]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | # SPDX-License-Identifier: GPL-2.0 |
685784aa DW |
2 | # |
3 | # Generic algorithms support | |
4 | # | |
5 | config XOR_BLOCKS | |
6 | tristate | |
7 | ||
1da177e4 | 8 | # |
9bc89cd8 | 9 | # async_tx api: hardware offloaded memory transfer/transform support |
1da177e4 | 10 | # |
9bc89cd8 | 11 | source "crypto/async_tx/Kconfig" |
1da177e4 | 12 | |
9bc89cd8 DW |
13 | # |
14 | # Cryptographic API Configuration | |
15 | # | |
2e290f43 | 16 | menuconfig CRYPTO |
c3715cb9 | 17 | tristate "Cryptographic API" |
1da177e4 LT |
18 | help |
19 | This option provides the core Cryptographic API. | |
20 | ||
cce9e06d HX |
21 | if CRYPTO |
22 | ||
584fffc8 SS |
23 | comment "Crypto core or helper" |
24 | ||
ccb778e1 NH |
25 | config CRYPTO_FIPS |
26 | bool "FIPS 200 compliance" | |
f2c89a10 | 27 | depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS |
1f696097 | 28 | depends on (MODULE_SIG || !MODULES) |
ccb778e1 | 29 | help |
d99324c2 GU |
30 | This option enables the fips boot option which is |
31 | required if you want the system to operate in a FIPS 200 | |
ccb778e1 | 32 | certification. You should say no unless you know what |
e84c5480 | 33 | this is. |
ccb778e1 | 34 | |
cce9e06d HX |
35 | config CRYPTO_ALGAPI |
36 | tristate | |
6a0fcbb4 | 37 | select CRYPTO_ALGAPI2 |
cce9e06d HX |
38 | help |
39 | This option provides the API for cryptographic algorithms. | |
40 | ||
6a0fcbb4 HX |
41 | config CRYPTO_ALGAPI2 |
42 | tristate | |
43 | ||
1ae97820 HX |
44 | config CRYPTO_AEAD |
45 | tristate | |
6a0fcbb4 | 46 | select CRYPTO_AEAD2 |
1ae97820 HX |
47 | select CRYPTO_ALGAPI |
48 | ||
6a0fcbb4 HX |
49 | config CRYPTO_AEAD2 |
50 | tristate | |
51 | select CRYPTO_ALGAPI2 | |
149a3971 HX |
52 | select CRYPTO_NULL2 |
53 | select CRYPTO_RNG2 | |
6a0fcbb4 | 54 | |
b95bba5d | 55 | config CRYPTO_SKCIPHER |
5cde0af2 | 56 | tristate |
b95bba5d | 57 | select CRYPTO_SKCIPHER2 |
5cde0af2 | 58 | select CRYPTO_ALGAPI |
6a0fcbb4 | 59 | |
b95bba5d | 60 | config CRYPTO_SKCIPHER2 |
6a0fcbb4 HX |
61 | tristate |
62 | select CRYPTO_ALGAPI2 | |
63 | select CRYPTO_RNG2 | |
5cde0af2 | 64 | |
055bcee3 HX |
65 | config CRYPTO_HASH |
66 | tristate | |
6a0fcbb4 | 67 | select CRYPTO_HASH2 |
055bcee3 HX |
68 | select CRYPTO_ALGAPI |
69 | ||
6a0fcbb4 HX |
70 | config CRYPTO_HASH2 |
71 | tristate | |
72 | select CRYPTO_ALGAPI2 | |
73 | ||
17f0f4a4 NH |
74 | config CRYPTO_RNG |
75 | tristate | |
6a0fcbb4 | 76 | select CRYPTO_RNG2 |
17f0f4a4 NH |
77 | select CRYPTO_ALGAPI |
78 | ||
6a0fcbb4 HX |
79 | config CRYPTO_RNG2 |
80 | tristate | |
81 | select CRYPTO_ALGAPI2 | |
82 | ||
401e4238 HX |
83 | config CRYPTO_RNG_DEFAULT |
84 | tristate | |
85 | select CRYPTO_DRBG_MENU | |
86 | ||
3c339ab8 TS |
87 | config CRYPTO_AKCIPHER2 |
88 | tristate | |
89 | select CRYPTO_ALGAPI2 | |
90 | ||
91 | config CRYPTO_AKCIPHER | |
92 | tristate | |
93 | select CRYPTO_AKCIPHER2 | |
94 | select CRYPTO_ALGAPI | |
95 | ||
4e5f2c40 SB |
96 | config CRYPTO_KPP2 |
97 | tristate | |
98 | select CRYPTO_ALGAPI2 | |
99 | ||
100 | config CRYPTO_KPP | |
101 | tristate | |
102 | select CRYPTO_ALGAPI | |
103 | select CRYPTO_KPP2 | |
104 | ||
2ebda74f GC |
105 | config CRYPTO_ACOMP2 |
106 | tristate | |
107 | select CRYPTO_ALGAPI2 | |
8cd579d2 | 108 | select SGL_ALLOC |
2ebda74f GC |
109 | |
110 | config CRYPTO_ACOMP | |
111 | tristate | |
112 | select CRYPTO_ALGAPI | |
113 | select CRYPTO_ACOMP2 | |
114 | ||
2b8c19db HX |
115 | config CRYPTO_MANAGER |
116 | tristate "Cryptographic algorithm manager" | |
6a0fcbb4 | 117 | select CRYPTO_MANAGER2 |
2b8c19db HX |
118 | help |
119 | Create default cryptographic template instantiations such as | |
120 | cbc(aes). | |
121 | ||
6a0fcbb4 HX |
122 | config CRYPTO_MANAGER2 |
123 | def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) | |
124 | select CRYPTO_AEAD2 | |
125 | select CRYPTO_HASH2 | |
b95bba5d | 126 | select CRYPTO_SKCIPHER2 |
946cc463 | 127 | select CRYPTO_AKCIPHER2 |
4e5f2c40 | 128 | select CRYPTO_KPP2 |
2ebda74f | 129 | select CRYPTO_ACOMP2 |
6a0fcbb4 | 130 | |
a38f7907 SK |
131 | config CRYPTO_USER |
132 | tristate "Userspace cryptographic algorithm configuration" | |
5db017aa | 133 | depends on NET |
a38f7907 SK |
134 | select CRYPTO_MANAGER |
135 | help | |
d19978f5 | 136 | Userspace configuration for cryptographic instantiations such as |
a38f7907 SK |
137 | cbc(aes). |
138 | ||
326a6346 HX |
139 | config CRYPTO_MANAGER_DISABLE_TESTS |
140 | bool "Disable run-time self tests" | |
00ca28a5 | 141 | default y |
0b767f96 | 142 | help |
326a6346 HX |
143 | Disable run-time self tests that normally take place at |
144 | algorithm registration. | |
0b767f96 | 145 | |
5b2706a4 EB |
146 | config CRYPTO_MANAGER_EXTRA_TESTS |
147 | bool "Enable extra run-time crypto self tests" | |
6569e309 | 148 | depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER |
5b2706a4 EB |
149 | help |
150 | Enable extra run-time self tests of registered crypto algorithms, | |
151 | including randomized fuzz tests. | |
152 | ||
153 | This is intended for developer use only, as these tests take much | |
154 | longer to run than the normal self tests. | |
155 | ||
584fffc8 | 156 | config CRYPTO_GF128MUL |
e590e132 | 157 | tristate |
333b0d7e | 158 | |
1da177e4 LT |
159 | config CRYPTO_NULL |
160 | tristate "Null algorithms" | |
149a3971 | 161 | select CRYPTO_NULL2 |
1da177e4 LT |
162 | help |
163 | These are 'Null' algorithms, used by IPsec, which do nothing. | |
164 | ||
149a3971 | 165 | config CRYPTO_NULL2 |
dd43c4e9 | 166 | tristate |
149a3971 | 167 | select CRYPTO_ALGAPI2 |
b95bba5d | 168 | select CRYPTO_SKCIPHER2 |
149a3971 HX |
169 | select CRYPTO_HASH2 |
170 | ||
5068c7a8 | 171 | config CRYPTO_PCRYPT |
3b4afaf2 KC |
172 | tristate "Parallel crypto engine" |
173 | depends on SMP | |
5068c7a8 SK |
174 | select PADATA |
175 | select CRYPTO_MANAGER | |
176 | select CRYPTO_AEAD | |
177 | help | |
178 | This converts an arbitrary crypto algorithm into a parallel | |
179 | algorithm that executes in kernel threads. | |
180 | ||
584fffc8 SS |
181 | config CRYPTO_CRYPTD |
182 | tristate "Software async crypto daemon" | |
b95bba5d | 183 | select CRYPTO_SKCIPHER |
b8a28251 | 184 | select CRYPTO_HASH |
584fffc8 | 185 | select CRYPTO_MANAGER |
1da177e4 | 186 | help |
584fffc8 SS |
187 | This is a generic software asynchronous crypto daemon that |
188 | converts an arbitrary synchronous software crypto algorithm | |
189 | into an asynchronous algorithm that executes in a kernel thread. | |
1da177e4 | 190 | |
584fffc8 SS |
191 | config CRYPTO_AUTHENC |
192 | tristate "Authenc support" | |
193 | select CRYPTO_AEAD | |
b95bba5d | 194 | select CRYPTO_SKCIPHER |
584fffc8 SS |
195 | select CRYPTO_MANAGER |
196 | select CRYPTO_HASH | |
e94c6a7a | 197 | select CRYPTO_NULL |
1da177e4 | 198 | help |
584fffc8 SS |
199 | Authenc: Combined mode wrapper for IPsec. |
200 | This is required for IPSec. | |
1da177e4 | 201 | |
584fffc8 SS |
202 | config CRYPTO_TEST |
203 | tristate "Testing module" | |
00ea27f1 | 204 | depends on m || EXPERT |
da7f033d | 205 | select CRYPTO_MANAGER |
1da177e4 | 206 | help |
584fffc8 | 207 | Quick & dirty crypto test module. |
1da177e4 | 208 | |
266d0516 HX |
209 | config CRYPTO_SIMD |
210 | tristate | |
ffaf9156 JK |
211 | select CRYPTO_CRYPTD |
212 | ||
735d37b5 BW |
213 | config CRYPTO_ENGINE |
214 | tristate | |
215 | ||
3d6228a5 VC |
216 | comment "Public-key cryptography" |
217 | ||
218 | config CRYPTO_RSA | |
219 | tristate "RSA algorithm" | |
220 | select CRYPTO_AKCIPHER | |
221 | select CRYPTO_MANAGER | |
222 | select MPILIB | |
223 | select ASN1 | |
224 | help | |
225 | Generic implementation of the RSA public key algorithm. | |
226 | ||
227 | config CRYPTO_DH | |
228 | tristate "Diffie-Hellman algorithm" | |
229 | select CRYPTO_KPP | |
230 | select MPILIB | |
231 | help | |
232 | Generic implementation of the Diffie-Hellman algorithm. | |
233 | ||
4a2289da VC |
234 | config CRYPTO_ECC |
235 | tristate | |
236 | ||
3d6228a5 VC |
237 | config CRYPTO_ECDH |
238 | tristate "ECDH algorithm" | |
4a2289da | 239 | select CRYPTO_ECC |
3d6228a5 VC |
240 | select CRYPTO_KPP |
241 | select CRYPTO_RNG_DEFAULT | |
242 | help | |
243 | Generic implementation of the ECDH algorithm | |
244 | ||
4e660291 SB |
245 | config CRYPTO_ECDSA |
246 | tristate "ECDSA (NIST P192, P256 etc.) algorithm" | |
247 | select CRYPTO_ECC | |
248 | select CRYPTO_AKCIPHER | |
249 | select ASN1 | |
250 | help | |
251 | Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) | |
252 | is A NIST cryptographic standard algorithm. Only signature verification | |
253 | is implemented. | |
254 | ||
0d7a7864 VC |
255 | config CRYPTO_ECRDSA |
256 | tristate "EC-RDSA (GOST 34.10) algorithm" | |
257 | select CRYPTO_ECC | |
258 | select CRYPTO_AKCIPHER | |
259 | select CRYPTO_STREEBOG | |
1036633e VC |
260 | select OID_REGISTRY |
261 | select ASN1 | |
0d7a7864 VC |
262 | help |
263 | Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, | |
264 | RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic | |
265 | standard algorithms (called GOST algorithms). Only signature verification | |
266 | is implemented. | |
267 | ||
ea7ecb66 TZ |
268 | config CRYPTO_SM2 |
269 | tristate "SM2 algorithm" | |
270 | select CRYPTO_SM3 | |
271 | select CRYPTO_AKCIPHER | |
272 | select CRYPTO_MANAGER | |
273 | select MPILIB | |
274 | select ASN1 | |
275 | help | |
276 | Generic implementation of the SM2 public key algorithm. It was | |
277 | published by State Encryption Management Bureau, China. | |
278 | as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. | |
279 | ||
280 | References: | |
281 | https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 | |
282 | http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml | |
