]> Git Repo - linux.git/blame - mm/shmem.c
vmcore: convert copy_oldmem_page() to take an iov_iter
[linux.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <[email protected]>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <[email protected]>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <[email protected]>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
626c3920 39#include <linux/fs_parser.h>
86a2f3f2 40#include <linux/swapfile.h>
95cc09d6 41
853ac43a
MM
42static struct vfsmount *shm_mnt;
43
44#ifdef CONFIG_SHMEM
1da177e4
LT
45/*
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
49 */
50
39f0247d 51#include <linux/xattr.h>
a5694255 52#include <linux/exportfs.h>
1c7c474c 53#include <linux/posix_acl.h>
feda821e 54#include <linux/posix_acl_xattr.h>
1da177e4 55#include <linux/mman.h>
1da177e4
LT
56#include <linux/string.h>
57#include <linux/slab.h>
58#include <linux/backing-dev.h>
59#include <linux/shmem_fs.h>
1da177e4 60#include <linux/writeback.h>
bda97eab 61#include <linux/pagevec.h>
41ffe5d5 62#include <linux/percpu_counter.h>
83e4fa9c 63#include <linux/falloc.h>
708e3508 64#include <linux/splice.h>
1da177e4
LT
65#include <linux/security.h>
66#include <linux/swapops.h>
67#include <linux/mempolicy.h>
68#include <linux/namei.h>
b00dc3ad 69#include <linux/ctype.h>
304dbdb7 70#include <linux/migrate.h>
c1f60a5a 71#include <linux/highmem.h>
680d794b 72#include <linux/seq_file.h>
92562927 73#include <linux/magic.h>
9183df25 74#include <linux/syscalls.h>
40e041a2 75#include <linux/fcntl.h>
9183df25 76#include <uapi/linux/memfd.h>
cfda0526 77#include <linux/userfaultfd_k.h>
4c27fe4c 78#include <linux/rmap.h>
2b4db796 79#include <linux/uuid.h>
304dbdb7 80
7c0f6ba6 81#include <linux/uaccess.h>
1da177e4 82
dd56b046
MG
83#include "internal.h"
84
09cbfeaf
KS
85#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
86#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 87
1da177e4
LT
88/* Pretend that each entry is of this size in directory's i_size */
89#define BOGO_DIRENT_SIZE 20
90
69f07ec9
HD
91/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92#define SHORT_SYMLINK_LEN 128
93
1aac1400 94/*
f00cdc6d 95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
9608703e 96 * inode->i_private (with i_rwsem making sure that it has only one user at
f00cdc6d 97 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
98 */
99struct shmem_falloc {
8e205f77 100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
101 pgoff_t start; /* start of range currently being fallocated */
102 pgoff_t next; /* the next page offset to be fallocated */
103 pgoff_t nr_falloced; /* how many new pages have been fallocated */
104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
105};
106
0b5071dd
AV
107struct shmem_options {
108 unsigned long long blocks;
109 unsigned long long inodes;
110 struct mempolicy *mpol;
111 kuid_t uid;
112 kgid_t gid;
113 umode_t mode;
ea3271f7 114 bool full_inums;
0b5071dd
AV
115 int huge;
116 int seen;
117#define SHMEM_SEEN_BLOCKS 1
118#define SHMEM_SEEN_INODES 2
119#define SHMEM_SEEN_HUGE 4
ea3271f7 120#define SHMEM_SEEN_INUMS 8
0b5071dd
AV
121};
122
b76db735 123#ifdef CONFIG_TMPFS
680d794b
AM
124static unsigned long shmem_default_max_blocks(void)
125{
ca79b0c2 126 return totalram_pages() / 2;
680d794b
AM
127}
128
129static unsigned long shmem_default_max_inodes(void)
130{
ca79b0c2
AK
131 unsigned long nr_pages = totalram_pages();
132
133 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 134}
b76db735 135#endif
680d794b 136
c5bf121e
VRP
137static int shmem_swapin_page(struct inode *inode, pgoff_t index,
138 struct page **pagep, enum sgp_type sgp,
139 gfp_t gfp, struct vm_area_struct *vma,
140 vm_fault_t *fault_type);
68da9f05 141static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 142 struct page **pagep, enum sgp_type sgp,
cfda0526 143 gfp_t gfp, struct vm_area_struct *vma,
2b740303 144 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 145
f3f0e1d2 146int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 147 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
148{
149 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 150 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 151}
1da177e4 152
1da177e4
LT
153static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154{
155 return sb->s_fs_info;
156}
157
158/*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
164static inline int shmem_acct_size(unsigned long flags, loff_t size)
165{
0b0a0806 166 return (flags & VM_NORESERVE) ?
191c5424 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
168}
169
170static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171{
0b0a0806 172 if (!(flags & VM_NORESERVE))
1da177e4
LT
173 vm_unacct_memory(VM_ACCT(size));
174}
175
77142517
KK
176static inline int shmem_reacct_size(unsigned long flags,
177 loff_t oldsize, loff_t newsize)
178{
179 if (!(flags & VM_NORESERVE)) {
180 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 return security_vm_enough_memory_mm(current->mm,
182 VM_ACCT(newsize) - VM_ACCT(oldsize));
183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 }
186 return 0;
187}
188
1da177e4
LT
189/*
190 * ... whereas tmpfs objects are accounted incrementally as
75edd345 191 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
192 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194 */
800d8c63 195static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 196{
800d8c63
KS
197 if (!(flags & VM_NORESERVE))
198 return 0;
199
200 return security_vm_enough_memory_mm(current->mm,
201 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
202}
203
204static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205{
0b0a0806 206 if (flags & VM_NORESERVE)
09cbfeaf 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
208}
209
0f079694
MR
210static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
211{
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214
215 if (shmem_acct_block(info->flags, pages))
216 return false;
217
218 if (sbinfo->max_blocks) {
219 if (percpu_counter_compare(&sbinfo->used_blocks,
220 sbinfo->max_blocks - pages) > 0)
221 goto unacct;
222 percpu_counter_add(&sbinfo->used_blocks, pages);
223 }
224
225 return true;
226
227unacct:
228 shmem_unacct_blocks(info->flags, pages);
229 return false;
230}
231
232static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
233{
234 struct shmem_inode_info *info = SHMEM_I(inode);
235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236
237 if (sbinfo->max_blocks)
238 percpu_counter_sub(&sbinfo->used_blocks, pages);
239 shmem_unacct_blocks(info->flags, pages);
240}
241
759b9775 242static const struct super_operations shmem_ops;
30e6a51d 243const struct address_space_operations shmem_aops;
15ad7cdc 244static const struct file_operations shmem_file_operations;
92e1d5be
AV
245static const struct inode_operations shmem_inode_operations;
246static const struct inode_operations shmem_dir_inode_operations;
247static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 248static const struct vm_operations_struct shmem_vm_ops;
779750d2 249static struct file_system_type shmem_fs_type;
1da177e4 250
b0506e48
MR
251bool vma_is_shmem(struct vm_area_struct *vma)
252{
253 return vma->vm_ops == &shmem_vm_ops;
254}
255
1da177e4 256static LIST_HEAD(shmem_swaplist);
cb5f7b9a 257static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 258
e809d5f0
CD
259/*
260 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261 * produces a novel ino for the newly allocated inode.
262 *
263 * It may also be called when making a hard link to permit the space needed by
264 * each dentry. However, in that case, no new inode number is needed since that
265 * internally draws from another pool of inode numbers (currently global
266 * get_next_ino()). This case is indicated by passing NULL as inop.
267 */
268#define SHMEM_INO_BATCH 1024
269static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
270{
271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
272 ino_t ino;
273
274 if (!(sb->s_flags & SB_KERNMOUNT)) {
bf11b9a8 275 raw_spin_lock(&sbinfo->stat_lock);
bb3e96d6
BS
276 if (sbinfo->max_inodes) {
277 if (!sbinfo->free_inodes) {
bf11b9a8 278 raw_spin_unlock(&sbinfo->stat_lock);
bb3e96d6
BS
279 return -ENOSPC;
280 }
281 sbinfo->free_inodes--;
5b04c689 282 }
e809d5f0
CD
283 if (inop) {
284 ino = sbinfo->next_ino++;
285 if (unlikely(is_zero_ino(ino)))
286 ino = sbinfo->next_ino++;
ea3271f7
CD
287 if (unlikely(!sbinfo->full_inums &&
288 ino > UINT_MAX)) {
e809d5f0
CD
289 /*
290 * Emulate get_next_ino uint wraparound for
291 * compatibility
292 */
ea3271f7
CD
293 if (IS_ENABLED(CONFIG_64BIT))
294 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295 __func__, MINOR(sb->s_dev));
296 sbinfo->next_ino = 1;
297 ino = sbinfo->next_ino++;
e809d5f0
CD
298 }
299 *inop = ino;
300 }
bf11b9a8 301 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
302 } else if (inop) {
303 /*
304 * __shmem_file_setup, one of our callers, is lock-free: it
305 * doesn't hold stat_lock in shmem_reserve_inode since
306 * max_inodes is always 0, and is called from potentially
307 * unknown contexts. As such, use a per-cpu batched allocator
308 * which doesn't require the per-sb stat_lock unless we are at
309 * the batch boundary.
ea3271f7
CD
310 *
311 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312 * shmem mounts are not exposed to userspace, so we don't need
313 * to worry about things like glibc compatibility.
e809d5f0
CD
314 */
315 ino_t *next_ino;
bf11b9a8 316
e809d5f0
CD
317 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
318 ino = *next_ino;
319 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
bf11b9a8 320 raw_spin_lock(&sbinfo->stat_lock);
e809d5f0
CD
321 ino = sbinfo->next_ino;
322 sbinfo->next_ino += SHMEM_INO_BATCH;
bf11b9a8 323 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
324 if (unlikely(is_zero_ino(ino)))
325 ino++;
326 }
327 *inop = ino;
328 *next_ino = ++ino;
329 put_cpu();
5b04c689 330 }
e809d5f0 331
5b04c689
PE
332 return 0;
333}
334
335static void shmem_free_inode(struct super_block *sb)
336{
337 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338 if (sbinfo->max_inodes) {
bf11b9a8 339 raw_spin_lock(&sbinfo->stat_lock);
5b04c689 340 sbinfo->free_inodes++;
bf11b9a8 341 raw_spin_unlock(&sbinfo->stat_lock);
5b04c689
PE
342 }
343}
344
46711810 345/**
41ffe5d5 346 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
347 * @inode: inode to recalc
348 *
349 * We have to calculate the free blocks since the mm can drop
350 * undirtied hole pages behind our back.
351 *
352 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
353 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
354 *
355 * It has to be called with the spinlock held.
356 */
357static void shmem_recalc_inode(struct inode *inode)
358{
359 struct shmem_inode_info *info = SHMEM_I(inode);
360 long freed;
361
362 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
363 if (freed > 0) {
364 info->alloced -= freed;
54af6042 365 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 366 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
367 }
368}
369
800d8c63
KS
370bool shmem_charge(struct inode *inode, long pages)
371{
372 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 373 unsigned long flags;
800d8c63 374
0f079694 375 if (!shmem_inode_acct_block(inode, pages))
800d8c63 376 return false;
b1cc94ab 377
aaa52e34
HD
378 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379 inode->i_mapping->nrpages += pages;
380
4595ef88 381 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
382 info->alloced += pages;
383 inode->i_blocks += pages * BLOCKS_PER_PAGE;
384 shmem_recalc_inode(inode);
4595ef88 385 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 386
800d8c63
KS
387 return true;
388}
389
390void shmem_uncharge(struct inode *inode, long pages)
391{
392 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 393 unsigned long flags;
800d8c63 394
aaa52e34
HD
395 /* nrpages adjustment done by __delete_from_page_cache() or caller */
396
4595ef88 397 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
398 info->alloced -= pages;
399 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400 shmem_recalc_inode(inode);
4595ef88 401 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 402
0f079694 403 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
404}
405
7a5d0fbb 406/*
62f945b6 407 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 408 */
62f945b6 409static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
410 pgoff_t index, void *expected, void *replacement)
411{
62f945b6 412 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 413 void *item;
7a5d0fbb
HD
414
415 VM_BUG_ON(!expected);
6dbaf22c 416 VM_BUG_ON(!replacement);
62f945b6 417 item = xas_load(&xas);
7a5d0fbb
HD
418 if (item != expected)
419 return -ENOENT;
62f945b6 420 xas_store(&xas, replacement);
7a5d0fbb
HD
421 return 0;
422}
423
d1899228
HD
424/*
425 * Sometimes, before we decide whether to proceed or to fail, we must check
426 * that an entry was not already brought back from swap by a racing thread.
427 *
428 * Checking page is not enough: by the time a SwapCache page is locked, it
429 * might be reused, and again be SwapCache, using the same swap as before.
430 */
431static bool shmem_confirm_swap(struct address_space *mapping,
432 pgoff_t index, swp_entry_t swap)
433{
a12831bf 434 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
435}
436
5a6e75f8
KS
437/*
438 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
439 *
440 * SHMEM_HUGE_NEVER:
441 * disables huge pages for the mount;
442 * SHMEM_HUGE_ALWAYS:
443 * enables huge pages for the mount;
444 * SHMEM_HUGE_WITHIN_SIZE:
445 * only allocate huge pages if the page will be fully within i_size,
446 * also respect fadvise()/madvise() hints;
447 * SHMEM_HUGE_ADVISE:
448 * only allocate huge pages if requested with fadvise()/madvise();
449 */
450
451#define SHMEM_HUGE_NEVER 0
452#define SHMEM_HUGE_ALWAYS 1
453#define SHMEM_HUGE_WITHIN_SIZE 2
454#define SHMEM_HUGE_ADVISE 3
455
456/*
457 * Special values.
458 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
459 *
460 * SHMEM_HUGE_DENY:
461 * disables huge on shm_mnt and all mounts, for emergency use;
462 * SHMEM_HUGE_FORCE:
463 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
464 *
465 */
466#define SHMEM_HUGE_DENY (-1)
467#define SHMEM_HUGE_FORCE (-2)
468
396bcc52 469#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
470/* ifdef here to avoid bloating shmem.o when not necessary */
471
5e6e5a12 472static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
5a6e75f8 473
5e6e5a12
HD
474bool shmem_is_huge(struct vm_area_struct *vma,
475 struct inode *inode, pgoff_t index)
c852023e 476{
c852023e 477 loff_t i_size;
c852023e 478
f7cd16a5
XR
479 if (!S_ISREG(inode->i_mode))
480 return false;
c852023e
HD
481 if (shmem_huge == SHMEM_HUGE_DENY)
482 return false;
5e6e5a12
HD
483 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
c852023e 485 return false;
5e6e5a12
HD
486 if (shmem_huge == SHMEM_HUGE_FORCE)
487 return true;
488
489 switch (SHMEM_SB(inode->i_sb)->huge) {
c852023e
HD
490 case SHMEM_HUGE_ALWAYS:
491 return true;
492 case SHMEM_HUGE_WITHIN_SIZE:
de6ee659 493 index = round_up(index + 1, HPAGE_PMD_NR);
c852023e 494 i_size = round_up(i_size_read(inode), PAGE_SIZE);
de6ee659 495 if (i_size >> PAGE_SHIFT >= index)
c852023e
HD
496 return true;
497 fallthrough;
498 case SHMEM_HUGE_ADVISE:
5e6e5a12
HD
499 if (vma && (vma->vm_flags & VM_HUGEPAGE))
500 return true;
501 fallthrough;
c852023e 502 default:
c852023e
HD
503 return false;
504 }
505}
5a6e75f8 506
e5f2249a 507#if defined(CONFIG_SYSFS)
5a6e75f8
KS
508static int shmem_parse_huge(const char *str)
509{
510 if (!strcmp(str, "never"))
511 return SHMEM_HUGE_NEVER;
512 if (!strcmp(str, "always"))
513 return SHMEM_HUGE_ALWAYS;
514 if (!strcmp(str, "within_size"))
515 return SHMEM_HUGE_WITHIN_SIZE;
516 if (!strcmp(str, "advise"))
517 return SHMEM_HUGE_ADVISE;
518 if (!strcmp(str, "deny"))
519 return SHMEM_HUGE_DENY;
520 if (!strcmp(str, "force"))
521 return SHMEM_HUGE_FORCE;
522 return -EINVAL;
523}
e5f2249a 524#endif
5a6e75f8 525
e5f2249a 526#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
527static const char *shmem_format_huge(int huge)
528{
529 switch (huge) {
530 case SHMEM_HUGE_NEVER:
531 return "never";
532 case SHMEM_HUGE_ALWAYS:
533 return "always";
534 case SHMEM_HUGE_WITHIN_SIZE:
535 return "within_size";
536 case SHMEM_HUGE_ADVISE:
537 return "advise";
538 case SHMEM_HUGE_DENY:
539 return "deny";
540 case SHMEM_HUGE_FORCE:
541 return "force";
542 default:
543 VM_BUG_ON(1);
544 return "bad_val";
545 }
546}
f1f5929c 547#endif
5a6e75f8 548
779750d2
KS
549static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550 struct shrink_control *sc, unsigned long nr_to_split)
551{
552 LIST_HEAD(list), *pos, *next;
253fd0f0 553 LIST_HEAD(to_remove);
779750d2
KS
554 struct inode *inode;
555 struct shmem_inode_info *info;
556 struct page *page;
557 unsigned long batch = sc ? sc->nr_to_scan : 128;
62c9827c 558 int split = 0;
779750d2
KS
559
560 if (list_empty(&sbinfo->shrinklist))
561 return SHRINK_STOP;
562
563 spin_lock(&sbinfo->shrinklist_lock);
564 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566
567 /* pin the inode */
568 inode = igrab(&info->vfs_inode);
569
570 /* inode is about to be evicted */
571 if (!inode) {
572 list_del_init(&info->shrinklist);
779750d2
KS
573 goto next;
574 }
575
576 /* Check if there's anything to gain */
577 if (round_up(inode->i_size, PAGE_SIZE) ==
578 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 579 list_move(&info->shrinklist, &to_remove);
779750d2
KS
580 goto next;
581 }
582
583 list_move(&info->shrinklist, &list);
584next:
62c9827c 585 sbinfo->shrinklist_len--;
779750d2
KS
586 if (!--batch)
587 break;
588 }
589 spin_unlock(&sbinfo->shrinklist_lock);
590
253fd0f0
KS
591 list_for_each_safe(pos, next, &to_remove) {
592 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 inode = &info->vfs_inode;
594 list_del_init(&info->shrinklist);
595 iput(inode);
596 }
597
779750d2
KS
598 list_for_each_safe(pos, next, &list) {
599 int ret;
600
601 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 inode = &info->vfs_inode;
603
b3cd54b2 604 if (nr_to_split && split >= nr_to_split)
62c9827c 605 goto move_back;
779750d2 606
b3cd54b2 607 page = find_get_page(inode->i_mapping,
779750d2
KS
608 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609 if (!page)
610 goto drop;
611
b3cd54b2 612 /* No huge page at the end of the file: nothing to split */
779750d2 613 if (!PageTransHuge(page)) {
779750d2
KS
614 put_page(page);
615 goto drop;
616 }
617
b3cd54b2 618 /*
62c9827c
GL
619 * Move the inode on the list back to shrinklist if we failed
620 * to lock the page at this time.
b3cd54b2
KS
621 *
622 * Waiting for the lock may lead to deadlock in the
623 * reclaim path.
