]>
Commit | Line | Data |
---|---|---|
043405e1 CO |
1 | /* |
2 | * Kernel-based Virtual Machine driver for Linux | |
3 | * | |
4 | * derived from drivers/kvm/kvm_main.c | |
5 | * | |
6 | * Copyright (C) 2006 Qumranet, Inc. | |
4d5c5d0f BAY |
7 | * Copyright (C) 2008 Qumranet, Inc. |
8 | * Copyright IBM Corporation, 2008 | |
9611c187 | 9 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
043405e1 CO |
10 | * |
11 | * Authors: | |
12 | * Avi Kivity <[email protected]> | |
13 | * Yaniv Kamay <[email protected]> | |
4d5c5d0f BAY |
14 | * Amit Shah <[email protected]> |
15 | * Ben-Ami Yassour <[email protected]> | |
043405e1 CO |
16 | * |
17 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
18 | * the COPYING file in the top-level directory. | |
19 | * | |
20 | */ | |
21 | ||
edf88417 | 22 | #include <linux/kvm_host.h> |
313a3dc7 | 23 | #include "irq.h" |
1d737c8a | 24 | #include "mmu.h" |
7837699f | 25 | #include "i8254.h" |
37817f29 | 26 | #include "tss.h" |
5fdbf976 | 27 | #include "kvm_cache_regs.h" |
26eef70c | 28 | #include "x86.h" |
00b27a3e | 29 | #include "cpuid.h" |
313a3dc7 | 30 | |
18068523 | 31 | #include <linux/clocksource.h> |
4d5c5d0f | 32 | #include <linux/interrupt.h> |
313a3dc7 CO |
33 | #include <linux/kvm.h> |
34 | #include <linux/fs.h> | |
35 | #include <linux/vmalloc.h> | |
5fb76f9b | 36 | #include <linux/module.h> |
0de10343 | 37 | #include <linux/mman.h> |
2bacc55c | 38 | #include <linux/highmem.h> |
19de40a8 | 39 | #include <linux/iommu.h> |
62c476c7 | 40 | #include <linux/intel-iommu.h> |
c8076604 | 41 | #include <linux/cpufreq.h> |
18863bdd | 42 | #include <linux/user-return-notifier.h> |
a983fb23 | 43 | #include <linux/srcu.h> |
5a0e3ad6 | 44 | #include <linux/slab.h> |
ff9d07a0 | 45 | #include <linux/perf_event.h> |
7bee342a | 46 | #include <linux/uaccess.h> |
af585b92 | 47 | #include <linux/hash.h> |
a1b60c1c | 48 | #include <linux/pci.h> |
16e8d74d MT |
49 | #include <linux/timekeeper_internal.h> |
50 | #include <linux/pvclock_gtod.h> | |
aec51dc4 | 51 | #include <trace/events/kvm.h> |
2ed152af | 52 | |
229456fc MT |
53 | #define CREATE_TRACE_POINTS |
54 | #include "trace.h" | |
043405e1 | 55 | |
24f1e32c | 56 | #include <asm/debugreg.h> |
d825ed0a | 57 | #include <asm/msr.h> |
a5f61300 | 58 | #include <asm/desc.h> |
0bed3b56 | 59 | #include <asm/mtrr.h> |
890ca9ae | 60 | #include <asm/mce.h> |
7cf30855 | 61 | #include <asm/i387.h> |
1361b83a | 62 | #include <asm/fpu-internal.h> /* Ugh! */ |
98918833 | 63 | #include <asm/xcr.h> |
1d5f066e | 64 | #include <asm/pvclock.h> |
217fc9cf | 65 | #include <asm/div64.h> |
043405e1 | 66 | |
313a3dc7 | 67 | #define MAX_IO_MSRS 256 |
890ca9ae | 68 | #define KVM_MAX_MCE_BANKS 32 |
5854dbca | 69 | #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) |
890ca9ae | 70 | |
0f65dd70 AK |
71 | #define emul_to_vcpu(ctxt) \ |
72 | container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) | |
73 | ||
50a37eb4 JR |
74 | /* EFER defaults: |
75 | * - enable syscall per default because its emulated by KVM | |
76 | * - enable LME and LMA per default on 64 bit KVM | |
77 | */ | |
78 | #ifdef CONFIG_X86_64 | |
1260edbe LJ |
79 | static |
80 | u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); | |
50a37eb4 | 81 | #else |
1260edbe | 82 | static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); |
50a37eb4 | 83 | #endif |
313a3dc7 | 84 | |
ba1389b7 AK |
85 | #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM |
86 | #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU | |
417bc304 | 87 | |
cb142eb7 | 88 | static void update_cr8_intercept(struct kvm_vcpu *vcpu); |
7460fb4a | 89 | static void process_nmi(struct kvm_vcpu *vcpu); |
674eea0f | 90 | |
97896d04 | 91 | struct kvm_x86_ops *kvm_x86_ops; |
5fdbf976 | 92 | EXPORT_SYMBOL_GPL(kvm_x86_ops); |
97896d04 | 93 | |
476bc001 RR |
94 | static bool ignore_msrs = 0; |
95 | module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); | |
ed85c068 | 96 | |
92a1f12d JR |
97 | bool kvm_has_tsc_control; |
98 | EXPORT_SYMBOL_GPL(kvm_has_tsc_control); | |
99 | u32 kvm_max_guest_tsc_khz; | |
100 | EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); | |
101 | ||
cc578287 ZA |
102 | /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ |
103 | static u32 tsc_tolerance_ppm = 250; | |
104 | module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); | |
105 | ||
18863bdd AK |
106 | #define KVM_NR_SHARED_MSRS 16 |
107 | ||
108 | struct kvm_shared_msrs_global { | |
109 | int nr; | |
2bf78fa7 | 110 | u32 msrs[KVM_NR_SHARED_MSRS]; |
18863bdd AK |
111 | }; |
112 | ||
113 | struct kvm_shared_msrs { | |
114 | struct user_return_notifier urn; | |
115 | bool registered; | |
2bf78fa7 SY |
116 | struct kvm_shared_msr_values { |
117 | u64 host; | |
118 | u64 curr; | |
119 | } values[KVM_NR_SHARED_MSRS]; | |
18863bdd AK |
120 | }; |
121 | ||
122 | static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; | |
013f6a5d | 123 | static struct kvm_shared_msrs __percpu *shared_msrs; |
18863bdd | 124 | |
417bc304 | 125 | struct kvm_stats_debugfs_item debugfs_entries[] = { |
ba1389b7 AK |
126 | { "pf_fixed", VCPU_STAT(pf_fixed) }, |
127 | { "pf_guest", VCPU_STAT(pf_guest) }, | |
128 | { "tlb_flush", VCPU_STAT(tlb_flush) }, | |
129 | { "invlpg", VCPU_STAT(invlpg) }, | |
130 | { "exits", VCPU_STAT(exits) }, | |
131 | { "io_exits", VCPU_STAT(io_exits) }, | |
132 | { "mmio_exits", VCPU_STAT(mmio_exits) }, | |
133 | { "signal_exits", VCPU_STAT(signal_exits) }, | |
134 | { "irq_window", VCPU_STAT(irq_window_exits) }, | |
f08864b4 | 135 | { "nmi_window", VCPU_STAT(nmi_window_exits) }, |
ba1389b7 AK |
136 | { "halt_exits", VCPU_STAT(halt_exits) }, |
137 | { "halt_wakeup", VCPU_STAT(halt_wakeup) }, | |
f11c3a8d | 138 | { "hypercalls", VCPU_STAT(hypercalls) }, |
ba1389b7 AK |
139 | { "request_irq", VCPU_STAT(request_irq_exits) }, |
140 | { "irq_exits", VCPU_STAT(irq_exits) }, | |
141 | { "host_state_reload", VCPU_STAT(host_state_reload) }, | |
142 | { "efer_reload", VCPU_STAT(efer_reload) }, | |
143 | { "fpu_reload", VCPU_STAT(fpu_reload) }, | |
144 | { "insn_emulation", VCPU_STAT(insn_emulation) }, | |
145 | { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, | |
fa89a817 | 146 | { "irq_injections", VCPU_STAT(irq_injections) }, |
c4abb7c9 | 147 | { "nmi_injections", VCPU_STAT(nmi_injections) }, |
4cee5764 AK |
148 | { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, |
149 | { "mmu_pte_write", VM_STAT(mmu_pte_write) }, | |
150 | { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, | |
151 | { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, | |
152 | { "mmu_flooded", VM_STAT(mmu_flooded) }, | |
153 | { "mmu_recycled", VM_STAT(mmu_recycled) }, | |
dfc5aa00 | 154 | { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, |
4731d4c7 | 155 | { "mmu_unsync", VM_STAT(mmu_unsync) }, |
0f74a24c | 156 | { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, |
05da4558 | 157 | { "largepages", VM_STAT(lpages) }, |
417bc304 HB |
158 | { NULL } |
159 | }; | |
160 | ||
2acf923e DC |
161 | u64 __read_mostly host_xcr0; |
162 | ||
b6785def | 163 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); |
d6aa1000 | 164 | |
af585b92 GN |
165 | static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) |
166 | { | |
167 | int i; | |
168 | for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) | |
169 | vcpu->arch.apf.gfns[i] = ~0; | |
170 | } | |
171 | ||
18863bdd AK |
172 | static void kvm_on_user_return(struct user_return_notifier *urn) |
173 | { | |
174 | unsigned slot; | |
18863bdd AK |
175 | struct kvm_shared_msrs *locals |
176 | = container_of(urn, struct kvm_shared_msrs, urn); | |
2bf78fa7 | 177 | struct kvm_shared_msr_values *values; |
18863bdd AK |
178 | |
179 | for (slot = 0; slot < shared_msrs_global.nr; ++slot) { | |
2bf78fa7 SY |
180 | values = &locals->values[slot]; |
181 | if (values->host != values->curr) { | |
182 | wrmsrl(shared_msrs_global.msrs[slot], values->host); | |
183 | values->curr = values->host; | |
18863bdd AK |
184 | } |
185 | } | |
186 | locals->registered = false; | |
187 | user_return_notifier_unregister(urn); | |
188 | } | |
189 | ||
2bf78fa7 | 190 | static void shared_msr_update(unsigned slot, u32 msr) |
18863bdd | 191 | { |
18863bdd | 192 | u64 value; |
013f6a5d MT |
193 | unsigned int cpu = smp_processor_id(); |
194 | struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); | |
18863bdd | 195 | |
2bf78fa7 SY |
196 | /* only read, and nobody should modify it at this time, |
197 | * so don't need lock */ | |
198 | if (slot >= shared_msrs_global.nr) { | |
199 | printk(KERN_ERR "kvm: invalid MSR slot!"); | |
200 | return; | |
201 | } | |
202 | rdmsrl_safe(msr, &value); | |
203 | smsr->values[slot].host = value; | |
204 | smsr->values[slot].curr = value; | |
205 | } | |
206 | ||
207 | void kvm_define_shared_msr(unsigned slot, u32 msr) | |
208 | { | |
18863bdd AK |
209 | if (slot >= shared_msrs_global.nr) |
210 | shared_msrs_global.nr = slot + 1; | |
2bf78fa7 SY |
211 | shared_msrs_global.msrs[slot] = msr; |
212 | /* we need ensured the shared_msr_global have been updated */ | |
213 | smp_wmb(); | |
18863bdd AK |
214 | } |
215 | EXPORT_SYMBOL_GPL(kvm_define_shared_msr); | |
216 | ||
217 | static void kvm_shared_msr_cpu_online(void) | |
218 | { | |
219 | unsigned i; | |
18863bdd AK |
220 | |
221 | for (i = 0; i < shared_msrs_global.nr; ++i) | |
2bf78fa7 | 222 | shared_msr_update(i, shared_msrs_global.msrs[i]); |
18863bdd AK |
223 | } |
224 | ||
d5696725 | 225 | void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) |
18863bdd | 226 | { |
013f6a5d MT |
227 | unsigned int cpu = smp_processor_id(); |
228 | struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); | |
18863bdd | 229 | |
2bf78fa7 | 230 | if (((value ^ smsr->values[slot].curr) & mask) == 0) |
18863bdd | 231 | return; |
2bf78fa7 SY |
232 | smsr->values[slot].curr = value; |
233 | wrmsrl(shared_msrs_global.msrs[slot], value); | |
18863bdd AK |
234 | if (!smsr->registered) { |
235 | smsr->urn.on_user_return = kvm_on_user_return; | |
236 | user_return_notifier_register(&smsr->urn); | |
237 | smsr->registered = true; | |
238 | } | |
239 | } | |
240 | EXPORT_SYMBOL_GPL(kvm_set_shared_msr); | |
241 | ||
3548bab5 AK |
242 | static void drop_user_return_notifiers(void *ignore) |
243 | { | |
013f6a5d MT |
244 | unsigned int cpu = smp_processor_id(); |
245 | struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); | |
3548bab5 AK |
246 | |
247 | if (smsr->registered) | |
248 | kvm_on_user_return(&smsr->urn); | |
249 | } | |
250 | ||
6866b83e CO |
251 | u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) |
252 | { | |
8a5a87d9 | 253 | return vcpu->arch.apic_base; |
6866b83e CO |
254 | } |
255 | EXPORT_SYMBOL_GPL(kvm_get_apic_base); | |
256 | ||
257 | void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) | |
258 | { | |
259 | /* TODO: reserve bits check */ | |
8a5a87d9 | 260 | kvm_lapic_set_base(vcpu, data); |
6866b83e CO |
261 | } |
262 | EXPORT_SYMBOL_GPL(kvm_set_apic_base); | |
263 | ||
e3ba45b8 GL |
264 | asmlinkage void kvm_spurious_fault(void) |
265 | { | |
266 | /* Fault while not rebooting. We want the trace. */ | |
267 | BUG(); | |
268 | } | |
269 | EXPORT_SYMBOL_GPL(kvm_spurious_fault); | |
270 | ||
3fd28fce ED |
271 | #define EXCPT_BENIGN 0 |
272 | #define EXCPT_CONTRIBUTORY 1 | |
273 | #define EXCPT_PF 2 | |
274 | ||
275 | static int exception_class(int vector) | |
276 | { | |
277 | switch (vector) { | |
278 | case PF_VECTOR: | |
279 | return EXCPT_PF; | |
280 | case DE_VECTOR: | |
281 | case TS_VECTOR: | |
282 | case NP_VECTOR: | |
283 | case SS_VECTOR: | |
284 | case GP_VECTOR: | |
285 | return EXCPT_CONTRIBUTORY; | |
286 | default: | |
287 | break; | |
288 | } | |
289 | return EXCPT_BENIGN; | |
290 | } | |
291 | ||
292 | static void kvm_multiple_exception(struct kvm_vcpu *vcpu, | |
ce7ddec4 JR |
293 | unsigned nr, bool has_error, u32 error_code, |
294 | bool reinject) | |
3fd28fce ED |
295 | { |
296 | u32 prev_nr; | |
297 | int class1, class2; | |
298 | ||
3842d135 AK |
299 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
300 | ||
3fd28fce ED |
301 | if (!vcpu->arch.exception.pending) { |
302 | queue: | |
303 | vcpu->arch.exception.pending = true; | |
304 | vcpu->arch.exception.has_error_code = has_error; | |
305 | vcpu->arch.exception.nr = nr; | |
306 | vcpu->arch.exception.error_code = error_code; | |
3f0fd292 | 307 | vcpu->arch.exception.reinject = reinject; |
3fd28fce ED |
308 | return; |
309 | } | |
310 | ||
311 | /* to check exception */ | |
312 | prev_nr = vcpu->arch.exception.nr; | |
313 | if (prev_nr == DF_VECTOR) { | |
314 | /* triple fault -> shutdown */ | |
a8eeb04a | 315 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
3fd28fce ED |
316 | return; |
317 | } | |
318 | class1 = exception_class(prev_nr); | |
319 | class2 = exception_class(nr); | |
320 | if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) | |
321 | || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { | |
322 | /* generate double fault per SDM Table 5-5 */ | |
323 | vcpu->arch.exception.pending = true; | |
324 | vcpu->arch.exception.has_error_code = true; | |
325 | vcpu->arch.exception.nr = DF_VECTOR; | |
326 | vcpu->arch.exception.error_code = 0; | |
327 | } else | |
328 | /* replace previous exception with a new one in a hope | |
329 | that instruction re-execution will regenerate lost | |
330 | exception */ | |
331 | goto queue; | |
332 | } | |
333 | ||
298101da AK |
334 | void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
335 | { | |
ce7ddec4 | 336 | kvm_multiple_exception(vcpu, nr, false, 0, false); |
298101da AK |
337 | } |
338 | EXPORT_SYMBOL_GPL(kvm_queue_exception); | |
339 | ||
ce7ddec4 JR |
340 | void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
341 | { | |
342 | kvm_multiple_exception(vcpu, nr, false, 0, true); | |
343 | } | |
344 | EXPORT_SYMBOL_GPL(kvm_requeue_exception); | |
345 | ||
db8fcefa | 346 | void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) |
c3c91fee | 347 | { |
db8fcefa AP |
348 | if (err) |
349 | kvm_inject_gp(vcpu, 0); | |
350 | else | |
351 | kvm_x86_ops->skip_emulated_instruction(vcpu); | |
352 | } | |
353 | EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); | |
8df25a32 | 354 | |
6389ee94 | 355 | void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
c3c91fee AK |
356 | { |
357 | ++vcpu->stat.pf_guest; | |
6389ee94 AK |
358 | vcpu->arch.cr2 = fault->address; |
359 | kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); | |
c3c91fee | 360 | } |
27d6c865 | 361 | EXPORT_SYMBOL_GPL(kvm_inject_page_fault); |
c3c91fee | 362 | |
6389ee94 | 363 | void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
d4f8cf66 | 364 | { |
6389ee94 AK |
365 | if (mmu_is_nested(vcpu) && !fault->nested_page_fault) |
366 | vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); | |
d4f8cf66 | 367 | else |
6389ee94 | 368 | vcpu->arch.mmu.inject_page_fault(vcpu, fault); |
d4f8cf66 JR |
369 | } |
370 | ||
3419ffc8 SY |
371 | void kvm_inject_nmi(struct kvm_vcpu *vcpu) |
372 | { | |
7460fb4a AK |
373 | atomic_inc(&vcpu->arch.nmi_queued); |
374 | kvm_make_request(KVM_REQ_NMI, vcpu); | |
3419ffc8 SY |
375 | } |
376 | EXPORT_SYMBOL_GPL(kvm_inject_nmi); | |
377 | ||
298101da AK |
378 | void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
379 | { | |
ce7ddec4 | 380 | kvm_multiple_exception(vcpu, nr, true, error_code, false); |
298101da AK |
381 | } |
382 | EXPORT_SYMBOL_GPL(kvm_queue_exception_e); | |
383 | ||
ce7ddec4 JR |
384 | void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
385 | { | |
386 | kvm_multiple_exception(vcpu, nr, true, error_code, true); | |
387 | } | |
388 | EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); | |
389 | ||
0a79b009 AK |
390 | /* |
391 | * Checks if cpl <= required_cpl; if true, return true. Otherwise queue | |
392 | * a #GP and return false. | |
393 | */ | |
394 | bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) | |
298101da | 395 | { |
0a79b009 AK |
396 | if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) |
397 | return true; | |
398 | kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | |
399 | return false; | |
298101da | 400 | } |
0a79b009 | 401 | EXPORT_SYMBOL_GPL(kvm_require_cpl); |
298101da | 402 | |
ec92fe44 JR |
403 | /* |
404 | * This function will be used to read from the physical memory of the currently | |
405 | * running guest. The difference to kvm_read_guest_page is that this function | |
406 | * can read from guest physical or from the guest's guest physical memory. | |
407 | */ | |
408 | int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | |
409 | gfn_t ngfn, void *data, int offset, int len, | |
410 | u32 access) | |
411 | { | |
412 | gfn_t real_gfn; | |
413 | gpa_t ngpa; | |
414 | ||
415 | ngpa = gfn_to_gpa(ngfn); | |
416 | real_gfn = mmu->translate_gpa(vcpu, ngpa, access); | |
417 | if (real_gfn == UNMAPPED_GVA) | |
418 | return -EFAULT; | |
419 | ||
420 | real_gfn = gpa_to_gfn(real_gfn); | |
421 | ||
422 | return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); | |
423 | } | |
424 | EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); | |
425 | ||
3d06b8bf JR |
426 | int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, |
427 | void *data, int offset, int len, u32 access) | |
428 | { | |
429 | return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, | |
430 | data, offset, len, access); | |
431 | } | |
432 | ||
a03490ed CO |
433 | /* |
434 | * Load the pae pdptrs. Return true is they are all valid. | |
435 | */ | |
ff03a073 | 436 | int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) |
a03490ed CO |
437 | { |
438 | gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; | |
439 | unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; | |
440 | int i; | |
441 | int ret; | |
ff03a073 | 442 | u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; |
a03490ed | 443 | |
ff03a073 JR |
444 | ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, |
445 | offset * sizeof(u64), sizeof(pdpte), | |
446 | PFERR_USER_MASK|PFERR_WRITE_MASK); | |
a03490ed CO |
447 | if (ret < 0) { |
448 | ret = 0; | |
449 | goto out; | |
450 | } | |
451 | for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { | |
43a3795a | 452 | if (is_present_gpte(pdpte[i]) && |
20c466b5 | 453 | (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { |
a03490ed CO |
454 | ret = 0; |
455 | goto out; | |
456 | } | |
457 | } | |
458 | ret = 1; | |
459 | ||
ff03a073 | 460 | memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); |
6de4f3ad AK |
461 | __set_bit(VCPU_EXREG_PDPTR, |
462 | (unsigned long *)&vcpu->arch.regs_avail); | |
463 | __set_bit(VCPU_EXREG_PDPTR, | |
464 | (unsigned long *)&vcpu->arch.regs_dirty); | |
a03490ed | 465 | out: |
a03490ed CO |
466 | |
467 | return ret; | |
468 | } | |
cc4b6871 | 469 | EXPORT_SYMBOL_GPL(load_pdptrs); |
a03490ed | 470 | |
d835dfec AK |
471 | static bool pdptrs_changed(struct kvm_vcpu *vcpu) |
472 | { | |
ff03a073 | 473 | u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; |
d835dfec | 474 | bool changed = true; |
3d06b8bf JR |
475 | int offset; |
476 | gfn_t gfn; | |
d835dfec AK |
477 | int r; |
478 | ||
479 | if (is_long_mode(vcpu) || !is_pae(vcpu)) | |
480 | return false; | |
481 | ||
6de4f3ad AK |
482 | if (!test_bit(VCPU_EXREG_PDPTR, |
483 | (unsigned long *)&vcpu->arch.regs_avail)) | |
484 | return true; | |
485 | ||
9f8fe504 AK |
486 | gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; |
487 | offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); | |
3d06b8bf JR |
488 | r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), |
489 | PFERR_USER_MASK | PFERR_WRITE_MASK); | |
d835dfec AK |
490 | if (r < 0) |
491 | goto out; | |
ff03a073 | 492 | changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; |
d835dfec | 493 | out: |
d835dfec AK |
494 | |
495 | return changed; | |
496 | } | |
497 | ||
49a9b07e | 498 | int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
a03490ed | 499 | { |
aad82703 SY |
500 | unsigned long old_cr0 = kvm_read_cr0(vcpu); |
501 | unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | | |
502 | X86_CR0_CD | X86_CR0_NW; | |
503 | ||
f9a48e6a AK |
504 | cr0 |= X86_CR0_ET; |
505 | ||
ab344828 | 506 | #ifdef CONFIG_X86_64 |
0f12244f GN |
507 | if (cr0 & 0xffffffff00000000UL) |
508 | return 1; | |
ab344828 GN |
509 | #endif |
510 | ||
511 | cr0 &= ~CR0_RESERVED_BITS; | |
a03490ed | 512 | |
0f12244f GN |
513 | if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) |
514 | return 1; | |
a03490ed | 515 | |
0f12244f GN |
516 | if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) |
517 | return 1; | |
a03490ed CO |
518 | |
519 | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { | |
520 | #ifdef CONFIG_X86_64 | |
f6801dff | 521 | if ((vcpu->arch.efer & EFER_LME)) { |
a03490ed CO |
522 | int cs_db, cs_l; |
523 | ||
0f12244f GN |
524 | if (!is_pae(vcpu)) |
525 | return 1; | |
a03490ed | 526 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
0f12244f GN |
527 | if (cs_l) |
528 | return 1; | |
a03490ed CO |
529 | } else |
530 | #endif | |
ff03a073 | 531 | if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
9f8fe504 | 532 | kvm_read_cr3(vcpu))) |
0f12244f | 533 | return 1; |
a03490ed CO |
534 | } |
535 | ||
ad756a16 MJ |
536 | if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) |
537 | return 1; | |
538 | ||
a03490ed | 539 | kvm_x86_ops->set_cr0(vcpu, cr0); |
a03490ed | 540 | |
d170c419 | 541 | if ((cr0 ^ old_cr0) & X86_CR0_PG) { |
e5f3f027 | 542 | kvm_clear_async_pf_completion_queue(vcpu); |
d170c419 LJ |
543 | kvm_async_pf_hash_reset(vcpu); |
544 | } | |
e5f3f027 | 545 | |
aad82703 SY |
546 | if ((cr0 ^ old_cr0) & update_bits) |
547 | kvm_mmu_reset_context(vcpu); | |
0f12244f GN |
548 | return 0; |
549 | } | |
2d3ad1f4 | 550 | EXPORT_SYMBOL_GPL(kvm_set_cr0); |
a03490ed | 551 | |
2d3ad1f4 | 552 | void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) |
a03490ed | 553 | { |
49a9b07e | 554 | (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); |
a03490ed | 555 | } |
2d3ad1f4 | 556 | EXPORT_SYMBOL_GPL(kvm_lmsw); |
a03490ed | 557 | |
2acf923e DC |
558 | int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) |
559 | { | |
560 | u64 xcr0; | |
561 | ||
562 | /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ | |
563 | if (index != XCR_XFEATURE_ENABLED_MASK) | |
564 | return 1; | |
565 | xcr0 = xcr; | |
566 | if (kvm_x86_ops->get_cpl(vcpu) != 0) | |
567 | return 1; | |
568 | if (!(xcr0 & XSTATE_FP)) | |
569 | return 1; | |
570 | if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) | |
571 | return 1; | |
572 | if (xcr0 & ~host_xcr0) | |
573 | return 1; | |
574 | vcpu->arch.xcr0 = xcr0; | |
575 | vcpu->guest_xcr0_loaded = 0; | |
576 | return 0; | |
577 | } | |
578 | ||
579 | int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) | |
580 | { | |
581 | if (__kvm_set_xcr(vcpu, index, xcr)) { | |
582 | kvm_inject_gp(vcpu, 0); | |
583 | return 1; | |
584 | } | |
585 | return 0; | |
586 | } | |
587 | EXPORT_SYMBOL_GPL(kvm_set_xcr); | |
588 | ||
a83b29c6 | 589 | int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
a03490ed | 590 | { |
fc78f519 | 591 | unsigned long old_cr4 = kvm_read_cr4(vcpu); |
c68b734f YW |
592 | unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | |
593 | X86_CR4_PAE | X86_CR4_SMEP; | |
0f12244f GN |
594 | if (cr4 & CR4_RESERVED_BITS) |
595 | return 1; | |
a03490ed | 596 | |
2acf923e DC |
597 | if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) |
598 | return 1; | |
599 | ||
c68b734f YW |
600 | if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) |
601 | return 1; | |
602 | ||
74dc2b4f YW |
603 | if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) |
604 | return 1; | |
605 | ||
a03490ed | 606 | if (is_long_mode(vcpu)) { |
0f12244f GN |
607 | if (!(cr4 & X86_CR4_PAE)) |
608 | return 1; | |
a2edf57f AK |
609 | } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) |
610 | && ((cr4 ^ old_cr4) & pdptr_bits) | |
9f8fe504 AK |
611 | && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
612 | kvm_read_cr3(vcpu))) | |
0f12244f GN |
613 | return 1; |
614 | ||
ad756a16 MJ |
615 | if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { |
616 | if (!guest_cpuid_has_pcid(vcpu)) | |
617 | return 1; | |
618 | ||
619 | /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ | |
620 | if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) | |
621 | return 1; | |
622 | } | |
623 | ||
5e1746d6 | 624 | if (kvm_x86_ops->set_cr4(vcpu, cr4)) |
0f12244f | 625 | return 1; |
a03490ed | 626 | |
ad756a16 MJ |
627 | if (((cr4 ^ old_cr4) & pdptr_bits) || |
628 | (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) | |
aad82703 | 629 | kvm_mmu_reset_context(vcpu); |
0f12244f | 630 | |
2acf923e | 631 | if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) |
00b27a3e | 632 | kvm_update_cpuid(vcpu); |
2acf923e | 633 | |
0f12244f GN |
634 | return 0; |
635 | } | |
2d3ad1f4 | 636 | EXPORT_SYMBOL_GPL(kvm_set_cr4); |
a03490ed | 637 | |
2390218b | 638 | int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
a03490ed | 639 | { |
9f8fe504 | 640 | if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { |
0ba73cda | 641 | kvm_mmu_sync_roots(vcpu); |
d835dfec | 642 | kvm_mmu_flush_tlb(vcpu); |
0f12244f | 643 | return 0; |
d835dfec AK |
644 | } |
645 | ||
a03490ed | 646 | if (is_long_mode(vcpu)) { |
471842ec | 647 | if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) { |
ad756a16 MJ |
648 | if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) |
649 | return 1; | |
650 | } else | |
651 | if (cr3 & CR3_L_MODE_RESERVED_BITS) | |
652 | return 1; | |
a03490ed CO |
653 | } else { |
654 | if (is_pae(vcpu)) { | |
0f12244f GN |
655 | if (cr3 & CR3_PAE_RESERVED_BITS) |
656 | return 1; | |
ff03a073 JR |
657 | if (is_paging(vcpu) && |
658 | !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) | |
0f12244f | 659 | return 1; |
a03490ed CO |
660 | } |
661 | /* | |
662 | * We don't check reserved bits in nonpae mode, because | |
663 | * this isn't enforced, and VMware depends on this. | |
664 | */ | |
665 | } | |
666 | ||
a03490ed CO |
667 | /* |
668 | * Does the new cr3 value map to physical memory? (Note, we | |
669 | * catch an invalid cr3 even in real-mode, because it would | |
670 | * cause trouble later on when we turn on paging anyway.) | |
671 | * | |
672 | * A real CPU would silently accept an invalid cr3 and would | |
673 | * attempt to use it - with largely undefined (and often hard | |
674 | * to debug) behavior on the guest side. | |
675 | */ | |
676 | if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) | |
0f12244f GN |
677 | return 1; |
678 | vcpu->arch.cr3 = cr3; | |
aff48baa | 679 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
0f12244f GN |
680 | vcpu->arch.mmu.new_cr3(vcpu); |
681 | return 0; | |
682 | } | |
2d3ad1f4 | 683 | EXPORT_SYMBOL_GPL(kvm_set_cr3); |
a03490ed | 684 | |
eea1cff9 | 685 | int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) |
a03490ed | 686 | { |
0f12244f GN |
687 | if (cr8 & CR8_RESERVED_BITS) |
688 | return 1; | |
a03490ed CO |
689 | if (irqchip_in_kernel(vcpu->kvm)) |
690 | kvm_lapic_set_tpr(vcpu, cr8); | |
691 | else | |
ad312c7c | 692 | vcpu->arch.cr8 = cr8; |
0f12244f GN |
693 | return 0; |
694 | } | |
2d3ad1f4 | 695 | EXPORT_SYMBOL_GPL(kvm_set_cr8); |
a03490ed | 696 | |
2d3ad1f4 | 697 | unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) |
a03490ed CO |
698 | { |
699 | if (irqchip_in_kernel(vcpu->kvm)) | |
700 | return kvm_lapic_get_cr8(vcpu); | |
701 | else | |
ad312c7c | 702 | return vcpu->arch.cr8; |
a03490ed | 703 | } |
2d3ad1f4 | 704 | EXPORT_SYMBOL_GPL(kvm_get_cr8); |
a03490ed | 705 | |
c8639010 JK |
706 | static void kvm_update_dr7(struct kvm_vcpu *vcpu) |
707 | { | |
708 | unsigned long dr7; | |
709 | ||
710 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) | |
711 | dr7 = vcpu->arch.guest_debug_dr7; | |
712 | else | |
713 | dr7 = vcpu->arch.dr7; | |
714 | kvm_x86_ops->set_dr7(vcpu, dr7); | |
715 | vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK); | |
716 | } | |
717 | ||
338dbc97 | 718 | static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) |
020df079 GN |
719 | { |
720 | switch (dr) { | |
721 | case 0 ... 3: | |
722 | vcpu->arch.db[dr] = val; | |
723 | if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) | |
724 | vcpu->arch.eff_db[dr] = val; | |
725 | break; | |
726 | case 4: | |
338dbc97 GN |
727 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
728 | return 1; /* #UD */ | |
020df079 GN |
729 | /* fall through */ |
730 | case 6: | |
338dbc97 GN |
731 | if (val & 0xffffffff00000000ULL) |
732 | return -1; /* #GP */ | |
020df079 GN |
733 | vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; |
734 | break; | |
735 | case 5: | |
338dbc97 GN |
736 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
737 | return 1; /* #UD */ | |
020df079 GN |
738 | /* fall through */ |
739 | default: /* 7 */ | |
338dbc97 GN |
740 | if (val & 0xffffffff00000000ULL) |
741 | return -1; /* #GP */ | |
020df079 | 742 | vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; |
c8639010 | 743 | kvm_update_dr7(vcpu); |
020df079 GN |
744 | break; |
745 | } | |
746 | ||
747 | return 0; | |
748 | } | |
338dbc97 GN |
749 | |
750 | int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) | |
751 | { | |
752 | int res; | |
753 | ||
754 | res = __kvm_set_dr(vcpu, dr, val); | |
755 | if (res > 0) | |
756 | kvm_queue_exception(vcpu, UD_VECTOR); | |
757 | else if (res < 0) | |
758 | kvm_inject_gp(vcpu, 0); | |
759 | ||
760 | return res; | |
761 | } | |
020df079 GN |
762 | EXPORT_SYMBOL_GPL(kvm_set_dr); |
763 | ||
338dbc97 | 764 | static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) |
020df079 GN |
765 | { |
766 | switch (dr) { | |
767 | case 0 ... 3: | |
768 | *val = vcpu->arch.db[dr]; | |
769 | break; | |
770 | case 4: | |
338dbc97 | 771 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
020df079 | 772 | return 1; |
020df079 GN |
773 | /* fall through */ |
774 | case 6: | |
775 | *val = vcpu->arch.dr6; | |
776 | break; | |
777 | case 5: | |
338dbc97 | 778 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
020df079 | 779 | return 1; |
020df079 GN |
780 | /* fall through */ |
781 | default: /* 7 */ | |
782 | *val = vcpu->arch.dr7; | |
783 | break; | |
784 | } | |
785 | ||
786 | return 0; | |
787 | } | |
338dbc97 GN |
788 | |
789 | int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) | |
790 | { | |
791 | if (_kvm_get_dr(vcpu, dr, val)) { | |
792 | kvm_queue_exception(vcpu, UD_VECTOR); | |
793 | return 1; | |
794 | } | |
795 | return 0; | |
796 | } | |
020df079 GN |
797 | EXPORT_SYMBOL_GPL(kvm_get_dr); |
798 | ||
022cd0e8 AK |
799 | bool kvm_rdpmc(struct kvm_vcpu *vcpu) |
800 | { | |
801 | u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
802 | u64 data; | |
803 | int err; | |
804 | ||
805 | err = kvm_pmu_read_pmc(vcpu, ecx, &data); | |
806 | if (err) | |
807 | return err; | |
808 | kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); | |
809 | kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); | |
810 | return err; | |
811 | } | |
812 | EXPORT_SYMBOL_GPL(kvm_rdpmc); | |
813 | ||
043405e1 CO |
814 | /* |
815 | * List of msr numbers which we expose to userspace through KVM_GET_MSRS | |
816 | * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. | |
817 | * | |
818 | * This list is modified at module load time to reflect the | |
e3267cbb GC |
819 | * capabilities of the host cpu. This capabilities test skips MSRs that are |
820 | * kvm-specific. Those are put in the beginning of the list. | |
043405e1 | 821 | */ |
e3267cbb | 822 | |
439793d4 | 823 | #define KVM_SAVE_MSRS_BEGIN 10 |
043405e1 | 824 | static u32 msrs_to_save[] = { |
e3267cbb | 825 | MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, |
11c6bffa | 826 | MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, |
55cd8e5a | 827 | HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, |
c9aaa895 | 828 | HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, |
ae7a2a3f | 829 | MSR_KVM_PV_EOI_EN, |
043405e1 | 830 | MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, |
8c06585d | 831 | MSR_STAR, |
043405e1 CO |
832 | #ifdef CONFIG_X86_64 |
833 | MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, | |
834 | #endif | |
e90aa41e | 835 | MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA |
043405e1 CO |
836 | }; |
837 | ||
838 | static unsigned num_msrs_to_save; | |
839 | ||
f1d24831 | 840 | static const u32 emulated_msrs[] = { |
ba904635 | 841 | MSR_IA32_TSC_ADJUST, |
a3e06bbe | 842 | MSR_IA32_TSCDEADLINE, |
043405e1 | 843 | MSR_IA32_MISC_ENABLE, |
908e75f3 AK |
844 | MSR_IA32_MCG_STATUS, |
845 | MSR_IA32_MCG_CTL, | |
043405e1 CO |
846 | }; |
847 | ||
b69e8cae | 848 | static int set_efer(struct kvm_vcpu *vcpu, u64 efer) |
15c4a640 | 849 | { |
aad82703 SY |
850 | u64 old_efer = vcpu->arch.efer; |
851 | ||
b69e8cae RJ |
852 | if (efer & efer_reserved_bits) |
853 | return 1; | |
15c4a640 CO |
854 | |
855 | if (is_paging(vcpu) | |
b69e8cae RJ |
856 | && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) |
857 | return 1; | |
15c4a640 | 858 | |
1b2fd70c AG |
859 | if (efer & EFER_FFXSR) { |
860 | struct kvm_cpuid_entry2 *feat; | |
861 | ||
862 | feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); | |
b69e8cae RJ |
863 | if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) |
864 | return 1; | |
1b2fd70c AG |
865 | } |
866 | ||
d8017474 AG |
867 | if (efer & EFER_SVME) { |
868 | struct kvm_cpuid_entry2 *feat; | |
869 | ||
870 | feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); | |
b69e8cae RJ |
871 | if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) |
872 | return 1; | |
d8017474 AG |
873 | } |
874 | ||
15c4a640 | 875 | efer &= ~EFER_LMA; |
f6801dff | 876 | efer |= vcpu->arch.efer & EFER_LMA; |
15c4a640 | 877 | |
a3d204e2 SY |
878 | kvm_x86_ops->set_efer(vcpu, efer); |
879 | ||
aad82703 SY |
880 | /* Update reserved bits */ |
881 | if ((efer ^ old_efer) & EFER_NX) | |
882 | kvm_mmu_reset_context(vcpu); | |
883 | ||
b69e8cae | 884 | return 0; |
15c4a640 CO |
885 | } |
886 | ||
f2b4b7dd JR |
887 | void kvm_enable_efer_bits(u64 mask) |
888 | { | |
889 | efer_reserved_bits &= ~mask; | |
890 | } | |
891 | EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); | |
892 | ||
893 | ||
15c4a640 CO |
894 | /* |
895 | * Writes msr value into into the appropriate "register". | |
896 | * Returns 0 on success, non-0 otherwise. | |
897 | * Assumes vcpu_load() was already called. | |
898 | */ | |
8fe8ab46 | 899 | int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) |
15c4a640 | 900 | { |
8fe8ab46 | 901 | return kvm_x86_ops->set_msr(vcpu, msr); |
15c4a640 CO |
902 | } |
903 | ||
313a3dc7 CO |
904 | /* |
905 | * Adapt set_msr() to msr_io()'s calling convention | |
906 | */ | |
907 | static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) | |
908 | { | |
