]> Git Repo - linux.git/blame - mm/shmem.c
mm/page_isolation: unset migratetype directly for non Buddy page
[linux.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <[email protected]>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <[email protected]>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <[email protected]>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
626c3920 40#include <linux/fs_parser.h>
86a2f3f2 41#include <linux/swapfile.h>
95cc09d6 42
853ac43a
MM
43static struct vfsmount *shm_mnt;
44
45#ifdef CONFIG_SHMEM
1da177e4
LT
46/*
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
50 */
51
39f0247d 52#include <linux/xattr.h>
a5694255 53#include <linux/exportfs.h>
1c7c474c 54#include <linux/posix_acl.h>
feda821e 55#include <linux/posix_acl_xattr.h>
1da177e4 56#include <linux/mman.h>
1da177e4
LT
57#include <linux/string.h>
58#include <linux/slab.h>
59#include <linux/backing-dev.h>
60#include <linux/shmem_fs.h>
1da177e4 61#include <linux/writeback.h>
bda97eab 62#include <linux/pagevec.h>
41ffe5d5 63#include <linux/percpu_counter.h>
83e4fa9c 64#include <linux/falloc.h>
708e3508 65#include <linux/splice.h>
1da177e4
LT
66#include <linux/security.h>
67#include <linux/swapops.h>
68#include <linux/mempolicy.h>
69#include <linux/namei.h>
b00dc3ad 70#include <linux/ctype.h>
304dbdb7 71#include <linux/migrate.h>
c1f60a5a 72#include <linux/highmem.h>
680d794b 73#include <linux/seq_file.h>
92562927 74#include <linux/magic.h>
9183df25 75#include <linux/syscalls.h>
40e041a2 76#include <linux/fcntl.h>
9183df25 77#include <uapi/linux/memfd.h>
cfda0526 78#include <linux/userfaultfd_k.h>
4c27fe4c 79#include <linux/rmap.h>
2b4db796 80#include <linux/uuid.h>
304dbdb7 81
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4 83
dd56b046
MG
84#include "internal.h"
85
09cbfeaf
KS
86#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 88
1da177e4
LT
89/* Pretend that each entry is of this size in directory's i_size */
90#define BOGO_DIRENT_SIZE 20
91
69f07ec9
HD
92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93#define SHORT_SYMLINK_LEN 128
94
1aac1400 95/*
f00cdc6d 96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
9608703e 97 * inode->i_private (with i_rwsem making sure that it has only one user at
f00cdc6d 98 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
99 */
100struct shmem_falloc {
8e205f77 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106};
107
0b5071dd
AV
108struct shmem_options {
109 unsigned long long blocks;
110 unsigned long long inodes;
111 struct mempolicy *mpol;
112 kuid_t uid;
113 kgid_t gid;
114 umode_t mode;
ea3271f7 115 bool full_inums;
0b5071dd
AV
116 int huge;
117 int seen;
118#define SHMEM_SEEN_BLOCKS 1
119#define SHMEM_SEEN_INODES 2
120#define SHMEM_SEEN_HUGE 4
ea3271f7 121#define SHMEM_SEEN_INUMS 8
0b5071dd
AV
122};
123
b76db735 124#ifdef CONFIG_TMPFS
680d794b
AM
125static unsigned long shmem_default_max_blocks(void)
126{
ca79b0c2 127 return totalram_pages() / 2;
680d794b
AM
128}
129
130static unsigned long shmem_default_max_inodes(void)
131{
ca79b0c2
AK
132 unsigned long nr_pages = totalram_pages();
133
134 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 135}
b76db735 136#endif
680d794b 137
c5bf121e
VRP
138static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139 struct page **pagep, enum sgp_type sgp,
140 gfp_t gfp, struct vm_area_struct *vma,
141 vm_fault_t *fault_type);
68da9f05 142static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 143 struct page **pagep, enum sgp_type sgp,
cfda0526 144 gfp_t gfp, struct vm_area_struct *vma,
2b740303 145 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 146
f3f0e1d2 147int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 148 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
149{
150 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 151 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 152}
1da177e4 153
1da177e4
LT
154static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155{
156 return sb->s_fs_info;
157}
158
159/*
160 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161 * for shared memory and for shared anonymous (/dev/zero) mappings
162 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163 * consistent with the pre-accounting of private mappings ...
164 */
165static inline int shmem_acct_size(unsigned long flags, loff_t size)
166{
0b0a0806 167 return (flags & VM_NORESERVE) ?
191c5424 168 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
169}
170
171static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172{
0b0a0806 173 if (!(flags & VM_NORESERVE))
1da177e4
LT
174 vm_unacct_memory(VM_ACCT(size));
175}
176
77142517
KK
177static inline int shmem_reacct_size(unsigned long flags,
178 loff_t oldsize, loff_t newsize)
179{
180 if (!(flags & VM_NORESERVE)) {
181 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182 return security_vm_enough_memory_mm(current->mm,
183 VM_ACCT(newsize) - VM_ACCT(oldsize));
184 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186 }
187 return 0;
188}
189
1da177e4
LT
190/*
191 * ... whereas tmpfs objects are accounted incrementally as
75edd345 192 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
193 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195 */
800d8c63 196static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 197{
800d8c63
KS
198 if (!(flags & VM_NORESERVE))
199 return 0;
200
201 return security_vm_enough_memory_mm(current->mm,
202 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
203}
204
205static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206{
0b0a0806 207 if (flags & VM_NORESERVE)
09cbfeaf 208 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
209}
210
0f079694
MR
211static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212{
213 struct shmem_inode_info *info = SHMEM_I(inode);
214 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215
216 if (shmem_acct_block(info->flags, pages))
217 return false;
218
219 if (sbinfo->max_blocks) {
220 if (percpu_counter_compare(&sbinfo->used_blocks,
221 sbinfo->max_blocks - pages) > 0)
222 goto unacct;
223 percpu_counter_add(&sbinfo->used_blocks, pages);
224 }
225
226 return true;
227
228unacct:
229 shmem_unacct_blocks(info->flags, pages);
230 return false;
231}
232
233static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234{
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237
238 if (sbinfo->max_blocks)
239 percpu_counter_sub(&sbinfo->used_blocks, pages);
240 shmem_unacct_blocks(info->flags, pages);
241}
242
759b9775 243static const struct super_operations shmem_ops;
30e6a51d 244const struct address_space_operations shmem_aops;
15ad7cdc 245static const struct file_operations shmem_file_operations;
92e1d5be
AV
246static const struct inode_operations shmem_inode_operations;
247static const struct inode_operations shmem_dir_inode_operations;
248static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 249static const struct vm_operations_struct shmem_vm_ops;
779750d2 250static struct file_system_type shmem_fs_type;
1da177e4 251
b0506e48
MR
252bool vma_is_shmem(struct vm_area_struct *vma)
253{
254 return vma->vm_ops == &shmem_vm_ops;
255}
256
1da177e4 257static LIST_HEAD(shmem_swaplist);
cb5f7b9a 258static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 259
e809d5f0
CD
260/*
261 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262 * produces a novel ino for the newly allocated inode.
263 *
264 * It may also be called when making a hard link to permit the space needed by
265 * each dentry. However, in that case, no new inode number is needed since that
266 * internally draws from another pool of inode numbers (currently global
267 * get_next_ino()). This case is indicated by passing NULL as inop.
268 */
269#define SHMEM_INO_BATCH 1024
270static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
271{
272 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
273 ino_t ino;
274
275 if (!(sb->s_flags & SB_KERNMOUNT)) {
bf11b9a8 276 raw_spin_lock(&sbinfo->stat_lock);
bb3e96d6
BS
277 if (sbinfo->max_inodes) {
278 if (!sbinfo->free_inodes) {
bf11b9a8 279 raw_spin_unlock(&sbinfo->stat_lock);
bb3e96d6
BS
280 return -ENOSPC;
281 }
282 sbinfo->free_inodes--;
5b04c689 283 }
e809d5f0
CD
284 if (inop) {
285 ino = sbinfo->next_ino++;
286 if (unlikely(is_zero_ino(ino)))
287 ino = sbinfo->next_ino++;
ea3271f7
CD
288 if (unlikely(!sbinfo->full_inums &&
289 ino > UINT_MAX)) {
e809d5f0
CD
290 /*
291 * Emulate get_next_ino uint wraparound for
292 * compatibility
293 */
ea3271f7
CD
294 if (IS_ENABLED(CONFIG_64BIT))
295 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296 __func__, MINOR(sb->s_dev));
297 sbinfo->next_ino = 1;
298 ino = sbinfo->next_ino++;
e809d5f0
CD
299 }
300 *inop = ino;
301 }
bf11b9a8 302 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
303 } else if (inop) {
304 /*
305 * __shmem_file_setup, one of our callers, is lock-free: it
306 * doesn't hold stat_lock in shmem_reserve_inode since
307 * max_inodes is always 0, and is called from potentially
308 * unknown contexts. As such, use a per-cpu batched allocator
309 * which doesn't require the per-sb stat_lock unless we are at
310 * the batch boundary.
ea3271f7
CD
311 *
312 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313 * shmem mounts are not exposed to userspace, so we don't need
314 * to worry about things like glibc compatibility.
e809d5f0
CD
315 */
316 ino_t *next_ino;
bf11b9a8 317
e809d5f0
CD
318 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 ino = *next_ino;
320 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
bf11b9a8 321 raw_spin_lock(&sbinfo->stat_lock);
e809d5f0
CD
322 ino = sbinfo->next_ino;
323 sbinfo->next_ino += SHMEM_INO_BATCH;
bf11b9a8 324 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
325 if (unlikely(is_zero_ino(ino)))
326 ino++;
327 }
328 *inop = ino;
329 *next_ino = ++ino;
330 put_cpu();
5b04c689 331 }
e809d5f0 332
5b04c689
PE
333 return 0;
334}
335
336static void shmem_free_inode(struct super_block *sb)
337{
338 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 if (sbinfo->max_inodes) {
bf11b9a8 340 raw_spin_lock(&sbinfo->stat_lock);
5b04c689 341 sbinfo->free_inodes++;
bf11b9a8 342 raw_spin_unlock(&sbinfo->stat_lock);
5b04c689
PE
343 }
344}
345
46711810 346/**
41ffe5d5 347 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
348 * @inode: inode to recalc
349 *
350 * We have to calculate the free blocks since the mm can drop
351 * undirtied hole pages behind our back.
352 *
353 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
354 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355 *
356 * It has to be called with the spinlock held.
357 */
358static void shmem_recalc_inode(struct inode *inode)
359{
360 struct shmem_inode_info *info = SHMEM_I(inode);
361 long freed;
362
363 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 if (freed > 0) {
365 info->alloced -= freed;
54af6042 366 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 367 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
368 }
369}
370
800d8c63
KS
371bool shmem_charge(struct inode *inode, long pages)
372{
373 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 374 unsigned long flags;
800d8c63 375
0f079694 376 if (!shmem_inode_acct_block(inode, pages))
800d8c63 377 return false;
b1cc94ab 378
aaa52e34
HD
379 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380 inode->i_mapping->nrpages += pages;
381
4595ef88 382 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
383 info->alloced += pages;
384 inode->i_blocks += pages * BLOCKS_PER_PAGE;
385 shmem_recalc_inode(inode);
4595ef88 386 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 387
800d8c63
KS
388 return true;
389}
390
391void shmem_uncharge(struct inode *inode, long pages)
392{
393 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 394 unsigned long flags;
800d8c63 395
aaa52e34
HD
396 /* nrpages adjustment done by __delete_from_page_cache() or caller */
397
4595ef88 398 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
399 info->alloced -= pages;
400 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401 shmem_recalc_inode(inode);
4595ef88 402 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 403
0f079694 404 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
405}
406
7a5d0fbb 407/*
62f945b6 408 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 409 */
62f945b6 410static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
411 pgoff_t index, void *expected, void *replacement)
412{
62f945b6 413 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 414 void *item;
7a5d0fbb
HD
415
416 VM_BUG_ON(!expected);
6dbaf22c 417 VM_BUG_ON(!replacement);
62f945b6 418 item = xas_load(&xas);
7a5d0fbb
HD
419 if (item != expected)
420 return -ENOENT;
62f945b6 421 xas_store(&xas, replacement);
7a5d0fbb
HD
422 return 0;
423}
424
d1899228
HD
425/*
426 * Sometimes, before we decide whether to proceed or to fail, we must check
427 * that an entry was not already brought back from swap by a racing thread.
428 *
429 * Checking page is not enough: by the time a SwapCache page is locked, it
430 * might be reused, and again be SwapCache, using the same swap as before.
431 */
432static bool shmem_confirm_swap(struct address_space *mapping,
433 pgoff_t index, swp_entry_t swap)
434{
a12831bf 435 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
436}
437
5a6e75f8
KS
438/*
439 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440 *
441 * SHMEM_HUGE_NEVER:
442 * disables huge pages for the mount;
443 * SHMEM_HUGE_ALWAYS:
444 * enables huge pages for the mount;
445 * SHMEM_HUGE_WITHIN_SIZE:
446 * only allocate huge pages if the page will be fully within i_size,
447 * also respect fadvise()/madvise() hints;
448 * SHMEM_HUGE_ADVISE:
449 * only allocate huge pages if requested with fadvise()/madvise();
450 */
451
452#define SHMEM_HUGE_NEVER 0
453#define SHMEM_HUGE_ALWAYS 1
454#define SHMEM_HUGE_WITHIN_SIZE 2
455#define SHMEM_HUGE_ADVISE 3
456
457/*
458 * Special values.
459 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460 *
461 * SHMEM_HUGE_DENY:
462 * disables huge on shm_mnt and all mounts, for emergency use;
463 * SHMEM_HUGE_FORCE:
464 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465 *
466 */
467#define SHMEM_HUGE_DENY (-1)
468#define SHMEM_HUGE_FORCE (-2)
469
396bcc52 470#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
471/* ifdef here to avoid bloating shmem.o when not necessary */
472
5e6e5a12 473static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
5a6e75f8 474
5e6e5a12
HD
475bool shmem_is_huge(struct vm_area_struct *vma,
476 struct inode *inode, pgoff_t index)
c852023e 477{
c852023e 478 loff_t i_size;
c852023e 479
c852023e
HD
480 if (shmem_huge == SHMEM_HUGE_DENY)
481 return false;
5e6e5a12
HD
482 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
483 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
c852023e 484 return false;
5e6e5a12
HD
485 if (shmem_huge == SHMEM_HUGE_FORCE)
486 return true;
487
488 switch (SHMEM_SB(inode->i_sb)->huge) {
c852023e
HD
489 case SHMEM_HUGE_ALWAYS:
490 return true;
491 case SHMEM_HUGE_WITHIN_SIZE:
de6ee659 492 index = round_up(index + 1, HPAGE_PMD_NR);
c852023e 493 i_size = round_up(i_size_read(inode), PAGE_SIZE);
de6ee659 494 if (i_size >> PAGE_SHIFT >= index)
c852023e
HD
495 return true;
496 fallthrough;
497 case SHMEM_HUGE_ADVISE:
5e6e5a12
HD
498 if (vma && (vma->vm_flags & VM_HUGEPAGE))
499 return true;
500 fallthrough;
c852023e 501 default:
c852023e
HD
502 return false;
503 }
504}
5a6e75f8 505
e5f2249a 506#if defined(CONFIG_SYSFS)
5a6e75f8
KS
507static int shmem_parse_huge(const char *str)
508{
509 if (!strcmp(str, "never"))
510 return SHMEM_HUGE_NEVER;
511 if (!strcmp(str, "always"))
512 return SHMEM_HUGE_ALWAYS;
513 if (!strcmp(str, "within_size"))
514 return SHMEM_HUGE_WITHIN_SIZE;
515 if (!strcmp(str, "advise"))
516 return SHMEM_HUGE_ADVISE;
517 if (!strcmp(str, "deny"))
518 return SHMEM_HUGE_DENY;
519 if (!strcmp(str, "force"))
520 return SHMEM_HUGE_FORCE;
521 return -EINVAL;
522}
e5f2249a 523#endif
5a6e75f8 524
e5f2249a 525#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
526static const char *shmem_format_huge(int huge)
527{
528 switch (huge) {
529 case SHMEM_HUGE_NEVER:
530 return "never";
531 case SHMEM_HUGE_ALWAYS:
532 return "always";
533 case SHMEM_HUGE_WITHIN_SIZE:
534 return "within_size";
535 case SHMEM_HUGE_ADVISE:
536 return "advise";
537 case SHMEM_HUGE_DENY:
538 return "deny";
539 case SHMEM_HUGE_FORCE:
540 return "force";
541 default:
542 VM_BUG_ON(1);
543 return "bad_val";
544 }
545}
f1f5929c 546#endif
5a6e75f8 547
779750d2
KS
548static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549 struct shrink_control *sc, unsigned long nr_to_split)
550{
551 LIST_HEAD(list), *pos, *next;
253fd0f0 552 LIST_HEAD(to_remove);
779750d2
KS
553 struct inode *inode;
554 struct shmem_inode_info *info;
555 struct page *page;
556 unsigned long batch = sc ? sc->nr_to_scan : 128;
62c9827c 557 int split = 0;
779750d2
KS
558
559 if (list_empty(&sbinfo->shrinklist))
560 return SHRINK_STOP;
561
562 spin_lock(&sbinfo->shrinklist_lock);
563 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564 info = list_entry(pos, struct shmem_inode_info, shrinklist);
565
566 /* pin the inode */
567 inode = igrab(&info->vfs_inode);
568
569 /* inode is about to be evicted */
570 if (!inode) {
571 list_del_init(&info->shrinklist);
779750d2
KS
572 goto next;
573 }
574
575 /* Check if there's anything to gain */
576 if (round_up(inode->i_size, PAGE_SIZE) ==
577 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 578 list_move(&info->shrinklist, &to_remove);
779750d2
KS
579 goto next;
580 }
581
582 list_move(&info->shrinklist, &list);
583next:
62c9827c 584 sbinfo->shrinklist_len--;
779750d2
KS
585 if (!--batch)
586 break;
587 }
588 spin_unlock(&sbinfo->shrinklist_lock);
589
253fd0f0
KS
590 list_for_each_safe(pos, next, &to_remove) {
591 info = list_entry(pos, struct shmem_inode_info, shrinklist);
592 inode = &info->vfs_inode;
593 list_del_init(&info->shrinklist);
594 iput(inode);
595 }
596
779750d2
KS
597 list_for_each_safe(pos, next, &list) {
598 int ret;
599
600 info = list_entry(pos, struct shmem_inode_info, shrinklist);
601 inode = &info->vfs_inode;
602
b3cd54b2 603 if (nr_to_split && split >= nr_to_split)
62c9827c 604 goto move_back;
779750d2 605
b3cd54b2 606 page = find_get_page(inode->i_mapping,
779750d2
KS
607 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
608 if (!page)
609 goto drop;
610
b3cd54b2 611 /* No huge page at the end of the file: nothing to split */
779750d2 612 if (!PageTransHuge(page)) {
779750d2
KS
613 put_page(page);
614 goto drop;
615 }
616
b3cd54b2 617 /*
62c9827c
GL
618 * Move the inode on the list back to shrinklist if we failed
619 * to lock the page at this time.
b3cd54b2
KS
620 *
621 * Waiting for the lock may lead to deadlock in the
622 * reclaim path.
