]>
Commit | Line | Data |
---|---|---|
043405e1 CO |
1 | /* |
2 | * Kernel-based Virtual Machine driver for Linux | |
3 | * | |
4 | * derived from drivers/kvm/kvm_main.c | |
5 | * | |
6 | * Copyright (C) 2006 Qumranet, Inc. | |
4d5c5d0f BAY |
7 | * Copyright (C) 2008 Qumranet, Inc. |
8 | * Copyright IBM Corporation, 2008 | |
9611c187 | 9 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
043405e1 CO |
10 | * |
11 | * Authors: | |
12 | * Avi Kivity <[email protected]> | |
13 | * Yaniv Kamay <[email protected]> | |
4d5c5d0f BAY |
14 | * Amit Shah <[email protected]> |
15 | * Ben-Ami Yassour <[email protected]> | |
043405e1 CO |
16 | * |
17 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
18 | * the COPYING file in the top-level directory. | |
19 | * | |
20 | */ | |
21 | ||
edf88417 | 22 | #include <linux/kvm_host.h> |
313a3dc7 | 23 | #include "irq.h" |
1d737c8a | 24 | #include "mmu.h" |
7837699f | 25 | #include "i8254.h" |
37817f29 | 26 | #include "tss.h" |
5fdbf976 | 27 | #include "kvm_cache_regs.h" |
26eef70c | 28 | #include "x86.h" |
00b27a3e | 29 | #include "cpuid.h" |
313a3dc7 | 30 | |
18068523 | 31 | #include <linux/clocksource.h> |
4d5c5d0f | 32 | #include <linux/interrupt.h> |
313a3dc7 CO |
33 | #include <linux/kvm.h> |
34 | #include <linux/fs.h> | |
35 | #include <linux/vmalloc.h> | |
5fb76f9b | 36 | #include <linux/module.h> |
0de10343 | 37 | #include <linux/mman.h> |
2bacc55c | 38 | #include <linux/highmem.h> |
19de40a8 | 39 | #include <linux/iommu.h> |
62c476c7 | 40 | #include <linux/intel-iommu.h> |
c8076604 | 41 | #include <linux/cpufreq.h> |
18863bdd | 42 | #include <linux/user-return-notifier.h> |
a983fb23 | 43 | #include <linux/srcu.h> |
5a0e3ad6 | 44 | #include <linux/slab.h> |
ff9d07a0 | 45 | #include <linux/perf_event.h> |
7bee342a | 46 | #include <linux/uaccess.h> |
af585b92 | 47 | #include <linux/hash.h> |
a1b60c1c | 48 | #include <linux/pci.h> |
16e8d74d MT |
49 | #include <linux/timekeeper_internal.h> |
50 | #include <linux/pvclock_gtod.h> | |
aec51dc4 | 51 | #include <trace/events/kvm.h> |
2ed152af | 52 | |
229456fc MT |
53 | #define CREATE_TRACE_POINTS |
54 | #include "trace.h" | |
043405e1 | 55 | |
24f1e32c | 56 | #include <asm/debugreg.h> |
d825ed0a | 57 | #include <asm/msr.h> |
a5f61300 | 58 | #include <asm/desc.h> |
0bed3b56 | 59 | #include <asm/mtrr.h> |
890ca9ae | 60 | #include <asm/mce.h> |
7cf30855 | 61 | #include <asm/i387.h> |
1361b83a | 62 | #include <asm/fpu-internal.h> /* Ugh! */ |
98918833 | 63 | #include <asm/xcr.h> |
1d5f066e | 64 | #include <asm/pvclock.h> |
217fc9cf | 65 | #include <asm/div64.h> |
043405e1 | 66 | |
313a3dc7 | 67 | #define MAX_IO_MSRS 256 |
890ca9ae | 68 | #define KVM_MAX_MCE_BANKS 32 |
5854dbca | 69 | #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) |
890ca9ae | 70 | |
0f65dd70 AK |
71 | #define emul_to_vcpu(ctxt) \ |
72 | container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) | |
73 | ||
50a37eb4 JR |
74 | /* EFER defaults: |
75 | * - enable syscall per default because its emulated by KVM | |
76 | * - enable LME and LMA per default on 64 bit KVM | |
77 | */ | |
78 | #ifdef CONFIG_X86_64 | |
1260edbe LJ |
79 | static |
80 | u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); | |
50a37eb4 | 81 | #else |
1260edbe | 82 | static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); |
50a37eb4 | 83 | #endif |
313a3dc7 | 84 | |
ba1389b7 AK |
85 | #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM |
86 | #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU | |
417bc304 | 87 | |
cb142eb7 | 88 | static void update_cr8_intercept(struct kvm_vcpu *vcpu); |
7460fb4a | 89 | static void process_nmi(struct kvm_vcpu *vcpu); |
674eea0f | 90 | |
97896d04 | 91 | struct kvm_x86_ops *kvm_x86_ops; |
5fdbf976 | 92 | EXPORT_SYMBOL_GPL(kvm_x86_ops); |
97896d04 | 93 | |
476bc001 RR |
94 | static bool ignore_msrs = 0; |
95 | module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); | |
ed85c068 | 96 | |
92a1f12d JR |
97 | bool kvm_has_tsc_control; |
98 | EXPORT_SYMBOL_GPL(kvm_has_tsc_control); | |
99 | u32 kvm_max_guest_tsc_khz; | |
100 | EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); | |
101 | ||
cc578287 ZA |
102 | /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ |
103 | static u32 tsc_tolerance_ppm = 250; | |
104 | module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); | |
105 | ||
18863bdd AK |
106 | #define KVM_NR_SHARED_MSRS 16 |
107 | ||
108 | struct kvm_shared_msrs_global { | |
109 | int nr; | |
2bf78fa7 | 110 | u32 msrs[KVM_NR_SHARED_MSRS]; |
18863bdd AK |
111 | }; |
112 | ||
113 | struct kvm_shared_msrs { | |
114 | struct user_return_notifier urn; | |
115 | bool registered; | |
2bf78fa7 SY |
116 | struct kvm_shared_msr_values { |
117 | u64 host; | |
118 | u64 curr; | |
119 | } values[KVM_NR_SHARED_MSRS]; | |
18863bdd AK |
120 | }; |
121 | ||
122 | static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; | |
123 | static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs); | |
124 | ||
417bc304 | 125 | struct kvm_stats_debugfs_item debugfs_entries[] = { |
ba1389b7 AK |
126 | { "pf_fixed", VCPU_STAT(pf_fixed) }, |
127 | { "pf_guest", VCPU_STAT(pf_guest) }, | |
128 | { "tlb_flush", VCPU_STAT(tlb_flush) }, | |
129 | { "invlpg", VCPU_STAT(invlpg) }, | |
130 | { "exits", VCPU_STAT(exits) }, | |
131 | { "io_exits", VCPU_STAT(io_exits) }, | |
132 | { "mmio_exits", VCPU_STAT(mmio_exits) }, | |
133 | { "signal_exits", VCPU_STAT(signal_exits) }, | |
134 | { "irq_window", VCPU_STAT(irq_window_exits) }, | |
f08864b4 | 135 | { "nmi_window", VCPU_STAT(nmi_window_exits) }, |
ba1389b7 AK |
136 | { "halt_exits", VCPU_STAT(halt_exits) }, |
137 | { "halt_wakeup", VCPU_STAT(halt_wakeup) }, | |
f11c3a8d | 138 | { "hypercalls", VCPU_STAT(hypercalls) }, |
ba1389b7 AK |
139 | { "request_irq", VCPU_STAT(request_irq_exits) }, |
140 | { "irq_exits", VCPU_STAT(irq_exits) }, | |
141 | { "host_state_reload", VCPU_STAT(host_state_reload) }, | |
142 | { "efer_reload", VCPU_STAT(efer_reload) }, | |
143 | { "fpu_reload", VCPU_STAT(fpu_reload) }, | |
144 | { "insn_emulation", VCPU_STAT(insn_emulation) }, | |
145 | { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, | |
fa89a817 | 146 | { "irq_injections", VCPU_STAT(irq_injections) }, |
c4abb7c9 | 147 | { "nmi_injections", VCPU_STAT(nmi_injections) }, |
4cee5764 AK |
148 | { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, |
149 | { "mmu_pte_write", VM_STAT(mmu_pte_write) }, | |
150 | { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, | |
151 | { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, | |
152 | { "mmu_flooded", VM_STAT(mmu_flooded) }, | |
153 | { "mmu_recycled", VM_STAT(mmu_recycled) }, | |
dfc5aa00 | 154 | { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, |
4731d4c7 | 155 | { "mmu_unsync", VM_STAT(mmu_unsync) }, |
0f74a24c | 156 | { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, |
05da4558 | 157 | { "largepages", VM_STAT(lpages) }, |
417bc304 HB |
158 | { NULL } |
159 | }; | |
160 | ||
2acf923e DC |
161 | u64 __read_mostly host_xcr0; |
162 | ||
b6785def | 163 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); |
d6aa1000 | 164 | |
8b6e4547 | 165 | static int kvm_vcpu_reset(struct kvm_vcpu *vcpu); |
d6aa1000 | 166 | |
af585b92 GN |
167 | static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) |
168 | { | |
169 | int i; | |
170 | for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) | |
171 | vcpu->arch.apf.gfns[i] = ~0; | |
172 | } | |
173 | ||
18863bdd AK |
174 | static void kvm_on_user_return(struct user_return_notifier *urn) |
175 | { | |
176 | unsigned slot; | |
18863bdd AK |
177 | struct kvm_shared_msrs *locals |
178 | = container_of(urn, struct kvm_shared_msrs, urn); | |
2bf78fa7 | 179 | struct kvm_shared_msr_values *values; |
18863bdd AK |
180 | |
181 | for (slot = 0; slot < shared_msrs_global.nr; ++slot) { | |
2bf78fa7 SY |
182 | values = &locals->values[slot]; |
183 | if (values->host != values->curr) { | |
184 | wrmsrl(shared_msrs_global.msrs[slot], values->host); | |
185 | values->curr = values->host; | |
18863bdd AK |
186 | } |
187 | } | |
188 | locals->registered = false; | |
189 | user_return_notifier_unregister(urn); | |
190 | } | |
191 | ||
2bf78fa7 | 192 | static void shared_msr_update(unsigned slot, u32 msr) |
18863bdd | 193 | { |
2bf78fa7 | 194 | struct kvm_shared_msrs *smsr; |
18863bdd AK |
195 | u64 value; |
196 | ||
2bf78fa7 SY |
197 | smsr = &__get_cpu_var(shared_msrs); |
198 | /* only read, and nobody should modify it at this time, | |
199 | * so don't need lock */ | |
200 | if (slot >= shared_msrs_global.nr) { | |
201 | printk(KERN_ERR "kvm: invalid MSR slot!"); | |
202 | return; | |
203 | } | |
204 | rdmsrl_safe(msr, &value); | |
205 | smsr->values[slot].host = value; | |
206 | smsr->values[slot].curr = value; | |
207 | } | |
208 | ||
209 | void kvm_define_shared_msr(unsigned slot, u32 msr) | |
210 | { | |
18863bdd AK |
211 | if (slot >= shared_msrs_global.nr) |
212 | shared_msrs_global.nr = slot + 1; | |
2bf78fa7 SY |
213 | shared_msrs_global.msrs[slot] = msr; |
214 | /* we need ensured the shared_msr_global have been updated */ | |
215 | smp_wmb(); | |
18863bdd AK |
216 | } |
217 | EXPORT_SYMBOL_GPL(kvm_define_shared_msr); | |
218 | ||
219 | static void kvm_shared_msr_cpu_online(void) | |
220 | { | |
221 | unsigned i; | |
18863bdd AK |
222 | |
223 | for (i = 0; i < shared_msrs_global.nr; ++i) | |
2bf78fa7 | 224 | shared_msr_update(i, shared_msrs_global.msrs[i]); |
18863bdd AK |
225 | } |
226 | ||
d5696725 | 227 | void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) |
18863bdd AK |
228 | { |
229 | struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); | |
230 | ||
2bf78fa7 | 231 | if (((value ^ smsr->values[slot].curr) & mask) == 0) |
18863bdd | 232 | return; |
2bf78fa7 SY |
233 | smsr->values[slot].curr = value; |
234 | wrmsrl(shared_msrs_global.msrs[slot], value); | |
18863bdd AK |
235 | if (!smsr->registered) { |
236 | smsr->urn.on_user_return = kvm_on_user_return; | |
237 | user_return_notifier_register(&smsr->urn); | |
238 | smsr->registered = true; | |
239 | } | |
240 | } | |
241 | EXPORT_SYMBOL_GPL(kvm_set_shared_msr); | |
242 | ||
3548bab5 AK |
243 | static void drop_user_return_notifiers(void *ignore) |
244 | { | |
245 | struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); | |
246 | ||
247 | if (smsr->registered) | |
248 | kvm_on_user_return(&smsr->urn); | |
249 | } | |
250 | ||
6866b83e CO |
251 | u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) |
252 | { | |
8a5a87d9 | 253 | return vcpu->arch.apic_base; |
6866b83e CO |
254 | } |
255 | EXPORT_SYMBOL_GPL(kvm_get_apic_base); | |
256 | ||
257 | void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) | |
258 | { | |
259 | /* TODO: reserve bits check */ | |
8a5a87d9 | 260 | kvm_lapic_set_base(vcpu, data); |
6866b83e CO |
261 | } |
262 | EXPORT_SYMBOL_GPL(kvm_set_apic_base); | |
263 | ||
3fd28fce ED |
264 | #define EXCPT_BENIGN 0 |
265 | #define EXCPT_CONTRIBUTORY 1 | |
266 | #define EXCPT_PF 2 | |
267 | ||
268 | static int exception_class(int vector) | |
269 | { | |
270 | switch (vector) { | |
271 | case PF_VECTOR: | |
272 | return EXCPT_PF; | |
273 | case DE_VECTOR: | |
274 | case TS_VECTOR: | |
275 | case NP_VECTOR: | |
276 | case SS_VECTOR: | |
277 | case GP_VECTOR: | |
278 | return EXCPT_CONTRIBUTORY; | |
279 | default: | |
280 | break; | |
281 | } | |
282 | return EXCPT_BENIGN; | |
283 | } | |
284 | ||
285 | static void kvm_multiple_exception(struct kvm_vcpu *vcpu, | |
ce7ddec4 JR |
286 | unsigned nr, bool has_error, u32 error_code, |
287 | bool reinject) | |
3fd28fce ED |
288 | { |
289 | u32 prev_nr; | |
290 | int class1, class2; | |
291 | ||
3842d135 AK |
292 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
293 | ||
3fd28fce ED |
294 | if (!vcpu->arch.exception.pending) { |
295 | queue: | |
296 | vcpu->arch.exception.pending = true; | |
297 | vcpu->arch.exception.has_error_code = has_error; | |
298 | vcpu->arch.exception.nr = nr; | |
299 | vcpu->arch.exception.error_code = error_code; | |
3f0fd292 | 300 | vcpu->arch.exception.reinject = reinject; |
3fd28fce ED |
301 | return; |
302 | } | |
303 | ||
304 | /* to check exception */ | |
305 | prev_nr = vcpu->arch.exception.nr; | |
306 | if (prev_nr == DF_VECTOR) { | |
307 | /* triple fault -> shutdown */ | |
a8eeb04a | 308 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
3fd28fce ED |
309 | return; |
310 | } | |
311 | class1 = exception_class(prev_nr); | |
312 | class2 = exception_class(nr); | |
313 | if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) | |
314 | || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { | |
315 | /* generate double fault per SDM Table 5-5 */ | |
316 | vcpu->arch.exception.pending = true; | |
317 | vcpu->arch.exception.has_error_code = true; | |
318 | vcpu->arch.exception.nr = DF_VECTOR; | |
319 | vcpu->arch.exception.error_code = 0; | |
320 | } else | |
321 | /* replace previous exception with a new one in a hope | |
322 | that instruction re-execution will regenerate lost | |
323 | exception */ | |
324 | goto queue; | |
325 | } | |
326 | ||
298101da AK |
327 | void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
328 | { | |
ce7ddec4 | 329 | kvm_multiple_exception(vcpu, nr, false, 0, false); |
298101da AK |
330 | } |
331 | EXPORT_SYMBOL_GPL(kvm_queue_exception); | |
332 | ||
ce7ddec4 JR |
333 | void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
334 | { | |
335 | kvm_multiple_exception(vcpu, nr, false, 0, true); | |
336 | } | |
337 | EXPORT_SYMBOL_GPL(kvm_requeue_exception); | |
338 | ||
db8fcefa | 339 | void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) |
c3c91fee | 340 | { |
db8fcefa AP |
341 | if (err) |
342 | kvm_inject_gp(vcpu, 0); | |
343 | else | |
344 | kvm_x86_ops->skip_emulated_instruction(vcpu); | |
345 | } | |
346 | EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); | |
8df25a32 | 347 | |
6389ee94 | 348 | void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
c3c91fee AK |
349 | { |
350 | ++vcpu->stat.pf_guest; | |
6389ee94 AK |
351 | vcpu->arch.cr2 = fault->address; |
352 | kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); | |
c3c91fee | 353 | } |
27d6c865 | 354 | EXPORT_SYMBOL_GPL(kvm_inject_page_fault); |
c3c91fee | 355 | |
6389ee94 | 356 | void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
d4f8cf66 | 357 | { |
6389ee94 AK |
358 | if (mmu_is_nested(vcpu) && !fault->nested_page_fault) |
359 | vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); | |
d4f8cf66 | 360 | else |
6389ee94 | 361 | vcpu->arch.mmu.inject_page_fault(vcpu, fault); |
d4f8cf66 JR |
362 | } |
363 | ||
3419ffc8 SY |
364 | void kvm_inject_nmi(struct kvm_vcpu *vcpu) |
365 | { | |
7460fb4a AK |
366 | atomic_inc(&vcpu->arch.nmi_queued); |
367 | kvm_make_request(KVM_REQ_NMI, vcpu); | |
3419ffc8 SY |
368 | } |
369 | EXPORT_SYMBOL_GPL(kvm_inject_nmi); | |
370 | ||
298101da AK |
371 | void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
372 | { | |
ce7ddec4 | 373 | kvm_multiple_exception(vcpu, nr, true, error_code, false); |
298101da AK |
374 | } |
375 | EXPORT_SYMBOL_GPL(kvm_queue_exception_e); | |
376 | ||
ce7ddec4 JR |
377 | void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
378 | { | |
379 | kvm_multiple_exception(vcpu, nr, true, error_code, true); | |
380 | } | |
381 | EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); | |
382 | ||
0a79b009 AK |
383 | /* |
384 | * Checks if cpl <= required_cpl; if true, return true. Otherwise queue | |
385 | * a #GP and return false. | |
386 | */ | |
387 | bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) | |
298101da | 388 | { |
0a79b009 AK |
389 | if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) |
390 | return true; | |
391 | kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | |
392 | return false; | |
298101da | 393 | } |
0a79b009 | 394 | EXPORT_SYMBOL_GPL(kvm_require_cpl); |
298101da | 395 | |
ec92fe44 JR |
396 | /* |
397 | * This function will be used to read from the physical memory of the currently | |
398 | * running guest. The difference to kvm_read_guest_page is that this function | |
399 | * can read from guest physical or from the guest's guest physical memory. | |
400 | */ | |
401 | int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | |
402 | gfn_t ngfn, void *data, int offset, int len, | |
403 | u32 access) | |
404 | { | |
405 | gfn_t real_gfn; | |
406 | gpa_t ngpa; | |
407 | ||
408 | ngpa = gfn_to_gpa(ngfn); | |
409 | real_gfn = mmu->translate_gpa(vcpu, ngpa, access); | |
410 | if (real_gfn == UNMAPPED_GVA) | |
411 | return -EFAULT; | |
412 | ||
413 | real_gfn = gpa_to_gfn(real_gfn); | |
414 | ||
415 | return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); | |
416 | } | |
417 | EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); | |
418 | ||
3d06b8bf JR |
419 | int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, |
420 | void *data, int offset, int len, u32 access) | |
421 | { | |
422 | return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, | |
423 | data, offset, len, access); | |
424 | } | |
425 | ||
a03490ed CO |
426 | /* |
427 | * Load the pae pdptrs. Return true is they are all valid. | |
428 | */ | |
ff03a073 | 429 | int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) |
a03490ed CO |
430 | { |
431 | gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; | |
432 | unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; | |
433 | int i; | |
434 | int ret; | |
ff03a073 | 435 | u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; |
a03490ed | 436 | |
ff03a073 JR |
437 | ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, |
438 | offset * sizeof(u64), sizeof(pdpte), | |
439 | PFERR_USER_MASK|PFERR_WRITE_MASK); | |
a03490ed CO |
440 | if (ret < 0) { |
441 | ret = 0; | |
442 | goto out; | |
443 | } | |
444 | for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { | |
43a3795a | 445 | if (is_present_gpte(pdpte[i]) && |
20c466b5 | 446 | (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { |
a03490ed CO |
447 | ret = 0; |
448 | goto out; | |
449 | } | |
450 | } | |
451 | ret = 1; | |
452 | ||
ff03a073 | 453 | memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); |
6de4f3ad AK |
454 | __set_bit(VCPU_EXREG_PDPTR, |
455 | (unsigned long *)&vcpu->arch.regs_avail); | |
456 | __set_bit(VCPU_EXREG_PDPTR, | |
457 | (unsigned long *)&vcpu->arch.regs_dirty); | |
a03490ed | 458 | out: |
a03490ed CO |
459 | |
460 | return ret; | |
461 | } | |
cc4b6871 | 462 | EXPORT_SYMBOL_GPL(load_pdptrs); |
a03490ed | 463 | |
d835dfec AK |
464 | static bool pdptrs_changed(struct kvm_vcpu *vcpu) |
465 | { | |
ff03a073 | 466 | u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; |
d835dfec | 467 | bool changed = true; |
3d06b8bf JR |
468 | int offset; |
469 | gfn_t gfn; | |
d835dfec AK |
470 | int r; |
471 | ||
472 | if (is_long_mode(vcpu) || !is_pae(vcpu)) | |
473 | return false; | |
474 | ||
6de4f3ad AK |
475 | if (!test_bit(VCPU_EXREG_PDPTR, |
476 | (unsigned long *)&vcpu->arch.regs_avail)) | |
477 | return true; | |
478 | ||
9f8fe504 AK |
479 | gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; |
480 | offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); | |
3d06b8bf JR |
481 | r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), |
482 | PFERR_USER_MASK | PFERR_WRITE_MASK); | |
d835dfec AK |
483 | if (r < 0) |
484 | goto out; | |
ff03a073 | 485 | changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; |
d835dfec | 486 | out: |
d835dfec AK |
487 | |
488 | return changed; | |
489 | } | |
490 | ||
49a9b07e | 491 | int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
a03490ed | 492 | { |
aad82703 SY |
493 | unsigned long old_cr0 = kvm_read_cr0(vcpu); |
494 | unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | | |
495 | X86_CR0_CD | X86_CR0_NW; | |
496 | ||
f9a48e6a AK |
497 | cr0 |= X86_CR0_ET; |
498 | ||
ab344828 | 499 | #ifdef CONFIG_X86_64 |
0f12244f GN |
500 | if (cr0 & 0xffffffff00000000UL) |
501 | return 1; | |
ab344828 GN |
502 | #endif |
503 | ||
504 | cr0 &= ~CR0_RESERVED_BITS; | |
a03490ed | 505 | |
0f12244f GN |
506 | if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) |
507 | return 1; | |
a03490ed | 508 | |
0f12244f GN |
509 | if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) |
510 | return 1; | |
a03490ed CO |
511 | |
512 | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { | |
513 | #ifdef CONFIG_X86_64 | |
f6801dff | 514 | if ((vcpu->arch.efer & EFER_LME)) { |
a03490ed CO |
515 | int cs_db, cs_l; |
516 | ||
0f12244f GN |
517 | if (!is_pae(vcpu)) |
518 | return 1; | |
a03490ed | 519 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
0f12244f GN |
520 | if (cs_l) |
521 | return 1; | |
a03490ed CO |
522 | } else |
523 | #endif | |
ff03a073 | 524 | if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
9f8fe504 | 525 | kvm_read_cr3(vcpu))) |
0f12244f | 526 | return 1; |
a03490ed CO |
527 | } |
528 | ||
ad756a16 MJ |
529 | if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) |
530 | return 1; | |
531 | ||
a03490ed | 532 | kvm_x86_ops->set_cr0(vcpu, cr0); |
a03490ed | 533 | |
d170c419 | 534 | if ((cr0 ^ old_cr0) & X86_CR0_PG) { |
e5f3f027 | 535 | kvm_clear_async_pf_completion_queue(vcpu); |
d170c419 LJ |
536 | kvm_async_pf_hash_reset(vcpu); |
537 | } | |
e5f3f027 | 538 | |
aad82703 SY |
539 | if ((cr0 ^ old_cr0) & update_bits) |
540 | kvm_mmu_reset_context(vcpu); | |
0f12244f GN |
541 | return 0; |
542 | } | |
2d3ad1f4 | 543 | EXPORT_SYMBOL_GPL(kvm_set_cr0); |
a03490ed | 544 | |
2d3ad1f4 | 545 | void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) |
a03490ed | 546 | { |
49a9b07e | 547 | (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); |
a03490ed | 548 | } |
2d3ad1f4 | 549 | EXPORT_SYMBOL_GPL(kvm_lmsw); |
a03490ed | 550 | |
2acf923e DC |
551 | int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) |
552 | { | |
553 | u64 xcr0; | |
554 | ||
555 | /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ | |
556 | if (index != XCR_XFEATURE_ENABLED_MASK) | |
557 | return 1; | |
558 | xcr0 = xcr; | |
559 | if (kvm_x86_ops->get_cpl(vcpu) != 0) | |
560 | return 1; | |
561 | if (!(xcr0 & XSTATE_FP)) | |
562 | return 1; | |
563 | if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) | |
564 | return 1; | |
565 | if (xcr0 & ~host_xcr0) | |
566 | return 1; | |
567 | vcpu->arch.xcr0 = xcr0; | |
568 | vcpu->guest_xcr0_loaded = 0; | |
569 | return 0; | |
570 | } | |
571 | ||
572 | int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) | |
573 | { | |
574 | if (__kvm_set_xcr(vcpu, index, xcr)) { | |
575 | kvm_inject_gp(vcpu, 0); | |
576 | return 1; | |
577 | } | |
578 | return 0; | |
579 | } | |
580 | EXPORT_SYMBOL_GPL(kvm_set_xcr); | |
581 | ||
a83b29c6 | 582 | int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
a03490ed | 583 | { |
fc78f519 | 584 | unsigned long old_cr4 = kvm_read_cr4(vcpu); |
c68b734f YW |
585 | unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | |
586 | X86_CR4_PAE | X86_CR4_SMEP; | |
0f12244f GN |
587 | if (cr4 & CR4_RESERVED_BITS) |
588 | return 1; | |
a03490ed | 589 | |
2acf923e DC |
590 | if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) |
591 | return 1; | |
592 | ||
c68b734f YW |
593 | if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) |
594 | return 1; | |
595 | ||
74dc2b4f YW |
596 | if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) |
597 | return 1; | |
598 | ||
a03490ed | 599 | if (is_long_mode(vcpu)) { |
0f12244f GN |
600 | if (!(cr4 & X86_CR4_PAE)) |
601 | return 1; | |
a2edf57f AK |
602 | } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) |
603 | && ((cr4 ^ old_cr4) & pdptr_bits) | |
9f8fe504 AK |
604 | && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
605 | kvm_read_cr3(vcpu))) | |
0f12244f GN |
606 | return 1; |
607 | ||
ad756a16 MJ |
608 | if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { |
609 | if (!guest_cpuid_has_pcid(vcpu)) | |
610 | return 1; | |
611 | ||
612 | /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ | |
613 | if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) | |
614 | return 1; | |
615 | } | |
616 | ||
5e1746d6 | 617 | if (kvm_x86_ops->set_cr4(vcpu, cr4)) |
0f12244f | 618 | return 1; |
a03490ed | 619 | |
ad756a16 MJ |
620 | if (((cr4 ^ old_cr4) & pdptr_bits) || |
621 | (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) | |
aad82703 | 622 | kvm_mmu_reset_context(vcpu); |
0f12244f | 623 | |
2acf923e | 624 | if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) |
00b27a3e | 625 | kvm_update_cpuid(vcpu); |
2acf923e | 626 | |
0f12244f GN |
627 | return 0; |
628 | } | |
2d3ad1f4 | 629 | EXPORT_SYMBOL_GPL(kvm_set_cr4); |
a03490ed | 630 | |
2390218b | 631 | int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
a03490ed | 632 | { |
9f8fe504 | 633 | if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { |
0ba73cda | 634 | kvm_mmu_sync_roots(vcpu); |
d835dfec | 635 | kvm_mmu_flush_tlb(vcpu); |
0f12244f | 636 | return 0; |
d835dfec AK |
637 | } |
638 | ||
a03490ed | 639 | if (is_long_mode(vcpu)) { |
471842ec | 640 | if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) { |
ad756a16 MJ |
641 | if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) |
642 | return 1; | |
643 | } else | |
644 | if (cr3 & CR3_L_MODE_RESERVED_BITS) | |
645 | return 1; | |
a03490ed CO |
646 | } else { |
647 | if (is_pae(vcpu)) { | |
0f12244f GN |
648 | if (cr3 & CR3_PAE_RESERVED_BITS) |
649 | return 1; | |
ff03a073 JR |
650 | if (is_paging(vcpu) && |
651 | !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) | |
0f12244f | 652 | return 1; |
a03490ed CO |
653 | } |
654 | /* | |
655 | * We don't check reserved bits in nonpae mode, because | |
656 | * this isn't enforced, and VMware depends on this. | |
657 | */ | |
658 | } | |
659 | ||
a03490ed CO |
660 | /* |
661 | * Does the new cr3 value map to physical memory? (Note, we | |
662 | * catch an invalid cr3 even in real-mode, because it would | |
663 | * cause trouble later on when we turn on paging anyway.) | |
664 | * | |
665 | * A real CPU would silently accept an invalid cr3 and would | |
666 | * attempt to use it - with largely undefined (and often hard | |
667 | * to debug) behavior on the guest side. | |
668 | */ | |
669 | if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) | |
0f12244f GN |
670 | return 1; |
671 | vcpu->arch.cr3 = cr3; | |
aff48baa | 672 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
0f12244f GN |
673 | vcpu->arch.mmu.new_cr3(vcpu); |
674 | return 0; | |
675 | } | |
2d3ad1f4 | 676 | EXPORT_SYMBOL_GPL(kvm_set_cr3); |
a03490ed | 677 | |
eea1cff9 | 678 | int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) |
a03490ed | 679 | { |
0f12244f GN |
680 | if (cr8 & CR8_RESERVED_BITS) |
681 | return 1; | |
a03490ed CO |
682 | if (irqchip_in_kernel(vcpu->kvm)) |
683 | kvm_lapic_set_tpr(vcpu, cr8); | |
684 | else | |
ad312c7c | 685 | vcpu->arch.cr8 = cr8; |
0f12244f GN |
686 | return 0; |
687 | } | |
2d3ad1f4 | 688 | EXPORT_SYMBOL_GPL(kvm_set_cr8); |
a03490ed | 689 | |
2d3ad1f4 | 690 | unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) |
a03490ed CO |
691 | { |
692 | if (irqchip_in_kernel(vcpu->kvm)) | |
693 | return kvm_lapic_get_cr8(vcpu); | |
694 | else | |
ad312c7c | 695 | return vcpu->arch.cr8; |
a03490ed | 696 | } |
2d3ad1f4 | 697 | EXPORT_SYMBOL_GPL(kvm_get_cr8); |
a03490ed | 698 | |
c8639010 JK |
699 | static void kvm_update_dr7(struct kvm_vcpu *vcpu) |
700 | { | |
701 | unsigned long dr7; | |
702 | ||
703 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) | |
704 | dr7 = vcpu->arch.guest_debug_dr7; | |
705 | else | |
706 | dr7 = vcpu->arch.dr7; | |
707 | kvm_x86_ops->set_dr7(vcpu, dr7); | |
708 | vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK); | |
709 | } | |
710 | ||
338dbc97 | 711 | static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) |
020df079 GN |
712 | { |
713 | switch (dr) { | |
714 | case 0 ... 3: | |
715 | vcpu->arch.db[dr] = val; | |
716 | if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) | |
717 | vcpu->arch.eff_db[dr] = val; | |
718 | break; | |
719 | case 4: | |
338dbc97 GN |
720 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
721 | return 1; /* #UD */ | |
020df079 GN |
722 | /* fall through */ |
723 | case 6: | |
338dbc97 GN |
724 | if (val & 0xffffffff00000000ULL) |
725 | return -1; /* #GP */ | |
020df079 GN |
726 | vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; |
727 | break; | |
728 | case 5: | |
338dbc97 GN |
729 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
730 | return 1; /* #UD */ | |
020df079 GN |
731 | /* fall through */ |
732 | default: /* 7 */ | |
338dbc97 GN |
733 | if (val & 0xffffffff00000000ULL) |
734 | return -1; /* #GP */ | |
020df079 | 735 | vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; |
c8639010 | 736 | kvm_update_dr7(vcpu); |
020df079 GN |
737 | break; |
738 | } | |
739 | ||
740 | return 0; | |
741 | } | |
338dbc97 GN |
742 | |
743 | int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) | |
744 | { | |
745 | int res; | |
746 | ||
747 | res = __kvm_set_dr(vcpu, dr, val); | |
748 | if (res > 0) | |
749 | kvm_queue_exception(vcpu, UD_VECTOR); | |
750 | else if (res < 0) | |
751 | kvm_inject_gp(vcpu, 0); | |
752 | ||
753 | return res; | |
754 | } | |
020df079 GN |
755 | EXPORT_SYMBOL_GPL(kvm_set_dr); |
756 | ||
338dbc97 | 757 | static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) |
020df079 GN |
758 | { |
759 | switch (dr) { | |
760 | case 0 ... 3: | |
761 | *val = vcpu->arch.db[dr]; | |
762 | break; | |
763 | case 4: | |
338dbc97 | 764 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
020df079 | 765 | return 1; |
020df079 GN |
766 | /* fall through */ |
767 | case 6: | |
768 | *val = vcpu->arch.dr6; | |
769 | break; | |
770 | case 5: | |
338dbc97 | 771 | if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
020df079 | 772 | return 1; |
020df079 GN |
773 | /* fall through */ |
774 | default: /* 7 */ | |
775 | *val = vcpu->arch.dr7; | |
776 | break; | |
777 | } | |
778 | ||
779 | return 0; | |
780 | } | |
338dbc97 GN |
781 | |
782 | int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) | |
783 | { | |
784 | if (_kvm_get_dr(vcpu, dr, val)) { | |
785 | kvm_queue_exception(vcpu, UD_VECTOR); | |
786 | return 1; | |
787 | } | |
788 | return 0; | |
789 | } | |
020df079 GN |
790 | EXPORT_SYMBOL_GPL(kvm_get_dr); |
791 | ||
022cd0e8 AK |
792 | bool kvm_rdpmc(struct kvm_vcpu *vcpu) |
793 | { | |
794 | u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
795 | u64 data; | |
796 | int err; | |
797 | ||
798 | err = kvm_pmu_read_pmc(vcpu, ecx, &data); | |
799 | if (err) | |
800 | return err; | |
801 | kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); | |
802 | kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); | |
803 | return err; | |
804 | } | |
805 | EXPORT_SYMBOL_GPL(kvm_rdpmc); | |
806 | ||
043405e1 CO |
807 | /* |
808 | * List of msr numbers which we expose to userspace through KVM_GET_MSRS | |
809 | * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. | |
810 | * | |
811 | * This list is modified at module load time to reflect the | |
e3267cbb GC |
812 | * capabilities of the host cpu. This capabilities test skips MSRs that are |
813 | * kvm-specific. Those are put in the beginning of the list. | |
043405e1 | 814 | */ |
e3267cbb | 815 | |
439793d4 | 816 | #define KVM_SAVE_MSRS_BEGIN 10 |
043405e1 | 817 | static u32 msrs_to_save[] = { |
e3267cbb | 818 | MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, |
11c6bffa | 819 | MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, |
55cd8e5a | 820 | HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, |
c9aaa895 | 821 | HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, |
ae7a2a3f | 822 | MSR_KVM_PV_EOI_EN, |
043405e1 | 823 | MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, |
8c06585d | 824 | MSR_STAR, |
043405e1 CO |
825 | #ifdef CONFIG_X86_64 |
826 | MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, | |
827 | #endif | |
e90aa41e | 828 | MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA |
043405e1 CO |
829 | }; |
830 | ||
831 | static unsigned num_msrs_to_save; | |
832 | ||
f1d24831 | 833 | static const u32 emulated_msrs[] = { |
ba904635 | 834 | MSR_IA32_TSC_ADJUST, |
a3e06bbe | 835 | MSR_IA32_TSCDEADLINE, |
043405e1 | 836 | MSR_IA32_MISC_ENABLE, |
908e75f3 AK |
837 | MSR_IA32_MCG_STATUS, |
838 | MSR_IA32_MCG_CTL, | |
043405e1 CO |
839 | }; |
840 | ||
b69e8cae | 841 | static int set_efer(struct kvm_vcpu *vcpu, u64 efer) |
15c4a640 | 842 | { |
aad82703 SY |
843 | u64 old_efer = vcpu->arch.efer; |
844 | ||
b69e8cae RJ |
845 | if (efer & efer_reserved_bits) |
846 | return 1; | |
15c4a640 CO |
847 | |
848 | if (is_paging(vcpu) | |
b69e8cae RJ |
849 | && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) |
850 | return 1; | |
15c4a640 | 851 | |
1b2fd70c AG |
852 | if (efer & EFER_FFXSR) { |
853 | struct kvm_cpuid_entry2 *feat; | |
854 | ||
855 | feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); | |
b69e8cae RJ |
856 | if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) |
857 | return 1; | |
1b2fd70c AG |
858 | } |
859 | ||
d8017474 AG |
860 | if (efer & EFER_SVME) { |
861 | struct kvm_cpuid_entry2 *feat; | |
862 | ||
863 | feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); | |
b69e8cae RJ |
864 | if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) |
865 | return 1; | |
d8017474 AG |
866 | } |
867 | ||
15c4a640 | 868 | efer &= ~EFER_LMA; |
f6801dff | 869 | efer |= vcpu->arch.efer & EFER_LMA; |
15c4a640 | 870 | |
a3d204e2 SY |
871 | kvm_x86_ops->set_efer(vcpu, efer); |
872 | ||
aad82703 SY |
873 | /* Update reserved bits */ |
874 | if ((efer ^ old_efer) & EFER_NX) | |
875 | kvm_mmu_reset_context(vcpu); | |
876 | ||
b69e8cae | 877 | return 0; |
15c4a640 CO |
878 | } |
879 | ||
f2b4b7dd JR |
880 | void kvm_enable_efer_bits(u64 mask) |
881 | { | |
882 | efer_reserved_bits &= ~mask; | |
883 | } | |
884 | EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); | |
885 | ||
886 | ||
15c4a640 CO |
887 | /* |
888 | * Writes msr value into into the appropriate "register". | |
889 | * Returns 0 on success, non-0 otherwise. | |
890 | * Assumes vcpu_load() was already called. | |
891 | */ | |
8fe8ab46 | 892 | int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) |
15c4a640 | 893 | { |
8fe8ab46 | 894 | return kvm_x86_ops->set_msr(vcpu, msr); |
15c4a640 CO |
895 | } |
896 | ||
313a3dc7 CO |
897 | /* |
898 | * Adapt set_msr() to msr_io()'s calling convention | |
899 | */ | |
900 | static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) | |
901 | { | |
8fe8ab46 WA |
902 | struct msr_data msr; |
903 | ||
904 | msr.data = *data; | |
