]> Git Repo - linux.git/blame_incremental - mm/slab_common.c
slab: make create_boot_cache() work with 32-bit sizes
[linux.git] / mm / slab_common.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <[email protected]>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
13#include <linux/cache.h>
14#include <linux/compiler.h>
15#include <linux/module.h>
16#include <linux/cpu.h>
17#include <linux/uaccess.h>
18#include <linux/seq_file.h>
19#include <linux/proc_fs.h>
20#include <asm/cacheflush.h>
21#include <asm/tlbflush.h>
22#include <asm/page.h>
23#include <linux/memcontrol.h>
24
25#define CREATE_TRACE_POINTS
26#include <trace/events/kmem.h>
27
28#include "slab.h"
29
30enum slab_state slab_state;
31LIST_HEAD(slab_caches);
32DEFINE_MUTEX(slab_mutex);
33struct kmem_cache *kmem_cache;
34
35#ifdef CONFIG_HARDENED_USERCOPY
36bool usercopy_fallback __ro_after_init =
37 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
38module_param(usercopy_fallback, bool, 0400);
39MODULE_PARM_DESC(usercopy_fallback,
40 "WARN instead of reject usercopy whitelist violations");
41#endif
42
43static LIST_HEAD(slab_caches_to_rcu_destroy);
44static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 slab_caches_to_rcu_destroy_workfn);
47
48/*
49 * Set of flags that will prevent slab merging
50 */
51#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
53 SLAB_FAILSLAB | SLAB_KASAN)
54
55#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
56 SLAB_ACCOUNT)
57
58/*
59 * Merge control. If this is set then no merging of slab caches will occur.
60 */
61static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
62
63static int __init setup_slab_nomerge(char *str)
64{
65 slab_nomerge = true;
66 return 1;
67}
68
69#ifdef CONFIG_SLUB
70__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
71#endif
72
73__setup("slab_nomerge", setup_slab_nomerge);
74
75/*
76 * Determine the size of a slab object
77 */
78unsigned int kmem_cache_size(struct kmem_cache *s)
79{
80 return s->object_size;
81}
82EXPORT_SYMBOL(kmem_cache_size);
83
84#ifdef CONFIG_DEBUG_VM
85static int kmem_cache_sanity_check(const char *name, size_t size)
86{
87 struct kmem_cache *s = NULL;
88
89 if (!name || in_interrupt() || size < sizeof(void *) ||
90 size > KMALLOC_MAX_SIZE) {
91 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
92 return -EINVAL;
93 }
94
95 list_for_each_entry(s, &slab_caches, list) {
96 char tmp;
97 int res;
98
99 /*
100 * This happens when the module gets unloaded and doesn't
101 * destroy its slab cache and no-one else reuses the vmalloc
102 * area of the module. Print a warning.
103 */
104 res = probe_kernel_address(s->name, tmp);
105 if (res) {
106 pr_err("Slab cache with size %d has lost its name\n",
107 s->object_size);
108 continue;
109 }
110 }
111
112 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
113 return 0;
114}
115#else
116static inline int kmem_cache_sanity_check(const char *name, size_t size)
117{
118 return 0;
119}
120#endif
121
122void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
123{
124 size_t i;
125
126 for (i = 0; i < nr; i++) {
127 if (s)
128 kmem_cache_free(s, p[i]);
129 else
130 kfree(p[i]);
131 }
132}
133
134int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
135 void **p)
136{
137 size_t i;
138
139 for (i = 0; i < nr; i++) {
140 void *x = p[i] = kmem_cache_alloc(s, flags);
141 if (!x) {
142 __kmem_cache_free_bulk(s, i, p);
143 return 0;
144 }
145 }
146 return i;
147}
148
149#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
150
151LIST_HEAD(slab_root_caches);
152
153void slab_init_memcg_params(struct kmem_cache *s)
154{
155 s->memcg_params.root_cache = NULL;
156 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
157 INIT_LIST_HEAD(&s->memcg_params.children);
158}
159
160static int init_memcg_params(struct kmem_cache *s,
161 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
162{
163 struct memcg_cache_array *arr;
164
165 if (root_cache) {
166 s->memcg_params.root_cache = root_cache;
167 s->memcg_params.memcg = memcg;
168 INIT_LIST_HEAD(&s->memcg_params.children_node);
169 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
170 return 0;
171 }
172
173 slab_init_memcg_params(s);
174
175 if (!memcg_nr_cache_ids)
176 return 0;
177
178 arr = kvzalloc(sizeof(struct memcg_cache_array) +
179 memcg_nr_cache_ids * sizeof(void *),
180 GFP_KERNEL);
181 if (!arr)
182 return -ENOMEM;
183
184 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
185 return 0;
186}
187
188static void destroy_memcg_params(struct kmem_cache *s)
189{
190 if (is_root_cache(s))
191 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
192}
193
194static void free_memcg_params(struct rcu_head *rcu)
195{
196 struct memcg_cache_array *old;
197
198 old = container_of(rcu, struct memcg_cache_array, rcu);
199 kvfree(old);
200}
201
202static int update_memcg_params(struct kmem_cache *s, int new_array_size)
203{
204 struct memcg_cache_array *old, *new;
205
206 new = kvzalloc(sizeof(struct memcg_cache_array) +
207 new_array_size * sizeof(void *), GFP_KERNEL);
208 if (!new)
209 return -ENOMEM;
210
211 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
212 lockdep_is_held(&slab_mutex));
213 if (old)
214 memcpy(new->entries, old->entries,
215 memcg_nr_cache_ids * sizeof(void *));
216
217 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
218 if (old)
219 call_rcu(&old->rcu, free_memcg_params);
220 return 0;
221}
222
223int memcg_update_all_caches(int num_memcgs)
224{
225 struct kmem_cache *s;
226 int ret = 0;
227
228 mutex_lock(&slab_mutex);
229 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
230 ret = update_memcg_params(s, num_memcgs);
231 /*
232 * Instead of freeing the memory, we'll just leave the caches
233 * up to this point in an updated state.
