]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
9608703e | 23 | * inode->i_rwsem (while writing or truncating, not reading or faulting) |
c1e8d7c6 | 24 | * mm->mmap_lock |
730633f0 JK |
25 | * mapping->invalidate_lock (in filemap_fault) |
26 | * page->flags PG_locked (lock_page) * (see hugetlbfs below) | |
27 | * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) | |
28 | * mapping->i_mmap_rwsem | |
29 | * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) | |
30 | * anon_vma->rwsem | |
31 | * mm->page_table_lock or pte_lock | |
32 | * swap_lock (in swap_duplicate, swap_info_get) | |
33 | * mmlist_lock (in mmput, drain_mmlist and others) | |
e621900a MWO |
34 | * mapping->private_lock (in block_dirty_folio) |
35 | * folio_lock_memcg move_lock (in block_dirty_folio) | |
730633f0 | 36 | * i_pages lock (widely used) |
e809c3fe | 37 | * lruvec->lru_lock (in folio_lruvec_lock_irq) |
730633f0 JK |
38 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) |
39 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | |
40 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
41 | * i_pages lock (widely used, in set_page_dirty, | |
42 | * in arch-dependent flush_dcache_mmap_lock, | |
43 | * within bdi.wb->list_lock in __sync_single_inode) | |
6a46079c | 44 | * |
9608703e | 45 | * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) |
9b679320 | 46 | * ->tasklist_lock |
6a46079c | 47 | * pte map lock |
c0d0381a MK |
48 | * |
49 | * * hugetlbfs PageHuge() pages take locks in this order: | |
50 | * mapping->i_mmap_rwsem | |
51 | * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) | |
52 | * page->flags PG_locked (lock_page) | |
1da177e4 LT |
53 | */ |
54 | ||
55 | #include <linux/mm.h> | |
6e84f315 | 56 | #include <linux/sched/mm.h> |
29930025 | 57 | #include <linux/sched/task.h> |
1da177e4 LT |
58 | #include <linux/pagemap.h> |
59 | #include <linux/swap.h> | |
60 | #include <linux/swapops.h> | |
61 | #include <linux/slab.h> | |
62 | #include <linux/init.h> | |
5ad64688 | 63 | #include <linux/ksm.h> |
1da177e4 LT |
64 | #include <linux/rmap.h> |
65 | #include <linux/rcupdate.h> | |
b95f1b31 | 66 | #include <linux/export.h> |
8a9f3ccd | 67 | #include <linux/memcontrol.h> |
cddb8a5c | 68 | #include <linux/mmu_notifier.h> |
64cdd548 | 69 | #include <linux/migrate.h> |
0fe6e20b | 70 | #include <linux/hugetlb.h> |
444f84fd | 71 | #include <linux/huge_mm.h> |
ef5d437f | 72 | #include <linux/backing-dev.h> |
33c3fc71 | 73 | #include <linux/page_idle.h> |
a5430dda | 74 | #include <linux/memremap.h> |
bce73e48 | 75 | #include <linux/userfaultfd_k.h> |
999dad82 | 76 | #include <linux/mm_inline.h> |
1da177e4 LT |
77 | |
78 | #include <asm/tlbflush.h> | |
79 | ||
4cc79b33 | 80 | #define CREATE_TRACE_POINTS |
72b252ae | 81 | #include <trace/events/tlb.h> |
4cc79b33 | 82 | #include <trace/events/migrate.h> |
72b252ae | 83 | |
b291f000 NP |
84 | #include "internal.h" |
85 | ||
fdd2e5f8 | 86 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 87 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
88 | |
89 | static inline struct anon_vma *anon_vma_alloc(void) | |
90 | { | |
01d8b20d PZ |
91 | struct anon_vma *anon_vma; |
92 | ||
93 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
94 | if (anon_vma) { | |
95 | atomic_set(&anon_vma->refcount, 1); | |
7a3ef208 KK |
96 | anon_vma->degree = 1; /* Reference for first vma */ |
97 | anon_vma->parent = anon_vma; | |
01d8b20d PZ |
98 | /* |
99 | * Initialise the anon_vma root to point to itself. If called | |
100 | * from fork, the root will be reset to the parents anon_vma. | |
101 | */ | |
102 | anon_vma->root = anon_vma; | |
103 | } | |
104 | ||
105 | return anon_vma; | |
fdd2e5f8 AB |
106 | } |
107 | ||
01d8b20d | 108 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 109 | { |
01d8b20d | 110 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
111 | |
112 | /* | |
2f031c6f | 113 | * Synchronize against folio_lock_anon_vma_read() such that |
88c22088 PZ |
114 | * we can safely hold the lock without the anon_vma getting |
115 | * freed. | |
116 | * | |
117 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
118 | * put_anon_vma() against the acquire barrier implied by | |
2f031c6f | 119 | * down_read_trylock() from folio_lock_anon_vma_read(). This orders: |
88c22088 | 120 | * |
2f031c6f | 121 | * folio_lock_anon_vma_read() VS put_anon_vma() |
4fc3f1d6 | 122 | * down_read_trylock() atomic_dec_and_test() |
88c22088 | 123 | * LOCK MB |
4fc3f1d6 | 124 | * atomic_read() rwsem_is_locked() |
88c22088 PZ |
125 | * |
126 | * LOCK should suffice since the actual taking of the lock must | |
127 | * happen _before_ what follows. | |
128 | */ | |
7f39dda9 | 129 | might_sleep(); |
5a505085 | 130 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
4fc3f1d6 | 131 | anon_vma_lock_write(anon_vma); |
08b52706 | 132 | anon_vma_unlock_write(anon_vma); |
88c22088 PZ |
133 | } |
134 | ||
fdd2e5f8 AB |
135 | kmem_cache_free(anon_vma_cachep, anon_vma); |
136 | } | |
1da177e4 | 137 | |
dd34739c | 138 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 139 | { |
dd34739c | 140 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
141 | } |
142 | ||
e574b5fd | 143 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
144 | { |
145 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
146 | } | |
147 | ||
6583a843 KC |
148 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
149 | struct anon_vma_chain *avc, | |
150 | struct anon_vma *anon_vma) | |
151 | { | |
152 | avc->vma = vma; | |
153 | avc->anon_vma = anon_vma; | |
154 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
bf181b9f | 155 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
6583a843 KC |
156 | } |
157 | ||
d9d332e0 | 158 | /** |
d5a187da | 159 | * __anon_vma_prepare - attach an anon_vma to a memory region |
d9d332e0 LT |
160 | * @vma: the memory region in question |
161 | * | |
162 | * This makes sure the memory mapping described by 'vma' has | |
163 | * an 'anon_vma' attached to it, so that we can associate the | |
164 | * anonymous pages mapped into it with that anon_vma. | |
165 | * | |
d5a187da VB |
166 | * The common case will be that we already have one, which |
167 | * is handled inline by anon_vma_prepare(). But if | |
23a0790a | 168 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
169 | * can re-use the anon_vma from (very common when the only |
170 | * reason for splitting a vma has been mprotect()), or we | |
171 | * allocate a new one. | |
172 | * | |
173 | * Anon-vma allocations are very subtle, because we may have | |
2f031c6f | 174 | * optimistically looked up an anon_vma in folio_lock_anon_vma_read() |
aaf1f990 | 175 | * and that may actually touch the rwsem even in the newly |
d9d332e0 LT |
176 | * allocated vma (it depends on RCU to make sure that the |
177 | * anon_vma isn't actually destroyed). | |
178 | * | |
179 | * As a result, we need to do proper anon_vma locking even | |
180 | * for the new allocation. At the same time, we do not want | |
181 | * to do any locking for the common case of already having | |
182 | * an anon_vma. | |
183 | * | |
c1e8d7c6 | 184 | * This must be called with the mmap_lock held for reading. |
d9d332e0 | 185 | */ |
d5a187da | 186 | int __anon_vma_prepare(struct vm_area_struct *vma) |
1da177e4 | 187 | { |
d5a187da VB |
188 | struct mm_struct *mm = vma->vm_mm; |
189 | struct anon_vma *anon_vma, *allocated; | |
5beb4930 | 190 | struct anon_vma_chain *avc; |
1da177e4 LT |
191 | |
192 | might_sleep(); | |
1da177e4 | 193 | |
d5a187da VB |
194 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
195 | if (!avc) | |
196 | goto out_enomem; | |
197 | ||
198 | anon_vma = find_mergeable_anon_vma(vma); | |
199 | allocated = NULL; | |
200 | if (!anon_vma) { | |
201 | anon_vma = anon_vma_alloc(); | |
202 | if (unlikely(!anon_vma)) | |
203 | goto out_enomem_free_avc; | |
204 | allocated = anon_vma; | |
205 | } | |
5beb4930 | 206 | |
d5a187da VB |
207 | anon_vma_lock_write(anon_vma); |
208 | /* page_table_lock to protect against threads */ | |
209 | spin_lock(&mm->page_table_lock); | |
210 | if (likely(!vma->anon_vma)) { | |
211 | vma->anon_vma = anon_vma; | |
212 | anon_vma_chain_link(vma, avc, anon_vma); | |
213 | /* vma reference or self-parent link for new root */ | |
214 | anon_vma->degree++; | |
d9d332e0 | 215 | allocated = NULL; |
d5a187da VB |
216 | avc = NULL; |
217 | } | |
218 | spin_unlock(&mm->page_table_lock); | |
219 | anon_vma_unlock_write(anon_vma); | |
1da177e4 | 220 | |
d5a187da VB |
221 | if (unlikely(allocated)) |
222 | put_anon_vma(allocated); | |
223 | if (unlikely(avc)) | |
224 | anon_vma_chain_free(avc); | |
31f2b0eb | 225 | |
1da177e4 | 226 | return 0; |
5beb4930 RR |
227 | |
228 | out_enomem_free_avc: | |
229 | anon_vma_chain_free(avc); | |
230 | out_enomem: | |
231 | return -ENOMEM; | |
1da177e4 LT |
232 | } |
233 | ||
bb4aa396 LT |
234 | /* |
235 | * This is a useful helper function for locking the anon_vma root as | |
236 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
237 | * have the same vma. | |
238 | * | |
239 | * Such anon_vma's should have the same root, so you'd expect to see | |
240 | * just a single mutex_lock for the whole traversal. | |
241 | */ | |
242 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
243 | { | |
244 | struct anon_vma *new_root = anon_vma->root; | |
245 | if (new_root != root) { | |
246 | if (WARN_ON_ONCE(root)) | |
5a505085 | 247 | up_write(&root->rwsem); |
bb4aa396 | 248 | root = new_root; |
5a505085 | 249 | down_write(&root->rwsem); |
bb4aa396 LT |
250 | } |
251 | return root; | |
252 | } | |
253 | ||
254 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
255 | { | |
256 | if (root) | |
5a505085 | 257 | up_write(&root->rwsem); |
bb4aa396 LT |
258 | } |
259 | ||
5beb4930 RR |
260 | /* |
261 | * Attach the anon_vmas from src to dst. | |
262 | * Returns 0 on success, -ENOMEM on failure. | |
7a3ef208 | 263 | * |
cb152a1a | 264 | * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and |
47b390d2 WY |
265 | * anon_vma_fork(). The first three want an exact copy of src, while the last |
266 | * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent | |
267 | * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, | |
268 | * we can identify this case by checking (!dst->anon_vma && src->anon_vma). | |
269 | * | |
270 | * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find | |
271 | * and reuse existing anon_vma which has no vmas and only one child anon_vma. | |
272 | * This prevents degradation of anon_vma hierarchy to endless linear chain in | |
273 | * case of constantly forking task. On the other hand, an anon_vma with more | |
274 | * than one child isn't reused even if there was no alive vma, thus rmap | |
275 | * walker has a good chance of avoiding scanning the whole hierarchy when it | |
276 | * searches where page is mapped. | |
5beb4930 RR |
277 | */ |
278 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 279 | { |
5beb4930 | 280 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 281 | struct anon_vma *root = NULL; |
5beb4930 | 282 | |
646d87b4 | 283 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
284 | struct anon_vma *anon_vma; |
285 | ||
dd34739c LT |
286 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
287 | if (unlikely(!avc)) { | |
288 | unlock_anon_vma_root(root); | |
289 | root = NULL; | |
290 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
291 | if (!avc) | |
292 | goto enomem_failure; | |
293 | } | |
bb4aa396 LT |
294 | anon_vma = pavc->anon_vma; |
295 | root = lock_anon_vma_root(root, anon_vma); | |
296 | anon_vma_chain_link(dst, avc, anon_vma); | |
7a3ef208 KK |
297 | |
298 | /* | |
299 | * Reuse existing anon_vma if its degree lower than two, | |
300 | * that means it has no vma and only one anon_vma child. | |
301 | * | |
dd062302 | 302 | * Do not choose parent anon_vma, otherwise first child |
7a3ef208 KK |
303 | * will always reuse it. Root anon_vma is never reused: |
304 | * it has self-parent reference and at least one child. | |
305 | */ | |
47b390d2 WY |
306 | if (!dst->anon_vma && src->anon_vma && |
307 | anon_vma != src->anon_vma && anon_vma->degree < 2) | |
7a3ef208 | 308 | dst->anon_vma = anon_vma; |
5beb4930 | 309 | } |
7a3ef208 KK |
310 | if (dst->anon_vma) |
311 | dst->anon_vma->degree++; | |
bb4aa396 | 312 | unlock_anon_vma_root(root); |
5beb4930 | 313 | return 0; |
1da177e4 | 314 | |
5beb4930 | 315 | enomem_failure: |
3fe89b3e LY |
316 | /* |
317 | * dst->anon_vma is dropped here otherwise its degree can be incorrectly | |
318 | * decremented in unlink_anon_vmas(). | |
319 | * We can safely do this because callers of anon_vma_clone() don't care | |
320 | * about dst->anon_vma if anon_vma_clone() failed. | |
321 | */ | |
322 | dst->anon_vma = NULL; | |
5beb4930 RR |
323 | unlink_anon_vmas(dst); |
324 | return -ENOMEM; | |
1da177e4 LT |
325 | } |
326 | ||
5beb4930 RR |
327 | /* |
328 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
329 | * the corresponding VMA in the parent process is attached to. | |
330 | * Returns 0 on success, non-zero on failure. | |
331 | */ | |