624 */
625 if (!trylock_page(page)) {
626 put_page(page);
62c9827c 627 goto move_back;
b3cd54b2
KS
628 }
629
779750d2
KS
630 ret = split_huge_page(page);
631 unlock_page(page);
632 put_page(page);
633
62c9827c 634 /* If split failed move the inode on the list back to shrinklist */
b3cd54b2 635 if (ret)
62c9827c 636 goto move_back;
779750d2
KS
637
638 split++;
639drop:
640 list_del_init(&info->shrinklist);
62c9827c
GL
641 goto put;
642move_back:
643 /*
644 * Make sure the inode is either on the global list or deleted
645 * from any local list before iput() since it could be deleted
646 * in another thread once we put the inode (then the local list
647 * is corrupted).
648 */
649 spin_lock(&sbinfo->shrinklist_lock);
650 list_move(&info->shrinklist, &sbinfo->shrinklist);
651 sbinfo->shrinklist_len++;
652 spin_unlock(&sbinfo->shrinklist_lock);
653put:
779750d2
KS
654 iput(inode);
655 }
656
779750d2
KS
657 return split;
658}
659
660static long shmem_unused_huge_scan(struct super_block *sb,
661 struct shrink_control *sc)
662{
663 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
664
665 if (!READ_ONCE(sbinfo->shrinklist_len))
666 return SHRINK_STOP;
667
668 return shmem_unused_huge_shrink(sbinfo, sc, 0);
669}
670
671static long shmem_unused_huge_count(struct super_block *sb,
672 struct shrink_control *sc)
673{
674 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
675 return READ_ONCE(sbinfo->shrinklist_len);
676}
396bcc52 677#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
678
679#define shmem_huge SHMEM_HUGE_DENY
680
5e6e5a12
HD
681bool shmem_is_huge(struct vm_area_struct *vma,
682 struct inode *inode, pgoff_t index)
683{
684 return false;
685}
686
779750d2
KS
687static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
688 struct shrink_control *sc, unsigned long nr_to_split)
689{
690 return 0;
691}
396bcc52 692#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 693
46f65ec1
HD
694/*
695 * Like add_to_page_cache_locked, but error if expected item has gone.
696 */
697static int shmem_add_to_page_cache(struct page *page,
698 struct address_space *mapping,
3fea5a49
JW
699 pgoff_t index, void *expected, gfp_t gfp,
700 struct mm_struct *charge_mm)
46f65ec1 701{
552446a4 702 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
d8c6546b 703 unsigned long nr = compound_nr(page);
3fea5a49 704 int error;
46f65ec1 705
800d8c63
KS
706 VM_BUG_ON_PAGE(PageTail(page), page);
707 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
708 VM_BUG_ON_PAGE(!PageLocked(page), page);
709 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 710 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 711
800d8c63 712 page_ref_add(page, nr);
b065b432
HD
713 page->mapping = mapping;
714 page->index = index;
715
4c6355b2 716 if (!PageSwapCache(page)) {
8f425e4e 717 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
4c6355b2
JW
718 if (error) {
719 if (PageTransHuge(page)) {
720 count_vm_event(THP_FILE_FALLBACK);
721 count_vm_event(THP_FILE_FALLBACK_CHARGE);
722 }
723 goto error;
3fea5a49 724 }
3fea5a49
JW
725 }
726 cgroup_throttle_swaprate(page, gfp);
727
552446a4 728 do {
552446a4 729 xas_lock_irq(&xas);
6b24ca4a
MWO
730 if (expected != xas_find_conflict(&xas)) {
731 xas_set_err(&xas, -EEXIST);
732 goto unlock;
733 }
734 if (expected && xas_find_conflict(&xas)) {
552446a4 735 xas_set_err(&xas, -EEXIST);
552446a4 736 goto unlock;
800d8c63 737 }
6b24ca4a
MWO
738 xas_store(&xas, page);
739 if (xas_error(&xas))
740 goto unlock;
552446a4 741 if (PageTransHuge(page)) {
800d8c63 742 count_vm_event(THP_FILE_ALLOC);
57b2847d 743 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
800d8c63 744 }
800d8c63 745 mapping->nrpages += nr;
0d1c2072
JW
746 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
747 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
748unlock:
749 xas_unlock_irq(&xas);
750 } while (xas_nomem(&xas, gfp));
751
752 if (xas_error(&xas)) {
3fea5a49
JW
753 error = xas_error(&xas);
754 goto error;
46f65ec1 755 }
552446a4
MW
756
757 return 0;
3fea5a49
JW
758error:
759 page->mapping = NULL;
760 page_ref_sub(page, nr);
761 return error;
46f65ec1
HD
762}
763
6922c0c7
HD
764/*
765 * Like delete_from_page_cache, but substitutes swap for page.
766 */
767static void shmem_delete_from_page_cache(struct page *page, void *radswap)
768{
769 struct address_space *mapping = page->mapping;
770 int error;
771
800d8c63
KS
772 VM_BUG_ON_PAGE(PageCompound(page), page);
773
b93b0163 774 xa_lock_irq(&mapping->i_pages);
62f945b6 775 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
776 page->mapping = NULL;
777 mapping->nrpages--;
0d1c2072
JW
778 __dec_lruvec_page_state(page, NR_FILE_PAGES);
779 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 780 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 781 put_page(page);
6922c0c7
HD
782 BUG_ON(error);
783}
784
7a5d0fbb 785/*
c121d3bb 786 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
787 */
788static int shmem_free_swap(struct address_space *mapping,
789 pgoff_t index, void *radswap)
790{
6dbaf22c 791 void *old;
7a5d0fbb 792
55f3f7ea 793 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
794 if (old != radswap)
795 return -ENOENT;
796 free_swap_and_cache(radix_to_swp_entry(radswap));
797 return 0;
7a5d0fbb
HD
798}
799
6a15a370
VB
800/*
801 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 802 * given offsets are swapped out.
6a15a370 803 *
9608703e 804 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
6a15a370
VB
805 * as long as the inode doesn't go away and racy results are not a problem.
806 */
48131e03
VB
807unsigned long shmem_partial_swap_usage(struct address_space *mapping,
808 pgoff_t start, pgoff_t end)
6a15a370 809{
7ae3424f 810 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 811 struct page *page;
48131e03 812 unsigned long swapped = 0;
6a15a370
VB
813
814 rcu_read_lock();
7ae3424f
MW
815 xas_for_each(&xas, page, end - 1) {
816 if (xas_retry(&xas, page))
2cf938aa 817 continue;
3159f943 818 if (xa_is_value(page))
6a15a370
VB
819 swapped++;
820
821 if (need_resched()) {
7ae3424f 822 xas_pause(&xas);
6a15a370 823 cond_resched_rcu();
6a15a370
VB
824 }
825 }
826
827 rcu_read_unlock();
828
829 return swapped << PAGE_SHIFT;
830}
831
48131e03
VB
832/*
833 * Determine (in bytes) how many of the shmem object's pages mapped by the
834 * given vma is swapped out.
835 *
9608703e 836 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
48131e03
VB
837 * as long as the inode doesn't go away and racy results are not a problem.
838 */
839unsigned long shmem_swap_usage(struct vm_area_struct *vma)
840{
841 struct inode *inode = file_inode(vma->vm_file);
842 struct shmem_inode_info *info = SHMEM_I(inode);
843 struct address_space *mapping = inode->i_mapping;
844 unsigned long swapped;
845
846 /* Be careful as we don't hold info->lock */
847 swapped = READ_ONCE(info->swapped);
848
849 /*
850 * The easier cases are when the shmem object has nothing in swap, or
851 * the vma maps it whole. Then we can simply use the stats that we
852 * already track.
853 */
854 if (!swapped)
855 return 0;
856
857 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
858 return swapped << PAGE_SHIFT;
859
860 /* Here comes the more involved part */
02399c88
PX
861 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
862 vma->vm_pgoff + vma_pages(vma));
48131e03
VB
863}
864
24513264
HD
865/*
866 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
867 */
868void shmem_unlock_mapping(struct address_space *mapping)
869{
870 struct pagevec pvec;
24513264
HD
871 pgoff_t index = 0;
872
86679820 873 pagevec_init(&pvec);
24513264
HD
874 /*
875 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
876 */
877 while (!mapping_unevictable(mapping)) {
96888e0a 878 if (!pagevec_lookup(&pvec, mapping, &index))
24513264 879 break;
64e3d12f 880 check_move_unevictable_pages(&pvec);
24513264
HD
881 pagevec_release(&pvec);
882 cond_resched();
883 }
7a5d0fbb
HD
884}
885
b9a8a419 886static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
71725ed1 887{
b9a8a419
MWO
888 struct folio *folio;
889 struct page *page;
71725ed1 890
b9a8a419
MWO
891 /*
892 * At first avoid shmem_getpage(,,,SGP_READ): that fails
893 * beyond i_size, and reports fallocated pages as holes.
894 */
895 folio = __filemap_get_folio(inode->i_mapping, index,
896 FGP_ENTRY | FGP_LOCK, 0);
897 if (!xa_is_value(folio))
898 return folio;
899 /*
900 * But read a page back from swap if any of it is within i_size
901 * (although in some cases this is just a waste of time).
902 */
903 page = NULL;
904 shmem_getpage(inode, index, &page, SGP_READ);
905 return page ? page_folio(page) : NULL;
71725ed1
HD
906}
907
7a5d0fbb 908/*
7f4446ee 909 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 910 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 911 */
1635f6a7
HD
912static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
913 bool unfalloc)
1da177e4 914{
285b2c4f 915 struct address_space *mapping = inode->i_mapping;
1da177e4 916 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
917 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
918 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
0e499ed3 919 struct folio_batch fbatch;
7a5d0fbb 920 pgoff_t indices[PAGEVEC_SIZE];
b9a8a419
MWO
921 struct folio *folio;
922 bool same_folio;
7a5d0fbb 923 long nr_swaps_freed = 0;
285b2c4f 924 pgoff_t index;
bda97eab
HD
925 int i;
926
83e4fa9c
HD
927 if (lend == -1)
928 end = -1; /* unsigned, so actually very big */
bda97eab 929
d144bf62
HD
930 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
931 info->fallocend = start;
932
51dcbdac 933 folio_batch_init(&fbatch);
bda97eab 934 index = start;
5c211ba2 935 while (index < end && find_lock_entries(mapping, index, end - 1,
51dcbdac
MWO
936 &fbatch, indices)) {
937 for (i = 0; i < folio_batch_count(&fbatch); i++) {
b9a8a419 938 folio = fbatch.folios[i];
bda97eab 939
7a5d0fbb 940 index = indices[i];
bda97eab 941
7b774aab 942 if (xa_is_value(folio)) {
1635f6a7
HD
943 if (unfalloc)
944 continue;
7a5d0fbb 945 nr_swaps_freed += !shmem_free_swap(mapping,
7b774aab 946 index, folio);
bda97eab 947 continue;
7a5d0fbb 948 }
7b774aab 949 index += folio_nr_pages(folio) - 1;
7a5d0fbb 950
7b774aab 951 if (!unfalloc || !folio_test_uptodate(folio))
1e84a3d9 952 truncate_inode_folio(mapping, folio);
7b774aab 953 folio_unlock(folio);
bda97eab 954 }
51dcbdac
MWO
955 folio_batch_remove_exceptionals(&fbatch);
956 folio_batch_release(&fbatch);
bda97eab
HD
957 cond_resched();
958 index++;
959 }
1da177e4 960
b9a8a419
MWO
961 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
962 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
963 if (folio) {
964 same_folio = lend < folio_pos(folio) + folio_size(folio);
965 folio_mark_dirty(folio);
966 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
967 start = folio->index + folio_nr_pages(folio);
968 if (same_folio)
969 end = folio->index;
83e4fa9c 970 }
b9a8a419
MWO
971 folio_unlock(folio);
972 folio_put(folio);
973 folio = NULL;
83e4fa9c 974 }
b9a8a419
MWO
975
976 if (!same_folio)
977 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
978 if (folio) {
979 folio_mark_dirty(folio);
980 if (!truncate_inode_partial_folio(folio, lstart, lend))
981 end = folio->index;
982 folio_unlock(folio);
983 folio_put(folio);
bda97eab
HD
984 }
985
986 index = start;
b1a36650 987 while (index < end) {
bda97eab 988 cond_resched();
0cd6144a 989
0e499ed3 990 if (!find_get_entries(mapping, index, end - 1, &fbatch,
cf2039af 991 indices)) {
b1a36650
HD
992 /* If all gone or hole-punch or unfalloc, we're done */
993 if (index == start || end != -1)
bda97eab 994 break;
b1a36650 995 /* But if truncating, restart to make sure all gone */
bda97eab
HD
996 index = start;
997 continue;
998 }
0e499ed3 999 for (i = 0; i < folio_batch_count(&fbatch); i++) {
b9a8a419 1000 folio = fbatch.folios[i];
bda97eab 1001
7a5d0fbb 1002 index = indices[i];
0e499ed3 1003 if (xa_is_value(folio)) {
1635f6a7
HD
1004 if (unfalloc)
1005 continue;
0e499ed3 1006 if (shmem_free_swap(mapping, index, folio)) {
b1a36650
HD
1007 /* Swap was replaced by page: retry */
1008 index--;
1009 break;
1010 }
1011 nr_swaps_freed++;
7a5d0fbb
HD
1012 continue;
1013 }
1014
0e499ed3 1015 folio_lock(folio);
800d8c63 1016
0e499ed3 1017 if (!unfalloc || !folio_test_uptodate(folio)) {
0e499ed3 1018 if (folio_mapping(folio) != mapping) {
b1a36650 1019 /* Page was replaced by swap: retry */
0e499ed3 1020 folio_unlock(folio);
b1a36650
HD
1021 index--;
1022 break;
1635f6a7 1023 }
0e499ed3
MWO
1024 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025 folio);
b9a8a419 1026 truncate_inode_folio(mapping, folio);
7a5d0fbb 1027 }
b9a8a419 1028 index = folio->index + folio_nr_pages(folio) - 1;
0e499ed3 1029 folio_unlock(folio);
bda97eab 1030 }
0e499ed3
MWO
1031 folio_batch_remove_exceptionals(&fbatch);
1032 folio_batch_release(&fbatch);
bda97eab
HD
1033 index++;
1034 }
94c1e62d 1035
4595ef88 1036 spin_lock_irq(&info->lock);
7a5d0fbb 1037 info->swapped -= nr_swaps_freed;
1da177e4 1038 shmem_recalc_inode(inode);
4595ef88 1039 spin_unlock_irq(&info->lock);
1635f6a7 1040}
1da177e4 1041
1635f6a7
HD
1042void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1043{
1044 shmem_undo_range(inode, lstart, lend, false);
078cd827 1045 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1046}
94c1e62d 1047EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1048
549c7297
CB
1049static int shmem_getattr(struct user_namespace *mnt_userns,
1050 const struct path *path, struct kstat *stat,
a528d35e 1051 u32 request_mask, unsigned int query_flags)
44a30220 1052{
a528d35e 1053 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
1054 struct shmem_inode_info *info = SHMEM_I(inode);
1055
d0424c42 1056 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1057 spin_lock_irq(&info->lock);
d0424c42 1058 shmem_recalc_inode(inode);
4595ef88 1059 spin_unlock_irq(&info->lock);
d0424c42 1060 }
0d56a451 1061 generic_fillattr(&init_user_ns, inode, stat);
89fdcd26 1062
a7fddc36 1063 if (shmem_is_huge(NULL, inode, 0))
89fdcd26
YS
1064 stat->blksize = HPAGE_PMD_SIZE;
1065
f7cd16a5
XR
1066 if (request_mask & STATX_BTIME) {
1067 stat->result_mask |= STATX_BTIME;
1068 stat->btime.tv_sec = info->i_crtime.tv_sec;
1069 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1070 }
1071
44a30220
YZ
1072 return 0;
1073}
1074
549c7297
CB
1075static int shmem_setattr(struct user_namespace *mnt_userns,
1076 struct dentry *dentry, struct iattr *attr)
1da177e4 1077{
75c3cfa8 1078 struct inode *inode = d_inode(dentry);
40e041a2 1079 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
1080 int error;
1081
2f221d6f 1082 error = setattr_prepare(&init_user_ns, dentry, attr);
db78b877
CH
1083 if (error)
1084 return error;
1085
94c1e62d
HD
1086 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1087 loff_t oldsize = inode->i_size;
1088 loff_t newsize = attr->ia_size;
3889e6e7 1089
9608703e 1090 /* protected by i_rwsem */
40e041a2
DR
1091 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1092 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1093 return -EPERM;
1094
94c1e62d 1095 if (newsize != oldsize) {
77142517
KK
1096 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1097 oldsize, newsize);
1098 if (error)
1099 return error;
94c1e62d 1100 i_size_write(inode, newsize);
078cd827 1101 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1102 }
afa2db2f 1103 if (newsize <= oldsize) {
94c1e62d 1104 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1105 if (oldsize > holebegin)
1106 unmap_mapping_range(inode->i_mapping,
1107 holebegin, 0, 1);
1108 if (info->alloced)
1109 shmem_truncate_range(inode,
1110 newsize, (loff_t)-1);
94c1e62d 1111 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1112 if (oldsize > holebegin)
1113 unmap_mapping_range(inode->i_mapping,
1114 holebegin, 0, 1);
94c1e62d 1115 }
1da177e4
LT
1116 }
1117
2f221d6f 1118 setattr_copy(&init_user_ns, inode, attr);
db78b877 1119 if (attr->ia_valid & ATTR_MODE)
e65ce2a5 1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1da177e4
LT
1121 return error;
1122}
1123
1f895f75 1124static void shmem_evict_inode(struct inode *inode)
1da177e4 1125{
1da177e4 1126 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1128
30e6a51d 1129 if (shmem_mapping(inode->i_mapping)) {
1da177e4
LT
1130 shmem_unacct_size(info->flags, inode->i_size);
1131 inode->i_size = 0;
bc786390 1132 mapping_set_exiting(inode->i_mapping);
3889e6e7 1133 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1134 if (!list_empty(&info->shrinklist)) {
1135 spin_lock(&sbinfo->shrinklist_lock);
1136 if (!list_empty(&info->shrinklist)) {
1137 list_del_init(&info->shrinklist);
1138 sbinfo->shrinklist_len--;
1139 }
1140 spin_unlock(&sbinfo->shrinklist_lock);
1141 }
af53d3e9
HD
1142 while (!list_empty(&info->swaplist)) {
1143 /* Wait while shmem_unuse() is scanning this inode... */
1144 wait_var_event(&info->stop_eviction,
1145 !atomic_read(&info->stop_eviction));
cb5f7b9a 1146 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1147 /* ...but beware of the race if we peeked too early */
1148 if (!atomic_read(&info->stop_eviction))
1149 list_del_init(&info->swaplist);
cb5f7b9a 1150 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1151 }
3ed47db3 1152 }
b09e0fa4 1153
38f38657 1154 simple_xattrs_free(&info->xattrs);
0f3c42f5 1155 WARN_ON(inode->i_blocks);
5b04c689 1156 shmem_free_inode(inode->i_sb);
dbd5768f 1157 clear_inode(inode);
1da177e4
LT
1158}
1159
b56a2d8a
VRP
1160static int shmem_find_swap_entries(struct address_space *mapping,
1161 pgoff_t start, unsigned int nr_entries,
1162 struct page **entries, pgoff_t *indices,
10a9c496 1163 unsigned int type)
478922e2 1164{
b56a2d8a
VRP
1165 XA_STATE(xas, &mapping->i_pages, start);
1166 struct page *page;
87039546 1167 swp_entry_t entry;
b56a2d8a
VRP
1168 unsigned int ret = 0;
1169
1170 if (!nr_entries)
1171 return 0;
478922e2
MW
1172
1173 rcu_read_lock();
b56a2d8a
VRP
1174 xas_for_each(&xas, page, ULONG_MAX) {
1175 if (xas_retry(&xas, page))
5b9c98f3 1176 continue;
b56a2d8a
VRP
1177
1178 if (!xa_is_value(page))
478922e2 1179 continue;
b56a2d8a 1180
87039546
HD
1181 entry = radix_to_swp_entry(page);
1182 if (swp_type(entry) != type)
1183 continue;
b56a2d8a
VRP
1184
1185 indices[ret] = xas.xa_index;
1186 entries[ret] = page;
1187
1188 if (need_resched()) {
1189 xas_pause(&xas);
1190 cond_resched_rcu();
1191 }
1192 if (++ret == nr_entries)
1193 break;
478922e2 1194 }
478922e2 1195 rcu_read_unlock();
e21a2955 1196
b56a2d8a 1197 return ret;
478922e2
MW
1198}
1199
46f65ec1 1200/*
b56a2d8a
VRP
1201 * Move the swapped pages for an inode to page cache. Returns the count
1202 * of pages swapped in, or the error in case of failure.
