]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | # SPDX-License-Identifier: GPL-2.0 |
685784aa DW |
2 | # |
3 | # Generic algorithms support | |
4 | # | |
5 | config XOR_BLOCKS | |
6 | tristate | |
7 | ||
1da177e4 | 8 | # |
9bc89cd8 | 9 | # async_tx api: hardware offloaded memory transfer/transform support |
1da177e4 | 10 | # |
9bc89cd8 | 11 | source "crypto/async_tx/Kconfig" |
1da177e4 | 12 | |
9bc89cd8 DW |
13 | # |
14 | # Cryptographic API Configuration | |
15 | # | |
2e290f43 | 16 | menuconfig CRYPTO |
c3715cb9 | 17 | tristate "Cryptographic API" |
1da177e4 LT |
18 | help |
19 | This option provides the core Cryptographic API. | |
20 | ||
cce9e06d HX |
21 | if CRYPTO |
22 | ||
584fffc8 SS |
23 | comment "Crypto core or helper" |
24 | ||
ccb778e1 NH |
25 | config CRYPTO_FIPS |
26 | bool "FIPS 200 compliance" | |
f2c89a10 | 27 | depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS |
1f696097 | 28 | depends on (MODULE_SIG || !MODULES) |
ccb778e1 NH |
29 | help |
30 | This options enables the fips boot option which is | |
31 | required if you want to system to operate in a FIPS 200 | |
32 | certification. You should say no unless you know what | |
e84c5480 | 33 | this is. |
ccb778e1 | 34 | |
cce9e06d HX |
35 | config CRYPTO_ALGAPI |
36 | tristate | |
6a0fcbb4 | 37 | select CRYPTO_ALGAPI2 |
cce9e06d HX |
38 | help |
39 | This option provides the API for cryptographic algorithms. | |
40 | ||
6a0fcbb4 HX |
41 | config CRYPTO_ALGAPI2 |
42 | tristate | |
43 | ||
1ae97820 HX |
44 | config CRYPTO_AEAD |
45 | tristate | |
6a0fcbb4 | 46 | select CRYPTO_AEAD2 |
1ae97820 HX |
47 | select CRYPTO_ALGAPI |
48 | ||
6a0fcbb4 HX |
49 | config CRYPTO_AEAD2 |
50 | tristate | |
51 | select CRYPTO_ALGAPI2 | |
149a3971 HX |
52 | select CRYPTO_NULL2 |
53 | select CRYPTO_RNG2 | |
6a0fcbb4 | 54 | |
5cde0af2 HX |
55 | config CRYPTO_BLKCIPHER |
56 | tristate | |
6a0fcbb4 | 57 | select CRYPTO_BLKCIPHER2 |
5cde0af2 | 58 | select CRYPTO_ALGAPI |
6a0fcbb4 HX |
59 | |
60 | config CRYPTO_BLKCIPHER2 | |
61 | tristate | |
62 | select CRYPTO_ALGAPI2 | |
63 | select CRYPTO_RNG2 | |
0a2e821d | 64 | select CRYPTO_WORKQUEUE |
5cde0af2 | 65 | |
055bcee3 HX |
66 | config CRYPTO_HASH |
67 | tristate | |
6a0fcbb4 | 68 | select CRYPTO_HASH2 |
055bcee3 HX |
69 | select CRYPTO_ALGAPI |
70 | ||
6a0fcbb4 HX |
71 | config CRYPTO_HASH2 |
72 | tristate | |
73 | select CRYPTO_ALGAPI2 | |
74 | ||
17f0f4a4 NH |
75 | config CRYPTO_RNG |
76 | tristate | |
6a0fcbb4 | 77 | select CRYPTO_RNG2 |
17f0f4a4 NH |
78 | select CRYPTO_ALGAPI |
79 | ||
6a0fcbb4 HX |
80 | config CRYPTO_RNG2 |
81 | tristate | |
82 | select CRYPTO_ALGAPI2 | |
83 | ||
401e4238 HX |
84 | config CRYPTO_RNG_DEFAULT |
85 | tristate | |
86 | select CRYPTO_DRBG_MENU | |
87 | ||
3c339ab8 TS |
88 | config CRYPTO_AKCIPHER2 |
89 | tristate | |
90 | select CRYPTO_ALGAPI2 | |
91 | ||
92 | config CRYPTO_AKCIPHER | |
93 | tristate | |
94 | select CRYPTO_AKCIPHER2 | |
95 | select CRYPTO_ALGAPI | |
96 | ||
4e5f2c40 SB |
97 | config CRYPTO_KPP2 |
98 | tristate | |
99 | select CRYPTO_ALGAPI2 | |
100 | ||
101 | config CRYPTO_KPP | |
102 | tristate | |
103 | select CRYPTO_ALGAPI | |
104 | select CRYPTO_KPP2 | |
105 | ||
2ebda74f GC |
106 | config CRYPTO_ACOMP2 |
107 | tristate | |
108 | select CRYPTO_ALGAPI2 | |
8cd579d2 | 109 | select SGL_ALLOC |
2ebda74f GC |
110 | |
111 | config CRYPTO_ACOMP | |
112 | tristate | |
113 | select CRYPTO_ALGAPI | |
114 | select CRYPTO_ACOMP2 | |
115 | ||
cfc2bb32 TS |
116 | config CRYPTO_RSA |
117 | tristate "RSA algorithm" | |
425e0172 | 118 | select CRYPTO_AKCIPHER |
58446fef | 119 | select CRYPTO_MANAGER |
cfc2bb32 TS |
120 | select MPILIB |
121 | select ASN1 | |
122 | help | |
123 | Generic implementation of the RSA public key algorithm. | |
124 | ||
802c7f1c SB |
125 | config CRYPTO_DH |
126 | tristate "Diffie-Hellman algorithm" | |
127 | select CRYPTO_KPP | |
128 | select MPILIB | |
129 | help | |
130 | Generic implementation of the Diffie-Hellman algorithm. | |
131 | ||
3c4b2390 SB |
132 | config CRYPTO_ECDH |
133 | tristate "ECDH algorithm" | |
b5b90077 | 134 | select CRYPTO_KPP |
6755fd26 | 135 | select CRYPTO_RNG_DEFAULT |
3c4b2390 SB |
136 | help |
137 | Generic implementation of the ECDH algorithm | |
802c7f1c | 138 | |
2b8c19db HX |
139 | config CRYPTO_MANAGER |
140 | tristate "Cryptographic algorithm manager" | |
6a0fcbb4 | 141 | select CRYPTO_MANAGER2 |
2b8c19db HX |
142 | help |
143 | Create default cryptographic template instantiations such as | |
144 | cbc(aes). | |
145 | ||
6a0fcbb4 HX |
146 | config CRYPTO_MANAGER2 |
147 | def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) | |
148 | select CRYPTO_AEAD2 | |
149 | select CRYPTO_HASH2 | |
150 | select CRYPTO_BLKCIPHER2 | |
946cc463 | 151 | select CRYPTO_AKCIPHER2 |
4e5f2c40 | 152 | select CRYPTO_KPP2 |
2ebda74f | 153 | select CRYPTO_ACOMP2 |
6a0fcbb4 | 154 | |
a38f7907 SK |
155 | config CRYPTO_USER |
156 | tristate "Userspace cryptographic algorithm configuration" | |
5db017aa | 157 | depends on NET |
a38f7907 SK |
158 | select CRYPTO_MANAGER |
159 | help | |
d19978f5 | 160 | Userspace configuration for cryptographic instantiations such as |
a38f7907 SK |
161 | cbc(aes). |
162 | ||
326a6346 HX |
163 | config CRYPTO_MANAGER_DISABLE_TESTS |
164 | bool "Disable run-time self tests" | |
00ca28a5 HX |
165 | default y |
166 | depends on CRYPTO_MANAGER2 | |
0b767f96 | 167 | help |
326a6346 HX |
168 | Disable run-time self tests that normally take place at |
169 | algorithm registration. | |
0b767f96 | 170 | |
584fffc8 | 171 | config CRYPTO_GF128MUL |
08c70fc3 | 172 | tristate "GF(2^128) multiplication functions" |
333b0d7e | 173 | help |
584fffc8 SS |
174 | Efficient table driven implementation of multiplications in the |
175 | field GF(2^128). This is needed by some cypher modes. This | |
176 | option will be selected automatically if you select such a | |
177 | cipher mode. Only select this option by hand if you expect to load | |
178 | an external module that requires these functions. | |
333b0d7e | 179 | |
1da177e4 LT |
180 | config CRYPTO_NULL |
181 | tristate "Null algorithms" | |
149a3971 | 182 | select CRYPTO_NULL2 |
1da177e4 LT |
183 | help |
184 | These are 'Null' algorithms, used by IPsec, which do nothing. | |
185 | ||
149a3971 | 186 | config CRYPTO_NULL2 |
dd43c4e9 | 187 | tristate |
149a3971 HX |
188 | select CRYPTO_ALGAPI2 |
189 | select CRYPTO_BLKCIPHER2 | |
190 | select CRYPTO_HASH2 | |
191 | ||
5068c7a8 | 192 | config CRYPTO_PCRYPT |
3b4afaf2 KC |
193 | tristate "Parallel crypto engine" |
194 | depends on SMP | |
5068c7a8 SK |
195 | select PADATA |
196 | select CRYPTO_MANAGER | |
197 | select CRYPTO_AEAD | |
198 | help | |
199 | This converts an arbitrary crypto algorithm into a parallel | |
200 | algorithm that executes in kernel threads. | |
201 | ||
25c38d3f YH |
202 | config CRYPTO_WORKQUEUE |
203 | tristate | |
204 | ||
584fffc8 SS |
205 | config CRYPTO_CRYPTD |
206 | tristate "Software async crypto daemon" | |
207 | select CRYPTO_BLKCIPHER | |
b8a28251 | 208 | select CRYPTO_HASH |
584fffc8 | 209 | select CRYPTO_MANAGER |
254eff77 | 210 | select CRYPTO_WORKQUEUE |
1da177e4 | 211 | help |
584fffc8 SS |
212 | This is a generic software asynchronous crypto daemon that |
213 | converts an arbitrary synchronous software crypto algorithm | |
214 | into an asynchronous algorithm that executes in a kernel thread. | |
1da177e4 | 215 | |
584fffc8 SS |
216 | config CRYPTO_AUTHENC |
217 | tristate "Authenc support" | |
218 | select CRYPTO_AEAD | |
219 | select CRYPTO_BLKCIPHER | |
220 | select CRYPTO_MANAGER | |
221 | select CRYPTO_HASH | |
e94c6a7a | 222 | select CRYPTO_NULL |
1da177e4 | 223 | help |
584fffc8 SS |
224 | Authenc: Combined mode wrapper for IPsec. |
225 | This is required for IPSec. | |
1da177e4 | 226 | |
584fffc8 SS |
227 | config CRYPTO_TEST |
228 | tristate "Testing module" | |
229 | depends on m | |
da7f033d | 230 | select CRYPTO_MANAGER |
1da177e4 | 231 | help |
584fffc8 | 232 | Quick & dirty crypto test module. |
1da177e4 | 233 | |
266d0516 HX |
234 | config CRYPTO_SIMD |
235 | tristate | |
ffaf9156 JK |
236 | select CRYPTO_CRYPTD |
237 | ||
596d8750 JK |
238 | config CRYPTO_GLUE_HELPER_X86 |
239 | tristate | |
240 | depends on X86 | |
065ce327 | 241 | select CRYPTO_BLKCIPHER |
596d8750 | 242 | |
735d37b5 BW |
243 | config CRYPTO_ENGINE |
244 | tristate | |
245 | ||
584fffc8 | 246 | comment "Authenticated Encryption with Associated Data" |
cd12fb90 | 247 | |
584fffc8 SS |
248 | config CRYPTO_CCM |
249 | tristate "CCM support" | |
250 | select CRYPTO_CTR | |
f15f05b0 | 251 | select CRYPTO_HASH |
584fffc8 | 252 | select CRYPTO_AEAD |
1da177e4 | 253 | help |
584fffc8 | 254 | Support for Counter with CBC MAC. Required for IPsec. |
1da177e4 | 255 | |
584fffc8 SS |
256 | config CRYPTO_GCM |
257 | tristate "GCM/GMAC support" | |
258 | select CRYPTO_CTR | |
259 | select CRYPTO_AEAD | |
9382d97a | 260 | select CRYPTO_GHASH |
9489667d | 261 | select CRYPTO_NULL |
1da177e4 | 262 | help |
584fffc8 SS |
263 | Support for Galois/Counter Mode (GCM) and Galois Message |
264 | Authentication Code (GMAC). Required for IPSec. | |
1da177e4 | 265 | |
71ebc4d1 MW |
266 | config CRYPTO_CHACHA20POLY1305 |
267 | tristate "ChaCha20-Poly1305 AEAD support" | |
268 | select CRYPTO_CHACHA20 | |
269 | select CRYPTO_POLY1305 | |
270 | select CRYPTO_AEAD | |
271 | help | |
272 | ChaCha20-Poly1305 AEAD support, RFC7539. | |
273 | ||
274 | Support for the AEAD wrapper using the ChaCha20 stream cipher combined | |
275 | with the Poly1305 authenticator. It is defined in RFC7539 for use in | |
276 | IETF protocols. | |
277 | ||
f606a88e OM |
278 | config CRYPTO_AEGIS128 |
279 | tristate "AEGIS-128 AEAD algorithm" | |