623 */
624 if (!trylock_page(page)) {
625 put_page(page);
62c9827c 626 goto move_back;
b3cd54b2
KS
627 }
628
779750d2
KS
629 ret = split_huge_page(page);
630 unlock_page(page);
631 put_page(page);
632
62c9827c 633 /* If split failed move the inode on the list back to shrinklist */
b3cd54b2 634 if (ret)
62c9827c 635 goto move_back;
779750d2
KS
636
637 split++;
638drop:
639 list_del_init(&info->shrinklist);
62c9827c
GL
640 goto put;
641move_back:
642 /*
643 * Make sure the inode is either on the global list or deleted
644 * from any local list before iput() since it could be deleted
645 * in another thread once we put the inode (then the local list
646 * is corrupted).
647 */
648 spin_lock(&sbinfo->shrinklist_lock);
649 list_move(&info->shrinklist, &sbinfo->shrinklist);
650 sbinfo->shrinklist_len++;
651 spin_unlock(&sbinfo->shrinklist_lock);
652put:
779750d2
KS
653 iput(inode);
654 }
655
779750d2
KS
656 return split;
657}
658
659static long shmem_unused_huge_scan(struct super_block *sb,
660 struct shrink_control *sc)
661{
662 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
663
664 if (!READ_ONCE(sbinfo->shrinklist_len))
665 return SHRINK_STOP;
666
667 return shmem_unused_huge_shrink(sbinfo, sc, 0);
668}
669
670static long shmem_unused_huge_count(struct super_block *sb,
671 struct shrink_control *sc)
672{
673 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
674 return READ_ONCE(sbinfo->shrinklist_len);
675}
396bcc52 676#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
677
678#define shmem_huge SHMEM_HUGE_DENY
679
5e6e5a12
HD
680bool shmem_is_huge(struct vm_area_struct *vma,
681 struct inode *inode, pgoff_t index)
682{
683 return false;
684}
685
779750d2
KS
686static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
687 struct shrink_control *sc, unsigned long nr_to_split)
688{
689 return 0;
690}
396bcc52 691#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 692
46f65ec1
HD
693/*
694 * Like add_to_page_cache_locked, but error if expected item has gone.
695 */
696static int shmem_add_to_page_cache(struct page *page,
697 struct address_space *mapping,
3fea5a49
JW
698 pgoff_t index, void *expected, gfp_t gfp,
699 struct mm_struct *charge_mm)
46f65ec1 700{
552446a4
MW
701 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
702 unsigned long i = 0;
d8c6546b 703 unsigned long nr = compound_nr(page);
3fea5a49 704 int error;
46f65ec1 705
800d8c63
KS
706 VM_BUG_ON_PAGE(PageTail(page), page);
707 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
708 VM_BUG_ON_PAGE(!PageLocked(page), page);
709 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 710 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 711
800d8c63 712 page_ref_add(page, nr);
b065b432
HD
713 page->mapping = mapping;
714 page->index = index;
715
4c6355b2 716 if (!PageSwapCache(page)) {
8f425e4e 717 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
4c6355b2
JW
718 if (error) {
719 if (PageTransHuge(page)) {
720 count_vm_event(THP_FILE_FALLBACK);
721 count_vm_event(THP_FILE_FALLBACK_CHARGE);
722 }
723 goto error;
3fea5a49 724 }
3fea5a49
JW
725 }
726 cgroup_throttle_swaprate(page, gfp);
727
552446a4
MW
728 do {
729 void *entry;
730 xas_lock_irq(&xas);
731 entry = xas_find_conflict(&xas);
732 if (entry != expected)
733 xas_set_err(&xas, -EEXIST);
734 xas_create_range(&xas);
735 if (xas_error(&xas))
736 goto unlock;
737next:
4101196b 738 xas_store(&xas, page);
552446a4
MW
739 if (++i < nr) {
740 xas_next(&xas);
741 goto next;
800d8c63 742 }
552446a4 743 if (PageTransHuge(page)) {
800d8c63 744 count_vm_event(THP_FILE_ALLOC);
57b2847d 745 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
800d8c63 746 }
800d8c63 747 mapping->nrpages += nr;
0d1c2072
JW
748 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
749 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
750unlock:
751 xas_unlock_irq(&xas);
752 } while (xas_nomem(&xas, gfp));
753
754 if (xas_error(&xas)) {
3fea5a49
JW
755 error = xas_error(&xas);
756 goto error;
46f65ec1 757 }
552446a4
MW
758
759 return 0;
3fea5a49
JW
760error:
761 page->mapping = NULL;
762 page_ref_sub(page, nr);
763 return error;
46f65ec1
HD
764}
765
6922c0c7
HD
766/*
767 * Like delete_from_page_cache, but substitutes swap for page.
768 */
769static void shmem_delete_from_page_cache(struct page *page, void *radswap)
770{
771 struct address_space *mapping = page->mapping;
772 int error;
773
800d8c63
KS
774 VM_BUG_ON_PAGE(PageCompound(page), page);
775
b93b0163 776 xa_lock_irq(&mapping->i_pages);
62f945b6 777 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
778 page->mapping = NULL;
779 mapping->nrpages--;
0d1c2072
JW
780 __dec_lruvec_page_state(page, NR_FILE_PAGES);
781 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 782 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 783 put_page(page);
6922c0c7
HD
784 BUG_ON(error);
785}
786
7a5d0fbb 787/*
c121d3bb 788 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
789 */
790static int shmem_free_swap(struct address_space *mapping,
791 pgoff_t index, void *radswap)
792{
6dbaf22c 793 void *old;
7a5d0fbb 794
55f3f7ea 795 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
796 if (old != radswap)
797 return -ENOENT;
798 free_swap_and_cache(radix_to_swp_entry(radswap));
799 return 0;
7a5d0fbb
HD
800}
801
6a15a370
VB
802/*
803 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 804 * given offsets are swapped out.
6a15a370 805 *
9608703e 806 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
6a15a370
VB
807 * as long as the inode doesn't go away and racy results are not a problem.
808 */
48131e03
VB
809unsigned long shmem_partial_swap_usage(struct address_space *mapping,
810 pgoff_t start, pgoff_t end)
6a15a370 811{
7ae3424f 812 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 813 struct page *page;
48131e03 814 unsigned long swapped = 0;
6a15a370
VB
815
816 rcu_read_lock();
7ae3424f
MW
817 xas_for_each(&xas, page, end - 1) {
818 if (xas_retry(&xas, page))
2cf938aa 819 continue;
3159f943 820 if (xa_is_value(page))
6a15a370
VB
821 swapped++;
822
823 if (need_resched()) {
7ae3424f 824 xas_pause(&xas);
6a15a370 825 cond_resched_rcu();
6a15a370
VB
826 }
827 }
828
829 rcu_read_unlock();
830
831 return swapped << PAGE_SHIFT;
832}
833
48131e03
VB
834/*
835 * Determine (in bytes) how many of the shmem object's pages mapped by the
836 * given vma is swapped out.
837 *
9608703e 838 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
48131e03
VB
839 * as long as the inode doesn't go away and racy results are not a problem.
840 */
841unsigned long shmem_swap_usage(struct vm_area_struct *vma)
842{
843 struct inode *inode = file_inode(vma->vm_file);
844 struct shmem_inode_info *info = SHMEM_I(inode);
845 struct address_space *mapping = inode->i_mapping;
846 unsigned long swapped;
847
848 /* Be careful as we don't hold info->lock */
849 swapped = READ_ONCE(info->swapped);
850
851 /*
852 * The easier cases are when the shmem object has nothing in swap, or
853 * the vma maps it whole. Then we can simply use the stats that we
854 * already track.
855 */
856 if (!swapped)
857 return 0;
858
859 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
860 return swapped << PAGE_SHIFT;
861
862 /* Here comes the more involved part */
02399c88
PX
863 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
864 vma->vm_pgoff + vma_pages(vma));
48131e03
VB
865}
866
24513264
HD
867/*
868 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
869 */
870void shmem_unlock_mapping(struct address_space *mapping)
871{
872 struct pagevec pvec;
24513264
HD
873 pgoff_t index = 0;
874
86679820 875 pagevec_init(&pvec);
24513264
HD
876 /*
877 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
878 */
879 while (!mapping_unevictable(mapping)) {
96888e0a 880 if (!pagevec_lookup(&pvec, mapping, &index))
24513264 881 break;
64e3d12f 882 check_move_unevictable_pages(&pvec);
24513264
HD
883 pagevec_release(&pvec);
884 cond_resched();
885 }
7a5d0fbb
HD
886}
887
71725ed1
HD
888/*
889 * Check whether a hole-punch or truncation needs to split a huge page,
890 * returning true if no split was required, or the split has been successful.
891 *
892 * Eviction (or truncation to 0 size) should never need to split a huge page;
893 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
894 * head, and then succeeded to trylock on tail.
895 *
896 * A split can only succeed when there are no additional references on the
897 * huge page: so the split below relies upon find_get_entries() having stopped
898 * when it found a subpage of the huge page, without getting further references.
899 */
900static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
901{
902 if (!PageTransCompound(page))
903 return true;
904
905 /* Just proceed to delete a huge page wholly within the range punched */
906 if (PageHead(page) &&
907 page->index >= start && page->index + HPAGE_PMD_NR <= end)
908 return true;
909
910 /* Try to split huge page, so we can truly punch the hole or truncate */
911 return split_huge_page(page) >= 0;
912}
913
7a5d0fbb 914/*
7f4446ee 915 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 916 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 917 */
1635f6a7
HD
918static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
919 bool unfalloc)
1da177e4 920{
285b2c4f 921 struct address_space *mapping = inode->i_mapping;
1da177e4 922 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
923 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
924 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
925 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
926 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 927 struct pagevec pvec;
7a5d0fbb
HD
928 pgoff_t indices[PAGEVEC_SIZE];
929 long nr_swaps_freed = 0;
285b2c4f 930 pgoff_t index;
bda97eab
HD
931 int i;
932
83e4fa9c
HD
933 if (lend == -1)
934 end = -1; /* unsigned, so actually very big */
bda97eab 935
d144bf62
HD
936 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
937 info->fallocend = start;
938
86679820 939 pagevec_init(&pvec);
bda97eab 940 index = start;
5c211ba2
MWO
941 while (index < end && find_lock_entries(mapping, index, end - 1,
942 &pvec, indices)) {
bda97eab
HD
943 for (i = 0; i < pagevec_count(&pvec); i++) {
944 struct page *page = pvec.pages[i];
945
7a5d0fbb 946 index = indices[i];
bda97eab 947
3159f943 948 if (xa_is_value(page)) {
1635f6a7
HD
949 if (unfalloc)
950 continue;
7a5d0fbb
HD
951 nr_swaps_freed += !shmem_free_swap(mapping,
952 index, page);
bda97eab 953 continue;
7a5d0fbb 954 }
5c211ba2 955 index += thp_nr_pages(page) - 1;
7a5d0fbb 956
5c211ba2
MWO
957 if (!unfalloc || !PageUptodate(page))
958 truncate_inode_page(mapping, page);
bda97eab
HD
959 unlock_page(page);
960 }
0cd6144a 961 pagevec_remove_exceptionals(&pvec);
24513264 962 pagevec_release(&pvec);
bda97eab
HD
963 cond_resched();
964 index++;
965 }
1da177e4 966
83e4fa9c 967 if (partial_start) {
bda97eab 968 struct page *page = NULL;
9e18eb29 969 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 970 if (page) {
09cbfeaf 971 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
972 if (start > end) {
973 top = partial_end;
974 partial_end = 0;
975 }
976 zero_user_segment(page, partial_start, top);
977 set_page_dirty(page);
978 unlock_page(page);
09cbfeaf 979 put_page(page);
83e4fa9c
HD
980 }
981 }
982 if (partial_end) {
983 struct page *page = NULL;
9e18eb29 984 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
985 if (page) {
986 zero_user_segment(page, 0, partial_end);
bda97eab
HD
987 set_page_dirty(page);
988 unlock_page(page);
09cbfeaf 989 put_page(page);
bda97eab
HD
990 }
991 }
83e4fa9c
HD
992 if (start >= end)
993 return;
bda97eab
HD
994
995 index = start;
b1a36650 996 while (index < end) {
bda97eab 997 cond_resched();
0cd6144a 998
cf2039af
MWO
999 if (!find_get_entries(mapping, index, end - 1, &pvec,
1000 indices)) {
b1a36650
HD
1001 /* If all gone or hole-punch or unfalloc, we're done */
1002 if (index == start || end != -1)
bda97eab 1003 break;
b1a36650 1004 /* But if truncating, restart to make sure all gone */
bda97eab
HD
1005 index = start;
1006 continue;
1007 }
bda97eab
HD
1008 for (i = 0; i < pagevec_count(&pvec); i++) {
1009 struct page *page = pvec.pages[i];
1010
7a5d0fbb 1011 index = indices[i];
3159f943 1012 if (xa_is_value(page)) {
1635f6a7
HD
1013 if (unfalloc)
1014 continue;
b1a36650
HD
1015 if (shmem_free_swap(mapping, index, page)) {
1016 /* Swap was replaced by page: retry */
1017 index--;
1018 break;
1019 }
1020 nr_swaps_freed++;
7a5d0fbb
HD
1021 continue;
1022 }
1023
bda97eab 1024 lock_page(page);
800d8c63 1025
1635f6a7 1026 if (!unfalloc || !PageUptodate(page)) {
71725ed1 1027 if (page_mapping(page) != mapping) {
b1a36650
HD
1028 /* Page was replaced by swap: retry */
1029 unlock_page(page);
1030 index--;
1031 break;
1635f6a7 1032 }
71725ed1
HD
1033 VM_BUG_ON_PAGE(PageWriteback(page), page);
1034 if (shmem_punch_compound(page, start, end))
1035 truncate_inode_page(mapping, page);
0783ac95 1036 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
71725ed1
HD
1037 /* Wipe the page and don't get stuck */
1038 clear_highpage(page);
1039 flush_dcache_page(page);
1040 set_page_dirty(page);
1041 if (index <
1042 round_up(start, HPAGE_PMD_NR))
1043 start = index + 1;
1044 }
7a5d0fbb 1045 }
bda97eab
HD
1046 unlock_page(page);
1047 }
0cd6144a 1048 pagevec_remove_exceptionals(&pvec);
24513264 1049 pagevec_release(&pvec);
bda97eab
HD
1050 index++;
1051 }
94c1e62d 1052
4595ef88 1053 spin_lock_irq(&info->lock);
7a5d0fbb 1054 info->swapped -= nr_swaps_freed;
1da177e4 1055 shmem_recalc_inode(inode);
4595ef88 1056 spin_unlock_irq(&info->lock);
1635f6a7 1057}
1da177e4 1058
1635f6a7
HD
1059void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1060{
1061 shmem_undo_range(inode, lstart, lend, false);
078cd827 1062 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1063}
94c1e62d 1064EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1065
549c7297
CB
1066static int shmem_getattr(struct user_namespace *mnt_userns,
1067 const struct path *path, struct kstat *stat,
a528d35e 1068 u32 request_mask, unsigned int query_flags)
44a30220 1069{
a528d35e 1070 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
1071 struct shmem_inode_info *info = SHMEM_I(inode);
1072
d0424c42 1073 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1074 spin_lock_irq(&info->lock);
d0424c42 1075 shmem_recalc_inode(inode);
4595ef88 1076 spin_unlock_irq(&info->lock);
d0424c42 1077 }
0d56a451 1078 generic_fillattr(&init_user_ns, inode, stat);
89fdcd26 1079
a7fddc36 1080 if (shmem_is_huge(NULL, inode, 0))
89fdcd26
YS
1081 stat->blksize = HPAGE_PMD_SIZE;
1082
44a30220
YZ
1083 return 0;
1084}
1085
549c7297
CB
1086static int shmem_setattr(struct user_namespace *mnt_userns,
1087 struct dentry *dentry, struct iattr *attr)
1da177e4 1088{
75c3cfa8 1089 struct inode *inode = d_inode(dentry);
40e041a2 1090 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
1091 int error;
1092
2f221d6f 1093 error = setattr_prepare(&init_user_ns, dentry, attr);
db78b877
CH
1094 if (error)
1095 return error;
1096
94c1e62d
HD
1097 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1098 loff_t oldsize = inode->i_size;
1099 loff_t newsize = attr->ia_size;
3889e6e7 1100
9608703e 1101 /* protected by i_rwsem */
40e041a2
DR
1102 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1103 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1104 return -EPERM;
1105
94c1e62d 1106 if (newsize != oldsize) {
77142517
KK
1107 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1108 oldsize, newsize);
1109 if (error)
1110 return error;
94c1e62d 1111 i_size_write(inode, newsize);
078cd827 1112 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1113 }
afa2db2f 1114 if (newsize <= oldsize) {
94c1e62d 1115 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1116 if (oldsize > holebegin)
1117 unmap_mapping_range(inode->i_mapping,
1118 holebegin, 0, 1);
1119 if (info->alloced)
1120 shmem_truncate_range(inode,
1121 newsize, (loff_t)-1);
94c1e62d 1122 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1123 if (oldsize > holebegin)
1124 unmap_mapping_range(inode->i_mapping,
1125 holebegin, 0, 1);
94c1e62d 1126 }
1da177e4
LT
1127 }
1128
2f221d6f 1129 setattr_copy(&init_user_ns, inode, attr);
db78b877 1130 if (attr->ia_valid & ATTR_MODE)
e65ce2a5 1131 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1da177e4
LT
1132 return error;
1133}
1134
1f895f75 1135static void shmem_evict_inode(struct inode *inode)
1da177e4 1136{
1da177e4 1137 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1138 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1139
30e6a51d 1140 if (shmem_mapping(inode->i_mapping)) {
1da177e4
LT
1141 shmem_unacct_size(info->flags, inode->i_size);
1142 inode->i_size = 0;
3889e6e7 1143 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1144 if (!list_empty(&info->shrinklist)) {
1145 spin_lock(&sbinfo->shrinklist_lock);
1146 if (!list_empty(&info->shrinklist)) {
1147 list_del_init(&info->shrinklist);
1148 sbinfo->shrinklist_len--;
1149 }
1150 spin_unlock(&sbinfo->shrinklist_lock);
1151 }
af53d3e9
HD
1152 while (!list_empty(&info->swaplist)) {
1153 /* Wait while shmem_unuse() is scanning this inode... */
1154 wait_var_event(&info->stop_eviction,
1155 !atomic_read(&info->stop_eviction));
cb5f7b9a 1156 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1157 /* ...but beware of the race if we peeked too early */
1158 if (!atomic_read(&info->stop_eviction))
1159 list_del_init(&info->swaplist);
cb5f7b9a 1160 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1161 }
3ed47db3 1162 }
b09e0fa4 1163
38f38657 1164 simple_xattrs_free(&info->xattrs);
0f3c42f5 1165 WARN_ON(inode->i_blocks);
5b04c689 1166 shmem_free_inode(inode->i_sb);
dbd5768f 1167 clear_inode(inode);
1da177e4
LT
1168}
1169
b56a2d8a
VRP
1170static int shmem_find_swap_entries(struct address_space *mapping,
1171 pgoff_t start, unsigned int nr_entries,
1172 struct page **entries, pgoff_t *indices,
87039546 1173 unsigned int type, bool frontswap)
478922e2 1174{
b56a2d8a
VRP
1175 XA_STATE(xas, &mapping->i_pages, start);
1176 struct page *page;
87039546 1177 swp_entry_t entry;
b56a2d8a
VRP
1178 unsigned int ret = 0;
1179
1180 if (!nr_entries)
1181 return 0;
478922e2
MW
1182
1183 rcu_read_lock();
b56a2d8a
VRP
1184 xas_for_each(&xas, page, ULONG_MAX) {
1185 if (xas_retry(&xas, page))
5b9c98f3 1186 continue;
b56a2d8a
VRP
1187
1188 if (!xa_is_value(page))
478922e2 1189 continue;
b56a2d8a 1190
87039546
HD
1191 entry = radix_to_swp_entry(page);
1192 if (swp_type(entry) != type)
1193 continue;
1194 if (frontswap &&
1195 !frontswap_test(swap_info[type], swp_offset(entry)))
1196 continue;
b56a2d8a
VRP
1197
1198 indices[ret] = xas.xa_index;
1199 entries[ret] = page;
1200
1201 if (need_resched()) {
1202 xas_pause(&xas);
1203 cond_resched_rcu();
1204 }
1205 if (++ret == nr_entries)
1206 break;
478922e2 1207 }
478922e2 1208 rcu_read_unlock();
e21a2955 1209
b56a2d8a 1210 return ret;
478922e2
MW
1211}
1212
46f65ec1 1213/*
b56a2d8a
VRP
1214 * Move the swapped pages for an inode to page cache. Returns the count
1215 * of pages swapped in, or the error in case of failure.
