]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * kernel/sched.c | |
3 | * | |
4 | * Kernel scheduler and related syscalls | |
5 | * | |
6 | * Copyright (C) 1991-2002 Linus Torvalds | |
7 | * | |
8 | * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and | |
9 | * make semaphores SMP safe | |
10 | * 1998-11-19 Implemented schedule_timeout() and related stuff | |
11 | * by Andrea Arcangeli | |
12 | * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: | |
13 | * hybrid priority-list and round-robin design with | |
14 | * an array-switch method of distributing timeslices | |
15 | * and per-CPU runqueues. Cleanups and useful suggestions | |
16 | * by Davide Libenzi, preemptible kernel bits by Robert Love. | |
17 | * 2003-09-03 Interactivity tuning by Con Kolivas. | |
18 | * 2004-04-02 Scheduler domains code by Nick Piggin | |
c31f2e8a IM |
19 | * 2007-04-15 Work begun on replacing all interactivity tuning with a |
20 | * fair scheduling design by Con Kolivas. | |
21 | * 2007-05-05 Load balancing (smp-nice) and other improvements | |
22 | * by Peter Williams | |
23 | * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith | |
24 | * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri | |
b9131769 IM |
25 | * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, |
26 | * Thomas Gleixner, Mike Kravetz | |
1da177e4 LT |
27 | */ |
28 | ||
29 | #include <linux/mm.h> | |
30 | #include <linux/module.h> | |
31 | #include <linux/nmi.h> | |
32 | #include <linux/init.h> | |
dff06c15 | 33 | #include <linux/uaccess.h> |
1da177e4 LT |
34 | #include <linux/highmem.h> |
35 | #include <linux/smp_lock.h> | |
36 | #include <asm/mmu_context.h> | |
37 | #include <linux/interrupt.h> | |
c59ede7b | 38 | #include <linux/capability.h> |
1da177e4 LT |
39 | #include <linux/completion.h> |
40 | #include <linux/kernel_stat.h> | |
9a11b49a | 41 | #include <linux/debug_locks.h> |
1da177e4 LT |
42 | #include <linux/security.h> |
43 | #include <linux/notifier.h> | |
44 | #include <linux/profile.h> | |
7dfb7103 | 45 | #include <linux/freezer.h> |
198e2f18 | 46 | #include <linux/vmalloc.h> |
1da177e4 LT |
47 | #include <linux/blkdev.h> |
48 | #include <linux/delay.h> | |
b488893a | 49 | #include <linux/pid_namespace.h> |
1da177e4 LT |
50 | #include <linux/smp.h> |
51 | #include <linux/threads.h> | |
52 | #include <linux/timer.h> | |
53 | #include <linux/rcupdate.h> | |
54 | #include <linux/cpu.h> | |
55 | #include <linux/cpuset.h> | |
56 | #include <linux/percpu.h> | |
57 | #include <linux/kthread.h> | |
58 | #include <linux/seq_file.h> | |
e692ab53 | 59 | #include <linux/sysctl.h> |
1da177e4 LT |
60 | #include <linux/syscalls.h> |
61 | #include <linux/times.h> | |
8f0ab514 | 62 | #include <linux/tsacct_kern.h> |
c6fd91f0 | 63 | #include <linux/kprobes.h> |
0ff92245 | 64 | #include <linux/delayacct.h> |
5517d86b | 65 | #include <linux/reciprocal_div.h> |
dff06c15 | 66 | #include <linux/unistd.h> |
f5ff8422 | 67 | #include <linux/pagemap.h> |
8f4d37ec | 68 | #include <linux/hrtimer.h> |
30914a58 | 69 | #include <linux/tick.h> |
434d53b0 | 70 | #include <linux/bootmem.h> |
f00b45c1 PZ |
71 | #include <linux/debugfs.h> |
72 | #include <linux/ctype.h> | |
1da177e4 | 73 | |
5517d86b | 74 | #include <asm/tlb.h> |
838225b4 | 75 | #include <asm/irq_regs.h> |
1da177e4 | 76 | |
6e0534f2 GH |
77 | #include "sched_cpupri.h" |
78 | ||
1da177e4 LT |
79 | /* |
80 | * Convert user-nice values [ -20 ... 0 ... 19 ] | |
81 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | |
82 | * and back. | |
83 | */ | |
84 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | |
85 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | |
86 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | |
87 | ||
88 | /* | |
89 | * 'User priority' is the nice value converted to something we | |
90 | * can work with better when scaling various scheduler parameters, | |
91 | * it's a [ 0 ... 39 ] range. | |
92 | */ | |
93 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | |
94 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | |
95 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | |
96 | ||
97 | /* | |
d7876a08 | 98 | * Helpers for converting nanosecond timing to jiffy resolution |
1da177e4 | 99 | */ |
d6322faf | 100 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) |
1da177e4 | 101 | |
6aa645ea IM |
102 | #define NICE_0_LOAD SCHED_LOAD_SCALE |
103 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT | |
104 | ||
1da177e4 LT |
105 | /* |
106 | * These are the 'tuning knobs' of the scheduler: | |
107 | * | |
a4ec24b4 | 108 | * default timeslice is 100 msecs (used only for SCHED_RR tasks). |
1da177e4 LT |
109 | * Timeslices get refilled after they expire. |
110 | */ | |
1da177e4 | 111 | #define DEF_TIMESLICE (100 * HZ / 1000) |
2dd73a4f | 112 | |
d0b27fa7 PZ |
113 | /* |
114 | * single value that denotes runtime == period, ie unlimited time. | |
115 | */ | |
116 | #define RUNTIME_INF ((u64)~0ULL) | |
117 | ||
5517d86b ED |
118 | #ifdef CONFIG_SMP |
119 | /* | |
120 | * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) | |
121 | * Since cpu_power is a 'constant', we can use a reciprocal divide. | |
122 | */ | |
123 | static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) | |
124 | { | |
125 | return reciprocal_divide(load, sg->reciprocal_cpu_power); | |
126 | } | |
127 | ||
128 | /* | |
129 | * Each time a sched group cpu_power is changed, | |
130 | * we must compute its reciprocal value | |
131 | */ | |
132 | static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) | |
133 | { | |
134 | sg->__cpu_power += val; | |
135 | sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); | |
136 | } | |
137 | #endif | |
138 | ||
e05606d3 IM |
139 | static inline int rt_policy(int policy) |
140 | { | |
3f33a7ce | 141 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
e05606d3 IM |
142 | return 1; |
143 | return 0; | |
144 | } | |
145 | ||
146 | static inline int task_has_rt_policy(struct task_struct *p) | |
147 | { | |
148 | return rt_policy(p->policy); | |
149 | } | |
150 | ||
1da177e4 | 151 | /* |
6aa645ea | 152 | * This is the priority-queue data structure of the RT scheduling class: |
1da177e4 | 153 | */ |
6aa645ea IM |
154 | struct rt_prio_array { |
155 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | |
45c01e82 GH |
156 | struct list_head xqueue[MAX_RT_PRIO]; /* exclusive queue */ |
157 | struct list_head squeue[MAX_RT_PRIO]; /* shared queue */ | |
6aa645ea IM |
158 | }; |
159 | ||
d0b27fa7 | 160 | struct rt_bandwidth { |
ea736ed5 IM |
161 | /* nests inside the rq lock: */ |
162 | spinlock_t rt_runtime_lock; | |
163 | ktime_t rt_period; | |
164 | u64 rt_runtime; | |
165 | struct hrtimer rt_period_timer; | |
d0b27fa7 PZ |
166 | }; |
167 | ||
168 | static struct rt_bandwidth def_rt_bandwidth; | |
169 | ||
170 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | |
171 | ||
172 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | |
173 | { | |
174 | struct rt_bandwidth *rt_b = | |
175 | container_of(timer, struct rt_bandwidth, rt_period_timer); | |
176 | ktime_t now; | |
177 | int overrun; | |
178 | int idle = 0; | |
179 | ||
180 | for (;;) { | |
181 | now = hrtimer_cb_get_time(timer); | |
182 | overrun = hrtimer_forward(timer, now, rt_b->rt_period); | |
183 | ||
184 | if (!overrun) | |
185 | break; | |
186 | ||
187 | idle = do_sched_rt_period_timer(rt_b, overrun); | |
188 | } | |
189 | ||
190 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | |
191 | } | |
192 | ||
193 | static | |
194 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | |
195 | { | |
196 | rt_b->rt_period = ns_to_ktime(period); | |
197 | rt_b->rt_runtime = runtime; | |
198 | ||
ac086bc2 PZ |
199 | spin_lock_init(&rt_b->rt_runtime_lock); |
200 | ||
d0b27fa7 PZ |
201 | hrtimer_init(&rt_b->rt_period_timer, |
202 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); | |
203 | rt_b->rt_period_timer.function = sched_rt_period_timer; | |
204 | rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; | |
205 | } | |
206 | ||
207 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | |
208 | { | |
209 | ktime_t now; | |
210 | ||
211 | if (rt_b->rt_runtime == RUNTIME_INF) | |
212 | return; | |
213 | ||
214 | if (hrtimer_active(&rt_b->rt_period_timer)) | |
215 | return; | |
216 | ||
217 | spin_lock(&rt_b->rt_runtime_lock); | |
218 | for (;;) { | |
219 | if (hrtimer_active(&rt_b->rt_period_timer)) | |
220 | break; | |
221 | ||
222 | now = hrtimer_cb_get_time(&rt_b->rt_period_timer); | |
223 | hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); | |
224 | hrtimer_start(&rt_b->rt_period_timer, | |
225 | rt_b->rt_period_timer.expires, | |
226 | HRTIMER_MODE_ABS); | |
227 | } | |
228 | spin_unlock(&rt_b->rt_runtime_lock); | |
229 | } | |
230 | ||
231 | #ifdef CONFIG_RT_GROUP_SCHED | |
232 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | |
233 | { | |
234 | hrtimer_cancel(&rt_b->rt_period_timer); | |
235 | } | |
236 | #endif | |
237 | ||
712555ee HC |
238 | /* |
239 | * sched_domains_mutex serializes calls to arch_init_sched_domains, | |
240 | * detach_destroy_domains and partition_sched_domains. | |
241 | */ | |
242 | static DEFINE_MUTEX(sched_domains_mutex); | |
243 | ||
052f1dc7 | 244 | #ifdef CONFIG_GROUP_SCHED |
29f59db3 | 245 | |
68318b8e SV |
246 | #include <linux/cgroup.h> |
247 | ||
29f59db3 SV |
248 | struct cfs_rq; |
249 | ||
6f505b16 PZ |
250 | static LIST_HEAD(task_groups); |
251 | ||
29f59db3 | 252 | /* task group related information */ |
4cf86d77 | 253 | struct task_group { |
052f1dc7 | 254 | #ifdef CONFIG_CGROUP_SCHED |
68318b8e SV |
255 | struct cgroup_subsys_state css; |
256 | #endif | |
052f1dc7 PZ |
257 | |
258 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
29f59db3 SV |
259 | /* schedulable entities of this group on each cpu */ |
260 | struct sched_entity **se; | |
261 | /* runqueue "owned" by this group on each cpu */ | |
262 | struct cfs_rq **cfs_rq; | |
263 | unsigned long shares; | |
052f1dc7 PZ |
264 | #endif |
265 | ||
266 | #ifdef CONFIG_RT_GROUP_SCHED | |
267 | struct sched_rt_entity **rt_se; | |
268 | struct rt_rq **rt_rq; | |
269 | ||
d0b27fa7 | 270 | struct rt_bandwidth rt_bandwidth; |
052f1dc7 | 271 | #endif |
6b2d7700 | 272 | |
ae8393e5 | 273 | struct rcu_head rcu; |
6f505b16 | 274 | struct list_head list; |
f473aa5e PZ |
275 | |
276 | struct task_group *parent; | |
277 | struct list_head siblings; | |
278 | struct list_head children; | |
29f59db3 SV |
279 | }; |
280 | ||
354d60c2 | 281 | #ifdef CONFIG_USER_SCHED |
eff766a6 PZ |
282 | |
283 | /* | |
284 | * Root task group. | |
285 | * Every UID task group (including init_task_group aka UID-0) will | |
286 | * be a child to this group. | |
287 | */ | |
288 | struct task_group root_task_group; | |
289 | ||
052f1dc7 | 290 | #ifdef CONFIG_FAIR_GROUP_SCHED |
29f59db3 SV |
291 | /* Default task group's sched entity on each cpu */ |
292 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | |
293 | /* Default task group's cfs_rq on each cpu */ | |
294 | static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; | |
6d6bc0ad | 295 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
052f1dc7 PZ |
296 | |
297 | #ifdef CONFIG_RT_GROUP_SCHED | |
298 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); | |
299 | static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | |
6d6bc0ad DG |
300 | #endif /* CONFIG_RT_GROUP_SCHED */ |
301 | #else /* !CONFIG_FAIR_GROUP_SCHED */ | |
eff766a6 | 302 | #define root_task_group init_task_group |
6d6bc0ad | 303 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
6f505b16 | 304 | |
8ed36996 | 305 | /* task_group_lock serializes add/remove of task groups and also changes to |
ec2c507f SV |
306 | * a task group's cpu shares. |
307 | */ | |
8ed36996 | 308 | static DEFINE_SPINLOCK(task_group_lock); |
ec2c507f | 309 | |
052f1dc7 | 310 | #ifdef CONFIG_FAIR_GROUP_SCHED |
052f1dc7 PZ |
311 | #ifdef CONFIG_USER_SCHED |
312 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | |
6d6bc0ad | 313 | #else /* !CONFIG_USER_SCHED */ |
052f1dc7 | 314 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD |
6d6bc0ad | 315 | #endif /* CONFIG_USER_SCHED */ |
052f1dc7 | 316 | |
cb4ad1ff MX |
317 | /* |
318 | * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems. | |
319 | * (The default weight is 1024 - so there's no practical | |
320 | * limitation from this.) | |
321 | */ | |
18d95a28 | 322 | #define MIN_SHARES 2 |
cb4ad1ff | 323 | #define MAX_SHARES (ULONG_MAX - 1) |
18d95a28 | 324 | |
052f1dc7 PZ |
325 | static int init_task_group_load = INIT_TASK_GROUP_LOAD; |
326 | #endif | |
327 | ||
29f59db3 | 328 | /* Default task group. |
3a252015 | 329 | * Every task in system belong to this group at bootup. |
29f59db3 | 330 | */ |
434d53b0 | 331 | struct task_group init_task_group; |
29f59db3 SV |
332 | |
333 | /* return group to which a task belongs */ | |
4cf86d77 | 334 | static inline struct task_group *task_group(struct task_struct *p) |
29f59db3 | 335 | { |
4cf86d77 | 336 | struct task_group *tg; |
9b5b7751 | 337 | |
052f1dc7 | 338 | #ifdef CONFIG_USER_SCHED |
24e377a8 | 339 | tg = p->user->tg; |
052f1dc7 | 340 | #elif defined(CONFIG_CGROUP_SCHED) |
68318b8e SV |
341 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), |
342 | struct task_group, css); | |
24e377a8 | 343 | #else |
41a2d6cf | 344 | tg = &init_task_group; |
24e377a8 | 345 | #endif |
9b5b7751 | 346 | return tg; |
29f59db3 SV |
347 | } |
348 | ||
349 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | |
6f505b16 | 350 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) |
29f59db3 | 351 | { |
052f1dc7 | 352 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ce96b5ac DA |
353 | p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; |
354 | p->se.parent = task_group(p)->se[cpu]; | |
052f1dc7 | 355 | #endif |
6f505b16 | 356 | |
052f1dc7 | 357 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 PZ |
358 | p->rt.rt_rq = task_group(p)->rt_rq[cpu]; |
359 | p->rt.parent = task_group(p)->rt_se[cpu]; | |
052f1dc7 | 360 | #endif |
29f59db3 SV |
361 | } |
362 | ||
363 | #else | |
364 | ||
6f505b16 | 365 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
29f59db3 | 366 | |
052f1dc7 | 367 | #endif /* CONFIG_GROUP_SCHED */ |
29f59db3 | 368 | |
6aa645ea IM |
369 | /* CFS-related fields in a runqueue */ |
370 | struct cfs_rq { | |
371 | struct load_weight load; | |
372 | unsigned long nr_running; | |
373 | ||
6aa645ea | 374 | u64 exec_clock; |
e9acbff6 | 375 | u64 min_vruntime; |
6aa645ea IM |
376 | |
377 | struct rb_root tasks_timeline; | |
378 | struct rb_node *rb_leftmost; | |
4a55bd5e PZ |
379 | |
380 | struct list_head tasks; | |
381 | struct list_head *balance_iterator; | |
382 | ||
383 | /* | |
384 | * 'curr' points to currently running entity on this cfs_rq. | |
6aa645ea IM |
385 | * It is set to NULL otherwise (i.e when none are currently running). |
386 | */ | |
aa2ac252 | 387 | struct sched_entity *curr, *next; |
ddc97297 PZ |
388 | |
389 | unsigned long nr_spread_over; | |
390 | ||
62160e3f | 391 | #ifdef CONFIG_FAIR_GROUP_SCHED |
6aa645ea IM |
392 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ |
393 | ||
41a2d6cf IM |
394 | /* |
395 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | |
6aa645ea IM |
396 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities |
397 | * (like users, containers etc.) | |
398 | * | |
399 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | |
400 | * list is used during load balance. | |
401 | */ | |
41a2d6cf IM |
402 | struct list_head leaf_cfs_rq_list; |
403 | struct task_group *tg; /* group that "owns" this runqueue */ | |
6aa645ea IM |
404 | #endif |
405 | }; | |
1da177e4 | 406 | |
6aa645ea IM |
407 | /* Real-Time classes' related field in a runqueue: */ |
408 | struct rt_rq { | |
409 | struct rt_prio_array active; | |
63489e45 | 410 | unsigned long rt_nr_running; |
052f1dc7 | 411 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
6f505b16 PZ |
412 | int highest_prio; /* highest queued rt task prio */ |
413 | #endif | |
fa85ae24 | 414 | #ifdef CONFIG_SMP |
73fe6aae | 415 | unsigned long rt_nr_migratory; |
a22d7fc1 | 416 | int overloaded; |
fa85ae24 | 417 | #endif |
6f505b16 | 418 | int rt_throttled; |
fa85ae24 | 419 | u64 rt_time; |
ac086bc2 | 420 | u64 rt_runtime; |
ea736ed5 | 421 | /* Nests inside the rq lock: */ |
ac086bc2 | 422 | spinlock_t rt_runtime_lock; |
6f505b16 | 423 | |
052f1dc7 | 424 | #ifdef CONFIG_RT_GROUP_SCHED |
23b0fdfc PZ |
425 | unsigned long rt_nr_boosted; |
426 | ||
6f505b16 PZ |
427 | struct rq *rq; |
428 | struct list_head leaf_rt_rq_list; | |
429 | struct task_group *tg; | |
430 | struct sched_rt_entity *rt_se; | |
431 | #endif | |
6aa645ea IM |
432 | }; |
433 | ||
57d885fe GH |
434 | #ifdef CONFIG_SMP |
435 | ||
436 | /* | |
437 | * We add the notion of a root-domain which will be used to define per-domain | |
0eab9146 IM |
438 | * variables. Each exclusive cpuset essentially defines an island domain by |
439 | * fully partitioning the member cpus from any other cpuset. Whenever a new | |
57d885fe GH |
440 | * exclusive cpuset is created, we also create and attach a new root-domain |
441 | * object. | |
442 | * | |
57d885fe GH |
443 | */ |
444 | struct root_domain { | |
445 | atomic_t refcount; | |
446 | cpumask_t span; | |
447 | cpumask_t online; | |
637f5085 | 448 | |
0eab9146 | 449 | /* |
637f5085 GH |
450 | * The "RT overload" flag: it gets set if a CPU has more than |
451 | * one runnable RT task. | |
452 | */ | |
453 | cpumask_t rto_mask; | |
0eab9146 | 454 | atomic_t rto_count; |
6e0534f2 GH |
455 | #ifdef CONFIG_SMP |
456 | struct cpupri cpupri; | |
457 | #endif | |
57d885fe GH |
458 | }; |
459 | ||
dc938520 GH |
460 | /* |
461 | * By default the system creates a single root-domain with all cpus as | |
462 | * members (mimicking the global state we have today). | |
463 | */ | |
57d885fe GH |
464 | static struct root_domain def_root_domain; |
465 | ||
466 | #endif | |
467 | ||
1da177e4 LT |
468 | /* |
469 | * This is the main, per-CPU runqueue data structure. | |
470 | * | |
471 | * Locking rule: those places that want to lock multiple runqueues | |
472 | * (such as the load balancing or the thread migration code), lock | |
473 | * acquire operations must be ordered by ascending &runqueue. | |
474 | */ | |
70b97a7f | 475 | struct rq { |
d8016491 IM |
476 | /* runqueue lock: */ |
477 | spinlock_t lock; | |
1da177e4 LT |
478 | |
479 | /* | |
480 | * nr_running and cpu_load should be in the same cacheline because | |
481 | * remote CPUs use both these fields when doing load calculation. | |
482 | */ | |
483 | unsigned long nr_running; | |
6aa645ea IM |
484 | #define CPU_LOAD_IDX_MAX 5 |
485 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | |
bdecea3a | 486 | unsigned char idle_at_tick; |
46cb4b7c | 487 | #ifdef CONFIG_NO_HZ |
15934a37 | 488 | unsigned long last_tick_seen; |
46cb4b7c SS |
489 | unsigned char in_nohz_recently; |
490 | #endif | |
d8016491 IM |
491 | /* capture load from *all* tasks on this cpu: */ |
492 | struct load_weight load; | |
6aa645ea IM |
493 | unsigned long nr_load_updates; |
494 | u64 nr_switches; | |
495 | ||
496 | struct cfs_rq cfs; | |
6f505b16 | 497 | struct rt_rq rt; |
6f505b16 | 498 | |
6aa645ea | 499 | #ifdef CONFIG_FAIR_GROUP_SCHED |
d8016491 IM |
500 | /* list of leaf cfs_rq on this cpu: */ |
501 | struct list_head leaf_cfs_rq_list; | |
052f1dc7 PZ |
502 | #endif |
503 | #ifdef CONFIG_RT_GROUP_SCHED | |
6f505b16 | 504 | struct list_head leaf_rt_rq_list; |
1da177e4 | 505 | #endif |
1da177e4 LT |
506 | |
507 | /* | |
508 | * This is part of a global counter where only the total sum | |
509 | * over all CPUs matters. A task can increase this counter on | |
510 | * one CPU and if it got migrated afterwards it may decrease | |
511 | * it on another CPU. Always updated under the runqueue lock: | |
512 | */ | |
513 | unsigned long nr_uninterruptible; | |
514 | ||
36c8b586 | 515 | struct task_struct *curr, *idle; |
c9819f45 | 516 | unsigned long next_balance; |
1da177e4 | 517 | struct mm_struct *prev_mm; |
6aa645ea | 518 | |
3e51f33f | 519 | u64 clock; |
6aa645ea | 520 | |
1da177e4 LT |
521 | atomic_t nr_iowait; |
522 | ||
523 | #ifdef CONFIG_SMP | |
0eab9146 | 524 | struct root_domain *rd; |
1da177e4 LT |
525 | struct sched_domain *sd; |
526 | ||
527 | /* For active balancing */ | |
528 | int active_balance; | |
529 | int push_cpu; | |
d8016491 IM |
530 | /* cpu of this runqueue: */ |
531 | int cpu; | |
1f11eb6a | 532 | int online; |
1da177e4 | 533 | |
36c8b586 | 534 | struct task_struct *migration_thread; |
1da177e4 LT |
535 | struct list_head migration_queue; |
536 | #endif | |
537 | ||
8f4d37ec PZ |
538 | #ifdef CONFIG_SCHED_HRTICK |
539 | unsigned long hrtick_flags; | |
540 | ktime_t hrtick_expire; | |
541 | struct hrtimer hrtick_timer; | |
542 | #endif | |
543 | ||
1da177e4 LT |
544 | #ifdef CONFIG_SCHEDSTATS |
545 | /* latency stats */ | |
546 | struct sched_info rq_sched_info; | |
547 | ||
548 | /* sys_sched_yield() stats */ | |
480b9434 KC |
549 | unsigned int yld_exp_empty; |
550 | unsigned int yld_act_empty; | |
551 | unsigned int yld_both_empty; | |
552 | unsigned int yld_count; | |
1da177e4 LT |
553 | |
554 | /* schedule() stats */ | |
480b9434 KC |
555 | unsigned int sched_switch; |
556 | unsigned int sched_count; | |
557 | unsigned int sched_goidle; | |
1da177e4 LT |
558 | |
559 | /* try_to_wake_up() stats */ | |
480b9434 KC |
560 | unsigned int ttwu_count; |
561 | unsigned int ttwu_local; | |
b8efb561 IM |
562 | |
563 | /* BKL stats */ | |
480b9434 | 564 | unsigned int bkl_count; |
1da177e4 | 565 | #endif |
fcb99371 | 566 | struct lock_class_key rq_lock_key; |
1da177e4 LT |
567 | }; |
568 | ||
f34e3b61 | 569 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
1da177e4 | 570 | |
dd41f596 IM |
571 | static inline void check_preempt_curr(struct rq *rq, struct task_struct *p) |
572 | { | |
573 | rq->curr->sched_class->check_preempt_curr(rq, p); | |
574 | } | |
575 | ||
0a2966b4 CL |
576 | static inline int cpu_of(struct rq *rq) |
577 | { | |
578 | #ifdef CONFIG_SMP | |
579 | return rq->cpu; | |
580 | #else | |
581 | return 0; | |
582 | #endif | |
583 | } | |
584 | ||
674311d5 NP |
585 | /* |
586 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | |
1a20ff27 | 587 | * See detach_destroy_domains: synchronize_sched for details. |
674311d5 NP |
588 | * |
589 | * The domain tree of any CPU may only be accessed from within | |
590 | * preempt-disabled sections. | |
591 | */ | |
48f24c4d IM |
592 | #define for_each_domain(cpu, __sd) \ |
593 | for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | |
1da177e4 LT |
594 | |
595 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | |
596 | #define this_rq() (&__get_cpu_var(runqueues)) | |
597 | #define task_rq(p) cpu_rq(task_cpu(p)) | |
598 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | |
599 | ||
3e51f33f PZ |
600 | static inline void update_rq_clock(struct rq *rq) |
601 | { | |
602 | rq->clock = sched_clock_cpu(cpu_of(rq)); | |
603 | } | |
604 | ||
bf5c91ba IM |
605 | /* |
606 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | |
607 | */ | |
608 | #ifdef CONFIG_SCHED_DEBUG | |
609 | # define const_debug __read_mostly | |
610 | #else | |
611 | # define const_debug static const | |
612 | #endif | |
613 | ||
614 | /* | |
615 | * Debugging: various feature bits | |
616 | */ | |
f00b45c1 PZ |
617 | |
618 | #define SCHED_FEAT(name, enabled) \ | |
619 | __SCHED_FEAT_##name , | |
620 | ||
bf5c91ba | 621 | enum { |
f00b45c1 | 622 | #include "sched_features.h" |
bf5c91ba IM |
623 | }; |
624 | ||
f00b45c1 PZ |
625 | #undef SCHED_FEAT |
626 | ||
627 | #define SCHED_FEAT(name, enabled) \ | |
628 | (1UL << __SCHED_FEAT_##name) * enabled | | |
629 | ||
bf5c91ba | 630 | const_debug unsigned int sysctl_sched_features = |
f00b45c1 PZ |
631 | #include "sched_features.h" |
632 | 0; | |
633 | ||
634 | #undef SCHED_FEAT | |
635 | ||
636 | #ifdef CONFIG_SCHED_DEBUG | |
637 | #define SCHED_FEAT(name, enabled) \ | |
638 | #name , | |
639 | ||
983ed7a6 | 640 | static __read_mostly char *sched_feat_names[] = { |
f00b45c1 PZ |
641 | #include "sched_features.h" |
642 | NULL | |
643 | }; | |
644 | ||
645 | #undef SCHED_FEAT | |
646 | ||
983ed7a6 | 647 | static int sched_feat_open(struct inode *inode, struct file *filp) |
f00b45c1 PZ |
648 | { |
649 | filp->private_data = inode->i_private; | |
650 | return 0; | |
651 | } | |
652 | ||
653 | static ssize_t | |
654 | sched_feat_read(struct file *filp, char __user *ubuf, | |
655 | size_t cnt, loff_t *ppos) | |
656 | { | |
657 | char *buf; | |
658 | int r = 0; | |
659 | int len = 0; | |
660 | int i; | |
661 | ||
662 | for (i = 0; sched_feat_names[i]; i++) { | |
663 | len += strlen(sched_feat_names[i]); | |
664 | len += 4; | |
665 | } | |
666 | ||
667 | buf = kmalloc(len + 2, GFP_KERNEL); | |
668 | if (!buf) | |
669 | return -ENOMEM; | |
670 | ||
671 | for (i = 0; sched_feat_names[i]; i++) { | |
672 | if (sysctl_sched_features & (1UL << i)) | |
673 | r += sprintf(buf + r, "%s ", sched_feat_names[i]); | |
674 | else | |
c24b7c52 | 675 | r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]); |
f00b45c1 PZ |
676 | } |
677 | ||
678 | r += sprintf(buf + r, "\n"); | |
679 | WARN_ON(r >= len + 2); | |
680 | ||
681 | r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r); | |
682 | ||
683 | kfree(buf); | |
684 | ||
685 | return r; | |
686 | } | |
687 | ||
688 | static ssize_t | |
689 | sched_feat_write(struct file *filp, const char __user *ubuf, | |
690 | size_t cnt, loff_t *ppos) | |
691 | { | |
692 | char buf[64]; | |
693 | char *cmp = buf; | |
694 | int neg = 0; | |
695 | int i; | |
696 | ||
697 | if (cnt > 63) | |
698 | cnt = 63; | |
699 | ||
700 | if (copy_from_user(&buf, ubuf, cnt)) | |
701 | return -EFAULT; | |
702 | ||
703 | buf[cnt] = 0; | |
704 | ||
c24b7c52 | 705 | if (strncmp(buf, "NO_", 3) == 0) { |
f00b45c1 PZ |
706 | neg = 1; |
707 | cmp += 3; | |
708 | } | |
709 | ||
710 | for (i = 0; sched_feat_names[i]; i++) { | |
711 | int len = strlen(sched_feat_names[i]); | |
712 | ||
713 | if (strncmp(cmp, sched_feat_names[i], len) == 0) { | |
714 | if (neg) | |
715 | sysctl_sched_features &= ~(1UL << i); | |
716 | else | |
717 | sysctl_sched_features |= (1UL << i); | |
718 | break; | |
719 | } | |
720 | } | |
721 | ||
722 | if (!sched_feat_names[i]) | |
723 | return -EINVAL; | |
724 | ||
725 | filp->f_pos += cnt; | |
726 | ||
727 | return cnt; | |
728 | } | |
729 | ||
730 | static struct file_operations sched_feat_fops = { | |
731 | .open = sched_feat_open, | |
732 | .read = sched_feat_read, | |
733 | .write = sched_feat_write, | |
734 | }; | |
735 | ||
736 | static __init int sched_init_debug(void) | |
737 | { | |
f00b45c1 PZ |
738 | debugfs_create_file("sched_features", 0644, NULL, NULL, |
739 | &sched_feat_fops); | |
740 | ||
741 | return 0; | |
742 | } | |
743 | late_initcall(sched_init_debug); | |
744 | ||
745 | #endif | |
746 | ||
747 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | |
bf5c91ba | 748 | |
b82d9fdd PZ |
749 | /* |
750 | * Number of tasks to iterate in a single balance run. | |
751 | * Limited because this is done with IRQs disabled. | |
752 | */ | |
753 | const_debug unsigned int sysctl_sched_nr_migrate = 32; | |
754 | ||
fa85ae24 | 755 | /* |
9f0c1e56 | 756 | * period over which we measure -rt task cpu usage in us. |
fa85ae24 PZ |
757 | * default: 1s |
758 | */ | |
9f0c1e56 | 759 | unsigned int sysctl_sched_rt_period = 1000000; |
fa85ae24 | 760 | |
6892b75e IM |
761 | static __read_mostly int scheduler_running; |
762 | ||
9f0c1e56 PZ |
763 | /* |
764 | * part of the period that we allow rt tasks to run in us. | |
765 | * default: 0.95s | |
766 | */ | |
767 | int sysctl_sched_rt_runtime = 950000; | |
fa85ae24 | 768 | |
d0b27fa7 PZ |
769 | static inline u64 global_rt_period(void) |
770 | { | |
771 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | |
772 | } | |
773 | ||
774 | static inline u64 global_rt_runtime(void) | |
775 | { | |
776 | if (sysctl_sched_rt_period < 0) | |
777 | return RUNTIME_INF; | |
778 | ||
779 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | |
780 | } | |
fa85ae24 | 781 | |
690229a0 | 782 | unsigned long long time_sync_thresh = 100000; |
27ec4407 IM |
783 | |
784 | static DEFINE_PER_CPU(unsigned long long, time_offset); | |
785 | static DEFINE_PER_CPU(unsigned long long, prev_cpu_time); | |
786 | ||
e436d800 | 787 | /* |
27ec4407 IM |
788 | * Global lock which we take every now and then to synchronize |
789 | * the CPUs time. This method is not warp-safe, but it's good | |
790 | * enough to synchronize slowly diverging time sources and thus | |
791 | * it's good enough for tracing: | |
e436d800 | 792 | */ |
27ec4407 IM |
793 | static DEFINE_SPINLOCK(time_sync_lock); |
794 | static unsigned long long prev_global_time; | |
795 | ||
dfbf4a1b | 796 | static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu) |
27ec4407 | 797 | { |
dfbf4a1b IM |
798 | /* |
799 | * We want this inlined, to not get tracer function calls | |
800 | * in this critical section: | |
801 | */ | |
802 | spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_); | |
803 | __raw_spin_lock(&time_sync_lock.raw_lock); | |
27ec4407 IM |
804 | |
805 | if (time < prev_global_time) { | |
806 | per_cpu(time_offset, cpu) += prev_global_time - time; | |
807 | time = prev_global_time; | |
808 | } else { | |
809 | prev_global_time = time; | |
810 | } | |
811 | ||
dfbf4a1b IM |
812 | __raw_spin_unlock(&time_sync_lock.raw_lock); |
813 | spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_); | |
27ec4407 IM |
814 | |
815 | return time; | |
816 | } | |
817 | ||
818 | static unsigned long long __cpu_clock(int cpu) | |
e436d800 | 819 | { |
e436d800 | 820 | unsigned long long now; |
e436d800 | 821 | |
8ced5f69 IM |
822 | /* |
823 | * Only call sched_clock() if the scheduler has already been | |
824 | * initialized (some code might call cpu_clock() very early): | |
825 | */ | |
6892b75e IM |
826 | if (unlikely(!scheduler_running)) |
827 | return 0; | |
828 | ||
3e51f33f | 829 | now = sched_clock_cpu(cpu); |
e436d800 IM |
830 | |
831 | return now; | |
832 | } | |
27ec4407 IM |
833 | |
834 | /* | |
835 | * For kernel-internal use: high-speed (but slightly incorrect) per-cpu | |
836 | * clock constructed from sched_clock(): | |
837 | */ | |
838 | unsigned long long cpu_clock(int cpu) | |
839 | { | |
840 | unsigned long long prev_cpu_time, time, delta_time; | |
dfbf4a1b | 841 | unsigned long flags; |
27ec4407 | 842 | |
dfbf4a1b | 843 | local_irq_save(flags); |
27ec4407 IM |
844 | prev_cpu_time = per_cpu(prev_cpu_time, cpu); |
845 | time = __cpu_clock(cpu) + per_cpu(time_offset, cpu); | |
846 | delta_time = time-prev_cpu_time; | |
847 | ||
dfbf4a1b | 848 | if (unlikely(delta_time > time_sync_thresh)) { |
27ec4407 | 849 | time = __sync_cpu_clock(time, cpu); |
dfbf4a1b IM |
850 | per_cpu(prev_cpu_time, cpu) = time; |
851 | } | |
852 | local_irq_restore(flags); | |
27ec4407 IM |
853 | |
854 | return time; | |
855 | } | |
a58f6f25 | 856 | EXPORT_SYMBOL_GPL(cpu_clock); |
e436d800 | 857 | |
1da177e4 | 858 | #ifndef prepare_arch_switch |
4866cde0 NP |
859 | # define prepare_arch_switch(next) do { } while (0) |
860 | #endif | |
861 | #ifndef finish_arch_switch | |
862 | # define finish_arch_switch(prev) do { } while (0) | |
863 | #endif | |
864 | ||
051a1d1a DA |
865 | static inline int task_current(struct rq *rq, struct task_struct *p) |
866 | { | |
867 | return rq->curr == p; | |
868 | } | |
869 | ||
4866cde0 | 870 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
70b97a7f | 871 | static inline int task_running(struct rq *rq, struct task_struct *p) |
4866cde0 | 872 | { |
051a1d1a | 873 | return task_current(rq, p); |
4866cde0 NP |
874 | } |
875 | ||
70b97a7f | 876 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
877 | { |
878 | } | |
879 | ||
70b97a7f | 880 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 | 881 | { |
da04c035 IM |
882 | #ifdef CONFIG_DEBUG_SPINLOCK |
883 | /* this is a valid case when another task releases the spinlock */ | |
884 | rq->lock.owner = current; | |
885 | #endif | |
8a25d5de IM |
886 | /* |
887 | * If we are tracking spinlock dependencies then we have to | |
888 | * fix up the runqueue lock - which gets 'carried over' from | |
889 | * prev into current: | |
890 | */ | |
891 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | |
892 | ||
4866cde0 NP |
893 | spin_unlock_irq(&rq->lock); |
894 | } | |
895 | ||
896 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
70b97a7f | 897 | static inline int task_running(struct rq *rq, struct task_struct *p) |
4866cde0 NP |
898 | { |
899 | #ifdef CONFIG_SMP | |
900 | return p->oncpu; | |
901 | #else | |
051a1d1a | 902 | return task_current(rq, p); |
4866cde0 NP |
903 | #endif |
904 | } | |
905 | ||
70b97a7f | 906 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
907 | { |
908 | #ifdef CONFIG_SMP | |
909 | /* | |
910 | * We can optimise this out completely for !SMP, because the | |
911 | * SMP rebalancing from interrupt is the only thing that cares | |
912 | * here. | |
913 | */ | |
914 | next->oncpu = 1; | |
915 | #endif | |
916 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
917 | spin_unlock_irq(&rq->lock); | |
918 | #else | |
919 | spin_unlock(&rq->lock); | |
920 | #endif | |
921 | } | |
922 | ||
70b97a7f | 923 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 NP |
924 | { |
925 | #ifdef CONFIG_SMP | |
926 | /* | |
927 | * After ->oncpu is cleared, the task can be moved to a different CPU. | |
928 | * We must ensure this doesn't happen until the switch is completely | |
929 | * finished. | |
930 | */ | |
931 | smp_wmb(); | |
932 | prev->oncpu = 0; | |
933 | #endif | |
934 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
935 | local_irq_enable(); | |
1da177e4 | 936 | #endif |
4866cde0 NP |
937 | } |
938 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
1da177e4 | 939 | |
b29739f9 IM |
940 | /* |
941 | * __task_rq_lock - lock the runqueue a given task resides on. | |
942 | * Must be called interrupts disabled. | |
943 | */ | |
70b97a7f | 944 | static inline struct rq *__task_rq_lock(struct task_struct *p) |
b29739f9 IM |
945 | __acquires(rq->lock) |
946 | { | |
3a5c359a AK |
947 | for (;;) { |
948 | struct rq *rq = task_rq(p); | |
949 | spin_lock(&rq->lock); | |
950 | if (likely(rq == task_rq(p))) | |
951 | return rq; | |
b29739f9 | 952 | spin_unlock(&rq->lock); |
b29739f9 | 953 | } |
b29739f9 IM |
954 | } |
955 | ||
1da177e4 LT |
956 | /* |
957 | * task_rq_lock - lock the runqueue a given task resides on and disable | |
41a2d6cf | 958 | * interrupts. Note the ordering: we can safely lookup the task_rq without |
1da177e4 LT |
959 | * explicitly disabling preemption. |
960 | */ | |
70b97a7f | 961 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) |
1da177e4 LT |
962 | __acquires(rq->lock) |
963 | { | |
70b97a7f | 964 | struct rq *rq; |
1da177e4 | 965 | |
3a5c359a AK |
966 | for (;;) { |
967 | local_irq_save(*flags); | |
968 | rq = task_rq(p); | |
969 | spin_lock(&rq->lock); | |
970 | if (likely(rq == task_rq(p))) | |
971 | return rq; | |
1da177e4 | 972 | spin_unlock_irqrestore(&rq->lock, *flags); |
1da177e4 | 973 | } |
1da177e4 LT |
974 | } |
975 | ||
a9957449 | 976 | static void __task_rq_unlock(struct rq *rq) |
b29739f9 IM |
977 | __releases(rq->lock) |
978 | { | |
979 | spin_unlock(&rq->lock); | |
980 | } | |
981 | ||
70b97a7f | 982 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) |
1da177e4 LT |
983 | __releases(rq->lock) |
984 | { | |
985 | spin_unlock_irqrestore(&rq->lock, *flags); | |
986 | } | |
987 | ||
1da177e4 | 988 | /* |
cc2a73b5 | 989 | * this_rq_lock - lock this runqueue and disable interrupts. |
1da177e4 | 990 | */ |
a9957449 | 991 | static struct rq *this_rq_lock(void) |
1da177e4 LT |
992 | __acquires(rq->lock) |
993 | { | |
70b97a7f | 994 | struct rq *rq; |
1da177e4 LT |
995 | |
996 | local_irq_disable(); | |
997 | rq = this_rq(); | |
998 | spin_lock(&rq->lock); | |
999 | ||
1000 | return rq; | |
1001 | } | |
1002 | ||
8f4d37ec PZ |
1003 | static void __resched_task(struct task_struct *p, int tif_bit); |
1004 | ||
1005 | static inline void resched_task(struct task_struct *p) | |
1006 | { | |
1007 | __resched_task(p, TIF_NEED_RESCHED); | |
1008 | } | |
1009 | ||
1010 | #ifdef CONFIG_SCHED_HRTICK | |
1011 | /* | |
1012 | * Use HR-timers to deliver accurate preemption points. | |
1013 | * | |
1014 | * Its all a bit involved since we cannot program an hrt while holding the | |
1015 | * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a | |
1016 | * reschedule event. | |
1017 | * | |
1018 | * When we get rescheduled we reprogram the hrtick_timer outside of the | |
1019 | * rq->lock. | |
1020 | */ | |
1021 | static inline void resched_hrt(struct task_struct *p) | |
1022 | { | |
1023 | __resched_task(p, TIF_HRTICK_RESCHED); | |
1024 | } | |
1025 | ||
1026 | static inline void resched_rq(struct rq *rq) | |
1027 | { | |
1028 | unsigned long flags; | |
1029 | ||
1030 | spin_lock_irqsave(&rq->lock, flags); | |
1031 | resched_task(rq->curr); | |
1032 | spin_unlock_irqrestore(&rq->lock, flags); | |
1033 | } | |
1034 | ||
1035 | enum { | |
1036 | HRTICK_SET, /* re-programm hrtick_timer */ | |
1037 | HRTICK_RESET, /* not a new slice */ | |
b328ca18 | 1038 | HRTICK_BLOCK, /* stop hrtick operations */ |
8f4d37ec PZ |
1039 | }; |
1040 | ||
1041 | /* | |
1042 | * Use hrtick when: | |
1043 | * - enabled by features | |
1044 | * - hrtimer is actually high res | |
1045 | */ | |
1046 | static inline int hrtick_enabled(struct rq *rq) | |
1047 | { | |
1048 | if (!sched_feat(HRTICK)) | |
1049 | return 0; | |
b328ca18 PZ |
1050 | if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags))) |
1051 | return 0; | |
8f4d37ec PZ |
1052 | return hrtimer_is_hres_active(&rq->hrtick_timer); |
1053 | } | |
1054 | ||
1055 | /* | |
1056 | * Called to set the hrtick timer state. | |
1057 | * | |
1058 | * called with rq->lock held and irqs disabled | |
1059 | */ | |
1060 | static void hrtick_start(struct rq *rq, u64 delay, int reset) | |
1061 | { | |
1062 | assert_spin_locked(&rq->lock); | |
1063 | ||
1064 | /* | |
1065 | * preempt at: now + delay | |
1066 | */ | |
1067 | rq->hrtick_expire = | |
1068 | ktime_add_ns(rq->hrtick_timer.base->get_time(), delay); | |
1069 | /* | |
1070 | * indicate we need to program the timer | |
1071 | */ | |
1072 | __set_bit(HRTICK_SET, &rq->hrtick_flags); | |
1073 | if (reset) | |
1074 | __set_bit(HRTICK_RESET, &rq->hrtick_flags); | |
1075 | ||
1076 | /* | |
1077 | * New slices are called from the schedule path and don't need a | |
1078 | * forced reschedule. | |
1079 | */ | |
1080 | if (reset) | |
1081 | resched_hrt(rq->curr); | |
1082 | } | |
1083 | ||
1084 | static void hrtick_clear(struct rq *rq) | |
1085 | { | |
1086 | if (hrtimer_active(&rq->hrtick_timer)) | |
1087 | hrtimer_cancel(&rq->hrtick_timer); | |
1088 | } | |
1089 | ||
1090 | /* | |
1091 | * Update the timer from the possible pending state. | |
1092 | */ | |
1093 | static void hrtick_set(struct rq *rq) | |
1094 | { | |
1095 | ktime_t time; | |
1096 | int set, reset; | |
1097 | unsigned long flags; | |
1098 | ||
1099 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | |
1100 | ||
1101 | spin_lock_irqsave(&rq->lock, flags); | |
1102 | set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags); | |
1103 | reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags); | |
1104 | time = rq->hrtick_expire; | |
1105 | clear_thread_flag(TIF_HRTICK_RESCHED); | |
1106 | spin_unlock_irqrestore(&rq->lock, flags); | |
1107 | ||
1108 | if (set) { | |
1109 | hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS); | |
1110 | if (reset && !hrtimer_active(&rq->hrtick_timer)) | |
1111 | resched_rq(rq); | |
1112 | } else | |
1113 | hrtick_clear(rq); | |
1114 | } | |
1115 | ||
1116 | /* | |
1117 | * High-resolution timer tick. | |
1118 | * Runs from hardirq context with interrupts disabled. | |
1119 | */ | |
1120 | static enum hrtimer_restart hrtick(struct hrtimer *timer) | |
1121 | { | |
1122 | struct rq *rq = container_of(timer, struct rq, hrtick_timer); | |
1123 | ||
1124 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | |
1125 | ||
1126 | spin_lock(&rq->lock); | |
3e51f33f | 1127 | update_rq_clock(rq); |
8f4d37ec PZ |
1128 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); |
1129 | spin_unlock(&rq->lock); | |
1130 | ||
1131 | return HRTIMER_NORESTART; | |
1132 | } | |
1133 | ||
81d41d7e | 1134 | #ifdef CONFIG_SMP |
b328ca18 PZ |
1135 | static void hotplug_hrtick_disable(int cpu) |
1136 | { | |
1137 | struct rq *rq = cpu_rq(cpu); | |
1138 | unsigned long flags; | |
1139 | ||
1140 | spin_lock_irqsave(&rq->lock, flags); | |
1141 | rq->hrtick_flags = 0; | |
1142 | __set_bit(HRTICK_BLOCK, &rq->hrtick_flags); | |
1143 | spin_unlock_irqrestore(&rq->lock, flags); | |
1144 | ||
1145 | hrtick_clear(rq); | |
1146 | } | |
1147 | ||
1148 | static void hotplug_hrtick_enable(int cpu) | |
1149 | { | |
1150 | struct rq *rq = cpu_rq(cpu); | |
1151 | unsigned long flags; | |
1152 | ||
1153 | spin_lock_irqsave(&rq->lock, flags); | |
1154 | __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags); | |
1155 | spin_unlock_irqrestore(&rq->lock, flags); | |
1156 | } | |
1157 | ||
1158 | static int | |
1159 | hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
1160 | { | |
1161 | int cpu = (int)(long)hcpu; | |
1162 | ||
1163 | switch (action) { | |
1164 | case CPU_UP_CANCELED: | |
1165 | case CPU_UP_CANCELED_FROZEN: | |
1166 | case CPU_DOWN_PREPARE: | |
1167 | case CPU_DOWN_PREPARE_FROZEN: | |
1168 | case CPU_DEAD: | |
1169 | case CPU_DEAD_FROZEN: | |
1170 | hotplug_hrtick_disable(cpu); | |
1171 | return NOTIFY_OK; | |
1172 | ||
1173 | case CPU_UP_PREPARE: | |
1174 | case CPU_UP_PREPARE_FROZEN: | |
1175 | case CPU_DOWN_FAILED: | |
1176 | case CPU_DOWN_FAILED_FROZEN: | |
1177 | case CPU_ONLINE: | |
1178 | case CPU_ONLINE_FROZEN: | |
1179 | hotplug_hrtick_enable(cpu); | |
1180 | return NOTIFY_OK; | |
