]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/slab.c | |
3 | * Written by Mark Hemment, 1996/97. | |
4 | * ([email protected]) | |
5 | * | |
6 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | |
7 | * | |
8 | * Major cleanup, different bufctl logic, per-cpu arrays | |
9 | * (c) 2000 Manfred Spraul | |
10 | * | |
11 | * Cleanup, make the head arrays unconditional, preparation for NUMA | |
12 | * (c) 2002 Manfred Spraul | |
13 | * | |
14 | * An implementation of the Slab Allocator as described in outline in; | |
15 | * UNIX Internals: The New Frontiers by Uresh Vahalia | |
16 | * Pub: Prentice Hall ISBN 0-13-101908-2 | |
17 | * or with a little more detail in; | |
18 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | |
19 | * Jeff Bonwick (Sun Microsystems). | |
20 | * Presented at: USENIX Summer 1994 Technical Conference | |
21 | * | |
22 | * The memory is organized in caches, one cache for each object type. | |
23 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | |
24 | * Each cache consists out of many slabs (they are small (usually one | |
25 | * page long) and always contiguous), and each slab contains multiple | |
26 | * initialized objects. | |
27 | * | |
28 | * This means, that your constructor is used only for newly allocated | |
29 | * slabs and you must pass objects with the same intializations to | |
30 | * kmem_cache_free. | |
31 | * | |
32 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | |
33 | * normal). If you need a special memory type, then must create a new | |
34 | * cache for that memory type. | |
35 | * | |
36 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | |
37 | * full slabs with 0 free objects | |
38 | * partial slabs | |
39 | * empty slabs with no allocated objects | |
40 | * | |
41 | * If partial slabs exist, then new allocations come from these slabs, | |
42 | * otherwise from empty slabs or new slabs are allocated. | |
43 | * | |
44 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | |
45 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | |
46 | * | |
47 | * Each cache has a short per-cpu head array, most allocs | |
48 | * and frees go into that array, and if that array overflows, then 1/2 | |
49 | * of the entries in the array are given back into the global cache. | |
50 | * The head array is strictly LIFO and should improve the cache hit rates. | |
51 | * On SMP, it additionally reduces the spinlock operations. | |
52 | * | |
53 | * The c_cpuarray may not be read with enabled local interrupts - | |
54 | * it's changed with a smp_call_function(). | |
55 | * | |
56 | * SMP synchronization: | |
57 | * constructors and destructors are called without any locking. | |
58 | * Several members in kmem_cache_t and struct slab never change, they | |
59 | * are accessed without any locking. | |
60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | |
61 | * and local interrupts are disabled so slab code is preempt-safe. | |
62 | * The non-constant members are protected with a per-cache irq spinlock. | |
63 | * | |
64 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | |
65 | * in 2000 - many ideas in the current implementation are derived from | |
66 | * his patch. | |
67 | * | |
68 | * Further notes from the original documentation: | |
69 | * | |
70 | * 11 April '97. Started multi-threading - markhe | |
71 | * The global cache-chain is protected by the semaphore 'cache_chain_sem'. | |
72 | * The sem is only needed when accessing/extending the cache-chain, which | |
73 | * can never happen inside an interrupt (kmem_cache_create(), | |
74 | * kmem_cache_shrink() and kmem_cache_reap()). | |
75 | * | |
76 | * At present, each engine can be growing a cache. This should be blocked. | |
77 | * | |
e498be7d CL |
78 | * 15 March 2005. NUMA slab allocator. |
79 | * Shai Fultheim <[email protected]>. | |
80 | * Shobhit Dayal <[email protected]> | |
81 | * Alok N Kataria <[email protected]> | |
82 | * Christoph Lameter <[email protected]> | |
83 | * | |
84 | * Modified the slab allocator to be node aware on NUMA systems. | |
85 | * Each node has its own list of partial, free and full slabs. | |
86 | * All object allocations for a node occur from node specific slab lists. | |
1da177e4 LT |
87 | */ |
88 | ||
89 | #include <linux/config.h> | |
90 | #include <linux/slab.h> | |
91 | #include <linux/mm.h> | |
92 | #include <linux/swap.h> | |
93 | #include <linux/cache.h> | |
94 | #include <linux/interrupt.h> | |
95 | #include <linux/init.h> | |
96 | #include <linux/compiler.h> | |
97 | #include <linux/seq_file.h> | |
98 | #include <linux/notifier.h> | |
99 | #include <linux/kallsyms.h> | |
100 | #include <linux/cpu.h> | |
101 | #include <linux/sysctl.h> | |
102 | #include <linux/module.h> | |
103 | #include <linux/rcupdate.h> | |
543537bd | 104 | #include <linux/string.h> |
e498be7d | 105 | #include <linux/nodemask.h> |
1da177e4 LT |
106 | |
107 | #include <asm/uaccess.h> | |
108 | #include <asm/cacheflush.h> | |
109 | #include <asm/tlbflush.h> | |
110 | #include <asm/page.h> | |
111 | ||
112 | /* | |
113 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL, | |
114 | * SLAB_RED_ZONE & SLAB_POISON. | |
115 | * 0 for faster, smaller code (especially in the critical paths). | |
116 | * | |
117 | * STATS - 1 to collect stats for /proc/slabinfo. | |
118 | * 0 for faster, smaller code (especially in the critical paths). | |
119 | * | |
120 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | |
121 | */ | |
122 | ||
123 | #ifdef CONFIG_DEBUG_SLAB | |
124 | #define DEBUG 1 | |
125 | #define STATS 1 | |
126 | #define FORCED_DEBUG 1 | |
127 | #else | |
128 | #define DEBUG 0 | |
129 | #define STATS 0 | |
130 | #define FORCED_DEBUG 0 | |
131 | #endif | |
132 | ||
133 | ||
134 | /* Shouldn't this be in a header file somewhere? */ | |
135 | #define BYTES_PER_WORD sizeof(void *) | |
136 | ||
137 | #ifndef cache_line_size | |
138 | #define cache_line_size() L1_CACHE_BYTES | |
139 | #endif | |
140 | ||
141 | #ifndef ARCH_KMALLOC_MINALIGN | |
142 | /* | |
143 | * Enforce a minimum alignment for the kmalloc caches. | |
144 | * Usually, the kmalloc caches are cache_line_size() aligned, except when | |
145 | * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. | |
146 | * Some archs want to perform DMA into kmalloc caches and need a guaranteed | |
147 | * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that. | |
148 | * Note that this flag disables some debug features. | |
149 | */ | |
150 | #define ARCH_KMALLOC_MINALIGN 0 | |
151 | #endif | |
152 | ||
153 | #ifndef ARCH_SLAB_MINALIGN | |
154 | /* | |
155 | * Enforce a minimum alignment for all caches. | |
156 | * Intended for archs that get misalignment faults even for BYTES_PER_WORD | |
157 | * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. | |
158 | * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables | |
159 | * some debug features. | |
160 | */ | |
161 | #define ARCH_SLAB_MINALIGN 0 | |
162 | #endif | |
163 | ||
164 | #ifndef ARCH_KMALLOC_FLAGS | |
165 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | |
166 | #endif | |
167 | ||
168 | /* Legal flag mask for kmem_cache_create(). */ | |
169 | #if DEBUG | |
170 | # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \ | |
171 | SLAB_POISON | SLAB_HWCACHE_ALIGN | \ | |
172 | SLAB_NO_REAP | SLAB_CACHE_DMA | \ | |
173 | SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \ | |
174 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ | |
175 | SLAB_DESTROY_BY_RCU) | |
176 | #else | |
177 | # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \ | |
178 | SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \ | |
179 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ | |
180 | SLAB_DESTROY_BY_RCU) | |
181 | #endif | |
182 | ||
183 | /* | |
184 | * kmem_bufctl_t: | |
185 | * | |
186 | * Bufctl's are used for linking objs within a slab | |
187 | * linked offsets. | |
188 | * | |
189 | * This implementation relies on "struct page" for locating the cache & | |
190 | * slab an object belongs to. | |
191 | * This allows the bufctl structure to be small (one int), but limits | |
192 | * the number of objects a slab (not a cache) can contain when off-slab | |
193 | * bufctls are used. The limit is the size of the largest general cache | |
194 | * that does not use off-slab slabs. | |
195 | * For 32bit archs with 4 kB pages, is this 56. | |
196 | * This is not serious, as it is only for large objects, when it is unwise | |
197 | * to have too many per slab. | |
198 | * Note: This limit can be raised by introducing a general cache whose size | |
199 | * is less than 512 (PAGE_SIZE<<3), but greater than 256. | |
200 | */ | |
201 | ||
fa5b08d5 | 202 | typedef unsigned int kmem_bufctl_t; |
1da177e4 LT |
203 | #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) |
204 | #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) | |
205 | #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2) | |
206 | ||
207 | /* Max number of objs-per-slab for caches which use off-slab slabs. | |
208 | * Needed to avoid a possible looping condition in cache_grow(). | |
209 | */ | |
210 | static unsigned long offslab_limit; | |
211 | ||
212 | /* | |
213 | * struct slab | |
214 | * | |
215 | * Manages the objs in a slab. Placed either at the beginning of mem allocated | |
216 | * for a slab, or allocated from an general cache. | |
217 | * Slabs are chained into three list: fully used, partial, fully free slabs. | |
218 | */ | |
219 | struct slab { | |
220 | struct list_head list; | |
221 | unsigned long colouroff; | |
222 | void *s_mem; /* including colour offset */ | |
223 | unsigned int inuse; /* num of objs active in slab */ | |
224 | kmem_bufctl_t free; | |
e498be7d | 225 | unsigned short nodeid; |
1da177e4 LT |
226 | }; |
227 | ||
228 | /* | |
229 | * struct slab_rcu | |
230 | * | |
231 | * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to | |
232 | * arrange for kmem_freepages to be called via RCU. This is useful if | |
233 | * we need to approach a kernel structure obliquely, from its address | |
234 | * obtained without the usual locking. We can lock the structure to | |
235 | * stabilize it and check it's still at the given address, only if we | |
236 | * can be sure that the memory has not been meanwhile reused for some | |
237 | * other kind of object (which our subsystem's lock might corrupt). | |
238 | * | |
239 | * rcu_read_lock before reading the address, then rcu_read_unlock after | |
240 | * taking the spinlock within the structure expected at that address. | |
241 | * | |
242 | * We assume struct slab_rcu can overlay struct slab when destroying. | |
243 | */ | |
244 | struct slab_rcu { | |
245 | struct rcu_head head; | |
246 | kmem_cache_t *cachep; | |
247 | void *addr; | |
248 | }; | |
249 | ||
250 | /* | |
251 | * struct array_cache | |
252 | * | |
1da177e4 LT |
253 | * Purpose: |
254 | * - LIFO ordering, to hand out cache-warm objects from _alloc | |
255 | * - reduce the number of linked list operations | |
256 | * - reduce spinlock operations | |
257 | * | |
258 | * The limit is stored in the per-cpu structure to reduce the data cache | |
259 | * footprint. | |
260 | * | |
261 | */ | |
262 | struct array_cache { | |
263 | unsigned int avail; | |
264 | unsigned int limit; | |
265 | unsigned int batchcount; | |
266 | unsigned int touched; | |
e498be7d CL |
267 | spinlock_t lock; |
268 | void *entry[0]; /* | |
269 | * Must have this definition in here for the proper | |
270 | * alignment of array_cache. Also simplifies accessing | |
271 | * the entries. | |
272 | * [0] is for gcc 2.95. It should really be []. | |
273 | */ | |
1da177e4 LT |
274 | }; |
275 | ||
276 | /* bootstrap: The caches do not work without cpuarrays anymore, | |
277 | * but the cpuarrays are allocated from the generic caches... | |
278 | */ | |
279 | #define BOOT_CPUCACHE_ENTRIES 1 | |
280 | struct arraycache_init { | |
281 | struct array_cache cache; | |
282 | void * entries[BOOT_CPUCACHE_ENTRIES]; | |
283 | }; | |
284 | ||
285 | /* | |
e498be7d | 286 | * The slab lists for all objects. |
1da177e4 LT |
287 | */ |
288 | struct kmem_list3 { | |
289 | struct list_head slabs_partial; /* partial list first, better asm code */ | |
290 | struct list_head slabs_full; | |
291 | struct list_head slabs_free; | |
292 | unsigned long free_objects; | |
1da177e4 | 293 | unsigned long next_reap; |
e498be7d CL |
294 | int free_touched; |
295 | unsigned int free_limit; | |
296 | spinlock_t list_lock; | |
297 | struct array_cache *shared; /* shared per node */ | |
298 | struct array_cache **alien; /* on other nodes */ | |
1da177e4 LT |
299 | }; |
300 | ||
e498be7d CL |
301 | /* |
302 | * Need this for bootstrapping a per node allocator. | |
303 | */ | |
304 | #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1) | |
305 | struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; | |
306 | #define CACHE_CACHE 0 | |
307 | #define SIZE_AC 1 | |
308 | #define SIZE_L3 (1 + MAX_NUMNODES) | |
309 | ||
310 | /* | |
7243cc05 | 311 | * This function must be completely optimized away if |
e498be7d CL |
312 | * a constant is passed to it. Mostly the same as |
313 | * what is in linux/slab.h except it returns an | |
314 | * index. | |
315 | */ | |
7243cc05 | 316 | static __always_inline int index_of(const size_t size) |
e498be7d CL |
317 | { |
318 | if (__builtin_constant_p(size)) { | |
319 | int i = 0; | |
320 | ||
321 | #define CACHE(x) \ | |
322 | if (size <=x) \ | |
323 | return i; \ | |
324 | else \ | |
325 | i++; | |
326 | #include "linux/kmalloc_sizes.h" | |
327 | #undef CACHE | |
328 | { | |
329 | extern void __bad_size(void); | |
330 | __bad_size(); | |
331 | } | |
7243cc05 IK |
332 | } else |
333 | BUG(); | |
e498be7d CL |
334 | return 0; |
335 | } | |
336 | ||
337 | #define INDEX_AC index_of(sizeof(struct arraycache_init)) | |
338 | #define INDEX_L3 index_of(sizeof(struct kmem_list3)) | |
1da177e4 | 339 | |
e498be7d CL |
340 | static inline void kmem_list3_init(struct kmem_list3 *parent) |
341 | { | |
342 | INIT_LIST_HEAD(&parent->slabs_full); | |
343 | INIT_LIST_HEAD(&parent->slabs_partial); | |
344 | INIT_LIST_HEAD(&parent->slabs_free); | |
345 | parent->shared = NULL; | |
346 | parent->alien = NULL; | |
347 | spin_lock_init(&parent->list_lock); | |
348 | parent->free_objects = 0; | |
349 | parent->free_touched = 0; | |
350 | } | |
351 | ||
352 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ | |
353 | do { \ | |
354 | INIT_LIST_HEAD(listp); \ | |
355 | list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ | |
356 | } while (0) | |
357 | ||
358 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ | |
359 | do { \ | |
360 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ | |
361 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | |
362 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | |
363 | } while (0) | |
1da177e4 LT |
364 | |
365 | /* | |
366 | * kmem_cache_t | |
367 | * | |
368 | * manages a cache. | |
369 | */ | |
370 | ||
2109a2d1 | 371 | struct kmem_cache { |
1da177e4 LT |
372 | /* 1) per-cpu data, touched during every alloc/free */ |
373 | struct array_cache *array[NR_CPUS]; | |
374 | unsigned int batchcount; | |
375 | unsigned int limit; | |
e498be7d | 376 | unsigned int shared; |
1da177e4 | 377 | unsigned int objsize; |
e498be7d CL |
378 | /* 2) touched by every alloc & free from the backend */ |
379 | struct kmem_list3 *nodelists[MAX_NUMNODES]; | |
1da177e4 LT |
380 | unsigned int flags; /* constant flags */ |
381 | unsigned int num; /* # of objs per slab */ | |
1da177e4 LT |
382 | spinlock_t spinlock; |
383 | ||
384 | /* 3) cache_grow/shrink */ | |
385 | /* order of pgs per slab (2^n) */ | |
386 | unsigned int gfporder; | |
387 | ||
388 | /* force GFP flags, e.g. GFP_DMA */ | |
6daa0e28 | 389 | gfp_t gfpflags; |
1da177e4 LT |
390 | |
391 | size_t colour; /* cache colouring range */ | |
392 | unsigned int colour_off; /* colour offset */ | |
393 | unsigned int colour_next; /* cache colouring */ | |
394 | kmem_cache_t *slabp_cache; | |
395 | unsigned int slab_size; | |
396 | unsigned int dflags; /* dynamic flags */ | |
397 | ||
398 | /* constructor func */ | |
399 | void (*ctor)(void *, kmem_cache_t *, unsigned long); | |
400 | ||
401 | /* de-constructor func */ | |
402 | void (*dtor)(void *, kmem_cache_t *, unsigned long); | |
403 | ||
404 | /* 4) cache creation/removal */ | |
405 | const char *name; | |
406 | struct list_head next; | |
407 | ||
408 | /* 5) statistics */ | |
409 | #if STATS | |
410 | unsigned long num_active; | |
411 | unsigned long num_allocations; | |
412 | unsigned long high_mark; | |
413 | unsigned long grown; | |
414 | unsigned long reaped; | |
415 | unsigned long errors; | |
416 | unsigned long max_freeable; | |