46f65ec1 1216 */
b56a2d8a
VRP
1217static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1218 pgoff_t *indices)
1da177e4 1219{
b56a2d8a
VRP
1220 int i = 0;
1221 int ret = 0;
bde05d1c 1222 int error = 0;
b56a2d8a 1223 struct address_space *mapping = inode->i_mapping;
1da177e4 1224
b56a2d8a
VRP
1225 for (i = 0; i < pvec.nr; i++) {
1226 struct page *page = pvec.pages[i];
2e0e26c7 1227
b56a2d8a
VRP
1228 if (!xa_is_value(page))
1229 continue;
1230 error = shmem_swapin_page(inode, indices[i],
1231 &page, SGP_CACHE,
1232 mapping_gfp_mask(mapping),
1233 NULL, NULL);
1234 if (error == 0) {
1235 unlock_page(page);
1236 put_page(page);
1237 ret++;
1238 }
1239 if (error == -ENOMEM)
1240 break;
1241 error = 0;
bde05d1c 1242 }
b56a2d8a
VRP
1243 return error ? error : ret;
1244}
bde05d1c 1245
b56a2d8a
VRP
1246/*
1247 * If swap found in inode, free it and move page from swapcache to filecache.
1248 */
1249static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1250 bool frontswap, unsigned long *fs_pages_to_unuse)
1251{
1252 struct address_space *mapping = inode->i_mapping;
1253 pgoff_t start = 0;
1254 struct pagevec pvec;
1255 pgoff_t indices[PAGEVEC_SIZE];
1256 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1257 int ret = 0;
1258
1259 pagevec_init(&pvec);
1260 do {
1261 unsigned int nr_entries = PAGEVEC_SIZE;
1262
1263 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1264 nr_entries = *fs_pages_to_unuse;
1265
1266 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1267 pvec.pages, indices,
87039546 1268 type, frontswap);
b56a2d8a
VRP
1269 if (pvec.nr == 0) {
1270 ret = 0;
1271 break;
46f65ec1 1272 }
b56a2d8a
VRP
1273
1274 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1275 if (ret < 0)
1276 break;
1277
1278 if (frontswap_partial) {
1279 *fs_pages_to_unuse -= ret;
1280 if (*fs_pages_to_unuse == 0) {
1281 ret = FRONTSWAP_PAGES_UNUSED;
1282 break;
1283 }
1284 }
1285
1286 start = indices[pvec.nr - 1];
1287 } while (true);
1288
1289 return ret;
1da177e4
LT
1290}
1291
1292/*
b56a2d8a
VRP
1293 * Read all the shared memory data that resides in the swap
1294 * device 'type' back into memory, so the swap device can be
1295 * unused.
1da177e4 1296 */
b56a2d8a
VRP
1297int shmem_unuse(unsigned int type, bool frontswap,
1298 unsigned long *fs_pages_to_unuse)
1da177e4 1299{
b56a2d8a 1300 struct shmem_inode_info *info, *next;
bde05d1c
HD
1301 int error = 0;
1302
b56a2d8a
VRP
1303 if (list_empty(&shmem_swaplist))
1304 return 0;
1305
1306 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1307 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1308 if (!info->swapped) {
6922c0c7 1309 list_del_init(&info->swaplist);
b56a2d8a
VRP
1310 continue;
1311 }
af53d3e9
HD
1312 /*
1313 * Drop the swaplist mutex while searching the inode for swap;
1314 * but before doing so, make sure shmem_evict_inode() will not
1315 * remove placeholder inode from swaplist, nor let it be freed
1316 * (igrab() would protect from unlink, but not from unmount).
1317 */
1318 atomic_inc(&info->stop_eviction);
b56a2d8a 1319 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1320
af53d3e9 1321 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1322 fs_pages_to_unuse);
cb5f7b9a 1323 cond_resched();
b56a2d8a
VRP
1324
1325 mutex_lock(&shmem_swaplist_mutex);
1326 next = list_next_entry(info, swaplist);
1327 if (!info->swapped)
1328 list_del_init(&info->swaplist);
af53d3e9
HD
1329 if (atomic_dec_and_test(&info->stop_eviction))
1330 wake_up_var(&info->stop_eviction);
b56a2d8a 1331 if (error)
778dd893 1332 break;
1da177e4 1333 }
cb5f7b9a 1334 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1335
778dd893 1336 return error;
1da177e4
LT
1337}
1338
1339/*
1340 * Move the page from the page cache to the swap cache.
1341 */
1342static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1343{
1344 struct shmem_inode_info *info;
1da177e4 1345 struct address_space *mapping;
1da177e4 1346 struct inode *inode;
6922c0c7
HD
1347 swp_entry_t swap;
1348 pgoff_t index;
1da177e4 1349
1e6decf3
HD
1350 /*
1351 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1352 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1353 * and its shmem_writeback() needs them to be split when swapping.
1354 */
1355 if (PageTransCompound(page)) {
1356 /* Ensure the subpages are still dirty */
1357 SetPageDirty(page);
1358 if (split_huge_page(page) < 0)
1359 goto redirty;
1360 ClearPageDirty(page);
1361 }
1362
1da177e4 1363 BUG_ON(!PageLocked(page));
1da177e4
LT
1364 mapping = page->mapping;
1365 index = page->index;
1366 inode = mapping->host;
1367 info = SHMEM_I(inode);
1368 if (info->flags & VM_LOCKED)
1369 goto redirty;
d9fe526a 1370 if (!total_swap_pages)
1da177e4
LT
1371 goto redirty;
1372
d9fe526a 1373 /*
97b713ba
CH
1374 * Our capabilities prevent regular writeback or sync from ever calling
1375 * shmem_writepage; but a stacking filesystem might use ->writepage of
1376 * its underlying filesystem, in which case tmpfs should write out to
1377 * swap only in response to memory pressure, and not for the writeback
1378 * threads or sync.
d9fe526a 1379 */
48f170fb
HD
1380 if (!wbc->for_reclaim) {
1381 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1382 goto redirty;
1383 }
1635f6a7
HD
1384
1385 /*
1386 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1387 * value into swapfile.c, the only way we can correctly account for a
1388 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1389 *
1390 * That's okay for a page already fallocated earlier, but if we have
1391 * not yet completed the fallocation, then (a) we want to keep track
1392 * of this page in case we have to undo it, and (b) it may not be a
1393 * good idea to continue anyway, once we're pushing into swap. So
1394 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1395 */
1396 if (!PageUptodate(page)) {
1aac1400
HD
1397 if (inode->i_private) {
1398 struct shmem_falloc *shmem_falloc;
1399 spin_lock(&inode->i_lock);
1400 shmem_falloc = inode->i_private;
1401 if (shmem_falloc &&
8e205f77 1402 !shmem_falloc->waitq &&
1aac1400
HD
1403 index >= shmem_falloc->start &&
1404 index < shmem_falloc->next)
1405 shmem_falloc->nr_unswapped++;
1406 else
1407 shmem_falloc = NULL;
1408 spin_unlock(&inode->i_lock);
1409 if (shmem_falloc)
1410 goto redirty;
1411 }
1635f6a7
HD
1412 clear_highpage(page);
1413 flush_dcache_page(page);
1414 SetPageUptodate(page);
1415 }
1416
38d8b4e6 1417 swap = get_swap_page(page);
48f170fb
HD
1418 if (!swap.val)
1419 goto redirty;
d9fe526a 1420
b1dea800
HD
1421 /*
1422 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1423 * if it's not already there. Do it now before the page is
1424 * moved to swap cache, when its pagelock no longer protects
b1dea800 1425 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1426 * we've incremented swapped, because shmem_unuse_inode() will
1427 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1428 */
48f170fb
HD
1429 mutex_lock(&shmem_swaplist_mutex);
1430 if (list_empty(&info->swaplist))
b56a2d8a 1431 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1432
4afab1cd 1433 if (add_to_swap_cache(page, swap,
3852f676
JK
1434 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1435 NULL) == 0) {
4595ef88 1436 spin_lock_irq(&info->lock);
6922c0c7 1437 shmem_recalc_inode(inode);
267a4c76 1438 info->swapped++;
4595ef88 1439 spin_unlock_irq(&info->lock);
6922c0c7 1440
267a4c76
HD
1441 swap_shmem_alloc(swap);
1442 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1443
6922c0c7 1444 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1445 BUG_ON(page_mapped(page));
9fab5619 1446 swap_writepage(page, wbc);
1da177e4
LT
1447 return 0;
1448 }
1449
6922c0c7 1450 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1451 put_swap_page(page, swap);
1da177e4
LT
1452redirty:
1453 set_page_dirty(page);
d9fe526a
HD
1454 if (wbc->for_reclaim)
1455 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1456 unlock_page(page);
1457 return 0;
1da177e4
LT
1458}
1459
75edd345 1460#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1461static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1462{
095f1fc4 1463 char buffer[64];
680d794b 1464
71fe804b 1465 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1466 return; /* show nothing */
680d794b 1467
a7a88b23 1468 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1469
1470 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1471}
71fe804b
LS
1472
1473static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1474{
1475 struct mempolicy *mpol = NULL;
1476 if (sbinfo->mpol) {
bf11b9a8 1477 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
71fe804b
LS
1478 mpol = sbinfo->mpol;
1479 mpol_get(mpol);
bf11b9a8 1480 raw_spin_unlock(&sbinfo->stat_lock);
71fe804b
LS
1481 }
1482 return mpol;
1483}
75edd345
HD
1484#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1485static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1486{
1487}
1488static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1489{
1490 return NULL;
1491}
1492#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1493#ifndef CONFIG_NUMA
1494#define vm_policy vm_private_data
1495#endif
680d794b 1496
800d8c63
KS
1497static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1498 struct shmem_inode_info *info, pgoff_t index)
1499{
1500 /* Create a pseudo vma that just contains the policy */
2c4541e2 1501 vma_init(vma, NULL);
800d8c63
KS
1502 /* Bias interleave by inode number to distribute better across nodes */
1503 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1504 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1505}
1506
1507static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1508{
1509 /* Drop reference taken by mpol_shared_policy_lookup() */
1510 mpol_cond_put(vma->vm_policy);
1511}
1512
41ffe5d5
HD
1513static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1514 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1515{
1da177e4 1516 struct vm_area_struct pvma;
18a2f371 1517 struct page *page;
8c63ca5b
WD
1518 struct vm_fault vmf = {
1519 .vma = &pvma,
1520 };
52cd3b07 1521
800d8c63 1522 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec 1523 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1524 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1525
800d8c63
KS
1526 return page;
1527}
1528
78cc8cdc
RR
1529/*
1530 * Make sure huge_gfp is always more limited than limit_gfp.
1531 * Some of the flags set permissions, while others set limitations.
1532 */
1533static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1534{
1535 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1536 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
187df5dd
RR
1537 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1538 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1539
1540 /* Allow allocations only from the originally specified zones. */
1541 result |= zoneflags;
78cc8cdc
RR
1542
1543 /*
1544 * Minimize the result gfp by taking the union with the deny flags,
1545 * and the intersection of the allow flags.
1546 */
1547 result |= (limit_gfp & denyflags);
1548 result |= (huge_gfp & limit_gfp) & allowflags;
1549
1550 return result;
1551}
1552
800d8c63
KS
1553static struct page *shmem_alloc_hugepage(gfp_t gfp,
1554 struct shmem_inode_info *info, pgoff_t index)
1555{
1556 struct vm_area_struct pvma;
7b8d046f
MW
1557 struct address_space *mapping = info->vfs_inode.i_mapping;
1558 pgoff_t hindex;
800d8c63
KS
1559 struct page *page;
1560
4620a06e 1561 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1562 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1563 XA_PRESENT))
800d8c63 1564 return NULL;
18a2f371 1565
800d8c63 1566 shmem_pseudo_vma_init(&pvma, info, hindex);
be1a13eb 1567 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
800d8c63
KS
1568 shmem_pseudo_vma_destroy(&pvma);
1569 if (page)
1570 prep_transhuge_page(page);
dcdf11ee
DR
1571 else
1572 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1573 return page;
1da177e4
LT
1574}
1575
02098fea 1576static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1577 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1578{
1579 struct vm_area_struct pvma;
18a2f371 1580 struct page *page;
1da177e4 1581
800d8c63
KS
1582 shmem_pseudo_vma_init(&pvma, info, index);
1583 page = alloc_page_vma(gfp, &pvma, 0);
1584 shmem_pseudo_vma_destroy(&pvma);
1585
1586 return page;
1587}
1588
1589static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1590 struct inode *inode,
800d8c63
KS
1591 pgoff_t index, bool huge)
1592{
0f079694 1593 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1594 struct page *page;
1595 int nr;
1596 int err = -ENOSPC;
52cd3b07 1597
396bcc52 1598 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1599 huge = false;
1600 nr = huge ? HPAGE_PMD_NR : 1;
1601
0f079694 1602 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1603 goto failed;
800d8c63
KS
1604
1605 if (huge)
1606 page = shmem_alloc_hugepage(gfp, info, index);
1607 else
1608 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1609 if (page) {
1610 __SetPageLocked(page);
1611 __SetPageSwapBacked(page);
800d8c63 1612 return page;
75edd345 1613 }
18a2f371 1614
800d8c63 1615 err = -ENOMEM;
0f079694 1616 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1617failed:
1618 return ERR_PTR(err);
1da177e4 1619}
71fe804b 1620
bde05d1c
HD
1621/*
1622 * When a page is moved from swapcache to shmem filecache (either by the
1623 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1624 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1625 * ignorance of the mapping it belongs to. If that mapping has special
1626 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1627 * we may need to copy to a suitable page before moving to filecache.
