]> Git Repo - linux.git/blame - mm/gup.c
mm: gup: fix the fast GUP race against THP collapse
[linux.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
1027e443 21
33a709b2 22#include <asm/mmu_context.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
b6a2619c
DH
32static inline void sanity_check_pinned_pages(struct page **pages,
33 unsigned long npages)
34{
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 return;
37
38 /*
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
42 *
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
49 */
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
53
54 if (!folio_test_anon(folio))
55 continue;
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 else
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
62 }
63}
64
cd1adf1b 65/*
ece1ed7b 66 * Return the folio with ref appropriately incremented,
cd1adf1b 67 * or NULL if that failed.
a707cdd5 68 */
ece1ed7b 69static inline struct folio *try_get_folio(struct page *page, int refs)
a707cdd5 70{
ece1ed7b 71 struct folio *folio;
a707cdd5 72
59409373 73retry:
ece1ed7b
MWO
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
a707cdd5 76 return NULL;
ece1ed7b 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
a707cdd5 78 return NULL;
c24d3732
JH
79
80 /*
ece1ed7b
MWO
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
c24d3732 85 * we were given anymore.
ece1ed7b
MWO
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
c24d3732 88 */
ece1ed7b 89 if (unlikely(page_folio(page) != folio)) {
f4f451a1
MS
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
59409373 92 goto retry;
c24d3732
JH
93 }
94
ece1ed7b 95 return folio;
a707cdd5
JH
96}
97
3967db22 98/**
ece1ed7b 99 * try_grab_folio() - Attempt to get or pin a folio.
3967db22 100 * @page: pointer to page to be grabbed
ece1ed7b 101 * @refs: the value to (effectively) add to the folio's refcount
3967db22
JH
102 * @flags: gup flags: these are the FOLL_* flag values.
103 *
3faa52c0 104 * "grab" names in this file mean, "look at flags to decide whether to use
ece1ed7b 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
3faa52c0
JH
106 *
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
110 *
ece1ed7b 111 * FOLL_GET: folio's refcount will be incremented by @refs.
3967db22 112 *
ece1ed7b
MWO
113 * FOLL_PIN on large folios: folio's refcount will be incremented by
114 * @refs, and its compound_pincount will be incremented by @refs.
3967db22 115 *
ece1ed7b 116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
5232c63f 117 * @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0 118 *
ece1ed7b
MWO
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
3faa52c0 123 */
ece1ed7b 124struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
3faa52c0
JH
125{
126 if (flags & FOLL_GET)
ece1ed7b 127 return try_get_folio(page, refs);
3faa52c0 128 else if (flags & FOLL_PIN) {
ece1ed7b
MWO
129 struct folio *folio;
130
df3a0a21 131 /*
d1e153fe
PT
132 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 * right zone, so fail and let the caller fall back to the slow
134 * path.
df3a0a21 135 */
d1e153fe 136 if (unlikely((flags & FOLL_LONGTERM) &&
6077c943 137 !is_longterm_pinnable_page(page)))
df3a0a21
PL
138 return NULL;
139
c24d3732
JH
140 /*
141 * CAUTION: Don't use compound_head() on the page before this
142 * point, the result won't be stable.
143 */
ece1ed7b
MWO
144 folio = try_get_folio(page, refs);
145 if (!folio)
c24d3732
JH
146 return NULL;
147
47e29d32 148 /*
ece1ed7b 149 * When pinning a large folio, use an exact count to track it.
47e29d32 150 *
ece1ed7b
MWO
151 * However, be sure to *also* increment the normal folio
152 * refcount field at least once, so that the folio really
78d9d6ce 153 * is pinned. That's why the refcount from the earlier
ece1ed7b 154 * try_get_folio() is left intact.
47e29d32 155 */
ece1ed7b
MWO
156 if (folio_test_large(folio))
157 atomic_add(refs, folio_pincount_ptr(folio));
c24d3732 158 else
ece1ed7b
MWO
159 folio_ref_add(folio,
160 refs * (GUP_PIN_COUNTING_BIAS - 1));
161 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
47e29d32 162
ece1ed7b 163 return folio;
3faa52c0
JH
164 }
165
166 WARN_ON_ONCE(1);
167 return NULL;
168}
169
d8ddc099 170static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
4509b42c
JG
171{
172 if (flags & FOLL_PIN) {
d8ddc099
MWO
173 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
174 if (folio_test_large(folio))
175 atomic_sub(refs, folio_pincount_ptr(folio));
4509b42c
JG
176 else
177 refs *= GUP_PIN_COUNTING_BIAS;
178 }
179
f4f451a1
MS
180 if (!put_devmap_managed_page_refs(&folio->page, refs))
181 folio_put_refs(folio, refs);
4509b42c
JG
182}
183
3faa52c0
JH
184/**
185 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
5fec0719
MWO
186 * @page: pointer to page to be grabbed
187 * @flags: gup flags: these are the FOLL_* flag values.
3faa52c0
JH
188 *
189 * This might not do anything at all, depending on the flags argument.
190 *
191 * "grab" names in this file mean, "look at flags to decide whether to use
192 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
193 *
3faa52c0 194 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
ece1ed7b 195 * time. Cases: please see the try_grab_folio() documentation, with
3967db22 196 * "refs=1".
3faa52c0
JH
197 *
198 * Return: true for success, or if no action was required (if neither FOLL_PIN
199 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
200 * FOLL_PIN was set, but the page could not be grabbed.
201 */
202bool __must_check try_grab_page(struct page *page, unsigned int flags)
203{
5fec0719
MWO
204 struct folio *folio = page_folio(page);
205
c36c04c2 206 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
5fec0719
MWO
207 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
208 return false;
3faa52c0 209
c36c04c2 210 if (flags & FOLL_GET)
5fec0719 211 folio_ref_inc(folio);
c36c04c2 212 else if (flags & FOLL_PIN) {
c36c04c2 213 /*
5fec0719 214 * Similar to try_grab_folio(): be sure to *also*
78d9d6ce
MWO
215 * increment the normal page refcount field at least once,
216 * so that the page really is pinned.
c36c04c2 217 */
5fec0719
MWO
218 if (folio_test_large(folio)) {
219 folio_ref_add(folio, 1);
220 atomic_add(1, folio_pincount_ptr(folio));
8ea2979c 221 } else {
5fec0719 222 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
8ea2979c 223 }
c36c04c2 224
5fec0719 225 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
c36c04c2
JH
226 }
227
228 return true;
3faa52c0
JH
229}
230
3faa52c0
JH
231/**
232 * unpin_user_page() - release a dma-pinned page
233 * @page: pointer to page to be released
234 *
235 * Pages that were pinned via pin_user_pages*() must be released via either
236 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
237 * that such pages can be separately tracked and uniquely handled. In
238 * particular, interactions with RDMA and filesystems need special handling.
239 */
240void unpin_user_page(struct page *page)
241{
b6a2619c 242 sanity_check_pinned_pages(&page, 1);
d8ddc099 243 gup_put_folio(page_folio(page), 1, FOLL_PIN);
3faa52c0
JH
244}
245EXPORT_SYMBOL(unpin_user_page);
246
659508f9 247static inline struct folio *gup_folio_range_next(struct page *start,
8f39f5fc 248 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78 249{
659508f9
MWO
250 struct page *next = nth_page(start, i);
251 struct folio *folio = page_folio(next);
458a4f78
JM
252 unsigned int nr = 1;
253
659508f9 254 if (folio_test_large(folio))
4c654229 255 nr = min_t(unsigned int, npages - i,
659508f9 256 folio_nr_pages(folio) - folio_page_idx(folio, next));
458a4f78 257
458a4f78 258 *ntails = nr;
659508f9 259 return folio;
458a4f78
JM
260}
261
12521c76 262static inline struct folio *gup_folio_next(struct page **list,
28297dbc 263 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6 264{
12521c76 265 struct folio *folio = page_folio(list[i]);
8745d7f6
JM
266 unsigned int nr;
267
8745d7f6 268 for (nr = i + 1; nr < npages; nr++) {
12521c76 269 if (page_folio(list[nr]) != folio)
8745d7f6
JM
270 break;
271 }
272
8745d7f6 273 *ntails = nr - i;
12521c76 274 return folio;
8745d7f6
JM
275}
276
fc1d8e7c 277/**
f1f6a7dd 278 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 279 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 280 * @npages: number of pages in the @pages array.
2d15eb31 281 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
282 *
283 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
284 * variants called on that page.
285 *
286 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 287 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
288 * listed as clean. In any case, releases all pages using unpin_user_page(),
289 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 290 *
f1f6a7dd 291 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 292 *
2d15eb31
AM
293 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
294 * required, then the caller should a) verify that this is really correct,
295 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 296 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
297 *
298 */
f1f6a7dd
JH
299void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
300 bool make_dirty)
fc1d8e7c 301{
12521c76
MWO
302 unsigned long i;
303 struct folio *folio;
304 unsigned int nr;
2d15eb31
AM
305
306 if (!make_dirty) {
f1f6a7dd 307 unpin_user_pages(pages, npages);
2d15eb31
AM
308 return;
309 }
310
b6a2619c 311 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
312 for (i = 0; i < npages; i += nr) {
313 folio = gup_folio_next(pages, npages, i, &nr);
2d15eb31
AM
314 /*
315 * Checking PageDirty at this point may race with
316 * clear_page_dirty_for_io(), but that's OK. Two key
317 * cases:
318 *
319 * 1) This code sees the page as already dirty, so it
320 * skips the call to set_page_dirty(). That could happen
321 * because clear_page_dirty_for_io() called
322 * page_mkclean(), followed by set_page_dirty().
323 * However, now the page is going to get written back,
324 * which meets the original intention of setting it
325 * dirty, so all is well: clear_page_dirty_for_io() goes
326 * on to call TestClearPageDirty(), and write the page
327 * back.
328 *
329 * 2) This code sees the page as clean, so it calls
330 * set_page_dirty(). The page stays dirty, despite being
331 * written back, so it gets written back again in the
332 * next writeback cycle. This is harmless.
333 */
12521c76
MWO
334 if (!folio_test_dirty(folio)) {
335 folio_lock(folio);
336 folio_mark_dirty(folio);
337 folio_unlock(folio);
338 }
339 gup_put_folio(folio, nr, FOLL_PIN);
2d15eb31 340 }
fc1d8e7c 341}
f1f6a7dd 342EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 343
458a4f78
JM
344/**
345 * unpin_user_page_range_dirty_lock() - release and optionally dirty
346 * gup-pinned page range
347 *
348 * @page: the starting page of a range maybe marked dirty, and definitely released.
349 * @npages: number of consecutive pages to release.
350 * @make_dirty: whether to mark the pages dirty
351 *
352 * "gup-pinned page range" refers to a range of pages that has had one of the
353 * pin_user_pages() variants called on that page.
354 *
355 * For the page ranges defined by [page .. page+npages], make that range (or
356 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
357 * page range was previously listed as clean.
358 *
359 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
360 * required, then the caller should a) verify that this is really correct,
361 * because _lock() is usually required, and b) hand code it:
362 * set_page_dirty_lock(), unpin_user_page().
363 *
364 */
365void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
366 bool make_dirty)
367{
659508f9
MWO
368 unsigned long i;
369 struct folio *folio;
370 unsigned int nr;
371
372 for (i = 0; i < npages; i += nr) {
373 folio = gup_folio_range_next(page, npages, i, &nr);
374 if (make_dirty && !folio_test_dirty(folio)) {
375 folio_lock(folio);
376 folio_mark_dirty(folio);
377 folio_unlock(folio);
378 }
379 gup_put_folio(folio, nr, FOLL_PIN);
458a4f78
JM
380 }
381}
382EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
383
b6a2619c
DH
384static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
385{
386 unsigned long i;
387 struct folio *folio;
388 unsigned int nr;
389
390 /*
391 * Don't perform any sanity checks because we might have raced with
392 * fork() and some anonymous pages might now actually be shared --
393 * which is why we're unpinning after all.
394 */
395 for (i = 0; i < npages; i += nr) {
396 folio = gup_folio_next(pages, npages, i, &nr);
397 gup_put_folio(folio, nr, FOLL_PIN);
398 }
399}
400
fc1d8e7c 401/**
f1f6a7dd 402 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
403 * @pages: array of pages to be marked dirty and released.
404 * @npages: number of pages in the @pages array.
405 *
f1f6a7dd 406 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 407 *
f1f6a7dd 408 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 409 */
f1f6a7dd 410void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c 411{
12521c76
MWO
412 unsigned long i;
413 struct folio *folio;
414 unsigned int nr;
fc1d8e7c 415
146608bb
JH
416 /*
417 * If this WARN_ON() fires, then the system *might* be leaking pages (by
418 * leaving them pinned), but probably not. More likely, gup/pup returned
419 * a hard -ERRNO error to the caller, who erroneously passed it here.
420 */
421 if (WARN_ON(IS_ERR_VALUE(npages)))
422 return;
31b912de 423
b6a2619c 424 sanity_check_pinned_pages(pages, npages);
12521c76
MWO
425 for (i = 0; i < npages; i += nr) {
426 folio = gup_folio_next(pages, npages, i, &nr);
427 gup_put_folio(folio, nr, FOLL_PIN);
e7602748 428 }
fc1d8e7c 429}
f1f6a7dd 430EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 431
a458b76a
AA
432/*
433 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
434 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
435 * cache bouncing on large SMP machines for concurrent pinned gups.