417 | unsigned long node_allocs; | |
e498be7d | 418 | unsigned long node_frees; |
1da177e4 LT |
419 | atomic_t allochit; |
420 | atomic_t allocmiss; | |
421 | atomic_t freehit; | |
422 | atomic_t freemiss; | |
423 | #endif | |
424 | #if DEBUG | |
425 | int dbghead; | |
426 | int reallen; | |
427 | #endif | |
428 | }; | |
429 | ||
430 | #define CFLGS_OFF_SLAB (0x80000000UL) | |
431 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) | |
432 | ||
433 | #define BATCHREFILL_LIMIT 16 | |
434 | /* Optimization question: fewer reaps means less | |
435 | * probability for unnessary cpucache drain/refill cycles. | |
436 | * | |
dc6f3f27 | 437 | * OTOH the cpuarrays can contain lots of objects, |
1da177e4 LT |
438 | * which could lock up otherwise freeable slabs. |
439 | */ | |
440 | #define REAPTIMEOUT_CPUC (2*HZ) | |
441 | #define REAPTIMEOUT_LIST3 (4*HZ) | |
442 | ||
443 | #if STATS | |
444 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | |
445 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | |
446 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | |
447 | #define STATS_INC_GROWN(x) ((x)->grown++) | |
448 | #define STATS_INC_REAPED(x) ((x)->reaped++) | |
449 | #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \ | |
450 | (x)->high_mark = (x)->num_active; \ | |
451 | } while (0) | |
452 | #define STATS_INC_ERR(x) ((x)->errors++) | |
453 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | |
e498be7d | 454 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
1da177e4 LT |
455 | #define STATS_SET_FREEABLE(x, i) \ |
456 | do { if ((x)->max_freeable < i) \ | |
457 | (x)->max_freeable = i; \ | |
458 | } while (0) | |
459 | ||
460 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) | |
461 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | |
462 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | |
463 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | |
464 | #else | |
465 | #define STATS_INC_ACTIVE(x) do { } while (0) | |
466 | #define STATS_DEC_ACTIVE(x) do { } while (0) | |
467 | #define STATS_INC_ALLOCED(x) do { } while (0) | |
468 | #define STATS_INC_GROWN(x) do { } while (0) | |
469 | #define STATS_INC_REAPED(x) do { } while (0) | |
470 | #define STATS_SET_HIGH(x) do { } while (0) | |
471 | #define STATS_INC_ERR(x) do { } while (0) | |
472 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | |
e498be7d | 473 | #define STATS_INC_NODEFREES(x) do { } while (0) |
1da177e4 LT |
474 | #define STATS_SET_FREEABLE(x, i) \ |
475 | do { } while (0) | |
476 | ||
477 | #define STATS_INC_ALLOCHIT(x) do { } while (0) | |
478 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | |
479 | #define STATS_INC_FREEHIT(x) do { } while (0) | |
480 | #define STATS_INC_FREEMISS(x) do { } while (0) | |
481 | #endif | |
482 | ||
483 | #if DEBUG | |
484 | /* Magic nums for obj red zoning. | |
485 | * Placed in the first word before and the first word after an obj. | |
486 | */ | |
487 | #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */ | |
488 | #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */ | |
489 | ||
490 | /* ...and for poisoning */ | |
491 | #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */ | |
492 | #define POISON_FREE 0x6b /* for use-after-free poisoning */ | |
493 | #define POISON_END 0xa5 /* end-byte of poisoning */ | |
494 | ||
495 | /* memory layout of objects: | |
496 | * 0 : objp | |
497 | * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that | |
498 | * the end of an object is aligned with the end of the real | |
499 | * allocation. Catches writes behind the end of the allocation. | |
500 | * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1: | |
501 | * redzone word. | |
502 | * cachep->dbghead: The real object. | |
503 | * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] | |
504 | * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long] | |
505 | */ | |
506 | static int obj_dbghead(kmem_cache_t *cachep) | |
507 | { | |
508 | return cachep->dbghead; | |
509 | } | |
510 | ||
511 | static int obj_reallen(kmem_cache_t *cachep) | |
512 | { | |
513 | return cachep->reallen; | |
514 | } | |
515 | ||
516 | static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp) | |
517 | { | |
518 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
519 | return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD); | |
520 | } | |
521 | ||
522 | static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp) | |
523 | { | |
524 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
525 | if (cachep->flags & SLAB_STORE_USER) | |
526 | return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD); | |
527 | return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD); | |
528 | } | |
529 | ||
530 | static void **dbg_userword(kmem_cache_t *cachep, void *objp) | |
531 | { | |
532 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | |
533 | return (void**)(objp+cachep->objsize-BYTES_PER_WORD); | |
534 | } | |
535 | ||
536 | #else | |
537 | ||
538 | #define obj_dbghead(x) 0 | |
539 | #define obj_reallen(cachep) (cachep->objsize) | |
540 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;}) | |
541 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;}) | |
542 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) | |
543 | ||
544 | #endif | |
545 | ||
546 | /* | |
547 | * Maximum size of an obj (in 2^order pages) | |
548 | * and absolute limit for the gfp order. | |
549 | */ | |
550 | #if defined(CONFIG_LARGE_ALLOCS) | |
551 | #define MAX_OBJ_ORDER 13 /* up to 32Mb */ | |
552 | #define MAX_GFP_ORDER 13 /* up to 32Mb */ | |
553 | #elif defined(CONFIG_MMU) | |
554 | #define MAX_OBJ_ORDER 5 /* 32 pages */ | |
555 | #define MAX_GFP_ORDER 5 /* 32 pages */ | |
556 | #else | |
557 | #define MAX_OBJ_ORDER 8 /* up to 1Mb */ | |
558 | #define MAX_GFP_ORDER 8 /* up to 1Mb */ | |
559 | #endif | |
560 | ||
561 | /* | |
562 | * Do not go above this order unless 0 objects fit into the slab. | |
563 | */ | |
564 | #define BREAK_GFP_ORDER_HI 1 | |
565 | #define BREAK_GFP_ORDER_LO 0 | |
566 | static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; | |
567 | ||
568 | /* Macros for storing/retrieving the cachep and or slab from the | |
569 | * global 'mem_map'. These are used to find the slab an obj belongs to. | |
570 | * With kfree(), these are used to find the cache which an obj belongs to. | |
571 | */ | |
572 | #define SET_PAGE_CACHE(pg,x) ((pg)->lru.next = (struct list_head *)(x)) | |
573 | #define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->lru.next) | |
574 | #define SET_PAGE_SLAB(pg,x) ((pg)->lru.prev = (struct list_head *)(x)) | |
575 | #define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->lru.prev) | |
576 | ||
577 | /* These are the default caches for kmalloc. Custom caches can have other sizes. */ | |
578 | struct cache_sizes malloc_sizes[] = { | |
579 | #define CACHE(x) { .cs_size = (x) }, | |
580 | #include <linux/kmalloc_sizes.h> | |
581 | CACHE(ULONG_MAX) | |
582 | #undef CACHE | |
583 | }; | |
584 | EXPORT_SYMBOL(malloc_sizes); | |
585 | ||
586 | /* Must match cache_sizes above. Out of line to keep cache footprint low. */ | |
587 | struct cache_names { | |
588 | char *name; | |
589 | char *name_dma; | |
590 | }; | |
591 | ||
592 | static struct cache_names __initdata cache_names[] = { | |
593 | #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, | |
594 | #include <linux/kmalloc_sizes.h> | |
595 | { NULL, } | |
596 | #undef CACHE | |
597 | }; | |
598 | ||
599 | static struct arraycache_init initarray_cache __initdata = | |
600 | { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | |
601 | static struct arraycache_init initarray_generic = | |
602 | { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | |
603 | ||
604 | /* internal cache of cache description objs */ | |
605 | static kmem_cache_t cache_cache = { | |
1da177e4 LT |
606 | .batchcount = 1, |
607 | .limit = BOOT_CPUCACHE_ENTRIES, | |
e498be7d | 608 | .shared = 1, |
1da177e4 LT |
609 | .objsize = sizeof(kmem_cache_t), |
610 | .flags = SLAB_NO_REAP, | |
611 | .spinlock = SPIN_LOCK_UNLOCKED, | |
612 | .name = "kmem_cache", | |
613 | #if DEBUG | |
614 | .reallen = sizeof(kmem_cache_t), | |
615 | #endif | |
616 | }; | |
617 | ||
618 | /* Guard access to the cache-chain. */ | |
619 | static struct semaphore cache_chain_sem; | |
620 | static struct list_head cache_chain; | |
621 | ||
622 | /* | |
623 | * vm_enough_memory() looks at this to determine how many | |
624 | * slab-allocated pages are possibly freeable under pressure | |
625 | * | |
626 | * SLAB_RECLAIM_ACCOUNT turns this on per-slab | |
627 | */ | |
628 | atomic_t slab_reclaim_pages; | |
1da177e4 LT |
629 | |
630 | /* | |
631 | * chicken and egg problem: delay the per-cpu array allocation | |
632 | * until the general caches are up. | |
633 | */ | |
634 | static enum { | |
635 | NONE, | |
e498be7d CL |
636 | PARTIAL_AC, |
637 | PARTIAL_L3, | |
1da177e4 LT |
638 | FULL |
639 | } g_cpucache_up; | |
640 | ||
641 | static DEFINE_PER_CPU(struct work_struct, reap_work); | |
642 | ||
ff69416e | 643 | static void free_block(kmem_cache_t* cachep, void** objpp, int len, int node); |
1da177e4 LT |
644 | static void enable_cpucache (kmem_cache_t *cachep); |
645 | static void cache_reap (void *unused); | |
e498be7d | 646 | static int __node_shrink(kmem_cache_t *cachep, int node); |
1da177e4 LT |
647 | |
648 | static inline struct array_cache *ac_data(kmem_cache_t *cachep) | |
649 | { | |
650 | return cachep->array[smp_processor_id()]; | |
651 | } | |
652 | ||
dd0fc66f | 653 | static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags) |
1da177e4 LT |
654 | { |
655 | struct cache_sizes *csizep = malloc_sizes; | |
656 | ||
657 | #if DEBUG | |
658 | /* This happens if someone tries to call | |
659 | * kmem_cache_create(), or __kmalloc(), before | |
660 | * the generic caches are initialized. | |
661 | */ | |
c7e43c78 | 662 | BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); |
1da177e4 LT |
663 | #endif |
664 | while (size > csizep->cs_size) | |
665 | csizep++; | |
666 | ||
667 | /* | |
0abf40c1 | 668 | * Really subtle: The last entry with cs->cs_size==ULONG_MAX |
1da177e4 LT |
669 | * has cs_{dma,}cachep==NULL. Thus no special case |
670 | * for large kmalloc calls required. | |
671 | */ | |
672 | if (unlikely(gfpflags & GFP_DMA)) | |
673 | return csizep->cs_dmacachep; | |
674 | return csizep->cs_cachep; | |
675 | } | |
676 | ||
dd0fc66f | 677 | kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags) |
97e2bde4 MS |
678 | { |
679 | return __find_general_cachep(size, gfpflags); | |
680 | } | |
681 | EXPORT_SYMBOL(kmem_find_general_cachep); | |
682 | ||
1da177e4 LT |
683 | /* Cal the num objs, wastage, and bytes left over for a given slab size. */ |
684 | static void cache_estimate(unsigned long gfporder, size_t size, size_t align, | |
685 | int flags, size_t *left_over, unsigned int *num) | |
686 | { | |
687 | int i; | |
688 | size_t wastage = PAGE_SIZE<<gfporder; | |
689 | size_t extra = 0; | |
690 | size_t base = 0; | |
691 | ||
692 | if (!(flags & CFLGS_OFF_SLAB)) { | |
693 | base = sizeof(struct slab); | |
694 | extra = sizeof(kmem_bufctl_t); | |
695 | } | |
696 | i = 0; | |
697 | while (i*size + ALIGN(base+i*extra, align) <= wastage) | |
698 | i++; | |
699 | if (i > 0) | |
700 | i--; | |
701 | ||
702 | if (i > SLAB_LIMIT) | |
703 | i = SLAB_LIMIT; | |
704 | ||
705 | *num = i; | |
706 | wastage -= i*size; | |
707 | wastage -= ALIGN(base+i*extra, align); | |
708 | *left_over = wastage; | |
709 | } | |
710 | ||
711 | #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg) | |
712 | ||
713 | static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg) | |
714 | { | |
715 | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | |
716 | function, cachep->name, msg); | |
717 | dump_stack(); | |
718 | } | |
719 | ||
720 | /* | |
721 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | |
722 | * via the workqueue/eventd. | |
723 | * Add the CPU number into the expiration time to minimize the possibility of | |
724 | * the CPUs getting into lockstep and contending for the global cache chain | |
725 | * lock. | |
726 | */ | |
727 | static void __devinit start_cpu_timer(int cpu) | |
728 | { | |
729 | struct work_struct *reap_work = &per_cpu(reap_work, cpu); | |
730 | ||
731 | /* | |
732 | * When this gets called from do_initcalls via cpucache_init(), | |
733 | * init_workqueues() has already run, so keventd will be setup | |
734 | * at that time. | |
735 | */ | |
736 | if (keventd_up() && reap_work->func == NULL) { | |
737 | INIT_WORK(reap_work, cache_reap, NULL); | |
738 | schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu); | |
739 | } | |
740 | } | |
741 | ||
e498be7d | 742 | static struct array_cache *alloc_arraycache(int node, int entries, |
1da177e4 LT |
743 | int batchcount) |
744 | { | |
745 | int memsize = sizeof(void*)*entries+sizeof(struct array_cache); | |
746 | struct array_cache *nc = NULL; | |
747 | ||
e498be7d | 748 | nc = kmalloc_node(memsize, GFP_KERNEL, node); |
1da177e4 LT |
749 | if (nc) { |
750 | nc->avail = 0; | |
751 | nc->limit = entries; | |
752 | nc->batchcount = batchcount; | |
753 | nc->touched = 0; | |
e498be7d | 754 | spin_lock_init(&nc->lock); |
1da177e4 LT |
755 | } |
756 | return nc; | |
757 | } | |
758 | ||
e498be7d CL |
759 | #ifdef CONFIG_NUMA |
760 | static inline struct array_cache **alloc_alien_cache(int node, int limit) | |
761 | { | |
762 | struct array_cache **ac_ptr; | |
763 | int memsize = sizeof(void*)*MAX_NUMNODES; | |
764 | int i; | |
765 | ||
766 | if (limit > 1) | |
767 | limit = 12; | |
768 | ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node); | |
769 | if (ac_ptr) { | |
770 | for_each_node(i) { | |
771 | if (i == node || !node_online(i)) { | |
772 | ac_ptr[i] = NULL; | |
773 | continue; | |
774 | } | |
775 | ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d); | |
776 | if (!ac_ptr[i]) { | |
777 | for (i--; i <=0; i--) | |
778 | kfree(ac_ptr[i]); | |
779 | kfree(ac_ptr); | |
780 | return NULL; | |
781 | } | |
782 | } | |
783 | } | |
784 | return ac_ptr; | |
785 | } | |
786 | ||
787 | static inline void free_alien_cache(struct array_cache **ac_ptr) | |
788 | { | |
789 | int i; | |
790 | ||
791 | if (!ac_ptr) | |
792 | return; | |
793 | ||
794 | for_each_node(i) | |
795 | kfree(ac_ptr[i]); | |
796 | ||
797 | kfree(ac_ptr); | |
798 | } | |
799 | ||
800 | static inline void __drain_alien_cache(kmem_cache_t *cachep, struct array_cache *ac, int node) | |
801 | { | |
802 | struct kmem_list3 *rl3 = cachep->nodelists[node]; | |
803 | ||
804 | if (ac->avail) { | |
805 | spin_lock(&rl3->list_lock); | |
ff69416e | 806 | free_block(cachep, ac->entry, ac->avail, node); |
e498be7d CL |
807 | ac->avail = 0; |
808 | spin_unlock(&rl3->list_lock); | |
809 | } | |
810 | } | |
811 | ||
812 | static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3) | |
813 | { | |
814 | int i=0; | |
815 | struct array_cache *ac; | |
816 | unsigned long flags; | |
817 | ||
818 | for_each_online_node(i) { | |
819 | ac = l3->alien[i]; | |
820 | if (ac) { | |
821 | spin_lock_irqsave(&ac->lock, flags); | |
822 | __drain_alien_cache(cachep, ac, i); | |
823 | spin_unlock_irqrestore(&ac->lock, flags); | |
824 | } | |
825 | } | |
826 | } | |
827 | #else | |
828 | #define alloc_alien_cache(node, limit) do { } while (0) | |
829 | #define free_alien_cache(ac_ptr) do { } while (0) | |
830 | #define drain_alien_cache(cachep, l3) do { } while (0) | |
831 | #endif | |
832 | ||
1da177e4 LT |
833 | static int __devinit cpuup_callback(struct notifier_block *nfb, |
834 | unsigned long action, void *hcpu) | |
835 | { | |
836 | long cpu = (long)hcpu; | |
837 | kmem_cache_t* cachep; | |
e498be7d CL |
838 | struct kmem_list3 *l3 = NULL; |
839 | int node = cpu_to_node(cpu); | |
840 | int memsize = sizeof(struct kmem_list3); | |
841 | struct array_cache *nc = NULL; | |
1da177e4 LT |
842 | |
843 | switch (action) { | |
844 | case CPU_UP_PREPARE: | |
845 | down(&cache_chain_sem); | |
e498be7d CL |
846 | /* we need to do this right in the beginning since |
847 | * alloc_arraycache's are going to use this list. | |
848 | * kmalloc_node allows us to add the slab to the right | |
849 | * kmem_list3 and not this cpu's kmem_list3 | |
850 | */ | |
851 | ||
1da177e4 | 852 | list_for_each_entry(cachep, &cache_chain, next) { |
e498be7d CL |
853 | /* setup the size64 kmemlist for cpu before we can |
854 | * begin anything. Make sure some other cpu on this | |
855 | * node has not already allocated this | |
856 | */ | |
857 | if (!cachep->nodelists[node]) { | |
858 | if (!(l3 = kmalloc_node(memsize, | |
859 | GFP_KERNEL, node))) | |
860 | goto bad; | |
861 | kmem_list3_init(l3); | |