1181 | } | |
1182 | ||
1183 | return NOTIFY_DONE; | |
1184 | } | |
1185 | ||
1186 | static void init_hrtick(void) | |
1187 | { | |
1188 | hotcpu_notifier(hotplug_hrtick, 0); | |
1189 | } | |
81d41d7e | 1190 | #endif /* CONFIG_SMP */ |
b328ca18 PZ |
1191 | |
1192 | static void init_rq_hrtick(struct rq *rq) | |
8f4d37ec PZ |
1193 | { |
1194 | rq->hrtick_flags = 0; | |
1195 | hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | |
1196 | rq->hrtick_timer.function = hrtick; | |
1197 | rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; | |
1198 | } | |
1199 | ||
1200 | void hrtick_resched(void) | |
1201 | { | |
1202 | struct rq *rq; | |
1203 | unsigned long flags; | |
1204 | ||
1205 | if (!test_thread_flag(TIF_HRTICK_RESCHED)) | |
1206 | return; | |
1207 | ||
1208 | local_irq_save(flags); | |
1209 | rq = cpu_rq(smp_processor_id()); | |
1210 | hrtick_set(rq); | |
1211 | local_irq_restore(flags); | |
1212 | } | |
1213 | #else | |
1214 | static inline void hrtick_clear(struct rq *rq) | |
1215 | { | |
1216 | } | |
1217 | ||
1218 | static inline void hrtick_set(struct rq *rq) | |
1219 | { | |
1220 | } | |
1221 | ||
1222 | static inline void init_rq_hrtick(struct rq *rq) | |
1223 | { | |
1224 | } | |
1225 | ||
1226 | void hrtick_resched(void) | |
1227 | { | |
1228 | } | |
b328ca18 PZ |
1229 | |
1230 | static inline void init_hrtick(void) | |
1231 | { | |
1232 | } | |
8f4d37ec PZ |
1233 | #endif |
1234 | ||
c24d20db IM |
1235 | /* |
1236 | * resched_task - mark a task 'to be rescheduled now'. | |
1237 | * | |
1238 | * On UP this means the setting of the need_resched flag, on SMP it | |
1239 | * might also involve a cross-CPU call to trigger the scheduler on | |
1240 | * the target CPU. | |
1241 | */ | |
1242 | #ifdef CONFIG_SMP | |
1243 | ||
1244 | #ifndef tsk_is_polling | |
1245 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | |
1246 | #endif | |
1247 | ||
8f4d37ec | 1248 | static void __resched_task(struct task_struct *p, int tif_bit) |
c24d20db IM |
1249 | { |
1250 | int cpu; | |
1251 | ||
1252 | assert_spin_locked(&task_rq(p)->lock); | |
1253 | ||
8f4d37ec | 1254 | if (unlikely(test_tsk_thread_flag(p, tif_bit))) |
c24d20db IM |
1255 | return; |
1256 | ||
8f4d37ec | 1257 | set_tsk_thread_flag(p, tif_bit); |
c24d20db IM |
1258 | |
1259 | cpu = task_cpu(p); | |
1260 | if (cpu == smp_processor_id()) | |
1261 | return; | |
1262 | ||
1263 | /* NEED_RESCHED must be visible before we test polling */ | |
1264 | smp_mb(); | |
1265 | if (!tsk_is_polling(p)) | |
1266 | smp_send_reschedule(cpu); | |
1267 | } | |
1268 | ||
1269 | static void resched_cpu(int cpu) | |
1270 | { | |
1271 | struct rq *rq = cpu_rq(cpu); | |
1272 | unsigned long flags; | |
1273 | ||
1274 | if (!spin_trylock_irqsave(&rq->lock, flags)) | |
1275 | return; | |
1276 | resched_task(cpu_curr(cpu)); | |
1277 | spin_unlock_irqrestore(&rq->lock, flags); | |
1278 | } | |
06d8308c TG |
1279 | |
1280 | #ifdef CONFIG_NO_HZ | |
1281 | /* | |
1282 | * When add_timer_on() enqueues a timer into the timer wheel of an | |
1283 | * idle CPU then this timer might expire before the next timer event | |
1284 | * which is scheduled to wake up that CPU. In case of a completely | |
1285 | * idle system the next event might even be infinite time into the | |
1286 | * future. wake_up_idle_cpu() ensures that the CPU is woken up and | |
1287 | * leaves the inner idle loop so the newly added timer is taken into | |
1288 | * account when the CPU goes back to idle and evaluates the timer | |
1289 | * wheel for the next timer event. | |
1290 | */ | |
1291 | void wake_up_idle_cpu(int cpu) | |
1292 | { | |
1293 | struct rq *rq = cpu_rq(cpu); | |
1294 | ||
1295 | if (cpu == smp_processor_id()) | |
1296 | return; | |
1297 | ||
1298 | /* | |
1299 | * This is safe, as this function is called with the timer | |
1300 | * wheel base lock of (cpu) held. When the CPU is on the way | |
1301 | * to idle and has not yet set rq->curr to idle then it will | |
1302 | * be serialized on the timer wheel base lock and take the new | |
1303 | * timer into account automatically. | |
1304 | */ | |
1305 | if (rq->curr != rq->idle) | |
1306 | return; | |
1307 | ||
1308 | /* | |
1309 | * We can set TIF_RESCHED on the idle task of the other CPU | |
1310 | * lockless. The worst case is that the other CPU runs the | |
1311 | * idle task through an additional NOOP schedule() | |
1312 | */ | |
1313 | set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED); | |
1314 | ||
1315 | /* NEED_RESCHED must be visible before we test polling */ | |
1316 | smp_mb(); | |
1317 | if (!tsk_is_polling(rq->idle)) | |
1318 | smp_send_reschedule(cpu); | |
1319 | } | |
6d6bc0ad | 1320 | #endif /* CONFIG_NO_HZ */ |
06d8308c | 1321 | |
6d6bc0ad | 1322 | #else /* !CONFIG_SMP */ |
8f4d37ec | 1323 | static void __resched_task(struct task_struct *p, int tif_bit) |
c24d20db IM |
1324 | { |
1325 | assert_spin_locked(&task_rq(p)->lock); | |
8f4d37ec | 1326 | set_tsk_thread_flag(p, tif_bit); |
c24d20db | 1327 | } |
6d6bc0ad | 1328 | #endif /* CONFIG_SMP */ |
c24d20db | 1329 | |
45bf76df IM |
1330 | #if BITS_PER_LONG == 32 |
1331 | # define WMULT_CONST (~0UL) | |
1332 | #else | |
1333 | # define WMULT_CONST (1UL << 32) | |
1334 | #endif | |
1335 | ||
1336 | #define WMULT_SHIFT 32 | |
1337 | ||
194081eb IM |
1338 | /* |
1339 | * Shift right and round: | |
1340 | */ | |
cf2ab469 | 1341 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) |
194081eb | 1342 | |
cb1c4fc9 | 1343 | static unsigned long |
45bf76df IM |
1344 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, |
1345 | struct load_weight *lw) | |
1346 | { | |
1347 | u64 tmp; | |
1348 | ||
e05510d0 PZ |
1349 | if (!lw->inv_weight) |
1350 | lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1); | |
45bf76df IM |
1351 | |
1352 | tmp = (u64)delta_exec * weight; | |
1353 | /* | |
1354 | * Check whether we'd overflow the 64-bit multiplication: | |
1355 | */ | |
194081eb | 1356 | if (unlikely(tmp > WMULT_CONST)) |
cf2ab469 | 1357 | tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, |
194081eb IM |
1358 | WMULT_SHIFT/2); |
1359 | else | |
cf2ab469 | 1360 | tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); |
45bf76df | 1361 | |
ecf691da | 1362 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); |
45bf76df IM |
1363 | } |
1364 | ||
f9305d4a IM |
1365 | static inline unsigned long |
1366 | calc_delta_fair(unsigned long delta_exec, struct load_weight *lw) | |
1367 | { | |
1368 | return calc_delta_mine(delta_exec, NICE_0_LOAD, lw); | |
1369 | } | |
1370 | ||
1091985b | 1371 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
45bf76df IM |
1372 | { |
1373 | lw->weight += inc; | |
e89996ae | 1374 | lw->inv_weight = 0; |
45bf76df IM |
1375 | } |
1376 | ||
1091985b | 1377 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) |
45bf76df IM |
1378 | { |
1379 | lw->weight -= dec; | |
e89996ae | 1380 | lw->inv_weight = 0; |
45bf76df IM |
1381 | } |
1382 | ||
2dd73a4f PW |
1383 | /* |
1384 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | |
1385 | * of tasks with abnormal "nice" values across CPUs the contribution that | |
1386 | * each task makes to its run queue's load is weighted according to its | |
41a2d6cf | 1387 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a |
2dd73a4f PW |
1388 | * scaled version of the new time slice allocation that they receive on time |
1389 | * slice expiry etc. | |
1390 | */ | |
1391 | ||
dd41f596 IM |
1392 | #define WEIGHT_IDLEPRIO 2 |
1393 | #define WMULT_IDLEPRIO (1 << 31) | |
1394 | ||
1395 | /* | |
1396 | * Nice levels are multiplicative, with a gentle 10% change for every | |
1397 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | |
1398 | * nice 1, it will get ~10% less CPU time than another CPU-bound task | |
1399 | * that remained on nice 0. | |
1400 | * | |
1401 | * The "10% effect" is relative and cumulative: from _any_ nice level, | |
1402 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | |
f9153ee6 IM |
1403 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. |
1404 | * If a task goes up by ~10% and another task goes down by ~10% then | |
1405 | * the relative distance between them is ~25%.) | |
dd41f596 IM |
1406 | */ |
1407 | static const int prio_to_weight[40] = { | |
254753dc IM |
1408 | /* -20 */ 88761, 71755, 56483, 46273, 36291, |
1409 | /* -15 */ 29154, 23254, 18705, 14949, 11916, | |
1410 | /* -10 */ 9548, 7620, 6100, 4904, 3906, | |
1411 | /* -5 */ 3121, 2501, 1991, 1586, 1277, | |
1412 | /* 0 */ 1024, 820, 655, 526, 423, | |
1413 | /* 5 */ 335, 272, 215, 172, 137, | |
1414 | /* 10 */ 110, 87, 70, 56, 45, | |
1415 | /* 15 */ 36, 29, 23, 18, 15, | |
dd41f596 IM |
1416 | }; |
1417 | ||
5714d2de IM |
1418 | /* |
1419 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | |
1420 | * | |
1421 | * In cases where the weight does not change often, we can use the | |
1422 | * precalculated inverse to speed up arithmetics by turning divisions | |
1423 | * into multiplications: | |
1424 | */ | |
dd41f596 | 1425 | static const u32 prio_to_wmult[40] = { |
254753dc IM |
1426 | /* -20 */ 48388, 59856, 76040, 92818, 118348, |
1427 | /* -15 */ 147320, 184698, 229616, 287308, 360437, | |
1428 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, | |
1429 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, | |
1430 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, | |
1431 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, | |
1432 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, | |
1433 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | |
dd41f596 | 1434 | }; |
2dd73a4f | 1435 | |
dd41f596 IM |
1436 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); |
1437 | ||
1438 | /* | |
1439 | * runqueue iterator, to support SMP load-balancing between different | |
1440 | * scheduling classes, without having to expose their internal data | |
1441 | * structures to the load-balancing proper: | |
1442 | */ | |
1443 | struct rq_iterator { | |
1444 | void *arg; | |
1445 | struct task_struct *(*start)(void *); | |
1446 | struct task_struct *(*next)(void *); | |
1447 | }; | |
1448 | ||
e1d1484f PW |
1449 | #ifdef CONFIG_SMP |
1450 | static unsigned long | |
1451 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
1452 | unsigned long max_load_move, struct sched_domain *sd, | |
1453 | enum cpu_idle_type idle, int *all_pinned, | |
1454 | int *this_best_prio, struct rq_iterator *iterator); | |
1455 | ||
1456 | static int | |
1457 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
1458 | struct sched_domain *sd, enum cpu_idle_type idle, | |
1459 | struct rq_iterator *iterator); | |
e1d1484f | 1460 | #endif |
dd41f596 | 1461 | |
d842de87 SV |
1462 | #ifdef CONFIG_CGROUP_CPUACCT |
1463 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime); | |
1464 | #else | |
1465 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | |
1466 | #endif | |
1467 | ||
18d95a28 PZ |
1468 | static inline void inc_cpu_load(struct rq *rq, unsigned long load) |
1469 | { | |
1470 | update_load_add(&rq->load, load); | |
1471 | } | |
1472 | ||
1473 | static inline void dec_cpu_load(struct rq *rq, unsigned long load) | |
1474 | { | |
1475 | update_load_sub(&rq->load, load); | |
1476 | } | |
1477 | ||
e7693a36 GH |
1478 | #ifdef CONFIG_SMP |
1479 | static unsigned long source_load(int cpu, int type); | |
1480 | static unsigned long target_load(int cpu, int type); | |
1481 | static unsigned long cpu_avg_load_per_task(int cpu); | |
1482 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); | |
18d95a28 PZ |
1483 | #else /* CONFIG_SMP */ |
1484 | ||
1485 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
1486 | static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) | |
1487 | { | |
1488 | } | |
1489 | #endif | |
1490 | ||
e7693a36 GH |
1491 | #endif /* CONFIG_SMP */ |
1492 | ||
dd41f596 | 1493 | #include "sched_stats.h" |
dd41f596 | 1494 | #include "sched_idletask.c" |
5522d5d5 IM |
1495 | #include "sched_fair.c" |
1496 | #include "sched_rt.c" | |
dd41f596 IM |
1497 | #ifdef CONFIG_SCHED_DEBUG |
1498 | # include "sched_debug.c" | |
1499 | #endif | |
1500 | ||
1501 | #define sched_class_highest (&rt_sched_class) | |
1f11eb6a GH |
1502 | #define for_each_class(class) \ |
1503 | for (class = sched_class_highest; class; class = class->next) | |
dd41f596 | 1504 | |
6363ca57 IM |
1505 | static inline void inc_load(struct rq *rq, const struct task_struct *p) |
1506 | { | |
1507 | update_load_add(&rq->load, p->se.load.weight); | |
1508 | } | |
1509 | ||
1510 | static inline void dec_load(struct rq *rq, const struct task_struct *p) | |
1511 | { | |
1512 | update_load_sub(&rq->load, p->se.load.weight); | |
1513 | } | |
1514 | ||
1515 | static void inc_nr_running(struct task_struct *p, struct rq *rq) | |
9c217245 IM |
1516 | { |
1517 | rq->nr_running++; | |
6363ca57 | 1518 | inc_load(rq, p); |
9c217245 IM |
1519 | } |
1520 | ||
6363ca57 | 1521 | static void dec_nr_running(struct task_struct *p, struct rq *rq) |
9c217245 IM |
1522 | { |
1523 | rq->nr_running--; | |
6363ca57 | 1524 | dec_load(rq, p); |
9c217245 IM |
1525 | } |
1526 | ||
45bf76df IM |
1527 | static void set_load_weight(struct task_struct *p) |
1528 | { | |
1529 | if (task_has_rt_policy(p)) { | |
dd41f596 IM |
1530 | p->se.load.weight = prio_to_weight[0] * 2; |
1531 | p->se.load.inv_weight = prio_to_wmult[0] >> 1; | |
1532 | return; | |
1533 | } | |
45bf76df | 1534 | |
dd41f596 IM |
1535 | /* |
1536 | * SCHED_IDLE tasks get minimal weight: | |
1537 | */ | |
1538 | if (p->policy == SCHED_IDLE) { | |
1539 | p->se.load.weight = WEIGHT_IDLEPRIO; | |
1540 | p->se.load.inv_weight = WMULT_IDLEPRIO; | |
1541 | return; | |
1542 | } | |
71f8bd46 | 1543 | |
dd41f596 IM |
1544 | p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; |
1545 | p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; | |
71f8bd46 IM |
1546 | } |
1547 | ||
8159f87e | 1548 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) |
71f8bd46 | 1549 | { |
dd41f596 | 1550 | sched_info_queued(p); |
fd390f6a | 1551 | p->sched_class->enqueue_task(rq, p, wakeup); |
dd41f596 | 1552 | p->se.on_rq = 1; |
71f8bd46 IM |
1553 | } |
1554 | ||
69be72c1 | 1555 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) |
71f8bd46 | 1556 | { |
f02231e5 | 1557 | p->sched_class->dequeue_task(rq, p, sleep); |
dd41f596 | 1558 | p->se.on_rq = 0; |
71f8bd46 IM |
1559 | } |
1560 | ||
14531189 | 1561 | /* |
dd41f596 | 1562 | * __normal_prio - return the priority that is based on the static prio |
14531189 | 1563 | */ |
14531189 IM |
1564 | static inline int __normal_prio(struct task_struct *p) |
1565 | { | |
dd41f596 | 1566 | return p->static_prio; |
14531189 IM |
1567 | } |
1568 | ||
b29739f9 IM |
1569 | /* |
1570 | * Calculate the expected normal priority: i.e. priority | |
1571 | * without taking RT-inheritance into account. Might be | |
1572 | * boosted by interactivity modifiers. Changes upon fork, | |
1573 | * setprio syscalls, and whenever the interactivity | |
1574 | * estimator recalculates. | |
1575 | */ | |
36c8b586 | 1576 | static inline int normal_prio(struct task_struct *p) |
b29739f9 IM |
1577 | { |
1578 | int prio; | |
1579 | ||
e05606d3 | 1580 | if (task_has_rt_policy(p)) |
b29739f9 IM |
1581 | prio = MAX_RT_PRIO-1 - p->rt_priority; |
1582 | else | |
1583 | prio = __normal_prio(p); | |
1584 | return prio; | |
1585 | } | |
1586 | ||
1587 | /* | |
1588 | * Calculate the current priority, i.e. the priority | |
1589 | * taken into account by the scheduler. This value might | |
1590 | * be boosted by RT tasks, or might be boosted by | |
1591 | * interactivity modifiers. Will be RT if the task got | |
1592 | * RT-boosted. If not then it returns p->normal_prio. | |
1593 | */ | |
36c8b586 | 1594 | static int effective_prio(struct task_struct *p) |
b29739f9 IM |
1595 | { |
1596 | p->normal_prio = normal_prio(p); | |
1597 | /* | |
1598 | * If we are RT tasks or we were boosted to RT priority, | |
1599 | * keep the priority unchanged. Otherwise, update priority | |
1600 | * to the normal priority: | |
1601 | */ | |
1602 | if (!rt_prio(p->prio)) | |
1603 | return p->normal_prio; | |
1604 | return p->prio; | |
1605 | } | |
1606 | ||
1da177e4 | 1607 | /* |
dd41f596 | 1608 | * activate_task - move a task to the runqueue. |
1da177e4 | 1609 | */ |
dd41f596 | 1610 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) |
1da177e4 | 1611 | { |
d9514f6c | 1612 | if (task_contributes_to_load(p)) |
dd41f596 | 1613 | rq->nr_uninterruptible--; |
1da177e4 | 1614 | |
8159f87e | 1615 | enqueue_task(rq, p, wakeup); |
6363ca57 | 1616 | inc_nr_running(p, rq); |
1da177e4 LT |
1617 | } |
1618 | ||
1da177e4 LT |
1619 | /* |
1620 | * deactivate_task - remove a task from the runqueue. | |
1621 | */ | |
2e1cb74a | 1622 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) |
1da177e4 | 1623 | { |
d9514f6c | 1624 | if (task_contributes_to_load(p)) |
dd41f596 IM |
1625 | rq->nr_uninterruptible++; |
1626 | ||
69be72c1 | 1627 | dequeue_task(rq, p, sleep); |
6363ca57 | 1628 | dec_nr_running(p, rq); |
1da177e4 LT |
1629 | } |
1630 | ||
1da177e4 LT |
1631 | /** |
1632 | * task_curr - is this task currently executing on a CPU? | |
1633 | * @p: the task in question. | |
1634 | */ | |
36c8b586 | 1635 | inline int task_curr(const struct task_struct *p) |
1da177e4 LT |
1636 | { |
1637 | return cpu_curr(task_cpu(p)) == p; | |
1638 | } | |
1639 | ||
2dd73a4f | 1640 | /* Used instead of source_load when we know the type == 0 */ |
f7dcd80b | 1641 | static unsigned long weighted_cpuload(const int cpu) |
2dd73a4f | 1642 | { |
495eca49 | 1643 | return cpu_rq(cpu)->load.weight; |
dd41f596 IM |
1644 | } |
1645 | ||
1646 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | |
1647 | { | |
6f505b16 | 1648 | set_task_rq(p, cpu); |
dd41f596 | 1649 | #ifdef CONFIG_SMP |
ce96b5ac DA |
1650 | /* |
1651 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | |
1652 | * successfuly executed on another CPU. We must ensure that updates of | |
1653 | * per-task data have been completed by this moment. | |
1654 | */ | |
1655 | smp_wmb(); | |
dd41f596 | 1656 | task_thread_info(p)->cpu = cpu; |
dd41f596 | 1657 | #endif |
2dd73a4f PW |
1658 | } |
1659 | ||
cb469845 SR |
1660 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, |
1661 | const struct sched_class *prev_class, | |
1662 | int oldprio, int running) | |
1663 | { | |
1664 | if (prev_class != p->sched_class) { | |
1665 | if (prev_class->switched_from) | |
1666 | prev_class->switched_from(rq, p, running); | |
1667 | p->sched_class->switched_to(rq, p, running); | |
1668 | } else | |
1669 | p->sched_class->prio_changed(rq, p, oldprio, running); | |
1670 | } | |
1671 | ||
1da177e4 | 1672 | #ifdef CONFIG_SMP |
c65cc870 | 1673 | |
cc367732 IM |
1674 | /* |
1675 | * Is this task likely cache-hot: | |
1676 | */ | |
e7693a36 | 1677 | static int |
cc367732 IM |
1678 | task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) |
1679 | { | |
1680 | s64 delta; | |
1681 | ||
f540a608 IM |
1682 | /* |
1683 | * Buddy candidates are cache hot: | |
1684 | */ | |
d25ce4cd | 1685 | if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next)) |
f540a608 IM |
1686 | return 1; |
1687 | ||
cc367732 IM |
1688 | if (p->sched_class != &fair_sched_class) |
1689 | return 0; | |
1690 | ||
6bc1665b IM |
1691 | if (sysctl_sched_migration_cost == -1) |
1692 | return 1; | |
1693 | if (sysctl_sched_migration_cost == 0) | |
1694 | return 0; | |
1695 | ||
cc367732 IM |
1696 | delta = now - p->se.exec_start; |
1697 | ||
1698 | return delta < (s64)sysctl_sched_migration_cost; | |
1699 | } | |
1700 | ||
1701 | ||
dd41f596 | 1702 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
c65cc870 | 1703 | { |
dd41f596 IM |
1704 | int old_cpu = task_cpu(p); |
1705 | struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); | |
2830cf8c SV |
1706 | struct cfs_rq *old_cfsrq = task_cfs_rq(p), |
1707 | *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); | |
bbdba7c0 | 1708 | u64 clock_offset; |
dd41f596 IM |
1709 | |
1710 | clock_offset = old_rq->clock - new_rq->clock; | |
6cfb0d5d IM |
1711 | |
1712 | #ifdef CONFIG_SCHEDSTATS | |
1713 | if (p->se.wait_start) | |
1714 | p->se.wait_start -= clock_offset; | |
dd41f596 IM |
1715 | if (p->se.sleep_start) |
1716 | p->se.sleep_start -= clock_offset; | |
1717 | if (p->se.block_start) | |
1718 | p->se.block_start -= clock_offset; | |
cc367732 IM |
1719 | if (old_cpu != new_cpu) { |
1720 | schedstat_inc(p, se.nr_migrations); | |
1721 | if (task_hot(p, old_rq->clock, NULL)) | |
1722 | schedstat_inc(p, se.nr_forced2_migrations); | |
1723 | } | |
6cfb0d5d | 1724 | #endif |
2830cf8c SV |
1725 | p->se.vruntime -= old_cfsrq->min_vruntime - |
1726 | new_cfsrq->min_vruntime; | |
dd41f596 IM |
1727 | |
1728 | __set_task_cpu(p, new_cpu); | |
c65cc870 IM |
1729 | } |
1730 | ||
70b97a7f | 1731 | struct migration_req { |
1da177e4 | 1732 | struct list_head list; |
1da177e4 | 1733 | |
36c8b586 | 1734 | struct task_struct *task; |
1da177e4 LT |
1735 | int dest_cpu; |
1736 | ||
1da177e4 | 1737 | struct completion done; |
70b97a7f | 1738 | }; |
1da177e4 LT |
1739 | |
1740 | /* | |
1741 | * The task's runqueue lock must be held. | |
1742 | * Returns true if you have to wait for migration thread. | |
1743 | */ | |
36c8b586 | 1744 | static int |
70b97a7f | 1745 | migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) |
1da177e4 | 1746 | { |
70b97a7f | 1747 | struct rq *rq = task_rq(p); |
1da177e4 LT |
1748 | |
1749 | /* | |
1750 | * If the task is not on a runqueue (and not running), then | |
1751 | * it is sufficient to simply update the task's cpu field. | |
1752 | */ | |
dd41f596 | 1753 | if (!p->se.on_rq && !task_running(rq, p)) { |
1da177e4 LT |
1754 | set_task_cpu(p, dest_cpu); |
1755 | return 0; | |
1756 | } | |
1757 | ||
1758 | init_completion(&req->done); | |
1da177e4 LT |
1759 | req->task = p; |
1760 | req->dest_cpu = dest_cpu; | |
1761 | list_add(&req->list, &rq->migration_queue); | |
48f24c4d | 1762 | |
1da177e4 LT |
1763 | return 1; |
1764 | } | |
1765 | ||
1766 | /* | |
1767 | * wait_task_inactive - wait for a thread to unschedule. | |
1768 | * | |
1769 | * The caller must ensure that the task *will* unschedule sometime soon, | |
1770 | * else this function might spin for a *long* time. This function can't | |
1771 | * be called with interrupts off, or it may introduce deadlock with | |
1772 | * smp_call_function() if an IPI is sent by the same process we are | |
1773 | * waiting to become inactive. | |
1774 | */ | |
36c8b586 | 1775 | void wait_task_inactive(struct task_struct *p) |
1da177e4 LT |
1776 | { |
1777 | unsigned long flags; | |
dd41f596 | 1778 | int running, on_rq; |
70b97a7f | 1779 | struct rq *rq; |
1da177e4 | 1780 | |
3a5c359a AK |
1781 | for (;;) { |
1782 | /* | |
1783 | * We do the initial early heuristics without holding | |
1784 | * any task-queue locks at all. We'll only try to get | |
1785 | * the runqueue lock when things look like they will | |
1786 | * work out! | |
1787 | */ | |
1788 | rq = task_rq(p); | |
fa490cfd | 1789 | |
3a5c359a AK |
1790 | /* |
1791 | * If the task is actively running on another CPU | |
1792 | * still, just relax and busy-wait without holding | |
1793 | * any locks. | |
1794 | * | |
1795 | * NOTE! Since we don't hold any locks, it's not | |
1796 | * even sure that "rq" stays as the right runqueue! | |
1797 | * But we don't care, since "task_running()" will | |
1798 | * return false if the runqueue has changed and p | |
1799 | * is actually now running somewhere else! | |
1800 | */ | |
1801 | while (task_running(rq, p)) | |
1802 | cpu_relax(); | |
fa490cfd | 1803 | |
3a5c359a AK |
1804 | /* |
1805 | * Ok, time to look more closely! We need the rq | |
1806 | * lock now, to be *sure*. If we're wrong, we'll | |
1807 | * just go back and repeat. | |
1808 | */ | |
1809 | rq = task_rq_lock(p, &flags); | |
1810 | running = task_running(rq, p); | |
1811 | on_rq = p->se.on_rq; | |
1812 | task_rq_unlock(rq, &flags); | |
fa490cfd | 1813 | |
3a5c359a AK |
1814 | /* |
1815 | * Was it really running after all now that we | |
1816 | * checked with the proper locks actually held? | |
1817 | * | |
1818 | * Oops. Go back and try again.. | |
1819 | */ | |
1820 | if (unlikely(running)) { | |
1821 | cpu_relax(); | |
1822 | continue; | |
1823 | } | |
fa490cfd | 1824 | |
3a5c359a AK |
1825 | /* |
1826 | * It's not enough that it's not actively running, | |
1827 | * it must be off the runqueue _entirely_, and not | |
1828 | * preempted! | |
1829 | * | |
1830 | * So if it wa still runnable (but just not actively | |
1831 | * running right now), it's preempted, and we should | |
1832 | * yield - it could be a while. | |
1833 | */ | |
1834 | if (unlikely(on_rq)) { | |
1835 | schedule_timeout_uninterruptible(1); | |
1836 | continue; | |
1837 | } | |
fa490cfd | 1838 | |
3a5c359a AK |
1839 | /* |
1840 | * Ahh, all good. It wasn't running, and it wasn't | |
1841 | * runnable, which means that it will never become | |
1842 | * running in the future either. We're all done! | |
1843 | */ | |
1844 | break; | |
1845 | } | |
1da177e4 LT |
1846 | } |
1847 | ||
1848 | /*** | |
1849 | * kick_process - kick a running thread to enter/exit the kernel | |
1850 | * @p: the to-be-kicked thread | |
1851 | * | |
1852 | * Cause a process which is running on another CPU to enter | |
1853 | * kernel-mode, without any delay. (to get signals handled.) | |
1854 | * | |
1855 | * NOTE: this function doesnt have to take the runqueue lock, | |
1856 | * because all it wants to ensure is that the remote task enters | |
1857 | * the kernel. If the IPI races and the task has been migrated | |
1858 | * to another CPU then no harm is done and the purpose has been | |
1859 | * achieved as well. | |
1860 | */ | |
36c8b586 | 1861 | void kick_process(struct task_struct *p) |
1da177e4 LT |
1862 | { |
1863 | int cpu; | |
1864 | ||
1865 | preempt_disable(); | |
1866 | cpu = task_cpu(p); | |
1867 | if ((cpu != smp_processor_id()) && task_curr(p)) | |
1868 | smp_send_reschedule(cpu); | |
1869 | preempt_enable(); | |
1870 | } | |
1871 | ||
1872 | /* | |
2dd73a4f PW |
1873 | * Return a low guess at the load of a migration-source cpu weighted |
1874 | * according to the scheduling class and "nice" value. | |
1da177e4 LT |
1875 | * |
1876 | * We want to under-estimate the load of migration sources, to | |
1877 | * balance conservatively. | |
1878 | */ | |
a9957449 | 1879 | static unsigned long source_load(int cpu, int type) |
1da177e4 | 1880 | { |
70b97a7f | 1881 | struct rq *rq = cpu_rq(cpu); |
dd41f596 | 1882 | unsigned long total = weighted_cpuload(cpu); |
2dd73a4f | 1883 | |
3b0bd9bc | 1884 | if (type == 0) |
dd41f596 | 1885 | return total; |
b910472d | 1886 | |
dd41f596 | 1887 | return min(rq->cpu_load[type-1], total); |
1da177e4 LT |
1888 | } |
1889 | ||
1890 | /* | |
2dd73a4f PW |
1891 | * Return a high guess at the load of a migration-target cpu weighted |
1892 | * according to the scheduling class and "nice" value. | |
1da177e4 | 1893 | */ |
a9957449 | 1894 | static unsigned long target_load(int cpu, int type) |
1da177e4 | 1895 | { |
70b97a7f | 1896 | struct rq *rq = cpu_rq(cpu); |
dd41f596 | 1897 | unsigned long total = weighted_cpuload(cpu); |
2dd73a4f | 1898 | |
7897986b | 1899 | if (type == 0) |
dd41f596 | 1900 | return total; |
3b0bd9bc | 1901 | |
dd41f596 | 1902 | return max(rq->cpu_load[type-1], total); |
2dd73a4f PW |
1903 | } |
1904 | ||
1905 | /* | |
1906 | * Return the average load per task on the cpu's run queue | |
1907 | */ | |
e7693a36 | 1908 | static unsigned long cpu_avg_load_per_task(int cpu) |
2dd73a4f | 1909 | { |
70b97a7f | 1910 | struct rq *rq = cpu_rq(cpu); |
dd41f596 | 1911 | unsigned long total = weighted_cpuload(cpu); |
2dd73a4f PW |
1912 | unsigned long n = rq->nr_running; |
1913 | ||
dd41f596 | 1914 | return n ? total / n : SCHED_LOAD_SCALE; |
1da177e4 LT |
1915 | } |
1916 | ||
147cbb4b NP |
1917 | /* |
1918 | * find_idlest_group finds and returns the least busy CPU group within the | |
1919 | * domain. | |
1920 | */ | |
1921 | static struct sched_group * | |
1922 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | |
1923 | { | |
1924 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | |
1925 | unsigned long min_load = ULONG_MAX, this_load = 0; | |
1926 | int load_idx = sd->forkexec_idx; | |
1927 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | |
1928 | ||
1929 | do { | |
1930 | unsigned long load, avg_load; | |
1931 | int local_group; | |
1932 | int i; | |
1933 | ||
da5a5522 BD |
1934 | /* Skip over this group if it has no CPUs allowed */ |
1935 | if (!cpus_intersects(group->cpumask, p->cpus_allowed)) | |
3a5c359a | 1936 | continue; |
da5a5522 | 1937 | |
147cbb4b | 1938 | local_group = cpu_isset(this_cpu, group->cpumask); |
147cbb4b NP |
1939 | |
1940 | /* Tally up the load of all CPUs in the group */ | |
1941 | avg_load = 0; | |
1942 | ||
1943 | for_each_cpu_mask(i, group->cpumask) { | |
1944 | /* Bias balancing toward cpus of our domain */ | |
1945 | if (local_group) | |
1946 | load = source_load(i, load_idx); | |
1947 | else | |
1948 | load = target_load(i, load_idx); | |
1949 | ||
1950 | avg_load += load; | |
1951 | } | |
1952 | ||
1953 | /* Adjust by relative CPU power of the group */ | |
5517d86b ED |
1954 | avg_load = sg_div_cpu_power(group, |
1955 | avg_load * SCHED_LOAD_SCALE); | |
147cbb4b NP |
1956 | |
1957 | if (local_group) { | |
1958 | this_load = avg_load; | |
1959 | this = group; | |
1960 | } else if (avg_load < min_load) { | |
1961 | min_load = avg_load; | |
1962 | idlest = group; | |
1963 | } | |
3a5c359a | 1964 | } while (group = group->next, group != sd->groups); |
147cbb4b NP |
1965 | |
1966 | if (!idlest || 100*this_load < imbalance*min_load) | |
1967 | return NULL; | |
1968 | return idlest; | |
1969 | } | |
1970 | ||
1971 | /* | |
0feaece9 | 1972 | * find_idlest_cpu - find the idlest cpu among the cpus in group. |
147cbb4b | 1973 | */ |
95cdf3b7 | 1974 | static int |
7c16ec58 MT |
1975 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu, |
1976 | cpumask_t *tmp) | |
147cbb4b NP |
1977 | { |
1978 | unsigned long load, min_load = ULONG_MAX; | |
1979 | int idlest = -1; | |
1980 | int i; | |
1981 | ||
da5a5522 | 1982 | /* Traverse only the allowed CPUs */ |
7c16ec58 | 1983 | cpus_and(*tmp, group->cpumask, p->cpus_allowed); |
da5a5522 | 1984 | |
7c16ec58 | 1985 | for_each_cpu_mask(i, *tmp) { |
2dd73a4f | 1986 | load = weighted_cpuload(i); |
147cbb4b NP |
1987 | |
1988 | if (load < min_load || (load == min_load && i == this_cpu)) { | |
1989 | min_load = load; | |
1990 | idlest = i; | |
1991 | } | |
1992 | } | |
1993 | ||
1994 | return idlest; | |
1995 | } | |
1996 | ||
476d139c NP |
1997 | /* |
1998 | * sched_balance_self: balance the current task (running on cpu) in domains | |
1999 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | |
2000 | * SD_BALANCE_EXEC. | |
2001 | * | |
2002 | * Balance, ie. select the least loaded group. | |
2003 | * | |
2004 | * Returns the target CPU number, or the same CPU if no balancing is needed. | |
2005 | * | |
2006 | * preempt must be disabled. | |
2007 | */ | |
2008 | static int sched_balance_self(int cpu, int flag) | |
2009 | { | |
2010 | struct task_struct *t = current; | |
2011 | struct sched_domain *tmp, *sd = NULL; | |
147cbb4b | 2012 | |
c96d145e | 2013 | for_each_domain(cpu, tmp) { |
9761eea8 IM |
2014 | /* |
2015 | * If power savings logic is enabled for a domain, stop there. | |
2016 | */ | |
5c45bf27 SS |
2017 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) |
2018 | break; | |
476d139c NP |
2019 | if (tmp->flags & flag) |
2020 | sd = tmp; | |
c96d145e | 2021 | } |
476d139c NP |
2022 | |
2023 | while (sd) { | |
7c16ec58 | 2024 | cpumask_t span, tmpmask; |
476d139c | 2025 | struct sched_group *group; |
1a848870 SS |
2026 | int new_cpu, weight; |
2027 | ||
2028 | if (!(sd->flags & flag)) { | |
2029 | sd = sd->child; | |
2030 | continue; | |
2031 | } | |
476d139c NP |
2032 | |
2033 | span = sd->span; | |
2034 | group = find_idlest_group(sd, t, cpu); | |
1a848870 SS |
2035 | if (!group) { |
2036 | sd = sd->child; | |
2037 | continue; | |
2038 | } | |
476d139c | 2039 | |
7c16ec58 | 2040 | new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask); |
1a848870 SS |
2041 | if (new_cpu == -1 || new_cpu == cpu) { |
2042 | /* Now try balancing at a lower domain level of cpu */ | |
2043 | sd = sd->child; | |
2044 | continue; | |
2045 | } | |
476d139c | 2046 | |
1a848870 | 2047 | /* Now try balancing at a lower domain level of new_cpu */ |
476d139c | 2048 | cpu = new_cpu; |
476d139c NP |
2049 | sd = NULL; |
2050 | weight = cpus_weight(span); | |
2051 | for_each_domain(cpu, tmp) { | |
2052 | if (weight <= cpus_weight(tmp->span)) | |
2053 | break; | |
2054 | if (tmp->flags & flag) | |
2055 | sd = tmp; | |
2056 | } | |
2057 | /* while loop will break here if sd == NULL */ | |
2058 | } | |
2059 | ||
2060 | return cpu; | |
2061 | } | |
2062 | ||
2063 | #endif /* CONFIG_SMP */ | |
1da177e4 | 2064 | |
1da177e4 LT |
2065 | /*** |
2066 | * try_to_wake_up - wake up a thread | |
2067 | * @p: the to-be-woken-up thread | |
2068 | * @state: the mask of task states that can be woken | |
2069 | * @sync: do a synchronous wakeup? | |
2070 | * | |
2071 | * Put it on the run-queue if it's not already there. The "current" | |
2072 | * thread is always on the run-queue (except when the actual | |
2073 | * re-schedule is in progress), and as such you're allowed to do | |
2074 | * the simpler "current->state = TASK_RUNNING" to mark yourself | |
2075 | * runnable without the overhead of this. | |
2076 | * | |
2077 | * returns failure only if the task is already active. | |
2078 | */ | |
36c8b586 | 2079 | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) |
1da177e4 | 2080 | { |
cc367732 | 2081 | int cpu, orig_cpu, this_cpu, success = 0; |
1da177e4 LT |
2082 | unsigned long flags; |
2083 | long old_state; | |
70b97a7f | 2084 | struct rq *rq; |
1da177e4 | 2085 | |
b85d0667 IM |
2086 | if (!sched_feat(SYNC_WAKEUPS)) |
2087 | sync = 0; | |
2088 | ||
04e2f174 | 2089 | smp_wmb(); |
1da177e4 LT |
2090 | rq = task_rq_lock(p, &flags); |
2091 | old_state = p->state; | |
2092 | if (!(old_state & state)) | |
2093 | goto out; | |
2094 | ||
dd41f596 | 2095 | if (p->se.on_rq) |
1da177e4 LT |
2096 | goto out_running; |
2097 | ||
2098 | cpu = task_cpu(p); | |
cc367732 | 2099 | orig_cpu = cpu; |
1da177e4 LT |
2100 | this_cpu = smp_processor_id(); |
2101 | ||
2102 | #ifdef CONFIG_SMP | |
2103 | if (unlikely(task_running(rq, p))) | |
2104 | goto out_activate; | |
2105 | ||
5d2f5a61 DA |
2106 | cpu = p->sched_class->select_task_rq(p, sync); |
2107 | if (cpu != orig_cpu) { | |
2108 | set_task_cpu(p, cpu); | |
1da177e4 LT |
2109 | task_rq_unlock(rq, &flags); |
2110 | /* might preempt at this point */ | |
2111 | rq = task_rq_lock(p, &flags); | |
2112 | old_state = p->state; | |
2113 | if (!(old_state & state)) | |
2114 | goto out; | |
dd41f596 | 2115 | if (p->se.on_rq) |
1da177e4 LT |
2116 | goto out_running; |
2117 | ||
2118 | this_cpu = smp_processor_id(); | |
2119 | cpu = task_cpu(p); | |
2120 | } | |
2121 | ||
e7693a36 GH |
2122 | #ifdef CONFIG_SCHEDSTATS |
2123 | schedstat_inc(rq, ttwu_count); | |
2124 | if (cpu == this_cpu) | |
2125 | schedstat_inc(rq, ttwu_local); | |
2126 | else { | |
2127 | struct sched_domain *sd; | |
2128 | for_each_domain(this_cpu, sd) { | |
2129 | if (cpu_isset(cpu, sd->span)) { | |
2130 | schedstat_inc(sd, ttwu_wake_remote); | |
2131 | break; | |
2132 | } | |
2133 | } | |
2134 | } | |
6d6bc0ad | 2135 | #endif /* CONFIG_SCHEDSTATS */ |
e7693a36 | 2136 | |
1da177e4 LT |
2137 | out_activate: |
2138 | #endif /* CONFIG_SMP */ | |
cc367732 IM |
2139 | schedstat_inc(p, se.nr_wakeups); |
2140 | if (sync) | |
2141 | schedstat_inc(p, se.nr_wakeups_sync); | |
2142 | if (orig_cpu != cpu) | |
2143 | schedstat_inc(p, se.nr_wakeups_migrate); | |
2144 | if (cpu == this_cpu) | |
2145 | schedstat_inc(p, se.nr_wakeups_local); | |
2146 | else | |
2147 | schedstat_inc(p, se.nr_wakeups_remote); | |
2daa3577 | 2148 | update_rq_clock(rq); |
dd41f596 | 2149 | activate_task(rq, p, 1); |
1da177e4 LT |
2150 | success = 1; |
2151 | ||
2152 | out_running: | |
4ae7d5ce IM |
2153 | check_preempt_curr(rq, p); |
2154 | ||
1da177e4 | 2155 | p->state = TASK_RUNNING; |
9a897c5a SR |
2156 | #ifdef CONFIG_SMP |
2157 | if (p->sched_class->task_wake_up) | |
2158 | p->sched_class->task_wake_up(rq, p); | |
2159 | #endif | |
1da177e4 LT |
2160 | out: |
2161 | task_rq_unlock(rq, &flags); | |
2162 | ||
2163 | return success; | |
2164 | } | |
2165 | ||
7ad5b3a5 | 2166 | int wake_up_process(struct task_struct *p) |
1da177e4 | 2167 | { |
d9514f6c | 2168 | return try_to_wake_up(p, TASK_ALL, 0); |
1da177e4 | 2169 | } |
1da177e4 LT |
2170 | EXPORT_SYMBOL(wake_up_process); |
2171 | ||
7ad5b3a5 | 2172 | int wake_up_state(struct task_struct *p, unsigned int state) |
1da177e4 LT |
2173 | { |
2174 | return try_to_wake_up(p, state, 0); | |
2175 | } | |
2176 | ||
1da177e4 LT |
2177 | /* |
2178 | * Perform scheduler related setup for a newly forked process p. | |
2179 | * p is forked by current. | |
dd41f596 IM |
2180 | * |
2181 | * __sched_fork() is basic setup used by init_idle() too: | |
2182 | */ | |
2183 | static void __sched_fork(struct task_struct *p) | |
2184 | { | |
dd41f596 IM |
2185 | p->se.exec_start = 0; |
2186 | p->se.sum_exec_runtime = 0; | |
f6cf891c | 2187 | p->se.prev_sum_exec_runtime = 0; |
4ae7d5ce IM |
2188 | p->se.last_wakeup = 0; |
2189 | p->se.avg_overlap = 0; | |
6cfb0d5d IM |
2190 | |
2191 | #ifdef CONFIG_SCHEDSTATS | |
2192 | p->se.wait_start = 0; | |
dd41f596 IM |
2193 | p->se.sum_sleep_runtime = 0; |
2194 | p->se.sleep_start = 0; | |
dd41f596 IM |
2195 | p->se.block_start = 0; |
2196 | p->se.sleep_max = 0; | |
2197 | p->se.block_max = 0; | |
2198 | p->se.exec_max = 0; | |
eba1ed4b | 2199 | p->se.slice_max = 0; |
dd41f596 | 2200 | p->se.wait_max = 0; |
6cfb0d5d | 2201 | #endif |
476d139c | 2202 | |
fa717060 | 2203 | INIT_LIST_HEAD(&p->rt.run_list); |
dd41f596 | 2204 | p->se.on_rq = 0; |
4a55bd5e | 2205 | INIT_LIST_HEAD(&p->se.group_node); |
476d139c | 2206 | |
e107be36 AK |
2207 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2208 | INIT_HLIST_HEAD(&p->preempt_notifiers); | |
2209 | #endif | |
2210 | ||
1da177e4 LT |
2211 | /* |
2212 | * We mark the process as running here, but have not actually | |
2213 | * inserted it onto the runqueue yet. This guarantees that | |
2214 | * nobody will actually run it, and a signal or other external | |
2215 | * event cannot wake it up and insert it on the runqueue either. | |
2216 | */ | |
2217 | p->state = TASK_RUNNING; | |
dd41f596 IM |
2218 | } |
2219 | ||
2220 | /* | |
2221 | * fork()/clone()-time setup: | |
2222 | */ | |
2223 | void sched_fork(struct task_struct *p, int clone_flags) | |
2224 | { | |
2225 | int cpu = get_cpu(); | |
2226 | ||
2227 | __sched_fork(p); | |
2228 | ||
2229 | #ifdef CONFIG_SMP | |
2230 | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | |
2231 | #endif | |
02e4bac2 | 2232 | set_task_cpu(p, cpu); |
b29739f9 IM |
2233 | |
2234 | /* | |
2235 | * Make sure we do not leak PI boosting priority to the child: | |
2236 | */ | |
2237 | p->prio = current->normal_prio; | |
2ddbf952 HS |
2238 | if (!rt_prio(p->prio)) |
2239 | p->sched_class = &fair_sched_class; | |
b29739f9 | 2240 | |
52f17b6c | 2241 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
dd41f596 | 2242 | if (likely(sched_info_on())) |
52f17b6c | 2243 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
1da177e4 | 2244 | #endif |
d6077cb8 | 2245 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
4866cde0 NP |
2246 | p->oncpu = 0; |
2247 | #endif | |
1da177e4 | 2248 | #ifdef CONFIG_PREEMPT |
4866cde0 | 2249 | /* Want to start with kernel preemption disabled. */ |
a1261f54 | 2250 | task_thread_info(p)->preempt_count = 1; |
1da177e4 | 2251 | #endif |
476d139c | 2252 | put_cpu(); |
1da177e4 LT |
2253 | } |
2254 | ||
2255 | /* | |
2256 | * wake_up_new_task - wake up a newly created task for the first time. | |
2257 | * | |
2258 | * This function will do some initial scheduler statistics housekeeping | |
2259 | * that must be done for every newly created context, then puts the task | |
2260 | * on the runqueue and wakes it. | |
2261 | */ | |
7ad5b3a5 | 2262 | void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) |
1da177e4 LT |
2263 | { |
2264 | unsigned long flags; | |
dd41f596 | 2265 | struct rq *rq; |
1da177e4 LT |
2266 | |
2267 | rq = task_rq_lock(p, &flags); | |
147cbb4b | 2268 | BUG_ON(p->state != TASK_RUNNING); |
a8e504d2 | 2269 | update_rq_clock(rq); |
1da177e4 LT |
2270 | |
2271 | p->prio = effective_prio(p); | |
2272 | ||
b9dca1e0 | 2273 | if (!p->sched_class->task_new || !current->se.on_rq) { |
dd41f596 | 2274 | activate_task(rq, p, 0); |
1da177e4 | 2275 | } else { |
1da177e4 | 2276 | /* |
dd41f596 IM |
2277 | * Let the scheduling class do new task startup |
2278 | * management (if any): | |
1da177e4 | 2279 | */ |
ee0827d8 | 2280 | p->sched_class->task_new(rq, p); |
6363ca57 | 2281 | inc_nr_running(p, rq); |
1da177e4 | 2282 | } |
dd41f596 | 2283 | check_preempt_curr(rq, p); |
9a897c5a SR |
2284 | #ifdef CONFIG_SMP |
2285 | if (p->sched_class->task_wake_up) | |
2286 | p->sched_class->task_wake_up(rq, p); | |
2287 | #endif | |
dd41f596 | 2288 | task_rq_unlock(rq, &flags); |
1da177e4 LT |
2289 | } |
2290 | ||
e107be36 AK |
2291 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2292 | ||
2293 | /** | |
421cee29 RD |
2294 | * preempt_notifier_register - tell me when current is being being preempted & rescheduled |
2295 | * @notifier: notifier struct to register | |
e107be36 AK |
2296 | */ |
2297 | void preempt_notifier_register(struct preempt_notifier *notifier) | |
2298 | { | |
2299 | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | |
2300 | } | |
2301 | EXPORT_SYMBOL_GPL(preempt_notifier_register); | |
2302 | ||
2303 | /** | |
2304 | * preempt_notifier_unregister - no longer interested in preemption notifications | |
