]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/slab.c | |
3 | * Written by Mark Hemment, 1996/97. | |
4 | * ([email protected]) | |
5 | * | |
6 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | |
7 | * | |
8 | * Major cleanup, different bufctl logic, per-cpu arrays | |
9 | * (c) 2000 Manfred Spraul | |
10 | * | |
11 | * Cleanup, make the head arrays unconditional, preparation for NUMA | |
12 | * (c) 2002 Manfred Spraul | |
13 | * | |
14 | * An implementation of the Slab Allocator as described in outline in; | |
15 | * UNIX Internals: The New Frontiers by Uresh Vahalia | |
16 | * Pub: Prentice Hall ISBN 0-13-101908-2 | |
17 | * or with a little more detail in; | |
18 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | |
19 | * Jeff Bonwick (Sun Microsystems). | |
20 | * Presented at: USENIX Summer 1994 Technical Conference | |
21 | * | |
22 | * The memory is organized in caches, one cache for each object type. | |
23 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | |
24 | * Each cache consists out of many slabs (they are small (usually one | |
25 | * page long) and always contiguous), and each slab contains multiple | |
26 | * initialized objects. | |
27 | * | |
28 | * This means, that your constructor is used only for newly allocated | |
29 | * slabs and you must pass objects with the same intializations to | |
30 | * kmem_cache_free. | |
31 | * | |
32 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | |
33 | * normal). If you need a special memory type, then must create a new | |
34 | * cache for that memory type. | |
35 | * | |
36 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | |
37 | * full slabs with 0 free objects | |
38 | * partial slabs | |
39 | * empty slabs with no allocated objects | |
40 | * | |
41 | * If partial slabs exist, then new allocations come from these slabs, | |
42 | * otherwise from empty slabs or new slabs are allocated. | |
43 | * | |
44 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | |
45 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | |
46 | * | |
47 | * Each cache has a short per-cpu head array, most allocs | |
48 | * and frees go into that array, and if that array overflows, then 1/2 | |
49 | * of the entries in the array are given back into the global cache. | |
50 | * The head array is strictly LIFO and should improve the cache hit rates. | |
51 | * On SMP, it additionally reduces the spinlock operations. | |
52 | * | |
a737b3e2 | 53 | * The c_cpuarray may not be read with enabled local interrupts - |
1da177e4 LT |
54 | * it's changed with a smp_call_function(). |
55 | * | |
56 | * SMP synchronization: | |
57 | * constructors and destructors are called without any locking. | |
343e0d7a | 58 | * Several members in struct kmem_cache and struct slab never change, they |
1da177e4 LT |
59 | * are accessed without any locking. |
60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | |
61 | * and local interrupts are disabled so slab code is preempt-safe. | |
62 | * The non-constant members are protected with a per-cache irq spinlock. | |
63 | * | |
64 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | |
65 | * in 2000 - many ideas in the current implementation are derived from | |
66 | * his patch. | |
67 | * | |
68 | * Further notes from the original documentation: | |
69 | * | |
70 | * 11 April '97. Started multi-threading - markhe | |
fc0abb14 | 71 | * The global cache-chain is protected by the mutex 'cache_chain_mutex'. |
1da177e4 LT |
72 | * The sem is only needed when accessing/extending the cache-chain, which |
73 | * can never happen inside an interrupt (kmem_cache_create(), | |
74 | * kmem_cache_shrink() and kmem_cache_reap()). | |
75 | * | |
76 | * At present, each engine can be growing a cache. This should be blocked. | |
77 | * | |
e498be7d CL |
78 | * 15 March 2005. NUMA slab allocator. |
79 | * Shai Fultheim <[email protected]>. | |
80 | * Shobhit Dayal <[email protected]> | |
81 | * Alok N Kataria <[email protected]> | |
82 | * Christoph Lameter <[email protected]> | |
83 | * | |
84 | * Modified the slab allocator to be node aware on NUMA systems. | |
85 | * Each node has its own list of partial, free and full slabs. | |
86 | * All object allocations for a node occur from node specific slab lists. | |
1da177e4 LT |
87 | */ |
88 | ||
1da177e4 LT |
89 | #include <linux/slab.h> |
90 | #include <linux/mm.h> | |
c9cf5528 | 91 | #include <linux/poison.h> |
1da177e4 LT |
92 | #include <linux/swap.h> |
93 | #include <linux/cache.h> | |
94 | #include <linux/interrupt.h> | |
95 | #include <linux/init.h> | |
96 | #include <linux/compiler.h> | |
101a5001 | 97 | #include <linux/cpuset.h> |
1da177e4 LT |
98 | #include <linux/seq_file.h> |
99 | #include <linux/notifier.h> | |
100 | #include <linux/kallsyms.h> | |
101 | #include <linux/cpu.h> | |
102 | #include <linux/sysctl.h> | |
103 | #include <linux/module.h> | |
104 | #include <linux/rcupdate.h> | |
543537bd | 105 | #include <linux/string.h> |
138ae663 | 106 | #include <linux/uaccess.h> |
e498be7d | 107 | #include <linux/nodemask.h> |
dc85da15 | 108 | #include <linux/mempolicy.h> |
fc0abb14 | 109 | #include <linux/mutex.h> |
8a8b6502 | 110 | #include <linux/fault-inject.h> |
e7eebaf6 | 111 | #include <linux/rtmutex.h> |
6a2d7a95 | 112 | #include <linux/reciprocal_div.h> |
1da177e4 | 113 | |
1da177e4 LT |
114 | #include <asm/cacheflush.h> |
115 | #include <asm/tlbflush.h> | |
116 | #include <asm/page.h> | |
117 | ||
118 | /* | |
119 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL, | |
120 | * SLAB_RED_ZONE & SLAB_POISON. | |
121 | * 0 for faster, smaller code (especially in the critical paths). | |
122 | * | |
123 | * STATS - 1 to collect stats for /proc/slabinfo. | |
124 | * 0 for faster, smaller code (especially in the critical paths). | |
125 | * | |
126 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | |
127 | */ | |
128 | ||
129 | #ifdef CONFIG_DEBUG_SLAB | |
130 | #define DEBUG 1 | |
131 | #define STATS 1 | |
132 | #define FORCED_DEBUG 1 | |
133 | #else | |
134 | #define DEBUG 0 | |
135 | #define STATS 0 | |
136 | #define FORCED_DEBUG 0 | |
137 | #endif | |
138 | ||
1da177e4 LT |
139 | /* Shouldn't this be in a header file somewhere? */ |
140 | #define BYTES_PER_WORD sizeof(void *) | |
141 | ||
142 | #ifndef cache_line_size | |
143 | #define cache_line_size() L1_CACHE_BYTES | |
144 | #endif | |
145 | ||
146 | #ifndef ARCH_KMALLOC_MINALIGN | |
147 | /* | |
148 | * Enforce a minimum alignment for the kmalloc caches. | |
149 | * Usually, the kmalloc caches are cache_line_size() aligned, except when | |
150 | * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. | |
151 | * Some archs want to perform DMA into kmalloc caches and need a guaranteed | |
152 | * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that. | |
153 | * Note that this flag disables some debug features. | |
154 | */ | |
155 | #define ARCH_KMALLOC_MINALIGN 0 | |
156 | #endif | |
157 | ||
158 | #ifndef ARCH_SLAB_MINALIGN | |
159 | /* | |
160 | * Enforce a minimum alignment for all caches. | |
161 | * Intended for archs that get misalignment faults even for BYTES_PER_WORD | |
162 | * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. | |
163 | * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables | |
164 | * some debug features. | |
165 | */ | |
166 | #define ARCH_SLAB_MINALIGN 0 | |
167 | #endif | |
168 | ||
169 | #ifndef ARCH_KMALLOC_FLAGS | |
170 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | |
171 | #endif | |
172 | ||
173 | /* Legal flag mask for kmem_cache_create(). */ | |
174 | #if DEBUG | |
175 | # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \ | |
176 | SLAB_POISON | SLAB_HWCACHE_ALIGN | \ | |
ac2b898c | 177 | SLAB_CACHE_DMA | \ |
1da177e4 LT |
178 | SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \ |
179 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ | |
101a5001 | 180 | SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD) |
1da177e4 | 181 | #else |
ac2b898c | 182 | # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ |
1da177e4 LT |
183 | SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \ |
184 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ | |
101a5001 | 185 | SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD) |
1da177e4 LT |
186 | #endif |
187 | ||
188 | /* | |
189 | * kmem_bufctl_t: | |
190 | * | |
191 | * Bufctl's are used for linking objs within a slab | |
192 | * linked offsets. | |
193 | * | |
194 | * This implementation relies on "struct page" for locating the cache & | |
195 | * slab an object belongs to. | |
196 | * This allows the bufctl structure to be small (one int), but limits | |
197 | * the number of objects a slab (not a cache) can contain when off-slab | |
198 | * bufctls are used. The limit is the size of the largest general cache | |
199 | * that does not use off-slab slabs. | |
200 | * For 32bit archs with 4 kB pages, is this 56. | |
201 | * This is not serious, as it is only for large objects, when it is unwise | |
202 | * to have too many per slab. | |
203 | * Note: This limit can be raised by introducing a general cache whose size | |
204 | * is less than 512 (PAGE_SIZE<<3), but greater than 256. | |
205 | */ | |
206 | ||
fa5b08d5 | 207 | typedef unsigned int kmem_bufctl_t; |
1da177e4 LT |
208 | #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) |
209 | #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) | |
871751e2 AV |
210 | #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) |
211 | #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) | |
1da177e4 | 212 | |
1da177e4 LT |
213 | /* |
214 | * struct slab | |
215 | * | |
216 | * Manages the objs in a slab. Placed either at the beginning of mem allocated | |
217 | * for a slab, or allocated from an general cache. | |
218 | * Slabs are chained into three list: fully used, partial, fully free slabs. | |
219 | */ | |
220 | struct slab { | |
b28a02de PE |
221 | struct list_head list; |
222 | unsigned long colouroff; | |
223 | void *s_mem; /* including colour offset */ | |
224 | unsigned int inuse; /* num of objs active in slab */ | |
225 | kmem_bufctl_t free; | |
226 | unsigned short nodeid; | |
1da177e4 LT |
227 | }; |
228 | ||
229 | /* | |
230 | * struct slab_rcu | |
231 | * | |
232 | * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to | |
233 | * arrange for kmem_freepages to be called via RCU. This is useful if | |
234 | * we need to approach a kernel structure obliquely, from its address | |
235 | * obtained without the usual locking. We can lock the structure to | |
236 | * stabilize it and check it's still at the given address, only if we | |
237 | * can be sure that the memory has not been meanwhile reused for some | |
238 | * other kind of object (which our subsystem's lock might corrupt). | |
239 | * | |
240 | * rcu_read_lock before reading the address, then rcu_read_unlock after | |
241 | * taking the spinlock within the structure expected at that address. | |
242 | * | |
243 | * We assume struct slab_rcu can overlay struct slab when destroying. | |
244 | */ | |
245 | struct slab_rcu { | |
b28a02de | 246 | struct rcu_head head; |
343e0d7a | 247 | struct kmem_cache *cachep; |
b28a02de | 248 | void *addr; |
1da177e4 LT |
249 | }; |
250 | ||
251 | /* | |
252 | * struct array_cache | |
253 | * | |
1da177e4 LT |
254 | * Purpose: |
255 | * - LIFO ordering, to hand out cache-warm objects from _alloc | |
256 | * - reduce the number of linked list operations | |
257 | * - reduce spinlock operations | |
258 | * | |
259 | * The limit is stored in the per-cpu structure to reduce the data cache | |
260 | * footprint. | |
261 | * | |
262 | */ | |
263 | struct array_cache { | |
264 | unsigned int avail; | |
265 | unsigned int limit; | |
266 | unsigned int batchcount; | |
267 | unsigned int touched; | |
e498be7d | 268 | spinlock_t lock; |
a737b3e2 AM |
269 | void *entry[0]; /* |
270 | * Must have this definition in here for the proper | |
271 | * alignment of array_cache. Also simplifies accessing | |
272 | * the entries. | |
273 | * [0] is for gcc 2.95. It should really be []. | |
274 | */ | |
1da177e4 LT |
275 | }; |
276 | ||
a737b3e2 AM |
277 | /* |
278 | * bootstrap: The caches do not work without cpuarrays anymore, but the | |
279 | * cpuarrays are allocated from the generic caches... | |
1da177e4 LT |
280 | */ |
281 | #define BOOT_CPUCACHE_ENTRIES 1 | |
282 | struct arraycache_init { | |
283 | struct array_cache cache; | |
b28a02de | 284 | void *entries[BOOT_CPUCACHE_ENTRIES]; |
1da177e4 LT |
285 | }; |
286 | ||
287 | /* | |
e498be7d | 288 | * The slab lists for all objects. |
1da177e4 LT |
289 | */ |
290 | struct kmem_list3 { | |
b28a02de PE |
291 | struct list_head slabs_partial; /* partial list first, better asm code */ |
292 | struct list_head slabs_full; | |
293 | struct list_head slabs_free; | |
294 | unsigned long free_objects; | |
b28a02de | 295 | unsigned int free_limit; |
2e1217cf | 296 | unsigned int colour_next; /* Per-node cache coloring */ |
b28a02de PE |
297 | spinlock_t list_lock; |
298 | struct array_cache *shared; /* shared per node */ | |
299 | struct array_cache **alien; /* on other nodes */ | |
35386e3b CL |
300 | unsigned long next_reap; /* updated without locking */ |
301 | int free_touched; /* updated without locking */ | |
1da177e4 LT |
302 | }; |
303 | ||
e498be7d CL |
304 | /* |
305 | * Need this for bootstrapping a per node allocator. | |
306 | */ | |
307 | #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1) | |
308 | struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; | |
309 | #define CACHE_CACHE 0 | |
310 | #define SIZE_AC 1 | |
311 | #define SIZE_L3 (1 + MAX_NUMNODES) | |
312 | ||
ed11d9eb CL |
313 | static int drain_freelist(struct kmem_cache *cache, |
314 | struct kmem_list3 *l3, int tofree); | |
315 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, | |
316 | int node); | |
2ed3a4ef | 317 | static int enable_cpucache(struct kmem_cache *cachep); |
65f27f38 | 318 | static void cache_reap(struct work_struct *unused); |
ed11d9eb | 319 | |
e498be7d | 320 | /* |
a737b3e2 AM |
321 | * This function must be completely optimized away if a constant is passed to |
322 | * it. Mostly the same as what is in linux/slab.h except it returns an index. | |
e498be7d | 323 | */ |
7243cc05 | 324 | static __always_inline int index_of(const size_t size) |
e498be7d | 325 | { |
5ec8a847 SR |
326 | extern void __bad_size(void); |
327 | ||
e498be7d CL |
328 | if (__builtin_constant_p(size)) { |
329 | int i = 0; | |
330 | ||
331 | #define CACHE(x) \ | |
332 | if (size <=x) \ | |
333 | return i; \ | |
334 | else \ | |
335 | i++; | |
336 | #include "linux/kmalloc_sizes.h" | |
337 | #undef CACHE | |
5ec8a847 | 338 | __bad_size(); |
7243cc05 | 339 | } else |
5ec8a847 | 340 | __bad_size(); |
e498be7d CL |
341 | return 0; |
342 | } | |
343 | ||
e0a42726 IM |
344 | static int slab_early_init = 1; |
345 | ||
e498be7d CL |
346 | #define INDEX_AC index_of(sizeof(struct arraycache_init)) |
347 | #define INDEX_L3 index_of(sizeof(struct kmem_list3)) | |
1da177e4 | 348 | |
5295a74c | 349 | static void kmem_list3_init(struct kmem_list3 *parent) |
e498be7d CL |
350 | { |
351 | INIT_LIST_HEAD(&parent->slabs_full); | |
352 | INIT_LIST_HEAD(&parent->slabs_partial); | |
353 | INIT_LIST_HEAD(&parent->slabs_free); | |
354 | parent->shared = NULL; | |
355 | parent->alien = NULL; | |
2e1217cf | 356 | parent->colour_next = 0; |
e498be7d CL |
357 | spin_lock_init(&parent->list_lock); |
358 | parent->free_objects = 0; | |
359 | parent->free_touched = 0; | |
360 | } | |
361 | ||
a737b3e2 AM |
362 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
363 | do { \ | |
364 | INIT_LIST_HEAD(listp); \ | |
365 | list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ | |
e498be7d CL |
366 | } while (0) |
367 | ||
a737b3e2 AM |
368 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
369 | do { \ | |
e498be7d CL |
370 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ |
371 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | |
372 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | |
373 | } while (0) | |
1da177e4 LT |
374 | |
375 | /* | |
343e0d7a | 376 | * struct kmem_cache |
1da177e4 LT |
377 | * |
378 | * manages a cache. | |
379 | */ | |
b28a02de | 380 | |
2109a2d1 | 381 | struct kmem_cache { |
1da177e4 | 382 | /* 1) per-cpu data, touched during every alloc/free */ |
b28a02de | 383 | struct array_cache *array[NR_CPUS]; |
b5d8ca7c | 384 | /* 2) Cache tunables. Protected by cache_chain_mutex */ |
b28a02de PE |
385 | unsigned int batchcount; |
386 | unsigned int limit; | |
387 | unsigned int shared; | |
b5d8ca7c | 388 | |
3dafccf2 | 389 | unsigned int buffer_size; |
6a2d7a95 | 390 | u32 reciprocal_buffer_size; |
b5d8ca7c | 391 | /* 3) touched by every alloc & free from the backend */ |
b28a02de | 392 | struct kmem_list3 *nodelists[MAX_NUMNODES]; |
b5d8ca7c | 393 | |
a737b3e2 AM |
394 | unsigned int flags; /* constant flags */ |
395 | unsigned int num; /* # of objs per slab */ | |
1da177e4 | 396 | |
b5d8ca7c | 397 | /* 4) cache_grow/shrink */ |
1da177e4 | 398 | /* order of pgs per slab (2^n) */ |
b28a02de | 399 | unsigned int gfporder; |
1da177e4 LT |
400 | |
401 | /* force GFP flags, e.g. GFP_DMA */ | |
b28a02de | 402 | gfp_t gfpflags; |
1da177e4 | 403 | |
a737b3e2 | 404 | size_t colour; /* cache colouring range */ |
b28a02de | 405 | unsigned int colour_off; /* colour offset */ |
343e0d7a | 406 | struct kmem_cache *slabp_cache; |
b28a02de | 407 | unsigned int slab_size; |
a737b3e2 | 408 | unsigned int dflags; /* dynamic flags */ |
1da177e4 LT |
409 | |
410 | /* constructor func */ | |
343e0d7a | 411 | void (*ctor) (void *, struct kmem_cache *, unsigned long); |
1da177e4 LT |
412 | |
413 | /* de-constructor func */ | |
343e0d7a | 414 | void (*dtor) (void *, struct kmem_cache *, unsigned long); |
1da177e4 | 415 | |
b5d8ca7c | 416 | /* 5) cache creation/removal */ |
b28a02de PE |
417 | const char *name; |
418 | struct list_head next; | |
1da177e4 | 419 | |
b5d8ca7c | 420 | /* 6) statistics */ |
1da177e4 | 421 | #if STATS |
b28a02de PE |
422 | unsigned long num_active; |
423 | unsigned long num_allocations; | |
424 | unsigned long high_mark; | |
425 | unsigned long grown; | |
426 | unsigned long reaped; | |
427 | unsigned long errors; | |
428 | unsigned long max_freeable; | |
429 | unsigned long node_allocs; | |
430 | unsigned long node_frees; | |
fb7faf33 | 431 | unsigned long node_overflow; |
b28a02de PE |
432 | atomic_t allochit; |
433 | atomic_t allocmiss; | |
434 | atomic_t freehit; | |
435 | atomic_t freemiss; | |
1da177e4 LT |
436 | #endif |
437 | #if DEBUG | |
3dafccf2 MS |
438 | /* |
439 | * If debugging is enabled, then the allocator can add additional | |
440 | * fields and/or padding to every object. buffer_size contains the total | |
441 | * object size including these internal fields, the following two | |
442 | * variables contain the offset to the user object and its size. | |
443 | */ | |
444 | int obj_offset; | |
445 | int obj_size; | |
1da177e4 LT |
446 | #endif |
447 | }; | |
448 | ||
449 | #define CFLGS_OFF_SLAB (0x80000000UL) | |
450 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) | |
451 | ||
452 | #define BATCHREFILL_LIMIT 16 | |
a737b3e2 AM |
453 | /* |
454 | * Optimization question: fewer reaps means less probability for unnessary | |
455 | * cpucache drain/refill cycles. | |
1da177e4 | 456 | * |
dc6f3f27 | 457 | * OTOH the cpuarrays can contain lots of objects, |
1da177e4 LT |
458 | * which could lock up otherwise freeable slabs. |
459 | */ | |
460 | #define REAPTIMEOUT_CPUC (2*HZ) | |
461 | #define REAPTIMEOUT_LIST3 (4*HZ) | |
462 | ||
463 | #if STATS | |
464 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | |
465 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | |
466 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | |
467 | #define STATS_INC_GROWN(x) ((x)->grown++) | |
ed11d9eb | 468 | #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) |
a737b3e2 AM |
469 | #define STATS_SET_HIGH(x) \ |
470 | do { \ | |
471 | if ((x)->num_active > (x)->high_mark) \ | |
472 | (x)->high_mark = (x)->num_active; \ | |
473 | } while (0) | |
1da177e4 LT |
474 | #define STATS_INC_ERR(x) ((x)->errors++) |
475 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | |
e498be7d | 476 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
fb7faf33 | 477 | #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) |
a737b3e2 AM |
478 | #define STATS_SET_FREEABLE(x, i) \ |
479 | do { \ | |
480 | if ((x)->max_freeable < i) \ | |
481 | (x)->max_freeable = i; \ | |
482 | } while (0) | |
1da177e4 LT |
483 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) |
484 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | |
485 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | |
486 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | |
487 | #else | |
488 | #define STATS_INC_ACTIVE(x) do { } while (0) | |
489 | #define STATS_DEC_ACTIVE(x) do { } while (0) | |
490 | #define STATS_INC_ALLOCED(x) do { } while (0) | |
491 | #define STATS_INC_GROWN(x) do { } while (0) | |
ed11d9eb | 492 | #define STATS_ADD_REAPED(x,y) do { } while (0) |
1da177e4 LT |
493 | #define STATS_SET_HIGH(x) do { } while (0) |
494 | #define STATS_INC_ERR(x) do { } while (0) | |
495 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | |
e498be7d | 496 | #define STATS_INC_NODEFREES(x) do { } while (0) |
fb7faf33 | 497 | #define STATS_INC_ACOVERFLOW(x) do { } while (0) |
a737b3e2 | 498 | #define STATS_SET_FREEABLE(x, i) do { } while (0) |
1da177e4 LT |
499 | #define STATS_INC_ALLOCHIT(x) do { } while (0) |
500 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | |
501 | #define STATS_INC_FREEHIT(x) do { } while (0) | |
502 | #define STATS_INC_FREEMISS(x) do { } while (0) | |
503 | #endif | |
504 | ||
505 | #if DEBUG | |
1da177e4 | 506 | |
a737b3e2 AM |