436 */
437static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
438{
439 if (!test_bit(MMF_HAS_PINNED, mm_flags))
440 set_bit(MMF_HAS_PINNED, mm_flags);
441}
442
050a9adc 443#ifdef CONFIG_MMU
69e68b4f
KS
444static struct page *no_page_table(struct vm_area_struct *vma,
445 unsigned int flags)
4bbd4c77 446{
69e68b4f
KS
447 /*
448 * When core dumping an enormous anonymous area that nobody
449 * has touched so far, we don't want to allocate unnecessary pages or
450 * page tables. Return error instead of NULL to skip handle_mm_fault,
451 * then get_dump_page() will return NULL to leave a hole in the dump.
452 * But we can only make this optimization where a hole would surely
453 * be zero-filled if handle_mm_fault() actually did handle it.
454 */
a0137f16
AK
455 if ((flags & FOLL_DUMP) &&
456 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
457 return ERR_PTR(-EFAULT);
458 return NULL;
459}
4bbd4c77 460
1027e443
KS
461static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
462 pte_t *pte, unsigned int flags)
463{
1027e443
KS
464 if (flags & FOLL_TOUCH) {
465 pte_t entry = *pte;
466
467 if (flags & FOLL_WRITE)
468 entry = pte_mkdirty(entry);
469 entry = pte_mkyoung(entry);
470
471 if (!pte_same(*pte, entry)) {
472 set_pte_at(vma->vm_mm, address, pte, entry);
473 update_mmu_cache(vma, address, pte);
474 }
475 }
476
477 /* Proper page table entry exists, but no corresponding struct page */
478 return -EEXIST;
479}
480
5535be30
DH
481/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
482static inline bool can_follow_write_pte(pte_t pte, struct page *page,
483 struct vm_area_struct *vma,
484 unsigned int flags)
19be0eaf 485{
5535be30
DH
486 /* If the pte is writable, we can write to the page. */
487 if (pte_write(pte))
488 return true;
489
490 /* Maybe FOLL_FORCE is set to override it? */
491 if (!(flags & FOLL_FORCE))
492 return false;
493
494 /* But FOLL_FORCE has no effect on shared mappings */
495 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
496 return false;
497
498 /* ... or read-only private ones */
499 if (!(vma->vm_flags & VM_MAYWRITE))
500 return false;
501
502 /* ... or already writable ones that just need to take a write fault */
503 if (vma->vm_flags & VM_WRITE)
504 return false;
505
506 /*
507 * See can_change_pte_writable(): we broke COW and could map the page
508 * writable if we have an exclusive anonymous page ...
509 */
510 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
511 return false;
512
513 /* ... and a write-fault isn't required for other reasons. */
514 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
515 return false;
516 return !userfaultfd_pte_wp(vma, pte);
19be0eaf
LT
517}
518
69e68b4f 519static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
520 unsigned long address, pmd_t *pmd, unsigned int flags,
521 struct dev_pagemap **pgmap)
69e68b4f
KS
522{
523 struct mm_struct *mm = vma->vm_mm;
524 struct page *page;
525 spinlock_t *ptl;
526 pte_t *ptep, pte;
f28d4363 527 int ret;
4bbd4c77 528
eddb1c22
JH
529 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
530 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
531 (FOLL_PIN | FOLL_GET)))
532 return ERR_PTR(-EINVAL);
69e68b4f 533retry:
4bbd4c77 534 if (unlikely(pmd_bad(*pmd)))
69e68b4f 535 return no_page_table(vma, flags);
4bbd4c77
KS
536
537 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
538 pte = *ptep;
539 if (!pte_present(pte)) {
540 swp_entry_t entry;
541 /*
542 * KSM's break_ksm() relies upon recognizing a ksm page
543 * even while it is being migrated, so for that case we
544 * need migration_entry_wait().
545 */
546 if (likely(!(flags & FOLL_MIGRATION)))
547 goto no_page;
0661a336 548 if (pte_none(pte))
4bbd4c77
KS
549 goto no_page;
550 entry = pte_to_swp_entry(pte);
551 if (!is_migration_entry(entry))
552 goto no_page;
553 pte_unmap_unlock(ptep, ptl);
554 migration_entry_wait(mm, pmd, address);
69e68b4f 555 goto retry;
4bbd4c77 556 }
8a0516ed 557 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 558 goto no_page;
4bbd4c77
KS
559
560 page = vm_normal_page(vma, address, pte);
5535be30
DH
561
562 /*
563 * We only care about anon pages in can_follow_write_pte() and don't
564 * have to worry about pte_devmap() because they are never anon.
565 */
566 if ((flags & FOLL_WRITE) &&
567 !can_follow_write_pte(pte, page, vma, flags)) {
568 page = NULL;
569 goto out;
570 }
571
3faa52c0 572 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 573 /*
3faa52c0
JH
574 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
575 * case since they are only valid while holding the pgmap
576 * reference.
3565fce3 577 */
df06b37f
KB
578 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
579 if (*pgmap)
3565fce3
DW
580 page = pte_page(pte);
581 else
582 goto no_page;
583 } else if (unlikely(!page)) {
1027e443
KS
584 if (flags & FOLL_DUMP) {
585 /* Avoid special (like zero) pages in core dumps */
586 page = ERR_PTR(-EFAULT);
587 goto out;
588 }
589
590 if (is_zero_pfn(pte_pfn(pte))) {
591 page = pte_page(pte);
592 } else {
1027e443
KS
593 ret = follow_pfn_pte(vma, address, ptep, flags);
594 page = ERR_PTR(ret);
595 goto out;
596 }
4bbd4c77
KS
597 }
598
a7f22660
DH
599 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
600 page = ERR_PTR(-EMLINK);
601 goto out;
602 }
b6a2619c
DH
603
604 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
605 !PageAnonExclusive(page), page);
606
3faa52c0
JH
607 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
608 if (unlikely(!try_grab_page(page, flags))) {
609 page = ERR_PTR(-ENOMEM);
610 goto out;
8fde12ca 611 }
f28d4363
CI
612 /*
613 * We need to make the page accessible if and only if we are going
614 * to access its content (the FOLL_PIN case). Please see
615 * Documentation/core-api/pin_user_pages.rst for details.
616 */
617 if (flags & FOLL_PIN) {
618 ret = arch_make_page_accessible(page);
619 if (ret) {
620 unpin_user_page(page);
621 page = ERR_PTR(ret);
622 goto out;
623 }
624 }
4bbd4c77
KS
625 if (flags & FOLL_TOUCH) {
626 if ((flags & FOLL_WRITE) &&
627 !pte_dirty(pte) && !PageDirty(page))
628 set_page_dirty(page);
629 /*
630 * pte_mkyoung() would be more correct here, but atomic care
631 * is needed to avoid losing the dirty bit: it is easier to use
632 * mark_page_accessed().
633 */
634 mark_page_accessed(page);
635 }
1027e443 636out:
4bbd4c77 637 pte_unmap_unlock(ptep, ptl);
4bbd4c77 638 return page;
4bbd4c77
KS
639no_page:
640 pte_unmap_unlock(ptep, ptl);
641 if (!pte_none(pte))
69e68b4f
KS
642 return NULL;
643 return no_page_table(vma, flags);
644}
645
080dbb61
AK
646static struct page *follow_pmd_mask(struct vm_area_struct *vma,
647 unsigned long address, pud_t *pudp,
df06b37f
KB
648 unsigned int flags,
649 struct follow_page_context *ctx)
69e68b4f 650{
68827280 651 pmd_t *pmd, pmdval;
69e68b4f
KS
652 spinlock_t *ptl;
653 struct page *page;
654 struct mm_struct *mm = vma->vm_mm;
655
080dbb61 656 pmd = pmd_offset(pudp, address);
68827280
YH
657 /*
658 * The READ_ONCE() will stabilize the pmdval in a register or
659 * on the stack so that it will stop changing under the code.
660 */
661 pmdval = READ_ONCE(*pmd);
662 if (pmd_none(pmdval))
69e68b4f 663 return no_page_table(vma, flags);
be9d3045 664 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
665 page = follow_huge_pmd(mm, address, pmd, flags);
666 if (page)
667 return page;
668 return no_page_table(vma, flags);
69e68b4f 669 }
68827280 670 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 671 page = follow_huge_pd(vma, address,
68827280 672 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
673 PMD_SHIFT);
674 if (page)
675 return page;
676 return no_page_table(vma, flags);
677 }
84c3fc4e 678retry:
68827280 679 if (!pmd_present(pmdval)) {
28b0ee3f
LX
680 /*
681 * Should never reach here, if thp migration is not supported;
682 * Otherwise, it must be a thp migration entry.
683 */
684 VM_BUG_ON(!thp_migration_supported() ||
685 !is_pmd_migration_entry(pmdval));
686
84c3fc4e
ZY
687 if (likely(!(flags & FOLL_MIGRATION)))
688 return no_page_table(vma, flags);
28b0ee3f
LX
689
690 pmd_migration_entry_wait(mm, pmd);
68827280
YH
691 pmdval = READ_ONCE(*pmd);
692 /*
693 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 694 * mmap_lock is held in read mode
68827280
YH
695 */
696 if (pmd_none(pmdval))
697 return no_page_table(vma, flags);
84c3fc4e
ZY
698 goto retry;
699 }
68827280 700 if (pmd_devmap(pmdval)) {
3565fce3 701 ptl = pmd_lock(mm, pmd);
df06b37f 702 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
703 spin_unlock(ptl);
704 if (page)
705 return page;
706 }
68827280 707 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 708 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 709
68827280 710 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
711 return no_page_table(vma, flags);
712
84c3fc4e 713retry_locked:
6742d293 714 ptl = pmd_lock(mm, pmd);
68827280
YH
715 if (unlikely(pmd_none(*pmd))) {
716 spin_unlock(ptl);
717 return no_page_table(vma, flags);
718 }
84c3fc4e
ZY
719 if (unlikely(!pmd_present(*pmd))) {
720 spin_unlock(ptl);
721 if (likely(!(flags & FOLL_MIGRATION)))
722 return no_page_table(vma, flags);
723 pmd_migration_entry_wait(mm, pmd);
724 goto retry_locked;
725 }
6742d293
KS
726 if (unlikely(!pmd_trans_huge(*pmd))) {
727 spin_unlock(ptl);
df06b37f 728 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 729 }
4066c119 730 if (flags & FOLL_SPLIT_PMD) {
6742d293
KS
731 int ret;
732 page = pmd_page(*pmd);
733 if (is_huge_zero_page(page)) {
734 spin_unlock(ptl);
735 ret = 0;
78ddc534 736 split_huge_pmd(vma, pmd, address);
337d9abf
NH
737 if (pmd_trans_unstable(pmd))
738 ret = -EBUSY;
4066c119 739 } else {
bfe7b00d
SL
740 spin_unlock(ptl);
741 split_huge_pmd(vma, pmd, address);
742 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
743 }
744
745 return ret ? ERR_PTR(ret) :
df06b37f 746 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 747 }
6742d293
KS
748 page = follow_trans_huge_pmd(vma, address, pmd, flags);
749 spin_unlock(ptl);
df06b37f 750 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 751 return page;
4bbd4c77
KS
752}
753
080dbb61
AK
754static struct page *follow_pud_mask(struct vm_area_struct *vma,
755 unsigned long address, p4d_t *p4dp,
df06b37f
KB
756 unsigned int flags,
757 struct follow_page_context *ctx)
080dbb61
AK
758{
759 pud_t *pud;
760 spinlock_t *ptl;
761 struct page *page;
762 struct mm_struct *mm = vma->vm_mm;
763
764 pud = pud_offset(p4dp, address);
765 if (pud_none(*pud))
766 return no_page_table(vma, flags);
be9d3045 767 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
768 page = follow_huge_pud(mm, address, pud, flags);
769 if (page)
770 return page;
771 return no_page_table(vma, flags);
772 }
4dc71451
AK
773 if (is_hugepd(__hugepd(pud_val(*pud)))) {
774 page = follow_huge_pd(vma, address,
775 __hugepd(pud_val(*pud)), flags,
776 PUD_SHIFT);
777 if (page)
778 return page;
779 return no_page_table(vma, flags);
780 }
080dbb61
AK
781 if (pud_devmap(*pud)) {
782 ptl = pud_lock(mm, pud);
df06b37f 783 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
784 spin_unlock(ptl);
785 if (page)
786 return page;
787 }
788 if (unlikely(pud_bad(*pud)))
789 return no_page_table(vma, flags);
790
df06b37f 791 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
792}
793
080dbb61
AK
794static struct page *follow_p4d_mask(struct vm_area_struct *vma,
795 unsigned long address, pgd_t *pgdp,
df06b37f
KB
796 unsigned int flags,
797 struct follow_page_context *ctx)
080dbb61
AK
798{
799 p4d_t *p4d;
4dc71451 800 struct page *page;
080dbb61
AK
801
802 p4d = p4d_offset(pgdp, address);
803 if (p4d_none(*p4d))
804 return no_page_table(vma, flags);
805 BUILD_BUG_ON(p4d_huge(*p4d));
806 if (unlikely(p4d_bad(*p4d)))
807 return no_page_table(vma, flags);
808
4dc71451
AK
809 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
810 page = follow_huge_pd(vma, address,
811 __hugepd(p4d_val(*p4d)), flags,
812 P4D_SHIFT);
813 if (page)
814 return page;
815 return no_page_table(vma, flags);
816 }
df06b37f 817 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
818}
819
820/**
821 * follow_page_mask - look up a page descriptor from a user-virtual address
822 * @vma: vm_area_struct mapping @address
823 * @address: virtual address to look up
824 * @flags: flags modifying lookup behaviour
78179556
MR
825 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
826 * pointer to output page_mask
080dbb61
AK
827 *
828 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
829 *
78179556
MR
830 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
831 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
832 *
a7f22660
DH
833 * When getting an anonymous page and the caller has to trigger unsharing
834 * of a shared anonymous page first, -EMLINK is returned. The caller should
835 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
836 * relevant with FOLL_PIN and !FOLL_WRITE.