283 | http://www.gmbz.org.cn/main/bzlb.html | |
284 | ||
ee772cb6 AB |
285 | config CRYPTO_CURVE25519 |
286 | tristate "Curve25519 algorithm" | |
287 | select CRYPTO_KPP | |
288 | select CRYPTO_LIB_CURVE25519_GENERIC | |
289 | ||
bb611bdf JD |
290 | config CRYPTO_CURVE25519_X86 |
291 | tristate "x86_64 accelerated Curve25519 scalar multiplication library" | |
292 | depends on X86 && 64BIT | |
293 | select CRYPTO_LIB_CURVE25519_GENERIC | |
294 | select CRYPTO_ARCH_HAVE_LIB_CURVE25519 | |
295 | ||
584fffc8 | 296 | comment "Authenticated Encryption with Associated Data" |
cd12fb90 | 297 | |
584fffc8 SS |
298 | config CRYPTO_CCM |
299 | tristate "CCM support" | |
300 | select CRYPTO_CTR | |
f15f05b0 | 301 | select CRYPTO_HASH |
584fffc8 | 302 | select CRYPTO_AEAD |
c8a3315a | 303 | select CRYPTO_MANAGER |
1da177e4 | 304 | help |
584fffc8 | 305 | Support for Counter with CBC MAC. Required for IPsec. |
1da177e4 | 306 | |
584fffc8 SS |
307 | config CRYPTO_GCM |
308 | tristate "GCM/GMAC support" | |
309 | select CRYPTO_CTR | |
310 | select CRYPTO_AEAD | |
9382d97a | 311 | select CRYPTO_GHASH |
9489667d | 312 | select CRYPTO_NULL |
c8a3315a | 313 | select CRYPTO_MANAGER |
1da177e4 | 314 | help |
584fffc8 SS |
315 | Support for Galois/Counter Mode (GCM) and Galois Message |
316 | Authentication Code (GMAC). Required for IPSec. | |
1da177e4 | 317 | |
71ebc4d1 MW |
318 | config CRYPTO_CHACHA20POLY1305 |
319 | tristate "ChaCha20-Poly1305 AEAD support" | |
320 | select CRYPTO_CHACHA20 | |
321 | select CRYPTO_POLY1305 | |
322 | select CRYPTO_AEAD | |
c8a3315a | 323 | select CRYPTO_MANAGER |
71ebc4d1 MW |
324 | help |
325 | ChaCha20-Poly1305 AEAD support, RFC7539. | |
326 | ||
327 | Support for the AEAD wrapper using the ChaCha20 stream cipher combined | |
328 | with the Poly1305 authenticator. It is defined in RFC7539 for use in | |
329 | IETF protocols. | |
330 | ||
f606a88e OM |
331 | config CRYPTO_AEGIS128 |
332 | tristate "AEGIS-128 AEAD algorithm" | |
333 | select CRYPTO_AEAD | |
334 | select CRYPTO_AES # for AES S-box tables | |
335 | help | |
336 | Support for the AEGIS-128 dedicated AEAD algorithm. | |
337 | ||
a4397635 AB |
338 | config CRYPTO_AEGIS128_SIMD |
339 | bool "Support SIMD acceleration for AEGIS-128" | |
340 | depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) | |
341 | default y | |
342 | ||
1d373d4e OM |
343 | config CRYPTO_AEGIS128_AESNI_SSE2 |
344 | tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" | |
345 | depends on X86 && 64BIT | |
346 | select CRYPTO_AEAD | |
de272ca7 | 347 | select CRYPTO_SIMD |
1d373d4e | 348 | help |
4e5180eb | 349 | AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. |
1d373d4e | 350 | |
584fffc8 SS |
351 | config CRYPTO_SEQIV |
352 | tristate "Sequence Number IV Generator" | |
353 | select CRYPTO_AEAD | |
b95bba5d | 354 | select CRYPTO_SKCIPHER |
856e3f40 | 355 | select CRYPTO_NULL |
401e4238 | 356 | select CRYPTO_RNG_DEFAULT |
c8a3315a | 357 | select CRYPTO_MANAGER |
1da177e4 | 358 | help |
584fffc8 SS |
359 | This IV generator generates an IV based on a sequence number by |
360 | xoring it with a salt. This algorithm is mainly useful for CTR | |
1da177e4 | 361 | |
a10f554f HX |
362 | config CRYPTO_ECHAINIV |
363 | tristate "Encrypted Chain IV Generator" | |
364 | select CRYPTO_AEAD | |
365 | select CRYPTO_NULL | |
401e4238 | 366 | select CRYPTO_RNG_DEFAULT |
c8a3315a | 367 | select CRYPTO_MANAGER |
a10f554f HX |
368 | help |
369 | This IV generator generates an IV based on the encryption of | |
370 | a sequence number xored with a salt. This is the default | |
371 | algorithm for CBC. | |
372 | ||
584fffc8 | 373 | comment "Block modes" |
c494e070 | 374 | |
584fffc8 SS |
375 | config CRYPTO_CBC |
376 | tristate "CBC support" | |
b95bba5d | 377 | select CRYPTO_SKCIPHER |
43518407 | 378 | select CRYPTO_MANAGER |
db131ef9 | 379 | help |
584fffc8 SS |
380 | CBC: Cipher Block Chaining mode |
381 | This block cipher algorithm is required for IPSec. | |
db131ef9 | 382 | |
a7d85e06 JB |
383 | config CRYPTO_CFB |
384 | tristate "CFB support" | |
b95bba5d | 385 | select CRYPTO_SKCIPHER |
a7d85e06 JB |
386 | select CRYPTO_MANAGER |
387 | help | |
388 | CFB: Cipher FeedBack mode | |
389 | This block cipher algorithm is required for TPM2 Cryptography. | |
390 | ||
584fffc8 SS |
391 | config CRYPTO_CTR |
392 | tristate "CTR support" | |
b95bba5d | 393 | select CRYPTO_SKCIPHER |
43518407 | 394 | select CRYPTO_MANAGER |
db131ef9 | 395 | help |
584fffc8 | 396 | CTR: Counter mode |
db131ef9 HX |
397 | This block cipher algorithm is required for IPSec. |
398 | ||
584fffc8 SS |
399 | config CRYPTO_CTS |
400 | tristate "CTS support" | |
b95bba5d | 401 | select CRYPTO_SKCIPHER |
c8a3315a | 402 | select CRYPTO_MANAGER |
584fffc8 SS |
403 | help |
404 | CTS: Cipher Text Stealing | |
405 | This is the Cipher Text Stealing mode as described by | |
ecd6d5c9 GBY |
406 | Section 8 of rfc2040 and referenced by rfc3962 |
407 | (rfc3962 includes errata information in its Appendix A) or | |
408 | CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. | |
584fffc8 SS |
409 | This mode is required for Kerberos gss mechanism support |
410 | for AES encryption. | |
411 | ||
ecd6d5c9 GBY |
412 | See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final |
413 | ||
584fffc8 SS |
414 | config CRYPTO_ECB |
415 | tristate "ECB support" | |
b95bba5d | 416 | select CRYPTO_SKCIPHER |
91652be5 | 417 | select CRYPTO_MANAGER |
91652be5 | 418 | help |
584fffc8 SS |
419 | ECB: Electronic CodeBook mode |
420 | This is the simplest block cipher algorithm. It simply encrypts | |
421 | the input block by block. | |
91652be5 | 422 | |
64470f1b | 423 | config CRYPTO_LRW |
2470a2b2 | 424 | tristate "LRW support" |
b95bba5d | 425 | select CRYPTO_SKCIPHER |
64470f1b RS |
426 | select CRYPTO_MANAGER |
427 | select CRYPTO_GF128MUL | |
428 | help | |
429 | LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable | |
430 | narrow block cipher mode for dm-crypt. Use it with cipher | |
431 | specification string aes-lrw-benbi, the key must be 256, 320 or 384. | |
432 | The first 128, 192 or 256 bits in the key are used for AES and the | |
433 | rest is used to tie each cipher block to its logical position. | |
434 | ||
e497c518 GBY |
435 | config CRYPTO_OFB |
436 | tristate "OFB support" | |
b95bba5d | 437 | select CRYPTO_SKCIPHER |
e497c518 GBY |
438 | select CRYPTO_MANAGER |
439 | help | |
440 | OFB: the Output Feedback mode makes a block cipher into a synchronous | |
441 | stream cipher. It generates keystream blocks, which are then XORed | |
442 | with the plaintext blocks to get the ciphertext. Flipping a bit in the | |
443 | ciphertext produces a flipped bit in the plaintext at the same | |
444 | location. This property allows many error correcting codes to function | |
445 | normally even when applied before encryption. | |
446 | ||
584fffc8 SS |
447 | config CRYPTO_PCBC |
448 | tristate "PCBC support" | |
b95bba5d | 449 | select CRYPTO_SKCIPHER |
584fffc8 SS |
450 | select CRYPTO_MANAGER |
451 | help | |
452 | PCBC: Propagating Cipher Block Chaining mode | |
453 | This block cipher algorithm is required for RxRPC. | |
454 | ||
f19f5111 | 455 | config CRYPTO_XTS |
5bcf8e6d | 456 | tristate "XTS support" |
b95bba5d | 457 | select CRYPTO_SKCIPHER |
f19f5111 | 458 | select CRYPTO_MANAGER |
12cb3a1c | 459 | select CRYPTO_ECB |
f19f5111 RS |
460 | help |
461 | XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, | |
462 | key size 256, 384 or 512 bits. This implementation currently | |
463 | can't handle a sectorsize which is not a multiple of 16 bytes. | |
464 | ||
1c49678e SM |
465 | config CRYPTO_KEYWRAP |
466 | tristate "Key wrapping support" | |
b95bba5d | 467 | select CRYPTO_SKCIPHER |
c8a3315a | 468 | select CRYPTO_MANAGER |
1c49678e SM |
469 | help |
470 | Support for key wrapping (NIST SP800-38F / RFC3394) without | |
471 | padding. | |
472 | ||
26609a21 EB |
473 | config CRYPTO_NHPOLY1305 |
474 | tristate | |
475 | select CRYPTO_HASH | |
48ea8c6e | 476 | select CRYPTO_LIB_POLY1305_GENERIC |
26609a21 | 477 | |
012c8238 EB |
478 | config CRYPTO_NHPOLY1305_SSE2 |
479 | tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" | |
480 | depends on X86 && 64BIT | |
481 | select CRYPTO_NHPOLY1305 | |
482 | help | |
483 | SSE2 optimized implementation of the hash function used by the | |
484 | Adiantum encryption mode. | |
485 | ||
0f961f9f EB |
486 | config CRYPTO_NHPOLY1305_AVX2 |
487 | tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" | |
488 | depends on X86 && 64BIT | |
489 | select CRYPTO_NHPOLY1305 | |
490 | help | |
491 | AVX2 optimized implementation of the hash function used by the | |
492 | Adiantum encryption mode. | |
493 | ||
059c2a4d EB |
494 | config CRYPTO_ADIANTUM |
495 | tristate "Adiantum support" | |
496 | select CRYPTO_CHACHA20 | |
48ea8c6e | 497 | select CRYPTO_LIB_POLY1305_GENERIC |
059c2a4d | 498 | select CRYPTO_NHPOLY1305 |
c8a3315a | 499 | select CRYPTO_MANAGER |
059c2a4d EB |
500 | help |
501 | Adiantum is a tweakable, length-preserving encryption mode | |
502 | designed for fast and secure disk encryption, especially on | |
503 | CPUs without dedicated crypto instructions. It encrypts | |
504 | each sector using the XChaCha12 stream cipher, two passes of | |
505 | an ε-almost-∆-universal hash function, and an invocation of | |
506 | the AES-256 block cipher on a single 16-byte block. On CPUs | |
507 | without AES instructions, Adiantum is much faster than | |
508 | AES-XTS. | |
509 | ||
510 | Adiantum's security is provably reducible to that of its | |
511 | underlying stream and block ciphers, subject to a security | |
512 | bound. Unlike XTS, Adiantum is a true wide-block encryption | |
513 | mode, so it actually provides an even stronger notion of | |