280 | select CRYPTO_AEAD | |
281 | select CRYPTO_AES # for AES S-box tables | |
282 | help | |
283 | Support for the AEGIS-128 dedicated AEAD algorithm. | |
284 | ||
285 | config CRYPTO_AEGIS128L | |
286 | tristate "AEGIS-128L AEAD algorithm" | |
287 | select CRYPTO_AEAD | |
288 | select CRYPTO_AES # for AES S-box tables | |
289 | help | |
290 | Support for the AEGIS-128L dedicated AEAD algorithm. | |
291 | ||
292 | config CRYPTO_AEGIS256 | |
293 | tristate "AEGIS-256 AEAD algorithm" | |
294 | select CRYPTO_AEAD | |
295 | select CRYPTO_AES # for AES S-box tables | |
296 | help | |
297 | Support for the AEGIS-256 dedicated AEAD algorithm. | |
298 | ||
1d373d4e OM |
299 | config CRYPTO_AEGIS128_AESNI_SSE2 |
300 | tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" | |
301 | depends on X86 && 64BIT | |
302 | select CRYPTO_AEAD | |
303 | select CRYPTO_CRYPTD | |
304 | help | |
305 | AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm. | |
306 | ||
307 | config CRYPTO_AEGIS128L_AESNI_SSE2 | |
308 | tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)" | |
309 | depends on X86 && 64BIT | |
310 | select CRYPTO_AEAD | |
311 | select CRYPTO_CRYPTD | |
312 | help | |
313 | AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm. | |
314 | ||
315 | config CRYPTO_AEGIS256_AESNI_SSE2 | |
316 | tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" | |
317 | depends on X86 && 64BIT | |
318 | select CRYPTO_AEAD | |
319 | select CRYPTO_CRYPTD | |
320 | help | |
321 | AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm. | |
322 | ||
396be41f OM |
323 | config CRYPTO_MORUS640 |
324 | tristate "MORUS-640 AEAD algorithm" | |
325 | select CRYPTO_AEAD | |
326 | help | |
327 | Support for the MORUS-640 dedicated AEAD algorithm. | |
328 | ||
56e8e57f | 329 | config CRYPTO_MORUS640_GLUE |
2808f173 OM |
330 | tristate |
331 | depends on X86 | |
56e8e57f OM |
332 | select CRYPTO_AEAD |
333 | select CRYPTO_CRYPTD | |
334 | help | |
335 | Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD | |
336 | algorithm. | |
337 | ||
6ecc9d9f OM |
338 | config CRYPTO_MORUS640_SSE2 |
339 | tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)" | |
340 | depends on X86 && 64BIT | |
341 | select CRYPTO_AEAD | |
342 | select CRYPTO_MORUS640_GLUE | |
343 | help | |
344 | SSE2 implementation of the MORUS-640 dedicated AEAD algorithm. | |
345 | ||
396be41f OM |
346 | config CRYPTO_MORUS1280 |
347 | tristate "MORUS-1280 AEAD algorithm" | |
348 | select CRYPTO_AEAD | |
349 | help | |
350 | Support for the MORUS-1280 dedicated AEAD algorithm. | |
351 | ||
56e8e57f | 352 | config CRYPTO_MORUS1280_GLUE |
2808f173 OM |
353 | tristate |
354 | depends on X86 | |
56e8e57f OM |
355 | select CRYPTO_AEAD |
356 | select CRYPTO_CRYPTD | |
357 | help | |
358 | Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD | |
6ecc9d9f OM |
359 | algorithm. |
360 | ||
361 | config CRYPTO_MORUS1280_SSE2 | |
362 | tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)" | |
363 | depends on X86 && 64BIT | |
364 | select CRYPTO_AEAD | |
365 | select CRYPTO_MORUS1280_GLUE | |
366 | help | |
367 | SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD | |
368 | algorithm. | |
369 | ||
370 | config CRYPTO_MORUS1280_AVX2 | |
371 | tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)" | |
372 | depends on X86 && 64BIT | |
373 | select CRYPTO_AEAD | |
374 | select CRYPTO_MORUS1280_GLUE | |
375 | help | |
376 | AVX2 optimized implementation of the MORUS-1280 dedicated AEAD | |
56e8e57f OM |
377 | algorithm. |
378 | ||
584fffc8 SS |
379 | config CRYPTO_SEQIV |
380 | tristate "Sequence Number IV Generator" | |
381 | select CRYPTO_AEAD | |
382 | select CRYPTO_BLKCIPHER | |
856e3f40 | 383 | select CRYPTO_NULL |
401e4238 | 384 | select CRYPTO_RNG_DEFAULT |
1da177e4 | 385 | help |
584fffc8 SS |
386 | This IV generator generates an IV based on a sequence number by |
387 | xoring it with a salt. This algorithm is mainly useful for CTR | |
1da177e4 | 388 | |
a10f554f HX |
389 | config CRYPTO_ECHAINIV |
390 | tristate "Encrypted Chain IV Generator" | |
391 | select CRYPTO_AEAD | |
392 | select CRYPTO_NULL | |
401e4238 | 393 | select CRYPTO_RNG_DEFAULT |
3491244c | 394 | default m |
a10f554f HX |
395 | help |
396 | This IV generator generates an IV based on the encryption of | |
397 | a sequence number xored with a salt. This is the default | |
398 | algorithm for CBC. | |
399 | ||
584fffc8 | 400 | comment "Block modes" |
c494e070 | 401 | |
584fffc8 SS |
402 | config CRYPTO_CBC |
403 | tristate "CBC support" | |
db131ef9 | 404 | select CRYPTO_BLKCIPHER |
43518407 | 405 | select CRYPTO_MANAGER |
db131ef9 | 406 | help |
584fffc8 SS |
407 | CBC: Cipher Block Chaining mode |
408 | This block cipher algorithm is required for IPSec. | |
db131ef9 | 409 | |
a7d85e06 JB |
410 | config CRYPTO_CFB |
411 | tristate "CFB support" | |
412 | select CRYPTO_BLKCIPHER | |
413 | select CRYPTO_MANAGER | |
414 | help | |
415 | CFB: Cipher FeedBack mode | |
416 | This block cipher algorithm is required for TPM2 Cryptography. | |
417 | ||
584fffc8 SS |
418 | config CRYPTO_CTR |
419 | tristate "CTR support" | |
db131ef9 | 420 | select CRYPTO_BLKCIPHER |
584fffc8 | 421 | select CRYPTO_SEQIV |
43518407 | 422 | select CRYPTO_MANAGER |
db131ef9 | 423 | help |
584fffc8 | 424 | CTR: Counter mode |
db131ef9 HX |
425 | This block cipher algorithm is required for IPSec. |
426 | ||
584fffc8 SS |
427 | config CRYPTO_CTS |
428 | tristate "CTS support" | |
429 | select CRYPTO_BLKCIPHER | |
430 | help | |
431 | CTS: Cipher Text Stealing | |
432 | This is the Cipher Text Stealing mode as described by | |
ecd6d5c9 GBY |
433 | Section 8 of rfc2040 and referenced by rfc3962 |
434 | (rfc3962 includes errata information in its Appendix A) or | |
435 | CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. | |
584fffc8 SS |
436 | This mode is required for Kerberos gss mechanism support |
437 | for AES encryption. | |
438 | ||
ecd6d5c9 GBY |
439 | See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final |
440 | ||
584fffc8 SS |
441 | config CRYPTO_ECB |
442 | tristate "ECB support" | |
91652be5 DH |
443 | select CRYPTO_BLKCIPHER |
444 | select CRYPTO_MANAGER | |
91652be5 | 445 | help |
584fffc8 SS |
446 | ECB: Electronic CodeBook mode |
447 | This is the simplest block cipher algorithm. It simply encrypts | |
448 | the input block by block. | |
91652be5 | 449 | |
64470f1b | 450 | config CRYPTO_LRW |
2470a2b2 | 451 | tristate "LRW support" |
64470f1b RS |
452 | select CRYPTO_BLKCIPHER |
453 | select CRYPTO_MANAGER | |
454 | select CRYPTO_GF128MUL | |
455 | help | |
456 | LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable | |
457 | narrow block cipher mode for dm-crypt. Use it with cipher | |
458 | specification string aes-lrw-benbi, the key must be 256, 320 or 384. | |
459 | The first 128, 192 or 256 bits in the key are used for AES and the | |
460 | rest is used to tie each cipher block to its logical position. | |
461 | ||
e497c518 GBY |
462 | config CRYPTO_OFB |
463 | tristate "OFB support" | |
464 | select CRYPTO_BLKCIPHER | |
465 | select CRYPTO_MANAGER | |
466 | help | |
467 | OFB: the Output Feedback mode makes a block cipher into a synchronous | |
468 | stream cipher. It generates keystream blocks, which are then XORed | |
469 | with the plaintext blocks to get the ciphertext. Flipping a bit in the | |
470 | ciphertext produces a flipped bit in the plaintext at the same | |
471 | location. This property allows many error correcting codes to function | |
472 | normally even when applied before encryption. | |
473 | ||
584fffc8 SS |
474 | config CRYPTO_PCBC |
475 | tristate "PCBC support" | |
476 | select CRYPTO_BLKCIPHER | |
477 | select CRYPTO_MANAGER | |
478 | help | |
479 | PCBC: Propagating Cipher Block Chaining mode | |
480 | This block cipher algorithm is required for RxRPC. | |
481 | ||
f19f5111 | 482 | config CRYPTO_XTS |
5bcf8e6d | 483 | tristate "XTS support" |
f19f5111 RS |
484 | select CRYPTO_BLKCIPHER |
485 | select CRYPTO_MANAGER | |
12cb3a1c | 486 | select CRYPTO_ECB |
f19f5111 RS |
487 | help |
488 | XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, | |
489 | key size 256, 384 or 512 bits. This implementation currently | |
490 | can't handle a sectorsize which is not a multiple of 16 bytes. | |
491 | ||
1c49678e SM |
492 | config CRYPTO_KEYWRAP |
493 | tristate "Key wrapping support" | |
494 | select CRYPTO_BLKCIPHER | |
495 | help | |
496 | Support for key wrapping (NIST SP800-38F / RFC3394) without | |
497 | padding. | |
498 | ||
26609a21 EB |
499 | config CRYPTO_NHPOLY1305 |
500 | tristate | |
501 | select CRYPTO_HASH | |
502 | select CRYPTO_POLY1305 | |
503 | ||
012c8238 EB |
504 | config CRYPTO_NHPOLY1305_SSE2 |
505 | tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" | |
506 | depends on X86 && 64BIT | |
507 | select CRYPTO_NHPOLY1305 | |
508 | help | |
509 | SSE2 optimized implementation of the hash function used by the | |
510 | Adiantum encryption mode. | |
511 | ||
059c2a4d EB |
512 | config CRYPTO_ADIANTUM |
513 | tristate "Adiantum support" | |
514 | select CRYPTO_CHACHA20 | |
515 | select CRYPTO_POLY1305 | |
516 | select CRYPTO_NHPOLY1305 | |
517 | help | |
518 | Adiantum is a tweakable, length-preserving encryption mode | |
519 | designed for fast and secure disk encryption, especially on | |
520 | CPUs without dedicated crypto instructions. It encrypts | |
521 | each sector using the XChaCha12 stream cipher, two passes of | |
522 | an ε-almost-∆-universal hash function, and an invocation of | |
523 | the AES-256 block cipher on a single 16-byte block. On CPUs | |
524 | without AES instructions, Adiantum is much faster than | |
525 | AES-XTS. | |
526 | ||