1628 *
1629 * In a future release, this may well be extended to respect cpuset and
1630 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1631 * but for now it is a simple matter of zone.
1632 */
1633static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1634{
1635 return page_zonenum(page) > gfp_zone(gfp);
1636}
1637
1638static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1639 struct shmem_inode_info *info, pgoff_t index)
1640{
1641 struct page *oldpage, *newpage;
d21bba2b 1642 struct folio *old, *new;
bde05d1c 1643 struct address_space *swap_mapping;
c1cb20d4 1644 swp_entry_t entry;
bde05d1c
HD
1645 pgoff_t swap_index;
1646 int error;
1647
1648 oldpage = *pagep;
c1cb20d4
YZ
1649 entry.val = page_private(oldpage);
1650 swap_index = swp_offset(entry);
bde05d1c
HD
1651 swap_mapping = page_mapping(oldpage);
1652
1653 /*
1654 * We have arrived here because our zones are constrained, so don't
1655 * limit chance of success by further cpuset and node constraints.
1656 */
1657 gfp &= ~GFP_CONSTRAINT_MASK;
1658 newpage = shmem_alloc_page(gfp, info, index);
1659 if (!newpage)
1660 return -ENOMEM;
bde05d1c 1661
09cbfeaf 1662 get_page(newpage);
bde05d1c 1663 copy_highpage(newpage, oldpage);
0142ef6c 1664 flush_dcache_page(newpage);
bde05d1c 1665
9956edf3
HD
1666 __SetPageLocked(newpage);
1667 __SetPageSwapBacked(newpage);
bde05d1c 1668 SetPageUptodate(newpage);
c1cb20d4 1669 set_page_private(newpage, entry.val);
bde05d1c
HD
1670 SetPageSwapCache(newpage);
1671
1672 /*
1673 * Our caller will very soon move newpage out of swapcache, but it's
1674 * a nice clean interface for us to replace oldpage by newpage there.
1675 */
b93b0163 1676 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1677 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1678 if (!error) {
d21bba2b
MWO
1679 old = page_folio(oldpage);
1680 new = page_folio(newpage);
1681 mem_cgroup_migrate(old, new);
0d1c2072
JW
1682 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1683 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1684 }
b93b0163 1685 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1686
0142ef6c
HD
1687 if (unlikely(error)) {
1688 /*
1689 * Is this possible? I think not, now that our callers check
1690 * both PageSwapCache and page_private after getting page lock;
1691 * but be defensive. Reverse old to newpage for clear and free.
1692 */
1693 oldpage = newpage;
1694 } else {
6058eaec 1695 lru_cache_add(newpage);
0142ef6c
HD
1696 *pagep = newpage;
1697 }
bde05d1c
HD
1698
1699 ClearPageSwapCache(oldpage);
1700 set_page_private(oldpage, 0);
1701
1702 unlock_page(oldpage);
09cbfeaf
KS
1703 put_page(oldpage);
1704 put_page(oldpage);
0142ef6c 1705 return error;
bde05d1c
HD
1706}
1707
c5bf121e
VRP
1708/*
1709 * Swap in the page pointed to by *pagep.
1710 * Caller has to make sure that *pagep contains a valid swapped page.
1711 * Returns 0 and the page in pagep if success. On failure, returns the
af44c12f 1712 * error code and NULL in *pagep.
c5bf121e
VRP
1713 */
1714static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1715 struct page **pagep, enum sgp_type sgp,
1716 gfp_t gfp, struct vm_area_struct *vma,
1717 vm_fault_t *fault_type)
1718{
1719 struct address_space *mapping = inode->i_mapping;
1720 struct shmem_inode_info *info = SHMEM_I(inode);
04f94e3f 1721 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
b1e1ef34 1722 struct page *page;
c5bf121e
VRP
1723 swp_entry_t swap;
1724 int error;
1725
1726 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1727 swap = radix_to_swp_entry(*pagep);
1728 *pagep = NULL;
1729
1730 /* Look it up and read it in.. */
1731 page = lookup_swap_cache(swap, NULL, 0);
1732 if (!page) {
1733 /* Or update major stats only when swapin succeeds?? */
1734 if (fault_type) {
1735 *fault_type |= VM_FAULT_MAJOR;
1736 count_vm_event(PGMAJFAULT);
1737 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1738 }
1739 /* Here we actually start the io */
1740 page = shmem_swapin(swap, gfp, info, index);
1741 if (!page) {
1742 error = -ENOMEM;
1743 goto failed;
1744 }
1745 }
1746
1747 /* We have to do this with page locked to prevent races */
1748 lock_page(page);
1749 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1750 !shmem_confirm_swap(mapping, index, swap)) {
1751 error = -EEXIST;
1752 goto unlock;
1753 }
1754 if (!PageUptodate(page)) {
1755 error = -EIO;
1756 goto failed;
1757 }
1758 wait_on_page_writeback(page);
1759
8a84802e
SP
1760 /*
1761 * Some architectures may have to restore extra metadata to the
1762 * physical page after reading from swap.
1763 */
1764 arch_swap_restore(swap, page);
1765
c5bf121e
VRP
1766 if (shmem_should_replace_page(page, gfp)) {
1767 error = shmem_replace_page(&page, gfp, info, index);
1768 if (error)
1769 goto failed;
1770 }
1771
14235ab3 1772 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1773 swp_to_radix_entry(swap), gfp,
1774 charge_mm);
1775 if (error)
14235ab3 1776 goto failed;
c5bf121e
VRP
1777
1778 spin_lock_irq(&info->lock);
1779 info->swapped--;
1780 shmem_recalc_inode(inode);
1781 spin_unlock_irq(&info->lock);
1782
1783 if (sgp == SGP_WRITE)
1784 mark_page_accessed(page);
1785
1786 delete_from_swap_cache(page);
1787 set_page_dirty(page);
1788 swap_free(swap);
1789
1790 *pagep = page;
1791 return 0;
1792failed:
1793 if (!shmem_confirm_swap(mapping, index, swap))
1794 error = -EEXIST;
1795unlock:
1796 if (page) {
1797 unlock_page(page);
1798 put_page(page);
1799 }
1800
1801 return error;
1802}
1803
1da177e4 1804/*
68da9f05 1805 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1806 *
1807 * If we allocate a new one we do not mark it dirty. That's up to the
1808 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1809 * entry since a page cannot live in both the swap and page cache.
1810 *
c949b097 1811 * vma, vmf, and fault_type are only supplied by shmem_fault:
9e18eb29 1812 * otherwise they are NULL.
1da177e4 1813 */
41ffe5d5 1814static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1815 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1816 struct vm_area_struct *vma, struct vm_fault *vmf,
1817 vm_fault_t *fault_type)
1da177e4
LT
1818{
1819 struct address_space *mapping = inode->i_mapping;
23f919d4 1820 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1821 struct shmem_sb_info *sbinfo;
9e18eb29 1822 struct mm_struct *charge_mm;
27ab7006 1823 struct page *page;
800d8c63 1824 pgoff_t hindex = index;
164cc4fe 1825 gfp_t huge_gfp;
1da177e4 1826 int error;
54af6042 1827 int once = 0;
1635f6a7 1828 int alloced = 0;
1da177e4 1829
09cbfeaf 1830 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1831 return -EFBIG;
1da177e4 1832repeat:
c5bf121e
VRP
1833 if (sgp <= SGP_CACHE &&
1834 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1835 return -EINVAL;
1836 }
1837
1838 sbinfo = SHMEM_SB(inode->i_sb);
04f94e3f 1839 charge_mm = vma ? vma->vm_mm : NULL;
c5bf121e 1840
44835d20
MWO
1841 page = pagecache_get_page(mapping, index,
1842 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
c949b097
AR
1843
1844 if (page && vma && userfaultfd_minor(vma)) {
1845 if (!xa_is_value(page)) {
1846 unlock_page(page);
1847 put_page(page);
1848 }
1849 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1850 return 0;
1851 }
1852
3159f943 1853 if (xa_is_value(page)) {
c5bf121e
VRP
1854 error = shmem_swapin_page(inode, index, &page,
1855 sgp, gfp, vma, fault_type);
1856 if (error == -EEXIST)
1857 goto repeat;
54af6042 1858
c5bf121e
VRP
1859 *pagep = page;
1860 return error;
54af6042
HD
1861 }
1862
acdd9f8e 1863 if (page) {
63ec1973 1864 hindex = page->index;
acdd9f8e
HD
1865 if (sgp == SGP_WRITE)
1866 mark_page_accessed(page);
1867 if (PageUptodate(page))
1868 goto out;
1869 /* fallocated page */
1635f6a7
HD
1870 if (sgp != SGP_READ)
1871 goto clear;
1872 unlock_page(page);
09cbfeaf 1873 put_page(page);
1635f6a7 1874 }
27ab7006
HD
1875
1876 /*
acdd9f8e
HD
1877 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1878 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1879 */
1880 *pagep = NULL;
1881 if (sgp == SGP_READ)
1882 return 0;
1883 if (sgp == SGP_NOALLOC)
1884 return -ENOENT;
1885
1886 /*
1887 * Fast cache lookup and swap lookup did not find it: allocate.
27ab7006 1888 */
54af6042 1889
c5bf121e
VRP
1890 if (vma && userfaultfd_missing(vma)) {
1891 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1892 return 0;
1893 }
cfda0526 1894
5e6e5a12
HD
1895 /* Never use a huge page for shmem_symlink() */
1896 if (S_ISLNK(inode->i_mode))
c5bf121e 1897 goto alloc_nohuge;
5e6e5a12 1898 if (!shmem_is_huge(vma, inode, index))
c5bf121e 1899 goto alloc_nohuge;
1da177e4 1900
164cc4fe 1901 huge_gfp = vma_thp_gfp_mask(vma);
78cc8cdc 1902 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
164cc4fe 1903 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
c5bf121e
VRP
1904 if (IS_ERR(page)) {
1905alloc_nohuge:
1906 page = shmem_alloc_and_acct_page(gfp, inode,
1907 index, false);
1908 }
1909 if (IS_ERR(page)) {
1910 int retry = 5;
800d8c63 1911
c5bf121e
VRP
1912 error = PTR_ERR(page);
1913 page = NULL;
1914 if (error != -ENOSPC)
1915 goto unlock;
1916 /*
1917 * Try to reclaim some space by splitting a huge page
1918 * beyond i_size on the filesystem.
1919 */
1920 while (retry--) {
1921 int ret;
66d2f4d2 1922
c5bf121e
VRP
1923 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1924 if (ret == SHRINK_STOP)
1925 break;
1926 if (ret)
1927 goto alloc_nohuge;
b065b432 1928 }
c5bf121e
VRP
1929 goto unlock;
1930 }
54af6042 1931
c5bf121e
VRP
1932 if (PageTransHuge(page))
1933 hindex = round_down(index, HPAGE_PMD_NR);
1934 else
1935 hindex = index;
54af6042 1936
c5bf121e
VRP
1937 if (sgp == SGP_WRITE)
1938 __SetPageReferenced(page);
1939
c5bf121e 1940 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1941 NULL, gfp & GFP_RECLAIM_MASK,
1942 charge_mm);
1943 if (error)
c5bf121e 1944 goto unacct;
6058eaec 1945 lru_cache_add(page);
779750d2 1946
c5bf121e 1947 spin_lock_irq(&info->lock);
d8c6546b 1948 info->alloced += compound_nr(page);
c5bf121e
VRP
1949 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1950 shmem_recalc_inode(inode);
1951 spin_unlock_irq(&info->lock);
1952 alloced = true;
1953
1954 if (PageTransHuge(page) &&
1955 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1956 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1957 /*
c5bf121e
VRP
1958 * Part of the huge page is beyond i_size: subject
1959 * to shrink under memory pressure.
1635f6a7 1960 */
c5bf121e 1961 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1962 /*
c5bf121e
VRP
1963 * _careful to defend against unlocked access to
1964 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1965 */
c5bf121e
VRP
1966 if (list_empty_careful(&info->shrinklist)) {
1967 list_add_tail(&info->shrinklist,
1968 &sbinfo->shrinklist);
1969 sbinfo->shrinklist_len++;
1970 }
1971 spin_unlock(&sbinfo->shrinklist_lock);
1972 }
800d8c63 1973
c5bf121e
VRP
1974 /*
1975 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1976 */
1977 if (sgp == SGP_FALLOC)
1978 sgp = SGP_WRITE;
1979clear:
1980 /*
1981 * Let SGP_WRITE caller clear ends if write does not fill page;
1982 * but SGP_FALLOC on a page fallocated earlier must initialize
1983 * it now, lest undo on failure cancel our earlier guarantee.
1984 */
1985 if (sgp != SGP_WRITE && !PageUptodate(page)) {
c5bf121e
VRP
1986 int i;
1987
63ec1973
MWO
1988 for (i = 0; i < compound_nr(page); i++) {
1989 clear_highpage(page + i);
1990 flush_dcache_page(page + i);
ec9516fb 1991 }
63ec1973 1992 SetPageUptodate(page);
1da177e4 1993 }
bde05d1c 1994
54af6042 1995 /* Perhaps the file has been truncated since we checked */
75edd345 1996 if (sgp <= SGP_CACHE &&
09cbfeaf 1997 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1998 if (alloced) {
1999 ClearPageDirty(page);
2000 delete_from_page_cache(page);
4595ef88 2001 spin_lock_irq(&info->lock);
267a4c76 2002 shmem_recalc_inode(inode);
4595ef88 2003 spin_unlock_irq(&info->lock);
267a4c76 2004 }
54af6042 2005 error = -EINVAL;
267a4c76 2006 goto unlock;
e83c32e8 2007 }
63ec1973 2008out:
800d8c63 2009 *pagep = page + index - hindex;
54af6042 2010 return 0;
1da177e4 2011
59a16ead 2012 /*
54af6042 2013 * Error recovery.
59a16ead 2014 */
54af6042 2015unacct:
d8c6546b 2016 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
2017
2018 if (PageTransHuge(page)) {
2019 unlock_page(page);
2020 put_page(page);
2021 goto alloc_nohuge;
2022 }
d1899228 2023unlock:
27ab7006 2024 if (page) {
54af6042 2025 unlock_page(page);
09cbfeaf 2026 put_page(page);
54af6042
HD
2027 }
2028 if (error == -ENOSPC && !once++) {
4595ef88 2029 spin_lock_irq(&info->lock);
54af6042 2030 shmem_recalc_inode(inode);
4595ef88 2031 spin_unlock_irq(&info->lock);
27ab7006 2032 goto repeat;
ff36b801 2033 }
7f4446ee 2034 if (error == -EEXIST)
54af6042
HD
2035 goto repeat;
2036 return error;
1da177e4
LT
2037}
2038
10d20bd2
LT
2039/*
2040 * This is like autoremove_wake_function, but it removes the wait queue
2041 * entry unconditionally - even if something else had already woken the
2042 * target.
2043 */
ac6424b9 2044static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2045{
2046 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2047 list_del_init(&wait->entry);
10d20bd2
LT
2048 return ret;
2049}
2050
20acce67 2051static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2052{
11bac800 2053 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2054 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2055 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
20acce67
SJ
2056 int err;
2057 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2058
f00cdc6d
HD
2059 /*
2060 * Trinity finds that probing a hole which tmpfs is punching can
2061 * prevent the hole-punch from ever completing: which in turn
9608703e 2062 * locks writers out with its hold on i_rwsem. So refrain from
8e205f77
HD
2063 * faulting pages into the hole while it's being punched. Although
2064 * shmem_undo_range() does remove the additions, it may be unable to
2065 * keep up, as each new page needs its own unmap_mapping_range() call,
2066 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2067 *
2068 * It does not matter if we sometimes reach this check just before the
2069 * hole-punch begins, so that one fault then races with the punch:
2070 * we just need to make racing faults a rare case.
2071 *
2072 * The implementation below would be much simpler if we just used a
9608703e 2073 * standard mutex or completion: but we cannot take i_rwsem in fault,
8e205f77 2074 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2075 */
2076 if (unlikely(inode->i_private)) {
2077 struct shmem_falloc *shmem_falloc;
2078
2079 spin_lock(&inode->i_lock);
2080 shmem_falloc = inode->i_private;
8e205f77
HD
2081 if (shmem_falloc &&
2082 shmem_falloc->waitq &&
2083 vmf->pgoff >= shmem_falloc->start &&
2084 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2085 struct file *fpin;
8e205f77 2086 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2087 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2088
2089 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2090 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2091 if (fpin)
8e205f77 2092 ret = VM_FAULT_RETRY;
8e205f77
HD
2093
2094 shmem_falloc_waitq = shmem_falloc->waitq;
2095 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2096 TASK_UNINTERRUPTIBLE);
2097 spin_unlock(&inode->i_lock);
2098 schedule();
2099
2100 /*
2101 * shmem_falloc_waitq points into the shmem_fallocate()
2102 * stack of the hole-punching task: shmem_falloc_waitq
2103 * is usually invalid by the time we reach here, but
2104 * finish_wait() does not dereference it in that case;
2105 * though i_lock needed lest racing with wake_up_all().
