]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | # SPDX-License-Identifier: GPL-2.0 |
685784aa DW |
2 | # |
3 | # Generic algorithms support | |
4 | # | |
5 | config XOR_BLOCKS | |
6 | tristate | |
7 | ||
1da177e4 | 8 | # |
9bc89cd8 | 9 | # async_tx api: hardware offloaded memory transfer/transform support |
1da177e4 | 10 | # |
9bc89cd8 | 11 | source "crypto/async_tx/Kconfig" |
1da177e4 | 12 | |
9bc89cd8 DW |
13 | # |
14 | # Cryptographic API Configuration | |
15 | # | |
2e290f43 | 16 | menuconfig CRYPTO |
c3715cb9 | 17 | tristate "Cryptographic API" |
1da177e4 LT |
18 | help |
19 | This option provides the core Cryptographic API. | |
20 | ||
cce9e06d HX |
21 | if CRYPTO |
22 | ||
584fffc8 SS |
23 | comment "Crypto core or helper" |
24 | ||
ccb778e1 NH |
25 | config CRYPTO_FIPS |
26 | bool "FIPS 200 compliance" | |
f2c89a10 | 27 | depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS |
1f696097 | 28 | depends on (MODULE_SIG || !MODULES) |
ccb778e1 NH |
29 | help |
30 | This options enables the fips boot option which is | |
31 | required if you want to system to operate in a FIPS 200 | |
32 | certification. You should say no unless you know what | |
e84c5480 | 33 | this is. |
ccb778e1 | 34 | |
cce9e06d HX |
35 | config CRYPTO_ALGAPI |
36 | tristate | |
6a0fcbb4 | 37 | select CRYPTO_ALGAPI2 |
cce9e06d HX |
38 | help |
39 | This option provides the API for cryptographic algorithms. | |
40 | ||
6a0fcbb4 HX |
41 | config CRYPTO_ALGAPI2 |
42 | tristate | |
43 | ||
1ae97820 HX |
44 | config CRYPTO_AEAD |
45 | tristate | |
6a0fcbb4 | 46 | select CRYPTO_AEAD2 |
1ae97820 HX |
47 | select CRYPTO_ALGAPI |
48 | ||
6a0fcbb4 HX |
49 | config CRYPTO_AEAD2 |
50 | tristate | |
51 | select CRYPTO_ALGAPI2 | |
149a3971 HX |
52 | select CRYPTO_NULL2 |
53 | select CRYPTO_RNG2 | |
6a0fcbb4 | 54 | |
5cde0af2 HX |
55 | config CRYPTO_BLKCIPHER |
56 | tristate | |
6a0fcbb4 | 57 | select CRYPTO_BLKCIPHER2 |
5cde0af2 | 58 | select CRYPTO_ALGAPI |
6a0fcbb4 HX |
59 | |
60 | config CRYPTO_BLKCIPHER2 | |
61 | tristate | |
62 | select CRYPTO_ALGAPI2 | |
63 | select CRYPTO_RNG2 | |
0a2e821d | 64 | select CRYPTO_WORKQUEUE |
5cde0af2 | 65 | |
055bcee3 HX |
66 | config CRYPTO_HASH |
67 | tristate | |
6a0fcbb4 | 68 | select CRYPTO_HASH2 |
055bcee3 HX |
69 | select CRYPTO_ALGAPI |
70 | ||
6a0fcbb4 HX |
71 | config CRYPTO_HASH2 |
72 | tristate | |
73 | select CRYPTO_ALGAPI2 | |
74 | ||
17f0f4a4 NH |
75 | config CRYPTO_RNG |
76 | tristate | |
6a0fcbb4 | 77 | select CRYPTO_RNG2 |
17f0f4a4 NH |
78 | select CRYPTO_ALGAPI |
79 | ||
6a0fcbb4 HX |
80 | config CRYPTO_RNG2 |
81 | tristate | |
82 | select CRYPTO_ALGAPI2 | |
83 | ||
401e4238 HX |
84 | config CRYPTO_RNG_DEFAULT |
85 | tristate | |
86 | select CRYPTO_DRBG_MENU | |
87 | ||
3c339ab8 TS |
88 | config CRYPTO_AKCIPHER2 |
89 | tristate | |
90 | select CRYPTO_ALGAPI2 | |
91 | ||
92 | config CRYPTO_AKCIPHER | |
93 | tristate | |
94 | select CRYPTO_AKCIPHER2 | |
95 | select CRYPTO_ALGAPI | |
96 | ||
4e5f2c40 SB |
97 | config CRYPTO_KPP2 |
98 | tristate | |
99 | select CRYPTO_ALGAPI2 | |
100 | ||
101 | config CRYPTO_KPP | |
102 | tristate | |
103 | select CRYPTO_ALGAPI | |
104 | select CRYPTO_KPP2 | |
105 | ||
2ebda74f GC |
106 | config CRYPTO_ACOMP2 |
107 | tristate | |
108 | select CRYPTO_ALGAPI2 | |
8cd579d2 | 109 | select SGL_ALLOC |
2ebda74f GC |
110 | |
111 | config CRYPTO_ACOMP | |
112 | tristate | |
113 | select CRYPTO_ALGAPI | |
114 | select CRYPTO_ACOMP2 | |
115 | ||
cfc2bb32 TS |
116 | config CRYPTO_RSA |
117 | tristate "RSA algorithm" | |
425e0172 | 118 | select CRYPTO_AKCIPHER |
58446fef | 119 | select CRYPTO_MANAGER |
cfc2bb32 TS |
120 | select MPILIB |
121 | select ASN1 | |
122 | help | |
123 | Generic implementation of the RSA public key algorithm. | |
124 | ||
802c7f1c SB |
125 | config CRYPTO_DH |
126 | tristate "Diffie-Hellman algorithm" | |
127 | select CRYPTO_KPP | |
128 | select MPILIB | |
129 | help | |
130 | Generic implementation of the Diffie-Hellman algorithm. | |
131 | ||
3c4b2390 SB |
132 | config CRYPTO_ECDH |
133 | tristate "ECDH algorithm" | |
b5b90077 | 134 | select CRYPTO_KPP |
6755fd26 | 135 | select CRYPTO_RNG_DEFAULT |
3c4b2390 SB |
136 | help |
137 | Generic implementation of the ECDH algorithm | |
802c7f1c | 138 | |
2b8c19db HX |
139 | config CRYPTO_MANAGER |
140 | tristate "Cryptographic algorithm manager" | |
6a0fcbb4 | 141 | select CRYPTO_MANAGER2 |
2b8c19db HX |
142 | help |
143 | Create default cryptographic template instantiations such as | |
144 | cbc(aes). | |
145 | ||
6a0fcbb4 HX |
146 | config CRYPTO_MANAGER2 |
147 | def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) | |
148 | select CRYPTO_AEAD2 | |
149 | select CRYPTO_HASH2 | |
150 | select CRYPTO_BLKCIPHER2 | |
946cc463 | 151 | select CRYPTO_AKCIPHER2 |
4e5f2c40 | 152 | select CRYPTO_KPP2 |
2ebda74f | 153 | select CRYPTO_ACOMP2 |
6a0fcbb4 | 154 | |
a38f7907 SK |
155 | config CRYPTO_USER |
156 | tristate "Userspace cryptographic algorithm configuration" | |
5db017aa | 157 | depends on NET |
a38f7907 SK |
158 | select CRYPTO_MANAGER |
159 | help | |
d19978f5 | 160 | Userspace configuration for cryptographic instantiations such as |
a38f7907 SK |
161 | cbc(aes). |
162 | ||
326a6346 HX |
163 | config CRYPTO_MANAGER_DISABLE_TESTS |
164 | bool "Disable run-time self tests" | |
00ca28a5 HX |
165 | default y |
