]> Git Repo - linux.git/blame - mm/shmem.c
mmc: sdhci-pci-o2micro: Improve card input timing at SDR104/HS200 mode
[linux.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <[email protected]>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <[email protected]>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <[email protected]>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
626c3920 40#include <linux/fs_parser.h>
86a2f3f2 41#include <linux/swapfile.h>
95cc09d6 42
853ac43a
MM
43static struct vfsmount *shm_mnt;
44
45#ifdef CONFIG_SHMEM
1da177e4
LT
46/*
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
50 */
51
39f0247d 52#include <linux/xattr.h>
a5694255 53#include <linux/exportfs.h>
1c7c474c 54#include <linux/posix_acl.h>
feda821e 55#include <linux/posix_acl_xattr.h>
1da177e4 56#include <linux/mman.h>
1da177e4
LT
57#include <linux/string.h>
58#include <linux/slab.h>
59#include <linux/backing-dev.h>
60#include <linux/shmem_fs.h>
1da177e4 61#include <linux/writeback.h>
bda97eab 62#include <linux/pagevec.h>
41ffe5d5 63#include <linux/percpu_counter.h>
83e4fa9c 64#include <linux/falloc.h>
708e3508 65#include <linux/splice.h>
1da177e4
LT
66#include <linux/security.h>
67#include <linux/swapops.h>
68#include <linux/mempolicy.h>
69#include <linux/namei.h>
b00dc3ad 70#include <linux/ctype.h>
304dbdb7 71#include <linux/migrate.h>
c1f60a5a 72#include <linux/highmem.h>
680d794b 73#include <linux/seq_file.h>
92562927 74#include <linux/magic.h>
9183df25 75#include <linux/syscalls.h>
40e041a2 76#include <linux/fcntl.h>
9183df25 77#include <uapi/linux/memfd.h>
cfda0526 78#include <linux/userfaultfd_k.h>
4c27fe4c 79#include <linux/rmap.h>
2b4db796 80#include <linux/uuid.h>
304dbdb7 81
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4 83
dd56b046
MG
84#include "internal.h"
85
09cbfeaf
KS
86#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 88
1da177e4
LT
89/* Pretend that each entry is of this size in directory's i_size */
90#define BOGO_DIRENT_SIZE 20
91
69f07ec9
HD
92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93#define SHORT_SYMLINK_LEN 128
94
1aac1400 95/*
f00cdc6d 96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
9608703e 97 * inode->i_private (with i_rwsem making sure that it has only one user at
f00cdc6d 98 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
99 */
100struct shmem_falloc {
8e205f77 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106};
107
0b5071dd
AV
108struct shmem_options {
109 unsigned long long blocks;
110 unsigned long long inodes;
111 struct mempolicy *mpol;
112 kuid_t uid;
113 kgid_t gid;
114 umode_t mode;
ea3271f7 115 bool full_inums;
0b5071dd
AV
116 int huge;
117 int seen;
118#define SHMEM_SEEN_BLOCKS 1
119#define SHMEM_SEEN_INODES 2
120#define SHMEM_SEEN_HUGE 4
ea3271f7 121#define SHMEM_SEEN_INUMS 8
0b5071dd
AV
122};
123
b76db735 124#ifdef CONFIG_TMPFS
680d794b
AM
125static unsigned long shmem_default_max_blocks(void)
126{
ca79b0c2 127 return totalram_pages() / 2;
680d794b
AM
128}
129
130static unsigned long shmem_default_max_inodes(void)
131{
ca79b0c2
AK
132 unsigned long nr_pages = totalram_pages();
133
134 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 135}
b76db735 136#endif
680d794b 137
c5bf121e
VRP
138static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139 struct page **pagep, enum sgp_type sgp,
140 gfp_t gfp, struct vm_area_struct *vma,
141 vm_fault_t *fault_type);
68da9f05 142static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 143 struct page **pagep, enum sgp_type sgp,
cfda0526 144 gfp_t gfp, struct vm_area_struct *vma,
2b740303 145 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 146
f3f0e1d2 147int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 148 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
149{
150 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 151 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 152}
1da177e4 153
1da177e4
LT
154static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155{
156 return sb->s_fs_info;
157}
158
159/*
160 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161 * for shared memory and for shared anonymous (/dev/zero) mappings
162 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163 * consistent with the pre-accounting of private mappings ...
164 */
165static inline int shmem_acct_size(unsigned long flags, loff_t size)
166{
0b0a0806 167 return (flags & VM_NORESERVE) ?
191c5424 168 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
169}
170
171static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172{
0b0a0806 173 if (!(flags & VM_NORESERVE))
1da177e4
LT
174 vm_unacct_memory(VM_ACCT(size));
175}
176
77142517
KK
177static inline int shmem_reacct_size(unsigned long flags,
178 loff_t oldsize, loff_t newsize)
179{
180 if (!(flags & VM_NORESERVE)) {
181 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182 return security_vm_enough_memory_mm(current->mm,
183 VM_ACCT(newsize) - VM_ACCT(oldsize));
184 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186 }
187 return 0;
188}
189
1da177e4
LT
190/*
191 * ... whereas tmpfs objects are accounted incrementally as
75edd345 192 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
193 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195 */
800d8c63 196static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 197{
800d8c63
KS
198 if (!(flags & VM_NORESERVE))
199 return 0;
200
201 return security_vm_enough_memory_mm(current->mm,
202 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
203}
204
205static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206{
0b0a0806 207 if (flags & VM_NORESERVE)
09cbfeaf 208 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
209}
210
0f079694
MR
211static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212{
213 struct shmem_inode_info *info = SHMEM_I(inode);
214 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215
216 if (shmem_acct_block(info->flags, pages))
217 return false;
218
219 if (sbinfo->max_blocks) {
220 if (percpu_counter_compare(&sbinfo->used_blocks,
221 sbinfo->max_blocks - pages) > 0)
222 goto unacct;
223 percpu_counter_add(&sbinfo->used_blocks, pages);
224 }
225
226 return true;
227
228unacct:
229 shmem_unacct_blocks(info->flags, pages);
230 return false;
231}
232
233static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234{
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237
238 if (sbinfo->max_blocks)
239 percpu_counter_sub(&sbinfo->used_blocks, pages);
240 shmem_unacct_blocks(info->flags, pages);
241}
242
759b9775 243static const struct super_operations shmem_ops;
30e6a51d 244const struct address_space_operations shmem_aops;
15ad7cdc 245static const struct file_operations shmem_file_operations;
92e1d5be
AV
246static const struct inode_operations shmem_inode_operations;
247static const struct inode_operations shmem_dir_inode_operations;
248static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 249static const struct vm_operations_struct shmem_vm_ops;
779750d2 250static struct file_system_type shmem_fs_type;
1da177e4 251
b0506e48
MR
252bool vma_is_shmem(struct vm_area_struct *vma)
253{
254 return vma->vm_ops == &shmem_vm_ops;
255}
256
1da177e4 257static LIST_HEAD(shmem_swaplist);
cb5f7b9a 258static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 259
e809d5f0
CD
260/*
261 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262 * produces a novel ino for the newly allocated inode.
263 *
264 * It may also be called when making a hard link to permit the space needed by
265 * each dentry. However, in that case, no new inode number is needed since that
266 * internally draws from another pool of inode numbers (currently global
267 * get_next_ino()). This case is indicated by passing NULL as inop.
268 */
269#define SHMEM_INO_BATCH 1024
270static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
271{
272 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
273 ino_t ino;
274
275 if (!(sb->s_flags & SB_KERNMOUNT)) {
bf11b9a8 276 raw_spin_lock(&sbinfo->stat_lock);
bb3e96d6
BS
277 if (sbinfo->max_inodes) {
278 if (!sbinfo->free_inodes) {
bf11b9a8 279 raw_spin_unlock(&sbinfo->stat_lock);
bb3e96d6
BS
280 return -ENOSPC;
281 }
282 sbinfo->free_inodes--;
5b04c689 283 }
e809d5f0
CD
284 if (inop) {
285 ino = sbinfo->next_ino++;
286 if (unlikely(is_zero_ino(ino)))
287 ino = sbinfo->next_ino++;
ea3271f7
CD
288 if (unlikely(!sbinfo->full_inums &&
289 ino > UINT_MAX)) {
e809d5f0
CD
290 /*
291 * Emulate get_next_ino uint wraparound for
292 * compatibility
293 */
ea3271f7
CD
294 if (IS_ENABLED(CONFIG_64BIT))
295 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296 __func__, MINOR(sb->s_dev));
297 sbinfo->next_ino = 1;
298 ino = sbinfo->next_ino++;
e809d5f0
CD
299 }
300 *inop = ino;
301 }
bf11b9a8 302 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
303 } else if (inop) {
304 /*
305 * __shmem_file_setup, one of our callers, is lock-free: it
306 * doesn't hold stat_lock in shmem_reserve_inode since
307 * max_inodes is always 0, and is called from potentially
308 * unknown contexts. As such, use a per-cpu batched allocator
309 * which doesn't require the per-sb stat_lock unless we are at
310 * the batch boundary.
ea3271f7
CD
311 *
312 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313 * shmem mounts are not exposed to userspace, so we don't need
314 * to worry about things like glibc compatibility.
e809d5f0
CD
315 */
316 ino_t *next_ino;
bf11b9a8 317
e809d5f0
CD
318 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 ino = *next_ino;
320 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
bf11b9a8 321 raw_spin_lock(&sbinfo->stat_lock);
e809d5f0
CD
322 ino = sbinfo->next_ino;
323 sbinfo->next_ino += SHMEM_INO_BATCH;
bf11b9a8 324 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
325 if (unlikely(is_zero_ino(ino)))
326 ino++;
327 }
328 *inop = ino;
329 *next_ino = ++ino;
330 put_cpu();
5b04c689 331 }
e809d5f0 332
5b04c689
PE
333 return 0;
334}
335
336static void shmem_free_inode(struct super_block *sb)
337{
338 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 if (sbinfo->max_inodes) {
bf11b9a8 340 raw_spin_lock(&sbinfo->stat_lock);
5b04c689 341 sbinfo->free_inodes++;
bf11b9a8 342 raw_spin_unlock(&sbinfo->stat_lock);
5b04c689
PE
343 }
344}
345
46711810 346/**
41ffe5d5 347 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
348 * @inode: inode to recalc
349 *
350 * We have to calculate the free blocks since the mm can drop
351 * undirtied hole pages behind our back.
352 *
353 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
354 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355 *
356 * It has to be called with the spinlock held.
357 */
358static void shmem_recalc_inode(struct inode *inode)
359{
360 struct shmem_inode_info *info = SHMEM_I(inode);
361 long freed;
362
363 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 if (freed > 0) {
365 info->alloced -= freed;
54af6042 366 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 367 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
368 }
369}
370
800d8c63
KS
371bool shmem_charge(struct inode *inode, long pages)
372{
373 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 374 unsigned long flags;
800d8c63 375
0f079694 376 if (!shmem_inode_acct_block(inode, pages))
800d8c63 377 return false;
b1cc94ab 378
aaa52e34
HD
379 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380 inode->i_mapping->nrpages += pages;
381
4595ef88 382 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
383 info->alloced += pages;
384 inode->i_blocks += pages * BLOCKS_PER_PAGE;
385 shmem_recalc_inode(inode);
4595ef88 386 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 387
800d8c63
KS
388 return true;
389}
390
391void shmem_uncharge(struct inode *inode, long pages)
392{
393 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 394 unsigned long flags;
800d8c63 395
aaa52e34
HD
396 /* nrpages adjustment done by __delete_from_page_cache() or caller */
397
4595ef88 398 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
399 info->alloced -= pages;
400 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401 shmem_recalc_inode(inode);
4595ef88 402 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 403
0f079694 404 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
405}
406
7a5d0fbb 407/*
62f945b6 408 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 409 */
62f945b6 410static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
411 pgoff_t index, void *expected, void *replacement)
412{
62f945b6 413 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 414 void *item;
7a5d0fbb
HD
415
416 VM_BUG_ON(!expected);
6dbaf22c 417 VM_BUG_ON(!replacement);
62f945b6 418 item = xas_load(&xas);
7a5d0fbb
HD
419 if (item != expected)
420 return -ENOENT;
62f945b6 421 xas_store(&xas, replacement);
7a5d0fbb
HD
422 return 0;
423}
424
d1899228
HD
425/*
426 * Sometimes, before we decide whether to proceed or to fail, we must check
427 * that an entry was not already brought back from swap by a racing thread.
428 *
429 * Checking page is not enough: by the time a SwapCache page is locked, it
430 * might be reused, and again be SwapCache, using the same swap as before.
431 */
432static bool shmem_confirm_swap(struct address_space *mapping,
433 pgoff_t index, swp_entry_t swap)
434{
a12831bf 435 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
436}
437
5a6e75f8
KS
438/*
439 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440 *
441 * SHMEM_HUGE_NEVER:
442 * disables huge pages for the mount;
443 * SHMEM_HUGE_ALWAYS:
444 * enables huge pages for the mount;
445 * SHMEM_HUGE_WITHIN_SIZE:
446 * only allocate huge pages if the page will be fully within i_size,
447 * also respect fadvise()/madvise() hints;
448 * SHMEM_HUGE_ADVISE:
449 * only allocate huge pages if requested with fadvise()/madvise();
450 */
451
452#define SHMEM_HUGE_NEVER 0
453#define SHMEM_HUGE_ALWAYS 1
454#define SHMEM_HUGE_WITHIN_SIZE 2
455#define SHMEM_HUGE_ADVISE 3
456
457/*
458 * Special values.
459 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460 *
461 * SHMEM_HUGE_DENY:
462 * disables huge on shm_mnt and all mounts, for emergency use;
463 * SHMEM_HUGE_FORCE:
464 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465 *
466 */
467#define SHMEM_HUGE_DENY (-1)
468#define SHMEM_HUGE_FORCE (-2)
469
396bcc52 470#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
471/* ifdef here to avoid bloating shmem.o when not necessary */
472
5e6e5a12 473static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
5a6e75f8 474
5e6e5a12
HD
475bool shmem_is_huge(struct vm_area_struct *vma,
476 struct inode *inode, pgoff_t index)
c852023e 477{
c852023e 478 loff_t i_size;
c852023e 479
c852023e
HD
480 if (shmem_huge == SHMEM_HUGE_DENY)
481 return false;
5e6e5a12
HD
482 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
483 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
c852023e 484 return false;
5e6e5a12
HD
485 if (shmem_huge == SHMEM_HUGE_FORCE)
486 return true;
487
488 switch (SHMEM_SB(inode->i_sb)->huge) {
c852023e
HD
489 case SHMEM_HUGE_ALWAYS:
490 return true;
491 case SHMEM_HUGE_WITHIN_SIZE:
de6ee659 492 index = round_up(index + 1, HPAGE_PMD_NR);
c852023e 493 i_size = round_up(i_size_read(inode), PAGE_SIZE);
de6ee659 494 if (i_size >> PAGE_SHIFT >= index)
c852023e
HD
495 return true;
496 fallthrough;
497 case SHMEM_HUGE_ADVISE:
5e6e5a12
HD
498 if (vma && (vma->vm_flags & VM_HUGEPAGE))
499 return true;
500 fallthrough;
c852023e 501 default:
c852023e
HD
502 return false;
503 }
504}
5a6e75f8 505
e5f2249a 506#if defined(CONFIG_SYSFS)
5a6e75f8
KS
507static int shmem_parse_huge(const char *str)
508{
509 if (!strcmp(str, "never"))
510 return SHMEM_HUGE_NEVER;
511 if (!strcmp(str, "always"))
512 return SHMEM_HUGE_ALWAYS;
513 if (!strcmp(str, "within_size"))
514 return SHMEM_HUGE_WITHIN_SIZE;
515 if (!strcmp(str, "advise"))
516 return SHMEM_HUGE_ADVISE;
517 if (!strcmp(str, "deny"))
518 return SHMEM_HUGE_DENY;
519 if (!strcmp(str, "force"))
520 return SHMEM_HUGE_FORCE;
521 return -EINVAL;
522}
e5f2249a 523#endif
5a6e75f8 524
e5f2249a 525#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
526static const char *shmem_format_huge(int huge)
527{
528 switch (huge) {
529 case SHMEM_HUGE_NEVER:
530 return "never";
531 case SHMEM_HUGE_ALWAYS:
532 return "always";
533 case SHMEM_HUGE_WITHIN_SIZE:
534 return "within_size";
535 case SHMEM_HUGE_ADVISE:
536 return "advise";
537 case SHMEM_HUGE_DENY:
538 return "deny";
539 case SHMEM_HUGE_FORCE:
540 return "force";
541 default:
542 VM_BUG_ON(1);
543 return "bad_val";
544 }
545}
f1f5929c 546#endif
5a6e75f8 547
779750d2
KS
548static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549 struct shrink_control *sc, unsigned long nr_to_split)
550{
551 LIST_HEAD(list), *pos, *next;
253fd0f0 552 LIST_HEAD(to_remove);
779750d2
KS
553 struct inode *inode;
554 struct shmem_inode_info *info;
555 struct page *page;
556 unsigned long batch = sc ? sc->nr_to_scan : 128;
557 int removed = 0, split = 0;
558
559 if (list_empty(&sbinfo->shrinklist))
560 return SHRINK_STOP;
561
562 spin_lock(&sbinfo->shrinklist_lock);
563 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564 info = list_entry(pos, struct shmem_inode_info, shrinklist);
565
566 /* pin the inode */
567 inode = igrab(&info->vfs_inode);
568
569 /* inode is about to be evicted */
570 if (!inode) {
571 list_del_init(&info->shrinklist);
572 removed++;
573 goto next;
574 }
575
576 /* Check if there's anything to gain */
577 if (round_up(inode->i_size, PAGE_SIZE) ==
578 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 579 list_move(&info->shrinklist, &to_remove);
779750d2 580 removed++;
779750d2
KS
581 goto next;
582 }
583
584 list_move(&info->shrinklist, &list);
585next:
586 if (!--batch)
587 break;
588 }
589 spin_unlock(&sbinfo->shrinklist_lock);
590
253fd0f0
KS
591 list_for_each_safe(pos, next, &to_remove) {
592 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 inode = &info->vfs_inode;
594 list_del_init(&info->shrinklist);
595 iput(inode);
596 }
597
779750d2
KS
598 list_for_each_safe(pos, next, &list) {
599 int ret;
600
601 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 inode = &info->vfs_inode;
603
b3cd54b2
KS
604 if (nr_to_split && split >= nr_to_split)
605 goto leave;
779750d2 606
b3cd54b2 607 page = find_get_page(inode->i_mapping,
779750d2
KS
608 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609 if (!page)
610 goto drop;
611
b3cd54b2 612 /* No huge page at the end of the file: nothing to split */
779750d2 613 if (!PageTransHuge(page)) {
779750d2
KS
614 put_page(page);
615 goto drop;
616 }
617
b3cd54b2
KS
618 /*
619 * Leave the inode on the list if we failed to lock
620 * the page at this time.