234 */
235 if (ret)
236 break;
237 }
238 mutex_unlock(&slab_mutex);
239 return ret;
240}
241
242void memcg_link_cache(struct kmem_cache *s)
243{
244 if (is_root_cache(s)) {
245 list_add(&s->root_caches_node, &slab_root_caches);
246 } else {
247 list_add(&s->memcg_params.children_node,
248 &s->memcg_params.root_cache->memcg_params.children);
249 list_add(&s->memcg_params.kmem_caches_node,
250 &s->memcg_params.memcg->kmem_caches);
251 }
252}
253
254static void memcg_unlink_cache(struct kmem_cache *s)
255{
256 if (is_root_cache(s)) {
257 list_del(&s->root_caches_node);
258 } else {
259 list_del(&s->memcg_params.children_node);
260 list_del(&s->memcg_params.kmem_caches_node);
261 }
262}
263#else
264static inline int init_memcg_params(struct kmem_cache *s,
265 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
266{
267 return 0;
268}
269
270static inline void destroy_memcg_params(struct kmem_cache *s)
271{
272}
273
274static inline void memcg_unlink_cache(struct kmem_cache *s)
275{
276}
277#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
278
279/*
280 * Figure out what the alignment of the objects will be given a set of
281 * flags, a user specified alignment and the size of the objects.
282 */
283static unsigned long calculate_alignment(slab_flags_t flags,
284 unsigned long align, unsigned long size)
285{
286 /*
287 * If the user wants hardware cache aligned objects then follow that
288 * suggestion if the object is sufficiently large.
289 *
290 * The hardware cache alignment cannot override the specified
291 * alignment though. If that is greater then use it.
292 */
293 if (flags & SLAB_HWCACHE_ALIGN) {
294 unsigned long ralign;
295
296 ralign = cache_line_size();
297 while (size <= ralign / 2)
298 ralign /= 2;
299 align = max(align, ralign);
300 }
301
302 if (align < ARCH_SLAB_MINALIGN)
303 align = ARCH_SLAB_MINALIGN;
304
305 return ALIGN(align, sizeof(void *));
306}
307
308/*
309 * Find a mergeable slab cache
310 */
311int slab_unmergeable(struct kmem_cache *s)
312{
313 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
314 return 1;
315
316 if (!is_root_cache(s))
317 return 1;
318
319 if (s->ctor)
320 return 1;
321
322 if (s->usersize)
323 return 1;
324
325 /*
326 * We may have set a slab to be unmergeable during bootstrap.
327 */
328 if (s->refcount < 0)
329 return 1;
330
331 return 0;
332}
333
334struct kmem_cache *find_mergeable(size_t size, size_t align,
335 slab_flags_t flags, const char *name, void (*ctor)(void *))
336{
337 struct kmem_cache *s;
338
339 if (slab_nomerge)
340 return NULL;
341
342 if (ctor)
343 return NULL;
344
345 size = ALIGN(size, sizeof(void *));
346 align = calculate_alignment(flags, align, size);
347 size = ALIGN(size, align);
348 flags = kmem_cache_flags(size, flags, name, NULL);
349
350 if (flags & SLAB_NEVER_MERGE)
351 return NULL;
352
353 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
354 if (slab_unmergeable(s))
355 continue;
356
357 if (size > s->size)
358 continue;
359
360 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
361 continue;
362 /*
363 * Check if alignment is compatible.
364 * Courtesy of Adrian Drzewiecki
365 */
366 if ((s->size & ~(align - 1)) != s->size)
367 continue;
368
369 if (s->size - size >= sizeof(void *))
370 continue;
371
372 if (IS_ENABLED(CONFIG_SLAB) && align &&
373 (align > s->align || s->align % align))
374 continue;
375
376 return s;
377 }
378 return NULL;
379}
380
381static struct kmem_cache *create_cache(const char *name,
382 size_t object_size, size_t size, size_t align,
383 slab_flags_t flags, size_t useroffset,
384 size_t usersize, void (*ctor)(void *),
385 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
386{
387 struct kmem_cache *s;
388 int err;
389
390 if (WARN_ON(useroffset + usersize > object_size))
391 useroffset = usersize = 0;
392
393 err = -ENOMEM;
394 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
395 if (!s)
396 goto out;
397
398 s->name = name;
399 s->object_size = object_size;
400 s->size = size;
401 s->align = align;
402 s->ctor = ctor;
403 s->useroffset = useroffset;
404 s->usersize = usersize;
405
406 err = init_memcg_params(s, memcg, root_cache);
407 if (err)
408 goto out_free_cache;
409
410 err = __kmem_cache_create(s, flags);
411 if (err)
412 goto out_free_cache;
413
414 s->refcount = 1;
415 list_add(&s->list, &slab_caches);
416 memcg_link_cache(s);
417out:
418 if (err)
419 return ERR_PTR(err);
420 return s;
421
422out_free_cache:
423 destroy_memcg_params(s);
424 kmem_cache_free(kmem_cache, s);
425 goto out;
426}
427
428/*
429 * kmem_cache_create_usercopy - Create a cache.