421cee29 | 2305 | * @notifier: notifier struct to unregister |
e107be36 AK |
2306 | * |
2307 | * This is safe to call from within a preemption notifier. | |
2308 | */ | |
2309 | void preempt_notifier_unregister(struct preempt_notifier *notifier) | |
2310 | { | |
2311 | hlist_del(¬ifier->link); | |
2312 | } | |
2313 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | |
2314 | ||
2315 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
2316 | { | |
2317 | struct preempt_notifier *notifier; | |
2318 | struct hlist_node *node; | |
2319 | ||
2320 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
2321 | notifier->ops->sched_in(notifier, raw_smp_processor_id()); | |
2322 | } | |
2323 | ||
2324 | static void | |
2325 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
2326 | struct task_struct *next) | |
2327 | { | |
2328 | struct preempt_notifier *notifier; | |
2329 | struct hlist_node *node; | |
2330 | ||
2331 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
2332 | notifier->ops->sched_out(notifier, next); | |
2333 | } | |
2334 | ||
6d6bc0ad | 2335 | #else /* !CONFIG_PREEMPT_NOTIFIERS */ |
e107be36 AK |
2336 | |
2337 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
2338 | { | |
2339 | } | |
2340 | ||
2341 | static void | |
2342 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
2343 | struct task_struct *next) | |
2344 | { | |
2345 | } | |
2346 | ||
6d6bc0ad | 2347 | #endif /* CONFIG_PREEMPT_NOTIFIERS */ |
e107be36 | 2348 | |
4866cde0 NP |
2349 | /** |
2350 | * prepare_task_switch - prepare to switch tasks | |
2351 | * @rq: the runqueue preparing to switch | |
421cee29 | 2352 | * @prev: the current task that is being switched out |
4866cde0 NP |
2353 | * @next: the task we are going to switch to. |
2354 | * | |
2355 | * This is called with the rq lock held and interrupts off. It must | |
2356 | * be paired with a subsequent finish_task_switch after the context | |
2357 | * switch. | |
2358 | * | |
2359 | * prepare_task_switch sets up locking and calls architecture specific | |
2360 | * hooks. | |
2361 | */ | |
e107be36 AK |
2362 | static inline void |
2363 | prepare_task_switch(struct rq *rq, struct task_struct *prev, | |
2364 | struct task_struct *next) | |
4866cde0 | 2365 | { |
e107be36 | 2366 | fire_sched_out_preempt_notifiers(prev, next); |
4866cde0 NP |
2367 | prepare_lock_switch(rq, next); |
2368 | prepare_arch_switch(next); | |
2369 | } | |
2370 | ||
1da177e4 LT |
2371 | /** |
2372 | * finish_task_switch - clean up after a task-switch | |
344babaa | 2373 | * @rq: runqueue associated with task-switch |
1da177e4 LT |
2374 | * @prev: the thread we just switched away from. |
2375 | * | |
4866cde0 NP |
2376 | * finish_task_switch must be called after the context switch, paired |
2377 | * with a prepare_task_switch call before the context switch. | |
2378 | * finish_task_switch will reconcile locking set up by prepare_task_switch, | |
2379 | * and do any other architecture-specific cleanup actions. | |
1da177e4 LT |
2380 | * |
2381 | * Note that we may have delayed dropping an mm in context_switch(). If | |
41a2d6cf | 2382 | * so, we finish that here outside of the runqueue lock. (Doing it |
1da177e4 LT |
2383 | * with the lock held can cause deadlocks; see schedule() for |
2384 | * details.) | |
2385 | */ | |
a9957449 | 2386 | static void finish_task_switch(struct rq *rq, struct task_struct *prev) |
1da177e4 LT |
2387 | __releases(rq->lock) |
2388 | { | |
1da177e4 | 2389 | struct mm_struct *mm = rq->prev_mm; |
55a101f8 | 2390 | long prev_state; |
1da177e4 LT |
2391 | |
2392 | rq->prev_mm = NULL; | |
2393 | ||
2394 | /* | |
2395 | * A task struct has one reference for the use as "current". | |
c394cc9f | 2396 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
55a101f8 ON |
2397 | * schedule one last time. The schedule call will never return, and |
2398 | * the scheduled task must drop that reference. | |
c394cc9f | 2399 | * The test for TASK_DEAD must occur while the runqueue locks are |
1da177e4 LT |
2400 | * still held, otherwise prev could be scheduled on another cpu, die |
2401 | * there before we look at prev->state, and then the reference would | |
2402 | * be dropped twice. | |
2403 | * Manfred Spraul <[email protected]> | |
2404 | */ | |
55a101f8 | 2405 | prev_state = prev->state; |
4866cde0 NP |
2406 | finish_arch_switch(prev); |
2407 | finish_lock_switch(rq, prev); | |
9a897c5a SR |
2408 | #ifdef CONFIG_SMP |
2409 | if (current->sched_class->post_schedule) | |
2410 | current->sched_class->post_schedule(rq); | |
2411 | #endif | |
e8fa1362 | 2412 | |
e107be36 | 2413 | fire_sched_in_preempt_notifiers(current); |
1da177e4 LT |
2414 | if (mm) |
2415 | mmdrop(mm); | |
c394cc9f | 2416 | if (unlikely(prev_state == TASK_DEAD)) { |
c6fd91f0 | 2417 | /* |
2418 | * Remove function-return probe instances associated with this | |
2419 | * task and put them back on the free list. | |
9761eea8 | 2420 | */ |
c6fd91f0 | 2421 | kprobe_flush_task(prev); |
1da177e4 | 2422 | put_task_struct(prev); |
c6fd91f0 | 2423 | } |
1da177e4 LT |
2424 | } |
2425 | ||
2426 | /** | |
2427 | * schedule_tail - first thing a freshly forked thread must call. | |
2428 | * @prev: the thread we just switched away from. | |
2429 | */ | |
36c8b586 | 2430 | asmlinkage void schedule_tail(struct task_struct *prev) |
1da177e4 LT |
2431 | __releases(rq->lock) |
2432 | { | |
70b97a7f IM |
2433 | struct rq *rq = this_rq(); |
2434 | ||
4866cde0 NP |
2435 | finish_task_switch(rq, prev); |
2436 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | |
2437 | /* In this case, finish_task_switch does not reenable preemption */ | |
2438 | preempt_enable(); | |
2439 | #endif | |
1da177e4 | 2440 | if (current->set_child_tid) |
b488893a | 2441 | put_user(task_pid_vnr(current), current->set_child_tid); |
1da177e4 LT |
2442 | } |
2443 | ||
2444 | /* | |
2445 | * context_switch - switch to the new MM and the new | |
2446 | * thread's register state. | |
2447 | */ | |
dd41f596 | 2448 | static inline void |
70b97a7f | 2449 | context_switch(struct rq *rq, struct task_struct *prev, |
36c8b586 | 2450 | struct task_struct *next) |
1da177e4 | 2451 | { |
dd41f596 | 2452 | struct mm_struct *mm, *oldmm; |
1da177e4 | 2453 | |
e107be36 | 2454 | prepare_task_switch(rq, prev, next); |
dd41f596 IM |
2455 | mm = next->mm; |
2456 | oldmm = prev->active_mm; | |
9226d125 ZA |
2457 | /* |
2458 | * For paravirt, this is coupled with an exit in switch_to to | |
2459 | * combine the page table reload and the switch backend into | |
2460 | * one hypercall. | |
2461 | */ | |
2462 | arch_enter_lazy_cpu_mode(); | |
2463 | ||
dd41f596 | 2464 | if (unlikely(!mm)) { |
1da177e4 LT |
2465 | next->active_mm = oldmm; |
2466 | atomic_inc(&oldmm->mm_count); | |
2467 | enter_lazy_tlb(oldmm, next); | |
2468 | } else | |
2469 | switch_mm(oldmm, mm, next); | |
2470 | ||
dd41f596 | 2471 | if (unlikely(!prev->mm)) { |
1da177e4 | 2472 | prev->active_mm = NULL; |
1da177e4 LT |
2473 | rq->prev_mm = oldmm; |
2474 | } | |
3a5f5e48 IM |
2475 | /* |
2476 | * Since the runqueue lock will be released by the next | |
2477 | * task (which is an invalid locking op but in the case | |
2478 | * of the scheduler it's an obvious special-case), so we | |
2479 | * do an early lockdep release here: | |
2480 | */ | |
2481 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | |
8a25d5de | 2482 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
3a5f5e48 | 2483 | #endif |
1da177e4 LT |
2484 | |
2485 | /* Here we just switch the register state and the stack. */ | |
2486 | switch_to(prev, next, prev); | |
2487 | ||
dd41f596 IM |
2488 | barrier(); |
2489 | /* | |
2490 | * this_rq must be evaluated again because prev may have moved | |
2491 | * CPUs since it called schedule(), thus the 'rq' on its stack | |
2492 | * frame will be invalid. | |
2493 | */ | |
2494 | finish_task_switch(this_rq(), prev); | |
1da177e4 LT |
2495 | } |
2496 | ||
2497 | /* | |
2498 | * nr_running, nr_uninterruptible and nr_context_switches: | |
2499 | * | |
2500 | * externally visible scheduler statistics: current number of runnable | |
2501 | * threads, current number of uninterruptible-sleeping threads, total | |
2502 | * number of context switches performed since bootup. | |
2503 | */ | |
2504 | unsigned long nr_running(void) | |
2505 | { | |
2506 | unsigned long i, sum = 0; | |
2507 | ||
2508 | for_each_online_cpu(i) | |
2509 | sum += cpu_rq(i)->nr_running; | |
2510 | ||
2511 | return sum; | |
2512 | } | |
2513 | ||
2514 | unsigned long nr_uninterruptible(void) | |
2515 | { | |
2516 | unsigned long i, sum = 0; | |
2517 | ||
0a945022 | 2518 | for_each_possible_cpu(i) |
1da177e4 LT |
2519 | sum += cpu_rq(i)->nr_uninterruptible; |
2520 | ||
2521 | /* | |
2522 | * Since we read the counters lockless, it might be slightly | |
2523 | * inaccurate. Do not allow it to go below zero though: | |
2524 | */ | |
2525 | if (unlikely((long)sum < 0)) | |
2526 | sum = 0; | |
2527 | ||
2528 | return sum; | |
2529 | } | |
2530 | ||
2531 | unsigned long long nr_context_switches(void) | |
2532 | { | |
cc94abfc SR |
2533 | int i; |
2534 | unsigned long long sum = 0; | |
1da177e4 | 2535 | |
0a945022 | 2536 | for_each_possible_cpu(i) |
1da177e4 LT |
2537 | sum += cpu_rq(i)->nr_switches; |
2538 | ||
2539 | return sum; | |
2540 | } | |
2541 | ||
2542 | unsigned long nr_iowait(void) | |
2543 | { | |
2544 | unsigned long i, sum = 0; | |
2545 | ||
0a945022 | 2546 | for_each_possible_cpu(i) |
1da177e4 LT |
2547 | sum += atomic_read(&cpu_rq(i)->nr_iowait); |
2548 | ||
2549 | return sum; | |
2550 | } | |
2551 | ||
db1b1fef JS |
2552 | unsigned long nr_active(void) |
2553 | { | |
2554 | unsigned long i, running = 0, uninterruptible = 0; | |
2555 | ||
2556 | for_each_online_cpu(i) { | |
2557 | running += cpu_rq(i)->nr_running; | |
2558 | uninterruptible += cpu_rq(i)->nr_uninterruptible; | |
2559 | } | |
2560 | ||
2561 | if (unlikely((long)uninterruptible < 0)) | |
2562 | uninterruptible = 0; | |
2563 | ||
2564 | return running + uninterruptible; | |
2565 | } | |
2566 | ||
48f24c4d | 2567 | /* |
dd41f596 IM |
2568 | * Update rq->cpu_load[] statistics. This function is usually called every |
2569 | * scheduler tick (TICK_NSEC). | |
48f24c4d | 2570 | */ |
dd41f596 | 2571 | static void update_cpu_load(struct rq *this_rq) |
48f24c4d | 2572 | { |
495eca49 | 2573 | unsigned long this_load = this_rq->load.weight; |
dd41f596 IM |
2574 | int i, scale; |
2575 | ||
2576 | this_rq->nr_load_updates++; | |
dd41f596 IM |
2577 | |
2578 | /* Update our load: */ | |
2579 | for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | |
2580 | unsigned long old_load, new_load; | |
2581 | ||
2582 | /* scale is effectively 1 << i now, and >> i divides by scale */ | |
2583 | ||
2584 | old_load = this_rq->cpu_load[i]; | |
2585 | new_load = this_load; | |
a25707f3 IM |
2586 | /* |
2587 | * Round up the averaging division if load is increasing. This | |
2588 | * prevents us from getting stuck on 9 if the load is 10, for | |
2589 | * example. | |
2590 | */ | |
2591 | if (new_load > old_load) | |
2592 | new_load += scale-1; | |
dd41f596 IM |
2593 | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; |
2594 | } | |
48f24c4d IM |
2595 | } |
2596 | ||
dd41f596 IM |
2597 | #ifdef CONFIG_SMP |
2598 | ||
1da177e4 LT |
2599 | /* |
2600 | * double_rq_lock - safely lock two runqueues | |
2601 | * | |
2602 | * Note this does not disable interrupts like task_rq_lock, | |
2603 | * you need to do so manually before calling. | |
2604 | */ | |
70b97a7f | 2605 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) |
1da177e4 LT |
2606 | __acquires(rq1->lock) |
2607 | __acquires(rq2->lock) | |
2608 | { | |
054b9108 | 2609 | BUG_ON(!irqs_disabled()); |
1da177e4 LT |
2610 | if (rq1 == rq2) { |
2611 | spin_lock(&rq1->lock); | |
2612 | __acquire(rq2->lock); /* Fake it out ;) */ | |
2613 | } else { | |
c96d145e | 2614 | if (rq1 < rq2) { |
1da177e4 LT |
2615 | spin_lock(&rq1->lock); |
2616 | spin_lock(&rq2->lock); | |
2617 | } else { | |
2618 | spin_lock(&rq2->lock); | |
2619 | spin_lock(&rq1->lock); | |
2620 | } | |
2621 | } | |
6e82a3be IM |
2622 | update_rq_clock(rq1); |
2623 | update_rq_clock(rq2); | |
1da177e4 LT |
2624 | } |
2625 | ||
2626 | /* | |
2627 | * double_rq_unlock - safely unlock two runqueues | |
2628 | * | |
2629 | * Note this does not restore interrupts like task_rq_unlock, | |
2630 | * you need to do so manually after calling. | |
2631 | */ | |
70b97a7f | 2632 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
1da177e4 LT |
2633 | __releases(rq1->lock) |
2634 | __releases(rq2->lock) | |
2635 | { | |
2636 | spin_unlock(&rq1->lock); | |
2637 | if (rq1 != rq2) | |
2638 | spin_unlock(&rq2->lock); | |
2639 | else | |
2640 | __release(rq2->lock); | |
2641 | } | |
2642 | ||
2643 | /* | |
2644 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | |
2645 | */ | |
e8fa1362 | 2646 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) |
1da177e4 LT |
2647 | __releases(this_rq->lock) |
2648 | __acquires(busiest->lock) | |
2649 | __acquires(this_rq->lock) | |
2650 | { | |
e8fa1362 SR |
2651 | int ret = 0; |
2652 | ||
054b9108 KK |
2653 | if (unlikely(!irqs_disabled())) { |
2654 | /* printk() doesn't work good under rq->lock */ | |
2655 | spin_unlock(&this_rq->lock); | |
2656 | BUG_ON(1); | |
2657 | } | |
1da177e4 | 2658 | if (unlikely(!spin_trylock(&busiest->lock))) { |
c96d145e | 2659 | if (busiest < this_rq) { |
1da177e4 LT |
2660 | spin_unlock(&this_rq->lock); |
2661 | spin_lock(&busiest->lock); | |
2662 | spin_lock(&this_rq->lock); | |
e8fa1362 | 2663 | ret = 1; |
1da177e4 LT |
2664 | } else |
2665 | spin_lock(&busiest->lock); | |
2666 | } | |
e8fa1362 | 2667 | return ret; |
1da177e4 LT |
2668 | } |
2669 | ||
1da177e4 LT |
2670 | /* |
2671 | * If dest_cpu is allowed for this process, migrate the task to it. | |
2672 | * This is accomplished by forcing the cpu_allowed mask to only | |
41a2d6cf | 2673 | * allow dest_cpu, which will force the cpu onto dest_cpu. Then |
1da177e4 LT |
2674 | * the cpu_allowed mask is restored. |
2675 | */ | |
36c8b586 | 2676 | static void sched_migrate_task(struct task_struct *p, int dest_cpu) |
1da177e4 | 2677 | { |
70b97a7f | 2678 | struct migration_req req; |
1da177e4 | 2679 | unsigned long flags; |
70b97a7f | 2680 | struct rq *rq; |
1da177e4 LT |
2681 | |
2682 | rq = task_rq_lock(p, &flags); | |
2683 | if (!cpu_isset(dest_cpu, p->cpus_allowed) | |
2684 | || unlikely(cpu_is_offline(dest_cpu))) | |
2685 | goto out; | |
2686 | ||
2687 | /* force the process onto the specified CPU */ | |
2688 | if (migrate_task(p, dest_cpu, &req)) { | |
2689 | /* Need to wait for migration thread (might exit: take ref). */ | |
2690 | struct task_struct *mt = rq->migration_thread; | |
36c8b586 | 2691 | |
1da177e4 LT |
2692 | get_task_struct(mt); |
2693 | task_rq_unlock(rq, &flags); | |
2694 | wake_up_process(mt); | |
2695 | put_task_struct(mt); | |
2696 | wait_for_completion(&req.done); | |
36c8b586 | 2697 | |
1da177e4 LT |
2698 | return; |
2699 | } | |
2700 | out: | |
2701 | task_rq_unlock(rq, &flags); | |
2702 | } | |
2703 | ||
2704 | /* | |
476d139c NP |
2705 | * sched_exec - execve() is a valuable balancing opportunity, because at |
2706 | * this point the task has the smallest effective memory and cache footprint. | |
1da177e4 LT |
2707 | */ |
2708 | void sched_exec(void) | |
2709 | { | |
1da177e4 | 2710 | int new_cpu, this_cpu = get_cpu(); |
476d139c | 2711 | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); |
1da177e4 | 2712 | put_cpu(); |
476d139c NP |
2713 | if (new_cpu != this_cpu) |
2714 | sched_migrate_task(current, new_cpu); | |
1da177e4 LT |
2715 | } |
2716 | ||
2717 | /* | |
2718 | * pull_task - move a task from a remote runqueue to the local runqueue. | |
2719 | * Both runqueues must be locked. | |
2720 | */ | |
dd41f596 IM |
2721 | static void pull_task(struct rq *src_rq, struct task_struct *p, |
2722 | struct rq *this_rq, int this_cpu) | |
1da177e4 | 2723 | { |
2e1cb74a | 2724 | deactivate_task(src_rq, p, 0); |
1da177e4 | 2725 | set_task_cpu(p, this_cpu); |
dd41f596 | 2726 | activate_task(this_rq, p, 0); |
1da177e4 LT |
2727 | /* |
2728 | * Note that idle threads have a prio of MAX_PRIO, for this test | |
2729 | * to be always true for them. | |
2730 | */ | |
dd41f596 | 2731 | check_preempt_curr(this_rq, p); |
1da177e4 LT |
2732 | } |
2733 | ||
2734 | /* | |
2735 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | |
2736 | */ | |
858119e1 | 2737 | static |
70b97a7f | 2738 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, |
d15bcfdb | 2739 | struct sched_domain *sd, enum cpu_idle_type idle, |
95cdf3b7 | 2740 | int *all_pinned) |
1da177e4 LT |
2741 | { |
2742 | /* | |
2743 | * We do not migrate tasks that are: | |
2744 | * 1) running (obviously), or | |
2745 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | |
2746 | * 3) are cache-hot on their current CPU. | |
2747 | */ | |
cc367732 IM |
2748 | if (!cpu_isset(this_cpu, p->cpus_allowed)) { |
2749 | schedstat_inc(p, se.nr_failed_migrations_affine); | |
1da177e4 | 2750 | return 0; |
cc367732 | 2751 | } |
81026794 NP |
2752 | *all_pinned = 0; |
2753 | ||
cc367732 IM |
2754 | if (task_running(rq, p)) { |
2755 | schedstat_inc(p, se.nr_failed_migrations_running); | |
81026794 | 2756 | return 0; |
cc367732 | 2757 | } |
1da177e4 | 2758 | |
da84d961 IM |
2759 | /* |
2760 | * Aggressive migration if: | |
2761 | * 1) task is cache cold, or | |
2762 | * 2) too many balance attempts have failed. | |
2763 | */ | |
2764 | ||
6bc1665b IM |
2765 | if (!task_hot(p, rq->clock, sd) || |
2766 | sd->nr_balance_failed > sd->cache_nice_tries) { | |
da84d961 | 2767 | #ifdef CONFIG_SCHEDSTATS |
cc367732 | 2768 | if (task_hot(p, rq->clock, sd)) { |
da84d961 | 2769 | schedstat_inc(sd, lb_hot_gained[idle]); |
cc367732 IM |
2770 | schedstat_inc(p, se.nr_forced_migrations); |
2771 | } | |
da84d961 IM |
2772 | #endif |
2773 | return 1; | |
2774 | } | |
2775 | ||
cc367732 IM |
2776 | if (task_hot(p, rq->clock, sd)) { |
2777 | schedstat_inc(p, se.nr_failed_migrations_hot); | |
da84d961 | 2778 | return 0; |
cc367732 | 2779 | } |
1da177e4 LT |
2780 | return 1; |
2781 | } | |
2782 | ||
e1d1484f PW |
2783 | static unsigned long |
2784 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
2785 | unsigned long max_load_move, struct sched_domain *sd, | |
2786 | enum cpu_idle_type idle, int *all_pinned, | |
2787 | int *this_best_prio, struct rq_iterator *iterator) | |
1da177e4 | 2788 | { |
b82d9fdd | 2789 | int loops = 0, pulled = 0, pinned = 0, skip_for_load; |
dd41f596 IM |
2790 | struct task_struct *p; |
2791 | long rem_load_move = max_load_move; | |
1da177e4 | 2792 | |
e1d1484f | 2793 | if (max_load_move == 0) |
1da177e4 LT |
2794 | goto out; |
2795 | ||
81026794 NP |
2796 | pinned = 1; |
2797 | ||
1da177e4 | 2798 | /* |
dd41f596 | 2799 | * Start the load-balancing iterator: |
1da177e4 | 2800 | */ |
dd41f596 IM |
2801 | p = iterator->start(iterator->arg); |
2802 | next: | |
b82d9fdd | 2803 | if (!p || loops++ > sysctl_sched_nr_migrate) |
1da177e4 | 2804 | goto out; |
50ddd969 | 2805 | /* |
b82d9fdd | 2806 | * To help distribute high priority tasks across CPUs we don't |
50ddd969 PW |
2807 | * skip a task if it will be the highest priority task (i.e. smallest |
2808 | * prio value) on its new queue regardless of its load weight | |
2809 | */ | |
dd41f596 IM |
2810 | skip_for_load = (p->se.load.weight >> 1) > rem_load_move + |
2811 | SCHED_LOAD_SCALE_FUZZ; | |
a4ac01c3 | 2812 | if ((skip_for_load && p->prio >= *this_best_prio) || |
dd41f596 | 2813 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { |
dd41f596 IM |
2814 | p = iterator->next(iterator->arg); |
2815 | goto next; | |
1da177e4 LT |
2816 | } |
2817 | ||
dd41f596 | 2818 | pull_task(busiest, p, this_rq, this_cpu); |
1da177e4 | 2819 | pulled++; |
dd41f596 | 2820 | rem_load_move -= p->se.load.weight; |
1da177e4 | 2821 | |
2dd73a4f | 2822 | /* |
b82d9fdd | 2823 | * We only want to steal up to the prescribed amount of weighted load. |
2dd73a4f | 2824 | */ |
e1d1484f | 2825 | if (rem_load_move > 0) { |
a4ac01c3 PW |
2826 | if (p->prio < *this_best_prio) |
2827 | *this_best_prio = p->prio; | |
dd41f596 IM |
2828 | p = iterator->next(iterator->arg); |
2829 | goto next; | |
1da177e4 LT |
2830 | } |
2831 | out: | |
2832 | /* | |
e1d1484f | 2833 | * Right now, this is one of only two places pull_task() is called, |
1da177e4 LT |
2834 | * so we can safely collect pull_task() stats here rather than |
2835 | * inside pull_task(). | |
2836 | */ | |
2837 | schedstat_add(sd, lb_gained[idle], pulled); | |
81026794 NP |
2838 | |
2839 | if (all_pinned) | |
2840 | *all_pinned = pinned; | |
e1d1484f PW |
2841 | |
2842 | return max_load_move - rem_load_move; | |
1da177e4 LT |
2843 | } |
2844 | ||
dd41f596 | 2845 | /* |
43010659 PW |
2846 | * move_tasks tries to move up to max_load_move weighted load from busiest to |
2847 | * this_rq, as part of a balancing operation within domain "sd". | |
2848 | * Returns 1 if successful and 0 otherwise. | |
dd41f596 IM |
2849 | * |
2850 | * Called with both runqueues locked. | |
2851 | */ | |
2852 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
43010659 | 2853 | unsigned long max_load_move, |
dd41f596 IM |
2854 | struct sched_domain *sd, enum cpu_idle_type idle, |
2855 | int *all_pinned) | |
2856 | { | |
5522d5d5 | 2857 | const struct sched_class *class = sched_class_highest; |
43010659 | 2858 | unsigned long total_load_moved = 0; |
a4ac01c3 | 2859 | int this_best_prio = this_rq->curr->prio; |
dd41f596 IM |
2860 | |
2861 | do { | |
43010659 PW |
2862 | total_load_moved += |
2863 | class->load_balance(this_rq, this_cpu, busiest, | |
e1d1484f | 2864 | max_load_move - total_load_moved, |
a4ac01c3 | 2865 | sd, idle, all_pinned, &this_best_prio); |
dd41f596 | 2866 | class = class->next; |
43010659 | 2867 | } while (class && max_load_move > total_load_moved); |
dd41f596 | 2868 | |
43010659 PW |
2869 | return total_load_moved > 0; |
2870 | } | |
2871 | ||
e1d1484f PW |
2872 | static int |
2873 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
2874 | struct sched_domain *sd, enum cpu_idle_type idle, | |
2875 | struct rq_iterator *iterator) | |
2876 | { | |
2877 | struct task_struct *p = iterator->start(iterator->arg); | |
2878 | int pinned = 0; | |
2879 | ||
2880 | while (p) { | |
2881 | if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | |
2882 | pull_task(busiest, p, this_rq, this_cpu); | |
2883 | /* | |
2884 | * Right now, this is only the second place pull_task() | |
2885 | * is called, so we can safely collect pull_task() | |
2886 | * stats here rather than inside pull_task(). | |
2887 | */ | |
2888 | schedstat_inc(sd, lb_gained[idle]); | |
2889 | ||
2890 | return 1; | |
2891 | } | |
2892 | p = iterator->next(iterator->arg); | |
2893 | } | |
2894 | ||
2895 | return 0; | |
2896 | } | |
2897 | ||
43010659 PW |
2898 | /* |
2899 | * move_one_task tries to move exactly one task from busiest to this_rq, as | |
2900 | * part of active balancing operations within "domain". | |
2901 | * Returns 1 if successful and 0 otherwise. | |
2902 | * | |
2903 | * Called with both runqueues locked. | |
2904 | */ | |
2905 | static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
2906 | struct sched_domain *sd, enum cpu_idle_type idle) | |
2907 | { | |
5522d5d5 | 2908 | const struct sched_class *class; |
43010659 PW |
2909 | |
2910 | for (class = sched_class_highest; class; class = class->next) | |
e1d1484f | 2911 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) |
43010659 PW |
2912 | return 1; |
2913 | ||
2914 | return 0; | |
dd41f596 IM |
2915 | } |
2916 | ||
1da177e4 LT |
2917 | /* |
2918 | * find_busiest_group finds and returns the busiest CPU group within the | |
48f24c4d IM |
2919 | * domain. It calculates and returns the amount of weighted load which |
2920 | * should be moved to restore balance via the imbalance parameter. | |
1da177e4 LT |
2921 | */ |
2922 | static struct sched_group * | |
2923 | find_busiest_group(struct sched_domain *sd, int this_cpu, | |
dd41f596 | 2924 | unsigned long *imbalance, enum cpu_idle_type idle, |
7c16ec58 | 2925 | int *sd_idle, const cpumask_t *cpus, int *balance) |
1da177e4 LT |
2926 | { |
2927 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | |
2928 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | |
0c117f1b | 2929 | unsigned long max_pull; |
2dd73a4f PW |
2930 | unsigned long busiest_load_per_task, busiest_nr_running; |
2931 | unsigned long this_load_per_task, this_nr_running; | |
908a7c1b | 2932 | int load_idx, group_imb = 0; |
5c45bf27 SS |
2933 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
2934 | int power_savings_balance = 1; | |
2935 | unsigned long leader_nr_running = 0, min_load_per_task = 0; | |
2936 | unsigned long min_nr_running = ULONG_MAX; | |
2937 | struct sched_group *group_min = NULL, *group_leader = NULL; | |
2938 | #endif | |
1da177e4 LT |
2939 | |
2940 | max_load = this_load = total_load = total_pwr = 0; | |
2dd73a4f PW |
2941 | busiest_load_per_task = busiest_nr_running = 0; |
2942 | this_load_per_task = this_nr_running = 0; | |
d15bcfdb | 2943 | if (idle == CPU_NOT_IDLE) |
7897986b | 2944 | load_idx = sd->busy_idx; |
d15bcfdb | 2945 | else if (idle == CPU_NEWLY_IDLE) |
7897986b NP |
2946 | load_idx = sd->newidle_idx; |
2947 | else | |
2948 | load_idx = sd->idle_idx; | |
1da177e4 LT |
2949 | |
2950 | do { | |
908a7c1b | 2951 | unsigned long load, group_capacity, max_cpu_load, min_cpu_load; |
1da177e4 LT |
2952 | int local_group; |
2953 | int i; | |
908a7c1b | 2954 | int __group_imb = 0; |
783609c6 | 2955 | unsigned int balance_cpu = -1, first_idle_cpu = 0; |
2dd73a4f | 2956 | unsigned long sum_nr_running, sum_weighted_load; |
1da177e4 LT |
2957 | |
2958 | local_group = cpu_isset(this_cpu, group->cpumask); | |
2959 | ||
783609c6 SS |
2960 | if (local_group) |
2961 | balance_cpu = first_cpu(group->cpumask); | |
2962 | ||
1da177e4 | 2963 | /* Tally up the load of all CPUs in the group */ |
2dd73a4f | 2964 | sum_weighted_load = sum_nr_running = avg_load = 0; |
908a7c1b KC |
2965 | max_cpu_load = 0; |
2966 | min_cpu_load = ~0UL; | |
1da177e4 LT |
2967 | |
2968 | for_each_cpu_mask(i, group->cpumask) { | |
0a2966b4 CL |
2969 | struct rq *rq; |
2970 | ||
2971 | if (!cpu_isset(i, *cpus)) | |
2972 | continue; | |
2973 | ||
2974 | rq = cpu_rq(i); | |
2dd73a4f | 2975 | |
9439aab8 | 2976 | if (*sd_idle && rq->nr_running) |
5969fe06 NP |
2977 | *sd_idle = 0; |
2978 | ||
1da177e4 | 2979 | /* Bias balancing toward cpus of our domain */ |
783609c6 SS |
2980 | if (local_group) { |
2981 | if (idle_cpu(i) && !first_idle_cpu) { | |
2982 | first_idle_cpu = 1; | |
2983 | balance_cpu = i; | |
2984 | } | |
2985 | ||
a2000572 | 2986 | load = target_load(i, load_idx); |
908a7c1b | 2987 | } else { |
a2000572 | 2988 | load = source_load(i, load_idx); |
908a7c1b KC |
2989 | if (load > max_cpu_load) |
2990 | max_cpu_load = load; | |
2991 | if (min_cpu_load > load) | |
2992 | min_cpu_load = load; | |
2993 | } | |
1da177e4 LT |
2994 | |
2995 | avg_load += load; | |
2dd73a4f | 2996 | sum_nr_running += rq->nr_running; |
dd41f596 | 2997 | sum_weighted_load += weighted_cpuload(i); |
1da177e4 LT |
2998 | } |
2999 | ||
783609c6 SS |
3000 | /* |
3001 | * First idle cpu or the first cpu(busiest) in this sched group | |
3002 | * is eligible for doing load balancing at this and above | |
9439aab8 SS |
3003 | * domains. In the newly idle case, we will allow all the cpu's |
3004 | * to do the newly idle load balance. | |
783609c6 | 3005 | */ |
9439aab8 SS |
3006 | if (idle != CPU_NEWLY_IDLE && local_group && |
3007 | balance_cpu != this_cpu && balance) { | |
783609c6 SS |
3008 | *balance = 0; |
3009 | goto ret; | |
3010 | } | |
3011 | ||
1da177e4 | 3012 | total_load += avg_load; |
5517d86b | 3013 | total_pwr += group->__cpu_power; |
1da177e4 LT |
3014 | |
3015 | /* Adjust by relative CPU power of the group */ | |
5517d86b ED |
3016 | avg_load = sg_div_cpu_power(group, |
3017 | avg_load * SCHED_LOAD_SCALE); | |
1da177e4 | 3018 | |
908a7c1b KC |
3019 | if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE) |
3020 | __group_imb = 1; | |
3021 | ||
5517d86b | 3022 | group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; |
5c45bf27 | 3023 | |
1da177e4 LT |
3024 | if (local_group) { |
3025 | this_load = avg_load; | |
3026 | this = group; | |
2dd73a4f PW |
3027 | this_nr_running = sum_nr_running; |
3028 | this_load_per_task = sum_weighted_load; | |
3029 | } else if (avg_load > max_load && | |
908a7c1b | 3030 | (sum_nr_running > group_capacity || __group_imb)) { |
1da177e4 LT |
3031 | max_load = avg_load; |
3032 | busiest = group; | |
2dd73a4f PW |
3033 | busiest_nr_running = sum_nr_running; |
3034 | busiest_load_per_task = sum_weighted_load; | |
908a7c1b | 3035 | group_imb = __group_imb; |
1da177e4 | 3036 | } |
5c45bf27 SS |
3037 | |
3038 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | |
3039 | /* | |
3040 | * Busy processors will not participate in power savings | |
3041 | * balance. | |
3042 | */ | |
dd41f596 IM |
3043 | if (idle == CPU_NOT_IDLE || |
3044 | !(sd->flags & SD_POWERSAVINGS_BALANCE)) | |
3045 | goto group_next; | |
5c45bf27 SS |
3046 | |
3047 | /* | |
3048 | * If the local group is idle or completely loaded | |
3049 | * no need to do power savings balance at this domain | |
3050 | */ | |
3051 | if (local_group && (this_nr_running >= group_capacity || | |
3052 | !this_nr_running)) | |
3053 | power_savings_balance = 0; | |
3054 | ||
dd41f596 | 3055 | /* |
5c45bf27 SS |
3056 | * If a group is already running at full capacity or idle, |
3057 | * don't include that group in power savings calculations | |
dd41f596 IM |
3058 | */ |
3059 | if (!power_savings_balance || sum_nr_running >= group_capacity | |
5c45bf27 | 3060 | || !sum_nr_running) |
dd41f596 | 3061 | goto group_next; |
5c45bf27 | 3062 | |
dd41f596 | 3063 | /* |
5c45bf27 | 3064 | * Calculate the group which has the least non-idle load. |
dd41f596 IM |
3065 | * This is the group from where we need to pick up the load |
3066 | * for saving power | |
3067 | */ | |
3068 | if ((sum_nr_running < min_nr_running) || | |
3069 | (sum_nr_running == min_nr_running && | |
5c45bf27 SS |
3070 | first_cpu(group->cpumask) < |
3071 | first_cpu(group_min->cpumask))) { | |
dd41f596 IM |
3072 | group_min = group; |
3073 | min_nr_running = sum_nr_running; | |
5c45bf27 SS |
3074 | min_load_per_task = sum_weighted_load / |
3075 | sum_nr_running; | |
dd41f596 | 3076 | } |
5c45bf27 | 3077 | |
dd41f596 | 3078 | /* |
5c45bf27 | 3079 | * Calculate the group which is almost near its |
dd41f596 IM |
3080 | * capacity but still has some space to pick up some load |
3081 | * from other group and save more power | |
3082 | */ | |
3083 | if (sum_nr_running <= group_capacity - 1) { | |
3084 | if (sum_nr_running > leader_nr_running || | |
3085 | (sum_nr_running == leader_nr_running && | |
3086 | first_cpu(group->cpumask) > | |
3087 | first_cpu(group_leader->cpumask))) { | |
3088 | group_leader = group; | |
3089 | leader_nr_running = sum_nr_running; | |
3090 | } | |
48f24c4d | 3091 | } |
5c45bf27 SS |
3092 | group_next: |
3093 | #endif | |
1da177e4 LT |
3094 | group = group->next; |
3095 | } while (group != sd->groups); | |
3096 | ||
2dd73a4f | 3097 | if (!busiest || this_load >= max_load || busiest_nr_running == 0) |
1da177e4 LT |
3098 | goto out_balanced; |
3099 | ||
3100 | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | |
3101 | ||
3102 | if (this_load >= avg_load || | |
3103 | 100*max_load <= sd->imbalance_pct*this_load) | |
3104 | goto out_balanced; | |
3105 | ||
2dd73a4f | 3106 | busiest_load_per_task /= busiest_nr_running; |
908a7c1b KC |
3107 | if (group_imb) |
3108 | busiest_load_per_task = min(busiest_load_per_task, avg_load); | |
3109 | ||
1da177e4 LT |
3110 | /* |
3111 | * We're trying to get all the cpus to the average_load, so we don't | |
3112 | * want to push ourselves above the average load, nor do we wish to | |
3113 | * reduce the max loaded cpu below the average load, as either of these | |
3114 | * actions would just result in more rebalancing later, and ping-pong | |
3115 | * tasks around. Thus we look for the minimum possible imbalance. | |
3116 | * Negative imbalances (*we* are more loaded than anyone else) will | |
3117 | * be counted as no imbalance for these purposes -- we can't fix that | |
41a2d6cf | 3118 | * by pulling tasks to us. Be careful of negative numbers as they'll |
1da177e4 LT |
3119 | * appear as very large values with unsigned longs. |
3120 | */ | |
2dd73a4f PW |
3121 | if (max_load <= busiest_load_per_task) |
3122 | goto out_balanced; | |
3123 | ||
3124 | /* | |
3125 | * In the presence of smp nice balancing, certain scenarios can have | |
3126 | * max load less than avg load(as we skip the groups at or below | |
3127 | * its cpu_power, while calculating max_load..) | |
3128 | */ | |
3129 | if (max_load < avg_load) { | |
3130 | *imbalance = 0; | |
3131 | goto small_imbalance; | |
3132 | } | |
0c117f1b SS |
3133 | |
3134 | /* Don't want to pull so many tasks that a group would go idle */ | |
2dd73a4f | 3135 | max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); |
0c117f1b | 3136 | |
1da177e4 | 3137 | /* How much load to actually move to equalise the imbalance */ |
5517d86b ED |
3138 | *imbalance = min(max_pull * busiest->__cpu_power, |
3139 | (avg_load - this_load) * this->__cpu_power) | |
1da177e4 LT |
3140 | / SCHED_LOAD_SCALE; |
3141 | ||
2dd73a4f PW |
3142 | /* |
3143 | * if *imbalance is less than the average load per runnable task | |
3144 | * there is no gaurantee that any tasks will be moved so we'll have | |
3145 | * a think about bumping its value to force at least one task to be | |
3146 | * moved | |
3147 | */ | |
7fd0d2dd | 3148 | if (*imbalance < busiest_load_per_task) { |
48f24c4d | 3149 | unsigned long tmp, pwr_now, pwr_move; |
2dd73a4f PW |
3150 | unsigned int imbn; |
3151 | ||
3152 | small_imbalance: | |
3153 | pwr_move = pwr_now = 0; | |
3154 | imbn = 2; | |
3155 | if (this_nr_running) { | |
3156 | this_load_per_task /= this_nr_running; | |
3157 | if (busiest_load_per_task > this_load_per_task) | |
3158 | imbn = 1; | |
3159 | } else | |
3160 | this_load_per_task = SCHED_LOAD_SCALE; | |
1da177e4 | 3161 | |
dd41f596 IM |
3162 | if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >= |
3163 | busiest_load_per_task * imbn) { | |
2dd73a4f | 3164 | *imbalance = busiest_load_per_task; |
1da177e4 LT |
3165 | return busiest; |
3166 | } | |
3167 | ||
3168 | /* | |
3169 | * OK, we don't have enough imbalance to justify moving tasks, | |
3170 | * however we may be able to increase total CPU power used by | |
3171 | * moving them. | |
3172 | */ | |
3173 | ||
5517d86b ED |
3174 | pwr_now += busiest->__cpu_power * |
3175 | min(busiest_load_per_task, max_load); | |
3176 | pwr_now += this->__cpu_power * | |
3177 | min(this_load_per_task, this_load); | |
1da177e4 LT |
3178 | pwr_now /= SCHED_LOAD_SCALE; |
3179 | ||
3180 | /* Amount of load we'd subtract */ | |
5517d86b ED |
3181 | tmp = sg_div_cpu_power(busiest, |
3182 | busiest_load_per_task * SCHED_LOAD_SCALE); | |
1da177e4 | 3183 | if (max_load > tmp) |
5517d86b | 3184 | pwr_move += busiest->__cpu_power * |
2dd73a4f | 3185 | min(busiest_load_per_task, max_load - tmp); |
1da177e4 LT |
3186 | |
3187 | /* Amount of load we'd add */ | |
5517d86b | 3188 | if (max_load * busiest->__cpu_power < |
33859f7f | 3189 | busiest_load_per_task * SCHED_LOAD_SCALE) |
5517d86b ED |
3190 | tmp = sg_div_cpu_power(this, |
3191 | max_load * busiest->__cpu_power); | |
1da177e4 | 3192 | else |
5517d86b ED |
3193 | tmp = sg_div_cpu_power(this, |
3194 | busiest_load_per_task * SCHED_LOAD_SCALE); | |
3195 | pwr_move += this->__cpu_power * | |
3196 | min(this_load_per_task, this_load + tmp); | |
1da177e4 LT |
3197 | pwr_move /= SCHED_LOAD_SCALE; |
3198 | ||
3199 | /* Move if we gain throughput */ | |
7fd0d2dd SS |
3200 | if (pwr_move > pwr_now) |
3201 | *imbalance = busiest_load_per_task; | |
1da177e4 LT |
3202 | } |
3203 | ||
1da177e4 LT |
3204 | return busiest; |
3205 | ||
3206 | out_balanced: | |
5c45bf27 | 3207 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
d15bcfdb | 3208 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) |
5c45bf27 | 3209 | goto ret; |
1da177e4 | 3210 | |
5c45bf27 SS |
3211 | if (this == group_leader && group_leader != group_min) { |
3212 | *imbalance = min_load_per_task; | |
3213 | return group_min; | |
3214 | } | |
5c45bf27 | 3215 | #endif |
783609c6 | 3216 | ret: |
1da177e4 LT |
3217 | *imbalance = 0; |
3218 | return NULL; | |
3219 | } | |
3220 | ||
3221 | /* | |
3222 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | |
3223 | */ | |
70b97a7f | 3224 | static struct rq * |
d15bcfdb | 3225 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, |
7c16ec58 | 3226 | unsigned long imbalance, const cpumask_t *cpus) |
1da177e4 | 3227 | { |
70b97a7f | 3228 | struct rq *busiest = NULL, *rq; |
2dd73a4f | 3229 | unsigned long max_load = 0; |
1da177e4 LT |
3230 | int i; |
3231 | ||
3232 | for_each_cpu_mask(i, group->cpumask) { | |
dd41f596 | 3233 | unsigned long wl; |
0a2966b4 CL |
3234 | |
3235 | if (!cpu_isset(i, *cpus)) | |
3236 | continue; | |
3237 | ||
48f24c4d | 3238 | rq = cpu_rq(i); |
dd41f596 | 3239 | wl = weighted_cpuload(i); |
2dd73a4f | 3240 | |
dd41f596 | 3241 | if (rq->nr_running == 1 && wl > imbalance) |
2dd73a4f | 3242 | continue; |
1da177e4 | 3243 | |
dd41f596 IM |
3244 | if (wl > max_load) { |
3245 | max_load = wl; | |
48f24c4d | 3246 | busiest = rq; |
1da177e4 LT |
3247 | } |
3248 | } | |
3249 | ||
3250 | return busiest; | |
3251 | } | |
3252 | ||
77391d71 NP |
3253 | /* |
3254 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | |
3255 | * so long as it is large enough. | |
3256 | */ | |
3257 | #define MAX_PINNED_INTERVAL 512 | |
3258 | ||
1da177e4 LT |
3259 | /* |
3260 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
3261 | * tasks if there is an imbalance. | |
1da177e4 | 3262 | */ |
70b97a7f | 3263 | static int load_balance(int this_cpu, struct rq *this_rq, |
d15bcfdb | 3264 | struct sched_domain *sd, enum cpu_idle_type idle, |
7c16ec58 | 3265 | int *balance, cpumask_t *cpus) |
1da177e4 | 3266 | { |
43010659 | 3267 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; |
1da177e4 | 3268 | struct sched_group *group; |
1da177e4 | 3269 | unsigned long imbalance; |
70b97a7f | 3270 | struct rq *busiest; |
fe2eea3f | 3271 | unsigned long flags; |
5969fe06 | 3272 | |
7c16ec58 MT |
3273 | cpus_setall(*cpus); |
3274 | ||
89c4710e SS |
3275 | /* |
3276 | * When power savings policy is enabled for the parent domain, idle | |
3277 | * sibling can pick up load irrespective of busy siblings. In this case, | |
dd41f596 | 3278 | * let the state of idle sibling percolate up as CPU_IDLE, instead of |
d15bcfdb | 3279 | * portraying it as CPU_NOT_IDLE. |
89c4710e | 3280 | */ |
d15bcfdb | 3281 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 3282 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 3283 | sd_idle = 1; |
1da177e4 | 3284 | |
2d72376b | 3285 | schedstat_inc(sd, lb_count[idle]); |
1da177e4 | 3286 | |
0a2966b4 CL |
3287 | redo: |
3288 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, | |
7c16ec58 | 3289 | cpus, balance); |
783609c6 | 3290 | |
06066714 | 3291 | if (*balance == 0) |
783609c6 | 3292 | goto out_balanced; |
783609c6 | 3293 | |
1da177e4 LT |
3294 | if (!group) { |
3295 | schedstat_inc(sd, lb_nobusyg[idle]); | |
3296 | goto out_balanced; | |
3297 | } | |
3298 | ||
7c16ec58 | 3299 | busiest = find_busiest_queue(group, idle, imbalance, cpus); |
1da177e4 LT |
3300 | if (!busiest) { |
3301 | schedstat_inc(sd, lb_nobusyq[idle]); | |
3302 | goto out_balanced; | |
3303 | } | |
3304 | ||
db935dbd | 3305 | BUG_ON(busiest == this_rq); |
1da177e4 LT |
3306 | |
3307 | schedstat_add(sd, lb_imbalance[idle], imbalance); | |
3308 | ||
43010659 | 3309 | ld_moved = 0; |
1da177e4 LT |
3310 | if (busiest->nr_running > 1) { |
3311 | /* | |
3312 | * Attempt to move tasks. If find_busiest_group has found | |
3313 | * an imbalance but busiest->nr_running <= 1, the group is | |
43010659 | 3314 | * still unbalanced. ld_moved simply stays zero, so it is |
1da177e4 LT |
3315 | * correctly treated as an imbalance. |
3316 | */ | |
fe2eea3f | 3317 | local_irq_save(flags); |
e17224bf | 3318 | double_rq_lock(this_rq, busiest); |
43010659 | 3319 | ld_moved = move_tasks(this_rq, this_cpu, busiest, |
48f24c4d | 3320 | imbalance, sd, idle, &all_pinned); |
e17224bf | 3321 | double_rq_unlock(this_rq, busiest); |
fe2eea3f | 3322 | local_irq_restore(flags); |
81026794 | 3323 | |
46cb4b7c SS |
3324 | /* |
3325 | * some other cpu did the load balance for us. | |
3326 | */ | |
43010659 | 3327 | if (ld_moved && this_cpu != smp_processor_id()) |
46cb4b7c SS |
3328 | resched_cpu(this_cpu); |
3329 | ||
81026794 | 3330 | /* All tasks on this runqueue were pinned by CPU affinity */ |
0a2966b4 | 3331 | if (unlikely(all_pinned)) { |
7c16ec58 MT |
3332 | cpu_clear(cpu_of(busiest), *cpus); |
3333 | if (!cpus_empty(*cpus)) | |
0a2966b4 | 3334 | goto redo; |
81026794 | 3335 | goto out_balanced; |
0a2966b4 | 3336 | } |
1da177e4 | 3337 | } |
81026794 | 3338 | |
43010659 | 3339 | if (!ld_moved) { |
1da177e4 LT |
3340 | schedstat_inc(sd, lb_failed[idle]); |
3341 | sd->nr_balance_failed++; | |
3342 | ||
3343 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | |
1da177e4 | 3344 | |
fe2eea3f | 3345 | spin_lock_irqsave(&busiest->lock, flags); |
fa3b6ddc SS |
3346 | |
3347 | /* don't kick the migration_thread, if the curr | |
3348 | * task on busiest cpu can't be moved to this_cpu | |
3349 | */ | |
3350 | if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { | |
fe2eea3f | 3351 | spin_unlock_irqrestore(&busiest->lock, flags); |
fa3b6ddc SS |
3352 | all_pinned = 1; |
3353 | goto out_one_pinned; | |
3354 | } | |
3355 | ||
1da177e4 LT |
3356 | if (!busiest->active_balance) { |
3357 | busiest->active_balance = 1; | |
3358 | busiest->push_cpu = this_cpu; | |
81026794 | 3359 | active_balance = 1; |