527 | Adiantum's security is provably reducible to that of its | |
528 | underlying stream and block ciphers, subject to a security | |
529 | bound. Unlike XTS, Adiantum is a true wide-block encryption | |
530 | mode, so it actually provides an even stronger notion of | |
531 | security than XTS, subject to the security bound. | |
532 | ||
533 | If unsure, say N. | |
534 | ||
584fffc8 SS |
535 | comment "Hash modes" |
536 | ||
93b5e86a JK |
537 | config CRYPTO_CMAC |
538 | tristate "CMAC support" | |
539 | select CRYPTO_HASH | |
540 | select CRYPTO_MANAGER | |
541 | help | |
542 | Cipher-based Message Authentication Code (CMAC) specified by | |
543 | The National Institute of Standards and Technology (NIST). | |
544 | ||
545 | https://tools.ietf.org/html/rfc4493 | |
546 | http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf | |
547 | ||
584fffc8 SS |
548 | config CRYPTO_HMAC |
549 | tristate "HMAC support" | |
550 | select CRYPTO_HASH | |
23e353c8 | 551 | select CRYPTO_MANAGER |
23e353c8 | 552 | help |
584fffc8 SS |
553 | HMAC: Keyed-Hashing for Message Authentication (RFC2104). |
554 | This is required for IPSec. | |
23e353c8 | 555 | |
584fffc8 SS |
556 | config CRYPTO_XCBC |
557 | tristate "XCBC support" | |
584fffc8 SS |
558 | select CRYPTO_HASH |
559 | select CRYPTO_MANAGER | |
76cb9521 | 560 | help |
584fffc8 SS |
561 | XCBC: Keyed-Hashing with encryption algorithm |
562 | http://www.ietf.org/rfc/rfc3566.txt | |
563 | http://csrc.nist.gov/encryption/modes/proposedmodes/ | |
564 | xcbc-mac/xcbc-mac-spec.pdf | |
76cb9521 | 565 | |
f1939f7c SW |
566 | config CRYPTO_VMAC |
567 | tristate "VMAC support" | |
f1939f7c SW |
568 | select CRYPTO_HASH |
569 | select CRYPTO_MANAGER | |
570 | help | |
571 | VMAC is a message authentication algorithm designed for | |
572 | very high speed on 64-bit architectures. | |
573 | ||
574 | See also: | |
575 | <http://fastcrypto.org/vmac> | |
576 | ||
584fffc8 | 577 | comment "Digest" |
28db8e3e | 578 | |
584fffc8 SS |
579 | config CRYPTO_CRC32C |
580 | tristate "CRC32c CRC algorithm" | |
5773a3e6 | 581 | select CRYPTO_HASH |
6a0962b2 | 582 | select CRC32 |
4a49b499 | 583 | help |
584fffc8 SS |
584 | Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used |
585 | by iSCSI for header and data digests and by others. | |
69c35efc | 586 | See Castagnoli93. Module will be crc32c. |
4a49b499 | 587 | |
8cb51ba8 AZ |
588 | config CRYPTO_CRC32C_INTEL |
589 | tristate "CRC32c INTEL hardware acceleration" | |
590 | depends on X86 | |
591 | select CRYPTO_HASH | |
592 | help | |
593 | In Intel processor with SSE4.2 supported, the processor will | |
594 | support CRC32C implementation using hardware accelerated CRC32 | |
595 | instruction. This option will create 'crc32c-intel' module, | |
596 | which will enable any routine to use the CRC32 instruction to | |
597 | gain performance compared with software implementation. | |
598 | Module will be crc32c-intel. | |
599 | ||
7cf31864 | 600 | config CRYPTO_CRC32C_VPMSUM |
6dd7a82c | 601 | tristate "CRC32c CRC algorithm (powerpc64)" |
c12abf34 | 602 | depends on PPC64 && ALTIVEC |
6dd7a82c AB |
603 | select CRYPTO_HASH |
604 | select CRC32 | |
605 | help | |
606 | CRC32c algorithm implemented using vector polynomial multiply-sum | |
607 | (vpmsum) instructions, introduced in POWER8. Enable on POWER8 | |
608 | and newer processors for improved performance. | |
609 | ||
610 | ||
442a7c40 DM |
611 | config CRYPTO_CRC32C_SPARC64 |
612 | tristate "CRC32c CRC algorithm (SPARC64)" | |
613 | depends on SPARC64 | |
614 | select CRYPTO_HASH | |
615 | select CRC32 | |
616 | help | |
617 | CRC32c CRC algorithm implemented using sparc64 crypto instructions, | |
618 | when available. | |
619 | ||
78c37d19 AB |
620 | config CRYPTO_CRC32 |
621 | tristate "CRC32 CRC algorithm" | |
622 | select CRYPTO_HASH | |
623 | select CRC32 | |
624 | help | |
625 | CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. | |
626 | Shash crypto api wrappers to crc32_le function. | |
627 | ||
628 | config CRYPTO_CRC32_PCLMUL | |
629 | tristate "CRC32 PCLMULQDQ hardware acceleration" | |
630 | depends on X86 | |
631 | select CRYPTO_HASH | |
632 | select CRC32 | |
633 | help | |
634 | From Intel Westmere and AMD Bulldozer processor with SSE4.2 | |
635 | and PCLMULQDQ supported, the processor will support | |
636 | CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ | |
637 | instruction. This option will create 'crc32-plcmul' module, | |
638 | which will enable any routine to use the CRC-32-IEEE 802.3 checksum | |
639 | and gain better performance as compared with the table implementation. | |
640 | ||
4a5dc51e MN |
641 | config CRYPTO_CRC32_MIPS |
642 | tristate "CRC32c and CRC32 CRC algorithm (MIPS)" | |
643 | depends on MIPS_CRC_SUPPORT | |
644 | select CRYPTO_HASH | |
645 | help | |
646 | CRC32c and CRC32 CRC algorithms implemented using mips crypto | |
647 | instructions, when available. | |
648 | ||
649 | ||
68411521 HX |
650 | config CRYPTO_CRCT10DIF |
651 | tristate "CRCT10DIF algorithm" | |
652 | select CRYPTO_HASH | |
653 | help | |
654 | CRC T10 Data Integrity Field computation is being cast as | |
655 | a crypto transform. This allows for faster crc t10 diff | |
656 | transforms to be used if they are available. | |
657 | ||
658 | config CRYPTO_CRCT10DIF_PCLMUL | |
659 | tristate "CRCT10DIF PCLMULQDQ hardware acceleration" | |
660 | depends on X86 && 64BIT && CRC_T10DIF | |
661 | select CRYPTO_HASH | |
662 | help | |
663 | For x86_64 processors with SSE4.2 and PCLMULQDQ supported, | |
664 | CRC T10 DIF PCLMULQDQ computation can be hardware | |
665 | accelerated PCLMULQDQ instruction. This option will create | |
666 | 'crct10dif-plcmul' module, which is faster when computing the | |
667 | crct10dif checksum as compared with the generic table implementation. | |
668 | ||
b01df1c1 DA |
669 | config CRYPTO_CRCT10DIF_VPMSUM |
670 | tristate "CRC32T10DIF powerpc64 hardware acceleration" | |
671 | depends on PPC64 && ALTIVEC && CRC_T10DIF | |
672 | select CRYPTO_HASH | |
673 | help | |
674 | CRC10T10DIF algorithm implemented using vector polynomial | |
675 | multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on | |
676 | POWER8 and newer processors for improved performance. | |
677 | ||
146c8688 DA |
678 | config CRYPTO_VPMSUM_TESTER |
679 | tristate "Powerpc64 vpmsum hardware acceleration tester" | |
680 | depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM | |
681 | help | |
682 | Stress test for CRC32c and CRC-T10DIF algorithms implemented with | |
683 | POWER8 vpmsum instructions. | |
684 | Unless you are testing these algorithms, you don't need this. | |
685 | ||
2cdc6899 YH |
686 | config CRYPTO_GHASH |
687 | tristate "GHASH digest algorithm" | |
2cdc6899 | 688 | select CRYPTO_GF128MUL |
578c60fb | 689 | select CRYPTO_HASH |
2cdc6899 YH |
690 | help |
691 | GHASH is message digest algorithm for GCM (Galois/Counter Mode). | |
692 | ||
f979e014 MW |
693 | config CRYPTO_POLY1305 |
694 | tristate "Poly1305 authenticator algorithm" | |
578c60fb | 695 | select CRYPTO_HASH |
f979e014 MW |
696 | help |
697 | Poly1305 authenticator algorithm, RFC7539. | |
698 | ||
699 | Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. | |
700 | It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use | |
701 | in IETF protocols. This is the portable C implementation of Poly1305. | |
702 | ||
c70f4abe | 703 | config CRYPTO_POLY1305_X86_64 |
b1ccc8f4 | 704 | tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" |
c70f4abe MW |
705 | depends on X86 && 64BIT |
706 | select CRYPTO_POLY1305 | |
707 | help | |
708 | Poly1305 authenticator algorithm, RFC7539. | |
709 | ||
710 | Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. | |
711 | It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use | |
712 | in IETF protocols. This is the x86_64 assembler implementation using SIMD | |
713 | instructions. | |
714 | ||
584fffc8 SS |
715 | config CRYPTO_MD4 |
716 | tristate "MD4 digest algorithm" | |
808a1763 | 717 | select CRYPTO_HASH |
124b53d0 | 718 | help |
584fffc8 | 719 | MD4 message digest algorithm (RFC1320). |
124b53d0 | 720 | |
584fffc8 SS |
721 | config CRYPTO_MD5 |
722 | tristate "MD5 digest algorithm" | |
14b75ba7 | 723 | select CRYPTO_HASH |
1da177e4 | 724 | help |
584fffc8 | 725 | MD5 message digest algorithm (RFC1321). |
1da177e4 | 726 | |
d69e75de AK |
727 | config CRYPTO_MD5_OCTEON |
728 | tristate "MD5 digest algorithm (OCTEON)" | |
729 | depends on CPU_CAVIUM_OCTEON | |
730 | select CRYPTO_MD5 | |
731 | select CRYPTO_HASH | |
732 | help | |
733 | MD5 message digest algorithm (RFC1321) implemented | |
734 | using OCTEON crypto instructions, when available. | |
735 | ||
e8e59953 MS |
736 | config CRYPTO_MD5_PPC |
737 | tristate "MD5 digest algorithm (PPC)" | |
738 | depends on PPC | |
739 | select CRYPTO_HASH | |
740 | help | |
741 | MD5 message digest algorithm (RFC1321) implemented | |
742 | in PPC assembler. | |
743 | ||
fa4dfedc DM |
744 | config CRYPTO_MD5_SPARC64 |
745 | tristate "MD5 digest algorithm (SPARC64)" | |
746 | depends on SPARC64 | |
747 | select CRYPTO_MD5 | |
748 | select CRYPTO_HASH | |
749 | help | |
750 | MD5 message digest algorithm (RFC1321) implemented | |
751 | using sparc64 crypto instructions, when available. | |
752 | ||
584fffc8 SS |
753 | config CRYPTO_MICHAEL_MIC |
754 | tristate "Michael MIC keyed digest algorithm" | |
19e2bf14 | 755 | select CRYPTO_HASH |
90831639 | 756 | help |
584fffc8 SS |
757 | Michael MIC is used for message integrity protection in TKIP |
758 | (IEEE 802.11i). This algorithm is required for TKIP, but it | |
759 | should not be used for other purposes because of the weakness | |
760 | of the algorithm. | |
90831639 | 761 | |