862 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
863 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; | |
864 | ||
865 | cachep->nodelists[node] = l3; | |
866 | } | |
1da177e4 | 867 | |
e498be7d CL |
868 | spin_lock_irq(&cachep->nodelists[node]->list_lock); |
869 | cachep->nodelists[node]->free_limit = | |
870 | (1 + nr_cpus_node(node)) * | |
871 | cachep->batchcount + cachep->num; | |
872 | spin_unlock_irq(&cachep->nodelists[node]->list_lock); | |
873 | } | |
874 | ||
875 | /* Now we can go ahead with allocating the shared array's | |
876 | & array cache's */ | |
877 | list_for_each_entry(cachep, &cache_chain, next) { | |
878 | nc = alloc_arraycache(node, cachep->limit, | |
879 | cachep->batchcount); | |
1da177e4 LT |
880 | if (!nc) |
881 | goto bad; | |
1da177e4 | 882 | cachep->array[cpu] = nc; |
1da177e4 | 883 | |
e498be7d CL |
884 | l3 = cachep->nodelists[node]; |
885 | BUG_ON(!l3); | |
886 | if (!l3->shared) { | |
887 | if (!(nc = alloc_arraycache(node, | |
888 | cachep->shared*cachep->batchcount, | |
889 | 0xbaadf00d))) | |
890 | goto bad; | |
891 | ||
892 | /* we are serialised from CPU_DEAD or | |
893 | CPU_UP_CANCELLED by the cpucontrol lock */ | |
894 | l3->shared = nc; | |
895 | } | |
1da177e4 LT |
896 | } |
897 | up(&cache_chain_sem); | |
898 | break; | |
899 | case CPU_ONLINE: | |
900 | start_cpu_timer(cpu); | |
901 | break; | |
902 | #ifdef CONFIG_HOTPLUG_CPU | |
903 | case CPU_DEAD: | |
904 | /* fall thru */ | |
905 | case CPU_UP_CANCELED: | |
906 | down(&cache_chain_sem); | |
907 | ||
908 | list_for_each_entry(cachep, &cache_chain, next) { | |
909 | struct array_cache *nc; | |
e498be7d | 910 | cpumask_t mask; |
1da177e4 | 911 | |
e498be7d | 912 | mask = node_to_cpumask(node); |
1da177e4 LT |
913 | spin_lock_irq(&cachep->spinlock); |
914 | /* cpu is dead; no one can alloc from it. */ | |
915 | nc = cachep->array[cpu]; | |
916 | cachep->array[cpu] = NULL; | |
e498be7d CL |
917 | l3 = cachep->nodelists[node]; |
918 | ||
919 | if (!l3) | |
920 | goto unlock_cache; | |
921 | ||
922 | spin_lock(&l3->list_lock); | |
923 | ||
924 | /* Free limit for this kmem_list3 */ | |
925 | l3->free_limit -= cachep->batchcount; | |
926 | if (nc) | |
ff69416e | 927 | free_block(cachep, nc->entry, nc->avail, node); |
e498be7d CL |
928 | |
929 | if (!cpus_empty(mask)) { | |
930 | spin_unlock(&l3->list_lock); | |
931 | goto unlock_cache; | |
932 | } | |
933 | ||
934 | if (l3->shared) { | |
935 | free_block(cachep, l3->shared->entry, | |
ff69416e | 936 | l3->shared->avail, node); |
e498be7d CL |
937 | kfree(l3->shared); |
938 | l3->shared = NULL; | |
939 | } | |
940 | if (l3->alien) { | |
941 | drain_alien_cache(cachep, l3); | |
942 | free_alien_cache(l3->alien); | |
943 | l3->alien = NULL; | |
944 | } | |
945 | ||
946 | /* free slabs belonging to this node */ | |
947 | if (__node_shrink(cachep, node)) { | |
948 | cachep->nodelists[node] = NULL; | |
949 | spin_unlock(&l3->list_lock); | |
950 | kfree(l3); | |
951 | } else { | |
952 | spin_unlock(&l3->list_lock); | |
953 | } | |
954 | unlock_cache: | |
1da177e4 LT |
955 | spin_unlock_irq(&cachep->spinlock); |
956 | kfree(nc); | |
957 | } | |
958 | up(&cache_chain_sem); | |
959 | break; | |
960 | #endif | |
961 | } | |
962 | return NOTIFY_OK; | |
963 | bad: | |
964 | up(&cache_chain_sem); | |
965 | return NOTIFY_BAD; | |
966 | } | |
967 | ||
968 | static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 }; | |
969 | ||
e498be7d CL |
970 | /* |
971 | * swap the static kmem_list3 with kmalloced memory | |
972 | */ | |
973 | static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, | |
974 | int nodeid) | |
975 | { | |
976 | struct kmem_list3 *ptr; | |
977 | ||
978 | BUG_ON(cachep->nodelists[nodeid] != list); | |
979 | ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid); | |
980 | BUG_ON(!ptr); | |
981 | ||
982 | local_irq_disable(); | |
983 | memcpy(ptr, list, sizeof(struct kmem_list3)); | |
984 | MAKE_ALL_LISTS(cachep, ptr, nodeid); | |
985 | cachep->nodelists[nodeid] = ptr; | |
986 | local_irq_enable(); | |
987 | } | |
988 | ||
1da177e4 LT |
989 | /* Initialisation. |
990 | * Called after the gfp() functions have been enabled, and before smp_init(). | |
991 | */ | |
992 | void __init kmem_cache_init(void) | |
993 | { | |
994 | size_t left_over; | |
995 | struct cache_sizes *sizes; | |
996 | struct cache_names *names; | |
e498be7d CL |
997 | int i; |
998 | ||
999 | for (i = 0; i < NUM_INIT_LISTS; i++) { | |
1000 | kmem_list3_init(&initkmem_list3[i]); | |
1001 | if (i < MAX_NUMNODES) | |
1002 | cache_cache.nodelists[i] = NULL; | |
1003 | } | |
1da177e4 LT |
1004 | |
1005 | /* | |
1006 | * Fragmentation resistance on low memory - only use bigger | |
1007 | * page orders on machines with more than 32MB of memory. | |
1008 | */ | |
1009 | if (num_physpages > (32 << 20) >> PAGE_SHIFT) | |
1010 | slab_break_gfp_order = BREAK_GFP_ORDER_HI; | |
1011 | ||
1da177e4 LT |
1012 | /* Bootstrap is tricky, because several objects are allocated |
1013 | * from caches that do not exist yet: | |
1014 | * 1) initialize the cache_cache cache: it contains the kmem_cache_t | |
1015 | * structures of all caches, except cache_cache itself: cache_cache | |
1016 | * is statically allocated. | |
e498be7d CL |
1017 | * Initially an __init data area is used for the head array and the |
1018 | * kmem_list3 structures, it's replaced with a kmalloc allocated | |
1019 | * array at the end of the bootstrap. | |
1da177e4 | 1020 | * 2) Create the first kmalloc cache. |
e498be7d CL |
1021 | * The kmem_cache_t for the new cache is allocated normally. |
1022 | * An __init data area is used for the head array. | |
1023 | * 3) Create the remaining kmalloc caches, with minimally sized | |
1024 | * head arrays. | |
1da177e4 LT |
1025 | * 4) Replace the __init data head arrays for cache_cache and the first |
1026 | * kmalloc cache with kmalloc allocated arrays. | |
e498be7d CL |
1027 | * 5) Replace the __init data for kmem_list3 for cache_cache and |
1028 | * the other cache's with kmalloc allocated memory. | |
1029 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | |
1da177e4 LT |
1030 | */ |
1031 | ||
1032 | /* 1) create the cache_cache */ | |
1033 | init_MUTEX(&cache_chain_sem); | |
1034 | INIT_LIST_HEAD(&cache_chain); | |
1035 | list_add(&cache_cache.next, &cache_chain); | |
1036 | cache_cache.colour_off = cache_line_size(); | |
1037 | cache_cache.array[smp_processor_id()] = &initarray_cache.cache; | |
e498be7d | 1038 | cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE]; |
1da177e4 LT |
1039 | |
1040 | cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size()); | |
1041 | ||
1042 | cache_estimate(0, cache_cache.objsize, cache_line_size(), 0, | |
1043 | &left_over, &cache_cache.num); | |
1044 | if (!cache_cache.num) | |
1045 | BUG(); | |
1046 | ||
1047 | cache_cache.colour = left_over/cache_cache.colour_off; | |
1048 | cache_cache.colour_next = 0; | |
1049 | cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) + | |
1050 | sizeof(struct slab), cache_line_size()); | |
1051 | ||
1052 | /* 2+3) create the kmalloc caches */ | |
1053 | sizes = malloc_sizes; | |
1054 | names = cache_names; | |
1055 | ||
e498be7d CL |
1056 | /* Initialize the caches that provide memory for the array cache |
1057 | * and the kmem_list3 structures first. | |
1058 | * Without this, further allocations will bug | |
1059 | */ | |
1060 | ||
1061 | sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, | |
1062 | sizes[INDEX_AC].cs_size, ARCH_KMALLOC_MINALIGN, | |
1063 | (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); | |
1064 | ||
1065 | if (INDEX_AC != INDEX_L3) | |
1066 | sizes[INDEX_L3].cs_cachep = | |
1067 | kmem_cache_create(names[INDEX_L3].name, | |
1068 | sizes[INDEX_L3].cs_size, ARCH_KMALLOC_MINALIGN, | |
1069 | (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); | |
1070 | ||
1da177e4 | 1071 | while (sizes->cs_size != ULONG_MAX) { |
e498be7d CL |
1072 | /* |
1073 | * For performance, all the general caches are L1 aligned. | |
1da177e4 LT |
1074 | * This should be particularly beneficial on SMP boxes, as it |
1075 | * eliminates "false sharing". | |
1076 | * Note for systems short on memory removing the alignment will | |
e498be7d CL |
1077 | * allow tighter packing of the smaller caches. |
1078 | */ | |
1079 | if(!sizes->cs_cachep) | |
1080 | sizes->cs_cachep = kmem_cache_create(names->name, | |
1081 | sizes->cs_size, ARCH_KMALLOC_MINALIGN, | |
1082 | (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); | |
1da177e4 LT |
1083 | |
1084 | /* Inc off-slab bufctl limit until the ceiling is hit. */ | |
1085 | if (!(OFF_SLAB(sizes->cs_cachep))) { | |
1086 | offslab_limit = sizes->cs_size-sizeof(struct slab); | |
1087 | offslab_limit /= sizeof(kmem_bufctl_t); | |
1088 | } | |
1089 | ||
1090 | sizes->cs_dmacachep = kmem_cache_create(names->name_dma, | |
1091 | sizes->cs_size, ARCH_KMALLOC_MINALIGN, | |
1092 | (ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC), | |
1093 | NULL, NULL); | |
1094 | ||
1095 | sizes++; | |
1096 | names++; | |
1097 | } | |
1098 | /* 4) Replace the bootstrap head arrays */ | |
1099 | { | |
1100 | void * ptr; | |
e498be7d | 1101 | |
1da177e4 | 1102 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); |
e498be7d | 1103 | |
1da177e4 LT |
1104 | local_irq_disable(); |
1105 | BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache); | |
e498be7d CL |
1106 | memcpy(ptr, ac_data(&cache_cache), |
1107 | sizeof(struct arraycache_init)); | |
1da177e4 LT |
1108 | cache_cache.array[smp_processor_id()] = ptr; |
1109 | local_irq_enable(); | |
e498be7d | 1110 | |
1da177e4 | 1111 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); |
e498be7d | 1112 | |
1da177e4 | 1113 | local_irq_disable(); |
e498be7d CL |
1114 | BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep) |
1115 | != &initarray_generic.cache); | |
1116 | memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep), | |
1da177e4 | 1117 | sizeof(struct arraycache_init)); |
e498be7d CL |
1118 | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = |
1119 | ptr; | |
1da177e4 LT |
1120 | local_irq_enable(); |
1121 | } | |
e498be7d CL |
1122 | /* 5) Replace the bootstrap kmem_list3's */ |
1123 | { | |
1124 | int node; | |
1125 | /* Replace the static kmem_list3 structures for the boot cpu */ | |
1126 | init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], | |
1127 | numa_node_id()); | |
1128 | ||
1129 | for_each_online_node(node) { | |
1130 | init_list(malloc_sizes[INDEX_AC].cs_cachep, | |
1131 | &initkmem_list3[SIZE_AC+node], node); | |
1132 | ||
1133 | if (INDEX_AC != INDEX_L3) { | |
1134 | init_list(malloc_sizes[INDEX_L3].cs_cachep, | |
1135 | &initkmem_list3[SIZE_L3+node], | |
1136 | node); | |
1137 | } | |
1138 | } | |
1139 | } | |
1da177e4 | 1140 | |
e498be7d | 1141 | /* 6) resize the head arrays to their final sizes */ |
1da177e4 LT |
1142 | { |
1143 | kmem_cache_t *cachep; | |
1144 | down(&cache_chain_sem); | |
1145 | list_for_each_entry(cachep, &cache_chain, next) | |
1146 | enable_cpucache(cachep); | |
1147 | up(&cache_chain_sem); | |
1148 | } | |
1149 | ||
1150 | /* Done! */ | |
1151 | g_cpucache_up = FULL; | |
1152 | ||
1153 | /* Register a cpu startup notifier callback | |
1154 | * that initializes ac_data for all new cpus | |
1155 | */ | |
1156 | register_cpu_notifier(&cpucache_notifier); | |
1da177e4 LT |
1157 | |
1158 | /* The reap timers are started later, with a module init call: | |
1159 | * That part of the kernel is not yet operational. | |
1160 | */ | |
1161 | } | |
1162 | ||
1163 | static int __init cpucache_init(void) | |
1164 | { | |
1165 | int cpu; | |
1166 | ||
1167 | /* | |
1168 | * Register the timers that return unneeded | |
1169 | * pages to gfp. | |
1170 | */ | |
e498be7d CL |
1171 | for_each_online_cpu(cpu) |
1172 | start_cpu_timer(cpu); | |
1da177e4 LT |
1173 | |
1174 | return 0; | |
1175 | } | |
1176 | ||
1177 | __initcall(cpucache_init); | |
1178 | ||
1179 | /* | |
1180 | * Interface to system's page allocator. No need to hold the cache-lock. | |
1181 | * | |
1182 | * If we requested dmaable memory, we will get it. Even if we | |
1183 | * did not request dmaable memory, we might get it, but that | |
1184 | * would be relatively rare and ignorable. | |
1185 | */ | |
dd0fc66f | 1186 | static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid) |
1da177e4 LT |
1187 | { |
1188 | struct page *page; | |
1189 | void *addr; | |
1190 | int i; | |
1191 | ||
1192 | flags |= cachep->gfpflags; | |
1193 | if (likely(nodeid == -1)) { | |
1194 | page = alloc_pages(flags, cachep->gfporder); | |
1195 | } else { | |
1196 | page = alloc_pages_node(nodeid, flags, cachep->gfporder); | |
1197 | } | |
1198 | if (!page) | |
1199 | return NULL; | |
1200 | addr = page_address(page); | |
1201 | ||
1202 | i = (1 << cachep->gfporder); | |
1203 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | |
1204 | atomic_add(i, &slab_reclaim_pages); | |
1205 | add_page_state(nr_slab, i); | |
1206 | while (i--) { | |
1207 | SetPageSlab(page); | |
1208 | page++; | |
1209 | } | |
1210 | return addr; | |
1211 | } | |
1212 | ||
1213 | /* | |
1214 | * Interface to system's page release. | |
1215 | */ | |
1216 | static void kmem_freepages(kmem_cache_t *cachep, void *addr) | |
1217 | { | |
1218 | unsigned long i = (1<<cachep->gfporder); | |
1219 | struct page *page = virt_to_page(addr); | |
1220 | const unsigned long nr_freed = i; | |
1221 | ||
1222 | while (i--) { | |
1223 | if (!TestClearPageSlab(page)) | |
1224 | BUG(); | |
1225 | page++; | |
1226 | } | |
1227 | sub_page_state(nr_slab, nr_freed); | |
1228 | if (current->reclaim_state) | |
1229 | current->reclaim_state->reclaimed_slab += nr_freed; | |
1230 | free_pages((unsigned long)addr, cachep->gfporder); | |
1231 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | |
1232 | atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages); | |
1233 | } | |
1234 | ||
1235 | static void kmem_rcu_free(struct rcu_head *head) | |
1236 | { | |
1237 | struct slab_rcu *slab_rcu = (struct slab_rcu *) head; | |
1238 | kmem_cache_t *cachep = slab_rcu->cachep; | |
1239 | ||
1240 | kmem_freepages(cachep, slab_rcu->addr); | |
1241 | if (OFF_SLAB(cachep)) | |
1242 | kmem_cache_free(cachep->slabp_cache, slab_rcu); | |
1243 | } | |
1244 | ||
1245 | #if DEBUG | |
1246 | ||
1247 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
1248 | static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, | |
1249 | unsigned long caller) | |
1250 | { | |
1251 | int size = obj_reallen(cachep); | |
1252 | ||
1253 | addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)]; | |
1254 | ||
1255 | if (size < 5*sizeof(unsigned long)) | |
1256 | return; | |
1257 | ||
1258 | *addr++=0x12345678; | |
1259 | *addr++=caller; | |
1260 | *addr++=smp_processor_id(); | |
1261 | size -= 3*sizeof(unsigned long); | |
1262 | { | |
1263 | unsigned long *sptr = &caller; | |
1264 | unsigned long svalue; | |
1265 | ||
1266 | while (!kstack_end(sptr)) { | |
1267 | svalue = *sptr++; | |
1268 | if (kernel_text_address(svalue)) { | |
1269 | *addr++=svalue; | |
1270 | size -= sizeof(unsigned long); | |
1271 | if (size <= sizeof(unsigned long)) | |
1272 | break; | |
1273 | } | |
1274 | } | |
1275 | ||
1276 | } | |
1277 | *addr++=0x87654321; | |
1278 | } | |
1279 | #endif | |
1280 | ||
1281 | static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val) | |
1282 | { | |
1283 | int size = obj_reallen(cachep); | |
1284 | addr = &((char*)addr)[obj_dbghead(cachep)]; | |
1285 | ||
1286 | memset(addr, val, size); | |
1287 | *(unsigned char *)(addr+size-1) = POISON_END; | |
1288 | } | |
1289 | ||
1290 | static void dump_line(char *data, int offset, int limit) | |
1291 | { | |
1292 | int i; | |
1293 | printk(KERN_ERR "%03x:", offset); | |
1294 | for (i=0;i<limit;i++) { | |
1295 | printk(" %02x", (unsigned char)data[offset+i]); | |
1296 | } | |
1297 | printk("\n"); | |
1298 | } | |
1299 | #endif | |
1300 | ||
1301 | #if DEBUG | |
1302 | ||
1303 | static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines) | |
1304 | { | |
1305 | int i, size; | |
1306 | char *realobj; | |
1307 | ||
1308 | if (cachep->flags & SLAB_RED_ZONE) { | |
1309 | printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n", | |
1310 | *dbg_redzone1(cachep, objp), | |
1311 | *dbg_redzone2(cachep, objp)); | |
1312 | } | |
1313 | ||
1314 | if (cachep->flags & SLAB_STORE_USER) { | |
1315 | printk(KERN_ERR "Last user: [<%p>]", | |
1316 | *dbg_userword(cachep, objp)); | |
1317 | print_symbol("(%s)", | |
1318 | (unsigned long)*dbg_userword(cachep, objp)); | |
1319 | printk("\n"); | |
1320 | } | |
1321 | realobj = (char*)objp+obj_dbghead(cachep); | |
1322 | size = obj_reallen(cachep); | |
