]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/slab.c | |
3 | * Written by Mark Hemment, 1996/97. | |
4 | * ([email protected]) | |
5 | * | |
6 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | |
7 | * | |
8 | * Major cleanup, different bufctl logic, per-cpu arrays | |
9 | * (c) 2000 Manfred Spraul | |
10 | * | |
11 | * Cleanup, make the head arrays unconditional, preparation for NUMA | |
12 | * (c) 2002 Manfred Spraul | |
13 | * | |
14 | * An implementation of the Slab Allocator as described in outline in; | |
15 | * UNIX Internals: The New Frontiers by Uresh Vahalia | |
16 | * Pub: Prentice Hall ISBN 0-13-101908-2 | |
17 | * or with a little more detail in; | |
18 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | |
19 | * Jeff Bonwick (Sun Microsystems). | |
20 | * Presented at: USENIX Summer 1994 Technical Conference | |
21 | * | |
22 | * The memory is organized in caches, one cache for each object type. | |
23 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | |
24 | * Each cache consists out of many slabs (they are small (usually one | |
25 | * page long) and always contiguous), and each slab contains multiple | |
26 | * initialized objects. | |
27 | * | |
28 | * This means, that your constructor is used only for newly allocated | |
29 | * slabs and you must pass objects with the same intializations to | |
30 | * kmem_cache_free. | |
31 | * | |
32 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | |
33 | * normal). If you need a special memory type, then must create a new | |
34 | * cache for that memory type. | |
35 | * | |
36 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | |
37 | * full slabs with 0 free objects | |
38 | * partial slabs | |
39 | * empty slabs with no allocated objects | |
40 | * | |
41 | * If partial slabs exist, then new allocations come from these slabs, | |
42 | * otherwise from empty slabs or new slabs are allocated. | |
43 | * | |
44 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | |
45 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | |
46 | * | |
47 | * Each cache has a short per-cpu head array, most allocs | |
48 | * and frees go into that array, and if that array overflows, then 1/2 | |
49 | * of the entries in the array are given back into the global cache. | |
50 | * The head array is strictly LIFO and should improve the cache hit rates. | |
51 | * On SMP, it additionally reduces the spinlock operations. | |
52 | * | |
53 | * The c_cpuarray may not be read with enabled local interrupts - | |
54 | * it's changed with a smp_call_function(). | |
55 | * | |
56 | * SMP synchronization: | |
57 | * constructors and destructors are called without any locking. | |
58 | * Several members in kmem_cache_t and struct slab never change, they | |
59 | * are accessed without any locking. | |
60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | |
61 | * and local interrupts are disabled so slab code is preempt-safe. | |
62 | * The non-constant members are protected with a per-cache irq spinlock. | |
63 | * | |
64 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | |
65 | * in 2000 - many ideas in the current implementation are derived from | |
66 | * his patch. | |
67 | * | |
68 | * Further notes from the original documentation: | |
69 | * | |
70 | * 11 April '97. Started multi-threading - markhe | |
71 | * The global cache-chain is protected by the semaphore 'cache_chain_sem'. | |
72 | * The sem is only needed when accessing/extending the cache-chain, which | |
73 | * can never happen inside an interrupt (kmem_cache_create(), | |
74 | * kmem_cache_shrink() and kmem_cache_reap()). | |
75 | * | |
76 | * At present, each engine can be growing a cache. This should be blocked. | |
77 | * | |
e498be7d CL |
78 | * 15 March 2005. NUMA slab allocator. |
79 | * Shai Fultheim <[email protected]>. | |
80 | * Shobhit Dayal <[email protected]> | |
81 | * Alok N Kataria <[email protected]> | |
82 | * Christoph Lameter <[email protected]> | |
83 | * | |
84 | * Modified the slab allocator to be node aware on NUMA systems. | |
85 | * Each node has its own list of partial, free and full slabs. | |
86 | * All object allocations for a node occur from node specific slab lists. | |
1da177e4 LT |
87 | */ |
88 | ||
89 | #include <linux/config.h> | |
90 | #include <linux/slab.h> | |
91 | #include <linux/mm.h> | |
92 | #include <linux/swap.h> | |
93 | #include <linux/cache.h> | |
94 | #include <linux/interrupt.h> | |
95 | #include <linux/init.h> | |
96 | #include <linux/compiler.h> | |
97 | #include <linux/seq_file.h> | |
98 | #include <linux/notifier.h> | |
99 | #include <linux/kallsyms.h> | |
100 | #include <linux/cpu.h> | |
101 | #include <linux/sysctl.h> | |
102 | #include <linux/module.h> | |
103 | #include <linux/rcupdate.h> | |
543537bd | 104 | #include <linux/string.h> |
e498be7d | 105 | #include <linux/nodemask.h> |
1da177e4 LT |
106 | |
107 | #include <asm/uaccess.h> | |
108 | #include <asm/cacheflush.h> | |
109 | #include <asm/tlbflush.h> | |
110 | #include <asm/page.h> | |
111 | ||
112 | /* | |
113 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL, | |
114 | * SLAB_RED_ZONE & SLAB_POISON. | |
115 | * 0 for faster, smaller code (especially in the critical paths). | |
116 | * | |
117 | * STATS - 1 to collect stats for /proc/slabinfo. | |
118 | * 0 for faster, smaller code (especially in the critical paths). | |
119 | * | |
120 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | |
121 | */ | |
122 | ||
123 | #ifdef CONFIG_DEBUG_SLAB | |
124 | #define DEBUG 1 | |
125 | #define STATS 1 | |
126 | #define FORCED_DEBUG 1 | |
127 | #else | |
128 | #define DEBUG 0 | |
129 | #define STATS 0 | |
130 | #define FORCED_DEBUG 0 | |
131 | #endif | |
132 | ||
133 | ||
134 | /* Shouldn't this be in a header file somewhere? */ | |
135 | #define BYTES_PER_WORD sizeof(void *) | |
136 | ||
137 | #ifndef cache_line_size | |
138 | #define cache_line_size() L1_CACHE_BYTES | |
139 | #endif | |
140 | ||
141 | #ifndef ARCH_KMALLOC_MINALIGN | |
142 | /* | |
143 | * Enforce a minimum alignment for the kmalloc caches. | |
144 | * Usually, the kmalloc caches are cache_line_size() aligned, except when | |
145 | * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. | |
146 | * Some archs want to perform DMA into kmalloc caches and need a guaranteed | |
147 | * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that. | |
148 | * Note that this flag disables some debug features. | |
149 | */ | |
150 | #define ARCH_KMALLOC_MINALIGN 0 | |
151 | #endif | |
152 | ||
153 | #ifndef ARCH_SLAB_MINALIGN | |
154 | /* | |
155 | * Enforce a minimum alignment for all caches. | |
156 | * Intended for archs that get misalignment faults even for BYTES_PER_WORD | |
157 | * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. | |
158 | * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables | |
159 | * some debug features. | |
160 | */ | |
161 | #define ARCH_SLAB_MINALIGN 0 | |
162 | #endif | |
163 | ||
164 | #ifndef ARCH_KMALLOC_FLAGS | |
165 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | |
166 | #endif | |
167 | ||
168 | /* Legal flag mask for kmem_cache_create(). */ | |
169 | #if DEBUG | |
170 | # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \ | |
171 | SLAB_POISON | SLAB_HWCACHE_ALIGN | \ | |
172 | SLAB_NO_REAP | SLAB_CACHE_DMA | \ | |
173 | SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \ | |
174 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ | |
175 | SLAB_DESTROY_BY_RCU) | |
176 | #else | |
177 | # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \ | |
178 | SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \ | |
179 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ | |
180 | SLAB_DESTROY_BY_RCU) | |
181 | #endif | |
182 | ||
183 | /* | |
184 | * kmem_bufctl_t: | |
185 | * | |
186 | * Bufctl's are used for linking objs within a slab | |
187 | * linked offsets. | |
188 | * | |
189 | * This implementation relies on "struct page" for locating the cache & | |
190 | * slab an object belongs to. | |
191 | * This allows the bufctl structure to be small (one int), but limits | |
192 | * the number of objects a slab (not a cache) can contain when off-slab | |
193 | * bufctls are used. The limit is the size of the largest general cache | |
194 | * that does not use off-slab slabs. | |
195 | * For 32bit archs with 4 kB pages, is this 56. | |
196 | * This is not serious, as it is only for large objects, when it is unwise | |
197 | * to have too many per slab. | |
198 | * Note: This limit can be raised by introducing a general cache whose size | |
199 | * is less than 512 (PAGE_SIZE<<3), but greater than 256. | |
200 | */ | |
201 | ||
fa5b08d5 | 202 | typedef unsigned int kmem_bufctl_t; |
1da177e4 LT |
203 | #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) |
204 | #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) | |
205 | #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2) | |
206 | ||
207 | /* Max number of objs-per-slab for caches which use off-slab slabs. | |
208 | * Needed to avoid a possible looping condition in cache_grow(). | |
209 | */ | |
210 | static unsigned long offslab_limit; | |
211 | ||
212 | /* | |
213 | * struct slab | |
214 | * | |
215 | * Manages the objs in a slab. Placed either at the beginning of mem allocated | |
216 | * for a slab, or allocated from an general cache. | |
217 | * Slabs are chained into three list: fully used, partial, fully free slabs. | |
218 | */ | |
219 | struct slab { | |
220 | struct list_head list; | |
221 | unsigned long colouroff; | |
222 | void *s_mem; /* including colour offset */ | |
223 | unsigned int inuse; /* num of objs active in slab */ | |
224 | kmem_bufctl_t free; | |
e498be7d | 225 | unsigned short nodeid; |
1da177e4 LT |
226 | }; |
227 | ||
228 | /* | |
229 | * struct slab_rcu | |
230 | * | |
231 | * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to | |
232 | * arrange for kmem_freepages to be called via RCU. This is useful if | |
233 | * we need to approach a kernel structure obliquely, from its address | |
234 | * obtained without the usual locking. We can lock the structure to | |
235 | * stabilize it and check it's still at the given address, only if we | |
236 | * can be sure that the memory has not been meanwhile reused for some | |
237 | * other kind of object (which our subsystem's lock might corrupt). | |
238 | * | |
239 | * rcu_read_lock before reading the address, then rcu_read_unlock after | |
240 | * taking the spinlock within the structure expected at that address. | |
241 | * | |
242 | * We assume struct slab_rcu can overlay struct slab when destroying. | |
243 | */ | |
244 | struct slab_rcu { | |
245 | struct rcu_head head; | |
246 | kmem_cache_t *cachep; | |
247 | void *addr; | |
248 | }; | |
249 | ||
250 | /* | |
251 | * struct array_cache | |
252 | * | |
1da177e4 LT |
253 | * Purpose: |
254 | * - LIFO ordering, to hand out cache-warm objects from _alloc | |
255 | * - reduce the number of linked list operations | |
256 | * - reduce spinlock operations | |
257 | * | |
258 | * The limit is stored in the per-cpu structure to reduce the data cache | |
259 | * footprint. | |
260 | * | |
261 | */ | |
262 | struct array_cache { | |
263 | unsigned int avail; | |
264 | unsigned int limit; | |
265 | unsigned int batchcount; | |
266 | unsigned int touched; | |
e498be7d CL |
267 | spinlock_t lock; |
268 | void *entry[0]; /* | |
269 | * Must have this definition in here for the proper | |
270 | * alignment of array_cache. Also simplifies accessing | |
271 | * the entries. | |
272 | * [0] is for gcc 2.95. It should really be []. | |
273 | */ | |
1da177e4 LT |
274 | }; |
275 | ||
276 | /* bootstrap: The caches do not work without cpuarrays anymore, | |
277 | * but the cpuarrays are allocated from the generic caches... | |
278 | */ | |
279 | #define BOOT_CPUCACHE_ENTRIES 1 | |
280 | struct arraycache_init { | |
281 | struct array_cache cache; | |
282 | void * entries[BOOT_CPUCACHE_ENTRIES]; | |
283 | }; | |
284 | ||
285 | /* | |
e498be7d | 286 | * The slab lists for all objects. |
1da177e4 LT |
287 | */ |
288 | struct kmem_list3 { | |
289 | struct list_head slabs_partial; /* partial list first, better asm code */ | |
290 | struct list_head slabs_full; | |
291 | struct list_head slabs_free; | |
292 | unsigned long free_objects; | |
1da177e4 | 293 | unsigned long next_reap; |
e498be7d CL |
294 | int free_touched; |
295 | unsigned int free_limit; | |
296 | spinlock_t list_lock; | |
297 | struct array_cache *shared; /* shared per node */ | |
298 | struct array_cache **alien; /* on other nodes */ | |
1da177e4 LT |
299 | }; |
300 | ||
e498be7d CL |
301 | /* |
302 | * Need this for bootstrapping a per node allocator. | |
303 | */ | |
304 | #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1) | |
305 | struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; | |
306 | #define CACHE_CACHE 0 | |
307 | #define SIZE_AC 1 | |
308 | #define SIZE_L3 (1 + MAX_NUMNODES) | |
309 | ||
310 | /* | |
311 | * This function may be completely optimized away if | |
312 | * a constant is passed to it. Mostly the same as | |
313 | * what is in linux/slab.h except it returns an | |
314 | * index. | |
315 | */ | |
316 | static inline int index_of(const size_t size) | |
317 | { | |
318 | if (__builtin_constant_p(size)) { | |
319 | int i = 0; | |
320 | ||
321 | #define CACHE(x) \ | |
322 | if (size <=x) \ | |
323 | return i; \ | |
324 | else \ | |
325 | i++; | |
326 | #include "linux/kmalloc_sizes.h" | |
327 | #undef CACHE | |
328 | { | |
329 | extern void __bad_size(void); | |
330 | __bad_size(); | |
331 | } | |
1da177e4 | 332 | } |
e498be7d CL |
333 | return 0; |
334 | } | |
335 | ||
336 | #define INDEX_AC index_of(sizeof(struct arraycache_init)) | |
337 | #define INDEX_L3 index_of(sizeof(struct kmem_list3)) | |
1da177e4 | 338 | |
e498be7d CL |
339 | static inline void kmem_list3_init(struct kmem_list3 *parent) |
340 | { | |
341 | INIT_LIST_HEAD(&parent->slabs_full); | |
342 | INIT_LIST_HEAD(&parent->slabs_partial); | |
343 | INIT_LIST_HEAD(&parent->slabs_free); | |
344 | parent->shared = NULL; | |
345 | parent->alien = NULL; | |
346 | spin_lock_init(&parent->list_lock); | |
347 | parent->free_objects = 0; | |
348 | parent->free_touched = 0; | |
349 | } | |
350 | ||
351 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ | |
352 | do { \ | |
353 | INIT_LIST_HEAD(listp); \ | |
354 | list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ | |
355 | } while (0) | |
356 | ||
357 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ | |
358 | do { \ | |
359 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ | |
360 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | |
361 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | |
362 | } while (0) | |
1da177e4 LT |
363 | |
364 | /* | |
365 | * kmem_cache_t | |
366 | * | |
367 | * manages a cache. | |
368 | */ | |
369 | ||
370 | struct kmem_cache_s { | |
371 | /* 1) per-cpu data, touched during every alloc/free */ | |
372 | struct array_cache *array[NR_CPUS]; | |
373 | unsigned int batchcount; | |
374 | unsigned int limit; | |
e498be7d | 375 | unsigned int shared; |
1da177e4 | 376 | unsigned int objsize; |
e498be7d CL |
377 | /* 2) touched by every alloc & free from the backend */ |
378 | struct kmem_list3 *nodelists[MAX_NUMNODES]; | |
1da177e4 LT |
379 | unsigned int flags; /* constant flags */ |
380 | unsigned int num; /* # of objs per slab */ | |
1da177e4 LT |
381 | spinlock_t spinlock; |
382 | ||
383 | /* 3) cache_grow/shrink */ | |
384 | /* order of pgs per slab (2^n) */ | |
385 | unsigned int gfporder; | |
386 | ||
387 | /* force GFP flags, e.g. GFP_DMA */ | |
388 | unsigned int gfpflags; | |
389 | ||
390 | size_t colour; /* cache colouring range */ | |
391 | unsigned int colour_off; /* colour offset */ | |
392 | unsigned int colour_next; /* cache colouring */ | |
393 | kmem_cache_t *slabp_cache; | |
394 | unsigned int slab_size; | |
395 | unsigned int dflags; /* dynamic flags */ | |
396 | ||
397 | /* constructor func */ | |
398 | void (*ctor)(void *, kmem_cache_t *, unsigned long); | |
399 | ||
400 | /* de-constructor func */ | |
401 | void (*dtor)(void *, kmem_cache_t *, unsigned long); | |
402 | ||
403 | /* 4) cache creation/removal */ | |
404 | const char *name; | |
405 | struct list_head next; | |
406 | ||
407 | /* 5) statistics */ | |
408 | #if STATS | |
409 | unsigned long num_active; | |
410 | unsigned long num_allocations; | |
411 | unsigned long high_mark; | |
412 | unsigned long grown; | |
413 | unsigned long reaped; | |
414 | unsigned long errors; | |