82798f90 | 762 | config CRYPTO_RMD128 |
b6d44341 | 763 | tristate "RIPEMD-128 digest algorithm" |
7c4468bc | 764 | select CRYPTO_HASH |
b6d44341 AB |
765 | help |
766 | RIPEMD-128 (ISO/IEC 10118-3:2004). | |
82798f90 | 767 | |
b6d44341 | 768 | RIPEMD-128 is a 128-bit cryptographic hash function. It should only |
35ed4b35 | 769 | be used as a secure replacement for RIPEMD. For other use cases, |
b6d44341 | 770 | RIPEMD-160 should be used. |
82798f90 | 771 | |
b6d44341 | 772 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 773 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
82798f90 AKR |
774 | |
775 | config CRYPTO_RMD160 | |
b6d44341 | 776 | tristate "RIPEMD-160 digest algorithm" |
e5835fba | 777 | select CRYPTO_HASH |
b6d44341 AB |
778 | help |
779 | RIPEMD-160 (ISO/IEC 10118-3:2004). | |
82798f90 | 780 | |
b6d44341 AB |
781 | RIPEMD-160 is a 160-bit cryptographic hash function. It is intended |
782 | to be used as a secure replacement for the 128-bit hash functions | |
783 | MD4, MD5 and it's predecessor RIPEMD | |
784 | (not to be confused with RIPEMD-128). | |
82798f90 | 785 | |
b6d44341 AB |
786 | It's speed is comparable to SHA1 and there are no known attacks |
787 | against RIPEMD-160. | |
534fe2c1 | 788 | |
b6d44341 | 789 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 790 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
534fe2c1 AKR |
791 | |
792 | config CRYPTO_RMD256 | |
b6d44341 | 793 | tristate "RIPEMD-256 digest algorithm" |
d8a5e2e9 | 794 | select CRYPTO_HASH |
b6d44341 AB |
795 | help |
796 | RIPEMD-256 is an optional extension of RIPEMD-128 with a | |
797 | 256 bit hash. It is intended for applications that require | |
798 | longer hash-results, without needing a larger security level | |
799 | (than RIPEMD-128). | |
534fe2c1 | 800 | |
b6d44341 | 801 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 802 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
534fe2c1 AKR |
803 | |
804 | config CRYPTO_RMD320 | |
b6d44341 | 805 | tristate "RIPEMD-320 digest algorithm" |
3b8efb4c | 806 | select CRYPTO_HASH |
b6d44341 AB |
807 | help |
808 | RIPEMD-320 is an optional extension of RIPEMD-160 with a | |
809 | 320 bit hash. It is intended for applications that require | |
810 | longer hash-results, without needing a larger security level | |
811 | (than RIPEMD-160). | |
534fe2c1 | 812 | |
b6d44341 | 813 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 814 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
82798f90 | 815 | |
584fffc8 SS |
816 | config CRYPTO_SHA1 |
817 | tristate "SHA1 digest algorithm" | |
54ccb367 | 818 | select CRYPTO_HASH |
1da177e4 | 819 | help |
584fffc8 | 820 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). |
1da177e4 | 821 | |
66be8951 | 822 | config CRYPTO_SHA1_SSSE3 |
e38b6b7f | 823 | tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" |
66be8951 MK |
824 | depends on X86 && 64BIT |
825 | select CRYPTO_SHA1 | |
826 | select CRYPTO_HASH | |
827 | help | |
828 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
829 | using Supplemental SSE3 (SSSE3) instructions or Advanced Vector | |
e38b6b7f | 830 | Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), |
831 | when available. | |
66be8951 | 832 | |
8275d1aa | 833 | config CRYPTO_SHA256_SSSE3 |
e38b6b7f | 834 | tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" |
8275d1aa TC |
835 | depends on X86 && 64BIT |
836 | select CRYPTO_SHA256 | |
837 | select CRYPTO_HASH | |
838 | help | |
839 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
840 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector | |
841 | Extensions version 1 (AVX1), or Advanced Vector Extensions | |
e38b6b7f | 842 | version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New |
843 | Instructions) when available. | |
87de4579 TC |
844 | |
845 | config CRYPTO_SHA512_SSSE3 | |
846 | tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" | |
847 | depends on X86 && 64BIT | |
848 | select CRYPTO_SHA512 | |
849 | select CRYPTO_HASH | |
850 | help | |
851 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
852 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector | |
853 | Extensions version 1 (AVX1), or Advanced Vector Extensions | |
8275d1aa TC |
854 | version 2 (AVX2) instructions, when available. |
855 | ||
efdb6f6e AK |
856 | config CRYPTO_SHA1_OCTEON |
857 | tristate "SHA1 digest algorithm (OCTEON)" | |
858 | depends on CPU_CAVIUM_OCTEON | |
859 | select CRYPTO_SHA1 | |
860 | select CRYPTO_HASH | |
861 | help | |
862 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
863 | using OCTEON crypto instructions, when available. | |
864 | ||
4ff28d4c DM |
865 | config CRYPTO_SHA1_SPARC64 |
866 | tristate "SHA1 digest algorithm (SPARC64)" | |
867 | depends on SPARC64 | |
868 | select CRYPTO_SHA1 | |
869 | select CRYPTO_HASH | |
870 | help | |
871 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
872 | using sparc64 crypto instructions, when available. | |
873 | ||
323a6bf1 ME |
874 | config CRYPTO_SHA1_PPC |
875 | tristate "SHA1 digest algorithm (powerpc)" | |
876 | depends on PPC | |
877 | help | |
878 | This is the powerpc hardware accelerated implementation of the | |
879 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). | |
880 | ||
d9850fc5 MS |
881 | config CRYPTO_SHA1_PPC_SPE |
882 | tristate "SHA1 digest algorithm (PPC SPE)" | |
883 | depends on PPC && SPE | |
884 | help | |
885 | SHA-1 secure hash standard (DFIPS 180-4) implemented | |
886 | using powerpc SPE SIMD instruction set. | |
887 | ||
584fffc8 SS |
888 | config CRYPTO_SHA256 |
889 | tristate "SHA224 and SHA256 digest algorithm" | |
50e109b5 | 890 | select CRYPTO_HASH |
1da177e4 | 891 | help |
584fffc8 | 892 | SHA256 secure hash standard (DFIPS 180-2). |
1da177e4 | 893 | |
584fffc8 SS |
894 | This version of SHA implements a 256 bit hash with 128 bits of |
895 | security against collision attacks. | |
2729bb42 | 896 | |
b6d44341 AB |
897 | This code also includes SHA-224, a 224 bit hash with 112 bits |
898 | of security against collision attacks. | |
584fffc8 | 899 | |
2ecc1e95 MS |
900 | config CRYPTO_SHA256_PPC_SPE |
901 | tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" | |
902 | depends on PPC && SPE | |
903 | select CRYPTO_SHA256 | |
904 | select CRYPTO_HASH | |
905 | help | |
906 | SHA224 and SHA256 secure hash standard (DFIPS 180-2) | |
907 | implemented using powerpc SPE SIMD instruction set. | |
908 | ||
efdb6f6e AK |
909 | config CRYPTO_SHA256_OCTEON |
910 | tristate "SHA224 and SHA256 digest algorithm (OCTEON)" | |
911 | depends on CPU_CAVIUM_OCTEON | |
912 | select CRYPTO_SHA256 | |
913 | select CRYPTO_HASH | |
914 | help | |
915 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
916 | using OCTEON crypto instructions, when available. | |
917 | ||
86c93b24 DM |
918 | config CRYPTO_SHA256_SPARC64 |
919 | tristate "SHA224 and SHA256 digest algorithm (SPARC64)" | |
920 | depends on SPARC64 | |
921 | select CRYPTO_SHA256 | |
922 | select CRYPTO_HASH | |
923 | help | |
924 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
925 | using sparc64 crypto instructions, when available. | |
926 | ||
584fffc8 SS |
927 | config CRYPTO_SHA512 |
928 | tristate "SHA384 and SHA512 digest algorithms" | |
bd9d20db | 929 | select CRYPTO_HASH |
b9f535ff | 930 | help |
584fffc8 | 931 | SHA512 secure hash standard (DFIPS 180-2). |
b9f535ff | 932 | |
584fffc8 SS |
933 | This version of SHA implements a 512 bit hash with 256 bits of |
934 | security against collision attacks. | |
b9f535ff | 935 | |
584fffc8 SS |
936 | This code also includes SHA-384, a 384 bit hash with 192 bits |
937 | of security against collision attacks. | |
b9f535ff | 938 | |
efdb6f6e AK |
939 | config CRYPTO_SHA512_OCTEON |
940 | tristate "SHA384 and SHA512 digest algorithms (OCTEON)" | |
941 | depends on CPU_CAVIUM_OCTEON | |
942 | select CRYPTO_SHA512 | |
943 | select CRYPTO_HASH | |
944 | help | |
945 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
946 | using OCTEON crypto instructions, when available. | |
947 | ||
775e0c69 DM |
948 | config CRYPTO_SHA512_SPARC64 |
949 | tristate "SHA384 and SHA512 digest algorithm (SPARC64)" | |
950 | depends on SPARC64 | |
951 | select CRYPTO_SHA512 | |
952 | select CRYPTO_HASH | |
953 | help | |
954 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
955 | using sparc64 crypto instructions, when available. | |
956 | ||
53964b9e JG |
957 | config CRYPTO_SHA3 |
958 | tristate "SHA3 digest algorithm" | |
959 | select CRYPTO_HASH | |
960 | help | |
961 | SHA-3 secure hash standard (DFIPS 202). It's based on | |
962 | cryptographic sponge function family called Keccak. | |
963 | ||
964 | References: | |
965 | http://keccak.noekeon.org/ | |
966 | ||
4f0fc160 GBY |
967 | config CRYPTO_SM3 |
968 | tristate "SM3 digest algorithm" | |
969 | select CRYPTO_HASH | |
970 | help | |
971 | SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). | |
972 | It is part of the Chinese Commercial Cryptography suite. | |
973 | ||
974 | References: | |
975 | http://www.oscca.gov.cn/UpFile/20101222141857786.pdf | |
976 | https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash | |
977 | ||
fe18957e VC |
978 | config CRYPTO_STREEBOG |
979 | tristate "Streebog Hash Function" | |
980 | select CRYPTO_HASH | |
981 | help | |
982 | Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian | |
983 | cryptographic standard algorithms (called GOST algorithms). | |
984 | This setting enables two hash algorithms with 256 and 512 bits output. | |
985 | ||
986 | References: | |
987 | https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf | |
988 | https://tools.ietf.org/html/rfc6986 | |
989 | ||
584fffc8 SS |
990 | config CRYPTO_TGR192 |