514 | security than XTS, subject to the security bound. | |
515 | ||
516 | If unsure, say N. | |
517 | ||
be1eb7f7 AB |
518 | config CRYPTO_ESSIV |
519 | tristate "ESSIV support for block encryption" | |
520 | select CRYPTO_AUTHENC | |
521 | help | |
522 | Encrypted salt-sector initialization vector (ESSIV) is an IV | |
523 | generation method that is used in some cases by fscrypt and/or | |
524 | dm-crypt. It uses the hash of the block encryption key as the | |
525 | symmetric key for a block encryption pass applied to the input | |
526 | IV, making low entropy IV sources more suitable for block | |
527 | encryption. | |
528 | ||
529 | This driver implements a crypto API template that can be | |
ab3d436b | 530 | instantiated either as an skcipher or as an AEAD (depending on the |
be1eb7f7 AB |
531 | type of the first template argument), and which defers encryption |
532 | and decryption requests to the encapsulated cipher after applying | |
ab3d436b | 533 | ESSIV to the input IV. Note that in the AEAD case, it is assumed |
be1eb7f7 AB |
534 | that the keys are presented in the same format used by the authenc |
535 | template, and that the IV appears at the end of the authenticated | |
536 | associated data (AAD) region (which is how dm-crypt uses it.) | |
537 | ||
538 | Note that the use of ESSIV is not recommended for new deployments, | |
539 | and so this only needs to be enabled when interoperability with | |
540 | existing encrypted volumes of filesystems is required, or when | |
541 | building for a particular system that requires it (e.g., when | |
542 | the SoC in question has accelerated CBC but not XTS, making CBC | |
543 | combined with ESSIV the only feasible mode for h/w accelerated | |
544 | block encryption) | |
545 | ||
584fffc8 SS |
546 | comment "Hash modes" |
547 | ||
93b5e86a JK |
548 | config CRYPTO_CMAC |
549 | tristate "CMAC support" | |
550 | select CRYPTO_HASH | |
551 | select CRYPTO_MANAGER | |
552 | help | |
553 | Cipher-based Message Authentication Code (CMAC) specified by | |
554 | The National Institute of Standards and Technology (NIST). | |
555 | ||
556 | https://tools.ietf.org/html/rfc4493 | |
557 | http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf | |
558 | ||
584fffc8 SS |
559 | config CRYPTO_HMAC |
560 | tristate "HMAC support" | |
561 | select CRYPTO_HASH | |
23e353c8 | 562 | select CRYPTO_MANAGER |
23e353c8 | 563 | help |
584fffc8 SS |
564 | HMAC: Keyed-Hashing for Message Authentication (RFC2104). |
565 | This is required for IPSec. | |
23e353c8 | 566 | |
584fffc8 SS |
567 | config CRYPTO_XCBC |
568 | tristate "XCBC support" | |
584fffc8 SS |
569 | select CRYPTO_HASH |
570 | select CRYPTO_MANAGER | |
76cb9521 | 571 | help |
584fffc8 | 572 | XCBC: Keyed-Hashing with encryption algorithm |
9332a9e7 | 573 | https://www.ietf.org/rfc/rfc3566.txt |
584fffc8 SS |
574 | http://csrc.nist.gov/encryption/modes/proposedmodes/ |
575 | xcbc-mac/xcbc-mac-spec.pdf | |
76cb9521 | 576 | |
f1939f7c SW |
577 | config CRYPTO_VMAC |
578 | tristate "VMAC support" | |
f1939f7c SW |
579 | select CRYPTO_HASH |
580 | select CRYPTO_MANAGER | |
581 | help | |
582 | VMAC is a message authentication algorithm designed for | |
583 | very high speed on 64-bit architectures. | |
584 | ||
585 | See also: | |
9332a9e7 | 586 | <https://fastcrypto.org/vmac> |
f1939f7c | 587 | |
584fffc8 | 588 | comment "Digest" |
28db8e3e | 589 | |
584fffc8 SS |
590 | config CRYPTO_CRC32C |
591 | tristate "CRC32c CRC algorithm" | |
5773a3e6 | 592 | select CRYPTO_HASH |
6a0962b2 | 593 | select CRC32 |
4a49b499 | 594 | help |
584fffc8 SS |
595 | Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used |
596 | by iSCSI for header and data digests and by others. | |
69c35efc | 597 | See Castagnoli93. Module will be crc32c. |
4a49b499 | 598 | |
8cb51ba8 AZ |
599 | config CRYPTO_CRC32C_INTEL |
600 | tristate "CRC32c INTEL hardware acceleration" | |
601 | depends on X86 | |
602 | select CRYPTO_HASH | |
603 | help | |
604 | In Intel processor with SSE4.2 supported, the processor will | |
605 | support CRC32C implementation using hardware accelerated CRC32 | |
606 | instruction. This option will create 'crc32c-intel' module, | |
607 | which will enable any routine to use the CRC32 instruction to | |
608 | gain performance compared with software implementation. | |
609 | Module will be crc32c-intel. | |
610 | ||
7cf31864 | 611 | config CRYPTO_CRC32C_VPMSUM |
6dd7a82c | 612 | tristate "CRC32c CRC algorithm (powerpc64)" |
c12abf34 | 613 | depends on PPC64 && ALTIVEC |
6dd7a82c AB |
614 | select CRYPTO_HASH |
615 | select CRC32 | |
616 | help | |
617 | CRC32c algorithm implemented using vector polynomial multiply-sum | |
618 | (vpmsum) instructions, introduced in POWER8. Enable on POWER8 | |
619 | and newer processors for improved performance. | |
620 | ||
621 | ||
442a7c40 DM |
622 | config CRYPTO_CRC32C_SPARC64 |
623 | tristate "CRC32c CRC algorithm (SPARC64)" | |
624 | depends on SPARC64 | |
625 | select CRYPTO_HASH | |
626 | select CRC32 | |
627 | help | |
628 | CRC32c CRC algorithm implemented using sparc64 crypto instructions, | |
629 | when available. | |
630 | ||
78c37d19 AB |
631 | config CRYPTO_CRC32 |
632 | tristate "CRC32 CRC algorithm" | |
633 | select CRYPTO_HASH | |
634 | select CRC32 | |
635 | help | |
636 | CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. | |
637 | Shash crypto api wrappers to crc32_le function. | |
638 | ||
639 | config CRYPTO_CRC32_PCLMUL | |
640 | tristate "CRC32 PCLMULQDQ hardware acceleration" | |
641 | depends on X86 | |
642 | select CRYPTO_HASH | |
643 | select CRC32 | |
644 | help | |
645 | From Intel Westmere and AMD Bulldozer processor with SSE4.2 | |
646 | and PCLMULQDQ supported, the processor will support | |
647 | CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ | |
af8cb01f | 648 | instruction. This option will create 'crc32-pclmul' module, |
78c37d19 AB |
649 | which will enable any routine to use the CRC-32-IEEE 802.3 checksum |
650 | and gain better performance as compared with the table implementation. | |
651 | ||
4a5dc51e MN |
652 | config CRYPTO_CRC32_MIPS |
653 | tristate "CRC32c and CRC32 CRC algorithm (MIPS)" | |
654 | depends on MIPS_CRC_SUPPORT | |
655 | select CRYPTO_HASH | |
656 | help | |
657 | CRC32c and CRC32 CRC algorithms implemented using mips crypto | |
658 | instructions, when available. | |
659 | ||
660 | ||
67882e76 NB |
661 | config CRYPTO_XXHASH |
662 | tristate "xxHash hash algorithm" | |
663 | select CRYPTO_HASH | |
664 | select XXHASH | |
665 | help | |
666 | xxHash non-cryptographic hash algorithm. Extremely fast, working at | |
667 | speeds close to RAM limits. | |
668 | ||
91d68933 DS |
669 | config CRYPTO_BLAKE2B |
670 | tristate "BLAKE2b digest algorithm" | |
671 | select CRYPTO_HASH | |
672 | help | |
673 | Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), | |
674 | optimized for 64bit platforms and can produce digests of any size | |
675 | between 1 to 64. The keyed hash is also implemented. | |
676 | ||
677 | This module provides the following algorithms: | |
678 | ||
679 | - blake2b-160 | |
680 | - blake2b-256 | |
681 | - blake2b-384 | |
682 | - blake2b-512 | |
683 | ||
684 | See https://blake2.net for further information. | |
685 | ||
7f9b0880 AB |
686 | config CRYPTO_BLAKE2S |
687 | tristate "BLAKE2s digest algorithm" | |
688 | select CRYPTO_LIB_BLAKE2S_GENERIC | |
689 | select CRYPTO_HASH | |
690 | help | |
691 | Implementation of cryptographic hash function BLAKE2s | |
692 | optimized for 8-32bit platforms and can produce digests of any size | |
693 | between 1 to 32. The keyed hash is also implemented. | |
694 | ||
695 | This module provides the following algorithms: | |
696 | ||
697 | - blake2s-128 | |
698 | - blake2s-160 | |
699 | - blake2s-224 | |
700 | - blake2s-256 | |
701 | ||
702 | See https://blake2.net for further information. | |
703 | ||
ed0356ed JD |
704 | config CRYPTO_BLAKE2S_X86 |
705 | tristate "BLAKE2s digest algorithm (x86 accelerated version)" | |
706 | depends on X86 && 64BIT | |
707 | select CRYPTO_LIB_BLAKE2S_GENERIC | |
708 | select CRYPTO_ARCH_HAVE_LIB_BLAKE2S | |
709 | ||
68411521 HX |
710 | config CRYPTO_CRCT10DIF |
711 | tristate "CRCT10DIF algorithm" | |
712 | select CRYPTO_HASH | |
713 | help | |
714 | CRC T10 Data Integrity Field computation is being cast as | |
715 | a crypto transform. This allows for faster crc t10 diff | |
716 | transforms to be used if they are available. | |
717 | ||
718 | config CRYPTO_CRCT10DIF_PCLMUL | |
719 | tristate "CRCT10DIF PCLMULQDQ hardware acceleration" | |
720 | depends on X86 && 64BIT && CRC_T10DIF | |
721 | select CRYPTO_HASH | |
722 | help | |
723 | For x86_64 processors with SSE4.2 and PCLMULQDQ supported, | |
724 | CRC T10 DIF PCLMULQDQ computation can be hardware | |
725 | accelerated PCLMULQDQ instruction. This option will create | |
af8cb01f | 726 | 'crct10dif-pclmul' module, which is faster when computing the |
68411521 HX |
727 | crct10dif checksum as compared with the generic table implementation. |
728 | ||
b01df1c1 DA |
729 | config CRYPTO_CRCT10DIF_VPMSUM |
730 | tristate "CRC32T10DIF powerpc64 hardware acceleration" | |
731 | depends on PPC64 && ALTIVEC && CRC_T10DIF | |
732 | select CRYPTO_HASH | |
733 | help | |
734 | CRC10T10DIF algorithm implemented using vector polynomial | |
735 | multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on | |
736 | POWER8 and newer processors for improved performance. | |
737 | ||
146c8688 DA |
738 | config CRYPTO_VPMSUM_TESTER |
739 | tristate "Powerpc64 vpmsum hardware acceleration tester" | |
740 | depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM | |
741 | help | |
742 | Stress test for CRC32c and CRC-T10DIF algorithms implemented with | |
743 | POWER8 vpmsum instructions. | |