8fe8ab46 WA |
909 | struct msr_data msr; |
910 | ||
911 | msr.data = *data; | |
912 | msr.index = index; | |
913 | msr.host_initiated = true; | |
914 | return kvm_set_msr(vcpu, &msr); | |
313a3dc7 CO |
915 | } |
916 | ||
16e8d74d MT |
917 | #ifdef CONFIG_X86_64 |
918 | struct pvclock_gtod_data { | |
919 | seqcount_t seq; | |
920 | ||
921 | struct { /* extract of a clocksource struct */ | |
922 | int vclock_mode; | |
923 | cycle_t cycle_last; | |
924 | cycle_t mask; | |
925 | u32 mult; | |
926 | u32 shift; | |
927 | } clock; | |
928 | ||
929 | /* open coded 'struct timespec' */ | |
930 | u64 monotonic_time_snsec; | |
931 | time_t monotonic_time_sec; | |
932 | }; | |
933 | ||
934 | static struct pvclock_gtod_data pvclock_gtod_data; | |
935 | ||
936 | static void update_pvclock_gtod(struct timekeeper *tk) | |
937 | { | |
938 | struct pvclock_gtod_data *vdata = &pvclock_gtod_data; | |
939 | ||
940 | write_seqcount_begin(&vdata->seq); | |
941 | ||
942 | /* copy pvclock gtod data */ | |
943 | vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode; | |
944 | vdata->clock.cycle_last = tk->clock->cycle_last; | |
945 | vdata->clock.mask = tk->clock->mask; | |
946 | vdata->clock.mult = tk->mult; | |
947 | vdata->clock.shift = tk->shift; | |
948 | ||
949 | vdata->monotonic_time_sec = tk->xtime_sec | |
950 | + tk->wall_to_monotonic.tv_sec; | |
951 | vdata->monotonic_time_snsec = tk->xtime_nsec | |
952 | + (tk->wall_to_monotonic.tv_nsec | |
953 | << tk->shift); | |
954 | while (vdata->monotonic_time_snsec >= | |
955 | (((u64)NSEC_PER_SEC) << tk->shift)) { | |
956 | vdata->monotonic_time_snsec -= | |
957 | ((u64)NSEC_PER_SEC) << tk->shift; | |
958 | vdata->monotonic_time_sec++; | |
959 | } | |
960 | ||
961 | write_seqcount_end(&vdata->seq); | |
962 | } | |
963 | #endif | |
964 | ||
965 | ||
18068523 GOC |
966 | static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) |
967 | { | |
9ed3c444 AK |
968 | int version; |
969 | int r; | |
50d0a0f9 | 970 | struct pvclock_wall_clock wc; |
923de3cf | 971 | struct timespec boot; |
18068523 GOC |
972 | |
973 | if (!wall_clock) | |
974 | return; | |
975 | ||
9ed3c444 AK |
976 | r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); |
977 | if (r) | |
978 | return; | |
979 | ||
980 | if (version & 1) | |
981 | ++version; /* first time write, random junk */ | |
982 | ||
983 | ++version; | |
18068523 | 984 | |
18068523 GOC |
985 | kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); |
986 | ||
50d0a0f9 GH |
987 | /* |
988 | * The guest calculates current wall clock time by adding | |
34c238a1 | 989 | * system time (updated by kvm_guest_time_update below) to the |
50d0a0f9 GH |
990 | * wall clock specified here. guest system time equals host |
991 | * system time for us, thus we must fill in host boot time here. | |
992 | */ | |
923de3cf | 993 | getboottime(&boot); |
50d0a0f9 | 994 | |
4b648665 BR |
995 | if (kvm->arch.kvmclock_offset) { |
996 | struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); | |
997 | boot = timespec_sub(boot, ts); | |
998 | } | |
50d0a0f9 GH |
999 | wc.sec = boot.tv_sec; |
1000 | wc.nsec = boot.tv_nsec; | |
1001 | wc.version = version; | |
18068523 GOC |
1002 | |
1003 | kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); | |
1004 | ||
1005 | version++; | |
1006 | kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); | |
18068523 GOC |
1007 | } |
1008 | ||
50d0a0f9 GH |
1009 | static uint32_t div_frac(uint32_t dividend, uint32_t divisor) |
1010 | { | |
1011 | uint32_t quotient, remainder; | |
1012 | ||
1013 | /* Don't try to replace with do_div(), this one calculates | |
1014 | * "(dividend << 32) / divisor" */ | |
1015 | __asm__ ( "divl %4" | |
1016 | : "=a" (quotient), "=d" (remainder) | |
1017 | : "0" (0), "1" (dividend), "r" (divisor) ); | |
1018 | return quotient; | |
1019 | } | |
1020 | ||
5f4e3f88 ZA |
1021 | static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, |
1022 | s8 *pshift, u32 *pmultiplier) | |
50d0a0f9 | 1023 | { |
5f4e3f88 | 1024 | uint64_t scaled64; |
50d0a0f9 GH |
1025 | int32_t shift = 0; |
1026 | uint64_t tps64; | |
1027 | uint32_t tps32; | |
1028 | ||
5f4e3f88 ZA |
1029 | tps64 = base_khz * 1000LL; |
1030 | scaled64 = scaled_khz * 1000LL; | |
50933623 | 1031 | while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { |
50d0a0f9 GH |
1032 | tps64 >>= 1; |
1033 | shift--; | |
1034 | } | |
1035 | ||
1036 | tps32 = (uint32_t)tps64; | |
50933623 JK |
1037 | while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { |
1038 | if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) | |
5f4e3f88 ZA |
1039 | scaled64 >>= 1; |
1040 | else | |
1041 | tps32 <<= 1; | |
50d0a0f9 GH |
1042 | shift++; |
1043 | } | |
1044 | ||
5f4e3f88 ZA |
1045 | *pshift = shift; |
1046 | *pmultiplier = div_frac(scaled64, tps32); | |
50d0a0f9 | 1047 | |
5f4e3f88 ZA |
1048 | pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", |
1049 | __func__, base_khz, scaled_khz, shift, *pmultiplier); | |
50d0a0f9 GH |
1050 | } |
1051 | ||
759379dd ZA |
1052 | static inline u64 get_kernel_ns(void) |
1053 | { | |
1054 | struct timespec ts; | |
1055 | ||
1056 | WARN_ON(preemptible()); | |
1057 | ktime_get_ts(&ts); | |
1058 | monotonic_to_bootbased(&ts); | |
1059 | return timespec_to_ns(&ts); | |
50d0a0f9 GH |
1060 | } |
1061 | ||
d828199e | 1062 | #ifdef CONFIG_X86_64 |
16e8d74d | 1063 | static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); |
d828199e | 1064 | #endif |
16e8d74d | 1065 | |
c8076604 | 1066 | static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); |
c285545f | 1067 | unsigned long max_tsc_khz; |
c8076604 | 1068 | |
cc578287 | 1069 | static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) |
8cfdc000 | 1070 | { |
cc578287 ZA |
1071 | return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, |
1072 | vcpu->arch.virtual_tsc_shift); | |
8cfdc000 ZA |
1073 | } |
1074 | ||
cc578287 | 1075 | static u32 adjust_tsc_khz(u32 khz, s32 ppm) |
1e993611 | 1076 | { |
cc578287 ZA |
1077 | u64 v = (u64)khz * (1000000 + ppm); |
1078 | do_div(v, 1000000); | |
1079 | return v; | |
1e993611 JR |
1080 | } |
1081 | ||
cc578287 | 1082 | static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) |
759379dd | 1083 | { |
cc578287 ZA |
1084 | u32 thresh_lo, thresh_hi; |
1085 | int use_scaling = 0; | |
217fc9cf | 1086 | |
03ba32ca MT |
1087 | /* tsc_khz can be zero if TSC calibration fails */ |
1088 | if (this_tsc_khz == 0) | |
1089 | return; | |
1090 | ||
c285545f ZA |
1091 | /* Compute a scale to convert nanoseconds in TSC cycles */ |
1092 | kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, | |
cc578287 ZA |
1093 | &vcpu->arch.virtual_tsc_shift, |
1094 | &vcpu->arch.virtual_tsc_mult); | |
1095 | vcpu->arch.virtual_tsc_khz = this_tsc_khz; | |
1096 | ||
1097 | /* | |
1098 | * Compute the variation in TSC rate which is acceptable | |
1099 | * within the range of tolerance and decide if the | |
1100 | * rate being applied is within that bounds of the hardware | |
1101 | * rate. If so, no scaling or compensation need be done. | |
1102 | */ | |
1103 | thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); | |
1104 | thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); | |
1105 | if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { | |
1106 | pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); | |
1107 | use_scaling = 1; | |
1108 | } | |
1109 | kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); | |
c285545f ZA |
1110 | } |
1111 | ||
1112 | static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) | |
1113 | { | |
e26101b1 | 1114 | u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, |
cc578287 ZA |
1115 | vcpu->arch.virtual_tsc_mult, |
1116 | vcpu->arch.virtual_tsc_shift); | |
e26101b1 | 1117 | tsc += vcpu->arch.this_tsc_write; |
c285545f ZA |
1118 | return tsc; |
1119 | } | |
1120 | ||
b48aa97e MT |
1121 | void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) |
1122 | { | |
1123 | #ifdef CONFIG_X86_64 | |
1124 | bool vcpus_matched; | |
1125 | bool do_request = false; | |
1126 | struct kvm_arch *ka = &vcpu->kvm->arch; | |
1127 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
1128 | ||
1129 | vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == | |
1130 | atomic_read(&vcpu->kvm->online_vcpus)); | |
1131 | ||
1132 | if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) | |
1133 | if (!ka->use_master_clock) | |
1134 | do_request = 1; | |
1135 | ||
1136 | if (!vcpus_matched && ka->use_master_clock) | |
1137 | do_request = 1; | |
1138 | ||
1139 | if (do_request) | |
1140 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); | |
1141 | ||
1142 | trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, | |
1143 | atomic_read(&vcpu->kvm->online_vcpus), | |
1144 | ka->use_master_clock, gtod->clock.vclock_mode); | |
1145 | #endif | |
1146 | } | |
1147 | ||
ba904635 WA |
1148 | static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) |
1149 | { | |
1150 | u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); | |
1151 | vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; | |
1152 | } | |
1153 | ||
8fe8ab46 | 1154 | void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) |
99e3e30a ZA |
1155 | { |
1156 | struct kvm *kvm = vcpu->kvm; | |
f38e098f | 1157 | u64 offset, ns, elapsed; |
99e3e30a | 1158 | unsigned long flags; |
02626b6a | 1159 | s64 usdiff; |
b48aa97e | 1160 | bool matched; |
8fe8ab46 | 1161 | u64 data = msr->data; |
99e3e30a | 1162 | |
038f8c11 | 1163 | raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); |
857e4099 | 1164 | offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); |
759379dd | 1165 | ns = get_kernel_ns(); |
f38e098f | 1166 | elapsed = ns - kvm->arch.last_tsc_nsec; |
5d3cb0f6 | 1167 | |
03ba32ca MT |
1168 | if (vcpu->arch.virtual_tsc_khz) { |
1169 | /* n.b - signed multiplication and division required */ | |
1170 | usdiff = data - kvm->arch.last_tsc_write; | |
5d3cb0f6 | 1171 | #ifdef CONFIG_X86_64 |
03ba32ca | 1172 | usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; |
5d3cb0f6 | 1173 | #else |
03ba32ca MT |
1174 | /* do_div() only does unsigned */ |
1175 | asm("idivl %2; xor %%edx, %%edx" | |
1176 | : "=A"(usdiff) | |
1177 | : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz)); | |
5d3cb0f6 | 1178 | #endif |
03ba32ca MT |
1179 | do_div(elapsed, 1000); |
1180 | usdiff -= elapsed; | |
1181 | if (usdiff < 0) | |
1182 | usdiff = -usdiff; | |
1183 | } else | |
1184 | usdiff = USEC_PER_SEC; /* disable TSC match window below */ | |
f38e098f ZA |
1185 | |
1186 | /* | |
5d3cb0f6 ZA |
1187 | * Special case: TSC write with a small delta (1 second) of virtual |
1188 | * cycle time against real time is interpreted as an attempt to | |
1189 | * synchronize the CPU. | |
1190 | * | |
1191 | * For a reliable TSC, we can match TSC offsets, and for an unstable | |
1192 | * TSC, we add elapsed time in this computation. We could let the | |
1193 | * compensation code attempt to catch up if we fall behind, but | |
1194 | * it's better to try to match offsets from the beginning. | |
1195 | */ | |
02626b6a | 1196 | if (usdiff < USEC_PER_SEC && |
5d3cb0f6 | 1197 | vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { |
f38e098f | 1198 | if (!check_tsc_unstable()) { |
e26101b1 | 1199 | offset = kvm->arch.cur_tsc_offset; |
f38e098f ZA |
1200 | pr_debug("kvm: matched tsc offset for %llu\n", data); |
1201 | } else { | |
857e4099 | 1202 | u64 delta = nsec_to_cycles(vcpu, elapsed); |
5d3cb0f6 ZA |
1203 | data += delta; |
1204 | offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); | |
759379dd | 1205 | pr_debug("kvm: adjusted tsc offset by %llu\n", delta); |
f38e098f | 1206 | } |
b48aa97e | 1207 | matched = true; |
e26101b1 ZA |
1208 | } else { |
1209 | /* | |
1210 | * We split periods of matched TSC writes into generations. | |
1211 | * For each generation, we track the original measured | |
1212 | * nanosecond time, offset, and write, so if TSCs are in | |
1213 | * sync, we can match exact offset, and if not, we can match | |
4a969980 | 1214 | * exact software computation in compute_guest_tsc() |
e26101b1 ZA |
1215 | * |
1216 | * These values are tracked in kvm->arch.cur_xxx variables. | |
1217 | */ | |
1218 | kvm->arch.cur_tsc_generation++; | |
1219 | kvm->arch.cur_tsc_nsec = ns; | |
1220 | kvm->arch.cur_tsc_write = data; | |
1221 | kvm->arch.cur_tsc_offset = offset; | |
b48aa97e | 1222 | matched = false; |
e26101b1 ZA |
1223 | pr_debug("kvm: new tsc generation %u, clock %llu\n", |
1224 | kvm->arch.cur_tsc_generation, data); | |
f38e098f | 1225 | } |
e26101b1 ZA |
1226 | |
1227 | /* | |
1228 | * We also track th most recent recorded KHZ, write and time to | |
1229 | * allow the matching interval to be extended at each write. | |
1230 | */ | |
f38e098f ZA |
1231 | kvm->arch.last_tsc_nsec = ns; |
1232 | kvm->arch.last_tsc_write = data; | |
5d3cb0f6 | 1233 | kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; |
99e3e30a ZA |
1234 | |
1235 | /* Reset of TSC must disable overshoot protection below */ | |
1236 | vcpu->arch.hv_clock.tsc_timestamp = 0; | |
b183aa58 | 1237 | vcpu->arch.last_guest_tsc = data; |
e26101b1 ZA |
1238 | |
1239 | /* Keep track of which generation this VCPU has synchronized to */ | |
1240 | vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; | |
1241 | vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; | |
1242 | vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; | |
1243 | ||
ba904635 WA |
1244 | if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) |
1245 | update_ia32_tsc_adjust_msr(vcpu, offset); | |
e26101b1 ZA |
1246 | kvm_x86_ops->write_tsc_offset(vcpu, offset); |
1247 | raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); | |
b48aa97e MT |
1248 | |
1249 | spin_lock(&kvm->arch.pvclock_gtod_sync_lock); | |
1250 | if (matched) | |
1251 | kvm->arch.nr_vcpus_matched_tsc++; | |
1252 | else | |
1253 | kvm->arch.nr_vcpus_matched_tsc = 0; | |
1254 | ||
1255 | kvm_track_tsc_matching(vcpu); | |
1256 | spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); | |
99e3e30a | 1257 | } |
e26101b1 | 1258 | |
99e3e30a ZA |
1259 | EXPORT_SYMBOL_GPL(kvm_write_tsc); |
1260 | ||
d828199e MT |
1261 | #ifdef CONFIG_X86_64 |
1262 | ||
1263 | static cycle_t read_tsc(void) | |
1264 | { | |
1265 | cycle_t ret; | |
1266 | u64 last; | |
1267 | ||
1268 | /* | |
1269 | * Empirically, a fence (of type that depends on the CPU) | |
1270 | * before rdtsc is enough to ensure that rdtsc is ordered | |
1271 | * with respect to loads. The various CPU manuals are unclear | |
1272 | * as to whether rdtsc can be reordered with later loads, | |
1273 | * but no one has ever seen it happen. | |
1274 | */ | |
1275 | rdtsc_barrier(); | |
1276 | ret = (cycle_t)vget_cycles(); | |
1277 | ||
1278 | last = pvclock_gtod_data.clock.cycle_last; | |
1279 | ||
1280 | if (likely(ret >= last)) | |
1281 | return ret; | |
1282 | ||
1283 | /* | |
1284 | * GCC likes to generate cmov here, but this branch is extremely | |
1285 | * predictable (it's just a funciton of time and the likely is | |
1286 | * very likely) and there's a data dependence, so force GCC | |
1287 | * to generate a branch instead. I don't barrier() because | |
1288 | * we don't actually need a barrier, and if this function | |
1289 | * ever gets inlined it will generate worse code. | |
1290 | */ | |
1291 | asm volatile (""); | |
1292 | return last; | |
1293 | } | |
1294 | ||
1295 | static inline u64 vgettsc(cycle_t *cycle_now) | |
1296 | { | |
1297 | long v; | |
1298 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
1299 | ||
1300 | *cycle_now = read_tsc(); | |
1301 | ||
1302 | v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; | |
1303 | return v * gtod->clock.mult; | |
1304 | } | |
1305 | ||
1306 | static int do_monotonic(struct timespec *ts, cycle_t *cycle_now) | |
1307 | { | |
1308 | unsigned long seq; | |
1309 | u64 ns; | |
1310 | int mode; | |
1311 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
1312 | ||
1313 | ts->tv_nsec = 0; | |
1314 | do { | |
1315 | seq = read_seqcount_begin(>od->seq); | |
1316 | mode = gtod->clock.vclock_mode; | |
1317 | ts->tv_sec = gtod->monotonic_time_sec; | |
1318 | ns = gtod->monotonic_time_snsec; | |
1319 | ns += vgettsc(cycle_now); | |
1320 | ns >>= gtod->clock.shift; | |
1321 | } while (unlikely(read_seqcount_retry(>od->seq, seq))); | |
1322 | timespec_add_ns(ts, ns); | |
1323 | ||
1324 | return mode; | |
1325 | } | |
1326 | ||
1327 | /* returns true if host is using tsc clocksource */ | |
1328 | static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) | |
1329 | { | |
1330 | struct timespec ts; | |
1331 | ||
1332 | /* checked again under seqlock below */ | |
1333 | if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) | |
1334 | return false; | |
1335 | ||
1336 | if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC) | |
1337 | return false; | |
1338 | ||
1339 | monotonic_to_bootbased(&ts); | |
1340 | *kernel_ns = timespec_to_ns(&ts); | |
1341 | ||
1342 | return true; | |
1343 | } | |
1344 | #endif | |
1345 | ||
1346 | /* | |
1347 | * | |
b48aa97e MT |
1348 | * Assuming a stable TSC across physical CPUS, and a stable TSC |
1349 | * across virtual CPUs, the following condition is possible. | |
1350 | * Each numbered line represents an event visible to both | |
d828199e MT |
1351 | * CPUs at the next numbered event. |
1352 | * | |
1353 | * "timespecX" represents host monotonic time. "tscX" represents | |
1354 | * RDTSC value. | |
1355 | * | |
1356 | * VCPU0 on CPU0 | VCPU1 on CPU1 | |
1357 | * | |
1358 | * 1. read timespec0,tsc0 | |
1359 | * 2. | timespec1 = timespec0 + N | |
1360 | * | tsc1 = tsc0 + M | |
1361 | * 3. transition to guest | transition to guest | |
1362 | * 4. ret0 = timespec0 + (rdtsc - tsc0) | | |
1363 | * 5. | ret1 = timespec1 + (rdtsc - tsc1) | |
1364 | * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) | |
1365 | * | |
1366 | * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: | |
1367 | * | |
1368 | * - ret0 < ret1 | |
1369 | * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) | |
1370 | * ... | |
1371 | * - 0 < N - M => M < N | |
1372 | * | |
1373 | * That is, when timespec0 != timespec1, M < N. Unfortunately that is not | |
1374 | * always the case (the difference between two distinct xtime instances | |
1375 | * might be smaller then the difference between corresponding TSC reads, | |
1376 | * when updating guest vcpus pvclock areas). | |
1377 | * | |
1378 | * To avoid that problem, do not allow visibility of distinct | |
1379 | * system_timestamp/tsc_timestamp values simultaneously: use a master | |
1380 | * copy of host monotonic time values. Update that master copy | |
1381 | * in lockstep. | |
1382 | * | |
b48aa97e | 1383 | * Rely on synchronization of host TSCs and guest TSCs for monotonicity. |
d828199e MT |
1384 | * |
1385 | */ | |
1386 | ||
1387 | static void pvclock_update_vm_gtod_copy(struct kvm *kvm) | |
1388 | { | |
1389 | #ifdef CONFIG_X86_64 | |
1390 | struct kvm_arch *ka = &kvm->arch; | |
1391 | int vclock_mode; | |
b48aa97e MT |
1392 | bool host_tsc_clocksource, vcpus_matched; |
1393 | ||
1394 | vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == | |
1395 | atomic_read(&kvm->online_vcpus)); | |
d828199e MT |
1396 | |
1397 | /* | |
1398 | * If the host uses TSC clock, then passthrough TSC as stable | |
1399 | * to the guest. | |
1400 | */ | |
b48aa97e | 1401 | host_tsc_clocksource = kvm_get_time_and_clockread( |
d828199e MT |
1402 | &ka->master_kernel_ns, |
1403 | &ka->master_cycle_now); | |
1404 | ||
b48aa97e MT |
1405 | ka->use_master_clock = host_tsc_clocksource & vcpus_matched; |
1406 | ||
d828199e MT |
1407 | if (ka->use_master_clock) |
1408 | atomic_set(&kvm_guest_has_master_clock, 1); | |
1409 | ||
1410 | vclock_mode = pvclock_gtod_data.clock.vclock_mode; | |
b48aa97e MT |
1411 | trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, |
1412 | vcpus_matched); | |
d828199e MT |
1413 | #endif |
1414 | } | |
1415 | ||
34c238a1 | 1416 | static int kvm_guest_time_update(struct kvm_vcpu *v) |
18068523 | 1417 | { |
d828199e | 1418 | unsigned long flags, this_tsc_khz; |
18068523 | 1419 | struct kvm_vcpu_arch *vcpu = &v->arch; |
d828199e | 1420 | struct kvm_arch *ka = &v->kvm->arch; |
1d5f066e | 1421 | s64 kernel_ns, max_kernel_ns; |
d828199e | 1422 | u64 tsc_timestamp, host_tsc; |
0b79459b | 1423 | struct pvclock_vcpu_time_info guest_hv_clock; |
51d59c6b | 1424 | u8 pvclock_flags; |
d828199e MT |
1425 | bool use_master_clock; |
1426 | ||
1427 | kernel_ns = 0; | |
1428 | host_tsc = 0; | |
18068523 | 1429 | |
d828199e MT |
1430 | /* |
1431 | * If the host uses TSC clock, then passthrough TSC as stable | |
1432 | * to the guest. | |
1433 | */ | |
1434 | spin_lock(&ka->pvclock_gtod_sync_lock); | |
1435 | use_master_clock = ka->use_master_clock; | |
1436 | if (use_master_clock) { | |
1437 | host_tsc = ka->master_cycle_now; | |
1438 | kernel_ns = ka->master_kernel_ns; | |
1439 | } | |
1440 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
c09664bb MT |
1441 | |
1442 | /* Keep irq disabled to prevent changes to the clock */ | |
1443 | local_irq_save(flags); | |
1444 | this_tsc_khz = __get_cpu_var(cpu_tsc_khz); | |
1445 | if (unlikely(this_tsc_khz == 0)) { | |
1446 | local_irq_restore(flags); | |
1447 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); | |
1448 | return 1; | |
1449 | } | |
d828199e MT |
1450 | if (!use_master_clock) { |
1451 | host_tsc = native_read_tsc(); | |
1452 | kernel_ns = get_kernel_ns(); | |
1453 | } | |
1454 | ||
1455 | tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); | |
1456 | ||
c285545f ZA |
1457 | /* |
1458 | * We may have to catch up the TSC to match elapsed wall clock | |
1459 | * time for two reasons, even if kvmclock is used. | |
1460 | * 1) CPU could have been running below the maximum TSC rate | |
1461 | * 2) Broken TSC compensation resets the base at each VCPU | |
1462 | * entry to avoid unknown leaps of TSC even when running | |
1463 | * again on the same CPU. This may cause apparent elapsed | |
1464 | * time to disappear, and the guest to stand still or run | |
1465 | * very slowly. | |
1466 | */ | |
1467 | if (vcpu->tsc_catchup) { | |
1468 | u64 tsc = compute_guest_tsc(v, kernel_ns); | |
1469 | if (tsc > tsc_timestamp) { | |
f1e2b260 | 1470 | adjust_tsc_offset_guest(v, tsc - tsc_timestamp); |
c285545f ZA |
1471 | tsc_timestamp = tsc; |
1472 | } | |
50d0a0f9 GH |
1473 | } |
1474 | ||
18068523 GOC |
1475 | local_irq_restore(flags); |
1476 | ||
0b79459b | 1477 | if (!vcpu->pv_time_enabled) |
c285545f | 1478 | return 0; |
18068523 | 1479 | |
1d5f066e ZA |
1480 | /* |
1481 | * Time as measured by the TSC may go backwards when resetting the base | |
1482 | * tsc_timestamp. The reason for this is that the TSC resolution is | |
1483 | * higher than the resolution of the other clock scales. Thus, many | |
1484 | * possible measurments of the TSC correspond to one measurement of any | |
1485 | * other clock, and so a spread of values is possible. This is not a | |
1486 | * problem for the computation of the nanosecond clock; with TSC rates | |
1487 | * around 1GHZ, there can only be a few cycles which correspond to one | |
1488 | * nanosecond value, and any path through this code will inevitably | |
1489 | * take longer than that. However, with the kernel_ns value itself, | |
1490 | * the precision may be much lower, down to HZ granularity. If the | |
1491 | * first sampling of TSC against kernel_ns ends in the low part of the | |
1492 | * range, and the second in the high end of the range, we can get: | |
1493 | * | |
1494 | * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new | |
1495 | * | |
1496 | * As the sampling errors potentially range in the thousands of cycles, | |
1497 | * it is possible such a time value has already been observed by the | |
1498 | * guest. To protect against this, we must compute the system time as | |
1499 | * observed by the guest and ensure the new system time is greater. | |
1500 | */ | |
1501 | max_kernel_ns = 0; | |
b183aa58 | 1502 | if (vcpu->hv_clock.tsc_timestamp) { |
1d5f066e ZA |
1503 | max_kernel_ns = vcpu->last_guest_tsc - |
1504 | vcpu->hv_clock.tsc_timestamp; | |
1505 | max_kernel_ns = pvclock_scale_delta(max_kernel_ns, | |
1506 | vcpu->hv_clock.tsc_to_system_mul, | |
1507 | vcpu->hv_clock.tsc_shift); | |
1508 | max_kernel_ns += vcpu->last_kernel_ns; | |
1509 | } | |
afbcf7ab | 1510 | |
e48672fa | 1511 | if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { |
5f4e3f88 ZA |
1512 | kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, |
1513 | &vcpu->hv_clock.tsc_shift, | |
1514 | &vcpu->hv_clock.tsc_to_system_mul); | |
e48672fa | 1515 | vcpu->hw_tsc_khz = this_tsc_khz; |
8cfdc000 ZA |
1516 | } |
1517 | ||
d828199e MT |
1518 | /* with a master <monotonic time, tsc value> tuple, |
1519 | * pvclock clock reads always increase at the (scaled) rate | |
1520 | * of guest TSC - no need to deal with sampling errors. | |
1521 | */ | |
1522 | if (!use_master_clock) { | |
1523 | if (max_kernel_ns > kernel_ns) | |
1524 | kernel_ns = max_kernel_ns; | |
1525 | } | |
8cfdc000 | 1526 | /* With all the info we got, fill in the values */ |
1d5f066e | 1527 | vcpu->hv_clock.tsc_timestamp = tsc_timestamp; |
759379dd | 1528 | vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; |
1d5f066e | 1529 | vcpu->last_kernel_ns = kernel_ns; |
28e4639a | 1530 | vcpu->last_guest_tsc = tsc_timestamp; |
51d59c6b | 1531 | |
18068523 GOC |
1532 | /* |
1533 | * The interface expects us to write an even number signaling that the | |
1534 | * update is finished. Since the guest won't see the intermediate | |
50d0a0f9 | 1535 | * state, we just increase by 2 at the end. |
18068523 | 1536 | */ |
50d0a0f9 | 1537 | vcpu->hv_clock.version += 2; |
18068523 | 1538 | |
0b79459b AH |
1539 | if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, |
1540 | &guest_hv_clock, sizeof(guest_hv_clock)))) | |
1541 | return 0; | |
78c0337a MT |
1542 | |
1543 | /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ | |
0b79459b | 1544 | pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); |
78c0337a MT |
1545 | |
1546 | if (vcpu->pvclock_set_guest_stopped_request) { | |
1547 | pvclock_flags |= PVCLOCK_GUEST_STOPPED; | |
1548 | vcpu->pvclock_set_guest_stopped_request = false; | |
1549 | } | |
1550 | ||
d828199e MT |
1551 | /* If the host uses TSC clocksource, then it is stable */ |
1552 | if (use_master_clock) | |
1553 | pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; | |
1554 | ||
78c0337a MT |
1555 | vcpu->hv_clock.flags = pvclock_flags; |
1556 | ||
0b79459b AH |
1557 | kvm_write_guest_cached(v->kvm, &vcpu->pv_time, |
1558 | &vcpu->hv_clock, | |
1559 | sizeof(vcpu->hv_clock)); | |
8cfdc000 | 1560 | return 0; |
c8076604 GH |
1561 | } |
1562 | ||
9ba075a6 AK |
1563 | static bool msr_mtrr_valid(unsigned msr) |
1564 | { | |
1565 | switch (msr) { | |
1566 | case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: | |
1567 | case MSR_MTRRfix64K_00000: | |
1568 | case MSR_MTRRfix16K_80000: | |
1569 | case MSR_MTRRfix16K_A0000: | |
1570 | case MSR_MTRRfix4K_C0000: | |
1571 | case MSR_MTRRfix4K_C8000: | |
1572 | case MSR_MTRRfix4K_D0000: | |
1573 | case MSR_MTRRfix4K_D8000: | |
1574 | case MSR_MTRRfix4K_E0000: | |
1575 | case MSR_MTRRfix4K_E8000: | |
1576 | case MSR_MTRRfix4K_F0000: | |
1577 | case MSR_MTRRfix4K_F8000: | |
1578 | case MSR_MTRRdefType: | |
1579 | case MSR_IA32_CR_PAT: | |
1580 | return true; | |
1581 | case 0x2f8: | |
1582 | return true; | |
1583 | } | |
1584 | return false; | |
1585 | } | |
1586 | ||
d6289b93 MT |
1587 | static bool valid_pat_type(unsigned t) |
1588 | { | |
1589 | return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ | |
1590 | } | |
1591 | ||
1592 | static bool valid_mtrr_type(unsigned t) | |
1593 | { | |
1594 | return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ | |
1595 | } | |
1596 | ||
1597 | static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) | |
1598 | { | |
1599 | int i; | |
1600 | ||
1601 | if (!msr_mtrr_valid(msr)) | |
1602 | return false; | |
1603 | ||
1604 | if (msr == MSR_IA32_CR_PAT) { | |
1605 | for (i = 0; i < 8; i++) | |
1606 | if (!valid_pat_type((data >> (i * 8)) & 0xff)) | |
1607 | return false; | |
1608 | return true; | |
1609 | } else if (msr == MSR_MTRRdefType) { | |
1610 | if (data & ~0xcff) | |
1611 | return false; | |
1612 | return valid_mtrr_type(data & 0xff); | |
1613 | } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { | |
1614 | for (i = 0; i < 8 ; i++) | |
1615 | if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) | |
1616 | return false; | |
1617 | return true; | |
1618 | } | |
1619 | ||
1620 | /* variable MTRRs */ | |
1621 | return valid_mtrr_type(data & 0xff); | |
1622 | } | |
1623 | ||
9ba075a6 AK |
1624 | static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
1625 | { | |
0bed3b56 SY |
1626 | u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; |
1627 | ||
d6289b93 | 1628 | if (!mtrr_valid(vcpu, msr, data)) |
9ba075a6 AK |
1629 | return 1; |
1630 | ||
0bed3b56 SY |
1631 | if (msr == MSR_MTRRdefType) { |
1632 | vcpu->arch.mtrr_state.def_type = data; | |
1633 | vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; | |
1634 | } else if (msr == MSR_MTRRfix64K_00000) | |
1635 | p[0] = data; | |
1636 | else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) | |
1637 | p[1 + msr - MSR_MTRRfix16K_80000] = data; | |
1638 | else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) | |
1639 | p[3 + msr - MSR_MTRRfix4K_C0000] = data; | |
1640 | else if (msr == MSR_IA32_CR_PAT) | |
1641 | vcpu->arch.pat = data; | |
1642 | else { /* Variable MTRRs */ | |
1643 | int idx, is_mtrr_mask; | |
1644 | u64 *pt; | |
1645 | ||
1646 | idx = (msr - 0x200) / 2; | |
1647 | is_mtrr_mask = msr - 0x200 - 2 * idx; | |
1648 | if (!is_mtrr_mask) | |
1649 | pt = | |
1650 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; | |
1651 | else | |
1652 | pt = | |
1653 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; | |
1654 | *pt = data; | |
1655 | } | |
1656 | ||
1657 | kvm_mmu_reset_context(vcpu); | |
9ba075a6 AK |
1658 | return 0; |
1659 | } | |
15c4a640 | 1660 | |
890ca9ae | 1661 | static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
15c4a640 | 1662 | { |
890ca9ae YH |
1663 | u64 mcg_cap = vcpu->arch.mcg_cap; |
1664 | unsigned bank_num = mcg_cap & 0xff; | |
1665 | ||
15c4a640 | 1666 | switch (msr) { |
15c4a640 | 1667 | case MSR_IA32_MCG_STATUS: |
890ca9ae | 1668 | vcpu->arch.mcg_status = data; |
15c4a640 | 1669 | break; |
c7ac679c | 1670 | case MSR_IA32_MCG_CTL: |
890ca9ae YH |
1671 | if (!(mcg_cap & MCG_CTL_P)) |
1672 | return 1; | |
1673 | if (data != 0 && data != ~(u64)0) | |
1674 | return -1; | |
1675 | vcpu->arch.mcg_ctl = data; | |
1676 | break; | |
1677 | default: | |
1678 | if (msr >= MSR_IA32_MC0_CTL && | |
1679 | msr < MSR_IA32_MC0_CTL + 4 * bank_num) { | |
1680 | u32 offset = msr - MSR_IA32_MC0_CTL; | |
114be429 AP |
1681 | /* only 0 or all 1s can be written to IA32_MCi_CTL |
1682 | * some Linux kernels though clear bit 10 in bank 4 to | |
1683 | * workaround a BIOS/GART TBL issue on AMD K8s, ignore | |
1684 | * this to avoid an uncatched #GP in the guest | |
1685 | */ | |
890ca9ae | 1686 | if ((offset & 0x3) == 0 && |
114be429 | 1687 | data != 0 && (data | (1 << 10)) != ~(u64)0) |
890ca9ae YH |
1688 | return -1; |
1689 | vcpu->arch.mce_banks[offset] = data; | |
1690 | break; | |
1691 | } | |
1692 | return 1; | |
1693 | } | |
1694 | return 0; | |
1695 | } | |
1696 | ||
ffde22ac ES |
1697 | static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) |
1698 | { | |
1699 | struct kvm *kvm = vcpu->kvm; | |
1700 | int lm = is_long_mode(vcpu); | |
1701 | u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 | |
1702 | : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; | |
1703 | u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 | |
1704 | : kvm->arch.xen_hvm_config.blob_size_32; | |
1705 | u32 page_num = data & ~PAGE_MASK; | |
1706 | u64 page_addr = data & PAGE_MASK; | |
1707 | u8 *page; | |
1708 | int r; | |
1709 | ||
1710 | r = -E2BIG; | |
1711 | if (page_num >= blob_size) | |
1712 | goto out; | |
1713 | r = -ENOMEM; | |
ff5c2c03 SL |
1714 | page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); |
1715 | if (IS_ERR(page)) { | |
1716 | r = PTR_ERR(page); | |
ffde22ac | 1717 | goto out; |
ff5c2c03 | 1718 | } |
ffde22ac ES |
1719 | if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) |
1720 | goto out_free; | |
1721 | r = 0; | |
1722 | out_free: | |
1723 | kfree(page); | |
1724 | out: | |
1725 | return r; | |
1726 | } | |
1727 | ||
55cd8e5a GN |
1728 | static bool kvm_hv_hypercall_enabled(struct kvm *kvm) |
1729 | { | |
1730 | return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; | |
1731 | } | |
1732 | ||
1733 | static bool kvm_hv_msr_partition_wide(u32 msr) | |
1734 | { | |
1735 | bool r = false; | |
1736 | switch (msr) { | |
1737 | case HV_X64_MSR_GUEST_OS_ID: | |
1738 | case HV_X64_MSR_HYPERCALL: | |
1739 | r = true; | |
1740 | break; | |
1741 | } | |
1742 | ||
1743 | return r; | |
1744 | } | |
1745 | ||
1746 | static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) | |
1747 | { | |
1748 | struct kvm *kvm = vcpu->kvm; | |
1749 | ||
1750 | switch (msr) { | |
1751 | case HV_X64_MSR_GUEST_OS_ID: | |
1752 | kvm->arch.hv_guest_os_id = data; | |
1753 | /* setting guest os id to zero disables hypercall page */ | |
1754 | if (!kvm->arch.hv_guest_os_id) | |
1755 | kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; | |
1756 | break; | |
1757 | case HV_X64_MSR_HYPERCALL: { | |
1758 | u64 gfn; | |
1759 | unsigned long addr; | |
1760 | u8 instructions[4]; | |
1761 | ||
1762 | /* if guest os id is not set hypercall should remain disabled */ | |
1763 | if (!kvm->arch.hv_guest_os_id) | |
1764 | break; | |
1765 | if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { | |
1766 | kvm->arch.hv_hypercall = data; | |
1767 | break; | |
1768 | } | |
1769 | gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; | |
1770 | addr = gfn_to_hva(kvm, gfn); | |
1771 | if (kvm_is_error_hva(addr)) | |
1772 | return 1; | |
1773 | kvm_x86_ops->patch_hypercall(vcpu, instructions); | |
1774 | ((unsigned char *)instructions)[3] = 0xc3; /* ret */ | |
8b0cedff | 1775 | if (__copy_to_user((void __user *)addr, instructions, 4)) |
55cd8e5a GN |
1776 | return 1; |
1777 | kvm->arch.hv_hypercall = data; | |
1778 | break; | |
1779 | } | |
1780 | default: | |
a737f256 CD |
1781 | vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " |
1782 | "data 0x%llx\n", msr, data); | |
55cd8e5a GN |
1783 | return 1; |
1784 | } | |
1785 | return 0; | |
1786 | } | |
1787 | ||
1788 | static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) | |
1789 | { | |
10388a07 GN |
1790 | switch (msr) { |
1791 | case HV_X64_MSR_APIC_ASSIST_PAGE: { | |
1792 | unsigned long addr; | |
55cd8e5a | 1793 | |
10388a07 GN |