430 * @name: A string which is used in /proc/slabinfo to identify this cache.
431 * @size: The size of objects to be created in this cache.
432 * @align: The required alignment for the objects.
433 * @flags: SLAB flags
434 * @useroffset: Usercopy region offset
435 * @usersize: Usercopy region size
436 * @ctor: A constructor for the objects.
437 *
438 * Returns a ptr to the cache on success, NULL on failure.
439 * Cannot be called within a interrupt, but can be interrupted.
440 * The @ctor is run when new pages are allocated by the cache.
441 *
442 * The flags are
443 *
444 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
445 * to catch references to uninitialised memory.
446 *
447 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
448 * for buffer overruns.
449 *
450 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
451 * cacheline. This can be beneficial if you're counting cycles as closely
452 * as davem.
453 */
454struct kmem_cache *
455kmem_cache_create_usercopy(const char *name, size_t size, size_t align,
456 slab_flags_t flags, size_t useroffset, size_t usersize,
457 void (*ctor)(void *))
458{
459 struct kmem_cache *s = NULL;
460 const char *cache_name;
461 int err;
462
463 get_online_cpus();
464 get_online_mems();
465 memcg_get_cache_ids();
466
467 mutex_lock(&slab_mutex);
468
469 err = kmem_cache_sanity_check(name, size);
470 if (err) {
471 goto out_unlock;
472 }
473
474 /* Refuse requests with allocator specific flags */
475 if (flags & ~SLAB_FLAGS_PERMITTED) {
476 err = -EINVAL;
477 goto out_unlock;
478 }
479
480 /*
481 * Some allocators will constraint the set of valid flags to a subset
482 * of all flags. We expect them to define CACHE_CREATE_MASK in this
483 * case, and we'll just provide them with a sanitized version of the
484 * passed flags.
485 */
486 flags &= CACHE_CREATE_MASK;
487
488 /* Fail closed on bad usersize of useroffset values. */
489 if (WARN_ON(!usersize && useroffset) ||
490 WARN_ON(size < usersize || size - usersize < useroffset))
491 usersize = useroffset = 0;
492
493 if (!usersize)
494 s = __kmem_cache_alias(name, size, align, flags, ctor);
495 if (s)
496 goto out_unlock;
497
498 cache_name = kstrdup_const(name, GFP_KERNEL);
499 if (!cache_name) {
500 err = -ENOMEM;
501 goto out_unlock;
502 }
503
504 s = create_cache(cache_name, size, size,
505 calculate_alignment(flags, align, size),
506 flags, useroffset, usersize, ctor, NULL, NULL);
507 if (IS_ERR(s)) {
508 err = PTR_ERR(s);
509 kfree_const(cache_name);
510 }
511
512out_unlock:
513 mutex_unlock(&slab_mutex);
514
515 memcg_put_cache_ids();
516 put_online_mems();
517 put_online_cpus();
518
519 if (err) {
520 if (flags & SLAB_PANIC)
521 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
522 name, err);
523 else {
524 pr_warn("kmem_cache_create(%s) failed with error %d\n",
525 name, err);
526 dump_stack();
527 }
528 return NULL;
529 }
530 return s;
531}
532EXPORT_SYMBOL(kmem_cache_create_usercopy);
533
534struct kmem_cache *
535kmem_cache_create(const char *name, size_t size, size_t align,
536 slab_flags_t flags, void (*ctor)(void *))
537{
538 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
539 ctor);
540}
541EXPORT_SYMBOL(kmem_cache_create);
542
543static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
544{
545 LIST_HEAD(to_destroy);
546 struct kmem_cache *s, *s2;
547
548 /*
549 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
550 * @slab_caches_to_rcu_destroy list. The slab pages are freed
551 * through RCU and and the associated kmem_cache are dereferenced
552 * while freeing the pages, so the kmem_caches should be freed only
553 * after the pending RCU operations are finished. As rcu_barrier()
554 * is a pretty slow operation, we batch all pending destructions
555 * asynchronously.
556 */
557 mutex_lock(&slab_mutex);
558 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
559 mutex_unlock(&slab_mutex);
560
561 if (list_empty(&to_destroy))
562 return;
563
564 rcu_barrier();
565
566 list_for_each_entry_safe(s, s2, &to_destroy, list) {
567#ifdef SLAB_SUPPORTS_SYSFS
568 sysfs_slab_release(s);
569#else
570 slab_kmem_cache_release(s);
571#endif
572 }
573}
574
575static int shutdown_cache(struct kmem_cache *s)
576{
577 /* free asan quarantined objects */
578 kasan_cache_shutdown(s);
579
580 if (__kmem_cache_shutdown(s) != 0)
581 return -EBUSY;
582
583 memcg_unlink_cache(s);
584 list_del(&s->list);
585
586 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
587 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
588 schedule_work(&slab_caches_to_rcu_destroy_work);
589 } else {
590#ifdef SLAB_SUPPORTS_SYSFS
591 sysfs_slab_release(s);
592#else
593 slab_kmem_cache_release(s);
594#endif
595 }
596
597 return 0;
598}
599
600#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
601/*
602 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
603 * @memcg: The memory cgroup the new cache is for.