166 | depends on CRYPTO_MANAGER2 | |
0b767f96 | 167 | help |
326a6346 HX |
168 | Disable run-time self tests that normally take place at |
169 | algorithm registration. | |
0b767f96 | 170 | |
584fffc8 | 171 | config CRYPTO_GF128MUL |
08c70fc3 | 172 | tristate "GF(2^128) multiplication functions" |
333b0d7e | 173 | help |
584fffc8 SS |
174 | Efficient table driven implementation of multiplications in the |
175 | field GF(2^128). This is needed by some cypher modes. This | |
176 | option will be selected automatically if you select such a | |
177 | cipher mode. Only select this option by hand if you expect to load | |
178 | an external module that requires these functions. | |
333b0d7e | 179 | |
1da177e4 LT |
180 | config CRYPTO_NULL |
181 | tristate "Null algorithms" | |
149a3971 | 182 | select CRYPTO_NULL2 |
1da177e4 LT |
183 | help |
184 | These are 'Null' algorithms, used by IPsec, which do nothing. | |
185 | ||
149a3971 | 186 | config CRYPTO_NULL2 |
dd43c4e9 | 187 | tristate |
149a3971 HX |
188 | select CRYPTO_ALGAPI2 |
189 | select CRYPTO_BLKCIPHER2 | |
190 | select CRYPTO_HASH2 | |
191 | ||
5068c7a8 | 192 | config CRYPTO_PCRYPT |
3b4afaf2 KC |
193 | tristate "Parallel crypto engine" |
194 | depends on SMP | |
5068c7a8 SK |
195 | select PADATA |
196 | select CRYPTO_MANAGER | |
197 | select CRYPTO_AEAD | |
198 | help | |
199 | This converts an arbitrary crypto algorithm into a parallel | |
200 | algorithm that executes in kernel threads. | |
201 | ||
25c38d3f YH |
202 | config CRYPTO_WORKQUEUE |
203 | tristate | |
204 | ||
584fffc8 SS |
205 | config CRYPTO_CRYPTD |
206 | tristate "Software async crypto daemon" | |
207 | select CRYPTO_BLKCIPHER | |
b8a28251 | 208 | select CRYPTO_HASH |
584fffc8 | 209 | select CRYPTO_MANAGER |
254eff77 | 210 | select CRYPTO_WORKQUEUE |
1da177e4 | 211 | help |
584fffc8 SS |
212 | This is a generic software asynchronous crypto daemon that |
213 | converts an arbitrary synchronous software crypto algorithm | |
214 | into an asynchronous algorithm that executes in a kernel thread. | |
1da177e4 | 215 | |
1e65b81a TC |
216 | config CRYPTO_MCRYPTD |
217 | tristate "Software async multi-buffer crypto daemon" | |
218 | select CRYPTO_BLKCIPHER | |
219 | select CRYPTO_HASH | |
220 | select CRYPTO_MANAGER | |
221 | select CRYPTO_WORKQUEUE | |
222 | help | |
223 | This is a generic software asynchronous crypto daemon that | |
224 | provides the kernel thread to assist multi-buffer crypto | |
225 | algorithms for submitting jobs and flushing jobs in multi-buffer | |
226 | crypto algorithms. Multi-buffer crypto algorithms are executed | |
227 | in the context of this kernel thread and drivers can post | |
0e56673b | 228 | their crypto request asynchronously to be processed by this daemon. |
1e65b81a | 229 | |
584fffc8 SS |
230 | config CRYPTO_AUTHENC |
231 | tristate "Authenc support" | |
232 | select CRYPTO_AEAD | |
233 | select CRYPTO_BLKCIPHER | |
234 | select CRYPTO_MANAGER | |
235 | select CRYPTO_HASH | |
e94c6a7a | 236 | select CRYPTO_NULL |
1da177e4 | 237 | help |
584fffc8 SS |
238 | Authenc: Combined mode wrapper for IPsec. |
239 | This is required for IPSec. | |
1da177e4 | 240 | |
584fffc8 SS |
241 | config CRYPTO_TEST |
242 | tristate "Testing module" | |
243 | depends on m | |
da7f033d | 244 | select CRYPTO_MANAGER |
1da177e4 | 245 | help |
584fffc8 | 246 | Quick & dirty crypto test module. |
1da177e4 | 247 | |
a62b01cd | 248 | config CRYPTO_ABLK_HELPER |
ffaf9156 | 249 | tristate |
266d0516 HX |
250 | select CRYPTO_CRYPTD |
251 | ||
252 | config CRYPTO_SIMD | |
253 | tristate | |
ffaf9156 JK |
254 | select CRYPTO_CRYPTD |
255 | ||
596d8750 JK |
256 | config CRYPTO_GLUE_HELPER_X86 |
257 | tristate | |
258 | depends on X86 | |
065ce327 | 259 | select CRYPTO_BLKCIPHER |
596d8750 | 260 | |
735d37b5 BW |
261 | config CRYPTO_ENGINE |
262 | tristate | |
263 | ||
584fffc8 | 264 | comment "Authenticated Encryption with Associated Data" |
cd12fb90 | 265 | |
584fffc8 SS |
266 | config CRYPTO_CCM |
267 | tristate "CCM support" | |
268 | select CRYPTO_CTR | |
f15f05b0 | 269 | select CRYPTO_HASH |
584fffc8 | 270 | select CRYPTO_AEAD |
1da177e4 | 271 | help |
584fffc8 | 272 | Support for Counter with CBC MAC. Required for IPsec. |
1da177e4 | 273 | |
584fffc8 SS |
274 | config CRYPTO_GCM |
275 | tristate "GCM/GMAC support" | |
276 | select CRYPTO_CTR | |
277 | select CRYPTO_AEAD | |
9382d97a | 278 | select CRYPTO_GHASH |
9489667d | 279 | select CRYPTO_NULL |
1da177e4 | 280 | help |
584fffc8 SS |
281 | Support for Galois/Counter Mode (GCM) and Galois Message |
282 | Authentication Code (GMAC). Required for IPSec. | |
1da177e4 | 283 | |
71ebc4d1 MW |
284 | config CRYPTO_CHACHA20POLY1305 |
285 | tristate "ChaCha20-Poly1305 AEAD support" | |
286 | select CRYPTO_CHACHA20 | |
287 | select CRYPTO_POLY1305 | |
288 | select CRYPTO_AEAD | |
289 | help | |
290 | ChaCha20-Poly1305 AEAD support, RFC7539. | |
291 | ||
292 | Support for the AEAD wrapper using the ChaCha20 stream cipher combined | |
293 | with the Poly1305 authenticator. It is defined in RFC7539 for use in | |
294 | IETF protocols. | |
295 | ||
584fffc8 SS |
296 | config CRYPTO_SEQIV |
297 | tristate "Sequence Number IV Generator" | |
298 | select CRYPTO_AEAD | |
299 | select CRYPTO_BLKCIPHER | |
856e3f40 | 300 | select CRYPTO_NULL |
401e4238 | 301 | select CRYPTO_RNG_DEFAULT |
