]> Git Repo - linux.git/blame - mm/slab_common.c
Merge tag 'spi-v6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[linux.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <[email protected]>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3 14#include <linux/compiler.h>
d3fb45f3 15#include <linux/kfence.h>
039363f3 16#include <linux/module.h>
20cea968
CL
17#include <linux/cpu.h>
18#include <linux/uaccess.h>
b7454ad3 19#include <linux/seq_file.h>
963e84b0 20#include <linux/dma-mapping.h>
b035f5a6 21#include <linux/swiotlb.h>
b7454ad3 22#include <linux/proc_fs.h>
fcf8a1e4 23#include <linux/debugfs.h>
6011be59 24#include <linux/kmemleak.h>
e86f8b09 25#include <linux/kasan.h>
039363f3
CL
26#include <asm/cacheflush.h>
27#include <asm/tlbflush.h>
28#include <asm/page.h>
2633d7a0 29#include <linux/memcontrol.h>
5cf909c5 30#include <linux/stackdepot.h>
928cec9c 31
44405099 32#include "internal.h"
97d06609
CL
33#include "slab.h"
34
b347aa7b
VA
35#define CREATE_TRACE_POINTS
36#include <trace/events/kmem.h>
37
97d06609 38enum slab_state slab_state;
18004c5d
CL
39LIST_HEAD(slab_caches);
40DEFINE_MUTEX(slab_mutex);
9b030cb8 41struct kmem_cache *kmem_cache;
97d06609 42
657dc2f9
TH
43static LIST_HEAD(slab_caches_to_rcu_destroy);
44static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 slab_caches_to_rcu_destroy_workfn);
47
423c929c
JK
48/*
49 * Set of flags that will prevent slab merging
50 */
51#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
96d8dbb6 53 SLAB_FAILSLAB | SLAB_NO_MERGE)
423c929c 54
230e9fc2 55#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
6d6ea1e9 56 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
423c929c
JK
57
58/*
59 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 60 */
7660a6fd 61static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
62
63static int __init setup_slab_nomerge(char *str)
64{
7660a6fd 65 slab_nomerge = true;
423c929c
JK
66 return 1;
67}
68
82edd9d5
RA
69static int __init setup_slab_merge(char *str)
70{
71 slab_nomerge = false;
72 return 1;
73}
74
423c929c 75__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
82edd9d5 76__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
423c929c
JK
77
78__setup("slab_nomerge", setup_slab_nomerge);
82edd9d5 79__setup("slab_merge", setup_slab_merge);
423c929c 80
07f361b2
JK
81/*
82 * Determine the size of a slab object
83 */
84unsigned int kmem_cache_size(struct kmem_cache *s)
85{
86 return s->object_size;
87}
88EXPORT_SYMBOL(kmem_cache_size);
89
77be4b13 90#ifdef CONFIG_DEBUG_VM
f4957d5b 91static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 92{
74c1d3e0 93 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
77be4b13
SK
94 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
95 return -EINVAL;
039363f3 96 }
b920536a 97
20cea968 98 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
99 return 0;
100}
101#else
f4957d5b 102static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
103{
104 return 0;
105}
20cea968
CL
106#endif
107
692ae74a
BL
108/*
109 * Figure out what the alignment of the objects will be given a set of
110 * flags, a user specified alignment and the size of the objects.
111 */
f4957d5b
AD
112static unsigned int calculate_alignment(slab_flags_t flags,
113 unsigned int align, unsigned int size)
692ae74a
BL
114{
115 /*
116 * If the user wants hardware cache aligned objects then follow that
117 * suggestion if the object is sufficiently large.
118 *
119 * The hardware cache alignment cannot override the specified
120 * alignment though. If that is greater then use it.
121 */
122 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 123 unsigned int ralign;
692ae74a
BL
124
125 ralign = cache_line_size();
126 while (size <= ralign / 2)
127 ralign /= 2;
128 align = max(align, ralign);
129 }
130
d949a815 131 align = max(align, arch_slab_minalign());
692ae74a
BL
132
133 return ALIGN(align, sizeof(void *));
134}
135
423c929c
JK
136/*
137 * Find a mergeable slab cache
138 */
139int slab_unmergeable(struct kmem_cache *s)
140{
141 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
142 return 1;
143
423c929c
JK
144 if (s->ctor)
145 return 1;
146
346907ce 147#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
148 if (s->usersize)
149 return 1;
346907ce 150#endif
8eb8284b 151
423c929c
JK
152 /*
153 * We may have set a slab to be unmergeable during bootstrap.
154 */
155 if (s->refcount < 0)
156 return 1;
157
158 return 0;
159}
160
f4957d5b 161struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 162 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
163{
164 struct kmem_cache *s;
165
c6e28895 166 if (slab_nomerge)
423c929c
JK
167 return NULL;
168
169 if (ctor)
170 return NULL;
171
172 size = ALIGN(size, sizeof(void *));
173 align = calculate_alignment(flags, align, size);
174 size = ALIGN(size, align);
303cd693 175 flags = kmem_cache_flags(flags, name);
423c929c 176
c6e28895
GM
177 if (flags & SLAB_NEVER_MERGE)
178 return NULL;
179
c7094406 180 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
181 if (slab_unmergeable(s))
182 continue;
183
184 if (size > s->size)
185 continue;
186
187 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
188 continue;
189 /*
190 * Check if alignment is compatible.