604 * @root_cache: The parent of the new cache.
605 *
606 * This function attempts to create a kmem cache that will serve allocation
607 * requests going from @memcg to @root_cache. The new cache inherits properties
608 * from its parent.
609 */
610void memcg_create_kmem_cache(struct mem_cgroup *memcg,
611 struct kmem_cache *root_cache)
612{
613 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
614 struct cgroup_subsys_state *css = &memcg->css;
615 struct memcg_cache_array *arr;
616 struct kmem_cache *s = NULL;
617 char *cache_name;
618 int idx;
619
620 get_online_cpus();
621 get_online_mems();
622
623 mutex_lock(&slab_mutex);
624
625 /*
626 * The memory cgroup could have been offlined while the cache
627 * creation work was pending.
628 */
629 if (memcg->kmem_state != KMEM_ONLINE)
630 goto out_unlock;
631
632 idx = memcg_cache_id(memcg);
633 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
634 lockdep_is_held(&slab_mutex));
635
636 /*
637 * Since per-memcg caches are created asynchronously on first
638 * allocation (see memcg_kmem_get_cache()), several threads can try to
639 * create the same cache, but only one of them may succeed.
640 */
641 if (arr->entries[idx])
642 goto out_unlock;
643
644 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
645 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
646 css->serial_nr, memcg_name_buf);
647 if (!cache_name)
648 goto out_unlock;
649
650 s = create_cache(cache_name, root_cache->object_size,
651 root_cache->size, root_cache->align,
652 root_cache->flags & CACHE_CREATE_MASK,
653 root_cache->useroffset, root_cache->usersize,
654 root_cache->ctor, memcg, root_cache);
655 /*
656 * If we could not create a memcg cache, do not complain, because
657 * that's not critical at all as we can always proceed with the root
658 * cache.
659 */
660 if (IS_ERR(s)) {
661 kfree(cache_name);
662 goto out_unlock;
663 }
664
665 /*
666 * Since readers won't lock (see cache_from_memcg_idx()), we need a
667 * barrier here to ensure nobody will see the kmem_cache partially
668 * initialized.
669 */
670 smp_wmb();
671 arr->entries[idx] = s;
672
673out_unlock:
674 mutex_unlock(&slab_mutex);
675
676 put_online_mems();
677 put_online_cpus();
678}
679
680static void kmemcg_deactivate_workfn(struct work_struct *work)
681{
682 struct kmem_cache *s = container_of(work, struct kmem_cache,
683 memcg_params.deact_work);
684
685 get_online_cpus();
686 get_online_mems();
687
688 mutex_lock(&slab_mutex);
689
690 s->memcg_params.deact_fn(s);
691
692 mutex_unlock(&slab_mutex);
693
694 put_online_mems();
695 put_online_cpus();
696
697 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
698 css_put(&s->memcg_params.memcg->css);
699}
700
701static void kmemcg_deactivate_rcufn(struct rcu_head *head)
702{
703 struct kmem_cache *s = container_of(head, struct kmem_cache,
704 memcg_params.deact_rcu_head);
705
706 /*
707 * We need to grab blocking locks. Bounce to ->deact_work. The
708 * work item shares the space with the RCU head and can't be
709 * initialized eariler.
710 */
711 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
712 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
713}
714
715/**
716 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
717 * sched RCU grace period
718 * @s: target kmem_cache
719 * @deact_fn: deactivation function to call
720 *
721 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
722 * held after a sched RCU grace period. The slab is guaranteed to stay
723 * alive until @deact_fn is finished. This is to be used from
724 * __kmemcg_cache_deactivate().
725 */
726void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
727 void (*deact_fn)(struct kmem_cache *))
728{
729 if (WARN_ON_ONCE(is_root_cache(s)) ||
730 WARN_ON_ONCE(s->memcg_params.deact_fn))
731 return;
732
733 /* pin memcg so that @s doesn't get destroyed in the middle */
734 css_get(&s->memcg_params.memcg->css);
735
736 s->memcg_params.deact_fn = deact_fn;
737 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
738}
739
740void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
741{
742 int idx;
743 struct memcg_cache_array *arr;
744 struct kmem_cache *s, *c;
745
746 idx = memcg_cache_id(memcg);
747
748 get_online_cpus();
749 get_online_mems();
750
751 mutex_lock(&slab_mutex);
752 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
753 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
754 lockdep_is_held(&slab_mutex));
755 c = arr->entries[idx];
756 if (!c)
757 continue;
758
759 __kmemcg_cache_deactivate(c);
760 arr->entries[idx] = NULL;
761 }
762 mutex_unlock(&slab_mutex);
763
764 put_online_mems();
765 put_online_cpus();
766}
767
768void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
769{
770 struct kmem_cache *s, *s2;
771
772 get_online_cpus();
773 get_online_mems();
774
775 mutex_lock(&slab_mutex);
776 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
777 memcg_params.kmem_caches_node) {
778 /*
779 * The cgroup is about to be freed and therefore has no charges
780 * left. Hence, all its caches must be empty by now.