905 | msr.index = index; | |
906 | msr.host_initiated = true; | |
907 | return kvm_set_msr(vcpu, &msr); | |
313a3dc7 CO |
908 | } |
909 | ||
16e8d74d MT |
910 | #ifdef CONFIG_X86_64 |
911 | struct pvclock_gtod_data { | |
912 | seqcount_t seq; | |
913 | ||
914 | struct { /* extract of a clocksource struct */ | |
915 | int vclock_mode; | |
916 | cycle_t cycle_last; | |
917 | cycle_t mask; | |
918 | u32 mult; | |
919 | u32 shift; | |
920 | } clock; | |
921 | ||
922 | /* open coded 'struct timespec' */ | |
923 | u64 monotonic_time_snsec; | |
924 | time_t monotonic_time_sec; | |
925 | }; | |
926 | ||
927 | static struct pvclock_gtod_data pvclock_gtod_data; | |
928 | ||
929 | static void update_pvclock_gtod(struct timekeeper *tk) | |
930 | { | |
931 | struct pvclock_gtod_data *vdata = &pvclock_gtod_data; | |
932 | ||
933 | write_seqcount_begin(&vdata->seq); | |
934 | ||
935 | /* copy pvclock gtod data */ | |
936 | vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode; | |
937 | vdata->clock.cycle_last = tk->clock->cycle_last; | |
938 | vdata->clock.mask = tk->clock->mask; | |
939 | vdata->clock.mult = tk->mult; | |
940 | vdata->clock.shift = tk->shift; | |
941 | ||
942 | vdata->monotonic_time_sec = tk->xtime_sec | |
943 | + tk->wall_to_monotonic.tv_sec; | |
944 | vdata->monotonic_time_snsec = tk->xtime_nsec | |
945 | + (tk->wall_to_monotonic.tv_nsec | |
946 | << tk->shift); | |
947 | while (vdata->monotonic_time_snsec >= | |
948 | (((u64)NSEC_PER_SEC) << tk->shift)) { | |
949 | vdata->monotonic_time_snsec -= | |
950 | ((u64)NSEC_PER_SEC) << tk->shift; | |
951 | vdata->monotonic_time_sec++; | |
952 | } | |
953 | ||
954 | write_seqcount_end(&vdata->seq); | |
955 | } | |
956 | #endif | |
957 | ||
958 | ||
18068523 GOC |
959 | static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) |
960 | { | |
9ed3c444 AK |
961 | int version; |
962 | int r; | |
50d0a0f9 | 963 | struct pvclock_wall_clock wc; |
923de3cf | 964 | struct timespec boot; |
18068523 GOC |
965 | |
966 | if (!wall_clock) | |
967 | return; | |
968 | ||
9ed3c444 AK |
969 | r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); |
970 | if (r) | |
971 | return; | |
972 | ||
973 | if (version & 1) | |
974 | ++version; /* first time write, random junk */ | |
975 | ||
976 | ++version; | |
18068523 | 977 | |
18068523 GOC |
978 | kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); |
979 | ||
50d0a0f9 GH |
980 | /* |
981 | * The guest calculates current wall clock time by adding | |
34c238a1 | 982 | * system time (updated by kvm_guest_time_update below) to the |
50d0a0f9 GH |
983 | * wall clock specified here. guest system time equals host |
984 | * system time for us, thus we must fill in host boot time here. | |
985 | */ | |
923de3cf | 986 | getboottime(&boot); |
50d0a0f9 | 987 | |
4b648665 BR |
988 | if (kvm->arch.kvmclock_offset) { |
989 | struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); | |
990 | boot = timespec_sub(boot, ts); | |
991 | } | |
50d0a0f9 GH |
992 | wc.sec = boot.tv_sec; |
993 | wc.nsec = boot.tv_nsec; | |
994 | wc.version = version; | |
18068523 GOC |
995 | |
996 | kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); | |
997 | ||
998 | version++; | |
999 | kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); | |
18068523 GOC |
1000 | } |
1001 | ||
50d0a0f9 GH |
1002 | static uint32_t div_frac(uint32_t dividend, uint32_t divisor) |
1003 | { | |
1004 | uint32_t quotient, remainder; | |
1005 | ||
1006 | /* Don't try to replace with do_div(), this one calculates | |
1007 | * "(dividend << 32) / divisor" */ | |
1008 | __asm__ ( "divl %4" | |
1009 | : "=a" (quotient), "=d" (remainder) | |
1010 | : "0" (0), "1" (dividend), "r" (divisor) ); | |
1011 | return quotient; | |
1012 | } | |
1013 | ||
5f4e3f88 ZA |
1014 | static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, |
1015 | s8 *pshift, u32 *pmultiplier) | |
50d0a0f9 | 1016 | { |
5f4e3f88 | 1017 | uint64_t scaled64; |
50d0a0f9 GH |
1018 | int32_t shift = 0; |
1019 | uint64_t tps64; | |
1020 | uint32_t tps32; | |
1021 | ||
5f4e3f88 ZA |
1022 | tps64 = base_khz * 1000LL; |
1023 | scaled64 = scaled_khz * 1000LL; | |
50933623 | 1024 | while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { |
50d0a0f9 GH |
1025 | tps64 >>= 1; |
1026 | shift--; | |
1027 | } | |
1028 | ||
1029 | tps32 = (uint32_t)tps64; | |
50933623 JK |
1030 | while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { |
1031 | if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) | |
5f4e3f88 ZA |
1032 | scaled64 >>= 1; |
1033 | else | |
1034 | tps32 <<= 1; | |
50d0a0f9 GH |
1035 | shift++; |
1036 | } | |
1037 | ||
5f4e3f88 ZA |
1038 | *pshift = shift; |
1039 | *pmultiplier = div_frac(scaled64, tps32); | |
50d0a0f9 | 1040 | |
5f4e3f88 ZA |
1041 | pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", |
1042 | __func__, base_khz, scaled_khz, shift, *pmultiplier); | |
50d0a0f9 GH |
1043 | } |
1044 | ||
759379dd ZA |
1045 | static inline u64 get_kernel_ns(void) |
1046 | { | |
1047 | struct timespec ts; | |
1048 | ||
1049 | WARN_ON(preemptible()); | |
1050 | ktime_get_ts(&ts); | |
1051 | monotonic_to_bootbased(&ts); | |
1052 | return timespec_to_ns(&ts); | |
50d0a0f9 GH |
1053 | } |
1054 | ||
d828199e | 1055 | #ifdef CONFIG_X86_64 |
16e8d74d | 1056 | static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); |
d828199e | 1057 | #endif |
16e8d74d | 1058 | |
c8076604 | 1059 | static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); |
c285545f | 1060 | unsigned long max_tsc_khz; |
c8076604 | 1061 | |
cc578287 | 1062 | static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) |
8cfdc000 | 1063 | { |
cc578287 ZA |
1064 | return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, |
1065 | vcpu->arch.virtual_tsc_shift); | |
8cfdc000 ZA |
1066 | } |
1067 | ||
cc578287 | 1068 | static u32 adjust_tsc_khz(u32 khz, s32 ppm) |
1e993611 | 1069 | { |
cc578287 ZA |
1070 | u64 v = (u64)khz * (1000000 + ppm); |
1071 | do_div(v, 1000000); | |
1072 | return v; | |
1e993611 JR |
1073 | } |
1074 | ||
cc578287 | 1075 | static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) |
759379dd | 1076 | { |
cc578287 ZA |
1077 | u32 thresh_lo, thresh_hi; |
1078 | int use_scaling = 0; | |
217fc9cf | 1079 | |
c285545f ZA |
1080 | /* Compute a scale to convert nanoseconds in TSC cycles */ |
1081 | kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, | |
cc578287 ZA |
1082 | &vcpu->arch.virtual_tsc_shift, |
1083 | &vcpu->arch.virtual_tsc_mult); | |
1084 | vcpu->arch.virtual_tsc_khz = this_tsc_khz; | |
1085 | ||
1086 | /* | |
1087 | * Compute the variation in TSC rate which is acceptable | |
1088 | * within the range of tolerance and decide if the | |
1089 | * rate being applied is within that bounds of the hardware | |
1090 | * rate. If so, no scaling or compensation need be done. | |
1091 | */ | |
1092 | thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); | |
1093 | thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); | |
1094 | if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { | |
1095 | pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); | |
1096 | use_scaling = 1; | |
1097 | } | |
1098 | kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); | |
c285545f ZA |
1099 | } |
1100 | ||
1101 | static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) | |
1102 | { | |
e26101b1 | 1103 | u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, |
cc578287 ZA |
1104 | vcpu->arch.virtual_tsc_mult, |
1105 | vcpu->arch.virtual_tsc_shift); | |
e26101b1 | 1106 | tsc += vcpu->arch.this_tsc_write; |
c285545f ZA |
1107 | return tsc; |
1108 | } | |
1109 | ||
b48aa97e MT |
1110 | void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) |
1111 | { | |
1112 | #ifdef CONFIG_X86_64 | |
1113 | bool vcpus_matched; | |
1114 | bool do_request = false; | |
1115 | struct kvm_arch *ka = &vcpu->kvm->arch; | |
1116 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
1117 | ||
1118 | vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == | |
1119 | atomic_read(&vcpu->kvm->online_vcpus)); | |
1120 | ||
1121 | if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) | |
1122 | if (!ka->use_master_clock) | |
1123 | do_request = 1; | |
1124 | ||
1125 | if (!vcpus_matched && ka->use_master_clock) | |
1126 | do_request = 1; | |
1127 | ||
1128 | if (do_request) | |
1129 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); | |
1130 | ||
1131 | trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, | |
1132 | atomic_read(&vcpu->kvm->online_vcpus), | |
1133 | ka->use_master_clock, gtod->clock.vclock_mode); | |
1134 | #endif | |
1135 | } | |
1136 | ||
ba904635 WA |
1137 | static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) |
1138 | { | |
1139 | u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); | |
1140 | vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; | |
1141 | } | |
1142 | ||
8fe8ab46 | 1143 | void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) |
99e3e30a ZA |
1144 | { |
1145 | struct kvm *kvm = vcpu->kvm; | |
f38e098f | 1146 | u64 offset, ns, elapsed; |
99e3e30a | 1147 | unsigned long flags; |
02626b6a | 1148 | s64 usdiff; |
b48aa97e | 1149 | bool matched; |
8fe8ab46 | 1150 | u64 data = msr->data; |
99e3e30a | 1151 | |
038f8c11 | 1152 | raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); |
857e4099 | 1153 | offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); |
759379dd | 1154 | ns = get_kernel_ns(); |
f38e098f | 1155 | elapsed = ns - kvm->arch.last_tsc_nsec; |
5d3cb0f6 ZA |
1156 | |
1157 | /* n.b - signed multiplication and division required */ | |
02626b6a | 1158 | usdiff = data - kvm->arch.last_tsc_write; |
5d3cb0f6 | 1159 | #ifdef CONFIG_X86_64 |
02626b6a | 1160 | usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; |
5d3cb0f6 ZA |
1161 | #else |
1162 | /* do_div() only does unsigned */ | |
1163 | asm("idivl %2; xor %%edx, %%edx" | |
02626b6a MT |
1164 | : "=A"(usdiff) |
1165 | : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz)); | |
5d3cb0f6 | 1166 | #endif |
02626b6a MT |
1167 | do_div(elapsed, 1000); |
1168 | usdiff -= elapsed; | |
1169 | if (usdiff < 0) | |
1170 | usdiff = -usdiff; | |
f38e098f ZA |
1171 | |
1172 | /* | |
5d3cb0f6 ZA |
1173 | * Special case: TSC write with a small delta (1 second) of virtual |
1174 | * cycle time against real time is interpreted as an attempt to | |
1175 | * synchronize the CPU. | |
1176 | * | |
1177 | * For a reliable TSC, we can match TSC offsets, and for an unstable | |
1178 | * TSC, we add elapsed time in this computation. We could let the | |
1179 | * compensation code attempt to catch up if we fall behind, but | |
1180 | * it's better to try to match offsets from the beginning. | |
1181 | */ | |
02626b6a | 1182 | if (usdiff < USEC_PER_SEC && |
5d3cb0f6 | 1183 | vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { |
f38e098f | 1184 | if (!check_tsc_unstable()) { |
e26101b1 | 1185 | offset = kvm->arch.cur_tsc_offset; |
f38e098f ZA |
1186 | pr_debug("kvm: matched tsc offset for %llu\n", data); |
1187 | } else { | |
857e4099 | 1188 | u64 delta = nsec_to_cycles(vcpu, elapsed); |
5d3cb0f6 ZA |
1189 | data += delta; |
1190 | offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); | |
759379dd | 1191 | pr_debug("kvm: adjusted tsc offset by %llu\n", delta); |
f38e098f | 1192 | } |
b48aa97e | 1193 | matched = true; |
e26101b1 ZA |
1194 | } else { |
1195 | /* | |
1196 | * We split periods of matched TSC writes into generations. | |
1197 | * For each generation, we track the original measured | |
1198 | * nanosecond time, offset, and write, so if TSCs are in | |
1199 | * sync, we can match exact offset, and if not, we can match | |
4a969980 | 1200 | * exact software computation in compute_guest_tsc() |
e26101b1 ZA |
1201 | * |
1202 | * These values are tracked in kvm->arch.cur_xxx variables. | |
1203 | */ | |
1204 | kvm->arch.cur_tsc_generation++; | |
1205 | kvm->arch.cur_tsc_nsec = ns; | |
1206 | kvm->arch.cur_tsc_write = data; | |
1207 | kvm->arch.cur_tsc_offset = offset; | |
b48aa97e | 1208 | matched = false; |
e26101b1 ZA |
1209 | pr_debug("kvm: new tsc generation %u, clock %llu\n", |
1210 | kvm->arch.cur_tsc_generation, data); | |
f38e098f | 1211 | } |
e26101b1 ZA |
1212 | |
1213 | /* | |
1214 | * We also track th most recent recorded KHZ, write and time to | |
1215 | * allow the matching interval to be extended at each write. | |
1216 | */ | |
f38e098f ZA |
1217 | kvm->arch.last_tsc_nsec = ns; |
1218 | kvm->arch.last_tsc_write = data; | |
5d3cb0f6 | 1219 | kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; |
99e3e30a ZA |
1220 | |
1221 | /* Reset of TSC must disable overshoot protection below */ | |
1222 | vcpu->arch.hv_clock.tsc_timestamp = 0; | |
b183aa58 | 1223 | vcpu->arch.last_guest_tsc = data; |
e26101b1 ZA |
1224 | |
1225 | /* Keep track of which generation this VCPU has synchronized to */ | |
1226 | vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; | |
1227 | vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; | |
1228 | vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; | |
1229 | ||
ba904635 WA |
1230 | if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) |
1231 | update_ia32_tsc_adjust_msr(vcpu, offset); | |
e26101b1 ZA |
1232 | kvm_x86_ops->write_tsc_offset(vcpu, offset); |
1233 | raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); | |
b48aa97e MT |
1234 | |
1235 | spin_lock(&kvm->arch.pvclock_gtod_sync_lock); | |
1236 | if (matched) | |
1237 | kvm->arch.nr_vcpus_matched_tsc++; | |
1238 | else | |
1239 | kvm->arch.nr_vcpus_matched_tsc = 0; | |
1240 | ||
1241 | kvm_track_tsc_matching(vcpu); | |
1242 | spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); | |
99e3e30a | 1243 | } |
e26101b1 | 1244 | |
99e3e30a ZA |
1245 | EXPORT_SYMBOL_GPL(kvm_write_tsc); |
1246 | ||
d828199e MT |
1247 | #ifdef CONFIG_X86_64 |
1248 | ||
1249 | static cycle_t read_tsc(void) | |
1250 | { | |
1251 | cycle_t ret; | |
1252 | u64 last; | |
1253 | ||
1254 | /* | |
1255 | * Empirically, a fence (of type that depends on the CPU) | |
1256 | * before rdtsc is enough to ensure that rdtsc is ordered | |
1257 | * with respect to loads. The various CPU manuals are unclear | |
1258 | * as to whether rdtsc can be reordered with later loads, | |
1259 | * but no one has ever seen it happen. | |
1260 | */ | |
1261 | rdtsc_barrier(); | |
1262 | ret = (cycle_t)vget_cycles(); | |
1263 | ||
1264 | last = pvclock_gtod_data.clock.cycle_last; | |
1265 | ||
1266 | if (likely(ret >= last)) | |
1267 | return ret; | |
1268 | ||
1269 | /* | |
1270 | * GCC likes to generate cmov here, but this branch is extremely | |
1271 | * predictable (it's just a funciton of time and the likely is | |
1272 | * very likely) and there's a data dependence, so force GCC | |
1273 | * to generate a branch instead. I don't barrier() because | |
1274 | * we don't actually need a barrier, and if this function | |
1275 | * ever gets inlined it will generate worse code. | |
1276 | */ | |
1277 | asm volatile (""); | |
1278 | return last; | |
1279 | } | |
1280 | ||
1281 | static inline u64 vgettsc(cycle_t *cycle_now) | |
1282 | { | |
1283 | long v; | |
1284 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
1285 | ||
1286 | *cycle_now = read_tsc(); | |
1287 | ||
1288 | v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; | |
1289 | return v * gtod->clock.mult; | |
1290 | } | |
1291 | ||
1292 | static int do_monotonic(struct timespec *ts, cycle_t *cycle_now) | |
1293 | { | |
1294 | unsigned long seq; | |
1295 | u64 ns; | |
1296 | int mode; | |
1297 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
1298 | ||
1299 | ts->tv_nsec = 0; | |
1300 | do { | |
1301 | seq = read_seqcount_begin(>od->seq); | |
1302 | mode = gtod->clock.vclock_mode; | |
1303 | ts->tv_sec = gtod->monotonic_time_sec; | |
1304 | ns = gtod->monotonic_time_snsec; | |
1305 | ns += vgettsc(cycle_now); | |
1306 | ns >>= gtod->clock.shift; | |
1307 | } while (unlikely(read_seqcount_retry(>od->seq, seq))); | |
1308 | timespec_add_ns(ts, ns); | |
1309 | ||
1310 | return mode; | |
1311 | } | |
1312 | ||
1313 | /* returns true if host is using tsc clocksource */ | |
1314 | static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) | |
1315 | { | |
1316 | struct timespec ts; | |
1317 | ||
1318 | /* checked again under seqlock below */ | |
1319 | if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) | |
1320 | return false; | |
1321 | ||
1322 | if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC) | |
1323 | return false; | |
1324 | ||
1325 | monotonic_to_bootbased(&ts); | |
1326 | *kernel_ns = timespec_to_ns(&ts); | |
1327 | ||
1328 | return true; | |
1329 | } | |
1330 | #endif | |
1331 | ||
1332 | /* | |
1333 | * | |
b48aa97e MT |
1334 | * Assuming a stable TSC across physical CPUS, and a stable TSC |
1335 | * across virtual CPUs, the following condition is possible. | |
1336 | * Each numbered line represents an event visible to both | |
d828199e MT |
1337 | * CPUs at the next numbered event. |
1338 | * | |
1339 | * "timespecX" represents host monotonic time. "tscX" represents | |
1340 | * RDTSC value. | |
1341 | * | |
1342 | * VCPU0 on CPU0 | VCPU1 on CPU1 | |
1343 | * | |
1344 | * 1. read timespec0,tsc0 | |
1345 | * 2. | timespec1 = timespec0 + N | |
1346 | * | tsc1 = tsc0 + M | |
1347 | * 3. transition to guest | transition to guest | |
1348 | * 4. ret0 = timespec0 + (rdtsc - tsc0) | | |
1349 | * 5. | ret1 = timespec1 + (rdtsc - tsc1) | |
1350 | * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) | |
1351 | * | |
1352 | * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: | |
1353 | * | |
1354 | * - ret0 < ret1 | |
1355 | * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) | |
1356 | * ... | |
1357 | * - 0 < N - M => M < N | |
1358 | * | |
1359 | * That is, when timespec0 != timespec1, M < N. Unfortunately that is not | |
1360 | * always the case (the difference between two distinct xtime instances | |
1361 | * might be smaller then the difference between corresponding TSC reads, | |
1362 | * when updating guest vcpus pvclock areas). | |
1363 | * | |
1364 | * To avoid that problem, do not allow visibility of distinct | |
1365 | * system_timestamp/tsc_timestamp values simultaneously: use a master | |
1366 | * copy of host monotonic time values. Update that master copy | |
1367 | * in lockstep. | |
1368 | * | |
b48aa97e | 1369 | * Rely on synchronization of host TSCs and guest TSCs for monotonicity. |
d828199e MT |
1370 | * |
1371 | */ | |
1372 | ||
1373 | static void pvclock_update_vm_gtod_copy(struct kvm *kvm) | |
1374 | { | |
1375 | #ifdef CONFIG_X86_64 | |
1376 | struct kvm_arch *ka = &kvm->arch; | |
1377 | int vclock_mode; | |
b48aa97e MT |
1378 | bool host_tsc_clocksource, vcpus_matched; |
1379 | ||
1380 | vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == | |
1381 | atomic_read(&kvm->online_vcpus)); | |
d828199e MT |
1382 | |
1383 | /* | |
1384 | * If the host uses TSC clock, then passthrough TSC as stable | |
1385 | * to the guest. | |
1386 | */ | |
b48aa97e | 1387 | host_tsc_clocksource = kvm_get_time_and_clockread( |
d828199e MT |
1388 | &ka->master_kernel_ns, |
1389 | &ka->master_cycle_now); | |
1390 | ||
b48aa97e MT |
1391 | ka->use_master_clock = host_tsc_clocksource & vcpus_matched; |
1392 | ||
d828199e MT |
1393 | if (ka->use_master_clock) |
1394 | atomic_set(&kvm_guest_has_master_clock, 1); | |
1395 | ||
1396 | vclock_mode = pvclock_gtod_data.clock.vclock_mode; | |
b48aa97e MT |
1397 | trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, |
1398 | vcpus_matched); | |
d828199e MT |
1399 | #endif |
1400 | } | |
1401 | ||
34c238a1 | 1402 | static int kvm_guest_time_update(struct kvm_vcpu *v) |
18068523 | 1403 | { |
d828199e | 1404 | unsigned long flags, this_tsc_khz; |
18068523 | 1405 | struct kvm_vcpu_arch *vcpu = &v->arch; |
d828199e | 1406 | struct kvm_arch *ka = &v->kvm->arch; |
18068523 | 1407 | void *shared_kaddr; |
1d5f066e | 1408 | s64 kernel_ns, max_kernel_ns; |
d828199e | 1409 | u64 tsc_timestamp, host_tsc; |
78c0337a | 1410 | struct pvclock_vcpu_time_info *guest_hv_clock; |
51d59c6b | 1411 | u8 pvclock_flags; |
d828199e MT |
1412 | bool use_master_clock; |
1413 | ||
1414 | kernel_ns = 0; | |
1415 | host_tsc = 0; | |
18068523 | 1416 | |
18068523 GOC |
1417 | /* Keep irq disabled to prevent changes to the clock */ |
1418 | local_irq_save(flags); | |
cc578287 | 1419 | this_tsc_khz = __get_cpu_var(cpu_tsc_khz); |
8cfdc000 | 1420 | if (unlikely(this_tsc_khz == 0)) { |
c285545f | 1421 | local_irq_restore(flags); |
34c238a1 | 1422 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); |
8cfdc000 ZA |
1423 | return 1; |
1424 | } | |
18068523 | 1425 | |
d828199e MT |
1426 | /* |
1427 | * If the host uses TSC clock, then passthrough TSC as stable | |
1428 | * to the guest. | |
1429 | */ | |
1430 | spin_lock(&ka->pvclock_gtod_sync_lock); | |
1431 | use_master_clock = ka->use_master_clock; | |
1432 | if (use_master_clock) { | |
1433 | host_tsc = ka->master_cycle_now; | |
1434 | kernel_ns = ka->master_kernel_ns; | |
1435 | } | |
1436 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
1437 | if (!use_master_clock) { | |
1438 | host_tsc = native_read_tsc(); | |
1439 | kernel_ns = get_kernel_ns(); | |
1440 | } | |
1441 | ||
1442 | tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); | |
1443 | ||
c285545f ZA |
1444 | /* |
1445 | * We may have to catch up the TSC to match elapsed wall clock | |
1446 | * time for two reasons, even if kvmclock is used. | |
1447 | * 1) CPU could have been running below the maximum TSC rate | |
1448 | * 2) Broken TSC compensation resets the base at each VCPU | |
1449 | * entry to avoid unknown leaps of TSC even when running | |
1450 | * again on the same CPU. This may cause apparent elapsed | |
1451 | * time to disappear, and the guest to stand still or run | |
1452 | * very slowly. | |
1453 | */ | |
1454 | if (vcpu->tsc_catchup) { | |
1455 | u64 tsc = compute_guest_tsc(v, kernel_ns); | |
1456 | if (tsc > tsc_timestamp) { | |
f1e2b260 | 1457 | adjust_tsc_offset_guest(v, tsc - tsc_timestamp); |
c285545f ZA |
1458 | tsc_timestamp = tsc; |
1459 | } | |
50d0a0f9 GH |
1460 | } |
1461 | ||
18068523 GOC |
1462 | local_irq_restore(flags); |
1463 | ||
c285545f ZA |
1464 | if (!vcpu->time_page) |
1465 | return 0; | |
18068523 | 1466 | |
1d5f066e ZA |
1467 | /* |
1468 | * Time as measured by the TSC may go backwards when resetting the base | |
1469 | * tsc_timestamp. The reason for this is that the TSC resolution is | |
1470 | * higher than the resolution of the other clock scales. Thus, many | |
1471 | * possible measurments of the TSC correspond to one measurement of any | |
1472 | * other clock, and so a spread of values is possible. This is not a | |
1473 | * problem for the computation of the nanosecond clock; with TSC rates | |
1474 | * around 1GHZ, there can only be a few cycles which correspond to one | |
1475 | * nanosecond value, and any path through this code will inevitably | |
1476 | * take longer than that. However, with the kernel_ns value itself, | |
1477 | * the precision may be much lower, down to HZ granularity. If the | |
1478 | * first sampling of TSC against kernel_ns ends in the low part of the | |
1479 | * range, and the second in the high end of the range, we can get: | |
1480 | * | |
1481 | * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new | |
1482 | * | |
1483 | * As the sampling errors potentially range in the thousands of cycles, | |
1484 | * it is possible such a time value has already been observed by the | |
1485 | * guest. To protect against this, we must compute the system time as | |
1486 | * observed by the guest and ensure the new system time is greater. | |
1487 | */ | |
1488 | max_kernel_ns = 0; | |
b183aa58 | 1489 | if (vcpu->hv_clock.tsc_timestamp) { |
1d5f066e ZA |
1490 | max_kernel_ns = vcpu->last_guest_tsc - |
1491 | vcpu->hv_clock.tsc_timestamp; | |
1492 | max_kernel_ns = pvclock_scale_delta(max_kernel_ns, | |
1493 | vcpu->hv_clock.tsc_to_system_mul, | |
1494 | vcpu->hv_clock.tsc_shift); | |
1495 | max_kernel_ns += vcpu->last_kernel_ns; | |
1496 | } | |
afbcf7ab | 1497 | |
e48672fa | 1498 | if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { |
5f4e3f88 ZA |
1499 | kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, |
1500 | &vcpu->hv_clock.tsc_shift, | |
1501 | &vcpu->hv_clock.tsc_to_system_mul); | |
e48672fa | 1502 | vcpu->hw_tsc_khz = this_tsc_khz; |
8cfdc000 ZA |
1503 | } |
1504 | ||
d828199e MT |
1505 | /* with a master <monotonic time, tsc value> tuple, |
1506 | * pvclock clock reads always increase at the (scaled) rate | |
1507 | * of guest TSC - no need to deal with sampling errors. | |
1508 | */ | |
1509 | if (!use_master_clock) { | |
1510 | if (max_kernel_ns > kernel_ns) | |
1511 | kernel_ns = max_kernel_ns; | |
1512 | } | |
8cfdc000 | 1513 | /* With all the info we got, fill in the values */ |
1d5f066e | 1514 | vcpu->hv_clock.tsc_timestamp = tsc_timestamp; |
759379dd | 1515 | vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; |
1d5f066e | 1516 | vcpu->last_kernel_ns = kernel_ns; |
28e4639a | 1517 | vcpu->last_guest_tsc = tsc_timestamp; |
51d59c6b | 1518 | |
18068523 GOC |
1519 | /* |
1520 | * The interface expects us to write an even number signaling that the | |
1521 | * update is finished. Since the guest won't see the intermediate | |
50d0a0f9 | 1522 | * state, we just increase by 2 at the end. |
18068523 | 1523 | */ |
50d0a0f9 | 1524 | vcpu->hv_clock.version += 2; |
18068523 | 1525 | |
8fd75e12 | 1526 | shared_kaddr = kmap_atomic(vcpu->time_page); |
18068523 | 1527 | |
78c0337a MT |
1528 | guest_hv_clock = shared_kaddr + vcpu->time_offset; |
1529 | ||
1530 | /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ | |
1531 | pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); | |
1532 | ||
1533 | if (vcpu->pvclock_set_guest_stopped_request) { | |
1534 | pvclock_flags |= PVCLOCK_GUEST_STOPPED; | |
1535 | vcpu->pvclock_set_guest_stopped_request = false; | |
1536 | } | |
1537 | ||
d828199e MT |
1538 | /* If the host uses TSC clocksource, then it is stable */ |
1539 | if (use_master_clock) | |
1540 | pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; | |
1541 | ||
78c0337a MT |
1542 | vcpu->hv_clock.flags = pvclock_flags; |
1543 | ||
18068523 | 1544 | memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, |
50d0a0f9 | 1545 | sizeof(vcpu->hv_clock)); |
18068523 | 1546 | |
8fd75e12 | 1547 | kunmap_atomic(shared_kaddr); |
18068523 GOC |
1548 | |
1549 | mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); | |
8cfdc000 | 1550 | return 0; |
c8076604 GH |
1551 | } |
1552 | ||
9ba075a6 AK |
1553 | static bool msr_mtrr_valid(unsigned msr) |
1554 | { | |
1555 | switch (msr) { | |
1556 | case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: | |
1557 | case MSR_MTRRfix64K_00000: | |
1558 | case MSR_MTRRfix16K_80000: | |
1559 | case MSR_MTRRfix16K_A0000: | |
1560 | case MSR_MTRRfix4K_C0000: | |
1561 | case MSR_MTRRfix4K_C8000: | |
1562 | case MSR_MTRRfix4K_D0000: | |
1563 | case MSR_MTRRfix4K_D8000: | |
1564 | case MSR_MTRRfix4K_E0000: | |
1565 | case MSR_MTRRfix4K_E8000: | |
1566 | case MSR_MTRRfix4K_F0000: | |
1567 | case MSR_MTRRfix4K_F8000: | |
1568 | case MSR_MTRRdefType: | |
1569 | case MSR_IA32_CR_PAT: | |
1570 | return true; | |
1571 | case 0x2f8: | |
1572 | return true; | |
1573 | } | |
1574 | return false; | |
1575 | } | |
1576 | ||
d6289b93 MT |
1577 | static bool valid_pat_type(unsigned t) |
1578 | { | |
1579 | return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ | |
1580 | } | |
1581 | ||
1582 | static bool valid_mtrr_type(unsigned t) | |
1583 | { | |
1584 | return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ | |
1585 | } | |
1586 | ||
1587 | static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) | |
1588 | { | |
1589 | int i; | |
1590 | ||
1591 | if (!msr_mtrr_valid(msr)) | |
1592 | return false; | |
1593 | ||
1594 | if (msr == MSR_IA32_CR_PAT) { | |
1595 | for (i = 0; i < 8; i++) | |
1596 | if (!valid_pat_type((data >> (i * 8)) & 0xff)) | |
1597 | return false; | |
1598 | return true; | |
1599 | } else if (msr == MSR_MTRRdefType) { | |
1600 | if (data & ~0xcff) | |
1601 | return false; | |
1602 | return valid_mtrr_type(data & 0xff); | |
1603 | } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { | |
1604 | for (i = 0; i < 8 ; i++) | |
1605 | if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) | |
1606 | return false; | |
1607 | return true; | |
1608 | } | |
1609 | ||
1610 | /* variable MTRRs */ | |
1611 | return valid_mtrr_type(data & 0xff); | |
1612 | } | |
1613 | ||
9ba075a6 AK |
1614 | static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
1615 | { | |
0bed3b56 SY |
1616 | u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; |
1617 | ||
d6289b93 | 1618 | if (!mtrr_valid(vcpu, msr, data)) |
9ba075a6 AK |
1619 | return 1; |
1620 | ||
0bed3b56 SY |
1621 | if (msr == MSR_MTRRdefType) { |
1622 | vcpu->arch.mtrr_state.def_type = data; | |
1623 | vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; | |
1624 | } else if (msr == MSR_MTRRfix64K_00000) | |
1625 | p[0] = data; | |
1626 | else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) | |
1627 | p[1 + msr - MSR_MTRRfix16K_80000] = data; | |
1628 | else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) | |
1629 | p[3 + msr - MSR_MTRRfix4K_C0000] = data; | |
1630 | else if (msr == MSR_IA32_CR_PAT) | |
1631 | vcpu->arch.pat = data; | |
1632 | else { /* Variable MTRRs */ | |
1633 | int idx, is_mtrr_mask; | |
1634 | u64 *pt; | |
1635 | ||
1636 | idx = (msr - 0x200) / 2; | |
1637 | is_mtrr_mask = msr - 0x200 - 2 * idx; | |
1638 | if (!is_mtrr_mask) | |
1639 | pt = | |
1640 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; | |
1641 | else | |
1642 | pt = | |
1643 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; | |
1644 | *pt = data; | |
1645 | } | |
1646 | ||
1647 | kvm_mmu_reset_context(vcpu); | |
9ba075a6 AK |
1648 | return 0; |
1649 | } | |
15c4a640 | 1650 | |
890ca9ae | 1651 | static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
15c4a640 | 1652 | { |
890ca9ae YH |
1653 | u64 mcg_cap = vcpu->arch.mcg_cap; |
1654 | unsigned bank_num = mcg_cap & 0xff; | |
1655 | ||
15c4a640 | 1656 | switch (msr) { |
15c4a640 | 1657 | case MSR_IA32_MCG_STATUS: |
890ca9ae | 1658 | vcpu->arch.mcg_status = data; |
15c4a640 | 1659 | break; |
c7ac679c | 1660 | case MSR_IA32_MCG_CTL: |
890ca9ae YH |
1661 | if (!(mcg_cap & MCG_CTL_P)) |
1662 | return 1; | |
1663 | if (data != 0 && data != ~(u64)0) | |
1664 | return -1; | |
1665 | vcpu->arch.mcg_ctl = data; | |
1666 | break; | |
1667 | default: | |
1668 | if (msr >= MSR_IA32_MC0_CTL && | |
1669 | msr < MSR_IA32_MC0_CTL + 4 * bank_num) { | |
1670 | u32 offset = msr - MSR_IA32_MC0_CTL; | |
114be429 AP |
1671 | /* only 0 or all 1s can be written to IA32_MCi_CTL |
1672 | * some Linux kernels though clear bit 10 in bank 4 to | |
1673 | * workaround a BIOS/GART TBL issue on AMD K8s, ignore | |
1674 | * this to avoid an uncatched #GP in the guest | |
1675 | */ | |
890ca9ae | 1676 | if ((offset & 0x3) == 0 && |
114be429 | 1677 | data != 0 && (data | (1 << 10)) != ~(u64)0) |
890ca9ae YH |
1678 | return -1; |
1679 | vcpu->arch.mce_banks[offset] = data; | |
1680 | break; | |
1681 | } | |
1682 | return 1; | |
1683 | } | |
1684 | return 0; | |
1685 | } | |
1686 | ||
ffde22ac ES |
1687 | static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) |
1688 | { | |
1689 | struct kvm *kvm = vcpu->kvm; | |
1690 | int lm = is_long_mode(vcpu); | |
1691 | u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 | |
1692 | : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; | |
1693 | u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 | |
1694 | : kvm->arch.xen_hvm_config.blob_size_32; | |
1695 | u32 page_num = data & ~PAGE_MASK; | |
1696 | u64 page_addr = data & PAGE_MASK; | |
1697 | u8 *page; | |
1698 | int r; | |
1699 | ||
1700 | r = -E2BIG; | |
1701 | if (page_num >= blob_size) | |
1702 | goto out; | |
1703 | r = -ENOMEM; | |
ff5c2c03 SL |
1704 | page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); |
1705 | if (IS_ERR(page)) { | |
1706 | r = PTR_ERR(page); | |
ffde22ac | 1707 | goto out; |
ff5c2c03 | 1708 | } |
ffde22ac ES |
1709 | if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) |
1710 | goto out_free; | |
1711 | r = 0; | |
1712 | out_free: | |
1713 | kfree(page); | |
1714 | out: | |
1715 | return r; | |
1716 | } | |
1717 | ||
55cd8e5a GN |
1718 | static bool kvm_hv_hypercall_enabled(struct kvm *kvm) |
1719 | { | |
1720 | return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; | |
1721 | } | |
1722 | ||
1723 | static bool kvm_hv_msr_partition_wide(u32 msr) | |
1724 | { | |
1725 | bool r = false; | |
1726 | switch (msr) { | |
1727 | case HV_X64_MSR_GUEST_OS_ID: | |
1728 | case HV_X64_MSR_HYPERCALL: | |
1729 | r = true; | |
1730 | break; | |
1731 | } | |
1732 | ||
1733 | return r; | |
1734 | } | |
1735 | ||
1736 | static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) | |
1737 | { | |
1738 | struct kvm *kvm = vcpu->kvm; | |
1739 | ||
1740 | switch (msr) { | |
1741 | case HV_X64_MSR_GUEST_OS_ID: | |
1742 | kvm->arch.hv_guest_os_id = data; | |
1743 | /* setting guest os id to zero disables hypercall page */ | |
1744 | if (!kvm->arch.hv_guest_os_id) | |
1745 | kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; | |
1746 | break; | |
1747 | case HV_X64_MSR_HYPERCALL: { | |
1748 | u64 gfn; | |
1749 | unsigned long addr; | |
1750 | u8 instructions[4]; | |
1751 | ||
1752 | /* if guest os id is not set hypercall should remain disabled */ | |
1753 | if (!kvm->arch.hv_guest_os_id) | |
1754 | break; | |
1755 | if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { | |
1756 | kvm->arch.hv_hypercall = data; | |
1757 | break; | |
1758 | } | |
1759 | gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; | |
1760 | addr = gfn_to_hva(kvm, gfn); | |
1761 | if (kvm_is_error_hva(addr)) | |
1762 | return 1; | |
1763 | kvm_x86_ops->patch_hypercall(vcpu, instructions); | |
1764 | ((unsigned char *)instructions)[3] = 0xc3; /* ret */ | |
8b0cedff | 1765 | if (__copy_to_user((void __user *)addr, instructions, 4)) |
55cd8e5a GN |
1766 | return 1; |
1767 | kvm->arch.hv_hypercall = data; | |
1768 | break; | |
1769 | } | |
1770 | default: | |
a737f256 CD |
1771 | vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " |
1772 | "data 0x%llx\n", msr, data); | |
55cd8e5a GN |
1773 | return 1; |
1774 | } | |
1775 | return 0; | |
1776 | } | |
1777 | ||
1778 | static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) | |
1779 | { | |
10388a07 GN |
1780 | switch (msr) { |
1781 | case HV_X64_MSR_APIC_ASSIST_PAGE: { | |
