]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * linux/mm/page_alloc.c | |
4 | * | |
5 | * Manages the free list, the system allocates free pages here. | |
6 | * Note that kmalloc() lives in slab.c | |
7 | * | |
8 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
9 | * Swap reorganised 29.12.95, Stephen Tweedie | |
10 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
11 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | |
12 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | |
13 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | |
14 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | |
15 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | |
16 | */ | |
17 | ||
1da177e4 LT |
18 | #include <linux/stddef.h> |
19 | #include <linux/mm.h> | |
ca79b0c2 | 20 | #include <linux/highmem.h> |
1da177e4 | 21 | #include <linux/interrupt.h> |
10ed273f | 22 | #include <linux/jiffies.h> |
1da177e4 | 23 | #include <linux/compiler.h> |
9f158333 | 24 | #include <linux/kernel.h> |
b8c73fc2 | 25 | #include <linux/kasan.h> |
b073d7f8 | 26 | #include <linux/kmsan.h> |
1da177e4 LT |
27 | #include <linux/module.h> |
28 | #include <linux/suspend.h> | |
a238ab5b | 29 | #include <linux/ratelimit.h> |
5a3135c2 | 30 | #include <linux/oom.h> |
1da177e4 LT |
31 | #include <linux/topology.h> |
32 | #include <linux/sysctl.h> | |
33 | #include <linux/cpu.h> | |
34 | #include <linux/cpuset.h> | |
90491d87 | 35 | #include <linux/pagevec.h> |
bdc8cb98 | 36 | #include <linux/memory_hotplug.h> |
1da177e4 | 37 | #include <linux/nodemask.h> |
a6cccdc3 | 38 | #include <linux/vmstat.h> |
933e312e | 39 | #include <linux/fault-inject.h> |
56de7263 | 40 | #include <linux/compaction.h> |
0d3d062a | 41 | #include <trace/events/kmem.h> |
d379f01d | 42 | #include <trace/events/oom.h> |
268bb0ce | 43 | #include <linux/prefetch.h> |
6e543d57 | 44 | #include <linux/mm_inline.h> |
f920e413 | 45 | #include <linux/mmu_notifier.h> |
041d3a8c | 46 | #include <linux/migrate.h> |
5b3cc15a | 47 | #include <linux/sched/mm.h> |
48c96a36 | 48 | #include <linux/page_owner.h> |
df4e817b | 49 | #include <linux/page_table_check.h> |
4949148a | 50 | #include <linux/memcontrol.h> |
42c269c8 | 51 | #include <linux/ftrace.h> |
d92a8cfc | 52 | #include <linux/lockdep.h> |
eb414681 | 53 | #include <linux/psi.h> |
4aab2be0 | 54 | #include <linux/khugepaged.h> |
5bf18281 | 55 | #include <linux/delayacct.h> |
362d37a1 | 56 | #include <linux/cacheinfo.h> |
dcfe378c | 57 | #include <linux/pgalloc_tag.h> |
ac924c60 | 58 | #include <asm/div64.h> |
1da177e4 | 59 | #include "internal.h" |
e900a918 | 60 | #include "shuffle.h" |
36e66c55 | 61 | #include "page_reporting.h" |
1da177e4 | 62 | |
f04a5d5d DH |
63 | /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ |
64 | typedef int __bitwise fpi_t; | |
65 | ||
66 | /* No special request */ | |
67 | #define FPI_NONE ((__force fpi_t)0) | |
68 | ||
69 | /* | |
70 | * Skip free page reporting notification for the (possibly merged) page. | |
71 | * This does not hinder free page reporting from grabbing the page, | |
72 | * reporting it and marking it "reported" - it only skips notifying | |
73 | * the free page reporting infrastructure about a newly freed page. For | |
74 | * example, used when temporarily pulling a page from a freelist and | |
75 | * putting it back unmodified. | |
76 | */ | |
77 | #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) | |
78 | ||
47b6a24a DH |
79 | /* |
80 | * Place the (possibly merged) page to the tail of the freelist. Will ignore | |
81 | * page shuffling (relevant code - e.g., memory onlining - is expected to | |
82 | * shuffle the whole zone). | |
83 | * | |
84 | * Note: No code should rely on this flag for correctness - it's purely | |
85 | * to allow for optimizations when handing back either fresh pages | |
86 | * (memory onlining) or untouched pages (page isolation, free page | |
87 | * reporting). | |
88 | */ | |
89 | #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) | |
90 | ||
c8e251fa CS |
91 | /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ |
92 | static DEFINE_MUTEX(pcp_batch_high_lock); | |
74f44822 | 93 | #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) |
c8e251fa | 94 | |
4b23a68f MG |
95 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) |
96 | /* | |
97 | * On SMP, spin_trylock is sufficient protection. | |
98 | * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. | |
99 | */ | |
100 | #define pcp_trylock_prepare(flags) do { } while (0) | |
101 | #define pcp_trylock_finish(flag) do { } while (0) | |
102 | #else | |
103 | ||
104 | /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ | |
105 | #define pcp_trylock_prepare(flags) local_irq_save(flags) | |
106 | #define pcp_trylock_finish(flags) local_irq_restore(flags) | |
107 | #endif | |
108 | ||
01b44456 MG |
109 | /* |
110 | * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid | |
111 | * a migration causing the wrong PCP to be locked and remote memory being | |
112 | * potentially allocated, pin the task to the CPU for the lookup+lock. | |
113 | * preempt_disable is used on !RT because it is faster than migrate_disable. | |
114 | * migrate_disable is used on RT because otherwise RT spinlock usage is | |
115 | * interfered with and a high priority task cannot preempt the allocator. | |
116 | */ | |
117 | #ifndef CONFIG_PREEMPT_RT | |
118 | #define pcpu_task_pin() preempt_disable() | |
119 | #define pcpu_task_unpin() preempt_enable() | |
120 | #else | |
121 | #define pcpu_task_pin() migrate_disable() | |
122 | #define pcpu_task_unpin() migrate_enable() | |
123 | #endif | |
c8e251fa | 124 | |
01b44456 MG |
125 | /* |
126 | * Generic helper to lookup and a per-cpu variable with an embedded spinlock. | |
127 | * Return value should be used with equivalent unlock helper. | |
128 | */ | |
129 | #define pcpu_spin_lock(type, member, ptr) \ | |
130 | ({ \ | |
131 | type *_ret; \ | |
132 | pcpu_task_pin(); \ | |
133 | _ret = this_cpu_ptr(ptr); \ | |
134 | spin_lock(&_ret->member); \ | |
135 | _ret; \ | |
136 | }) | |
137 | ||
57490774 | 138 | #define pcpu_spin_trylock(type, member, ptr) \ |
01b44456 MG |
139 | ({ \ |
140 | type *_ret; \ | |
141 | pcpu_task_pin(); \ | |
142 | _ret = this_cpu_ptr(ptr); \ | |
57490774 | 143 | if (!spin_trylock(&_ret->member)) { \ |
01b44456 MG |
144 | pcpu_task_unpin(); \ |
145 | _ret = NULL; \ | |
146 | } \ | |
147 | _ret; \ | |
148 | }) | |
149 | ||
150 | #define pcpu_spin_unlock(member, ptr) \ | |
151 | ({ \ | |
152 | spin_unlock(&ptr->member); \ | |
153 | pcpu_task_unpin(); \ | |
154 | }) | |
155 | ||
01b44456 MG |
156 | /* struct per_cpu_pages specific helpers. */ |
157 | #define pcp_spin_lock(ptr) \ | |
158 | pcpu_spin_lock(struct per_cpu_pages, lock, ptr) | |
159 | ||
57490774 MG |
160 | #define pcp_spin_trylock(ptr) \ |
161 | pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) | |
01b44456 MG |
162 | |
163 | #define pcp_spin_unlock(ptr) \ | |
164 | pcpu_spin_unlock(lock, ptr) | |
165 | ||
72812019 LS |
166 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID |
167 | DEFINE_PER_CPU(int, numa_node); | |
168 | EXPORT_PER_CPU_SYMBOL(numa_node); | |
169 | #endif | |
170 | ||
4518085e KW |
171 | DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); |
172 | ||
7aac7898 LS |
173 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
174 | /* | |
175 | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | |
176 | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | |
177 | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | |
178 | * defined in <linux/topology.h>. | |
179 | */ | |
180 | DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ | |
181 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | |
182 | #endif | |
183 | ||
8b885f53 | 184 | static DEFINE_MUTEX(pcpu_drain_mutex); |
bd233f53 | 185 | |
38addce8 | 186 | #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY |
58bea414 | 187 | volatile unsigned long latent_entropy __latent_entropy; |
38addce8 ER |
188 | EXPORT_SYMBOL(latent_entropy); |
189 | #endif | |
190 | ||
1da177e4 | 191 | /* |
13808910 | 192 | * Array of node states. |
1da177e4 | 193 | */ |
13808910 CL |
194 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
195 | [N_POSSIBLE] = NODE_MASK_ALL, | |
196 | [N_ONLINE] = { { [0] = 1UL } }, | |
197 | #ifndef CONFIG_NUMA | |
198 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, | |
199 | #ifdef CONFIG_HIGHMEM | |
200 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, | |
20b2f52b | 201 | #endif |
20b2f52b | 202 | [N_MEMORY] = { { [0] = 1UL } }, |
13808910 CL |
203 | [N_CPU] = { { [0] = 1UL } }, |
204 | #endif /* NUMA */ | |
205 | }; | |
206 | EXPORT_SYMBOL(node_states); | |
207 | ||
dcce284a | 208 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
6471384a | 209 | |
d9c23400 | 210 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
d00181b9 | 211 | unsigned int pageblock_order __read_mostly; |
d9c23400 MG |
212 | #endif |
213 | ||
7fef431b DH |
214 | static void __free_pages_ok(struct page *page, unsigned int order, |
215 | fpi_t fpi_flags); | |
a226f6c8 | 216 | |
1da177e4 LT |
217 | /* |
218 | * results with 256, 32 in the lowmem_reserve sysctl: | |
219 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | |
220 | * 1G machine -> (16M dma, 784M normal, 224M high) | |
221 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | |
222 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | |
84109e15 | 223 | * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA |
a2f1b424 AK |
224 | * |
225 | * TBD: should special case ZONE_DMA32 machines here - in those we normally | |
226 | * don't need any ZONE_NORMAL reservation | |
1da177e4 | 227 | */ |
62069aac | 228 | static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { |
4b51d669 | 229 | #ifdef CONFIG_ZONE_DMA |
d3cda233 | 230 | [ZONE_DMA] = 256, |
4b51d669 | 231 | #endif |
fb0e7942 | 232 | #ifdef CONFIG_ZONE_DMA32 |
d3cda233 | 233 | [ZONE_DMA32] = 256, |
fb0e7942 | 234 | #endif |
d3cda233 | 235 | [ZONE_NORMAL] = 32, |
e53ef38d | 236 | #ifdef CONFIG_HIGHMEM |
d3cda233 | 237 | [ZONE_HIGHMEM] = 0, |
e53ef38d | 238 | #endif |
d3cda233 | 239 | [ZONE_MOVABLE] = 0, |
2f1b6248 | 240 | }; |
1da177e4 | 241 | |
9420f89d | 242 | char * const zone_names[MAX_NR_ZONES] = { |
4b51d669 | 243 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 244 | "DMA", |
4b51d669 | 245 | #endif |
fb0e7942 | 246 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 247 | "DMA32", |
fb0e7942 | 248 | #endif |
2f1b6248 | 249 | "Normal", |
e53ef38d | 250 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 251 | "HighMem", |
e53ef38d | 252 | #endif |
2a1e274a | 253 | "Movable", |
033fbae9 DW |
254 | #ifdef CONFIG_ZONE_DEVICE |
255 | "Device", | |
256 | #endif | |
2f1b6248 CL |
257 | }; |
258 | ||
c999fbd3 | 259 | const char * const migratetype_names[MIGRATE_TYPES] = { |
60f30350 VB |
260 | "Unmovable", |
261 | "Movable", | |
262 | "Reclaimable", | |
263 | "HighAtomic", | |
264 | #ifdef CONFIG_CMA | |
265 | "CMA", | |
266 | #endif | |
267 | #ifdef CONFIG_MEMORY_ISOLATION | |
268 | "Isolate", | |
269 | #endif | |
270 | }; | |
271 | ||
1da177e4 | 272 | int min_free_kbytes = 1024; |
42aa83cb | 273 | int user_min_free_kbytes = -1; |
e95d372c KW |
274 | static int watermark_boost_factor __read_mostly = 15000; |
275 | static int watermark_scale_factor = 10; | |
0ee332c1 TH |
276 | |
277 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | |
278 | int movable_zone; | |
279 | EXPORT_SYMBOL(movable_zone); | |
c713216d | 280 | |
418508c1 | 281 | #if MAX_NUMNODES > 1 |
b9726c26 | 282 | unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; |
ce0725f7 | 283 | unsigned int nr_online_nodes __read_mostly = 1; |
418508c1 | 284 | EXPORT_SYMBOL(nr_node_ids); |
62bc62a8 | 285 | EXPORT_SYMBOL(nr_online_nodes); |
418508c1 MS |
286 | #endif |
287 | ||
dcdfdd40 KS |
288 | static bool page_contains_unaccepted(struct page *page, unsigned int order); |
289 | static void accept_page(struct page *page, unsigned int order); | |
290 | static bool try_to_accept_memory(struct zone *zone, unsigned int order); | |
291 | static inline bool has_unaccepted_memory(void); | |
292 | static bool __free_unaccepted(struct page *page); | |
293 | ||
9ef9acb0 MG |
294 | int page_group_by_mobility_disabled __read_mostly; |
295 | ||
3a80a7fa | 296 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
3c0c12cc WL |
297 | /* |
298 | * During boot we initialize deferred pages on-demand, as needed, but once | |
299 | * page_alloc_init_late() has finished, the deferred pages are all initialized, | |
300 | * and we can permanently disable that path. | |
301 | */ | |
9420f89d | 302 | DEFINE_STATIC_KEY_TRUE(deferred_pages); |
3c0c12cc | 303 | |
94ae8b83 | 304 | static inline bool deferred_pages_enabled(void) |
3c0c12cc | 305 | { |
94ae8b83 | 306 | return static_branch_unlikely(&deferred_pages); |
3c0c12cc WL |
307 | } |
308 | ||
3a80a7fa | 309 | /* |
9420f89d MRI |
310 | * deferred_grow_zone() is __init, but it is called from |
311 | * get_page_from_freelist() during early boot until deferred_pages permanently | |
312 | * disables this call. This is why we have refdata wrapper to avoid warning, | |
313 | * and to ensure that the function body gets unloaded. | |
3a80a7fa | 314 | */ |
9420f89d MRI |
315 | static bool __ref |
316 | _deferred_grow_zone(struct zone *zone, unsigned int order) | |
3a80a7fa | 317 | { |
96a5c186 | 318 | return deferred_grow_zone(zone, order); |
3a80a7fa MG |
319 | } |
320 | #else | |
94ae8b83 | 321 | static inline bool deferred_pages_enabled(void) |
2c335680 | 322 | { |
94ae8b83 | 323 | return false; |
2c335680 | 324 | } |
9420f89d | 325 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
3a80a7fa | 326 | |
0b423ca2 | 327 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
ca891f41 | 328 | static inline unsigned long *get_pageblock_bitmap(const struct page *page, |
0b423ca2 MG |
329 | unsigned long pfn) |
330 | { | |
331 | #ifdef CONFIG_SPARSEMEM | |
f1eca35a | 332 | return section_to_usemap(__pfn_to_section(pfn)); |
0b423ca2 MG |
333 | #else |
334 | return page_zone(page)->pageblock_flags; | |
335 | #endif /* CONFIG_SPARSEMEM */ | |
336 | } | |
337 | ||
ca891f41 | 338 | static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) |
0b423ca2 MG |
339 | { |
340 | #ifdef CONFIG_SPARSEMEM | |
341 | pfn &= (PAGES_PER_SECTION-1); | |
0b423ca2 | 342 | #else |
4f9bc69a | 343 | pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); |
0b423ca2 | 344 | #endif /* CONFIG_SPARSEMEM */ |
399b795b | 345 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
0b423ca2 MG |
346 | } |
347 | ||
a04d12c2 KS |
348 | /** |
349 | * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages | |
350 | * @page: The page within the block of interest | |
351 | * @pfn: The target page frame number | |
352 | * @mask: mask of bits that the caller is interested in | |
353 | * | |
354 | * Return: pageblock_bits flags | |
355 | */ | |
356 | unsigned long get_pfnblock_flags_mask(const struct page *page, | |
357 | unsigned long pfn, unsigned long mask) | |
0b423ca2 MG |
358 | { |
359 | unsigned long *bitmap; | |
360 | unsigned long bitidx, word_bitidx; | |
361 | unsigned long word; | |
362 | ||
363 | bitmap = get_pageblock_bitmap(page, pfn); | |
364 | bitidx = pfn_to_bitidx(page, pfn); | |
365 | word_bitidx = bitidx / BITS_PER_LONG; | |
366 | bitidx &= (BITS_PER_LONG-1); | |
1c563432 MK |
367 | /* |
368 | * This races, without locks, with set_pfnblock_flags_mask(). Ensure | |
369 | * a consistent read of the memory array, so that results, even though | |
370 | * racy, are not corrupted. | |
371 | */ | |
372 | word = READ_ONCE(bitmap[word_bitidx]); | |
d93d5ab9 | 373 | return (word >> bitidx) & mask; |
0b423ca2 MG |
374 | } |
375 | ||
ca891f41 MWO |
376 | static __always_inline int get_pfnblock_migratetype(const struct page *page, |
377 | unsigned long pfn) | |
0b423ca2 | 378 | { |
a04d12c2 | 379 | return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); |
0b423ca2 MG |
380 | } |
381 | ||
382 | /** | |
383 | * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages | |
384 | * @page: The page within the block of interest | |
385 | * @flags: The flags to set | |
386 | * @pfn: The target page frame number | |
0b423ca2 MG |
387 | * @mask: mask of bits that the caller is interested in |
388 | */ | |
389 | void set_pfnblock_flags_mask(struct page *page, unsigned long flags, | |
390 | unsigned long pfn, | |
0b423ca2 MG |
391 | unsigned long mask) |
392 | { | |
393 | unsigned long *bitmap; | |
394 | unsigned long bitidx, word_bitidx; | |
04ec0061 | 395 | unsigned long word; |
0b423ca2 MG |
396 | |
397 | BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); | |
125b860b | 398 | BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); |
0b423ca2 MG |
399 | |
400 | bitmap = get_pageblock_bitmap(page, pfn); | |
401 | bitidx = pfn_to_bitidx(page, pfn); | |
402 | word_bitidx = bitidx / BITS_PER_LONG; | |
403 | bitidx &= (BITS_PER_LONG-1); | |
404 | ||
405 | VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); | |
406 | ||
d93d5ab9 WY |
407 | mask <<= bitidx; |
408 | flags <<= bitidx; | |
0b423ca2 MG |
409 | |
410 | word = READ_ONCE(bitmap[word_bitidx]); | |
04ec0061 UB |
411 | do { |
412 | } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); | |
0b423ca2 | 413 | } |
3a80a7fa | 414 | |
ee6f509c | 415 | void set_pageblock_migratetype(struct page *page, int migratetype) |
b2a0ac88 | 416 | { |
5d0f3f72 KM |
417 | if (unlikely(page_group_by_mobility_disabled && |
418 | migratetype < MIGRATE_PCPTYPES)) | |
49255c61 MG |
419 | migratetype = MIGRATE_UNMOVABLE; |
420 | ||
d93d5ab9 | 421 | set_pfnblock_flags_mask(page, (unsigned long)migratetype, |
535b81e2 | 422 | page_to_pfn(page), MIGRATETYPE_MASK); |
b2a0ac88 MG |
423 | } |
424 | ||
13e7444b | 425 | #ifdef CONFIG_DEBUG_VM |
c6a57e19 | 426 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
1da177e4 | 427 | { |
82d9b8c8 | 428 | int ret; |
bdc8cb98 DH |
429 | unsigned seq; |
430 | unsigned long pfn = page_to_pfn(page); | |
b5e6a5a2 | 431 | unsigned long sp, start_pfn; |
c6a57e19 | 432 | |
bdc8cb98 DH |
433 | do { |
434 | seq = zone_span_seqbegin(zone); | |
b5e6a5a2 CS |
435 | start_pfn = zone->zone_start_pfn; |
436 | sp = zone->spanned_pages; | |
82d9b8c8 | 437 | ret = !zone_spans_pfn(zone, pfn); |
bdc8cb98 DH |
438 | } while (zone_span_seqretry(zone, seq)); |
439 | ||
b5e6a5a2 | 440 | if (ret) |
613813e8 DH |
441 | pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", |
442 | pfn, zone_to_nid(zone), zone->name, | |
443 | start_pfn, start_pfn + sp); | |
b5e6a5a2 | 444 | |
bdc8cb98 | 445 | return ret; |
c6a57e19 DH |
446 | } |
447 | ||
c6a57e19 DH |
448 | /* |
449 | * Temporary debugging check for pages not lying within a given zone. | |
450 | */ | |
5bb14214 | 451 | static bool __maybe_unused bad_range(struct zone *zone, struct page *page) |
c6a57e19 DH |
452 | { |
453 | if (page_outside_zone_boundaries(zone, page)) | |
5bb14214 | 454 | return true; |
5b855aa3 | 455 | if (zone != page_zone(page)) |
5bb14214 | 456 | return true; |
c6a57e19 | 457 | |
5bb14214 | 458 | return false; |
1da177e4 | 459 | } |
13e7444b | 460 | #else |
5bb14214 | 461 | static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) |
13e7444b | 462 | { |
5bb14214 | 463 | return false; |
13e7444b NP |
464 | } |
465 | #endif | |
466 | ||
82a3241a | 467 | static void bad_page(struct page *page, const char *reason) |
1da177e4 | 468 | { |
d936cf9b HD |
469 | static unsigned long resume; |
470 | static unsigned long nr_shown; | |
471 | static unsigned long nr_unshown; | |
472 | ||
473 | /* | |
474 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
475 | * or allow a steady drip of one report per second. | |
476 | */ | |
477 | if (nr_shown == 60) { | |
478 | if (time_before(jiffies, resume)) { | |
479 | nr_unshown++; | |
480 | goto out; | |
481 | } | |
482 | if (nr_unshown) { | |
ff8e8116 | 483 | pr_alert( |
1e9e6365 | 484 | "BUG: Bad page state: %lu messages suppressed\n", |
d936cf9b HD |
485 | nr_unshown); |
486 | nr_unshown = 0; | |
487 | } | |
488 | nr_shown = 0; | |
489 | } | |
490 | if (nr_shown++ == 0) | |
491 | resume = jiffies + 60 * HZ; | |
492 | ||
ff8e8116 | 493 | pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", |
3dc14741 | 494 | current->comm, page_to_pfn(page)); |
d2f07ec0 | 495 | dump_page(page, reason); |
3dc14741 | 496 | |
4f31888c | 497 | print_modules(); |
1da177e4 | 498 | dump_stack(); |
d936cf9b | 499 | out: |
8cc3b392 | 500 | /* Leave bad fields for debug, except PageBuddy could make trouble */ |
22b751c3 | 501 | page_mapcount_reset(page); /* remove PageBuddy */ |
373d4d09 | 502 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 LT |
503 | } |
504 | ||
44042b44 MG |
505 | static inline unsigned int order_to_pindex(int migratetype, int order) |
506 | { | |
44042b44 MG |
507 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
508 | if (order > PAGE_ALLOC_COSTLY_ORDER) { | |
6303d1c5 | 509 | VM_BUG_ON(order != HPAGE_PMD_ORDER); |
5d0a661d | 510 | return NR_LOWORDER_PCP_LISTS; |
44042b44 MG |
511 | } |
512 | #else | |
513 | VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); | |
514 | #endif | |
515 | ||
c1dc69e6 | 516 | return (MIGRATE_PCPTYPES * order) + migratetype; |
44042b44 MG |
517 | } |
518 | ||
519 | static inline int pindex_to_order(unsigned int pindex) | |
520 | { | |
521 | int order = pindex / MIGRATE_PCPTYPES; | |
522 | ||
523 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
5d0a661d | 524 | if (pindex == NR_LOWORDER_PCP_LISTS) |
6303d1c5 | 525 | order = HPAGE_PMD_ORDER; |
44042b44 MG |
526 | #else |
527 | VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); | |
528 | #endif | |
529 | ||
530 | return order; | |
531 | } | |
532 | ||
533 | static inline bool pcp_allowed_order(unsigned int order) | |
534 | { | |
535 | if (order <= PAGE_ALLOC_COSTLY_ORDER) | |
536 | return true; | |
537 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
6303d1c5 | 538 | if (order == HPAGE_PMD_ORDER) |
44042b44 MG |
539 | return true; |
540 | #endif | |
541 | return false; | |
542 | } | |
543 | ||
1da177e4 LT |
544 | /* |
545 | * Higher-order pages are called "compound pages". They are structured thusly: | |
546 | * | |
1d798ca3 | 547 | * The first PAGE_SIZE page is called the "head page" and have PG_head set. |
1da177e4 | 548 | * |
1d798ca3 KS |
549 | * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded |
550 | * in bit 0 of page->compound_head. The rest of bits is pointer to head page. | |
1da177e4 | 551 | * |
1d798ca3 | 552 | * The first tail page's ->compound_order holds the order of allocation. |
41d78ba5 | 553 | * This usage means that zero-order pages may not be compound. |
1da177e4 | 554 | */ |
d98c7a09 | 555 | |
d00181b9 | 556 | void prep_compound_page(struct page *page, unsigned int order) |
18229df5 AW |
557 | { |
558 | int i; | |
559 | int nr_pages = 1 << order; | |
560 | ||
18229df5 | 561 | __SetPageHead(page); |
5b24eeef JM |
562 | for (i = 1; i < nr_pages; i++) |
563 | prep_compound_tail(page, i); | |
1378a5ee | 564 | |
5b24eeef | 565 | prep_compound_head(page, order); |
18229df5 AW |
566 | } |
567 | ||
ab130f91 | 568 | static inline void set_buddy_order(struct page *page, unsigned int order) |
6aa3001b | 569 | { |
4c21e2f2 | 570 | set_page_private(page, order); |
676165a8 | 571 | __SetPageBuddy(page); |
1da177e4 LT |
572 | } |
573 | ||
5e1f0f09 MG |
574 | #ifdef CONFIG_COMPACTION |
575 | static inline struct capture_control *task_capc(struct zone *zone) | |
576 | { | |
577 | struct capture_control *capc = current->capture_control; | |
578 | ||
deba0487 | 579 | return unlikely(capc) && |
5e1f0f09 MG |
580 | !(current->flags & PF_KTHREAD) && |
581 | !capc->page && | |
deba0487 | 582 | capc->cc->zone == zone ? capc : NULL; |
5e1f0f09 MG |
583 | } |
584 | ||
585 | static inline bool | |
586 | compaction_capture(struct capture_control *capc, struct page *page, | |
587 | int order, int migratetype) | |
588 | { | |
589 | if (!capc || order != capc->cc->order) | |
590 | return false; | |
591 | ||
592 | /* Do not accidentally pollute CMA or isolated regions*/ | |
593 | if (is_migrate_cma(migratetype) || | |
594 | is_migrate_isolate(migratetype)) | |
595 | return false; | |
596 | ||
597 | /* | |
231f8c71 BW |
598 | * Do not let lower order allocations pollute a movable pageblock |
599 | * unless compaction is also requesting movable pages. | |
5e1f0f09 MG |
600 | * This might let an unmovable request use a reclaimable pageblock |
601 | * and vice-versa but no more than normal fallback logic which can | |
602 | * have trouble finding a high-order free page. | |
603 | */ | |
231f8c71 BW |
604 | if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && |
605 | capc->cc->migratetype != MIGRATE_MOVABLE) | |
5e1f0f09 MG |
606 | return false; |
607 | ||
608 | capc->page = page; | |
609 | return true; | |
610 | } | |
611 | ||
612 | #else | |
613 | static inline struct capture_control *task_capc(struct zone *zone) | |
614 | { | |
615 | return NULL; | |
616 | } | |
617 | ||
618 | static inline bool | |
619 | compaction_capture(struct capture_control *capc, struct page *page, | |
620 | int order, int migratetype) | |
621 | { | |
622 | return false; | |
623 | } | |
624 | #endif /* CONFIG_COMPACTION */ | |
625 | ||
e0932b6c JW |
626 | static inline void account_freepages(struct zone *zone, int nr_pages, |
627 | int migratetype) | |
6ab01363 | 628 | { |
e0932b6c JW |
629 | if (is_migrate_isolate(migratetype)) |
630 | return; | |
6ab01363 | 631 | |
e0932b6c JW |
632 | __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); |
633 | ||
634 | if (is_migrate_cma(migratetype)) | |
635 | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); | |
6ab01363 AD |
636 | } |
637 | ||
638 | /* Used for pages not on another list */ | |
e0932b6c JW |
639 | static inline void __add_to_free_list(struct page *page, struct zone *zone, |
640 | unsigned int order, int migratetype, | |
641 | bool tail) | |
6ab01363 AD |
642 | { |
643 | struct free_area *area = &zone->free_area[order]; | |
644 | ||
e0932b6c JW |
645 | VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, |
646 | "page type is %lu, passed migratetype is %d (nr=%d)\n", | |
647 | get_pageblock_migratetype(page), migratetype, 1 << order); | |
648 | ||
649 | if (tail) | |
650 | list_add_tail(&page->buddy_list, &area->free_list[migratetype]); | |
651 | else | |
652 | list_add(&page->buddy_list, &area->free_list[migratetype]); | |
6ab01363 AD |
653 | area->nr_free++; |
654 | } | |
655 | ||
293ffa5e DH |
656 | /* |
657 | * Used for pages which are on another list. Move the pages to the tail | |
658 | * of the list - so the moved pages won't immediately be considered for | |
659 | * allocation again (e.g., optimization for memory onlining). | |
660 | */ | |
6ab01363 | 661 | static inline void move_to_free_list(struct page *page, struct zone *zone, |
e0932b6c | 662 | unsigned int order, int old_mt, int new_mt) |
6ab01363 AD |
663 | { |
664 | struct free_area *area = &zone->free_area[order]; | |
665 | ||
e0932b6c JW |
666 | /* Free page moving can fail, so it happens before the type update */ |
667 | VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, | |
668 | "page type is %lu, passed migratetype is %d (nr=%d)\n", | |
669 | get_pageblock_migratetype(page), old_mt, 1 << order); | |
670 | ||
671 | list_move_tail(&page->buddy_list, &area->free_list[new_mt]); | |
672 | ||
673 | account_freepages(zone, -(1 << order), old_mt); | |
674 | account_freepages(zone, 1 << order, new_mt); | |
6ab01363 AD |
675 | } |
676 | ||
e0932b6c JW |
677 | static inline void __del_page_from_free_list(struct page *page, struct zone *zone, |
678 | unsigned int order, int migratetype) | |
6ab01363 | 679 | { |
e0932b6c JW |
680 | VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, |
681 | "page type is %lu, passed migratetype is %d (nr=%d)\n", | |
682 | get_pageblock_migratetype(page), migratetype, 1 << order); | |
683 | ||
36e66c55 AD |
684 | /* clear reported state and update reported page count */ |
685 | if (page_reported(page)) | |
686 | __ClearPageReported(page); | |
687 | ||
bf75f200 | 688 | list_del(&page->buddy_list); |
6ab01363 AD |
689 | __ClearPageBuddy(page); |
690 | set_page_private(page, 0); | |
691 | zone->free_area[order].nr_free--; | |
692 | } | |
693 | ||
e0932b6c JW |
694 | static inline void del_page_from_free_list(struct page *page, struct zone *zone, |
695 | unsigned int order, int migratetype) | |
696 | { | |
697 | __del_page_from_free_list(page, zone, order, migratetype); | |
698 | account_freepages(zone, -(1 << order), migratetype); | |
699 | } | |
700 | ||
5d671eb4 MRI |
701 | static inline struct page *get_page_from_free_area(struct free_area *area, |
702 | int migratetype) | |
703 | { | |
704 | return list_first_entry_or_null(&area->free_list[migratetype], | |
1bf61092 | 705 | struct page, buddy_list); |
5d671eb4 MRI |
706 | } |
707 | ||
a2129f24 AD |
708 | /* |
709 | * If this is not the largest possible page, check if the buddy | |
710 | * of the next-highest order is free. If it is, it's possible | |
711 | * that pages are being freed that will coalesce soon. In case, | |
712 | * that is happening, add the free page to the tail of the list | |
713 | * so it's less likely to be used soon and more likely to be merged | |
714 | * as a higher order page | |
715 | */ | |
716 | static inline bool | |
717 | buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, | |
718 | struct page *page, unsigned int order) | |
719 | { | |
8170ac47 ZY |
720 | unsigned long higher_page_pfn; |
721 | struct page *higher_page; | |
a2129f24 | 722 | |
5e0a760b | 723 | if (order >= MAX_PAGE_ORDER - 1) |
a2129f24 AD |
724 | return false; |
725 | ||
8170ac47 ZY |
726 | higher_page_pfn = buddy_pfn & pfn; |
727 | higher_page = page + (higher_page_pfn - pfn); | |
a2129f24 | 728 | |
8170ac47 ZY |
729 | return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, |
730 | NULL) != NULL; | |
a2129f24 AD |
731 | } |
732 | ||
1da177e4 LT |
733 | /* |
734 | * Freeing function for a buddy system allocator. | |
735 | * | |
736 | * The concept of a buddy system is to maintain direct-mapped table | |
737 | * (containing bit values) for memory blocks of various "orders". | |
738 | * The bottom level table contains the map for the smallest allocatable | |
739 | * units of memory (here, pages), and each level above it describes | |
740 | * pairs of units from the levels below, hence, "buddies". | |
741 | * At a high level, all that happens here is marking the table entry | |
742 | * at the bottom level available, and propagating the changes upward | |
743 | * as necessary, plus some accounting needed to play nicely with other | |
744 | * parts of the VM system. | |
745 | * At each level, we keep a list of pages, which are heads of continuous | |
6e292b9b MW |
746 | * free pages of length of (1 << order) and marked with PageBuddy. |
747 | * Page's order is recorded in page_private(page) field. | |
1da177e4 | 748 | * So when we are allocating or freeing one, we can derive the state of the |
5f63b720 MN |
749 | * other. That is, if we allocate a small block, and both were |
750 | * free, the remainder of the region must be split into blocks. | |
1da177e4 | 751 | * If a block is freed, and its buddy is also free, then this |
5f63b720 | 752 | * triggers coalescing into a block of larger size. |
1da177e4 | 753 | * |
6d49e352 | 754 | * -- nyc |
1da177e4 LT |
755 | */ |
756 | ||
48db57f8 | 757 | static inline void __free_one_page(struct page *page, |
dc4b0caf | 758 | unsigned long pfn, |
ed0ae21d | 759 | struct zone *zone, unsigned int order, |
f04a5d5d | 760 | int migratetype, fpi_t fpi_flags) |
1da177e4 | 761 | { |
a2129f24 | 762 | struct capture_control *capc = task_capc(zone); |
dae37a5d | 763 | unsigned long buddy_pfn = 0; |
a2129f24 | 764 | unsigned long combined_pfn; |
a2129f24 AD |
765 | struct page *buddy; |
766 | bool to_tail; | |
d9dddbf5 | 767 | |
d29bb978 | 768 | VM_BUG_ON(!zone_is_initialized(zone)); |
6e9f0d58 | 769 | VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); |
1da177e4 | 770 | |
ed0ae21d | 771 | VM_BUG_ON(migratetype == -1); |
76741e77 | 772 | VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); |
309381fe | 773 | VM_BUG_ON_PAGE(bad_range(zone, page), page); |
1da177e4 | 774 | |
e0932b6c JW |
775 | account_freepages(zone, 1 << order, migratetype); |
776 | ||
5e0a760b | 777 | while (order < MAX_PAGE_ORDER) { |
e0932b6c JW |
778 | int buddy_mt = migratetype; |
779 | ||
5e1f0f09 | 780 | if (compaction_capture(capc, page, order, migratetype)) { |
e0932b6c | 781 | account_freepages(zone, -(1 << order), migratetype); |
5e1f0f09 MG |
782 | return; |
783 | } | |
13ad59df | 784 | |
8170ac47 ZY |
785 | buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); |
786 | if (!buddy) | |
d9dddbf5 | 787 | goto done_merging; |
bb0e28eb ZY |
788 | |
789 | if (unlikely(order >= pageblock_order)) { | |
790 | /* | |
791 | * We want to prevent merge between freepages on pageblock | |
792 | * without fallbacks and normal pageblock. Without this, | |
793 | * pageblock isolation could cause incorrect freepage or CMA | |
794 | * accounting or HIGHATOMIC accounting. | |
795 | */ | |
e0932b6c | 796 | buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); |
bb0e28eb | 797 | |
e0932b6c JW |
798 | if (migratetype != buddy_mt && |
799 | (!migratetype_is_mergeable(migratetype) || | |
800 | !migratetype_is_mergeable(buddy_mt))) | |
801 | goto done_merging; | |
bb0e28eb ZY |
802 | } |
803 | ||
c0a32fc5 SG |
804 | /* |
805 | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | |
806 | * merge with it and move up one order. | |
807 | */ | |
b03641af | 808 | if (page_is_guard(buddy)) |
e0932b6c | 809 | clear_page_guard(zone, buddy, order); |
b03641af | 810 | else |
e0932b6c JW |
811 | __del_page_from_free_list(buddy, zone, order, buddy_mt); |
812 | ||
813 | if (unlikely(buddy_mt != migratetype)) { | |
814 | /* | |
815 | * Match buddy type. This ensures that an | |
816 | * expand() down the line puts the sub-blocks | |
817 | * on the right freelists. | |
818 | */ | |
819 | set_pageblock_migratetype(buddy, migratetype); | |
820 | } | |
821 | ||
76741e77 VB |
822 | combined_pfn = buddy_pfn & pfn; |
823 | page = page + (combined_pfn - pfn); | |
824 | pfn = combined_pfn; | |
1da177e4 LT |
825 | order++; |
826 | } | |
d9dddbf5 VB |
827 | |
828 | done_merging: | |
ab130f91 | 829 | set_buddy_order(page, order); |
6dda9d55 | 830 | |
47b6a24a DH |
831 | if (fpi_flags & FPI_TO_TAIL) |
832 | to_tail = true; | |
833 | else if (is_shuffle_order(order)) | |
a2129f24 | 834 | to_tail = shuffle_pick_tail(); |
97500a4a | 835 | else |
a2129f24 | 836 | to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); |
97500a4a | 837 | |
e0932b6c | 838 | __add_to_free_list(page, zone, order, migratetype, to_tail); |
36e66c55 AD |
839 | |
840 | /* Notify page reporting subsystem of freed page */ | |
f04a5d5d | 841 | if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) |
36e66c55 | 842 | page_reporting_notify_free(order); |
1da177e4 LT |
843 | } |
844 | ||
7bfec6f4 MG |
845 | /* |
846 | * A bad page could be due to a number of fields. Instead of multiple branches, | |
847 | * try and check multiple fields with one check. The caller must do a detailed | |
848 | * check if necessary. | |
849 | */ | |
850 | static inline bool page_expected_state(struct page *page, | |
851 | unsigned long check_flags) | |
852 | { | |
853 | if (unlikely(atomic_read(&page->_mapcount) != -1)) | |
854 | return false; | |
855 | ||
856 | if (unlikely((unsigned long)page->mapping | | |
857 | page_ref_count(page) | | |
858 | #ifdef CONFIG_MEMCG | |
48060834 | 859 | page->memcg_data | |
dba1b8a7 JDB |
860 | #endif |
861 | #ifdef CONFIG_PAGE_POOL | |
862 | ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | | |
7bfec6f4 MG |
863 | #endif |
864 | (page->flags & check_flags))) | |
865 | return false; | |
866 | ||
867 | return true; | |
868 | } | |
869 | ||
58b7f119 | 870 | static const char *page_bad_reason(struct page *page, unsigned long flags) |
1da177e4 | 871 | { |
82a3241a | 872 | const char *bad_reason = NULL; |
f0b791a3 | 873 | |
53f9263b | 874 | if (unlikely(atomic_read(&page->_mapcount) != -1)) |
f0b791a3 DH |
875 | bad_reason = "nonzero mapcount"; |
876 | if (unlikely(page->mapping != NULL)) | |
877 | bad_reason = "non-NULL mapping"; | |
fe896d18 | 878 | if (unlikely(page_ref_count(page) != 0)) |
0139aa7b | 879 | bad_reason = "nonzero _refcount"; |
58b7f119 WY |
880 | if (unlikely(page->flags & flags)) { |
881 | if (flags == PAGE_FLAGS_CHECK_AT_PREP) | |