332 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 333 | { |
5beb4930 RR |
334 | struct anon_vma_chain *avc; |
335 | struct anon_vma *anon_vma; | |
c4ea95d7 | 336 | int error; |
1da177e4 | 337 | |
5beb4930 RR |
338 | /* Don't bother if the parent process has no anon_vma here. */ |
339 | if (!pvma->anon_vma) | |
340 | return 0; | |
341 | ||
7a3ef208 KK |
342 | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ |
343 | vma->anon_vma = NULL; | |
344 | ||
5beb4930 RR |
345 | /* |
346 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
347 | * so rmap can find non-COWed pages in child processes. | |
348 | */ | |
c4ea95d7 DF |
349 | error = anon_vma_clone(vma, pvma); |
350 | if (error) | |
351 | return error; | |
5beb4930 | 352 | |
7a3ef208 KK |
353 | /* An existing anon_vma has been reused, all done then. */ |
354 | if (vma->anon_vma) | |
355 | return 0; | |
356 | ||
5beb4930 RR |
357 | /* Then add our own anon_vma. */ |
358 | anon_vma = anon_vma_alloc(); | |
359 | if (!anon_vma) | |
360 | goto out_error; | |
dd34739c | 361 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
362 | if (!avc) |
363 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
364 | |
365 | /* | |
aaf1f990 | 366 | * The root anon_vma's rwsem is the lock actually used when we |
5c341ee1 RR |
367 | * lock any of the anon_vmas in this anon_vma tree. |
368 | */ | |
369 | anon_vma->root = pvma->anon_vma->root; | |
7a3ef208 | 370 | anon_vma->parent = pvma->anon_vma; |
76545066 | 371 | /* |
01d8b20d PZ |
372 | * With refcounts, an anon_vma can stay around longer than the |
373 | * process it belongs to. The root anon_vma needs to be pinned until | |
374 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
375 | */ |
376 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
377 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
378 | vma->anon_vma = anon_vma; | |
4fc3f1d6 | 379 | anon_vma_lock_write(anon_vma); |
5c341ee1 | 380 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 | 381 | anon_vma->parent->degree++; |
08b52706 | 382 | anon_vma_unlock_write(anon_vma); |
5beb4930 RR |
383 | |
384 | return 0; | |
385 | ||
386 | out_error_free_anon_vma: | |
01d8b20d | 387 | put_anon_vma(anon_vma); |
5beb4930 | 388 | out_error: |
4946d54c | 389 | unlink_anon_vmas(vma); |
5beb4930 | 390 | return -ENOMEM; |
1da177e4 LT |
391 | } |
392 | ||
5beb4930 RR |
393 | void unlink_anon_vmas(struct vm_area_struct *vma) |
394 | { | |
395 | struct anon_vma_chain *avc, *next; | |
eee2acba | 396 | struct anon_vma *root = NULL; |
5beb4930 | 397 | |
5c341ee1 RR |
398 | /* |
399 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
400 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
401 | */ | |
5beb4930 | 402 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
403 | struct anon_vma *anon_vma = avc->anon_vma; |
404 | ||
405 | root = lock_anon_vma_root(root, anon_vma); | |
bf181b9f | 406 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
eee2acba PZ |
407 | |
408 | /* | |
409 | * Leave empty anon_vmas on the list - we'll need | |
410 | * to free them outside the lock. | |
411 | */ | |
f808c13f | 412 | if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { |
7a3ef208 | 413 | anon_vma->parent->degree--; |
eee2acba | 414 | continue; |
7a3ef208 | 415 | } |
eee2acba PZ |
416 | |
417 | list_del(&avc->same_vma); | |
418 | anon_vma_chain_free(avc); | |
419 | } | |
ee8ab190 | 420 | if (vma->anon_vma) { |
7a3ef208 | 421 | vma->anon_vma->degree--; |
ee8ab190 LX |
422 | |
423 | /* | |
424 | * vma would still be needed after unlink, and anon_vma will be prepared | |
425 | * when handle fault. | |
426 | */ | |
427 | vma->anon_vma = NULL; | |
428 | } | |
eee2acba PZ |
429 | unlock_anon_vma_root(root); |
430 | ||
431 | /* | |
432 | * Iterate the list once more, it now only contains empty and unlinked | |
433 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
5a505085 | 434 | * needing to write-acquire the anon_vma->root->rwsem. |
eee2acba PZ |
435 | */ |
436 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
437 | struct anon_vma *anon_vma = avc->anon_vma; | |
438 | ||
e4c5800a | 439 | VM_WARN_ON(anon_vma->degree); |
eee2acba PZ |
440 | put_anon_vma(anon_vma); |
441 | ||
5beb4930 RR |
442 | list_del(&avc->same_vma); |
443 | anon_vma_chain_free(avc); | |
444 | } | |
445 | } | |
446 | ||
51cc5068 | 447 | static void anon_vma_ctor(void *data) |
1da177e4 | 448 | { |
a35afb83 | 449 | struct anon_vma *anon_vma = data; |
1da177e4 | 450 | |
5a505085 | 451 | init_rwsem(&anon_vma->rwsem); |
83813267 | 452 | atomic_set(&anon_vma->refcount, 0); |
f808c13f | 453 | anon_vma->rb_root = RB_ROOT_CACHED; |
1da177e4 LT |
454 | } |
455 | ||
456 | void __init anon_vma_init(void) | |
457 | { | |
458 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
5f0d5a3a | 459 | 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, |
5d097056 VD |
460 | anon_vma_ctor); |
461 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | |
462 | SLAB_PANIC|SLAB_ACCOUNT); | |
1da177e4 LT |
463 | } |
464 | ||
465 | /* | |
6111e4ca PZ |
466 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
467 | * | |
468 | * Since there is no serialization what so ever against page_remove_rmap() | |
ad8a20cf ML |
469 | * the best this function can do is return a refcount increased anon_vma |
470 | * that might have been relevant to this page. | |
6111e4ca PZ |
471 | * |
472 | * The page might have been remapped to a different anon_vma or the anon_vma | |
473 | * returned may already be freed (and even reused). | |
474 | * | |
bc658c96 PZ |
475 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
476 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
477 | * ensure that any anon_vma obtained from the page will still be valid for as | |
478 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
479 | * | |
6111e4ca PZ |
480 | * All users of this function must be very careful when walking the anon_vma |
481 | * chain and verify that the page in question is indeed mapped in it | |
482 | * [ something equivalent to page_mapped_in_vma() ]. | |
483 | * | |
091e4299 MC |
484 | * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from |
485 | * page_remove_rmap() that the anon_vma pointer from page->mapping is valid | |
486 | * if there is a mapcount, we can dereference the anon_vma after observing | |
487 | * those. | |
1da177e4 | 488 | */ |
746b18d4 | 489 | struct anon_vma *page_get_anon_vma(struct page *page) |
1da177e4 | 490 | { |
746b18d4 | 491 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
492 | unsigned long anon_mapping; |
493 | ||
494 | rcu_read_lock(); | |
4db0c3c2 | 495 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
3ca7b3c5 | 496 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
497 | goto out; |
498 | if (!page_mapped(page)) | |
499 | goto out; | |
500 | ||
501 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
502 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
503 | anon_vma = NULL; | |
504 | goto out; | |
505 | } | |
f1819427 HD |
506 | |
507 | /* | |
508 | * If this page is still mapped, then its anon_vma cannot have been | |
746b18d4 PZ |
509 | * freed. But if it has been unmapped, we have no security against the |
510 | * anon_vma structure being freed and reused (for another anon_vma: | |
5f0d5a3a | 511 | * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() |
746b18d4 | 512 | * above cannot corrupt). |
f1819427 | 513 | */ |
746b18d4 | 514 | if (!page_mapped(page)) { |
7f39dda9 | 515 | rcu_read_unlock(); |
746b18d4 | 516 | put_anon_vma(anon_vma); |
7f39dda9 | 517 | return NULL; |
746b18d4 | 518 | } |
1da177e4 LT |
519 | out: |
520 | rcu_read_unlock(); | |
746b18d4 PZ |
521 | |
522 | return anon_vma; | |
523 | } | |
524 | ||
88c22088 PZ |
525 | /* |
526 | * Similar to page_get_anon_vma() except it locks the anon_vma. | |
527 | * | |
528 | * Its a little more complex as it tries to keep the fast path to a single | |
529 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
6d4675e6 MK |
530 | * reference like with page_get_anon_vma() and then block on the mutex |
531 | * on !rwc->try_lock case. | |
88c22088 | 532 | */ |
6d4675e6 MK |
533 | struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, |
534 | struct rmap_walk_control *rwc) | |
746b18d4 | 535 | { |
88c22088 | 536 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 537 | struct anon_vma *root_anon_vma; |
88c22088 | 538 | unsigned long anon_mapping; |
746b18d4 | 539 | |
88c22088 | 540 | rcu_read_lock(); |
9595d769 | 541 | anon_mapping = (unsigned long)READ_ONCE(folio->mapping); |
88c22088 PZ |
542 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
543 | goto out; | |
9595d769 | 544 | if (!folio_mapped(folio)) |
88c22088 PZ |
545 | goto out; |
546 | ||
547 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
4db0c3c2 | 548 | root_anon_vma = READ_ONCE(anon_vma->root); |
4fc3f1d6 | 549 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
88c22088 | 550 | /* |
9595d769 | 551 | * If the folio is still mapped, then this anon_vma is still |
eee0f252 | 552 | * its anon_vma, and holding the mutex ensures that it will |
bc658c96 | 553 | * not go away, see anon_vma_free(). |
88c22088 | 554 | */ |
9595d769 | 555 | if (!folio_mapped(folio)) { |
4fc3f1d6 | 556 | up_read(&root_anon_vma->rwsem); |
88c22088 PZ |
557 | anon_vma = NULL; |
558 | } | |
559 | goto out; | |
560 | } | |
746b18d4 | 561 | |
6d4675e6 MK |
562 | if (rwc && rwc->try_lock) { |
563 | anon_vma = NULL; | |
564 | rwc->contended = true; | |
565 | goto out; | |
566 | } | |
567 | ||
88c22088 PZ |
568 | /* trylock failed, we got to sleep */ |
569 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
570 | anon_vma = NULL; | |
571 | goto out; | |
572 | } | |
573 | ||
9595d769 | 574 | if (!folio_mapped(folio)) { |
7f39dda9 | 575 | rcu_read_unlock(); |
88c22088 | 576 | put_anon_vma(anon_vma); |
7f39dda9 | 577 | return NULL; |
88c22088 PZ |
578 | } |
579 | ||
580 | /* we pinned the anon_vma, its safe to sleep */ | |
581 | rcu_read_unlock(); | |
4fc3f1d6 | 582 | anon_vma_lock_read(anon_vma); |
88c22088 PZ |
583 | |
584 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
585 | /* | |
586 | * Oops, we held the last refcount, release the lock | |
587 | * and bail -- can't simply use put_anon_vma() because | |
4fc3f1d6 | 588 | * we'll deadlock on the anon_vma_lock_write() recursion. |
88c22088 | 589 | */ |
4fc3f1d6 | 590 | anon_vma_unlock_read(anon_vma); |
88c22088 PZ |
591 | __put_anon_vma(anon_vma); |
592 | anon_vma = NULL; | |
593 | } | |
594 | ||
595 | return anon_vma; | |
596 | ||
597 | out: | |
598 | rcu_read_unlock(); | |
746b18d4 | 599 | return anon_vma; |
34bbd704 ON |
600 | } |
601 | ||
4fc3f1d6 | 602 | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) |
34bbd704 | 603 | { |
4fc3f1d6 | 604 | anon_vma_unlock_read(anon_vma); |
1da177e4 LT |
605 | } |
606 | ||
72b252ae | 607 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
72b252ae MG |
608 | /* |
609 | * Flush TLB entries for recently unmapped pages from remote CPUs. It is | |
610 | * important if a PTE was dirty when it was unmapped that it's flushed | |
611 | * before any IO is initiated on the page to prevent lost writes. Similarly, | |
612 | * it must be flushed before freeing to prevent data leakage. | |
613 | */ | |
614 | void try_to_unmap_flush(void) | |
615 | { | |
616 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
72b252ae MG |
617 | |
618 | if (!tlb_ubc->flush_required) | |
619 | return; | |
620 | ||
e73ad5ff | 621 | arch_tlbbatch_flush(&tlb_ubc->arch); |
72b252ae | 622 | tlb_ubc->flush_required = false; |
d950c947 | 623 | tlb_ubc->writable = false; |
72b252ae MG |
624 | } |
625 | ||
d950c947 MG |
626 | /* Flush iff there are potentially writable TLB entries that can race with IO */ |
627 | void try_to_unmap_flush_dirty(void) | |
628 | { | |
629 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
630 | ||
631 | if (tlb_ubc->writable) | |
632 | try_to_unmap_flush(); | |
633 | } | |
634 | ||
5ee2fa2f YH |
635 | /* |
636 | * Bits 0-14 of mm->tlb_flush_batched record pending generations. | |
637 | * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. | |
638 | */ | |
639 | #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 | |
640 | #define TLB_FLUSH_BATCH_PENDING_MASK \ | |
641 | ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) | |
642 | #define TLB_FLUSH_BATCH_PENDING_LARGE \ | |
643 | (TLB_FLUSH_BATCH_PENDING_MASK / 2) | |
644 | ||
c7ab0d2f | 645 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
646 | { |
647 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
5ee2fa2f | 648 | int batch, nbatch; |
72b252ae | 649 | |
e73ad5ff | 650 | arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); |
72b252ae | 651 | tlb_ubc->flush_required = true; |
d950c947 | 652 | |
3ea27719 MG |
653 | /* |
654 | * Ensure compiler does not re-order the setting of tlb_flush_batched | |
655 | * before the PTE is cleared. | |
656 | */ | |
657 | barrier(); | |
5ee2fa2f YH |
658 | batch = atomic_read(&mm->tlb_flush_batched); |
659 | retry: | |
660 | if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { | |
661 | /* | |
662 | * Prevent `pending' from catching up with `flushed' because of | |