2106 */
2107 spin_lock(&inode->i_lock);
2108 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2109 spin_unlock(&inode->i_lock);
8897c1b1
KS
2110
2111 if (fpin)
2112 fput(fpin);
8e205f77 2113 return ret;
f00cdc6d 2114 }
8e205f77 2115 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2116 }
2117
5e6e5a12 2118 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
cfda0526 2119 gfp, vma, vmf, &ret);
20acce67
SJ
2120 if (err)
2121 return vmf_error(err);
68da9f05 2122 return ret;
1da177e4
LT
2123}
2124
c01d5b30
HD
2125unsigned long shmem_get_unmapped_area(struct file *file,
2126 unsigned long uaddr, unsigned long len,
2127 unsigned long pgoff, unsigned long flags)
2128{
2129 unsigned long (*get_area)(struct file *,
2130 unsigned long, unsigned long, unsigned long, unsigned long);
2131 unsigned long addr;
2132 unsigned long offset;
2133 unsigned long inflated_len;
2134 unsigned long inflated_addr;
2135 unsigned long inflated_offset;
2136
2137 if (len > TASK_SIZE)
2138 return -ENOMEM;
2139
2140 get_area = current->mm->get_unmapped_area;
2141 addr = get_area(file, uaddr, len, pgoff, flags);
2142
396bcc52 2143 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2144 return addr;
2145 if (IS_ERR_VALUE(addr))
2146 return addr;
2147 if (addr & ~PAGE_MASK)
2148 return addr;
2149 if (addr > TASK_SIZE - len)
2150 return addr;
2151
2152 if (shmem_huge == SHMEM_HUGE_DENY)
2153 return addr;
2154 if (len < HPAGE_PMD_SIZE)
2155 return addr;
2156 if (flags & MAP_FIXED)
2157 return addr;
2158 /*
2159 * Our priority is to support MAP_SHARED mapped hugely;
2160 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2161 * But if caller specified an address hint and we allocated area there
2162 * successfully, respect that as before.
c01d5b30 2163 */
99158997 2164 if (uaddr == addr)
c01d5b30
HD
2165 return addr;
2166
2167 if (shmem_huge != SHMEM_HUGE_FORCE) {
2168 struct super_block *sb;
2169
2170 if (file) {
2171 VM_BUG_ON(file->f_op != &shmem_file_operations);
2172 sb = file_inode(file)->i_sb;
2173 } else {
2174 /*
2175 * Called directly from mm/mmap.c, or drivers/char/mem.c
2176 * for "/dev/zero", to create a shared anonymous object.
2177 */
2178 if (IS_ERR(shm_mnt))
2179 return addr;
2180 sb = shm_mnt->mnt_sb;
2181 }
3089bf61 2182 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2183 return addr;
2184 }
2185
2186 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2187 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2188 return addr;
2189 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2190 return addr;
2191
2192 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2193 if (inflated_len > TASK_SIZE)
2194 return addr;
2195 if (inflated_len < len)
2196 return addr;
2197
99158997 2198 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2199 if (IS_ERR_VALUE(inflated_addr))
2200 return addr;
2201 if (inflated_addr & ~PAGE_MASK)
2202 return addr;
2203
2204 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2205 inflated_addr += offset - inflated_offset;
2206 if (inflated_offset > offset)
2207 inflated_addr += HPAGE_PMD_SIZE;
2208
2209 if (inflated_addr > TASK_SIZE - len)
2210 return addr;
2211 return inflated_addr;
2212}
2213
1da177e4 2214#ifdef CONFIG_NUMA
41ffe5d5 2215static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2216{
496ad9aa 2217 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2218 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2219}
2220
d8dc74f2
AB
2221static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2222 unsigned long addr)
1da177e4 2223{
496ad9aa 2224 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2225 pgoff_t index;
1da177e4 2226
41ffe5d5
HD
2227 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2228 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2229}
2230#endif
2231
d7c9e99a 2232int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
1da177e4 2233{
496ad9aa 2234 struct inode *inode = file_inode(file);
1da177e4
LT
2235 struct shmem_inode_info *info = SHMEM_I(inode);
2236 int retval = -ENOMEM;
2237
ea0dfeb4
HD
2238 /*
2239 * What serializes the accesses to info->flags?
2240 * ipc_lock_object() when called from shmctl_do_lock(),
2241 * no serialization needed when called from shm_destroy().
2242 */
1da177e4 2243 if (lock && !(info->flags & VM_LOCKED)) {
d7c9e99a 2244 if (!user_shm_lock(inode->i_size, ucounts))
1da177e4
LT
2245 goto out_nomem;
2246 info->flags |= VM_LOCKED;
89e004ea 2247 mapping_set_unevictable(file->f_mapping);
1da177e4 2248 }
d7c9e99a
AG
2249 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2250 user_shm_unlock(inode->i_size, ucounts);
1da177e4 2251 info->flags &= ~VM_LOCKED;
89e004ea 2252 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2253 }
2254 retval = 0;
89e004ea 2255
1da177e4 2256out_nomem:
1da177e4
LT
2257 return retval;
2258}
2259
9b83a6a8 2260static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2261{
ab3948f5 2262 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
22247efd 2263 int ret;
ab3948f5 2264
22247efd
PX
2265 ret = seal_check_future_write(info->seals, vma);
2266 if (ret)
2267 return ret;
ab3948f5 2268
51b0bff2
CM
2269 /* arm64 - allow memory tagging on RAM-based files */
2270 vma->vm_flags |= VM_MTE_ALLOWED;
2271
1da177e4
LT
2272 file_accessed(file);
2273 vma->vm_ops = &shmem_vm_ops;
396bcc52 2274 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2275 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2276 (vma->vm_end & HPAGE_PMD_MASK)) {
2277 khugepaged_enter(vma, vma->vm_flags);
2278 }
1da177e4
LT
2279 return 0;
2280}
2281
454abafe 2282static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2283 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2284{
2285 struct inode *inode;
2286 struct shmem_inode_info *info;
2287 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2288 ino_t ino;
1da177e4 2289
e809d5f0 2290 if (shmem_reserve_inode(sb, &ino))
5b04c689 2291 return NULL;
1da177e4
LT
2292
2293 inode = new_inode(sb);
2294 if (inode) {
e809d5f0 2295 inode->i_ino = ino;
21cb47be 2296 inode_init_owner(&init_user_ns, inode, dir, mode);
1da177e4 2297 inode->i_blocks = 0;
078cd827 2298 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2299 inode->i_generation = prandom_u32();
1da177e4
LT
2300 info = SHMEM_I(inode);
2301 memset(info, 0, (char *)inode - (char *)info);
2302 spin_lock_init(&info->lock);
af53d3e9 2303 atomic_set(&info->stop_eviction, 0);
40e041a2 2304 info->seals = F_SEAL_SEAL;
0b0a0806 2305 info->flags = flags & VM_NORESERVE;
779750d2 2306 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2307 INIT_LIST_HEAD(&info->swaplist);
38f38657 2308 simple_xattrs_init(&info->xattrs);
72c04902 2309 cache_no_acl(inode);
ff36da69 2310 mapping_set_large_folios(inode->i_mapping);
1da177e4
LT
2311
2312 switch (mode & S_IFMT) {
2313 default:
39f0247d 2314 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2315 init_special_inode(inode, mode, dev);
2316 break;
2317 case S_IFREG:
14fcc23f 2318 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2319 inode->i_op = &shmem_inode_operations;
2320 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2321 mpol_shared_policy_init(&info->policy,
2322 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2323 break;
2324 case S_IFDIR:
d8c76e6f 2325 inc_nlink(inode);
1da177e4
LT
2326 /* Some things misbehave if size == 0 on a directory */
2327 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2328 inode->i_op = &shmem_dir_inode_operations;
2329 inode->i_fop = &simple_dir_operations;
2330 break;
2331 case S_IFLNK:
2332 /*
2333 * Must not load anything in the rbtree,
2334 * mpol_free_shared_policy will not be called.
2335 */
71fe804b 2336 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2337 break;
2338 }
b45d71fb
JFG
2339
2340 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2341 } else
2342 shmem_free_inode(sb);
1da177e4
LT
2343 return inode;
2344}
2345
3460f6e5
AR
2346#ifdef CONFIG_USERFAULTFD
2347int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2348 pmd_t *dst_pmd,
2349 struct vm_area_struct *dst_vma,
2350 unsigned long dst_addr,
2351 unsigned long src_addr,
2352 bool zeropage,
2353 struct page **pagep)
4c27fe4c
MR
2354{
2355 struct inode *inode = file_inode(dst_vma->vm_file);
2356 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2357 struct address_space *mapping = inode->i_mapping;
2358 gfp_t gfp = mapping_gfp_mask(mapping);
2359 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2360 void *page_kaddr;
2361 struct page *page;
4c27fe4c 2362 int ret;
3460f6e5 2363 pgoff_t max_off;
4c27fe4c 2364
7ed9d238
AR
2365 if (!shmem_inode_acct_block(inode, 1)) {
2366 /*
2367 * We may have got a page, returned -ENOENT triggering a retry,
2368 * and now we find ourselves with -ENOMEM. Release the page, to
2369 * avoid a BUG_ON in our caller.
2370 */
2371 if (unlikely(*pagep)) {
2372 put_page(*pagep);
2373 *pagep = NULL;
2374 }
7d64ae3a 2375 return -ENOMEM;
7ed9d238 2376 }
4c27fe4c 2377
cb658a45 2378 if (!*pagep) {
7d64ae3a 2379 ret = -ENOMEM;
4c27fe4c
MR
2380 page = shmem_alloc_page(gfp, info, pgoff);
2381 if (!page)
0f079694 2382 goto out_unacct_blocks;
4c27fe4c 2383
3460f6e5 2384 if (!zeropage) { /* COPY */
8d103963
MR
2385 page_kaddr = kmap_atomic(page);
2386 ret = copy_from_user(page_kaddr,
2387 (const void __user *)src_addr,
2388 PAGE_SIZE);
2389 kunmap_atomic(page_kaddr);
2390
c1e8d7c6 2391 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2392 if (unlikely(ret)) {
2393 *pagep = page;
7d64ae3a 2394 ret = -ENOENT;
8d103963 2395 /* don't free the page */
7d64ae3a 2396 goto out_unacct_blocks;
8d103963 2397 }
3460f6e5 2398 } else { /* ZEROPAGE */
8d103963 2399 clear_highpage(page);
4c27fe4c
MR
2400 }
2401 } else {
2402 page = *pagep;
2403 *pagep = NULL;
2404 }
2405
3460f6e5
AR
2406 VM_BUG_ON(PageLocked(page));
2407 VM_BUG_ON(PageSwapBacked(page));
9cc90c66
AA
2408 __SetPageLocked(page);
2409 __SetPageSwapBacked(page);
a425d358 2410 __SetPageUptodate(page);
9cc90c66 2411
e2a50c1f 2412 ret = -EFAULT;
e2a50c1f 2413 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3460f6e5 2414 if (unlikely(pgoff >= max_off))
e2a50c1f
AA
2415 goto out_release;
2416
552446a4 2417 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2418 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2419 if (ret)
3fea5a49 2420 goto out_release;
4c27fe4c 2421
7d64ae3a
AR
2422 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2423 page, true, false);
2424 if (ret)
2425 goto out_delete_from_cache;
4c27fe4c 2426
94b7cc01 2427 spin_lock_irq(&info->lock);
4c27fe4c
MR
2428 info->alloced++;
2429 inode->i_blocks += BLOCKS_PER_PAGE;
2430 shmem_recalc_inode(inode);
94b7cc01 2431 spin_unlock_irq(&info->lock);
4c27fe4c 2432
e2a50c1f 2433 unlock_page(page);
7d64ae3a
AR
2434 return 0;
2435out_delete_from_cache:
e2a50c1f 2436 delete_from_page_cache(page);
4c27fe4c 2437out_release:
9cc90c66 2438 unlock_page(page);
4c27fe4c 2439 put_page(page);
4c27fe4c 2440out_unacct_blocks:
0f079694 2441 shmem_inode_unacct_blocks(inode, 1);
7d64ae3a 2442 return ret;
8d103963 2443}
3460f6e5 2444#endif /* CONFIG_USERFAULTFD */
8d103963 2445
1da177e4 2446#ifdef CONFIG_TMPFS
92e1d5be 2447static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2448static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2449
6d9d88d0
JS
2450#ifdef CONFIG_TMPFS_XATTR
2451static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2452#else
2453#define shmem_initxattrs NULL
2454#endif
2455
1da177e4 2456static int
800d15a5
NP
2457shmem_write_begin(struct file *file, struct address_space *mapping,
2458 loff_t pos, unsigned len, unsigned flags,
2459 struct page **pagep, void **fsdata)
1da177e4 2460{
800d15a5 2461 struct inode *inode = mapping->host;
40e041a2 2462 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2463 pgoff_t index = pos >> PAGE_SHIFT;
a7605426 2464 int ret = 0;
40e041a2 2465
9608703e 2466 /* i_rwsem is held by caller */
ab3948f5
JFG
2467 if (unlikely(info->seals & (F_SEAL_GROW |
2468 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2469 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DR
2470 return -EPERM;
2471 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2472 return -EPERM;
2473 }
2474
a7605426
YS
2475 ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2476
2477 if (ret)
2478 return ret;
2479
2480 if (PageHWPoison(*pagep)) {
2481 unlock_page(*pagep);
2482 put_page(*pagep);
2483 *pagep = NULL;
2484 return -EIO;
2485 }
2486
2487 return 0;
800d15a5
NP
2488}
2489
2490static int
2491shmem_write_end(struct file *file, struct address_space *mapping,
2492 loff_t pos, unsigned len, unsigned copied,
2493 struct page *page, void *fsdata)
2494{
2495 struct inode *inode = mapping->host;
2496
d3602444
HD
2497 if (pos + copied > inode->i_size)
2498 i_size_write(inode, pos + copied);
2499
ec9516fb 2500 if (!PageUptodate(page)) {
800d8c63
KS
2501 struct page *head = compound_head(page);
2502 if (PageTransCompound(page)) {
2503 int i;
2504
2505 for (i = 0; i < HPAGE_PMD_NR; i++) {
2506 if (head + i == page)
2507 continue;
2508 clear_highpage(head + i);
2509 flush_dcache_page(head + i);
2510 }
2511 }
09cbfeaf
KS
2512 if (copied < PAGE_SIZE) {
2513 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2514 zero_user_segments(page, 0, from,
09cbfeaf 2515 from + copied, PAGE_SIZE);
ec9516fb 2516 }
800d8c63 2517 SetPageUptodate(head);
ec9516fb 2518 }
800d15a5 2519 set_page_dirty(page);
6746aff7 2520 unlock_page(page);
09cbfeaf 2521 put_page(page);
800d15a5 2522
800d15a5 2523 return copied;
1da177e4
LT
2524}
2525
2ba5bbed 2526static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2527{
6e58e79d
AV
2528 struct file *file = iocb->ki_filp;
2529 struct inode *inode = file_inode(file);
1da177e4 2530 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2531 pgoff_t index;
2532 unsigned long offset;
a0ee5ec5 2533 enum sgp_type sgp = SGP_READ;
f7c1d074 2534 int error = 0;
cb66a7a1 2535 ssize_t retval = 0;
6e58e79d 2536 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2537
2538 /*
2539 * Might this read be for a stacking filesystem? Then when reading
2540 * holes of a sparse file, we actually need to allocate those pages,
2541 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2542 */
777eda2c 2543 if (!iter_is_iovec(to))
75edd345 2544 sgp = SGP_CACHE;
1da177e4 2545
09cbfeaf
KS
2546 index = *ppos >> PAGE_SHIFT;
2547 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2548
2549 for (;;) {
2550 struct page *page = NULL;
41ffe5d5
HD
2551 pgoff_t end_index;
2552 unsigned long nr, ret;
1da177e4
LT
2553 loff_t i_size = i_size_read(inode);
2554
09cbfeaf 2555 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2556 if (index > end_index)
2557 break;
2558 if (index == end_index) {
09cbfeaf 2559 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2560 if (nr <= offset)
2561 break;
2562 }
2563
9e18eb29 2564 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2565 if (error) {
2566 if (error == -EINVAL)
2567 error = 0;
1da177e4
LT
2568 break;
2569 }
75edd345
HD
2570 if (page) {
2571 if (sgp == SGP_CACHE)
2572 set_page_dirty(page);
d3602444 2573 unlock_page(page);
a7605426
YS
2574
2575 if (PageHWPoison(page)) {
2576 put_page(page);
2577 error = -EIO;
2578 break;
2579 }
75edd345 2580 }
1da177e4
LT
2581
2582 /*
2583 * We must evaluate after, since reads (unlike writes)
9608703e 2584 * are called without i_rwsem protection against truncate
1da177e4 2585 */
09cbfeaf 2586 nr = PAGE_SIZE;
1da177e4 2587 i_size = i_size_read(inode);
09cbfeaf 2588 end_index = i_size >> PAGE_SHIFT;
1da177e4 2589 if (index == end_index) {
09cbfeaf 2590 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2591 if (nr <= offset) {
2592 if (page)
09cbfeaf 2593 put_page(page);
1da177e4
LT
2594 break;
2595 }
2596 }
2597 nr -= offset;
2598
2599 if (page) {
2600 /*
2601 * If users can be writing to this page using arbitrary
2602 * virtual addresses, take care about potential aliasing
2603 * before reading the page on the kernel side.
2604 */
2605 if (mapping_writably_mapped(mapping))
2606 flush_dcache_page(page);
2607 /*
2608 * Mark the page accessed if we read the beginning.
2609 */
2610 if (!offset)
2611 mark_page_accessed(page);
b5810039 2612 } else {
1da177e4 2613 page = ZERO_PAGE(0);
09cbfeaf 2614 get_page(page);
b5810039 2615 }
1da177e4
LT
2616
2617 /*
2618 * Ok, we have the page, and it's up-to-date, so
2619 * now we can copy it to user space...