1da177e4 | 3360 | } |
fe2eea3f | 3361 | spin_unlock_irqrestore(&busiest->lock, flags); |
81026794 | 3362 | if (active_balance) |
1da177e4 LT |
3363 | wake_up_process(busiest->migration_thread); |
3364 | ||
3365 | /* | |
3366 | * We've kicked active balancing, reset the failure | |
3367 | * counter. | |
3368 | */ | |
39507451 | 3369 | sd->nr_balance_failed = sd->cache_nice_tries+1; |
1da177e4 | 3370 | } |
81026794 | 3371 | } else |
1da177e4 LT |
3372 | sd->nr_balance_failed = 0; |
3373 | ||
81026794 | 3374 | if (likely(!active_balance)) { |
1da177e4 LT |
3375 | /* We were unbalanced, so reset the balancing interval */ |
3376 | sd->balance_interval = sd->min_interval; | |
81026794 NP |
3377 | } else { |
3378 | /* | |
3379 | * If we've begun active balancing, start to back off. This | |
3380 | * case may not be covered by the all_pinned logic if there | |
3381 | * is only 1 task on the busy runqueue (because we don't call | |
3382 | * move_tasks). | |
3383 | */ | |
3384 | if (sd->balance_interval < sd->max_interval) | |
3385 | sd->balance_interval *= 2; | |
1da177e4 LT |
3386 | } |
3387 | ||
43010659 | 3388 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 3389 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
6363ca57 IM |
3390 | return -1; |
3391 | return ld_moved; | |
1da177e4 LT |
3392 | |
3393 | out_balanced: | |
1da177e4 LT |
3394 | schedstat_inc(sd, lb_balanced[idle]); |
3395 | ||
16cfb1c0 | 3396 | sd->nr_balance_failed = 0; |
fa3b6ddc SS |
3397 | |
3398 | out_one_pinned: | |
1da177e4 | 3399 | /* tune up the balancing interval */ |
77391d71 NP |
3400 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || |
3401 | (sd->balance_interval < sd->max_interval)) | |
1da177e4 LT |
3402 | sd->balance_interval *= 2; |
3403 | ||
48f24c4d | 3404 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 3405 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
6363ca57 IM |
3406 | return -1; |
3407 | return 0; | |
1da177e4 LT |
3408 | } |
3409 | ||
3410 | /* | |
3411 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
3412 | * tasks if there is an imbalance. | |
3413 | * | |
d15bcfdb | 3414 | * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). |
1da177e4 LT |
3415 | * this_rq is locked. |
3416 | */ | |
48f24c4d | 3417 | static int |
7c16ec58 MT |
3418 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd, |
3419 | cpumask_t *cpus) | |
1da177e4 LT |
3420 | { |
3421 | struct sched_group *group; | |
70b97a7f | 3422 | struct rq *busiest = NULL; |
1da177e4 | 3423 | unsigned long imbalance; |
43010659 | 3424 | int ld_moved = 0; |
5969fe06 | 3425 | int sd_idle = 0; |
969bb4e4 | 3426 | int all_pinned = 0; |
7c16ec58 MT |
3427 | |
3428 | cpus_setall(*cpus); | |
5969fe06 | 3429 | |
89c4710e SS |
3430 | /* |
3431 | * When power savings policy is enabled for the parent domain, idle | |
3432 | * sibling can pick up load irrespective of busy siblings. In this case, | |
3433 | * let the state of idle sibling percolate up as IDLE, instead of | |
d15bcfdb | 3434 | * portraying it as CPU_NOT_IDLE. |
89c4710e SS |
3435 | */ |
3436 | if (sd->flags & SD_SHARE_CPUPOWER && | |
3437 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | |
5969fe06 | 3438 | sd_idle = 1; |
1da177e4 | 3439 | |
2d72376b | 3440 | schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); |
0a2966b4 | 3441 | redo: |
d15bcfdb | 3442 | group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, |
7c16ec58 | 3443 | &sd_idle, cpus, NULL); |
1da177e4 | 3444 | if (!group) { |
d15bcfdb | 3445 | schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); |
16cfb1c0 | 3446 | goto out_balanced; |
1da177e4 LT |
3447 | } |
3448 | ||
7c16ec58 | 3449 | busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); |
db935dbd | 3450 | if (!busiest) { |
d15bcfdb | 3451 | schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); |
16cfb1c0 | 3452 | goto out_balanced; |
1da177e4 LT |
3453 | } |
3454 | ||
db935dbd NP |
3455 | BUG_ON(busiest == this_rq); |
3456 | ||
d15bcfdb | 3457 | schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); |
d6d5cfaf | 3458 | |
43010659 | 3459 | ld_moved = 0; |
d6d5cfaf NP |
3460 | if (busiest->nr_running > 1) { |
3461 | /* Attempt to move tasks */ | |
3462 | double_lock_balance(this_rq, busiest); | |
6e82a3be IM |
3463 | /* this_rq->clock is already updated */ |
3464 | update_rq_clock(busiest); | |
43010659 | 3465 | ld_moved = move_tasks(this_rq, this_cpu, busiest, |
969bb4e4 SS |
3466 | imbalance, sd, CPU_NEWLY_IDLE, |
3467 | &all_pinned); | |
d6d5cfaf | 3468 | spin_unlock(&busiest->lock); |
0a2966b4 | 3469 | |
969bb4e4 | 3470 | if (unlikely(all_pinned)) { |
7c16ec58 MT |
3471 | cpu_clear(cpu_of(busiest), *cpus); |
3472 | if (!cpus_empty(*cpus)) | |
0a2966b4 CL |
3473 | goto redo; |
3474 | } | |
d6d5cfaf NP |
3475 | } |
3476 | ||
43010659 | 3477 | if (!ld_moved) { |
d15bcfdb | 3478 | schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); |
89c4710e SS |
3479 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
3480 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | |
5969fe06 NP |
3481 | return -1; |
3482 | } else | |
16cfb1c0 | 3483 | sd->nr_balance_failed = 0; |
1da177e4 | 3484 | |
43010659 | 3485 | return ld_moved; |
16cfb1c0 NP |
3486 | |
3487 | out_balanced: | |
d15bcfdb | 3488 | schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); |
48f24c4d | 3489 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 3490 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 3491 | return -1; |
16cfb1c0 | 3492 | sd->nr_balance_failed = 0; |
48f24c4d | 3493 | |
16cfb1c0 | 3494 | return 0; |
1da177e4 LT |
3495 | } |
3496 | ||
3497 | /* | |
3498 | * idle_balance is called by schedule() if this_cpu is about to become | |
3499 | * idle. Attempts to pull tasks from other CPUs. | |
3500 | */ | |
70b97a7f | 3501 | static void idle_balance(int this_cpu, struct rq *this_rq) |
1da177e4 LT |
3502 | { |
3503 | struct sched_domain *sd; | |
dd41f596 IM |
3504 | int pulled_task = -1; |
3505 | unsigned long next_balance = jiffies + HZ; | |
7c16ec58 | 3506 | cpumask_t tmpmask; |
1da177e4 LT |
3507 | |
3508 | for_each_domain(this_cpu, sd) { | |
92c4ca5c CL |
3509 | unsigned long interval; |
3510 | ||
3511 | if (!(sd->flags & SD_LOAD_BALANCE)) | |
3512 | continue; | |
3513 | ||
3514 | if (sd->flags & SD_BALANCE_NEWIDLE) | |
48f24c4d | 3515 | /* If we've pulled tasks over stop searching: */ |
7c16ec58 MT |
3516 | pulled_task = load_balance_newidle(this_cpu, this_rq, |
3517 | sd, &tmpmask); | |
92c4ca5c CL |
3518 | |
3519 | interval = msecs_to_jiffies(sd->balance_interval); | |
3520 | if (time_after(next_balance, sd->last_balance + interval)) | |
3521 | next_balance = sd->last_balance + interval; | |
3522 | if (pulled_task) | |
3523 | break; | |
1da177e4 | 3524 | } |
dd41f596 | 3525 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { |
1bd77f2d CL |
3526 | /* |
3527 | * We are going idle. next_balance may be set based on | |
3528 | * a busy processor. So reset next_balance. | |
3529 | */ | |
3530 | this_rq->next_balance = next_balance; | |
dd41f596 | 3531 | } |
1da177e4 LT |
3532 | } |
3533 | ||
3534 | /* | |
3535 | * active_load_balance is run by migration threads. It pushes running tasks | |
3536 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | |
3537 | * running on each physical CPU where possible, and avoids physical / | |
3538 | * logical imbalances. | |
3539 | * | |
3540 | * Called with busiest_rq locked. | |
3541 | */ | |
70b97a7f | 3542 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) |
1da177e4 | 3543 | { |
39507451 | 3544 | int target_cpu = busiest_rq->push_cpu; |
70b97a7f IM |
3545 | struct sched_domain *sd; |
3546 | struct rq *target_rq; | |
39507451 | 3547 | |
48f24c4d | 3548 | /* Is there any task to move? */ |
39507451 | 3549 | if (busiest_rq->nr_running <= 1) |
39507451 NP |
3550 | return; |
3551 | ||
3552 | target_rq = cpu_rq(target_cpu); | |
1da177e4 LT |
3553 | |
3554 | /* | |
39507451 | 3555 | * This condition is "impossible", if it occurs |
41a2d6cf | 3556 | * we need to fix it. Originally reported by |
39507451 | 3557 | * Bjorn Helgaas on a 128-cpu setup. |
1da177e4 | 3558 | */ |
39507451 | 3559 | BUG_ON(busiest_rq == target_rq); |
1da177e4 | 3560 | |
39507451 NP |
3561 | /* move a task from busiest_rq to target_rq */ |
3562 | double_lock_balance(busiest_rq, target_rq); | |
6e82a3be IM |
3563 | update_rq_clock(busiest_rq); |
3564 | update_rq_clock(target_rq); | |
39507451 NP |
3565 | |
3566 | /* Search for an sd spanning us and the target CPU. */ | |
c96d145e | 3567 | for_each_domain(target_cpu, sd) { |
39507451 | 3568 | if ((sd->flags & SD_LOAD_BALANCE) && |
48f24c4d | 3569 | cpu_isset(busiest_cpu, sd->span)) |
39507451 | 3570 | break; |
c96d145e | 3571 | } |
39507451 | 3572 | |
48f24c4d | 3573 | if (likely(sd)) { |
2d72376b | 3574 | schedstat_inc(sd, alb_count); |
39507451 | 3575 | |
43010659 PW |
3576 | if (move_one_task(target_rq, target_cpu, busiest_rq, |
3577 | sd, CPU_IDLE)) | |
48f24c4d IM |
3578 | schedstat_inc(sd, alb_pushed); |
3579 | else | |
3580 | schedstat_inc(sd, alb_failed); | |
3581 | } | |
39507451 | 3582 | spin_unlock(&target_rq->lock); |
1da177e4 LT |
3583 | } |
3584 | ||
46cb4b7c SS |
3585 | #ifdef CONFIG_NO_HZ |
3586 | static struct { | |
3587 | atomic_t load_balancer; | |
41a2d6cf | 3588 | cpumask_t cpu_mask; |
46cb4b7c SS |
3589 | } nohz ____cacheline_aligned = { |
3590 | .load_balancer = ATOMIC_INIT(-1), | |
3591 | .cpu_mask = CPU_MASK_NONE, | |
3592 | }; | |
3593 | ||
7835b98b | 3594 | /* |
46cb4b7c SS |
3595 | * This routine will try to nominate the ilb (idle load balancing) |
3596 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | |
3597 | * load balancing on behalf of all those cpus. If all the cpus in the system | |
3598 | * go into this tickless mode, then there will be no ilb owner (as there is | |
3599 | * no need for one) and all the cpus will sleep till the next wakeup event | |
3600 | * arrives... | |
3601 | * | |
3602 | * For the ilb owner, tick is not stopped. And this tick will be used | |
3603 | * for idle load balancing. ilb owner will still be part of | |
3604 | * nohz.cpu_mask.. | |
7835b98b | 3605 | * |
46cb4b7c SS |
3606 | * While stopping the tick, this cpu will become the ilb owner if there |
3607 | * is no other owner. And will be the owner till that cpu becomes busy | |
3608 | * or if all cpus in the system stop their ticks at which point | |
3609 | * there is no need for ilb owner. | |
3610 | * | |
3611 | * When the ilb owner becomes busy, it nominates another owner, during the | |
3612 | * next busy scheduler_tick() | |
3613 | */ | |
3614 | int select_nohz_load_balancer(int stop_tick) | |
3615 | { | |
3616 | int cpu = smp_processor_id(); | |
3617 | ||
3618 | if (stop_tick) { | |
3619 | cpu_set(cpu, nohz.cpu_mask); | |
3620 | cpu_rq(cpu)->in_nohz_recently = 1; | |
3621 | ||
3622 | /* | |
3623 | * If we are going offline and still the leader, give up! | |
3624 | */ | |
3625 | if (cpu_is_offline(cpu) && | |
3626 | atomic_read(&nohz.load_balancer) == cpu) { | |
3627 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | |
3628 | BUG(); | |
3629 | return 0; | |
3630 | } | |
3631 | ||
3632 | /* time for ilb owner also to sleep */ | |
3633 | if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) { | |
3634 | if (atomic_read(&nohz.load_balancer) == cpu) | |
3635 | atomic_set(&nohz.load_balancer, -1); | |
3636 | return 0; | |
3637 | } | |
3638 | ||
3639 | if (atomic_read(&nohz.load_balancer) == -1) { | |
3640 | /* make me the ilb owner */ | |
3641 | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | |
3642 | return 1; | |
3643 | } else if (atomic_read(&nohz.load_balancer) == cpu) | |
3644 | return 1; | |
3645 | } else { | |
3646 | if (!cpu_isset(cpu, nohz.cpu_mask)) | |
3647 | return 0; | |
3648 | ||
3649 | cpu_clear(cpu, nohz.cpu_mask); | |
3650 | ||
3651 | if (atomic_read(&nohz.load_balancer) == cpu) | |
3652 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | |
3653 | BUG(); | |
3654 | } | |
3655 | return 0; | |
3656 | } | |
3657 | #endif | |
3658 | ||
3659 | static DEFINE_SPINLOCK(balancing); | |
3660 | ||
3661 | /* | |
7835b98b CL |
3662 | * It checks each scheduling domain to see if it is due to be balanced, |
3663 | * and initiates a balancing operation if so. | |
3664 | * | |
3665 | * Balancing parameters are set up in arch_init_sched_domains. | |
3666 | */ | |
a9957449 | 3667 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) |
7835b98b | 3668 | { |
46cb4b7c SS |
3669 | int balance = 1; |
3670 | struct rq *rq = cpu_rq(cpu); | |
7835b98b CL |
3671 | unsigned long interval; |
3672 | struct sched_domain *sd; | |
46cb4b7c | 3673 | /* Earliest time when we have to do rebalance again */ |
c9819f45 | 3674 | unsigned long next_balance = jiffies + 60*HZ; |
f549da84 | 3675 | int update_next_balance = 0; |
d07355f5 | 3676 | int need_serialize; |
7c16ec58 | 3677 | cpumask_t tmp; |
1da177e4 | 3678 | |
46cb4b7c | 3679 | for_each_domain(cpu, sd) { |
1da177e4 LT |
3680 | if (!(sd->flags & SD_LOAD_BALANCE)) |
3681 | continue; | |
3682 | ||
3683 | interval = sd->balance_interval; | |
d15bcfdb | 3684 | if (idle != CPU_IDLE) |
1da177e4 LT |
3685 | interval *= sd->busy_factor; |
3686 | ||
3687 | /* scale ms to jiffies */ | |
3688 | interval = msecs_to_jiffies(interval); | |
3689 | if (unlikely(!interval)) | |
3690 | interval = 1; | |
dd41f596 IM |
3691 | if (interval > HZ*NR_CPUS/10) |
3692 | interval = HZ*NR_CPUS/10; | |
3693 | ||
d07355f5 | 3694 | need_serialize = sd->flags & SD_SERIALIZE; |
1da177e4 | 3695 | |
d07355f5 | 3696 | if (need_serialize) { |
08c183f3 CL |
3697 | if (!spin_trylock(&balancing)) |
3698 | goto out; | |
3699 | } | |
3700 | ||
c9819f45 | 3701 | if (time_after_eq(jiffies, sd->last_balance + interval)) { |
7c16ec58 | 3702 | if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) { |
fa3b6ddc SS |
3703 | /* |
3704 | * We've pulled tasks over so either we're no | |
5969fe06 NP |
3705 | * longer idle, or one of our SMT siblings is |
3706 | * not idle. | |
3707 | */ | |
d15bcfdb | 3708 | idle = CPU_NOT_IDLE; |
1da177e4 | 3709 | } |
1bd77f2d | 3710 | sd->last_balance = jiffies; |
1da177e4 | 3711 | } |
d07355f5 | 3712 | if (need_serialize) |
08c183f3 CL |
3713 | spin_unlock(&balancing); |
3714 | out: | |
f549da84 | 3715 | if (time_after(next_balance, sd->last_balance + interval)) { |
c9819f45 | 3716 | next_balance = sd->last_balance + interval; |
f549da84 SS |
3717 | update_next_balance = 1; |
3718 | } | |
783609c6 SS |
3719 | |
3720 | /* | |
3721 | * Stop the load balance at this level. There is another | |
3722 | * CPU in our sched group which is doing load balancing more | |
3723 | * actively. | |
3724 | */ | |
3725 | if (!balance) | |
3726 | break; | |
1da177e4 | 3727 | } |
f549da84 SS |
3728 | |
3729 | /* | |
3730 | * next_balance will be updated only when there is a need. | |
3731 | * When the cpu is attached to null domain for ex, it will not be | |
3732 | * updated. | |
3733 | */ | |
3734 | if (likely(update_next_balance)) | |
3735 | rq->next_balance = next_balance; | |
46cb4b7c SS |
3736 | } |
3737 | ||
3738 | /* | |
3739 | * run_rebalance_domains is triggered when needed from the scheduler tick. | |
3740 | * In CONFIG_NO_HZ case, the idle load balance owner will do the | |
3741 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | |
3742 | */ | |
3743 | static void run_rebalance_domains(struct softirq_action *h) | |
3744 | { | |
dd41f596 IM |
3745 | int this_cpu = smp_processor_id(); |
3746 | struct rq *this_rq = cpu_rq(this_cpu); | |
3747 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | |
3748 | CPU_IDLE : CPU_NOT_IDLE; | |
46cb4b7c | 3749 | |
dd41f596 | 3750 | rebalance_domains(this_cpu, idle); |
46cb4b7c SS |
3751 | |
3752 | #ifdef CONFIG_NO_HZ | |
3753 | /* | |
3754 | * If this cpu is the owner for idle load balancing, then do the | |
3755 | * balancing on behalf of the other idle cpus whose ticks are | |
3756 | * stopped. | |
3757 | */ | |
dd41f596 IM |
3758 | if (this_rq->idle_at_tick && |
3759 | atomic_read(&nohz.load_balancer) == this_cpu) { | |
46cb4b7c SS |
3760 | cpumask_t cpus = nohz.cpu_mask; |
3761 | struct rq *rq; | |
3762 | int balance_cpu; | |
3763 | ||
dd41f596 | 3764 | cpu_clear(this_cpu, cpus); |
46cb4b7c SS |
3765 | for_each_cpu_mask(balance_cpu, cpus) { |
3766 | /* | |
3767 | * If this cpu gets work to do, stop the load balancing | |
3768 | * work being done for other cpus. Next load | |
3769 | * balancing owner will pick it up. | |
3770 | */ | |
3771 | if (need_resched()) | |
3772 | break; | |
3773 | ||
de0cf899 | 3774 | rebalance_domains(balance_cpu, CPU_IDLE); |
46cb4b7c SS |
3775 | |
3776 | rq = cpu_rq(balance_cpu); | |
dd41f596 IM |
3777 | if (time_after(this_rq->next_balance, rq->next_balance)) |
3778 | this_rq->next_balance = rq->next_balance; | |
46cb4b7c SS |
3779 | } |
3780 | } | |
3781 | #endif | |
3782 | } | |
3783 | ||
3784 | /* | |
3785 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | |
3786 | * | |
3787 | * In case of CONFIG_NO_HZ, this is the place where we nominate a new | |
3788 | * idle load balancing owner or decide to stop the periodic load balancing, | |
3789 | * if the whole system is idle. | |
3790 | */ | |
dd41f596 | 3791 | static inline void trigger_load_balance(struct rq *rq, int cpu) |
46cb4b7c | 3792 | { |
46cb4b7c SS |
3793 | #ifdef CONFIG_NO_HZ |
3794 | /* | |
3795 | * If we were in the nohz mode recently and busy at the current | |
3796 | * scheduler tick, then check if we need to nominate new idle | |
3797 | * load balancer. | |
3798 | */ | |
3799 | if (rq->in_nohz_recently && !rq->idle_at_tick) { | |
3800 | rq->in_nohz_recently = 0; | |
3801 | ||
3802 | if (atomic_read(&nohz.load_balancer) == cpu) { | |
3803 | cpu_clear(cpu, nohz.cpu_mask); | |
3804 | atomic_set(&nohz.load_balancer, -1); | |
3805 | } | |
3806 | ||
3807 | if (atomic_read(&nohz.load_balancer) == -1) { | |
3808 | /* | |
3809 | * simple selection for now: Nominate the | |
3810 | * first cpu in the nohz list to be the next | |
3811 | * ilb owner. | |
3812 | * | |
3813 | * TBD: Traverse the sched domains and nominate | |
3814 | * the nearest cpu in the nohz.cpu_mask. | |
3815 | */ | |
3816 | int ilb = first_cpu(nohz.cpu_mask); | |
3817 | ||
434d53b0 | 3818 | if (ilb < nr_cpu_ids) |
46cb4b7c SS |
3819 | resched_cpu(ilb); |
3820 | } | |
3821 | } | |
3822 | ||
3823 | /* | |
3824 | * If this cpu is idle and doing idle load balancing for all the | |
3825 | * cpus with ticks stopped, is it time for that to stop? | |
3826 | */ | |
3827 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | |
3828 | cpus_weight(nohz.cpu_mask) == num_online_cpus()) { | |
3829 | resched_cpu(cpu); | |
3830 | return; | |
3831 | } | |
3832 | ||
3833 | /* | |
3834 | * If this cpu is idle and the idle load balancing is done by | |
3835 | * someone else, then no need raise the SCHED_SOFTIRQ | |
3836 | */ | |
3837 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | |
3838 | cpu_isset(cpu, nohz.cpu_mask)) | |
3839 | return; | |
3840 | #endif | |
3841 | if (time_after_eq(jiffies, rq->next_balance)) | |
3842 | raise_softirq(SCHED_SOFTIRQ); | |
1da177e4 | 3843 | } |
dd41f596 IM |
3844 | |
3845 | #else /* CONFIG_SMP */ | |
3846 | ||
1da177e4 LT |
3847 | /* |
3848 | * on UP we do not need to balance between CPUs: | |
3849 | */ | |
70b97a7f | 3850 | static inline void idle_balance(int cpu, struct rq *rq) |
1da177e4 LT |
3851 | { |
3852 | } | |
dd41f596 | 3853 | |
1da177e4 LT |
3854 | #endif |
3855 | ||
1da177e4 LT |
3856 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
3857 | ||
3858 | EXPORT_PER_CPU_SYMBOL(kstat); | |
3859 | ||
3860 | /* | |
41b86e9c IM |
3861 | * Return p->sum_exec_runtime plus any more ns on the sched_clock |
3862 | * that have not yet been banked in case the task is currently running. | |
1da177e4 | 3863 | */ |
41b86e9c | 3864 | unsigned long long task_sched_runtime(struct task_struct *p) |
1da177e4 | 3865 | { |
1da177e4 | 3866 | unsigned long flags; |
41b86e9c IM |
3867 | u64 ns, delta_exec; |
3868 | struct rq *rq; | |
48f24c4d | 3869 | |
41b86e9c IM |
3870 | rq = task_rq_lock(p, &flags); |
3871 | ns = p->se.sum_exec_runtime; | |
051a1d1a | 3872 | if (task_current(rq, p)) { |
a8e504d2 IM |
3873 | update_rq_clock(rq); |
3874 | delta_exec = rq->clock - p->se.exec_start; | |
41b86e9c IM |
3875 | if ((s64)delta_exec > 0) |
3876 | ns += delta_exec; | |
3877 | } | |
3878 | task_rq_unlock(rq, &flags); | |
48f24c4d | 3879 | |
1da177e4 LT |
3880 | return ns; |
3881 | } | |
3882 | ||
1da177e4 LT |
3883 | /* |
3884 | * Account user cpu time to a process. | |
3885 | * @p: the process that the cpu time gets accounted to | |
1da177e4 LT |
3886 | * @cputime: the cpu time spent in user space since the last update |
3887 | */ | |
3888 | void account_user_time(struct task_struct *p, cputime_t cputime) | |
3889 | { | |
3890 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
3891 | cputime64_t tmp; | |
3892 | ||
3893 | p->utime = cputime_add(p->utime, cputime); | |
3894 | ||
3895 | /* Add user time to cpustat. */ | |
3896 | tmp = cputime_to_cputime64(cputime); | |
3897 | if (TASK_NICE(p) > 0) | |
3898 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | |
3899 | else | |
3900 | cpustat->user = cputime64_add(cpustat->user, tmp); | |
3901 | } | |
3902 | ||
94886b84 LV |
3903 | /* |
3904 | * Account guest cpu time to a process. | |
3905 | * @p: the process that the cpu time gets accounted to | |
3906 | * @cputime: the cpu time spent in virtual machine since the last update | |
3907 | */ | |
f7402e03 | 3908 | static void account_guest_time(struct task_struct *p, cputime_t cputime) |
94886b84 LV |
3909 | { |
3910 | cputime64_t tmp; | |
3911 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
3912 | ||
3913 | tmp = cputime_to_cputime64(cputime); | |
3914 | ||
3915 | p->utime = cputime_add(p->utime, cputime); | |
3916 | p->gtime = cputime_add(p->gtime, cputime); | |
3917 | ||
3918 | cpustat->user = cputime64_add(cpustat->user, tmp); | |
3919 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | |
3920 | } | |
3921 | ||
c66f08be MN |
3922 | /* |
3923 | * Account scaled user cpu time to a process. | |
3924 | * @p: the process that the cpu time gets accounted to | |
3925 | * @cputime: the cpu time spent in user space since the last update | |
3926 | */ | |
3927 | void account_user_time_scaled(struct task_struct *p, cputime_t cputime) | |
3928 | { | |
3929 | p->utimescaled = cputime_add(p->utimescaled, cputime); | |
3930 | } | |
3931 | ||
1da177e4 LT |
3932 | /* |
3933 | * Account system cpu time to a process. | |
3934 | * @p: the process that the cpu time gets accounted to | |
3935 | * @hardirq_offset: the offset to subtract from hardirq_count() | |
3936 | * @cputime: the cpu time spent in kernel space since the last update | |
3937 | */ | |
3938 | void account_system_time(struct task_struct *p, int hardirq_offset, | |
3939 | cputime_t cputime) | |
3940 | { | |
3941 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
70b97a7f | 3942 | struct rq *rq = this_rq(); |
1da177e4 LT |
3943 | cputime64_t tmp; |
3944 | ||
983ed7a6 HH |
3945 | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { |
3946 | account_guest_time(p, cputime); | |
3947 | return; | |
3948 | } | |
94886b84 | 3949 | |
1da177e4 LT |
3950 | p->stime = cputime_add(p->stime, cputime); |
3951 | ||
3952 | /* Add system time to cpustat. */ | |
3953 | tmp = cputime_to_cputime64(cputime); | |
3954 | if (hardirq_count() - hardirq_offset) | |
3955 | cpustat->irq = cputime64_add(cpustat->irq, tmp); | |
3956 | else if (softirq_count()) | |
3957 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | |
cfb52856 | 3958 | else if (p != rq->idle) |
1da177e4 | 3959 | cpustat->system = cputime64_add(cpustat->system, tmp); |
cfb52856 | 3960 | else if (atomic_read(&rq->nr_iowait) > 0) |
1da177e4 LT |
3961 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); |
3962 | else | |
3963 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | |
3964 | /* Account for system time used */ | |
3965 | acct_update_integrals(p); | |
1da177e4 LT |
3966 | } |
3967 | ||
c66f08be MN |
3968 | /* |
3969 | * Account scaled system cpu time to a process. | |
3970 | * @p: the process that the cpu time gets accounted to | |
3971 | * @hardirq_offset: the offset to subtract from hardirq_count() | |
3972 | * @cputime: the cpu time spent in kernel space since the last update | |
3973 | */ | |
3974 | void account_system_time_scaled(struct task_struct *p, cputime_t cputime) | |
3975 | { | |
3976 | p->stimescaled = cputime_add(p->stimescaled, cputime); | |
3977 | } | |
3978 | ||
1da177e4 LT |
3979 | /* |
3980 | * Account for involuntary wait time. | |
3981 | * @p: the process from which the cpu time has been stolen | |
3982 | * @steal: the cpu time spent in involuntary wait | |
3983 | */ | |
3984 | void account_steal_time(struct task_struct *p, cputime_t steal) | |
3985 | { | |
3986 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
3987 | cputime64_t tmp = cputime_to_cputime64(steal); | |
70b97a7f | 3988 | struct rq *rq = this_rq(); |
1da177e4 LT |
3989 | |
3990 | if (p == rq->idle) { | |
3991 | p->stime = cputime_add(p->stime, steal); | |
3992 | if (atomic_read(&rq->nr_iowait) > 0) | |
3993 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | |
3994 | else | |
3995 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | |
cfb52856 | 3996 | } else |
1da177e4 LT |
3997 | cpustat->steal = cputime64_add(cpustat->steal, tmp); |
3998 | } | |
3999 | ||
7835b98b CL |
4000 | /* |
4001 | * This function gets called by the timer code, with HZ frequency. | |
4002 | * We call it with interrupts disabled. | |
4003 | * | |
4004 | * It also gets called by the fork code, when changing the parent's | |
4005 | * timeslices. | |
4006 | */ | |
4007 | void scheduler_tick(void) | |
4008 | { | |
7835b98b CL |
4009 | int cpu = smp_processor_id(); |
4010 | struct rq *rq = cpu_rq(cpu); | |
dd41f596 | 4011 | struct task_struct *curr = rq->curr; |
3e51f33f PZ |
4012 | |
4013 | sched_clock_tick(); | |
dd41f596 IM |
4014 | |
4015 | spin_lock(&rq->lock); | |
3e51f33f | 4016 | update_rq_clock(rq); |
f1a438d8 | 4017 | update_cpu_load(rq); |
fa85ae24 | 4018 | curr->sched_class->task_tick(rq, curr, 0); |
dd41f596 | 4019 | spin_unlock(&rq->lock); |
7835b98b | 4020 | |
e418e1c2 | 4021 | #ifdef CONFIG_SMP |
dd41f596 IM |
4022 | rq->idle_at_tick = idle_cpu(cpu); |
4023 | trigger_load_balance(rq, cpu); | |
e418e1c2 | 4024 | #endif |
1da177e4 LT |
4025 | } |
4026 | ||
1da177e4 LT |
4027 | #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT) |
4028 | ||
43627582 | 4029 | void __kprobes add_preempt_count(int val) |
1da177e4 LT |
4030 | { |
4031 | /* | |
4032 | * Underflow? | |
4033 | */ | |
9a11b49a IM |
4034 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) |
4035 | return; | |
1da177e4 LT |
4036 | preempt_count() += val; |
4037 | /* | |
4038 | * Spinlock count overflowing soon? | |
4039 | */ | |
33859f7f MOS |
4040 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= |
4041 | PREEMPT_MASK - 10); | |
1da177e4 LT |
4042 | } |
4043 | EXPORT_SYMBOL(add_preempt_count); | |
4044 | ||
43627582 | 4045 | void __kprobes sub_preempt_count(int val) |
1da177e4 LT |
4046 | { |
4047 | /* | |
4048 | * Underflow? | |
4049 | */ | |
9a11b49a IM |
4050 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) |
4051 | return; | |
1da177e4 LT |
4052 | /* |
4053 | * Is the spinlock portion underflowing? | |
4054 | */ | |
9a11b49a IM |
4055 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && |
4056 | !(preempt_count() & PREEMPT_MASK))) | |
4057 | return; | |
4058 | ||
1da177e4 LT |
4059 | preempt_count() -= val; |
4060 | } | |
4061 | EXPORT_SYMBOL(sub_preempt_count); | |
4062 | ||
4063 | #endif | |
4064 | ||
4065 | /* | |
dd41f596 | 4066 | * Print scheduling while atomic bug: |
1da177e4 | 4067 | */ |
dd41f596 | 4068 | static noinline void __schedule_bug(struct task_struct *prev) |
1da177e4 | 4069 | { |
838225b4 SS |
4070 | struct pt_regs *regs = get_irq_regs(); |
4071 | ||
4072 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", | |
4073 | prev->comm, prev->pid, preempt_count()); | |
4074 | ||
dd41f596 | 4075 | debug_show_held_locks(prev); |
e21f5b15 | 4076 | print_modules(); |
dd41f596 IM |
4077 | if (irqs_disabled()) |
4078 | print_irqtrace_events(prev); | |
838225b4 SS |
4079 | |
4080 | if (regs) | |
4081 | show_regs(regs); | |
4082 | else | |
4083 | dump_stack(); | |
dd41f596 | 4084 | } |
1da177e4 | 4085 | |
dd41f596 IM |
4086 | /* |
4087 | * Various schedule()-time debugging checks and statistics: | |
4088 | */ | |
4089 | static inline void schedule_debug(struct task_struct *prev) | |
4090 | { | |
1da177e4 | 4091 | /* |
41a2d6cf | 4092 | * Test if we are atomic. Since do_exit() needs to call into |
1da177e4 LT |
4093 | * schedule() atomically, we ignore that path for now. |
4094 | * Otherwise, whine if we are scheduling when we should not be. | |
4095 | */ | |
3f33a7ce | 4096 | if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) |
dd41f596 IM |
4097 | __schedule_bug(prev); |
4098 | ||
1da177e4 LT |
4099 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
4100 | ||
2d72376b | 4101 | schedstat_inc(this_rq(), sched_count); |
b8efb561 IM |
4102 | #ifdef CONFIG_SCHEDSTATS |
4103 | if (unlikely(prev->lock_depth >= 0)) { | |
2d72376b IM |
4104 | schedstat_inc(this_rq(), bkl_count); |
4105 | schedstat_inc(prev, sched_info.bkl_count); | |
b8efb561 IM |
4106 | } |
4107 | #endif | |
dd41f596 IM |
4108 | } |
4109 | ||
4110 | /* | |
4111 | * Pick up the highest-prio task: | |
4112 | */ | |
4113 | static inline struct task_struct * | |
ff95f3df | 4114 | pick_next_task(struct rq *rq, struct task_struct *prev) |
dd41f596 | 4115 | { |
5522d5d5 | 4116 | const struct sched_class *class; |
dd41f596 | 4117 | struct task_struct *p; |
1da177e4 LT |
4118 | |
4119 | /* | |
dd41f596 IM |
4120 | * Optimization: we know that if all tasks are in |
4121 | * the fair class we can call that function directly: | |
1da177e4 | 4122 | */ |
dd41f596 | 4123 | if (likely(rq->nr_running == rq->cfs.nr_running)) { |
fb8d4724 | 4124 | p = fair_sched_class.pick_next_task(rq); |
dd41f596 IM |
4125 | if (likely(p)) |
4126 | return p; | |
1da177e4 LT |
4127 | } |
4128 | ||
dd41f596 IM |
4129 | class = sched_class_highest; |
4130 | for ( ; ; ) { | |
fb8d4724 | 4131 | p = class->pick_next_task(rq); |
dd41f596 IM |
4132 | if (p) |
4133 | return p; | |
4134 | /* | |
4135 | * Will never be NULL as the idle class always | |
4136 | * returns a non-NULL p: | |
4137 | */ | |
4138 | class = class->next; | |
4139 | } | |
4140 | } | |
1da177e4 | 4141 | |
dd41f596 IM |
4142 | /* |
4143 | * schedule() is the main scheduler function. | |
4144 | */ | |
4145 | asmlinkage void __sched schedule(void) | |
4146 | { | |
4147 | struct task_struct *prev, *next; | |
67ca7bde | 4148 | unsigned long *switch_count; |
dd41f596 | 4149 | struct rq *rq; |
f333fdc9 | 4150 | int cpu, hrtick = sched_feat(HRTICK); |
dd41f596 IM |
4151 | |
4152 | need_resched: | |
4153 | preempt_disable(); | |
4154 | cpu = smp_processor_id(); | |
4155 | rq = cpu_rq(cpu); | |
4156 | rcu_qsctr_inc(cpu); | |
4157 | prev = rq->curr; | |
4158 | switch_count = &prev->nivcsw; | |
4159 | ||
4160 | release_kernel_lock(prev); | |
4161 | need_resched_nonpreemptible: | |
4162 | ||
4163 | schedule_debug(prev); | |
1da177e4 | 4164 | |
f333fdc9 MG |
4165 | if (hrtick) |
4166 | hrtick_clear(rq); | |
8f4d37ec | 4167 | |
1e819950 IM |
4168 | /* |
4169 | * Do the rq-clock update outside the rq lock: | |
4170 | */ | |
4171 | local_irq_disable(); | |
3e51f33f | 4172 | update_rq_clock(rq); |
1e819950 IM |
4173 | spin_lock(&rq->lock); |
4174 | clear_tsk_need_resched(prev); | |
1da177e4 | 4175 | |
1da177e4 | 4176 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
1da177e4 | 4177 | if (unlikely((prev->state & TASK_INTERRUPTIBLE) && |
23e3c3cd | 4178 | signal_pending(prev))) { |
1da177e4 | 4179 | prev->state = TASK_RUNNING; |
dd41f596 | 4180 | } else { |
2e1cb74a | 4181 | deactivate_task(rq, prev, 1); |
1da177e4 | 4182 | } |
dd41f596 | 4183 | switch_count = &prev->nvcsw; |
1da177e4 LT |
4184 | } |
4185 | ||
9a897c5a SR |
4186 | #ifdef CONFIG_SMP |
4187 | if (prev->sched_class->pre_schedule) | |
4188 | prev->sched_class->pre_schedule(rq, prev); | |
4189 | #endif | |
f65eda4f | 4190 | |
dd41f596 | 4191 | if (unlikely(!rq->nr_running)) |
1da177e4 | 4192 | idle_balance(cpu, rq); |
1da177e4 | 4193 | |
31ee529c | 4194 | prev->sched_class->put_prev_task(rq, prev); |
ff95f3df | 4195 | next = pick_next_task(rq, prev); |
1da177e4 | 4196 | |
1da177e4 | 4197 | if (likely(prev != next)) { |
673a90a1 DS |
4198 | sched_info_switch(prev, next); |
4199 | ||
1da177e4 LT |
4200 | rq->nr_switches++; |
4201 | rq->curr = next; | |
4202 | ++*switch_count; | |
4203 | ||
dd41f596 | 4204 | context_switch(rq, prev, next); /* unlocks the rq */ |
8f4d37ec PZ |
4205 | /* |
4206 | * the context switch might have flipped the stack from under | |
4207 | * us, hence refresh the local variables. | |
4208 | */ | |
4209 | cpu = smp_processor_id(); | |
4210 | rq = cpu_rq(cpu); | |
1da177e4 LT |
4211 | } else |
4212 | spin_unlock_irq(&rq->lock); | |
4213 | ||
f333fdc9 MG |
4214 | if (hrtick) |
4215 | hrtick_set(rq); | |
8f4d37ec PZ |
4216 | |
4217 | if (unlikely(reacquire_kernel_lock(current) < 0)) | |
1da177e4 | 4218 | goto need_resched_nonpreemptible; |
8f4d37ec | 4219 | |
1da177e4 LT |
4220 | preempt_enable_no_resched(); |
4221 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | |
4222 | goto need_resched; | |
4223 | } | |
1da177e4 LT |
4224 | EXPORT_SYMBOL(schedule); |
4225 | ||
4226 | #ifdef CONFIG_PREEMPT | |
4227 | /* | |
2ed6e34f | 4228 | * this is the entry point to schedule() from in-kernel preemption |
41a2d6cf | 4229 | * off of preempt_enable. Kernel preemptions off return from interrupt |
1da177e4 LT |
4230 | * occur there and call schedule directly. |
4231 | */ | |
4232 | asmlinkage void __sched preempt_schedule(void) | |
4233 | { | |
4234 | struct thread_info *ti = current_thread_info(); | |
6478d880 | 4235 | |
1da177e4 LT |
4236 | /* |
4237 | * If there is a non-zero preempt_count or interrupts are disabled, | |
41a2d6cf | 4238 | * we do not want to preempt the current task. Just return.. |
1da177e4 | 4239 | */ |
beed33a8 | 4240 | if (likely(ti->preempt_count || irqs_disabled())) |
1da177e4 LT |
4241 | return; |
4242 | ||
3a5c359a AK |
4243 | do { |
4244 | add_preempt_count(PREEMPT_ACTIVE); | |
3a5c359a | 4245 | schedule(); |
3a5c359a | 4246 | sub_preempt_count(PREEMPT_ACTIVE); |
1da177e4 | 4247 | |
3a5c359a AK |
4248 | /* |
4249 | * Check again in case we missed a preemption opportunity | |
4250 | * between schedule and now. | |
4251 | */ | |
4252 | barrier(); | |
4253 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | |
1da177e4 | 4254 | } |
1da177e4 LT |
4255 | EXPORT_SYMBOL(preempt_schedule); |
4256 | ||
4257 | /* | |
2ed6e34f | 4258 | * this is the entry point to schedule() from kernel preemption |
1da177e4 LT |
4259 | * off of irq context. |
4260 | * Note, that this is called and return with irqs disabled. This will | |
4261 | * protect us against recursive calling from irq. | |
4262 | */ | |
4263 | asmlinkage void __sched preempt_schedule_irq(void) | |
4264 | { | |
4265 | struct thread_info *ti = current_thread_info(); | |
6478d880 | 4266 | |
2ed6e34f | 4267 | /* Catch callers which need to be fixed */ |
1da177e4 LT |
4268 | BUG_ON(ti->preempt_count || !irqs_disabled()); |
4269 | ||
3a5c359a AK |
4270 | do { |
4271 | add_preempt_count(PREEMPT_ACTIVE); | |
3a5c359a AK |
4272 | local_irq_enable(); |
4273 | schedule(); | |
4274 | local_irq_disable(); | |
3a5c359a | 4275 | sub_preempt_count(PREEMPT_ACTIVE); |
1da177e4 | 4276 | |
3a5c359a AK |
4277 | /* |
4278 | * Check again in case we missed a preemption opportunity | |
4279 | * between schedule and now. | |
4280 | */ | |
4281 | barrier(); | |
4282 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | |
1da177e4 LT |
4283 | } |
4284 | ||
4285 | #endif /* CONFIG_PREEMPT */ | |
4286 | ||
95cdf3b7 IM |
4287 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, |
4288 | void *key) | |
1da177e4 | 4289 | { |
48f24c4d | 4290 | return try_to_wake_up(curr->private, mode, sync); |
1da177e4 | 4291 | } |
1da177e4 LT |
4292 | EXPORT_SYMBOL(default_wake_function); |
4293 | ||
4294 | /* | |
41a2d6cf IM |
4295 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just |
4296 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | |
1da177e4 LT |
4297 | * number) then we wake all the non-exclusive tasks and one exclusive task. |
4298 | * | |
4299 | * There are circumstances in which we can try to wake a task which has already | |
41a2d6cf | 4300 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns |
1da177e4 LT |
4301 | * zero in this (rare) case, and we handle it by continuing to scan the queue. |
4302 | */ | |
4303 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | |
4304 | int nr_exclusive, int sync, void *key) | |
4305 | { | |
2e45874c | 4306 | wait_queue_t *curr, *next; |
1da177e4 | 4307 | |
2e45874c | 4308 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
48f24c4d IM |
4309 | unsigned flags = curr->flags; |
4310 | ||
1da177e4 | 4311 | if (curr->func(curr, mode, sync, key) && |
48f24c4d | 4312 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
1da177e4 LT |
4313 | break; |
4314 | } | |
4315 | } | |
4316 | ||
4317 | /** | |
4318 | * __wake_up - wake up threads blocked on a waitqueue. | |
4319 | * @q: the waitqueue | |
4320 | * @mode: which threads | |
4321 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
67be2dd1 | 4322 | * @key: is directly passed to the wakeup function |
1da177e4 | 4323 | */ |
7ad5b3a5 | 4324 | void __wake_up(wait_queue_head_t *q, unsigned int mode, |
95cdf3b7 | 4325 | int nr_exclusive, void *key) |
1da177e4 LT |
4326 | { |
4327 | unsigned long flags; | |
4328 | ||
4329 | spin_lock_irqsave(&q->lock, flags); | |
4330 | __wake_up_common(q, mode, nr_exclusive, 0, key); | |
4331 | spin_unlock_irqrestore(&q->lock, flags); | |
4332 | } | |
1da177e4 LT |
4333 | EXPORT_SYMBOL(__wake_up); |
4334 | ||
4335 | /* | |
4336 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | |
4337 | */ | |
7ad5b3a5 | 4338 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) |
1da177e4 LT |
4339 | { |
4340 | __wake_up_common(q, mode, 1, 0, NULL); | |
4341 | } | |
4342 | ||
4343 | /** | |
67be2dd1 | 4344 | * __wake_up_sync - wake up threads blocked on a waitqueue. |
1da177e4 LT |
4345 | * @q: the waitqueue |
4346 | * @mode: which threads | |
4347 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
4348 | * | |
4349 | * The sync wakeup differs that the waker knows that it will schedule | |
4350 | * away soon, so while the target thread will be woken up, it will not | |
4351 | * be migrated to another CPU - ie. the two threads are 'synchronized' | |
4352 | * with each other. This can prevent needless bouncing between CPUs. | |
4353 | * | |
4354 | * On UP it can prevent extra preemption. | |
4355 | */ | |
7ad5b3a5 | 4356 | void |
95cdf3b7 | 4357 | __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) |
1da177e4 LT |
4358 | { |
4359 | unsigned long flags; | |
4360 | int sync = 1; | |
4361 | ||
4362 | if (unlikely(!q)) | |
4363 | return; | |
4364 | ||
4365 | if (unlikely(!nr_exclusive)) | |
4366 | sync = 0; | |
4367 | ||
4368 | spin_lock_irqsave(&q->lock, flags); | |
4369 | __wake_up_common(q, mode, nr_exclusive, sync, NULL); | |
4370 | spin_unlock_irqrestore(&q->lock, flags); | |
4371 | } | |
4372 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ | |
4373 | ||
b15136e9 | 4374 | void complete(struct completion *x) |
1da177e4 LT |
4375 | { |
4376 | unsigned long flags; | |
4377 | ||
4378 | spin_lock_irqsave(&x->wait.lock, flags); | |
4379 | x->done++; | |
d9514f6c | 4380 | __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); |
1da177e4 LT |
4381 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4382 | } | |
4383 | EXPORT_SYMBOL(complete); | |
4384 | ||
b15136e9 | 4385 | void complete_all(struct completion *x) |
1da177e4 LT |
4386 | { |
4387 | unsigned long flags; | |
4388 | ||
4389 | spin_lock_irqsave(&x->wait.lock, flags); | |
4390 | x->done += UINT_MAX/2; | |
d9514f6c | 4391 | __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); |
1da177e4 LT |
4392 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4393 | } | |
4394 | EXPORT_SYMBOL(complete_all); | |
4395 | ||
8cbbe86d AK |
4396 | static inline long __sched |
4397 | do_wait_for_common(struct completion *x, long timeout, int state) | |
1da177e4 | 4398 | { |
1da177e4 LT |
4399 | if (!x->done) { |
4400 | DECLARE_WAITQUEUE(wait, current); | |
4401 | ||
4402 | wait.flags |= WQ_FLAG_EXCLUSIVE; | |
4403 | __add_wait_queue_tail(&x->wait, &wait); | |
4404 | do { | |
009e577e MW |
4405 | if ((state == TASK_INTERRUPTIBLE && |
4406 | signal_pending(current)) || | |
4407 | (state == TASK_KILLABLE && | |
4408 | fatal_signal_pending(current))) { | |
8cbbe86d AK |
4409 | __remove_wait_queue(&x->wait, &wait); |
4410 | return -ERESTARTSYS; | |
4411 | } | |
4412 | __set_current_state(state); | |
1da177e4 LT |
4413 | spin_unlock_irq(&x->wait.lock); |
4414 | timeout = schedule_timeout(timeout); | |
4415 | spin_lock_irq(&x->wait.lock); | |
4416 | if (!timeout) { | |
4417 | __remove_wait_queue(&x->wait, &wait); | |
8cbbe86d | 4418 | return timeout; |
1da177e4 LT |
4419 | } |
4420 | } while (!x->done); | |
4421 | __remove_wait_queue(&x->wait, &wait); | |
4422 | } | |
4423 | x->done--; | |
1da177e4 LT |
4424 | return timeout; |
4425 | } | |
1da177e4 | 4426 | |
8cbbe86d AK |
4427 | static long __sched |
4428 | wait_for_common(struct completion *x, long timeout, int state) | |
1da177e4 | 4429 | { |
1da177e4 LT |
4430 | might_sleep(); |
4431 | ||
4432 | spin_lock_irq(&x->wait.lock); | |
8cbbe86d | 4433 | timeout = do_wait_for_common(x, timeout, state); |
1da177e4 | 4434 | spin_unlock_irq(&x->wait.lock); |
8cbbe86d AK |
4435 | return timeout; |
4436 | } | |
1da177e4 | 4437 | |