882 | bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; | |
883 | else | |
884 | bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; | |
f0b791a3 | 885 | } |
9edad6ea | 886 | #ifdef CONFIG_MEMCG |
48060834 | 887 | if (unlikely(page->memcg_data)) |
9edad6ea | 888 | bad_reason = "page still charged to cgroup"; |
dba1b8a7 JDB |
889 | #endif |
890 | #ifdef CONFIG_PAGE_POOL | |
891 | if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) | |
892 | bad_reason = "page_pool leak"; | |
9edad6ea | 893 | #endif |
58b7f119 WY |
894 | return bad_reason; |
895 | } | |
896 | ||
a8368cd8 | 897 | static void free_page_is_bad_report(struct page *page) |
58b7f119 WY |
898 | { |
899 | bad_page(page, | |
900 | page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); | |
bb552ac6 MG |
901 | } |
902 | ||
a8368cd8 | 903 | static inline bool free_page_is_bad(struct page *page) |
bb552ac6 | 904 | { |
da838d4f | 905 | if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) |
a8368cd8 | 906 | return false; |
bb552ac6 MG |
907 | |
908 | /* Something has gone sideways, find it */ | |
a8368cd8 AM |
909 | free_page_is_bad_report(page); |
910 | return true; | |
1da177e4 LT |
911 | } |
912 | ||
ecbb490d KW |
913 | static inline bool is_check_pages_enabled(void) |
914 | { | |
915 | return static_branch_unlikely(&check_pages_enabled); | |
916 | } | |
917 | ||
8666925c | 918 | static int free_tail_page_prepare(struct page *head_page, struct page *page) |
4db7548c | 919 | { |
94688e8e | 920 | struct folio *folio = (struct folio *)head_page; |
4db7548c MG |
921 | int ret = 1; |
922 | ||
923 | /* | |
924 | * We rely page->lru.next never has bit 0 set, unless the page | |
925 | * is PageTail(). Let's make sure that's true even for poisoned ->lru. | |
926 | */ | |
927 | BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); | |
928 | ||
ecbb490d | 929 | if (!is_check_pages_enabled()) { |
4db7548c MG |
930 | ret = 0; |
931 | goto out; | |
932 | } | |
933 | switch (page - head_page) { | |
934 | case 1: | |
cb67f428 | 935 | /* the first tail page: these may be in place of ->mapping */ |
65a689f3 MWO |
936 | if (unlikely(folio_entire_mapcount(folio))) { |
937 | bad_page(page, "nonzero entire_mapcount"); | |
4db7548c MG |
938 | goto out; |
939 | } | |
05c5323b DH |
940 | if (unlikely(folio_large_mapcount(folio))) { |
941 | bad_page(page, "nonzero large_mapcount"); | |
942 | goto out; | |
943 | } | |
65a689f3 MWO |
944 | if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { |
945 | bad_page(page, "nonzero nr_pages_mapped"); | |
cb67f428 HD |
946 | goto out; |
947 | } | |
94688e8e MWO |
948 | if (unlikely(atomic_read(&folio->_pincount))) { |
949 | bad_page(page, "nonzero pincount"); | |
cb67f428 HD |
950 | goto out; |
951 | } | |
4db7548c MG |
952 | break; |
953 | case 2: | |
b7b098cf MWO |
954 | /* the second tail page: deferred_list overlaps ->mapping */ |
955 | if (unlikely(!list_empty(&folio->_deferred_list))) { | |
956 | bad_page(page, "on deferred list"); | |
957 | goto out; | |
958 | } | |
4db7548c MG |
959 | break; |
960 | default: | |
961 | if (page->mapping != TAIL_MAPPING) { | |
82a3241a | 962 | bad_page(page, "corrupted mapping in tail page"); |
4db7548c MG |
963 | goto out; |
964 | } | |
965 | break; | |
966 | } | |
967 | if (unlikely(!PageTail(page))) { | |
82a3241a | 968 | bad_page(page, "PageTail not set"); |
4db7548c MG |
969 | goto out; |
970 | } | |
971 | if (unlikely(compound_head(page) != head_page)) { | |
82a3241a | 972 | bad_page(page, "compound_head not consistent"); |
4db7548c MG |
973 | goto out; |
974 | } | |
975 | ret = 0; | |
976 | out: | |
977 | page->mapping = NULL; | |
978 | clear_compound_head(page); | |
979 | return ret; | |
980 | } | |
981 | ||
94ae8b83 AK |
982 | /* |
983 | * Skip KASAN memory poisoning when either: | |
984 | * | |
0a54864f PC |
985 | * 1. For generic KASAN: deferred memory initialization has not yet completed. |
986 | * Tag-based KASAN modes skip pages freed via deferred memory initialization | |
987 | * using page tags instead (see below). | |
988 | * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating | |
989 | * that error detection is disabled for accesses via the page address. | |
990 | * | |
991 | * Pages will have match-all tags in the following circumstances: | |
992 | * | |
993 | * 1. Pages are being initialized for the first time, including during deferred | |
994 | * memory init; see the call to page_kasan_tag_reset in __init_single_page. | |
995 | * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the | |
996 | * exception of pages unpoisoned by kasan_unpoison_vmalloc. | |
997 | * 3. The allocation was excluded from being checked due to sampling, | |
44383cef | 998 | * see the call to kasan_unpoison_pages. |
94ae8b83 AK |
999 | * |
1000 | * Poisoning pages during deferred memory init will greatly lengthen the | |
1001 | * process and cause problem in large memory systems as the deferred pages | |
1002 | * initialization is done with interrupt disabled. | |
1003 | * | |
1004 | * Assuming that there will be no reference to those newly initialized | |
1005 | * pages before they are ever allocated, this should have no effect on | |
1006 | * KASAN memory tracking as the poison will be properly inserted at page | |
1007 | * allocation time. The only corner case is when pages are allocated by | |
1008 | * on-demand allocation and then freed again before the deferred pages | |
1009 | * initialization is done, but this is not likely to happen. | |
1010 | */ | |
5267fe5d | 1011 | static inline bool should_skip_kasan_poison(struct page *page) |
94ae8b83 | 1012 | { |
0a54864f PC |
1013 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
1014 | return deferred_pages_enabled(); | |
1015 | ||
5cb6674b | 1016 | return page_kasan_tag(page) == KASAN_TAG_KERNEL; |
94ae8b83 AK |
1017 | } |
1018 | ||
ba42b524 | 1019 | void kernel_init_pages(struct page *page, int numpages) |
6471384a AP |
1020 | { |
1021 | int i; | |
1022 | ||
9e15afa5 QC |
1023 | /* s390's use of memset() could override KASAN redzones. */ |
1024 | kasan_disable_current(); | |
d9da8f6c AK |
1025 | for (i = 0; i < numpages; i++) |
1026 | clear_highpage_kasan_tagged(page + i); | |
9e15afa5 | 1027 | kasan_enable_current(); |
6471384a AP |
1028 | } |
1029 | ||
733aea0b | 1030 | __always_inline bool free_pages_prepare(struct page *page, |
5267fe5d | 1031 | unsigned int order) |
4db7548c | 1032 | { |
e2769dbd | 1033 | int bad = 0; |
5267fe5d | 1034 | bool skip_kasan_poison = should_skip_kasan_poison(page); |
c3525330 | 1035 | bool init = want_init_on_free(); |
76f26535 | 1036 | bool compound = PageCompound(page); |
4db7548c | 1037 | |
4db7548c MG |
1038 | VM_BUG_ON_PAGE(PageTail(page), page); |
1039 | ||
e2769dbd | 1040 | trace_mm_page_free(page, order); |
b073d7f8 | 1041 | kmsan_free_page(page, order); |
e2769dbd | 1042 | |
17b46e7b BJ |
1043 | if (memcg_kmem_online() && PageMemcgKmem(page)) |
1044 | __memcg_kmem_uncharge_page(page, order); | |
1045 | ||
79f5f8fa | 1046 | if (unlikely(PageHWPoison(page)) && !order) { |
17b46e7b | 1047 | /* Do not let hwpoison pages hit pcplists/buddy */ |
79f5f8fa | 1048 | reset_page_owner(page, order); |
df4e817b | 1049 | page_table_check_free(page, order); |
dcfe378c | 1050 | pgalloc_tag_sub(page, 1 << order); |
79f5f8fa OS |
1051 | return false; |
1052 | } | |
1053 | ||
76f26535 HY |
1054 | VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); |
1055 | ||
e2769dbd MG |
1056 | /* |
1057 | * Check tail pages before head page information is cleared to | |
1058 | * avoid checking PageCompound for order-0 pages. | |
1059 | */ | |
1060 | if (unlikely(order)) { | |
e2769dbd MG |
1061 | int i; |
1062 | ||
cb67f428 | 1063 | if (compound) |
9c5ccf2d | 1064 | page[1].flags &= ~PAGE_FLAGS_SECOND; |
e2769dbd MG |
1065 | for (i = 1; i < (1 << order); i++) { |
1066 | if (compound) | |
8666925c | 1067 | bad += free_tail_page_prepare(page, page + i); |
fce0b421 | 1068 | if (is_check_pages_enabled()) { |
8666925c | 1069 | if (free_page_is_bad(page + i)) { |
700d2e9a VB |
1070 | bad++; |
1071 | continue; | |
1072 | } | |
e2769dbd MG |
1073 | } |
1074 | (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
1075 | } | |
1076 | } | |
bda807d4 | 1077 | if (PageMappingFlags(page)) |
4db7548c | 1078 | page->mapping = NULL; |
fce0b421 | 1079 | if (is_check_pages_enabled()) { |
700d2e9a VB |
1080 | if (free_page_is_bad(page)) |
1081 | bad++; | |
1082 | if (bad) | |
1083 | return false; | |
1084 | } | |
4db7548c | 1085 | |
e2769dbd MG |
1086 | page_cpupid_reset_last(page); |
1087 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
1088 | reset_page_owner(page, order); | |
df4e817b | 1089 | page_table_check_free(page, order); |
dcfe378c | 1090 | pgalloc_tag_sub(page, 1 << order); |
4db7548c MG |
1091 | |
1092 | if (!PageHighMem(page)) { | |
1093 | debug_check_no_locks_freed(page_address(page), | |
e2769dbd | 1094 | PAGE_SIZE << order); |
4db7548c | 1095 | debug_check_no_obj_freed(page_address(page), |
e2769dbd | 1096 | PAGE_SIZE << order); |
4db7548c | 1097 | } |
6471384a | 1098 | |
8db26a3d VB |
1099 | kernel_poison_pages(page, 1 << order); |
1100 | ||
f9d79e8d | 1101 | /* |
1bb5eab3 | 1102 | * As memory initialization might be integrated into KASAN, |
7c13c163 | 1103 | * KASAN poisoning and memory initialization code must be |
1bb5eab3 AK |
1104 | * kept together to avoid discrepancies in behavior. |
1105 | * | |
f9d79e8d AK |
1106 | * With hardware tag-based KASAN, memory tags must be set before the |
1107 | * page becomes unavailable via debug_pagealloc or arch_free_page. | |
1108 | */ | |
f446883d | 1109 | if (!skip_kasan_poison) { |
c3525330 | 1110 | kasan_poison_pages(page, order, init); |
f9d79e8d | 1111 | |
db8a0477 AK |
1112 | /* Memory is already initialized if KASAN did it internally. */ |
1113 | if (kasan_has_integrated_init()) | |
1114 | init = false; | |
1115 | } | |
1116 | if (init) | |
aeaec8e2 | 1117 | kernel_init_pages(page, 1 << order); |
db8a0477 | 1118 | |
234fdce8 QC |
1119 | /* |
1120 | * arch_free_page() can make the page's contents inaccessible. s390 | |
1121 | * does this. So nothing which can access the page's contents should | |
1122 | * happen after this. | |
1123 | */ | |
1124 | arch_free_page(page, order); | |
1125 | ||
77bc7fd6 | 1126 | debug_pagealloc_unmap_pages(page, 1 << order); |
d6332692 | 1127 | |
4db7548c MG |
1128 | return true; |
1129 | } | |
1130 | ||
1da177e4 | 1131 | /* |
5f8dcc21 | 1132 | * Frees a number of pages from the PCP lists |
7cba630b | 1133 | * Assumes all pages on list are in same zone. |
207f36ee | 1134 | * count is the number of pages to free. |
1da177e4 | 1135 | */ |
5f8dcc21 | 1136 | static void free_pcppages_bulk(struct zone *zone, int count, |
fd56eef2 MG |
1137 | struct per_cpu_pages *pcp, |
1138 | int pindex) | |
1da177e4 | 1139 | { |
57490774 | 1140 | unsigned long flags; |
44042b44 | 1141 | unsigned int order; |
8b10b465 | 1142 | struct page *page; |
f2260e6b | 1143 | |
88e8ac11 CTR |
1144 | /* |
1145 | * Ensure proper count is passed which otherwise would stuck in the | |
1146 | * below while (list_empty(list)) loop. | |
1147 | */ | |
1148 | count = min(pcp->count, count); | |
d61372bc MG |
1149 | |
1150 | /* Ensure requested pindex is drained first. */ | |
1151 | pindex = pindex - 1; | |
1152 | ||
57490774 | 1153 | spin_lock_irqsave(&zone->lock, flags); |
8b10b465 | 1154 | |
44042b44 | 1155 | while (count > 0) { |
5f8dcc21 | 1156 | struct list_head *list; |
fd56eef2 | 1157 | int nr_pages; |
5f8dcc21 | 1158 | |
fd56eef2 | 1159 | /* Remove pages from lists in a round-robin fashion. */ |
5f8dcc21 | 1160 | do { |
f142b2c2 KS |
1161 | if (++pindex > NR_PCP_LISTS - 1) |
1162 | pindex = 0; | |
44042b44 | 1163 | list = &pcp->lists[pindex]; |
f142b2c2 | 1164 | } while (list_empty(list)); |
48db57f8 | 1165 | |
44042b44 | 1166 | order = pindex_to_order(pindex); |
fd56eef2 | 1167 | nr_pages = 1 << order; |
a6f9edd6 | 1168 | do { |
17edeb5d | 1169 | unsigned long pfn; |
8b10b465 MG |
1170 | int mt; |
1171 | ||
bf75f200 | 1172 | page = list_last_entry(list, struct page, pcp_list); |
17edeb5d JW |
1173 | pfn = page_to_pfn(page); |
1174 | mt = get_pfnblock_migratetype(page, pfn); | |
8b10b465 | 1175 | |
0a5f4e5b | 1176 | /* must delete to avoid corrupting pcp list */ |
bf75f200 | 1177 | list_del(&page->pcp_list); |
fd56eef2 MG |
1178 | count -= nr_pages; |
1179 | pcp->count -= nr_pages; | |
aa016d14 | 1180 | |
17edeb5d | 1181 | __free_one_page(page, pfn, zone, order, mt, FPI_NONE); |
8b10b465 MG |
1182 | trace_mm_page_pcpu_drain(page, order, mt); |
1183 | } while (count > 0 && !list_empty(list)); | |
0a5f4e5b | 1184 | } |
8b10b465 | 1185 | |
57490774 | 1186 | spin_unlock_irqrestore(&zone->lock, flags); |
1da177e4 LT |
1187 | } |
1188 | ||
55612e80 JW |
1189 | static void free_one_page(struct zone *zone, struct page *page, |
1190 | unsigned long pfn, unsigned int order, | |
1191 | fpi_t fpi_flags) | |
1da177e4 | 1192 | { |
df1acc85 | 1193 | unsigned long flags; |
55612e80 | 1194 | int migratetype; |
df1acc85 MG |
1195 | |
1196 | spin_lock_irqsave(&zone->lock, flags); | |
55612e80 | 1197 | migratetype = get_pfnblock_migratetype(page, pfn); |
7fef431b | 1198 | __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); |
df1acc85 | 1199 | spin_unlock_irqrestore(&zone->lock, flags); |
48db57f8 NP |
1200 | } |
1201 | ||
7fef431b DH |
1202 | static void __free_pages_ok(struct page *page, unsigned int order, |
1203 | fpi_t fpi_flags) | |
ec95f53a | 1204 | { |
dc4b0caf | 1205 | unsigned long pfn = page_to_pfn(page); |
56f0e661 | 1206 | struct zone *zone = page_zone(page); |
ec95f53a | 1207 | |
5267fe5d | 1208 | if (!free_pages_prepare(page, order)) |
ec95f53a KM |
1209 | return; |
1210 | ||
55612e80 | 1211 | free_one_page(zone, page, pfn, order, fpi_flags); |
90249993 | 1212 | |
d34b0733 | 1213 | __count_vm_events(PGFREE, 1 << order); |
1da177e4 LT |
1214 | } |
1215 | ||
a9cd410a | 1216 | void __free_pages_core(struct page *page, unsigned int order) |
a226f6c8 | 1217 | { |
c3993076 | 1218 | unsigned int nr_pages = 1 << order; |
e2d0bd2b | 1219 | struct page *p = page; |
c3993076 | 1220 | unsigned int loop; |
a226f6c8 | 1221 | |
7fef431b DH |
1222 | /* |
1223 | * When initializing the memmap, __init_single_page() sets the refcount | |
1224 | * of all pages to 1 ("allocated"/"not free"). We have to set the | |
1225 | * refcount of all involved pages to 0. | |
1226 | */ | |
e2d0bd2b YL |
1227 | prefetchw(p); |
1228 | for (loop = 0; loop < (nr_pages - 1); loop++, p++) { | |
1229 | prefetchw(p + 1); | |
c3993076 JW |
1230 | __ClearPageReserved(p); |
1231 | set_page_count(p, 0); | |
a226f6c8 | 1232 | } |
e2d0bd2b YL |
1233 | __ClearPageReserved(p); |
1234 | set_page_count(p, 0); | |
c3993076 | 1235 | |
9705bea5 | 1236 | atomic_long_add(nr_pages, &page_zone(page)->managed_pages); |
7fef431b | 1237 | |
dcdfdd40 | 1238 | if (page_contains_unaccepted(page, order)) { |
5e0a760b | 1239 | if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) |
dcdfdd40 KS |
1240 | return; |
1241 | ||
1242 | accept_page(page, order); | |
1243 | } | |
1244 | ||
7fef431b DH |
1245 | /* |
1246 | * Bypass PCP and place fresh pages right to the tail, primarily | |
1247 | * relevant for memory onlining. | |
1248 | */ | |
0a54864f | 1249 | __free_pages_ok(page, order, FPI_TO_TAIL); |
a226f6c8 DH |
1250 | } |
1251 | ||
7cf91a98 JK |
1252 | /* |
1253 | * Check that the whole (or subset of) a pageblock given by the interval of | |
1254 | * [start_pfn, end_pfn) is valid and within the same zone, before scanning it | |
859a85dd | 1255 | * with the migration of free compaction scanner. |
7cf91a98 JK |
1256 | * |
1257 | * Return struct page pointer of start_pfn, or NULL if checks were not passed. | |
1258 | * | |
1259 | * It's possible on some configurations to have a setup like node0 node1 node0 | |
1260 | * i.e. it's possible that all pages within a zones range of pages do not | |
1261 | * belong to a single zone. We assume that a border between node0 and node1 | |
1262 | * can occur within a single pageblock, but not a node0 node1 node0 | |
1263 | * interleaving within a single pageblock. It is therefore sufficient to check | |
1264 | * the first and last page of a pageblock and avoid checking each individual | |
1265 | * page in a pageblock. | |
65f67a3e BW |
1266 | * |
1267 | * Note: the function may return non-NULL struct page even for a page block | |
1268 | * which contains a memory hole (i.e. there is no physical memory for a subset | |
5e0a760b | 1269 | * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which |
65f67a3e BW |
1270 | * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole |
1271 | * even though the start pfn is online and valid. This should be safe most of | |
1272 | * the time because struct pages are still initialized via init_unavailable_range() | |
1273 | * and pfn walkers shouldn't touch any physical memory range for which they do | |
1274 | * not recognize any specific metadata in struct pages. | |
7cf91a98 JK |
1275 | */ |
1276 | struct page *__pageblock_pfn_to_page(unsigned long start_pfn, | |
1277 | unsigned long end_pfn, struct zone *zone) | |
1278 | { | |
1279 | struct page *start_page; | |
1280 | struct page *end_page; | |
1281 | ||
1282 | /* end_pfn is one past the range we are checking */ | |
1283 | end_pfn--; | |
1284 | ||
3c4322c9 | 1285 | if (!pfn_valid(end_pfn)) |
7cf91a98 JK |
1286 | return NULL; |
1287 | ||
2d070eab MH |
1288 | start_page = pfn_to_online_page(start_pfn); |
1289 | if (!start_page) | |
1290 | return NULL; | |
7cf91a98 JK |
1291 | |
1292 | if (page_zone(start_page) != zone) | |
1293 | return NULL; | |
1294 | ||
1295 | end_page = pfn_to_page(end_pfn); | |
1296 | ||
1297 | /* This gives a shorter code than deriving page_zone(end_page) */ | |
1298 | if (page_zone_id(start_page) != page_zone_id(end_page)) | |
1299 | return NULL; | |
1300 | ||
1301 | return start_page; | |
1302 | } | |
1303 | ||
2f47a91f | 1304 | /* |
9420f89d MRI |
1305 | * The order of subdivision here is critical for the IO subsystem. |
1306 | * Please do not alter this order without good reasons and regression | |
1307 | * testing. Specifically, as large blocks of memory are subdivided, | |
1308 | * the order in which smaller blocks are delivered depends on the order | |
1309 | * they're subdivided in this function. This is the primary factor | |
1310 | * influencing the order in which pages are delivered to the IO | |
1311 | * subsystem according to empirical testing, and this is also justified | |
1312 | * by considering the behavior of a buddy system containing a single | |
1313 | * large block of memory acted on by a series of small allocations. | |
1314 | * This behavior is a critical factor in sglist merging's success. | |
80b1f41c | 1315 | * |
9420f89d | 1316 | * -- nyc |
2f47a91f | 1317 | */ |
9420f89d MRI |
1318 | static inline void expand(struct zone *zone, struct page *page, |
1319 | int low, int high, int migratetype) | |
2f47a91f | 1320 | { |
9420f89d | 1321 | unsigned long size = 1 << high; |
883dd161 | 1322 | unsigned long nr_added = 0; |
2f47a91f | 1323 | |
9420f89d MRI |
1324 | while (high > low) { |
1325 | high--; | |
1326 | size >>= 1; | |
1327 | VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); | |
2f47a91f | 1328 | |
9420f89d MRI |
1329 | /* |
1330 | * Mark as guard pages (or page), that will allow to | |
1331 | * merge back to allocator when buddy will be freed. | |
1332 | * Corresponding page table entries will not be touched, | |
1333 | * pages will stay not present in virtual address space | |
1334 | */ | |
e0932b6c | 1335 | if (set_page_guard(zone, &page[size], high)) |
2f47a91f | 1336 | continue; |
9420f89d | 1337 | |
883dd161 | 1338 | __add_to_free_list(&page[size], zone, high, migratetype, false); |
9420f89d | 1339 | set_buddy_order(&page[size], high); |
883dd161 | 1340 | nr_added += size; |
2f47a91f | 1341 | } |
883dd161 | 1342 | account_freepages(zone, nr_added, migratetype); |
2f47a91f PT |
1343 | } |
1344 | ||
9420f89d | 1345 | static void check_new_page_bad(struct page *page) |
0e56acae | 1346 | { |
9420f89d MRI |
1347 | if (unlikely(page->flags & __PG_HWPOISON)) { |
1348 | /* Don't complain about hwpoisoned pages */ | |
1349 | page_mapcount_reset(page); /* remove PageBuddy */ | |
1350 | return; | |
0e56acae AD |
1351 | } |
1352 | ||
9420f89d MRI |
1353 | bad_page(page, |
1354 | page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); | |
0e56acae AD |
1355 | } |
1356 | ||
1357 | /* | |
9420f89d | 1358 | * This page is about to be returned from the page allocator |
0e56acae | 1359 | */ |
77c7a095 | 1360 | static bool check_new_page(struct page *page) |
0e56acae | 1361 | { |
9420f89d MRI |
1362 | if (likely(page_expected_state(page, |
1363 | PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) | |
77c7a095 | 1364 | return false; |
0e56acae | 1365 | |
9420f89d | 1366 | check_new_page_bad(page); |
77c7a095 | 1367 | return true; |
9420f89d | 1368 | } |
0e56acae | 1369 | |
9420f89d MRI |
1370 | static inline bool check_new_pages(struct page *page, unsigned int order) |
1371 | { | |
1372 | if (is_check_pages_enabled()) { | |
1373 | for (int i = 0; i < (1 << order); i++) { | |
1374 | struct page *p = page + i; | |
0e56acae | 1375 | |
8666925c | 1376 | if (check_new_page(p)) |
9420f89d | 1377 | return true; |
0e56acae AD |
1378 | } |
1379 | } | |
1380 | ||
9420f89d | 1381 | return false; |
0e56acae AD |
1382 | } |
1383 | ||
9420f89d | 1384 | static inline bool should_skip_kasan_unpoison(gfp_t flags) |
e4443149 | 1385 | { |
9420f89d MRI |
1386 | /* Don't skip if a software KASAN mode is enabled. */ |
1387 | if (IS_ENABLED(CONFIG_KASAN_GENERIC) || | |
1388 | IS_ENABLED(CONFIG_KASAN_SW_TAGS)) | |
1389 | return false; | |
e4443149 | 1390 | |
9420f89d MRI |
1391 | /* Skip, if hardware tag-based KASAN is not enabled. */ |
1392 | if (!kasan_hw_tags_enabled()) | |
1393 | return true; | |
e4443149 DJ |
1394 | |
1395 | /* | |
9420f89d MRI |
1396 | * With hardware tag-based KASAN enabled, skip if this has been |
1397 | * requested via __GFP_SKIP_KASAN. | |
e4443149 | 1398 | */ |
9420f89d | 1399 | return flags & __GFP_SKIP_KASAN; |
e4443149 DJ |
1400 | } |
1401 | ||
9420f89d | 1402 | static inline bool should_skip_init(gfp_t flags) |
ecd09650 | 1403 | { |
9420f89d MRI |
1404 | /* Don't skip, if hardware tag-based KASAN is not enabled. */ |
1405 | if (!kasan_hw_tags_enabled()) | |
1406 | return false; | |
1407 | ||
1408 | /* For hardware tag-based KASAN, skip if requested. */ | |
1409 | return (flags & __GFP_SKIP_ZERO); | |
ecd09650 DJ |
1410 | } |
1411 | ||
9420f89d MRI |
1412 | inline void post_alloc_hook(struct page *page, unsigned int order, |
1413 | gfp_t gfp_flags) | |
7e18adb4 | 1414 | { |
9420f89d MRI |
1415 | bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && |
1416 | !should_skip_init(gfp_flags); | |
1417 | bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); | |
1418 | int i; | |
1419 | ||
1420 | set_page_private(page, 0); | |
1421 | set_page_refcounted(page); | |
0e1cc95b | 1422 | |
9420f89d MRI |
1423 | arch_alloc_page(page, order); |
1424 | debug_pagealloc_map_pages(page, 1 << order); | |
7e18adb4 | 1425 | |
3d060856 | 1426 | /* |
9420f89d MRI |
1427 | * Page unpoisoning must happen before memory initialization. |
1428 | * Otherwise, the poison pattern will be overwritten for __GFP_ZERO | |
1429 | * allocations and the page unpoisoning code will complain. | |
3d060856 | 1430 | */ |
9420f89d | 1431 | kernel_unpoison_pages(page, 1 << order); |
862b6dee | 1432 | |
1bb5eab3 AK |
1433 | /* |
1434 | * As memory initialization might be integrated into KASAN, | |
b42090ae | 1435 | * KASAN unpoisoning and memory initializion code must be |
1bb5eab3 AK |
1436 | * kept together to avoid discrepancies in behavior. |
1437 | */ | |
9294b128 AK |
1438 | |
1439 | /* | |
44383cef AK |
1440 | * If memory tags should be zeroed |
1441 | * (which happens only when memory should be initialized as well). | |
9294b128 | 1442 | */ |
44383cef | 1443 | if (zero_tags) { |
420ef683 | 1444 | /* Initialize both memory and memory tags. */ |
9294b128 AK |
1445 | for (i = 0; i != 1 << order; ++i) |
1446 | tag_clear_highpage(page + i); | |
1447 | ||
44383cef | 1448 | /* Take note that memory was initialized by the loop above. */ |
9294b128 AK |
1449 | init = false; |
1450 | } | |
0a54864f PC |
1451 | if (!should_skip_kasan_unpoison(gfp_flags) && |
1452 | kasan_unpoison_pages(page, order, init)) { | |
1453 | /* Take note that memory was initialized by KASAN. */ | |
1454 | if (kasan_has_integrated_init()) | |
1455 | init = false; | |
1456 | } else { | |
1457 | /* | |
1458 | * If memory tags have not been set by KASAN, reset the page | |
1459 | * tags to ensure page_address() dereferencing does not fault. | |
1460 | */ | |
70c248ac CM |
1461 | for (i = 0; i != 1 << order; ++i) |
1462 | page_kasan_tag_reset(page + i); | |
7a3b8353 | 1463 | } |
44383cef | 1464 | /* If memory is still not initialized, initialize it now. */ |
7e3cbba6 | 1465 | if (init) |
aeaec8e2 | 1466 | kernel_init_pages(page, 1 << order); |
1bb5eab3 AK |
1467 | |
1468 | set_page_owner(page, order, gfp_flags); | |
df4e817b | 1469 | page_table_check_alloc(page, order); |
dcfe378c | 1470 | pgalloc_tag_add(page, current, 1 << order); |
46f24fd8 JK |
1471 | } |
1472 | ||
479f854a | 1473 | static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, |
c603844b | 1474 | unsigned int alloc_flags) |
2a7684a2 | 1475 | { |
46f24fd8 | 1476 | post_alloc_hook(page, order, gfp_flags); |
17cf4406 | 1477 | |
17cf4406 NP |
1478 | if (order && (gfp_flags & __GFP_COMP)) |
1479 | prep_compound_page(page, order); | |
1480 | ||
75379191 | 1481 | /* |
2f064f34 | 1482 | * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to |
75379191 VB |
1483 | * allocate the page. The expectation is that the caller is taking |
1484 | * steps that will free more memory. The caller should avoid the page | |
1485 | * being used for !PFMEMALLOC purposes. | |
1486 | */ | |
2f064f34 MH |
1487 | if (alloc_flags & ALLOC_NO_WATERMARKS) |
1488 | set_page_pfmemalloc(page); | |
1489 | else | |
1490 | clear_page_pfmemalloc(page); | |
1da177e4 LT |
1491 | } |
1492 | ||
56fd56b8 MG |
1493 | /* |
1494 | * Go through the free lists for the given migratetype and remove | |
1495 | * the smallest available page from the freelists | |
1496 | */ | |
85ccc8fa | 1497 | static __always_inline |
728ec980 | 1498 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, |
56fd56b8 MG |
1499 | int migratetype) |
1500 | { | |
1501 | unsigned int current_order; | |
b8af2941 | 1502 | struct free_area *area; |
56fd56b8 MG |
1503 | struct page *page; |
1504 | ||
1505 | /* Find a page of the appropriate size in the preferred list */ | |
fd377218 | 1506 | for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { |
56fd56b8 | 1507 | area = &(zone->free_area[current_order]); |
b03641af | 1508 | page = get_page_from_free_area(area, migratetype); |
a16601c5 GT |
1509 | if (!page) |
1510 | continue; | |
e0932b6c | 1511 | del_page_from_free_list(page, zone, current_order, migratetype); |
6ab01363 | 1512 | expand(zone, page, order, current_order, migratetype); |
10e0f753 WY |
1513 | trace_mm_page_alloc_zone_locked(page, order, migratetype, |
1514 | pcp_allowed_order(order) && | |
1515 | migratetype < MIGRATE_PCPTYPES); | |
56fd56b8 MG |
1516 | return page; |
1517 | } | |
1518 | ||
1519 | return NULL; | |
1520 | } | |
1521 | ||
1522 | ||
b2a0ac88 MG |
1523 | /* |
1524 | * This array describes the order lists are fallen back to when | |
1525 | * the free lists for the desirable migrate type are depleted | |
1dd214b8 ZY |
1526 | * |
1527 | * The other migratetypes do not have fallbacks. | |
b2a0ac88 | 1528 | */ |
0aac4566 | 1529 | static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { |
aa02d3c1 YD |
1530 | [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, |
1531 | [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, | |
1532 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, | |
b2a0ac88 MG |
1533 | }; |
1534 | ||
dc67647b | 1535 | #ifdef CONFIG_CMA |
85ccc8fa | 1536 | static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, |
dc67647b JK |
1537 | unsigned int order) |
1538 | { | |
1539 | return __rmqueue_smallest(zone, order, MIGRATE_CMA); | |
1540 | } | |
1541 | #else | |
1542 | static inline struct page *__rmqueue_cma_fallback(struct zone *zone, | |
1543 | unsigned int order) { return NULL; } | |
1544 | #endif | |
1545 | ||
c361be55 | 1546 | /* |
f37c0f68 ZY |
1547 | * Change the type of a block and move all its free pages to that |
1548 | * type's freelist. | |
c361be55 | 1549 | */ |
e1f42a57 VB |
1550 | static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, |
1551 | int old_mt, int new_mt) | |
c361be55 MG |
1552 | { |
1553 | struct page *page; | |
e1f42a57 | 1554 | unsigned long pfn, end_pfn; |
d00181b9 | 1555 | unsigned int order; |
d100313f | 1556 | int pages_moved = 0; |
c361be55 | 1557 | |
f37c0f68 | 1558 | VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); |
e1f42a57 | 1559 | end_pfn = pageblock_end_pfn(start_pfn); |
f37c0f68 | 1560 | |
e1f42a57 | 1561 | for (pfn = start_pfn; pfn < end_pfn;) { |
39ddb991 | 1562 | page = pfn_to_page(pfn); |
c361be55 | 1563 | if (!PageBuddy(page)) { |
39ddb991 | 1564 | pfn++; |
c361be55 MG |
1565 | continue; |
1566 | } | |
1567 | ||
cd961038 DR |
1568 | /* Make sure we are not inadvertently changing nodes */ |
1569 | VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); | |
1570 | VM_BUG_ON_PAGE(page_zone(page) != zone, page); | |
1571 | ||
ab130f91 | 1572 | order = buddy_order(page); |
e0932b6c JW |
1573 | |
1574 | move_to_free_list(page, zone, order, old_mt, new_mt); | |
1575 | ||
39ddb991 | 1576 | pfn += 1 << order; |
d100313f | 1577 | pages_moved += 1 << order; |
c361be55 MG |
1578 | } |
1579 | ||
e0932b6c | 1580 | set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); |
f37c0f68 | 1581 | |
d100313f | 1582 | return pages_moved; |
c361be55 MG |
1583 | } |
1584 | ||
c0cd6f55 JW |
1585 | static bool prep_move_freepages_block(struct zone *zone, struct page *page, |
1586 | unsigned long *start_pfn, | |
c0cd6f55 | 1587 | int *num_free, int *num_movable) |
c361be55 | 1588 | { |
c0cd6f55 | 1589 | unsigned long pfn, start, end; |
4a222127 | 1590 | |
39ddb991 | 1591 | pfn = page_to_pfn(page); |
c0cd6f55 | 1592 | start = pageblock_start_pfn(pfn); |
e1f42a57 | 1593 | end = pageblock_end_pfn(pfn); |
c361be55 | 1594 | |
2dd482ba JW |
1595 | /* |
1596 | * The caller only has the lock for @zone, don't touch ranges | |
1597 | * that straddle into other zones. While we could move part of | |
1598 | * the range that's inside the zone, this call is usually | |
1599 | * accompanied by other operations such as migratetype updates | |
1600 | * which also should be locked. | |
1601 | */ | |
c0cd6f55 JW |
1602 | if (!zone_spans_pfn(zone, start)) |
1603 | return false; | |
e1f42a57 | 1604 | if (!zone_spans_pfn(zone, end - 1)) |
c0cd6f55 JW |
1605 | return false; |
1606 | ||
1607 | *start_pfn = start; | |
c0cd6f55 JW |
1608 | |
1609 | if (num_free) { | |
1610 | *num_free = 0; | |
1611 | *num_movable = 0; | |
e1f42a57 | 1612 | for (pfn = start; pfn < end;) { |
c0cd6f55 JW |
1613 | page = pfn_to_page(pfn); |
1614 | if (PageBuddy(page)) { | |
1615 | int nr = 1 << buddy_order(page); | |
1616 | ||
1617 | *num_free += nr; | |
1618 | pfn += nr; | |
1619 | continue; | |
1620 | } | |
1621 | /* | |
1622 | * We assume that pages that could be isolated for | |
1623 | * migration are movable. But we don't actually try | |
1624 | * isolating, as that would be expensive. | |
1625 | */ | |
1626 | if (PageLRU(page) || __PageMovable(page)) | |
1627 | (*num_movable)++; | |
1628 | pfn++; | |
1629 | } | |
1630 | } | |
c361be55 | 1631 | |
c0cd6f55 JW |
1632 | return true; |
1633 | } | |
1634 | ||
fd919a85 | 1635 | static int move_freepages_block(struct zone *zone, struct page *page, |
e0932b6c | 1636 | int old_mt, int new_mt) |
c0cd6f55 | 1637 | { |
e1f42a57 | 1638 | unsigned long start_pfn; |
c0cd6f55 | 1639 | |
e1f42a57 | 1640 | if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) |
c0cd6f55 JW |
1641 | return -1; |
1642 | ||
e1f42a57 | 1643 | return __move_freepages_block(zone, start_pfn, old_mt, new_mt); |
c361be55 MG |
1644 | } |
1645 | ||
fd919a85 JW |
1646 | #ifdef CONFIG_MEMORY_ISOLATION |
1647 | /* Look for a buddy that straddles start_pfn */ | |
1648 | static unsigned long find_large_buddy(unsigned long start_pfn) | |
1649 | { | |
1650 | int order = 0; | |
1651 | struct page *page; | |
1652 | unsigned long pfn = start_pfn; | |
1653 | ||
1654 | while (!PageBuddy(page = pfn_to_page(pfn))) { | |
1655 | /* Nothing found */ | |
1656 | if (++order > MAX_PAGE_ORDER) | |
1657 | return start_pfn; | |
1658 | pfn &= ~0UL << order; | |
1659 | } | |
1660 | ||
1661 | /* | |
1662 | * Found a preceding buddy, but does it straddle? | |
1663 | */ | |
1664 | if (pfn + (1 << buddy_order(page)) > start_pfn) | |
1665 | return pfn; | |
1666 | ||
1667 | /* Nothing found */ | |
1668 | return start_pfn; | |
1669 | } | |
1670 | ||
1671 | /* Split a multi-block free page into its individual pageblocks */ | |
1672 | static void split_large_buddy(struct zone *zone, struct page *page, | |
1673 | unsigned long pfn, int order) | |
1674 | { | |
1675 | unsigned long end_pfn = pfn + (1 << order); | |
1676 | ||
1677 | VM_WARN_ON_ONCE(order <= pageblock_order); | |
1678 | VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1)); | |
1679 | ||
1680 | /* Caller removed page from freelist, buddy info cleared! */ | |
1681 | VM_WARN_ON_ONCE(PageBuddy(page)); | |
1682 | ||
1683 | while (pfn != end_pfn) { | |
1684 | int mt = get_pfnblock_migratetype(page, pfn); | |
1685 | ||
1686 | __free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE); | |
1687 | pfn += pageblock_nr_pages; | |
1688 | page = pfn_to_page(pfn); | |
1689 | } | |
1690 | } | |
1691 | ||
1692 | /** | |
1693 | * move_freepages_block_isolate - move free pages in block for page isolation | |
1694 | * @zone: the zone | |
1695 | * @page: the pageblock page | |
1696 | * @migratetype: migratetype to set on the pageblock | |
1697 | * | |
1698 | * This is similar to move_freepages_block(), but handles the special | |
1699 | * case encountered in page isolation, where the block of interest | |
1700 | * might be part of a larger buddy spanning multiple pageblocks. | |
1701 | * | |
1702 | * Unlike the regular page allocator path, which moves pages while | |
1703 | * stealing buddies off the freelist, page isolation is interested in | |
1704 | * arbitrary pfn ranges that may have overlapping buddies on both ends. | |
1705 | * | |
1706 | * This function handles that. Straddling buddies are split into | |
1707 | * individual pageblocks. Only the block of interest is moved. | |
1708 | * | |
1709 | * Returns %true if pages could be moved, %false otherwise. | |
1710 | */ | |
1711 | bool move_freepages_block_isolate(struct zone *zone, struct page *page, | |
1712 | int migratetype) | |
1713 | { | |
e1f42a57 | 1714 | unsigned long start_pfn, pfn; |
fd919a85 | 1715 | |
e1f42a57 | 1716 | if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) |
fd919a85 JW |
1717 | return false; |
1718 | ||
1719 | /* No splits needed if buddies can't span multiple blocks */ | |
1720 | if (pageblock_order == MAX_PAGE_ORDER) | |
1721 | goto move; | |
1722 | ||
1723 | /* We're a tail block in a larger buddy */ | |
1724 | pfn = find_large_buddy(start_pfn); | |
1725 | if (pfn != start_pfn) { | |
1726 | struct page *buddy = pfn_to_page(pfn); | |
1727 | int order = buddy_order(buddy); | |
fd919a85 | 1728 | |
e0932b6c JW |
1729 | del_page_from_free_list(buddy, zone, order, |
1730 | get_pfnblock_migratetype(buddy, pfn)); | |
fd919a85 JW |
1731 | set_pageblock_migratetype(page, migratetype); |
1732 | split_large_buddy(zone, buddy, pfn, order); | |
1733 | return true; | |
1734 | } | |
1735 | ||
1736 | /* We're the starting block of a larger buddy */ | |
1737 | if (PageBuddy(page) && buddy_order(page) > pageblock_order) { | |
fd919a85 JW |
1738 | int order = buddy_order(page); |
1739 | ||
e0932b6c JW |
1740 | del_page_from_free_list(page, zone, order, |
1741 | get_pfnblock_migratetype(page, pfn)); | |
fd919a85 JW |
1742 | set_pageblock_migratetype(page, migratetype); |
1743 | split_large_buddy(zone, page, pfn, order); | |
1744 | return true; | |
1745 | } | |
1746 | move: | |
e1f42a57 VB |
1747 | __move_freepages_block(zone, start_pfn, |
1748 | get_pfnblock_migratetype(page, start_pfn), | |
1749 | migratetype); | |
fd919a85 JW |
1750 | return true; |
1751 | } | |