663 | * overflow. Reset `pending' and `flushed' to be 1 and 0 if | |
664 | * `pending' becomes large. | |
665 | */ | |
666 | nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1); | |
667 | if (nbatch != batch) { | |
668 | batch = nbatch; | |
669 | goto retry; | |
670 | } | |
671 | } else { | |
672 | atomic_inc(&mm->tlb_flush_batched); | |
673 | } | |
3ea27719 | 674 | |
d950c947 MG |
675 | /* |
676 | * If the PTE was dirty then it's best to assume it's writable. The | |
677 | * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | |
678 | * before the page is queued for IO. | |
679 | */ | |
680 | if (writable) | |
681 | tlb_ubc->writable = true; | |
72b252ae MG |
682 | } |
683 | ||
684 | /* | |
685 | * Returns true if the TLB flush should be deferred to the end of a batch of | |
686 | * unmap operations to reduce IPIs. | |
687 | */ | |
688 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
689 | { | |
690 | bool should_defer = false; | |
691 | ||
692 | if (!(flags & TTU_BATCH_FLUSH)) | |
693 | return false; | |
694 | ||
695 | /* If remote CPUs need to be flushed then defer batch the flush */ | |
696 | if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | |
697 | should_defer = true; | |
698 | put_cpu(); | |
699 | ||
700 | return should_defer; | |
701 | } | |
3ea27719 MG |
702 | |
703 | /* | |
704 | * Reclaim unmaps pages under the PTL but do not flush the TLB prior to | |
705 | * releasing the PTL if TLB flushes are batched. It's possible for a parallel | |
706 | * operation such as mprotect or munmap to race between reclaim unmapping | |
707 | * the page and flushing the page. If this race occurs, it potentially allows | |
708 | * access to data via a stale TLB entry. Tracking all mm's that have TLB | |
709 | * batching in flight would be expensive during reclaim so instead track | |
710 | * whether TLB batching occurred in the past and if so then do a flush here | |
711 | * if required. This will cost one additional flush per reclaim cycle paid | |
712 | * by the first operation at risk such as mprotect and mumap. | |
713 | * | |
714 | * This must be called under the PTL so that an access to tlb_flush_batched | |
715 | * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise | |
716 | * via the PTL. | |
717 | */ | |
718 | void flush_tlb_batched_pending(struct mm_struct *mm) | |
719 | { | |
5ee2fa2f YH |
720 | int batch = atomic_read(&mm->tlb_flush_batched); |
721 | int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; | |
722 | int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; | |
3ea27719 | 723 | |
5ee2fa2f YH |
724 | if (pending != flushed) { |
725 | flush_tlb_mm(mm); | |
3ea27719 | 726 | /* |
5ee2fa2f YH |
727 | * If the new TLB flushing is pending during flushing, leave |
728 | * mm->tlb_flush_batched as is, to avoid losing flushing. | |
3ea27719 | 729 | */ |
5ee2fa2f YH |
730 | atomic_cmpxchg(&mm->tlb_flush_batched, batch, |
731 | pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); | |
3ea27719 MG |
732 | } |
733 | } | |
72b252ae | 734 | #else |
c7ab0d2f | 735 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
736 | { |
737 | } | |
738 | ||
739 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
740 | { | |
741 | return false; | |
742 | } | |
743 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | |
744 | ||
1da177e4 | 745 | /* |
bf89c8c8 | 746 | * At what user virtual address is page expected in vma? |
ab941e0f | 747 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
748 | */ |
749 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
750 | { | |
e05b3453 MWO |
751 | struct folio *folio = page_folio(page); |
752 | if (folio_test_anon(folio)) { | |
753 | struct anon_vma *page__anon_vma = folio_anon_vma(folio); | |
4829b906 HD |
754 | /* |
755 | * Note: swapoff's unuse_vma() is more efficient with this | |
756 | * check, and needs it to match anon_vma when KSM is active. | |
757 | */ | |
758 | if (!vma->anon_vma || !page__anon_vma || | |
759 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 | 760 | return -EFAULT; |
31657170 JW |
761 | } else if (!vma->vm_file) { |
762 | return -EFAULT; | |
e05b3453 | 763 | } else if (vma->vm_file->f_mapping != folio->mapping) { |
1da177e4 | 764 | return -EFAULT; |
31657170 | 765 | } |
494334e4 HD |
766 | |
767 | return vma_address(page, vma); | |
1da177e4 LT |
768 | } |
769 | ||
6219049a BL |
770 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
771 | { | |
772 | pgd_t *pgd; | |
c2febafc | 773 | p4d_t *p4d; |
6219049a BL |
774 | pud_t *pud; |
775 | pmd_t *pmd = NULL; | |
f72e7dcd | 776 | pmd_t pmde; |
6219049a BL |
777 | |
778 | pgd = pgd_offset(mm, address); | |
779 | if (!pgd_present(*pgd)) | |
780 | goto out; | |
781 | ||
c2febafc KS |
782 | p4d = p4d_offset(pgd, address); |
783 | if (!p4d_present(*p4d)) | |
784 | goto out; | |
785 | ||
786 | pud = pud_offset(p4d, address); | |
6219049a BL |
787 | if (!pud_present(*pud)) |
788 | goto out; | |
789 | ||
790 | pmd = pmd_offset(pud, address); | |
f72e7dcd | 791 | /* |
8809aa2d | 792 | * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() |
f72e7dcd HD |
793 | * without holding anon_vma lock for write. So when looking for a |
794 | * genuine pmde (in which to find pte), test present and !THP together. | |
795 | */ | |
e37c6982 CB |
796 | pmde = *pmd; |
797 | barrier(); | |
f72e7dcd | 798 | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) |
6219049a BL |
799 | pmd = NULL; |
800 | out: | |
801 | return pmd; | |
802 | } | |
803 | ||
b3ac0413 | 804 | struct folio_referenced_arg { |
8749cfea VD |
805 | int mapcount; |
806 | int referenced; | |
807 | unsigned long vm_flags; | |
808 | struct mem_cgroup *memcg; | |
809 | }; | |
810 | /* | |
b3ac0413 | 811 | * arg: folio_referenced_arg will be passed |
8749cfea | 812 | */ |
2f031c6f MWO |
813 | static bool folio_referenced_one(struct folio *folio, |
814 | struct vm_area_struct *vma, unsigned long address, void *arg) | |
8749cfea | 815 | { |
b3ac0413 MWO |
816 | struct folio_referenced_arg *pra = arg; |
817 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); | |
8749cfea VD |
818 | int referenced = 0; |
819 | ||
8eaedede KS |
820 | while (page_vma_mapped_walk(&pvmw)) { |
821 | address = pvmw.address; | |
b20ce5e0 | 822 | |
47d4f3ee | 823 | if ((vma->vm_flags & VM_LOCKED) && |
b3ac0413 | 824 | (!folio_test_large(folio) || !pvmw.pte)) { |
47d4f3ee | 825 | /* Restore the mlock which got missed */ |
b3ac0413 | 826 | mlock_vma_folio(folio, vma, !pvmw.pte); |
8eaedede KS |
827 | page_vma_mapped_walk_done(&pvmw); |
828 | pra->vm_flags |= VM_LOCKED; | |
e4b82222 | 829 | return false; /* To break the loop */ |
8eaedede | 830 | } |
71e3aac0 | 831 | |
8eaedede KS |
832 | if (pvmw.pte) { |
833 | if (ptep_clear_flush_young_notify(vma, address, | |
834 | pvmw.pte)) { | |
835 | /* | |
836 | * Don't treat a reference through | |
837 | * a sequentially read mapping as such. | |
b3ac0413 | 838 | * If the folio has been used in another mapping, |
8eaedede KS |
839 | * we will catch it; if this other mapping is |
840 | * already gone, the unmap path will have set | |
b3ac0413 | 841 | * the referenced flag or activated the folio. |
8eaedede KS |
842 | */ |
843 | if (likely(!(vma->vm_flags & VM_SEQ_READ))) | |
844 | referenced++; | |
845 | } | |
846 | } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | |
847 | if (pmdp_clear_flush_young_notify(vma, address, | |
848 | pvmw.pmd)) | |
8749cfea | 849 | referenced++; |
8eaedede | 850 | } else { |
b3ac0413 | 851 | /* unexpected pmd-mapped folio? */ |
8eaedede | 852 | WARN_ON_ONCE(1); |
8749cfea | 853 | } |
8eaedede KS |
854 | |
855 | pra->mapcount--; | |
b20ce5e0 | 856 | } |
b20ce5e0 | 857 | |
33c3fc71 | 858 | if (referenced) |
b3ac0413 MWO |
859 | folio_clear_idle(folio); |
860 | if (folio_test_clear_young(folio)) | |
33c3fc71 VD |
861 | referenced++; |
862 | ||
9f32624b JK |
863 | if (referenced) { |
864 | pra->referenced++; | |
47d4f3ee | 865 | pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; |
1da177e4 | 866 | } |
34bbd704 | 867 | |
9f32624b | 868 | if (!pra->mapcount) |
e4b82222 | 869 | return false; /* To break the loop */ |
9f32624b | 870 | |
e4b82222 | 871 | return true; |
1da177e4 LT |
872 | } |
873 | ||
b3ac0413 | 874 | static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) |
1da177e4 | 875 | { |
b3ac0413 | 876 | struct folio_referenced_arg *pra = arg; |
9f32624b | 877 | struct mem_cgroup *memcg = pra->memcg; |
1da177e4 | 878 | |
9f32624b JK |
879 | if (!mm_match_cgroup(vma->vm_mm, memcg)) |
880 | return true; | |
1da177e4 | 881 | |
9f32624b | 882 | return false; |
1da177e4 LT |
883 | } |
884 | ||
885 | /** | |
b3ac0413 MWO |
886 | * folio_referenced() - Test if the folio was referenced. |
887 | * @folio: The folio to test. | |
888 | * @is_locked: Caller holds lock on the folio. | |
72835c86 | 889 | * @memcg: target memory cgroup |
b3ac0413 | 890 | * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. |
1da177e4 | 891 | * |
b3ac0413 MWO |
892 | * Quick test_and_clear_referenced for all mappings of a folio, |
893 | * | |
6d4675e6 MK |
894 | * Return: The number of mappings which referenced the folio. Return -1 if |
895 | * the function bailed out due to rmap lock contention. | |
1da177e4 | 896 | */ |
b3ac0413 MWO |
897 | int folio_referenced(struct folio *folio, int is_locked, |
898 | struct mem_cgroup *memcg, unsigned long *vm_flags) | |
1da177e4 | 899 | { |
5ad64688 | 900 | int we_locked = 0; |
b3ac0413 MWO |
901 | struct folio_referenced_arg pra = { |
902 | .mapcount = folio_mapcount(folio), | |
9f32624b JK |
903 | .memcg = memcg, |
904 | }; | |
905 | struct rmap_walk_control rwc = { | |
b3ac0413 | 906 | .rmap_one = folio_referenced_one, |
9f32624b | 907 | .arg = (void *)&pra, |
2f031c6f | 908 | .anon_lock = folio_lock_anon_vma_read, |
6d4675e6 | 909 | .try_lock = true, |
9f32624b | 910 | }; |
1da177e4 | 911 | |
6fe6b7e3 | 912 | *vm_flags = 0; |
059d8442 | 913 | if (!pra.mapcount) |
9f32624b JK |
914 | return 0; |
915 | ||
b3ac0413 | 916 | if (!folio_raw_mapping(folio)) |
9f32624b JK |
917 | return 0; |
918 | ||
b3ac0413 MWO |
919 | if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { |
920 | we_locked = folio_trylock(folio); | |
9f32624b JK |
921 | if (!we_locked) |
922 | return 1; | |
1da177e4 | 923 | } |
9f32624b JK |
924 | |
925 | /* | |
926 | * If we are reclaiming on behalf of a cgroup, skip | |
927 | * counting on behalf of references from different | |
928 | * cgroups | |
929 | */ | |
930 | if (memcg) { | |
b3ac0413 | 931 | rwc.invalid_vma = invalid_folio_referenced_vma; |
9f32624b JK |
932 | } |
933 | ||
2f031c6f | 934 | rmap_walk(folio, &rwc); |
9f32624b JK |
935 | *vm_flags = pra.vm_flags; |
936 | ||
937 | if (we_locked) | |
b3ac0413 | 938 | folio_unlock(folio); |
9f32624b | 939 | |
6d4675e6 | 940 | return rwc.contended ? -1 : pra.referenced; |
1da177e4 LT |
941 | } |
942 | ||
6a8e0596 | 943 | static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) |
d08b3851 | 944 | { |
6a8e0596 MS |
945 | int cleaned = 0; |
946 | struct vm_area_struct *vma = pvmw->vma; | |
ac46d4f3 | 947 | struct mmu_notifier_range range; |
6a8e0596 | 948 | unsigned long address = pvmw->address; |
d08b3851 | 949 | |
369ea824 JG |
950 | /* |
951 | * We have to assume the worse case ie pmd for invalidation. Note that | |
e83c09a2 | 952 | * the folio can not be freed from this function. |
369ea824 | 953 | */ |
7269f999 JG |
954 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, |
955 | 0, vma, vma->vm_mm, address, | |
6a8e0596 | 956 | vma_address_end(pvmw)); |
ac46d4f3 | 957 | mmu_notifier_invalidate_range_start(&range); |
369ea824 | 958 | |
6a8e0596 | 959 | while (page_vma_mapped_walk(pvmw)) { |
f27176cf | 960 | int ret = 0; |
369ea824 | 961 | |
6a8e0596 MS |
962 | address = pvmw->address; |
963 | if (pvmw->pte) { | |
f27176cf | 964 | pte_t entry; |
6a8e0596 | 965 | pte_t *pte = pvmw->pte; |
f27176cf KS |
966 | |
967 | if (!pte_dirty(*pte) && !pte_write(*pte)) | |
968 | continue; | |
969 | ||
785373b4 LT |
970 | flush_cache_page(vma, address, pte_pfn(*pte)); |
971 | entry = ptep_clear_flush(vma, address, pte); | |
f27176cf KS |
972 | entry = pte_wrprotect(entry); |
973 | entry = pte_mkclean(entry); | |
785373b4 | 974 | set_pte_at(vma->vm_mm, address, pte, entry); |
f27176cf KS |
975 | ret = 1; |
976 | } else { | |
396bcc52 | 977 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
6a8e0596 | 978 | pmd_t *pmd = pvmw->pmd; |
f27176cf KS |
979 | pmd_t entry; |
980 | ||
981 | if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) | |
982 | continue; | |
983 | ||
7f9c9b60 MS |
984 | flush_cache_range(vma, address, |
985 | address + HPAGE_PMD_SIZE); | |
024eee0e | 986 | entry = pmdp_invalidate(vma, address, pmd); |
f27176cf KS |
987 | entry = pmd_wrprotect(entry); |
988 | entry = pmd_mkclean(entry); | |
785373b4 | 989 | set_pmd_at(vma->vm_mm, address, pmd, entry); |
f27176cf KS |
990 | ret = 1; |
991 | #else | |
e83c09a2 | 992 | /* unexpected pmd-mapped folio? */ |
f27176cf KS |
993 | WARN_ON_ONCE(1); |
994 | #endif | |
995 | } | |
d08b3851 | 996 | |
0f10851e JG |
997 | /* |
998 | * No need to call mmu_notifier_invalidate_range() as we are | |