191 * Courtesy of Adrian Drzewiecki
192 */
193 if ((s->size & ~(align - 1)) != s->size)
194 continue;
195
196 if (s->size - size >= sizeof(void *))
197 continue;
198
199 return s;
200 }
201 return NULL;
202}
203
c9a77a79 204static struct kmem_cache *create_cache(const char *name,
d345bd2e
CB
205 unsigned int object_size, unsigned int freeptr_offset,
206 unsigned int align, slab_flags_t flags,
207 unsigned int useroffset, unsigned int usersize,
208 void (*ctor)(void *))
794b1248
VD
209{
210 struct kmem_cache *s;
211 int err;
212
8eb8284b
DW
213 if (WARN_ON(useroffset + usersize > object_size))
214 useroffset = usersize = 0;
215
d345bd2e
CB
216 /* If a custom freelist pointer is requested make sure it's sane. */
217 err = -EINVAL;
218 if (freeptr_offset != UINT_MAX &&
219 (freeptr_offset >= object_size || !(flags & SLAB_TYPESAFE_BY_RCU) ||
220 !IS_ALIGNED(freeptr_offset, sizeof(freeptr_t))))
221 goto out;
222
794b1248
VD
223 err = -ENOMEM;
224 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
225 if (!s)
226 goto out;
227
228 s->name = name;
613a5eb5 229 s->size = s->object_size = object_size;
d345bd2e 230 s->rcu_freeptr_offset = freeptr_offset;
794b1248
VD
231 s->align = align;
232 s->ctor = ctor;
346907ce 233#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
234 s->useroffset = useroffset;
235 s->usersize = usersize;
346907ce 236#endif
794b1248
VD
237 err = __kmem_cache_create(s, flags);
238 if (err)
239 goto out_free_cache;
240
241 s->refcount = 1;
242 list_add(&s->list, &slab_caches);
794b1248
VD
243 return s;
244
245out_free_cache:
7c4da061 246 kmem_cache_free(kmem_cache, s);
b9dad156
ZL
247out:
248 return ERR_PTR(err);
794b1248 249}
45906855 250
d345bd2e
CB
251static struct kmem_cache *
252do_kmem_cache_create_usercopy(const char *name,
253 unsigned int size, unsigned int freeptr_offset,
254 unsigned int align, slab_flags_t flags,
7bbdb81e 255 unsigned int useroffset, unsigned int usersize,
8eb8284b 256 void (*ctor)(void *))
77be4b13 257{
40911a79 258 struct kmem_cache *s = NULL;
3dec16ea 259 const char *cache_name;
3965fc36 260 int err;
039363f3 261
afe0c26d
VB
262#ifdef CONFIG_SLUB_DEBUG
263 /*
671776b3 264 * If no slab_debug was enabled globally, the static key is not yet
afe0c26d
VB
265 * enabled by setup_slub_debug(). Enable it if the cache is being
266 * created with any of the debugging flags passed explicitly.
5cf909c5
OG
267 * It's also possible that this is the first cache created with
268 * SLAB_STORE_USER and we should init stack_depot for it.
afe0c26d
VB
269 */
270 if (flags & SLAB_DEBUG_FLAGS)
271 static_branch_enable(&slub_debug_enabled);
5cf909c5
OG
272 if (flags & SLAB_STORE_USER)
273 stack_depot_init();
afe0c26d
VB
274#endif
275
77be4b13 276 mutex_lock(&slab_mutex);
686d550d 277
794b1248 278 err = kmem_cache_sanity_check(name, size);
3aa24f51 279 if (err) {
3965fc36 280 goto out_unlock;
3aa24f51 281 }
686d550d 282
e70954fd
TG
283 /* Refuse requests with allocator specific flags */
284 if (flags & ~SLAB_FLAGS_PERMITTED) {
285 err = -EINVAL;
286 goto out_unlock;
287 }
288
d8843922
GC
289 /*
290 * Some allocators will constraint the set of valid flags to a subset
291 * of all flags. We expect them to define CACHE_CREATE_MASK in this
292 * case, and we'll just provide them with a sanitized version of the
293 * passed flags.
294 */
295 flags &= CACHE_CREATE_MASK;
686d550d 296
8eb8284b 297 /* Fail closed on bad usersize of useroffset values. */
346907ce
VB
298 if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
299 WARN_ON(!usersize && useroffset) ||
8eb8284b
DW
300 WARN_ON(size < usersize || size - usersize < useroffset))
301 usersize = useroffset = 0;
302
303 if (!usersize)
304 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 305 if (s)
3965fc36 306 goto out_unlock;
2633d7a0 307
3dec16ea 308 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
309 if (!cache_name) {
310 err = -ENOMEM;
311 goto out_unlock;
312 }
7c9adf5a 313
d345bd2e 314 s = create_cache(cache_name, size, freeptr_offset,
c9a77a79 315 calculate_alignment(flags, align, size),
e446f18e 316 flags, useroffset, usersize, ctor);
794b1248
VD
317 if (IS_ERR(s)) {
318 err = PTR_ERR(s);
3dec16ea 319 kfree_const(cache_name);
794b1248 320 }
3965fc36
VD
321
322out_unlock:
20cea968 323 mutex_unlock(&slab_mutex);
03afc0e2 324
ba3253c7 325 if (err) {
686d550d 326 if (flags & SLAB_PANIC)
4acaa7d5 327 panic("%s: Failed to create slab '%s'. Error %d\n",
328 __func__, name, err);
686d550d 329 else {
4acaa7d5 330 pr_warn("%s(%s) failed with error %d\n",
331 __func__, name, err);
686d550d
CL
332 dump_stack();
333 }
686d550d
CL
334 return NULL;
335 }
039363f3
CL
336 return s;
337}
d345bd2e
CB
338
339/**
340 * kmem_cache_create_usercopy - Create a cache with a region suitable
341 * for copying to userspace
342 * @name: A string which is used in /proc/slabinfo to identify this cache.
343 * @size: The size of objects to be created in this cache.
d345bd2e
CB
344 * @align: The required alignment for the objects.
345 * @flags: SLAB flags
346 * @useroffset: Usercopy region offset
347 * @usersize: Usercopy region size
348 * @ctor: A constructor for the objects.
349 *
350 * Cannot be called within a interrupt, but can be interrupted.
351 * The @ctor is run when new pages are allocated by the cache.
352 *
353 * The flags are
354 *
355 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
356 * to catch references to uninitialised memory.
357 *
358 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
359 * for buffer overruns.
360 *
361 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
362 * cacheline. This can be beneficial if you're counting cycles as closely
363 * as davem.
364 *
365 * Return: a pointer to the cache on success, NULL on failure.
366 */
367struct kmem_cache *
368kmem_cache_create_usercopy(const char *name, unsigned int size,
369 unsigned int align, slab_flags_t flags,
370 unsigned int useroffset, unsigned int usersize,
371 void (*ctor)(void *))
372{
373 return do_kmem_cache_create_usercopy(name, size, UINT_MAX, align, flags,
374 useroffset, usersize, ctor);
375}
8eb8284b
DW
376EXPORT_SYMBOL(kmem_cache_create_usercopy);
377
f496990f
MR
378/**
379 * kmem_cache_create - Create a cache.
380 * @name: A string which is used in /proc/slabinfo to identify this cache.
381 * @size: The size of objects to be created in this cache.
382 * @align: The required alignment for the objects.
383 * @flags: SLAB flags
384 * @ctor: A constructor for the objects.
385 *
386 * Cannot be called within a interrupt, but can be interrupted.
387 * The @ctor is run when new pages are allocated by the cache.
388 *
389 * The flags are
390 *
391 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
392 * to catch references to uninitialised memory.
393 *
394 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
395 * for buffer overruns.
396 *
397 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
398 * cacheline. This can be beneficial if you're counting cycles as closely
399 * as davem.
400 *
401 * Return: a pointer to the cache on success, NULL on failure.
402 */
8eb8284b 403struct kmem_cache *
f4957d5b 404kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
405 slab_flags_t flags, void (*ctor)(void *))
406{
d345bd2e
CB
407 return do_kmem_cache_create_usercopy(name, size, UINT_MAX, align, flags,
408 0, 0, ctor);
8eb8284b 409}
794b1248 410EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 411
d345bd2e
CB
412/**
413 * kmem_cache_create_rcu - Create a SLAB_TYPESAFE_BY_RCU cache.