781 */
782 BUG_ON(shutdown_cache(s));
783 }
784 mutex_unlock(&slab_mutex);
785
786 put_online_mems();
787 put_online_cpus();
788}
789
790static int shutdown_memcg_caches(struct kmem_cache *s)
791{
792 struct memcg_cache_array *arr;
793 struct kmem_cache *c, *c2;
794 LIST_HEAD(busy);
795 int i;
796
797 BUG_ON(!is_root_cache(s));
798
799 /*
800 * First, shutdown active caches, i.e. caches that belong to online
801 * memory cgroups.
802 */
803 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
804 lockdep_is_held(&slab_mutex));
805 for_each_memcg_cache_index(i) {
806 c = arr->entries[i];
807 if (!c)
808 continue;
809 if (shutdown_cache(c))
810 /*
811 * The cache still has objects. Move it to a temporary
812 * list so as not to try to destroy it for a second
813 * time while iterating over inactive caches below.
814 */
815 list_move(&c->memcg_params.children_node, &busy);
816 else
817 /*
818 * The cache is empty and will be destroyed soon. Clear
819 * the pointer to it in the memcg_caches array so that
820 * it will never be accessed even if the root cache
821 * stays alive.
822 */
823 arr->entries[i] = NULL;
824 }
825
826 /*
827 * Second, shutdown all caches left from memory cgroups that are now
828 * offline.
829 */
830 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
831 memcg_params.children_node)
832 shutdown_cache(c);
833
834 list_splice(&busy, &s->memcg_params.children);
835
836 /*
837 * A cache being destroyed must be empty. In particular, this means
838 * that all per memcg caches attached to it must be empty too.
839 */
840 if (!list_empty(&s->memcg_params.children))
841 return -EBUSY;
842 return 0;
843}
844#else
845static inline int shutdown_memcg_caches(struct kmem_cache *s)
846{
847 return 0;
848}
849#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
850
851void slab_kmem_cache_release(struct kmem_cache *s)
852{
853 __kmem_cache_release(s);
854 destroy_memcg_params(s);
855 kfree_const(s->name);
856 kmem_cache_free(kmem_cache, s);
857}
858
859void kmem_cache_destroy(struct kmem_cache *s)
860{
861 int err;
862
863 if (unlikely(!s))
864 return;
865
866 get_online_cpus();
867 get_online_mems();
868
869 mutex_lock(&slab_mutex);
870
871 s->refcount--;
872 if (s->refcount)
873 goto out_unlock;
874
875 err = shutdown_memcg_caches(s);
876 if (!err)
877 err = shutdown_cache(s);
878
879 if (err) {
880 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
881 s->name);
882 dump_stack();
883 }
884out_unlock:
885 mutex_unlock(&slab_mutex);
886
887 put_online_mems();
888 put_online_cpus();
889}
890EXPORT_SYMBOL(kmem_cache_destroy);
891
892/**
893 * kmem_cache_shrink - Shrink a cache.
894 * @cachep: The cache to shrink.
895 *
896 * Releases as many slabs as possible for a cache.
897 * To help debugging, a zero exit status indicates all slabs were released.
898 */
899int kmem_cache_shrink(struct kmem_cache *cachep)
900{
901 int ret;
902
903 get_online_cpus();
904 get_online_mems();
905 kasan_cache_shrink(cachep);
906 ret = __kmem_cache_shrink(cachep);
907 put_online_mems();
908 put_online_cpus();
909 return ret;
910}
911EXPORT_SYMBOL(kmem_cache_shrink);
912
913bool slab_is_available(void)
914{
915 return slab_state >= UP;
916}
917
918#ifndef CONFIG_SLOB
919/* Create a cache during boot when no slab services are available yet */
920void __init create_boot_cache(struct kmem_cache *s, const char *name,
921 unsigned int size, slab_flags_t flags,
922 unsigned int useroffset, unsigned int usersize)
923{
924 int err;
925
926 s->name = name;
927 s->size = s->object_size = size;
928 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
929 s->useroffset = useroffset;
930 s->usersize = usersize;
931
932 slab_init_memcg_params(s);
933
934 err = __kmem_cache_create(s, flags);
935
936 if (err)
937 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
938 name, size, err);
939
940 s->refcount = -1; /* Exempt from merging for now */
941}
942
943struct kmem_cache *__init create_kmalloc_cache(const char *name,
944 unsigned int size, slab_flags_t flags,
945 unsigned int useroffset, unsigned int usersize)
946{
947 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
948
949 if (!s)
950 panic("Out of memory when creating slab %s\n", name);
951
952 create_boot_cache(s, name, size, flags, useroffset, usersize);
953 list_add(&s->list, &slab_caches);
954 memcg_link_cache(s);
955 s->refcount = 1;
956 return s;
957}
958
959struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
960EXPORT_SYMBOL(kmalloc_caches);
961
962#ifdef CONFIG_ZONE_DMA
963struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
964EXPORT_SYMBOL(kmalloc_dma_caches);
965#endif
966
967/*
968 * Conversion table for small slabs sizes / 8 to the index in the
969 * kmalloc array. This is necessary for slabs < 192 since we have non power
970 * of two cache sizes there. The size of larger slabs can be determined using
971 * fls.