999 | * downgrading page table protection not changing it to point | |
1000 | * to a new page. | |
1001 | * | |
ad56b738 | 1002 | * See Documentation/vm/mmu_notifier.rst |
0f10851e JG |
1003 | */ |
1004 | if (ret) | |
6a8e0596 | 1005 | cleaned++; |
c2fda5fe | 1006 | } |
d08b3851 | 1007 | |
ac46d4f3 | 1008 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 1009 | |
6a8e0596 MS |
1010 | return cleaned; |
1011 | } | |
1012 | ||
1013 | static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, | |
1014 | unsigned long address, void *arg) | |
1015 | { | |
1016 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); | |
1017 | int *cleaned = arg; | |
1018 | ||
1019 | *cleaned += page_vma_mkclean_one(&pvmw); | |
1020 | ||
e4b82222 | 1021 | return true; |
d08b3851 PZ |
1022 | } |
1023 | ||
9853a407 | 1024 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) |
d08b3851 | 1025 | { |
9853a407 | 1026 | if (vma->vm_flags & VM_SHARED) |
871beb8c | 1027 | return false; |
d08b3851 | 1028 | |
871beb8c | 1029 | return true; |
d08b3851 PZ |
1030 | } |
1031 | ||
d9c08e22 | 1032 | int folio_mkclean(struct folio *folio) |
d08b3851 | 1033 | { |
9853a407 JK |
1034 | int cleaned = 0; |
1035 | struct address_space *mapping; | |
1036 | struct rmap_walk_control rwc = { | |
1037 | .arg = (void *)&cleaned, | |
1038 | .rmap_one = page_mkclean_one, | |
1039 | .invalid_vma = invalid_mkclean_vma, | |
1040 | }; | |
d08b3851 | 1041 | |
d9c08e22 | 1042 | BUG_ON(!folio_test_locked(folio)); |
d08b3851 | 1043 | |
d9c08e22 | 1044 | if (!folio_mapped(folio)) |
9853a407 JK |
1045 | return 0; |
1046 | ||
d9c08e22 | 1047 | mapping = folio_mapping(folio); |
9853a407 JK |
1048 | if (!mapping) |
1049 | return 0; | |
1050 | ||
2f031c6f | 1051 | rmap_walk(folio, &rwc); |
d08b3851 | 1052 | |
9853a407 | 1053 | return cleaned; |
d08b3851 | 1054 | } |
d9c08e22 | 1055 | EXPORT_SYMBOL_GPL(folio_mkclean); |
d08b3851 | 1056 | |
6a8e0596 MS |
1057 | /** |
1058 | * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of | |
1059 | * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) | |
1060 | * within the @vma of shared mappings. And since clean PTEs | |
1061 | * should also be readonly, write protects them too. | |
1062 | * @pfn: start pfn. | |
1063 | * @nr_pages: number of physically contiguous pages srarting with @pfn. | |
1064 | * @pgoff: page offset that the @pfn mapped with. | |
1065 | * @vma: vma that @pfn mapped within. | |
1066 | * | |
1067 | * Returns the number of cleaned PTEs (including PMDs). | |
1068 | */ | |
1069 | int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, | |
1070 | struct vm_area_struct *vma) | |
1071 | { | |
1072 | struct page_vma_mapped_walk pvmw = { | |
1073 | .pfn = pfn, | |
1074 | .nr_pages = nr_pages, | |
1075 | .pgoff = pgoff, | |
1076 | .vma = vma, | |
1077 | .flags = PVMW_SYNC, | |
1078 | }; | |
1079 | ||
1080 | if (invalid_mkclean_vma(vma, NULL)) | |
1081 | return 0; | |
1082 | ||
1083 | pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); | |
1084 | VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); | |
1085 | ||
1086 | return page_vma_mkclean_one(&pvmw); | |
1087 | } | |
1088 | ||
c44b6743 RR |
1089 | /** |
1090 | * page_move_anon_rmap - move a page to our anon_vma | |
1091 | * @page: the page to move to our anon_vma | |
1092 | * @vma: the vma the page belongs to | |
c44b6743 RR |
1093 | * |
1094 | * When a page belongs exclusively to one process after a COW event, | |
1095 | * that page can be moved into the anon_vma that belongs to just that | |
1096 | * process, so the rmap code will not search the parent or sibling | |
1097 | * processes. | |
1098 | */ | |
5a49973d | 1099 | void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) |
c44b6743 RR |
1100 | { |
1101 | struct anon_vma *anon_vma = vma->anon_vma; | |
6c287605 | 1102 | struct page *subpage = page; |
c44b6743 | 1103 | |
5a49973d HD |
1104 | page = compound_head(page); |
1105 | ||
309381fe | 1106 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
81d1b09c | 1107 | VM_BUG_ON_VMA(!anon_vma, vma); |
c44b6743 RR |
1108 | |
1109 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
414e2fb8 VD |
1110 | /* |
1111 | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | |
b3ac0413 MWO |
1112 | * simultaneously, so a concurrent reader (eg folio_referenced()'s |
1113 | * folio_test_anon()) will not see one without the other. | |
414e2fb8 VD |
1114 | */ |
1115 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); | |
6c287605 | 1116 | SetPageAnonExclusive(subpage); |
c44b6743 RR |
1117 | } |
1118 | ||
9617d95e | 1119 | /** |
4e1c1975 | 1120 | * __page_set_anon_rmap - set up new anonymous rmap |
451b9514 | 1121 | * @page: Page or Hugepage to add to rmap |
4e1c1975 AK |
1122 | * @vma: VM area to add page to. |
1123 | * @address: User virtual address of the mapping | |
e8a03feb | 1124 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
1125 | */ |
1126 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 1127 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 1128 | { |
e8a03feb | 1129 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 1130 | |
e8a03feb | 1131 | BUG_ON(!anon_vma); |
ea90002b | 1132 | |
4e1c1975 | 1133 | if (PageAnon(page)) |
6c287605 | 1134 | goto out; |
4e1c1975 | 1135 | |
ea90002b | 1136 | /* |
e8a03feb RR |
1137 | * If the page isn't exclusively mapped into this vma, |
1138 | * we must use the _oldest_ possible anon_vma for the | |
1139 | * page mapping! | |
ea90002b | 1140 | */ |
4e1c1975 | 1141 | if (!exclusive) |
288468c3 | 1142 | anon_vma = anon_vma->root; |
9617d95e | 1143 | |
16f5e707 AS |
1144 | /* |
1145 | * page_idle does a lockless/optimistic rmap scan on page->mapping. | |
1146 | * Make sure the compiler doesn't split the stores of anon_vma and | |
1147 | * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code | |
1148 | * could mistake the mapping for a struct address_space and crash. | |
1149 | */ | |
9617d95e | 1150 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
16f5e707 | 1151 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); |
9617d95e | 1152 | page->index = linear_page_index(vma, address); |
6c287605 DH |
1153 | out: |
1154 | if (exclusive) | |
1155 | SetPageAnonExclusive(page); | |
9617d95e NP |
1156 | } |
1157 | ||
c97a9e10 | 1158 | /** |
43d8eac4 | 1159 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
1160 | * @page: the page to add the mapping to |
1161 | * @vma: the vm area in which the mapping is added | |
1162 | * @address: the user virtual address mapped | |
1163 | */ | |
1164 | static void __page_check_anon_rmap(struct page *page, | |
1165 | struct vm_area_struct *vma, unsigned long address) | |
1166 | { | |
e05b3453 | 1167 | struct folio *folio = page_folio(page); |
c97a9e10 NP |
1168 | /* |
1169 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
1170 | * be set up correctly at this point. | |
1171 | * | |
1172 | * We have exclusion against page_add_anon_rmap because the caller | |
90aaca85 | 1173 | * always holds the page locked. |
c97a9e10 NP |
1174 | * |
1175 | * We have exclusion against page_add_new_anon_rmap because those pages | |
1176 | * are initially only visible via the pagetables, and the pte is locked | |
1177 | * over the call to page_add_new_anon_rmap. | |
1178 | */ | |
e05b3453 MWO |
1179 | VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, |
1180 | folio); | |
30c46382 YS |
1181 | VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), |
1182 | page); | |
c97a9e10 NP |
1183 | } |
1184 | ||
1da177e4 LT |
1185 | /** |
1186 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1187 | * @page: the page to add the mapping to | |
1188 | * @vma: the vm area in which the mapping is added | |
1189 | * @address: the user virtual address mapped | |
f1e2db12 | 1190 | * @flags: the rmap flags |
1da177e4 | 1191 | * |
5ad64688 | 1192 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1193 | * the anon_vma case: to serialize mapping,index checking after setting, |
1194 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1195 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
1196 | */ |
1197 | void page_add_anon_rmap(struct page *page, | |
14f9135d | 1198 | struct vm_area_struct *vma, unsigned long address, rmap_t flags) |
1da177e4 | 1199 | { |
53f9263b KS |
1200 | bool compound = flags & RMAP_COMPOUND; |
1201 | bool first; | |
1202 | ||
be5d0a74 JW |
1203 | if (unlikely(PageKsm(page))) |
1204 | lock_page_memcg(page); | |
1205 | else | |
1206 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
1207 | ||
e9b61f19 KS |
1208 | if (compound) { |
1209 | atomic_t *mapcount; | |
53f9263b | 1210 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
e9b61f19 KS |
1211 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
1212 | mapcount = compound_mapcount_ptr(page); | |
1213 | first = atomic_inc_and_test(mapcount); | |
53f9263b KS |
1214 | } else { |
1215 | first = atomic_inc_and_test(&page->_mapcount); | |
1216 | } | |
6c287605 DH |
1217 | VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); |
1218 | VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); | |
53f9263b | 1219 | |
79134171 | 1220 | if (first) { |
6c357848 | 1221 | int nr = compound ? thp_nr_pages(page) : 1; |
bea04b07 JZ |
1222 | /* |
1223 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1224 | * these counters are not modified in interrupt context, and | |
1225 | * pte lock(a spinlock) is held, which implies preemption | |
1226 | * disabled. | |
1227 | */ | |
65c45377 | 1228 | if (compound) |
69473e5d | 1229 | __mod_lruvec_page_state(page, NR_ANON_THPS, nr); |
be5d0a74 | 1230 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); |
79134171 | 1231 | } |
5ad64688 | 1232 | |
cea86fe2 | 1233 | if (unlikely(PageKsm(page))) |
be5d0a74 | 1234 | unlock_page_memcg(page); |
53f9263b | 1235 | |
5dbe0af4 | 1236 | /* address might be in next vma when migration races vma_adjust */ |
cea86fe2 | 1237 | else if (first) |
d281ee61 | 1238 | __page_set_anon_rmap(page, vma, address, |
14f9135d | 1239 | !!(flags & RMAP_EXCLUSIVE)); |
69029cd5 | 1240 | else |
c97a9e10 | 1241 | __page_check_anon_rmap(page, vma, address); |
cea86fe2 HD |
1242 | |
1243 | mlock_vma_page(page, vma, compound); | |
1da177e4 LT |
1244 | } |
1245 | ||
43d8eac4 | 1246 | /** |
40f2bbf7 | 1247 | * page_add_new_anon_rmap - add mapping to a new anonymous page |
9617d95e NP |
1248 | * @page: the page to add the mapping to |
1249 | * @vma: the vm area in which the mapping is added | |
1250 | * @address: the user virtual address mapped | |
40f2bbf7 DH |
1251 | * |
1252 | * If it's a compound page, it is accounted as a compound page. As the page | |
1253 | * is new, it's assume to get mapped exclusively by a single process. | |
9617d95e NP |
1254 | * |
1255 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
1256 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 1257 | * Page does not have to be locked. |
9617d95e NP |
1258 | */ |
1259 | void page_add_new_anon_rmap(struct page *page, | |
40f2bbf7 | 1260 | struct vm_area_struct *vma, unsigned long address) |
9617d95e | 1261 | { |
40f2bbf7 | 1262 | const bool compound = PageCompound(page); |
6c357848 | 1263 | int nr = compound ? thp_nr_pages(page) : 1; |
d281ee61 | 1264 | |
81d1b09c | 1265 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
fa9949da | 1266 | __SetPageSwapBacked(page); |
d281ee61 KS |
1267 | if (compound) { |
1268 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
53f9263b KS |
1269 | /* increment count (starts at -1) */ |
1270 | atomic_set(compound_mapcount_ptr(page), 0); | |
5232c63f | 1271 | atomic_set(compound_pincount_ptr(page), 0); |
47e29d32 | 1272 | |
69473e5d | 1273 | __mod_lruvec_page_state(page, NR_ANON_THPS, nr); |
53f9263b | 1274 | } else { |
53f9263b KS |
1275 | /* increment count (starts at -1) */ |
1276 | atomic_set(&page->_mapcount, 0); | |
d281ee61 | 1277 | } |
be5d0a74 | 1278 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); |
e8a03feb | 1279 | __page_set_anon_rmap(page, vma, address, 1); |
9617d95e NP |
1280 | } |
1281 | ||
1da177e4 LT |
1282 | /** |
1283 | * page_add_file_rmap - add pte mapping to a file page | |
cea86fe2 HD |
1284 | * @page: the page to add the mapping to |
1285 | * @vma: the vm area in which the mapping is added | |
1286 | * @compound: charge the page as compound or small page | |
1da177e4 | 1287 | * |
b8072f09 | 1288 | * The caller needs to hold the pte lock. |
1da177e4 | 1289 | */ |
cea86fe2 HD |
1290 | void page_add_file_rmap(struct page *page, |
1291 | struct vm_area_struct *vma, bool compound) | |
1da177e4 | 1292 | { |
5d543f13 | 1293 | int i, nr = 0; |
dd78fedd KS |
1294 | |
1295 | VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); | |
62cccb8c | 1296 | lock_page_memcg(page); |
dd78fedd | 1297 | if (compound && PageTransHuge(page)) { |
a1528e21 MS |
1298 | int nr_pages = thp_nr_pages(page); |
1299 | ||
5d543f13 | 1300 | for (i = 0; i < nr_pages; i++) { |
dd78fedd KS |
1301 | if (atomic_inc_and_test(&page[i]._mapcount)) |
1302 | nr++; | |
1303 | } | |
1304 | if (!atomic_inc_and_test(compound_mapcount_ptr(page))) | |
1305 | goto out; | |
bd55b0c2 HD |