b15136e9 | 4438 | void __sched wait_for_completion(struct completion *x) |
8cbbe86d AK |
4439 | { |
4440 | wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); | |
1da177e4 | 4441 | } |
8cbbe86d | 4442 | EXPORT_SYMBOL(wait_for_completion); |
1da177e4 | 4443 | |
b15136e9 | 4444 | unsigned long __sched |
8cbbe86d | 4445 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) |
1da177e4 | 4446 | { |
8cbbe86d | 4447 | return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); |
1da177e4 | 4448 | } |
8cbbe86d | 4449 | EXPORT_SYMBOL(wait_for_completion_timeout); |
1da177e4 | 4450 | |
8cbbe86d | 4451 | int __sched wait_for_completion_interruptible(struct completion *x) |
0fec171c | 4452 | { |
51e97990 AK |
4453 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); |
4454 | if (t == -ERESTARTSYS) | |
4455 | return t; | |
4456 | return 0; | |
0fec171c | 4457 | } |
8cbbe86d | 4458 | EXPORT_SYMBOL(wait_for_completion_interruptible); |
1da177e4 | 4459 | |
b15136e9 | 4460 | unsigned long __sched |
8cbbe86d AK |
4461 | wait_for_completion_interruptible_timeout(struct completion *x, |
4462 | unsigned long timeout) | |
0fec171c | 4463 | { |
8cbbe86d | 4464 | return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); |
0fec171c | 4465 | } |
8cbbe86d | 4466 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); |
1da177e4 | 4467 | |
009e577e MW |
4468 | int __sched wait_for_completion_killable(struct completion *x) |
4469 | { | |
4470 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); | |
4471 | if (t == -ERESTARTSYS) | |
4472 | return t; | |
4473 | return 0; | |
4474 | } | |
4475 | EXPORT_SYMBOL(wait_for_completion_killable); | |
4476 | ||
8cbbe86d AK |
4477 | static long __sched |
4478 | sleep_on_common(wait_queue_head_t *q, int state, long timeout) | |
1da177e4 | 4479 | { |
0fec171c IM |
4480 | unsigned long flags; |
4481 | wait_queue_t wait; | |
4482 | ||
4483 | init_waitqueue_entry(&wait, current); | |
1da177e4 | 4484 | |
8cbbe86d | 4485 | __set_current_state(state); |
1da177e4 | 4486 | |
8cbbe86d AK |
4487 | spin_lock_irqsave(&q->lock, flags); |
4488 | __add_wait_queue(q, &wait); | |
4489 | spin_unlock(&q->lock); | |
4490 | timeout = schedule_timeout(timeout); | |
4491 | spin_lock_irq(&q->lock); | |
4492 | __remove_wait_queue(q, &wait); | |
4493 | spin_unlock_irqrestore(&q->lock, flags); | |
4494 | ||
4495 | return timeout; | |
4496 | } | |
4497 | ||
4498 | void __sched interruptible_sleep_on(wait_queue_head_t *q) | |
4499 | { | |
4500 | sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | |
1da177e4 | 4501 | } |
1da177e4 LT |
4502 | EXPORT_SYMBOL(interruptible_sleep_on); |
4503 | ||
0fec171c | 4504 | long __sched |
95cdf3b7 | 4505 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) |
1da177e4 | 4506 | { |
8cbbe86d | 4507 | return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); |
1da177e4 | 4508 | } |
1da177e4 LT |
4509 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); |
4510 | ||
0fec171c | 4511 | void __sched sleep_on(wait_queue_head_t *q) |
1da177e4 | 4512 | { |
8cbbe86d | 4513 | sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
1da177e4 | 4514 | } |
1da177e4 LT |
4515 | EXPORT_SYMBOL(sleep_on); |
4516 | ||
0fec171c | 4517 | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) |
1da177e4 | 4518 | { |
8cbbe86d | 4519 | return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); |
1da177e4 | 4520 | } |
1da177e4 LT |
4521 | EXPORT_SYMBOL(sleep_on_timeout); |
4522 | ||
b29739f9 IM |
4523 | #ifdef CONFIG_RT_MUTEXES |
4524 | ||
4525 | /* | |
4526 | * rt_mutex_setprio - set the current priority of a task | |
4527 | * @p: task | |
4528 | * @prio: prio value (kernel-internal form) | |
4529 | * | |
4530 | * This function changes the 'effective' priority of a task. It does | |
4531 | * not touch ->normal_prio like __setscheduler(). | |
4532 | * | |
4533 | * Used by the rt_mutex code to implement priority inheritance logic. | |
4534 | */ | |
36c8b586 | 4535 | void rt_mutex_setprio(struct task_struct *p, int prio) |
b29739f9 IM |
4536 | { |
4537 | unsigned long flags; | |
83b699ed | 4538 | int oldprio, on_rq, running; |
70b97a7f | 4539 | struct rq *rq; |
cb469845 | 4540 | const struct sched_class *prev_class = p->sched_class; |
b29739f9 IM |
4541 | |
4542 | BUG_ON(prio < 0 || prio > MAX_PRIO); | |
4543 | ||
4544 | rq = task_rq_lock(p, &flags); | |
a8e504d2 | 4545 | update_rq_clock(rq); |
b29739f9 | 4546 | |
d5f9f942 | 4547 | oldprio = p->prio; |
dd41f596 | 4548 | on_rq = p->se.on_rq; |
051a1d1a | 4549 | running = task_current(rq, p); |
0e1f3483 | 4550 | if (on_rq) |
69be72c1 | 4551 | dequeue_task(rq, p, 0); |
0e1f3483 HS |
4552 | if (running) |
4553 | p->sched_class->put_prev_task(rq, p); | |
dd41f596 IM |
4554 | |
4555 | if (rt_prio(prio)) | |
4556 | p->sched_class = &rt_sched_class; | |
4557 | else | |
4558 | p->sched_class = &fair_sched_class; | |
4559 | ||
b29739f9 IM |
4560 | p->prio = prio; |
4561 | ||
0e1f3483 HS |
4562 | if (running) |
4563 | p->sched_class->set_curr_task(rq); | |
dd41f596 | 4564 | if (on_rq) { |
8159f87e | 4565 | enqueue_task(rq, p, 0); |
cb469845 SR |
4566 | |
4567 | check_class_changed(rq, p, prev_class, oldprio, running); | |
b29739f9 IM |
4568 | } |
4569 | task_rq_unlock(rq, &flags); | |
4570 | } | |
4571 | ||
4572 | #endif | |
4573 | ||
36c8b586 | 4574 | void set_user_nice(struct task_struct *p, long nice) |
1da177e4 | 4575 | { |
dd41f596 | 4576 | int old_prio, delta, on_rq; |
1da177e4 | 4577 | unsigned long flags; |
70b97a7f | 4578 | struct rq *rq; |
1da177e4 LT |
4579 | |
4580 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | |
4581 | return; | |
4582 | /* | |
4583 | * We have to be careful, if called from sys_setpriority(), | |
4584 | * the task might be in the middle of scheduling on another CPU. | |
4585 | */ | |
4586 | rq = task_rq_lock(p, &flags); | |
a8e504d2 | 4587 | update_rq_clock(rq); |
1da177e4 LT |
4588 | /* |
4589 | * The RT priorities are set via sched_setscheduler(), but we still | |
4590 | * allow the 'normal' nice value to be set - but as expected | |
4591 | * it wont have any effect on scheduling until the task is | |
dd41f596 | 4592 | * SCHED_FIFO/SCHED_RR: |
1da177e4 | 4593 | */ |
e05606d3 | 4594 | if (task_has_rt_policy(p)) { |
1da177e4 LT |
4595 | p->static_prio = NICE_TO_PRIO(nice); |
4596 | goto out_unlock; | |
4597 | } | |
dd41f596 | 4598 | on_rq = p->se.on_rq; |
6363ca57 | 4599 | if (on_rq) { |
69be72c1 | 4600 | dequeue_task(rq, p, 0); |
6363ca57 IM |
4601 | dec_load(rq, p); |
4602 | } | |
1da177e4 | 4603 | |
1da177e4 | 4604 | p->static_prio = NICE_TO_PRIO(nice); |
2dd73a4f | 4605 | set_load_weight(p); |
b29739f9 IM |
4606 | old_prio = p->prio; |
4607 | p->prio = effective_prio(p); | |
4608 | delta = p->prio - old_prio; | |
1da177e4 | 4609 | |
dd41f596 | 4610 | if (on_rq) { |
8159f87e | 4611 | enqueue_task(rq, p, 0); |
6363ca57 | 4612 | inc_load(rq, p); |
1da177e4 | 4613 | /* |
d5f9f942 AM |
4614 | * If the task increased its priority or is running and |
4615 | * lowered its priority, then reschedule its CPU: | |
1da177e4 | 4616 | */ |
d5f9f942 | 4617 | if (delta < 0 || (delta > 0 && task_running(rq, p))) |
1da177e4 LT |
4618 | resched_task(rq->curr); |
4619 | } | |
4620 | out_unlock: | |
4621 | task_rq_unlock(rq, &flags); | |
4622 | } | |
1da177e4 LT |
4623 | EXPORT_SYMBOL(set_user_nice); |
4624 | ||
e43379f1 MM |
4625 | /* |
4626 | * can_nice - check if a task can reduce its nice value | |
4627 | * @p: task | |
4628 | * @nice: nice value | |
4629 | */ | |
36c8b586 | 4630 | int can_nice(const struct task_struct *p, const int nice) |
e43379f1 | 4631 | { |
024f4747 MM |
4632 | /* convert nice value [19,-20] to rlimit style value [1,40] */ |
4633 | int nice_rlim = 20 - nice; | |
48f24c4d | 4634 | |
e43379f1 MM |
4635 | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || |
4636 | capable(CAP_SYS_NICE)); | |
4637 | } | |
4638 | ||
1da177e4 LT |
4639 | #ifdef __ARCH_WANT_SYS_NICE |
4640 | ||
4641 | /* | |
4642 | * sys_nice - change the priority of the current process. | |
4643 | * @increment: priority increment | |
4644 | * | |
4645 | * sys_setpriority is a more generic, but much slower function that | |
4646 | * does similar things. | |
4647 | */ | |
4648 | asmlinkage long sys_nice(int increment) | |
4649 | { | |
48f24c4d | 4650 | long nice, retval; |
1da177e4 LT |
4651 | |
4652 | /* | |
4653 | * Setpriority might change our priority at the same moment. | |
4654 | * We don't have to worry. Conceptually one call occurs first | |
4655 | * and we have a single winner. | |
4656 | */ | |
e43379f1 MM |
4657 | if (increment < -40) |
4658 | increment = -40; | |
1da177e4 LT |
4659 | if (increment > 40) |
4660 | increment = 40; | |
4661 | ||
4662 | nice = PRIO_TO_NICE(current->static_prio) + increment; | |
4663 | if (nice < -20) | |
4664 | nice = -20; | |
4665 | if (nice > 19) | |
4666 | nice = 19; | |
4667 | ||
e43379f1 MM |
4668 | if (increment < 0 && !can_nice(current, nice)) |
4669 | return -EPERM; | |
4670 | ||
1da177e4 LT |
4671 | retval = security_task_setnice(current, nice); |
4672 | if (retval) | |
4673 | return retval; | |
4674 | ||
4675 | set_user_nice(current, nice); | |
4676 | return 0; | |
4677 | } | |
4678 | ||
4679 | #endif | |
4680 | ||
4681 | /** | |
4682 | * task_prio - return the priority value of a given task. | |
4683 | * @p: the task in question. | |
4684 | * | |
4685 | * This is the priority value as seen by users in /proc. | |
4686 | * RT tasks are offset by -200. Normal tasks are centered | |
4687 | * around 0, value goes from -16 to +15. | |
4688 | */ | |
36c8b586 | 4689 | int task_prio(const struct task_struct *p) |
1da177e4 LT |
4690 | { |
4691 | return p->prio - MAX_RT_PRIO; | |
4692 | } | |
4693 | ||
4694 | /** | |
4695 | * task_nice - return the nice value of a given task. | |
4696 | * @p: the task in question. | |
4697 | */ | |
36c8b586 | 4698 | int task_nice(const struct task_struct *p) |
1da177e4 LT |
4699 | { |
4700 | return TASK_NICE(p); | |
4701 | } | |
150d8bed | 4702 | EXPORT_SYMBOL(task_nice); |
1da177e4 LT |
4703 | |
4704 | /** | |
4705 | * idle_cpu - is a given cpu idle currently? | |
4706 | * @cpu: the processor in question. | |
4707 | */ | |
4708 | int idle_cpu(int cpu) | |
4709 | { | |
4710 | return cpu_curr(cpu) == cpu_rq(cpu)->idle; | |
4711 | } | |
4712 | ||
1da177e4 LT |
4713 | /** |
4714 | * idle_task - return the idle task for a given cpu. | |
4715 | * @cpu: the processor in question. | |
4716 | */ | |
36c8b586 | 4717 | struct task_struct *idle_task(int cpu) |
1da177e4 LT |
4718 | { |
4719 | return cpu_rq(cpu)->idle; | |
4720 | } | |
4721 | ||
4722 | /** | |
4723 | * find_process_by_pid - find a process with a matching PID value. | |
4724 | * @pid: the pid in question. | |
4725 | */ | |
a9957449 | 4726 | static struct task_struct *find_process_by_pid(pid_t pid) |
1da177e4 | 4727 | { |
228ebcbe | 4728 | return pid ? find_task_by_vpid(pid) : current; |
1da177e4 LT |
4729 | } |
4730 | ||
4731 | /* Actually do priority change: must hold rq lock. */ | |
dd41f596 IM |
4732 | static void |
4733 | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | |
1da177e4 | 4734 | { |
dd41f596 | 4735 | BUG_ON(p->se.on_rq); |
48f24c4d | 4736 | |
1da177e4 | 4737 | p->policy = policy; |
dd41f596 IM |
4738 | switch (p->policy) { |
4739 | case SCHED_NORMAL: | |
4740 | case SCHED_BATCH: | |
4741 | case SCHED_IDLE: | |
4742 | p->sched_class = &fair_sched_class; | |
4743 | break; | |
4744 | case SCHED_FIFO: | |
4745 | case SCHED_RR: | |
4746 | p->sched_class = &rt_sched_class; | |
4747 | break; | |
4748 | } | |
4749 | ||
1da177e4 | 4750 | p->rt_priority = prio; |
b29739f9 IM |
4751 | p->normal_prio = normal_prio(p); |
4752 | /* we are holding p->pi_lock already */ | |
4753 | p->prio = rt_mutex_getprio(p); | |
2dd73a4f | 4754 | set_load_weight(p); |
1da177e4 LT |
4755 | } |
4756 | ||
4757 | /** | |
72fd4a35 | 4758 | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. |
1da177e4 LT |
4759 | * @p: the task in question. |
4760 | * @policy: new policy. | |
4761 | * @param: structure containing the new RT priority. | |
5fe1d75f | 4762 | * |
72fd4a35 | 4763 | * NOTE that the task may be already dead. |
1da177e4 | 4764 | */ |
95cdf3b7 IM |
4765 | int sched_setscheduler(struct task_struct *p, int policy, |
4766 | struct sched_param *param) | |
1da177e4 | 4767 | { |
83b699ed | 4768 | int retval, oldprio, oldpolicy = -1, on_rq, running; |
1da177e4 | 4769 | unsigned long flags; |
cb469845 | 4770 | const struct sched_class *prev_class = p->sched_class; |
70b97a7f | 4771 | struct rq *rq; |
1da177e4 | 4772 | |
66e5393a SR |
4773 | /* may grab non-irq protected spin_locks */ |
4774 | BUG_ON(in_interrupt()); | |
1da177e4 LT |
4775 | recheck: |
4776 | /* double check policy once rq lock held */ | |
4777 | if (policy < 0) | |
4778 | policy = oldpolicy = p->policy; | |
4779 | else if (policy != SCHED_FIFO && policy != SCHED_RR && | |
dd41f596 IM |
4780 | policy != SCHED_NORMAL && policy != SCHED_BATCH && |
4781 | policy != SCHED_IDLE) | |
b0a9499c | 4782 | return -EINVAL; |
1da177e4 LT |
4783 | /* |
4784 | * Valid priorities for SCHED_FIFO and SCHED_RR are | |
dd41f596 IM |
4785 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, |
4786 | * SCHED_BATCH and SCHED_IDLE is 0. | |
1da177e4 LT |
4787 | */ |
4788 | if (param->sched_priority < 0 || | |
95cdf3b7 | 4789 | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || |
d46523ea | 4790 | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) |
1da177e4 | 4791 | return -EINVAL; |
e05606d3 | 4792 | if (rt_policy(policy) != (param->sched_priority != 0)) |
1da177e4 LT |
4793 | return -EINVAL; |
4794 | ||
37e4ab3f OC |
4795 | /* |
4796 | * Allow unprivileged RT tasks to decrease priority: | |
4797 | */ | |
4798 | if (!capable(CAP_SYS_NICE)) { | |
e05606d3 | 4799 | if (rt_policy(policy)) { |
8dc3e909 | 4800 | unsigned long rlim_rtprio; |
8dc3e909 ON |
4801 | |
4802 | if (!lock_task_sighand(p, &flags)) | |
4803 | return -ESRCH; | |
4804 | rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; | |
4805 | unlock_task_sighand(p, &flags); | |
4806 | ||
4807 | /* can't set/change the rt policy */ | |
4808 | if (policy != p->policy && !rlim_rtprio) | |
4809 | return -EPERM; | |
4810 | ||
4811 | /* can't increase priority */ | |
4812 | if (param->sched_priority > p->rt_priority && | |
4813 | param->sched_priority > rlim_rtprio) | |
4814 | return -EPERM; | |
4815 | } | |
dd41f596 IM |
4816 | /* |
4817 | * Like positive nice levels, dont allow tasks to | |
4818 | * move out of SCHED_IDLE either: | |
4819 | */ | |
4820 | if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) | |
4821 | return -EPERM; | |
5fe1d75f | 4822 | |
37e4ab3f OC |
4823 | /* can't change other user's priorities */ |
4824 | if ((current->euid != p->euid) && | |
4825 | (current->euid != p->uid)) | |
4826 | return -EPERM; | |
4827 | } | |
1da177e4 | 4828 | |
b68aa230 PZ |
4829 | #ifdef CONFIG_RT_GROUP_SCHED |
4830 | /* | |
4831 | * Do not allow realtime tasks into groups that have no runtime | |
4832 | * assigned. | |
4833 | */ | |
d0b27fa7 | 4834 | if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0) |
b68aa230 PZ |
4835 | return -EPERM; |
4836 | #endif | |
4837 | ||
1da177e4 LT |
4838 | retval = security_task_setscheduler(p, policy, param); |
4839 | if (retval) | |
4840 | return retval; | |
b29739f9 IM |
4841 | /* |
4842 | * make sure no PI-waiters arrive (or leave) while we are | |
4843 | * changing the priority of the task: | |
4844 | */ | |
4845 | spin_lock_irqsave(&p->pi_lock, flags); | |
1da177e4 LT |
4846 | /* |
4847 | * To be able to change p->policy safely, the apropriate | |
4848 | * runqueue lock must be held. | |
4849 | */ | |
b29739f9 | 4850 | rq = __task_rq_lock(p); |
1da177e4 LT |
4851 | /* recheck policy now with rq lock held */ |
4852 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | |
4853 | policy = oldpolicy = -1; | |
b29739f9 IM |
4854 | __task_rq_unlock(rq); |
4855 | spin_unlock_irqrestore(&p->pi_lock, flags); | |
1da177e4 LT |
4856 | goto recheck; |
4857 | } | |
2daa3577 | 4858 | update_rq_clock(rq); |
dd41f596 | 4859 | on_rq = p->se.on_rq; |
051a1d1a | 4860 | running = task_current(rq, p); |
0e1f3483 | 4861 | if (on_rq) |
2e1cb74a | 4862 | deactivate_task(rq, p, 0); |
0e1f3483 HS |
4863 | if (running) |
4864 | p->sched_class->put_prev_task(rq, p); | |
f6b53205 | 4865 | |
1da177e4 | 4866 | oldprio = p->prio; |
dd41f596 | 4867 | __setscheduler(rq, p, policy, param->sched_priority); |
f6b53205 | 4868 | |
0e1f3483 HS |
4869 | if (running) |
4870 | p->sched_class->set_curr_task(rq); | |
dd41f596 IM |
4871 | if (on_rq) { |
4872 | activate_task(rq, p, 0); | |
cb469845 SR |
4873 | |
4874 | check_class_changed(rq, p, prev_class, oldprio, running); | |
1da177e4 | 4875 | } |
b29739f9 IM |
4876 | __task_rq_unlock(rq); |
4877 | spin_unlock_irqrestore(&p->pi_lock, flags); | |
4878 | ||
95e02ca9 TG |
4879 | rt_mutex_adjust_pi(p); |
4880 | ||
1da177e4 LT |
4881 | return 0; |
4882 | } | |
4883 | EXPORT_SYMBOL_GPL(sched_setscheduler); | |
4884 | ||
95cdf3b7 IM |
4885 | static int |
4886 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | |
1da177e4 | 4887 | { |
1da177e4 LT |
4888 | struct sched_param lparam; |
4889 | struct task_struct *p; | |
36c8b586 | 4890 | int retval; |
1da177e4 LT |
4891 | |
4892 | if (!param || pid < 0) | |
4893 | return -EINVAL; | |
4894 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | |
4895 | return -EFAULT; | |
5fe1d75f ON |
4896 | |
4897 | rcu_read_lock(); | |
4898 | retval = -ESRCH; | |
1da177e4 | 4899 | p = find_process_by_pid(pid); |
5fe1d75f ON |
4900 | if (p != NULL) |
4901 | retval = sched_setscheduler(p, policy, &lparam); | |
4902 | rcu_read_unlock(); | |
36c8b586 | 4903 | |
1da177e4 LT |
4904 | return retval; |
4905 | } | |
4906 | ||
4907 | /** | |
4908 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | |
4909 | * @pid: the pid in question. | |
4910 | * @policy: new policy. | |
4911 | * @param: structure containing the new RT priority. | |
4912 | */ | |
41a2d6cf IM |
4913 | asmlinkage long |
4914 | sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | |
1da177e4 | 4915 | { |
c21761f1 JB |
4916 | /* negative values for policy are not valid */ |
4917 | if (policy < 0) | |
4918 | return -EINVAL; | |
4919 | ||
1da177e4 LT |
4920 | return do_sched_setscheduler(pid, policy, param); |
4921 | } | |
4922 | ||
4923 | /** | |
4924 | * sys_sched_setparam - set/change the RT priority of a thread | |
4925 | * @pid: the pid in question. | |
4926 | * @param: structure containing the new RT priority. | |
4927 | */ | |
4928 | asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) | |
4929 | { | |
4930 | return do_sched_setscheduler(pid, -1, param); | |
4931 | } | |
4932 | ||
4933 | /** | |
4934 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | |
4935 | * @pid: the pid in question. | |
4936 | */ | |
4937 | asmlinkage long sys_sched_getscheduler(pid_t pid) | |
4938 | { | |
36c8b586 | 4939 | struct task_struct *p; |
3a5c359a | 4940 | int retval; |
1da177e4 LT |
4941 | |
4942 | if (pid < 0) | |
3a5c359a | 4943 | return -EINVAL; |
1da177e4 LT |
4944 | |
4945 | retval = -ESRCH; | |
4946 | read_lock(&tasklist_lock); | |
4947 | p = find_process_by_pid(pid); | |
4948 | if (p) { | |
4949 | retval = security_task_getscheduler(p); | |
4950 | if (!retval) | |
4951 | retval = p->policy; | |
4952 | } | |
4953 | read_unlock(&tasklist_lock); | |
1da177e4 LT |
4954 | return retval; |
4955 | } | |
4956 | ||
4957 | /** | |
4958 | * sys_sched_getscheduler - get the RT priority of a thread | |
4959 | * @pid: the pid in question. | |
4960 | * @param: structure containing the RT priority. | |
4961 | */ | |
4962 | asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) | |
4963 | { | |
4964 | struct sched_param lp; | |
36c8b586 | 4965 | struct task_struct *p; |
3a5c359a | 4966 | int retval; |
1da177e4 LT |
4967 | |
4968 | if (!param || pid < 0) | |
3a5c359a | 4969 | return -EINVAL; |
1da177e4 LT |
4970 | |
4971 | read_lock(&tasklist_lock); | |
4972 | p = find_process_by_pid(pid); | |
4973 | retval = -ESRCH; | |
4974 | if (!p) | |
4975 | goto out_unlock; | |
4976 | ||
4977 | retval = security_task_getscheduler(p); | |
4978 | if (retval) | |
4979 | goto out_unlock; | |
4980 | ||
4981 | lp.sched_priority = p->rt_priority; | |
4982 | read_unlock(&tasklist_lock); | |
4983 | ||
4984 | /* | |
4985 | * This one might sleep, we cannot do it with a spinlock held ... | |
4986 | */ | |
4987 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | |
4988 | ||
1da177e4 LT |
4989 | return retval; |
4990 | ||
4991 | out_unlock: | |
4992 | read_unlock(&tasklist_lock); | |
4993 | return retval; | |
4994 | } | |
4995 | ||
b53e921b | 4996 | long sched_setaffinity(pid_t pid, const cpumask_t *in_mask) |
1da177e4 | 4997 | { |
1da177e4 | 4998 | cpumask_t cpus_allowed; |
b53e921b | 4999 | cpumask_t new_mask = *in_mask; |
36c8b586 IM |
5000 | struct task_struct *p; |
5001 | int retval; | |
1da177e4 | 5002 | |
95402b38 | 5003 | get_online_cpus(); |
1da177e4 LT |
5004 | read_lock(&tasklist_lock); |
5005 | ||
5006 | p = find_process_by_pid(pid); | |
5007 | if (!p) { | |
5008 | read_unlock(&tasklist_lock); | |
95402b38 | 5009 | put_online_cpus(); |
1da177e4 LT |
5010 | return -ESRCH; |
5011 | } | |
5012 | ||
5013 | /* | |
5014 | * It is not safe to call set_cpus_allowed with the | |
41a2d6cf | 5015 | * tasklist_lock held. We will bump the task_struct's |
1da177e4 LT |
5016 | * usage count and then drop tasklist_lock. |
5017 | */ | |
5018 | get_task_struct(p); | |
5019 | read_unlock(&tasklist_lock); | |
5020 | ||
5021 | retval = -EPERM; | |
5022 | if ((current->euid != p->euid) && (current->euid != p->uid) && | |
5023 | !capable(CAP_SYS_NICE)) | |
5024 | goto out_unlock; | |
5025 | ||
e7834f8f DQ |
5026 | retval = security_task_setscheduler(p, 0, NULL); |
5027 | if (retval) | |
5028 | goto out_unlock; | |
5029 | ||
f9a86fcb | 5030 | cpuset_cpus_allowed(p, &cpus_allowed); |
1da177e4 | 5031 | cpus_and(new_mask, new_mask, cpus_allowed); |
8707d8b8 | 5032 | again: |
7c16ec58 | 5033 | retval = set_cpus_allowed_ptr(p, &new_mask); |
1da177e4 | 5034 | |
8707d8b8 | 5035 | if (!retval) { |
f9a86fcb | 5036 | cpuset_cpus_allowed(p, &cpus_allowed); |
8707d8b8 PM |
5037 | if (!cpus_subset(new_mask, cpus_allowed)) { |
5038 | /* | |
5039 | * We must have raced with a concurrent cpuset | |
5040 | * update. Just reset the cpus_allowed to the | |
5041 | * cpuset's cpus_allowed | |
5042 | */ | |
5043 | new_mask = cpus_allowed; | |
5044 | goto again; | |
5045 | } | |
5046 | } | |
1da177e4 LT |
5047 | out_unlock: |
5048 | put_task_struct(p); | |
95402b38 | 5049 | put_online_cpus(); |
1da177e4 LT |
5050 | return retval; |
5051 | } | |
5052 | ||
5053 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | |
5054 | cpumask_t *new_mask) | |
5055 | { | |
5056 | if (len < sizeof(cpumask_t)) { | |
5057 | memset(new_mask, 0, sizeof(cpumask_t)); | |
5058 | } else if (len > sizeof(cpumask_t)) { | |
5059 | len = sizeof(cpumask_t); | |
5060 | } | |
5061 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | |
5062 | } | |
5063 | ||
5064 | /** | |
5065 | * sys_sched_setaffinity - set the cpu affinity of a process | |
5066 | * @pid: pid of the process | |
5067 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
5068 | * @user_mask_ptr: user-space pointer to the new cpu mask | |
5069 | */ | |
5070 | asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, | |
5071 | unsigned long __user *user_mask_ptr) | |
5072 | { | |
5073 | cpumask_t new_mask; | |
5074 | int retval; | |
5075 | ||
5076 | retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); | |
5077 | if (retval) | |
5078 | return retval; | |
5079 | ||
b53e921b | 5080 | return sched_setaffinity(pid, &new_mask); |
1da177e4 LT |
5081 | } |
5082 | ||
1da177e4 LT |
5083 | long sched_getaffinity(pid_t pid, cpumask_t *mask) |
5084 | { | |
36c8b586 | 5085 | struct task_struct *p; |
1da177e4 | 5086 | int retval; |
1da177e4 | 5087 | |
95402b38 | 5088 | get_online_cpus(); |
1da177e4 LT |
5089 | read_lock(&tasklist_lock); |
5090 | ||
5091 | retval = -ESRCH; | |
5092 | p = find_process_by_pid(pid); | |
5093 | if (!p) | |
5094 | goto out_unlock; | |
5095 | ||
e7834f8f DQ |
5096 | retval = security_task_getscheduler(p); |
5097 | if (retval) | |
5098 | goto out_unlock; | |
5099 | ||
2f7016d9 | 5100 | cpus_and(*mask, p->cpus_allowed, cpu_online_map); |
1da177e4 LT |
5101 | |
5102 | out_unlock: | |
5103 | read_unlock(&tasklist_lock); | |
95402b38 | 5104 | put_online_cpus(); |
1da177e4 | 5105 | |
9531b62f | 5106 | return retval; |
1da177e4 LT |
5107 | } |
5108 | ||
5109 | /** | |
5110 | * sys_sched_getaffinity - get the cpu affinity of a process | |
5111 | * @pid: pid of the process | |
5112 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
5113 | * @user_mask_ptr: user-space pointer to hold the current cpu mask | |
5114 | */ | |
5115 | asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, | |
5116 | unsigned long __user *user_mask_ptr) | |
5117 | { | |
5118 | int ret; | |
5119 | cpumask_t mask; | |
5120 | ||
5121 | if (len < sizeof(cpumask_t)) | |
5122 | return -EINVAL; | |
5123 | ||
5124 | ret = sched_getaffinity(pid, &mask); | |
5125 | if (ret < 0) | |
5126 | return ret; | |
5127 | ||
5128 | if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) | |
5129 | return -EFAULT; | |
5130 | ||
5131 | return sizeof(cpumask_t); | |
5132 | } | |
5133 | ||
5134 | /** | |
5135 | * sys_sched_yield - yield the current processor to other threads. | |
5136 | * | |
dd41f596 IM |
5137 | * This function yields the current CPU to other tasks. If there are no |
5138 | * other threads running on this CPU then this function will return. | |
1da177e4 LT |
5139 | */ |
5140 | asmlinkage long sys_sched_yield(void) | |
5141 | { | |
70b97a7f | 5142 | struct rq *rq = this_rq_lock(); |
1da177e4 | 5143 | |
2d72376b | 5144 | schedstat_inc(rq, yld_count); |
4530d7ab | 5145 | current->sched_class->yield_task(rq); |
1da177e4 LT |
5146 | |
5147 | /* | |
5148 | * Since we are going to call schedule() anyway, there's | |
5149 | * no need to preempt or enable interrupts: | |
5150 | */ | |
5151 | __release(rq->lock); | |
8a25d5de | 5152 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
1da177e4 LT |
5153 | _raw_spin_unlock(&rq->lock); |
5154 | preempt_enable_no_resched(); | |
5155 | ||
5156 | schedule(); | |
5157 | ||
5158 | return 0; | |
5159 | } | |
5160 | ||
e7b38404 | 5161 | static void __cond_resched(void) |
1da177e4 | 5162 | { |
8e0a43d8 IM |
5163 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP |
5164 | __might_sleep(__FILE__, __LINE__); | |
5165 | #endif | |
5bbcfd90 IM |
5166 | /* |
5167 | * The BKS might be reacquired before we have dropped | |
5168 | * PREEMPT_ACTIVE, which could trigger a second | |
5169 | * cond_resched() call. | |
5170 | */ | |
1da177e4 LT |
5171 | do { |
5172 | add_preempt_count(PREEMPT_ACTIVE); | |
5173 | schedule(); | |
5174 | sub_preempt_count(PREEMPT_ACTIVE); | |
5175 | } while (need_resched()); | |
5176 | } | |
5177 | ||
02b67cc3 | 5178 | int __sched _cond_resched(void) |
1da177e4 | 5179 | { |
9414232f IM |
5180 | if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) && |
5181 | system_state == SYSTEM_RUNNING) { | |
1da177e4 LT |
5182 | __cond_resched(); |
5183 | return 1; | |
5184 | } | |
5185 | return 0; | |
5186 | } | |
02b67cc3 | 5187 | EXPORT_SYMBOL(_cond_resched); |
1da177e4 LT |
5188 | |
5189 | /* | |
5190 | * cond_resched_lock() - if a reschedule is pending, drop the given lock, | |
5191 | * call schedule, and on return reacquire the lock. | |
5192 | * | |
41a2d6cf | 5193 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level |
1da177e4 LT |
5194 | * operations here to prevent schedule() from being called twice (once via |
5195 | * spin_unlock(), once by hand). | |
5196 | */ | |
95cdf3b7 | 5197 | int cond_resched_lock(spinlock_t *lock) |
1da177e4 | 5198 | { |
95c354fe | 5199 | int resched = need_resched() && system_state == SYSTEM_RUNNING; |
6df3cecb JK |
5200 | int ret = 0; |
5201 | ||
95c354fe | 5202 | if (spin_needbreak(lock) || resched) { |
1da177e4 | 5203 | spin_unlock(lock); |
95c354fe NP |
5204 | if (resched && need_resched()) |
5205 | __cond_resched(); | |
5206 | else | |
5207 | cpu_relax(); | |
6df3cecb | 5208 | ret = 1; |
1da177e4 | 5209 | spin_lock(lock); |
1da177e4 | 5210 | } |
6df3cecb | 5211 | return ret; |
1da177e4 | 5212 | } |
1da177e4 LT |
5213 | EXPORT_SYMBOL(cond_resched_lock); |
5214 | ||
5215 | int __sched cond_resched_softirq(void) | |
5216 | { | |
5217 | BUG_ON(!in_softirq()); | |
5218 | ||
9414232f | 5219 | if (need_resched() && system_state == SYSTEM_RUNNING) { |
98d82567 | 5220 | local_bh_enable(); |
1da177e4 LT |
5221 | __cond_resched(); |
5222 | local_bh_disable(); | |
5223 | return 1; | |
5224 | } | |
5225 | return 0; | |
5226 | } | |
1da177e4 LT |
5227 | EXPORT_SYMBOL(cond_resched_softirq); |
5228 | ||
1da177e4 LT |
5229 | /** |
5230 | * yield - yield the current processor to other threads. | |
5231 | * | |
72fd4a35 | 5232 | * This is a shortcut for kernel-space yielding - it marks the |
1da177e4 LT |
5233 | * thread runnable and calls sys_sched_yield(). |
5234 | */ | |
5235 | void __sched yield(void) | |
5236 | { | |
5237 | set_current_state(TASK_RUNNING); | |
5238 | sys_sched_yield(); | |
5239 | } | |
1da177e4 LT |
5240 | EXPORT_SYMBOL(yield); |
5241 | ||
5242 | /* | |
41a2d6cf | 5243 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so |
1da177e4 LT |
5244 | * that process accounting knows that this is a task in IO wait state. |
5245 | * | |
5246 | * But don't do that if it is a deliberate, throttling IO wait (this task | |
5247 | * has set its backing_dev_info: the queue against which it should throttle) | |
5248 | */ | |
5249 | void __sched io_schedule(void) | |
5250 | { | |
70b97a7f | 5251 | struct rq *rq = &__raw_get_cpu_var(runqueues); |
1da177e4 | 5252 | |
0ff92245 | 5253 | delayacct_blkio_start(); |
1da177e4 LT |
5254 | atomic_inc(&rq->nr_iowait); |
5255 | schedule(); | |
5256 | atomic_dec(&rq->nr_iowait); | |
0ff92245 | 5257 | delayacct_blkio_end(); |
1da177e4 | 5258 | } |
1da177e4 LT |
5259 | EXPORT_SYMBOL(io_schedule); |
5260 | ||
5261 | long __sched io_schedule_timeout(long timeout) | |
5262 | { | |
70b97a7f | 5263 | struct rq *rq = &__raw_get_cpu_var(runqueues); |
1da177e4 LT |
5264 | long ret; |
5265 | ||
0ff92245 | 5266 | delayacct_blkio_start(); |
1da177e4 LT |
5267 | atomic_inc(&rq->nr_iowait); |
5268 | ret = schedule_timeout(timeout); | |
5269 | atomic_dec(&rq->nr_iowait); | |
0ff92245 | 5270 | delayacct_blkio_end(); |
1da177e4 LT |
5271 | return ret; |
5272 | } | |
5273 | ||
5274 | /** | |
5275 | * sys_sched_get_priority_max - return maximum RT priority. | |
5276 | * @policy: scheduling class. | |
5277 | * | |
5278 | * this syscall returns the maximum rt_priority that can be used | |
5279 | * by a given scheduling class. | |
5280 | */ | |
5281 | asmlinkage long sys_sched_get_priority_max(int policy) | |
5282 | { | |
5283 | int ret = -EINVAL; | |
5284 | ||
5285 | switch (policy) { | |
5286 | case SCHED_FIFO: | |
5287 | case SCHED_RR: | |
5288 | ret = MAX_USER_RT_PRIO-1; | |
5289 | break; | |
5290 | case SCHED_NORMAL: | |
b0a9499c | 5291 | case SCHED_BATCH: |
dd41f596 | 5292 | case SCHED_IDLE: |
1da177e4 LT |
5293 | ret = 0; |
5294 | break; | |
5295 | } | |
5296 | return ret; | |
5297 | } | |
5298 | ||
5299 | /** | |
5300 | * sys_sched_get_priority_min - return minimum RT priority. | |
5301 | * @policy: scheduling class. | |
5302 | * | |
5303 | * this syscall returns the minimum rt_priority that can be used | |
5304 | * by a given scheduling class. | |
5305 | */ | |
5306 | asmlinkage long sys_sched_get_priority_min(int policy) | |
5307 | { | |
5308 | int ret = -EINVAL; | |
5309 | ||
5310 | switch (policy) { | |
5311 | case SCHED_FIFO: | |
5312 | case SCHED_RR: | |
5313 | ret = 1; | |
5314 | break; | |
5315 | case SCHED_NORMAL: | |
b0a9499c | 5316 | case SCHED_BATCH: |
dd41f596 | 5317 | case SCHED_IDLE: |
1da177e4 LT |
5318 | ret = 0; |
5319 | } | |
5320 | return ret; | |
5321 | } | |
5322 | ||
5323 | /** | |
5324 | * sys_sched_rr_get_interval - return the default timeslice of a process. | |
5325 | * @pid: pid of the process. | |
5326 | * @interval: userspace pointer to the timeslice value. | |
5327 | * | |
5328 | * this syscall writes the default timeslice value of a given process | |
5329 | * into the user-space timespec buffer. A value of '0' means infinity. | |
5330 | */ | |
5331 | asmlinkage | |
5332 | long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) | |
5333 | { | |
36c8b586 | 5334 | struct task_struct *p; |
a4ec24b4 | 5335 | unsigned int time_slice; |
3a5c359a | 5336 | int retval; |
1da177e4 | 5337 | struct timespec t; |
1da177e4 LT |
5338 | |
5339 | if (pid < 0) | |
3a5c359a | 5340 | return -EINVAL; |
1da177e4 LT |
5341 | |
5342 | retval = -ESRCH; | |
5343 | read_lock(&tasklist_lock); | |
5344 | p = find_process_by_pid(pid); | |
5345 | if (!p) | |
5346 | goto out_unlock; | |
5347 | ||
5348 | retval = security_task_getscheduler(p); | |
5349 | if (retval) | |
5350 | goto out_unlock; | |
5351 | ||
77034937 IM |
5352 | /* |
5353 | * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER | |
5354 | * tasks that are on an otherwise idle runqueue: | |
5355 | */ | |
5356 | time_slice = 0; | |
5357 | if (p->policy == SCHED_RR) { | |
a4ec24b4 | 5358 | time_slice = DEF_TIMESLICE; |
1868f958 | 5359 | } else if (p->policy != SCHED_FIFO) { |
a4ec24b4 DA |
5360 | struct sched_entity *se = &p->se; |
5361 | unsigned long flags; | |
5362 | struct rq *rq; | |
5363 | ||
5364 | rq = task_rq_lock(p, &flags); | |
77034937 IM |
5365 | if (rq->cfs.load.weight) |
5366 | time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | |
a4ec24b4 DA |
5367 | task_rq_unlock(rq, &flags); |
5368 | } | |
1da177e4 | 5369 | read_unlock(&tasklist_lock); |
a4ec24b4 | 5370 | jiffies_to_timespec(time_slice, &t); |
1da177e4 | 5371 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
1da177e4 | 5372 | return retval; |
3a5c359a | 5373 | |
1da177e4 LT |
5374 | out_unlock: |
5375 | read_unlock(&tasklist_lock); | |
5376 | return retval; | |
5377 | } | |
5378 | ||
2ed6e34f | 5379 | static const char stat_nam[] = "RSDTtZX"; |
36c8b586 | 5380 | |
82a1fcb9 | 5381 | void sched_show_task(struct task_struct *p) |
1da177e4 | 5382 | { |
1da177e4 | 5383 | unsigned long free = 0; |
36c8b586 | 5384 | unsigned state; |
1da177e4 | 5385 | |
1da177e4 | 5386 | state = p->state ? __ffs(p->state) + 1 : 0; |
cc4ea795 | 5387 | printk(KERN_INFO "%-13.13s %c", p->comm, |
2ed6e34f | 5388 | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); |
4bd77321 | 5389 | #if BITS_PER_LONG == 32 |
1da177e4 | 5390 | if (state == TASK_RUNNING) |
cc4ea795 | 5391 | printk(KERN_CONT " running "); |
1da177e4 | 5392 | else |
cc4ea795 | 5393 | printk(KERN_CONT " %08lx ", thread_saved_pc(p)); |
1da177e4 LT |
5394 | #else |
5395 | if (state == TASK_RUNNING) | |
cc4ea795 | 5396 | printk(KERN_CONT " running task "); |
1da177e4 | 5397 | else |
cc4ea795 | 5398 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); |
1da177e4 LT |
5399 | #endif |
5400 | #ifdef CONFIG_DEBUG_STACK_USAGE | |
5401 | { | |
10ebffde | 5402 | unsigned long *n = end_of_stack(p); |
1da177e4 LT |
5403 | while (!*n) |
5404 | n++; | |
10ebffde | 5405 | free = (unsigned long)n - (unsigned long)end_of_stack(p); |
1da177e4 LT |
5406 | } |
5407 | #endif | |
ba25f9dc | 5408 | printk(KERN_CONT "%5lu %5d %6d\n", free, |
fcfd50af | 5409 | task_pid_nr(p), task_pid_nr(p->real_parent)); |
1da177e4 | 5410 | |
5fb5e6de | 5411 | show_stack(p, NULL); |
1da177e4 LT |
5412 | } |
5413 | ||
e59e2ae2 | 5414 | void show_state_filter(unsigned long state_filter) |
1da177e4 | 5415 | { |
36c8b586 | 5416 | struct task_struct *g, *p; |
1da177e4 | 5417 | |
4bd77321 IM |
5418 | #if BITS_PER_LONG == 32 |
5419 | printk(KERN_INFO | |
5420 | " task PC stack pid father\n"); | |
1da177e4 | 5421 | #else |
4bd77321 IM |
5422 | printk(KERN_INFO |
5423 | " task PC stack pid father\n"); | |
1da177e4 LT |
5424 | #endif |
5425 | read_lock(&tasklist_lock); | |
5426 | do_each_thread(g, p) { | |
5427 | /* | |
5428 | * reset the NMI-timeout, listing all files on a slow | |
5429 | * console might take alot of time: | |
5430 | */ | |
5431 | touch_nmi_watchdog(); | |
39bc89fd | 5432 | if (!state_filter || (p->state & state_filter)) |
82a1fcb9 | 5433 | sched_show_task(p); |
1da177e4 LT |
5434 | } while_each_thread(g, p); |
5435 | ||
04c9167f JF |
5436 | touch_all_softlockup_watchdogs(); |
5437 | ||
dd41f596 IM |
5438 | #ifdef CONFIG_SCHED_DEBUG |
5439 | sysrq_sched_debug_show(); | |
5440 | #endif | |
1da177e4 | 5441 | read_unlock(&tasklist_lock); |
e59e2ae2 IM |
5442 | /* |
5443 | * Only show locks if all tasks are dumped: | |
5444 | */ | |
5445 | if (state_filter == -1) | |
5446 | debug_show_all_locks(); | |
1da177e4 LT |
5447 | } |
5448 | ||
1df21055 IM |
5449 | void __cpuinit init_idle_bootup_task(struct task_struct *idle) |
5450 | { | |
dd41f596 | 5451 | idle->sched_class = &idle_sched_class; |
1df21055 IM |
5452 | } |
5453 | ||
f340c0d1 IM |
5454 | /** |
5455 | * init_idle - set up an idle thread for a given CPU | |
5456 | * @idle: task in question | |
5457 | * @cpu: cpu the idle task belongs to | |
5458 | * | |
5459 | * NOTE: this function does not set the idle thread's NEED_RESCHED | |
5460 | * flag, to make booting more robust. | |
5461 | */ | |
5c1e1767 | 5462 | void __cpuinit init_idle(struct task_struct *idle, int cpu) |
1da177e4 | 5463 | { |
70b97a7f | 5464 | struct rq *rq = cpu_rq(cpu); |
1da177e4 LT |
5465 | unsigned long flags; |
5466 | ||
dd41f596 IM |
5467 | __sched_fork(idle); |
5468 | idle->se.exec_start = sched_clock(); | |
5469 | ||
b29739f9 | 5470 | idle->prio = idle->normal_prio = MAX_PRIO; |
1da177e4 | 5471 | idle->cpus_allowed = cpumask_of_cpu(cpu); |
dd41f596 | 5472 | __set_task_cpu(idle, cpu); |
1da177e4 LT |
5473 | |
5474 | spin_lock_irqsave(&rq->lock, flags); | |
5475 | rq->curr = rq->idle = idle; | |
4866cde0 NP |
5476 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
5477 | idle->oncpu = 1; | |
5478 | #endif | |
1da177e4 LT |
5479 | spin_unlock_irqrestore(&rq->lock, flags); |
5480 | ||
5481 | /* Set the preempt count _outside_ the spinlocks! */ | |
8e3e076c LT |
5482 | #if defined(CONFIG_PREEMPT) |
5483 | task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); | |
5484 | #else | |
a1261f54 | 5485 | task_thread_info(idle)->preempt_count = 0; |
8e3e076c | 5486 | #endif |
dd41f596 IM |
5487 | /* |
5488 | * The idle tasks have their own, simple scheduling class: | |
5489 | */ | |
5490 | idle->sched_class = &idle_sched_class; | |
1da177e4 LT |
5491 | } |
5492 | ||
5493 | /* | |
5494 | * In a system that switches off the HZ timer nohz_cpu_mask | |
5495 | * indicates which cpus entered this state. This is used | |
5496 | * in the rcu update to wait only for active cpus. For system | |
5497 | * which do not switch off the HZ timer nohz_cpu_mask should | |
5498 | * always be CPU_MASK_NONE. | |
5499 | */ | |
5500 | cpumask_t nohz_cpu_mask = CPU_MASK_NONE; | |
5501 | ||
19978ca6 IM |
5502 | /* |
5503 | * Increase the granularity value when there are more CPUs, | |
5504 | * because with more CPUs the 'effective latency' as visible | |
5505 | * to users decreases. But the relationship is not linear, | |
5506 | * so pick a second-best guess by going with the log2 of the | |
5507 | * number of CPUs. | |
5508 | * | |
5509 | * This idea comes from the SD scheduler of Con Kolivas: | |
5510 | */ | |
5511 | static inline void sched_init_granularity(void) | |
5512 | { | |
5513 | unsigned int factor = 1 + ilog2(num_online_cpus()); | |
5514 | const unsigned long limit = 200000000; | |
5515 | ||
5516 | sysctl_sched_min_granularity *= factor; | |
5517 | if (sysctl_sched_min_granularity > limit) | |
5518 | sysctl_sched_min_granularity = limit; | |
5519 | ||
5520 | sysctl_sched_latency *= factor; | |
5521 | if (sysctl_sched_latency > limit) | |
5522 | sysctl_sched_latency = limit; | |
5523 | ||
5524 | sysctl_sched_wakeup_granularity *= factor; | |
19978ca6 IM |
5525 | } |
5526 | ||
1da177e4 LT |
5527 | #ifdef CONFIG_SMP |
5528 | /* | |
5529 | * This is how migration works: | |
5530 | * | |
70b97a7f | 5531 | * 1) we queue a struct migration_req structure in the source CPU's |
1da177e4 LT |
5532 | * runqueue and wake up that CPU's migration thread. |
5533 | * 2) we down() the locked semaphore => thread blocks. | |
5534 | * 3) migration thread wakes up (implicitly it forces the migrated | |
5535 | * thread off the CPU) | |
5536 | * 4) it gets the migration request and checks whether the migrated | |
5537 | * task is still in the wrong runqueue. | |
5538 | * 5) if it's in the wrong runqueue then the migration thread removes | |
5539 | * it and puts it into the right queue. | |
5540 | * 6) migration thread up()s the semaphore. | |
5541 | * 7) we wake up and the migration is done. | |
5542 | */ | |
5543 | ||
5544 | /* | |
5545 | * Change a given task's CPU affinity. Migrate the thread to a | |
5546 | * proper CPU and schedule it away if the CPU it's executing on | |
5547 | * is removed from the allowed bitmask. | |
5548 | * | |
5549 | * NOTE: the caller must have a valid reference to the task, the | |
41a2d6cf | 5550 | * task must not exit() & deallocate itself prematurely. The |
1da177e4 LT |
5551 | * call is not atomic; no spinlocks may be held. |
5552 | */ | |
cd8ba7cd | 5553 | int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask) |
1da177e4 | 5554 | { |
70b97a7f | 5555 | struct migration_req req; |
1da177e4 | 5556 | unsigned long flags; |
70b97a7f | 5557 | struct rq *rq; |
48f24c4d | 5558 | int ret = 0; |
1da177e4 LT |
5559 | |
5560 | rq = task_rq_lock(p, &flags); | |
cd8ba7cd | 5561 | if (!cpus_intersects(*new_mask, cpu_online_map)) { |
1da177e4 LT |
5562 | ret = -EINVAL; |
5563 | goto out; | |
5564 | } | |
5565 | ||
73fe6aae | 5566 | if (p->sched_class->set_cpus_allowed) |
cd8ba7cd | 5567 | p->sched_class->set_cpus_allowed(p, new_mask); |
73fe6aae | 5568 | else { |