991 | tristate "Tiger digest algorithms" | |
f63fbd3d | 992 | select CRYPTO_HASH |
eaf44088 | 993 | help |
584fffc8 | 994 | Tiger hash algorithm 192, 160 and 128-bit hashes |
eaf44088 | 995 | |
584fffc8 SS |
996 | Tiger is a hash function optimized for 64-bit processors while |
997 | still having decent performance on 32-bit processors. | |
998 | Tiger was developed by Ross Anderson and Eli Biham. | |
eaf44088 JF |
999 | |
1000 | See also: | |
584fffc8 | 1001 | <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. |
eaf44088 | 1002 | |
584fffc8 SS |
1003 | config CRYPTO_WP512 |
1004 | tristate "Whirlpool digest algorithms" | |
4946510b | 1005 | select CRYPTO_HASH |
1da177e4 | 1006 | help |
584fffc8 | 1007 | Whirlpool hash algorithm 512, 384 and 256-bit hashes |
1da177e4 | 1008 | |
584fffc8 SS |
1009 | Whirlpool-512 is part of the NESSIE cryptographic primitives. |
1010 | Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard | |
1da177e4 LT |
1011 | |
1012 | See also: | |
6d8de74c | 1013 | <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> |
584fffc8 | 1014 | |
0e1227d3 YH |
1015 | config CRYPTO_GHASH_CLMUL_NI_INTEL |
1016 | tristate "GHASH digest algorithm (CLMUL-NI accelerated)" | |
8af00860 | 1017 | depends on X86 && 64BIT |
0e1227d3 YH |
1018 | select CRYPTO_CRYPTD |
1019 | help | |
1020 | GHASH is message digest algorithm for GCM (Galois/Counter Mode). | |
1021 | The implementation is accelerated by CLMUL-NI of Intel. | |
1022 | ||
584fffc8 | 1023 | comment "Ciphers" |
1da177e4 LT |
1024 | |
1025 | config CRYPTO_AES | |
1026 | tristate "AES cipher algorithms" | |
cce9e06d | 1027 | select CRYPTO_ALGAPI |
1da177e4 | 1028 | help |
584fffc8 | 1029 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
1da177e4 LT |
1030 | algorithm. |
1031 | ||
1032 | Rijndael appears to be consistently a very good performer in | |
584fffc8 SS |
1033 | both hardware and software across a wide range of computing |
1034 | environments regardless of its use in feedback or non-feedback | |
1035 | modes. Its key setup time is excellent, and its key agility is | |
1036 | good. Rijndael's very low memory requirements make it very well | |
1037 | suited for restricted-space environments, in which it also | |
1038 | demonstrates excellent performance. Rijndael's operations are | |
1039 | among the easiest to defend against power and timing attacks. | |
1da177e4 | 1040 | |
584fffc8 | 1041 | The AES specifies three key sizes: 128, 192 and 256 bits |
1da177e4 LT |
1042 | |
1043 | See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. | |
1044 | ||
b5e0b032 AB |
1045 | config CRYPTO_AES_TI |
1046 | tristate "Fixed time AES cipher" | |
1047 | select CRYPTO_ALGAPI | |
1048 | help | |
1049 | This is a generic implementation of AES that attempts to eliminate | |
1050 | data dependent latencies as much as possible without affecting | |
1051 | performance too much. It is intended for use by the generic CCM | |
1052 | and GCM drivers, and other CTR or CMAC/XCBC based modes that rely | |
1053 | solely on encryption (although decryption is supported as well, but | |
1054 | with a more dramatic performance hit) | |
1055 | ||
1056 | Instead of using 16 lookup tables of 1 KB each, (8 for encryption and | |
1057 | 8 for decryption), this implementation only uses just two S-boxes of | |
1058 | 256 bytes each, and attempts to eliminate data dependent latencies by | |
1059 | prefetching the entire table into the cache at the start of each | |
0a6a40c2 EB |
1060 | block. Interrupts are also disabled to avoid races where cachelines |
1061 | are evicted when the CPU is interrupted to do something else. | |
b5e0b032 | 1062 | |
1da177e4 LT |
1063 | config CRYPTO_AES_586 |
1064 | tristate "AES cipher algorithms (i586)" | |
cce9e06d HX |
1065 | depends on (X86 || UML_X86) && !64BIT |
1066 | select CRYPTO_ALGAPI | |
5157dea8 | 1067 | select CRYPTO_AES |
1da177e4 | 1068 | help |
584fffc8 | 1069 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
1da177e4 LT |
1070 | algorithm. |
1071 | ||
1072 | Rijndael appears to be consistently a very good performer in | |
584fffc8 SS |
1073 | both hardware and software across a wide range of computing |
1074 | environments regardless of its use in feedback or non-feedback | |
1075 | modes. Its key setup time is excellent, and its key agility is | |
1076 | good. Rijndael's very low memory requirements make it very well | |
1077 | suited for restricted-space environments, in which it also | |
1078 | demonstrates excellent performance. Rijndael's operations are | |
1079 | among the easiest to defend against power and timing attacks. | |
1da177e4 | 1080 | |
584fffc8 | 1081 | The AES specifies three key sizes: 128, 192 and 256 bits |
a2a892a2 AS |
1082 | |
1083 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
1084 | ||
1085 | config CRYPTO_AES_X86_64 | |
1086 | tristate "AES cipher algorithms (x86_64)" | |
cce9e06d HX |
1087 | depends on (X86 || UML_X86) && 64BIT |
1088 | select CRYPTO_ALGAPI | |
81190b32 | 1089 | select CRYPTO_AES |
a2a892a2 | 1090 | help |
584fffc8 | 1091 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
a2a892a2 AS |
1092 | algorithm. |
1093 | ||
1094 | Rijndael appears to be consistently a very good performer in | |
584fffc8 SS |
1095 | both hardware and software across a wide range of computing |
1096 | environments regardless of its use in feedback or non-feedback | |
1097 | modes. Its key setup time is excellent, and its key agility is | |
54b6a1bd YH |
1098 | good. Rijndael's very low memory requirements make it very well |
1099 | suited for restricted-space environments, in which it also | |
1100 | demonstrates excellent performance. Rijndael's operations are | |
1101 | among the easiest to defend against power and timing attacks. | |
1102 | ||
1103 | The AES specifies three key sizes: 128, 192 and 256 bits | |
1104 | ||
1105 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
1106 | ||
1107 | config CRYPTO_AES_NI_INTEL | |
1108 | tristate "AES cipher algorithms (AES-NI)" | |
8af00860 | 1109 | depends on X86 |
85671860 | 1110 | select CRYPTO_AEAD |
0d258efb MK |
1111 | select CRYPTO_AES_X86_64 if 64BIT |
1112 | select CRYPTO_AES_586 if !64BIT | |
54b6a1bd | 1113 | select CRYPTO_ALGAPI |
85671860 | 1114 | select CRYPTO_BLKCIPHER |
7643a11a | 1115 | select CRYPTO_GLUE_HELPER_X86 if 64BIT |
85671860 | 1116 | select CRYPTO_SIMD |
54b6a1bd YH |
1117 | help |
1118 | Use Intel AES-NI instructions for AES algorithm. | |
1119 | ||
1120 | AES cipher algorithms (FIPS-197). AES uses the Rijndael | |
1121 | algorithm. | |
1122 | ||
1123 | Rijndael appears to be consistently a very good performer in | |
1124 | both hardware and software across a wide range of computing | |
1125 | environments regardless of its use in feedback or non-feedback | |
1126 | modes. Its key setup time is excellent, and its key agility is | |
584fffc8 SS |
1127 | good. Rijndael's very low memory requirements make it very well |
1128 | suited for restricted-space environments, in which it also | |
1129 | demonstrates excellent performance. Rijndael's operations are | |
1130 | among the easiest to defend against power and timing attacks. | |
a2a892a2 | 1131 | |
584fffc8 | 1132 | The AES specifies three key sizes: 128, 192 and 256 bits |
1da177e4 LT |
1133 | |
1134 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
1135 | ||
0d258efb MK |
1136 | In addition to AES cipher algorithm support, the acceleration |
1137 | for some popular block cipher mode is supported too, including | |
944585a6 | 1138 | ECB, CBC, LRW, XTS. The 64 bit version has additional |
0d258efb | 1139 | acceleration for CTR. |
2cf4ac8b | 1140 | |
9bf4852d DM |
1141 | config CRYPTO_AES_SPARC64 |
1142 | tristate "AES cipher algorithms (SPARC64)" | |
1143 | depends on SPARC64 | |
1144 | select CRYPTO_CRYPTD | |
1145 | select CRYPTO_ALGAPI | |
1146 | help | |
1147 | Use SPARC64 crypto opcodes for AES algorithm. | |
1148 | ||
1149 | AES cipher algorithms (FIPS-197). AES uses the Rijndael | |
1150 | algorithm. | |
1151 | ||
1152 | Rijndael appears to be consistently a very good performer in | |
1153 | both hardware and software across a wide range of computing | |
1154 | environments regardless of its use in feedback or non-feedback | |
1155 | modes. Its key setup time is excellent, and its key agility is | |
1156 | good. Rijndael's very low memory requirements make it very well | |
1157 | suited for restricted-space environments, in which it also | |
1158 | demonstrates excellent performance. Rijndael's operations are | |
1159 | among the easiest to defend against power and timing attacks. | |
1160 | ||
1161 | The AES specifies three key sizes: 128, 192 and 256 bits | |
1162 | ||
1163 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
1164 | ||
1165 | In addition to AES cipher algorithm support, the acceleration | |
1166 | for some popular block cipher mode is supported too, including | |
1167 | ECB and CBC. | |
1168 | ||
504c6143 MS |
1169 | config CRYPTO_AES_PPC_SPE |
1170 | tristate "AES cipher algorithms (PPC SPE)" | |
1171 | depends on PPC && SPE | |
1172 | help | |
1173 | AES cipher algorithms (FIPS-197). Additionally the acceleration | |
1174 | for popular block cipher modes ECB, CBC, CTR and XTS is supported. | |
1175 | This module should only be used for low power (router) devices | |
1176 | without hardware AES acceleration (e.g. caam crypto). It reduces the | |
1177 | size of the AES tables from 16KB to 8KB + 256 bytes and mitigates | |
1178 | timining attacks. Nevertheless it might be not as secure as other | |
1179 | architecture specific assembler implementations that work on 1KB | |
1180 | tables or 256 bytes S-boxes. | |
1181 | ||
584fffc8 SS |
1182 | config CRYPTO_ANUBIS |