507 | /* |
508 | * memory layout of objects: | |
1da177e4 | 509 | * 0 : objp |
3dafccf2 | 510 | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that |
1da177e4 LT |
511 | * the end of an object is aligned with the end of the real |
512 | * allocation. Catches writes behind the end of the allocation. | |
3dafccf2 | 513 | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: |
1da177e4 | 514 | * redzone word. |
3dafccf2 MS |
515 | * cachep->obj_offset: The real object. |
516 | * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] | |
a737b3e2 AM |
517 | * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address |
518 | * [BYTES_PER_WORD long] | |
1da177e4 | 519 | */ |
343e0d7a | 520 | static int obj_offset(struct kmem_cache *cachep) |
1da177e4 | 521 | { |
3dafccf2 | 522 | return cachep->obj_offset; |
1da177e4 LT |
523 | } |
524 | ||
343e0d7a | 525 | static int obj_size(struct kmem_cache *cachep) |
1da177e4 | 526 | { |
3dafccf2 | 527 | return cachep->obj_size; |
1da177e4 LT |
528 | } |
529 | ||
343e0d7a | 530 | static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
531 | { |
532 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
3dafccf2 | 533 | return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD); |
1da177e4 LT |
534 | } |
535 | ||
343e0d7a | 536 | static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
537 | { |
538 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
539 | if (cachep->flags & SLAB_STORE_USER) | |
3dafccf2 | 540 | return (unsigned long *)(objp + cachep->buffer_size - |
b28a02de | 541 | 2 * BYTES_PER_WORD); |
3dafccf2 | 542 | return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD); |
1da177e4 LT |
543 | } |
544 | ||
343e0d7a | 545 | static void **dbg_userword(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
546 | { |
547 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | |
3dafccf2 | 548 | return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); |
1da177e4 LT |
549 | } |
550 | ||
551 | #else | |
552 | ||
3dafccf2 MS |
553 | #define obj_offset(x) 0 |
554 | #define obj_size(cachep) (cachep->buffer_size) | |
1da177e4 LT |
555 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;}) |
556 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;}) | |
557 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) | |
558 | ||
559 | #endif | |
560 | ||
561 | /* | |
a737b3e2 AM |
562 | * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp |
563 | * order. | |
1da177e4 LT |
564 | */ |
565 | #if defined(CONFIG_LARGE_ALLOCS) | |
566 | #define MAX_OBJ_ORDER 13 /* up to 32Mb */ | |
567 | #define MAX_GFP_ORDER 13 /* up to 32Mb */ | |
568 | #elif defined(CONFIG_MMU) | |
569 | #define MAX_OBJ_ORDER 5 /* 32 pages */ | |
570 | #define MAX_GFP_ORDER 5 /* 32 pages */ | |
571 | #else | |
572 | #define MAX_OBJ_ORDER 8 /* up to 1Mb */ | |
573 | #define MAX_GFP_ORDER 8 /* up to 1Mb */ | |
574 | #endif | |
575 | ||
576 | /* | |
577 | * Do not go above this order unless 0 objects fit into the slab. | |
578 | */ | |
579 | #define BREAK_GFP_ORDER_HI 1 | |
580 | #define BREAK_GFP_ORDER_LO 0 | |
581 | static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; | |
582 | ||
a737b3e2 AM |
583 | /* |
584 | * Functions for storing/retrieving the cachep and or slab from the page | |
585 | * allocator. These are used to find the slab an obj belongs to. With kfree(), | |
586 | * these are used to find the cache which an obj belongs to. | |
1da177e4 | 587 | */ |
065d41cb PE |
588 | static inline void page_set_cache(struct page *page, struct kmem_cache *cache) |
589 | { | |
590 | page->lru.next = (struct list_head *)cache; | |
591 | } | |
592 | ||
593 | static inline struct kmem_cache *page_get_cache(struct page *page) | |
594 | { | |
84097518 NP |
595 | if (unlikely(PageCompound(page))) |
596 | page = (struct page *)page_private(page); | |
ddc2e812 | 597 | BUG_ON(!PageSlab(page)); |
065d41cb PE |
598 | return (struct kmem_cache *)page->lru.next; |
599 | } | |
600 | ||
601 | static inline void page_set_slab(struct page *page, struct slab *slab) | |
602 | { | |
603 | page->lru.prev = (struct list_head *)slab; | |
604 | } | |
605 | ||
606 | static inline struct slab *page_get_slab(struct page *page) | |
607 | { | |
84097518 NP |
608 | if (unlikely(PageCompound(page))) |
609 | page = (struct page *)page_private(page); | |
ddc2e812 | 610 | BUG_ON(!PageSlab(page)); |
065d41cb PE |
611 | return (struct slab *)page->lru.prev; |
612 | } | |
1da177e4 | 613 | |
6ed5eb22 PE |
614 | static inline struct kmem_cache *virt_to_cache(const void *obj) |
615 | { | |
616 | struct page *page = virt_to_page(obj); | |
617 | return page_get_cache(page); | |
618 | } | |
619 | ||
620 | static inline struct slab *virt_to_slab(const void *obj) | |
621 | { | |
622 | struct page *page = virt_to_page(obj); | |
623 | return page_get_slab(page); | |
624 | } | |
625 | ||
8fea4e96 PE |
626 | static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, |
627 | unsigned int idx) | |
628 | { | |
629 | return slab->s_mem + cache->buffer_size * idx; | |
630 | } | |
631 | ||
6a2d7a95 ED |
632 | /* |
633 | * We want to avoid an expensive divide : (offset / cache->buffer_size) | |
634 | * Using the fact that buffer_size is a constant for a particular cache, | |
635 | * we can replace (offset / cache->buffer_size) by | |
636 | * reciprocal_divide(offset, cache->reciprocal_buffer_size) | |
637 | */ | |
638 | static inline unsigned int obj_to_index(const struct kmem_cache *cache, | |
639 | const struct slab *slab, void *obj) | |
8fea4e96 | 640 | { |
6a2d7a95 ED |
641 | u32 offset = (obj - slab->s_mem); |
642 | return reciprocal_divide(offset, cache->reciprocal_buffer_size); | |
8fea4e96 PE |
643 | } |
644 | ||
a737b3e2 AM |
645 | /* |
646 | * These are the default caches for kmalloc. Custom caches can have other sizes. | |
647 | */ | |
1da177e4 LT |
648 | struct cache_sizes malloc_sizes[] = { |
649 | #define CACHE(x) { .cs_size = (x) }, | |
650 | #include <linux/kmalloc_sizes.h> | |
651 | CACHE(ULONG_MAX) | |
652 | #undef CACHE | |
653 | }; | |
654 | EXPORT_SYMBOL(malloc_sizes); | |
655 | ||
656 | /* Must match cache_sizes above. Out of line to keep cache footprint low. */ | |
657 | struct cache_names { | |
658 | char *name; | |
659 | char *name_dma; | |
660 | }; | |
661 | ||
662 | static struct cache_names __initdata cache_names[] = { | |
663 | #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, | |
664 | #include <linux/kmalloc_sizes.h> | |
b28a02de | 665 | {NULL,} |
1da177e4 LT |
666 | #undef CACHE |
667 | }; | |
668 | ||
669 | static struct arraycache_init initarray_cache __initdata = | |
b28a02de | 670 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
1da177e4 | 671 | static struct arraycache_init initarray_generic = |
b28a02de | 672 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
1da177e4 LT |
673 | |
674 | /* internal cache of cache description objs */ | |
343e0d7a | 675 | static struct kmem_cache cache_cache = { |
b28a02de PE |
676 | .batchcount = 1, |
677 | .limit = BOOT_CPUCACHE_ENTRIES, | |
678 | .shared = 1, | |
343e0d7a | 679 | .buffer_size = sizeof(struct kmem_cache), |
b28a02de | 680 | .name = "kmem_cache", |
1da177e4 | 681 | #if DEBUG |
343e0d7a | 682 | .obj_size = sizeof(struct kmem_cache), |
1da177e4 LT |
683 | #endif |
684 | }; | |
685 | ||
056c6241 RT |
686 | #define BAD_ALIEN_MAGIC 0x01020304ul |
687 | ||
f1aaee53 AV |
688 | #ifdef CONFIG_LOCKDEP |
689 | ||
690 | /* | |
691 | * Slab sometimes uses the kmalloc slabs to store the slab headers | |
692 | * for other slabs "off slab". | |
693 | * The locking for this is tricky in that it nests within the locks | |
694 | * of all other slabs in a few places; to deal with this special | |
695 | * locking we put on-slab caches into a separate lock-class. | |
056c6241 RT |
696 | * |
697 | * We set lock class for alien array caches which are up during init. | |
698 | * The lock annotation will be lost if all cpus of a node goes down and | |
699 | * then comes back up during hotplug | |
f1aaee53 | 700 | */ |
056c6241 RT |
701 | static struct lock_class_key on_slab_l3_key; |
702 | static struct lock_class_key on_slab_alc_key; | |
703 | ||
704 | static inline void init_lock_keys(void) | |
f1aaee53 | 705 | |
f1aaee53 AV |
706 | { |
707 | int q; | |
056c6241 RT |
708 | struct cache_sizes *s = malloc_sizes; |
709 | ||
710 | while (s->cs_size != ULONG_MAX) { | |
711 | for_each_node(q) { | |
712 | struct array_cache **alc; | |
713 | int r; | |
714 | struct kmem_list3 *l3 = s->cs_cachep->nodelists[q]; | |
715 | if (!l3 || OFF_SLAB(s->cs_cachep)) | |
716 | continue; | |
717 | lockdep_set_class(&l3->list_lock, &on_slab_l3_key); | |
718 | alc = l3->alien; | |
719 | /* | |
720 | * FIXME: This check for BAD_ALIEN_MAGIC | |
721 | * should go away when common slab code is taught to | |
722 | * work even without alien caches. | |
723 | * Currently, non NUMA code returns BAD_ALIEN_MAGIC | |
724 | * for alloc_alien_cache, | |
725 | */ | |
726 | if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) | |
727 | continue; | |
728 | for_each_node(r) { | |
729 | if (alc[r]) | |
730 | lockdep_set_class(&alc[r]->lock, | |
731 | &on_slab_alc_key); | |
732 | } | |
733 | } | |
734 | s++; | |
f1aaee53 AV |
735 | } |
736 | } | |
f1aaee53 | 737 | #else |
056c6241 | 738 | static inline void init_lock_keys(void) |
f1aaee53 AV |
739 | { |
740 | } | |
741 | #endif | |
742 | ||
8f5be20b RT |
743 | /* |
744 | * 1. Guard access to the cache-chain. | |
745 | * 2. Protect sanity of cpu_online_map against cpu hotplug events | |
746 | */ | |
fc0abb14 | 747 | static DEFINE_MUTEX(cache_chain_mutex); |
1da177e4 LT |
748 | static struct list_head cache_chain; |
749 | ||
1da177e4 LT |
750 | /* |
751 | * chicken and egg problem: delay the per-cpu array allocation | |
752 | * until the general caches are up. | |
753 | */ | |
754 | static enum { | |
755 | NONE, | |
e498be7d CL |
756 | PARTIAL_AC, |
757 | PARTIAL_L3, | |
1da177e4 LT |
758 | FULL |
759 | } g_cpucache_up; | |
760 | ||
39d24e64 MK |
761 | /* |
762 | * used by boot code to determine if it can use slab based allocator | |
763 | */ | |
764 | int slab_is_available(void) | |
765 | { | |
766 | return g_cpucache_up == FULL; | |
767 | } | |
768 | ||
52bad64d | 769 | static DEFINE_PER_CPU(struct delayed_work, reap_work); |
1da177e4 | 770 | |
343e0d7a | 771 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
1da177e4 LT |
772 | { |
773 | return cachep->array[smp_processor_id()]; | |
774 | } | |
775 | ||
a737b3e2 AM |
776 | static inline struct kmem_cache *__find_general_cachep(size_t size, |
777 | gfp_t gfpflags) | |
1da177e4 LT |
778 | { |
779 | struct cache_sizes *csizep = malloc_sizes; | |
780 | ||
781 | #if DEBUG | |
782 | /* This happens if someone tries to call | |
b28a02de PE |
783 | * kmem_cache_create(), or __kmalloc(), before |
784 | * the generic caches are initialized. | |
785 | */ | |
c7e43c78 | 786 | BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); |
1da177e4 LT |
787 | #endif |
788 | while (size > csizep->cs_size) | |
789 | csizep++; | |
790 | ||
791 | /* | |
0abf40c1 | 792 | * Really subtle: The last entry with cs->cs_size==ULONG_MAX |
1da177e4 LT |
793 | * has cs_{dma,}cachep==NULL. Thus no special case |
794 | * for large kmalloc calls required. | |
795 | */ | |
4b51d669 | 796 | #ifdef CONFIG_ZONE_DMA |
1da177e4 LT |
797 | if (unlikely(gfpflags & GFP_DMA)) |
798 | return csizep->cs_dmacachep; | |
4b51d669 | 799 | #endif |
1da177e4 LT |
800 | return csizep->cs_cachep; |
801 | } | |
802 | ||
b221385b | 803 | static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) |
97e2bde4 MS |
804 | { |
805 | return __find_general_cachep(size, gfpflags); | |
806 | } | |
97e2bde4 | 807 | |
fbaccacf | 808 | static size_t slab_mgmt_size(size_t nr_objs, size_t align) |
1da177e4 | 809 | { |
fbaccacf SR |
810 | return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); |
811 | } | |
1da177e4 | 812 | |
a737b3e2 AM |
813 | /* |
814 | * Calculate the number of objects and left-over bytes for a given buffer size. | |
815 | */ | |
fbaccacf SR |
816 | static void cache_estimate(unsigned long gfporder, size_t buffer_size, |
817 | size_t align, int flags, size_t *left_over, | |
818 | unsigned int *num) | |
819 | { | |
820 | int nr_objs; | |
821 | size_t mgmt_size; | |
822 | size_t slab_size = PAGE_SIZE << gfporder; | |
1da177e4 | 823 | |
fbaccacf SR |
824 | /* |
825 | * The slab management structure can be either off the slab or | |
826 | * on it. For the latter case, the memory allocated for a | |
827 | * slab is used for: | |
828 | * | |
829 | * - The struct slab | |
830 | * - One kmem_bufctl_t for each object | |
831 | * - Padding to respect alignment of @align | |
832 | * - @buffer_size bytes for each object | |
833 | * | |
834 | * If the slab management structure is off the slab, then the | |
835 | * alignment will already be calculated into the size. Because | |
836 | * the slabs are all pages aligned, the objects will be at the | |
837 | * correct alignment when allocated. | |
838 | */ | |
839 | if (flags & CFLGS_OFF_SLAB) { | |
840 | mgmt_size = 0; | |
841 | nr_objs = slab_size / buffer_size; | |
842 | ||
843 | if (nr_objs > SLAB_LIMIT) | |
844 | nr_objs = SLAB_LIMIT; | |
845 | } else { | |
846 | /* | |
847 | * Ignore padding for the initial guess. The padding | |
848 | * is at most @align-1 bytes, and @buffer_size is at | |
849 | * least @align. In the worst case, this result will | |
850 | * be one greater than the number of objects that fit | |
851 | * into the memory allocation when taking the padding | |
852 | * into account. | |
853 | */ | |
854 | nr_objs = (slab_size - sizeof(struct slab)) / | |
855 | (buffer_size + sizeof(kmem_bufctl_t)); | |
856 | ||
857 | /* | |
858 | * This calculated number will be either the right | |
859 | * amount, or one greater than what we want. | |
860 | */ | |
861 | if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size | |
862 | > slab_size) | |
863 | nr_objs--; | |
864 | ||
865 | if (nr_objs > SLAB_LIMIT) | |
866 | nr_objs = SLAB_LIMIT; | |
867 | ||
868 | mgmt_size = slab_mgmt_size(nr_objs, align); | |
869 | } | |
870 | *num = nr_objs; | |
871 | *left_over = slab_size - nr_objs*buffer_size - mgmt_size; | |
1da177e4 LT |
872 | } |
873 | ||
874 | #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg) | |
875 | ||
a737b3e2 AM |
876 | static void __slab_error(const char *function, struct kmem_cache *cachep, |
877 | char *msg) | |
1da177e4 LT |
878 | { |
879 | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | |
b28a02de | 880 | function, cachep->name, msg); |
1da177e4 LT |
881 | dump_stack(); |
882 | } | |
883 | ||
3395ee05 PM |
884 | /* |
885 | * By default on NUMA we use alien caches to stage the freeing of | |
886 | * objects allocated from other nodes. This causes massive memory | |
887 | * inefficiencies when using fake NUMA setup to split memory into a | |
888 | * large number of small nodes, so it can be disabled on the command | |
889 | * line | |
890 | */ | |
891 | ||
892 | static int use_alien_caches __read_mostly = 1; | |
893 | static int __init noaliencache_setup(char *s) | |
894 | { | |
895 | use_alien_caches = 0; | |
896 | return 1; | |
897 | } | |
898 | __setup("noaliencache", noaliencache_setup); | |
899 | ||
8fce4d8e CL |
900 | #ifdef CONFIG_NUMA |
901 | /* | |
902 | * Special reaping functions for NUMA systems called from cache_reap(). | |
903 | * These take care of doing round robin flushing of alien caches (containing | |
904 | * objects freed on different nodes from which they were allocated) and the | |
905 | * flushing of remote pcps by calling drain_node_pages. | |
906 | */ | |
907 | static DEFINE_PER_CPU(unsigned long, reap_node); | |
908 | ||
909 | static void init_reap_node(int cpu) | |
910 | { | |
911 | int node; | |
912 | ||
913 | node = next_node(cpu_to_node(cpu), node_online_map); | |
914 | if (node == MAX_NUMNODES) | |
442295c9 | 915 | node = first_node(node_online_map); |
8fce4d8e | 916 | |
7f6b8876 | 917 | per_cpu(reap_node, cpu) = node; |
8fce4d8e CL |
918 | } |
919 | ||
920 | static void next_reap_node(void) | |
921 | { | |
922 | int node = __get_cpu_var(reap_node); | |
923 | ||
924 | /* | |
925 | * Also drain per cpu pages on remote zones | |
926 | */ | |
927 | if (node != numa_node_id()) | |
928 | drain_node_pages(node); | |
929 | ||
930 | node = next_node(node, node_online_map); | |
931 | if (unlikely(node >= MAX_NUMNODES)) | |
932 | node = first_node(node_online_map); | |
933 | __get_cpu_var(reap_node) = node; | |
934 | } | |
935 | ||
936 | #else | |
937 | #define init_reap_node(cpu) do { } while (0) | |
938 | #define next_reap_node(void) do { } while (0) | |
939 | #endif | |
940 | ||
1da177e4 LT |
941 | /* |
942 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | |
943 | * via the workqueue/eventd. | |
944 | * Add the CPU number into the expiration time to minimize the possibility of | |
945 | * the CPUs getting into lockstep and contending for the global cache chain | |
946 | * lock. | |
947 | */ | |
948 | static void __devinit start_cpu_timer(int cpu) | |
949 | { | |
52bad64d | 950 | struct delayed_work *reap_work = &per_cpu(reap_work, cpu); |
1da177e4 LT |
951 | |
952 | /* | |
953 | * When this gets called from do_initcalls via cpucache_init(), | |
954 | * init_workqueues() has already run, so keventd will be setup | |
955 | * at that time. | |
956 | */ | |
52bad64d | 957 | if (keventd_up() && reap_work->work.func == NULL) { |
8fce4d8e | 958 | init_reap_node(cpu); |
65f27f38 | 959 | INIT_DELAYED_WORK(reap_work, cache_reap); |
2b284214 AV |
960 | schedule_delayed_work_on(cpu, reap_work, |
961 | __round_jiffies_relative(HZ, cpu)); | |
1da177e4 LT |
962 | } |
963 | } | |
964 | ||
e498be7d | 965 | static struct array_cache *alloc_arraycache(int node, int entries, |
b28a02de | 966 | int batchcount) |
1da177e4 | 967 | { |
b28a02de | 968 | int memsize = sizeof(void *) * entries + sizeof(struct array_cache); |
1da177e4 LT |
969 | struct array_cache *nc = NULL; |
970 | ||
e498be7d | 971 | nc = kmalloc_node(memsize, GFP_KERNEL, node); |
1da177e4 LT |
972 | if (nc) { |
973 | nc->avail = 0; | |
974 | nc->limit = entries; | |
975 | nc->batchcount = batchcount; | |
976 | nc->touched = 0; | |
e498be7d | 977 | spin_lock_init(&nc->lock); |
1da177e4 LT |
978 | } |
979 | return nc; | |
980 | } | |
981 | ||
3ded175a CL |
982 | /* |
983 | * Transfer objects in one arraycache to another. | |
984 | * Locking must be handled by the caller. | |
985 | * | |
986 | * Return the number of entries transferred. | |
987 | */ | |
988 | static int transfer_objects(struct array_cache *to, | |
989 | struct array_cache *from, unsigned int max) | |
990 | { | |
991 | /* Figure out how many entries to transfer */ | |
992 | int nr = min(min(from->avail, max), to->limit - to->avail); | |
993 | ||
994 | if (!nr) | |
995 | return 0; | |
996 | ||
997 | memcpy(to->entry + to->avail, from->entry + from->avail -nr, | |
998 | sizeof(void *) *nr); | |
999 | ||
1000 | from->avail -= nr; | |
1001 | to->avail += nr; | |
1002 | to->touched = 1; | |
1003 | return nr; | |
1004 | } | |
1005 | ||
765c4507 CL |
1006 | #ifndef CONFIG_NUMA |
1007 | ||
1008 | #define drain_alien_cache(cachep, alien) do { } while (0) | |
1009 | #define reap_alien(cachep, l3) do { } while (0) | |
1010 | ||
1011 | static inline struct array_cache **alloc_alien_cache(int node, int limit) | |
1012 | { | |
1013 | return (struct array_cache **)BAD_ALIEN_MAGIC; | |
1014 | } | |
1015 | ||
1016 | static inline void free_alien_cache(struct array_cache **ac_ptr) | |
1017 | { | |
1018 | } | |
1019 | ||
1020 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
1021 | { | |
1022 | return 0; | |
1023 | } | |
1024 | ||
1025 | static inline void *alternate_node_alloc(struct kmem_cache *cachep, | |
1026 | gfp_t flags) | |
1027 | { | |
1028 | return NULL; | |
1029 | } | |
1030 | ||
8b98c169 | 1031 | static inline void *____cache_alloc_node(struct kmem_cache *cachep, |
765c4507 CL |
1032 | gfp_t flags, int nodeid) |
1033 | { | |
1034 | return NULL; | |
1035 | } | |
1036 | ||
1037 | #else /* CONFIG_NUMA */ | |
1038 | ||
8b98c169 | 1039 | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); |
c61afb18 | 1040 | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); |
dc85da15 | 1041 | |
5295a74c | 1042 | static struct array_cache **alloc_alien_cache(int node, int limit) |
e498be7d CL |
1043 | { |
1044 | struct array_cache **ac_ptr; | |
8ef82866 | 1045 | int memsize = sizeof(void *) * nr_node_ids; |
e498be7d CL |
1046 | int i; |
1047 | ||
1048 | if (limit > 1) | |
1049 | limit = 12; | |
1050 | ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node); | |
1051 | if (ac_ptr) { | |
1052 | for_each_node(i) { | |
1053 | if (i == node || !node_online(i)) { | |
1054 | ac_ptr[i] = NULL; | |
1055 | continue; | |
1056 | } | |
1057 | ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d); | |
1058 | if (!ac_ptr[i]) { | |
b28a02de | 1059 | for (i--; i <= 0; i--) |
e498be7d CL |
1060 | kfree(ac_ptr[i]); |
1061 | kfree(ac_ptr); | |
1062 | return NULL; | |
1063 | } | |
1064 | } | |
1065 | } | |
1066 | return ac_ptr; | |
1067 | } | |
1068 | ||
5295a74c | 1069 | static void free_alien_cache(struct array_cache **ac_ptr) |
e498be7d CL |
1070 | { |
1071 | int i; | |
1072 | ||
1073 | if (!ac_ptr) | |
1074 | return; | |
e498be7d | 1075 | for_each_node(i) |
b28a02de | 1076 | kfree(ac_ptr[i]); |
e498be7d CL |
1077 | kfree(ac_ptr); |
1078 | } | |
1079 | ||
343e0d7a | 1080 | static void __drain_alien_cache(struct kmem_cache *cachep, |
5295a74c | 1081 | struct array_cache *ac, int node) |
e498be7d CL |
1082 | { |
1083 | struct kmem_list3 *rl3 = cachep->nodelists[node]; | |
1084 | ||
1085 | if (ac->avail) { | |
1086 | spin_lock(&rl3->list_lock); | |
e00946fe CL |
1087 | /* |
1088 | * Stuff objects into the remote nodes shared array first. | |
1089 | * That way we could avoid the overhead of putting the objects | |