46f65ec1 1203 */
b56a2d8a
VRP
1204static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1205 pgoff_t *indices)
1da177e4 1206{
b56a2d8a
VRP
1207 int i = 0;
1208 int ret = 0;
bde05d1c 1209 int error = 0;
b56a2d8a 1210 struct address_space *mapping = inode->i_mapping;
1da177e4 1211
b56a2d8a
VRP
1212 for (i = 0; i < pvec.nr; i++) {
1213 struct page *page = pvec.pages[i];
2e0e26c7 1214
b56a2d8a
VRP
1215 if (!xa_is_value(page))
1216 continue;
1217 error = shmem_swapin_page(inode, indices[i],
1218 &page, SGP_CACHE,
1219 mapping_gfp_mask(mapping),
1220 NULL, NULL);
1221 if (error == 0) {
1222 unlock_page(page);
1223 put_page(page);
1224 ret++;
1225 }
1226 if (error == -ENOMEM)
1227 break;
1228 error = 0;
bde05d1c 1229 }
b56a2d8a
VRP
1230 return error ? error : ret;
1231}
bde05d1c 1232
b56a2d8a
VRP
1233/*
1234 * If swap found in inode, free it and move page from swapcache to filecache.
1235 */
10a9c496 1236static int shmem_unuse_inode(struct inode *inode, unsigned int type)
b56a2d8a
VRP
1237{
1238 struct address_space *mapping = inode->i_mapping;
1239 pgoff_t start = 0;
1240 struct pagevec pvec;
1241 pgoff_t indices[PAGEVEC_SIZE];
b56a2d8a
VRP
1242 int ret = 0;
1243
1244 pagevec_init(&pvec);
1245 do {
1246 unsigned int nr_entries = PAGEVEC_SIZE;
1247
b56a2d8a 1248 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
10a9c496 1249 pvec.pages, indices, type);
b56a2d8a
VRP
1250 if (pvec.nr == 0) {
1251 ret = 0;
1252 break;
46f65ec1 1253 }
b56a2d8a
VRP
1254
1255 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1256 if (ret < 0)
1257 break;
1258
b56a2d8a
VRP
1259 start = indices[pvec.nr - 1];
1260 } while (true);
1261
1262 return ret;
1da177e4
LT
1263}
1264
1265/*
b56a2d8a
VRP
1266 * Read all the shared memory data that resides in the swap
1267 * device 'type' back into memory, so the swap device can be
1268 * unused.
1da177e4 1269 */
10a9c496 1270int shmem_unuse(unsigned int type)
1da177e4 1271{
b56a2d8a 1272 struct shmem_inode_info *info, *next;
bde05d1c
HD
1273 int error = 0;
1274
b56a2d8a
VRP
1275 if (list_empty(&shmem_swaplist))
1276 return 0;
1277
1278 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1279 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1280 if (!info->swapped) {
6922c0c7 1281 list_del_init(&info->swaplist);
b56a2d8a
VRP
1282 continue;
1283 }
af53d3e9
HD
1284 /*
1285 * Drop the swaplist mutex while searching the inode for swap;
1286 * but before doing so, make sure shmem_evict_inode() will not
1287 * remove placeholder inode from swaplist, nor let it be freed
1288 * (igrab() would protect from unlink, but not from unmount).
1289 */
1290 atomic_inc(&info->stop_eviction);
b56a2d8a 1291 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1292
10a9c496 1293 error = shmem_unuse_inode(&info->vfs_inode, type);
cb5f7b9a 1294 cond_resched();
b56a2d8a
VRP
1295
1296 mutex_lock(&shmem_swaplist_mutex);
1297 next = list_next_entry(info, swaplist);
1298 if (!info->swapped)
1299 list_del_init(&info->swaplist);
af53d3e9
HD
1300 if (atomic_dec_and_test(&info->stop_eviction))
1301 wake_up_var(&info->stop_eviction);
b56a2d8a 1302 if (error)
778dd893 1303 break;
1da177e4 1304 }
cb5f7b9a 1305 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1306
778dd893 1307 return error;
1da177e4
LT
1308}
1309
1310/*
1311 * Move the page from the page cache to the swap cache.
1312 */
1313static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1314{
1315 struct shmem_inode_info *info;
1da177e4 1316 struct address_space *mapping;
1da177e4 1317 struct inode *inode;
6922c0c7
HD
1318 swp_entry_t swap;
1319 pgoff_t index;
1da177e4 1320
1e6decf3
HD
1321 /*
1322 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1323 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1324 * and its shmem_writeback() needs them to be split when swapping.
1325 */
1326 if (PageTransCompound(page)) {
1327 /* Ensure the subpages are still dirty */
1328 SetPageDirty(page);
1329 if (split_huge_page(page) < 0)
1330 goto redirty;
1331 ClearPageDirty(page);
1332 }
1333
1da177e4 1334 BUG_ON(!PageLocked(page));
1da177e4
LT
1335 mapping = page->mapping;
1336 index = page->index;
1337 inode = mapping->host;
1338 info = SHMEM_I(inode);
1339 if (info->flags & VM_LOCKED)
1340 goto redirty;
d9fe526a 1341 if (!total_swap_pages)
1da177e4
LT
1342 goto redirty;
1343
d9fe526a 1344 /*
97b713ba
CH
1345 * Our capabilities prevent regular writeback or sync from ever calling
1346 * shmem_writepage; but a stacking filesystem might use ->writepage of
1347 * its underlying filesystem, in which case tmpfs should write out to
1348 * swap only in response to memory pressure, and not for the writeback
1349 * threads or sync.
d9fe526a 1350 */
48f170fb
HD
1351 if (!wbc->for_reclaim) {
1352 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1353 goto redirty;
1354 }
1635f6a7
HD
1355
1356 /*
1357 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1358 * value into swapfile.c, the only way we can correctly account for a
1359 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1360 *
1361 * That's okay for a page already fallocated earlier, but if we have
1362 * not yet completed the fallocation, then (a) we want to keep track
1363 * of this page in case we have to undo it, and (b) it may not be a
1364 * good idea to continue anyway, once we're pushing into swap. So
1365 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1366 */
1367 if (!PageUptodate(page)) {
1aac1400
HD
1368 if (inode->i_private) {
1369 struct shmem_falloc *shmem_falloc;
1370 spin_lock(&inode->i_lock);
1371 shmem_falloc = inode->i_private;
1372 if (shmem_falloc &&
8e205f77 1373 !shmem_falloc->waitq &&
1aac1400
HD
1374 index >= shmem_falloc->start &&
1375 index < shmem_falloc->next)
1376 shmem_falloc->nr_unswapped++;
1377 else
1378 shmem_falloc = NULL;
1379 spin_unlock(&inode->i_lock);
1380 if (shmem_falloc)
1381 goto redirty;
1382 }
1635f6a7
HD
1383 clear_highpage(page);
1384 flush_dcache_page(page);
1385 SetPageUptodate(page);
1386 }
1387
38d8b4e6 1388 swap = get_swap_page(page);
48f170fb
HD
1389 if (!swap.val)
1390 goto redirty;
d9fe526a 1391
b1dea800
HD
1392 /*
1393 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1394 * if it's not already there. Do it now before the page is
1395 * moved to swap cache, when its pagelock no longer protects
b1dea800 1396 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1397 * we've incremented swapped, because shmem_unuse_inode() will
1398 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1399 */
48f170fb
HD
1400 mutex_lock(&shmem_swaplist_mutex);
1401 if (list_empty(&info->swaplist))
b56a2d8a 1402 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1403
4afab1cd 1404 if (add_to_swap_cache(page, swap,
3852f676
JK
1405 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1406 NULL) == 0) {
4595ef88 1407 spin_lock_irq(&info->lock);
6922c0c7 1408 shmem_recalc_inode(inode);
267a4c76 1409 info->swapped++;
4595ef88 1410 spin_unlock_irq(&info->lock);
6922c0c7 1411
267a4c76
HD
1412 swap_shmem_alloc(swap);
1413 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1414
6922c0c7 1415 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1416 BUG_ON(page_mapped(page));
9fab5619 1417 swap_writepage(page, wbc);
1da177e4
LT
1418 return 0;
1419 }
1420
6922c0c7 1421 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1422 put_swap_page(page, swap);
1da177e4
LT
1423redirty:
1424 set_page_dirty(page);
d9fe526a
HD
1425 if (wbc->for_reclaim)
1426 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1427 unlock_page(page);
1428 return 0;
1da177e4
LT
1429}
1430
75edd345 1431#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1432static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1433{
095f1fc4 1434 char buffer[64];
680d794b 1435
71fe804b 1436 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1437 return; /* show nothing */
680d794b 1438
a7a88b23 1439 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1440
1441 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1442}
71fe804b
LS
1443
1444static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1445{
1446 struct mempolicy *mpol = NULL;
1447 if (sbinfo->mpol) {
bf11b9a8 1448 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
71fe804b
LS
1449 mpol = sbinfo->mpol;
1450 mpol_get(mpol);
bf11b9a8 1451 raw_spin_unlock(&sbinfo->stat_lock);
71fe804b
LS
1452 }
1453 return mpol;
1454}
75edd345
HD
1455#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1456static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1457{
1458}
1459static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1460{
1461 return NULL;
1462}
1463#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1464#ifndef CONFIG_NUMA
1465#define vm_policy vm_private_data
1466#endif
680d794b 1467
800d8c63
KS
1468static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1469 struct shmem_inode_info *info, pgoff_t index)
1470{
1471 /* Create a pseudo vma that just contains the policy */
2c4541e2 1472 vma_init(vma, NULL);
800d8c63
KS
1473 /* Bias interleave by inode number to distribute better across nodes */
1474 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1475 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1476}
1477
1478static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1479{
1480 /* Drop reference taken by mpol_shared_policy_lookup() */
1481 mpol_cond_put(vma->vm_policy);
1482}
1483
41ffe5d5
HD
1484static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1485 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1486{
1da177e4 1487 struct vm_area_struct pvma;
18a2f371 1488 struct page *page;
8c63ca5b
WD
1489 struct vm_fault vmf = {
1490 .vma = &pvma,
1491 };
52cd3b07 1492
800d8c63 1493 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec 1494 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1495 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1496
800d8c63
KS
1497 return page;
1498}
1499
78cc8cdc
RR
1500/*
1501 * Make sure huge_gfp is always more limited than limit_gfp.
1502 * Some of the flags set permissions, while others set limitations.
1503 */
1504static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1505{
1506 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1507 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
187df5dd
RR
1508 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1509 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1510
1511 /* Allow allocations only from the originally specified zones. */
1512 result |= zoneflags;
78cc8cdc
RR
1513
1514 /*
1515 * Minimize the result gfp by taking the union with the deny flags,
1516 * and the intersection of the allow flags.
1517 */
1518 result |= (limit_gfp & denyflags);
1519 result |= (huge_gfp & limit_gfp) & allowflags;
1520
1521 return result;
1522}
1523
800d8c63
KS
1524static struct page *shmem_alloc_hugepage(gfp_t gfp,
1525 struct shmem_inode_info *info, pgoff_t index)
1526{
1527 struct vm_area_struct pvma;
7b8d046f
MW
1528 struct address_space *mapping = info->vfs_inode.i_mapping;
1529 pgoff_t hindex;
800d8c63
KS
1530 struct page *page;
1531
4620a06e 1532 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1533 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1534 XA_PRESENT))
800d8c63 1535 return NULL;
18a2f371 1536
800d8c63 1537 shmem_pseudo_vma_init(&pvma, info, hindex);
be1a13eb 1538 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
800d8c63
KS
1539 shmem_pseudo_vma_destroy(&pvma);
1540 if (page)
1541 prep_transhuge_page(page);
dcdf11ee
DR
1542 else
1543 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1544 return page;
1da177e4
LT
1545}
1546
02098fea 1547static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1548 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1549{
1550 struct vm_area_struct pvma;
18a2f371 1551 struct page *page;
1da177e4 1552
800d8c63
KS
1553 shmem_pseudo_vma_init(&pvma, info, index);
1554 page = alloc_page_vma(gfp, &pvma, 0);
1555 shmem_pseudo_vma_destroy(&pvma);
1556
1557 return page;
1558}
1559
1560static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1561 struct inode *inode,
800d8c63
KS
1562 pgoff_t index, bool huge)
1563{
0f079694 1564 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1565 struct page *page;
1566 int nr;
1567 int err = -ENOSPC;
52cd3b07 1568
396bcc52 1569 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1570 huge = false;
1571 nr = huge ? HPAGE_PMD_NR : 1;
1572
0f079694 1573 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1574 goto failed;
800d8c63
KS
1575
1576 if (huge)
1577 page = shmem_alloc_hugepage(gfp, info, index);
1578 else
1579 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1580 if (page) {
1581 __SetPageLocked(page);
1582 __SetPageSwapBacked(page);
800d8c63 1583 return page;
75edd345 1584 }
18a2f371 1585
800d8c63 1586 err = -ENOMEM;
0f079694 1587 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1588failed:
1589 return ERR_PTR(err);
1da177e4 1590}
71fe804b 1591
bde05d1c
HD
1592/*
1593 * When a page is moved from swapcache to shmem filecache (either by the
1594 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1595 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1596 * ignorance of the mapping it belongs to. If that mapping has special
1597 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1598 * we may need to copy to a suitable page before moving to filecache.
1599 *
1600 * In a future release, this may well be extended to respect cpuset and
1601 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1602 * but for now it is a simple matter of zone.