621 *
622 * Waiting for the lock may lead to deadlock in the
623 * reclaim path.
624 */
625 if (!trylock_page(page)) {
626 put_page(page);
627 goto leave;
628 }
629
779750d2
KS
630 ret = split_huge_page(page);
631 unlock_page(page);
632 put_page(page);
633
b3cd54b2
KS
634 /* If split failed leave the inode on the list */
635 if (ret)
636 goto leave;
779750d2
KS
637
638 split++;
639drop:
640 list_del_init(&info->shrinklist);
641 removed++;
b3cd54b2 642leave:
779750d2
KS
643 iput(inode);
644 }
645
646 spin_lock(&sbinfo->shrinklist_lock);
647 list_splice_tail(&list, &sbinfo->shrinklist);
648 sbinfo->shrinklist_len -= removed;
649 spin_unlock(&sbinfo->shrinklist_lock);
650
651 return split;
652}
653
654static long shmem_unused_huge_scan(struct super_block *sb,
655 struct shrink_control *sc)
656{
657 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
658
659 if (!READ_ONCE(sbinfo->shrinklist_len))
660 return SHRINK_STOP;
661
662 return shmem_unused_huge_shrink(sbinfo, sc, 0);
663}
664
665static long shmem_unused_huge_count(struct super_block *sb,
666 struct shrink_control *sc)
667{
668 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
669 return READ_ONCE(sbinfo->shrinklist_len);
670}
396bcc52 671#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
672
673#define shmem_huge SHMEM_HUGE_DENY
674
5e6e5a12
HD
675bool shmem_is_huge(struct vm_area_struct *vma,
676 struct inode *inode, pgoff_t index)
677{
678 return false;
679}
680
779750d2
KS
681static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
682 struct shrink_control *sc, unsigned long nr_to_split)
683{
684 return 0;
685}
396bcc52 686#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 687
46f65ec1
HD
688/*
689 * Like add_to_page_cache_locked, but error if expected item has gone.
690 */
691static int shmem_add_to_page_cache(struct page *page,
692 struct address_space *mapping,
3fea5a49
JW
693 pgoff_t index, void *expected, gfp_t gfp,
694 struct mm_struct *charge_mm)
46f65ec1 695{
552446a4
MW
696 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
697 unsigned long i = 0;
d8c6546b 698 unsigned long nr = compound_nr(page);
3fea5a49 699 int error;
46f65ec1 700
800d8c63
KS
701 VM_BUG_ON_PAGE(PageTail(page), page);
702 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
703 VM_BUG_ON_PAGE(!PageLocked(page), page);
704 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 705 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 706
800d8c63 707 page_ref_add(page, nr);
b065b432
HD
708 page->mapping = mapping;
709 page->index = index;
710
4c6355b2 711 if (!PageSwapCache(page)) {
8f425e4e 712 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
4c6355b2
JW
713 if (error) {
714 if (PageTransHuge(page)) {
715 count_vm_event(THP_FILE_FALLBACK);
716 count_vm_event(THP_FILE_FALLBACK_CHARGE);
717 }
718 goto error;
3fea5a49 719 }
3fea5a49
JW
720 }
721 cgroup_throttle_swaprate(page, gfp);
722
552446a4
MW
723 do {
724 void *entry;
725 xas_lock_irq(&xas);
726 entry = xas_find_conflict(&xas);
727 if (entry != expected)
728 xas_set_err(&xas, -EEXIST);
729 xas_create_range(&xas);
730 if (xas_error(&xas))
731 goto unlock;
732next:
4101196b 733 xas_store(&xas, page);
552446a4
MW
734 if (++i < nr) {
735 xas_next(&xas);
736 goto next;
800d8c63 737 }
552446a4 738 if (PageTransHuge(page)) {
800d8c63 739 count_vm_event(THP_FILE_ALLOC);
57b2847d 740 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
800d8c63 741 }
800d8c63 742 mapping->nrpages += nr;
0d1c2072
JW
743 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
744 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
745unlock:
746 xas_unlock_irq(&xas);
747 } while (xas_nomem(&xas, gfp));
748
749 if (xas_error(&xas)) {
3fea5a49
JW
750 error = xas_error(&xas);
751 goto error;
46f65ec1 752 }
552446a4
MW
753
754 return 0;
3fea5a49
JW
755error:
756 page->mapping = NULL;
757 page_ref_sub(page, nr);
758 return error;
46f65ec1
HD
759}
760
6922c0c7
HD
761/*
762 * Like delete_from_page_cache, but substitutes swap for page.
763 */
764static void shmem_delete_from_page_cache(struct page *page, void *radswap)
765{
766 struct address_space *mapping = page->mapping;
767 int error;
768
800d8c63
KS
769 VM_BUG_ON_PAGE(PageCompound(page), page);
770
b93b0163 771 xa_lock_irq(&mapping->i_pages);
62f945b6 772 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
773 page->mapping = NULL;
774 mapping->nrpages--;
0d1c2072
JW
775 __dec_lruvec_page_state(page, NR_FILE_PAGES);
776 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 777 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 778 put_page(page);
6922c0c7
HD
779 BUG_ON(error);
780}
781
7a5d0fbb 782/*
c121d3bb 783 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
784 */
785static int shmem_free_swap(struct address_space *mapping,
786 pgoff_t index, void *radswap)
787{
6dbaf22c 788 void *old;
7a5d0fbb 789
55f3f7ea 790 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
791 if (old != radswap)
792 return -ENOENT;
793 free_swap_and_cache(radix_to_swp_entry(radswap));
794 return 0;
7a5d0fbb
HD
795}
796
6a15a370
VB
797/*
798 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 799 * given offsets are swapped out.
6a15a370 800 *
9608703e 801 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
6a15a370
VB
802 * as long as the inode doesn't go away and racy results are not a problem.
803 */
48131e03
VB
804unsigned long shmem_partial_swap_usage(struct address_space *mapping,
805 pgoff_t start, pgoff_t end)
6a15a370 806{
7ae3424f 807 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 808 struct page *page;
48131e03 809 unsigned long swapped = 0;
6a15a370
VB
810
811 rcu_read_lock();
7ae3424f
MW
812 xas_for_each(&xas, page, end - 1) {
813 if (xas_retry(&xas, page))
2cf938aa 814 continue;
3159f943 815 if (xa_is_value(page))
6a15a370
VB
816 swapped++;
817
818 if (need_resched()) {
7ae3424f 819 xas_pause(&xas);
6a15a370 820 cond_resched_rcu();
6a15a370
VB
821 }
822 }
823
824 rcu_read_unlock();
825
826 return swapped << PAGE_SHIFT;
827}
828
48131e03
VB
829/*
830 * Determine (in bytes) how many of the shmem object's pages mapped by the
831 * given vma is swapped out.
832 *
9608703e 833 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
48131e03
VB
834 * as long as the inode doesn't go away and racy results are not a problem.
835 */
836unsigned long shmem_swap_usage(struct vm_area_struct *vma)
837{
838 struct inode *inode = file_inode(vma->vm_file);
839 struct shmem_inode_info *info = SHMEM_I(inode);
840 struct address_space *mapping = inode->i_mapping;
841 unsigned long swapped;
842
843 /* Be careful as we don't hold info->lock */
844 swapped = READ_ONCE(info->swapped);
845
846 /*
847 * The easier cases are when the shmem object has nothing in swap, or
848 * the vma maps it whole. Then we can simply use the stats that we
849 * already track.
850 */
851 if (!swapped)
852 return 0;
853
854 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
855 return swapped << PAGE_SHIFT;
856
857 /* Here comes the more involved part */
02399c88
PX
858 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
859 vma->vm_pgoff + vma_pages(vma));
48131e03
VB
860}
861
24513264
HD
862/*
863 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
864 */
865void shmem_unlock_mapping(struct address_space *mapping)
866{
867 struct pagevec pvec;
24513264
HD
868 pgoff_t index = 0;
869
86679820 870 pagevec_init(&pvec);
24513264
HD
871 /*
872 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
873 */
874 while (!mapping_unevictable(mapping)) {
96888e0a 875 if (!pagevec_lookup(&pvec, mapping, &index))
24513264 876 break;
64e3d12f 877 check_move_unevictable_pages(&pvec);
24513264
HD
878 pagevec_release(&pvec);
879 cond_resched();
880 }
7a5d0fbb
HD
881}
882
71725ed1
HD
883/*
884 * Check whether a hole-punch or truncation needs to split a huge page,
885 * returning true if no split was required, or the split has been successful.
886 *
887 * Eviction (or truncation to 0 size) should never need to split a huge page;
888 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
889 * head, and then succeeded to trylock on tail.
890 *
891 * A split can only succeed when there are no additional references on the
892 * huge page: so the split below relies upon find_get_entries() having stopped
893 * when it found a subpage of the huge page, without getting further references.
894 */
895static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
896{
897 if (!PageTransCompound(page))
898 return true;
899
900 /* Just proceed to delete a huge page wholly within the range punched */
901 if (PageHead(page) &&
902 page->index >= start && page->index + HPAGE_PMD_NR <= end)
903 return true;
904
905 /* Try to split huge page, so we can truly punch the hole or truncate */
906 return split_huge_page(page) >= 0;
907}
908
7a5d0fbb 909/*
7f4446ee 910 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 911 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 912 */
1635f6a7
HD
913static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
914 bool unfalloc)
1da177e4 915{
285b2c4f 916 struct address_space *mapping = inode->i_mapping;
1da177e4 917 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
918 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
919 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
920 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
921 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 922 struct pagevec pvec;
7a5d0fbb
HD
923 pgoff_t indices[PAGEVEC_SIZE];
924 long nr_swaps_freed = 0;
285b2c4f 925 pgoff_t index;
bda97eab
HD
926 int i;
927
83e4fa9c
HD
928 if (lend == -1)
929 end = -1; /* unsigned, so actually very big */
bda97eab 930
d144bf62
HD
931 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
932 info->fallocend = start;
933
86679820 934 pagevec_init(&pvec);
bda97eab 935 index = start;
5c211ba2
MWO
936 while (index < end && find_lock_entries(mapping, index, end - 1,
937 &pvec, indices)) {
bda97eab
HD
938 for (i = 0; i < pagevec_count(&pvec); i++) {
939 struct page *page = pvec.pages[i];
940
7a5d0fbb 941 index = indices[i];
bda97eab 942
3159f943 943 if (xa_is_value(page)) {
1635f6a7
HD
944 if (unfalloc)
945 continue;
7a5d0fbb
HD
946 nr_swaps_freed += !shmem_free_swap(mapping,
947 index, page);
bda97eab 948 continue;
7a5d0fbb 949 }
5c211ba2 950 index += thp_nr_pages(page) - 1;
7a5d0fbb 951
5c211ba2
MWO
952 if (!unfalloc || !PageUptodate(page))
953 truncate_inode_page(mapping, page);
bda97eab
HD
954 unlock_page(page);
955 }
0cd6144a 956 pagevec_remove_exceptionals(&pvec);
24513264 957 pagevec_release(&pvec);
bda97eab
HD
958 cond_resched();
959 index++;
960 }
1da177e4 961
83e4fa9c 962 if (partial_start) {
bda97eab 963 struct page *page = NULL;
9e18eb29 964 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 965 if (page) {
09cbfeaf 966 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
967 if (start > end) {
968 top = partial_end;
969 partial_end = 0;
970 }
971 zero_user_segment(page, partial_start, top);
972 set_page_dirty(page);
973 unlock_page(page);
09cbfeaf 974 put_page(page);
83e4fa9c
HD
975 }
976 }
977 if (partial_end) {
978 struct page *page = NULL;
9e18eb29 979 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
980 if (page) {
981 zero_user_segment(page, 0, partial_end);
bda97eab
HD
982 set_page_dirty(page);
983 unlock_page(page);
09cbfeaf 984 put_page(page);
bda97eab
HD
985 }
986 }
83e4fa9c
HD
987 if (start >= end)
988 return;
bda97eab
HD
989
990 index = start;
b1a36650 991 while (index < end) {
bda97eab 992 cond_resched();
0cd6144a 993
cf2039af
MWO
994 if (!find_get_entries(mapping, index, end - 1, &pvec,
995 indices)) {
b1a36650
HD
996 /* If all gone or hole-punch or unfalloc, we're done */
997 if (index == start || end != -1)
bda97eab 998 break;
b1a36650 999 /* But if truncating, restart to make sure all gone */
bda97eab
HD
1000 index = start;
1001 continue;
1002 }
bda97eab
HD
1003 for (i = 0; i < pagevec_count(&pvec); i++) {
1004 struct page *page = pvec.pages[i];
1005
7a5d0fbb 1006 index = indices[i];
3159f943 1007 if (xa_is_value(page)) {
1635f6a7
HD
1008 if (unfalloc)
1009 continue;
b1a36650
HD
1010 if (shmem_free_swap(mapping, index, page)) {
1011 /* Swap was replaced by page: retry */
1012 index--;
1013 break;
1014 }
1015 nr_swaps_freed++;
7a5d0fbb
HD
1016 continue;
1017 }
1018
bda97eab 1019 lock_page(page);
800d8c63 1020
1635f6a7 1021 if (!unfalloc || !PageUptodate(page)) {
71725ed1 1022 if (page_mapping(page) != mapping) {
b1a36650
HD
1023 /* Page was replaced by swap: retry */
1024 unlock_page(page);
1025 index--;
1026 break;
1635f6a7 1027 }
71725ed1
HD
1028 VM_BUG_ON_PAGE(PageWriteback(page), page);
1029 if (shmem_punch_compound(page, start, end))
1030 truncate_inode_page(mapping, page);
0783ac95 1031 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
71725ed1
HD
1032 /* Wipe the page and don't get stuck */
1033 clear_highpage(page);
1034 flush_dcache_page(page);
1035 set_page_dirty(page);
1036 if (index <
1037 round_up(start, HPAGE_PMD_NR))
1038 start = index + 1;
1039 }
7a5d0fbb 1040 }
bda97eab
HD
1041 unlock_page(page);
1042 }
0cd6144a 1043 pagevec_remove_exceptionals(&pvec);
24513264 1044 pagevec_release(&pvec);
bda97eab
HD
1045 index++;
1046 }
94c1e62d 1047
4595ef88 1048 spin_lock_irq(&info->lock);
7a5d0fbb 1049 info->swapped -= nr_swaps_freed;
1da177e4 1050 shmem_recalc_inode(inode);
4595ef88 1051 spin_unlock_irq(&info->lock);
1635f6a7 1052}
1da177e4 1053
1635f6a7
HD
1054void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1055{
1056 shmem_undo_range(inode, lstart, lend, false);
078cd827 1057 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1058}
94c1e62d 1059EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1060
549c7297
CB
1061static int shmem_getattr(struct user_namespace *mnt_userns,
1062 const struct path *path, struct kstat *stat,
a528d35e 1063 u32 request_mask, unsigned int query_flags)
44a30220 1064{
a528d35e 1065 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
1066 struct shmem_inode_info *info = SHMEM_I(inode);
1067
d0424c42 1068 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1069 spin_lock_irq(&info->lock);
d0424c42 1070 shmem_recalc_inode(inode);
4595ef88 1071 spin_unlock_irq(&info->lock);
d0424c42 1072 }
0d56a451 1073 generic_fillattr(&init_user_ns, inode, stat);
89fdcd26 1074
a7fddc36 1075 if (shmem_is_huge(NULL, inode, 0))
89fdcd26
YS
1076 stat->blksize = HPAGE_PMD_SIZE;
1077
44a30220
YZ
1078 return 0;
1079}
1080
549c7297
CB
1081static int shmem_setattr(struct user_namespace *mnt_userns,
1082 struct dentry *dentry, struct iattr *attr)
1da177e4 1083{
75c3cfa8 1084 struct inode *inode = d_inode(dentry);
40e041a2 1085 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
1086 int error;
1087
2f221d6f 1088 error = setattr_prepare(&init_user_ns, dentry, attr);
db78b877
CH
1089 if (error)
1090 return error;
1091
94c1e62d
HD
1092 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1093 loff_t oldsize = inode->i_size;
1094 loff_t newsize = attr->ia_size;
3889e6e7 1095
9608703e 1096 /* protected by i_rwsem */
40e041a2
DR
1097 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1098 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1099 return -EPERM;
1100
94c1e62d 1101 if (newsize != oldsize) {
77142517
KK
1102 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1103 oldsize, newsize);
1104 if (error)
1105 return error;
94c1e62d 1106 i_size_write(inode, newsize);
078cd827 1107 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1108 }
afa2db2f 1109 if (newsize <= oldsize) {
94c1e62d 1110 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1111 if (oldsize > holebegin)
1112 unmap_mapping_range(inode->i_mapping,
1113 holebegin, 0, 1);
1114 if (info->alloced)
1115 shmem_truncate_range(inode,
1116 newsize, (loff_t)-1);
94c1e62d 1117 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1118 if (oldsize > holebegin)
1119 unmap_mapping_range(inode->i_mapping,
1120 holebegin, 0, 1);
94c1e62d 1121 }
1da177e4
LT
1122 }
1123
2f221d6f 1124 setattr_copy(&init_user_ns, inode, attr);
db78b877 1125 if (attr->ia_valid & ATTR_MODE)
e65ce2a5 1126 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1da177e4
LT
1127 return error;
1128}
1129
1f895f75 1130static void shmem_evict_inode(struct inode *inode)
1da177e4 1131{
1da177e4 1132 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1133 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1134
30e6a51d 1135 if (shmem_mapping(inode->i_mapping)) {
1da177e4
LT
1136 shmem_unacct_size(info->flags, inode->i_size);
1137 inode->i_size = 0;
3889e6e7 1138 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1139 if (!list_empty(&info->shrinklist)) {
1140 spin_lock(&sbinfo->shrinklist_lock);
1141 if (!list_empty(&info->shrinklist)) {
1142 list_del_init(&info->shrinklist);
1143 sbinfo->shrinklist_len--;
1144 }
1145 spin_unlock(&sbinfo->shrinklist_lock);
1146 }
af53d3e9
HD
1147 while (!list_empty(&info->swaplist)) {
1148 /* Wait while shmem_unuse() is scanning this inode... */
1149 wait_var_event(&info->stop_eviction,
1150 !atomic_read(&info->stop_eviction));
cb5f7b9a 1151 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1152 /* ...but beware of the race if we peeked too early */
1153 if (!atomic_read(&info->stop_eviction))
1154 list_del_init(&info->swaplist);
cb5f7b9a 1155 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1156 }
3ed47db3 1157 }
b09e0fa4 1158
38f38657 1159 simple_xattrs_free(&info->xattrs);
0f3c42f5 1160 WARN_ON(inode->i_blocks);
5b04c689 1161 shmem_free_inode(inode->i_sb);
dbd5768f 1162 clear_inode(inode);
1da177e4
LT
1163}
1164
b56a2d8a
VRP
1165static int shmem_find_swap_entries(struct address_space *mapping,
1166 pgoff_t start, unsigned int nr_entries,
1167 struct page **entries, pgoff_t *indices,
87039546 1168 unsigned int type, bool frontswap)
478922e2 1169{
b56a2d8a
VRP
1170 XA_STATE(xas, &mapping->i_pages, start);
1171 struct page *page;
87039546 1172 swp_entry_t entry;
b56a2d8a
VRP
1173 unsigned int ret = 0;
1174
1175 if (!nr_entries)
1176 return 0;
478922e2
MW
1177
1178 rcu_read_lock();
b56a2d8a
VRP
1179 xas_for_each(&xas, page, ULONG_MAX) {
1180 if (xas_retry(&xas, page))
5b9c98f3 1181 continue;
b56a2d8a
VRP
1182
1183 if (!xa_is_value(page))
478922e2 1184 continue;
b56a2d8a 1185
87039546
HD
1186 entry = radix_to_swp_entry(page);
1187 if (swp_type(entry) != type)
1188 continue;
1189 if (frontswap &&
1190 !frontswap_test(swap_info[type], swp_offset(entry)))
1191 continue;
b56a2d8a
VRP
1192
1193 indices[ret] = xas.xa_index;
1194 entries[ret] = page;
1195
1196 if (need_resched()) {
1197 xas_pause(&xas);
1198 cond_resched_rcu();
1199 }
1200 if (++ret == nr_entries)
1201 break;
478922e2 1202 }
478922e2 1203 rcu_read_unlock();
e21a2955 1204
b56a2d8a 1205 return ret;
478922e2
MW
1206}
1207
46f65ec1 1208/*
b56a2d8a
VRP
1209 * Move the swapped pages for an inode to page cache. Returns the count
1210 * of pages swapped in, or the error in case of failure.