1752 | #endif /* CONFIG_MEMORY_ISOLATION */ | |
1753 | ||
2f66a68f MG |
1754 | static void change_pageblock_range(struct page *pageblock_page, |
1755 | int start_order, int migratetype) | |
1756 | { | |
1757 | int nr_pageblocks = 1 << (start_order - pageblock_order); | |
1758 | ||
1759 | while (nr_pageblocks--) { | |
1760 | set_pageblock_migratetype(pageblock_page, migratetype); | |
1761 | pageblock_page += pageblock_nr_pages; | |
1762 | } | |
1763 | } | |
1764 | ||
fef903ef | 1765 | /* |
9c0415eb VB |
1766 | * When we are falling back to another migratetype during allocation, try to |
1767 | * steal extra free pages from the same pageblocks to satisfy further | |
1768 | * allocations, instead of polluting multiple pageblocks. | |
1769 | * | |
1770 | * If we are stealing a relatively large buddy page, it is likely there will | |
1771 | * be more free pages in the pageblock, so try to steal them all. For | |
1772 | * reclaimable and unmovable allocations, we steal regardless of page size, | |
1773 | * as fragmentation caused by those allocations polluting movable pageblocks | |
1774 | * is worse than movable allocations stealing from unmovable and reclaimable | |
1775 | * pageblocks. | |
fef903ef | 1776 | */ |
4eb7dce6 JK |
1777 | static bool can_steal_fallback(unsigned int order, int start_mt) |
1778 | { | |
1779 | /* | |
1780 | * Leaving this order check is intended, although there is | |
1781 | * relaxed order check in next check. The reason is that | |
1782 | * we can actually steal whole pageblock if this condition met, | |
1783 | * but, below check doesn't guarantee it and that is just heuristic | |
1784 | * so could be changed anytime. | |
1785 | */ | |
1786 | if (order >= pageblock_order) | |
1787 | return true; | |
1788 | ||
1789 | if (order >= pageblock_order / 2 || | |
1790 | start_mt == MIGRATE_RECLAIMABLE || | |
1791 | start_mt == MIGRATE_UNMOVABLE || | |
1792 | page_group_by_mobility_disabled) | |
1793 | return true; | |
1794 | ||
1795 | return false; | |
1796 | } | |
1797 | ||
597c8920 | 1798 | static inline bool boost_watermark(struct zone *zone) |
1c30844d MG |
1799 | { |
1800 | unsigned long max_boost; | |
1801 | ||
1802 | if (!watermark_boost_factor) | |
597c8920 | 1803 | return false; |
14f69140 HW |
1804 | /* |
1805 | * Don't bother in zones that are unlikely to produce results. | |
1806 | * On small machines, including kdump capture kernels running | |
1807 | * in a small area, boosting the watermark can cause an out of | |
1808 | * memory situation immediately. | |
1809 | */ | |
1810 | if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) | |
597c8920 | 1811 | return false; |
1c30844d MG |
1812 | |
1813 | max_boost = mult_frac(zone->_watermark[WMARK_HIGH], | |
1814 | watermark_boost_factor, 10000); | |
94b3334c MG |
1815 | |
1816 | /* | |
1817 | * high watermark may be uninitialised if fragmentation occurs | |
1818 | * very early in boot so do not boost. We do not fall | |
1819 | * through and boost by pageblock_nr_pages as failing | |
1820 | * allocations that early means that reclaim is not going | |
1821 | * to help and it may even be impossible to reclaim the | |
1822 | * boosted watermark resulting in a hang. | |
1823 | */ | |
1824 | if (!max_boost) | |
597c8920 | 1825 | return false; |
94b3334c | 1826 | |
1c30844d MG |
1827 | max_boost = max(pageblock_nr_pages, max_boost); |
1828 | ||
1829 | zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, | |
1830 | max_boost); | |
597c8920 JW |
1831 | |
1832 | return true; | |
1c30844d MG |
1833 | } |
1834 | ||
4eb7dce6 | 1835 | /* |
c0cd6f55 JW |
1836 | * This function implements actual steal behaviour. If order is large enough, we |
1837 | * can claim the whole pageblock for the requested migratetype. If not, we check | |
1838 | * the pageblock for constituent pages; if at least half of the pages are free | |
1839 | * or compatible, we can still claim the whole block, so pages freed in the | |
1840 | * future will be put on the correct free list. Otherwise, we isolate exactly | |
1841 | * the order we need from the fallback block and leave its migratetype alone. | |
4eb7dce6 | 1842 | */ |
c0cd6f55 JW |
1843 | static struct page * |
1844 | steal_suitable_fallback(struct zone *zone, struct page *page, | |
1845 | int current_order, int order, int start_type, | |
1846 | unsigned int alloc_flags, bool whole_block) | |
fef903ef | 1847 | { |
02aa0cdd | 1848 | int free_pages, movable_pages, alike_pages; |
e1f42a57 | 1849 | unsigned long start_pfn; |
c0cd6f55 | 1850 | int block_type; |
02aa0cdd | 1851 | |
c0cd6f55 | 1852 | block_type = get_pageblock_migratetype(page); |
fef903ef | 1853 | |
3bc48f96 VB |
1854 | /* |
1855 | * This can happen due to races and we want to prevent broken | |
1856 | * highatomic accounting. | |
1857 | */ | |
c0cd6f55 | 1858 | if (is_migrate_highatomic(block_type)) |
3bc48f96 VB |
1859 | goto single_page; |
1860 | ||
fef903ef SB |
1861 | /* Take ownership for orders >= pageblock_order */ |
1862 | if (current_order >= pageblock_order) { | |
e0932b6c | 1863 | del_page_from_free_list(page, zone, current_order, block_type); |
fef903ef | 1864 | change_pageblock_range(page, current_order, start_type); |
c0cd6f55 JW |
1865 | expand(zone, page, order, current_order, start_type); |
1866 | return page; | |
fef903ef SB |
1867 | } |
1868 | ||
1c30844d MG |
1869 | /* |
1870 | * Boost watermarks to increase reclaim pressure to reduce the | |
1871 | * likelihood of future fallbacks. Wake kswapd now as the node | |
1872 | * may be balanced overall and kswapd will not wake naturally. | |
1873 | */ | |
597c8920 | 1874 | if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) |
73444bc4 | 1875 | set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); |
1c30844d | 1876 | |
3bc48f96 VB |
1877 | /* We are not allowed to try stealing from the whole block */ |
1878 | if (!whole_block) | |
1879 | goto single_page; | |
1880 | ||
ebddd111 | 1881 | /* moving whole block can fail due to zone boundary conditions */ |
e1f42a57 VB |
1882 | if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, |
1883 | &movable_pages)) | |
ebddd111 ML |
1884 | goto single_page; |
1885 | ||
02aa0cdd VB |
1886 | /* |
1887 | * Determine how many pages are compatible with our allocation. | |
1888 | * For movable allocation, it's the number of movable pages which | |
1889 | * we just obtained. For other types it's a bit more tricky. | |
1890 | */ | |
1891 | if (start_type == MIGRATE_MOVABLE) { | |
1892 | alike_pages = movable_pages; | |
1893 | } else { | |
1894 | /* | |
1895 | * If we are falling back a RECLAIMABLE or UNMOVABLE allocation | |
1896 | * to MOVABLE pageblock, consider all non-movable pages as | |
1897 | * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or | |
1898 | * vice versa, be conservative since we can't distinguish the | |
1899 | * exact migratetype of non-movable pages. | |
1900 | */ | |
c0cd6f55 | 1901 | if (block_type == MIGRATE_MOVABLE) |
02aa0cdd VB |
1902 | alike_pages = pageblock_nr_pages |
1903 | - (free_pages + movable_pages); | |
1904 | else | |
1905 | alike_pages = 0; | |
1906 | } | |
02aa0cdd VB |
1907 | /* |
1908 | * If a sufficient number of pages in the block are either free or of | |
ebddd111 | 1909 | * compatible migratability as our allocation, claim the whole block. |
02aa0cdd VB |
1910 | */ |
1911 | if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || | |
c0cd6f55 | 1912 | page_group_by_mobility_disabled) { |
e1f42a57 | 1913 | __move_freepages_block(zone, start_pfn, block_type, start_type); |
c0cd6f55 JW |
1914 | return __rmqueue_smallest(zone, order, start_type); |
1915 | } | |
3bc48f96 VB |
1916 | |
1917 | single_page: | |
e0932b6c | 1918 | del_page_from_free_list(page, zone, current_order, block_type); |
c0cd6f55 JW |
1919 | expand(zone, page, order, current_order, block_type); |
1920 | return page; | |
4eb7dce6 JK |
1921 | } |
1922 | ||
2149cdae JK |
1923 | /* |
1924 | * Check whether there is a suitable fallback freepage with requested order. | |
1925 | * If only_stealable is true, this function returns fallback_mt only if | |
1926 | * we can steal other freepages all together. This would help to reduce | |
1927 | * fragmentation due to mixed migratetype pages in one pageblock. | |
1928 | */ | |
1929 | int find_suitable_fallback(struct free_area *area, unsigned int order, | |
1930 | int migratetype, bool only_stealable, bool *can_steal) | |
4eb7dce6 JK |
1931 | { |
1932 | int i; | |
1933 | int fallback_mt; | |
1934 | ||
1935 | if (area->nr_free == 0) | |
1936 | return -1; | |
1937 | ||
1938 | *can_steal = false; | |
aa02d3c1 | 1939 | for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { |
4eb7dce6 | 1940 | fallback_mt = fallbacks[migratetype][i]; |
b03641af | 1941 | if (free_area_empty(area, fallback_mt)) |
4eb7dce6 | 1942 | continue; |
fef903ef | 1943 | |
4eb7dce6 JK |
1944 | if (can_steal_fallback(order, migratetype)) |
1945 | *can_steal = true; | |
1946 | ||
2149cdae JK |
1947 | if (!only_stealable) |
1948 | return fallback_mt; | |
1949 | ||
1950 | if (*can_steal) | |
1951 | return fallback_mt; | |
fef903ef | 1952 | } |
4eb7dce6 JK |
1953 | |
1954 | return -1; | |
fef903ef SB |
1955 | } |
1956 | ||
0aaa29a5 | 1957 | /* |
7cc5a5d6 JW |
1958 | * Reserve the pageblock(s) surrounding an allocation request for |
1959 | * exclusive use of high-order atomic allocations if there are no | |
1960 | * empty page blocks that contain a page with a suitable order | |
0aaa29a5 | 1961 | */ |
7cc5a5d6 JW |
1962 | static void reserve_highatomic_pageblock(struct page *page, int order, |
1963 | struct zone *zone) | |
0aaa29a5 MG |
1964 | { |
1965 | int mt; | |
1966 | unsigned long max_managed, flags; | |
1967 | ||
1968 | /* | |
d68e39fc | 1969 | * The number reserved as: minimum is 1 pageblock, maximum is |
9cd20f3f CTK |
1970 | * roughly 1% of a zone. But if 1% of a zone falls below a |
1971 | * pageblock size, then don't reserve any pageblocks. | |
0aaa29a5 MG |
1972 | * Check is race-prone but harmless. |
1973 | */ | |
9cd20f3f CTK |
1974 | if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) |
1975 | return; | |
d68e39fc | 1976 | max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); |
0aaa29a5 MG |
1977 | if (zone->nr_reserved_highatomic >= max_managed) |
1978 | return; | |
1979 | ||
1980 | spin_lock_irqsave(&zone->lock, flags); | |
1981 | ||
1982 | /* Recheck the nr_reserved_highatomic limit under the lock */ | |
1983 | if (zone->nr_reserved_highatomic >= max_managed) | |
1984 | goto out_unlock; | |
1985 | ||
1986 | /* Yoink! */ | |
1987 | mt = get_pageblock_migratetype(page); | |
1dd214b8 | 1988 | /* Only reserve normal pageblocks (i.e., they can merge with others) */ |
7cc5a5d6 JW |
1989 | if (!migratetype_is_mergeable(mt)) |
1990 | goto out_unlock; | |
1991 | ||
1992 | if (order < pageblock_order) { | |
1993 | if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) | |
1994 | goto out_unlock; | |
1995 | zone->nr_reserved_highatomic += pageblock_nr_pages; | |
1996 | } else { | |
1997 | change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); | |
1998 | zone->nr_reserved_highatomic += 1 << order; | |
1999 | } | |
0aaa29a5 MG |
2000 | |
2001 | out_unlock: | |
2002 | spin_unlock_irqrestore(&zone->lock, flags); | |
2003 | } | |
2004 | ||
2005 | /* | |
2006 | * Used when an allocation is about to fail under memory pressure. This | |
2007 | * potentially hurts the reliability of high-order allocations when under | |
2008 | * intense memory pressure but failed atomic allocations should be easier | |
2009 | * to recover from than an OOM. | |
29fac03b | 2010 | * |
7cc5a5d6 | 2011 | * If @force is true, try to unreserve pageblocks even though highatomic |
29fac03b | 2012 | * pageblock is exhausted. |
0aaa29a5 | 2013 | */ |
29fac03b MK |
2014 | static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, |
2015 | bool force) | |
0aaa29a5 MG |
2016 | { |
2017 | struct zonelist *zonelist = ac->zonelist; | |
2018 | unsigned long flags; | |
2019 | struct zoneref *z; | |
2020 | struct zone *zone; | |
2021 | struct page *page; | |
2022 | int order; | |
c0cd6f55 | 2023 | int ret; |
0aaa29a5 | 2024 | |
97a225e6 | 2025 | for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, |
0aaa29a5 | 2026 | ac->nodemask) { |
29fac03b MK |
2027 | /* |
2028 | * Preserve at least one pageblock unless memory pressure | |
2029 | * is really high. | |
2030 | */ | |
2031 | if (!force && zone->nr_reserved_highatomic <= | |
2032 | pageblock_nr_pages) | |
0aaa29a5 MG |
2033 | continue; |
2034 | ||
2035 | spin_lock_irqsave(&zone->lock, flags); | |
fd377218 | 2036 | for (order = 0; order < NR_PAGE_ORDERS; order++) { |
0aaa29a5 | 2037 | struct free_area *area = &(zone->free_area[order]); |
e0932b6c | 2038 | int mt; |
0aaa29a5 | 2039 | |
b03641af | 2040 | page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); |
a16601c5 | 2041 | if (!page) |
0aaa29a5 MG |
2042 | continue; |
2043 | ||
e0932b6c | 2044 | mt = get_pageblock_migratetype(page); |
0aaa29a5 | 2045 | /* |
4855e4a7 MK |
2046 | * In page freeing path, migratetype change is racy so |
2047 | * we can counter several free pages in a pageblock | |
f0953a1b | 2048 | * in this loop although we changed the pageblock type |
4855e4a7 MK |
2049 | * from highatomic to ac->migratetype. So we should |
2050 | * adjust the count once. | |
0aaa29a5 | 2051 | */ |
e0932b6c | 2052 | if (is_migrate_highatomic(mt)) { |
7cc5a5d6 | 2053 | unsigned long size; |
4855e4a7 MK |
2054 | /* |
2055 | * It should never happen but changes to | |
2056 | * locking could inadvertently allow a per-cpu | |
2057 | * drain to add pages to MIGRATE_HIGHATOMIC | |
2058 | * while unreserving so be safe and watch for | |
2059 | * underflows. | |
2060 | */ | |
7cc5a5d6 JW |
2061 | size = max(pageblock_nr_pages, 1UL << order); |
2062 | size = min(size, zone->nr_reserved_highatomic); | |
2063 | zone->nr_reserved_highatomic -= size; | |
4855e4a7 | 2064 | } |
0aaa29a5 MG |
2065 | |
2066 | /* | |
2067 | * Convert to ac->migratetype and avoid the normal | |
2068 | * pageblock stealing heuristics. Minimally, the caller | |
2069 | * is doing the work and needs the pages. More | |
2070 | * importantly, if the block was always converted to | |
2071 | * MIGRATE_UNMOVABLE or another type then the number | |
2072 | * of pageblocks that cannot be completely freed | |
2073 | * may increase. | |
2074 | */ | |
7cc5a5d6 JW |
2075 | if (order < pageblock_order) |
2076 | ret = move_freepages_block(zone, page, mt, | |
2077 | ac->migratetype); | |
2078 | else { | |
2079 | move_to_free_list(page, zone, order, mt, | |
2080 | ac->migratetype); | |
2081 | change_pageblock_range(page, order, | |
2082 | ac->migratetype); | |
2083 | ret = 1; | |
2084 | } | |
c0cd6f55 | 2085 | /* |
7cc5a5d6 JW |
2086 | * Reserving the block(s) already succeeded, |
2087 | * so this should not fail on zone boundaries. | |
c0cd6f55 JW |
2088 | */ |
2089 | WARN_ON_ONCE(ret == -1); | |
c0cd6f55 | 2090 | if (ret > 0) { |
29fac03b MK |
2091 | spin_unlock_irqrestore(&zone->lock, flags); |
2092 | return ret; | |
2093 | } | |
0aaa29a5 MG |
2094 | } |
2095 | spin_unlock_irqrestore(&zone->lock, flags); | |
2096 | } | |
04c8716f MK |
2097 | |
2098 | return false; | |
0aaa29a5 MG |
2099 | } |
2100 | ||
3bc48f96 VB |
2101 | /* |
2102 | * Try finding a free buddy page on the fallback list and put it on the free | |
2103 | * list of requested migratetype, possibly along with other pages from the same | |
2104 | * block, depending on fragmentation avoidance heuristics. Returns true if | |
2105 | * fallback was found so that __rmqueue_smallest() can grab it. | |
b002529d RV |
2106 | * |
2107 | * The use of signed ints for order and current_order is a deliberate | |
2108 | * deviation from the rest of this file, to make the for loop | |
2109 | * condition simpler. | |
3bc48f96 | 2110 | */ |
c0cd6f55 | 2111 | static __always_inline struct page * |
6bb15450 MG |
2112 | __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, |
2113 | unsigned int alloc_flags) | |
b2a0ac88 | 2114 | { |
b8af2941 | 2115 | struct free_area *area; |
b002529d | 2116 | int current_order; |
6bb15450 | 2117 | int min_order = order; |
b2a0ac88 | 2118 | struct page *page; |
4eb7dce6 JK |
2119 | int fallback_mt; |
2120 | bool can_steal; | |
b2a0ac88 | 2121 | |
6bb15450 MG |
2122 | /* |
2123 | * Do not steal pages from freelists belonging to other pageblocks | |
2124 | * i.e. orders < pageblock_order. If there are no local zones free, | |
2125 | * the zonelists will be reiterated without ALLOC_NOFRAGMENT. | |
2126 | */ | |
e933dc4a | 2127 | if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) |
6bb15450 MG |
2128 | min_order = pageblock_order; |
2129 | ||
7a8f58f3 VB |
2130 | /* |
2131 | * Find the largest available free page in the other list. This roughly | |
2132 | * approximates finding the pageblock with the most free pages, which | |
2133 | * would be too costly to do exactly. | |
2134 | */ | |
5e0a760b | 2135 | for (current_order = MAX_PAGE_ORDER; current_order >= min_order; |
7aeb09f9 | 2136 | --current_order) { |
4eb7dce6 JK |
2137 | area = &(zone->free_area[current_order]); |
2138 | fallback_mt = find_suitable_fallback(area, current_order, | |
2149cdae | 2139 | start_migratetype, false, &can_steal); |
4eb7dce6 JK |
2140 | if (fallback_mt == -1) |
2141 | continue; | |
b2a0ac88 | 2142 | |
7a8f58f3 VB |
2143 | /* |
2144 | * We cannot steal all free pages from the pageblock and the | |
2145 | * requested migratetype is movable. In that case it's better to | |
2146 | * steal and split the smallest available page instead of the | |
2147 | * largest available page, because even if the next movable | |
2148 | * allocation falls back into a different pageblock than this | |
2149 | * one, it won't cause permanent fragmentation. | |
2150 | */ | |
2151 | if (!can_steal && start_migratetype == MIGRATE_MOVABLE | |
2152 | && current_order > order) | |
2153 | goto find_smallest; | |
b2a0ac88 | 2154 | |
7a8f58f3 VB |
2155 | goto do_steal; |
2156 | } | |
e0fff1bd | 2157 | |
c0cd6f55 | 2158 | return NULL; |
e0fff1bd | 2159 | |
7a8f58f3 | 2160 | find_smallest: |
fd377218 | 2161 | for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { |
7a8f58f3 VB |
2162 | area = &(zone->free_area[current_order]); |
2163 | fallback_mt = find_suitable_fallback(area, current_order, | |
2164 | start_migratetype, false, &can_steal); | |
2165 | if (fallback_mt != -1) | |
2166 | break; | |
b2a0ac88 MG |
2167 | } |
2168 | ||
7a8f58f3 VB |
2169 | /* |
2170 | * This should not happen - we already found a suitable fallback | |
2171 | * when looking for the largest page. | |
2172 | */ | |
5e0a760b | 2173 | VM_BUG_ON(current_order > MAX_PAGE_ORDER); |
7a8f58f3 VB |
2174 | |
2175 | do_steal: | |
b03641af | 2176 | page = get_page_from_free_area(area, fallback_mt); |
7a8f58f3 | 2177 | |
c0cd6f55 JW |
2178 | /* take off list, maybe claim block, expand remainder */ |
2179 | page = steal_suitable_fallback(zone, page, current_order, order, | |
2180 | start_migratetype, alloc_flags, can_steal); | |
7a8f58f3 VB |
2181 | |
2182 | trace_mm_page_alloc_extfrag(page, order, current_order, | |
2183 | start_migratetype, fallback_mt); | |
2184 | ||
c0cd6f55 | 2185 | return page; |
b2a0ac88 MG |
2186 | } |
2187 | ||
56fd56b8 | 2188 | /* |
1da177e4 LT |
2189 | * Do the hard work of removing an element from the buddy allocator. |
2190 | * Call me with the zone->lock already held. | |
2191 | */ | |
85ccc8fa | 2192 | static __always_inline struct page * |
6bb15450 MG |
2193 | __rmqueue(struct zone *zone, unsigned int order, int migratetype, |
2194 | unsigned int alloc_flags) | |
1da177e4 | 2195 | { |
1da177e4 LT |
2196 | struct page *page; |
2197 | ||
ce8f86ee H |
2198 | if (IS_ENABLED(CONFIG_CMA)) { |
2199 | /* | |
2200 | * Balance movable allocations between regular and CMA areas by | |
2201 | * allocating from CMA when over half of the zone's free memory | |
2202 | * is in the CMA area. | |
2203 | */ | |
2204 | if (alloc_flags & ALLOC_CMA && | |
2205 | zone_page_state(zone, NR_FREE_CMA_PAGES) > | |
2206 | zone_page_state(zone, NR_FREE_PAGES) / 2) { | |
2207 | page = __rmqueue_cma_fallback(zone, order); | |
2208 | if (page) | |
10e0f753 | 2209 | return page; |
ce8f86ee | 2210 | } |
16867664 | 2211 | } |
c0cd6f55 | 2212 | |
56fd56b8 | 2213 | page = __rmqueue_smallest(zone, order, migratetype); |
974a786e | 2214 | if (unlikely(!page)) { |
8510e69c | 2215 | if (alloc_flags & ALLOC_CMA) |
dc67647b JK |
2216 | page = __rmqueue_cma_fallback(zone, order); |
2217 | ||
c0cd6f55 JW |
2218 | if (!page) |
2219 | page = __rmqueue_fallback(zone, order, migratetype, | |
2220 | alloc_flags); | |
728ec980 | 2221 | } |
b2a0ac88 | 2222 | return page; |
1da177e4 LT |
2223 | } |
2224 | ||
5f63b720 | 2225 | /* |
1da177e4 LT |
2226 | * Obtain a specified number of elements from the buddy allocator, all under |
2227 | * a single hold of the lock, for efficiency. Add them to the supplied list. | |
2228 | * Returns the number of new pages which were placed at *list. | |
2229 | */ | |
5f63b720 | 2230 | static int rmqueue_bulk(struct zone *zone, unsigned int order, |
b2a0ac88 | 2231 | unsigned long count, struct list_head *list, |
6bb15450 | 2232 | int migratetype, unsigned int alloc_flags) |
1da177e4 | 2233 | { |
57490774 | 2234 | unsigned long flags; |
700d2e9a | 2235 | int i; |
5f63b720 | 2236 | |
57490774 | 2237 | spin_lock_irqsave(&zone->lock, flags); |
1da177e4 | 2238 | for (i = 0; i < count; ++i) { |
6bb15450 MG |
2239 | struct page *page = __rmqueue(zone, order, migratetype, |
2240 | alloc_flags); | |
085cc7d5 | 2241 | if (unlikely(page == NULL)) |
1da177e4 | 2242 | break; |
81eabcbe MG |
2243 | |
2244 | /* | |
0fac3ba5 VB |
2245 | * Split buddy pages returned by expand() are received here in |
2246 | * physical page order. The page is added to the tail of | |
2247 | * caller's list. From the callers perspective, the linked list | |
2248 | * is ordered by page number under some conditions. This is | |
2249 | * useful for IO devices that can forward direction from the | |
2250 | * head, thus also in the physical page order. This is useful | |
2251 | * for IO devices that can merge IO requests if the physical | |
2252 | * pages are ordered properly. | |
81eabcbe | 2253 | */ |
bf75f200 | 2254 | list_add_tail(&page->pcp_list, list); |
1da177e4 | 2255 | } |
57490774 | 2256 | spin_unlock_irqrestore(&zone->lock, flags); |
2ede3c13 | 2257 | |
700d2e9a | 2258 | return i; |
1da177e4 LT |
2259 | } |
2260 | ||
51a755c5 YH |
2261 | /* |
2262 | * Called from the vmstat counter updater to decay the PCP high. | |
2263 | * Return whether there are addition works to do. | |
2264 | */ | |
2265 | int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) | |
2266 | { | |
2267 | int high_min, to_drain, batch; | |
2268 | int todo = 0; | |
2269 | ||
2270 | high_min = READ_ONCE(pcp->high_min); | |
2271 | batch = READ_ONCE(pcp->batch); | |
2272 | /* | |
2273 | * Decrease pcp->high periodically to try to free possible | |
2274 | * idle PCP pages. And, avoid to free too many pages to | |
2275 | * control latency. This caps pcp->high decrement too. | |
2276 | */ | |
2277 | if (pcp->high > high_min) { | |
2278 | pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), | |
2279 | pcp->high - (pcp->high >> 3), high_min); | |
2280 | if (pcp->high > high_min) | |
2281 | todo++; | |
2282 | } | |
2283 | ||
2284 | to_drain = pcp->count - pcp->high; | |
2285 | if (to_drain > 0) { | |
2286 | spin_lock(&pcp->lock); | |
2287 | free_pcppages_bulk(zone, to_drain, pcp, 0); | |
2288 | spin_unlock(&pcp->lock); | |
2289 | todo++; | |
2290 | } | |
2291 | ||
2292 | return todo; | |
2293 | } | |
2294 | ||
4ae7c039 | 2295 | #ifdef CONFIG_NUMA |
8fce4d8e | 2296 | /* |
4037d452 CL |
2297 | * Called from the vmstat counter updater to drain pagesets of this |
2298 | * currently executing processor on remote nodes after they have | |
2299 | * expired. | |
8fce4d8e | 2300 | */ |
4037d452 | 2301 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
4ae7c039 | 2302 | { |
7be12fc9 | 2303 | int to_drain, batch; |
4ae7c039 | 2304 | |
4db0c3c2 | 2305 | batch = READ_ONCE(pcp->batch); |
7be12fc9 | 2306 | to_drain = min(pcp->count, batch); |
4b23a68f | 2307 | if (to_drain > 0) { |
57490774 | 2308 | spin_lock(&pcp->lock); |
fd56eef2 | 2309 | free_pcppages_bulk(zone, to_drain, pcp, 0); |
57490774 | 2310 | spin_unlock(&pcp->lock); |
4b23a68f | 2311 | } |
4ae7c039 CL |
2312 | } |
2313 | #endif | |
2314 | ||
9f8f2172 | 2315 | /* |
93481ff0 | 2316 | * Drain pcplists of the indicated processor and zone. |
9f8f2172 | 2317 | */ |
93481ff0 | 2318 | static void drain_pages_zone(unsigned int cpu, struct zone *zone) |
1da177e4 | 2319 | { |
55f77df7 LS |
2320 | struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
2321 | int count = READ_ONCE(pcp->count); | |
2322 | ||
2323 | while (count) { | |
2324 | int to_drain = min(count, pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); | |
2325 | count -= to_drain; | |
1da177e4 | 2326 | |
57490774 | 2327 | spin_lock(&pcp->lock); |
55f77df7 | 2328 | free_pcppages_bulk(zone, to_drain, pcp, 0); |
57490774 | 2329 | spin_unlock(&pcp->lock); |
4b23a68f | 2330 | } |
93481ff0 | 2331 | } |
3dfa5721 | 2332 | |
93481ff0 VB |
2333 | /* |
2334 | * Drain pcplists of all zones on the indicated processor. | |
93481ff0 VB |
2335 | */ |
2336 | static void drain_pages(unsigned int cpu) | |
2337 | { | |
2338 | struct zone *zone; | |
2339 | ||
2340 | for_each_populated_zone(zone) { | |
2341 | drain_pages_zone(cpu, zone); | |
1da177e4 LT |
2342 | } |
2343 | } | |
1da177e4 | 2344 | |
9f8f2172 CL |
2345 | /* |
2346 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | |
2347 | */ | |
93481ff0 | 2348 | void drain_local_pages(struct zone *zone) |
9f8f2172 | 2349 | { |
93481ff0 VB |
2350 | int cpu = smp_processor_id(); |
2351 | ||
2352 | if (zone) | |
2353 | drain_pages_zone(cpu, zone); | |
2354 | else | |
2355 | drain_pages(cpu); | |
9f8f2172 CL |
2356 | } |
2357 | ||
2358 | /* | |
ec6e8c7e VB |
2359 | * The implementation of drain_all_pages(), exposing an extra parameter to |
2360 | * drain on all cpus. | |
93481ff0 | 2361 | * |
ec6e8c7e VB |
2362 | * drain_all_pages() is optimized to only execute on cpus where pcplists are |
2363 | * not empty. The check for non-emptiness can however race with a free to | |
2364 | * pcplist that has not yet increased the pcp->count from 0 to 1. Callers | |
2365 | * that need the guarantee that every CPU has drained can disable the | |
2366 | * optimizing racy check. | |
9f8f2172 | 2367 | */ |
3b1f3658 | 2368 | static void __drain_all_pages(struct zone *zone, bool force_all_cpus) |
9f8f2172 | 2369 | { |
74046494 | 2370 | int cpu; |
74046494 GBY |
2371 | |
2372 | /* | |
041711ce | 2373 | * Allocate in the BSS so we won't require allocation in |
74046494 GBY |
2374 | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y |
2375 | */ | |
2376 | static cpumask_t cpus_with_pcps; | |
2377 | ||
bd233f53 MG |
2378 | /* |
2379 | * Do not drain if one is already in progress unless it's specific to | |
2380 | * a zone. Such callers are primarily CMA and memory hotplug and need | |
2381 | * the drain to be complete when the call returns. | |
2382 | */ | |
2383 | if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { | |
2384 | if (!zone) | |
2385 | return; | |
2386 | mutex_lock(&pcpu_drain_mutex); | |
2387 | } | |
0ccce3b9 | 2388 | |
74046494 GBY |
2389 | /* |
2390 | * We don't care about racing with CPU hotplug event | |
2391 | * as offline notification will cause the notified | |
2392 | * cpu to drain that CPU pcps and on_each_cpu_mask | |
2393 | * disables preemption as part of its processing | |
2394 | */ | |
2395 | for_each_online_cpu(cpu) { | |
28f836b6 | 2396 | struct per_cpu_pages *pcp; |
93481ff0 | 2397 | struct zone *z; |
74046494 | 2398 | bool has_pcps = false; |
93481ff0 | 2399 | |
ec6e8c7e VB |
2400 | if (force_all_cpus) { |
2401 | /* | |
2402 | * The pcp.count check is racy, some callers need a | |
2403 | * guarantee that no cpu is missed. | |
2404 | */ | |
2405 | has_pcps = true; | |
2406 | } else if (zone) { | |
28f836b6 MG |
2407 | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
2408 | if (pcp->count) | |
74046494 | 2409 | has_pcps = true; |
93481ff0 VB |
2410 | } else { |
2411 | for_each_populated_zone(z) { | |
28f836b6 MG |
2412 | pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); |
2413 | if (pcp->count) { | |
93481ff0 VB |
2414 | has_pcps = true; |
2415 | break; | |
2416 | } | |
74046494 GBY |
2417 | } |
2418 | } | |
93481ff0 | 2419 | |
74046494 GBY |
2420 | if (has_pcps) |
2421 | cpumask_set_cpu(cpu, &cpus_with_pcps); | |
2422 | else | |
2423 | cpumask_clear_cpu(cpu, &cpus_with_pcps); | |
2424 | } | |
0ccce3b9 | 2425 | |
bd233f53 | 2426 | for_each_cpu(cpu, &cpus_with_pcps) { |
443c2acc NSJ |
2427 | if (zone) |
2428 | drain_pages_zone(cpu, zone); | |
2429 | else | |
2430 | drain_pages(cpu); | |
0ccce3b9 | 2431 | } |
bd233f53 MG |
2432 | |
2433 | mutex_unlock(&pcpu_drain_mutex); | |
9f8f2172 CL |
2434 | } |
2435 | ||
ec6e8c7e VB |
2436 | /* |
2437 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. | |
2438 | * | |
2439 | * When zone parameter is non-NULL, spill just the single zone's pages. | |
ec6e8c7e VB |
2440 | */ |
2441 | void drain_all_pages(struct zone *zone) | |
2442 | { | |
2443 | __drain_all_pages(zone, false); | |
2444 | } | |
2445 | ||
51a755c5 | 2446 | static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) |
3b12e7e9 MG |
2447 | { |
2448 | int min_nr_free, max_nr_free; | |
2449 | ||
51a755c5 | 2450 | /* Free as much as possible if batch freeing high-order pages. */ |
f26b3fa0 | 2451 | if (unlikely(free_high)) |
51a755c5 | 2452 | return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); |
f26b3fa0 | 2453 | |
3b12e7e9 MG |
2454 | /* Check for PCP disabled or boot pageset */ |
2455 | if (unlikely(high < batch)) | |
2456 | return 1; | |
2457 | ||
2458 | /* Leave at least pcp->batch pages on the list */ | |
2459 | min_nr_free = batch; | |
2460 | max_nr_free = high - batch; | |
2461 | ||
2462 | /* | |
6ccdcb6d YH |
2463 | * Increase the batch number to the number of the consecutive |
2464 | * freed pages to reduce zone lock contention. | |
3b12e7e9 | 2465 | */ |
6ccdcb6d | 2466 | batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); |
3b12e7e9 MG |
2467 | |
2468 | return batch; | |
2469 | } | |
2470 | ||
f26b3fa0 | 2471 | static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, |
51a755c5 | 2472 | int batch, bool free_high) |
c49c2c47 | 2473 | { |
51a755c5 | 2474 | int high, high_min, high_max; |
c49c2c47 | 2475 | |
51a755c5 YH |
2476 | high_min = READ_ONCE(pcp->high_min); |
2477 | high_max = READ_ONCE(pcp->high_max); | |
2478 | high = pcp->high = clamp(pcp->high, high_min, high_max); | |
2479 | ||
2480 | if (unlikely(!high)) | |
c49c2c47 MG |
2481 | return 0; |
2482 | ||
51a755c5 YH |
2483 | if (unlikely(free_high)) { |
2484 | pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), | |
2485 | high_min); | |
2486 | return 0; | |
2487 | } | |
c49c2c47 MG |
2488 | |
2489 | /* | |
2490 | * If reclaim is active, limit the number of pages that can be | |
2491 | * stored on pcp lists | |
2492 | */ | |
51a755c5 | 2493 | if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { |
6ccdcb6d YH |
2494 | int free_count = max_t(int, pcp->free_count, batch); |
2495 | ||
2496 | pcp->high = max(high - free_count, high_min); | |
51a755c5 YH |
2497 | return min(batch << 2, pcp->high); |
2498 | } | |
2499 | ||
57c0419c YH |
2500 | if (high_min == high_max) |
2501 | return high; | |
2502 | ||
2503 | if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { | |
6ccdcb6d YH |
2504 | int free_count = max_t(int, pcp->free_count, batch); |
2505 | ||
2506 | pcp->high = max(high - free_count, high_min); | |
57c0419c YH |
2507 | high = max(pcp->count, high_min); |
2508 | } else if (pcp->count >= high) { | |
6ccdcb6d | 2509 | int need_high = pcp->free_count + batch; |
51a755c5 YH |
2510 | |
2511 | /* pcp->high should be large enough to hold batch freed pages */ | |
2512 | if (pcp->high < need_high) | |
2513 | pcp->high = clamp(need_high, high_min, high_max); | |
2514 | } | |
2515 | ||
2516 | return high; | |
c49c2c47 MG |
2517 | } |
2518 | ||
4b23a68f MG |
2519 | static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, |
2520 | struct page *page, int migratetype, | |
56651377 | 2521 | unsigned int order) |
9cca35d4 | 2522 | { |
51a755c5 | 2523 | int high, batch; |
44042b44 | 2524 | int pindex; |
ca71fe1a | 2525 | bool free_high = false; |
9cca35d4 | 2526 | |
c0a24239 YH |
2527 | /* |
2528 | * On freeing, reduce the number of pages that are batch allocated. | |
2529 | * See nr_pcp_alloc() where alloc_factor is increased for subsequent | |
2530 | * allocations. | |
2531 | */ | |
2532 | pcp->alloc_factor >>= 1; | |
15cd9004 | 2533 | __count_vm_events(PGFREE, 1 << order); |
44042b44 | 2534 | pindex = order_to_pindex(migratetype, order); |
bf75f200 | 2535 | list_add(&page->pcp_list, &pcp->lists[pindex]); |
44042b44 | 2536 | pcp->count += 1 << order; |
f26b3fa0 | 2537 | |
51a755c5 | 2538 | batch = READ_ONCE(pcp->batch); |
f26b3fa0 MG |
2539 | /* |
2540 | * As high-order pages other than THP's stored on PCP can contribute | |
2541 | * to fragmentation, limit the number stored when PCP is heavily | |
2542 | * freeing without allocation. The remainder after bulk freeing | |
2543 | * stops will be drained from vmstat refresh context. | |
2544 | */ | |
ca71fe1a | 2545 | if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { |
6ccdcb6d | 2546 | free_high = (pcp->free_count >= batch && |
362d37a1 YH |
2547 | (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && |
2548 | (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || | |
51a755c5 | 2549 | pcp->count >= READ_ONCE(batch))); |
ca71fe1a YH |
2550 | pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; |
2551 | } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { | |
2552 | pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; | |
2553 | } | |
6ccdcb6d YH |
2554 | if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) |
2555 | pcp->free_count += (1 << order); | |
51a755c5 | 2556 | high = nr_pcp_high(pcp, zone, batch, free_high); |
3b12e7e9 | 2557 | if (pcp->count >= high) { |
51a755c5 YH |
2558 | free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), |
2559 | pcp, pindex); | |
57c0419c YH |
2560 | if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && |
2561 | zone_watermark_ok(zone, 0, high_wmark_pages(zone), | |
2562 | ZONE_MOVABLE, 0)) | |
2563 | clear_bit(ZONE_BELOW_HIGH, &zone->flags); | |
3b12e7e9 | 2564 | } |
9cca35d4 | 2565 | } |
5f8dcc21 | 2566 | |
9cca35d4 | 2567 | /* |
44042b44 | 2568 | * Free a pcp page |
9cca35d4 | 2569 | */ |
44042b44 | 2570 | void free_unref_page(struct page *page, unsigned int order) |
9cca35d4 | 2571 | { |
4b23a68f MG |
2572 | unsigned long __maybe_unused UP_flags; |
2573 | struct per_cpu_pages *pcp; | |
2574 | struct zone *zone; | |
9cca35d4 | 2575 | unsigned long pfn = page_to_pfn(page); |
55612e80 | 2576 | int migratetype; |
9cca35d4 | 2577 | |
5b8d7591 MWO |
2578 | if (!pcp_allowed_order(order)) { |
2579 | __free_pages_ok(page, order, FPI_NONE); | |
2580 | return; | |
2581 | } | |
2582 | ||
17edeb5d | 2583 | if (!free_pages_prepare(page, order)) |
9cca35d4 | 2584 | return; |
da456f14 | 2585 | |
5f8dcc21 MG |
2586 | /* |
2587 | * We only track unmovable, reclaimable and movable on pcp lists. | |
df1acc85 | 2588 | * Place ISOLATE pages on the isolated list because they are being |
7b086755 JW |
2589 | * offlined but treat HIGHATOMIC and CMA as movable pages so we can |
2590 | * get those areas back if necessary. Otherwise, we may have to free | |
5f8dcc21 MG |
2591 | * excessively into the page allocator |
2592 | */ | |
55612e80 | 2593 | migratetype = get_pfnblock_migratetype(page, pfn); |
df1acc85 | 2594 | if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { |
194159fb | 2595 | if (unlikely(is_migrate_isolate(migratetype))) { |
55612e80 | 2596 | free_one_page(page_zone(page), page, pfn, order, FPI_NONE); |
9cca35d4 | 2597 | return; |
5f8dcc21 | 2598 | } |
55612e80 | 2599 | migratetype = MIGRATE_MOVABLE; |
5f8dcc21 MG |
2600 | } |
2601 | ||
4b23a68f MG |
2602 | zone = page_zone(page); |
2603 | pcp_trylock_prepare(UP_flags); | |
57490774 | 2604 | pcp = pcp_spin_trylock(zone->per_cpu_pageset); |
01b44456 | 2605 | if (pcp) { |
55612e80 | 2606 | free_unref_page_commit(zone, pcp, page, migratetype, order); |
57490774 | 2607 | pcp_spin_unlock(pcp); |
4b23a68f | 2608 | } else { |
55612e80 | 2609 | free_one_page(zone, page, pfn, order, FPI_NONE); |