1782 | unsigned long addr; | |
55cd8e5a | 1783 | |
10388a07 GN |
1784 | if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { |
1785 | vcpu->arch.hv_vapic = data; | |
1786 | break; | |
1787 | } | |
1788 | addr = gfn_to_hva(vcpu->kvm, data >> | |
1789 | HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); | |
1790 | if (kvm_is_error_hva(addr)) | |
1791 | return 1; | |
8b0cedff | 1792 | if (__clear_user((void __user *)addr, PAGE_SIZE)) |
10388a07 GN |
1793 | return 1; |
1794 | vcpu->arch.hv_vapic = data; | |
1795 | break; | |
1796 | } | |
1797 | case HV_X64_MSR_EOI: | |
1798 | return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); | |
1799 | case HV_X64_MSR_ICR: | |
1800 | return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); | |
1801 | case HV_X64_MSR_TPR: | |
1802 | return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); | |
1803 | default: | |
a737f256 CD |
1804 | vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " |
1805 | "data 0x%llx\n", msr, data); | |
10388a07 GN |
1806 | return 1; |
1807 | } | |
1808 | ||
1809 | return 0; | |
55cd8e5a GN |
1810 | } |
1811 | ||
344d9588 GN |
1812 | static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) |
1813 | { | |
1814 | gpa_t gpa = data & ~0x3f; | |
1815 | ||
4a969980 | 1816 | /* Bits 2:5 are reserved, Should be zero */ |
6adba527 | 1817 | if (data & 0x3c) |
344d9588 GN |
1818 | return 1; |
1819 | ||
1820 | vcpu->arch.apf.msr_val = data; | |
1821 | ||
1822 | if (!(data & KVM_ASYNC_PF_ENABLED)) { | |
1823 | kvm_clear_async_pf_completion_queue(vcpu); | |
1824 | kvm_async_pf_hash_reset(vcpu); | |
1825 | return 0; | |
1826 | } | |
1827 | ||
1828 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) | |
1829 | return 1; | |
1830 | ||
6adba527 | 1831 | vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); |
344d9588 GN |
1832 | kvm_async_pf_wakeup_all(vcpu); |
1833 | return 0; | |
1834 | } | |
1835 | ||
12f9a48f GC |
1836 | static void kvmclock_reset(struct kvm_vcpu *vcpu) |
1837 | { | |
1838 | if (vcpu->arch.time_page) { | |
1839 | kvm_release_page_dirty(vcpu->arch.time_page); | |
1840 | vcpu->arch.time_page = NULL; | |
1841 | } | |
1842 | } | |
1843 | ||
c9aaa895 GC |
1844 | static void accumulate_steal_time(struct kvm_vcpu *vcpu) |
1845 | { | |
1846 | u64 delta; | |
1847 | ||
1848 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | |
1849 | return; | |
1850 | ||
1851 | delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; | |
1852 | vcpu->arch.st.last_steal = current->sched_info.run_delay; | |
1853 | vcpu->arch.st.accum_steal = delta; | |
1854 | } | |
1855 | ||
1856 | static void record_steal_time(struct kvm_vcpu *vcpu) | |
1857 | { | |
1858 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | |
1859 | return; | |
1860 | ||
1861 | if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, | |
1862 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) | |
1863 | return; | |
1864 | ||
1865 | vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; | |
1866 | vcpu->arch.st.steal.version += 2; | |
1867 | vcpu->arch.st.accum_steal = 0; | |
1868 | ||
1869 | kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, | |
1870 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); | |
1871 | } | |
1872 | ||
8fe8ab46 | 1873 | int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
15c4a640 | 1874 | { |
5753785f | 1875 | bool pr = false; |
8fe8ab46 WA |
1876 | u32 msr = msr_info->index; |
1877 | u64 data = msr_info->data; | |
5753785f | 1878 | |
15c4a640 | 1879 | switch (msr) { |
15c4a640 | 1880 | case MSR_EFER: |
b69e8cae | 1881 | return set_efer(vcpu, data); |
8f1589d9 AP |
1882 | case MSR_K7_HWCR: |
1883 | data &= ~(u64)0x40; /* ignore flush filter disable */ | |
82494028 | 1884 | data &= ~(u64)0x100; /* ignore ignne emulation enable */ |
a223c313 | 1885 | data &= ~(u64)0x8; /* ignore TLB cache disable */ |
8f1589d9 | 1886 | if (data != 0) { |
a737f256 CD |
1887 | vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", |
1888 | data); | |
8f1589d9 AP |
1889 | return 1; |
1890 | } | |
15c4a640 | 1891 | break; |
f7c6d140 AP |
1892 | case MSR_FAM10H_MMIO_CONF_BASE: |
1893 | if (data != 0) { | |
a737f256 CD |
1894 | vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " |
1895 | "0x%llx\n", data); | |
f7c6d140 AP |
1896 | return 1; |
1897 | } | |
15c4a640 | 1898 | break; |
c323c0e5 | 1899 | case MSR_AMD64_NB_CFG: |
c7ac679c | 1900 | break; |
b5e2fec0 AG |
1901 | case MSR_IA32_DEBUGCTLMSR: |
1902 | if (!data) { | |
1903 | /* We support the non-activated case already */ | |
1904 | break; | |
1905 | } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { | |
1906 | /* Values other than LBR and BTF are vendor-specific, | |
1907 | thus reserved and should throw a #GP */ | |
1908 | return 1; | |
1909 | } | |
a737f256 CD |
1910 | vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", |
1911 | __func__, data); | |
b5e2fec0 | 1912 | break; |
15c4a640 CO |
1913 | case MSR_IA32_UCODE_REV: |
1914 | case MSR_IA32_UCODE_WRITE: | |
61a6bd67 | 1915 | case MSR_VM_HSAVE_PA: |
6098ca93 | 1916 | case MSR_AMD64_PATCH_LOADER: |
15c4a640 | 1917 | break; |
9ba075a6 AK |
1918 | case 0x200 ... 0x2ff: |
1919 | return set_msr_mtrr(vcpu, msr, data); | |
15c4a640 CO |
1920 | case MSR_IA32_APICBASE: |
1921 | kvm_set_apic_base(vcpu, data); | |
1922 | break; | |
0105d1a5 GN |
1923 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
1924 | return kvm_x2apic_msr_write(vcpu, msr, data); | |
a3e06bbe LJ |
1925 | case MSR_IA32_TSCDEADLINE: |
1926 | kvm_set_lapic_tscdeadline_msr(vcpu, data); | |
1927 | break; | |
ba904635 WA |
1928 | case MSR_IA32_TSC_ADJUST: |
1929 | if (guest_cpuid_has_tsc_adjust(vcpu)) { | |
1930 | if (!msr_info->host_initiated) { | |
1931 | u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; | |
1932 | kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); | |
1933 | } | |
1934 | vcpu->arch.ia32_tsc_adjust_msr = data; | |
1935 | } | |
1936 | break; | |
15c4a640 | 1937 | case MSR_IA32_MISC_ENABLE: |
ad312c7c | 1938 | vcpu->arch.ia32_misc_enable_msr = data; |
15c4a640 | 1939 | break; |
11c6bffa | 1940 | case MSR_KVM_WALL_CLOCK_NEW: |
18068523 GOC |
1941 | case MSR_KVM_WALL_CLOCK: |
1942 | vcpu->kvm->arch.wall_clock = data; | |
1943 | kvm_write_wall_clock(vcpu->kvm, data); | |
1944 | break; | |
11c6bffa | 1945 | case MSR_KVM_SYSTEM_TIME_NEW: |
18068523 | 1946 | case MSR_KVM_SYSTEM_TIME: { |
12f9a48f | 1947 | kvmclock_reset(vcpu); |
18068523 GOC |
1948 | |
1949 | vcpu->arch.time = data; | |
c285545f | 1950 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
18068523 GOC |
1951 | |
1952 | /* we verify if the enable bit is set... */ | |
1953 | if (!(data & 1)) | |
1954 | break; | |
1955 | ||
1956 | /* ...but clean it before doing the actual write */ | |
1957 | vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); | |
1958 | ||
18068523 GOC |
1959 | vcpu->arch.time_page = |
1960 | gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); | |
18068523 | 1961 | |
32cad84f | 1962 | if (is_error_page(vcpu->arch.time_page)) |
18068523 | 1963 | vcpu->arch.time_page = NULL; |
32cad84f | 1964 | |
18068523 GOC |
1965 | break; |
1966 | } | |
344d9588 GN |
1967 | case MSR_KVM_ASYNC_PF_EN: |
1968 | if (kvm_pv_enable_async_pf(vcpu, data)) | |
1969 | return 1; | |
1970 | break; | |
c9aaa895 GC |
1971 | case MSR_KVM_STEAL_TIME: |
1972 | ||
1973 | if (unlikely(!sched_info_on())) | |
1974 | return 1; | |
1975 | ||
1976 | if (data & KVM_STEAL_RESERVED_MASK) | |
1977 | return 1; | |
1978 | ||
1979 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, | |
1980 | data & KVM_STEAL_VALID_BITS)) | |
1981 | return 1; | |
1982 | ||
1983 | vcpu->arch.st.msr_val = data; | |
1984 | ||
1985 | if (!(data & KVM_MSR_ENABLED)) | |
1986 | break; | |
1987 | ||
1988 | vcpu->arch.st.last_steal = current->sched_info.run_delay; | |
1989 | ||
1990 | preempt_disable(); | |
1991 | accumulate_steal_time(vcpu); | |
1992 | preempt_enable(); | |
1993 | ||
1994 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); | |
1995 | ||
1996 | break; | |
ae7a2a3f MT |
1997 | case MSR_KVM_PV_EOI_EN: |
1998 | if (kvm_lapic_enable_pv_eoi(vcpu, data)) | |
1999 | return 1; | |
2000 | break; | |
c9aaa895 | 2001 | |
890ca9ae YH |
2002 | case MSR_IA32_MCG_CTL: |
2003 | case MSR_IA32_MCG_STATUS: | |
2004 | case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: | |
2005 | return set_msr_mce(vcpu, msr, data); | |
71db6023 AP |
2006 | |
2007 | /* Performance counters are not protected by a CPUID bit, | |
2008 | * so we should check all of them in the generic path for the sake of | |
2009 | * cross vendor migration. | |
2010 | * Writing a zero into the event select MSRs disables them, | |
2011 | * which we perfectly emulate ;-). Any other value should be at least | |
2012 | * reported, some guests depend on them. | |
2013 | */ | |
71db6023 AP |
2014 | case MSR_K7_EVNTSEL0: |
2015 | case MSR_K7_EVNTSEL1: | |
2016 | case MSR_K7_EVNTSEL2: | |
2017 | case MSR_K7_EVNTSEL3: | |
2018 | if (data != 0) | |
a737f256 CD |
2019 | vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " |
2020 | "0x%x data 0x%llx\n", msr, data); | |
71db6023 AP |
2021 | break; |
2022 | /* at least RHEL 4 unconditionally writes to the perfctr registers, | |
2023 | * so we ignore writes to make it happy. | |
2024 | */ | |
71db6023 AP |
2025 | case MSR_K7_PERFCTR0: |
2026 | case MSR_K7_PERFCTR1: | |
2027 | case MSR_K7_PERFCTR2: | |
2028 | case MSR_K7_PERFCTR3: | |
a737f256 CD |
2029 | vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " |
2030 | "0x%x data 0x%llx\n", msr, data); | |
71db6023 | 2031 | break; |
5753785f GN |
2032 | case MSR_P6_PERFCTR0: |
2033 | case MSR_P6_PERFCTR1: | |
2034 | pr = true; | |
2035 | case MSR_P6_EVNTSEL0: | |
2036 | case MSR_P6_EVNTSEL1: | |
2037 | if (kvm_pmu_msr(vcpu, msr)) | |
2038 | return kvm_pmu_set_msr(vcpu, msr, data); | |
2039 | ||
2040 | if (pr || data != 0) | |
a737f256 CD |
2041 | vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " |
2042 | "0x%x data 0x%llx\n", msr, data); | |
5753785f | 2043 | break; |
84e0cefa JS |
2044 | case MSR_K7_CLK_CTL: |
2045 | /* | |
2046 | * Ignore all writes to this no longer documented MSR. | |
2047 | * Writes are only relevant for old K7 processors, | |
2048 | * all pre-dating SVM, but a recommended workaround from | |
4a969980 | 2049 | * AMD for these chips. It is possible to specify the |
84e0cefa JS |
2050 | * affected processor models on the command line, hence |
2051 | * the need to ignore the workaround. | |
2052 | */ | |
2053 | break; | |
55cd8e5a GN |
2054 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
2055 | if (kvm_hv_msr_partition_wide(msr)) { | |
2056 | int r; | |
2057 | mutex_lock(&vcpu->kvm->lock); | |
2058 | r = set_msr_hyperv_pw(vcpu, msr, data); | |
2059 | mutex_unlock(&vcpu->kvm->lock); | |
2060 | return r; | |
2061 | } else | |
2062 | return set_msr_hyperv(vcpu, msr, data); | |
2063 | break; | |
91c9c3ed | 2064 | case MSR_IA32_BBL_CR_CTL3: |
2065 | /* Drop writes to this legacy MSR -- see rdmsr | |
2066 | * counterpart for further detail. | |
2067 | */ | |
a737f256 | 2068 | vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); |
91c9c3ed | 2069 | break; |
2b036c6b BO |
2070 | case MSR_AMD64_OSVW_ID_LENGTH: |
2071 | if (!guest_cpuid_has_osvw(vcpu)) | |
2072 | return 1; | |
2073 | vcpu->arch.osvw.length = data; | |
2074 | break; | |
2075 | case MSR_AMD64_OSVW_STATUS: | |
2076 | if (!guest_cpuid_has_osvw(vcpu)) | |
2077 | return 1; | |
2078 | vcpu->arch.osvw.status = data; | |
2079 | break; | |
15c4a640 | 2080 | default: |
ffde22ac ES |
2081 | if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) |
2082 | return xen_hvm_config(vcpu, data); | |
f5132b01 GN |
2083 | if (kvm_pmu_msr(vcpu, msr)) |
2084 | return kvm_pmu_set_msr(vcpu, msr, data); | |
ed85c068 | 2085 | if (!ignore_msrs) { |
a737f256 CD |
2086 | vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", |
2087 | msr, data); | |
ed85c068 AP |
2088 | return 1; |
2089 | } else { | |
a737f256 CD |
2090 | vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", |
2091 | msr, data); | |
ed85c068 AP |
2092 | break; |
2093 | } | |
15c4a640 CO |
2094 | } |
2095 | return 0; | |
2096 | } | |
2097 | EXPORT_SYMBOL_GPL(kvm_set_msr_common); | |
2098 | ||
2099 | ||
2100 | /* | |
2101 | * Reads an msr value (of 'msr_index') into 'pdata'. | |
2102 | * Returns 0 on success, non-0 otherwise. | |
2103 | * Assumes vcpu_load() was already called. | |
2104 | */ | |
2105 | int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) | |
2106 | { | |
2107 | return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); | |
2108 | } | |
2109 | ||
9ba075a6 AK |
2110 | static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
2111 | { | |
0bed3b56 SY |
2112 | u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; |
2113 | ||
9ba075a6 AK |
2114 | if (!msr_mtrr_valid(msr)) |
2115 | return 1; | |
2116 | ||
0bed3b56 SY |
2117 | if (msr == MSR_MTRRdefType) |
2118 | *pdata = vcpu->arch.mtrr_state.def_type + | |
2119 | (vcpu->arch.mtrr_state.enabled << 10); | |
2120 | else if (msr == MSR_MTRRfix64K_00000) | |
2121 | *pdata = p[0]; | |
2122 | else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) | |
2123 | *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; | |
2124 | else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) | |
2125 | *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; | |
2126 | else if (msr == MSR_IA32_CR_PAT) | |
2127 | *pdata = vcpu->arch.pat; | |
2128 | else { /* Variable MTRRs */ | |
2129 | int idx, is_mtrr_mask; | |
2130 | u64 *pt; | |
2131 | ||
2132 | idx = (msr - 0x200) / 2; | |
2133 | is_mtrr_mask = msr - 0x200 - 2 * idx; | |
2134 | if (!is_mtrr_mask) | |
2135 | pt = | |
2136 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; | |
2137 | else | |
2138 | pt = | |
2139 | (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; | |
2140 | *pdata = *pt; | |
2141 | } | |
2142 | ||
9ba075a6 AK |
2143 | return 0; |
2144 | } | |
2145 | ||
890ca9ae | 2146 | static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
15c4a640 CO |
2147 | { |
2148 | u64 data; | |
890ca9ae YH |
2149 | u64 mcg_cap = vcpu->arch.mcg_cap; |
2150 | unsigned bank_num = mcg_cap & 0xff; | |
15c4a640 CO |
2151 | |
2152 | switch (msr) { | |
15c4a640 CO |
2153 | case MSR_IA32_P5_MC_ADDR: |
2154 | case MSR_IA32_P5_MC_TYPE: | |
890ca9ae YH |
2155 | data = 0; |
2156 | break; | |
15c4a640 | 2157 | case MSR_IA32_MCG_CAP: |
890ca9ae YH |
2158 | data = vcpu->arch.mcg_cap; |
2159 | break; | |
c7ac679c | 2160 | case MSR_IA32_MCG_CTL: |
890ca9ae YH |
2161 | if (!(mcg_cap & MCG_CTL_P)) |
2162 | return 1; | |
2163 | data = vcpu->arch.mcg_ctl; | |
2164 | break; | |
2165 | case MSR_IA32_MCG_STATUS: | |
2166 | data = vcpu->arch.mcg_status; | |
2167 | break; | |
2168 | default: | |
2169 | if (msr >= MSR_IA32_MC0_CTL && | |
2170 | msr < MSR_IA32_MC0_CTL + 4 * bank_num) { | |
2171 | u32 offset = msr - MSR_IA32_MC0_CTL; | |
2172 | data = vcpu->arch.mce_banks[offset]; | |
2173 | break; | |
2174 | } | |
2175 | return 1; | |
2176 | } | |
2177 | *pdata = data; | |
2178 | return 0; | |
2179 | } | |
2180 | ||
55cd8e5a GN |
2181 | static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
2182 | { | |
2183 | u64 data = 0; | |
2184 | struct kvm *kvm = vcpu->kvm; | |
2185 | ||
2186 | switch (msr) { | |
2187 | case HV_X64_MSR_GUEST_OS_ID: | |
2188 | data = kvm->arch.hv_guest_os_id; | |
2189 | break; | |
2190 | case HV_X64_MSR_HYPERCALL: | |
2191 | data = kvm->arch.hv_hypercall; | |
2192 | break; | |
2193 | default: | |
a737f256 | 2194 | vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); |
55cd8e5a GN |
2195 | return 1; |
2196 | } | |
2197 | ||
2198 | *pdata = data; | |
2199 | return 0; | |
2200 | } | |
2201 | ||
2202 | static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | |
2203 | { | |
2204 | u64 data = 0; | |
2205 | ||
2206 | switch (msr) { | |
2207 | case HV_X64_MSR_VP_INDEX: { | |
2208 | int r; | |
2209 | struct kvm_vcpu *v; | |
2210 | kvm_for_each_vcpu(r, v, vcpu->kvm) | |
2211 | if (v == vcpu) | |
2212 | data = r; | |
2213 | break; | |
2214 | } | |
10388a07 GN |
2215 | case HV_X64_MSR_EOI: |
2216 | return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); | |
2217 | case HV_X64_MSR_ICR: | |
2218 | return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); | |
2219 | case HV_X64_MSR_TPR: | |
2220 | return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); | |
14fa67ee | 2221 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
d1613ad5 MW |
2222 | data = vcpu->arch.hv_vapic; |
2223 | break; | |
55cd8e5a | 2224 | default: |
a737f256 | 2225 | vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); |
55cd8e5a GN |
2226 | return 1; |
2227 | } | |
2228 | *pdata = data; | |
2229 | return 0; | |
2230 | } | |
2231 | ||
890ca9ae YH |
2232 | int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
2233 | { | |
2234 | u64 data; | |
2235 | ||
2236 | switch (msr) { | |
890ca9ae | 2237 | case MSR_IA32_PLATFORM_ID: |
15c4a640 | 2238 | case MSR_IA32_EBL_CR_POWERON: |
b5e2fec0 AG |
2239 | case MSR_IA32_DEBUGCTLMSR: |
2240 | case MSR_IA32_LASTBRANCHFROMIP: | |
2241 | case MSR_IA32_LASTBRANCHTOIP: | |
2242 | case MSR_IA32_LASTINTFROMIP: | |
2243 | case MSR_IA32_LASTINTTOIP: | |
60af2ecd JSR |
2244 | case MSR_K8_SYSCFG: |
2245 | case MSR_K7_HWCR: | |
61a6bd67 | 2246 | case MSR_VM_HSAVE_PA: |
9e699624 | 2247 | case MSR_K7_EVNTSEL0: |
1f3ee616 | 2248 | case MSR_K7_PERFCTR0: |
1fdbd48c | 2249 | case MSR_K8_INT_PENDING_MSG: |
c323c0e5 | 2250 | case MSR_AMD64_NB_CFG: |
f7c6d140 | 2251 | case MSR_FAM10H_MMIO_CONF_BASE: |
15c4a640 CO |
2252 | data = 0; |
2253 | break; | |
5753785f GN |
2254 | case MSR_P6_PERFCTR0: |
2255 | case MSR_P6_PERFCTR1: | |
2256 | case MSR_P6_EVNTSEL0: | |
2257 | case MSR_P6_EVNTSEL1: | |
2258 | if (kvm_pmu_msr(vcpu, msr)) | |
2259 | return kvm_pmu_get_msr(vcpu, msr, pdata); | |
2260 | data = 0; | |
2261 | break; | |
742bc670 MT |
2262 | case MSR_IA32_UCODE_REV: |
2263 | data = 0x100000000ULL; | |
2264 | break; | |
9ba075a6 AK |
2265 | case MSR_MTRRcap: |
2266 | data = 0x500 | KVM_NR_VAR_MTRR; | |
2267 | break; | |
2268 | case 0x200 ... 0x2ff: | |
2269 | return get_msr_mtrr(vcpu, msr, pdata); | |
15c4a640 CO |
2270 | case 0xcd: /* fsb frequency */ |
2271 | data = 3; | |
2272 | break; | |
7b914098 JS |
2273 | /* |
2274 | * MSR_EBC_FREQUENCY_ID | |
2275 | * Conservative value valid for even the basic CPU models. | |
2276 | * Models 0,1: 000 in bits 23:21 indicating a bus speed of | |
2277 | * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, | |
2278 | * and 266MHz for model 3, or 4. Set Core Clock | |
2279 | * Frequency to System Bus Frequency Ratio to 1 (bits | |
2280 | * 31:24) even though these are only valid for CPU | |
2281 | * models > 2, however guests may end up dividing or | |
2282 | * multiplying by zero otherwise. | |
2283 | */ | |
2284 | case MSR_EBC_FREQUENCY_ID: | |
2285 | data = 1 << 24; | |
2286 | break; | |
15c4a640 CO |
2287 | case MSR_IA32_APICBASE: |
2288 | data = kvm_get_apic_base(vcpu); | |
2289 | break; | |
0105d1a5 GN |
2290 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
2291 | return kvm_x2apic_msr_read(vcpu, msr, pdata); | |
2292 | break; | |
a3e06bbe LJ |
2293 | case MSR_IA32_TSCDEADLINE: |
2294 | data = kvm_get_lapic_tscdeadline_msr(vcpu); | |
2295 | break; | |
ba904635 WA |
2296 | case MSR_IA32_TSC_ADJUST: |
2297 | data = (u64)vcpu->arch.ia32_tsc_adjust_msr; | |
2298 | break; | |
15c4a640 | 2299 | case MSR_IA32_MISC_ENABLE: |
ad312c7c | 2300 | data = vcpu->arch.ia32_misc_enable_msr; |
15c4a640 | 2301 | break; |
847f0ad8 AG |
2302 | case MSR_IA32_PERF_STATUS: |
2303 | /* TSC increment by tick */ | |
2304 | data = 1000ULL; | |
2305 | /* CPU multiplier */ | |
2306 | data |= (((uint64_t)4ULL) << 40); | |
2307 | break; | |
15c4a640 | 2308 | case MSR_EFER: |
f6801dff | 2309 | data = vcpu->arch.efer; |
15c4a640 | 2310 | break; |
18068523 | 2311 | case MSR_KVM_WALL_CLOCK: |
11c6bffa | 2312 | case MSR_KVM_WALL_CLOCK_NEW: |
18068523 GOC |
2313 | data = vcpu->kvm->arch.wall_clock; |
2314 | break; | |
2315 | case MSR_KVM_SYSTEM_TIME: | |
11c6bffa | 2316 | case MSR_KVM_SYSTEM_TIME_NEW: |
18068523 GOC |
2317 | data = vcpu->arch.time; |
2318 | break; | |
344d9588 GN |
2319 | case MSR_KVM_ASYNC_PF_EN: |
2320 | data = vcpu->arch.apf.msr_val; | |
2321 | break; | |
c9aaa895 GC |
2322 | case MSR_KVM_STEAL_TIME: |
2323 | data = vcpu->arch.st.msr_val; | |
2324 | break; | |
1d92128f MT |
2325 | case MSR_KVM_PV_EOI_EN: |
2326 | data = vcpu->arch.pv_eoi.msr_val; | |
2327 | break; | |
890ca9ae YH |
2328 | case MSR_IA32_P5_MC_ADDR: |
2329 | case MSR_IA32_P5_MC_TYPE: | |
2330 | case MSR_IA32_MCG_CAP: | |
2331 | case MSR_IA32_MCG_CTL: | |
2332 | case MSR_IA32_MCG_STATUS: | |
2333 | case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: | |
2334 | return get_msr_mce(vcpu, msr, pdata); | |
84e0cefa JS |
2335 | case MSR_K7_CLK_CTL: |
2336 | /* | |
2337 | * Provide expected ramp-up count for K7. All other | |
2338 | * are set to zero, indicating minimum divisors for | |
2339 | * every field. | |
2340 | * | |
2341 | * This prevents guest kernels on AMD host with CPU | |
2342 | * type 6, model 8 and higher from exploding due to | |
2343 | * the rdmsr failing. | |
2344 | */ | |
2345 | data = 0x20000000; | |
2346 | break; | |
55cd8e5a GN |
2347 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
2348 | if (kvm_hv_msr_partition_wide(msr)) { | |
2349 | int r; | |
2350 | mutex_lock(&vcpu->kvm->lock); | |
2351 | r = get_msr_hyperv_pw(vcpu, msr, pdata); | |
2352 | mutex_unlock(&vcpu->kvm->lock); | |
2353 | return r; | |
2354 | } else | |
2355 | return get_msr_hyperv(vcpu, msr, pdata); | |
2356 | break; | |
91c9c3ed | 2357 | case MSR_IA32_BBL_CR_CTL3: |
2358 | /* This legacy MSR exists but isn't fully documented in current | |
2359 | * silicon. It is however accessed by winxp in very narrow | |
2360 | * scenarios where it sets bit #19, itself documented as | |
2361 | * a "reserved" bit. Best effort attempt to source coherent | |
2362 | * read data here should the balance of the register be | |
2363 | * interpreted by the guest: | |
2364 | * | |
2365 | * L2 cache control register 3: 64GB range, 256KB size, | |
2366 | * enabled, latency 0x1, configured | |
2367 | */ | |
2368 | data = 0xbe702111; | |
2369 | break; | |
2b036c6b BO |
2370 | case MSR_AMD64_OSVW_ID_LENGTH: |
2371 | if (!guest_cpuid_has_osvw(vcpu)) | |
2372 | return 1; | |
2373 | data = vcpu->arch.osvw.length; | |
2374 | break; | |
2375 | case MSR_AMD64_OSVW_STATUS: | |
2376 | if (!guest_cpuid_has_osvw(vcpu)) | |
2377 | return 1; | |
2378 | data = vcpu->arch.osvw.status; | |
2379 | break; | |
15c4a640 | 2380 | default: |
f5132b01 GN |
2381 | if (kvm_pmu_msr(vcpu, msr)) |
2382 | return kvm_pmu_get_msr(vcpu, msr, pdata); | |
ed85c068 | 2383 | if (!ignore_msrs) { |
a737f256 | 2384 | vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); |
ed85c068 AP |
2385 | return 1; |
2386 | } else { | |
a737f256 | 2387 | vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); |
ed85c068 AP |
2388 | data = 0; |
2389 | } | |
2390 | break; | |
15c4a640 CO |
2391 | } |
2392 | *pdata = data; | |
2393 | return 0; | |
2394 | } | |
2395 | EXPORT_SYMBOL_GPL(kvm_get_msr_common); | |
2396 | ||
313a3dc7 CO |
2397 | /* |
2398 | * Read or write a bunch of msrs. All parameters are kernel addresses. | |
2399 | * | |
2400 | * @return number of msrs set successfully. | |
2401 | */ | |
2402 | static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, | |
2403 | struct kvm_msr_entry *entries, | |
2404 | int (*do_msr)(struct kvm_vcpu *vcpu, | |
2405 | unsigned index, u64 *data)) | |
2406 | { | |
f656ce01 | 2407 | int i, idx; |
313a3dc7 | 2408 | |
f656ce01 | 2409 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
313a3dc7 CO |
2410 | for (i = 0; i < msrs->nmsrs; ++i) |
2411 | if (do_msr(vcpu, entries[i].index, &entries[i].data)) | |
2412 | break; | |
f656ce01 | 2413 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
313a3dc7 | 2414 | |
313a3dc7 CO |
2415 | return i; |
2416 | } | |
2417 | ||
2418 | /* | |
2419 | * Read or write a bunch of msrs. Parameters are user addresses. | |
2420 | * | |
2421 | * @return number of msrs set successfully. | |
2422 | */ | |
2423 | static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, | |
2424 | int (*do_msr)(struct kvm_vcpu *vcpu, | |
2425 | unsigned index, u64 *data), | |
2426 | int writeback) | |
2427 | { | |
2428 | struct kvm_msrs msrs; | |
2429 | struct kvm_msr_entry *entries; | |
2430 | int r, n; | |
2431 | unsigned size; | |
2432 | ||
2433 | r = -EFAULT; | |
2434 | if (copy_from_user(&msrs, user_msrs, sizeof msrs)) | |
2435 | goto out; | |
2436 | ||
2437 | r = -E2BIG; | |
2438 | if (msrs.nmsrs >= MAX_IO_MSRS) | |
2439 | goto out; | |
2440 | ||
313a3dc7 | 2441 | size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; |
ff5c2c03 SL |
2442 | entries = memdup_user(user_msrs->entries, size); |
2443 | if (IS_ERR(entries)) { | |
2444 | r = PTR_ERR(entries); | |
313a3dc7 | 2445 | goto out; |
ff5c2c03 | 2446 | } |
313a3dc7 CO |
2447 | |
2448 | r = n = __msr_io(vcpu, &msrs, entries, do_msr); | |
2449 | if (r < 0) | |
2450 | goto out_free; | |
2451 | ||
2452 | r = -EFAULT; | |
2453 | if (writeback && copy_to_user(user_msrs->entries, entries, size)) | |
2454 | goto out_free; | |
2455 | ||
2456 | r = n; | |
2457 | ||
2458 | out_free: | |
7a73c028 | 2459 | kfree(entries); |
313a3dc7 CO |
2460 | out: |
2461 | return r; | |
2462 | } | |
2463 | ||
018d00d2 ZX |
2464 | int kvm_dev_ioctl_check_extension(long ext) |
2465 | { | |
2466 | int r; | |
2467 | ||
2468 | switch (ext) { | |
2469 | case KVM_CAP_IRQCHIP: | |
2470 | case KVM_CAP_HLT: | |
2471 | case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: | |
018d00d2 | 2472 | case KVM_CAP_SET_TSS_ADDR: |
07716717 | 2473 | case KVM_CAP_EXT_CPUID: |
c8076604 | 2474 | case KVM_CAP_CLOCKSOURCE: |
7837699f | 2475 | case KVM_CAP_PIT: |
a28e4f5a | 2476 | case KVM_CAP_NOP_IO_DELAY: |
62d9f0db | 2477 | case KVM_CAP_MP_STATE: |
ed848624 | 2478 | case KVM_CAP_SYNC_MMU: |
a355c85c | 2479 | case KVM_CAP_USER_NMI: |
52d939a0 | 2480 | case KVM_CAP_REINJECT_CONTROL: |
4925663a | 2481 | case KVM_CAP_IRQ_INJECT_STATUS: |
e56d532f | 2482 | case KVM_CAP_ASSIGN_DEV_IRQ: |
721eecbf | 2483 | case KVM_CAP_IRQFD: |
d34e6b17 | 2484 | case KVM_CAP_IOEVENTFD: |
c5ff41ce | 2485 | case KVM_CAP_PIT2: |
e9f42757 | 2486 | case KVM_CAP_PIT_STATE2: |
b927a3ce | 2487 | case KVM_CAP_SET_IDENTITY_MAP_ADDR: |
ffde22ac | 2488 | case KVM_CAP_XEN_HVM: |
afbcf7ab | 2489 | case KVM_CAP_ADJUST_CLOCK: |
3cfc3092 | 2490 | case KVM_CAP_VCPU_EVENTS: |
55cd8e5a | 2491 | case KVM_CAP_HYPERV: |
10388a07 | 2492 | case KVM_CAP_HYPERV_VAPIC: |
c25bc163 | 2493 | case KVM_CAP_HYPERV_SPIN: |
ab9f4ecb | 2494 | case KVM_CAP_PCI_SEGMENT: |
a1efbe77 | 2495 | case KVM_CAP_DEBUGREGS: |
d2be1651 | 2496 | case KVM_CAP_X86_ROBUST_SINGLESTEP: |
2d5b5a66 | 2497 | case KVM_CAP_XSAVE: |
344d9588 | 2498 | case KVM_CAP_ASYNC_PF: |
92a1f12d | 2499 | case KVM_CAP_GET_TSC_KHZ: |
07700a94 | 2500 | case KVM_CAP_PCI_2_3: |
1c0b28c2 | 2501 | case KVM_CAP_KVMCLOCK_CTRL: |
4d8b81ab | 2502 | case KVM_CAP_READONLY_MEM: |
7a84428a | 2503 | case KVM_CAP_IRQFD_RESAMPLE: |
018d00d2 ZX |
2504 | r = 1; |
2505 | break; | |
542472b5 LV |
2506 | case KVM_CAP_COALESCED_MMIO: |
2507 | r = KVM_COALESCED_MMIO_PAGE_OFFSET; | |
2508 | break; | |
774ead3a AK |
2509 | case KVM_CAP_VAPIC: |
2510 | r = !kvm_x86_ops->cpu_has_accelerated_tpr(); | |
2511 | break; | |
f725230a | 2512 | case KVM_CAP_NR_VCPUS: |
8c3ba334 SL |
2513 | r = KVM_SOFT_MAX_VCPUS; |
2514 | break; | |
2515 | case KVM_CAP_MAX_VCPUS: | |
f725230a AK |
2516 | r = KVM_MAX_VCPUS; |
2517 | break; | |
a988b910 | 2518 | case KVM_CAP_NR_MEMSLOTS: |
bbacc0c1 | 2519 | r = KVM_USER_MEM_SLOTS; |
a988b910 | 2520 | break; |
a68a6a72 MT |
2521 | case KVM_CAP_PV_MMU: /* obsolete */ |
2522 | r = 0; | |
2f333bcb | 2523 | break; |
62c476c7 | 2524 | case KVM_CAP_IOMMU: |
a1b60c1c | 2525 | r = iommu_present(&pci_bus_type); |
62c476c7 | 2526 | break; |
890ca9ae YH |
2527 | case KVM_CAP_MCE: |
2528 | r = KVM_MAX_MCE_BANKS; | |
2529 | break; | |
2d5b5a66 SY |
2530 | case KVM_CAP_XCRS: |
2531 | r = cpu_has_xsave; | |
2532 | break; | |
92a1f12d JR |
2533 | case KVM_CAP_TSC_CONTROL: |
2534 | r = kvm_has_tsc_control; | |
2535 | break; | |
4d25a066 JK |
2536 | case KVM_CAP_TSC_DEADLINE_TIMER: |
2537 | r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); | |
2538 | break; | |
018d00d2 ZX |
2539 | default: |
2540 | r = 0; | |
2541 | break; | |
2542 | } | |
2543 | return r; | |
2544 | ||
2545 | } | |
2546 | ||
043405e1 CO |
2547 | long kvm_arch_dev_ioctl(struct file *filp, |
2548 | unsigned int ioctl, unsigned long arg) | |
2549 | { | |
2550 | void __user *argp = (void __user *)arg; | |
2551 | long r; | |
2552 | ||
2553 | switch (ioctl) { | |
2554 | case KVM_GET_MSR_INDEX_LIST: { | |
2555 | struct kvm_msr_list __user *user_msr_list = argp; | |
2556 | struct kvm_msr_list msr_list; | |
2557 | unsigned n; | |
2558 | ||
2559 | r = -EFAULT; | |
2560 | if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) | |
2561 | goto out; | |
2562 | n = msr_list.nmsrs; | |
2563 | msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); | |
2564 | if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) | |
2565 | goto out; | |
2566 | r = -E2BIG; | |
e125e7b6 | 2567 | if (n < msr_list.nmsrs) |
043405e1 CO |
2568 | goto out; |
2569 | r = -EFAULT; | |
2570 | if (copy_to_user(user_msr_list->indices, &msrs_to_save, | |
2571 | num_msrs_to_save * sizeof(u32))) | |
2572 | goto out; | |
e125e7b6 | 2573 | if (copy_to_user(user_msr_list->indices + num_msrs_to_save, |
043405e1 CO |
2574 | &emulated_msrs, |
2575 | ARRAY_SIZE(emulated_msrs) * sizeof(u32))) | |
2576 | goto out; | |
2577 | r = 0; | |
2578 | break; | |
2579 | } | |
674eea0f AK |
2580 | case KVM_GET_SUPPORTED_CPUID: { |
2581 | struct kvm_cpuid2 __user *cpuid_arg = argp; | |
2582 | struct kvm_cpuid2 cpuid; | |
2583 | ||
2584 | r = -EFAULT; | |
2585 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
2586 | goto out; | |
2587 | r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, | |
19355475 | 2588 | cpuid_arg->entries); |
674eea0f AK |
2589 | if (r) |
2590 | goto out; | |
2591 | ||
2592 | r = -EFAULT; | |
2593 | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | |
2594 | goto out; | |
2595 | r = 0; | |
2596 | break; | |
2597 | } | |
890ca9ae YH |
2598 | case KVM_X86_GET_MCE_CAP_SUPPORTED: { |
2599 | u64 mce_cap; | |
2600 | ||
2601 | mce_cap = KVM_MCE_CAP_SUPPORTED; | |
2602 | r = -EFAULT; | |
2603 | if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) | |
2604 | goto out; | |
2605 | r = 0; | |
2606 | break; | |
2607 | } | |
043405e1 CO |
2608 | default: |
2609 | r = -EINVAL; | |
2610 | } | |
2611 | out: | |
2612 | return r; | |
2613 | } | |
2614 | ||
f5f48ee1 SY |
2615 | static void wbinvd_ipi(void *garbage) |
2616 | { | |
2617 | wbinvd(); | |
2618 | } | |
2619 | ||
2620 | static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) | |
2621 | { | |
2622 | return vcpu->kvm->arch.iommu_domain && | |
2623 | !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); | |
2624 | } | |
2625 | ||
313a3dc7 CO |
2626 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
2627 | { | |
f5f48ee1 SY |
2628 | /* Address WBINVD may be executed by guest */ |
2629 | if (need_emulate_wbinvd(vcpu)) { | |
2630 | if (kvm_x86_ops->has_wbinvd_exit()) | |
2631 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | |
2632 | else if (vcpu->cpu != -1 && vcpu->cpu != cpu) | |
2633 | smp_call_function_single(vcpu->cpu, | |
2634 | wbinvd_ipi, NULL, 1); | |
2635 | } | |
2636 | ||
313a3dc7 | 2637 | kvm_x86_ops->vcpu_load(vcpu, cpu); |
8f6055cb | 2638 | |
0dd6a6ed ZA |
2639 | /* Apply any externally detected TSC adjustments (due to suspend) */ |
2640 | if (unlikely(vcpu->arch.tsc_offset_adjustment)) { | |
2641 | adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); | |
2642 | vcpu->arch.tsc_offset_adjustment = 0; | |
2643 | set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); | |
2644 | } | |
8f6055cb | 2645 | |
48434c20 | 2646 | if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { |
6f526ec5 ZA |
2647 | s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : |
2648 | native_read_tsc() - vcpu->arch.last_host_tsc; | |
e48672fa ZA |
2649 | if (tsc_delta < 0) |
2650 | mark_tsc_unstable("KVM discovered backwards TSC"); | |
c285545f | 2651 | if (check_tsc_unstable()) { |
b183aa58 ZA |
2652 | u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, |
2653 | vcpu->arch.last_guest_tsc); | |
2654 | kvm_x86_ops->write_tsc_offset(vcpu, offset); | |
c285545f | 2655 | vcpu->arch.tsc_catchup = 1; |
c285545f | 2656 | } |
d98d07ca MT |
2657 | /* |
2658 | * On a host with synchronized TSC, there is no need to update | |
2659 | * kvmclock on vcpu->cpu migration | |
2660 | */ | |
2661 | if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) | |
2662 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | |
c285545f ZA |
2663 | if (vcpu->cpu != cpu) |
2664 | kvm_migrate_timers(vcpu); | |
e48672fa | 2665 | vcpu->cpu = cpu; |
6b7d7e76 | 2666 | } |
c9aaa895 GC |
2667 | |
2668 | accumulate_steal_time(vcpu); | |
2669 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); | |
313a3dc7 CO |
2670 | } |
2671 | ||
2672 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) | |
2673 | { | |
02daab21 | 2674 | kvm_x86_ops->vcpu_put(vcpu); |
1c11e713 | 2675 | kvm_put_guest_fpu(vcpu); |
6f526ec5 | 2676 | vcpu->arch.last_host_tsc = native_read_tsc(); |
313a3dc7 CO |
2677 | } |
2678 | ||
313a3dc7 CO |
2679 | static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, |
2680 | struct kvm_lapic_state *s) | |
2681 | { | |
ad312c7c | 2682 | memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); |
313a3dc7 CO |
2683 | |
2684 | return 0; | |
2685 | } | |
2686 | ||
2687 | static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, | |
2688 | struct kvm_lapic_state *s) | |
2689 | { | |
64eb0620 | 2690 | kvm_apic_post_state_restore(vcpu, s); |
cb142eb7 | 2691 | update_cr8_intercept(vcpu); |
313a3dc7 CO |
2692 | |
2693 | return 0; | |
2694 | } | |
2695 | ||
f77bc6a4 ZX |
2696 | static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, |
2697 | struct kvm_interrupt *irq) | |
2698 | { | |
a50abc3b | 2699 | if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS) |
f77bc6a4 ZX |
2700 | return -EINVAL; |
2701 | if (irqchip_in_kernel(vcpu->kvm)) | |
2702 | return -ENXIO; | |
f77bc6a4 | 2703 | |
66fd3f7f | 2704 | kvm_queue_interrupt(vcpu, irq->irq, false); |
3842d135 | 2705 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
f77bc6a4 | 2706 | |
f77bc6a4 ZX |
2707 | return 0; |