1090 | * into the free lists and getting them back later. | |
1091 | */ | |
693f7d36 JS |
1092 | if (rl3->shared) |
1093 | transfer_objects(rl3->shared, ac, ac->limit); | |
e00946fe | 1094 | |
ff69416e | 1095 | free_block(cachep, ac->entry, ac->avail, node); |
e498be7d CL |
1096 | ac->avail = 0; |
1097 | spin_unlock(&rl3->list_lock); | |
1098 | } | |
1099 | } | |
1100 | ||
8fce4d8e CL |
1101 | /* |
1102 | * Called from cache_reap() to regularly drain alien caches round robin. | |
1103 | */ | |
1104 | static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) | |
1105 | { | |
1106 | int node = __get_cpu_var(reap_node); | |
1107 | ||
1108 | if (l3->alien) { | |
1109 | struct array_cache *ac = l3->alien[node]; | |
e00946fe CL |
1110 | |
1111 | if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { | |
8fce4d8e CL |
1112 | __drain_alien_cache(cachep, ac, node); |
1113 | spin_unlock_irq(&ac->lock); | |
1114 | } | |
1115 | } | |
1116 | } | |
1117 | ||
a737b3e2 AM |
1118 | static void drain_alien_cache(struct kmem_cache *cachep, |
1119 | struct array_cache **alien) | |
e498be7d | 1120 | { |
b28a02de | 1121 | int i = 0; |
e498be7d CL |
1122 | struct array_cache *ac; |
1123 | unsigned long flags; | |
1124 | ||
1125 | for_each_online_node(i) { | |
4484ebf1 | 1126 | ac = alien[i]; |
e498be7d CL |
1127 | if (ac) { |
1128 | spin_lock_irqsave(&ac->lock, flags); | |
1129 | __drain_alien_cache(cachep, ac, i); | |
1130 | spin_unlock_irqrestore(&ac->lock, flags); | |
1131 | } | |
1132 | } | |
1133 | } | |
729bd0b7 | 1134 | |
873623df | 1135 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) |
729bd0b7 PE |
1136 | { |
1137 | struct slab *slabp = virt_to_slab(objp); | |
1138 | int nodeid = slabp->nodeid; | |
1139 | struct kmem_list3 *l3; | |
1140 | struct array_cache *alien = NULL; | |
1ca4cb24 PE |
1141 | int node; |
1142 | ||
1143 | node = numa_node_id(); | |
729bd0b7 PE |
1144 | |
1145 | /* | |
1146 | * Make sure we are not freeing a object from another node to the array | |
1147 | * cache on this cpu. | |
1148 | */ | |
62918a03 | 1149 | if (likely(slabp->nodeid == node)) |
729bd0b7 PE |
1150 | return 0; |
1151 | ||
1ca4cb24 | 1152 | l3 = cachep->nodelists[node]; |
729bd0b7 PE |
1153 | STATS_INC_NODEFREES(cachep); |
1154 | if (l3->alien && l3->alien[nodeid]) { | |
1155 | alien = l3->alien[nodeid]; | |
873623df | 1156 | spin_lock(&alien->lock); |
729bd0b7 PE |
1157 | if (unlikely(alien->avail == alien->limit)) { |
1158 | STATS_INC_ACOVERFLOW(cachep); | |
1159 | __drain_alien_cache(cachep, alien, nodeid); | |
1160 | } | |
1161 | alien->entry[alien->avail++] = objp; | |
1162 | spin_unlock(&alien->lock); | |
1163 | } else { | |
1164 | spin_lock(&(cachep->nodelists[nodeid])->list_lock); | |
1165 | free_block(cachep, &objp, 1, nodeid); | |
1166 | spin_unlock(&(cachep->nodelists[nodeid])->list_lock); | |
1167 | } | |
1168 | return 1; | |
1169 | } | |
e498be7d CL |
1170 | #endif |
1171 | ||
8c78f307 | 1172 | static int __cpuinit cpuup_callback(struct notifier_block *nfb, |
b28a02de | 1173 | unsigned long action, void *hcpu) |
1da177e4 LT |
1174 | { |
1175 | long cpu = (long)hcpu; | |
343e0d7a | 1176 | struct kmem_cache *cachep; |
e498be7d CL |
1177 | struct kmem_list3 *l3 = NULL; |
1178 | int node = cpu_to_node(cpu); | |
1179 | int memsize = sizeof(struct kmem_list3); | |
1da177e4 LT |
1180 | |
1181 | switch (action) { | |
1182 | case CPU_UP_PREPARE: | |
fc0abb14 | 1183 | mutex_lock(&cache_chain_mutex); |
a737b3e2 AM |
1184 | /* |
1185 | * We need to do this right in the beginning since | |
e498be7d CL |
1186 | * alloc_arraycache's are going to use this list. |
1187 | * kmalloc_node allows us to add the slab to the right | |
1188 | * kmem_list3 and not this cpu's kmem_list3 | |
1189 | */ | |
1190 | ||
1da177e4 | 1191 | list_for_each_entry(cachep, &cache_chain, next) { |
a737b3e2 AM |
1192 | /* |
1193 | * Set up the size64 kmemlist for cpu before we can | |
e498be7d CL |
1194 | * begin anything. Make sure some other cpu on this |
1195 | * node has not already allocated this | |
1196 | */ | |
1197 | if (!cachep->nodelists[node]) { | |
a737b3e2 AM |
1198 | l3 = kmalloc_node(memsize, GFP_KERNEL, node); |
1199 | if (!l3) | |
e498be7d CL |
1200 | goto bad; |
1201 | kmem_list3_init(l3); | |
1202 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
b28a02de | 1203 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
e498be7d | 1204 | |
4484ebf1 RT |
1205 | /* |
1206 | * The l3s don't come and go as CPUs come and | |
1207 | * go. cache_chain_mutex is sufficient | |
1208 | * protection here. | |
1209 | */ | |
e498be7d CL |
1210 | cachep->nodelists[node] = l3; |
1211 | } | |
1da177e4 | 1212 | |
e498be7d CL |
1213 | spin_lock_irq(&cachep->nodelists[node]->list_lock); |
1214 | cachep->nodelists[node]->free_limit = | |
a737b3e2 AM |
1215 | (1 + nr_cpus_node(node)) * |
1216 | cachep->batchcount + cachep->num; | |
e498be7d CL |
1217 | spin_unlock_irq(&cachep->nodelists[node]->list_lock); |
1218 | } | |
1219 | ||
a737b3e2 AM |
1220 | /* |
1221 | * Now we can go ahead with allocating the shared arrays and | |
1222 | * array caches | |
1223 | */ | |
e498be7d | 1224 | list_for_each_entry(cachep, &cache_chain, next) { |
cd105df4 | 1225 | struct array_cache *nc; |
4484ebf1 | 1226 | struct array_cache *shared; |
3395ee05 | 1227 | struct array_cache **alien = NULL; |
cd105df4 | 1228 | |
e498be7d | 1229 | nc = alloc_arraycache(node, cachep->limit, |
4484ebf1 | 1230 | cachep->batchcount); |
1da177e4 LT |
1231 | if (!nc) |
1232 | goto bad; | |
4484ebf1 RT |
1233 | shared = alloc_arraycache(node, |
1234 | cachep->shared * cachep->batchcount, | |
1235 | 0xbaadf00d); | |
1236 | if (!shared) | |
1237 | goto bad; | |
7a21ef6f | 1238 | |
3395ee05 PM |
1239 | if (use_alien_caches) { |
1240 | alien = alloc_alien_cache(node, cachep->limit); | |
1241 | if (!alien) | |
1242 | goto bad; | |
1243 | } | |
1da177e4 | 1244 | cachep->array[cpu] = nc; |
e498be7d CL |
1245 | l3 = cachep->nodelists[node]; |
1246 | BUG_ON(!l3); | |
e498be7d | 1247 | |
4484ebf1 RT |
1248 | spin_lock_irq(&l3->list_lock); |
1249 | if (!l3->shared) { | |
1250 | /* | |
1251 | * We are serialised from CPU_DEAD or | |
1252 | * CPU_UP_CANCELLED by the cpucontrol lock | |
1253 | */ | |
1254 | l3->shared = shared; | |
1255 | shared = NULL; | |
e498be7d | 1256 | } |
4484ebf1 RT |
1257 | #ifdef CONFIG_NUMA |
1258 | if (!l3->alien) { | |
1259 | l3->alien = alien; | |
1260 | alien = NULL; | |
1261 | } | |
1262 | #endif | |
1263 | spin_unlock_irq(&l3->list_lock); | |
4484ebf1 RT |
1264 | kfree(shared); |
1265 | free_alien_cache(alien); | |
1da177e4 | 1266 | } |
1da177e4 LT |
1267 | break; |
1268 | case CPU_ONLINE: | |
8f5be20b | 1269 | mutex_unlock(&cache_chain_mutex); |
1da177e4 LT |
1270 | start_cpu_timer(cpu); |
1271 | break; | |
1272 | #ifdef CONFIG_HOTPLUG_CPU | |
8f5be20b RT |
1273 | case CPU_DOWN_PREPARE: |
1274 | mutex_lock(&cache_chain_mutex); | |
1275 | break; | |
1276 | case CPU_DOWN_FAILED: | |
1277 | mutex_unlock(&cache_chain_mutex); | |
1278 | break; | |
1da177e4 | 1279 | case CPU_DEAD: |
4484ebf1 RT |
1280 | /* |
1281 | * Even if all the cpus of a node are down, we don't free the | |
1282 | * kmem_list3 of any cache. This to avoid a race between | |
1283 | * cpu_down, and a kmalloc allocation from another cpu for | |
1284 | * memory from the node of the cpu going down. The list3 | |
1285 | * structure is usually allocated from kmem_cache_create() and | |
1286 | * gets destroyed at kmem_cache_destroy(). | |
1287 | */ | |
1da177e4 | 1288 | /* fall thru */ |
8f5be20b | 1289 | #endif |
1da177e4 | 1290 | case CPU_UP_CANCELED: |
1da177e4 LT |
1291 | list_for_each_entry(cachep, &cache_chain, next) { |
1292 | struct array_cache *nc; | |
4484ebf1 RT |
1293 | struct array_cache *shared; |
1294 | struct array_cache **alien; | |
e498be7d | 1295 | cpumask_t mask; |
1da177e4 | 1296 | |
e498be7d | 1297 | mask = node_to_cpumask(node); |
1da177e4 LT |
1298 | /* cpu is dead; no one can alloc from it. */ |
1299 | nc = cachep->array[cpu]; | |
1300 | cachep->array[cpu] = NULL; | |
e498be7d CL |
1301 | l3 = cachep->nodelists[node]; |
1302 | ||
1303 | if (!l3) | |
4484ebf1 | 1304 | goto free_array_cache; |
e498be7d | 1305 | |
ca3b9b91 | 1306 | spin_lock_irq(&l3->list_lock); |
e498be7d CL |
1307 | |
1308 | /* Free limit for this kmem_list3 */ | |
1309 | l3->free_limit -= cachep->batchcount; | |
1310 | if (nc) | |
ff69416e | 1311 | free_block(cachep, nc->entry, nc->avail, node); |
e498be7d CL |
1312 | |
1313 | if (!cpus_empty(mask)) { | |
ca3b9b91 | 1314 | spin_unlock_irq(&l3->list_lock); |
4484ebf1 | 1315 | goto free_array_cache; |
b28a02de | 1316 | } |
e498be7d | 1317 | |
4484ebf1 RT |
1318 | shared = l3->shared; |
1319 | if (shared) { | |
e498be7d | 1320 | free_block(cachep, l3->shared->entry, |
b28a02de | 1321 | l3->shared->avail, node); |
e498be7d CL |
1322 | l3->shared = NULL; |
1323 | } | |
e498be7d | 1324 | |
4484ebf1 RT |
1325 | alien = l3->alien; |
1326 | l3->alien = NULL; | |
1327 | ||
1328 | spin_unlock_irq(&l3->list_lock); | |
1329 | ||
1330 | kfree(shared); | |
1331 | if (alien) { | |
1332 | drain_alien_cache(cachep, alien); | |
1333 | free_alien_cache(alien); | |
e498be7d | 1334 | } |
4484ebf1 | 1335 | free_array_cache: |
1da177e4 LT |
1336 | kfree(nc); |
1337 | } | |
4484ebf1 RT |
1338 | /* |
1339 | * In the previous loop, all the objects were freed to | |
1340 | * the respective cache's slabs, now we can go ahead and | |
1341 | * shrink each nodelist to its limit. | |
1342 | */ | |
1343 | list_for_each_entry(cachep, &cache_chain, next) { | |
1344 | l3 = cachep->nodelists[node]; | |
1345 | if (!l3) | |
1346 | continue; | |
ed11d9eb | 1347 | drain_freelist(cachep, l3, l3->free_objects); |
4484ebf1 | 1348 | } |
fc0abb14 | 1349 | mutex_unlock(&cache_chain_mutex); |
1da177e4 | 1350 | break; |
1da177e4 LT |
1351 | } |
1352 | return NOTIFY_OK; | |
a737b3e2 | 1353 | bad: |
1da177e4 LT |
1354 | return NOTIFY_BAD; |
1355 | } | |
1356 | ||
74b85f37 CS |
1357 | static struct notifier_block __cpuinitdata cpucache_notifier = { |
1358 | &cpuup_callback, NULL, 0 | |
1359 | }; | |
1da177e4 | 1360 | |
e498be7d CL |
1361 | /* |
1362 | * swap the static kmem_list3 with kmalloced memory | |
1363 | */ | |
a737b3e2 AM |
1364 | static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, |
1365 | int nodeid) | |
e498be7d CL |
1366 | { |
1367 | struct kmem_list3 *ptr; | |
1368 | ||
e498be7d CL |
1369 | ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid); |
1370 | BUG_ON(!ptr); | |
1371 | ||
1372 | local_irq_disable(); | |
1373 | memcpy(ptr, list, sizeof(struct kmem_list3)); | |
2b2d5493 IM |
1374 | /* |
1375 | * Do not assume that spinlocks can be initialized via memcpy: | |
1376 | */ | |
1377 | spin_lock_init(&ptr->list_lock); | |
1378 | ||
e498be7d CL |
1379 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
1380 | cachep->nodelists[nodeid] = ptr; | |
1381 | local_irq_enable(); | |
1382 | } | |
1383 | ||
a737b3e2 AM |
1384 | /* |
1385 | * Initialisation. Called after the page allocator have been initialised and | |
1386 | * before smp_init(). | |
1da177e4 LT |
1387 | */ |
1388 | void __init kmem_cache_init(void) | |
1389 | { | |
1390 | size_t left_over; | |
1391 | struct cache_sizes *sizes; | |
1392 | struct cache_names *names; | |
e498be7d | 1393 | int i; |
07ed76b2 | 1394 | int order; |
1ca4cb24 | 1395 | int node; |
e498be7d | 1396 | |
62918a03 SS |
1397 | if (num_possible_nodes() == 1) |
1398 | use_alien_caches = 0; | |
1399 | ||
e498be7d CL |
1400 | for (i = 0; i < NUM_INIT_LISTS; i++) { |
1401 | kmem_list3_init(&initkmem_list3[i]); | |
1402 | if (i < MAX_NUMNODES) | |
1403 | cache_cache.nodelists[i] = NULL; | |
1404 | } | |
1da177e4 LT |
1405 | |
1406 | /* | |
1407 | * Fragmentation resistance on low memory - only use bigger | |
1408 | * page orders on machines with more than 32MB of memory. | |
1409 | */ | |
1410 | if (num_physpages > (32 << 20) >> PAGE_SHIFT) | |
1411 | slab_break_gfp_order = BREAK_GFP_ORDER_HI; | |
1412 | ||
1da177e4 LT |
1413 | /* Bootstrap is tricky, because several objects are allocated |
1414 | * from caches that do not exist yet: | |
a737b3e2 AM |
1415 | * 1) initialize the cache_cache cache: it contains the struct |
1416 | * kmem_cache structures of all caches, except cache_cache itself: | |
1417 | * cache_cache is statically allocated. | |
e498be7d CL |
1418 | * Initially an __init data area is used for the head array and the |
1419 | * kmem_list3 structures, it's replaced with a kmalloc allocated | |
1420 | * array at the end of the bootstrap. | |
1da177e4 | 1421 | * 2) Create the first kmalloc cache. |
343e0d7a | 1422 | * The struct kmem_cache for the new cache is allocated normally. |
e498be7d CL |
1423 | * An __init data area is used for the head array. |
1424 | * 3) Create the remaining kmalloc caches, with minimally sized | |
1425 | * head arrays. | |
1da177e4 LT |
1426 | * 4) Replace the __init data head arrays for cache_cache and the first |
1427 | * kmalloc cache with kmalloc allocated arrays. | |
e498be7d CL |
1428 | * 5) Replace the __init data for kmem_list3 for cache_cache and |
1429 | * the other cache's with kmalloc allocated memory. | |
1430 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | |
1da177e4 LT |
1431 | */ |
1432 | ||
1ca4cb24 PE |
1433 | node = numa_node_id(); |
1434 | ||
1da177e4 | 1435 | /* 1) create the cache_cache */ |
1da177e4 LT |
1436 | INIT_LIST_HEAD(&cache_chain); |
1437 | list_add(&cache_cache.next, &cache_chain); | |
1438 | cache_cache.colour_off = cache_line_size(); | |
1439 | cache_cache.array[smp_processor_id()] = &initarray_cache.cache; | |
1ca4cb24 | 1440 | cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE]; |
1da177e4 | 1441 | |
a737b3e2 AM |
1442 | cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, |
1443 | cache_line_size()); | |
6a2d7a95 ED |
1444 | cache_cache.reciprocal_buffer_size = |
1445 | reciprocal_value(cache_cache.buffer_size); | |
1da177e4 | 1446 | |
07ed76b2 JS |
1447 | for (order = 0; order < MAX_ORDER; order++) { |
1448 | cache_estimate(order, cache_cache.buffer_size, | |
1449 | cache_line_size(), 0, &left_over, &cache_cache.num); | |
1450 | if (cache_cache.num) | |
1451 | break; | |
1452 | } | |
40094fa6 | 1453 | BUG_ON(!cache_cache.num); |
07ed76b2 | 1454 | cache_cache.gfporder = order; |
b28a02de | 1455 | cache_cache.colour = left_over / cache_cache.colour_off; |
b28a02de PE |
1456 | cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + |
1457 | sizeof(struct slab), cache_line_size()); | |
1da177e4 LT |
1458 | |
1459 | /* 2+3) create the kmalloc caches */ | |
1460 | sizes = malloc_sizes; | |
1461 | names = cache_names; | |
1462 | ||
a737b3e2 AM |
1463 | /* |
1464 | * Initialize the caches that provide memory for the array cache and the | |
1465 | * kmem_list3 structures first. Without this, further allocations will | |
1466 | * bug. | |
e498be7d CL |
1467 | */ |
1468 | ||
1469 | sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, | |
a737b3e2 AM |
1470 | sizes[INDEX_AC].cs_size, |
1471 | ARCH_KMALLOC_MINALIGN, | |
1472 | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | |
1473 | NULL, NULL); | |
e498be7d | 1474 | |
a737b3e2 | 1475 | if (INDEX_AC != INDEX_L3) { |
e498be7d | 1476 | sizes[INDEX_L3].cs_cachep = |
a737b3e2 AM |
1477 | kmem_cache_create(names[INDEX_L3].name, |
1478 | sizes[INDEX_L3].cs_size, | |
1479 | ARCH_KMALLOC_MINALIGN, | |
1480 | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | |
1481 | NULL, NULL); | |
1482 | } | |
e498be7d | 1483 | |
e0a42726 IM |
1484 | slab_early_init = 0; |
1485 | ||
1da177e4 | 1486 | while (sizes->cs_size != ULONG_MAX) { |
e498be7d CL |
1487 | /* |
1488 | * For performance, all the general caches are L1 aligned. | |
1da177e4 LT |
1489 | * This should be particularly beneficial on SMP boxes, as it |
1490 | * eliminates "false sharing". | |
1491 | * Note for systems short on memory removing the alignment will | |
e498be7d CL |
1492 | * allow tighter packing of the smaller caches. |
1493 | */ | |
a737b3e2 | 1494 | if (!sizes->cs_cachep) { |
e498be7d | 1495 | sizes->cs_cachep = kmem_cache_create(names->name, |
a737b3e2 AM |
1496 | sizes->cs_size, |
1497 | ARCH_KMALLOC_MINALIGN, | |
1498 | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | |
1499 | NULL, NULL); | |
1500 | } | |
4b51d669 CL |
1501 | #ifdef CONFIG_ZONE_DMA |
1502 | sizes->cs_dmacachep = kmem_cache_create( | |
1503 | names->name_dma, | |
a737b3e2 AM |
1504 | sizes->cs_size, |
1505 | ARCH_KMALLOC_MINALIGN, | |
1506 | ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| | |
1507 | SLAB_PANIC, | |
1508 | NULL, NULL); | |
4b51d669 | 1509 | #endif |
1da177e4 LT |
1510 | sizes++; |
1511 | names++; | |
1512 | } | |
1513 | /* 4) Replace the bootstrap head arrays */ | |
1514 | { | |
2b2d5493 | 1515 | struct array_cache *ptr; |
e498be7d | 1516 | |
1da177e4 | 1517 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); |
e498be7d | 1518 | |
1da177e4 | 1519 | local_irq_disable(); |
9a2dba4b PE |
1520 | BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); |
1521 | memcpy(ptr, cpu_cache_get(&cache_cache), | |
b28a02de | 1522 | sizeof(struct arraycache_init)); |
2b2d5493 IM |
1523 | /* |
1524 | * Do not assume that spinlocks can be initialized via memcpy: | |
1525 | */ | |
1526 | spin_lock_init(&ptr->lock); | |
1527 | ||
1da177e4 LT |
1528 | cache_cache.array[smp_processor_id()] = ptr; |
1529 | local_irq_enable(); | |
e498be7d | 1530 | |
1da177e4 | 1531 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); |
e498be7d | 1532 | |
1da177e4 | 1533 | local_irq_disable(); |
9a2dba4b | 1534 | BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) |
b28a02de | 1535 | != &initarray_generic.cache); |
9a2dba4b | 1536 | memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), |
b28a02de | 1537 | sizeof(struct arraycache_init)); |
2b2d5493 IM |
1538 | /* |
1539 | * Do not assume that spinlocks can be initialized via memcpy: | |
1540 | */ | |
1541 | spin_lock_init(&ptr->lock); | |
1542 | ||
e498be7d | 1543 | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = |
b28a02de | 1544 | ptr; |
1da177e4 LT |
1545 | local_irq_enable(); |
1546 | } | |
e498be7d CL |
1547 | /* 5) Replace the bootstrap kmem_list3's */ |
1548 | { | |
1ca4cb24 PE |
1549 | int nid; |
1550 | ||
e498be7d | 1551 | /* Replace the static kmem_list3 structures for the boot cpu */ |
1ca4cb24 | 1552 | init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node); |
e498be7d | 1553 | |
1ca4cb24 | 1554 | for_each_online_node(nid) { |
e498be7d | 1555 | init_list(malloc_sizes[INDEX_AC].cs_cachep, |
1ca4cb24 | 1556 | &initkmem_list3[SIZE_AC + nid], nid); |
e498be7d CL |
1557 | |
1558 | if (INDEX_AC != INDEX_L3) { | |
1559 | init_list(malloc_sizes[INDEX_L3].cs_cachep, | |
1ca4cb24 | 1560 | &initkmem_list3[SIZE_L3 + nid], nid); |
e498be7d CL |
1561 | } |
1562 | } | |
1563 | } | |
1da177e4 | 1564 | |
e498be7d | 1565 | /* 6) resize the head arrays to their final sizes */ |
1da177e4 | 1566 | { |
343e0d7a | 1567 | struct kmem_cache *cachep; |
fc0abb14 | 1568 | mutex_lock(&cache_chain_mutex); |
1da177e4 | 1569 | list_for_each_entry(cachep, &cache_chain, next) |
2ed3a4ef CL |
1570 | if (enable_cpucache(cachep)) |
1571 | BUG(); | |
fc0abb14 | 1572 | mutex_unlock(&cache_chain_mutex); |
1da177e4 LT |
1573 | } |
1574 | ||
056c6241 RT |
1575 | /* Annotate slab for lockdep -- annotate the malloc caches */ |
1576 | init_lock_keys(); | |
1577 | ||
1578 | ||
1da177e4 LT |
1579 | /* Done! */ |
1580 | g_cpucache_up = FULL; | |
1581 | ||
a737b3e2 AM |
1582 | /* |
1583 | * Register a cpu startup notifier callback that initializes | |
1584 | * cpu_cache_get for all new cpus | |
1da177e4 LT |
1585 | */ |
1586 | register_cpu_notifier(&cpucache_notifier); | |
1da177e4 | 1587 | |
a737b3e2 AM |
1588 | /* |
1589 | * The reap timers are started later, with a module init call: That part | |
1590 | * of the kernel is not yet operational. | |
1da177e4 LT |
1591 | */ |
1592 | } | |
1593 | ||
1594 | static int __init cpucache_init(void) | |
1595 | { | |
1596 | int cpu; | |
1597 | ||
a737b3e2 AM |
1598 | /* |
1599 | * Register the timers that return unneeded pages to the page allocator | |
1da177e4 | 1600 | */ |
e498be7d | 1601 | for_each_online_cpu(cpu) |
a737b3e2 | 1602 | start_cpu_timer(cpu); |
1da177e4 LT |
1603 | return 0; |
1604 | } | |
1da177e4 LT |
1605 | __initcall(cpucache_init); |
1606 | ||
1607 | /* | |
1608 | * Interface to system's page allocator. No need to hold the cache-lock. | |
1609 | * | |
1610 | * If we requested dmaable memory, we will get it. Even if we | |
1611 | * did not request dmaable memory, we might get it, but that | |
1612 | * would be relatively rare and ignorable. | |
1613 | */ | |
343e0d7a | 1614 | static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
1da177e4 LT |
1615 | { |
1616 | struct page *page; | |
e1b6aa6f | 1617 | int nr_pages; |
1da177e4 LT |
1618 | int i; |
1619 | ||
d6fef9da | 1620 | #ifndef CONFIG_MMU |
e1b6aa6f CH |
1621 | /* |
1622 | * Nommu uses slab's for process anonymous memory allocations, and thus | |
1623 | * requires __GFP_COMP to properly refcount higher order allocations | |
d6fef9da | 1624 | */ |
e1b6aa6f | 1625 | flags |= __GFP_COMP; |
d6fef9da | 1626 | #endif |
765c4507 | 1627 | |
3c517a61 | 1628 | flags |= cachep->gfpflags; |
e1b6aa6f CH |
1629 | |
1630 | page = alloc_pages_node(nodeid, flags, cachep->gfporder); | |
1da177e4 LT |
1631 | if (!page) |
1632 | return NULL; | |
1da177e4 | 1633 | |
e1b6aa6f | 1634 | nr_pages = (1 << cachep->gfporder); |
1da177e4 | 1635 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
972d1a7b CL |
1636 | add_zone_page_state(page_zone(page), |
1637 | NR_SLAB_RECLAIMABLE, nr_pages); | |
1638 | else | |
1639 | add_zone_page_state(page_zone(page), | |
1640 | NR_SLAB_UNRECLAIMABLE, nr_pages); | |
e1b6aa6f CH |
1641 | for (i = 0; i < nr_pages; i++) |
1642 | __SetPageSlab(page + i); | |