4b23a68f MG |
2610 | } |
2611 | pcp_trylock_finish(UP_flags); | |
1da177e4 LT |
2612 | } |
2613 | ||
cc59850e | 2614 | /* |
31b2ff82 | 2615 | * Free a batch of folios |
cc59850e | 2616 | */ |
90491d87 | 2617 | void free_unref_folios(struct folio_batch *folios) |
cc59850e | 2618 | { |
57490774 | 2619 | unsigned long __maybe_unused UP_flags; |
4b23a68f MG |
2620 | struct per_cpu_pages *pcp = NULL; |
2621 | struct zone *locked_zone = NULL; | |
9cbe97ba | 2622 | int i, j; |
9cca35d4 | 2623 | |
90491d87 MWO |
2624 | /* Prepare folios for freeing */ |
2625 | for (i = 0, j = 0; i < folios->nr; i++) { | |
2626 | struct folio *folio = folios->folios[i]; | |
7c76d922 | 2627 | unsigned long pfn = folio_pfn(folio); |
31b2ff82 | 2628 | unsigned int order = folio_order(folio); |
9cca35d4 | 2629 | |
31b2ff82 MWO |
2630 | if (order > 0 && folio_test_large_rmappable(folio)) |
2631 | folio_undo_large_rmappable(folio); | |
17edeb5d | 2632 | if (!free_pages_prepare(&folio->page, order)) |
053cfda1 | 2633 | continue; |
df1acc85 | 2634 | /* |
9cbe97ba JW |
2635 | * Free orders not handled on the PCP directly to the |
2636 | * allocator. | |
df1acc85 | 2637 | */ |
9cbe97ba | 2638 | if (!pcp_allowed_order(order)) { |
55612e80 JW |
2639 | free_one_page(folio_zone(folio), &folio->page, |
2640 | pfn, order, FPI_NONE); | |
47aef601 | 2641 | continue; |
df1acc85 | 2642 | } |
31b2ff82 | 2643 | folio->private = (void *)(unsigned long)order; |
90491d87 MWO |
2644 | if (j != i) |
2645 | folios->folios[j] = folio; | |
2646 | j++; | |
9cca35d4 | 2647 | } |
90491d87 | 2648 | folios->nr = j; |
cc59850e | 2649 | |
90491d87 MWO |
2650 | for (i = 0; i < folios->nr; i++) { |
2651 | struct folio *folio = folios->folios[i]; | |
7c76d922 | 2652 | struct zone *zone = folio_zone(folio); |
17edeb5d | 2653 | unsigned long pfn = folio_pfn(folio); |
31b2ff82 | 2654 | unsigned int order = (unsigned long)folio->private; |
9cbe97ba | 2655 | int migratetype; |
4b23a68f | 2656 | |
31b2ff82 | 2657 | folio->private = NULL; |
17edeb5d | 2658 | migratetype = get_pfnblock_migratetype(&folio->page, pfn); |
c3e58a70 | 2659 | |
90491d87 | 2660 | /* Different zone requires a different pcp lock */ |
9cbe97ba JW |
2661 | if (zone != locked_zone || |
2662 | is_migrate_isolate(migratetype)) { | |
57490774 MG |
2663 | if (pcp) { |
2664 | pcp_spin_unlock(pcp); | |
2665 | pcp_trylock_finish(UP_flags); | |
9cbe97ba JW |
2666 | locked_zone = NULL; |
2667 | pcp = NULL; | |
2668 | } | |
2669 | ||
2670 | /* | |
2671 | * Free isolated pages directly to the | |
2672 | * allocator, see comment in free_unref_page. | |
2673 | */ | |
2674 | if (is_migrate_isolate(migratetype)) { | |
2675 | free_one_page(zone, &folio->page, pfn, | |
55612e80 | 2676 | order, FPI_NONE); |
9cbe97ba | 2677 | continue; |
57490774 | 2678 | } |
01b44456 | 2679 | |
57490774 | 2680 | /* |
7c76d922 | 2681 | * trylock is necessary as folios may be getting freed |
57490774 MG |
2682 | * from IRQ or SoftIRQ context after an IO completion. |
2683 | */ | |
2684 | pcp_trylock_prepare(UP_flags); | |
2685 | pcp = pcp_spin_trylock(zone->per_cpu_pageset); | |
2686 | if (unlikely(!pcp)) { | |
2687 | pcp_trylock_finish(UP_flags); | |
17edeb5d | 2688 | free_one_page(zone, &folio->page, pfn, |
55612e80 | 2689 | order, FPI_NONE); |
57490774 MG |
2690 | continue; |
2691 | } | |
4b23a68f | 2692 | locked_zone = zone; |
4b23a68f MG |
2693 | } |
2694 | ||
47aef601 DB |
2695 | /* |
2696 | * Non-isolated types over MIGRATE_PCPTYPES get added | |
2697 | * to the MIGRATE_MOVABLE pcp list. | |
2698 | */ | |
47aef601 DB |
2699 | if (unlikely(migratetype >= MIGRATE_PCPTYPES)) |
2700 | migratetype = MIGRATE_MOVABLE; | |
2701 | ||
7c76d922 | 2702 | trace_mm_page_free_batched(&folio->page); |
31b2ff82 MWO |
2703 | free_unref_page_commit(zone, pcp, &folio->page, migratetype, |
2704 | order); | |
cc59850e | 2705 | } |
4b23a68f | 2706 | |
57490774 MG |
2707 | if (pcp) { |
2708 | pcp_spin_unlock(pcp); | |
2709 | pcp_trylock_finish(UP_flags); | |
2710 | } | |
90491d87 | 2711 | folio_batch_reinit(folios); |
cc59850e KK |
2712 | } |
2713 | ||
8dfcc9ba NP |
2714 | /* |
2715 | * split_page takes a non-compound higher-order page, and splits it into | |
2716 | * n (1<<order) sub-pages: page[0..n] | |
2717 | * Each sub-page must be freed individually. | |
2718 | * | |
2719 | * Note: this is probably too low level an operation for use in drivers. | |
2720 | * Please consult with lkml before using this in your driver. | |
2721 | */ | |
2722 | void split_page(struct page *page, unsigned int order) | |
2723 | { | |
2724 | int i; | |
2725 | ||
309381fe SL |
2726 | VM_BUG_ON_PAGE(PageCompound(page), page); |
2727 | VM_BUG_ON_PAGE(!page_count(page), page); | |
b1eeab67 | 2728 | |
a9627bc5 | 2729 | for (i = 1; i < (1 << order); i++) |
7835e98b | 2730 | set_page_refcounted(page + i); |
46d44d09 | 2731 | split_page_owner(page, order, 0); |
be25d1d4 | 2732 | pgalloc_tag_split(page, 1 << order); |
b8791381 | 2733 | split_page_memcg(page, order, 0); |
8dfcc9ba | 2734 | } |
5853ff23 | 2735 | EXPORT_SYMBOL_GPL(split_page); |
8dfcc9ba | 2736 | |
3c605096 | 2737 | int __isolate_free_page(struct page *page, unsigned int order) |
748446bb | 2738 | { |
9a157dd8 KW |
2739 | struct zone *zone = page_zone(page); |
2740 | int mt = get_pageblock_migratetype(page); | |
748446bb | 2741 | |
194159fb | 2742 | if (!is_migrate_isolate(mt)) { |
9a157dd8 | 2743 | unsigned long watermark; |
8348faf9 VB |
2744 | /* |
2745 | * Obey watermarks as if the page was being allocated. We can | |
2746 | * emulate a high-order watermark check with a raised order-0 | |
2747 | * watermark, because we already know our high-order page | |
2748 | * exists. | |
2749 | */ | |
fd1444b2 | 2750 | watermark = zone->_watermark[WMARK_MIN] + (1UL << order); |
d883c6cf | 2751 | if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) |
2e30abd1 | 2752 | return 0; |
2e30abd1 | 2753 | } |
748446bb | 2754 | |
e0932b6c | 2755 | del_page_from_free_list(page, zone, order, mt); |
2139cbe6 | 2756 | |
400bc7fd | 2757 | /* |
2758 | * Set the pageblock if the isolated page is at least half of a | |
2759 | * pageblock | |
2760 | */ | |
748446bb MG |
2761 | if (order >= pageblock_order - 1) { |
2762 | struct page *endpage = page + (1 << order) - 1; | |
47118af0 MN |
2763 | for (; page < endpage; page += pageblock_nr_pages) { |
2764 | int mt = get_pageblock_migratetype(page); | |
1dd214b8 ZY |
2765 | /* |
2766 | * Only change normal pageblocks (i.e., they can merge | |
2767 | * with others) | |
2768 | */ | |
f37c0f68 | 2769 | if (migratetype_is_mergeable(mt)) |
e0932b6c | 2770 | move_freepages_block(zone, page, mt, |
f37c0f68 | 2771 | MIGRATE_MOVABLE); |
47118af0 | 2772 | } |
748446bb MG |
2773 | } |
2774 | ||
8fb74b9f | 2775 | return 1UL << order; |
1fb3f8ca MG |
2776 | } |
2777 | ||
624f58d8 AD |
2778 | /** |
2779 | * __putback_isolated_page - Return a now-isolated page back where we got it | |
2780 | * @page: Page that was isolated | |
2781 | * @order: Order of the isolated page | |
e6a0a7ad | 2782 | * @mt: The page's pageblock's migratetype |
624f58d8 AD |
2783 | * |
2784 | * This function is meant to return a page pulled from the free lists via | |
2785 | * __isolate_free_page back to the free lists they were pulled from. | |
2786 | */ | |
2787 | void __putback_isolated_page(struct page *page, unsigned int order, int mt) | |
2788 | { | |
2789 | struct zone *zone = page_zone(page); | |
2790 | ||
2791 | /* zone lock should be held when this function is called */ | |
2792 | lockdep_assert_held(&zone->lock); | |
2793 | ||
2794 | /* Return isolated page to tail of freelist. */ | |
f04a5d5d | 2795 | __free_one_page(page, page_to_pfn(page), zone, order, mt, |
47b6a24a | 2796 | FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); |
624f58d8 AD |
2797 | } |
2798 | ||
060e7417 MG |
2799 | /* |
2800 | * Update NUMA hit/miss statistics | |
060e7417 | 2801 | */ |
3e23060b MG |
2802 | static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, |
2803 | long nr_account) | |
060e7417 MG |
2804 | { |
2805 | #ifdef CONFIG_NUMA | |
3a321d2a | 2806 | enum numa_stat_item local_stat = NUMA_LOCAL; |
060e7417 | 2807 | |
4518085e KW |
2808 | /* skip numa counters update if numa stats is disabled */ |
2809 | if (!static_branch_likely(&vm_numa_stat_key)) | |
2810 | return; | |
2811 | ||
c1093b74 | 2812 | if (zone_to_nid(z) != numa_node_id()) |
060e7417 | 2813 | local_stat = NUMA_OTHER; |
060e7417 | 2814 | |
c1093b74 | 2815 | if (zone_to_nid(z) == zone_to_nid(preferred_zone)) |
3e23060b | 2816 | __count_numa_events(z, NUMA_HIT, nr_account); |
2df26639 | 2817 | else { |
3e23060b MG |
2818 | __count_numa_events(z, NUMA_MISS, nr_account); |
2819 | __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); | |
060e7417 | 2820 | } |
3e23060b | 2821 | __count_numa_events(z, local_stat, nr_account); |
060e7417 MG |
2822 | #endif |
2823 | } | |
2824 | ||
589d9973 MG |
2825 | static __always_inline |
2826 | struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, | |
2827 | unsigned int order, unsigned int alloc_flags, | |
2828 | int migratetype) | |
2829 | { | |
2830 | struct page *page; | |
2831 | unsigned long flags; | |
2832 | ||
2833 | do { | |
2834 | page = NULL; | |
2835 | spin_lock_irqsave(&zone->lock, flags); | |
eb2e2b42 | 2836 | if (alloc_flags & ALLOC_HIGHATOMIC) |
589d9973 MG |
2837 | page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); |
2838 | if (!page) { | |
2839 | page = __rmqueue(zone, order, migratetype, alloc_flags); | |
eb2e2b42 MG |
2840 | |
2841 | /* | |
2842 | * If the allocation fails, allow OOM handling access | |
2843 | * to HIGHATOMIC reserves as failing now is worse than | |
2844 | * failing a high-order atomic allocation in the | |
2845 | * future. | |
2846 | */ | |
2847 | if (!page && (alloc_flags & ALLOC_OOM)) | |
2848 | page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); | |
2849 | ||
589d9973 MG |
2850 | if (!page) { |
2851 | spin_unlock_irqrestore(&zone->lock, flags); | |
2852 | return NULL; | |
2853 | } | |
2854 | } | |
589d9973 MG |
2855 | spin_unlock_irqrestore(&zone->lock, flags); |
2856 | } while (check_new_pages(page, order)); | |
2857 | ||
2858 | __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); | |
2859 | zone_statistics(preferred_zone, zone, 1); | |
2860 | ||
2861 | return page; | |
2862 | } | |
2863 | ||
51a755c5 | 2864 | static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) |
c0a24239 | 2865 | { |
51a755c5 YH |
2866 | int high, base_batch, batch, max_nr_alloc; |
2867 | int high_max, high_min; | |
c0a24239 | 2868 | |
51a755c5 YH |
2869 | base_batch = READ_ONCE(pcp->batch); |
2870 | high_min = READ_ONCE(pcp->high_min); | |
2871 | high_max = READ_ONCE(pcp->high_max); | |
2872 | high = pcp->high = clamp(pcp->high, high_min, high_max); | |
c0a24239 YH |
2873 | |
2874 | /* Check for PCP disabled or boot pageset */ | |
51a755c5 | 2875 | if (unlikely(high < base_batch)) |
c0a24239 YH |
2876 | return 1; |
2877 | ||
51a755c5 YH |
2878 | if (order) |
2879 | batch = base_batch; | |
2880 | else | |
2881 | batch = (base_batch << pcp->alloc_factor); | |
2882 | ||
c0a24239 | 2883 | /* |
51a755c5 YH |
2884 | * If we had larger pcp->high, we could avoid to allocate from |
2885 | * zone. | |
c0a24239 | 2886 | */ |
57c0419c | 2887 | if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) |
51a755c5 YH |
2888 | high = pcp->high = min(high + batch, high_max); |
2889 | ||
c0a24239 | 2890 | if (!order) { |
51a755c5 YH |
2891 | max_nr_alloc = max(high - pcp->count - base_batch, base_batch); |
2892 | /* | |
2893 | * Double the number of pages allocated each time there is | |
2894 | * subsequent allocation of order-0 pages without any freeing. | |
2895 | */ | |
c0a24239 YH |
2896 | if (batch <= max_nr_alloc && |
2897 | pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) | |
2898 | pcp->alloc_factor++; | |
2899 | batch = min(batch, max_nr_alloc); | |
2900 | } | |
2901 | ||
2902 | /* | |
2903 | * Scale batch relative to order if batch implies free pages | |
2904 | * can be stored on the PCP. Batch can be 1 for small zones or | |
2905 | * for boot pagesets which should never store free pages as | |
2906 | * the pages may belong to arbitrary zones. | |
2907 | */ | |
2908 | if (batch > 1) | |
2909 | batch = max(batch >> order, 2); | |
2910 | ||
2911 | return batch; | |
2912 | } | |
2913 | ||
066b2393 | 2914 | /* Remove page from the per-cpu list, caller must protect the list */ |
3b822017 | 2915 | static inline |
44042b44 MG |
2916 | struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, |
2917 | int migratetype, | |
6bb15450 | 2918 | unsigned int alloc_flags, |
453f85d4 | 2919 | struct per_cpu_pages *pcp, |
066b2393 MG |
2920 | struct list_head *list) |
2921 | { | |
2922 | struct page *page; | |
2923 | ||
2924 | do { | |
2925 | if (list_empty(list)) { | |
51a755c5 | 2926 | int batch = nr_pcp_alloc(pcp, zone, order); |
44042b44 MG |
2927 | int alloced; |
2928 | ||
44042b44 MG |
2929 | alloced = rmqueue_bulk(zone, order, |
2930 | batch, list, | |
6bb15450 | 2931 | migratetype, alloc_flags); |
44042b44 MG |
2932 | |
2933 | pcp->count += alloced << order; | |
066b2393 MG |
2934 | if (unlikely(list_empty(list))) |
2935 | return NULL; | |
2936 | } | |
2937 | ||
bf75f200 MG |
2938 | page = list_first_entry(list, struct page, pcp_list); |
2939 | list_del(&page->pcp_list); | |
44042b44 | 2940 | pcp->count -= 1 << order; |
700d2e9a | 2941 | } while (check_new_pages(page, order)); |
066b2393 MG |
2942 | |
2943 | return page; | |
2944 | } | |
2945 | ||
2946 | /* Lock and remove page from the per-cpu list */ | |
2947 | static struct page *rmqueue_pcplist(struct zone *preferred_zone, | |
44042b44 | 2948 | struct zone *zone, unsigned int order, |
663d0cfd | 2949 | int migratetype, unsigned int alloc_flags) |
066b2393 MG |
2950 | { |
2951 | struct per_cpu_pages *pcp; | |
2952 | struct list_head *list; | |
066b2393 | 2953 | struct page *page; |
4b23a68f | 2954 | unsigned long __maybe_unused UP_flags; |
066b2393 | 2955 | |
57490774 | 2956 | /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ |
4b23a68f | 2957 | pcp_trylock_prepare(UP_flags); |
57490774 | 2958 | pcp = pcp_spin_trylock(zone->per_cpu_pageset); |
01b44456 | 2959 | if (!pcp) { |
4b23a68f | 2960 | pcp_trylock_finish(UP_flags); |
4b23a68f MG |
2961 | return NULL; |
2962 | } | |
3b12e7e9 MG |
2963 | |
2964 | /* | |
2965 | * On allocation, reduce the number of pages that are batch freed. | |
2966 | * See nr_pcp_free() where free_factor is increased for subsequent | |
2967 | * frees. | |
2968 | */ | |
6ccdcb6d | 2969 | pcp->free_count >>= 1; |
44042b44 MG |
2970 | list = &pcp->lists[order_to_pindex(migratetype, order)]; |
2971 | page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); | |
57490774 | 2972 | pcp_spin_unlock(pcp); |
4b23a68f | 2973 | pcp_trylock_finish(UP_flags); |
066b2393 | 2974 | if (page) { |
15cd9004 | 2975 | __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); |
3e23060b | 2976 | zone_statistics(preferred_zone, zone, 1); |
066b2393 | 2977 | } |
066b2393 MG |
2978 | return page; |
2979 | } | |
2980 | ||
1da177e4 | 2981 | /* |
a57ae9ef RX |
2982 | * Allocate a page from the given zone. |
2983 | * Use pcplists for THP or "cheap" high-order allocations. | |
1da177e4 | 2984 | */ |
b073d7f8 AP |
2985 | |
2986 | /* | |
2987 | * Do not instrument rmqueue() with KMSAN. This function may call | |
2988 | * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). | |
2989 | * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it | |
2990 | * may call rmqueue() again, which will result in a deadlock. | |
1da177e4 | 2991 | */ |
b073d7f8 | 2992 | __no_sanitize_memory |
0a15c3e9 | 2993 | static inline |
066b2393 | 2994 | struct page *rmqueue(struct zone *preferred_zone, |
7aeb09f9 | 2995 | struct zone *zone, unsigned int order, |
c603844b MG |
2996 | gfp_t gfp_flags, unsigned int alloc_flags, |
2997 | int migratetype) | |
1da177e4 | 2998 | { |
689bcebf | 2999 | struct page *page; |
1da177e4 | 3000 | |
589d9973 MG |
3001 | /* |
3002 | * We most definitely don't want callers attempting to | |
3003 | * allocate greater than order-1 page units with __GFP_NOFAIL. | |
3004 | */ | |
3005 | WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); | |
3006 | ||
44042b44 | 3007 | if (likely(pcp_allowed_order(order))) { |
f945116e JW |
3008 | page = rmqueue_pcplist(preferred_zone, zone, order, |
3009 | migratetype, alloc_flags); | |
3010 | if (likely(page)) | |
3011 | goto out; | |
066b2393 | 3012 | } |
83b9355b | 3013 | |
589d9973 MG |
3014 | page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, |
3015 | migratetype); | |
1da177e4 | 3016 | |
066b2393 | 3017 | out: |
73444bc4 | 3018 | /* Separate test+clear to avoid unnecessary atomics */ |
3b11edf1 TH |
3019 | if ((alloc_flags & ALLOC_KSWAPD) && |
3020 | unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { | |
73444bc4 MG |
3021 | clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); |
3022 | wakeup_kswapd(zone, 0, 0, zone_idx(zone)); | |
3023 | } | |
3024 | ||
066b2393 | 3025 | VM_BUG_ON_PAGE(page && bad_range(zone, page), page); |
1da177e4 LT |
3026 | return page; |
3027 | } | |
3028 | ||
54aa3866 | 3029 | noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
af3b8544 BP |
3030 | { |
3031 | return __should_fail_alloc_page(gfp_mask, order); | |
3032 | } | |
3033 | ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); | |
3034 | ||
f27ce0e1 JK |
3035 | static inline long __zone_watermark_unusable_free(struct zone *z, |
3036 | unsigned int order, unsigned int alloc_flags) | |
3037 | { | |
f27ce0e1 JK |
3038 | long unusable_free = (1 << order) - 1; |
3039 | ||
3040 | /* | |
ab350885 MG |
3041 | * If the caller does not have rights to reserves below the min |
3042 | * watermark then subtract the high-atomic reserves. This will | |
3043 | * over-estimate the size of the atomic reserve but it avoids a search. | |
f27ce0e1 | 3044 | */ |
ab350885 | 3045 | if (likely(!(alloc_flags & ALLOC_RESERVES))) |
f27ce0e1 JK |
3046 | unusable_free += z->nr_reserved_highatomic; |
3047 | ||
3048 | #ifdef CONFIG_CMA | |
3049 | /* If allocation can't use CMA areas don't use free CMA pages */ | |
3050 | if (!(alloc_flags & ALLOC_CMA)) | |
3051 | unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); | |
3052 | #endif | |
dcdfdd40 KS |
3053 | #ifdef CONFIG_UNACCEPTED_MEMORY |
3054 | unusable_free += zone_page_state(z, NR_UNACCEPTED); | |
3055 | #endif | |
f27ce0e1 JK |
3056 | |
3057 | return unusable_free; | |
3058 | } | |
3059 | ||
1da177e4 | 3060 | /* |
97a16fc8 MG |
3061 | * Return true if free base pages are above 'mark'. For high-order checks it |
3062 | * will return true of the order-0 watermark is reached and there is at least | |
3063 | * one free page of a suitable size. Checking now avoids taking the zone lock | |
3064 | * to check in the allocation paths if no pages are free. | |
1da177e4 | 3065 | */ |
86a294a8 | 3066 | bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
97a225e6 | 3067 | int highest_zoneidx, unsigned int alloc_flags, |
86a294a8 | 3068 | long free_pages) |
1da177e4 | 3069 | { |
d23ad423 | 3070 | long min = mark; |
1da177e4 LT |
3071 | int o; |
3072 | ||
0aaa29a5 | 3073 | /* free_pages may go negative - that's OK */ |
f27ce0e1 | 3074 | free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); |
0aaa29a5 | 3075 | |
ab350885 MG |
3076 | if (unlikely(alloc_flags & ALLOC_RESERVES)) { |
3077 | /* | |
3078 | * __GFP_HIGH allows access to 50% of the min reserve as well | |
3079 | * as OOM. | |
3080 | */ | |
1ebbb218 | 3081 | if (alloc_flags & ALLOC_MIN_RESERVE) { |
ab350885 | 3082 | min -= min / 2; |
0aaa29a5 | 3083 | |
1ebbb218 MG |
3084 | /* |
3085 | * Non-blocking allocations (e.g. GFP_ATOMIC) can | |
3086 | * access more reserves than just __GFP_HIGH. Other | |
3087 | * non-blocking allocations requests such as GFP_NOWAIT | |
3088 | * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get | |
3089 | * access to the min reserve. | |
3090 | */ | |
3091 | if (alloc_flags & ALLOC_NON_BLOCK) | |
3092 | min -= min / 4; | |
3093 | } | |
0aaa29a5 | 3094 | |
cd04ae1e | 3095 | /* |
ab350885 | 3096 | * OOM victims can try even harder than the normal reserve |
cd04ae1e MH |
3097 | * users on the grounds that it's definitely going to be in |
3098 | * the exit path shortly and free memory. Any allocation it | |
3099 | * makes during the free path will be small and short-lived. | |
3100 | */ | |
3101 | if (alloc_flags & ALLOC_OOM) | |
3102 | min -= min / 2; | |
cd04ae1e MH |
3103 | } |
3104 | ||
97a16fc8 MG |
3105 | /* |
3106 | * Check watermarks for an order-0 allocation request. If these | |
3107 | * are not met, then a high-order request also cannot go ahead | |
3108 | * even if a suitable page happened to be free. | |
3109 | */ | |
97a225e6 | 3110 | if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) |
88f5acf8 | 3111 | return false; |
1da177e4 | 3112 | |
97a16fc8 MG |
3113 | /* If this is an order-0 request then the watermark is fine */ |
3114 | if (!order) | |
3115 | return true; | |
3116 | ||
3117 | /* For a high-order request, check at least one suitable page is free */ | |
fd377218 | 3118 | for (o = order; o < NR_PAGE_ORDERS; o++) { |
97a16fc8 MG |
3119 | struct free_area *area = &z->free_area[o]; |
3120 | int mt; | |
3121 | ||
3122 | if (!area->nr_free) | |
3123 | continue; | |
3124 | ||
97a16fc8 | 3125 | for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { |
b03641af | 3126 | if (!free_area_empty(area, mt)) |
97a16fc8 MG |
3127 | return true; |
3128 | } | |
3129 | ||
3130 | #ifdef CONFIG_CMA | |
d883c6cf | 3131 | if ((alloc_flags & ALLOC_CMA) && |
b03641af | 3132 | !free_area_empty(area, MIGRATE_CMA)) { |
97a16fc8 | 3133 | return true; |
d883c6cf | 3134 | } |
97a16fc8 | 3135 | #endif |
eb2e2b42 MG |
3136 | if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && |
3137 | !free_area_empty(area, MIGRATE_HIGHATOMIC)) { | |
b050e376 | 3138 | return true; |
eb2e2b42 | 3139 | } |
1da177e4 | 3140 | } |
97a16fc8 | 3141 | return false; |
88f5acf8 MG |
3142 | } |
3143 | ||
7aeb09f9 | 3144 | bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
97a225e6 | 3145 | int highest_zoneidx, unsigned int alloc_flags) |
88f5acf8 | 3146 | { |
97a225e6 | 3147 | return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, |
88f5acf8 MG |
3148 | zone_page_state(z, NR_FREE_PAGES)); |
3149 | } | |
3150 | ||
48ee5f36 | 3151 | static inline bool zone_watermark_fast(struct zone *z, unsigned int order, |
97a225e6 | 3152 | unsigned long mark, int highest_zoneidx, |
f80b08fc | 3153 | unsigned int alloc_flags, gfp_t gfp_mask) |
48ee5f36 | 3154 | { |
f27ce0e1 | 3155 | long free_pages; |
d883c6cf | 3156 | |
f27ce0e1 | 3157 | free_pages = zone_page_state(z, NR_FREE_PAGES); |
48ee5f36 MG |
3158 | |
3159 | /* | |
3160 | * Fast check for order-0 only. If this fails then the reserves | |
f27ce0e1 | 3161 | * need to be calculated. |
48ee5f36 | 3162 | */ |
f27ce0e1 | 3163 | if (!order) { |
9282012f JK |
3164 | long usable_free; |
3165 | long reserved; | |
f27ce0e1 | 3166 | |
9282012f JK |
3167 | usable_free = free_pages; |
3168 | reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); | |
3169 | ||
3170 | /* reserved may over estimate high-atomic reserves. */ | |
3171 | usable_free -= min(usable_free, reserved); | |
3172 | if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) | |
f27ce0e1 JK |
3173 | return true; |
3174 | } | |
48ee5f36 | 3175 | |
f80b08fc CTR |
3176 | if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, |
3177 | free_pages)) | |
3178 | return true; | |
2973d822 | 3179 | |
f80b08fc | 3180 | /* |
2973d822 | 3181 | * Ignore watermark boosting for __GFP_HIGH order-0 allocations |
f80b08fc CTR |
3182 | * when checking the min watermark. The min watermark is the |
3183 | * point where boosting is ignored so that kswapd is woken up | |
3184 | * when below the low watermark. | |
3185 | */ | |
2973d822 | 3186 | if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost |
f80b08fc CTR |
3187 | && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { |
3188 | mark = z->_watermark[WMARK_MIN]; | |
3189 | return __zone_watermark_ok(z, order, mark, highest_zoneidx, | |
3190 | alloc_flags, free_pages); | |
3191 | } | |
3192 | ||
3193 | return false; | |
48ee5f36 MG |
3194 | } |
3195 | ||
7aeb09f9 | 3196 | bool zone_watermark_ok_safe(struct zone *z, unsigned int order, |
97a225e6 | 3197 | unsigned long mark, int highest_zoneidx) |
88f5acf8 MG |
3198 | { |
3199 | long free_pages = zone_page_state(z, NR_FREE_PAGES); | |
3200 | ||
3201 | if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) | |
3202 | free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); | |
3203 | ||
97a225e6 | 3204 | return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, |
88f5acf8 | 3205 | free_pages); |
1da177e4 LT |
3206 | } |
3207 | ||
9276b1bc | 3208 | #ifdef CONFIG_NUMA |
61bb6cd2 GU |
3209 | int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; |
3210 | ||
957f822a DR |
3211 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
3212 | { | |
e02dc017 | 3213 | return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= |
a55c7454 | 3214 | node_reclaim_distance; |
957f822a | 3215 | } |
9276b1bc | 3216 | #else /* CONFIG_NUMA */ |
957f822a DR |
3217 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
3218 | { | |
3219 | return true; | |
3220 | } | |
9276b1bc PJ |
3221 | #endif /* CONFIG_NUMA */ |
3222 | ||
6bb15450 MG |
3223 | /* |
3224 | * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid | |
3225 | * fragmentation is subtle. If the preferred zone was HIGHMEM then | |
3226 | * premature use of a lower zone may cause lowmem pressure problems that | |
3227 | * are worse than fragmentation. If the next zone is ZONE_DMA then it is | |
3228 | * probably too small. It only makes sense to spread allocations to avoid | |
3229 | * fragmentation between the Normal and DMA32 zones. | |
3230 | */ | |
3231 | static inline unsigned int | |
0a79cdad | 3232 | alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) |
6bb15450 | 3233 | { |
736838e9 | 3234 | unsigned int alloc_flags; |
0a79cdad | 3235 | |
736838e9 MN |
3236 | /* |
3237 | * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD | |
3238 | * to save a branch. | |
3239 | */ | |
3240 | alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); | |
0a79cdad MG |
3241 | |
3242 | #ifdef CONFIG_ZONE_DMA32 | |
8139ad04 AR |
3243 | if (!zone) |
3244 | return alloc_flags; | |
3245 | ||
6bb15450 | 3246 | if (zone_idx(zone) != ZONE_NORMAL) |
8118b82e | 3247 | return alloc_flags; |
6bb15450 MG |
3248 | |
3249 | /* | |
3250 | * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and | |
3251 | * the pointer is within zone->zone_pgdat->node_zones[]. Also assume | |
3252 | * on UMA that if Normal is populated then so is DMA32. | |
3253 | */ | |
3254 | BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); | |
3255 | if (nr_online_nodes > 1 && !populated_zone(--zone)) | |
8118b82e | 3256 | return alloc_flags; |
6bb15450 | 3257 | |
8118b82e | 3258 | alloc_flags |= ALLOC_NOFRAGMENT; |
0a79cdad MG |
3259 | #endif /* CONFIG_ZONE_DMA32 */ |
3260 | return alloc_flags; | |
6bb15450 | 3261 | } |
6bb15450 | 3262 | |
8e3560d9 PT |
3263 | /* Must be called after current_gfp_context() which can change gfp_mask */ |
3264 | static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, | |
3265 | unsigned int alloc_flags) | |
8510e69c JK |
3266 | { |
3267 | #ifdef CONFIG_CMA | |
8e3560d9 | 3268 | if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) |
8510e69c | 3269 | alloc_flags |= ALLOC_CMA; |
8510e69c JK |
3270 | #endif |
3271 | return alloc_flags; | |
3272 | } | |
3273 | ||
7fb1d9fc | 3274 | /* |
0798e519 | 3275 | * get_page_from_freelist goes through the zonelist trying to allocate |
7fb1d9fc RS |
3276 | * a page. |
3277 | */ | |
3278 | static struct page * | |
a9263751 VB |
3279 | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, |
3280 | const struct alloc_context *ac) | |
753ee728 | 3281 | { |
6bb15450 | 3282 | struct zoneref *z; |
5117f45d | 3283 | struct zone *zone; |
8a87d695 WY |
3284 | struct pglist_data *last_pgdat = NULL; |
3285 | bool last_pgdat_dirty_ok = false; | |
6bb15450 | 3286 | bool no_fallback; |
3b8c0be4 | 3287 | |
6bb15450 | 3288 | retry: |
7fb1d9fc | 3289 | /* |
9276b1bc | 3290 | * Scan zonelist, looking for a zone with enough free. |
8e464522 | 3291 | * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. |
7fb1d9fc | 3292 | */ |
6bb15450 MG |
3293 | no_fallback = alloc_flags & ALLOC_NOFRAGMENT; |
3294 | z = ac->preferred_zoneref; | |
30d8ec73 MN |
3295 | for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, |
3296 | ac->nodemask) { | |
be06af00 | 3297 | struct page *page; |
e085dbc5 JW |
3298 | unsigned long mark; |
3299 | ||
664eedde MG |
3300 | if (cpusets_enabled() && |
3301 | (alloc_flags & ALLOC_CPUSET) && | |
002f2906 | 3302 | !__cpuset_zone_allowed(zone, gfp_mask)) |
cd38b115 | 3303 | continue; |
a756cf59 JW |
3304 | /* |
3305 | * When allocating a page cache page for writing, we | |
281e3726 MG |
3306 | * want to get it from a node that is within its dirty |
3307 | * limit, such that no single node holds more than its | |
a756cf59 | 3308 | * proportional share of globally allowed dirty pages. |
281e3726 | 3309 | * The dirty limits take into account the node's |
a756cf59 JW |
3310 | * lowmem reserves and high watermark so that kswapd |
3311 | * should be able to balance it without having to | |
3312 | * write pages from its LRU list. | |
3313 | * | |
a756cf59 | 3314 | * XXX: For now, allow allocations to potentially |
281e3726 | 3315 | * exceed the per-node dirty limit in the slowpath |
c9ab0c4f | 3316 | * (spread_dirty_pages unset) before going into reclaim, |
a756cf59 | 3317 | * which is important when on a NUMA setup the allowed |
281e3726 | 3318 | * nodes are together not big enough to reach the |
a756cf59 | 3319 | * global limit. The proper fix for these situations |
281e3726 | 3320 | * will require awareness of nodes in the |
a756cf59 JW |
3321 | * dirty-throttling and the flusher threads. |
3322 | */ | |
3b8c0be4 | 3323 | if (ac->spread_dirty_pages) { |
8a87d695 WY |
3324 | if (last_pgdat != zone->zone_pgdat) { |
3325 | last_pgdat = zone->zone_pgdat; | |
3326 | last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); | |
3327 | } | |
3b8c0be4 | 3328 | |
8a87d695 | 3329 | if (!last_pgdat_dirty_ok) |
3b8c0be4 | 3330 | continue; |
3b8c0be4 | 3331 | } |
7fb1d9fc | 3332 | |
6bb15450 MG |
3333 | if (no_fallback && nr_online_nodes > 1 && |
3334 | zone != ac->preferred_zoneref->zone) { | |
3335 | int local_nid; | |
3336 | ||
3337 | /* | |
3338 | * If moving to a remote node, retry but allow | |
3339 | * fragmenting fallbacks. Locality is more important | |
3340 | * than fragmentation avoidance. | |
3341 | */ | |
3342 | local_nid = zone_to_nid(ac->preferred_zoneref->zone); | |
3343 | if (zone_to_nid(zone) != local_nid) { | |
3344 | alloc_flags &= ~ALLOC_NOFRAGMENT; | |
3345 | goto retry; | |
3346 | } | |
3347 | } | |
3348 | ||
57c0419c YH |
3349 | /* |
3350 | * Detect whether the number of free pages is below high | |
3351 | * watermark. If so, we will decrease pcp->high and free | |
3352 | * PCP pages in free path to reduce the possibility of | |
3353 | * premature page reclaiming. Detection is done here to | |
3354 | * avoid to do that in hotter free path. | |
3355 | */ | |
3356 | if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) | |
3357 | goto check_alloc_wmark; | |
3358 | ||
3359 | mark = high_wmark_pages(zone); | |
3360 | if (zone_watermark_fast(zone, order, mark, | |
3361 | ac->highest_zoneidx, alloc_flags, | |
3362 | gfp_mask)) | |
3363 | goto try_this_zone; | |
3364 | else | |
3365 | set_bit(ZONE_BELOW_HIGH, &zone->flags); | |
3366 | ||
3367 | check_alloc_wmark: | |
a9214443 | 3368 | mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); |
48ee5f36 | 3369 | if (!zone_watermark_fast(zone, order, mark, |
f80b08fc CTR |
3370 | ac->highest_zoneidx, alloc_flags, |
3371 | gfp_mask)) { | |
fa5e084e MG |
3372 | int ret; |
3373 | ||
dcdfdd40 KS |
3374 | if (has_unaccepted_memory()) { |
3375 | if (try_to_accept_memory(zone, order)) | |
3376 | goto try_this_zone; | |
3377 | } | |
3378 | ||
c9e97a19 PT |
3379 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
3380 | /* | |
3381 | * Watermark failed for this zone, but see if we can | |
3382 | * grow this zone if it contains deferred pages. | |
3383 | */ | |
076cf7ea | 3384 | if (deferred_pages_enabled()) { |
c9e97a19 PT |
3385 | if (_deferred_grow_zone(zone, order)) |
3386 | goto try_this_zone; | |
3387 | } | |
3388 | #endif | |
5dab2911 MG |
3389 | /* Checked here to keep the fast path fast */ |
3390 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); | |
3391 | if (alloc_flags & ALLOC_NO_WATERMARKS) | |
3392 | goto try_this_zone; | |
3393 | ||
202e35db | 3394 | if (!node_reclaim_enabled() || |
c33d6c06 | 3395 | !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) |
cd38b115 MG |
3396 | continue; |
3397 | ||
a5f5f91d | 3398 | ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); |
fa5e084e | 3399 | switch (ret) { |
a5f5f91d | 3400 | case NODE_RECLAIM_NOSCAN: |
fa5e084e | 3401 | /* did not scan */ |
cd38b115 | 3402 | continue; |
a5f5f91d | 3403 | case NODE_RECLAIM_FULL: |
fa5e084e | 3404 | /* scanned but unreclaimable */ |
cd38b115 | 3405 | continue; |
fa5e084e MG |
3406 | default: |
3407 | /* did we reclaim enough */ | |
fed2719e | 3408 | if (zone_watermark_ok(zone, order, mark, |
97a225e6 | 3409 | ac->highest_zoneidx, alloc_flags)) |
fed2719e MG |
3410 | goto try_this_zone; |
3411 | ||
fed2719e | 3412 | continue; |
0798e519 | 3413 | } |
7fb1d9fc RS |
3414 | } |
3415 | ||
fa5e084e | 3416 | try_this_zone: |
066b2393 | 3417 | page = rmqueue(ac->preferred_zoneref->zone, zone, order, |
0aaa29a5 | 3418 | gfp_mask, alloc_flags, ac->migratetype); |
75379191 | 3419 | if (page) { |
479f854a | 3420 | prep_new_page(page, order, gfp_mask, alloc_flags); |
0aaa29a5 MG |
3421 | |
3422 | /* | |
3423 | * If this is a high-order atomic allocation then check | |
3424 | * if the pageblock should be reserved for the future | |
3425 | */ | |
eb2e2b42 | 3426 | if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) |
7cc5a5d6 | 3427 | reserve_highatomic_pageblock(page, order, zone); |
0aaa29a5 | 3428 | |
75379191 | 3429 | return page; |
c9e97a19 | 3430 | } else { |
dcdfdd40 KS |
3431 | if (has_unaccepted_memory()) { |
3432 | if (try_to_accept_memory(zone, order)) | |
3433 | goto try_this_zone; | |
3434 | } | |
3435 | ||
c9e97a19 PT |
3436 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
3437 | /* Try again if zone has deferred pages */ | |
076cf7ea | 3438 | if (deferred_pages_enabled()) { |
c9e97a19 PT |
3439 | if (_deferred_grow_zone(zone, order)) |
3440 | goto try_this_zone; | |
3441 | } | |
3442 | #endif | |
75379191 | 3443 | } |
54a6eb5c | 3444 | } |
9276b1bc | 3445 | |
6bb15450 MG |
3446 | /* |
3447 | * It's possible on a UMA machine to get through all zones that are | |
3448 | * fragmented. If avoiding fragmentation, reset and try again. | |
3449 | */ | |
3450 | if (no_fallback) { | |
3451 | alloc_flags &= ~ALLOC_NOFRAGMENT; | |
3452 | goto retry; | |
3453 | } | |
3454 | ||
4ffeaf35 | 3455 | return NULL; |
753ee728 MH |
3456 | } |
3457 | ||
9af744d7 | 3458 | static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) |
a238ab5b | 3459 | { |
a238ab5b | 3460 | unsigned int filter = SHOW_MEM_FILTER_NODES; |
a238ab5b DH |
3461 | |
3462 | /* | |
3463 | * This documents exceptions given to allocations in certain | |
3464 | * contexts that are allowed to allocate outside current's set | |
3465 | * of allowed nodes. | |
3466 | */ | |
3467 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | |
cd04ae1e | 3468 | if (tsk_is_oom_victim(current) || |
a238ab5b DH |
3469 | (current->flags & (PF_MEMALLOC | PF_EXITING))) |
3470 | filter &= ~SHOW_MEM_FILTER_NODES; | |
88dc6f20 | 3471 | if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) |
a238ab5b DH |
3472 | filter &= ~SHOW_MEM_FILTER_NODES; |
3473 | ||
974f4367 | 3474 | __show_mem(filter, nodemask, gfp_zone(gfp_mask)); |
aa187507 MH |
3475 | } |
3476 | ||
a8e99259 | 3477 | void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) |
aa187507 MH |
3478 | { |
3479 | struct va_format vaf; | |
3480 | va_list args; | |
1be334e5 | 3481 | static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); |
aa187507 | 3482 | |
c4dc63f0 BH |
3483 | if ((gfp_mask & __GFP_NOWARN) || |
3484 | !__ratelimit(&nopage_rs) || | |
3485 | ((gfp_mask & __GFP_DMA) && !has_managed_dma())) | |
aa187507 MH |
3486 | return; |