1da177e4 | 302 | help |
584fffc8 SS |
303 | This IV generator generates an IV based on a sequence number by |
304 | xoring it with a salt. This algorithm is mainly useful for CTR | |
1da177e4 | 305 | |
a10f554f HX |
306 | config CRYPTO_ECHAINIV |
307 | tristate "Encrypted Chain IV Generator" | |
308 | select CRYPTO_AEAD | |
309 | select CRYPTO_NULL | |
401e4238 | 310 | select CRYPTO_RNG_DEFAULT |
3491244c | 311 | default m |
a10f554f HX |
312 | help |
313 | This IV generator generates an IV based on the encryption of | |
314 | a sequence number xored with a salt. This is the default | |
315 | algorithm for CBC. | |
316 | ||
584fffc8 | 317 | comment "Block modes" |
c494e070 | 318 | |
584fffc8 SS |
319 | config CRYPTO_CBC |
320 | tristate "CBC support" | |
db131ef9 | 321 | select CRYPTO_BLKCIPHER |
43518407 | 322 | select CRYPTO_MANAGER |
db131ef9 | 323 | help |
584fffc8 SS |
324 | CBC: Cipher Block Chaining mode |
325 | This block cipher algorithm is required for IPSec. | |
db131ef9 | 326 | |
584fffc8 SS |
327 | config CRYPTO_CTR |
328 | tristate "CTR support" | |
db131ef9 | 329 | select CRYPTO_BLKCIPHER |
584fffc8 | 330 | select CRYPTO_SEQIV |
43518407 | 331 | select CRYPTO_MANAGER |
db131ef9 | 332 | help |
584fffc8 | 333 | CTR: Counter mode |
db131ef9 HX |
334 | This block cipher algorithm is required for IPSec. |
335 | ||
584fffc8 SS |
336 | config CRYPTO_CTS |
337 | tristate "CTS support" | |
338 | select CRYPTO_BLKCIPHER | |
339 | help | |
340 | CTS: Cipher Text Stealing | |
341 | This is the Cipher Text Stealing mode as described by | |
342 | Section 8 of rfc2040 and referenced by rfc3962. | |
343 | (rfc3962 includes errata information in its Appendix A) | |
344 | This mode is required for Kerberos gss mechanism support | |
345 | for AES encryption. | |
346 | ||
347 | config CRYPTO_ECB | |
348 | tristate "ECB support" | |
91652be5 DH |
349 | select CRYPTO_BLKCIPHER |
350 | select CRYPTO_MANAGER | |
91652be5 | 351 | help |
584fffc8 SS |
352 | ECB: Electronic CodeBook mode |
353 | This is the simplest block cipher algorithm. It simply encrypts | |
354 | the input block by block. | |
91652be5 | 355 | |
64470f1b | 356 | config CRYPTO_LRW |
2470a2b2 | 357 | tristate "LRW support" |
64470f1b RS |
358 | select CRYPTO_BLKCIPHER |
359 | select CRYPTO_MANAGER | |
360 | select CRYPTO_GF128MUL | |
361 | help | |
362 | LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable | |
363 | narrow block cipher mode for dm-crypt. Use it with cipher | |
364 | specification string aes-lrw-benbi, the key must be 256, 320 or 384. | |
365 | The first 128, 192 or 256 bits in the key are used for AES and the | |
366 | rest is used to tie each cipher block to its logical position. | |
367 | ||
584fffc8 SS |
368 | config CRYPTO_PCBC |
369 | tristate "PCBC support" | |
370 | select CRYPTO_BLKCIPHER | |
371 | select CRYPTO_MANAGER | |
372 | help | |
373 | PCBC: Propagating Cipher Block Chaining mode | |
374 | This block cipher algorithm is required for RxRPC. | |
375 | ||
f19f5111 | 376 | config CRYPTO_XTS |
5bcf8e6d | 377 | tristate "XTS support" |
f19f5111 RS |
378 | select CRYPTO_BLKCIPHER |
379 | select CRYPTO_MANAGER | |
12cb3a1c | 380 | select CRYPTO_ECB |
f19f5111 RS |
381 | help |
382 | XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, | |
383 | key size 256, 384 or 512 bits. This implementation currently | |
384 | can't handle a sectorsize which is not a multiple of 16 bytes. | |
385 | ||
1c49678e SM |
386 | config CRYPTO_KEYWRAP |
387 | tristate "Key wrapping support" | |
388 | select CRYPTO_BLKCIPHER | |
389 | help | |
390 | Support for key wrapping (NIST SP800-38F / RFC3394) without | |
391 | padding. | |
392 | ||
584fffc8 SS |
393 | comment "Hash modes" |
394 | ||
93b5e86a JK |
395 | config CRYPTO_CMAC |
396 | tristate "CMAC support" | |
397 | select CRYPTO_HASH | |
398 | select CRYPTO_MANAGER | |
399 | help | |
400 | Cipher-based Message Authentication Code (CMAC) specified by | |
401 | The National Institute of Standards and Technology (NIST). | |
402 | ||
403 | https://tools.ietf.org/html/rfc4493 | |
404 | http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf | |
405 | ||
584fffc8 SS |
406 | config CRYPTO_HMAC |
407 | tristate "HMAC support" | |
408 | select CRYPTO_HASH | |
23e353c8 | 409 | select CRYPTO_MANAGER |
23e353c8 | 410 | help |
584fffc8 SS |
411 | HMAC: Keyed-Hashing for Message Authentication (RFC2104). |
412 | This is required for IPSec. | |
23e353c8 | 413 | |
584fffc8 SS |
414 | config CRYPTO_XCBC |
415 | tristate "XCBC support" | |
584fffc8 SS |
416 | select CRYPTO_HASH |
417 | select CRYPTO_MANAGER | |
76cb9521 | 418 | help |
584fffc8 SS |
419 | XCBC: Keyed-Hashing with encryption algorithm |
420 | http://www.ietf.org/rfc/rfc3566.txt | |
421 | http://csrc.nist.gov/encryption/modes/proposedmodes/ | |
422 | xcbc-mac/xcbc-mac-spec.pdf | |
76cb9521 | 423 | |
f1939f7c SW |
424 | config CRYPTO_VMAC |
425 | tristate "VMAC support" | |
f1939f7c SW |
426 | select CRYPTO_HASH |
427 | select CRYPTO_MANAGER | |
428 | help | |
429 | VMAC is a message authentication algorithm designed for | |
430 | very high speed on 64-bit architectures. | |
431 | ||
432 | See also: | |
433 | <http://fastcrypto.org/vmac> | |
434 | ||
584fffc8 | 435 | comment "Digest" |
28db8e3e | 436 | |
584fffc8 SS |
437 | config CRYPTO_CRC32C |
438 | tristate "CRC32c CRC algorithm" | |