46f65ec1 1211 */
b56a2d8a
VRP
1212static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1213 pgoff_t *indices)
1da177e4 1214{
b56a2d8a
VRP
1215 int i = 0;
1216 int ret = 0;
bde05d1c 1217 int error = 0;
b56a2d8a 1218 struct address_space *mapping = inode->i_mapping;
1da177e4 1219
b56a2d8a
VRP
1220 for (i = 0; i < pvec.nr; i++) {
1221 struct page *page = pvec.pages[i];
2e0e26c7 1222
b56a2d8a
VRP
1223 if (!xa_is_value(page))
1224 continue;
1225 error = shmem_swapin_page(inode, indices[i],
1226 &page, SGP_CACHE,
1227 mapping_gfp_mask(mapping),
1228 NULL, NULL);
1229 if (error == 0) {
1230 unlock_page(page);
1231 put_page(page);
1232 ret++;
1233 }
1234 if (error == -ENOMEM)
1235 break;
1236 error = 0;
bde05d1c 1237 }
b56a2d8a
VRP
1238 return error ? error : ret;
1239}
bde05d1c 1240
b56a2d8a
VRP
1241/*
1242 * If swap found in inode, free it and move page from swapcache to filecache.
1243 */
1244static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1245 bool frontswap, unsigned long *fs_pages_to_unuse)
1246{
1247 struct address_space *mapping = inode->i_mapping;
1248 pgoff_t start = 0;
1249 struct pagevec pvec;
1250 pgoff_t indices[PAGEVEC_SIZE];
1251 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1252 int ret = 0;
1253
1254 pagevec_init(&pvec);
1255 do {
1256 unsigned int nr_entries = PAGEVEC_SIZE;
1257
1258 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1259 nr_entries = *fs_pages_to_unuse;
1260
1261 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1262 pvec.pages, indices,
87039546 1263 type, frontswap);
b56a2d8a
VRP
1264 if (pvec.nr == 0) {
1265 ret = 0;
1266 break;
46f65ec1 1267 }
b56a2d8a
VRP
1268
1269 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1270 if (ret < 0)
1271 break;
1272
1273 if (frontswap_partial) {
1274 *fs_pages_to_unuse -= ret;
1275 if (*fs_pages_to_unuse == 0) {
1276 ret = FRONTSWAP_PAGES_UNUSED;
1277 break;
1278 }
1279 }
1280
1281 start = indices[pvec.nr - 1];
1282 } while (true);
1283
1284 return ret;
1da177e4
LT
1285}
1286
1287/*
b56a2d8a
VRP
1288 * Read all the shared memory data that resides in the swap
1289 * device 'type' back into memory, so the swap device can be
1290 * unused.
1da177e4 1291 */
b56a2d8a
VRP
1292int shmem_unuse(unsigned int type, bool frontswap,
1293 unsigned long *fs_pages_to_unuse)
1da177e4 1294{
b56a2d8a 1295 struct shmem_inode_info *info, *next;
bde05d1c
HD
1296 int error = 0;
1297
b56a2d8a
VRP
1298 if (list_empty(&shmem_swaplist))
1299 return 0;
1300
1301 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1302 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1303 if (!info->swapped) {
6922c0c7 1304 list_del_init(&info->swaplist);
b56a2d8a
VRP
1305 continue;
1306 }
af53d3e9
HD
1307 /*
1308 * Drop the swaplist mutex while searching the inode for swap;
1309 * but before doing so, make sure shmem_evict_inode() will not
1310 * remove placeholder inode from swaplist, nor let it be freed
1311 * (igrab() would protect from unlink, but not from unmount).
1312 */
1313 atomic_inc(&info->stop_eviction);
b56a2d8a 1314 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1315
af53d3e9 1316 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1317 fs_pages_to_unuse);
cb5f7b9a 1318 cond_resched();
b56a2d8a
VRP
1319
1320 mutex_lock(&shmem_swaplist_mutex);
1321 next = list_next_entry(info, swaplist);
1322 if (!info->swapped)
1323 list_del_init(&info->swaplist);
af53d3e9
HD
1324 if (atomic_dec_and_test(&info->stop_eviction))
1325 wake_up_var(&info->stop_eviction);
b56a2d8a 1326 if (error)
778dd893 1327 break;
1da177e4 1328 }
cb5f7b9a 1329 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1330
778dd893 1331 return error;
1da177e4
LT
1332}
1333
1334/*
1335 * Move the page from the page cache to the swap cache.
1336 */
1337static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1338{
1339 struct shmem_inode_info *info;
1da177e4 1340 struct address_space *mapping;
1da177e4 1341 struct inode *inode;
6922c0c7
HD
1342 swp_entry_t swap;
1343 pgoff_t index;
1da177e4 1344
1e6decf3
HD
1345 /*
1346 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1347 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1348 * and its shmem_writeback() needs them to be split when swapping.
1349 */
1350 if (PageTransCompound(page)) {
1351 /* Ensure the subpages are still dirty */
1352 SetPageDirty(page);
1353 if (split_huge_page(page) < 0)
1354 goto redirty;
1355 ClearPageDirty(page);
1356 }
1357
1da177e4 1358 BUG_ON(!PageLocked(page));
1da177e4
LT
1359 mapping = page->mapping;
1360 index = page->index;
1361 inode = mapping->host;
1362 info = SHMEM_I(inode);
1363 if (info->flags & VM_LOCKED)
1364 goto redirty;
d9fe526a 1365 if (!total_swap_pages)
1da177e4
LT
1366 goto redirty;
1367
d9fe526a 1368 /*
97b713ba
CH
1369 * Our capabilities prevent regular writeback or sync from ever calling
1370 * shmem_writepage; but a stacking filesystem might use ->writepage of
1371 * its underlying filesystem, in which case tmpfs should write out to
1372 * swap only in response to memory pressure, and not for the writeback
1373 * threads or sync.
d9fe526a 1374 */
48f170fb
HD
1375 if (!wbc->for_reclaim) {
1376 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1377 goto redirty;
1378 }
1635f6a7
HD
1379
1380 /*
1381 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1382 * value into swapfile.c, the only way we can correctly account for a
1383 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1384 *
1385 * That's okay for a page already fallocated earlier, but if we have
1386 * not yet completed the fallocation, then (a) we want to keep track
1387 * of this page in case we have to undo it, and (b) it may not be a
1388 * good idea to continue anyway, once we're pushing into swap. So
1389 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1390 */
1391 if (!PageUptodate(page)) {
1aac1400
HD
1392 if (inode->i_private) {
1393 struct shmem_falloc *shmem_falloc;
1394 spin_lock(&inode->i_lock);
1395 shmem_falloc = inode->i_private;
1396 if (shmem_falloc &&
8e205f77 1397 !shmem_falloc->waitq &&
1aac1400
HD
1398 index >= shmem_falloc->start &&
1399 index < shmem_falloc->next)
1400 shmem_falloc->nr_unswapped++;
1401 else
1402 shmem_falloc = NULL;
1403 spin_unlock(&inode->i_lock);
1404 if (shmem_falloc)
1405 goto redirty;
1406 }
1635f6a7
HD
1407 clear_highpage(page);
1408 flush_dcache_page(page);
1409 SetPageUptodate(page);
1410 }
1411
38d8b4e6 1412 swap = get_swap_page(page);
48f170fb
HD
1413 if (!swap.val)
1414 goto redirty;
d9fe526a 1415
b1dea800
HD
1416 /*
1417 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1418 * if it's not already there. Do it now before the page is
1419 * moved to swap cache, when its pagelock no longer protects
b1dea800 1420 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1421 * we've incremented swapped, because shmem_unuse_inode() will
1422 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1423 */
48f170fb
HD
1424 mutex_lock(&shmem_swaplist_mutex);
1425 if (list_empty(&info->swaplist))
b56a2d8a 1426 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1427
4afab1cd 1428 if (add_to_swap_cache(page, swap,
3852f676
JK
1429 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1430 NULL) == 0) {
4595ef88 1431 spin_lock_irq(&info->lock);
6922c0c7 1432 shmem_recalc_inode(inode);
267a4c76 1433 info->swapped++;
4595ef88 1434 spin_unlock_irq(&info->lock);
6922c0c7 1435
267a4c76
HD
1436 swap_shmem_alloc(swap);
1437 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1438
6922c0c7 1439 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1440 BUG_ON(page_mapped(page));
9fab5619 1441 swap_writepage(page, wbc);
1da177e4
LT
1442 return 0;
1443 }
1444
6922c0c7 1445 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1446 put_swap_page(page, swap);
1da177e4
LT
1447redirty:
1448 set_page_dirty(page);
d9fe526a
HD
1449 if (wbc->for_reclaim)
1450 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1451 unlock_page(page);
1452 return 0;
1da177e4
LT
1453}
1454
75edd345 1455#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1456static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1457{
095f1fc4 1458 char buffer[64];
680d794b 1459
71fe804b 1460 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1461 return; /* show nothing */
680d794b 1462
a7a88b23 1463 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1464
1465 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1466}
71fe804b
LS
1467
1468static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1469{
1470 struct mempolicy *mpol = NULL;
1471 if (sbinfo->mpol) {
bf11b9a8 1472 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
71fe804b
LS
1473 mpol = sbinfo->mpol;
1474 mpol_get(mpol);
bf11b9a8 1475 raw_spin_unlock(&sbinfo->stat_lock);
71fe804b
LS
1476 }
1477 return mpol;
1478}
75edd345
HD
1479#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1480static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1481{
1482}
1483static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1484{
1485 return NULL;
1486}
1487#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1488#ifndef CONFIG_NUMA
1489#define vm_policy vm_private_data
1490#endif
680d794b 1491
800d8c63
KS
1492static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1493 struct shmem_inode_info *info, pgoff_t index)
1494{
1495 /* Create a pseudo vma that just contains the policy */
2c4541e2 1496 vma_init(vma, NULL);
800d8c63
KS
1497 /* Bias interleave by inode number to distribute better across nodes */
1498 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1499 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1500}
1501
1502static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1503{
1504 /* Drop reference taken by mpol_shared_policy_lookup() */
1505 mpol_cond_put(vma->vm_policy);
1506}
1507
41ffe5d5
HD
1508static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1509 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1510{
1da177e4 1511 struct vm_area_struct pvma;
18a2f371 1512 struct page *page;
8c63ca5b
WD
1513 struct vm_fault vmf = {
1514 .vma = &pvma,
1515 };
52cd3b07 1516
800d8c63 1517 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec 1518 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1519 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1520
800d8c63
KS
1521 return page;
1522}
1523
78cc8cdc
RR
1524/*
1525 * Make sure huge_gfp is always more limited than limit_gfp.
1526 * Some of the flags set permissions, while others set limitations.
1527 */
1528static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1529{
1530 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1531 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
187df5dd
RR
1532 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1533 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1534
1535 /* Allow allocations only from the originally specified zones. */
1536 result |= zoneflags;
78cc8cdc
RR
1537
1538 /*
1539 * Minimize the result gfp by taking the union with the deny flags,
1540 * and the intersection of the allow flags.
1541 */
1542 result |= (limit_gfp & denyflags);
1543 result |= (huge_gfp & limit_gfp) & allowflags;
1544
1545 return result;
1546}
1547
800d8c63
KS
1548static struct page *shmem_alloc_hugepage(gfp_t gfp,
1549 struct shmem_inode_info *info, pgoff_t index)
1550{
1551 struct vm_area_struct pvma;
7b8d046f
MW
1552 struct address_space *mapping = info->vfs_inode.i_mapping;
1553 pgoff_t hindex;
800d8c63
KS
1554 struct page *page;
1555
4620a06e 1556 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1557 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1558 XA_PRESENT))
800d8c63 1559 return NULL;
18a2f371 1560
800d8c63 1561 shmem_pseudo_vma_init(&pvma, info, hindex);
164cc4fe
RR
1562 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1563 true);
800d8c63
KS
1564 shmem_pseudo_vma_destroy(&pvma);
1565 if (page)
1566 prep_transhuge_page(page);
dcdf11ee
DR
1567 else
1568 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1569 return page;
1da177e4
LT
1570}
1571
02098fea 1572static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1573 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1574{
1575 struct vm_area_struct pvma;
18a2f371 1576 struct page *page;
1da177e4 1577
800d8c63
KS
1578 shmem_pseudo_vma_init(&pvma, info, index);
1579 page = alloc_page_vma(gfp, &pvma, 0);
1580 shmem_pseudo_vma_destroy(&pvma);
1581
1582 return page;
1583}
1584
1585static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1586 struct inode *inode,
800d8c63
KS
1587 pgoff_t index, bool huge)
1588{
0f079694 1589 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1590 struct page *page;
1591 int nr;
1592 int err = -ENOSPC;
52cd3b07 1593
396bcc52 1594 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1595 huge = false;
1596 nr = huge ? HPAGE_PMD_NR : 1;
1597
0f079694 1598 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1599 goto failed;
800d8c63
KS
1600
1601 if (huge)
1602 page = shmem_alloc_hugepage(gfp, info, index);
1603 else
1604 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1605 if (page) {
1606 __SetPageLocked(page);
1607 __SetPageSwapBacked(page);
800d8c63 1608 return page;
75edd345 1609 }
18a2f371 1610
800d8c63 1611 err = -ENOMEM;
0f079694 1612 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1613failed:
1614 return ERR_PTR(err);
1da177e4 1615}
71fe804b 1616
bde05d1c
HD
1617/*
1618 * When a page is moved from swapcache to shmem filecache (either by the
1619 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1620 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1621 * ignorance of the mapping it belongs to. If that mapping has special
1622 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1623 * we may need to copy to a suitable page before moving to filecache.