3487 | ||
7877cdcc MH |
3488 | va_start(args, fmt); |
3489 | vaf.fmt = fmt; | |
3490 | vaf.va = &args; | |
ef8444ea | 3491 | pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", |
0205f755 MH |
3492 | current->comm, &vaf, gfp_mask, &gfp_mask, |
3493 | nodemask_pr_args(nodemask)); | |
7877cdcc | 3494 | va_end(args); |
3ee9a4f0 | 3495 | |
a8e99259 | 3496 | cpuset_print_current_mems_allowed(); |
ef8444ea | 3497 | pr_cont("\n"); |
a238ab5b | 3498 | dump_stack(); |
685dbf6f | 3499 | warn_alloc_show_mem(gfp_mask, nodemask); |
a238ab5b DH |
3500 | } |
3501 | ||
6c18ba7a MH |
3502 | static inline struct page * |
3503 | __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, | |
3504 | unsigned int alloc_flags, | |
3505 | const struct alloc_context *ac) | |
3506 | { | |
3507 | struct page *page; | |
3508 | ||
3509 | page = get_page_from_freelist(gfp_mask, order, | |
3510 | alloc_flags|ALLOC_CPUSET, ac); | |
3511 | /* | |
3512 | * fallback to ignore cpuset restriction if our nodes | |
3513 | * are depleted | |
3514 | */ | |
3515 | if (!page) | |
3516 | page = get_page_from_freelist(gfp_mask, order, | |
3517 | alloc_flags, ac); | |
3518 | ||
3519 | return page; | |
3520 | } | |
3521 | ||
11e33f6a MG |
3522 | static inline struct page * |
3523 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |
a9263751 | 3524 | const struct alloc_context *ac, unsigned long *did_some_progress) |
11e33f6a | 3525 | { |
6e0fc46d DR |
3526 | struct oom_control oc = { |
3527 | .zonelist = ac->zonelist, | |
3528 | .nodemask = ac->nodemask, | |
2a966b77 | 3529 | .memcg = NULL, |
6e0fc46d DR |
3530 | .gfp_mask = gfp_mask, |
3531 | .order = order, | |
6e0fc46d | 3532 | }; |
11e33f6a MG |
3533 | struct page *page; |
3534 | ||
9879de73 JW |
3535 | *did_some_progress = 0; |
3536 | ||
9879de73 | 3537 | /* |
dc56401f JW |
3538 | * Acquire the oom lock. If that fails, somebody else is |
3539 | * making progress for us. | |
9879de73 | 3540 | */ |
dc56401f | 3541 | if (!mutex_trylock(&oom_lock)) { |
9879de73 | 3542 | *did_some_progress = 1; |
11e33f6a | 3543 | schedule_timeout_uninterruptible(1); |
1da177e4 LT |
3544 | return NULL; |
3545 | } | |
6b1de916 | 3546 | |
11e33f6a MG |
3547 | /* |
3548 | * Go through the zonelist yet one more time, keep very high watermark | |
3549 | * here, this is only to catch a parallel oom killing, we must fail if | |
e746bf73 TH |
3550 | * we're still under heavy pressure. But make sure that this reclaim |
3551 | * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY | |
3552 | * allocation which will never fail due to oom_lock already held. | |
11e33f6a | 3553 | */ |
e746bf73 TH |
3554 | page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & |
3555 | ~__GFP_DIRECT_RECLAIM, order, | |
3556 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); | |
7fb1d9fc | 3557 | if (page) |
11e33f6a MG |
3558 | goto out; |
3559 | ||
06ad276a MH |
3560 | /* Coredumps can quickly deplete all memory reserves */ |
3561 | if (current->flags & PF_DUMPCORE) | |
3562 | goto out; | |
3563 | /* The OOM killer will not help higher order allocs */ | |
3564 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
3565 | goto out; | |
dcda9b04 MH |
3566 | /* |
3567 | * We have already exhausted all our reclaim opportunities without any | |
3568 | * success so it is time to admit defeat. We will skip the OOM killer | |
3569 | * because it is very likely that the caller has a more reasonable | |
3570 | * fallback than shooting a random task. | |
cfb4a541 MN |
3571 | * |
3572 | * The OOM killer may not free memory on a specific node. | |
dcda9b04 | 3573 | */ |
cfb4a541 | 3574 | if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) |
dcda9b04 | 3575 | goto out; |
06ad276a | 3576 | /* The OOM killer does not needlessly kill tasks for lowmem */ |
97a225e6 | 3577 | if (ac->highest_zoneidx < ZONE_NORMAL) |
06ad276a MH |
3578 | goto out; |
3579 | if (pm_suspended_storage()) | |
3580 | goto out; | |
3581 | /* | |
3582 | * XXX: GFP_NOFS allocations should rather fail than rely on | |
3583 | * other request to make a forward progress. | |
3584 | * We are in an unfortunate situation where out_of_memory cannot | |
3585 | * do much for this context but let's try it to at least get | |
3586 | * access to memory reserved if the current task is killed (see | |
3587 | * out_of_memory). Once filesystems are ready to handle allocation | |
3588 | * failures more gracefully we should just bail out here. | |
3589 | */ | |
3590 | ||
3c2c6488 | 3591 | /* Exhausted what can be done so it's blame time */ |
3f913fc5 QZ |
3592 | if (out_of_memory(&oc) || |
3593 | WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { | |
c32b3cbe | 3594 | *did_some_progress = 1; |
5020e285 | 3595 | |
6c18ba7a MH |
3596 | /* |
3597 | * Help non-failing allocations by giving them access to memory | |
3598 | * reserves | |
3599 | */ | |
3600 | if (gfp_mask & __GFP_NOFAIL) | |
3601 | page = __alloc_pages_cpuset_fallback(gfp_mask, order, | |
5020e285 | 3602 | ALLOC_NO_WATERMARKS, ac); |
5020e285 | 3603 | } |
11e33f6a | 3604 | out: |
dc56401f | 3605 | mutex_unlock(&oom_lock); |
11e33f6a MG |
3606 | return page; |
3607 | } | |
3608 | ||
33c2d214 | 3609 | /* |
baf2f90b | 3610 | * Maximum number of compaction retries with a progress before OOM |
33c2d214 MH |
3611 | * killer is consider as the only way to move forward. |
3612 | */ | |
3613 | #define MAX_COMPACT_RETRIES 16 | |
3614 | ||
56de7263 MG |
3615 | #ifdef CONFIG_COMPACTION |
3616 | /* Try memory compaction for high-order allocations before reclaim */ | |
3617 | static struct page * | |
3618 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
c603844b | 3619 | unsigned int alloc_flags, const struct alloc_context *ac, |
a5508cd8 | 3620 | enum compact_priority prio, enum compact_result *compact_result) |
56de7263 | 3621 | { |
5e1f0f09 | 3622 | struct page *page = NULL; |
eb414681 | 3623 | unsigned long pflags; |
499118e9 | 3624 | unsigned int noreclaim_flag; |
53853e2d VB |
3625 | |
3626 | if (!order) | |
66199712 | 3627 | return NULL; |
66199712 | 3628 | |
eb414681 | 3629 | psi_memstall_enter(&pflags); |
5bf18281 | 3630 | delayacct_compact_start(); |
499118e9 | 3631 | noreclaim_flag = memalloc_noreclaim_save(); |
eb414681 | 3632 | |
c5d01d0d | 3633 | *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, |
5e1f0f09 | 3634 | prio, &page); |
eb414681 | 3635 | |
499118e9 | 3636 | memalloc_noreclaim_restore(noreclaim_flag); |
eb414681 | 3637 | psi_memstall_leave(&pflags); |
5bf18281 | 3638 | delayacct_compact_end(); |
56de7263 | 3639 | |
06dac2f4 CTR |
3640 | if (*compact_result == COMPACT_SKIPPED) |
3641 | return NULL; | |
98dd3b48 VB |
3642 | /* |
3643 | * At least in one zone compaction wasn't deferred or skipped, so let's | |
3644 | * count a compaction stall | |
3645 | */ | |
3646 | count_vm_event(COMPACTSTALL); | |
8fb74b9f | 3647 | |
5e1f0f09 MG |
3648 | /* Prep a captured page if available */ |
3649 | if (page) | |
3650 | prep_new_page(page, order, gfp_mask, alloc_flags); | |
3651 | ||
3652 | /* Try get a page from the freelist if available */ | |
3653 | if (!page) | |
3654 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | |
53853e2d | 3655 | |
98dd3b48 VB |
3656 | if (page) { |
3657 | struct zone *zone = page_zone(page); | |
53853e2d | 3658 | |
98dd3b48 VB |
3659 | zone->compact_blockskip_flush = false; |
3660 | compaction_defer_reset(zone, order, true); | |
3661 | count_vm_event(COMPACTSUCCESS); | |
3662 | return page; | |
3663 | } | |
56de7263 | 3664 | |
98dd3b48 VB |
3665 | /* |
3666 | * It's bad if compaction run occurs and fails. The most likely reason | |
3667 | * is that pages exist, but not enough to satisfy watermarks. | |
3668 | */ | |
3669 | count_vm_event(COMPACTFAIL); | |
66199712 | 3670 | |
98dd3b48 | 3671 | cond_resched(); |
56de7263 MG |
3672 | |
3673 | return NULL; | |
3674 | } | |
33c2d214 | 3675 | |
3250845d VB |
3676 | static inline bool |
3677 | should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, | |
3678 | enum compact_result compact_result, | |
3679 | enum compact_priority *compact_priority, | |
d9436498 | 3680 | int *compaction_retries) |
3250845d VB |
3681 | { |
3682 | int max_retries = MAX_COMPACT_RETRIES; | |
c2033b00 | 3683 | int min_priority; |
65190cff MH |
3684 | bool ret = false; |
3685 | int retries = *compaction_retries; | |
3686 | enum compact_priority priority = *compact_priority; | |
3250845d VB |
3687 | |
3688 | if (!order) | |
3689 | return false; | |
3690 | ||
691d9497 AT |
3691 | if (fatal_signal_pending(current)) |
3692 | return false; | |
3693 | ||
49433085 | 3694 | /* |
ecd8b292 JW |
3695 | * Compaction was skipped due to a lack of free order-0 |
3696 | * migration targets. Continue if reclaim can help. | |
49433085 | 3697 | */ |
ecd8b292 | 3698 | if (compact_result == COMPACT_SKIPPED) { |
49433085 VB |
3699 | ret = compaction_zonelist_suitable(ac, order, alloc_flags); |
3700 | goto out; | |
3701 | } | |
3702 | ||
3250845d | 3703 | /* |
511a69b2 JW |
3704 | * Compaction managed to coalesce some page blocks, but the |
3705 | * allocation failed presumably due to a race. Retry some. | |
3250845d | 3706 | */ |
511a69b2 JW |
3707 | if (compact_result == COMPACT_SUCCESS) { |
3708 | /* | |
3709 | * !costly requests are much more important than | |
3710 | * __GFP_RETRY_MAYFAIL costly ones because they are de | |
3711 | * facto nofail and invoke OOM killer to move on while | |
3712 | * costly can fail and users are ready to cope with | |
3713 | * that. 1/4 retries is rather arbitrary but we would | |
3714 | * need much more detailed feedback from compaction to | |
3715 | * make a better decision. | |
3716 | */ | |
3717 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
3718 | max_retries /= 4; | |
3250845d | 3719 | |
511a69b2 JW |
3720 | if (++(*compaction_retries) <= max_retries) { |
3721 | ret = true; | |
3722 | goto out; | |
3723 | } | |
65190cff | 3724 | } |
3250845d | 3725 | |
d9436498 | 3726 | /* |
511a69b2 | 3727 | * Compaction failed. Retry with increasing priority. |
d9436498 | 3728 | */ |
c2033b00 VB |
3729 | min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? |
3730 | MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; | |
65190cff | 3731 | |
c2033b00 | 3732 | if (*compact_priority > min_priority) { |
d9436498 VB |
3733 | (*compact_priority)--; |
3734 | *compaction_retries = 0; | |
65190cff | 3735 | ret = true; |
d9436498 | 3736 | } |
65190cff MH |
3737 | out: |
3738 | trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); | |
3739 | return ret; | |
3250845d | 3740 | } |
56de7263 MG |
3741 | #else |
3742 | static inline struct page * | |
3743 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
c603844b | 3744 | unsigned int alloc_flags, const struct alloc_context *ac, |
a5508cd8 | 3745 | enum compact_priority prio, enum compact_result *compact_result) |
56de7263 | 3746 | { |
33c2d214 | 3747 | *compact_result = COMPACT_SKIPPED; |
56de7263 MG |
3748 | return NULL; |
3749 | } | |
33c2d214 MH |
3750 | |
3751 | static inline bool | |
86a294a8 MH |
3752 | should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, |
3753 | enum compact_result compact_result, | |
a5508cd8 | 3754 | enum compact_priority *compact_priority, |
d9436498 | 3755 | int *compaction_retries) |
33c2d214 | 3756 | { |
31e49bfd MH |
3757 | struct zone *zone; |
3758 | struct zoneref *z; | |
3759 | ||
3760 | if (!order || order > PAGE_ALLOC_COSTLY_ORDER) | |
3761 | return false; | |
3762 | ||
3763 | /* | |
3764 | * There are setups with compaction disabled which would prefer to loop | |
3765 | * inside the allocator rather than hit the oom killer prematurely. | |
3766 | * Let's give them a good hope and keep retrying while the order-0 | |
3767 | * watermarks are OK. | |
3768 | */ | |
97a225e6 JK |
3769 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, |
3770 | ac->highest_zoneidx, ac->nodemask) { | |
31e49bfd | 3771 | if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), |
97a225e6 | 3772 | ac->highest_zoneidx, alloc_flags)) |
31e49bfd MH |
3773 | return true; |
3774 | } | |
33c2d214 MH |
3775 | return false; |
3776 | } | |
3250845d | 3777 | #endif /* CONFIG_COMPACTION */ |
56de7263 | 3778 | |
d92a8cfc | 3779 | #ifdef CONFIG_LOCKDEP |
93781325 | 3780 | static struct lockdep_map __fs_reclaim_map = |
d92a8cfc PZ |
3781 | STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); |
3782 | ||
f920e413 | 3783 | static bool __need_reclaim(gfp_t gfp_mask) |
d92a8cfc | 3784 | { |
d92a8cfc PZ |
3785 | /* no reclaim without waiting on it */ |
3786 | if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) | |
3787 | return false; | |
3788 | ||
3789 | /* this guy won't enter reclaim */ | |
2e517d68 | 3790 | if (current->flags & PF_MEMALLOC) |
d92a8cfc PZ |
3791 | return false; |
3792 | ||
d92a8cfc PZ |
3793 | if (gfp_mask & __GFP_NOLOCKDEP) |
3794 | return false; | |
3795 | ||
3796 | return true; | |
3797 | } | |
3798 | ||
4f3eaf45 | 3799 | void __fs_reclaim_acquire(unsigned long ip) |
93781325 | 3800 | { |
4f3eaf45 | 3801 | lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); |
93781325 OS |
3802 | } |
3803 | ||
4f3eaf45 | 3804 | void __fs_reclaim_release(unsigned long ip) |
93781325 | 3805 | { |
4f3eaf45 | 3806 | lock_release(&__fs_reclaim_map, ip); |
93781325 OS |
3807 | } |
3808 | ||
d92a8cfc PZ |
3809 | void fs_reclaim_acquire(gfp_t gfp_mask) |
3810 | { | |
f920e413 SV |
3811 | gfp_mask = current_gfp_context(gfp_mask); |
3812 | ||
3813 | if (__need_reclaim(gfp_mask)) { | |
3814 | if (gfp_mask & __GFP_FS) | |
4f3eaf45 | 3815 | __fs_reclaim_acquire(_RET_IP_); |
f920e413 SV |
3816 | |
3817 | #ifdef CONFIG_MMU_NOTIFIER | |
3818 | lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); | |
3819 | lock_map_release(&__mmu_notifier_invalidate_range_start_map); | |
3820 | #endif | |
3821 | ||
3822 | } | |
d92a8cfc PZ |
3823 | } |
3824 | EXPORT_SYMBOL_GPL(fs_reclaim_acquire); | |
3825 | ||
3826 | void fs_reclaim_release(gfp_t gfp_mask) | |
3827 | { | |
f920e413 SV |
3828 | gfp_mask = current_gfp_context(gfp_mask); |
3829 | ||
3830 | if (__need_reclaim(gfp_mask)) { | |
3831 | if (gfp_mask & __GFP_FS) | |
4f3eaf45 | 3832 | __fs_reclaim_release(_RET_IP_); |
f920e413 | 3833 | } |
d92a8cfc PZ |
3834 | } |
3835 | EXPORT_SYMBOL_GPL(fs_reclaim_release); | |
3836 | #endif | |
3837 | ||
3d36424b MG |
3838 | /* |
3839 | * Zonelists may change due to hotplug during allocation. Detect when zonelists | |
3840 | * have been rebuilt so allocation retries. Reader side does not lock and | |
3841 | * retries the allocation if zonelist changes. Writer side is protected by the | |
3842 | * embedded spin_lock. | |
3843 | */ | |
3844 | static DEFINE_SEQLOCK(zonelist_update_seq); | |
3845 | ||
3846 | static unsigned int zonelist_iter_begin(void) | |
3847 | { | |
3848 | if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) | |
3849 | return read_seqbegin(&zonelist_update_seq); | |
3850 | ||
3851 | return 0; | |
3852 | } | |
3853 | ||
3854 | static unsigned int check_retry_zonelist(unsigned int seq) | |
3855 | { | |
3856 | if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) | |
3857 | return read_seqretry(&zonelist_update_seq, seq); | |
3858 | ||
3859 | return seq; | |
3860 | } | |
3861 | ||
bba90710 | 3862 | /* Perform direct synchronous page reclaim */ |
2187e17b | 3863 | static unsigned long |
a9263751 VB |
3864 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, |
3865 | const struct alloc_context *ac) | |
11e33f6a | 3866 | { |
499118e9 | 3867 | unsigned int noreclaim_flag; |
fa7fc75f | 3868 | unsigned long progress; |
11e33f6a MG |
3869 | |
3870 | cond_resched(); | |
3871 | ||
3872 | /* We now go into synchronous reclaim */ | |
3873 | cpuset_memory_pressure_bump(); | |
d92a8cfc | 3874 | fs_reclaim_acquire(gfp_mask); |
93781325 | 3875 | noreclaim_flag = memalloc_noreclaim_save(); |
11e33f6a | 3876 | |
a9263751 VB |
3877 | progress = try_to_free_pages(ac->zonelist, order, gfp_mask, |
3878 | ac->nodemask); | |
11e33f6a | 3879 | |
499118e9 | 3880 | memalloc_noreclaim_restore(noreclaim_flag); |
93781325 | 3881 | fs_reclaim_release(gfp_mask); |
11e33f6a MG |
3882 | |
3883 | cond_resched(); | |
3884 | ||
bba90710 MS |
3885 | return progress; |
3886 | } | |
3887 | ||
3888 | /* The really slow allocator path where we enter direct reclaim */ | |
3889 | static inline struct page * | |
3890 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | |
c603844b | 3891 | unsigned int alloc_flags, const struct alloc_context *ac, |
a9263751 | 3892 | unsigned long *did_some_progress) |
bba90710 MS |
3893 | { |
3894 | struct page *page = NULL; | |
fa7fc75f | 3895 | unsigned long pflags; |
bba90710 MS |
3896 | bool drained = false; |
3897 | ||
fa7fc75f | 3898 | psi_memstall_enter(&pflags); |
a9263751 | 3899 | *did_some_progress = __perform_reclaim(gfp_mask, order, ac); |
9ee493ce | 3900 | if (unlikely(!(*did_some_progress))) |
fa7fc75f | 3901 | goto out; |
11e33f6a | 3902 | |
9ee493ce | 3903 | retry: |
31a6c190 | 3904 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
9ee493ce MG |
3905 | |
3906 | /* | |
3907 | * If an allocation failed after direct reclaim, it could be because | |
0aaa29a5 | 3908 | * pages are pinned on the per-cpu lists or in high alloc reserves. |
047b9967 | 3909 | * Shrink them and try again |
9ee493ce MG |
3910 | */ |
3911 | if (!page && !drained) { | |
29fac03b | 3912 | unreserve_highatomic_pageblock(ac, false); |
93481ff0 | 3913 | drain_all_pages(NULL); |
9ee493ce MG |
3914 | drained = true; |
3915 | goto retry; | |
3916 | } | |
fa7fc75f SB |
3917 | out: |
3918 | psi_memstall_leave(&pflags); | |
9ee493ce | 3919 | |
11e33f6a MG |
3920 | return page; |
3921 | } | |
3922 | ||
5ecd9d40 DR |
3923 | static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, |
3924 | const struct alloc_context *ac) | |
3a025760 JW |
3925 | { |
3926 | struct zoneref *z; | |
3927 | struct zone *zone; | |
e1a55637 | 3928 | pg_data_t *last_pgdat = NULL; |
97a225e6 | 3929 | enum zone_type highest_zoneidx = ac->highest_zoneidx; |
3a025760 | 3930 | |
97a225e6 | 3931 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, |
5ecd9d40 | 3932 | ac->nodemask) { |
bc53008e WY |
3933 | if (!managed_zone(zone)) |
3934 | continue; | |
d137a7cb | 3935 | if (last_pgdat != zone->zone_pgdat) { |
97a225e6 | 3936 | wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); |
d137a7cb CW |
3937 | last_pgdat = zone->zone_pgdat; |
3938 | } | |
e1a55637 | 3939 | } |
3a025760 JW |
3940 | } |
3941 | ||
c603844b | 3942 | static inline unsigned int |
eb2e2b42 | 3943 | gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) |
341ce06f | 3944 | { |
c603844b | 3945 | unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; |
1da177e4 | 3946 | |
736838e9 | 3947 | /* |
524c4807 | 3948 | * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE |
736838e9 MN |
3949 | * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD |
3950 | * to save two branches. | |
3951 | */ | |
524c4807 | 3952 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); |
736838e9 | 3953 | BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); |
933e312e | 3954 | |
341ce06f PZ |
3955 | /* |
3956 | * The caller may dip into page reserves a bit more if the caller | |
3957 | * cannot run direct reclaim, or if the caller has realtime scheduling | |
3958 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will | |
1ebbb218 | 3959 | * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). |
341ce06f | 3960 | */ |
736838e9 MN |
3961 | alloc_flags |= (__force int) |
3962 | (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); | |
1da177e4 | 3963 | |
1ebbb218 | 3964 | if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { |
5c3240d9 | 3965 | /* |
b104a35d DR |
3966 | * Not worth trying to allocate harder for __GFP_NOMEMALLOC even |
3967 | * if it can't schedule. | |
5c3240d9 | 3968 | */ |
eb2e2b42 | 3969 | if (!(gfp_mask & __GFP_NOMEMALLOC)) { |
1ebbb218 | 3970 | alloc_flags |= ALLOC_NON_BLOCK; |
eb2e2b42 MG |
3971 | |
3972 | if (order > 0) | |
3973 | alloc_flags |= ALLOC_HIGHATOMIC; | |
3974 | } | |
3975 | ||
523b9458 | 3976 | /* |
1ebbb218 MG |
3977 | * Ignore cpuset mems for non-blocking __GFP_HIGH (probably |
3978 | * GFP_ATOMIC) rather than fail, see the comment for | |
8e464522 | 3979 | * cpuset_node_allowed(). |
523b9458 | 3980 | */ |
1ebbb218 MG |
3981 | if (alloc_flags & ALLOC_MIN_RESERVE) |
3982 | alloc_flags &= ~ALLOC_CPUSET; | |
88dc6f20 | 3983 | } else if (unlikely(rt_task(current)) && in_task()) |
c988dcbe | 3984 | alloc_flags |= ALLOC_MIN_RESERVE; |
341ce06f | 3985 | |
8e3560d9 | 3986 | alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); |
8510e69c | 3987 | |
341ce06f PZ |
3988 | return alloc_flags; |
3989 | } | |
3990 | ||
cd04ae1e | 3991 | static bool oom_reserves_allowed(struct task_struct *tsk) |
072bb0aa | 3992 | { |
cd04ae1e MH |
3993 | if (!tsk_is_oom_victim(tsk)) |
3994 | return false; | |
3995 | ||
3996 | /* | |
3997 | * !MMU doesn't have oom reaper so give access to memory reserves | |
3998 | * only to the thread with TIF_MEMDIE set | |
3999 | */ | |
4000 | if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) | |
31a6c190 VB |
4001 | return false; |
4002 | ||
cd04ae1e MH |
4003 | return true; |
4004 | } | |
4005 | ||
4006 | /* | |
4007 | * Distinguish requests which really need access to full memory | |
4008 | * reserves from oom victims which can live with a portion of it | |
4009 | */ | |
4010 | static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) | |
4011 | { | |
4012 | if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) | |
4013 | return 0; | |
31a6c190 | 4014 | if (gfp_mask & __GFP_MEMALLOC) |
cd04ae1e | 4015 | return ALLOC_NO_WATERMARKS; |
31a6c190 | 4016 | if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) |
cd04ae1e MH |
4017 | return ALLOC_NO_WATERMARKS; |
4018 | if (!in_interrupt()) { | |
4019 | if (current->flags & PF_MEMALLOC) | |
4020 | return ALLOC_NO_WATERMARKS; | |
4021 | else if (oom_reserves_allowed(current)) | |
4022 | return ALLOC_OOM; | |
4023 | } | |
31a6c190 | 4024 | |
cd04ae1e MH |
4025 | return 0; |
4026 | } | |
4027 | ||
4028 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) | |
4029 | { | |
4030 | return !!__gfp_pfmemalloc_flags(gfp_mask); | |
072bb0aa MG |
4031 | } |
4032 | ||
0a0337e0 MH |
4033 | /* |
4034 | * Checks whether it makes sense to retry the reclaim to make a forward progress | |
4035 | * for the given allocation request. | |
491d79ae JW |
4036 | * |
4037 | * We give up when we either have tried MAX_RECLAIM_RETRIES in a row | |
4038 | * without success, or when we couldn't even meet the watermark if we | |
4039 | * reclaimed all remaining pages on the LRU lists. | |
0a0337e0 MH |
4040 | * |
4041 | * Returns true if a retry is viable or false to enter the oom path. | |
4042 | */ | |
4043 | static inline bool | |
4044 | should_reclaim_retry(gfp_t gfp_mask, unsigned order, | |
4045 | struct alloc_context *ac, int alloc_flags, | |
423b452e | 4046 | bool did_some_progress, int *no_progress_loops) |
0a0337e0 MH |
4047 | { |
4048 | struct zone *zone; | |
4049 | struct zoneref *z; | |
15f570bf | 4050 | bool ret = false; |
0a0337e0 | 4051 | |
423b452e VB |
4052 | /* |
4053 | * Costly allocations might have made a progress but this doesn't mean | |
4054 | * their order will become available due to high fragmentation so | |
4055 | * always increment the no progress counter for them | |
4056 | */ | |
4057 | if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) | |
4058 | *no_progress_loops = 0; | |
4059 | else | |
4060 | (*no_progress_loops)++; | |
4061 | ||
ac3f3b0a CTK |
4062 | if (*no_progress_loops > MAX_RECLAIM_RETRIES) |
4063 | goto out; | |
4064 | ||
0a0337e0 | 4065 | |
bca67592 MG |
4066 | /* |
4067 | * Keep reclaiming pages while there is a chance this will lead | |
4068 | * somewhere. If none of the target zones can satisfy our allocation | |
4069 | * request even if all reclaimable pages are considered then we are | |
4070 | * screwed and have to go OOM. | |
0a0337e0 | 4071 | */ |
97a225e6 JK |
4072 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, |
4073 | ac->highest_zoneidx, ac->nodemask) { | |
0a0337e0 | 4074 | unsigned long available; |
ede37713 | 4075 | unsigned long reclaimable; |
d379f01d MH |
4076 | unsigned long min_wmark = min_wmark_pages(zone); |
4077 | bool wmark; | |
0a0337e0 | 4078 | |
5a1c84b4 | 4079 | available = reclaimable = zone_reclaimable_pages(zone); |
5a1c84b4 | 4080 | available += zone_page_state_snapshot(zone, NR_FREE_PAGES); |
0a0337e0 MH |
4081 | |
4082 | /* | |
491d79ae JW |
4083 | * Would the allocation succeed if we reclaimed all |
4084 | * reclaimable pages? | |
0a0337e0 | 4085 | */ |
d379f01d | 4086 | wmark = __zone_watermark_ok(zone, order, min_wmark, |
97a225e6 | 4087 | ac->highest_zoneidx, alloc_flags, available); |
d379f01d MH |
4088 | trace_reclaim_retry_zone(z, order, reclaimable, |
4089 | available, min_wmark, *no_progress_loops, wmark); | |
4090 | if (wmark) { | |
15f570bf | 4091 | ret = true; |
132b0d21 | 4092 | break; |
0a0337e0 MH |
4093 | } |
4094 | } | |
4095 | ||
15f570bf MH |
4096 | /* |
4097 | * Memory allocation/reclaim might be called from a WQ context and the | |
4098 | * current implementation of the WQ concurrency control doesn't | |
4099 | * recognize that a particular WQ is congested if the worker thread is | |
4100 | * looping without ever sleeping. Therefore we have to do a short sleep | |
4101 | * here rather than calling cond_resched(). | |
4102 | */ | |
4103 | if (current->flags & PF_WQ_WORKER) | |
4104 | schedule_timeout_uninterruptible(1); | |
4105 | else | |
4106 | cond_resched(); | |
ac3f3b0a CTK |
4107 | out: |
4108 | /* Before OOM, exhaust highatomic_reserve */ | |
4109 | if (!ret) | |
4110 | return unreserve_highatomic_pageblock(ac, true); | |
4111 | ||
15f570bf | 4112 | return ret; |
0a0337e0 MH |
4113 | } |
4114 | ||
902b6281 VB |
4115 | static inline bool |
4116 | check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) | |
4117 | { | |
4118 | /* | |
4119 | * It's possible that cpuset's mems_allowed and the nodemask from | |
4120 | * mempolicy don't intersect. This should be normally dealt with by | |
4121 | * policy_nodemask(), but it's possible to race with cpuset update in | |
4122 | * such a way the check therein was true, and then it became false | |
4123 | * before we got our cpuset_mems_cookie here. | |
4124 | * This assumes that for all allocations, ac->nodemask can come only | |
4125 | * from MPOL_BIND mempolicy (whose documented semantics is to be ignored | |
4126 | * when it does not intersect with the cpuset restrictions) or the | |
4127 | * caller can deal with a violated nodemask. | |
4128 | */ | |
4129 | if (cpusets_enabled() && ac->nodemask && | |
4130 | !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { | |
4131 | ac->nodemask = NULL; | |
4132 | return true; | |
4133 | } | |
4134 | ||
4135 | /* | |
4136 | * When updating a task's mems_allowed or mempolicy nodemask, it is | |
4137 | * possible to race with parallel threads in such a way that our | |
4138 | * allocation can fail while the mask is being updated. If we are about | |
4139 | * to fail, check if the cpuset changed during allocation and if so, | |
4140 | * retry. | |
4141 | */ | |
4142 | if (read_mems_allowed_retry(cpuset_mems_cookie)) | |
4143 | return true; | |
4144 | ||
4145 | return false; | |
4146 | } | |
4147 | ||
11e33f6a MG |
4148 | static inline struct page * |
4149 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | |
a9263751 | 4150 | struct alloc_context *ac) |
11e33f6a | 4151 | { |
d0164adc | 4152 | bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; |
803de900 | 4153 | bool can_compact = gfp_compaction_allowed(gfp_mask); |
282722b0 | 4154 | const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; |
11e33f6a | 4155 | struct page *page = NULL; |
c603844b | 4156 | unsigned int alloc_flags; |
11e33f6a | 4157 | unsigned long did_some_progress; |
5ce9bfef | 4158 | enum compact_priority compact_priority; |
c5d01d0d | 4159 | enum compact_result compact_result; |
5ce9bfef VB |
4160 | int compaction_retries; |
4161 | int no_progress_loops; | |
5ce9bfef | 4162 | unsigned int cpuset_mems_cookie; |
3d36424b | 4163 | unsigned int zonelist_iter_cookie; |
cd04ae1e | 4164 | int reserve_flags; |
1da177e4 | 4165 | |
3d36424b | 4166 | restart: |
5ce9bfef VB |
4167 | compaction_retries = 0; |
4168 | no_progress_loops = 0; | |
4169 | compact_priority = DEF_COMPACT_PRIORITY; | |
4170 | cpuset_mems_cookie = read_mems_allowed_begin(); | |
3d36424b | 4171 | zonelist_iter_cookie = zonelist_iter_begin(); |
9a67f648 MH |
4172 | |
4173 | /* | |
4174 | * The fast path uses conservative alloc_flags to succeed only until | |
4175 | * kswapd needs to be woken up, and to avoid the cost of setting up | |
4176 | * alloc_flags precisely. So we do that now. | |
4177 | */ | |
eb2e2b42 | 4178 | alloc_flags = gfp_to_alloc_flags(gfp_mask, order); |
9a67f648 | 4179 | |
e47483bc VB |
4180 | /* |
4181 | * We need to recalculate the starting point for the zonelist iterator | |
4182 | * because we might have used different nodemask in the fast path, or | |
4183 | * there was a cpuset modification and we are retrying - otherwise we | |
4184 | * could end up iterating over non-eligible zones endlessly. | |
4185 | */ | |
4186 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | |
97a225e6 | 4187 | ac->highest_zoneidx, ac->nodemask); |
e47483bc VB |
4188 | if (!ac->preferred_zoneref->zone) |
4189 | goto nopage; | |
4190 | ||
8ca1b5a4 FT |
4191 | /* |
4192 | * Check for insane configurations where the cpuset doesn't contain | |
4193 | * any suitable zone to satisfy the request - e.g. non-movable | |
4194 | * GFP_HIGHUSER allocations from MOVABLE nodes only. | |
4195 | */ | |
4196 | if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { | |
4197 | struct zoneref *z = first_zones_zonelist(ac->zonelist, | |
4198 | ac->highest_zoneidx, | |
4199 | &cpuset_current_mems_allowed); | |
4200 | if (!z->zone) | |
4201 | goto nopage; | |
4202 | } | |
4203 | ||
0a79cdad | 4204 | if (alloc_flags & ALLOC_KSWAPD) |
5ecd9d40 | 4205 | wake_all_kswapds(order, gfp_mask, ac); |
23771235 VB |
4206 | |
4207 | /* | |
4208 | * The adjusted alloc_flags might result in immediate success, so try | |
4209 | * that first | |
4210 | */ | |
4211 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | |
4212 | if (page) | |
4213 | goto got_pg; | |
4214 | ||
a8161d1e VB |
4215 | /* |
4216 | * For costly allocations, try direct compaction first, as it's likely | |
282722b0 VB |
4217 | * that we have enough base pages and don't need to reclaim. For non- |
4218 | * movable high-order allocations, do that as well, as compaction will | |
4219 | * try prevent permanent fragmentation by migrating from blocks of the | |
4220 | * same migratetype. | |
4221 | * Don't try this for allocations that are allowed to ignore | |
4222 | * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. | |
a8161d1e | 4223 | */ |
803de900 | 4224 | if (can_direct_reclaim && can_compact && |
282722b0 VB |
4225 | (costly_order || |
4226 | (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) | |
4227 | && !gfp_pfmemalloc_allowed(gfp_mask)) { | |
a8161d1e VB |
4228 | page = __alloc_pages_direct_compact(gfp_mask, order, |
4229 | alloc_flags, ac, | |
a5508cd8 | 4230 | INIT_COMPACT_PRIORITY, |
a8161d1e VB |
4231 | &compact_result); |
4232 | if (page) | |
4233 | goto got_pg; | |
4234 | ||
cc638f32 VB |
4235 | /* |
4236 | * Checks for costly allocations with __GFP_NORETRY, which | |
4237 | * includes some THP page fault allocations | |
4238 | */ | |
4239 | if (costly_order && (gfp_mask & __GFP_NORETRY)) { | |
b39d0ee2 DR |
4240 | /* |
4241 | * If allocating entire pageblock(s) and compaction | |
4242 | * failed because all zones are below low watermarks | |
4243 | * or is prohibited because it recently failed at this | |
3f36d866 DR |
4244 | * order, fail immediately unless the allocator has |
4245 | * requested compaction and reclaim retry. | |
b39d0ee2 DR |
4246 | * |
4247 | * Reclaim is | |
4248 | * - potentially very expensive because zones are far | |
4249 | * below their low watermarks or this is part of very | |
4250 | * bursty high order allocations, | |
4251 | * - not guaranteed to help because isolate_freepages() | |
4252 | * may not iterate over freed pages as part of its | |
4253 | * linear scan, and | |
4254 | * - unlikely to make entire pageblocks free on its | |
4255 | * own. | |
4256 | */ | |
4257 | if (compact_result == COMPACT_SKIPPED || | |
4258 | compact_result == COMPACT_DEFERRED) | |
4259 | goto nopage; | |
a8161d1e | 4260 | |
a8161d1e | 4261 | /* |
3eb2771b VB |
4262 | * Looks like reclaim/compaction is worth trying, but |
4263 | * sync compaction could be very expensive, so keep | |
25160354 | 4264 | * using async compaction. |
a8161d1e | 4265 | */ |
a5508cd8 | 4266 | compact_priority = INIT_COMPACT_PRIORITY; |
a8161d1e VB |
4267 | } |
4268 | } | |
23771235 | 4269 | |
31a6c190 | 4270 | retry: |
23771235 | 4271 | /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ |
0a79cdad | 4272 | if (alloc_flags & ALLOC_KSWAPD) |
5ecd9d40 | 4273 | wake_all_kswapds(order, gfp_mask, ac); |
31a6c190 | 4274 | |
cd04ae1e MH |
4275 | reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); |
4276 | if (reserve_flags) | |
ce96fa62 ML |
4277 | alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | |
4278 | (alloc_flags & ALLOC_KSWAPD); | |
23771235 | 4279 | |
e46e7b77 | 4280 | /* |
d6a24df0 VB |
4281 | * Reset the nodemask and zonelist iterators if memory policies can be |
4282 | * ignored. These allocations are high priority and system rather than | |
4283 | * user oriented. | |
e46e7b77 | 4284 | */ |
cd04ae1e | 4285 | if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { |
d6a24df0 | 4286 | ac->nodemask = NULL; |
e46e7b77 | 4287 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, |
97a225e6 | 4288 | ac->highest_zoneidx, ac->nodemask); |
e46e7b77 MG |
4289 | } |
4290 | ||
23771235 | 4291 | /* Attempt with potentially adjusted zonelist and alloc_flags */ |
31a6c190 | 4292 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); |
7fb1d9fc RS |
4293 | if (page) |
4294 | goto got_pg; | |
1da177e4 | 4295 | |
d0164adc | 4296 | /* Caller is not willing to reclaim, we can't balance anything */ |
9a67f648 | 4297 | if (!can_direct_reclaim) |
1da177e4 LT |
4298 | goto nopage; |
4299 | ||
9a67f648 MH |
4300 | /* Avoid recursion of direct reclaim */ |
4301 | if (current->flags & PF_MEMALLOC) | |
6583bb64 DR |
4302 | goto nopage; |
4303 | ||
a8161d1e VB |
4304 | /* Try direct reclaim and then allocating */ |
4305 | page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, | |
4306 | &did_some_progress); | |
4307 | if (page) | |
4308 | goto got_pg; | |
4309 | ||
4310 | /* Try direct compaction and then allocating */ | |
a9263751 | 4311 | page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, |
a5508cd8 | 4312 | compact_priority, &compact_result); |
56de7263 MG |
4313 | if (page) |
4314 | goto got_pg; | |
75f30861 | 4315 | |
9083905a JW |
4316 | /* Do not loop if specifically requested */ |
4317 | if (gfp_mask & __GFP_NORETRY) | |
a8161d1e | 4318 | goto nopage; |
9083905a | 4319 | |
0a0337e0 MH |
4320 | /* |
4321 | * Do not retry costly high order allocations unless they are | |
803de900 | 4322 | * __GFP_RETRY_MAYFAIL and we can compact |
0a0337e0 | 4323 | */ |
803de900 VB |
4324 | if (costly_order && (!can_compact || |
4325 | !(gfp_mask & __GFP_RETRY_MAYFAIL))) | |
a8161d1e | 4326 | goto nopage; |
0a0337e0 | 4327 | |
0a0337e0 | 4328 | if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, |
423b452e | 4329 | did_some_progress > 0, &no_progress_loops)) |
0a0337e0 MH |
4330 | goto retry; |
4331 | ||
33c2d214 MH |
4332 | /* |
4333 | * It doesn't make any sense to retry for the compaction if the order-0 | |
4334 | * reclaim is not able to make any progress because the current | |
4335 | * implementation of the compaction depends on the sufficient amount | |
4336 | * of free memory (see __compaction_suitable) | |
4337 | */ | |
803de900 | 4338 | if (did_some_progress > 0 && can_compact && |
86a294a8 | 4339 | should_compact_retry(ac, order, alloc_flags, |
a5508cd8 | 4340 | compact_result, &compact_priority, |
d9436498 | 4341 | &compaction_retries)) |
33c2d214 MH |
4342 | goto retry; |
4343 | ||
902b6281 | 4344 | |
3d36424b MG |
4345 | /* |
4346 | * Deal with possible cpuset update races or zonelist updates to avoid | |
4347 | * a unnecessary OOM kill. | |
4348 | */ | |
4349 | if (check_retry_cpuset(cpuset_mems_cookie, ac) || | |
4350 | check_retry_zonelist(zonelist_iter_cookie)) | |