414 * @name: A string which is used in /proc/slabinfo to identify this cache.
415 * @size: The size of objects to be created in this cache.
416 * @freeptr_offset: The offset into the memory to the free pointer
417 * @flags: SLAB flags
418 *
419 * Cannot be called within an interrupt, but can be interrupted.
420 *
421 * See kmem_cache_create() for an explanation of possible @flags.
422 *
423 * By default SLAB_TYPESAFE_BY_RCU caches place the free pointer outside
424 * of the object. This might cause the object to grow in size. Callers
425 * that have a reason to avoid this can specify a custom free pointer
426 * offset in their struct where the free pointer will be placed.
427 *
428 * Note that placing the free pointer inside the object requires the
429 * caller to ensure that no fields are invalidated that are required to
430 * guard against object recycling (See SLAB_TYPESAFE_BY_RCU for
431 * details.).
432 *
433 * Using zero as a value for @freeptr_offset is valid. To request no
434 * offset UINT_MAX must be specified.
435 *
436 * Note that @ctor isn't supported with custom free pointers as a @ctor
437 * requires an external free pointer.
438 *
439 * Return: a pointer to the cache on success, NULL on failure.
440 */
441struct kmem_cache *kmem_cache_create_rcu(const char *name, unsigned int size,
442 unsigned int freeptr_offset,
443 slab_flags_t flags)
444{
445 return do_kmem_cache_create_usercopy(name, size, freeptr_offset, 0,
446 flags | SLAB_TYPESAFE_BY_RCU, 0, 0,
447 NULL);
448}
449EXPORT_SYMBOL(kmem_cache_create_rcu);
450
b32801d1
KC
451static struct kmem_cache *kmem_buckets_cache __ro_after_init;
452
453/**
454 * kmem_buckets_create - Create a set of caches that handle dynamic sized
455 * allocations via kmem_buckets_alloc()
456 * @name: A prefix string which is used in /proc/slabinfo to identify this
457 * cache. The individual caches with have their sizes as the suffix.
458 * @flags: SLAB flags (see kmem_cache_create() for details).
459 * @useroffset: Starting offset within an allocation that may be copied
460 * to/from userspace.
461 * @usersize: How many bytes, starting at @useroffset, may be copied
462 * to/from userspace.
463 * @ctor: A constructor for the objects, run when new allocations are made.
464 *
465 * Cannot be called within an interrupt, but can be interrupted.
466 *
467 * Return: a pointer to the cache on success, NULL on failure. When
468 * CONFIG_SLAB_BUCKETS is not enabled, ZERO_SIZE_PTR is returned, and
469 * subsequent calls to kmem_buckets_alloc() will fall back to kmalloc().
470 * (i.e. callers only need to check for NULL on failure.)
471 */
472kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags,
473 unsigned int useroffset,
474 unsigned int usersize,
475 void (*ctor)(void *))
476{
477 kmem_buckets *b;
478 int idx;
479
480 /*
481 * When the separate buckets API is not built in, just return
482 * a non-NULL value for the kmem_buckets pointer, which will be
483 * unused when performing allocations.
484 */
485 if (!IS_ENABLED(CONFIG_SLAB_BUCKETS))
486 return ZERO_SIZE_PTR;
487
488 if (WARN_ON(!kmem_buckets_cache))
489 return NULL;
490
491 b = kmem_cache_alloc(kmem_buckets_cache, GFP_KERNEL|__GFP_ZERO);
492 if (WARN_ON(!b))
493 return NULL;
494
495 flags |= SLAB_NO_MERGE;
496
497 for (idx = 0; idx < ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]); idx++) {
498 char *short_size, *cache_name;
499 unsigned int cache_useroffset, cache_usersize;
500 unsigned int size;
501
502 if (!kmalloc_caches[KMALLOC_NORMAL][idx])
503 continue;
504
505 size = kmalloc_caches[KMALLOC_NORMAL][idx]->object_size;
506 if (!size)
507 continue;
508
509 short_size = strchr(kmalloc_caches[KMALLOC_NORMAL][idx]->name, '-');
510 if (WARN_ON(!short_size))
511 goto fail;
512
513 cache_name = kasprintf(GFP_KERNEL, "%s-%s", name, short_size + 1);
514 if (WARN_ON(!cache_name))
515 goto fail;
516
517 if (useroffset >= size) {
518 cache_useroffset = 0;
519 cache_usersize = 0;
520 } else {
521 cache_useroffset = useroffset;
522 cache_usersize = min(size - cache_useroffset, usersize);
523 }
524 (*b)[idx] = kmem_cache_create_usercopy(cache_name, size,
525 0, flags, cache_useroffset,
526 cache_usersize, ctor);
527 kfree(cache_name);
528 if (WARN_ON(!(*b)[idx]))
529 goto fail;
530 }
531
532 return b;
533
534fail:
535 for (idx = 0; idx < ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]); idx++)
536 kmem_cache_destroy((*b)[idx]);
537 kfree(b);
538
539 return NULL;
540}
541EXPORT_SYMBOL(kmem_buckets_create);
542
0495e337
WL
543#ifdef SLAB_SUPPORTS_SYSFS
544/*
545 * For a given kmem_cache, kmem_cache_destroy() should only be called
546 * once or there will be a use-after-free problem. The actual deletion
547 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
548 * protection. So they are now done without holding those locks.
549 *
550 * Note that there will be a slight delay in the deletion of sysfs files
551 * if kmem_cache_release() is called indrectly from a work function.
552 */
553static void kmem_cache_release(struct kmem_cache *s)
554{
011568eb
XW
555 if (slab_state >= FULL) {
556 sysfs_slab_unlink(s);
557 sysfs_slab_release(s);
558 } else {
559 slab_kmem_cache_release(s);
560 }
0495e337
WL
561}
562#else
563static void kmem_cache_release(struct kmem_cache *s)
564{
565 slab_kmem_cache_release(s);
566}
567#endif
568
657dc2f9 569static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 570{
657dc2f9
TH
571 LIST_HEAD(to_destroy);
572 struct kmem_cache *s, *s2;
d5b3cf71 573
657dc2f9 574 /*
5f0d5a3a 575 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9 576 * @slab_caches_to_rcu_destroy list. The slab pages are freed
081a06fa 577 * through RCU and the associated kmem_cache are dereferenced
657dc2f9
TH
578 * while freeing the pages, so the kmem_caches should be freed only
579 * after the pending RCU operations are finished. As rcu_barrier()
580 * is a pretty slow operation, we batch all pending destructions
581 * asynchronously.