2708 | } | |
2709 | ||
c4abb7c9 JK |
2710 | static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) |
2711 | { | |
c4abb7c9 | 2712 | kvm_inject_nmi(vcpu); |
c4abb7c9 JK |
2713 | |
2714 | return 0; | |
2715 | } | |
2716 | ||
b209749f AK |
2717 | static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, |
2718 | struct kvm_tpr_access_ctl *tac) | |
2719 | { | |
2720 | if (tac->flags) | |
2721 | return -EINVAL; | |
2722 | vcpu->arch.tpr_access_reporting = !!tac->enabled; | |
2723 | return 0; | |
2724 | } | |
2725 | ||
890ca9ae YH |
2726 | static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, |
2727 | u64 mcg_cap) | |
2728 | { | |
2729 | int r; | |
2730 | unsigned bank_num = mcg_cap & 0xff, bank; | |
2731 | ||
2732 | r = -EINVAL; | |
a9e38c3e | 2733 | if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) |
890ca9ae YH |
2734 | goto out; |
2735 | if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) | |
2736 | goto out; | |
2737 | r = 0; | |
2738 | vcpu->arch.mcg_cap = mcg_cap; | |
2739 | /* Init IA32_MCG_CTL to all 1s */ | |
2740 | if (mcg_cap & MCG_CTL_P) | |
2741 | vcpu->arch.mcg_ctl = ~(u64)0; | |
2742 | /* Init IA32_MCi_CTL to all 1s */ | |
2743 | for (bank = 0; bank < bank_num; bank++) | |
2744 | vcpu->arch.mce_banks[bank*4] = ~(u64)0; | |
2745 | out: | |
2746 | return r; | |
2747 | } | |
2748 | ||
2749 | static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, | |
2750 | struct kvm_x86_mce *mce) | |
2751 | { | |
2752 | u64 mcg_cap = vcpu->arch.mcg_cap; | |
2753 | unsigned bank_num = mcg_cap & 0xff; | |
2754 | u64 *banks = vcpu->arch.mce_banks; | |
2755 | ||
2756 | if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) | |
2757 | return -EINVAL; | |
2758 | /* | |
2759 | * if IA32_MCG_CTL is not all 1s, the uncorrected error | |
2760 | * reporting is disabled | |
2761 | */ | |
2762 | if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && | |
2763 | vcpu->arch.mcg_ctl != ~(u64)0) | |
2764 | return 0; | |
2765 | banks += 4 * mce->bank; | |
2766 | /* | |
2767 | * if IA32_MCi_CTL is not all 1s, the uncorrected error | |
2768 | * reporting is disabled for the bank | |
2769 | */ | |
2770 | if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) | |
2771 | return 0; | |
2772 | if (mce->status & MCI_STATUS_UC) { | |
2773 | if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || | |
fc78f519 | 2774 | !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { |
a8eeb04a | 2775 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
890ca9ae YH |
2776 | return 0; |
2777 | } | |
2778 | if (banks[1] & MCI_STATUS_VAL) | |
2779 | mce->status |= MCI_STATUS_OVER; | |
2780 | banks[2] = mce->addr; | |
2781 | banks[3] = mce->misc; | |
2782 | vcpu->arch.mcg_status = mce->mcg_status; | |
2783 | banks[1] = mce->status; | |
2784 | kvm_queue_exception(vcpu, MC_VECTOR); | |
2785 | } else if (!(banks[1] & MCI_STATUS_VAL) | |
2786 | || !(banks[1] & MCI_STATUS_UC)) { | |
2787 | if (banks[1] & MCI_STATUS_VAL) | |
2788 | mce->status |= MCI_STATUS_OVER; | |
2789 | banks[2] = mce->addr; | |
2790 | banks[3] = mce->misc; | |
2791 | banks[1] = mce->status; | |
2792 | } else | |
2793 | banks[1] |= MCI_STATUS_OVER; | |
2794 | return 0; | |
2795 | } | |
2796 | ||
3cfc3092 JK |
2797 | static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, |
2798 | struct kvm_vcpu_events *events) | |
2799 | { | |
7460fb4a | 2800 | process_nmi(vcpu); |
03b82a30 JK |
2801 | events->exception.injected = |
2802 | vcpu->arch.exception.pending && | |
2803 | !kvm_exception_is_soft(vcpu->arch.exception.nr); | |
3cfc3092 JK |
2804 | events->exception.nr = vcpu->arch.exception.nr; |
2805 | events->exception.has_error_code = vcpu->arch.exception.has_error_code; | |
97e69aa6 | 2806 | events->exception.pad = 0; |
3cfc3092 JK |
2807 | events->exception.error_code = vcpu->arch.exception.error_code; |
2808 | ||
03b82a30 JK |
2809 | events->interrupt.injected = |
2810 | vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; | |
3cfc3092 | 2811 | events->interrupt.nr = vcpu->arch.interrupt.nr; |
03b82a30 | 2812 | events->interrupt.soft = 0; |
48005f64 JK |
2813 | events->interrupt.shadow = |
2814 | kvm_x86_ops->get_interrupt_shadow(vcpu, | |
2815 | KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); | |
3cfc3092 JK |
2816 | |
2817 | events->nmi.injected = vcpu->arch.nmi_injected; | |
7460fb4a | 2818 | events->nmi.pending = vcpu->arch.nmi_pending != 0; |
3cfc3092 | 2819 | events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); |
97e69aa6 | 2820 | events->nmi.pad = 0; |
3cfc3092 JK |
2821 | |
2822 | events->sipi_vector = vcpu->arch.sipi_vector; | |
2823 | ||
dab4b911 | 2824 | events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING |
48005f64 JK |
2825 | | KVM_VCPUEVENT_VALID_SIPI_VECTOR |
2826 | | KVM_VCPUEVENT_VALID_SHADOW); | |
97e69aa6 | 2827 | memset(&events->reserved, 0, sizeof(events->reserved)); |
3cfc3092 JK |
2828 | } |
2829 | ||
2830 | static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, | |
2831 | struct kvm_vcpu_events *events) | |
2832 | { | |
dab4b911 | 2833 | if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING |
48005f64 JK |
2834 | | KVM_VCPUEVENT_VALID_SIPI_VECTOR |
2835 | | KVM_VCPUEVENT_VALID_SHADOW)) | |
3cfc3092 JK |
2836 | return -EINVAL; |
2837 | ||
7460fb4a | 2838 | process_nmi(vcpu); |
3cfc3092 JK |
2839 | vcpu->arch.exception.pending = events->exception.injected; |
2840 | vcpu->arch.exception.nr = events->exception.nr; | |
2841 | vcpu->arch.exception.has_error_code = events->exception.has_error_code; | |
2842 | vcpu->arch.exception.error_code = events->exception.error_code; | |
2843 | ||
2844 | vcpu->arch.interrupt.pending = events->interrupt.injected; | |
2845 | vcpu->arch.interrupt.nr = events->interrupt.nr; | |
2846 | vcpu->arch.interrupt.soft = events->interrupt.soft; | |
48005f64 JK |
2847 | if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) |
2848 | kvm_x86_ops->set_interrupt_shadow(vcpu, | |
2849 | events->interrupt.shadow); | |
3cfc3092 JK |
2850 | |
2851 | vcpu->arch.nmi_injected = events->nmi.injected; | |
dab4b911 JK |
2852 | if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) |
2853 | vcpu->arch.nmi_pending = events->nmi.pending; | |
3cfc3092 JK |
2854 | kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); |
2855 | ||
dab4b911 JK |
2856 | if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) |
2857 | vcpu->arch.sipi_vector = events->sipi_vector; | |
3cfc3092 | 2858 | |
3842d135 AK |
2859 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
2860 | ||
3cfc3092 JK |
2861 | return 0; |
2862 | } | |
2863 | ||
a1efbe77 JK |
2864 | static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, |
2865 | struct kvm_debugregs *dbgregs) | |
2866 | { | |
a1efbe77 JK |
2867 | memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); |
2868 | dbgregs->dr6 = vcpu->arch.dr6; | |
2869 | dbgregs->dr7 = vcpu->arch.dr7; | |
2870 | dbgregs->flags = 0; | |
97e69aa6 | 2871 | memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); |
a1efbe77 JK |
2872 | } |
2873 | ||
2874 | static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, | |
2875 | struct kvm_debugregs *dbgregs) | |
2876 | { | |
2877 | if (dbgregs->flags) | |
2878 | return -EINVAL; | |
2879 | ||
a1efbe77 JK |
2880 | memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); |
2881 | vcpu->arch.dr6 = dbgregs->dr6; | |
2882 | vcpu->arch.dr7 = dbgregs->dr7; | |
2883 | ||
a1efbe77 JK |
2884 | return 0; |
2885 | } | |
2886 | ||
2d5b5a66 SY |
2887 | static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, |
2888 | struct kvm_xsave *guest_xsave) | |
2889 | { | |
2890 | if (cpu_has_xsave) | |
2891 | memcpy(guest_xsave->region, | |
2892 | &vcpu->arch.guest_fpu.state->xsave, | |
f45755b8 | 2893 | xstate_size); |
2d5b5a66 SY |
2894 | else { |
2895 | memcpy(guest_xsave->region, | |
2896 | &vcpu->arch.guest_fpu.state->fxsave, | |
2897 | sizeof(struct i387_fxsave_struct)); | |
2898 | *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = | |
2899 | XSTATE_FPSSE; | |
2900 | } | |
2901 | } | |
2902 | ||
2903 | static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, | |
2904 | struct kvm_xsave *guest_xsave) | |
2905 | { | |
2906 | u64 xstate_bv = | |
2907 | *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; | |
2908 | ||
2909 | if (cpu_has_xsave) | |
2910 | memcpy(&vcpu->arch.guest_fpu.state->xsave, | |
f45755b8 | 2911 | guest_xsave->region, xstate_size); |
2d5b5a66 SY |
2912 | else { |
2913 | if (xstate_bv & ~XSTATE_FPSSE) | |
2914 | return -EINVAL; | |
2915 | memcpy(&vcpu->arch.guest_fpu.state->fxsave, | |
2916 | guest_xsave->region, sizeof(struct i387_fxsave_struct)); | |
2917 | } | |
2918 | return 0; | |
2919 | } | |
2920 | ||
2921 | static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, | |
2922 | struct kvm_xcrs *guest_xcrs) | |
2923 | { | |
2924 | if (!cpu_has_xsave) { | |
2925 | guest_xcrs->nr_xcrs = 0; | |
2926 | return; | |
2927 | } | |
2928 | ||
2929 | guest_xcrs->nr_xcrs = 1; | |
2930 | guest_xcrs->flags = 0; | |
2931 | guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; | |
2932 | guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; | |
2933 | } | |
2934 | ||
2935 | static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, | |
2936 | struct kvm_xcrs *guest_xcrs) | |
2937 | { | |
2938 | int i, r = 0; | |
2939 | ||
2940 | if (!cpu_has_xsave) | |
2941 | return -EINVAL; | |
2942 | ||
2943 | if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) | |
2944 | return -EINVAL; | |
2945 | ||
2946 | for (i = 0; i < guest_xcrs->nr_xcrs; i++) | |
2947 | /* Only support XCR0 currently */ | |
2948 | if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { | |
2949 | r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, | |
2950 | guest_xcrs->xcrs[0].value); | |
2951 | break; | |
2952 | } | |
2953 | if (r) | |
2954 | r = -EINVAL; | |
2955 | return r; | |
2956 | } | |
2957 | ||
1c0b28c2 EM |
2958 | /* |
2959 | * kvm_set_guest_paused() indicates to the guest kernel that it has been | |
2960 | * stopped by the hypervisor. This function will be called from the host only. | |
2961 | * EINVAL is returned when the host attempts to set the flag for a guest that | |
2962 | * does not support pv clocks. | |
2963 | */ | |
2964 | static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) | |
2965 | { | |
1c0b28c2 EM |
2966 | if (!vcpu->arch.time_page) |
2967 | return -EINVAL; | |
51d59c6b | 2968 | vcpu->arch.pvclock_set_guest_stopped_request = true; |
1c0b28c2 EM |
2969 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
2970 | return 0; | |
2971 | } | |
2972 | ||
313a3dc7 CO |
2973 | long kvm_arch_vcpu_ioctl(struct file *filp, |
2974 | unsigned int ioctl, unsigned long arg) | |
2975 | { | |
2976 | struct kvm_vcpu *vcpu = filp->private_data; | |
2977 | void __user *argp = (void __user *)arg; | |
2978 | int r; | |
d1ac91d8 AK |
2979 | union { |
2980 | struct kvm_lapic_state *lapic; | |
2981 | struct kvm_xsave *xsave; | |
2982 | struct kvm_xcrs *xcrs; | |
2983 | void *buffer; | |
2984 | } u; | |
2985 | ||
2986 | u.buffer = NULL; | |
313a3dc7 CO |
2987 | switch (ioctl) { |
2988 | case KVM_GET_LAPIC: { | |
2204ae3c MT |
2989 | r = -EINVAL; |
2990 | if (!vcpu->arch.apic) | |
2991 | goto out; | |
d1ac91d8 | 2992 | u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); |
313a3dc7 | 2993 | |
b772ff36 | 2994 | r = -ENOMEM; |
d1ac91d8 | 2995 | if (!u.lapic) |
b772ff36 | 2996 | goto out; |
d1ac91d8 | 2997 | r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); |
313a3dc7 CO |
2998 | if (r) |
2999 | goto out; | |
3000 | r = -EFAULT; | |
d1ac91d8 | 3001 | if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) |
313a3dc7 CO |
3002 | goto out; |
3003 | r = 0; | |
3004 | break; | |
3005 | } | |
3006 | case KVM_SET_LAPIC: { | |
2204ae3c MT |
3007 | r = -EINVAL; |
3008 | if (!vcpu->arch.apic) | |
3009 | goto out; | |
ff5c2c03 | 3010 | u.lapic = memdup_user(argp, sizeof(*u.lapic)); |
18595411 GC |
3011 | if (IS_ERR(u.lapic)) |
3012 | return PTR_ERR(u.lapic); | |
ff5c2c03 | 3013 | |
d1ac91d8 | 3014 | r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); |
313a3dc7 CO |
3015 | break; |
3016 | } | |
f77bc6a4 ZX |
3017 | case KVM_INTERRUPT: { |
3018 | struct kvm_interrupt irq; | |
3019 | ||
3020 | r = -EFAULT; | |
3021 | if (copy_from_user(&irq, argp, sizeof irq)) | |
3022 | goto out; | |
3023 | r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); | |
f77bc6a4 ZX |
3024 | break; |
3025 | } | |
c4abb7c9 JK |
3026 | case KVM_NMI: { |
3027 | r = kvm_vcpu_ioctl_nmi(vcpu); | |
c4abb7c9 JK |
3028 | break; |
3029 | } | |
313a3dc7 CO |
3030 | case KVM_SET_CPUID: { |
3031 | struct kvm_cpuid __user *cpuid_arg = argp; | |
3032 | struct kvm_cpuid cpuid; | |
3033 | ||
3034 | r = -EFAULT; | |
3035 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3036 | goto out; | |
3037 | r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); | |
313a3dc7 CO |
3038 | break; |
3039 | } | |
07716717 DK |
3040 | case KVM_SET_CPUID2: { |
3041 | struct kvm_cpuid2 __user *cpuid_arg = argp; | |
3042 | struct kvm_cpuid2 cpuid; | |
3043 | ||
3044 | r = -EFAULT; | |
3045 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3046 | goto out; | |
3047 | r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, | |
19355475 | 3048 | cpuid_arg->entries); |
07716717 DK |
3049 | break; |
3050 | } | |
3051 | case KVM_GET_CPUID2: { | |
3052 | struct kvm_cpuid2 __user *cpuid_arg = argp; | |
3053 | struct kvm_cpuid2 cpuid; | |
3054 | ||
3055 | r = -EFAULT; | |
3056 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3057 | goto out; | |
3058 | r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, | |
19355475 | 3059 | cpuid_arg->entries); |
07716717 DK |
3060 | if (r) |
3061 | goto out; | |
3062 | r = -EFAULT; | |
3063 | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | |
3064 | goto out; | |
3065 | r = 0; | |
3066 | break; | |
3067 | } | |
313a3dc7 CO |
3068 | case KVM_GET_MSRS: |
3069 | r = msr_io(vcpu, argp, kvm_get_msr, 1); | |
3070 | break; | |
3071 | case KVM_SET_MSRS: | |
3072 | r = msr_io(vcpu, argp, do_set_msr, 0); | |
3073 | break; | |
b209749f AK |
3074 | case KVM_TPR_ACCESS_REPORTING: { |
3075 | struct kvm_tpr_access_ctl tac; | |
3076 | ||
3077 | r = -EFAULT; | |
3078 | if (copy_from_user(&tac, argp, sizeof tac)) | |
3079 | goto out; | |
3080 | r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); | |
3081 | if (r) | |
3082 | goto out; | |
3083 | r = -EFAULT; | |
3084 | if (copy_to_user(argp, &tac, sizeof tac)) | |
3085 | goto out; | |
3086 | r = 0; | |
3087 | break; | |
3088 | }; | |
b93463aa AK |
3089 | case KVM_SET_VAPIC_ADDR: { |
3090 | struct kvm_vapic_addr va; | |
3091 | ||
3092 | r = -EINVAL; | |
3093 | if (!irqchip_in_kernel(vcpu->kvm)) | |
3094 | goto out; | |
3095 | r = -EFAULT; | |
3096 | if (copy_from_user(&va, argp, sizeof va)) | |
3097 | goto out; | |
3098 | r = 0; | |
3099 | kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); | |
3100 | break; | |
3101 | } | |
890ca9ae YH |
3102 | case KVM_X86_SETUP_MCE: { |
3103 | u64 mcg_cap; | |
3104 | ||
3105 | r = -EFAULT; | |
3106 | if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) | |
3107 | goto out; | |
3108 | r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); | |
3109 | break; | |
3110 | } | |
3111 | case KVM_X86_SET_MCE: { | |
3112 | struct kvm_x86_mce mce; | |
3113 | ||
3114 | r = -EFAULT; | |
3115 | if (copy_from_user(&mce, argp, sizeof mce)) | |
3116 | goto out; | |
3117 | r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); | |
3118 | break; | |
3119 | } | |
3cfc3092 JK |
3120 | case KVM_GET_VCPU_EVENTS: { |
3121 | struct kvm_vcpu_events events; | |
3122 | ||
3123 | kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); | |
3124 | ||
3125 | r = -EFAULT; | |
3126 | if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) | |
3127 | break; | |
3128 | r = 0; | |
3129 | break; | |
3130 | } | |
3131 | case KVM_SET_VCPU_EVENTS: { | |
3132 | struct kvm_vcpu_events events; | |
3133 | ||
3134 | r = -EFAULT; | |
3135 | if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) | |
3136 | break; | |
3137 | ||
3138 | r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); | |
3139 | break; | |
3140 | } | |
a1efbe77 JK |
3141 | case KVM_GET_DEBUGREGS: { |
3142 | struct kvm_debugregs dbgregs; | |
3143 | ||
3144 | kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); | |
3145 | ||
3146 | r = -EFAULT; | |
3147 | if (copy_to_user(argp, &dbgregs, | |
3148 | sizeof(struct kvm_debugregs))) | |
3149 | break; | |
3150 | r = 0; | |
3151 | break; | |
3152 | } | |
3153 | case KVM_SET_DEBUGREGS: { | |
3154 | struct kvm_debugregs dbgregs; | |
3155 | ||
3156 | r = -EFAULT; | |
3157 | if (copy_from_user(&dbgregs, argp, | |
3158 | sizeof(struct kvm_debugregs))) | |
3159 | break; | |
3160 | ||
3161 | r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); | |
3162 | break; | |
3163 | } | |
2d5b5a66 | 3164 | case KVM_GET_XSAVE: { |
d1ac91d8 | 3165 | u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); |
2d5b5a66 | 3166 | r = -ENOMEM; |
d1ac91d8 | 3167 | if (!u.xsave) |
2d5b5a66 SY |
3168 | break; |
3169 | ||
d1ac91d8 | 3170 | kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); |
2d5b5a66 SY |
3171 | |
3172 | r = -EFAULT; | |
d1ac91d8 | 3173 | if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) |
2d5b5a66 SY |
3174 | break; |
3175 | r = 0; | |
3176 | break; | |
3177 | } | |
3178 | case KVM_SET_XSAVE: { | |
ff5c2c03 | 3179 | u.xsave = memdup_user(argp, sizeof(*u.xsave)); |
18595411 GC |
3180 | if (IS_ERR(u.xsave)) |
3181 | return PTR_ERR(u.xsave); | |
2d5b5a66 | 3182 | |
d1ac91d8 | 3183 | r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); |
2d5b5a66 SY |
3184 | break; |
3185 | } | |
3186 | case KVM_GET_XCRS: { | |
d1ac91d8 | 3187 | u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); |
2d5b5a66 | 3188 | r = -ENOMEM; |
d1ac91d8 | 3189 | if (!u.xcrs) |
2d5b5a66 SY |
3190 | break; |
3191 | ||
d1ac91d8 | 3192 | kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); |
2d5b5a66 SY |
3193 | |
3194 | r = -EFAULT; | |
d1ac91d8 | 3195 | if (copy_to_user(argp, u.xcrs, |
2d5b5a66 SY |
3196 | sizeof(struct kvm_xcrs))) |
3197 | break; | |
3198 | r = 0; | |
3199 | break; | |
3200 | } | |
3201 | case KVM_SET_XCRS: { | |
ff5c2c03 | 3202 | u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); |
18595411 GC |
3203 | if (IS_ERR(u.xcrs)) |
3204 | return PTR_ERR(u.xcrs); | |
2d5b5a66 | 3205 | |
d1ac91d8 | 3206 | r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); |
2d5b5a66 SY |
3207 | break; |
3208 | } | |
92a1f12d JR |
3209 | case KVM_SET_TSC_KHZ: { |
3210 | u32 user_tsc_khz; | |
3211 | ||
3212 | r = -EINVAL; | |
92a1f12d JR |
3213 | user_tsc_khz = (u32)arg; |
3214 | ||
3215 | if (user_tsc_khz >= kvm_max_guest_tsc_khz) | |
3216 | goto out; | |
3217 | ||
cc578287 ZA |
3218 | if (user_tsc_khz == 0) |
3219 | user_tsc_khz = tsc_khz; | |
3220 | ||
3221 | kvm_set_tsc_khz(vcpu, user_tsc_khz); | |
92a1f12d JR |
3222 | |
3223 | r = 0; | |
3224 | goto out; | |
3225 | } | |
3226 | case KVM_GET_TSC_KHZ: { | |
cc578287 | 3227 | r = vcpu->arch.virtual_tsc_khz; |
92a1f12d JR |
3228 | goto out; |
3229 | } | |
1c0b28c2 EM |
3230 | case KVM_KVMCLOCK_CTRL: { |
3231 | r = kvm_set_guest_paused(vcpu); | |
3232 | goto out; | |
3233 | } | |
313a3dc7 CO |
3234 | default: |
3235 | r = -EINVAL; | |
3236 | } | |
3237 | out: | |
d1ac91d8 | 3238 | kfree(u.buffer); |
313a3dc7 CO |
3239 | return r; |
3240 | } | |
3241 | ||
5b1c1493 CO |
3242 | int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
3243 | { | |
3244 | return VM_FAULT_SIGBUS; | |
3245 | } | |
3246 | ||
1fe779f8 CO |
3247 | static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) |
3248 | { | |
3249 | int ret; | |
3250 | ||
3251 | if (addr > (unsigned int)(-3 * PAGE_SIZE)) | |
951179ce | 3252 | return -EINVAL; |
1fe779f8 CO |
3253 | ret = kvm_x86_ops->set_tss_addr(kvm, addr); |
3254 | return ret; | |
3255 | } | |
3256 | ||
b927a3ce SY |
3257 | static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, |
3258 | u64 ident_addr) | |
3259 | { | |
3260 | kvm->arch.ept_identity_map_addr = ident_addr; | |
3261 | return 0; | |
3262 | } | |
3263 | ||
1fe779f8 CO |
3264 | static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, |
3265 | u32 kvm_nr_mmu_pages) | |
3266 | { | |
3267 | if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) | |
3268 | return -EINVAL; | |
3269 | ||
79fac95e | 3270 | mutex_lock(&kvm->slots_lock); |
1fe779f8 CO |
3271 | |
3272 | kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); | |
f05e70ac | 3273 | kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; |
1fe779f8 | 3274 | |
79fac95e | 3275 | mutex_unlock(&kvm->slots_lock); |
1fe779f8 CO |
3276 | return 0; |
3277 | } | |
3278 | ||
3279 | static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) | |
3280 | { | |
39de71ec | 3281 | return kvm->arch.n_max_mmu_pages; |
1fe779f8 CO |
3282 | } |
3283 | ||
1fe779f8 CO |
3284 | static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
3285 | { | |
3286 | int r; | |
3287 | ||
3288 | r = 0; | |
3289 | switch (chip->chip_id) { | |
3290 | case KVM_IRQCHIP_PIC_MASTER: | |
3291 | memcpy(&chip->chip.pic, | |
3292 | &pic_irqchip(kvm)->pics[0], | |
3293 | sizeof(struct kvm_pic_state)); | |
3294 | break; | |
3295 | case KVM_IRQCHIP_PIC_SLAVE: | |
3296 | memcpy(&chip->chip.pic, | |
3297 | &pic_irqchip(kvm)->pics[1], | |
3298 | sizeof(struct kvm_pic_state)); | |
3299 | break; | |
3300 | case KVM_IRQCHIP_IOAPIC: | |
eba0226b | 3301 | r = kvm_get_ioapic(kvm, &chip->chip.ioapic); |
1fe779f8 CO |
3302 | break; |
3303 | default: | |
3304 | r = -EINVAL; | |
3305 | break; | |
3306 | } | |
3307 | return r; | |
3308 | } | |
3309 | ||
3310 | static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | |
3311 | { | |
3312 | int r; | |
3313 | ||
3314 | r = 0; | |
3315 | switch (chip->chip_id) { | |
3316 | case KVM_IRQCHIP_PIC_MASTER: | |
f4f51050 | 3317 | spin_lock(&pic_irqchip(kvm)->lock); |
1fe779f8 CO |
3318 | memcpy(&pic_irqchip(kvm)->pics[0], |
3319 | &chip->chip.pic, | |
3320 | sizeof(struct kvm_pic_state)); | |
f4f51050 | 3321 | spin_unlock(&pic_irqchip(kvm)->lock); |
1fe779f8 CO |
3322 | break; |
3323 | case KVM_IRQCHIP_PIC_SLAVE: | |
f4f51050 | 3324 | spin_lock(&pic_irqchip(kvm)->lock); |
1fe779f8 CO |
3325 | memcpy(&pic_irqchip(kvm)->pics[1], |
3326 | &chip->chip.pic, | |
3327 | sizeof(struct kvm_pic_state)); | |
f4f51050 | 3328 | spin_unlock(&pic_irqchip(kvm)->lock); |
1fe779f8 CO |
3329 | break; |
3330 | case KVM_IRQCHIP_IOAPIC: | |
eba0226b | 3331 | r = kvm_set_ioapic(kvm, &chip->chip.ioapic); |
1fe779f8 CO |
3332 | break; |
3333 | default: | |
3334 | r = -EINVAL; | |
3335 | break; | |
3336 | } | |
3337 | kvm_pic_update_irq(pic_irqchip(kvm)); | |
3338 | return r; | |
3339 | } | |
3340 | ||
e0f63cb9 SY |
3341 | static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
3342 | { | |
3343 | int r = 0; | |
3344 | ||
894a9c55 | 3345 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
e0f63cb9 | 3346 | memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); |
894a9c55 | 3347 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
e0f63cb9 SY |
3348 | return r; |
3349 | } | |
3350 | ||
3351 | static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) | |
3352 | { | |
3353 | int r = 0; | |
3354 | ||
894a9c55 | 3355 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
e0f63cb9 | 3356 | memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); |
e9f42757 BK |
3357 | kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); |
3358 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); | |
3359 | return r; | |
3360 | } | |
3361 | ||
3362 | static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | |
3363 | { | |
3364 | int r = 0; | |
3365 | ||
3366 | mutex_lock(&kvm->arch.vpit->pit_state.lock); | |
3367 | memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, | |
3368 | sizeof(ps->channels)); | |
3369 | ps->flags = kvm->arch.vpit->pit_state.flags; | |
3370 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); | |
97e69aa6 | 3371 | memset(&ps->reserved, 0, sizeof(ps->reserved)); |
e9f42757 BK |
3372 | return r; |
3373 | } | |
3374 | ||
3375 | static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | |
3376 | { | |
3377 | int r = 0, start = 0; | |
3378 | u32 prev_legacy, cur_legacy; | |
3379 | mutex_lock(&kvm->arch.vpit->pit_state.lock); | |
3380 | prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; | |
3381 | cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; | |
3382 | if (!prev_legacy && cur_legacy) | |
3383 | start = 1; | |
3384 | memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, | |
3385 | sizeof(kvm->arch.vpit->pit_state.channels)); | |
3386 | kvm->arch.vpit->pit_state.flags = ps->flags; | |
3387 | kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); | |
894a9c55 | 3388 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
e0f63cb9 SY |
3389 | return r; |
3390 | } | |
3391 | ||
52d939a0 MT |
3392 | static int kvm_vm_ioctl_reinject(struct kvm *kvm, |
3393 | struct kvm_reinject_control *control) | |
3394 | { | |
3395 | if (!kvm->arch.vpit) | |
3396 | return -ENXIO; | |
894a9c55 | 3397 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
26ef1924 | 3398 | kvm->arch.vpit->pit_state.reinject = control->pit_reinject; |
894a9c55 | 3399 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
52d939a0 MT |
3400 | return 0; |
3401 | } | |
3402 | ||
95d4c16c | 3403 | /** |
60c34612 TY |
3404 | * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot |
3405 | * @kvm: kvm instance | |
3406 | * @log: slot id and address to which we copy the log | |
95d4c16c | 3407 | * |
60c34612 TY |
3408 | * We need to keep it in mind that VCPU threads can write to the bitmap |
3409 | * concurrently. So, to avoid losing data, we keep the following order for | |
3410 | * each bit: | |
95d4c16c | 3411 | * |
60c34612 TY |
3412 | * 1. Take a snapshot of the bit and clear it if needed. |
3413 | * 2. Write protect the corresponding page. | |
3414 | * 3. Flush TLB's if needed. | |
3415 | * 4. Copy the snapshot to the userspace. | |
95d4c16c | 3416 | * |
60c34612 TY |
3417 | * Between 2 and 3, the guest may write to the page using the remaining TLB |
3418 | * entry. This is not a problem because the page will be reported dirty at | |
3419 | * step 4 using the snapshot taken before and step 3 ensures that successive | |
3420 | * writes will be logged for the next call. | |
5bb064dc | 3421 | */ |
60c34612 | 3422 | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) |
5bb064dc | 3423 | { |
7850ac54 | 3424 | int r; |
5bb064dc | 3425 | struct kvm_memory_slot *memslot; |
60c34612 TY |
3426 | unsigned long n, i; |
3427 | unsigned long *dirty_bitmap; | |
3428 | unsigned long *dirty_bitmap_buffer; | |
3429 | bool is_dirty = false; | |
5bb064dc | 3430 | |
79fac95e | 3431 | mutex_lock(&kvm->slots_lock); |
5bb064dc | 3432 | |
b050b015 | 3433 | r = -EINVAL; |
bbacc0c1 | 3434 | if (log->slot >= KVM_USER_MEM_SLOTS) |
b050b015 MT |
3435 | goto out; |
3436 | ||
28a37544 | 3437 | memslot = id_to_memslot(kvm->memslots, log->slot); |
60c34612 TY |
3438 | |
3439 | dirty_bitmap = memslot->dirty_bitmap; | |
b050b015 | 3440 | r = -ENOENT; |
60c34612 | 3441 | if (!dirty_bitmap) |
b050b015 MT |
3442 | goto out; |
3443 | ||
87bf6e7d | 3444 | n = kvm_dirty_bitmap_bytes(memslot); |
b050b015 | 3445 | |
60c34612 TY |
3446 | dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); |
3447 | memset(dirty_bitmap_buffer, 0, n); | |
b050b015 | 3448 | |
60c34612 | 3449 | spin_lock(&kvm->mmu_lock); |
b050b015 | 3450 | |
60c34612 TY |
3451 | for (i = 0; i < n / sizeof(long); i++) { |
3452 | unsigned long mask; | |
3453 | gfn_t offset; | |
cdfca7b3 | 3454 | |
60c34612 TY |
3455 | if (!dirty_bitmap[i]) |
3456 | continue; | |
b050b015 | 3457 | |
60c34612 | 3458 | is_dirty = true; |
914ebccd | 3459 | |
60c34612 TY |
3460 | mask = xchg(&dirty_bitmap[i], 0); |
3461 | dirty_bitmap_buffer[i] = mask; | |
edde99ce | 3462 | |
60c34612 TY |
3463 | offset = i * BITS_PER_LONG; |
3464 | kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); | |
5bb064dc | 3465 | } |
60c34612 TY |
3466 | if (is_dirty) |
3467 | kvm_flush_remote_tlbs(kvm); | |
3468 | ||
3469 | spin_unlock(&kvm->mmu_lock); | |
3470 | ||
3471 | r = -EFAULT; | |
3472 | if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) | |
3473 | goto out; | |
b050b015 | 3474 | |
5bb064dc ZX |
3475 | r = 0; |
3476 | out: | |
79fac95e | 3477 | mutex_unlock(&kvm->slots_lock); |
5bb064dc ZX |
3478 | return r; |
3479 | } | |
3480 | ||
23d43cf9 CD |
3481 | int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event) |
3482 | { | |
3483 | if (!irqchip_in_kernel(kvm)) | |
3484 | return -ENXIO; | |
3485 | ||
3486 | irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, | |
3487 | irq_event->irq, irq_event->level); | |
3488 | return 0; | |
3489 | } | |
3490 | ||
1fe779f8 CO |
3491 | long kvm_arch_vm_ioctl(struct file *filp, |
3492 | unsigned int ioctl, unsigned long arg) | |
3493 | { | |
3494 | struct kvm *kvm = filp->private_data; | |
3495 | void __user *argp = (void __user *)arg; | |
367e1319 | 3496 | int r = -ENOTTY; |
f0d66275 DH |
3497 | /* |
3498 | * This union makes it completely explicit to gcc-3.x | |
3499 | * that these two variables' stack usage should be | |
3500 | * combined, not added together. | |
3501 | */ | |
3502 | union { | |
3503 | struct kvm_pit_state ps; | |
e9f42757 | 3504 | struct kvm_pit_state2 ps2; |
c5ff41ce | 3505 | struct kvm_pit_config pit_config; |
f0d66275 | 3506 | } u; |
1fe779f8 CO |
3507 | |
3508 | switch (ioctl) { | |
3509 | case KVM_SET_TSS_ADDR: | |
3510 | r = kvm_vm_ioctl_set_tss_addr(kvm, arg); | |
1fe779f8 | 3511 | break; |
b927a3ce SY |
3512 | case KVM_SET_IDENTITY_MAP_ADDR: { |
3513 | u64 ident_addr; | |
3514 | ||
3515 | r = -EFAULT; | |
3516 | if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) | |
3517 | goto out; | |
3518 | r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); | |
b927a3ce SY |
3519 | break; |
3520 | } | |
1fe779f8 CO |
3521 | case KVM_SET_NR_MMU_PAGES: |
3522 | r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); | |
1fe779f8 CO |
3523 | break; |
3524 | case KVM_GET_NR_MMU_PAGES: | |
3525 | r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); | |
3526 | break; | |
3ddea128 MT |
3527 | case KVM_CREATE_IRQCHIP: { |
3528 | struct kvm_pic *vpic; | |
3529 | ||
3530 | mutex_lock(&kvm->lock); | |
3531 | r = -EEXIST; | |
3532 | if (kvm->arch.vpic) | |
3533 | goto create_irqchip_unlock; | |
3e515705 AK |
3534 | r = -EINVAL; |
3535 | if (atomic_read(&kvm->online_vcpus)) | |
3536 | goto create_irqchip_unlock; | |
1fe779f8 | 3537 | r = -ENOMEM; |
3ddea128 MT |
3538 | vpic = kvm_create_pic(kvm); |
3539 | if (vpic) { | |
1fe779f8 CO |
3540 | r = kvm_ioapic_init(kvm); |
3541 | if (r) { | |
175504cd | 3542 | mutex_lock(&kvm->slots_lock); |
72bb2fcd | 3543 | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, |
743eeb0b SL |
3544 | &vpic->dev_master); |
3545 | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, | |
3546 | &vpic->dev_slave); | |
3547 | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, | |
3548 | &vpic->dev_eclr); | |
175504cd | 3549 | mutex_unlock(&kvm->slots_lock); |
3ddea128 MT |
3550 | kfree(vpic); |
3551 | goto create_irqchip_unlock; | |
1fe779f8 CO |
3552 | } |
3553 | } else | |
3ddea128 MT |
3554 | goto create_irqchip_unlock; |
3555 | smp_wmb(); | |
3556 | kvm->arch.vpic = vpic; | |
3557 | smp_wmb(); | |
399ec807 AK |
3558 | r = kvm_setup_default_irq_routing(kvm); |
3559 | if (r) { | |
175504cd | 3560 | mutex_lock(&kvm->slots_lock); |
3ddea128 | 3561 | mutex_lock(&kvm->irq_lock); |
72bb2fcd WY |
3562 | kvm_ioapic_destroy(kvm); |
3563 | kvm_destroy_pic(kvm); | |
3ddea128 | 3564 | mutex_unlock(&kvm->irq_lock); |
175504cd | 3565 | mutex_unlock(&kvm->slots_lock); |
399ec807 | 3566 | } |
3ddea128 MT |
3567 | create_irqchip_unlock: |
3568 | mutex_unlock(&kvm->lock); | |
1fe779f8 | 3569 | break; |
3ddea128 | 3570 | } |
7837699f | 3571 | case KVM_CREATE_PIT: |
c5ff41ce JK |
3572 | u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; |
3573 | goto create_pit; | |
3574 | case KVM_CREATE_PIT2: | |
3575 | r = -EFAULT; | |
3576 | if (copy_from_user(&u.pit_config, argp, | |
3577 | sizeof(struct kvm_pit_config))) | |
3578 | goto out; | |
3579 | create_pit: | |
79fac95e | 3580 | mutex_lock(&kvm->slots_lock); |
269e05e4 AK |
3581 | r = -EEXIST; |
3582 | if (kvm->arch.vpit) | |
3583 | goto create_pit_unlock; | |
7837699f | 3584 | r = -ENOMEM; |
c5ff41ce | 3585 | kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); |
7837699f SY |
3586 | if (kvm->arch.vpit) |
3587 | r = 0; | |
269e05e4 | 3588 | create_pit_unlock: |
79fac95e | 3589 | mutex_unlock(&kvm->slots_lock); |
7837699f | 3590 | break; |
1fe779f8 CO |
3591 | case KVM_GET_IRQCHIP: { |
3592 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | |
ff5c2c03 | 3593 | struct kvm_irqchip *chip; |
1fe779f8 | 3594 | |
ff5c2c03 SL |
3595 | chip = memdup_user(argp, sizeof(*chip)); |
3596 | if (IS_ERR(chip)) { | |
3597 | r = PTR_ERR(chip); | |
1fe779f8 | 3598 | goto out; |
ff5c2c03 SL |
3599 | } |
3600 | ||
1fe779f8 CO |
3601 | r = -ENXIO; |
3602 | if (!irqchip_in_kernel(kvm)) | |
f0d66275 DH |
3603 | goto get_irqchip_out; |
3604 | r = kvm_vm_ioctl_get_irqchip(kvm, chip); | |
1fe779f8 | 3605 | if (r) |
f0d66275 | 3606 | goto get_irqchip_out; |
1fe779f8 | 3607 | r = -EFAULT; |
f0d66275 DH |
3608 | if (copy_to_user(argp, chip, sizeof *chip)) |
3609 | goto get_irqchip_out; | |
1fe779f8 | 3610 | r = 0; |
f0d66275 DH |
3611 | get_irqchip_out: |
3612 | kfree(chip); | |
1fe779f8 CO |
3613 | break; |
3614 | } | |
3615 | case KVM_SET_IRQCHIP: { | |
3616 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | |
ff5c2c03 | 3617 | struct kvm_irqchip *chip; |
1fe779f8 | 3618 | |
ff5c2c03 SL |
3619 | chip = memdup_user(argp, sizeof(*chip)); |
3620 | if (IS_ERR(chip)) { | |
3621 | r = PTR_ERR(chip); | |
1fe779f8 | 3622 | goto out; |
ff5c2c03 SL |
3623 | } |
3624 | ||
1fe779f8 CO |
3625 | r = -ENXIO; |
3626 | if (!irqchip_in_kernel(kvm)) | |
f0d66275 DH |
3627 | goto set_irqchip_out; |
3628 | r = kvm_vm_ioctl_set_irqchip(kvm, chip); | |
1fe779f8 | 3629 | if (r) |
f0d66275 | 3630 | goto set_irqchip_out; |
1fe779f8 | 3631 | r = 0; |
f0d66275 DH |
3632 | set_irqchip_out: |
3633 | kfree(chip); | |
1fe779f8 CO |
3634 | break; |
3635 | } | |
e0f63cb9 | 3636 | case KVM_GET_PIT: { |
e0f63cb9 | 3637 | r = -EFAULT; |
f0d66275 | 3638 | if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) |
e0f63cb9 SY |
3639 | goto out; |
3640 | r = -ENXIO; | |
3641 | if (!kvm->arch.vpit) | |
3642 | goto out; | |
f0d66275 | 3643 | r = kvm_vm_ioctl_get_pit(kvm, &u.ps); |