744 | Unless you are testing these algorithms, you don't need this. | |
745 | ||
2cdc6899 | 746 | config CRYPTO_GHASH |
8dfa20fc | 747 | tristate "GHASH hash function" |
2cdc6899 | 748 | select CRYPTO_GF128MUL |
578c60fb | 749 | select CRYPTO_HASH |
2cdc6899 | 750 | help |
8dfa20fc EB |
751 | GHASH is the hash function used in GCM (Galois/Counter Mode). |
752 | It is not a general-purpose cryptographic hash function. | |
2cdc6899 | 753 | |
f979e014 MW |
754 | config CRYPTO_POLY1305 |
755 | tristate "Poly1305 authenticator algorithm" | |
578c60fb | 756 | select CRYPTO_HASH |
48ea8c6e | 757 | select CRYPTO_LIB_POLY1305_GENERIC |
f979e014 MW |
758 | help |
759 | Poly1305 authenticator algorithm, RFC7539. | |
760 | ||
761 | Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. | |
762 | It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use | |
763 | in IETF protocols. This is the portable C implementation of Poly1305. | |
764 | ||
c70f4abe | 765 | config CRYPTO_POLY1305_X86_64 |
b1ccc8f4 | 766 | tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" |
c70f4abe | 767 | depends on X86 && 64BIT |
1b2c6a51 | 768 | select CRYPTO_LIB_POLY1305_GENERIC |
f0e89bcf | 769 | select CRYPTO_ARCH_HAVE_LIB_POLY1305 |
c70f4abe MW |
770 | help |
771 | Poly1305 authenticator algorithm, RFC7539. | |
772 | ||
773 | Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. | |
774 | It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use | |
775 | in IETF protocols. This is the x86_64 assembler implementation using SIMD | |
776 | instructions. | |
777 | ||
a11d055e AB |
778 | config CRYPTO_POLY1305_MIPS |
779 | tristate "Poly1305 authenticator algorithm (MIPS optimized)" | |
6c810cf2 | 780 | depends on MIPS |
a11d055e AB |
781 | select CRYPTO_ARCH_HAVE_LIB_POLY1305 |
782 | ||
584fffc8 SS |
783 | config CRYPTO_MD4 |
784 | tristate "MD4 digest algorithm" | |
808a1763 | 785 | select CRYPTO_HASH |
124b53d0 | 786 | help |
584fffc8 | 787 | MD4 message digest algorithm (RFC1320). |
124b53d0 | 788 | |
584fffc8 SS |
789 | config CRYPTO_MD5 |
790 | tristate "MD5 digest algorithm" | |
14b75ba7 | 791 | select CRYPTO_HASH |
1da177e4 | 792 | help |
584fffc8 | 793 | MD5 message digest algorithm (RFC1321). |
1da177e4 | 794 | |
d69e75de AK |
795 | config CRYPTO_MD5_OCTEON |
796 | tristate "MD5 digest algorithm (OCTEON)" | |
797 | depends on CPU_CAVIUM_OCTEON | |
798 | select CRYPTO_MD5 | |
799 | select CRYPTO_HASH | |
800 | help | |
801 | MD5 message digest algorithm (RFC1321) implemented | |
802 | using OCTEON crypto instructions, when available. | |
803 | ||
e8e59953 MS |
804 | config CRYPTO_MD5_PPC |
805 | tristate "MD5 digest algorithm (PPC)" | |
806 | depends on PPC | |
807 | select CRYPTO_HASH | |
808 | help | |
809 | MD5 message digest algorithm (RFC1321) implemented | |
810 | in PPC assembler. | |
811 | ||
fa4dfedc DM |
812 | config CRYPTO_MD5_SPARC64 |
813 | tristate "MD5 digest algorithm (SPARC64)" | |
814 | depends on SPARC64 | |
815 | select CRYPTO_MD5 | |
816 | select CRYPTO_HASH | |
817 | help | |
818 | MD5 message digest algorithm (RFC1321) implemented | |
819 | using sparc64 crypto instructions, when available. | |
820 | ||
584fffc8 SS |
821 | config CRYPTO_MICHAEL_MIC |
822 | tristate "Michael MIC keyed digest algorithm" | |
19e2bf14 | 823 | select CRYPTO_HASH |
90831639 | 824 | help |
584fffc8 SS |
825 | Michael MIC is used for message integrity protection in TKIP |
826 | (IEEE 802.11i). This algorithm is required for TKIP, but it | |
827 | should not be used for other purposes because of the weakness | |
828 | of the algorithm. | |
90831639 | 829 | |
82798f90 | 830 | config CRYPTO_RMD160 |
b6d44341 | 831 | tristate "RIPEMD-160 digest algorithm" |
e5835fba | 832 | select CRYPTO_HASH |
b6d44341 AB |
833 | help |
834 | RIPEMD-160 (ISO/IEC 10118-3:2004). | |
82798f90 | 835 | |
b6d44341 AB |
836 | RIPEMD-160 is a 160-bit cryptographic hash function. It is intended |
837 | to be used as a secure replacement for the 128-bit hash functions | |
838 | MD4, MD5 and it's predecessor RIPEMD | |
839 | (not to be confused with RIPEMD-128). | |
82798f90 | 840 | |
b6d44341 AB |
841 | It's speed is comparable to SHA1 and there are no known attacks |
842 | against RIPEMD-160. | |
534fe2c1 | 843 | |
b6d44341 | 844 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
9332a9e7 | 845 | See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
534fe2c1 | 846 | |
584fffc8 SS |
847 | config CRYPTO_SHA1 |
848 | tristate "SHA1 digest algorithm" | |
54ccb367 | 849 | select CRYPTO_HASH |
1da177e4 | 850 | help |
584fffc8 | 851 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). |
1da177e4 | 852 | |
66be8951 | 853 | config CRYPTO_SHA1_SSSE3 |
e38b6b7f | 854 | tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" |
66be8951 MK |
855 | depends on X86 && 64BIT |
856 | select CRYPTO_SHA1 | |
857 | select CRYPTO_HASH | |
858 | help | |
859 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
860 | using Supplemental SSE3 (SSSE3) instructions or Advanced Vector | |
e38b6b7f | 861 | Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), |
862 | when available. | |
66be8951 | 863 | |
8275d1aa | 864 | config CRYPTO_SHA256_SSSE3 |
e38b6b7f | 865 | tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" |
8275d1aa TC |
866 | depends on X86 && 64BIT |
867 | select CRYPTO_SHA256 | |
868 | select CRYPTO_HASH | |
869 | help | |
870 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
871 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector | |
872 | Extensions version 1 (AVX1), or Advanced Vector Extensions | |
e38b6b7f | 873 | version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New |
874 | Instructions) when available. | |
87de4579 TC |
875 | |
876 | config CRYPTO_SHA512_SSSE3 | |
877 | tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" | |
878 | depends on X86 && 64BIT | |
879 | select CRYPTO_SHA512 | |
880 | select CRYPTO_HASH | |
881 | help | |
882 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
883 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector | |
884 | Extensions version 1 (AVX1), or Advanced Vector Extensions | |
8275d1aa TC |
885 | version 2 (AVX2) instructions, when available. |
886 | ||
efdb6f6e AK |
887 | config CRYPTO_SHA1_OCTEON |
888 | tristate "SHA1 digest algorithm (OCTEON)" | |
889 | depends on CPU_CAVIUM_OCTEON | |
890 | select CRYPTO_SHA1 | |
891 | select CRYPTO_HASH | |
892 | help | |
893 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
894 | using OCTEON crypto instructions, when available. | |
895 | ||
4ff28d4c DM |
896 | config CRYPTO_SHA1_SPARC64 |
897 | tristate "SHA1 digest algorithm (SPARC64)" | |
898 | depends on SPARC64 | |
899 | select CRYPTO_SHA1 | |
900 | select CRYPTO_HASH | |
901 | help | |
902 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
903 | using sparc64 crypto instructions, when available. | |
904 | ||
323a6bf1 ME |
905 | config CRYPTO_SHA1_PPC |
906 | tristate "SHA1 digest algorithm (powerpc)" | |
907 | depends on PPC | |
908 | help | |
909 | This is the powerpc hardware accelerated implementation of the | |
910 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). | |
911 | ||
d9850fc5 MS |
912 | config CRYPTO_SHA1_PPC_SPE |
913 | tristate "SHA1 digest algorithm (PPC SPE)" | |
914 | depends on PPC && SPE | |
915 | help | |
916 | SHA-1 secure hash standard (DFIPS 180-4) implemented | |
917 | using powerpc SPE SIMD instruction set. | |
918 | ||
584fffc8 SS |
919 | config CRYPTO_SHA256 |
920 | tristate "SHA224 and SHA256 digest algorithm" | |
50e109b5 | 921 | select CRYPTO_HASH |
08c327f6 | 922 | select CRYPTO_LIB_SHA256 |
1da177e4 | 923 | help |
584fffc8 | 924 | SHA256 secure hash standard (DFIPS 180-2). |
1da177e4 | 925 | |
584fffc8 SS |
926 | This version of SHA implements a 256 bit hash with 128 bits of |
927 | security against collision attacks. | |
2729bb42 | 928 | |
b6d44341 AB |
929 | This code also includes SHA-224, a 224 bit hash with 112 bits |
930 | of security against collision attacks. | |
584fffc8 | 931 | |
2ecc1e95 MS |
932 | config CRYPTO_SHA256_PPC_SPE |
933 | tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" | |
934 | depends on PPC && SPE | |
935 | select CRYPTO_SHA256 | |
936 | select CRYPTO_HASH | |
937 | help | |
938 | SHA224 and SHA256 secure hash standard (DFIPS 180-2) | |
939 | implemented using powerpc SPE SIMD instruction set. | |
940 | ||
efdb6f6e AK |
941 | config CRYPTO_SHA256_OCTEON |
942 | tristate "SHA224 and SHA256 digest algorithm (OCTEON)" | |
943 | depends on CPU_CAVIUM_OCTEON | |
944 | select CRYPTO_SHA256 | |
945 | select CRYPTO_HASH | |
946 | help | |
947 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
948 | using OCTEON crypto instructions, when available. | |
949 | ||
86c93b24 DM |
950 | config CRYPTO_SHA256_SPARC64 |
951 | tristate "SHA224 and SHA256 digest algorithm (SPARC64)" | |
952 | depends on SPARC64 | |
953 | select CRYPTO_SHA256 | |
954 | select CRYPTO_HASH | |
955 | help | |
956 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
957 | using sparc64 crypto instructions, when available. | |
958 | ||
584fffc8 SS |
959 | config CRYPTO_SHA512 |
960 | tristate "SHA384 and SHA512 digest algorithms" | |
bd9d20db | 961 | select CRYPTO_HASH |
b9f535ff | 962 | help |
584fffc8 | 963 | SHA512 secure hash standard (DFIPS 180-2). |
b9f535ff | 964 | |
584fffc8 SS |
965 | This version of SHA implements a 512 bit hash with 256 bits of |
966 | security against collision attacks. | |
b9f535ff | 967 | |
584fffc8 SS |
968 | This code also includes SHA-384, a 384 bit hash with 192 bits |
969 | of security against collision attacks. | |
b9f535ff | 970 | |
efdb6f6e AK |
971 | config CRYPTO_SHA512_OCTEON |
972 | tristate "SHA384 and SHA512 digest algorithms (OCTEON)" | |
973 | depends on CPU_CAVIUM_OCTEON | |