582 */
583 mutex_lock(&slab_mutex);
584 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
585 mutex_unlock(&slab_mutex);
d5b3cf71 586
657dc2f9
TH
587 if (list_empty(&to_destroy))
588 return;
589
590 rcu_barrier();
591
592 list_for_each_entry_safe(s, s2, &to_destroy, list) {
64dd6849 593 debugfs_slab_release(s);
d3fb45f3 594 kfence_shutdown_cache(s);
0495e337 595 kmem_cache_release(s);
657dc2f9 596 }
d5b3cf71
VD
597}
598
657dc2f9 599static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 600{
f9fa1d91
GT
601 /* free asan quarantined objects */
602 kasan_cache_shutdown(s);
603
657dc2f9
TH
604 if (__kmem_cache_shutdown(s) != 0)
605 return -EBUSY;
d5b3cf71 606
657dc2f9 607 list_del(&s->list);
d5b3cf71 608
5f0d5a3a 609 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
657dc2f9
TH
610 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
611 schedule_work(&slab_caches_to_rcu_destroy_work);
612 } else {
d3fb45f3 613 kfence_shutdown_cache(s);
64dd6849 614 debugfs_slab_release(s);
d5b3cf71 615 }
657dc2f9
TH
616
617 return 0;
d5b3cf71
VD
618}
619
41a21285
CL
620void slab_kmem_cache_release(struct kmem_cache *s)
621{
52b4b950 622 __kmem_cache_release(s);
3dec16ea 623 kfree_const(s->name);
41a21285
CL
624 kmem_cache_free(kmem_cache, s);
625}
626
945cf2b6
CL
627void kmem_cache_destroy(struct kmem_cache *s)
628{
46a9ea66 629 int err = -EBUSY;
d71608a8 630 bool rcu_set;
0495e337 631
bed0a9b5 632 if (unlikely(!s) || !kasan_check_byte(s))
3942d299
SS
633 return;
634
5a836bf6 635 cpus_read_lock();
945cf2b6 636 mutex_lock(&slab_mutex);
b8529907 637
d71608a8
FT
638 rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
639
46a9ea66
RA
640 s->refcount--;
641 if (s->refcount)
b8529907
VD
642 goto out_unlock;
643
46a9ea66
RA
644 err = shutdown_cache(s);
645 WARN(err, "%s %s: Slab cache still has objects when called from %pS",
7302e91f 646 __func__, s->name, (void *)_RET_IP_);
b8529907
VD
647out_unlock:
648 mutex_unlock(&slab_mutex);
5a836bf6 649 cpus_read_unlock();
46a9ea66 650 if (!err && !rcu_set)
0495e337 651 kmem_cache_release(s);
945cf2b6
CL
652}
653EXPORT_SYMBOL(kmem_cache_destroy);
654
03afc0e2
VD
655/**
656 * kmem_cache_shrink - Shrink a cache.
657 * @cachep: The cache to shrink.
658 *
659 * Releases as many slabs as possible for a cache.
660 * To help debugging, a zero exit status indicates all slabs were released.
a862f68a
MR
661 *
662 * Return: %0 if all slabs were released, non-zero otherwise
03afc0e2
VD
663 */
664int kmem_cache_shrink(struct kmem_cache *cachep)
665{
55834c59 666 kasan_cache_shrink(cachep);
7e1fa93d 667
610f9c00 668 return __kmem_cache_shrink(cachep);
03afc0e2
VD
669}
670EXPORT_SYMBOL(kmem_cache_shrink);
671
fda90124 672bool slab_is_available(void)
97d06609
CL
673{
674 return slab_state >= UP;
675}
b7454ad3 676
5bb1bb35 677#ifdef CONFIG_PRINTK
2dfe63e6
ME
678static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
679{
680 if (__kfence_obj_info(kpp, object, slab))
681 return;
682 __kmem_obj_info(kpp, object, slab);
683}
684
8e7f37f2
PM
685/**
686 * kmem_dump_obj - Print available slab provenance information
687 * @object: slab object for which to find provenance information.
688 *
689 * This function uses pr_cont(), so that the caller is expected to have
690 * printed out whatever preamble is appropriate. The provenance information
691 * depends on the type of object and on how much debugging is enabled.
692 * For a slab-cache object, the fact that it is a slab object is printed,
693 * and, if available, the slab name, return address, and stack trace from
e548eaa1 694 * the allocation and last free path of that object.
8e7f37f2 695 *
6e284c55
ZL
696 * Return: %true if the pointer is to a not-yet-freed object from
697 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
698 * is to an already-freed object, and %false otherwise.
8e7f37f2 699 */
6e284c55 700bool kmem_dump_obj(void *object)
8e7f37f2
PM
701{
702 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
703 int i;
7213230a 704 struct slab *slab;
8e7f37f2
PM
705 unsigned long ptroffset;
706 struct kmem_obj_info kp = { };
707
6e284c55
ZL
708 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
709 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
710 return false;
7213230a 711 slab = virt_to_slab(object);
6e284c55
ZL
712 if (!slab)
713 return false;
714
7213230a 715 kmem_obj_info(&kp, object, slab);
8e7f37f2
PM
716 if (kp.kp_slab_cache)
717 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
718 else
719 pr_cont(" slab%s", cp);
2dfe63e6
ME
720 if (is_kfence_address(object))
721 pr_cont(" (kfence)");
8e7f37f2
PM
722 if (kp.kp_objp)
723 pr_cont(" start %px", kp.kp_objp);
724 if (kp.kp_data_offset)
725 pr_cont(" data offset %lu", kp.kp_data_offset);
726 if (kp.kp_objp) {
727 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
728 pr_cont(" pointer offset %lu", ptroffset);
729 }
346907ce
VB
730 if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
731 pr_cont(" size %u", kp.kp_slab_cache->object_size);
8e7f37f2
PM
732 if (kp.kp_ret)
733 pr_cont(" allocated at %pS\n", kp.kp_ret);
734 else
735 pr_cont("\n");
736 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
737 if (!kp.kp_stack[i])
738 break;
739 pr_info(" %pS\n", kp.kp_stack[i]);
740 }
e548eaa1
MS
741
742 if (kp.kp_free_stack[0])
743 pr_cont(" Free path:\n");
744
745 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
746 if (!kp.kp_free_stack[i])
747 break;
748 pr_info(" %pS\n", kp.kp_free_stack[i]);
749 }
750
6e284c55 751 return true;
8e7f37f2 752}
0d3dd2c8 753EXPORT_SYMBOL_GPL(kmem_dump_obj);
5bb1bb35 754#endif
8e7f37f2 755
45530c44 756/* Create a cache during boot when no slab services are available yet */
361d575e
AD
757void __init create_boot_cache(struct kmem_cache *s, const char *name,
758 unsigned int size, slab_flags_t flags,
759 unsigned int useroffset, unsigned int usersize)
45530c44
CL
760{
761 int err;
59bb4798 762 unsigned int align = ARCH_KMALLOC_MINALIGN;
45530c44
CL
763
764 s->name = name;
765 s->size = s->object_size = size;
59bb4798
VB
766
767 /*
ad59baa3
VB
768 * kmalloc caches guarantee alignment of at least the largest
769 * power-of-two divisor of the size. For power-of-two sizes,
770 * it is the size itself.