1183 | tristate "Anubis cipher algorithm" | |
1184 | select CRYPTO_ALGAPI | |
1185 | help | |
1186 | Anubis cipher algorithm. | |
1187 | ||
1188 | Anubis is a variable key length cipher which can use keys from | |
1189 | 128 bits to 320 bits in length. It was evaluated as a entrant | |
1190 | in the NESSIE competition. | |
1191 | ||
1192 | See also: | |
6d8de74c JM |
1193 | <https://www.cosic.esat.kuleuven.be/nessie/reports/> |
1194 | <http://www.larc.usp.br/~pbarreto/AnubisPage.html> | |
584fffc8 SS |
1195 | |
1196 | config CRYPTO_ARC4 | |
1197 | tristate "ARC4 cipher algorithm" | |
b9b0f080 | 1198 | select CRYPTO_BLKCIPHER |
584fffc8 SS |
1199 | help |
1200 | ARC4 cipher algorithm. | |
1201 | ||
1202 | ARC4 is a stream cipher using keys ranging from 8 bits to 2048 | |
1203 | bits in length. This algorithm is required for driver-based | |
1204 | WEP, but it should not be for other purposes because of the | |
1205 | weakness of the algorithm. | |
1206 | ||
1207 | config CRYPTO_BLOWFISH | |
1208 | tristate "Blowfish cipher algorithm" | |
1209 | select CRYPTO_ALGAPI | |
52ba867c | 1210 | select CRYPTO_BLOWFISH_COMMON |
584fffc8 SS |
1211 | help |
1212 | Blowfish cipher algorithm, by Bruce Schneier. | |
1213 | ||
1214 | This is a variable key length cipher which can use keys from 32 | |
1215 | bits to 448 bits in length. It's fast, simple and specifically | |
1216 | designed for use on "large microprocessors". | |
1217 | ||
1218 | See also: | |
1219 | <http://www.schneier.com/blowfish.html> | |
1220 | ||
52ba867c JK |
1221 | config CRYPTO_BLOWFISH_COMMON |
1222 | tristate | |
1223 | help | |
1224 | Common parts of the Blowfish cipher algorithm shared by the | |
1225 | generic c and the assembler implementations. | |
1226 | ||
1227 | See also: | |
1228 | <http://www.schneier.com/blowfish.html> | |
1229 | ||
64b94cea JK |
1230 | config CRYPTO_BLOWFISH_X86_64 |
1231 | tristate "Blowfish cipher algorithm (x86_64)" | |
f21a7c19 | 1232 | depends on X86 && 64BIT |
c1679171 | 1233 | select CRYPTO_BLKCIPHER |
64b94cea JK |
1234 | select CRYPTO_BLOWFISH_COMMON |
1235 | help | |
1236 | Blowfish cipher algorithm (x86_64), by Bruce Schneier. | |
1237 | ||
1238 | This is a variable key length cipher which can use keys from 32 | |
1239 | bits to 448 bits in length. It's fast, simple and specifically | |
1240 | designed for use on "large microprocessors". | |
1241 | ||
1242 | See also: | |
1243 | <http://www.schneier.com/blowfish.html> | |
1244 | ||
584fffc8 SS |
1245 | config CRYPTO_CAMELLIA |
1246 | tristate "Camellia cipher algorithms" | |
1247 | depends on CRYPTO | |
1248 | select CRYPTO_ALGAPI | |
1249 | help | |
1250 | Camellia cipher algorithms module. | |
1251 | ||
1252 | Camellia is a symmetric key block cipher developed jointly | |
1253 | at NTT and Mitsubishi Electric Corporation. | |
1254 | ||
1255 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1256 | ||
1257 | See also: | |
1258 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1259 | ||
0b95ec56 JK |
1260 | config CRYPTO_CAMELLIA_X86_64 |
1261 | tristate "Camellia cipher algorithm (x86_64)" | |
f21a7c19 | 1262 | depends on X86 && 64BIT |
0b95ec56 | 1263 | depends on CRYPTO |
1af6d037 | 1264 | select CRYPTO_BLKCIPHER |
964263af | 1265 | select CRYPTO_GLUE_HELPER_X86 |
0b95ec56 JK |
1266 | help |
1267 | Camellia cipher algorithm module (x86_64). | |
1268 | ||
1269 | Camellia is a symmetric key block cipher developed jointly | |
1270 | at NTT and Mitsubishi Electric Corporation. | |
1271 | ||
1272 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1273 | ||
1274 | See also: | |
d9b1d2e7 JK |
1275 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
1276 | ||
1277 | config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 | |
1278 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" | |
1279 | depends on X86 && 64BIT | |
1280 | depends on CRYPTO | |
44893bc2 | 1281 | select CRYPTO_BLKCIPHER |
d9b1d2e7 | 1282 | select CRYPTO_CAMELLIA_X86_64 |
44893bc2 EB |
1283 | select CRYPTO_GLUE_HELPER_X86 |
1284 | select CRYPTO_SIMD | |
d9b1d2e7 JK |
1285 | select CRYPTO_XTS |
1286 | help | |
1287 | Camellia cipher algorithm module (x86_64/AES-NI/AVX). | |
1288 | ||
1289 | Camellia is a symmetric key block cipher developed jointly | |
1290 | at NTT and Mitsubishi Electric Corporation. | |
1291 | ||
1292 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1293 | ||
1294 | See also: | |
0b95ec56 JK |
1295 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
1296 | ||
f3f935a7 JK |
1297 | config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 |
1298 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" | |
1299 | depends on X86 && 64BIT | |
1300 | depends on CRYPTO | |
f3f935a7 | 1301 | select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 |
f3f935a7 JK |
1302 | help |
1303 | Camellia cipher algorithm module (x86_64/AES-NI/AVX2). | |
1304 | ||
1305 | Camellia is a symmetric key block cipher developed jointly | |
1306 | at NTT and Mitsubishi Electric Corporation. | |
1307 | ||
1308 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1309 | ||
1310 | See also: | |
1311 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1312 | ||
81658ad0 DM |
1313 | config CRYPTO_CAMELLIA_SPARC64 |
1314 | tristate "Camellia cipher algorithm (SPARC64)" | |
1315 | depends on SPARC64 | |
1316 | depends on CRYPTO | |
1317 | select CRYPTO_ALGAPI | |
1318 | help | |
1319 | Camellia cipher algorithm module (SPARC64). | |
1320 | ||
1321 | Camellia is a symmetric key block cipher developed jointly | |
1322 | at NTT and Mitsubishi Electric Corporation. | |
1323 | ||
1324 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1325 | ||
1326 | See also: | |
1327 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1328 | ||
044ab525 JK |
1329 | config CRYPTO_CAST_COMMON |
1330 | tristate | |
1331 | help | |
1332 | Common parts of the CAST cipher algorithms shared by the | |
1333 | generic c and the assembler implementations. | |
1334 | ||
1da177e4 LT |
1335 | config CRYPTO_CAST5 |
1336 | tristate "CAST5 (CAST-128) cipher algorithm" | |
cce9e06d | 1337 | select CRYPTO_ALGAPI |
044ab525 | 1338 | select CRYPTO_CAST_COMMON |
1da177e4 LT |
1339 | help |
1340 | The CAST5 encryption algorithm (synonymous with CAST-128) is | |
1341 | described in RFC2144. | |
1342 | ||
4d6d6a2c JG |
1343 | config CRYPTO_CAST5_AVX_X86_64 |
1344 | tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" | |
1345 | depends on X86 && 64BIT | |
1e63183a | 1346 | select CRYPTO_BLKCIPHER |
4d6d6a2c | 1347 | select CRYPTO_CAST5 |
1e63183a EB |
1348 | select CRYPTO_CAST_COMMON |
1349 | select CRYPTO_SIMD | |
4d6d6a2c JG |
1350 | help |
1351 | The CAST5 encryption algorithm (synonymous with CAST-128) is | |
1352 | described in RFC2144. | |
1353 | ||
1354 | This module provides the Cast5 cipher algorithm that processes | |
1355 | sixteen blocks parallel using the AVX instruction set. | |
1356 | ||
1da177e4 LT |
1357 | config CRYPTO_CAST6 |
1358 | tristate "CAST6 (CAST-256) cipher algorithm" | |
cce9e06d | 1359 | select CRYPTO_ALGAPI |
044ab525 | 1360 | select CRYPTO_CAST_COMMON |
1da177e4 LT |
1361 | help |
1362 | The CAST6 encryption algorithm (synonymous with CAST-256) is | |
1363 | described in RFC2612. | |
1364 | ||
4ea1277d JG |
1365 | config CRYPTO_CAST6_AVX_X86_64 |
1366 | tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" | |
1367 | depends on X86 && 64BIT | |
4bd96924 | 1368 | select CRYPTO_BLKCIPHER |
4ea1277d | 1369 | select CRYPTO_CAST6 |
4bd96924 EB |
1370 | select CRYPTO_CAST_COMMON |
1371 | select CRYPTO_GLUE_HELPER_X86 | |
1372 | select CRYPTO_SIMD | |
4ea1277d JG |
1373 | select CRYPTO_XTS |
1374 | help | |
1375 | The CAST6 encryption algorithm (synonymous with CAST-256) is | |
1376 | described in RFC2612. | |
1377 | ||
1378 | This module provides the Cast6 cipher algorithm that processes | |
1379 | eight blocks parallel using the AVX instruction set. | |
1380 | ||
584fffc8 SS |
1381 | config CRYPTO_DES |
1382 | tristate "DES and Triple DES EDE cipher algorithms" | |
cce9e06d | 1383 | select CRYPTO_ALGAPI |
1da177e4 | 1384 | help |
584fffc8 | 1385 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). |
fb4f10ed | 1386 | |
c5aac2df DM |
1387 | config CRYPTO_DES_SPARC64 |
1388 | tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" | |
97da37b3 | 1389 | depends on SPARC64 |
c5aac2df DM |
1390 | select CRYPTO_ALGAPI |
1391 | select CRYPTO_DES | |
1392 | help | |
1393 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), | |
1394 | optimized using SPARC64 crypto opcodes. | |
1395 | ||
6574e6c6 JK |
1396 | config CRYPTO_DES3_EDE_X86_64 |
1397 | tristate "Triple DES EDE cipher algorithm (x86-64)" | |
1398 | depends on X86 && 64BIT | |
09c0f03b | 1399 | select CRYPTO_BLKCIPHER |
6574e6c6 JK |
1400 | select CRYPTO_DES |
1401 | help | |
1402 | Triple DES EDE (FIPS 46-3) algorithm. | |
1403 | ||
1404 | This module provides implementation of the Triple DES EDE cipher | |
1405 | algorithm that is optimized for x86-64 processors. Two versions of | |
1406 | algorithm are provided; regular processing one input block and | |
1407 | one that processes three blocks parallel. | |
1408 | ||
584fffc8 SS |
1409 | config CRYPTO_FCRYPT |
1410 | tristate "FCrypt cipher algorithm" | |
cce9e06d | 1411 | select CRYPTO_ALGAPI |
584fffc8 | 1412 | select CRYPTO_BLKCIPHER |
1da177e4 | 1413 | help |
584fffc8 | 1414 | FCrypt algorithm used by RxRPC. |
1da177e4 LT |
1415 | |
1416 | config CRYPTO_KHAZAD | |
1417 | tristate "Khazad cipher algorithm" | |
cce9e06d | 1418 | select CRYPTO_ALGAPI |
1da177e4 LT |
1419 | help |
1420 | Khazad cipher algorithm. | |
1421 | ||
1422 | Khazad was a finalist in the initial NESSIE competition. It is | |