1643 | return page_address(page); | |
1da177e4 LT |
1644 | } |
1645 | ||
1646 | /* | |
1647 | * Interface to system's page release. | |
1648 | */ | |
343e0d7a | 1649 | static void kmem_freepages(struct kmem_cache *cachep, void *addr) |
1da177e4 | 1650 | { |
b28a02de | 1651 | unsigned long i = (1 << cachep->gfporder); |
1da177e4 LT |
1652 | struct page *page = virt_to_page(addr); |
1653 | const unsigned long nr_freed = i; | |
1654 | ||
972d1a7b CL |
1655 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1656 | sub_zone_page_state(page_zone(page), | |
1657 | NR_SLAB_RECLAIMABLE, nr_freed); | |
1658 | else | |
1659 | sub_zone_page_state(page_zone(page), | |
1660 | NR_SLAB_UNRECLAIMABLE, nr_freed); | |
1da177e4 | 1661 | while (i--) { |
f205b2fe NP |
1662 | BUG_ON(!PageSlab(page)); |
1663 | __ClearPageSlab(page); | |
1da177e4 LT |
1664 | page++; |
1665 | } | |
1da177e4 LT |
1666 | if (current->reclaim_state) |
1667 | current->reclaim_state->reclaimed_slab += nr_freed; | |
1668 | free_pages((unsigned long)addr, cachep->gfporder); | |
1da177e4 LT |
1669 | } |
1670 | ||
1671 | static void kmem_rcu_free(struct rcu_head *head) | |
1672 | { | |
b28a02de | 1673 | struct slab_rcu *slab_rcu = (struct slab_rcu *)head; |
343e0d7a | 1674 | struct kmem_cache *cachep = slab_rcu->cachep; |
1da177e4 LT |
1675 | |
1676 | kmem_freepages(cachep, slab_rcu->addr); | |
1677 | if (OFF_SLAB(cachep)) | |
1678 | kmem_cache_free(cachep->slabp_cache, slab_rcu); | |
1679 | } | |
1680 | ||
1681 | #if DEBUG | |
1682 | ||
1683 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
343e0d7a | 1684 | static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, |
b28a02de | 1685 | unsigned long caller) |
1da177e4 | 1686 | { |
3dafccf2 | 1687 | int size = obj_size(cachep); |
1da177e4 | 1688 | |
3dafccf2 | 1689 | addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; |
1da177e4 | 1690 | |
b28a02de | 1691 | if (size < 5 * sizeof(unsigned long)) |
1da177e4 LT |
1692 | return; |
1693 | ||
b28a02de PE |
1694 | *addr++ = 0x12345678; |
1695 | *addr++ = caller; | |
1696 | *addr++ = smp_processor_id(); | |
1697 | size -= 3 * sizeof(unsigned long); | |
1da177e4 LT |
1698 | { |
1699 | unsigned long *sptr = &caller; | |
1700 | unsigned long svalue; | |
1701 | ||
1702 | while (!kstack_end(sptr)) { | |
1703 | svalue = *sptr++; | |
1704 | if (kernel_text_address(svalue)) { | |
b28a02de | 1705 | *addr++ = svalue; |
1da177e4 LT |
1706 | size -= sizeof(unsigned long); |
1707 | if (size <= sizeof(unsigned long)) | |
1708 | break; | |
1709 | } | |
1710 | } | |
1711 | ||
1712 | } | |
b28a02de | 1713 | *addr++ = 0x87654321; |
1da177e4 LT |
1714 | } |
1715 | #endif | |
1716 | ||
343e0d7a | 1717 | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) |
1da177e4 | 1718 | { |
3dafccf2 MS |
1719 | int size = obj_size(cachep); |
1720 | addr = &((char *)addr)[obj_offset(cachep)]; | |
1da177e4 LT |
1721 | |
1722 | memset(addr, val, size); | |
b28a02de | 1723 | *(unsigned char *)(addr + size - 1) = POISON_END; |
1da177e4 LT |
1724 | } |
1725 | ||
1726 | static void dump_line(char *data, int offset, int limit) | |
1727 | { | |
1728 | int i; | |
aa83aa40 DJ |
1729 | unsigned char error = 0; |
1730 | int bad_count = 0; | |
1731 | ||
1da177e4 | 1732 | printk(KERN_ERR "%03x:", offset); |
aa83aa40 DJ |
1733 | for (i = 0; i < limit; i++) { |
1734 | if (data[offset + i] != POISON_FREE) { | |
1735 | error = data[offset + i]; | |
1736 | bad_count++; | |
1737 | } | |
b28a02de | 1738 | printk(" %02x", (unsigned char)data[offset + i]); |
aa83aa40 | 1739 | } |
1da177e4 | 1740 | printk("\n"); |
aa83aa40 DJ |
1741 | |
1742 | if (bad_count == 1) { | |
1743 | error ^= POISON_FREE; | |
1744 | if (!(error & (error - 1))) { | |
1745 | printk(KERN_ERR "Single bit error detected. Probably " | |
1746 | "bad RAM.\n"); | |
1747 | #ifdef CONFIG_X86 | |
1748 | printk(KERN_ERR "Run memtest86+ or a similar memory " | |
1749 | "test tool.\n"); | |
1750 | #else | |
1751 | printk(KERN_ERR "Run a memory test tool.\n"); | |
1752 | #endif | |
1753 | } | |
1754 | } | |
1da177e4 LT |
1755 | } |
1756 | #endif | |
1757 | ||
1758 | #if DEBUG | |
1759 | ||
343e0d7a | 1760 | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) |
1da177e4 LT |
1761 | { |
1762 | int i, size; | |
1763 | char *realobj; | |
1764 | ||
1765 | if (cachep->flags & SLAB_RED_ZONE) { | |
1766 | printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n", | |
a737b3e2 AM |
1767 | *dbg_redzone1(cachep, objp), |
1768 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
1769 | } |
1770 | ||
1771 | if (cachep->flags & SLAB_STORE_USER) { | |
1772 | printk(KERN_ERR "Last user: [<%p>]", | |
a737b3e2 | 1773 | *dbg_userword(cachep, objp)); |
1da177e4 | 1774 | print_symbol("(%s)", |
a737b3e2 | 1775 | (unsigned long)*dbg_userword(cachep, objp)); |
1da177e4 LT |
1776 | printk("\n"); |
1777 | } | |
3dafccf2 MS |
1778 | realobj = (char *)objp + obj_offset(cachep); |
1779 | size = obj_size(cachep); | |
b28a02de | 1780 | for (i = 0; i < size && lines; i += 16, lines--) { |
1da177e4 LT |
1781 | int limit; |
1782 | limit = 16; | |
b28a02de PE |
1783 | if (i + limit > size) |
1784 | limit = size - i; | |
1da177e4 LT |
1785 | dump_line(realobj, i, limit); |
1786 | } | |
1787 | } | |
1788 | ||
343e0d7a | 1789 | static void check_poison_obj(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
1790 | { |
1791 | char *realobj; | |
1792 | int size, i; | |
1793 | int lines = 0; | |
1794 | ||
3dafccf2 MS |
1795 | realobj = (char *)objp + obj_offset(cachep); |
1796 | size = obj_size(cachep); | |
1da177e4 | 1797 | |
b28a02de | 1798 | for (i = 0; i < size; i++) { |
1da177e4 | 1799 | char exp = POISON_FREE; |
b28a02de | 1800 | if (i == size - 1) |
1da177e4 LT |
1801 | exp = POISON_END; |
1802 | if (realobj[i] != exp) { | |
1803 | int limit; | |
1804 | /* Mismatch ! */ | |
1805 | /* Print header */ | |
1806 | if (lines == 0) { | |
b28a02de | 1807 | printk(KERN_ERR |
e94a40c5 DH |
1808 | "Slab corruption: %s start=%p, len=%d\n", |
1809 | cachep->name, realobj, size); | |
1da177e4 LT |
1810 | print_objinfo(cachep, objp, 0); |
1811 | } | |
1812 | /* Hexdump the affected line */ | |
b28a02de | 1813 | i = (i / 16) * 16; |
1da177e4 | 1814 | limit = 16; |
b28a02de PE |
1815 | if (i + limit > size) |
1816 | limit = size - i; | |
1da177e4 LT |
1817 | dump_line(realobj, i, limit); |
1818 | i += 16; | |
1819 | lines++; | |
1820 | /* Limit to 5 lines */ | |
1821 | if (lines > 5) | |
1822 | break; | |
1823 | } | |
1824 | } | |
1825 | if (lines != 0) { | |
1826 | /* Print some data about the neighboring objects, if they | |
1827 | * exist: | |
1828 | */ | |
6ed5eb22 | 1829 | struct slab *slabp = virt_to_slab(objp); |
8fea4e96 | 1830 | unsigned int objnr; |
1da177e4 | 1831 | |
8fea4e96 | 1832 | objnr = obj_to_index(cachep, slabp, objp); |
1da177e4 | 1833 | if (objnr) { |
8fea4e96 | 1834 | objp = index_to_obj(cachep, slabp, objnr - 1); |
3dafccf2 | 1835 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 1836 | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", |
b28a02de | 1837 | realobj, size); |
1da177e4 LT |
1838 | print_objinfo(cachep, objp, 2); |
1839 | } | |
b28a02de | 1840 | if (objnr + 1 < cachep->num) { |
8fea4e96 | 1841 | objp = index_to_obj(cachep, slabp, objnr + 1); |
3dafccf2 | 1842 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 1843 | printk(KERN_ERR "Next obj: start=%p, len=%d\n", |
b28a02de | 1844 | realobj, size); |
1da177e4 LT |
1845 | print_objinfo(cachep, objp, 2); |
1846 | } | |
1847 | } | |
1848 | } | |
1849 | #endif | |
1850 | ||
12dd36fa MD |
1851 | #if DEBUG |
1852 | /** | |
911851e6 RD |
1853 | * slab_destroy_objs - destroy a slab and its objects |
1854 | * @cachep: cache pointer being destroyed | |
1855 | * @slabp: slab pointer being destroyed | |
1856 | * | |
1857 | * Call the registered destructor for each object in a slab that is being | |
1858 | * destroyed. | |
1da177e4 | 1859 | */ |
343e0d7a | 1860 | static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) |
1da177e4 | 1861 | { |
1da177e4 LT |
1862 | int i; |
1863 | for (i = 0; i < cachep->num; i++) { | |
8fea4e96 | 1864 | void *objp = index_to_obj(cachep, slabp, i); |
1da177e4 LT |
1865 | |
1866 | if (cachep->flags & SLAB_POISON) { | |
1867 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
a737b3e2 AM |
1868 | if (cachep->buffer_size % PAGE_SIZE == 0 && |
1869 | OFF_SLAB(cachep)) | |
b28a02de | 1870 | kernel_map_pages(virt_to_page(objp), |
a737b3e2 | 1871 | cachep->buffer_size / PAGE_SIZE, 1); |
1da177e4 LT |
1872 | else |
1873 | check_poison_obj(cachep, objp); | |
1874 | #else | |
1875 | check_poison_obj(cachep, objp); | |
1876 | #endif | |
1877 | } | |
1878 | if (cachep->flags & SLAB_RED_ZONE) { | |
1879 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
1880 | slab_error(cachep, "start of a freed object " | |
b28a02de | 1881 | "was overwritten"); |
1da177e4 LT |
1882 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
1883 | slab_error(cachep, "end of a freed object " | |
b28a02de | 1884 | "was overwritten"); |
1da177e4 LT |
1885 | } |
1886 | if (cachep->dtor && !(cachep->flags & SLAB_POISON)) | |
3dafccf2 | 1887 | (cachep->dtor) (objp + obj_offset(cachep), cachep, 0); |
1da177e4 | 1888 | } |
12dd36fa | 1889 | } |
1da177e4 | 1890 | #else |
343e0d7a | 1891 | static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) |
12dd36fa | 1892 | { |
1da177e4 LT |
1893 | if (cachep->dtor) { |
1894 | int i; | |
1895 | for (i = 0; i < cachep->num; i++) { | |
8fea4e96 | 1896 | void *objp = index_to_obj(cachep, slabp, i); |
b28a02de | 1897 | (cachep->dtor) (objp, cachep, 0); |
1da177e4 LT |
1898 | } |
1899 | } | |
12dd36fa | 1900 | } |
1da177e4 LT |
1901 | #endif |
1902 | ||
911851e6 RD |
1903 | /** |
1904 | * slab_destroy - destroy and release all objects in a slab | |
1905 | * @cachep: cache pointer being destroyed | |
1906 | * @slabp: slab pointer being destroyed | |
1907 | * | |
12dd36fa | 1908 | * Destroy all the objs in a slab, and release the mem back to the system. |
a737b3e2 AM |
1909 | * Before calling the slab must have been unlinked from the cache. The |
1910 | * cache-lock is not held/needed. | |
12dd36fa | 1911 | */ |
343e0d7a | 1912 | static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) |
12dd36fa MD |
1913 | { |
1914 | void *addr = slabp->s_mem - slabp->colouroff; | |
1915 | ||
1916 | slab_destroy_objs(cachep, slabp); | |
1da177e4 LT |
1917 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { |
1918 | struct slab_rcu *slab_rcu; | |
1919 | ||
b28a02de | 1920 | slab_rcu = (struct slab_rcu *)slabp; |
1da177e4 LT |
1921 | slab_rcu->cachep = cachep; |
1922 | slab_rcu->addr = addr; | |
1923 | call_rcu(&slab_rcu->head, kmem_rcu_free); | |
1924 | } else { | |
1925 | kmem_freepages(cachep, addr); | |
873623df IM |
1926 | if (OFF_SLAB(cachep)) |
1927 | kmem_cache_free(cachep->slabp_cache, slabp); | |
1da177e4 LT |
1928 | } |
1929 | } | |
1930 | ||
a737b3e2 AM |
1931 | /* |
1932 | * For setting up all the kmem_list3s for cache whose buffer_size is same as | |
1933 | * size of kmem_list3. | |
1934 | */ | |
343e0d7a | 1935 | static void set_up_list3s(struct kmem_cache *cachep, int index) |
e498be7d CL |
1936 | { |
1937 | int node; | |
1938 | ||
1939 | for_each_online_node(node) { | |
b28a02de | 1940 | cachep->nodelists[node] = &initkmem_list3[index + node]; |
e498be7d | 1941 | cachep->nodelists[node]->next_reap = jiffies + |
b28a02de PE |
1942 | REAPTIMEOUT_LIST3 + |
1943 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
e498be7d CL |
1944 | } |
1945 | } | |
1946 | ||
117f6eb1 CL |
1947 | static void __kmem_cache_destroy(struct kmem_cache *cachep) |
1948 | { | |
1949 | int i; | |
1950 | struct kmem_list3 *l3; | |
1951 | ||
1952 | for_each_online_cpu(i) | |
1953 | kfree(cachep->array[i]); | |
1954 | ||
1955 | /* NUMA: free the list3 structures */ | |
1956 | for_each_online_node(i) { | |
1957 | l3 = cachep->nodelists[i]; | |
1958 | if (l3) { | |
1959 | kfree(l3->shared); | |
1960 | free_alien_cache(l3->alien); | |
1961 | kfree(l3); | |
1962 | } | |
1963 | } | |
1964 | kmem_cache_free(&cache_cache, cachep); | |
1965 | } | |
1966 | ||
1967 | ||
4d268eba | 1968 | /** |
a70773dd RD |
1969 | * calculate_slab_order - calculate size (page order) of slabs |
1970 | * @cachep: pointer to the cache that is being created | |
1971 | * @size: size of objects to be created in this cache. | |
1972 | * @align: required alignment for the objects. | |
1973 | * @flags: slab allocation flags | |
1974 | * | |
1975 | * Also calculates the number of objects per slab. | |
4d268eba PE |
1976 | * |
1977 | * This could be made much more intelligent. For now, try to avoid using | |
1978 | * high order pages for slabs. When the gfp() functions are more friendly | |
1979 | * towards high-order requests, this should be changed. | |
1980 | */ | |
a737b3e2 | 1981 | static size_t calculate_slab_order(struct kmem_cache *cachep, |
ee13d785 | 1982 | size_t size, size_t align, unsigned long flags) |
4d268eba | 1983 | { |
b1ab41c4 | 1984 | unsigned long offslab_limit; |
4d268eba | 1985 | size_t left_over = 0; |
9888e6fa | 1986 | int gfporder; |
4d268eba | 1987 | |
a737b3e2 | 1988 | for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) { |
4d268eba PE |
1989 | unsigned int num; |
1990 | size_t remainder; | |
1991 | ||
9888e6fa | 1992 | cache_estimate(gfporder, size, align, flags, &remainder, &num); |
4d268eba PE |
1993 | if (!num) |
1994 | continue; | |
9888e6fa | 1995 | |
b1ab41c4 IM |
1996 | if (flags & CFLGS_OFF_SLAB) { |
1997 | /* | |
1998 | * Max number of objs-per-slab for caches which | |
1999 | * use off-slab slabs. Needed to avoid a possible | |
2000 | * looping condition in cache_grow(). | |
2001 | */ | |
2002 | offslab_limit = size - sizeof(struct slab); | |
2003 | offslab_limit /= sizeof(kmem_bufctl_t); | |
2004 | ||
2005 | if (num > offslab_limit) | |
2006 | break; | |
2007 | } | |
4d268eba | 2008 | |
9888e6fa | 2009 | /* Found something acceptable - save it away */ |
4d268eba | 2010 | cachep->num = num; |
9888e6fa | 2011 | cachep->gfporder = gfporder; |
4d268eba PE |
2012 | left_over = remainder; |
2013 | ||
f78bb8ad LT |
2014 | /* |
2015 | * A VFS-reclaimable slab tends to have most allocations | |
2016 | * as GFP_NOFS and we really don't want to have to be allocating | |
2017 | * higher-order pages when we are unable to shrink dcache. | |
2018 | */ | |
2019 | if (flags & SLAB_RECLAIM_ACCOUNT) | |
2020 | break; | |
2021 | ||
4d268eba PE |
2022 | /* |
2023 | * Large number of objects is good, but very large slabs are | |
2024 | * currently bad for the gfp()s. | |
2025 | */ | |
9888e6fa | 2026 | if (gfporder >= slab_break_gfp_order) |
4d268eba PE |
2027 | break; |
2028 | ||
9888e6fa LT |
2029 | /* |
2030 | * Acceptable internal fragmentation? | |
2031 | */ | |
a737b3e2 | 2032 | if (left_over * 8 <= (PAGE_SIZE << gfporder)) |
4d268eba PE |
2033 | break; |
2034 | } | |
2035 | return left_over; | |
2036 | } | |
2037 | ||
2ed3a4ef | 2038 | static int setup_cpu_cache(struct kmem_cache *cachep) |
f30cf7d1 | 2039 | { |
2ed3a4ef CL |
2040 | if (g_cpucache_up == FULL) |
2041 | return enable_cpucache(cachep); | |
2042 | ||
f30cf7d1 PE |
2043 | if (g_cpucache_up == NONE) { |
2044 | /* | |
2045 | * Note: the first kmem_cache_create must create the cache | |
2046 | * that's used by kmalloc(24), otherwise the creation of | |
2047 | * further caches will BUG(). | |
2048 | */ | |
2049 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | |
2050 | ||
2051 | /* | |
2052 | * If the cache that's used by kmalloc(sizeof(kmem_list3)) is | |
2053 | * the first cache, then we need to set up all its list3s, | |
2054 | * otherwise the creation of further caches will BUG(). | |
2055 | */ | |
2056 | set_up_list3s(cachep, SIZE_AC); | |
2057 | if (INDEX_AC == INDEX_L3) | |
2058 | g_cpucache_up = PARTIAL_L3; | |
2059 | else | |
2060 | g_cpucache_up = PARTIAL_AC; | |
2061 | } else { | |
2062 | cachep->array[smp_processor_id()] = | |
2063 | kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); | |
2064 | ||
2065 | if (g_cpucache_up == PARTIAL_AC) { | |
2066 | set_up_list3s(cachep, SIZE_L3); | |
2067 | g_cpucache_up = PARTIAL_L3; | |
2068 | } else { | |
2069 | int node; | |
2070 | for_each_online_node(node) { | |
2071 | cachep->nodelists[node] = | |
2072 | kmalloc_node(sizeof(struct kmem_list3), | |
2073 | GFP_KERNEL, node); | |
2074 | BUG_ON(!cachep->nodelists[node]); | |
2075 | kmem_list3_init(cachep->nodelists[node]); | |
2076 | } | |
2077 | } | |
2078 | } | |
2079 | cachep->nodelists[numa_node_id()]->next_reap = | |
2080 | jiffies + REAPTIMEOUT_LIST3 + | |
2081 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
2082 | ||
2083 | cpu_cache_get(cachep)->avail = 0; | |
2084 | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | |
2085 | cpu_cache_get(cachep)->batchcount = 1; | |
2086 | cpu_cache_get(cachep)->touched = 0; | |
2087 | cachep->batchcount = 1; | |
2088 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | |
2ed3a4ef | 2089 | return 0; |
f30cf7d1 PE |
2090 | } |
2091 | ||
1da177e4 LT |
2092 | /** |
2093 | * kmem_cache_create - Create a cache. | |
2094 | * @name: A string which is used in /proc/slabinfo to identify this cache. | |
2095 | * @size: The size of objects to be created in this cache. | |
2096 | * @align: The required alignment for the objects. | |
2097 | * @flags: SLAB flags | |
2098 | * @ctor: A constructor for the objects. | |
2099 | * @dtor: A destructor for the objects. | |
2100 | * | |
2101 | * Returns a ptr to the cache on success, NULL on failure. | |
2102 | * Cannot be called within a int, but can be interrupted. | |
2103 | * The @ctor is run when new pages are allocated by the cache | |
2104 | * and the @dtor is run before the pages are handed back. | |
2105 | * | |
2106 | * @name must be valid until the cache is destroyed. This implies that | |
a737b3e2 AM |
2107 | * the module calling this has to destroy the cache before getting unloaded. |
2108 | * | |
1da177e4 LT |
2109 | * The flags are |
2110 | * | |
2111 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
2112 | * to catch references to uninitialised memory. | |
2113 | * | |
2114 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
2115 | * for buffer overruns. | |
2116 | * | |
1da177e4 LT |
2117 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
2118 | * cacheline. This can be beneficial if you're counting cycles as closely | |
2119 | * as davem. | |
2120 | */ | |
343e0d7a | 2121 | struct kmem_cache * |
1da177e4 | 2122 | kmem_cache_create (const char *name, size_t size, size_t align, |
a737b3e2 AM |
2123 | unsigned long flags, |
2124 | void (*ctor)(void*, struct kmem_cache *, unsigned long), | |
343e0d7a | 2125 | void (*dtor)(void*, struct kmem_cache *, unsigned long)) |
1da177e4 LT |
2126 | { |
2127 | size_t left_over, slab_size, ralign; | |
7a7c381d | 2128 | struct kmem_cache *cachep = NULL, *pc; |
1da177e4 LT |
2129 | |
2130 | /* | |
2131 | * Sanity checks... these are all serious usage bugs. | |
2132 | */ | |
a737b3e2 | 2133 | if (!name || in_interrupt() || (size < BYTES_PER_WORD) || |
b28a02de | 2134 | (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) { |
a737b3e2 AM |
2135 | printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__, |
2136 | name); | |
b28a02de PE |
2137 | BUG(); |
2138 | } | |
1da177e4 | 2139 | |
f0188f47 | 2140 | /* |
8f5be20b RT |
2141 | * We use cache_chain_mutex to ensure a consistent view of |
2142 | * cpu_online_map as well. Please see cpuup_callback | |
f0188f47 | 2143 | */ |
fc0abb14 | 2144 | mutex_lock(&cache_chain_mutex); |
4f12bb4f | 2145 | |
7a7c381d | 2146 | list_for_each_entry(pc, &cache_chain, next) { |
4f12bb4f AM |
2147 | char tmp; |
2148 | int res; | |
2149 | ||
2150 | /* | |
2151 | * This happens when the module gets unloaded and doesn't | |
2152 | * destroy its slab cache and no-one else reuses the vmalloc | |
2153 | * area of the module. Print a warning. | |
2154 | */ | |
138ae663 | 2155 | res = probe_kernel_address(pc->name, tmp); |
4f12bb4f AM |
2156 | if (res) { |
2157 | printk("SLAB: cache with size %d has lost its name\n", | |
3dafccf2 | 2158 | pc->buffer_size); |
4f12bb4f AM |
2159 | continue; |
2160 | } | |
2161 | ||
b28a02de | 2162 | if (!strcmp(pc->name, name)) { |
4f12bb4f AM |
2163 | printk("kmem_cache_create: duplicate cache %s\n", name); |
2164 | dump_stack(); | |
2165 | goto oops; | |
2166 | } | |
2167 | } | |
2168 | ||
1da177e4 LT |
2169 | #if DEBUG |
2170 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ | |
2171 | if ((flags & SLAB_DEBUG_INITIAL) && !ctor) { | |
2172 | /* No constructor, but inital state check requested */ | |
2173 | printk(KERN_ERR "%s: No con, but init state check " | |
b28a02de | 2174 | "requested - %s\n", __FUNCTION__, name); |
1da177e4 LT |
2175 | flags &= ~SLAB_DEBUG_INITIAL; |
2176 | } | |
1da177e4 LT |
2177 | #if FORCED_DEBUG |
2178 | /* | |
2179 | * Enable redzoning and last user accounting, except for caches with | |
2180 | * large objects, if the increased size would increase the object size | |
2181 | * above the next power of two: caches with object sizes just above a | |
2182 | * power of two have a significant amount of internal fragmentation. | |
2183 | */ | |
a737b3e2 | 2184 | if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD)) |
b28a02de | 2185 | flags |= SLAB_RED_ZONE | SLAB_STORE_USER; |
1da177e4 LT |
2186 | if (!(flags & SLAB_DESTROY_BY_RCU)) |
2187 | flags |= SLAB_POISON; | |
2188 | #endif | |
2189 | if (flags & SLAB_DESTROY_BY_RCU) | |
2190 | BUG_ON(flags & SLAB_POISON); | |
2191 | #endif | |
2192 | if (flags & SLAB_DESTROY_BY_RCU) | |
2193 | BUG_ON(dtor); | |
2194 | ||
2195 | /* | |
a737b3e2 AM |
2196 | * Always checks flags, a caller might be expecting debug support which |
2197 | * isn't available. | |
1da177e4 | 2198 | */ |
40094fa6 | 2199 | BUG_ON(flags & ~CREATE_MASK); |
1da177e4 | 2200 | |
a737b3e2 AM |