415 | unsigned long max_freeable; | |
416 | unsigned long node_allocs; | |
e498be7d | 417 | unsigned long node_frees; |
1da177e4 LT |
418 | atomic_t allochit; |
419 | atomic_t allocmiss; | |
420 | atomic_t freehit; | |
421 | atomic_t freemiss; | |
422 | #endif | |
423 | #if DEBUG | |
424 | int dbghead; | |
425 | int reallen; | |
426 | #endif | |
427 | }; | |
428 | ||
429 | #define CFLGS_OFF_SLAB (0x80000000UL) | |
430 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) | |
431 | ||
432 | #define BATCHREFILL_LIMIT 16 | |
433 | /* Optimization question: fewer reaps means less | |
434 | * probability for unnessary cpucache drain/refill cycles. | |
435 | * | |
436 | * OTHO the cpuarrays can contain lots of objects, | |
437 | * which could lock up otherwise freeable slabs. | |
438 | */ | |
439 | #define REAPTIMEOUT_CPUC (2*HZ) | |
440 | #define REAPTIMEOUT_LIST3 (4*HZ) | |
441 | ||
442 | #if STATS | |
443 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | |
444 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | |
445 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | |
446 | #define STATS_INC_GROWN(x) ((x)->grown++) | |
447 | #define STATS_INC_REAPED(x) ((x)->reaped++) | |
448 | #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \ | |
449 | (x)->high_mark = (x)->num_active; \ | |
450 | } while (0) | |
451 | #define STATS_INC_ERR(x) ((x)->errors++) | |
452 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | |
e498be7d | 453 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
1da177e4 LT |
454 | #define STATS_SET_FREEABLE(x, i) \ |
455 | do { if ((x)->max_freeable < i) \ | |
456 | (x)->max_freeable = i; \ | |
457 | } while (0) | |
458 | ||
459 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) | |
460 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | |
461 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | |
462 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | |
463 | #else | |
464 | #define STATS_INC_ACTIVE(x) do { } while (0) | |
465 | #define STATS_DEC_ACTIVE(x) do { } while (0) | |
466 | #define STATS_INC_ALLOCED(x) do { } while (0) | |
467 | #define STATS_INC_GROWN(x) do { } while (0) | |
468 | #define STATS_INC_REAPED(x) do { } while (0) | |
469 | #define STATS_SET_HIGH(x) do { } while (0) | |
470 | #define STATS_INC_ERR(x) do { } while (0) | |
471 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | |
e498be7d | 472 | #define STATS_INC_NODEFREES(x) do { } while (0) |
1da177e4 LT |
473 | #define STATS_SET_FREEABLE(x, i) \ |
474 | do { } while (0) | |
475 | ||
476 | #define STATS_INC_ALLOCHIT(x) do { } while (0) | |
477 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | |
478 | #define STATS_INC_FREEHIT(x) do { } while (0) | |
479 | #define STATS_INC_FREEMISS(x) do { } while (0) | |
480 | #endif | |
481 | ||
482 | #if DEBUG | |
483 | /* Magic nums for obj red zoning. | |
484 | * Placed in the first word before and the first word after an obj. | |
485 | */ | |
486 | #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */ | |
487 | #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */ | |
488 | ||
489 | /* ...and for poisoning */ | |
490 | #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */ | |
491 | #define POISON_FREE 0x6b /* for use-after-free poisoning */ | |
492 | #define POISON_END 0xa5 /* end-byte of poisoning */ | |
493 | ||
494 | /* memory layout of objects: | |
495 | * 0 : objp | |
496 | * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that | |
497 | * the end of an object is aligned with the end of the real | |
498 | * allocation. Catches writes behind the end of the allocation. | |
499 | * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1: | |
500 | * redzone word. | |
501 | * cachep->dbghead: The real object. | |
502 | * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] | |
503 | * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long] | |
504 | */ | |
505 | static int obj_dbghead(kmem_cache_t *cachep) | |
506 | { | |
507 | return cachep->dbghead; | |
508 | } | |
509 | ||
510 | static int obj_reallen(kmem_cache_t *cachep) | |
511 | { | |
512 | return cachep->reallen; | |
513 | } | |
514 | ||
515 | static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp) | |
516 | { | |
517 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
518 | return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD); | |
519 | } | |
520 | ||
521 | static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp) | |
522 | { | |
523 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
524 | if (cachep->flags & SLAB_STORE_USER) | |
525 | return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD); | |
526 | return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD); | |
527 | } | |
528 | ||
529 | static void **dbg_userword(kmem_cache_t *cachep, void *objp) | |
530 | { | |
531 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | |
532 | return (void**)(objp+cachep->objsize-BYTES_PER_WORD); | |
533 | } | |
534 | ||
535 | #else | |
536 | ||
537 | #define obj_dbghead(x) 0 | |
538 | #define obj_reallen(cachep) (cachep->objsize) | |
539 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;}) | |
540 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;}) | |
541 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) | |
542 | ||
543 | #endif | |
544 | ||
545 | /* | |
546 | * Maximum size of an obj (in 2^order pages) | |
547 | * and absolute limit for the gfp order. | |
548 | */ | |
549 | #if defined(CONFIG_LARGE_ALLOCS) | |
550 | #define MAX_OBJ_ORDER 13 /* up to 32Mb */ | |
551 | #define MAX_GFP_ORDER 13 /* up to 32Mb */ | |
552 | #elif defined(CONFIG_MMU) | |
553 | #define MAX_OBJ_ORDER 5 /* 32 pages */ | |
554 | #define MAX_GFP_ORDER 5 /* 32 pages */ | |
555 | #else | |
556 | #define MAX_OBJ_ORDER 8 /* up to 1Mb */ | |
557 | #define MAX_GFP_ORDER 8 /* up to 1Mb */ | |
558 | #endif | |
559 | ||
560 | /* | |
561 | * Do not go above this order unless 0 objects fit into the slab. | |
562 | */ | |
563 | #define BREAK_GFP_ORDER_HI 1 | |
564 | #define BREAK_GFP_ORDER_LO 0 | |
565 | static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; | |
566 | ||
567 | /* Macros for storing/retrieving the cachep and or slab from the | |
568 | * global 'mem_map'. These are used to find the slab an obj belongs to. | |
569 | * With kfree(), these are used to find the cache which an obj belongs to. | |
570 | */ | |
571 | #define SET_PAGE_CACHE(pg,x) ((pg)->lru.next = (struct list_head *)(x)) | |
572 | #define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->lru.next) | |
573 | #define SET_PAGE_SLAB(pg,x) ((pg)->lru.prev = (struct list_head *)(x)) | |
574 | #define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->lru.prev) | |
575 | ||
576 | /* These are the default caches for kmalloc. Custom caches can have other sizes. */ | |
577 | struct cache_sizes malloc_sizes[] = { | |
578 | #define CACHE(x) { .cs_size = (x) }, | |
579 | #include <linux/kmalloc_sizes.h> | |
580 | CACHE(ULONG_MAX) | |
581 | #undef CACHE | |
582 | }; | |
583 | EXPORT_SYMBOL(malloc_sizes); | |
584 | ||
585 | /* Must match cache_sizes above. Out of line to keep cache footprint low. */ | |
586 | struct cache_names { | |
587 | char *name; | |
588 | char *name_dma; | |
589 | }; | |
590 | ||
591 | static struct cache_names __initdata cache_names[] = { | |
592 | #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, | |
593 | #include <linux/kmalloc_sizes.h> | |
594 | { NULL, } | |
595 | #undef CACHE | |
596 | }; | |
597 | ||
598 | static struct arraycache_init initarray_cache __initdata = | |
599 | { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | |
600 | static struct arraycache_init initarray_generic = | |
601 | { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | |
602 | ||
603 | /* internal cache of cache description objs */ | |
604 | static kmem_cache_t cache_cache = { | |
1da177e4 LT |
605 | .batchcount = 1, |
606 | .limit = BOOT_CPUCACHE_ENTRIES, | |
e498be7d | 607 | .shared = 1, |
1da177e4 LT |
608 | .objsize = sizeof(kmem_cache_t), |
609 | .flags = SLAB_NO_REAP, | |
610 | .spinlock = SPIN_LOCK_UNLOCKED, | |
611 | .name = "kmem_cache", | |
612 | #if DEBUG | |
613 | .reallen = sizeof(kmem_cache_t), | |
614 | #endif | |
615 | }; | |
616 | ||
617 | /* Guard access to the cache-chain. */ | |
618 | static struct semaphore cache_chain_sem; | |
619 | static struct list_head cache_chain; | |
620 | ||
621 | /* | |
622 | * vm_enough_memory() looks at this to determine how many | |
623 | * slab-allocated pages are possibly freeable under pressure | |
624 | * | |
625 | * SLAB_RECLAIM_ACCOUNT turns this on per-slab | |
626 | */ | |
627 | atomic_t slab_reclaim_pages; | |
1da177e4 LT |
628 | |
629 | /* | |
630 | * chicken and egg problem: delay the per-cpu array allocation | |
631 | * until the general caches are up. | |
632 | */ | |
633 | static enum { | |
634 | NONE, | |
e498be7d CL |
635 | PARTIAL_AC, |
636 | PARTIAL_L3, | |
1da177e4 LT |
637 | FULL |
638 | } g_cpucache_up; | |
639 | ||
640 | static DEFINE_PER_CPU(struct work_struct, reap_work); | |
641 | ||
642 | static void free_block(kmem_cache_t* cachep, void** objpp, int len); | |
643 | static void enable_cpucache (kmem_cache_t *cachep); | |
644 | static void cache_reap (void *unused); | |
e498be7d | 645 | static int __node_shrink(kmem_cache_t *cachep, int node); |
1da177e4 LT |
646 | |
647 | static inline struct array_cache *ac_data(kmem_cache_t *cachep) | |
648 | { | |
649 | return cachep->array[smp_processor_id()]; | |
650 | } | |
651 | ||
0db925af AD |
652 | static inline kmem_cache_t *__find_general_cachep(size_t size, |
653 | unsigned int __nocast gfpflags) | |
1da177e4 LT |
654 | { |
655 | struct cache_sizes *csizep = malloc_sizes; | |
656 | ||
657 | #if DEBUG | |
658 | /* This happens if someone tries to call | |
659 | * kmem_cache_create(), or __kmalloc(), before | |
660 | * the generic caches are initialized. | |
661 | */ | |
c7e43c78 | 662 | BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); |
1da177e4 LT |
663 | #endif |
664 | while (size > csizep->cs_size) | |
665 | csizep++; | |
666 | ||
667 | /* | |
0abf40c1 | 668 | * Really subtle: The last entry with cs->cs_size==ULONG_MAX |
1da177e4 LT |
669 | * has cs_{dma,}cachep==NULL. Thus no special case |
670 | * for large kmalloc calls required. | |
671 | */ | |
672 | if (unlikely(gfpflags & GFP_DMA)) | |
673 | return csizep->cs_dmacachep; | |
674 | return csizep->cs_cachep; | |
675 | } | |
676 | ||
0db925af AD |
677 | kmem_cache_t *kmem_find_general_cachep(size_t size, |
678 | unsigned int __nocast gfpflags) | |
97e2bde4 MS |
679 | { |
680 | return __find_general_cachep(size, gfpflags); | |
681 | } | |
682 | EXPORT_SYMBOL(kmem_find_general_cachep); | |
683 | ||
1da177e4 LT |
684 | /* Cal the num objs, wastage, and bytes left over for a given slab size. */ |
685 | static void cache_estimate(unsigned long gfporder, size_t size, size_t align, | |
686 | int flags, size_t *left_over, unsigned int *num) | |
687 | { | |
688 | int i; | |
689 | size_t wastage = PAGE_SIZE<<gfporder; | |
690 | size_t extra = 0; | |
691 | size_t base = 0; | |
692 | ||
693 | if (!(flags & CFLGS_OFF_SLAB)) { | |
694 | base = sizeof(struct slab); | |
695 | extra = sizeof(kmem_bufctl_t); | |
696 | } | |
697 | i = 0; | |
698 | while (i*size + ALIGN(base+i*extra, align) <= wastage) | |
699 | i++; | |
700 | if (i > 0) | |
701 | i--; | |
702 | ||
703 | if (i > SLAB_LIMIT) | |
704 | i = SLAB_LIMIT; | |
705 | ||
706 | *num = i; | |
707 | wastage -= i*size; | |
708 | wastage -= ALIGN(base+i*extra, align); | |
709 | *left_over = wastage; | |
710 | } | |
711 | ||
712 | #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg) | |
713 | ||
714 | static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg) | |
715 | { | |
716 | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | |
717 | function, cachep->name, msg); | |
718 | dump_stack(); | |
719 | } | |
720 | ||
721 | /* | |
722 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | |
723 | * via the workqueue/eventd. | |
724 | * Add the CPU number into the expiration time to minimize the possibility of | |
725 | * the CPUs getting into lockstep and contending for the global cache chain | |
726 | * lock. | |
727 | */ | |
728 | static void __devinit start_cpu_timer(int cpu) | |
729 | { | |
730 | struct work_struct *reap_work = &per_cpu(reap_work, cpu); | |
731 | ||
732 | /* | |
733 | * When this gets called from do_initcalls via cpucache_init(), | |
734 | * init_workqueues() has already run, so keventd will be setup | |
735 | * at that time. | |
736 | */ | |
737 | if (keventd_up() && reap_work->func == NULL) { | |
738 | INIT_WORK(reap_work, cache_reap, NULL); | |
739 | schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu); | |
740 | } | |
741 | } | |
742 | ||
e498be7d | 743 | static struct array_cache *alloc_arraycache(int node, int entries, |
1da177e4 LT |
744 | int batchcount) |
745 | { | |
746 | int memsize = sizeof(void*)*entries+sizeof(struct array_cache); | |
747 | struct array_cache *nc = NULL; | |
748 | ||
e498be7d | 749 | nc = kmalloc_node(memsize, GFP_KERNEL, node); |
1da177e4 LT |
750 | if (nc) { |
751 | nc->avail = 0; | |
752 | nc->limit = entries; | |
753 | nc->batchcount = batchcount; | |
754 | nc->touched = 0; | |
e498be7d | 755 | spin_lock_init(&nc->lock); |
1da177e4 LT |
756 | } |
757 | return nc; | |
758 | } | |
759 | ||
e498be7d CL |
760 | #ifdef CONFIG_NUMA |
761 | static inline struct array_cache **alloc_alien_cache(int node, int limit) | |
762 | { | |
763 | struct array_cache **ac_ptr; | |
764 | int memsize = sizeof(void*)*MAX_NUMNODES; | |
765 | int i; | |
766 | ||
767 | if (limit > 1) | |
768 | limit = 12; | |
769 | ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node); | |
770 | if (ac_ptr) { | |
771 | for_each_node(i) { | |
772 | if (i == node || !node_online(i)) { | |
773 | ac_ptr[i] = NULL; | |
774 | continue; | |
775 | } | |
776 | ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d); | |
777 | if (!ac_ptr[i]) { | |
778 | for (i--; i <=0; i--) | |
779 | kfree(ac_ptr[i]); | |
780 | kfree(ac_ptr); | |
781 | return NULL; | |
782 | } | |
783 | } | |
784 | } | |
785 | return ac_ptr; | |
786 | } | |
787 | ||
788 | static inline void free_alien_cache(struct array_cache **ac_ptr) | |
789 | { | |
790 | int i; | |
791 | ||
792 | if (!ac_ptr) | |
793 | return; | |
794 | ||
795 | for_each_node(i) | |
796 | kfree(ac_ptr[i]); | |
797 | ||
798 | kfree(ac_ptr); | |
799 | } | |
800 | ||
801 | static inline void __drain_alien_cache(kmem_cache_t *cachep, struct array_cache *ac, int node) | |
802 | { | |
803 | struct kmem_list3 *rl3 = cachep->nodelists[node]; | |
804 | ||
805 | if (ac->avail) { | |
806 | spin_lock(&rl3->list_lock); | |
807 | free_block(cachep, ac->entry, ac->avail); | |
808 | ac->avail = 0; | |
809 | spin_unlock(&rl3->list_lock); | |
810 | } | |
811 | } | |
812 | ||
813 | static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3) | |
814 | { | |
815 | int i=0; | |
816 | struct array_cache *ac; | |
817 | unsigned long flags; | |
818 | ||
819 | for_each_online_node(i) { | |
820 | ac = l3->alien[i]; | |
821 | if (ac) { | |
822 | spin_lock_irqsave(&ac->lock, flags); | |
823 | __drain_alien_cache(cachep, ac, i); | |
824 | spin_unlock_irqrestore(&ac->lock, flags); | |
825 | } | |
826 | } | |
827 | } | |
828 | #else | |
829 | #define alloc_alien_cache(node, limit) do { } while (0) | |
830 | #define free_alien_cache(ac_ptr) do { } while (0) | |
831 | #define drain_alien_cache(cachep, l3) do { } while (0) | |
832 | #endif | |
833 | ||
1da177e4 LT |
834 | static int __devinit cpuup_callback(struct notifier_block *nfb, |
835 | unsigned long action, void *hcpu) | |
836 | { | |
837 | long cpu = (long)hcpu; | |
838 | kmem_cache_t* cachep; | |
e498be7d CL |
839 | struct kmem_list3 *l3 = NULL; |
840 | int node = cpu_to_node(cpu); | |
841 | int memsize = sizeof(struct kmem_list3); | |
842 | struct array_cache *nc = NULL; | |
1da177e4 LT |
843 | |
844 | switch (action) { | |
845 | case CPU_UP_PREPARE: | |
846 | down(&cache_chain_sem); | |
e498be7d CL |
847 | /* we need to do this right in the beginning since |
848 | * alloc_arraycache's are going to use this list. | |
849 | * kmalloc_node allows us to add the slab to the right | |
850 | * kmem_list3 and not this cpu's kmem_list3 | |
851 | */ | |
852 | ||
1da177e4 | 853 | list_for_each_entry(cachep, &cache_chain, next) { |
e498be7d CL |
854 | /* setup the size64 kmemlist for cpu before we can |
855 | * begin anything. Make sure some other cpu on this | |
856 | * node has not already allocated this | |
857 | */ | |