1423 | an algorithm optimized for 64-bit processors with good performance | |
1424 | on 32-bit processors. Khazad uses an 128 bit key size. | |
1425 | ||
1426 | See also: | |
6d8de74c | 1427 | <http://www.larc.usp.br/~pbarreto/KhazadPage.html> |
1da177e4 | 1428 | |
2407d608 | 1429 | config CRYPTO_SALSA20 |
3b4afaf2 | 1430 | tristate "Salsa20 stream cipher algorithm" |
2407d608 TSH |
1431 | select CRYPTO_BLKCIPHER |
1432 | help | |
1433 | Salsa20 stream cipher algorithm. | |
1434 | ||
1435 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT | |
1436 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> | |
974e4b75 TSH |
1437 | |
1438 | The Salsa20 stream cipher algorithm is designed by Daniel J. | |
1439 | Bernstein <[email protected]>. See <http://cr.yp.to/snuffle.html> | |
1440 | ||
c08d0e64 | 1441 | config CRYPTO_CHACHA20 |
aa762409 | 1442 | tristate "ChaCha stream cipher algorithms" |
c08d0e64 MW |
1443 | select CRYPTO_BLKCIPHER |
1444 | help | |
aa762409 | 1445 | The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. |
c08d0e64 MW |
1446 | |
1447 | ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. | |
1448 | Bernstein and further specified in RFC7539 for use in IETF protocols. | |
de61d7ae | 1449 | This is the portable C implementation of ChaCha20. See also: |
c08d0e64 MW |
1450 | <http://cr.yp.to/chacha/chacha-20080128.pdf> |
1451 | ||
de61d7ae EB |
1452 | XChaCha20 is the application of the XSalsa20 construction to ChaCha20 |
1453 | rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length | |
1454 | from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, | |
1455 | while provably retaining ChaCha20's security. See also: | |
1456 | <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> | |
1457 | ||
aa762409 EB |
1458 | XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly |
1459 | reduced security margin but increased performance. It can be needed | |
1460 | in some performance-sensitive scenarios. | |
1461 | ||
c9320b6d | 1462 | config CRYPTO_CHACHA20_X86_64 |
3d1e93cd | 1463 | tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" |
c9320b6d MW |
1464 | depends on X86 && 64BIT |
1465 | select CRYPTO_BLKCIPHER | |
1466 | select CRYPTO_CHACHA20 | |
1467 | help | |
1468 | ChaCha20 cipher algorithm, RFC7539. | |
1469 | ||
1470 | ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. | |
1471 | Bernstein and further specified in RFC7539 for use in IETF protocols. | |
1472 | This is the x86_64 assembler implementation using SIMD instructions. | |
1473 | ||
1474 | See also: | |
1475 | <http://cr.yp.to/chacha/chacha-20080128.pdf> | |
1476 | ||
584fffc8 SS |
1477 | config CRYPTO_SEED |
1478 | tristate "SEED cipher algorithm" | |
cce9e06d | 1479 | select CRYPTO_ALGAPI |
1da177e4 | 1480 | help |
584fffc8 | 1481 | SEED cipher algorithm (RFC4269). |
1da177e4 | 1482 | |
584fffc8 SS |
1483 | SEED is a 128-bit symmetric key block cipher that has been |
1484 | developed by KISA (Korea Information Security Agency) as a | |
1485 | national standard encryption algorithm of the Republic of Korea. | |
1486 | It is a 16 round block cipher with the key size of 128 bit. | |
1487 | ||
1488 | See also: | |
1489 | <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> | |
1490 | ||
1491 | config CRYPTO_SERPENT | |
1492 | tristate "Serpent cipher algorithm" | |
cce9e06d | 1493 | select CRYPTO_ALGAPI |
1da177e4 | 1494 | help |
584fffc8 | 1495 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
1da177e4 | 1496 | |
584fffc8 SS |
1497 | Keys are allowed to be from 0 to 256 bits in length, in steps |
1498 | of 8 bits. Also includes the 'Tnepres' algorithm, a reversed | |
1499 | variant of Serpent for compatibility with old kerneli.org code. | |
1500 | ||
1501 | See also: | |
1502 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
1503 | ||
937c30d7 JK |
1504 | config CRYPTO_SERPENT_SSE2_X86_64 |
1505 | tristate "Serpent cipher algorithm (x86_64/SSE2)" | |
1506 | depends on X86 && 64BIT | |
e0f409dc | 1507 | select CRYPTO_BLKCIPHER |
596d8750 | 1508 | select CRYPTO_GLUE_HELPER_X86 |
937c30d7 | 1509 | select CRYPTO_SERPENT |
e0f409dc | 1510 | select CRYPTO_SIMD |
937c30d7 JK |
1511 | help |
1512 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1513 | ||
1514 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1515 | of 8 bits. | |
1516 | ||
1e6232f8 | 1517 | This module provides Serpent cipher algorithm that processes eight |
937c30d7 JK |
1518 | blocks parallel using SSE2 instruction set. |
1519 | ||
1520 | See also: | |
1521 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
1522 | ||
251496db JK |
1523 | config CRYPTO_SERPENT_SSE2_586 |
1524 | tristate "Serpent cipher algorithm (i586/SSE2)" | |
1525 | depends on X86 && !64BIT | |
e0f409dc | 1526 | select CRYPTO_BLKCIPHER |
596d8750 | 1527 | select CRYPTO_GLUE_HELPER_X86 |
251496db | 1528 | select CRYPTO_SERPENT |
e0f409dc | 1529 | select CRYPTO_SIMD |
251496db JK |
1530 | help |
1531 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1532 | ||
1533 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1534 | of 8 bits. | |
1535 | ||
1536 | This module provides Serpent cipher algorithm that processes four | |
1537 | blocks parallel using SSE2 instruction set. | |
1538 | ||
1539 | See also: | |
1540 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
7efe4076 JG |
1541 | |
1542 | config CRYPTO_SERPENT_AVX_X86_64 | |
1543 | tristate "Serpent cipher algorithm (x86_64/AVX)" | |
1544 | depends on X86 && 64BIT | |
e16bf974 | 1545 | select CRYPTO_BLKCIPHER |
1d0debbd | 1546 | select CRYPTO_GLUE_HELPER_X86 |
7efe4076 | 1547 | select CRYPTO_SERPENT |
e16bf974 | 1548 | select CRYPTO_SIMD |
7efe4076 JG |
1549 | select CRYPTO_XTS |
1550 | help | |
1551 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1552 | ||
1553 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1554 | of 8 bits. | |
1555 | ||
1556 | This module provides the Serpent cipher algorithm that processes | |
1557 | eight blocks parallel using the AVX instruction set. | |
1558 | ||
1559 | See also: | |
1560 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
251496db | 1561 | |
56d76c96 JK |
1562 | config CRYPTO_SERPENT_AVX2_X86_64 |
1563 | tristate "Serpent cipher algorithm (x86_64/AVX2)" | |
1564 | depends on X86 && 64BIT | |
56d76c96 | 1565 | select CRYPTO_SERPENT_AVX_X86_64 |
56d76c96 JK |
1566 | help |
1567 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1568 | ||
1569 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1570 | of 8 bits. | |
1571 | ||
1572 | This module provides Serpent cipher algorithm that processes 16 | |
1573 | blocks parallel using AVX2 instruction set. | |
1574 | ||
1575 | See also: | |
1576 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
1577 | ||
747c8ce4 GBY |
1578 | config CRYPTO_SM4 |
1579 | tristate "SM4 cipher algorithm" | |
1580 | select CRYPTO_ALGAPI | |
1581 | help | |
1582 | SM4 cipher algorithms (OSCCA GB/T 32907-2016). | |
1583 | ||
1584 | SM4 (GBT.32907-2016) is a cryptographic standard issued by the | |
1585 | Organization of State Commercial Administration of China (OSCCA) | |
1586 | as an authorized cryptographic algorithms for the use within China. | |
1587 | ||
1588 | SMS4 was originally created for use in protecting wireless | |
1589 | networks, and is mandated in the Chinese National Standard for | |
1590 | Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) | |
1591 | (GB.15629.11-2003). | |
1592 | ||
1593 | The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and | |
1594 | standardized through TC 260 of the Standardization Administration | |
1595 | of the People's Republic of China (SAC). | |
1596 | ||
1597 | The input, output, and key of SMS4 are each 128 bits. | |
1598 | ||
1599 | See also: <https://eprint.iacr.org/2008/329.pdf> | |
1600 | ||
1601 | If unsure, say N. | |
1602 | ||
584fffc8 SS |
1603 | config CRYPTO_TEA |
1604 | tristate "TEA, XTEA and XETA cipher algorithms" | |
cce9e06d | 1605 | select CRYPTO_ALGAPI |
1da177e4 | 1606 | help |
584fffc8 | 1607 | TEA cipher algorithm. |
1da177e4 | 1608 | |
584fffc8 SS |
1609 | Tiny Encryption Algorithm is a simple cipher that uses |
1610 | many rounds for security. It is very fast and uses | |
1611 | little memory. | |
1612 | ||
1613 | Xtendend Tiny Encryption Algorithm is a modification to | |
1614 | the TEA algorithm to address a potential key weakness | |
1615 | in the TEA algorithm. | |
1616 | ||
1617 | Xtendend Encryption Tiny Algorithm is a mis-implementation | |
1618 | of the XTEA algorithm for compatibility purposes. | |
1619 | ||
1620 | config CRYPTO_TWOFISH | |
1621 | tristate "Twofish cipher algorithm" | |
04ac7db3 | 1622 | select CRYPTO_ALGAPI |
584fffc8 | 1623 | select CRYPTO_TWOFISH_COMMON |
04ac7db3 | 1624 | help |
584fffc8 | 1625 | Twofish cipher algorithm. |
04ac7db3 | 1626 | |
584fffc8 SS |
1627 | Twofish was submitted as an AES (Advanced Encryption Standard) |
1628 | candidate cipher by researchers at CounterPane Systems. It is a | |
1629 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1630 | bits. | |
04ac7db3 | 1631 | |
584fffc8 SS |
1632 | See also: |
1633 | <http://www.schneier.com/twofish.html> | |
1634 | ||
1635 | config CRYPTO_TWOFISH_COMMON | |
1636 | tristate | |
1637 | help | |
1638 | Common parts of the Twofish cipher algorithm shared by the | |
1639 | generic c and the assembler implementations. | |
1640 | ||
1641 | config CRYPTO_TWOFISH_586 | |
1642 | tristate "Twofish cipher algorithms (i586)" | |
1643 | depends on (X86 || UML_X86) && !64BIT | |
1644 | select CRYPTO_ALGAPI | |
1645 | select CRYPTO_TWOFISH_COMMON | |
1646 | help | |
1647 | Twofish cipher algorithm. | |
1648 | ||