4351 | goto restart; | |
e47483bc | 4352 | |
9083905a JW |
4353 | /* Reclaim has failed us, start killing things */ |
4354 | page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); | |
4355 | if (page) | |
4356 | goto got_pg; | |
4357 | ||
9a67f648 | 4358 | /* Avoid allocations with no watermarks from looping endlessly */ |
cd04ae1e | 4359 | if (tsk_is_oom_victim(current) && |
8510e69c | 4360 | (alloc_flags & ALLOC_OOM || |
c288983d | 4361 | (gfp_mask & __GFP_NOMEMALLOC))) |
9a67f648 MH |
4362 | goto nopage; |
4363 | ||
9083905a | 4364 | /* Retry as long as the OOM killer is making progress */ |
0a0337e0 MH |
4365 | if (did_some_progress) { |
4366 | no_progress_loops = 0; | |
9083905a | 4367 | goto retry; |
0a0337e0 | 4368 | } |
9083905a | 4369 | |
1da177e4 | 4370 | nopage: |
3d36424b MG |
4371 | /* |
4372 | * Deal with possible cpuset update races or zonelist updates to avoid | |
4373 | * a unnecessary OOM kill. | |
4374 | */ | |
4375 | if (check_retry_cpuset(cpuset_mems_cookie, ac) || | |
4376 | check_retry_zonelist(zonelist_iter_cookie)) | |
4377 | goto restart; | |
5ce9bfef | 4378 | |
9a67f648 MH |
4379 | /* |
4380 | * Make sure that __GFP_NOFAIL request doesn't leak out and make sure | |
4381 | * we always retry | |
4382 | */ | |
4383 | if (gfp_mask & __GFP_NOFAIL) { | |
4384 | /* | |
4385 | * All existing users of the __GFP_NOFAIL are blockable, so warn | |
4386 | * of any new users that actually require GFP_NOWAIT | |
4387 | */ | |
3f913fc5 | 4388 | if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) |
9a67f648 MH |
4389 | goto fail; |
4390 | ||
4391 | /* | |
4392 | * PF_MEMALLOC request from this context is rather bizarre | |
4393 | * because we cannot reclaim anything and only can loop waiting | |
4394 | * for somebody to do a work for us | |
4395 | */ | |
3f913fc5 | 4396 | WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); |
9a67f648 MH |
4397 | |
4398 | /* | |
4399 | * non failing costly orders are a hard requirement which we | |
4400 | * are not prepared for much so let's warn about these users | |
4401 | * so that we can identify them and convert them to something | |
4402 | * else. | |
4403 | */ | |
896c4d52 | 4404 | WARN_ON_ONCE_GFP(costly_order, gfp_mask); |
9a67f648 | 4405 | |
6c18ba7a | 4406 | /* |
1ebbb218 MG |
4407 | * Help non-failing allocations by giving some access to memory |
4408 | * reserves normally used for high priority non-blocking | |
4409 | * allocations but do not use ALLOC_NO_WATERMARKS because this | |
6c18ba7a | 4410 | * could deplete whole memory reserves which would just make |
1ebbb218 | 4411 | * the situation worse. |
6c18ba7a | 4412 | */ |
1ebbb218 | 4413 | page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); |
6c18ba7a MH |
4414 | if (page) |
4415 | goto got_pg; | |
4416 | ||
9a67f648 MH |
4417 | cond_resched(); |
4418 | goto retry; | |
4419 | } | |
4420 | fail: | |
a8e99259 | 4421 | warn_alloc(gfp_mask, ac->nodemask, |
7877cdcc | 4422 | "page allocation failure: order:%u", order); |
1da177e4 | 4423 | got_pg: |
072bb0aa | 4424 | return page; |
1da177e4 | 4425 | } |
11e33f6a | 4426 | |
9cd75558 | 4427 | static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, |
04ec6264 | 4428 | int preferred_nid, nodemask_t *nodemask, |
8e6a930b | 4429 | struct alloc_context *ac, gfp_t *alloc_gfp, |
9cd75558 | 4430 | unsigned int *alloc_flags) |
11e33f6a | 4431 | { |
97a225e6 | 4432 | ac->highest_zoneidx = gfp_zone(gfp_mask); |
04ec6264 | 4433 | ac->zonelist = node_zonelist(preferred_nid, gfp_mask); |
9cd75558 | 4434 | ac->nodemask = nodemask; |
01c0bfe0 | 4435 | ac->migratetype = gfp_migratetype(gfp_mask); |
11e33f6a | 4436 | |
682a3385 | 4437 | if (cpusets_enabled()) { |
8e6a930b | 4438 | *alloc_gfp |= __GFP_HARDWALL; |
182f3d7a MS |
4439 | /* |
4440 | * When we are in the interrupt context, it is irrelevant | |
4441 | * to the current task context. It means that any node ok. | |
4442 | */ | |
88dc6f20 | 4443 | if (in_task() && !ac->nodemask) |
9cd75558 | 4444 | ac->nodemask = &cpuset_current_mems_allowed; |
51047820 VB |
4445 | else |
4446 | *alloc_flags |= ALLOC_CPUSET; | |
682a3385 MG |
4447 | } |
4448 | ||
446ec838 | 4449 | might_alloc(gfp_mask); |
11e33f6a MG |
4450 | |
4451 | if (should_fail_alloc_page(gfp_mask, order)) | |
9cd75558 | 4452 | return false; |
11e33f6a | 4453 | |
8e3560d9 | 4454 | *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); |
d883c6cf | 4455 | |
c9ab0c4f | 4456 | /* Dirty zone balancing only done in the fast path */ |
9cd75558 | 4457 | ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); |
c9ab0c4f | 4458 | |
e46e7b77 MG |
4459 | /* |
4460 | * The preferred zone is used for statistics but crucially it is | |
4461 | * also used as the starting point for the zonelist iterator. It | |
4462 | * may get reset for allocations that ignore memory policies. | |
4463 | */ | |
9cd75558 | 4464 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, |
97a225e6 | 4465 | ac->highest_zoneidx, ac->nodemask); |
a0622d05 MN |
4466 | |
4467 | return true; | |
9cd75558 MG |
4468 | } |
4469 | ||
387ba26f | 4470 | /* |
0f87d9d3 | 4471 | * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array |
387ba26f MG |
4472 | * @gfp: GFP flags for the allocation |
4473 | * @preferred_nid: The preferred NUMA node ID to allocate from | |
4474 | * @nodemask: Set of nodes to allocate from, may be NULL | |
0f87d9d3 MG |
4475 | * @nr_pages: The number of pages desired on the list or array |
4476 | * @page_list: Optional list to store the allocated pages | |
4477 | * @page_array: Optional array to store the pages | |
387ba26f MG |
4478 | * |
4479 | * This is a batched version of the page allocator that attempts to | |
0f87d9d3 MG |
4480 | * allocate nr_pages quickly. Pages are added to page_list if page_list |
4481 | * is not NULL, otherwise it is assumed that the page_array is valid. | |
387ba26f | 4482 | * |
0f87d9d3 MG |
4483 | * For lists, nr_pages is the number of pages that should be allocated. |
4484 | * | |
4485 | * For arrays, only NULL elements are populated with pages and nr_pages | |
4486 | * is the maximum number of pages that will be stored in the array. | |
4487 | * | |
4488 | * Returns the number of pages on the list or array. | |
387ba26f | 4489 | */ |
b951aaff | 4490 | unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, |
387ba26f | 4491 | nodemask_t *nodemask, int nr_pages, |
0f87d9d3 MG |
4492 | struct list_head *page_list, |
4493 | struct page **page_array) | |
387ba26f MG |
4494 | { |
4495 | struct page *page; | |
4b23a68f | 4496 | unsigned long __maybe_unused UP_flags; |
387ba26f MG |
4497 | struct zone *zone; |
4498 | struct zoneref *z; | |
4499 | struct per_cpu_pages *pcp; | |
4500 | struct list_head *pcp_list; | |
4501 | struct alloc_context ac; | |
4502 | gfp_t alloc_gfp; | |
4503 | unsigned int alloc_flags = ALLOC_WMARK_LOW; | |
3e23060b | 4504 | int nr_populated = 0, nr_account = 0; |
387ba26f | 4505 | |
0f87d9d3 MG |
4506 | /* |
4507 | * Skip populated array elements to determine if any pages need | |
4508 | * to be allocated before disabling IRQs. | |
4509 | */ | |
b08e50dd | 4510 | while (page_array && nr_populated < nr_pages && page_array[nr_populated]) |
0f87d9d3 MG |
4511 | nr_populated++; |
4512 | ||
06147843 CL |
4513 | /* No pages requested? */ |
4514 | if (unlikely(nr_pages <= 0)) | |
4515 | goto out; | |
4516 | ||
b3b64ebd MG |
4517 | /* Already populated array? */ |
4518 | if (unlikely(page_array && nr_pages - nr_populated == 0)) | |
06147843 | 4519 | goto out; |
b3b64ebd | 4520 | |
8dcb3060 | 4521 | /* Bulk allocator does not support memcg accounting. */ |
f7a449f7 | 4522 | if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) |
8dcb3060 SB |
4523 | goto failed; |
4524 | ||
387ba26f | 4525 | /* Use the single page allocator for one page. */ |
0f87d9d3 | 4526 | if (nr_pages - nr_populated == 1) |
387ba26f MG |
4527 | goto failed; |
4528 | ||
187ad460 MG |
4529 | #ifdef CONFIG_PAGE_OWNER |
4530 | /* | |
4531 | * PAGE_OWNER may recurse into the allocator to allocate space to | |
4532 | * save the stack with pagesets.lock held. Releasing/reacquiring | |
4533 | * removes much of the performance benefit of bulk allocation so | |
4534 | * force the caller to allocate one page at a time as it'll have | |
4535 | * similar performance to added complexity to the bulk allocator. | |
4536 | */ | |
4537 | if (static_branch_unlikely(&page_owner_inited)) | |
4538 | goto failed; | |
4539 | #endif | |
4540 | ||
387ba26f MG |
4541 | /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ |
4542 | gfp &= gfp_allowed_mask; | |
4543 | alloc_gfp = gfp; | |
4544 | if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) | |
06147843 | 4545 | goto out; |
387ba26f MG |
4546 | gfp = alloc_gfp; |
4547 | ||
4548 | /* Find an allowed local zone that meets the low watermark. */ | |
4549 | for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { | |
4550 | unsigned long mark; | |
4551 | ||
4552 | if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && | |
4553 | !__cpuset_zone_allowed(zone, gfp)) { | |
4554 | continue; | |
4555 | } | |
4556 | ||
4557 | if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && | |
4558 | zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { | |
4559 | goto failed; | |
4560 | } | |
4561 | ||
4562 | mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; | |
4563 | if (zone_watermark_fast(zone, 0, mark, | |
4564 | zonelist_zone_idx(ac.preferred_zoneref), | |
4565 | alloc_flags, gfp)) { | |
4566 | break; | |
4567 | } | |
4568 | } | |
4569 | ||
4570 | /* | |
4571 | * If there are no allowed local zones that meets the watermarks then | |
4572 | * try to allocate a single page and reclaim if necessary. | |
4573 | */ | |
ce76f9a1 | 4574 | if (unlikely(!zone)) |
387ba26f MG |
4575 | goto failed; |
4576 | ||
57490774 | 4577 | /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ |
4b23a68f | 4578 | pcp_trylock_prepare(UP_flags); |
57490774 | 4579 | pcp = pcp_spin_trylock(zone->per_cpu_pageset); |
01b44456 | 4580 | if (!pcp) |
4b23a68f | 4581 | goto failed_irq; |
387ba26f | 4582 | |
387ba26f | 4583 | /* Attempt the batch allocation */ |
44042b44 | 4584 | pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; |
0f87d9d3 MG |
4585 | while (nr_populated < nr_pages) { |
4586 | ||
4587 | /* Skip existing pages */ | |
4588 | if (page_array && page_array[nr_populated]) { | |
4589 | nr_populated++; | |
4590 | continue; | |
4591 | } | |
4592 | ||
44042b44 | 4593 | page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, |
387ba26f | 4594 | pcp, pcp_list); |
ce76f9a1 | 4595 | if (unlikely(!page)) { |
c572e488 | 4596 | /* Try and allocate at least one page */ |
4b23a68f | 4597 | if (!nr_account) { |
57490774 | 4598 | pcp_spin_unlock(pcp); |
387ba26f | 4599 | goto failed_irq; |
4b23a68f | 4600 | } |
387ba26f MG |
4601 | break; |
4602 | } | |
3e23060b | 4603 | nr_account++; |
387ba26f MG |
4604 | |
4605 | prep_new_page(page, 0, gfp, 0); | |
0f87d9d3 MG |
4606 | if (page_list) |
4607 | list_add(&page->lru, page_list); | |
4608 | else | |
4609 | page_array[nr_populated] = page; | |
4610 | nr_populated++; | |
387ba26f MG |
4611 | } |
4612 | ||
57490774 | 4613 | pcp_spin_unlock(pcp); |
4b23a68f | 4614 | pcp_trylock_finish(UP_flags); |
43c95bcc | 4615 | |
3e23060b MG |
4616 | __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); |
4617 | zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); | |
387ba26f | 4618 | |
06147843 | 4619 | out: |
0f87d9d3 | 4620 | return nr_populated; |
387ba26f MG |
4621 | |
4622 | failed_irq: | |
4b23a68f | 4623 | pcp_trylock_finish(UP_flags); |
387ba26f MG |
4624 | |
4625 | failed: | |
b951aaff | 4626 | page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); |
387ba26f | 4627 | if (page) { |
0f87d9d3 MG |
4628 | if (page_list) |
4629 | list_add(&page->lru, page_list); | |
4630 | else | |
4631 | page_array[nr_populated] = page; | |
4632 | nr_populated++; | |
387ba26f MG |
4633 | } |
4634 | ||
06147843 | 4635 | goto out; |
387ba26f | 4636 | } |
b951aaff | 4637 | EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); |
387ba26f | 4638 | |
9cd75558 MG |
4639 | /* |
4640 | * This is the 'heart' of the zoned buddy allocator. | |
4641 | */ | |
b951aaff SB |
4642 | struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, |
4643 | int preferred_nid, nodemask_t *nodemask) | |
9cd75558 MG |
4644 | { |
4645 | struct page *page; | |
4646 | unsigned int alloc_flags = ALLOC_WMARK_LOW; | |
8e6a930b | 4647 | gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ |
9cd75558 MG |
4648 | struct alloc_context ac = { }; |
4649 | ||
c63ae43b MH |
4650 | /* |
4651 | * There are several places where we assume that the order value is sane | |
4652 | * so bail out early if the request is out of bound. | |
4653 | */ | |
5e0a760b | 4654 | if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) |
c63ae43b | 4655 | return NULL; |
c63ae43b | 4656 | |
6e5e0f28 | 4657 | gfp &= gfp_allowed_mask; |
da6df1b0 PT |
4658 | /* |
4659 | * Apply scoped allocation constraints. This is mainly about GFP_NOFS | |
4660 | * resp. GFP_NOIO which has to be inherited for all allocation requests | |
4661 | * from a particular context which has been marked by | |
8e3560d9 PT |
4662 | * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures |
4663 | * movable zones are not used during allocation. | |
da6df1b0 PT |
4664 | */ |
4665 | gfp = current_gfp_context(gfp); | |
6e5e0f28 MWO |
4666 | alloc_gfp = gfp; |
4667 | if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, | |
8e6a930b | 4668 | &alloc_gfp, &alloc_flags)) |
9cd75558 MG |
4669 | return NULL; |
4670 | ||
6bb15450 MG |
4671 | /* |
4672 | * Forbid the first pass from falling back to types that fragment | |
4673 | * memory until all local zones are considered. | |
4674 | */ | |
6e5e0f28 | 4675 | alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); |
6bb15450 | 4676 | |
5117f45d | 4677 | /* First allocation attempt */ |
8e6a930b | 4678 | page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); |
4fcb0971 MG |
4679 | if (likely(page)) |
4680 | goto out; | |
11e33f6a | 4681 | |
da6df1b0 | 4682 | alloc_gfp = gfp; |
4fcb0971 | 4683 | ac.spread_dirty_pages = false; |
23f086f9 | 4684 | |
4741526b MG |
4685 | /* |
4686 | * Restore the original nodemask if it was potentially replaced with | |
4687 | * &cpuset_current_mems_allowed to optimize the fast-path attempt. | |
4688 | */ | |
97ce86f9 | 4689 | ac.nodemask = nodemask; |
16096c25 | 4690 | |
8e6a930b | 4691 | page = __alloc_pages_slowpath(alloc_gfp, order, &ac); |
cc9a6c87 | 4692 | |
4fcb0971 | 4693 | out: |
f7a449f7 | 4694 | if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && |
6e5e0f28 | 4695 | unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { |
c4159a75 VD |
4696 | __free_pages(page, order); |
4697 | page = NULL; | |
4949148a VD |
4698 | } |
4699 | ||
8e6a930b | 4700 | trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); |
b073d7f8 | 4701 | kmsan_alloc_page(page, order, alloc_gfp); |
4fcb0971 | 4702 | |
11e33f6a | 4703 | return page; |
1da177e4 | 4704 | } |
b951aaff | 4705 | EXPORT_SYMBOL(__alloc_pages_noprof); |
1da177e4 | 4706 | |
b951aaff | 4707 | struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, |
cc09cb13 MWO |
4708 | nodemask_t *nodemask) |
4709 | { | |
b951aaff | 4710 | struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, |
23e48832 HD |
4711 | preferred_nid, nodemask); |
4712 | return page_rmappable_folio(page); | |
cc09cb13 | 4713 | } |
b951aaff | 4714 | EXPORT_SYMBOL(__folio_alloc_noprof); |
cc09cb13 | 4715 | |
1da177e4 | 4716 | /* |
9ea9a680 MH |
4717 | * Common helper functions. Never use with __GFP_HIGHMEM because the returned |
4718 | * address cannot represent highmem pages. Use alloc_pages and then kmap if | |
4719 | * you need to access high mem. | |
1da177e4 | 4720 | */ |
b951aaff | 4721 | unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) |
1da177e4 | 4722 | { |
945a1113 AM |
4723 | struct page *page; |
4724 | ||
b951aaff | 4725 | page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); |
1da177e4 LT |
4726 | if (!page) |
4727 | return 0; | |
4728 | return (unsigned long) page_address(page); | |
4729 | } | |
b951aaff | 4730 | EXPORT_SYMBOL(get_free_pages_noprof); |
1da177e4 | 4731 | |
b951aaff | 4732 | unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) |
1da177e4 | 4733 | { |
b951aaff | 4734 | return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); |
1da177e4 | 4735 | } |
b951aaff | 4736 | EXPORT_SYMBOL(get_zeroed_page_noprof); |
1da177e4 | 4737 | |
7f194fbb MWO |
4738 | /** |
4739 | * __free_pages - Free pages allocated with alloc_pages(). | |
4740 | * @page: The page pointer returned from alloc_pages(). | |
4741 | * @order: The order of the allocation. | |
4742 | * | |
4743 | * This function can free multi-page allocations that are not compound | |
4744 | * pages. It does not check that the @order passed in matches that of | |
4745 | * the allocation, so it is easy to leak memory. Freeing more memory | |
4746 | * than was allocated will probably emit a warning. | |
4747 | * | |
4748 | * If the last reference to this page is speculative, it will be released | |
4749 | * by put_page() which only frees the first page of a non-compound | |
4750 | * allocation. To prevent the remaining pages from being leaked, we free | |
4751 | * the subsequent pages here. If you want to use the page's reference | |
4752 | * count to decide when to free the allocation, you should allocate a | |
4753 | * compound page, and use put_page() instead of __free_pages(). | |
4754 | * | |
4755 | * Context: May be called in interrupt context or while holding a normal | |
4756 | * spinlock, but not in NMI context or while holding a raw spinlock. | |
4757 | */ | |
742aa7fb AL |
4758 | void __free_pages(struct page *page, unsigned int order) |
4759 | { | |
462a8e08 DC |
4760 | /* get PageHead before we drop reference */ |
4761 | int head = PageHead(page); | |
cc92eba1 | 4762 | struct alloc_tag *tag = pgalloc_tag_get(page); |
462a8e08 | 4763 | |
742aa7fb | 4764 | if (put_page_testzero(page)) |
5b8d7591 | 4765 | free_unref_page(page, order); |
cc92eba1 SB |
4766 | else if (!head) { |
4767 | pgalloc_tag_sub_pages(tag, (1 << order) - 1); | |
e320d301 | 4768 | while (order-- > 0) |
5b8d7591 | 4769 | free_unref_page(page + (1 << order), order); |
cc92eba1 | 4770 | } |
742aa7fb | 4771 | } |
1da177e4 LT |
4772 | EXPORT_SYMBOL(__free_pages); |
4773 | ||
920c7a5d | 4774 | void free_pages(unsigned long addr, unsigned int order) |
1da177e4 LT |
4775 | { |
4776 | if (addr != 0) { | |
725d704e | 4777 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
1da177e4 LT |
4778 | __free_pages(virt_to_page((void *)addr), order); |
4779 | } | |
4780 | } | |
4781 | ||
4782 | EXPORT_SYMBOL(free_pages); | |
4783 | ||
b63ae8ca AD |
4784 | /* |
4785 | * Page Fragment: | |
4786 | * An arbitrary-length arbitrary-offset area of memory which resides | |
4787 | * within a 0 or higher order page. Multiple fragments within that page | |
4788 | * are individually refcounted, in the page's reference counter. | |
4789 | * | |
4790 | * The page_frag functions below provide a simple allocation framework for | |
4791 | * page fragments. This is used by the network stack and network device | |
4792 | * drivers to provide a backing region of memory for use as either an | |
4793 | * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. | |
4794 | */ | |
2976db80 AD |
4795 | static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, |
4796 | gfp_t gfp_mask) | |
b63ae8ca AD |
4797 | { |
4798 | struct page *page = NULL; | |
4799 | gfp_t gfp = gfp_mask; | |
4800 | ||
4801 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
4bc0d63a YL |
4802 | gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | |
4803 | __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC; | |
b63ae8ca AD |
4804 | page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, |
4805 | PAGE_FRAG_CACHE_MAX_ORDER); | |
4806 | nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; | |
4807 | #endif | |
4808 | if (unlikely(!page)) | |
4809 | page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); | |
4810 | ||
4811 | nc->va = page ? page_address(page) : NULL; | |
4812 | ||
4813 | return page; | |
4814 | } | |
4815 | ||
a0727489 YL |
4816 | void page_frag_cache_drain(struct page_frag_cache *nc) |
4817 | { | |
4818 | if (!nc->va) | |
4819 | return; | |
4820 | ||
4821 | __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias); | |
4822 | nc->va = NULL; | |
4823 | } | |
4824 | EXPORT_SYMBOL(page_frag_cache_drain); | |
4825 | ||
2976db80 | 4826 | void __page_frag_cache_drain(struct page *page, unsigned int count) |
44fdffd7 AD |
4827 | { |
4828 | VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); | |
4829 | ||
742aa7fb | 4830 | if (page_ref_sub_and_test(page, count)) |
5b8d7591 | 4831 | free_unref_page(page, compound_order(page)); |
44fdffd7 | 4832 | } |
2976db80 | 4833 | EXPORT_SYMBOL(__page_frag_cache_drain); |
44fdffd7 | 4834 | |
411c5f36 YL |
4835 | void *__page_frag_alloc_align(struct page_frag_cache *nc, |
4836 | unsigned int fragsz, gfp_t gfp_mask, | |
4837 | unsigned int align_mask) | |
b63ae8ca AD |
4838 | { |
4839 | unsigned int size = PAGE_SIZE; | |
4840 | struct page *page; | |
4841 | int offset; | |
4842 | ||
4843 | if (unlikely(!nc->va)) { | |
4844 | refill: | |
2976db80 | 4845 | page = __page_frag_cache_refill(nc, gfp_mask); |
b63ae8ca AD |
4846 | if (!page) |
4847 | return NULL; | |
4848 | ||
4849 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
4850 | /* if size can vary use size else just use PAGE_SIZE */ | |
4851 | size = nc->size; | |
4852 | #endif | |
4853 | /* Even if we own the page, we do not use atomic_set(). | |
4854 | * This would break get_page_unless_zero() users. | |
4855 | */ | |
86447726 | 4856 | page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); |
b63ae8ca AD |
4857 | |
4858 | /* reset page count bias and offset to start of new frag */ | |
2f064f34 | 4859 | nc->pfmemalloc = page_is_pfmemalloc(page); |
86447726 | 4860 | nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; |
b63ae8ca AD |
4861 | nc->offset = size; |
4862 | } | |
4863 | ||
4864 | offset = nc->offset - fragsz; | |
4865 | if (unlikely(offset < 0)) { | |
4866 | page = virt_to_page(nc->va); | |
4867 | ||
fe896d18 | 4868 | if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) |
b63ae8ca AD |
4869 | goto refill; |
4870 | ||
d8c19014 | 4871 | if (unlikely(nc->pfmemalloc)) { |
5b8d7591 | 4872 | free_unref_page(page, compound_order(page)); |
d8c19014 DZ |
4873 | goto refill; |
4874 | } | |
4875 | ||
b63ae8ca AD |
4876 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) |
4877 | /* if size can vary use size else just use PAGE_SIZE */ | |
4878 | size = nc->size; | |
4879 | #endif | |
4880 | /* OK, page count is 0, we can safely set it */ | |
86447726 | 4881 | set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); |
b63ae8ca AD |
4882 | |
4883 | /* reset page count bias and offset to start of new frag */ | |
86447726 | 4884 | nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; |
b63ae8ca | 4885 | offset = size - fragsz; |
dac22531 ML |
4886 | if (unlikely(offset < 0)) { |
4887 | /* | |
4888 | * The caller is trying to allocate a fragment | |
4889 | * with fragsz > PAGE_SIZE but the cache isn't big | |
4890 | * enough to satisfy the request, this may | |
4891 | * happen in low memory conditions. | |
4892 | * We don't release the cache page because | |
4893 | * it could make memory pressure worse | |
4894 | * so we simply return NULL here. | |
4895 | */ | |
4896 | return NULL; | |
4897 | } | |
b63ae8ca AD |
4898 | } |
4899 | ||
4900 | nc->pagecnt_bias--; | |
b358e212 | 4901 | offset &= align_mask; |
b63ae8ca AD |
4902 | nc->offset = offset; |
4903 | ||
4904 | return nc->va + offset; | |
4905 | } | |
411c5f36 | 4906 | EXPORT_SYMBOL(__page_frag_alloc_align); |
b63ae8ca AD |
4907 | |
4908 | /* | |
4909 | * Frees a page fragment allocated out of either a compound or order 0 page. | |
4910 | */ | |
8c2dd3e4 | 4911 | void page_frag_free(void *addr) |
b63ae8ca AD |
4912 | { |
4913 | struct page *page = virt_to_head_page(addr); | |
4914 | ||
742aa7fb | 4915 | if (unlikely(put_page_testzero(page))) |
5b8d7591 | 4916 | free_unref_page(page, compound_order(page)); |
b63ae8ca | 4917 | } |
8c2dd3e4 | 4918 | EXPORT_SYMBOL(page_frag_free); |
b63ae8ca | 4919 | |
d00181b9 KS |
4920 | static void *make_alloc_exact(unsigned long addr, unsigned int order, |
4921 | size_t size) | |
ee85c2e1 AK |
4922 | { |
4923 | if (addr) { | |
df48a5f7 LH |
4924 | unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); |
4925 | struct page *page = virt_to_page((void *)addr); | |
4926 | struct page *last = page + nr; | |
4927 | ||
46d44d09 | 4928 | split_page_owner(page, order, 0); |
be25d1d4 | 4929 | pgalloc_tag_split(page, 1 << order); |
b8791381 | 4930 | split_page_memcg(page, order, 0); |
df48a5f7 LH |
4931 | while (page < --last) |
4932 | set_page_refcounted(last); | |
4933 | ||
4934 | last = page + (1UL << order); | |
4935 | for (page += nr; page < last; page++) | |
4936 | __free_pages_ok(page, 0, FPI_TO_TAIL); | |
ee85c2e1 AK |
4937 | } |
4938 | return (void *)addr; | |
4939 | } | |
4940 | ||
2be0ffe2 TT |
4941 | /** |
4942 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | |
4943 | * @size: the number of bytes to allocate | |
63931eb9 | 4944 | * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP |
2be0ffe2 TT |
4945 | * |
4946 | * This function is similar to alloc_pages(), except that it allocates the | |
4947 | * minimum number of pages to satisfy the request. alloc_pages() can only | |
4948 | * allocate memory in power-of-two pages. | |
4949 | * | |
5e0a760b | 4950 | * This function is also limited by MAX_PAGE_ORDER. |
2be0ffe2 TT |
4951 | * |
4952 | * Memory allocated by this function must be released by free_pages_exact(). | |
a862f68a MR |
4953 | * |
4954 | * Return: pointer to the allocated area or %NULL in case of error. | |
2be0ffe2 | 4955 | */ |
b951aaff | 4956 | void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) |
2be0ffe2 TT |
4957 | { |
4958 | unsigned int order = get_order(size); | |
4959 | unsigned long addr; | |
4960 | ||
ba7f1b9e ML |
4961 | if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) |
4962 | gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); | |
63931eb9 | 4963 | |
b951aaff | 4964 | addr = get_free_pages_noprof(gfp_mask, order); |
ee85c2e1 | 4965 | return make_alloc_exact(addr, order, size); |
2be0ffe2 | 4966 | } |
b951aaff | 4967 | EXPORT_SYMBOL(alloc_pages_exact_noprof); |
2be0ffe2 | 4968 | |
ee85c2e1 AK |
4969 | /** |
4970 | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | |
4971 | * pages on a node. | |
b5e6ab58 | 4972 | * @nid: the preferred node ID where memory should be allocated |
ee85c2e1 | 4973 | * @size: the number of bytes to allocate |
63931eb9 | 4974 | * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP |
ee85c2e1 AK |
4975 | * |
4976 | * Like alloc_pages_exact(), but try to allocate on node nid first before falling | |
4977 | * back. | |
a862f68a MR |
4978 | * |
4979 | * Return: pointer to the allocated area or %NULL in case of error. | |
ee85c2e1 | 4980 | */ |
b951aaff | 4981 | void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) |
ee85c2e1 | 4982 | { |
d00181b9 | 4983 | unsigned int order = get_order(size); |
63931eb9 VB |
4984 | struct page *p; |
4985 | ||
ba7f1b9e ML |
4986 | if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) |
4987 | gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); | |
63931eb9 | 4988 | |
b951aaff | 4989 | p = alloc_pages_node_noprof(nid, gfp_mask, order); |
ee85c2e1 AK |
4990 | if (!p) |
4991 | return NULL; | |
4992 | return make_alloc_exact((unsigned long)page_address(p), order, size); | |
4993 | } | |
ee85c2e1 | 4994 | |
2be0ffe2 TT |
4995 | /** |
4996 | * free_pages_exact - release memory allocated via alloc_pages_exact() | |
4997 | * @virt: the value returned by alloc_pages_exact. | |
4998 | * @size: size of allocation, same value as passed to alloc_pages_exact(). | |
4999 | * | |
5000 | * Release the memory allocated by a previous call to alloc_pages_exact. | |
5001 | */ | |
5002 | void free_pages_exact(void *virt, size_t size) | |
5003 | { | |
5004 | unsigned long addr = (unsigned long)virt; | |
5005 | unsigned long end = addr + PAGE_ALIGN(size); | |
5006 | ||
5007 | while (addr < end) { | |
5008 | free_page(addr); | |
5009 | addr += PAGE_SIZE; | |
5010 | } | |
5011 | } | |
5012 | EXPORT_SYMBOL(free_pages_exact); | |
5013 | ||
e0fb5815 ZY |
5014 | /** |
5015 | * nr_free_zone_pages - count number of pages beyond high watermark | |
5016 | * @offset: The zone index of the highest zone | |
5017 | * | |
a862f68a | 5018 | * nr_free_zone_pages() counts the number of pages which are beyond the |
e0fb5815 ZY |
5019 | * high watermark within all zones at or below a given zone index. For each |
5020 | * zone, the number of pages is calculated as: | |
0e056eb5 MCC |
5021 | * |
5022 | * nr_free_zone_pages = managed_pages - high_pages | |
a862f68a MR |
5023 | * |
5024 | * Return: number of pages beyond high watermark. | |
e0fb5815 | 5025 | */ |
ebec3862 | 5026 | static unsigned long nr_free_zone_pages(int offset) |
1da177e4 | 5027 | { |
dd1a239f | 5028 | struct zoneref *z; |
54a6eb5c MG |
5029 | struct zone *zone; |
5030 | ||
e310fd43 | 5031 | /* Just pick one node, since fallback list is circular */ |
ebec3862 | 5032 | unsigned long sum = 0; |
1da177e4 | 5033 | |
0e88460d | 5034 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
1da177e4 | 5035 | |
54a6eb5c | 5036 | for_each_zone_zonelist(zone, z, zonelist, offset) { |
9705bea5 | 5037 | unsigned long size = zone_managed_pages(zone); |
41858966 | 5038 | unsigned long high = high_wmark_pages(zone); |
e310fd43 MB |
5039 | if (size > high) |
5040 | sum += size - high; | |
1da177e4 LT |
5041 | } |
5042 | ||
5043 | return sum; | |
5044 | } | |
5045 | ||
e0fb5815 ZY |
5046 | /** |
5047 | * nr_free_buffer_pages - count number of pages beyond high watermark | |
5048 | * | |
5049 | * nr_free_buffer_pages() counts the number of pages which are beyond the high | |
5050 | * watermark within ZONE_DMA and ZONE_NORMAL. | |
a862f68a MR |
5051 | * |
5052 | * Return: number of pages beyond high watermark within ZONE_DMA and | |
5053 | * ZONE_NORMAL. | |
1da177e4 | 5054 | */ |
ebec3862 | 5055 | unsigned long nr_free_buffer_pages(void) |
1da177e4 | 5056 | { |
af4ca457 | 5057 | return nr_free_zone_pages(gfp_zone(GFP_USER)); |
1da177e4 | 5058 | } |
c2f1a551 | 5059 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
1da177e4 | 5060 | |
19770b32 MG |
5061 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
5062 | { | |
5063 | zoneref->zone = zone; | |
5064 | zoneref->zone_idx = zone_idx(zone); | |
5065 | } | |
5066 | ||
1da177e4 LT |
5067 | /* |
5068 | * Builds allocation fallback zone lists. | |
1a93205b CL |
5069 | * |
5070 | * Add all populated zones of a node to the zonelist. | |
1da177e4 | 5071 | */ |
9d3be21b | 5072 | static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) |
1da177e4 | 5073 | { |
1a93205b | 5074 | struct zone *zone; |
bc732f1d | 5075 | enum zone_type zone_type = MAX_NR_ZONES; |
9d3be21b | 5076 | int nr_zones = 0; |
02a68a5e CL |
5077 | |
5078 | do { | |
2f6726e5 | 5079 | zone_type--; |
070f8032 | 5080 | zone = pgdat->node_zones + zone_type; |
e553f62f | 5081 | if (populated_zone(zone)) { |
9d3be21b | 5082 | zoneref_set_zone(zone, &zonerefs[nr_zones++]); |
070f8032 | 5083 | check_highest_zone(zone_type); |
1da177e4 | 5084 | } |
2f6726e5 | 5085 | } while (zone_type); |
bc732f1d | 5086 | |
070f8032 | 5087 | return nr_zones; |
1da177e4 LT |
5088 | } |
5089 | ||
5090 | #ifdef CONFIG_NUMA | |
f0c0b2b8 KH |
5091 | |
5092 | static int __parse_numa_zonelist_order(char *s) | |
5093 | { | |
c9bff3ee | 5094 | /* |
f0953a1b | 5095 | * We used to support different zonelists modes but they turned |
c9bff3ee MH |
5096 | * out to be just not useful. Let's keep the warning in place |
5097 | * if somebody still use the cmd line parameter so that we do | |
5098 | * not fail it silently | |
5099 | */ | |
5100 | if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { | |
5101 | pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); | |
f0c0b2b8 KH |
5102 | return -EINVAL; |
5103 | } | |
5104 | return 0; | |
5105 | } | |
5106 | ||
e95d372c KW |
5107 | static char numa_zonelist_order[] = "Node"; |
5108 | #define NUMA_ZONELIST_ORDER_LEN 16 | |
f0c0b2b8 KH |
5109 | /* |
5110 | * sysctl handler for numa_zonelist_order | |
5111 | */ | |
e95d372c | 5112 | static int numa_zonelist_order_handler(struct ctl_table *table, int write, |
32927393 | 5113 | void *buffer, size_t *length, loff_t *ppos) |
f0c0b2b8 | 5114 | { |
32927393 CH |
5115 | if (write) |
5116 | return __parse_numa_zonelist_order(buffer); | |
5117 | return proc_dostring(table, write, buffer, length, ppos); | |
f0c0b2b8 KH |
5118 | } |
5119 | ||
f0c0b2b8 KH |
5120 | static int node_load[MAX_NUMNODES]; |
5121 | ||
1da177e4 | 5122 | /** |
4dc3b16b | 5123 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
1da177e4 LT |
5124 | * @node: node whose fallback list we're appending |
5125 | * @used_node_mask: nodemask_t of already used nodes | |
5126 | * | |
5127 | * We use a number of factors to determine which is the next node that should | |
5128 | * appear on a given node's fallback list. The node should not have appeared | |
5129 | * already in @node's fallback list, and it should be the next closest node | |
5130 | * according to the distance array (which contains arbitrary distance values | |
5131 | * from each node to each node in the system), and should also prefer nodes | |
5132 | * with no CPUs, since presumably they'll have very little allocation pressure | |
5133 | * on them otherwise. | |
a862f68a MR |
5134 | * |
5135 | * Return: node id of the found node or %NUMA_NO_NODE if no node is found. | |
1da177e4 | 5136 | */ |
79c28a41 | 5137 | int find_next_best_node(int node, nodemask_t *used_node_mask) |
1da177e4 | 5138 | { |
4cf808eb | 5139 | int n, val; |
1da177e4 | 5140 | int min_val = INT_MAX; |
00ef2d2f | 5141 | int best_node = NUMA_NO_NODE; |
1da177e4 | 5142 | |
c2baef39 QZ |
5143 | /* |
5144 | * Use the local node if we haven't already, but for memoryless local | |
5145 | * node, we should skip it and fall back to other nodes. | |
5146 | */ | |
5147 | if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { | |
4cf808eb LT |
5148 | node_set(node, *used_node_mask); |
5149 | return node; | |
5150 | } | |
1da177e4 | 5151 | |
4b0ef1fe | 5152 | for_each_node_state(n, N_MEMORY) { |
1da177e4 LT |
5153 | |
5154 | /* Don't want a node to appear more than once */ | |
5155 | if (node_isset(n, *used_node_mask)) | |
5156 | continue; | |
5157 | ||
1da177e4 LT |
5158 | /* Use the distance array to find the distance */ |
5159 | val = node_distance(node, n); | |
5160 | ||
4cf808eb LT |
5161 | /* Penalize nodes under us ("prefer the next node") */ |
5162 | val += (n < node); | |
5163 | ||
1da177e4 | 5164 | /* Give preference to headless and unused nodes */ |
b630749f | 5165 | if (!cpumask_empty(cpumask_of_node(n))) |
1da177e4 LT |
5166 | val += PENALTY_FOR_NODE_WITH_CPUS; |
5167 | ||
5168 | /* Slight preference for less loaded node */ | |
37931324 | 5169 | val *= MAX_NUMNODES; |
1da177e4 LT |
5170 | val += node_load[n]; |
5171 | ||
5172 | if (val < min_val) { | |
5173 | min_val = val; | |
5174 | best_node = n; | |
5175 | } | |
5176 | } | |
5177 | ||
5178 | if (best_node >= 0) | |
5179 | node_set(best_node, *used_node_mask); | |
5180 | ||
5181 | return best_node; | |
5182 | } | |
5183 | ||
f0c0b2b8 KH |
5184 | |
5185 | /* | |
5186 | * Build zonelists ordered by node and zones within node. | |
5187 | * This results in maximum locality--normal zone overflows into local | |
5188 | * DMA zone, if any--but risks exhausting DMA zone. | |
5189 | */ | |
9d3be21b MH |
5190 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, |
5191 | unsigned nr_nodes) | |
1da177e4 | 5192 | { |
9d3be21b MH |
5193 | struct zoneref *zonerefs; |
5194 | int i; | |
5195 | ||
5196 | zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; | |
5197 | ||
5198 | for (i = 0; i < nr_nodes; i++) { | |
5199 | int nr_zones; | |
5200 | ||
5201 | pg_data_t *node = NODE_DATA(node_order[i]); | |
f0c0b2b8 | 5202 | |
9d3be21b MH |
5203 | nr_zones = build_zonerefs_node(node, zonerefs); |
5204 | zonerefs += nr_zones; | |
5205 | } | |
5206 | zonerefs->zone = NULL; | |
5207 | zonerefs->zone_idx = 0; | |
f0c0b2b8 KH |
5208 | } |
5209 | ||