1306 | |
1307 | /* | |
1308 | * It is racy to ClearPageDoubleMap in page_remove_file_rmap(); | |
1309 | * but page lock is held by all page_add_file_rmap() compound | |
1310 | * callers, and SetPageDoubleMap below warns if !PageLocked: | |
1311 | * so here is a place that DoubleMap can be safely cleared. | |
1312 | */ | |
1313 | VM_WARN_ON_ONCE(!PageLocked(page)); | |
1314 | if (nr == nr_pages && PageDoubleMap(page)) | |
1315 | ClearPageDoubleMap(page); | |
1316 | ||
99cb0dbd | 1317 | if (PageSwapBacked(page)) |
a1528e21 MS |
1318 | __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, |
1319 | nr_pages); | |
99cb0dbd | 1320 | else |
380780e7 MS |
1321 | __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, |
1322 | nr_pages); | |
dd78fedd | 1323 | } else { |
c8efc390 KS |
1324 | if (PageTransCompound(page) && page_mapping(page)) { |
1325 | VM_WARN_ON_ONCE(!PageLocked(page)); | |
cea86fe2 | 1326 | SetPageDoubleMap(compound_head(page)); |
9a73f61b | 1327 | } |
5d543f13 HD |
1328 | if (atomic_inc_and_test(&page->_mapcount)) |
1329 | nr++; | |
d69b042f | 1330 | } |
dd78fedd | 1331 | out: |
5d543f13 HD |
1332 | if (nr) |
1333 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); | |
62cccb8c | 1334 | unlock_page_memcg(page); |
cea86fe2 HD |
1335 | |
1336 | mlock_vma_page(page, vma, compound); | |
1da177e4 LT |
1337 | } |
1338 | ||
dd78fedd | 1339 | static void page_remove_file_rmap(struct page *page, bool compound) |
8186eb6a | 1340 | { |
5d543f13 | 1341 | int i, nr = 0; |
dd78fedd | 1342 | |
57dea93a | 1343 | VM_BUG_ON_PAGE(compound && !PageHead(page), page); |
8186eb6a | 1344 | |
53f9263b KS |
1345 | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ |
1346 | if (unlikely(PageHuge(page))) { | |
1347 | /* hugetlb pages are always mapped with pmds */ | |
1348 | atomic_dec(compound_mapcount_ptr(page)); | |
be5d0a74 | 1349 | return; |
53f9263b | 1350 | } |
8186eb6a | 1351 | |
53f9263b | 1352 | /* page still mapped by someone else? */ |
dd78fedd | 1353 | if (compound && PageTransHuge(page)) { |
a1528e21 MS |
1354 | int nr_pages = thp_nr_pages(page); |
1355 | ||
5d543f13 | 1356 | for (i = 0; i < nr_pages; i++) { |
dd78fedd KS |
1357 | if (atomic_add_negative(-1, &page[i]._mapcount)) |
1358 | nr++; | |
1359 | } | |
1360 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
5d543f13 | 1361 | goto out; |
99cb0dbd | 1362 | if (PageSwapBacked(page)) |
a1528e21 MS |
1363 | __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, |
1364 | -nr_pages); | |
99cb0dbd | 1365 | else |
380780e7 MS |
1366 | __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, |
1367 | -nr_pages); | |
dd78fedd | 1368 | } else { |
5d543f13 HD |
1369 | if (atomic_add_negative(-1, &page->_mapcount)) |
1370 | nr++; | |
dd78fedd | 1371 | } |
5d543f13 HD |
1372 | out: |
1373 | if (nr) | |
1374 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); | |
8186eb6a JW |
1375 | } |
1376 | ||
53f9263b KS |
1377 | static void page_remove_anon_compound_rmap(struct page *page) |
1378 | { | |
1379 | int i, nr; | |
1380 | ||
1381 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
1382 | return; | |
1383 | ||
1384 | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | |
1385 | if (unlikely(PageHuge(page))) | |
1386 | return; | |
1387 | ||
1388 | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | |
1389 | return; | |
1390 | ||
69473e5d | 1391 | __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page)); |
53f9263b KS |
1392 | |
1393 | if (TestClearPageDoubleMap(page)) { | |
1394 | /* | |
1395 | * Subpages can be mapped with PTEs too. Check how many of | |
f1fe80d4 | 1396 | * them are still mapped. |
53f9263b | 1397 | */ |
5eaf35ab | 1398 | for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { |
53f9263b KS |
1399 | if (atomic_add_negative(-1, &page[i]._mapcount)) |
1400 | nr++; | |
1401 | } | |
f1fe80d4 KS |
1402 | |
1403 | /* | |
1404 | * Queue the page for deferred split if at least one small | |
1405 | * page of the compound page is unmapped, but at least one | |
1406 | * small page is still mapped. | |
1407 | */ | |
5eaf35ab | 1408 | if (nr && nr < thp_nr_pages(page)) |
f1fe80d4 | 1409 | deferred_split_huge_page(page); |
53f9263b | 1410 | } else { |
5eaf35ab | 1411 | nr = thp_nr_pages(page); |
53f9263b KS |
1412 | } |
1413 | ||
f1fe80d4 | 1414 | if (nr) |
be5d0a74 | 1415 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr); |
53f9263b KS |
1416 | } |
1417 | ||
1da177e4 LT |
1418 | /** |
1419 | * page_remove_rmap - take down pte mapping from a page | |
d281ee61 | 1420 | * @page: page to remove mapping from |
cea86fe2 | 1421 | * @vma: the vm area from which the mapping is removed |
d281ee61 | 1422 | * @compound: uncharge the page as compound or small page |
1da177e4 | 1423 | * |
b8072f09 | 1424 | * The caller needs to hold the pte lock. |
1da177e4 | 1425 | */ |
cea86fe2 HD |
1426 | void page_remove_rmap(struct page *page, |
1427 | struct vm_area_struct *vma, bool compound) | |
1da177e4 | 1428 | { |
be5d0a74 | 1429 | lock_page_memcg(page); |
89c06bd5 | 1430 | |
be5d0a74 JW |
1431 | if (!PageAnon(page)) { |
1432 | page_remove_file_rmap(page, compound); | |
1433 | goto out; | |
1434 | } | |
1435 | ||
1436 | if (compound) { | |
1437 | page_remove_anon_compound_rmap(page); | |
1438 | goto out; | |
1439 | } | |
53f9263b | 1440 | |
b904dcfe KM |
1441 | /* page still mapped by someone else? */ |
1442 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
be5d0a74 | 1443 | goto out; |
8186eb6a | 1444 | |
0fe6e20b | 1445 | /* |
bea04b07 JZ |
1446 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because |
1447 | * these counters are not modified in interrupt context, and | |
bea04b07 | 1448 | * pte lock(a spinlock) is held, which implies preemption disabled. |
0fe6e20b | 1449 | */ |
be5d0a74 | 1450 | __dec_lruvec_page_state(page, NR_ANON_MAPPED); |
8186eb6a | 1451 | |
9a982250 KS |
1452 | if (PageTransCompound(page)) |
1453 | deferred_split_huge_page(compound_head(page)); | |
1454 | ||
b904dcfe KM |
1455 | /* |
1456 | * It would be tidy to reset the PageAnon mapping here, | |
1457 | * but that might overwrite a racing page_add_anon_rmap | |
1458 | * which increments mapcount after us but sets mapping | |
2d4894b5 | 1459 | * before us: so leave the reset to free_unref_page, |
b904dcfe KM |
1460 | * and remember that it's only reliable while mapped. |
1461 | * Leaving it set also helps swapoff to reinstate ptes | |
1462 | * faster for those pages still in swapcache. | |
1463 | */ | |
be5d0a74 JW |
1464 | out: |
1465 | unlock_page_memcg(page); | |
cea86fe2 HD |
1466 | |
1467 | munlock_vma_page(page, vma, compound); | |
1da177e4 LT |
1468 | } |
1469 | ||
1470 | /* | |
52629506 | 1471 | * @arg: enum ttu_flags will be passed to this argument |
1da177e4 | 1472 | */ |
2f031c6f | 1473 | static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, |
52629506 | 1474 | unsigned long address, void *arg) |
1da177e4 LT |
1475 | { |
1476 | struct mm_struct *mm = vma->vm_mm; | |
869f7ee6 | 1477 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); |
1da177e4 | 1478 | pte_t pteval; |
c7ab0d2f | 1479 | struct page *subpage; |
6c287605 | 1480 | bool anon_exclusive, ret = true; |
ac46d4f3 | 1481 | struct mmu_notifier_range range; |
4708f318 | 1482 | enum ttu_flags flags = (enum ttu_flags)(long)arg; |
1da177e4 | 1483 | |
732ed558 HD |
1484 | /* |
1485 | * When racing against e.g. zap_pte_range() on another cpu, | |
1486 | * in between its ptep_get_and_clear_full() and page_remove_rmap(), | |
1fb08ac6 | 1487 | * try_to_unmap() may return before page_mapped() has become false, |
732ed558 HD |
1488 | * if page table locking is skipped: use TTU_SYNC to wait for that. |
1489 | */ | |
1490 | if (flags & TTU_SYNC) | |
1491 | pvmw.flags = PVMW_SYNC; | |
1492 | ||
a98a2f0c | 1493 | if (flags & TTU_SPLIT_HUGE_PMD) |
af28a988 | 1494 | split_huge_pmd_address(vma, address, false, folio); |
fec89c10 | 1495 | |
369ea824 | 1496 | /* |
017b1660 MK |
1497 | * For THP, we have to assume the worse case ie pmd for invalidation. |
1498 | * For hugetlb, it could be much worse if we need to do pud | |
1499 | * invalidation in the case of pmd sharing. | |
1500 | * | |
869f7ee6 MWO |
1501 | * Note that the folio can not be freed in this function as call of |
1502 | * try_to_unmap() must hold a reference on the folio. | |
369ea824 | 1503 | */ |
2aff7a47 | 1504 | range.end = vma_address_end(&pvmw); |
7269f999 | 1505 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
494334e4 | 1506 | address, range.end); |
869f7ee6 | 1507 | if (folio_test_hugetlb(folio)) { |
017b1660 MK |
1508 | /* |
1509 | * If sharing is possible, start and end will be adjusted | |
1510 | * accordingly. | |
1511 | */ | |
ac46d4f3 JG |
1512 | adjust_range_if_pmd_sharing_possible(vma, &range.start, |
1513 | &range.end); | |
017b1660 | 1514 | } |
ac46d4f3 | 1515 | mmu_notifier_invalidate_range_start(&range); |
369ea824 | 1516 | |
c7ab0d2f | 1517 | while (page_vma_mapped_walk(&pvmw)) { |
cea86fe2 | 1518 | /* Unexpected PMD-mapped THP? */ |
869f7ee6 | 1519 | VM_BUG_ON_FOLIO(!pvmw.pte, folio); |
cea86fe2 | 1520 | |
c7ab0d2f | 1521 | /* |
869f7ee6 | 1522 | * If the folio is in an mlock()d vma, we must not swap it out. |
c7ab0d2f | 1523 | */ |
efdb6720 HD |
1524 | if (!(flags & TTU_IGNORE_MLOCK) && |
1525 | (vma->vm_flags & VM_LOCKED)) { | |
cea86fe2 | 1526 | /* Restore the mlock which got missed */ |
869f7ee6 | 1527 | mlock_vma_folio(folio, vma, false); |
efdb6720 HD |
1528 | page_vma_mapped_walk_done(&pvmw); |
1529 | ret = false; | |
1530 | break; | |
b87537d9 | 1531 | } |
c7ab0d2f | 1532 | |
869f7ee6 MWO |
1533 | subpage = folio_page(folio, |
1534 | pte_pfn(*pvmw.pte) - folio_pfn(folio)); | |
785373b4 | 1535 | address = pvmw.address; |
6c287605 DH |
1536 | anon_exclusive = folio_test_anon(folio) && |
1537 | PageAnonExclusive(subpage); | |
785373b4 | 1538 | |
dfc7ab57 | 1539 | if (folio_test_hugetlb(folio)) { |
a00a8759 BW |
1540 | /* |
1541 | * The try_to_unmap() is only passed a hugetlb page | |
1542 | * in the case where the hugetlb page is poisoned. | |
1543 | */ | |
1544 | VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); | |
54205e9c BW |
1545 | /* |
1546 | * huge_pmd_unshare may unmap an entire PMD page. | |
1547 | * There is no way of knowing exactly which PMDs may | |
1548 | * be cached for this mm, so we must flush them all. | |
1549 | * start/end were already adjusted above to cover this | |
1550 | * range. | |
1551 | */ | |
1552 | flush_cache_range(vma, range.start, range.end); | |
1553 | ||
dfc7ab57 | 1554 | if (!folio_test_anon(folio)) { |
017b1660 | 1555 | /* |
dfc7ab57 BW |
1556 | * To call huge_pmd_unshare, i_mmap_rwsem must be |
1557 | * held in write mode. Caller needs to explicitly | |
1558 | * do this outside rmap routines. | |
017b1660 | 1559 | */ |
dfc7ab57 BW |
1560 | VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); |
1561 | ||
1562 | if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { | |
1563 | flush_tlb_range(vma, range.start, range.end); | |
1564 | mmu_notifier_invalidate_range(mm, range.start, | |
1565 | range.end); | |
1566 | ||
1567 | /* | |
1568 | * The ref count of the PMD page was dropped | |
1569 | * which is part of the way map counting | |
1570 | * is done for shared PMDs. Return 'true' | |
1571 | * here. When there is no other sharing, | |
1572 | * huge_pmd_unshare returns false and we will | |
1573 | * unmap the actual page and drop map count | |
1574 | * to zero. | |
1575 | */ | |
1576 | page_vma_mapped_walk_done(&pvmw); | |
1577 | break; | |
1578 | } | |
017b1660 | 1579 | } |
a00a8759 | 1580 | pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); |
54205e9c BW |
1581 | } else { |
1582 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | |
c7ab0d2f | 1583 | /* |
a00a8759 BW |
1584 | * Nuke the page table entry. When having to clear |
1585 | * PageAnonExclusive(), we always have to flush. | |
c7ab0d2f | 1586 | */ |
a00a8759 BW |
1587 | if (should_defer_flush(mm, flags) && !anon_exclusive) { |
1588 | /* | |
1589 | * We clear the PTE but do not flush so potentially | |
1590 | * a remote CPU could still be writing to the folio. | |
1591 | * If the entry was previously clean then the | |
1592 | * architecture must guarantee that a clear->dirty | |
1593 | * transition on a cached TLB entry is written through | |
1594 | * and traps if the PTE is unmapped. | |
1595 | */ | |
1596 | pteval = ptep_get_and_clear(mm, address, pvmw.pte); | |
c7ab0d2f | 1597 | |
a00a8759 BW |
1598 | set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); |
1599 | } else { | |
1600 | pteval = ptep_clear_flush(vma, address, pvmw.pte); | |
1601 | } | |
c7ab0d2f | 1602 | } |
72b252ae | 1603 | |
999dad82 PX |
1604 | /* |
1605 | * Now the pte is cleared. If this pte was uffd-wp armed, | |
1606 | * we may want to replace a none pte with a marker pte if | |
1607 | * it's file-backed, so we don't lose the tracking info. | |
1608 | */ | |
1609 | pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); | |
1610 | ||
869f7ee6 | 1611 | /* Set the dirty flag on the folio now the pte is gone. */ |
c7ab0d2f | 1612 | if (pte_dirty(pteval)) |
869f7ee6 | 1613 | folio_mark_dirty(folio); |