1794 | if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { |
1795 | vcpu->arch.hv_vapic = data; | |
1796 | break; | |
1797 | } | |
1798 | addr = gfn_to_hva(vcpu->kvm, data >> | |
1799 | HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); | |
1800 | if (kvm_is_error_hva(addr)) | |
1801 | return 1; | |
8b0cedff | 1802 | if (__clear_user((void __user *)addr, PAGE_SIZE)) |
10388a07 GN |
1803 | return 1; |
1804 | vcpu->arch.hv_vapic = data; | |
1805 | break; | |
1806 | } | |
1807 | case HV_X64_MSR_EOI: | |
1808 | return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); | |
1809 | case HV_X64_MSR_ICR: | |
1810 | return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); | |
1811 | case HV_X64_MSR_TPR: | |
1812 | return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); | |
1813 | default: | |
a737f256 CD |
1814 | vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " |
1815 | "data 0x%llx\n", msr, data); | |
10388a07 GN |
1816 | return 1; |
1817 | } | |
1818 | ||
1819 | return 0; | |
55cd8e5a GN |
1820 | } |
1821 | ||
344d9588 GN |
1822 | static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) |
1823 | { | |
1824 | gpa_t gpa = data & ~0x3f; | |
1825 | ||
4a969980 | 1826 | /* Bits 2:5 are reserved, Should be zero */ |
6adba527 | 1827 | if (data & 0x3c) |
344d9588 GN |
1828 | return 1; |
1829 | ||
1830 | vcpu->arch.apf.msr_val = data; | |
1831 | ||
1832 | if (!(data & KVM_ASYNC_PF_ENABLED)) { | |
1833 | kvm_clear_async_pf_completion_queue(vcpu); | |
1834 | kvm_async_pf_hash_reset(vcpu); | |
1835 | return 0; | |
1836 | } | |
1837 | ||
1838 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) | |
1839 | return 1; | |
1840 | ||
6adba527 | 1841 | vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); |
344d9588 GN |
1842 | kvm_async_pf_wakeup_all(vcpu); |
1843 | return 0; | |
1844 | } | |
1845 | ||
12f9a48f GC |
1846 | static void kvmclock_reset(struct kvm_vcpu *vcpu) |
1847 | { | |
0b79459b | 1848 | vcpu->arch.pv_time_enabled = false; |
12f9a48f GC |
1849 | } |
1850 | ||
c9aaa895 GC |
1851 | static void accumulate_steal_time(struct kvm_vcpu *vcpu) |
1852 | { | |
1853 | u64 delta; | |
1854 | ||
1855 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | |
1856 | return; | |
1857 | ||
1858 | delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; | |
1859 | vcpu->arch.st.last_steal = current->sched_info.run_delay; | |
1860 | vcpu->arch.st.accum_steal = delta; | |
1861 | } | |
1862 | ||
1863 | static void record_steal_time(struct kvm_vcpu *vcpu) | |
1864 | { | |
1865 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | |
1866 | return; | |
1867 | ||
1868 | if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, | |
1869 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) | |
1870 | return; | |
1871 | ||
1872 | vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; | |
1873 | vcpu->arch.st.steal.version += 2; | |
1874 | vcpu->arch.st.accum_steal = 0; | |
1875 | ||
1876 | kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, | |
1877 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); | |
1878 | } | |
1879 | ||
8fe8ab46 | 1880 | int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
15c4a640 | 1881 | { |
5753785f | 1882 | bool pr = false; |
8fe8ab46 WA |
1883 | u32 msr = msr_info->index; |
1884 | u64 data = msr_info->data; | |
5753785f | 1885 | |
15c4a640 | 1886 | switch (msr) { |
2e32b719 BP |
1887 | case MSR_AMD64_NB_CFG: |
1888 | case MSR_IA32_UCODE_REV: | |
1889 | case MSR_IA32_UCODE_WRITE: | |
1890 | case MSR_VM_HSAVE_PA: | |
1891 | case MSR_AMD64_PATCH_LOADER: | |
1892 | case MSR_AMD64_BU_CFG2: | |
1893 | break; | |
1894 | ||
15c4a640 | 1895 | case MSR_EFER: |
b69e8cae | 1896 | return set_efer(vcpu, data); |
8f1589d9 AP |
1897 | case MSR_K7_HWCR: |
1898 | data &= ~(u64)0x40; /* ignore flush filter disable */ | |
82494028 | 1899 | data &= ~(u64)0x100; /* ignore ignne emulation enable */ |
a223c313 | 1900 | data &= ~(u64)0x8; /* ignore TLB cache disable */ |
8f1589d9 | 1901 | if (data != 0) { |
a737f256 CD |
1902 | vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", |
1903 | data); | |
8f1589d9 AP |
1904 | return 1; |
1905 | } | |
15c4a640 | 1906 | break; |
f7c6d140 AP |
1907 | case MSR_FAM10H_MMIO_CONF_BASE: |
1908 | if (data != 0) { | |
a737f256 CD |
1909 | vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " |
1910 | "0x%llx\n", data); | |
f7c6d140 AP |
1911 | return 1; |
1912 | } | |
15c4a640 | 1913 | break; |
b5e2fec0 AG |
1914 | case MSR_IA32_DEBUGCTLMSR: |
1915 | if (!data) { | |
1916 | /* We support the non-activated case already */ | |
1917 | break; | |
1918 | } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { | |
1919 | /* Values other than LBR and BTF are vendor-specific, | |
1920 | thus reserved and should throw a #GP */ | |
1921 | return 1; | |
1922 | } | |
a737f256 CD |
1923 | vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", |
1924 | __func__, data); | |
b5e2fec0 | 1925 | break; |
9ba075a6 AK |
1926 | case 0x200 ... 0x2ff: |
1927 | return set_msr_mtrr(vcpu, msr, data); | |
15c4a640 CO |
1928 | case MSR_IA32_APICBASE: |
1929 | kvm_set_apic_base(vcpu, data); | |
1930 | break; | |
0105d1a5 GN |
1931 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
1932 | return kvm_x2apic_msr_write(vcpu, msr, data); | |
a3e06bbe LJ |
1933 | case MSR_IA32_TSCDEADLINE: |
1934 | kvm_set_lapic_tscdeadline_msr(vcpu, data); | |
1935 | break; | |
ba904635 WA |
1936 | case MSR_IA32_TSC_ADJUST: |
1937 | if (guest_cpuid_has_tsc_adjust(vcpu)) { | |
1938 | if (!msr_info->host_initiated) { | |
1939 | u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; | |
1940 | kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); | |
1941 | } | |
1942 | vcpu->arch.ia32_tsc_adjust_msr = data; | |
1943 | } | |
1944 | break; | |
15c4a640 | 1945 | case MSR_IA32_MISC_ENABLE: |
ad312c7c | 1946 | vcpu->arch.ia32_misc_enable_msr = data; |
15c4a640 | 1947 | break; |
11c6bffa | 1948 | case MSR_KVM_WALL_CLOCK_NEW: |
18068523 GOC |
1949 | case MSR_KVM_WALL_CLOCK: |
1950 | vcpu->kvm->arch.wall_clock = data; | |
1951 | kvm_write_wall_clock(vcpu->kvm, data); | |
1952 | break; | |
11c6bffa | 1953 | case MSR_KVM_SYSTEM_TIME_NEW: |
18068523 | 1954 | case MSR_KVM_SYSTEM_TIME: { |
0b79459b | 1955 | u64 gpa_offset; |
12f9a48f | 1956 | kvmclock_reset(vcpu); |
18068523 GOC |
1957 | |
1958 | vcpu->arch.time = data; | |
c285545f | 1959 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
18068523 GOC |
1960 | |
1961 | /* we verify if the enable bit is set... */ | |
1962 | if (!(data & 1)) | |
1963 | break; | |
1964 | ||
0b79459b | 1965 | gpa_offset = data & ~(PAGE_MASK | 1); |
18068523 | 1966 | |
c300aa64 | 1967 | /* Check that the address is 32-byte aligned. */ |
0b79459b | 1968 | if (gpa_offset & (sizeof(struct pvclock_vcpu_time_info) - 1)) |
c300aa64 | 1969 | break; |
18068523 | 1970 | |
0b79459b AH |
1971 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, |
1972 | &vcpu->arch.pv_time, data & ~1ULL)) | |
1973 | vcpu->arch.pv_time_enabled = false; | |
1974 | else | |
1975 | vcpu->arch.pv_time_enabled = true; | |
32cad84f | 1976 | |
18068523 GOC |
1977 | break; |
1978 | } | |
344d9588 GN |
1979 | case MSR_KVM_ASYNC_PF_EN: |
1980 | if (kvm_pv_enable_async_pf(vcpu, data)) | |
1981 | return 1; | |
1982 | break; | |
c9aaa895 GC |
1983 | case MSR_KVM_STEAL_TIME: |
1984 | ||
1985 | if (unlikely(!sched_info_on())) | |
1986 | return 1; | |
1987 | ||
1988 | if (data & KVM_STEAL_RESERVED_MASK) | |
1989 | return 1; | |
1990 | ||
1991 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, | |
1992 | data & KVM_STEAL_VALID_BITS)) | |
1993 | return 1; | |
1994 | ||
1995 | vcpu->arch.st.msr_val = data; | |
1996 | ||
1997 | if (!(data & KVM_MSR_ENABLED)) | |
1998 | break; | |
1999 | ||
2000 | vcpu->arch.st.last_steal = current->sched_info.run_delay; | |
2001 | ||
2002 | preempt_disable(); | |
2003 | accumulate_steal_time(vcpu); | |
2004 | preempt_enable(); | |
2005 | ||
2006 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); | |
2007 | ||
2008 | break; | |
ae7a2a3f MT |
2009 | case MSR_KVM_PV_EOI_EN: |
2010 | if (kvm_lapic_enable_pv_eoi(vcpu, data)) | |
2011 | return 1; | |
2012 | break; | |
c9aaa895 | 2013 | |
890ca9ae YH |
2014 | case MSR_IA32_MCG_CTL: |
2015 | case MSR_IA32_MCG_STATUS: | |
2016 | case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: | |
2017 | return set_msr_mce(vcpu, msr, data); | |
71db6023 AP |
2018 | |
2019 | /* Performance counters are not protected by a CPUID bit, | |
2020 | * so we should check all of them in the generic path for the sake of | |
2021 | * cross vendor migration. | |
2022 | * Writing a zero into the event select MSRs disables them, | |
2023 | * which we perfectly emulate ;-). Any other value should be at least | |
2024 | * reported, some guests depend on them. | |
2025 | */ | |
71db6023 AP |
2026 | case MSR_K7_EVNTSEL0: |
2027 | case MSR_K7_EVNTSEL1: | |
2028 | case MSR_K7_EVNTSEL2: | |
2029 | case MSR_K7_EVNTSEL3: | |
2030 | if (data != 0) | |
a737f256 CD |
2031 | vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " |
2032 | "0x%x data 0x%llx\n", msr, data); | |
71db6023 AP |
2033 | break; |
2034 | /* at least RHEL 4 unconditionally writes to the perfctr registers, | |
2035 | * so we ignore writes to make it happy. | |
2036 | */ | |
71db6023 AP |
2037 | case MSR_K7_PERFCTR0: |
2038 | case MSR_K7_PERFCTR1: | |
2039 | case MSR_K7_PERFCTR2: | |
2040 | case MSR_K7_PERFCTR3: | |
a737f256 CD |
2041 | vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " |
2042 | "0x%x data 0x%llx\n", msr, data); | |
71db6023 | 2043 | break; |
5753785f GN |
2044 | case MSR_P6_PERFCTR0: |
2045 | case MSR_P6_PERFCTR1: | |
2046 | pr = true; | |
2047 | case MSR_P6_EVNTSEL0: | |
2048 | case MSR_P6_EVNTSEL1: | |
2049 | if (kvm_pmu_msr(vcpu, msr)) | |
afd80d85 | 2050 | return kvm_pmu_set_msr(vcpu, msr_info); |
5753785f GN |
2051 | |
2052 | if (pr || data != 0) | |
a737f256 CD |
2053 | vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " |
2054 | "0x%x data 0x%llx\n", msr, data); | |
5753785f | 2055 | break; |
84e0cefa JS |
2056 | case MSR_K7_CLK_CTL: |
2057 | /* | |
2058 | * Ignore all writes to this no longer documented MSR. | |
2059 | * Writes are only relevant for old K7 processors, | |
2060 | * all pre-dating SVM, but a recommended workaround from | |
4a969980 | 2061 | * AMD for these chips. It is possible to specify the |
84e0cefa JS |
2062 | * affected processor models on the command line, hence |
2063 | * the need to ignore the workaround. | |
2064 | */ | |
2065 | break; | |
55cd8e5a GN |
2066 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
2067 | if (kvm_hv_msr_partition_wide(msr)) { | |
2068 | int r; | |
2069 | mutex_lock(&vcpu->kvm->lock); | |
2070 | r = set_msr_hyperv_pw(vcpu, msr, data); | |
2071 | mutex_unlock(&vcpu->kvm->lock); | |
2072 | return r; | |
2073 | } else | |
2074 | return set_msr_hyperv(vcpu, msr, data); | |
2075 | break; | |
91c9c3ed | 2076 | case MSR_IA32_BBL_CR_CTL3: |
2077 | /* Drop writes to this legacy MSR -- see rdmsr | |
2078 | * counterpart for further detail. | |
2079 | */ | |
a737f256 | 2080 | vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); |
91c9c3ed | 2081 | break; |
2b036c6b BO |
2082 | case MSR_AMD64_OSVW_ID_LENGTH: |
2083 | if (!guest_cpuid_has_osvw(vcpu)) | |
2084 | return 1; | |
2085 | vcpu->arch.osvw.length = data; | |
2086 | break; | |
2087 | case MSR_AMD64_OSVW_STATUS: | |
2088 | if (!guest_cpuid_has_osvw(vcpu)) | |
2089 | return 1; | |
2090 | vcpu->arch.osvw.status = data; | |
2091 | break; | |
15c4a640 | 2092 | default: |
ffde22ac ES |
2093 | if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) |
2094 | return xen_hvm_config(vcpu, data); | |
f5132b01 | 2095 | if (kvm_pmu_msr(vcpu, msr)) |
afd80d85 | 2096 | return kvm_pmu_set_msr(vcpu, msr_info); |
ed85c068 | 2097 | if (!ignore_msrs) { |
a737f256 CD |
2098 | vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", |
2099 | msr, data); | |
ed85c068 AP |
2100 | return 1; |
2101 | } else { | |
a737f256 CD |
2102 | vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", |
2103 | msr, data); | |
ed85c068 AP |
2104 | break; |
2105 | } | |
15c4a640 CO |
2106 | } |
2107 | return 0; | |
2108 | } | |
2109 | EXPORT_SYMBOL_GPL(kvm_set_msr_common); | |
2110 | ||
2111 | ||
2112 | /* | |
2113 | * Reads an msr value (of 'msr_index') into 'pdata'. | |
2114 | * Returns 0 on success, non-0 otherwise. | |
2115 | * Assumes vcpu_load() was already called. | |
2116 | */ | |
2117 | int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) | |
2118 | { | |
2119 | return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); | |
2120 | } | |
2121 | ||
9ba075a6 AK |
2122 | static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
2123 | { | |
0bed3b56 SY |
2124 | u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; |
2125 | ||
9ba075a6 AK |
2126 | if (!msr_mtrr_valid(msr)) |
2127 | return 1; | |
2128 | ||
0bed3b56 SY |
2129 | if (msr == MSR_MTRRdefType) |
2130 | *pdata = vcpu->arch.mtrr_state.def_type + | |
2131 | (vcpu->arch.mtrr_state.enabled << 10); | |
2132 | else if (msr == MSR_MTRRfix64K_00000) | |
2133 | *pdata = p[0]; | |
2134 | else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) | |
2135 | *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; | |
2136 | else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) | |
2137 | *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; | |
2138 | else if (msr == MSR_IA32_CR_PAT) | |
2139 | *pdata = vcpu->arch.pat; | |
2140 | else { /* Variable MTRRs */ | |
2141 | int idx, is_mtrr_mask; | |
2142 | u64 *pt; | |
2143 | ||
2144 | idx = (msr - 0x200) / 2; | |
2145 | is_mtrr_mask = msr - 0x200 - 2 * idx; | |
2146 | if (!is_mtrr_mask) | |
2147 | pt = | |
2148 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; | |
2149 | else | |
2150 | pt = | |
2151 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; | |
2152 | *pdata = *pt; | |
2153 | } | |
2154 | ||
9ba075a6 AK |
2155 | return 0; |
2156 | } | |
2157 | ||
890ca9ae | 2158 | static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
15c4a640 CO |
2159 | { |
2160 | u64 data; | |
890ca9ae YH |
2161 | u64 mcg_cap = vcpu->arch.mcg_cap; |
2162 | unsigned bank_num = mcg_cap & 0xff; | |
15c4a640 CO |
2163 | |
2164 | switch (msr) { | |
15c4a640 CO |
2165 | case MSR_IA32_P5_MC_ADDR: |
2166 | case MSR_IA32_P5_MC_TYPE: | |
890ca9ae YH |
2167 | data = 0; |
2168 | break; | |
15c4a640 | 2169 | case MSR_IA32_MCG_CAP: |
890ca9ae YH |
2170 | data = vcpu->arch.mcg_cap; |
2171 | break; | |
c7ac679c | 2172 | case MSR_IA32_MCG_CTL: |
890ca9ae YH |
2173 | if (!(mcg_cap & MCG_CTL_P)) |
2174 | return 1; | |
2175 | data = vcpu->arch.mcg_ctl; | |
2176 | break; | |
2177 | case MSR_IA32_MCG_STATUS: | |
2178 | data = vcpu->arch.mcg_status; | |
2179 | break; | |
2180 | default: | |
2181 | if (msr >= MSR_IA32_MC0_CTL && | |
2182 | msr < MSR_IA32_MC0_CTL + 4 * bank_num) { | |
2183 | u32 offset = msr - MSR_IA32_MC0_CTL; | |
2184 | data = vcpu->arch.mce_banks[offset]; | |
2185 | break; | |
2186 | } | |
2187 | return 1; | |
2188 | } | |
2189 | *pdata = data; | |
2190 | return 0; | |
2191 | } | |
2192 | ||
55cd8e5a GN |
2193 | static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
2194 | { | |
2195 | u64 data = 0; | |
2196 | struct kvm *kvm = vcpu->kvm; | |
2197 | ||
2198 | switch (msr) { | |
2199 | case HV_X64_MSR_GUEST_OS_ID: | |
2200 | data = kvm->arch.hv_guest_os_id; | |
2201 | break; | |
2202 | case HV_X64_MSR_HYPERCALL: | |
2203 | data = kvm->arch.hv_hypercall; | |
2204 | break; | |
2205 | default: | |
a737f256 | 2206 | vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); |
55cd8e5a GN |
2207 | return 1; |
2208 | } | |
2209 | ||
2210 | *pdata = data; | |
2211 | return 0; | |
2212 | } | |
2213 | ||
2214 | static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | |
2215 | { | |
2216 | u64 data = 0; | |
2217 | ||
2218 | switch (msr) { | |
2219 | case HV_X64_MSR_VP_INDEX: { | |
2220 | int r; | |
2221 | struct kvm_vcpu *v; | |
2222 | kvm_for_each_vcpu(r, v, vcpu->kvm) | |
2223 | if (v == vcpu) | |
2224 | data = r; | |
2225 | break; | |
2226 | } | |
10388a07 GN |
2227 | case HV_X64_MSR_EOI: |
2228 | return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); | |
2229 | case HV_X64_MSR_ICR: | |
2230 | return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); | |
2231 | case HV_X64_MSR_TPR: | |
2232 | return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); | |
14fa67ee | 2233 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
d1613ad5 MW |
2234 | data = vcpu->arch.hv_vapic; |
2235 | break; | |
55cd8e5a | 2236 | default: |
a737f256 | 2237 | vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); |
55cd8e5a GN |
2238 | return 1; |
2239 | } | |
2240 | *pdata = data; | |
2241 | return 0; | |
2242 | } | |
2243 | ||
890ca9ae YH |
2244 | int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
2245 | { | |
2246 | u64 data; | |
2247 | ||
2248 | switch (msr) { | |
890ca9ae | 2249 | case MSR_IA32_PLATFORM_ID: |
15c4a640 | 2250 | case MSR_IA32_EBL_CR_POWERON: |
b5e2fec0 AG |
2251 | case MSR_IA32_DEBUGCTLMSR: |
2252 | case MSR_IA32_LASTBRANCHFROMIP: | |
2253 | case MSR_IA32_LASTBRANCHTOIP: | |
2254 | case MSR_IA32_LASTINTFROMIP: | |
2255 | case MSR_IA32_LASTINTTOIP: | |
60af2ecd JSR |
2256 | case MSR_K8_SYSCFG: |
2257 | case MSR_K7_HWCR: | |
61a6bd67 | 2258 | case MSR_VM_HSAVE_PA: |
9e699624 | 2259 | case MSR_K7_EVNTSEL0: |
1f3ee616 | 2260 | case MSR_K7_PERFCTR0: |
1fdbd48c | 2261 | case MSR_K8_INT_PENDING_MSG: |
c323c0e5 | 2262 | case MSR_AMD64_NB_CFG: |
f7c6d140 | 2263 | case MSR_FAM10H_MMIO_CONF_BASE: |
2e32b719 | 2264 | case MSR_AMD64_BU_CFG2: |
15c4a640 CO |
2265 | data = 0; |
2266 | break; | |
5753785f GN |
2267 | case MSR_P6_PERFCTR0: |
2268 | case MSR_P6_PERFCTR1: | |
2269 | case MSR_P6_EVNTSEL0: | |
2270 | case MSR_P6_EVNTSEL1: | |
2271 | if (kvm_pmu_msr(vcpu, msr)) | |
2272 | return kvm_pmu_get_msr(vcpu, msr, pdata); | |
2273 | data = 0; | |
2274 | break; | |
742bc670 MT |
2275 | case MSR_IA32_UCODE_REV: |
2276 | data = 0x100000000ULL; | |
2277 | break; | |
9ba075a6 AK |
2278 | case MSR_MTRRcap: |
2279 | data = 0x500 | KVM_NR_VAR_MTRR; | |
2280 | break; | |
2281 | case 0x200 ... 0x2ff: | |
2282 | return get_msr_mtrr(vcpu, msr, pdata); | |
15c4a640 CO |
2283 | case 0xcd: /* fsb frequency */ |
2284 | data = 3; | |
2285 | break; | |
7b914098 JS |
2286 | /* |
2287 | * MSR_EBC_FREQUENCY_ID | |
2288 | * Conservative value valid for even the basic CPU models. | |
2289 | * Models 0,1: 000 in bits 23:21 indicating a bus speed of | |
2290 | * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, | |
2291 | * and 266MHz for model 3, or 4. Set Core Clock | |
2292 | * Frequency to System Bus Frequency Ratio to 1 (bits | |
2293 | * 31:24) even though these are only valid for CPU | |
2294 | * models > 2, however guests may end up dividing or | |
2295 | * multiplying by zero otherwise. | |
2296 | */ | |
2297 | case MSR_EBC_FREQUENCY_ID: | |
2298 | data = 1 << 24; | |
2299 | break; | |
15c4a640 CO |
2300 | case MSR_IA32_APICBASE: |
2301 | data = kvm_get_apic_base(vcpu); | |
2302 | break; | |
0105d1a5 GN |
2303 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
2304 | return kvm_x2apic_msr_read(vcpu, msr, pdata); | |
2305 | break; | |
a3e06bbe LJ |
2306 | case MSR_IA32_TSCDEADLINE: |
2307 | data = kvm_get_lapic_tscdeadline_msr(vcpu); | |
2308 | break; | |
ba904635 WA |
2309 | case MSR_IA32_TSC_ADJUST: |
2310 | data = (u64)vcpu->arch.ia32_tsc_adjust_msr; | |
2311 | break; | |
15c4a640 | 2312 | case MSR_IA32_MISC_ENABLE: |
ad312c7c | 2313 | data = vcpu->arch.ia32_misc_enable_msr; |
15c4a640 | 2314 | break; |
847f0ad8 AG |
2315 | case MSR_IA32_PERF_STATUS: |
2316 | /* TSC increment by tick */ | |
2317 | data = 1000ULL; | |
2318 | /* CPU multiplier */ | |
2319 | data |= (((uint64_t)4ULL) << 40); | |
2320 | break; | |
15c4a640 | 2321 | case MSR_EFER: |
f6801dff | 2322 | data = vcpu->arch.efer; |
15c4a640 | 2323 | break; |
18068523 | 2324 | case MSR_KVM_WALL_CLOCK: |
11c6bffa | 2325 | case MSR_KVM_WALL_CLOCK_NEW: |
18068523 GOC |
2326 | data = vcpu->kvm->arch.wall_clock; |
2327 | break; | |
2328 | case MSR_KVM_SYSTEM_TIME: | |
11c6bffa | 2329 | case MSR_KVM_SYSTEM_TIME_NEW: |
18068523 GOC |
2330 | data = vcpu->arch.time; |
2331 | break; | |
344d9588 GN |
2332 | case MSR_KVM_ASYNC_PF_EN: |
2333 | data = vcpu->arch.apf.msr_val; | |
2334 | break; | |
c9aaa895 GC |
2335 | case MSR_KVM_STEAL_TIME: |
2336 | data = vcpu->arch.st.msr_val; | |
2337 | break; | |
1d92128f MT |
2338 | case MSR_KVM_PV_EOI_EN: |
2339 | data = vcpu->arch.pv_eoi.msr_val; | |
2340 | break; | |
890ca9ae YH |
2341 | case MSR_IA32_P5_MC_ADDR: |
2342 | case MSR_IA32_P5_MC_TYPE: | |
2343 | case MSR_IA32_MCG_CAP: | |
2344 | case MSR_IA32_MCG_CTL: | |
2345 | case MSR_IA32_MCG_STATUS: | |
2346 | case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: | |
2347 | return get_msr_mce(vcpu, msr, pdata); | |
84e0cefa JS |
2348 | case MSR_K7_CLK_CTL: |
2349 | /* | |
2350 | * Provide expected ramp-up count for K7. All other | |
2351 | * are set to zero, indicating minimum divisors for | |
2352 | * every field. | |
2353 | * | |
2354 | * This prevents guest kernels on AMD host with CPU | |
2355 | * type 6, model 8 and higher from exploding due to | |
2356 | * the rdmsr failing. | |
2357 | */ | |
2358 | data = 0x20000000; | |
2359 | break; | |
55cd8e5a GN |
2360 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
2361 | if (kvm_hv_msr_partition_wide(msr)) { | |
2362 | int r; | |
2363 | mutex_lock(&vcpu->kvm->lock); | |
2364 | r = get_msr_hyperv_pw(vcpu, msr, pdata); | |
2365 | mutex_unlock(&vcpu->kvm->lock); | |
2366 | return r; | |
2367 | } else | |
2368 | return get_msr_hyperv(vcpu, msr, pdata); | |
2369 | break; | |
91c9c3ed | 2370 | case MSR_IA32_BBL_CR_CTL3: |
2371 | /* This legacy MSR exists but isn't fully documented in current | |
2372 | * silicon. It is however accessed by winxp in very narrow | |
2373 | * scenarios where it sets bit #19, itself documented as | |
2374 | * a "reserved" bit. Best effort attempt to source coherent | |
2375 | * read data here should the balance of the register be | |
2376 | * interpreted by the guest: | |
2377 | * | |
2378 | * L2 cache control register 3: 64GB range, 256KB size, | |
2379 | * enabled, latency 0x1, configured | |
2380 | */ | |
2381 | data = 0xbe702111; | |
2382 | break; | |
2b036c6b BO |
2383 | case MSR_AMD64_OSVW_ID_LENGTH: |
2384 | if (!guest_cpuid_has_osvw(vcpu)) | |
2385 | return 1; | |
2386 | data = vcpu->arch.osvw.length; | |
2387 | break; | |
2388 | case MSR_AMD64_OSVW_STATUS: | |
2389 | if (!guest_cpuid_has_osvw(vcpu)) | |
2390 | return 1; | |
2391 | data = vcpu->arch.osvw.status; | |
2392 | break; | |
15c4a640 | 2393 | default: |
f5132b01 GN |
2394 | if (kvm_pmu_msr(vcpu, msr)) |
2395 | return kvm_pmu_get_msr(vcpu, msr, pdata); | |
ed85c068 | 2396 | if (!ignore_msrs) { |
a737f256 | 2397 | vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); |
ed85c068 AP |
2398 | return 1; |
2399 | } else { | |
a737f256 | 2400 | vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); |
ed85c068 AP |
2401 | data = 0; |
2402 | } | |
2403 | break; | |
15c4a640 CO |
2404 | } |
2405 | *pdata = data; | |
2406 | return 0; | |
2407 | } | |
2408 | EXPORT_SYMBOL_GPL(kvm_get_msr_common); | |
2409 | ||
313a3dc7 CO |
2410 | /* |
2411 | * Read or write a bunch of msrs. All parameters are kernel addresses. | |
2412 | * | |
2413 | * @return number of msrs set successfully. | |
2414 | */ | |
2415 | static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, | |
2416 | struct kvm_msr_entry *entries, | |
2417 | int (*do_msr)(struct kvm_vcpu *vcpu, | |
2418 | unsigned index, u64 *data)) | |
2419 | { | |
f656ce01 | 2420 | int i, idx; |
313a3dc7 | 2421 | |
f656ce01 | 2422 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
313a3dc7 CO |
2423 | for (i = 0; i < msrs->nmsrs; ++i) |
2424 | if (do_msr(vcpu, entries[i].index, &entries[i].data)) | |
2425 | break; | |
f656ce01 | 2426 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
313a3dc7 | 2427 | |
313a3dc7 CO |
2428 | return i; |
2429 | } | |
2430 | ||
2431 | /* | |
2432 | * Read or write a bunch of msrs. Parameters are user addresses. | |
2433 | * | |
2434 | * @return number of msrs set successfully. | |
2435 | */ | |
2436 | static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, | |
2437 | int (*do_msr)(struct kvm_vcpu *vcpu, | |
2438 | unsigned index, u64 *data), | |
2439 | int writeback) | |
2440 | { | |
2441 | struct kvm_msrs msrs; | |
2442 | struct kvm_msr_entry *entries; | |
2443 | int r, n; | |
2444 | unsigned size; | |
2445 | ||
2446 | r = -EFAULT; | |
2447 | if (copy_from_user(&msrs, user_msrs, sizeof msrs)) | |
2448 | goto out; | |
2449 | ||
2450 | r = -E2BIG; | |
2451 | if (msrs.nmsrs >= MAX_IO_MSRS) | |
2452 | goto out; | |
2453 | ||
313a3dc7 | 2454 | size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; |
ff5c2c03 SL |
2455 | entries = memdup_user(user_msrs->entries, size); |
2456 | if (IS_ERR(entries)) { | |
2457 | r = PTR_ERR(entries); | |
313a3dc7 | 2458 | goto out; |
ff5c2c03 | 2459 | } |
313a3dc7 CO |
2460 | |
2461 | r = n = __msr_io(vcpu, &msrs, entries, do_msr); | |
2462 | if (r < 0) | |
2463 | goto out_free; | |
2464 | ||
2465 | r = -EFAULT; | |
2466 | if (writeback && copy_to_user(user_msrs->entries, entries, size)) | |
2467 | goto out_free; | |
2468 | ||
2469 | r = n; | |
2470 | ||
2471 | out_free: | |
7a73c028 | 2472 | kfree(entries); |
313a3dc7 CO |
2473 | out: |
2474 | return r; | |
2475 | } | |
2476 | ||
018d00d2 ZX |
2477 | int kvm_dev_ioctl_check_extension(long ext) |
2478 | { | |
2479 | int r; | |
2480 | ||
2481 | switch (ext) { | |
2482 | case KVM_CAP_IRQCHIP: | |
2483 | case KVM_CAP_HLT: | |
2484 | case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: | |
018d00d2 | 2485 | case KVM_CAP_SET_TSS_ADDR: |
07716717 | 2486 | case KVM_CAP_EXT_CPUID: |
c8076604 | 2487 | case KVM_CAP_CLOCKSOURCE: |
7837699f | 2488 | case KVM_CAP_PIT: |
a28e4f5a | 2489 | case KVM_CAP_NOP_IO_DELAY: |
62d9f0db | 2490 | case KVM_CAP_MP_STATE: |
ed848624 | 2491 | case KVM_CAP_SYNC_MMU: |
a355c85c | 2492 | case KVM_CAP_USER_NMI: |
52d939a0 | 2493 | case KVM_CAP_REINJECT_CONTROL: |
4925663a | 2494 | case KVM_CAP_IRQ_INJECT_STATUS: |
e56d532f | 2495 | case KVM_CAP_ASSIGN_DEV_IRQ: |
721eecbf | 2496 | case KVM_CAP_IRQFD: |
d34e6b17 | 2497 | case KVM_CAP_IOEVENTFD: |
c5ff41ce | 2498 | case KVM_CAP_PIT2: |
e9f42757 | 2499 | case KVM_CAP_PIT_STATE2: |
b927a3ce | 2500 | case KVM_CAP_SET_IDENTITY_MAP_ADDR: |
ffde22ac | 2501 | case KVM_CAP_XEN_HVM: |
afbcf7ab | 2502 | case KVM_CAP_ADJUST_CLOCK: |
3cfc3092 | 2503 | case KVM_CAP_VCPU_EVENTS: |
55cd8e5a | 2504 | case KVM_CAP_HYPERV: |
10388a07 | 2505 | case KVM_CAP_HYPERV_VAPIC: |
c25bc163 | 2506 | case KVM_CAP_HYPERV_SPIN: |
ab9f4ecb | 2507 | case KVM_CAP_PCI_SEGMENT: |
a1efbe77 | 2508 | case KVM_CAP_DEBUGREGS: |
d2be1651 | 2509 | case KVM_CAP_X86_ROBUST_SINGLESTEP: |
2d5b5a66 | 2510 | case KVM_CAP_XSAVE: |
344d9588 | 2511 | case KVM_CAP_ASYNC_PF: |
92a1f12d | 2512 | case KVM_CAP_GET_TSC_KHZ: |
07700a94 | 2513 | case KVM_CAP_PCI_2_3: |
1c0b28c2 | 2514 | case KVM_CAP_KVMCLOCK_CTRL: |
4d8b81ab | 2515 | case KVM_CAP_READONLY_MEM: |
7a84428a | 2516 | case KVM_CAP_IRQFD_RESAMPLE: |
018d00d2 ZX |
2517 | r = 1; |
2518 | break; | |
542472b5 LV |
2519 | case KVM_CAP_COALESCED_MMIO: |
2520 | r = KVM_COALESCED_MMIO_PAGE_OFFSET; | |
2521 | break; | |
774ead3a AK |
2522 | case KVM_CAP_VAPIC: |
2523 | r = !kvm_x86_ops->cpu_has_accelerated_tpr(); | |
2524 | break; | |
f725230a | 2525 | case KVM_CAP_NR_VCPUS: |
8c3ba334 SL |
2526 | r = KVM_SOFT_MAX_VCPUS; |
2527 | break; | |
2528 | case KVM_CAP_MAX_VCPUS: | |
f725230a AK |
2529 | r = KVM_MAX_VCPUS; |
2530 | break; | |
a988b910 | 2531 | case KVM_CAP_NR_MEMSLOTS: |
bbacc0c1 | 2532 | r = KVM_USER_MEM_SLOTS; |
a988b910 | 2533 | break; |
a68a6a72 MT |
2534 | case KVM_CAP_PV_MMU: /* obsolete */ |
2535 | r = 0; | |
2f333bcb | 2536 | break; |
62c476c7 | 2537 | case KVM_CAP_IOMMU: |
a1b60c1c | 2538 | r = iommu_present(&pci_bus_type); |
62c476c7 | 2539 | break; |
890ca9ae YH |
2540 | case KVM_CAP_MCE: |
2541 | r = KVM_MAX_MCE_BANKS; | |
2542 | break; | |
2d5b5a66 SY |
2543 | case KVM_CAP_XCRS: |
2544 | r = cpu_has_xsave; | |
2545 | break; | |
92a1f12d JR |
2546 | case KVM_CAP_TSC_CONTROL: |
2547 | r = kvm_has_tsc_control; | |
2548 | break; | |
4d25a066 JK |
2549 | case KVM_CAP_TSC_DEADLINE_TIMER: |
2550 | r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); | |
2551 | break; | |
018d00d2 ZX |
2552 | default: |
2553 | r = 0; | |
2554 | break; | |
2555 | } | |
2556 | return r; | |
2557 | ||
2558 | } | |
2559 | ||
043405e1 CO |
2560 | long kvm_arch_dev_ioctl(struct file *filp, |
2561 | unsigned int ioctl, unsigned long arg) | |
2562 | { | |
2563 | void __user *argp = (void __user *)arg; | |
2564 | long r; | |
2565 | ||
2566 | switch (ioctl) { | |
2567 | case KVM_GET_MSR_INDEX_LIST: { | |
2568 | struct kvm_msr_list __user *user_msr_list = argp; | |
2569 | struct kvm_msr_list msr_list; | |
2570 | unsigned n; | |
2571 | ||
2572 | r = -EFAULT; | |
2573 | if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) | |
2574 | goto out; | |
2575 | n = msr_list.nmsrs; | |
2576 | msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); | |
2577 | if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) | |
2578 | goto out; | |
2579 | r = -E2BIG; | |
e125e7b6 | 2580 | if (n < msr_list.nmsrs) |
043405e1 CO |
2581 | goto out; |
2582 | r = -EFAULT; | |
2583 | if (copy_to_user(user_msr_list->indices, &msrs_to_save, | |
2584 | num_msrs_to_save * sizeof(u32))) | |
2585 | goto out; | |
e125e7b6 | 2586 | if (copy_to_user(user_msr_list->indices + num_msrs_to_save, |
043405e1 CO |
2587 | &emulated_msrs, |
2588 | ARRAY_SIZE(emulated_msrs) * sizeof(u32))) | |
2589 | goto out; | |
2590 | r = 0; | |
2591 | break; | |
2592 | } | |
674eea0f AK |
2593 | case KVM_GET_SUPPORTED_CPUID: { |
2594 | struct kvm_cpuid2 __user *cpuid_arg = argp; | |
2595 | struct kvm_cpuid2 cpuid; | |
2596 | ||
2597 | r = -EFAULT; | |
2598 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
2599 | goto out; | |
2600 | r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, | |
19355475 | 2601 | cpuid_arg->entries); |
674eea0f AK |
2602 | if (r) |
2603 | goto out; | |
2604 | ||
2605 | r = -EFAULT; | |
2606 | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | |
2607 | goto out; | |
2608 | r = 0; | |
2609 | break; | |
2610 | } | |
890ca9ae YH |
2611 | case KVM_X86_GET_MCE_CAP_SUPPORTED: { |
2612 | u64 mce_cap; | |
2613 | ||
2614 | mce_cap = KVM_MCE_CAP_SUPPORTED; | |
2615 | r = -EFAULT; | |
2616 | if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) | |
2617 | goto out; | |
2618 | r = 0; | |
2619 | break; | |
2620 | } | |
043405e1 CO |
2621 | default: |
2622 | r = -EINVAL; | |
2623 | } | |
2624 | out: | |
2625 | return r; | |
2626 | } | |
2627 | ||
f5f48ee1 SY |
2628 | static void wbinvd_ipi(void *garbage) |
2629 | { | |
2630 | wbinvd(); | |
2631 | } | |
2632 | ||
2633 | static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) | |
2634 | { | |
2635 | return vcpu->kvm->arch.iommu_domain && | |
2636 | !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); | |
2637 | } | |
2638 | ||
313a3dc7 CO |
2639 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
2640 | { | |
f5f48ee1 SY |
2641 | /* Address WBINVD may be executed by guest */ |
2642 | if (need_emulate_wbinvd(vcpu)) { | |
2643 | if (kvm_x86_ops->has_wbinvd_exit()) | |
2644 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | |
2645 | else if (vcpu->cpu != -1 && vcpu->cpu != cpu) | |
2646 | smp_call_function_single(vcpu->cpu, | |
2647 | wbinvd_ipi, NULL, 1); | |
2648 | } | |
2649 | ||
313a3dc7 | 2650 | kvm_x86_ops->vcpu_load(vcpu, cpu); |
8f6055cb | 2651 | |
0dd6a6ed ZA |
2652 | /* Apply any externally detected TSC adjustments (due to suspend) */ |
2653 | if (unlikely(vcpu->arch.tsc_offset_adjustment)) { | |
2654 | adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); | |
2655 | vcpu->arch.tsc_offset_adjustment = 0; | |
2656 | set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); | |
2657 | } | |
8f6055cb | 2658 | |
48434c20 | 2659 | if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { |
6f526ec5 ZA |
2660 | s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : |
2661 | native_read_tsc() - vcpu->arch.last_host_tsc; | |
e48672fa ZA |
2662 | if (tsc_delta < 0) |
2663 | mark_tsc_unstable("KVM discovered backwards TSC"); | |
c285545f | 2664 | if (check_tsc_unstable()) { |
b183aa58 ZA |
2665 | u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, |
2666 | vcpu->arch.last_guest_tsc); | |
2667 | kvm_x86_ops->write_tsc_offset(vcpu, offset); | |
c285545f | 2668 | vcpu->arch.tsc_catchup = 1; |
c285545f | 2669 | } |
d98d07ca MT |
2670 | /* |
2671 | * On a host with synchronized TSC, there is no need to update | |
2672 | * kvmclock on vcpu->cpu migration | |
2673 | */ | |
2674 | if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) | |
2675 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | |
c285545f ZA |
2676 | if (vcpu->cpu != cpu) |
2677 | kvm_migrate_timers(vcpu); | |
e48672fa | 2678 | vcpu->cpu = cpu; |
6b7d7e76 | 2679 | } |
c9aaa895 GC |
2680 | |
2681 | accumulate_steal_time(vcpu); | |
2682 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); | |
313a3dc7 CO |
2683 | } |
2684 | ||
2685 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) | |
2686 | { | |
02daab21 | 2687 | kvm_x86_ops->vcpu_put(vcpu); |
1c11e713 | 2688 | kvm_put_guest_fpu(vcpu); |
6f526ec5 | 2689 | vcpu->arch.last_host_tsc = native_read_tsc(); |
313a3dc7 CO |
2690 | } |
2691 | ||
313a3dc7 CO |
2692 | static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, |
2693 | struct kvm_lapic_state *s) | |
2694 | { | |
ad312c7c | 2695 | memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); |
313a3dc7 CO |
2696 | |
2697 | return 0; | |
2698 | } | |
2699 | ||
2700 | static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, | |
2701 | struct kvm_lapic_state *s) | |
2702 | { | |
64eb0620 | 2703 | kvm_apic_post_state_restore(vcpu, s); |
cb142eb7 | 2704 | update_cr8_intercept(vcpu); |
313a3dc7 CO |
2705 | |
2706 | return 0; | |
2707 | } | |
2708 | ||
f77bc6a4 ZX |
2709 | static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, |
2710 | struct kvm_interrupt *irq) | |
2711 | { | |
02cdb50f | 2712 | if (irq->irq >= KVM_NR_INTERRUPTS) |
f77bc6a4 ZX |
2713 | return -EINVAL; |
2714 | if (irqchip_in_kernel(vcpu->kvm)) | |
2715 | return -ENXIO; | |
f77bc6a4 | 2716 | |
66fd3f7f | 2717 | kvm_queue_interrupt(vcpu, irq->irq, false); |
3842d135 | 2718 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
f77bc6a4 | 2719 | |
f77bc6a4 ZX |
2720 | return 0; |
2721 | } | |
2722 | ||
c4abb7c9 JK |
2723 | static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) |
2724 | { | |
c4abb7c9 | 2725 | kvm_inject_nmi(vcpu); |
c4abb7c9 JK |
2726 | |
2727 | return 0; | |
2728 | } | |