523b9458 CL |
5210 | /* |
5211 | * Build gfp_thisnode zonelists | |
5212 | */ | |
5213 | static void build_thisnode_zonelists(pg_data_t *pgdat) | |
5214 | { | |
9d3be21b MH |
5215 | struct zoneref *zonerefs; |
5216 | int nr_zones; | |
523b9458 | 5217 | |
9d3be21b MH |
5218 | zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; |
5219 | nr_zones = build_zonerefs_node(pgdat, zonerefs); | |
5220 | zonerefs += nr_zones; | |
5221 | zonerefs->zone = NULL; | |
5222 | zonerefs->zone_idx = 0; | |
523b9458 CL |
5223 | } |
5224 | ||
f0c0b2b8 KH |
5225 | /* |
5226 | * Build zonelists ordered by zone and nodes within zones. | |
5227 | * This results in conserving DMA zone[s] until all Normal memory is | |
5228 | * exhausted, but results in overflowing to remote node while memory | |
5229 | * may still exist in local DMA zone. | |
5230 | */ | |
f0c0b2b8 | 5231 | |
f0c0b2b8 KH |
5232 | static void build_zonelists(pg_data_t *pgdat) |
5233 | { | |
9d3be21b | 5234 | static int node_order[MAX_NUMNODES]; |
37931324 | 5235 | int node, nr_nodes = 0; |
d0ddf49b | 5236 | nodemask_t used_mask = NODE_MASK_NONE; |
f0c0b2b8 | 5237 | int local_node, prev_node; |
1da177e4 LT |
5238 | |
5239 | /* NUMA-aware ordering of nodes */ | |
5240 | local_node = pgdat->node_id; | |
1da177e4 | 5241 | prev_node = local_node; |
f0c0b2b8 | 5242 | |
f0c0b2b8 | 5243 | memset(node_order, 0, sizeof(node_order)); |
1da177e4 LT |
5244 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
5245 | /* | |
5246 | * We don't want to pressure a particular node. | |
5247 | * So adding penalty to the first node in same | |
5248 | * distance group to make it round-robin. | |
5249 | */ | |
957f822a DR |
5250 | if (node_distance(local_node, node) != |
5251 | node_distance(local_node, prev_node)) | |
37931324 | 5252 | node_load[node] += 1; |
f0c0b2b8 | 5253 | |
9d3be21b | 5254 | node_order[nr_nodes++] = node; |
1da177e4 | 5255 | prev_node = node; |
1da177e4 | 5256 | } |
523b9458 | 5257 | |
9d3be21b | 5258 | build_zonelists_in_node_order(pgdat, node_order, nr_nodes); |
523b9458 | 5259 | build_thisnode_zonelists(pgdat); |
6cf25392 BR |
5260 | pr_info("Fallback order for Node %d: ", local_node); |
5261 | for (node = 0; node < nr_nodes; node++) | |
5262 | pr_cont("%d ", node_order[node]); | |
5263 | pr_cont("\n"); | |
1da177e4 LT |
5264 | } |
5265 | ||
7aac7898 LS |
5266 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
5267 | /* | |
5268 | * Return node id of node used for "local" allocations. | |
5269 | * I.e., first node id of first zone in arg node's generic zonelist. | |
5270 | * Used for initializing percpu 'numa_mem', which is used primarily | |
5271 | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | |
5272 | */ | |
5273 | int local_memory_node(int node) | |
5274 | { | |
c33d6c06 | 5275 | struct zoneref *z; |
7aac7898 | 5276 | |
c33d6c06 | 5277 | z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), |
7aac7898 | 5278 | gfp_zone(GFP_KERNEL), |
c33d6c06 | 5279 | NULL); |
c1093b74 | 5280 | return zone_to_nid(z->zone); |
7aac7898 LS |
5281 | } |
5282 | #endif | |
f0c0b2b8 | 5283 | |
6423aa81 JK |
5284 | static void setup_min_unmapped_ratio(void); |
5285 | static void setup_min_slab_ratio(void); | |
1da177e4 LT |
5286 | #else /* CONFIG_NUMA */ |
5287 | ||
f0c0b2b8 | 5288 | static void build_zonelists(pg_data_t *pgdat) |
1da177e4 | 5289 | { |
9d3be21b MH |
5290 | struct zoneref *zonerefs; |
5291 | int nr_zones; | |
1da177e4 | 5292 | |
9d3be21b MH |
5293 | zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; |
5294 | nr_zones = build_zonerefs_node(pgdat, zonerefs); | |
5295 | zonerefs += nr_zones; | |
1da177e4 | 5296 | |
9d3be21b MH |
5297 | zonerefs->zone = NULL; |
5298 | zonerefs->zone_idx = 0; | |
1da177e4 LT |
5299 | } |
5300 | ||
5301 | #endif /* CONFIG_NUMA */ | |
5302 | ||
99dcc3e5 CL |
5303 | /* |
5304 | * Boot pageset table. One per cpu which is going to be used for all | |
5305 | * zones and all nodes. The parameters will be set in such a way | |
5306 | * that an item put on a list will immediately be handed over to | |
5307 | * the buddy list. This is safe since pageset manipulation is done | |
5308 | * with interrupts disabled. | |
5309 | * | |
5310 | * The boot_pagesets must be kept even after bootup is complete for | |
5311 | * unused processors and/or zones. They do play a role for bootstrapping | |
5312 | * hotplugged processors. | |
5313 | * | |
5314 | * zoneinfo_show() and maybe other functions do | |
5315 | * not check if the processor is online before following the pageset pointer. | |
5316 | * Other parts of the kernel may not check if the zone is available. | |
5317 | */ | |
28f836b6 | 5318 | static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); |
952eaf81 VB |
5319 | /* These effectively disable the pcplists in the boot pageset completely */ |
5320 | #define BOOT_PAGESET_HIGH 0 | |
5321 | #define BOOT_PAGESET_BATCH 1 | |
28f836b6 MG |
5322 | static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); |
5323 | static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); | |
99dcc3e5 | 5324 | |
11cd8638 | 5325 | static void __build_all_zonelists(void *data) |
1da177e4 | 5326 | { |
6811378e | 5327 | int nid; |
afb6ebb3 | 5328 | int __maybe_unused cpu; |
9adb62a5 | 5329 | pg_data_t *self = data; |
1007843a | 5330 | unsigned long flags; |
b93e0f32 | 5331 | |
1007843a | 5332 | /* |
a2ebb515 SAS |
5333 | * The zonelist_update_seq must be acquired with irqsave because the |
5334 | * reader can be invoked from IRQ with GFP_ATOMIC. | |
1007843a | 5335 | */ |
a2ebb515 | 5336 | write_seqlock_irqsave(&zonelist_update_seq, flags); |
1007843a | 5337 | /* |
a2ebb515 SAS |
5338 | * Also disable synchronous printk() to prevent any printk() from |
5339 | * trying to hold port->lock, for | |
1007843a TH |
5340 | * tty_insert_flip_string_and_push_buffer() on other CPU might be |
5341 | * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. | |
5342 | */ | |
5343 | printk_deferred_enter(); | |
9276b1bc | 5344 | |
7f9cfb31 BL |
5345 | #ifdef CONFIG_NUMA |
5346 | memset(node_load, 0, sizeof(node_load)); | |
5347 | #endif | |
9adb62a5 | 5348 | |
c1152583 WY |
5349 | /* |
5350 | * This node is hotadded and no memory is yet present. So just | |
5351 | * building zonelists is fine - no need to touch other nodes. | |
5352 | */ | |
9adb62a5 JL |
5353 | if (self && !node_online(self->node_id)) { |
5354 | build_zonelists(self); | |
c1152583 | 5355 | } else { |
09f49dca MH |
5356 | /* |
5357 | * All possible nodes have pgdat preallocated | |
5358 | * in free_area_init | |
5359 | */ | |
5360 | for_each_node(nid) { | |
c1152583 | 5361 | pg_data_t *pgdat = NODE_DATA(nid); |
7ea1530a | 5362 | |
c1152583 WY |
5363 | build_zonelists(pgdat); |
5364 | } | |
99dcc3e5 | 5365 | |
7aac7898 LS |
5366 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
5367 | /* | |
5368 | * We now know the "local memory node" for each node-- | |
5369 | * i.e., the node of the first zone in the generic zonelist. | |
5370 | * Set up numa_mem percpu variable for on-line cpus. During | |
5371 | * boot, only the boot cpu should be on-line; we'll init the | |
5372 | * secondary cpus' numa_mem as they come on-line. During | |
5373 | * node/memory hotplug, we'll fixup all on-line cpus. | |
5374 | */ | |
d9c9a0b9 | 5375 | for_each_online_cpu(cpu) |
7aac7898 | 5376 | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); |
afb6ebb3 | 5377 | #endif |
d9c9a0b9 | 5378 | } |
b93e0f32 | 5379 | |
1007843a | 5380 | printk_deferred_exit(); |
a2ebb515 | 5381 | write_sequnlock_irqrestore(&zonelist_update_seq, flags); |
6811378e YG |
5382 | } |
5383 | ||
061f67bc RV |
5384 | static noinline void __init |
5385 | build_all_zonelists_init(void) | |
5386 | { | |
afb6ebb3 MH |
5387 | int cpu; |
5388 | ||
061f67bc | 5389 | __build_all_zonelists(NULL); |
afb6ebb3 MH |
5390 | |
5391 | /* | |
5392 | * Initialize the boot_pagesets that are going to be used | |
5393 | * for bootstrapping processors. The real pagesets for | |
5394 | * each zone will be allocated later when the per cpu | |
5395 | * allocator is available. | |
5396 | * | |
5397 | * boot_pagesets are used also for bootstrapping offline | |
5398 | * cpus if the system is already booted because the pagesets | |
5399 | * are needed to initialize allocators on a specific cpu too. | |
5400 | * F.e. the percpu allocator needs the page allocator which | |
5401 | * needs the percpu allocator in order to allocate its pagesets | |
5402 | * (a chicken-egg dilemma). | |
5403 | */ | |
5404 | for_each_possible_cpu(cpu) | |
28f836b6 | 5405 | per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); |
afb6ebb3 | 5406 | |
061f67bc RV |
5407 | mminit_verify_zonelist(); |
5408 | cpuset_init_current_mems_allowed(); | |
5409 | } | |
5410 | ||
4eaf3f64 | 5411 | /* |
4eaf3f64 | 5412 | * unless system_state == SYSTEM_BOOTING. |
061f67bc | 5413 | * |
72675e13 | 5414 | * __ref due to call of __init annotated helper build_all_zonelists_init |
061f67bc | 5415 | * [protected by SYSTEM_BOOTING]. |
4eaf3f64 | 5416 | */ |
72675e13 | 5417 | void __ref build_all_zonelists(pg_data_t *pgdat) |
6811378e | 5418 | { |
0a18e607 DH |
5419 | unsigned long vm_total_pages; |
5420 | ||
6811378e | 5421 | if (system_state == SYSTEM_BOOTING) { |
061f67bc | 5422 | build_all_zonelists_init(); |
6811378e | 5423 | } else { |
11cd8638 | 5424 | __build_all_zonelists(pgdat); |
6811378e YG |
5425 | /* cpuset refresh routine should be here */ |
5426 | } | |
56b9413b DH |
5427 | /* Get the number of free pages beyond high watermark in all zones. */ |
5428 | vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); | |
9ef9acb0 MG |
5429 | /* |
5430 | * Disable grouping by mobility if the number of pages in the | |
5431 | * system is too low to allow the mechanism to work. It would be | |
5432 | * more accurate, but expensive to check per-zone. This check is | |
5433 | * made on memory-hotadd so a system can start with mobility | |
5434 | * disabled and enable it later | |
5435 | */ | |
d9c23400 | 5436 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
9ef9acb0 MG |
5437 | page_group_by_mobility_disabled = 1; |
5438 | else | |
5439 | page_group_by_mobility_disabled = 0; | |
5440 | ||
ce0725f7 | 5441 | pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", |
756a025f | 5442 | nr_online_nodes, |
756a025f JP |
5443 | page_group_by_mobility_disabled ? "off" : "on", |
5444 | vm_total_pages); | |
f0c0b2b8 | 5445 | #ifdef CONFIG_NUMA |
f88dfff5 | 5446 | pr_info("Policy zone: %s\n", zone_names[policy_zone]); |
f0c0b2b8 | 5447 | #endif |
1da177e4 LT |
5448 | } |
5449 | ||
9420f89d | 5450 | static int zone_batchsize(struct zone *zone) |
1da177e4 | 5451 | { |
9420f89d MRI |
5452 | #ifdef CONFIG_MMU |
5453 | int batch; | |
1da177e4 | 5454 | |
9420f89d MRI |
5455 | /* |
5456 | * The number of pages to batch allocate is either ~0.1% | |
5457 | * of the zone or 1MB, whichever is smaller. The batch | |
5458 | * size is striking a balance between allocation latency | |
5459 | * and zone lock contention. | |
5460 | */ | |
5461 | batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); | |
5462 | batch /= 4; /* We effectively *= 4 below */ | |
5463 | if (batch < 1) | |
5464 | batch = 1; | |
22b31eec | 5465 | |
4b94ffdc | 5466 | /* |
9420f89d MRI |
5467 | * Clamp the batch to a 2^n - 1 value. Having a power |
5468 | * of 2 value was found to be more likely to have | |
5469 | * suboptimal cache aliasing properties in some cases. | |
5470 | * | |
5471 | * For example if 2 tasks are alternately allocating | |
5472 | * batches of pages, one task can end up with a lot | |
5473 | * of pages of one half of the possible page colors | |
5474 | * and the other with pages of the other colors. | |
4b94ffdc | 5475 | */ |
9420f89d | 5476 | batch = rounddown_pow_of_two(batch + batch/2) - 1; |
966cf44f | 5477 | |
9420f89d | 5478 | return batch; |
3a6be87f DH |
5479 | |
5480 | #else | |
5481 | /* The deferral and batching of frees should be suppressed under NOMMU | |
5482 | * conditions. | |
5483 | * | |
5484 | * The problem is that NOMMU needs to be able to allocate large chunks | |
5485 | * of contiguous memory as there's no hardware page translation to | |
5486 | * assemble apparent contiguous memory from discontiguous pages. | |
5487 | * | |
5488 | * Queueing large contiguous runs of pages for batching, however, | |
5489 | * causes the pages to actually be freed in smaller chunks. As there | |
5490 | * can be a significant delay between the individual batches being | |
5491 | * recycled, this leads to the once large chunks of space being | |
5492 | * fragmented and becoming unavailable for high-order allocations. | |
5493 | */ | |
5494 | return 0; | |
5495 | #endif | |
e7c8d5c9 CL |
5496 | } |
5497 | ||
e95d372c | 5498 | static int percpu_pagelist_high_fraction; |
90b41691 YH |
5499 | static int zone_highsize(struct zone *zone, int batch, int cpu_online, |
5500 | int high_fraction) | |
b92ca18e | 5501 | { |
9420f89d MRI |
5502 | #ifdef CONFIG_MMU |
5503 | int high; | |
5504 | int nr_split_cpus; | |
5505 | unsigned long total_pages; | |
c13291a5 | 5506 | |
90b41691 | 5507 | if (!high_fraction) { |
2a1e274a | 5508 | /* |
9420f89d MRI |
5509 | * By default, the high value of the pcp is based on the zone |
5510 | * low watermark so that if they are full then background | |
5511 | * reclaim will not be started prematurely. | |
2a1e274a | 5512 | */ |
9420f89d MRI |
5513 | total_pages = low_wmark_pages(zone); |
5514 | } else { | |
2a1e274a | 5515 | /* |
9420f89d MRI |
5516 | * If percpu_pagelist_high_fraction is configured, the high |
5517 | * value is based on a fraction of the managed pages in the | |
5518 | * zone. | |
2a1e274a | 5519 | */ |
90b41691 | 5520 | total_pages = zone_managed_pages(zone) / high_fraction; |
2a1e274a MG |
5521 | } |
5522 | ||
5523 | /* | |
9420f89d MRI |
5524 | * Split the high value across all online CPUs local to the zone. Note |
5525 | * that early in boot that CPUs may not be online yet and that during | |
5526 | * CPU hotplug that the cpumask is not yet updated when a CPU is being | |
90b41691 YH |
5527 | * onlined. For memory nodes that have no CPUs, split the high value |
5528 | * across all online CPUs to mitigate the risk that reclaim is triggered | |
9420f89d | 5529 | * prematurely due to pages stored on pcp lists. |
2a1e274a | 5530 | */ |
9420f89d MRI |
5531 | nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; |
5532 | if (!nr_split_cpus) | |
5533 | nr_split_cpus = num_online_cpus(); | |
5534 | high = total_pages / nr_split_cpus; | |
2a1e274a | 5535 | |
9420f89d MRI |
5536 | /* |
5537 | * Ensure high is at least batch*4. The multiple is based on the | |
5538 | * historical relationship between high and batch. | |
5539 | */ | |
5540 | high = max(high, batch << 2); | |
37b07e41 | 5541 | |
9420f89d MRI |
5542 | return high; |
5543 | #else | |
5544 | return 0; | |
5545 | #endif | |
37b07e41 LS |
5546 | } |
5547 | ||
51930df5 | 5548 | /* |
9420f89d MRI |
5549 | * pcp->high and pcp->batch values are related and generally batch is lower |
5550 | * than high. They are also related to pcp->count such that count is lower | |
5551 | * than high, and as soon as it reaches high, the pcplist is flushed. | |
5552 | * | |
5553 | * However, guaranteeing these relations at all times would require e.g. write | |
5554 | * barriers here but also careful usage of read barriers at the read side, and | |
5555 | * thus be prone to error and bad for performance. Thus the update only prevents | |
90b41691 YH |
5556 | * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max |
5557 | * should ensure they can cope with those fields changing asynchronously, and | |
5558 | * fully trust only the pcp->count field on the local CPU with interrupts | |
5559 | * disabled. | |
9420f89d MRI |
5560 | * |
5561 | * mutex_is_locked(&pcp_batch_high_lock) required when calling this function | |
5562 | * outside of boot time (or some other assurance that no concurrent updaters | |
5563 | * exist). | |
51930df5 | 5564 | */ |
90b41691 YH |
5565 | static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, |
5566 | unsigned long high_max, unsigned long batch) | |
51930df5 | 5567 | { |
9420f89d | 5568 | WRITE_ONCE(pcp->batch, batch); |
90b41691 YH |
5569 | WRITE_ONCE(pcp->high_min, high_min); |
5570 | WRITE_ONCE(pcp->high_max, high_max); | |
51930df5 MR |
5571 | } |
5572 | ||
9420f89d | 5573 | static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) |
c713216d | 5574 | { |
9420f89d | 5575 | int pindex; |
90cae1fe | 5576 | |
9420f89d MRI |
5577 | memset(pcp, 0, sizeof(*pcp)); |
5578 | memset(pzstats, 0, sizeof(*pzstats)); | |
90cae1fe | 5579 | |
9420f89d MRI |
5580 | spin_lock_init(&pcp->lock); |
5581 | for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) | |
5582 | INIT_LIST_HEAD(&pcp->lists[pindex]); | |
2a1e274a | 5583 | |
9420f89d MRI |
5584 | /* |
5585 | * Set batch and high values safe for a boot pageset. A true percpu | |
5586 | * pageset's initialization will update them subsequently. Here we don't | |
5587 | * need to be as careful as pageset_update() as nobody can access the | |
5588 | * pageset yet. | |
5589 | */ | |
90b41691 YH |
5590 | pcp->high_min = BOOT_PAGESET_HIGH; |
5591 | pcp->high_max = BOOT_PAGESET_HIGH; | |
9420f89d | 5592 | pcp->batch = BOOT_PAGESET_BATCH; |
6ccdcb6d | 5593 | pcp->free_count = 0; |
9420f89d | 5594 | } |
c713216d | 5595 | |
90b41691 YH |
5596 | static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, |
5597 | unsigned long high_max, unsigned long batch) | |
9420f89d MRI |
5598 | { |
5599 | struct per_cpu_pages *pcp; | |
5600 | int cpu; | |
2a1e274a | 5601 | |
9420f89d MRI |
5602 | for_each_possible_cpu(cpu) { |
5603 | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); | |
90b41691 | 5604 | pageset_update(pcp, high_min, high_max, batch); |
2a1e274a | 5605 | } |
9420f89d | 5606 | } |
c713216d | 5607 | |
9420f89d MRI |
5608 | /* |
5609 | * Calculate and set new high and batch values for all per-cpu pagesets of a | |
5610 | * zone based on the zone's size. | |
5611 | */ | |
5612 | static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) | |
5613 | { | |
90b41691 | 5614 | int new_high_min, new_high_max, new_batch; |
09f49dca | 5615 | |
9420f89d | 5616 | new_batch = max(1, zone_batchsize(zone)); |
90b41691 YH |
5617 | if (percpu_pagelist_high_fraction) { |
5618 | new_high_min = zone_highsize(zone, new_batch, cpu_online, | |
5619 | percpu_pagelist_high_fraction); | |
5620 | /* | |
5621 | * PCP high is tuned manually, disable auto-tuning via | |
5622 | * setting high_min and high_max to the manual value. | |
5623 | */ | |
5624 | new_high_max = new_high_min; | |
5625 | } else { | |
5626 | new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); | |
5627 | new_high_max = zone_highsize(zone, new_batch, cpu_online, | |
5628 | MIN_PERCPU_PAGELIST_HIGH_FRACTION); | |
5629 | } | |
09f49dca | 5630 | |
90b41691 YH |
5631 | if (zone->pageset_high_min == new_high_min && |
5632 | zone->pageset_high_max == new_high_max && | |
9420f89d MRI |
5633 | zone->pageset_batch == new_batch) |
5634 | return; | |
37b07e41 | 5635 | |
90b41691 YH |
5636 | zone->pageset_high_min = new_high_min; |
5637 | zone->pageset_high_max = new_high_max; | |
9420f89d | 5638 | zone->pageset_batch = new_batch; |
122e093c | 5639 | |
90b41691 YH |
5640 | __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, |
5641 | new_batch); | |
c713216d | 5642 | } |
2a1e274a | 5643 | |
9420f89d | 5644 | void __meminit setup_zone_pageset(struct zone *zone) |
2a1e274a | 5645 | { |
9420f89d | 5646 | int cpu; |
2a1e274a | 5647 | |
9420f89d MRI |
5648 | /* Size may be 0 on !SMP && !NUMA */ |
5649 | if (sizeof(struct per_cpu_zonestat) > 0) | |
5650 | zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); | |
2a1e274a | 5651 | |
9420f89d MRI |
5652 | zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); |
5653 | for_each_possible_cpu(cpu) { | |
5654 | struct per_cpu_pages *pcp; | |
5655 | struct per_cpu_zonestat *pzstats; | |
2a1e274a | 5656 | |
9420f89d MRI |
5657 | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
5658 | pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); | |
5659 | per_cpu_pages_init(pcp, pzstats); | |
a5c6d650 | 5660 | } |
9420f89d MRI |
5661 | |
5662 | zone_set_pageset_high_and_batch(zone, 0); | |
2a1e274a | 5663 | } |
ed7ed365 | 5664 | |
7e63efef | 5665 | /* |
9420f89d MRI |
5666 | * The zone indicated has a new number of managed_pages; batch sizes and percpu |
5667 | * page high values need to be recalculated. | |
7e63efef | 5668 | */ |
9420f89d | 5669 | static void zone_pcp_update(struct zone *zone, int cpu_online) |
7e63efef | 5670 | { |
9420f89d MRI |
5671 | mutex_lock(&pcp_batch_high_lock); |
5672 | zone_set_pageset_high_and_batch(zone, cpu_online); | |
5673 | mutex_unlock(&pcp_batch_high_lock); | |
7e63efef MG |
5674 | } |
5675 | ||
5cec4eb7 | 5676 | static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) |
362d37a1 | 5677 | { |
362d37a1 YH |
5678 | struct per_cpu_pages *pcp; |
5679 | struct cpu_cacheinfo *cci; | |
5680 | ||
5cec4eb7 YH |
5681 | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); |
5682 | cci = get_cpu_cacheinfo(cpu); | |
5683 | /* | |
5684 | * If data cache slice of CPU is large enough, "pcp->batch" | |
5685 | * pages can be preserved in PCP before draining PCP for | |
5686 | * consecutive high-order pages freeing without allocation. | |
5687 | * This can reduce zone lock contention without hurting | |
5688 | * cache-hot pages sharing. | |
5689 | */ | |
5690 | spin_lock(&pcp->lock); | |
5691 | if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) | |
5692 | pcp->flags |= PCPF_FREE_HIGH_BATCH; | |
5693 | else | |
5694 | pcp->flags &= ~PCPF_FREE_HIGH_BATCH; | |
5695 | spin_unlock(&pcp->lock); | |
362d37a1 YH |
5696 | } |
5697 | ||
5cec4eb7 | 5698 | void setup_pcp_cacheinfo(unsigned int cpu) |
362d37a1 YH |
5699 | { |
5700 | struct zone *zone; | |
5701 | ||
5702 | for_each_populated_zone(zone) | |
5cec4eb7 | 5703 | zone_pcp_update_cacheinfo(zone, cpu); |
362d37a1 YH |
5704 | } |
5705 | ||
7e63efef | 5706 | /* |
9420f89d MRI |
5707 | * Allocate per cpu pagesets and initialize them. |
5708 | * Before this call only boot pagesets were available. | |
7e63efef | 5709 | */ |
9420f89d | 5710 | void __init setup_per_cpu_pageset(void) |
7e63efef | 5711 | { |
9420f89d MRI |
5712 | struct pglist_data *pgdat; |
5713 | struct zone *zone; | |
5714 | int __maybe_unused cpu; | |
5715 | ||
5716 | for_each_populated_zone(zone) | |
5717 | setup_zone_pageset(zone); | |
5718 | ||
5719 | #ifdef CONFIG_NUMA | |
5720 | /* | |
5721 | * Unpopulated zones continue using the boot pagesets. | |
5722 | * The numa stats for these pagesets need to be reset. | |
5723 | * Otherwise, they will end up skewing the stats of | |
5724 | * the nodes these zones are associated with. | |
5725 | */ | |
5726 | for_each_possible_cpu(cpu) { | |
5727 | struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); | |
5728 | memset(pzstats->vm_numa_event, 0, | |
5729 | sizeof(pzstats->vm_numa_event)); | |
5730 | } | |
5731 | #endif | |
5732 | ||
5733 | for_each_online_pgdat(pgdat) | |
5734 | pgdat->per_cpu_nodestats = | |
5735 | alloc_percpu(struct per_cpu_nodestat); | |
7e63efef MG |
5736 | } |
5737 | ||
9420f89d MRI |
5738 | __meminit void zone_pcp_init(struct zone *zone) |
5739 | { | |
5740 | /* | |
5741 | * per cpu subsystem is not up at this point. The following code | |
5742 | * relies on the ability of the linker to provide the | |
5743 | * offset of a (static) per cpu variable into the per cpu area. | |
5744 | */ | |
5745 | zone->per_cpu_pageset = &boot_pageset; | |
5746 | zone->per_cpu_zonestats = &boot_zonestats; | |
90b41691 YH |
5747 | zone->pageset_high_min = BOOT_PAGESET_HIGH; |
5748 | zone->pageset_high_max = BOOT_PAGESET_HIGH; | |
9420f89d MRI |
5749 | zone->pageset_batch = BOOT_PAGESET_BATCH; |
5750 | ||
5751 | if (populated_zone(zone)) | |
5752 | pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, | |
5753 | zone->present_pages, zone_batchsize(zone)); | |
5754 | } | |
ed7ed365 | 5755 | |
c3d5f5f0 JL |
5756 | void adjust_managed_page_count(struct page *page, long count) |
5757 | { | |
9705bea5 | 5758 | atomic_long_add(count, &page_zone(page)->managed_pages); |
ca79b0c2 | 5759 | totalram_pages_add(count); |
3dcc0571 JL |
5760 | #ifdef CONFIG_HIGHMEM |
5761 | if (PageHighMem(page)) | |
ca79b0c2 | 5762 | totalhigh_pages_add(count); |
3dcc0571 | 5763 | #endif |
c3d5f5f0 | 5764 | } |
3dcc0571 | 5765 | EXPORT_SYMBOL(adjust_managed_page_count); |
c3d5f5f0 | 5766 | |
e5cb113f | 5767 | unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) |
69afade7 | 5768 | { |
11199692 JL |
5769 | void *pos; |
5770 | unsigned long pages = 0; | |
69afade7 | 5771 | |
11199692 JL |
5772 | start = (void *)PAGE_ALIGN((unsigned long)start); |
5773 | end = (void *)((unsigned long)end & PAGE_MASK); | |
5774 | for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { | |
0d834328 DH |
5775 | struct page *page = virt_to_page(pos); |
5776 | void *direct_map_addr; | |
5777 | ||
5778 | /* | |
5779 | * 'direct_map_addr' might be different from 'pos' | |
5780 | * because some architectures' virt_to_page() | |
5781 | * work with aliases. Getting the direct map | |
5782 | * address ensures that we get a _writeable_ | |
5783 | * alias for the memset(). | |
5784 | */ | |
5785 | direct_map_addr = page_address(page); | |
c746170d VF |
5786 | /* |
5787 | * Perform a kasan-unchecked memset() since this memory | |
5788 | * has not been initialized. | |
5789 | */ | |
5790 | direct_map_addr = kasan_reset_tag(direct_map_addr); | |
dbe67df4 | 5791 | if ((unsigned int)poison <= 0xFF) |
0d834328 DH |
5792 | memset(direct_map_addr, poison, PAGE_SIZE); |
5793 | ||
5794 | free_reserved_page(page); | |
69afade7 JL |
5795 | } |
5796 | ||
5797 | if (pages && s) | |
ff7ed9e4 | 5798 | pr_info("Freeing %s memory: %ldK\n", s, K(pages)); |
69afade7 JL |
5799 | |
5800 | return pages; | |
5801 | } | |
5802 | ||
005fd4bb | 5803 | static int page_alloc_cpu_dead(unsigned int cpu) |
1da177e4 | 5804 | { |
04f8cfea | 5805 | struct zone *zone; |
1da177e4 | 5806 | |
005fd4bb | 5807 | lru_add_drain_cpu(cpu); |
96f97c43 | 5808 | mlock_drain_remote(cpu); |
005fd4bb | 5809 | drain_pages(cpu); |
9f8f2172 | 5810 | |
005fd4bb SAS |
5811 | /* |
5812 | * Spill the event counters of the dead processor | |
5813 | * into the current processors event counters. | |
5814 | * This artificially elevates the count of the current | |
5815 | * processor. | |
5816 | */ | |
5817 | vm_events_fold_cpu(cpu); | |
9f8f2172 | 5818 | |
005fd4bb SAS |
5819 | /* |
5820 | * Zero the differential counters of the dead processor | |
5821 | * so that the vm statistics are consistent. | |
5822 | * | |
5823 | * This is only okay since the processor is dead and cannot | |
5824 | * race with what we are doing. | |
5825 | */ | |
5826 | cpu_vm_stats_fold(cpu); | |
04f8cfea MG |
5827 | |
5828 | for_each_populated_zone(zone) | |
5829 | zone_pcp_update(zone, 0); | |
5830 | ||
5831 | return 0; | |
5832 | } | |
5833 | ||
5834 | static int page_alloc_cpu_online(unsigned int cpu) | |
5835 | { | |
5836 | struct zone *zone; | |
5837 | ||
5838 | for_each_populated_zone(zone) | |
5839 | zone_pcp_update(zone, 1); | |
005fd4bb | 5840 | return 0; |
1da177e4 | 5841 | } |
1da177e4 | 5842 | |
c4fbed4b | 5843 | void __init page_alloc_init_cpuhp(void) |
1da177e4 | 5844 | { |
005fd4bb SAS |
5845 | int ret; |
5846 | ||
04f8cfea MG |
5847 | ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, |
5848 | "mm/page_alloc:pcp", | |
5849 | page_alloc_cpu_online, | |
005fd4bb SAS |
5850 | page_alloc_cpu_dead); |
5851 | WARN_ON(ret < 0); | |
1da177e4 LT |
5852 | } |
5853 | ||
cb45b0e9 | 5854 | /* |
34b10060 | 5855 | * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio |
cb45b0e9 HA |
5856 | * or min_free_kbytes changes. |
5857 | */ | |
5858 | static void calculate_totalreserve_pages(void) | |
5859 | { | |
5860 | struct pglist_data *pgdat; | |
5861 | unsigned long reserve_pages = 0; | |
2f6726e5 | 5862 | enum zone_type i, j; |
cb45b0e9 HA |
5863 | |
5864 | for_each_online_pgdat(pgdat) { | |
281e3726 MG |
5865 | |
5866 | pgdat->totalreserve_pages = 0; | |
5867 | ||
cb45b0e9 HA |
5868 | for (i = 0; i < MAX_NR_ZONES; i++) { |
5869 | struct zone *zone = pgdat->node_zones + i; | |
3484b2de | 5870 | long max = 0; |
9705bea5 | 5871 | unsigned long managed_pages = zone_managed_pages(zone); |
cb45b0e9 HA |
5872 | |
5873 | /* Find valid and maximum lowmem_reserve in the zone */ | |
5874 | for (j = i; j < MAX_NR_ZONES; j++) { | |
5875 | if (zone->lowmem_reserve[j] > max) | |
5876 | max = zone->lowmem_reserve[j]; | |
5877 | } | |
5878 | ||
41858966 MG |
5879 | /* we treat the high watermark as reserved pages. */ |
5880 | max += high_wmark_pages(zone); | |
cb45b0e9 | 5881 | |
3d6357de AK |
5882 | if (max > managed_pages) |
5883 | max = managed_pages; | |
a8d01437 | 5884 | |
281e3726 | 5885 | pgdat->totalreserve_pages += max; |
a8d01437 | 5886 | |
cb45b0e9 HA |
5887 | reserve_pages += max; |
5888 | } | |
5889 | } | |
5890 | totalreserve_pages = reserve_pages; | |
5891 | } | |
5892 | ||
1da177e4 LT |
5893 | /* |
5894 | * setup_per_zone_lowmem_reserve - called whenever | |
34b10060 | 5895 | * sysctl_lowmem_reserve_ratio changes. Ensures that each zone |
1da177e4 LT |
5896 | * has a correct pages reserved value, so an adequate number of |
5897 | * pages are left in the zone after a successful __alloc_pages(). | |
5898 | */ | |
5899 | static void setup_per_zone_lowmem_reserve(void) | |
5900 | { | |
5901 | struct pglist_data *pgdat; | |
470c61d7 | 5902 | enum zone_type i, j; |
1da177e4 | 5903 | |
ec936fc5 | 5904 | for_each_online_pgdat(pgdat) { |
470c61d7 LS |
5905 | for (i = 0; i < MAX_NR_ZONES - 1; i++) { |
5906 | struct zone *zone = &pgdat->node_zones[i]; | |
5907 | int ratio = sysctl_lowmem_reserve_ratio[i]; | |
5908 | bool clear = !ratio || !zone_managed_pages(zone); | |
5909 | unsigned long managed_pages = 0; | |
5910 | ||
5911 | for (j = i + 1; j < MAX_NR_ZONES; j++) { | |
f7ec1044 | 5912 | struct zone *upper_zone = &pgdat->node_zones[j]; |
96a5c186 | 5913 | bool empty = !zone_managed_pages(upper_zone); |
f7ec1044 LS |
5914 | |
5915 | managed_pages += zone_managed_pages(upper_zone); | |
470c61d7 | 5916 | |
96a5c186 | 5917 | if (clear || empty) |
f7ec1044 LS |
5918 | zone->lowmem_reserve[j] = 0; |
5919 | else | |
470c61d7 | 5920 | zone->lowmem_reserve[j] = managed_pages / ratio; |
1da177e4 LT |
5921 | } |
5922 | } | |
5923 | } | |
cb45b0e9 HA |
5924 | |
5925 | /* update totalreserve_pages */ | |
5926 | calculate_totalreserve_pages(); | |
1da177e4 LT |
5927 | } |
5928 | ||
cfd3da1e | 5929 | static void __setup_per_zone_wmarks(void) |
1da177e4 LT |
5930 | { |
5931 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | |
5932 | unsigned long lowmem_pages = 0; | |
5933 | struct zone *zone; | |
5934 | unsigned long flags; | |
5935 | ||
416ef04f | 5936 | /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ |
1da177e4 | 5937 | for_each_zone(zone) { |
416ef04f | 5938 | if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) |
9705bea5 | 5939 | lowmem_pages += zone_managed_pages(zone); |
1da177e4 LT |
5940 | } |
5941 | ||
5942 | for_each_zone(zone) { | |
ac924c60 AM |
5943 | u64 tmp; |
5944 | ||
1125b4e3 | 5945 | spin_lock_irqsave(&zone->lock, flags); |
9705bea5 | 5946 | tmp = (u64)pages_min * zone_managed_pages(zone); |
72741db6 | 5947 | tmp = div64_ul(tmp, lowmem_pages); |
416ef04f | 5948 | if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { |
1da177e4 | 5949 | /* |
669ed175 | 5950 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
416ef04f | 5951 | * need highmem and movable zones pages, so cap pages_min |
5952 | * to a small value here. | |
669ed175 | 5953 | * |
41858966 | 5954 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
8bb4e7a2 | 5955 | * deltas control async page reclaim, and so should |
416ef04f | 5956 | * not be capped for highmem and movable zones. |
1da177e4 | 5957 | */ |
90ae8d67 | 5958 | unsigned long min_pages; |
1da177e4 | 5959 | |
9705bea5 | 5960 | min_pages = zone_managed_pages(zone) / 1024; |
90ae8d67 | 5961 | min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); |
a9214443 | 5962 | zone->_watermark[WMARK_MIN] = min_pages; |
1da177e4 | 5963 | } else { |
669ed175 NP |
5964 | /* |
5965 | * If it's a lowmem zone, reserve a number of pages | |
1da177e4 LT |
5966 | * proportionate to the zone's size. |
5967 | */ | |
a9214443 | 5968 | zone->_watermark[WMARK_MIN] = tmp; |
1da177e4 LT |
5969 | } |
5970 | ||
795ae7a0 JW |
5971 | /* |
5972 | * Set the kswapd watermarks distance according to the | |
5973 | * scale factor in proportion to available memory, but | |
5974 | * ensure a minimum size on small systems. | |
5975 | */ | |
5976 | tmp = max_t(u64, tmp >> 2, | |
9705bea5 | 5977 | mult_frac(zone_managed_pages(zone), |
795ae7a0 JW |
5978 | watermark_scale_factor, 10000)); |
5979 | ||
aa092591 | 5980 | zone->watermark_boost = 0; |
a9214443 | 5981 | zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; |
c574bbe9 YH |
5982 | zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; |
5983 | zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; | |
49f223a9 | 5984 | |
1125b4e3 | 5985 | spin_unlock_irqrestore(&zone->lock, flags); |
1da177e4 | 5986 | } |
cb45b0e9 HA |
5987 | |
5988 | /* update totalreserve_pages */ | |
5989 | calculate_totalreserve_pages(); | |
1da177e4 LT |
5990 | } |
5991 | ||
cfd3da1e MG |
5992 | /** |
5993 | * setup_per_zone_wmarks - called when min_free_kbytes changes | |
5994 | * or when memory is hot-{added|removed} | |
5995 | * | |
5996 | * Ensures that the watermark[min,low,high] values for each zone are set | |
5997 | * correctly with respect to min_free_kbytes. | |
5998 | */ | |
5999 | void setup_per_zone_wmarks(void) | |
6000 | { | |
b92ca18e | 6001 | struct zone *zone; |
b93e0f32 MH |
6002 | static DEFINE_SPINLOCK(lock); |
6003 | ||
6004 | spin_lock(&lock); | |
cfd3da1e | 6005 | __setup_per_zone_wmarks(); |
b93e0f32 | 6006 | spin_unlock(&lock); |
b92ca18e MG |
6007 | |
6008 | /* | |
6009 | * The watermark size have changed so update the pcpu batch | |
6010 | * and high limits or the limits may be inappropriate. | |
6011 | */ | |
6012 | for_each_zone(zone) | |
04f8cfea | 6013 | zone_pcp_update(zone, 0); |
cfd3da1e MG |
6014 | } |
6015 | ||
1da177e4 LT |
6016 | /* |
6017 | * Initialise min_free_kbytes. | |
6018 | * | |
6019 | * For small machines we want it small (128k min). For large machines | |
8beeae86 | 6020 | * we want it large (256MB max). But it is not linear, because network |
1da177e4 LT |
6021 | * bandwidth does not increase linearly with machine size. We use |
6022 | * | |
b8af2941 | 6023 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: |
1da177e4 LT |
6024 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) |
6025 | * | |
6026 | * which yields | |
6027 | * | |
6028 | * 16MB: 512k | |
6029 | * 32MB: 724k | |
6030 | * 64MB: 1024k | |
6031 | * 128MB: 1448k | |
6032 | * 256MB: 2048k | |
6033 | * 512MB: 2896k | |
6034 | * 1024MB: 4096k | |
6035 | * 2048MB: 5792k | |
6036 | * 4096MB: 8192k | |
6037 | * 8192MB: 11584k | |
6038 | * 16384MB: 16384k | |
6039 | */ | |
bd3400ea | 6040 | void calculate_min_free_kbytes(void) |
1da177e4 LT |
6041 | { |
6042 | unsigned long lowmem_kbytes; | |
5f12733e | 6043 | int new_min_free_kbytes; |
1da177e4 LT |
6044 | |
6045 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | |
5f12733e MH |
6046 | new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); |
6047 | ||
59d336bd WS |
6048 | if (new_min_free_kbytes > user_min_free_kbytes) |
6049 | min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); | |
6050 | else | |
5f12733e MH |
6051 | pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", |
6052 | new_min_free_kbytes, user_min_free_kbytes); | |
59d336bd | 6053 | |
bd3400ea LF |
6054 | } |
6055 | ||
6056 | int __meminit init_per_zone_wmark_min(void) | |
6057 | { | |
6058 | calculate_min_free_kbytes(); | |
bc75d33f | 6059 | setup_per_zone_wmarks(); |
a6cccdc3 | 6060 | refresh_zone_stat_thresholds(); |
1da177e4 | 6061 | setup_per_zone_lowmem_reserve(); |
6423aa81 JK |
6062 | |
6063 | #ifdef CONFIG_NUMA | |
6064 | setup_min_unmapped_ratio(); | |
6065 | setup_min_slab_ratio(); | |
6066 | #endif | |
6067 | ||
4aab2be0 VB |
6068 | khugepaged_min_free_kbytes_update(); |
6069 | ||
1da177e4 LT |
6070 | return 0; |
6071 | } | |
e08d3fdf | 6072 | postcore_initcall(init_per_zone_wmark_min) |
1da177e4 LT |
6073 | |
6074 | /* | |
b8af2941 | 6075 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so |
1da177e4 LT |