e0f63cb9 SY |
3644 | if (r) |
3645 | goto out; | |
3646 | r = -EFAULT; | |
f0d66275 | 3647 | if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) |
e0f63cb9 SY |
3648 | goto out; |
3649 | r = 0; | |
3650 | break; | |
3651 | } | |
3652 | case KVM_SET_PIT: { | |
e0f63cb9 | 3653 | r = -EFAULT; |
f0d66275 | 3654 | if (copy_from_user(&u.ps, argp, sizeof u.ps)) |
e0f63cb9 SY |
3655 | goto out; |
3656 | r = -ENXIO; | |
3657 | if (!kvm->arch.vpit) | |
3658 | goto out; | |
f0d66275 | 3659 | r = kvm_vm_ioctl_set_pit(kvm, &u.ps); |
e0f63cb9 SY |
3660 | break; |
3661 | } | |
e9f42757 BK |
3662 | case KVM_GET_PIT2: { |
3663 | r = -ENXIO; | |
3664 | if (!kvm->arch.vpit) | |
3665 | goto out; | |
3666 | r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); | |
3667 | if (r) | |
3668 | goto out; | |
3669 | r = -EFAULT; | |
3670 | if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) | |
3671 | goto out; | |
3672 | r = 0; | |
3673 | break; | |
3674 | } | |
3675 | case KVM_SET_PIT2: { | |
3676 | r = -EFAULT; | |
3677 | if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) | |
3678 | goto out; | |
3679 | r = -ENXIO; | |
3680 | if (!kvm->arch.vpit) | |
3681 | goto out; | |
3682 | r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); | |
e9f42757 BK |
3683 | break; |
3684 | } | |
52d939a0 MT |
3685 | case KVM_REINJECT_CONTROL: { |
3686 | struct kvm_reinject_control control; | |
3687 | r = -EFAULT; | |
3688 | if (copy_from_user(&control, argp, sizeof(control))) | |
3689 | goto out; | |
3690 | r = kvm_vm_ioctl_reinject(kvm, &control); | |
52d939a0 MT |
3691 | break; |
3692 | } | |
ffde22ac ES |
3693 | case KVM_XEN_HVM_CONFIG: { |
3694 | r = -EFAULT; | |
3695 | if (copy_from_user(&kvm->arch.xen_hvm_config, argp, | |
3696 | sizeof(struct kvm_xen_hvm_config))) | |
3697 | goto out; | |
3698 | r = -EINVAL; | |
3699 | if (kvm->arch.xen_hvm_config.flags) | |
3700 | goto out; | |
3701 | r = 0; | |
3702 | break; | |
3703 | } | |
afbcf7ab | 3704 | case KVM_SET_CLOCK: { |
afbcf7ab GC |
3705 | struct kvm_clock_data user_ns; |
3706 | u64 now_ns; | |
3707 | s64 delta; | |
3708 | ||
3709 | r = -EFAULT; | |
3710 | if (copy_from_user(&user_ns, argp, sizeof(user_ns))) | |
3711 | goto out; | |
3712 | ||
3713 | r = -EINVAL; | |
3714 | if (user_ns.flags) | |
3715 | goto out; | |
3716 | ||
3717 | r = 0; | |
395c6b0a | 3718 | local_irq_disable(); |
759379dd | 3719 | now_ns = get_kernel_ns(); |
afbcf7ab | 3720 | delta = user_ns.clock - now_ns; |
395c6b0a | 3721 | local_irq_enable(); |
afbcf7ab GC |
3722 | kvm->arch.kvmclock_offset = delta; |
3723 | break; | |
3724 | } | |
3725 | case KVM_GET_CLOCK: { | |
afbcf7ab GC |
3726 | struct kvm_clock_data user_ns; |
3727 | u64 now_ns; | |
3728 | ||
395c6b0a | 3729 | local_irq_disable(); |
759379dd | 3730 | now_ns = get_kernel_ns(); |
afbcf7ab | 3731 | user_ns.clock = kvm->arch.kvmclock_offset + now_ns; |
395c6b0a | 3732 | local_irq_enable(); |
afbcf7ab | 3733 | user_ns.flags = 0; |
97e69aa6 | 3734 | memset(&user_ns.pad, 0, sizeof(user_ns.pad)); |
afbcf7ab GC |
3735 | |
3736 | r = -EFAULT; | |
3737 | if (copy_to_user(argp, &user_ns, sizeof(user_ns))) | |
3738 | goto out; | |
3739 | r = 0; | |
3740 | break; | |
3741 | } | |
3742 | ||
1fe779f8 CO |
3743 | default: |
3744 | ; | |
3745 | } | |
3746 | out: | |
3747 | return r; | |
3748 | } | |
3749 | ||
a16b043c | 3750 | static void kvm_init_msr_list(void) |
043405e1 CO |
3751 | { |
3752 | u32 dummy[2]; | |
3753 | unsigned i, j; | |
3754 | ||
e3267cbb GC |
3755 | /* skip the first msrs in the list. KVM-specific */ |
3756 | for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { | |
043405e1 CO |
3757 | if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) |
3758 | continue; | |
3759 | if (j < i) | |
3760 | msrs_to_save[j] = msrs_to_save[i]; | |
3761 | j++; | |
3762 | } | |
3763 | num_msrs_to_save = j; | |
3764 | } | |
3765 | ||
bda9020e MT |
3766 | static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, |
3767 | const void *v) | |
bbd9b64e | 3768 | { |
70252a10 AK |
3769 | int handled = 0; |
3770 | int n; | |
3771 | ||
3772 | do { | |
3773 | n = min(len, 8); | |
3774 | if (!(vcpu->arch.apic && | |
3775 | !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) | |
3776 | && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) | |
3777 | break; | |
3778 | handled += n; | |
3779 | addr += n; | |
3780 | len -= n; | |
3781 | v += n; | |
3782 | } while (len); | |
bbd9b64e | 3783 | |
70252a10 | 3784 | return handled; |
bbd9b64e CO |
3785 | } |
3786 | ||
bda9020e | 3787 | static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) |
bbd9b64e | 3788 | { |
70252a10 AK |
3789 | int handled = 0; |
3790 | int n; | |
3791 | ||
3792 | do { | |
3793 | n = min(len, 8); | |
3794 | if (!(vcpu->arch.apic && | |
3795 | !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) | |
3796 | && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) | |
3797 | break; | |
3798 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); | |
3799 | handled += n; | |
3800 | addr += n; | |
3801 | len -= n; | |
3802 | v += n; | |
3803 | } while (len); | |
bbd9b64e | 3804 | |
70252a10 | 3805 | return handled; |
bbd9b64e CO |
3806 | } |
3807 | ||
2dafc6c2 GN |
3808 | static void kvm_set_segment(struct kvm_vcpu *vcpu, |
3809 | struct kvm_segment *var, int seg) | |
3810 | { | |
3811 | kvm_x86_ops->set_segment(vcpu, var, seg); | |
3812 | } | |
3813 | ||
3814 | void kvm_get_segment(struct kvm_vcpu *vcpu, | |
3815 | struct kvm_segment *var, int seg) | |
3816 | { | |
3817 | kvm_x86_ops->get_segment(vcpu, var, seg); | |
3818 | } | |
3819 | ||
e459e322 | 3820 | gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) |
02f59dc9 JR |
3821 | { |
3822 | gpa_t t_gpa; | |
ab9ae313 | 3823 | struct x86_exception exception; |
02f59dc9 JR |
3824 | |
3825 | BUG_ON(!mmu_is_nested(vcpu)); | |
3826 | ||
3827 | /* NPT walks are always user-walks */ | |
3828 | access |= PFERR_USER_MASK; | |
ab9ae313 | 3829 | t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); |
02f59dc9 JR |
3830 | |
3831 | return t_gpa; | |
3832 | } | |
3833 | ||
ab9ae313 AK |
3834 | gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, |
3835 | struct x86_exception *exception) | |
1871c602 GN |
3836 | { |
3837 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
ab9ae313 | 3838 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
1871c602 GN |
3839 | } |
3840 | ||
ab9ae313 AK |
3841 | gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, |
3842 | struct x86_exception *exception) | |
1871c602 GN |
3843 | { |
3844 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
3845 | access |= PFERR_FETCH_MASK; | |
ab9ae313 | 3846 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
1871c602 GN |
3847 | } |
3848 | ||
ab9ae313 AK |
3849 | gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, |
3850 | struct x86_exception *exception) | |
1871c602 GN |
3851 | { |
3852 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
3853 | access |= PFERR_WRITE_MASK; | |
ab9ae313 | 3854 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
1871c602 GN |
3855 | } |
3856 | ||
3857 | /* uses this to access any guest's mapped memory without checking CPL */ | |
ab9ae313 AK |
3858 | gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, |
3859 | struct x86_exception *exception) | |
1871c602 | 3860 | { |
ab9ae313 | 3861 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); |
1871c602 GN |
3862 | } |
3863 | ||
3864 | static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, | |
3865 | struct kvm_vcpu *vcpu, u32 access, | |
bcc55cba | 3866 | struct x86_exception *exception) |
bbd9b64e CO |
3867 | { |
3868 | void *data = val; | |
10589a46 | 3869 | int r = X86EMUL_CONTINUE; |
bbd9b64e CO |
3870 | |
3871 | while (bytes) { | |
14dfe855 | 3872 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, |
ab9ae313 | 3873 | exception); |
bbd9b64e | 3874 | unsigned offset = addr & (PAGE_SIZE-1); |
77c2002e | 3875 | unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); |
bbd9b64e CO |
3876 | int ret; |
3877 | ||
bcc55cba | 3878 | if (gpa == UNMAPPED_GVA) |
ab9ae313 | 3879 | return X86EMUL_PROPAGATE_FAULT; |
77c2002e | 3880 | ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); |
10589a46 | 3881 | if (ret < 0) { |
c3cd7ffa | 3882 | r = X86EMUL_IO_NEEDED; |
10589a46 MT |
3883 | goto out; |
3884 | } | |
bbd9b64e | 3885 | |
77c2002e IE |
3886 | bytes -= toread; |
3887 | data += toread; | |
3888 | addr += toread; | |
bbd9b64e | 3889 | } |
10589a46 | 3890 | out: |
10589a46 | 3891 | return r; |
bbd9b64e | 3892 | } |
77c2002e | 3893 | |
1871c602 | 3894 | /* used for instruction fetching */ |
0f65dd70 AK |
3895 | static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, |
3896 | gva_t addr, void *val, unsigned int bytes, | |
bcc55cba | 3897 | struct x86_exception *exception) |
1871c602 | 3898 | { |
0f65dd70 | 3899 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
1871c602 | 3900 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
0f65dd70 | 3901 | |
1871c602 | 3902 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, |
bcc55cba AK |
3903 | access | PFERR_FETCH_MASK, |
3904 | exception); | |
1871c602 GN |
3905 | } |
3906 | ||
064aea77 | 3907 | int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, |
0f65dd70 | 3908 | gva_t addr, void *val, unsigned int bytes, |
bcc55cba | 3909 | struct x86_exception *exception) |
1871c602 | 3910 | { |
0f65dd70 | 3911 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
1871c602 | 3912 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
0f65dd70 | 3913 | |
1871c602 | 3914 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, |
bcc55cba | 3915 | exception); |
1871c602 | 3916 | } |
064aea77 | 3917 | EXPORT_SYMBOL_GPL(kvm_read_guest_virt); |
1871c602 | 3918 | |
0f65dd70 AK |
3919 | static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, |
3920 | gva_t addr, void *val, unsigned int bytes, | |
bcc55cba | 3921 | struct x86_exception *exception) |
1871c602 | 3922 | { |
0f65dd70 | 3923 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
bcc55cba | 3924 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); |
1871c602 GN |
3925 | } |
3926 | ||
6a4d7550 | 3927 | int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, |
0f65dd70 | 3928 | gva_t addr, void *val, |
2dafc6c2 | 3929 | unsigned int bytes, |
bcc55cba | 3930 | struct x86_exception *exception) |
77c2002e | 3931 | { |
0f65dd70 | 3932 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
77c2002e IE |
3933 | void *data = val; |
3934 | int r = X86EMUL_CONTINUE; | |
3935 | ||
3936 | while (bytes) { | |
14dfe855 JR |
3937 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, |
3938 | PFERR_WRITE_MASK, | |
ab9ae313 | 3939 | exception); |
77c2002e IE |
3940 | unsigned offset = addr & (PAGE_SIZE-1); |
3941 | unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); | |
3942 | int ret; | |
3943 | ||
bcc55cba | 3944 | if (gpa == UNMAPPED_GVA) |
ab9ae313 | 3945 | return X86EMUL_PROPAGATE_FAULT; |
77c2002e IE |
3946 | ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); |
3947 | if (ret < 0) { | |
c3cd7ffa | 3948 | r = X86EMUL_IO_NEEDED; |
77c2002e IE |
3949 | goto out; |
3950 | } | |
3951 | ||
3952 | bytes -= towrite; | |
3953 | data += towrite; | |
3954 | addr += towrite; | |
3955 | } | |
3956 | out: | |
3957 | return r; | |
3958 | } | |
6a4d7550 | 3959 | EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); |
77c2002e | 3960 | |
af7cc7d1 XG |
3961 | static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
3962 | gpa_t *gpa, struct x86_exception *exception, | |
3963 | bool write) | |
3964 | { | |
97d64b78 AK |
3965 | u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) |
3966 | | (write ? PFERR_WRITE_MASK : 0); | |
af7cc7d1 | 3967 | |
97d64b78 AK |
3968 | if (vcpu_match_mmio_gva(vcpu, gva) |
3969 | && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) { | |
bebb106a XG |
3970 | *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | |
3971 | (gva & (PAGE_SIZE - 1)); | |
4f022648 | 3972 | trace_vcpu_match_mmio(gva, *gpa, write, false); |
bebb106a XG |
3973 | return 1; |
3974 | } | |
3975 | ||
af7cc7d1 XG |
3976 | *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
3977 | ||
3978 | if (*gpa == UNMAPPED_GVA) | |
3979 | return -1; | |
3980 | ||
3981 | /* For APIC access vmexit */ | |
3982 | if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | |
3983 | return 1; | |
3984 | ||
4f022648 XG |
3985 | if (vcpu_match_mmio_gpa(vcpu, *gpa)) { |
3986 | trace_vcpu_match_mmio(gva, *gpa, write, true); | |
bebb106a | 3987 | return 1; |
4f022648 | 3988 | } |
bebb106a | 3989 | |
af7cc7d1 XG |
3990 | return 0; |
3991 | } | |
3992 | ||
3200f405 | 3993 | int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, |
bcc55cba | 3994 | const void *val, int bytes) |
bbd9b64e CO |
3995 | { |
3996 | int ret; | |
3997 | ||
3998 | ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); | |
9f811285 | 3999 | if (ret < 0) |
bbd9b64e | 4000 | return 0; |
f57f2ef5 | 4001 | kvm_mmu_pte_write(vcpu, gpa, val, bytes); |
bbd9b64e CO |
4002 | return 1; |
4003 | } | |
4004 | ||
77d197b2 XG |
4005 | struct read_write_emulator_ops { |
4006 | int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, | |
4007 | int bytes); | |
4008 | int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4009 | void *val, int bytes); | |
4010 | int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4011 | int bytes, void *val); | |
4012 | int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4013 | void *val, int bytes); | |
4014 | bool write; | |
4015 | }; | |
4016 | ||
4017 | static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) | |
4018 | { | |
4019 | if (vcpu->mmio_read_completed) { | |
77d197b2 | 4020 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, |
f78146b0 | 4021 | vcpu->mmio_fragments[0].gpa, *(u64 *)val); |
77d197b2 XG |
4022 | vcpu->mmio_read_completed = 0; |
4023 | return 1; | |
4024 | } | |
4025 | ||
4026 | return 0; | |
4027 | } | |
4028 | ||
4029 | static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4030 | void *val, int bytes) | |
4031 | { | |
4032 | return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); | |
4033 | } | |
4034 | ||
4035 | static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4036 | void *val, int bytes) | |
4037 | { | |
4038 | return emulator_write_phys(vcpu, gpa, val, bytes); | |
4039 | } | |
4040 | ||
4041 | static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) | |
4042 | { | |
4043 | trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); | |
4044 | return vcpu_mmio_write(vcpu, gpa, bytes, val); | |
4045 | } | |
4046 | ||
4047 | static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4048 | void *val, int bytes) | |
4049 | { | |
4050 | trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); | |
4051 | return X86EMUL_IO_NEEDED; | |
4052 | } | |
4053 | ||
4054 | static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4055 | void *val, int bytes) | |
4056 | { | |
f78146b0 AK |
4057 | struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; |
4058 | ||
87da7e66 | 4059 | memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); |
77d197b2 XG |
4060 | return X86EMUL_CONTINUE; |
4061 | } | |
4062 | ||
0fbe9b0b | 4063 | static const struct read_write_emulator_ops read_emultor = { |
77d197b2 XG |
4064 | .read_write_prepare = read_prepare, |
4065 | .read_write_emulate = read_emulate, | |
4066 | .read_write_mmio = vcpu_mmio_read, | |
4067 | .read_write_exit_mmio = read_exit_mmio, | |
4068 | }; | |
4069 | ||
0fbe9b0b | 4070 | static const struct read_write_emulator_ops write_emultor = { |
77d197b2 XG |
4071 | .read_write_emulate = write_emulate, |
4072 | .read_write_mmio = write_mmio, | |
4073 | .read_write_exit_mmio = write_exit_mmio, | |
4074 | .write = true, | |
4075 | }; | |
4076 | ||
22388a3c XG |
4077 | static int emulator_read_write_onepage(unsigned long addr, void *val, |
4078 | unsigned int bytes, | |
4079 | struct x86_exception *exception, | |
4080 | struct kvm_vcpu *vcpu, | |
0fbe9b0b | 4081 | const struct read_write_emulator_ops *ops) |
bbd9b64e | 4082 | { |
af7cc7d1 XG |
4083 | gpa_t gpa; |
4084 | int handled, ret; | |
22388a3c | 4085 | bool write = ops->write; |
f78146b0 | 4086 | struct kvm_mmio_fragment *frag; |
10589a46 | 4087 | |
22388a3c | 4088 | ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); |
bbd9b64e | 4089 | |
af7cc7d1 | 4090 | if (ret < 0) |
bbd9b64e | 4091 | return X86EMUL_PROPAGATE_FAULT; |
bbd9b64e CO |
4092 | |
4093 | /* For APIC access vmexit */ | |
af7cc7d1 | 4094 | if (ret) |
bbd9b64e CO |
4095 | goto mmio; |
4096 | ||
22388a3c | 4097 | if (ops->read_write_emulate(vcpu, gpa, val, bytes)) |
bbd9b64e CO |
4098 | return X86EMUL_CONTINUE; |
4099 | ||
4100 | mmio: | |
4101 | /* | |
4102 | * Is this MMIO handled locally? | |
4103 | */ | |
22388a3c | 4104 | handled = ops->read_write_mmio(vcpu, gpa, bytes, val); |
70252a10 | 4105 | if (handled == bytes) |
bbd9b64e | 4106 | return X86EMUL_CONTINUE; |
bbd9b64e | 4107 | |
70252a10 AK |
4108 | gpa += handled; |
4109 | bytes -= handled; | |
4110 | val += handled; | |
4111 | ||
87da7e66 XG |
4112 | WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); |
4113 | frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; | |
4114 | frag->gpa = gpa; | |
4115 | frag->data = val; | |
4116 | frag->len = bytes; | |
f78146b0 | 4117 | return X86EMUL_CONTINUE; |
bbd9b64e CO |
4118 | } |
4119 | ||
22388a3c XG |
4120 | int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, |
4121 | void *val, unsigned int bytes, | |
4122 | struct x86_exception *exception, | |
0fbe9b0b | 4123 | const struct read_write_emulator_ops *ops) |
bbd9b64e | 4124 | { |
0f65dd70 | 4125 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
f78146b0 AK |
4126 | gpa_t gpa; |
4127 | int rc; | |
4128 | ||
4129 | if (ops->read_write_prepare && | |
4130 | ops->read_write_prepare(vcpu, val, bytes)) | |
4131 | return X86EMUL_CONTINUE; | |
4132 | ||
4133 | vcpu->mmio_nr_fragments = 0; | |
0f65dd70 | 4134 | |
bbd9b64e CO |
4135 | /* Crossing a page boundary? */ |
4136 | if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { | |
f78146b0 | 4137 | int now; |
bbd9b64e CO |
4138 | |
4139 | now = -addr & ~PAGE_MASK; | |
22388a3c XG |
4140 | rc = emulator_read_write_onepage(addr, val, now, exception, |
4141 | vcpu, ops); | |
4142 | ||
bbd9b64e CO |
4143 | if (rc != X86EMUL_CONTINUE) |
4144 | return rc; | |
4145 | addr += now; | |
4146 | val += now; | |
4147 | bytes -= now; | |
4148 | } | |
22388a3c | 4149 | |
f78146b0 AK |
4150 | rc = emulator_read_write_onepage(addr, val, bytes, exception, |
4151 | vcpu, ops); | |
4152 | if (rc != X86EMUL_CONTINUE) | |
4153 | return rc; | |
4154 | ||
4155 | if (!vcpu->mmio_nr_fragments) | |
4156 | return rc; | |
4157 | ||
4158 | gpa = vcpu->mmio_fragments[0].gpa; | |
4159 | ||
4160 | vcpu->mmio_needed = 1; | |
4161 | vcpu->mmio_cur_fragment = 0; | |
4162 | ||
87da7e66 | 4163 | vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); |
f78146b0 AK |
4164 | vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; |
4165 | vcpu->run->exit_reason = KVM_EXIT_MMIO; | |
4166 | vcpu->run->mmio.phys_addr = gpa; | |
4167 | ||
4168 | return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); | |
22388a3c XG |
4169 | } |
4170 | ||
4171 | static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, | |
4172 | unsigned long addr, | |
4173 | void *val, | |
4174 | unsigned int bytes, | |
4175 | struct x86_exception *exception) | |
4176 | { | |
4177 | return emulator_read_write(ctxt, addr, val, bytes, | |
4178 | exception, &read_emultor); | |
4179 | } | |
4180 | ||
4181 | int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, | |
4182 | unsigned long addr, | |
4183 | const void *val, | |
4184 | unsigned int bytes, | |
4185 | struct x86_exception *exception) | |
4186 | { | |
4187 | return emulator_read_write(ctxt, addr, (void *)val, bytes, | |
4188 | exception, &write_emultor); | |
bbd9b64e | 4189 | } |
bbd9b64e | 4190 | |
daea3e73 AK |
4191 | #define CMPXCHG_TYPE(t, ptr, old, new) \ |
4192 | (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) | |
4193 | ||
4194 | #ifdef CONFIG_X86_64 | |
4195 | # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) | |
4196 | #else | |
4197 | # define CMPXCHG64(ptr, old, new) \ | |
9749a6c0 | 4198 | (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) |
daea3e73 AK |
4199 | #endif |
4200 | ||
0f65dd70 AK |
4201 | static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, |
4202 | unsigned long addr, | |
bbd9b64e CO |
4203 | const void *old, |
4204 | const void *new, | |
4205 | unsigned int bytes, | |
0f65dd70 | 4206 | struct x86_exception *exception) |
bbd9b64e | 4207 | { |
0f65dd70 | 4208 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
daea3e73 AK |
4209 | gpa_t gpa; |
4210 | struct page *page; | |
4211 | char *kaddr; | |
4212 | bool exchanged; | |
2bacc55c | 4213 | |
daea3e73 AK |
4214 | /* guests cmpxchg8b have to be emulated atomically */ |
4215 | if (bytes > 8 || (bytes & (bytes - 1))) | |
4216 | goto emul_write; | |
10589a46 | 4217 | |
daea3e73 | 4218 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); |
2bacc55c | 4219 | |
daea3e73 AK |
4220 | if (gpa == UNMAPPED_GVA || |
4221 | (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | |
4222 | goto emul_write; | |
2bacc55c | 4223 | |
daea3e73 AK |
4224 | if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) |
4225 | goto emul_write; | |
72dc67a6 | 4226 | |
daea3e73 | 4227 | page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); |
32cad84f | 4228 | if (is_error_page(page)) |
c19b8bd6 | 4229 | goto emul_write; |
72dc67a6 | 4230 | |
8fd75e12 | 4231 | kaddr = kmap_atomic(page); |
daea3e73 AK |
4232 | kaddr += offset_in_page(gpa); |
4233 | switch (bytes) { | |
4234 | case 1: | |
4235 | exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); | |
4236 | break; | |
4237 | case 2: | |
4238 | exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); | |
4239 | break; | |
4240 | case 4: | |
4241 | exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); | |
4242 | break; | |
4243 | case 8: | |
4244 | exchanged = CMPXCHG64(kaddr, old, new); | |
4245 | break; | |
4246 | default: | |
4247 | BUG(); | |
2bacc55c | 4248 | } |
8fd75e12 | 4249 | kunmap_atomic(kaddr); |
daea3e73 AK |
4250 | kvm_release_page_dirty(page); |
4251 | ||
4252 | if (!exchanged) | |
4253 | return X86EMUL_CMPXCHG_FAILED; | |
4254 | ||
f57f2ef5 | 4255 | kvm_mmu_pte_write(vcpu, gpa, new, bytes); |
8f6abd06 GN |
4256 | |
4257 | return X86EMUL_CONTINUE; | |
4a5f48f6 | 4258 | |
3200f405 | 4259 | emul_write: |
daea3e73 | 4260 | printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); |
2bacc55c | 4261 | |
0f65dd70 | 4262 | return emulator_write_emulated(ctxt, addr, new, bytes, exception); |
bbd9b64e CO |
4263 | } |
4264 | ||
cf8f70bf GN |
4265 | static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) |
4266 | { | |
4267 | /* TODO: String I/O for in kernel device */ | |
4268 | int r; | |
4269 | ||
4270 | if (vcpu->arch.pio.in) | |
4271 | r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, | |
4272 | vcpu->arch.pio.size, pd); | |
4273 | else | |
4274 | r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, | |
4275 | vcpu->arch.pio.port, vcpu->arch.pio.size, | |
4276 | pd); | |
4277 | return r; | |
4278 | } | |
4279 | ||
6f6fbe98 XG |
4280 | static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, |
4281 | unsigned short port, void *val, | |
4282 | unsigned int count, bool in) | |
cf8f70bf | 4283 | { |
6f6fbe98 | 4284 | trace_kvm_pio(!in, port, size, count); |
cf8f70bf GN |
4285 | |
4286 | vcpu->arch.pio.port = port; | |
6f6fbe98 | 4287 | vcpu->arch.pio.in = in; |
7972995b | 4288 | vcpu->arch.pio.count = count; |
cf8f70bf GN |
4289 | vcpu->arch.pio.size = size; |
4290 | ||
4291 | if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { | |
7972995b | 4292 | vcpu->arch.pio.count = 0; |
cf8f70bf GN |
4293 | return 1; |
4294 | } | |
4295 | ||
4296 | vcpu->run->exit_reason = KVM_EXIT_IO; | |
6f6fbe98 | 4297 | vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; |
cf8f70bf GN |
4298 | vcpu->run->io.size = size; |
4299 | vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; | |
4300 | vcpu->run->io.count = count; | |
4301 | vcpu->run->io.port = port; | |
4302 | ||
4303 | return 0; | |
4304 | } | |
4305 | ||
6f6fbe98 XG |
4306 | static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, |
4307 | int size, unsigned short port, void *val, | |
4308 | unsigned int count) | |
cf8f70bf | 4309 | { |
ca1d4a9e | 4310 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
6f6fbe98 | 4311 | int ret; |
ca1d4a9e | 4312 | |
6f6fbe98 XG |
4313 | if (vcpu->arch.pio.count) |
4314 | goto data_avail; | |
cf8f70bf | 4315 | |
6f6fbe98 XG |
4316 | ret = emulator_pio_in_out(vcpu, size, port, val, count, true); |
4317 | if (ret) { | |
4318 | data_avail: | |
4319 | memcpy(val, vcpu->arch.pio_data, size * count); | |
7972995b | 4320 | vcpu->arch.pio.count = 0; |
cf8f70bf GN |
4321 | return 1; |
4322 | } | |
4323 | ||
cf8f70bf GN |
4324 | return 0; |
4325 | } | |
4326 | ||
6f6fbe98 XG |
4327 | static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, |
4328 | int size, unsigned short port, | |
4329 | const void *val, unsigned int count) | |
4330 | { | |
4331 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
4332 | ||
4333 | memcpy(vcpu->arch.pio_data, val, size * count); | |
4334 | return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); | |
4335 | } | |
4336 | ||
bbd9b64e CO |
4337 | static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) |
4338 | { | |
4339 | return kvm_x86_ops->get_segment_base(vcpu, seg); | |
4340 | } | |
4341 | ||
3cb16fe7 | 4342 | static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) |
bbd9b64e | 4343 | { |
3cb16fe7 | 4344 | kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); |
bbd9b64e CO |
4345 | } |
4346 | ||
f5f48ee1 SY |
4347 | int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) |
4348 | { | |
4349 | if (!need_emulate_wbinvd(vcpu)) | |
4350 | return X86EMUL_CONTINUE; | |
4351 | ||
4352 | if (kvm_x86_ops->has_wbinvd_exit()) { | |
2eec7343 JK |
4353 | int cpu = get_cpu(); |
4354 | ||
4355 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | |
f5f48ee1 SY |
4356 | smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, |
4357 | wbinvd_ipi, NULL, 1); | |
2eec7343 | 4358 | put_cpu(); |
f5f48ee1 | 4359 | cpumask_clear(vcpu->arch.wbinvd_dirty_mask); |
2eec7343 JK |
4360 | } else |
4361 | wbinvd(); | |
f5f48ee1 SY |
4362 | return X86EMUL_CONTINUE; |
4363 | } | |
4364 | EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); | |
4365 | ||
bcaf5cc5 AK |
4366 | static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) |
4367 | { | |
4368 | kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); | |
4369 | } | |
4370 | ||
717746e3 | 4371 | int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) |
bbd9b64e | 4372 | { |
717746e3 | 4373 | return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); |
bbd9b64e CO |
4374 | } |
4375 | ||
717746e3 | 4376 | int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) |
bbd9b64e | 4377 | { |
338dbc97 | 4378 | |
717746e3 | 4379 | return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); |
bbd9b64e CO |
4380 | } |
4381 | ||
52a46617 | 4382 | static u64 mk_cr_64(u64 curr_cr, u32 new_val) |
5fdbf976 | 4383 | { |
52a46617 | 4384 | return (curr_cr & ~((1ULL << 32) - 1)) | new_val; |
5fdbf976 MT |
4385 | } |
4386 | ||
717746e3 | 4387 | static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) |
bbd9b64e | 4388 | { |
717746e3 | 4389 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
52a46617 GN |
4390 | unsigned long value; |
4391 | ||
4392 | switch (cr) { | |
4393 | case 0: | |
4394 | value = kvm_read_cr0(vcpu); | |
4395 | break; | |
4396 | case 2: | |
4397 | value = vcpu->arch.cr2; | |
4398 | break; | |
4399 | case 3: | |
9f8fe504 | 4400 | value = kvm_read_cr3(vcpu); |
52a46617 GN |
4401 | break; |
4402 | case 4: | |
4403 | value = kvm_read_cr4(vcpu); | |
4404 | break; | |
4405 | case 8: | |
4406 | value = kvm_get_cr8(vcpu); | |
4407 | break; | |
4408 | default: | |
a737f256 | 4409 | kvm_err("%s: unexpected cr %u\n", __func__, cr); |
52a46617 GN |
4410 | return 0; |
4411 | } | |
4412 | ||
4413 | return value; | |
4414 | } | |
4415 | ||
717746e3 | 4416 | static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) |
52a46617 | 4417 | { |
717746e3 | 4418 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
0f12244f GN |
4419 | int res = 0; |
4420 | ||
52a46617 GN |
4421 | switch (cr) { |
4422 | case 0: | |
49a9b07e | 4423 | res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); |
52a46617 GN |
4424 | break; |
4425 | case 2: | |
4426 | vcpu->arch.cr2 = val; | |
4427 | break; | |
4428 | case 3: | |
2390218b | 4429 | res = kvm_set_cr3(vcpu, val); |
52a46617 GN |
4430 | break; |
4431 | case 4: | |
a83b29c6 | 4432 | res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); |
52a46617 GN |
4433 | break; |
4434 | case 8: | |
eea1cff9 | 4435 | res = kvm_set_cr8(vcpu, val); |
52a46617 GN |
4436 | break; |
4437 | default: | |
a737f256 | 4438 | kvm_err("%s: unexpected cr %u\n", __func__, cr); |
0f12244f | 4439 | res = -1; |
52a46617 | 4440 | } |
0f12244f GN |
4441 | |
4442 | return res; | |
52a46617 GN |
4443 | } |
4444 | ||
4cee4798 KW |
4445 | static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) |
4446 | { | |
4447 | kvm_set_rflags(emul_to_vcpu(ctxt), val); | |
4448 | } | |
4449 | ||
717746e3 | 4450 | static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) |
9c537244 | 4451 | { |
717746e3 | 4452 | return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); |
9c537244 GN |
4453 | } |
4454 | ||
4bff1e86 | 4455 | static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
2dafc6c2 | 4456 | { |
4bff1e86 | 4457 | kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); |
2dafc6c2 GN |
4458 | } |
4459 | ||
4bff1e86 | 4460 | static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
160ce1f1 | 4461 | { |
4bff1e86 | 4462 | kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); |
160ce1f1 MG |
4463 | } |
4464 | ||
1ac9d0cf AK |
4465 | static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
4466 | { | |
4467 | kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); | |
4468 | } | |
4469 | ||
4470 | static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | |
4471 | { | |
4472 | kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); | |
4473 | } | |
4474 | ||
4bff1e86 AK |
4475 | static unsigned long emulator_get_cached_segment_base( |
4476 | struct x86_emulate_ctxt *ctxt, int seg) | |
5951c442 | 4477 | { |
4bff1e86 | 4478 | return get_segment_base(emul_to_vcpu(ctxt), seg); |
5951c442 GN |
4479 | } |
4480 | ||
1aa36616 AK |
4481 | static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, |
4482 | struct desc_struct *desc, u32 *base3, | |
4483 | int seg) | |
2dafc6c2 GN |
4484 | { |
4485 | struct kvm_segment var; | |
4486 | ||
4bff1e86 | 4487 | kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); |
1aa36616 | 4488 | *selector = var.selector; |
2dafc6c2 | 4489 | |
378a8b09 GN |
4490 | if (var.unusable) { |
4491 | memset(desc, 0, sizeof(*desc)); | |
2dafc6c2 | 4492 | return false; |
378a8b09 | 4493 | } |
2dafc6c2 GN |
4494 | |
4495 | if (var.g) | |
4496 | var.limit >>= 12; | |
4497 | set_desc_limit(desc, var.limit); | |
4498 | set_desc_base(desc, (unsigned long)var.base); | |
5601d05b GN |
4499 | #ifdef CONFIG_X86_64 |
4500 | if (base3) | |
4501 | *base3 = var.base >> 32; | |
4502 | #endif | |
2dafc6c2 GN |
4503 | desc->type = var.type; |
4504 | desc->s = var.s; | |
4505 | desc->dpl = var.dpl; | |
4506 | desc->p = var.present; | |
4507 | desc->avl = var.avl; | |
4508 | desc->l = var.l; | |
4509 | desc->d = var.db; | |
4510 | desc->g = var.g; | |
4511 | ||
4512 | return true; | |
4513 | } | |
4514 | ||
1aa36616 AK |
4515 | static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, |
4516 | struct desc_struct *desc, u32 base3, | |
4517 | int seg) | |
2dafc6c2 | 4518 | { |
4bff1e86 | 4519 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
2dafc6c2 GN |
4520 | struct kvm_segment var; |
4521 | ||
1aa36616 | 4522 | var.selector = selector; |
2dafc6c2 | 4523 | var.base = get_desc_base(desc); |
5601d05b GN |
4524 | #ifdef CONFIG_X86_64 |
4525 | var.base |= ((u64)base3) << 32; | |
4526 | #endif | |
2dafc6c2 GN |
4527 | var.limit = get_desc_limit(desc); |
4528 | if (desc->g) | |
4529 | var.limit = (var.limit << 12) | 0xfff; | |
4530 | var.type = desc->type; | |
4531 | var.present = desc->p; | |
4532 | var.dpl = desc->dpl; | |
4533 | var.db = desc->d; | |
4534 | var.s = desc->s; | |
4535 | var.l = desc->l; | |
4536 | var.g = desc->g; | |
4537 | var.avl = desc->avl; | |
4538 | var.present = desc->p; | |
4539 | var.unusable = !var.present; | |
4540 | var.padding = 0; | |
4541 | ||
4542 | kvm_set_segment(vcpu, &var, seg); | |
4543 | return; | |
4544 | } | |
4545 | ||
717746e3 AK |
4546 | static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, |
4547 | u32 msr_index, u64 *pdata) | |
4548 | { | |
4549 | return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); | |
4550 | } | |
4551 | ||
4552 | static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, | |
4553 | u32 msr_index, u64 data) | |
4554 | { | |
8fe8ab46 WA |
4555 | struct msr_data msr; |
4556 | ||
4557 | msr.data = data; | |
4558 | msr.index = msr_index; | |
4559 | msr.host_initiated = false; | |
4560 | return kvm_set_msr(emul_to_vcpu(ctxt), &msr); | |
717746e3 AK |
4561 | } |
4562 | ||
222d21aa AK |
4563 | static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, |
4564 | u32 pmc, u64 *pdata) | |
4565 | { | |
4566 | return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); | |
4567 | } | |
4568 | ||
6c3287f7 AK |
4569 | static void emulator_halt(struct x86_emulate_ctxt *ctxt) |
4570 | { | |
4571 | emul_to_vcpu(ctxt)->arch.halt_request = 1; | |
4572 | } | |
4573 | ||
5037f6f3 AK |
4574 | static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) |
4575 | { | |
4576 | preempt_disable(); | |
5197b808 | 4577 | kvm_load_guest_fpu(emul_to_vcpu(ctxt)); |
5037f6f3 AK |
4578 | /* |
4579 | * CR0.TS may reference the host fpu state, not the guest fpu state, | |
4580 | * so it may be clear at this point. | |
4581 | */ | |
4582 | clts(); | |
4583 | } | |
4584 | ||
4585 | static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) | |
4586 | { | |
4587 | preempt_enable(); | |
4588 | } | |
4589 | ||
2953538e | 4590 | static int emulator_intercept(struct x86_emulate_ctxt *ctxt, |
8a76d7f2 | 4591 | struct x86_instruction_info *info, |
c4f035c6 AK |