2729 | ||
b209749f AK |
2730 | static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, |
2731 | struct kvm_tpr_access_ctl *tac) | |
2732 | { | |
2733 | if (tac->flags) | |
2734 | return -EINVAL; | |
2735 | vcpu->arch.tpr_access_reporting = !!tac->enabled; | |
2736 | return 0; | |
2737 | } | |
2738 | ||
890ca9ae YH |
2739 | static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, |
2740 | u64 mcg_cap) | |
2741 | { | |
2742 | int r; | |
2743 | unsigned bank_num = mcg_cap & 0xff, bank; | |
2744 | ||
2745 | r = -EINVAL; | |
a9e38c3e | 2746 | if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) |
890ca9ae YH |
2747 | goto out; |
2748 | if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) | |
2749 | goto out; | |
2750 | r = 0; | |
2751 | vcpu->arch.mcg_cap = mcg_cap; | |
2752 | /* Init IA32_MCG_CTL to all 1s */ | |
2753 | if (mcg_cap & MCG_CTL_P) | |
2754 | vcpu->arch.mcg_ctl = ~(u64)0; | |
2755 | /* Init IA32_MCi_CTL to all 1s */ | |
2756 | for (bank = 0; bank < bank_num; bank++) | |
2757 | vcpu->arch.mce_banks[bank*4] = ~(u64)0; | |
2758 | out: | |
2759 | return r; | |
2760 | } | |
2761 | ||
2762 | static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, | |
2763 | struct kvm_x86_mce *mce) | |
2764 | { | |
2765 | u64 mcg_cap = vcpu->arch.mcg_cap; | |
2766 | unsigned bank_num = mcg_cap & 0xff; | |
2767 | u64 *banks = vcpu->arch.mce_banks; | |
2768 | ||
2769 | if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) | |
2770 | return -EINVAL; | |
2771 | /* | |
2772 | * if IA32_MCG_CTL is not all 1s, the uncorrected error | |
2773 | * reporting is disabled | |
2774 | */ | |
2775 | if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && | |
2776 | vcpu->arch.mcg_ctl != ~(u64)0) | |
2777 | return 0; | |
2778 | banks += 4 * mce->bank; | |
2779 | /* | |
2780 | * if IA32_MCi_CTL is not all 1s, the uncorrected error | |
2781 | * reporting is disabled for the bank | |
2782 | */ | |
2783 | if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) | |
2784 | return 0; | |
2785 | if (mce->status & MCI_STATUS_UC) { | |
2786 | if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || | |
fc78f519 | 2787 | !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { |
a8eeb04a | 2788 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
890ca9ae YH |
2789 | return 0; |
2790 | } | |
2791 | if (banks[1] & MCI_STATUS_VAL) | |
2792 | mce->status |= MCI_STATUS_OVER; | |
2793 | banks[2] = mce->addr; | |
2794 | banks[3] = mce->misc; | |
2795 | vcpu->arch.mcg_status = mce->mcg_status; | |
2796 | banks[1] = mce->status; | |
2797 | kvm_queue_exception(vcpu, MC_VECTOR); | |
2798 | } else if (!(banks[1] & MCI_STATUS_VAL) | |
2799 | || !(banks[1] & MCI_STATUS_UC)) { | |
2800 | if (banks[1] & MCI_STATUS_VAL) | |
2801 | mce->status |= MCI_STATUS_OVER; | |
2802 | banks[2] = mce->addr; | |
2803 | banks[3] = mce->misc; | |
2804 | banks[1] = mce->status; | |
2805 | } else | |
2806 | banks[1] |= MCI_STATUS_OVER; | |
2807 | return 0; | |
2808 | } | |
2809 | ||
3cfc3092 JK |
2810 | static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, |
2811 | struct kvm_vcpu_events *events) | |
2812 | { | |
7460fb4a | 2813 | process_nmi(vcpu); |
03b82a30 JK |
2814 | events->exception.injected = |
2815 | vcpu->arch.exception.pending && | |
2816 | !kvm_exception_is_soft(vcpu->arch.exception.nr); | |
3cfc3092 JK |
2817 | events->exception.nr = vcpu->arch.exception.nr; |
2818 | events->exception.has_error_code = vcpu->arch.exception.has_error_code; | |
97e69aa6 | 2819 | events->exception.pad = 0; |
3cfc3092 JK |
2820 | events->exception.error_code = vcpu->arch.exception.error_code; |
2821 | ||
03b82a30 JK |
2822 | events->interrupt.injected = |
2823 | vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; | |
3cfc3092 | 2824 | events->interrupt.nr = vcpu->arch.interrupt.nr; |
03b82a30 | 2825 | events->interrupt.soft = 0; |
48005f64 JK |
2826 | events->interrupt.shadow = |
2827 | kvm_x86_ops->get_interrupt_shadow(vcpu, | |
2828 | KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); | |
3cfc3092 JK |
2829 | |
2830 | events->nmi.injected = vcpu->arch.nmi_injected; | |
7460fb4a | 2831 | events->nmi.pending = vcpu->arch.nmi_pending != 0; |
3cfc3092 | 2832 | events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); |
97e69aa6 | 2833 | events->nmi.pad = 0; |
3cfc3092 | 2834 | |
66450a21 | 2835 | events->sipi_vector = 0; /* never valid when reporting to user space */ |
3cfc3092 | 2836 | |
dab4b911 | 2837 | events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING |
48005f64 | 2838 | | KVM_VCPUEVENT_VALID_SHADOW); |
97e69aa6 | 2839 | memset(&events->reserved, 0, sizeof(events->reserved)); |
3cfc3092 JK |
2840 | } |
2841 | ||
2842 | static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, | |
2843 | struct kvm_vcpu_events *events) | |
2844 | { | |
dab4b911 | 2845 | if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING |
48005f64 JK |
2846 | | KVM_VCPUEVENT_VALID_SIPI_VECTOR |
2847 | | KVM_VCPUEVENT_VALID_SHADOW)) | |
3cfc3092 JK |
2848 | return -EINVAL; |
2849 | ||
7460fb4a | 2850 | process_nmi(vcpu); |
3cfc3092 JK |
2851 | vcpu->arch.exception.pending = events->exception.injected; |
2852 | vcpu->arch.exception.nr = events->exception.nr; | |
2853 | vcpu->arch.exception.has_error_code = events->exception.has_error_code; | |
2854 | vcpu->arch.exception.error_code = events->exception.error_code; | |
2855 | ||
2856 | vcpu->arch.interrupt.pending = events->interrupt.injected; | |
2857 | vcpu->arch.interrupt.nr = events->interrupt.nr; | |
2858 | vcpu->arch.interrupt.soft = events->interrupt.soft; | |
48005f64 JK |
2859 | if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) |
2860 | kvm_x86_ops->set_interrupt_shadow(vcpu, | |
2861 | events->interrupt.shadow); | |
3cfc3092 JK |
2862 | |
2863 | vcpu->arch.nmi_injected = events->nmi.injected; | |
dab4b911 JK |
2864 | if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) |
2865 | vcpu->arch.nmi_pending = events->nmi.pending; | |
3cfc3092 JK |
2866 | kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); |
2867 | ||
66450a21 JK |
2868 | if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && |
2869 | kvm_vcpu_has_lapic(vcpu)) | |
2870 | vcpu->arch.apic->sipi_vector = events->sipi_vector; | |
3cfc3092 | 2871 | |
3842d135 AK |
2872 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
2873 | ||
3cfc3092 JK |
2874 | return 0; |
2875 | } | |
2876 | ||
a1efbe77 JK |
2877 | static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, |
2878 | struct kvm_debugregs *dbgregs) | |
2879 | { | |
a1efbe77 JK |
2880 | memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); |
2881 | dbgregs->dr6 = vcpu->arch.dr6; | |
2882 | dbgregs->dr7 = vcpu->arch.dr7; | |
2883 | dbgregs->flags = 0; | |
97e69aa6 | 2884 | memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); |
a1efbe77 JK |
2885 | } |
2886 | ||
2887 | static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, | |
2888 | struct kvm_debugregs *dbgregs) | |
2889 | { | |
2890 | if (dbgregs->flags) | |
2891 | return -EINVAL; | |
2892 | ||
a1efbe77 JK |
2893 | memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); |
2894 | vcpu->arch.dr6 = dbgregs->dr6; | |
2895 | vcpu->arch.dr7 = dbgregs->dr7; | |
2896 | ||
a1efbe77 JK |
2897 | return 0; |
2898 | } | |
2899 | ||
2d5b5a66 SY |
2900 | static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, |
2901 | struct kvm_xsave *guest_xsave) | |
2902 | { | |
2903 | if (cpu_has_xsave) | |
2904 | memcpy(guest_xsave->region, | |
2905 | &vcpu->arch.guest_fpu.state->xsave, | |
f45755b8 | 2906 | xstate_size); |
2d5b5a66 SY |
2907 | else { |
2908 | memcpy(guest_xsave->region, | |
2909 | &vcpu->arch.guest_fpu.state->fxsave, | |
2910 | sizeof(struct i387_fxsave_struct)); | |
2911 | *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = | |
2912 | XSTATE_FPSSE; | |
2913 | } | |
2914 | } | |
2915 | ||
2916 | static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, | |
2917 | struct kvm_xsave *guest_xsave) | |
2918 | { | |
2919 | u64 xstate_bv = | |
2920 | *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; | |
2921 | ||
2922 | if (cpu_has_xsave) | |
2923 | memcpy(&vcpu->arch.guest_fpu.state->xsave, | |
f45755b8 | 2924 | guest_xsave->region, xstate_size); |
2d5b5a66 SY |
2925 | else { |
2926 | if (xstate_bv & ~XSTATE_FPSSE) | |
2927 | return -EINVAL; | |
2928 | memcpy(&vcpu->arch.guest_fpu.state->fxsave, | |
2929 | guest_xsave->region, sizeof(struct i387_fxsave_struct)); | |
2930 | } | |
2931 | return 0; | |
2932 | } | |
2933 | ||
2934 | static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, | |
2935 | struct kvm_xcrs *guest_xcrs) | |
2936 | { | |
2937 | if (!cpu_has_xsave) { | |
2938 | guest_xcrs->nr_xcrs = 0; | |
2939 | return; | |
2940 | } | |
2941 | ||
2942 | guest_xcrs->nr_xcrs = 1; | |
2943 | guest_xcrs->flags = 0; | |
2944 | guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; | |
2945 | guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; | |
2946 | } | |
2947 | ||
2948 | static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, | |
2949 | struct kvm_xcrs *guest_xcrs) | |
2950 | { | |
2951 | int i, r = 0; | |
2952 | ||
2953 | if (!cpu_has_xsave) | |
2954 | return -EINVAL; | |
2955 | ||
2956 | if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) | |
2957 | return -EINVAL; | |
2958 | ||
2959 | for (i = 0; i < guest_xcrs->nr_xcrs; i++) | |
2960 | /* Only support XCR0 currently */ | |
2961 | if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { | |
2962 | r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, | |
2963 | guest_xcrs->xcrs[0].value); | |
2964 | break; | |
2965 | } | |
2966 | if (r) | |
2967 | r = -EINVAL; | |
2968 | return r; | |
2969 | } | |
2970 | ||
1c0b28c2 EM |
2971 | /* |
2972 | * kvm_set_guest_paused() indicates to the guest kernel that it has been | |
2973 | * stopped by the hypervisor. This function will be called from the host only. | |
2974 | * EINVAL is returned when the host attempts to set the flag for a guest that | |
2975 | * does not support pv clocks. | |
2976 | */ | |
2977 | static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) | |
2978 | { | |
0b79459b | 2979 | if (!vcpu->arch.pv_time_enabled) |
1c0b28c2 | 2980 | return -EINVAL; |
51d59c6b | 2981 | vcpu->arch.pvclock_set_guest_stopped_request = true; |
1c0b28c2 EM |
2982 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
2983 | return 0; | |
2984 | } | |
2985 | ||
313a3dc7 CO |
2986 | long kvm_arch_vcpu_ioctl(struct file *filp, |
2987 | unsigned int ioctl, unsigned long arg) | |
2988 | { | |
2989 | struct kvm_vcpu *vcpu = filp->private_data; | |
2990 | void __user *argp = (void __user *)arg; | |
2991 | int r; | |
d1ac91d8 AK |
2992 | union { |
2993 | struct kvm_lapic_state *lapic; | |
2994 | struct kvm_xsave *xsave; | |
2995 | struct kvm_xcrs *xcrs; | |
2996 | void *buffer; | |
2997 | } u; | |
2998 | ||
2999 | u.buffer = NULL; | |
313a3dc7 CO |
3000 | switch (ioctl) { |
3001 | case KVM_GET_LAPIC: { | |
2204ae3c MT |
3002 | r = -EINVAL; |
3003 | if (!vcpu->arch.apic) | |
3004 | goto out; | |
d1ac91d8 | 3005 | u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); |
313a3dc7 | 3006 | |
b772ff36 | 3007 | r = -ENOMEM; |
d1ac91d8 | 3008 | if (!u.lapic) |
b772ff36 | 3009 | goto out; |
d1ac91d8 | 3010 | r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); |
313a3dc7 CO |
3011 | if (r) |
3012 | goto out; | |
3013 | r = -EFAULT; | |
d1ac91d8 | 3014 | if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) |
313a3dc7 CO |
3015 | goto out; |
3016 | r = 0; | |
3017 | break; | |
3018 | } | |
3019 | case KVM_SET_LAPIC: { | |
2204ae3c MT |
3020 | r = -EINVAL; |
3021 | if (!vcpu->arch.apic) | |
3022 | goto out; | |
ff5c2c03 | 3023 | u.lapic = memdup_user(argp, sizeof(*u.lapic)); |
18595411 GC |
3024 | if (IS_ERR(u.lapic)) |
3025 | return PTR_ERR(u.lapic); | |
ff5c2c03 | 3026 | |
d1ac91d8 | 3027 | r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); |
313a3dc7 CO |
3028 | break; |
3029 | } | |
f77bc6a4 ZX |
3030 | case KVM_INTERRUPT: { |
3031 | struct kvm_interrupt irq; | |
3032 | ||
3033 | r = -EFAULT; | |
3034 | if (copy_from_user(&irq, argp, sizeof irq)) | |
3035 | goto out; | |
3036 | r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); | |
f77bc6a4 ZX |
3037 | break; |
3038 | } | |
c4abb7c9 JK |
3039 | case KVM_NMI: { |
3040 | r = kvm_vcpu_ioctl_nmi(vcpu); | |
c4abb7c9 JK |
3041 | break; |
3042 | } | |
313a3dc7 CO |
3043 | case KVM_SET_CPUID: { |
3044 | struct kvm_cpuid __user *cpuid_arg = argp; | |
3045 | struct kvm_cpuid cpuid; | |
3046 | ||
3047 | r = -EFAULT; | |
3048 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3049 | goto out; | |
3050 | r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); | |
313a3dc7 CO |
3051 | break; |
3052 | } | |
07716717 DK |
3053 | case KVM_SET_CPUID2: { |
3054 | struct kvm_cpuid2 __user *cpuid_arg = argp; | |
3055 | struct kvm_cpuid2 cpuid; | |
3056 | ||
3057 | r = -EFAULT; | |
3058 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3059 | goto out; | |
3060 | r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, | |
19355475 | 3061 | cpuid_arg->entries); |
07716717 DK |
3062 | break; |
3063 | } | |
3064 | case KVM_GET_CPUID2: { | |
3065 | struct kvm_cpuid2 __user *cpuid_arg = argp; | |
3066 | struct kvm_cpuid2 cpuid; | |
3067 | ||
3068 | r = -EFAULT; | |
3069 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3070 | goto out; | |
3071 | r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, | |
19355475 | 3072 | cpuid_arg->entries); |
07716717 DK |
3073 | if (r) |
3074 | goto out; | |
3075 | r = -EFAULT; | |
3076 | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | |
3077 | goto out; | |
3078 | r = 0; | |
3079 | break; | |
3080 | } | |
313a3dc7 CO |
3081 | case KVM_GET_MSRS: |
3082 | r = msr_io(vcpu, argp, kvm_get_msr, 1); | |
3083 | break; | |
3084 | case KVM_SET_MSRS: | |
3085 | r = msr_io(vcpu, argp, do_set_msr, 0); | |
3086 | break; | |
b209749f AK |
3087 | case KVM_TPR_ACCESS_REPORTING: { |
3088 | struct kvm_tpr_access_ctl tac; | |
3089 | ||
3090 | r = -EFAULT; | |
3091 | if (copy_from_user(&tac, argp, sizeof tac)) | |
3092 | goto out; | |
3093 | r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); | |
3094 | if (r) | |
3095 | goto out; | |
3096 | r = -EFAULT; | |
3097 | if (copy_to_user(argp, &tac, sizeof tac)) | |
3098 | goto out; | |
3099 | r = 0; | |
3100 | break; | |
3101 | }; | |
b93463aa AK |
3102 | case KVM_SET_VAPIC_ADDR: { |
3103 | struct kvm_vapic_addr va; | |
3104 | ||
3105 | r = -EINVAL; | |
3106 | if (!irqchip_in_kernel(vcpu->kvm)) | |
3107 | goto out; | |
3108 | r = -EFAULT; | |
3109 | if (copy_from_user(&va, argp, sizeof va)) | |
3110 | goto out; | |
3111 | r = 0; | |
3112 | kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); | |
3113 | break; | |
3114 | } | |
890ca9ae YH |
3115 | case KVM_X86_SETUP_MCE: { |
3116 | u64 mcg_cap; | |
3117 | ||
3118 | r = -EFAULT; | |
3119 | if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) | |
3120 | goto out; | |
3121 | r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); | |
3122 | break; | |
3123 | } | |
3124 | case KVM_X86_SET_MCE: { | |
3125 | struct kvm_x86_mce mce; | |
3126 | ||
3127 | r = -EFAULT; | |
3128 | if (copy_from_user(&mce, argp, sizeof mce)) | |
3129 | goto out; | |
3130 | r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); | |
3131 | break; | |
3132 | } | |
3cfc3092 JK |
3133 | case KVM_GET_VCPU_EVENTS: { |
3134 | struct kvm_vcpu_events events; | |
3135 | ||
3136 | kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); | |
3137 | ||
3138 | r = -EFAULT; | |
3139 | if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) | |
3140 | break; | |
3141 | r = 0; | |
3142 | break; | |
3143 | } | |
3144 | case KVM_SET_VCPU_EVENTS: { | |
3145 | struct kvm_vcpu_events events; | |
3146 | ||
3147 | r = -EFAULT; | |
3148 | if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) | |
3149 | break; | |
3150 | ||
3151 | r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); | |
3152 | break; | |
3153 | } | |
a1efbe77 JK |
3154 | case KVM_GET_DEBUGREGS: { |
3155 | struct kvm_debugregs dbgregs; | |
3156 | ||
3157 | kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); | |
3158 | ||
3159 | r = -EFAULT; | |
3160 | if (copy_to_user(argp, &dbgregs, | |
3161 | sizeof(struct kvm_debugregs))) | |
3162 | break; | |
3163 | r = 0; | |
3164 | break; | |
3165 | } | |
3166 | case KVM_SET_DEBUGREGS: { | |
3167 | struct kvm_debugregs dbgregs; | |
3168 | ||
3169 | r = -EFAULT; | |
3170 | if (copy_from_user(&dbgregs, argp, | |
3171 | sizeof(struct kvm_debugregs))) | |
3172 | break; | |
3173 | ||
3174 | r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); | |
3175 | break; | |
3176 | } | |
2d5b5a66 | 3177 | case KVM_GET_XSAVE: { |
d1ac91d8 | 3178 | u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); |
2d5b5a66 | 3179 | r = -ENOMEM; |
d1ac91d8 | 3180 | if (!u.xsave) |
2d5b5a66 SY |
3181 | break; |
3182 | ||
d1ac91d8 | 3183 | kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); |
2d5b5a66 SY |
3184 | |
3185 | r = -EFAULT; | |
d1ac91d8 | 3186 | if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) |
2d5b5a66 SY |
3187 | break; |
3188 | r = 0; | |
3189 | break; | |
3190 | } | |
3191 | case KVM_SET_XSAVE: { | |
ff5c2c03 | 3192 | u.xsave = memdup_user(argp, sizeof(*u.xsave)); |
18595411 GC |
3193 | if (IS_ERR(u.xsave)) |
3194 | return PTR_ERR(u.xsave); | |
2d5b5a66 | 3195 | |
d1ac91d8 | 3196 | r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); |
2d5b5a66 SY |
3197 | break; |
3198 | } | |
3199 | case KVM_GET_XCRS: { | |
d1ac91d8 | 3200 | u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); |
2d5b5a66 | 3201 | r = -ENOMEM; |
d1ac91d8 | 3202 | if (!u.xcrs) |
2d5b5a66 SY |
3203 | break; |
3204 | ||
d1ac91d8 | 3205 | kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); |
2d5b5a66 SY |
3206 | |
3207 | r = -EFAULT; | |
d1ac91d8 | 3208 | if (copy_to_user(argp, u.xcrs, |
2d5b5a66 SY |
3209 | sizeof(struct kvm_xcrs))) |
3210 | break; | |
3211 | r = 0; | |
3212 | break; | |
3213 | } | |
3214 | case KVM_SET_XCRS: { | |
ff5c2c03 | 3215 | u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); |
18595411 GC |
3216 | if (IS_ERR(u.xcrs)) |
3217 | return PTR_ERR(u.xcrs); | |
2d5b5a66 | 3218 | |
d1ac91d8 | 3219 | r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); |
2d5b5a66 SY |
3220 | break; |
3221 | } | |
92a1f12d JR |
3222 | case KVM_SET_TSC_KHZ: { |
3223 | u32 user_tsc_khz; | |
3224 | ||
3225 | r = -EINVAL; | |
92a1f12d JR |
3226 | user_tsc_khz = (u32)arg; |
3227 | ||
3228 | if (user_tsc_khz >= kvm_max_guest_tsc_khz) | |
3229 | goto out; | |
3230 | ||
cc578287 ZA |
3231 | if (user_tsc_khz == 0) |
3232 | user_tsc_khz = tsc_khz; | |
3233 | ||
3234 | kvm_set_tsc_khz(vcpu, user_tsc_khz); | |
92a1f12d JR |
3235 | |
3236 | r = 0; | |
3237 | goto out; | |
3238 | } | |
3239 | case KVM_GET_TSC_KHZ: { | |
cc578287 | 3240 | r = vcpu->arch.virtual_tsc_khz; |
92a1f12d JR |
3241 | goto out; |
3242 | } | |
1c0b28c2 EM |
3243 | case KVM_KVMCLOCK_CTRL: { |
3244 | r = kvm_set_guest_paused(vcpu); | |
3245 | goto out; | |
3246 | } | |
313a3dc7 CO |
3247 | default: |
3248 | r = -EINVAL; | |
3249 | } | |
3250 | out: | |
d1ac91d8 | 3251 | kfree(u.buffer); |
313a3dc7 CO |
3252 | return r; |
3253 | } | |
3254 | ||
5b1c1493 CO |
3255 | int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
3256 | { | |
3257 | return VM_FAULT_SIGBUS; | |
3258 | } | |
3259 | ||
1fe779f8 CO |
3260 | static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) |
3261 | { | |
3262 | int ret; | |
3263 | ||
3264 | if (addr > (unsigned int)(-3 * PAGE_SIZE)) | |
951179ce | 3265 | return -EINVAL; |
1fe779f8 CO |
3266 | ret = kvm_x86_ops->set_tss_addr(kvm, addr); |
3267 | return ret; | |
3268 | } | |
3269 | ||
b927a3ce SY |
3270 | static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, |
3271 | u64 ident_addr) | |
3272 | { | |
3273 | kvm->arch.ept_identity_map_addr = ident_addr; | |
3274 | return 0; | |
3275 | } | |
3276 | ||
1fe779f8 CO |
3277 | static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, |
3278 | u32 kvm_nr_mmu_pages) | |
3279 | { | |
3280 | if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) | |
3281 | return -EINVAL; | |
3282 | ||
79fac95e | 3283 | mutex_lock(&kvm->slots_lock); |
1fe779f8 CO |
3284 | |
3285 | kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); | |
f05e70ac | 3286 | kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; |
1fe779f8 | 3287 | |
79fac95e | 3288 | mutex_unlock(&kvm->slots_lock); |
1fe779f8 CO |
3289 | return 0; |
3290 | } | |
3291 | ||
3292 | static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) | |
3293 | { | |
39de71ec | 3294 | return kvm->arch.n_max_mmu_pages; |
1fe779f8 CO |
3295 | } |
3296 | ||
1fe779f8 CO |
3297 | static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
3298 | { | |
3299 | int r; | |
3300 | ||
3301 | r = 0; | |
3302 | switch (chip->chip_id) { | |
3303 | case KVM_IRQCHIP_PIC_MASTER: | |
3304 | memcpy(&chip->chip.pic, | |
3305 | &pic_irqchip(kvm)->pics[0], | |
3306 | sizeof(struct kvm_pic_state)); | |
3307 | break; | |
3308 | case KVM_IRQCHIP_PIC_SLAVE: | |
3309 | memcpy(&chip->chip.pic, | |
3310 | &pic_irqchip(kvm)->pics[1], | |
3311 | sizeof(struct kvm_pic_state)); | |
3312 | break; | |
3313 | case KVM_IRQCHIP_IOAPIC: | |
eba0226b | 3314 | r = kvm_get_ioapic(kvm, &chip->chip.ioapic); |
1fe779f8 CO |
3315 | break; |
3316 | default: | |
3317 | r = -EINVAL; | |
3318 | break; | |
3319 | } | |
3320 | return r; | |
3321 | } | |
3322 | ||
3323 | static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | |
3324 | { | |
3325 | int r; | |
3326 | ||
3327 | r = 0; | |
3328 | switch (chip->chip_id) { | |
3329 | case KVM_IRQCHIP_PIC_MASTER: | |
f4f51050 | 3330 | spin_lock(&pic_irqchip(kvm)->lock); |
1fe779f8 CO |
3331 | memcpy(&pic_irqchip(kvm)->pics[0], |
3332 | &chip->chip.pic, | |
3333 | sizeof(struct kvm_pic_state)); | |
f4f51050 | 3334 | spin_unlock(&pic_irqchip(kvm)->lock); |
1fe779f8 CO |
3335 | break; |
3336 | case KVM_IRQCHIP_PIC_SLAVE: | |
f4f51050 | 3337 | spin_lock(&pic_irqchip(kvm)->lock); |
1fe779f8 CO |
3338 | memcpy(&pic_irqchip(kvm)->pics[1], |
3339 | &chip->chip.pic, | |
3340 | sizeof(struct kvm_pic_state)); | |
f4f51050 | 3341 | spin_unlock(&pic_irqchip(kvm)->lock); |
1fe779f8 CO |
3342 | break; |
3343 | case KVM_IRQCHIP_IOAPIC: | |
eba0226b | 3344 | r = kvm_set_ioapic(kvm, &chip->chip.ioapic); |
1fe779f8 CO |
3345 | break; |
3346 | default: | |
3347 | r = -EINVAL; | |
3348 | break; | |
3349 | } | |
3350 | kvm_pic_update_irq(pic_irqchip(kvm)); | |
3351 | return r; | |
3352 | } | |
3353 | ||
e0f63cb9 SY |
3354 | static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
3355 | { | |
3356 | int r = 0; | |
3357 | ||
894a9c55 | 3358 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
e0f63cb9 | 3359 | memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); |
894a9c55 | 3360 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
e0f63cb9 SY |
3361 | return r; |
3362 | } | |
3363 | ||
3364 | static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) | |
3365 | { | |
3366 | int r = 0; | |
3367 | ||
894a9c55 | 3368 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
e0f63cb9 | 3369 | memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); |
e9f42757 BK |
3370 | kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); |
3371 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); | |
3372 | return r; | |
3373 | } | |
3374 | ||
3375 | static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | |
3376 | { | |
3377 | int r = 0; | |
3378 | ||
3379 | mutex_lock(&kvm->arch.vpit->pit_state.lock); | |
3380 | memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, | |
3381 | sizeof(ps->channels)); | |
3382 | ps->flags = kvm->arch.vpit->pit_state.flags; | |
3383 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); | |
97e69aa6 | 3384 | memset(&ps->reserved, 0, sizeof(ps->reserved)); |
e9f42757 BK |
3385 | return r; |
3386 | } | |
3387 | ||
3388 | static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | |
3389 | { | |
3390 | int r = 0, start = 0; | |
3391 | u32 prev_legacy, cur_legacy; | |
3392 | mutex_lock(&kvm->arch.vpit->pit_state.lock); | |
3393 | prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; | |
3394 | cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; | |
3395 | if (!prev_legacy && cur_legacy) | |
3396 | start = 1; | |
3397 | memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, | |
3398 | sizeof(kvm->arch.vpit->pit_state.channels)); | |
3399 | kvm->arch.vpit->pit_state.flags = ps->flags; | |
3400 | kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); | |
894a9c55 | 3401 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
e0f63cb9 SY |
3402 | return r; |
3403 | } | |
3404 | ||
52d939a0 MT |
3405 | static int kvm_vm_ioctl_reinject(struct kvm *kvm, |
3406 | struct kvm_reinject_control *control) | |
3407 | { | |
3408 | if (!kvm->arch.vpit) | |
3409 | return -ENXIO; | |
894a9c55 | 3410 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
26ef1924 | 3411 | kvm->arch.vpit->pit_state.reinject = control->pit_reinject; |
894a9c55 | 3412 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
52d939a0 MT |
3413 | return 0; |
3414 | } | |
3415 | ||
95d4c16c | 3416 | /** |
60c34612 TY |
3417 | * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot |
3418 | * @kvm: kvm instance | |
3419 | * @log: slot id and address to which we copy the log | |
95d4c16c | 3420 | * |
60c34612 TY |
3421 | * We need to keep it in mind that VCPU threads can write to the bitmap |
3422 | * concurrently. So, to avoid losing data, we keep the following order for | |
3423 | * each bit: | |
95d4c16c | 3424 | * |
60c34612 TY |
3425 | * 1. Take a snapshot of the bit and clear it if needed. |
3426 | * 2. Write protect the corresponding page. | |
3427 | * 3. Flush TLB's if needed. | |
3428 | * 4. Copy the snapshot to the userspace. | |
95d4c16c | 3429 | * |
60c34612 TY |
3430 | * Between 2 and 3, the guest may write to the page using the remaining TLB |
3431 | * entry. This is not a problem because the page will be reported dirty at | |
3432 | * step 4 using the snapshot taken before and step 3 ensures that successive | |
3433 | * writes will be logged for the next call. | |
5bb064dc | 3434 | */ |
60c34612 | 3435 | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) |
5bb064dc | 3436 | { |
7850ac54 | 3437 | int r; |
5bb064dc | 3438 | struct kvm_memory_slot *memslot; |
60c34612 TY |
3439 | unsigned long n, i; |
3440 | unsigned long *dirty_bitmap; | |
3441 | unsigned long *dirty_bitmap_buffer; | |
3442 | bool is_dirty = false; | |
5bb064dc | 3443 | |
79fac95e | 3444 | mutex_lock(&kvm->slots_lock); |
5bb064dc | 3445 | |
b050b015 | 3446 | r = -EINVAL; |
bbacc0c1 | 3447 | if (log->slot >= KVM_USER_MEM_SLOTS) |
b050b015 MT |
3448 | goto out; |
3449 | ||
28a37544 | 3450 | memslot = id_to_memslot(kvm->memslots, log->slot); |
60c34612 TY |
3451 | |
3452 | dirty_bitmap = memslot->dirty_bitmap; | |
b050b015 | 3453 | r = -ENOENT; |
60c34612 | 3454 | if (!dirty_bitmap) |
b050b015 MT |
3455 | goto out; |
3456 | ||
87bf6e7d | 3457 | n = kvm_dirty_bitmap_bytes(memslot); |
b050b015 | 3458 | |
60c34612 TY |
3459 | dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); |
3460 | memset(dirty_bitmap_buffer, 0, n); | |
b050b015 | 3461 | |
60c34612 | 3462 | spin_lock(&kvm->mmu_lock); |
b050b015 | 3463 | |
60c34612 TY |
3464 | for (i = 0; i < n / sizeof(long); i++) { |
3465 | unsigned long mask; | |
3466 | gfn_t offset; | |
cdfca7b3 | 3467 | |
60c34612 TY |
3468 | if (!dirty_bitmap[i]) |
3469 | continue; | |
b050b015 | 3470 | |
60c34612 | 3471 | is_dirty = true; |
914ebccd | 3472 | |
60c34612 TY |
3473 | mask = xchg(&dirty_bitmap[i], 0); |
3474 | dirty_bitmap_buffer[i] = mask; | |
edde99ce | 3475 | |
60c34612 TY |
3476 | offset = i * BITS_PER_LONG; |
3477 | kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); | |
5bb064dc | 3478 | } |
60c34612 TY |
3479 | if (is_dirty) |
3480 | kvm_flush_remote_tlbs(kvm); | |
3481 | ||
3482 | spin_unlock(&kvm->mmu_lock); | |
3483 | ||
3484 | r = -EFAULT; | |
3485 | if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) | |
3486 | goto out; | |
b050b015 | 3487 | |
5bb064dc ZX |
3488 | r = 0; |
3489 | out: | |
79fac95e | 3490 | mutex_unlock(&kvm->slots_lock); |
5bb064dc ZX |
3491 | return r; |
3492 | } | |
3493 | ||
aa2fbe6d YZ |
3494 | int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, |
3495 | bool line_status) | |
23d43cf9 CD |
3496 | { |
3497 | if (!irqchip_in_kernel(kvm)) | |
3498 | return -ENXIO; | |
3499 | ||
3500 | irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, | |
aa2fbe6d YZ |
3501 | irq_event->irq, irq_event->level, |
3502 | line_status); | |
23d43cf9 CD |
3503 | return 0; |
3504 | } | |
3505 | ||
1fe779f8 CO |
3506 | long kvm_arch_vm_ioctl(struct file *filp, |
3507 | unsigned int ioctl, unsigned long arg) | |
3508 | { | |
3509 | struct kvm *kvm = filp->private_data; | |
3510 | void __user *argp = (void __user *)arg; | |
367e1319 | 3511 | int r = -ENOTTY; |
f0d66275 DH |
3512 | /* |
3513 | * This union makes it completely explicit to gcc-3.x | |
3514 | * that these two variables' stack usage should be | |
3515 | * combined, not added together. | |
3516 | */ | |
3517 | union { | |
3518 | struct kvm_pit_state ps; | |
e9f42757 | 3519 | struct kvm_pit_state2 ps2; |
c5ff41ce | 3520 | struct kvm_pit_config pit_config; |
f0d66275 | 3521 | } u; |
1fe779f8 CO |
3522 | |
3523 | switch (ioctl) { | |
3524 | case KVM_SET_TSS_ADDR: | |
3525 | r = kvm_vm_ioctl_set_tss_addr(kvm, arg); | |
1fe779f8 | 3526 | break; |
b927a3ce SY |
3527 | case KVM_SET_IDENTITY_MAP_ADDR: { |
3528 | u64 ident_addr; | |
3529 | ||
3530 | r = -EFAULT; | |
3531 | if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) | |
3532 | goto out; | |
3533 | r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); | |
b927a3ce SY |
3534 | break; |
3535 | } | |
1fe779f8 CO |
3536 | case KVM_SET_NR_MMU_PAGES: |
3537 | r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); | |
1fe779f8 CO |
3538 | break; |
3539 | case KVM_GET_NR_MMU_PAGES: | |
3540 | r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); | |
3541 | break; | |
3ddea128 MT |
3542 | case KVM_CREATE_IRQCHIP: { |
3543 | struct kvm_pic *vpic; | |
3544 | ||
3545 | mutex_lock(&kvm->lock); | |
3546 | r = -EEXIST; | |
3547 | if (kvm->arch.vpic) | |
3548 | goto create_irqchip_unlock; | |
3e515705 AK |
3549 | r = -EINVAL; |
3550 | if (atomic_read(&kvm->online_vcpus)) | |
3551 | goto create_irqchip_unlock; | |
1fe779f8 | 3552 | r = -ENOMEM; |
3ddea128 MT |
3553 | vpic = kvm_create_pic(kvm); |
3554 | if (vpic) { | |
1fe779f8 CO |
3555 | r = kvm_ioapic_init(kvm); |
3556 | if (r) { | |
175504cd | 3557 | mutex_lock(&kvm->slots_lock); |
72bb2fcd | 3558 | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, |
743eeb0b SL |
3559 | &vpic->dev_master); |
3560 | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, | |
3561 | &vpic->dev_slave); | |
3562 | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, | |
3563 | &vpic->dev_eclr); | |
175504cd | 3564 | mutex_unlock(&kvm->slots_lock); |
3ddea128 MT |
3565 | kfree(vpic); |
3566 | goto create_irqchip_unlock; | |
1fe779f8 CO |
3567 | } |
3568 | } else | |
3ddea128 MT |
3569 | goto create_irqchip_unlock; |
3570 | smp_wmb(); | |
3571 | kvm->arch.vpic = vpic; | |
3572 | smp_wmb(); | |
399ec807 AK |
3573 | r = kvm_setup_default_irq_routing(kvm); |
3574 | if (r) { | |
175504cd | 3575 | mutex_lock(&kvm->slots_lock); |
3ddea128 | 3576 | mutex_lock(&kvm->irq_lock); |
72bb2fcd WY |
3577 | kvm_ioapic_destroy(kvm); |
3578 | kvm_destroy_pic(kvm); | |
3ddea128 | 3579 | mutex_unlock(&kvm->irq_lock); |
175504cd | 3580 | mutex_unlock(&kvm->slots_lock); |
399ec807 | 3581 | } |
3ddea128 MT |
3582 | create_irqchip_unlock: |
3583 | mutex_unlock(&kvm->lock); | |
1fe779f8 | 3584 | break; |
3ddea128 | 3585 | } |
7837699f | 3586 | case KVM_CREATE_PIT: |
c5ff41ce JK |
3587 | u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; |
3588 | goto create_pit; | |
3589 | case KVM_CREATE_PIT2: | |
3590 | r = -EFAULT; | |
3591 | if (copy_from_user(&u.pit_config, argp, | |
3592 | sizeof(struct kvm_pit_config))) | |
3593 | goto out; | |
3594 | create_pit: | |
79fac95e | 3595 | mutex_lock(&kvm->slots_lock); |
269e05e4 AK |
3596 | r = -EEXIST; |
3597 | if (kvm->arch.vpit) | |
3598 | goto create_pit_unlock; | |
7837699f | 3599 | r = -ENOMEM; |
c5ff41ce | 3600 | kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); |
7837699f SY |
3601 | if (kvm->arch.vpit) |
3602 | r = 0; | |
269e05e4 | 3603 | create_pit_unlock: |
79fac95e | 3604 | mutex_unlock(&kvm->slots_lock); |
7837699f | 3605 | break; |
1fe779f8 CO |
3606 | case KVM_GET_IRQCHIP: { |
3607 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | |
ff5c2c03 | 3608 | struct kvm_irqchip *chip; |
1fe779f8 | 3609 | |
ff5c2c03 SL |
3610 | chip = memdup_user(argp, sizeof(*chip)); |
3611 | if (IS_ERR(chip)) { | |
3612 | r = PTR_ERR(chip); | |
1fe779f8 | 3613 | goto out; |
ff5c2c03 SL |
3614 | } |
3615 | ||
1fe779f8 CO |
3616 | r = -ENXIO; |
3617 | if (!irqchip_in_kernel(kvm)) | |
f0d66275 DH |
3618 | goto get_irqchip_out; |
3619 | r = kvm_vm_ioctl_get_irqchip(kvm, chip); | |
1fe779f8 | 3620 | if (r) |
f0d66275 | 3621 | goto get_irqchip_out; |
1fe779f8 | 3622 | r = -EFAULT; |
f0d66275 DH |
3623 | if (copy_to_user(argp, chip, sizeof *chip)) |
3624 | goto get_irqchip_out; | |
1fe779f8 | 3625 | r = 0; |
f0d66275 DH |
3626 | get_irqchip_out: |
3627 | kfree(chip); | |
1fe779f8 CO |
3628 | break; |
3629 | } | |
3630 | case KVM_SET_IRQCHIP: { | |
3631 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | |
ff5c2c03 | 3632 | struct kvm_irqchip *chip; |
1fe779f8 | 3633 | |
ff5c2c03 SL |
3634 | chip = memdup_user(argp, sizeof(*chip)); |
3635 | if (IS_ERR(chip)) { | |
3636 | r = PTR_ERR(chip); | |
1fe779f8 | 3637 | goto out; |
ff5c2c03 SL |
3638 | } |
3639 | ||
1fe779f8 CO |
3640 | r = -ENXIO; |
3641 | if (!irqchip_in_kernel(kvm)) | |
f0d66275 DH |
3642 | goto set_irqchip_out; |
3643 | r = kvm_vm_ioctl_set_irqchip(kvm, chip); | |
1fe779f8 | 3644 | if (r) |
f0d66275 | 3645 | goto set_irqchip_out; |
1fe779f8 | 3646 | r = 0; |
f0d66275 DH |
3647 | set_irqchip_out: |
3648 | kfree(chip); | |
1fe779f8 CO |
3649 | break; |
3650 | } | |
e0f63cb9 | 3651 | case KVM_GET_PIT: { |
e0f63cb9 | 3652 | r = -EFAULT; |
f0d66275 | 3653 | if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) |
e0f63cb9 SY |
3654 | goto out; |
3655 | r = -ENXIO; | |
3656 | if (!kvm->arch.vpit) | |
3657 | goto out; | |
f0d66275 | 3658 | r = kvm_vm_ioctl_get_pit(kvm, &u.ps); |
e0f63cb9 SY |
3659 | if (r) |
3660 | goto out; | |
3661 | r = -EFAULT; | |
f0d66275 | 3662 | if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) |
e0f63cb9 SY |
3663 | goto out; |
3664 | r = 0; | |
3665 | break; | |
3666 | } | |
3667 | case KVM_SET_PIT: { | |
e0f63cb9 | 3668 | r = -EFAULT; |