5773a3e6 | 439 | select CRYPTO_HASH |
6a0962b2 | 440 | select CRC32 |
4a49b499 | 441 | help |
584fffc8 SS |
442 | Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used |
443 | by iSCSI for header and data digests and by others. | |
69c35efc | 444 | See Castagnoli93. Module will be crc32c. |
4a49b499 | 445 | |
8cb51ba8 AZ |
446 | config CRYPTO_CRC32C_INTEL |
447 | tristate "CRC32c INTEL hardware acceleration" | |
448 | depends on X86 | |
449 | select CRYPTO_HASH | |
450 | help | |
451 | In Intel processor with SSE4.2 supported, the processor will | |
452 | support CRC32C implementation using hardware accelerated CRC32 | |
453 | instruction. This option will create 'crc32c-intel' module, | |
454 | which will enable any routine to use the CRC32 instruction to | |
455 | gain performance compared with software implementation. | |
456 | Module will be crc32c-intel. | |
457 | ||
7cf31864 | 458 | config CRYPTO_CRC32C_VPMSUM |
6dd7a82c | 459 | tristate "CRC32c CRC algorithm (powerpc64)" |
c12abf34 | 460 | depends on PPC64 && ALTIVEC |
6dd7a82c AB |
461 | select CRYPTO_HASH |
462 | select CRC32 | |
463 | help | |
464 | CRC32c algorithm implemented using vector polynomial multiply-sum | |
465 | (vpmsum) instructions, introduced in POWER8. Enable on POWER8 | |
466 | and newer processors for improved performance. | |
467 | ||
468 | ||
442a7c40 DM |
469 | config CRYPTO_CRC32C_SPARC64 |
470 | tristate "CRC32c CRC algorithm (SPARC64)" | |
471 | depends on SPARC64 | |
472 | select CRYPTO_HASH | |
473 | select CRC32 | |
474 | help | |
475 | CRC32c CRC algorithm implemented using sparc64 crypto instructions, | |
476 | when available. | |
477 | ||
78c37d19 AB |
478 | config CRYPTO_CRC32 |
479 | tristate "CRC32 CRC algorithm" | |
480 | select CRYPTO_HASH | |
481 | select CRC32 | |
482 | help | |
483 | CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. | |
484 | Shash crypto api wrappers to crc32_le function. | |
485 | ||
486 | config CRYPTO_CRC32_PCLMUL | |
487 | tristate "CRC32 PCLMULQDQ hardware acceleration" | |
488 | depends on X86 | |
489 | select CRYPTO_HASH | |
490 | select CRC32 | |
491 | help | |
492 | From Intel Westmere and AMD Bulldozer processor with SSE4.2 | |
493 | and PCLMULQDQ supported, the processor will support | |
494 | CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ | |
495 | instruction. This option will create 'crc32-plcmul' module, | |
496 | which will enable any routine to use the CRC-32-IEEE 802.3 checksum | |
497 | and gain better performance as compared with the table implementation. | |
498 | ||
68411521 HX |
499 | config CRYPTO_CRCT10DIF |
500 | tristate "CRCT10DIF algorithm" | |
501 | select CRYPTO_HASH | |
502 | help | |
503 | CRC T10 Data Integrity Field computation is being cast as | |
504 | a crypto transform. This allows for faster crc t10 diff | |
505 | transforms to be used if they are available. | |
506 | ||
507 | config CRYPTO_CRCT10DIF_PCLMUL | |
508 | tristate "CRCT10DIF PCLMULQDQ hardware acceleration" | |
509 | depends on X86 && 64BIT && CRC_T10DIF | |
510 | select CRYPTO_HASH | |
511 | help | |
512 | For x86_64 processors with SSE4.2 and PCLMULQDQ supported, | |
513 | CRC T10 DIF PCLMULQDQ computation can be hardware | |
514 | accelerated PCLMULQDQ instruction. This option will create | |
515 | 'crct10dif-plcmul' module, which is faster when computing the | |
516 | crct10dif checksum as compared with the generic table implementation. | |
517 | ||
b01df1c1 DA |
518 | config CRYPTO_CRCT10DIF_VPMSUM |
519 | tristate "CRC32T10DIF powerpc64 hardware acceleration" | |
520 | depends on PPC64 && ALTIVEC && CRC_T10DIF | |
521 | select CRYPTO_HASH | |
522 | help | |
523 | CRC10T10DIF algorithm implemented using vector polynomial | |
524 | multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on | |
525 | POWER8 and newer processors for improved performance. | |
526 | ||
146c8688 DA |
527 | config CRYPTO_VPMSUM_TESTER |
528 | tristate "Powerpc64 vpmsum hardware acceleration tester" | |
529 | depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM | |
530 | help | |
531 | Stress test for CRC32c and CRC-T10DIF algorithms implemented with | |
532 | POWER8 vpmsum instructions. | |
533 | Unless you are testing these algorithms, you don't need this. | |
534 | ||
2cdc6899 YH |
535 | config CRYPTO_GHASH |
536 | tristate "GHASH digest algorithm" | |
2cdc6899 | 537 | select CRYPTO_GF128MUL |
578c60fb | 538 | select CRYPTO_HASH |
2cdc6899 YH |
539 | help |
540 | GHASH is message digest algorithm for GCM (Galois/Counter Mode). | |
541 | ||
f979e014 MW |
542 | config CRYPTO_POLY1305 |
543 | tristate "Poly1305 authenticator algorithm" | |
578c60fb | 544 | select CRYPTO_HASH |
f979e014 MW |
545 | help |
546 | Poly1305 authenticator algorithm, RFC7539. | |
547 | ||
548 | Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. | |
549 | It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use | |
550 | in IETF protocols. This is the portable C implementation of Poly1305. | |
551 | ||
c70f4abe | 552 | config CRYPTO_POLY1305_X86_64 |
b1ccc8f4 | 553 | tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" |
c70f4abe MW |
554 | depends on X86 && 64BIT |
555 | select CRYPTO_POLY1305 | |
556 | help | |
557 | Poly1305 authenticator algorithm, RFC7539. | |
558 | ||
559 | Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. | |