1624 *
1625 * In a future release, this may well be extended to respect cpuset and
1626 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1627 * but for now it is a simple matter of zone.
1628 */
1629static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1630{
1631 return page_zonenum(page) > gfp_zone(gfp);
1632}
1633
1634static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1635 struct shmem_inode_info *info, pgoff_t index)
1636{
1637 struct page *oldpage, *newpage;
d21bba2b 1638 struct folio *old, *new;
bde05d1c 1639 struct address_space *swap_mapping;
c1cb20d4 1640 swp_entry_t entry;
bde05d1c
HD
1641 pgoff_t swap_index;
1642 int error;
1643
1644 oldpage = *pagep;
c1cb20d4
YZ
1645 entry.val = page_private(oldpage);
1646 swap_index = swp_offset(entry);
bde05d1c
HD
1647 swap_mapping = page_mapping(oldpage);
1648
1649 /*
1650 * We have arrived here because our zones are constrained, so don't
1651 * limit chance of success by further cpuset and node constraints.
1652 */
1653 gfp &= ~GFP_CONSTRAINT_MASK;
1654 newpage = shmem_alloc_page(gfp, info, index);
1655 if (!newpage)
1656 return -ENOMEM;
bde05d1c 1657
09cbfeaf 1658 get_page(newpage);
bde05d1c 1659 copy_highpage(newpage, oldpage);
0142ef6c 1660 flush_dcache_page(newpage);
bde05d1c 1661
9956edf3
HD
1662 __SetPageLocked(newpage);
1663 __SetPageSwapBacked(newpage);
bde05d1c 1664 SetPageUptodate(newpage);
c1cb20d4 1665 set_page_private(newpage, entry.val);
bde05d1c
HD
1666 SetPageSwapCache(newpage);
1667
1668 /*
1669 * Our caller will very soon move newpage out of swapcache, but it's
1670 * a nice clean interface for us to replace oldpage by newpage there.
1671 */
b93b0163 1672 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1673 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1674 if (!error) {
d21bba2b
MWO
1675 old = page_folio(oldpage);
1676 new = page_folio(newpage);
1677 mem_cgroup_migrate(old, new);
0d1c2072
JW
1678 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1679 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1680 }
b93b0163 1681 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1682
0142ef6c
HD
1683 if (unlikely(error)) {
1684 /*
1685 * Is this possible? I think not, now that our callers check
1686 * both PageSwapCache and page_private after getting page lock;
1687 * but be defensive. Reverse old to newpage for clear and free.
1688 */
1689 oldpage = newpage;
1690 } else {
6058eaec 1691 lru_cache_add(newpage);
0142ef6c
HD
1692 *pagep = newpage;
1693 }
bde05d1c
HD
1694
1695 ClearPageSwapCache(oldpage);
1696 set_page_private(oldpage, 0);
1697
1698 unlock_page(oldpage);
09cbfeaf
KS
1699 put_page(oldpage);
1700 put_page(oldpage);
0142ef6c 1701 return error;
bde05d1c
HD
1702}
1703
c5bf121e
VRP
1704/*
1705 * Swap in the page pointed to by *pagep.
1706 * Caller has to make sure that *pagep contains a valid swapped page.
1707 * Returns 0 and the page in pagep if success. On failure, returns the
af44c12f 1708 * error code and NULL in *pagep.
c5bf121e
VRP
1709 */
1710static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1711 struct page **pagep, enum sgp_type sgp,
1712 gfp_t gfp, struct vm_area_struct *vma,
1713 vm_fault_t *fault_type)
1714{
1715 struct address_space *mapping = inode->i_mapping;
1716 struct shmem_inode_info *info = SHMEM_I(inode);
04f94e3f 1717 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
b1e1ef34 1718 struct page *page;
c5bf121e
VRP
1719 swp_entry_t swap;
1720 int error;
1721
1722 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1723 swap = radix_to_swp_entry(*pagep);
1724 *pagep = NULL;
1725
1726 /* Look it up and read it in.. */
1727 page = lookup_swap_cache(swap, NULL, 0);
1728 if (!page) {
1729 /* Or update major stats only when swapin succeeds?? */
1730 if (fault_type) {
1731 *fault_type |= VM_FAULT_MAJOR;
1732 count_vm_event(PGMAJFAULT);
1733 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1734 }
1735 /* Here we actually start the io */
1736 page = shmem_swapin(swap, gfp, info, index);
1737 if (!page) {
1738 error = -ENOMEM;
1739 goto failed;
1740 }
1741 }
1742
1743 /* We have to do this with page locked to prevent races */
1744 lock_page(page);
1745 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1746 !shmem_confirm_swap(mapping, index, swap)) {
1747 error = -EEXIST;
1748 goto unlock;
1749 }
1750 if (!PageUptodate(page)) {
1751 error = -EIO;
1752 goto failed;
1753 }
1754 wait_on_page_writeback(page);
1755
8a84802e
SP
1756 /*
1757 * Some architectures may have to restore extra metadata to the
1758 * physical page after reading from swap.
1759 */
1760 arch_swap_restore(swap, page);
1761
c5bf121e
VRP
1762 if (shmem_should_replace_page(page, gfp)) {
1763 error = shmem_replace_page(&page, gfp, info, index);
1764 if (error)
1765 goto failed;
1766 }
1767
14235ab3 1768 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1769 swp_to_radix_entry(swap), gfp,
1770 charge_mm);
1771 if (error)
14235ab3 1772 goto failed;
c5bf121e
VRP
1773
1774 spin_lock_irq(&info->lock);
1775 info->swapped--;
1776 shmem_recalc_inode(inode);
1777 spin_unlock_irq(&info->lock);
1778
1779 if (sgp == SGP_WRITE)
1780 mark_page_accessed(page);
1781
1782 delete_from_swap_cache(page);
1783 set_page_dirty(page);
1784 swap_free(swap);
1785
1786 *pagep = page;
1787 return 0;
1788failed:
1789 if (!shmem_confirm_swap(mapping, index, swap))
1790 error = -EEXIST;
1791unlock:
1792 if (page) {
1793 unlock_page(page);
1794 put_page(page);
1795 }
1796
1797 return error;
1798}
1799
1da177e4 1800/*
68da9f05 1801 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1802 *
1803 * If we allocate a new one we do not mark it dirty. That's up to the
1804 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1805 * entry since a page cannot live in both the swap and page cache.
1806 *
c949b097 1807 * vma, vmf, and fault_type are only supplied by shmem_fault:
9e18eb29 1808 * otherwise they are NULL.
1da177e4 1809 */
41ffe5d5 1810static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1811 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1812 struct vm_area_struct *vma, struct vm_fault *vmf,
1813 vm_fault_t *fault_type)
1da177e4
LT
1814{
1815 struct address_space *mapping = inode->i_mapping;
23f919d4 1816 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1817 struct shmem_sb_info *sbinfo;
9e18eb29 1818 struct mm_struct *charge_mm;
27ab7006 1819 struct page *page;
800d8c63 1820 pgoff_t hindex = index;
164cc4fe 1821 gfp_t huge_gfp;
1da177e4 1822 int error;
54af6042 1823 int once = 0;
1635f6a7 1824 int alloced = 0;
1da177e4 1825
09cbfeaf 1826 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1827 return -EFBIG;
1da177e4 1828repeat:
c5bf121e
VRP
1829 if (sgp <= SGP_CACHE &&
1830 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1831 return -EINVAL;
1832 }
1833
1834 sbinfo = SHMEM_SB(inode->i_sb);
04f94e3f 1835 charge_mm = vma ? vma->vm_mm : NULL;
c5bf121e 1836
44835d20
MWO
1837 page = pagecache_get_page(mapping, index,
1838 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
c949b097
AR
1839
1840 if (page && vma && userfaultfd_minor(vma)) {
1841 if (!xa_is_value(page)) {
1842 unlock_page(page);
1843 put_page(page);
1844 }
1845 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1846 return 0;
1847 }
1848
3159f943 1849 if (xa_is_value(page)) {
c5bf121e
VRP
1850 error = shmem_swapin_page(inode, index, &page,
1851 sgp, gfp, vma, fault_type);
1852 if (error == -EEXIST)
1853 goto repeat;
54af6042 1854
c5bf121e
VRP
1855 *pagep = page;
1856 return error;
54af6042
HD
1857 }
1858
acdd9f8e 1859 if (page) {
63ec1973 1860 hindex = page->index;
acdd9f8e
HD
1861 if (sgp == SGP_WRITE)
1862 mark_page_accessed(page);
1863 if (PageUptodate(page))
1864 goto out;
1865 /* fallocated page */
1635f6a7
HD
1866 if (sgp != SGP_READ)
1867 goto clear;
1868 unlock_page(page);
09cbfeaf 1869 put_page(page);
1635f6a7 1870 }
27ab7006
HD
1871
1872 /*
acdd9f8e
HD
1873 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1874 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1875 */
1876 *pagep = NULL;
1877 if (sgp == SGP_READ)
1878 return 0;
1879 if (sgp == SGP_NOALLOC)
1880 return -ENOENT;
1881
1882 /*
1883 * Fast cache lookup and swap lookup did not find it: allocate.
27ab7006 1884 */
54af6042 1885
c5bf121e
VRP
1886 if (vma && userfaultfd_missing(vma)) {
1887 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1888 return 0;
1889 }
cfda0526 1890
5e6e5a12
HD
1891 /* Never use a huge page for shmem_symlink() */
1892 if (S_ISLNK(inode->i_mode))
c5bf121e 1893 goto alloc_nohuge;
5e6e5a12 1894 if (!shmem_is_huge(vma, inode, index))
c5bf121e 1895 goto alloc_nohuge;
1da177e4 1896
164cc4fe 1897 huge_gfp = vma_thp_gfp_mask(vma);
78cc8cdc 1898 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
164cc4fe 1899 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
c5bf121e
VRP
1900 if (IS_ERR(page)) {
1901alloc_nohuge:
1902 page = shmem_alloc_and_acct_page(gfp, inode,
1903 index, false);
1904 }
1905 if (IS_ERR(page)) {
1906 int retry = 5;
800d8c63 1907
c5bf121e
VRP
1908 error = PTR_ERR(page);
1909 page = NULL;
1910 if (error != -ENOSPC)
1911 goto unlock;
1912 /*
1913 * Try to reclaim some space by splitting a huge page
1914 * beyond i_size on the filesystem.
1915 */
1916 while (retry--) {
1917 int ret;
66d2f4d2 1918
c5bf121e
VRP
1919 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1920 if (ret == SHRINK_STOP)
1921 break;
1922 if (ret)
1923 goto alloc_nohuge;
b065b432 1924 }
c5bf121e
VRP
1925 goto unlock;
1926 }
54af6042 1927
c5bf121e
VRP
1928 if (PageTransHuge(page))
1929 hindex = round_down(index, HPAGE_PMD_NR);
1930 else
1931 hindex = index;
54af6042 1932
c5bf121e
VRP
1933 if (sgp == SGP_WRITE)
1934 __SetPageReferenced(page);
1935
c5bf121e 1936 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1937 NULL, gfp & GFP_RECLAIM_MASK,
1938 charge_mm);
1939 if (error)
c5bf121e 1940 goto unacct;
6058eaec 1941 lru_cache_add(page);
779750d2 1942
c5bf121e 1943 spin_lock_irq(&info->lock);
d8c6546b 1944 info->alloced += compound_nr(page);
c5bf121e
VRP
1945 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1946 shmem_recalc_inode(inode);
1947 spin_unlock_irq(&info->lock);
1948 alloced = true;
1949
1950 if (PageTransHuge(page) &&
1951 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1952 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1953 /*
c5bf121e
VRP
1954 * Part of the huge page is beyond i_size: subject
1955 * to shrink under memory pressure.
1635f6a7 1956 */
c5bf121e 1957 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1958 /*
c5bf121e
VRP
1959 * _careful to defend against unlocked access to
1960 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1961 */
c5bf121e
VRP
1962 if (list_empty_careful(&info->shrinklist)) {
1963 list_add_tail(&info->shrinklist,
1964 &sbinfo->shrinklist);
1965 sbinfo->shrinklist_len++;
1966 }
1967 spin_unlock(&sbinfo->shrinklist_lock);
1968 }
800d8c63 1969
c5bf121e
VRP
1970 /*
1971 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1972 */
1973 if (sgp == SGP_FALLOC)
1974 sgp = SGP_WRITE;
1975clear:
1976 /*
1977 * Let SGP_WRITE caller clear ends if write does not fill page;
1978 * but SGP_FALLOC on a page fallocated earlier must initialize
1979 * it now, lest undo on failure cancel our earlier guarantee.
1980 */
1981 if (sgp != SGP_WRITE && !PageUptodate(page)) {
c5bf121e
VRP
1982 int i;
1983
63ec1973
MWO
1984 for (i = 0; i < compound_nr(page); i++) {
1985 clear_highpage(page + i);
1986 flush_dcache_page(page + i);
ec9516fb 1987 }
63ec1973 1988 SetPageUptodate(page);
1da177e4 1989 }
bde05d1c 1990
54af6042 1991 /* Perhaps the file has been truncated since we checked */
75edd345 1992 if (sgp <= SGP_CACHE &&
09cbfeaf 1993 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1994 if (alloced) {
1995 ClearPageDirty(page);
1996 delete_from_page_cache(page);
4595ef88 1997 spin_lock_irq(&info->lock);
267a4c76 1998 shmem_recalc_inode(inode);
4595ef88 1999 spin_unlock_irq(&info->lock);
267a4c76 2000 }
54af6042 2001 error = -EINVAL;
267a4c76 2002 goto unlock;
e83c32e8 2003 }
63ec1973 2004out:
800d8c63 2005 *pagep = page + index - hindex;
54af6042 2006 return 0;
1da177e4 2007
59a16ead 2008 /*
54af6042 2009 * Error recovery.
59a16ead 2010 */
54af6042 2011unacct:
d8c6546b 2012 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
2013
2014 if (PageTransHuge(page)) {
2015 unlock_page(page);
2016 put_page(page);
2017 goto alloc_nohuge;
2018 }
d1899228 2019unlock:
27ab7006 2020 if (page) {
54af6042 2021 unlock_page(page);
09cbfeaf 2022 put_page(page);
54af6042
HD
2023 }
2024 if (error == -ENOSPC && !once++) {
4595ef88 2025 spin_lock_irq(&info->lock);
54af6042 2026 shmem_recalc_inode(inode);
4595ef88 2027 spin_unlock_irq(&info->lock);
27ab7006 2028 goto repeat;
ff36b801 2029 }
7f4446ee 2030 if (error == -EEXIST)
54af6042
HD
2031 goto repeat;
2032 return error;
1da177e4
LT
2033}
2034
10d20bd2
LT
2035/*
2036 * This is like autoremove_wake_function, but it removes the wait queue
2037 * entry unconditionally - even if something else had already woken the
2038 * target.
2039 */
ac6424b9 2040static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2041{
2042 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2043 list_del_init(&wait->entry);
10d20bd2
LT
2044 return ret;
2045}
2046
20acce67 2047static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2048{
11bac800 2049 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2050 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2051 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
20acce67
SJ
2052 int err;
2053 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2054
f00cdc6d
HD
2055 /*
2056 * Trinity finds that probing a hole which tmpfs is punching can
2057 * prevent the hole-punch from ever completing: which in turn
9608703e 2058 * locks writers out with its hold on i_rwsem. So refrain from
8e205f77
HD
2059 * faulting pages into the hole while it's being punched. Although
2060 * shmem_undo_range() does remove the additions, it may be unable to
2061 * keep up, as each new page needs its own unmap_mapping_range() call,
2062 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2063 *
2064 * It does not matter if we sometimes reach this check just before the
2065 * hole-punch begins, so that one fault then races with the punch:
2066 * we just need to make racing faults a rare case.
2067 *
2068 * The implementation below would be much simpler if we just used a
9608703e 2069 * standard mutex or completion: but we cannot take i_rwsem in fault,
8e205f77 2070 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2071 */
2072 if (unlikely(inode->i_private)) {
2073 struct shmem_falloc *shmem_falloc;
2074
2075 spin_lock(&inode->i_lock);
2076 shmem_falloc = inode->i_private;
8e205f77
HD
2077 if (shmem_falloc &&
2078 shmem_falloc->waitq &&
2079 vmf->pgoff >= shmem_falloc->start &&
2080 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2081 struct file *fpin;
8e205f77 2082 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2083 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2084
2085 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2086 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2087 if (fpin)
8e205f77 2088 ret = VM_FAULT_RETRY;
8e205f77
HD
2089
2090 shmem_falloc_waitq = shmem_falloc->waitq;
2091 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2092 TASK_UNINTERRUPTIBLE);
2093 spin_unlock(&inode->i_lock);
2094 schedule();
2095
2096 /*
2097 * shmem_falloc_waitq points into the shmem_fallocate()
2098 * stack of the hole-punching task: shmem_falloc_waitq
2099 * is usually invalid by the time we reach here, but
2100 * finish_wait() does not dereference it in that case;
2101 * though i_lock needed lest racing with wake_up_all().