972 */
973static s8 size_index[24] __ro_after_init = {
974 3, /* 8 */
975 4, /* 16 */
976 5, /* 24 */
977 5, /* 32 */
978 6, /* 40 */
979 6, /* 48 */
980 6, /* 56 */
981 6, /* 64 */
982 1, /* 72 */
983 1, /* 80 */
984 1, /* 88 */
985 1, /* 96 */
986 7, /* 104 */
987 7, /* 112 */
988 7, /* 120 */
989 7, /* 128 */
990 2, /* 136 */
991 2, /* 144 */
992 2, /* 152 */
993 2, /* 160 */
994 2, /* 168 */
995 2, /* 176 */
996 2, /* 184 */
997 2 /* 192 */
998};
999
1000static inline int size_index_elem(size_t bytes)
1001{
1002 return (bytes - 1) / 8;
1003}
1004
1005/*
1006 * Find the kmem_cache structure that serves a given size of
1007 * allocation
1008 */
1009struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1010{
1011 int index;
1012
1013 if (unlikely(size > KMALLOC_MAX_SIZE)) {
1014 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
1015 return NULL;
1016 }
1017
1018 if (size <= 192) {
1019 if (!size)
1020 return ZERO_SIZE_PTR;
1021
1022 index = size_index[size_index_elem(size)];
1023 } else
1024 index = fls(size - 1);
1025
1026#ifdef CONFIG_ZONE_DMA
1027 if (unlikely((flags & GFP_DMA)))
1028 return kmalloc_dma_caches[index];
1029
1030#endif
1031 return kmalloc_caches[index];
1032}
1033
1034/*
1035 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1036 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1037 * kmalloc-67108864.
1038 */
1039const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1040 {NULL, 0}, {"kmalloc-96", 96},
1041 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1042 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1043 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1044 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1045 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1046 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1047 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1048 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1049 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1050 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1051 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1052 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1053 {"kmalloc-67108864", 67108864}
1054};
1055
1056/*
1057 * Patch up the size_index table if we have strange large alignment
1058 * requirements for the kmalloc array. This is only the case for
1059 * MIPS it seems. The standard arches will not generate any code here.
1060 *
1061 * Largest permitted alignment is 256 bytes due to the way we
1062 * handle the index determination for the smaller caches.
1063 *
1064 * Make sure that nothing crazy happens if someone starts tinkering
1065 * around with ARCH_KMALLOC_MINALIGN
1066 */
1067void __init setup_kmalloc_cache_index_table(void)
1068{
1069 int i;
1070
1071 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1072 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1073
1074 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1075 int elem = size_index_elem(i);
1076
1077 if (elem >= ARRAY_SIZE(size_index))
1078 break;
1079 size_index[elem] = KMALLOC_SHIFT_LOW;
1080 }
1081
1082 if (KMALLOC_MIN_SIZE >= 64) {
1083 /*
1084 * The 96 byte size cache is not used if the alignment
1085 * is 64 byte.
1086 */
1087 for (i = 64 + 8; i <= 96; i += 8)
1088 size_index[size_index_elem(i)] = 7;
1089
1090 }
1091
1092 if (KMALLOC_MIN_SIZE >= 128) {
1093 /*
1094 * The 192 byte sized cache is not used if the alignment
1095 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1096 * instead.
1097 */
1098 for (i = 128 + 8; i <= 192; i += 8)
1099 size_index[size_index_elem(i)] = 8;
1100 }
1101}
1102
1103static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
1104{
1105 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1106 kmalloc_info[idx].size, flags, 0,
1107 kmalloc_info[idx].size);
1108}
1109
1110/*
1111 * Create the kmalloc array. Some of the regular kmalloc arrays
1112 * may already have been created because they were needed to
1113 * enable allocations for slab creation.
1114 */
1115void __init create_kmalloc_caches(slab_flags_t flags)
1116{
1117 int i;
1118
1119 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1120 if (!kmalloc_caches[i])
1121 new_kmalloc_cache(i, flags);
1122
1123 /*
1124 * Caches that are not of the two-to-the-power-of size.
1125 * These have to be created immediately after the
1126 * earlier power of two caches
1127 */
1128 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1129 new_kmalloc_cache(1, flags);
1130 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1131 new_kmalloc_cache(2, flags);
1132 }
1133
1134 /* Kmalloc array is now usable */
1135 slab_state = UP;
1136
1137#ifdef CONFIG_ZONE_DMA
1138 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1139 struct kmem_cache *s = kmalloc_caches[i];
1140
1141 if (s) {
1142 unsigned int size = kmalloc_size(i);
1143 char *n = kasprintf(GFP_NOWAIT,
1144 "dma-kmalloc-%u", size);
1145
1146 BUG_ON(!n);
1147 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1148 size, SLAB_CACHE_DMA | flags, 0, 0);
1149 }
1150 }
1151#endif
1152}
1153#endif /* !CONFIG_SLOB */
1154
1155/*
1156 * To avoid unnecessary overhead, we pass through large allocation requests
1157 * directly to the page allocator. We use __GFP_COMP, because we will need to
1158 * know the allocation order to free the pages properly in kfree.