2201 | /* |
2202 | * Check that size is in terms of words. This is needed to avoid | |
1da177e4 LT |
2203 | * unaligned accesses for some archs when redzoning is used, and makes |
2204 | * sure any on-slab bufctl's are also correctly aligned. | |
2205 | */ | |
b28a02de PE |
2206 | if (size & (BYTES_PER_WORD - 1)) { |
2207 | size += (BYTES_PER_WORD - 1); | |
2208 | size &= ~(BYTES_PER_WORD - 1); | |
1da177e4 LT |
2209 | } |
2210 | ||
a737b3e2 AM |
2211 | /* calculate the final buffer alignment: */ |
2212 | ||
1da177e4 LT |
2213 | /* 1) arch recommendation: can be overridden for debug */ |
2214 | if (flags & SLAB_HWCACHE_ALIGN) { | |
a737b3e2 AM |
2215 | /* |
2216 | * Default alignment: as specified by the arch code. Except if | |
2217 | * an object is really small, then squeeze multiple objects into | |
2218 | * one cacheline. | |
1da177e4 LT |
2219 | */ |
2220 | ralign = cache_line_size(); | |
b28a02de | 2221 | while (size <= ralign / 2) |
1da177e4 LT |
2222 | ralign /= 2; |
2223 | } else { | |
2224 | ralign = BYTES_PER_WORD; | |
2225 | } | |
ca5f9703 PE |
2226 | |
2227 | /* | |
2228 | * Redzoning and user store require word alignment. Note this will be | |
2229 | * overridden by architecture or caller mandated alignment if either | |
2230 | * is greater than BYTES_PER_WORD. | |
2231 | */ | |
2232 | if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER) | |
2233 | ralign = BYTES_PER_WORD; | |
2234 | ||
a44b56d3 | 2235 | /* 2) arch mandated alignment */ |
1da177e4 LT |
2236 | if (ralign < ARCH_SLAB_MINALIGN) { |
2237 | ralign = ARCH_SLAB_MINALIGN; | |
1da177e4 | 2238 | } |
a44b56d3 | 2239 | /* 3) caller mandated alignment */ |
1da177e4 LT |
2240 | if (ralign < align) { |
2241 | ralign = align; | |
1da177e4 | 2242 | } |
a44b56d3 KH |
2243 | /* disable debug if necessary */ |
2244 | if (ralign > BYTES_PER_WORD) | |
2245 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | |
a737b3e2 | 2246 | /* |
ca5f9703 | 2247 | * 4) Store it. |
1da177e4 LT |
2248 | */ |
2249 | align = ralign; | |
2250 | ||
2251 | /* Get cache's description obj. */ | |
e94b1766 | 2252 | cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL); |
1da177e4 | 2253 | if (!cachep) |
4f12bb4f | 2254 | goto oops; |
1da177e4 LT |
2255 | |
2256 | #if DEBUG | |
3dafccf2 | 2257 | cachep->obj_size = size; |
1da177e4 | 2258 | |
ca5f9703 PE |
2259 | /* |
2260 | * Both debugging options require word-alignment which is calculated | |
2261 | * into align above. | |
2262 | */ | |
1da177e4 | 2263 | if (flags & SLAB_RED_ZONE) { |
1da177e4 | 2264 | /* add space for red zone words */ |
3dafccf2 | 2265 | cachep->obj_offset += BYTES_PER_WORD; |
b28a02de | 2266 | size += 2 * BYTES_PER_WORD; |
1da177e4 LT |
2267 | } |
2268 | if (flags & SLAB_STORE_USER) { | |
ca5f9703 PE |
2269 | /* user store requires one word storage behind the end of |
2270 | * the real object. | |
1da177e4 | 2271 | */ |
1da177e4 LT |
2272 | size += BYTES_PER_WORD; |
2273 | } | |
2274 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | |
b28a02de | 2275 | if (size >= malloc_sizes[INDEX_L3 + 1].cs_size |
3dafccf2 MS |
2276 | && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) { |
2277 | cachep->obj_offset += PAGE_SIZE - size; | |
1da177e4 LT |
2278 | size = PAGE_SIZE; |
2279 | } | |
2280 | #endif | |
2281 | #endif | |
2282 | ||
e0a42726 IM |
2283 | /* |
2284 | * Determine if the slab management is 'on' or 'off' slab. | |
2285 | * (bootstrapping cannot cope with offslab caches so don't do | |
2286 | * it too early on.) | |
2287 | */ | |
2288 | if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init) | |
1da177e4 LT |
2289 | /* |
2290 | * Size is large, assume best to place the slab management obj | |
2291 | * off-slab (should allow better packing of objs). | |
2292 | */ | |
2293 | flags |= CFLGS_OFF_SLAB; | |
2294 | ||
2295 | size = ALIGN(size, align); | |
2296 | ||
f78bb8ad | 2297 | left_over = calculate_slab_order(cachep, size, align, flags); |
1da177e4 LT |
2298 | |
2299 | if (!cachep->num) { | |
2300 | printk("kmem_cache_create: couldn't create cache %s.\n", name); | |
2301 | kmem_cache_free(&cache_cache, cachep); | |
2302 | cachep = NULL; | |
4f12bb4f | 2303 | goto oops; |
1da177e4 | 2304 | } |
b28a02de PE |
2305 | slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) |
2306 | + sizeof(struct slab), align); | |
1da177e4 LT |
2307 | |
2308 | /* | |
2309 | * If the slab has been placed off-slab, and we have enough space then | |
2310 | * move it on-slab. This is at the expense of any extra colouring. | |
2311 | */ | |
2312 | if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { | |
2313 | flags &= ~CFLGS_OFF_SLAB; | |
2314 | left_over -= slab_size; | |
2315 | } | |
2316 | ||
2317 | if (flags & CFLGS_OFF_SLAB) { | |
2318 | /* really off slab. No need for manual alignment */ | |
b28a02de PE |
2319 | slab_size = |
2320 | cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); | |
1da177e4 LT |
2321 | } |
2322 | ||
2323 | cachep->colour_off = cache_line_size(); | |
2324 | /* Offset must be a multiple of the alignment. */ | |
2325 | if (cachep->colour_off < align) | |
2326 | cachep->colour_off = align; | |
b28a02de | 2327 | cachep->colour = left_over / cachep->colour_off; |
1da177e4 LT |
2328 | cachep->slab_size = slab_size; |
2329 | cachep->flags = flags; | |
2330 | cachep->gfpflags = 0; | |
4b51d669 | 2331 | if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) |
1da177e4 | 2332 | cachep->gfpflags |= GFP_DMA; |
3dafccf2 | 2333 | cachep->buffer_size = size; |
6a2d7a95 | 2334 | cachep->reciprocal_buffer_size = reciprocal_value(size); |
1da177e4 | 2335 | |
e5ac9c5a | 2336 | if (flags & CFLGS_OFF_SLAB) { |
b2d55073 | 2337 | cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); |
e5ac9c5a RT |
2338 | /* |
2339 | * This is a possibility for one of the malloc_sizes caches. | |
2340 | * But since we go off slab only for object size greater than | |
2341 | * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, | |
2342 | * this should not happen at all. | |
2343 | * But leave a BUG_ON for some lucky dude. | |
2344 | */ | |
2345 | BUG_ON(!cachep->slabp_cache); | |
2346 | } | |
1da177e4 LT |
2347 | cachep->ctor = ctor; |
2348 | cachep->dtor = dtor; | |
2349 | cachep->name = name; | |
2350 | ||
2ed3a4ef CL |
2351 | if (setup_cpu_cache(cachep)) { |
2352 | __kmem_cache_destroy(cachep); | |
2353 | cachep = NULL; | |
2354 | goto oops; | |
2355 | } | |
1da177e4 | 2356 | |
1da177e4 LT |
2357 | /* cache setup completed, link it into the list */ |
2358 | list_add(&cachep->next, &cache_chain); | |
a737b3e2 | 2359 | oops: |
1da177e4 LT |
2360 | if (!cachep && (flags & SLAB_PANIC)) |
2361 | panic("kmem_cache_create(): failed to create slab `%s'\n", | |
b28a02de | 2362 | name); |
fc0abb14 | 2363 | mutex_unlock(&cache_chain_mutex); |
1da177e4 LT |
2364 | return cachep; |
2365 | } | |
2366 | EXPORT_SYMBOL(kmem_cache_create); | |
2367 | ||
2368 | #if DEBUG | |
2369 | static void check_irq_off(void) | |
2370 | { | |
2371 | BUG_ON(!irqs_disabled()); | |
2372 | } | |
2373 | ||
2374 | static void check_irq_on(void) | |
2375 | { | |
2376 | BUG_ON(irqs_disabled()); | |
2377 | } | |
2378 | ||
343e0d7a | 2379 | static void check_spinlock_acquired(struct kmem_cache *cachep) |
1da177e4 LT |
2380 | { |
2381 | #ifdef CONFIG_SMP | |
2382 | check_irq_off(); | |
e498be7d | 2383 | assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock); |
1da177e4 LT |
2384 | #endif |
2385 | } | |
e498be7d | 2386 | |
343e0d7a | 2387 | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) |
e498be7d CL |
2388 | { |
2389 | #ifdef CONFIG_SMP | |
2390 | check_irq_off(); | |
2391 | assert_spin_locked(&cachep->nodelists[node]->list_lock); | |
2392 | #endif | |
2393 | } | |
2394 | ||
1da177e4 LT |
2395 | #else |
2396 | #define check_irq_off() do { } while(0) | |
2397 | #define check_irq_on() do { } while(0) | |
2398 | #define check_spinlock_acquired(x) do { } while(0) | |
e498be7d | 2399 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
1da177e4 LT |
2400 | #endif |
2401 | ||
aab2207c CL |
2402 | static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, |
2403 | struct array_cache *ac, | |
2404 | int force, int node); | |
2405 | ||
1da177e4 LT |
2406 | static void do_drain(void *arg) |
2407 | { | |
a737b3e2 | 2408 | struct kmem_cache *cachep = arg; |
1da177e4 | 2409 | struct array_cache *ac; |
ff69416e | 2410 | int node = numa_node_id(); |
1da177e4 LT |
2411 | |
2412 | check_irq_off(); | |
9a2dba4b | 2413 | ac = cpu_cache_get(cachep); |
ff69416e CL |
2414 | spin_lock(&cachep->nodelists[node]->list_lock); |
2415 | free_block(cachep, ac->entry, ac->avail, node); | |
2416 | spin_unlock(&cachep->nodelists[node]->list_lock); | |
1da177e4 LT |
2417 | ac->avail = 0; |
2418 | } | |
2419 | ||
343e0d7a | 2420 | static void drain_cpu_caches(struct kmem_cache *cachep) |
1da177e4 | 2421 | { |
e498be7d CL |
2422 | struct kmem_list3 *l3; |
2423 | int node; | |
2424 | ||
a07fa394 | 2425 | on_each_cpu(do_drain, cachep, 1, 1); |
1da177e4 | 2426 | check_irq_on(); |
b28a02de | 2427 | for_each_online_node(node) { |
e498be7d | 2428 | l3 = cachep->nodelists[node]; |
a4523a8b RD |
2429 | if (l3 && l3->alien) |
2430 | drain_alien_cache(cachep, l3->alien); | |
2431 | } | |
2432 | ||
2433 | for_each_online_node(node) { | |
2434 | l3 = cachep->nodelists[node]; | |
2435 | if (l3) | |
aab2207c | 2436 | drain_array(cachep, l3, l3->shared, 1, node); |
e498be7d | 2437 | } |
1da177e4 LT |
2438 | } |
2439 | ||
ed11d9eb CL |
2440 | /* |
2441 | * Remove slabs from the list of free slabs. | |
2442 | * Specify the number of slabs to drain in tofree. | |
2443 | * | |
2444 | * Returns the actual number of slabs released. | |
2445 | */ | |
2446 | static int drain_freelist(struct kmem_cache *cache, | |
2447 | struct kmem_list3 *l3, int tofree) | |
1da177e4 | 2448 | { |
ed11d9eb CL |
2449 | struct list_head *p; |
2450 | int nr_freed; | |
1da177e4 | 2451 | struct slab *slabp; |
1da177e4 | 2452 | |
ed11d9eb CL |
2453 | nr_freed = 0; |
2454 | while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { | |
1da177e4 | 2455 | |
ed11d9eb | 2456 | spin_lock_irq(&l3->list_lock); |
e498be7d | 2457 | p = l3->slabs_free.prev; |
ed11d9eb CL |
2458 | if (p == &l3->slabs_free) { |
2459 | spin_unlock_irq(&l3->list_lock); | |
2460 | goto out; | |
2461 | } | |
1da177e4 | 2462 | |
ed11d9eb | 2463 | slabp = list_entry(p, struct slab, list); |
1da177e4 | 2464 | #if DEBUG |
40094fa6 | 2465 | BUG_ON(slabp->inuse); |
1da177e4 LT |
2466 | #endif |
2467 | list_del(&slabp->list); | |
ed11d9eb CL |
2468 | /* |
2469 | * Safe to drop the lock. The slab is no longer linked | |
2470 | * to the cache. | |
2471 | */ | |
2472 | l3->free_objects -= cache->num; | |
e498be7d | 2473 | spin_unlock_irq(&l3->list_lock); |
ed11d9eb CL |
2474 | slab_destroy(cache, slabp); |
2475 | nr_freed++; | |
1da177e4 | 2476 | } |
ed11d9eb CL |
2477 | out: |
2478 | return nr_freed; | |
1da177e4 LT |
2479 | } |
2480 | ||
8f5be20b | 2481 | /* Called with cache_chain_mutex held to protect against cpu hotplug */ |
343e0d7a | 2482 | static int __cache_shrink(struct kmem_cache *cachep) |
e498be7d CL |
2483 | { |
2484 | int ret = 0, i = 0; | |
2485 | struct kmem_list3 *l3; | |
2486 | ||
2487 | drain_cpu_caches(cachep); | |
2488 | ||
2489 | check_irq_on(); | |
2490 | for_each_online_node(i) { | |
2491 | l3 = cachep->nodelists[i]; | |
ed11d9eb CL |
2492 | if (!l3) |
2493 | continue; | |
2494 | ||
2495 | drain_freelist(cachep, l3, l3->free_objects); | |
2496 | ||
2497 | ret += !list_empty(&l3->slabs_full) || | |
2498 | !list_empty(&l3->slabs_partial); | |
e498be7d CL |
2499 | } |
2500 | return (ret ? 1 : 0); | |
2501 | } | |
2502 | ||
1da177e4 LT |
2503 | /** |
2504 | * kmem_cache_shrink - Shrink a cache. | |
2505 | * @cachep: The cache to shrink. | |
2506 | * | |
2507 | * Releases as many slabs as possible for a cache. | |
2508 | * To help debugging, a zero exit status indicates all slabs were released. | |
2509 | */ | |
343e0d7a | 2510 | int kmem_cache_shrink(struct kmem_cache *cachep) |
1da177e4 | 2511 | { |
8f5be20b | 2512 | int ret; |
40094fa6 | 2513 | BUG_ON(!cachep || in_interrupt()); |
1da177e4 | 2514 | |
8f5be20b RT |
2515 | mutex_lock(&cache_chain_mutex); |
2516 | ret = __cache_shrink(cachep); | |
2517 | mutex_unlock(&cache_chain_mutex); | |
2518 | return ret; | |
1da177e4 LT |
2519 | } |
2520 | EXPORT_SYMBOL(kmem_cache_shrink); | |
2521 | ||
2522 | /** | |
2523 | * kmem_cache_destroy - delete a cache | |
2524 | * @cachep: the cache to destroy | |
2525 | * | |
72fd4a35 | 2526 | * Remove a &struct kmem_cache object from the slab cache. |
1da177e4 LT |
2527 | * |
2528 | * It is expected this function will be called by a module when it is | |
2529 | * unloaded. This will remove the cache completely, and avoid a duplicate | |
2530 | * cache being allocated each time a module is loaded and unloaded, if the | |
2531 | * module doesn't have persistent in-kernel storage across loads and unloads. | |
2532 | * | |
2533 | * The cache must be empty before calling this function. | |
2534 | * | |
2535 | * The caller must guarantee that noone will allocate memory from the cache | |
2536 | * during the kmem_cache_destroy(). | |
2537 | */ | |
133d205a | 2538 | void kmem_cache_destroy(struct kmem_cache *cachep) |
1da177e4 | 2539 | { |
40094fa6 | 2540 | BUG_ON(!cachep || in_interrupt()); |
1da177e4 | 2541 | |
1da177e4 | 2542 | /* Find the cache in the chain of caches. */ |
fc0abb14 | 2543 | mutex_lock(&cache_chain_mutex); |
1da177e4 LT |
2544 | /* |
2545 | * the chain is never empty, cache_cache is never destroyed | |
2546 | */ | |
2547 | list_del(&cachep->next); | |
1da177e4 LT |
2548 | if (__cache_shrink(cachep)) { |
2549 | slab_error(cachep, "Can't free all objects"); | |
b28a02de | 2550 | list_add(&cachep->next, &cache_chain); |
fc0abb14 | 2551 | mutex_unlock(&cache_chain_mutex); |
133d205a | 2552 | return; |
1da177e4 LT |
2553 | } |
2554 | ||
2555 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) | |
fbd568a3 | 2556 | synchronize_rcu(); |
1da177e4 | 2557 | |
117f6eb1 | 2558 | __kmem_cache_destroy(cachep); |
8f5be20b | 2559 | mutex_unlock(&cache_chain_mutex); |
1da177e4 LT |
2560 | } |
2561 | EXPORT_SYMBOL(kmem_cache_destroy); | |
2562 | ||
e5ac9c5a RT |
2563 | /* |
2564 | * Get the memory for a slab management obj. | |
2565 | * For a slab cache when the slab descriptor is off-slab, slab descriptors | |
2566 | * always come from malloc_sizes caches. The slab descriptor cannot | |
2567 | * come from the same cache which is getting created because, | |
2568 | * when we are searching for an appropriate cache for these | |
2569 | * descriptors in kmem_cache_create, we search through the malloc_sizes array. | |
2570 | * If we are creating a malloc_sizes cache here it would not be visible to | |
2571 | * kmem_find_general_cachep till the initialization is complete. | |
2572 | * Hence we cannot have slabp_cache same as the original cache. | |
2573 | */ | |
343e0d7a | 2574 | static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, |
5b74ada7 RT |
2575 | int colour_off, gfp_t local_flags, |
2576 | int nodeid) | |
1da177e4 LT |
2577 | { |
2578 | struct slab *slabp; | |
b28a02de | 2579 | |
1da177e4 LT |
2580 | if (OFF_SLAB(cachep)) { |
2581 | /* Slab management obj is off-slab. */ | |
5b74ada7 | 2582 | slabp = kmem_cache_alloc_node(cachep->slabp_cache, |
3c517a61 | 2583 | local_flags & ~GFP_THISNODE, nodeid); |
1da177e4 LT |
2584 | if (!slabp) |
2585 | return NULL; | |
2586 | } else { | |
b28a02de | 2587 | slabp = objp + colour_off; |
1da177e4 LT |
2588 | colour_off += cachep->slab_size; |
2589 | } | |
2590 | slabp->inuse = 0; | |
2591 | slabp->colouroff = colour_off; | |
b28a02de | 2592 | slabp->s_mem = objp + colour_off; |
5b74ada7 | 2593 | slabp->nodeid = nodeid; |
1da177e4 LT |
2594 | return slabp; |
2595 | } | |
2596 | ||
2597 | static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) | |
2598 | { | |
b28a02de | 2599 | return (kmem_bufctl_t *) (slabp + 1); |
1da177e4 LT |
2600 | } |
2601 | ||
343e0d7a | 2602 | static void cache_init_objs(struct kmem_cache *cachep, |
b28a02de | 2603 | struct slab *slabp, unsigned long ctor_flags) |
1da177e4 LT |
2604 | { |
2605 | int i; | |
2606 | ||
2607 | for (i = 0; i < cachep->num; i++) { | |
8fea4e96 | 2608 | void *objp = index_to_obj(cachep, slabp, i); |
1da177e4 LT |
2609 | #if DEBUG |
2610 | /* need to poison the objs? */ | |
2611 | if (cachep->flags & SLAB_POISON) | |
2612 | poison_obj(cachep, objp, POISON_FREE); | |
2613 | if (cachep->flags & SLAB_STORE_USER) | |
2614 | *dbg_userword(cachep, objp) = NULL; | |
2615 | ||
2616 | if (cachep->flags & SLAB_RED_ZONE) { | |
2617 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2618 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2619 | } | |
2620 | /* | |
a737b3e2 AM |
2621 | * Constructors are not allowed to allocate memory from the same |
2622 | * cache which they are a constructor for. Otherwise, deadlock. | |
2623 | * They must also be threaded. | |
1da177e4 LT |
2624 | */ |
2625 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | |
3dafccf2 | 2626 | cachep->ctor(objp + obj_offset(cachep), cachep, |
b28a02de | 2627 | ctor_flags); |
1da177e4 LT |
2628 | |
2629 | if (cachep->flags & SLAB_RED_ZONE) { | |
2630 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
2631 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2632 | " end of an object"); |
1da177e4 LT |
2633 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
2634 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2635 | " start of an object"); |
1da177e4 | 2636 | } |
a737b3e2 AM |
2637 | if ((cachep->buffer_size % PAGE_SIZE) == 0 && |
2638 | OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) | |
b28a02de | 2639 | kernel_map_pages(virt_to_page(objp), |
3dafccf2 | 2640 | cachep->buffer_size / PAGE_SIZE, 0); |
1da177e4 LT |
2641 | #else |
2642 | if (cachep->ctor) | |
2643 | cachep->ctor(objp, cachep, ctor_flags); | |
2644 | #endif | |
b28a02de | 2645 | slab_bufctl(slabp)[i] = i + 1; |
1da177e4 | 2646 | } |
b28a02de | 2647 | slab_bufctl(slabp)[i - 1] = BUFCTL_END; |
1da177e4 LT |
2648 | slabp->free = 0; |
2649 | } | |
2650 | ||
343e0d7a | 2651 | static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 2652 | { |
4b51d669 CL |
2653 | if (CONFIG_ZONE_DMA_FLAG) { |
2654 | if (flags & GFP_DMA) | |
2655 | BUG_ON(!(cachep->gfpflags & GFP_DMA)); | |
2656 | else | |
2657 | BUG_ON(cachep->gfpflags & GFP_DMA); | |
2658 | } | |
1da177e4 LT |
2659 | } |
2660 | ||
a737b3e2 AM |
2661 | static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, |
2662 | int nodeid) | |
78d382d7 | 2663 | { |
8fea4e96 | 2664 | void *objp = index_to_obj(cachep, slabp, slabp->free); |
78d382d7 MD |
2665 | kmem_bufctl_t next; |
2666 | ||
2667 | slabp->inuse++; | |
2668 | next = slab_bufctl(slabp)[slabp->free]; | |
2669 | #if DEBUG | |
2670 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | |
2671 | WARN_ON(slabp->nodeid != nodeid); | |
2672 | #endif | |
2673 | slabp->free = next; | |
2674 | ||
2675 | return objp; | |
2676 | } | |
2677 | ||
a737b3e2 AM |
2678 | static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, |
2679 | void *objp, int nodeid) | |
78d382d7 | 2680 | { |
8fea4e96 | 2681 | unsigned int objnr = obj_to_index(cachep, slabp, objp); |
78d382d7 MD |
2682 | |
2683 | #if DEBUG | |
2684 | /* Verify that the slab belongs to the intended node */ | |
2685 | WARN_ON(slabp->nodeid != nodeid); | |
2686 | ||
871751e2 | 2687 | if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { |
78d382d7 | 2688 | printk(KERN_ERR "slab: double free detected in cache " |
a737b3e2 | 2689 | "'%s', objp %p\n", cachep->name, objp); |
78d382d7 MD |
2690 | BUG(); |
2691 | } | |
2692 | #endif | |
2693 | slab_bufctl(slabp)[objnr] = slabp->free; | |
2694 | slabp->free = objnr; | |
2695 | slabp->inuse--; | |
2696 | } | |
2697 | ||
4776874f PE |
2698 | /* |
2699 | * Map pages beginning at addr to the given cache and slab. This is required | |
2700 | * for the slab allocator to be able to lookup the cache and slab of a | |
2701 | * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging. | |
2702 | */ | |
2703 | static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, | |
2704 | void *addr) | |
1da177e4 | 2705 | { |
4776874f | 2706 | int nr_pages; |
1da177e4 LT |
2707 | struct page *page; |
2708 | ||
4776874f | 2709 | page = virt_to_page(addr); |
84097518 | 2710 | |
4776874f | 2711 | nr_pages = 1; |
84097518 | 2712 | if (likely(!PageCompound(page))) |
4776874f PE |
2713 | nr_pages <<= cache->gfporder; |
2714 | ||
1da177e4 | 2715 | do { |
4776874f PE |
2716 | page_set_cache(page, cache); |
2717 | page_set_slab(page, slab); | |
1da177e4 | 2718 | page++; |
4776874f | 2719 | } while (--nr_pages); |
1da177e4 LT |
2720 | } |
2721 | ||
2722 | /* | |
2723 | * Grow (by 1) the number of slabs within a cache. This is called by | |
2724 | * kmem_cache_alloc() when there are no active objs left in a cache. | |
2725 | */ | |
3c517a61 CL |
2726 | static int cache_grow(struct kmem_cache *cachep, |
2727 | gfp_t flags, int nodeid, void *objp) | |
1da177e4 | 2728 | { |
b28a02de | 2729 | struct slab *slabp; |
b28a02de PE |
2730 | size_t offset; |
2731 | gfp_t local_flags; | |
2732 | unsigned long ctor_flags; | |
e498be7d | 2733 | struct kmem_list3 *l3; |
1da177e4 | 2734 | |
a737b3e2 AM |
2735 | /* |
2736 | * Be lazy and only check for valid flags here, keeping it out of the | |
2737 | * critical path in kmem_cache_alloc(). | |
1da177e4 | 2738 | */ |
441e143e | 2739 | BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW)); |
6e0eaa4b | 2740 | if (flags & __GFP_NO_GROW) |
1da177e4 LT |
2741 | return 0; |
2742 | ||
2743 | ctor_flags = SLAB_CTOR_CONSTRUCTOR; | |
a06d72c1 | 2744 | local_flags = (flags & GFP_LEVEL_MASK); |
1da177e4 LT |
2745 | if (!(local_flags & __GFP_WAIT)) |
2746 | /* | |
2747 | * Not allowed to sleep. Need to tell a constructor about | |