858 | if (!cachep->nodelists[node]) { | |
859 | if (!(l3 = kmalloc_node(memsize, | |
860 | GFP_KERNEL, node))) | |
861 | goto bad; | |
862 | kmem_list3_init(l3); | |
863 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
864 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; | |
865 | ||
866 | cachep->nodelists[node] = l3; | |
867 | } | |
1da177e4 | 868 | |
e498be7d CL |
869 | spin_lock_irq(&cachep->nodelists[node]->list_lock); |
870 | cachep->nodelists[node]->free_limit = | |
871 | (1 + nr_cpus_node(node)) * | |
872 | cachep->batchcount + cachep->num; | |
873 | spin_unlock_irq(&cachep->nodelists[node]->list_lock); | |
874 | } | |
875 | ||
876 | /* Now we can go ahead with allocating the shared array's | |
877 | & array cache's */ | |
878 | list_for_each_entry(cachep, &cache_chain, next) { | |
879 | nc = alloc_arraycache(node, cachep->limit, | |
880 | cachep->batchcount); | |
1da177e4 LT |
881 | if (!nc) |
882 | goto bad; | |
1da177e4 | 883 | cachep->array[cpu] = nc; |
1da177e4 | 884 | |
e498be7d CL |
885 | l3 = cachep->nodelists[node]; |
886 | BUG_ON(!l3); | |
887 | if (!l3->shared) { | |
888 | if (!(nc = alloc_arraycache(node, | |
889 | cachep->shared*cachep->batchcount, | |
890 | 0xbaadf00d))) | |
891 | goto bad; | |
892 | ||
893 | /* we are serialised from CPU_DEAD or | |
894 | CPU_UP_CANCELLED by the cpucontrol lock */ | |
895 | l3->shared = nc; | |
896 | } | |
1da177e4 LT |
897 | } |
898 | up(&cache_chain_sem); | |
899 | break; | |
900 | case CPU_ONLINE: | |
901 | start_cpu_timer(cpu); | |
902 | break; | |
903 | #ifdef CONFIG_HOTPLUG_CPU | |
904 | case CPU_DEAD: | |
905 | /* fall thru */ | |
906 | case CPU_UP_CANCELED: | |
907 | down(&cache_chain_sem); | |
908 | ||
909 | list_for_each_entry(cachep, &cache_chain, next) { | |
910 | struct array_cache *nc; | |
e498be7d | 911 | cpumask_t mask; |
1da177e4 | 912 | |
e498be7d | 913 | mask = node_to_cpumask(node); |
1da177e4 LT |
914 | spin_lock_irq(&cachep->spinlock); |
915 | /* cpu is dead; no one can alloc from it. */ | |
916 | nc = cachep->array[cpu]; | |
917 | cachep->array[cpu] = NULL; | |
e498be7d CL |
918 | l3 = cachep->nodelists[node]; |
919 | ||
920 | if (!l3) | |
921 | goto unlock_cache; | |
922 | ||
923 | spin_lock(&l3->list_lock); | |
924 | ||
925 | /* Free limit for this kmem_list3 */ | |
926 | l3->free_limit -= cachep->batchcount; | |
927 | if (nc) | |
928 | free_block(cachep, nc->entry, nc->avail); | |
929 | ||
930 | if (!cpus_empty(mask)) { | |
931 | spin_unlock(&l3->list_lock); | |
932 | goto unlock_cache; | |
933 | } | |
934 | ||
935 | if (l3->shared) { | |
936 | free_block(cachep, l3->shared->entry, | |
937 | l3->shared->avail); | |
938 | kfree(l3->shared); | |
939 | l3->shared = NULL; | |
940 | } | |
941 | if (l3->alien) { | |
942 | drain_alien_cache(cachep, l3); | |
943 | free_alien_cache(l3->alien); | |
944 | l3->alien = NULL; | |
945 | } | |
946 | ||
947 | /* free slabs belonging to this node */ | |
948 | if (__node_shrink(cachep, node)) { | |
949 | cachep->nodelists[node] = NULL; | |
950 | spin_unlock(&l3->list_lock); | |
951 | kfree(l3); | |
952 | } else { | |
953 | spin_unlock(&l3->list_lock); | |
954 | } | |
955 | unlock_cache: | |
1da177e4 LT |
956 | spin_unlock_irq(&cachep->spinlock); |
957 | kfree(nc); | |
958 | } | |
959 | up(&cache_chain_sem); | |
960 | break; | |
961 | #endif | |
962 | } | |
963 | return NOTIFY_OK; | |
964 | bad: | |
965 | up(&cache_chain_sem); | |
966 | return NOTIFY_BAD; | |
967 | } | |
968 | ||
969 | static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 }; | |
970 | ||
e498be7d CL |
971 | /* |
972 | * swap the static kmem_list3 with kmalloced memory | |
973 | */ | |
974 | static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, | |
975 | int nodeid) | |
976 | { | |
977 | struct kmem_list3 *ptr; | |
978 | ||
979 | BUG_ON(cachep->nodelists[nodeid] != list); | |
980 | ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid); | |
981 | BUG_ON(!ptr); | |
982 | ||
983 | local_irq_disable(); | |
984 | memcpy(ptr, list, sizeof(struct kmem_list3)); | |
985 | MAKE_ALL_LISTS(cachep, ptr, nodeid); | |
986 | cachep->nodelists[nodeid] = ptr; | |
987 | local_irq_enable(); | |
988 | } | |
989 | ||
1da177e4 LT |
990 | /* Initialisation. |
991 | * Called after the gfp() functions have been enabled, and before smp_init(). | |
992 | */ | |
993 | void __init kmem_cache_init(void) | |
994 | { | |
995 | size_t left_over; | |
996 | struct cache_sizes *sizes; | |
997 | struct cache_names *names; | |
e498be7d CL |
998 | int i; |
999 | ||
1000 | for (i = 0; i < NUM_INIT_LISTS; i++) { | |
1001 | kmem_list3_init(&initkmem_list3[i]); | |
1002 | if (i < MAX_NUMNODES) | |
1003 | cache_cache.nodelists[i] = NULL; | |
1004 | } | |
1da177e4 LT |
1005 | |
1006 | /* | |
1007 | * Fragmentation resistance on low memory - only use bigger | |
1008 | * page orders on machines with more than 32MB of memory. | |
1009 | */ | |
1010 | if (num_physpages > (32 << 20) >> PAGE_SHIFT) | |
1011 | slab_break_gfp_order = BREAK_GFP_ORDER_HI; | |
1012 | ||
1da177e4 LT |
1013 | /* Bootstrap is tricky, because several objects are allocated |
1014 | * from caches that do not exist yet: | |
1015 | * 1) initialize the cache_cache cache: it contains the kmem_cache_t | |
1016 | * structures of all caches, except cache_cache itself: cache_cache | |
1017 | * is statically allocated. | |
e498be7d CL |
1018 | * Initially an __init data area is used for the head array and the |
1019 | * kmem_list3 structures, it's replaced with a kmalloc allocated | |
1020 | * array at the end of the bootstrap. | |
1da177e4 | 1021 | * 2) Create the first kmalloc cache. |
e498be7d CL |
1022 | * The kmem_cache_t for the new cache is allocated normally. |
1023 | * An __init data area is used for the head array. | |
1024 | * 3) Create the remaining kmalloc caches, with minimally sized | |
1025 | * head arrays. | |
1da177e4 LT |
1026 | * 4) Replace the __init data head arrays for cache_cache and the first |
1027 | * kmalloc cache with kmalloc allocated arrays. | |
e498be7d CL |
1028 | * 5) Replace the __init data for kmem_list3 for cache_cache and |
1029 | * the other cache's with kmalloc allocated memory. | |
1030 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | |
1da177e4 LT |
1031 | */ |
1032 | ||
1033 | /* 1) create the cache_cache */ | |
1034 | init_MUTEX(&cache_chain_sem); | |
1035 | INIT_LIST_HEAD(&cache_chain); | |
1036 | list_add(&cache_cache.next, &cache_chain); | |
1037 | cache_cache.colour_off = cache_line_size(); | |
1038 | cache_cache.array[smp_processor_id()] = &initarray_cache.cache; | |
e498be7d | 1039 | cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE]; |
1da177e4 LT |
1040 | |
1041 | cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size()); | |
1042 | ||
1043 | cache_estimate(0, cache_cache.objsize, cache_line_size(), 0, | |
1044 | &left_over, &cache_cache.num); | |
1045 | if (!cache_cache.num) | |
1046 | BUG(); | |
1047 | ||
1048 | cache_cache.colour = left_over/cache_cache.colour_off; | |
1049 | cache_cache.colour_next = 0; | |
1050 | cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) + | |
1051 | sizeof(struct slab), cache_line_size()); | |
1052 | ||
1053 | /* 2+3) create the kmalloc caches */ | |
1054 | sizes = malloc_sizes; | |
1055 | names = cache_names; | |
1056 | ||
e498be7d CL |
1057 | /* Initialize the caches that provide memory for the array cache |
1058 | * and the kmem_list3 structures first. | |
1059 | * Without this, further allocations will bug | |
1060 | */ | |
1061 | ||
1062 | sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, | |
1063 | sizes[INDEX_AC].cs_size, ARCH_KMALLOC_MINALIGN, | |
1064 | (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); | |
1065 | ||
1066 | if (INDEX_AC != INDEX_L3) | |
1067 | sizes[INDEX_L3].cs_cachep = | |
1068 | kmem_cache_create(names[INDEX_L3].name, | |
1069 | sizes[INDEX_L3].cs_size, ARCH_KMALLOC_MINALIGN, | |
1070 | (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); | |
1071 | ||
1da177e4 | 1072 | while (sizes->cs_size != ULONG_MAX) { |
e498be7d CL |
1073 | /* |
1074 | * For performance, all the general caches are L1 aligned. | |
1da177e4 LT |
1075 | * This should be particularly beneficial on SMP boxes, as it |
1076 | * eliminates "false sharing". | |
1077 | * Note for systems short on memory removing the alignment will | |
e498be7d CL |
1078 | * allow tighter packing of the smaller caches. |
1079 | */ | |
1080 | if(!sizes->cs_cachep) | |
1081 | sizes->cs_cachep = kmem_cache_create(names->name, | |
1082 | sizes->cs_size, ARCH_KMALLOC_MINALIGN, | |
1083 | (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); | |
1da177e4 LT |
1084 | |
1085 | /* Inc off-slab bufctl limit until the ceiling is hit. */ | |
1086 | if (!(OFF_SLAB(sizes->cs_cachep))) { | |
1087 | offslab_limit = sizes->cs_size-sizeof(struct slab); | |
1088 | offslab_limit /= sizeof(kmem_bufctl_t); | |
1089 | } | |
1090 | ||
1091 | sizes->cs_dmacachep = kmem_cache_create(names->name_dma, | |
1092 | sizes->cs_size, ARCH_KMALLOC_MINALIGN, | |
1093 | (ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC), | |
1094 | NULL, NULL); | |
1095 | ||
1096 | sizes++; | |
1097 | names++; | |
1098 | } | |
1099 | /* 4) Replace the bootstrap head arrays */ | |
1100 | { | |
1101 | void * ptr; | |
e498be7d | 1102 | |
1da177e4 | 1103 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); |
e498be7d | 1104 | |
1da177e4 LT |
1105 | local_irq_disable(); |
1106 | BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache); | |
e498be7d CL |
1107 | memcpy(ptr, ac_data(&cache_cache), |
1108 | sizeof(struct arraycache_init)); | |
1da177e4 LT |
1109 | cache_cache.array[smp_processor_id()] = ptr; |
1110 | local_irq_enable(); | |
e498be7d | 1111 | |
1da177e4 | 1112 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); |
e498be7d | 1113 | |
1da177e4 | 1114 | local_irq_disable(); |
e498be7d CL |
1115 | BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep) |
1116 | != &initarray_generic.cache); | |
1117 | memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep), | |
1da177e4 | 1118 | sizeof(struct arraycache_init)); |
e498be7d CL |
1119 | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = |
1120 | ptr; | |
1da177e4 LT |
1121 | local_irq_enable(); |
1122 | } | |
e498be7d CL |
1123 | /* 5) Replace the bootstrap kmem_list3's */ |
1124 | { | |
1125 | int node; | |
1126 | /* Replace the static kmem_list3 structures for the boot cpu */ | |
1127 | init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], | |
1128 | numa_node_id()); | |
1129 | ||
1130 | for_each_online_node(node) { | |
1131 | init_list(malloc_sizes[INDEX_AC].cs_cachep, | |
1132 | &initkmem_list3[SIZE_AC+node], node); | |
1133 | ||
1134 | if (INDEX_AC != INDEX_L3) { | |
1135 | init_list(malloc_sizes[INDEX_L3].cs_cachep, | |
1136 | &initkmem_list3[SIZE_L3+node], | |
1137 | node); | |
1138 | } | |
1139 | } | |
1140 | } | |
1da177e4 | 1141 | |
e498be7d | 1142 | /* 6) resize the head arrays to their final sizes */ |
1da177e4 LT |
1143 | { |
1144 | kmem_cache_t *cachep; | |
1145 | down(&cache_chain_sem); | |
1146 | list_for_each_entry(cachep, &cache_chain, next) | |
1147 | enable_cpucache(cachep); | |
1148 | up(&cache_chain_sem); | |
1149 | } | |
1150 | ||
1151 | /* Done! */ | |
1152 | g_cpucache_up = FULL; | |
1153 | ||
1154 | /* Register a cpu startup notifier callback | |
1155 | * that initializes ac_data for all new cpus | |
1156 | */ | |
1157 | register_cpu_notifier(&cpucache_notifier); | |
1da177e4 LT |
1158 | |
1159 | /* The reap timers are started later, with a module init call: | |
1160 | * That part of the kernel is not yet operational. | |
1161 | */ | |
1162 | } | |
1163 | ||
1164 | static int __init cpucache_init(void) | |
1165 | { | |
1166 | int cpu; | |
1167 | ||
1168 | /* | |
1169 | * Register the timers that return unneeded | |
1170 | * pages to gfp. | |
1171 | */ | |
e498be7d CL |
1172 | for_each_online_cpu(cpu) |
1173 | start_cpu_timer(cpu); | |
1da177e4 LT |
1174 | |
1175 | return 0; | |
1176 | } | |
1177 | ||
1178 | __initcall(cpucache_init); | |
1179 | ||
1180 | /* | |
1181 | * Interface to system's page allocator. No need to hold the cache-lock. | |
1182 | * | |
1183 | * If we requested dmaable memory, we will get it. Even if we | |
1184 | * did not request dmaable memory, we might get it, but that | |
1185 | * would be relatively rare and ignorable. | |
1186 | */ | |
1187 | static void *kmem_getpages(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid) | |
1188 | { | |
1189 | struct page *page; | |
1190 | void *addr; | |
1191 | int i; | |
1192 | ||
1193 | flags |= cachep->gfpflags; | |
1194 | if (likely(nodeid == -1)) { | |
1195 | page = alloc_pages(flags, cachep->gfporder); | |
1196 | } else { | |
1197 | page = alloc_pages_node(nodeid, flags, cachep->gfporder); | |
1198 | } | |
1199 | if (!page) | |
1200 | return NULL; | |
1201 | addr = page_address(page); | |
1202 | ||
1203 | i = (1 << cachep->gfporder); | |
1204 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | |
1205 | atomic_add(i, &slab_reclaim_pages); | |
1206 | add_page_state(nr_slab, i); | |
1207 | while (i--) { | |
1208 | SetPageSlab(page); | |
1209 | page++; | |
1210 | } | |
1211 | return addr; | |
1212 | } | |
1213 | ||
1214 | /* | |
1215 | * Interface to system's page release. | |
1216 | */ | |
1217 | static void kmem_freepages(kmem_cache_t *cachep, void *addr) | |
1218 | { | |
1219 | unsigned long i = (1<<cachep->gfporder); | |
1220 | struct page *page = virt_to_page(addr); | |
1221 | const unsigned long nr_freed = i; | |
1222 | ||
1223 | while (i--) { | |
1224 | if (!TestClearPageSlab(page)) | |
1225 | BUG(); | |
1226 | page++; | |
1227 | } | |
1228 | sub_page_state(nr_slab, nr_freed); | |
1229 | if (current->reclaim_state) | |
1230 | current->reclaim_state->reclaimed_slab += nr_freed; | |
1231 | free_pages((unsigned long)addr, cachep->gfporder); | |
1232 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | |
1233 | atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages); | |
1234 | } | |
1235 | ||
1236 | static void kmem_rcu_free(struct rcu_head *head) | |
1237 | { | |
1238 | struct slab_rcu *slab_rcu = (struct slab_rcu *) head; | |
1239 | kmem_cache_t *cachep = slab_rcu->cachep; | |
1240 | ||
1241 | kmem_freepages(cachep, slab_rcu->addr); | |
1242 | if (OFF_SLAB(cachep)) | |
1243 | kmem_cache_free(cachep->slabp_cache, slab_rcu); | |
1244 | } | |
1245 | ||
1246 | #if DEBUG | |
1247 | ||
1248 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
1249 | static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, | |
1250 | unsigned long caller) | |
1251 | { | |
1252 | int size = obj_reallen(cachep); | |
1253 | ||
1254 | addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)]; | |
1255 | ||
1256 | if (size < 5*sizeof(unsigned long)) | |
1257 | return; | |
1258 | ||
1259 | *addr++=0x12345678; | |
1260 | *addr++=caller; | |
1261 | *addr++=smp_processor_id(); | |
1262 | size -= 3*sizeof(unsigned long); | |
1263 | { | |
1264 | unsigned long *sptr = &caller; | |
1265 | unsigned long svalue; | |
1266 | ||
1267 | while (!kstack_end(sptr)) { | |
1268 | svalue = *sptr++; | |
1269 | if (kernel_text_address(svalue)) { | |
1270 | *addr++=svalue; | |
1271 | size -= sizeof(unsigned long); | |
1272 | if (size <= sizeof(unsigned long)) | |
1273 | break; | |
1274 | } | |
1275 | } | |
1276 | ||
1277 | } | |
1278 | *addr++=0x87654321; | |
1279 | } | |
1280 | #endif | |
1281 | ||
1282 | static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val) | |
1283 | { | |
1284 | int size = obj_reallen(cachep); | |
1285 | addr = &((char*)addr)[obj_dbghead(cachep)]; | |
1286 | ||
1287 | memset(addr, val, size); | |
1288 | *(unsigned char *)(addr+size-1) = POISON_END; | |
1289 | } | |
1290 | ||
1291 | static void dump_line(char *data, int offset, int limit) | |
1292 | { | |
1293 | int i; | |
1294 | printk(KERN_ERR "%03x:", offset); | |
1295 | for (i=0;i<limit;i++) { | |
1296 | printk(" %02x", (unsigned char)data[offset+i]); | |
1297 | } | |
1298 | printk("\n"); | |
1299 | } | |
1300 | #endif | |
1301 | ||
1302 | #if DEBUG | |
1303 | ||
1304 | static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines) | |
1305 | { | |
1306 | int i, size; | |
1307 | char *realobj; | |
1308 | ||
1309 | if (cachep->flags & SLAB_RED_ZONE) { | |
1310 | printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n", | |
1311 | *dbg_redzone1(cachep, objp), | |
1312 | *dbg_redzone2(cachep, objp)); | |
1313 | } | |
1314 | ||
1315 | if (cachep->flags & SLAB_STORE_USER) { | |
1316 | printk(KERN_ERR "Last user: [<%p>]", | |