1323 | for (i=0; i<size && lines;i+=16, lines--) { | |
1324 | int limit; | |
1325 | limit = 16; | |
1326 | if (i+limit > size) | |
1327 | limit = size-i; | |
1328 | dump_line(realobj, i, limit); | |
1329 | } | |
1330 | } | |
1331 | ||
1332 | static void check_poison_obj(kmem_cache_t *cachep, void *objp) | |
1333 | { | |
1334 | char *realobj; | |
1335 | int size, i; | |
1336 | int lines = 0; | |
1337 | ||
1338 | realobj = (char*)objp+obj_dbghead(cachep); | |
1339 | size = obj_reallen(cachep); | |
1340 | ||
1341 | for (i=0;i<size;i++) { | |
1342 | char exp = POISON_FREE; | |
1343 | if (i == size-1) | |
1344 | exp = POISON_END; | |
1345 | if (realobj[i] != exp) { | |
1346 | int limit; | |
1347 | /* Mismatch ! */ | |
1348 | /* Print header */ | |
1349 | if (lines == 0) { | |
1350 | printk(KERN_ERR "Slab corruption: start=%p, len=%d\n", | |
1351 | realobj, size); | |
1352 | print_objinfo(cachep, objp, 0); | |
1353 | } | |
1354 | /* Hexdump the affected line */ | |
1355 | i = (i/16)*16; | |
1356 | limit = 16; | |
1357 | if (i+limit > size) | |
1358 | limit = size-i; | |
1359 | dump_line(realobj, i, limit); | |
1360 | i += 16; | |
1361 | lines++; | |
1362 | /* Limit to 5 lines */ | |
1363 | if (lines > 5) | |
1364 | break; | |
1365 | } | |
1366 | } | |
1367 | if (lines != 0) { | |
1368 | /* Print some data about the neighboring objects, if they | |
1369 | * exist: | |
1370 | */ | |
1371 | struct slab *slabp = GET_PAGE_SLAB(virt_to_page(objp)); | |
1372 | int objnr; | |
1373 | ||
1374 | objnr = (objp-slabp->s_mem)/cachep->objsize; | |
1375 | if (objnr) { | |
1376 | objp = slabp->s_mem+(objnr-1)*cachep->objsize; | |
1377 | realobj = (char*)objp+obj_dbghead(cachep); | |
1378 | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", | |
1379 | realobj, size); | |
1380 | print_objinfo(cachep, objp, 2); | |
1381 | } | |
1382 | if (objnr+1 < cachep->num) { | |
1383 | objp = slabp->s_mem+(objnr+1)*cachep->objsize; | |
1384 | realobj = (char*)objp+obj_dbghead(cachep); | |
1385 | printk(KERN_ERR "Next obj: start=%p, len=%d\n", | |
1386 | realobj, size); | |
1387 | print_objinfo(cachep, objp, 2); | |
1388 | } | |
1389 | } | |
1390 | } | |
1391 | #endif | |
1392 | ||
1393 | /* Destroy all the objs in a slab, and release the mem back to the system. | |
1394 | * Before calling the slab must have been unlinked from the cache. | |
1395 | * The cache-lock is not held/needed. | |
1396 | */ | |
1397 | static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) | |
1398 | { | |
1399 | void *addr = slabp->s_mem - slabp->colouroff; | |
1400 | ||
1401 | #if DEBUG | |
1402 | int i; | |
1403 | for (i = 0; i < cachep->num; i++) { | |
1404 | void *objp = slabp->s_mem + cachep->objsize * i; | |
1405 | ||
1406 | if (cachep->flags & SLAB_POISON) { | |
1407 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
1408 | if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep)) | |
1409 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1); | |
1410 | else | |
1411 | check_poison_obj(cachep, objp); | |
1412 | #else | |
1413 | check_poison_obj(cachep, objp); | |
1414 | #endif | |
1415 | } | |
1416 | if (cachep->flags & SLAB_RED_ZONE) { | |
1417 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
1418 | slab_error(cachep, "start of a freed object " | |
1419 | "was overwritten"); | |
1420 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
1421 | slab_error(cachep, "end of a freed object " | |
1422 | "was overwritten"); | |
1423 | } | |
1424 | if (cachep->dtor && !(cachep->flags & SLAB_POISON)) | |
1425 | (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0); | |
1426 | } | |
1427 | #else | |
1428 | if (cachep->dtor) { | |
1429 | int i; | |
1430 | for (i = 0; i < cachep->num; i++) { | |
1431 | void* objp = slabp->s_mem+cachep->objsize*i; | |
1432 | (cachep->dtor)(objp, cachep, 0); | |
1433 | } | |
1434 | } | |
1435 | #endif | |
1436 | ||
1437 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { | |
1438 | struct slab_rcu *slab_rcu; | |
1439 | ||
1440 | slab_rcu = (struct slab_rcu *) slabp; | |
1441 | slab_rcu->cachep = cachep; | |
1442 | slab_rcu->addr = addr; | |
1443 | call_rcu(&slab_rcu->head, kmem_rcu_free); | |
1444 | } else { | |
1445 | kmem_freepages(cachep, addr); | |
1446 | if (OFF_SLAB(cachep)) | |
1447 | kmem_cache_free(cachep->slabp_cache, slabp); | |
1448 | } | |
1449 | } | |
1450 | ||
e498be7d CL |
1451 | /* For setting up all the kmem_list3s for cache whose objsize is same |
1452 | as size of kmem_list3. */ | |
1453 | static inline void set_up_list3s(kmem_cache_t *cachep, int index) | |
1454 | { | |
1455 | int node; | |
1456 | ||
1457 | for_each_online_node(node) { | |
1458 | cachep->nodelists[node] = &initkmem_list3[index+node]; | |
1459 | cachep->nodelists[node]->next_reap = jiffies + | |
1460 | REAPTIMEOUT_LIST3 + | |
1461 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; | |
1462 | } | |
1463 | } | |
1464 | ||
1da177e4 LT |
1465 | /** |
1466 | * kmem_cache_create - Create a cache. | |
1467 | * @name: A string which is used in /proc/slabinfo to identify this cache. | |
1468 | * @size: The size of objects to be created in this cache. | |
1469 | * @align: The required alignment for the objects. | |
1470 | * @flags: SLAB flags | |
1471 | * @ctor: A constructor for the objects. | |
1472 | * @dtor: A destructor for the objects. | |
1473 | * | |
1474 | * Returns a ptr to the cache on success, NULL on failure. | |
1475 | * Cannot be called within a int, but can be interrupted. | |
1476 | * The @ctor is run when new pages are allocated by the cache | |
1477 | * and the @dtor is run before the pages are handed back. | |
1478 | * | |
1479 | * @name must be valid until the cache is destroyed. This implies that | |
1480 | * the module calling this has to destroy the cache before getting | |
1481 | * unloaded. | |
1482 | * | |
1483 | * The flags are | |
1484 | * | |
1485 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
1486 | * to catch references to uninitialised memory. | |
1487 | * | |
1488 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
1489 | * for buffer overruns. | |
1490 | * | |
1491 | * %SLAB_NO_REAP - Don't automatically reap this cache when we're under | |
1492 | * memory pressure. | |
1493 | * | |
1494 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | |
1495 | * cacheline. This can be beneficial if you're counting cycles as closely | |
1496 | * as davem. | |
1497 | */ | |
1498 | kmem_cache_t * | |
1499 | kmem_cache_create (const char *name, size_t size, size_t align, | |
1500 | unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long), | |
1501 | void (*dtor)(void*, kmem_cache_t *, unsigned long)) | |
1502 | { | |
1503 | size_t left_over, slab_size, ralign; | |
1504 | kmem_cache_t *cachep = NULL; | |
4f12bb4f | 1505 | struct list_head *p; |
1da177e4 LT |
1506 | |
1507 | /* | |
1508 | * Sanity checks... these are all serious usage bugs. | |
1509 | */ | |
1510 | if ((!name) || | |
1511 | in_interrupt() || | |
1512 | (size < BYTES_PER_WORD) || | |
1513 | (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) || | |
1514 | (dtor && !ctor)) { | |
1515 | printk(KERN_ERR "%s: Early error in slab %s\n", | |
1516 | __FUNCTION__, name); | |
1517 | BUG(); | |
1518 | } | |
1519 | ||
4f12bb4f AM |
1520 | down(&cache_chain_sem); |
1521 | ||
1522 | list_for_each(p, &cache_chain) { | |
1523 | kmem_cache_t *pc = list_entry(p, kmem_cache_t, next); | |
1524 | mm_segment_t old_fs = get_fs(); | |
1525 | char tmp; | |
1526 | int res; | |
1527 | ||
1528 | /* | |
1529 | * This happens when the module gets unloaded and doesn't | |
1530 | * destroy its slab cache and no-one else reuses the vmalloc | |
1531 | * area of the module. Print a warning. | |
1532 | */ | |
1533 | set_fs(KERNEL_DS); | |
1534 | res = __get_user(tmp, pc->name); | |
1535 | set_fs(old_fs); | |
1536 | if (res) { | |
1537 | printk("SLAB: cache with size %d has lost its name\n", | |
1538 | pc->objsize); | |
1539 | continue; | |
1540 | } | |
1541 | ||
1542 | if (!strcmp(pc->name,name)) { | |
1543 | printk("kmem_cache_create: duplicate cache %s\n", name); | |
1544 | dump_stack(); | |
1545 | goto oops; | |
1546 | } | |
1547 | } | |
1548 | ||
1da177e4 LT |
1549 | #if DEBUG |
1550 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ | |
1551 | if ((flags & SLAB_DEBUG_INITIAL) && !ctor) { | |
1552 | /* No constructor, but inital state check requested */ | |
1553 | printk(KERN_ERR "%s: No con, but init state check " | |
1554 | "requested - %s\n", __FUNCTION__, name); | |
1555 | flags &= ~SLAB_DEBUG_INITIAL; | |
1556 | } | |
1557 | ||
1558 | #if FORCED_DEBUG | |
1559 | /* | |
1560 | * Enable redzoning and last user accounting, except for caches with | |
1561 | * large objects, if the increased size would increase the object size | |
1562 | * above the next power of two: caches with object sizes just above a | |
1563 | * power of two have a significant amount of internal fragmentation. | |
1564 | */ | |
1565 | if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD))) | |
1566 | flags |= SLAB_RED_ZONE|SLAB_STORE_USER; | |
1567 | if (!(flags & SLAB_DESTROY_BY_RCU)) | |
1568 | flags |= SLAB_POISON; | |
1569 | #endif | |
1570 | if (flags & SLAB_DESTROY_BY_RCU) | |
1571 | BUG_ON(flags & SLAB_POISON); | |
1572 | #endif | |
1573 | if (flags & SLAB_DESTROY_BY_RCU) | |
1574 | BUG_ON(dtor); | |
1575 | ||
1576 | /* | |
1577 | * Always checks flags, a caller might be expecting debug | |
1578 | * support which isn't available. | |
1579 | */ | |
1580 | if (flags & ~CREATE_MASK) | |
1581 | BUG(); | |
1582 | ||
1583 | /* Check that size is in terms of words. This is needed to avoid | |
1584 | * unaligned accesses for some archs when redzoning is used, and makes | |
1585 | * sure any on-slab bufctl's are also correctly aligned. | |
1586 | */ | |
1587 | if (size & (BYTES_PER_WORD-1)) { | |
1588 | size += (BYTES_PER_WORD-1); | |
1589 | size &= ~(BYTES_PER_WORD-1); | |
1590 | } | |
1591 | ||
1592 | /* calculate out the final buffer alignment: */ | |
1593 | /* 1) arch recommendation: can be overridden for debug */ | |
1594 | if (flags & SLAB_HWCACHE_ALIGN) { | |
1595 | /* Default alignment: as specified by the arch code. | |
1596 | * Except if an object is really small, then squeeze multiple | |
1597 | * objects into one cacheline. | |
1598 | */ | |
1599 | ralign = cache_line_size(); | |
1600 | while (size <= ralign/2) | |
1601 | ralign /= 2; | |
1602 | } else { | |
1603 | ralign = BYTES_PER_WORD; | |
1604 | } | |
1605 | /* 2) arch mandated alignment: disables debug if necessary */ | |
1606 | if (ralign < ARCH_SLAB_MINALIGN) { | |
1607 | ralign = ARCH_SLAB_MINALIGN; | |
1608 | if (ralign > BYTES_PER_WORD) | |
1609 | flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER); | |
1610 | } | |
1611 | /* 3) caller mandated alignment: disables debug if necessary */ | |
1612 | if (ralign < align) { | |
1613 | ralign = align; | |
1614 | if (ralign > BYTES_PER_WORD) | |
1615 | flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER); | |
1616 | } | |
1617 | /* 4) Store it. Note that the debug code below can reduce | |
1618 | * the alignment to BYTES_PER_WORD. | |
1619 | */ | |
1620 | align = ralign; | |
1621 | ||
1622 | /* Get cache's description obj. */ | |
1623 | cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL); | |
1624 | if (!cachep) | |
4f12bb4f | 1625 | goto oops; |
1da177e4 LT |
1626 | memset(cachep, 0, sizeof(kmem_cache_t)); |
1627 | ||
1628 | #if DEBUG | |
1629 | cachep->reallen = size; | |
1630 | ||
1631 | if (flags & SLAB_RED_ZONE) { | |
1632 | /* redzoning only works with word aligned caches */ | |
1633 | align = BYTES_PER_WORD; | |
1634 | ||
1635 | /* add space for red zone words */ | |
1636 | cachep->dbghead += BYTES_PER_WORD; | |
1637 | size += 2*BYTES_PER_WORD; | |
1638 | } | |
1639 | if (flags & SLAB_STORE_USER) { | |
1640 | /* user store requires word alignment and | |
1641 | * one word storage behind the end of the real | |
1642 | * object. | |
1643 | */ | |
1644 | align = BYTES_PER_WORD; | |
1645 | size += BYTES_PER_WORD; | |
1646 | } | |
1647 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | |
e498be7d | 1648 | if (size >= malloc_sizes[INDEX_L3+1].cs_size && cachep->reallen > cache_line_size() && size < PAGE_SIZE) { |
1da177e4 LT |
1649 | cachep->dbghead += PAGE_SIZE - size; |
1650 | size = PAGE_SIZE; | |
1651 | } | |
1652 | #endif | |
1653 | #endif | |
1654 | ||
1655 | /* Determine if the slab management is 'on' or 'off' slab. */ | |
1656 | if (size >= (PAGE_SIZE>>3)) | |
1657 | /* | |
1658 | * Size is large, assume best to place the slab management obj | |
1659 | * off-slab (should allow better packing of objs). | |
1660 | */ | |
1661 | flags |= CFLGS_OFF_SLAB; | |
1662 | ||
1663 | size = ALIGN(size, align); | |
1664 | ||
1665 | if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) { | |
1666 | /* | |
1667 | * A VFS-reclaimable slab tends to have most allocations | |
1668 | * as GFP_NOFS and we really don't want to have to be allocating | |
1669 | * higher-order pages when we are unable to shrink dcache. | |
1670 | */ | |
1671 | cachep->gfporder = 0; | |
1672 | cache_estimate(cachep->gfporder, size, align, flags, | |
1673 | &left_over, &cachep->num); | |
1674 | } else { | |
1675 | /* | |
1676 | * Calculate size (in pages) of slabs, and the num of objs per | |
1677 | * slab. This could be made much more intelligent. For now, | |
1678 | * try to avoid using high page-orders for slabs. When the | |
1679 | * gfp() funcs are more friendly towards high-order requests, | |
1680 | * this should be changed. | |
1681 | */ | |
1682 | do { | |
1683 | unsigned int break_flag = 0; | |
1684 | cal_wastage: | |
1685 | cache_estimate(cachep->gfporder, size, align, flags, | |
1686 | &left_over, &cachep->num); | |
1687 | if (break_flag) | |
1688 | break; | |
1689 | if (cachep->gfporder >= MAX_GFP_ORDER) | |
1690 | break; | |
1691 | if (!cachep->num) | |
1692 | goto next; | |
1693 | if (flags & CFLGS_OFF_SLAB && | |
1694 | cachep->num > offslab_limit) { | |
1695 | /* This num of objs will cause problems. */ | |
1696 | cachep->gfporder--; | |
1697 | break_flag++; | |
1698 | goto cal_wastage; | |
1699 | } | |
1700 | ||
1701 | /* | |
1702 | * Large num of objs is good, but v. large slabs are | |
1703 | * currently bad for the gfp()s. | |
1704 | */ | |
1705 | if (cachep->gfporder >= slab_break_gfp_order) | |
1706 | break; | |
1707 | ||
1708 | if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder)) | |
1709 | break; /* Acceptable internal fragmentation. */ | |
1710 | next: | |
1711 | cachep->gfporder++; | |
1712 | } while (1); | |
1713 | } | |
1714 | ||
1715 | if (!cachep->num) { | |
1716 | printk("kmem_cache_create: couldn't create cache %s.\n", name); | |
1717 | kmem_cache_free(&cache_cache, cachep); | |
1718 | cachep = NULL; | |
4f12bb4f | 1719 | goto oops; |
1da177e4 LT |
1720 | } |
1721 | slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t) | |
1722 | + sizeof(struct slab), align); | |
1723 | ||
1724 | /* | |
1725 | * If the slab has been placed off-slab, and we have enough space then | |
1726 | * move it on-slab. This is at the expense of any extra colouring. | |
1727 | */ | |
1728 | if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { | |
1729 | flags &= ~CFLGS_OFF_SLAB; | |
1730 | left_over -= slab_size; | |
1731 | } | |
1732 | ||
1733 | if (flags & CFLGS_OFF_SLAB) { | |
1734 | /* really off slab. No need for manual alignment */ | |
1735 | slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab); | |
1736 | } | |
1737 | ||
1738 | cachep->colour_off = cache_line_size(); | |
1739 | /* Offset must be a multiple of the alignment. */ | |
1740 | if (cachep->colour_off < align) | |
1741 | cachep->colour_off = align; | |
1742 | cachep->colour = left_over/cachep->colour_off; | |
1743 | cachep->slab_size = slab_size; | |
1744 | cachep->flags = flags; | |
1745 | cachep->gfpflags = 0; | |
1746 | if (flags & SLAB_CACHE_DMA) | |
1747 | cachep->gfpflags |= GFP_DMA; | |
1748 | spin_lock_init(&cachep->spinlock); | |
1749 | cachep->objsize = size; | |
1da177e4 LT |
1750 | |
1751 | if (flags & CFLGS_OFF_SLAB) | |
b2d55073 | 1752 | cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); |
1da177e4 LT |
1753 | cachep->ctor = ctor; |
1754 | cachep->dtor = dtor; | |
1755 | cachep->name = name; | |
1756 | ||
1757 | /* Don't let CPUs to come and go */ | |
1758 | lock_cpu_hotplug(); | |
1759 | ||
1760 | if (g_cpucache_up == FULL) { | |
1761 | enable_cpucache(cachep); | |
1762 | } else { | |
1763 | if (g_cpucache_up == NONE) { | |
1764 | /* Note: the first kmem_cache_create must create | |
1765 | * the cache that's used by kmalloc(24), otherwise | |
1766 | * the creation of further caches will BUG(). | |
1767 | */ | |