1159 */
1160void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1161{
1162 void *ret;
1163 struct page *page;
1164
1165 flags |= __GFP_COMP;
1166 page = alloc_pages(flags, order);
1167 ret = page ? page_address(page) : NULL;
1168 kmemleak_alloc(ret, size, 1, flags);
1169 kasan_kmalloc_large(ret, size, flags);
1170 return ret;
1171}
1172EXPORT_SYMBOL(kmalloc_order);
1173
1174#ifdef CONFIG_TRACING
1175void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1176{
1177 void *ret = kmalloc_order(size, flags, order);
1178 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1179 return ret;
1180}
1181EXPORT_SYMBOL(kmalloc_order_trace);
1182#endif
1183
1184#ifdef CONFIG_SLAB_FREELIST_RANDOM
1185/* Randomize a generic freelist */
1186static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1187 size_t count)
1188{
1189 size_t i;
1190 unsigned int rand;
1191
1192 for (i = 0; i < count; i++)
1193 list[i] = i;
1194
1195 /* Fisher-Yates shuffle */
1196 for (i = count - 1; i > 0; i--) {
1197 rand = prandom_u32_state(state);
1198 rand %= (i + 1);
1199 swap(list[i], list[rand]);
1200 }
1201}
1202
1203/* Create a random sequence per cache */
1204int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1205 gfp_t gfp)
1206{
1207 struct rnd_state state;
1208
1209 if (count < 2 || cachep->random_seq)
1210 return 0;
1211
1212 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1213 if (!cachep->random_seq)
1214 return -ENOMEM;
1215
1216 /* Get best entropy at this stage of boot */
1217 prandom_seed_state(&state, get_random_long());
1218
1219 freelist_randomize(&state, cachep->random_seq, count);
1220 return 0;
1221}
1222
1223/* Destroy the per-cache random freelist sequence */
1224void cache_random_seq_destroy(struct kmem_cache *cachep)
1225{
1226 kfree(cachep->random_seq);
1227 cachep->random_seq = NULL;
1228}
1229#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1230
1231#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1232#ifdef CONFIG_SLAB
1233#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1234#else
1235#define SLABINFO_RIGHTS S_IRUSR
1236#endif
1237
1238static void print_slabinfo_header(struct seq_file *m)
1239{
1240 /*
1241 * Output format version, so at least we can change it
1242 * without _too_ many complaints.
1243 */
1244#ifdef CONFIG_DEBUG_SLAB
1245 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1246#else
1247 seq_puts(m, "slabinfo - version: 2.1\n");
1248#endif
1249 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1250 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1251 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1252#ifdef CONFIG_DEBUG_SLAB
1253 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1254 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1255#endif
1256 seq_putc(m, '\n');
1257}
1258
1259void *slab_start(struct seq_file *m, loff_t *pos)
1260{
1261 mutex_lock(&slab_mutex);
1262 return seq_list_start(&slab_root_caches, *pos);
1263}
1264
1265void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1266{
1267 return seq_list_next(p, &slab_root_caches, pos);
1268}
1269
1270void slab_stop(struct seq_file *m, void *p)
1271{
1272 mutex_unlock(&slab_mutex);
1273}
1274
1275static void
1276memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1277{
1278 struct kmem_cache *c;
1279 struct slabinfo sinfo;
1280
1281 if (!is_root_cache(s))
1282 return;
1283
1284 for_each_memcg_cache(c, s) {
1285 memset(&sinfo, 0, sizeof(sinfo));
1286 get_slabinfo(c, &sinfo);
1287
1288 info->active_slabs += sinfo.active_slabs;
1289 info->num_slabs += sinfo.num_slabs;
1290 info->shared_avail += sinfo.shared_avail;
1291 info->active_objs += sinfo.active_objs;
1292 info->num_objs += sinfo.num_objs;
1293 }
1294}
1295
1296static void cache_show(struct kmem_cache *s, struct seq_file *m)
1297{
1298 struct slabinfo sinfo;
1299
1300 memset(&sinfo, 0, sizeof(sinfo));
1301 get_slabinfo(s, &sinfo);
1302
1303 memcg_accumulate_slabinfo(s, &sinfo);
1304
1305 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1306 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1307 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1308
1309 seq_printf(m, " : tunables %4u %4u %4u",
1310 sinfo.limit, sinfo.batchcount, sinfo.shared);
1311 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1312 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1313 slabinfo_show_stats(m, s);
1314 seq_putc(m, '\n');
1315}
1316
1317static int slab_show(struct seq_file *m, void *p)
1318{
1319 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1320
1321 if (p == slab_root_caches.next)
1322 print_slabinfo_header(m);
1323 cache_show(s, m);
1324 return 0;
1325}
1326
1327void dump_unreclaimable_slab(void)
1328{
1329 struct kmem_cache *s, *s2;
1330 struct slabinfo sinfo;
1331
1332 /*
1333 * Here acquiring slab_mutex is risky since we don't prefer to get
1334 * sleep in oom path. But, without mutex hold, it may introduce a
1335 * risk of crash.
1336 * Use mutex_trylock to protect the list traverse, dump nothing
1337 * without acquiring the mutex.