59bb4798 771 */
ad59baa3
VB
772 if (flags & SLAB_KMALLOC)
773 align = max(align, 1U << (ffs(size) - 1));
59bb4798
VB
774 s->align = calculate_alignment(flags, align, size);
775
346907ce 776#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
777 s->useroffset = useroffset;
778 s->usersize = usersize;
346907ce 779#endif
f7ce3190 780
45530c44
CL
781 err = __kmem_cache_create(s, flags);
782
783 if (err)
361d575e 784 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
785 name, size, err);
786
787 s->refcount = -1; /* Exempt from merging for now */
788}
789
0c474d31
CM
790static struct kmem_cache *__init create_kmalloc_cache(const char *name,
791 unsigned int size,
792 slab_flags_t flags)
45530c44
CL
793{
794 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
795
796 if (!s)
797 panic("Out of memory when creating slab %s\n", name);
798
0c474d31 799 create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
45530c44
CL
800 list_add(&s->list, &slab_caches);
801 s->refcount = 1;
802 return s;
803}
804
72e0fe22 805kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES] __ro_after_init =
2947a456 806{ /* initialization for https://llvm.org/pr42570 */ };
9425c58e
CL
807EXPORT_SYMBOL(kmalloc_caches);
808
3c615294
GR
809#ifdef CONFIG_RANDOM_KMALLOC_CACHES
810unsigned long random_kmalloc_seed __ro_after_init;
811EXPORT_SYMBOL(random_kmalloc_seed);
812#endif
813
2c59dd65
CL
814/*
815 * Conversion table for small slabs sizes / 8 to the index in the
816 * kmalloc array. This is necessary for slabs < 192 since we have non power
817 * of two cache sizes there. The size of larger slabs can be determined using
818 * fls.
819 */
5a9d31d9 820u8 kmalloc_size_index[24] __ro_after_init = {
2c59dd65
CL
821 3, /* 8 */
822 4, /* 16 */
823 5, /* 24 */
824 5, /* 32 */
825 6, /* 40 */
826 6, /* 48 */
827 6, /* 56 */
828 6, /* 64 */
829 1, /* 72 */
830 1, /* 80 */
831 1, /* 88 */
832 1, /* 96 */
833 7, /* 104 */
834 7, /* 112 */
835 7, /* 120 */
836 7, /* 128 */
837 2, /* 136 */
838 2, /* 144 */
839 2, /* 152 */
840 2, /* 160 */
841 2, /* 168 */
842 2, /* 176 */
843 2, /* 184 */
844 2 /* 192 */
845};
846
05a94065
KC
847size_t kmalloc_size_roundup(size_t size)
848{
8446a4de
DL
849 if (size && size <= KMALLOC_MAX_CACHE_SIZE) {
850 /*
851 * The flags don't matter since size_index is common to all.
852 * Neither does the caller for just getting ->object_size.
853 */
67f2df3b 854 return kmalloc_slab(size, NULL, GFP_KERNEL, 0)->object_size;
8446a4de
DL
855 }
856
05a94065 857 /* Above the smaller buckets, size is a multiple of page size. */
8446a4de 858 if (size && size <= KMALLOC_MAX_SIZE)
05a94065
KC
859 return PAGE_SIZE << get_order(size);
860
3c615294 861 /*
8446a4de
DL
862 * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR
863 * and very large size - kmalloc() may fail.
3c615294 864 */
8446a4de
DL
865 return size;
866
05a94065
KC
867}
868EXPORT_SYMBOL(kmalloc_size_roundup);
869
cb5d9fb3 870#ifdef CONFIG_ZONE_DMA
494c1dfe
WL
871#define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
872#else
873#define KMALLOC_DMA_NAME(sz)
874#endif
875
3a3b7fec 876#ifdef CONFIG_MEMCG
494c1dfe 877#define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
cb5d9fb3 878#else
494c1dfe
WL
879#define KMALLOC_CGROUP_NAME(sz)
880#endif
881
2f7c1c13
VB
882#ifndef CONFIG_SLUB_TINY
883#define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
884#else
885#define KMALLOC_RCL_NAME(sz)
886#endif
887
3c615294
GR
888#ifdef CONFIG_RANDOM_KMALLOC_CACHES
889#define __KMALLOC_RANDOM_CONCAT(a, b) a ## b
890#define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz)
891#define KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 1] = "kmalloc-rnd-01-" #sz,
892#define KMA_RAND_2(sz) KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 2] = "kmalloc-rnd-02-" #sz,
893#define KMA_RAND_3(sz) KMA_RAND_2(sz) .name[KMALLOC_RANDOM_START + 3] = "kmalloc-rnd-03-" #sz,
894#define KMA_RAND_4(sz) KMA_RAND_3(sz) .name[KMALLOC_RANDOM_START + 4] = "kmalloc-rnd-04-" #sz,
895#define KMA_RAND_5(sz) KMA_RAND_4(sz) .name[KMALLOC_RANDOM_START + 5] = "kmalloc-rnd-05-" #sz,
896#define KMA_RAND_6(sz) KMA_RAND_5(sz) .name[KMALLOC_RANDOM_START + 6] = "kmalloc-rnd-06-" #sz,
897#define KMA_RAND_7(sz) KMA_RAND_6(sz) .name[KMALLOC_RANDOM_START + 7] = "kmalloc-rnd-07-" #sz,
898#define KMA_RAND_8(sz) KMA_RAND_7(sz) .name[KMALLOC_RANDOM_START + 8] = "kmalloc-rnd-08-" #sz,
899#define KMA_RAND_9(sz) KMA_RAND_8(sz) .name[KMALLOC_RANDOM_START + 9] = "kmalloc-rnd-09-" #sz,
900#define KMA_RAND_10(sz) KMA_RAND_9(sz) .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz,
901#define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz,
902#define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz,
903#define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz,
904#define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz,
905#define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz,
906#else // CONFIG_RANDOM_KMALLOC_CACHES
907#define KMALLOC_RANDOM_NAME(N, sz)
908#endif
909
cb5d9fb3
PL
910#define INIT_KMALLOC_INFO(__size, __short_size) \
911{ \
912 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
2f7c1c13 913 KMALLOC_RCL_NAME(__short_size) \
494c1dfe
WL
914 KMALLOC_CGROUP_NAME(__short_size) \
915 KMALLOC_DMA_NAME(__short_size) \
3c615294 916 KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size) \
cb5d9fb3
PL
917 .size = __size, \
918}
cb5d9fb3 919
4066c33d 920/*
671776b3 921 * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time.
d6a71648
HY
922 * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
923 * kmalloc-2M.