974 | select CRYPTO_SHA512 | |
975 | select CRYPTO_HASH | |
976 | help | |
977 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
978 | using OCTEON crypto instructions, when available. | |
979 | ||
775e0c69 DM |
980 | config CRYPTO_SHA512_SPARC64 |
981 | tristate "SHA384 and SHA512 digest algorithm (SPARC64)" | |
982 | depends on SPARC64 | |
983 | select CRYPTO_SHA512 | |
984 | select CRYPTO_HASH | |
985 | help | |
986 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
987 | using sparc64 crypto instructions, when available. | |
988 | ||
53964b9e JG |
989 | config CRYPTO_SHA3 |
990 | tristate "SHA3 digest algorithm" | |
991 | select CRYPTO_HASH | |
992 | help | |
993 | SHA-3 secure hash standard (DFIPS 202). It's based on | |
994 | cryptographic sponge function family called Keccak. | |
995 | ||
996 | References: | |
997 | http://keccak.noekeon.org/ | |
998 | ||
4f0fc160 GBY |
999 | config CRYPTO_SM3 |
1000 | tristate "SM3 digest algorithm" | |
1001 | select CRYPTO_HASH | |
1002 | help | |
1003 | SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). | |
1004 | It is part of the Chinese Commercial Cryptography suite. | |
1005 | ||
1006 | References: | |
1007 | http://www.oscca.gov.cn/UpFile/20101222141857786.pdf | |
1008 | https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash | |
1009 | ||
fe18957e VC |
1010 | config CRYPTO_STREEBOG |
1011 | tristate "Streebog Hash Function" | |
1012 | select CRYPTO_HASH | |
1013 | help | |
1014 | Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian | |
1015 | cryptographic standard algorithms (called GOST algorithms). | |
1016 | This setting enables two hash algorithms with 256 and 512 bits output. | |
1017 | ||
1018 | References: | |
1019 | https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf | |
1020 | https://tools.ietf.org/html/rfc6986 | |
1021 | ||
584fffc8 SS |
1022 | config CRYPTO_WP512 |
1023 | tristate "Whirlpool digest algorithms" | |
4946510b | 1024 | select CRYPTO_HASH |
1da177e4 | 1025 | help |
584fffc8 | 1026 | Whirlpool hash algorithm 512, 384 and 256-bit hashes |
1da177e4 | 1027 | |
584fffc8 SS |
1028 | Whirlpool-512 is part of the NESSIE cryptographic primitives. |
1029 | Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard | |
1da177e4 LT |
1030 | |
1031 | See also: | |
6d8de74c | 1032 | <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> |
584fffc8 | 1033 | |
0e1227d3 | 1034 | config CRYPTO_GHASH_CLMUL_NI_INTEL |
8dfa20fc | 1035 | tristate "GHASH hash function (CLMUL-NI accelerated)" |
8af00860 | 1036 | depends on X86 && 64BIT |
0e1227d3 YH |
1037 | select CRYPTO_CRYPTD |
1038 | help | |
8dfa20fc EB |
1039 | This is the x86_64 CLMUL-NI accelerated implementation of |
1040 | GHASH, the hash function used in GCM (Galois/Counter mode). | |
0e1227d3 | 1041 | |
584fffc8 | 1042 | comment "Ciphers" |
1da177e4 LT |
1043 | |
1044 | config CRYPTO_AES | |
1045 | tristate "AES cipher algorithms" | |
cce9e06d | 1046 | select CRYPTO_ALGAPI |
5bb12d78 | 1047 | select CRYPTO_LIB_AES |
1da177e4 | 1048 | help |
584fffc8 | 1049 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
1da177e4 LT |
1050 | algorithm. |
1051 | ||
1052 | Rijndael appears to be consistently a very good performer in | |
584fffc8 SS |
1053 | both hardware and software across a wide range of computing |
1054 | environments regardless of its use in feedback or non-feedback | |
1055 | modes. Its key setup time is excellent, and its key agility is | |
1056 | good. Rijndael's very low memory requirements make it very well | |
1057 | suited for restricted-space environments, in which it also | |
1058 | demonstrates excellent performance. Rijndael's operations are | |
1059 | among the easiest to defend against power and timing attacks. | |
1da177e4 | 1060 | |
584fffc8 | 1061 | The AES specifies three key sizes: 128, 192 and 256 bits |
1da177e4 LT |
1062 | |
1063 | See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. | |
1064 | ||
b5e0b032 AB |
1065 | config CRYPTO_AES_TI |
1066 | tristate "Fixed time AES cipher" | |
1067 | select CRYPTO_ALGAPI | |
e59c1c98 | 1068 | select CRYPTO_LIB_AES |
b5e0b032 AB |
1069 | help |
1070 | This is a generic implementation of AES that attempts to eliminate | |
1071 | data dependent latencies as much as possible without affecting | |
1072 | performance too much. It is intended for use by the generic CCM | |
1073 | and GCM drivers, and other CTR or CMAC/XCBC based modes that rely | |
1074 | solely on encryption (although decryption is supported as well, but | |
1075 | with a more dramatic performance hit) | |
1076 | ||
1077 | Instead of using 16 lookup tables of 1 KB each, (8 for encryption and | |
1078 | 8 for decryption), this implementation only uses just two S-boxes of | |
1079 | 256 bytes each, and attempts to eliminate data dependent latencies by | |
1080 | prefetching the entire table into the cache at the start of each | |
0a6a40c2 EB |
1081 | block. Interrupts are also disabled to avoid races where cachelines |
1082 | are evicted when the CPU is interrupted to do something else. | |
b5e0b032 | 1083 | |
54b6a1bd YH |
1084 | config CRYPTO_AES_NI_INTEL |
1085 | tristate "AES cipher algorithms (AES-NI)" | |
8af00860 | 1086 | depends on X86 |
85671860 | 1087 | select CRYPTO_AEAD |
2c53fd11 | 1088 | select CRYPTO_LIB_AES |
54b6a1bd | 1089 | select CRYPTO_ALGAPI |
b95bba5d | 1090 | select CRYPTO_SKCIPHER |
85671860 | 1091 | select CRYPTO_SIMD |
54b6a1bd YH |
1092 | help |
1093 | Use Intel AES-NI instructions for AES algorithm. | |
1094 | ||
1095 | AES cipher algorithms (FIPS-197). AES uses the Rijndael | |
1096 | algorithm. | |
1097 | ||
1098 | Rijndael appears to be consistently a very good performer in | |
1099 | both hardware and software across a wide range of computing | |
1100 | environments regardless of its use in feedback or non-feedback | |
1101 | modes. Its key setup time is excellent, and its key agility is | |
584fffc8 SS |
1102 | good. Rijndael's very low memory requirements make it very well |
1103 | suited for restricted-space environments, in which it also | |
1104 | demonstrates excellent performance. Rijndael's operations are | |
1105 | among the easiest to defend against power and timing attacks. | |
a2a892a2 | 1106 | |
584fffc8 | 1107 | The AES specifies three key sizes: 128, 192 and 256 bits |
1da177e4 LT |
1108 | |
1109 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
1110 | ||
0d258efb MK |
1111 | In addition to AES cipher algorithm support, the acceleration |
1112 | for some popular block cipher mode is supported too, including | |
944585a6 | 1113 | ECB, CBC, LRW, XTS. The 64 bit version has additional |
0d258efb | 1114 | acceleration for CTR. |
2cf4ac8b | 1115 | |
9bf4852d DM |
1116 | config CRYPTO_AES_SPARC64 |
1117 | tristate "AES cipher algorithms (SPARC64)" | |
1118 | depends on SPARC64 | |
b95bba5d | 1119 | select CRYPTO_SKCIPHER |
9bf4852d DM |
1120 | help |
1121 | Use SPARC64 crypto opcodes for AES algorithm. | |
1122 | ||
1123 | AES cipher algorithms (FIPS-197). AES uses the Rijndael | |
1124 | algorithm. | |
1125 | ||
1126 | Rijndael appears to be consistently a very good performer in | |
1127 | both hardware and software across a wide range of computing | |
1128 | environments regardless of its use in feedback or non-feedback | |
1129 | modes. Its key setup time is excellent, and its key agility is | |
1130 | good. Rijndael's very low memory requirements make it very well | |
1131 | suited for restricted-space environments, in which it also | |
1132 | demonstrates excellent performance. Rijndael's operations are | |
1133 | among the easiest to defend against power and timing attacks. | |
1134 | ||
1135 | The AES specifies three key sizes: 128, 192 and 256 bits | |
1136 | ||
1137 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
1138 | ||
1139 | In addition to AES cipher algorithm support, the acceleration | |
1140 | for some popular block cipher mode is supported too, including | |
1141 | ECB and CBC. | |
1142 | ||
504c6143 MS |
1143 | config CRYPTO_AES_PPC_SPE |
1144 | tristate "AES cipher algorithms (PPC SPE)" | |
1145 | depends on PPC && SPE | |
b95bba5d | 1146 | select CRYPTO_SKCIPHER |
504c6143 MS |
1147 | help |
1148 | AES cipher algorithms (FIPS-197). Additionally the acceleration | |
1149 | for popular block cipher modes ECB, CBC, CTR and XTS is supported. | |
1150 | This module should only be used for low power (router) devices | |
1151 | without hardware AES acceleration (e.g. caam crypto). It reduces the | |
1152 | size of the AES tables from 16KB to 8KB + 256 bytes and mitigates | |
1153 | timining attacks. Nevertheless it might be not as secure as other | |
1154 | architecture specific assembler implementations that work on 1KB | |
1155 | tables or 256 bytes S-boxes. | |
1156 | ||
584fffc8 SS |
1157 | config CRYPTO_ANUBIS |
1158 | tristate "Anubis cipher algorithm" | |
1674aea5 | 1159 | depends on CRYPTO_USER_API_ENABLE_OBSOLETE |
584fffc8 SS |
1160 | select CRYPTO_ALGAPI |
1161 | help | |
1162 | Anubis cipher algorithm. | |
1163 | ||
1164 | Anubis is a variable key length cipher which can use keys from | |
1165 | 128 bits to 320 bits in length. It was evaluated as a entrant | |
1166 | in the NESSIE competition. | |
1167 | ||
1168 | See also: | |
6d8de74c JM |
1169 | <https://www.cosic.esat.kuleuven.be/nessie/reports/> |
1170 | <http://www.larc.usp.br/~pbarreto/AnubisPage.html> | |
584fffc8 SS |
1171 | |
1172 | config CRYPTO_ARC4 | |
1173 | tristate "ARC4 cipher algorithm" | |
9ace6771 | 1174 | depends on CRYPTO_USER_API_ENABLE_OBSOLETE |
b95bba5d | 1175 | select CRYPTO_SKCIPHER |
dc51f257 | 1176 | select CRYPTO_LIB_ARC4 |
584fffc8 SS |
1177 | help |
1178 | ARC4 cipher algorithm. | |
1179 | ||
1180 | ARC4 is a stream cipher using keys ranging from 8 bits to 2048 | |