2102 */
2103 spin_lock(&inode->i_lock);
2104 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2105 spin_unlock(&inode->i_lock);
8897c1b1
KS
2106
2107 if (fpin)
2108 fput(fpin);
8e205f77 2109 return ret;
f00cdc6d 2110 }
8e205f77 2111 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2112 }
2113
5e6e5a12 2114 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
cfda0526 2115 gfp, vma, vmf, &ret);
20acce67
SJ
2116 if (err)
2117 return vmf_error(err);
68da9f05 2118 return ret;
1da177e4
LT
2119}
2120
c01d5b30
HD
2121unsigned long shmem_get_unmapped_area(struct file *file,
2122 unsigned long uaddr, unsigned long len,
2123 unsigned long pgoff, unsigned long flags)
2124{
2125 unsigned long (*get_area)(struct file *,
2126 unsigned long, unsigned long, unsigned long, unsigned long);
2127 unsigned long addr;
2128 unsigned long offset;
2129 unsigned long inflated_len;
2130 unsigned long inflated_addr;
2131 unsigned long inflated_offset;
2132
2133 if (len > TASK_SIZE)
2134 return -ENOMEM;
2135
2136 get_area = current->mm->get_unmapped_area;
2137 addr = get_area(file, uaddr, len, pgoff, flags);
2138
396bcc52 2139 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2140 return addr;
2141 if (IS_ERR_VALUE(addr))
2142 return addr;
2143 if (addr & ~PAGE_MASK)
2144 return addr;
2145 if (addr > TASK_SIZE - len)
2146 return addr;
2147
2148 if (shmem_huge == SHMEM_HUGE_DENY)
2149 return addr;
2150 if (len < HPAGE_PMD_SIZE)
2151 return addr;
2152 if (flags & MAP_FIXED)
2153 return addr;
2154 /*
2155 * Our priority is to support MAP_SHARED mapped hugely;
2156 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2157 * But if caller specified an address hint and we allocated area there
2158 * successfully, respect that as before.
c01d5b30 2159 */
99158997 2160 if (uaddr == addr)
c01d5b30
HD
2161 return addr;
2162
2163 if (shmem_huge != SHMEM_HUGE_FORCE) {
2164 struct super_block *sb;
2165
2166 if (file) {
2167 VM_BUG_ON(file->f_op != &shmem_file_operations);
2168 sb = file_inode(file)->i_sb;
2169 } else {
2170 /*
2171 * Called directly from mm/mmap.c, or drivers/char/mem.c
2172 * for "/dev/zero", to create a shared anonymous object.
2173 */
2174 if (IS_ERR(shm_mnt))
2175 return addr;
2176 sb = shm_mnt->mnt_sb;
2177 }
3089bf61 2178 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2179 return addr;
2180 }
2181
2182 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2183 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2184 return addr;
2185 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2186 return addr;
2187
2188 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2189 if (inflated_len > TASK_SIZE)
2190 return addr;
2191 if (inflated_len < len)
2192 return addr;
2193
99158997 2194 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2195 if (IS_ERR_VALUE(inflated_addr))
2196 return addr;
2197 if (inflated_addr & ~PAGE_MASK)
2198 return addr;
2199
2200 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2201 inflated_addr += offset - inflated_offset;
2202 if (inflated_offset > offset)
2203 inflated_addr += HPAGE_PMD_SIZE;
2204
2205 if (inflated_addr > TASK_SIZE - len)
2206 return addr;
2207 return inflated_addr;
2208}
2209
1da177e4 2210#ifdef CONFIG_NUMA
41ffe5d5 2211static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2212{
496ad9aa 2213 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2214 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2215}
2216
d8dc74f2
AB
2217static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2218 unsigned long addr)
1da177e4 2219{
496ad9aa 2220 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2221 pgoff_t index;
1da177e4 2222
41ffe5d5
HD
2223 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2224 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2225}
2226#endif
2227
d7c9e99a 2228int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
1da177e4 2229{
496ad9aa 2230 struct inode *inode = file_inode(file);
1da177e4
LT
2231 struct shmem_inode_info *info = SHMEM_I(inode);
2232 int retval = -ENOMEM;
2233
ea0dfeb4
HD
2234 /*
2235 * What serializes the accesses to info->flags?
2236 * ipc_lock_object() when called from shmctl_do_lock(),
2237 * no serialization needed when called from shm_destroy().
2238 */
1da177e4 2239 if (lock && !(info->flags & VM_LOCKED)) {
d7c9e99a 2240 if (!user_shm_lock(inode->i_size, ucounts))
1da177e4
LT
2241 goto out_nomem;
2242 info->flags |= VM_LOCKED;
89e004ea 2243 mapping_set_unevictable(file->f_mapping);
1da177e4 2244 }
d7c9e99a
AG
2245 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2246 user_shm_unlock(inode->i_size, ucounts);
1da177e4 2247 info->flags &= ~VM_LOCKED;
89e004ea 2248 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2249 }
2250 retval = 0;
89e004ea 2251
1da177e4 2252out_nomem:
1da177e4
LT
2253 return retval;
2254}
2255
9b83a6a8 2256static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2257{
ab3948f5 2258 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
22247efd 2259 int ret;
ab3948f5 2260
22247efd
PX
2261 ret = seal_check_future_write(info->seals, vma);
2262 if (ret)
2263 return ret;
ab3948f5 2264
51b0bff2
CM
2265 /* arm64 - allow memory tagging on RAM-based files */
2266 vma->vm_flags |= VM_MTE_ALLOWED;
2267
1da177e4
LT
2268 file_accessed(file);
2269 vma->vm_ops = &shmem_vm_ops;
396bcc52 2270 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2271 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2272 (vma->vm_end & HPAGE_PMD_MASK)) {
2273 khugepaged_enter(vma, vma->vm_flags);
2274 }
1da177e4
LT
2275 return 0;
2276}
2277
454abafe 2278static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2279 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2280{
2281 struct inode *inode;
2282 struct shmem_inode_info *info;
2283 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2284 ino_t ino;
1da177e4 2285
e809d5f0 2286 if (shmem_reserve_inode(sb, &ino))
5b04c689 2287 return NULL;
1da177e4
LT
2288
2289 inode = new_inode(sb);
2290 if (inode) {
e809d5f0 2291 inode->i_ino = ino;
21cb47be 2292 inode_init_owner(&init_user_ns, inode, dir, mode);
1da177e4 2293 inode->i_blocks = 0;
078cd827 2294 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2295 inode->i_generation = prandom_u32();
1da177e4
LT
2296 info = SHMEM_I(inode);
2297 memset(info, 0, (char *)inode - (char *)info);
2298 spin_lock_init(&info->lock);
af53d3e9 2299 atomic_set(&info->stop_eviction, 0);
40e041a2 2300 info->seals = F_SEAL_SEAL;
0b0a0806 2301 info->flags = flags & VM_NORESERVE;
779750d2 2302 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2303 INIT_LIST_HEAD(&info->swaplist);
38f38657 2304 simple_xattrs_init(&info->xattrs);
72c04902 2305 cache_no_acl(inode);
ff36da69 2306 mapping_set_large_folios(inode->i_mapping);
1da177e4
LT
2307
2308 switch (mode & S_IFMT) {
2309 default:
39f0247d 2310 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2311 init_special_inode(inode, mode, dev);
2312 break;
2313 case S_IFREG:
14fcc23f 2314 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2315 inode->i_op = &shmem_inode_operations;
2316 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2317 mpol_shared_policy_init(&info->policy,
2318 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2319 break;
2320 case S_IFDIR:
d8c76e6f 2321 inc_nlink(inode);
1da177e4
LT
2322 /* Some things misbehave if size == 0 on a directory */
2323 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2324 inode->i_op = &shmem_dir_inode_operations;
2325 inode->i_fop = &simple_dir_operations;
2326 break;
2327 case S_IFLNK:
2328 /*
2329 * Must not load anything in the rbtree,
2330 * mpol_free_shared_policy will not be called.
2331 */
71fe804b 2332 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2333 break;
2334 }
b45d71fb
JFG
2335
2336 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2337 } else
2338 shmem_free_inode(sb);
1da177e4
LT
2339 return inode;
2340}
2341
3460f6e5
AR
2342#ifdef CONFIG_USERFAULTFD
2343int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2344 pmd_t *dst_pmd,
2345 struct vm_area_struct *dst_vma,
2346 unsigned long dst_addr,
2347 unsigned long src_addr,
2348 bool zeropage,
2349 struct page **pagep)
4c27fe4c
MR
2350{
2351 struct inode *inode = file_inode(dst_vma->vm_file);
2352 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2353 struct address_space *mapping = inode->i_mapping;
2354 gfp_t gfp = mapping_gfp_mask(mapping);
2355 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2356 void *page_kaddr;
2357 struct page *page;
4c27fe4c 2358 int ret;
3460f6e5 2359 pgoff_t max_off;
4c27fe4c 2360
7ed9d238
AR
2361 if (!shmem_inode_acct_block(inode, 1)) {
2362 /*
2363 * We may have got a page, returned -ENOENT triggering a retry,
2364 * and now we find ourselves with -ENOMEM. Release the page, to
2365 * avoid a BUG_ON in our caller.
2366 */
2367 if (unlikely(*pagep)) {
2368 put_page(*pagep);
2369 *pagep = NULL;
2370 }
7d64ae3a 2371 return -ENOMEM;
7ed9d238 2372 }
4c27fe4c 2373
cb658a45 2374 if (!*pagep) {
7d64ae3a 2375 ret = -ENOMEM;
4c27fe4c
MR
2376 page = shmem_alloc_page(gfp, info, pgoff);
2377 if (!page)
0f079694 2378 goto out_unacct_blocks;
4c27fe4c 2379
3460f6e5 2380 if (!zeropage) { /* COPY */
8d103963
MR
2381 page_kaddr = kmap_atomic(page);
2382 ret = copy_from_user(page_kaddr,
2383 (const void __user *)src_addr,
2384 PAGE_SIZE);
2385 kunmap_atomic(page_kaddr);
2386
c1e8d7c6 2387 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2388 if (unlikely(ret)) {
2389 *pagep = page;
7d64ae3a 2390 ret = -ENOENT;
8d103963 2391 /* don't free the page */
7d64ae3a 2392 goto out_unacct_blocks;
8d103963 2393 }
3460f6e5 2394 } else { /* ZEROPAGE */
8d103963 2395 clear_highpage(page);
4c27fe4c
MR
2396 }
2397 } else {
2398 page = *pagep;
2399 *pagep = NULL;
2400 }
2401
3460f6e5
AR
2402 VM_BUG_ON(PageLocked(page));
2403 VM_BUG_ON(PageSwapBacked(page));
9cc90c66
AA
2404 __SetPageLocked(page);
2405 __SetPageSwapBacked(page);
a425d358 2406 __SetPageUptodate(page);
9cc90c66 2407
e2a50c1f 2408 ret = -EFAULT;
e2a50c1f 2409 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3460f6e5 2410 if (unlikely(pgoff >= max_off))
e2a50c1f
AA
2411 goto out_release;
2412
552446a4 2413 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2414 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2415 if (ret)
3fea5a49 2416 goto out_release;
4c27fe4c 2417
7d64ae3a
AR
2418 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2419 page, true, false);
2420 if (ret)
2421 goto out_delete_from_cache;
4c27fe4c 2422
94b7cc01 2423 spin_lock_irq(&info->lock);
4c27fe4c
MR
2424 info->alloced++;
2425 inode->i_blocks += BLOCKS_PER_PAGE;
2426 shmem_recalc_inode(inode);
94b7cc01 2427 spin_unlock_irq(&info->lock);
4c27fe4c 2428
e2a50c1f 2429 unlock_page(page);
7d64ae3a
AR
2430 return 0;
2431out_delete_from_cache:
e2a50c1f 2432 delete_from_page_cache(page);
4c27fe4c 2433out_release:
9cc90c66 2434 unlock_page(page);
4c27fe4c 2435 put_page(page);
4c27fe4c 2436out_unacct_blocks:
0f079694 2437 shmem_inode_unacct_blocks(inode, 1);
7d64ae3a 2438 return ret;
8d103963 2439}
3460f6e5 2440#endif /* CONFIG_USERFAULTFD */
8d103963 2441
1da177e4 2442#ifdef CONFIG_TMPFS
92e1d5be 2443static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2444static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2445
6d9d88d0
JS
2446#ifdef CONFIG_TMPFS_XATTR
2447static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2448#else
2449#define shmem_initxattrs NULL
2450#endif
2451
1da177e4 2452static int
800d15a5
NP
2453shmem_write_begin(struct file *file, struct address_space *mapping,
2454 loff_t pos, unsigned len, unsigned flags,
2455 struct page **pagep, void **fsdata)
1da177e4 2456{
800d15a5 2457 struct inode *inode = mapping->host;
40e041a2 2458 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2459 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2 2460
9608703e 2461 /* i_rwsem is held by caller */
ab3948f5
JFG
2462 if (unlikely(info->seals & (F_SEAL_GROW |
2463 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2464 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DR
2465 return -EPERM;
2466 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2467 return -EPERM;
2468 }
2469
d0b51bfb 2470 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2471}
2472
2473static int
2474shmem_write_end(struct file *file, struct address_space *mapping,
2475 loff_t pos, unsigned len, unsigned copied,
2476 struct page *page, void *fsdata)
2477{
2478 struct inode *inode = mapping->host;
2479
d3602444
HD
2480 if (pos + copied > inode->i_size)
2481 i_size_write(inode, pos + copied);
2482
ec9516fb 2483 if (!PageUptodate(page)) {
800d8c63
KS
2484 struct page *head = compound_head(page);
2485 if (PageTransCompound(page)) {
2486 int i;
2487
2488 for (i = 0; i < HPAGE_PMD_NR; i++) {
2489 if (head + i == page)
2490 continue;
2491 clear_highpage(head + i);
2492 flush_dcache_page(head + i);
2493 }
2494 }
09cbfeaf
KS
2495 if (copied < PAGE_SIZE) {
2496 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2497 zero_user_segments(page, 0, from,
09cbfeaf 2498 from + copied, PAGE_SIZE);
ec9516fb 2499 }
800d8c63 2500 SetPageUptodate(head);
ec9516fb 2501 }
800d15a5 2502 set_page_dirty(page);
6746aff7 2503 unlock_page(page);
09cbfeaf 2504 put_page(page);
800d15a5 2505
800d15a5 2506 return copied;
1da177e4
LT
2507}
2508
2ba5bbed 2509static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2510{
6e58e79d
AV
2511 struct file *file = iocb->ki_filp;
2512 struct inode *inode = file_inode(file);
1da177e4 2513 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2514 pgoff_t index;
2515 unsigned long offset;
a0ee5ec5 2516 enum sgp_type sgp = SGP_READ;
f7c1d074 2517 int error = 0;
cb66a7a1 2518 ssize_t retval = 0;
6e58e79d 2519 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2520
2521 /*
2522 * Might this read be for a stacking filesystem? Then when reading
2523 * holes of a sparse file, we actually need to allocate those pages,
2524 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2525 */
777eda2c 2526 if (!iter_is_iovec(to))
75edd345 2527 sgp = SGP_CACHE;
1da177e4 2528
09cbfeaf
KS
2529 index = *ppos >> PAGE_SHIFT;
2530 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2531
2532 for (;;) {
2533 struct page *page = NULL;
41ffe5d5
HD
2534 pgoff_t end_index;
2535 unsigned long nr, ret;
1da177e4
LT
2536 loff_t i_size = i_size_read(inode);
2537
09cbfeaf 2538 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2539 if (index > end_index)
2540 break;
2541 if (index == end_index) {
09cbfeaf 2542 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2543 if (nr <= offset)
2544 break;
2545 }
2546
9e18eb29 2547 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2548 if (error) {
2549 if (error == -EINVAL)
2550 error = 0;
1da177e4
LT
2551 break;
2552 }
75edd345
HD
2553 if (page) {
2554 if (sgp == SGP_CACHE)
2555 set_page_dirty(page);
d3602444 2556 unlock_page(page);
75edd345 2557 }
1da177e4
LT
2558
2559 /*
2560 * We must evaluate after, since reads (unlike writes)
9608703e 2561 * are called without i_rwsem protection against truncate
1da177e4 2562 */
09cbfeaf 2563 nr = PAGE_SIZE;
1da177e4 2564 i_size = i_size_read(inode);
09cbfeaf 2565 end_index = i_size >> PAGE_SHIFT;
1da177e4 2566 if (index == end_index) {
09cbfeaf 2567 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2568 if (nr <= offset) {
2569 if (page)
09cbfeaf 2570 put_page(page);
1da177e4
LT
2571 break;
2572 }
2573 }
2574 nr -= offset;
2575
2576 if (page) {
2577 /*
2578 * If users can be writing to this page using arbitrary
2579 * virtual addresses, take care about potential aliasing
2580 * before reading the page on the kernel side.
2581 */
2582 if (mapping_writably_mapped(mapping))
2583 flush_dcache_page(page);
2584 /*
2585 * Mark the page accessed if we read the beginning.
2586 */
2587 if (!offset)
2588 mark_page_accessed(page);
b5810039 2589 } else {
1da177e4 2590 page = ZERO_PAGE(0);
09cbfeaf 2591 get_page(page);
b5810039 2592 }
1da177e4
LT
2593
2594 /*
2595 * Ok, we have the page, and it's up-to-date, so
2596 * now we can copy it to user space...