1317 | *dbg_userword(cachep, objp)); | |
1318 | print_symbol("(%s)", | |
1319 | (unsigned long)*dbg_userword(cachep, objp)); | |
1320 | printk("\n"); | |
1321 | } | |
1322 | realobj = (char*)objp+obj_dbghead(cachep); | |
1323 | size = obj_reallen(cachep); | |
1324 | for (i=0; i<size && lines;i+=16, lines--) { | |
1325 | int limit; | |
1326 | limit = 16; | |
1327 | if (i+limit > size) | |
1328 | limit = size-i; | |
1329 | dump_line(realobj, i, limit); | |
1330 | } | |
1331 | } | |
1332 | ||
1333 | static void check_poison_obj(kmem_cache_t *cachep, void *objp) | |
1334 | { | |
1335 | char *realobj; | |
1336 | int size, i; | |
1337 | int lines = 0; | |
1338 | ||
1339 | realobj = (char*)objp+obj_dbghead(cachep); | |
1340 | size = obj_reallen(cachep); | |
1341 | ||
1342 | for (i=0;i<size;i++) { | |
1343 | char exp = POISON_FREE; | |
1344 | if (i == size-1) | |
1345 | exp = POISON_END; | |
1346 | if (realobj[i] != exp) { | |
1347 | int limit; | |
1348 | /* Mismatch ! */ | |
1349 | /* Print header */ | |
1350 | if (lines == 0) { | |
1351 | printk(KERN_ERR "Slab corruption: start=%p, len=%d\n", | |
1352 | realobj, size); | |
1353 | print_objinfo(cachep, objp, 0); | |
1354 | } | |
1355 | /* Hexdump the affected line */ | |
1356 | i = (i/16)*16; | |
1357 | limit = 16; | |
1358 | if (i+limit > size) | |
1359 | limit = size-i; | |
1360 | dump_line(realobj, i, limit); | |
1361 | i += 16; | |
1362 | lines++; | |
1363 | /* Limit to 5 lines */ | |
1364 | if (lines > 5) | |
1365 | break; | |
1366 | } | |
1367 | } | |
1368 | if (lines != 0) { | |
1369 | /* Print some data about the neighboring objects, if they | |
1370 | * exist: | |
1371 | */ | |
1372 | struct slab *slabp = GET_PAGE_SLAB(virt_to_page(objp)); | |
1373 | int objnr; | |
1374 | ||
1375 | objnr = (objp-slabp->s_mem)/cachep->objsize; | |
1376 | if (objnr) { | |
1377 | objp = slabp->s_mem+(objnr-1)*cachep->objsize; | |
1378 | realobj = (char*)objp+obj_dbghead(cachep); | |
1379 | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", | |
1380 | realobj, size); | |
1381 | print_objinfo(cachep, objp, 2); | |
1382 | } | |
1383 | if (objnr+1 < cachep->num) { | |
1384 | objp = slabp->s_mem+(objnr+1)*cachep->objsize; | |
1385 | realobj = (char*)objp+obj_dbghead(cachep); | |
1386 | printk(KERN_ERR "Next obj: start=%p, len=%d\n", | |
1387 | realobj, size); | |
1388 | print_objinfo(cachep, objp, 2); | |
1389 | } | |
1390 | } | |
1391 | } | |
1392 | #endif | |
1393 | ||
1394 | /* Destroy all the objs in a slab, and release the mem back to the system. | |
1395 | * Before calling the slab must have been unlinked from the cache. | |
1396 | * The cache-lock is not held/needed. | |
1397 | */ | |
1398 | static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) | |
1399 | { | |
1400 | void *addr = slabp->s_mem - slabp->colouroff; | |
1401 | ||
1402 | #if DEBUG | |
1403 | int i; | |
1404 | for (i = 0; i < cachep->num; i++) { | |
1405 | void *objp = slabp->s_mem + cachep->objsize * i; | |
1406 | ||
1407 | if (cachep->flags & SLAB_POISON) { | |
1408 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
1409 | if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep)) | |
1410 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1); | |
1411 | else | |
1412 | check_poison_obj(cachep, objp); | |
1413 | #else | |
1414 | check_poison_obj(cachep, objp); | |
1415 | #endif | |
1416 | } | |
1417 | if (cachep->flags & SLAB_RED_ZONE) { | |
1418 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
1419 | slab_error(cachep, "start of a freed object " | |
1420 | "was overwritten"); | |
1421 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
1422 | slab_error(cachep, "end of a freed object " | |
1423 | "was overwritten"); | |
1424 | } | |
1425 | if (cachep->dtor && !(cachep->flags & SLAB_POISON)) | |
1426 | (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0); | |
1427 | } | |
1428 | #else | |
1429 | if (cachep->dtor) { | |
1430 | int i; | |
1431 | for (i = 0; i < cachep->num; i++) { | |
1432 | void* objp = slabp->s_mem+cachep->objsize*i; | |
1433 | (cachep->dtor)(objp, cachep, 0); | |
1434 | } | |
1435 | } | |
1436 | #endif | |
1437 | ||
1438 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { | |
1439 | struct slab_rcu *slab_rcu; | |
1440 | ||
1441 | slab_rcu = (struct slab_rcu *) slabp; | |
1442 | slab_rcu->cachep = cachep; | |
1443 | slab_rcu->addr = addr; | |
1444 | call_rcu(&slab_rcu->head, kmem_rcu_free); | |
1445 | } else { | |
1446 | kmem_freepages(cachep, addr); | |
1447 | if (OFF_SLAB(cachep)) | |
1448 | kmem_cache_free(cachep->slabp_cache, slabp); | |
1449 | } | |
1450 | } | |
1451 | ||
e498be7d CL |
1452 | /* For setting up all the kmem_list3s for cache whose objsize is same |
1453 | as size of kmem_list3. */ | |
1454 | static inline void set_up_list3s(kmem_cache_t *cachep, int index) | |
1455 | { | |
1456 | int node; | |
1457 | ||
1458 | for_each_online_node(node) { | |
1459 | cachep->nodelists[node] = &initkmem_list3[index+node]; | |
1460 | cachep->nodelists[node]->next_reap = jiffies + | |
1461 | REAPTIMEOUT_LIST3 + | |
1462 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; | |
1463 | } | |
1464 | } | |
1465 | ||
1da177e4 LT |
1466 | /** |
1467 | * kmem_cache_create - Create a cache. | |
1468 | * @name: A string which is used in /proc/slabinfo to identify this cache. | |
1469 | * @size: The size of objects to be created in this cache. | |
1470 | * @align: The required alignment for the objects. | |
1471 | * @flags: SLAB flags | |
1472 | * @ctor: A constructor for the objects. | |
1473 | * @dtor: A destructor for the objects. | |
1474 | * | |
1475 | * Returns a ptr to the cache on success, NULL on failure. | |
1476 | * Cannot be called within a int, but can be interrupted. | |
1477 | * The @ctor is run when new pages are allocated by the cache | |
1478 | * and the @dtor is run before the pages are handed back. | |
1479 | * | |
1480 | * @name must be valid until the cache is destroyed. This implies that | |
1481 | * the module calling this has to destroy the cache before getting | |
1482 | * unloaded. | |
1483 | * | |
1484 | * The flags are | |
1485 | * | |
1486 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
1487 | * to catch references to uninitialised memory. | |
1488 | * | |
1489 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
1490 | * for buffer overruns. | |
1491 | * | |
1492 | * %SLAB_NO_REAP - Don't automatically reap this cache when we're under | |
1493 | * memory pressure. | |
1494 | * | |
1495 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | |
1496 | * cacheline. This can be beneficial if you're counting cycles as closely | |
1497 | * as davem. | |
1498 | */ | |
1499 | kmem_cache_t * | |
1500 | kmem_cache_create (const char *name, size_t size, size_t align, | |
1501 | unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long), | |
1502 | void (*dtor)(void*, kmem_cache_t *, unsigned long)) | |
1503 | { | |
1504 | size_t left_over, slab_size, ralign; | |
1505 | kmem_cache_t *cachep = NULL; | |
1506 | ||
1507 | /* | |
1508 | * Sanity checks... these are all serious usage bugs. | |
1509 | */ | |
1510 | if ((!name) || | |
1511 | in_interrupt() || | |
1512 | (size < BYTES_PER_WORD) || | |
1513 | (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) || | |
1514 | (dtor && !ctor)) { | |
1515 | printk(KERN_ERR "%s: Early error in slab %s\n", | |
1516 | __FUNCTION__, name); | |
1517 | BUG(); | |
1518 | } | |
1519 | ||
1520 | #if DEBUG | |
1521 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ | |
1522 | if ((flags & SLAB_DEBUG_INITIAL) && !ctor) { | |
1523 | /* No constructor, but inital state check requested */ | |
1524 | printk(KERN_ERR "%s: No con, but init state check " | |
1525 | "requested - %s\n", __FUNCTION__, name); | |
1526 | flags &= ~SLAB_DEBUG_INITIAL; | |
1527 | } | |
1528 | ||
1529 | #if FORCED_DEBUG | |
1530 | /* | |
1531 | * Enable redzoning and last user accounting, except for caches with | |
1532 | * large objects, if the increased size would increase the object size | |
1533 | * above the next power of two: caches with object sizes just above a | |
1534 | * power of two have a significant amount of internal fragmentation. | |
1535 | */ | |
1536 | if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD))) | |
1537 | flags |= SLAB_RED_ZONE|SLAB_STORE_USER; | |
1538 | if (!(flags & SLAB_DESTROY_BY_RCU)) | |
1539 | flags |= SLAB_POISON; | |
1540 | #endif | |
1541 | if (flags & SLAB_DESTROY_BY_RCU) | |
1542 | BUG_ON(flags & SLAB_POISON); | |
1543 | #endif | |
1544 | if (flags & SLAB_DESTROY_BY_RCU) | |
1545 | BUG_ON(dtor); | |
1546 | ||
1547 | /* | |
1548 | * Always checks flags, a caller might be expecting debug | |
1549 | * support which isn't available. | |
1550 | */ | |
1551 | if (flags & ~CREATE_MASK) | |
1552 | BUG(); | |
1553 | ||
1554 | /* Check that size is in terms of words. This is needed to avoid | |
1555 | * unaligned accesses for some archs when redzoning is used, and makes | |
1556 | * sure any on-slab bufctl's are also correctly aligned. | |
1557 | */ | |
1558 | if (size & (BYTES_PER_WORD-1)) { | |
1559 | size += (BYTES_PER_WORD-1); | |
1560 | size &= ~(BYTES_PER_WORD-1); | |
1561 | } | |
1562 | ||
1563 | /* calculate out the final buffer alignment: */ | |
1564 | /* 1) arch recommendation: can be overridden for debug */ | |
1565 | if (flags & SLAB_HWCACHE_ALIGN) { | |
1566 | /* Default alignment: as specified by the arch code. | |
1567 | * Except if an object is really small, then squeeze multiple | |
1568 | * objects into one cacheline. | |
1569 | */ | |
1570 | ralign = cache_line_size(); | |
1571 | while (size <= ralign/2) | |
1572 | ralign /= 2; | |
1573 | } else { | |
1574 | ralign = BYTES_PER_WORD; | |
1575 | } | |
1576 | /* 2) arch mandated alignment: disables debug if necessary */ | |
1577 | if (ralign < ARCH_SLAB_MINALIGN) { | |
1578 | ralign = ARCH_SLAB_MINALIGN; | |
1579 | if (ralign > BYTES_PER_WORD) | |
1580 | flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER); | |
1581 | } | |
1582 | /* 3) caller mandated alignment: disables debug if necessary */ | |
1583 | if (ralign < align) { | |
1584 | ralign = align; | |
1585 | if (ralign > BYTES_PER_WORD) | |
1586 | flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER); | |
1587 | } | |
1588 | /* 4) Store it. Note that the debug code below can reduce | |
1589 | * the alignment to BYTES_PER_WORD. | |
1590 | */ | |
1591 | align = ralign; | |
1592 | ||
1593 | /* Get cache's description obj. */ | |
1594 | cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL); | |
1595 | if (!cachep) | |
1596 | goto opps; | |
1597 | memset(cachep, 0, sizeof(kmem_cache_t)); | |
1598 | ||
1599 | #if DEBUG | |
1600 | cachep->reallen = size; | |
1601 | ||
1602 | if (flags & SLAB_RED_ZONE) { | |
1603 | /* redzoning only works with word aligned caches */ | |
1604 | align = BYTES_PER_WORD; | |
1605 | ||
1606 | /* add space for red zone words */ | |
1607 | cachep->dbghead += BYTES_PER_WORD; | |
1608 | size += 2*BYTES_PER_WORD; | |
1609 | } | |
1610 | if (flags & SLAB_STORE_USER) { | |
1611 | /* user store requires word alignment and | |
1612 | * one word storage behind the end of the real | |
1613 | * object. | |
1614 | */ | |
1615 | align = BYTES_PER_WORD; | |
1616 | size += BYTES_PER_WORD; | |
1617 | } | |
1618 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | |
e498be7d | 1619 | if (size >= malloc_sizes[INDEX_L3+1].cs_size && cachep->reallen > cache_line_size() && size < PAGE_SIZE) { |
1da177e4 LT |
1620 | cachep->dbghead += PAGE_SIZE - size; |
1621 | size = PAGE_SIZE; | |
1622 | } | |
1623 | #endif | |
1624 | #endif | |
1625 | ||
1626 | /* Determine if the slab management is 'on' or 'off' slab. */ | |
1627 | if (size >= (PAGE_SIZE>>3)) | |
1628 | /* | |
1629 | * Size is large, assume best to place the slab management obj | |
1630 | * off-slab (should allow better packing of objs). | |
1631 | */ | |
1632 | flags |= CFLGS_OFF_SLAB; | |
1633 | ||
1634 | size = ALIGN(size, align); | |
1635 | ||
1636 | if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) { | |
1637 | /* | |
1638 | * A VFS-reclaimable slab tends to have most allocations | |
1639 | * as GFP_NOFS and we really don't want to have to be allocating | |
1640 | * higher-order pages when we are unable to shrink dcache. | |
1641 | */ | |
1642 | cachep->gfporder = 0; | |
1643 | cache_estimate(cachep->gfporder, size, align, flags, | |
1644 | &left_over, &cachep->num); | |
1645 | } else { | |
1646 | /* | |
1647 | * Calculate size (in pages) of slabs, and the num of objs per | |
1648 | * slab. This could be made much more intelligent. For now, | |
1649 | * try to avoid using high page-orders for slabs. When the | |
1650 | * gfp() funcs are more friendly towards high-order requests, | |
1651 | * this should be changed. | |
1652 | */ | |
1653 | do { | |
1654 | unsigned int break_flag = 0; | |
1655 | cal_wastage: | |
1656 | cache_estimate(cachep->gfporder, size, align, flags, | |
1657 | &left_over, &cachep->num); | |
1658 | if (break_flag) | |
1659 | break; | |
1660 | if (cachep->gfporder >= MAX_GFP_ORDER) | |
1661 | break; | |
1662 | if (!cachep->num) | |
1663 | goto next; | |
1664 | if (flags & CFLGS_OFF_SLAB && | |
1665 | cachep->num > offslab_limit) { | |
1666 | /* This num of objs will cause problems. */ | |
1667 | cachep->gfporder--; | |
1668 | break_flag++; | |
1669 | goto cal_wastage; | |
1670 | } | |
1671 | ||
1672 | /* | |
1673 | * Large num of objs is good, but v. large slabs are | |
1674 | * currently bad for the gfp()s. | |
1675 | */ | |
1676 | if (cachep->gfporder >= slab_break_gfp_order) | |
1677 | break; | |
1678 | ||
1679 | if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder)) | |
1680 | break; /* Acceptable internal fragmentation. */ | |
1681 | next: | |
1682 | cachep->gfporder++; | |
1683 | } while (1); | |
1684 | } | |
1685 | ||
1686 | if (!cachep->num) { | |
1687 | printk("kmem_cache_create: couldn't create cache %s.\n", name); | |
1688 | kmem_cache_free(&cache_cache, cachep); | |
1689 | cachep = NULL; | |
1690 | goto opps; | |
1691 | } | |
1692 | slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t) | |
1693 | + sizeof(struct slab), align); | |
1694 | ||
1695 | /* | |
1696 | * If the slab has been placed off-slab, and we have enough space then | |
1697 | * move it on-slab. This is at the expense of any extra colouring. | |
1698 | */ | |
1699 | if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { | |
1700 | flags &= ~CFLGS_OFF_SLAB; | |
1701 | left_over -= slab_size; | |
1702 | } | |
1703 | ||
1704 | if (flags & CFLGS_OFF_SLAB) { | |
1705 | /* really off slab. No need for manual alignment */ | |
1706 | slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab); | |
1707 | } | |
1708 | ||
1709 | cachep->colour_off = cache_line_size(); | |
1710 | /* Offset must be a multiple of the alignment. */ | |
1711 | if (cachep->colour_off < align) | |
1712 | cachep->colour_off = align; | |
1713 | cachep->colour = left_over/cachep->colour_off; | |
1714 | cachep->slab_size = slab_size; | |
1715 | cachep->flags = flags; | |
1716 | cachep->gfpflags = 0; | |
1717 | if (flags & SLAB_CACHE_DMA) | |
1718 | cachep->gfpflags |= GFP_DMA; | |
1719 | spin_lock_init(&cachep->spinlock); | |
1720 | cachep->objsize = size; | |
1da177e4 LT |
1721 | |
1722 | if (flags & CFLGS_OFF_SLAB) | |
b2d55073 | 1723 | cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); |
1da177e4 LT |
1724 | cachep->ctor = ctor; |
1725 | cachep->dtor = dtor; | |
1726 | cachep->name = name; | |
1727 | ||
1728 | /* Don't let CPUs to come and go */ | |
1729 | lock_cpu_hotplug(); | |
1730 | ||
1731 | if (g_cpucache_up == FULL) { | |
1732 | enable_cpucache(cachep); | |
1733 | } else { | |
1734 | if (g_cpucache_up == NONE) { | |
1735 | /* Note: the first kmem_cache_create must create | |
1736 | * the cache that's used by kmalloc(24), otherwise | |
1737 | * the creation of further caches will BUG(). | |
1738 | */ | |
e498be7d CL |
1739 | cachep->array[smp_processor_id()] = |
1740 | &initarray_generic.cache; | |
1741 | ||
1742 | /* If the cache that's used by | |
1743 | * kmalloc(sizeof(kmem_list3)) is the first cache, | |
1744 | * then we need to set up all its list3s, otherwise | |
1745 | * the creation of further caches will BUG(). | |
1746 | */ | |
1747 | set_up_list3s(cachep, SIZE_AC); | |
1748 | if (INDEX_AC == INDEX_L3) | |
1749 | g_cpucache_up = PARTIAL_L3; | |
1750 | else | |
1751 | g_cpucache_up = PARTIAL_AC; | |
1da177e4 | 1752 | } else { |
e498be7d CL |
1753 | cachep->array[smp_processor_id()] = |
1754 | kmalloc(sizeof(struct arraycache_init), | |
1755 | GFP_KERNEL); | |