837 *
78179556
MR
838 * On output, the @ctx->page_mask is set according to the size of the page.
839 *
840 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
841 * an error pointer if there is a mapping to something not represented
842 * by a page descriptor (see also vm_normal_page()).
843 */
a7030aea 844static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 845 unsigned long address, unsigned int flags,
df06b37f 846 struct follow_page_context *ctx)
080dbb61
AK
847{
848 pgd_t *pgd;
849 struct page *page;
850 struct mm_struct *mm = vma->vm_mm;
851
df06b37f 852 ctx->page_mask = 0;
080dbb61
AK
853
854 /* make this handle hugepd */
855 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
856 if (!IS_ERR(page)) {
3faa52c0 857 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
858 return page;
859 }
860
861 pgd = pgd_offset(mm, address);
862
863 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
864 return no_page_table(vma, flags);
865
faaa5b62
AK
866 if (pgd_huge(*pgd)) {
867 page = follow_huge_pgd(mm, address, pgd, flags);
868 if (page)
869 return page;
870 return no_page_table(vma, flags);
871 }
4dc71451
AK
872 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
873 page = follow_huge_pd(vma, address,
874 __hugepd(pgd_val(*pgd)), flags,
875 PGDIR_SHIFT);
876 if (page)
877 return page;
878 return no_page_table(vma, flags);
879 }
faaa5b62 880
df06b37f
KB
881 return follow_p4d_mask(vma, address, pgd, flags, ctx);
882}
883
884struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
885 unsigned int foll_flags)
886{
887 struct follow_page_context ctx = { NULL };
888 struct page *page;
889
1507f512
MR
890 if (vma_is_secretmem(vma))
891 return NULL;
892
8909691b
DH
893 if (foll_flags & FOLL_PIN)
894 return NULL;
895
df06b37f
KB
896 page = follow_page_mask(vma, address, foll_flags, &ctx);
897 if (ctx.pgmap)
898 put_dev_pagemap(ctx.pgmap);
899 return page;
080dbb61
AK
900}
901
f2b495ca
KS
902static int get_gate_page(struct mm_struct *mm, unsigned long address,
903 unsigned int gup_flags, struct vm_area_struct **vma,
904 struct page **page)
905{
906 pgd_t *pgd;
c2febafc 907 p4d_t *p4d;
f2b495ca
KS
908 pud_t *pud;
909 pmd_t *pmd;
910 pte_t *pte;
911 int ret = -EFAULT;
912
913 /* user gate pages are read-only */
914 if (gup_flags & FOLL_WRITE)
915 return -EFAULT;
916 if (address > TASK_SIZE)
917 pgd = pgd_offset_k(address);
918 else
919 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
920 if (pgd_none(*pgd))
921 return -EFAULT;
c2febafc 922 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
923 if (p4d_none(*p4d))
924 return -EFAULT;
c2febafc 925 pud = pud_offset(p4d, address);
b5d1c39f
AL
926 if (pud_none(*pud))
927 return -EFAULT;
f2b495ca 928 pmd = pmd_offset(pud, address);
84c3fc4e 929 if (!pmd_present(*pmd))
f2b495ca
KS
930 return -EFAULT;
931 VM_BUG_ON(pmd_trans_huge(*pmd));
932 pte = pte_offset_map(pmd, address);
933 if (pte_none(*pte))
934 goto unmap;
935 *vma = get_gate_vma(mm);
936 if (!page)
937 goto out;
938 *page = vm_normal_page(*vma, address, *pte);
939 if (!*page) {
940 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
941 goto unmap;
942 *page = pte_page(*pte);
943 }
9fa2dd94 944 if (unlikely(!try_grab_page(*page, gup_flags))) {
8fde12ca
LT
945 ret = -ENOMEM;
946 goto unmap;
947 }
f2b495ca
KS
948out:
949 ret = 0;
950unmap:
951 pte_unmap(pte);
952 return ret;
953}
954
9a95f3cf 955/*
c1e8d7c6
ML
956 * mmap_lock must be held on entry. If @locked != NULL and *@flags
957 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 958 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 959 */
64019a2e 960static int faultin_page(struct vm_area_struct *vma,
a7f22660
DH
961 unsigned long address, unsigned int *flags, bool unshare,
962 int *locked)
16744483 963{
16744483 964 unsigned int fault_flags = 0;
2b740303 965 vm_fault_t ret;
16744483 966
55b8fe70
AG
967 if (*flags & FOLL_NOFAULT)
968 return -EFAULT;
16744483
KS
969 if (*flags & FOLL_WRITE)
970 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
971 if (*flags & FOLL_REMOTE)
972 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 973 if (locked)
71335f37 974 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
975 if (*flags & FOLL_NOWAIT)
976 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 977 if (*flags & FOLL_TRIED) {
4426e945
PX
978 /*
979 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
980 * can co-exist
981 */
234b239b
ALC
982 fault_flags |= FAULT_FLAG_TRIED;
983 }
a7f22660
DH
984 if (unshare) {
985 fault_flags |= FAULT_FLAG_UNSHARE;
986 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
987 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
988 }
16744483 989
bce617ed 990 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
991
992 if (ret & VM_FAULT_COMPLETED) {
993 /*
994 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
995 * mmap lock in the page fault handler. Sanity check this.
996 */
997 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
998 if (locked)
999 *locked = 0;
1000 /*
1001 * We should do the same as VM_FAULT_RETRY, but let's not
1002 * return -EBUSY since that's not reflecting the reality of
1003 * what has happened - we've just fully completed a page
1004 * fault, with the mmap lock released. Use -EAGAIN to show
1005 * that we want to take the mmap lock _again_.
1006 */
1007 return -EAGAIN;
1008 }
1009
16744483 1010 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1011 int err = vm_fault_to_errno(ret, *flags);
1012
1013 if (err)
1014 return err;
16744483
KS
1015 BUG();
1016 }
1017
16744483 1018 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
1019 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1020 *locked = 0;
16744483
KS
1021 return -EBUSY;
1022 }
1023
16744483
KS
1024 return 0;
1025}
1026
fa5bb209
KS
1027static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1028{
1029 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
1030 int write = (gup_flags & FOLL_WRITE);
1031 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
1032
1033 if (vm_flags & (VM_IO | VM_PFNMAP))
1034 return -EFAULT;
1035
7f7ccc2c
WT
1036 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1037 return -EFAULT;
1038
52650c8b
JG
1039 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1040 return -EOPNOTSUPP;
1041
1507f512
MR
1042 if (vma_is_secretmem(vma))
1043 return -EFAULT;
1044
1b2ee126 1045 if (write) {
fa5bb209
KS
1046 if (!(vm_flags & VM_WRITE)) {
1047 if (!(gup_flags & FOLL_FORCE))
1048 return -EFAULT;
1049 /*
1050 * We used to let the write,force case do COW in a
1051 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1052 * set a breakpoint in a read-only mapping of an
1053 * executable, without corrupting the file (yet only
1054 * when that file had been opened for writing!).
1055 * Anon pages in shared mappings are surprising: now
1056 * just reject it.
1057 */
46435364 1058 if (!is_cow_mapping(vm_flags))
fa5bb209 1059 return -EFAULT;
fa5bb209
KS
1060 }
1061 } else if (!(vm_flags & VM_READ)) {
1062 if (!(gup_flags & FOLL_FORCE))
1063 return -EFAULT;
1064 /*
1065 * Is there actually any vma we can reach here which does not
1066 * have VM_MAYREAD set?
1067 */
1068 if (!(vm_flags & VM_MAYREAD))
1069 return -EFAULT;
1070 }
d61172b4
DH
1071 /*
1072 * gups are always data accesses, not instruction
1073 * fetches, so execute=false here
1074 */
1075 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1076 return -EFAULT;
fa5bb209
KS
1077 return 0;
1078}
1079
4bbd4c77
KS
1080/**
1081 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1082 * @mm: mm_struct of target mm
1083 * @start: starting user address
1084 * @nr_pages: number of pages from start to pin
1085 * @gup_flags: flags modifying pin behaviour
1086 * @pages: array that receives pointers to the pages pinned.
1087 * Should be at least nr_pages long. Or NULL, if caller
1088 * only intends to ensure the pages are faulted in.
1089 * @vmas: array of pointers to vmas corresponding to each page.
1090 * Or NULL if the caller does not require them.
c1e8d7c6 1091 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1092 *
d2dfbe47
LX
1093 * Returns either number of pages pinned (which may be less than the
1094 * number requested), or an error. Details about the return value:
1095 *
1096 * -- If nr_pages is 0, returns 0.
1097 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1098 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1099 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1100 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1101 *
1102 * The caller is responsible for releasing returned @pages, via put_page().
1103 *
c1e8d7c6 1104 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 1105 *
c1e8d7c6 1106 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1107 *
1108 * __get_user_pages walks a process's page tables and takes a reference to
1109 * each struct page that each user address corresponds to at a given
1110 * instant. That is, it takes the page that would be accessed if a user
1111 * thread accesses the given user virtual address at that instant.
1112 *
1113 * This does not guarantee that the page exists in the user mappings when
1114 * __get_user_pages returns, and there may even be a completely different
1115 * page there in some cases (eg. if mmapped pagecache has been invalidated
1116 * and subsequently re faulted). However it does guarantee that the page
1117 * won't be freed completely. And mostly callers simply care that the page
1118 * contains data that was valid *at some point in time*. Typically, an IO
1119 * or similar operation cannot guarantee anything stronger anyway because
1120 * locks can't be held over the syscall boundary.
1121 *
1122 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1123 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1124 * appropriate) must be called after the page is finished with, and
1125 * before put_page is called.
1126 *
c1e8d7c6 1127 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1128 * released by an up_read(). That can happen if @gup_flags does not
1129 * have FOLL_NOWAIT.
9a95f3cf 1130 *
4f6da934 1131 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1132 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1133 * when it's been released. Otherwise, it must be held for either
1134 * reading or writing and will not be released.
4bbd4c77
KS
1135 *
1136 * In most cases, get_user_pages or get_user_pages_fast should be used
1137 * instead of __get_user_pages. __get_user_pages should be used only if
1138 * you need some special @gup_flags.
1139 */
64019a2e 1140static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1141 unsigned long start, unsigned long nr_pages,
1142 unsigned int gup_flags, struct page **pages,
4f6da934 1143 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1144{
df06b37f 1145 long ret = 0, i = 0;
fa5bb209 1146 struct vm_area_struct *vma = NULL;
df06b37f 1147 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1148
1149 if (!nr_pages)
1150 return 0;
1151
f9652594
AK
1152 start = untagged_addr(start);
1153
eddb1c22 1154 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1155
1156 /*
1157 * If FOLL_FORCE is set then do not force a full fault as the hinting
1158 * fault information is unrelated to the reference behaviour of a task
1159 * using the address space
1160 */
1161 if (!(gup_flags & FOLL_FORCE))
1162 gup_flags |= FOLL_NUMA;
1163
4bbd4c77 1164 do {
fa5bb209
KS
1165 struct page *page;
1166 unsigned int foll_flags = gup_flags;
1167 unsigned int page_increm;
1168
1169 /* first iteration or cross vma bound */
1170 if (!vma || start >= vma->vm_end) {
1171 vma = find_extend_vma(mm, start);
1172 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1173 ret = get_gate_page(mm, start & PAGE_MASK,
1174 gup_flags, &vma,
1175 pages ? &pages[i] : NULL);
1176 if (ret)
08be37b7 1177 goto out;
df06b37f 1178 ctx.page_mask = 0;
fa5bb209
KS
1179 goto next_page;
1180 }
4bbd4c77 1181
52650c8b 1182 if (!vma) {
df06b37f
KB
1183 ret = -EFAULT;
1184 goto out;
1185 }
52650c8b
JG
1186 ret = check_vma_flags(vma, gup_flags);
1187 if (ret)
1188 goto out;
1189
fa5bb209
KS
1190 if (is_vm_hugetlb_page(vma)) {
1191 i = follow_hugetlb_page(mm, vma, pages, vmas,
1192 &start, &nr_pages, i,
a308c71b 1193 gup_flags, locked);
ad415db8
PX
1194 if (locked && *locked == 0) {
1195 /*
1196 * We've got a VM_FAULT_RETRY
c1e8d7c6 1197 * and we've lost mmap_lock.
ad415db8
PX
1198 * We must stop here.
1199 */
1200 BUG_ON(gup_flags & FOLL_NOWAIT);
ad415db8
PX
1201 goto out;
1202 }
fa5bb209 1203 continue;
4bbd4c77 1204 }
fa5bb209
KS
1205 }
1206retry:
1207 /*
1208 * If we have a pending SIGKILL, don't keep faulting pages and
1209 * potentially allocating memory.