1da177e4 2597 */
2ba5bbed 2598 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2599 retval += ret;
1da177e4 2600 offset += ret;
09cbfeaf
KS
2601 index += offset >> PAGE_SHIFT;
2602 offset &= ~PAGE_MASK;
1da177e4 2603
09cbfeaf 2604 put_page(page);
2ba5bbed 2605 if (!iov_iter_count(to))
1da177e4 2606 break;
6e58e79d
AV
2607 if (ret < nr) {
2608 error = -EFAULT;
2609 break;
2610 }
1da177e4
LT
2611 cond_resched();
2612 }
2613
09cbfeaf 2614 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2615 file_accessed(file);
2616 return retval ? retval : error;
1da177e4
LT
2617}
2618
965c8e59 2619static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2620{
2621 struct address_space *mapping = file->f_mapping;
2622 struct inode *inode = mapping->host;
220f2ac9 2623
965c8e59
AM
2624 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2625 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2626 MAX_LFS_FILESIZE, i_size_read(inode));
41139aa4
MWO
2627 if (offset < 0)
2628 return -ENXIO;
2629
5955102c 2630 inode_lock(inode);
9608703e 2631 /* We're holding i_rwsem so we can access i_size directly */
41139aa4 2632 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
387aae6f
HD
2633 if (offset >= 0)
2634 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2635 inode_unlock(inode);
220f2ac9
HD
2636 return offset;
2637}
2638
83e4fa9c
HD
2639static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2640 loff_t len)
2641{
496ad9aa 2642 struct inode *inode = file_inode(file);
e2d12e22 2643 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2644 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2645 struct shmem_falloc shmem_falloc;
d144bf62 2646 pgoff_t start, index, end, undo_fallocend;
e2d12e22 2647 int error;
83e4fa9c 2648
13ace4d0
HD
2649 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2650 return -EOPNOTSUPP;
2651
5955102c 2652 inode_lock(inode);
83e4fa9c
HD
2653
2654 if (mode & FALLOC_FL_PUNCH_HOLE) {
2655 struct address_space *mapping = file->f_mapping;
2656 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2657 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2658 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2659
9608703e 2660 /* protected by i_rwsem */
ab3948f5 2661 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DR
2662 error = -EPERM;
2663 goto out;
2664 }
2665
8e205f77 2666 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2667 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2668 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2669 spin_lock(&inode->i_lock);
2670 inode->i_private = &shmem_falloc;
2671 spin_unlock(&inode->i_lock);
2672
83e4fa9c
HD
2673 if ((u64)unmap_end > (u64)unmap_start)
2674 unmap_mapping_range(mapping, unmap_start,
2675 1 + unmap_end - unmap_start, 0);
2676 shmem_truncate_range(inode, offset, offset + len - 1);
2677 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2678
2679 spin_lock(&inode->i_lock);
2680 inode->i_private = NULL;
2681 wake_up_all(&shmem_falloc_waitq);
2055da97 2682 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2683 spin_unlock(&inode->i_lock);
83e4fa9c 2684 error = 0;
8e205f77 2685 goto out;
e2d12e22
HD
2686 }
2687
2688 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2689 error = inode_newsize_ok(inode, offset + len);
2690 if (error)
2691 goto out;
2692
40e041a2
DR
2693 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2694 error = -EPERM;
2695 goto out;
2696 }
2697
09cbfeaf
KS
2698 start = offset >> PAGE_SHIFT;
2699 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2700 /* Try to avoid a swapstorm if len is impossible to satisfy */
2701 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2702 error = -ENOSPC;
2703 goto out;
83e4fa9c
HD
2704 }
2705
8e205f77 2706 shmem_falloc.waitq = NULL;
1aac1400
HD
2707 shmem_falloc.start = start;
2708 shmem_falloc.next = start;
2709 shmem_falloc.nr_falloced = 0;
2710 shmem_falloc.nr_unswapped = 0;
2711 spin_lock(&inode->i_lock);
2712 inode->i_private = &shmem_falloc;
2713 spin_unlock(&inode->i_lock);
2714
d144bf62
HD
2715 /*
2716 * info->fallocend is only relevant when huge pages might be
2717 * involved: to prevent split_huge_page() freeing fallocated
2718 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2719 */
2720 undo_fallocend = info->fallocend;
2721 if (info->fallocend < end)
2722 info->fallocend = end;
2723
050dcb5c 2724 for (index = start; index < end; ) {
e2d12e22
HD
2725 struct page *page;
2726
2727 /*
2728 * Good, the fallocate(2) manpage permits EINTR: we may have
2729 * been interrupted because we are using up too much memory.
2730 */
2731 if (signal_pending(current))
2732 error = -EINTR;
1aac1400
HD
2733 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2734 error = -ENOMEM;
e2d12e22 2735 else
9e18eb29 2736 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2737 if (error) {
d144bf62 2738 info->fallocend = undo_fallocend;
1635f6a7 2739 /* Remove the !PageUptodate pages we added */
7f556567
HD
2740 if (index > start) {
2741 shmem_undo_range(inode,
2742 (loff_t)start << PAGE_SHIFT,
2743 ((loff_t)index << PAGE_SHIFT) - 1, true);
2744 }
1aac1400 2745 goto undone;
e2d12e22
HD
2746 }
2747
050dcb5c
HD
2748 index++;
2749 /*
2750 * Here is a more important optimization than it appears:
2751 * a second SGP_FALLOC on the same huge page will clear it,
2752 * making it PageUptodate and un-undoable if we fail later.
2753 */
2754 if (PageTransCompound(page)) {
2755 index = round_up(index, HPAGE_PMD_NR);
2756 /* Beware 32-bit wraparound */
2757 if (!index)
2758 index--;
2759 }
2760
1aac1400
HD
2761 /*
2762 * Inform shmem_writepage() how far we have reached.
2763 * No need for lock or barrier: we have the page lock.
2764 */
1aac1400 2765 if (!PageUptodate(page))
050dcb5c
HD
2766 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2767 shmem_falloc.next = index;
1aac1400 2768
e2d12e22 2769 /*
1635f6a7
HD
2770 * If !PageUptodate, leave it that way so that freeable pages
2771 * can be recognized if we need to rollback on error later.
2772 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2773 * than free the pages we are allocating (and SGP_CACHE pages
2774 * might still be clean: we now need to mark those dirty too).
2775 */
2776 set_page_dirty(page);
2777 unlock_page(page);
09cbfeaf 2778 put_page(page);
e2d12e22
HD
2779 cond_resched();
2780 }
2781
2782 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2783 i_size_write(inode, offset + len);
078cd827 2784 inode->i_ctime = current_time(inode);
1aac1400
HD
2785undone:
2786 spin_lock(&inode->i_lock);
2787 inode->i_private = NULL;
2788 spin_unlock(&inode->i_lock);
e2d12e22 2789out:
5955102c 2790 inode_unlock(inode);
83e4fa9c
HD
2791 return error;
2792}
2793
726c3342 2794static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2795{
726c3342 2796 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2797
2798 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2799 buf->f_bsize = PAGE_SIZE;
1da177e4 2800 buf->f_namelen = NAME_MAX;
0edd73b3 2801 if (sbinfo->max_blocks) {
1da177e4 2802 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2803 buf->f_bavail =
2804 buf->f_bfree = sbinfo->max_blocks -
2805 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2806 }
2807 if (sbinfo->max_inodes) {
1da177e4
LT
2808 buf->f_files = sbinfo->max_inodes;
2809 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2810 }
2811 /* else leave those fields 0 like simple_statfs */
59cda49e
AG
2812
2813 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2814
1da177e4
LT
2815 return 0;
2816}
2817
2818/*
2819 * File creation. Allocate an inode, and we're done..
2820 */
2821static int
549c7297
CB
2822shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2823 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2824{
0b0a0806 2825 struct inode *inode;
1da177e4
LT
2826 int error = -ENOSPC;
2827
454abafe 2828 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2829 if (inode) {
feda821e
CH
2830 error = simple_acl_create(dir, inode);
2831 if (error)
2832 goto out_iput;
2a7dba39 2833 error = security_inode_init_security(inode, dir,
9d8f13ba 2834 &dentry->d_name,
6d9d88d0 2835 shmem_initxattrs, NULL);
feda821e
CH
2836 if (error && error != -EOPNOTSUPP)
2837 goto out_iput;
37ec43cd 2838
718deb6b 2839 error = 0;
1da177e4 2840 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2841 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2842 d_instantiate(dentry, inode);
2843 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2844 }
2845 return error;
feda821e
CH
2846out_iput:
2847 iput(inode);
2848 return error;
1da177e4
LT
2849}
2850
60545d0d 2851static int
549c7297
CB
2852shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2853 struct dentry *dentry, umode_t mode)
60545d0d
AV
2854{
2855 struct inode *inode;
2856 int error = -ENOSPC;
2857
2858 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2859 if (inode) {
2860 error = security_inode_init_security(inode, dir,
2861 NULL,
2862 shmem_initxattrs, NULL);
feda821e
CH
2863 if (error && error != -EOPNOTSUPP)
2864 goto out_iput;
2865 error = simple_acl_create(dir, inode);
2866 if (error)
2867 goto out_iput;
60545d0d
AV
2868 d_tmpfile(dentry, inode);
2869 }
2870 return error;
feda821e
CH
2871out_iput:
2872 iput(inode);
2873 return error;
60545d0d
AV
2874}
2875
549c7297
CB
2876static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2877 struct dentry *dentry, umode_t mode)
1da177e4
LT
2878{
2879 int error;
2880
549c7297
CB
2881 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2882 mode | S_IFDIR, 0)))
1da177e4 2883 return error;
d8c76e6f 2884 inc_nlink(dir);
1da177e4
LT
2885 return 0;
2886}
2887
549c7297
CB
2888static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2889 struct dentry *dentry, umode_t mode, bool excl)
1da177e4 2890{
549c7297 2891 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
2892}
2893
2894/*
2895 * Link a file..
2896 */
2897static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2898{
75c3cfa8 2899 struct inode *inode = d_inode(old_dentry);
29b00e60 2900 int ret = 0;
1da177e4
LT
2901
2902 /*
2903 * No ordinary (disk based) filesystem counts links as inodes;
2904 * but each new link needs a new dentry, pinning lowmem, and
2905 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2906 * But if an O_TMPFILE file is linked into the tmpfs, the
2907 * first link must skip that, to get the accounting right.
1da177e4 2908 */
1062af92 2909 if (inode->i_nlink) {
e809d5f0 2910 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
2911 if (ret)
2912 goto out;
2913 }
1da177e4
LT
2914
2915 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2916 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2917 inc_nlink(inode);
7de9c6ee 2918 ihold(inode); /* New dentry reference */
1da177e4
LT
2919 dget(dentry); /* Extra pinning count for the created dentry */
2920 d_instantiate(dentry, inode);
5b04c689
PE
2921out:
2922 return ret;
1da177e4
LT
2923}
2924
2925static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2926{
75c3cfa8 2927 struct inode *inode = d_inode(dentry);
1da177e4 2928
5b04c689
PE
2929 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2930 shmem_free_inode(inode->i_sb);
1da177e4
LT
2931
2932 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2933 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2934 drop_nlink(inode);
1da177e4
LT
2935 dput(dentry); /* Undo the count from "create" - this does all the work */
2936 return 0;
2937}
2938
2939static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2940{
2941 if (!simple_empty(dentry))
2942 return -ENOTEMPTY;
2943
75c3cfa8 2944 drop_nlink(d_inode(dentry));
9a53c3a7 2945 drop_nlink(dir);
1da177e4
LT
2946 return shmem_unlink(dir, dentry);
2947}
2948
549c7297
CB
2949static int shmem_whiteout(struct user_namespace *mnt_userns,
2950 struct inode *old_dir, struct dentry *old_dentry)
46fdb794
MS
2951{
2952 struct dentry *whiteout;
2953 int error;
2954
2955 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2956 if (!whiteout)
2957 return -ENOMEM;
2958
549c7297 2959 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
46fdb794
MS
2960 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2961 dput(whiteout);
2962 if (error)
2963 return error;
2964
2965 /*
2966 * Cheat and hash the whiteout while the old dentry is still in
2967 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2968 *
2969 * d_lookup() will consistently find one of them at this point,
2970 * not sure which one, but that isn't even important.
2971 */
2972 d_rehash(whiteout);
2973 return 0;
2974}
2975
1da177e4
LT
2976/*
2977 * The VFS layer already does all the dentry stuff for rename,
2978 * we just have to decrement the usage count for the target if
2979 * it exists so that the VFS layer correctly free's it when it
2980 * gets overwritten.
2981 */
549c7297
CB
2982static int shmem_rename2(struct user_namespace *mnt_userns,
2983 struct inode *old_dir, struct dentry *old_dentry,
2984 struct inode *new_dir, struct dentry *new_dentry,
2985 unsigned int flags)
1da177e4 2986{
75c3cfa8 2987 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2988 int they_are_dirs = S_ISDIR(inode->i_mode);
2989
46fdb794 2990 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2991 return -EINVAL;
2992
37456771 2993 if (flags & RENAME_EXCHANGE)
6429e463 2994 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
37456771 2995
1da177e4
LT
2996 if (!simple_empty(new_dentry))
2997 return -ENOTEMPTY;
2998
46fdb794
MS
2999 if (flags & RENAME_WHITEOUT) {
3000 int error;
3001
549c7297 3002 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
46fdb794
MS
3003 if (error)
3004 return error;
3005 }
3006
75c3cfa8 3007 if (d_really_is_positive(new_dentry)) {
1da177e4 3008 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3009 if (they_are_dirs) {
75c3cfa8 3010 drop_nlink(d_inode(new_dentry));
9a53c3a7 3011 drop_nlink(old_dir);
b928095b 3012 }
1da177e4 3013 } else if (they_are_dirs) {
9a53c3a7 3014 drop_nlink(old_dir);
d8c76e6f 3015 inc_nlink(new_dir);
1da177e4
LT
3016 }
3017
3018 old_dir->i_size -= BOGO_DIRENT_SIZE;
3019 new_dir->i_size += BOGO_DIRENT_SIZE;
3020 old_dir->i_ctime = old_dir->i_mtime =
3021 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3022 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3023 return 0;
3024}
3025
549c7297
CB
3026static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3027 struct dentry *dentry, const char *symname)
1da177e4
LT
3028{
3029 int error;
3030 int len;
3031 struct inode *inode;
9276aad6 3032 struct page *page;
1da177e4
LT
3033
3034 len = strlen(symname) + 1;
09cbfeaf 3035 if (len > PAGE_SIZE)
1da177e4
LT
3036 return -ENAMETOOLONG;
3037
0825a6f9
JP
3038 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3039 VM_NORESERVE);
1da177e4
LT
3040 if (!inode)
3041 return -ENOSPC;
3042
9d8f13ba 3043 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3044 shmem_initxattrs, NULL);
343c3d7f
MN
3045 if (error && error != -EOPNOTSUPP) {
3046 iput(inode);
3047 return error;
570bc1c2
SS
3048 }
3049
1da177e4 3050 inode->i_size = len-1;
69f07ec9 3051 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3052 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3053 if (!inode->i_link) {
69f07ec9
HD
3054 iput(inode);
3055 return -ENOMEM;
3056 }
3057 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3058 } else {
e8ecde25 3059 inode_nohighmem(inode);
9e18eb29 3060 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3061 if (error) {
3062 iput(inode);
3063 return error;
3064 }
14fcc23f 3065 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3066 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3067 memcpy(page_address(page), symname, len);
ec9516fb 3068 SetPageUptodate(page);
1da177e4 3069 set_page_dirty(page);
6746aff7 3070 unlock_page(page);
09cbfeaf 3071 put_page(page);
1da177e4 3072 }
1da177e4 3073 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3074 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3075 d_instantiate(dentry, inode);
3076 dget(dentry);
3077 return 0;
3078}
3079
fceef393 3080static void shmem_put_link(void *arg)
1da177e4 3081{
fceef393
AV
3082 mark_page_accessed(arg);
3083 put_page(arg);
1da177e4
LT
3084}
3085
6b255391 3086static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3087 struct inode *inode,
3088 struct delayed_call *done)
1da177e4 3089{
1da177e4 3090 struct page *page = NULL;
6b255391 3091 int error;
6a6c9904
AV
3092 if (!dentry) {
3093 page = find_get_page(inode->i_mapping, 0);
3094 if (!page)
3095 return ERR_PTR(-ECHILD);
d0b51bfb 3096 if (!PageUptodate(page)) {
6a6c9904
AV
3097 put_page(page);
3098 return ERR_PTR(-ECHILD);
3099 }
3100 } else {
9e18eb29 3101 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3102 if (error)
3103 return ERR_PTR(error);
3104 unlock_page(page);
3105 }
fceef393 3106 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3107 return page_address(page);
1da177e4
LT
3108}
3109
b09e0fa4 3110#ifdef CONFIG_TMPFS_XATTR
46711810 3111/*
b09e0fa4
EP
3112 * Superblocks without xattr inode operations may get some security.* xattr
3113 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3114 * like ACLs, we also need to implement the security.* handlers at
3115 * filesystem level, though.
3116 */
3117
6d9d88d0
JS
3118/*
3119 * Callback for security_inode_init_security() for acquiring xattrs.