cd8ba7cd MT |
5569 | p->cpus_allowed = *new_mask; |
5570 | p->rt.nr_cpus_allowed = cpus_weight(*new_mask); | |
73fe6aae GH |
5571 | } |
5572 | ||
1da177e4 | 5573 | /* Can the task run on the task's current CPU? If so, we're done */ |
cd8ba7cd | 5574 | if (cpu_isset(task_cpu(p), *new_mask)) |
1da177e4 LT |
5575 | goto out; |
5576 | ||
cd8ba7cd | 5577 | if (migrate_task(p, any_online_cpu(*new_mask), &req)) { |
1da177e4 LT |
5578 | /* Need help from migration thread: drop lock and wait. */ |
5579 | task_rq_unlock(rq, &flags); | |
5580 | wake_up_process(rq->migration_thread); | |
5581 | wait_for_completion(&req.done); | |
5582 | tlb_migrate_finish(p->mm); | |
5583 | return 0; | |
5584 | } | |
5585 | out: | |
5586 | task_rq_unlock(rq, &flags); | |
48f24c4d | 5587 | |
1da177e4 LT |
5588 | return ret; |
5589 | } | |
cd8ba7cd | 5590 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); |
1da177e4 LT |
5591 | |
5592 | /* | |
41a2d6cf | 5593 | * Move (not current) task off this cpu, onto dest cpu. We're doing |
1da177e4 LT |
5594 | * this because either it can't run here any more (set_cpus_allowed() |
5595 | * away from this CPU, or CPU going down), or because we're | |
5596 | * attempting to rebalance this task on exec (sched_exec). | |
5597 | * | |
5598 | * So we race with normal scheduler movements, but that's OK, as long | |
5599 | * as the task is no longer on this CPU. | |
efc30814 KK |
5600 | * |
5601 | * Returns non-zero if task was successfully migrated. | |
1da177e4 | 5602 | */ |
efc30814 | 5603 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) |
1da177e4 | 5604 | { |
70b97a7f | 5605 | struct rq *rq_dest, *rq_src; |
dd41f596 | 5606 | int ret = 0, on_rq; |
1da177e4 LT |
5607 | |
5608 | if (unlikely(cpu_is_offline(dest_cpu))) | |
efc30814 | 5609 | return ret; |
1da177e4 LT |
5610 | |
5611 | rq_src = cpu_rq(src_cpu); | |
5612 | rq_dest = cpu_rq(dest_cpu); | |
5613 | ||
5614 | double_rq_lock(rq_src, rq_dest); | |
5615 | /* Already moved. */ | |
5616 | if (task_cpu(p) != src_cpu) | |
5617 | goto out; | |
5618 | /* Affinity changed (again). */ | |
5619 | if (!cpu_isset(dest_cpu, p->cpus_allowed)) | |
5620 | goto out; | |
5621 | ||
dd41f596 | 5622 | on_rq = p->se.on_rq; |
6e82a3be | 5623 | if (on_rq) |
2e1cb74a | 5624 | deactivate_task(rq_src, p, 0); |
6e82a3be | 5625 | |
1da177e4 | 5626 | set_task_cpu(p, dest_cpu); |
dd41f596 IM |
5627 | if (on_rq) { |
5628 | activate_task(rq_dest, p, 0); | |
5629 | check_preempt_curr(rq_dest, p); | |
1da177e4 | 5630 | } |
efc30814 | 5631 | ret = 1; |
1da177e4 LT |
5632 | out: |
5633 | double_rq_unlock(rq_src, rq_dest); | |
efc30814 | 5634 | return ret; |
1da177e4 LT |
5635 | } |
5636 | ||
5637 | /* | |
5638 | * migration_thread - this is a highprio system thread that performs | |
5639 | * thread migration by bumping thread off CPU then 'pushing' onto | |
5640 | * another runqueue. | |
5641 | */ | |
95cdf3b7 | 5642 | static int migration_thread(void *data) |
1da177e4 | 5643 | { |
1da177e4 | 5644 | int cpu = (long)data; |
70b97a7f | 5645 | struct rq *rq; |
1da177e4 LT |
5646 | |
5647 | rq = cpu_rq(cpu); | |
5648 | BUG_ON(rq->migration_thread != current); | |
5649 | ||
5650 | set_current_state(TASK_INTERRUPTIBLE); | |
5651 | while (!kthread_should_stop()) { | |
70b97a7f | 5652 | struct migration_req *req; |
1da177e4 | 5653 | struct list_head *head; |
1da177e4 | 5654 | |
1da177e4 LT |
5655 | spin_lock_irq(&rq->lock); |
5656 | ||
5657 | if (cpu_is_offline(cpu)) { | |
5658 | spin_unlock_irq(&rq->lock); | |
5659 | goto wait_to_die; | |
5660 | } | |
5661 | ||
5662 | if (rq->active_balance) { | |
5663 | active_load_balance(rq, cpu); | |
5664 | rq->active_balance = 0; | |
5665 | } | |
5666 | ||
5667 | head = &rq->migration_queue; | |
5668 | ||
5669 | if (list_empty(head)) { | |
5670 | spin_unlock_irq(&rq->lock); | |
5671 | schedule(); | |
5672 | set_current_state(TASK_INTERRUPTIBLE); | |
5673 | continue; | |
5674 | } | |
70b97a7f | 5675 | req = list_entry(head->next, struct migration_req, list); |
1da177e4 LT |
5676 | list_del_init(head->next); |
5677 | ||
674311d5 NP |
5678 | spin_unlock(&rq->lock); |
5679 | __migrate_task(req->task, cpu, req->dest_cpu); | |
5680 | local_irq_enable(); | |
1da177e4 LT |
5681 | |
5682 | complete(&req->done); | |
5683 | } | |
5684 | __set_current_state(TASK_RUNNING); | |
5685 | return 0; | |
5686 | ||
5687 | wait_to_die: | |
5688 | /* Wait for kthread_stop */ | |
5689 | set_current_state(TASK_INTERRUPTIBLE); | |
5690 | while (!kthread_should_stop()) { | |
5691 | schedule(); | |
5692 | set_current_state(TASK_INTERRUPTIBLE); | |
5693 | } | |
5694 | __set_current_state(TASK_RUNNING); | |
5695 | return 0; | |
5696 | } | |
5697 | ||
5698 | #ifdef CONFIG_HOTPLUG_CPU | |
f7b4cddc ON |
5699 | |
5700 | static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) | |
5701 | { | |
5702 | int ret; | |
5703 | ||
5704 | local_irq_disable(); | |
5705 | ret = __migrate_task(p, src_cpu, dest_cpu); | |
5706 | local_irq_enable(); | |
5707 | return ret; | |
5708 | } | |
5709 | ||
054b9108 | 5710 | /* |
3a4fa0a2 | 5711 | * Figure out where task on dead CPU should go, use force if necessary. |
054b9108 KK |
5712 | * NOTE: interrupts should be disabled by the caller |
5713 | */ | |
48f24c4d | 5714 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) |
1da177e4 | 5715 | { |
efc30814 | 5716 | unsigned long flags; |
1da177e4 | 5717 | cpumask_t mask; |
70b97a7f IM |
5718 | struct rq *rq; |
5719 | int dest_cpu; | |
1da177e4 | 5720 | |
3a5c359a AK |
5721 | do { |
5722 | /* On same node? */ | |
5723 | mask = node_to_cpumask(cpu_to_node(dead_cpu)); | |
5724 | cpus_and(mask, mask, p->cpus_allowed); | |
5725 | dest_cpu = any_online_cpu(mask); | |
5726 | ||
5727 | /* On any allowed CPU? */ | |
434d53b0 | 5728 | if (dest_cpu >= nr_cpu_ids) |
3a5c359a AK |
5729 | dest_cpu = any_online_cpu(p->cpus_allowed); |
5730 | ||
5731 | /* No more Mr. Nice Guy. */ | |
434d53b0 | 5732 | if (dest_cpu >= nr_cpu_ids) { |
f9a86fcb MT |
5733 | cpumask_t cpus_allowed; |
5734 | ||
5735 | cpuset_cpus_allowed_locked(p, &cpus_allowed); | |
470fd646 CW |
5736 | /* |
5737 | * Try to stay on the same cpuset, where the | |
5738 | * current cpuset may be a subset of all cpus. | |
5739 | * The cpuset_cpus_allowed_locked() variant of | |
41a2d6cf | 5740 | * cpuset_cpus_allowed() will not block. It must be |
470fd646 CW |
5741 | * called within calls to cpuset_lock/cpuset_unlock. |
5742 | */ | |
3a5c359a | 5743 | rq = task_rq_lock(p, &flags); |
470fd646 | 5744 | p->cpus_allowed = cpus_allowed; |
3a5c359a AK |
5745 | dest_cpu = any_online_cpu(p->cpus_allowed); |
5746 | task_rq_unlock(rq, &flags); | |
1da177e4 | 5747 | |
3a5c359a AK |
5748 | /* |
5749 | * Don't tell them about moving exiting tasks or | |
5750 | * kernel threads (both mm NULL), since they never | |
5751 | * leave kernel. | |
5752 | */ | |
41a2d6cf | 5753 | if (p->mm && printk_ratelimit()) { |
3a5c359a AK |
5754 | printk(KERN_INFO "process %d (%s) no " |
5755 | "longer affine to cpu%d\n", | |
41a2d6cf IM |
5756 | task_pid_nr(p), p->comm, dead_cpu); |
5757 | } | |
3a5c359a | 5758 | } |
f7b4cddc | 5759 | } while (!__migrate_task_irq(p, dead_cpu, dest_cpu)); |
1da177e4 LT |
5760 | } |
5761 | ||
5762 | /* | |
5763 | * While a dead CPU has no uninterruptible tasks queued at this point, | |
5764 | * it might still have a nonzero ->nr_uninterruptible counter, because | |
5765 | * for performance reasons the counter is not stricly tracking tasks to | |
5766 | * their home CPUs. So we just add the counter to another CPU's counter, | |
5767 | * to keep the global sum constant after CPU-down: | |
5768 | */ | |
70b97a7f | 5769 | static void migrate_nr_uninterruptible(struct rq *rq_src) |
1da177e4 | 5770 | { |
7c16ec58 | 5771 | struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR)); |
1da177e4 LT |
5772 | unsigned long flags; |
5773 | ||
5774 | local_irq_save(flags); | |
5775 | double_rq_lock(rq_src, rq_dest); | |
5776 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | |
5777 | rq_src->nr_uninterruptible = 0; | |
5778 | double_rq_unlock(rq_src, rq_dest); | |
5779 | local_irq_restore(flags); | |
5780 | } | |
5781 | ||
5782 | /* Run through task list and migrate tasks from the dead cpu. */ | |
5783 | static void migrate_live_tasks(int src_cpu) | |
5784 | { | |
48f24c4d | 5785 | struct task_struct *p, *t; |
1da177e4 | 5786 | |
f7b4cddc | 5787 | read_lock(&tasklist_lock); |
1da177e4 | 5788 | |
48f24c4d IM |
5789 | do_each_thread(t, p) { |
5790 | if (p == current) | |
1da177e4 LT |
5791 | continue; |
5792 | ||
48f24c4d IM |
5793 | if (task_cpu(p) == src_cpu) |
5794 | move_task_off_dead_cpu(src_cpu, p); | |
5795 | } while_each_thread(t, p); | |
1da177e4 | 5796 | |
f7b4cddc | 5797 | read_unlock(&tasklist_lock); |
1da177e4 LT |
5798 | } |
5799 | ||
dd41f596 IM |
5800 | /* |
5801 | * Schedules idle task to be the next runnable task on current CPU. | |
94bc9a7b DA |
5802 | * It does so by boosting its priority to highest possible. |
5803 | * Used by CPU offline code. | |
1da177e4 LT |
5804 | */ |
5805 | void sched_idle_next(void) | |
5806 | { | |
48f24c4d | 5807 | int this_cpu = smp_processor_id(); |
70b97a7f | 5808 | struct rq *rq = cpu_rq(this_cpu); |
1da177e4 LT |
5809 | struct task_struct *p = rq->idle; |
5810 | unsigned long flags; | |
5811 | ||
5812 | /* cpu has to be offline */ | |
48f24c4d | 5813 | BUG_ON(cpu_online(this_cpu)); |
1da177e4 | 5814 | |
48f24c4d IM |
5815 | /* |
5816 | * Strictly not necessary since rest of the CPUs are stopped by now | |
5817 | * and interrupts disabled on the current cpu. | |
1da177e4 LT |
5818 | */ |
5819 | spin_lock_irqsave(&rq->lock, flags); | |
5820 | ||
dd41f596 | 5821 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
48f24c4d | 5822 | |
94bc9a7b DA |
5823 | update_rq_clock(rq); |
5824 | activate_task(rq, p, 0); | |
1da177e4 LT |
5825 | |
5826 | spin_unlock_irqrestore(&rq->lock, flags); | |
5827 | } | |
5828 | ||
48f24c4d IM |
5829 | /* |
5830 | * Ensures that the idle task is using init_mm right before its cpu goes | |
1da177e4 LT |
5831 | * offline. |
5832 | */ | |
5833 | void idle_task_exit(void) | |
5834 | { | |
5835 | struct mm_struct *mm = current->active_mm; | |
5836 | ||
5837 | BUG_ON(cpu_online(smp_processor_id())); | |
5838 | ||
5839 | if (mm != &init_mm) | |
5840 | switch_mm(mm, &init_mm, current); | |
5841 | mmdrop(mm); | |
5842 | } | |
5843 | ||
054b9108 | 5844 | /* called under rq->lock with disabled interrupts */ |
36c8b586 | 5845 | static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) |
1da177e4 | 5846 | { |
70b97a7f | 5847 | struct rq *rq = cpu_rq(dead_cpu); |
1da177e4 LT |
5848 | |
5849 | /* Must be exiting, otherwise would be on tasklist. */ | |
270f722d | 5850 | BUG_ON(!p->exit_state); |
1da177e4 LT |
5851 | |
5852 | /* Cannot have done final schedule yet: would have vanished. */ | |
c394cc9f | 5853 | BUG_ON(p->state == TASK_DEAD); |
1da177e4 | 5854 | |
48f24c4d | 5855 | get_task_struct(p); |
1da177e4 LT |
5856 | |
5857 | /* | |
5858 | * Drop lock around migration; if someone else moves it, | |
41a2d6cf | 5859 | * that's OK. No task can be added to this CPU, so iteration is |
1da177e4 LT |
5860 | * fine. |
5861 | */ | |
f7b4cddc | 5862 | spin_unlock_irq(&rq->lock); |
48f24c4d | 5863 | move_task_off_dead_cpu(dead_cpu, p); |
f7b4cddc | 5864 | spin_lock_irq(&rq->lock); |
1da177e4 | 5865 | |
48f24c4d | 5866 | put_task_struct(p); |
1da177e4 LT |
5867 | } |
5868 | ||
5869 | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | |
5870 | static void migrate_dead_tasks(unsigned int dead_cpu) | |
5871 | { | |
70b97a7f | 5872 | struct rq *rq = cpu_rq(dead_cpu); |
dd41f596 | 5873 | struct task_struct *next; |
48f24c4d | 5874 | |
dd41f596 IM |
5875 | for ( ; ; ) { |
5876 | if (!rq->nr_running) | |
5877 | break; | |
a8e504d2 | 5878 | update_rq_clock(rq); |
ff95f3df | 5879 | next = pick_next_task(rq, rq->curr); |
dd41f596 IM |
5880 | if (!next) |
5881 | break; | |
5882 | migrate_dead(dead_cpu, next); | |
e692ab53 | 5883 | |
1da177e4 LT |
5884 | } |
5885 | } | |
5886 | #endif /* CONFIG_HOTPLUG_CPU */ | |
5887 | ||
e692ab53 NP |
5888 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) |
5889 | ||
5890 | static struct ctl_table sd_ctl_dir[] = { | |
e0361851 AD |
5891 | { |
5892 | .procname = "sched_domain", | |
c57baf1e | 5893 | .mode = 0555, |
e0361851 | 5894 | }, |
38605cae | 5895 | {0, }, |
e692ab53 NP |
5896 | }; |
5897 | ||
5898 | static struct ctl_table sd_ctl_root[] = { | |
e0361851 | 5899 | { |
c57baf1e | 5900 | .ctl_name = CTL_KERN, |
e0361851 | 5901 | .procname = "kernel", |
c57baf1e | 5902 | .mode = 0555, |
e0361851 AD |
5903 | .child = sd_ctl_dir, |
5904 | }, | |
38605cae | 5905 | {0, }, |
e692ab53 NP |
5906 | }; |
5907 | ||
5908 | static struct ctl_table *sd_alloc_ctl_entry(int n) | |
5909 | { | |
5910 | struct ctl_table *entry = | |
5cf9f062 | 5911 | kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); |
e692ab53 | 5912 | |
e692ab53 NP |
5913 | return entry; |
5914 | } | |
5915 | ||
6382bc90 MM |
5916 | static void sd_free_ctl_entry(struct ctl_table **tablep) |
5917 | { | |
cd790076 | 5918 | struct ctl_table *entry; |
6382bc90 | 5919 | |
cd790076 MM |
5920 | /* |
5921 | * In the intermediate directories, both the child directory and | |
5922 | * procname are dynamically allocated and could fail but the mode | |
41a2d6cf | 5923 | * will always be set. In the lowest directory the names are |
cd790076 MM |
5924 | * static strings and all have proc handlers. |
5925 | */ | |
5926 | for (entry = *tablep; entry->mode; entry++) { | |
6382bc90 MM |
5927 | if (entry->child) |
5928 | sd_free_ctl_entry(&entry->child); | |
cd790076 MM |
5929 | if (entry->proc_handler == NULL) |
5930 | kfree(entry->procname); | |
5931 | } | |
6382bc90 MM |
5932 | |
5933 | kfree(*tablep); | |
5934 | *tablep = NULL; | |
5935 | } | |
5936 | ||
e692ab53 | 5937 | static void |
e0361851 | 5938 | set_table_entry(struct ctl_table *entry, |
e692ab53 NP |
5939 | const char *procname, void *data, int maxlen, |
5940 | mode_t mode, proc_handler *proc_handler) | |
5941 | { | |
e692ab53 NP |
5942 | entry->procname = procname; |
5943 | entry->data = data; | |
5944 | entry->maxlen = maxlen; | |
5945 | entry->mode = mode; | |
5946 | entry->proc_handler = proc_handler; | |
5947 | } | |
5948 | ||
5949 | static struct ctl_table * | |
5950 | sd_alloc_ctl_domain_table(struct sched_domain *sd) | |
5951 | { | |
ace8b3d6 | 5952 | struct ctl_table *table = sd_alloc_ctl_entry(12); |
e692ab53 | 5953 | |
ad1cdc1d MM |
5954 | if (table == NULL) |
5955 | return NULL; | |
5956 | ||
e0361851 | 5957 | set_table_entry(&table[0], "min_interval", &sd->min_interval, |
e692ab53 | 5958 | sizeof(long), 0644, proc_doulongvec_minmax); |
e0361851 | 5959 | set_table_entry(&table[1], "max_interval", &sd->max_interval, |
e692ab53 | 5960 | sizeof(long), 0644, proc_doulongvec_minmax); |
e0361851 | 5961 | set_table_entry(&table[2], "busy_idx", &sd->busy_idx, |
e692ab53 | 5962 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5963 | set_table_entry(&table[3], "idle_idx", &sd->idle_idx, |
e692ab53 | 5964 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5965 | set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, |
e692ab53 | 5966 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5967 | set_table_entry(&table[5], "wake_idx", &sd->wake_idx, |
e692ab53 | 5968 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5969 | set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, |
e692ab53 | 5970 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5971 | set_table_entry(&table[7], "busy_factor", &sd->busy_factor, |
e692ab53 | 5972 | sizeof(int), 0644, proc_dointvec_minmax); |
e0361851 | 5973 | set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, |
e692ab53 | 5974 | sizeof(int), 0644, proc_dointvec_minmax); |
ace8b3d6 | 5975 | set_table_entry(&table[9], "cache_nice_tries", |
e692ab53 NP |
5976 | &sd->cache_nice_tries, |
5977 | sizeof(int), 0644, proc_dointvec_minmax); | |
ace8b3d6 | 5978 | set_table_entry(&table[10], "flags", &sd->flags, |
e692ab53 | 5979 | sizeof(int), 0644, proc_dointvec_minmax); |
6323469f | 5980 | /* &table[11] is terminator */ |
e692ab53 NP |
5981 | |
5982 | return table; | |
5983 | } | |
5984 | ||
9a4e7159 | 5985 | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) |
e692ab53 NP |
5986 | { |
5987 | struct ctl_table *entry, *table; | |
5988 | struct sched_domain *sd; | |
5989 | int domain_num = 0, i; | |
5990 | char buf[32]; | |
5991 | ||
5992 | for_each_domain(cpu, sd) | |
5993 | domain_num++; | |
5994 | entry = table = sd_alloc_ctl_entry(domain_num + 1); | |
ad1cdc1d MM |
5995 | if (table == NULL) |
5996 | return NULL; | |
e692ab53 NP |
5997 | |
5998 | i = 0; | |
5999 | for_each_domain(cpu, sd) { | |
6000 | snprintf(buf, 32, "domain%d", i); | |
e692ab53 | 6001 | entry->procname = kstrdup(buf, GFP_KERNEL); |
c57baf1e | 6002 | entry->mode = 0555; |
e692ab53 NP |
6003 | entry->child = sd_alloc_ctl_domain_table(sd); |
6004 | entry++; | |
6005 | i++; | |
6006 | } | |
6007 | return table; | |
6008 | } | |
6009 | ||
6010 | static struct ctl_table_header *sd_sysctl_header; | |
6382bc90 | 6011 | static void register_sched_domain_sysctl(void) |
e692ab53 NP |
6012 | { |
6013 | int i, cpu_num = num_online_cpus(); | |
6014 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | |
6015 | char buf[32]; | |
6016 | ||
7378547f MM |
6017 | WARN_ON(sd_ctl_dir[0].child); |
6018 | sd_ctl_dir[0].child = entry; | |
6019 | ||
ad1cdc1d MM |
6020 | if (entry == NULL) |
6021 | return; | |
6022 | ||
97b6ea7b | 6023 | for_each_online_cpu(i) { |
e692ab53 | 6024 | snprintf(buf, 32, "cpu%d", i); |
e692ab53 | 6025 | entry->procname = kstrdup(buf, GFP_KERNEL); |
c57baf1e | 6026 | entry->mode = 0555; |
e692ab53 | 6027 | entry->child = sd_alloc_ctl_cpu_table(i); |
97b6ea7b | 6028 | entry++; |
e692ab53 | 6029 | } |
7378547f MM |
6030 | |
6031 | WARN_ON(sd_sysctl_header); | |
e692ab53 NP |
6032 | sd_sysctl_header = register_sysctl_table(sd_ctl_root); |
6033 | } | |
6382bc90 | 6034 | |
7378547f | 6035 | /* may be called multiple times per register */ |
6382bc90 MM |
6036 | static void unregister_sched_domain_sysctl(void) |
6037 | { | |
7378547f MM |
6038 | if (sd_sysctl_header) |
6039 | unregister_sysctl_table(sd_sysctl_header); | |
6382bc90 | 6040 | sd_sysctl_header = NULL; |
7378547f MM |
6041 | if (sd_ctl_dir[0].child) |
6042 | sd_free_ctl_entry(&sd_ctl_dir[0].child); | |
6382bc90 | 6043 | } |
e692ab53 | 6044 | #else |
6382bc90 MM |
6045 | static void register_sched_domain_sysctl(void) |
6046 | { | |
6047 | } | |
6048 | static void unregister_sched_domain_sysctl(void) | |
e692ab53 NP |
6049 | { |
6050 | } | |
6051 | #endif | |
6052 | ||
1f11eb6a GH |
6053 | static void set_rq_online(struct rq *rq) |
6054 | { | |
6055 | if (!rq->online) { | |
6056 | const struct sched_class *class; | |
6057 | ||
6058 | cpu_set(rq->cpu, rq->rd->online); | |
6059 | rq->online = 1; | |
6060 | ||
6061 | for_each_class(class) { | |
6062 | if (class->rq_online) | |
6063 | class->rq_online(rq); | |
6064 | } | |
6065 | } | |
6066 | } | |
6067 | ||
6068 | static void set_rq_offline(struct rq *rq) | |
6069 | { | |
6070 | if (rq->online) { | |
6071 | const struct sched_class *class; | |
6072 | ||
6073 | for_each_class(class) { | |
6074 | if (class->rq_offline) | |
6075 | class->rq_offline(rq); | |
6076 | } | |
6077 | ||
6078 | cpu_clear(rq->cpu, rq->rd->online); | |
6079 | rq->online = 0; | |
6080 | } | |
6081 | } | |
6082 | ||
1da177e4 LT |
6083 | /* |
6084 | * migration_call - callback that gets triggered when a CPU is added. | |
6085 | * Here we can start up the necessary migration thread for the new CPU. | |
6086 | */ | |
48f24c4d IM |
6087 | static int __cpuinit |
6088 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
1da177e4 | 6089 | { |
1da177e4 | 6090 | struct task_struct *p; |
48f24c4d | 6091 | int cpu = (long)hcpu; |
1da177e4 | 6092 | unsigned long flags; |
70b97a7f | 6093 | struct rq *rq; |
1da177e4 LT |
6094 | |
6095 | switch (action) { | |
5be9361c | 6096 | |
1da177e4 | 6097 | case CPU_UP_PREPARE: |
8bb78442 | 6098 | case CPU_UP_PREPARE_FROZEN: |
dd41f596 | 6099 | p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); |
1da177e4 LT |
6100 | if (IS_ERR(p)) |
6101 | return NOTIFY_BAD; | |
1da177e4 LT |
6102 | kthread_bind(p, cpu); |
6103 | /* Must be high prio: stop_machine expects to yield to it. */ | |
6104 | rq = task_rq_lock(p, &flags); | |
dd41f596 | 6105 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
1da177e4 LT |
6106 | task_rq_unlock(rq, &flags); |
6107 | cpu_rq(cpu)->migration_thread = p; | |
6108 | break; | |
48f24c4d | 6109 | |
1da177e4 | 6110 | case CPU_ONLINE: |
8bb78442 | 6111 | case CPU_ONLINE_FROZEN: |
3a4fa0a2 | 6112 | /* Strictly unnecessary, as first user will wake it. */ |
1da177e4 | 6113 | wake_up_process(cpu_rq(cpu)->migration_thread); |
1f94ef59 GH |
6114 | |
6115 | /* Update our root-domain */ | |
6116 | rq = cpu_rq(cpu); | |
6117 | spin_lock_irqsave(&rq->lock, flags); | |
6118 | if (rq->rd) { | |
6119 | BUG_ON(!cpu_isset(cpu, rq->rd->span)); | |
1f11eb6a GH |
6120 | |
6121 | set_rq_online(rq); | |
1f94ef59 GH |
6122 | } |
6123 | spin_unlock_irqrestore(&rq->lock, flags); | |
1da177e4 | 6124 | break; |
48f24c4d | 6125 | |
1da177e4 LT |
6126 | #ifdef CONFIG_HOTPLUG_CPU |
6127 | case CPU_UP_CANCELED: | |
8bb78442 | 6128 | case CPU_UP_CANCELED_FROZEN: |
fc75cdfa HC |
6129 | if (!cpu_rq(cpu)->migration_thread) |
6130 | break; | |
41a2d6cf | 6131 | /* Unbind it from offline cpu so it can run. Fall thru. */ |
a4c4af7c HC |
6132 | kthread_bind(cpu_rq(cpu)->migration_thread, |
6133 | any_online_cpu(cpu_online_map)); | |
1da177e4 LT |
6134 | kthread_stop(cpu_rq(cpu)->migration_thread); |
6135 | cpu_rq(cpu)->migration_thread = NULL; | |
6136 | break; | |
48f24c4d | 6137 | |
1da177e4 | 6138 | case CPU_DEAD: |
8bb78442 | 6139 | case CPU_DEAD_FROZEN: |
470fd646 | 6140 | cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ |
1da177e4 LT |
6141 | migrate_live_tasks(cpu); |
6142 | rq = cpu_rq(cpu); | |
6143 | kthread_stop(rq->migration_thread); | |
6144 | rq->migration_thread = NULL; | |
6145 | /* Idle task back to normal (off runqueue, low prio) */ | |
d2da272a | 6146 | spin_lock_irq(&rq->lock); |
a8e504d2 | 6147 | update_rq_clock(rq); |
2e1cb74a | 6148 | deactivate_task(rq, rq->idle, 0); |
1da177e4 | 6149 | rq->idle->static_prio = MAX_PRIO; |
dd41f596 IM |
6150 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); |
6151 | rq->idle->sched_class = &idle_sched_class; | |
1da177e4 | 6152 | migrate_dead_tasks(cpu); |
d2da272a | 6153 | spin_unlock_irq(&rq->lock); |
470fd646 | 6154 | cpuset_unlock(); |
1da177e4 LT |
6155 | migrate_nr_uninterruptible(rq); |
6156 | BUG_ON(rq->nr_running != 0); | |
6157 | ||
41a2d6cf IM |
6158 | /* |
6159 | * No need to migrate the tasks: it was best-effort if | |
6160 | * they didn't take sched_hotcpu_mutex. Just wake up | |
6161 | * the requestors. | |
6162 | */ | |
1da177e4 LT |
6163 | spin_lock_irq(&rq->lock); |
6164 | while (!list_empty(&rq->migration_queue)) { | |
70b97a7f IM |
6165 | struct migration_req *req; |
6166 | ||
1da177e4 | 6167 | req = list_entry(rq->migration_queue.next, |
70b97a7f | 6168 | struct migration_req, list); |
1da177e4 LT |
6169 | list_del_init(&req->list); |
6170 | complete(&req->done); | |
6171 | } | |
6172 | spin_unlock_irq(&rq->lock); | |
6173 | break; | |
57d885fe | 6174 | |
08f503b0 GH |
6175 | case CPU_DYING: |
6176 | case CPU_DYING_FROZEN: | |
57d885fe GH |
6177 | /* Update our root-domain */ |
6178 | rq = cpu_rq(cpu); | |
6179 | spin_lock_irqsave(&rq->lock, flags); | |
6180 | if (rq->rd) { | |
6181 | BUG_ON(!cpu_isset(cpu, rq->rd->span)); | |
1f11eb6a | 6182 | set_rq_offline(rq); |
57d885fe GH |
6183 | } |
6184 | spin_unlock_irqrestore(&rq->lock, flags); | |
6185 | break; | |
1da177e4 LT |
6186 | #endif |
6187 | } | |
6188 | return NOTIFY_OK; | |
6189 | } | |
6190 | ||
6191 | /* Register at highest priority so that task migration (migrate_all_tasks) | |
6192 | * happens before everything else. | |
6193 | */ | |
26c2143b | 6194 | static struct notifier_block __cpuinitdata migration_notifier = { |
1da177e4 LT |
6195 | .notifier_call = migration_call, |
6196 | .priority = 10 | |
6197 | }; | |
6198 | ||
e6fe6649 | 6199 | void __init migration_init(void) |
1da177e4 LT |
6200 | { |
6201 | void *cpu = (void *)(long)smp_processor_id(); | |
07dccf33 | 6202 | int err; |
48f24c4d IM |
6203 | |
6204 | /* Start one for the boot CPU: */ | |
07dccf33 AM |
6205 | err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); |
6206 | BUG_ON(err == NOTIFY_BAD); | |
1da177e4 LT |
6207 | migration_call(&migration_notifier, CPU_ONLINE, cpu); |
6208 | register_cpu_notifier(&migration_notifier); | |
1da177e4 LT |
6209 | } |
6210 | #endif | |
6211 | ||
6212 | #ifdef CONFIG_SMP | |
476f3534 | 6213 | |
3e9830dc | 6214 | #ifdef CONFIG_SCHED_DEBUG |
4dcf6aff | 6215 | |
099f98c8 GS |
6216 | static inline const char *sd_level_to_string(enum sched_domain_level lvl) |
6217 | { | |
6218 | switch (lvl) { | |
6219 | case SD_LV_NONE: | |
6220 | return "NONE"; | |
6221 | case SD_LV_SIBLING: | |
6222 | return "SIBLING"; | |
6223 | case SD_LV_MC: | |
6224 | return "MC"; | |
6225 | case SD_LV_CPU: | |
6226 | return "CPU"; | |
6227 | case SD_LV_NODE: | |
6228 | return "NODE"; | |
6229 | case SD_LV_ALLNODES: | |
6230 | return "ALLNODES"; | |
6231 | case SD_LV_MAX: | |
6232 | return "MAX"; | |
6233 | ||
6234 | } | |
6235 | return "MAX"; | |
6236 | } | |
6237 | ||
7c16ec58 MT |
6238 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
6239 | cpumask_t *groupmask) | |
1da177e4 | 6240 | { |
4dcf6aff | 6241 | struct sched_group *group = sd->groups; |
434d53b0 | 6242 | char str[256]; |
1da177e4 | 6243 | |
434d53b0 | 6244 | cpulist_scnprintf(str, sizeof(str), sd->span); |
7c16ec58 | 6245 | cpus_clear(*groupmask); |
4dcf6aff IM |
6246 | |
6247 | printk(KERN_DEBUG "%*s domain %d: ", level, "", level); | |
6248 | ||
6249 | if (!(sd->flags & SD_LOAD_BALANCE)) { | |
6250 | printk("does not load-balance\n"); | |
6251 | if (sd->parent) | |
6252 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" | |
6253 | " has parent"); | |
6254 | return -1; | |
41c7ce9a NP |
6255 | } |
6256 | ||
099f98c8 GS |
6257 | printk(KERN_CONT "span %s level %s\n", |
6258 | str, sd_level_to_string(sd->level)); | |
4dcf6aff IM |
6259 | |
6260 | if (!cpu_isset(cpu, sd->span)) { | |
6261 | printk(KERN_ERR "ERROR: domain->span does not contain " | |
6262 | "CPU%d\n", cpu); | |
6263 | } | |
6264 | if (!cpu_isset(cpu, group->cpumask)) { | |
6265 | printk(KERN_ERR "ERROR: domain->groups does not contain" | |
6266 | " CPU%d\n", cpu); | |
6267 | } | |
1da177e4 | 6268 | |
4dcf6aff | 6269 | printk(KERN_DEBUG "%*s groups:", level + 1, ""); |
1da177e4 | 6270 | do { |
4dcf6aff IM |
6271 | if (!group) { |
6272 | printk("\n"); | |
6273 | printk(KERN_ERR "ERROR: group is NULL\n"); | |
1da177e4 LT |
6274 | break; |
6275 | } | |
6276 | ||
4dcf6aff IM |
6277 | if (!group->__cpu_power) { |
6278 | printk(KERN_CONT "\n"); | |
6279 | printk(KERN_ERR "ERROR: domain->cpu_power not " | |
6280 | "set\n"); | |
6281 | break; | |
6282 | } | |
1da177e4 | 6283 | |
4dcf6aff IM |
6284 | if (!cpus_weight(group->cpumask)) { |
6285 | printk(KERN_CONT "\n"); | |
6286 | printk(KERN_ERR "ERROR: empty group\n"); | |
6287 | break; | |
6288 | } | |
1da177e4 | 6289 | |
7c16ec58 | 6290 | if (cpus_intersects(*groupmask, group->cpumask)) { |
4dcf6aff IM |
6291 | printk(KERN_CONT "\n"); |
6292 | printk(KERN_ERR "ERROR: repeated CPUs\n"); | |
6293 | break; | |
6294 | } | |
1da177e4 | 6295 | |
7c16ec58 | 6296 | cpus_or(*groupmask, *groupmask, group->cpumask); |
1da177e4 | 6297 | |
434d53b0 | 6298 | cpulist_scnprintf(str, sizeof(str), group->cpumask); |
4dcf6aff | 6299 | printk(KERN_CONT " %s", str); |
1da177e4 | 6300 | |
4dcf6aff IM |
6301 | group = group->next; |
6302 | } while (group != sd->groups); | |
6303 | printk(KERN_CONT "\n"); | |
1da177e4 | 6304 | |
7c16ec58 | 6305 | if (!cpus_equal(sd->span, *groupmask)) |
4dcf6aff | 6306 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); |
1da177e4 | 6307 | |
7c16ec58 | 6308 | if (sd->parent && !cpus_subset(*groupmask, sd->parent->span)) |
4dcf6aff IM |
6309 | printk(KERN_ERR "ERROR: parent span is not a superset " |
6310 | "of domain->span\n"); | |
6311 | return 0; | |
6312 | } | |
1da177e4 | 6313 | |
4dcf6aff IM |
6314 | static void sched_domain_debug(struct sched_domain *sd, int cpu) |
6315 | { | |
7c16ec58 | 6316 | cpumask_t *groupmask; |
4dcf6aff | 6317 | int level = 0; |
1da177e4 | 6318 | |
4dcf6aff IM |
6319 | if (!sd) { |
6320 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | |
6321 | return; | |
6322 | } | |
1da177e4 | 6323 | |
4dcf6aff IM |
6324 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); |
6325 | ||
7c16ec58 MT |
6326 | groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL); |
6327 | if (!groupmask) { | |
6328 | printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); | |
6329 | return; | |
6330 | } | |
6331 | ||
4dcf6aff | 6332 | for (;;) { |
7c16ec58 | 6333 | if (sched_domain_debug_one(sd, cpu, level, groupmask)) |
4dcf6aff | 6334 | break; |
1da177e4 LT |
6335 | level++; |
6336 | sd = sd->parent; | |
33859f7f | 6337 | if (!sd) |
4dcf6aff IM |
6338 | break; |
6339 | } | |
7c16ec58 | 6340 | kfree(groupmask); |
1da177e4 | 6341 | } |
6d6bc0ad | 6342 | #else /* !CONFIG_SCHED_DEBUG */ |
48f24c4d | 6343 | # define sched_domain_debug(sd, cpu) do { } while (0) |
6d6bc0ad | 6344 | #endif /* CONFIG_SCHED_DEBUG */ |
1da177e4 | 6345 | |
1a20ff27 | 6346 | static int sd_degenerate(struct sched_domain *sd) |
245af2c7 SS |
6347 | { |
6348 | if (cpus_weight(sd->span) == 1) | |
6349 | return 1; | |
6350 | ||
6351 | /* Following flags need at least 2 groups */ | |
6352 | if (sd->flags & (SD_LOAD_BALANCE | | |
6353 | SD_BALANCE_NEWIDLE | | |
6354 | SD_BALANCE_FORK | | |
89c4710e SS |
6355 | SD_BALANCE_EXEC | |
6356 | SD_SHARE_CPUPOWER | | |
6357 | SD_SHARE_PKG_RESOURCES)) { | |
245af2c7 SS |
6358 | if (sd->groups != sd->groups->next) |
6359 | return 0; | |
6360 | } | |
6361 | ||
6362 | /* Following flags don't use groups */ | |
6363 | if (sd->flags & (SD_WAKE_IDLE | | |
6364 | SD_WAKE_AFFINE | | |
6365 | SD_WAKE_BALANCE)) | |
6366 | return 0; | |
6367 | ||
6368 | return 1; | |
6369 | } | |
6370 | ||
48f24c4d IM |
6371 | static int |
6372 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |
245af2c7 SS |
6373 | { |
6374 | unsigned long cflags = sd->flags, pflags = parent->flags; | |
6375 | ||
6376 | if (sd_degenerate(parent)) | |
6377 | return 1; | |
6378 | ||
6379 | if (!cpus_equal(sd->span, parent->span)) | |
6380 | return 0; | |
6381 | ||
6382 | /* Does parent contain flags not in child? */ | |
6383 | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ | |
6384 | if (cflags & SD_WAKE_AFFINE) | |
6385 | pflags &= ~SD_WAKE_BALANCE; | |
6386 | /* Flags needing groups don't count if only 1 group in parent */ | |
6387 | if (parent->groups == parent->groups->next) { | |
6388 | pflags &= ~(SD_LOAD_BALANCE | | |
6389 | SD_BALANCE_NEWIDLE | | |
6390 | SD_BALANCE_FORK | | |
89c4710e SS |
6391 | SD_BALANCE_EXEC | |
6392 | SD_SHARE_CPUPOWER | | |
6393 | SD_SHARE_PKG_RESOURCES); | |
245af2c7 SS |
6394 | } |
6395 | if (~cflags & pflags) | |
6396 | return 0; | |
6397 | ||
6398 | return 1; | |
6399 | } | |
6400 | ||
57d885fe GH |
6401 | static void rq_attach_root(struct rq *rq, struct root_domain *rd) |
6402 | { | |
6403 | unsigned long flags; | |
57d885fe GH |
6404 | |
6405 | spin_lock_irqsave(&rq->lock, flags); | |
6406 | ||
6407 | if (rq->rd) { | |
6408 | struct root_domain *old_rd = rq->rd; | |
6409 | ||
1f11eb6a GH |
6410 | if (cpu_isset(rq->cpu, old_rd->online)) |
6411 | set_rq_offline(rq); | |
57d885fe | 6412 | |
dc938520 | 6413 | cpu_clear(rq->cpu, old_rd->span); |
dc938520 | 6414 | |
57d885fe GH |
6415 | if (atomic_dec_and_test(&old_rd->refcount)) |
6416 | kfree(old_rd); | |
6417 | } | |
6418 | ||
6419 | atomic_inc(&rd->refcount); | |
6420 | rq->rd = rd; | |
6421 | ||
dc938520 | 6422 | cpu_set(rq->cpu, rd->span); |
1f94ef59 | 6423 | if (cpu_isset(rq->cpu, cpu_online_map)) |
1f11eb6a | 6424 | set_rq_online(rq); |
57d885fe GH |
6425 | |
6426 | spin_unlock_irqrestore(&rq->lock, flags); | |
6427 | } | |
6428 | ||
dc938520 | 6429 | static void init_rootdomain(struct root_domain *rd) |
57d885fe GH |
6430 | { |
6431 | memset(rd, 0, sizeof(*rd)); | |
6432 | ||
dc938520 GH |
6433 | cpus_clear(rd->span); |
6434 | cpus_clear(rd->online); | |
6e0534f2 GH |
6435 | |
6436 | cpupri_init(&rd->cpupri); | |
57d885fe GH |
6437 | } |
6438 | ||
6439 | static void init_defrootdomain(void) | |
6440 | { | |
dc938520 | 6441 | init_rootdomain(&def_root_domain); |
57d885fe GH |
6442 | atomic_set(&def_root_domain.refcount, 1); |
6443 | } | |
6444 | ||
dc938520 | 6445 | static struct root_domain *alloc_rootdomain(void) |
57d885fe GH |
6446 | { |
6447 | struct root_domain *rd; | |
6448 | ||
6449 | rd = kmalloc(sizeof(*rd), GFP_KERNEL); | |
6450 | if (!rd) | |
6451 | return NULL; | |
6452 | ||
dc938520 | 6453 | init_rootdomain(rd); |
57d885fe GH |
6454 | |
6455 | return rd; | |
6456 | } | |
6457 | ||
1da177e4 | 6458 | /* |
0eab9146 | 6459 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must |
1da177e4 LT |
6460 | * hold the hotplug lock. |
6461 | */ | |
0eab9146 IM |
6462 | static void |
6463 | cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | |
1da177e4 | 6464 | { |
70b97a7f | 6465 | struct rq *rq = cpu_rq(cpu); |
245af2c7 SS |
6466 | struct sched_domain *tmp; |
6467 | ||
6468 | /* Remove the sched domains which do not contribute to scheduling. */ | |
6469 | for (tmp = sd; tmp; tmp = tmp->parent) { | |
6470 | struct sched_domain *parent = tmp->parent; | |
6471 | if (!parent) | |
6472 | break; | |
1a848870 | 6473 | if (sd_parent_degenerate(tmp, parent)) { |
245af2c7 | 6474 | tmp->parent = parent->parent; |
1a848870 SS |
6475 | if (parent->parent) |
6476 | parent->parent->child = tmp; | |
6477 | } | |
245af2c7 SS |
6478 | } |
6479 | ||
1a848870 | 6480 | if (sd && sd_degenerate(sd)) { |
245af2c7 | 6481 | sd = sd->parent; |
1a848870 SS |
6482 | if (sd) |
6483 | sd->child = NULL; | |
6484 | } | |
1da177e4 LT |
6485 | |
6486 | sched_domain_debug(sd, cpu); | |
6487 | ||
57d885fe | 6488 | rq_attach_root(rq, rd); |
674311d5 | 6489 | rcu_assign_pointer(rq->sd, sd); |
1da177e4 LT |
6490 | } |
6491 | ||
6492 | /* cpus with isolated domains */ | |
67af63a6 | 6493 | static cpumask_t cpu_isolated_map = CPU_MASK_NONE; |
1da177e4 LT |
6494 | |
6495 | /* Setup the mask of cpus configured for isolated domains */ | |
6496 | static int __init isolated_cpu_setup(char *str) | |
6497 | { | |
6498 | int ints[NR_CPUS], i; | |
6499 | ||
6500 | str = get_options(str, ARRAY_SIZE(ints), ints); | |
6501 | cpus_clear(cpu_isolated_map); | |
6502 | for (i = 1; i <= ints[0]; i++) | |
6503 | if (ints[i] < NR_CPUS) | |
6504 | cpu_set(ints[i], cpu_isolated_map); | |
6505 | return 1; | |
6506 | } | |
6507 | ||
8927f494 | 6508 | __setup("isolcpus=", isolated_cpu_setup); |
1da177e4 LT |
6509 | |
6510 | /* | |
6711cab4 SS |
6511 | * init_sched_build_groups takes the cpumask we wish to span, and a pointer |
6512 | * to a function which identifies what group(along with sched group) a CPU | |
6513 | * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS | |
6514 | * (due to the fact that we keep track of groups covered with a cpumask_t). | |
1da177e4 LT |
6515 | * |
6516 | * init_sched_build_groups will build a circular linked list of the groups | |
6517 | * covered by the given span, and will set each group's ->cpumask correctly, | |
6518 | * and ->cpu_power to 0. | |
6519 | */ | |
a616058b | 6520 | static void |
7c16ec58 | 6521 | init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map, |
6711cab4 | 6522 | int (*group_fn)(int cpu, const cpumask_t *cpu_map, |
7c16ec58 MT |
6523 | struct sched_group **sg, |
6524 | cpumask_t *tmpmask), | |
6525 | cpumask_t *covered, cpumask_t *tmpmask) | |
1da177e4 LT |
6526 | { |
6527 | struct sched_group *first = NULL, *last = NULL; | |
1da177e4 LT |
6528 | int i; |
6529 | ||
7c16ec58 MT |
6530 | cpus_clear(*covered); |
6531 | ||
6532 | for_each_cpu_mask(i, *span) { | |
6711cab4 | 6533 | struct sched_group *sg; |
7c16ec58 | 6534 | int group = group_fn(i, cpu_map, &sg, tmpmask); |
1da177e4 LT |
6535 | int j; |
6536 | ||
7c16ec58 | 6537 | if (cpu_isset(i, *covered)) |
1da177e4 LT |
6538 | continue; |
6539 | ||
7c16ec58 | 6540 | cpus_clear(sg->cpumask); |
5517d86b | 6541 | sg->__cpu_power = 0; |
1da177e4 | 6542 | |
7c16ec58 MT |
6543 | for_each_cpu_mask(j, *span) { |
6544 | if (group_fn(j, cpu_map, NULL, tmpmask) != group) | |
1da177e4 LT |
6545 | continue; |
6546 | ||
7c16ec58 | 6547 | cpu_set(j, *covered); |
1da177e4 LT |
6548 | cpu_set(j, sg->cpumask); |
6549 | } | |
6550 | if (!first) | |
6551 | first = sg; | |
6552 | if (last) | |
6553 | last->next = sg; | |
6554 | last = sg; | |
6555 | } | |
6556 | last->next = first; | |
6557 | } | |
6558 | ||
9c1cfda2 | 6559 | #define SD_NODES_PER_DOMAIN 16 |
1da177e4 | 6560 | |
9c1cfda2 | 6561 | #ifdef CONFIG_NUMA |
198e2f18 | 6562 | |
9c1cfda2 JH |
6563 | /** |
6564 | * find_next_best_node - find the next node to include in a sched_domain | |
6565 | * @node: node whose sched_domain we're building | |
6566 | * @used_nodes: nodes already in the sched_domain | |
6567 | * | |
41a2d6cf | 6568 | * Find the next node to include in a given scheduling domain. Simply |
9c1cfda2 JH |
6569 | * finds the closest node not already in the @used_nodes map. |
6570 | * | |
6571 | * Should use nodemask_t. | |
6572 | */ | |
c5f59f08 | 6573 | static int find_next_best_node(int node, nodemask_t *used_nodes) |
9c1cfda2 JH |
6574 | { |
6575 | int i, n, val, min_val, best_node = 0; | |
6576 | ||
6577 | min_val = INT_MAX; | |
6578 | ||
6579 | for (i = 0; i < MAX_NUMNODES; i++) { | |
6580 | /* Start at @node */ | |
6581 | n = (node + i) % MAX_NUMNODES; | |
6582 | ||
6583 | if (!nr_cpus_node(n)) | |
6584 | continue; | |
6585 | ||
6586 | /* Skip already used nodes */ | |
c5f59f08 | 6587 | if (node_isset(n, *used_nodes)) |
9c1cfda2 JH |
6588 | continue; |
6589 | ||
6590 | /* Simple min distance search */ | |
6591 | val = node_distance(node, n); | |
6592 | ||
6593 | if (val < min_val) { | |
6594 | min_val = val; | |
6595 | best_node = n; | |
6596 | } | |
6597 | } | |
6598 | ||
c5f59f08 | 6599 | node_set(best_node, *used_nodes); |
9c1cfda2 JH |
6600 | return best_node; |
6601 | } | |
6602 | ||
6603 | /** | |
6604 | * sched_domain_node_span - get a cpumask for a node's sched_domain | |
6605 | * @node: node whose cpumask we're constructing | |
73486722 | 6606 | * @span: resulting cpumask |
9c1cfda2 | 6607 | * |
41a2d6cf | 6608 | * Given a node, construct a good cpumask for its sched_domain to span. It |
9c1cfda2 JH |
6609 | * should be one that prevents unnecessary balancing, but also spreads tasks |
6610 | * out optimally. | |
6611 | */ | |
4bdbaad3 | 6612 | static void sched_domain_node_span(int node, cpumask_t *span) |
9c1cfda2 | 6613 | { |
c5f59f08 | 6614 | nodemask_t used_nodes; |
c5f59f08 | 6615 | node_to_cpumask_ptr(nodemask, node); |
48f24c4d | 6616 | int i; |
9c1cfda2 | 6617 | |
4bdbaad3 | 6618 | cpus_clear(*span); |
c5f59f08 | 6619 | nodes_clear(used_nodes); |
9c1cfda2 | 6620 | |
4bdbaad3 | 6621 | cpus_or(*span, *span, *nodemask); |
c5f59f08 | 6622 | node_set(node, used_nodes); |
9c1cfda2 JH |
6623 | |
6624 | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | |
c5f59f08 | 6625 | int next_node = find_next_best_node(node, &used_nodes); |
48f24c4d | 6626 | |
c5f59f08 | 6627 | node_to_cpumask_ptr_next(nodemask, next_node); |
4bdbaad3 | 6628 | cpus_or(*span, *span, *nodemask); |
9c1cfda2 | 6629 | } |
9c1cfda2 | 6630 | } |
6d6bc0ad | 6631 | #endif /* CONFIG_NUMA */ |
9c1cfda2 | 6632 | |
5c45bf27 | 6633 | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; |
48f24c4d | 6634 | |
9c1cfda2 | 6635 | /* |
48f24c4d | 6636 | * SMT sched-domains: |
9c1cfda2 | 6637 | */ |
1da177e4 LT |
6638 | #ifdef CONFIG_SCHED_SMT |
6639 | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); | |
6711cab4 | 6640 | static DEFINE_PER_CPU(struct sched_group, sched_group_cpus); |
48f24c4d | 6641 | |
41a2d6cf | 6642 | static int |
7c16ec58 MT |
6643 | cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, |
6644 | cpumask_t *unused) | |
1da177e4 | 6645 | { |
6711cab4 SS |
6646 | if (sg) |
6647 | *sg = &per_cpu(sched_group_cpus, cpu); | |
1da177e4 LT |
6648 | return cpu; |
6649 | } | |
6d6bc0ad | 6650 | #endif /* CONFIG_SCHED_SMT */ |
1da177e4 | 6651 | |
48f24c4d IM |
6652 | /* |
6653 | * multi-core sched-domains: | |
6654 | */ | |
1e9f28fa SS |
6655 | #ifdef CONFIG_SCHED_MC |
6656 | static DEFINE_PER_CPU(struct sched_domain, core_domains); | |
6711cab4 | 6657 | static DEFINE_PER_CPU(struct sched_group, sched_group_core); |
6d6bc0ad | 6658 | #endif /* CONFIG_SCHED_MC */ |
1e9f28fa SS |
6659 | |
6660 | #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) | |
41a2d6cf | 6661 | static int |
7c16ec58 MT |
6662 | cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, |
6663 | cpumask_t *mask) | |
1e9f28fa | 6664 | { |
6711cab4 | 6665 | int group; |
7c16ec58 MT |
6666 | |
6667 | *mask = per_cpu(cpu_sibling_map, cpu); | |
6668 | cpus_and(*mask, *mask, *cpu_map); | |
6669 | group = first_cpu(*mask); | |
6711cab4 SS |
6670 | if (sg) |
6671 | *sg = &per_cpu(sched_group_core, group); | |
6672 | return group; | |
1e9f28fa SS |
6673 | } |
6674 | #elif defined(CONFIG_SCHED_MC) | |
41a2d6cf | 6675 | static int |
7c16ec58 MT |
6676 | cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, |
6677 | cpumask_t *unused) | |
1e9f28fa | 6678 | { |
6711cab4 SS |
6679 | if (sg) |
6680 | *sg = &per_cpu(sched_group_core, cpu); | |
1e9f28fa SS |
6681 | return cpu; |
6682 | } | |
6683 | #endif | |
6684 | ||
1da177e4 | 6685 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); |
6711cab4 | 6686 | static DEFINE_PER_CPU(struct sched_group, sched_group_phys); |
48f24c4d | 6687 | |