1210 */
fa45f116 1211 if (fatal_signal_pending(current)) {
d180870d 1212 ret = -EINTR;
df06b37f
KB
1213 goto out;
1214 }
fa5bb209 1215 cond_resched();
df06b37f
KB
1216
1217 page = follow_page_mask(vma, start, foll_flags, &ctx);
a7f22660
DH
1218 if (!page || PTR_ERR(page) == -EMLINK) {
1219 ret = faultin_page(vma, start, &foll_flags,
1220 PTR_ERR(page) == -EMLINK, locked);
fa5bb209
KS
1221 switch (ret) {
1222 case 0:
1223 goto retry;
df06b37f 1224 case -EBUSY:
d9272525 1225 case -EAGAIN:
df06b37f 1226 ret = 0;
e4a9bc58 1227 fallthrough;
fa5bb209
KS
1228 case -EFAULT:
1229 case -ENOMEM:
1230 case -EHWPOISON:
df06b37f 1231 goto out;
4bbd4c77 1232 }
fa5bb209 1233 BUG();
1027e443
KS
1234 } else if (PTR_ERR(page) == -EEXIST) {
1235 /*
1236 * Proper page table entry exists, but no corresponding
65462462
JH
1237 * struct page. If the caller expects **pages to be
1238 * filled in, bail out now, because that can't be done
1239 * for this page.
1027e443 1240 */
65462462
JH
1241 if (pages) {
1242 ret = PTR_ERR(page);
1243 goto out;
1244 }
1245
1027e443
KS
1246 goto next_page;
1247 } else if (IS_ERR(page)) {
df06b37f
KB
1248 ret = PTR_ERR(page);
1249 goto out;
1027e443 1250 }
fa5bb209
KS
1251 if (pages) {
1252 pages[i] = page;
1253 flush_anon_page(vma, page, start);
1254 flush_dcache_page(page);
df06b37f 1255 ctx.page_mask = 0;
4bbd4c77 1256 }
4bbd4c77 1257next_page:
fa5bb209
KS
1258 if (vmas) {
1259 vmas[i] = vma;
df06b37f 1260 ctx.page_mask = 0;
fa5bb209 1261 }
df06b37f 1262 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1263 if (page_increm > nr_pages)
1264 page_increm = nr_pages;
1265 i += page_increm;
1266 start += page_increm * PAGE_SIZE;
1267 nr_pages -= page_increm;
4bbd4c77 1268 } while (nr_pages);
df06b37f
KB
1269out:
1270 if (ctx.pgmap)
1271 put_dev_pagemap(ctx.pgmap);
1272 return i ? i : ret;
4bbd4c77 1273}
4bbd4c77 1274
771ab430
TK
1275static bool vma_permits_fault(struct vm_area_struct *vma,
1276 unsigned int fault_flags)
d4925e00 1277{
1b2ee126
DH
1278 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1279 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1280 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1281
1282 if (!(vm_flags & vma->vm_flags))
1283 return false;
1284
33a709b2
DH
1285 /*
1286 * The architecture might have a hardware protection
1b2ee126 1287 * mechanism other than read/write that can deny access.
d61172b4
DH
1288 *
1289 * gup always represents data access, not instruction
1290 * fetches, so execute=false here:
33a709b2 1291 */
d61172b4 1292 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1293 return false;
1294
d4925e00
DH
1295 return true;
1296}
1297
adc8cb40 1298/**
4bbd4c77 1299 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1300 * @mm: mm_struct of target mm
1301 * @address: user address
1302 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1303 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1304 * does not allow retry. If NULL, the caller must guarantee
1305 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1306 *
1307 * This is meant to be called in the specific scenario where for locking reasons
1308 * we try to access user memory in atomic context (within a pagefault_disable()
1309 * section), this returns -EFAULT, and we want to resolve the user fault before
1310 * trying again.
1311 *
1312 * Typically this is meant to be used by the futex code.
1313 *
1314 * The main difference with get_user_pages() is that this function will
1315 * unconditionally call handle_mm_fault() which will in turn perform all the
1316 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1317 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1318 *
1319 * This is important for some architectures where those bits also gate the
1320 * access permission to the page because they are maintained in software. On
1321 * such architectures, gup() will not be enough to make a subsequent access
1322 * succeed.
1323 *
c1e8d7c6
ML
1324 * This function will not return with an unlocked mmap_lock. So it has not the
1325 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1326 */
64019a2e 1327int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1328 unsigned long address, unsigned int fault_flags,
1329 bool *unlocked)
4bbd4c77
KS
1330{
1331 struct vm_area_struct *vma;
8fed2f3c 1332 vm_fault_t ret;
4a9e1cda 1333
f9652594
AK
1334 address = untagged_addr(address);
1335
4a9e1cda 1336 if (unlocked)
71335f37 1337 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1338
4a9e1cda 1339retry:
4bbd4c77
KS
1340 vma = find_extend_vma(mm, address);
1341 if (!vma || address < vma->vm_start)
1342 return -EFAULT;
1343
d4925e00 1344 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1345 return -EFAULT;
1346
475f4dfc
PX
1347 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1348 fatal_signal_pending(current))
1349 return -EINTR;
1350
bce617ed 1351 ret = handle_mm_fault(vma, address, fault_flags, NULL);
d9272525
PX
1352
1353 if (ret & VM_FAULT_COMPLETED) {
1354 /*
1355 * NOTE: it's a pity that we need to retake the lock here
1356 * to pair with the unlock() in the callers. Ideally we
1357 * could tell the callers so they do not need to unlock.
1358 */
1359 mmap_read_lock(mm);
1360 *unlocked = true;
1361 return 0;
1362 }
1363
4bbd4c77 1364 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1365 int err = vm_fault_to_errno(ret, 0);
1366
1367 if (err)
1368 return err;
4bbd4c77
KS
1369 BUG();
1370 }
4a9e1cda
DD
1371
1372 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1373 mmap_read_lock(mm);
475f4dfc
PX
1374 *unlocked = true;
1375 fault_flags |= FAULT_FLAG_TRIED;
1376 goto retry;
4a9e1cda
DD
1377 }
1378
4bbd4c77
KS
1379 return 0;
1380}
add6a0cd 1381EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1382
2d3a36a4
MH
1383/*
1384 * Please note that this function, unlike __get_user_pages will not
1385 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1386 */
64019a2e 1387static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1388 unsigned long start,
1389 unsigned long nr_pages,
f0818f47
AA
1390 struct page **pages,
1391 struct vm_area_struct **vmas,
e716712f 1392 int *locked,
0fd71a56 1393 unsigned int flags)
f0818f47 1394{
f0818f47
AA
1395 long ret, pages_done;
1396 bool lock_dropped;
1397
1398 if (locked) {
1399 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1400 BUG_ON(vmas);
1401 /* check caller initialized locked */
1402 BUG_ON(*locked != 1);
1403 }
1404
a458b76a
AA
1405 if (flags & FOLL_PIN)
1406 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1407
eddb1c22
JH
1408 /*
1409 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1410 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1411 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1412 * for FOLL_GET, not for the newer FOLL_PIN.
1413 *
1414 * FOLL_PIN always expects pages to be non-null, but no need to assert
1415 * that here, as any failures will be obvious enough.
1416 */
1417 if (pages && !(flags & FOLL_PIN))
f0818f47 1418 flags |= FOLL_GET;
f0818f47
AA
1419
1420 pages_done = 0;
1421 lock_dropped = false;
1422 for (;;) {
64019a2e 1423 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1424 vmas, locked);
1425 if (!locked)
1426 /* VM_FAULT_RETRY couldn't trigger, bypass */
1427 return ret;
1428
d9272525 1429 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
f0818f47
AA
1430 if (!*locked) {
1431 BUG_ON(ret < 0);
1432 BUG_ON(ret >= nr_pages);
1433 }
1434
f0818f47
AA
1435 if (ret > 0) {
1436 nr_pages -= ret;
1437 pages_done += ret;
1438 if (!nr_pages)
1439 break;
1440 }
1441 if (*locked) {
96312e61
AA
1442 /*
1443 * VM_FAULT_RETRY didn't trigger or it was a
1444 * FOLL_NOWAIT.
1445 */
f0818f47
AA
1446 if (!pages_done)
1447 pages_done = ret;
1448 break;
1449 }
df17277b
MR
1450 /*
1451 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1452 * For the prefault case (!pages) we only update counts.
1453 */
1454 if (likely(pages))
1455 pages += ret;
f0818f47 1456 start += ret << PAGE_SHIFT;
4426e945 1457 lock_dropped = true;
f0818f47 1458
4426e945 1459retry:
f0818f47
AA
1460 /*
1461 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1462 * with both FAULT_FLAG_ALLOW_RETRY and
1463 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1464 * by fatal signals, so we need to check it before we
1465 * start trying again otherwise it can loop forever.
f0818f47 1466 */
4426e945 1467
ae46d2aa
HD
1468 if (fatal_signal_pending(current)) {
1469 if (!pages_done)
1470 pages_done = -EINTR;
4426e945 1471 break;
ae46d2aa 1472 }
4426e945 1473
d8ed45c5 1474 ret = mmap_read_lock_killable(mm);
71335f37
PX
1475 if (ret) {
1476 BUG_ON(ret > 0);
1477 if (!pages_done)
1478 pages_done = ret;
1479 break;
1480 }
4426e945 1481
c7b6a566 1482 *locked = 1;
64019a2e 1483 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1484 pages, NULL, locked);
1485 if (!*locked) {
1486 /* Continue to retry until we succeeded */
1487 BUG_ON(ret != 0);
1488 goto retry;
1489 }
f0818f47
AA
1490 if (ret != 1) {
1491 BUG_ON(ret > 1);
1492 if (!pages_done)
1493 pages_done = ret;
1494 break;
1495 }
1496 nr_pages--;
1497 pages_done++;
1498 if (!nr_pages)
1499 break;
df17277b
MR
1500 if (likely(pages))
1501 pages++;
f0818f47
AA
1502 start += PAGE_SIZE;
1503 }
e716712f 1504 if (lock_dropped && *locked) {
f0818f47
AA
1505 /*
1506 * We must let the caller know we temporarily dropped the lock
1507 * and so the critical section protected by it was lost.
1508 */
d8ed45c5 1509 mmap_read_unlock(mm);
f0818f47
AA
1510 *locked = 0;
1511 }
1512 return pages_done;
1513}
1514
d3649f68
CH
1515/**
1516 * populate_vma_page_range() - populate a range of pages in the vma.
1517 * @vma: target vma
1518 * @start: start address
1519 * @end: end address
c1e8d7c6 1520 * @locked: whether the mmap_lock is still held
d3649f68
CH
1521 *
1522 * This takes care of mlocking the pages too if VM_LOCKED is set.
1523 *
0a36f7f8
TY
1524 * Return either number of pages pinned in the vma, or a negative error
1525 * code on error.
d3649f68 1526 *
c1e8d7c6 1527 * vma->vm_mm->mmap_lock must be held.
d3649f68 1528 *
4f6da934 1529 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1530 * be unperturbed.
1531 *
4f6da934
PX
1532 * If @locked is non-NULL, it must held for read only and may be
1533 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1534 */
1535long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1536 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1537{
1538 struct mm_struct *mm = vma->vm_mm;
1539 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1540 int gup_flags;
ece369c7 1541 long ret;
d3649f68 1542
be51eb18
ML
1543 VM_BUG_ON(!PAGE_ALIGNED(start));
1544 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1545 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1546 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1547 mmap_assert_locked(mm);
d3649f68 1548
b67bf49c
HD
1549 /*
1550 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1551 * faultin_page() to break COW, so it has no work to do here.
1552 */
d3649f68 1553 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1554 return nr_pages;
1555
1556 gup_flags = FOLL_TOUCH;
d3649f68
CH
1557 /*
1558 * We want to touch writable mappings with a write fault in order
1559 * to break COW, except for shared mappings because these don't COW
1560 * and we would not want to dirty them for nothing.
1561 */
1562 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1563 gup_flags |= FOLL_WRITE;
1564
1565 /*
1566 * We want mlock to succeed for regions that have any permissions
1567 * other than PROT_NONE.
1568 */
3122e80e 1569 if (vma_is_accessible(vma))
d3649f68
CH
1570 gup_flags |= FOLL_FORCE;
1571
1572 /*
1573 * We made sure addr is within a VMA, so the following will
1574 * not result in a stack expansion that recurses back here.
1575 */
ece369c7 1576 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1577 NULL, NULL, locked);
ece369c7
HD
1578 lru_add_drain();
1579 return ret;
d3649f68
CH
1580}
1581
4ca9b385
DH
1582/*
1583 * faultin_vma_page_range() - populate (prefault) page tables inside the
1584 * given VMA range readable/writable
1585 *
1586 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1587 *
1588 * @vma: target vma
1589 * @start: start address
1590 * @end: end address
1591 * @write: whether to prefault readable or writable
1592 * @locked: whether the mmap_lock is still held
1593 *
1594 * Returns either number of processed pages in the vma, or a negative error
1595 * code on error (see __get_user_pages()).
1596 *
1597 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1598 * covered by the VMA.
1599 *
1600 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1601 *
1602 * If @locked is non-NULL, it must held for read only and may be released. If
1603 * it's released, *@locked will be set to 0.
1604 */
1605long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1606 unsigned long end, bool write, int *locked)
1607{
1608 struct mm_struct *mm = vma->vm_mm;
1609 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1610 int gup_flags;
ece369c7 1611 long ret;
4ca9b385
DH
1612
1613 VM_BUG_ON(!PAGE_ALIGNED(start));
1614 VM_BUG_ON(!PAGE_ALIGNED(end));
1615 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1616 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1617 mmap_assert_locked(mm);
1618
1619 /*
1620 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1621 * the page dirty with FOLL_WRITE -- which doesn't make a
1622 * difference with !FOLL_FORCE, because the page is writable
1623 * in the page table.