1649 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1650 | candidate cipher by researchers at CounterPane Systems. It is a | |
1651 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1652 | bits. | |
04ac7db3 NT |
1653 | |
1654 | See also: | |
584fffc8 | 1655 | <http://www.schneier.com/twofish.html> |
04ac7db3 | 1656 | |
584fffc8 SS |
1657 | config CRYPTO_TWOFISH_X86_64 |
1658 | tristate "Twofish cipher algorithm (x86_64)" | |
1659 | depends on (X86 || UML_X86) && 64BIT | |
cce9e06d | 1660 | select CRYPTO_ALGAPI |
584fffc8 | 1661 | select CRYPTO_TWOFISH_COMMON |
1da177e4 | 1662 | help |
584fffc8 | 1663 | Twofish cipher algorithm (x86_64). |
1da177e4 | 1664 | |
584fffc8 SS |
1665 | Twofish was submitted as an AES (Advanced Encryption Standard) |
1666 | candidate cipher by researchers at CounterPane Systems. It is a | |
1667 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1668 | bits. | |
1669 | ||
1670 | See also: | |
1671 | <http://www.schneier.com/twofish.html> | |
1672 | ||
8280daad JK |
1673 | config CRYPTO_TWOFISH_X86_64_3WAY |
1674 | tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" | |
f21a7c19 | 1675 | depends on X86 && 64BIT |
37992fa4 | 1676 | select CRYPTO_BLKCIPHER |
8280daad JK |
1677 | select CRYPTO_TWOFISH_COMMON |
1678 | select CRYPTO_TWOFISH_X86_64 | |
414cb5e7 | 1679 | select CRYPTO_GLUE_HELPER_X86 |
8280daad JK |
1680 | help |
1681 | Twofish cipher algorithm (x86_64, 3-way parallel). | |
1682 | ||
1683 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1684 | candidate cipher by researchers at CounterPane Systems. It is a | |
1685 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1686 | bits. | |
1687 | ||
1688 | This module provides Twofish cipher algorithm that processes three | |
1689 | blocks parallel, utilizing resources of out-of-order CPUs better. | |
1690 | ||
1691 | See also: | |
1692 | <http://www.schneier.com/twofish.html> | |
1693 | ||
107778b5 JG |
1694 | config CRYPTO_TWOFISH_AVX_X86_64 |
1695 | tristate "Twofish cipher algorithm (x86_64/AVX)" | |
1696 | depends on X86 && 64BIT | |
0e6ab46d | 1697 | select CRYPTO_BLKCIPHER |
a7378d4e | 1698 | select CRYPTO_GLUE_HELPER_X86 |
0e6ab46d | 1699 | select CRYPTO_SIMD |
107778b5 JG |
1700 | select CRYPTO_TWOFISH_COMMON |
1701 | select CRYPTO_TWOFISH_X86_64 | |
1702 | select CRYPTO_TWOFISH_X86_64_3WAY | |
107778b5 JG |
1703 | help |
1704 | Twofish cipher algorithm (x86_64/AVX). | |
1705 | ||
1706 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1707 | candidate cipher by researchers at CounterPane Systems. It is a | |
1708 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1709 | bits. | |
1710 | ||
1711 | This module provides the Twofish cipher algorithm that processes | |
1712 | eight blocks parallel using the AVX Instruction Set. | |
1713 | ||
1714 | See also: | |
1715 | <http://www.schneier.com/twofish.html> | |
1716 | ||
584fffc8 SS |
1717 | comment "Compression" |
1718 | ||
1719 | config CRYPTO_DEFLATE | |
1720 | tristate "Deflate compression algorithm" | |
1721 | select CRYPTO_ALGAPI | |
f6ded09d | 1722 | select CRYPTO_ACOMP2 |
584fffc8 SS |
1723 | select ZLIB_INFLATE |
1724 | select ZLIB_DEFLATE | |
3c09f17c | 1725 | help |
584fffc8 SS |
1726 | This is the Deflate algorithm (RFC1951), specified for use in |
1727 | IPSec with the IPCOMP protocol (RFC3173, RFC2394). | |
1728 | ||
1729 | You will most probably want this if using IPSec. | |
3c09f17c | 1730 | |
0b77abb3 ZS |
1731 | config CRYPTO_LZO |
1732 | tristate "LZO compression algorithm" | |
1733 | select CRYPTO_ALGAPI | |
ac9d2c4b | 1734 | select CRYPTO_ACOMP2 |
0b77abb3 ZS |
1735 | select LZO_COMPRESS |
1736 | select LZO_DECOMPRESS | |
1737 | help | |
1738 | This is the LZO algorithm. | |
1739 | ||
35a1fc18 SJ |
1740 | config CRYPTO_842 |
1741 | tristate "842 compression algorithm" | |
2062c5b6 | 1742 | select CRYPTO_ALGAPI |
6a8de3ae | 1743 | select CRYPTO_ACOMP2 |
2062c5b6 DS |
1744 | select 842_COMPRESS |
1745 | select 842_DECOMPRESS | |
35a1fc18 SJ |
1746 | help |
1747 | This is the 842 algorithm. | |
0ea8530d CM |
1748 | |
1749 | config CRYPTO_LZ4 | |
1750 | tristate "LZ4 compression algorithm" | |
1751 | select CRYPTO_ALGAPI | |
8cd9330e | 1752 | select CRYPTO_ACOMP2 |
0ea8530d CM |
1753 | select LZ4_COMPRESS |
1754 | select LZ4_DECOMPRESS | |
1755 | help | |
1756 | This is the LZ4 algorithm. | |
1757 | ||
1758 | config CRYPTO_LZ4HC | |
1759 | tristate "LZ4HC compression algorithm" | |
1760 | select CRYPTO_ALGAPI | |
91d53d96 | 1761 | select CRYPTO_ACOMP2 |
0ea8530d CM |
1762 | select LZ4HC_COMPRESS |
1763 | select LZ4_DECOMPRESS | |
1764 | help | |
1765 | This is the LZ4 high compression mode algorithm. | |
35a1fc18 | 1766 | |
d28fc3db NT |
1767 | config CRYPTO_ZSTD |
1768 | tristate "Zstd compression algorithm" | |
1769 | select CRYPTO_ALGAPI | |
1770 | select CRYPTO_ACOMP2 | |
1771 | select ZSTD_COMPRESS | |
1772 | select ZSTD_DECOMPRESS | |
1773 | help | |
1774 | This is the zstd algorithm. | |
1775 | ||
17f0f4a4 NH |
1776 | comment "Random Number Generation" |
1777 | ||
1778 | config CRYPTO_ANSI_CPRNG | |
1779 | tristate "Pseudo Random Number Generation for Cryptographic modules" | |
1780 | select CRYPTO_AES | |
1781 | select CRYPTO_RNG | |
17f0f4a4 NH |
1782 | help |
1783 | This option enables the generic pseudo random number generator | |
1784 | for cryptographic modules. Uses the Algorithm specified in | |
7dd607e8 JK |
1785 | ANSI X9.31 A.2.4. Note that this option must be enabled if |
1786 | CRYPTO_FIPS is selected | |
17f0f4a4 | 1787 | |
f2c89a10 | 1788 | menuconfig CRYPTO_DRBG_MENU |
419090c6 | 1789 | tristate "NIST SP800-90A DRBG" |
419090c6 SM |
1790 | help |
1791 | NIST SP800-90A compliant DRBG. In the following submenu, one or | |
1792 | more of the DRBG types must be selected. | |
1793 | ||
f2c89a10 | 1794 | if CRYPTO_DRBG_MENU |
419090c6 SM |
1795 | |
1796 | config CRYPTO_DRBG_HMAC | |
401e4238 | 1797 | bool |
419090c6 | 1798 | default y |
419090c6 | 1799 | select CRYPTO_HMAC |
826775bb | 1800 | select CRYPTO_SHA256 |
419090c6 SM |
1801 | |
1802 | config CRYPTO_DRBG_HASH | |
1803 | bool "Enable Hash DRBG" | |
826775bb | 1804 | select CRYPTO_SHA256 |
419090c6 SM |
1805 | help |
1806 | Enable the Hash DRBG variant as defined in NIST SP800-90A. | |
1807 | ||
1808 | config CRYPTO_DRBG_CTR | |
1809 | bool "Enable CTR DRBG" | |
419090c6 | 1810 | select CRYPTO_AES |
35591285 | 1811 | depends on CRYPTO_CTR |
419090c6 SM |
1812 | help |
1813 | Enable the CTR DRBG variant as defined in NIST SP800-90A. | |
1814 | ||
f2c89a10 HX |
1815 | config CRYPTO_DRBG |
1816 | tristate | |
401e4238 | 1817 | default CRYPTO_DRBG_MENU |
f2c89a10 | 1818 | select CRYPTO_RNG |
bb5530e4 | 1819 | select CRYPTO_JITTERENTROPY |
f2c89a10 HX |
1820 | |
1821 | endif # if CRYPTO_DRBG_MENU | |
419090c6 | 1822 | |
bb5530e4 SM |
1823 | config CRYPTO_JITTERENTROPY |
1824 | tristate "Jitterentropy Non-Deterministic Random Number Generator" | |
2f313e02 | 1825 | select CRYPTO_RNG |
bb5530e4 SM |
1826 | help |
1827 | The Jitterentropy RNG is a noise that is intended | |
1828 | to provide seed to another RNG. The RNG does not | |
1829 | perform any cryptographic whitening of the generated | |
1830 | random numbers. This Jitterentropy RNG registers with | |
1831 | the kernel crypto API and can be used by any caller. | |
1832 | ||
03c8efc1 HX |
1833 | config CRYPTO_USER_API |
1834 | tristate | |
1835 | ||
fe869cdb HX |
1836 | config CRYPTO_USER_API_HASH |
1837 | tristate "User-space interface for hash algorithms" | |
7451708f | 1838 | depends on NET |
fe869cdb HX |
1839 | select CRYPTO_HASH |
1840 | select CRYPTO_USER_API | |
1841 | help | |
1842 | This option enables the user-spaces interface for hash | |
1843 | algorithms. | |
1844 | ||
8ff59090 HX |
1845 | config CRYPTO_USER_API_SKCIPHER |
1846 | tristate "User-space interface for symmetric key cipher algorithms" | |
7451708f | 1847 | depends on NET |
8ff59090 HX |
1848 | select CRYPTO_BLKCIPHER |
1849 | select CRYPTO_USER_API | |
1850 | help | |
1851 | This option enables the user-spaces interface for symmetric | |
1852 | key cipher algorithms. | |
1853 | ||
2f375538 SM |
1854 | config CRYPTO_USER_API_RNG |
1855 | tristate "User-space interface for random number generator algorithms" | |
1856 | depends on NET | |
1857 | select CRYPTO_RNG | |
1858 | select CRYPTO_USER_API | |
1859 | help | |
1860 | This option enables the user-spaces interface for random | |
1861 | number generator algorithms. | |
1862 | ||
b64a2d95 HX |
1863 | config CRYPTO_USER_API_AEAD |
1864 | tristate "User-space interface for AEAD cipher algorithms" | |
1865 | depends on NET | |
1866 | select CRYPTO_AEAD | |
72548b09 SM |
1867 | select CRYPTO_BLKCIPHER |
1868 | select CRYPTO_NULL | |
b64a2d95 HX |
1869 | select CRYPTO_USER_API |
1870 | help | |
1871 | This option enables the user-spaces interface for AEAD | |
1872 | cipher algorithms. | |
1873 | ||
cac5818c CL |
1874 | config CRYPTO_STATS |
1875 | bool "Crypto usage statistics for User-space" | |
a6a31385 | 1876 | depends on CRYPTO_USER |
cac5818c CL |
1877 | help |
1878 | This option enables the gathering of crypto stats. | |
1879 | This will collect: | |
1880 | - encrypt/decrypt size and numbers of symmeric operations | |
1881 | - compress/decompress size and numbers of compress operations | |
1882 | - size and numbers of hash operations | |
1883 | - encrypt/decrypt/sign/verify numbers for asymmetric operations | |
1884 | - generate/seed numbers for rng operations | |
1885 | ||
ee08997f DK |
1886 | config CRYPTO_HASH_INFO |
1887 | bool | |
1888 | ||
1da177e4 | 1889 | source "drivers/crypto/Kconfig" |
964f3b3b | 1890 | source crypto/asymmetric_keys/Kconfig |
cfc411e7 | 1891 | source certs/Kconfig |
1da177e4 | 1892 | |
cce9e06d | 1893 | endif # if CRYPTO |