1603 */
1604static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1605{
1606 return page_zonenum(page) > gfp_zone(gfp);
1607}
1608
1609static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1610 struct shmem_inode_info *info, pgoff_t index)
1611{
1612 struct page *oldpage, *newpage;
d21bba2b 1613 struct folio *old, *new;
bde05d1c 1614 struct address_space *swap_mapping;
c1cb20d4 1615 swp_entry_t entry;
bde05d1c
HD
1616 pgoff_t swap_index;
1617 int error;
1618
1619 oldpage = *pagep;
c1cb20d4
YZ
1620 entry.val = page_private(oldpage);
1621 swap_index = swp_offset(entry);
bde05d1c
HD
1622 swap_mapping = page_mapping(oldpage);
1623
1624 /*
1625 * We have arrived here because our zones are constrained, so don't
1626 * limit chance of success by further cpuset and node constraints.
1627 */
1628 gfp &= ~GFP_CONSTRAINT_MASK;
1629 newpage = shmem_alloc_page(gfp, info, index);
1630 if (!newpage)
1631 return -ENOMEM;
bde05d1c 1632
09cbfeaf 1633 get_page(newpage);
bde05d1c 1634 copy_highpage(newpage, oldpage);
0142ef6c 1635 flush_dcache_page(newpage);
bde05d1c 1636
9956edf3
HD
1637 __SetPageLocked(newpage);
1638 __SetPageSwapBacked(newpage);
bde05d1c 1639 SetPageUptodate(newpage);
c1cb20d4 1640 set_page_private(newpage, entry.val);
bde05d1c
HD
1641 SetPageSwapCache(newpage);
1642
1643 /*
1644 * Our caller will very soon move newpage out of swapcache, but it's
1645 * a nice clean interface for us to replace oldpage by newpage there.
1646 */
b93b0163 1647 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1648 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1649 if (!error) {
d21bba2b
MWO
1650 old = page_folio(oldpage);
1651 new = page_folio(newpage);
1652 mem_cgroup_migrate(old, new);
0d1c2072
JW
1653 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1654 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1655 }
b93b0163 1656 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1657
0142ef6c
HD
1658 if (unlikely(error)) {
1659 /*
1660 * Is this possible? I think not, now that our callers check
1661 * both PageSwapCache and page_private after getting page lock;
1662 * but be defensive. Reverse old to newpage for clear and free.
1663 */
1664 oldpage = newpage;
1665 } else {
6058eaec 1666 lru_cache_add(newpage);
0142ef6c
HD
1667 *pagep = newpage;
1668 }
bde05d1c
HD
1669
1670 ClearPageSwapCache(oldpage);
1671 set_page_private(oldpage, 0);
1672
1673 unlock_page(oldpage);
09cbfeaf
KS
1674 put_page(oldpage);
1675 put_page(oldpage);
0142ef6c 1676 return error;
bde05d1c
HD
1677}
1678
c5bf121e
VRP
1679/*
1680 * Swap in the page pointed to by *pagep.
1681 * Caller has to make sure that *pagep contains a valid swapped page.
1682 * Returns 0 and the page in pagep if success. On failure, returns the
af44c12f 1683 * error code and NULL in *pagep.
c5bf121e
VRP
1684 */
1685static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1686 struct page **pagep, enum sgp_type sgp,
1687 gfp_t gfp, struct vm_area_struct *vma,
1688 vm_fault_t *fault_type)
1689{
1690 struct address_space *mapping = inode->i_mapping;
1691 struct shmem_inode_info *info = SHMEM_I(inode);
04f94e3f 1692 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
b1e1ef34 1693 struct page *page;
c5bf121e
VRP
1694 swp_entry_t swap;
1695 int error;
1696
1697 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1698 swap = radix_to_swp_entry(*pagep);
1699 *pagep = NULL;
1700
1701 /* Look it up and read it in.. */
1702 page = lookup_swap_cache(swap, NULL, 0);
1703 if (!page) {
1704 /* Or update major stats only when swapin succeeds?? */
1705 if (fault_type) {
1706 *fault_type |= VM_FAULT_MAJOR;
1707 count_vm_event(PGMAJFAULT);
1708 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1709 }
1710 /* Here we actually start the io */
1711 page = shmem_swapin(swap, gfp, info, index);
1712 if (!page) {
1713 error = -ENOMEM;
1714 goto failed;
1715 }
1716 }
1717
1718 /* We have to do this with page locked to prevent races */
1719 lock_page(page);
1720 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1721 !shmem_confirm_swap(mapping, index, swap)) {
1722 error = -EEXIST;
1723 goto unlock;
1724 }
1725 if (!PageUptodate(page)) {
1726 error = -EIO;
1727 goto failed;
1728 }
1729 wait_on_page_writeback(page);
1730
8a84802e
SP
1731 /*
1732 * Some architectures may have to restore extra metadata to the
1733 * physical page after reading from swap.
1734 */
1735 arch_swap_restore(swap, page);
1736
c5bf121e
VRP
1737 if (shmem_should_replace_page(page, gfp)) {
1738 error = shmem_replace_page(&page, gfp, info, index);
1739 if (error)
1740 goto failed;
1741 }
1742
14235ab3 1743 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1744 swp_to_radix_entry(swap), gfp,
1745 charge_mm);
1746 if (error)
14235ab3 1747 goto failed;
c5bf121e
VRP
1748
1749 spin_lock_irq(&info->lock);
1750 info->swapped--;
1751 shmem_recalc_inode(inode);
1752 spin_unlock_irq(&info->lock);
1753
1754 if (sgp == SGP_WRITE)
1755 mark_page_accessed(page);
1756
1757 delete_from_swap_cache(page);
1758 set_page_dirty(page);
1759 swap_free(swap);
1760
1761 *pagep = page;
1762 return 0;
1763failed:
1764 if (!shmem_confirm_swap(mapping, index, swap))
1765 error = -EEXIST;
1766unlock:
1767 if (page) {
1768 unlock_page(page);
1769 put_page(page);
1770 }
1771
1772 return error;
1773}
1774
1da177e4 1775/*
68da9f05 1776 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1777 *
1778 * If we allocate a new one we do not mark it dirty. That's up to the
1779 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1780 * entry since a page cannot live in both the swap and page cache.
1781 *
c949b097 1782 * vma, vmf, and fault_type are only supplied by shmem_fault:
9e18eb29 1783 * otherwise they are NULL.
1da177e4 1784 */
41ffe5d5 1785static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1786 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1787 struct vm_area_struct *vma, struct vm_fault *vmf,
1788 vm_fault_t *fault_type)
1da177e4
LT
1789{
1790 struct address_space *mapping = inode->i_mapping;
23f919d4 1791 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1792 struct shmem_sb_info *sbinfo;
9e18eb29 1793 struct mm_struct *charge_mm;
27ab7006 1794 struct page *page;
800d8c63 1795 pgoff_t hindex = index;
164cc4fe 1796 gfp_t huge_gfp;
1da177e4 1797 int error;
54af6042 1798 int once = 0;
1635f6a7 1799 int alloced = 0;
1da177e4 1800
09cbfeaf 1801 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1802 return -EFBIG;
1da177e4 1803repeat:
c5bf121e
VRP
1804 if (sgp <= SGP_CACHE &&
1805 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1806 return -EINVAL;
1807 }
1808
1809 sbinfo = SHMEM_SB(inode->i_sb);
04f94e3f 1810 charge_mm = vma ? vma->vm_mm : NULL;
c5bf121e 1811
44835d20
MWO
1812 page = pagecache_get_page(mapping, index,
1813 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
c949b097
AR
1814
1815 if (page && vma && userfaultfd_minor(vma)) {
1816 if (!xa_is_value(page)) {
1817 unlock_page(page);
1818 put_page(page);
1819 }
1820 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1821 return 0;
1822 }
1823
3159f943 1824 if (xa_is_value(page)) {
c5bf121e
VRP
1825 error = shmem_swapin_page(inode, index, &page,
1826 sgp, gfp, vma, fault_type);
1827 if (error == -EEXIST)
1828 goto repeat;
54af6042 1829
c5bf121e
VRP
1830 *pagep = page;
1831 return error;
54af6042
HD
1832 }
1833
acdd9f8e 1834 if (page) {
63ec1973 1835 hindex = page->index;
acdd9f8e
HD
1836 if (sgp == SGP_WRITE)
1837 mark_page_accessed(page);
1838 if (PageUptodate(page))
1839 goto out;
1840 /* fallocated page */
1635f6a7
HD
1841 if (sgp != SGP_READ)
1842 goto clear;
1843 unlock_page(page);
09cbfeaf 1844 put_page(page);
1635f6a7 1845 }
27ab7006
HD
1846
1847 /*
acdd9f8e
HD
1848 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1849 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1850 */
1851 *pagep = NULL;
1852 if (sgp == SGP_READ)
1853 return 0;
1854 if (sgp == SGP_NOALLOC)
1855 return -ENOENT;
1856
1857 /*
1858 * Fast cache lookup and swap lookup did not find it: allocate.
27ab7006 1859 */
54af6042 1860
c5bf121e
VRP
1861 if (vma && userfaultfd_missing(vma)) {
1862 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1863 return 0;
1864 }
cfda0526 1865
5e6e5a12 1866 if (!shmem_is_huge(vma, inode, index))
c5bf121e 1867 goto alloc_nohuge;
1da177e4 1868
164cc4fe 1869 huge_gfp = vma_thp_gfp_mask(vma);
78cc8cdc 1870 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
164cc4fe 1871 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
c5bf121e
VRP
1872 if (IS_ERR(page)) {
1873alloc_nohuge:
1874 page = shmem_alloc_and_acct_page(gfp, inode,
1875 index, false);
1876 }
1877 if (IS_ERR(page)) {
1878 int retry = 5;
800d8c63 1879
c5bf121e
VRP
1880 error = PTR_ERR(page);
1881 page = NULL;
1882 if (error != -ENOSPC)
1883 goto unlock;
1884 /*
1885 * Try to reclaim some space by splitting a huge page
1886 * beyond i_size on the filesystem.
1887 */
1888 while (retry--) {
1889 int ret;
66d2f4d2 1890
c5bf121e
VRP
1891 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1892 if (ret == SHRINK_STOP)
1893 break;
1894 if (ret)
1895 goto alloc_nohuge;
b065b432 1896 }
c5bf121e
VRP
1897 goto unlock;
1898 }
54af6042 1899
c5bf121e
VRP
1900 if (PageTransHuge(page))
1901 hindex = round_down(index, HPAGE_PMD_NR);
1902 else
1903 hindex = index;
54af6042 1904
c5bf121e
VRP
1905 if (sgp == SGP_WRITE)
1906 __SetPageReferenced(page);
1907
c5bf121e 1908 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1909 NULL, gfp & GFP_RECLAIM_MASK,
1910 charge_mm);
1911 if (error)
c5bf121e 1912 goto unacct;
6058eaec 1913 lru_cache_add(page);
779750d2 1914
c5bf121e 1915 spin_lock_irq(&info->lock);
d8c6546b 1916 info->alloced += compound_nr(page);
c5bf121e
VRP
1917 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1918 shmem_recalc_inode(inode);
1919 spin_unlock_irq(&info->lock);
1920 alloced = true;
1921
1922 if (PageTransHuge(page) &&
1923 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1924 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1925 /*
c5bf121e
VRP
1926 * Part of the huge page is beyond i_size: subject
1927 * to shrink under memory pressure.
1635f6a7 1928 */
c5bf121e 1929 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1930 /*
c5bf121e
VRP
1931 * _careful to defend against unlocked access to
1932 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1933 */
c5bf121e
VRP
1934 if (list_empty_careful(&info->shrinklist)) {
1935 list_add_tail(&info->shrinklist,
1936 &sbinfo->shrinklist);
1937 sbinfo->shrinklist_len++;
1938 }
1939 spin_unlock(&sbinfo->shrinklist_lock);
1940 }
800d8c63 1941
c5bf121e
VRP
1942 /*
1943 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1944 */
1945 if (sgp == SGP_FALLOC)
1946 sgp = SGP_WRITE;
1947clear:
1948 /*
1949 * Let SGP_WRITE caller clear ends if write does not fill page;
1950 * but SGP_FALLOC on a page fallocated earlier must initialize
1951 * it now, lest undo on failure cancel our earlier guarantee.
1952 */
1953 if (sgp != SGP_WRITE && !PageUptodate(page)) {
c5bf121e
VRP
1954 int i;
1955
63ec1973
MWO
1956 for (i = 0; i < compound_nr(page); i++) {
1957 clear_highpage(page + i);
1958 flush_dcache_page(page + i);
ec9516fb 1959 }
63ec1973 1960 SetPageUptodate(page);
1da177e4 1961 }
bde05d1c 1962
54af6042 1963 /* Perhaps the file has been truncated since we checked */
75edd345 1964 if (sgp <= SGP_CACHE &&
09cbfeaf 1965 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1966 if (alloced) {
1967 ClearPageDirty(page);
1968 delete_from_page_cache(page);
4595ef88 1969 spin_lock_irq(&info->lock);
267a4c76 1970 shmem_recalc_inode(inode);
4595ef88 1971 spin_unlock_irq(&info->lock);
267a4c76 1972 }
54af6042 1973 error = -EINVAL;
267a4c76 1974 goto unlock;
e83c32e8 1975 }
63ec1973 1976out:
800d8c63 1977 *pagep = page + index - hindex;
54af6042 1978 return 0;
1da177e4 1979
59a16ead 1980 /*
54af6042 1981 * Error recovery.
59a16ead 1982 */
54af6042 1983unacct:
d8c6546b 1984 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
1985
1986 if (PageTransHuge(page)) {
1987 unlock_page(page);
1988 put_page(page);
1989 goto alloc_nohuge;
1990 }
d1899228 1991unlock:
27ab7006 1992 if (page) {
54af6042 1993 unlock_page(page);
09cbfeaf 1994 put_page(page);
54af6042
HD
1995 }
1996 if (error == -ENOSPC && !once++) {
4595ef88 1997 spin_lock_irq(&info->lock);
54af6042 1998 shmem_recalc_inode(inode);
4595ef88 1999 spin_unlock_irq(&info->lock);
27ab7006 2000 goto repeat;
ff36b801 2001 }
7f4446ee 2002 if (error == -EEXIST)
54af6042
HD
2003 goto repeat;
2004 return error;
1da177e4
LT
2005}
2006
10d20bd2
LT
2007/*
2008 * This is like autoremove_wake_function, but it removes the wait queue
2009 * entry unconditionally - even if something else had already woken the
2010 * target.
2011 */
ac6424b9 2012static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2013{
2014 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2015 list_del_init(&wait->entry);
10d20bd2
LT
2016 return ret;
2017}
2018
20acce67 2019static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2020{
11bac800 2021 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2022 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2023 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
20acce67
SJ
2024 int err;
2025 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2026
f00cdc6d
HD
2027 /*
2028 * Trinity finds that probing a hole which tmpfs is punching can
2029 * prevent the hole-punch from ever completing: which in turn
9608703e 2030 * locks writers out with its hold on i_rwsem. So refrain from
8e205f77
HD
2031 * faulting pages into the hole while it's being punched. Although
2032 * shmem_undo_range() does remove the additions, it may be unable to
2033 * keep up, as each new page needs its own unmap_mapping_range() call,
2034 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2035 *
2036 * It does not matter if we sometimes reach this check just before the
2037 * hole-punch begins, so that one fault then races with the punch:
2038 * we just need to make racing faults a rare case.
2039 *
2040 * The implementation below would be much simpler if we just used a
9608703e 2041 * standard mutex or completion: but we cannot take i_rwsem in fault,
8e205f77 2042 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2043 */
2044 if (unlikely(inode->i_private)) {
2045 struct shmem_falloc *shmem_falloc;
2046
2047 spin_lock(&inode->i_lock);
2048 shmem_falloc = inode->i_private;
8e205f77
HD
2049 if (shmem_falloc &&
2050 shmem_falloc->waitq &&
2051 vmf->pgoff >= shmem_falloc->start &&
2052 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2053 struct file *fpin;
8e205f77 2054 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2055 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2056
2057 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2058 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2059 if (fpin)
8e205f77 2060 ret = VM_FAULT_RETRY;
8e205f77
HD
2061
2062 shmem_falloc_waitq = shmem_falloc->waitq;
2063 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2064 TASK_UNINTERRUPTIBLE);
2065 spin_unlock(&inode->i_lock);
2066 schedule();
2067
2068 /*
2069 * shmem_falloc_waitq points into the shmem_fallocate()
2070 * stack of the hole-punching task: shmem_falloc_waitq
2071 * is usually invalid by the time we reach here, but
2072 * finish_wait() does not dereference it in that case;
2073 * though i_lock needed lest racing with wake_up_all().
2074 */
2075 spin_lock(&inode->i_lock);
2076 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2077 spin_unlock(&inode->i_lock);
8897c1b1
KS
2078
2079 if (fpin)
2080 fput(fpin);
8e205f77 2081 return ret;
f00cdc6d 2082 }
8e205f77 2083 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2084 }
2085
5e6e5a12 2086 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
cfda0526 2087 gfp, vma, vmf, &ret);
20acce67
SJ
2088 if (err)
2089 return vmf_error(err);
68da9f05 2090 return ret;
1da177e4
LT
2091}
2092
c01d5b30
HD
2093unsigned long shmem_get_unmapped_area(struct file *file,
2094 unsigned long uaddr, unsigned long len,
2095 unsigned long pgoff, unsigned long flags)
2096{
2097 unsigned long (*get_area)(struct file *,
2098 unsigned long, unsigned long, unsigned long, unsigned long);
2099 unsigned long addr;
2100 unsigned long offset;
2101 unsigned long inflated_len;
2102 unsigned long inflated_addr;
2103 unsigned long inflated_offset;
2104
2105 if (len > TASK_SIZE)
2106 return -ENOMEM;
2107
2108 get_area = current->mm->get_unmapped_area;
2109 addr = get_area(file, uaddr, len, pgoff, flags);
2110
396bcc52 2111 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2112 return addr;
2113 if (IS_ERR_VALUE(addr))
2114 return addr;
2115 if (addr & ~PAGE_MASK)
2116 return addr;
2117 if (addr > TASK_SIZE - len)
2118 return addr;
2119
2120 if (shmem_huge == SHMEM_HUGE_DENY)
2121 return addr;
2122 if (len < HPAGE_PMD_SIZE)
2123 return addr;
2124 if (flags & MAP_FIXED)
2125 return addr;
2126 /*
2127 * Our priority is to support MAP_SHARED mapped hugely;
2128 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2129 * But if caller specified an address hint and we allocated area there
2130 * successfully, respect that as before.
c01d5b30 2131 */
99158997 2132 if (uaddr == addr)
c01d5b30
HD
2133 return addr;
2134
2135 if (shmem_huge != SHMEM_HUGE_FORCE) {
2136 struct super_block *sb;
2137
2138 if (file) {
2139 VM_BUG_ON(file->f_op != &shmem_file_operations);
2140 sb = file_inode(file)->i_sb;
2141 } else {
2142 /*
2143 * Called directly from mm/mmap.c, or drivers/char/mem.c
2144 * for "/dev/zero", to create a shared anonymous object.