f0d66275 | 3669 | if (copy_from_user(&u.ps, argp, sizeof u.ps)) |
e0f63cb9 SY |
3670 | goto out; |
3671 | r = -ENXIO; | |
3672 | if (!kvm->arch.vpit) | |
3673 | goto out; | |
f0d66275 | 3674 | r = kvm_vm_ioctl_set_pit(kvm, &u.ps); |
e0f63cb9 SY |
3675 | break; |
3676 | } | |
e9f42757 BK |
3677 | case KVM_GET_PIT2: { |
3678 | r = -ENXIO; | |
3679 | if (!kvm->arch.vpit) | |
3680 | goto out; | |
3681 | r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); | |
3682 | if (r) | |
3683 | goto out; | |
3684 | r = -EFAULT; | |
3685 | if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) | |
3686 | goto out; | |
3687 | r = 0; | |
3688 | break; | |
3689 | } | |
3690 | case KVM_SET_PIT2: { | |
3691 | r = -EFAULT; | |
3692 | if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) | |
3693 | goto out; | |
3694 | r = -ENXIO; | |
3695 | if (!kvm->arch.vpit) | |
3696 | goto out; | |
3697 | r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); | |
e9f42757 BK |
3698 | break; |
3699 | } | |
52d939a0 MT |
3700 | case KVM_REINJECT_CONTROL: { |
3701 | struct kvm_reinject_control control; | |
3702 | r = -EFAULT; | |
3703 | if (copy_from_user(&control, argp, sizeof(control))) | |
3704 | goto out; | |
3705 | r = kvm_vm_ioctl_reinject(kvm, &control); | |
52d939a0 MT |
3706 | break; |
3707 | } | |
ffde22ac ES |
3708 | case KVM_XEN_HVM_CONFIG: { |
3709 | r = -EFAULT; | |
3710 | if (copy_from_user(&kvm->arch.xen_hvm_config, argp, | |
3711 | sizeof(struct kvm_xen_hvm_config))) | |
3712 | goto out; | |
3713 | r = -EINVAL; | |
3714 | if (kvm->arch.xen_hvm_config.flags) | |
3715 | goto out; | |
3716 | r = 0; | |
3717 | break; | |
3718 | } | |
afbcf7ab | 3719 | case KVM_SET_CLOCK: { |
afbcf7ab GC |
3720 | struct kvm_clock_data user_ns; |
3721 | u64 now_ns; | |
3722 | s64 delta; | |
3723 | ||
3724 | r = -EFAULT; | |
3725 | if (copy_from_user(&user_ns, argp, sizeof(user_ns))) | |
3726 | goto out; | |
3727 | ||
3728 | r = -EINVAL; | |
3729 | if (user_ns.flags) | |
3730 | goto out; | |
3731 | ||
3732 | r = 0; | |
395c6b0a | 3733 | local_irq_disable(); |
759379dd | 3734 | now_ns = get_kernel_ns(); |
afbcf7ab | 3735 | delta = user_ns.clock - now_ns; |
395c6b0a | 3736 | local_irq_enable(); |
afbcf7ab GC |
3737 | kvm->arch.kvmclock_offset = delta; |
3738 | break; | |
3739 | } | |
3740 | case KVM_GET_CLOCK: { | |
afbcf7ab GC |
3741 | struct kvm_clock_data user_ns; |
3742 | u64 now_ns; | |
3743 | ||
395c6b0a | 3744 | local_irq_disable(); |
759379dd | 3745 | now_ns = get_kernel_ns(); |
afbcf7ab | 3746 | user_ns.clock = kvm->arch.kvmclock_offset + now_ns; |
395c6b0a | 3747 | local_irq_enable(); |
afbcf7ab | 3748 | user_ns.flags = 0; |
97e69aa6 | 3749 | memset(&user_ns.pad, 0, sizeof(user_ns.pad)); |
afbcf7ab GC |
3750 | |
3751 | r = -EFAULT; | |
3752 | if (copy_to_user(argp, &user_ns, sizeof(user_ns))) | |
3753 | goto out; | |
3754 | r = 0; | |
3755 | break; | |
3756 | } | |
3757 | ||
1fe779f8 CO |
3758 | default: |
3759 | ; | |
3760 | } | |
3761 | out: | |
3762 | return r; | |
3763 | } | |
3764 | ||
a16b043c | 3765 | static void kvm_init_msr_list(void) |
043405e1 CO |
3766 | { |
3767 | u32 dummy[2]; | |
3768 | unsigned i, j; | |
3769 | ||
e3267cbb GC |
3770 | /* skip the first msrs in the list. KVM-specific */ |
3771 | for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { | |
043405e1 CO |
3772 | if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) |
3773 | continue; | |
3774 | if (j < i) | |
3775 | msrs_to_save[j] = msrs_to_save[i]; | |
3776 | j++; | |
3777 | } | |
3778 | num_msrs_to_save = j; | |
3779 | } | |
3780 | ||
bda9020e MT |
3781 | static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, |
3782 | const void *v) | |
bbd9b64e | 3783 | { |
70252a10 AK |
3784 | int handled = 0; |
3785 | int n; | |
3786 | ||
3787 | do { | |
3788 | n = min(len, 8); | |
3789 | if (!(vcpu->arch.apic && | |
3790 | !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) | |
3791 | && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) | |
3792 | break; | |
3793 | handled += n; | |
3794 | addr += n; | |
3795 | len -= n; | |
3796 | v += n; | |
3797 | } while (len); | |
bbd9b64e | 3798 | |
70252a10 | 3799 | return handled; |
bbd9b64e CO |
3800 | } |
3801 | ||
bda9020e | 3802 | static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) |
bbd9b64e | 3803 | { |
70252a10 AK |
3804 | int handled = 0; |
3805 | int n; | |
3806 | ||
3807 | do { | |
3808 | n = min(len, 8); | |
3809 | if (!(vcpu->arch.apic && | |
3810 | !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) | |
3811 | && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) | |
3812 | break; | |
3813 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); | |
3814 | handled += n; | |
3815 | addr += n; | |
3816 | len -= n; | |
3817 | v += n; | |
3818 | } while (len); | |
bbd9b64e | 3819 | |
70252a10 | 3820 | return handled; |
bbd9b64e CO |
3821 | } |
3822 | ||
2dafc6c2 GN |
3823 | static void kvm_set_segment(struct kvm_vcpu *vcpu, |
3824 | struct kvm_segment *var, int seg) | |
3825 | { | |
3826 | kvm_x86_ops->set_segment(vcpu, var, seg); | |
3827 | } | |
3828 | ||
3829 | void kvm_get_segment(struct kvm_vcpu *vcpu, | |
3830 | struct kvm_segment *var, int seg) | |
3831 | { | |
3832 | kvm_x86_ops->get_segment(vcpu, var, seg); | |
3833 | } | |
3834 | ||
e459e322 | 3835 | gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) |
02f59dc9 JR |
3836 | { |
3837 | gpa_t t_gpa; | |
ab9ae313 | 3838 | struct x86_exception exception; |
02f59dc9 JR |
3839 | |
3840 | BUG_ON(!mmu_is_nested(vcpu)); | |
3841 | ||
3842 | /* NPT walks are always user-walks */ | |
3843 | access |= PFERR_USER_MASK; | |
ab9ae313 | 3844 | t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); |
02f59dc9 JR |
3845 | |
3846 | return t_gpa; | |
3847 | } | |
3848 | ||
ab9ae313 AK |
3849 | gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, |
3850 | struct x86_exception *exception) | |
1871c602 GN |
3851 | { |
3852 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
ab9ae313 | 3853 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
1871c602 GN |
3854 | } |
3855 | ||
ab9ae313 AK |
3856 | gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, |
3857 | struct x86_exception *exception) | |
1871c602 GN |
3858 | { |
3859 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
3860 | access |= PFERR_FETCH_MASK; | |
ab9ae313 | 3861 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
1871c602 GN |
3862 | } |
3863 | ||
ab9ae313 AK |
3864 | gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, |
3865 | struct x86_exception *exception) | |
1871c602 GN |
3866 | { |
3867 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
3868 | access |= PFERR_WRITE_MASK; | |
ab9ae313 | 3869 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
1871c602 GN |
3870 | } |
3871 | ||
3872 | /* uses this to access any guest's mapped memory without checking CPL */ | |
ab9ae313 AK |
3873 | gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, |
3874 | struct x86_exception *exception) | |
1871c602 | 3875 | { |
ab9ae313 | 3876 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); |
1871c602 GN |
3877 | } |
3878 | ||
3879 | static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, | |
3880 | struct kvm_vcpu *vcpu, u32 access, | |
bcc55cba | 3881 | struct x86_exception *exception) |
bbd9b64e CO |
3882 | { |
3883 | void *data = val; | |
10589a46 | 3884 | int r = X86EMUL_CONTINUE; |
bbd9b64e CO |
3885 | |
3886 | while (bytes) { | |
14dfe855 | 3887 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, |
ab9ae313 | 3888 | exception); |
bbd9b64e | 3889 | unsigned offset = addr & (PAGE_SIZE-1); |
77c2002e | 3890 | unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); |
bbd9b64e CO |
3891 | int ret; |
3892 | ||
bcc55cba | 3893 | if (gpa == UNMAPPED_GVA) |
ab9ae313 | 3894 | return X86EMUL_PROPAGATE_FAULT; |
77c2002e | 3895 | ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); |
10589a46 | 3896 | if (ret < 0) { |
c3cd7ffa | 3897 | r = X86EMUL_IO_NEEDED; |
10589a46 MT |
3898 | goto out; |
3899 | } | |
bbd9b64e | 3900 | |
77c2002e IE |
3901 | bytes -= toread; |
3902 | data += toread; | |
3903 | addr += toread; | |
bbd9b64e | 3904 | } |
10589a46 | 3905 | out: |
10589a46 | 3906 | return r; |
bbd9b64e | 3907 | } |
77c2002e | 3908 | |
1871c602 | 3909 | /* used for instruction fetching */ |
0f65dd70 AK |
3910 | static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, |
3911 | gva_t addr, void *val, unsigned int bytes, | |
bcc55cba | 3912 | struct x86_exception *exception) |
1871c602 | 3913 | { |
0f65dd70 | 3914 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
1871c602 | 3915 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
0f65dd70 | 3916 | |
1871c602 | 3917 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, |
bcc55cba AK |
3918 | access | PFERR_FETCH_MASK, |
3919 | exception); | |
1871c602 GN |
3920 | } |
3921 | ||
064aea77 | 3922 | int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, |
0f65dd70 | 3923 | gva_t addr, void *val, unsigned int bytes, |
bcc55cba | 3924 | struct x86_exception *exception) |
1871c602 | 3925 | { |
0f65dd70 | 3926 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
1871c602 | 3927 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
0f65dd70 | 3928 | |
1871c602 | 3929 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, |
bcc55cba | 3930 | exception); |
1871c602 | 3931 | } |
064aea77 | 3932 | EXPORT_SYMBOL_GPL(kvm_read_guest_virt); |
1871c602 | 3933 | |
0f65dd70 AK |
3934 | static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, |
3935 | gva_t addr, void *val, unsigned int bytes, | |
bcc55cba | 3936 | struct x86_exception *exception) |
1871c602 | 3937 | { |
0f65dd70 | 3938 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
bcc55cba | 3939 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); |
1871c602 GN |
3940 | } |
3941 | ||
6a4d7550 | 3942 | int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, |
0f65dd70 | 3943 | gva_t addr, void *val, |
2dafc6c2 | 3944 | unsigned int bytes, |
bcc55cba | 3945 | struct x86_exception *exception) |
77c2002e | 3946 | { |
0f65dd70 | 3947 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
77c2002e IE |
3948 | void *data = val; |
3949 | int r = X86EMUL_CONTINUE; | |
3950 | ||
3951 | while (bytes) { | |
14dfe855 JR |
3952 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, |
3953 | PFERR_WRITE_MASK, | |
ab9ae313 | 3954 | exception); |
77c2002e IE |
3955 | unsigned offset = addr & (PAGE_SIZE-1); |
3956 | unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); | |
3957 | int ret; | |
3958 | ||
bcc55cba | 3959 | if (gpa == UNMAPPED_GVA) |
ab9ae313 | 3960 | return X86EMUL_PROPAGATE_FAULT; |
77c2002e IE |
3961 | ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); |
3962 | if (ret < 0) { | |
c3cd7ffa | 3963 | r = X86EMUL_IO_NEEDED; |
77c2002e IE |
3964 | goto out; |
3965 | } | |
3966 | ||
3967 | bytes -= towrite; | |
3968 | data += towrite; | |
3969 | addr += towrite; | |
3970 | } | |
3971 | out: | |
3972 | return r; | |
3973 | } | |
6a4d7550 | 3974 | EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); |
77c2002e | 3975 | |
af7cc7d1 XG |
3976 | static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
3977 | gpa_t *gpa, struct x86_exception *exception, | |
3978 | bool write) | |
3979 | { | |
97d64b78 AK |
3980 | u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) |
3981 | | (write ? PFERR_WRITE_MASK : 0); | |
af7cc7d1 | 3982 | |
97d64b78 AK |
3983 | if (vcpu_match_mmio_gva(vcpu, gva) |
3984 | && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) { | |
bebb106a XG |
3985 | *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | |
3986 | (gva & (PAGE_SIZE - 1)); | |
4f022648 | 3987 | trace_vcpu_match_mmio(gva, *gpa, write, false); |
bebb106a XG |
3988 | return 1; |
3989 | } | |
3990 | ||
af7cc7d1 XG |
3991 | *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
3992 | ||
3993 | if (*gpa == UNMAPPED_GVA) | |
3994 | return -1; | |
3995 | ||
3996 | /* For APIC access vmexit */ | |
3997 | if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | |
3998 | return 1; | |
3999 | ||
4f022648 XG |
4000 | if (vcpu_match_mmio_gpa(vcpu, *gpa)) { |
4001 | trace_vcpu_match_mmio(gva, *gpa, write, true); | |
bebb106a | 4002 | return 1; |
4f022648 | 4003 | } |
bebb106a | 4004 | |
af7cc7d1 XG |
4005 | return 0; |
4006 | } | |
4007 | ||
3200f405 | 4008 | int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, |
bcc55cba | 4009 | const void *val, int bytes) |
bbd9b64e CO |
4010 | { |
4011 | int ret; | |
4012 | ||
4013 | ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); | |
9f811285 | 4014 | if (ret < 0) |
bbd9b64e | 4015 | return 0; |
f57f2ef5 | 4016 | kvm_mmu_pte_write(vcpu, gpa, val, bytes); |
bbd9b64e CO |
4017 | return 1; |
4018 | } | |
4019 | ||
77d197b2 XG |
4020 | struct read_write_emulator_ops { |
4021 | int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, | |
4022 | int bytes); | |
4023 | int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4024 | void *val, int bytes); | |
4025 | int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4026 | int bytes, void *val); | |
4027 | int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4028 | void *val, int bytes); | |
4029 | bool write; | |
4030 | }; | |
4031 | ||
4032 | static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) | |
4033 | { | |
4034 | if (vcpu->mmio_read_completed) { | |
77d197b2 | 4035 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, |
f78146b0 | 4036 | vcpu->mmio_fragments[0].gpa, *(u64 *)val); |
77d197b2 XG |
4037 | vcpu->mmio_read_completed = 0; |
4038 | return 1; | |
4039 | } | |
4040 | ||
4041 | return 0; | |
4042 | } | |
4043 | ||
4044 | static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4045 | void *val, int bytes) | |
4046 | { | |
4047 | return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); | |
4048 | } | |
4049 | ||
4050 | static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4051 | void *val, int bytes) | |
4052 | { | |
4053 | return emulator_write_phys(vcpu, gpa, val, bytes); | |
4054 | } | |
4055 | ||
4056 | static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) | |
4057 | { | |
4058 | trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); | |
4059 | return vcpu_mmio_write(vcpu, gpa, bytes, val); | |
4060 | } | |
4061 | ||
4062 | static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4063 | void *val, int bytes) | |
4064 | { | |
4065 | trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); | |
4066 | return X86EMUL_IO_NEEDED; | |
4067 | } | |
4068 | ||
4069 | static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4070 | void *val, int bytes) | |
4071 | { | |
f78146b0 AK |
4072 | struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; |
4073 | ||
87da7e66 | 4074 | memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); |
77d197b2 XG |
4075 | return X86EMUL_CONTINUE; |
4076 | } | |
4077 | ||
0fbe9b0b | 4078 | static const struct read_write_emulator_ops read_emultor = { |
77d197b2 XG |
4079 | .read_write_prepare = read_prepare, |
4080 | .read_write_emulate = read_emulate, | |
4081 | .read_write_mmio = vcpu_mmio_read, | |
4082 | .read_write_exit_mmio = read_exit_mmio, | |
4083 | }; | |
4084 | ||
0fbe9b0b | 4085 | static const struct read_write_emulator_ops write_emultor = { |
77d197b2 XG |
4086 | .read_write_emulate = write_emulate, |
4087 | .read_write_mmio = write_mmio, | |
4088 | .read_write_exit_mmio = write_exit_mmio, | |
4089 | .write = true, | |
4090 | }; | |
4091 | ||
22388a3c XG |
4092 | static int emulator_read_write_onepage(unsigned long addr, void *val, |
4093 | unsigned int bytes, | |
4094 | struct x86_exception *exception, | |
4095 | struct kvm_vcpu *vcpu, | |
0fbe9b0b | 4096 | const struct read_write_emulator_ops *ops) |
bbd9b64e | 4097 | { |
af7cc7d1 XG |
4098 | gpa_t gpa; |
4099 | int handled, ret; | |
22388a3c | 4100 | bool write = ops->write; |
f78146b0 | 4101 | struct kvm_mmio_fragment *frag; |
10589a46 | 4102 | |
22388a3c | 4103 | ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); |
bbd9b64e | 4104 | |
af7cc7d1 | 4105 | if (ret < 0) |
bbd9b64e | 4106 | return X86EMUL_PROPAGATE_FAULT; |
bbd9b64e CO |
4107 | |
4108 | /* For APIC access vmexit */ | |
af7cc7d1 | 4109 | if (ret) |
bbd9b64e CO |
4110 | goto mmio; |
4111 | ||
22388a3c | 4112 | if (ops->read_write_emulate(vcpu, gpa, val, bytes)) |
bbd9b64e CO |
4113 | return X86EMUL_CONTINUE; |
4114 | ||
4115 | mmio: | |
4116 | /* | |
4117 | * Is this MMIO handled locally? | |
4118 | */ | |
22388a3c | 4119 | handled = ops->read_write_mmio(vcpu, gpa, bytes, val); |
70252a10 | 4120 | if (handled == bytes) |
bbd9b64e | 4121 | return X86EMUL_CONTINUE; |
bbd9b64e | 4122 | |
70252a10 AK |
4123 | gpa += handled; |
4124 | bytes -= handled; | |
4125 | val += handled; | |
4126 | ||
87da7e66 XG |
4127 | WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); |
4128 | frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; | |
4129 | frag->gpa = gpa; | |
4130 | frag->data = val; | |
4131 | frag->len = bytes; | |
f78146b0 | 4132 | return X86EMUL_CONTINUE; |
bbd9b64e CO |
4133 | } |
4134 | ||
22388a3c XG |
4135 | int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, |
4136 | void *val, unsigned int bytes, | |
4137 | struct x86_exception *exception, | |
0fbe9b0b | 4138 | const struct read_write_emulator_ops *ops) |
bbd9b64e | 4139 | { |
0f65dd70 | 4140 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
f78146b0 AK |
4141 | gpa_t gpa; |
4142 | int rc; | |
4143 | ||
4144 | if (ops->read_write_prepare && | |
4145 | ops->read_write_prepare(vcpu, val, bytes)) | |
4146 | return X86EMUL_CONTINUE; | |
4147 | ||
4148 | vcpu->mmio_nr_fragments = 0; | |
0f65dd70 | 4149 | |
bbd9b64e CO |
4150 | /* Crossing a page boundary? */ |
4151 | if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { | |
f78146b0 | 4152 | int now; |
bbd9b64e CO |
4153 | |
4154 | now = -addr & ~PAGE_MASK; | |
22388a3c XG |
4155 | rc = emulator_read_write_onepage(addr, val, now, exception, |
4156 | vcpu, ops); | |
4157 | ||
bbd9b64e CO |
4158 | if (rc != X86EMUL_CONTINUE) |
4159 | return rc; | |
4160 | addr += now; | |
4161 | val += now; | |
4162 | bytes -= now; | |
4163 | } | |
22388a3c | 4164 | |
f78146b0 AK |
4165 | rc = emulator_read_write_onepage(addr, val, bytes, exception, |
4166 | vcpu, ops); | |
4167 | if (rc != X86EMUL_CONTINUE) | |
4168 | return rc; | |
4169 | ||
4170 | if (!vcpu->mmio_nr_fragments) | |
4171 | return rc; | |
4172 | ||
4173 | gpa = vcpu->mmio_fragments[0].gpa; | |
4174 | ||
4175 | vcpu->mmio_needed = 1; | |
4176 | vcpu->mmio_cur_fragment = 0; | |
4177 | ||
87da7e66 | 4178 | vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); |
f78146b0 AK |
4179 | vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; |
4180 | vcpu->run->exit_reason = KVM_EXIT_MMIO; | |
4181 | vcpu->run->mmio.phys_addr = gpa; | |
4182 | ||
4183 | return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); | |
22388a3c XG |
4184 | } |
4185 | ||
4186 | static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, | |
4187 | unsigned long addr, | |
4188 | void *val, | |
4189 | unsigned int bytes, | |
4190 | struct x86_exception *exception) | |
4191 | { | |
4192 | return emulator_read_write(ctxt, addr, val, bytes, | |
4193 | exception, &read_emultor); | |
4194 | } | |
4195 | ||
4196 | int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, | |
4197 | unsigned long addr, | |
4198 | const void *val, | |
4199 | unsigned int bytes, | |
4200 | struct x86_exception *exception) | |
4201 | { | |
4202 | return emulator_read_write(ctxt, addr, (void *)val, bytes, | |
4203 | exception, &write_emultor); | |
bbd9b64e | 4204 | } |
bbd9b64e | 4205 | |
daea3e73 AK |
4206 | #define CMPXCHG_TYPE(t, ptr, old, new) \ |
4207 | (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) | |
4208 | ||
4209 | #ifdef CONFIG_X86_64 | |
4210 | # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) | |
4211 | #else | |
4212 | # define CMPXCHG64(ptr, old, new) \ | |
9749a6c0 | 4213 | (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) |
daea3e73 AK |
4214 | #endif |
4215 | ||
0f65dd70 AK |
4216 | static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, |
4217 | unsigned long addr, | |
bbd9b64e CO |
4218 | const void *old, |
4219 | const void *new, | |
4220 | unsigned int bytes, | |
0f65dd70 | 4221 | struct x86_exception *exception) |
bbd9b64e | 4222 | { |
0f65dd70 | 4223 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
daea3e73 AK |
4224 | gpa_t gpa; |
4225 | struct page *page; | |
4226 | char *kaddr; | |
4227 | bool exchanged; | |
2bacc55c | 4228 | |
daea3e73 AK |
4229 | /* guests cmpxchg8b have to be emulated atomically */ |
4230 | if (bytes > 8 || (bytes & (bytes - 1))) | |
4231 | goto emul_write; | |
10589a46 | 4232 | |
daea3e73 | 4233 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); |
2bacc55c | 4234 | |
daea3e73 AK |
4235 | if (gpa == UNMAPPED_GVA || |
4236 | (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | |
4237 | goto emul_write; | |
2bacc55c | 4238 | |
daea3e73 AK |
4239 | if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) |
4240 | goto emul_write; | |
72dc67a6 | 4241 | |
daea3e73 | 4242 | page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); |
32cad84f | 4243 | if (is_error_page(page)) |
c19b8bd6 | 4244 | goto emul_write; |
72dc67a6 | 4245 | |
8fd75e12 | 4246 | kaddr = kmap_atomic(page); |
daea3e73 AK |
4247 | kaddr += offset_in_page(gpa); |
4248 | switch (bytes) { | |
4249 | case 1: | |
4250 | exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); | |
4251 | break; | |
4252 | case 2: | |
4253 | exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); | |
4254 | break; | |
4255 | case 4: | |
4256 | exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); | |
4257 | break; | |
4258 | case 8: | |
4259 | exchanged = CMPXCHG64(kaddr, old, new); | |
4260 | break; | |
4261 | default: | |
4262 | BUG(); | |
2bacc55c | 4263 | } |
8fd75e12 | 4264 | kunmap_atomic(kaddr); |
daea3e73 AK |
4265 | kvm_release_page_dirty(page); |
4266 | ||
4267 | if (!exchanged) | |
4268 | return X86EMUL_CMPXCHG_FAILED; | |
4269 | ||
f57f2ef5 | 4270 | kvm_mmu_pte_write(vcpu, gpa, new, bytes); |
8f6abd06 GN |
4271 | |
4272 | return X86EMUL_CONTINUE; | |
4a5f48f6 | 4273 | |
3200f405 | 4274 | emul_write: |
daea3e73 | 4275 | printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); |
2bacc55c | 4276 | |
0f65dd70 | 4277 | return emulator_write_emulated(ctxt, addr, new, bytes, exception); |
bbd9b64e CO |
4278 | } |
4279 | ||
cf8f70bf GN |
4280 | static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) |
4281 | { | |
4282 | /* TODO: String I/O for in kernel device */ | |
4283 | int r; | |
4284 | ||
4285 | if (vcpu->arch.pio.in) | |
4286 | r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, | |
4287 | vcpu->arch.pio.size, pd); | |
4288 | else | |
4289 | r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, | |
4290 | vcpu->arch.pio.port, vcpu->arch.pio.size, | |
4291 | pd); | |
4292 | return r; | |
4293 | } | |
4294 | ||
6f6fbe98 XG |
4295 | static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, |
4296 | unsigned short port, void *val, | |
4297 | unsigned int count, bool in) | |
cf8f70bf | 4298 | { |
6f6fbe98 | 4299 | trace_kvm_pio(!in, port, size, count); |
cf8f70bf GN |
4300 | |
4301 | vcpu->arch.pio.port = port; | |
6f6fbe98 | 4302 | vcpu->arch.pio.in = in; |
7972995b | 4303 | vcpu->arch.pio.count = count; |
cf8f70bf GN |
4304 | vcpu->arch.pio.size = size; |
4305 | ||
4306 | if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { | |
7972995b | 4307 | vcpu->arch.pio.count = 0; |
cf8f70bf GN |
4308 | return 1; |
4309 | } | |
4310 | ||
4311 | vcpu->run->exit_reason = KVM_EXIT_IO; | |
6f6fbe98 | 4312 | vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; |
cf8f70bf GN |
4313 | vcpu->run->io.size = size; |
4314 | vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; | |
4315 | vcpu->run->io.count = count; | |
4316 | vcpu->run->io.port = port; | |
4317 | ||
4318 | return 0; | |
4319 | } | |
4320 | ||
6f6fbe98 XG |
4321 | static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, |
4322 | int size, unsigned short port, void *val, | |
4323 | unsigned int count) | |
cf8f70bf | 4324 | { |
ca1d4a9e | 4325 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
6f6fbe98 | 4326 | int ret; |
ca1d4a9e | 4327 | |
6f6fbe98 XG |
4328 | if (vcpu->arch.pio.count) |
4329 | goto data_avail; | |
cf8f70bf | 4330 | |
6f6fbe98 XG |
4331 | ret = emulator_pio_in_out(vcpu, size, port, val, count, true); |
4332 | if (ret) { | |
4333 | data_avail: | |
4334 | memcpy(val, vcpu->arch.pio_data, size * count); | |
7972995b | 4335 | vcpu->arch.pio.count = 0; |
cf8f70bf GN |
4336 | return 1; |
4337 | } | |
4338 | ||
cf8f70bf GN |
4339 | return 0; |
4340 | } | |
4341 | ||
6f6fbe98 XG |
4342 | static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, |
4343 | int size, unsigned short port, | |
4344 | const void *val, unsigned int count) | |
4345 | { | |
4346 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
4347 | ||
4348 | memcpy(vcpu->arch.pio_data, val, size * count); | |
4349 | return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); | |
4350 | } | |
4351 | ||
bbd9b64e CO |
4352 | static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) |
4353 | { | |
4354 | return kvm_x86_ops->get_segment_base(vcpu, seg); | |
4355 | } | |
4356 | ||
3cb16fe7 | 4357 | static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) |
bbd9b64e | 4358 | { |
3cb16fe7 | 4359 | kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); |
bbd9b64e CO |
4360 | } |
4361 | ||
f5f48ee1 SY |
4362 | int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) |
4363 | { | |
4364 | if (!need_emulate_wbinvd(vcpu)) | |
4365 | return X86EMUL_CONTINUE; | |
4366 | ||
4367 | if (kvm_x86_ops->has_wbinvd_exit()) { | |
2eec7343 JK |
4368 | int cpu = get_cpu(); |
4369 | ||
4370 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | |
f5f48ee1 SY |
4371 | smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, |
4372 | wbinvd_ipi, NULL, 1); | |
2eec7343 | 4373 | put_cpu(); |
f5f48ee1 | 4374 | cpumask_clear(vcpu->arch.wbinvd_dirty_mask); |
2eec7343 JK |
4375 | } else |
4376 | wbinvd(); | |
f5f48ee1 SY |
4377 | return X86EMUL_CONTINUE; |
4378 | } | |
4379 | EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); | |
4380 | ||
bcaf5cc5 AK |
4381 | static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) |
4382 | { | |
4383 | kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); | |
4384 | } | |
4385 | ||
717746e3 | 4386 | int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) |
bbd9b64e | 4387 | { |
717746e3 | 4388 | return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); |
bbd9b64e CO |
4389 | } |
4390 | ||
717746e3 | 4391 | int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) |
bbd9b64e | 4392 | { |
338dbc97 | 4393 | |
717746e3 | 4394 | return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); |
bbd9b64e CO |
4395 | } |
4396 | ||
52a46617 | 4397 | static u64 mk_cr_64(u64 curr_cr, u32 new_val) |
5fdbf976 | 4398 | { |
52a46617 | 4399 | return (curr_cr & ~((1ULL << 32) - 1)) | new_val; |
5fdbf976 MT |
4400 | } |
4401 | ||
717746e3 | 4402 | static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) |
bbd9b64e | 4403 | { |
717746e3 | 4404 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
52a46617 GN |
4405 | unsigned long value; |
4406 | ||
4407 | switch (cr) { | |
4408 | case 0: | |
4409 | value = kvm_read_cr0(vcpu); | |
4410 | break; | |
4411 | case 2: | |
4412 | value = vcpu->arch.cr2; | |
4413 | break; | |
4414 | case 3: | |
9f8fe504 | 4415 | value = kvm_read_cr3(vcpu); |
52a46617 GN |
4416 | break; |
4417 | case 4: | |
4418 | value = kvm_read_cr4(vcpu); | |
4419 | break; | |
4420 | case 8: | |
4421 | value = kvm_get_cr8(vcpu); | |
4422 | break; | |
4423 | default: | |
a737f256 | 4424 | kvm_err("%s: unexpected cr %u\n", __func__, cr); |
52a46617 GN |
4425 | return 0; |
4426 | } | |
4427 | ||
4428 | return value; | |
4429 | } | |
4430 | ||
717746e3 | 4431 | static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) |
52a46617 | 4432 | { |
717746e3 | 4433 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
0f12244f GN |
4434 | int res = 0; |
4435 | ||
52a46617 GN |
4436 | switch (cr) { |
4437 | case 0: | |
49a9b07e | 4438 | res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); |
52a46617 GN |
4439 | break; |
4440 | case 2: | |
4441 | vcpu->arch.cr2 = val; | |
4442 | break; | |
4443 | case 3: | |
2390218b | 4444 | res = kvm_set_cr3(vcpu, val); |
52a46617 GN |
4445 | break; |
4446 | case 4: | |
a83b29c6 | 4447 | res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); |
52a46617 GN |
4448 | break; |
4449 | case 8: | |
eea1cff9 | 4450 | res = kvm_set_cr8(vcpu, val); |
52a46617 GN |
4451 | break; |
4452 | default: | |
a737f256 | 4453 | kvm_err("%s: unexpected cr %u\n", __func__, cr); |
0f12244f | 4454 | res = -1; |
52a46617 | 4455 | } |
0f12244f GN |
4456 | |
4457 | return res; | |
52a46617 GN |
4458 | } |
4459 | ||
4cee4798 KW |
4460 | static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) |
4461 | { | |
4462 | kvm_set_rflags(emul_to_vcpu(ctxt), val); | |
4463 | } | |
4464 | ||
717746e3 | 4465 | static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) |
9c537244 | 4466 | { |
717746e3 | 4467 | return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); |
9c537244 GN |
4468 | } |
4469 | ||
4bff1e86 | 4470 | static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
2dafc6c2 | 4471 | { |
4bff1e86 | 4472 | kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); |
2dafc6c2 GN |
4473 | } |
4474 | ||
4bff1e86 | 4475 | static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
160ce1f1 | 4476 | { |
4bff1e86 | 4477 | kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); |
160ce1f1 MG |
4478 | } |
4479 | ||
1ac9d0cf AK |
4480 | static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
4481 | { | |
4482 | kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); | |
4483 | } | |
4484 | ||
4485 | static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | |
4486 | { | |
4487 | kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); | |
4488 | } | |
4489 | ||
4bff1e86 AK |
4490 | static unsigned long emulator_get_cached_segment_base( |
4491 | struct x86_emulate_ctxt *ctxt, int seg) | |
5951c442 | 4492 | { |
4bff1e86 | 4493 | return get_segment_base(emul_to_vcpu(ctxt), seg); |
5951c442 GN |
4494 | } |
4495 | ||
1aa36616 AK |
4496 | static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, |
4497 | struct desc_struct *desc, u32 *base3, | |
4498 | int seg) | |
2dafc6c2 GN |
4499 | { |
4500 | struct kvm_segment var; | |
4501 | ||
4bff1e86 | 4502 | kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); |
1aa36616 | 4503 | *selector = var.selector; |
2dafc6c2 | 4504 | |
378a8b09 GN |
4505 | if (var.unusable) { |
4506 | memset(desc, 0, sizeof(*desc)); | |
2dafc6c2 | 4507 | return false; |
378a8b09 | 4508 | } |
2dafc6c2 GN |
4509 | |
4510 | if (var.g) | |
4511 | var.limit >>= 12; | |
4512 | set_desc_limit(desc, var.limit); | |
4513 | set_desc_base(desc, (unsigned long)var.base); | |
5601d05b GN |
4514 | #ifdef CONFIG_X86_64 |
4515 | if (base3) | |
4516 | *base3 = var.base >> 32; | |
4517 | #endif | |
2dafc6c2 GN |
4518 | desc->type = var.type; |
4519 | desc->s = var.s; | |
4520 | desc->dpl = var.dpl; | |
4521 | desc->p = var.present; | |
4522 | desc->avl = var.avl; | |
4523 | desc->l = var.l; | |
4524 | desc->d = var.db; | |
4525 | desc->g = var.g; | |
4526 | ||
4527 | return true; | |
4528 | } | |
4529 | ||
1aa36616 AK |
4530 | static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, |
4531 | struct desc_struct *desc, u32 base3, | |
4532 | int seg) | |
2dafc6c2 | 4533 | { |
4bff1e86 | 4534 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
2dafc6c2 GN |
4535 | struct kvm_segment var; |
4536 | ||
1aa36616 | 4537 | var.selector = selector; |
2dafc6c2 | 4538 | var.base = get_desc_base(desc); |
5601d05b GN |
4539 | #ifdef CONFIG_X86_64 |
4540 | var.base |= ((u64)base3) << 32; | |
4541 | #endif | |
2dafc6c2 GN |
4542 | var.limit = get_desc_limit(desc); |
4543 | if (desc->g) | |
4544 | var.limit = (var.limit << 12) | 0xfff; | |
4545 | var.type = desc->type; | |
4546 | var.present = desc->p; | |
4547 | var.dpl = desc->dpl; | |
4548 | var.db = desc->d; | |
4549 | var.s = desc->s; | |
4550 | var.l = desc->l; | |
4551 | var.g = desc->g; | |
4552 | var.avl = desc->avl; | |
4553 | var.present = desc->p; | |
4554 | var.unusable = !var.present; | |
4555 | var.padding = 0; | |
4556 | ||
4557 | kvm_set_segment(vcpu, &var, seg); | |
4558 | return; | |
4559 | } | |
4560 | ||
717746e3 AK |
4561 | static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, |
4562 | u32 msr_index, u64 *pdata) | |
4563 | { | |
4564 | return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); | |
4565 | } | |
4566 | ||
4567 | static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, | |
4568 | u32 msr_index, u64 data) | |
4569 | { | |
8fe8ab46 WA |
4570 | struct msr_data msr; |
4571 | ||
4572 | msr.data = data; | |
4573 | msr.index = msr_index; | |
4574 | msr.host_initiated = false; | |
4575 | return kvm_set_msr(emul_to_vcpu(ctxt), &msr); | |
717746e3 AK |
4576 | } |
4577 | ||
222d21aa AK |
4578 | static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, |
4579 | u32 pmc, u64 *pdata) | |
4580 | { | |
4581 | return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); | |
4582 | } | |
4583 | ||
6c3287f7 AK |
4584 | static void emulator_halt(struct x86_emulate_ctxt *ctxt) |
4585 | { | |
4586 | emul_to_vcpu(ctxt)->arch.halt_request = 1; | |
4587 | } | |
4588 | ||
5037f6f3 AK |
4589 | static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) |
4590 | { | |
4591 | preempt_disable(); | |
5197b808 | 4592 | kvm_load_guest_fpu(emul_to_vcpu(ctxt)); |
5037f6f3 AK |
4593 | /* |
4594 | * CR0.TS may reference the host fpu state, not the guest fpu state, | |
4595 | * so it may be clear at this point. | |
4596 | */ | |
4597 | clts(); | |
4598 | } | |
4599 | ||
4600 | static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) | |
4601 | { | |
4602 | preempt_enable(); | |
4603 | } | |
4604 | ||
2953538e | 4605 | static int emulator_intercept(struct x86_emulate_ctxt *ctxt, |
8a76d7f2 | 4606 | struct x86_instruction_info *info, |
c4f035c6 AK |
4607 | enum x86_intercept_stage stage) |
4608 | { | |
2953538e | 4609 | return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); |
c4f035c6 AK |
4610 | } |
4611 | ||
0017f93a | 4612 | static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, |
bdb42f5a SB |
4613 | u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) |
4614 | { | |
0017f93a | 4615 | kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); |
bdb42f5a SB |
4616 | } |
4617 | ||
dd856efa AK |
4618 | static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) |
4619 | { | |
4620 | return kvm_register_read(emul_to_vcpu(ctxt), reg); | |