1756 | ||
1757 | if (g_cpucache_up == PARTIAL_AC) { | |
1758 | set_up_list3s(cachep, SIZE_L3); | |
1759 | g_cpucache_up = PARTIAL_L3; | |
1760 | } else { | |
1761 | int node; | |
1762 | for_each_online_node(node) { | |
1763 | ||
1764 | cachep->nodelists[node] = | |
1765 | kmalloc_node(sizeof(struct kmem_list3), | |
1766 | GFP_KERNEL, node); | |
1767 | BUG_ON(!cachep->nodelists[node]); | |
1768 | kmem_list3_init(cachep->nodelists[node]); | |
1769 | } | |
1770 | } | |
1da177e4 | 1771 | } |
e498be7d CL |
1772 | cachep->nodelists[numa_node_id()]->next_reap = |
1773 | jiffies + REAPTIMEOUT_LIST3 + | |
1774 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; | |
1775 | ||
1da177e4 LT |
1776 | BUG_ON(!ac_data(cachep)); |
1777 | ac_data(cachep)->avail = 0; | |
1778 | ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | |
1779 | ac_data(cachep)->batchcount = 1; | |
1780 | ac_data(cachep)->touched = 0; | |
1781 | cachep->batchcount = 1; | |
1782 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | |
1da177e4 LT |
1783 | } |
1784 | ||
1da177e4 LT |
1785 | /* Need the semaphore to access the chain. */ |
1786 | down(&cache_chain_sem); | |
1787 | { | |
1788 | struct list_head *p; | |
1789 | mm_segment_t old_fs; | |
1790 | ||
1791 | old_fs = get_fs(); | |
1792 | set_fs(KERNEL_DS); | |
1793 | list_for_each(p, &cache_chain) { | |
1794 | kmem_cache_t *pc = list_entry(p, kmem_cache_t, next); | |
1795 | char tmp; | |
1796 | /* This happens when the module gets unloaded and doesn't | |
1797 | destroy its slab cache and noone else reuses the vmalloc | |
1798 | area of the module. Print a warning. */ | |
1799 | if (__get_user(tmp,pc->name)) { | |
1800 | printk("SLAB: cache with size %d has lost its name\n", | |
1801 | pc->objsize); | |
1802 | continue; | |
1803 | } | |
1804 | if (!strcmp(pc->name,name)) { | |
1805 | printk("kmem_cache_create: duplicate cache %s\n",name); | |
1806 | up(&cache_chain_sem); | |
1807 | unlock_cpu_hotplug(); | |
1808 | BUG(); | |
1809 | } | |
1810 | } | |
1811 | set_fs(old_fs); | |
1812 | } | |
1813 | ||
1814 | /* cache setup completed, link it into the list */ | |
1815 | list_add(&cachep->next, &cache_chain); | |
1816 | up(&cache_chain_sem); | |
1817 | unlock_cpu_hotplug(); | |
1818 | opps: | |
1819 | if (!cachep && (flags & SLAB_PANIC)) | |
1820 | panic("kmem_cache_create(): failed to create slab `%s'\n", | |
1821 | name); | |
1822 | return cachep; | |
1823 | } | |
1824 | EXPORT_SYMBOL(kmem_cache_create); | |
1825 | ||
1826 | #if DEBUG | |
1827 | static void check_irq_off(void) | |
1828 | { | |
1829 | BUG_ON(!irqs_disabled()); | |
1830 | } | |
1831 | ||
1832 | static void check_irq_on(void) | |
1833 | { | |
1834 | BUG_ON(irqs_disabled()); | |
1835 | } | |
1836 | ||
1837 | static void check_spinlock_acquired(kmem_cache_t *cachep) | |
1838 | { | |
1839 | #ifdef CONFIG_SMP | |
1840 | check_irq_off(); | |
e498be7d | 1841 | assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock); |
1da177e4 LT |
1842 | #endif |
1843 | } | |
e498be7d CL |
1844 | |
1845 | static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node) | |
1846 | { | |
1847 | #ifdef CONFIG_SMP | |
1848 | check_irq_off(); | |
1849 | assert_spin_locked(&cachep->nodelists[node]->list_lock); | |
1850 | #endif | |
1851 | } | |
1852 | ||
1da177e4 LT |
1853 | #else |
1854 | #define check_irq_off() do { } while(0) | |
1855 | #define check_irq_on() do { } while(0) | |
1856 | #define check_spinlock_acquired(x) do { } while(0) | |
e498be7d | 1857 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
1da177e4 LT |
1858 | #endif |
1859 | ||
1860 | /* | |
1861 | * Waits for all CPUs to execute func(). | |
1862 | */ | |
1863 | static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg) | |
1864 | { | |
1865 | check_irq_on(); | |
1866 | preempt_disable(); | |
1867 | ||
1868 | local_irq_disable(); | |
1869 | func(arg); | |
1870 | local_irq_enable(); | |
1871 | ||
1872 | if (smp_call_function(func, arg, 1, 1)) | |
1873 | BUG(); | |
1874 | ||
1875 | preempt_enable(); | |
1876 | } | |
1877 | ||
1878 | static void drain_array_locked(kmem_cache_t* cachep, | |
e498be7d | 1879 | struct array_cache *ac, int force, int node); |
1da177e4 LT |
1880 | |
1881 | static void do_drain(void *arg) | |
1882 | { | |
1883 | kmem_cache_t *cachep = (kmem_cache_t*)arg; | |
1884 | struct array_cache *ac; | |
1885 | ||
1886 | check_irq_off(); | |
1887 | ac = ac_data(cachep); | |
e498be7d CL |
1888 | spin_lock(&cachep->nodelists[numa_node_id()]->list_lock); |
1889 | free_block(cachep, ac->entry, ac->avail); | |
1890 | spin_unlock(&cachep->nodelists[numa_node_id()]->list_lock); | |
1da177e4 LT |
1891 | ac->avail = 0; |
1892 | } | |
1893 | ||
1894 | static void drain_cpu_caches(kmem_cache_t *cachep) | |
1895 | { | |
e498be7d CL |
1896 | struct kmem_list3 *l3; |
1897 | int node; | |
1898 | ||
1da177e4 LT |
1899 | smp_call_function_all_cpus(do_drain, cachep); |
1900 | check_irq_on(); | |
1901 | spin_lock_irq(&cachep->spinlock); | |
e498be7d CL |
1902 | for_each_online_node(node) { |
1903 | l3 = cachep->nodelists[node]; | |
1904 | if (l3) { | |
1905 | spin_lock(&l3->list_lock); | |
1906 | drain_array_locked(cachep, l3->shared, 1, node); | |
1907 | spin_unlock(&l3->list_lock); | |
1908 | if (l3->alien) | |
1909 | drain_alien_cache(cachep, l3); | |
1910 | } | |
1911 | } | |
1da177e4 LT |
1912 | spin_unlock_irq(&cachep->spinlock); |
1913 | } | |
1914 | ||
e498be7d | 1915 | static int __node_shrink(kmem_cache_t *cachep, int node) |
1da177e4 LT |
1916 | { |
1917 | struct slab *slabp; | |
e498be7d | 1918 | struct kmem_list3 *l3 = cachep->nodelists[node]; |
1da177e4 LT |
1919 | int ret; |
1920 | ||
e498be7d | 1921 | for (;;) { |
1da177e4 LT |
1922 | struct list_head *p; |
1923 | ||
e498be7d CL |
1924 | p = l3->slabs_free.prev; |
1925 | if (p == &l3->slabs_free) | |
1da177e4 LT |
1926 | break; |
1927 | ||
e498be7d | 1928 | slabp = list_entry(l3->slabs_free.prev, struct slab, list); |
1da177e4 LT |
1929 | #if DEBUG |
1930 | if (slabp->inuse) | |
1931 | BUG(); | |
1932 | #endif | |
1933 | list_del(&slabp->list); | |
1934 | ||
e498be7d CL |
1935 | l3->free_objects -= cachep->num; |
1936 | spin_unlock_irq(&l3->list_lock); | |
1da177e4 | 1937 | slab_destroy(cachep, slabp); |
e498be7d | 1938 | spin_lock_irq(&l3->list_lock); |
1da177e4 | 1939 | } |
e498be7d CL |
1940 | ret = !list_empty(&l3->slabs_full) || |
1941 | !list_empty(&l3->slabs_partial); | |
1da177e4 LT |
1942 | return ret; |
1943 | } | |
1944 | ||
e498be7d CL |
1945 | static int __cache_shrink(kmem_cache_t *cachep) |
1946 | { | |
1947 | int ret = 0, i = 0; | |
1948 | struct kmem_list3 *l3; | |
1949 | ||
1950 | drain_cpu_caches(cachep); | |
1951 | ||
1952 | check_irq_on(); | |
1953 | for_each_online_node(i) { | |
1954 | l3 = cachep->nodelists[i]; | |
1955 | if (l3) { | |
1956 | spin_lock_irq(&l3->list_lock); | |
1957 | ret += __node_shrink(cachep, i); | |
1958 | spin_unlock_irq(&l3->list_lock); | |
1959 | } | |
1960 | } | |
1961 | return (ret ? 1 : 0); | |
1962 | } | |
1963 | ||
1da177e4 LT |
1964 | /** |
1965 | * kmem_cache_shrink - Shrink a cache. | |
1966 | * @cachep: The cache to shrink. | |
1967 | * | |
1968 | * Releases as many slabs as possible for a cache. | |
1969 | * To help debugging, a zero exit status indicates all slabs were released. | |
1970 | */ | |
1971 | int kmem_cache_shrink(kmem_cache_t *cachep) | |
1972 | { | |
1973 | if (!cachep || in_interrupt()) | |
1974 | BUG(); | |
1975 | ||
1976 | return __cache_shrink(cachep); | |
1977 | } | |
1978 | EXPORT_SYMBOL(kmem_cache_shrink); | |
1979 | ||
1980 | /** | |
1981 | * kmem_cache_destroy - delete a cache | |
1982 | * @cachep: the cache to destroy | |
1983 | * | |
1984 | * Remove a kmem_cache_t object from the slab cache. | |
1985 | * Returns 0 on success. | |
1986 | * | |
1987 | * It is expected this function will be called by a module when it is | |
1988 | * unloaded. This will remove the cache completely, and avoid a duplicate | |
1989 | * cache being allocated each time a module is loaded and unloaded, if the | |
1990 | * module doesn't have persistent in-kernel storage across loads and unloads. | |
1991 | * | |
1992 | * The cache must be empty before calling this function. | |
1993 | * | |
1994 | * The caller must guarantee that noone will allocate memory from the cache | |
1995 | * during the kmem_cache_destroy(). | |
1996 | */ | |
1997 | int kmem_cache_destroy(kmem_cache_t * cachep) | |
1998 | { | |
1999 | int i; | |
e498be7d | 2000 | struct kmem_list3 *l3; |
1da177e4 LT |
2001 | |
2002 | if (!cachep || in_interrupt()) | |
2003 | BUG(); | |
2004 | ||
2005 | /* Don't let CPUs to come and go */ | |
2006 | lock_cpu_hotplug(); | |
2007 | ||
2008 | /* Find the cache in the chain of caches. */ | |
2009 | down(&cache_chain_sem); | |
2010 | /* | |
2011 | * the chain is never empty, cache_cache is never destroyed | |
2012 | */ | |
2013 | list_del(&cachep->next); | |
2014 | up(&cache_chain_sem); | |
2015 | ||
2016 | if (__cache_shrink(cachep)) { | |
2017 | slab_error(cachep, "Can't free all objects"); | |
2018 | down(&cache_chain_sem); | |
2019 | list_add(&cachep->next,&cache_chain); | |
2020 | up(&cache_chain_sem); | |
2021 | unlock_cpu_hotplug(); | |
2022 | return 1; | |
2023 | } | |
2024 | ||
2025 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) | |
fbd568a3 | 2026 | synchronize_rcu(); |
1da177e4 | 2027 | |
e498be7d | 2028 | for_each_online_cpu(i) |
1da177e4 LT |
2029 | kfree(cachep->array[i]); |
2030 | ||
2031 | /* NUMA: free the list3 structures */ | |
e498be7d CL |
2032 | for_each_online_node(i) { |
2033 | if ((l3 = cachep->nodelists[i])) { | |
2034 | kfree(l3->shared); | |
2035 | free_alien_cache(l3->alien); | |
2036 | kfree(l3); | |
2037 | } | |
2038 | } | |
1da177e4 LT |
2039 | kmem_cache_free(&cache_cache, cachep); |
2040 | ||
2041 | unlock_cpu_hotplug(); | |
2042 | ||
2043 | return 0; | |
2044 | } | |
2045 | EXPORT_SYMBOL(kmem_cache_destroy); | |
2046 | ||
2047 | /* Get the memory for a slab management obj. */ | |
e498be7d CL |
2048 | static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, void *objp, |
2049 | int colour_off, unsigned int __nocast local_flags) | |
1da177e4 LT |
2050 | { |
2051 | struct slab *slabp; | |
2052 | ||
2053 | if (OFF_SLAB(cachep)) { | |
2054 | /* Slab management obj is off-slab. */ | |
2055 | slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags); | |
2056 | if (!slabp) | |
2057 | return NULL; | |
2058 | } else { | |
2059 | slabp = objp+colour_off; | |
2060 | colour_off += cachep->slab_size; | |
2061 | } | |
2062 | slabp->inuse = 0; | |
2063 | slabp->colouroff = colour_off; | |
2064 | slabp->s_mem = objp+colour_off; | |
2065 | ||
2066 | return slabp; | |
2067 | } | |
2068 | ||
2069 | static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) | |
2070 | { | |
2071 | return (kmem_bufctl_t *)(slabp+1); | |
2072 | } | |
2073 | ||
2074 | static void cache_init_objs(kmem_cache_t *cachep, | |
2075 | struct slab *slabp, unsigned long ctor_flags) | |
2076 | { | |
2077 | int i; | |
2078 | ||
2079 | for (i = 0; i < cachep->num; i++) { | |
e498be7d | 2080 | void *objp = slabp->s_mem+cachep->objsize*i; |
1da177e4 LT |
2081 | #if DEBUG |
2082 | /* need to poison the objs? */ | |
2083 | if (cachep->flags & SLAB_POISON) | |
2084 | poison_obj(cachep, objp, POISON_FREE); | |
2085 | if (cachep->flags & SLAB_STORE_USER) | |
2086 | *dbg_userword(cachep, objp) = NULL; | |
2087 | ||
2088 | if (cachep->flags & SLAB_RED_ZONE) { | |
2089 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2090 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2091 | } | |
2092 | /* | |
2093 | * Constructors are not allowed to allocate memory from | |
2094 | * the same cache which they are a constructor for. | |
2095 | * Otherwise, deadlock. They must also be threaded. | |
2096 | */ | |
2097 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | |
2098 | cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags); | |
2099 | ||
2100 | if (cachep->flags & SLAB_RED_ZONE) { | |
2101 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
2102 | slab_error(cachep, "constructor overwrote the" | |
2103 | " end of an object"); | |
2104 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
2105 | slab_error(cachep, "constructor overwrote the" | |
2106 | " start of an object"); | |
2107 | } | |
2108 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) | |
2109 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); | |
2110 | #else | |
2111 | if (cachep->ctor) | |
2112 | cachep->ctor(objp, cachep, ctor_flags); | |
2113 | #endif | |
2114 | slab_bufctl(slabp)[i] = i+1; | |
2115 | } | |
2116 | slab_bufctl(slabp)[i-1] = BUFCTL_END; | |
2117 | slabp->free = 0; | |
2118 | } | |
2119 | ||
2120 | static void kmem_flagcheck(kmem_cache_t *cachep, unsigned int flags) | |
2121 | { | |
2122 | if (flags & SLAB_DMA) { | |
2123 | if (!(cachep->gfpflags & GFP_DMA)) | |
2124 | BUG(); | |
2125 | } else { | |
2126 | if (cachep->gfpflags & GFP_DMA) | |
2127 | BUG(); | |
2128 | } | |
2129 | } | |
2130 | ||
2131 | static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp) | |
2132 | { | |
2133 | int i; | |
2134 | struct page *page; | |
2135 | ||
2136 | /* Nasty!!!!!! I hope this is OK. */ | |
2137 | i = 1 << cachep->gfporder; | |
2138 | page = virt_to_page(objp); | |
2139 | do { | |
2140 | SET_PAGE_CACHE(page, cachep); | |
2141 | SET_PAGE_SLAB(page, slabp); | |
2142 | page++; | |
2143 | } while (--i); | |
2144 | } | |
2145 | ||
2146 | /* | |
2147 | * Grow (by 1) the number of slabs within a cache. This is called by | |
2148 | * kmem_cache_alloc() when there are no active objs left in a cache. | |
2149 | */ | |
2150 | static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid) | |
2151 | { | |
2152 | struct slab *slabp; | |
2153 | void *objp; | |
2154 | size_t offset; | |
2155 | unsigned int local_flags; | |
2156 | unsigned long ctor_flags; | |
e498be7d | 2157 | struct kmem_list3 *l3; |
1da177e4 LT |
2158 | |
2159 | /* Be lazy and only check for valid flags here, | |
2160 | * keeping it out of the critical path in kmem_cache_alloc(). | |
2161 | */ | |
2162 | if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW)) | |
2163 | BUG(); | |
2164 | if (flags & SLAB_NO_GROW) | |
2165 | return 0; | |
2166 | ||
2167 | ctor_flags = SLAB_CTOR_CONSTRUCTOR; | |
2168 | local_flags = (flags & SLAB_LEVEL_MASK); | |
2169 | if (!(local_flags & __GFP_WAIT)) | |
2170 | /* | |
2171 | * Not allowed to sleep. Need to tell a constructor about | |
2172 | * this - it might need to know... | |
2173 | */ | |
2174 | ctor_flags |= SLAB_CTOR_ATOMIC; | |
2175 | ||
2176 | /* About to mess with non-constant members - lock. */ | |
2177 | check_irq_off(); | |
2178 | spin_lock(&cachep->spinlock); | |
2179 | ||
2180 | /* Get colour for the slab, and cal the next value. */ | |
2181 | offset = cachep->colour_next; | |
2182 | cachep->colour_next++; | |
2183 | if (cachep->colour_next >= cachep->colour) | |
2184 | cachep->colour_next = 0; | |
2185 | offset *= cachep->colour_off; | |
2186 | ||
2187 | spin_unlock(&cachep->spinlock); | |
2188 | ||
e498be7d | 2189 | check_irq_off(); |
1da177e4 LT |
2190 | if (local_flags & __GFP_WAIT) |
2191 | local_irq_enable(); | |
2192 | ||
2193 | /* | |
2194 | * The test for missing atomic flag is performed here, rather than | |
2195 | * the more obvious place, simply to reduce the critical path length | |
2196 | * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | |
2197 | * will eventually be caught here (where it matters). | |
2198 | */ | |
2199 | kmem_flagcheck(cachep, flags); | |
2200 | ||
e498be7d CL |
2201 | /* Get mem for the objs. |
2202 | * Attempt to allocate a physical page from 'nodeid', | |
2203 | */ | |
1da177e4 LT |
2204 | if (!(objp = kmem_getpages(cachep, flags, nodeid))) |
2205 | goto failed; | |
2206 | ||
2207 | /* Get slab management. */ | |
2208 | if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags))) | |
2209 | goto opps1; | |
2210 | ||
e498be7d | 2211 | slabp->nodeid = nodeid; |
1da177e4 LT |
2212 | set_slab_attr(cachep, slabp, objp); |
2213 | ||
2214 | cache_init_objs(cachep, slabp, ctor_flags); | |
2215 | ||
2216 | if (local_flags & __GFP_WAIT) | |
2217 | local_irq_disable(); | |
2218 | check_irq_off(); | |
e498be7d CL |
2219 | l3 = cachep->nodelists[nodeid]; |
2220 | spin_lock(&l3->list_lock); | |
1da177e4 LT |
2221 | |
2222 | /* Make slab active. */ | |
e498be7d | 2223 | list_add_tail(&slabp->list, &(l3->slabs_free)); |
1da177e4 | 2224 | STATS_INC_GROWN(cachep); |
e498be7d CL |
2225 | l3->free_objects += cachep->num; |
2226 | spin_unlock(&l3->list_lock); | |
1da177e4 LT |