1624 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1625 * a poisoned page.
4ca9b385
DH
1626 * !FOLL_FORCE: Require proper access permissions.
1627 */
b67bf49c 1628 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
4ca9b385
DH
1629 if (write)
1630 gup_flags |= FOLL_WRITE;
1631
1632 /*
eb2faa51
DH
1633 * We want to report -EINVAL instead of -EFAULT for any permission
1634 * problems or incompatible mappings.
4ca9b385 1635 */
eb2faa51
DH
1636 if (check_vma_flags(vma, gup_flags))
1637 return -EINVAL;
1638
ece369c7 1639 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
4ca9b385 1640 NULL, NULL, locked);
ece369c7
HD
1641 lru_add_drain();
1642 return ret;
4ca9b385
DH
1643}
1644
d3649f68
CH
1645/*
1646 * __mm_populate - populate and/or mlock pages within a range of address space.
1647 *
1648 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1649 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1650 * mmap_lock must not be held.
d3649f68
CH
1651 */
1652int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1653{
1654 struct mm_struct *mm = current->mm;
1655 unsigned long end, nstart, nend;
1656 struct vm_area_struct *vma = NULL;
1657 int locked = 0;
1658 long ret = 0;
1659
1660 end = start + len;
1661
1662 for (nstart = start; nstart < end; nstart = nend) {
1663 /*
1664 * We want to fault in pages for [nstart; end) address range.
1665 * Find first corresponding VMA.
1666 */
1667 if (!locked) {
1668 locked = 1;
d8ed45c5 1669 mmap_read_lock(mm);
d3649f68
CH
1670 vma = find_vma(mm, nstart);
1671 } else if (nstart >= vma->vm_end)
1672 vma = vma->vm_next;
1673 if (!vma || vma->vm_start >= end)
1674 break;
1675 /*
1676 * Set [nstart; nend) to intersection of desired address
1677 * range with the first VMA. Also, skip undesirable VMA types.
1678 */
1679 nend = min(end, vma->vm_end);
1680 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1681 continue;
1682 if (nstart < vma->vm_start)
1683 nstart = vma->vm_start;
1684 /*
1685 * Now fault in a range of pages. populate_vma_page_range()
1686 * double checks the vma flags, so that it won't mlock pages
1687 * if the vma was already munlocked.
1688 */
1689 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1690 if (ret < 0) {
1691 if (ignore_errors) {
1692 ret = 0;
1693 continue; /* continue at next VMA */
1694 }
1695 break;
1696 }
1697 nend = nstart + ret * PAGE_SIZE;
1698 ret = 0;
1699 }
1700 if (locked)
d8ed45c5 1701 mmap_read_unlock(mm);
d3649f68
CH
1702 return ret; /* 0 or negative error code */
1703}
050a9adc 1704#else /* CONFIG_MMU */
64019a2e 1705static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1706 unsigned long nr_pages, struct page **pages,
1707 struct vm_area_struct **vmas, int *locked,
1708 unsigned int foll_flags)
1709{
1710 struct vm_area_struct *vma;
1711 unsigned long vm_flags;
24dc20c7 1712 long i;
050a9adc
CH
1713
1714 /* calculate required read or write permissions.
1715 * If FOLL_FORCE is set, we only require the "MAY" flags.
1716 */
1717 vm_flags = (foll_flags & FOLL_WRITE) ?
1718 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1719 vm_flags &= (foll_flags & FOLL_FORCE) ?
1720 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1721
1722 for (i = 0; i < nr_pages; i++) {
1723 vma = find_vma(mm, start);
1724 if (!vma)
1725 goto finish_or_fault;
1726
1727 /* protect what we can, including chardevs */
1728 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1729 !(vm_flags & vma->vm_flags))
1730 goto finish_or_fault;
1731
1732 if (pages) {
396a400b 1733 pages[i] = virt_to_page((void *)start);
050a9adc
CH
1734 if (pages[i])
1735 get_page(pages[i]);
1736 }
1737 if (vmas)
1738 vmas[i] = vma;
1739 start = (start + PAGE_SIZE) & PAGE_MASK;
1740 }
1741
1742 return i;
1743
1744finish_or_fault:
1745 return i ? : -EFAULT;
1746}
1747#endif /* !CONFIG_MMU */
d3649f68 1748
bb523b40
AG
1749/**
1750 * fault_in_writeable - fault in userspace address range for writing
1751 * @uaddr: start of address range
1752 * @size: size of address range
1753 *
1754 * Returns the number of bytes not faulted in (like copy_to_user() and
1755 * copy_from_user()).
1756 */
1757size_t fault_in_writeable(char __user *uaddr, size_t size)
1758{
1759 char __user *start = uaddr, *end;
1760
1761 if (unlikely(size == 0))
1762 return 0;
677b2a8c
CL
1763 if (!user_write_access_begin(uaddr, size))
1764 return size;
bb523b40 1765 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1766 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1767 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1768 }
1769 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1770 if (unlikely(end < start))
1771 end = NULL;
1772 while (uaddr != end) {
677b2a8c 1773 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1774 uaddr += PAGE_SIZE;
1775 }
1776
1777out:
677b2a8c 1778 user_write_access_end();
bb523b40
AG
1779 if (size > uaddr - start)
1780 return size - (uaddr - start);
1781 return 0;
1782}
1783EXPORT_SYMBOL(fault_in_writeable);
1784
da32b581
CM
1785/**
1786 * fault_in_subpage_writeable - fault in an address range for writing
1787 * @uaddr: start of address range
1788 * @size: size of address range
1789 *
1790 * Fault in a user address range for writing while checking for permissions at
1791 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1792 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1793 *
1794 * Returns the number of bytes not faulted in (like copy_to_user() and
1795 * copy_from_user()).
1796 */
1797size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1798{
1799 size_t faulted_in;
1800
1801 /*
1802 * Attempt faulting in at page granularity first for page table
1803 * permission checking. The arch-specific probe_subpage_writeable()
1804 * functions may not check for this.
1805 */
1806 faulted_in = size - fault_in_writeable(uaddr, size);
1807 if (faulted_in)
1808 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1809
1810 return size - faulted_in;
1811}
1812EXPORT_SYMBOL(fault_in_subpage_writeable);
1813
cdd591fc
AG
1814/*
1815 * fault_in_safe_writeable - fault in an address range for writing
1816 * @uaddr: start of address range
1817 * @size: length of address range
1818 *
fe673d3f
LT
1819 * Faults in an address range for writing. This is primarily useful when we
1820 * already know that some or all of the pages in the address range aren't in
1821 * memory.
cdd591fc 1822 *
fe673d3f 1823 * Unlike fault_in_writeable(), this function is non-destructive.
cdd591fc
AG
1824 *
1825 * Note that we don't pin or otherwise hold the pages referenced that we fault
1826 * in. There's no guarantee that they'll stay in memory for any duration of
1827 * time.
1828 *
1829 * Returns the number of bytes not faulted in, like copy_to_user() and
1830 * copy_from_user().
1831 */
1832size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1833{
fe673d3f 1834 unsigned long start = (unsigned long)uaddr, end;
cdd591fc 1835 struct mm_struct *mm = current->mm;
fe673d3f 1836 bool unlocked = false;
cdd591fc 1837
fe673d3f
LT
1838 if (unlikely(size == 0))
1839 return 0;
cdd591fc 1840 end = PAGE_ALIGN(start + size);
fe673d3f 1841 if (end < start)
cdd591fc 1842 end = 0;
cdd591fc 1843
fe673d3f
LT
1844 mmap_read_lock(mm);
1845 do {
1846 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
cdd591fc 1847 break;
fe673d3f
LT
1848 start = (start + PAGE_SIZE) & PAGE_MASK;
1849 } while (start != end);
1850 mmap_read_unlock(mm);
1851
1852 if (size > (unsigned long)uaddr - start)
1853 return size - ((unsigned long)uaddr - start);
1854 return 0;
cdd591fc
AG
1855}
1856EXPORT_SYMBOL(fault_in_safe_writeable);
1857
bb523b40
AG
1858/**
1859 * fault_in_readable - fault in userspace address range for reading
1860 * @uaddr: start of user address range
1861 * @size: size of user address range
1862 *
1863 * Returns the number of bytes not faulted in (like copy_to_user() and
1864 * copy_from_user()).
1865 */
1866size_t fault_in_readable(const char __user *uaddr, size_t size)
1867{
1868 const char __user *start = uaddr, *end;
1869 volatile char c;
1870
1871 if (unlikely(size == 0))
1872 return 0;
677b2a8c
CL
1873 if (!user_read_access_begin(uaddr, size))
1874 return size;
bb523b40 1875 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1876 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1877 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1878 }
1879 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1880 if (unlikely(end < start))
1881 end = NULL;
1882 while (uaddr != end) {
677b2a8c 1883 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1884 uaddr += PAGE_SIZE;
1885 }
1886
1887out:
677b2a8c 1888 user_read_access_end();
bb523b40
AG
1889 (void)c;
1890 if (size > uaddr - start)
1891 return size - (uaddr - start);
1892 return 0;
1893}
1894EXPORT_SYMBOL(fault_in_readable);
1895
8f942eea
JH
1896/**
1897 * get_dump_page() - pin user page in memory while writing it to core dump
1898 * @addr: user address
1899 *
1900 * Returns struct page pointer of user page pinned for dump,
1901 * to be freed afterwards by put_page().
1902 *
1903 * Returns NULL on any kind of failure - a hole must then be inserted into
1904 * the corefile, to preserve alignment with its headers; and also returns
1905 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1906 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1907 *
7f3bfab5 1908 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1909 */
1910#ifdef CONFIG_ELF_CORE
1911struct page *get_dump_page(unsigned long addr)
1912{
7f3bfab5 1913 struct mm_struct *mm = current->mm;
8f942eea 1914 struct page *page;
7f3bfab5
JH
1915 int locked = 1;
1916 int ret;
8f942eea 1917
7f3bfab5 1918 if (mmap_read_lock_killable(mm))
8f942eea 1919 return NULL;
7f3bfab5
JH
1920 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1921 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1922 if (locked)
1923 mmap_read_unlock(mm);
1924 return (ret == 1) ? page : NULL;
8f942eea
JH
1925}
1926#endif /* CONFIG_ELF_CORE */
1927
d1e153fe 1928#ifdef CONFIG_MIGRATION
f68749ec
PT
1929/*
1930 * Check whether all pages are pinnable, if so return number of pages. If some
1931 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1932 * pages were migrated, or if some pages were not successfully isolated.
1933 * Return negative error if migration fails.
1934 */
1935static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 1936 struct page **pages,
d1e153fe 1937 unsigned int gup_flags)
9a4e9f3b 1938{
f9f38f78 1939 unsigned long isolation_error_count = 0, i;
1b7f7e58 1940 struct folio *prev_folio = NULL;
d1e153fe 1941 LIST_HEAD(movable_page_list);
b05a79d4 1942 bool drain_allow = true, coherent_pages = false;
f9f38f78 1943 int ret = 0;
9a4e9f3b 1944
83c02c23 1945 for (i = 0; i < nr_pages; i++) {
1b7f7e58 1946 struct folio *folio = page_folio(pages[i]);
f9f38f78 1947
1b7f7e58 1948 if (folio == prev_folio)
83c02c23 1949 continue;
1b7f7e58 1950 prev_folio = folio;
f9f38f78 1951
b05a79d4
AP
1952 /*
1953 * Device coherent pages are managed by a driver and should not
1954 * be pinned indefinitely as it prevents the driver moving the
1955 * page. So when trying to pin with FOLL_LONGTERM instead try
1956 * to migrate the page out of device memory.
1957 */
1958 if (folio_is_device_coherent(folio)) {
1959 /*
1960 * We always want a new GUP lookup with device coherent
1961 * pages.
1962 */
1963 pages[i] = 0;
1964 coherent_pages = true;
1965
1966 /*
1967 * Migration will fail if the page is pinned, so convert
1968 * the pin on the source page to a normal reference.
1969 */
1970 if (gup_flags & FOLL_PIN) {
1971 get_page(&folio->page);
1972 unpin_user_page(&folio->page);
1973 }
1974
1975 ret = migrate_device_coherent_page(&folio->page);
1976 if (ret)
1977 goto unpin_pages;
1978
f9f38f78 1979 continue;
b05a79d4 1980 }
f9f38f78 1981
b05a79d4
AP
1982 if (folio_is_longterm_pinnable(folio))
1983 continue;
9a4e9f3b 1984 /*
f9f38f78 1985 * Try to move out any movable page before pinning the range.
9a4e9f3b 1986 */
1b7f7e58 1987 if (folio_test_hugetlb(folio)) {
7ce82f4c 1988 if (isolate_hugetlb(&folio->page,
1b7f7e58 1989 &movable_page_list))
f9f38f78
CH
1990 isolation_error_count++;
1991 continue;
1992 }
9a4e9f3b 1993
1b7f7e58 1994 if (!folio_test_lru(folio) && drain_allow) {
f9f38f78
CH
1995 lru_add_drain_all();
1996 drain_allow = false;
1997 }
1998
1b7f7e58 1999 if (folio_isolate_lru(folio)) {
f9f38f78
CH
2000 isolation_error_count++;
2001 continue;
9a4e9f3b 2002 }
1b7f7e58
MWO
2003 list_add_tail(&folio->lru, &movable_page_list);
2004 node_stat_mod_folio(folio,
2005 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2006 folio_nr_pages(folio));
9a4e9f3b
AK
2007 }
2008
65974cb9
AP
2009 if (!list_empty(&movable_page_list) || isolation_error_count ||
2010 coherent_pages)
f9f38f78
CH
2011 goto unpin_pages;
2012
6e7f34eb
PT
2013 /*
2014 * If list is empty, and no isolation errors, means that all pages are
2015 * in the correct zone.