560 | It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use | |
561 | in IETF protocols. This is the x86_64 assembler implementation using SIMD | |
562 | instructions. | |
563 | ||
584fffc8 SS |
564 | config CRYPTO_MD4 |
565 | tristate "MD4 digest algorithm" | |
808a1763 | 566 | select CRYPTO_HASH |
124b53d0 | 567 | help |
584fffc8 | 568 | MD4 message digest algorithm (RFC1320). |
124b53d0 | 569 | |
584fffc8 SS |
570 | config CRYPTO_MD5 |
571 | tristate "MD5 digest algorithm" | |
14b75ba7 | 572 | select CRYPTO_HASH |
1da177e4 | 573 | help |
584fffc8 | 574 | MD5 message digest algorithm (RFC1321). |
1da177e4 | 575 | |
d69e75de AK |
576 | config CRYPTO_MD5_OCTEON |
577 | tristate "MD5 digest algorithm (OCTEON)" | |
578 | depends on CPU_CAVIUM_OCTEON | |
579 | select CRYPTO_MD5 | |
580 | select CRYPTO_HASH | |
581 | help | |
582 | MD5 message digest algorithm (RFC1321) implemented | |
583 | using OCTEON crypto instructions, when available. | |
584 | ||
e8e59953 MS |
585 | config CRYPTO_MD5_PPC |
586 | tristate "MD5 digest algorithm (PPC)" | |
587 | depends on PPC | |
588 | select CRYPTO_HASH | |
589 | help | |
590 | MD5 message digest algorithm (RFC1321) implemented | |
591 | in PPC assembler. | |
592 | ||
fa4dfedc DM |
593 | config CRYPTO_MD5_SPARC64 |
594 | tristate "MD5 digest algorithm (SPARC64)" | |
595 | depends on SPARC64 | |
596 | select CRYPTO_MD5 | |
597 | select CRYPTO_HASH | |
598 | help | |
599 | MD5 message digest algorithm (RFC1321) implemented | |
600 | using sparc64 crypto instructions, when available. | |
601 | ||
584fffc8 SS |
602 | config CRYPTO_MICHAEL_MIC |
603 | tristate "Michael MIC keyed digest algorithm" | |
19e2bf14 | 604 | select CRYPTO_HASH |
90831639 | 605 | help |
584fffc8 SS |
606 | Michael MIC is used for message integrity protection in TKIP |
607 | (IEEE 802.11i). This algorithm is required for TKIP, but it | |
608 | should not be used for other purposes because of the weakness | |
609 | of the algorithm. | |
90831639 | 610 | |
82798f90 | 611 | config CRYPTO_RMD128 |
b6d44341 | 612 | tristate "RIPEMD-128 digest algorithm" |
7c4468bc | 613 | select CRYPTO_HASH |
b6d44341 AB |
614 | help |
615 | RIPEMD-128 (ISO/IEC 10118-3:2004). | |
82798f90 | 616 | |
b6d44341 | 617 | RIPEMD-128 is a 128-bit cryptographic hash function. It should only |
35ed4b35 | 618 | be used as a secure replacement for RIPEMD. For other use cases, |
b6d44341 | 619 | RIPEMD-160 should be used. |
82798f90 | 620 | |
b6d44341 | 621 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 622 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
82798f90 AKR |
623 | |
624 | config CRYPTO_RMD160 | |
b6d44341 | 625 | tristate "RIPEMD-160 digest algorithm" |
e5835fba | 626 | select CRYPTO_HASH |
b6d44341 AB |
627 | help |
628 | RIPEMD-160 (ISO/IEC 10118-3:2004). | |
82798f90 | 629 | |
b6d44341 AB |
630 | RIPEMD-160 is a 160-bit cryptographic hash function. It is intended |
631 | to be used as a secure replacement for the 128-bit hash functions | |
632 | MD4, MD5 and it's predecessor RIPEMD | |
633 | (not to be confused with RIPEMD-128). | |
82798f90 | 634 | |
b6d44341 AB |
635 | It's speed is comparable to SHA1 and there are no known attacks |
636 | against RIPEMD-160. | |
534fe2c1 | 637 | |
b6d44341 | 638 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 639 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
534fe2c1 AKR |
640 | |
641 | config CRYPTO_RMD256 | |
b6d44341 | 642 | tristate "RIPEMD-256 digest algorithm" |
d8a5e2e9 | 643 | select CRYPTO_HASH |
b6d44341 AB |
644 | help |
645 | RIPEMD-256 is an optional extension of RIPEMD-128 with a | |
646 | 256 bit hash. It is intended for applications that require | |
647 | longer hash-results, without needing a larger security level | |
648 | (than RIPEMD-128). | |
534fe2c1 | 649 | |
b6d44341 | 650 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 651 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
534fe2c1 AKR |
652 | |
653 | config CRYPTO_RMD320 | |
b6d44341 | 654 | tristate "RIPEMD-320 digest algorithm" |
3b8efb4c | 655 | select CRYPTO_HASH |
b6d44341 AB |
656 | help |
657 | RIPEMD-320 is an optional extension of RIPEMD-160 with a | |
658 | 320 bit hash. It is intended for applications that require | |
659 | longer hash-results, without needing a larger security level | |
660 | (than RIPEMD-160). | |
534fe2c1 | 661 | |
b6d44341 | 662 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 663 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
82798f90 | 664 | |
584fffc8 SS |
665 | config CRYPTO_SHA1 |
666 | tristate "SHA1 digest algorithm" | |
54ccb367 | 667 | select CRYPTO_HASH |
1da177e4 | 668 | help |
584fffc8 | 669 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). |
1da177e4 | 670 | |
66be8951 | 671 | config CRYPTO_SHA1_SSSE3 |
e38b6b7f | 672 | tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" |
66be8951 MK |
673 | depends on X86 && 64BIT |
674 | select CRYPTO_SHA1 | |
675 | select CRYPTO_HASH | |
676 | help | |
677 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
678 | using Supplemental SSE3 (SSSE3) instructions or Advanced Vector | |
e38b6b7f | 679 | Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), |
680 | when available. | |
66be8951 | 681 | |
8275d1aa | 682 | config CRYPTO_SHA256_SSSE3 |