4621 | } | |
4622 | ||
4623 | static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) | |
4624 | { | |
4625 | kvm_register_write(emul_to_vcpu(ctxt), reg, val); | |
4626 | } | |
4627 | ||
0225fb50 | 4628 | static const struct x86_emulate_ops emulate_ops = { |
dd856efa AK |
4629 | .read_gpr = emulator_read_gpr, |
4630 | .write_gpr = emulator_write_gpr, | |
1871c602 | 4631 | .read_std = kvm_read_guest_virt_system, |
2dafc6c2 | 4632 | .write_std = kvm_write_guest_virt_system, |
1871c602 | 4633 | .fetch = kvm_fetch_guest_virt, |
bbd9b64e CO |
4634 | .read_emulated = emulator_read_emulated, |
4635 | .write_emulated = emulator_write_emulated, | |
4636 | .cmpxchg_emulated = emulator_cmpxchg_emulated, | |
3cb16fe7 | 4637 | .invlpg = emulator_invlpg, |
cf8f70bf GN |
4638 | .pio_in_emulated = emulator_pio_in_emulated, |
4639 | .pio_out_emulated = emulator_pio_out_emulated, | |
1aa36616 AK |
4640 | .get_segment = emulator_get_segment, |
4641 | .set_segment = emulator_set_segment, | |
5951c442 | 4642 | .get_cached_segment_base = emulator_get_cached_segment_base, |
2dafc6c2 | 4643 | .get_gdt = emulator_get_gdt, |
160ce1f1 | 4644 | .get_idt = emulator_get_idt, |
1ac9d0cf AK |
4645 | .set_gdt = emulator_set_gdt, |
4646 | .set_idt = emulator_set_idt, | |
52a46617 GN |
4647 | .get_cr = emulator_get_cr, |
4648 | .set_cr = emulator_set_cr, | |
4cee4798 | 4649 | .set_rflags = emulator_set_rflags, |
9c537244 | 4650 | .cpl = emulator_get_cpl, |
35aa5375 GN |
4651 | .get_dr = emulator_get_dr, |
4652 | .set_dr = emulator_set_dr, | |
717746e3 AK |
4653 | .set_msr = emulator_set_msr, |
4654 | .get_msr = emulator_get_msr, | |
222d21aa | 4655 | .read_pmc = emulator_read_pmc, |
6c3287f7 | 4656 | .halt = emulator_halt, |
bcaf5cc5 | 4657 | .wbinvd = emulator_wbinvd, |
d6aa1000 | 4658 | .fix_hypercall = emulator_fix_hypercall, |
5037f6f3 AK |
4659 | .get_fpu = emulator_get_fpu, |
4660 | .put_fpu = emulator_put_fpu, | |
c4f035c6 | 4661 | .intercept = emulator_intercept, |
bdb42f5a | 4662 | .get_cpuid = emulator_get_cpuid, |
bbd9b64e CO |
4663 | }; |
4664 | ||
95cb2295 GN |
4665 | static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) |
4666 | { | |
4667 | u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); | |
4668 | /* | |
4669 | * an sti; sti; sequence only disable interrupts for the first | |
4670 | * instruction. So, if the last instruction, be it emulated or | |
4671 | * not, left the system with the INT_STI flag enabled, it | |
4672 | * means that the last instruction is an sti. We should not | |
4673 | * leave the flag on in this case. The same goes for mov ss | |
4674 | */ | |
4675 | if (!(int_shadow & mask)) | |
4676 | kvm_x86_ops->set_interrupt_shadow(vcpu, mask); | |
4677 | } | |
4678 | ||
54b8486f GN |
4679 | static void inject_emulated_exception(struct kvm_vcpu *vcpu) |
4680 | { | |
4681 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | |
da9cb575 | 4682 | if (ctxt->exception.vector == PF_VECTOR) |
6389ee94 | 4683 | kvm_propagate_fault(vcpu, &ctxt->exception); |
da9cb575 AK |
4684 | else if (ctxt->exception.error_code_valid) |
4685 | kvm_queue_exception_e(vcpu, ctxt->exception.vector, | |
4686 | ctxt->exception.error_code); | |
54b8486f | 4687 | else |
da9cb575 | 4688 | kvm_queue_exception(vcpu, ctxt->exception.vector); |
54b8486f GN |
4689 | } |
4690 | ||
dd856efa | 4691 | static void init_decode_cache(struct x86_emulate_ctxt *ctxt) |
b5c9ff73 | 4692 | { |
9dac77fa | 4693 | memset(&ctxt->twobyte, 0, |
dd856efa | 4694 | (void *)&ctxt->_regs - (void *)&ctxt->twobyte); |
b5c9ff73 | 4695 | |
9dac77fa AK |
4696 | ctxt->fetch.start = 0; |
4697 | ctxt->fetch.end = 0; | |
4698 | ctxt->io_read.pos = 0; | |
4699 | ctxt->io_read.end = 0; | |
4700 | ctxt->mem_read.pos = 0; | |
4701 | ctxt->mem_read.end = 0; | |
b5c9ff73 TY |
4702 | } |
4703 | ||
8ec4722d MG |
4704 | static void init_emulate_ctxt(struct kvm_vcpu *vcpu) |
4705 | { | |
adf52235 | 4706 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
8ec4722d MG |
4707 | int cs_db, cs_l; |
4708 | ||
8ec4722d MG |
4709 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
4710 | ||
adf52235 TY |
4711 | ctxt->eflags = kvm_get_rflags(vcpu); |
4712 | ctxt->eip = kvm_rip_read(vcpu); | |
4713 | ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : | |
4714 | (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : | |
4715 | cs_l ? X86EMUL_MODE_PROT64 : | |
4716 | cs_db ? X86EMUL_MODE_PROT32 : | |
4717 | X86EMUL_MODE_PROT16; | |
4718 | ctxt->guest_mode = is_guest_mode(vcpu); | |
4719 | ||
dd856efa | 4720 | init_decode_cache(ctxt); |
7ae441ea | 4721 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; |
8ec4722d MG |
4722 | } |
4723 | ||
71f9833b | 4724 | int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) |
63995653 | 4725 | { |
9d74191a | 4726 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
63995653 MG |
4727 | int ret; |
4728 | ||
4729 | init_emulate_ctxt(vcpu); | |
4730 | ||
9dac77fa AK |
4731 | ctxt->op_bytes = 2; |
4732 | ctxt->ad_bytes = 2; | |
4733 | ctxt->_eip = ctxt->eip + inc_eip; | |
9d74191a | 4734 | ret = emulate_int_real(ctxt, irq); |
63995653 MG |
4735 | |
4736 | if (ret != X86EMUL_CONTINUE) | |
4737 | return EMULATE_FAIL; | |
4738 | ||
9dac77fa | 4739 | ctxt->eip = ctxt->_eip; |
9d74191a TY |
4740 | kvm_rip_write(vcpu, ctxt->eip); |
4741 | kvm_set_rflags(vcpu, ctxt->eflags); | |
63995653 MG |
4742 | |
4743 | if (irq == NMI_VECTOR) | |
7460fb4a | 4744 | vcpu->arch.nmi_pending = 0; |
63995653 MG |
4745 | else |
4746 | vcpu->arch.interrupt.pending = false; | |
4747 | ||
4748 | return EMULATE_DONE; | |
4749 | } | |
4750 | EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); | |
4751 | ||
6d77dbfc GN |
4752 | static int handle_emulation_failure(struct kvm_vcpu *vcpu) |
4753 | { | |
fc3a9157 JR |
4754 | int r = EMULATE_DONE; |
4755 | ||
6d77dbfc GN |
4756 | ++vcpu->stat.insn_emulation_fail; |
4757 | trace_kvm_emulate_insn_failed(vcpu); | |
fc3a9157 JR |
4758 | if (!is_guest_mode(vcpu)) { |
4759 | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | |
4760 | vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | |
4761 | vcpu->run->internal.ndata = 0; | |
4762 | r = EMULATE_FAIL; | |
4763 | } | |
6d77dbfc | 4764 | kvm_queue_exception(vcpu, UD_VECTOR); |
fc3a9157 JR |
4765 | |
4766 | return r; | |
6d77dbfc GN |
4767 | } |
4768 | ||
93c05d3e | 4769 | static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, |
991eebf9 GN |
4770 | bool write_fault_to_shadow_pgtable, |
4771 | int emulation_type) | |
a6f177ef | 4772 | { |
95b3cf69 | 4773 | gpa_t gpa = cr2; |
8e3d9d06 | 4774 | pfn_t pfn; |
a6f177ef | 4775 | |
991eebf9 GN |
4776 | if (emulation_type & EMULTYPE_NO_REEXECUTE) |
4777 | return false; | |
4778 | ||
95b3cf69 XG |
4779 | if (!vcpu->arch.mmu.direct_map) { |
4780 | /* | |
4781 | * Write permission should be allowed since only | |
4782 | * write access need to be emulated. | |
4783 | */ | |
4784 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); | |
22368028 | 4785 | |
95b3cf69 XG |
4786 | /* |
4787 | * If the mapping is invalid in guest, let cpu retry | |
4788 | * it to generate fault. | |
4789 | */ | |
4790 | if (gpa == UNMAPPED_GVA) | |
4791 | return true; | |
4792 | } | |
a6f177ef | 4793 | |
8e3d9d06 XG |
4794 | /* |
4795 | * Do not retry the unhandleable instruction if it faults on the | |
4796 | * readonly host memory, otherwise it will goto a infinite loop: | |
4797 | * retry instruction -> write #PF -> emulation fail -> retry | |
4798 | * instruction -> ... | |
4799 | */ | |
4800 | pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); | |
95b3cf69 XG |
4801 | |
4802 | /* | |
4803 | * If the instruction failed on the error pfn, it can not be fixed, | |
4804 | * report the error to userspace. | |
4805 | */ | |
4806 | if (is_error_noslot_pfn(pfn)) | |
4807 | return false; | |
4808 | ||
4809 | kvm_release_pfn_clean(pfn); | |
4810 | ||
4811 | /* The instructions are well-emulated on direct mmu. */ | |
4812 | if (vcpu->arch.mmu.direct_map) { | |
4813 | unsigned int indirect_shadow_pages; | |
4814 | ||
4815 | spin_lock(&vcpu->kvm->mmu_lock); | |
4816 | indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; | |
4817 | spin_unlock(&vcpu->kvm->mmu_lock); | |
4818 | ||
4819 | if (indirect_shadow_pages) | |
4820 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); | |
4821 | ||
a6f177ef | 4822 | return true; |
8e3d9d06 | 4823 | } |
a6f177ef | 4824 | |
95b3cf69 XG |
4825 | /* |
4826 | * if emulation was due to access to shadowed page table | |
4827 | * and it failed try to unshadow page and re-enter the | |
4828 | * guest to let CPU execute the instruction. | |
4829 | */ | |
4830 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); | |
93c05d3e XG |
4831 | |
4832 | /* | |
4833 | * If the access faults on its page table, it can not | |
4834 | * be fixed by unprotecting shadow page and it should | |
4835 | * be reported to userspace. | |
4836 | */ | |
4837 | return !write_fault_to_shadow_pgtable; | |
a6f177ef GN |
4838 | } |
4839 | ||
1cb3f3ae XG |
4840 | static bool retry_instruction(struct x86_emulate_ctxt *ctxt, |
4841 | unsigned long cr2, int emulation_type) | |
4842 | { | |
4843 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
4844 | unsigned long last_retry_eip, last_retry_addr, gpa = cr2; | |
4845 | ||
4846 | last_retry_eip = vcpu->arch.last_retry_eip; | |
4847 | last_retry_addr = vcpu->arch.last_retry_addr; | |
4848 | ||
4849 | /* | |
4850 | * If the emulation is caused by #PF and it is non-page_table | |
4851 | * writing instruction, it means the VM-EXIT is caused by shadow | |
4852 | * page protected, we can zap the shadow page and retry this | |
4853 | * instruction directly. | |
4854 | * | |
4855 | * Note: if the guest uses a non-page-table modifying instruction | |
4856 | * on the PDE that points to the instruction, then we will unmap | |
4857 | * the instruction and go to an infinite loop. So, we cache the | |
4858 | * last retried eip and the last fault address, if we meet the eip | |
4859 | * and the address again, we can break out of the potential infinite | |
4860 | * loop. | |
4861 | */ | |
4862 | vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; | |
4863 | ||
4864 | if (!(emulation_type & EMULTYPE_RETRY)) | |
4865 | return false; | |
4866 | ||
4867 | if (x86_page_table_writing_insn(ctxt)) | |
4868 | return false; | |
4869 | ||
4870 | if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) | |
4871 | return false; | |
4872 | ||
4873 | vcpu->arch.last_retry_eip = ctxt->eip; | |
4874 | vcpu->arch.last_retry_addr = cr2; | |
4875 | ||
4876 | if (!vcpu->arch.mmu.direct_map) | |
4877 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); | |
4878 | ||
22368028 | 4879 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); |
1cb3f3ae XG |
4880 | |
4881 | return true; | |
4882 | } | |
4883 | ||
716d51ab GN |
4884 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu); |
4885 | static int complete_emulated_pio(struct kvm_vcpu *vcpu); | |
4886 | ||
51d8b661 AP |
4887 | int x86_emulate_instruction(struct kvm_vcpu *vcpu, |
4888 | unsigned long cr2, | |
dc25e89e AP |
4889 | int emulation_type, |
4890 | void *insn, | |
4891 | int insn_len) | |
bbd9b64e | 4892 | { |
95cb2295 | 4893 | int r; |
9d74191a | 4894 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
7ae441ea | 4895 | bool writeback = true; |
93c05d3e | 4896 | bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; |
bbd9b64e | 4897 | |
93c05d3e XG |
4898 | /* |
4899 | * Clear write_fault_to_shadow_pgtable here to ensure it is | |
4900 | * never reused. | |
4901 | */ | |
4902 | vcpu->arch.write_fault_to_shadow_pgtable = false; | |
26eef70c | 4903 | kvm_clear_exception_queue(vcpu); |
8d7d8102 | 4904 | |
571008da | 4905 | if (!(emulation_type & EMULTYPE_NO_DECODE)) { |
8ec4722d | 4906 | init_emulate_ctxt(vcpu); |
9d74191a TY |
4907 | ctxt->interruptibility = 0; |
4908 | ctxt->have_exception = false; | |
4909 | ctxt->perm_ok = false; | |
bbd9b64e | 4910 | |
9d74191a | 4911 | ctxt->only_vendor_specific_insn |
4005996e AK |
4912 | = emulation_type & EMULTYPE_TRAP_UD; |
4913 | ||
9d74191a | 4914 | r = x86_decode_insn(ctxt, insn, insn_len); |
bbd9b64e | 4915 | |
e46479f8 | 4916 | trace_kvm_emulate_insn_start(vcpu); |
f2b5756b | 4917 | ++vcpu->stat.insn_emulation; |
1d2887e2 | 4918 | if (r != EMULATION_OK) { |
4005996e AK |
4919 | if (emulation_type & EMULTYPE_TRAP_UD) |
4920 | return EMULATE_FAIL; | |
991eebf9 GN |
4921 | if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, |
4922 | emulation_type)) | |
bbd9b64e | 4923 | return EMULATE_DONE; |
6d77dbfc GN |
4924 | if (emulation_type & EMULTYPE_SKIP) |
4925 | return EMULATE_FAIL; | |
4926 | return handle_emulation_failure(vcpu); | |
bbd9b64e CO |
4927 | } |
4928 | } | |
4929 | ||
ba8afb6b | 4930 | if (emulation_type & EMULTYPE_SKIP) { |
9dac77fa | 4931 | kvm_rip_write(vcpu, ctxt->_eip); |
ba8afb6b GN |
4932 | return EMULATE_DONE; |
4933 | } | |
4934 | ||
1cb3f3ae XG |
4935 | if (retry_instruction(ctxt, cr2, emulation_type)) |
4936 | return EMULATE_DONE; | |
4937 | ||
7ae441ea | 4938 | /* this is needed for vmware backdoor interface to work since it |
4d2179e1 | 4939 | changes registers values during IO operation */ |
7ae441ea GN |
4940 | if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { |
4941 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; | |
dd856efa | 4942 | emulator_invalidate_register_cache(ctxt); |
7ae441ea | 4943 | } |
4d2179e1 | 4944 | |
5cd21917 | 4945 | restart: |
9d74191a | 4946 | r = x86_emulate_insn(ctxt); |
bbd9b64e | 4947 | |
775fde86 JR |
4948 | if (r == EMULATION_INTERCEPTED) |
4949 | return EMULATE_DONE; | |
4950 | ||
d2ddd1c4 | 4951 | if (r == EMULATION_FAILED) { |
991eebf9 GN |
4952 | if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, |
4953 | emulation_type)) | |
c3cd7ffa GN |
4954 | return EMULATE_DONE; |
4955 | ||
6d77dbfc | 4956 | return handle_emulation_failure(vcpu); |
bbd9b64e CO |
4957 | } |
4958 | ||
9d74191a | 4959 | if (ctxt->have_exception) { |
54b8486f | 4960 | inject_emulated_exception(vcpu); |
d2ddd1c4 GN |
4961 | r = EMULATE_DONE; |
4962 | } else if (vcpu->arch.pio.count) { | |
3457e419 GN |
4963 | if (!vcpu->arch.pio.in) |
4964 | vcpu->arch.pio.count = 0; | |
716d51ab | 4965 | else { |
7ae441ea | 4966 | writeback = false; |
716d51ab GN |
4967 | vcpu->arch.complete_userspace_io = complete_emulated_pio; |
4968 | } | |
e85d28f8 | 4969 | r = EMULATE_DO_MMIO; |
7ae441ea GN |
4970 | } else if (vcpu->mmio_needed) { |
4971 | if (!vcpu->mmio_is_write) | |
4972 | writeback = false; | |
e85d28f8 | 4973 | r = EMULATE_DO_MMIO; |
716d51ab | 4974 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; |
7ae441ea | 4975 | } else if (r == EMULATION_RESTART) |
5cd21917 | 4976 | goto restart; |
d2ddd1c4 GN |
4977 | else |
4978 | r = EMULATE_DONE; | |
f850e2e6 | 4979 | |
7ae441ea | 4980 | if (writeback) { |
9d74191a TY |
4981 | toggle_interruptibility(vcpu, ctxt->interruptibility); |
4982 | kvm_set_rflags(vcpu, ctxt->eflags); | |
7ae441ea | 4983 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
7ae441ea | 4984 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
9d74191a | 4985 | kvm_rip_write(vcpu, ctxt->eip); |
7ae441ea GN |
4986 | } else |
4987 | vcpu->arch.emulate_regs_need_sync_to_vcpu = true; | |
e85d28f8 GN |
4988 | |
4989 | return r; | |
de7d789a | 4990 | } |
51d8b661 | 4991 | EXPORT_SYMBOL_GPL(x86_emulate_instruction); |
de7d789a | 4992 | |
cf8f70bf | 4993 | int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) |
de7d789a | 4994 | { |
cf8f70bf | 4995 | unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); |
ca1d4a9e AK |
4996 | int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, |
4997 | size, port, &val, 1); | |
cf8f70bf | 4998 | /* do not return to emulator after return from userspace */ |
7972995b | 4999 | vcpu->arch.pio.count = 0; |
de7d789a CO |
5000 | return ret; |
5001 | } | |
cf8f70bf | 5002 | EXPORT_SYMBOL_GPL(kvm_fast_pio_out); |
de7d789a | 5003 | |
8cfdc000 ZA |
5004 | static void tsc_bad(void *info) |
5005 | { | |
0a3aee0d | 5006 | __this_cpu_write(cpu_tsc_khz, 0); |
8cfdc000 ZA |
5007 | } |
5008 | ||
5009 | static void tsc_khz_changed(void *data) | |
c8076604 | 5010 | { |
8cfdc000 ZA |
5011 | struct cpufreq_freqs *freq = data; |
5012 | unsigned long khz = 0; | |
5013 | ||
5014 | if (data) | |
5015 | khz = freq->new; | |
5016 | else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | |
5017 | khz = cpufreq_quick_get(raw_smp_processor_id()); | |
5018 | if (!khz) | |
5019 | khz = tsc_khz; | |
0a3aee0d | 5020 | __this_cpu_write(cpu_tsc_khz, khz); |
c8076604 GH |
5021 | } |
5022 | ||
c8076604 GH |
5023 | static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
5024 | void *data) | |
5025 | { | |
5026 | struct cpufreq_freqs *freq = data; | |
5027 | struct kvm *kvm; | |
5028 | struct kvm_vcpu *vcpu; | |
5029 | int i, send_ipi = 0; | |
5030 | ||
8cfdc000 ZA |
5031 | /* |
5032 | * We allow guests to temporarily run on slowing clocks, | |
5033 | * provided we notify them after, or to run on accelerating | |
5034 | * clocks, provided we notify them before. Thus time never | |
5035 | * goes backwards. | |
5036 | * | |
5037 | * However, we have a problem. We can't atomically update | |
5038 | * the frequency of a given CPU from this function; it is | |
5039 | * merely a notifier, which can be called from any CPU. | |
5040 | * Changing the TSC frequency at arbitrary points in time | |
5041 | * requires a recomputation of local variables related to | |
5042 | * the TSC for each VCPU. We must flag these local variables | |
5043 | * to be updated and be sure the update takes place with the | |
5044 | * new frequency before any guests proceed. | |
5045 | * | |
5046 | * Unfortunately, the combination of hotplug CPU and frequency | |
5047 | * change creates an intractable locking scenario; the order | |
5048 | * of when these callouts happen is undefined with respect to | |
5049 | * CPU hotplug, and they can race with each other. As such, | |
5050 | * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is | |
5051 | * undefined; you can actually have a CPU frequency change take | |
5052 | * place in between the computation of X and the setting of the | |
5053 | * variable. To protect against this problem, all updates of | |
5054 | * the per_cpu tsc_khz variable are done in an interrupt | |
5055 | * protected IPI, and all callers wishing to update the value | |
5056 | * must wait for a synchronous IPI to complete (which is trivial | |
5057 | * if the caller is on the CPU already). This establishes the | |
5058 | * necessary total order on variable updates. | |
5059 | * | |
5060 | * Note that because a guest time update may take place | |
5061 | * anytime after the setting of the VCPU's request bit, the | |
5062 | * correct TSC value must be set before the request. However, | |
5063 | * to ensure the update actually makes it to any guest which | |
5064 | * starts running in hardware virtualization between the set | |
5065 | * and the acquisition of the spinlock, we must also ping the | |
5066 | * CPU after setting the request bit. | |
5067 | * | |
5068 | */ | |
5069 | ||
c8076604 GH |
5070 | if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) |
5071 | return 0; | |
5072 | if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) | |
5073 | return 0; | |
8cfdc000 ZA |
5074 | |
5075 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); | |
c8076604 | 5076 | |
e935b837 | 5077 | raw_spin_lock(&kvm_lock); |
c8076604 | 5078 | list_for_each_entry(kvm, &vm_list, vm_list) { |
988a2cae | 5079 | kvm_for_each_vcpu(i, vcpu, kvm) { |
c8076604 GH |
5080 | if (vcpu->cpu != freq->cpu) |
5081 | continue; | |
c285545f | 5082 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
c8076604 | 5083 | if (vcpu->cpu != smp_processor_id()) |
8cfdc000 | 5084 | send_ipi = 1; |
c8076604 GH |
5085 | } |
5086 | } | |
e935b837 | 5087 | raw_spin_unlock(&kvm_lock); |
c8076604 GH |
5088 | |
5089 | if (freq->old < freq->new && send_ipi) { | |
5090 | /* | |
5091 | * We upscale the frequency. Must make the guest | |
5092 | * doesn't see old kvmclock values while running with | |
5093 | * the new frequency, otherwise we risk the guest sees | |
5094 | * time go backwards. | |
5095 | * | |
5096 | * In case we update the frequency for another cpu | |
5097 | * (which might be in guest context) send an interrupt | |
5098 | * to kick the cpu out of guest context. Next time | |
5099 | * guest context is entered kvmclock will be updated, | |
5100 | * so the guest will not see stale values. | |
5101 | */ | |
8cfdc000 | 5102 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); |
c8076604 GH |
5103 | } |
5104 | return 0; | |
5105 | } | |
5106 | ||
5107 | static struct notifier_block kvmclock_cpufreq_notifier_block = { | |
8cfdc000 ZA |
5108 | .notifier_call = kvmclock_cpufreq_notifier |
5109 | }; | |
5110 | ||
5111 | static int kvmclock_cpu_notifier(struct notifier_block *nfb, | |
5112 | unsigned long action, void *hcpu) | |
5113 | { | |
5114 | unsigned int cpu = (unsigned long)hcpu; | |
5115 | ||
5116 | switch (action) { | |
5117 | case CPU_ONLINE: | |
5118 | case CPU_DOWN_FAILED: | |
5119 | smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); | |
5120 | break; | |
5121 | case CPU_DOWN_PREPARE: | |
5122 | smp_call_function_single(cpu, tsc_bad, NULL, 1); | |
5123 | break; | |
5124 | } | |
5125 | return NOTIFY_OK; | |
5126 | } | |
5127 | ||
5128 | static struct notifier_block kvmclock_cpu_notifier_block = { | |
5129 | .notifier_call = kvmclock_cpu_notifier, | |
5130 | .priority = -INT_MAX | |
c8076604 GH |
5131 | }; |
5132 | ||
b820cc0c ZA |
5133 | static void kvm_timer_init(void) |
5134 | { | |
5135 | int cpu; | |
5136 | ||
c285545f | 5137 | max_tsc_khz = tsc_khz; |
8cfdc000 | 5138 | register_hotcpu_notifier(&kvmclock_cpu_notifier_block); |
b820cc0c | 5139 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
c285545f ZA |
5140 | #ifdef CONFIG_CPU_FREQ |
5141 | struct cpufreq_policy policy; | |
5142 | memset(&policy, 0, sizeof(policy)); | |
3e26f230 AK |
5143 | cpu = get_cpu(); |
5144 | cpufreq_get_policy(&policy, cpu); | |
c285545f ZA |
5145 | if (policy.cpuinfo.max_freq) |
5146 | max_tsc_khz = policy.cpuinfo.max_freq; | |
3e26f230 | 5147 | put_cpu(); |
c285545f | 5148 | #endif |
b820cc0c ZA |
5149 | cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, |
5150 | CPUFREQ_TRANSITION_NOTIFIER); | |
5151 | } | |
c285545f | 5152 | pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); |
8cfdc000 ZA |
5153 | for_each_online_cpu(cpu) |
5154 | smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); | |
b820cc0c ZA |
5155 | } |
5156 | ||
ff9d07a0 ZY |
5157 | static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); |
5158 | ||
f5132b01 | 5159 | int kvm_is_in_guest(void) |
ff9d07a0 | 5160 | { |
086c9855 | 5161 | return __this_cpu_read(current_vcpu) != NULL; |
ff9d07a0 ZY |
5162 | } |
5163 | ||
5164 | static int kvm_is_user_mode(void) | |
5165 | { | |
5166 | int user_mode = 3; | |
dcf46b94 | 5167 | |
086c9855 AS |
5168 | if (__this_cpu_read(current_vcpu)) |
5169 | user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); | |
dcf46b94 | 5170 | |
ff9d07a0 ZY |
5171 | return user_mode != 0; |
5172 | } | |
5173 | ||
5174 | static unsigned long kvm_get_guest_ip(void) | |
5175 | { | |
5176 | unsigned long ip = 0; | |
dcf46b94 | 5177 | |
086c9855 AS |
5178 | if (__this_cpu_read(current_vcpu)) |
5179 | ip = kvm_rip_read(__this_cpu_read(current_vcpu)); | |
dcf46b94 | 5180 | |
ff9d07a0 ZY |
5181 | return ip; |
5182 | } | |
5183 | ||
5184 | static struct perf_guest_info_callbacks kvm_guest_cbs = { | |
5185 | .is_in_guest = kvm_is_in_guest, | |
5186 | .is_user_mode = kvm_is_user_mode, | |
5187 | .get_guest_ip = kvm_get_guest_ip, | |
5188 | }; | |
5189 | ||
5190 | void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) | |
5191 | { | |
086c9855 | 5192 | __this_cpu_write(current_vcpu, vcpu); |
ff9d07a0 ZY |
5193 | } |
5194 | EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); | |
5195 | ||
5196 | void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) | |
5197 | { | |
086c9855 | 5198 | __this_cpu_write(current_vcpu, NULL); |
ff9d07a0 ZY |
5199 | } |
5200 | EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); | |
5201 | ||
ce88decf XG |
5202 | static void kvm_set_mmio_spte_mask(void) |
5203 | { | |
5204 | u64 mask; | |
5205 | int maxphyaddr = boot_cpu_data.x86_phys_bits; | |
5206 | ||
5207 | /* | |
5208 | * Set the reserved bits and the present bit of an paging-structure | |
5209 | * entry to generate page fault with PFER.RSV = 1. | |
5210 | */ | |
5211 | mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; | |
5212 | mask |= 1ull; | |
5213 | ||
5214 | #ifdef CONFIG_X86_64 | |
5215 | /* | |
5216 | * If reserved bit is not supported, clear the present bit to disable | |
5217 | * mmio page fault. | |
5218 | */ | |
5219 | if (maxphyaddr == 52) | |
5220 | mask &= ~1ull; | |
5221 | #endif | |
5222 | ||
5223 | kvm_mmu_set_mmio_spte_mask(mask); | |
5224 | } | |
5225 | ||
16e8d74d MT |
5226 | #ifdef CONFIG_X86_64 |
5227 | static void pvclock_gtod_update_fn(struct work_struct *work) | |
5228 | { | |
d828199e MT |
5229 | struct kvm *kvm; |
5230 | ||
5231 | struct kvm_vcpu *vcpu; | |
5232 | int i; | |
5233 | ||
5234 | raw_spin_lock(&kvm_lock); | |
5235 | list_for_each_entry(kvm, &vm_list, vm_list) | |
5236 | kvm_for_each_vcpu(i, vcpu, kvm) | |
5237 | set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests); | |
5238 | atomic_set(&kvm_guest_has_master_clock, 0); | |
5239 | raw_spin_unlock(&kvm_lock); | |
16e8d74d MT |
5240 | } |
5241 | ||
5242 | static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); | |
5243 | ||
5244 | /* | |
5245 | * Notification about pvclock gtod data update. | |
5246 | */ | |
5247 | static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, | |
5248 | void *priv) | |
5249 | { | |
5250 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
5251 | struct timekeeper *tk = priv; | |
5252 | ||
5253 | update_pvclock_gtod(tk); | |
5254 | ||
5255 | /* disable master clock if host does not trust, or does not | |
5256 | * use, TSC clocksource | |
5257 | */ | |
5258 | if (gtod->clock.vclock_mode != VCLOCK_TSC && | |
5259 | atomic_read(&kvm_guest_has_master_clock) != 0) | |
5260 | queue_work(system_long_wq, &pvclock_gtod_work); | |
5261 | ||
5262 | return 0; | |
5263 | } | |
5264 | ||
5265 | static struct notifier_block pvclock_gtod_notifier = { | |
5266 | .notifier_call = pvclock_gtod_notify, | |
5267 | }; | |
5268 | #endif | |
5269 | ||
f8c16bba | 5270 | int kvm_arch_init(void *opaque) |
043405e1 | 5271 | { |
b820cc0c | 5272 | int r; |
f8c16bba ZX |
5273 | struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; |
5274 | ||
f8c16bba ZX |
5275 | if (kvm_x86_ops) { |
5276 | printk(KERN_ERR "kvm: already loaded the other module\n"); | |
56c6d28a ZX |
5277 | r = -EEXIST; |
5278 | goto out; | |
f8c16bba ZX |
5279 | } |
5280 | ||
5281 | if (!ops->cpu_has_kvm_support()) { | |
5282 | printk(KERN_ERR "kvm: no hardware support\n"); | |
56c6d28a ZX |
5283 | r = -EOPNOTSUPP; |
5284 | goto out; | |
f8c16bba ZX |
5285 | } |
5286 | if (ops->disabled_by_bios()) { | |
5287 | printk(KERN_ERR "kvm: disabled by bios\n"); | |
56c6d28a ZX |
5288 | r = -EOPNOTSUPP; |
5289 | goto out; | |
f8c16bba ZX |
5290 | } |
5291 | ||
013f6a5d MT |
5292 | r = -ENOMEM; |
5293 | shared_msrs = alloc_percpu(struct kvm_shared_msrs); | |
5294 | if (!shared_msrs) { | |
5295 | printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); | |
5296 | goto out; | |
5297 | } | |
5298 | ||
97db56ce AK |
5299 | r = kvm_mmu_module_init(); |
5300 | if (r) | |
013f6a5d | 5301 | goto out_free_percpu; |
97db56ce | 5302 | |
ce88decf | 5303 | kvm_set_mmio_spte_mask(); |
97db56ce AK |
5304 | kvm_init_msr_list(); |
5305 | ||
f8c16bba | 5306 | kvm_x86_ops = ops; |
7b52345e | 5307 | kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, |
4b12f0de | 5308 | PT_DIRTY_MASK, PT64_NX_MASK, 0); |
c8076604 | 5309 | |
b820cc0c | 5310 | kvm_timer_init(); |
c8076604 | 5311 | |
ff9d07a0 ZY |
5312 | perf_register_guest_info_callbacks(&kvm_guest_cbs); |
5313 | ||
2acf923e DC |
5314 | if (cpu_has_xsave) |
5315 | host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); | |
5316 | ||
c5cc421b | 5317 | kvm_lapic_init(); |
16e8d74d MT |
5318 | #ifdef CONFIG_X86_64 |
5319 | pvclock_gtod_register_notifier(&pvclock_gtod_notifier); | |
5320 | #endif | |
5321 | ||
f8c16bba | 5322 | return 0; |
56c6d28a | 5323 | |
013f6a5d MT |
5324 | out_free_percpu: |
5325 | free_percpu(shared_msrs); | |
56c6d28a | 5326 | out: |
56c6d28a | 5327 | return r; |
043405e1 | 5328 | } |
8776e519 | 5329 | |
f8c16bba ZX |
5330 | void kvm_arch_exit(void) |
5331 | { | |
ff9d07a0 ZY |
5332 | perf_unregister_guest_info_callbacks(&kvm_guest_cbs); |
5333 | ||
888d256e JK |
5334 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
5335 | cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, | |
5336 | CPUFREQ_TRANSITION_NOTIFIER); | |
8cfdc000 | 5337 | unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); |
16e8d74d MT |
5338 | #ifdef CONFIG_X86_64 |
5339 | pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); | |
5340 | #endif | |
f8c16bba | 5341 | kvm_x86_ops = NULL; |
56c6d28a | 5342 | kvm_mmu_module_exit(); |
013f6a5d | 5343 | free_percpu(shared_msrs); |
56c6d28a | 5344 | } |
f8c16bba | 5345 | |
8776e519 HB |
5346 | int kvm_emulate_halt(struct kvm_vcpu *vcpu) |
5347 | { | |
5348 | ++vcpu->stat.halt_exits; | |
5349 | if (irqchip_in_kernel(vcpu->kvm)) { | |
a4535290 | 5350 | vcpu->arch.mp_state = KVM_MP_STATE_HALTED; |
8776e519 HB |
5351 | return 1; |
5352 | } else { | |
5353 | vcpu->run->exit_reason = KVM_EXIT_HLT; | |
5354 | return 0; | |
5355 | } | |
5356 | } | |
5357 | EXPORT_SYMBOL_GPL(kvm_emulate_halt); | |
5358 | ||
55cd8e5a GN |
5359 | int kvm_hv_hypercall(struct kvm_vcpu *vcpu) |
5360 | { | |
5361 | u64 param, ingpa, outgpa, ret; | |
5362 | uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; | |
5363 | bool fast, longmode; | |
5364 | int cs_db, cs_l; | |
5365 | ||
5366 | /* | |
5367 | * hypercall generates UD from non zero cpl and real mode | |
5368 | * per HYPER-V spec | |
5369 | */ | |
3eeb3288 | 5370 | if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { |
55cd8e5a GN |
5371 | kvm_queue_exception(vcpu, UD_VECTOR); |
5372 | return 0; | |
5373 | } | |
5374 | ||
5375 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); | |
5376 | longmode = is_long_mode(vcpu) && cs_l == 1; | |
5377 | ||
5378 | if (!longmode) { | |
ccd46936 GN |
5379 | param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | |
5380 | (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); | |
5381 | ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | | |
5382 | (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); | |
5383 | outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | | |
5384 | (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); | |
55cd8e5a GN |
5385 | } |
5386 | #ifdef CONFIG_X86_64 | |
5387 | else { | |
5388 | param = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
5389 | ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); | |
5390 | outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); | |
5391 | } | |
5392 | #endif | |
5393 | ||
5394 | code = param & 0xffff; | |
5395 | fast = (param >> 16) & 0x1; | |
5396 | rep_cnt = (param >> 32) & 0xfff; | |
5397 | rep_idx = (param >> 48) & 0xfff; | |
5398 | ||
5399 | trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); | |
5400 | ||
c25bc163 GN |
5401 | switch (code) { |
5402 | case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: | |
5403 | kvm_vcpu_on_spin(vcpu); | |
5404 | break; | |
5405 | default: | |
5406 | res = HV_STATUS_INVALID_HYPERCALL_CODE; | |
5407 | break; | |
5408 | } | |
55cd8e5a GN |
5409 | |
5410 | ret = res | (((u64)rep_done & 0xfff) << 32); | |
5411 | if (longmode) { | |
5412 | kvm_register_write(vcpu, VCPU_REGS_RAX, ret); | |
5413 | } else { | |
5414 | kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); | |
5415 | kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); | |
5416 | } | |
5417 | ||
5418 | return 1; | |
5419 | } | |
5420 | ||
8776e519 HB |
5421 | int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) |
5422 | { | |
5423 | unsigned long nr, a0, a1, a2, a3, ret; | |
2f333bcb | 5424 | int r = 1; |
8776e519 | 5425 | |
55cd8e5a GN |
5426 | if (kvm_hv_hypercall_enabled(vcpu->kvm)) |
5427 | return kvm_hv_hypercall(vcpu); | |
5428 | ||
5fdbf976 MT |
5429 | nr = kvm_register_read(vcpu, VCPU_REGS_RAX); |
5430 | a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); | |
5431 | a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
5432 | a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); | |
5433 | a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); | |
8776e519 | 5434 | |
229456fc | 5435 | trace_kvm_hypercall(nr, a0, a1, a2, a3); |
2714d1d3 | 5436 | |
8776e519 HB |
5437 | if (!is_long_mode(vcpu)) { |
5438 | nr &= 0xFFFFFFFF; | |
5439 | a0 &= 0xFFFFFFFF; | |
5440 | a1 &= 0xFFFFFFFF; | |
5441 | a2 &= 0xFFFFFFFF; | |
5442 | a3 &= 0xFFFFFFFF; | |
5443 | } | |
5444 | ||
07708c4a JK |
5445 | if (kvm_x86_ops->get_cpl(vcpu) != 0) { |
5446 | ret = -KVM_EPERM; | |
5447 | goto out; | |
5448 | } | |
5449 | ||
8776e519 | 5450 | switch (nr) { |
b93463aa AK |
5451 | case KVM_HC_VAPIC_POLL_IRQ: |
5452 | ret = 0; | |
5453 | break; | |
8776e519 HB |
5454 | default: |
5455 | ret = -KVM_ENOSYS; | |
5456 | break; | |
5457 | } | |
07708c4a | 5458 | out: |
5fdbf976 | 5459 | kvm_register_write(vcpu, VCPU_REGS_RAX, ret); |
f11c3a8d | 5460 | ++vcpu->stat.hypercalls; |
2f333bcb | 5461 | return r; |
8776e519 HB |
5462 | } |
5463 | EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); | |
5464 | ||
b6785def | 5465 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) |
8776e519 | 5466 | { |
d6aa1000 | 5467 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
8776e519 | 5468 | char instruction[3]; |
5fdbf976 | 5469 | unsigned long rip = kvm_rip_read(vcpu); |
8776e519 | 5470 | |
8776e519 HB |
5471 | /* |
5472 | * Blow out the MMU to ensure that no other VCPU has an active mapping | |
5473 | * to ensure that the updated hypercall appears atomically across all | |
5474 | * VCPUs. | |
5475 | */ | |
5476 | kvm_mmu_zap_all(vcpu->kvm); | |
5477 | ||
8776e519 | 5478 | kvm_x86_ops->patch_hypercall(vcpu, instruction); |
8776e519 | 5479 | |
9d74191a | 5480 | return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); |
8776e519 HB |
5481 | } |
5482 | ||
b6c7a5dc HB |
5483 | /* |
5484 | * Check if userspace requested an interrupt window, and that the | |
5485 | * interrupt window is open. | |
5486 | * | |
5487 | * No need to exit to userspace if we already have an interrupt queued. | |
5488 | */ | |
851ba692 | 5489 | static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) |
b6c7a5dc | 5490 | { |