2145 */
2146 if (IS_ERR(shm_mnt))
2147 return addr;
2148 sb = shm_mnt->mnt_sb;
2149 }
3089bf61 2150 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2151 return addr;
2152 }
2153
2154 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2155 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2156 return addr;
2157 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2158 return addr;
2159
2160 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2161 if (inflated_len > TASK_SIZE)
2162 return addr;
2163 if (inflated_len < len)
2164 return addr;
2165
99158997 2166 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2167 if (IS_ERR_VALUE(inflated_addr))
2168 return addr;
2169 if (inflated_addr & ~PAGE_MASK)
2170 return addr;
2171
2172 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2173 inflated_addr += offset - inflated_offset;
2174 if (inflated_offset > offset)
2175 inflated_addr += HPAGE_PMD_SIZE;
2176
2177 if (inflated_addr > TASK_SIZE - len)
2178 return addr;
2179 return inflated_addr;
2180}
2181
1da177e4 2182#ifdef CONFIG_NUMA
41ffe5d5 2183static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2184{
496ad9aa 2185 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2186 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2187}
2188
d8dc74f2
AB
2189static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2190 unsigned long addr)
1da177e4 2191{
496ad9aa 2192 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2193 pgoff_t index;
1da177e4 2194
41ffe5d5
HD
2195 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2196 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2197}
2198#endif
2199
d7c9e99a 2200int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
1da177e4 2201{
496ad9aa 2202 struct inode *inode = file_inode(file);
1da177e4
LT
2203 struct shmem_inode_info *info = SHMEM_I(inode);
2204 int retval = -ENOMEM;
2205
ea0dfeb4
HD
2206 /*
2207 * What serializes the accesses to info->flags?
2208 * ipc_lock_object() when called from shmctl_do_lock(),
2209 * no serialization needed when called from shm_destroy().
2210 */
1da177e4 2211 if (lock && !(info->flags & VM_LOCKED)) {
d7c9e99a 2212 if (!user_shm_lock(inode->i_size, ucounts))
1da177e4
LT
2213 goto out_nomem;
2214 info->flags |= VM_LOCKED;
89e004ea 2215 mapping_set_unevictable(file->f_mapping);
1da177e4 2216 }
d7c9e99a
AG
2217 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2218 user_shm_unlock(inode->i_size, ucounts);
1da177e4 2219 info->flags &= ~VM_LOCKED;
89e004ea 2220 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2221 }
2222 retval = 0;
89e004ea 2223
1da177e4 2224out_nomem:
1da177e4
LT
2225 return retval;
2226}
2227
9b83a6a8 2228static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2229{
ab3948f5 2230 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
22247efd 2231 int ret;
ab3948f5 2232
22247efd
PX
2233 ret = seal_check_future_write(info->seals, vma);
2234 if (ret)
2235 return ret;
ab3948f5 2236
51b0bff2
CM
2237 /* arm64 - allow memory tagging on RAM-based files */
2238 vma->vm_flags |= VM_MTE_ALLOWED;
2239
1da177e4
LT
2240 file_accessed(file);
2241 vma->vm_ops = &shmem_vm_ops;
396bcc52 2242 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2243 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2244 (vma->vm_end & HPAGE_PMD_MASK)) {
2245 khugepaged_enter(vma, vma->vm_flags);
2246 }
1da177e4
LT
2247 return 0;
2248}
2249
454abafe 2250static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2251 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2252{
2253 struct inode *inode;
2254 struct shmem_inode_info *info;
2255 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2256 ino_t ino;
1da177e4 2257
e809d5f0 2258 if (shmem_reserve_inode(sb, &ino))
5b04c689 2259 return NULL;
1da177e4
LT
2260
2261 inode = new_inode(sb);
2262 if (inode) {
e809d5f0 2263 inode->i_ino = ino;
21cb47be 2264 inode_init_owner(&init_user_ns, inode, dir, mode);
1da177e4 2265 inode->i_blocks = 0;
078cd827 2266 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2267 inode->i_generation = prandom_u32();
1da177e4
LT
2268 info = SHMEM_I(inode);
2269 memset(info, 0, (char *)inode - (char *)info);
2270 spin_lock_init(&info->lock);
af53d3e9 2271 atomic_set(&info->stop_eviction, 0);
40e041a2 2272 info->seals = F_SEAL_SEAL;
0b0a0806 2273 info->flags = flags & VM_NORESERVE;
f7cd16a5 2274 info->i_crtime = inode->i_mtime;
779750d2 2275 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2276 INIT_LIST_HEAD(&info->swaplist);
38f38657 2277 simple_xattrs_init(&info->xattrs);
72c04902 2278 cache_no_acl(inode);
ff36da69 2279 mapping_set_large_folios(inode->i_mapping);
1da177e4
LT
2280
2281 switch (mode & S_IFMT) {
2282 default:
39f0247d 2283 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2284 init_special_inode(inode, mode, dev);
2285 break;
2286 case S_IFREG:
14fcc23f 2287 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2288 inode->i_op = &shmem_inode_operations;
2289 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2290 mpol_shared_policy_init(&info->policy,
2291 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2292 break;
2293 case S_IFDIR:
d8c76e6f 2294 inc_nlink(inode);
1da177e4
LT
2295 /* Some things misbehave if size == 0 on a directory */
2296 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2297 inode->i_op = &shmem_dir_inode_operations;
2298 inode->i_fop = &simple_dir_operations;
2299 break;
2300 case S_IFLNK:
2301 /*
2302 * Must not load anything in the rbtree,
2303 * mpol_free_shared_policy will not be called.
2304 */
71fe804b 2305 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2306 break;
2307 }
b45d71fb
JFG
2308
2309 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2310 } else
2311 shmem_free_inode(sb);
1da177e4
LT
2312 return inode;
2313}
2314
3460f6e5
AR
2315#ifdef CONFIG_USERFAULTFD
2316int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2317 pmd_t *dst_pmd,
2318 struct vm_area_struct *dst_vma,
2319 unsigned long dst_addr,
2320 unsigned long src_addr,
2321 bool zeropage,
2322 struct page **pagep)
4c27fe4c
MR
2323{
2324 struct inode *inode = file_inode(dst_vma->vm_file);
2325 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2326 struct address_space *mapping = inode->i_mapping;
2327 gfp_t gfp = mapping_gfp_mask(mapping);
2328 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2329 void *page_kaddr;
2330 struct page *page;
4c27fe4c 2331 int ret;
3460f6e5 2332 pgoff_t max_off;
4c27fe4c 2333
7ed9d238
AR
2334 if (!shmem_inode_acct_block(inode, 1)) {
2335 /*
2336 * We may have got a page, returned -ENOENT triggering a retry,
2337 * and now we find ourselves with -ENOMEM. Release the page, to
2338 * avoid a BUG_ON in our caller.
2339 */
2340 if (unlikely(*pagep)) {
2341 put_page(*pagep);
2342 *pagep = NULL;
2343 }
7d64ae3a 2344 return -ENOMEM;
7ed9d238 2345 }
4c27fe4c 2346
cb658a45 2347 if (!*pagep) {
7d64ae3a 2348 ret = -ENOMEM;
4c27fe4c
MR
2349 page = shmem_alloc_page(gfp, info, pgoff);
2350 if (!page)
0f079694 2351 goto out_unacct_blocks;
4c27fe4c 2352
3460f6e5 2353 if (!zeropage) { /* COPY */
8d103963
MR
2354 page_kaddr = kmap_atomic(page);
2355 ret = copy_from_user(page_kaddr,
2356 (const void __user *)src_addr,
2357 PAGE_SIZE);
2358 kunmap_atomic(page_kaddr);
2359
c1e8d7c6 2360 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2361 if (unlikely(ret)) {
2362 *pagep = page;
7d64ae3a 2363 ret = -ENOENT;
8d103963 2364 /* don't free the page */
7d64ae3a 2365 goto out_unacct_blocks;
8d103963 2366 }
19b482c2
MS
2367
2368 flush_dcache_page(page);
3460f6e5 2369 } else { /* ZEROPAGE */
19b482c2 2370 clear_user_highpage(page, dst_addr);
4c27fe4c
MR
2371 }
2372 } else {
2373 page = *pagep;
2374 *pagep = NULL;
2375 }
2376
3460f6e5
AR
2377 VM_BUG_ON(PageLocked(page));
2378 VM_BUG_ON(PageSwapBacked(page));
9cc90c66
AA
2379 __SetPageLocked(page);
2380 __SetPageSwapBacked(page);
a425d358 2381 __SetPageUptodate(page);
9cc90c66 2382
e2a50c1f 2383 ret = -EFAULT;
e2a50c1f 2384 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3460f6e5 2385 if (unlikely(pgoff >= max_off))
e2a50c1f
AA
2386 goto out_release;
2387
552446a4 2388 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2389 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2390 if (ret)
3fea5a49 2391 goto out_release;
4c27fe4c 2392
7d64ae3a
AR
2393 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2394 page, true, false);
2395 if (ret)
2396 goto out_delete_from_cache;
4c27fe4c 2397
94b7cc01 2398 spin_lock_irq(&info->lock);
4c27fe4c
MR
2399 info->alloced++;
2400 inode->i_blocks += BLOCKS_PER_PAGE;
2401 shmem_recalc_inode(inode);
94b7cc01 2402 spin_unlock_irq(&info->lock);
4c27fe4c 2403
e2a50c1f 2404 unlock_page(page);
7d64ae3a
AR
2405 return 0;
2406out_delete_from_cache:
e2a50c1f 2407 delete_from_page_cache(page);
4c27fe4c 2408out_release:
9cc90c66 2409 unlock_page(page);
4c27fe4c 2410 put_page(page);
4c27fe4c 2411out_unacct_blocks:
0f079694 2412 shmem_inode_unacct_blocks(inode, 1);
7d64ae3a 2413 return ret;
8d103963 2414}
3460f6e5 2415#endif /* CONFIG_USERFAULTFD */
8d103963 2416
1da177e4 2417#ifdef CONFIG_TMPFS
92e1d5be 2418static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2419static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2420
6d9d88d0
JS
2421#ifdef CONFIG_TMPFS_XATTR
2422static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2423#else
2424#define shmem_initxattrs NULL
2425#endif
2426
1da177e4 2427static int
800d15a5
NP
2428shmem_write_begin(struct file *file, struct address_space *mapping,
2429 loff_t pos, unsigned len, unsigned flags,
2430 struct page **pagep, void **fsdata)
1da177e4 2431{
800d15a5 2432 struct inode *inode = mapping->host;
40e041a2 2433 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2434 pgoff_t index = pos >> PAGE_SHIFT;
a7605426 2435 int ret = 0;
40e041a2 2436
9608703e 2437 /* i_rwsem is held by caller */
ab3948f5
JFG
2438 if (unlikely(info->seals & (F_SEAL_GROW |
2439 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2440 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DR
2441 return -EPERM;
2442 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2443 return -EPERM;
2444 }
2445
a7605426
YS
2446 ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2447
2448 if (ret)
2449 return ret;
2450
2451 if (PageHWPoison(*pagep)) {
2452 unlock_page(*pagep);
2453 put_page(*pagep);
2454 *pagep = NULL;
2455 return -EIO;
2456 }
2457
2458 return 0;
800d15a5
NP
2459}
2460
2461static int
2462shmem_write_end(struct file *file, struct address_space *mapping,
2463 loff_t pos, unsigned len, unsigned copied,
2464 struct page *page, void *fsdata)
2465{
2466 struct inode *inode = mapping->host;
2467
d3602444
HD
2468 if (pos + copied > inode->i_size)
2469 i_size_write(inode, pos + copied);
2470
ec9516fb 2471 if (!PageUptodate(page)) {
800d8c63
KS
2472 struct page *head = compound_head(page);
2473 if (PageTransCompound(page)) {
2474 int i;
2475
2476 for (i = 0; i < HPAGE_PMD_NR; i++) {
2477 if (head + i == page)
2478 continue;
2479 clear_highpage(head + i);
2480 flush_dcache_page(head + i);
2481 }
2482 }
09cbfeaf
KS
2483 if (copied < PAGE_SIZE) {
2484 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2485 zero_user_segments(page, 0, from,
09cbfeaf 2486 from + copied, PAGE_SIZE);
ec9516fb 2487 }
800d8c63 2488 SetPageUptodate(head);
ec9516fb 2489 }
800d15a5 2490 set_page_dirty(page);
6746aff7 2491 unlock_page(page);
09cbfeaf 2492 put_page(page);
800d15a5 2493
800d15a5 2494 return copied;
1da177e4
LT
2495}
2496
2ba5bbed 2497static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2498{
6e58e79d
AV
2499 struct file *file = iocb->ki_filp;
2500 struct inode *inode = file_inode(file);
1da177e4 2501 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2502 pgoff_t index;
2503 unsigned long offset;
f7c1d074 2504 int error = 0;
cb66a7a1 2505 ssize_t retval = 0;
6e58e79d 2506 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5 2507
09cbfeaf
KS
2508 index = *ppos >> PAGE_SHIFT;
2509 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2510
2511 for (;;) {
2512 struct page *page = NULL;
41ffe5d5
HD
2513 pgoff_t end_index;
2514 unsigned long nr, ret;
1da177e4
LT
2515 loff_t i_size = i_size_read(inode);
2516
09cbfeaf 2517 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2518 if (index > end_index)
2519 break;
2520 if (index == end_index) {
09cbfeaf 2521 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2522 if (nr <= offset)
2523 break;
2524 }
2525
56a8c8eb 2526 error = shmem_getpage(inode, index, &page, SGP_READ);
6e58e79d
AV
2527 if (error) {
2528 if (error == -EINVAL)
2529 error = 0;
1da177e4
LT
2530 break;
2531 }
75edd345 2532 if (page) {
d3602444 2533 unlock_page(page);
a7605426
YS
2534
2535 if (PageHWPoison(page)) {
2536 put_page(page);
2537 error = -EIO;
2538 break;
2539 }
75edd345 2540 }
1da177e4
LT
2541
2542 /*
2543 * We must evaluate after, since reads (unlike writes)
9608703e 2544 * are called without i_rwsem protection against truncate
1da177e4 2545 */
09cbfeaf 2546 nr = PAGE_SIZE;
1da177e4 2547 i_size = i_size_read(inode);
09cbfeaf 2548 end_index = i_size >> PAGE_SHIFT;
1da177e4 2549 if (index == end_index) {
09cbfeaf 2550 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2551 if (nr <= offset) {
2552 if (page)
09cbfeaf 2553 put_page(page);
1da177e4
LT
2554 break;
2555 }
2556 }
2557 nr -= offset;
2558
2559 if (page) {
2560 /*
2561 * If users can be writing to this page using arbitrary
2562 * virtual addresses, take care about potential aliasing
2563 * before reading the page on the kernel side.
2564 */
2565 if (mapping_writably_mapped(mapping))
2566 flush_dcache_page(page);
2567 /*
2568 * Mark the page accessed if we read the beginning.
2569 */
2570 if (!offset)
2571 mark_page_accessed(page);
1bdec44b
HD
2572 /*
2573 * Ok, we have the page, and it's up-to-date, so
2574 * now we can copy it to user space...
2575 */
2576 ret = copy_page_to_iter(page, offset, nr, to);
2577 put_page(page);
2578
2579 } else if (iter_is_iovec(to)) {
2580 /*
2581 * Copy to user tends to be so well optimized, but
2582 * clear_user() not so much, that it is noticeably
2583 * faster to copy the zero page instead of clearing.
2584 */
2585 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
b5810039 2586 } else {
1bdec44b
HD
2587 /*
2588 * But submitting the same page twice in a row to
2589 * splice() - or others? - can result in confusion:
2590 * so don't attempt that optimization on pipes etc.