1181 | bits in length. This algorithm is required for driver-based | |
1182 | WEP, but it should not be for other purposes because of the | |
1183 | weakness of the algorithm. | |
1184 | ||
1185 | config CRYPTO_BLOWFISH | |
1186 | tristate "Blowfish cipher algorithm" | |
1187 | select CRYPTO_ALGAPI | |
52ba867c | 1188 | select CRYPTO_BLOWFISH_COMMON |
584fffc8 SS |
1189 | help |
1190 | Blowfish cipher algorithm, by Bruce Schneier. | |
1191 | ||
1192 | This is a variable key length cipher which can use keys from 32 | |
1193 | bits to 448 bits in length. It's fast, simple and specifically | |
1194 | designed for use on "large microprocessors". | |
1195 | ||
1196 | See also: | |
9332a9e7 | 1197 | <https://www.schneier.com/blowfish.html> |
584fffc8 | 1198 | |
52ba867c JK |
1199 | config CRYPTO_BLOWFISH_COMMON |
1200 | tristate | |
1201 | help | |
1202 | Common parts of the Blowfish cipher algorithm shared by the | |
1203 | generic c and the assembler implementations. | |
1204 | ||
1205 | See also: | |
9332a9e7 | 1206 | <https://www.schneier.com/blowfish.html> |
52ba867c | 1207 | |
64b94cea JK |
1208 | config CRYPTO_BLOWFISH_X86_64 |
1209 | tristate "Blowfish cipher algorithm (x86_64)" | |
f21a7c19 | 1210 | depends on X86 && 64BIT |
b95bba5d | 1211 | select CRYPTO_SKCIPHER |
64b94cea | 1212 | select CRYPTO_BLOWFISH_COMMON |
c0a64926 | 1213 | imply CRYPTO_CTR |
64b94cea JK |
1214 | help |
1215 | Blowfish cipher algorithm (x86_64), by Bruce Schneier. | |
1216 | ||
1217 | This is a variable key length cipher which can use keys from 32 | |
1218 | bits to 448 bits in length. It's fast, simple and specifically | |
1219 | designed for use on "large microprocessors". | |
1220 | ||
1221 | See also: | |
9332a9e7 | 1222 | <https://www.schneier.com/blowfish.html> |
64b94cea | 1223 | |
584fffc8 SS |
1224 | config CRYPTO_CAMELLIA |
1225 | tristate "Camellia cipher algorithms" | |
584fffc8 SS |
1226 | select CRYPTO_ALGAPI |
1227 | help | |
1228 | Camellia cipher algorithms module. | |
1229 | ||
1230 | Camellia is a symmetric key block cipher developed jointly | |
1231 | at NTT and Mitsubishi Electric Corporation. | |
1232 | ||
1233 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1234 | ||
1235 | See also: | |
1236 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1237 | ||
0b95ec56 JK |
1238 | config CRYPTO_CAMELLIA_X86_64 |
1239 | tristate "Camellia cipher algorithm (x86_64)" | |
f21a7c19 | 1240 | depends on X86 && 64BIT |
b95bba5d | 1241 | select CRYPTO_SKCIPHER |
a1f91ecf | 1242 | imply CRYPTO_CTR |
0b95ec56 JK |
1243 | help |
1244 | Camellia cipher algorithm module (x86_64). | |
1245 | ||
1246 | Camellia is a symmetric key block cipher developed jointly | |
1247 | at NTT and Mitsubishi Electric Corporation. | |
1248 | ||
1249 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1250 | ||
1251 | See also: | |
d9b1d2e7 JK |
1252 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
1253 | ||
1254 | config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 | |
1255 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" | |
1256 | depends on X86 && 64BIT | |
b95bba5d | 1257 | select CRYPTO_SKCIPHER |
d9b1d2e7 | 1258 | select CRYPTO_CAMELLIA_X86_64 |
44893bc2 | 1259 | select CRYPTO_SIMD |
55a7e88f | 1260 | imply CRYPTO_XTS |
d9b1d2e7 JK |
1261 | help |
1262 | Camellia cipher algorithm module (x86_64/AES-NI/AVX). | |
1263 | ||
1264 | Camellia is a symmetric key block cipher developed jointly | |
1265 | at NTT and Mitsubishi Electric Corporation. | |
1266 | ||
1267 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1268 | ||
1269 | See also: | |
0b95ec56 JK |
1270 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
1271 | ||
f3f935a7 JK |
1272 | config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 |
1273 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" | |
1274 | depends on X86 && 64BIT | |
f3f935a7 | 1275 | select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 |
f3f935a7 JK |
1276 | help |
1277 | Camellia cipher algorithm module (x86_64/AES-NI/AVX2). | |
1278 | ||
1279 | Camellia is a symmetric key block cipher developed jointly | |
1280 | at NTT and Mitsubishi Electric Corporation. | |
1281 | ||
1282 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1283 | ||
1284 | See also: | |
1285 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1286 | ||
81658ad0 DM |
1287 | config CRYPTO_CAMELLIA_SPARC64 |
1288 | tristate "Camellia cipher algorithm (SPARC64)" | |
1289 | depends on SPARC64 | |
81658ad0 | 1290 | select CRYPTO_ALGAPI |
b95bba5d | 1291 | select CRYPTO_SKCIPHER |
81658ad0 DM |
1292 | help |
1293 | Camellia cipher algorithm module (SPARC64). | |
1294 | ||
1295 | Camellia is a symmetric key block cipher developed jointly | |
1296 | at NTT and Mitsubishi Electric Corporation. | |
1297 | ||
1298 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1299 | ||
1300 | See also: | |
1301 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1302 | ||
044ab525 JK |
1303 | config CRYPTO_CAST_COMMON |
1304 | tristate | |
1305 | help | |
1306 | Common parts of the CAST cipher algorithms shared by the | |
1307 | generic c and the assembler implementations. | |
1308 | ||
1da177e4 LT |
1309 | config CRYPTO_CAST5 |
1310 | tristate "CAST5 (CAST-128) cipher algorithm" | |
cce9e06d | 1311 | select CRYPTO_ALGAPI |
044ab525 | 1312 | select CRYPTO_CAST_COMMON |
1da177e4 LT |
1313 | help |
1314 | The CAST5 encryption algorithm (synonymous with CAST-128) is | |
1315 | described in RFC2144. | |
1316 | ||
4d6d6a2c JG |
1317 | config CRYPTO_CAST5_AVX_X86_64 |
1318 | tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" | |
1319 | depends on X86 && 64BIT | |
b95bba5d | 1320 | select CRYPTO_SKCIPHER |
4d6d6a2c | 1321 | select CRYPTO_CAST5 |
1e63183a EB |
1322 | select CRYPTO_CAST_COMMON |
1323 | select CRYPTO_SIMD | |
e2d60e2f | 1324 | imply CRYPTO_CTR |
4d6d6a2c JG |
1325 | help |
1326 | The CAST5 encryption algorithm (synonymous with CAST-128) is | |
1327 | described in RFC2144. | |
1328 | ||
1329 | This module provides the Cast5 cipher algorithm that processes | |
1330 | sixteen blocks parallel using the AVX instruction set. | |
1331 | ||
1da177e4 LT |
1332 | config CRYPTO_CAST6 |
1333 | tristate "CAST6 (CAST-256) cipher algorithm" | |
cce9e06d | 1334 | select CRYPTO_ALGAPI |
044ab525 | 1335 | select CRYPTO_CAST_COMMON |
1da177e4 LT |
1336 | help |
1337 | The CAST6 encryption algorithm (synonymous with CAST-256) is | |
1338 | described in RFC2612. | |
1339 | ||
4ea1277d JG |
1340 | config CRYPTO_CAST6_AVX_X86_64 |
1341 | tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" | |
1342 | depends on X86 && 64BIT | |
b95bba5d | 1343 | select CRYPTO_SKCIPHER |
4ea1277d | 1344 | select CRYPTO_CAST6 |
4bd96924 | 1345 | select CRYPTO_CAST_COMMON |
4bd96924 | 1346 | select CRYPTO_SIMD |
2cc0fedb | 1347 | imply CRYPTO_XTS |
7a6623cc | 1348 | imply CRYPTO_CTR |
4ea1277d JG |
1349 | help |
1350 | The CAST6 encryption algorithm (synonymous with CAST-256) is | |
1351 | described in RFC2612. | |
1352 | ||
1353 | This module provides the Cast6 cipher algorithm that processes | |
1354 | eight blocks parallel using the AVX instruction set. | |
1355 | ||
584fffc8 SS |
1356 | config CRYPTO_DES |
1357 | tristate "DES and Triple DES EDE cipher algorithms" | |
cce9e06d | 1358 | select CRYPTO_ALGAPI |
04007b0e | 1359 | select CRYPTO_LIB_DES |
1da177e4 | 1360 | help |
584fffc8 | 1361 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). |
fb4f10ed | 1362 | |
c5aac2df DM |
1363 | config CRYPTO_DES_SPARC64 |
1364 | tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" | |
97da37b3 | 1365 | depends on SPARC64 |
c5aac2df | 1366 | select CRYPTO_ALGAPI |
04007b0e | 1367 | select CRYPTO_LIB_DES |
b95bba5d | 1368 | select CRYPTO_SKCIPHER |
c5aac2df DM |
1369 | help |
1370 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), | |
1371 | optimized using SPARC64 crypto opcodes. | |
1372 | ||
6574e6c6 JK |
1373 | config CRYPTO_DES3_EDE_X86_64 |
1374 | tristate "Triple DES EDE cipher algorithm (x86-64)" | |
1375 | depends on X86 && 64BIT | |
b95bba5d | 1376 | select CRYPTO_SKCIPHER |
04007b0e | 1377 | select CRYPTO_LIB_DES |
768db5fe | 1378 | imply CRYPTO_CTR |
6574e6c6 JK |
1379 | help |
1380 | Triple DES EDE (FIPS 46-3) algorithm. | |
1381 | ||
1382 | This module provides implementation of the Triple DES EDE cipher | |
1383 | algorithm that is optimized for x86-64 processors. Two versions of | |
1384 | algorithm are provided; regular processing one input block and | |
1385 | one that processes three blocks parallel. | |
1386 | ||
584fffc8 SS |
1387 | config CRYPTO_FCRYPT |
1388 | tristate "FCrypt cipher algorithm" | |
cce9e06d | 1389 | select CRYPTO_ALGAPI |
b95bba5d | 1390 | select CRYPTO_SKCIPHER |
1da177e4 | 1391 | help |
584fffc8 | 1392 | FCrypt algorithm used by RxRPC. |
1da177e4 LT |
1393 | |
1394 | config CRYPTO_KHAZAD | |
1395 | tristate "Khazad cipher algorithm" | |
1674aea5 | 1396 | depends on CRYPTO_USER_API_ENABLE_OBSOLETE |
cce9e06d | 1397 | select CRYPTO_ALGAPI |
1da177e4 LT |
1398 | help |
1399 | Khazad cipher algorithm. | |
1400 | ||
1401 | Khazad was a finalist in the initial NESSIE competition. It is | |
1402 | an algorithm optimized for 64-bit processors with good performance | |
1403 | on 32-bit processors. Khazad uses an 128 bit key size. | |
1404 | ||
1405 | See also: | |
6d8de74c | 1406 | <http://www.larc.usp.br/~pbarreto/KhazadPage.html> |
1da177e4 | 1407 | |
c08d0e64 | 1408 | config CRYPTO_CHACHA20 |
aa762409 | 1409 | tristate "ChaCha stream cipher algorithms" |
5fb8ef25 | 1410 | select CRYPTO_LIB_CHACHA_GENERIC |
b95bba5d | 1411 | select CRYPTO_SKCIPHER |
c08d0e64 | 1412 | help |
aa762409 | 1413 | The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. |
c08d0e64 MW |
1414 | |