1da177e4 | 1614 | |
c7ab0d2f KS |
1615 | /* Update high watermark before we lower rss */ |
1616 | update_hiwater_rss(mm); | |
1da177e4 | 1617 | |
da358d5c | 1618 | if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) { |
5fd27b8e | 1619 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); |
869f7ee6 MWO |
1620 | if (folio_test_hugetlb(folio)) { |
1621 | hugetlb_count_sub(folio_nr_pages(folio), mm); | |
785373b4 | 1622 | set_huge_swap_pte_at(mm, address, |
5fd27b8e PA |
1623 | pvmw.pte, pteval, |
1624 | vma_mmu_pagesize(vma)); | |
c7ab0d2f | 1625 | } else { |
869f7ee6 | 1626 | dec_mm_counter(mm, mm_counter(&folio->page)); |
785373b4 | 1627 | set_pte_at(mm, address, pvmw.pte, pteval); |
c7ab0d2f | 1628 | } |
365e9c87 | 1629 | |
bce73e48 | 1630 | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { |
c7ab0d2f KS |
1631 | /* |
1632 | * The guest indicated that the page content is of no | |
1633 | * interest anymore. Simply discard the pte, vmscan | |
1634 | * will take care of the rest. | |
bce73e48 CB |
1635 | * A future reference will then fault in a new zero |
1636 | * page. When userfaultfd is active, we must not drop | |
1637 | * this page though, as its main user (postcopy | |
1638 | * migration) will not expect userfaults on already | |
1639 | * copied pages. | |
c7ab0d2f | 1640 | */ |
869f7ee6 | 1641 | dec_mm_counter(mm, mm_counter(&folio->page)); |
0f10851e JG |
1642 | /* We have to invalidate as we cleared the pte */ |
1643 | mmu_notifier_invalidate_range(mm, address, | |
1644 | address + PAGE_SIZE); | |
869f7ee6 | 1645 | } else if (folio_test_anon(folio)) { |
c7ab0d2f KS |
1646 | swp_entry_t entry = { .val = page_private(subpage) }; |
1647 | pte_t swp_pte; | |
1648 | /* | |
1649 | * Store the swap location in the pte. | |
1650 | * See handle_pte_fault() ... | |
1651 | */ | |
869f7ee6 MWO |
1652 | if (unlikely(folio_test_swapbacked(folio) != |
1653 | folio_test_swapcache(folio))) { | |
eb94a878 | 1654 | WARN_ON_ONCE(1); |
83612a94 | 1655 | ret = false; |
369ea824 | 1656 | /* We have to invalidate as we cleared the pte */ |
0f10851e JG |
1657 | mmu_notifier_invalidate_range(mm, address, |
1658 | address + PAGE_SIZE); | |
eb94a878 MK |
1659 | page_vma_mapped_walk_done(&pvmw); |
1660 | break; | |
1661 | } | |
c7ab0d2f | 1662 | |
802a3a92 | 1663 | /* MADV_FREE page check */ |
869f7ee6 | 1664 | if (!folio_test_swapbacked(folio)) { |
6c8e2a25 MFO |
1665 | int ref_count, map_count; |
1666 | ||
1667 | /* | |
1668 | * Synchronize with gup_pte_range(): | |
1669 | * - clear PTE; barrier; read refcount | |
1670 | * - inc refcount; barrier; read PTE | |
1671 | */ | |
1672 | smp_mb(); | |
1673 | ||
1674 | ref_count = folio_ref_count(folio); | |
1675 | map_count = folio_mapcount(folio); | |
1676 | ||
1677 | /* | |
1678 | * Order reads for page refcount and dirty flag | |
1679 | * (see comments in __remove_mapping()). | |
1680 | */ | |
1681 | smp_rmb(); | |
1682 | ||
1683 | /* | |
1684 | * The only page refs must be one from isolation | |
1685 | * plus the rmap(s) (dropped by discard:). | |
1686 | */ | |
1687 | if (ref_count == 1 + map_count && | |
1688 | !folio_test_dirty(folio)) { | |
0f10851e JG |
1689 | /* Invalidate as we cleared the pte */ |
1690 | mmu_notifier_invalidate_range(mm, | |
1691 | address, address + PAGE_SIZE); | |
802a3a92 SL |
1692 | dec_mm_counter(mm, MM_ANONPAGES); |
1693 | goto discard; | |
1694 | } | |
1695 | ||
1696 | /* | |
869f7ee6 | 1697 | * If the folio was redirtied, it cannot be |
802a3a92 SL |
1698 | * discarded. Remap the page to page table. |
1699 | */ | |
785373b4 | 1700 | set_pte_at(mm, address, pvmw.pte, pteval); |
869f7ee6 | 1701 | folio_set_swapbacked(folio); |
e4b82222 | 1702 | ret = false; |
802a3a92 SL |
1703 | page_vma_mapped_walk_done(&pvmw); |
1704 | break; | |
c7ab0d2f | 1705 | } |
854e9ed0 | 1706 | |
c7ab0d2f | 1707 | if (swap_duplicate(entry) < 0) { |
785373b4 | 1708 | set_pte_at(mm, address, pvmw.pte, pteval); |
e4b82222 | 1709 | ret = false; |
c7ab0d2f KS |
1710 | page_vma_mapped_walk_done(&pvmw); |
1711 | break; | |
1712 | } | |
ca827d55 | 1713 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { |
322842ea | 1714 | swap_free(entry); |
ca827d55 KA |
1715 | set_pte_at(mm, address, pvmw.pte, pteval); |
1716 | ret = false; | |
1717 | page_vma_mapped_walk_done(&pvmw); | |
1718 | break; | |
1719 | } | |
6c287605 DH |
1720 | if (anon_exclusive && |
1721 | page_try_share_anon_rmap(subpage)) { | |
1722 | swap_free(entry); | |
1723 | set_pte_at(mm, address, pvmw.pte, pteval); | |
1724 | ret = false; | |
1725 | page_vma_mapped_walk_done(&pvmw); | |
1726 | break; | |
1727 | } | |
1728 | /* | |
1493a191 DH |
1729 | * Note: We *don't* remember if the page was mapped |
1730 | * exclusively in the swap pte if the architecture | |
1731 | * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In | |
1732 | * that case, swapin code has to re-determine that | |
1733 | * manually and might detect the page as possibly | |
1734 | * shared, for example, if there are other references on | |
1735 | * the page or if the page is under writeback. We made | |
1736 | * sure that there are no GUP pins on the page that | |
1737 | * would rely on it, so for GUP pins this is fine. | |
6c287605 | 1738 | */ |
c7ab0d2f KS |
1739 | if (list_empty(&mm->mmlist)) { |
1740 | spin_lock(&mmlist_lock); | |
1741 | if (list_empty(&mm->mmlist)) | |
1742 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1743 | spin_unlock(&mmlist_lock); | |
1744 | } | |
854e9ed0 | 1745 | dec_mm_counter(mm, MM_ANONPAGES); |
c7ab0d2f KS |
1746 | inc_mm_counter(mm, MM_SWAPENTS); |
1747 | swp_pte = swp_entry_to_pte(entry); | |
1493a191 DH |
1748 | if (anon_exclusive) |
1749 | swp_pte = pte_swp_mkexclusive(swp_pte); | |
c7ab0d2f KS |
1750 | if (pte_soft_dirty(pteval)) |
1751 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
f45ec5ff PX |
1752 | if (pte_uffd_wp(pteval)) |
1753 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
785373b4 | 1754 | set_pte_at(mm, address, pvmw.pte, swp_pte); |
0f10851e JG |
1755 | /* Invalidate as we cleared the pte */ |
1756 | mmu_notifier_invalidate_range(mm, address, | |
1757 | address + PAGE_SIZE); | |
1758 | } else { | |
1759 | /* | |
869f7ee6 MWO |
1760 | * This is a locked file-backed folio, |
1761 | * so it cannot be removed from the page | |
1762 | * cache and replaced by a new folio before | |
1763 | * mmu_notifier_invalidate_range_end, so no | |
1764 | * concurrent thread might update its page table | |
1765 | * to point at a new folio while a device is | |
1766 | * still using this folio. | |
0f10851e | 1767 | * |
ad56b738 | 1768 | * See Documentation/vm/mmu_notifier.rst |
0f10851e | 1769 | */ |
869f7ee6 | 1770 | dec_mm_counter(mm, mm_counter_file(&folio->page)); |
0f10851e | 1771 | } |
854e9ed0 | 1772 | discard: |
0f10851e JG |
1773 | /* |
1774 | * No need to call mmu_notifier_invalidate_range() it has be | |
1775 | * done above for all cases requiring it to happen under page | |
1776 | * table lock before mmu_notifier_invalidate_range_end() | |
1777 | * | |
ad56b738 | 1778 | * See Documentation/vm/mmu_notifier.rst |
0f10851e | 1779 | */ |
869f7ee6 | 1780 | page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); |
b7435507 | 1781 | if (vma->vm_flags & VM_LOCKED) |
adb11e78 | 1782 | mlock_page_drain_local(); |
869f7ee6 | 1783 | folio_put(folio); |
c7ab0d2f | 1784 | } |
369ea824 | 1785 | |
ac46d4f3 | 1786 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 1787 | |
caed0f48 | 1788 | return ret; |
1da177e4 LT |
1789 | } |
1790 | ||
52629506 JK |
1791 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) |
1792 | { | |
222100ee | 1793 | return vma_is_temporary_stack(vma); |
52629506 JK |
1794 | } |
1795 | ||
2f031c6f | 1796 | static int page_not_mapped(struct folio *folio) |
52629506 | 1797 | { |
2f031c6f | 1798 | return !folio_mapped(folio); |
2a52bcbc | 1799 | } |
52629506 | 1800 | |
1da177e4 | 1801 | /** |
869f7ee6 MWO |
1802 | * try_to_unmap - Try to remove all page table mappings to a folio. |
1803 | * @folio: The folio to unmap. | |
14fa31b8 | 1804 | * @flags: action and flags |
1da177e4 LT |
1805 | * |
1806 | * Tries to remove all the page table entries which are mapping this | |
869f7ee6 MWO |
1807 | * folio. It is the caller's responsibility to check if the folio is |
1808 | * still mapped if needed (use TTU_SYNC to prevent accounting races). | |
1da177e4 | 1809 | * |
869f7ee6 | 1810 | * Context: Caller must hold the folio lock. |
1da177e4 | 1811 | */ |
869f7ee6 | 1812 | void try_to_unmap(struct folio *folio, enum ttu_flags flags) |
1da177e4 | 1813 | { |
52629506 JK |
1814 | struct rmap_walk_control rwc = { |
1815 | .rmap_one = try_to_unmap_one, | |
802a3a92 | 1816 | .arg = (void *)flags, |
b7e188ec | 1817 | .done = page_not_mapped, |
2f031c6f | 1818 | .anon_lock = folio_lock_anon_vma_read, |
52629506 | 1819 | }; |
1da177e4 | 1820 | |
a98a2f0c | 1821 | if (flags & TTU_RMAP_LOCKED) |
2f031c6f | 1822 | rmap_walk_locked(folio, &rwc); |
a98a2f0c | 1823 | else |
2f031c6f | 1824 | rmap_walk(folio, &rwc); |
a98a2f0c AP |
1825 | } |
1826 | ||
1827 | /* | |
1828 | * @arg: enum ttu_flags will be passed to this argument. | |
1829 | * | |
1830 | * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs | |
64b586d1 | 1831 | * containing migration entries. |
a98a2f0c | 1832 | */ |
2f031c6f | 1833 | static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, |
a98a2f0c AP |
1834 | unsigned long address, void *arg) |
1835 | { | |
1836 | struct mm_struct *mm = vma->vm_mm; | |
4b8554c5 | 1837 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); |
a98a2f0c AP |
1838 | pte_t pteval; |
1839 | struct page *subpage; | |
6c287605 | 1840 | bool anon_exclusive, ret = true; |
a98a2f0c AP |
1841 | struct mmu_notifier_range range; |
1842 | enum ttu_flags flags = (enum ttu_flags)(long)arg; | |
1843 | ||
a98a2f0c AP |
1844 | /* |
1845 | * When racing against e.g. zap_pte_range() on another cpu, | |
1846 | * in between its ptep_get_and_clear_full() and page_remove_rmap(), | |
1847 | * try_to_migrate() may return before page_mapped() has become false, | |
1848 | * if page table locking is skipped: use TTU_SYNC to wait for that. | |
1849 | */ | |
1850 | if (flags & TTU_SYNC) | |
1851 | pvmw.flags = PVMW_SYNC; | |
1852 | ||
1853 | /* | |
1854 | * unmap_page() in mm/huge_memory.c is the only user of migration with | |
1855 | * TTU_SPLIT_HUGE_PMD and it wants to freeze. | |
1856 | */ | |
1857 | if (flags & TTU_SPLIT_HUGE_PMD) | |
af28a988 | 1858 | split_huge_pmd_address(vma, address, true, folio); |
a98a2f0c AP |
1859 | |
1860 | /* | |
1861 | * For THP, we have to assume the worse case ie pmd for invalidation. | |
1862 | * For hugetlb, it could be much worse if we need to do pud | |
1863 | * invalidation in the case of pmd sharing. | |
1864 | * | |
1865 | * Note that the page can not be free in this function as call of | |
1866 | * try_to_unmap() must hold a reference on the page. | |
1867 | */ | |
2aff7a47 | 1868 | range.end = vma_address_end(&pvmw); |
a98a2f0c AP |
1869 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
1870 | address, range.end); | |
4b8554c5 | 1871 | if (folio_test_hugetlb(folio)) { |
a98a2f0c AP |
1872 | /* |
1873 | * If sharing is possible, start and end will be adjusted | |
1874 | * accordingly. | |
1875 | */ | |
1876 | adjust_range_if_pmd_sharing_possible(vma, &range.start, | |
1877 | &range.end); | |
1878 | } | |
1879 | mmu_notifier_invalidate_range_start(&range); | |
1880 | ||
1881 | while (page_vma_mapped_walk(&pvmw)) { | |
1882 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | |
1883 | /* PMD-mapped THP migration entry */ | |
1884 | if (!pvmw.pte) { | |
4b8554c5 MWO |
1885 | subpage = folio_page(folio, |
1886 | pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); | |
1887 | VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || | |
1888 | !folio_test_pmd_mappable(folio), folio); | |
a98a2f0c | 1889 | |
7f5abe60 DH |
1890 | if (set_pmd_migration_entry(&pvmw, subpage)) { |
1891 | ret = false; | |
1892 | page_vma_mapped_walk_done(&pvmw); | |
1893 | break; | |
1894 | } | |
a98a2f0c AP |
1895 | continue; |
1896 | } | |
1897 | #endif | |
1898 | ||
1899 | /* Unexpected PMD-mapped THP? */ | |
4b8554c5 | 1900 | VM_BUG_ON_FOLIO(!pvmw.pte, folio); |
a98a2f0c | 1901 | |
4b8554c5 MWO |
1902 | subpage = folio_page(folio, |
1903 | pte_pfn(*pvmw.pte) - folio_pfn(folio)); | |
a98a2f0c | 1904 | address = pvmw.address; |
6c287605 DH |
1905 | anon_exclusive = folio_test_anon(folio) && |
1906 | PageAnonExclusive(subpage); | |
a98a2f0c | 1907 | |
dfc7ab57 | 1908 | if (folio_test_hugetlb(folio)) { |
54205e9c BW |
1909 | /* |
1910 | * huge_pmd_unshare may unmap an entire PMD page. | |
1911 | * There is no way of knowing exactly which PMDs may | |
1912 | * be cached for this mm, so we must flush them all. | |
1913 | * start/end were already adjusted above to cover this | |
1914 | * range. | |
1915 | */ | |
1916 | flush_cache_range(vma, range.start, range.end); | |
1917 | ||
dfc7ab57 | 1918 | if (!folio_test_anon(folio)) { |
a98a2f0c | 1919 | /* |
dfc7ab57 BW |
1920 | * To call huge_pmd_unshare, i_mmap_rwsem must be |