2591 */
2592 ret = iov_iter_zero(nr, to);
b5810039 2593 }
1da177e4 2594
6e58e79d 2595 retval += ret;
1da177e4 2596 offset += ret;
09cbfeaf
KS
2597 index += offset >> PAGE_SHIFT;
2598 offset &= ~PAGE_MASK;
1da177e4 2599
2ba5bbed 2600 if (!iov_iter_count(to))
1da177e4 2601 break;
6e58e79d
AV
2602 if (ret < nr) {
2603 error = -EFAULT;
2604 break;
2605 }
1da177e4
LT
2606 cond_resched();
2607 }
2608
09cbfeaf 2609 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2610 file_accessed(file);
2611 return retval ? retval : error;
1da177e4
LT
2612}
2613
965c8e59 2614static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2615{
2616 struct address_space *mapping = file->f_mapping;
2617 struct inode *inode = mapping->host;
220f2ac9 2618
965c8e59
AM
2619 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2620 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2621 MAX_LFS_FILESIZE, i_size_read(inode));
41139aa4
MWO
2622 if (offset < 0)
2623 return -ENXIO;
2624
5955102c 2625 inode_lock(inode);
9608703e 2626 /* We're holding i_rwsem so we can access i_size directly */
41139aa4 2627 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
387aae6f
HD
2628 if (offset >= 0)
2629 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2630 inode_unlock(inode);
220f2ac9
HD
2631 return offset;
2632}
2633
83e4fa9c
HD
2634static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2635 loff_t len)
2636{
496ad9aa 2637 struct inode *inode = file_inode(file);
e2d12e22 2638 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2639 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2640 struct shmem_falloc shmem_falloc;
d144bf62 2641 pgoff_t start, index, end, undo_fallocend;
e2d12e22 2642 int error;
83e4fa9c 2643
13ace4d0
HD
2644 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2645 return -EOPNOTSUPP;
2646
5955102c 2647 inode_lock(inode);
83e4fa9c
HD
2648
2649 if (mode & FALLOC_FL_PUNCH_HOLE) {
2650 struct address_space *mapping = file->f_mapping;
2651 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2652 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2653 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2654
9608703e 2655 /* protected by i_rwsem */
ab3948f5 2656 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DR
2657 error = -EPERM;
2658 goto out;
2659 }
2660
8e205f77 2661 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2662 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2663 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2664 spin_lock(&inode->i_lock);
2665 inode->i_private = &shmem_falloc;
2666 spin_unlock(&inode->i_lock);
2667
83e4fa9c
HD
2668 if ((u64)unmap_end > (u64)unmap_start)
2669 unmap_mapping_range(mapping, unmap_start,
2670 1 + unmap_end - unmap_start, 0);
2671 shmem_truncate_range(inode, offset, offset + len - 1);
2672 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2673
2674 spin_lock(&inode->i_lock);
2675 inode->i_private = NULL;
2676 wake_up_all(&shmem_falloc_waitq);
2055da97 2677 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2678 spin_unlock(&inode->i_lock);
83e4fa9c 2679 error = 0;
8e205f77 2680 goto out;
e2d12e22
HD
2681 }
2682
2683 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2684 error = inode_newsize_ok(inode, offset + len);
2685 if (error)
2686 goto out;
2687
40e041a2
DR
2688 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2689 error = -EPERM;
2690 goto out;
2691 }
2692
09cbfeaf
KS
2693 start = offset >> PAGE_SHIFT;
2694 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2695 /* Try to avoid a swapstorm if len is impossible to satisfy */
2696 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2697 error = -ENOSPC;
2698 goto out;
83e4fa9c
HD
2699 }
2700
8e205f77 2701 shmem_falloc.waitq = NULL;
1aac1400
HD
2702 shmem_falloc.start = start;
2703 shmem_falloc.next = start;
2704 shmem_falloc.nr_falloced = 0;
2705 shmem_falloc.nr_unswapped = 0;
2706 spin_lock(&inode->i_lock);
2707 inode->i_private = &shmem_falloc;
2708 spin_unlock(&inode->i_lock);
2709
d144bf62
HD
2710 /*
2711 * info->fallocend is only relevant when huge pages might be
2712 * involved: to prevent split_huge_page() freeing fallocated
2713 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2714 */
2715 undo_fallocend = info->fallocend;
2716 if (info->fallocend < end)
2717 info->fallocend = end;
2718
050dcb5c 2719 for (index = start; index < end; ) {
e2d12e22
HD
2720 struct page *page;
2721
2722 /*
2723 * Good, the fallocate(2) manpage permits EINTR: we may have
2724 * been interrupted because we are using up too much memory.
2725 */
2726 if (signal_pending(current))
2727 error = -EINTR;
1aac1400
HD
2728 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2729 error = -ENOMEM;
e2d12e22 2730 else
9e18eb29 2731 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2732 if (error) {
d144bf62 2733 info->fallocend = undo_fallocend;
1635f6a7 2734 /* Remove the !PageUptodate pages we added */
7f556567
HD
2735 if (index > start) {
2736 shmem_undo_range(inode,
2737 (loff_t)start << PAGE_SHIFT,
2738 ((loff_t)index << PAGE_SHIFT) - 1, true);
2739 }
1aac1400 2740 goto undone;
e2d12e22
HD
2741 }
2742
050dcb5c
HD
2743 index++;
2744 /*
2745 * Here is a more important optimization than it appears:
2746 * a second SGP_FALLOC on the same huge page will clear it,
2747 * making it PageUptodate and un-undoable if we fail later.
2748 */
2749 if (PageTransCompound(page)) {
2750 index = round_up(index, HPAGE_PMD_NR);
2751 /* Beware 32-bit wraparound */
2752 if (!index)
2753 index--;
2754 }
2755
1aac1400
HD
2756 /*
2757 * Inform shmem_writepage() how far we have reached.
2758 * No need for lock or barrier: we have the page lock.
2759 */
1aac1400 2760 if (!PageUptodate(page))
050dcb5c
HD
2761 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2762 shmem_falloc.next = index;
1aac1400 2763
e2d12e22 2764 /*
1635f6a7
HD
2765 * If !PageUptodate, leave it that way so that freeable pages
2766 * can be recognized if we need to rollback on error later.
2767 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2768 * than free the pages we are allocating (and SGP_CACHE pages
2769 * might still be clean: we now need to mark those dirty too).
2770 */
2771 set_page_dirty(page);
2772 unlock_page(page);
09cbfeaf 2773 put_page(page);
e2d12e22
HD
2774 cond_resched();
2775 }
2776
2777 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2778 i_size_write(inode, offset + len);
078cd827 2779 inode->i_ctime = current_time(inode);
1aac1400
HD
2780undone:
2781 spin_lock(&inode->i_lock);
2782 inode->i_private = NULL;
2783 spin_unlock(&inode->i_lock);
e2d12e22 2784out:
5955102c 2785 inode_unlock(inode);
83e4fa9c
HD
2786 return error;
2787}
2788
726c3342 2789static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2790{
726c3342 2791 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2792
2793 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2794 buf->f_bsize = PAGE_SIZE;
1da177e4 2795 buf->f_namelen = NAME_MAX;
0edd73b3 2796 if (sbinfo->max_blocks) {
1da177e4 2797 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2798 buf->f_bavail =
2799 buf->f_bfree = sbinfo->max_blocks -
2800 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2801 }
2802 if (sbinfo->max_inodes) {
1da177e4
LT
2803 buf->f_files = sbinfo->max_inodes;
2804 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2805 }
2806 /* else leave those fields 0 like simple_statfs */
59cda49e
AG
2807
2808 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2809
1da177e4
LT
2810 return 0;
2811}
2812
2813/*
2814 * File creation. Allocate an inode, and we're done..
2815 */
2816static int
549c7297
CB
2817shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2818 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2819{
0b0a0806 2820 struct inode *inode;
1da177e4
LT
2821 int error = -ENOSPC;
2822
454abafe 2823 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2824 if (inode) {
feda821e
CH
2825 error = simple_acl_create(dir, inode);
2826 if (error)
2827 goto out_iput;
2a7dba39 2828 error = security_inode_init_security(inode, dir,
9d8f13ba 2829 &dentry->d_name,
6d9d88d0 2830 shmem_initxattrs, NULL);
feda821e
CH
2831 if (error && error != -EOPNOTSUPP)
2832 goto out_iput;
37ec43cd 2833
718deb6b 2834 error = 0;
1da177e4 2835 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2836 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2837 d_instantiate(dentry, inode);
2838 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2839 }
2840 return error;
feda821e
CH
2841out_iput:
2842 iput(inode);
2843 return error;
1da177e4
LT
2844}
2845
60545d0d 2846static int
549c7297
CB
2847shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2848 struct dentry *dentry, umode_t mode)
60545d0d
AV
2849{
2850 struct inode *inode;
2851 int error = -ENOSPC;
2852
2853 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2854 if (inode) {
2855 error = security_inode_init_security(inode, dir,
2856 NULL,
2857 shmem_initxattrs, NULL);
feda821e
CH
2858 if (error && error != -EOPNOTSUPP)
2859 goto out_iput;
2860 error = simple_acl_create(dir, inode);
2861 if (error)
2862 goto out_iput;
60545d0d
AV
2863 d_tmpfile(dentry, inode);
2864 }
2865 return error;
feda821e
CH
2866out_iput:
2867 iput(inode);
2868 return error;
60545d0d
AV
2869}
2870
549c7297
CB
2871static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2872 struct dentry *dentry, umode_t mode)
1da177e4
LT
2873{
2874 int error;
2875
549c7297
CB
2876 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2877 mode | S_IFDIR, 0)))
1da177e4 2878 return error;
d8c76e6f 2879 inc_nlink(dir);
1da177e4
LT
2880 return 0;
2881}
2882
549c7297
CB
2883static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2884 struct dentry *dentry, umode_t mode, bool excl)
1da177e4 2885{
549c7297 2886 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
2887}
2888
2889/*
2890 * Link a file..
2891 */
2892static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2893{
75c3cfa8 2894 struct inode *inode = d_inode(old_dentry);
29b00e60 2895 int ret = 0;
1da177e4
LT
2896
2897 /*
2898 * No ordinary (disk based) filesystem counts links as inodes;
2899 * but each new link needs a new dentry, pinning lowmem, and
2900 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2901 * But if an O_TMPFILE file is linked into the tmpfs, the
2902 * first link must skip that, to get the accounting right.
1da177e4 2903 */
1062af92 2904 if (inode->i_nlink) {
e809d5f0 2905 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
2906 if (ret)
2907 goto out;
2908 }
1da177e4
LT
2909
2910 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2911 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2912 inc_nlink(inode);
7de9c6ee 2913 ihold(inode); /* New dentry reference */
1da177e4
LT
2914 dget(dentry); /* Extra pinning count for the created dentry */
2915 d_instantiate(dentry, inode);
5b04c689
PE
2916out:
2917 return ret;
1da177e4
LT
2918}
2919
2920static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2921{
75c3cfa8 2922 struct inode *inode = d_inode(dentry);
1da177e4 2923
5b04c689
PE
2924 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2925 shmem_free_inode(inode->i_sb);
1da177e4
LT
2926
2927 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2928 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2929 drop_nlink(inode);
1da177e4
LT
2930 dput(dentry); /* Undo the count from "create" - this does all the work */
2931 return 0;
2932}
2933
2934static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2935{
2936 if (!simple_empty(dentry))
2937 return -ENOTEMPTY;
2938
75c3cfa8 2939 drop_nlink(d_inode(dentry));
9a53c3a7 2940 drop_nlink(dir);
1da177e4
LT
2941 return shmem_unlink(dir, dentry);
2942}
2943
549c7297
CB
2944static int shmem_whiteout(struct user_namespace *mnt_userns,
2945 struct inode *old_dir, struct dentry *old_dentry)
46fdb794
MS
2946{
2947 struct dentry *whiteout;
2948 int error;
2949
2950 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2951 if (!whiteout)
2952 return -ENOMEM;
2953
549c7297 2954 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
46fdb794
MS
2955 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2956 dput(whiteout);
2957 if (error)
2958 return error;
2959
2960 /*
2961 * Cheat and hash the whiteout while the old dentry is still in
2962 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2963 *
2964 * d_lookup() will consistently find one of them at this point,
2965 * not sure which one, but that isn't even important.
2966 */
2967 d_rehash(whiteout);
2968 return 0;
2969}
2970
1da177e4
LT
2971/*
2972 * The VFS layer already does all the dentry stuff for rename,
2973 * we just have to decrement the usage count for the target if
2974 * it exists so that the VFS layer correctly free's it when it
2975 * gets overwritten.
2976 */
549c7297
CB
2977static int shmem_rename2(struct user_namespace *mnt_userns,
2978 struct inode *old_dir, struct dentry *old_dentry,
2979 struct inode *new_dir, struct dentry *new_dentry,
2980 unsigned int flags)
1da177e4 2981{
75c3cfa8 2982 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2983 int they_are_dirs = S_ISDIR(inode->i_mode);
2984
46fdb794 2985 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2986 return -EINVAL;
2987
37456771 2988 if (flags & RENAME_EXCHANGE)
6429e463 2989 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
37456771 2990
1da177e4
LT
2991 if (!simple_empty(new_dentry))
2992 return -ENOTEMPTY;
2993
46fdb794
MS
2994 if (flags & RENAME_WHITEOUT) {
2995 int error;
2996
549c7297 2997 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
46fdb794
MS
2998 if (error)
2999 return error;
3000 }
3001
75c3cfa8 3002 if (d_really_is_positive(new_dentry)) {
1da177e4 3003 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3004 if (they_are_dirs) {
75c3cfa8 3005 drop_nlink(d_inode(new_dentry));
9a53c3a7 3006 drop_nlink(old_dir);
b928095b 3007 }
1da177e4 3008 } else if (they_are_dirs) {
9a53c3a7 3009 drop_nlink(old_dir);
d8c76e6f 3010 inc_nlink(new_dir);
1da177e4
LT
3011 }
3012
3013 old_dir->i_size -= BOGO_DIRENT_SIZE;
3014 new_dir->i_size += BOGO_DIRENT_SIZE;
3015 old_dir->i_ctime = old_dir->i_mtime =
3016 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3017 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3018 return 0;
3019}
3020
549c7297
CB
3021static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3022 struct dentry *dentry, const char *symname)
1da177e4
LT
3023{
3024 int error;
3025 int len;
3026 struct inode *inode;
9276aad6 3027 struct page *page;
1da177e4
LT
3028
3029 len = strlen(symname) + 1;
09cbfeaf 3030 if (len > PAGE_SIZE)
1da177e4
LT
3031 return -ENAMETOOLONG;
3032
0825a6f9
JP
3033 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3034 VM_NORESERVE);
1da177e4
LT
3035 if (!inode)
3036 return -ENOSPC;
3037
9d8f13ba 3038 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3039 shmem_initxattrs, NULL);
343c3d7f
MN
3040 if (error && error != -EOPNOTSUPP) {
3041 iput(inode);
3042 return error;
570bc1c2
SS
3043 }
3044
1da177e4 3045 inode->i_size = len-1;
69f07ec9 3046 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3047 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3048 if (!inode->i_link) {
69f07ec9
HD
3049 iput(inode);
3050 return -ENOMEM;
3051 }
3052 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3053 } else {
e8ecde25 3054 inode_nohighmem(inode);
9e18eb29 3055 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3056 if (error) {
3057 iput(inode);
3058 return error;
3059 }
14fcc23f 3060 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3061 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3062 memcpy(page_address(page), symname, len);
ec9516fb 3063 SetPageUptodate(page);
1da177e4 3064 set_page_dirty(page);
6746aff7 3065 unlock_page(page);
09cbfeaf 3066 put_page(page);
1da177e4 3067 }
1da177e4 3068 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3069 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3070 d_instantiate(dentry, inode);
3071 dget(dentry);
3072 return 0;
3073}
3074
fceef393 3075static void shmem_put_link(void *arg)
1da177e4 3076{
fceef393
AV
3077 mark_page_accessed(arg);
3078 put_page(arg);
1da177e4
LT
3079}
3080
6b255391 3081static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3082 struct inode *inode,
3083 struct delayed_call *done)
1da177e4 3084{
1da177e4 3085 struct page *page = NULL;
6b255391 3086 int error;
6a6c9904
AV
3087 if (!dentry) {
3088 page = find_get_page(inode->i_mapping, 0);
3089 if (!page)
3090 return ERR_PTR(-ECHILD);
a7605426
YS
3091 if (PageHWPoison(page) ||
3092 !PageUptodate(page)) {
6a6c9904
AV
3093 put_page(page);
3094 return ERR_PTR(-ECHILD);
3095 }
3096 } else {
9e18eb29 3097 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3098 if (error)
3099 return ERR_PTR(error);
a7605426
YS
3100 if (!page)
3101 return ERR_PTR(-ECHILD);
3102 if (PageHWPoison(page)) {
3103 unlock_page(page);
3104 put_page(page);
3105 return ERR_PTR(-ECHILD);
3106 }
6a6c9904
AV
3107 unlock_page(page);
3108 }
fceef393 3109 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3110 return page_address(page);
1da177e4
LT
3111}
3112
b09e0fa4 3113#ifdef CONFIG_TMPFS_XATTR
46711810 3114/*
b09e0fa4
EP
3115 * Superblocks without xattr inode operations may get some security.* xattr
3116 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3117 * like ACLs, we also need to implement the security.* handlers at
3118 * filesystem level, though.
3119 */
3120
6d9d88d0
JS
3121/*
3122 * Callback for security_inode_init_security() for acquiring xattrs.