41a2d6cf | 6688 | static int |
7c16ec58 MT |
6689 | cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, |
6690 | cpumask_t *mask) | |
1da177e4 | 6691 | { |
6711cab4 | 6692 | int group; |
48f24c4d | 6693 | #ifdef CONFIG_SCHED_MC |
7c16ec58 MT |
6694 | *mask = cpu_coregroup_map(cpu); |
6695 | cpus_and(*mask, *mask, *cpu_map); | |
6696 | group = first_cpu(*mask); | |
1e9f28fa | 6697 | #elif defined(CONFIG_SCHED_SMT) |
7c16ec58 MT |
6698 | *mask = per_cpu(cpu_sibling_map, cpu); |
6699 | cpus_and(*mask, *mask, *cpu_map); | |
6700 | group = first_cpu(*mask); | |
1da177e4 | 6701 | #else |
6711cab4 | 6702 | group = cpu; |
1da177e4 | 6703 | #endif |
6711cab4 SS |
6704 | if (sg) |
6705 | *sg = &per_cpu(sched_group_phys, group); | |
6706 | return group; | |
1da177e4 LT |
6707 | } |
6708 | ||
6709 | #ifdef CONFIG_NUMA | |
1da177e4 | 6710 | /* |
9c1cfda2 JH |
6711 | * The init_sched_build_groups can't handle what we want to do with node |
6712 | * groups, so roll our own. Now each node has its own list of groups which | |
6713 | * gets dynamically allocated. | |
1da177e4 | 6714 | */ |
9c1cfda2 | 6715 | static DEFINE_PER_CPU(struct sched_domain, node_domains); |
434d53b0 | 6716 | static struct sched_group ***sched_group_nodes_bycpu; |
1da177e4 | 6717 | |
9c1cfda2 | 6718 | static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); |
6711cab4 | 6719 | static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes); |
9c1cfda2 | 6720 | |
6711cab4 | 6721 | static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map, |
7c16ec58 | 6722 | struct sched_group **sg, cpumask_t *nodemask) |
9c1cfda2 | 6723 | { |
6711cab4 SS |
6724 | int group; |
6725 | ||
7c16ec58 MT |
6726 | *nodemask = node_to_cpumask(cpu_to_node(cpu)); |
6727 | cpus_and(*nodemask, *nodemask, *cpu_map); | |
6728 | group = first_cpu(*nodemask); | |
6711cab4 SS |
6729 | |
6730 | if (sg) | |
6731 | *sg = &per_cpu(sched_group_allnodes, group); | |
6732 | return group; | |
1da177e4 | 6733 | } |
6711cab4 | 6734 | |
08069033 SS |
6735 | static void init_numa_sched_groups_power(struct sched_group *group_head) |
6736 | { | |
6737 | struct sched_group *sg = group_head; | |
6738 | int j; | |
6739 | ||
6740 | if (!sg) | |
6741 | return; | |
3a5c359a AK |
6742 | do { |
6743 | for_each_cpu_mask(j, sg->cpumask) { | |
6744 | struct sched_domain *sd; | |
08069033 | 6745 | |
3a5c359a AK |
6746 | sd = &per_cpu(phys_domains, j); |
6747 | if (j != first_cpu(sd->groups->cpumask)) { | |
6748 | /* | |
6749 | * Only add "power" once for each | |
6750 | * physical package. | |
6751 | */ | |
6752 | continue; | |
6753 | } | |
08069033 | 6754 | |
3a5c359a AK |
6755 | sg_inc_cpu_power(sg, sd->groups->__cpu_power); |
6756 | } | |
6757 | sg = sg->next; | |
6758 | } while (sg != group_head); | |
08069033 | 6759 | } |
6d6bc0ad | 6760 | #endif /* CONFIG_NUMA */ |
1da177e4 | 6761 | |
a616058b | 6762 | #ifdef CONFIG_NUMA |
51888ca2 | 6763 | /* Free memory allocated for various sched_group structures */ |
7c16ec58 | 6764 | static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) |
51888ca2 | 6765 | { |
a616058b | 6766 | int cpu, i; |
51888ca2 SV |
6767 | |
6768 | for_each_cpu_mask(cpu, *cpu_map) { | |
51888ca2 SV |
6769 | struct sched_group **sched_group_nodes |
6770 | = sched_group_nodes_bycpu[cpu]; | |
6771 | ||
51888ca2 SV |
6772 | if (!sched_group_nodes) |
6773 | continue; | |
6774 | ||
6775 | for (i = 0; i < MAX_NUMNODES; i++) { | |
51888ca2 SV |
6776 | struct sched_group *oldsg, *sg = sched_group_nodes[i]; |
6777 | ||
7c16ec58 MT |
6778 | *nodemask = node_to_cpumask(i); |
6779 | cpus_and(*nodemask, *nodemask, *cpu_map); | |
6780 | if (cpus_empty(*nodemask)) | |
51888ca2 SV |
6781 | continue; |
6782 | ||
6783 | if (sg == NULL) | |
6784 | continue; | |
6785 | sg = sg->next; | |
6786 | next_sg: | |
6787 | oldsg = sg; | |
6788 | sg = sg->next; | |
6789 | kfree(oldsg); | |
6790 | if (oldsg != sched_group_nodes[i]) | |
6791 | goto next_sg; | |
6792 | } | |
6793 | kfree(sched_group_nodes); | |
6794 | sched_group_nodes_bycpu[cpu] = NULL; | |
6795 | } | |
51888ca2 | 6796 | } |
6d6bc0ad | 6797 | #else /* !CONFIG_NUMA */ |
7c16ec58 | 6798 | static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) |
a616058b SS |
6799 | { |
6800 | } | |
6d6bc0ad | 6801 | #endif /* CONFIG_NUMA */ |
51888ca2 | 6802 | |
89c4710e SS |
6803 | /* |
6804 | * Initialize sched groups cpu_power. | |
6805 | * | |
6806 | * cpu_power indicates the capacity of sched group, which is used while | |
6807 | * distributing the load between different sched groups in a sched domain. | |
6808 | * Typically cpu_power for all the groups in a sched domain will be same unless | |
6809 | * there are asymmetries in the topology. If there are asymmetries, group | |
6810 | * having more cpu_power will pickup more load compared to the group having | |
6811 | * less cpu_power. | |
6812 | * | |
6813 | * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents | |
6814 | * the maximum number of tasks a group can handle in the presence of other idle | |
6815 | * or lightly loaded groups in the same sched domain. | |
6816 | */ | |
6817 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | |
6818 | { | |
6819 | struct sched_domain *child; | |
6820 | struct sched_group *group; | |
6821 | ||
6822 | WARN_ON(!sd || !sd->groups); | |
6823 | ||
6824 | if (cpu != first_cpu(sd->groups->cpumask)) | |
6825 | return; | |
6826 | ||
6827 | child = sd->child; | |
6828 | ||
5517d86b ED |
6829 | sd->groups->__cpu_power = 0; |
6830 | ||
89c4710e SS |
6831 | /* |
6832 | * For perf policy, if the groups in child domain share resources | |
6833 | * (for example cores sharing some portions of the cache hierarchy | |
6834 | * or SMT), then set this domain groups cpu_power such that each group | |
6835 | * can handle only one task, when there are other idle groups in the | |
6836 | * same sched domain. | |
6837 | */ | |
6838 | if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && | |
6839 | (child->flags & | |
6840 | (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { | |
5517d86b | 6841 | sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); |
89c4710e SS |
6842 | return; |
6843 | } | |
6844 | ||
89c4710e SS |
6845 | /* |
6846 | * add cpu_power of each child group to this groups cpu_power | |
6847 | */ | |
6848 | group = child->groups; | |
6849 | do { | |
5517d86b | 6850 | sg_inc_cpu_power(sd->groups, group->__cpu_power); |
89c4710e SS |
6851 | group = group->next; |
6852 | } while (group != child->groups); | |
6853 | } | |
6854 | ||
7c16ec58 MT |
6855 | /* |
6856 | * Initializers for schedule domains | |
6857 | * Non-inlined to reduce accumulated stack pressure in build_sched_domains() | |
6858 | */ | |
6859 | ||
6860 | #define SD_INIT(sd, type) sd_init_##type(sd) | |
6861 | #define SD_INIT_FUNC(type) \ | |
6862 | static noinline void sd_init_##type(struct sched_domain *sd) \ | |
6863 | { \ | |
6864 | memset(sd, 0, sizeof(*sd)); \ | |
6865 | *sd = SD_##type##_INIT; \ | |
1d3504fc | 6866 | sd->level = SD_LV_##type; \ |
7c16ec58 MT |
6867 | } |
6868 | ||
6869 | SD_INIT_FUNC(CPU) | |
6870 | #ifdef CONFIG_NUMA | |
6871 | SD_INIT_FUNC(ALLNODES) | |
6872 | SD_INIT_FUNC(NODE) | |
6873 | #endif | |
6874 | #ifdef CONFIG_SCHED_SMT | |
6875 | SD_INIT_FUNC(SIBLING) | |
6876 | #endif | |
6877 | #ifdef CONFIG_SCHED_MC | |
6878 | SD_INIT_FUNC(MC) | |
6879 | #endif | |
6880 | ||
6881 | /* | |
6882 | * To minimize stack usage kmalloc room for cpumasks and share the | |
6883 | * space as the usage in build_sched_domains() dictates. Used only | |
6884 | * if the amount of space is significant. | |
6885 | */ | |
6886 | struct allmasks { | |
6887 | cpumask_t tmpmask; /* make this one first */ | |
6888 | union { | |
6889 | cpumask_t nodemask; | |
6890 | cpumask_t this_sibling_map; | |
6891 | cpumask_t this_core_map; | |
6892 | }; | |
6893 | cpumask_t send_covered; | |
6894 | ||
6895 | #ifdef CONFIG_NUMA | |
6896 | cpumask_t domainspan; | |
6897 | cpumask_t covered; | |
6898 | cpumask_t notcovered; | |
6899 | #endif | |
6900 | }; | |
6901 | ||
6902 | #if NR_CPUS > 128 | |
6903 | #define SCHED_CPUMASK_ALLOC 1 | |
6904 | #define SCHED_CPUMASK_FREE(v) kfree(v) | |
6905 | #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v | |
6906 | #else | |
6907 | #define SCHED_CPUMASK_ALLOC 0 | |
6908 | #define SCHED_CPUMASK_FREE(v) | |
6909 | #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v | |
6910 | #endif | |
6911 | ||
6912 | #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \ | |
6913 | ((unsigned long)(a) + offsetof(struct allmasks, v)) | |
6914 | ||
1d3504fc HS |
6915 | static int default_relax_domain_level = -1; |
6916 | ||
6917 | static int __init setup_relax_domain_level(char *str) | |
6918 | { | |
6919 | default_relax_domain_level = simple_strtoul(str, NULL, 0); | |
6920 | return 1; | |
6921 | } | |
6922 | __setup("relax_domain_level=", setup_relax_domain_level); | |
6923 | ||
6924 | static void set_domain_attribute(struct sched_domain *sd, | |
6925 | struct sched_domain_attr *attr) | |
6926 | { | |
6927 | int request; | |
6928 | ||
6929 | if (!attr || attr->relax_domain_level < 0) { | |
6930 | if (default_relax_domain_level < 0) | |
6931 | return; | |
6932 | else | |
6933 | request = default_relax_domain_level; | |
6934 | } else | |
6935 | request = attr->relax_domain_level; | |
6936 | if (request < sd->level) { | |
6937 | /* turn off idle balance on this domain */ | |
6938 | sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); | |
6939 | } else { | |
6940 | /* turn on idle balance on this domain */ | |
6941 | sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); | |
6942 | } | |
6943 | } | |
6944 | ||
1da177e4 | 6945 | /* |
1a20ff27 DG |
6946 | * Build sched domains for a given set of cpus and attach the sched domains |
6947 | * to the individual cpus | |
1da177e4 | 6948 | */ |
1d3504fc HS |
6949 | static int __build_sched_domains(const cpumask_t *cpu_map, |
6950 | struct sched_domain_attr *attr) | |
1da177e4 LT |
6951 | { |
6952 | int i; | |
57d885fe | 6953 | struct root_domain *rd; |
7c16ec58 MT |
6954 | SCHED_CPUMASK_DECLARE(allmasks); |
6955 | cpumask_t *tmpmask; | |
d1b55138 JH |
6956 | #ifdef CONFIG_NUMA |
6957 | struct sched_group **sched_group_nodes = NULL; | |
6711cab4 | 6958 | int sd_allnodes = 0; |
d1b55138 JH |
6959 | |
6960 | /* | |
6961 | * Allocate the per-node list of sched groups | |
6962 | */ | |
5cf9f062 | 6963 | sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *), |
41a2d6cf | 6964 | GFP_KERNEL); |
d1b55138 JH |
6965 | if (!sched_group_nodes) { |
6966 | printk(KERN_WARNING "Can not alloc sched group node list\n"); | |
51888ca2 | 6967 | return -ENOMEM; |
d1b55138 | 6968 | } |
d1b55138 | 6969 | #endif |
1da177e4 | 6970 | |
dc938520 | 6971 | rd = alloc_rootdomain(); |
57d885fe GH |
6972 | if (!rd) { |
6973 | printk(KERN_WARNING "Cannot alloc root domain\n"); | |
7c16ec58 MT |
6974 | #ifdef CONFIG_NUMA |
6975 | kfree(sched_group_nodes); | |
6976 | #endif | |
57d885fe GH |
6977 | return -ENOMEM; |
6978 | } | |
6979 | ||
7c16ec58 MT |
6980 | #if SCHED_CPUMASK_ALLOC |
6981 | /* get space for all scratch cpumask variables */ | |
6982 | allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL); | |
6983 | if (!allmasks) { | |
6984 | printk(KERN_WARNING "Cannot alloc cpumask array\n"); | |
6985 | kfree(rd); | |
6986 | #ifdef CONFIG_NUMA | |
6987 | kfree(sched_group_nodes); | |
6988 | #endif | |
6989 | return -ENOMEM; | |
6990 | } | |
6991 | #endif | |
6992 | tmpmask = (cpumask_t *)allmasks; | |
6993 | ||
6994 | ||
6995 | #ifdef CONFIG_NUMA | |
6996 | sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; | |
6997 | #endif | |
6998 | ||
1da177e4 | 6999 | /* |
1a20ff27 | 7000 | * Set up domains for cpus specified by the cpu_map. |
1da177e4 | 7001 | */ |
1a20ff27 | 7002 | for_each_cpu_mask(i, *cpu_map) { |
1da177e4 | 7003 | struct sched_domain *sd = NULL, *p; |
7c16ec58 | 7004 | SCHED_CPUMASK_VAR(nodemask, allmasks); |
1da177e4 | 7005 | |
7c16ec58 MT |
7006 | *nodemask = node_to_cpumask(cpu_to_node(i)); |
7007 | cpus_and(*nodemask, *nodemask, *cpu_map); | |
1da177e4 LT |
7008 | |
7009 | #ifdef CONFIG_NUMA | |
dd41f596 | 7010 | if (cpus_weight(*cpu_map) > |
7c16ec58 | 7011 | SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) { |
9c1cfda2 | 7012 | sd = &per_cpu(allnodes_domains, i); |
7c16ec58 | 7013 | SD_INIT(sd, ALLNODES); |
1d3504fc | 7014 | set_domain_attribute(sd, attr); |
9c1cfda2 | 7015 | sd->span = *cpu_map; |
7c16ec58 | 7016 | cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); |
9c1cfda2 | 7017 | p = sd; |
6711cab4 | 7018 | sd_allnodes = 1; |
9c1cfda2 JH |
7019 | } else |
7020 | p = NULL; | |
7021 | ||
1da177e4 | 7022 | sd = &per_cpu(node_domains, i); |
7c16ec58 | 7023 | SD_INIT(sd, NODE); |
1d3504fc | 7024 | set_domain_attribute(sd, attr); |
4bdbaad3 | 7025 | sched_domain_node_span(cpu_to_node(i), &sd->span); |
9c1cfda2 | 7026 | sd->parent = p; |
1a848870 SS |
7027 | if (p) |
7028 | p->child = sd; | |
9c1cfda2 | 7029 | cpus_and(sd->span, sd->span, *cpu_map); |
1da177e4 LT |
7030 | #endif |
7031 | ||
7032 | p = sd; | |
7033 | sd = &per_cpu(phys_domains, i); | |
7c16ec58 | 7034 | SD_INIT(sd, CPU); |
1d3504fc | 7035 | set_domain_attribute(sd, attr); |
7c16ec58 | 7036 | sd->span = *nodemask; |
1da177e4 | 7037 | sd->parent = p; |
1a848870 SS |
7038 | if (p) |
7039 | p->child = sd; | |
7c16ec58 | 7040 | cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); |
1da177e4 | 7041 | |
1e9f28fa SS |
7042 | #ifdef CONFIG_SCHED_MC |
7043 | p = sd; | |
7044 | sd = &per_cpu(core_domains, i); | |
7c16ec58 | 7045 | SD_INIT(sd, MC); |
1d3504fc | 7046 | set_domain_attribute(sd, attr); |
1e9f28fa SS |
7047 | sd->span = cpu_coregroup_map(i); |
7048 | cpus_and(sd->span, sd->span, *cpu_map); | |
7049 | sd->parent = p; | |
1a848870 | 7050 | p->child = sd; |
7c16ec58 | 7051 | cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); |
1e9f28fa SS |
7052 | #endif |
7053 | ||
1da177e4 LT |
7054 | #ifdef CONFIG_SCHED_SMT |
7055 | p = sd; | |
7056 | sd = &per_cpu(cpu_domains, i); | |
7c16ec58 | 7057 | SD_INIT(sd, SIBLING); |
1d3504fc | 7058 | set_domain_attribute(sd, attr); |
d5a7430d | 7059 | sd->span = per_cpu(cpu_sibling_map, i); |
1a20ff27 | 7060 | cpus_and(sd->span, sd->span, *cpu_map); |
1da177e4 | 7061 | sd->parent = p; |
1a848870 | 7062 | p->child = sd; |
7c16ec58 | 7063 | cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); |
1da177e4 LT |
7064 | #endif |
7065 | } | |
7066 | ||
7067 | #ifdef CONFIG_SCHED_SMT | |
7068 | /* Set up CPU (sibling) groups */ | |
9c1cfda2 | 7069 | for_each_cpu_mask(i, *cpu_map) { |
7c16ec58 MT |
7070 | SCHED_CPUMASK_VAR(this_sibling_map, allmasks); |
7071 | SCHED_CPUMASK_VAR(send_covered, allmasks); | |
7072 | ||
7073 | *this_sibling_map = per_cpu(cpu_sibling_map, i); | |
7074 | cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map); | |
7075 | if (i != first_cpu(*this_sibling_map)) | |
1da177e4 LT |
7076 | continue; |
7077 | ||
dd41f596 | 7078 | init_sched_build_groups(this_sibling_map, cpu_map, |
7c16ec58 MT |
7079 | &cpu_to_cpu_group, |
7080 | send_covered, tmpmask); | |
1da177e4 LT |
7081 | } |
7082 | #endif | |
7083 | ||
1e9f28fa SS |
7084 | #ifdef CONFIG_SCHED_MC |
7085 | /* Set up multi-core groups */ | |
7086 | for_each_cpu_mask(i, *cpu_map) { | |
7c16ec58 MT |
7087 | SCHED_CPUMASK_VAR(this_core_map, allmasks); |
7088 | SCHED_CPUMASK_VAR(send_covered, allmasks); | |
7089 | ||
7090 | *this_core_map = cpu_coregroup_map(i); | |
7091 | cpus_and(*this_core_map, *this_core_map, *cpu_map); | |
7092 | if (i != first_cpu(*this_core_map)) | |
1e9f28fa | 7093 | continue; |
7c16ec58 | 7094 | |
dd41f596 | 7095 | init_sched_build_groups(this_core_map, cpu_map, |
7c16ec58 MT |
7096 | &cpu_to_core_group, |
7097 | send_covered, tmpmask); | |
1e9f28fa SS |
7098 | } |
7099 | #endif | |
7100 | ||
1da177e4 LT |
7101 | /* Set up physical groups */ |
7102 | for (i = 0; i < MAX_NUMNODES; i++) { | |
7c16ec58 MT |
7103 | SCHED_CPUMASK_VAR(nodemask, allmasks); |
7104 | SCHED_CPUMASK_VAR(send_covered, allmasks); | |
1da177e4 | 7105 | |
7c16ec58 MT |
7106 | *nodemask = node_to_cpumask(i); |
7107 | cpus_and(*nodemask, *nodemask, *cpu_map); | |
7108 | if (cpus_empty(*nodemask)) | |
1da177e4 LT |
7109 | continue; |
7110 | ||
7c16ec58 MT |
7111 | init_sched_build_groups(nodemask, cpu_map, |
7112 | &cpu_to_phys_group, | |
7113 | send_covered, tmpmask); | |
1da177e4 LT |
7114 | } |
7115 | ||
7116 | #ifdef CONFIG_NUMA | |
7117 | /* Set up node groups */ | |
7c16ec58 MT |
7118 | if (sd_allnodes) { |
7119 | SCHED_CPUMASK_VAR(send_covered, allmasks); | |
7120 | ||
7121 | init_sched_build_groups(cpu_map, cpu_map, | |
7122 | &cpu_to_allnodes_group, | |
7123 | send_covered, tmpmask); | |
7124 | } | |
9c1cfda2 JH |
7125 | |
7126 | for (i = 0; i < MAX_NUMNODES; i++) { | |
7127 | /* Set up node groups */ | |
7128 | struct sched_group *sg, *prev; | |
7c16ec58 MT |
7129 | SCHED_CPUMASK_VAR(nodemask, allmasks); |
7130 | SCHED_CPUMASK_VAR(domainspan, allmasks); | |
7131 | SCHED_CPUMASK_VAR(covered, allmasks); | |
9c1cfda2 JH |
7132 | int j; |
7133 | ||
7c16ec58 MT |
7134 | *nodemask = node_to_cpumask(i); |
7135 | cpus_clear(*covered); | |
7136 | ||
7137 | cpus_and(*nodemask, *nodemask, *cpu_map); | |
7138 | if (cpus_empty(*nodemask)) { | |
d1b55138 | 7139 | sched_group_nodes[i] = NULL; |
9c1cfda2 | 7140 | continue; |
d1b55138 | 7141 | } |
9c1cfda2 | 7142 | |
4bdbaad3 | 7143 | sched_domain_node_span(i, domainspan); |
7c16ec58 | 7144 | cpus_and(*domainspan, *domainspan, *cpu_map); |
9c1cfda2 | 7145 | |
15f0b676 | 7146 | sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i); |
51888ca2 SV |
7147 | if (!sg) { |
7148 | printk(KERN_WARNING "Can not alloc domain group for " | |
7149 | "node %d\n", i); | |
7150 | goto error; | |
7151 | } | |
9c1cfda2 | 7152 | sched_group_nodes[i] = sg; |
7c16ec58 | 7153 | for_each_cpu_mask(j, *nodemask) { |
9c1cfda2 | 7154 | struct sched_domain *sd; |
9761eea8 | 7155 | |
9c1cfda2 JH |
7156 | sd = &per_cpu(node_domains, j); |
7157 | sd->groups = sg; | |
9c1cfda2 | 7158 | } |
5517d86b | 7159 | sg->__cpu_power = 0; |
7c16ec58 | 7160 | sg->cpumask = *nodemask; |
51888ca2 | 7161 | sg->next = sg; |
7c16ec58 | 7162 | cpus_or(*covered, *covered, *nodemask); |
9c1cfda2 JH |
7163 | prev = sg; |
7164 | ||
7165 | for (j = 0; j < MAX_NUMNODES; j++) { | |
7c16ec58 | 7166 | SCHED_CPUMASK_VAR(notcovered, allmasks); |
9c1cfda2 | 7167 | int n = (i + j) % MAX_NUMNODES; |
c5f59f08 | 7168 | node_to_cpumask_ptr(pnodemask, n); |
9c1cfda2 | 7169 | |
7c16ec58 MT |
7170 | cpus_complement(*notcovered, *covered); |
7171 | cpus_and(*tmpmask, *notcovered, *cpu_map); | |
7172 | cpus_and(*tmpmask, *tmpmask, *domainspan); | |
7173 | if (cpus_empty(*tmpmask)) | |
9c1cfda2 JH |
7174 | break; |
7175 | ||
7c16ec58 MT |
7176 | cpus_and(*tmpmask, *tmpmask, *pnodemask); |
7177 | if (cpus_empty(*tmpmask)) | |
9c1cfda2 JH |
7178 | continue; |
7179 | ||
15f0b676 SV |
7180 | sg = kmalloc_node(sizeof(struct sched_group), |
7181 | GFP_KERNEL, i); | |
9c1cfda2 JH |
7182 | if (!sg) { |
7183 | printk(KERN_WARNING | |
7184 | "Can not alloc domain group for node %d\n", j); | |
51888ca2 | 7185 | goto error; |
9c1cfda2 | 7186 | } |
5517d86b | 7187 | sg->__cpu_power = 0; |
7c16ec58 | 7188 | sg->cpumask = *tmpmask; |
51888ca2 | 7189 | sg->next = prev->next; |
7c16ec58 | 7190 | cpus_or(*covered, *covered, *tmpmask); |
9c1cfda2 JH |
7191 | prev->next = sg; |
7192 | prev = sg; | |
7193 | } | |
9c1cfda2 | 7194 | } |
1da177e4 LT |
7195 | #endif |
7196 | ||
7197 | /* Calculate CPU power for physical packages and nodes */ | |
5c45bf27 | 7198 | #ifdef CONFIG_SCHED_SMT |
1a20ff27 | 7199 | for_each_cpu_mask(i, *cpu_map) { |
dd41f596 IM |
7200 | struct sched_domain *sd = &per_cpu(cpu_domains, i); |
7201 | ||
89c4710e | 7202 | init_sched_groups_power(i, sd); |
5c45bf27 | 7203 | } |
1da177e4 | 7204 | #endif |
1e9f28fa | 7205 | #ifdef CONFIG_SCHED_MC |
5c45bf27 | 7206 | for_each_cpu_mask(i, *cpu_map) { |
dd41f596 IM |
7207 | struct sched_domain *sd = &per_cpu(core_domains, i); |
7208 | ||
89c4710e | 7209 | init_sched_groups_power(i, sd); |
5c45bf27 SS |
7210 | } |
7211 | #endif | |
1e9f28fa | 7212 | |
5c45bf27 | 7213 | for_each_cpu_mask(i, *cpu_map) { |
dd41f596 IM |
7214 | struct sched_domain *sd = &per_cpu(phys_domains, i); |
7215 | ||
89c4710e | 7216 | init_sched_groups_power(i, sd); |
1da177e4 LT |
7217 | } |
7218 | ||
9c1cfda2 | 7219 | #ifdef CONFIG_NUMA |
08069033 SS |
7220 | for (i = 0; i < MAX_NUMNODES; i++) |
7221 | init_numa_sched_groups_power(sched_group_nodes[i]); | |
9c1cfda2 | 7222 | |
6711cab4 SS |
7223 | if (sd_allnodes) { |
7224 | struct sched_group *sg; | |
f712c0c7 | 7225 | |
7c16ec58 MT |
7226 | cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg, |
7227 | tmpmask); | |
f712c0c7 SS |
7228 | init_numa_sched_groups_power(sg); |
7229 | } | |
9c1cfda2 JH |
7230 | #endif |
7231 | ||
1da177e4 | 7232 | /* Attach the domains */ |
1a20ff27 | 7233 | for_each_cpu_mask(i, *cpu_map) { |
1da177e4 LT |
7234 | struct sched_domain *sd; |
7235 | #ifdef CONFIG_SCHED_SMT | |
7236 | sd = &per_cpu(cpu_domains, i); | |
1e9f28fa SS |
7237 | #elif defined(CONFIG_SCHED_MC) |
7238 | sd = &per_cpu(core_domains, i); | |
1da177e4 LT |
7239 | #else |
7240 | sd = &per_cpu(phys_domains, i); | |
7241 | #endif | |
57d885fe | 7242 | cpu_attach_domain(sd, rd, i); |
1da177e4 | 7243 | } |
51888ca2 | 7244 | |
7c16ec58 | 7245 | SCHED_CPUMASK_FREE((void *)allmasks); |
51888ca2 SV |
7246 | return 0; |
7247 | ||
a616058b | 7248 | #ifdef CONFIG_NUMA |
51888ca2 | 7249 | error: |
7c16ec58 MT |
7250 | free_sched_groups(cpu_map, tmpmask); |
7251 | SCHED_CPUMASK_FREE((void *)allmasks); | |
51888ca2 | 7252 | return -ENOMEM; |
a616058b | 7253 | #endif |
1da177e4 | 7254 | } |
029190c5 | 7255 | |
1d3504fc HS |
7256 | static int build_sched_domains(const cpumask_t *cpu_map) |
7257 | { | |
7258 | return __build_sched_domains(cpu_map, NULL); | |
7259 | } | |
7260 | ||
029190c5 PJ |
7261 | static cpumask_t *doms_cur; /* current sched domains */ |
7262 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ | |
4285f594 IM |
7263 | static struct sched_domain_attr *dattr_cur; |
7264 | /* attribues of custom domains in 'doms_cur' */ | |
029190c5 PJ |
7265 | |
7266 | /* | |
7267 | * Special case: If a kmalloc of a doms_cur partition (array of | |
7268 | * cpumask_t) fails, then fallback to a single sched domain, | |
7269 | * as determined by the single cpumask_t fallback_doms. | |
7270 | */ | |
7271 | static cpumask_t fallback_doms; | |
7272 | ||
22e52b07 HC |
7273 | void __attribute__((weak)) arch_update_cpu_topology(void) |
7274 | { | |
7275 | } | |
7276 | ||
5c8e1ed1 MK |
7277 | /* |
7278 | * Free current domain masks. | |
7279 | * Called after all cpus are attached to NULL domain. | |
7280 | */ | |
7281 | static void free_sched_domains(void) | |
7282 | { | |
7283 | ndoms_cur = 0; | |
7284 | if (doms_cur != &fallback_doms) | |
7285 | kfree(doms_cur); | |
7286 | doms_cur = &fallback_doms; | |
7287 | } | |
7288 | ||
1a20ff27 | 7289 | /* |
41a2d6cf | 7290 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. |
029190c5 PJ |
7291 | * For now this just excludes isolated cpus, but could be used to |
7292 | * exclude other special cases in the future. | |
1a20ff27 | 7293 | */ |
51888ca2 | 7294 | static int arch_init_sched_domains(const cpumask_t *cpu_map) |
1a20ff27 | 7295 | { |
7378547f MM |
7296 | int err; |
7297 | ||
22e52b07 | 7298 | arch_update_cpu_topology(); |
029190c5 PJ |
7299 | ndoms_cur = 1; |
7300 | doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL); | |
7301 | if (!doms_cur) | |
7302 | doms_cur = &fallback_doms; | |
7303 | cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map); | |
1d3504fc | 7304 | dattr_cur = NULL; |
7378547f | 7305 | err = build_sched_domains(doms_cur); |
6382bc90 | 7306 | register_sched_domain_sysctl(); |
7378547f MM |
7307 | |
7308 | return err; | |
1a20ff27 DG |
7309 | } |
7310 | ||
7c16ec58 MT |
7311 | static void arch_destroy_sched_domains(const cpumask_t *cpu_map, |
7312 | cpumask_t *tmpmask) | |
1da177e4 | 7313 | { |
7c16ec58 | 7314 | free_sched_groups(cpu_map, tmpmask); |
9c1cfda2 | 7315 | } |
1da177e4 | 7316 | |
1a20ff27 DG |
7317 | /* |
7318 | * Detach sched domains from a group of cpus specified in cpu_map | |
7319 | * These cpus will now be attached to the NULL domain | |
7320 | */ | |
858119e1 | 7321 | static void detach_destroy_domains(const cpumask_t *cpu_map) |
1a20ff27 | 7322 | { |
7c16ec58 | 7323 | cpumask_t tmpmask; |
1a20ff27 DG |
7324 | int i; |
7325 | ||
6382bc90 MM |
7326 | unregister_sched_domain_sysctl(); |
7327 | ||
1a20ff27 | 7328 | for_each_cpu_mask(i, *cpu_map) |
57d885fe | 7329 | cpu_attach_domain(NULL, &def_root_domain, i); |
1a20ff27 | 7330 | synchronize_sched(); |
7c16ec58 | 7331 | arch_destroy_sched_domains(cpu_map, &tmpmask); |
1a20ff27 DG |
7332 | } |
7333 | ||
1d3504fc HS |
7334 | /* handle null as "default" */ |
7335 | static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | |
7336 | struct sched_domain_attr *new, int idx_new) | |
7337 | { | |
7338 | struct sched_domain_attr tmp; | |
7339 | ||
7340 | /* fast path */ | |
7341 | if (!new && !cur) | |
7342 | return 1; | |
7343 | ||
7344 | tmp = SD_ATTR_INIT; | |
7345 | return !memcmp(cur ? (cur + idx_cur) : &tmp, | |
7346 | new ? (new + idx_new) : &tmp, | |
7347 | sizeof(struct sched_domain_attr)); | |
7348 | } | |
7349 | ||
029190c5 PJ |
7350 | /* |
7351 | * Partition sched domains as specified by the 'ndoms_new' | |
41a2d6cf | 7352 | * cpumasks in the array doms_new[] of cpumasks. This compares |
029190c5 PJ |
7353 | * doms_new[] to the current sched domain partitioning, doms_cur[]. |
7354 | * It destroys each deleted domain and builds each new domain. | |
7355 | * | |
7356 | * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'. | |
41a2d6cf IM |
7357 | * The masks don't intersect (don't overlap.) We should setup one |
7358 | * sched domain for each mask. CPUs not in any of the cpumasks will | |
7359 | * not be load balanced. If the same cpumask appears both in the | |
029190c5 PJ |
7360 | * current 'doms_cur' domains and in the new 'doms_new', we can leave |
7361 | * it as it is. | |
7362 | * | |
41a2d6cf IM |
7363 | * The passed in 'doms_new' should be kmalloc'd. This routine takes |
7364 | * ownership of it and will kfree it when done with it. If the caller | |
029190c5 PJ |
7365 | * failed the kmalloc call, then it can pass in doms_new == NULL, |
7366 | * and partition_sched_domains() will fallback to the single partition | |
7367 | * 'fallback_doms'. | |
7368 | * | |
7369 | * Call with hotplug lock held | |
7370 | */ | |
1d3504fc HS |
7371 | void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, |
7372 | struct sched_domain_attr *dattr_new) | |
029190c5 PJ |
7373 | { |
7374 | int i, j; | |
7375 | ||
712555ee | 7376 | mutex_lock(&sched_domains_mutex); |
a1835615 | 7377 | |
7378547f MM |
7378 | /* always unregister in case we don't destroy any domains */ |
7379 | unregister_sched_domain_sysctl(); | |
7380 | ||
029190c5 PJ |
7381 | if (doms_new == NULL) { |
7382 | ndoms_new = 1; | |
7383 | doms_new = &fallback_doms; | |
7384 | cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map); | |
1d3504fc | 7385 | dattr_new = NULL; |
029190c5 PJ |
7386 | } |
7387 | ||
7388 | /* Destroy deleted domains */ | |
7389 | for (i = 0; i < ndoms_cur; i++) { | |
7390 | for (j = 0; j < ndoms_new; j++) { | |
1d3504fc HS |
7391 | if (cpus_equal(doms_cur[i], doms_new[j]) |
7392 | && dattrs_equal(dattr_cur, i, dattr_new, j)) | |
029190c5 PJ |
7393 | goto match1; |
7394 | } | |
7395 | /* no match - a current sched domain not in new doms_new[] */ | |
7396 | detach_destroy_domains(doms_cur + i); | |
7397 | match1: | |
7398 | ; | |
7399 | } | |
7400 | ||
7401 | /* Build new domains */ | |
7402 | for (i = 0; i < ndoms_new; i++) { | |
7403 | for (j = 0; j < ndoms_cur; j++) { | |
1d3504fc HS |
7404 | if (cpus_equal(doms_new[i], doms_cur[j]) |
7405 | && dattrs_equal(dattr_new, i, dattr_cur, j)) | |
029190c5 PJ |
7406 | goto match2; |
7407 | } | |
7408 | /* no match - add a new doms_new */ | |
1d3504fc HS |
7409 | __build_sched_domains(doms_new + i, |
7410 | dattr_new ? dattr_new + i : NULL); | |
029190c5 PJ |
7411 | match2: |
7412 | ; | |
7413 | } | |
7414 | ||
7415 | /* Remember the new sched domains */ | |
7416 | if (doms_cur != &fallback_doms) | |
7417 | kfree(doms_cur); | |
1d3504fc | 7418 | kfree(dattr_cur); /* kfree(NULL) is safe */ |
029190c5 | 7419 | doms_cur = doms_new; |
1d3504fc | 7420 | dattr_cur = dattr_new; |
029190c5 | 7421 | ndoms_cur = ndoms_new; |
7378547f MM |
7422 | |
7423 | register_sched_domain_sysctl(); | |
a1835615 | 7424 | |
712555ee | 7425 | mutex_unlock(&sched_domains_mutex); |
029190c5 PJ |
7426 | } |
7427 | ||
5c45bf27 | 7428 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
9aefd0ab | 7429 | int arch_reinit_sched_domains(void) |
5c45bf27 SS |
7430 | { |
7431 | int err; | |
7432 | ||
95402b38 | 7433 | get_online_cpus(); |
712555ee | 7434 | mutex_lock(&sched_domains_mutex); |
5c45bf27 | 7435 | detach_destroy_domains(&cpu_online_map); |
5c8e1ed1 | 7436 | free_sched_domains(); |
5c45bf27 | 7437 | err = arch_init_sched_domains(&cpu_online_map); |
712555ee | 7438 | mutex_unlock(&sched_domains_mutex); |
95402b38 | 7439 | put_online_cpus(); |
5c45bf27 SS |
7440 | |
7441 | return err; | |
7442 | } | |
7443 | ||
7444 | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | |
7445 | { | |
7446 | int ret; | |
7447 | ||
7448 | if (buf[0] != '0' && buf[0] != '1') | |
7449 | return -EINVAL; | |
7450 | ||
7451 | if (smt) | |
7452 | sched_smt_power_savings = (buf[0] == '1'); | |
7453 | else | |
7454 | sched_mc_power_savings = (buf[0] == '1'); | |
7455 | ||
7456 | ret = arch_reinit_sched_domains(); | |
7457 | ||
7458 | return ret ? ret : count; | |
7459 | } | |
7460 | ||
5c45bf27 SS |
7461 | #ifdef CONFIG_SCHED_MC |
7462 | static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page) | |
7463 | { | |
7464 | return sprintf(page, "%u\n", sched_mc_power_savings); | |
7465 | } | |
48f24c4d IM |
7466 | static ssize_t sched_mc_power_savings_store(struct sys_device *dev, |
7467 | const char *buf, size_t count) | |
5c45bf27 SS |
7468 | { |
7469 | return sched_power_savings_store(buf, count, 0); | |
7470 | } | |
6707de00 AB |
7471 | static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show, |
7472 | sched_mc_power_savings_store); | |
5c45bf27 SS |
7473 | #endif |
7474 | ||
7475 | #ifdef CONFIG_SCHED_SMT | |
7476 | static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page) | |
7477 | { | |
7478 | return sprintf(page, "%u\n", sched_smt_power_savings); | |
7479 | } | |
48f24c4d IM |
7480 | static ssize_t sched_smt_power_savings_store(struct sys_device *dev, |
7481 | const char *buf, size_t count) | |
5c45bf27 SS |
7482 | { |
7483 | return sched_power_savings_store(buf, count, 1); | |
7484 | } | |
6707de00 AB |
7485 | static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show, |
7486 | sched_smt_power_savings_store); | |
7487 | #endif | |
7488 | ||
7489 | int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) | |
7490 | { | |
7491 | int err = 0; | |
7492 | ||
7493 | #ifdef CONFIG_SCHED_SMT | |
7494 | if (smt_capable()) | |
7495 | err = sysfs_create_file(&cls->kset.kobj, | |
7496 | &attr_sched_smt_power_savings.attr); | |
7497 | #endif | |
7498 | #ifdef CONFIG_SCHED_MC | |
7499 | if (!err && mc_capable()) | |
7500 | err = sysfs_create_file(&cls->kset.kobj, | |
7501 | &attr_sched_mc_power_savings.attr); | |
7502 | #endif | |
7503 | return err; | |
7504 | } | |
6d6bc0ad | 7505 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
5c45bf27 | 7506 | |
1da177e4 | 7507 | /* |
41a2d6cf | 7508 | * Force a reinitialization of the sched domains hierarchy. The domains |
1da177e4 | 7509 | * and groups cannot be updated in place without racing with the balancing |
41c7ce9a | 7510 | * code, so we temporarily attach all running cpus to the NULL domain |
1da177e4 LT |
7511 | * which will prevent rebalancing while the sched domains are recalculated. |
7512 | */ | |
7513 | static int update_sched_domains(struct notifier_block *nfb, | |
7514 | unsigned long action, void *hcpu) | |
7515 | { | |
1da177e4 LT |
7516 | switch (action) { |
7517 | case CPU_UP_PREPARE: | |
8bb78442 | 7518 | case CPU_UP_PREPARE_FROZEN: |
1da177e4 | 7519 | case CPU_DOWN_PREPARE: |
8bb78442 | 7520 | case CPU_DOWN_PREPARE_FROZEN: |
1a20ff27 | 7521 | detach_destroy_domains(&cpu_online_map); |
5c8e1ed1 | 7522 | free_sched_domains(); |
1da177e4 LT |
7523 | return NOTIFY_OK; |
7524 | ||
7525 | case CPU_UP_CANCELED: | |
8bb78442 | 7526 | case CPU_UP_CANCELED_FROZEN: |
1da177e4 | 7527 | case CPU_DOWN_FAILED: |
8bb78442 | 7528 | case CPU_DOWN_FAILED_FROZEN: |
1da177e4 | 7529 | case CPU_ONLINE: |
8bb78442 | 7530 | case CPU_ONLINE_FROZEN: |
1da177e4 | 7531 | case CPU_DEAD: |
8bb78442 | 7532 | case CPU_DEAD_FROZEN: |
1da177e4 LT |
7533 | /* |
7534 | * Fall through and re-initialise the domains. | |
7535 | */ | |
7536 | break; | |
7537 | default: | |
7538 | return NOTIFY_DONE; | |
7539 | } | |
7540 | ||
5c8e1ed1 MK |
7541 | #ifndef CONFIG_CPUSETS |
7542 | /* | |
7543 | * Create default domain partitioning if cpusets are disabled. | |
7544 | * Otherwise we let cpusets rebuild the domains based on the | |
7545 | * current setup. | |
7546 | */ | |
7547 | ||
1da177e4 | 7548 | /* The hotplug lock is already held by cpu_up/cpu_down */ |
1a20ff27 | 7549 | arch_init_sched_domains(&cpu_online_map); |
5c8e1ed1 | 7550 | #endif |
1da177e4 LT |
7551 | |
7552 | return NOTIFY_OK; | |
7553 | } | |
1da177e4 LT |
7554 | |
7555 | void __init sched_init_smp(void) | |
7556 | { | |
5c1e1767 NP |
7557 | cpumask_t non_isolated_cpus; |
7558 | ||
434d53b0 MT |
7559 | #if defined(CONFIG_NUMA) |
7560 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), | |
7561 | GFP_KERNEL); | |
7562 | BUG_ON(sched_group_nodes_bycpu == NULL); | |
7563 | #endif | |
95402b38 | 7564 | get_online_cpus(); |
712555ee | 7565 | mutex_lock(&sched_domains_mutex); |
1a20ff27 | 7566 | arch_init_sched_domains(&cpu_online_map); |
e5e5673f | 7567 | cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map); |
5c1e1767 NP |
7568 | if (cpus_empty(non_isolated_cpus)) |
7569 | cpu_set(smp_processor_id(), non_isolated_cpus); | |
712555ee | 7570 | mutex_unlock(&sched_domains_mutex); |
95402b38 | 7571 | put_online_cpus(); |
1da177e4 LT |
7572 | /* XXX: Theoretical race here - CPU may be hotplugged now */ |
7573 | hotcpu_notifier(update_sched_domains, 0); | |
b328ca18 | 7574 | init_hrtick(); |
5c1e1767 NP |
7575 | |
7576 | /* Move init over to a non-isolated CPU */ | |
7c16ec58 | 7577 | if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0) |
5c1e1767 | 7578 | BUG(); |
19978ca6 | 7579 | sched_init_granularity(); |
1da177e4 LT |
7580 | } |
7581 | #else | |
7582 | void __init sched_init_smp(void) | |
7583 | { | |
19978ca6 | 7584 | sched_init_granularity(); |
1da177e4 LT |
7585 | } |
7586 | #endif /* CONFIG_SMP */ | |
7587 | ||
7588 | int in_sched_functions(unsigned long addr) | |
7589 | { | |
1da177e4 LT |
7590 | return in_lock_functions(addr) || |
7591 | (addr >= (unsigned long)__sched_text_start | |
7592 | && addr < (unsigned long)__sched_text_end); | |
7593 | } | |
7594 | ||
a9957449 | 7595 | static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) |
dd41f596 IM |
7596 | { |
7597 | cfs_rq->tasks_timeline = RB_ROOT; | |
4a55bd5e | 7598 | INIT_LIST_HEAD(&cfs_rq->tasks); |
dd41f596 IM |
7599 | #ifdef CONFIG_FAIR_GROUP_SCHED |
7600 | cfs_rq->rq = rq; | |
7601 | #endif | |
67e9fb2a | 7602 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); |
dd41f596 IM |
7603 | } |
7604 | ||
fa85ae24 PZ |
7605 | static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) |
7606 | { | |
7607 | struct rt_prio_array *array; | |
7608 | int i; | |
7609 | ||
7610 | array = &rt_rq->active; | |
7611 | for (i = 0; i < MAX_RT_PRIO; i++) { | |
45c01e82 GH |
7612 | INIT_LIST_HEAD(array->xqueue + i); |
7613 | INIT_LIST_HEAD(array->squeue + i); | |
fa85ae24 PZ |
7614 | __clear_bit(i, array->bitmap); |
7615 | } | |
7616 | /* delimiter for bitsearch: */ | |
7617 | __set_bit(MAX_RT_PRIO, array->bitmap); | |
7618 | ||
052f1dc7 | 7619 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
48d5e258 PZ |
7620 | rt_rq->highest_prio = MAX_RT_PRIO; |
7621 | #endif | |
fa85ae24 PZ |
7622 | #ifdef CONFIG_SMP |
7623 | rt_rq->rt_nr_migratory = 0; | |
fa85ae24 PZ |
7624 | rt_rq->overloaded = 0; |
7625 | #endif | |
7626 | ||
7627 | rt_rq->rt_time = 0; | |
7628 | rt_rq->rt_throttled = 0; | |
ac086bc2 PZ |
7629 | rt_rq->rt_runtime = 0; |
7630 | spin_lock_init(&rt_rq->rt_runtime_lock); | |
6f505b16 | 7631 | |
052f1dc7 | 7632 | #ifdef CONFIG_RT_GROUP_SCHED |
23b0fdfc | 7633 | rt_rq->rt_nr_boosted = 0; |
6f505b16 PZ |
7634 | rt_rq->rq = rq; |
7635 | #endif | |
fa85ae24 PZ |
7636 | } |
7637 | ||
6f505b16 | 7638 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ec7dc8ac DG |
7639 | static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
7640 | struct sched_entity *se, int cpu, int add, | |
7641 | struct sched_entity *parent) | |
6f505b16 | 7642 | { |
ec7dc8ac | 7643 | struct rq *rq = cpu_rq(cpu); |
6f505b16 PZ |
7644 | tg->cfs_rq[cpu] = cfs_rq; |
7645 | init_cfs_rq(cfs_rq, rq); | |
7646 | cfs_rq->tg = tg; | |
7647 | if (add) | |
7648 | list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); | |
7649 | ||
7650 | tg->se[cpu] = se; | |
354d60c2 DG |
7651 | /* se could be NULL for init_task_group */ |
7652 | if (!se) | |
7653 | return; | |
7654 | ||
ec7dc8ac DG |
7655 | if (!parent) |
7656 | se->cfs_rq = &rq->cfs; | |
7657 | else | |
7658 | se->cfs_rq = parent->my_q; | |
7659 | ||
6f505b16 PZ |
7660 | se->my_q = cfs_rq; |
7661 | se->load.weight = tg->shares; | |
e05510d0 | 7662 | se->load.inv_weight = 0; |
ec7dc8ac | 7663 | se->parent = parent; |
6f505b16 | 7664 | } |
052f1dc7 | 7665 | #endif |
6f505b16 | 7666 | |
052f1dc7 | 7667 | #ifdef CONFIG_RT_GROUP_SCHED |
ec7dc8ac DG |
7668 | static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
7669 | struct sched_rt_entity *rt_se, int cpu, int add, | |
7670 | struct sched_rt_entity *parent) | |
6f505b16 | 7671 | { |
ec7dc8ac DG |
7672 | struct rq *rq = cpu_rq(cpu); |
7673 | ||
6f505b16 PZ |
7674 | tg->rt_rq[cpu] = rt_rq; |
7675 | init_rt_rq(rt_rq, rq); | |
7676 | rt_rq->tg = tg; | |
7677 | rt_rq->rt_se = rt_se; | |
ac086bc2 | 7678 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
6f505b16 PZ |
7679 | if (add) |
7680 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | |
7681 | ||
7682 | tg->rt_se[cpu] = rt_se; | |
354d60c2 DG |
7683 | if (!rt_se) |
7684 | return; | |
7685 | ||
ec7dc8ac DG |
7686 | if (!parent) |
7687 | rt_se->rt_rq = &rq->rt; | |
7688 | else | |
7689 | rt_se->rt_rq = parent->my_q; | |
7690 | ||
6f505b16 PZ |
7691 | rt_se->rt_rq = &rq->rt; |
7692 | rt_se->my_q = rt_rq; | |
ec7dc8ac | 7693 | rt_se->parent = parent; |
6f505b16 PZ |
7694 | INIT_LIST_HEAD(&rt_se->run_list); |
7695 | } | |
7696 | #endif | |
7697 | ||
1da177e4 LT |
7698 | void __init sched_init(void) |
7699 | { | |
dd41f596 | 7700 | int i, j; |
434d53b0 MT |
7701 | unsigned long alloc_size = 0, ptr; |
7702 | ||
7703 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
7704 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | |
7705 | #endif | |
7706 | #ifdef CONFIG_RT_GROUP_SCHED | |
7707 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | |
eff766a6 PZ |
7708 | #endif |
7709 | #ifdef CONFIG_USER_SCHED | |
7710 | alloc_size *= 2; | |
434d53b0 MT |
7711 | #endif |
7712 | /* | |
7713 | * As sched_init() is called before page_alloc is setup, | |
7714 | * we use alloc_bootmem(). | |
7715 | */ | |
7716 | if (alloc_size) { | |
5a9d3225 | 7717 | ptr = (unsigned long)alloc_bootmem(alloc_size); |
434d53b0 MT |
7718 | |
7719 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
7720 | init_task_group.se = (struct sched_entity **)ptr; | |
7721 | ptr += nr_cpu_ids * sizeof(void **); | |
7722 | ||
7723 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; | |
7724 | ptr += nr_cpu_ids * sizeof(void **); | |
eff766a6 PZ |
7725 | |
7726 | #ifdef CONFIG_USER_SCHED | |
7727 | root_task_group.se = (struct sched_entity **)ptr; | |
7728 | ptr += nr_cpu_ids * sizeof(void **); | |
7729 | ||
7730 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; | |
7731 | ptr += nr_cpu_ids * sizeof(void **); | |
6d6bc0ad DG |
7732 | #endif /* CONFIG_USER_SCHED */ |
7733 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
434d53b0 MT |
7734 | #ifdef CONFIG_RT_GROUP_SCHED |
7735 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; | |
7736 | ptr += nr_cpu_ids * sizeof(void **); | |
7737 | ||
7738 | init_task_group.rt_rq = (struct rt_rq **)ptr; | |
eff766a6 PZ |
7739 | ptr += nr_cpu_ids * sizeof(void **); |
7740 | ||
7741 | #ifdef CONFIG_USER_SCHED | |
7742 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; | |
7743 | ptr += nr_cpu_ids * sizeof(void **); | |
7744 | ||
7745 | root_task_group.rt_rq = (struct rt_rq **)ptr; | |
7746 | ptr += nr_cpu_ids * sizeof(void **); | |
6d6bc0ad DG |
7747 | #endif /* CONFIG_USER_SCHED */ |
7748 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
434d53b0 | 7749 | } |
dd41f596 | 7750 | |
57d885fe GH |
7751 | #ifdef CONFIG_SMP |
7752 | init_defrootdomain(); | |
7753 | #endif | |
7754 | ||
d0b27fa7 PZ |
7755 | init_rt_bandwidth(&def_rt_bandwidth, |
7756 | global_rt_period(), global_rt_runtime()); | |
7757 | ||
7758 | #ifdef CONFIG_RT_GROUP_SCHED | |
7759 | init_rt_bandwidth(&init_task_group.rt_bandwidth, | |
7760 | global_rt_period(), global_rt_runtime()); | |
eff766a6 PZ |
7761 | #ifdef CONFIG_USER_SCHED |
7762 | init_rt_bandwidth(&root_task_group.rt_bandwidth, | |
7763 | global_rt_period(), RUNTIME_INF); | |
6d6bc0ad DG |
7764 | #endif /* CONFIG_USER_SCHED */ |
7765 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
d0b27fa7 | 7766 | |
052f1dc7 | 7767 | #ifdef CONFIG_GROUP_SCHED |
6f505b16 | 7768 | list_add(&init_task_group.list, &task_groups); |
f473aa5e PZ |
7769 | INIT_LIST_HEAD(&init_task_group.children); |