e498be7d CL |
1768 | cachep->array[smp_processor_id()] = |
1769 | &initarray_generic.cache; | |
1770 | ||
1771 | /* If the cache that's used by | |
1772 | * kmalloc(sizeof(kmem_list3)) is the first cache, | |
1773 | * then we need to set up all its list3s, otherwise | |
1774 | * the creation of further caches will BUG(). | |
1775 | */ | |
1776 | set_up_list3s(cachep, SIZE_AC); | |
1777 | if (INDEX_AC == INDEX_L3) | |
1778 | g_cpucache_up = PARTIAL_L3; | |
1779 | else | |
1780 | g_cpucache_up = PARTIAL_AC; | |
1da177e4 | 1781 | } else { |
e498be7d CL |
1782 | cachep->array[smp_processor_id()] = |
1783 | kmalloc(sizeof(struct arraycache_init), | |
1784 | GFP_KERNEL); | |
1785 | ||
1786 | if (g_cpucache_up == PARTIAL_AC) { | |
1787 | set_up_list3s(cachep, SIZE_L3); | |
1788 | g_cpucache_up = PARTIAL_L3; | |
1789 | } else { | |
1790 | int node; | |
1791 | for_each_online_node(node) { | |
1792 | ||
1793 | cachep->nodelists[node] = | |
1794 | kmalloc_node(sizeof(struct kmem_list3), | |
1795 | GFP_KERNEL, node); | |
1796 | BUG_ON(!cachep->nodelists[node]); | |
1797 | kmem_list3_init(cachep->nodelists[node]); | |
1798 | } | |
1799 | } | |
1da177e4 | 1800 | } |
e498be7d CL |
1801 | cachep->nodelists[numa_node_id()]->next_reap = |
1802 | jiffies + REAPTIMEOUT_LIST3 + | |
1803 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; | |
1804 | ||
1da177e4 LT |
1805 | BUG_ON(!ac_data(cachep)); |
1806 | ac_data(cachep)->avail = 0; | |
1807 | ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | |
1808 | ac_data(cachep)->batchcount = 1; | |
1809 | ac_data(cachep)->touched = 0; | |
1810 | cachep->batchcount = 1; | |
1811 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | |
1da177e4 LT |
1812 | } |
1813 | ||
1da177e4 LT |
1814 | /* cache setup completed, link it into the list */ |
1815 | list_add(&cachep->next, &cache_chain); | |
1da177e4 | 1816 | unlock_cpu_hotplug(); |
4f12bb4f | 1817 | oops: |
1da177e4 LT |
1818 | if (!cachep && (flags & SLAB_PANIC)) |
1819 | panic("kmem_cache_create(): failed to create slab `%s'\n", | |
1820 | name); | |
4f12bb4f | 1821 | up(&cache_chain_sem); |
1da177e4 LT |
1822 | return cachep; |
1823 | } | |
1824 | EXPORT_SYMBOL(kmem_cache_create); | |
1825 | ||
1826 | #if DEBUG | |
1827 | static void check_irq_off(void) | |
1828 | { | |
1829 | BUG_ON(!irqs_disabled()); | |
1830 | } | |
1831 | ||
1832 | static void check_irq_on(void) | |
1833 | { | |
1834 | BUG_ON(irqs_disabled()); | |
1835 | } | |
1836 | ||
1837 | static void check_spinlock_acquired(kmem_cache_t *cachep) | |
1838 | { | |
1839 | #ifdef CONFIG_SMP | |
1840 | check_irq_off(); | |
e498be7d | 1841 | assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock); |
1da177e4 LT |
1842 | #endif |
1843 | } | |
e498be7d CL |
1844 | |
1845 | static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node) | |
1846 | { | |
1847 | #ifdef CONFIG_SMP | |
1848 | check_irq_off(); | |
1849 | assert_spin_locked(&cachep->nodelists[node]->list_lock); | |
1850 | #endif | |
1851 | } | |
1852 | ||
1da177e4 LT |
1853 | #else |
1854 | #define check_irq_off() do { } while(0) | |
1855 | #define check_irq_on() do { } while(0) | |
1856 | #define check_spinlock_acquired(x) do { } while(0) | |
e498be7d | 1857 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
1da177e4 LT |
1858 | #endif |
1859 | ||
1860 | /* | |
1861 | * Waits for all CPUs to execute func(). | |
1862 | */ | |
1863 | static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg) | |
1864 | { | |
1865 | check_irq_on(); | |
1866 | preempt_disable(); | |
1867 | ||
1868 | local_irq_disable(); | |
1869 | func(arg); | |
1870 | local_irq_enable(); | |
1871 | ||
1872 | if (smp_call_function(func, arg, 1, 1)) | |
1873 | BUG(); | |
1874 | ||
1875 | preempt_enable(); | |
1876 | } | |
1877 | ||
1878 | static void drain_array_locked(kmem_cache_t* cachep, | |
e498be7d | 1879 | struct array_cache *ac, int force, int node); |
1da177e4 LT |
1880 | |
1881 | static void do_drain(void *arg) | |
1882 | { | |
1883 | kmem_cache_t *cachep = (kmem_cache_t*)arg; | |
1884 | struct array_cache *ac; | |
ff69416e | 1885 | int node = numa_node_id(); |
1da177e4 LT |
1886 | |
1887 | check_irq_off(); | |
1888 | ac = ac_data(cachep); | |
ff69416e CL |
1889 | spin_lock(&cachep->nodelists[node]->list_lock); |
1890 | free_block(cachep, ac->entry, ac->avail, node); | |
1891 | spin_unlock(&cachep->nodelists[node]->list_lock); | |
1da177e4 LT |
1892 | ac->avail = 0; |
1893 | } | |
1894 | ||
1895 | static void drain_cpu_caches(kmem_cache_t *cachep) | |
1896 | { | |
e498be7d CL |
1897 | struct kmem_list3 *l3; |
1898 | int node; | |
1899 | ||
1da177e4 LT |
1900 | smp_call_function_all_cpus(do_drain, cachep); |
1901 | check_irq_on(); | |
1902 | spin_lock_irq(&cachep->spinlock); | |
e498be7d CL |
1903 | for_each_online_node(node) { |
1904 | l3 = cachep->nodelists[node]; | |
1905 | if (l3) { | |
1906 | spin_lock(&l3->list_lock); | |
1907 | drain_array_locked(cachep, l3->shared, 1, node); | |
1908 | spin_unlock(&l3->list_lock); | |
1909 | if (l3->alien) | |
1910 | drain_alien_cache(cachep, l3); | |
1911 | } | |
1912 | } | |
1da177e4 LT |
1913 | spin_unlock_irq(&cachep->spinlock); |
1914 | } | |
1915 | ||
e498be7d | 1916 | static int __node_shrink(kmem_cache_t *cachep, int node) |
1da177e4 LT |
1917 | { |
1918 | struct slab *slabp; | |
e498be7d | 1919 | struct kmem_list3 *l3 = cachep->nodelists[node]; |
1da177e4 LT |
1920 | int ret; |
1921 | ||
e498be7d | 1922 | for (;;) { |
1da177e4 LT |
1923 | struct list_head *p; |
1924 | ||
e498be7d CL |
1925 | p = l3->slabs_free.prev; |
1926 | if (p == &l3->slabs_free) | |
1da177e4 LT |
1927 | break; |
1928 | ||
e498be7d | 1929 | slabp = list_entry(l3->slabs_free.prev, struct slab, list); |
1da177e4 LT |
1930 | #if DEBUG |
1931 | if (slabp->inuse) | |
1932 | BUG(); | |
1933 | #endif | |
1934 | list_del(&slabp->list); | |
1935 | ||
e498be7d CL |
1936 | l3->free_objects -= cachep->num; |
1937 | spin_unlock_irq(&l3->list_lock); | |
1da177e4 | 1938 | slab_destroy(cachep, slabp); |
e498be7d | 1939 | spin_lock_irq(&l3->list_lock); |
1da177e4 | 1940 | } |
e498be7d CL |
1941 | ret = !list_empty(&l3->slabs_full) || |
1942 | !list_empty(&l3->slabs_partial); | |
1da177e4 LT |
1943 | return ret; |
1944 | } | |
1945 | ||
e498be7d CL |
1946 | static int __cache_shrink(kmem_cache_t *cachep) |
1947 | { | |
1948 | int ret = 0, i = 0; | |
1949 | struct kmem_list3 *l3; | |
1950 | ||
1951 | drain_cpu_caches(cachep); | |
1952 | ||
1953 | check_irq_on(); | |
1954 | for_each_online_node(i) { | |
1955 | l3 = cachep->nodelists[i]; | |
1956 | if (l3) { | |
1957 | spin_lock_irq(&l3->list_lock); | |
1958 | ret += __node_shrink(cachep, i); | |
1959 | spin_unlock_irq(&l3->list_lock); | |
1960 | } | |
1961 | } | |
1962 | return (ret ? 1 : 0); | |
1963 | } | |
1964 | ||
1da177e4 LT |
1965 | /** |
1966 | * kmem_cache_shrink - Shrink a cache. | |
1967 | * @cachep: The cache to shrink. | |
1968 | * | |
1969 | * Releases as many slabs as possible for a cache. | |
1970 | * To help debugging, a zero exit status indicates all slabs were released. | |
1971 | */ | |
1972 | int kmem_cache_shrink(kmem_cache_t *cachep) | |
1973 | { | |
1974 | if (!cachep || in_interrupt()) | |
1975 | BUG(); | |
1976 | ||
1977 | return __cache_shrink(cachep); | |
1978 | } | |
1979 | EXPORT_SYMBOL(kmem_cache_shrink); | |
1980 | ||
1981 | /** | |
1982 | * kmem_cache_destroy - delete a cache | |
1983 | * @cachep: the cache to destroy | |
1984 | * | |
1985 | * Remove a kmem_cache_t object from the slab cache. | |
1986 | * Returns 0 on success. | |
1987 | * | |
1988 | * It is expected this function will be called by a module when it is | |
1989 | * unloaded. This will remove the cache completely, and avoid a duplicate | |
1990 | * cache being allocated each time a module is loaded and unloaded, if the | |
1991 | * module doesn't have persistent in-kernel storage across loads and unloads. | |
1992 | * | |
1993 | * The cache must be empty before calling this function. | |
1994 | * | |
1995 | * The caller must guarantee that noone will allocate memory from the cache | |
1996 | * during the kmem_cache_destroy(). | |
1997 | */ | |
1998 | int kmem_cache_destroy(kmem_cache_t * cachep) | |
1999 | { | |
2000 | int i; | |
e498be7d | 2001 | struct kmem_list3 *l3; |
1da177e4 LT |
2002 | |
2003 | if (!cachep || in_interrupt()) | |
2004 | BUG(); | |
2005 | ||
2006 | /* Don't let CPUs to come and go */ | |
2007 | lock_cpu_hotplug(); | |
2008 | ||
2009 | /* Find the cache in the chain of caches. */ | |
2010 | down(&cache_chain_sem); | |
2011 | /* | |
2012 | * the chain is never empty, cache_cache is never destroyed | |
2013 | */ | |
2014 | list_del(&cachep->next); | |
2015 | up(&cache_chain_sem); | |
2016 | ||
2017 | if (__cache_shrink(cachep)) { | |
2018 | slab_error(cachep, "Can't free all objects"); | |
2019 | down(&cache_chain_sem); | |
2020 | list_add(&cachep->next,&cache_chain); | |
2021 | up(&cache_chain_sem); | |
2022 | unlock_cpu_hotplug(); | |
2023 | return 1; | |
2024 | } | |
2025 | ||
2026 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) | |
fbd568a3 | 2027 | synchronize_rcu(); |
1da177e4 | 2028 | |
e498be7d | 2029 | for_each_online_cpu(i) |
1da177e4 LT |
2030 | kfree(cachep->array[i]); |
2031 | ||
2032 | /* NUMA: free the list3 structures */ | |
e498be7d CL |
2033 | for_each_online_node(i) { |
2034 | if ((l3 = cachep->nodelists[i])) { | |
2035 | kfree(l3->shared); | |
2036 | free_alien_cache(l3->alien); | |
2037 | kfree(l3); | |
2038 | } | |
2039 | } | |
1da177e4 LT |
2040 | kmem_cache_free(&cache_cache, cachep); |
2041 | ||
2042 | unlock_cpu_hotplug(); | |
2043 | ||
2044 | return 0; | |
2045 | } | |
2046 | EXPORT_SYMBOL(kmem_cache_destroy); | |
2047 | ||
2048 | /* Get the memory for a slab management obj. */ | |
e498be7d | 2049 | static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, void *objp, |
dd0fc66f | 2050 | int colour_off, gfp_t local_flags) |
1da177e4 LT |
2051 | { |
2052 | struct slab *slabp; | |
2053 | ||
2054 | if (OFF_SLAB(cachep)) { | |
2055 | /* Slab management obj is off-slab. */ | |
2056 | slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags); | |
2057 | if (!slabp) | |
2058 | return NULL; | |
2059 | } else { | |
2060 | slabp = objp+colour_off; | |
2061 | colour_off += cachep->slab_size; | |
2062 | } | |
2063 | slabp->inuse = 0; | |
2064 | slabp->colouroff = colour_off; | |
2065 | slabp->s_mem = objp+colour_off; | |
2066 | ||
2067 | return slabp; | |
2068 | } | |
2069 | ||
2070 | static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) | |
2071 | { | |
2072 | return (kmem_bufctl_t *)(slabp+1); | |
2073 | } | |
2074 | ||
2075 | static void cache_init_objs(kmem_cache_t *cachep, | |
2076 | struct slab *slabp, unsigned long ctor_flags) | |
2077 | { | |
2078 | int i; | |
2079 | ||
2080 | for (i = 0; i < cachep->num; i++) { | |
e498be7d | 2081 | void *objp = slabp->s_mem+cachep->objsize*i; |
1da177e4 LT |
2082 | #if DEBUG |
2083 | /* need to poison the objs? */ | |
2084 | if (cachep->flags & SLAB_POISON) | |
2085 | poison_obj(cachep, objp, POISON_FREE); | |
2086 | if (cachep->flags & SLAB_STORE_USER) | |
2087 | *dbg_userword(cachep, objp) = NULL; | |
2088 | ||
2089 | if (cachep->flags & SLAB_RED_ZONE) { | |
2090 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2091 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2092 | } | |
2093 | /* | |
2094 | * Constructors are not allowed to allocate memory from | |
2095 | * the same cache which they are a constructor for. | |
2096 | * Otherwise, deadlock. They must also be threaded. | |
2097 | */ | |
2098 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | |
2099 | cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags); | |
2100 | ||
2101 | if (cachep->flags & SLAB_RED_ZONE) { | |
2102 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
2103 | slab_error(cachep, "constructor overwrote the" | |
2104 | " end of an object"); | |
2105 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
2106 | slab_error(cachep, "constructor overwrote the" | |
2107 | " start of an object"); | |
2108 | } | |
2109 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) | |
2110 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); | |
2111 | #else | |
2112 | if (cachep->ctor) | |
2113 | cachep->ctor(objp, cachep, ctor_flags); | |
2114 | #endif | |
2115 | slab_bufctl(slabp)[i] = i+1; | |
2116 | } | |
2117 | slab_bufctl(slabp)[i-1] = BUFCTL_END; | |
2118 | slabp->free = 0; | |
2119 | } | |
2120 | ||
6daa0e28 | 2121 | static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags) |
1da177e4 LT |
2122 | { |
2123 | if (flags & SLAB_DMA) { | |
2124 | if (!(cachep->gfpflags & GFP_DMA)) | |
2125 | BUG(); | |
2126 | } else { | |
2127 | if (cachep->gfpflags & GFP_DMA) | |
2128 | BUG(); | |
2129 | } | |
2130 | } | |
2131 | ||
2132 | static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp) | |
2133 | { | |
2134 | int i; | |
2135 | struct page *page; | |
2136 | ||
2137 | /* Nasty!!!!!! I hope this is OK. */ | |
2138 | i = 1 << cachep->gfporder; | |
2139 | page = virt_to_page(objp); | |
2140 | do { | |
2141 | SET_PAGE_CACHE(page, cachep); | |
2142 | SET_PAGE_SLAB(page, slabp); | |
2143 | page++; | |
2144 | } while (--i); | |
2145 | } | |
2146 | ||
2147 | /* | |
2148 | * Grow (by 1) the number of slabs within a cache. This is called by | |
2149 | * kmem_cache_alloc() when there are no active objs left in a cache. | |
2150 | */ | |
dd0fc66f | 2151 | static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid) |
1da177e4 LT |
2152 | { |
2153 | struct slab *slabp; | |
2154 | void *objp; | |
2155 | size_t offset; | |
6daa0e28 | 2156 | gfp_t local_flags; |
1da177e4 | 2157 | unsigned long ctor_flags; |
e498be7d | 2158 | struct kmem_list3 *l3; |
1da177e4 LT |
2159 | |
2160 | /* Be lazy and only check for valid flags here, | |
2161 | * keeping it out of the critical path in kmem_cache_alloc(). | |
2162 | */ | |
2163 | if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW)) | |
2164 | BUG(); | |
2165 | if (flags & SLAB_NO_GROW) | |
2166 | return 0; | |
2167 | ||
2168 | ctor_flags = SLAB_CTOR_CONSTRUCTOR; | |
2169 | local_flags = (flags & SLAB_LEVEL_MASK); | |
2170 | if (!(local_flags & __GFP_WAIT)) | |
2171 | /* | |
2172 | * Not allowed to sleep. Need to tell a constructor about | |
2173 | * this - it might need to know... | |
2174 | */ | |
2175 | ctor_flags |= SLAB_CTOR_ATOMIC; | |
2176 | ||
2177 | /* About to mess with non-constant members - lock. */ | |
2178 | check_irq_off(); | |
2179 | spin_lock(&cachep->spinlock); | |
2180 | ||
2181 | /* Get colour for the slab, and cal the next value. */ | |
2182 | offset = cachep->colour_next; | |
2183 | cachep->colour_next++; | |
2184 | if (cachep->colour_next >= cachep->colour) | |
2185 | cachep->colour_next = 0; | |
2186 | offset *= cachep->colour_off; | |
2187 | ||
2188 | spin_unlock(&cachep->spinlock); | |
2189 | ||
e498be7d | 2190 | check_irq_off(); |
1da177e4 LT |
2191 | if (local_flags & __GFP_WAIT) |
2192 | local_irq_enable(); | |
2193 | ||
2194 | /* | |
2195 | * The test for missing atomic flag is performed here, rather than | |
2196 | * the more obvious place, simply to reduce the critical path length | |
2197 | * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | |
2198 | * will eventually be caught here (where it matters). | |
2199 | */ | |
2200 | kmem_flagcheck(cachep, flags); | |
2201 | ||
e498be7d CL |
2202 | /* Get mem for the objs. |
2203 | * Attempt to allocate a physical page from 'nodeid', | |
2204 | */ | |
1da177e4 LT |
2205 | if (!(objp = kmem_getpages(cachep, flags, nodeid))) |
2206 | goto failed; | |
2207 | ||
2208 | /* Get slab management. */ | |
2209 | if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags))) | |
2210 | goto opps1; | |
2211 | ||
e498be7d | 2212 | slabp->nodeid = nodeid; |
1da177e4 LT |
2213 | set_slab_attr(cachep, slabp, objp); |
2214 | ||
2215 | cache_init_objs(cachep, slabp, ctor_flags); | |
2216 | ||
2217 | if (local_flags & __GFP_WAIT) | |
2218 | local_irq_disable(); | |
2219 | check_irq_off(); | |
e498be7d CL |
2220 | l3 = cachep->nodelists[nodeid]; |
2221 | spin_lock(&l3->list_lock); | |
1da177e4 LT |
2222 | |
2223 | /* Make slab active. */ | |
e498be7d | 2224 | list_add_tail(&slabp->list, &(l3->slabs_free)); |
1da177e4 | 2225 | STATS_INC_GROWN(cachep); |
e498be7d CL |
2226 | l3->free_objects += cachep->num; |
2227 | spin_unlock(&l3->list_lock); | |
1da177e4 LT |
2228 | return 1; |
2229 | opps1: | |
2230 | kmem_freepages(cachep, objp); | |
2231 | failed: | |
2232 | if (local_flags & __GFP_WAIT) | |
2233 | local_irq_disable(); | |
2234 | return 0; | |
2235 | } | |
2236 | ||
2237 | #if DEBUG | |
2238 | ||
2239 | /* | |
2240 | * Perform extra freeing checks: | |