4066c33d 924 */
af3b5f87 925const struct kmalloc_info_struct kmalloc_info[] __initconst = {
cb5d9fb3
PL
926 INIT_KMALLOC_INFO(0, 0),
927 INIT_KMALLOC_INFO(96, 96),
928 INIT_KMALLOC_INFO(192, 192),
929 INIT_KMALLOC_INFO(8, 8),
930 INIT_KMALLOC_INFO(16, 16),
931 INIT_KMALLOC_INFO(32, 32),
932 INIT_KMALLOC_INFO(64, 64),
933 INIT_KMALLOC_INFO(128, 128),
934 INIT_KMALLOC_INFO(256, 256),
935 INIT_KMALLOC_INFO(512, 512),
936 INIT_KMALLOC_INFO(1024, 1k),
937 INIT_KMALLOC_INFO(2048, 2k),
938 INIT_KMALLOC_INFO(4096, 4k),
939 INIT_KMALLOC_INFO(8192, 8k),
940 INIT_KMALLOC_INFO(16384, 16k),
941 INIT_KMALLOC_INFO(32768, 32k),
942 INIT_KMALLOC_INFO(65536, 64k),
943 INIT_KMALLOC_INFO(131072, 128k),
944 INIT_KMALLOC_INFO(262144, 256k),
945 INIT_KMALLOC_INFO(524288, 512k),
946 INIT_KMALLOC_INFO(1048576, 1M),
d6a71648 947 INIT_KMALLOC_INFO(2097152, 2M)
4066c33d
GG
948};
949
f97d5f63 950/*
34cc6990
DS
951 * Patch up the size_index table if we have strange large alignment
952 * requirements for the kmalloc array. This is only the case for
953 * MIPS it seems. The standard arches will not generate any code here.
954 *
955 * Largest permitted alignment is 256 bytes due to the way we
956 * handle the index determination for the smaller caches.
957 *
958 * Make sure that nothing crazy happens if someone starts tinkering
959 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 960 */
34cc6990 961void __init setup_kmalloc_cache_index_table(void)
f97d5f63 962{
ac914d08 963 unsigned int i;
f97d5f63 964
2c59dd65 965 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
7d6b6cc3 966 !is_power_of_2(KMALLOC_MIN_SIZE));
2c59dd65
CL
967
968 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 969 unsigned int elem = size_index_elem(i);
2c59dd65 970
5a9d31d9 971 if (elem >= ARRAY_SIZE(kmalloc_size_index))
2c59dd65 972 break;
5a9d31d9 973 kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW;
2c59dd65
CL
974 }
975
976 if (KMALLOC_MIN_SIZE >= 64) {
977 /*
0b8f0d87 978 * The 96 byte sized cache is not used if the alignment
2c59dd65
CL
979 * is 64 byte.
980 */
981 for (i = 64 + 8; i <= 96; i += 8)
5a9d31d9 982 kmalloc_size_index[size_index_elem(i)] = 7;
2c59dd65
CL
983
984 }
985
986 if (KMALLOC_MIN_SIZE >= 128) {
987 /*
988 * The 192 byte sized cache is not used if the alignment
989 * is 128 byte. Redirect kmalloc to use the 256 byte cache
990 * instead.
991 */
992 for (i = 128 + 8; i <= 192; i += 8)
5a9d31d9 993 kmalloc_size_index[size_index_elem(i)] = 8;
2c59dd65 994 }
34cc6990
DS
995}
996
963e84b0
CM
997static unsigned int __kmalloc_minalign(void)
998{
c15cdea5
CM
999 unsigned int minalign = dma_get_cache_alignment();
1000
05ee7741
PT
1001 if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) &&
1002 is_swiotlb_allocated())
c15cdea5
CM
1003 minalign = ARCH_KMALLOC_MINALIGN;
1004
1005 return max(minalign, arch_slab_minalign());
963e84b0
CM
1006}
1007
66b3dc1f
ZY
1008static void __init
1009new_kmalloc_cache(int idx, enum kmalloc_cache_type type)
a9730fca 1010{
66b3dc1f 1011 slab_flags_t flags = 0;
963e84b0
CM
1012 unsigned int minalign = __kmalloc_minalign();
1013 unsigned int aligned_size = kmalloc_info[idx].size;
1014 int aligned_idx = idx;
1015
2f7c1c13 1016 if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
1291523f 1017 flags |= SLAB_RECLAIM_ACCOUNT;
3a3b7fec 1018 } else if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_CGROUP)) {
17c17367 1019 if (mem_cgroup_kmem_disabled()) {
494c1dfe
WL
1020 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
1021 return;
1022 }
1023 flags |= SLAB_ACCOUNT;
33647783
OK
1024 } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
1025 flags |= SLAB_CACHE_DMA;
494c1dfe 1026 }
1291523f 1027
3c615294
GR
1028#ifdef CONFIG_RANDOM_KMALLOC_CACHES
1029 if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END)
1030 flags |= SLAB_NO_MERGE;
1031#endif
1032
13e680fb 1033 /*
3a3b7fec 1034 * If CONFIG_MEMCG is enabled, disable cache merging for
13e680fb
WL
1035 * KMALLOC_NORMAL caches.
1036 */
3a3b7fec 1037 if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_NORMAL))
d5bf4857
VB
1038 flags |= SLAB_NO_MERGE;
1039
963e84b0
CM
1040 if (minalign > ARCH_KMALLOC_MINALIGN) {
1041 aligned_size = ALIGN(aligned_size, minalign);
1042 aligned_idx = __kmalloc_index(aligned_size, false);
1043 }
1044
1045 if (!kmalloc_caches[type][aligned_idx])
1046 kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
1047 kmalloc_info[aligned_idx].name[type],
1048 aligned_size, flags);
1049 if (idx != aligned_idx)
1050 kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
a9730fca
CL
1051}
1052
34cc6990
DS
1053/*
1054 * Create the kmalloc array. Some of the regular kmalloc arrays
1055 * may already have been created because they were needed to
1056 * enable allocations for slab creation.