4592 | enum x86_intercept_stage stage) |
4593 | { | |
2953538e | 4594 | return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); |
c4f035c6 AK |
4595 | } |
4596 | ||
0017f93a | 4597 | static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, |
bdb42f5a SB |
4598 | u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) |
4599 | { | |
0017f93a | 4600 | kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); |
bdb42f5a SB |
4601 | } |
4602 | ||
dd856efa AK |
4603 | static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) |
4604 | { | |
4605 | return kvm_register_read(emul_to_vcpu(ctxt), reg); | |
4606 | } | |
4607 | ||
4608 | static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) | |
4609 | { | |
4610 | kvm_register_write(emul_to_vcpu(ctxt), reg, val); | |
4611 | } | |
4612 | ||
0225fb50 | 4613 | static const struct x86_emulate_ops emulate_ops = { |
dd856efa AK |
4614 | .read_gpr = emulator_read_gpr, |
4615 | .write_gpr = emulator_write_gpr, | |
1871c602 | 4616 | .read_std = kvm_read_guest_virt_system, |
2dafc6c2 | 4617 | .write_std = kvm_write_guest_virt_system, |
1871c602 | 4618 | .fetch = kvm_fetch_guest_virt, |
bbd9b64e CO |
4619 | .read_emulated = emulator_read_emulated, |
4620 | .write_emulated = emulator_write_emulated, | |
4621 | .cmpxchg_emulated = emulator_cmpxchg_emulated, | |
3cb16fe7 | 4622 | .invlpg = emulator_invlpg, |
cf8f70bf GN |
4623 | .pio_in_emulated = emulator_pio_in_emulated, |
4624 | .pio_out_emulated = emulator_pio_out_emulated, | |
1aa36616 AK |
4625 | .get_segment = emulator_get_segment, |
4626 | .set_segment = emulator_set_segment, | |
5951c442 | 4627 | .get_cached_segment_base = emulator_get_cached_segment_base, |
2dafc6c2 | 4628 | .get_gdt = emulator_get_gdt, |
160ce1f1 | 4629 | .get_idt = emulator_get_idt, |
1ac9d0cf AK |
4630 | .set_gdt = emulator_set_gdt, |
4631 | .set_idt = emulator_set_idt, | |
52a46617 GN |
4632 | .get_cr = emulator_get_cr, |
4633 | .set_cr = emulator_set_cr, | |
4cee4798 | 4634 | .set_rflags = emulator_set_rflags, |
9c537244 | 4635 | .cpl = emulator_get_cpl, |
35aa5375 GN |
4636 | .get_dr = emulator_get_dr, |
4637 | .set_dr = emulator_set_dr, | |
717746e3 AK |
4638 | .set_msr = emulator_set_msr, |
4639 | .get_msr = emulator_get_msr, | |
222d21aa | 4640 | .read_pmc = emulator_read_pmc, |
6c3287f7 | 4641 | .halt = emulator_halt, |
bcaf5cc5 | 4642 | .wbinvd = emulator_wbinvd, |
d6aa1000 | 4643 | .fix_hypercall = emulator_fix_hypercall, |
5037f6f3 AK |
4644 | .get_fpu = emulator_get_fpu, |
4645 | .put_fpu = emulator_put_fpu, | |
c4f035c6 | 4646 | .intercept = emulator_intercept, |
bdb42f5a | 4647 | .get_cpuid = emulator_get_cpuid, |
bbd9b64e CO |
4648 | }; |
4649 | ||
95cb2295 GN |
4650 | static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) |
4651 | { | |
4652 | u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); | |
4653 | /* | |
4654 | * an sti; sti; sequence only disable interrupts for the first | |
4655 | * instruction. So, if the last instruction, be it emulated or | |
4656 | * not, left the system with the INT_STI flag enabled, it | |
4657 | * means that the last instruction is an sti. We should not | |
4658 | * leave the flag on in this case. The same goes for mov ss | |
4659 | */ | |
4660 | if (!(int_shadow & mask)) | |
4661 | kvm_x86_ops->set_interrupt_shadow(vcpu, mask); | |
4662 | } | |
4663 | ||
54b8486f GN |
4664 | static void inject_emulated_exception(struct kvm_vcpu *vcpu) |
4665 | { | |
4666 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | |
da9cb575 | 4667 | if (ctxt->exception.vector == PF_VECTOR) |
6389ee94 | 4668 | kvm_propagate_fault(vcpu, &ctxt->exception); |
da9cb575 AK |
4669 | else if (ctxt->exception.error_code_valid) |
4670 | kvm_queue_exception_e(vcpu, ctxt->exception.vector, | |
4671 | ctxt->exception.error_code); | |
54b8486f | 4672 | else |
da9cb575 | 4673 | kvm_queue_exception(vcpu, ctxt->exception.vector); |
54b8486f GN |
4674 | } |
4675 | ||
dd856efa | 4676 | static void init_decode_cache(struct x86_emulate_ctxt *ctxt) |
b5c9ff73 | 4677 | { |
9dac77fa | 4678 | memset(&ctxt->twobyte, 0, |
dd856efa | 4679 | (void *)&ctxt->_regs - (void *)&ctxt->twobyte); |
b5c9ff73 | 4680 | |
9dac77fa AK |
4681 | ctxt->fetch.start = 0; |
4682 | ctxt->fetch.end = 0; | |
4683 | ctxt->io_read.pos = 0; | |
4684 | ctxt->io_read.end = 0; | |
4685 | ctxt->mem_read.pos = 0; | |
4686 | ctxt->mem_read.end = 0; | |
b5c9ff73 TY |
4687 | } |
4688 | ||
8ec4722d MG |
4689 | static void init_emulate_ctxt(struct kvm_vcpu *vcpu) |
4690 | { | |
adf52235 | 4691 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
8ec4722d MG |
4692 | int cs_db, cs_l; |
4693 | ||
8ec4722d MG |
4694 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
4695 | ||
adf52235 TY |
4696 | ctxt->eflags = kvm_get_rflags(vcpu); |
4697 | ctxt->eip = kvm_rip_read(vcpu); | |
4698 | ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : | |
4699 | (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : | |
4700 | cs_l ? X86EMUL_MODE_PROT64 : | |
4701 | cs_db ? X86EMUL_MODE_PROT32 : | |
4702 | X86EMUL_MODE_PROT16; | |
4703 | ctxt->guest_mode = is_guest_mode(vcpu); | |
4704 | ||
dd856efa | 4705 | init_decode_cache(ctxt); |
7ae441ea | 4706 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; |
8ec4722d MG |
4707 | } |
4708 | ||
71f9833b | 4709 | int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) |
63995653 | 4710 | { |
9d74191a | 4711 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
63995653 MG |
4712 | int ret; |
4713 | ||
4714 | init_emulate_ctxt(vcpu); | |
4715 | ||
9dac77fa AK |
4716 | ctxt->op_bytes = 2; |
4717 | ctxt->ad_bytes = 2; | |
4718 | ctxt->_eip = ctxt->eip + inc_eip; | |
9d74191a | 4719 | ret = emulate_int_real(ctxt, irq); |
63995653 MG |
4720 | |
4721 | if (ret != X86EMUL_CONTINUE) | |
4722 | return EMULATE_FAIL; | |
4723 | ||
9dac77fa | 4724 | ctxt->eip = ctxt->_eip; |
9d74191a TY |
4725 | kvm_rip_write(vcpu, ctxt->eip); |
4726 | kvm_set_rflags(vcpu, ctxt->eflags); | |
63995653 MG |
4727 | |
4728 | if (irq == NMI_VECTOR) | |
7460fb4a | 4729 | vcpu->arch.nmi_pending = 0; |
63995653 MG |
4730 | else |
4731 | vcpu->arch.interrupt.pending = false; | |
4732 | ||
4733 | return EMULATE_DONE; | |
4734 | } | |
4735 | EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); | |
4736 | ||
6d77dbfc GN |
4737 | static int handle_emulation_failure(struct kvm_vcpu *vcpu) |
4738 | { | |
fc3a9157 JR |
4739 | int r = EMULATE_DONE; |
4740 | ||
6d77dbfc GN |
4741 | ++vcpu->stat.insn_emulation_fail; |
4742 | trace_kvm_emulate_insn_failed(vcpu); | |
fc3a9157 JR |
4743 | if (!is_guest_mode(vcpu)) { |
4744 | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | |
4745 | vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | |
4746 | vcpu->run->internal.ndata = 0; | |
4747 | r = EMULATE_FAIL; | |
4748 | } | |
6d77dbfc | 4749 | kvm_queue_exception(vcpu, UD_VECTOR); |
fc3a9157 JR |
4750 | |
4751 | return r; | |
6d77dbfc GN |
4752 | } |
4753 | ||
93c05d3e XG |
4754 | static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, |
4755 | bool write_fault_to_shadow_pgtable) | |
a6f177ef | 4756 | { |
95b3cf69 | 4757 | gpa_t gpa = cr2; |
8e3d9d06 | 4758 | pfn_t pfn; |
a6f177ef | 4759 | |
95b3cf69 XG |
4760 | if (!vcpu->arch.mmu.direct_map) { |
4761 | /* | |
4762 | * Write permission should be allowed since only | |
4763 | * write access need to be emulated. | |
4764 | */ | |
4765 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); | |
22368028 | 4766 | |
95b3cf69 XG |
4767 | /* |
4768 | * If the mapping is invalid in guest, let cpu retry | |
4769 | * it to generate fault. | |
4770 | */ | |
4771 | if (gpa == UNMAPPED_GVA) | |
4772 | return true; | |
4773 | } | |
a6f177ef | 4774 | |
8e3d9d06 XG |
4775 | /* |
4776 | * Do not retry the unhandleable instruction if it faults on the | |
4777 | * readonly host memory, otherwise it will goto a infinite loop: | |
4778 | * retry instruction -> write #PF -> emulation fail -> retry | |
4779 | * instruction -> ... | |
4780 | */ | |
4781 | pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); | |
95b3cf69 XG |
4782 | |
4783 | /* | |
4784 | * If the instruction failed on the error pfn, it can not be fixed, | |
4785 | * report the error to userspace. | |
4786 | */ | |
4787 | if (is_error_noslot_pfn(pfn)) | |
4788 | return false; | |
4789 | ||
4790 | kvm_release_pfn_clean(pfn); | |
4791 | ||
4792 | /* The instructions are well-emulated on direct mmu. */ | |
4793 | if (vcpu->arch.mmu.direct_map) { | |
4794 | unsigned int indirect_shadow_pages; | |
4795 | ||
4796 | spin_lock(&vcpu->kvm->mmu_lock); | |
4797 | indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; | |
4798 | spin_unlock(&vcpu->kvm->mmu_lock); | |
4799 | ||
4800 | if (indirect_shadow_pages) | |
4801 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); | |
4802 | ||
a6f177ef | 4803 | return true; |
8e3d9d06 | 4804 | } |
a6f177ef | 4805 | |
95b3cf69 XG |
4806 | /* |
4807 | * if emulation was due to access to shadowed page table | |
4808 | * and it failed try to unshadow page and re-enter the | |
4809 | * guest to let CPU execute the instruction. | |
4810 | */ | |
4811 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); | |
93c05d3e XG |
4812 | |
4813 | /* | |
4814 | * If the access faults on its page table, it can not | |
4815 | * be fixed by unprotecting shadow page and it should | |
4816 | * be reported to userspace. | |
4817 | */ | |
4818 | return !write_fault_to_shadow_pgtable; | |
a6f177ef GN |
4819 | } |
4820 | ||
1cb3f3ae XG |
4821 | static bool retry_instruction(struct x86_emulate_ctxt *ctxt, |
4822 | unsigned long cr2, int emulation_type) | |
4823 | { | |
4824 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
4825 | unsigned long last_retry_eip, last_retry_addr, gpa = cr2; | |
4826 | ||
4827 | last_retry_eip = vcpu->arch.last_retry_eip; | |
4828 | last_retry_addr = vcpu->arch.last_retry_addr; | |
4829 | ||
4830 | /* | |
4831 | * If the emulation is caused by #PF and it is non-page_table | |
4832 | * writing instruction, it means the VM-EXIT is caused by shadow | |
4833 | * page protected, we can zap the shadow page and retry this | |
4834 | * instruction directly. | |
4835 | * | |
4836 | * Note: if the guest uses a non-page-table modifying instruction | |
4837 | * on the PDE that points to the instruction, then we will unmap | |
4838 | * the instruction and go to an infinite loop. So, we cache the | |
4839 | * last retried eip and the last fault address, if we meet the eip | |
4840 | * and the address again, we can break out of the potential infinite | |
4841 | * loop. | |
4842 | */ | |
4843 | vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; | |
4844 | ||
4845 | if (!(emulation_type & EMULTYPE_RETRY)) | |
4846 | return false; | |
4847 | ||
4848 | if (x86_page_table_writing_insn(ctxt)) | |
4849 | return false; | |
4850 | ||
4851 | if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) | |
4852 | return false; | |
4853 | ||
4854 | vcpu->arch.last_retry_eip = ctxt->eip; | |
4855 | vcpu->arch.last_retry_addr = cr2; | |
4856 | ||
4857 | if (!vcpu->arch.mmu.direct_map) | |
4858 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); | |
4859 | ||
22368028 | 4860 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); |
1cb3f3ae XG |
4861 | |
4862 | return true; | |
4863 | } | |
4864 | ||
716d51ab GN |
4865 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu); |
4866 | static int complete_emulated_pio(struct kvm_vcpu *vcpu); | |
4867 | ||
51d8b661 AP |
4868 | int x86_emulate_instruction(struct kvm_vcpu *vcpu, |
4869 | unsigned long cr2, | |
dc25e89e AP |
4870 | int emulation_type, |
4871 | void *insn, | |
4872 | int insn_len) | |
bbd9b64e | 4873 | { |
95cb2295 | 4874 | int r; |
9d74191a | 4875 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
7ae441ea | 4876 | bool writeback = true; |
93c05d3e | 4877 | bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; |
bbd9b64e | 4878 | |
93c05d3e XG |
4879 | /* |
4880 | * Clear write_fault_to_shadow_pgtable here to ensure it is | |
4881 | * never reused. | |
4882 | */ | |
4883 | vcpu->arch.write_fault_to_shadow_pgtable = false; | |
26eef70c | 4884 | kvm_clear_exception_queue(vcpu); |
8d7d8102 | 4885 | |
571008da | 4886 | if (!(emulation_type & EMULTYPE_NO_DECODE)) { |
8ec4722d | 4887 | init_emulate_ctxt(vcpu); |
9d74191a TY |
4888 | ctxt->interruptibility = 0; |
4889 | ctxt->have_exception = false; | |
4890 | ctxt->perm_ok = false; | |
bbd9b64e | 4891 | |
9d74191a | 4892 | ctxt->only_vendor_specific_insn |
4005996e AK |
4893 | = emulation_type & EMULTYPE_TRAP_UD; |
4894 | ||
9d74191a | 4895 | r = x86_decode_insn(ctxt, insn, insn_len); |
bbd9b64e | 4896 | |
e46479f8 | 4897 | trace_kvm_emulate_insn_start(vcpu); |
f2b5756b | 4898 | ++vcpu->stat.insn_emulation; |
1d2887e2 | 4899 | if (r != EMULATION_OK) { |
4005996e AK |
4900 | if (emulation_type & EMULTYPE_TRAP_UD) |
4901 | return EMULATE_FAIL; | |
93c05d3e XG |
4902 | if (reexecute_instruction(vcpu, cr2, |
4903 | write_fault_to_spt)) | |
bbd9b64e | 4904 | return EMULATE_DONE; |
6d77dbfc GN |
4905 | if (emulation_type & EMULTYPE_SKIP) |
4906 | return EMULATE_FAIL; | |
4907 | return handle_emulation_failure(vcpu); | |
bbd9b64e CO |
4908 | } |
4909 | } | |
4910 | ||
ba8afb6b | 4911 | if (emulation_type & EMULTYPE_SKIP) { |
9dac77fa | 4912 | kvm_rip_write(vcpu, ctxt->_eip); |
ba8afb6b GN |
4913 | return EMULATE_DONE; |
4914 | } | |
4915 | ||
1cb3f3ae XG |
4916 | if (retry_instruction(ctxt, cr2, emulation_type)) |
4917 | return EMULATE_DONE; | |
4918 | ||
7ae441ea | 4919 | /* this is needed for vmware backdoor interface to work since it |
4d2179e1 | 4920 | changes registers values during IO operation */ |
7ae441ea GN |
4921 | if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { |
4922 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; | |
dd856efa | 4923 | emulator_invalidate_register_cache(ctxt); |
7ae441ea | 4924 | } |
4d2179e1 | 4925 | |
5cd21917 | 4926 | restart: |
9d74191a | 4927 | r = x86_emulate_insn(ctxt); |
bbd9b64e | 4928 | |
775fde86 JR |
4929 | if (r == EMULATION_INTERCEPTED) |
4930 | return EMULATE_DONE; | |
4931 | ||
d2ddd1c4 | 4932 | if (r == EMULATION_FAILED) { |
93c05d3e | 4933 | if (reexecute_instruction(vcpu, cr2, write_fault_to_spt)) |
c3cd7ffa GN |
4934 | return EMULATE_DONE; |
4935 | ||
6d77dbfc | 4936 | return handle_emulation_failure(vcpu); |
bbd9b64e CO |
4937 | } |
4938 | ||
9d74191a | 4939 | if (ctxt->have_exception) { |
54b8486f | 4940 | inject_emulated_exception(vcpu); |
d2ddd1c4 GN |
4941 | r = EMULATE_DONE; |
4942 | } else if (vcpu->arch.pio.count) { | |
3457e419 GN |
4943 | if (!vcpu->arch.pio.in) |
4944 | vcpu->arch.pio.count = 0; | |
716d51ab | 4945 | else { |
7ae441ea | 4946 | writeback = false; |
716d51ab GN |
4947 | vcpu->arch.complete_userspace_io = complete_emulated_pio; |
4948 | } | |
e85d28f8 | 4949 | r = EMULATE_DO_MMIO; |
7ae441ea GN |
4950 | } else if (vcpu->mmio_needed) { |
4951 | if (!vcpu->mmio_is_write) | |
4952 | writeback = false; | |
e85d28f8 | 4953 | r = EMULATE_DO_MMIO; |
716d51ab | 4954 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; |
7ae441ea | 4955 | } else if (r == EMULATION_RESTART) |
5cd21917 | 4956 | goto restart; |
d2ddd1c4 GN |
4957 | else |
4958 | r = EMULATE_DONE; | |
f850e2e6 | 4959 | |
7ae441ea | 4960 | if (writeback) { |
9d74191a TY |
4961 | toggle_interruptibility(vcpu, ctxt->interruptibility); |
4962 | kvm_set_rflags(vcpu, ctxt->eflags); | |
7ae441ea | 4963 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
7ae441ea | 4964 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
9d74191a | 4965 | kvm_rip_write(vcpu, ctxt->eip); |
7ae441ea GN |
4966 | } else |
4967 | vcpu->arch.emulate_regs_need_sync_to_vcpu = true; | |
e85d28f8 GN |
4968 | |
4969 | return r; | |
de7d789a | 4970 | } |
51d8b661 | 4971 | EXPORT_SYMBOL_GPL(x86_emulate_instruction); |
de7d789a | 4972 | |
cf8f70bf | 4973 | int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) |
de7d789a | 4974 | { |
cf8f70bf | 4975 | unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); |
ca1d4a9e AK |
4976 | int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, |
4977 | size, port, &val, 1); | |
cf8f70bf | 4978 | /* do not return to emulator after return from userspace */ |
7972995b | 4979 | vcpu->arch.pio.count = 0; |
de7d789a CO |
4980 | return ret; |
4981 | } | |
cf8f70bf | 4982 | EXPORT_SYMBOL_GPL(kvm_fast_pio_out); |
de7d789a | 4983 | |
8cfdc000 ZA |
4984 | static void tsc_bad(void *info) |
4985 | { | |
0a3aee0d | 4986 | __this_cpu_write(cpu_tsc_khz, 0); |
8cfdc000 ZA |
4987 | } |
4988 | ||
4989 | static void tsc_khz_changed(void *data) | |
c8076604 | 4990 | { |
8cfdc000 ZA |
4991 | struct cpufreq_freqs *freq = data; |
4992 | unsigned long khz = 0; | |
4993 | ||
4994 | if (data) | |
4995 | khz = freq->new; | |
4996 | else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | |
4997 | khz = cpufreq_quick_get(raw_smp_processor_id()); | |
4998 | if (!khz) | |
4999 | khz = tsc_khz; | |
0a3aee0d | 5000 | __this_cpu_write(cpu_tsc_khz, khz); |
c8076604 GH |
5001 | } |
5002 | ||
c8076604 GH |
5003 | static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
5004 | void *data) | |
5005 | { | |
5006 | struct cpufreq_freqs *freq = data; | |
5007 | struct kvm *kvm; | |
5008 | struct kvm_vcpu *vcpu; | |
5009 | int i, send_ipi = 0; | |
5010 | ||
8cfdc000 ZA |
5011 | /* |
5012 | * We allow guests to temporarily run on slowing clocks, | |
5013 | * provided we notify them after, or to run on accelerating | |
5014 | * clocks, provided we notify them before. Thus time never | |
5015 | * goes backwards. | |
5016 | * | |
5017 | * However, we have a problem. We can't atomically update | |
5018 | * the frequency of a given CPU from this function; it is | |
5019 | * merely a notifier, which can be called from any CPU. | |
5020 | * Changing the TSC frequency at arbitrary points in time | |
5021 | * requires a recomputation of local variables related to | |
5022 | * the TSC for each VCPU. We must flag these local variables | |
5023 | * to be updated and be sure the update takes place with the | |
5024 | * new frequency before any guests proceed. | |
5025 | * | |
5026 | * Unfortunately, the combination of hotplug CPU and frequency | |
5027 | * change creates an intractable locking scenario; the order | |
5028 | * of when these callouts happen is undefined with respect to | |
5029 | * CPU hotplug, and they can race with each other. As such, | |
5030 | * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is | |
5031 | * undefined; you can actually have a CPU frequency change take | |
5032 | * place in between the computation of X and the setting of the | |
5033 | * variable. To protect against this problem, all updates of | |
5034 | * the per_cpu tsc_khz variable are done in an interrupt | |
5035 | * protected IPI, and all callers wishing to update the value | |
5036 | * must wait for a synchronous IPI to complete (which is trivial | |
5037 | * if the caller is on the CPU already). This establishes the | |
5038 | * necessary total order on variable updates. | |
5039 | * | |
5040 | * Note that because a guest time update may take place | |
5041 | * anytime after the setting of the VCPU's request bit, the | |
5042 | * correct TSC value must be set before the request. However, | |
5043 | * to ensure the update actually makes it to any guest which | |
5044 | * starts running in hardware virtualization between the set | |
5045 | * and the acquisition of the spinlock, we must also ping the | |
5046 | * CPU after setting the request bit. | |
5047 | * | |
5048 | */ | |
5049 | ||
c8076604 GH |
5050 | if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) |
5051 | return 0; | |
5052 | if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) | |
5053 | return 0; | |
8cfdc000 ZA |
5054 | |
5055 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); | |
c8076604 | 5056 | |
e935b837 | 5057 | raw_spin_lock(&kvm_lock); |
c8076604 | 5058 | list_for_each_entry(kvm, &vm_list, vm_list) { |
988a2cae | 5059 | kvm_for_each_vcpu(i, vcpu, kvm) { |
c8076604 GH |
5060 | if (vcpu->cpu != freq->cpu) |
5061 | continue; | |
c285545f | 5062 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
c8076604 | 5063 | if (vcpu->cpu != smp_processor_id()) |
8cfdc000 | 5064 | send_ipi = 1; |
c8076604 GH |
5065 | } |
5066 | } | |
e935b837 | 5067 | raw_spin_unlock(&kvm_lock); |
c8076604 GH |
5068 | |
5069 | if (freq->old < freq->new && send_ipi) { | |
5070 | /* | |
5071 | * We upscale the frequency. Must make the guest | |
5072 | * doesn't see old kvmclock values while running with | |
5073 | * the new frequency, otherwise we risk the guest sees | |
5074 | * time go backwards. | |
5075 | * | |
5076 | * In case we update the frequency for another cpu | |
5077 | * (which might be in guest context) send an interrupt | |
5078 | * to kick the cpu out of guest context. Next time | |
5079 | * guest context is entered kvmclock will be updated, | |
5080 | * so the guest will not see stale values. | |
5081 | */ | |
8cfdc000 | 5082 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); |
c8076604 GH |
5083 | } |
5084 | return 0; | |
5085 | } | |
5086 | ||
5087 | static struct notifier_block kvmclock_cpufreq_notifier_block = { | |
8cfdc000 ZA |
5088 | .notifier_call = kvmclock_cpufreq_notifier |
5089 | }; | |
5090 | ||
5091 | static int kvmclock_cpu_notifier(struct notifier_block *nfb, | |
5092 | unsigned long action, void *hcpu) | |
5093 | { | |
5094 | unsigned int cpu = (unsigned long)hcpu; | |
5095 | ||
5096 | switch (action) { | |
5097 | case CPU_ONLINE: | |
5098 | case CPU_DOWN_FAILED: | |
5099 | smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); | |
5100 | break; | |
5101 | case CPU_DOWN_PREPARE: | |
5102 | smp_call_function_single(cpu, tsc_bad, NULL, 1); | |
5103 | break; | |
5104 | } | |
5105 | return NOTIFY_OK; | |
5106 | } | |
5107 | ||
5108 | static struct notifier_block kvmclock_cpu_notifier_block = { | |
5109 | .notifier_call = kvmclock_cpu_notifier, | |
5110 | .priority = -INT_MAX | |
c8076604 GH |
5111 | }; |
5112 | ||
b820cc0c ZA |
5113 | static void kvm_timer_init(void) |
5114 | { | |
5115 | int cpu; | |
5116 | ||
c285545f | 5117 | max_tsc_khz = tsc_khz; |
8cfdc000 | 5118 | register_hotcpu_notifier(&kvmclock_cpu_notifier_block); |
b820cc0c | 5119 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
c285545f ZA |
5120 | #ifdef CONFIG_CPU_FREQ |
5121 | struct cpufreq_policy policy; | |
5122 | memset(&policy, 0, sizeof(policy)); | |
3e26f230 AK |
5123 | cpu = get_cpu(); |
5124 | cpufreq_get_policy(&policy, cpu); | |
c285545f ZA |
5125 | if (policy.cpuinfo.max_freq) |
5126 | max_tsc_khz = policy.cpuinfo.max_freq; | |
3e26f230 | 5127 | put_cpu(); |
c285545f | 5128 | #endif |
b820cc0c ZA |
5129 | cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, |
5130 | CPUFREQ_TRANSITION_NOTIFIER); | |
5131 | } | |
c285545f | 5132 | pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); |
8cfdc000 ZA |
5133 | for_each_online_cpu(cpu) |
5134 | smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); | |
b820cc0c ZA |
5135 | } |
5136 | ||
ff9d07a0 ZY |
5137 | static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); |
5138 | ||
f5132b01 | 5139 | int kvm_is_in_guest(void) |
ff9d07a0 | 5140 | { |
086c9855 | 5141 | return __this_cpu_read(current_vcpu) != NULL; |
ff9d07a0 ZY |
5142 | } |
5143 | ||
5144 | static int kvm_is_user_mode(void) | |
5145 | { | |
5146 | int user_mode = 3; | |
dcf46b94 | 5147 | |
086c9855 AS |
5148 | if (__this_cpu_read(current_vcpu)) |
5149 | user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); | |
dcf46b94 | 5150 | |
ff9d07a0 ZY |
5151 | return user_mode != 0; |
5152 | } | |
5153 | ||
5154 | static unsigned long kvm_get_guest_ip(void) | |
5155 | { | |
5156 | unsigned long ip = 0; | |
dcf46b94 | 5157 | |
086c9855 AS |
5158 | if (__this_cpu_read(current_vcpu)) |
5159 | ip = kvm_rip_read(__this_cpu_read(current_vcpu)); | |
dcf46b94 | 5160 | |
ff9d07a0 ZY |
5161 | return ip; |
5162 | } | |
5163 | ||
5164 | static struct perf_guest_info_callbacks kvm_guest_cbs = { | |
5165 | .is_in_guest = kvm_is_in_guest, | |
5166 | .is_user_mode = kvm_is_user_mode, | |
5167 | .get_guest_ip = kvm_get_guest_ip, | |
5168 | }; | |
5169 | ||
5170 | void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) | |
5171 | { | |
086c9855 | 5172 | __this_cpu_write(current_vcpu, vcpu); |
ff9d07a0 ZY |
5173 | } |
5174 | EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); | |
5175 | ||
5176 | void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) | |
5177 | { | |
086c9855 | 5178 | __this_cpu_write(current_vcpu, NULL); |
ff9d07a0 ZY |
5179 | } |
5180 | EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); | |
5181 | ||
ce88decf XG |
5182 | static void kvm_set_mmio_spte_mask(void) |
5183 | { | |
5184 | u64 mask; | |
5185 | int maxphyaddr = boot_cpu_data.x86_phys_bits; | |
5186 | ||
5187 | /* | |
5188 | * Set the reserved bits and the present bit of an paging-structure | |
5189 | * entry to generate page fault with PFER.RSV = 1. | |
5190 | */ | |
5191 | mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; | |
5192 | mask |= 1ull; | |
5193 | ||
5194 | #ifdef CONFIG_X86_64 | |
5195 | /* | |
5196 | * If reserved bit is not supported, clear the present bit to disable | |
5197 | * mmio page fault. | |
5198 | */ | |
5199 | if (maxphyaddr == 52) | |
5200 | mask &= ~1ull; | |
5201 | #endif | |
5202 | ||
5203 | kvm_mmu_set_mmio_spte_mask(mask); | |
5204 | } | |
5205 | ||
16e8d74d MT |
5206 | #ifdef CONFIG_X86_64 |
5207 | static void pvclock_gtod_update_fn(struct work_struct *work) | |
5208 | { | |
d828199e MT |
5209 | struct kvm *kvm; |
5210 | ||
5211 | struct kvm_vcpu *vcpu; | |
5212 | int i; | |
5213 | ||
5214 | raw_spin_lock(&kvm_lock); | |
5215 | list_for_each_entry(kvm, &vm_list, vm_list) | |
5216 | kvm_for_each_vcpu(i, vcpu, kvm) | |
5217 | set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests); | |
5218 | atomic_set(&kvm_guest_has_master_clock, 0); | |
5219 | raw_spin_unlock(&kvm_lock); | |
16e8d74d MT |
5220 | } |
5221 | ||
5222 | static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); | |
5223 | ||
5224 | /* | |
5225 | * Notification about pvclock gtod data update. | |
5226 | */ | |
5227 | static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, | |
5228 | void *priv) | |
5229 | { | |
5230 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
5231 | struct timekeeper *tk = priv; | |
5232 | ||
5233 | update_pvclock_gtod(tk); | |
5234 | ||
5235 | /* disable master clock if host does not trust, or does not | |
5236 | * use, TSC clocksource | |
5237 | */ | |
5238 | if (gtod->clock.vclock_mode != VCLOCK_TSC && | |
5239 | atomic_read(&kvm_guest_has_master_clock) != 0) | |
5240 | queue_work(system_long_wq, &pvclock_gtod_work); | |
5241 | ||
5242 | return 0; | |
5243 | } | |
5244 | ||
5245 | static struct notifier_block pvclock_gtod_notifier = { | |
5246 | .notifier_call = pvclock_gtod_notify, | |
5247 | }; | |
5248 | #endif | |
5249 | ||
f8c16bba | 5250 | int kvm_arch_init(void *opaque) |
043405e1 | 5251 | { |
b820cc0c | 5252 | int r; |
f8c16bba ZX |
5253 | struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; |
5254 | ||
f8c16bba ZX |
5255 | if (kvm_x86_ops) { |
5256 | printk(KERN_ERR "kvm: already loaded the other module\n"); | |
56c6d28a ZX |
5257 | r = -EEXIST; |
5258 | goto out; | |
f8c16bba ZX |
5259 | } |
5260 | ||
5261 | if (!ops->cpu_has_kvm_support()) { | |
5262 | printk(KERN_ERR "kvm: no hardware support\n"); | |
56c6d28a ZX |
5263 | r = -EOPNOTSUPP; |
5264 | goto out; | |
f8c16bba ZX |
5265 | } |
5266 | if (ops->disabled_by_bios()) { | |
5267 | printk(KERN_ERR "kvm: disabled by bios\n"); | |
56c6d28a ZX |
5268 | r = -EOPNOTSUPP; |
5269 | goto out; | |
f8c16bba ZX |
5270 | } |
5271 | ||
97db56ce AK |
5272 | r = kvm_mmu_module_init(); |
5273 | if (r) | |
5274 | goto out; | |
5275 | ||
ce88decf | 5276 | kvm_set_mmio_spte_mask(); |
97db56ce AK |
5277 | kvm_init_msr_list(); |
5278 | ||
f8c16bba | 5279 | kvm_x86_ops = ops; |
7b52345e | 5280 | kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, |
4b12f0de | 5281 | PT_DIRTY_MASK, PT64_NX_MASK, 0); |
c8076604 | 5282 | |
b820cc0c | 5283 | kvm_timer_init(); |
c8076604 | 5284 | |
ff9d07a0 ZY |
5285 | perf_register_guest_info_callbacks(&kvm_guest_cbs); |
5286 | ||
2acf923e DC |
5287 | if (cpu_has_xsave) |
5288 | host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); | |
5289 | ||
c5cc421b | 5290 | kvm_lapic_init(); |
16e8d74d MT |
5291 | #ifdef CONFIG_X86_64 |
5292 | pvclock_gtod_register_notifier(&pvclock_gtod_notifier); | |
5293 | #endif | |
5294 | ||
f8c16bba | 5295 | return 0; |
56c6d28a ZX |
5296 | |
5297 | out: | |
56c6d28a | 5298 | return r; |
043405e1 | 5299 | } |
8776e519 | 5300 | |
f8c16bba ZX |
5301 | void kvm_arch_exit(void) |
5302 | { | |
ff9d07a0 ZY |
5303 | perf_unregister_guest_info_callbacks(&kvm_guest_cbs); |
5304 | ||
888d256e JK |
5305 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
5306 | cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, | |
5307 | CPUFREQ_TRANSITION_NOTIFIER); | |
8cfdc000 | 5308 | unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); |
16e8d74d MT |
5309 | #ifdef CONFIG_X86_64 |
5310 | pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); | |
5311 | #endif | |
f8c16bba | 5312 | kvm_x86_ops = NULL; |
56c6d28a ZX |
5313 | kvm_mmu_module_exit(); |
5314 | } | |
f8c16bba | 5315 | |
8776e519 HB |
5316 | int kvm_emulate_halt(struct kvm_vcpu *vcpu) |
5317 | { | |
5318 | ++vcpu->stat.halt_exits; | |
5319 | if (irqchip_in_kernel(vcpu->kvm)) { | |
a4535290 | 5320 | vcpu->arch.mp_state = KVM_MP_STATE_HALTED; |
8776e519 HB |
5321 | return 1; |
5322 | } else { | |
5323 | vcpu->run->exit_reason = KVM_EXIT_HLT; | |
5324 | return 0; | |
5325 | } | |
5326 | } | |
5327 | EXPORT_SYMBOL_GPL(kvm_emulate_halt); | |
5328 | ||
55cd8e5a GN |
5329 | int kvm_hv_hypercall(struct kvm_vcpu *vcpu) |
5330 | { | |
5331 | u64 param, ingpa, outgpa, ret; | |
5332 | uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; | |
5333 | bool fast, longmode; | |
5334 | int cs_db, cs_l; | |
5335 | ||
5336 | /* | |
5337 | * hypercall generates UD from non zero cpl and real mode | |
5338 | * per HYPER-V spec | |
5339 | */ | |
3eeb3288 | 5340 | if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { |
55cd8e5a GN |
5341 | kvm_queue_exception(vcpu, UD_VECTOR); |
5342 | return 0; | |
5343 | } | |
5344 | ||
5345 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); | |
5346 | longmode = is_long_mode(vcpu) && cs_l == 1; | |
5347 | ||
5348 | if (!longmode) { | |
ccd46936 GN |
5349 | param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | |
5350 | (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); | |
5351 | ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | | |
5352 | (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); | |
5353 | outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | | |
5354 | (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); | |
55cd8e5a GN |
5355 | } |
5356 | #ifdef CONFIG_X86_64 | |
5357 | else { | |
5358 | param = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
5359 | ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); | |
5360 | outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); | |
5361 | } | |
5362 | #endif | |
5363 | ||
5364 | code = param & 0xffff; | |
5365 | fast = (param >> 16) & 0x1; | |
5366 | rep_cnt = (param >> 32) & 0xfff; | |
5367 | rep_idx = (param >> 48) & 0xfff; | |
5368 | ||
5369 | trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); | |
5370 | ||
c25bc163 GN |
5371 | switch (code) { |
5372 | case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: | |
5373 | kvm_vcpu_on_spin(vcpu); | |
5374 | break; | |
5375 | default: | |
5376 | res = HV_STATUS_INVALID_HYPERCALL_CODE; | |
5377 | break; | |
5378 | } | |
55cd8e5a GN |
5379 | |
5380 | ret = res | (((u64)rep_done & 0xfff) << 32); | |
5381 | if (longmode) { | |
5382 | kvm_register_write(vcpu, VCPU_REGS_RAX, ret); | |
5383 | } else { | |
5384 | kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); | |
5385 | kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); | |
5386 | } | |
5387 | ||
5388 | return 1; | |
5389 | } | |
5390 | ||
8776e519 HB |
5391 | int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) |
5392 | { | |
5393 | unsigned long nr, a0, a1, a2, a3, ret; | |
2f333bcb | 5394 | int r = 1; |
8776e519 | 5395 | |
55cd8e5a GN |
5396 | if (kvm_hv_hypercall_enabled(vcpu->kvm)) |
5397 | return kvm_hv_hypercall(vcpu); | |
5398 | ||
5fdbf976 MT |
5399 | nr = kvm_register_read(vcpu, VCPU_REGS_RAX); |
5400 | a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); | |
5401 | a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
5402 | a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); | |
5403 | a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); | |
8776e519 | 5404 | |
229456fc | 5405 | trace_kvm_hypercall(nr, a0, a1, a2, a3); |
2714d1d3 | 5406 | |
8776e519 HB |
5407 | if (!is_long_mode(vcpu)) { |
5408 | nr &= 0xFFFFFFFF; | |
5409 | a0 &= 0xFFFFFFFF; | |
5410 | a1 &= 0xFFFFFFFF; | |
5411 | a2 &= 0xFFFFFFFF; | |
5412 | a3 &= 0xFFFFFFFF; | |
5413 | } | |
5414 | ||
07708c4a JK |
5415 | if (kvm_x86_ops->get_cpl(vcpu) != 0) { |
5416 | ret = -KVM_EPERM; | |
5417 | goto out; | |
5418 | } | |
5419 | ||
8776e519 | 5420 | switch (nr) { |
b93463aa AK |
5421 | case KVM_HC_VAPIC_POLL_IRQ: |
5422 | ret = 0; | |
5423 | break; | |
8776e519 HB |
5424 | default: |
5425 | ret = -KVM_ENOSYS; | |
5426 | break; | |
5427 | } | |
07708c4a | 5428 | out: |
5fdbf976 | 5429 | kvm_register_write(vcpu, VCPU_REGS_RAX, ret); |
f11c3a8d | 5430 | ++vcpu->stat.hypercalls; |
2f333bcb | 5431 | return r; |
8776e519 HB |
5432 | } |
5433 | EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); | |
5434 | ||
b6785def | 5435 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) |
8776e519 | 5436 | { |
d6aa1000 | 5437 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
8776e519 | 5438 | char instruction[3]; |
5fdbf976 | 5439 | unsigned long rip = kvm_rip_read(vcpu); |
8776e519 | 5440 | |
8776e519 HB |
5441 | /* |
5442 | * Blow out the MMU to ensure that no other VCPU has an active mapping | |
5443 | * to ensure that the updated hypercall appears atomically across all | |
5444 | * VCPUs. | |
5445 | */ | |
5446 | kvm_mmu_zap_all(vcpu->kvm); | |
5447 | ||
8776e519 | 5448 | kvm_x86_ops->patch_hypercall(vcpu, instruction); |
8776e519 | 5449 | |
9d74191a | 5450 | return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); |
8776e519 HB |
5451 | } |
5452 | ||
b6c7a5dc HB |
5453 | /* |
5454 | * Check if userspace requested an interrupt window, and that the | |
5455 | * interrupt window is open. | |