2241 | * - detect bad pointers. | |
2242 | * - POISON/RED_ZONE checking | |
2243 | * - destructor calls, for caches with POISON+dtor | |
2244 | */ | |
2245 | static void kfree_debugcheck(const void *objp) | |
2246 | { | |
2247 | struct page *page; | |
2248 | ||
2249 | if (!virt_addr_valid(objp)) { | |
2250 | printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | |
2251 | (unsigned long)objp); | |
2252 | BUG(); | |
2253 | } | |
2254 | page = virt_to_page(objp); | |
2255 | if (!PageSlab(page)) { | |
2256 | printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp); | |
2257 | BUG(); | |
2258 | } | |
2259 | } | |
2260 | ||
2261 | static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp, | |
2262 | void *caller) | |
2263 | { | |
2264 | struct page *page; | |
2265 | unsigned int objnr; | |
2266 | struct slab *slabp; | |
2267 | ||
2268 | objp -= obj_dbghead(cachep); | |
2269 | kfree_debugcheck(objp); | |
2270 | page = virt_to_page(objp); | |
2271 | ||
2272 | if (GET_PAGE_CACHE(page) != cachep) { | |
2273 | printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n", | |
2274 | GET_PAGE_CACHE(page),cachep); | |
2275 | printk(KERN_ERR "%p is %s.\n", cachep, cachep->name); | |
2276 | printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name); | |
2277 | WARN_ON(1); | |
2278 | } | |
2279 | slabp = GET_PAGE_SLAB(page); | |
2280 | ||
2281 | if (cachep->flags & SLAB_RED_ZONE) { | |
2282 | if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) { | |
2283 | slab_error(cachep, "double free, or memory outside" | |
2284 | " object was overwritten"); | |
2285 | printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", | |
2286 | objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); | |
2287 | } | |
2288 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2289 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2290 | } | |
2291 | if (cachep->flags & SLAB_STORE_USER) | |
2292 | *dbg_userword(cachep, objp) = caller; | |
2293 | ||
2294 | objnr = (objp-slabp->s_mem)/cachep->objsize; | |
2295 | ||
2296 | BUG_ON(objnr >= cachep->num); | |
2297 | BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize); | |
2298 | ||
2299 | if (cachep->flags & SLAB_DEBUG_INITIAL) { | |
2300 | /* Need to call the slab's constructor so the | |
2301 | * caller can perform a verify of its state (debugging). | |
2302 | * Called without the cache-lock held. | |
2303 | */ | |
2304 | cachep->ctor(objp+obj_dbghead(cachep), | |
2305 | cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY); | |
2306 | } | |
2307 | if (cachep->flags & SLAB_POISON && cachep->dtor) { | |
2308 | /* we want to cache poison the object, | |
2309 | * call the destruction callback | |
2310 | */ | |
2311 | cachep->dtor(objp+obj_dbghead(cachep), cachep, 0); | |
2312 | } | |
2313 | if (cachep->flags & SLAB_POISON) { | |
2314 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
2315 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) { | |
2316 | store_stackinfo(cachep, objp, (unsigned long)caller); | |
2317 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); | |
2318 | } else { | |
2319 | poison_obj(cachep, objp, POISON_FREE); | |
2320 | } | |
2321 | #else | |
2322 | poison_obj(cachep, objp, POISON_FREE); | |
2323 | #endif | |
2324 | } | |
2325 | return objp; | |
2326 | } | |
2327 | ||
2328 | static void check_slabp(kmem_cache_t *cachep, struct slab *slabp) | |
2329 | { | |
2330 | kmem_bufctl_t i; | |
2331 | int entries = 0; | |
2332 | ||
1da177e4 LT |
2333 | /* Check slab's freelist to see if this obj is there. */ |
2334 | for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { | |
2335 | entries++; | |
2336 | if (entries > cachep->num || i >= cachep->num) | |
2337 | goto bad; | |
2338 | } | |
2339 | if (entries != cachep->num - slabp->inuse) { | |
2340 | bad: | |
2341 | printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n", | |
2342 | cachep->name, cachep->num, slabp, slabp->inuse); | |
2343 | for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) { | |
2344 | if ((i%16)==0) | |
2345 | printk("\n%03x:", i); | |
2346 | printk(" %02x", ((unsigned char*)slabp)[i]); | |
2347 | } | |
2348 | printk("\n"); | |
2349 | BUG(); | |
2350 | } | |
2351 | } | |
2352 | #else | |
2353 | #define kfree_debugcheck(x) do { } while(0) | |
2354 | #define cache_free_debugcheck(x,objp,z) (objp) | |
2355 | #define check_slabp(x,y) do { } while(0) | |
2356 | #endif | |
2357 | ||
dd0fc66f | 2358 | static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags) |
1da177e4 LT |
2359 | { |
2360 | int batchcount; | |
2361 | struct kmem_list3 *l3; | |
2362 | struct array_cache *ac; | |
2363 | ||
2364 | check_irq_off(); | |
2365 | ac = ac_data(cachep); | |
2366 | retry: | |
2367 | batchcount = ac->batchcount; | |
2368 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | |
2369 | /* if there was little recent activity on this | |
2370 | * cache, then perform only a partial refill. | |
2371 | * Otherwise we could generate refill bouncing. | |
2372 | */ | |
2373 | batchcount = BATCHREFILL_LIMIT; | |
2374 | } | |
e498be7d CL |
2375 | l3 = cachep->nodelists[numa_node_id()]; |
2376 | ||
2377 | BUG_ON(ac->avail > 0 || !l3); | |
2378 | spin_lock(&l3->list_lock); | |
1da177e4 | 2379 | |
1da177e4 LT |
2380 | if (l3->shared) { |
2381 | struct array_cache *shared_array = l3->shared; | |
2382 | if (shared_array->avail) { | |
2383 | if (batchcount > shared_array->avail) | |
2384 | batchcount = shared_array->avail; | |
2385 | shared_array->avail -= batchcount; | |
2386 | ac->avail = batchcount; | |
e498be7d CL |
2387 | memcpy(ac->entry, |
2388 | &(shared_array->entry[shared_array->avail]), | |
2389 | sizeof(void*)*batchcount); | |
1da177e4 LT |
2390 | shared_array->touched = 1; |
2391 | goto alloc_done; | |
2392 | } | |
2393 | } | |
2394 | while (batchcount > 0) { | |
2395 | struct list_head *entry; | |
2396 | struct slab *slabp; | |
2397 | /* Get slab alloc is to come from. */ | |
2398 | entry = l3->slabs_partial.next; | |
2399 | if (entry == &l3->slabs_partial) { | |
2400 | l3->free_touched = 1; | |
2401 | entry = l3->slabs_free.next; | |
2402 | if (entry == &l3->slabs_free) | |
2403 | goto must_grow; | |
2404 | } | |
2405 | ||
2406 | slabp = list_entry(entry, struct slab, list); | |
2407 | check_slabp(cachep, slabp); | |
2408 | check_spinlock_acquired(cachep); | |
2409 | while (slabp->inuse < cachep->num && batchcount--) { | |
2410 | kmem_bufctl_t next; | |
2411 | STATS_INC_ALLOCED(cachep); | |
2412 | STATS_INC_ACTIVE(cachep); | |
2413 | STATS_SET_HIGH(cachep); | |
2414 | ||
2415 | /* get obj pointer */ | |
e498be7d CL |
2416 | ac->entry[ac->avail++] = slabp->s_mem + |
2417 | slabp->free*cachep->objsize; | |
1da177e4 LT |
2418 | |
2419 | slabp->inuse++; | |
2420 | next = slab_bufctl(slabp)[slabp->free]; | |
2421 | #if DEBUG | |
2422 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | |
09ad4bbc | 2423 | WARN_ON(numa_node_id() != slabp->nodeid); |
1da177e4 LT |
2424 | #endif |
2425 | slabp->free = next; | |
2426 | } | |
2427 | check_slabp(cachep, slabp); | |
2428 | ||
2429 | /* move slabp to correct slabp list: */ | |
2430 | list_del(&slabp->list); | |
2431 | if (slabp->free == BUFCTL_END) | |
2432 | list_add(&slabp->list, &l3->slabs_full); | |
2433 | else | |
2434 | list_add(&slabp->list, &l3->slabs_partial); | |
2435 | } | |
2436 | ||
2437 | must_grow: | |
2438 | l3->free_objects -= ac->avail; | |
2439 | alloc_done: | |
e498be7d | 2440 | spin_unlock(&l3->list_lock); |
1da177e4 LT |
2441 | |
2442 | if (unlikely(!ac->avail)) { | |
2443 | int x; | |
e498be7d CL |
2444 | x = cache_grow(cachep, flags, numa_node_id()); |
2445 | ||
1da177e4 LT |
2446 | // cache_grow can reenable interrupts, then ac could change. |
2447 | ac = ac_data(cachep); | |
2448 | if (!x && ac->avail == 0) // no objects in sight? abort | |
2449 | return NULL; | |
2450 | ||
2451 | if (!ac->avail) // objects refilled by interrupt? | |
2452 | goto retry; | |
2453 | } | |
2454 | ac->touched = 1; | |
e498be7d | 2455 | return ac->entry[--ac->avail]; |
1da177e4 LT |
2456 | } |
2457 | ||
2458 | static inline void | |
dd0fc66f | 2459 | cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags) |
1da177e4 LT |
2460 | { |
2461 | might_sleep_if(flags & __GFP_WAIT); | |
2462 | #if DEBUG | |
2463 | kmem_flagcheck(cachep, flags); | |
2464 | #endif | |
2465 | } | |
2466 | ||
2467 | #if DEBUG | |
2468 | static void * | |
2469 | cache_alloc_debugcheck_after(kmem_cache_t *cachep, | |
dd0fc66f | 2470 | gfp_t flags, void *objp, void *caller) |
1da177e4 LT |
2471 | { |
2472 | if (!objp) | |
2473 | return objp; | |
2474 | if (cachep->flags & SLAB_POISON) { | |
2475 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
2476 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) | |
2477 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1); | |
2478 | else | |
2479 | check_poison_obj(cachep, objp); | |
2480 | #else | |
2481 | check_poison_obj(cachep, objp); | |
2482 | #endif | |
2483 | poison_obj(cachep, objp, POISON_INUSE); | |
2484 | } | |
2485 | if (cachep->flags & SLAB_STORE_USER) | |
2486 | *dbg_userword(cachep, objp) = caller; | |
2487 | ||
2488 | if (cachep->flags & SLAB_RED_ZONE) { | |
2489 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | |
2490 | slab_error(cachep, "double free, or memory outside" | |
2491 | " object was overwritten"); | |
2492 | printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", | |
2493 | objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); | |
2494 | } | |
2495 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | |
2496 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | |
2497 | } | |
2498 | objp += obj_dbghead(cachep); | |
2499 | if (cachep->ctor && cachep->flags & SLAB_POISON) { | |
2500 | unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR; | |
2501 | ||
2502 | if (!(flags & __GFP_WAIT)) | |
2503 | ctor_flags |= SLAB_CTOR_ATOMIC; | |
2504 | ||
2505 | cachep->ctor(objp, cachep, ctor_flags); | |
2506 | } | |
2507 | return objp; | |
2508 | } | |
2509 | #else | |
2510 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | |
2511 | #endif | |
2512 | ||
dd0fc66f | 2513 | static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags) |
1da177e4 | 2514 | { |
1da177e4 LT |
2515 | void* objp; |
2516 | struct array_cache *ac; | |
2517 | ||
5c382300 | 2518 | check_irq_off(); |
1da177e4 LT |
2519 | ac = ac_data(cachep); |
2520 | if (likely(ac->avail)) { | |
2521 | STATS_INC_ALLOCHIT(cachep); | |
2522 | ac->touched = 1; | |
e498be7d | 2523 | objp = ac->entry[--ac->avail]; |
1da177e4 LT |
2524 | } else { |
2525 | STATS_INC_ALLOCMISS(cachep); | |
2526 | objp = cache_alloc_refill(cachep, flags); | |
2527 | } | |
5c382300 AK |
2528 | return objp; |
2529 | } | |
2530 | ||
dd0fc66f | 2531 | static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags) |
5c382300 AK |
2532 | { |
2533 | unsigned long save_flags; | |
2534 | void* objp; | |
2535 | ||
2536 | cache_alloc_debugcheck_before(cachep, flags); | |
2537 | ||
2538 | local_irq_save(save_flags); | |
2539 | objp = ____cache_alloc(cachep, flags); | |
1da177e4 | 2540 | local_irq_restore(save_flags); |
34342e86 ED |
2541 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, |
2542 | __builtin_return_address(0)); | |
2543 | prefetchw(objp); | |
1da177e4 LT |
2544 | return objp; |
2545 | } | |
2546 | ||
e498be7d CL |
2547 | #ifdef CONFIG_NUMA |
2548 | /* | |
2549 | * A interface to enable slab creation on nodeid | |
1da177e4 | 2550 | */ |
6daa0e28 | 2551 | static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid) |
e498be7d CL |
2552 | { |
2553 | struct list_head *entry; | |
2554 | struct slab *slabp; | |
2555 | struct kmem_list3 *l3; | |
2556 | void *obj; | |
2557 | kmem_bufctl_t next; | |
2558 | int x; | |
2559 | ||
2560 | l3 = cachep->nodelists[nodeid]; | |
2561 | BUG_ON(!l3); | |
2562 | ||
2563 | retry: | |
2564 | spin_lock(&l3->list_lock); | |
2565 | entry = l3->slabs_partial.next; | |
2566 | if (entry == &l3->slabs_partial) { | |
2567 | l3->free_touched = 1; | |
2568 | entry = l3->slabs_free.next; | |
2569 | if (entry == &l3->slabs_free) | |
2570 | goto must_grow; | |
2571 | } | |
2572 | ||
2573 | slabp = list_entry(entry, struct slab, list); | |
2574 | check_spinlock_acquired_node(cachep, nodeid); | |
2575 | check_slabp(cachep, slabp); | |
2576 | ||
2577 | STATS_INC_NODEALLOCS(cachep); | |
2578 | STATS_INC_ACTIVE(cachep); | |
2579 | STATS_SET_HIGH(cachep); | |
2580 | ||
2581 | BUG_ON(slabp->inuse == cachep->num); | |
2582 | ||
2583 | /* get obj pointer */ | |
2584 | obj = slabp->s_mem + slabp->free*cachep->objsize; | |
2585 | slabp->inuse++; | |
2586 | next = slab_bufctl(slabp)[slabp->free]; | |
2587 | #if DEBUG | |
2588 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | |
2589 | #endif | |
2590 | slabp->free = next; | |
2591 | check_slabp(cachep, slabp); | |
2592 | l3->free_objects--; | |
2593 | /* move slabp to correct slabp list: */ | |
2594 | list_del(&slabp->list); | |
2595 | ||
2596 | if (slabp->free == BUFCTL_END) { | |
2597 | list_add(&slabp->list, &l3->slabs_full); | |
2598 | } else { | |
2599 | list_add(&slabp->list, &l3->slabs_partial); | |
2600 | } | |
2601 | ||
2602 | spin_unlock(&l3->list_lock); | |
2603 | goto done; | |
2604 | ||
2605 | must_grow: | |
2606 | spin_unlock(&l3->list_lock); | |
2607 | x = cache_grow(cachep, flags, nodeid); | |
1da177e4 | 2608 | |
e498be7d CL |
2609 | if (!x) |
2610 | return NULL; | |
2611 | ||
2612 | goto retry; | |
2613 | done: | |
2614 | return obj; | |
2615 | } | |
2616 | #endif | |
2617 | ||
2618 | /* | |
2619 | * Caller needs to acquire correct kmem_list's list_lock | |
2620 | */ | |
ff69416e | 2621 | static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, int node) |
1da177e4 LT |
2622 | { |
2623 | int i; | |
e498be7d | 2624 | struct kmem_list3 *l3; |
1da177e4 LT |
2625 | |
2626 | for (i = 0; i < nr_objects; i++) { | |
2627 | void *objp = objpp[i]; | |
2628 | struct slab *slabp; | |
2629 | unsigned int objnr; | |
2630 | ||
2631 | slabp = GET_PAGE_SLAB(virt_to_page(objp)); | |
ff69416e | 2632 | l3 = cachep->nodelists[node]; |
1da177e4 LT |
2633 | list_del(&slabp->list); |
2634 | objnr = (objp - slabp->s_mem) / cachep->objsize; | |
ff69416e | 2635 | check_spinlock_acquired_node(cachep, node); |
1da177e4 | 2636 | check_slabp(cachep, slabp); |
e498be7d | 2637 | |
1da177e4 | 2638 | #if DEBUG |
09ad4bbc CL |
2639 | /* Verify that the slab belongs to the intended node */ |
2640 | WARN_ON(slabp->nodeid != node); | |
2641 | ||
1da177e4 | 2642 | if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) { |
e498be7d CL |
2643 | printk(KERN_ERR "slab: double free detected in cache " |
2644 | "'%s', objp %p\n", cachep->name, objp); | |
1da177e4 LT |
2645 | BUG(); |
2646 | } | |
2647 | #endif | |
2648 | slab_bufctl(slabp)[objnr] = slabp->free; | |
2649 | slabp->free = objnr; | |
2650 | STATS_DEC_ACTIVE(cachep); | |
2651 | slabp->inuse--; | |
e498be7d | 2652 | l3->free_objects++; |
1da177e4 LT |
2653 | check_slabp(cachep, slabp); |
2654 | ||
2655 | /* fixup slab chains */ | |
2656 | if (slabp->inuse == 0) { | |
e498be7d CL |
2657 | if (l3->free_objects > l3->free_limit) { |
2658 | l3->free_objects -= cachep->num; | |
1da177e4 LT |
2659 | slab_destroy(cachep, slabp); |
2660 | } else { | |
e498be7d | 2661 | list_add(&slabp->list, &l3->slabs_free); |
1da177e4 LT |
2662 | } |
2663 | } else { | |
2664 | /* Unconditionally move a slab to the end of the | |
2665 | * partial list on free - maximum time for the | |
2666 | * other objects to be freed, too. | |
2667 | */ | |
e498be7d | 2668 | list_add_tail(&slabp->list, &l3->slabs_partial); |
1da177e4 LT |
2669 | } |
2670 | } | |
2671 | } | |
2672 | ||
2673 | static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac) | |
2674 | { | |
2675 | int batchcount; | |
e498be7d | 2676 | struct kmem_list3 *l3; |
ff69416e | 2677 | int node = numa_node_id(); |
1da177e4 LT |
2678 | |
2679 | batchcount = ac->batchcount; | |
2680 | #if DEBUG | |
2681 | BUG_ON(!batchcount || batchcount > ac->avail); | |
2682 | #endif | |
2683 | check_irq_off(); | |
ff69416e | 2684 | l3 = cachep->nodelists[node]; |
e498be7d CL |
2685 | spin_lock(&l3->list_lock); |
2686 | if (l3->shared) { | |
2687 | struct array_cache *shared_array = l3->shared; | |
1da177e4 LT |
2688 | int max = shared_array->limit-shared_array->avail; |
2689 | if (max) { | |
2690 | if (batchcount > max) | |
2691 | batchcount = max; | |
e498be7d CL |
2692 | memcpy(&(shared_array->entry[shared_array->avail]), |
2693 | ac->entry, | |
1da177e4 LT |
2694 | sizeof(void*)*batchcount); |
2695 | shared_array->avail += batchcount; | |
2696 | goto free_done; | |
2697 | } | |
2698 | } | |
2699 | ||
ff69416e | 2700 | free_block(cachep, ac->entry, batchcount, node); |
1da177e4 LT |