2748 | * this - it might need to know... | |
2749 | */ | |
2750 | ctor_flags |= SLAB_CTOR_ATOMIC; | |
2751 | ||
2e1217cf | 2752 | /* Take the l3 list lock to change the colour_next on this node */ |
1da177e4 | 2753 | check_irq_off(); |
2e1217cf RT |
2754 | l3 = cachep->nodelists[nodeid]; |
2755 | spin_lock(&l3->list_lock); | |
1da177e4 LT |
2756 | |
2757 | /* Get colour for the slab, and cal the next value. */ | |
2e1217cf RT |
2758 | offset = l3->colour_next; |
2759 | l3->colour_next++; | |
2760 | if (l3->colour_next >= cachep->colour) | |
2761 | l3->colour_next = 0; | |
2762 | spin_unlock(&l3->list_lock); | |
1da177e4 | 2763 | |
2e1217cf | 2764 | offset *= cachep->colour_off; |
1da177e4 LT |
2765 | |
2766 | if (local_flags & __GFP_WAIT) | |
2767 | local_irq_enable(); | |
2768 | ||
2769 | /* | |
2770 | * The test for missing atomic flag is performed here, rather than | |
2771 | * the more obvious place, simply to reduce the critical path length | |
2772 | * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | |
2773 | * will eventually be caught here (where it matters). | |
2774 | */ | |
2775 | kmem_flagcheck(cachep, flags); | |
2776 | ||
a737b3e2 AM |
2777 | /* |
2778 | * Get mem for the objs. Attempt to allocate a physical page from | |
2779 | * 'nodeid'. | |
e498be7d | 2780 | */ |
3c517a61 CL |
2781 | if (!objp) |
2782 | objp = kmem_getpages(cachep, flags, nodeid); | |
a737b3e2 | 2783 | if (!objp) |
1da177e4 LT |
2784 | goto failed; |
2785 | ||
2786 | /* Get slab management. */ | |
3c517a61 CL |
2787 | slabp = alloc_slabmgmt(cachep, objp, offset, |
2788 | local_flags & ~GFP_THISNODE, nodeid); | |
a737b3e2 | 2789 | if (!slabp) |
1da177e4 LT |
2790 | goto opps1; |
2791 | ||
e498be7d | 2792 | slabp->nodeid = nodeid; |
4776874f | 2793 | slab_map_pages(cachep, slabp, objp); |
1da177e4 LT |
2794 | |
2795 | cache_init_objs(cachep, slabp, ctor_flags); | |
2796 | ||
2797 | if (local_flags & __GFP_WAIT) | |
2798 | local_irq_disable(); | |
2799 | check_irq_off(); | |
e498be7d | 2800 | spin_lock(&l3->list_lock); |
1da177e4 LT |
2801 | |
2802 | /* Make slab active. */ | |
e498be7d | 2803 | list_add_tail(&slabp->list, &(l3->slabs_free)); |
1da177e4 | 2804 | STATS_INC_GROWN(cachep); |
e498be7d CL |
2805 | l3->free_objects += cachep->num; |
2806 | spin_unlock(&l3->list_lock); | |
1da177e4 | 2807 | return 1; |
a737b3e2 | 2808 | opps1: |
1da177e4 | 2809 | kmem_freepages(cachep, objp); |
a737b3e2 | 2810 | failed: |
1da177e4 LT |
2811 | if (local_flags & __GFP_WAIT) |
2812 | local_irq_disable(); | |
2813 | return 0; | |
2814 | } | |
2815 | ||
2816 | #if DEBUG | |
2817 | ||
2818 | /* | |
2819 | * Perform extra freeing checks: | |
2820 | * - detect bad pointers. | |
2821 | * - POISON/RED_ZONE checking | |
2822 | * - destructor calls, for caches with POISON+dtor | |
2823 | */ | |
2824 | static void kfree_debugcheck(const void *objp) | |
2825 | { | |
1da177e4 LT |
2826 | if (!virt_addr_valid(objp)) { |
2827 | printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | |
b28a02de PE |
2828 | (unsigned long)objp); |
2829 | BUG(); | |
1da177e4 | 2830 | } |
1da177e4 LT |
2831 | } |
2832 | ||
58ce1fd5 PE |
2833 | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) |
2834 | { | |
2835 | unsigned long redzone1, redzone2; | |
2836 | ||
2837 | redzone1 = *dbg_redzone1(cache, obj); | |
2838 | redzone2 = *dbg_redzone2(cache, obj); | |
2839 | ||
2840 | /* | |
2841 | * Redzone is ok. | |
2842 | */ | |
2843 | if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | |
2844 | return; | |
2845 | ||
2846 | if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | |
2847 | slab_error(cache, "double free detected"); | |
2848 | else | |
2849 | slab_error(cache, "memory outside object was overwritten"); | |
2850 | ||
2851 | printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n", | |
2852 | obj, redzone1, redzone2); | |
2853 | } | |
2854 | ||
343e0d7a | 2855 | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, |
b28a02de | 2856 | void *caller) |
1da177e4 LT |
2857 | { |
2858 | struct page *page; | |
2859 | unsigned int objnr; | |
2860 | struct slab *slabp; | |
2861 | ||
3dafccf2 | 2862 | objp -= obj_offset(cachep); |
1da177e4 LT |
2863 | kfree_debugcheck(objp); |
2864 | page = virt_to_page(objp); | |
2865 | ||
065d41cb | 2866 | slabp = page_get_slab(page); |
1da177e4 LT |
2867 | |
2868 | if (cachep->flags & SLAB_RED_ZONE) { | |
58ce1fd5 | 2869 | verify_redzone_free(cachep, objp); |
1da177e4 LT |
2870 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
2871 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2872 | } | |
2873 | if (cachep->flags & SLAB_STORE_USER) | |
2874 | *dbg_userword(cachep, objp) = caller; | |
2875 | ||
8fea4e96 | 2876 | objnr = obj_to_index(cachep, slabp, objp); |
1da177e4 LT |
2877 | |
2878 | BUG_ON(objnr >= cachep->num); | |
8fea4e96 | 2879 | BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); |
1da177e4 LT |
2880 | |
2881 | if (cachep->flags & SLAB_DEBUG_INITIAL) { | |
a737b3e2 AM |
2882 | /* |
2883 | * Need to call the slab's constructor so the caller can | |
2884 | * perform a verify of its state (debugging). Called without | |
2885 | * the cache-lock held. | |
1da177e4 | 2886 | */ |
3dafccf2 | 2887 | cachep->ctor(objp + obj_offset(cachep), |
b28a02de | 2888 | cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY); |
1da177e4 LT |
2889 | } |
2890 | if (cachep->flags & SLAB_POISON && cachep->dtor) { | |
2891 | /* we want to cache poison the object, | |
2892 | * call the destruction callback | |
2893 | */ | |
3dafccf2 | 2894 | cachep->dtor(objp + obj_offset(cachep), cachep, 0); |
1da177e4 | 2895 | } |
871751e2 AV |
2896 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
2897 | slab_bufctl(slabp)[objnr] = BUFCTL_FREE; | |
2898 | #endif | |
1da177e4 LT |
2899 | if (cachep->flags & SLAB_POISON) { |
2900 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
a737b3e2 | 2901 | if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { |
1da177e4 | 2902 | store_stackinfo(cachep, objp, (unsigned long)caller); |
b28a02de | 2903 | kernel_map_pages(virt_to_page(objp), |
3dafccf2 | 2904 | cachep->buffer_size / PAGE_SIZE, 0); |
1da177e4 LT |
2905 | } else { |
2906 | poison_obj(cachep, objp, POISON_FREE); | |
2907 | } | |
2908 | #else | |
2909 | poison_obj(cachep, objp, POISON_FREE); | |
2910 | #endif | |
2911 | } | |
2912 | return objp; | |
2913 | } | |
2914 | ||
343e0d7a | 2915 | static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) |
1da177e4 LT |
2916 | { |
2917 | kmem_bufctl_t i; | |
2918 | int entries = 0; | |
b28a02de | 2919 | |
1da177e4 LT |
2920 | /* Check slab's freelist to see if this obj is there. */ |
2921 | for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { | |
2922 | entries++; | |
2923 | if (entries > cachep->num || i >= cachep->num) | |
2924 | goto bad; | |
2925 | } | |
2926 | if (entries != cachep->num - slabp->inuse) { | |
a737b3e2 AM |
2927 | bad: |
2928 | printk(KERN_ERR "slab: Internal list corruption detected in " | |
2929 | "cache '%s'(%d), slabp %p(%d). Hexdump:\n", | |
2930 | cachep->name, cachep->num, slabp, slabp->inuse); | |
b28a02de | 2931 | for (i = 0; |
264132bc | 2932 | i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t); |
b28a02de | 2933 | i++) { |
a737b3e2 | 2934 | if (i % 16 == 0) |
1da177e4 | 2935 | printk("\n%03x:", i); |
b28a02de | 2936 | printk(" %02x", ((unsigned char *)slabp)[i]); |
1da177e4 LT |
2937 | } |
2938 | printk("\n"); | |
2939 | BUG(); | |
2940 | } | |
2941 | } | |
2942 | #else | |
2943 | #define kfree_debugcheck(x) do { } while(0) | |
2944 | #define cache_free_debugcheck(x,objp,z) (objp) | |
2945 | #define check_slabp(x,y) do { } while(0) | |
2946 | #endif | |
2947 | ||
343e0d7a | 2948 | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 LT |
2949 | { |
2950 | int batchcount; | |
2951 | struct kmem_list3 *l3; | |
2952 | struct array_cache *ac; | |
1ca4cb24 PE |
2953 | int node; |
2954 | ||
2955 | node = numa_node_id(); | |
1da177e4 LT |
2956 | |
2957 | check_irq_off(); | |
9a2dba4b | 2958 | ac = cpu_cache_get(cachep); |
a737b3e2 | 2959 | retry: |
1da177e4 LT |
2960 | batchcount = ac->batchcount; |
2961 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | |
a737b3e2 AM |
2962 | /* |
2963 | * If there was little recent activity on this cache, then | |
2964 | * perform only a partial refill. Otherwise we could generate | |
2965 | * refill bouncing. | |
1da177e4 LT |
2966 | */ |
2967 | batchcount = BATCHREFILL_LIMIT; | |
2968 | } | |
1ca4cb24 | 2969 | l3 = cachep->nodelists[node]; |
e498be7d CL |
2970 | |
2971 | BUG_ON(ac->avail > 0 || !l3); | |
2972 | spin_lock(&l3->list_lock); | |
1da177e4 | 2973 | |
3ded175a CL |
2974 | /* See if we can refill from the shared array */ |
2975 | if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) | |
2976 | goto alloc_done; | |
2977 | ||
1da177e4 LT |
2978 | while (batchcount > 0) { |
2979 | struct list_head *entry; | |
2980 | struct slab *slabp; | |
2981 | /* Get slab alloc is to come from. */ | |
2982 | entry = l3->slabs_partial.next; | |
2983 | if (entry == &l3->slabs_partial) { | |
2984 | l3->free_touched = 1; | |
2985 | entry = l3->slabs_free.next; | |
2986 | if (entry == &l3->slabs_free) | |
2987 | goto must_grow; | |
2988 | } | |
2989 | ||
2990 | slabp = list_entry(entry, struct slab, list); | |
2991 | check_slabp(cachep, slabp); | |
2992 | check_spinlock_acquired(cachep); | |
2993 | while (slabp->inuse < cachep->num && batchcount--) { | |
1da177e4 LT |
2994 | STATS_INC_ALLOCED(cachep); |
2995 | STATS_INC_ACTIVE(cachep); | |
2996 | STATS_SET_HIGH(cachep); | |
2997 | ||
78d382d7 | 2998 | ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, |
1ca4cb24 | 2999 | node); |
1da177e4 LT |
3000 | } |
3001 | check_slabp(cachep, slabp); | |
3002 | ||
3003 | /* move slabp to correct slabp list: */ | |
3004 | list_del(&slabp->list); | |
3005 | if (slabp->free == BUFCTL_END) | |
3006 | list_add(&slabp->list, &l3->slabs_full); | |
3007 | else | |
3008 | list_add(&slabp->list, &l3->slabs_partial); | |
3009 | } | |
3010 | ||
a737b3e2 | 3011 | must_grow: |
1da177e4 | 3012 | l3->free_objects -= ac->avail; |
a737b3e2 | 3013 | alloc_done: |
e498be7d | 3014 | spin_unlock(&l3->list_lock); |
1da177e4 LT |
3015 | |
3016 | if (unlikely(!ac->avail)) { | |
3017 | int x; | |
3c517a61 | 3018 | x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); |
e498be7d | 3019 | |
a737b3e2 | 3020 | /* cache_grow can reenable interrupts, then ac could change. */ |
9a2dba4b | 3021 | ac = cpu_cache_get(cachep); |
a737b3e2 | 3022 | if (!x && ac->avail == 0) /* no objects in sight? abort */ |
1da177e4 LT |
3023 | return NULL; |
3024 | ||
a737b3e2 | 3025 | if (!ac->avail) /* objects refilled by interrupt? */ |
1da177e4 LT |
3026 | goto retry; |
3027 | } | |
3028 | ac->touched = 1; | |
e498be7d | 3029 | return ac->entry[--ac->avail]; |
1da177e4 LT |
3030 | } |
3031 | ||
a737b3e2 AM |
3032 | static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, |
3033 | gfp_t flags) | |
1da177e4 LT |
3034 | { |
3035 | might_sleep_if(flags & __GFP_WAIT); | |
3036 | #if DEBUG | |
3037 | kmem_flagcheck(cachep, flags); | |
3038 | #endif | |
3039 | } | |
3040 | ||
3041 | #if DEBUG | |
a737b3e2 AM |
3042 | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, |
3043 | gfp_t flags, void *objp, void *caller) | |
1da177e4 | 3044 | { |
b28a02de | 3045 | if (!objp) |
1da177e4 | 3046 | return objp; |
b28a02de | 3047 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 3048 | #ifdef CONFIG_DEBUG_PAGEALLOC |
3dafccf2 | 3049 | if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) |
b28a02de | 3050 | kernel_map_pages(virt_to_page(objp), |
3dafccf2 | 3051 | cachep->buffer_size / PAGE_SIZE, 1); |
1da177e4 LT |
3052 | else |
3053 | check_poison_obj(cachep, objp); | |
3054 | #else | |
3055 | check_poison_obj(cachep, objp); | |
3056 | #endif | |
3057 | poison_obj(cachep, objp, POISON_INUSE); | |
3058 | } | |
3059 | if (cachep->flags & SLAB_STORE_USER) | |
3060 | *dbg_userword(cachep, objp) = caller; | |
3061 | ||
3062 | if (cachep->flags & SLAB_RED_ZONE) { | |
a737b3e2 AM |
3063 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || |
3064 | *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | |
3065 | slab_error(cachep, "double free, or memory outside" | |
3066 | " object was overwritten"); | |
b28a02de | 3067 | printk(KERN_ERR |
a737b3e2 AM |
3068 | "%p: redzone 1:0x%lx, redzone 2:0x%lx\n", |
3069 | objp, *dbg_redzone1(cachep, objp), | |
3070 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
3071 | } |
3072 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | |
3073 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | |
3074 | } | |
871751e2 AV |
3075 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
3076 | { | |
3077 | struct slab *slabp; | |
3078 | unsigned objnr; | |
3079 | ||
3080 | slabp = page_get_slab(virt_to_page(objp)); | |
3081 | objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; | |
3082 | slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; | |
3083 | } | |
3084 | #endif | |
3dafccf2 | 3085 | objp += obj_offset(cachep); |
1da177e4 | 3086 | if (cachep->ctor && cachep->flags & SLAB_POISON) { |
b28a02de | 3087 | unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR; |
1da177e4 LT |
3088 | |
3089 | if (!(flags & __GFP_WAIT)) | |
3090 | ctor_flags |= SLAB_CTOR_ATOMIC; | |
3091 | ||
3092 | cachep->ctor(objp, cachep, ctor_flags); | |
b28a02de | 3093 | } |
a44b56d3 KH |
3094 | #if ARCH_SLAB_MINALIGN |
3095 | if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) { | |
3096 | printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", | |
3097 | objp, ARCH_SLAB_MINALIGN); | |
3098 | } | |
3099 | #endif | |
1da177e4 LT |
3100 | return objp; |
3101 | } | |
3102 | #else | |
3103 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | |
3104 | #endif | |
3105 | ||
8a8b6502 AM |
3106 | #ifdef CONFIG_FAILSLAB |
3107 | ||
3108 | static struct failslab_attr { | |
3109 | ||
3110 | struct fault_attr attr; | |
3111 | ||
3112 | u32 ignore_gfp_wait; | |
3113 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | |
3114 | struct dentry *ignore_gfp_wait_file; | |
3115 | #endif | |
3116 | ||
3117 | } failslab = { | |
3118 | .attr = FAULT_ATTR_INITIALIZER, | |
6b1b60f4 | 3119 | .ignore_gfp_wait = 1, |
8a8b6502 AM |
3120 | }; |
3121 | ||
3122 | static int __init setup_failslab(char *str) | |
3123 | { | |
3124 | return setup_fault_attr(&failslab.attr, str); | |
3125 | } | |
3126 | __setup("failslab=", setup_failslab); | |
3127 | ||
3128 | static int should_failslab(struct kmem_cache *cachep, gfp_t flags) | |
3129 | { | |
3130 | if (cachep == &cache_cache) | |
3131 | return 0; | |
3132 | if (flags & __GFP_NOFAIL) | |
3133 | return 0; | |
3134 | if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT)) | |
3135 | return 0; | |
3136 | ||
3137 | return should_fail(&failslab.attr, obj_size(cachep)); | |
3138 | } | |
3139 | ||
3140 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | |
3141 | ||
3142 | static int __init failslab_debugfs(void) | |
3143 | { | |
3144 | mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; | |
3145 | struct dentry *dir; | |
3146 | int err; | |
3147 | ||
3148 | err = init_fault_attr_dentries(&failslab.attr, "failslab"); | |
3149 | if (err) | |
3150 | return err; | |
3151 | dir = failslab.attr.dentries.dir; | |
3152 | ||
3153 | failslab.ignore_gfp_wait_file = | |
3154 | debugfs_create_bool("ignore-gfp-wait", mode, dir, | |
3155 | &failslab.ignore_gfp_wait); | |
3156 | ||
3157 | if (!failslab.ignore_gfp_wait_file) { | |
3158 | err = -ENOMEM; | |
3159 | debugfs_remove(failslab.ignore_gfp_wait_file); | |
3160 | cleanup_fault_attr_dentries(&failslab.attr); | |
3161 | } | |
3162 | ||
3163 | return err; | |
3164 | } | |
3165 | ||
3166 | late_initcall(failslab_debugfs); | |
3167 | ||
3168 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | |
3169 | ||
3170 | #else /* CONFIG_FAILSLAB */ | |
3171 | ||
3172 | static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags) | |
3173 | { | |
3174 | return 0; | |
3175 | } | |
3176 | ||
3177 | #endif /* CONFIG_FAILSLAB */ | |
3178 | ||
343e0d7a | 3179 | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3180 | { |
b28a02de | 3181 | void *objp; |
1da177e4 LT |
3182 | struct array_cache *ac; |
3183 | ||
5c382300 | 3184 | check_irq_off(); |
8a8b6502 AM |
3185 | |
3186 | if (should_failslab(cachep, flags)) | |
3187 | return NULL; | |
3188 | ||
9a2dba4b | 3189 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
3190 | if (likely(ac->avail)) { |
3191 | STATS_INC_ALLOCHIT(cachep); | |
3192 | ac->touched = 1; | |
e498be7d | 3193 | objp = ac->entry[--ac->avail]; |
1da177e4 LT |
3194 | } else { |
3195 | STATS_INC_ALLOCMISS(cachep); | |
3196 | objp = cache_alloc_refill(cachep, flags); | |
3197 | } | |
5c382300 AK |
3198 | return objp; |
3199 | } | |
3200 | ||
e498be7d | 3201 | #ifdef CONFIG_NUMA |
c61afb18 | 3202 | /* |
b2455396 | 3203 | * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. |
c61afb18 PJ |
3204 | * |
3205 | * If we are in_interrupt, then process context, including cpusets and | |
3206 | * mempolicy, may not apply and should not be used for allocation policy. | |
3207 | */ | |
3208 | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3209 | { | |
3210 | int nid_alloc, nid_here; | |
3211 | ||
765c4507 | 3212 | if (in_interrupt() || (flags & __GFP_THISNODE)) |
c61afb18 PJ |
3213 | return NULL; |
3214 | nid_alloc = nid_here = numa_node_id(); | |
3215 | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) | |
3216 | nid_alloc = cpuset_mem_spread_node(); | |
3217 | else if (current->mempolicy) | |
3218 | nid_alloc = slab_node(current->mempolicy); | |
3219 | if (nid_alloc != nid_here) | |
8b98c169 | 3220 | return ____cache_alloc_node(cachep, flags, nid_alloc); |
c61afb18 PJ |
3221 | return NULL; |
3222 | } | |
3223 | ||
765c4507 CL |
3224 | /* |
3225 | * Fallback function if there was no memory available and no objects on a | |
3c517a61 CL |
3226 | * certain node and fall back is permitted. First we scan all the |
3227 | * available nodelists for available objects. If that fails then we | |
3228 | * perform an allocation without specifying a node. This allows the page | |
3229 | * allocator to do its reclaim / fallback magic. We then insert the | |
3230 | * slab into the proper nodelist and then allocate from it. | |
765c4507 | 3231 | */ |
8c8cc2c1 | 3232 | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) |
765c4507 | 3233 | { |
8c8cc2c1 PE |
3234 | struct zonelist *zonelist; |
3235 | gfp_t local_flags; | |
765c4507 CL |
3236 | struct zone **z; |
3237 | void *obj = NULL; | |
3c517a61 | 3238 | int nid; |
8c8cc2c1 PE |
3239 | |
3240 | if (flags & __GFP_THISNODE) | |
3241 | return NULL; | |
3242 | ||
3243 | zonelist = &NODE_DATA(slab_node(current->mempolicy)) | |
3244 | ->node_zonelists[gfp_zone(flags)]; | |
3245 | local_flags = (flags & GFP_LEVEL_MASK); | |
765c4507 | 3246 | |
3c517a61 CL |
3247 | retry: |
3248 | /* | |
3249 | * Look through allowed nodes for objects available | |
3250 | * from existing per node queues. | |
3251 | */ | |
aedb0eb1 | 3252 | for (z = zonelist->zones; *z && !obj; z++) { |
3c517a61 | 3253 | nid = zone_to_nid(*z); |
aedb0eb1 | 3254 | |
02a0e53d | 3255 | if (cpuset_zone_allowed_hardwall(*z, flags) && |
3c517a61 CL |
3256 | cache->nodelists[nid] && |
3257 | cache->nodelists[nid]->free_objects) | |
3258 | obj = ____cache_alloc_node(cache, | |
3259 | flags | GFP_THISNODE, nid); | |
3260 | } | |
3261 | ||
b6a60451 | 3262 | if (!obj && !(flags & __GFP_NO_GROW)) { |
3c517a61 CL |
3263 | /* |
3264 | * This allocation will be performed within the constraints | |
3265 | * of the current cpuset / memory policy requirements. | |
3266 | * We may trigger various forms of reclaim on the allowed | |
3267 | * set and go into memory reserves if necessary. | |
3268 | */ | |
dd47ea75 CL |
3269 | if (local_flags & __GFP_WAIT) |
3270 | local_irq_enable(); | |
3271 | kmem_flagcheck(cache, flags); | |
3c517a61 | 3272 | obj = kmem_getpages(cache, flags, -1); |
dd47ea75 CL |
3273 | if (local_flags & __GFP_WAIT) |
3274 | local_irq_disable(); | |
3c517a61 CL |
3275 | if (obj) { |
3276 | /* | |
3277 | * Insert into the appropriate per node queues | |
3278 | */ | |
3279 | nid = page_to_nid(virt_to_page(obj)); | |
3280 | if (cache_grow(cache, flags, nid, obj)) { | |
3281 | obj = ____cache_alloc_node(cache, | |
3282 | flags | GFP_THISNODE, nid); | |
3283 | if (!obj) | |
3284 | /* | |
3285 | * Another processor may allocate the | |
3286 | * objects in the slab since we are | |
3287 | * not holding any locks. | |
3288 | */ | |
3289 | goto retry; | |
3290 | } else { | |
b6a60451 | 3291 | /* cache_grow already freed obj */ |
3c517a61 CL |
3292 | obj = NULL; |
3293 | } | |
3294 | } | |
aedb0eb1 | 3295 | } |
765c4507 CL |
3296 | return obj; |
3297 | } | |
3298 | ||
e498be7d CL |
3299 | /* |
3300 | * A interface to enable slab creation on nodeid | |
1da177e4 | 3301 | */ |
8b98c169 | 3302 | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
a737b3e2 | 3303 | int nodeid) |
e498be7d CL |
3304 | { |
3305 | struct list_head *entry; | |
b28a02de PE |
3306 | struct slab *slabp; |
3307 | struct kmem_list3 *l3; | |
3308 | void *obj; | |
b28a02de PE |
3309 | int x; |
3310 | ||
3311 | l3 = cachep->nodelists[nodeid]; | |
3312 | BUG_ON(!l3); | |
3313 | ||
a737b3e2 | 3314 | retry: |
ca3b9b91 | 3315 | check_irq_off(); |
b28a02de PE |
3316 | spin_lock(&l3->list_lock); |
3317 | entry = l3->slabs_partial.next; | |
3318 | if (entry == &l3->slabs_partial) { | |
3319 | l3->free_touched = 1; | |
3320 | entry = l3->slabs_free.next; | |
3321 | if (entry == &l3->slabs_free) | |
3322 | goto must_grow; | |
3323 | } | |
3324 | ||
3325 | slabp = list_entry(entry, struct slab, list); | |
3326 | check_spinlock_acquired_node(cachep, nodeid); | |
3327 | check_slabp(cachep, slabp); | |
3328 | ||