e38b6b7f | 683 | tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" |
8275d1aa TC |
684 | depends on X86 && 64BIT |
685 | select CRYPTO_SHA256 | |
686 | select CRYPTO_HASH | |
687 | help | |
688 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
689 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector | |
690 | Extensions version 1 (AVX1), or Advanced Vector Extensions | |
e38b6b7f | 691 | version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New |
692 | Instructions) when available. | |
87de4579 TC |
693 | |
694 | config CRYPTO_SHA512_SSSE3 | |
695 | tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" | |
696 | depends on X86 && 64BIT | |
697 | select CRYPTO_SHA512 | |
698 | select CRYPTO_HASH | |
699 | help | |
700 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
701 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector | |
702 | Extensions version 1 (AVX1), or Advanced Vector Extensions | |
8275d1aa TC |
703 | version 2 (AVX2) instructions, when available. |
704 | ||
efdb6f6e AK |
705 | config CRYPTO_SHA1_OCTEON |
706 | tristate "SHA1 digest algorithm (OCTEON)" | |
707 | depends on CPU_CAVIUM_OCTEON | |
708 | select CRYPTO_SHA1 | |
709 | select CRYPTO_HASH | |
710 | help | |
711 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
712 | using OCTEON crypto instructions, when available. | |
713 | ||
4ff28d4c DM |
714 | config CRYPTO_SHA1_SPARC64 |
715 | tristate "SHA1 digest algorithm (SPARC64)" | |
716 | depends on SPARC64 | |
717 | select CRYPTO_SHA1 | |
718 | select CRYPTO_HASH | |
719 | help | |
720 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
721 | using sparc64 crypto instructions, when available. | |
722 | ||
323a6bf1 ME |
723 | config CRYPTO_SHA1_PPC |
724 | tristate "SHA1 digest algorithm (powerpc)" | |
725 | depends on PPC | |
726 | help | |
727 | This is the powerpc hardware accelerated implementation of the | |
728 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). | |
729 | ||
d9850fc5 MS |
730 | config CRYPTO_SHA1_PPC_SPE |
731 | tristate "SHA1 digest algorithm (PPC SPE)" | |
732 | depends on PPC && SPE | |
733 | help | |
734 | SHA-1 secure hash standard (DFIPS 180-4) implemented | |
735 | using powerpc SPE SIMD instruction set. | |
736 | ||
1e65b81a TC |
737 | config CRYPTO_SHA1_MB |
738 | tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" | |
739 | depends on X86 && 64BIT | |
740 | select CRYPTO_SHA1 | |
741 | select CRYPTO_HASH | |
742 | select CRYPTO_MCRYPTD | |
743 | help | |
744 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
745 | using multi-buffer technique. This algorithm computes on | |
746 | multiple data lanes concurrently with SIMD instructions for | |
747 | better throughput. It should not be enabled by default but | |
748 | used when there is significant amount of work to keep the keep | |
749 | the data lanes filled to get performance benefit. If the data | |
750 | lanes remain unfilled, a flush operation will be initiated to | |
751 | process the crypto jobs, adding a slight latency. | |
752 | ||
9be7e244 MD |
753 | config CRYPTO_SHA256_MB |
754 | tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" | |
755 | depends on X86 && 64BIT | |
756 | select CRYPTO_SHA256 | |
757 | select CRYPTO_HASH | |
758 | select CRYPTO_MCRYPTD | |
759 | help | |
760 | SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
761 | using multi-buffer technique. This algorithm computes on | |
762 | multiple data lanes concurrently with SIMD instructions for | |
763 | better throughput. It should not be enabled by default but | |
764 | used when there is significant amount of work to keep the keep | |
765 | the data lanes filled to get performance benefit. If the data | |
766 | lanes remain unfilled, a flush operation will be initiated to | |
767 | process the crypto jobs, adding a slight latency. | |
768 | ||
026bb8aa MD |
769 | config CRYPTO_SHA512_MB |
770 | tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" | |
771 | depends on X86 && 64BIT | |
772 | select CRYPTO_SHA512 | |
773 | select CRYPTO_HASH | |
774 | select CRYPTO_MCRYPTD | |
775 | help | |
776 | SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
777 | using multi-buffer technique. This algorithm computes on | |
778 | multiple data lanes concurrently with SIMD instructions for | |
779 | better throughput. It should not be enabled by default but | |
780 | used when there is significant amount of work to keep the keep | |
781 | the data lanes filled to get performance benefit. If the data | |
782 | lanes remain unfilled, a flush operation will be initiated to | |
783 | process the crypto jobs, adding a slight latency. | |
784 | ||
584fffc8 SS |
785 | config CRYPTO_SHA256 |
786 | tristate "SHA224 and SHA256 digest algorithm" | |
50e109b5 | 787 | select CRYPTO_HASH |
1da177e4 | 788 | help |
584fffc8 | 789 | SHA256 secure hash standard (DFIPS 180-2). |
1da177e4 | 790 | |
584fffc8 SS |
791 | This version of SHA implements a 256 bit hash with 128 bits of |
792 | security against collision attacks. | |
2729bb42 | 793 | |
b6d44341 AB |
794 | This code also includes SHA-224, a 224 bit hash with 112 bits |
795 | of security against collision attacks. | |
584fffc8 | 796 | |
2ecc1e95 MS |
797 | config CRYPTO_SHA256_PPC_SPE |
798 | tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" | |
799 | depends on PPC && SPE | |
800 | select CRYPTO_SHA256 | |