1921 | * held in write mode. Caller needs to explicitly | |
1922 | * do this outside rmap routines. | |
a98a2f0c | 1923 | */ |
dfc7ab57 BW |
1924 | VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); |
1925 | ||
1926 | if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { | |
1927 | flush_tlb_range(vma, range.start, range.end); | |
1928 | mmu_notifier_invalidate_range(mm, range.start, | |
1929 | range.end); | |
1930 | ||
1931 | /* | |
1932 | * The ref count of the PMD page was dropped | |
1933 | * which is part of the way map counting | |
1934 | * is done for shared PMDs. Return 'true' | |
1935 | * here. When there is no other sharing, | |
1936 | * huge_pmd_unshare returns false and we will | |
1937 | * unmap the actual page and drop map count | |
1938 | * to zero. | |
1939 | */ | |
1940 | page_vma_mapped_walk_done(&pvmw); | |
1941 | break; | |
1942 | } | |
a98a2f0c | 1943 | } |
5d4af619 BW |
1944 | |
1945 | /* Nuke the hugetlb page table entry */ | |
1946 | pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); | |
54205e9c BW |
1947 | } else { |
1948 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | |
5d4af619 BW |
1949 | /* Nuke the page table entry. */ |
1950 | pteval = ptep_clear_flush(vma, address, pvmw.pte); | |
a98a2f0c AP |
1951 | } |
1952 | ||
4b8554c5 | 1953 | /* Set the dirty flag on the folio now the pte is gone. */ |
a98a2f0c | 1954 | if (pte_dirty(pteval)) |
4b8554c5 | 1955 | folio_mark_dirty(folio); |
a98a2f0c AP |
1956 | |
1957 | /* Update high watermark before we lower rss */ | |
1958 | update_hiwater_rss(mm); | |
1959 | ||
4b8554c5 MWO |
1960 | if (folio_is_zone_device(folio)) { |
1961 | unsigned long pfn = folio_pfn(folio); | |
a98a2f0c AP |
1962 | swp_entry_t entry; |
1963 | pte_t swp_pte; | |
1964 | ||
6c287605 DH |
1965 | if (anon_exclusive) |
1966 | BUG_ON(page_try_share_anon_rmap(subpage)); | |
1967 | ||
a98a2f0c AP |
1968 | /* |
1969 | * Store the pfn of the page in a special migration | |
1970 | * pte. do_swap_page() will wait until the migration | |
1971 | * pte is removed and then restart fault handling. | |
1972 | */ | |
3d88705c AP |
1973 | entry = pte_to_swp_entry(pteval); |
1974 | if (is_writable_device_private_entry(entry)) | |
1975 | entry = make_writable_migration_entry(pfn); | |
6c287605 DH |
1976 | else if (anon_exclusive) |
1977 | entry = make_readable_exclusive_migration_entry(pfn); | |
3d88705c AP |
1978 | else |
1979 | entry = make_readable_migration_entry(pfn); | |
a98a2f0c AP |
1980 | swp_pte = swp_entry_to_pte(entry); |
1981 | ||
1982 | /* | |
1983 | * pteval maps a zone device page and is therefore | |
1984 | * a swap pte. | |
1985 | */ | |
1986 | if (pte_swp_soft_dirty(pteval)) | |
1987 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1988 | if (pte_swp_uffd_wp(pteval)) | |
1989 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
1990 | set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); | |
4cc79b33 AK |
1991 | trace_set_migration_pte(pvmw.address, pte_val(swp_pte), |
1992 | compound_order(&folio->page)); | |
a98a2f0c AP |
1993 | /* |
1994 | * No need to invalidate here it will synchronize on | |
1995 | * against the special swap migration pte. | |
1996 | * | |
1997 | * The assignment to subpage above was computed from a | |
1998 | * swap PTE which results in an invalid pointer. | |
1999 | * Since only PAGE_SIZE pages can currently be | |
2000 | * migrated, just set it to page. This will need to be | |
2001 | * changed when hugepage migrations to device private | |
2002 | * memory are supported. | |
2003 | */ | |
4b8554c5 | 2004 | subpage = &folio->page; |
da358d5c | 2005 | } else if (PageHWPoison(subpage)) { |
a98a2f0c | 2006 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); |
4b8554c5 MWO |
2007 | if (folio_test_hugetlb(folio)) { |
2008 | hugetlb_count_sub(folio_nr_pages(folio), mm); | |
a98a2f0c AP |
2009 | set_huge_swap_pte_at(mm, address, |
2010 | pvmw.pte, pteval, | |
2011 | vma_mmu_pagesize(vma)); | |
2012 | } else { | |
4b8554c5 | 2013 | dec_mm_counter(mm, mm_counter(&folio->page)); |
a98a2f0c AP |
2014 | set_pte_at(mm, address, pvmw.pte, pteval); |
2015 | } | |
2016 | ||
2017 | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { | |
2018 | /* | |
2019 | * The guest indicated that the page content is of no | |
2020 | * interest anymore. Simply discard the pte, vmscan | |
2021 | * will take care of the rest. | |
2022 | * A future reference will then fault in a new zero | |
2023 | * page. When userfaultfd is active, we must not drop | |
2024 | * this page though, as its main user (postcopy | |
2025 | * migration) will not expect userfaults on already | |
2026 | * copied pages. | |
2027 | */ | |
4b8554c5 | 2028 | dec_mm_counter(mm, mm_counter(&folio->page)); |
a98a2f0c AP |
2029 | /* We have to invalidate as we cleared the pte */ |
2030 | mmu_notifier_invalidate_range(mm, address, | |
2031 | address + PAGE_SIZE); | |
2032 | } else { | |
2033 | swp_entry_t entry; | |
2034 | pte_t swp_pte; | |
2035 | ||
2036 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { | |
5d4af619 BW |
2037 | if (folio_test_hugetlb(folio)) |
2038 | set_huge_pte_at(mm, address, pvmw.pte, pteval); | |
2039 | else | |
2040 | set_pte_at(mm, address, pvmw.pte, pteval); | |
a98a2f0c AP |
2041 | ret = false; |
2042 | page_vma_mapped_walk_done(&pvmw); | |
2043 | break; | |
2044 | } | |
6c287605 DH |
2045 | VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && |
2046 | !anon_exclusive, subpage); | |
2047 | if (anon_exclusive && | |
2048 | page_try_share_anon_rmap(subpage)) { | |
5d4af619 BW |
2049 | if (folio_test_hugetlb(folio)) |
2050 | set_huge_pte_at(mm, address, pvmw.pte, pteval); | |
2051 | else | |
2052 | set_pte_at(mm, address, pvmw.pte, pteval); | |
6c287605 DH |
2053 | ret = false; |
2054 | page_vma_mapped_walk_done(&pvmw); | |
2055 | break; | |
2056 | } | |
a98a2f0c AP |
2057 | |
2058 | /* | |
2059 | * Store the pfn of the page in a special migration | |
2060 | * pte. do_swap_page() will wait until the migration | |
2061 | * pte is removed and then restart fault handling. | |
2062 | */ | |
2063 | if (pte_write(pteval)) | |
2064 | entry = make_writable_migration_entry( | |
2065 | page_to_pfn(subpage)); | |
6c287605 DH |
2066 | else if (anon_exclusive) |
2067 | entry = make_readable_exclusive_migration_entry( | |
2068 | page_to_pfn(subpage)); | |
a98a2f0c AP |
2069 | else |
2070 | entry = make_readable_migration_entry( | |
2071 | page_to_pfn(subpage)); | |
2072 | ||
2073 | swp_pte = swp_entry_to_pte(entry); | |
2074 | if (pte_soft_dirty(pteval)) | |
2075 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
2076 | if (pte_uffd_wp(pteval)) | |
2077 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
5d4af619 BW |
2078 | if (folio_test_hugetlb(folio)) |
2079 | set_huge_swap_pte_at(mm, address, pvmw.pte, | |
2080 | swp_pte, vma_mmu_pagesize(vma)); | |
2081 | else | |
2082 | set_pte_at(mm, address, pvmw.pte, swp_pte); | |
4cc79b33 AK |
2083 | trace_set_migration_pte(address, pte_val(swp_pte), |
2084 | compound_order(&folio->page)); | |
a98a2f0c AP |
2085 | /* |
2086 | * No need to invalidate here it will synchronize on | |
2087 | * against the special swap migration pte. | |
2088 | */ | |
2089 | } | |
2090 | ||
2091 | /* | |
2092 | * No need to call mmu_notifier_invalidate_range() it has be | |
2093 | * done above for all cases requiring it to happen under page | |
2094 | * table lock before mmu_notifier_invalidate_range_end() | |
2095 | * | |
2096 | * See Documentation/vm/mmu_notifier.rst | |
2097 | */ | |
4b8554c5 | 2098 | page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); |
b7435507 | 2099 | if (vma->vm_flags & VM_LOCKED) |
adb11e78 | 2100 | mlock_page_drain_local(); |
4b8554c5 | 2101 | folio_put(folio); |
a98a2f0c AP |
2102 | } |
2103 | ||
2104 | mmu_notifier_invalidate_range_end(&range); | |
2105 | ||
2106 | return ret; | |
2107 | } | |
2108 | ||
2109 | /** | |
2110 | * try_to_migrate - try to replace all page table mappings with swap entries | |
4b8554c5 | 2111 | * @folio: the folio to replace page table entries for |
a98a2f0c AP |
2112 | * @flags: action and flags |
2113 | * | |
4b8554c5 MWO |
2114 | * Tries to remove all the page table entries which are mapping this folio and |
2115 | * replace them with special swap entries. Caller must hold the folio lock. | |
a98a2f0c | 2116 | */ |
4b8554c5 | 2117 | void try_to_migrate(struct folio *folio, enum ttu_flags flags) |
a98a2f0c AP |
2118 | { |
2119 | struct rmap_walk_control rwc = { | |
2120 | .rmap_one = try_to_migrate_one, | |
2121 | .arg = (void *)flags, | |
2122 | .done = page_not_mapped, | |
2f031c6f | 2123 | .anon_lock = folio_lock_anon_vma_read, |
a98a2f0c AP |
2124 | }; |
2125 | ||
2126 | /* | |
2127 | * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and | |
2128 | * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags. | |
2129 | */ | |
2130 | if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | | |
2131 | TTU_SYNC))) | |
2132 | return; | |
2133 | ||
4b8554c5 | 2134 | if (folio_is_zone_device(folio) && !folio_is_device_private(folio)) |
6c855fce HD |
2135 | return; |
2136 | ||
52629506 JK |
2137 | /* |
2138 | * During exec, a temporary VMA is setup and later moved. | |
2139 | * The VMA is moved under the anon_vma lock but not the | |
2140 | * page tables leading to a race where migration cannot | |
2141 | * find the migration ptes. Rather than increasing the | |
2142 | * locking requirements of exec(), migration skips | |
2143 | * temporary VMAs until after exec() completes. | |
2144 | */ | |
4b8554c5 | 2145 | if (!folio_test_ksm(folio) && folio_test_anon(folio)) |
52629506 JK |
2146 | rwc.invalid_vma = invalid_migration_vma; |
2147 | ||
2a52bcbc | 2148 | if (flags & TTU_RMAP_LOCKED) |
2f031c6f | 2149 | rmap_walk_locked(folio, &rwc); |
2a52bcbc | 2150 | else |
2f031c6f | 2151 | rmap_walk(folio, &rwc); |
b291f000 | 2152 | } |
e9995ef9 | 2153 | |
b756a3b5 AP |
2154 | #ifdef CONFIG_DEVICE_PRIVATE |
2155 | struct make_exclusive_args { | |
2156 | struct mm_struct *mm; | |
2157 | unsigned long address; | |
2158 | void *owner; | |
2159 | bool valid; | |
2160 | }; | |
2161 | ||
2f031c6f | 2162 | static bool page_make_device_exclusive_one(struct folio *folio, |
b756a3b5 AP |
2163 | struct vm_area_struct *vma, unsigned long address, void *priv) |
2164 | { | |
2165 | struct mm_struct *mm = vma->vm_mm; | |
0d251485 | 2166 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); |
b756a3b5 AP |
2167 | struct make_exclusive_args *args = priv; |
2168 | pte_t pteval; | |
2169 | struct page *subpage; | |
2170 | bool ret = true; | |
2171 | struct mmu_notifier_range range; | |
2172 | swp_entry_t entry; | |
2173 | pte_t swp_pte; | |
2174 | ||
2175 | mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, | |
2176 | vma->vm_mm, address, min(vma->vm_end, | |
0d251485 MWO |
2177 | address + folio_size(folio)), |
2178 | args->owner); | |
b756a3b5 AP |
2179 | mmu_notifier_invalidate_range_start(&range); |
2180 | ||
2181 | while (page_vma_mapped_walk(&pvmw)) { | |
2182 | /* Unexpected PMD-mapped THP? */ | |
0d251485 | 2183 | VM_BUG_ON_FOLIO(!pvmw.pte, folio); |
b756a3b5 AP |
2184 | |
2185 | if (!pte_present(*pvmw.pte)) { | |
2186 | ret = false; | |
2187 | page_vma_mapped_walk_done(&pvmw); | |
2188 | break; | |
2189 | } | |
2190 | ||
0d251485 MWO |
2191 | subpage = folio_page(folio, |
2192 | pte_pfn(*pvmw.pte) - folio_pfn(folio)); | |
b756a3b5 AP |
2193 | address = pvmw.address; |
2194 | ||
2195 | /* Nuke the page table entry. */ | |
2196 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | |
2197 | pteval = ptep_clear_flush(vma, address, pvmw.pte); | |
2198 | ||
0d251485 | 2199 | /* Set the dirty flag on the folio now the pte is gone. */ |
b756a3b5 | 2200 | if (pte_dirty(pteval)) |
0d251485 | 2201 | folio_mark_dirty(folio); |
b756a3b5 AP |
2202 | |
2203 | /* | |
2204 | * Check that our target page is still mapped at the expected | |
2205 | * address. | |
2206 | */ | |
2207 | if (args->mm == mm && args->address == address && | |
2208 | pte_write(pteval)) | |
2209 | args->valid = true; | |
2210 | ||
2211 | /* | |
2212 | * Store the pfn of the page in a special migration | |
2213 | * pte. do_swap_page() will wait until the migration | |
2214 | * pte is removed and then restart fault handling. | |
2215 | */ | |
2216 | if (pte_write(pteval)) | |
2217 | entry = make_writable_device_exclusive_entry( | |
2218 | page_to_pfn(subpage)); | |
2219 | else | |
2220 | entry = make_readable_device_exclusive_entry( | |
2221 | page_to_pfn(subpage)); | |
2222 | swp_pte = swp_entry_to_pte(entry); | |
2223 | if (pte_soft_dirty(pteval)) | |
2224 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
2225 | if (pte_uffd_wp(pteval)) | |
2226 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
2227 | ||
2228 | set_pte_at(mm, address, pvmw.pte, swp_pte); | |
2229 | ||
2230 | /* | |
2231 | * There is a reference on the page for the swap entry which has | |
2232 | * been removed, so shouldn't take another. | |
2233 | */ | |
cea86fe2 | 2234 | page_remove_rmap(subpage, vma, false); |
b756a3b5 AP |
2235 | } |
2236 | ||
2237 | mmu_notifier_invalidate_range_end(&range); | |
2238 | ||