1415 | ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. | |
1416 | Bernstein and further specified in RFC7539 for use in IETF protocols. | |
de61d7ae | 1417 | This is the portable C implementation of ChaCha20. See also: |
9332a9e7 | 1418 | <https://cr.yp.to/chacha/chacha-20080128.pdf> |
c08d0e64 | 1419 | |
de61d7ae EB |
1420 | XChaCha20 is the application of the XSalsa20 construction to ChaCha20 |
1421 | rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length | |
1422 | from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, | |
1423 | while provably retaining ChaCha20's security. See also: | |
1424 | <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> | |
1425 | ||
aa762409 EB |
1426 | XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly |
1427 | reduced security margin but increased performance. It can be needed | |
1428 | in some performance-sensitive scenarios. | |
1429 | ||
c9320b6d | 1430 | config CRYPTO_CHACHA20_X86_64 |
4af78261 | 1431 | tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" |
c9320b6d | 1432 | depends on X86 && 64BIT |
b95bba5d | 1433 | select CRYPTO_SKCIPHER |
28e8d89b | 1434 | select CRYPTO_LIB_CHACHA_GENERIC |
84e03fa3 | 1435 | select CRYPTO_ARCH_HAVE_LIB_CHACHA |
c9320b6d | 1436 | help |
7a507d62 EB |
1437 | SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, |
1438 | XChaCha20, and XChaCha12 stream ciphers. | |
c9320b6d | 1439 | |
3a2f58f3 AB |
1440 | config CRYPTO_CHACHA_MIPS |
1441 | tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" | |
1442 | depends on CPU_MIPS32_R2 | |
660eda8d | 1443 | select CRYPTO_SKCIPHER |
3a2f58f3 AB |
1444 | select CRYPTO_ARCH_HAVE_LIB_CHACHA |
1445 | ||
584fffc8 SS |
1446 | config CRYPTO_SEED |
1447 | tristate "SEED cipher algorithm" | |
1674aea5 | 1448 | depends on CRYPTO_USER_API_ENABLE_OBSOLETE |
cce9e06d | 1449 | select CRYPTO_ALGAPI |
1da177e4 | 1450 | help |
584fffc8 | 1451 | SEED cipher algorithm (RFC4269). |
1da177e4 | 1452 | |
584fffc8 SS |
1453 | SEED is a 128-bit symmetric key block cipher that has been |
1454 | developed by KISA (Korea Information Security Agency) as a | |
1455 | national standard encryption algorithm of the Republic of Korea. | |
1456 | It is a 16 round block cipher with the key size of 128 bit. | |
1457 | ||
1458 | See also: | |
1459 | <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> | |
1460 | ||
1461 | config CRYPTO_SERPENT | |
1462 | tristate "Serpent cipher algorithm" | |
cce9e06d | 1463 | select CRYPTO_ALGAPI |
1da177e4 | 1464 | help |
584fffc8 | 1465 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
1da177e4 | 1466 | |
584fffc8 | 1467 | Keys are allowed to be from 0 to 256 bits in length, in steps |
784506a1 | 1468 | of 8 bits. |
584fffc8 SS |
1469 | |
1470 | See also: | |
9332a9e7 | 1471 | <https://www.cl.cam.ac.uk/~rja14/serpent.html> |
584fffc8 | 1472 | |
937c30d7 JK |
1473 | config CRYPTO_SERPENT_SSE2_X86_64 |
1474 | tristate "Serpent cipher algorithm (x86_64/SSE2)" | |
1475 | depends on X86 && 64BIT | |
b95bba5d | 1476 | select CRYPTO_SKCIPHER |
937c30d7 | 1477 | select CRYPTO_SERPENT |
e0f409dc | 1478 | select CRYPTO_SIMD |
2e9440ae | 1479 | imply CRYPTO_CTR |
937c30d7 JK |
1480 | help |
1481 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1482 | ||
1483 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1484 | of 8 bits. | |
1485 | ||
1e6232f8 | 1486 | This module provides Serpent cipher algorithm that processes eight |
937c30d7 JK |
1487 | blocks parallel using SSE2 instruction set. |
1488 | ||
1489 | See also: | |
9332a9e7 | 1490 | <https://www.cl.cam.ac.uk/~rja14/serpent.html> |
937c30d7 | 1491 | |
251496db JK |
1492 | config CRYPTO_SERPENT_SSE2_586 |
1493 | tristate "Serpent cipher algorithm (i586/SSE2)" | |
1494 | depends on X86 && !64BIT | |
b95bba5d | 1495 | select CRYPTO_SKCIPHER |
251496db | 1496 | select CRYPTO_SERPENT |
e0f409dc | 1497 | select CRYPTO_SIMD |
2e9440ae | 1498 | imply CRYPTO_CTR |
251496db JK |
1499 | help |
1500 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1501 | ||
1502 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1503 | of 8 bits. | |
1504 | ||
1505 | This module provides Serpent cipher algorithm that processes four | |
1506 | blocks parallel using SSE2 instruction set. | |
1507 | ||
1508 | See also: | |
9332a9e7 | 1509 | <https://www.cl.cam.ac.uk/~rja14/serpent.html> |
7efe4076 JG |
1510 | |
1511 | config CRYPTO_SERPENT_AVX_X86_64 | |
1512 | tristate "Serpent cipher algorithm (x86_64/AVX)" | |
1513 | depends on X86 && 64BIT | |
b95bba5d | 1514 | select CRYPTO_SKCIPHER |
7efe4076 | 1515 | select CRYPTO_SERPENT |
e16bf974 | 1516 | select CRYPTO_SIMD |
9ec0af8a | 1517 | imply CRYPTO_XTS |
2e9440ae | 1518 | imply CRYPTO_CTR |
7efe4076 JG |
1519 | help |
1520 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1521 | ||
1522 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1523 | of 8 bits. | |
1524 | ||
1525 | This module provides the Serpent cipher algorithm that processes | |
1526 | eight blocks parallel using the AVX instruction set. | |
1527 | ||
1528 | See also: | |
9332a9e7 | 1529 | <https://www.cl.cam.ac.uk/~rja14/serpent.html> |
251496db | 1530 | |
56d76c96 JK |
1531 | config CRYPTO_SERPENT_AVX2_X86_64 |
1532 | tristate "Serpent cipher algorithm (x86_64/AVX2)" | |
1533 | depends on X86 && 64BIT | |
56d76c96 | 1534 | select CRYPTO_SERPENT_AVX_X86_64 |
56d76c96 JK |
1535 | help |
1536 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1537 | ||
1538 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1539 | of 8 bits. | |
1540 | ||
1541 | This module provides Serpent cipher algorithm that processes 16 | |
1542 | blocks parallel using AVX2 instruction set. | |
1543 | ||
1544 | See also: | |
9332a9e7 | 1545 | <https://www.cl.cam.ac.uk/~rja14/serpent.html> |
56d76c96 | 1546 | |
747c8ce4 GBY |
1547 | config CRYPTO_SM4 |
1548 | tristate "SM4 cipher algorithm" | |
1549 | select CRYPTO_ALGAPI | |
1550 | help | |
1551 | SM4 cipher algorithms (OSCCA GB/T 32907-2016). | |
1552 | ||
1553 | SM4 (GBT.32907-2016) is a cryptographic standard issued by the | |
1554 | Organization of State Commercial Administration of China (OSCCA) | |
1555 | as an authorized cryptographic algorithms for the use within China. | |
1556 | ||
1557 | SMS4 was originally created for use in protecting wireless | |
1558 | networks, and is mandated in the Chinese National Standard for | |
1559 | Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) | |
1560 | (GB.15629.11-2003). | |
1561 | ||
1562 | The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and | |
1563 | standardized through TC 260 of the Standardization Administration | |
1564 | of the People's Republic of China (SAC). | |
1565 | ||
1566 | The input, output, and key of SMS4 are each 128 bits. | |
1567 | ||
1568 | See also: <https://eprint.iacr.org/2008/329.pdf> | |
1569 | ||
1570 | If unsure, say N. | |
1571 | ||
584fffc8 SS |
1572 | config CRYPTO_TEA |
1573 | tristate "TEA, XTEA and XETA cipher algorithms" | |
1674aea5 | 1574 | depends on CRYPTO_USER_API_ENABLE_OBSOLETE |
cce9e06d | 1575 | select CRYPTO_ALGAPI |
1da177e4 | 1576 | help |
584fffc8 | 1577 | TEA cipher algorithm. |
1da177e4 | 1578 | |
584fffc8 SS |
1579 | Tiny Encryption Algorithm is a simple cipher that uses |
1580 | many rounds for security. It is very fast and uses | |
1581 | little memory. | |
1582 | ||
1583 | Xtendend Tiny Encryption Algorithm is a modification to | |
1584 | the TEA algorithm to address a potential key weakness | |
1585 | in the TEA algorithm. | |
1586 | ||
1587 | Xtendend Encryption Tiny Algorithm is a mis-implementation | |
1588 | of the XTEA algorithm for compatibility purposes. | |
1589 | ||
1590 | config CRYPTO_TWOFISH | |
1591 | tristate "Twofish cipher algorithm" | |
04ac7db3 | 1592 | select CRYPTO_ALGAPI |
584fffc8 | 1593 | select CRYPTO_TWOFISH_COMMON |
04ac7db3 | 1594 | help |
584fffc8 | 1595 | Twofish cipher algorithm. |
04ac7db3 | 1596 | |
584fffc8 SS |
1597 | Twofish was submitted as an AES (Advanced Encryption Standard) |
1598 | candidate cipher by researchers at CounterPane Systems. It is a | |
1599 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1600 | bits. | |
04ac7db3 | 1601 | |
584fffc8 | 1602 | See also: |
9332a9e7 | 1603 | <https://www.schneier.com/twofish.html> |
584fffc8 SS |
1604 | |
1605 | config CRYPTO_TWOFISH_COMMON | |
1606 | tristate | |
1607 | help | |
1608 | Common parts of the Twofish cipher algorithm shared by the | |
1609 | generic c and the assembler implementations. | |
1610 | ||
1611 | config CRYPTO_TWOFISH_586 | |
1612 | tristate "Twofish cipher algorithms (i586)" | |
1613 | depends on (X86 || UML_X86) && !64BIT | |
1614 | select CRYPTO_ALGAPI | |
1615 | select CRYPTO_TWOFISH_COMMON | |
f43dcaf2 | 1616 | imply CRYPTO_CTR |
584fffc8 SS |
1617 | help |
1618 | Twofish cipher algorithm. | |
1619 | ||
1620 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1621 | candidate cipher by researchers at CounterPane Systems. It is a | |
1622 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1623 | bits. | |
04ac7db3 NT |
1624 | |
1625 | See also: | |
9332a9e7 | 1626 | <https://www.schneier.com/twofish.html> |
04ac7db3 | 1627 | |
584fffc8 SS |
1628 | config CRYPTO_TWOFISH_X86_64 |
1629 | tristate "Twofish cipher algorithm (x86_64)" | |
1630 | depends on (X86 || UML_X86) && 64BIT | |
cce9e06d | 1631 | select CRYPTO_ALGAPI |
584fffc8 | 1632 | select CRYPTO_TWOFISH_COMMON |
f43dcaf2 | 1633 | imply CRYPTO_CTR |
1da177e4 | 1634 | help |
584fffc8 | 1635 | Twofish cipher algorithm (x86_64). |
1da177e4 | 1636 | |
584fffc8 SS |
1637 | Twofish was submitted as an AES (Advanced Encryption Standard) |
1638 | candidate cipher by researchers at CounterPane Systems. It is a | |
1639 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1640 | bits. | |
1641 | ||