7770 | ||
7771 | #ifdef CONFIG_USER_SCHED | |
7772 | INIT_LIST_HEAD(&root_task_group.children); | |
7773 | init_task_group.parent = &root_task_group; | |
7774 | list_add(&init_task_group.siblings, &root_task_group.children); | |
6d6bc0ad DG |
7775 | #endif /* CONFIG_USER_SCHED */ |
7776 | #endif /* CONFIG_GROUP_SCHED */ | |
6f505b16 | 7777 | |
0a945022 | 7778 | for_each_possible_cpu(i) { |
70b97a7f | 7779 | struct rq *rq; |
1da177e4 LT |
7780 | |
7781 | rq = cpu_rq(i); | |
7782 | spin_lock_init(&rq->lock); | |
fcb99371 | 7783 | lockdep_set_class(&rq->lock, &rq->rq_lock_key); |
7897986b | 7784 | rq->nr_running = 0; |
dd41f596 | 7785 | init_cfs_rq(&rq->cfs, rq); |
6f505b16 | 7786 | init_rt_rq(&rq->rt, rq); |
dd41f596 | 7787 | #ifdef CONFIG_FAIR_GROUP_SCHED |
4cf86d77 | 7788 | init_task_group.shares = init_task_group_load; |
6f505b16 | 7789 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); |
354d60c2 DG |
7790 | #ifdef CONFIG_CGROUP_SCHED |
7791 | /* | |
7792 | * How much cpu bandwidth does init_task_group get? | |
7793 | * | |
7794 | * In case of task-groups formed thr' the cgroup filesystem, it | |
7795 | * gets 100% of the cpu resources in the system. This overall | |
7796 | * system cpu resource is divided among the tasks of | |
7797 | * init_task_group and its child task-groups in a fair manner, | |
7798 | * based on each entity's (task or task-group's) weight | |
7799 | * (se->load.weight). | |
7800 | * | |
7801 | * In other words, if init_task_group has 10 tasks of weight | |
7802 | * 1024) and two child groups A0 and A1 (of weight 1024 each), | |
7803 | * then A0's share of the cpu resource is: | |
7804 | * | |
7805 | * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% | |
7806 | * | |
7807 | * We achieve this by letting init_task_group's tasks sit | |
7808 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). | |
7809 | */ | |
ec7dc8ac | 7810 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); |
354d60c2 | 7811 | #elif defined CONFIG_USER_SCHED |
eff766a6 PZ |
7812 | root_task_group.shares = NICE_0_LOAD; |
7813 | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); | |
354d60c2 DG |
7814 | /* |
7815 | * In case of task-groups formed thr' the user id of tasks, | |
7816 | * init_task_group represents tasks belonging to root user. | |
7817 | * Hence it forms a sibling of all subsequent groups formed. | |
7818 | * In this case, init_task_group gets only a fraction of overall | |
7819 | * system cpu resource, based on the weight assigned to root | |
7820 | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished | |
7821 | * by letting tasks of init_task_group sit in a separate cfs_rq | |
7822 | * (init_cfs_rq) and having one entity represent this group of | |
7823 | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). | |
7824 | */ | |
ec7dc8ac | 7825 | init_tg_cfs_entry(&init_task_group, |
6f505b16 | 7826 | &per_cpu(init_cfs_rq, i), |
eff766a6 PZ |
7827 | &per_cpu(init_sched_entity, i), i, 1, |
7828 | root_task_group.se[i]); | |
6f505b16 | 7829 | |
052f1dc7 | 7830 | #endif |
354d60c2 DG |
7831 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
7832 | ||
7833 | rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; | |
052f1dc7 | 7834 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 7835 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); |
354d60c2 | 7836 | #ifdef CONFIG_CGROUP_SCHED |
ec7dc8ac | 7837 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); |
354d60c2 | 7838 | #elif defined CONFIG_USER_SCHED |
eff766a6 | 7839 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); |
ec7dc8ac | 7840 | init_tg_rt_entry(&init_task_group, |
6f505b16 | 7841 | &per_cpu(init_rt_rq, i), |
eff766a6 PZ |
7842 | &per_cpu(init_sched_rt_entity, i), i, 1, |
7843 | root_task_group.rt_se[i]); | |
354d60c2 | 7844 | #endif |
dd41f596 | 7845 | #endif |
1da177e4 | 7846 | |
dd41f596 IM |
7847 | for (j = 0; j < CPU_LOAD_IDX_MAX; j++) |
7848 | rq->cpu_load[j] = 0; | |
1da177e4 | 7849 | #ifdef CONFIG_SMP |
41c7ce9a | 7850 | rq->sd = NULL; |
57d885fe | 7851 | rq->rd = NULL; |
1da177e4 | 7852 | rq->active_balance = 0; |
dd41f596 | 7853 | rq->next_balance = jiffies; |
1da177e4 | 7854 | rq->push_cpu = 0; |
0a2966b4 | 7855 | rq->cpu = i; |
1f11eb6a | 7856 | rq->online = 0; |
1da177e4 LT |
7857 | rq->migration_thread = NULL; |
7858 | INIT_LIST_HEAD(&rq->migration_queue); | |
dc938520 | 7859 | rq_attach_root(rq, &def_root_domain); |
1da177e4 | 7860 | #endif |
8f4d37ec | 7861 | init_rq_hrtick(rq); |
1da177e4 | 7862 | atomic_set(&rq->nr_iowait, 0); |
1da177e4 LT |
7863 | } |
7864 | ||
2dd73a4f | 7865 | set_load_weight(&init_task); |
b50f60ce | 7866 | |
e107be36 AK |
7867 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
7868 | INIT_HLIST_HEAD(&init_task.preempt_notifiers); | |
7869 | #endif | |
7870 | ||
c9819f45 CL |
7871 | #ifdef CONFIG_SMP |
7872 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL); | |
7873 | #endif | |
7874 | ||
b50f60ce HC |
7875 | #ifdef CONFIG_RT_MUTEXES |
7876 | plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); | |
7877 | #endif | |
7878 | ||
1da177e4 LT |
7879 | /* |
7880 | * The boot idle thread does lazy MMU switching as well: | |
7881 | */ | |
7882 | atomic_inc(&init_mm.mm_count); | |
7883 | enter_lazy_tlb(&init_mm, current); | |
7884 | ||
7885 | /* | |
7886 | * Make us the idle thread. Technically, schedule() should not be | |
7887 | * called from this thread, however somewhere below it might be, | |
7888 | * but because we are the idle thread, we just pick up running again | |
7889 | * when this runqueue becomes "idle". | |
7890 | */ | |
7891 | init_idle(current, smp_processor_id()); | |
dd41f596 IM |
7892 | /* |
7893 | * During early bootup we pretend to be a normal task: | |
7894 | */ | |
7895 | current->sched_class = &fair_sched_class; | |
6892b75e IM |
7896 | |
7897 | scheduler_running = 1; | |
1da177e4 LT |
7898 | } |
7899 | ||
7900 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | |
7901 | void __might_sleep(char *file, int line) | |
7902 | { | |
48f24c4d | 7903 | #ifdef in_atomic |
1da177e4 LT |
7904 | static unsigned long prev_jiffy; /* ratelimiting */ |
7905 | ||
7906 | if ((in_atomic() || irqs_disabled()) && | |
7907 | system_state == SYSTEM_RUNNING && !oops_in_progress) { | |
7908 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | |
7909 | return; | |
7910 | prev_jiffy = jiffies; | |
91368d73 | 7911 | printk(KERN_ERR "BUG: sleeping function called from invalid" |
1da177e4 LT |
7912 | " context at %s:%d\n", file, line); |
7913 | printk("in_atomic():%d, irqs_disabled():%d\n", | |
7914 | in_atomic(), irqs_disabled()); | |
a4c410f0 | 7915 | debug_show_held_locks(current); |
3117df04 IM |
7916 | if (irqs_disabled()) |
7917 | print_irqtrace_events(current); | |
1da177e4 LT |
7918 | dump_stack(); |
7919 | } | |
7920 | #endif | |
7921 | } | |
7922 | EXPORT_SYMBOL(__might_sleep); | |
7923 | #endif | |
7924 | ||
7925 | #ifdef CONFIG_MAGIC_SYSRQ | |
3a5e4dc1 AK |
7926 | static void normalize_task(struct rq *rq, struct task_struct *p) |
7927 | { | |
7928 | int on_rq; | |
3e51f33f | 7929 | |
3a5e4dc1 AK |
7930 | update_rq_clock(rq); |
7931 | on_rq = p->se.on_rq; | |
7932 | if (on_rq) | |
7933 | deactivate_task(rq, p, 0); | |
7934 | __setscheduler(rq, p, SCHED_NORMAL, 0); | |
7935 | if (on_rq) { | |
7936 | activate_task(rq, p, 0); | |
7937 | resched_task(rq->curr); | |
7938 | } | |
7939 | } | |
7940 | ||
1da177e4 LT |
7941 | void normalize_rt_tasks(void) |
7942 | { | |
a0f98a1c | 7943 | struct task_struct *g, *p; |
1da177e4 | 7944 | unsigned long flags; |
70b97a7f | 7945 | struct rq *rq; |
1da177e4 | 7946 | |
4cf5d77a | 7947 | read_lock_irqsave(&tasklist_lock, flags); |
a0f98a1c | 7948 | do_each_thread(g, p) { |
178be793 IM |
7949 | /* |
7950 | * Only normalize user tasks: | |
7951 | */ | |
7952 | if (!p->mm) | |
7953 | continue; | |
7954 | ||
6cfb0d5d | 7955 | p->se.exec_start = 0; |
6cfb0d5d | 7956 | #ifdef CONFIG_SCHEDSTATS |
dd41f596 | 7957 | p->se.wait_start = 0; |
dd41f596 | 7958 | p->se.sleep_start = 0; |
dd41f596 | 7959 | p->se.block_start = 0; |
6cfb0d5d | 7960 | #endif |
dd41f596 IM |
7961 | |
7962 | if (!rt_task(p)) { | |
7963 | /* | |
7964 | * Renice negative nice level userspace | |
7965 | * tasks back to 0: | |
7966 | */ | |
7967 | if (TASK_NICE(p) < 0 && p->mm) | |
7968 | set_user_nice(p, 0); | |
1da177e4 | 7969 | continue; |
dd41f596 | 7970 | } |
1da177e4 | 7971 | |
4cf5d77a | 7972 | spin_lock(&p->pi_lock); |
b29739f9 | 7973 | rq = __task_rq_lock(p); |
1da177e4 | 7974 | |
178be793 | 7975 | normalize_task(rq, p); |
3a5e4dc1 | 7976 | |
b29739f9 | 7977 | __task_rq_unlock(rq); |
4cf5d77a | 7978 | spin_unlock(&p->pi_lock); |
a0f98a1c IM |
7979 | } while_each_thread(g, p); |
7980 | ||
4cf5d77a | 7981 | read_unlock_irqrestore(&tasklist_lock, flags); |
1da177e4 LT |
7982 | } |
7983 | ||
7984 | #endif /* CONFIG_MAGIC_SYSRQ */ | |
1df5c10a LT |
7985 | |
7986 | #ifdef CONFIG_IA64 | |
7987 | /* | |
7988 | * These functions are only useful for the IA64 MCA handling. | |
7989 | * | |
7990 | * They can only be called when the whole system has been | |
7991 | * stopped - every CPU needs to be quiescent, and no scheduling | |
7992 | * activity can take place. Using them for anything else would | |
7993 | * be a serious bug, and as a result, they aren't even visible | |
7994 | * under any other configuration. | |
7995 | */ | |
7996 | ||
7997 | /** | |
7998 | * curr_task - return the current task for a given cpu. | |
7999 | * @cpu: the processor in question. | |
8000 | * | |
8001 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
8002 | */ | |
36c8b586 | 8003 | struct task_struct *curr_task(int cpu) |
1df5c10a LT |
8004 | { |
8005 | return cpu_curr(cpu); | |
8006 | } | |
8007 | ||
8008 | /** | |
8009 | * set_curr_task - set the current task for a given cpu. | |
8010 | * @cpu: the processor in question. | |
8011 | * @p: the task pointer to set. | |
8012 | * | |
8013 | * Description: This function must only be used when non-maskable interrupts | |
41a2d6cf IM |
8014 | * are serviced on a separate stack. It allows the architecture to switch the |
8015 | * notion of the current task on a cpu in a non-blocking manner. This function | |
1df5c10a LT |
8016 | * must be called with all CPU's synchronized, and interrupts disabled, the |
8017 | * and caller must save the original value of the current task (see | |
8018 | * curr_task() above) and restore that value before reenabling interrupts and | |
8019 | * re-starting the system. | |
8020 | * | |
8021 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
8022 | */ | |
36c8b586 | 8023 | void set_curr_task(int cpu, struct task_struct *p) |
1df5c10a LT |
8024 | { |
8025 | cpu_curr(cpu) = p; | |
8026 | } | |
8027 | ||
8028 | #endif | |
29f59db3 | 8029 | |
bccbe08a PZ |
8030 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8031 | static void free_fair_sched_group(struct task_group *tg) | |
6f505b16 PZ |
8032 | { |
8033 | int i; | |
8034 | ||
8035 | for_each_possible_cpu(i) { | |
8036 | if (tg->cfs_rq) | |
8037 | kfree(tg->cfs_rq[i]); | |
8038 | if (tg->se) | |
8039 | kfree(tg->se[i]); | |
6f505b16 PZ |
8040 | } |
8041 | ||
8042 | kfree(tg->cfs_rq); | |
8043 | kfree(tg->se); | |
6f505b16 PZ |
8044 | } |
8045 | ||
ec7dc8ac DG |
8046 | static |
8047 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
29f59db3 | 8048 | { |
29f59db3 | 8049 | struct cfs_rq *cfs_rq; |
ec7dc8ac | 8050 | struct sched_entity *se, *parent_se; |
9b5b7751 | 8051 | struct rq *rq; |
29f59db3 SV |
8052 | int i; |
8053 | ||
434d53b0 | 8054 | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); |
29f59db3 SV |
8055 | if (!tg->cfs_rq) |
8056 | goto err; | |
434d53b0 | 8057 | tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); |
29f59db3 SV |
8058 | if (!tg->se) |
8059 | goto err; | |
052f1dc7 PZ |
8060 | |
8061 | tg->shares = NICE_0_LOAD; | |
29f59db3 SV |
8062 | |
8063 | for_each_possible_cpu(i) { | |
9b5b7751 | 8064 | rq = cpu_rq(i); |
29f59db3 | 8065 | |
6f505b16 PZ |
8066 | cfs_rq = kmalloc_node(sizeof(struct cfs_rq), |
8067 | GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); | |
29f59db3 SV |
8068 | if (!cfs_rq) |
8069 | goto err; | |
8070 | ||
6f505b16 PZ |
8071 | se = kmalloc_node(sizeof(struct sched_entity), |
8072 | GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); | |
29f59db3 SV |
8073 | if (!se) |
8074 | goto err; | |
8075 | ||
ec7dc8ac DG |
8076 | parent_se = parent ? parent->se[i] : NULL; |
8077 | init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se); | |
bccbe08a PZ |
8078 | } |
8079 | ||
8080 | return 1; | |
8081 | ||
8082 | err: | |
8083 | return 0; | |
8084 | } | |
8085 | ||
8086 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | |
8087 | { | |
8088 | list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list, | |
8089 | &cpu_rq(cpu)->leaf_cfs_rq_list); | |
8090 | } | |
8091 | ||
8092 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | |
8093 | { | |
8094 | list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); | |
8095 | } | |
6d6bc0ad | 8096 | #else /* !CONFG_FAIR_GROUP_SCHED */ |
bccbe08a PZ |
8097 | static inline void free_fair_sched_group(struct task_group *tg) |
8098 | { | |
8099 | } | |
8100 | ||
ec7dc8ac DG |
8101 | static inline |
8102 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
8103 | { |
8104 | return 1; | |
8105 | } | |
8106 | ||
8107 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | |
8108 | { | |
8109 | } | |
8110 | ||
8111 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | |
8112 | { | |
8113 | } | |
6d6bc0ad | 8114 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
052f1dc7 PZ |
8115 | |
8116 | #ifdef CONFIG_RT_GROUP_SCHED | |
bccbe08a PZ |
8117 | static void free_rt_sched_group(struct task_group *tg) |
8118 | { | |
8119 | int i; | |
8120 | ||
d0b27fa7 PZ |
8121 | destroy_rt_bandwidth(&tg->rt_bandwidth); |
8122 | ||
bccbe08a PZ |
8123 | for_each_possible_cpu(i) { |
8124 | if (tg->rt_rq) | |
8125 | kfree(tg->rt_rq[i]); | |
8126 | if (tg->rt_se) | |
8127 | kfree(tg->rt_se[i]); | |
8128 | } | |
8129 | ||
8130 | kfree(tg->rt_rq); | |
8131 | kfree(tg->rt_se); | |
8132 | } | |
8133 | ||
ec7dc8ac DG |
8134 | static |
8135 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
8136 | { |
8137 | struct rt_rq *rt_rq; | |
ec7dc8ac | 8138 | struct sched_rt_entity *rt_se, *parent_se; |
bccbe08a PZ |
8139 | struct rq *rq; |
8140 | int i; | |
8141 | ||
434d53b0 | 8142 | tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); |
bccbe08a PZ |
8143 | if (!tg->rt_rq) |
8144 | goto err; | |
434d53b0 | 8145 | tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); |
bccbe08a PZ |
8146 | if (!tg->rt_se) |
8147 | goto err; | |
8148 | ||
d0b27fa7 PZ |
8149 | init_rt_bandwidth(&tg->rt_bandwidth, |
8150 | ktime_to_ns(def_rt_bandwidth.rt_period), 0); | |
bccbe08a PZ |
8151 | |
8152 | for_each_possible_cpu(i) { | |
8153 | rq = cpu_rq(i); | |
8154 | ||
6f505b16 PZ |
8155 | rt_rq = kmalloc_node(sizeof(struct rt_rq), |
8156 | GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); | |
8157 | if (!rt_rq) | |
8158 | goto err; | |
29f59db3 | 8159 | |
6f505b16 PZ |
8160 | rt_se = kmalloc_node(sizeof(struct sched_rt_entity), |
8161 | GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); | |
8162 | if (!rt_se) | |
8163 | goto err; | |
29f59db3 | 8164 | |
ec7dc8ac DG |
8165 | parent_se = parent ? parent->rt_se[i] : NULL; |
8166 | init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se); | |
29f59db3 SV |
8167 | } |
8168 | ||
bccbe08a PZ |
8169 | return 1; |
8170 | ||
8171 | err: | |
8172 | return 0; | |
8173 | } | |
8174 | ||
8175 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | |
8176 | { | |
8177 | list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list, | |
8178 | &cpu_rq(cpu)->leaf_rt_rq_list); | |
8179 | } | |
8180 | ||
8181 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |
8182 | { | |
8183 | list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); | |
8184 | } | |
6d6bc0ad | 8185 | #else /* !CONFIG_RT_GROUP_SCHED */ |
bccbe08a PZ |
8186 | static inline void free_rt_sched_group(struct task_group *tg) |
8187 | { | |
8188 | } | |
8189 | ||
ec7dc8ac DG |
8190 | static inline |
8191 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
bccbe08a PZ |
8192 | { |
8193 | return 1; | |
8194 | } | |
8195 | ||
8196 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | |
8197 | { | |
8198 | } | |
8199 | ||
8200 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |
8201 | { | |
8202 | } | |
6d6bc0ad | 8203 | #endif /* CONFIG_RT_GROUP_SCHED */ |
bccbe08a | 8204 | |
d0b27fa7 | 8205 | #ifdef CONFIG_GROUP_SCHED |
bccbe08a PZ |
8206 | static void free_sched_group(struct task_group *tg) |
8207 | { | |
8208 | free_fair_sched_group(tg); | |
8209 | free_rt_sched_group(tg); | |
8210 | kfree(tg); | |
8211 | } | |
8212 | ||
8213 | /* allocate runqueue etc for a new task group */ | |
ec7dc8ac | 8214 | struct task_group *sched_create_group(struct task_group *parent) |
bccbe08a PZ |
8215 | { |
8216 | struct task_group *tg; | |
8217 | unsigned long flags; | |
8218 | int i; | |
8219 | ||
8220 | tg = kzalloc(sizeof(*tg), GFP_KERNEL); | |
8221 | if (!tg) | |
8222 | return ERR_PTR(-ENOMEM); | |
8223 | ||
ec7dc8ac | 8224 | if (!alloc_fair_sched_group(tg, parent)) |
bccbe08a PZ |
8225 | goto err; |
8226 | ||
ec7dc8ac | 8227 | if (!alloc_rt_sched_group(tg, parent)) |
bccbe08a PZ |
8228 | goto err; |
8229 | ||
8ed36996 | 8230 | spin_lock_irqsave(&task_group_lock, flags); |
9b5b7751 | 8231 | for_each_possible_cpu(i) { |
bccbe08a PZ |
8232 | register_fair_sched_group(tg, i); |
8233 | register_rt_sched_group(tg, i); | |
9b5b7751 | 8234 | } |
6f505b16 | 8235 | list_add_rcu(&tg->list, &task_groups); |
f473aa5e PZ |
8236 | |
8237 | WARN_ON(!parent); /* root should already exist */ | |
8238 | ||
8239 | tg->parent = parent; | |
8240 | list_add_rcu(&tg->siblings, &parent->children); | |
8241 | INIT_LIST_HEAD(&tg->children); | |
8ed36996 | 8242 | spin_unlock_irqrestore(&task_group_lock, flags); |
29f59db3 | 8243 | |
9b5b7751 | 8244 | return tg; |
29f59db3 SV |
8245 | |
8246 | err: | |
6f505b16 | 8247 | free_sched_group(tg); |
29f59db3 SV |
8248 | return ERR_PTR(-ENOMEM); |
8249 | } | |
8250 | ||
9b5b7751 | 8251 | /* rcu callback to free various structures associated with a task group */ |
6f505b16 | 8252 | static void free_sched_group_rcu(struct rcu_head *rhp) |
29f59db3 | 8253 | { |
29f59db3 | 8254 | /* now it should be safe to free those cfs_rqs */ |
6f505b16 | 8255 | free_sched_group(container_of(rhp, struct task_group, rcu)); |
29f59db3 SV |
8256 | } |
8257 | ||
9b5b7751 | 8258 | /* Destroy runqueue etc associated with a task group */ |
4cf86d77 | 8259 | void sched_destroy_group(struct task_group *tg) |
29f59db3 | 8260 | { |
8ed36996 | 8261 | unsigned long flags; |
9b5b7751 | 8262 | int i; |
29f59db3 | 8263 | |
8ed36996 | 8264 | spin_lock_irqsave(&task_group_lock, flags); |
9b5b7751 | 8265 | for_each_possible_cpu(i) { |
bccbe08a PZ |
8266 | unregister_fair_sched_group(tg, i); |
8267 | unregister_rt_sched_group(tg, i); | |
9b5b7751 | 8268 | } |
6f505b16 | 8269 | list_del_rcu(&tg->list); |
f473aa5e | 8270 | list_del_rcu(&tg->siblings); |
8ed36996 | 8271 | spin_unlock_irqrestore(&task_group_lock, flags); |
9b5b7751 | 8272 | |
9b5b7751 | 8273 | /* wait for possible concurrent references to cfs_rqs complete */ |
6f505b16 | 8274 | call_rcu(&tg->rcu, free_sched_group_rcu); |
29f59db3 SV |
8275 | } |
8276 | ||
9b5b7751 | 8277 | /* change task's runqueue when it moves between groups. |
3a252015 IM |
8278 | * The caller of this function should have put the task in its new group |
8279 | * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to | |
8280 | * reflect its new group. | |
9b5b7751 SV |
8281 | */ |
8282 | void sched_move_task(struct task_struct *tsk) | |
29f59db3 SV |
8283 | { |
8284 | int on_rq, running; | |
8285 | unsigned long flags; | |
8286 | struct rq *rq; | |
8287 | ||
8288 | rq = task_rq_lock(tsk, &flags); | |
8289 | ||
29f59db3 SV |
8290 | update_rq_clock(rq); |
8291 | ||
051a1d1a | 8292 | running = task_current(rq, tsk); |
29f59db3 SV |
8293 | on_rq = tsk->se.on_rq; |
8294 | ||
0e1f3483 | 8295 | if (on_rq) |
29f59db3 | 8296 | dequeue_task(rq, tsk, 0); |
0e1f3483 HS |
8297 | if (unlikely(running)) |
8298 | tsk->sched_class->put_prev_task(rq, tsk); | |
29f59db3 | 8299 | |
6f505b16 | 8300 | set_task_rq(tsk, task_cpu(tsk)); |
29f59db3 | 8301 | |
810b3817 PZ |
8302 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8303 | if (tsk->sched_class->moved_group) | |
8304 | tsk->sched_class->moved_group(tsk); | |
8305 | #endif | |
8306 | ||
0e1f3483 HS |
8307 | if (unlikely(running)) |
8308 | tsk->sched_class->set_curr_task(rq); | |
8309 | if (on_rq) | |
7074badb | 8310 | enqueue_task(rq, tsk, 0); |
29f59db3 | 8311 | |
29f59db3 SV |
8312 | task_rq_unlock(rq, &flags); |
8313 | } | |
6d6bc0ad | 8314 | #endif /* CONFIG_GROUP_SCHED */ |
29f59db3 | 8315 | |
052f1dc7 | 8316 | #ifdef CONFIG_FAIR_GROUP_SCHED |
6363ca57 | 8317 | static void set_se_shares(struct sched_entity *se, unsigned long shares) |
29f59db3 SV |
8318 | { |
8319 | struct cfs_rq *cfs_rq = se->cfs_rq; | |
6363ca57 | 8320 | struct rq *rq = cfs_rq->rq; |
29f59db3 SV |
8321 | int on_rq; |
8322 | ||
6363ca57 IM |
8323 | spin_lock_irq(&rq->lock); |
8324 | ||
29f59db3 | 8325 | on_rq = se->on_rq; |
62fb1851 | 8326 | if (on_rq) |
29f59db3 SV |
8327 | dequeue_entity(cfs_rq, se, 0); |
8328 | ||
8329 | se->load.weight = shares; | |
e05510d0 | 8330 | se->load.inv_weight = 0; |
29f59db3 | 8331 | |
62fb1851 | 8332 | if (on_rq) |
29f59db3 | 8333 | enqueue_entity(cfs_rq, se, 0); |
62fb1851 | 8334 | |
6363ca57 | 8335 | spin_unlock_irq(&rq->lock); |
29f59db3 SV |
8336 | } |
8337 | ||
8ed36996 PZ |
8338 | static DEFINE_MUTEX(shares_mutex); |
8339 | ||
4cf86d77 | 8340 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) |
29f59db3 SV |
8341 | { |
8342 | int i; | |
8ed36996 | 8343 | unsigned long flags; |
c61935fd | 8344 | |
ec7dc8ac DG |
8345 | /* |
8346 | * We can't change the weight of the root cgroup. | |
8347 | */ | |
8348 | if (!tg->se[0]) | |
8349 | return -EINVAL; | |
8350 | ||
18d95a28 PZ |
8351 | if (shares < MIN_SHARES) |
8352 | shares = MIN_SHARES; | |
cb4ad1ff MX |
8353 | else if (shares > MAX_SHARES) |
8354 | shares = MAX_SHARES; | |
62fb1851 | 8355 | |
8ed36996 | 8356 | mutex_lock(&shares_mutex); |
9b5b7751 | 8357 | if (tg->shares == shares) |
5cb350ba | 8358 | goto done; |
29f59db3 | 8359 | |
8ed36996 | 8360 | spin_lock_irqsave(&task_group_lock, flags); |
bccbe08a PZ |
8361 | for_each_possible_cpu(i) |
8362 | unregister_fair_sched_group(tg, i); | |
f473aa5e | 8363 | list_del_rcu(&tg->siblings); |
8ed36996 | 8364 | spin_unlock_irqrestore(&task_group_lock, flags); |
6b2d7700 SV |
8365 | |
8366 | /* wait for any ongoing reference to this group to finish */ | |
8367 | synchronize_sched(); | |
8368 | ||
8369 | /* | |
8370 | * Now we are free to modify the group's share on each cpu | |
8371 | * w/o tripping rebalance_share or load_balance_fair. | |
8372 | */ | |
9b5b7751 | 8373 | tg->shares = shares; |
6363ca57 | 8374 | for_each_possible_cpu(i) |
cb4ad1ff | 8375 | set_se_shares(tg->se[i], shares); |
29f59db3 | 8376 | |
6b2d7700 SV |
8377 | /* |
8378 | * Enable load balance activity on this group, by inserting it back on | |
8379 | * each cpu's rq->leaf_cfs_rq_list. | |
8380 | */ | |
8ed36996 | 8381 | spin_lock_irqsave(&task_group_lock, flags); |
bccbe08a PZ |
8382 | for_each_possible_cpu(i) |
8383 | register_fair_sched_group(tg, i); | |
f473aa5e | 8384 | list_add_rcu(&tg->siblings, &tg->parent->children); |
8ed36996 | 8385 | spin_unlock_irqrestore(&task_group_lock, flags); |
5cb350ba | 8386 | done: |
8ed36996 | 8387 | mutex_unlock(&shares_mutex); |
9b5b7751 | 8388 | return 0; |
29f59db3 SV |
8389 | } |
8390 | ||
5cb350ba DG |
8391 | unsigned long sched_group_shares(struct task_group *tg) |
8392 | { | |
8393 | return tg->shares; | |
8394 | } | |
052f1dc7 | 8395 | #endif |
5cb350ba | 8396 | |
052f1dc7 | 8397 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 8398 | /* |
9f0c1e56 | 8399 | * Ensure that the real time constraints are schedulable. |
6f505b16 | 8400 | */ |
9f0c1e56 PZ |
8401 | static DEFINE_MUTEX(rt_constraints_mutex); |
8402 | ||
8403 | static unsigned long to_ratio(u64 period, u64 runtime) | |
8404 | { | |
8405 | if (runtime == RUNTIME_INF) | |
8406 | return 1ULL << 16; | |
8407 | ||
6f6d6a1a | 8408 | return div64_u64(runtime << 16, period); |
9f0c1e56 PZ |
8409 | } |
8410 | ||
b40b2e8e PZ |
8411 | #ifdef CONFIG_CGROUP_SCHED |
8412 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) | |
8413 | { | |
8414 | struct task_group *tgi, *parent = tg->parent; | |
8415 | unsigned long total = 0; | |
8416 | ||
8417 | if (!parent) { | |
8418 | if (global_rt_period() < period) | |
8419 | return 0; | |
8420 | ||
8421 | return to_ratio(period, runtime) < | |
8422 | to_ratio(global_rt_period(), global_rt_runtime()); | |
8423 | } | |
8424 | ||
8425 | if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period) | |
8426 | return 0; | |
8427 | ||
8428 | rcu_read_lock(); | |
8429 | list_for_each_entry_rcu(tgi, &parent->children, siblings) { | |
8430 | if (tgi == tg) | |
8431 | continue; | |
8432 | ||
8433 | total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period), | |
8434 | tgi->rt_bandwidth.rt_runtime); | |
8435 | } | |
8436 | rcu_read_unlock(); | |
8437 | ||
8438 | return total + to_ratio(period, runtime) < | |
8439 | to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period), | |
8440 | parent->rt_bandwidth.rt_runtime); | |
8441 | } | |
8442 | #elif defined CONFIG_USER_SCHED | |
9f0c1e56 | 8443 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) |
6f505b16 PZ |
8444 | { |
8445 | struct task_group *tgi; | |
8446 | unsigned long total = 0; | |
9f0c1e56 | 8447 | unsigned long global_ratio = |
d0b27fa7 | 8448 | to_ratio(global_rt_period(), global_rt_runtime()); |
6f505b16 PZ |
8449 | |
8450 | rcu_read_lock(); | |
9f0c1e56 PZ |
8451 | list_for_each_entry_rcu(tgi, &task_groups, list) { |
8452 | if (tgi == tg) | |
8453 | continue; | |
6f505b16 | 8454 | |
d0b27fa7 PZ |
8455 | total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period), |
8456 | tgi->rt_bandwidth.rt_runtime); | |
9f0c1e56 PZ |
8457 | } |
8458 | rcu_read_unlock(); | |
6f505b16 | 8459 | |
9f0c1e56 | 8460 | return total + to_ratio(period, runtime) < global_ratio; |
6f505b16 | 8461 | } |
b40b2e8e | 8462 | #endif |
6f505b16 | 8463 | |
521f1a24 DG |
8464 | /* Must be called with tasklist_lock held */ |
8465 | static inline int tg_has_rt_tasks(struct task_group *tg) | |
8466 | { | |
8467 | struct task_struct *g, *p; | |
8468 | do_each_thread(g, p) { | |
8469 | if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) | |
8470 | return 1; | |
8471 | } while_each_thread(g, p); | |
8472 | return 0; | |
8473 | } | |
8474 | ||
d0b27fa7 PZ |
8475 | static int tg_set_bandwidth(struct task_group *tg, |
8476 | u64 rt_period, u64 rt_runtime) | |
6f505b16 | 8477 | { |
ac086bc2 | 8478 | int i, err = 0; |
9f0c1e56 | 8479 | |
9f0c1e56 | 8480 | mutex_lock(&rt_constraints_mutex); |
521f1a24 | 8481 | read_lock(&tasklist_lock); |
ac086bc2 | 8482 | if (rt_runtime == 0 && tg_has_rt_tasks(tg)) { |
521f1a24 DG |
8483 | err = -EBUSY; |
8484 | goto unlock; | |
8485 | } | |
9f0c1e56 PZ |
8486 | if (!__rt_schedulable(tg, rt_period, rt_runtime)) { |
8487 | err = -EINVAL; | |
8488 | goto unlock; | |
8489 | } | |
ac086bc2 PZ |
8490 | |
8491 | spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | |
d0b27fa7 PZ |
8492 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); |
8493 | tg->rt_bandwidth.rt_runtime = rt_runtime; | |
ac086bc2 PZ |
8494 | |
8495 | for_each_possible_cpu(i) { | |
8496 | struct rt_rq *rt_rq = tg->rt_rq[i]; | |
8497 | ||
8498 | spin_lock(&rt_rq->rt_runtime_lock); | |
8499 | rt_rq->rt_runtime = rt_runtime; | |
8500 | spin_unlock(&rt_rq->rt_runtime_lock); | |
8501 | } | |
8502 | spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | |
9f0c1e56 | 8503 | unlock: |
521f1a24 | 8504 | read_unlock(&tasklist_lock); |
9f0c1e56 PZ |
8505 | mutex_unlock(&rt_constraints_mutex); |
8506 | ||
8507 | return err; | |
6f505b16 PZ |
8508 | } |
8509 | ||
d0b27fa7 PZ |
8510 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) |
8511 | { | |
8512 | u64 rt_runtime, rt_period; | |
8513 | ||
8514 | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
8515 | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | |
8516 | if (rt_runtime_us < 0) | |
8517 | rt_runtime = RUNTIME_INF; | |
8518 | ||
8519 | return tg_set_bandwidth(tg, rt_period, rt_runtime); | |
8520 | } | |
8521 | ||
9f0c1e56 PZ |
8522 | long sched_group_rt_runtime(struct task_group *tg) |
8523 | { | |
8524 | u64 rt_runtime_us; | |
8525 | ||
d0b27fa7 | 8526 | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) |
9f0c1e56 PZ |
8527 | return -1; |
8528 | ||
d0b27fa7 | 8529 | rt_runtime_us = tg->rt_bandwidth.rt_runtime; |
9f0c1e56 PZ |
8530 | do_div(rt_runtime_us, NSEC_PER_USEC); |
8531 | return rt_runtime_us; | |
8532 | } | |
d0b27fa7 PZ |
8533 | |
8534 | int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) | |
8535 | { | |
8536 | u64 rt_runtime, rt_period; | |
8537 | ||
8538 | rt_period = (u64)rt_period_us * NSEC_PER_USEC; | |
8539 | rt_runtime = tg->rt_bandwidth.rt_runtime; | |
8540 | ||
8541 | return tg_set_bandwidth(tg, rt_period, rt_runtime); | |
8542 | } | |
8543 | ||
8544 | long sched_group_rt_period(struct task_group *tg) | |
8545 | { | |
8546 | u64 rt_period_us; | |
8547 | ||
8548 | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
8549 | do_div(rt_period_us, NSEC_PER_USEC); | |
8550 | return rt_period_us; | |
8551 | } | |
8552 | ||
8553 | static int sched_rt_global_constraints(void) | |
8554 | { | |
8555 | int ret = 0; | |
8556 | ||
8557 | mutex_lock(&rt_constraints_mutex); | |
8558 | if (!__rt_schedulable(NULL, 1, 0)) | |
8559 | ret = -EINVAL; | |
8560 | mutex_unlock(&rt_constraints_mutex); | |
8561 | ||
8562 | return ret; | |
8563 | } | |
6d6bc0ad | 8564 | #else /* !CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
8565 | static int sched_rt_global_constraints(void) |
8566 | { | |
ac086bc2 PZ |
8567 | unsigned long flags; |
8568 | int i; | |
8569 | ||
8570 | spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); | |
8571 | for_each_possible_cpu(i) { | |
8572 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; | |
8573 | ||
8574 | spin_lock(&rt_rq->rt_runtime_lock); | |
8575 | rt_rq->rt_runtime = global_rt_runtime(); | |
8576 | spin_unlock(&rt_rq->rt_runtime_lock); | |
8577 | } | |
8578 | spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); | |
8579 | ||
d0b27fa7 PZ |
8580 | return 0; |
8581 | } | |
6d6bc0ad | 8582 | #endif /* CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
8583 | |
8584 | int sched_rt_handler(struct ctl_table *table, int write, | |
8585 | struct file *filp, void __user *buffer, size_t *lenp, | |
8586 | loff_t *ppos) | |
8587 | { | |
8588 | int ret; | |
8589 | int old_period, old_runtime; | |
8590 | static DEFINE_MUTEX(mutex); | |
8591 | ||
8592 | mutex_lock(&mutex); | |
8593 | old_period = sysctl_sched_rt_period; | |
8594 | old_runtime = sysctl_sched_rt_runtime; | |
8595 | ||
8596 | ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); | |
8597 | ||
8598 | if (!ret && write) { | |
8599 | ret = sched_rt_global_constraints(); | |
8600 | if (ret) { | |
8601 | sysctl_sched_rt_period = old_period; | |
8602 | sysctl_sched_rt_runtime = old_runtime; | |
8603 | } else { | |
8604 | def_rt_bandwidth.rt_runtime = global_rt_runtime(); | |
8605 | def_rt_bandwidth.rt_period = | |
8606 | ns_to_ktime(global_rt_period()); | |
8607 | } | |
8608 | } | |
8609 | mutex_unlock(&mutex); | |
8610 | ||
8611 | return ret; | |
8612 | } | |
68318b8e | 8613 | |
052f1dc7 | 8614 | #ifdef CONFIG_CGROUP_SCHED |
68318b8e SV |
8615 | |
8616 | /* return corresponding task_group object of a cgroup */ | |
2b01dfe3 | 8617 | static inline struct task_group *cgroup_tg(struct cgroup *cgrp) |
68318b8e | 8618 | { |
2b01dfe3 PM |
8619 | return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), |
8620 | struct task_group, css); | |
68318b8e SV |
8621 | } |
8622 | ||
8623 | static struct cgroup_subsys_state * | |
2b01dfe3 | 8624 | cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) |
68318b8e | 8625 | { |
ec7dc8ac | 8626 | struct task_group *tg, *parent; |
68318b8e | 8627 | |
2b01dfe3 | 8628 | if (!cgrp->parent) { |
68318b8e | 8629 | /* This is early initialization for the top cgroup */ |
2b01dfe3 | 8630 | init_task_group.css.cgroup = cgrp; |
68318b8e SV |
8631 | return &init_task_group.css; |
8632 | } | |
8633 | ||
ec7dc8ac DG |
8634 | parent = cgroup_tg(cgrp->parent); |
8635 | tg = sched_create_group(parent); | |
68318b8e SV |
8636 | if (IS_ERR(tg)) |
8637 | return ERR_PTR(-ENOMEM); | |
8638 | ||
8639 | /* Bind the cgroup to task_group object we just created */ | |
2b01dfe3 | 8640 | tg->css.cgroup = cgrp; |
68318b8e SV |
8641 | |
8642 | return &tg->css; | |
8643 | } | |
8644 | ||
41a2d6cf IM |
8645 | static void |
8646 | cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |
68318b8e | 8647 | { |
2b01dfe3 | 8648 | struct task_group *tg = cgroup_tg(cgrp); |
68318b8e SV |
8649 | |
8650 | sched_destroy_group(tg); | |
8651 | } | |
8652 | ||
41a2d6cf IM |
8653 | static int |
8654 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | |
8655 | struct task_struct *tsk) | |
68318b8e | 8656 | { |
b68aa230 PZ |
8657 | #ifdef CONFIG_RT_GROUP_SCHED |
8658 | /* Don't accept realtime tasks when there is no way for them to run */ | |
d0b27fa7 | 8659 | if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0) |
b68aa230 PZ |
8660 | return -EINVAL; |
8661 | #else | |
68318b8e SV |
8662 | /* We don't support RT-tasks being in separate groups */ |
8663 | if (tsk->sched_class != &fair_sched_class) | |
8664 | return -EINVAL; | |
b68aa230 | 8665 | #endif |
68318b8e SV |
8666 | |
8667 | return 0; | |
8668 | } | |
8669 | ||
8670 | static void | |
2b01dfe3 | 8671 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, |
68318b8e SV |
8672 | struct cgroup *old_cont, struct task_struct *tsk) |
8673 | { | |
8674 | sched_move_task(tsk); | |
8675 | } | |
8676 | ||
052f1dc7 | 8677 | #ifdef CONFIG_FAIR_GROUP_SCHED |
f4c753b7 | 8678 | static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, |
2b01dfe3 | 8679 | u64 shareval) |
68318b8e | 8680 | { |
2b01dfe3 | 8681 | return sched_group_set_shares(cgroup_tg(cgrp), shareval); |
68318b8e SV |
8682 | } |
8683 | ||
f4c753b7 | 8684 | static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) |
68318b8e | 8685 | { |
2b01dfe3 | 8686 | struct task_group *tg = cgroup_tg(cgrp); |
68318b8e SV |
8687 | |
8688 | return (u64) tg->shares; | |
8689 | } | |
6d6bc0ad | 8690 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
68318b8e | 8691 | |
052f1dc7 | 8692 | #ifdef CONFIG_RT_GROUP_SCHED |
0c70814c | 8693 | static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, |
06ecb27c | 8694 | s64 val) |
6f505b16 | 8695 | { |
06ecb27c | 8696 | return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); |
6f505b16 PZ |
8697 | } |
8698 | ||
06ecb27c | 8699 | static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) |
6f505b16 | 8700 | { |
06ecb27c | 8701 | return sched_group_rt_runtime(cgroup_tg(cgrp)); |
6f505b16 | 8702 | } |
d0b27fa7 PZ |
8703 | |
8704 | static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, | |
8705 | u64 rt_period_us) | |
8706 | { | |
8707 | return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); | |
8708 | } | |
8709 | ||
8710 | static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) | |
8711 | { | |
8712 | return sched_group_rt_period(cgroup_tg(cgrp)); | |
8713 | } | |
6d6bc0ad | 8714 | #endif /* CONFIG_RT_GROUP_SCHED */ |
6f505b16 | 8715 | |
fe5c7cc2 | 8716 | static struct cftype cpu_files[] = { |
052f1dc7 | 8717 | #ifdef CONFIG_FAIR_GROUP_SCHED |
fe5c7cc2 PM |
8718 | { |
8719 | .name = "shares", | |
f4c753b7 PM |
8720 | .read_u64 = cpu_shares_read_u64, |
8721 | .write_u64 = cpu_shares_write_u64, | |
fe5c7cc2 | 8722 | }, |
052f1dc7 PZ |
8723 | #endif |
8724 | #ifdef CONFIG_RT_GROUP_SCHED | |
6f505b16 | 8725 | { |
9f0c1e56 | 8726 | .name = "rt_runtime_us", |
06ecb27c PM |
8727 | .read_s64 = cpu_rt_runtime_read, |
8728 | .write_s64 = cpu_rt_runtime_write, | |
6f505b16 | 8729 | }, |
d0b27fa7 PZ |
8730 | { |
8731 | .name = "rt_period_us", | |
f4c753b7 PM |
8732 | .read_u64 = cpu_rt_period_read_uint, |
8733 | .write_u64 = cpu_rt_period_write_uint, | |
d0b27fa7 | 8734 | }, |
052f1dc7 | 8735 | #endif |
68318b8e SV |
8736 | }; |
8737 | ||
8738 | static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) | |
8739 | { | |
fe5c7cc2 | 8740 | return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); |
68318b8e SV |
8741 | } |
8742 | ||
8743 | struct cgroup_subsys cpu_cgroup_subsys = { | |
38605cae IM |
8744 | .name = "cpu", |
8745 | .create = cpu_cgroup_create, | |
8746 | .destroy = cpu_cgroup_destroy, | |
8747 | .can_attach = cpu_cgroup_can_attach, | |
8748 | .attach = cpu_cgroup_attach, | |
8749 | .populate = cpu_cgroup_populate, | |
8750 | .subsys_id = cpu_cgroup_subsys_id, | |
68318b8e SV |
8751 | .early_init = 1, |
8752 | }; | |
8753 | ||
052f1dc7 | 8754 | #endif /* CONFIG_CGROUP_SCHED */ |
d842de87 SV |
8755 | |
8756 | #ifdef CONFIG_CGROUP_CPUACCT | |
8757 | ||
8758 | /* | |
8759 | * CPU accounting code for task groups. | |
8760 | * | |
8761 | * Based on the work by Paul Menage ([email protected]) and Balbir Singh | |
8762 | * ([email protected]). | |
8763 | */ | |
8764 | ||
8765 | /* track cpu usage of a group of tasks */ | |
8766 | struct cpuacct { | |
8767 | struct cgroup_subsys_state css; | |
8768 | /* cpuusage holds pointer to a u64-type object on every cpu */ | |
8769 | u64 *cpuusage; | |
8770 | }; | |
8771 | ||
8772 | struct cgroup_subsys cpuacct_subsys; | |
8773 | ||
8774 | /* return cpu accounting group corresponding to this container */ | |
32cd756a | 8775 | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) |
d842de87 | 8776 | { |
32cd756a | 8777 | return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), |
d842de87 SV |
8778 | struct cpuacct, css); |
8779 | } | |
8780 | ||
8781 | /* return cpu accounting group to which this task belongs */ | |
8782 | static inline struct cpuacct *task_ca(struct task_struct *tsk) | |
8783 | { | |
8784 | return container_of(task_subsys_state(tsk, cpuacct_subsys_id), | |
8785 | struct cpuacct, css); | |
8786 | } | |
8787 | ||
8788 | /* create a new cpu accounting group */ | |
8789 | static struct cgroup_subsys_state *cpuacct_create( | |
32cd756a | 8790 | struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 SV |
8791 | { |
8792 | struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); | |
8793 | ||
8794 | if (!ca) | |
8795 | return ERR_PTR(-ENOMEM); | |
8796 | ||
8797 | ca->cpuusage = alloc_percpu(u64); | |
8798 | if (!ca->cpuusage) { | |
8799 | kfree(ca); | |
8800 | return ERR_PTR(-ENOMEM); | |
8801 | } | |
8802 | ||
8803 | return &ca->css; | |
8804 | } | |
8805 | ||
8806 | /* destroy an existing cpu accounting group */ | |
41a2d6cf | 8807 | static void |
32cd756a | 8808 | cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 | 8809 | { |
32cd756a | 8810 | struct cpuacct *ca = cgroup_ca(cgrp); |
d842de87 SV |
8811 | |
8812 | free_percpu(ca->cpuusage); | |
8813 | kfree(ca); | |
8814 | } | |
8815 | ||
8816 | /* return total cpu usage (in nanoseconds) of a group */ | |
32cd756a | 8817 | static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) |
d842de87 | 8818 | { |
32cd756a | 8819 | struct cpuacct *ca = cgroup_ca(cgrp); |
d842de87 SV |
8820 | u64 totalcpuusage = 0; |
8821 | int i; | |
8822 | ||
8823 | for_each_possible_cpu(i) { | |
8824 | u64 *cpuusage = percpu_ptr(ca->cpuusage, i); | |
8825 | ||
8826 | /* | |
8827 | * Take rq->lock to make 64-bit addition safe on 32-bit | |
8828 | * platforms. | |
8829 | */ | |
8830 | spin_lock_irq(&cpu_rq(i)->lock); | |
8831 | totalcpuusage += *cpuusage; | |
8832 | spin_unlock_irq(&cpu_rq(i)->lock); | |
8833 | } | |
8834 | ||
8835 | return totalcpuusage; | |
8836 | } | |
8837 | ||
0297b803 DG |
8838 | static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, |
8839 | u64 reset) | |
8840 | { | |
8841 | struct cpuacct *ca = cgroup_ca(cgrp); | |
8842 | int err = 0; | |
8843 | int i; | |
8844 | ||
8845 | if (reset) { | |
8846 | err = -EINVAL; | |
8847 | goto out; | |
8848 | } | |
8849 | ||
8850 | for_each_possible_cpu(i) { | |
8851 | u64 *cpuusage = percpu_ptr(ca->cpuusage, i); | |
8852 | ||
8853 | spin_lock_irq(&cpu_rq(i)->lock); | |
8854 | *cpuusage = 0; | |
8855 | spin_unlock_irq(&cpu_rq(i)->lock); | |
8856 | } | |
8857 | out: | |
8858 | return err; | |
8859 | } | |
8860 | ||
d842de87 SV |
8861 | static struct cftype files[] = { |
8862 | { | |
8863 | .name = "usage", | |
f4c753b7 PM |
8864 | .read_u64 = cpuusage_read, |
8865 | .write_u64 = cpuusage_write, | |
d842de87 SV |
8866 | }, |
8867 | }; | |
8868 | ||
32cd756a | 8869 | static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) |
d842de87 | 8870 | { |
32cd756a | 8871 | return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); |
d842de87 SV |
8872 | } |
8873 | ||
8874 | /* | |
8875 | * charge this task's execution time to its accounting group. | |
8876 | * | |
8877 | * called with rq->lock held. | |
8878 | */ | |
8879 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |
8880 | { | |
8881 | struct cpuacct *ca; | |
8882 | ||
8883 | if (!cpuacct_subsys.active) | |
8884 | return; | |
8885 | ||
8886 | ca = task_ca(tsk); | |
8887 | if (ca) { | |
8888 | u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk)); | |
8889 | ||
8890 | *cpuusage += cputime; | |
8891 | } | |
8892 | } | |
8893 | ||
8894 | struct cgroup_subsys cpuacct_subsys = { | |
8895 | .name = "cpuacct", | |
8896 | .create = cpuacct_create, | |
8897 | .destroy = cpuacct_destroy, | |
8898 | .populate = cpuacct_populate, | |
8899 | .subsys_id = cpuacct_subsys_id, | |
8900 | }; | |
8901 | #endif /* CONFIG_CGROUP_CPUACCT */ |