801 | select CRYPTO_HASH | |
802 | help | |
803 | SHA224 and SHA256 secure hash standard (DFIPS 180-2) | |
804 | implemented using powerpc SPE SIMD instruction set. | |
805 | ||
efdb6f6e AK |
806 | config CRYPTO_SHA256_OCTEON |
807 | tristate "SHA224 and SHA256 digest algorithm (OCTEON)" | |
808 | depends on CPU_CAVIUM_OCTEON | |
809 | select CRYPTO_SHA256 | |
810 | select CRYPTO_HASH | |
811 | help | |
812 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
813 | using OCTEON crypto instructions, when available. | |
814 | ||
86c93b24 DM |
815 | config CRYPTO_SHA256_SPARC64 |
816 | tristate "SHA224 and SHA256 digest algorithm (SPARC64)" | |
817 | depends on SPARC64 | |
818 | select CRYPTO_SHA256 | |
819 | select CRYPTO_HASH | |
820 | help | |
821 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
822 | using sparc64 crypto instructions, when available. | |
823 | ||
584fffc8 SS |
824 | config CRYPTO_SHA512 |
825 | tristate "SHA384 and SHA512 digest algorithms" | |
bd9d20db | 826 | select CRYPTO_HASH |
b9f535ff | 827 | help |
584fffc8 | 828 | SHA512 secure hash standard (DFIPS 180-2). |
b9f535ff | 829 | |
584fffc8 SS |
830 | This version of SHA implements a 512 bit hash with 256 bits of |
831 | security against collision attacks. | |
b9f535ff | 832 | |
584fffc8 SS |
833 | This code also includes SHA-384, a 384 bit hash with 192 bits |
834 | of security against collision attacks. | |
b9f535ff | 835 | |
efdb6f6e AK |
836 | config CRYPTO_SHA512_OCTEON |
837 | tristate "SHA384 and SHA512 digest algorithms (OCTEON)" | |
838 | depends on CPU_CAVIUM_OCTEON | |
839 | select CRYPTO_SHA512 | |
840 | select CRYPTO_HASH | |
841 | help | |
842 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
843 | using OCTEON crypto instructions, when available. | |
844 | ||
775e0c69 DM |
845 | config CRYPTO_SHA512_SPARC64 |
846 | tristate "SHA384 and SHA512 digest algorithm (SPARC64)" | |
847 | depends on SPARC64 | |
848 | select CRYPTO_SHA512 | |
849 | select CRYPTO_HASH | |
850 | help | |
851 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
852 | using sparc64 crypto instructions, when available. | |
853 | ||
53964b9e JG |
854 | config CRYPTO_SHA3 |
855 | tristate "SHA3 digest algorithm" | |
856 | select CRYPTO_HASH | |
857 | help | |
858 | SHA-3 secure hash standard (DFIPS 202). It's based on | |
859 | cryptographic sponge function family called Keccak. | |
860 | ||
861 | References: | |
862 | http://keccak.noekeon.org/ | |
863 | ||
4f0fc160 GBY |
864 | config CRYPTO_SM3 |
865 | tristate "SM3 digest algorithm" | |
866 | select CRYPTO_HASH | |
867 | help | |
868 | SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). | |
869 | It is part of the Chinese Commercial Cryptography suite. | |
870 | ||
871 | References: | |
872 | http://www.oscca.gov.cn/UpFile/20101222141857786.pdf | |
873 | https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash | |
874 | ||
584fffc8 SS |
875 | config CRYPTO_TGR192 |
876 | tristate "Tiger digest algorithms" | |
f63fbd3d | 877 | select CRYPTO_HASH |
eaf44088 | 878 | help |
584fffc8 | 879 | Tiger hash algorithm 192, 160 and 128-bit hashes |
eaf44088 | 880 | |
584fffc8 SS |
881 | Tiger is a hash function optimized for 64-bit processors while |
882 | still having decent performance on 32-bit processors. | |
883 | Tiger was developed by Ross Anderson and Eli Biham. | |
eaf44088 JF |
884 | |
885 | See also: | |
584fffc8 | 886 | <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. |
eaf44088 | 887 | |
584fffc8 SS |
888 | config CRYPTO_WP512 |
889 | tristate "Whirlpool digest algorithms" | |
4946510b | 890 | select CRYPTO_HASH |
1da177e4 | 891 | help |
584fffc8 | 892 | Whirlpool hash algorithm 512, 384 and 256-bit hashes |
1da177e4 | 893 | |
584fffc8 SS |
894 | Whirlpool-512 is part of the NESSIE cryptographic primitives. |
895 | Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard | |
1da177e4 LT |
896 | |
897 | See also: | |
6d8de74c | 898 | <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> |
584fffc8 | 899 | |
0e1227d3 YH |
900 | config CRYPTO_GHASH_CLMUL_NI_INTEL |
901 | tristate "GHASH digest algorithm (CLMUL-NI accelerated)" | |
8af00860 | 902 | depends on X86 && 64BIT |
0e1227d3 YH |
903 | select CRYPTO_CRYPTD |
904 | help | |
905 | GHASH is message digest algorithm for GCM (Galois/Counter Mode). | |
906 | The implementation is accelerated by CLMUL-NI of Intel. | |
907 | ||
584fffc8 | 908 | comment "Ciphers" |
1da177e4 LT |
909 | |
910 | config CRYPTO_AES | |
911 | tristate "AES cipher algorithms" | |
cce9e06d | 912 | select CRYPTO_ALGAPI |
1da177e4 | 913 | help |
584fffc8 | 914 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
1da177e4 LT |
915 | algorithm. |
916 | ||
917 | Rijndael appears to be consistently a very good performer in | |
584fffc8 SS |
918 | both hardware and software across a wide range of computing |
919 | environments regardless of its use in feedback or non-feedback | |
920 | modes. Its key setup time is excellent, and its key agility is | |
921 | good. Rijndael's very low memory requirements make it very well | |
922 | suited for restricted-space environments, in which it also | |
923 | demonstrates excellent performance. Rijndael's operations are | |
924 | among the easiest to defend against power and timing attacks. | |
1da177e4 | 925 | |