1da177e4 2620 */
2ba5bbed 2621 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2622 retval += ret;
1da177e4 2623 offset += ret;
09cbfeaf
KS
2624 index += offset >> PAGE_SHIFT;
2625 offset &= ~PAGE_MASK;
1da177e4 2626
09cbfeaf 2627 put_page(page);
2ba5bbed 2628 if (!iov_iter_count(to))
1da177e4 2629 break;
6e58e79d
AV
2630 if (ret < nr) {
2631 error = -EFAULT;
2632 break;
2633 }
1da177e4
LT
2634 cond_resched();
2635 }
2636
09cbfeaf 2637 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2638 file_accessed(file);
2639 return retval ? retval : error;
1da177e4
LT
2640}
2641
965c8e59 2642static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2643{
2644 struct address_space *mapping = file->f_mapping;
2645 struct inode *inode = mapping->host;
220f2ac9 2646
965c8e59
AM
2647 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2648 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2649 MAX_LFS_FILESIZE, i_size_read(inode));
41139aa4
MWO
2650 if (offset < 0)
2651 return -ENXIO;
2652
5955102c 2653 inode_lock(inode);
9608703e 2654 /* We're holding i_rwsem so we can access i_size directly */
41139aa4 2655 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
387aae6f
HD
2656 if (offset >= 0)
2657 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2658 inode_unlock(inode);
220f2ac9
HD
2659 return offset;
2660}
2661
83e4fa9c
HD
2662static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2663 loff_t len)
2664{
496ad9aa 2665 struct inode *inode = file_inode(file);
e2d12e22 2666 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2667 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2668 struct shmem_falloc shmem_falloc;
d144bf62 2669 pgoff_t start, index, end, undo_fallocend;
e2d12e22 2670 int error;
83e4fa9c 2671
13ace4d0
HD
2672 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2673 return -EOPNOTSUPP;
2674
5955102c 2675 inode_lock(inode);
83e4fa9c
HD
2676
2677 if (mode & FALLOC_FL_PUNCH_HOLE) {
2678 struct address_space *mapping = file->f_mapping;
2679 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2680 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2681 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2682
9608703e 2683 /* protected by i_rwsem */
ab3948f5 2684 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DR
2685 error = -EPERM;
2686 goto out;
2687 }
2688
8e205f77 2689 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2690 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2691 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2692 spin_lock(&inode->i_lock);
2693 inode->i_private = &shmem_falloc;
2694 spin_unlock(&inode->i_lock);
2695
83e4fa9c
HD
2696 if ((u64)unmap_end > (u64)unmap_start)
2697 unmap_mapping_range(mapping, unmap_start,
2698 1 + unmap_end - unmap_start, 0);
2699 shmem_truncate_range(inode, offset, offset + len - 1);
2700 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2701
2702 spin_lock(&inode->i_lock);
2703 inode->i_private = NULL;
2704 wake_up_all(&shmem_falloc_waitq);
2055da97 2705 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2706 spin_unlock(&inode->i_lock);
83e4fa9c 2707 error = 0;
8e205f77 2708 goto out;
e2d12e22
HD
2709 }
2710
2711 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2712 error = inode_newsize_ok(inode, offset + len);
2713 if (error)
2714 goto out;
2715
40e041a2
DR
2716 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2717 error = -EPERM;
2718 goto out;
2719 }
2720
09cbfeaf
KS
2721 start = offset >> PAGE_SHIFT;
2722 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2723 /* Try to avoid a swapstorm if len is impossible to satisfy */
2724 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2725 error = -ENOSPC;
2726 goto out;
83e4fa9c
HD
2727 }
2728
8e205f77 2729 shmem_falloc.waitq = NULL;
1aac1400
HD
2730 shmem_falloc.start = start;
2731 shmem_falloc.next = start;
2732 shmem_falloc.nr_falloced = 0;
2733 shmem_falloc.nr_unswapped = 0;
2734 spin_lock(&inode->i_lock);
2735 inode->i_private = &shmem_falloc;
2736 spin_unlock(&inode->i_lock);
2737
d144bf62
HD
2738 /*
2739 * info->fallocend is only relevant when huge pages might be
2740 * involved: to prevent split_huge_page() freeing fallocated
2741 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2742 */
2743 undo_fallocend = info->fallocend;
2744 if (info->fallocend < end)
2745 info->fallocend = end;
2746
050dcb5c 2747 for (index = start; index < end; ) {
e2d12e22
HD
2748 struct page *page;
2749
2750 /*
2751 * Good, the fallocate(2) manpage permits EINTR: we may have
2752 * been interrupted because we are using up too much memory.
2753 */
2754 if (signal_pending(current))
2755 error = -EINTR;
1aac1400
HD
2756 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2757 error = -ENOMEM;
e2d12e22 2758 else
9e18eb29 2759 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2760 if (error) {
d144bf62 2761 info->fallocend = undo_fallocend;
1635f6a7 2762 /* Remove the !PageUptodate pages we added */
7f556567
HD
2763 if (index > start) {
2764 shmem_undo_range(inode,
2765 (loff_t)start << PAGE_SHIFT,
2766 ((loff_t)index << PAGE_SHIFT) - 1, true);
2767 }
1aac1400 2768 goto undone;
e2d12e22
HD
2769 }
2770
050dcb5c
HD
2771 index++;
2772 /*
2773 * Here is a more important optimization than it appears:
2774 * a second SGP_FALLOC on the same huge page will clear it,
2775 * making it PageUptodate and un-undoable if we fail later.
2776 */
2777 if (PageTransCompound(page)) {
2778 index = round_up(index, HPAGE_PMD_NR);
2779 /* Beware 32-bit wraparound */
2780 if (!index)
2781 index--;
2782 }
2783
1aac1400
HD
2784 /*
2785 * Inform shmem_writepage() how far we have reached.
2786 * No need for lock or barrier: we have the page lock.
2787 */
1aac1400 2788 if (!PageUptodate(page))
050dcb5c
HD
2789 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2790 shmem_falloc.next = index;
1aac1400 2791
e2d12e22 2792 /*
1635f6a7
HD
2793 * If !PageUptodate, leave it that way so that freeable pages
2794 * can be recognized if we need to rollback on error later.
2795 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2796 * than free the pages we are allocating (and SGP_CACHE pages
2797 * might still be clean: we now need to mark those dirty too).
2798 */
2799 set_page_dirty(page);
2800 unlock_page(page);
09cbfeaf 2801 put_page(page);
e2d12e22
HD
2802 cond_resched();
2803 }
2804
2805 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2806 i_size_write(inode, offset + len);
078cd827 2807 inode->i_ctime = current_time(inode);
1aac1400
HD
2808undone:
2809 spin_lock(&inode->i_lock);
2810 inode->i_private = NULL;
2811 spin_unlock(&inode->i_lock);
e2d12e22 2812out:
5955102c 2813 inode_unlock(inode);
83e4fa9c
HD
2814 return error;
2815}
2816
726c3342 2817static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2818{
726c3342 2819 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2820
2821 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2822 buf->f_bsize = PAGE_SIZE;
1da177e4 2823 buf->f_namelen = NAME_MAX;
0edd73b3 2824 if (sbinfo->max_blocks) {
1da177e4 2825 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2826 buf->f_bavail =
2827 buf->f_bfree = sbinfo->max_blocks -
2828 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2829 }
2830 if (sbinfo->max_inodes) {
1da177e4
LT
2831 buf->f_files = sbinfo->max_inodes;
2832 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2833 }
2834 /* else leave those fields 0 like simple_statfs */
59cda49e
AG
2835
2836 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2837
1da177e4
LT
2838 return 0;
2839}
2840
2841/*
2842 * File creation. Allocate an inode, and we're done..
2843 */
2844static int
549c7297
CB
2845shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2846 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2847{
0b0a0806 2848 struct inode *inode;
1da177e4
LT
2849 int error = -ENOSPC;
2850
454abafe 2851 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2852 if (inode) {
feda821e
CH
2853 error = simple_acl_create(dir, inode);
2854 if (error)
2855 goto out_iput;
2a7dba39 2856 error = security_inode_init_security(inode, dir,
9d8f13ba 2857 &dentry->d_name,
6d9d88d0 2858 shmem_initxattrs, NULL);
feda821e
CH
2859 if (error && error != -EOPNOTSUPP)
2860 goto out_iput;
37ec43cd 2861
718deb6b 2862 error = 0;
1da177e4 2863 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2864 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2865 d_instantiate(dentry, inode);
2866 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2867 }
2868 return error;
feda821e
CH
2869out_iput:
2870 iput(inode);
2871 return error;
1da177e4
LT
2872}
2873
60545d0d 2874static int
549c7297
CB
2875shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2876 struct dentry *dentry, umode_t mode)
60545d0d
AV
2877{
2878 struct inode *inode;
2879 int error = -ENOSPC;
2880
2881 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2882 if (inode) {
2883 error = security_inode_init_security(inode, dir,
2884 NULL,
2885 shmem_initxattrs, NULL);
feda821e
CH
2886 if (error && error != -EOPNOTSUPP)
2887 goto out_iput;
2888 error = simple_acl_create(dir, inode);
2889 if (error)
2890 goto out_iput;
60545d0d
AV
2891 d_tmpfile(dentry, inode);
2892 }
2893 return error;
feda821e
CH
2894out_iput:
2895 iput(inode);
2896 return error;
60545d0d
AV
2897}
2898
549c7297
CB
2899static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2900 struct dentry *dentry, umode_t mode)
1da177e4
LT
2901{
2902 int error;
2903
549c7297
CB
2904 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2905 mode | S_IFDIR, 0)))
1da177e4 2906 return error;
d8c76e6f 2907 inc_nlink(dir);
1da177e4
LT
2908 return 0;
2909}
2910
549c7297
CB
2911static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2912 struct dentry *dentry, umode_t mode, bool excl)
1da177e4 2913{
549c7297 2914 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
2915}
2916
2917/*
2918 * Link a file..
2919 */
2920static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2921{
75c3cfa8 2922 struct inode *inode = d_inode(old_dentry);
29b00e60 2923 int ret = 0;
1da177e4
LT
2924
2925 /*
2926 * No ordinary (disk based) filesystem counts links as inodes;
2927 * but each new link needs a new dentry, pinning lowmem, and
2928 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2929 * But if an O_TMPFILE file is linked into the tmpfs, the
2930 * first link must skip that, to get the accounting right.
1da177e4 2931 */
1062af92 2932 if (inode->i_nlink) {
e809d5f0 2933 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
2934 if (ret)
2935 goto out;
2936 }
1da177e4
LT
2937
2938 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2939 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2940 inc_nlink(inode);
7de9c6ee 2941 ihold(inode); /* New dentry reference */
1da177e4
LT
2942 dget(dentry); /* Extra pinning count for the created dentry */
2943 d_instantiate(dentry, inode);
5b04c689
PE
2944out:
2945 return ret;
1da177e4
LT
2946}
2947
2948static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2949{
75c3cfa8 2950 struct inode *inode = d_inode(dentry);
1da177e4 2951
5b04c689
PE
2952 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2953 shmem_free_inode(inode->i_sb);
1da177e4
LT
2954
2955 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2956 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2957 drop_nlink(inode);
1da177e4
LT
2958 dput(dentry); /* Undo the count from "create" - this does all the work */
2959 return 0;
2960}
2961
2962static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2963{
2964 if (!simple_empty(dentry))
2965 return -ENOTEMPTY;
2966
75c3cfa8 2967 drop_nlink(d_inode(dentry));
9a53c3a7 2968 drop_nlink(dir);
1da177e4
LT
2969 return shmem_unlink(dir, dentry);
2970}
2971
549c7297
CB
2972static int shmem_whiteout(struct user_namespace *mnt_userns,
2973 struct inode *old_dir, struct dentry *old_dentry)
46fdb794
MS
2974{
2975 struct dentry *whiteout;
2976 int error;
2977
2978 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2979 if (!whiteout)
2980 return -ENOMEM;
2981
549c7297 2982 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
46fdb794
MS
2983 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2984 dput(whiteout);
2985 if (error)
2986 return error;
2987
2988 /*
2989 * Cheat and hash the whiteout while the old dentry is still in
2990 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2991 *
2992 * d_lookup() will consistently find one of them at this point,
2993 * not sure which one, but that isn't even important.
2994 */
2995 d_rehash(whiteout);
2996 return 0;
2997}
2998
1da177e4
LT
2999/*
3000 * The VFS layer already does all the dentry stuff for rename,
3001 * we just have to decrement the usage count for the target if
3002 * it exists so that the VFS layer correctly free's it when it
3003 * gets overwritten.
3004 */
549c7297
CB
3005static int shmem_rename2(struct user_namespace *mnt_userns,
3006 struct inode *old_dir, struct dentry *old_dentry,
3007 struct inode *new_dir, struct dentry *new_dentry,
3008 unsigned int flags)
1da177e4 3009{
75c3cfa8 3010 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3011 int they_are_dirs = S_ISDIR(inode->i_mode);
3012
46fdb794 3013 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3014 return -EINVAL;
3015
37456771 3016 if (flags & RENAME_EXCHANGE)
6429e463 3017 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
37456771 3018
1da177e4
LT
3019 if (!simple_empty(new_dentry))
3020 return -ENOTEMPTY;
3021
46fdb794
MS
3022 if (flags & RENAME_WHITEOUT) {
3023 int error;
3024
549c7297 3025 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
46fdb794
MS
3026 if (error)
3027 return error;
3028 }
3029
75c3cfa8 3030 if (d_really_is_positive(new_dentry)) {
1da177e4 3031 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3032 if (they_are_dirs) {
75c3cfa8 3033 drop_nlink(d_inode(new_dentry));
9a53c3a7 3034 drop_nlink(old_dir);
b928095b 3035 }
1da177e4 3036 } else if (they_are_dirs) {
9a53c3a7 3037 drop_nlink(old_dir);
d8c76e6f 3038 inc_nlink(new_dir);
1da177e4
LT
3039 }
3040
3041 old_dir->i_size -= BOGO_DIRENT_SIZE;
3042 new_dir->i_size += BOGO_DIRENT_SIZE;
3043 old_dir->i_ctime = old_dir->i_mtime =
3044 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3045 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3046 return 0;
3047}
3048
549c7297
CB
3049static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3050 struct dentry *dentry, const char *symname)
1da177e4
LT
3051{
3052 int error;
3053 int len;
3054 struct inode *inode;
9276aad6 3055 struct page *page;
1da177e4
LT
3056
3057 len = strlen(symname) + 1;
09cbfeaf 3058 if (len > PAGE_SIZE)
1da177e4
LT
3059 return -ENAMETOOLONG;
3060
0825a6f9
JP
3061 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3062 VM_NORESERVE);
1da177e4
LT
3063 if (!inode)
3064 return -ENOSPC;
3065
9d8f13ba 3066 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3067 shmem_initxattrs, NULL);
343c3d7f
MN
3068 if (error && error != -EOPNOTSUPP) {
3069 iput(inode);
3070 return error;
570bc1c2
SS
3071 }
3072
1da177e4 3073 inode->i_size = len-1;
69f07ec9 3074 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3075 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3076 if (!inode->i_link) {
69f07ec9
HD
3077 iput(inode);
3078 return -ENOMEM;
3079 }
3080 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3081 } else {
e8ecde25 3082 inode_nohighmem(inode);
9e18eb29 3083 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3084 if (error) {
3085 iput(inode);
3086 return error;
3087 }
14fcc23f 3088 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3089 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3090 memcpy(page_address(page), symname, len);
ec9516fb 3091 SetPageUptodate(page);
1da177e4 3092 set_page_dirty(page);
6746aff7 3093 unlock_page(page);
09cbfeaf 3094 put_page(page);
1da177e4 3095 }
1da177e4 3096 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3097 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3098 d_instantiate(dentry, inode);
3099 dget(dentry);
3100 return 0;
3101}
3102
fceef393 3103static void shmem_put_link(void *arg)
1da177e4 3104{
fceef393
AV
3105 mark_page_accessed(arg);
3106 put_page(arg);
1da177e4
LT
3107}
3108
6b255391 3109static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3110 struct inode *inode,
3111 struct delayed_call *done)
1da177e4 3112{
1da177e4 3113 struct page *page = NULL;
6b255391 3114 int error;
6a6c9904
AV
3115 if (!dentry) {
3116 page = find_get_page(inode->i_mapping, 0);
3117 if (!page)
3118 return ERR_PTR(-ECHILD);
a7605426
YS
3119 if (PageHWPoison(page) ||
3120 !PageUptodate(page)) {
6a6c9904
AV
3121 put_page(page);
3122 return ERR_PTR(-ECHILD);
3123 }
3124 } else {
9e18eb29 3125 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3126 if (error)
3127 return ERR_PTR(error);
a7605426
YS
3128 if (!page)
3129 return ERR_PTR(-ECHILD);
3130 if (PageHWPoison(page)) {
3131 unlock_page(page);
3132 put_page(page);
3133 return ERR_PTR(-ECHILD);
3134 }
6a6c9904
AV
3135 unlock_page(page);
3136 }
fceef393 3137 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3138 return page_address(page);
1da177e4
LT
3139}
3140
b09e0fa4 3141#ifdef CONFIG_TMPFS_XATTR
46711810 3142/*
b09e0fa4
EP
3143 * Superblocks without xattr inode operations may get some security.* xattr
3144 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3145 * like ACLs, we also need to implement the security.* handlers at
3146 * filesystem level, though.
3147 */
3148
6d9d88d0
JS
3149/*
3150 * Callback for security_inode_init_security() for acquiring xattrs.