8061823a | 5491 | return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && |
851ba692 | 5492 | vcpu->run->request_interrupt_window && |
5df56646 | 5493 | kvm_arch_interrupt_allowed(vcpu)); |
b6c7a5dc HB |
5494 | } |
5495 | ||
851ba692 | 5496 | static void post_kvm_run_save(struct kvm_vcpu *vcpu) |
b6c7a5dc | 5497 | { |
851ba692 AK |
5498 | struct kvm_run *kvm_run = vcpu->run; |
5499 | ||
91586a3b | 5500 | kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; |
2d3ad1f4 | 5501 | kvm_run->cr8 = kvm_get_cr8(vcpu); |
b6c7a5dc | 5502 | kvm_run->apic_base = kvm_get_apic_base(vcpu); |
4531220b | 5503 | if (irqchip_in_kernel(vcpu->kvm)) |
b6c7a5dc | 5504 | kvm_run->ready_for_interrupt_injection = 1; |
4531220b | 5505 | else |
b6c7a5dc | 5506 | kvm_run->ready_for_interrupt_injection = |
fa9726b0 GN |
5507 | kvm_arch_interrupt_allowed(vcpu) && |
5508 | !kvm_cpu_has_interrupt(vcpu) && | |
5509 | !kvm_event_needs_reinjection(vcpu); | |
b6c7a5dc HB |
5510 | } |
5511 | ||
4484141a | 5512 | static int vapic_enter(struct kvm_vcpu *vcpu) |
b93463aa AK |
5513 | { |
5514 | struct kvm_lapic *apic = vcpu->arch.apic; | |
5515 | struct page *page; | |
5516 | ||
5517 | if (!apic || !apic->vapic_addr) | |
4484141a | 5518 | return 0; |
b93463aa AK |
5519 | |
5520 | page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); | |
4484141a XG |
5521 | if (is_error_page(page)) |
5522 | return -EFAULT; | |
72dc67a6 IE |
5523 | |
5524 | vcpu->arch.apic->vapic_page = page; | |
4484141a | 5525 | return 0; |
b93463aa AK |
5526 | } |
5527 | ||
5528 | static void vapic_exit(struct kvm_vcpu *vcpu) | |
5529 | { | |
5530 | struct kvm_lapic *apic = vcpu->arch.apic; | |
f656ce01 | 5531 | int idx; |
b93463aa AK |
5532 | |
5533 | if (!apic || !apic->vapic_addr) | |
5534 | return; | |
5535 | ||
f656ce01 | 5536 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
b93463aa AK |
5537 | kvm_release_page_dirty(apic->vapic_page); |
5538 | mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); | |
f656ce01 | 5539 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
b93463aa AK |
5540 | } |
5541 | ||
95ba8273 GN |
5542 | static void update_cr8_intercept(struct kvm_vcpu *vcpu) |
5543 | { | |
5544 | int max_irr, tpr; | |
5545 | ||
5546 | if (!kvm_x86_ops->update_cr8_intercept) | |
5547 | return; | |
5548 | ||
88c808fd AK |
5549 | if (!vcpu->arch.apic) |
5550 | return; | |
5551 | ||
8db3baa2 GN |
5552 | if (!vcpu->arch.apic->vapic_addr) |
5553 | max_irr = kvm_lapic_find_highest_irr(vcpu); | |
5554 | else | |
5555 | max_irr = -1; | |
95ba8273 GN |
5556 | |
5557 | if (max_irr != -1) | |
5558 | max_irr >>= 4; | |
5559 | ||
5560 | tpr = kvm_lapic_get_cr8(vcpu); | |
5561 | ||
5562 | kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); | |
5563 | } | |
5564 | ||
851ba692 | 5565 | static void inject_pending_event(struct kvm_vcpu *vcpu) |
95ba8273 GN |
5566 | { |
5567 | /* try to reinject previous events if any */ | |
b59bb7bd | 5568 | if (vcpu->arch.exception.pending) { |
5c1c85d0 AK |
5569 | trace_kvm_inj_exception(vcpu->arch.exception.nr, |
5570 | vcpu->arch.exception.has_error_code, | |
5571 | vcpu->arch.exception.error_code); | |
b59bb7bd GN |
5572 | kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, |
5573 | vcpu->arch.exception.has_error_code, | |
ce7ddec4 JR |
5574 | vcpu->arch.exception.error_code, |
5575 | vcpu->arch.exception.reinject); | |
b59bb7bd GN |
5576 | return; |
5577 | } | |
5578 | ||
95ba8273 GN |
5579 | if (vcpu->arch.nmi_injected) { |
5580 | kvm_x86_ops->set_nmi(vcpu); | |
5581 | return; | |
5582 | } | |
5583 | ||
5584 | if (vcpu->arch.interrupt.pending) { | |
66fd3f7f | 5585 | kvm_x86_ops->set_irq(vcpu); |
95ba8273 GN |
5586 | return; |
5587 | } | |
5588 | ||
5589 | /* try to inject new event if pending */ | |
5590 | if (vcpu->arch.nmi_pending) { | |
5591 | if (kvm_x86_ops->nmi_allowed(vcpu)) { | |
7460fb4a | 5592 | --vcpu->arch.nmi_pending; |
95ba8273 GN |
5593 | vcpu->arch.nmi_injected = true; |
5594 | kvm_x86_ops->set_nmi(vcpu); | |
5595 | } | |
c7c9c56c | 5596 | } else if (kvm_cpu_has_injectable_intr(vcpu)) { |
95ba8273 | 5597 | if (kvm_x86_ops->interrupt_allowed(vcpu)) { |
66fd3f7f GN |
5598 | kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), |
5599 | false); | |
5600 | kvm_x86_ops->set_irq(vcpu); | |
95ba8273 GN |
5601 | } |
5602 | } | |
5603 | } | |
5604 | ||
2acf923e DC |
5605 | static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) |
5606 | { | |
5607 | if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && | |
5608 | !vcpu->guest_xcr0_loaded) { | |
5609 | /* kvm_set_xcr() also depends on this */ | |
5610 | xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); | |
5611 | vcpu->guest_xcr0_loaded = 1; | |
5612 | } | |
5613 | } | |
5614 | ||
5615 | static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) | |
5616 | { | |
5617 | if (vcpu->guest_xcr0_loaded) { | |
5618 | if (vcpu->arch.xcr0 != host_xcr0) | |
5619 | xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); | |
5620 | vcpu->guest_xcr0_loaded = 0; | |
5621 | } | |
5622 | } | |
5623 | ||
7460fb4a AK |
5624 | static void process_nmi(struct kvm_vcpu *vcpu) |
5625 | { | |
5626 | unsigned limit = 2; | |
5627 | ||
5628 | /* | |
5629 | * x86 is limited to one NMI running, and one NMI pending after it. | |
5630 | * If an NMI is already in progress, limit further NMIs to just one. | |
5631 | * Otherwise, allow two (and we'll inject the first one immediately). | |
5632 | */ | |
5633 | if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) | |
5634 | limit = 1; | |
5635 | ||
5636 | vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); | |
5637 | vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); | |
5638 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
5639 | } | |
5640 | ||
d828199e MT |
5641 | static void kvm_gen_update_masterclock(struct kvm *kvm) |
5642 | { | |
5643 | #ifdef CONFIG_X86_64 | |
5644 | int i; | |
5645 | struct kvm_vcpu *vcpu; | |
5646 | struct kvm_arch *ka = &kvm->arch; | |
5647 | ||
5648 | spin_lock(&ka->pvclock_gtod_sync_lock); | |
5649 | kvm_make_mclock_inprogress_request(kvm); | |
5650 | /* no guest entries from this point */ | |
5651 | pvclock_update_vm_gtod_copy(kvm); | |
5652 | ||
5653 | kvm_for_each_vcpu(i, vcpu, kvm) | |
5654 | set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); | |
5655 | ||
5656 | /* guest entries allowed */ | |
5657 | kvm_for_each_vcpu(i, vcpu, kvm) | |
5658 | clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); | |
5659 | ||
5660 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
5661 | #endif | |
5662 | } | |
5663 | ||
3d81bc7e | 5664 | static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) |
c7c9c56c YZ |
5665 | { |
5666 | u64 eoi_exit_bitmap[4]; | |
5667 | ||
3d81bc7e YZ |
5668 | if (!kvm_apic_hw_enabled(vcpu->arch.apic)) |
5669 | return; | |
5670 | ||
c7c9c56c YZ |
5671 | memset(eoi_exit_bitmap, 0, 32); |
5672 | ||
3d81bc7e | 5673 | kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap); |
c7c9c56c YZ |
5674 | kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); |
5675 | } | |
5676 | ||
851ba692 | 5677 | static int vcpu_enter_guest(struct kvm_vcpu *vcpu) |
b6c7a5dc HB |
5678 | { |
5679 | int r; | |
6a8b1d13 | 5680 | bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && |
851ba692 | 5681 | vcpu->run->request_interrupt_window; |
d6185f20 | 5682 | bool req_immediate_exit = 0; |
b6c7a5dc | 5683 | |
3e007509 | 5684 | if (vcpu->requests) { |
a8eeb04a | 5685 | if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) |
2e53d63a | 5686 | kvm_mmu_unload(vcpu); |
a8eeb04a | 5687 | if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) |
2f599714 | 5688 | __kvm_migrate_timers(vcpu); |
d828199e MT |
5689 | if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) |
5690 | kvm_gen_update_masterclock(vcpu->kvm); | |
34c238a1 ZA |
5691 | if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { |
5692 | r = kvm_guest_time_update(vcpu); | |
8cfdc000 ZA |
5693 | if (unlikely(r)) |
5694 | goto out; | |
5695 | } | |
a8eeb04a | 5696 | if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) |
4731d4c7 | 5697 | kvm_mmu_sync_roots(vcpu); |
a8eeb04a | 5698 | if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) |
d4acf7e7 | 5699 | kvm_x86_ops->tlb_flush(vcpu); |
a8eeb04a | 5700 | if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { |
851ba692 | 5701 | vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; |
b93463aa AK |
5702 | r = 0; |
5703 | goto out; | |
5704 | } | |
a8eeb04a | 5705 | if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { |
851ba692 | 5706 | vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; |
71c4dfaf JR |
5707 | r = 0; |
5708 | goto out; | |
5709 | } | |
a8eeb04a | 5710 | if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { |
02daab21 AK |
5711 | vcpu->fpu_active = 0; |
5712 | kvm_x86_ops->fpu_deactivate(vcpu); | |
5713 | } | |
af585b92 GN |
5714 | if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { |
5715 | /* Page is swapped out. Do synthetic halt */ | |
5716 | vcpu->arch.apf.halted = true; | |
5717 | r = 1; | |
5718 | goto out; | |
5719 | } | |
c9aaa895 GC |
5720 | if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) |
5721 | record_steal_time(vcpu); | |
7460fb4a AK |
5722 | if (kvm_check_request(KVM_REQ_NMI, vcpu)) |
5723 | process_nmi(vcpu); | |
d6185f20 NHE |
5724 | req_immediate_exit = |
5725 | kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu); | |
f5132b01 GN |
5726 | if (kvm_check_request(KVM_REQ_PMU, vcpu)) |
5727 | kvm_handle_pmu_event(vcpu); | |
5728 | if (kvm_check_request(KVM_REQ_PMI, vcpu)) | |
5729 | kvm_deliver_pmi(vcpu); | |
3d81bc7e YZ |
5730 | if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) |
5731 | vcpu_scan_ioapic(vcpu); | |
2f52d58c | 5732 | } |
b93463aa | 5733 | |
b463a6f7 | 5734 | if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { |
66450a21 JK |
5735 | kvm_apic_accept_events(vcpu); |
5736 | if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { | |
5737 | r = 1; | |
5738 | goto out; | |
5739 | } | |
5740 | ||
b463a6f7 AK |
5741 | inject_pending_event(vcpu); |
5742 | ||
5743 | /* enable NMI/IRQ window open exits if needed */ | |
7460fb4a | 5744 | if (vcpu->arch.nmi_pending) |
b463a6f7 | 5745 | kvm_x86_ops->enable_nmi_window(vcpu); |
c7c9c56c | 5746 | else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) |
b463a6f7 AK |
5747 | kvm_x86_ops->enable_irq_window(vcpu); |
5748 | ||
5749 | if (kvm_lapic_enabled(vcpu)) { | |
c7c9c56c YZ |
5750 | /* |
5751 | * Update architecture specific hints for APIC | |
5752 | * virtual interrupt delivery. | |
5753 | */ | |
5754 | if (kvm_x86_ops->hwapic_irr_update) | |
5755 | kvm_x86_ops->hwapic_irr_update(vcpu, | |
5756 | kvm_lapic_find_highest_irr(vcpu)); | |
b463a6f7 AK |
5757 | update_cr8_intercept(vcpu); |
5758 | kvm_lapic_sync_to_vapic(vcpu); | |
5759 | } | |
5760 | } | |
5761 | ||
d8368af8 AK |
5762 | r = kvm_mmu_reload(vcpu); |
5763 | if (unlikely(r)) { | |
d905c069 | 5764 | goto cancel_injection; |
d8368af8 AK |
5765 | } |
5766 | ||
b6c7a5dc HB |
5767 | preempt_disable(); |
5768 | ||
5769 | kvm_x86_ops->prepare_guest_switch(vcpu); | |
2608d7a1 AK |
5770 | if (vcpu->fpu_active) |
5771 | kvm_load_guest_fpu(vcpu); | |
2acf923e | 5772 | kvm_load_guest_xcr0(vcpu); |
b6c7a5dc | 5773 | |
6b7e2d09 XG |
5774 | vcpu->mode = IN_GUEST_MODE; |
5775 | ||
5776 | /* We should set ->mode before check ->requests, | |
5777 | * see the comment in make_all_cpus_request. | |
5778 | */ | |
5779 | smp_mb(); | |
b6c7a5dc | 5780 | |
d94e1dc9 | 5781 | local_irq_disable(); |
32f88400 | 5782 | |
6b7e2d09 | 5783 | if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests |
d94e1dc9 | 5784 | || need_resched() || signal_pending(current)) { |
6b7e2d09 | 5785 | vcpu->mode = OUTSIDE_GUEST_MODE; |
d94e1dc9 | 5786 | smp_wmb(); |
6c142801 AK |
5787 | local_irq_enable(); |
5788 | preempt_enable(); | |
5789 | r = 1; | |
d905c069 | 5790 | goto cancel_injection; |
6c142801 AK |
5791 | } |
5792 | ||
f656ce01 | 5793 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
3200f405 | 5794 | |
d6185f20 NHE |
5795 | if (req_immediate_exit) |
5796 | smp_send_reschedule(vcpu->cpu); | |
5797 | ||
b6c7a5dc HB |
5798 | kvm_guest_enter(); |
5799 | ||
42dbaa5a | 5800 | if (unlikely(vcpu->arch.switch_db_regs)) { |
42dbaa5a JK |
5801 | set_debugreg(0, 7); |
5802 | set_debugreg(vcpu->arch.eff_db[0], 0); | |
5803 | set_debugreg(vcpu->arch.eff_db[1], 1); | |
5804 | set_debugreg(vcpu->arch.eff_db[2], 2); | |
5805 | set_debugreg(vcpu->arch.eff_db[3], 3); | |
5806 | } | |
b6c7a5dc | 5807 | |
229456fc | 5808 | trace_kvm_entry(vcpu->vcpu_id); |
851ba692 | 5809 | kvm_x86_ops->run(vcpu); |
b6c7a5dc | 5810 | |
24f1e32c FW |
5811 | /* |
5812 | * If the guest has used debug registers, at least dr7 | |
5813 | * will be disabled while returning to the host. | |
5814 | * If we don't have active breakpoints in the host, we don't | |
5815 | * care about the messed up debug address registers. But if | |
5816 | * we have some of them active, restore the old state. | |
5817 | */ | |
59d8eb53 | 5818 | if (hw_breakpoint_active()) |
24f1e32c | 5819 | hw_breakpoint_restore(); |
42dbaa5a | 5820 | |
886b470c MT |
5821 | vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, |
5822 | native_read_tsc()); | |
1d5f066e | 5823 | |
6b7e2d09 | 5824 | vcpu->mode = OUTSIDE_GUEST_MODE; |
d94e1dc9 | 5825 | smp_wmb(); |
a547c6db YZ |
5826 | |
5827 | /* Interrupt is enabled by handle_external_intr() */ | |
5828 | kvm_x86_ops->handle_external_intr(vcpu); | |
b6c7a5dc HB |
5829 | |
5830 | ++vcpu->stat.exits; | |
5831 | ||
5832 | /* | |
5833 | * We must have an instruction between local_irq_enable() and | |
5834 | * kvm_guest_exit(), so the timer interrupt isn't delayed by | |
5835 | * the interrupt shadow. The stat.exits increment will do nicely. | |
5836 | * But we need to prevent reordering, hence this barrier(): | |
5837 | */ | |
5838 | barrier(); | |
5839 | ||
5840 | kvm_guest_exit(); | |
5841 | ||
5842 | preempt_enable(); | |
5843 | ||
f656ce01 | 5844 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
3200f405 | 5845 | |
b6c7a5dc HB |
5846 | /* |
5847 | * Profile KVM exit RIPs: | |
5848 | */ | |
5849 | if (unlikely(prof_on == KVM_PROFILING)) { | |
5fdbf976 MT |
5850 | unsigned long rip = kvm_rip_read(vcpu); |
5851 | profile_hit(KVM_PROFILING, (void *)rip); | |
b6c7a5dc HB |
5852 | } |
5853 | ||
cc578287 ZA |
5854 | if (unlikely(vcpu->arch.tsc_always_catchup)) |
5855 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | |
298101da | 5856 | |
5cfb1d5a MT |
5857 | if (vcpu->arch.apic_attention) |
5858 | kvm_lapic_sync_from_vapic(vcpu); | |
b93463aa | 5859 | |
851ba692 | 5860 | r = kvm_x86_ops->handle_exit(vcpu); |
d905c069 MT |
5861 | return r; |
5862 | ||
5863 | cancel_injection: | |
5864 | kvm_x86_ops->cancel_injection(vcpu); | |
ae7a2a3f MT |
5865 | if (unlikely(vcpu->arch.apic_attention)) |
5866 | kvm_lapic_sync_from_vapic(vcpu); | |
d7690175 MT |
5867 | out: |
5868 | return r; | |
5869 | } | |
b6c7a5dc | 5870 | |
09cec754 | 5871 | |
851ba692 | 5872 | static int __vcpu_run(struct kvm_vcpu *vcpu) |
d7690175 MT |
5873 | { |
5874 | int r; | |
f656ce01 | 5875 | struct kvm *kvm = vcpu->kvm; |
d7690175 | 5876 | |
f656ce01 | 5877 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
4484141a XG |
5878 | r = vapic_enter(vcpu); |
5879 | if (r) { | |
5880 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); | |
5881 | return r; | |
5882 | } | |
d7690175 MT |
5883 | |
5884 | r = 1; | |
5885 | while (r > 0) { | |
af585b92 GN |
5886 | if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && |
5887 | !vcpu->arch.apf.halted) | |
851ba692 | 5888 | r = vcpu_enter_guest(vcpu); |
d7690175 | 5889 | else { |
f656ce01 | 5890 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
d7690175 | 5891 | kvm_vcpu_block(vcpu); |
f656ce01 | 5892 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
66450a21 JK |
5893 | if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { |
5894 | kvm_apic_accept_events(vcpu); | |
09cec754 GN |
5895 | switch(vcpu->arch.mp_state) { |
5896 | case KVM_MP_STATE_HALTED: | |
d7690175 | 5897 | vcpu->arch.mp_state = |
09cec754 GN |
5898 | KVM_MP_STATE_RUNNABLE; |
5899 | case KVM_MP_STATE_RUNNABLE: | |
af585b92 | 5900 | vcpu->arch.apf.halted = false; |
09cec754 | 5901 | break; |
66450a21 JK |
5902 | case KVM_MP_STATE_INIT_RECEIVED: |
5903 | break; | |
09cec754 GN |
5904 | default: |
5905 | r = -EINTR; | |
5906 | break; | |
5907 | } | |
5908 | } | |
d7690175 MT |
5909 | } |
5910 | ||
09cec754 GN |
5911 | if (r <= 0) |
5912 | break; | |
5913 | ||
5914 | clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); | |
5915 | if (kvm_cpu_has_pending_timer(vcpu)) | |
5916 | kvm_inject_pending_timer_irqs(vcpu); | |
5917 | ||
851ba692 | 5918 | if (dm_request_for_irq_injection(vcpu)) { |
09cec754 | 5919 | r = -EINTR; |
851ba692 | 5920 | vcpu->run->exit_reason = KVM_EXIT_INTR; |
09cec754 GN |
5921 | ++vcpu->stat.request_irq_exits; |
5922 | } | |
af585b92 GN |
5923 | |
5924 | kvm_check_async_pf_completion(vcpu); | |
5925 | ||
09cec754 GN |
5926 | if (signal_pending(current)) { |
5927 | r = -EINTR; | |
851ba692 | 5928 | vcpu->run->exit_reason = KVM_EXIT_INTR; |
09cec754 GN |
5929 | ++vcpu->stat.signal_exits; |
5930 | } | |
5931 | if (need_resched()) { | |
f656ce01 | 5932 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
09cec754 | 5933 | kvm_resched(vcpu); |
f656ce01 | 5934 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
d7690175 | 5935 | } |
b6c7a5dc HB |
5936 | } |
5937 | ||
f656ce01 | 5938 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
b6c7a5dc | 5939 | |
b93463aa AK |
5940 | vapic_exit(vcpu); |
5941 | ||
b6c7a5dc HB |
5942 | return r; |
5943 | } | |
5944 | ||
716d51ab GN |
5945 | static inline int complete_emulated_io(struct kvm_vcpu *vcpu) |
5946 | { | |
5947 | int r; | |
5948 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); | |
5949 | r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); | |
5950 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); | |
5951 | if (r != EMULATE_DONE) | |
5952 | return 0; | |
5953 | return 1; | |
5954 | } | |
5955 | ||
5956 | static int complete_emulated_pio(struct kvm_vcpu *vcpu) | |
5957 | { | |
5958 | BUG_ON(!vcpu->arch.pio.count); | |
5959 | ||
5960 | return complete_emulated_io(vcpu); | |
5961 | } | |
5962 | ||
f78146b0 AK |
5963 | /* |
5964 | * Implements the following, as a state machine: | |
5965 | * | |
5966 | * read: | |
5967 | * for each fragment | |
87da7e66 XG |
5968 | * for each mmio piece in the fragment |
5969 | * write gpa, len | |
5970 | * exit | |
5971 | * copy data | |
f78146b0 AK |
5972 | * execute insn |
5973 | * | |
5974 | * write: | |
5975 | * for each fragment | |
87da7e66 XG |
5976 | * for each mmio piece in the fragment |
5977 | * write gpa, len | |
5978 | * copy data | |
5979 | * exit | |
f78146b0 | 5980 | */ |
716d51ab | 5981 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu) |
5287f194 AK |
5982 | { |
5983 | struct kvm_run *run = vcpu->run; | |
f78146b0 | 5984 | struct kvm_mmio_fragment *frag; |
87da7e66 | 5985 | unsigned len; |
5287f194 | 5986 | |
716d51ab | 5987 | BUG_ON(!vcpu->mmio_needed); |
5287f194 | 5988 | |
716d51ab | 5989 | /* Complete previous fragment */ |
87da7e66 XG |
5990 | frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; |
5991 | len = min(8u, frag->len); | |
716d51ab | 5992 | if (!vcpu->mmio_is_write) |
87da7e66 XG |
5993 | memcpy(frag->data, run->mmio.data, len); |
5994 | ||
5995 | if (frag->len <= 8) { | |
5996 | /* Switch to the next fragment. */ | |
5997 | frag++; | |
5998 | vcpu->mmio_cur_fragment++; | |
5999 | } else { | |
6000 | /* Go forward to the next mmio piece. */ | |
6001 | frag->data += len; | |
6002 | frag->gpa += len; | |
6003 | frag->len -= len; | |
6004 | } | |
6005 | ||
716d51ab GN |
6006 | if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { |
6007 | vcpu->mmio_needed = 0; | |
cef4dea0 | 6008 | if (vcpu->mmio_is_write) |
716d51ab GN |
6009 | return 1; |
6010 | vcpu->mmio_read_completed = 1; | |
6011 | return complete_emulated_io(vcpu); | |
6012 | } | |
87da7e66 | 6013 | |
716d51ab GN |
6014 | run->exit_reason = KVM_EXIT_MMIO; |
6015 | run->mmio.phys_addr = frag->gpa; | |
6016 | if (vcpu->mmio_is_write) | |
87da7e66 XG |
6017 | memcpy(run->mmio.data, frag->data, min(8u, frag->len)); |
6018 | run->mmio.len = min(8u, frag->len); | |
716d51ab GN |
6019 | run->mmio.is_write = vcpu->mmio_is_write; |
6020 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; | |
6021 | return 0; | |
5287f194 AK |
6022 | } |
6023 | ||
716d51ab | 6024 | |
b6c7a5dc HB |
6025 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
6026 | { | |
6027 | int r; | |
6028 | sigset_t sigsaved; | |
6029 | ||
e5c30142 AK |
6030 | if (!tsk_used_math(current) && init_fpu(current)) |
6031 | return -ENOMEM; | |
6032 | ||
ac9f6dc0 AK |
6033 | if (vcpu->sigset_active) |
6034 | sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); | |
6035 | ||
a4535290 | 6036 | if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { |
b6c7a5dc | 6037 | kvm_vcpu_block(vcpu); |
66450a21 | 6038 | kvm_apic_accept_events(vcpu); |
d7690175 | 6039 | clear_bit(KVM_REQ_UNHALT, &vcpu->requests); |
ac9f6dc0 AK |
6040 | r = -EAGAIN; |
6041 | goto out; | |
b6c7a5dc HB |
6042 | } |
6043 | ||
b6c7a5dc | 6044 | /* re-sync apic's tpr */ |
eea1cff9 AP |
6045 | if (!irqchip_in_kernel(vcpu->kvm)) { |
6046 | if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { | |
6047 | r = -EINVAL; | |
6048 | goto out; | |
6049 | } | |
6050 | } | |
b6c7a5dc | 6051 | |
716d51ab GN |
6052 | if (unlikely(vcpu->arch.complete_userspace_io)) { |
6053 | int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; | |
6054 | vcpu->arch.complete_userspace_io = NULL; | |
6055 | r = cui(vcpu); | |
6056 | if (r <= 0) | |
6057 | goto out; | |
6058 | } else | |
6059 | WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); | |
5287f194 | 6060 | |
851ba692 | 6061 | r = __vcpu_run(vcpu); |
b6c7a5dc HB |
6062 | |
6063 | out: | |
f1d86e46 | 6064 | post_kvm_run_save(vcpu); |
b6c7a5dc HB |
6065 | if (vcpu->sigset_active) |
6066 | sigprocmask(SIG_SETMASK, &sigsaved, NULL); | |
6067 | ||
b6c7a5dc HB |
6068 | return r; |
6069 | } | |
6070 | ||
6071 | int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | |
6072 | { | |
7ae441ea GN |
6073 | if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { |
6074 | /* | |
6075 | * We are here if userspace calls get_regs() in the middle of | |
6076 | * instruction emulation. Registers state needs to be copied | |
4a969980 | 6077 | * back from emulation context to vcpu. Userspace shouldn't do |
7ae441ea GN |
6078 | * that usually, but some bad designed PV devices (vmware |
6079 | * backdoor interface) need this to work | |
6080 | */ | |
dd856efa | 6081 | emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); |
7ae441ea GN |
6082 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
6083 | } | |
5fdbf976 MT |
6084 | regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); |
6085 | regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); | |
6086 | regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
6087 | regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); | |
6088 | regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); | |
6089 | regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); | |
6090 | regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); | |
6091 | regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); | |
b6c7a5dc | 6092 | #ifdef CONFIG_X86_64 |
5fdbf976 MT |
6093 | regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); |
6094 | regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); | |
6095 | regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); | |
6096 | regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); | |
6097 | regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); | |
6098 | regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); | |
6099 | regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); | |
6100 | regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); | |
b6c7a5dc HB |
6101 | #endif |
6102 | ||
5fdbf976 | 6103 | regs->rip = kvm_rip_read(vcpu); |
91586a3b | 6104 | regs->rflags = kvm_get_rflags(vcpu); |
b6c7a5dc | 6105 | |
b6c7a5dc HB |
6106 | return 0; |
6107 | } | |
6108 | ||
6109 | int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | |
6110 | { | |
7ae441ea GN |
6111 | vcpu->arch.emulate_regs_need_sync_from_vcpu = true; |
6112 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; | |
6113 | ||
5fdbf976 MT |
6114 | kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); |
6115 | kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); | |
6116 | kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); | |
6117 | kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); | |
6118 | kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); | |
6119 | kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); | |
6120 | kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); | |
6121 | kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); | |
b6c7a5dc | 6122 | #ifdef CONFIG_X86_64 |
5fdbf976 MT |
6123 | kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); |
6124 | kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); | |
6125 | kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); | |
6126 | kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); | |
6127 | kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); | |
6128 | kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); | |
6129 | kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); | |
6130 | kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); | |
b6c7a5dc HB |
6131 | #endif |
6132 | ||
5fdbf976 | 6133 | kvm_rip_write(vcpu, regs->rip); |
91586a3b | 6134 | kvm_set_rflags(vcpu, regs->rflags); |
b6c7a5dc | 6135 | |
b4f14abd JK |
6136 | vcpu->arch.exception.pending = false; |
6137 | ||
3842d135 AK |
6138 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
6139 | ||
b6c7a5dc HB |
6140 | return 0; |
6141 | } | |
6142 | ||
b6c7a5dc HB |
6143 | void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
6144 | { | |
6145 | struct kvm_segment cs; | |
6146 | ||
3e6e0aab | 6147 | kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); |
b6c7a5dc HB |
6148 | *db = cs.db; |
6149 | *l = cs.l; | |
6150 | } | |
6151 | EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); | |
6152 | ||
6153 | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, | |
6154 | struct kvm_sregs *sregs) | |
6155 | { | |
89a27f4d | 6156 | struct desc_ptr dt; |
b6c7a5dc | 6157 | |
3e6e0aab GT |
6158 | kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
6159 | kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | |
6160 | kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); | |
6161 | kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | |
6162 | kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | |
6163 | kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | |
b6c7a5dc | 6164 | |
3e6e0aab GT |
6165 | kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
6166 | kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | |
b6c7a5dc HB |
6167 | |
6168 | kvm_x86_ops->get_idt(vcpu, &dt); | |
89a27f4d GN |
6169 | sregs->idt.limit = dt.size; |
6170 | sregs->idt.base = dt.address; | |
b6c7a5dc | 6171 | kvm_x86_ops->get_gdt(vcpu, &dt); |
89a27f4d GN |
6172 | sregs->gdt.limit = dt.size; |
6173 | sregs->gdt.base = dt.address; | |
b6c7a5dc | 6174 | |
4d4ec087 | 6175 | sregs->cr0 = kvm_read_cr0(vcpu); |
ad312c7c | 6176 | sregs->cr2 = vcpu->arch.cr2; |
9f8fe504 | 6177 | sregs->cr3 = kvm_read_cr3(vcpu); |
fc78f519 | 6178 | sregs->cr4 = kvm_read_cr4(vcpu); |
2d3ad1f4 | 6179 | sregs->cr8 = kvm_get_cr8(vcpu); |
f6801dff | 6180 | sregs->efer = vcpu->arch.efer; |
b6c7a5dc HB |
6181 | sregs->apic_base = kvm_get_apic_base(vcpu); |
6182 | ||
923c61bb | 6183 | memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); |
b6c7a5dc | 6184 | |
36752c9b | 6185 | if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) |
14d0bc1f GN |
6186 | set_bit(vcpu->arch.interrupt.nr, |
6187 | (unsigned long *)sregs->interrupt_bitmap); | |
16d7a191 | 6188 | |
b6c7a5dc HB |
6189 | return 0; |
6190 | } | |
6191 | ||
62d9f0db MT |
6192 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
6193 | struct kvm_mp_state *mp_state) | |
6194 | { | |
66450a21 | 6195 | kvm_apic_accept_events(vcpu); |
62d9f0db | 6196 | mp_state->mp_state = vcpu->arch.mp_state; |
62d9f0db MT |
6197 | return 0; |
6198 | } | |
6199 | ||
6200 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | |
6201 | struct kvm_mp_state *mp_state) | |
6202 | { | |
66450a21 JK |
6203 | if (!kvm_vcpu_has_lapic(vcpu) && |
6204 | mp_state->mp_state != KVM_MP_STATE_RUNNABLE) | |
6205 | return -EINVAL; | |
6206 | ||
6207 | if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { | |
6208 | vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
6209 | set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); | |
6210 | } else | |
6211 | vcpu->arch.mp_state = mp_state->mp_state; | |
3842d135 | 6212 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
62d9f0db MT |
6213 | return 0; |
6214 | } | |
6215 | ||
7f3d35fd KW |
6216 | int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, |
6217 | int reason, bool has_error_code, u32 error_code) | |
b6c7a5dc | 6218 | { |
9d74191a | 6219 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
8ec4722d | 6220 | int ret; |
e01c2426 | 6221 | |
8ec4722d | 6222 | init_emulate_ctxt(vcpu); |
c697518a | 6223 | |
7f3d35fd | 6224 | ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, |
9d74191a | 6225 | has_error_code, error_code); |
c697518a | 6226 | |
c697518a | 6227 | if (ret) |
19d04437 | 6228 | return EMULATE_FAIL; |
37817f29 | 6229 | |
9d74191a TY |
6230 | kvm_rip_write(vcpu, ctxt->eip); |
6231 | kvm_set_rflags(vcpu, ctxt->eflags); | |
3842d135 | 6232 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
19d04437 | 6233 | return EMULATE_DONE; |
37817f29 IE |
6234 | } |
6235 | EXPORT_SYMBOL_GPL(kvm_task_switch); | |
6236 | ||
b6c7a5dc HB |
6237 | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
6238 | struct kvm_sregs *sregs) | |
6239 | { | |
6240 | int mmu_reset_needed = 0; | |
63f42e02 | 6241 | int pending_vec, max_bits, idx; |
89a27f4d | 6242 | struct desc_ptr dt; |
b6c7a5dc | 6243 | |
6d1068b3 PM |
6244 | if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) |
6245 | return -EINVAL; | |
6246 | ||
89a27f4d GN |
6247 | dt.size = sregs->idt.limit; |
6248 | dt.address = sregs->idt.base; | |
b6c7a5dc | 6249 | kvm_x86_ops->set_idt(vcpu, &dt); |
89a27f4d GN |
6250 | dt.size = sregs->gdt.limit; |
6251 | dt.address = sregs->gdt.base; | |
b6c7a5dc HB |
6252 | kvm_x86_ops->set_gdt(vcpu, &dt); |
6253 | ||
ad312c7c | 6254 | vcpu->arch.cr2 = sregs->cr2; |
9f8fe504 | 6255 | mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; |
dc7e795e | 6256 | vcpu->arch.cr3 = sregs->cr3; |
aff48baa | 6257 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
b6c7a5dc | 6258 | |
2d3ad1f4 | 6259 | kvm_set_cr8(vcpu, sregs->cr8); |
b6c7a5dc | 6260 | |
f6801dff | 6261 | mmu_reset_needed |= vcpu->arch.efer != sregs->efer; |
b6c7a5dc | 6262 | kvm_x86_ops->set_efer(vcpu, sregs->efer); |
b6c7a5dc HB |
6263 | kvm_set_apic_base(vcpu, sregs->apic_base); |
6264 | ||
4d4ec087 | 6265 | mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; |
b6c7a5dc | 6266 | kvm_x86_ops->set_cr0(vcpu, sregs->cr0); |
d7306163 | 6267 | vcpu->arch.cr0 = sregs->cr0; |
b6c7a5dc | 6268 | |
fc78f519 | 6269 | mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; |
b6c7a5dc | 6270 | kvm_x86_ops->set_cr4(vcpu, sregs->cr4); |
3ea3aa8c | 6271 | if (sregs->cr4 & X86_CR4_OSXSAVE) |
00b27a3e | 6272 | kvm_update_cpuid(vcpu); |
63f42e02 XG |
6273 | |
6274 | idx = srcu_read_lock(&vcpu->kvm->srcu); | |
7c93be44 | 6275 | if (!is_long_mode(vcpu) && is_pae(vcpu)) { |
9f8fe504 | 6276 | load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); |
7c93be44 MT |
6277 | mmu_reset_needed = 1; |
6278 | } | |
63f42e02 | 6279 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
b6c7a5dc HB |
6280 | |
6281 | if (mmu_reset_needed) | |
6282 | kvm_mmu_reset_context(vcpu); | |
6283 | ||
a50abc3b | 6284 | max_bits = KVM_NR_INTERRUPTS; |
923c61bb GN |
6285 | pending_vec = find_first_bit( |
6286 | (const unsigned long *)sregs->interrupt_bitmap, max_bits); | |
6287 | if (pending_vec < max_bits) { | |
66fd3f7f | 6288 | kvm_queue_interrupt(vcpu, pending_vec, false); |
923c61bb | 6289 | pr_debug("Set back pending irq %d\n", pending_vec); |
b6c7a5dc HB |
6290 | } |
6291 | ||
3e6e0aab GT |
6292 | kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
6293 | kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | |
6294 | kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); | |
6295 | kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | |
6296 | kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | |
6297 | kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | |
b6c7a5dc | 6298 | |
3e6e0aab GT |
6299 | kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
6300 | kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | |
b6c7a5dc | 6301 | |
5f0269f5 ME |
6302 | update_cr8_intercept(vcpu); |
6303 | ||
9c3e4aab | 6304 | /* Older userspace won't unhalt the vcpu on reset. */ |
c5af89b6 | 6305 | if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && |
9c3e4aab | 6306 | sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && |
3eeb3288 | 6307 | !is_protmode(vcpu)) |
9c3e4aab MT |
6308 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
6309 | ||
3842d135 AK |
6310 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
6311 | ||
b6c7a5dc HB |
6312 | return 0; |
6313 | } | |
6314 | ||
d0bfb940 JK |
6315 | int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
6316 | struct kvm_guest_debug *dbg) | |
b6c7a5dc | 6317 | { |
355be0b9 | 6318 | unsigned long rflags; |
ae675ef0 | 6319 | int i, r; |
b6c7a5dc | 6320 | |
4f926bf2 JK |
6321 | if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { |
6322 | r = -EBUSY; | |
6323 | if (vcpu->arch.exception.pending) | |
2122ff5e | 6324 | goto out; |
4f926bf2 JK |
6325 | if (dbg->control & KVM_GUESTDBG_INJECT_DB) |
6326 | kvm_queue_exception(vcpu, DB_VECTOR); | |
6327 | else | |
6328 | kvm_queue_exception(vcpu, BP_VECTOR); | |
6329 | } | |
6330 | ||
91586a3b JK |
6331 | /* |
6332 | * Read rflags as long as potentially injected trace flags are still | |
6333 | * filtered out. | |
6334 | */ | |
6335 | rflags = kvm_get_rflags(vcpu); | |
355be0b9 JK |
6336 | |
6337 | vcpu->guest_debug = dbg->control; | |
6338 | if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) | |
6339 | vcpu->guest_debug = 0; | |
6340 | ||
6341 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { | |
ae675ef0 JK |
6342 | for (i = 0; i < KVM_NR_DB_REGS; ++i) |