2016 */
f9f38f78 2017 return nr_pages;
6e7f34eb 2018
f9f38f78 2019unpin_pages:
b05a79d4
AP
2020 /*
2021 * pages[i] might be NULL if any device coherent pages were found.
2022 */
2023 for (i = 0; i < nr_pages; i++) {
2024 if (!pages[i])
2025 continue;
2026
2027 if (gup_flags & FOLL_PIN)
2028 unpin_user_page(pages[i]);
2029 else
f68749ec
PT
2030 put_page(pages[i]);
2031 }
f9f38f78 2032
d1e153fe 2033 if (!list_empty(&movable_page_list)) {
f9f38f78
CH
2034 struct migration_target_control mtc = {
2035 .nid = NUMA_NO_NODE,
2036 .gfp_mask = GFP_USER | __GFP_NOWARN,
2037 };
2038
d1e153fe 2039 ret = migrate_pages(&movable_page_list, alloc_migration_target,
f0f44638 2040 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
5ac95884 2041 MR_LONGTERM_PIN, NULL);
f9f38f78
CH
2042 if (ret > 0) /* number of pages not migrated */
2043 ret = -ENOMEM;
9a4e9f3b
AK
2044 }
2045
f9f38f78
CH
2046 if (ret && !list_empty(&movable_page_list))
2047 putback_movable_pages(&movable_page_list);
2048 return ret;
9a4e9f3b
AK
2049}
2050#else
f68749ec 2051static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 2052 struct page **pages,
d1e153fe 2053 unsigned int gup_flags)
9a4e9f3b
AK
2054{
2055 return nr_pages;
2056}
d1e153fe 2057#endif /* CONFIG_MIGRATION */
9a4e9f3b 2058
2bb6d283 2059/*
932f4a63
IW
2060 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2061 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 2062 */
64019a2e 2063static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
2064 unsigned long start,
2065 unsigned long nr_pages,
2066 struct page **pages,
2067 struct vm_area_struct **vmas,
2068 unsigned int gup_flags)
2bb6d283 2069{
f68749ec 2070 unsigned int flags;
52650c8b 2071 long rc;
2bb6d283 2072
f68749ec
PT
2073 if (!(gup_flags & FOLL_LONGTERM))
2074 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2075 NULL, gup_flags);
2076 flags = memalloc_pin_save();
2077 do {
2078 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2079 NULL, gup_flags);
2080 if (rc <= 0)
2081 break;
2082 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
2083 } while (!rc);
2084 memalloc_pin_restore(flags);
2bb6d283 2085
2bb6d283
DW
2086 return rc;
2087}
932f4a63 2088
447f3e45
BS
2089static bool is_valid_gup_flags(unsigned int gup_flags)
2090{
2091 /*
2092 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2093 * never directly by the caller, so enforce that with an assertion:
2094 */
2095 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2096 return false;
2097 /*
2098 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2099 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2100 * FOLL_PIN.
2101 */
2102 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2103 return false;
2104
2105 return true;
2106}
2107
22bf29b6 2108#ifdef CONFIG_MMU
64019a2e 2109static long __get_user_pages_remote(struct mm_struct *mm,
22bf29b6
JH
2110 unsigned long start, unsigned long nr_pages,
2111 unsigned int gup_flags, struct page **pages,
2112 struct vm_area_struct **vmas, int *locked)
2113{
2114 /*
2115 * Parts of FOLL_LONGTERM behavior are incompatible with
2116 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2117 * vmas. However, this only comes up if locked is set, and there are
2118 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2119 * allow what we can.
2120 */
2121 if (gup_flags & FOLL_LONGTERM) {
2122 if (WARN_ON_ONCE(locked))
2123 return -EINVAL;
2124 /*
2125 * This will check the vmas (even if our vmas arg is NULL)
2126 * and return -ENOTSUPP if DAX isn't allowed in this case:
2127 */
64019a2e 2128 return __gup_longterm_locked(mm, start, nr_pages, pages,
22bf29b6
JH
2129 vmas, gup_flags | FOLL_TOUCH |
2130 FOLL_REMOTE);
2131 }
2132
64019a2e 2133 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
22bf29b6
JH
2134 locked,
2135 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2136}
2137
adc8cb40 2138/**
c4237f8b 2139 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2140 * @mm: mm_struct of target mm
2141 * @start: starting user address
2142 * @nr_pages: number of pages from start to pin
2143 * @gup_flags: flags modifying lookup behaviour
2144 * @pages: array that receives pointers to the pages pinned.
2145 * Should be at least nr_pages long. Or NULL, if caller
2146 * only intends to ensure the pages are faulted in.
2147 * @vmas: array of pointers to vmas corresponding to each page.
2148 * Or NULL if the caller does not require them.
2149 * @locked: pointer to lock flag indicating whether lock is held and
2150 * subsequently whether VM_FAULT_RETRY functionality can be
2151 * utilised. Lock must initially be held.
2152 *
2153 * Returns either number of pages pinned (which may be less than the
2154 * number requested), or an error. Details about the return value:
2155 *
2156 * -- If nr_pages is 0, returns 0.
2157 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2158 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2159 * pages pinned. Again, this may be less than nr_pages.
2160 *
2161 * The caller is responsible for releasing returned @pages, via put_page().
2162 *
c1e8d7c6 2163 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 2164 *
c1e8d7c6 2165 * Must be called with mmap_lock held for read or write.
c4237f8b 2166 *
adc8cb40
SJ
2167 * get_user_pages_remote walks a process's page tables and takes a reference
2168 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2169 * instant. That is, it takes the page that would be accessed if a user
2170 * thread accesses the given user virtual address at that instant.
2171 *
2172 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2173 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
2174 * page there in some cases (eg. if mmapped pagecache has been invalidated
2175 * and subsequently re faulted). However it does guarantee that the page
2176 * won't be freed completely. And mostly callers simply care that the page
2177 * contains data that was valid *at some point in time*. Typically, an IO
2178 * or similar operation cannot guarantee anything stronger anyway because
2179 * locks can't be held over the syscall boundary.
2180 *
2181 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2182 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2183 * be called after the page is finished with, and before put_page is called.
2184 *
adc8cb40
SJ
2185 * get_user_pages_remote is typically used for fewer-copy IO operations,
2186 * to get a handle on the memory by some means other than accesses
2187 * via the user virtual addresses. The pages may be submitted for
2188 * DMA to devices or accessed via their kernel linear mapping (via the
2189 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2190 *
2191 * See also get_user_pages_fast, for performance critical applications.
2192 *
adc8cb40 2193 * get_user_pages_remote should be phased out in favor of
c4237f8b 2194 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2195 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2196 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2197 */
64019a2e 2198long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2199 unsigned long start, unsigned long nr_pages,
2200 unsigned int gup_flags, struct page **pages,
2201 struct vm_area_struct **vmas, int *locked)
2202{
447f3e45 2203 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2204 return -EINVAL;
2205
64019a2e 2206 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
22bf29b6 2207 pages, vmas, locked);
c4237f8b
JH
2208}
2209EXPORT_SYMBOL(get_user_pages_remote);
2210
eddb1c22 2211#else /* CONFIG_MMU */
64019a2e 2212long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2213 unsigned long start, unsigned long nr_pages,
2214 unsigned int gup_flags, struct page **pages,
2215 struct vm_area_struct **vmas, int *locked)
2216{
2217 return 0;
2218}
3faa52c0 2219
64019a2e 2220static long __get_user_pages_remote(struct mm_struct *mm,
3faa52c0
JH
2221 unsigned long start, unsigned long nr_pages,
2222 unsigned int gup_flags, struct page **pages,
2223 struct vm_area_struct **vmas, int *locked)
2224{
2225 return 0;
2226}
eddb1c22
JH
2227#endif /* !CONFIG_MMU */
2228
adc8cb40
SJ
2229/**
2230 * get_user_pages() - pin user pages in memory
2231 * @start: starting user address
2232 * @nr_pages: number of pages from start to pin
2233 * @gup_flags: flags modifying lookup behaviour
2234 * @pages: array that receives pointers to the pages pinned.
2235 * Should be at least nr_pages long. Or NULL, if caller
2236 * only intends to ensure the pages are faulted in.
2237 * @vmas: array of pointers to vmas corresponding to each page.
2238 * Or NULL if the caller does not require them.
2239 *
64019a2e
PX
2240 * This is the same as get_user_pages_remote(), just with a less-flexible
2241 * calling convention where we assume that the mm being operated on belongs to
2242 * the current task, and doesn't allow passing of a locked parameter. We also
2243 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2244 */
2245long get_user_pages(unsigned long start, unsigned long nr_pages,
2246 unsigned int gup_flags, struct page **pages,
2247 struct vm_area_struct **vmas)
2248{
447f3e45 2249 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2250 return -EINVAL;
2251
64019a2e 2252 return __gup_longterm_locked(current->mm, start, nr_pages,
932f4a63
IW
2253 pages, vmas, gup_flags | FOLL_TOUCH);
2254}
2255EXPORT_SYMBOL(get_user_pages);
2bb6d283 2256
acc3c8d1 2257/*
d3649f68 2258 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2259 *
3e4e28c5 2260 * mmap_read_lock(mm);
64019a2e 2261 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2262 * mmap_read_unlock(mm);
d3649f68
CH
2263 *
2264 * with:
2265 *
64019a2e 2266 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2267 *
2268 * It is functionally equivalent to get_user_pages_fast so
2269 * get_user_pages_fast should be used instead if specific gup_flags
2270 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2271 */
d3649f68
CH
2272long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2273 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
2274{
2275 struct mm_struct *mm = current->mm;
d3649f68
CH
2276 int locked = 1;
2277 long ret;
acc3c8d1 2278
d3649f68
CH
2279 /*
2280 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2281 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2282 * vmas. As there are no users of this flag in this call we simply
2283 * disallow this option for now.
2284 */
2285 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2286 return -EINVAL;
acc3c8d1 2287
d8ed45c5 2288 mmap_read_lock(mm);
64019a2e 2289 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
d3649f68 2290 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 2291 if (locked)
d8ed45c5 2292 mmap_read_unlock(mm);
d3649f68 2293 return ret;
4bbd4c77 2294}
d3649f68 2295EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2296
2297/*
67a929e0 2298 * Fast GUP
2667f50e
SC
2299 *
2300 * get_user_pages_fast attempts to pin user pages by walking the page
2301 * tables directly and avoids taking locks. Thus the walker needs to be
2302 * protected from page table pages being freed from under it, and should
2303 * block any THP splits.
2304 *
2305 * One way to achieve this is to have the walker disable interrupts, and
2306 * rely on IPIs from the TLB flushing code blocking before the page table
2307 * pages are freed. This is unsuitable for architectures that do not need
2308 * to broadcast an IPI when invalidating TLBs.
2309 *
2310 * Another way to achieve this is to batch up page table containing pages
2311 * belonging to more than one mm_user, then rcu_sched a callback to free those
2312 * pages. Disabling interrupts will allow the fast_gup walker to both block
2313 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2314 * (which is a relatively rare event). The code below adopts this strategy.
2315 *
2316 * Before activating this code, please be aware that the following assumptions
2317 * are currently made:
2318 *
ff2e6d72 2319 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2320 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2321 *
2667f50e
SC
2322 * *) ptes can be read atomically by the architecture.
2323 *
2324 * *) access_ok is sufficient to validate userspace address ranges.
2325 *
2326 * The last two assumptions can be relaxed by the addition of helper functions.
2327 *
2328 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2329 */
67a929e0 2330#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2331
790c7369 2332static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2333 unsigned int flags,
790c7369 2334 struct page **pages)
b59f65fa
KS
2335{
2336 while ((*nr) - nr_start) {
2337 struct page *page = pages[--(*nr)];
2338
2339 ClearPageReferenced(page);
3faa52c0
JH
2340 if (flags & FOLL_PIN)
2341 unpin_user_page(page);
2342 else
2343 put_page(page);
b59f65fa
KS
2344 }
2345}
2346
3010a5ea 2347#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
70cbc3cc
YS
2348/*
2349 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2350 * operations.
2351 *
2352 * To pin the page, fast-gup needs to do below in order:
2353 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2354 *
2355 * For the rest of pgtable operations where pgtable updates can be racy
2356 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2357 * is pinned.
2358 *
2359 * Above will work for all pte-level operations, including THP split.
2360 *
2361 * For THP collapse, it's a bit more complicated because fast-gup may be
2362 * walking a pgtable page that is being freed (pte is still valid but pmd
2363 * can be cleared already). To avoid race in such condition, we need to
2364 * also check pmd here to make sure pmd doesn't change (corresponds to
2365 * pmdp_collapse_flush() in the THP collapse code path).
2366 */
2367static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2368 unsigned long end, unsigned int flags,
2369 struct page **pages, int *nr)
2667f50e 2370{
b59f65fa
KS
2371 struct dev_pagemap *pgmap = NULL;
2372 int nr_start = *nr, ret = 0;
2667f50e 2373 pte_t *ptep, *ptem;
2667f50e
SC
2374
2375 ptem = ptep = pte_offset_map(&pmd, addr);
2376 do {
2a4a06da 2377 pte_t pte = ptep_get_lockless(ptep);
b0496fe4
MWO
2378 struct page *page;
2379 struct folio *folio;
2667f50e
SC
2380
2381 /*
2382 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2383 * path using the pte_protnone check.