2239 | return ret; | |
2240 | } | |
2241 | ||
2242 | /** | |
0d251485 MWO |
2243 | * folio_make_device_exclusive - Mark the folio exclusively owned by a device. |
2244 | * @folio: The folio to replace page table entries for. | |
2245 | * @mm: The mm_struct where the folio is expected to be mapped. | |
2246 | * @address: Address where the folio is expected to be mapped. | |
b756a3b5 AP |
2247 | * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks |
2248 | * | |
0d251485 MWO |
2249 | * Tries to remove all the page table entries which are mapping this |
2250 | * folio and replace them with special device exclusive swap entries to | |
2251 | * grant a device exclusive access to the folio. | |
b756a3b5 | 2252 | * |
0d251485 MWO |
2253 | * Context: Caller must hold the folio lock. |
2254 | * Return: false if the page is still mapped, or if it could not be unmapped | |
b756a3b5 AP |
2255 | * from the expected address. Otherwise returns true (success). |
2256 | */ | |
0d251485 MWO |
2257 | static bool folio_make_device_exclusive(struct folio *folio, |
2258 | struct mm_struct *mm, unsigned long address, void *owner) | |
b756a3b5 AP |
2259 | { |
2260 | struct make_exclusive_args args = { | |
2261 | .mm = mm, | |
2262 | .address = address, | |
2263 | .owner = owner, | |
2264 | .valid = false, | |
2265 | }; | |
2266 | struct rmap_walk_control rwc = { | |
2267 | .rmap_one = page_make_device_exclusive_one, | |
2268 | .done = page_not_mapped, | |
2f031c6f | 2269 | .anon_lock = folio_lock_anon_vma_read, |
b756a3b5 AP |
2270 | .arg = &args, |
2271 | }; | |
2272 | ||
2273 | /* | |
0d251485 MWO |
2274 | * Restrict to anonymous folios for now to avoid potential writeback |
2275 | * issues. | |
b756a3b5 | 2276 | */ |
0d251485 | 2277 | if (!folio_test_anon(folio)) |
b756a3b5 AP |
2278 | return false; |
2279 | ||
2f031c6f | 2280 | rmap_walk(folio, &rwc); |
b756a3b5 | 2281 | |
0d251485 | 2282 | return args.valid && !folio_mapcount(folio); |
b756a3b5 AP |
2283 | } |
2284 | ||
2285 | /** | |
2286 | * make_device_exclusive_range() - Mark a range for exclusive use by a device | |
dd062302 | 2287 | * @mm: mm_struct of associated target process |
b756a3b5 AP |
2288 | * @start: start of the region to mark for exclusive device access |
2289 | * @end: end address of region | |
2290 | * @pages: returns the pages which were successfully marked for exclusive access | |
2291 | * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering | |
2292 | * | |
2293 | * Returns: number of pages found in the range by GUP. A page is marked for | |
2294 | * exclusive access only if the page pointer is non-NULL. | |
2295 | * | |
2296 | * This function finds ptes mapping page(s) to the given address range, locks | |
2297 | * them and replaces mappings with special swap entries preventing userspace CPU | |
2298 | * access. On fault these entries are replaced with the original mapping after | |
2299 | * calling MMU notifiers. | |
2300 | * | |
2301 | * A driver using this to program access from a device must use a mmu notifier | |
2302 | * critical section to hold a device specific lock during programming. Once | |
2303 | * programming is complete it should drop the page lock and reference after | |
2304 | * which point CPU access to the page will revoke the exclusive access. | |
2305 | */ | |
2306 | int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, | |
2307 | unsigned long end, struct page **pages, | |
2308 | void *owner) | |
2309 | { | |
2310 | long npages = (end - start) >> PAGE_SHIFT; | |
2311 | long i; | |
2312 | ||
2313 | npages = get_user_pages_remote(mm, start, npages, | |
2314 | FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, | |
2315 | pages, NULL, NULL); | |
2316 | if (npages < 0) | |
2317 | return npages; | |
2318 | ||
2319 | for (i = 0; i < npages; i++, start += PAGE_SIZE) { | |
0d251485 MWO |
2320 | struct folio *folio = page_folio(pages[i]); |
2321 | if (PageTail(pages[i]) || !folio_trylock(folio)) { | |
2322 | folio_put(folio); | |
b756a3b5 AP |
2323 | pages[i] = NULL; |
2324 | continue; | |
2325 | } | |
2326 | ||
0d251485 MWO |
2327 | if (!folio_make_device_exclusive(folio, mm, start, owner)) { |
2328 | folio_unlock(folio); | |
2329 | folio_put(folio); | |
b756a3b5 AP |
2330 | pages[i] = NULL; |
2331 | } | |
2332 | } | |
2333 | ||
2334 | return npages; | |
2335 | } | |
2336 | EXPORT_SYMBOL_GPL(make_device_exclusive_range); | |
2337 | #endif | |
2338 | ||
01d8b20d | 2339 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 2340 | { |
01d8b20d | 2341 | struct anon_vma *root = anon_vma->root; |
76545066 | 2342 | |
624483f3 | 2343 | anon_vma_free(anon_vma); |
01d8b20d PZ |
2344 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
2345 | anon_vma_free(root); | |
76545066 | 2346 | } |
76545066 | 2347 | |
2f031c6f | 2348 | static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, |
6d4675e6 | 2349 | struct rmap_walk_control *rwc) |
faecd8dd JK |
2350 | { |
2351 | struct anon_vma *anon_vma; | |
2352 | ||
0dd1c7bb | 2353 | if (rwc->anon_lock) |
6d4675e6 | 2354 | return rwc->anon_lock(folio, rwc); |
0dd1c7bb | 2355 | |
faecd8dd | 2356 | /* |
2f031c6f | 2357 | * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() |
faecd8dd | 2358 | * because that depends on page_mapped(); but not all its usages |
c1e8d7c6 | 2359 | * are holding mmap_lock. Users without mmap_lock are required to |
faecd8dd JK |
2360 | * take a reference count to prevent the anon_vma disappearing |
2361 | */ | |
e05b3453 | 2362 | anon_vma = folio_anon_vma(folio); |
faecd8dd JK |
2363 | if (!anon_vma) |
2364 | return NULL; | |
2365 | ||
6d4675e6 MK |
2366 | if (anon_vma_trylock_read(anon_vma)) |
2367 | goto out; | |
2368 | ||
2369 | if (rwc->try_lock) { | |
2370 | anon_vma = NULL; | |
2371 | rwc->contended = true; | |
2372 | goto out; | |
2373 | } | |
2374 | ||
faecd8dd | 2375 | anon_vma_lock_read(anon_vma); |
6d4675e6 | 2376 | out: |
faecd8dd JK |
2377 | return anon_vma; |
2378 | } | |
2379 | ||
e9995ef9 | 2380 | /* |
e8351ac9 JK |
2381 | * rmap_walk_anon - do something to anonymous page using the object-based |
2382 | * rmap method | |
2383 | * @page: the page to be handled | |
2384 | * @rwc: control variable according to each walk type | |
2385 | * | |
2386 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
2387 | * contained in the anon_vma struct it points to. | |
e9995ef9 | 2388 | */ |
84fbbe21 | 2389 | static void rmap_walk_anon(struct folio *folio, |
6d4675e6 | 2390 | struct rmap_walk_control *rwc, bool locked) |
e9995ef9 HD |
2391 | { |
2392 | struct anon_vma *anon_vma; | |
a8fa41ad | 2393 | pgoff_t pgoff_start, pgoff_end; |
5beb4930 | 2394 | struct anon_vma_chain *avc; |
e9995ef9 | 2395 | |
b9773199 | 2396 | if (locked) { |
e05b3453 | 2397 | anon_vma = folio_anon_vma(folio); |
b9773199 | 2398 | /* anon_vma disappear under us? */ |
e05b3453 | 2399 | VM_BUG_ON_FOLIO(!anon_vma, folio); |
b9773199 | 2400 | } else { |
2f031c6f | 2401 | anon_vma = rmap_walk_anon_lock(folio, rwc); |
b9773199 | 2402 | } |
e9995ef9 | 2403 | if (!anon_vma) |
1df631ae | 2404 | return; |
faecd8dd | 2405 | |
2f031c6f MWO |
2406 | pgoff_start = folio_pgoff(folio); |
2407 | pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; | |
a8fa41ad KS |
2408 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, |
2409 | pgoff_start, pgoff_end) { | |
5beb4930 | 2410 | struct vm_area_struct *vma = avc->vma; |
2f031c6f | 2411 | unsigned long address = vma_address(&folio->page, vma); |
0dd1c7bb | 2412 | |
494334e4 | 2413 | VM_BUG_ON_VMA(address == -EFAULT, vma); |
ad12695f AA |
2414 | cond_resched(); |
2415 | ||
0dd1c7bb JK |
2416 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
2417 | continue; | |
2418 | ||
2f031c6f | 2419 | if (!rwc->rmap_one(folio, vma, address, rwc->arg)) |
e9995ef9 | 2420 | break; |
2f031c6f | 2421 | if (rwc->done && rwc->done(folio)) |
0dd1c7bb | 2422 | break; |
e9995ef9 | 2423 | } |
b9773199 KS |
2424 | |
2425 | if (!locked) | |
2426 | anon_vma_unlock_read(anon_vma); | |
e9995ef9 HD |
2427 | } |
2428 | ||
e8351ac9 JK |
2429 | /* |
2430 | * rmap_walk_file - do something to file page using the object-based rmap method | |
2431 | * @page: the page to be handled | |
2432 | * @rwc: control variable according to each walk type | |
2433 | * | |
2434 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
2435 | * contained in the address_space struct it points to. | |
e8351ac9 | 2436 | */ |
84fbbe21 | 2437 | static void rmap_walk_file(struct folio *folio, |
6d4675e6 | 2438 | struct rmap_walk_control *rwc, bool locked) |
e9995ef9 | 2439 | { |
2f031c6f | 2440 | struct address_space *mapping = folio_mapping(folio); |
a8fa41ad | 2441 | pgoff_t pgoff_start, pgoff_end; |
e9995ef9 | 2442 | struct vm_area_struct *vma; |
e9995ef9 | 2443 | |
9f32624b JK |
2444 | /* |
2445 | * The page lock not only makes sure that page->mapping cannot | |
2446 | * suddenly be NULLified by truncation, it makes sure that the | |
2447 | * structure at mapping cannot be freed and reused yet, | |
c8c06efa | 2448 | * so we can safely take mapping->i_mmap_rwsem. |
9f32624b | 2449 | */ |
2f031c6f | 2450 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
9f32624b | 2451 | |
e9995ef9 | 2452 | if (!mapping) |
1df631ae | 2453 | return; |
3dec0ba0 | 2454 | |
2f031c6f MWO |
2455 | pgoff_start = folio_pgoff(folio); |
2456 | pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; | |
6d4675e6 MK |
2457 | if (!locked) { |
2458 | if (i_mmap_trylock_read(mapping)) | |
2459 | goto lookup; | |
2460 | ||
2461 | if (rwc->try_lock) { | |
2462 | rwc->contended = true; | |
2463 | return; | |
2464 | } | |
2465 | ||
b9773199 | 2466 | i_mmap_lock_read(mapping); |
6d4675e6 MK |
2467 | } |
2468 | lookup: | |
a8fa41ad KS |
2469 | vma_interval_tree_foreach(vma, &mapping->i_mmap, |
2470 | pgoff_start, pgoff_end) { | |
2f031c6f | 2471 | unsigned long address = vma_address(&folio->page, vma); |
0dd1c7bb | 2472 | |
494334e4 | 2473 | VM_BUG_ON_VMA(address == -EFAULT, vma); |
ad12695f AA |
2474 | cond_resched(); |
2475 | ||
0dd1c7bb JK |
2476 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
2477 | continue; | |
2478 | ||
2f031c6f | 2479 | if (!rwc->rmap_one(folio, vma, address, rwc->arg)) |
0dd1c7bb | 2480 | goto done; |
2f031c6f | 2481 | if (rwc->done && rwc->done(folio)) |
0dd1c7bb | 2482 | goto done; |
e9995ef9 | 2483 | } |
0dd1c7bb | 2484 | |
0dd1c7bb | 2485 | done: |
b9773199 KS |
2486 | if (!locked) |
2487 | i_mmap_unlock_read(mapping); | |
e9995ef9 HD |
2488 | } |
2489 | ||
6d4675e6 | 2490 | void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) |
e9995ef9 | 2491 | { |
2f031c6f MWO |
2492 | if (unlikely(folio_test_ksm(folio))) |
2493 | rmap_walk_ksm(folio, rwc); | |
2494 | else if (folio_test_anon(folio)) | |
2495 | rmap_walk_anon(folio, rwc, false); | |
b9773199 | 2496 | else |
2f031c6f | 2497 | rmap_walk_file(folio, rwc, false); |
b9773199 KS |
2498 | } |
2499 | ||
2500 | /* Like rmap_walk, but caller holds relevant rmap lock */ | |
6d4675e6 | 2501 | void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) |
b9773199 KS |
2502 | { |
2503 | /* no ksm support for now */ | |
2f031c6f MWO |
2504 | VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); |
2505 | if (folio_test_anon(folio)) | |
2506 | rmap_walk_anon(folio, rwc, true); | |
e9995ef9 | 2507 | else |
2f031c6f | 2508 | rmap_walk_file(folio, rwc, true); |
e9995ef9 | 2509 | } |
0fe6e20b | 2510 | |
e3390f67 | 2511 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b | 2512 | /* |
451b9514 | 2513 | * The following two functions are for anonymous (private mapped) hugepages. |
0fe6e20b NH |
2514 | * Unlike common anonymous pages, anonymous hugepages have no accounting code |
2515 | * and no lru code, because we handle hugepages differently from common pages. | |
28c5209d DH |
2516 | * |
2517 | * RMAP_COMPOUND is ignored. | |
0fe6e20b | 2518 | */ |
28c5209d DH |
2519 | void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, |
2520 | unsigned long address, rmap_t flags) | |
0fe6e20b NH |
2521 | { |
2522 | struct anon_vma *anon_vma = vma->anon_vma; | |
2523 | int first; | |
a850ea30 NH |
2524 | |
2525 | BUG_ON(!PageLocked(page)); | |
0fe6e20b | 2526 | BUG_ON(!anon_vma); |
5dbe0af4 | 2527 | /* address might be in next vma when migration races vma_adjust */ |
53f9263b | 2528 | first = atomic_inc_and_test(compound_mapcount_ptr(page)); |
6c287605 DH |
2529 | VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); |
2530 | VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); | |
0fe6e20b | 2531 | if (first) |
28c5209d DH |
2532 | __page_set_anon_rmap(page, vma, address, |
2533 | !!(flags & RMAP_EXCLUSIVE)); | |
0fe6e20b NH |
2534 | } |
2535 | ||
2536 | void hugepage_add_new_anon_rmap(struct page *page, | |
2537 | struct vm_area_struct *vma, unsigned long address) | |
2538 | { | |
2539 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
53f9263b | 2540 | atomic_set(compound_mapcount_ptr(page), 0); |
5232c63f | 2541 | atomic_set(compound_pincount_ptr(page), 0); |
47e29d32 | 2542 | |
451b9514 | 2543 | __page_set_anon_rmap(page, vma, address, 1); |
0fe6e20b | 2544 | } |
e3390f67 | 2545 | #endif /* CONFIG_HUGETLB_PAGE */ |