3123 */
3124static int shmem_initxattrs(struct inode *inode,
3125 const struct xattr *xattr_array,
3126 void *fs_info)
3127{
3128 struct shmem_inode_info *info = SHMEM_I(inode);
3129 const struct xattr *xattr;
38f38657 3130 struct simple_xattr *new_xattr;
6d9d88d0
JS
3131 size_t len;
3132
3133 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3134 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3135 if (!new_xattr)
3136 return -ENOMEM;
3137
3138 len = strlen(xattr->name) + 1;
3139 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3140 GFP_KERNEL);
3141 if (!new_xattr->name) {
3bef735a 3142 kvfree(new_xattr);
6d9d88d0
JS
3143 return -ENOMEM;
3144 }
3145
3146 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3147 XATTR_SECURITY_PREFIX_LEN);
3148 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3149 xattr->name, len);
3150
38f38657 3151 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3152 }
3153
3154 return 0;
3155}
3156
aa7c5241 3157static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3158 struct dentry *unused, struct inode *inode,
3159 const char *name, void *buffer, size_t size)
b09e0fa4 3160{
b296821a 3161 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3162
aa7c5241 3163 name = xattr_full_name(handler, name);
38f38657 3164 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3165}
3166
aa7c5241 3167static int shmem_xattr_handler_set(const struct xattr_handler *handler,
e65ce2a5 3168 struct user_namespace *mnt_userns,
59301226
AV
3169 struct dentry *unused, struct inode *inode,
3170 const char *name, const void *value,
3171 size_t size, int flags)
b09e0fa4 3172{
59301226 3173 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3174
aa7c5241 3175 name = xattr_full_name(handler, name);
a46a2295 3176 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3177}
3178
aa7c5241
AG
3179static const struct xattr_handler shmem_security_xattr_handler = {
3180 .prefix = XATTR_SECURITY_PREFIX,
3181 .get = shmem_xattr_handler_get,
3182 .set = shmem_xattr_handler_set,
3183};
b09e0fa4 3184
aa7c5241
AG
3185static const struct xattr_handler shmem_trusted_xattr_handler = {
3186 .prefix = XATTR_TRUSTED_PREFIX,
3187 .get = shmem_xattr_handler_get,
3188 .set = shmem_xattr_handler_set,
3189};
b09e0fa4 3190
aa7c5241
AG
3191static const struct xattr_handler *shmem_xattr_handlers[] = {
3192#ifdef CONFIG_TMPFS_POSIX_ACL
3193 &posix_acl_access_xattr_handler,
3194 &posix_acl_default_xattr_handler,
3195#endif
3196 &shmem_security_xattr_handler,
3197 &shmem_trusted_xattr_handler,
3198 NULL
3199};
b09e0fa4
EP
3200
3201static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3202{
75c3cfa8 3203 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3204 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3205}
3206#endif /* CONFIG_TMPFS_XATTR */
3207
69f07ec9 3208static const struct inode_operations shmem_short_symlink_operations = {
f7cd16a5 3209 .getattr = shmem_getattr,
6b255391 3210 .get_link = simple_get_link,
b09e0fa4 3211#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3212 .listxattr = shmem_listxattr,
b09e0fa4
EP
3213#endif
3214};
3215
3216static const struct inode_operations shmem_symlink_inode_operations = {
f7cd16a5 3217 .getattr = shmem_getattr,
6b255391 3218 .get_link = shmem_get_link,
b09e0fa4 3219#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3220 .listxattr = shmem_listxattr,
39f0247d 3221#endif
b09e0fa4 3222};
39f0247d 3223
91828a40
DG
3224static struct dentry *shmem_get_parent(struct dentry *child)
3225{
3226 return ERR_PTR(-ESTALE);
3227}
3228
3229static int shmem_match(struct inode *ino, void *vfh)
3230{
3231 __u32 *fh = vfh;
3232 __u64 inum = fh[2];
3233 inum = (inum << 32) | fh[1];
3234 return ino->i_ino == inum && fh[0] == ino->i_generation;
3235}
3236
12ba780d
AG
3237/* Find any alias of inode, but prefer a hashed alias */
3238static struct dentry *shmem_find_alias(struct inode *inode)
3239{
3240 struct dentry *alias = d_find_alias(inode);
3241
3242 return alias ?: d_find_any_alias(inode);
3243}
3244
3245
480b116c
CH
3246static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3247 struct fid *fid, int fh_len, int fh_type)
91828a40 3248{
91828a40 3249 struct inode *inode;
480b116c 3250 struct dentry *dentry = NULL;
35c2a7f4 3251 u64 inum;
480b116c
CH
3252
3253 if (fh_len < 3)
3254 return NULL;
91828a40 3255
35c2a7f4
HD
3256 inum = fid->raw[2];
3257 inum = (inum << 32) | fid->raw[1];
3258
480b116c
CH
3259 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3260 shmem_match, fid->raw);
91828a40 3261 if (inode) {
12ba780d 3262 dentry = shmem_find_alias(inode);
91828a40
DG
3263 iput(inode);
3264 }
3265
480b116c 3266 return dentry;
91828a40
DG
3267}
3268
b0b0382b
AV
3269static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3270 struct inode *parent)
91828a40 3271{
5fe0c237
AK
3272 if (*len < 3) {
3273 *len = 3;
94e07a75 3274 return FILEID_INVALID;
5fe0c237 3275 }
91828a40 3276
1d3382cb 3277 if (inode_unhashed(inode)) {
91828a40
DG
3278 /* Unfortunately insert_inode_hash is not idempotent,
3279 * so as we hash inodes here rather than at creation
3280 * time, we need a lock to ensure we only try
3281 * to do it once
3282 */
3283 static DEFINE_SPINLOCK(lock);
3284 spin_lock(&lock);
1d3382cb 3285 if (inode_unhashed(inode))
91828a40
DG
3286 __insert_inode_hash(inode,
3287 inode->i_ino + inode->i_generation);
3288 spin_unlock(&lock);
3289 }
3290
3291 fh[0] = inode->i_generation;
3292 fh[1] = inode->i_ino;
3293 fh[2] = ((__u64)inode->i_ino) >> 32;
3294
3295 *len = 3;
3296 return 1;
3297}
3298
39655164 3299static const struct export_operations shmem_export_ops = {
91828a40 3300 .get_parent = shmem_get_parent,
91828a40 3301 .encode_fh = shmem_encode_fh,
480b116c 3302 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3303};
3304
626c3920
AV
3305enum shmem_param {
3306 Opt_gid,
3307 Opt_huge,
3308 Opt_mode,
3309 Opt_mpol,
3310 Opt_nr_blocks,
3311 Opt_nr_inodes,
3312 Opt_size,
3313 Opt_uid,
ea3271f7
CD
3314 Opt_inode32,
3315 Opt_inode64,
626c3920
AV
3316};
3317
5eede625 3318static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3319 {"never", SHMEM_HUGE_NEVER },
3320 {"always", SHMEM_HUGE_ALWAYS },
3321 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3322 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3323 {}
3324};
3325
d7167b14 3326const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3327 fsparam_u32 ("gid", Opt_gid),
2710c957 3328 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3329 fsparam_u32oct("mode", Opt_mode),
3330 fsparam_string("mpol", Opt_mpol),
3331 fsparam_string("nr_blocks", Opt_nr_blocks),
3332 fsparam_string("nr_inodes", Opt_nr_inodes),
3333 fsparam_string("size", Opt_size),
3334 fsparam_u32 ("uid", Opt_uid),
ea3271f7
CD
3335 fsparam_flag ("inode32", Opt_inode32),
3336 fsparam_flag ("inode64", Opt_inode64),
626c3920
AV
3337 {}
3338};
3339
f3235626 3340static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3341{
f3235626 3342 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3343 struct fs_parse_result result;
3344 unsigned long long size;
e04dc423 3345 char *rest;
626c3920
AV
3346 int opt;
3347
d7167b14 3348 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3349 if (opt < 0)
626c3920 3350 return opt;
1da177e4 3351
626c3920
AV
3352 switch (opt) {
3353 case Opt_size:
3354 size = memparse(param->string, &rest);
e04dc423
AV
3355 if (*rest == '%') {
3356 size <<= PAGE_SHIFT;
3357 size *= totalram_pages();
3358 do_div(size, 100);
3359 rest++;
3360 }
3361 if (*rest)
626c3920 3362 goto bad_value;
e04dc423
AV
3363 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3364 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3365 break;
3366 case Opt_nr_blocks:
3367 ctx->blocks = memparse(param->string, &rest);
e04dc423 3368 if (*rest)
626c3920 3369 goto bad_value;
e04dc423 3370 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3371 break;
3372 case Opt_nr_inodes:
3373 ctx->inodes = memparse(param->string, &rest);
e04dc423 3374 if (*rest)
626c3920 3375 goto bad_value;
e04dc423 3376 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3377 break;
3378 case Opt_mode:
3379 ctx->mode = result.uint_32 & 07777;
3380 break;
3381 case Opt_uid:
3382 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3383 if (!uid_valid(ctx->uid))
626c3920
AV
3384 goto bad_value;
3385 break;
3386 case Opt_gid:
3387 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3388 if (!gid_valid(ctx->gid))
626c3920
AV
3389 goto bad_value;
3390 break;
3391 case Opt_huge:
3392 ctx->huge = result.uint_32;
3393 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3394 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3395 has_transparent_hugepage()))
3396 goto unsupported_parameter;
e04dc423 3397 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3398 break;
3399 case Opt_mpol:
3400 if (IS_ENABLED(CONFIG_NUMA)) {
3401 mpol_put(ctx->mpol);
3402 ctx->mpol = NULL;
3403 if (mpol_parse_str(param->string, &ctx->mpol))
3404 goto bad_value;
3405 break;
3406 }
3407 goto unsupported_parameter;
ea3271f7
CD
3408 case Opt_inode32:
3409 ctx->full_inums = false;
3410 ctx->seen |= SHMEM_SEEN_INUMS;
3411 break;
3412 case Opt_inode64:
3413 if (sizeof(ino_t) < 8) {
3414 return invalfc(fc,
3415 "Cannot use inode64 with <64bit inums in kernel\n");
3416 }
3417 ctx->full_inums = true;
3418 ctx->seen |= SHMEM_SEEN_INUMS;
3419 break;
e04dc423
AV
3420 }
3421 return 0;
3422
626c3920 3423unsupported_parameter:
f35aa2bc 3424 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3425bad_value:
f35aa2bc 3426 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3427}
3428
f3235626 3429static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3430{
f3235626
DH
3431 char *options = data;
3432
33f37c64
AV
3433 if (options) {
3434 int err = security_sb_eat_lsm_opts(options, &fc->security);
3435 if (err)
3436 return err;
3437 }
3438
b00dc3ad 3439 while (options != NULL) {
626c3920 3440 char *this_char = options;
b00dc3ad
HD
3441 for (;;) {
3442 /*
3443 * NUL-terminate this option: unfortunately,
3444 * mount options form a comma-separated list,
3445 * but mpol's nodelist may also contain commas.
3446 */
3447 options = strchr(options, ',');
3448 if (options == NULL)
3449 break;
3450 options++;
3451 if (!isdigit(*options)) {
3452 options[-1] = '\0';
3453 break;
3454 }
3455 }
626c3920 3456 if (*this_char) {
68d68ff6 3457 char *value = strchr(this_char, '=');
f3235626 3458 size_t len = 0;
626c3920
AV
3459 int err;
3460
3461 if (value) {
3462 *value++ = '\0';
f3235626 3463 len = strlen(value);
626c3920 3464 }
f3235626
DH
3465 err = vfs_parse_fs_string(fc, this_char, value, len);
3466 if (err < 0)
3467 return err;
1da177e4 3468 }
1da177e4
LT
3469 }
3470 return 0;
1da177e4
LT
3471}
3472
f3235626
DH
3473/*
3474 * Reconfigure a shmem filesystem.
3475 *
3476 * Note that we disallow change from limited->unlimited blocks/inodes while any
3477 * are in use; but we must separately disallow unlimited->limited, because in
3478 * that case we have no record of how much is already in use.
3479 */
3480static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3481{
f3235626
DH
3482 struct shmem_options *ctx = fc->fs_private;
3483 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3484 unsigned long inodes;
bf11b9a8 3485 struct mempolicy *mpol = NULL;
f3235626 3486 const char *err;
1da177e4 3487
bf11b9a8 3488 raw_spin_lock(&sbinfo->stat_lock);
0edd73b3 3489 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3490 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3491 if (!sbinfo->max_blocks) {
3492 err = "Cannot retroactively limit size";
0b5071dd 3493 goto out;
f3235626 3494 }
0b5071dd 3495 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3496 ctx->blocks) > 0) {
3497 err = "Too small a size for current use";
0b5071dd 3498 goto out;
f3235626 3499 }
0b5071dd 3500 }
f3235626
DH
3501 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3502 if (!sbinfo->max_inodes) {
3503 err = "Cannot retroactively limit inodes";
0b5071dd 3504 goto out;
f3235626
DH
3505 }
3506 if (ctx->inodes < inodes) {
3507 err = "Too few inodes for current use";
0b5071dd 3508 goto out;
f3235626 3509 }
0b5071dd 3510 }
0edd73b3 3511
ea3271f7
CD
3512 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3513 sbinfo->next_ino > UINT_MAX) {
3514 err = "Current inum too high to switch to 32-bit inums";
3515 goto out;
3516 }
3517
f3235626
DH
3518 if (ctx->seen & SHMEM_SEEN_HUGE)
3519 sbinfo->huge = ctx->huge;
ea3271f7
CD
3520 if (ctx->seen & SHMEM_SEEN_INUMS)
3521 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3522 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3523 sbinfo->max_blocks = ctx->blocks;
3524 if (ctx->seen & SHMEM_SEEN_INODES) {
3525 sbinfo->max_inodes = ctx->inodes;
3526 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3527 }
71fe804b 3528
5f00110f
GT
3529 /*
3530 * Preserve previous mempolicy unless mpol remount option was specified.
3531 */
f3235626 3532 if (ctx->mpol) {
bf11b9a8 3533 mpol = sbinfo->mpol;
f3235626
DH
3534 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3535 ctx->mpol = NULL;
5f00110f 3536 }
bf11b9a8
SAS
3537 raw_spin_unlock(&sbinfo->stat_lock);
3538 mpol_put(mpol);
f3235626 3539 return 0;
0edd73b3 3540out:
bf11b9a8 3541 raw_spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3542 return invalfc(fc, "%s", err);
1da177e4 3543}
680d794b 3544
34c80b1d 3545static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3546{
34c80b1d 3547 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3548
3549 if (sbinfo->max_blocks != shmem_default_max_blocks())
3550 seq_printf(seq, ",size=%luk",
09cbfeaf 3551 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3552 if (sbinfo->max_inodes != shmem_default_max_inodes())
3553 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3554 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3555 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3556 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3557 seq_printf(seq, ",uid=%u",
3558 from_kuid_munged(&init_user_ns, sbinfo->uid));
3559 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3560 seq_printf(seq, ",gid=%u",
3561 from_kgid_munged(&init_user_ns, sbinfo->gid));
ea3271f7
CD
3562
3563 /*
3564 * Showing inode{64,32} might be useful even if it's the system default,
3565 * since then people don't have to resort to checking both here and
3566 * /proc/config.gz to confirm 64-bit inums were successfully applied
3567 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3568 *
3569 * We hide it when inode64 isn't the default and we are using 32-bit
3570 * inodes, since that probably just means the feature isn't even under
3571 * consideration.
3572 *
3573 * As such:
3574 *
3575 * +-----------------+-----------------+
3576 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3577 * +------------------+-----------------+-----------------+
3578 * | full_inums=true | show | show |
3579 * | full_inums=false | show | hide |
3580 * +------------------+-----------------+-----------------+
3581 *
3582 */
3583 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3584 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
396bcc52 3585#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3586 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3587 if (sbinfo->huge)
3588 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3589#endif
71fe804b 3590 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3591 return 0;
3592}
9183df25 3593
680d794b 3594#endif /* CONFIG_TMPFS */
1da177e4
LT
3595
3596static void shmem_put_super(struct super_block *sb)
3597{
602586a8
HD
3598 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3599
e809d5f0 3600 free_percpu(sbinfo->ino_batch);
602586a8 3601 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3602 mpol_put(sbinfo->mpol);
602586a8 3603 kfree(sbinfo);
1da177e4
LT
3604 sb->s_fs_info = NULL;
3605}
3606
f3235626 3607static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3608{
f3235626 3609 struct shmem_options *ctx = fc->fs_private;
1da177e4 3610 struct inode *inode;
0edd73b3 3611 struct shmem_sb_info *sbinfo;
680d794b
AM
3612
3613 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3614 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3615 L1_CACHE_BYTES), GFP_KERNEL);
3616 if (!sbinfo)
3617 return -ENOMEM;
3618
680d794b 3619 sb->s_fs_info = sbinfo;
1da177e4 3620
0edd73b3 3621#ifdef CONFIG_TMPFS
1da177e4
LT
3622 /*
3623 * Per default we only allow half of the physical ram per
3624 * tmpfs instance, limiting inodes to one per page of lowmem;
3625 * but the internal instance is left unlimited.