3120 */
3121static int shmem_initxattrs(struct inode *inode,
3122 const struct xattr *xattr_array,
3123 void *fs_info)
3124{
3125 struct shmem_inode_info *info = SHMEM_I(inode);
3126 const struct xattr *xattr;
38f38657 3127 struct simple_xattr *new_xattr;
6d9d88d0
JS
3128 size_t len;
3129
3130 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3131 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3132 if (!new_xattr)
3133 return -ENOMEM;
3134
3135 len = strlen(xattr->name) + 1;
3136 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3137 GFP_KERNEL);
3138 if (!new_xattr->name) {
3bef735a 3139 kvfree(new_xattr);
6d9d88d0
JS
3140 return -ENOMEM;
3141 }
3142
3143 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3144 XATTR_SECURITY_PREFIX_LEN);
3145 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3146 xattr->name, len);
3147
38f38657 3148 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3149 }
3150
3151 return 0;
3152}
3153
aa7c5241 3154static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3155 struct dentry *unused, struct inode *inode,
3156 const char *name, void *buffer, size_t size)
b09e0fa4 3157{
b296821a 3158 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3159
aa7c5241 3160 name = xattr_full_name(handler, name);
38f38657 3161 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3162}
3163
aa7c5241 3164static int shmem_xattr_handler_set(const struct xattr_handler *handler,
e65ce2a5 3165 struct user_namespace *mnt_userns,
59301226
AV
3166 struct dentry *unused, struct inode *inode,
3167 const char *name, const void *value,
3168 size_t size, int flags)
b09e0fa4 3169{
59301226 3170 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3171
aa7c5241 3172 name = xattr_full_name(handler, name);
a46a2295 3173 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3174}
3175
aa7c5241
AG
3176static const struct xattr_handler shmem_security_xattr_handler = {
3177 .prefix = XATTR_SECURITY_PREFIX,
3178 .get = shmem_xattr_handler_get,
3179 .set = shmem_xattr_handler_set,
3180};
b09e0fa4 3181
aa7c5241
AG
3182static const struct xattr_handler shmem_trusted_xattr_handler = {
3183 .prefix = XATTR_TRUSTED_PREFIX,
3184 .get = shmem_xattr_handler_get,
3185 .set = shmem_xattr_handler_set,
3186};
b09e0fa4 3187
aa7c5241
AG
3188static const struct xattr_handler *shmem_xattr_handlers[] = {
3189#ifdef CONFIG_TMPFS_POSIX_ACL
3190 &posix_acl_access_xattr_handler,
3191 &posix_acl_default_xattr_handler,
3192#endif
3193 &shmem_security_xattr_handler,
3194 &shmem_trusted_xattr_handler,
3195 NULL
3196};
b09e0fa4
EP
3197
3198static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3199{
75c3cfa8 3200 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3201 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3202}
3203#endif /* CONFIG_TMPFS_XATTR */
3204
69f07ec9 3205static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3206 .get_link = simple_get_link,
b09e0fa4 3207#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3208 .listxattr = shmem_listxattr,
b09e0fa4
EP
3209#endif
3210};
3211
3212static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3213 .get_link = shmem_get_link,
b09e0fa4 3214#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3215 .listxattr = shmem_listxattr,
39f0247d 3216#endif
b09e0fa4 3217};
39f0247d 3218
91828a40
DG
3219static struct dentry *shmem_get_parent(struct dentry *child)
3220{
3221 return ERR_PTR(-ESTALE);
3222}
3223
3224static int shmem_match(struct inode *ino, void *vfh)
3225{
3226 __u32 *fh = vfh;
3227 __u64 inum = fh[2];
3228 inum = (inum << 32) | fh[1];
3229 return ino->i_ino == inum && fh[0] == ino->i_generation;
3230}
3231
12ba780d
AG
3232/* Find any alias of inode, but prefer a hashed alias */
3233static struct dentry *shmem_find_alias(struct inode *inode)
3234{
3235 struct dentry *alias = d_find_alias(inode);
3236
3237 return alias ?: d_find_any_alias(inode);
3238}
3239
3240
480b116c
CH
3241static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3242 struct fid *fid, int fh_len, int fh_type)
91828a40 3243{
91828a40 3244 struct inode *inode;
480b116c 3245 struct dentry *dentry = NULL;
35c2a7f4 3246 u64 inum;
480b116c
CH
3247
3248 if (fh_len < 3)
3249 return NULL;
91828a40 3250
35c2a7f4
HD
3251 inum = fid->raw[2];
3252 inum = (inum << 32) | fid->raw[1];
3253
480b116c
CH
3254 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3255 shmem_match, fid->raw);
91828a40 3256 if (inode) {
12ba780d 3257 dentry = shmem_find_alias(inode);
91828a40
DG
3258 iput(inode);
3259 }
3260
480b116c 3261 return dentry;
91828a40
DG
3262}
3263
b0b0382b
AV
3264static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3265 struct inode *parent)
91828a40 3266{
5fe0c237
AK
3267 if (*len < 3) {
3268 *len = 3;
94e07a75 3269 return FILEID_INVALID;
5fe0c237 3270 }
91828a40 3271
1d3382cb 3272 if (inode_unhashed(inode)) {
91828a40
DG
3273 /* Unfortunately insert_inode_hash is not idempotent,
3274 * so as we hash inodes here rather than at creation
3275 * time, we need a lock to ensure we only try
3276 * to do it once
3277 */
3278 static DEFINE_SPINLOCK(lock);
3279 spin_lock(&lock);
1d3382cb 3280 if (inode_unhashed(inode))
91828a40
DG
3281 __insert_inode_hash(inode,
3282 inode->i_ino + inode->i_generation);
3283 spin_unlock(&lock);
3284 }
3285
3286 fh[0] = inode->i_generation;
3287 fh[1] = inode->i_ino;
3288 fh[2] = ((__u64)inode->i_ino) >> 32;
3289
3290 *len = 3;
3291 return 1;
3292}
3293
39655164 3294static const struct export_operations shmem_export_ops = {
91828a40 3295 .get_parent = shmem_get_parent,
91828a40 3296 .encode_fh = shmem_encode_fh,
480b116c 3297 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3298};
3299
626c3920
AV
3300enum shmem_param {
3301 Opt_gid,
3302 Opt_huge,
3303 Opt_mode,
3304 Opt_mpol,
3305 Opt_nr_blocks,
3306 Opt_nr_inodes,
3307 Opt_size,
3308 Opt_uid,
ea3271f7
CD
3309 Opt_inode32,
3310 Opt_inode64,
626c3920
AV
3311};
3312
5eede625 3313static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3314 {"never", SHMEM_HUGE_NEVER },
3315 {"always", SHMEM_HUGE_ALWAYS },
3316 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3317 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3318 {}
3319};
3320
d7167b14 3321const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3322 fsparam_u32 ("gid", Opt_gid),
2710c957 3323 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3324 fsparam_u32oct("mode", Opt_mode),
3325 fsparam_string("mpol", Opt_mpol),
3326 fsparam_string("nr_blocks", Opt_nr_blocks),
3327 fsparam_string("nr_inodes", Opt_nr_inodes),
3328 fsparam_string("size", Opt_size),
3329 fsparam_u32 ("uid", Opt_uid),
ea3271f7
CD
3330 fsparam_flag ("inode32", Opt_inode32),
3331 fsparam_flag ("inode64", Opt_inode64),
626c3920
AV
3332 {}
3333};
3334
f3235626 3335static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3336{
f3235626 3337 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3338 struct fs_parse_result result;
3339 unsigned long long size;
e04dc423 3340 char *rest;
626c3920
AV
3341 int opt;
3342
d7167b14 3343 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3344 if (opt < 0)
626c3920 3345 return opt;
1da177e4 3346
626c3920
AV
3347 switch (opt) {
3348 case Opt_size:
3349 size = memparse(param->string, &rest);
e04dc423
AV
3350 if (*rest == '%') {
3351 size <<= PAGE_SHIFT;
3352 size *= totalram_pages();
3353 do_div(size, 100);
3354 rest++;
3355 }
3356 if (*rest)
626c3920 3357 goto bad_value;
e04dc423
AV
3358 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3359 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3360 break;
3361 case Opt_nr_blocks:
3362 ctx->blocks = memparse(param->string, &rest);
e04dc423 3363 if (*rest)
626c3920 3364 goto bad_value;
e04dc423 3365 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3366 break;
3367 case Opt_nr_inodes:
3368 ctx->inodes = memparse(param->string, &rest);
e04dc423 3369 if (*rest)
626c3920 3370 goto bad_value;
e04dc423 3371 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3372 break;
3373 case Opt_mode:
3374 ctx->mode = result.uint_32 & 07777;
3375 break;
3376 case Opt_uid:
3377 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3378 if (!uid_valid(ctx->uid))
626c3920
AV
3379 goto bad_value;
3380 break;
3381 case Opt_gid:
3382 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3383 if (!gid_valid(ctx->gid))
626c3920
AV
3384 goto bad_value;
3385 break;
3386 case Opt_huge:
3387 ctx->huge = result.uint_32;
3388 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3389 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3390 has_transparent_hugepage()))
3391 goto unsupported_parameter;
e04dc423 3392 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3393 break;
3394 case Opt_mpol:
3395 if (IS_ENABLED(CONFIG_NUMA)) {
3396 mpol_put(ctx->mpol);
3397 ctx->mpol = NULL;
3398 if (mpol_parse_str(param->string, &ctx->mpol))
3399 goto bad_value;
3400 break;
3401 }
3402 goto unsupported_parameter;
ea3271f7
CD
3403 case Opt_inode32:
3404 ctx->full_inums = false;
3405 ctx->seen |= SHMEM_SEEN_INUMS;
3406 break;
3407 case Opt_inode64:
3408 if (sizeof(ino_t) < 8) {
3409 return invalfc(fc,
3410 "Cannot use inode64 with <64bit inums in kernel\n");
3411 }
3412 ctx->full_inums = true;
3413 ctx->seen |= SHMEM_SEEN_INUMS;
3414 break;
e04dc423
AV
3415 }
3416 return 0;
3417
626c3920 3418unsupported_parameter:
f35aa2bc 3419 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3420bad_value:
f35aa2bc 3421 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3422}
3423
f3235626 3424static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3425{
f3235626
DH
3426 char *options = data;
3427
33f37c64
AV
3428 if (options) {
3429 int err = security_sb_eat_lsm_opts(options, &fc->security);
3430 if (err)
3431 return err;
3432 }
3433
b00dc3ad 3434 while (options != NULL) {
626c3920 3435 char *this_char = options;
b00dc3ad
HD
3436 for (;;) {
3437 /*
3438 * NUL-terminate this option: unfortunately,
3439 * mount options form a comma-separated list,
3440 * but mpol's nodelist may also contain commas.
3441 */
3442 options = strchr(options, ',');
3443 if (options == NULL)
3444 break;
3445 options++;
3446 if (!isdigit(*options)) {
3447 options[-1] = '\0';
3448 break;
3449 }
3450 }
626c3920 3451 if (*this_char) {
68d68ff6 3452 char *value = strchr(this_char, '=');
f3235626 3453 size_t len = 0;
626c3920
AV
3454 int err;
3455
3456 if (value) {
3457 *value++ = '\0';
f3235626 3458 len = strlen(value);
626c3920 3459 }
f3235626
DH
3460 err = vfs_parse_fs_string(fc, this_char, value, len);
3461 if (err < 0)
3462 return err;
1da177e4 3463 }
1da177e4
LT
3464 }
3465 return 0;
1da177e4
LT
3466}
3467
f3235626
DH
3468/*
3469 * Reconfigure a shmem filesystem.
3470 *
3471 * Note that we disallow change from limited->unlimited blocks/inodes while any
3472 * are in use; but we must separately disallow unlimited->limited, because in
3473 * that case we have no record of how much is already in use.
3474 */
3475static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3476{
f3235626
DH
3477 struct shmem_options *ctx = fc->fs_private;
3478 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3479 unsigned long inodes;
bf11b9a8 3480 struct mempolicy *mpol = NULL;
f3235626 3481 const char *err;
1da177e4 3482
bf11b9a8 3483 raw_spin_lock(&sbinfo->stat_lock);
0edd73b3 3484 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3485 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3486 if (!sbinfo->max_blocks) {
3487 err = "Cannot retroactively limit size";
0b5071dd 3488 goto out;
f3235626 3489 }
0b5071dd 3490 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3491 ctx->blocks) > 0) {
3492 err = "Too small a size for current use";
0b5071dd 3493 goto out;
f3235626 3494 }
0b5071dd 3495 }
f3235626
DH
3496 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3497 if (!sbinfo->max_inodes) {
3498 err = "Cannot retroactively limit inodes";
0b5071dd 3499 goto out;
f3235626
DH
3500 }
3501 if (ctx->inodes < inodes) {
3502 err = "Too few inodes for current use";
0b5071dd 3503 goto out;
f3235626 3504 }
0b5071dd 3505 }
0edd73b3 3506
ea3271f7
CD
3507 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3508 sbinfo->next_ino > UINT_MAX) {
3509 err = "Current inum too high to switch to 32-bit inums";
3510 goto out;
3511 }
3512
f3235626
DH
3513 if (ctx->seen & SHMEM_SEEN_HUGE)
3514 sbinfo->huge = ctx->huge;
ea3271f7
CD
3515 if (ctx->seen & SHMEM_SEEN_INUMS)
3516 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3517 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3518 sbinfo->max_blocks = ctx->blocks;
3519 if (ctx->seen & SHMEM_SEEN_INODES) {
3520 sbinfo->max_inodes = ctx->inodes;
3521 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3522 }
71fe804b 3523
5f00110f
GT
3524 /*
3525 * Preserve previous mempolicy unless mpol remount option was specified.
3526 */
f3235626 3527 if (ctx->mpol) {
bf11b9a8 3528 mpol = sbinfo->mpol;
f3235626
DH
3529 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3530 ctx->mpol = NULL;
5f00110f 3531 }
bf11b9a8
SAS
3532 raw_spin_unlock(&sbinfo->stat_lock);
3533 mpol_put(mpol);
f3235626 3534 return 0;
0edd73b3 3535out:
bf11b9a8 3536 raw_spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3537 return invalfc(fc, "%s", err);
1da177e4 3538}
680d794b 3539
34c80b1d 3540static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3541{
34c80b1d 3542 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3543
3544 if (sbinfo->max_blocks != shmem_default_max_blocks())
3545 seq_printf(seq, ",size=%luk",
09cbfeaf 3546 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3547 if (sbinfo->max_inodes != shmem_default_max_inodes())
3548 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3549 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3550 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3551 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3552 seq_printf(seq, ",uid=%u",
3553 from_kuid_munged(&init_user_ns, sbinfo->uid));
3554 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3555 seq_printf(seq, ",gid=%u",
3556 from_kgid_munged(&init_user_ns, sbinfo->gid));
ea3271f7
CD
3557
3558 /*
3559 * Showing inode{64,32} might be useful even if it's the system default,
3560 * since then people don't have to resort to checking both here and
3561 * /proc/config.gz to confirm 64-bit inums were successfully applied
3562 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3563 *
3564 * We hide it when inode64 isn't the default and we are using 32-bit
3565 * inodes, since that probably just means the feature isn't even under
3566 * consideration.
3567 *
3568 * As such:
3569 *
3570 * +-----------------+-----------------+
3571 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3572 * +------------------+-----------------+-----------------+
3573 * | full_inums=true | show | show |
3574 * | full_inums=false | show | hide |
3575 * +------------------+-----------------+-----------------+
3576 *
3577 */
3578 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3579 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
396bcc52 3580#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3581 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3582 if (sbinfo->huge)
3583 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3584#endif
71fe804b 3585 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3586 return 0;
3587}
9183df25 3588
680d794b 3589#endif /* CONFIG_TMPFS */
1da177e4
LT
3590
3591static void shmem_put_super(struct super_block *sb)
3592{
602586a8
HD
3593 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3594
e809d5f0 3595 free_percpu(sbinfo->ino_batch);
602586a8 3596 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3597 mpol_put(sbinfo->mpol);
602586a8 3598 kfree(sbinfo);
1da177e4
LT
3599 sb->s_fs_info = NULL;
3600}
3601
f3235626 3602static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3603{
f3235626 3604 struct shmem_options *ctx = fc->fs_private;
1da177e4 3605 struct inode *inode;
0edd73b3 3606 struct shmem_sb_info *sbinfo;
680d794b
AM
3607
3608 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3609 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3610 L1_CACHE_BYTES), GFP_KERNEL);
3611 if (!sbinfo)
3612 return -ENOMEM;
3613
680d794b 3614 sb->s_fs_info = sbinfo;
1da177e4 3615
0edd73b3 3616#ifdef CONFIG_TMPFS
1da177e4
LT
3617 /*
3618 * Per default we only allow half of the physical ram per
3619 * tmpfs instance, limiting inodes to one per page of lowmem;
3620 * but the internal instance is left unlimited.