3329 | STATS_INC_NODEALLOCS(cachep); | |
3330 | STATS_INC_ACTIVE(cachep); | |
3331 | STATS_SET_HIGH(cachep); | |
3332 | ||
3333 | BUG_ON(slabp->inuse == cachep->num); | |
3334 | ||
78d382d7 | 3335 | obj = slab_get_obj(cachep, slabp, nodeid); |
b28a02de PE |
3336 | check_slabp(cachep, slabp); |
3337 | l3->free_objects--; | |
3338 | /* move slabp to correct slabp list: */ | |
3339 | list_del(&slabp->list); | |
3340 | ||
a737b3e2 | 3341 | if (slabp->free == BUFCTL_END) |
b28a02de | 3342 | list_add(&slabp->list, &l3->slabs_full); |
a737b3e2 | 3343 | else |
b28a02de | 3344 | list_add(&slabp->list, &l3->slabs_partial); |
e498be7d | 3345 | |
b28a02de PE |
3346 | spin_unlock(&l3->list_lock); |
3347 | goto done; | |
e498be7d | 3348 | |
a737b3e2 | 3349 | must_grow: |
b28a02de | 3350 | spin_unlock(&l3->list_lock); |
3c517a61 | 3351 | x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); |
765c4507 CL |
3352 | if (x) |
3353 | goto retry; | |
1da177e4 | 3354 | |
8c8cc2c1 | 3355 | return fallback_alloc(cachep, flags); |
e498be7d | 3356 | |
a737b3e2 | 3357 | done: |
b28a02de | 3358 | return obj; |
e498be7d | 3359 | } |
8c8cc2c1 PE |
3360 | |
3361 | /** | |
3362 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
3363 | * @cachep: The cache to allocate from. | |
3364 | * @flags: See kmalloc(). | |
3365 | * @nodeid: node number of the target node. | |
3366 | * @caller: return address of caller, used for debug information | |
3367 | * | |
3368 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
3369 | * node, which can improve the performance for cpu bound structures. | |
3370 | * | |
3371 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
3372 | */ | |
3373 | static __always_inline void * | |
3374 | __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, | |
3375 | void *caller) | |
3376 | { | |
3377 | unsigned long save_flags; | |
3378 | void *ptr; | |
3379 | ||
3380 | cache_alloc_debugcheck_before(cachep, flags); | |
3381 | local_irq_save(save_flags); | |
3382 | ||
3383 | if (unlikely(nodeid == -1)) | |
3384 | nodeid = numa_node_id(); | |
3385 | ||
3386 | if (unlikely(!cachep->nodelists[nodeid])) { | |
3387 | /* Node not bootstrapped yet */ | |
3388 | ptr = fallback_alloc(cachep, flags); | |
3389 | goto out; | |
3390 | } | |
3391 | ||
3392 | if (nodeid == numa_node_id()) { | |
3393 | /* | |
3394 | * Use the locally cached objects if possible. | |
3395 | * However ____cache_alloc does not allow fallback | |
3396 | * to other nodes. It may fail while we still have | |
3397 | * objects on other nodes available. | |
3398 | */ | |
3399 | ptr = ____cache_alloc(cachep, flags); | |
3400 | if (ptr) | |
3401 | goto out; | |
3402 | } | |
3403 | /* ___cache_alloc_node can fall back to other nodes */ | |
3404 | ptr = ____cache_alloc_node(cachep, flags, nodeid); | |
3405 | out: | |
3406 | local_irq_restore(save_flags); | |
3407 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); | |
3408 | ||
3409 | return ptr; | |
3410 | } | |
3411 | ||
3412 | static __always_inline void * | |
3413 | __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) | |
3414 | { | |
3415 | void *objp; | |
3416 | ||
3417 | if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { | |
3418 | objp = alternate_node_alloc(cache, flags); | |
3419 | if (objp) | |
3420 | goto out; | |
3421 | } | |
3422 | objp = ____cache_alloc(cache, flags); | |
3423 | ||
3424 | /* | |
3425 | * We may just have run out of memory on the local node. | |
3426 | * ____cache_alloc_node() knows how to locate memory on other nodes | |
3427 | */ | |
3428 | if (!objp) | |
3429 | objp = ____cache_alloc_node(cache, flags, numa_node_id()); | |
3430 | ||
3431 | out: | |
3432 | return objp; | |
3433 | } | |
3434 | #else | |
3435 | ||
3436 | static __always_inline void * | |
3437 | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3438 | { | |
3439 | return ____cache_alloc(cachep, flags); | |
3440 | } | |
3441 | ||
3442 | #endif /* CONFIG_NUMA */ | |
3443 | ||
3444 | static __always_inline void * | |
3445 | __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) | |
3446 | { | |
3447 | unsigned long save_flags; | |
3448 | void *objp; | |
3449 | ||
3450 | cache_alloc_debugcheck_before(cachep, flags); | |
3451 | local_irq_save(save_flags); | |
3452 | objp = __do_cache_alloc(cachep, flags); | |
3453 | local_irq_restore(save_flags); | |
3454 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | |
3455 | prefetchw(objp); | |
3456 | ||
3457 | return objp; | |
3458 | } | |
e498be7d CL |
3459 | |
3460 | /* | |
3461 | * Caller needs to acquire correct kmem_list's list_lock | |
3462 | */ | |
343e0d7a | 3463 | static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, |
b28a02de | 3464 | int node) |
1da177e4 LT |
3465 | { |
3466 | int i; | |
e498be7d | 3467 | struct kmem_list3 *l3; |
1da177e4 LT |
3468 | |
3469 | for (i = 0; i < nr_objects; i++) { | |
3470 | void *objp = objpp[i]; | |
3471 | struct slab *slabp; | |
1da177e4 | 3472 | |
6ed5eb22 | 3473 | slabp = virt_to_slab(objp); |
ff69416e | 3474 | l3 = cachep->nodelists[node]; |
1da177e4 | 3475 | list_del(&slabp->list); |
ff69416e | 3476 | check_spinlock_acquired_node(cachep, node); |
1da177e4 | 3477 | check_slabp(cachep, slabp); |
78d382d7 | 3478 | slab_put_obj(cachep, slabp, objp, node); |
1da177e4 | 3479 | STATS_DEC_ACTIVE(cachep); |
e498be7d | 3480 | l3->free_objects++; |
1da177e4 LT |
3481 | check_slabp(cachep, slabp); |
3482 | ||
3483 | /* fixup slab chains */ | |
3484 | if (slabp->inuse == 0) { | |
e498be7d CL |
3485 | if (l3->free_objects > l3->free_limit) { |
3486 | l3->free_objects -= cachep->num; | |
e5ac9c5a RT |
3487 | /* No need to drop any previously held |
3488 | * lock here, even if we have a off-slab slab | |
3489 | * descriptor it is guaranteed to come from | |
3490 | * a different cache, refer to comments before | |
3491 | * alloc_slabmgmt. | |
3492 | */ | |
1da177e4 LT |
3493 | slab_destroy(cachep, slabp); |
3494 | } else { | |
e498be7d | 3495 | list_add(&slabp->list, &l3->slabs_free); |
1da177e4 LT |
3496 | } |
3497 | } else { | |
3498 | /* Unconditionally move a slab to the end of the | |
3499 | * partial list on free - maximum time for the | |
3500 | * other objects to be freed, too. | |
3501 | */ | |
e498be7d | 3502 | list_add_tail(&slabp->list, &l3->slabs_partial); |
1da177e4 LT |
3503 | } |
3504 | } | |
3505 | } | |
3506 | ||
343e0d7a | 3507 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
1da177e4 LT |
3508 | { |
3509 | int batchcount; | |
e498be7d | 3510 | struct kmem_list3 *l3; |
ff69416e | 3511 | int node = numa_node_id(); |
1da177e4 LT |
3512 | |
3513 | batchcount = ac->batchcount; | |
3514 | #if DEBUG | |
3515 | BUG_ON(!batchcount || batchcount > ac->avail); | |
3516 | #endif | |
3517 | check_irq_off(); | |
ff69416e | 3518 | l3 = cachep->nodelists[node]; |
873623df | 3519 | spin_lock(&l3->list_lock); |
e498be7d CL |
3520 | if (l3->shared) { |
3521 | struct array_cache *shared_array = l3->shared; | |
b28a02de | 3522 | int max = shared_array->limit - shared_array->avail; |
1da177e4 LT |
3523 | if (max) { |
3524 | if (batchcount > max) | |
3525 | batchcount = max; | |
e498be7d | 3526 | memcpy(&(shared_array->entry[shared_array->avail]), |
b28a02de | 3527 | ac->entry, sizeof(void *) * batchcount); |
1da177e4 LT |
3528 | shared_array->avail += batchcount; |
3529 | goto free_done; | |
3530 | } | |
3531 | } | |
3532 | ||
ff69416e | 3533 | free_block(cachep, ac->entry, batchcount, node); |
a737b3e2 | 3534 | free_done: |
1da177e4 LT |
3535 | #if STATS |
3536 | { | |
3537 | int i = 0; | |
3538 | struct list_head *p; | |
3539 | ||
e498be7d CL |
3540 | p = l3->slabs_free.next; |
3541 | while (p != &(l3->slabs_free)) { | |
1da177e4 LT |
3542 | struct slab *slabp; |
3543 | ||
3544 | slabp = list_entry(p, struct slab, list); | |
3545 | BUG_ON(slabp->inuse); | |
3546 | ||
3547 | i++; | |
3548 | p = p->next; | |
3549 | } | |
3550 | STATS_SET_FREEABLE(cachep, i); | |
3551 | } | |
3552 | #endif | |
e498be7d | 3553 | spin_unlock(&l3->list_lock); |
1da177e4 | 3554 | ac->avail -= batchcount; |
a737b3e2 | 3555 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
1da177e4 LT |
3556 | } |
3557 | ||
3558 | /* | |
a737b3e2 AM |
3559 | * Release an obj back to its cache. If the obj has a constructed state, it must |
3560 | * be in this state _before_ it is released. Called with disabled ints. | |
1da177e4 | 3561 | */ |
873623df | 3562 | static inline void __cache_free(struct kmem_cache *cachep, void *objp) |
1da177e4 | 3563 | { |
9a2dba4b | 3564 | struct array_cache *ac = cpu_cache_get(cachep); |
1da177e4 LT |
3565 | |
3566 | check_irq_off(); | |
3567 | objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); | |
3568 | ||
62918a03 | 3569 | if (use_alien_caches && cache_free_alien(cachep, objp)) |
729bd0b7 PE |
3570 | return; |
3571 | ||
1da177e4 LT |
3572 | if (likely(ac->avail < ac->limit)) { |
3573 | STATS_INC_FREEHIT(cachep); | |
e498be7d | 3574 | ac->entry[ac->avail++] = objp; |
1da177e4 LT |
3575 | return; |
3576 | } else { | |
3577 | STATS_INC_FREEMISS(cachep); | |
3578 | cache_flusharray(cachep, ac); | |
e498be7d | 3579 | ac->entry[ac->avail++] = objp; |
1da177e4 LT |
3580 | } |
3581 | } | |
3582 | ||
3583 | /** | |
3584 | * kmem_cache_alloc - Allocate an object | |
3585 | * @cachep: The cache to allocate from. | |
3586 | * @flags: See kmalloc(). | |
3587 | * | |
3588 | * Allocate an object from this cache. The flags are only relevant | |
3589 | * if the cache has no available objects. | |
3590 | */ | |
343e0d7a | 3591 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3592 | { |
7fd6b141 | 3593 | return __cache_alloc(cachep, flags, __builtin_return_address(0)); |
1da177e4 LT |
3594 | } |
3595 | EXPORT_SYMBOL(kmem_cache_alloc); | |
3596 | ||
a8c0f9a4 | 3597 | /** |
b8008b2b | 3598 | * kmem_cache_zalloc - Allocate an object. The memory is set to zero. |
a8c0f9a4 PE |
3599 | * @cache: The cache to allocate from. |
3600 | * @flags: See kmalloc(). | |
3601 | * | |
3602 | * Allocate an object from this cache and set the allocated memory to zero. | |
3603 | * The flags are only relevant if the cache has no available objects. | |
3604 | */ | |
3605 | void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags) | |
3606 | { | |
3607 | void *ret = __cache_alloc(cache, flags, __builtin_return_address(0)); | |
3608 | if (ret) | |
3609 | memset(ret, 0, obj_size(cache)); | |
3610 | return ret; | |
3611 | } | |
3612 | EXPORT_SYMBOL(kmem_cache_zalloc); | |
3613 | ||
1da177e4 LT |
3614 | /** |
3615 | * kmem_ptr_validate - check if an untrusted pointer might | |
3616 | * be a slab entry. | |
3617 | * @cachep: the cache we're checking against | |
3618 | * @ptr: pointer to validate | |
3619 | * | |
3620 | * This verifies that the untrusted pointer looks sane: | |
3621 | * it is _not_ a guarantee that the pointer is actually | |
3622 | * part of the slab cache in question, but it at least | |
3623 | * validates that the pointer can be dereferenced and | |
3624 | * looks half-way sane. | |
3625 | * | |
3626 | * Currently only used for dentry validation. | |
3627 | */ | |
b7f869a2 | 3628 | int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr) |
1da177e4 | 3629 | { |
b28a02de | 3630 | unsigned long addr = (unsigned long)ptr; |
1da177e4 | 3631 | unsigned long min_addr = PAGE_OFFSET; |
b28a02de | 3632 | unsigned long align_mask = BYTES_PER_WORD - 1; |
3dafccf2 | 3633 | unsigned long size = cachep->buffer_size; |
1da177e4 LT |
3634 | struct page *page; |
3635 | ||
3636 | if (unlikely(addr < min_addr)) | |
3637 | goto out; | |
3638 | if (unlikely(addr > (unsigned long)high_memory - size)) | |
3639 | goto out; | |
3640 | if (unlikely(addr & align_mask)) | |
3641 | goto out; | |
3642 | if (unlikely(!kern_addr_valid(addr))) | |
3643 | goto out; | |
3644 | if (unlikely(!kern_addr_valid(addr + size - 1))) | |
3645 | goto out; | |
3646 | page = virt_to_page(ptr); | |
3647 | if (unlikely(!PageSlab(page))) | |
3648 | goto out; | |
065d41cb | 3649 | if (unlikely(page_get_cache(page) != cachep)) |
1da177e4 LT |
3650 | goto out; |
3651 | return 1; | |
a737b3e2 | 3652 | out: |
1da177e4 LT |
3653 | return 0; |
3654 | } | |
3655 | ||
3656 | #ifdef CONFIG_NUMA | |
8b98c169 CH |
3657 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
3658 | { | |
3659 | return __cache_alloc_node(cachep, flags, nodeid, | |
3660 | __builtin_return_address(0)); | |
3661 | } | |
1da177e4 LT |
3662 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3663 | ||
8b98c169 CH |
3664 | static __always_inline void * |
3665 | __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) | |
97e2bde4 | 3666 | { |
343e0d7a | 3667 | struct kmem_cache *cachep; |
97e2bde4 MS |
3668 | |
3669 | cachep = kmem_find_general_cachep(size, flags); | |
3670 | if (unlikely(cachep == NULL)) | |
3671 | return NULL; | |
3672 | return kmem_cache_alloc_node(cachep, flags, node); | |
3673 | } | |
8b98c169 CH |
3674 | |
3675 | #ifdef CONFIG_DEBUG_SLAB | |
3676 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | |
3677 | { | |
3678 | return __do_kmalloc_node(size, flags, node, | |
3679 | __builtin_return_address(0)); | |
3680 | } | |
dbe5e69d | 3681 | EXPORT_SYMBOL(__kmalloc_node); |
8b98c169 CH |
3682 | |
3683 | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | |
3684 | int node, void *caller) | |
3685 | { | |
3686 | return __do_kmalloc_node(size, flags, node, caller); | |
3687 | } | |
3688 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | |
3689 | #else | |
3690 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | |
3691 | { | |
3692 | return __do_kmalloc_node(size, flags, node, NULL); | |
3693 | } | |
3694 | EXPORT_SYMBOL(__kmalloc_node); | |
3695 | #endif /* CONFIG_DEBUG_SLAB */ | |
3696 | #endif /* CONFIG_NUMA */ | |
1da177e4 LT |
3697 | |
3698 | /** | |
800590f5 | 3699 | * __do_kmalloc - allocate memory |
1da177e4 | 3700 | * @size: how many bytes of memory are required. |
800590f5 | 3701 | * @flags: the type of memory to allocate (see kmalloc). |
911851e6 | 3702 | * @caller: function caller for debug tracking of the caller |
1da177e4 | 3703 | */ |
7fd6b141 PE |
3704 | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, |
3705 | void *caller) | |
1da177e4 | 3706 | { |
343e0d7a | 3707 | struct kmem_cache *cachep; |
1da177e4 | 3708 | |
97e2bde4 MS |
3709 | /* If you want to save a few bytes .text space: replace |
3710 | * __ with kmem_. | |
3711 | * Then kmalloc uses the uninlined functions instead of the inline | |
3712 | * functions. | |
3713 | */ | |
3714 | cachep = __find_general_cachep(size, flags); | |
dbdb9045 AM |
3715 | if (unlikely(cachep == NULL)) |
3716 | return NULL; | |
7fd6b141 PE |
3717 | return __cache_alloc(cachep, flags, caller); |
3718 | } | |
3719 | ||
7fd6b141 | 3720 | |
1d2c8eea | 3721 | #ifdef CONFIG_DEBUG_SLAB |
7fd6b141 PE |
3722 | void *__kmalloc(size_t size, gfp_t flags) |
3723 | { | |
871751e2 | 3724 | return __do_kmalloc(size, flags, __builtin_return_address(0)); |
1da177e4 LT |
3725 | } |
3726 | EXPORT_SYMBOL(__kmalloc); | |
3727 | ||
7fd6b141 PE |
3728 | void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller) |
3729 | { | |
3730 | return __do_kmalloc(size, flags, caller); | |
3731 | } | |
3732 | EXPORT_SYMBOL(__kmalloc_track_caller); | |
1d2c8eea CH |
3733 | |
3734 | #else | |
3735 | void *__kmalloc(size_t size, gfp_t flags) | |
3736 | { | |
3737 | return __do_kmalloc(size, flags, NULL); | |
3738 | } | |
3739 | EXPORT_SYMBOL(__kmalloc); | |
7fd6b141 PE |
3740 | #endif |
3741 | ||
1da177e4 LT |
3742 | /** |
3743 | * kmem_cache_free - Deallocate an object | |
3744 | * @cachep: The cache the allocation was from. | |
3745 | * @objp: The previously allocated object. | |
3746 | * | |
3747 | * Free an object which was previously allocated from this | |
3748 | * cache. | |
3749 | */ | |
343e0d7a | 3750 | void kmem_cache_free(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
3751 | { |
3752 | unsigned long flags; | |
3753 | ||
ddc2e812 PE |
3754 | BUG_ON(virt_to_cache(objp) != cachep); |
3755 | ||
1da177e4 | 3756 | local_irq_save(flags); |
898552c9 | 3757 | debug_check_no_locks_freed(objp, obj_size(cachep)); |
873623df | 3758 | __cache_free(cachep, objp); |
1da177e4 LT |
3759 | local_irq_restore(flags); |
3760 | } | |
3761 | EXPORT_SYMBOL(kmem_cache_free); | |
3762 | ||
1da177e4 LT |
3763 | /** |
3764 | * kfree - free previously allocated memory | |
3765 | * @objp: pointer returned by kmalloc. | |
3766 | * | |
80e93eff PE |
3767 | * If @objp is NULL, no operation is performed. |
3768 | * | |
1da177e4 LT |
3769 | * Don't free memory not originally allocated by kmalloc() |
3770 | * or you will run into trouble. | |
3771 | */ | |
3772 | void kfree(const void *objp) | |
3773 | { | |
343e0d7a | 3774 | struct kmem_cache *c; |
1da177e4 LT |
3775 | unsigned long flags; |
3776 | ||
3777 | if (unlikely(!objp)) | |
3778 | return; | |
3779 | local_irq_save(flags); | |
3780 | kfree_debugcheck(objp); | |
6ed5eb22 | 3781 | c = virt_to_cache(objp); |
f9b8404c | 3782 | debug_check_no_locks_freed(objp, obj_size(c)); |
873623df | 3783 | __cache_free(c, (void *)objp); |
1da177e4 LT |
3784 | local_irq_restore(flags); |
3785 | } | |
3786 | EXPORT_SYMBOL(kfree); | |
3787 | ||
343e0d7a | 3788 | unsigned int kmem_cache_size(struct kmem_cache *cachep) |
1da177e4 | 3789 | { |
3dafccf2 | 3790 | return obj_size(cachep); |
1da177e4 LT |
3791 | } |
3792 | EXPORT_SYMBOL(kmem_cache_size); | |
3793 | ||
343e0d7a | 3794 | const char *kmem_cache_name(struct kmem_cache *cachep) |
1944972d ACM |
3795 | { |
3796 | return cachep->name; | |
3797 | } | |
3798 | EXPORT_SYMBOL_GPL(kmem_cache_name); | |
3799 | ||
e498be7d | 3800 | /* |
0718dc2a | 3801 | * This initializes kmem_list3 or resizes varioius caches for all nodes. |
e498be7d | 3802 | */ |
343e0d7a | 3803 | static int alloc_kmemlist(struct kmem_cache *cachep) |
e498be7d CL |
3804 | { |
3805 | int node; | |
3806 | struct kmem_list3 *l3; | |
cafeb02e | 3807 | struct array_cache *new_shared; |
3395ee05 | 3808 | struct array_cache **new_alien = NULL; |
e498be7d CL |
3809 | |
3810 | for_each_online_node(node) { | |
cafeb02e | 3811 | |
3395ee05 PM |
3812 | if (use_alien_caches) { |
3813 | new_alien = alloc_alien_cache(node, cachep->limit); | |
3814 | if (!new_alien) | |
3815 | goto fail; | |
3816 | } | |
cafeb02e | 3817 | |
0718dc2a CL |
3818 | new_shared = alloc_arraycache(node, |
3819 | cachep->shared*cachep->batchcount, | |
a737b3e2 | 3820 | 0xbaadf00d); |
0718dc2a CL |
3821 | if (!new_shared) { |
3822 | free_alien_cache(new_alien); | |
e498be7d | 3823 | goto fail; |
0718dc2a | 3824 | } |
cafeb02e | 3825 | |
a737b3e2 AM |
3826 | l3 = cachep->nodelists[node]; |
3827 | if (l3) { | |
cafeb02e CL |
3828 | struct array_cache *shared = l3->shared; |
3829 | ||
e498be7d CL |
3830 | spin_lock_irq(&l3->list_lock); |
3831 | ||
cafeb02e | 3832 | if (shared) |
0718dc2a CL |
3833 | free_block(cachep, shared->entry, |
3834 | shared->avail, node); | |
e498be7d | 3835 | |
cafeb02e CL |
3836 | l3->shared = new_shared; |
3837 | if (!l3->alien) { | |
e498be7d CL |
3838 | l3->alien = new_alien; |
3839 | new_alien = NULL; | |
3840 | } | |
b28a02de | 3841 | l3->free_limit = (1 + nr_cpus_node(node)) * |
a737b3e2 | 3842 | cachep->batchcount + cachep->num; |
e498be7d | 3843 | spin_unlock_irq(&l3->list_lock); |
cafeb02e | 3844 | kfree(shared); |
e498be7d CL |
3845 | free_alien_cache(new_alien); |
3846 | continue; | |
3847 | } | |
a737b3e2 | 3848 | l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node); |
0718dc2a CL |
3849 | if (!l3) { |
3850 | free_alien_cache(new_alien); | |
3851 | kfree(new_shared); | |
e498be7d | 3852 | goto fail; |
0718dc2a | 3853 | } |
e498be7d CL |
3854 | |
3855 | kmem_list3_init(l3); | |
3856 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
a737b3e2 | 3857 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
cafeb02e | 3858 | l3->shared = new_shared; |
e498be7d | 3859 | l3->alien = new_alien; |
b28a02de | 3860 | l3->free_limit = (1 + nr_cpus_node(node)) * |
a737b3e2 | 3861 | cachep->batchcount + cachep->num; |
e498be7d CL |
3862 | cachep->nodelists[node] = l3; |
3863 | } | |
cafeb02e | 3864 | return 0; |
0718dc2a | 3865 | |
a737b3e2 | 3866 | fail: |
0718dc2a CL |
3867 | if (!cachep->next.next) { |
3868 | /* Cache is not active yet. Roll back what we did */ | |
3869 | node--; | |
3870 | while (node >= 0) { | |
3871 | if (cachep->nodelists[node]) { | |
3872 | l3 = cachep->nodelists[node]; | |
3873 | ||
3874 | kfree(l3->shared); | |
3875 | free_alien_cache(l3->alien); | |
3876 | kfree(l3); | |
3877 | cachep->nodelists[node] = NULL; | |
3878 | } | |
3879 | node--; | |
3880 | } | |
3881 | } | |
cafeb02e | 3882 | return -ENOMEM; |
e498be7d CL |
3883 | } |
3884 | ||
1da177e4 | 3885 | struct ccupdate_struct { |
343e0d7a | 3886 | struct kmem_cache *cachep; |
1da177e4 LT |
3887 | struct array_cache *new[NR_CPUS]; |
3888 | }; | |
3889 | ||
3890 | static void do_ccupdate_local(void *info) | |
3891 | { | |
a737b3e2 | 3892 | struct ccupdate_struct *new = info; |
1da177e4 LT |
3893 | struct array_cache *old; |
3894 | ||
3895 | check_irq_off(); | |
9a2dba4b | 3896 | old = cpu_cache_get(new->cachep); |
e498be7d | 3897 | |
1da177e4 LT |
3898 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; |
3899 | new->new[smp_processor_id()] = old; | |
3900 | } | |
3901 | ||
b5d8ca7c | 3902 | /* Always called with the cache_chain_mutex held */ |
a737b3e2 AM |
3903 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, |
3904 | int batchcount, int shared) | |
1da177e4 | 3905 | { |
d2e7b7d0 | 3906 | struct ccupdate_struct *new; |
2ed3a4ef | 3907 | int i; |
1da177e4 | 3908 | |
d2e7b7d0 SS |
3909 | new = kzalloc(sizeof(*new), GFP_KERNEL); |
3910 | if (!new) | |
3911 | return -ENOMEM; | |
3912 | ||
e498be7d | 3913 | for_each_online_cpu(i) { |
d2e7b7d0 | 3914 | new->new[i] = alloc_arraycache(cpu_to_node(i), limit, |
a737b3e2 | 3915 | batchcount); |
d2e7b7d0 | 3916 | if (!new->new[i]) { |