1057 */
66b3dc1f 1058void __init create_kmalloc_caches(void)
34cc6990 1059{
13657d0a
PL
1060 int i;
1061 enum kmalloc_cache_type type;
34cc6990 1062
494c1dfe 1063 /*
3a3b7fec 1064 * Including KMALLOC_CGROUP if CONFIG_MEMCG defined
494c1dfe 1065 */
33647783 1066 for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
306c4ac9 1067 /* Caches that are NOT of the two-to-the-power-of size. */
7338999c 1068 if (KMALLOC_MIN_SIZE <= 32)
306c4ac9 1069 new_kmalloc_cache(1, type);
7338999c 1070 if (KMALLOC_MIN_SIZE <= 64)
306c4ac9
HL
1071 new_kmalloc_cache(2, type);
1072
1073 /* Caches that are of the two-to-the-power-of size. */
7338999c
HL
1074 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
1075 new_kmalloc_cache(i, type);
8a965b3b 1076 }
3c615294
GR
1077#ifdef CONFIG_RANDOM_KMALLOC_CACHES
1078 random_kmalloc_seed = get_random_u64();
1079#endif
8a965b3b 1080
f97d5f63
CL
1081 /* Kmalloc array is now usable */
1082 slab_state = UP;
b32801d1
KC
1083
1084 if (IS_ENABLED(CONFIG_SLAB_BUCKETS))
1085 kmem_buckets_cache = kmem_cache_create("kmalloc_buckets",
1086 sizeof(kmem_buckets),
1087 0, SLAB_NO_MERGE, NULL);
f97d5f63 1088}
d6a71648 1089
445d41d7
VB
1090/**
1091 * __ksize -- Report full size of underlying allocation
a2076201 1092 * @object: pointer to the object
445d41d7
VB
1093 *
1094 * This should only be used internally to query the true size of allocations.
1095 * It is not meant to be a way to discover the usable size of an allocation
1096 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
1097 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
1098 * and/or FORTIFY_SOURCE.
1099 *
a2076201 1100 * Return: size of the actual memory used by @object in bytes
445d41d7 1101 */
b1405135
HY
1102size_t __ksize(const void *object)
1103{
1104 struct folio *folio;
1105
1106 if (unlikely(object == ZERO_SIZE_PTR))
1107 return 0;
1108
1109 folio = virt_to_folio(object);
1110
d5eff736
HY
1111 if (unlikely(!folio_test_slab(folio))) {
1112 if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
1113 return 0;
1114 if (WARN_ON(object != folio_address(folio)))
1115 return 0;
b1405135 1116 return folio_size(folio);
d5eff736 1117 }
b1405135 1118
946fa0db
FT
1119#ifdef CONFIG_SLUB_DEBUG
1120 skip_orig_size_check(folio_slab(folio)->slab_cache, object);
1121#endif
1122
b1405135
HY
1123 return slab_ksize(folio_slab(folio)->slab_cache);
1124}
26a40990 1125
44405099
LL
1126gfp_t kmalloc_fix_flags(gfp_t flags)
1127{
1128 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1129
1130 flags &= ~GFP_SLAB_BUG_MASK;
1131 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1132 invalid_mask, &invalid_mask, flags, &flags);
1133 dump_stack();
1134
1135 return flags;
1136}
1137
7c00fce9
TG
1138#ifdef CONFIG_SLAB_FREELIST_RANDOM
1139/* Randomize a generic freelist */
ffe4dfe0 1140static void freelist_randomize(unsigned int *list,
302d55d5 1141 unsigned int count)
7c00fce9 1142{
7c00fce9 1143 unsigned int rand;
302d55d5 1144 unsigned int i;
7c00fce9
TG
1145
1146 for (i = 0; i < count; i++)
1147 list[i] = i;
1148
1149 /* Fisher-Yates shuffle */
1150 for (i = count - 1; i > 0; i--) {
ffe4dfe0 1151 rand = get_random_u32_below(i + 1);
7c00fce9
TG
1152 swap(list[i], list[rand]);
1153 }
1154}
1155
1156/* Create a random sequence per cache */
1157int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1158 gfp_t gfp)
1159{
7c00fce9
TG
1160
1161 if (count < 2 || cachep->random_seq)
1162 return 0;
1163
1164 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1165 if (!cachep->random_seq)
1166 return -ENOMEM;
1167
ffe4dfe0 1168 freelist_randomize(cachep->random_seq, count);
7c00fce9
TG
1169 return 0;
1170}
1171
1172/* Destroy the per-cache random freelist sequence */
1173void cache_random_seq_destroy(struct kmem_cache *cachep)
1174{
1175 kfree(cachep->random_seq);
1176 cachep->random_seq = NULL;
1177}
1178#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1179
a9e0b9f2 1180#ifdef CONFIG_SLUB_DEBUG
0825a6f9 1181#define SLABINFO_RIGHTS (0400)
e9b4db2b 1182
b047501c 1183static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1184{
1185 /*
1186 * Output format version, so at least we can change it
1187 * without _too_ many complaints.
1188 */
bcee6e2a 1189 seq_puts(m, "slabinfo - version: 2.1\n");
756a025f 1190 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1191 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1192 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
bcee6e2a
GC
1193 seq_putc(m, '\n');
1194}
1195
c29b5b3d 1196static void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1197{
b7454ad3 1198 mutex_lock(&slab_mutex);
c7094406 1199 return seq_list_start(&slab_caches, *pos);
b7454ad3
GC
1200}
1201
c29b5b3d 1202static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1203{
c7094406 1204 return seq_list_next(p, &slab_caches, pos);
b7454ad3
GC
1205}
1206
c29b5b3d 1207static void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1208{
1209 mutex_unlock(&slab_mutex);
1210}
1211
b047501c 1212static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1213{
0d7561c6
GC
1214 struct slabinfo sinfo;
1215
1216 memset(&sinfo, 0, sizeof(sinfo));
1217 get_slabinfo(s, &sinfo);
1218
1219 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
10befea9 1220 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1221 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1222
1223 seq_printf(m, " : tunables %4u %4u %4u",
1224 sinfo.limit, sinfo.batchcount, sinfo.shared);
1225 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1226 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
0d7561c6 1227 seq_putc(m, '\n');
b7454ad3
GC
1228}
1229
1df3b26f 1230static int slab_show(struct seq_file *m, void *p)
749c5415 1231{
c7094406 1232 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
749c5415 1233
c7094406 1234 if (p == slab_caches.next)
1df3b26f 1235 print_slabinfo_header(m);
10befea9 1236 cache_show(s, m);
b047501c
VD
1237 return 0;
1238}
1239
852d8be0
YS
1240void dump_unreclaimable_slab(void)
1241{
7714304f 1242 struct kmem_cache *s;
852d8be0
YS
1243 struct slabinfo sinfo;
1244
1245 /*
1246 * Here acquiring slab_mutex is risky since we don't prefer to get
1247 * sleep in oom path. But, without mutex hold, it may introduce a
1248 * risk of crash.
1249 * Use mutex_trylock to protect the list traverse, dump nothing
1250 * without acquiring the mutex.