5456 | * | |
5457 | * No need to exit to userspace if we already have an interrupt queued. | |
5458 | */ | |
851ba692 | 5459 | static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) |
b6c7a5dc | 5460 | { |
8061823a | 5461 | return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && |
851ba692 | 5462 | vcpu->run->request_interrupt_window && |
5df56646 | 5463 | kvm_arch_interrupt_allowed(vcpu)); |
b6c7a5dc HB |
5464 | } |
5465 | ||
851ba692 | 5466 | static void post_kvm_run_save(struct kvm_vcpu *vcpu) |
b6c7a5dc | 5467 | { |
851ba692 AK |
5468 | struct kvm_run *kvm_run = vcpu->run; |
5469 | ||
91586a3b | 5470 | kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; |
2d3ad1f4 | 5471 | kvm_run->cr8 = kvm_get_cr8(vcpu); |
b6c7a5dc | 5472 | kvm_run->apic_base = kvm_get_apic_base(vcpu); |
4531220b | 5473 | if (irqchip_in_kernel(vcpu->kvm)) |
b6c7a5dc | 5474 | kvm_run->ready_for_interrupt_injection = 1; |
4531220b | 5475 | else |
b6c7a5dc | 5476 | kvm_run->ready_for_interrupt_injection = |
fa9726b0 GN |
5477 | kvm_arch_interrupt_allowed(vcpu) && |
5478 | !kvm_cpu_has_interrupt(vcpu) && | |
5479 | !kvm_event_needs_reinjection(vcpu); | |
b6c7a5dc HB |
5480 | } |
5481 | ||
4484141a | 5482 | static int vapic_enter(struct kvm_vcpu *vcpu) |
b93463aa AK |
5483 | { |
5484 | struct kvm_lapic *apic = vcpu->arch.apic; | |
5485 | struct page *page; | |
5486 | ||
5487 | if (!apic || !apic->vapic_addr) | |
4484141a | 5488 | return 0; |
b93463aa AK |
5489 | |
5490 | page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); | |
4484141a XG |
5491 | if (is_error_page(page)) |
5492 | return -EFAULT; | |
72dc67a6 IE |
5493 | |
5494 | vcpu->arch.apic->vapic_page = page; | |
4484141a | 5495 | return 0; |
b93463aa AK |
5496 | } |
5497 | ||
5498 | static void vapic_exit(struct kvm_vcpu *vcpu) | |
5499 | { | |
5500 | struct kvm_lapic *apic = vcpu->arch.apic; | |
f656ce01 | 5501 | int idx; |
b93463aa AK |
5502 | |
5503 | if (!apic || !apic->vapic_addr) | |
5504 | return; | |
5505 | ||
f656ce01 | 5506 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
b93463aa AK |
5507 | kvm_release_page_dirty(apic->vapic_page); |
5508 | mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); | |
f656ce01 | 5509 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
b93463aa AK |
5510 | } |
5511 | ||
95ba8273 GN |
5512 | static void update_cr8_intercept(struct kvm_vcpu *vcpu) |
5513 | { | |
5514 | int max_irr, tpr; | |
5515 | ||
5516 | if (!kvm_x86_ops->update_cr8_intercept) | |
5517 | return; | |
5518 | ||
88c808fd AK |
5519 | if (!vcpu->arch.apic) |
5520 | return; | |
5521 | ||
8db3baa2 GN |
5522 | if (!vcpu->arch.apic->vapic_addr) |
5523 | max_irr = kvm_lapic_find_highest_irr(vcpu); | |
5524 | else | |
5525 | max_irr = -1; | |
95ba8273 GN |
5526 | |
5527 | if (max_irr != -1) | |
5528 | max_irr >>= 4; | |
5529 | ||
5530 | tpr = kvm_lapic_get_cr8(vcpu); | |
5531 | ||
5532 | kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); | |
5533 | } | |
5534 | ||
851ba692 | 5535 | static void inject_pending_event(struct kvm_vcpu *vcpu) |
95ba8273 GN |
5536 | { |
5537 | /* try to reinject previous events if any */ | |
b59bb7bd | 5538 | if (vcpu->arch.exception.pending) { |
5c1c85d0 AK |
5539 | trace_kvm_inj_exception(vcpu->arch.exception.nr, |
5540 | vcpu->arch.exception.has_error_code, | |
5541 | vcpu->arch.exception.error_code); | |
b59bb7bd GN |
5542 | kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, |
5543 | vcpu->arch.exception.has_error_code, | |
ce7ddec4 JR |
5544 | vcpu->arch.exception.error_code, |
5545 | vcpu->arch.exception.reinject); | |
b59bb7bd GN |
5546 | return; |
5547 | } | |
5548 | ||
95ba8273 GN |
5549 | if (vcpu->arch.nmi_injected) { |
5550 | kvm_x86_ops->set_nmi(vcpu); | |
5551 | return; | |
5552 | } | |
5553 | ||
5554 | if (vcpu->arch.interrupt.pending) { | |
66fd3f7f | 5555 | kvm_x86_ops->set_irq(vcpu); |
95ba8273 GN |
5556 | return; |
5557 | } | |
5558 | ||
5559 | /* try to inject new event if pending */ | |
5560 | if (vcpu->arch.nmi_pending) { | |
5561 | if (kvm_x86_ops->nmi_allowed(vcpu)) { | |
7460fb4a | 5562 | --vcpu->arch.nmi_pending; |
95ba8273 GN |
5563 | vcpu->arch.nmi_injected = true; |
5564 | kvm_x86_ops->set_nmi(vcpu); | |
5565 | } | |
c7c9c56c | 5566 | } else if (kvm_cpu_has_injectable_intr(vcpu)) { |
95ba8273 | 5567 | if (kvm_x86_ops->interrupt_allowed(vcpu)) { |
66fd3f7f GN |
5568 | kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), |
5569 | false); | |
5570 | kvm_x86_ops->set_irq(vcpu); | |
95ba8273 GN |
5571 | } |
5572 | } | |
5573 | } | |
5574 | ||
2acf923e DC |
5575 | static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) |
5576 | { | |
5577 | if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && | |
5578 | !vcpu->guest_xcr0_loaded) { | |
5579 | /* kvm_set_xcr() also depends on this */ | |
5580 | xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); | |
5581 | vcpu->guest_xcr0_loaded = 1; | |
5582 | } | |
5583 | } | |
5584 | ||
5585 | static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) | |
5586 | { | |
5587 | if (vcpu->guest_xcr0_loaded) { | |
5588 | if (vcpu->arch.xcr0 != host_xcr0) | |
5589 | xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); | |
5590 | vcpu->guest_xcr0_loaded = 0; | |
5591 | } | |
5592 | } | |
5593 | ||
7460fb4a AK |
5594 | static void process_nmi(struct kvm_vcpu *vcpu) |
5595 | { | |
5596 | unsigned limit = 2; | |
5597 | ||
5598 | /* | |
5599 | * x86 is limited to one NMI running, and one NMI pending after it. | |
5600 | * If an NMI is already in progress, limit further NMIs to just one. | |
5601 | * Otherwise, allow two (and we'll inject the first one immediately). | |
5602 | */ | |
5603 | if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) | |
5604 | limit = 1; | |
5605 | ||
5606 | vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); | |
5607 | vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); | |
5608 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
5609 | } | |
5610 | ||
d828199e MT |
5611 | static void kvm_gen_update_masterclock(struct kvm *kvm) |
5612 | { | |
5613 | #ifdef CONFIG_X86_64 | |
5614 | int i; | |
5615 | struct kvm_vcpu *vcpu; | |
5616 | struct kvm_arch *ka = &kvm->arch; | |
5617 | ||
5618 | spin_lock(&ka->pvclock_gtod_sync_lock); | |
5619 | kvm_make_mclock_inprogress_request(kvm); | |
5620 | /* no guest entries from this point */ | |
5621 | pvclock_update_vm_gtod_copy(kvm); | |
5622 | ||
5623 | kvm_for_each_vcpu(i, vcpu, kvm) | |
5624 | set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); | |
5625 | ||
5626 | /* guest entries allowed */ | |
5627 | kvm_for_each_vcpu(i, vcpu, kvm) | |
5628 | clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); | |
5629 | ||
5630 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
5631 | #endif | |
5632 | } | |
5633 | ||
c7c9c56c YZ |
5634 | static void update_eoi_exitmap(struct kvm_vcpu *vcpu) |
5635 | { | |
5636 | u64 eoi_exit_bitmap[4]; | |
5637 | ||
5638 | memset(eoi_exit_bitmap, 0, 32); | |
5639 | ||
5640 | kvm_ioapic_calculate_eoi_exitmap(vcpu, eoi_exit_bitmap); | |
5641 | kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); | |
5642 | } | |
5643 | ||
851ba692 | 5644 | static int vcpu_enter_guest(struct kvm_vcpu *vcpu) |
b6c7a5dc HB |
5645 | { |
5646 | int r; | |
6a8b1d13 | 5647 | bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && |
851ba692 | 5648 | vcpu->run->request_interrupt_window; |
d6185f20 | 5649 | bool req_immediate_exit = 0; |
b6c7a5dc | 5650 | |
3e007509 | 5651 | if (vcpu->requests) { |
a8eeb04a | 5652 | if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) |
2e53d63a | 5653 | kvm_mmu_unload(vcpu); |
a8eeb04a | 5654 | if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) |
2f599714 | 5655 | __kvm_migrate_timers(vcpu); |
d828199e MT |
5656 | if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) |
5657 | kvm_gen_update_masterclock(vcpu->kvm); | |
34c238a1 ZA |
5658 | if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { |
5659 | r = kvm_guest_time_update(vcpu); | |
8cfdc000 ZA |
5660 | if (unlikely(r)) |
5661 | goto out; | |
5662 | } | |
a8eeb04a | 5663 | if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) |
4731d4c7 | 5664 | kvm_mmu_sync_roots(vcpu); |
a8eeb04a | 5665 | if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) |
d4acf7e7 | 5666 | kvm_x86_ops->tlb_flush(vcpu); |
a8eeb04a | 5667 | if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { |
851ba692 | 5668 | vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; |
b93463aa AK |
5669 | r = 0; |
5670 | goto out; | |
5671 | } | |
a8eeb04a | 5672 | if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { |
851ba692 | 5673 | vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; |
71c4dfaf JR |
5674 | r = 0; |
5675 | goto out; | |
5676 | } | |
a8eeb04a | 5677 | if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { |
02daab21 AK |
5678 | vcpu->fpu_active = 0; |
5679 | kvm_x86_ops->fpu_deactivate(vcpu); | |
5680 | } | |
af585b92 GN |
5681 | if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { |
5682 | /* Page is swapped out. Do synthetic halt */ | |
5683 | vcpu->arch.apf.halted = true; | |
5684 | r = 1; | |
5685 | goto out; | |
5686 | } | |
c9aaa895 GC |
5687 | if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) |
5688 | record_steal_time(vcpu); | |
7460fb4a AK |
5689 | if (kvm_check_request(KVM_REQ_NMI, vcpu)) |
5690 | process_nmi(vcpu); | |
d6185f20 NHE |
5691 | req_immediate_exit = |
5692 | kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu); | |
f5132b01 GN |
5693 | if (kvm_check_request(KVM_REQ_PMU, vcpu)) |
5694 | kvm_handle_pmu_event(vcpu); | |
5695 | if (kvm_check_request(KVM_REQ_PMI, vcpu)) | |
5696 | kvm_deliver_pmi(vcpu); | |
c7c9c56c YZ |
5697 | if (kvm_check_request(KVM_REQ_EOIBITMAP, vcpu)) |
5698 | update_eoi_exitmap(vcpu); | |
2f52d58c | 5699 | } |
b93463aa | 5700 | |
b463a6f7 AK |
5701 | if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { |
5702 | inject_pending_event(vcpu); | |
5703 | ||
5704 | /* enable NMI/IRQ window open exits if needed */ | |
7460fb4a | 5705 | if (vcpu->arch.nmi_pending) |
b463a6f7 | 5706 | kvm_x86_ops->enable_nmi_window(vcpu); |
c7c9c56c | 5707 | else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) |
b463a6f7 AK |
5708 | kvm_x86_ops->enable_irq_window(vcpu); |
5709 | ||
5710 | if (kvm_lapic_enabled(vcpu)) { | |
c7c9c56c YZ |
5711 | /* |
5712 | * Update architecture specific hints for APIC | |
5713 | * virtual interrupt delivery. | |
5714 | */ | |
5715 | if (kvm_x86_ops->hwapic_irr_update) | |
5716 | kvm_x86_ops->hwapic_irr_update(vcpu, | |
5717 | kvm_lapic_find_highest_irr(vcpu)); | |
b463a6f7 AK |
5718 | update_cr8_intercept(vcpu); |
5719 | kvm_lapic_sync_to_vapic(vcpu); | |
5720 | } | |
5721 | } | |
5722 | ||
d8368af8 AK |
5723 | r = kvm_mmu_reload(vcpu); |
5724 | if (unlikely(r)) { | |
d905c069 | 5725 | goto cancel_injection; |
d8368af8 AK |
5726 | } |
5727 | ||
b6c7a5dc HB |
5728 | preempt_disable(); |
5729 | ||
5730 | kvm_x86_ops->prepare_guest_switch(vcpu); | |
2608d7a1 AK |
5731 | if (vcpu->fpu_active) |
5732 | kvm_load_guest_fpu(vcpu); | |
2acf923e | 5733 | kvm_load_guest_xcr0(vcpu); |
b6c7a5dc | 5734 | |
6b7e2d09 XG |
5735 | vcpu->mode = IN_GUEST_MODE; |
5736 | ||
5737 | /* We should set ->mode before check ->requests, | |
5738 | * see the comment in make_all_cpus_request. | |
5739 | */ | |
5740 | smp_mb(); | |
b6c7a5dc | 5741 | |
d94e1dc9 | 5742 | local_irq_disable(); |
32f88400 | 5743 | |
6b7e2d09 | 5744 | if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests |
d94e1dc9 | 5745 | || need_resched() || signal_pending(current)) { |
6b7e2d09 | 5746 | vcpu->mode = OUTSIDE_GUEST_MODE; |
d94e1dc9 | 5747 | smp_wmb(); |
6c142801 AK |
5748 | local_irq_enable(); |
5749 | preempt_enable(); | |
5750 | r = 1; | |
d905c069 | 5751 | goto cancel_injection; |
6c142801 AK |
5752 | } |
5753 | ||
f656ce01 | 5754 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
3200f405 | 5755 | |
d6185f20 NHE |
5756 | if (req_immediate_exit) |
5757 | smp_send_reschedule(vcpu->cpu); | |
5758 | ||
b6c7a5dc HB |
5759 | kvm_guest_enter(); |
5760 | ||
42dbaa5a | 5761 | if (unlikely(vcpu->arch.switch_db_regs)) { |
42dbaa5a JK |
5762 | set_debugreg(0, 7); |
5763 | set_debugreg(vcpu->arch.eff_db[0], 0); | |
5764 | set_debugreg(vcpu->arch.eff_db[1], 1); | |
5765 | set_debugreg(vcpu->arch.eff_db[2], 2); | |
5766 | set_debugreg(vcpu->arch.eff_db[3], 3); | |
5767 | } | |
b6c7a5dc | 5768 | |
229456fc | 5769 | trace_kvm_entry(vcpu->vcpu_id); |
851ba692 | 5770 | kvm_x86_ops->run(vcpu); |
b6c7a5dc | 5771 | |
24f1e32c FW |
5772 | /* |
5773 | * If the guest has used debug registers, at least dr7 | |
5774 | * will be disabled while returning to the host. | |
5775 | * If we don't have active breakpoints in the host, we don't | |
5776 | * care about the messed up debug address registers. But if | |
5777 | * we have some of them active, restore the old state. | |
5778 | */ | |
59d8eb53 | 5779 | if (hw_breakpoint_active()) |
24f1e32c | 5780 | hw_breakpoint_restore(); |
42dbaa5a | 5781 | |
886b470c MT |
5782 | vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, |
5783 | native_read_tsc()); | |
1d5f066e | 5784 | |
6b7e2d09 | 5785 | vcpu->mode = OUTSIDE_GUEST_MODE; |
d94e1dc9 | 5786 | smp_wmb(); |
b6c7a5dc HB |
5787 | local_irq_enable(); |
5788 | ||
5789 | ++vcpu->stat.exits; | |
5790 | ||
5791 | /* | |
5792 | * We must have an instruction between local_irq_enable() and | |
5793 | * kvm_guest_exit(), so the timer interrupt isn't delayed by | |
5794 | * the interrupt shadow. The stat.exits increment will do nicely. | |
5795 | * But we need to prevent reordering, hence this barrier(): | |
5796 | */ | |
5797 | barrier(); | |
5798 | ||
5799 | kvm_guest_exit(); | |
5800 | ||
5801 | preempt_enable(); | |
5802 | ||
f656ce01 | 5803 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
3200f405 | 5804 | |
b6c7a5dc HB |
5805 | /* |
5806 | * Profile KVM exit RIPs: | |
5807 | */ | |
5808 | if (unlikely(prof_on == KVM_PROFILING)) { | |
5fdbf976 MT |
5809 | unsigned long rip = kvm_rip_read(vcpu); |
5810 | profile_hit(KVM_PROFILING, (void *)rip); | |
b6c7a5dc HB |
5811 | } |
5812 | ||
cc578287 ZA |
5813 | if (unlikely(vcpu->arch.tsc_always_catchup)) |
5814 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | |
298101da | 5815 | |
5cfb1d5a MT |
5816 | if (vcpu->arch.apic_attention) |
5817 | kvm_lapic_sync_from_vapic(vcpu); | |
b93463aa | 5818 | |
851ba692 | 5819 | r = kvm_x86_ops->handle_exit(vcpu); |
d905c069 MT |
5820 | return r; |
5821 | ||
5822 | cancel_injection: | |
5823 | kvm_x86_ops->cancel_injection(vcpu); | |
ae7a2a3f MT |
5824 | if (unlikely(vcpu->arch.apic_attention)) |
5825 | kvm_lapic_sync_from_vapic(vcpu); | |
d7690175 MT |
5826 | out: |
5827 | return r; | |
5828 | } | |
b6c7a5dc | 5829 | |
09cec754 | 5830 | |
851ba692 | 5831 | static int __vcpu_run(struct kvm_vcpu *vcpu) |
d7690175 MT |
5832 | { |
5833 | int r; | |
f656ce01 | 5834 | struct kvm *kvm = vcpu->kvm; |
d7690175 MT |
5835 | |
5836 | if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { | |
1b10bf31 JK |
5837 | pr_debug("vcpu %d received sipi with vector # %x\n", |
5838 | vcpu->vcpu_id, vcpu->arch.sipi_vector); | |
d7690175 | 5839 | kvm_lapic_reset(vcpu); |
8b6e4547 | 5840 | r = kvm_vcpu_reset(vcpu); |
d7690175 MT |
5841 | if (r) |
5842 | return r; | |
5843 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; | |
b6c7a5dc HB |
5844 | } |
5845 | ||
f656ce01 | 5846 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
4484141a XG |
5847 | r = vapic_enter(vcpu); |
5848 | if (r) { | |
5849 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); | |
5850 | return r; | |
5851 | } | |
d7690175 MT |
5852 | |
5853 | r = 1; | |
5854 | while (r > 0) { | |
af585b92 GN |
5855 | if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && |
5856 | !vcpu->arch.apf.halted) | |
851ba692 | 5857 | r = vcpu_enter_guest(vcpu); |
d7690175 | 5858 | else { |
f656ce01 | 5859 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
d7690175 | 5860 | kvm_vcpu_block(vcpu); |
f656ce01 | 5861 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
a8eeb04a | 5862 | if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) |
09cec754 GN |
5863 | { |
5864 | switch(vcpu->arch.mp_state) { | |
5865 | case KVM_MP_STATE_HALTED: | |
d7690175 | 5866 | vcpu->arch.mp_state = |
09cec754 GN |
5867 | KVM_MP_STATE_RUNNABLE; |
5868 | case KVM_MP_STATE_RUNNABLE: | |
af585b92 | 5869 | vcpu->arch.apf.halted = false; |
09cec754 GN |
5870 | break; |
5871 | case KVM_MP_STATE_SIPI_RECEIVED: | |
5872 | default: | |
5873 | r = -EINTR; | |
5874 | break; | |
5875 | } | |
5876 | } | |
d7690175 MT |
5877 | } |
5878 | ||
09cec754 GN |
5879 | if (r <= 0) |
5880 | break; | |
5881 | ||
5882 | clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); | |
5883 | if (kvm_cpu_has_pending_timer(vcpu)) | |
5884 | kvm_inject_pending_timer_irqs(vcpu); | |
5885 | ||
851ba692 | 5886 | if (dm_request_for_irq_injection(vcpu)) { |
09cec754 | 5887 | r = -EINTR; |
851ba692 | 5888 | vcpu->run->exit_reason = KVM_EXIT_INTR; |
09cec754 GN |
5889 | ++vcpu->stat.request_irq_exits; |
5890 | } | |
af585b92 GN |
5891 | |
5892 | kvm_check_async_pf_completion(vcpu); | |
5893 | ||
09cec754 GN |
5894 | if (signal_pending(current)) { |
5895 | r = -EINTR; | |
851ba692 | 5896 | vcpu->run->exit_reason = KVM_EXIT_INTR; |
09cec754 GN |
5897 | ++vcpu->stat.signal_exits; |
5898 | } | |
5899 | if (need_resched()) { | |
f656ce01 | 5900 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
09cec754 | 5901 | kvm_resched(vcpu); |
f656ce01 | 5902 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
d7690175 | 5903 | } |
b6c7a5dc HB |
5904 | } |
5905 | ||
f656ce01 | 5906 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
b6c7a5dc | 5907 | |
b93463aa AK |
5908 | vapic_exit(vcpu); |
5909 | ||
b6c7a5dc HB |
5910 | return r; |
5911 | } | |
5912 | ||
716d51ab GN |
5913 | static inline int complete_emulated_io(struct kvm_vcpu *vcpu) |
5914 | { | |
5915 | int r; | |
5916 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); | |
5917 | r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); | |
5918 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); | |
5919 | if (r != EMULATE_DONE) | |
5920 | return 0; | |
5921 | return 1; | |
5922 | } | |
5923 | ||
5924 | static int complete_emulated_pio(struct kvm_vcpu *vcpu) | |
5925 | { | |
5926 | BUG_ON(!vcpu->arch.pio.count); | |
5927 | ||
5928 | return complete_emulated_io(vcpu); | |
5929 | } | |
5930 | ||
f78146b0 AK |
5931 | /* |
5932 | * Implements the following, as a state machine: | |
5933 | * | |
5934 | * read: | |
5935 | * for each fragment | |
87da7e66 XG |
5936 | * for each mmio piece in the fragment |
5937 | * write gpa, len | |
5938 | * exit | |
5939 | * copy data | |
f78146b0 AK |
5940 | * execute insn |
5941 | * | |
5942 | * write: | |
5943 | * for each fragment | |
87da7e66 XG |
5944 | * for each mmio piece in the fragment |
5945 | * write gpa, len | |
5946 | * copy data | |
5947 | * exit | |
f78146b0 | 5948 | */ |
716d51ab | 5949 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu) |
5287f194 AK |
5950 | { |
5951 | struct kvm_run *run = vcpu->run; | |
f78146b0 | 5952 | struct kvm_mmio_fragment *frag; |
87da7e66 | 5953 | unsigned len; |
5287f194 | 5954 | |
716d51ab | 5955 | BUG_ON(!vcpu->mmio_needed); |
5287f194 | 5956 | |
716d51ab | 5957 | /* Complete previous fragment */ |
87da7e66 XG |
5958 | frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; |
5959 | len = min(8u, frag->len); | |
716d51ab | 5960 | if (!vcpu->mmio_is_write) |
87da7e66 XG |
5961 | memcpy(frag->data, run->mmio.data, len); |
5962 | ||
5963 | if (frag->len <= 8) { | |
5964 | /* Switch to the next fragment. */ | |
5965 | frag++; | |
5966 | vcpu->mmio_cur_fragment++; | |
5967 | } else { | |
5968 | /* Go forward to the next mmio piece. */ | |
5969 | frag->data += len; | |
5970 | frag->gpa += len; | |
5971 | frag->len -= len; | |
5972 | } | |
5973 | ||
716d51ab GN |
5974 | if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { |
5975 | vcpu->mmio_needed = 0; | |
cef4dea0 | 5976 | if (vcpu->mmio_is_write) |
716d51ab GN |
5977 | return 1; |
5978 | vcpu->mmio_read_completed = 1; | |
5979 | return complete_emulated_io(vcpu); | |
5980 | } | |
87da7e66 | 5981 | |
716d51ab GN |
5982 | run->exit_reason = KVM_EXIT_MMIO; |
5983 | run->mmio.phys_addr = frag->gpa; | |
5984 | if (vcpu->mmio_is_write) | |
87da7e66 XG |
5985 | memcpy(run->mmio.data, frag->data, min(8u, frag->len)); |
5986 | run->mmio.len = min(8u, frag->len); | |
716d51ab GN |
5987 | run->mmio.is_write = vcpu->mmio_is_write; |
5988 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; | |
5989 | return 0; | |
5287f194 AK |
5990 | } |
5991 | ||
716d51ab | 5992 | |
b6c7a5dc HB |
5993 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
5994 | { | |
5995 | int r; | |
5996 | sigset_t sigsaved; | |
5997 | ||
e5c30142 AK |
5998 | if (!tsk_used_math(current) && init_fpu(current)) |
5999 | return -ENOMEM; | |
6000 | ||
ac9f6dc0 AK |
6001 | if (vcpu->sigset_active) |
6002 | sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); | |
6003 | ||
a4535290 | 6004 | if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { |
b6c7a5dc | 6005 | kvm_vcpu_block(vcpu); |
d7690175 | 6006 | clear_bit(KVM_REQ_UNHALT, &vcpu->requests); |
ac9f6dc0 AK |
6007 | r = -EAGAIN; |
6008 | goto out; | |
b6c7a5dc HB |
6009 | } |
6010 | ||
b6c7a5dc | 6011 | /* re-sync apic's tpr */ |
eea1cff9 AP |
6012 | if (!irqchip_in_kernel(vcpu->kvm)) { |
6013 | if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { | |
6014 | r = -EINVAL; | |
6015 | goto out; | |
6016 | } | |
6017 | } | |
b6c7a5dc | 6018 | |
716d51ab GN |
6019 | if (unlikely(vcpu->arch.complete_userspace_io)) { |
6020 | int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; | |
6021 | vcpu->arch.complete_userspace_io = NULL; | |
6022 | r = cui(vcpu); | |
6023 | if (r <= 0) | |
6024 | goto out; | |
6025 | } else | |
6026 | WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); | |
5287f194 | 6027 | |
851ba692 | 6028 | r = __vcpu_run(vcpu); |
b6c7a5dc HB |
6029 | |
6030 | out: | |
f1d86e46 | 6031 | post_kvm_run_save(vcpu); |
b6c7a5dc HB |
6032 | if (vcpu->sigset_active) |
6033 | sigprocmask(SIG_SETMASK, &sigsaved, NULL); | |
6034 | ||
b6c7a5dc HB |
6035 | return r; |
6036 | } | |
6037 | ||
6038 | int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | |
6039 | { | |
7ae441ea GN |
6040 | if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { |
6041 | /* | |
6042 | * We are here if userspace calls get_regs() in the middle of | |
6043 | * instruction emulation. Registers state needs to be copied | |
4a969980 | 6044 | * back from emulation context to vcpu. Userspace shouldn't do |
7ae441ea GN |
6045 | * that usually, but some bad designed PV devices (vmware |
6046 | * backdoor interface) need this to work | |
6047 | */ | |
dd856efa | 6048 | emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); |
7ae441ea GN |
6049 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
6050 | } | |
5fdbf976 MT |
6051 | regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); |
6052 | regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); | |
6053 | regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
6054 | regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); | |
6055 | regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); | |
6056 | regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); | |
6057 | regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); | |
6058 | regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); | |
b6c7a5dc | 6059 | #ifdef CONFIG_X86_64 |
5fdbf976 MT |
6060 | regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); |
6061 | regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); | |
6062 | regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); | |
6063 | regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); | |
6064 | regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); | |
6065 | regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); | |
6066 | regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); | |
6067 | regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); | |
b6c7a5dc HB |
6068 | #endif |
6069 | ||
5fdbf976 | 6070 | regs->rip = kvm_rip_read(vcpu); |
91586a3b | 6071 | regs->rflags = kvm_get_rflags(vcpu); |
b6c7a5dc | 6072 | |
b6c7a5dc HB |
6073 | return 0; |
6074 | } | |
6075 | ||
6076 | int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | |
6077 | { | |
7ae441ea GN |
6078 | vcpu->arch.emulate_regs_need_sync_from_vcpu = true; |
6079 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; | |
6080 | ||
5fdbf976 MT |
6081 | kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); |
6082 | kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); | |
6083 | kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); | |
6084 | kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); | |
6085 | kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); | |
6086 | kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); | |
6087 | kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); | |
6088 | kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); | |
b6c7a5dc | 6089 | #ifdef CONFIG_X86_64 |
5fdbf976 MT |
6090 | kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); |
6091 | kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); | |
6092 | kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); | |
6093 | kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); | |
6094 | kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); | |
6095 | kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); | |
6096 | kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); | |
6097 | kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); | |
b6c7a5dc HB |
6098 | #endif |
6099 | ||
5fdbf976 | 6100 | kvm_rip_write(vcpu, regs->rip); |
91586a3b | 6101 | kvm_set_rflags(vcpu, regs->rflags); |
b6c7a5dc | 6102 | |
b4f14abd JK |
6103 | vcpu->arch.exception.pending = false; |
6104 | ||
3842d135 AK |
6105 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
6106 | ||
b6c7a5dc HB |
6107 | return 0; |
6108 | } | |
6109 | ||
b6c7a5dc HB |
6110 | void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
6111 | { | |
6112 | struct kvm_segment cs; | |
6113 | ||
3e6e0aab | 6114 | kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); |
b6c7a5dc HB |
6115 | *db = cs.db; |
6116 | *l = cs.l; | |
6117 | } | |
6118 | EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); | |
6119 | ||
6120 | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, | |
6121 | struct kvm_sregs *sregs) | |
6122 | { | |
89a27f4d | 6123 | struct desc_ptr dt; |
b6c7a5dc | 6124 | |
3e6e0aab GT |
6125 | kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
6126 | kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | |
6127 | kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); | |
6128 | kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | |
6129 | kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | |
6130 | kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | |
b6c7a5dc | 6131 | |
3e6e0aab GT |
6132 | kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
6133 | kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | |
b6c7a5dc HB |
6134 | |
6135 | kvm_x86_ops->get_idt(vcpu, &dt); | |
89a27f4d GN |
6136 | sregs->idt.limit = dt.size; |
6137 | sregs->idt.base = dt.address; | |
b6c7a5dc | 6138 | kvm_x86_ops->get_gdt(vcpu, &dt); |
89a27f4d GN |
6139 | sregs->gdt.limit = dt.size; |
6140 | sregs->gdt.base = dt.address; | |
b6c7a5dc | 6141 | |
4d4ec087 | 6142 | sregs->cr0 = kvm_read_cr0(vcpu); |
ad312c7c | 6143 | sregs->cr2 = vcpu->arch.cr2; |
9f8fe504 | 6144 | sregs->cr3 = kvm_read_cr3(vcpu); |
fc78f519 | 6145 | sregs->cr4 = kvm_read_cr4(vcpu); |
2d3ad1f4 | 6146 | sregs->cr8 = kvm_get_cr8(vcpu); |
f6801dff | 6147 | sregs->efer = vcpu->arch.efer; |
b6c7a5dc HB |
6148 | sregs->apic_base = kvm_get_apic_base(vcpu); |
6149 | ||
923c61bb | 6150 | memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); |
b6c7a5dc | 6151 | |
36752c9b | 6152 | if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) |
14d0bc1f GN |
6153 | set_bit(vcpu->arch.interrupt.nr, |
6154 | (unsigned long *)sregs->interrupt_bitmap); | |
16d7a191 | 6155 | |
b6c7a5dc HB |
6156 | return 0; |
6157 | } | |
6158 | ||
62d9f0db MT |
6159 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
6160 | struct kvm_mp_state *mp_state) | |
6161 | { | |
62d9f0db | 6162 | mp_state->mp_state = vcpu->arch.mp_state; |
62d9f0db MT |
6163 | return 0; |
6164 | } | |
6165 | ||
6166 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | |
6167 | struct kvm_mp_state *mp_state) | |
6168 | { | |
62d9f0db | 6169 | vcpu->arch.mp_state = mp_state->mp_state; |
3842d135 | 6170 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
62d9f0db MT |
6171 | return 0; |
6172 | } | |
6173 | ||
7f3d35fd KW |
6174 | int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, |
6175 | int reason, bool has_error_code, u32 error_code) | |
b6c7a5dc | 6176 | { |
9d74191a | 6177 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
8ec4722d | 6178 | int ret; |
e01c2426 | 6179 | |
8ec4722d | 6180 | init_emulate_ctxt(vcpu); |
c697518a | 6181 | |
7f3d35fd | 6182 | ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, |
9d74191a | 6183 | has_error_code, error_code); |
c697518a | 6184 | |
c697518a | 6185 | if (ret) |
19d04437 | 6186 | return EMULATE_FAIL; |
37817f29 | 6187 | |
9d74191a TY |
6188 | kvm_rip_write(vcpu, ctxt->eip); |
6189 | kvm_set_rflags(vcpu, ctxt->eflags); | |
3842d135 | 6190 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
19d04437 | 6191 | return EMULATE_DONE; |
37817f29 IE |
6192 | } |
6193 | EXPORT_SYMBOL_GPL(kvm_task_switch); | |
6194 | ||
b6c7a5dc HB |
6195 | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
6196 | struct kvm_sregs *sregs) | |
6197 | { | |
6198 | int mmu_reset_needed = 0; | |
63f42e02 | 6199 | int pending_vec, max_bits, idx; |
89a27f4d | 6200 | struct desc_ptr dt; |
b6c7a5dc | 6201 | |
6d1068b3 PM |
6202 | if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) |
6203 | return -EINVAL; | |
6204 | ||
89a27f4d GN |
6205 | dt.size = sregs->idt.limit; |
6206 | dt.address = sregs->idt.base; | |
b6c7a5dc | 6207 | kvm_x86_ops->set_idt(vcpu, &dt); |
89a27f4d GN |
6208 | dt.size = sregs->gdt.limit; |
6209 | dt.address = sregs->gdt.base; | |
b6c7a5dc HB |
6210 | kvm_x86_ops->set_gdt(vcpu, &dt); |
6211 | ||
ad312c7c | 6212 | vcpu->arch.cr2 = sregs->cr2; |
9f8fe504 | 6213 | mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; |
dc7e795e | 6214 | vcpu->arch.cr3 = sregs->cr3; |
aff48baa | 6215 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
b6c7a5dc | 6216 | |
2d3ad1f4 | 6217 | kvm_set_cr8(vcpu, sregs->cr8); |
b6c7a5dc | 6218 | |
f6801dff | 6219 | mmu_reset_needed |= vcpu->arch.efer != sregs->efer; |
b6c7a5dc | 6220 | kvm_x86_ops->set_efer(vcpu, sregs->efer); |
b6c7a5dc HB |
6221 | kvm_set_apic_base(vcpu, sregs->apic_base); |
6222 | ||
4d4ec087 | 6223 | mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; |
b6c7a5dc | 6224 | kvm_x86_ops->set_cr0(vcpu, sregs->cr0); |
d7306163 | 6225 | vcpu->arch.cr0 = sregs->cr0; |
b6c7a5dc | 6226 | |
fc78f519 | 6227 | mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; |
b6c7a5dc | 6228 | kvm_x86_ops->set_cr4(vcpu, sregs->cr4); |
3ea3aa8c | 6229 | if (sregs->cr4 & X86_CR4_OSXSAVE) |
00b27a3e | 6230 | kvm_update_cpuid(vcpu); |
63f42e02 XG |
6231 | |
6232 | idx = srcu_read_lock(&vcpu->kvm->srcu); | |
7c93be44 | 6233 | if (!is_long_mode(vcpu) && is_pae(vcpu)) { |
9f8fe504 | 6234 | load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); |
7c93be44 MT |
6235 | mmu_reset_needed = 1; |
6236 | } | |
63f42e02 | 6237 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
b6c7a5dc HB |
6238 | |
6239 | if (mmu_reset_needed) | |
6240 | kvm_mmu_reset_context(vcpu); | |
6241 | ||
a50abc3b | 6242 | max_bits = KVM_NR_INTERRUPTS; |
923c61bb GN |
6243 | pending_vec = find_first_bit( |
6244 | (const unsigned long *)sregs->interrupt_bitmap, max_bits); | |
6245 | if (pending_vec < max_bits) { | |
66fd3f7f | 6246 | kvm_queue_interrupt(vcpu, pending_vec, false); |
923c61bb | 6247 | pr_debug("Set back pending irq %d\n", pending_vec); |
b6c7a5dc HB |
6248 | } |
6249 | ||
3e6e0aab GT |
6250 | kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
6251 | kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | |
6252 | kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); | |
6253 | kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | |
6254 | kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | |
6255 | kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | |
b6c7a5dc | 6256 | |
3e6e0aab GT |
6257 | kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
6258 | kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | |
b6c7a5dc | 6259 | |
5f0269f5 ME |
6260 | update_cr8_intercept(vcpu); |
6261 | ||
9c3e4aab | 6262 | /* Older userspace won't unhalt the vcpu on reset. */ |
c5af89b6 | 6263 | if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && |
9c3e4aab | 6264 | sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && |
3eeb3288 | 6265 | !is_protmode(vcpu)) |
9c3e4aab MT |
6266 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
6267 | ||
3842d135 AK |
6268 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
6269 | ||
b6c7a5dc HB |
6270 | return 0; |
6271 | } | |
6272 | ||
d0bfb940 JK |
6273 | int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
6274 | struct kvm_guest_debug *dbg) | |
b6c7a5dc | 6275 | { |
355be0b9 | 6276 | unsigned long rflags; |
ae675ef0 | 6277 | int i, r; |
b6c7a5dc | 6278 | |
4f926bf2 JK |
6279 | if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { |
6280 | r = -EBUSY; | |
6281 | if (vcpu->arch.exception.pending) | |
2122ff5e | 6282 | goto out; |
4f926bf2 JK |
6283 | if (dbg->control & KVM_GUESTDBG_INJECT_DB) |
6284 | kvm_queue_exception(vcpu, DB_VECTOR); | |
6285 | else | |
6286 | kvm_queue_exception(vcpu, BP_VECTOR); | |
6287 | } | |
6288 | ||
91586a3b JK |
6289 | /* |
6290 | * Read rflags as long as potentially injected trace flags are still | |
6291 | * filtered out. | |
6292 | */ | |
6293 | rflags = kvm_get_rflags(vcpu); | |
355be0b9 JK |
6294 | |
6295 | vcpu->guest_debug = dbg->control; | |
6296 | if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) | |
6297 | vcpu->guest_debug = 0; | |
6298 | ||
6299 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { | |
ae675ef0 JK |
6300 | for (i = 0; i < KVM_NR_DB_REGS; ++i) |
6301 | vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; | |