3626 */
1751e8a6 3627 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3628 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3629 ctx->blocks = shmem_default_max_blocks();
3630 if (!(ctx->seen & SHMEM_SEEN_INODES))
3631 ctx->inodes = shmem_default_max_inodes();
ea3271f7
CD
3632 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3633 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
ca4e0519 3634 } else {
1751e8a6 3635 sb->s_flags |= SB_NOUSER;
1da177e4 3636 }
91828a40 3637 sb->s_export_op = &shmem_export_ops;
1751e8a6 3638 sb->s_flags |= SB_NOSEC;
1da177e4 3639#else
1751e8a6 3640 sb->s_flags |= SB_NOUSER;
1da177e4 3641#endif
f3235626
DH
3642 sbinfo->max_blocks = ctx->blocks;
3643 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3644 if (sb->s_flags & SB_KERNMOUNT) {
3645 sbinfo->ino_batch = alloc_percpu(ino_t);
3646 if (!sbinfo->ino_batch)
3647 goto failed;
3648 }
f3235626
DH
3649 sbinfo->uid = ctx->uid;
3650 sbinfo->gid = ctx->gid;
ea3271f7 3651 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3652 sbinfo->mode = ctx->mode;
3653 sbinfo->huge = ctx->huge;
3654 sbinfo->mpol = ctx->mpol;
3655 ctx->mpol = NULL;
1da177e4 3656
bf11b9a8 3657 raw_spin_lock_init(&sbinfo->stat_lock);
908c7f19 3658 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3659 goto failed;
779750d2
KS
3660 spin_lock_init(&sbinfo->shrinklist_lock);
3661 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3662
285b2c4f 3663 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3664 sb->s_blocksize = PAGE_SIZE;
3665 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3666 sb->s_magic = TMPFS_MAGIC;
3667 sb->s_op = &shmem_ops;
cfd95a9c 3668 sb->s_time_gran = 1;
b09e0fa4 3669#ifdef CONFIG_TMPFS_XATTR
39f0247d 3670 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3671#endif
3672#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3673 sb->s_flags |= SB_POSIXACL;
39f0247d 3674#endif
2b4db796 3675 uuid_gen(&sb->s_uuid);
0edd73b3 3676
454abafe 3677 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3678 if (!inode)
3679 goto failed;
680d794b
AM
3680 inode->i_uid = sbinfo->uid;
3681 inode->i_gid = sbinfo->gid;
318ceed0
AV
3682 sb->s_root = d_make_root(inode);
3683 if (!sb->s_root)
48fde701 3684 goto failed;
1da177e4
LT
3685 return 0;
3686
1da177e4
LT
3687failed:
3688 shmem_put_super(sb);
f2b346e4 3689 return -ENOMEM;
1da177e4
LT
3690}
3691
f3235626
DH
3692static int shmem_get_tree(struct fs_context *fc)
3693{
3694 return get_tree_nodev(fc, shmem_fill_super);
3695}
3696
3697static void shmem_free_fc(struct fs_context *fc)
3698{
3699 struct shmem_options *ctx = fc->fs_private;
3700
3701 if (ctx) {
3702 mpol_put(ctx->mpol);
3703 kfree(ctx);
3704 }
3705}
3706
3707static const struct fs_context_operations shmem_fs_context_ops = {
3708 .free = shmem_free_fc,
3709 .get_tree = shmem_get_tree,
3710#ifdef CONFIG_TMPFS
3711 .parse_monolithic = shmem_parse_options,
3712 .parse_param = shmem_parse_one,
3713 .reconfigure = shmem_reconfigure,
3714#endif
3715};
3716
fcc234f8 3717static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3718
3719static struct inode *shmem_alloc_inode(struct super_block *sb)
3720{
41ffe5d5 3721 struct shmem_inode_info *info;
fd60b288 3722 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
41ffe5d5 3723 if (!info)
1da177e4 3724 return NULL;
41ffe5d5 3725 return &info->vfs_inode;
1da177e4
LT
3726}
3727
74b1da56 3728static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3729{
84e710da
AV
3730 if (S_ISLNK(inode->i_mode))
3731 kfree(inode->i_link);
fa0d7e3d
NP
3732 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3733}
3734
1da177e4
LT
3735static void shmem_destroy_inode(struct inode *inode)
3736{
09208d15 3737 if (S_ISREG(inode->i_mode))
1da177e4 3738 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3739}
3740
41ffe5d5 3741static void shmem_init_inode(void *foo)
1da177e4 3742{
41ffe5d5
HD
3743 struct shmem_inode_info *info = foo;
3744 inode_init_once(&info->vfs_inode);
1da177e4
LT
3745}
3746
9a8ec03e 3747static void shmem_init_inodecache(void)
1da177e4
LT
3748{
3749 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3750 sizeof(struct shmem_inode_info),
5d097056 3751 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3752}
3753
41ffe5d5 3754static void shmem_destroy_inodecache(void)
1da177e4 3755{
1a1d92c1 3756 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3757}
3758
a7605426
YS
3759/* Keep the page in page cache instead of truncating it */
3760static int shmem_error_remove_page(struct address_space *mapping,
3761 struct page *page)
3762{
3763 return 0;
3764}
3765
30e6a51d 3766const struct address_space_operations shmem_aops = {
1da177e4 3767 .writepage = shmem_writepage,
46de8b97 3768 .dirty_folio = noop_dirty_folio,
1da177e4 3769#ifdef CONFIG_TMPFS
800d15a5
NP
3770 .write_begin = shmem_write_begin,
3771 .write_end = shmem_write_end,
1da177e4 3772#endif
1c93923c 3773#ifdef CONFIG_MIGRATION
304dbdb7 3774 .migratepage = migrate_page,
1c93923c 3775#endif
a7605426 3776 .error_remove_page = shmem_error_remove_page,
1da177e4 3777};
30e6a51d 3778EXPORT_SYMBOL(shmem_aops);
1da177e4 3779
15ad7cdc 3780static const struct file_operations shmem_file_operations = {
1da177e4 3781 .mmap = shmem_mmap,
c01d5b30 3782 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3783#ifdef CONFIG_TMPFS
220f2ac9 3784 .llseek = shmem_file_llseek,
2ba5bbed 3785 .read_iter = shmem_file_read_iter,
8174202b 3786 .write_iter = generic_file_write_iter,
1b061d92 3787 .fsync = noop_fsync,
82c156f8 3788 .splice_read = generic_file_splice_read,
f6cb85d0 3789 .splice_write = iter_file_splice_write,
83e4fa9c 3790 .fallocate = shmem_fallocate,
1da177e4
LT
3791#endif
3792};
3793
92e1d5be 3794static const struct inode_operations shmem_inode_operations = {
44a30220 3795 .getattr = shmem_getattr,
94c1e62d 3796 .setattr = shmem_setattr,
b09e0fa4 3797#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3798 .listxattr = shmem_listxattr,
feda821e 3799 .set_acl = simple_set_acl,
b09e0fa4 3800#endif
1da177e4
LT
3801};
3802
92e1d5be 3803static const struct inode_operations shmem_dir_inode_operations = {
1da177e4 3804#ifdef CONFIG_TMPFS
f7cd16a5 3805 .getattr = shmem_getattr,
1da177e4
LT
3806 .create = shmem_create,
3807 .lookup = simple_lookup,
3808 .link = shmem_link,
3809 .unlink = shmem_unlink,
3810 .symlink = shmem_symlink,
3811 .mkdir = shmem_mkdir,
3812 .rmdir = shmem_rmdir,
3813 .mknod = shmem_mknod,
2773bf00 3814 .rename = shmem_rename2,
60545d0d 3815 .tmpfile = shmem_tmpfile,
1da177e4 3816#endif
b09e0fa4 3817#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3818 .listxattr = shmem_listxattr,
b09e0fa4 3819#endif
39f0247d 3820#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3821 .setattr = shmem_setattr,
feda821e 3822 .set_acl = simple_set_acl,
39f0247d
AG
3823#endif
3824};
3825
92e1d5be 3826static const struct inode_operations shmem_special_inode_operations = {
f7cd16a5 3827 .getattr = shmem_getattr,
b09e0fa4 3828#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3829 .listxattr = shmem_listxattr,
b09e0fa4 3830#endif
39f0247d 3831#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3832 .setattr = shmem_setattr,
feda821e 3833 .set_acl = simple_set_acl,
39f0247d 3834#endif
1da177e4
LT
3835};
3836
759b9775 3837static const struct super_operations shmem_ops = {
1da177e4 3838 .alloc_inode = shmem_alloc_inode,
74b1da56 3839 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3840 .destroy_inode = shmem_destroy_inode,
3841#ifdef CONFIG_TMPFS
3842 .statfs = shmem_statfs,
680d794b 3843 .show_options = shmem_show_options,
1da177e4 3844#endif
1f895f75 3845 .evict_inode = shmem_evict_inode,
1da177e4
LT
3846 .drop_inode = generic_delete_inode,
3847 .put_super = shmem_put_super,
396bcc52 3848#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3849 .nr_cached_objects = shmem_unused_huge_count,
3850 .free_cached_objects = shmem_unused_huge_scan,
3851#endif
1da177e4
LT
3852};
3853
f0f37e2f 3854static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3855 .fault = shmem_fault,
d7c17551 3856 .map_pages = filemap_map_pages,
1da177e4
LT
3857#ifdef CONFIG_NUMA
3858 .set_policy = shmem_set_policy,
3859 .get_policy = shmem_get_policy,
3860#endif
3861};
3862
f3235626 3863int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3864{
f3235626
DH
3865 struct shmem_options *ctx;
3866
3867 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3868 if (!ctx)
3869 return -ENOMEM;
3870
3871 ctx->mode = 0777 | S_ISVTX;
3872 ctx->uid = current_fsuid();
3873 ctx->gid = current_fsgid();
3874
3875 fc->fs_private = ctx;
3876 fc->ops = &shmem_fs_context_ops;
3877 return 0;
1da177e4
LT
3878}
3879
41ffe5d5 3880static struct file_system_type shmem_fs_type = {
1da177e4
LT
3881 .owner = THIS_MODULE,
3882 .name = "tmpfs",
f3235626
DH
3883 .init_fs_context = shmem_init_fs_context,
3884#ifdef CONFIG_TMPFS
d7167b14 3885 .parameters = shmem_fs_parameters,
f3235626 3886#endif
1da177e4 3887 .kill_sb = kill_litter_super,
ff36da69 3888 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3889};
1da177e4 3890
41ffe5d5 3891int __init shmem_init(void)
1da177e4
LT
3892{
3893 int error;
3894
9a8ec03e 3895 shmem_init_inodecache();
1da177e4 3896
41ffe5d5 3897 error = register_filesystem(&shmem_fs_type);
1da177e4 3898 if (error) {
1170532b 3899 pr_err("Could not register tmpfs\n");
1da177e4
LT
3900 goto out2;
3901 }
95dc112a 3902
ca4e0519 3903 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3904 if (IS_ERR(shm_mnt)) {
3905 error = PTR_ERR(shm_mnt);
1170532b 3906 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3907 goto out1;
3908 }
5a6e75f8 3909
396bcc52 3910#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3911 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3912 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3913 else
5e6e5a12 3914 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5a6e75f8 3915#endif
1da177e4
LT
3916 return 0;
3917
3918out1:
41ffe5d5 3919 unregister_filesystem(&shmem_fs_type);
1da177e4 3920out2:
41ffe5d5 3921 shmem_destroy_inodecache();
1da177e4
LT
3922 shm_mnt = ERR_PTR(error);
3923 return error;
3924}
853ac43a 3925
396bcc52 3926#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8 3927static ssize_t shmem_enabled_show(struct kobject *kobj,
79d4d38a 3928 struct kobj_attribute *attr, char *buf)
5a6e75f8 3929{
26083eb6 3930 static const int values[] = {
5a6e75f8
KS
3931 SHMEM_HUGE_ALWAYS,
3932 SHMEM_HUGE_WITHIN_SIZE,
3933 SHMEM_HUGE_ADVISE,
3934 SHMEM_HUGE_NEVER,
3935 SHMEM_HUGE_DENY,
3936 SHMEM_HUGE_FORCE,
3937 };
79d4d38a
JP
3938 int len = 0;
3939 int i;
5a6e75f8 3940
79d4d38a
JP
3941 for (i = 0; i < ARRAY_SIZE(values); i++) {
3942 len += sysfs_emit_at(buf, len,
3943 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3944 i ? " " : "",
3945 shmem_format_huge(values[i]));
5a6e75f8 3946 }
79d4d38a
JP
3947
3948 len += sysfs_emit_at(buf, len, "\n");
3949
3950 return len;
5a6e75f8
KS
3951}
3952
3953static ssize_t shmem_enabled_store(struct kobject *kobj,
3954 struct kobj_attribute *attr, const char *buf, size_t count)
3955{
3956 char tmp[16];
3957 int huge;
3958
3959 if (count + 1 > sizeof(tmp))
3960 return -EINVAL;
3961 memcpy(tmp, buf, count);
3962 tmp[count] = '\0';
3963 if (count && tmp[count - 1] == '\n')
3964 tmp[count - 1] = '\0';
3965
3966 huge = shmem_parse_huge(tmp);
3967 if (huge == -EINVAL)
3968 return -EINVAL;
3969 if (!has_transparent_hugepage() &&
3970 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3971 return -EINVAL;
3972
3973 shmem_huge = huge;
435c0b87 3974 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3975 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3976 return count;
3977}
3978
4bfa8ada 3979struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
396bcc52 3980#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 3981
853ac43a
MM
3982#else /* !CONFIG_SHMEM */
3983
3984/*
3985 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3986 *
3987 * This is intended for small system where the benefits of the full
3988 * shmem code (swap-backed and resource-limited) are outweighed by
3989 * their complexity. On systems without swap this code should be
3990 * effectively equivalent, but much lighter weight.
3991 */
3992
41ffe5d5 3993static struct file_system_type shmem_fs_type = {
853ac43a 3994 .name = "tmpfs",
f3235626 3995 .init_fs_context = ramfs_init_fs_context,
d7167b14 3996 .parameters = ramfs_fs_parameters,
853ac43a 3997 .kill_sb = kill_litter_super,
2b8576cb 3998 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3999};
4000
41ffe5d5 4001int __init shmem_init(void)
853ac43a 4002{
41ffe5d5 4003 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4004
41ffe5d5 4005 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4006 BUG_ON(IS_ERR(shm_mnt));
4007
4008 return 0;
4009}
4010
10a9c496 4011int shmem_unuse(unsigned int type)
853ac43a
MM
4012{
4013 return 0;
4014}
4015
d7c9e99a 4016int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
3f96b79a
HD
4017{
4018 return 0;
4019}
4020
24513264
HD
4021void shmem_unlock_mapping(struct address_space *mapping)
4022{
4023}
4024
c01d5b30
HD
4025#ifdef CONFIG_MMU
4026unsigned long shmem_get_unmapped_area(struct file *file,
4027 unsigned long addr, unsigned long len,
4028 unsigned long pgoff, unsigned long flags)
4029{
4030 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4031}
4032#endif
4033
41ffe5d5 4034void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4035{
41ffe5d5 4036 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4037}
4038EXPORT_SYMBOL_GPL(shmem_truncate_range);
4039
0b0a0806
HD
4040#define shmem_vm_ops generic_file_vm_ops
4041#define shmem_file_operations ramfs_file_operations
454abafe 4042#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4043#define shmem_acct_size(flags, size) 0
4044#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4045
4046#endif /* CONFIG_SHMEM */
4047
4048/* common code */
1da177e4 4049
703321b6 4050static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4051 unsigned long flags, unsigned int i_flags)
1da177e4 4052{
1da177e4 4053 struct inode *inode;
93dec2da 4054 struct file *res;
1da177e4 4055
703321b6
MA
4056 if (IS_ERR(mnt))
4057 return ERR_CAST(mnt);
1da177e4 4058
285b2c4f 4059 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4060 return ERR_PTR(-EINVAL);
4061
4062 if (shmem_acct_size(flags, size))
4063 return ERR_PTR(-ENOMEM);
4064
93dec2da
AV
4065 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4066 flags);
dac2d1f6
AV
4067 if (unlikely(!inode)) {
4068 shmem_unacct_size(flags, size);
4069 return ERR_PTR(-ENOSPC);
4070 }
c7277090 4071 inode->i_flags |= i_flags;
1da177e4 4072 inode->i_size = size;
6d6b77f1 4073 clear_nlink(inode); /* It is unlinked */
26567cdb 4074 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4075 if (!IS_ERR(res))
4076 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4077 &shmem_file_operations);
26567cdb 4078 if (IS_ERR(res))
93dec2da 4079 iput(inode);
6b4d0b27 4080 return res;
1da177e4 4081}
c7277090
EP
4082
4083/**
4084 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4085 * kernel internal. There will be NO LSM permission checks against the
4086 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4087 * higher layer. The users are the big_key and shm implementations. LSM
4088 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4089 * @name: name for dentry (to be seen in /proc/<pid>/maps
4090 * @size: size to be set for the file
4091 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4092 */
4093struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4094{
703321b6 4095 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4096}
4097
4098/**
4099 * shmem_file_setup - get an unlinked file living in tmpfs
4100 * @name: name for dentry (to be seen in /proc/<pid>/maps
4101 * @size: size to be set for the file
4102 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4103 */
4104struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4105{
703321b6 4106 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4107}
395e0ddc 4108EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4109
703321b6
MA
4110/**
4111 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4112 * @mnt: the tmpfs mount where the file will be created
4113 * @name: name for dentry (to be seen in /proc/<pid>/maps
4114 * @size: size to be set for the file
4115 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4116 */
4117struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4118 loff_t size, unsigned long flags)
4119{
4120 return __shmem_file_setup(mnt, name, size, flags, 0);
4121}
4122EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4123
46711810 4124/**
1da177e4 4125 * shmem_zero_setup - setup a shared anonymous mapping
45e55300 4126 * @vma: the vma to be mmapped is prepared by do_mmap
1da177e4
LT
4127 */
4128int shmem_zero_setup(struct vm_area_struct *vma)
4129{
4130 struct file *file;
4131 loff_t size = vma->vm_end - vma->vm_start;
4132
66fc1303 4133 /*
c1e8d7c6 4134 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4135 * between XFS directory reading and selinux: since this file is only
4136 * accessible to the user through its mapping, use S_PRIVATE flag to
4137 * bypass file security, in the same way as shmem_kernel_file_setup().
4138 */
703321b6 4139 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4140 if (IS_ERR(file))
4141 return PTR_ERR(file);
4142
4143 if (vma->vm_file)
4144 fput(vma->vm_file);
4145 vma->vm_file = file;
4146 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4147
396bcc52 4148 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4149 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4150 (vma->vm_end & HPAGE_PMD_MASK)) {
4151 khugepaged_enter(vma, vma->vm_flags);
4152 }
4153
1da177e4
LT
4154 return 0;
4155}
d9d90e5e
HD
4156
4157/**
4158 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4159 * @mapping: the page's address_space
4160 * @index: the page index
4161 * @gfp: the page allocator flags to use if allocating
4162 *
4163 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4164 * with any new page allocations done using the specified allocation flags.
4165 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4166 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4167 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4168 *
68da9f05
HD
4169 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4170 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4171 */
4172struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4173 pgoff_t index, gfp_t gfp)
4174{
68da9f05
HD
4175#ifdef CONFIG_SHMEM
4176 struct inode *inode = mapping->host;
9276aad6 4177 struct page *page;
68da9f05
HD
4178 int error;
4179
30e6a51d 4180 BUG_ON(!shmem_mapping(mapping));
9e18eb29 4181 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4182 gfp, NULL, NULL, NULL);
68da9f05 4183 if (error)
a7605426
YS
4184 return ERR_PTR(error);
4185
4186 unlock_page(page);
4187 if (PageHWPoison(page)) {
4188 put_page(page);
4189 return ERR_PTR(-EIO);
4190 }
4191
68da9f05
HD
4192 return page;
4193#else
4194 /*
4195 * The tiny !SHMEM case uses ramfs without swap
4196 */
d9d90e5e 4197 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4198#endif
d9d90e5e
HD
4199}
4200EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 2.232084 seconds and 4 git commands to generate.