2667f50e 2384 */
e7884f8e
KS
2385 if (pte_protnone(pte))
2386 goto pte_unmap;
2387
b798bec4 2388 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2389 goto pte_unmap;
2390
b59f65fa 2391 if (pte_devmap(pte)) {
7af75561
IW
2392 if (unlikely(flags & FOLL_LONGTERM))
2393 goto pte_unmap;
2394
b59f65fa
KS
2395 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2396 if (unlikely(!pgmap)) {
3b78d834 2397 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2398 goto pte_unmap;
2399 }
2400 } else if (pte_special(pte))
2667f50e
SC
2401 goto pte_unmap;
2402
2403 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2404 page = pte_page(pte);
2405
b0496fe4
MWO
2406 folio = try_grab_folio(page, 1, flags);
2407 if (!folio)
2667f50e
SC
2408 goto pte_unmap;
2409
1507f512 2410 if (unlikely(page_is_secretmem(page))) {
b0496fe4 2411 gup_put_folio(folio, 1, flags);
1507f512
MR
2412 goto pte_unmap;
2413 }
2414
70cbc3cc
YS
2415 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2416 unlikely(pte_val(pte) != pte_val(*ptep))) {
b0496fe4 2417 gup_put_folio(folio, 1, flags);
2667f50e
SC
2418 goto pte_unmap;
2419 }
2420
a7f22660
DH
2421 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2422 gup_put_folio(folio, 1, flags);
2423 goto pte_unmap;
2424 }
2425
f28d4363
CI
2426 /*
2427 * We need to make the page accessible if and only if we are
2428 * going to access its content (the FOLL_PIN case). Please
2429 * see Documentation/core-api/pin_user_pages.rst for
2430 * details.
2431 */
2432 if (flags & FOLL_PIN) {
2433 ret = arch_make_page_accessible(page);
2434 if (ret) {
b0496fe4 2435 gup_put_folio(folio, 1, flags);
f28d4363
CI
2436 goto pte_unmap;
2437 }
2438 }
b0496fe4 2439 folio_set_referenced(folio);
2667f50e
SC
2440 pages[*nr] = page;
2441 (*nr)++;
2667f50e
SC
2442 } while (ptep++, addr += PAGE_SIZE, addr != end);
2443
2444 ret = 1;
2445
2446pte_unmap:
832d7aa0
CH
2447 if (pgmap)
2448 put_dev_pagemap(pgmap);
2667f50e
SC
2449 pte_unmap(ptem);
2450 return ret;
2451}
2452#else
2453
2454/*
2455 * If we can't determine whether or not a pte is special, then fail immediately
2456 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2457 * to be special.
2458 *
2459 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2460 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2461 * useful to have gup_huge_pmd even if we can't operate on ptes.
2462 */
70cbc3cc
YS
2463static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2464 unsigned long end, unsigned int flags,
2465 struct page **pages, int *nr)
2667f50e
SC
2466{
2467 return 0;
2468}
3010a5ea 2469#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2470
17596731 2471#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2472static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2473 unsigned long end, unsigned int flags,
2474 struct page **pages, int *nr)
b59f65fa
KS
2475{
2476 int nr_start = *nr;
2477 struct dev_pagemap *pgmap = NULL;
2478
2479 do {
2480 struct page *page = pfn_to_page(pfn);
2481
2482 pgmap = get_dev_pagemap(pfn, pgmap);
2483 if (unlikely(!pgmap)) {
3b78d834 2484 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2485 break;
b59f65fa
KS
2486 }
2487 SetPageReferenced(page);
2488 pages[*nr] = page;
3faa52c0
JH
2489 if (unlikely(!try_grab_page(page, flags))) {
2490 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2491 break;
3faa52c0 2492 }
b59f65fa
KS
2493 (*nr)++;
2494 pfn++;
2495 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2496
6401c4eb 2497 put_dev_pagemap(pgmap);
20b7fee7 2498 return addr == end;
b59f65fa
KS
2499}
2500
a9b6de77 2501static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2502 unsigned long end, unsigned int flags,
2503 struct page **pages, int *nr)
b59f65fa
KS
2504{
2505 unsigned long fault_pfn;
a9b6de77
DW
2506 int nr_start = *nr;
2507
2508 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2509 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2510 return 0;
b59f65fa 2511
a9b6de77 2512 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2513 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2514 return 0;
2515 }
2516 return 1;
b59f65fa
KS
2517}
2518
a9b6de77 2519static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2520 unsigned long end, unsigned int flags,
2521 struct page **pages, int *nr)
b59f65fa
KS
2522{
2523 unsigned long fault_pfn;
a9b6de77
DW
2524 int nr_start = *nr;
2525
2526 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2527 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2528 return 0;
b59f65fa 2529
a9b6de77 2530 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2531 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2532 return 0;
2533 }
2534 return 1;
b59f65fa
KS
2535}
2536#else
a9b6de77 2537static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2538 unsigned long end, unsigned int flags,
2539 struct page **pages, int *nr)
b59f65fa
KS
2540{
2541 BUILD_BUG();
2542 return 0;
2543}
2544
a9b6de77 2545static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2546 unsigned long end, unsigned int flags,
2547 struct page **pages, int *nr)
b59f65fa
KS
2548{
2549 BUILD_BUG();
2550 return 0;
2551}
2552#endif
2553
a43e9820
JH
2554static int record_subpages(struct page *page, unsigned long addr,
2555 unsigned long end, struct page **pages)
2556{
2557 int nr;
2558
c228afb1
MWO
2559 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2560 pages[nr] = nth_page(page, nr);
a43e9820
JH
2561
2562 return nr;
2563}
2564
cbd34da7
CH
2565#ifdef CONFIG_ARCH_HAS_HUGEPD
2566static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2567 unsigned long sz)
2568{
2569 unsigned long __boundary = (addr + sz) & ~(sz-1);
2570 return (__boundary - 1 < end - 1) ? __boundary : end;
2571}
2572
2573static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2574 unsigned long end, unsigned int flags,
2575 struct page **pages, int *nr)
cbd34da7
CH
2576{
2577 unsigned long pte_end;
09a1626e
MWO
2578 struct page *page;
2579 struct folio *folio;
cbd34da7
CH
2580 pte_t pte;
2581 int refs;
2582
2583 pte_end = (addr + sz) & ~(sz-1);
2584 if (pte_end < end)
2585 end = pte_end;
2586
55ca2263 2587 pte = huge_ptep_get(ptep);
cbd34da7 2588
0cd22afd 2589 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2590 return 0;
2591
2592 /* hugepages are never "special" */
2593 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2594
09a1626e 2595 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
a43e9820 2596 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2597
09a1626e
MWO
2598 folio = try_grab_folio(page, refs, flags);
2599 if (!folio)
cbd34da7 2600 return 0;
cbd34da7
CH
2601
2602 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
09a1626e 2603 gup_put_folio(folio, refs, flags);
cbd34da7
CH
2604 return 0;
2605 }
2606
a7f22660
DH
2607 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2608 gup_put_folio(folio, refs, flags);
2609 return 0;
2610 }
2611
a43e9820 2612 *nr += refs;
09a1626e 2613 folio_set_referenced(folio);
cbd34da7
CH
2614 return 1;
2615}
2616
2617static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2618 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2619 struct page **pages, int *nr)
2620{
2621 pte_t *ptep;
2622 unsigned long sz = 1UL << hugepd_shift(hugepd);
2623 unsigned long next;
2624
2625 ptep = hugepte_offset(hugepd, addr, pdshift);
2626 do {
2627 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2628 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2629 return 0;
2630 } while (ptep++, addr = next, addr != end);
2631
2632 return 1;
2633}
2634#else
2635static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2636 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2637 struct page **pages, int *nr)
2638{
2639 return 0;
2640}
2641#endif /* CONFIG_ARCH_HAS_HUGEPD */
2642
2667f50e 2643static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2644 unsigned long end, unsigned int flags,
2645 struct page **pages, int *nr)
2667f50e 2646{
667ed1f7
MWO
2647 struct page *page;
2648 struct folio *folio;
2667f50e
SC
2649 int refs;
2650
b798bec4 2651 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2652 return 0;
2653
7af75561
IW
2654 if (pmd_devmap(orig)) {
2655 if (unlikely(flags & FOLL_LONGTERM))
2656 return 0;
86dfbed4
JH
2657 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2658 pages, nr);
7af75561 2659 }
b59f65fa 2660
c228afb1 2661 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2662 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2663
667ed1f7
MWO
2664 folio = try_grab_folio(page, refs, flags);
2665 if (!folio)
2667f50e 2666 return 0;
2667f50e
SC
2667
2668 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
667ed1f7 2669 gup_put_folio(folio, refs, flags);
2667f50e
SC
2670 return 0;
2671 }
2672
a7f22660
DH
2673 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2674 gup_put_folio(folio, refs, flags);
2675 return 0;
2676 }
2677
a43e9820 2678 *nr += refs;
667ed1f7 2679 folio_set_referenced(folio);
2667f50e
SC
2680 return 1;
2681}
2682
2683static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2684 unsigned long end, unsigned int flags,
2685 struct page **pages, int *nr)
2667f50e 2686{
83afb52e
MWO
2687 struct page *page;
2688 struct folio *folio;
2667f50e
SC
2689 int refs;
2690
b798bec4 2691 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2692 return 0;
2693
7af75561
IW
2694 if (pud_devmap(orig)) {
2695 if (unlikely(flags & FOLL_LONGTERM))
2696 return 0;
86dfbed4
JH
2697 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2698 pages, nr);
7af75561 2699 }
b59f65fa 2700
c228afb1 2701 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2702 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2703
83afb52e
MWO
2704 folio = try_grab_folio(page, refs, flags);
2705 if (!folio)
2667f50e 2706 return 0;
2667f50e
SC
2707
2708 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
83afb52e 2709 gup_put_folio(folio, refs, flags);
2667f50e
SC
2710 return 0;
2711 }
2712
a7f22660
DH
2713 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2714 gup_put_folio(folio, refs, flags);
2715 return 0;
2716 }
2717
a43e9820 2718 *nr += refs;
83afb52e 2719 folio_set_referenced(folio);
2667f50e
SC
2720 return 1;
2721}
2722
f30c59e9 2723static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2724 unsigned long end, unsigned int flags,
f30c59e9
AK
2725 struct page **pages, int *nr)
2726{
2727 int refs;
2d7919a2
MWO
2728 struct page *page;
2729 struct folio *folio;
f30c59e9 2730
b798bec4 2731 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2732 return 0;
2733
b59f65fa 2734 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2735
c228afb1 2736 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2737 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2738
2d7919a2
MWO
2739 folio = try_grab_folio(page, refs, flags);
2740 if (!folio)
f30c59e9 2741 return 0;
f30c59e9
AK
2742
2743 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2d7919a2 2744 gup_put_folio(folio, refs, flags);
f30c59e9
AK
2745 return 0;
2746 }
2747
a43e9820 2748 *nr += refs;
2d7919a2 2749 folio_set_referenced(folio);
f30c59e9
AK
2750 return 1;
2751}
2752
d3f7b1bb 2753static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2754 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2755{
2756 unsigned long next;
2757 pmd_t *pmdp;
2758
d3f7b1bb 2759 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2760 do {
38c5ce93 2761 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2762
2763 next = pmd_addr_end(addr, end);
84c3fc4e 2764 if (!pmd_present(pmd))
2667f50e
SC
2765 return 0;
2766
414fd080
YZ
2767 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2768 pmd_devmap(pmd))) {
2667f50e
SC
2769 /*
2770 * NUMA hinting faults need to be handled in the GUP
2771 * slowpath for accounting purposes and so that they
2772 * can be serialised against THP migration.