c8639010 | 6302 | vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; |
ae675ef0 JK |
6303 | } else { |
6304 | for (i = 0; i < KVM_NR_DB_REGS; i++) | |
6305 | vcpu->arch.eff_db[i] = vcpu->arch.db[i]; | |
ae675ef0 | 6306 | } |
c8639010 | 6307 | kvm_update_dr7(vcpu); |
ae675ef0 | 6308 | |
f92653ee JK |
6309 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
6310 | vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + | |
6311 | get_segment_base(vcpu, VCPU_SREG_CS); | |
94fe45da | 6312 | |
91586a3b JK |
6313 | /* |
6314 | * Trigger an rflags update that will inject or remove the trace | |
6315 | * flags. | |
6316 | */ | |
6317 | kvm_set_rflags(vcpu, rflags); | |
b6c7a5dc | 6318 | |
c8639010 | 6319 | kvm_x86_ops->update_db_bp_intercept(vcpu); |
b6c7a5dc | 6320 | |
4f926bf2 | 6321 | r = 0; |
d0bfb940 | 6322 | |
2122ff5e | 6323 | out: |
b6c7a5dc HB |
6324 | |
6325 | return r; | |
6326 | } | |
6327 | ||
8b006791 ZX |
6328 | /* |
6329 | * Translate a guest virtual address to a guest physical address. | |
6330 | */ | |
6331 | int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, | |
6332 | struct kvm_translation *tr) | |
6333 | { | |
6334 | unsigned long vaddr = tr->linear_address; | |
6335 | gpa_t gpa; | |
f656ce01 | 6336 | int idx; |
8b006791 | 6337 | |
f656ce01 | 6338 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
1871c602 | 6339 | gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); |
f656ce01 | 6340 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
8b006791 ZX |
6341 | tr->physical_address = gpa; |
6342 | tr->valid = gpa != UNMAPPED_GVA; | |
6343 | tr->writeable = 1; | |
6344 | tr->usermode = 0; | |
8b006791 ZX |
6345 | |
6346 | return 0; | |
6347 | } | |
6348 | ||
d0752060 HB |
6349 | int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
6350 | { | |
98918833 SY |
6351 | struct i387_fxsave_struct *fxsave = |
6352 | &vcpu->arch.guest_fpu.state->fxsave; | |
d0752060 | 6353 | |
d0752060 HB |
6354 | memcpy(fpu->fpr, fxsave->st_space, 128); |
6355 | fpu->fcw = fxsave->cwd; | |
6356 | fpu->fsw = fxsave->swd; | |
6357 | fpu->ftwx = fxsave->twd; | |
6358 | fpu->last_opcode = fxsave->fop; | |
6359 | fpu->last_ip = fxsave->rip; | |
6360 | fpu->last_dp = fxsave->rdp; | |
6361 | memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); | |
6362 | ||
d0752060 HB |
6363 | return 0; |
6364 | } | |
6365 | ||
6366 | int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | |
6367 | { | |
98918833 SY |
6368 | struct i387_fxsave_struct *fxsave = |
6369 | &vcpu->arch.guest_fpu.state->fxsave; | |
d0752060 | 6370 | |
d0752060 HB |
6371 | memcpy(fxsave->st_space, fpu->fpr, 128); |
6372 | fxsave->cwd = fpu->fcw; | |
6373 | fxsave->swd = fpu->fsw; | |
6374 | fxsave->twd = fpu->ftwx; | |
6375 | fxsave->fop = fpu->last_opcode; | |
6376 | fxsave->rip = fpu->last_ip; | |
6377 | fxsave->rdp = fpu->last_dp; | |
6378 | memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); | |
6379 | ||
d0752060 HB |
6380 | return 0; |
6381 | } | |
6382 | ||
10ab25cd | 6383 | int fx_init(struct kvm_vcpu *vcpu) |
d0752060 | 6384 | { |
10ab25cd JK |
6385 | int err; |
6386 | ||
6387 | err = fpu_alloc(&vcpu->arch.guest_fpu); | |
6388 | if (err) | |
6389 | return err; | |
6390 | ||
98918833 | 6391 | fpu_finit(&vcpu->arch.guest_fpu); |
d0752060 | 6392 | |
2acf923e DC |
6393 | /* |
6394 | * Ensure guest xcr0 is valid for loading | |
6395 | */ | |
6396 | vcpu->arch.xcr0 = XSTATE_FP; | |
6397 | ||
ad312c7c | 6398 | vcpu->arch.cr0 |= X86_CR0_ET; |
10ab25cd JK |
6399 | |
6400 | return 0; | |
d0752060 HB |
6401 | } |
6402 | EXPORT_SYMBOL_GPL(fx_init); | |
6403 | ||
98918833 SY |
6404 | static void fx_free(struct kvm_vcpu *vcpu) |
6405 | { | |
6406 | fpu_free(&vcpu->arch.guest_fpu); | |
6407 | } | |
6408 | ||
d0752060 HB |
6409 | void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) |
6410 | { | |
2608d7a1 | 6411 | if (vcpu->guest_fpu_loaded) |
d0752060 HB |
6412 | return; |
6413 | ||
2acf923e DC |
6414 | /* |
6415 | * Restore all possible states in the guest, | |
6416 | * and assume host would use all available bits. | |
6417 | * Guest xcr0 would be loaded later. | |
6418 | */ | |
6419 | kvm_put_guest_xcr0(vcpu); | |
d0752060 | 6420 | vcpu->guest_fpu_loaded = 1; |
b1a74bf8 | 6421 | __kernel_fpu_begin(); |
98918833 | 6422 | fpu_restore_checking(&vcpu->arch.guest_fpu); |
0c04851c | 6423 | trace_kvm_fpu(1); |
d0752060 | 6424 | } |
d0752060 HB |
6425 | |
6426 | void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) | |
6427 | { | |
2acf923e DC |
6428 | kvm_put_guest_xcr0(vcpu); |
6429 | ||
d0752060 HB |
6430 | if (!vcpu->guest_fpu_loaded) |
6431 | return; | |
6432 | ||
6433 | vcpu->guest_fpu_loaded = 0; | |
98918833 | 6434 | fpu_save_init(&vcpu->arch.guest_fpu); |
b1a74bf8 | 6435 | __kernel_fpu_end(); |
f096ed85 | 6436 | ++vcpu->stat.fpu_reload; |
a8eeb04a | 6437 | kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); |
0c04851c | 6438 | trace_kvm_fpu(0); |
d0752060 | 6439 | } |
e9b11c17 ZX |
6440 | |
6441 | void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) | |
6442 | { | |
12f9a48f | 6443 | kvmclock_reset(vcpu); |
7f1ea208 | 6444 | |
f5f48ee1 | 6445 | free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); |
98918833 | 6446 | fx_free(vcpu); |
e9b11c17 ZX |
6447 | kvm_x86_ops->vcpu_free(vcpu); |
6448 | } | |
6449 | ||
6450 | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, | |
6451 | unsigned int id) | |
6452 | { | |
6755bae8 ZA |
6453 | if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) |
6454 | printk_once(KERN_WARNING | |
6455 | "kvm: SMP vm created on host with unstable TSC; " | |
6456 | "guest TSC will not be reliable\n"); | |
26e5215f AK |
6457 | return kvm_x86_ops->vcpu_create(kvm, id); |
6458 | } | |
e9b11c17 | 6459 | |
26e5215f AK |
6460 | int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) |
6461 | { | |
6462 | int r; | |
e9b11c17 | 6463 | |
0bed3b56 | 6464 | vcpu->arch.mtrr_state.have_fixed = 1; |
9fc77441 MT |
6465 | r = vcpu_load(vcpu); |
6466 | if (r) | |
6467 | return r; | |
8b6e4547 | 6468 | r = kvm_vcpu_reset(vcpu); |
e9b11c17 ZX |
6469 | if (r == 0) |
6470 | r = kvm_mmu_setup(vcpu); | |
6471 | vcpu_put(vcpu); | |
e9b11c17 | 6472 | |
26e5215f | 6473 | return r; |
e9b11c17 ZX |
6474 | } |
6475 | ||
42897d86 MT |
6476 | int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
6477 | { | |
6478 | int r; | |
8fe8ab46 | 6479 | struct msr_data msr; |
42897d86 MT |
6480 | |
6481 | r = vcpu_load(vcpu); | |
6482 | if (r) | |
6483 | return r; | |
8fe8ab46 WA |
6484 | msr.data = 0x0; |
6485 | msr.index = MSR_IA32_TSC; | |
6486 | msr.host_initiated = true; | |
6487 | kvm_write_tsc(vcpu, &msr); | |
42897d86 MT |
6488 | vcpu_put(vcpu); |
6489 | ||
6490 | return r; | |
6491 | } | |
6492 | ||
d40ccc62 | 6493 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
e9b11c17 | 6494 | { |
9fc77441 | 6495 | int r; |
344d9588 GN |
6496 | vcpu->arch.apf.msr_val = 0; |
6497 | ||
9fc77441 MT |
6498 | r = vcpu_load(vcpu); |
6499 | BUG_ON(r); | |
e9b11c17 ZX |
6500 | kvm_mmu_unload(vcpu); |
6501 | vcpu_put(vcpu); | |
6502 | ||
98918833 | 6503 | fx_free(vcpu); |
e9b11c17 ZX |
6504 | kvm_x86_ops->vcpu_free(vcpu); |
6505 | } | |
6506 | ||
8b6e4547 | 6507 | static int kvm_vcpu_reset(struct kvm_vcpu *vcpu) |
e9b11c17 | 6508 | { |
7460fb4a AK |
6509 | atomic_set(&vcpu->arch.nmi_queued, 0); |
6510 | vcpu->arch.nmi_pending = 0; | |
448fa4a9 JK |
6511 | vcpu->arch.nmi_injected = false; |
6512 | ||
42dbaa5a JK |
6513 | memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); |
6514 | vcpu->arch.dr6 = DR6_FIXED_1; | |
6515 | vcpu->arch.dr7 = DR7_FIXED_1; | |
c8639010 | 6516 | kvm_update_dr7(vcpu); |
42dbaa5a | 6517 | |
3842d135 | 6518 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
344d9588 | 6519 | vcpu->arch.apf.msr_val = 0; |
c9aaa895 | 6520 | vcpu->arch.st.msr_val = 0; |
3842d135 | 6521 | |
12f9a48f GC |
6522 | kvmclock_reset(vcpu); |
6523 | ||
af585b92 GN |
6524 | kvm_clear_async_pf_completion_queue(vcpu); |
6525 | kvm_async_pf_hash_reset(vcpu); | |
6526 | vcpu->arch.apf.halted = false; | |
3842d135 | 6527 | |
f5132b01 GN |
6528 | kvm_pmu_reset(vcpu); |
6529 | ||
66f7b72e JS |
6530 | memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); |
6531 | vcpu->arch.regs_avail = ~0; | |
6532 | vcpu->arch.regs_dirty = ~0; | |
6533 | ||
e9b11c17 ZX |
6534 | return kvm_x86_ops->vcpu_reset(vcpu); |
6535 | } | |
6536 | ||
10474ae8 | 6537 | int kvm_arch_hardware_enable(void *garbage) |
e9b11c17 | 6538 | { |
ca84d1a2 ZA |
6539 | struct kvm *kvm; |
6540 | struct kvm_vcpu *vcpu; | |
6541 | int i; | |
0dd6a6ed ZA |
6542 | int ret; |
6543 | u64 local_tsc; | |
6544 | u64 max_tsc = 0; | |
6545 | bool stable, backwards_tsc = false; | |
18863bdd AK |
6546 | |
6547 | kvm_shared_msr_cpu_online(); | |
0dd6a6ed ZA |
6548 | ret = kvm_x86_ops->hardware_enable(garbage); |
6549 | if (ret != 0) | |
6550 | return ret; | |
6551 | ||
6552 | local_tsc = native_read_tsc(); | |
6553 | stable = !check_tsc_unstable(); | |
6554 | list_for_each_entry(kvm, &vm_list, vm_list) { | |
6555 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
6556 | if (!stable && vcpu->cpu == smp_processor_id()) | |
6557 | set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); | |
6558 | if (stable && vcpu->arch.last_host_tsc > local_tsc) { | |
6559 | backwards_tsc = true; | |
6560 | if (vcpu->arch.last_host_tsc > max_tsc) | |
6561 | max_tsc = vcpu->arch.last_host_tsc; | |
6562 | } | |
6563 | } | |
6564 | } | |
6565 | ||
6566 | /* | |
6567 | * Sometimes, even reliable TSCs go backwards. This happens on | |
6568 | * platforms that reset TSC during suspend or hibernate actions, but | |
6569 | * maintain synchronization. We must compensate. Fortunately, we can | |
6570 | * detect that condition here, which happens early in CPU bringup, | |
6571 | * before any KVM threads can be running. Unfortunately, we can't | |
6572 | * bring the TSCs fully up to date with real time, as we aren't yet far | |
6573 | * enough into CPU bringup that we know how much real time has actually | |
6574 | * elapsed; our helper function, get_kernel_ns() will be using boot | |
6575 | * variables that haven't been updated yet. | |
6576 | * | |
6577 | * So we simply find the maximum observed TSC above, then record the | |
6578 | * adjustment to TSC in each VCPU. When the VCPU later gets loaded, | |
6579 | * the adjustment will be applied. Note that we accumulate | |
6580 | * adjustments, in case multiple suspend cycles happen before some VCPU | |
6581 | * gets a chance to run again. In the event that no KVM threads get a | |
6582 | * chance to run, we will miss the entire elapsed period, as we'll have | |
6583 | * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may | |
6584 | * loose cycle time. This isn't too big a deal, since the loss will be | |
6585 | * uniform across all VCPUs (not to mention the scenario is extremely | |
6586 | * unlikely). It is possible that a second hibernate recovery happens | |
6587 | * much faster than a first, causing the observed TSC here to be | |
6588 | * smaller; this would require additional padding adjustment, which is | |
6589 | * why we set last_host_tsc to the local tsc observed here. | |
6590 | * | |
6591 | * N.B. - this code below runs only on platforms with reliable TSC, | |
6592 | * as that is the only way backwards_tsc is set above. Also note | |
6593 | * that this runs for ALL vcpus, which is not a bug; all VCPUs should | |
6594 | * have the same delta_cyc adjustment applied if backwards_tsc | |
6595 | * is detected. Note further, this adjustment is only done once, | |
6596 | * as we reset last_host_tsc on all VCPUs to stop this from being | |
6597 | * called multiple times (one for each physical CPU bringup). | |
6598 | * | |
4a969980 | 6599 | * Platforms with unreliable TSCs don't have to deal with this, they |
0dd6a6ed ZA |
6600 | * will be compensated by the logic in vcpu_load, which sets the TSC to |
6601 | * catchup mode. This will catchup all VCPUs to real time, but cannot | |
6602 | * guarantee that they stay in perfect synchronization. | |
6603 | */ | |
6604 | if (backwards_tsc) { | |
6605 | u64 delta_cyc = max_tsc - local_tsc; | |
6606 | list_for_each_entry(kvm, &vm_list, vm_list) { | |
6607 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
6608 | vcpu->arch.tsc_offset_adjustment += delta_cyc; | |
6609 | vcpu->arch.last_host_tsc = local_tsc; | |
d828199e MT |
6610 | set_bit(KVM_REQ_MASTERCLOCK_UPDATE, |
6611 | &vcpu->requests); | |
0dd6a6ed ZA |
6612 | } |
6613 | ||
6614 | /* | |
6615 | * We have to disable TSC offset matching.. if you were | |
6616 | * booting a VM while issuing an S4 host suspend.... | |
6617 | * you may have some problem. Solving this issue is | |
6618 | * left as an exercise to the reader. | |
6619 | */ | |
6620 | kvm->arch.last_tsc_nsec = 0; | |
6621 | kvm->arch.last_tsc_write = 0; | |
6622 | } | |
6623 | ||
6624 | } | |
6625 | return 0; | |
e9b11c17 ZX |
6626 | } |
6627 | ||
6628 | void kvm_arch_hardware_disable(void *garbage) | |
6629 | { | |
6630 | kvm_x86_ops->hardware_disable(garbage); | |
3548bab5 | 6631 | drop_user_return_notifiers(garbage); |
e9b11c17 ZX |
6632 | } |
6633 | ||
6634 | int kvm_arch_hardware_setup(void) | |
6635 | { | |
6636 | return kvm_x86_ops->hardware_setup(); | |
6637 | } | |
6638 | ||
6639 | void kvm_arch_hardware_unsetup(void) | |
6640 | { | |
6641 | kvm_x86_ops->hardware_unsetup(); | |
6642 | } | |
6643 | ||
6644 | void kvm_arch_check_processor_compat(void *rtn) | |
6645 | { | |
6646 | kvm_x86_ops->check_processor_compatibility(rtn); | |
6647 | } | |
6648 | ||
3e515705 AK |
6649 | bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) |
6650 | { | |
6651 | return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); | |
6652 | } | |
6653 | ||
54e9818f GN |
6654 | struct static_key kvm_no_apic_vcpu __read_mostly; |
6655 | ||
e9b11c17 ZX |
6656 | int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) |
6657 | { | |
6658 | struct page *page; | |
6659 | struct kvm *kvm; | |
6660 | int r; | |
6661 | ||
6662 | BUG_ON(vcpu->kvm == NULL); | |
6663 | kvm = vcpu->kvm; | |
6664 | ||
9aabc88f | 6665 | vcpu->arch.emulate_ctxt.ops = &emulate_ops; |
c5af89b6 | 6666 | if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) |
a4535290 | 6667 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
e9b11c17 | 6668 | else |
a4535290 | 6669 | vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; |
e9b11c17 ZX |
6670 | |
6671 | page = alloc_page(GFP_KERNEL | __GFP_ZERO); | |
6672 | if (!page) { | |
6673 | r = -ENOMEM; | |
6674 | goto fail; | |
6675 | } | |
ad312c7c | 6676 | vcpu->arch.pio_data = page_address(page); |
e9b11c17 | 6677 | |
cc578287 | 6678 | kvm_set_tsc_khz(vcpu, max_tsc_khz); |
c285545f | 6679 | |
e9b11c17 ZX |
6680 | r = kvm_mmu_create(vcpu); |
6681 | if (r < 0) | |
6682 | goto fail_free_pio_data; | |
6683 | ||
6684 | if (irqchip_in_kernel(kvm)) { | |
6685 | r = kvm_create_lapic(vcpu); | |
6686 | if (r < 0) | |
6687 | goto fail_mmu_destroy; | |
54e9818f GN |
6688 | } else |
6689 | static_key_slow_inc(&kvm_no_apic_vcpu); | |
e9b11c17 | 6690 | |
890ca9ae YH |
6691 | vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, |
6692 | GFP_KERNEL); | |
6693 | if (!vcpu->arch.mce_banks) { | |
6694 | r = -ENOMEM; | |
443c39bc | 6695 | goto fail_free_lapic; |
890ca9ae YH |
6696 | } |
6697 | vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; | |
6698 | ||
f5f48ee1 SY |
6699 | if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) |
6700 | goto fail_free_mce_banks; | |
6701 | ||
66f7b72e JS |
6702 | r = fx_init(vcpu); |
6703 | if (r) | |
6704 | goto fail_free_wbinvd_dirty_mask; | |
6705 | ||
ba904635 | 6706 | vcpu->arch.ia32_tsc_adjust_msr = 0x0; |
af585b92 | 6707 | kvm_async_pf_hash_reset(vcpu); |
f5132b01 | 6708 | kvm_pmu_init(vcpu); |
af585b92 | 6709 | |
e9b11c17 | 6710 | return 0; |
66f7b72e JS |
6711 | fail_free_wbinvd_dirty_mask: |
6712 | free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); | |
f5f48ee1 SY |
6713 | fail_free_mce_banks: |
6714 | kfree(vcpu->arch.mce_banks); | |
443c39bc WY |
6715 | fail_free_lapic: |
6716 | kvm_free_lapic(vcpu); | |
e9b11c17 ZX |
6717 | fail_mmu_destroy: |
6718 | kvm_mmu_destroy(vcpu); | |
6719 | fail_free_pio_data: | |
ad312c7c | 6720 | free_page((unsigned long)vcpu->arch.pio_data); |
e9b11c17 ZX |
6721 | fail: |
6722 | return r; | |
6723 | } | |
6724 | ||
6725 | void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) | |
6726 | { | |
f656ce01 MT |
6727 | int idx; |
6728 | ||
f5132b01 | 6729 | kvm_pmu_destroy(vcpu); |
36cb93fd | 6730 | kfree(vcpu->arch.mce_banks); |
e9b11c17 | 6731 | kvm_free_lapic(vcpu); |
f656ce01 | 6732 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
e9b11c17 | 6733 | kvm_mmu_destroy(vcpu); |
f656ce01 | 6734 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
ad312c7c | 6735 | free_page((unsigned long)vcpu->arch.pio_data); |
54e9818f GN |
6736 | if (!irqchip_in_kernel(vcpu->kvm)) |
6737 | static_key_slow_dec(&kvm_no_apic_vcpu); | |
e9b11c17 | 6738 | } |
d19a9cd2 | 6739 | |
e08b9637 | 6740 | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
d19a9cd2 | 6741 | { |
e08b9637 CO |
6742 | if (type) |
6743 | return -EINVAL; | |
6744 | ||
f05e70ac | 6745 | INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); |
4d5c5d0f | 6746 | INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); |
d19a9cd2 | 6747 | |
5550af4d SY |
6748 | /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ |
6749 | set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); | |
7a84428a AW |
6750 | /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ |
6751 | set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, | |
6752 | &kvm->arch.irq_sources_bitmap); | |
5550af4d | 6753 | |
038f8c11 | 6754 | raw_spin_lock_init(&kvm->arch.tsc_write_lock); |
1e08ec4a | 6755 | mutex_init(&kvm->arch.apic_map_lock); |
d828199e MT |
6756 | spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); |
6757 | ||
6758 | pvclock_update_vm_gtod_copy(kvm); | |
53f658b3 | 6759 | |
d89f5eff | 6760 | return 0; |
d19a9cd2 ZX |
6761 | } |
6762 | ||
6763 | static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) | |
6764 | { | |
9fc77441 MT |
6765 | int r; |
6766 | r = vcpu_load(vcpu); | |
6767 | BUG_ON(r); | |
d19a9cd2 ZX |
6768 | kvm_mmu_unload(vcpu); |
6769 | vcpu_put(vcpu); | |
6770 | } | |
6771 | ||
6772 | static void kvm_free_vcpus(struct kvm *kvm) | |
6773 | { | |
6774 | unsigned int i; | |
988a2cae | 6775 | struct kvm_vcpu *vcpu; |
d19a9cd2 ZX |
6776 | |
6777 | /* | |
6778 | * Unpin any mmu pages first. | |
6779 | */ | |
af585b92 GN |
6780 | kvm_for_each_vcpu(i, vcpu, kvm) { |
6781 | kvm_clear_async_pf_completion_queue(vcpu); | |
988a2cae | 6782 | kvm_unload_vcpu_mmu(vcpu); |
af585b92 | 6783 | } |
988a2cae GN |
6784 | kvm_for_each_vcpu(i, vcpu, kvm) |
6785 | kvm_arch_vcpu_free(vcpu); | |
6786 | ||
6787 | mutex_lock(&kvm->lock); | |
6788 | for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) | |
6789 | kvm->vcpus[i] = NULL; | |
d19a9cd2 | 6790 | |
988a2cae GN |
6791 | atomic_set(&kvm->online_vcpus, 0); |
6792 | mutex_unlock(&kvm->lock); | |
d19a9cd2 ZX |
6793 | } |
6794 | ||
ad8ba2cd SY |
6795 | void kvm_arch_sync_events(struct kvm *kvm) |
6796 | { | |
ba4cef31 | 6797 | kvm_free_all_assigned_devices(kvm); |
aea924f6 | 6798 | kvm_free_pit(kvm); |
ad8ba2cd SY |
6799 | } |
6800 | ||
d19a9cd2 ZX |
6801 | void kvm_arch_destroy_vm(struct kvm *kvm) |
6802 | { | |
6eb55818 | 6803 | kvm_iommu_unmap_guest(kvm); |
d7deeeb0 ZX |
6804 | kfree(kvm->arch.vpic); |
6805 | kfree(kvm->arch.vioapic); | |
d19a9cd2 | 6806 | kvm_free_vcpus(kvm); |
3d45830c AK |
6807 | if (kvm->arch.apic_access_page) |
6808 | put_page(kvm->arch.apic_access_page); | |
b7ebfb05 SY |
6809 | if (kvm->arch.ept_identity_pagetable) |
6810 | put_page(kvm->arch.ept_identity_pagetable); | |
1e08ec4a | 6811 | kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); |
d19a9cd2 | 6812 | } |
0de10343 | 6813 | |
db3fe4eb TY |
6814 | void kvm_arch_free_memslot(struct kvm_memory_slot *free, |
6815 | struct kvm_memory_slot *dont) | |
6816 | { | |
6817 | int i; | |
6818 | ||
d89cc617 TY |
6819 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
6820 | if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { | |
6821 | kvm_kvfree(free->arch.rmap[i]); | |
6822 | free->arch.rmap[i] = NULL; | |
77d11309 | 6823 | } |
d89cc617 TY |
6824 | if (i == 0) |
6825 | continue; | |
6826 | ||
6827 | if (!dont || free->arch.lpage_info[i - 1] != | |
6828 | dont->arch.lpage_info[i - 1]) { | |
6829 | kvm_kvfree(free->arch.lpage_info[i - 1]); | |
6830 | free->arch.lpage_info[i - 1] = NULL; | |
db3fe4eb TY |
6831 | } |
6832 | } | |
6833 | } | |
6834 | ||
6835 | int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) | |
6836 | { | |
6837 | int i; | |
6838 | ||
d89cc617 | 6839 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
db3fe4eb TY |
6840 | unsigned long ugfn; |
6841 | int lpages; | |
d89cc617 | 6842 | int level = i + 1; |
db3fe4eb TY |
6843 | |
6844 | lpages = gfn_to_index(slot->base_gfn + npages - 1, | |
6845 | slot->base_gfn, level) + 1; | |
6846 | ||
d89cc617 TY |
6847 | slot->arch.rmap[i] = |
6848 | kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); | |
6849 | if (!slot->arch.rmap[i]) | |
77d11309 | 6850 | goto out_free; |
d89cc617 TY |
6851 | if (i == 0) |
6852 | continue; | |
77d11309 | 6853 | |
d89cc617 TY |
6854 | slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * |
6855 | sizeof(*slot->arch.lpage_info[i - 1])); | |
6856 | if (!slot->arch.lpage_info[i - 1]) | |
db3fe4eb TY |
6857 | goto out_free; |
6858 | ||
6859 | if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) | |
d89cc617 | 6860 | slot->arch.lpage_info[i - 1][0].write_count = 1; |
db3fe4eb | 6861 | if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) |
d89cc617 | 6862 | slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; |
db3fe4eb TY |
6863 | ugfn = slot->userspace_addr >> PAGE_SHIFT; |
6864 | /* | |
6865 | * If the gfn and userspace address are not aligned wrt each | |
6866 | * other, or if explicitly asked to, disable large page | |
6867 | * support for this slot | |
6868 | */ | |
6869 | if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || | |
6870 | !kvm_largepages_enabled()) { | |
6871 | unsigned long j; | |
6872 | ||
6873 | for (j = 0; j < lpages; ++j) | |
d89cc617 | 6874 | slot->arch.lpage_info[i - 1][j].write_count = 1; |
db3fe4eb TY |
6875 | } |
6876 | } | |
6877 | ||
6878 | return 0; | |
6879 | ||
6880 | out_free: | |
d89cc617 TY |
6881 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
6882 | kvm_kvfree(slot->arch.rmap[i]); | |
6883 | slot->arch.rmap[i] = NULL; | |
6884 | if (i == 0) | |
6885 | continue; | |
6886 | ||
6887 | kvm_kvfree(slot->arch.lpage_info[i - 1]); | |
6888 | slot->arch.lpage_info[i - 1] = NULL; | |
db3fe4eb TY |
6889 | } |
6890 | return -ENOMEM; | |
6891 | } | |
6892 | ||
f7784b8e MT |
6893 | int kvm_arch_prepare_memory_region(struct kvm *kvm, |
6894 | struct kvm_memory_slot *memslot, | |
0de10343 | 6895 | struct kvm_memory_slot old, |
f7784b8e | 6896 | struct kvm_userspace_memory_region *mem, |
f82a8cfe | 6897 | bool user_alloc) |
0de10343 | 6898 | { |
f7784b8e | 6899 | int npages = memslot->npages; |
7ac77099 AK |
6900 | int map_flags = MAP_PRIVATE | MAP_ANONYMOUS; |
6901 | ||
6902 | /* Prevent internal slot pages from being moved by fork()/COW. */ | |
bbacc0c1 | 6903 | if (memslot->id >= KVM_USER_MEM_SLOTS) |
7ac77099 | 6904 | map_flags = MAP_SHARED | MAP_ANONYMOUS; |
0de10343 ZX |
6905 | |
6906 | /*To keep backward compatibility with older userspace, | |
4a969980 | 6907 | *x86 needs to handle !user_alloc case. |
0de10343 ZX |
6908 | */ |
6909 | if (!user_alloc) { | |
aab2eb7a | 6910 | if (npages && !old.npages) { |
604b38ac AA |
6911 | unsigned long userspace_addr; |
6912 | ||
6be5ceb0 | 6913 | userspace_addr = vm_mmap(NULL, 0, |
604b38ac AA |
6914 | npages * PAGE_SIZE, |
6915 | PROT_READ | PROT_WRITE, | |
7ac77099 | 6916 | map_flags, |
604b38ac | 6917 | 0); |
0de10343 | 6918 | |
604b38ac AA |
6919 | if (IS_ERR((void *)userspace_addr)) |
6920 | return PTR_ERR((void *)userspace_addr); | |
6921 | ||
604b38ac | 6922 | memslot->userspace_addr = userspace_addr; |
0de10343 ZX |
6923 | } |
6924 | } | |
6925 | ||
f7784b8e MT |
6926 | |
6927 | return 0; | |
6928 | } | |
6929 | ||
6930 | void kvm_arch_commit_memory_region(struct kvm *kvm, | |
6931 | struct kvm_userspace_memory_region *mem, | |
6932 | struct kvm_memory_slot old, | |
f82a8cfe | 6933 | bool user_alloc) |
f7784b8e MT |
6934 | { |
6935 | ||
48c0e4e9 | 6936 | int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT; |
f7784b8e | 6937 | |
aab2eb7a | 6938 | if (!user_alloc && !old.user_alloc && old.npages && !npages) { |
f7784b8e MT |
6939 | int ret; |
6940 | ||
bfce281c | 6941 | ret = vm_munmap(old.userspace_addr, |
f7784b8e | 6942 | old.npages * PAGE_SIZE); |
f7784b8e MT |
6943 | if (ret < 0) |
6944 | printk(KERN_WARNING | |
6945 | "kvm_vm_ioctl_set_memory_region: " | |
6946 | "failed to munmap memory\n"); | |
6947 | } | |
6948 | ||
48c0e4e9 XG |
6949 | if (!kvm->arch.n_requested_mmu_pages) |
6950 | nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); | |
6951 | ||
48c0e4e9 | 6952 | if (nr_mmu_pages) |
0de10343 | 6953 | kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); |
c972f3b1 TY |
6954 | /* |
6955 | * Write protect all pages for dirty logging. | |
6956 | * Existing largepage mappings are destroyed here and new ones will | |
6957 | * not be created until the end of the logging. | |
6958 | */ | |
9d1beefb | 6959 | if (npages && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) |
c972f3b1 | 6960 | kvm_mmu_slot_remove_write_access(kvm, mem->slot); |
3b4dc3a0 MT |
6961 | /* |
6962 | * If memory slot is created, or moved, we need to clear all | |
6963 | * mmio sptes. | |
6964 | */ | |
6965 | if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) { | |
6966 | kvm_mmu_zap_all(kvm); | |
6967 | kvm_reload_remote_mmus(kvm); | |
6968 | } | |
0de10343 | 6969 | } |
1d737c8a | 6970 | |
2df72e9b | 6971 | void kvm_arch_flush_shadow_all(struct kvm *kvm) |
34d4cb8f MT |
6972 | { |
6973 | kvm_mmu_zap_all(kvm); | |
8986ecc0 | 6974 | kvm_reload_remote_mmus(kvm); |
34d4cb8f MT |
6975 | } |
6976 | ||
2df72e9b MT |
6977 | void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
6978 | struct kvm_memory_slot *slot) | |
6979 | { | |
6980 | kvm_arch_flush_shadow_all(kvm); | |
6981 | } | |
6982 | ||
1d737c8a ZX |
6983 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) |
6984 | { | |
af585b92 GN |
6985 | return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && |
6986 | !vcpu->arch.apf.halted) | |
6987 | || !list_empty_careful(&vcpu->async_pf.done) | |
a1b37100 | 6988 | || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED |
7460fb4a | 6989 | || atomic_read(&vcpu->arch.nmi_queued) || |
a1b37100 GN |
6990 | (kvm_arch_interrupt_allowed(vcpu) && |
6991 | kvm_cpu_has_interrupt(vcpu)); | |
1d737c8a | 6992 | } |
5736199a | 6993 | |
b6d33834 | 6994 | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
5736199a | 6995 | { |
b6d33834 | 6996 | return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; |
5736199a | 6997 | } |
78646121 GN |
6998 | |
6999 | int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) | |
7000 | { | |
7001 | return kvm_x86_ops->interrupt_allowed(vcpu); | |
7002 | } | |
229456fc | 7003 | |
f92653ee JK |
7004 | bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) |
7005 | { | |
7006 | unsigned long current_rip = kvm_rip_read(vcpu) + | |
7007 | get_segment_base(vcpu, VCPU_SREG_CS); | |
7008 | ||
7009 | return current_rip == linear_rip; | |
7010 | } | |
7011 | EXPORT_SYMBOL_GPL(kvm_is_linear_rip); | |
7012 | ||
94fe45da JK |
7013 | unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) |
7014 | { | |
7015 | unsigned long rflags; | |
7016 | ||
7017 | rflags = kvm_x86_ops->get_rflags(vcpu); | |
7018 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) | |
c310bac5 | 7019 | rflags &= ~X86_EFLAGS_TF; |
94fe45da JK |
7020 | return rflags; |
7021 | } | |
7022 | EXPORT_SYMBOL_GPL(kvm_get_rflags); | |
7023 | ||
7024 | void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | |
7025 | { | |
7026 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && | |
f92653ee | 7027 | kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) |
c310bac5 | 7028 | rflags |= X86_EFLAGS_TF; |
94fe45da | 7029 | kvm_x86_ops->set_rflags(vcpu, rflags); |
3842d135 | 7030 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
94fe45da JK |
7031 | } |
7032 | EXPORT_SYMBOL_GPL(kvm_set_rflags); | |
7033 | ||
56028d08 GN |
7034 | void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) |
7035 | { | |
7036 | int r; | |
7037 | ||
fb67e14f | 7038 | if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || |
c4806acd | 7039 | is_error_page(work->page)) |
56028d08 GN |
7040 | return; |
7041 | ||
7042 | r = kvm_mmu_reload(vcpu); | |
7043 | if (unlikely(r)) | |
7044 | return; | |
7045 | ||
fb67e14f XG |
7046 | if (!vcpu->arch.mmu.direct_map && |
7047 | work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) | |
7048 | return; | |
7049 | ||
56028d08 GN |
7050 | vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); |
7051 | } | |
7052 | ||
af585b92 GN |
7053 | static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) |
7054 | { | |
7055 | return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); | |
7056 | } | |
7057 | ||
7058 | static inline u32 kvm_async_pf_next_probe(u32 key) | |
7059 | { | |
7060 | return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); | |
7061 | } | |
7062 | ||
7063 | static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
7064 | { | |
7065 | u32 key = kvm_async_pf_hash_fn(gfn); | |
7066 | ||
7067 | while (vcpu->arch.apf.gfns[key] != ~0) | |
7068 | key = kvm_async_pf_next_probe(key); | |
7069 | ||
7070 | vcpu->arch.apf.gfns[key] = gfn; | |
7071 | } | |
7072 | ||
7073 | static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) | |
7074 | { | |
7075 | int i; | |
7076 | u32 key = kvm_async_pf_hash_fn(gfn); | |
7077 | ||
7078 | for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && | |
c7d28c24 XG |
7079 | (vcpu->arch.apf.gfns[key] != gfn && |
7080 | vcpu->arch.apf.gfns[key] != ~0); i++) | |
af585b92 GN |
7081 | key = kvm_async_pf_next_probe(key); |
7082 | ||
7083 | return key; | |
7084 | } | |
7085 | ||
7086 | bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
7087 | { | |
7088 | return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; | |
7089 | } | |
7090 | ||
7091 | static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
7092 | { | |
7093 | u32 i, j, k; | |
7094 | ||
7095 | i = j = kvm_async_pf_gfn_slot(vcpu, gfn); | |
7096 | while (true) { | |
7097 | vcpu->arch.apf.gfns[i] = ~0; | |
7098 | do { | |
7099 | j = kvm_async_pf_next_probe(j); | |
7100 | if (vcpu->arch.apf.gfns[j] == ~0) | |
7101 | return; | |
7102 | k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); | |
7103 | /* | |
7104 | * k lies cyclically in ]i,j] | |
7105 | * | i.k.j | | |
7106 | * |....j i.k.| or |.k..j i...| | |
7107 | */ | |
7108 | } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); | |
7109 | vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; | |
7110 | i = j; | |
7111 | } | |
7112 | } | |
7113 | ||
7c90705b GN |
7114 | static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) |
7115 | { | |
7116 | ||
7117 | return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, | |
7118 | sizeof(val)); | |
7119 | } | |
7120 | ||
af585b92 GN |
7121 | void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, |
7122 | struct kvm_async_pf *work) | |
7123 | { | |
6389ee94 AK |
7124 | struct x86_exception fault; |
7125 | ||
7c90705b | 7126 | trace_kvm_async_pf_not_present(work->arch.token, work->gva); |
af585b92 | 7127 | kvm_add_async_pf_gfn(vcpu, work->arch.gfn); |
7c90705b GN |
7128 | |
7129 | if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || | |
fc5f06fa GN |
7130 | (vcpu->arch.apf.send_user_only && |
7131 | kvm_x86_ops->get_cpl(vcpu) == 0)) | |
7c90705b GN |
7132 | kvm_make_request(KVM_REQ_APF_HALT, vcpu); |
7133 | else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { | |
6389ee94 AK |
7134 | fault.vector = PF_VECTOR; |
7135 | fault.error_code_valid = true; | |
7136 | fault.error_code = 0; | |
7137 | fault.nested_page_fault = false; | |
7138 | fault.address = work->arch.token; | |
7139 | kvm_inject_page_fault(vcpu, &fault); | |
7c90705b | 7140 | } |
af585b92 GN |
7141 | } |
7142 | ||
7143 | void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, | |
7144 | struct kvm_async_pf *work) | |
7145 | { | |
6389ee94 AK |
7146 | struct x86_exception fault; |
7147 | ||
7c90705b GN |
7148 | trace_kvm_async_pf_ready(work->arch.token, work->gva); |
7149 | if (is_error_page(work->page)) | |
7150 | work->arch.token = ~0; /* broadcast wakeup */ | |
7151 | else | |
7152 | kvm_del_async_pf_gfn(vcpu, work->arch.gfn); | |
7153 | ||
7154 | if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && | |
7155 | !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { | |
6389ee94 AK |
7156 | fault.vector = PF_VECTOR; |
7157 | fault.error_code_valid = true; | |
7158 | fault.error_code = 0; | |
7159 | fault.nested_page_fault = false; | |
7160 | fault.address = work->arch.token; | |
7161 | kvm_inject_page_fault(vcpu, &fault); | |
7c90705b | 7162 | } |
e6d53e3b | 7163 | vcpu->arch.apf.halted = false; |
a4fa1635 | 7164 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
7c90705b GN |
7165 | } |
7166 | ||
7167 | bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) | |
7168 | { | |
7169 | if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) | |
7170 | return true; | |
7171 | else | |
7172 | return !kvm_event_needs_reinjection(vcpu) && | |
7173 | kvm_x86_ops->interrupt_allowed(vcpu); | |
af585b92 GN |
7174 | } |
7175 | ||
229456fc MT |
7176 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); |
7177 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); | |
7178 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); | |
7179 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); | |
7180 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); | |
0ac406de | 7181 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); |
d8cabddf | 7182 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); |
17897f36 | 7183 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); |
236649de | 7184 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); |
ec1ff790 | 7185 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); |
532a46b9 | 7186 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); |
2e554e8d | 7187 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); |