1642 | See also: | |
9332a9e7 | 1643 | <https://www.schneier.com/twofish.html> |
584fffc8 | 1644 | |
8280daad JK |
1645 | config CRYPTO_TWOFISH_X86_64_3WAY |
1646 | tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" | |
f21a7c19 | 1647 | depends on X86 && 64BIT |
b95bba5d | 1648 | select CRYPTO_SKCIPHER |
8280daad JK |
1649 | select CRYPTO_TWOFISH_COMMON |
1650 | select CRYPTO_TWOFISH_X86_64 | |
1651 | help | |
1652 | Twofish cipher algorithm (x86_64, 3-way parallel). | |
1653 | ||
1654 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1655 | candidate cipher by researchers at CounterPane Systems. It is a | |
1656 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1657 | bits. | |
1658 | ||
1659 | This module provides Twofish cipher algorithm that processes three | |
1660 | blocks parallel, utilizing resources of out-of-order CPUs better. | |
1661 | ||
1662 | See also: | |
9332a9e7 | 1663 | <https://www.schneier.com/twofish.html> |
8280daad | 1664 | |
107778b5 JG |
1665 | config CRYPTO_TWOFISH_AVX_X86_64 |
1666 | tristate "Twofish cipher algorithm (x86_64/AVX)" | |
1667 | depends on X86 && 64BIT | |
b95bba5d | 1668 | select CRYPTO_SKCIPHER |
0e6ab46d | 1669 | select CRYPTO_SIMD |
107778b5 JG |
1670 | select CRYPTO_TWOFISH_COMMON |
1671 | select CRYPTO_TWOFISH_X86_64 | |
1672 | select CRYPTO_TWOFISH_X86_64_3WAY | |
da4df93a | 1673 | imply CRYPTO_XTS |
107778b5 JG |
1674 | help |
1675 | Twofish cipher algorithm (x86_64/AVX). | |
1676 | ||
1677 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1678 | candidate cipher by researchers at CounterPane Systems. It is a | |
1679 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1680 | bits. | |
1681 | ||
1682 | This module provides the Twofish cipher algorithm that processes | |
1683 | eight blocks parallel using the AVX Instruction Set. | |
1684 | ||
1685 | See also: | |
9332a9e7 | 1686 | <https://www.schneier.com/twofish.html> |
107778b5 | 1687 | |
584fffc8 SS |
1688 | comment "Compression" |
1689 | ||
1690 | config CRYPTO_DEFLATE | |
1691 | tristate "Deflate compression algorithm" | |
1692 | select CRYPTO_ALGAPI | |
f6ded09d | 1693 | select CRYPTO_ACOMP2 |
584fffc8 SS |
1694 | select ZLIB_INFLATE |
1695 | select ZLIB_DEFLATE | |
3c09f17c | 1696 | help |
584fffc8 SS |
1697 | This is the Deflate algorithm (RFC1951), specified for use in |
1698 | IPSec with the IPCOMP protocol (RFC3173, RFC2394). | |
1699 | ||
1700 | You will most probably want this if using IPSec. | |
3c09f17c | 1701 | |
0b77abb3 ZS |
1702 | config CRYPTO_LZO |
1703 | tristate "LZO compression algorithm" | |
1704 | select CRYPTO_ALGAPI | |
ac9d2c4b | 1705 | select CRYPTO_ACOMP2 |
0b77abb3 ZS |
1706 | select LZO_COMPRESS |
1707 | select LZO_DECOMPRESS | |
1708 | help | |
1709 | This is the LZO algorithm. | |
1710 | ||
35a1fc18 SJ |
1711 | config CRYPTO_842 |
1712 | tristate "842 compression algorithm" | |
2062c5b6 | 1713 | select CRYPTO_ALGAPI |
6a8de3ae | 1714 | select CRYPTO_ACOMP2 |
2062c5b6 DS |
1715 | select 842_COMPRESS |
1716 | select 842_DECOMPRESS | |
35a1fc18 SJ |
1717 | help |
1718 | This is the 842 algorithm. | |
0ea8530d CM |
1719 | |
1720 | config CRYPTO_LZ4 | |
1721 | tristate "LZ4 compression algorithm" | |
1722 | select CRYPTO_ALGAPI | |
8cd9330e | 1723 | select CRYPTO_ACOMP2 |
0ea8530d CM |
1724 | select LZ4_COMPRESS |
1725 | select LZ4_DECOMPRESS | |
1726 | help | |
1727 | This is the LZ4 algorithm. | |
1728 | ||
1729 | config CRYPTO_LZ4HC | |
1730 | tristate "LZ4HC compression algorithm" | |
1731 | select CRYPTO_ALGAPI | |
91d53d96 | 1732 | select CRYPTO_ACOMP2 |
0ea8530d CM |
1733 | select LZ4HC_COMPRESS |
1734 | select LZ4_DECOMPRESS | |
1735 | help | |
1736 | This is the LZ4 high compression mode algorithm. | |
35a1fc18 | 1737 | |
d28fc3db NT |
1738 | config CRYPTO_ZSTD |
1739 | tristate "Zstd compression algorithm" | |
1740 | select CRYPTO_ALGAPI | |
1741 | select CRYPTO_ACOMP2 | |
1742 | select ZSTD_COMPRESS | |
1743 | select ZSTD_DECOMPRESS | |
1744 | help | |
1745 | This is the zstd algorithm. | |
1746 | ||
17f0f4a4 NH |
1747 | comment "Random Number Generation" |
1748 | ||
1749 | config CRYPTO_ANSI_CPRNG | |
1750 | tristate "Pseudo Random Number Generation for Cryptographic modules" | |
1751 | select CRYPTO_AES | |
1752 | select CRYPTO_RNG | |
17f0f4a4 NH |
1753 | help |
1754 | This option enables the generic pseudo random number generator | |
1755 | for cryptographic modules. Uses the Algorithm specified in | |
7dd607e8 JK |
1756 | ANSI X9.31 A.2.4. Note that this option must be enabled if |
1757 | CRYPTO_FIPS is selected | |
17f0f4a4 | 1758 | |
f2c89a10 | 1759 | menuconfig CRYPTO_DRBG_MENU |
419090c6 | 1760 | tristate "NIST SP800-90A DRBG" |
419090c6 SM |
1761 | help |
1762 | NIST SP800-90A compliant DRBG. In the following submenu, one or | |
1763 | more of the DRBG types must be selected. | |
1764 | ||
f2c89a10 | 1765 | if CRYPTO_DRBG_MENU |
419090c6 SM |
1766 | |
1767 | config CRYPTO_DRBG_HMAC | |
401e4238 | 1768 | bool |
419090c6 | 1769 | default y |
419090c6 | 1770 | select CRYPTO_HMAC |
826775bb | 1771 | select CRYPTO_SHA256 |
419090c6 SM |
1772 | |
1773 | config CRYPTO_DRBG_HASH | |
1774 | bool "Enable Hash DRBG" | |
826775bb | 1775 | select CRYPTO_SHA256 |
419090c6 SM |
1776 | help |
1777 | Enable the Hash DRBG variant as defined in NIST SP800-90A. | |
1778 | ||
1779 | config CRYPTO_DRBG_CTR | |
1780 | bool "Enable CTR DRBG" | |
419090c6 | 1781 | select CRYPTO_AES |
d6fc1a45 | 1782 | select CRYPTO_CTR |
419090c6 SM |
1783 | help |
1784 | Enable the CTR DRBG variant as defined in NIST SP800-90A. | |
1785 | ||
f2c89a10 HX |
1786 | config CRYPTO_DRBG |
1787 | tristate | |
401e4238 | 1788 | default CRYPTO_DRBG_MENU |
f2c89a10 | 1789 | select CRYPTO_RNG |
bb5530e4 | 1790 | select CRYPTO_JITTERENTROPY |
f2c89a10 HX |
1791 | |
1792 | endif # if CRYPTO_DRBG_MENU | |
419090c6 | 1793 | |
bb5530e4 SM |
1794 | config CRYPTO_JITTERENTROPY |
1795 | tristate "Jitterentropy Non-Deterministic Random Number Generator" | |
2f313e02 | 1796 | select CRYPTO_RNG |
bb5530e4 SM |
1797 | help |
1798 | The Jitterentropy RNG is a noise that is intended | |
1799 | to provide seed to another RNG. The RNG does not | |
1800 | perform any cryptographic whitening of the generated | |
1801 | random numbers. This Jitterentropy RNG registers with | |
1802 | the kernel crypto API and can be used by any caller. | |
1803 | ||
03c8efc1 HX |
1804 | config CRYPTO_USER_API |
1805 | tristate | |
1806 | ||
fe869cdb HX |
1807 | config CRYPTO_USER_API_HASH |
1808 | tristate "User-space interface for hash algorithms" | |
7451708f | 1809 | depends on NET |
fe869cdb HX |
1810 | select CRYPTO_HASH |
1811 | select CRYPTO_USER_API | |
1812 | help | |
1813 | This option enables the user-spaces interface for hash | |
1814 | algorithms. | |
1815 | ||
8ff59090 HX |
1816 | config CRYPTO_USER_API_SKCIPHER |
1817 | tristate "User-space interface for symmetric key cipher algorithms" | |
7451708f | 1818 | depends on NET |
b95bba5d | 1819 | select CRYPTO_SKCIPHER |
8ff59090 HX |
1820 | select CRYPTO_USER_API |
1821 | help | |
1822 | This option enables the user-spaces interface for symmetric | |
1823 | key cipher algorithms. | |
1824 | ||
2f375538 SM |
1825 | config CRYPTO_USER_API_RNG |
1826 | tristate "User-space interface for random number generator algorithms" | |
1827 | depends on NET | |
1828 | select CRYPTO_RNG | |
1829 | select CRYPTO_USER_API | |
1830 | help | |
1831 | This option enables the user-spaces interface for random | |
1832 | number generator algorithms. | |
1833 | ||
77ebdabe EP |
1834 | config CRYPTO_USER_API_RNG_CAVP |
1835 | bool "Enable CAVP testing of DRBG" | |
1836 | depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG | |
1837 | help | |
1838 | This option enables extra API for CAVP testing via the user-space | |
1839 | interface: resetting of DRBG entropy, and providing Additional Data. | |
1840 | This should only be enabled for CAVP testing. You should say | |
1841 | no unless you know what this is. | |
1842 | ||
b64a2d95 HX |
1843 | config CRYPTO_USER_API_AEAD |
1844 | tristate "User-space interface for AEAD cipher algorithms" | |
1845 | depends on NET | |
1846 | select CRYPTO_AEAD | |
b95bba5d | 1847 | select CRYPTO_SKCIPHER |
72548b09 | 1848 | select CRYPTO_NULL |
b64a2d95 HX |
1849 | select CRYPTO_USER_API |
1850 | help | |
1851 | This option enables the user-spaces interface for AEAD | |
1852 | cipher algorithms. | |
1853 | ||
9ace6771 AB |
1854 | config CRYPTO_USER_API_ENABLE_OBSOLETE |
1855 | bool "Enable obsolete cryptographic algorithms for userspace" | |
1856 | depends on CRYPTO_USER_API | |
1857 | default y | |
1858 | help | |
1859 | Allow obsolete cryptographic algorithms to be selected that have | |
1860 | already been phased out from internal use by the kernel, and are | |
1861 | only useful for userspace clients that still rely on them. | |
1862 | ||
cac5818c CL |
1863 | config CRYPTO_STATS |
1864 | bool "Crypto usage statistics for User-space" | |
a6a31385 | 1865 | depends on CRYPTO_USER |
cac5818c CL |
1866 | help |
1867 | This option enables the gathering of crypto stats. | |
1868 | This will collect: | |
1869 | - encrypt/decrypt size and numbers of symmeric operations | |
1870 | - compress/decompress size and numbers of compress operations | |
1871 | - size and numbers of hash operations | |
1872 | - encrypt/decrypt/sign/verify numbers for asymmetric operations | |
1873 | - generate/seed numbers for rng operations | |
1874 | ||
ee08997f DK |
1875 | config CRYPTO_HASH_INFO |
1876 | bool | |
1877 | ||
746b2e02 | 1878 | source "lib/crypto/Kconfig" |
1da177e4 | 1879 | source "drivers/crypto/Kconfig" |
8636a1f9 MY |
1880 | source "crypto/asymmetric_keys/Kconfig" |
1881 | source "certs/Kconfig" | |
1da177e4 | 1882 | |
cce9e06d | 1883 | endif # if CRYPTO |