6343 | vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; | |
c8639010 | 6344 | vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; |
ae675ef0 JK |
6345 | } else { |
6346 | for (i = 0; i < KVM_NR_DB_REGS; i++) | |
6347 | vcpu->arch.eff_db[i] = vcpu->arch.db[i]; | |
ae675ef0 | 6348 | } |
c8639010 | 6349 | kvm_update_dr7(vcpu); |
ae675ef0 | 6350 | |
f92653ee JK |
6351 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
6352 | vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + | |
6353 | get_segment_base(vcpu, VCPU_SREG_CS); | |
94fe45da | 6354 | |
91586a3b JK |
6355 | /* |
6356 | * Trigger an rflags update that will inject or remove the trace | |
6357 | * flags. | |
6358 | */ | |
6359 | kvm_set_rflags(vcpu, rflags); | |
b6c7a5dc | 6360 | |
c8639010 | 6361 | kvm_x86_ops->update_db_bp_intercept(vcpu); |
b6c7a5dc | 6362 | |
4f926bf2 | 6363 | r = 0; |
d0bfb940 | 6364 | |
2122ff5e | 6365 | out: |
b6c7a5dc HB |
6366 | |
6367 | return r; | |
6368 | } | |
6369 | ||
8b006791 ZX |
6370 | /* |
6371 | * Translate a guest virtual address to a guest physical address. | |
6372 | */ | |
6373 | int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, | |
6374 | struct kvm_translation *tr) | |
6375 | { | |
6376 | unsigned long vaddr = tr->linear_address; | |
6377 | gpa_t gpa; | |
f656ce01 | 6378 | int idx; |
8b006791 | 6379 | |
f656ce01 | 6380 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
1871c602 | 6381 | gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); |
f656ce01 | 6382 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
8b006791 ZX |
6383 | tr->physical_address = gpa; |
6384 | tr->valid = gpa != UNMAPPED_GVA; | |
6385 | tr->writeable = 1; | |
6386 | tr->usermode = 0; | |
8b006791 ZX |
6387 | |
6388 | return 0; | |
6389 | } | |
6390 | ||
d0752060 HB |
6391 | int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
6392 | { | |
98918833 SY |
6393 | struct i387_fxsave_struct *fxsave = |
6394 | &vcpu->arch.guest_fpu.state->fxsave; | |
d0752060 | 6395 | |
d0752060 HB |
6396 | memcpy(fpu->fpr, fxsave->st_space, 128); |
6397 | fpu->fcw = fxsave->cwd; | |
6398 | fpu->fsw = fxsave->swd; | |
6399 | fpu->ftwx = fxsave->twd; | |
6400 | fpu->last_opcode = fxsave->fop; | |
6401 | fpu->last_ip = fxsave->rip; | |
6402 | fpu->last_dp = fxsave->rdp; | |
6403 | memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); | |
6404 | ||
d0752060 HB |
6405 | return 0; |
6406 | } | |
6407 | ||
6408 | int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | |
6409 | { | |
98918833 SY |
6410 | struct i387_fxsave_struct *fxsave = |
6411 | &vcpu->arch.guest_fpu.state->fxsave; | |
d0752060 | 6412 | |
d0752060 HB |
6413 | memcpy(fxsave->st_space, fpu->fpr, 128); |
6414 | fxsave->cwd = fpu->fcw; | |
6415 | fxsave->swd = fpu->fsw; | |
6416 | fxsave->twd = fpu->ftwx; | |
6417 | fxsave->fop = fpu->last_opcode; | |
6418 | fxsave->rip = fpu->last_ip; | |
6419 | fxsave->rdp = fpu->last_dp; | |
6420 | memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); | |
6421 | ||
d0752060 HB |
6422 | return 0; |
6423 | } | |
6424 | ||
10ab25cd | 6425 | int fx_init(struct kvm_vcpu *vcpu) |
d0752060 | 6426 | { |
10ab25cd JK |
6427 | int err; |
6428 | ||
6429 | err = fpu_alloc(&vcpu->arch.guest_fpu); | |
6430 | if (err) | |
6431 | return err; | |
6432 | ||
98918833 | 6433 | fpu_finit(&vcpu->arch.guest_fpu); |
d0752060 | 6434 | |
2acf923e DC |
6435 | /* |
6436 | * Ensure guest xcr0 is valid for loading | |
6437 | */ | |
6438 | vcpu->arch.xcr0 = XSTATE_FP; | |
6439 | ||
ad312c7c | 6440 | vcpu->arch.cr0 |= X86_CR0_ET; |
10ab25cd JK |
6441 | |
6442 | return 0; | |
d0752060 HB |
6443 | } |
6444 | EXPORT_SYMBOL_GPL(fx_init); | |
6445 | ||
98918833 SY |
6446 | static void fx_free(struct kvm_vcpu *vcpu) |
6447 | { | |
6448 | fpu_free(&vcpu->arch.guest_fpu); | |
6449 | } | |
6450 | ||
d0752060 HB |
6451 | void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) |
6452 | { | |
2608d7a1 | 6453 | if (vcpu->guest_fpu_loaded) |
d0752060 HB |
6454 | return; |
6455 | ||
2acf923e DC |
6456 | /* |
6457 | * Restore all possible states in the guest, | |
6458 | * and assume host would use all available bits. | |
6459 | * Guest xcr0 would be loaded later. | |
6460 | */ | |
6461 | kvm_put_guest_xcr0(vcpu); | |
d0752060 | 6462 | vcpu->guest_fpu_loaded = 1; |
b1a74bf8 | 6463 | __kernel_fpu_begin(); |
98918833 | 6464 | fpu_restore_checking(&vcpu->arch.guest_fpu); |
0c04851c | 6465 | trace_kvm_fpu(1); |
d0752060 | 6466 | } |
d0752060 HB |
6467 | |
6468 | void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) | |
6469 | { | |
2acf923e DC |
6470 | kvm_put_guest_xcr0(vcpu); |
6471 | ||
d0752060 HB |
6472 | if (!vcpu->guest_fpu_loaded) |
6473 | return; | |
6474 | ||
6475 | vcpu->guest_fpu_loaded = 0; | |
98918833 | 6476 | fpu_save_init(&vcpu->arch.guest_fpu); |
b1a74bf8 | 6477 | __kernel_fpu_end(); |
f096ed85 | 6478 | ++vcpu->stat.fpu_reload; |
a8eeb04a | 6479 | kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); |
0c04851c | 6480 | trace_kvm_fpu(0); |
d0752060 | 6481 | } |
e9b11c17 ZX |
6482 | |
6483 | void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) | |
6484 | { | |
12f9a48f | 6485 | kvmclock_reset(vcpu); |
7f1ea208 | 6486 | |
f5f48ee1 | 6487 | free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); |
98918833 | 6488 | fx_free(vcpu); |
e9b11c17 ZX |
6489 | kvm_x86_ops->vcpu_free(vcpu); |
6490 | } | |
6491 | ||
6492 | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, | |
6493 | unsigned int id) | |
6494 | { | |
6755bae8 ZA |
6495 | if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) |
6496 | printk_once(KERN_WARNING | |
6497 | "kvm: SMP vm created on host with unstable TSC; " | |
6498 | "guest TSC will not be reliable\n"); | |
26e5215f AK |
6499 | return kvm_x86_ops->vcpu_create(kvm, id); |
6500 | } | |
e9b11c17 | 6501 | |
26e5215f AK |
6502 | int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) |
6503 | { | |
6504 | int r; | |
e9b11c17 | 6505 | |
0bed3b56 | 6506 | vcpu->arch.mtrr_state.have_fixed = 1; |
9fc77441 MT |
6507 | r = vcpu_load(vcpu); |
6508 | if (r) | |
6509 | return r; | |
57f252f2 JK |
6510 | kvm_vcpu_reset(vcpu); |
6511 | r = kvm_mmu_setup(vcpu); | |
e9b11c17 | 6512 | vcpu_put(vcpu); |
e9b11c17 | 6513 | |
26e5215f | 6514 | return r; |
e9b11c17 ZX |
6515 | } |
6516 | ||
42897d86 MT |
6517 | int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
6518 | { | |
6519 | int r; | |
8fe8ab46 | 6520 | struct msr_data msr; |
42897d86 MT |
6521 | |
6522 | r = vcpu_load(vcpu); | |
6523 | if (r) | |
6524 | return r; | |
8fe8ab46 WA |
6525 | msr.data = 0x0; |
6526 | msr.index = MSR_IA32_TSC; | |
6527 | msr.host_initiated = true; | |
6528 | kvm_write_tsc(vcpu, &msr); | |
42897d86 MT |
6529 | vcpu_put(vcpu); |
6530 | ||
6531 | return r; | |
6532 | } | |
6533 | ||
d40ccc62 | 6534 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
e9b11c17 | 6535 | { |
9fc77441 | 6536 | int r; |
344d9588 GN |
6537 | vcpu->arch.apf.msr_val = 0; |
6538 | ||
9fc77441 MT |
6539 | r = vcpu_load(vcpu); |
6540 | BUG_ON(r); | |
e9b11c17 ZX |
6541 | kvm_mmu_unload(vcpu); |
6542 | vcpu_put(vcpu); | |
6543 | ||
98918833 | 6544 | fx_free(vcpu); |
e9b11c17 ZX |
6545 | kvm_x86_ops->vcpu_free(vcpu); |
6546 | } | |
6547 | ||
66450a21 | 6548 | void kvm_vcpu_reset(struct kvm_vcpu *vcpu) |
e9b11c17 | 6549 | { |
7460fb4a AK |
6550 | atomic_set(&vcpu->arch.nmi_queued, 0); |
6551 | vcpu->arch.nmi_pending = 0; | |
448fa4a9 JK |
6552 | vcpu->arch.nmi_injected = false; |
6553 | ||
42dbaa5a JK |
6554 | memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); |
6555 | vcpu->arch.dr6 = DR6_FIXED_1; | |
6556 | vcpu->arch.dr7 = DR7_FIXED_1; | |
c8639010 | 6557 | kvm_update_dr7(vcpu); |
42dbaa5a | 6558 | |
3842d135 | 6559 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
344d9588 | 6560 | vcpu->arch.apf.msr_val = 0; |
c9aaa895 | 6561 | vcpu->arch.st.msr_val = 0; |
3842d135 | 6562 | |
12f9a48f GC |
6563 | kvmclock_reset(vcpu); |
6564 | ||
af585b92 GN |
6565 | kvm_clear_async_pf_completion_queue(vcpu); |
6566 | kvm_async_pf_hash_reset(vcpu); | |
6567 | vcpu->arch.apf.halted = false; | |
3842d135 | 6568 | |
f5132b01 GN |
6569 | kvm_pmu_reset(vcpu); |
6570 | ||
66f7b72e JS |
6571 | memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); |
6572 | vcpu->arch.regs_avail = ~0; | |
6573 | vcpu->arch.regs_dirty = ~0; | |
6574 | ||
57f252f2 | 6575 | kvm_x86_ops->vcpu_reset(vcpu); |
e9b11c17 ZX |
6576 | } |
6577 | ||
66450a21 JK |
6578 | void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector) |
6579 | { | |
6580 | struct kvm_segment cs; | |
6581 | ||
6582 | kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); | |
6583 | cs.selector = vector << 8; | |
6584 | cs.base = vector << 12; | |
6585 | kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); | |
6586 | kvm_rip_write(vcpu, 0); | |
6587 | } | |
6588 | ||
10474ae8 | 6589 | int kvm_arch_hardware_enable(void *garbage) |
e9b11c17 | 6590 | { |
ca84d1a2 ZA |
6591 | struct kvm *kvm; |
6592 | struct kvm_vcpu *vcpu; | |
6593 | int i; | |
0dd6a6ed ZA |
6594 | int ret; |
6595 | u64 local_tsc; | |
6596 | u64 max_tsc = 0; | |
6597 | bool stable, backwards_tsc = false; | |
18863bdd AK |
6598 | |
6599 | kvm_shared_msr_cpu_online(); | |
0dd6a6ed ZA |
6600 | ret = kvm_x86_ops->hardware_enable(garbage); |
6601 | if (ret != 0) | |
6602 | return ret; | |
6603 | ||
6604 | local_tsc = native_read_tsc(); | |
6605 | stable = !check_tsc_unstable(); | |
6606 | list_for_each_entry(kvm, &vm_list, vm_list) { | |
6607 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
6608 | if (!stable && vcpu->cpu == smp_processor_id()) | |
6609 | set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); | |
6610 | if (stable && vcpu->arch.last_host_tsc > local_tsc) { | |
6611 | backwards_tsc = true; | |
6612 | if (vcpu->arch.last_host_tsc > max_tsc) | |
6613 | max_tsc = vcpu->arch.last_host_tsc; | |
6614 | } | |
6615 | } | |
6616 | } | |
6617 | ||
6618 | /* | |
6619 | * Sometimes, even reliable TSCs go backwards. This happens on | |
6620 | * platforms that reset TSC during suspend or hibernate actions, but | |
6621 | * maintain synchronization. We must compensate. Fortunately, we can | |
6622 | * detect that condition here, which happens early in CPU bringup, | |
6623 | * before any KVM threads can be running. Unfortunately, we can't | |
6624 | * bring the TSCs fully up to date with real time, as we aren't yet far | |
6625 | * enough into CPU bringup that we know how much real time has actually | |
6626 | * elapsed; our helper function, get_kernel_ns() will be using boot | |
6627 | * variables that haven't been updated yet. | |
6628 | * | |
6629 | * So we simply find the maximum observed TSC above, then record the | |
6630 | * adjustment to TSC in each VCPU. When the VCPU later gets loaded, | |
6631 | * the adjustment will be applied. Note that we accumulate | |
6632 | * adjustments, in case multiple suspend cycles happen before some VCPU | |
6633 | * gets a chance to run again. In the event that no KVM threads get a | |
6634 | * chance to run, we will miss the entire elapsed period, as we'll have | |
6635 | * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may | |
6636 | * loose cycle time. This isn't too big a deal, since the loss will be | |
6637 | * uniform across all VCPUs (not to mention the scenario is extremely | |
6638 | * unlikely). It is possible that a second hibernate recovery happens | |
6639 | * much faster than a first, causing the observed TSC here to be | |
6640 | * smaller; this would require additional padding adjustment, which is | |
6641 | * why we set last_host_tsc to the local tsc observed here. | |
6642 | * | |
6643 | * N.B. - this code below runs only on platforms with reliable TSC, | |
6644 | * as that is the only way backwards_tsc is set above. Also note | |
6645 | * that this runs for ALL vcpus, which is not a bug; all VCPUs should | |
6646 | * have the same delta_cyc adjustment applied if backwards_tsc | |
6647 | * is detected. Note further, this adjustment is only done once, | |
6648 | * as we reset last_host_tsc on all VCPUs to stop this from being | |
6649 | * called multiple times (one for each physical CPU bringup). | |
6650 | * | |
4a969980 | 6651 | * Platforms with unreliable TSCs don't have to deal with this, they |
0dd6a6ed ZA |
6652 | * will be compensated by the logic in vcpu_load, which sets the TSC to |
6653 | * catchup mode. This will catchup all VCPUs to real time, but cannot | |
6654 | * guarantee that they stay in perfect synchronization. | |
6655 | */ | |
6656 | if (backwards_tsc) { | |
6657 | u64 delta_cyc = max_tsc - local_tsc; | |
6658 | list_for_each_entry(kvm, &vm_list, vm_list) { | |
6659 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
6660 | vcpu->arch.tsc_offset_adjustment += delta_cyc; | |
6661 | vcpu->arch.last_host_tsc = local_tsc; | |
d828199e MT |
6662 | set_bit(KVM_REQ_MASTERCLOCK_UPDATE, |
6663 | &vcpu->requests); | |
0dd6a6ed ZA |
6664 | } |
6665 | ||
6666 | /* | |
6667 | * We have to disable TSC offset matching.. if you were | |
6668 | * booting a VM while issuing an S4 host suspend.... | |
6669 | * you may have some problem. Solving this issue is | |
6670 | * left as an exercise to the reader. | |
6671 | */ | |
6672 | kvm->arch.last_tsc_nsec = 0; | |
6673 | kvm->arch.last_tsc_write = 0; | |
6674 | } | |
6675 | ||
6676 | } | |
6677 | return 0; | |
e9b11c17 ZX |
6678 | } |
6679 | ||
6680 | void kvm_arch_hardware_disable(void *garbage) | |
6681 | { | |
6682 | kvm_x86_ops->hardware_disable(garbage); | |
3548bab5 | 6683 | drop_user_return_notifiers(garbage); |
e9b11c17 ZX |
6684 | } |
6685 | ||
6686 | int kvm_arch_hardware_setup(void) | |
6687 | { | |
6688 | return kvm_x86_ops->hardware_setup(); | |
6689 | } | |
6690 | ||
6691 | void kvm_arch_hardware_unsetup(void) | |
6692 | { | |
6693 | kvm_x86_ops->hardware_unsetup(); | |
6694 | } | |
6695 | ||
6696 | void kvm_arch_check_processor_compat(void *rtn) | |
6697 | { | |
6698 | kvm_x86_ops->check_processor_compatibility(rtn); | |
6699 | } | |
6700 | ||
3e515705 AK |
6701 | bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) |
6702 | { | |
6703 | return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); | |
6704 | } | |
6705 | ||
54e9818f GN |
6706 | struct static_key kvm_no_apic_vcpu __read_mostly; |
6707 | ||
e9b11c17 ZX |
6708 | int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) |
6709 | { | |
6710 | struct page *page; | |
6711 | struct kvm *kvm; | |
6712 | int r; | |
6713 | ||
6714 | BUG_ON(vcpu->kvm == NULL); | |
6715 | kvm = vcpu->kvm; | |
6716 | ||
9aabc88f | 6717 | vcpu->arch.emulate_ctxt.ops = &emulate_ops; |
c5af89b6 | 6718 | if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) |
a4535290 | 6719 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
e9b11c17 | 6720 | else |
a4535290 | 6721 | vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; |
e9b11c17 ZX |
6722 | |
6723 | page = alloc_page(GFP_KERNEL | __GFP_ZERO); | |
6724 | if (!page) { | |
6725 | r = -ENOMEM; | |
6726 | goto fail; | |
6727 | } | |
ad312c7c | 6728 | vcpu->arch.pio_data = page_address(page); |
e9b11c17 | 6729 | |
cc578287 | 6730 | kvm_set_tsc_khz(vcpu, max_tsc_khz); |
c285545f | 6731 | |
e9b11c17 ZX |
6732 | r = kvm_mmu_create(vcpu); |
6733 | if (r < 0) | |
6734 | goto fail_free_pio_data; | |
6735 | ||
6736 | if (irqchip_in_kernel(kvm)) { | |
6737 | r = kvm_create_lapic(vcpu); | |
6738 | if (r < 0) | |
6739 | goto fail_mmu_destroy; | |
54e9818f GN |
6740 | } else |
6741 | static_key_slow_inc(&kvm_no_apic_vcpu); | |
e9b11c17 | 6742 | |
890ca9ae YH |
6743 | vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, |
6744 | GFP_KERNEL); | |
6745 | if (!vcpu->arch.mce_banks) { | |
6746 | r = -ENOMEM; | |
443c39bc | 6747 | goto fail_free_lapic; |
890ca9ae YH |
6748 | } |
6749 | vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; | |
6750 | ||
f5f48ee1 SY |
6751 | if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) |
6752 | goto fail_free_mce_banks; | |
6753 | ||
66f7b72e JS |
6754 | r = fx_init(vcpu); |
6755 | if (r) | |
6756 | goto fail_free_wbinvd_dirty_mask; | |
6757 | ||
ba904635 | 6758 | vcpu->arch.ia32_tsc_adjust_msr = 0x0; |
0b79459b | 6759 | vcpu->arch.pv_time_enabled = false; |
af585b92 | 6760 | kvm_async_pf_hash_reset(vcpu); |
f5132b01 | 6761 | kvm_pmu_init(vcpu); |
af585b92 | 6762 | |
e9b11c17 | 6763 | return 0; |
66f7b72e JS |
6764 | fail_free_wbinvd_dirty_mask: |
6765 | free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); | |
f5f48ee1 SY |
6766 | fail_free_mce_banks: |
6767 | kfree(vcpu->arch.mce_banks); | |
443c39bc WY |
6768 | fail_free_lapic: |
6769 | kvm_free_lapic(vcpu); | |
e9b11c17 ZX |
6770 | fail_mmu_destroy: |
6771 | kvm_mmu_destroy(vcpu); | |
6772 | fail_free_pio_data: | |
ad312c7c | 6773 | free_page((unsigned long)vcpu->arch.pio_data); |
e9b11c17 ZX |
6774 | fail: |
6775 | return r; | |
6776 | } | |
6777 | ||
6778 | void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) | |
6779 | { | |
f656ce01 MT |
6780 | int idx; |
6781 | ||
f5132b01 | 6782 | kvm_pmu_destroy(vcpu); |
36cb93fd | 6783 | kfree(vcpu->arch.mce_banks); |
e9b11c17 | 6784 | kvm_free_lapic(vcpu); |
f656ce01 | 6785 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
e9b11c17 | 6786 | kvm_mmu_destroy(vcpu); |
f656ce01 | 6787 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
ad312c7c | 6788 | free_page((unsigned long)vcpu->arch.pio_data); |
54e9818f GN |
6789 | if (!irqchip_in_kernel(vcpu->kvm)) |
6790 | static_key_slow_dec(&kvm_no_apic_vcpu); | |
e9b11c17 | 6791 | } |
d19a9cd2 | 6792 | |
e08b9637 | 6793 | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
d19a9cd2 | 6794 | { |
e08b9637 CO |
6795 | if (type) |
6796 | return -EINVAL; | |
6797 | ||
f05e70ac | 6798 | INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); |
4d5c5d0f | 6799 | INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); |
d19a9cd2 | 6800 | |
5550af4d SY |
6801 | /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ |
6802 | set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); | |
7a84428a AW |
6803 | /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ |
6804 | set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, | |
6805 | &kvm->arch.irq_sources_bitmap); | |
5550af4d | 6806 | |
038f8c11 | 6807 | raw_spin_lock_init(&kvm->arch.tsc_write_lock); |
1e08ec4a | 6808 | mutex_init(&kvm->arch.apic_map_lock); |
d828199e MT |
6809 | spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); |
6810 | ||
6811 | pvclock_update_vm_gtod_copy(kvm); | |
53f658b3 | 6812 | |
d89f5eff | 6813 | return 0; |
d19a9cd2 ZX |
6814 | } |
6815 | ||
6816 | static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) | |
6817 | { | |
9fc77441 MT |
6818 | int r; |
6819 | r = vcpu_load(vcpu); | |
6820 | BUG_ON(r); | |
d19a9cd2 ZX |
6821 | kvm_mmu_unload(vcpu); |
6822 | vcpu_put(vcpu); | |
6823 | } | |
6824 | ||
6825 | static void kvm_free_vcpus(struct kvm *kvm) | |
6826 | { | |
6827 | unsigned int i; | |
988a2cae | 6828 | struct kvm_vcpu *vcpu; |
d19a9cd2 ZX |
6829 | |
6830 | /* | |
6831 | * Unpin any mmu pages first. | |
6832 | */ | |
af585b92 GN |
6833 | kvm_for_each_vcpu(i, vcpu, kvm) { |
6834 | kvm_clear_async_pf_completion_queue(vcpu); | |
988a2cae | 6835 | kvm_unload_vcpu_mmu(vcpu); |
af585b92 | 6836 | } |
988a2cae GN |
6837 | kvm_for_each_vcpu(i, vcpu, kvm) |
6838 | kvm_arch_vcpu_free(vcpu); | |
6839 | ||
6840 | mutex_lock(&kvm->lock); | |
6841 | for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) | |
6842 | kvm->vcpus[i] = NULL; | |
d19a9cd2 | 6843 | |
988a2cae GN |
6844 | atomic_set(&kvm->online_vcpus, 0); |
6845 | mutex_unlock(&kvm->lock); | |
d19a9cd2 ZX |
6846 | } |
6847 | ||
ad8ba2cd SY |
6848 | void kvm_arch_sync_events(struct kvm *kvm) |
6849 | { | |
ba4cef31 | 6850 | kvm_free_all_assigned_devices(kvm); |
aea924f6 | 6851 | kvm_free_pit(kvm); |
ad8ba2cd SY |
6852 | } |
6853 | ||
d19a9cd2 ZX |
6854 | void kvm_arch_destroy_vm(struct kvm *kvm) |
6855 | { | |
6eb55818 | 6856 | kvm_iommu_unmap_guest(kvm); |
d7deeeb0 ZX |
6857 | kfree(kvm->arch.vpic); |
6858 | kfree(kvm->arch.vioapic); | |
d19a9cd2 | 6859 | kvm_free_vcpus(kvm); |
3d45830c AK |
6860 | if (kvm->arch.apic_access_page) |
6861 | put_page(kvm->arch.apic_access_page); | |
b7ebfb05 SY |
6862 | if (kvm->arch.ept_identity_pagetable) |
6863 | put_page(kvm->arch.ept_identity_pagetable); | |
1e08ec4a | 6864 | kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); |
d19a9cd2 | 6865 | } |
0de10343 | 6866 | |
db3fe4eb TY |
6867 | void kvm_arch_free_memslot(struct kvm_memory_slot *free, |
6868 | struct kvm_memory_slot *dont) | |
6869 | { | |
6870 | int i; | |
6871 | ||
d89cc617 TY |
6872 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
6873 | if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { | |
6874 | kvm_kvfree(free->arch.rmap[i]); | |
6875 | free->arch.rmap[i] = NULL; | |
77d11309 | 6876 | } |
d89cc617 TY |
6877 | if (i == 0) |
6878 | continue; | |
6879 | ||
6880 | if (!dont || free->arch.lpage_info[i - 1] != | |
6881 | dont->arch.lpage_info[i - 1]) { | |
6882 | kvm_kvfree(free->arch.lpage_info[i - 1]); | |
6883 | free->arch.lpage_info[i - 1] = NULL; | |
db3fe4eb TY |
6884 | } |
6885 | } | |
6886 | } | |
6887 | ||
6888 | int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) | |
6889 | { | |
6890 | int i; | |
6891 | ||
d89cc617 | 6892 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
db3fe4eb TY |
6893 | unsigned long ugfn; |
6894 | int lpages; | |
d89cc617 | 6895 | int level = i + 1; |
db3fe4eb TY |
6896 | |
6897 | lpages = gfn_to_index(slot->base_gfn + npages - 1, | |
6898 | slot->base_gfn, level) + 1; | |
6899 | ||
d89cc617 TY |
6900 | slot->arch.rmap[i] = |
6901 | kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); | |
6902 | if (!slot->arch.rmap[i]) | |
77d11309 | 6903 | goto out_free; |
d89cc617 TY |
6904 | if (i == 0) |
6905 | continue; | |
77d11309 | 6906 | |
d89cc617 TY |
6907 | slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * |
6908 | sizeof(*slot->arch.lpage_info[i - 1])); | |
6909 | if (!slot->arch.lpage_info[i - 1]) | |
db3fe4eb TY |
6910 | goto out_free; |
6911 | ||
6912 | if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) | |
d89cc617 | 6913 | slot->arch.lpage_info[i - 1][0].write_count = 1; |
db3fe4eb | 6914 | if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) |
d89cc617 | 6915 | slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; |
db3fe4eb TY |
6916 | ugfn = slot->userspace_addr >> PAGE_SHIFT; |
6917 | /* | |
6918 | * If the gfn and userspace address are not aligned wrt each | |
6919 | * other, or if explicitly asked to, disable large page | |
6920 | * support for this slot | |
6921 | */ | |
6922 | if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || | |
6923 | !kvm_largepages_enabled()) { | |
6924 | unsigned long j; | |
6925 | ||
6926 | for (j = 0; j < lpages; ++j) | |
d89cc617 | 6927 | slot->arch.lpage_info[i - 1][j].write_count = 1; |
db3fe4eb TY |
6928 | } |
6929 | } | |
6930 | ||
6931 | return 0; | |
6932 | ||
6933 | out_free: | |
d89cc617 TY |
6934 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
6935 | kvm_kvfree(slot->arch.rmap[i]); | |
6936 | slot->arch.rmap[i] = NULL; | |
6937 | if (i == 0) | |
6938 | continue; | |
6939 | ||
6940 | kvm_kvfree(slot->arch.lpage_info[i - 1]); | |
6941 | slot->arch.lpage_info[i - 1] = NULL; | |
db3fe4eb TY |
6942 | } |
6943 | return -ENOMEM; | |
6944 | } | |
6945 | ||
f7784b8e MT |
6946 | int kvm_arch_prepare_memory_region(struct kvm *kvm, |
6947 | struct kvm_memory_slot *memslot, | |
7b6195a9 TY |
6948 | struct kvm_userspace_memory_region *mem, |
6949 | enum kvm_mr_change change) | |
0de10343 | 6950 | { |
7a905b14 TY |
6951 | /* |
6952 | * Only private memory slots need to be mapped here since | |
6953 | * KVM_SET_MEMORY_REGION ioctl is no longer supported. | |
0de10343 | 6954 | */ |
7b6195a9 | 6955 | if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) { |
7a905b14 | 6956 | unsigned long userspace_addr; |
604b38ac | 6957 | |
7a905b14 TY |
6958 | /* |
6959 | * MAP_SHARED to prevent internal slot pages from being moved | |
6960 | * by fork()/COW. | |
6961 | */ | |
7b6195a9 | 6962 | userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE, |
7a905b14 TY |
6963 | PROT_READ | PROT_WRITE, |
6964 | MAP_SHARED | MAP_ANONYMOUS, 0); | |
0de10343 | 6965 | |
7a905b14 TY |
6966 | if (IS_ERR((void *)userspace_addr)) |
6967 | return PTR_ERR((void *)userspace_addr); | |
604b38ac | 6968 | |
7a905b14 | 6969 | memslot->userspace_addr = userspace_addr; |
0de10343 ZX |
6970 | } |
6971 | ||
f7784b8e MT |
6972 | return 0; |
6973 | } | |
6974 | ||
6975 | void kvm_arch_commit_memory_region(struct kvm *kvm, | |
6976 | struct kvm_userspace_memory_region *mem, | |
8482644a TY |
6977 | const struct kvm_memory_slot *old, |
6978 | enum kvm_mr_change change) | |
f7784b8e MT |
6979 | { |
6980 | ||
8482644a | 6981 | int nr_mmu_pages = 0; |
f7784b8e | 6982 | |
8482644a | 6983 | if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) { |
f7784b8e MT |
6984 | int ret; |
6985 | ||
8482644a TY |
6986 | ret = vm_munmap(old->userspace_addr, |
6987 | old->npages * PAGE_SIZE); | |
f7784b8e MT |
6988 | if (ret < 0) |
6989 | printk(KERN_WARNING | |
6990 | "kvm_vm_ioctl_set_memory_region: " | |
6991 | "failed to munmap memory\n"); | |
6992 | } | |
6993 | ||
48c0e4e9 XG |
6994 | if (!kvm->arch.n_requested_mmu_pages) |
6995 | nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); | |
6996 | ||
48c0e4e9 | 6997 | if (nr_mmu_pages) |
0de10343 | 6998 | kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); |
c972f3b1 TY |
6999 | /* |
7000 | * Write protect all pages for dirty logging. | |
7001 | * Existing largepage mappings are destroyed here and new ones will | |
7002 | * not be created until the end of the logging. | |
7003 | */ | |
8482644a | 7004 | if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) |
c972f3b1 | 7005 | kvm_mmu_slot_remove_write_access(kvm, mem->slot); |
3b4dc3a0 MT |
7006 | /* |
7007 | * If memory slot is created, or moved, we need to clear all | |
7008 | * mmio sptes. | |
7009 | */ | |
8482644a | 7010 | if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { |
982b3394 | 7011 | kvm_mmu_zap_mmio_sptes(kvm); |
3b4dc3a0 MT |
7012 | kvm_reload_remote_mmus(kvm); |
7013 | } | |
0de10343 | 7014 | } |
1d737c8a | 7015 | |
2df72e9b | 7016 | void kvm_arch_flush_shadow_all(struct kvm *kvm) |
34d4cb8f MT |
7017 | { |
7018 | kvm_mmu_zap_all(kvm); | |
8986ecc0 | 7019 | kvm_reload_remote_mmus(kvm); |
34d4cb8f MT |
7020 | } |
7021 | ||
2df72e9b MT |
7022 | void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
7023 | struct kvm_memory_slot *slot) | |
7024 | { | |
7025 | kvm_arch_flush_shadow_all(kvm); | |
7026 | } | |
7027 | ||
1d737c8a ZX |
7028 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) |
7029 | { | |
af585b92 GN |
7030 | return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && |
7031 | !vcpu->arch.apf.halted) | |
7032 | || !list_empty_careful(&vcpu->async_pf.done) | |
66450a21 | 7033 | || kvm_apic_has_events(vcpu) |
7460fb4a | 7034 | || atomic_read(&vcpu->arch.nmi_queued) || |
a1b37100 GN |
7035 | (kvm_arch_interrupt_allowed(vcpu) && |
7036 | kvm_cpu_has_interrupt(vcpu)); | |
1d737c8a | 7037 | } |
5736199a | 7038 | |
b6d33834 | 7039 | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
5736199a | 7040 | { |
b6d33834 | 7041 | return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; |
5736199a | 7042 | } |
78646121 GN |
7043 | |
7044 | int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) | |
7045 | { | |
7046 | return kvm_x86_ops->interrupt_allowed(vcpu); | |
7047 | } | |
229456fc | 7048 | |
f92653ee JK |
7049 | bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) |
7050 | { | |
7051 | unsigned long current_rip = kvm_rip_read(vcpu) + | |
7052 | get_segment_base(vcpu, VCPU_SREG_CS); | |
7053 | ||
7054 | return current_rip == linear_rip; | |
7055 | } | |
7056 | EXPORT_SYMBOL_GPL(kvm_is_linear_rip); | |
7057 | ||
94fe45da JK |
7058 | unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) |
7059 | { | |
7060 | unsigned long rflags; | |
7061 | ||
7062 | rflags = kvm_x86_ops->get_rflags(vcpu); | |
7063 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) | |
c310bac5 | 7064 | rflags &= ~X86_EFLAGS_TF; |
94fe45da JK |
7065 | return rflags; |
7066 | } | |
7067 | EXPORT_SYMBOL_GPL(kvm_get_rflags); | |
7068 | ||
7069 | void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | |
7070 | { | |
7071 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && | |
f92653ee | 7072 | kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) |
c310bac5 | 7073 | rflags |= X86_EFLAGS_TF; |
94fe45da | 7074 | kvm_x86_ops->set_rflags(vcpu, rflags); |
3842d135 | 7075 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
94fe45da JK |
7076 | } |
7077 | EXPORT_SYMBOL_GPL(kvm_set_rflags); | |
7078 | ||
56028d08 GN |
7079 | void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) |
7080 | { | |
7081 | int r; | |
7082 | ||
fb67e14f | 7083 | if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || |
c4806acd | 7084 | is_error_page(work->page)) |
56028d08 GN |
7085 | return; |
7086 | ||
7087 | r = kvm_mmu_reload(vcpu); | |
7088 | if (unlikely(r)) | |
7089 | return; | |
7090 | ||
fb67e14f XG |
7091 | if (!vcpu->arch.mmu.direct_map && |
7092 | work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) | |
7093 | return; | |
7094 | ||
56028d08 GN |
7095 | vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); |
7096 | } | |
7097 | ||
af585b92 GN |
7098 | static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) |
7099 | { | |
7100 | return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); | |
7101 | } | |
7102 | ||
7103 | static inline u32 kvm_async_pf_next_probe(u32 key) | |
7104 | { | |
7105 | return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); | |
7106 | } | |
7107 | ||
7108 | static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
7109 | { | |
7110 | u32 key = kvm_async_pf_hash_fn(gfn); | |
7111 | ||
7112 | while (vcpu->arch.apf.gfns[key] != ~0) | |
7113 | key = kvm_async_pf_next_probe(key); | |
7114 | ||
7115 | vcpu->arch.apf.gfns[key] = gfn; | |
7116 | } | |
7117 | ||
7118 | static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) | |
7119 | { | |
7120 | int i; | |
7121 | u32 key = kvm_async_pf_hash_fn(gfn); | |
7122 | ||
7123 | for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && | |
c7d28c24 XG |
7124 | (vcpu->arch.apf.gfns[key] != gfn && |
7125 | vcpu->arch.apf.gfns[key] != ~0); i++) | |
af585b92 GN |
7126 | key = kvm_async_pf_next_probe(key); |
7127 | ||
7128 | return key; | |
7129 | } | |
7130 | ||
7131 | bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
7132 | { | |
7133 | return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; | |
7134 | } | |
7135 | ||
7136 | static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
7137 | { | |
7138 | u32 i, j, k; | |
7139 | ||
7140 | i = j = kvm_async_pf_gfn_slot(vcpu, gfn); | |
7141 | while (true) { | |
7142 | vcpu->arch.apf.gfns[i] = ~0; | |
7143 | do { | |
7144 | j = kvm_async_pf_next_probe(j); | |
7145 | if (vcpu->arch.apf.gfns[j] == ~0) | |
7146 | return; | |
7147 | k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); | |
7148 | /* | |
7149 | * k lies cyclically in ]i,j] | |
7150 | * | i.k.j | | |
7151 | * |....j i.k.| or |.k..j i...| | |
7152 | */ | |
7153 | } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); | |
7154 | vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; | |
7155 | i = j; | |
7156 | } | |
7157 | } | |
7158 | ||
7c90705b GN |
7159 | static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) |
7160 | { | |
7161 | ||
7162 | return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, | |
7163 | sizeof(val)); | |
7164 | } | |
7165 | ||
af585b92 GN |
7166 | void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, |
7167 | struct kvm_async_pf *work) | |
7168 | { | |
6389ee94 AK |
7169 | struct x86_exception fault; |
7170 | ||
7c90705b | 7171 | trace_kvm_async_pf_not_present(work->arch.token, work->gva); |
af585b92 | 7172 | kvm_add_async_pf_gfn(vcpu, work->arch.gfn); |
7c90705b GN |
7173 | |
7174 | if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || | |
fc5f06fa GN |
7175 | (vcpu->arch.apf.send_user_only && |
7176 | kvm_x86_ops->get_cpl(vcpu) == 0)) | |
7c90705b GN |
7177 | kvm_make_request(KVM_REQ_APF_HALT, vcpu); |
7178 | else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { | |
6389ee94 AK |
7179 | fault.vector = PF_VECTOR; |
7180 | fault.error_code_valid = true; | |
7181 | fault.error_code = 0; | |
7182 | fault.nested_page_fault = false; | |
7183 | fault.address = work->arch.token; | |
7184 | kvm_inject_page_fault(vcpu, &fault); | |
7c90705b | 7185 | } |
af585b92 GN |
7186 | } |
7187 | ||
7188 | void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, | |
7189 | struct kvm_async_pf *work) | |
7190 | { | |
6389ee94 AK |
7191 | struct x86_exception fault; |
7192 | ||
7c90705b GN |
7193 | trace_kvm_async_pf_ready(work->arch.token, work->gva); |
7194 | if (is_error_page(work->page)) | |
7195 | work->arch.token = ~0; /* broadcast wakeup */ | |
7196 | else | |
7197 | kvm_del_async_pf_gfn(vcpu, work->arch.gfn); | |
7198 | ||
7199 | if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && | |
7200 | !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { | |
6389ee94 AK |
7201 | fault.vector = PF_VECTOR; |
7202 | fault.error_code_valid = true; | |
7203 | fault.error_code = 0; | |
7204 | fault.nested_page_fault = false; | |
7205 | fault.address = work->arch.token; | |
7206 | kvm_inject_page_fault(vcpu, &fault); | |
7c90705b | 7207 | } |
e6d53e3b | 7208 | vcpu->arch.apf.halted = false; |
a4fa1635 | 7209 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
7c90705b GN |
7210 | } |
7211 | ||
7212 | bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) | |
7213 | { | |
7214 | if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) | |
7215 | return true; | |
7216 | else | |
7217 | return !kvm_event_needs_reinjection(vcpu) && | |
7218 | kvm_x86_ops->interrupt_allowed(vcpu); | |
af585b92 GN |
7219 | } |
7220 | ||
229456fc MT |
7221 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); |
7222 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); | |
7223 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); | |
7224 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); | |
7225 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); | |
0ac406de | 7226 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); |
d8cabddf | 7227 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); |
17897f36 | 7228 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); |
236649de | 7229 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); |
ec1ff790 | 7230 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); |
532a46b9 | 7231 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); |
2e554e8d | 7232 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); |