2227 | return 1; |
2228 | opps1: | |
2229 | kmem_freepages(cachep, objp); | |
2230 | failed: | |
2231 | if (local_flags & __GFP_WAIT) | |
2232 | local_irq_disable(); | |
2233 | return 0; | |
2234 | } | |
2235 | ||
2236 | #if DEBUG | |
2237 | ||
2238 | /* | |
2239 | * Perform extra freeing checks: | |
2240 | * - detect bad pointers. | |
2241 | * - POISON/RED_ZONE checking | |
2242 | * - destructor calls, for caches with POISON+dtor | |
2243 | */ | |
2244 | static void kfree_debugcheck(const void *objp) | |
2245 | { | |
2246 | struct page *page; | |
2247 | ||
2248 | if (!virt_addr_valid(objp)) { | |
2249 | printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | |
2250 | (unsigned long)objp); | |
2251 | BUG(); | |
2252 | } | |
2253 | page = virt_to_page(objp); | |
2254 | if (!PageSlab(page)) { | |
2255 | printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp); | |
2256 | BUG(); | |
2257 | } | |
2258 | } | |
2259 | ||
2260 | static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp, | |
2261 | void *caller) | |
2262 | { | |
2263 | struct page *page; | |
2264 | unsigned int objnr; | |
2265 | struct slab *slabp; | |
2266 | ||
2267 | objp -= obj_dbghead(cachep); | |
2268 | kfree_debugcheck(objp); | |
2269 | page = virt_to_page(objp); | |
2270 | ||
2271 | if (GET_PAGE_CACHE(page) != cachep) { | |
2272 | printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n", | |
2273 | GET_PAGE_CACHE(page),cachep); | |
2274 | printk(KERN_ERR "%p is %s.\n", cachep, cachep->name); | |
2275 | printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name); | |
2276 | WARN_ON(1); | |
2277 | } | |
2278 | slabp = GET_PAGE_SLAB(page); | |
2279 | ||
2280 | if (cachep->flags & SLAB_RED_ZONE) { | |
2281 | if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) { | |
2282 | slab_error(cachep, "double free, or memory outside" | |
2283 | " object was overwritten"); | |
2284 | printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", | |
2285 | objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); | |
2286 | } | |
2287 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2288 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2289 | } | |
2290 | if (cachep->flags & SLAB_STORE_USER) | |
2291 | *dbg_userword(cachep, objp) = caller; | |
2292 | ||
2293 | objnr = (objp-slabp->s_mem)/cachep->objsize; | |
2294 | ||
2295 | BUG_ON(objnr >= cachep->num); | |
2296 | BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize); | |
2297 | ||
2298 | if (cachep->flags & SLAB_DEBUG_INITIAL) { | |
2299 | /* Need to call the slab's constructor so the | |
2300 | * caller can perform a verify of its state (debugging). | |
2301 | * Called without the cache-lock held. | |
2302 | */ | |
2303 | cachep->ctor(objp+obj_dbghead(cachep), | |
2304 | cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY); | |
2305 | } | |
2306 | if (cachep->flags & SLAB_POISON && cachep->dtor) { | |
2307 | /* we want to cache poison the object, | |
2308 | * call the destruction callback | |
2309 | */ | |
2310 | cachep->dtor(objp+obj_dbghead(cachep), cachep, 0); | |
2311 | } | |
2312 | if (cachep->flags & SLAB_POISON) { | |
2313 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
2314 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) { | |
2315 | store_stackinfo(cachep, objp, (unsigned long)caller); | |
2316 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); | |
2317 | } else { | |
2318 | poison_obj(cachep, objp, POISON_FREE); | |
2319 | } | |
2320 | #else | |
2321 | poison_obj(cachep, objp, POISON_FREE); | |
2322 | #endif | |
2323 | } | |
2324 | return objp; | |
2325 | } | |
2326 | ||
2327 | static void check_slabp(kmem_cache_t *cachep, struct slab *slabp) | |
2328 | { | |
2329 | kmem_bufctl_t i; | |
2330 | int entries = 0; | |
2331 | ||
1da177e4 LT |
2332 | /* Check slab's freelist to see if this obj is there. */ |
2333 | for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { | |
2334 | entries++; | |
2335 | if (entries > cachep->num || i >= cachep->num) | |
2336 | goto bad; | |
2337 | } | |
2338 | if (entries != cachep->num - slabp->inuse) { | |
2339 | bad: | |
2340 | printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n", | |
2341 | cachep->name, cachep->num, slabp, slabp->inuse); | |
2342 | for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) { | |
2343 | if ((i%16)==0) | |
2344 | printk("\n%03x:", i); | |
2345 | printk(" %02x", ((unsigned char*)slabp)[i]); | |
2346 | } | |
2347 | printk("\n"); | |
2348 | BUG(); | |
2349 | } | |
2350 | } | |
2351 | #else | |
2352 | #define kfree_debugcheck(x) do { } while(0) | |
2353 | #define cache_free_debugcheck(x,objp,z) (objp) | |
2354 | #define check_slabp(x,y) do { } while(0) | |
2355 | #endif | |
2356 | ||
2357 | static void *cache_alloc_refill(kmem_cache_t *cachep, unsigned int __nocast flags) | |
2358 | { | |
2359 | int batchcount; | |
2360 | struct kmem_list3 *l3; | |
2361 | struct array_cache *ac; | |
2362 | ||
2363 | check_irq_off(); | |
2364 | ac = ac_data(cachep); | |
2365 | retry: | |
2366 | batchcount = ac->batchcount; | |
2367 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | |
2368 | /* if there was little recent activity on this | |
2369 | * cache, then perform only a partial refill. | |
2370 | * Otherwise we could generate refill bouncing. | |
2371 | */ | |
2372 | batchcount = BATCHREFILL_LIMIT; | |
2373 | } | |
e498be7d CL |
2374 | l3 = cachep->nodelists[numa_node_id()]; |
2375 | ||
2376 | BUG_ON(ac->avail > 0 || !l3); | |
2377 | spin_lock(&l3->list_lock); | |
1da177e4 | 2378 | |
1da177e4 LT |
2379 | if (l3->shared) { |
2380 | struct array_cache *shared_array = l3->shared; | |
2381 | if (shared_array->avail) { | |
2382 | if (batchcount > shared_array->avail) | |
2383 | batchcount = shared_array->avail; | |
2384 | shared_array->avail -= batchcount; | |
2385 | ac->avail = batchcount; | |
e498be7d CL |
2386 | memcpy(ac->entry, |
2387 | &(shared_array->entry[shared_array->avail]), | |
2388 | sizeof(void*)*batchcount); | |
1da177e4 LT |
2389 | shared_array->touched = 1; |
2390 | goto alloc_done; | |
2391 | } | |
2392 | } | |
2393 | while (batchcount > 0) { | |
2394 | struct list_head *entry; | |
2395 | struct slab *slabp; | |
2396 | /* Get slab alloc is to come from. */ | |
2397 | entry = l3->slabs_partial.next; | |
2398 | if (entry == &l3->slabs_partial) { | |
2399 | l3->free_touched = 1; | |
2400 | entry = l3->slabs_free.next; | |
2401 | if (entry == &l3->slabs_free) | |
2402 | goto must_grow; | |
2403 | } | |
2404 | ||
2405 | slabp = list_entry(entry, struct slab, list); | |
2406 | check_slabp(cachep, slabp); | |
2407 | check_spinlock_acquired(cachep); | |
2408 | while (slabp->inuse < cachep->num && batchcount--) { | |
2409 | kmem_bufctl_t next; | |
2410 | STATS_INC_ALLOCED(cachep); | |
2411 | STATS_INC_ACTIVE(cachep); | |
2412 | STATS_SET_HIGH(cachep); | |
2413 | ||
2414 | /* get obj pointer */ | |
e498be7d CL |
2415 | ac->entry[ac->avail++] = slabp->s_mem + |
2416 | slabp->free*cachep->objsize; | |
1da177e4 LT |
2417 | |
2418 | slabp->inuse++; | |
2419 | next = slab_bufctl(slabp)[slabp->free]; | |
2420 | #if DEBUG | |
2421 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | |
2422 | #endif | |
2423 | slabp->free = next; | |
2424 | } | |
2425 | check_slabp(cachep, slabp); | |
2426 | ||
2427 | /* move slabp to correct slabp list: */ | |
2428 | list_del(&slabp->list); | |
2429 | if (slabp->free == BUFCTL_END) | |
2430 | list_add(&slabp->list, &l3->slabs_full); | |
2431 | else | |
2432 | list_add(&slabp->list, &l3->slabs_partial); | |
2433 | } | |
2434 | ||
2435 | must_grow: | |
2436 | l3->free_objects -= ac->avail; | |
2437 | alloc_done: | |
e498be7d | 2438 | spin_unlock(&l3->list_lock); |
1da177e4 LT |
2439 | |
2440 | if (unlikely(!ac->avail)) { | |
2441 | int x; | |
e498be7d CL |
2442 | x = cache_grow(cachep, flags, numa_node_id()); |
2443 | ||
1da177e4 LT |
2444 | // cache_grow can reenable interrupts, then ac could change. |
2445 | ac = ac_data(cachep); | |
2446 | if (!x && ac->avail == 0) // no objects in sight? abort | |
2447 | return NULL; | |
2448 | ||
2449 | if (!ac->avail) // objects refilled by interrupt? | |
2450 | goto retry; | |
2451 | } | |
2452 | ac->touched = 1; | |
e498be7d | 2453 | return ac->entry[--ac->avail]; |
1da177e4 LT |
2454 | } |
2455 | ||
2456 | static inline void | |
2457 | cache_alloc_debugcheck_before(kmem_cache_t *cachep, unsigned int __nocast flags) | |
2458 | { | |
2459 | might_sleep_if(flags & __GFP_WAIT); | |
2460 | #if DEBUG | |
2461 | kmem_flagcheck(cachep, flags); | |
2462 | #endif | |
2463 | } | |
2464 | ||
2465 | #if DEBUG | |
2466 | static void * | |
2467 | cache_alloc_debugcheck_after(kmem_cache_t *cachep, | |
0db925af | 2468 | unsigned int __nocast flags, void *objp, void *caller) |
1da177e4 LT |
2469 | { |
2470 | if (!objp) | |
2471 | return objp; | |
2472 | if (cachep->flags & SLAB_POISON) { | |
2473 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
2474 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) | |
2475 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1); | |
2476 | else | |
2477 | check_poison_obj(cachep, objp); | |
2478 | #else | |
2479 | check_poison_obj(cachep, objp); | |
2480 | #endif | |
2481 | poison_obj(cachep, objp, POISON_INUSE); | |
2482 | } | |
2483 | if (cachep->flags & SLAB_STORE_USER) | |
2484 | *dbg_userword(cachep, objp) = caller; | |
2485 | ||
2486 | if (cachep->flags & SLAB_RED_ZONE) { | |
2487 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | |
2488 | slab_error(cachep, "double free, or memory outside" | |
2489 | " object was overwritten"); | |
2490 | printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", | |
2491 | objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); | |
2492 | } | |
2493 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | |
2494 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | |
2495 | } | |
2496 | objp += obj_dbghead(cachep); | |
2497 | if (cachep->ctor && cachep->flags & SLAB_POISON) { | |
2498 | unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR; | |
2499 | ||
2500 | if (!(flags & __GFP_WAIT)) | |
2501 | ctor_flags |= SLAB_CTOR_ATOMIC; | |
2502 | ||
2503 | cachep->ctor(objp, cachep, ctor_flags); | |
2504 | } | |
2505 | return objp; | |
2506 | } | |
2507 | #else | |
2508 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | |
2509 | #endif | |
2510 | ||
2511 | ||
2512 | static inline void *__cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags) | |
2513 | { | |
2514 | unsigned long save_flags; | |
2515 | void* objp; | |
2516 | struct array_cache *ac; | |
2517 | ||
2518 | cache_alloc_debugcheck_before(cachep, flags); | |
2519 | ||
2520 | local_irq_save(save_flags); | |
2521 | ac = ac_data(cachep); | |
2522 | if (likely(ac->avail)) { | |
2523 | STATS_INC_ALLOCHIT(cachep); | |
2524 | ac->touched = 1; | |
e498be7d | 2525 | objp = ac->entry[--ac->avail]; |
1da177e4 LT |
2526 | } else { |
2527 | STATS_INC_ALLOCMISS(cachep); | |
2528 | objp = cache_alloc_refill(cachep, flags); | |
2529 | } | |
2530 | local_irq_restore(save_flags); | |
34342e86 ED |
2531 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, |
2532 | __builtin_return_address(0)); | |
2533 | prefetchw(objp); | |
1da177e4 LT |
2534 | return objp; |
2535 | } | |
2536 | ||
e498be7d CL |
2537 | #ifdef CONFIG_NUMA |
2538 | /* | |
2539 | * A interface to enable slab creation on nodeid | |
1da177e4 | 2540 | */ |
e498be7d CL |
2541 | static void *__cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid) |
2542 | { | |
2543 | struct list_head *entry; | |
2544 | struct slab *slabp; | |
2545 | struct kmem_list3 *l3; | |
2546 | void *obj; | |
2547 | kmem_bufctl_t next; | |
2548 | int x; | |
2549 | ||
2550 | l3 = cachep->nodelists[nodeid]; | |
2551 | BUG_ON(!l3); | |
2552 | ||
2553 | retry: | |
2554 | spin_lock(&l3->list_lock); | |
2555 | entry = l3->slabs_partial.next; | |
2556 | if (entry == &l3->slabs_partial) { | |
2557 | l3->free_touched = 1; | |
2558 | entry = l3->slabs_free.next; | |
2559 | if (entry == &l3->slabs_free) | |
2560 | goto must_grow; | |
2561 | } | |
2562 | ||
2563 | slabp = list_entry(entry, struct slab, list); | |
2564 | check_spinlock_acquired_node(cachep, nodeid); | |
2565 | check_slabp(cachep, slabp); | |
2566 | ||
2567 | STATS_INC_NODEALLOCS(cachep); | |
2568 | STATS_INC_ACTIVE(cachep); | |
2569 | STATS_SET_HIGH(cachep); | |
2570 | ||
2571 | BUG_ON(slabp->inuse == cachep->num); | |
2572 | ||
2573 | /* get obj pointer */ | |
2574 | obj = slabp->s_mem + slabp->free*cachep->objsize; | |
2575 | slabp->inuse++; | |
2576 | next = slab_bufctl(slabp)[slabp->free]; | |
2577 | #if DEBUG | |
2578 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | |
2579 | #endif | |
2580 | slabp->free = next; | |
2581 | check_slabp(cachep, slabp); | |
2582 | l3->free_objects--; | |
2583 | /* move slabp to correct slabp list: */ | |
2584 | list_del(&slabp->list); | |
2585 | ||
2586 | if (slabp->free == BUFCTL_END) { | |
2587 | list_add(&slabp->list, &l3->slabs_full); | |
2588 | } else { | |
2589 | list_add(&slabp->list, &l3->slabs_partial); | |
2590 | } | |
2591 | ||
2592 | spin_unlock(&l3->list_lock); | |
2593 | goto done; | |
2594 | ||
2595 | must_grow: | |
2596 | spin_unlock(&l3->list_lock); | |
2597 | x = cache_grow(cachep, flags, nodeid); | |
1da177e4 | 2598 | |
e498be7d CL |
2599 | if (!x) |
2600 | return NULL; | |
2601 | ||
2602 | goto retry; | |
2603 | done: | |
2604 | return obj; | |
2605 | } | |
2606 | #endif | |
2607 | ||
2608 | /* | |
2609 | * Caller needs to acquire correct kmem_list's list_lock | |
2610 | */ | |
1da177e4 LT |
2611 | static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects) |
2612 | { | |
2613 | int i; | |
e498be7d | 2614 | struct kmem_list3 *l3; |
1da177e4 LT |
2615 | |
2616 | for (i = 0; i < nr_objects; i++) { | |
2617 | void *objp = objpp[i]; | |
2618 | struct slab *slabp; | |
2619 | unsigned int objnr; | |
e498be7d | 2620 | int nodeid = 0; |
1da177e4 LT |
2621 | |
2622 | slabp = GET_PAGE_SLAB(virt_to_page(objp)); | |
e498be7d CL |
2623 | nodeid = slabp->nodeid; |
2624 | l3 = cachep->nodelists[nodeid]; | |
1da177e4 LT |
2625 | list_del(&slabp->list); |
2626 | objnr = (objp - slabp->s_mem) / cachep->objsize; | |
e498be7d | 2627 | check_spinlock_acquired_node(cachep, nodeid); |
1da177e4 | 2628 | check_slabp(cachep, slabp); |
e498be7d CL |
2629 | |
2630 | ||
1da177e4 LT |
2631 | #if DEBUG |
2632 | if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) { | |
e498be7d CL |
2633 | printk(KERN_ERR "slab: double free detected in cache " |
2634 | "'%s', objp %p\n", cachep->name, objp); | |
1da177e4 LT |
2635 | BUG(); |
2636 | } | |
2637 | #endif | |
2638 | slab_bufctl(slabp)[objnr] = slabp->free; | |
2639 | slabp->free = objnr; | |
2640 | STATS_DEC_ACTIVE(cachep); | |
2641 | slabp->inuse--; | |
e498be7d | 2642 | l3->free_objects++; |
1da177e4 LT |
2643 | check_slabp(cachep, slabp); |
2644 | ||
2645 | /* fixup slab chains */ | |
2646 | if (slabp->inuse == 0) { | |
e498be7d CL |
2647 | if (l3->free_objects > l3->free_limit) { |
2648 | l3->free_objects -= cachep->num; | |
1da177e4 LT |
2649 | slab_destroy(cachep, slabp); |
2650 | } else { | |
e498be7d | 2651 | list_add(&slabp->list, &l3->slabs_free); |
1da177e4 LT |
2652 | } |
2653 | } else { | |
2654 | /* Unconditionally move a slab to the end of the | |
2655 | * partial list on free - maximum time for the | |
2656 | * other objects to be freed, too. | |
2657 | */ | |
e498be7d | 2658 | list_add_tail(&slabp->list, &l3->slabs_partial); |
1da177e4 LT |
2659 | } |
2660 | } | |
2661 | } | |
2662 | ||
2663 | static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac) | |
2664 | { | |
2665 | int batchcount; | |
e498be7d | 2666 | struct kmem_list3 *l3; |
1da177e4 LT |
2667 | |
2668 | batchcount = ac->batchcount; | |
2669 | #if DEBUG | |
2670 | BUG_ON(!batchcount || batchcount > ac->avail); | |
2671 | #endif | |
2672 | check_irq_off(); | |
e498be7d CL |
2673 | l3 = cachep->nodelists[numa_node_id()]; |
2674 | spin_lock(&l3->list_lock); | |
2675 | if (l3->shared) { | |
2676 | struct array_cache *shared_array = l3->shared; | |
1da177e4 LT |
2677 | int max = shared_array->limit-shared_array->avail; |
2678 | if (max) { | |
2679 | if (batchcount > max) | |
2680 | batchcount = max; | |
e498be7d CL |
2681 | memcpy(&(shared_array->entry[shared_array->avail]), |
2682 | ac->entry, | |
1da177e4 LT |
2683 | sizeof(void*)*batchcount); |
2684 | shared_array->avail += batchcount; | |
2685 | goto free_done; | |
2686 | } | |
2687 | } | |
2688 | ||
e498be7d | 2689 | free_block(cachep, ac->entry, batchcount); |
1da177e4 LT |
2690 | free_done: |