1251 */
1252 if (!mutex_trylock(&slab_mutex)) {
1253 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1254 return;
1255 }
1256
1257 pr_info("Unreclaimable slab info:\n");
1258 pr_info("Name Used Total\n");
1259
7714304f 1260 list_for_each_entry(s, &slab_caches, list) {
10befea9 1261 if (s->flags & SLAB_RECLAIM_ACCOUNT)
852d8be0
YS
1262 continue;
1263
1264 get_slabinfo(s, &sinfo);
1265
1266 if (sinfo.num_objs > 0)
10befea9 1267 pr_info("%-17s %10luKB %10luKB\n", s->name,
852d8be0
YS
1268 (sinfo.active_objs * s->size) / 1024,
1269 (sinfo.num_objs * s->size) / 1024);
1270 }
1271 mutex_unlock(&slab_mutex);
1272}
1273
b7454ad3
GC
1274/*
1275 * slabinfo_op - iterator that generates /proc/slabinfo
1276 *
1277 * Output layout:
1278 * cache-name
1279 * num-active-objs
1280 * total-objs
1281 * object size
1282 * num-active-slabs
1283 * total-slabs
1284 * num-pages-per-slab
1285 * + further values on SMP and with statistics enabled
1286 */
1287static const struct seq_operations slabinfo_op = {
1df3b26f 1288 .start = slab_start,
276a2439
WL
1289 .next = slab_next,
1290 .stop = slab_stop,
1df3b26f 1291 .show = slab_show,
b7454ad3
GC
1292};
1293
1294static int slabinfo_open(struct inode *inode, struct file *file)
1295{
1296 return seq_open(file, &slabinfo_op);
1297}
1298
97a32539 1299static const struct proc_ops slabinfo_proc_ops = {
d919b33d 1300 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
1301 .proc_open = slabinfo_open,
1302 .proc_read = seq_read,
97a32539
AD
1303 .proc_lseek = seq_lseek,
1304 .proc_release = seq_release,
b7454ad3
GC
1305};
1306
1307static int __init slab_proc_init(void)
1308{
97a32539 1309 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
b7454ad3
GC
1310 return 0;
1311}
1312module_init(slab_proc_init);
fcf8a1e4 1313
a9e0b9f2 1314#endif /* CONFIG_SLUB_DEBUG */
928cec9c 1315
9ed9cac1
KC
1316static __always_inline __realloc_size(2) void *
1317__do_krealloc(const void *p, size_t new_size, gfp_t flags)
928cec9c
AR
1318{
1319 void *ret;
fa9ba3aa 1320 size_t ks;
928cec9c 1321
38931d89 1322 /* Check for double-free before calling ksize. */
d12d9ad8
AK
1323 if (likely(!ZERO_OR_NULL_PTR(p))) {
1324 if (!kasan_check_byte(p))
1325 return NULL;
38931d89 1326 ks = ksize(p);
d12d9ad8
AK
1327 } else
1328 ks = 0;
928cec9c 1329
d12d9ad8 1330 /* If the object still fits, repoison it precisely. */
0316bec2 1331 if (ks >= new_size) {
0116523c 1332 p = kasan_krealloc((void *)p, new_size, flags);
928cec9c 1333 return (void *)p;
0316bec2 1334 }
928cec9c 1335
7bd230a2 1336 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
d12d9ad8
AK
1337 if (ret && p) {
1338 /* Disable KASAN checks as the object's redzone is accessed. */
1339 kasan_disable_current();
1340 memcpy(ret, kasan_reset_tag(p), ks);
1341 kasan_enable_current();
1342 }
928cec9c
AR
1343
1344 return ret;
1345}
1346
928cec9c
AR
1347/**
1348 * krealloc - reallocate memory. The contents will remain unchanged.
1349 * @p: object to reallocate memory for.
1350 * @new_size: how many bytes of memory are required.
1351 * @flags: the type of memory to allocate.
1352 *
1353 * The contents of the object pointed to are preserved up to the
15d5de49
BG
1354 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1355 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1356 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
a862f68a
MR
1357 *
1358 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c 1359 */
7bd230a2 1360void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
928cec9c
AR
1361{
1362 void *ret;
1363
1364 if (unlikely(!new_size)) {
1365 kfree(p);
1366 return ZERO_SIZE_PTR;
1367 }
1368
1369 ret = __do_krealloc(p, new_size, flags);
772a2fa5 1370 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
928cec9c
AR
1371 kfree(p);
1372
1373 return ret;
1374}
7bd230a2 1375EXPORT_SYMBOL(krealloc_noprof);
928cec9c
AR
1376
1377/**
453431a5 1378 * kfree_sensitive - Clear sensitive information in memory before freeing
928cec9c
AR
1379 * @p: object to free memory of
1380 *
1381 * The memory of the object @p points to is zeroed before freed.
453431a5 1382 * If @p is %NULL, kfree_sensitive() does nothing.
928cec9c
AR
1383 *
1384 * Note: this function zeroes the whole allocated buffer which can be a good
1385 * deal bigger than the requested buffer size passed to kmalloc(). So be
1386 * careful when using this function in performance sensitive code.
1387 */
453431a5 1388void kfree_sensitive(const void *p)
928cec9c
AR
1389{
1390 size_t ks;
1391 void *mem = (void *)p;
1392
928cec9c 1393 ks = ksize(mem);
38931d89
KC
1394 if (ks) {
1395 kasan_unpoison_range(mem, ks);
fa9ba3aa 1396 memzero_explicit(mem, ks);
38931d89 1397 }
928cec9c
AR
1398 kfree(mem);
1399}
453431a5 1400EXPORT_SYMBOL(kfree_sensitive);
928cec9c 1401
10d1f8cb
ME
1402size_t ksize(const void *objp)
1403{
0d4ca4c9 1404 /*
38931d89
KC
1405 * We need to first check that the pointer to the object is valid.
1406 * The KASAN report printed from ksize() is more useful, then when
1407 * it's printed later when the behaviour could be undefined due to
1408 * a potential use-after-free or double-free.
0d4ca4c9 1409 *
611806b4
AK
1410 * We use kasan_check_byte(), which is supported for the hardware
1411 * tag-based KASAN mode, unlike kasan_check_read/write().
1412 *
1413 * If the pointed to memory is invalid, we return 0 to avoid users of
0d4ca4c9
ME
1414 * ksize() writing to and potentially corrupting the memory region.
1415 *
1416 * We want to perform the check before __ksize(), to avoid potentially
1417 * crashing in __ksize() due to accessing invalid metadata.
1418 */
611806b4 1419 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
0d4ca4c9
ME
1420 return 0;
1421
38931d89 1422 return kfence_ksize(objp) ?: __ksize(objp);
10d1f8cb
ME
1423}
1424EXPORT_SYMBOL(ksize);
1425
928cec9c
AR
1426/* Tracepoints definitions. */
1427EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1428EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
928cec9c
AR
1429EXPORT_TRACEPOINT_SYMBOL(kfree);
1430EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb 1431
This page took 0.915187 seconds and 4 git commands to generate.