2773 */
8a0516ed 2774 if (pmd_protnone(pmd))
2667f50e
SC
2775 return 0;
2776
b798bec4 2777 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2778 pages, nr))
2779 return 0;
2780
f30c59e9
AK
2781 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2782 /*
2783 * architecture have different format for hugetlbfs
2784 * pmd format and THP pmd format
2785 */
2786 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2787 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2788 return 0;
70cbc3cc 2789 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2923117b 2790 return 0;
2667f50e
SC
2791 } while (pmdp++, addr = next, addr != end);
2792
2793 return 1;
2794}
2795
d3f7b1bb 2796static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2797 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2798{
2799 unsigned long next;
2800 pud_t *pudp;
2801
d3f7b1bb 2802 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2803 do {
e37c6982 2804 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2805
2806 next = pud_addr_end(addr, end);
15494520 2807 if (unlikely(!pud_present(pud)))
2667f50e 2808 return 0;
f30c59e9 2809 if (unlikely(pud_huge(pud))) {
b798bec4 2810 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2811 pages, nr))
2812 return 0;
2813 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2814 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2815 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2816 return 0;
d3f7b1bb 2817 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2818 return 0;
2819 } while (pudp++, addr = next, addr != end);
2820
2821 return 1;
2822}
2823
d3f7b1bb 2824static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2825 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2826{
2827 unsigned long next;
2828 p4d_t *p4dp;
2829
d3f7b1bb 2830 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2831 do {
2832 p4d_t p4d = READ_ONCE(*p4dp);
2833
2834 next = p4d_addr_end(addr, end);
2835 if (p4d_none(p4d))
2836 return 0;
2837 BUILD_BUG_ON(p4d_huge(p4d));
2838 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2839 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2840 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2841 return 0;
d3f7b1bb 2842 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2843 return 0;
2844 } while (p4dp++, addr = next, addr != end);
2845
2846 return 1;
2847}
2848
5b65c467 2849static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2850 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2851{
2852 unsigned long next;
2853 pgd_t *pgdp;
2854
2855 pgdp = pgd_offset(current->mm, addr);
2856 do {
2857 pgd_t pgd = READ_ONCE(*pgdp);
2858
2859 next = pgd_addr_end(addr, end);
2860 if (pgd_none(pgd))
2861 return;
2862 if (unlikely(pgd_huge(pgd))) {
b798bec4 2863 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2864 pages, nr))
2865 return;
2866 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2867 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2868 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2869 return;
d3f7b1bb 2870 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2871 return;
2872 } while (pgdp++, addr = next, addr != end);
2873}
050a9adc
CH
2874#else
2875static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2876 unsigned int flags, struct page **pages, int *nr)
2877{
2878}
2879#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2880
2881#ifndef gup_fast_permitted
2882/*
dadbb612 2883 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2884 * we need to fall back to the slow version:
2885 */
26f4c328 2886static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2887{
26f4c328 2888 return true;
5b65c467
KS
2889}
2890#endif
2891
7af75561
IW
2892static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2893 unsigned int gup_flags, struct page **pages)
2894{
2895 int ret;
2896
2897 /*
2898 * FIXME: FOLL_LONGTERM does not work with
2899 * get_user_pages_unlocked() (see comments in that function)
2900 */
2901 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2902 mmap_read_lock(current->mm);
64019a2e 2903 ret = __gup_longterm_locked(current->mm,
7af75561
IW
2904 start, nr_pages,
2905 pages, NULL, gup_flags);
d8ed45c5 2906 mmap_read_unlock(current->mm);
7af75561
IW
2907 } else {
2908 ret = get_user_pages_unlocked(start, nr_pages,
2909 pages, gup_flags);
2910 }
2911
2912 return ret;
2913}
2914
c28b1fc7
JG
2915static unsigned long lockless_pages_from_mm(unsigned long start,
2916 unsigned long end,
2917 unsigned int gup_flags,
2918 struct page **pages)
2919{
2920 unsigned long flags;
2921 int nr_pinned = 0;
57efa1fe 2922 unsigned seq;
c28b1fc7
JG
2923
2924 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2925 !gup_fast_permitted(start, end))
2926 return 0;
2927
57efa1fe
JG
2928 if (gup_flags & FOLL_PIN) {
2929 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2930 if (seq & 1)
2931 return 0;
2932 }
2933
c28b1fc7
JG
2934 /*
2935 * Disable interrupts. The nested form is used, in order to allow full,
2936 * general purpose use of this routine.
2937 *
2938 * With interrupts disabled, we block page table pages from being freed
2939 * from under us. See struct mmu_table_batch comments in
2940 * include/asm-generic/tlb.h for more details.
2941 *
2942 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2943 * that come from THPs splitting.
2944 */
2945 local_irq_save(flags);
2946 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2947 local_irq_restore(flags);
57efa1fe
JG
2948
2949 /*
2950 * When pinning pages for DMA there could be a concurrent write protect
2951 * from fork() via copy_page_range(), in this case always fail fast GUP.
2952 */
2953 if (gup_flags & FOLL_PIN) {
2954 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
b6a2619c 2955 unpin_user_pages_lockless(pages, nr_pinned);
57efa1fe 2956 return 0;
b6a2619c
DH
2957 } else {
2958 sanity_check_pinned_pages(pages, nr_pinned);
57efa1fe
JG
2959 }
2960 }
c28b1fc7
JG
2961 return nr_pinned;
2962}
2963
2964static int internal_get_user_pages_fast(unsigned long start,
2965 unsigned long nr_pages,
eddb1c22
JH
2966 unsigned int gup_flags,
2967 struct page **pages)
2667f50e 2968{
c28b1fc7
JG
2969 unsigned long len, end;
2970 unsigned long nr_pinned;
2971 int ret;
2667f50e 2972
f4000fdf 2973 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 2974 FOLL_FORCE | FOLL_PIN | FOLL_GET |
55b8fe70 2975 FOLL_FAST_ONLY | FOLL_NOFAULT)))
817be129
CH
2976 return -EINVAL;
2977
a458b76a
AA
2978 if (gup_flags & FOLL_PIN)
2979 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 2980
f81cd178 2981 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2982 might_lock_read(&current->mm->mmap_lock);
f81cd178 2983
f455c854 2984 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2985 len = nr_pages << PAGE_SHIFT;
2986 if (check_add_overflow(start, len, &end))
c61611f7 2987 return 0;
96d4f267 2988 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2989 return -EFAULT;
73e10a61 2990
c28b1fc7
JG
2991 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2992 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2993 return nr_pinned;
2667f50e 2994
c28b1fc7
JG
2995 /* Slow path: try to get the remaining pages with get_user_pages */
2996 start += nr_pinned << PAGE_SHIFT;
2997 pages += nr_pinned;
2998 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2999 pages);
3000 if (ret < 0) {
3001 /*
3002 * The caller has to unpin the pages we already pinned so
3003 * returning -errno is not an option
3004 */
3005 if (nr_pinned)
3006 return nr_pinned;
3007 return ret;
2667f50e 3008 }
c28b1fc7 3009 return ret + nr_pinned;
2667f50e 3010}
c28b1fc7 3011
dadbb612
SJ
3012/**
3013 * get_user_pages_fast_only() - pin user pages in memory
3014 * @start: starting user address
3015 * @nr_pages: number of pages from start to pin
3016 * @gup_flags: flags modifying pin behaviour
3017 * @pages: array that receives pointers to the pages pinned.
3018 * Should be at least nr_pages long.
3019 *
9e1f0580
JH
3020 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3021 * the regular GUP.
3022 * Note a difference with get_user_pages_fast: this always returns the
3023 * number of pages pinned, 0 if no pages were pinned.
3024 *
3025 * If the architecture does not support this function, simply return with no
3026 * pages pinned.
3027 *
3028 * Careful, careful! COW breaking can go either way, so a non-write
3029 * access can get ambiguous page results. If you call this function without
3030 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3031 */
dadbb612
SJ
3032int get_user_pages_fast_only(unsigned long start, int nr_pages,
3033 unsigned int gup_flags, struct page **pages)
9e1f0580 3034{
376a34ef 3035 int nr_pinned;
9e1f0580
JH
3036 /*
3037 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3038 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
3039 *
3040 * FOLL_FAST_ONLY is required in order to match the API description of
3041 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 3042 */
dadbb612 3043 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 3044
376a34ef
JH
3045 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3046 pages);
9e1f0580
JH
3047
3048 /*
376a34ef
JH
3049 * As specified in the API description above, this routine is not
3050 * allowed to return negative values. However, the common core
3051 * routine internal_get_user_pages_fast() *can* return -errno.
3052 * Therefore, correct for that here:
9e1f0580 3053 */
376a34ef
JH
3054 if (nr_pinned < 0)
3055 nr_pinned = 0;
9e1f0580
JH
3056
3057 return nr_pinned;
3058}
dadbb612 3059EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 3060
eddb1c22
JH
3061/**
3062 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
3063 * @start: starting user address
3064 * @nr_pages: number of pages from start to pin
3065 * @gup_flags: flags modifying pin behaviour
3066 * @pages: array that receives pointers to the pages pinned.
3067 * Should be at least nr_pages long.
eddb1c22 3068 *
c1e8d7c6 3069 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
3070 * If not successful, it will fall back to taking the lock and
3071 * calling get_user_pages().
3072 *
3073 * Returns number of pages pinned. This may be fewer than the number requested.
3074 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3075 * -errno.
3076 */
3077int get_user_pages_fast(unsigned long start, int nr_pages,
3078 unsigned int gup_flags, struct page **pages)
3079{
447f3e45 3080 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
3081 return -EINVAL;
3082
94202f12
JH
3083 /*
3084 * The caller may or may not have explicitly set FOLL_GET; either way is
3085 * OK. However, internally (within mm/gup.c), gup fast variants must set
3086 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3087 * request.
3088 */
3089 gup_flags |= FOLL_GET;
eddb1c22
JH
3090 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3091}
050a9adc 3092EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
3093
3094/**
3095 * pin_user_pages_fast() - pin user pages in memory without taking locks
3096 *
3faa52c0
JH
3097 * @start: starting user address
3098 * @nr_pages: number of pages from start to pin
3099 * @gup_flags: flags modifying pin behaviour
3100 * @pages: array that receives pointers to the pages pinned.
3101 * Should be at least nr_pages long.
3102 *
3103 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3104 * get_user_pages_fast() for documentation on the function arguments, because
3105 * the arguments here are identical.
3106 *
3107 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3108 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
3109 */
3110int pin_user_pages_fast(unsigned long start, int nr_pages,
3111 unsigned int gup_flags, struct page **pages)
3112{
3faa52c0
JH
3113 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3114 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3115 return -EINVAL;
3116
0768c8de
YN
3117 if (WARN_ON_ONCE(!pages))
3118 return -EINVAL;
3119
3faa52c0
JH
3120 gup_flags |= FOLL_PIN;
3121 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
3122}
3123EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3124
104acc32 3125/*
dadbb612
SJ
3126 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3127 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
3128 *
3129 * The API rules are the same, too: no negative values may be returned.
3130 */
3131int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3132 unsigned int gup_flags, struct page **pages)
3133{
3134 int nr_pinned;
3135
3136 /*
3137 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3138 * rules require returning 0, rather than -errno:
3139 */
3140 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3141 return 0;
0768c8de
YN
3142
3143 if (WARN_ON_ONCE(!pages))
3144 return 0;
104acc32
JH
3145 /*
3146 * FOLL_FAST_ONLY is required in order to match the API description of
3147 * this routine: no fall back to regular ("slow") GUP.
3148 */
3149 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3150 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3151 pages);
3152 /*
3153 * This routine is not allowed to return negative values. However,
3154 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3155 * correct for that here:
3156 */
3157 if (nr_pinned < 0)
3158 nr_pinned = 0;
3159
3160 return nr_pinned;
3161}
3162EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3163
eddb1c22 3164/**
64019a2e 3165 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3166 *
3faa52c0
JH
3167 * @mm: mm_struct of target mm
3168 * @start: starting user address
3169 * @nr_pages: number of pages from start to pin
3170 * @gup_flags: flags modifying lookup behaviour
3171 * @pages: array that receives pointers to the pages pinned.
0768c8de 3172 * Should be at least nr_pages long.
3faa52c0
JH
3173 * @vmas: array of pointers to vmas corresponding to each page.
3174 * Or NULL if the caller does not require them.
3175 * @locked: pointer to lock flag indicating whether lock is held and
3176 * subsequently whether VM_FAULT_RETRY functionality can be
3177 * utilised. Lock must initially be held.
3178 *
3179 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3180 * get_user_pages_remote() for documentation on the function arguments, because
3181 * the arguments here are identical.
3182 *
3183 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3184 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 3185 */
64019a2e 3186long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3187 unsigned long start, unsigned long nr_pages,
3188 unsigned int gup_flags, struct page **pages,
3189 struct vm_area_struct **vmas, int *locked)
3190{
3faa52c0
JH
3191 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3192 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3193 return -EINVAL;
3194
0768c8de
YN
3195 if (WARN_ON_ONCE(!pages))
3196 return -EINVAL;
3197
3faa52c0 3198 gup_flags |= FOLL_PIN;
64019a2e 3199 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3faa52c0 3200 pages, vmas, locked);
eddb1c22
JH
3201}
3202EXPORT_SYMBOL(pin_user_pages_remote);
3203
3204/**
3205 * pin_user_pages() - pin user pages in memory for use by other devices
3206 *
3faa52c0
JH
3207 * @start: starting user address
3208 * @nr_pages: number of pages from start to pin
3209 * @gup_flags: flags modifying lookup behaviour
3210 * @pages: array that receives pointers to the pages pinned.
0768c8de 3211 * Should be at least nr_pages long.
3faa52c0
JH
3212 * @vmas: array of pointers to vmas corresponding to each page.
3213 * Or NULL if the caller does not require them.
3214 *
3215 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3216 * FOLL_PIN is set.
3217 *
3218 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3219 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
3220 */
3221long pin_user_pages(unsigned long start, unsigned long nr_pages,
3222 unsigned int gup_flags, struct page **pages,
3223 struct vm_area_struct **vmas)
3224{
3faa52c0
JH
3225 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3226 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3227 return -EINVAL;
3228
0768c8de
YN
3229 if (WARN_ON_ONCE(!pages))
3230 return -EINVAL;
3231
3faa52c0 3232 gup_flags |= FOLL_PIN;
64019a2e 3233 return __gup_longterm_locked(current->mm, start, nr_pages,
3faa52c0 3234 pages, vmas, gup_flags);
eddb1c22
JH
3235}
3236EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3237
3238/*
3239 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3240 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3241 * FOLL_PIN and rejects FOLL_GET.
3242 */
3243long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3244 struct page **pages, unsigned int gup_flags)
3245{
3246 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3247 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3248 return -EINVAL;
3249
0768c8de
YN
3250 if (WARN_ON_ONCE(!pages))
3251 return -EINVAL;
3252
91429023
JH
3253 gup_flags |= FOLL_PIN;
3254 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3255}
3256EXPORT_SYMBOL(pin_user_pages_unlocked);
This page took 1.067955 seconds and 4 git commands to generate.