2701 | free_done: |
2702 | #if STATS | |
2703 | { | |
2704 | int i = 0; | |
2705 | struct list_head *p; | |
2706 | ||
e498be7d CL |
2707 | p = l3->slabs_free.next; |
2708 | while (p != &(l3->slabs_free)) { | |
1da177e4 LT |
2709 | struct slab *slabp; |
2710 | ||
2711 | slabp = list_entry(p, struct slab, list); | |
2712 | BUG_ON(slabp->inuse); | |
2713 | ||
2714 | i++; | |
2715 | p = p->next; | |
2716 | } | |
2717 | STATS_SET_FREEABLE(cachep, i); | |
2718 | } | |
2719 | #endif | |
e498be7d | 2720 | spin_unlock(&l3->list_lock); |
1da177e4 | 2721 | ac->avail -= batchcount; |
e498be7d | 2722 | memmove(ac->entry, &(ac->entry[batchcount]), |
1da177e4 LT |
2723 | sizeof(void*)*ac->avail); |
2724 | } | |
2725 | ||
e498be7d | 2726 | |
1da177e4 LT |
2727 | /* |
2728 | * __cache_free | |
2729 | * Release an obj back to its cache. If the obj has a constructed | |
2730 | * state, it must be in this state _before_ it is released. | |
2731 | * | |
2732 | * Called with disabled ints. | |
2733 | */ | |
2734 | static inline void __cache_free(kmem_cache_t *cachep, void *objp) | |
2735 | { | |
2736 | struct array_cache *ac = ac_data(cachep); | |
2737 | ||
2738 | check_irq_off(); | |
2739 | objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); | |
2740 | ||
e498be7d CL |
2741 | /* Make sure we are not freeing a object from another |
2742 | * node to the array cache on this cpu. | |
2743 | */ | |
2744 | #ifdef CONFIG_NUMA | |
2745 | { | |
2746 | struct slab *slabp; | |
2747 | slabp = GET_PAGE_SLAB(virt_to_page(objp)); | |
2748 | if (unlikely(slabp->nodeid != numa_node_id())) { | |
2749 | struct array_cache *alien = NULL; | |
2750 | int nodeid = slabp->nodeid; | |
2751 | struct kmem_list3 *l3 = cachep->nodelists[numa_node_id()]; | |
2752 | ||
2753 | STATS_INC_NODEFREES(cachep); | |
2754 | if (l3->alien && l3->alien[nodeid]) { | |
2755 | alien = l3->alien[nodeid]; | |
2756 | spin_lock(&alien->lock); | |
2757 | if (unlikely(alien->avail == alien->limit)) | |
2758 | __drain_alien_cache(cachep, | |
2759 | alien, nodeid); | |
2760 | alien->entry[alien->avail++] = objp; | |
2761 | spin_unlock(&alien->lock); | |
2762 | } else { | |
2763 | spin_lock(&(cachep->nodelists[nodeid])-> | |
2764 | list_lock); | |
ff69416e | 2765 | free_block(cachep, &objp, 1, nodeid); |
e498be7d CL |
2766 | spin_unlock(&(cachep->nodelists[nodeid])-> |
2767 | list_lock); | |
2768 | } | |
2769 | return; | |
2770 | } | |
2771 | } | |
2772 | #endif | |
1da177e4 LT |
2773 | if (likely(ac->avail < ac->limit)) { |
2774 | STATS_INC_FREEHIT(cachep); | |
e498be7d | 2775 | ac->entry[ac->avail++] = objp; |
1da177e4 LT |
2776 | return; |
2777 | } else { | |
2778 | STATS_INC_FREEMISS(cachep); | |
2779 | cache_flusharray(cachep, ac); | |
e498be7d | 2780 | ac->entry[ac->avail++] = objp; |
1da177e4 LT |
2781 | } |
2782 | } | |
2783 | ||
2784 | /** | |
2785 | * kmem_cache_alloc - Allocate an object | |
2786 | * @cachep: The cache to allocate from. | |
2787 | * @flags: See kmalloc(). | |
2788 | * | |
2789 | * Allocate an object from this cache. The flags are only relevant | |
2790 | * if the cache has no available objects. | |
2791 | */ | |
dd0fc66f | 2792 | void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags) |
1da177e4 LT |
2793 | { |
2794 | return __cache_alloc(cachep, flags); | |
2795 | } | |
2796 | EXPORT_SYMBOL(kmem_cache_alloc); | |
2797 | ||
2798 | /** | |
2799 | * kmem_ptr_validate - check if an untrusted pointer might | |
2800 | * be a slab entry. | |
2801 | * @cachep: the cache we're checking against | |
2802 | * @ptr: pointer to validate | |
2803 | * | |
2804 | * This verifies that the untrusted pointer looks sane: | |
2805 | * it is _not_ a guarantee that the pointer is actually | |
2806 | * part of the slab cache in question, but it at least | |
2807 | * validates that the pointer can be dereferenced and | |
2808 | * looks half-way sane. | |
2809 | * | |
2810 | * Currently only used for dentry validation. | |
2811 | */ | |
2812 | int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr) | |
2813 | { | |
2814 | unsigned long addr = (unsigned long) ptr; | |
2815 | unsigned long min_addr = PAGE_OFFSET; | |
2816 | unsigned long align_mask = BYTES_PER_WORD-1; | |
2817 | unsigned long size = cachep->objsize; | |
2818 | struct page *page; | |
2819 | ||
2820 | if (unlikely(addr < min_addr)) | |
2821 | goto out; | |
2822 | if (unlikely(addr > (unsigned long)high_memory - size)) | |
2823 | goto out; | |
2824 | if (unlikely(addr & align_mask)) | |
2825 | goto out; | |
2826 | if (unlikely(!kern_addr_valid(addr))) | |
2827 | goto out; | |
2828 | if (unlikely(!kern_addr_valid(addr + size - 1))) | |
2829 | goto out; | |
2830 | page = virt_to_page(ptr); | |
2831 | if (unlikely(!PageSlab(page))) | |
2832 | goto out; | |
2833 | if (unlikely(GET_PAGE_CACHE(page) != cachep)) | |
2834 | goto out; | |
2835 | return 1; | |
2836 | out: | |
2837 | return 0; | |
2838 | } | |
2839 | ||
2840 | #ifdef CONFIG_NUMA | |
2841 | /** | |
2842 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
2843 | * @cachep: The cache to allocate from. | |
2844 | * @flags: See kmalloc(). | |
2845 | * @nodeid: node number of the target node. | |
2846 | * | |
2847 | * Identical to kmem_cache_alloc, except that this function is slow | |
2848 | * and can sleep. And it will allocate memory on the given node, which | |
2849 | * can improve the performance for cpu bound structures. | |
e498be7d CL |
2850 | * New and improved: it will now make sure that the object gets |
2851 | * put on the correct node list so that there is no false sharing. | |
1da177e4 | 2852 | */ |
dd0fc66f | 2853 | void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid) |
1da177e4 | 2854 | { |
e498be7d CL |
2855 | unsigned long save_flags; |
2856 | void *ptr; | |
1da177e4 | 2857 | |
ff69416e | 2858 | if (nodeid == -1) |
e498be7d | 2859 | return __cache_alloc(cachep, flags); |
1da177e4 | 2860 | |
e498be7d CL |
2861 | if (unlikely(!cachep->nodelists[nodeid])) { |
2862 | /* Fall back to __cache_alloc if we run into trouble */ | |
2863 | printk(KERN_WARNING "slab: not allocating in inactive node %d for cache %s\n", nodeid, cachep->name); | |
2864 | return __cache_alloc(cachep,flags); | |
1da177e4 | 2865 | } |
1da177e4 | 2866 | |
e498be7d CL |
2867 | cache_alloc_debugcheck_before(cachep, flags); |
2868 | local_irq_save(save_flags); | |
5c382300 AK |
2869 | if (nodeid == numa_node_id()) |
2870 | ptr = ____cache_alloc(cachep, flags); | |
2871 | else | |
2872 | ptr = __cache_alloc_node(cachep, flags, nodeid); | |
e498be7d CL |
2873 | local_irq_restore(save_flags); |
2874 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, __builtin_return_address(0)); | |
1da177e4 | 2875 | |
e498be7d | 2876 | return ptr; |
1da177e4 LT |
2877 | } |
2878 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
2879 | ||
dd0fc66f | 2880 | void *kmalloc_node(size_t size, gfp_t flags, int node) |
97e2bde4 MS |
2881 | { |
2882 | kmem_cache_t *cachep; | |
2883 | ||
2884 | cachep = kmem_find_general_cachep(size, flags); | |
2885 | if (unlikely(cachep == NULL)) | |
2886 | return NULL; | |
2887 | return kmem_cache_alloc_node(cachep, flags, node); | |
2888 | } | |
2889 | EXPORT_SYMBOL(kmalloc_node); | |
1da177e4 LT |
2890 | #endif |
2891 | ||
2892 | /** | |
2893 | * kmalloc - allocate memory | |
2894 | * @size: how many bytes of memory are required. | |
2895 | * @flags: the type of memory to allocate. | |
2896 | * | |
2897 | * kmalloc is the normal method of allocating memory | |
2898 | * in the kernel. | |
2899 | * | |
2900 | * The @flags argument may be one of: | |
2901 | * | |
2902 | * %GFP_USER - Allocate memory on behalf of user. May sleep. | |
2903 | * | |
2904 | * %GFP_KERNEL - Allocate normal kernel ram. May sleep. | |
2905 | * | |
2906 | * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers. | |
2907 | * | |
2908 | * Additionally, the %GFP_DMA flag may be set to indicate the memory | |
2909 | * must be suitable for DMA. This can mean different things on different | |
2910 | * platforms. For example, on i386, it means that the memory must come | |
2911 | * from the first 16MB. | |
2912 | */ | |
dd0fc66f | 2913 | void *__kmalloc(size_t size, gfp_t flags) |
1da177e4 LT |
2914 | { |
2915 | kmem_cache_t *cachep; | |
2916 | ||
97e2bde4 MS |
2917 | /* If you want to save a few bytes .text space: replace |
2918 | * __ with kmem_. | |
2919 | * Then kmalloc uses the uninlined functions instead of the inline | |
2920 | * functions. | |
2921 | */ | |
2922 | cachep = __find_general_cachep(size, flags); | |
dbdb9045 AM |
2923 | if (unlikely(cachep == NULL)) |
2924 | return NULL; | |
1da177e4 LT |
2925 | return __cache_alloc(cachep, flags); |
2926 | } | |
2927 | EXPORT_SYMBOL(__kmalloc); | |
2928 | ||
2929 | #ifdef CONFIG_SMP | |
2930 | /** | |
2931 | * __alloc_percpu - allocate one copy of the object for every present | |
2932 | * cpu in the system, zeroing them. | |
2933 | * Objects should be dereferenced using the per_cpu_ptr macro only. | |
2934 | * | |
2935 | * @size: how many bytes of memory are required. | |
2936 | * @align: the alignment, which can't be greater than SMP_CACHE_BYTES. | |
2937 | */ | |
2938 | void *__alloc_percpu(size_t size, size_t align) | |
2939 | { | |
2940 | int i; | |
2941 | struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL); | |
2942 | ||
2943 | if (!pdata) | |
2944 | return NULL; | |
2945 | ||
e498be7d CL |
2946 | /* |
2947 | * Cannot use for_each_online_cpu since a cpu may come online | |
2948 | * and we have no way of figuring out how to fix the array | |
2949 | * that we have allocated then.... | |
2950 | */ | |
2951 | for_each_cpu(i) { | |
2952 | int node = cpu_to_node(i); | |
2953 | ||
2954 | if (node_online(node)) | |
2955 | pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node); | |
2956 | else | |
2957 | pdata->ptrs[i] = kmalloc(size, GFP_KERNEL); | |
1da177e4 LT |
2958 | |
2959 | if (!pdata->ptrs[i]) | |
2960 | goto unwind_oom; | |
2961 | memset(pdata->ptrs[i], 0, size); | |
2962 | } | |
2963 | ||
2964 | /* Catch derefs w/o wrappers */ | |
2965 | return (void *) (~(unsigned long) pdata); | |
2966 | ||
2967 | unwind_oom: | |
2968 | while (--i >= 0) { | |
2969 | if (!cpu_possible(i)) | |
2970 | continue; | |
2971 | kfree(pdata->ptrs[i]); | |
2972 | } | |
2973 | kfree(pdata); | |
2974 | return NULL; | |
2975 | } | |
2976 | EXPORT_SYMBOL(__alloc_percpu); | |
2977 | #endif | |
2978 | ||
2979 | /** | |
2980 | * kmem_cache_free - Deallocate an object | |
2981 | * @cachep: The cache the allocation was from. | |
2982 | * @objp: The previously allocated object. | |
2983 | * | |
2984 | * Free an object which was previously allocated from this | |
2985 | * cache. | |
2986 | */ | |
2987 | void kmem_cache_free(kmem_cache_t *cachep, void *objp) | |
2988 | { | |
2989 | unsigned long flags; | |
2990 | ||
2991 | local_irq_save(flags); | |
2992 | __cache_free(cachep, objp); | |
2993 | local_irq_restore(flags); | |
2994 | } | |
2995 | EXPORT_SYMBOL(kmem_cache_free); | |
2996 | ||
2997 | /** | |
dd392710 PE |
2998 | * kzalloc - allocate memory. The memory is set to zero. |
2999 | * @size: how many bytes of memory are required. | |
1da177e4 LT |
3000 | * @flags: the type of memory to allocate. |
3001 | */ | |
dd0fc66f | 3002 | void *kzalloc(size_t size, gfp_t flags) |
1da177e4 | 3003 | { |
dd392710 | 3004 | void *ret = kmalloc(size, flags); |
1da177e4 | 3005 | if (ret) |
dd392710 | 3006 | memset(ret, 0, size); |
1da177e4 LT |
3007 | return ret; |
3008 | } | |
dd392710 | 3009 | EXPORT_SYMBOL(kzalloc); |
1da177e4 LT |
3010 | |
3011 | /** | |
3012 | * kfree - free previously allocated memory | |
3013 | * @objp: pointer returned by kmalloc. | |
3014 | * | |
80e93eff PE |
3015 | * If @objp is NULL, no operation is performed. |
3016 | * | |
1da177e4 LT |
3017 | * Don't free memory not originally allocated by kmalloc() |
3018 | * or you will run into trouble. | |
3019 | */ | |
3020 | void kfree(const void *objp) | |
3021 | { | |
3022 | kmem_cache_t *c; | |
3023 | unsigned long flags; | |
3024 | ||
3025 | if (unlikely(!objp)) | |
3026 | return; | |
3027 | local_irq_save(flags); | |
3028 | kfree_debugcheck(objp); | |
3029 | c = GET_PAGE_CACHE(virt_to_page(objp)); | |
3030 | __cache_free(c, (void*)objp); | |
3031 | local_irq_restore(flags); | |
3032 | } | |
3033 | EXPORT_SYMBOL(kfree); | |
3034 | ||
3035 | #ifdef CONFIG_SMP | |
3036 | /** | |
3037 | * free_percpu - free previously allocated percpu memory | |
3038 | * @objp: pointer returned by alloc_percpu. | |
3039 | * | |
3040 | * Don't free memory not originally allocated by alloc_percpu() | |
3041 | * The complemented objp is to check for that. | |
3042 | */ | |
3043 | void | |
3044 | free_percpu(const void *objp) | |
3045 | { | |
3046 | int i; | |
3047 | struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp); | |
3048 | ||
e498be7d CL |
3049 | /* |
3050 | * We allocate for all cpus so we cannot use for online cpu here. | |
3051 | */ | |
3052 | for_each_cpu(i) | |
1da177e4 | 3053 | kfree(p->ptrs[i]); |
1da177e4 LT |
3054 | kfree(p); |
3055 | } | |
3056 | EXPORT_SYMBOL(free_percpu); | |
3057 | #endif | |
3058 | ||
3059 | unsigned int kmem_cache_size(kmem_cache_t *cachep) | |
3060 | { | |
3061 | return obj_reallen(cachep); | |
3062 | } | |
3063 | EXPORT_SYMBOL(kmem_cache_size); | |
3064 | ||
1944972d ACM |
3065 | const char *kmem_cache_name(kmem_cache_t *cachep) |
3066 | { | |
3067 | return cachep->name; | |
3068 | } | |
3069 | EXPORT_SYMBOL_GPL(kmem_cache_name); | |
3070 | ||
e498be7d CL |
3071 | /* |
3072 | * This initializes kmem_list3 for all nodes. | |
3073 | */ | |
3074 | static int alloc_kmemlist(kmem_cache_t *cachep) | |
3075 | { | |
3076 | int node; | |
3077 | struct kmem_list3 *l3; | |
3078 | int err = 0; | |
3079 | ||
3080 | for_each_online_node(node) { | |
3081 | struct array_cache *nc = NULL, *new; | |
3082 | struct array_cache **new_alien = NULL; | |
3083 | #ifdef CONFIG_NUMA | |
3084 | if (!(new_alien = alloc_alien_cache(node, cachep->limit))) | |
3085 | goto fail; | |
3086 | #endif | |
3087 | if (!(new = alloc_arraycache(node, (cachep->shared* | |
3088 | cachep->batchcount), 0xbaadf00d))) | |
3089 | goto fail; | |
3090 | if ((l3 = cachep->nodelists[node])) { | |
3091 | ||
3092 | spin_lock_irq(&l3->list_lock); | |
3093 | ||
3094 | if ((nc = cachep->nodelists[node]->shared)) | |
3095 | free_block(cachep, nc->entry, | |
ff69416e | 3096 | nc->avail, node); |
e498be7d CL |
3097 | |
3098 | l3->shared = new; | |
3099 | if (!cachep->nodelists[node]->alien) { | |
3100 | l3->alien = new_alien; | |
3101 | new_alien = NULL; | |
3102 | } | |
3103 | l3->free_limit = (1 + nr_cpus_node(node))* | |
3104 | cachep->batchcount + cachep->num; | |
3105 | spin_unlock_irq(&l3->list_lock); | |
3106 | kfree(nc); | |
3107 | free_alien_cache(new_alien); | |
3108 | continue; | |
3109 | } | |
3110 | if (!(l3 = kmalloc_node(sizeof(struct kmem_list3), | |
3111 | GFP_KERNEL, node))) | |
3112 | goto fail; | |
3113 | ||
3114 | kmem_list3_init(l3); | |
3115 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
3116 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; | |
3117 | l3->shared = new; | |
3118 | l3->alien = new_alien; | |
3119 | l3->free_limit = (1 + nr_cpus_node(node))* | |
3120 | cachep->batchcount + cachep->num; | |
3121 | cachep->nodelists[node] = l3; | |
3122 | } | |
3123 | return err; | |
3124 | fail: | |
3125 | err = -ENOMEM; | |
3126 | return err; | |
3127 | } | |
3128 | ||
1da177e4 LT |
3129 | struct ccupdate_struct { |
3130 | kmem_cache_t *cachep; | |
3131 | struct array_cache *new[NR_CPUS]; | |
3132 | }; | |
3133 | ||
3134 | static void do_ccupdate_local(void *info) | |
3135 | { | |
3136 | struct ccupdate_struct *new = (struct ccupdate_struct *)info; | |
3137 | struct array_cache *old; | |
3138 | ||
3139 | check_irq_off(); | |
3140 | old = ac_data(new->cachep); | |
e498be7d | 3141 | |
1da177e4 LT |
3142 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; |
3143 | new->new[smp_processor_id()] = old; | |
3144 | } | |
3145 | ||
3146 | ||
3147 | static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount, | |
3148 | int shared) | |
3149 | { | |
3150 | struct ccupdate_struct new; | |
e498be7d | 3151 | int i, err; |
1da177e4 LT |
3152 | |
3153 | memset(&new.new,0,sizeof(new.new)); | |
e498be7d CL |
3154 | for_each_online_cpu(i) { |
3155 | new.new[i] = alloc_arraycache(cpu_to_node(i), limit, batchcount); | |
3156 | if (!new.new[i]) { | |
3157 | for (i--; i >= 0; i--) kfree(new.new[i]); | |
3158 | return -ENOMEM; | |
1da177e4 LT |
3159 | } |
3160 | } | |
3161 | new.cachep = cachep; | |
3162 | ||
3163 | smp_call_function_all_cpus(do_ccupdate_local, (void *)&new); | |
e498be7d | 3164 | |
1da177e4 LT |
3165 | check_irq_on(); |