3151 */
3152static int shmem_initxattrs(struct inode *inode,
3153 const struct xattr *xattr_array,
3154 void *fs_info)
3155{
3156 struct shmem_inode_info *info = SHMEM_I(inode);
3157 const struct xattr *xattr;
38f38657 3158 struct simple_xattr *new_xattr;
6d9d88d0
JS
3159 size_t len;
3160
3161 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3162 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3163 if (!new_xattr)
3164 return -ENOMEM;
3165
3166 len = strlen(xattr->name) + 1;
3167 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3168 GFP_KERNEL);
3169 if (!new_xattr->name) {
3bef735a 3170 kvfree(new_xattr);
6d9d88d0
JS
3171 return -ENOMEM;
3172 }
3173
3174 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3175 XATTR_SECURITY_PREFIX_LEN);
3176 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3177 xattr->name, len);
3178
38f38657 3179 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3180 }
3181
3182 return 0;
3183}
3184
aa7c5241 3185static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3186 struct dentry *unused, struct inode *inode,
3187 const char *name, void *buffer, size_t size)
b09e0fa4 3188{
b296821a 3189 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3190
aa7c5241 3191 name = xattr_full_name(handler, name);
38f38657 3192 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3193}
3194
aa7c5241 3195static int shmem_xattr_handler_set(const struct xattr_handler *handler,
e65ce2a5 3196 struct user_namespace *mnt_userns,
59301226
AV
3197 struct dentry *unused, struct inode *inode,
3198 const char *name, const void *value,
3199 size_t size, int flags)
b09e0fa4 3200{
59301226 3201 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3202
aa7c5241 3203 name = xattr_full_name(handler, name);
a46a2295 3204 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3205}
3206
aa7c5241
AG
3207static const struct xattr_handler shmem_security_xattr_handler = {
3208 .prefix = XATTR_SECURITY_PREFIX,
3209 .get = shmem_xattr_handler_get,
3210 .set = shmem_xattr_handler_set,
3211};
b09e0fa4 3212
aa7c5241
AG
3213static const struct xattr_handler shmem_trusted_xattr_handler = {
3214 .prefix = XATTR_TRUSTED_PREFIX,
3215 .get = shmem_xattr_handler_get,
3216 .set = shmem_xattr_handler_set,
3217};
b09e0fa4 3218
aa7c5241
AG
3219static const struct xattr_handler *shmem_xattr_handlers[] = {
3220#ifdef CONFIG_TMPFS_POSIX_ACL
3221 &posix_acl_access_xattr_handler,
3222 &posix_acl_default_xattr_handler,
3223#endif
3224 &shmem_security_xattr_handler,
3225 &shmem_trusted_xattr_handler,
3226 NULL
3227};
b09e0fa4
EP
3228
3229static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3230{
75c3cfa8 3231 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3232 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3233}
3234#endif /* CONFIG_TMPFS_XATTR */
3235
69f07ec9 3236static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3237 .get_link = simple_get_link,
b09e0fa4 3238#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3239 .listxattr = shmem_listxattr,
b09e0fa4
EP
3240#endif
3241};
3242
3243static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3244 .get_link = shmem_get_link,
b09e0fa4 3245#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3246 .listxattr = shmem_listxattr,
39f0247d 3247#endif
b09e0fa4 3248};
39f0247d 3249
91828a40
DG
3250static struct dentry *shmem_get_parent(struct dentry *child)
3251{
3252 return ERR_PTR(-ESTALE);
3253}
3254
3255static int shmem_match(struct inode *ino, void *vfh)
3256{
3257 __u32 *fh = vfh;
3258 __u64 inum = fh[2];
3259 inum = (inum << 32) | fh[1];
3260 return ino->i_ino == inum && fh[0] == ino->i_generation;
3261}
3262
12ba780d
AG
3263/* Find any alias of inode, but prefer a hashed alias */
3264static struct dentry *shmem_find_alias(struct inode *inode)
3265{
3266 struct dentry *alias = d_find_alias(inode);
3267
3268 return alias ?: d_find_any_alias(inode);
3269}
3270
3271
480b116c
CH
3272static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3273 struct fid *fid, int fh_len, int fh_type)
91828a40 3274{
91828a40 3275 struct inode *inode;
480b116c 3276 struct dentry *dentry = NULL;
35c2a7f4 3277 u64 inum;
480b116c
CH
3278
3279 if (fh_len < 3)
3280 return NULL;
91828a40 3281
35c2a7f4
HD
3282 inum = fid->raw[2];
3283 inum = (inum << 32) | fid->raw[1];
3284
480b116c
CH
3285 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3286 shmem_match, fid->raw);
91828a40 3287 if (inode) {
12ba780d 3288 dentry = shmem_find_alias(inode);
91828a40
DG
3289 iput(inode);
3290 }
3291
480b116c 3292 return dentry;
91828a40
DG
3293}
3294
b0b0382b
AV
3295static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3296 struct inode *parent)
91828a40 3297{
5fe0c237
AK
3298 if (*len < 3) {
3299 *len = 3;
94e07a75 3300 return FILEID_INVALID;
5fe0c237 3301 }
91828a40 3302
1d3382cb 3303 if (inode_unhashed(inode)) {
91828a40
DG
3304 /* Unfortunately insert_inode_hash is not idempotent,
3305 * so as we hash inodes here rather than at creation
3306 * time, we need a lock to ensure we only try
3307 * to do it once
3308 */
3309 static DEFINE_SPINLOCK(lock);
3310 spin_lock(&lock);
1d3382cb 3311 if (inode_unhashed(inode))
91828a40
DG
3312 __insert_inode_hash(inode,
3313 inode->i_ino + inode->i_generation);
3314 spin_unlock(&lock);
3315 }
3316
3317 fh[0] = inode->i_generation;
3318 fh[1] = inode->i_ino;
3319 fh[2] = ((__u64)inode->i_ino) >> 32;
3320
3321 *len = 3;
3322 return 1;
3323}
3324
39655164 3325static const struct export_operations shmem_export_ops = {
91828a40 3326 .get_parent = shmem_get_parent,
91828a40 3327 .encode_fh = shmem_encode_fh,
480b116c 3328 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3329};
3330
626c3920
AV
3331enum shmem_param {
3332 Opt_gid,
3333 Opt_huge,
3334 Opt_mode,
3335 Opt_mpol,
3336 Opt_nr_blocks,
3337 Opt_nr_inodes,
3338 Opt_size,
3339 Opt_uid,
ea3271f7
CD
3340 Opt_inode32,
3341 Opt_inode64,
626c3920
AV
3342};
3343
5eede625 3344static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3345 {"never", SHMEM_HUGE_NEVER },
3346 {"always", SHMEM_HUGE_ALWAYS },
3347 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3348 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3349 {}
3350};
3351
d7167b14 3352const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3353 fsparam_u32 ("gid", Opt_gid),
2710c957 3354 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3355 fsparam_u32oct("mode", Opt_mode),
3356 fsparam_string("mpol", Opt_mpol),
3357 fsparam_string("nr_blocks", Opt_nr_blocks),
3358 fsparam_string("nr_inodes", Opt_nr_inodes),
3359 fsparam_string("size", Opt_size),
3360 fsparam_u32 ("uid", Opt_uid),
ea3271f7
CD
3361 fsparam_flag ("inode32", Opt_inode32),
3362 fsparam_flag ("inode64", Opt_inode64),
626c3920
AV
3363 {}
3364};
3365
f3235626 3366static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3367{
f3235626 3368 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3369 struct fs_parse_result result;
3370 unsigned long long size;
e04dc423 3371 char *rest;
626c3920
AV
3372 int opt;
3373
d7167b14 3374 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3375 if (opt < 0)
626c3920 3376 return opt;
1da177e4 3377
626c3920
AV
3378 switch (opt) {
3379 case Opt_size:
3380 size = memparse(param->string, &rest);
e04dc423
AV
3381 if (*rest == '%') {
3382 size <<= PAGE_SHIFT;
3383 size *= totalram_pages();
3384 do_div(size, 100);
3385 rest++;
3386 }
3387 if (*rest)
626c3920 3388 goto bad_value;
e04dc423
AV
3389 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3390 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3391 break;
3392 case Opt_nr_blocks:
3393 ctx->blocks = memparse(param->string, &rest);
e04dc423 3394 if (*rest)
626c3920 3395 goto bad_value;
e04dc423 3396 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3397 break;
3398 case Opt_nr_inodes:
3399 ctx->inodes = memparse(param->string, &rest);
e04dc423 3400 if (*rest)
626c3920 3401 goto bad_value;
e04dc423 3402 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3403 break;
3404 case Opt_mode:
3405 ctx->mode = result.uint_32 & 07777;
3406 break;
3407 case Opt_uid:
3408 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3409 if (!uid_valid(ctx->uid))
626c3920
AV
3410 goto bad_value;
3411 break;
3412 case Opt_gid:
3413 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3414 if (!gid_valid(ctx->gid))
626c3920
AV
3415 goto bad_value;
3416 break;
3417 case Opt_huge:
3418 ctx->huge = result.uint_32;
3419 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3420 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3421 has_transparent_hugepage()))
3422 goto unsupported_parameter;
e04dc423 3423 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3424 break;
3425 case Opt_mpol:
3426 if (IS_ENABLED(CONFIG_NUMA)) {
3427 mpol_put(ctx->mpol);
3428 ctx->mpol = NULL;
3429 if (mpol_parse_str(param->string, &ctx->mpol))
3430 goto bad_value;
3431 break;
3432 }
3433 goto unsupported_parameter;
ea3271f7
CD
3434 case Opt_inode32:
3435 ctx->full_inums = false;
3436 ctx->seen |= SHMEM_SEEN_INUMS;
3437 break;
3438 case Opt_inode64:
3439 if (sizeof(ino_t) < 8) {
3440 return invalfc(fc,
3441 "Cannot use inode64 with <64bit inums in kernel\n");
3442 }
3443 ctx->full_inums = true;
3444 ctx->seen |= SHMEM_SEEN_INUMS;
3445 break;
e04dc423
AV
3446 }
3447 return 0;
3448
626c3920 3449unsupported_parameter:
f35aa2bc 3450 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3451bad_value:
f35aa2bc 3452 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3453}
3454
f3235626 3455static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3456{
f3235626
DH
3457 char *options = data;
3458
33f37c64
AV
3459 if (options) {
3460 int err = security_sb_eat_lsm_opts(options, &fc->security);
3461 if (err)
3462 return err;
3463 }
3464
b00dc3ad 3465 while (options != NULL) {
626c3920 3466 char *this_char = options;
b00dc3ad
HD
3467 for (;;) {
3468 /*
3469 * NUL-terminate this option: unfortunately,
3470 * mount options form a comma-separated list,
3471 * but mpol's nodelist may also contain commas.
3472 */
3473 options = strchr(options, ',');
3474 if (options == NULL)
3475 break;
3476 options++;
3477 if (!isdigit(*options)) {
3478 options[-1] = '\0';
3479 break;
3480 }
3481 }
626c3920 3482 if (*this_char) {
68d68ff6 3483 char *value = strchr(this_char, '=');
f3235626 3484 size_t len = 0;
626c3920
AV
3485 int err;
3486
3487 if (value) {
3488 *value++ = '\0';
f3235626 3489 len = strlen(value);
626c3920 3490 }
f3235626
DH
3491 err = vfs_parse_fs_string(fc, this_char, value, len);
3492 if (err < 0)
3493 return err;
1da177e4 3494 }
1da177e4
LT
3495 }
3496 return 0;
1da177e4
LT
3497}
3498
f3235626
DH
3499/*
3500 * Reconfigure a shmem filesystem.
3501 *
3502 * Note that we disallow change from limited->unlimited blocks/inodes while any
3503 * are in use; but we must separately disallow unlimited->limited, because in
3504 * that case we have no record of how much is already in use.
3505 */
3506static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3507{
f3235626
DH
3508 struct shmem_options *ctx = fc->fs_private;
3509 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3510 unsigned long inodes;
bf11b9a8 3511 struct mempolicy *mpol = NULL;
f3235626 3512 const char *err;
1da177e4 3513
bf11b9a8 3514 raw_spin_lock(&sbinfo->stat_lock);
0edd73b3 3515 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3516 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3517 if (!sbinfo->max_blocks) {
3518 err = "Cannot retroactively limit size";
0b5071dd 3519 goto out;
f3235626 3520 }
0b5071dd 3521 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3522 ctx->blocks) > 0) {
3523 err = "Too small a size for current use";
0b5071dd 3524 goto out;
f3235626 3525 }
0b5071dd 3526 }
f3235626
DH
3527 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3528 if (!sbinfo->max_inodes) {
3529 err = "Cannot retroactively limit inodes";
0b5071dd 3530 goto out;
f3235626
DH
3531 }
3532 if (ctx->inodes < inodes) {
3533 err = "Too few inodes for current use";
0b5071dd 3534 goto out;
f3235626 3535 }
0b5071dd 3536 }
0edd73b3 3537
ea3271f7
CD
3538 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3539 sbinfo->next_ino > UINT_MAX) {
3540 err = "Current inum too high to switch to 32-bit inums";
3541 goto out;
3542 }
3543
f3235626
DH
3544 if (ctx->seen & SHMEM_SEEN_HUGE)
3545 sbinfo->huge = ctx->huge;
ea3271f7
CD
3546 if (ctx->seen & SHMEM_SEEN_INUMS)
3547 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3548 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3549 sbinfo->max_blocks = ctx->blocks;
3550 if (ctx->seen & SHMEM_SEEN_INODES) {
3551 sbinfo->max_inodes = ctx->inodes;
3552 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3553 }
71fe804b 3554
5f00110f
GT
3555 /*
3556 * Preserve previous mempolicy unless mpol remount option was specified.
3557 */
f3235626 3558 if (ctx->mpol) {
bf11b9a8 3559 mpol = sbinfo->mpol;
f3235626
DH
3560 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3561 ctx->mpol = NULL;
5f00110f 3562 }
bf11b9a8
SAS
3563 raw_spin_unlock(&sbinfo->stat_lock);
3564 mpol_put(mpol);
f3235626 3565 return 0;
0edd73b3 3566out:
bf11b9a8 3567 raw_spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3568 return invalfc(fc, "%s", err);
1da177e4 3569}
680d794b 3570
34c80b1d 3571static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3572{
34c80b1d 3573 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3574
3575 if (sbinfo->max_blocks != shmem_default_max_blocks())
3576 seq_printf(seq, ",size=%luk",
09cbfeaf 3577 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3578 if (sbinfo->max_inodes != shmem_default_max_inodes())
3579 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3580 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3581 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3582 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3583 seq_printf(seq, ",uid=%u",
3584 from_kuid_munged(&init_user_ns, sbinfo->uid));
3585 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3586 seq_printf(seq, ",gid=%u",
3587 from_kgid_munged(&init_user_ns, sbinfo->gid));
ea3271f7
CD
3588
3589 /*
3590 * Showing inode{64,32} might be useful even if it's the system default,
3591 * since then people don't have to resort to checking both here and
3592 * /proc/config.gz to confirm 64-bit inums were successfully applied
3593 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3594 *
3595 * We hide it when inode64 isn't the default and we are using 32-bit
3596 * inodes, since that probably just means the feature isn't even under
3597 * consideration.
3598 *
3599 * As such:
3600 *
3601 * +-----------------+-----------------+
3602 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3603 * +------------------+-----------------+-----------------+
3604 * | full_inums=true | show | show |
3605 * | full_inums=false | show | hide |
3606 * +------------------+-----------------+-----------------+
3607 *
3608 */
3609 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3610 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
396bcc52 3611#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3612 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3613 if (sbinfo->huge)
3614 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3615#endif
71fe804b 3616 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3617 return 0;
3618}
9183df25 3619
680d794b 3620#endif /* CONFIG_TMPFS */
1da177e4
LT
3621
3622static void shmem_put_super(struct super_block *sb)
3623{
602586a8
HD
3624 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3625
e809d5f0 3626 free_percpu(sbinfo->ino_batch);
602586a8 3627 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3628 mpol_put(sbinfo->mpol);
602586a8 3629 kfree(sbinfo);
1da177e4
LT
3630 sb->s_fs_info = NULL;
3631}
3632
f3235626 3633static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3634{
f3235626 3635 struct shmem_options *ctx = fc->fs_private;
1da177e4 3636 struct inode *inode;
0edd73b3 3637 struct shmem_sb_info *sbinfo;
680d794b
AM
3638
3639 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3640 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3641 L1_CACHE_BYTES), GFP_KERNEL);
3642 if (!sbinfo)
3643 return -ENOMEM;
3644
680d794b 3645 sb->s_fs_info = sbinfo;
1da177e4 3646
0edd73b3 3647#ifdef CONFIG_TMPFS
1da177e4
LT
3648 /*
3649 * Per default we only allow half of the physical ram per
3650 * tmpfs instance, limiting inodes to one per page of lowmem;
3651 * but the internal instance is left unlimited.