2691 | #if STATS | |
2692 | { | |
2693 | int i = 0; | |
2694 | struct list_head *p; | |
2695 | ||
e498be7d CL |
2696 | p = l3->slabs_free.next; |
2697 | while (p != &(l3->slabs_free)) { | |
1da177e4 LT |
2698 | struct slab *slabp; |
2699 | ||
2700 | slabp = list_entry(p, struct slab, list); | |
2701 | BUG_ON(slabp->inuse); | |
2702 | ||
2703 | i++; | |
2704 | p = p->next; | |
2705 | } | |
2706 | STATS_SET_FREEABLE(cachep, i); | |
2707 | } | |
2708 | #endif | |
e498be7d | 2709 | spin_unlock(&l3->list_lock); |
1da177e4 | 2710 | ac->avail -= batchcount; |
e498be7d | 2711 | memmove(ac->entry, &(ac->entry[batchcount]), |
1da177e4 LT |
2712 | sizeof(void*)*ac->avail); |
2713 | } | |
2714 | ||
e498be7d | 2715 | |
1da177e4 LT |
2716 | /* |
2717 | * __cache_free | |
2718 | * Release an obj back to its cache. If the obj has a constructed | |
2719 | * state, it must be in this state _before_ it is released. | |
2720 | * | |
2721 | * Called with disabled ints. | |
2722 | */ | |
2723 | static inline void __cache_free(kmem_cache_t *cachep, void *objp) | |
2724 | { | |
2725 | struct array_cache *ac = ac_data(cachep); | |
2726 | ||
2727 | check_irq_off(); | |
2728 | objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); | |
2729 | ||
e498be7d CL |
2730 | /* Make sure we are not freeing a object from another |
2731 | * node to the array cache on this cpu. | |
2732 | */ | |
2733 | #ifdef CONFIG_NUMA | |
2734 | { | |
2735 | struct slab *slabp; | |
2736 | slabp = GET_PAGE_SLAB(virt_to_page(objp)); | |
2737 | if (unlikely(slabp->nodeid != numa_node_id())) { | |
2738 | struct array_cache *alien = NULL; | |
2739 | int nodeid = slabp->nodeid; | |
2740 | struct kmem_list3 *l3 = cachep->nodelists[numa_node_id()]; | |
2741 | ||
2742 | STATS_INC_NODEFREES(cachep); | |
2743 | if (l3->alien && l3->alien[nodeid]) { | |
2744 | alien = l3->alien[nodeid]; | |
2745 | spin_lock(&alien->lock); | |
2746 | if (unlikely(alien->avail == alien->limit)) | |
2747 | __drain_alien_cache(cachep, | |
2748 | alien, nodeid); | |
2749 | alien->entry[alien->avail++] = objp; | |
2750 | spin_unlock(&alien->lock); | |
2751 | } else { | |
2752 | spin_lock(&(cachep->nodelists[nodeid])-> | |
2753 | list_lock); | |
2754 | free_block(cachep, &objp, 1); | |
2755 | spin_unlock(&(cachep->nodelists[nodeid])-> | |
2756 | list_lock); | |
2757 | } | |
2758 | return; | |
2759 | } | |
2760 | } | |
2761 | #endif | |
1da177e4 LT |
2762 | if (likely(ac->avail < ac->limit)) { |
2763 | STATS_INC_FREEHIT(cachep); | |
e498be7d | 2764 | ac->entry[ac->avail++] = objp; |
1da177e4 LT |
2765 | return; |
2766 | } else { | |
2767 | STATS_INC_FREEMISS(cachep); | |
2768 | cache_flusharray(cachep, ac); | |
e498be7d | 2769 | ac->entry[ac->avail++] = objp; |
1da177e4 LT |
2770 | } |
2771 | } | |
2772 | ||
2773 | /** | |
2774 | * kmem_cache_alloc - Allocate an object | |
2775 | * @cachep: The cache to allocate from. | |
2776 | * @flags: See kmalloc(). | |
2777 | * | |
2778 | * Allocate an object from this cache. The flags are only relevant | |
2779 | * if the cache has no available objects. | |
2780 | */ | |
2781 | void *kmem_cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags) | |
2782 | { | |
2783 | return __cache_alloc(cachep, flags); | |
2784 | } | |
2785 | EXPORT_SYMBOL(kmem_cache_alloc); | |
2786 | ||
2787 | /** | |
2788 | * kmem_ptr_validate - check if an untrusted pointer might | |
2789 | * be a slab entry. | |
2790 | * @cachep: the cache we're checking against | |
2791 | * @ptr: pointer to validate | |
2792 | * | |
2793 | * This verifies that the untrusted pointer looks sane: | |
2794 | * it is _not_ a guarantee that the pointer is actually | |
2795 | * part of the slab cache in question, but it at least | |
2796 | * validates that the pointer can be dereferenced and | |
2797 | * looks half-way sane. | |
2798 | * | |
2799 | * Currently only used for dentry validation. | |
2800 | */ | |
2801 | int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr) | |
2802 | { | |
2803 | unsigned long addr = (unsigned long) ptr; | |
2804 | unsigned long min_addr = PAGE_OFFSET; | |
2805 | unsigned long align_mask = BYTES_PER_WORD-1; | |
2806 | unsigned long size = cachep->objsize; | |
2807 | struct page *page; | |
2808 | ||
2809 | if (unlikely(addr < min_addr)) | |
2810 | goto out; | |
2811 | if (unlikely(addr > (unsigned long)high_memory - size)) | |
2812 | goto out; | |
2813 | if (unlikely(addr & align_mask)) | |
2814 | goto out; | |
2815 | if (unlikely(!kern_addr_valid(addr))) | |
2816 | goto out; | |
2817 | if (unlikely(!kern_addr_valid(addr + size - 1))) | |
2818 | goto out; | |
2819 | page = virt_to_page(ptr); | |
2820 | if (unlikely(!PageSlab(page))) | |
2821 | goto out; | |
2822 | if (unlikely(GET_PAGE_CACHE(page) != cachep)) | |
2823 | goto out; | |
2824 | return 1; | |
2825 | out: | |
2826 | return 0; | |
2827 | } | |
2828 | ||
2829 | #ifdef CONFIG_NUMA | |
2830 | /** | |
2831 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
2832 | * @cachep: The cache to allocate from. | |
2833 | * @flags: See kmalloc(). | |
2834 | * @nodeid: node number of the target node. | |
2835 | * | |
2836 | * Identical to kmem_cache_alloc, except that this function is slow | |
2837 | * and can sleep. And it will allocate memory on the given node, which | |
2838 | * can improve the performance for cpu bound structures. | |
e498be7d CL |
2839 | * New and improved: it will now make sure that the object gets |
2840 | * put on the correct node list so that there is no false sharing. | |
1da177e4 | 2841 | */ |
b2d55073 | 2842 | void *kmem_cache_alloc_node(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid) |
1da177e4 | 2843 | { |
e498be7d CL |
2844 | unsigned long save_flags; |
2845 | void *ptr; | |
1da177e4 | 2846 | |
e498be7d CL |
2847 | if (nodeid == numa_node_id() || nodeid == -1) |
2848 | return __cache_alloc(cachep, flags); | |
1da177e4 | 2849 | |
e498be7d CL |
2850 | if (unlikely(!cachep->nodelists[nodeid])) { |
2851 | /* Fall back to __cache_alloc if we run into trouble */ | |
2852 | printk(KERN_WARNING "slab: not allocating in inactive node %d for cache %s\n", nodeid, cachep->name); | |
2853 | return __cache_alloc(cachep,flags); | |
1da177e4 | 2854 | } |
1da177e4 | 2855 | |
e498be7d CL |
2856 | cache_alloc_debugcheck_before(cachep, flags); |
2857 | local_irq_save(save_flags); | |
2858 | ptr = __cache_alloc_node(cachep, flags, nodeid); | |
2859 | local_irq_restore(save_flags); | |
2860 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, __builtin_return_address(0)); | |
1da177e4 | 2861 | |
e498be7d | 2862 | return ptr; |
1da177e4 LT |
2863 | } |
2864 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
2865 | ||
0db925af | 2866 | void *kmalloc_node(size_t size, unsigned int __nocast flags, int node) |
97e2bde4 MS |
2867 | { |
2868 | kmem_cache_t *cachep; | |
2869 | ||
2870 | cachep = kmem_find_general_cachep(size, flags); | |
2871 | if (unlikely(cachep == NULL)) | |
2872 | return NULL; | |
2873 | return kmem_cache_alloc_node(cachep, flags, node); | |
2874 | } | |
2875 | EXPORT_SYMBOL(kmalloc_node); | |
1da177e4 LT |
2876 | #endif |
2877 | ||
2878 | /** | |
2879 | * kmalloc - allocate memory | |
2880 | * @size: how many bytes of memory are required. | |
2881 | * @flags: the type of memory to allocate. | |
2882 | * | |
2883 | * kmalloc is the normal method of allocating memory | |
2884 | * in the kernel. | |
2885 | * | |
2886 | * The @flags argument may be one of: | |
2887 | * | |
2888 | * %GFP_USER - Allocate memory on behalf of user. May sleep. | |
2889 | * | |
2890 | * %GFP_KERNEL - Allocate normal kernel ram. May sleep. | |
2891 | * | |
2892 | * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers. | |
2893 | * | |
2894 | * Additionally, the %GFP_DMA flag may be set to indicate the memory | |
2895 | * must be suitable for DMA. This can mean different things on different | |
2896 | * platforms. For example, on i386, it means that the memory must come | |
2897 | * from the first 16MB. | |
2898 | */ | |
2899 | void *__kmalloc(size_t size, unsigned int __nocast flags) | |
2900 | { | |
2901 | kmem_cache_t *cachep; | |
2902 | ||
97e2bde4 MS |
2903 | /* If you want to save a few bytes .text space: replace |
2904 | * __ with kmem_. | |
2905 | * Then kmalloc uses the uninlined functions instead of the inline | |
2906 | * functions. | |
2907 | */ | |
2908 | cachep = __find_general_cachep(size, flags); | |
1da177e4 LT |
2909 | if (unlikely(cachep == NULL)) |
2910 | return NULL; | |
2911 | return __cache_alloc(cachep, flags); | |
2912 | } | |
2913 | EXPORT_SYMBOL(__kmalloc); | |
2914 | ||
2915 | #ifdef CONFIG_SMP | |
2916 | /** | |
2917 | * __alloc_percpu - allocate one copy of the object for every present | |
2918 | * cpu in the system, zeroing them. | |
2919 | * Objects should be dereferenced using the per_cpu_ptr macro only. | |
2920 | * | |
2921 | * @size: how many bytes of memory are required. | |
2922 | * @align: the alignment, which can't be greater than SMP_CACHE_BYTES. | |
2923 | */ | |
2924 | void *__alloc_percpu(size_t size, size_t align) | |
2925 | { | |
2926 | int i; | |
2927 | struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL); | |
2928 | ||
2929 | if (!pdata) | |
2930 | return NULL; | |
2931 | ||
e498be7d CL |
2932 | /* |
2933 | * Cannot use for_each_online_cpu since a cpu may come online | |
2934 | * and we have no way of figuring out how to fix the array | |
2935 | * that we have allocated then.... | |
2936 | */ | |
2937 | for_each_cpu(i) { | |
2938 | int node = cpu_to_node(i); | |
2939 | ||
2940 | if (node_online(node)) | |
2941 | pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node); | |
2942 | else | |
2943 | pdata->ptrs[i] = kmalloc(size, GFP_KERNEL); | |
1da177e4 LT |
2944 | |
2945 | if (!pdata->ptrs[i]) | |
2946 | goto unwind_oom; | |
2947 | memset(pdata->ptrs[i], 0, size); | |
2948 | } | |
2949 | ||
2950 | /* Catch derefs w/o wrappers */ | |
2951 | return (void *) (~(unsigned long) pdata); | |
2952 | ||
2953 | unwind_oom: | |
2954 | while (--i >= 0) { | |
2955 | if (!cpu_possible(i)) | |
2956 | continue; | |
2957 | kfree(pdata->ptrs[i]); | |
2958 | } | |
2959 | kfree(pdata); | |
2960 | return NULL; | |
2961 | } | |
2962 | EXPORT_SYMBOL(__alloc_percpu); | |
2963 | #endif | |
2964 | ||
2965 | /** | |
2966 | * kmem_cache_free - Deallocate an object | |
2967 | * @cachep: The cache the allocation was from. | |
2968 | * @objp: The previously allocated object. | |
2969 | * | |
2970 | * Free an object which was previously allocated from this | |
2971 | * cache. | |
2972 | */ | |
2973 | void kmem_cache_free(kmem_cache_t *cachep, void *objp) | |
2974 | { | |
2975 | unsigned long flags; | |
2976 | ||
2977 | local_irq_save(flags); | |
2978 | __cache_free(cachep, objp); | |
2979 | local_irq_restore(flags); | |
2980 | } | |
2981 | EXPORT_SYMBOL(kmem_cache_free); | |
2982 | ||
2983 | /** | |
dd392710 PE |
2984 | * kzalloc - allocate memory. The memory is set to zero. |
2985 | * @size: how many bytes of memory are required. | |
1da177e4 LT |
2986 | * @flags: the type of memory to allocate. |
2987 | */ | |
dd392710 | 2988 | void *kzalloc(size_t size, unsigned int __nocast flags) |
1da177e4 | 2989 | { |
dd392710 | 2990 | void *ret = kmalloc(size, flags); |
1da177e4 | 2991 | if (ret) |
dd392710 | 2992 | memset(ret, 0, size); |
1da177e4 LT |
2993 | return ret; |
2994 | } | |
dd392710 | 2995 | EXPORT_SYMBOL(kzalloc); |
1da177e4 LT |
2996 | |
2997 | /** | |
2998 | * kfree - free previously allocated memory | |
2999 | * @objp: pointer returned by kmalloc. | |
3000 | * | |
80e93eff PE |
3001 | * If @objp is NULL, no operation is performed. |
3002 | * | |
1da177e4 LT |
3003 | * Don't free memory not originally allocated by kmalloc() |
3004 | * or you will run into trouble. | |
3005 | */ | |
3006 | void kfree(const void *objp) | |
3007 | { | |
3008 | kmem_cache_t *c; | |
3009 | unsigned long flags; | |
3010 | ||
3011 | if (unlikely(!objp)) | |
3012 | return; | |
3013 | local_irq_save(flags); | |
3014 | kfree_debugcheck(objp); | |
3015 | c = GET_PAGE_CACHE(virt_to_page(objp)); | |
3016 | __cache_free(c, (void*)objp); | |
3017 | local_irq_restore(flags); | |
3018 | } | |
3019 | EXPORT_SYMBOL(kfree); | |
3020 | ||
3021 | #ifdef CONFIG_SMP | |
3022 | /** | |
3023 | * free_percpu - free previously allocated percpu memory | |
3024 | * @objp: pointer returned by alloc_percpu. | |
3025 | * | |
3026 | * Don't free memory not originally allocated by alloc_percpu() | |
3027 | * The complemented objp is to check for that. | |
3028 | */ | |
3029 | void | |
3030 | free_percpu(const void *objp) | |
3031 | { | |
3032 | int i; | |
3033 | struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp); | |
3034 | ||
e498be7d CL |
3035 | /* |
3036 | * We allocate for all cpus so we cannot use for online cpu here. | |
3037 | */ | |
3038 | for_each_cpu(i) | |
1da177e4 | 3039 | kfree(p->ptrs[i]); |
1da177e4 LT |
3040 | kfree(p); |
3041 | } | |
3042 | EXPORT_SYMBOL(free_percpu); | |
3043 | #endif | |
3044 | ||
3045 | unsigned int kmem_cache_size(kmem_cache_t *cachep) | |
3046 | { | |
3047 | return obj_reallen(cachep); | |
3048 | } | |
3049 | EXPORT_SYMBOL(kmem_cache_size); | |
3050 | ||
1944972d ACM |
3051 | const char *kmem_cache_name(kmem_cache_t *cachep) |
3052 | { | |
3053 | return cachep->name; | |
3054 | } | |
3055 | EXPORT_SYMBOL_GPL(kmem_cache_name); | |
3056 | ||
e498be7d CL |
3057 | /* |
3058 | * This initializes kmem_list3 for all nodes. | |
3059 | */ | |
3060 | static int alloc_kmemlist(kmem_cache_t *cachep) | |
3061 | { | |
3062 | int node; | |
3063 | struct kmem_list3 *l3; | |
3064 | int err = 0; | |
3065 | ||
3066 | for_each_online_node(node) { | |
3067 | struct array_cache *nc = NULL, *new; | |
3068 | struct array_cache **new_alien = NULL; | |
3069 | #ifdef CONFIG_NUMA | |
3070 | if (!(new_alien = alloc_alien_cache(node, cachep->limit))) | |
3071 | goto fail; | |
3072 | #endif | |
3073 | if (!(new = alloc_arraycache(node, (cachep->shared* | |
3074 | cachep->batchcount), 0xbaadf00d))) | |
3075 | goto fail; | |
3076 | if ((l3 = cachep->nodelists[node])) { | |
3077 | ||
3078 | spin_lock_irq(&l3->list_lock); | |
3079 | ||
3080 | if ((nc = cachep->nodelists[node]->shared)) | |
3081 | free_block(cachep, nc->entry, | |
3082 | nc->avail); | |
3083 | ||
3084 | l3->shared = new; | |
3085 | if (!cachep->nodelists[node]->alien) { | |
3086 | l3->alien = new_alien; | |
3087 | new_alien = NULL; | |
3088 | } | |
3089 | l3->free_limit = (1 + nr_cpus_node(node))* | |
3090 | cachep->batchcount + cachep->num; | |
3091 | spin_unlock_irq(&l3->list_lock); | |
3092 | kfree(nc); | |
3093 | free_alien_cache(new_alien); | |
3094 | continue; | |
3095 | } | |
3096 | if (!(l3 = kmalloc_node(sizeof(struct kmem_list3), | |
3097 | GFP_KERNEL, node))) | |
3098 | goto fail; | |
3099 | ||
3100 | kmem_list3_init(l3); | |
3101 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
3102 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; | |
3103 | l3->shared = new; | |
3104 | l3->alien = new_alien; | |
3105 | l3->free_limit = (1 + nr_cpus_node(node))* | |
3106 | cachep->batchcount + cachep->num; | |
3107 | cachep->nodelists[node] = l3; | |
3108 | } | |
3109 | return err; | |
3110 | fail: | |
3111 | err = -ENOMEM; | |
3112 | return err; | |
3113 | } | |
3114 | ||
1da177e4 LT |
3115 | struct ccupdate_struct { |
3116 | kmem_cache_t *cachep; | |
3117 | struct array_cache *new[NR_CPUS]; | |
3118 | }; | |
3119 | ||
3120 | static void do_ccupdate_local(void *info) | |
3121 | { | |
3122 | struct ccupdate_struct *new = (struct ccupdate_struct *)info; | |
3123 | struct array_cache *old; | |
3124 | ||
3125 | check_irq_off(); | |
3126 | old = ac_data(new->cachep); | |
e498be7d | 3127 | |
1da177e4 LT |
3128 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; |
3129 | new->new[smp_processor_id()] = old; | |
3130 | } | |
3131 | ||
3132 | ||
3133 | static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount, | |
3134 | int shared) | |
3135 | { | |
3136 | struct ccupdate_struct new; | |
e498be7d | 3137 | int i, err; |
1da177e4 LT |
3138 | |
3139 | memset(&new.new,0,sizeof(new.new)); | |
e498be7d CL |
3140 | for_each_online_cpu(i) { |
3141 | new.new[i] = alloc_arraycache(cpu_to_node(i), limit, batchcount); | |
3142 | if (!new.new[i]) { | |
3143 | for (i--; i >= 0; i--) kfree(new.new[i]); | |
3144 | return -ENOMEM; | |
1da177e4 LT |
3145 | } |
3146 | } | |
3147 | new.cachep = cachep; | |
3148 | ||
3149 | smp_call_function_all_cpus(do_ccupdate_local, (void *)&new); | |
e498be7d | 3150 | |
1da177e4 LT |
3151 | check_irq_on(); |
3152 | spin_lock_irq(&cachep->spinlock); | |