1338 */
1339 if (!mutex_trylock(&slab_mutex)) {
1340 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1341 return;
1342 }
1343
1344 pr_info("Unreclaimable slab info:\n");
1345 pr_info("Name Used Total\n");
1346
1347 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1348 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1349 continue;
1350
1351 get_slabinfo(s, &sinfo);
1352
1353 if (sinfo.num_objs > 0)
1354 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1355 (sinfo.active_objs * s->size) / 1024,
1356 (sinfo.num_objs * s->size) / 1024);
1357 }
1358 mutex_unlock(&slab_mutex);
1359}
1360
1361#if defined(CONFIG_MEMCG)
1362void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1363{
1364 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1365
1366 mutex_lock(&slab_mutex);
1367 return seq_list_start(&memcg->kmem_caches, *pos);
1368}
1369
1370void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1371{
1372 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1373
1374 return seq_list_next(p, &memcg->kmem_caches, pos);
1375}
1376
1377void memcg_slab_stop(struct seq_file *m, void *p)
1378{
1379 mutex_unlock(&slab_mutex);
1380}
1381
1382int memcg_slab_show(struct seq_file *m, void *p)
1383{
1384 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1385 memcg_params.kmem_caches_node);
1386 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1387
1388 if (p == memcg->kmem_caches.next)
1389 print_slabinfo_header(m);
1390 cache_show(s, m);
1391 return 0;
1392}
1393#endif
1394
1395/*
1396 * slabinfo_op - iterator that generates /proc/slabinfo
1397 *
1398 * Output layout:
1399 * cache-name
1400 * num-active-objs
1401 * total-objs
1402 * object size
1403 * num-active-slabs
1404 * total-slabs
1405 * num-pages-per-slab
1406 * + further values on SMP and with statistics enabled
1407 */
1408static const struct seq_operations slabinfo_op = {
1409 .start = slab_start,
1410 .next = slab_next,
1411 .stop = slab_stop,
1412 .show = slab_show,
1413};
1414
1415static int slabinfo_open(struct inode *inode, struct file *file)
1416{
1417 return seq_open(file, &slabinfo_op);
1418}
1419
1420static const struct file_operations proc_slabinfo_operations = {
1421 .open = slabinfo_open,
1422 .read = seq_read,
1423 .write = slabinfo_write,
1424 .llseek = seq_lseek,
1425 .release = seq_release,
1426};
1427
1428static int __init slab_proc_init(void)
1429{
1430 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1431 &proc_slabinfo_operations);
1432 return 0;
1433}
1434module_init(slab_proc_init);
1435#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1436
1437static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1438 gfp_t flags)
1439{
1440 void *ret;
1441 size_t ks = 0;
1442
1443 if (p)
1444 ks = ksize(p);
1445
1446 if (ks >= new_size) {
1447 kasan_krealloc((void *)p, new_size, flags);
1448 return (void *)p;
1449 }
1450
1451 ret = kmalloc_track_caller(new_size, flags);
1452 if (ret && p)
1453 memcpy(ret, p, ks);
1454
1455 return ret;
1456}
1457
1458/**
1459 * __krealloc - like krealloc() but don't free @p.
1460 * @p: object to reallocate memory for.
1461 * @new_size: how many bytes of memory are required.
1462 * @flags: the type of memory to allocate.
1463 *
1464 * This function is like krealloc() except it never frees the originally
1465 * allocated buffer. Use this if you don't want to free the buffer immediately
1466 * like, for example, with RCU.
1467 */
1468void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1469{
1470 if (unlikely(!new_size))
1471 return ZERO_SIZE_PTR;
1472
1473 return __do_krealloc(p, new_size, flags);
1474
1475}
1476EXPORT_SYMBOL(__krealloc);
1477
1478/**
1479 * krealloc - reallocate memory. The contents will remain unchanged.
1480 * @p: object to reallocate memory for.
1481 * @new_size: how many bytes of memory are required.
1482 * @flags: the type of memory to allocate.
1483 *
1484 * The contents of the object pointed to are preserved up to the
1485 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1486 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1487 * %NULL pointer, the object pointed to is freed.
1488 */
1489void *krealloc(const void *p, size_t new_size, gfp_t flags)
1490{
1491 void *ret;
1492
1493 if (unlikely(!new_size)) {
1494 kfree(p);
1495 return ZERO_SIZE_PTR;
1496 }
1497
1498 ret = __do_krealloc(p, new_size, flags);
1499 if (ret && p != ret)
1500 kfree(p);
1501
1502 return ret;
1503}
1504EXPORT_SYMBOL(krealloc);
1505
1506/**
1507 * kzfree - like kfree but zero memory
1508 * @p: object to free memory of
1509 *
1510 * The memory of the object @p points to is zeroed before freed.
1511 * If @p is %NULL, kzfree() does nothing.
1512 *
1513 * Note: this function zeroes the whole allocated buffer which can be a good
1514 * deal bigger than the requested buffer size passed to kmalloc(). So be
1515 * careful when using this function in performance sensitive code.
1516 */
1517void kzfree(const void *p)
1518{
1519 size_t ks;
1520 void *mem = (void *)p;
1521
1522 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1523 return;
1524 ks = ksize(mem);
1525 memset(mem, 0, ks);
1526 kfree(mem);
1527}
1528EXPORT_SYMBOL(kzfree);
1529
1530/* Tracepoints definitions. */
1531EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1532EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1533EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1534EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1535EXPORT_TRACEPOINT_SYMBOL(kfree);
1536EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
This page took 0.050153 seconds and 4 git commands to generate.