3166 | spin_lock_irq(&cachep->spinlock); | |
3167 | cachep->batchcount = batchcount; | |
3168 | cachep->limit = limit; | |
e498be7d | 3169 | cachep->shared = shared; |
1da177e4 LT |
3170 | spin_unlock_irq(&cachep->spinlock); |
3171 | ||
e498be7d | 3172 | for_each_online_cpu(i) { |
1da177e4 LT |
3173 | struct array_cache *ccold = new.new[i]; |
3174 | if (!ccold) | |
3175 | continue; | |
e498be7d | 3176 | spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); |
ff69416e | 3177 | free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i)); |
e498be7d | 3178 | spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); |
1da177e4 LT |
3179 | kfree(ccold); |
3180 | } | |
1da177e4 | 3181 | |
e498be7d CL |
3182 | err = alloc_kmemlist(cachep); |
3183 | if (err) { | |
3184 | printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n", | |
3185 | cachep->name, -err); | |
3186 | BUG(); | |
1da177e4 | 3187 | } |
1da177e4 LT |
3188 | return 0; |
3189 | } | |
3190 | ||
3191 | ||
3192 | static void enable_cpucache(kmem_cache_t *cachep) | |
3193 | { | |
3194 | int err; | |
3195 | int limit, shared; | |
3196 | ||
3197 | /* The head array serves three purposes: | |
3198 | * - create a LIFO ordering, i.e. return objects that are cache-warm | |
3199 | * - reduce the number of spinlock operations. | |
3200 | * - reduce the number of linked list operations on the slab and | |
3201 | * bufctl chains: array operations are cheaper. | |
3202 | * The numbers are guessed, we should auto-tune as described by | |
3203 | * Bonwick. | |
3204 | */ | |
3205 | if (cachep->objsize > 131072) | |
3206 | limit = 1; | |
3207 | else if (cachep->objsize > PAGE_SIZE) | |
3208 | limit = 8; | |
3209 | else if (cachep->objsize > 1024) | |
3210 | limit = 24; | |
3211 | else if (cachep->objsize > 256) | |
3212 | limit = 54; | |
3213 | else | |
3214 | limit = 120; | |
3215 | ||
3216 | /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound | |
3217 | * allocation behaviour: Most allocs on one cpu, most free operations | |
3218 | * on another cpu. For these cases, an efficient object passing between | |
3219 | * cpus is necessary. This is provided by a shared array. The array | |
3220 | * replaces Bonwick's magazine layer. | |
3221 | * On uniprocessor, it's functionally equivalent (but less efficient) | |
3222 | * to a larger limit. Thus disabled by default. | |
3223 | */ | |
3224 | shared = 0; | |
3225 | #ifdef CONFIG_SMP | |
3226 | if (cachep->objsize <= PAGE_SIZE) | |
3227 | shared = 8; | |
3228 | #endif | |
3229 | ||
3230 | #if DEBUG | |
3231 | /* With debugging enabled, large batchcount lead to excessively | |
3232 | * long periods with disabled local interrupts. Limit the | |
3233 | * batchcount | |
3234 | */ | |
3235 | if (limit > 32) | |
3236 | limit = 32; | |
3237 | #endif | |
3238 | err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared); | |
3239 | if (err) | |
3240 | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | |
3241 | cachep->name, -err); | |
3242 | } | |
3243 | ||
3244 | static void drain_array_locked(kmem_cache_t *cachep, | |
e498be7d | 3245 | struct array_cache *ac, int force, int node) |
1da177e4 LT |
3246 | { |
3247 | int tofree; | |
3248 | ||
e498be7d | 3249 | check_spinlock_acquired_node(cachep, node); |
1da177e4 LT |
3250 | if (ac->touched && !force) { |
3251 | ac->touched = 0; | |
3252 | } else if (ac->avail) { | |
3253 | tofree = force ? ac->avail : (ac->limit+4)/5; | |
3254 | if (tofree > ac->avail) { | |
3255 | tofree = (ac->avail+1)/2; | |
3256 | } | |
ff69416e | 3257 | free_block(cachep, ac->entry, tofree, node); |
1da177e4 | 3258 | ac->avail -= tofree; |
e498be7d | 3259 | memmove(ac->entry, &(ac->entry[tofree]), |
1da177e4 LT |
3260 | sizeof(void*)*ac->avail); |
3261 | } | |
3262 | } | |
3263 | ||
3264 | /** | |
3265 | * cache_reap - Reclaim memory from caches. | |
1e5d5331 | 3266 | * @unused: unused parameter |
1da177e4 LT |
3267 | * |
3268 | * Called from workqueue/eventd every few seconds. | |
3269 | * Purpose: | |
3270 | * - clear the per-cpu caches for this CPU. | |
3271 | * - return freeable pages to the main free memory pool. | |
3272 | * | |
3273 | * If we cannot acquire the cache chain semaphore then just give up - we'll | |
3274 | * try again on the next iteration. | |
3275 | */ | |
3276 | static void cache_reap(void *unused) | |
3277 | { | |
3278 | struct list_head *walk; | |
e498be7d | 3279 | struct kmem_list3 *l3; |
1da177e4 LT |
3280 | |
3281 | if (down_trylock(&cache_chain_sem)) { | |
3282 | /* Give up. Setup the next iteration. */ | |
cd61ef62 | 3283 | schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC); |
1da177e4 LT |
3284 | return; |
3285 | } | |
3286 | ||
3287 | list_for_each(walk, &cache_chain) { | |
3288 | kmem_cache_t *searchp; | |
3289 | struct list_head* p; | |
3290 | int tofree; | |
3291 | struct slab *slabp; | |
3292 | ||
3293 | searchp = list_entry(walk, kmem_cache_t, next); | |
3294 | ||
3295 | if (searchp->flags & SLAB_NO_REAP) | |
3296 | goto next; | |
3297 | ||
3298 | check_irq_on(); | |
3299 | ||
e498be7d CL |
3300 | l3 = searchp->nodelists[numa_node_id()]; |
3301 | if (l3->alien) | |
3302 | drain_alien_cache(searchp, l3); | |
3303 | spin_lock_irq(&l3->list_lock); | |
1da177e4 | 3304 | |
e498be7d CL |
3305 | drain_array_locked(searchp, ac_data(searchp), 0, |
3306 | numa_node_id()); | |
1da177e4 | 3307 | |
e498be7d | 3308 | if (time_after(l3->next_reap, jiffies)) |
1da177e4 LT |
3309 | goto next_unlock; |
3310 | ||
e498be7d | 3311 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3; |
1da177e4 | 3312 | |
e498be7d CL |
3313 | if (l3->shared) |
3314 | drain_array_locked(searchp, l3->shared, 0, | |
3315 | numa_node_id()); | |
1da177e4 | 3316 | |
e498be7d CL |
3317 | if (l3->free_touched) { |
3318 | l3->free_touched = 0; | |
1da177e4 LT |
3319 | goto next_unlock; |
3320 | } | |
3321 | ||
e498be7d | 3322 | tofree = (l3->free_limit+5*searchp->num-1)/(5*searchp->num); |
1da177e4 | 3323 | do { |
e498be7d CL |
3324 | p = l3->slabs_free.next; |
3325 | if (p == &(l3->slabs_free)) | |
1da177e4 LT |
3326 | break; |
3327 | ||
3328 | slabp = list_entry(p, struct slab, list); | |
3329 | BUG_ON(slabp->inuse); | |
3330 | list_del(&slabp->list); | |
3331 | STATS_INC_REAPED(searchp); | |
3332 | ||
3333 | /* Safe to drop the lock. The slab is no longer | |
3334 | * linked to the cache. | |
3335 | * searchp cannot disappear, we hold | |
3336 | * cache_chain_lock | |
3337 | */ | |
e498be7d CL |
3338 | l3->free_objects -= searchp->num; |
3339 | spin_unlock_irq(&l3->list_lock); | |
1da177e4 | 3340 | slab_destroy(searchp, slabp); |
e498be7d | 3341 | spin_lock_irq(&l3->list_lock); |
1da177e4 LT |
3342 | } while(--tofree > 0); |
3343 | next_unlock: | |
e498be7d | 3344 | spin_unlock_irq(&l3->list_lock); |
1da177e4 LT |
3345 | next: |
3346 | cond_resched(); | |
3347 | } | |
3348 | check_irq_on(); | |
3349 | up(&cache_chain_sem); | |
4ae7c039 | 3350 | drain_remote_pages(); |
1da177e4 | 3351 | /* Setup the next iteration */ |
cd61ef62 | 3352 | schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC); |
1da177e4 LT |
3353 | } |
3354 | ||
3355 | #ifdef CONFIG_PROC_FS | |
3356 | ||
3357 | static void *s_start(struct seq_file *m, loff_t *pos) | |
3358 | { | |
3359 | loff_t n = *pos; | |
3360 | struct list_head *p; | |
3361 | ||
3362 | down(&cache_chain_sem); | |
3363 | if (!n) { | |
3364 | /* | |
3365 | * Output format version, so at least we can change it | |
3366 | * without _too_ many complaints. | |
3367 | */ | |
3368 | #if STATS | |
3369 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | |
3370 | #else | |
3371 | seq_puts(m, "slabinfo - version: 2.1\n"); | |
3372 | #endif | |
3373 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); | |
3374 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | |
3375 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
3376 | #if STATS | |
3377 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>" | |
e498be7d | 3378 | " <error> <maxfreeable> <nodeallocs> <remotefrees>"); |
1da177e4 LT |
3379 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
3380 | #endif | |
3381 | seq_putc(m, '\n'); | |
3382 | } | |
3383 | p = cache_chain.next; | |
3384 | while (n--) { | |
3385 | p = p->next; | |
3386 | if (p == &cache_chain) | |
3387 | return NULL; | |
3388 | } | |
3389 | return list_entry(p, kmem_cache_t, next); | |
3390 | } | |
3391 | ||
3392 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
3393 | { | |
3394 | kmem_cache_t *cachep = p; | |
3395 | ++*pos; | |
3396 | return cachep->next.next == &cache_chain ? NULL | |
3397 | : list_entry(cachep->next.next, kmem_cache_t, next); | |
3398 | } | |
3399 | ||
3400 | static void s_stop(struct seq_file *m, void *p) | |
3401 | { | |
3402 | up(&cache_chain_sem); | |
3403 | } | |
3404 | ||
3405 | static int s_show(struct seq_file *m, void *p) | |
3406 | { | |
3407 | kmem_cache_t *cachep = p; | |
3408 | struct list_head *q; | |
3409 | struct slab *slabp; | |
3410 | unsigned long active_objs; | |
3411 | unsigned long num_objs; | |
3412 | unsigned long active_slabs = 0; | |
e498be7d CL |
3413 | unsigned long num_slabs, free_objects = 0, shared_avail = 0; |
3414 | const char *name; | |
1da177e4 | 3415 | char *error = NULL; |
e498be7d CL |
3416 | int node; |
3417 | struct kmem_list3 *l3; | |
1da177e4 LT |
3418 | |
3419 | check_irq_on(); | |
3420 | spin_lock_irq(&cachep->spinlock); | |
3421 | active_objs = 0; | |
3422 | num_slabs = 0; | |
e498be7d CL |
3423 | for_each_online_node(node) { |
3424 | l3 = cachep->nodelists[node]; | |
3425 | if (!l3) | |
3426 | continue; | |
3427 | ||
3428 | spin_lock(&l3->list_lock); | |
3429 | ||
3430 | list_for_each(q,&l3->slabs_full) { | |
3431 | slabp = list_entry(q, struct slab, list); | |
3432 | if (slabp->inuse != cachep->num && !error) | |
3433 | error = "slabs_full accounting error"; | |
3434 | active_objs += cachep->num; | |
3435 | active_slabs++; | |
3436 | } | |
3437 | list_for_each(q,&l3->slabs_partial) { | |
3438 | slabp = list_entry(q, struct slab, list); | |
3439 | if (slabp->inuse == cachep->num && !error) | |
3440 | error = "slabs_partial inuse accounting error"; | |
3441 | if (!slabp->inuse && !error) | |
3442 | error = "slabs_partial/inuse accounting error"; | |
3443 | active_objs += slabp->inuse; | |
3444 | active_slabs++; | |
3445 | } | |
3446 | list_for_each(q,&l3->slabs_free) { | |
3447 | slabp = list_entry(q, struct slab, list); | |
3448 | if (slabp->inuse && !error) | |
3449 | error = "slabs_free/inuse accounting error"; | |
3450 | num_slabs++; | |
3451 | } | |
3452 | free_objects += l3->free_objects; | |
3453 | shared_avail += l3->shared->avail; | |
3454 | ||
3455 | spin_unlock(&l3->list_lock); | |
1da177e4 LT |
3456 | } |
3457 | num_slabs+=active_slabs; | |
3458 | num_objs = num_slabs*cachep->num; | |
e498be7d | 3459 | if (num_objs - active_objs != free_objects && !error) |
1da177e4 LT |
3460 | error = "free_objects accounting error"; |
3461 | ||
3462 | name = cachep->name; | |
3463 | if (error) | |
3464 | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | |
3465 | ||
3466 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | |
3467 | name, active_objs, num_objs, cachep->objsize, | |
3468 | cachep->num, (1<<cachep->gfporder)); | |
3469 | seq_printf(m, " : tunables %4u %4u %4u", | |
3470 | cachep->limit, cachep->batchcount, | |
e498be7d CL |
3471 | cachep->shared); |
3472 | seq_printf(m, " : slabdata %6lu %6lu %6lu", | |
3473 | active_slabs, num_slabs, shared_avail); | |
1da177e4 LT |
3474 | #if STATS |
3475 | { /* list3 stats */ | |
3476 | unsigned long high = cachep->high_mark; | |
3477 | unsigned long allocs = cachep->num_allocations; | |
3478 | unsigned long grown = cachep->grown; | |
3479 | unsigned long reaped = cachep->reaped; | |
3480 | unsigned long errors = cachep->errors; | |
3481 | unsigned long max_freeable = cachep->max_freeable; | |
1da177e4 | 3482 | unsigned long node_allocs = cachep->node_allocs; |
e498be7d | 3483 | unsigned long node_frees = cachep->node_frees; |
1da177e4 | 3484 | |
e498be7d CL |
3485 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ |
3486 | %4lu %4lu %4lu %4lu", | |
3487 | allocs, high, grown, reaped, errors, | |
3488 | max_freeable, node_allocs, node_frees); | |
1da177e4 LT |
3489 | } |
3490 | /* cpu stats */ | |
3491 | { | |
3492 | unsigned long allochit = atomic_read(&cachep->allochit); | |
3493 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | |
3494 | unsigned long freehit = atomic_read(&cachep->freehit); | |
3495 | unsigned long freemiss = atomic_read(&cachep->freemiss); | |
3496 | ||
3497 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | |
3498 | allochit, allocmiss, freehit, freemiss); | |
3499 | } | |
3500 | #endif | |
3501 | seq_putc(m, '\n'); | |
3502 | spin_unlock_irq(&cachep->spinlock); | |
3503 | return 0; | |
3504 | } | |
3505 | ||
3506 | /* | |
3507 | * slabinfo_op - iterator that generates /proc/slabinfo | |
3508 | * | |
3509 | * Output layout: | |
3510 | * cache-name | |
3511 | * num-active-objs | |
3512 | * total-objs | |
3513 | * object size | |
3514 | * num-active-slabs | |
3515 | * total-slabs | |
3516 | * num-pages-per-slab | |
3517 | * + further values on SMP and with statistics enabled | |
3518 | */ | |
3519 | ||
3520 | struct seq_operations slabinfo_op = { | |
3521 | .start = s_start, | |
3522 | .next = s_next, | |
3523 | .stop = s_stop, | |
3524 | .show = s_show, | |
3525 | }; | |
3526 | ||
3527 | #define MAX_SLABINFO_WRITE 128 | |
3528 | /** | |
3529 | * slabinfo_write - Tuning for the slab allocator | |
3530 | * @file: unused | |
3531 | * @buffer: user buffer | |
3532 | * @count: data length | |
3533 | * @ppos: unused | |
3534 | */ | |
3535 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, | |
3536 | size_t count, loff_t *ppos) | |
3537 | { | |
3538 | char kbuf[MAX_SLABINFO_WRITE+1], *tmp; | |
3539 | int limit, batchcount, shared, res; | |
3540 | struct list_head *p; | |
3541 | ||
3542 | if (count > MAX_SLABINFO_WRITE) | |
3543 | return -EINVAL; | |
3544 | if (copy_from_user(&kbuf, buffer, count)) | |
3545 | return -EFAULT; | |
3546 | kbuf[MAX_SLABINFO_WRITE] = '\0'; | |
3547 | ||
3548 | tmp = strchr(kbuf, ' '); | |
3549 | if (!tmp) | |
3550 | return -EINVAL; | |
3551 | *tmp = '\0'; | |
3552 | tmp++; | |
3553 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | |
3554 | return -EINVAL; | |
3555 | ||
3556 | /* Find the cache in the chain of caches. */ | |
3557 | down(&cache_chain_sem); | |
3558 | res = -EINVAL; | |
3559 | list_for_each(p,&cache_chain) { | |
3560 | kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next); | |
3561 | ||
3562 | if (!strcmp(cachep->name, kbuf)) { | |
3563 | if (limit < 1 || | |
3564 | batchcount < 1 || | |
3565 | batchcount > limit || | |
3566 | shared < 0) { | |
e498be7d | 3567 | res = 0; |
1da177e4 | 3568 | } else { |
e498be7d CL |
3569 | res = do_tune_cpucache(cachep, limit, |
3570 | batchcount, shared); | |
1da177e4 LT |
3571 | } |
3572 | break; | |
3573 | } | |
3574 | } | |
3575 | up(&cache_chain_sem); | |
3576 | if (res >= 0) | |
3577 | res = count; | |
3578 | return res; | |
3579 | } | |
3580 | #endif | |
3581 | ||
00e145b6 MS |
3582 | /** |
3583 | * ksize - get the actual amount of memory allocated for a given object | |
3584 | * @objp: Pointer to the object | |
3585 | * | |
3586 | * kmalloc may internally round up allocations and return more memory | |
3587 | * than requested. ksize() can be used to determine the actual amount of | |
3588 | * memory allocated. The caller may use this additional memory, even though | |
3589 | * a smaller amount of memory was initially specified with the kmalloc call. | |
3590 | * The caller must guarantee that objp points to a valid object previously | |
3591 | * allocated with either kmalloc() or kmem_cache_alloc(). The object | |
3592 | * must not be freed during the duration of the call. | |
3593 | */ | |
1da177e4 LT |
3594 | unsigned int ksize(const void *objp) |
3595 | { | |
00e145b6 MS |
3596 | if (unlikely(objp == NULL)) |
3597 | return 0; | |
1da177e4 | 3598 | |
00e145b6 | 3599 | return obj_reallen(GET_PAGE_CACHE(virt_to_page(objp))); |
1da177e4 | 3600 | } |
543537bd PM |
3601 | |
3602 | ||
3603 | /* | |
3604 | * kstrdup - allocate space for and copy an existing string | |
3605 | * | |
3606 | * @s: the string to duplicate | |
3607 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
3608 | */ | |
dd0fc66f | 3609 | char *kstrdup(const char *s, gfp_t gfp) |
543537bd PM |
3610 | { |
3611 | size_t len; | |
3612 | char *buf; | |
3613 | ||
3614 | if (!s) | |
3615 | return NULL; | |
3616 | ||
3617 | len = strlen(s) + 1; | |
3618 | buf = kmalloc(len, gfp); | |
3619 | if (buf) | |
3620 | memcpy(buf, s, len); | |
3621 | return buf; | |
3622 | } | |
3623 | EXPORT_SYMBOL(kstrdup); |