3153 | cachep->batchcount = batchcount; | |
3154 | cachep->limit = limit; | |
e498be7d | 3155 | cachep->shared = shared; |
1da177e4 LT |
3156 | spin_unlock_irq(&cachep->spinlock); |
3157 | ||
e498be7d | 3158 | for_each_online_cpu(i) { |
1da177e4 LT |
3159 | struct array_cache *ccold = new.new[i]; |
3160 | if (!ccold) | |
3161 | continue; | |
e498be7d CL |
3162 | spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); |
3163 | free_block(cachep, ccold->entry, ccold->avail); | |
3164 | spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); | |
1da177e4 LT |
3165 | kfree(ccold); |
3166 | } | |
1da177e4 | 3167 | |
e498be7d CL |
3168 | err = alloc_kmemlist(cachep); |
3169 | if (err) { | |
3170 | printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n", | |
3171 | cachep->name, -err); | |
3172 | BUG(); | |
1da177e4 | 3173 | } |
1da177e4 LT |
3174 | return 0; |
3175 | } | |
3176 | ||
3177 | ||
3178 | static void enable_cpucache(kmem_cache_t *cachep) | |
3179 | { | |
3180 | int err; | |
3181 | int limit, shared; | |
3182 | ||
3183 | /* The head array serves three purposes: | |
3184 | * - create a LIFO ordering, i.e. return objects that are cache-warm | |
3185 | * - reduce the number of spinlock operations. | |
3186 | * - reduce the number of linked list operations on the slab and | |
3187 | * bufctl chains: array operations are cheaper. | |
3188 | * The numbers are guessed, we should auto-tune as described by | |
3189 | * Bonwick. | |
3190 | */ | |
3191 | if (cachep->objsize > 131072) | |
3192 | limit = 1; | |
3193 | else if (cachep->objsize > PAGE_SIZE) | |
3194 | limit = 8; | |
3195 | else if (cachep->objsize > 1024) | |
3196 | limit = 24; | |
3197 | else if (cachep->objsize > 256) | |
3198 | limit = 54; | |
3199 | else | |
3200 | limit = 120; | |
3201 | ||
3202 | /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound | |
3203 | * allocation behaviour: Most allocs on one cpu, most free operations | |
3204 | * on another cpu. For these cases, an efficient object passing between | |
3205 | * cpus is necessary. This is provided by a shared array. The array | |
3206 | * replaces Bonwick's magazine layer. | |
3207 | * On uniprocessor, it's functionally equivalent (but less efficient) | |
3208 | * to a larger limit. Thus disabled by default. | |
3209 | */ | |
3210 | shared = 0; | |
3211 | #ifdef CONFIG_SMP | |
3212 | if (cachep->objsize <= PAGE_SIZE) | |
3213 | shared = 8; | |
3214 | #endif | |
3215 | ||
3216 | #if DEBUG | |
3217 | /* With debugging enabled, large batchcount lead to excessively | |
3218 | * long periods with disabled local interrupts. Limit the | |
3219 | * batchcount | |
3220 | */ | |
3221 | if (limit > 32) | |
3222 | limit = 32; | |
3223 | #endif | |
3224 | err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared); | |
3225 | if (err) | |
3226 | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | |
3227 | cachep->name, -err); | |
3228 | } | |
3229 | ||
3230 | static void drain_array_locked(kmem_cache_t *cachep, | |
e498be7d | 3231 | struct array_cache *ac, int force, int node) |
1da177e4 LT |
3232 | { |
3233 | int tofree; | |
3234 | ||
e498be7d | 3235 | check_spinlock_acquired_node(cachep, node); |
1da177e4 LT |
3236 | if (ac->touched && !force) { |
3237 | ac->touched = 0; | |
3238 | } else if (ac->avail) { | |
3239 | tofree = force ? ac->avail : (ac->limit+4)/5; | |
3240 | if (tofree > ac->avail) { | |
3241 | tofree = (ac->avail+1)/2; | |
3242 | } | |
e498be7d | 3243 | free_block(cachep, ac->entry, tofree); |
1da177e4 | 3244 | ac->avail -= tofree; |
e498be7d | 3245 | memmove(ac->entry, &(ac->entry[tofree]), |
1da177e4 LT |
3246 | sizeof(void*)*ac->avail); |
3247 | } | |
3248 | } | |
3249 | ||
3250 | /** | |
3251 | * cache_reap - Reclaim memory from caches. | |
3252 | * | |
3253 | * Called from workqueue/eventd every few seconds. | |
3254 | * Purpose: | |
3255 | * - clear the per-cpu caches for this CPU. | |
3256 | * - return freeable pages to the main free memory pool. | |
3257 | * | |
3258 | * If we cannot acquire the cache chain semaphore then just give up - we'll | |
3259 | * try again on the next iteration. | |
3260 | */ | |
3261 | static void cache_reap(void *unused) | |
3262 | { | |
3263 | struct list_head *walk; | |
e498be7d | 3264 | struct kmem_list3 *l3; |
1da177e4 LT |
3265 | |
3266 | if (down_trylock(&cache_chain_sem)) { | |
3267 | /* Give up. Setup the next iteration. */ | |
3268 | schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id()); | |
3269 | return; | |
3270 | } | |
3271 | ||
3272 | list_for_each(walk, &cache_chain) { | |
3273 | kmem_cache_t *searchp; | |
3274 | struct list_head* p; | |
3275 | int tofree; | |
3276 | struct slab *slabp; | |
3277 | ||
3278 | searchp = list_entry(walk, kmem_cache_t, next); | |
3279 | ||
3280 | if (searchp->flags & SLAB_NO_REAP) | |
3281 | goto next; | |
3282 | ||
3283 | check_irq_on(); | |
3284 | ||
e498be7d CL |
3285 | l3 = searchp->nodelists[numa_node_id()]; |
3286 | if (l3->alien) | |
3287 | drain_alien_cache(searchp, l3); | |
3288 | spin_lock_irq(&l3->list_lock); | |
1da177e4 | 3289 | |
e498be7d CL |
3290 | drain_array_locked(searchp, ac_data(searchp), 0, |
3291 | numa_node_id()); | |
1da177e4 | 3292 | |
e498be7d | 3293 | if (time_after(l3->next_reap, jiffies)) |
1da177e4 LT |
3294 | goto next_unlock; |
3295 | ||
e498be7d | 3296 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3; |
1da177e4 | 3297 | |
e498be7d CL |
3298 | if (l3->shared) |
3299 | drain_array_locked(searchp, l3->shared, 0, | |
3300 | numa_node_id()); | |
1da177e4 | 3301 | |
e498be7d CL |
3302 | if (l3->free_touched) { |
3303 | l3->free_touched = 0; | |
1da177e4 LT |
3304 | goto next_unlock; |
3305 | } | |
3306 | ||
e498be7d | 3307 | tofree = (l3->free_limit+5*searchp->num-1)/(5*searchp->num); |
1da177e4 | 3308 | do { |
e498be7d CL |
3309 | p = l3->slabs_free.next; |
3310 | if (p == &(l3->slabs_free)) | |
1da177e4 LT |
3311 | break; |
3312 | ||
3313 | slabp = list_entry(p, struct slab, list); | |
3314 | BUG_ON(slabp->inuse); | |
3315 | list_del(&slabp->list); | |
3316 | STATS_INC_REAPED(searchp); | |
3317 | ||
3318 | /* Safe to drop the lock. The slab is no longer | |
3319 | * linked to the cache. | |
3320 | * searchp cannot disappear, we hold | |
3321 | * cache_chain_lock | |
3322 | */ | |
e498be7d CL |
3323 | l3->free_objects -= searchp->num; |
3324 | spin_unlock_irq(&l3->list_lock); | |
1da177e4 | 3325 | slab_destroy(searchp, slabp); |
e498be7d | 3326 | spin_lock_irq(&l3->list_lock); |
1da177e4 LT |
3327 | } while(--tofree > 0); |
3328 | next_unlock: | |
e498be7d | 3329 | spin_unlock_irq(&l3->list_lock); |
1da177e4 LT |
3330 | next: |
3331 | cond_resched(); | |
3332 | } | |
3333 | check_irq_on(); | |
3334 | up(&cache_chain_sem); | |
4ae7c039 | 3335 | drain_remote_pages(); |
1da177e4 LT |
3336 | /* Setup the next iteration */ |
3337 | schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id()); | |
3338 | } | |
3339 | ||
3340 | #ifdef CONFIG_PROC_FS | |
3341 | ||
3342 | static void *s_start(struct seq_file *m, loff_t *pos) | |
3343 | { | |
3344 | loff_t n = *pos; | |
3345 | struct list_head *p; | |
3346 | ||
3347 | down(&cache_chain_sem); | |
3348 | if (!n) { | |
3349 | /* | |
3350 | * Output format version, so at least we can change it | |
3351 | * without _too_ many complaints. | |
3352 | */ | |
3353 | #if STATS | |
3354 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | |
3355 | #else | |
3356 | seq_puts(m, "slabinfo - version: 2.1\n"); | |
3357 | #endif | |
3358 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); | |
3359 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | |
3360 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
3361 | #if STATS | |
3362 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>" | |
e498be7d | 3363 | " <error> <maxfreeable> <nodeallocs> <remotefrees>"); |
1da177e4 LT |
3364 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
3365 | #endif | |
3366 | seq_putc(m, '\n'); | |
3367 | } | |
3368 | p = cache_chain.next; | |
3369 | while (n--) { | |
3370 | p = p->next; | |
3371 | if (p == &cache_chain) | |
3372 | return NULL; | |
3373 | } | |
3374 | return list_entry(p, kmem_cache_t, next); | |
3375 | } | |
3376 | ||
3377 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
3378 | { | |
3379 | kmem_cache_t *cachep = p; | |
3380 | ++*pos; | |
3381 | return cachep->next.next == &cache_chain ? NULL | |
3382 | : list_entry(cachep->next.next, kmem_cache_t, next); | |
3383 | } | |
3384 | ||
3385 | static void s_stop(struct seq_file *m, void *p) | |
3386 | { | |
3387 | up(&cache_chain_sem); | |
3388 | } | |
3389 | ||
3390 | static int s_show(struct seq_file *m, void *p) | |
3391 | { | |
3392 | kmem_cache_t *cachep = p; | |
3393 | struct list_head *q; | |
3394 | struct slab *slabp; | |
3395 | unsigned long active_objs; | |
3396 | unsigned long num_objs; | |
3397 | unsigned long active_slabs = 0; | |
e498be7d CL |
3398 | unsigned long num_slabs, free_objects = 0, shared_avail = 0; |
3399 | const char *name; | |
1da177e4 | 3400 | char *error = NULL; |
e498be7d CL |
3401 | int node; |
3402 | struct kmem_list3 *l3; | |
1da177e4 LT |
3403 | |
3404 | check_irq_on(); | |
3405 | spin_lock_irq(&cachep->spinlock); | |
3406 | active_objs = 0; | |
3407 | num_slabs = 0; | |
e498be7d CL |
3408 | for_each_online_node(node) { |
3409 | l3 = cachep->nodelists[node]; | |
3410 | if (!l3) | |
3411 | continue; | |
3412 | ||
3413 | spin_lock(&l3->list_lock); | |
3414 | ||
3415 | list_for_each(q,&l3->slabs_full) { | |
3416 | slabp = list_entry(q, struct slab, list); | |
3417 | if (slabp->inuse != cachep->num && !error) | |
3418 | error = "slabs_full accounting error"; | |
3419 | active_objs += cachep->num; | |
3420 | active_slabs++; | |
3421 | } | |
3422 | list_for_each(q,&l3->slabs_partial) { | |
3423 | slabp = list_entry(q, struct slab, list); | |
3424 | if (slabp->inuse == cachep->num && !error) | |
3425 | error = "slabs_partial inuse accounting error"; | |
3426 | if (!slabp->inuse && !error) | |
3427 | error = "slabs_partial/inuse accounting error"; | |
3428 | active_objs += slabp->inuse; | |
3429 | active_slabs++; | |
3430 | } | |
3431 | list_for_each(q,&l3->slabs_free) { | |
3432 | slabp = list_entry(q, struct slab, list); | |
3433 | if (slabp->inuse && !error) | |
3434 | error = "slabs_free/inuse accounting error"; | |
3435 | num_slabs++; | |
3436 | } | |
3437 | free_objects += l3->free_objects; | |
3438 | shared_avail += l3->shared->avail; | |
3439 | ||
3440 | spin_unlock(&l3->list_lock); | |
1da177e4 LT |
3441 | } |
3442 | num_slabs+=active_slabs; | |
3443 | num_objs = num_slabs*cachep->num; | |
e498be7d | 3444 | if (num_objs - active_objs != free_objects && !error) |
1da177e4 LT |
3445 | error = "free_objects accounting error"; |
3446 | ||
3447 | name = cachep->name; | |
3448 | if (error) | |
3449 | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | |
3450 | ||
3451 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | |
3452 | name, active_objs, num_objs, cachep->objsize, | |
3453 | cachep->num, (1<<cachep->gfporder)); | |
3454 | seq_printf(m, " : tunables %4u %4u %4u", | |
3455 | cachep->limit, cachep->batchcount, | |
e498be7d CL |
3456 | cachep->shared); |
3457 | seq_printf(m, " : slabdata %6lu %6lu %6lu", | |
3458 | active_slabs, num_slabs, shared_avail); | |
1da177e4 LT |
3459 | #if STATS |
3460 | { /* list3 stats */ | |
3461 | unsigned long high = cachep->high_mark; | |
3462 | unsigned long allocs = cachep->num_allocations; | |
3463 | unsigned long grown = cachep->grown; | |
3464 | unsigned long reaped = cachep->reaped; | |
3465 | unsigned long errors = cachep->errors; | |
3466 | unsigned long max_freeable = cachep->max_freeable; | |
1da177e4 | 3467 | unsigned long node_allocs = cachep->node_allocs; |
e498be7d | 3468 | unsigned long node_frees = cachep->node_frees; |
1da177e4 | 3469 | |
e498be7d CL |
3470 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ |
3471 | %4lu %4lu %4lu %4lu", | |
3472 | allocs, high, grown, reaped, errors, | |
3473 | max_freeable, node_allocs, node_frees); | |
1da177e4 LT |
3474 | } |
3475 | /* cpu stats */ | |
3476 | { | |
3477 | unsigned long allochit = atomic_read(&cachep->allochit); | |
3478 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | |
3479 | unsigned long freehit = atomic_read(&cachep->freehit); | |
3480 | unsigned long freemiss = atomic_read(&cachep->freemiss); | |
3481 | ||
3482 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | |
3483 | allochit, allocmiss, freehit, freemiss); | |
3484 | } | |
3485 | #endif | |
3486 | seq_putc(m, '\n'); | |
3487 | spin_unlock_irq(&cachep->spinlock); | |
3488 | return 0; | |
3489 | } | |
3490 | ||
3491 | /* | |
3492 | * slabinfo_op - iterator that generates /proc/slabinfo | |
3493 | * | |
3494 | * Output layout: | |
3495 | * cache-name | |
3496 | * num-active-objs | |
3497 | * total-objs | |
3498 | * object size | |
3499 | * num-active-slabs | |
3500 | * total-slabs | |
3501 | * num-pages-per-slab | |
3502 | * + further values on SMP and with statistics enabled | |
3503 | */ | |
3504 | ||
3505 | struct seq_operations slabinfo_op = { | |
3506 | .start = s_start, | |
3507 | .next = s_next, | |
3508 | .stop = s_stop, | |
3509 | .show = s_show, | |
3510 | }; | |
3511 | ||
3512 | #define MAX_SLABINFO_WRITE 128 | |
3513 | /** | |
3514 | * slabinfo_write - Tuning for the slab allocator | |
3515 | * @file: unused | |
3516 | * @buffer: user buffer | |
3517 | * @count: data length | |
3518 | * @ppos: unused | |
3519 | */ | |
3520 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, | |
3521 | size_t count, loff_t *ppos) | |
3522 | { | |
3523 | char kbuf[MAX_SLABINFO_WRITE+1], *tmp; | |
3524 | int limit, batchcount, shared, res; | |
3525 | struct list_head *p; | |
3526 | ||
3527 | if (count > MAX_SLABINFO_WRITE) | |
3528 | return -EINVAL; | |
3529 | if (copy_from_user(&kbuf, buffer, count)) | |
3530 | return -EFAULT; | |
3531 | kbuf[MAX_SLABINFO_WRITE] = '\0'; | |
3532 | ||
3533 | tmp = strchr(kbuf, ' '); | |
3534 | if (!tmp) | |
3535 | return -EINVAL; | |
3536 | *tmp = '\0'; | |
3537 | tmp++; | |
3538 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | |
3539 | return -EINVAL; | |
3540 | ||
3541 | /* Find the cache in the chain of caches. */ | |
3542 | down(&cache_chain_sem); | |
3543 | res = -EINVAL; | |
3544 | list_for_each(p,&cache_chain) { | |
3545 | kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next); | |
3546 | ||
3547 | if (!strcmp(cachep->name, kbuf)) { | |
3548 | if (limit < 1 || | |
3549 | batchcount < 1 || | |
3550 | batchcount > limit || | |
3551 | shared < 0) { | |
e498be7d | 3552 | res = 0; |
1da177e4 | 3553 | } else { |
e498be7d CL |
3554 | res = do_tune_cpucache(cachep, limit, |
3555 | batchcount, shared); | |
1da177e4 LT |
3556 | } |
3557 | break; | |
3558 | } | |
3559 | } | |
3560 | up(&cache_chain_sem); | |
3561 | if (res >= 0) | |
3562 | res = count; | |
3563 | return res; | |
3564 | } | |
3565 | #endif | |
3566 | ||
00e145b6 MS |
3567 | /** |
3568 | * ksize - get the actual amount of memory allocated for a given object | |
3569 | * @objp: Pointer to the object | |
3570 | * | |
3571 | * kmalloc may internally round up allocations and return more memory | |
3572 | * than requested. ksize() can be used to determine the actual amount of | |
3573 | * memory allocated. The caller may use this additional memory, even though | |
3574 | * a smaller amount of memory was initially specified with the kmalloc call. | |
3575 | * The caller must guarantee that objp points to a valid object previously | |
3576 | * allocated with either kmalloc() or kmem_cache_alloc(). The object | |
3577 | * must not be freed during the duration of the call. | |
3578 | */ | |
1da177e4 LT |
3579 | unsigned int ksize(const void *objp) |
3580 | { | |
00e145b6 MS |
3581 | if (unlikely(objp == NULL)) |
3582 | return 0; | |
1da177e4 | 3583 | |
00e145b6 | 3584 | return obj_reallen(GET_PAGE_CACHE(virt_to_page(objp))); |
1da177e4 | 3585 | } |
543537bd PM |
3586 | |
3587 | ||
3588 | /* | |
3589 | * kstrdup - allocate space for and copy an existing string | |
3590 | * | |
3591 | * @s: the string to duplicate | |
3592 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
3593 | */ | |
0db925af | 3594 | char *kstrdup(const char *s, unsigned int __nocast gfp) |
543537bd PM |
3595 | { |
3596 | size_t len; | |
3597 | char *buf; | |
3598 | ||
3599 | if (!s) | |
3600 | return NULL; | |
3601 | ||
3602 | len = strlen(s) + 1; | |
3603 | buf = kmalloc(len, gfp); | |
3604 | if (buf) | |
3605 | memcpy(buf, s, len); | |
3606 | return buf; | |
3607 | } | |
3608 | EXPORT_SYMBOL(kstrdup); |