6076 | * that we can call two helper functions whenever min_free_kbytes |
6077 | * changes. | |
6078 | */ | |
e95d372c | 6079 | static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, |
32927393 | 6080 | void *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 6081 | { |
da8c757b HP |
6082 | int rc; |
6083 | ||
6084 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
6085 | if (rc) | |
6086 | return rc; | |
6087 | ||
5f12733e MH |
6088 | if (write) { |
6089 | user_min_free_kbytes = min_free_kbytes; | |
bc75d33f | 6090 | setup_per_zone_wmarks(); |
5f12733e | 6091 | } |
1da177e4 LT |
6092 | return 0; |
6093 | } | |
6094 | ||
e95d372c | 6095 | static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, |
32927393 | 6096 | void *buffer, size_t *length, loff_t *ppos) |
795ae7a0 JW |
6097 | { |
6098 | int rc; | |
6099 | ||
6100 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
6101 | if (rc) | |
6102 | return rc; | |
6103 | ||
6104 | if (write) | |
6105 | setup_per_zone_wmarks(); | |
6106 | ||
6107 | return 0; | |
6108 | } | |
6109 | ||
9614634f | 6110 | #ifdef CONFIG_NUMA |
6423aa81 | 6111 | static void setup_min_unmapped_ratio(void) |
9614634f | 6112 | { |
6423aa81 | 6113 | pg_data_t *pgdat; |
9614634f | 6114 | struct zone *zone; |
9614634f | 6115 | |
a5f5f91d | 6116 | for_each_online_pgdat(pgdat) |
81cbcbc2 | 6117 | pgdat->min_unmapped_pages = 0; |
a5f5f91d | 6118 | |
9614634f | 6119 | for_each_zone(zone) |
9705bea5 AK |
6120 | zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * |
6121 | sysctl_min_unmapped_ratio) / 100; | |
9614634f | 6122 | } |
0ff38490 | 6123 | |
6423aa81 | 6124 | |
e95d372c | 6125 | static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, |
32927393 | 6126 | void *buffer, size_t *length, loff_t *ppos) |
0ff38490 | 6127 | { |
0ff38490 CL |
6128 | int rc; |
6129 | ||
8d65af78 | 6130 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
0ff38490 CL |
6131 | if (rc) |
6132 | return rc; | |
6133 | ||
6423aa81 JK |
6134 | setup_min_unmapped_ratio(); |
6135 | ||
6136 | return 0; | |
6137 | } | |
6138 | ||
6139 | static void setup_min_slab_ratio(void) | |
6140 | { | |
6141 | pg_data_t *pgdat; | |
6142 | struct zone *zone; | |
6143 | ||
a5f5f91d MG |
6144 | for_each_online_pgdat(pgdat) |
6145 | pgdat->min_slab_pages = 0; | |
6146 | ||
0ff38490 | 6147 | for_each_zone(zone) |
9705bea5 AK |
6148 | zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * |
6149 | sysctl_min_slab_ratio) / 100; | |
6423aa81 JK |
6150 | } |
6151 | ||
e95d372c | 6152 | static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, |
32927393 | 6153 | void *buffer, size_t *length, loff_t *ppos) |
6423aa81 JK |
6154 | { |
6155 | int rc; | |
6156 | ||
6157 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
6158 | if (rc) | |
6159 | return rc; | |
6160 | ||
6161 | setup_min_slab_ratio(); | |
6162 | ||
0ff38490 CL |
6163 | return 0; |
6164 | } | |
9614634f CL |
6165 | #endif |
6166 | ||
1da177e4 LT |
6167 | /* |
6168 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | |
6169 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | |
6170 | * whenever sysctl_lowmem_reserve_ratio changes. | |
6171 | * | |
6172 | * The reserve ratio obviously has absolutely no relation with the | |
41858966 | 6173 | * minimum watermarks. The lowmem reserve ratio can only make sense |
1da177e4 LT |
6174 | * if in function of the boot time zone sizes. |
6175 | */ | |
e95d372c KW |
6176 | static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, |
6177 | int write, void *buffer, size_t *length, loff_t *ppos) | |
1da177e4 | 6178 | { |
86aaf255 BH |
6179 | int i; |
6180 | ||
8d65af78 | 6181 | proc_dointvec_minmax(table, write, buffer, length, ppos); |
86aaf255 BH |
6182 | |
6183 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
6184 | if (sysctl_lowmem_reserve_ratio[i] < 1) | |
6185 | sysctl_lowmem_reserve_ratio[i] = 0; | |
6186 | } | |
6187 | ||
1da177e4 LT |
6188 | setup_per_zone_lowmem_reserve(); |
6189 | return 0; | |
6190 | } | |
6191 | ||
8ad4b1fb | 6192 | /* |
74f44822 MG |
6193 | * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each |
6194 | * cpu. It is the fraction of total pages in each zone that a hot per cpu | |
b8af2941 | 6195 | * pagelist can have before it gets flushed back to buddy allocator. |
8ad4b1fb | 6196 | */ |
e95d372c | 6197 | static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, |
74f44822 | 6198 | int write, void *buffer, size_t *length, loff_t *ppos) |
8ad4b1fb RS |
6199 | { |
6200 | struct zone *zone; | |
74f44822 | 6201 | int old_percpu_pagelist_high_fraction; |
8ad4b1fb RS |
6202 | int ret; |
6203 | ||
7cd2b0a3 | 6204 | mutex_lock(&pcp_batch_high_lock); |
74f44822 | 6205 | old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; |
7cd2b0a3 | 6206 | |
8d65af78 | 6207 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
7cd2b0a3 DR |
6208 | if (!write || ret < 0) |
6209 | goto out; | |
6210 | ||
6211 | /* Sanity checking to avoid pcp imbalance */ | |
74f44822 MG |
6212 | if (percpu_pagelist_high_fraction && |
6213 | percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { | |
6214 | percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; | |
7cd2b0a3 DR |
6215 | ret = -EINVAL; |
6216 | goto out; | |
6217 | } | |
6218 | ||
6219 | /* No change? */ | |
74f44822 | 6220 | if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) |
7cd2b0a3 | 6221 | goto out; |
c8e251fa | 6222 | |
cb1ef534 | 6223 | for_each_populated_zone(zone) |
74f44822 | 6224 | zone_set_pageset_high_and_batch(zone, 0); |
7cd2b0a3 | 6225 | out: |
c8e251fa | 6226 | mutex_unlock(&pcp_batch_high_lock); |
7cd2b0a3 | 6227 | return ret; |
8ad4b1fb RS |
6228 | } |
6229 | ||
e95d372c KW |
6230 | static struct ctl_table page_alloc_sysctl_table[] = { |
6231 | { | |
6232 | .procname = "min_free_kbytes", | |
6233 | .data = &min_free_kbytes, | |
6234 | .maxlen = sizeof(min_free_kbytes), | |
6235 | .mode = 0644, | |
6236 | .proc_handler = min_free_kbytes_sysctl_handler, | |
6237 | .extra1 = SYSCTL_ZERO, | |
6238 | }, | |
6239 | { | |
6240 | .procname = "watermark_boost_factor", | |
6241 | .data = &watermark_boost_factor, | |
6242 | .maxlen = sizeof(watermark_boost_factor), | |
6243 | .mode = 0644, | |
6244 | .proc_handler = proc_dointvec_minmax, | |
6245 | .extra1 = SYSCTL_ZERO, | |
6246 | }, | |
6247 | { | |
6248 | .procname = "watermark_scale_factor", | |
6249 | .data = &watermark_scale_factor, | |
6250 | .maxlen = sizeof(watermark_scale_factor), | |
6251 | .mode = 0644, | |
6252 | .proc_handler = watermark_scale_factor_sysctl_handler, | |
6253 | .extra1 = SYSCTL_ONE, | |
6254 | .extra2 = SYSCTL_THREE_THOUSAND, | |
6255 | }, | |
6256 | { | |
6257 | .procname = "percpu_pagelist_high_fraction", | |
6258 | .data = &percpu_pagelist_high_fraction, | |
6259 | .maxlen = sizeof(percpu_pagelist_high_fraction), | |
6260 | .mode = 0644, | |
6261 | .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, | |
6262 | .extra1 = SYSCTL_ZERO, | |
6263 | }, | |
6264 | { | |
6265 | .procname = "lowmem_reserve_ratio", | |
6266 | .data = &sysctl_lowmem_reserve_ratio, | |
6267 | .maxlen = sizeof(sysctl_lowmem_reserve_ratio), | |
6268 | .mode = 0644, | |
6269 | .proc_handler = lowmem_reserve_ratio_sysctl_handler, | |
6270 | }, | |
6271 | #ifdef CONFIG_NUMA | |
6272 | { | |
6273 | .procname = "numa_zonelist_order", | |
6274 | .data = &numa_zonelist_order, | |
6275 | .maxlen = NUMA_ZONELIST_ORDER_LEN, | |
6276 | .mode = 0644, | |
6277 | .proc_handler = numa_zonelist_order_handler, | |
6278 | }, | |
6279 | { | |
6280 | .procname = "min_unmapped_ratio", | |
6281 | .data = &sysctl_min_unmapped_ratio, | |
6282 | .maxlen = sizeof(sysctl_min_unmapped_ratio), | |
6283 | .mode = 0644, | |
6284 | .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, | |
6285 | .extra1 = SYSCTL_ZERO, | |
6286 | .extra2 = SYSCTL_ONE_HUNDRED, | |
6287 | }, | |
6288 | { | |
6289 | .procname = "min_slab_ratio", | |
6290 | .data = &sysctl_min_slab_ratio, | |
6291 | .maxlen = sizeof(sysctl_min_slab_ratio), | |
6292 | .mode = 0644, | |
6293 | .proc_handler = sysctl_min_slab_ratio_sysctl_handler, | |
6294 | .extra1 = SYSCTL_ZERO, | |
6295 | .extra2 = SYSCTL_ONE_HUNDRED, | |
6296 | }, | |
6297 | #endif | |
e95d372c KW |
6298 | }; |
6299 | ||
6300 | void __init page_alloc_sysctl_init(void) | |
6301 | { | |
6302 | register_sysctl_init("vm", page_alloc_sysctl_table); | |
6303 | } | |
6304 | ||
8df995f6 | 6305 | #ifdef CONFIG_CONTIG_ALLOC |
a1394bdd MK |
6306 | /* Usage: See admin-guide/dynamic-debug-howto.rst */ |
6307 | static void alloc_contig_dump_pages(struct list_head *page_list) | |
6308 | { | |
6309 | DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); | |
6310 | ||
6311 | if (DYNAMIC_DEBUG_BRANCH(descriptor)) { | |
6312 | struct page *page; | |
6313 | ||
6314 | dump_stack(); | |
6315 | list_for_each_entry(page, page_list, lru) | |
6316 | dump_page(page, "migration failure"); | |
6317 | } | |
6318 | } | |
a1394bdd | 6319 | |
c8b36003 RC |
6320 | /* |
6321 | * [start, end) must belong to a single zone. | |
6322 | * @migratetype: using migratetype to filter the type of migration in | |
6323 | * trace_mm_alloc_contig_migrate_range_info. | |
6324 | */ | |
b2c9e2fb | 6325 | int __alloc_contig_migrate_range(struct compact_control *cc, |
c8b36003 RC |
6326 | unsigned long start, unsigned long end, |
6327 | int migratetype) | |
041d3a8c MN |
6328 | { |
6329 | /* This function is based on compact_zone() from compaction.c. */ | |
730ec8c0 | 6330 | unsigned int nr_reclaimed; |
041d3a8c MN |
6331 | unsigned long pfn = start; |
6332 | unsigned int tries = 0; | |
6333 | int ret = 0; | |
8b94e0b8 JK |
6334 | struct migration_target_control mtc = { |
6335 | .nid = zone_to_nid(cc->zone), | |
6336 | .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, | |
e42dfe4e | 6337 | .reason = MR_CONTIG_RANGE, |
8b94e0b8 | 6338 | }; |
c8b36003 RC |
6339 | struct page *page; |
6340 | unsigned long total_mapped = 0; | |
6341 | unsigned long total_migrated = 0; | |
6342 | unsigned long total_reclaimed = 0; | |
041d3a8c | 6343 | |
361a2a22 | 6344 | lru_cache_disable(); |
041d3a8c | 6345 | |
bb13ffeb | 6346 | while (pfn < end || !list_empty(&cc->migratepages)) { |
041d3a8c MN |
6347 | if (fatal_signal_pending(current)) { |
6348 | ret = -EINTR; | |
6349 | break; | |
6350 | } | |
6351 | ||
bb13ffeb MG |
6352 | if (list_empty(&cc->migratepages)) { |
6353 | cc->nr_migratepages = 0; | |
c2ad7a1f OS |
6354 | ret = isolate_migratepages_range(cc, pfn, end); |
6355 | if (ret && ret != -EAGAIN) | |
041d3a8c | 6356 | break; |
c2ad7a1f | 6357 | pfn = cc->migrate_pfn; |
041d3a8c MN |
6358 | tries = 0; |
6359 | } else if (++tries == 5) { | |
c8e28b47 | 6360 | ret = -EBUSY; |
041d3a8c MN |
6361 | break; |
6362 | } | |
6363 | ||
beb51eaa MK |
6364 | nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, |
6365 | &cc->migratepages); | |
6366 | cc->nr_migratepages -= nr_reclaimed; | |
02c6de8d | 6367 | |
c8b36003 RC |
6368 | if (trace_mm_alloc_contig_migrate_range_info_enabled()) { |
6369 | total_reclaimed += nr_reclaimed; | |
7115936a DH |
6370 | list_for_each_entry(page, &cc->migratepages, lru) { |
6371 | struct folio *folio = page_folio(page); | |
6372 | ||
6373 | total_mapped += folio_mapped(folio) * | |
6374 | folio_nr_pages(folio); | |
6375 | } | |
c8b36003 RC |
6376 | } |
6377 | ||
8b94e0b8 | 6378 | ret = migrate_pages(&cc->migratepages, alloc_migration_target, |
5ac95884 | 6379 | NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); |
c8e28b47 | 6380 | |
c8b36003 RC |
6381 | if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) |
6382 | total_migrated += cc->nr_migratepages; | |
6383 | ||
c8e28b47 OS |
6384 | /* |
6385 | * On -ENOMEM, migrate_pages() bails out right away. It is pointless | |
6386 | * to retry again over this error, so do the same here. | |
6387 | */ | |
6388 | if (ret == -ENOMEM) | |
6389 | break; | |
041d3a8c | 6390 | } |
d479960e | 6391 | |
361a2a22 | 6392 | lru_cache_enable(); |
2a6f5124 | 6393 | if (ret < 0) { |
3f913fc5 | 6394 | if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) |
151e084a | 6395 | alloc_contig_dump_pages(&cc->migratepages); |
2a6f5124 | 6396 | putback_movable_pages(&cc->migratepages); |
2a6f5124 | 6397 | } |
c8b36003 RC |
6398 | |
6399 | trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, | |
6400 | total_migrated, | |
6401 | total_reclaimed, | |
6402 | total_mapped); | |
6403 | return (ret < 0) ? ret : 0; | |
041d3a8c MN |
6404 | } |
6405 | ||
6406 | /** | |
6407 | * alloc_contig_range() -- tries to allocate given range of pages | |
6408 | * @start: start PFN to allocate | |
6409 | * @end: one-past-the-last PFN to allocate | |
f0953a1b | 6410 | * @migratetype: migratetype of the underlying pageblocks (either |
0815f3d8 MN |
6411 | * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks |
6412 | * in range must have the same migratetype and it must | |
6413 | * be either of the two. | |
ca96b625 | 6414 | * @gfp_mask: GFP mask to use during compaction |
041d3a8c | 6415 | * |
11ac3e87 ZY |
6416 | * The PFN range does not have to be pageblock aligned. The PFN range must |
6417 | * belong to a single zone. | |
041d3a8c | 6418 | * |
2c7452a0 MK |
6419 | * The first thing this routine does is attempt to MIGRATE_ISOLATE all |
6420 | * pageblocks in the range. Once isolated, the pageblocks should not | |
6421 | * be modified by others. | |
041d3a8c | 6422 | * |
a862f68a | 6423 | * Return: zero on success or negative error code. On success all |
041d3a8c MN |
6424 | * pages which PFN is in [start, end) are allocated for the caller and |
6425 | * need to be freed with free_contig_range(). | |
6426 | */ | |
b951aaff | 6427 | int alloc_contig_range_noprof(unsigned long start, unsigned long end, |
ca96b625 | 6428 | unsigned migratetype, gfp_t gfp_mask) |
041d3a8c | 6429 | { |
041d3a8c | 6430 | unsigned long outer_start, outer_end; |
d00181b9 | 6431 | int ret = 0; |
041d3a8c | 6432 | |
bb13ffeb MG |
6433 | struct compact_control cc = { |
6434 | .nr_migratepages = 0, | |
6435 | .order = -1, | |
6436 | .zone = page_zone(pfn_to_page(start)), | |
e0b9daeb | 6437 | .mode = MIGRATE_SYNC, |
bb13ffeb | 6438 | .ignore_skip_hint = true, |
2583d671 | 6439 | .no_set_skip_hint = true, |
7dea19f9 | 6440 | .gfp_mask = current_gfp_context(gfp_mask), |
b06eda09 | 6441 | .alloc_contig = true, |
bb13ffeb MG |
6442 | }; |
6443 | INIT_LIST_HEAD(&cc.migratepages); | |
6444 | ||
041d3a8c MN |
6445 | /* |
6446 | * What we do here is we mark all pageblocks in range as | |
6447 | * MIGRATE_ISOLATE. Because pageblock and max order pages may | |
6448 | * have different sizes, and due to the way page allocator | |
b2c9e2fb | 6449 | * work, start_isolate_page_range() has special handlings for this. |
041d3a8c MN |
6450 | * |
6451 | * Once the pageblocks are marked as MIGRATE_ISOLATE, we | |
6452 | * migrate the pages from an unaligned range (ie. pages that | |
b2c9e2fb | 6453 | * we are interested in). This will put all the pages in |
041d3a8c MN |
6454 | * range back to page allocator as MIGRATE_ISOLATE. |
6455 | * | |
6456 | * When this is done, we take the pages in range from page | |
6457 | * allocator removing them from the buddy system. This way | |
6458 | * page allocator will never consider using them. | |
6459 | * | |
6460 | * This lets us mark the pageblocks back as | |
6461 | * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the | |
6462 | * aligned range but not in the unaligned, original range are | |
6463 | * put back to page allocator so that buddy can use them. | |
6464 | */ | |
6465 | ||
6e263fff | 6466 | ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); |
3fa0c7c7 | 6467 | if (ret) |
b2c9e2fb | 6468 | goto done; |
041d3a8c | 6469 | |
7612921f VB |
6470 | drain_all_pages(cc.zone); |
6471 | ||
8ef5849f JK |
6472 | /* |
6473 | * In case of -EBUSY, we'd like to know which page causes problem. | |
63cd4489 MK |
6474 | * So, just fall through. test_pages_isolated() has a tracepoint |
6475 | * which will report the busy page. | |
6476 | * | |
6477 | * It is possible that busy pages could become available before | |
6478 | * the call to test_pages_isolated, and the range will actually be | |
6479 | * allocated. So, if we fall through be sure to clear ret so that | |
6480 | * -EBUSY is not accidentally used or returned to caller. | |
8ef5849f | 6481 | */ |
c8b36003 | 6482 | ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); |
8ef5849f | 6483 | if (ret && ret != -EBUSY) |
041d3a8c | 6484 | goto done; |
68d68ff6 | 6485 | ret = 0; |
041d3a8c MN |
6486 | |
6487 | /* | |
b2c9e2fb | 6488 | * Pages from [start, end) are within a pageblock_nr_pages |
041d3a8c MN |
6489 | * aligned blocks that are marked as MIGRATE_ISOLATE. What's |
6490 | * more, all pages in [start, end) are free in page allocator. | |
6491 | * What we are going to do is to allocate all pages from | |
6492 | * [start, end) (that is remove them from page allocator). | |
6493 | * | |
6494 | * The only problem is that pages at the beginning and at the | |
6495 | * end of interesting range may be not aligned with pages that | |
6496 | * page allocator holds, ie. they can be part of higher order | |
6497 | * pages. Because of this, we reserve the bigger range and | |
6498 | * once this is done free the pages we are not interested in. | |
6499 | * | |
6500 | * We don't have to hold zone->lock here because the pages are | |
6501 | * isolated thus they won't get removed from buddy. | |
6502 | */ | |
fd919a85 | 6503 | outer_start = find_large_buddy(start); |
8ef5849f | 6504 | |
041d3a8c | 6505 | /* Make sure the range is really isolated. */ |
756d25be | 6506 | if (test_pages_isolated(outer_start, end, 0)) { |
041d3a8c MN |
6507 | ret = -EBUSY; |
6508 | goto done; | |
6509 | } | |
6510 | ||
49f223a9 | 6511 | /* Grab isolated pages from freelists. */ |
bb13ffeb | 6512 | outer_end = isolate_freepages_range(&cc, outer_start, end); |
041d3a8c MN |
6513 | if (!outer_end) { |
6514 | ret = -EBUSY; | |
6515 | goto done; | |
6516 | } | |
6517 | ||
6518 | /* Free head and tail (if any) */ | |
6519 | if (start != outer_start) | |
6520 | free_contig_range(outer_start, start - outer_start); | |
6521 | if (end != outer_end) | |
6522 | free_contig_range(end, outer_end - end); | |
6523 | ||
6524 | done: | |
6e263fff | 6525 | undo_isolate_page_range(start, end, migratetype); |
041d3a8c MN |
6526 | return ret; |
6527 | } | |
b951aaff | 6528 | EXPORT_SYMBOL(alloc_contig_range_noprof); |
5e27a2df AK |
6529 | |
6530 | static int __alloc_contig_pages(unsigned long start_pfn, | |
6531 | unsigned long nr_pages, gfp_t gfp_mask) | |
6532 | { | |
6533 | unsigned long end_pfn = start_pfn + nr_pages; | |
6534 | ||
b951aaff SB |
6535 | return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, |
6536 | gfp_mask); | |
5e27a2df AK |
6537 | } |
6538 | ||
6539 | static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, | |
6540 | unsigned long nr_pages) | |
6541 | { | |
6542 | unsigned long i, end_pfn = start_pfn + nr_pages; | |
6543 | struct page *page; | |
6544 | ||
6545 | for (i = start_pfn; i < end_pfn; i++) { | |
6546 | page = pfn_to_online_page(i); | |
6547 | if (!page) | |
6548 | return false; | |
6549 | ||
6550 | if (page_zone(page) != z) | |
6551 | return false; | |
6552 | ||
6553 | if (PageReserved(page)) | |
4d73ba5f MG |
6554 | return false; |
6555 | ||
6556 | if (PageHuge(page)) | |
5e27a2df | 6557 | return false; |
5e27a2df AK |
6558 | } |
6559 | return true; | |
6560 | } | |
6561 | ||
6562 | static bool zone_spans_last_pfn(const struct zone *zone, | |
6563 | unsigned long start_pfn, unsigned long nr_pages) | |
6564 | { | |
6565 | unsigned long last_pfn = start_pfn + nr_pages - 1; | |
6566 | ||
6567 | return zone_spans_pfn(zone, last_pfn); | |
6568 | } | |
6569 | ||
6570 | /** | |
6571 | * alloc_contig_pages() -- tries to find and allocate contiguous range of pages | |
6572 | * @nr_pages: Number of contiguous pages to allocate | |
6573 | * @gfp_mask: GFP mask to limit search and used during compaction | |
6574 | * @nid: Target node | |
6575 | * @nodemask: Mask for other possible nodes | |
6576 | * | |
6577 | * This routine is a wrapper around alloc_contig_range(). It scans over zones | |
6578 | * on an applicable zonelist to find a contiguous pfn range which can then be | |
6579 | * tried for allocation with alloc_contig_range(). This routine is intended | |
6580 | * for allocation requests which can not be fulfilled with the buddy allocator. | |
6581 | * | |
6582 | * The allocated memory is always aligned to a page boundary. If nr_pages is a | |
eaab8e75 AK |
6583 | * power of two, then allocated range is also guaranteed to be aligned to same |
6584 | * nr_pages (e.g. 1GB request would be aligned to 1GB). | |
5e27a2df AK |
6585 | * |
6586 | * Allocated pages can be freed with free_contig_range() or by manually calling | |
6587 | * __free_page() on each allocated page. | |
6588 | * | |
6589 | * Return: pointer to contiguous pages on success, or NULL if not successful. | |
6590 | */ | |
b951aaff SB |
6591 | struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, |
6592 | int nid, nodemask_t *nodemask) | |
5e27a2df AK |
6593 | { |
6594 | unsigned long ret, pfn, flags; | |
6595 | struct zonelist *zonelist; | |
6596 | struct zone *zone; | |
6597 | struct zoneref *z; | |
6598 | ||
6599 | zonelist = node_zonelist(nid, gfp_mask); | |
6600 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | |
6601 | gfp_zone(gfp_mask), nodemask) { | |
6602 | spin_lock_irqsave(&zone->lock, flags); | |
6603 | ||
6604 | pfn = ALIGN(zone->zone_start_pfn, nr_pages); | |
6605 | while (zone_spans_last_pfn(zone, pfn, nr_pages)) { | |
6606 | if (pfn_range_valid_contig(zone, pfn, nr_pages)) { | |
6607 | /* | |
6608 | * We release the zone lock here because | |
6609 | * alloc_contig_range() will also lock the zone | |
6610 | * at some point. If there's an allocation | |
6611 | * spinning on this lock, it may win the race | |
6612 | * and cause alloc_contig_range() to fail... | |
6613 | */ | |
6614 | spin_unlock_irqrestore(&zone->lock, flags); | |
6615 | ret = __alloc_contig_pages(pfn, nr_pages, | |
6616 | gfp_mask); | |
6617 | if (!ret) | |
6618 | return pfn_to_page(pfn); | |
6619 | spin_lock_irqsave(&zone->lock, flags); | |
6620 | } | |
6621 | pfn += nr_pages; | |
6622 | } | |
6623 | spin_unlock_irqrestore(&zone->lock, flags); | |
6624 | } | |
6625 | return NULL; | |
6626 | } | |
4eb0716e | 6627 | #endif /* CONFIG_CONTIG_ALLOC */ |
041d3a8c | 6628 | |
78fa5150 | 6629 | void free_contig_range(unsigned long pfn, unsigned long nr_pages) |
041d3a8c | 6630 | { |
78fa5150 | 6631 | unsigned long count = 0; |
bcc2b02f MS |
6632 | |
6633 | for (; nr_pages--; pfn++) { | |
6634 | struct page *page = pfn_to_page(pfn); | |
6635 | ||
6636 | count += page_count(page) != 1; | |
6637 | __free_page(page); | |
6638 | } | |
78fa5150 | 6639 | WARN(count != 0, "%lu pages are still in use!\n", count); |
041d3a8c | 6640 | } |
255f5985 | 6641 | EXPORT_SYMBOL(free_contig_range); |
041d3a8c | 6642 | |
ec6e8c7e VB |
6643 | /* |
6644 | * Effectively disable pcplists for the zone by setting the high limit to 0 | |
6645 | * and draining all cpus. A concurrent page freeing on another CPU that's about | |
6646 | * to put the page on pcplist will either finish before the drain and the page | |
6647 | * will be drained, or observe the new high limit and skip the pcplist. | |
6648 | * | |
6649 | * Must be paired with a call to zone_pcp_enable(). | |
6650 | */ | |
6651 | void zone_pcp_disable(struct zone *zone) | |
6652 | { | |
6653 | mutex_lock(&pcp_batch_high_lock); | |
90b41691 | 6654 | __zone_set_pageset_high_and_batch(zone, 0, 0, 1); |
ec6e8c7e VB |
6655 | __drain_all_pages(zone, true); |
6656 | } | |
6657 | ||
6658 | void zone_pcp_enable(struct zone *zone) | |
6659 | { | |
90b41691 YH |
6660 | __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, |
6661 | zone->pageset_high_max, zone->pageset_batch); | |
ec6e8c7e VB |
6662 | mutex_unlock(&pcp_batch_high_lock); |
6663 | } | |
6664 | ||
340175b7 JL |
6665 | void zone_pcp_reset(struct zone *zone) |
6666 | { | |
5a883813 | 6667 | int cpu; |
28f836b6 | 6668 | struct per_cpu_zonestat *pzstats; |
340175b7 | 6669 | |
28f836b6 | 6670 | if (zone->per_cpu_pageset != &boot_pageset) { |
5a883813 | 6671 | for_each_online_cpu(cpu) { |
28f836b6 MG |
6672 | pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); |
6673 | drain_zonestat(zone, pzstats); | |
5a883813 | 6674 | } |
28f836b6 | 6675 | free_percpu(zone->per_cpu_pageset); |
28f836b6 | 6676 | zone->per_cpu_pageset = &boot_pageset; |
022e7fa0 ML |
6677 | if (zone->per_cpu_zonestats != &boot_zonestats) { |
6678 | free_percpu(zone->per_cpu_zonestats); | |
6679 | zone->per_cpu_zonestats = &boot_zonestats; | |
6680 | } | |
340175b7 | 6681 | } |
340175b7 JL |
6682 | } |
6683 | ||
6dcd73d7 | 6684 | #ifdef CONFIG_MEMORY_HOTREMOVE |
0c0e6195 | 6685 | /* |
257bea71 DH |
6686 | * All pages in the range must be in a single zone, must not contain holes, |
6687 | * must span full sections, and must be isolated before calling this function. | |
0c0e6195 | 6688 | */ |
257bea71 | 6689 | void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) |
0c0e6195 | 6690 | { |
257bea71 | 6691 | unsigned long pfn = start_pfn; |
0c0e6195 KH |
6692 | struct page *page; |
6693 | struct zone *zone; | |
0ee5f4f3 | 6694 | unsigned int order; |
0c0e6195 | 6695 | unsigned long flags; |
5557c766 | 6696 | |
2d070eab | 6697 | offline_mem_sections(pfn, end_pfn); |
0c0e6195 KH |
6698 | zone = page_zone(pfn_to_page(pfn)); |
6699 | spin_lock_irqsave(&zone->lock, flags); | |
0c0e6195 | 6700 | while (pfn < end_pfn) { |
0c0e6195 | 6701 | page = pfn_to_page(pfn); |
b023f468 WC |
6702 | /* |
6703 | * The HWPoisoned page may be not in buddy system, and | |
6704 | * page_count() is not 0. | |
6705 | */ | |
6706 | if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { | |
6707 | pfn++; | |
b023f468 WC |
6708 | continue; |
6709 | } | |
aa218795 DH |
6710 | /* |
6711 | * At this point all remaining PageOffline() pages have a | |
6712 | * reference count of 0 and can simply be skipped. | |
6713 | */ | |
6714 | if (PageOffline(page)) { | |
6715 | BUG_ON(page_count(page)); | |
6716 | BUG_ON(PageBuddy(page)); | |
6717 | pfn++; | |
aa218795 DH |
6718 | continue; |
6719 | } | |
b023f468 | 6720 | |
0c0e6195 KH |
6721 | BUG_ON(page_count(page)); |
6722 | BUG_ON(!PageBuddy(page)); | |
e0932b6c | 6723 | VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); |
ab130f91 | 6724 | order = buddy_order(page); |
e0932b6c | 6725 | del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); |
0c0e6195 KH |
6726 | pfn += (1 << order); |
6727 | } | |
6728 | spin_unlock_irqrestore(&zone->lock, flags); | |
6729 | } | |
6730 | #endif | |
8d22ba1b | 6731 | |
8446b59b ED |
6732 | /* |
6733 | * This function returns a stable result only if called under zone lock. | |
6734 | */ | |
2ace5a67 | 6735 | bool is_free_buddy_page(const struct page *page) |
8d22ba1b | 6736 | { |
8d22ba1b | 6737 | unsigned long pfn = page_to_pfn(page); |
7aeb09f9 | 6738 | unsigned int order; |
8d22ba1b | 6739 | |
fd377218 | 6740 | for (order = 0; order < NR_PAGE_ORDERS; order++) { |
2ace5a67 | 6741 | const struct page *head = page - (pfn & ((1 << order) - 1)); |
8d22ba1b | 6742 | |
2ace5a67 MWO |
6743 | if (PageBuddy(head) && |
6744 | buddy_order_unsafe(head) >= order) | |
8d22ba1b WF |
6745 | break; |
6746 | } | |
8d22ba1b | 6747 | |
5e0a760b | 6748 | return order <= MAX_PAGE_ORDER; |
8d22ba1b | 6749 | } |
a581865e | 6750 | EXPORT_SYMBOL(is_free_buddy_page); |
d4ae9916 NH |
6751 | |
6752 | #ifdef CONFIG_MEMORY_FAILURE | |
e0932b6c JW |
6753 | static inline void add_to_free_list(struct page *page, struct zone *zone, |
6754 | unsigned int order, int migratetype, | |
6755 | bool tail) | |
6756 | { | |
6757 | __add_to_free_list(page, zone, order, migratetype, tail); | |
6758 | account_freepages(zone, 1 << order, migratetype); | |
6759 | } | |
6760 | ||
d4ae9916 | 6761 | /* |
06be6ff3 OS |
6762 | * Break down a higher-order page in sub-pages, and keep our target out of |
6763 | * buddy allocator. | |
d4ae9916 | 6764 | */ |
06be6ff3 OS |
6765 | static void break_down_buddy_pages(struct zone *zone, struct page *page, |
6766 | struct page *target, int low, int high, | |
6767 | int migratetype) | |
6768 | { | |
6769 | unsigned long size = 1 << high; | |
0dfca313 | 6770 | struct page *current_buddy; |
06be6ff3 OS |
6771 | |
6772 | while (high > low) { | |
6773 | high--; | |
6774 | size >>= 1; | |
6775 | ||
6776 | if (target >= &page[size]) { | |
06be6ff3 | 6777 | current_buddy = page; |
0dfca313 | 6778 | page = page + size; |
06be6ff3 | 6779 | } else { |
06be6ff3 OS |
6780 | current_buddy = page + size; |
6781 | } | |
6782 | ||
e0932b6c | 6783 | if (set_page_guard(zone, current_buddy, high)) |
06be6ff3 OS |
6784 | continue; |
6785 | ||
e0932b6c | 6786 | add_to_free_list(current_buddy, zone, high, migratetype, false); |
27e0db3c | 6787 | set_buddy_order(current_buddy, high); |
06be6ff3 OS |
6788 | } |
6789 | } | |
6790 | ||
6791 | /* | |
6792 | * Take a page that will be marked as poisoned off the buddy allocator. | |
6793 | */ | |
6794 | bool take_page_off_buddy(struct page *page) | |
d4ae9916 NH |
6795 | { |
6796 | struct zone *zone = page_zone(page); | |
6797 | unsigned long pfn = page_to_pfn(page); | |
6798 | unsigned long flags; | |
6799 | unsigned int order; | |
06be6ff3 | 6800 | bool ret = false; |
d4ae9916 NH |
6801 | |
6802 | spin_lock_irqsave(&zone->lock, flags); | |
fd377218 | 6803 | for (order = 0; order < NR_PAGE_ORDERS; order++) { |
d4ae9916 | 6804 | struct page *page_head = page - (pfn & ((1 << order) - 1)); |
ab130f91 | 6805 | int page_order = buddy_order(page_head); |
d4ae9916 | 6806 | |
ab130f91 | 6807 | if (PageBuddy(page_head) && page_order >= order) { |
06be6ff3 OS |
6808 | unsigned long pfn_head = page_to_pfn(page_head); |
6809 | int migratetype = get_pfnblock_migratetype(page_head, | |
6810 | pfn_head); | |
6811 | ||
e0932b6c JW |
6812 | del_page_from_free_list(page_head, zone, page_order, |
6813 | migratetype); | |
06be6ff3 | 6814 | break_down_buddy_pages(zone, page_head, page, 0, |
ab130f91 | 6815 | page_order, migratetype); |
bf181c58 | 6816 | SetPageHWPoisonTakenOff(page); |
06be6ff3 | 6817 | ret = true; |
d4ae9916 NH |
6818 | break; |
6819 | } | |
06be6ff3 OS |
6820 | if (page_count(page_head) > 0) |
6821 | break; | |
d4ae9916 NH |
6822 | } |
6823 | spin_unlock_irqrestore(&zone->lock, flags); | |
06be6ff3 | 6824 | return ret; |
d4ae9916 | 6825 | } |
bf181c58 NH |
6826 | |
6827 | /* | |
6828 | * Cancel takeoff done by take_page_off_buddy(). | |
6829 | */ | |
6830 | bool put_page_back_buddy(struct page *page) | |
6831 | { | |
6832 | struct zone *zone = page_zone(page); | |
bf181c58 | 6833 | unsigned long flags; |
bf181c58 NH |
6834 | bool ret = false; |
6835 | ||
6836 | spin_lock_irqsave(&zone->lock, flags); | |
6837 | if (put_page_testzero(page)) { | |
55612e80 JW |
6838 | unsigned long pfn = page_to_pfn(page); |
6839 | int migratetype = get_pfnblock_migratetype(page, pfn); | |
6840 | ||
bf181c58 NH |
6841 | ClearPageHWPoisonTakenOff(page); |
6842 | __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); | |
6843 | if (TestClearPageHWPoison(page)) { | |
bf181c58 NH |
6844 | ret = true; |
6845 | } | |
6846 | } | |
6847 | spin_unlock_irqrestore(&zone->lock, flags); | |
6848 | ||
6849 | return ret; | |
6850 | } | |
d4ae9916 | 6851 | #endif |
62b31070 BH |
6852 | |
6853 | #ifdef CONFIG_ZONE_DMA | |
6854 | bool has_managed_dma(void) | |
6855 | { | |
6856 | struct pglist_data *pgdat; | |
6857 | ||
6858 | for_each_online_pgdat(pgdat) { | |
6859 | struct zone *zone = &pgdat->node_zones[ZONE_DMA]; | |
6860 | ||
6861 | if (managed_zone(zone)) | |
6862 | return true; | |
6863 | } | |
6864 | return false; | |
6865 | } | |
6866 | #endif /* CONFIG_ZONE_DMA */ | |
dcdfdd40 KS |
6867 | |
6868 | #ifdef CONFIG_UNACCEPTED_MEMORY | |
6869 | ||
6870 | /* Counts number of zones with unaccepted pages. */ | |
6871 | static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); | |
6872 | ||
6873 | static bool lazy_accept = true; | |
6874 | ||
6875 | static int __init accept_memory_parse(char *p) | |
6876 | { | |
6877 | if (!strcmp(p, "lazy")) { | |
6878 | lazy_accept = true; | |
6879 | return 0; | |
6880 | } else if (!strcmp(p, "eager")) { | |
6881 | lazy_accept = false; | |
6882 | return 0; | |
6883 | } else { | |
6884 | return -EINVAL; | |
6885 | } | |
6886 | } | |
6887 | early_param("accept_memory", accept_memory_parse); | |
6888 | ||
6889 | static bool page_contains_unaccepted(struct page *page, unsigned int order) | |
6890 | { | |
6891 | phys_addr_t start = page_to_phys(page); | |
6892 | phys_addr_t end = start + (PAGE_SIZE << order); | |
6893 | ||
6894 | return range_contains_unaccepted_memory(start, end); | |
6895 | } | |
6896 | ||
6897 | static void accept_page(struct page *page, unsigned int order) | |
6898 | { | |
6899 | phys_addr_t start = page_to_phys(page); | |
6900 | ||
6901 | accept_memory(start, start + (PAGE_SIZE << order)); | |
6902 | } | |
6903 | ||
6904 | static bool try_to_accept_memory_one(struct zone *zone) | |
6905 | { | |
6906 | unsigned long flags; | |
6907 | struct page *page; | |
6908 | bool last; | |
6909 | ||
6910 | if (list_empty(&zone->unaccepted_pages)) | |
6911 | return false; | |
6912 | ||
6913 | spin_lock_irqsave(&zone->lock, flags); | |
6914 | page = list_first_entry_or_null(&zone->unaccepted_pages, | |
6915 | struct page, lru); | |
6916 | if (!page) { | |
6917 | spin_unlock_irqrestore(&zone->lock, flags); | |
6918 | return false; | |
6919 | } | |
6920 | ||
6921 | list_del(&page->lru); | |
6922 | last = list_empty(&zone->unaccepted_pages); | |
6923 | ||
e0932b6c | 6924 | account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); |
dcdfdd40 KS |
6925 | __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); |
6926 | spin_unlock_irqrestore(&zone->lock, flags); | |
6927 | ||
5e0a760b | 6928 | accept_page(page, MAX_PAGE_ORDER); |
dcdfdd40 | 6929 | |
5e0a760b | 6930 | __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); |
dcdfdd40 KS |
6931 | |
6932 | if (last) | |
6933 | static_branch_dec(&zones_with_unaccepted_pages); | |
6934 | ||
6935 | return true; | |
6936 | } | |
6937 | ||
6938 | static bool try_to_accept_memory(struct zone *zone, unsigned int order) | |
6939 | { | |
6940 | long to_accept; | |
6941 | int ret = false; | |
6942 | ||
6943 | /* How much to accept to get to high watermark? */ | |
6944 | to_accept = high_wmark_pages(zone) - | |
6945 | (zone_page_state(zone, NR_FREE_PAGES) - | |
6946 | __zone_watermark_unusable_free(zone, order, 0)); | |
6947 | ||
6948 | /* Accept at least one page */ | |
6949 | do { | |
6950 | if (!try_to_accept_memory_one(zone)) | |
6951 | break; | |
6952 | ret = true; | |
6953 | to_accept -= MAX_ORDER_NR_PAGES; | |
6954 | } while (to_accept > 0); | |
6955 | ||
6956 | return ret; | |
6957 | } | |
6958 | ||
6959 | static inline bool has_unaccepted_memory(void) | |
6960 | { | |
6961 | return static_branch_unlikely(&zones_with_unaccepted_pages); | |
6962 | } | |
6963 | ||
6964 | static bool __free_unaccepted(struct page *page) | |
6965 | { | |
6966 | struct zone *zone = page_zone(page); | |
6967 | unsigned long flags; | |
6968 | bool first = false; | |
6969 | ||
6970 | if (!lazy_accept) | |
6971 | return false; | |
6972 | ||
6973 | spin_lock_irqsave(&zone->lock, flags); | |
6974 | first = list_empty(&zone->unaccepted_pages); | |
6975 | list_add_tail(&page->lru, &zone->unaccepted_pages); | |
e0932b6c | 6976 | account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); |
dcdfdd40 KS |
6977 | __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); |
6978 | spin_unlock_irqrestore(&zone->lock, flags); | |
6979 | ||
6980 | if (first) | |
6981 | static_branch_inc(&zones_with_unaccepted_pages); | |
6982 | ||
6983 | return true; | |
6984 | } | |
6985 | ||
6986 | #else | |
6987 | ||
6988 | static bool page_contains_unaccepted(struct page *page, unsigned int order) | |
6989 | { | |
6990 | return false; | |
6991 | } | |
6992 | ||
6993 | static void accept_page(struct page *page, unsigned int order) | |
6994 | { | |
6995 | } | |
6996 | ||
6997 | static bool try_to_accept_memory(struct zone *zone, unsigned int order) | |
6998 | { | |
6999 | return false; | |
7000 | } | |
7001 | ||
7002 | static inline bool has_unaccepted_memory(void) | |
7003 | { | |
7004 | return false; | |
7005 | } | |
7006 | ||
7007 | static bool __free_unaccepted(struct page *page) | |
7008 | { | |
7009 | BUILD_BUG(); | |
7010 | return false; | |
7011 | } | |
7012 | ||
7013 | #endif /* CONFIG_UNACCEPTED_MEMORY */ |