b28a02de | 3917 | for (i--; i >= 0; i--) |
d2e7b7d0 SS |
3918 | kfree(new->new[i]); |
3919 | kfree(new); | |
e498be7d | 3920 | return -ENOMEM; |
1da177e4 LT |
3921 | } |
3922 | } | |
d2e7b7d0 | 3923 | new->cachep = cachep; |
1da177e4 | 3924 | |
d2e7b7d0 | 3925 | on_each_cpu(do_ccupdate_local, (void *)new, 1, 1); |
e498be7d | 3926 | |
1da177e4 | 3927 | check_irq_on(); |
1da177e4 LT |
3928 | cachep->batchcount = batchcount; |
3929 | cachep->limit = limit; | |
e498be7d | 3930 | cachep->shared = shared; |
1da177e4 | 3931 | |
e498be7d | 3932 | for_each_online_cpu(i) { |
d2e7b7d0 | 3933 | struct array_cache *ccold = new->new[i]; |
1da177e4 LT |
3934 | if (!ccold) |
3935 | continue; | |
e498be7d | 3936 | spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); |
ff69416e | 3937 | free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i)); |
e498be7d | 3938 | spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); |
1da177e4 LT |
3939 | kfree(ccold); |
3940 | } | |
d2e7b7d0 | 3941 | kfree(new); |
2ed3a4ef | 3942 | return alloc_kmemlist(cachep); |
1da177e4 LT |
3943 | } |
3944 | ||
b5d8ca7c | 3945 | /* Called with cache_chain_mutex held always */ |
2ed3a4ef | 3946 | static int enable_cpucache(struct kmem_cache *cachep) |
1da177e4 LT |
3947 | { |
3948 | int err; | |
3949 | int limit, shared; | |
3950 | ||
a737b3e2 AM |
3951 | /* |
3952 | * The head array serves three purposes: | |
1da177e4 LT |
3953 | * - create a LIFO ordering, i.e. return objects that are cache-warm |
3954 | * - reduce the number of spinlock operations. | |
a737b3e2 | 3955 | * - reduce the number of linked list operations on the slab and |
1da177e4 LT |
3956 | * bufctl chains: array operations are cheaper. |
3957 | * The numbers are guessed, we should auto-tune as described by | |
3958 | * Bonwick. | |
3959 | */ | |
3dafccf2 | 3960 | if (cachep->buffer_size > 131072) |
1da177e4 | 3961 | limit = 1; |
3dafccf2 | 3962 | else if (cachep->buffer_size > PAGE_SIZE) |
1da177e4 | 3963 | limit = 8; |
3dafccf2 | 3964 | else if (cachep->buffer_size > 1024) |
1da177e4 | 3965 | limit = 24; |
3dafccf2 | 3966 | else if (cachep->buffer_size > 256) |
1da177e4 LT |
3967 | limit = 54; |
3968 | else | |
3969 | limit = 120; | |
3970 | ||
a737b3e2 AM |
3971 | /* |
3972 | * CPU bound tasks (e.g. network routing) can exhibit cpu bound | |
1da177e4 LT |
3973 | * allocation behaviour: Most allocs on one cpu, most free operations |
3974 | * on another cpu. For these cases, an efficient object passing between | |
3975 | * cpus is necessary. This is provided by a shared array. The array | |
3976 | * replaces Bonwick's magazine layer. | |
3977 | * On uniprocessor, it's functionally equivalent (but less efficient) | |
3978 | * to a larger limit. Thus disabled by default. | |
3979 | */ | |
3980 | shared = 0; | |
3981 | #ifdef CONFIG_SMP | |
3dafccf2 | 3982 | if (cachep->buffer_size <= PAGE_SIZE) |
1da177e4 LT |
3983 | shared = 8; |
3984 | #endif | |
3985 | ||
3986 | #if DEBUG | |
a737b3e2 AM |
3987 | /* |
3988 | * With debugging enabled, large batchcount lead to excessively long | |
3989 | * periods with disabled local interrupts. Limit the batchcount | |
1da177e4 LT |
3990 | */ |
3991 | if (limit > 32) | |
3992 | limit = 32; | |
3993 | #endif | |
b28a02de | 3994 | err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared); |
1da177e4 LT |
3995 | if (err) |
3996 | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | |
b28a02de | 3997 | cachep->name, -err); |
2ed3a4ef | 3998 | return err; |
1da177e4 LT |
3999 | } |
4000 | ||
1b55253a CL |
4001 | /* |
4002 | * Drain an array if it contains any elements taking the l3 lock only if | |
b18e7e65 CL |
4003 | * necessary. Note that the l3 listlock also protects the array_cache |
4004 | * if drain_array() is used on the shared array. | |
1b55253a CL |
4005 | */ |
4006 | void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, | |
4007 | struct array_cache *ac, int force, int node) | |
1da177e4 LT |
4008 | { |
4009 | int tofree; | |
4010 | ||
1b55253a CL |
4011 | if (!ac || !ac->avail) |
4012 | return; | |
1da177e4 LT |
4013 | if (ac->touched && !force) { |
4014 | ac->touched = 0; | |
b18e7e65 | 4015 | } else { |
1b55253a | 4016 | spin_lock_irq(&l3->list_lock); |
b18e7e65 CL |
4017 | if (ac->avail) { |
4018 | tofree = force ? ac->avail : (ac->limit + 4) / 5; | |
4019 | if (tofree > ac->avail) | |
4020 | tofree = (ac->avail + 1) / 2; | |
4021 | free_block(cachep, ac->entry, tofree, node); | |
4022 | ac->avail -= tofree; | |
4023 | memmove(ac->entry, &(ac->entry[tofree]), | |
4024 | sizeof(void *) * ac->avail); | |
4025 | } | |
1b55253a | 4026 | spin_unlock_irq(&l3->list_lock); |
1da177e4 LT |
4027 | } |
4028 | } | |
4029 | ||
4030 | /** | |
4031 | * cache_reap - Reclaim memory from caches. | |
05fb6bf0 | 4032 | * @w: work descriptor |
1da177e4 LT |
4033 | * |
4034 | * Called from workqueue/eventd every few seconds. | |
4035 | * Purpose: | |
4036 | * - clear the per-cpu caches for this CPU. | |
4037 | * - return freeable pages to the main free memory pool. | |
4038 | * | |
a737b3e2 AM |
4039 | * If we cannot acquire the cache chain mutex then just give up - we'll try |
4040 | * again on the next iteration. | |
1da177e4 | 4041 | */ |
7c5cae36 | 4042 | static void cache_reap(struct work_struct *w) |
1da177e4 | 4043 | { |
7a7c381d | 4044 | struct kmem_cache *searchp; |
e498be7d | 4045 | struct kmem_list3 *l3; |
aab2207c | 4046 | int node = numa_node_id(); |
7c5cae36 CL |
4047 | struct delayed_work *work = |
4048 | container_of(w, struct delayed_work, work); | |
1da177e4 | 4049 | |
7c5cae36 | 4050 | if (!mutex_trylock(&cache_chain_mutex)) |
1da177e4 | 4051 | /* Give up. Setup the next iteration. */ |
7c5cae36 | 4052 | goto out; |
1da177e4 | 4053 | |
7a7c381d | 4054 | list_for_each_entry(searchp, &cache_chain, next) { |
1da177e4 LT |
4055 | check_irq_on(); |
4056 | ||
35386e3b CL |
4057 | /* |
4058 | * We only take the l3 lock if absolutely necessary and we | |
4059 | * have established with reasonable certainty that | |
4060 | * we can do some work if the lock was obtained. | |
4061 | */ | |
aab2207c | 4062 | l3 = searchp->nodelists[node]; |
35386e3b | 4063 | |
8fce4d8e | 4064 | reap_alien(searchp, l3); |
1da177e4 | 4065 | |
aab2207c | 4066 | drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); |
1da177e4 | 4067 | |
35386e3b CL |
4068 | /* |
4069 | * These are racy checks but it does not matter | |
4070 | * if we skip one check or scan twice. | |
4071 | */ | |
e498be7d | 4072 | if (time_after(l3->next_reap, jiffies)) |
35386e3b | 4073 | goto next; |
1da177e4 | 4074 | |
e498be7d | 4075 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3; |
1da177e4 | 4076 | |
aab2207c | 4077 | drain_array(searchp, l3, l3->shared, 0, node); |
1da177e4 | 4078 | |
ed11d9eb | 4079 | if (l3->free_touched) |
e498be7d | 4080 | l3->free_touched = 0; |
ed11d9eb CL |
4081 | else { |
4082 | int freed; | |
1da177e4 | 4083 | |
ed11d9eb CL |
4084 | freed = drain_freelist(searchp, l3, (l3->free_limit + |
4085 | 5 * searchp->num - 1) / (5 * searchp->num)); | |
4086 | STATS_ADD_REAPED(searchp, freed); | |
4087 | } | |
35386e3b | 4088 | next: |
1da177e4 LT |
4089 | cond_resched(); |
4090 | } | |
4091 | check_irq_on(); | |
fc0abb14 | 4092 | mutex_unlock(&cache_chain_mutex); |
8fce4d8e | 4093 | next_reap_node(); |
2244b95a | 4094 | refresh_cpu_vm_stats(smp_processor_id()); |
7c5cae36 | 4095 | out: |
a737b3e2 | 4096 | /* Set up the next iteration */ |
7c5cae36 | 4097 | schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); |
1da177e4 LT |
4098 | } |
4099 | ||
4100 | #ifdef CONFIG_PROC_FS | |
4101 | ||
85289f98 | 4102 | static void print_slabinfo_header(struct seq_file *m) |
1da177e4 | 4103 | { |
85289f98 PE |
4104 | /* |
4105 | * Output format version, so at least we can change it | |
4106 | * without _too_ many complaints. | |
4107 | */ | |
1da177e4 | 4108 | #if STATS |
85289f98 | 4109 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); |
1da177e4 | 4110 | #else |
85289f98 | 4111 | seq_puts(m, "slabinfo - version: 2.1\n"); |
1da177e4 | 4112 | #endif |
85289f98 PE |
4113 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> " |
4114 | "<objperslab> <pagesperslab>"); | |
4115 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | |
4116 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
1da177e4 | 4117 | #if STATS |
85289f98 | 4118 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " |
fb7faf33 | 4119 | "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); |
85289f98 | 4120 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
1da177e4 | 4121 | #endif |
85289f98 PE |
4122 | seq_putc(m, '\n'); |
4123 | } | |
4124 | ||
4125 | static void *s_start(struct seq_file *m, loff_t *pos) | |
4126 | { | |
4127 | loff_t n = *pos; | |
4128 | struct list_head *p; | |
4129 | ||
fc0abb14 | 4130 | mutex_lock(&cache_chain_mutex); |
85289f98 PE |
4131 | if (!n) |
4132 | print_slabinfo_header(m); | |
1da177e4 LT |
4133 | p = cache_chain.next; |
4134 | while (n--) { | |
4135 | p = p->next; | |
4136 | if (p == &cache_chain) | |
4137 | return NULL; | |
4138 | } | |
343e0d7a | 4139 | return list_entry(p, struct kmem_cache, next); |
1da177e4 LT |
4140 | } |
4141 | ||
4142 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
4143 | { | |
343e0d7a | 4144 | struct kmem_cache *cachep = p; |
1da177e4 | 4145 | ++*pos; |
a737b3e2 AM |
4146 | return cachep->next.next == &cache_chain ? |
4147 | NULL : list_entry(cachep->next.next, struct kmem_cache, next); | |
1da177e4 LT |
4148 | } |
4149 | ||
4150 | static void s_stop(struct seq_file *m, void *p) | |
4151 | { | |
fc0abb14 | 4152 | mutex_unlock(&cache_chain_mutex); |
1da177e4 LT |
4153 | } |
4154 | ||
4155 | static int s_show(struct seq_file *m, void *p) | |
4156 | { | |
343e0d7a | 4157 | struct kmem_cache *cachep = p; |
b28a02de PE |
4158 | struct slab *slabp; |
4159 | unsigned long active_objs; | |
4160 | unsigned long num_objs; | |
4161 | unsigned long active_slabs = 0; | |
4162 | unsigned long num_slabs, free_objects = 0, shared_avail = 0; | |
e498be7d | 4163 | const char *name; |
1da177e4 | 4164 | char *error = NULL; |
e498be7d CL |
4165 | int node; |
4166 | struct kmem_list3 *l3; | |
1da177e4 | 4167 | |
1da177e4 LT |
4168 | active_objs = 0; |
4169 | num_slabs = 0; | |
e498be7d CL |
4170 | for_each_online_node(node) { |
4171 | l3 = cachep->nodelists[node]; | |
4172 | if (!l3) | |
4173 | continue; | |
4174 | ||
ca3b9b91 RT |
4175 | check_irq_on(); |
4176 | spin_lock_irq(&l3->list_lock); | |
e498be7d | 4177 | |
7a7c381d | 4178 | list_for_each_entry(slabp, &l3->slabs_full, list) { |
e498be7d CL |
4179 | if (slabp->inuse != cachep->num && !error) |
4180 | error = "slabs_full accounting error"; | |
4181 | active_objs += cachep->num; | |
4182 | active_slabs++; | |
4183 | } | |
7a7c381d | 4184 | list_for_each_entry(slabp, &l3->slabs_partial, list) { |
e498be7d CL |
4185 | if (slabp->inuse == cachep->num && !error) |
4186 | error = "slabs_partial inuse accounting error"; | |
4187 | if (!slabp->inuse && !error) | |
4188 | error = "slabs_partial/inuse accounting error"; | |
4189 | active_objs += slabp->inuse; | |
4190 | active_slabs++; | |
4191 | } | |
7a7c381d | 4192 | list_for_each_entry(slabp, &l3->slabs_free, list) { |
e498be7d CL |
4193 | if (slabp->inuse && !error) |
4194 | error = "slabs_free/inuse accounting error"; | |
4195 | num_slabs++; | |
4196 | } | |
4197 | free_objects += l3->free_objects; | |
4484ebf1 RT |
4198 | if (l3->shared) |
4199 | shared_avail += l3->shared->avail; | |
e498be7d | 4200 | |
ca3b9b91 | 4201 | spin_unlock_irq(&l3->list_lock); |
1da177e4 | 4202 | } |
b28a02de PE |
4203 | num_slabs += active_slabs; |
4204 | num_objs = num_slabs * cachep->num; | |
e498be7d | 4205 | if (num_objs - active_objs != free_objects && !error) |
1da177e4 LT |
4206 | error = "free_objects accounting error"; |
4207 | ||
b28a02de | 4208 | name = cachep->name; |
1da177e4 LT |
4209 | if (error) |
4210 | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | |
4211 | ||
4212 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | |
3dafccf2 | 4213 | name, active_objs, num_objs, cachep->buffer_size, |
b28a02de | 4214 | cachep->num, (1 << cachep->gfporder)); |
1da177e4 | 4215 | seq_printf(m, " : tunables %4u %4u %4u", |
b28a02de | 4216 | cachep->limit, cachep->batchcount, cachep->shared); |
e498be7d | 4217 | seq_printf(m, " : slabdata %6lu %6lu %6lu", |
b28a02de | 4218 | active_slabs, num_slabs, shared_avail); |
1da177e4 | 4219 | #if STATS |
b28a02de | 4220 | { /* list3 stats */ |
1da177e4 LT |
4221 | unsigned long high = cachep->high_mark; |
4222 | unsigned long allocs = cachep->num_allocations; | |
4223 | unsigned long grown = cachep->grown; | |
4224 | unsigned long reaped = cachep->reaped; | |
4225 | unsigned long errors = cachep->errors; | |
4226 | unsigned long max_freeable = cachep->max_freeable; | |
1da177e4 | 4227 | unsigned long node_allocs = cachep->node_allocs; |
e498be7d | 4228 | unsigned long node_frees = cachep->node_frees; |
fb7faf33 | 4229 | unsigned long overflows = cachep->node_overflow; |
1da177e4 | 4230 | |
e498be7d | 4231 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ |
fb7faf33 | 4232 | %4lu %4lu %4lu %4lu %4lu", allocs, high, grown, |
a737b3e2 | 4233 | reaped, errors, max_freeable, node_allocs, |
fb7faf33 | 4234 | node_frees, overflows); |
1da177e4 LT |
4235 | } |
4236 | /* cpu stats */ | |
4237 | { | |
4238 | unsigned long allochit = atomic_read(&cachep->allochit); | |
4239 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | |
4240 | unsigned long freehit = atomic_read(&cachep->freehit); | |
4241 | unsigned long freemiss = atomic_read(&cachep->freemiss); | |
4242 | ||
4243 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | |
b28a02de | 4244 | allochit, allocmiss, freehit, freemiss); |
1da177e4 LT |
4245 | } |
4246 | #endif | |
4247 | seq_putc(m, '\n'); | |
1da177e4 LT |
4248 | return 0; |
4249 | } | |
4250 | ||
4251 | /* | |
4252 | * slabinfo_op - iterator that generates /proc/slabinfo | |
4253 | * | |
4254 | * Output layout: | |
4255 | * cache-name | |
4256 | * num-active-objs | |
4257 | * total-objs | |
4258 | * object size | |
4259 | * num-active-slabs | |
4260 | * total-slabs | |
4261 | * num-pages-per-slab | |
4262 | * + further values on SMP and with statistics enabled | |
4263 | */ | |
4264 | ||
15ad7cdc | 4265 | const struct seq_operations slabinfo_op = { |
b28a02de PE |
4266 | .start = s_start, |
4267 | .next = s_next, | |
4268 | .stop = s_stop, | |
4269 | .show = s_show, | |
1da177e4 LT |
4270 | }; |
4271 | ||
4272 | #define MAX_SLABINFO_WRITE 128 | |
4273 | /** | |
4274 | * slabinfo_write - Tuning for the slab allocator | |
4275 | * @file: unused | |
4276 | * @buffer: user buffer | |
4277 | * @count: data length | |
4278 | * @ppos: unused | |
4279 | */ | |
b28a02de PE |
4280 | ssize_t slabinfo_write(struct file *file, const char __user * buffer, |
4281 | size_t count, loff_t *ppos) | |
1da177e4 | 4282 | { |
b28a02de | 4283 | char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; |
1da177e4 | 4284 | int limit, batchcount, shared, res; |
7a7c381d | 4285 | struct kmem_cache *cachep; |
b28a02de | 4286 | |
1da177e4 LT |
4287 | if (count > MAX_SLABINFO_WRITE) |
4288 | return -EINVAL; | |
4289 | if (copy_from_user(&kbuf, buffer, count)) | |
4290 | return -EFAULT; | |
b28a02de | 4291 | kbuf[MAX_SLABINFO_WRITE] = '\0'; |
1da177e4 LT |
4292 | |
4293 | tmp = strchr(kbuf, ' '); | |
4294 | if (!tmp) | |
4295 | return -EINVAL; | |
4296 | *tmp = '\0'; | |
4297 | tmp++; | |
4298 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | |
4299 | return -EINVAL; | |
4300 | ||
4301 | /* Find the cache in the chain of caches. */ | |
fc0abb14 | 4302 | mutex_lock(&cache_chain_mutex); |
1da177e4 | 4303 | res = -EINVAL; |
7a7c381d | 4304 | list_for_each_entry(cachep, &cache_chain, next) { |
1da177e4 | 4305 | if (!strcmp(cachep->name, kbuf)) { |
a737b3e2 AM |
4306 | if (limit < 1 || batchcount < 1 || |
4307 | batchcount > limit || shared < 0) { | |
e498be7d | 4308 | res = 0; |
1da177e4 | 4309 | } else { |
e498be7d | 4310 | res = do_tune_cpucache(cachep, limit, |
b28a02de | 4311 | batchcount, shared); |
1da177e4 LT |
4312 | } |
4313 | break; | |
4314 | } | |
4315 | } | |
fc0abb14 | 4316 | mutex_unlock(&cache_chain_mutex); |
1da177e4 LT |
4317 | if (res >= 0) |
4318 | res = count; | |
4319 | return res; | |
4320 | } | |
871751e2 AV |
4321 | |
4322 | #ifdef CONFIG_DEBUG_SLAB_LEAK | |
4323 | ||
4324 | static void *leaks_start(struct seq_file *m, loff_t *pos) | |
4325 | { | |
4326 | loff_t n = *pos; | |
4327 | struct list_head *p; | |
4328 | ||
4329 | mutex_lock(&cache_chain_mutex); | |
4330 | p = cache_chain.next; | |
4331 | while (n--) { | |
4332 | p = p->next; | |
4333 | if (p == &cache_chain) | |
4334 | return NULL; | |
4335 | } | |
4336 | return list_entry(p, struct kmem_cache, next); | |
4337 | } | |
4338 | ||
4339 | static inline int add_caller(unsigned long *n, unsigned long v) | |
4340 | { | |
4341 | unsigned long *p; | |
4342 | int l; | |
4343 | if (!v) | |
4344 | return 1; | |
4345 | l = n[1]; | |
4346 | p = n + 2; | |
4347 | while (l) { | |
4348 | int i = l/2; | |
4349 | unsigned long *q = p + 2 * i; | |
4350 | if (*q == v) { | |
4351 | q[1]++; | |
4352 | return 1; | |
4353 | } | |
4354 | if (*q > v) { | |
4355 | l = i; | |
4356 | } else { | |
4357 | p = q + 2; | |
4358 | l -= i + 1; | |
4359 | } | |
4360 | } | |
4361 | if (++n[1] == n[0]) | |
4362 | return 0; | |
4363 | memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); | |
4364 | p[0] = v; | |
4365 | p[1] = 1; | |
4366 | return 1; | |
4367 | } | |
4368 | ||
4369 | static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) | |
4370 | { | |
4371 | void *p; | |
4372 | int i; | |
4373 | if (n[0] == n[1]) | |
4374 | return; | |
4375 | for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) { | |
4376 | if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) | |
4377 | continue; | |
4378 | if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) | |
4379 | return; | |
4380 | } | |
4381 | } | |
4382 | ||
4383 | static void show_symbol(struct seq_file *m, unsigned long address) | |
4384 | { | |
4385 | #ifdef CONFIG_KALLSYMS | |
4386 | char *modname; | |
4387 | const char *name; | |
4388 | unsigned long offset, size; | |
4389 | char namebuf[KSYM_NAME_LEN+1]; | |
4390 | ||
4391 | name = kallsyms_lookup(address, &size, &offset, &modname, namebuf); | |
4392 | ||
4393 | if (name) { | |
4394 | seq_printf(m, "%s+%#lx/%#lx", name, offset, size); | |
4395 | if (modname) | |
4396 | seq_printf(m, " [%s]", modname); | |
4397 | return; | |
4398 | } | |
4399 | #endif | |
4400 | seq_printf(m, "%p", (void *)address); | |
4401 | } | |
4402 | ||
4403 | static int leaks_show(struct seq_file *m, void *p) | |
4404 | { | |
4405 | struct kmem_cache *cachep = p; | |
871751e2 AV |
4406 | struct slab *slabp; |
4407 | struct kmem_list3 *l3; | |
4408 | const char *name; | |
4409 | unsigned long *n = m->private; | |
4410 | int node; | |
4411 | int i; | |
4412 | ||
4413 | if (!(cachep->flags & SLAB_STORE_USER)) | |
4414 | return 0; | |
4415 | if (!(cachep->flags & SLAB_RED_ZONE)) | |
4416 | return 0; | |
4417 | ||
4418 | /* OK, we can do it */ | |
4419 | ||
4420 | n[1] = 0; | |
4421 | ||
4422 | for_each_online_node(node) { | |
4423 | l3 = cachep->nodelists[node]; | |
4424 | if (!l3) | |
4425 | continue; | |
4426 | ||
4427 | check_irq_on(); | |
4428 | spin_lock_irq(&l3->list_lock); | |
4429 | ||
7a7c381d | 4430 | list_for_each_entry(slabp, &l3->slabs_full, list) |
871751e2 | 4431 | handle_slab(n, cachep, slabp); |
7a7c381d | 4432 | list_for_each_entry(slabp, &l3->slabs_partial, list) |
871751e2 | 4433 | handle_slab(n, cachep, slabp); |
871751e2 AV |
4434 | spin_unlock_irq(&l3->list_lock); |
4435 | } | |
4436 | name = cachep->name; | |
4437 | if (n[0] == n[1]) { | |
4438 | /* Increase the buffer size */ | |
4439 | mutex_unlock(&cache_chain_mutex); | |
4440 | m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); | |
4441 | if (!m->private) { | |
4442 | /* Too bad, we are really out */ | |
4443 | m->private = n; | |
4444 | mutex_lock(&cache_chain_mutex); | |
4445 | return -ENOMEM; | |
4446 | } | |
4447 | *(unsigned long *)m->private = n[0] * 2; | |
4448 | kfree(n); | |
4449 | mutex_lock(&cache_chain_mutex); | |
4450 | /* Now make sure this entry will be retried */ | |
4451 | m->count = m->size; | |
4452 | return 0; | |
4453 | } | |
4454 | for (i = 0; i < n[1]; i++) { | |
4455 | seq_printf(m, "%s: %lu ", name, n[2*i+3]); | |
4456 | show_symbol(m, n[2*i+2]); | |
4457 | seq_putc(m, '\n'); | |
4458 | } | |
d2e7b7d0 | 4459 | |
871751e2 AV |
4460 | return 0; |
4461 | } | |
4462 | ||
15ad7cdc | 4463 | const struct seq_operations slabstats_op = { |
871751e2 AV |
4464 | .start = leaks_start, |
4465 | .next = s_next, | |
4466 | .stop = s_stop, | |
4467 | .show = leaks_show, | |
4468 | }; | |
4469 | #endif | |
1da177e4 LT |
4470 | #endif |
4471 | ||
00e145b6 MS |
4472 | /** |
4473 | * ksize - get the actual amount of memory allocated for a given object | |
4474 | * @objp: Pointer to the object | |
4475 | * | |
4476 | * kmalloc may internally round up allocations and return more memory | |
4477 | * than requested. ksize() can be used to determine the actual amount of | |
4478 | * memory allocated. The caller may use this additional memory, even though | |
4479 | * a smaller amount of memory was initially specified with the kmalloc call. | |
4480 | * The caller must guarantee that objp points to a valid object previously | |
4481 | * allocated with either kmalloc() or kmem_cache_alloc(). The object | |
4482 | * must not be freed during the duration of the call. | |
4483 | */ | |
1da177e4 LT |
4484 | unsigned int ksize(const void *objp) |
4485 | { | |
00e145b6 MS |
4486 | if (unlikely(objp == NULL)) |
4487 | return 0; | |
1da177e4 | 4488 | |
6ed5eb22 | 4489 | return obj_size(virt_to_cache(objp)); |
1da177e4 | 4490 | } |