3652 */
1751e8a6 3653 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3654 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3655 ctx->blocks = shmem_default_max_blocks();
3656 if (!(ctx->seen & SHMEM_SEEN_INODES))
3657 ctx->inodes = shmem_default_max_inodes();
ea3271f7
CD
3658 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3659 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
ca4e0519 3660 } else {
1751e8a6 3661 sb->s_flags |= SB_NOUSER;
1da177e4 3662 }
91828a40 3663 sb->s_export_op = &shmem_export_ops;
1751e8a6 3664 sb->s_flags |= SB_NOSEC;
1da177e4 3665#else
1751e8a6 3666 sb->s_flags |= SB_NOUSER;
1da177e4 3667#endif
f3235626
DH
3668 sbinfo->max_blocks = ctx->blocks;
3669 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3670 if (sb->s_flags & SB_KERNMOUNT) {
3671 sbinfo->ino_batch = alloc_percpu(ino_t);
3672 if (!sbinfo->ino_batch)
3673 goto failed;
3674 }
f3235626
DH
3675 sbinfo->uid = ctx->uid;
3676 sbinfo->gid = ctx->gid;
ea3271f7 3677 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3678 sbinfo->mode = ctx->mode;
3679 sbinfo->huge = ctx->huge;
3680 sbinfo->mpol = ctx->mpol;
3681 ctx->mpol = NULL;
1da177e4 3682
bf11b9a8 3683 raw_spin_lock_init(&sbinfo->stat_lock);
908c7f19 3684 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3685 goto failed;
779750d2
KS
3686 spin_lock_init(&sbinfo->shrinklist_lock);
3687 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3688
285b2c4f 3689 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3690 sb->s_blocksize = PAGE_SIZE;
3691 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3692 sb->s_magic = TMPFS_MAGIC;
3693 sb->s_op = &shmem_ops;
cfd95a9c 3694 sb->s_time_gran = 1;
b09e0fa4 3695#ifdef CONFIG_TMPFS_XATTR
39f0247d 3696 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3697#endif
3698#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3699 sb->s_flags |= SB_POSIXACL;
39f0247d 3700#endif
2b4db796 3701 uuid_gen(&sb->s_uuid);
0edd73b3 3702
454abafe 3703 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3704 if (!inode)
3705 goto failed;
680d794b
AM
3706 inode->i_uid = sbinfo->uid;
3707 inode->i_gid = sbinfo->gid;
318ceed0
AV
3708 sb->s_root = d_make_root(inode);
3709 if (!sb->s_root)
48fde701 3710 goto failed;
1da177e4
LT
3711 return 0;
3712
1da177e4
LT
3713failed:
3714 shmem_put_super(sb);
f2b346e4 3715 return -ENOMEM;
1da177e4
LT
3716}
3717
f3235626
DH
3718static int shmem_get_tree(struct fs_context *fc)
3719{
3720 return get_tree_nodev(fc, shmem_fill_super);
3721}
3722
3723static void shmem_free_fc(struct fs_context *fc)
3724{
3725 struct shmem_options *ctx = fc->fs_private;
3726
3727 if (ctx) {
3728 mpol_put(ctx->mpol);
3729 kfree(ctx);
3730 }
3731}
3732
3733static const struct fs_context_operations shmem_fs_context_ops = {
3734 .free = shmem_free_fc,
3735 .get_tree = shmem_get_tree,
3736#ifdef CONFIG_TMPFS
3737 .parse_monolithic = shmem_parse_options,
3738 .parse_param = shmem_parse_one,
3739 .reconfigure = shmem_reconfigure,
3740#endif
3741};
3742
fcc234f8 3743static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3744
3745static struct inode *shmem_alloc_inode(struct super_block *sb)
3746{
41ffe5d5
HD
3747 struct shmem_inode_info *info;
3748 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3749 if (!info)
1da177e4 3750 return NULL;
41ffe5d5 3751 return &info->vfs_inode;
1da177e4
LT
3752}
3753
74b1da56 3754static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3755{
84e710da
AV
3756 if (S_ISLNK(inode->i_mode))
3757 kfree(inode->i_link);
fa0d7e3d
NP
3758 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3759}
3760
1da177e4
LT
3761static void shmem_destroy_inode(struct inode *inode)
3762{
09208d15 3763 if (S_ISREG(inode->i_mode))
1da177e4 3764 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3765}
3766
41ffe5d5 3767static void shmem_init_inode(void *foo)
1da177e4 3768{
41ffe5d5
HD
3769 struct shmem_inode_info *info = foo;
3770 inode_init_once(&info->vfs_inode);
1da177e4
LT
3771}
3772
9a8ec03e 3773static void shmem_init_inodecache(void)
1da177e4
LT
3774{
3775 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3776 sizeof(struct shmem_inode_info),
5d097056 3777 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3778}
3779
41ffe5d5 3780static void shmem_destroy_inodecache(void)
1da177e4 3781{
1a1d92c1 3782 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3783}
3784
a7605426
YS
3785/* Keep the page in page cache instead of truncating it */
3786static int shmem_error_remove_page(struct address_space *mapping,
3787 struct page *page)
3788{
3789 return 0;
3790}
3791
30e6a51d 3792const struct address_space_operations shmem_aops = {
1da177e4 3793 .writepage = shmem_writepage,
76719325 3794 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3795#ifdef CONFIG_TMPFS
800d15a5
NP
3796 .write_begin = shmem_write_begin,
3797 .write_end = shmem_write_end,
1da177e4 3798#endif
1c93923c 3799#ifdef CONFIG_MIGRATION
304dbdb7 3800 .migratepage = migrate_page,
1c93923c 3801#endif
a7605426 3802 .error_remove_page = shmem_error_remove_page,
1da177e4 3803};
30e6a51d 3804EXPORT_SYMBOL(shmem_aops);
1da177e4 3805
15ad7cdc 3806static const struct file_operations shmem_file_operations = {
1da177e4 3807 .mmap = shmem_mmap,
c01d5b30 3808 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3809#ifdef CONFIG_TMPFS
220f2ac9 3810 .llseek = shmem_file_llseek,
2ba5bbed 3811 .read_iter = shmem_file_read_iter,
8174202b 3812 .write_iter = generic_file_write_iter,
1b061d92 3813 .fsync = noop_fsync,
82c156f8 3814 .splice_read = generic_file_splice_read,
f6cb85d0 3815 .splice_write = iter_file_splice_write,
83e4fa9c 3816 .fallocate = shmem_fallocate,
1da177e4
LT
3817#endif
3818};
3819
92e1d5be 3820static const struct inode_operations shmem_inode_operations = {
44a30220 3821 .getattr = shmem_getattr,
94c1e62d 3822 .setattr = shmem_setattr,
b09e0fa4 3823#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3824 .listxattr = shmem_listxattr,
feda821e 3825 .set_acl = simple_set_acl,
b09e0fa4 3826#endif
1da177e4
LT
3827};
3828
92e1d5be 3829static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3830#ifdef CONFIG_TMPFS
3831 .create = shmem_create,
3832 .lookup = simple_lookup,
3833 .link = shmem_link,
3834 .unlink = shmem_unlink,
3835 .symlink = shmem_symlink,
3836 .mkdir = shmem_mkdir,
3837 .rmdir = shmem_rmdir,
3838 .mknod = shmem_mknod,
2773bf00 3839 .rename = shmem_rename2,
60545d0d 3840 .tmpfile = shmem_tmpfile,
1da177e4 3841#endif
b09e0fa4 3842#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3843 .listxattr = shmem_listxattr,
b09e0fa4 3844#endif
39f0247d 3845#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3846 .setattr = shmem_setattr,
feda821e 3847 .set_acl = simple_set_acl,
39f0247d
AG
3848#endif
3849};
3850
92e1d5be 3851static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3852#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3853 .listxattr = shmem_listxattr,
b09e0fa4 3854#endif
39f0247d 3855#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3856 .setattr = shmem_setattr,
feda821e 3857 .set_acl = simple_set_acl,
39f0247d 3858#endif
1da177e4
LT
3859};
3860
759b9775 3861static const struct super_operations shmem_ops = {
1da177e4 3862 .alloc_inode = shmem_alloc_inode,
74b1da56 3863 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3864 .destroy_inode = shmem_destroy_inode,
3865#ifdef CONFIG_TMPFS
3866 .statfs = shmem_statfs,
680d794b 3867 .show_options = shmem_show_options,
1da177e4 3868#endif
1f895f75 3869 .evict_inode = shmem_evict_inode,
1da177e4
LT
3870 .drop_inode = generic_delete_inode,
3871 .put_super = shmem_put_super,
396bcc52 3872#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3873 .nr_cached_objects = shmem_unused_huge_count,
3874 .free_cached_objects = shmem_unused_huge_scan,
3875#endif
1da177e4
LT
3876};
3877
f0f37e2f 3878static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3879 .fault = shmem_fault,
d7c17551 3880 .map_pages = filemap_map_pages,
1da177e4
LT
3881#ifdef CONFIG_NUMA
3882 .set_policy = shmem_set_policy,
3883 .get_policy = shmem_get_policy,
3884#endif
3885};
3886
f3235626 3887int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3888{
f3235626
DH
3889 struct shmem_options *ctx;
3890
3891 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3892 if (!ctx)
3893 return -ENOMEM;
3894
3895 ctx->mode = 0777 | S_ISVTX;
3896 ctx->uid = current_fsuid();
3897 ctx->gid = current_fsgid();
3898
3899 fc->fs_private = ctx;
3900 fc->ops = &shmem_fs_context_ops;
3901 return 0;
1da177e4
LT
3902}
3903
41ffe5d5 3904static struct file_system_type shmem_fs_type = {
1da177e4
LT
3905 .owner = THIS_MODULE,
3906 .name = "tmpfs",
f3235626
DH
3907 .init_fs_context = shmem_init_fs_context,
3908#ifdef CONFIG_TMPFS
d7167b14 3909 .parameters = shmem_fs_parameters,
f3235626 3910#endif
1da177e4 3911 .kill_sb = kill_litter_super,
ff36da69 3912 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3913};
1da177e4 3914
41ffe5d5 3915int __init shmem_init(void)
1da177e4
LT
3916{
3917 int error;
3918
9a8ec03e 3919 shmem_init_inodecache();
1da177e4 3920
41ffe5d5 3921 error = register_filesystem(&shmem_fs_type);
1da177e4 3922 if (error) {
1170532b 3923 pr_err("Could not register tmpfs\n");
1da177e4
LT
3924 goto out2;
3925 }
95dc112a 3926
ca4e0519 3927 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3928 if (IS_ERR(shm_mnt)) {
3929 error = PTR_ERR(shm_mnt);
1170532b 3930 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3931 goto out1;
3932 }
5a6e75f8 3933
396bcc52 3934#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3935 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3936 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3937 else
5e6e5a12 3938 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5a6e75f8 3939#endif
1da177e4
LT
3940 return 0;
3941
3942out1:
41ffe5d5 3943 unregister_filesystem(&shmem_fs_type);
1da177e4 3944out2:
41ffe5d5 3945 shmem_destroy_inodecache();
1da177e4
LT
3946 shm_mnt = ERR_PTR(error);
3947 return error;
3948}
853ac43a 3949
396bcc52 3950#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8 3951static ssize_t shmem_enabled_show(struct kobject *kobj,
79d4d38a 3952 struct kobj_attribute *attr, char *buf)
5a6e75f8 3953{
26083eb6 3954 static const int values[] = {
5a6e75f8
KS
3955 SHMEM_HUGE_ALWAYS,
3956 SHMEM_HUGE_WITHIN_SIZE,
3957 SHMEM_HUGE_ADVISE,
3958 SHMEM_HUGE_NEVER,
3959 SHMEM_HUGE_DENY,
3960 SHMEM_HUGE_FORCE,
3961 };
79d4d38a
JP
3962 int len = 0;
3963 int i;
5a6e75f8 3964
79d4d38a
JP
3965 for (i = 0; i < ARRAY_SIZE(values); i++) {
3966 len += sysfs_emit_at(buf, len,
3967 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3968 i ? " " : "",
3969 shmem_format_huge(values[i]));
5a6e75f8 3970 }
79d4d38a
JP
3971
3972 len += sysfs_emit_at(buf, len, "\n");
3973
3974 return len;
5a6e75f8
KS
3975}
3976
3977static ssize_t shmem_enabled_store(struct kobject *kobj,
3978 struct kobj_attribute *attr, const char *buf, size_t count)
3979{
3980 char tmp[16];
3981 int huge;
3982
3983 if (count + 1 > sizeof(tmp))
3984 return -EINVAL;
3985 memcpy(tmp, buf, count);
3986 tmp[count] = '\0';
3987 if (count && tmp[count - 1] == '\n')
3988 tmp[count - 1] = '\0';
3989
3990 huge = shmem_parse_huge(tmp);
3991 if (huge == -EINVAL)
3992 return -EINVAL;
3993 if (!has_transparent_hugepage() &&
3994 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3995 return -EINVAL;
3996
3997 shmem_huge = huge;
435c0b87 3998 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3999 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4000 return count;
4001}
4002
4003struct kobj_attribute shmem_enabled_attr =
4004 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
396bcc52 4005#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 4006
853ac43a
MM
4007#else /* !CONFIG_SHMEM */
4008
4009/*
4010 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4011 *
4012 * This is intended for small system where the benefits of the full
4013 * shmem code (swap-backed and resource-limited) are outweighed by
4014 * their complexity. On systems without swap this code should be
4015 * effectively equivalent, but much lighter weight.
4016 */
4017
41ffe5d5 4018static struct file_system_type shmem_fs_type = {
853ac43a 4019 .name = "tmpfs",
f3235626 4020 .init_fs_context = ramfs_init_fs_context,
d7167b14 4021 .parameters = ramfs_fs_parameters,
853ac43a 4022 .kill_sb = kill_litter_super,
2b8576cb 4023 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4024};
4025
41ffe5d5 4026int __init shmem_init(void)
853ac43a 4027{
41ffe5d5 4028 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4029
41ffe5d5 4030 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4031 BUG_ON(IS_ERR(shm_mnt));
4032
4033 return 0;
4034}
4035
b56a2d8a
VRP
4036int shmem_unuse(unsigned int type, bool frontswap,
4037 unsigned long *fs_pages_to_unuse)
853ac43a
MM
4038{
4039 return 0;
4040}
4041
d7c9e99a 4042int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
3f96b79a
HD
4043{
4044 return 0;
4045}
4046
24513264
HD
4047void shmem_unlock_mapping(struct address_space *mapping)
4048{
4049}
4050
c01d5b30
HD
4051#ifdef CONFIG_MMU
4052unsigned long shmem_get_unmapped_area(struct file *file,
4053 unsigned long addr, unsigned long len,
4054 unsigned long pgoff, unsigned long flags)
4055{
4056 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4057}
4058#endif
4059
41ffe5d5 4060void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4061{
41ffe5d5 4062 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4063}
4064EXPORT_SYMBOL_GPL(shmem_truncate_range);
4065
0b0a0806
HD
4066#define shmem_vm_ops generic_file_vm_ops
4067#define shmem_file_operations ramfs_file_operations
454abafe 4068#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4069#define shmem_acct_size(flags, size) 0
4070#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4071
4072#endif /* CONFIG_SHMEM */
4073
4074/* common code */
1da177e4 4075
703321b6 4076static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4077 unsigned long flags, unsigned int i_flags)
1da177e4 4078{
1da177e4 4079 struct inode *inode;
93dec2da 4080 struct file *res;
1da177e4 4081
703321b6
MA
4082 if (IS_ERR(mnt))
4083 return ERR_CAST(mnt);
1da177e4 4084
285b2c4f 4085 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4086 return ERR_PTR(-EINVAL);
4087
4088 if (shmem_acct_size(flags, size))
4089 return ERR_PTR(-ENOMEM);
4090
93dec2da
AV
4091 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4092 flags);
dac2d1f6
AV
4093 if (unlikely(!inode)) {
4094 shmem_unacct_size(flags, size);
4095 return ERR_PTR(-ENOSPC);
4096 }
c7277090 4097 inode->i_flags |= i_flags;
1da177e4 4098 inode->i_size = size;
6d6b77f1 4099 clear_nlink(inode); /* It is unlinked */
26567cdb 4100 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4101 if (!IS_ERR(res))
4102 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4103 &shmem_file_operations);
26567cdb 4104 if (IS_ERR(res))
93dec2da 4105 iput(inode);
6b4d0b27 4106 return res;
1da177e4 4107}
c7277090
EP
4108
4109/**
4110 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4111 * kernel internal. There will be NO LSM permission checks against the
4112 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4113 * higher layer. The users are the big_key and shm implementations. LSM
4114 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4115 * @name: name for dentry (to be seen in /proc/<pid>/maps
4116 * @size: size to be set for the file
4117 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4118 */
4119struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4120{
703321b6 4121 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4122}
4123
4124/**
4125 * shmem_file_setup - get an unlinked file living in tmpfs
4126 * @name: name for dentry (to be seen in /proc/<pid>/maps
4127 * @size: size to be set for the file
4128 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4129 */
4130struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4131{
703321b6 4132 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4133}
395e0ddc 4134EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4135
703321b6
MA
4136/**
4137 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4138 * @mnt: the tmpfs mount where the file will be created
4139 * @name: name for dentry (to be seen in /proc/<pid>/maps
4140 * @size: size to be set for the file
4141 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4142 */
4143struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4144 loff_t size, unsigned long flags)
4145{
4146 return __shmem_file_setup(mnt, name, size, flags, 0);
4147}
4148EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4149
46711810 4150/**
1da177e4 4151 * shmem_zero_setup - setup a shared anonymous mapping
45e55300 4152 * @vma: the vma to be mmapped is prepared by do_mmap
1da177e4
LT
4153 */
4154int shmem_zero_setup(struct vm_area_struct *vma)
4155{
4156 struct file *file;
4157 loff_t size = vma->vm_end - vma->vm_start;
4158
66fc1303 4159 /*
c1e8d7c6 4160 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4161 * between XFS directory reading and selinux: since this file is only
4162 * accessible to the user through its mapping, use S_PRIVATE flag to
4163 * bypass file security, in the same way as shmem_kernel_file_setup().
4164 */
703321b6 4165 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4166 if (IS_ERR(file))
4167 return PTR_ERR(file);
4168
4169 if (vma->vm_file)
4170 fput(vma->vm_file);
4171 vma->vm_file = file;
4172 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4173
396bcc52 4174 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4175 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4176 (vma->vm_end & HPAGE_PMD_MASK)) {
4177 khugepaged_enter(vma, vma->vm_flags);
4178 }
4179
1da177e4
LT
4180 return 0;
4181}
d9d90e5e
HD
4182
4183/**
4184 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4185 * @mapping: the page's address_space
4186 * @index: the page index
4187 * @gfp: the page allocator flags to use if allocating
4188 *
4189 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4190 * with any new page allocations done using the specified allocation flags.
4191 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4192 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4193 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4194 *
68da9f05
HD
4195 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4196 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4197 */
4198struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4199 pgoff_t index, gfp_t gfp)
4200{
68da9f05
HD
4201#ifdef CONFIG_SHMEM
4202 struct inode *inode = mapping->host;
9276aad6 4203 struct page *page;
68da9f05
HD
4204 int error;
4205
30e6a51d 4206 BUG_ON(!shmem_mapping(mapping));
9e18eb29 4207 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4208 gfp, NULL, NULL, NULL);
68da9f05 4209 if (error)
a7605426
YS
4210 return ERR_PTR(error);
4211
4212 unlock_page(page);
4213 if (PageHWPoison(page)) {
4214 put_page(page);
4215 return ERR_PTR(-EIO);
4216 }
4217
68da9f05
HD
4218 return page;
4219#else
4220 /*
4221 * The tiny !SHMEM case uses ramfs without swap
4222 */
d9d90e5e 4223 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4224#endif
d9d90e5e
HD
4225}
4226EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 2.401676 seconds and 4 git commands to generate.