3621 */
1751e8a6 3622 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3623 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3624 ctx->blocks = shmem_default_max_blocks();
3625 if (!(ctx->seen & SHMEM_SEEN_INODES))
3626 ctx->inodes = shmem_default_max_inodes();
ea3271f7
CD
3627 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3628 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
ca4e0519 3629 } else {
1751e8a6 3630 sb->s_flags |= SB_NOUSER;
1da177e4 3631 }
91828a40 3632 sb->s_export_op = &shmem_export_ops;
1751e8a6 3633 sb->s_flags |= SB_NOSEC;
1da177e4 3634#else
1751e8a6 3635 sb->s_flags |= SB_NOUSER;
1da177e4 3636#endif
f3235626
DH
3637 sbinfo->max_blocks = ctx->blocks;
3638 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3639 if (sb->s_flags & SB_KERNMOUNT) {
3640 sbinfo->ino_batch = alloc_percpu(ino_t);
3641 if (!sbinfo->ino_batch)
3642 goto failed;
3643 }
f3235626
DH
3644 sbinfo->uid = ctx->uid;
3645 sbinfo->gid = ctx->gid;
ea3271f7 3646 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3647 sbinfo->mode = ctx->mode;
3648 sbinfo->huge = ctx->huge;
3649 sbinfo->mpol = ctx->mpol;
3650 ctx->mpol = NULL;
1da177e4 3651
bf11b9a8 3652 raw_spin_lock_init(&sbinfo->stat_lock);
908c7f19 3653 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3654 goto failed;
779750d2
KS
3655 spin_lock_init(&sbinfo->shrinklist_lock);
3656 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3657
285b2c4f 3658 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3659 sb->s_blocksize = PAGE_SIZE;
3660 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3661 sb->s_magic = TMPFS_MAGIC;
3662 sb->s_op = &shmem_ops;
cfd95a9c 3663 sb->s_time_gran = 1;
b09e0fa4 3664#ifdef CONFIG_TMPFS_XATTR
39f0247d 3665 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3666#endif
3667#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3668 sb->s_flags |= SB_POSIXACL;
39f0247d 3669#endif
2b4db796 3670 uuid_gen(&sb->s_uuid);
0edd73b3 3671
454abafe 3672 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3673 if (!inode)
3674 goto failed;
680d794b
AM
3675 inode->i_uid = sbinfo->uid;
3676 inode->i_gid = sbinfo->gid;
318ceed0
AV
3677 sb->s_root = d_make_root(inode);
3678 if (!sb->s_root)
48fde701 3679 goto failed;
1da177e4
LT
3680 return 0;
3681
1da177e4
LT
3682failed:
3683 shmem_put_super(sb);
f2b346e4 3684 return -ENOMEM;
1da177e4
LT
3685}
3686
f3235626
DH
3687static int shmem_get_tree(struct fs_context *fc)
3688{
3689 return get_tree_nodev(fc, shmem_fill_super);
3690}
3691
3692static void shmem_free_fc(struct fs_context *fc)
3693{
3694 struct shmem_options *ctx = fc->fs_private;
3695
3696 if (ctx) {
3697 mpol_put(ctx->mpol);
3698 kfree(ctx);
3699 }
3700}
3701
3702static const struct fs_context_operations shmem_fs_context_ops = {
3703 .free = shmem_free_fc,
3704 .get_tree = shmem_get_tree,
3705#ifdef CONFIG_TMPFS
3706 .parse_monolithic = shmem_parse_options,
3707 .parse_param = shmem_parse_one,
3708 .reconfigure = shmem_reconfigure,
3709#endif
3710};
3711
fcc234f8 3712static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3713
3714static struct inode *shmem_alloc_inode(struct super_block *sb)
3715{
41ffe5d5
HD
3716 struct shmem_inode_info *info;
3717 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3718 if (!info)
1da177e4 3719 return NULL;
41ffe5d5 3720 return &info->vfs_inode;
1da177e4
LT
3721}
3722
74b1da56 3723static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3724{
84e710da
AV
3725 if (S_ISLNK(inode->i_mode))
3726 kfree(inode->i_link);
fa0d7e3d
NP
3727 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3728}
3729
1da177e4
LT
3730static void shmem_destroy_inode(struct inode *inode)
3731{
09208d15 3732 if (S_ISREG(inode->i_mode))
1da177e4 3733 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3734}
3735
41ffe5d5 3736static void shmem_init_inode(void *foo)
1da177e4 3737{
41ffe5d5
HD
3738 struct shmem_inode_info *info = foo;
3739 inode_init_once(&info->vfs_inode);
1da177e4
LT
3740}
3741
9a8ec03e 3742static void shmem_init_inodecache(void)
1da177e4
LT
3743{
3744 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3745 sizeof(struct shmem_inode_info),
5d097056 3746 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3747}
3748
41ffe5d5 3749static void shmem_destroy_inodecache(void)
1da177e4 3750{
1a1d92c1 3751 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3752}
3753
30e6a51d 3754const struct address_space_operations shmem_aops = {
1da177e4 3755 .writepage = shmem_writepage,
76719325 3756 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3757#ifdef CONFIG_TMPFS
800d15a5
NP
3758 .write_begin = shmem_write_begin,
3759 .write_end = shmem_write_end,
1da177e4 3760#endif
1c93923c 3761#ifdef CONFIG_MIGRATION
304dbdb7 3762 .migratepage = migrate_page,
1c93923c 3763#endif
d0b51bfb 3764 .error_remove_page = generic_error_remove_page,
1da177e4 3765};
30e6a51d 3766EXPORT_SYMBOL(shmem_aops);
1da177e4 3767
15ad7cdc 3768static const struct file_operations shmem_file_operations = {
1da177e4 3769 .mmap = shmem_mmap,
c01d5b30 3770 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3771#ifdef CONFIG_TMPFS
220f2ac9 3772 .llseek = shmem_file_llseek,
2ba5bbed 3773 .read_iter = shmem_file_read_iter,
8174202b 3774 .write_iter = generic_file_write_iter,
1b061d92 3775 .fsync = noop_fsync,
82c156f8 3776 .splice_read = generic_file_splice_read,
f6cb85d0 3777 .splice_write = iter_file_splice_write,
83e4fa9c 3778 .fallocate = shmem_fallocate,
1da177e4
LT
3779#endif
3780};
3781
92e1d5be 3782static const struct inode_operations shmem_inode_operations = {
44a30220 3783 .getattr = shmem_getattr,
94c1e62d 3784 .setattr = shmem_setattr,
b09e0fa4 3785#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3786 .listxattr = shmem_listxattr,
feda821e 3787 .set_acl = simple_set_acl,
b09e0fa4 3788#endif
1da177e4
LT
3789};
3790
92e1d5be 3791static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3792#ifdef CONFIG_TMPFS
3793 .create = shmem_create,
3794 .lookup = simple_lookup,
3795 .link = shmem_link,
3796 .unlink = shmem_unlink,
3797 .symlink = shmem_symlink,
3798 .mkdir = shmem_mkdir,
3799 .rmdir = shmem_rmdir,
3800 .mknod = shmem_mknod,
2773bf00 3801 .rename = shmem_rename2,
60545d0d 3802 .tmpfile = shmem_tmpfile,
1da177e4 3803#endif
b09e0fa4 3804#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3805 .listxattr = shmem_listxattr,
b09e0fa4 3806#endif
39f0247d 3807#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3808 .setattr = shmem_setattr,
feda821e 3809 .set_acl = simple_set_acl,
39f0247d
AG
3810#endif
3811};
3812
92e1d5be 3813static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3814#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3815 .listxattr = shmem_listxattr,
b09e0fa4 3816#endif
39f0247d 3817#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3818 .setattr = shmem_setattr,
feda821e 3819 .set_acl = simple_set_acl,
39f0247d 3820#endif
1da177e4
LT
3821};
3822
759b9775 3823static const struct super_operations shmem_ops = {
1da177e4 3824 .alloc_inode = shmem_alloc_inode,
74b1da56 3825 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3826 .destroy_inode = shmem_destroy_inode,
3827#ifdef CONFIG_TMPFS
3828 .statfs = shmem_statfs,
680d794b 3829 .show_options = shmem_show_options,
1da177e4 3830#endif
1f895f75 3831 .evict_inode = shmem_evict_inode,
1da177e4
LT
3832 .drop_inode = generic_delete_inode,
3833 .put_super = shmem_put_super,
396bcc52 3834#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3835 .nr_cached_objects = shmem_unused_huge_count,
3836 .free_cached_objects = shmem_unused_huge_scan,
3837#endif
1da177e4
LT
3838};
3839
f0f37e2f 3840static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3841 .fault = shmem_fault,
d7c17551 3842 .map_pages = filemap_map_pages,
1da177e4
LT
3843#ifdef CONFIG_NUMA
3844 .set_policy = shmem_set_policy,
3845 .get_policy = shmem_get_policy,
3846#endif
3847};
3848
f3235626 3849int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3850{
f3235626
DH
3851 struct shmem_options *ctx;
3852
3853 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3854 if (!ctx)
3855 return -ENOMEM;
3856
3857 ctx->mode = 0777 | S_ISVTX;
3858 ctx->uid = current_fsuid();
3859 ctx->gid = current_fsgid();
3860
3861 fc->fs_private = ctx;
3862 fc->ops = &shmem_fs_context_ops;
3863 return 0;
1da177e4
LT
3864}
3865
41ffe5d5 3866static struct file_system_type shmem_fs_type = {
1da177e4
LT
3867 .owner = THIS_MODULE,
3868 .name = "tmpfs",
f3235626
DH
3869 .init_fs_context = shmem_init_fs_context,
3870#ifdef CONFIG_TMPFS
d7167b14 3871 .parameters = shmem_fs_parameters,
f3235626 3872#endif
1da177e4 3873 .kill_sb = kill_litter_super,
ff36da69 3874 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3875};
1da177e4 3876
41ffe5d5 3877int __init shmem_init(void)
1da177e4
LT
3878{
3879 int error;
3880
9a8ec03e 3881 shmem_init_inodecache();
1da177e4 3882
41ffe5d5 3883 error = register_filesystem(&shmem_fs_type);
1da177e4 3884 if (error) {
1170532b 3885 pr_err("Could not register tmpfs\n");
1da177e4
LT
3886 goto out2;
3887 }
95dc112a 3888
ca4e0519 3889 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3890 if (IS_ERR(shm_mnt)) {
3891 error = PTR_ERR(shm_mnt);
1170532b 3892 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3893 goto out1;
3894 }
5a6e75f8 3895
396bcc52 3896#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3897 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3898 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3899 else
5e6e5a12 3900 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5a6e75f8 3901#endif
1da177e4
LT
3902 return 0;
3903
3904out1:
41ffe5d5 3905 unregister_filesystem(&shmem_fs_type);
1da177e4 3906out2:
41ffe5d5 3907 shmem_destroy_inodecache();
1da177e4
LT
3908 shm_mnt = ERR_PTR(error);
3909 return error;
3910}
853ac43a 3911
396bcc52 3912#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8 3913static ssize_t shmem_enabled_show(struct kobject *kobj,
79d4d38a 3914 struct kobj_attribute *attr, char *buf)
5a6e75f8 3915{
26083eb6 3916 static const int values[] = {
5a6e75f8
KS
3917 SHMEM_HUGE_ALWAYS,
3918 SHMEM_HUGE_WITHIN_SIZE,
3919 SHMEM_HUGE_ADVISE,
3920 SHMEM_HUGE_NEVER,
3921 SHMEM_HUGE_DENY,
3922 SHMEM_HUGE_FORCE,
3923 };
79d4d38a
JP
3924 int len = 0;
3925 int i;
5a6e75f8 3926
79d4d38a
JP
3927 for (i = 0; i < ARRAY_SIZE(values); i++) {
3928 len += sysfs_emit_at(buf, len,
3929 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3930 i ? " " : "",
3931 shmem_format_huge(values[i]));
5a6e75f8 3932 }
79d4d38a
JP
3933
3934 len += sysfs_emit_at(buf, len, "\n");
3935
3936 return len;
5a6e75f8
KS
3937}
3938
3939static ssize_t shmem_enabled_store(struct kobject *kobj,
3940 struct kobj_attribute *attr, const char *buf, size_t count)
3941{
3942 char tmp[16];
3943 int huge;
3944
3945 if (count + 1 > sizeof(tmp))
3946 return -EINVAL;
3947 memcpy(tmp, buf, count);
3948 tmp[count] = '\0';
3949 if (count && tmp[count - 1] == '\n')
3950 tmp[count - 1] = '\0';
3951
3952 huge = shmem_parse_huge(tmp);
3953 if (huge == -EINVAL)
3954 return -EINVAL;
3955 if (!has_transparent_hugepage() &&
3956 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3957 return -EINVAL;
3958
3959 shmem_huge = huge;
435c0b87 3960 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3961 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3962 return count;
3963}
3964
3965struct kobj_attribute shmem_enabled_attr =
3966 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
396bcc52 3967#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 3968
853ac43a
MM
3969#else /* !CONFIG_SHMEM */
3970
3971/*
3972 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3973 *
3974 * This is intended for small system where the benefits of the full
3975 * shmem code (swap-backed and resource-limited) are outweighed by
3976 * their complexity. On systems without swap this code should be
3977 * effectively equivalent, but much lighter weight.
3978 */
3979
41ffe5d5 3980static struct file_system_type shmem_fs_type = {
853ac43a 3981 .name = "tmpfs",
f3235626 3982 .init_fs_context = ramfs_init_fs_context,
d7167b14 3983 .parameters = ramfs_fs_parameters,
853ac43a 3984 .kill_sb = kill_litter_super,
2b8576cb 3985 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3986};
3987
41ffe5d5 3988int __init shmem_init(void)
853ac43a 3989{
41ffe5d5 3990 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3991
41ffe5d5 3992 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3993 BUG_ON(IS_ERR(shm_mnt));
3994
3995 return 0;
3996}
3997
b56a2d8a
VRP
3998int shmem_unuse(unsigned int type, bool frontswap,
3999 unsigned long *fs_pages_to_unuse)
853ac43a
MM
4000{
4001 return 0;
4002}
4003
d7c9e99a 4004int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
3f96b79a
HD
4005{
4006 return 0;
4007}
4008
24513264
HD
4009void shmem_unlock_mapping(struct address_space *mapping)
4010{
4011}
4012
c01d5b30
HD
4013#ifdef CONFIG_MMU
4014unsigned long shmem_get_unmapped_area(struct file *file,
4015 unsigned long addr, unsigned long len,
4016 unsigned long pgoff, unsigned long flags)
4017{
4018 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4019}
4020#endif
4021
41ffe5d5 4022void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4023{
41ffe5d5 4024 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4025}
4026EXPORT_SYMBOL_GPL(shmem_truncate_range);
4027
0b0a0806
HD
4028#define shmem_vm_ops generic_file_vm_ops
4029#define shmem_file_operations ramfs_file_operations
454abafe 4030#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4031#define shmem_acct_size(flags, size) 0
4032#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4033
4034#endif /* CONFIG_SHMEM */
4035
4036/* common code */
1da177e4 4037
703321b6 4038static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4039 unsigned long flags, unsigned int i_flags)
1da177e4 4040{
1da177e4 4041 struct inode *inode;
93dec2da 4042 struct file *res;
1da177e4 4043
703321b6
MA
4044 if (IS_ERR(mnt))
4045 return ERR_CAST(mnt);
1da177e4 4046
285b2c4f 4047 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4048 return ERR_PTR(-EINVAL);
4049
4050 if (shmem_acct_size(flags, size))
4051 return ERR_PTR(-ENOMEM);
4052
93dec2da
AV
4053 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4054 flags);
dac2d1f6
AV
4055 if (unlikely(!inode)) {
4056 shmem_unacct_size(flags, size);
4057 return ERR_PTR(-ENOSPC);
4058 }
c7277090 4059 inode->i_flags |= i_flags;
1da177e4 4060 inode->i_size = size;
6d6b77f1 4061 clear_nlink(inode); /* It is unlinked */
26567cdb 4062 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4063 if (!IS_ERR(res))
4064 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4065 &shmem_file_operations);
26567cdb 4066 if (IS_ERR(res))
93dec2da 4067 iput(inode);
6b4d0b27 4068 return res;
1da177e4 4069}
c7277090
EP
4070
4071/**
4072 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4073 * kernel internal. There will be NO LSM permission checks against the
4074 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4075 * higher layer. The users are the big_key and shm implementations. LSM
4076 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4077 * @name: name for dentry (to be seen in /proc/<pid>/maps
4078 * @size: size to be set for the file
4079 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4080 */
4081struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4082{
703321b6 4083 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4084}
4085
4086/**
4087 * shmem_file_setup - get an unlinked file living in tmpfs
4088 * @name: name for dentry (to be seen in /proc/<pid>/maps
4089 * @size: size to be set for the file
4090 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4091 */
4092struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4093{
703321b6 4094 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4095}
395e0ddc 4096EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4097
703321b6
MA
4098/**
4099 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4100 * @mnt: the tmpfs mount where the file will be created
4101 * @name: name for dentry (to be seen in /proc/<pid>/maps
4102 * @size: size to be set for the file
4103 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4104 */
4105struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4106 loff_t size, unsigned long flags)
4107{
4108 return __shmem_file_setup(mnt, name, size, flags, 0);
4109}
4110EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4111
46711810 4112/**
1da177e4 4113 * shmem_zero_setup - setup a shared anonymous mapping
45e55300 4114 * @vma: the vma to be mmapped is prepared by do_mmap
1da177e4
LT
4115 */
4116int shmem_zero_setup(struct vm_area_struct *vma)
4117{
4118 struct file *file;
4119 loff_t size = vma->vm_end - vma->vm_start;
4120
66fc1303 4121 /*
c1e8d7c6 4122 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4123 * between XFS directory reading and selinux: since this file is only
4124 * accessible to the user through its mapping, use S_PRIVATE flag to
4125 * bypass file security, in the same way as shmem_kernel_file_setup().
4126 */
703321b6 4127 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4128 if (IS_ERR(file))
4129 return PTR_ERR(file);
4130
4131 if (vma->vm_file)
4132 fput(vma->vm_file);
4133 vma->vm_file = file;
4134 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4135
396bcc52 4136 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4137 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4138 (vma->vm_end & HPAGE_PMD_MASK)) {
4139 khugepaged_enter(vma, vma->vm_flags);
4140 }
4141
1da177e4
LT
4142 return 0;
4143}
d9d90e5e
HD
4144
4145/**
4146 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4147 * @mapping: the page's address_space
4148 * @index: the page index
4149 * @gfp: the page allocator flags to use if allocating
4150 *
4151 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4152 * with any new page allocations done using the specified allocation flags.
4153 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4154 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4155 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4156 *
68da9f05
HD
4157 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4158 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4159 */
4160struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4161 pgoff_t index, gfp_t gfp)
4162{
68da9f05
HD
4163#ifdef CONFIG_SHMEM
4164 struct inode *inode = mapping->host;
9276aad6 4165 struct page *page;
68da9f05
HD
4166 int error;
4167
30e6a51d 4168 BUG_ON(!shmem_mapping(mapping));
9e18eb29 4169 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4170 gfp, NULL, NULL, NULL);
68da9f05
HD
4171 if (error)
4172 page = ERR_PTR(error);
4173 else
4174 unlock_page(page);
4175 return page;
4176#else
4177 /*
4178 * The tiny !SHMEM case uses ramfs without swap
4179 */
d9d90e5e 4180 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4181#endif
d9d90e5e
HD
4182}
4183EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 2.174131 seconds and 4 git commands to generate.