584fffc8 | 926 | The AES specifies three key sizes: 128, 192 and 256 bits |
1da177e4 LT |
927 | |
928 | See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. | |
929 | ||
b5e0b032 AB |
930 | config CRYPTO_AES_TI |
931 | tristate "Fixed time AES cipher" | |
932 | select CRYPTO_ALGAPI | |
933 | help | |
934 | This is a generic implementation of AES that attempts to eliminate | |
935 | data dependent latencies as much as possible without affecting | |
936 | performance too much. It is intended for use by the generic CCM | |
937 | and GCM drivers, and other CTR or CMAC/XCBC based modes that rely | |
938 | solely on encryption (although decryption is supported as well, but | |
939 | with a more dramatic performance hit) | |
940 | ||
941 | Instead of using 16 lookup tables of 1 KB each, (8 for encryption and | |
942 | 8 for decryption), this implementation only uses just two S-boxes of | |
943 | 256 bytes each, and attempts to eliminate data dependent latencies by | |
944 | prefetching the entire table into the cache at the start of each | |
945 | block. | |
946 | ||
1da177e4 LT |
947 | config CRYPTO_AES_586 |
948 | tristate "AES cipher algorithms (i586)" | |
cce9e06d HX |
949 | depends on (X86 || UML_X86) && !64BIT |
950 | select CRYPTO_ALGAPI | |
5157dea8 | 951 | select CRYPTO_AES |
1da177e4 | 952 | help |
584fffc8 | 953 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
1da177e4 LT |
954 | algorithm. |
955 | ||
956 | Rijndael appears to be consistently a very good performer in | |
584fffc8 SS |
957 | both hardware and software across a wide range of computing |
958 | environments regardless of its use in feedback or non-feedback | |
959 | modes. Its key setup time is excellent, and its key agility is | |
960 | good. Rijndael's very low memory requirements make it very well | |
961 | suited for restricted-space environments, in which it also | |
962 | demonstrates excellent performance. Rijndael's operations are | |
963 | among the easiest to defend against power and timing attacks. | |
1da177e4 | 964 | |
584fffc8 | 965 | The AES specifies three key sizes: 128, 192 and 256 bits |
a2a892a2 AS |
966 | |
967 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
968 | ||
969 | config CRYPTO_AES_X86_64 | |
970 | tristate "AES cipher algorithms (x86_64)" | |
cce9e06d HX |
971 | depends on (X86 || UML_X86) && 64BIT |
972 | select CRYPTO_ALGAPI | |
81190b32 | 973 | select CRYPTO_AES |
a2a892a2 | 974 | help |
584fffc8 | 975 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
a2a892a2 AS |
976 | algorithm. |
977 | ||
978 | Rijndael appears to be consistently a very good performer in | |
584fffc8 SS |
979 | both hardware and software across a wide range of computing |
980 | environments regardless of its use in feedback or non-feedback | |
981 | modes. Its key setup time is excellent, and its key agility is | |
54b6a1bd YH |
982 | good. Rijndael's very low memory requirements make it very well |
983 | suited for restricted-space environments, in which it also | |
984 | demonstrates excellent performance. Rijndael's operations are | |
985 | among the easiest to defend against power and timing attacks. | |
986 | ||
987 | The AES specifies three key sizes: 128, 192 and 256 bits | |
988 | ||
989 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
990 | ||
991 | config CRYPTO_AES_NI_INTEL | |
992 | tristate "AES cipher algorithms (AES-NI)" | |
8af00860 | 993 | depends on X86 |
85671860 | 994 | select CRYPTO_AEAD |
0d258efb MK |
995 | select CRYPTO_AES_X86_64 if 64BIT |
996 | select CRYPTO_AES_586 if !64BIT | |
54b6a1bd | 997 | select CRYPTO_ALGAPI |
85671860 | 998 | select CRYPTO_BLKCIPHER |
7643a11a | 999 | select CRYPTO_GLUE_HELPER_X86 if 64BIT |
85671860 | 1000 | select CRYPTO_SIMD |
54b6a1bd YH |
1001 | help |
1002 | Use Intel AES-NI instructions for AES algorithm. | |
1003 | ||
1004 | AES cipher algorithms (FIPS-197). AES uses the Rijndael | |
1005 | algorithm. | |
1006 | ||
1007 | Rijndael appears to be consistently a very good performer in | |
1008 | both hardware and software across a wide range of computing | |
1009 | environments regardless of its use in feedback or non-feedback | |
1010 | modes. Its key setup time is excellent, and its key agility is | |
584fffc8 SS |
1011 | good. Rijndael's very low memory requirements make it very well |
1012 | suited for restricted-space environments, in which it also | |
1013 | demonstrates excellent performance. Rijndael's operations are | |
1014 | among the easiest to defend against power and timing attacks. | |
a2a892a2 | 1015 | |
584fffc8 | 1016 | The AES specifies three key sizes: 128, 192 and 256 bits |
1da177e4 LT |
1017 | |
1018 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
1019 | ||
0d258efb MK |
1020 | In addition to AES cipher algorithm support, the acceleration |
1021 | for some popular block cipher mode is supported too, including | |
1022 | ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional | |
1023 | acceleration for CTR. | |
2cf4ac8b | 1024 | |
9bf4852d DM |
1025 | config CRYPTO_AES_SPARC64 |
1026 | tristate "AES cipher algorithms (SPARC64)" | |
1027 | depends on SPARC64 | |
1028 | select CRYPTO_CRYPTD | |
1029 | select CRYPTO_ALGAPI | |
1030 | help | |
1031 | Use SPARC64 crypto opcodes for AES algorithm. | |
1032 | ||
1033 | AES cipher algorithms (FIPS-197). AES uses the Rijndael | |
1034 | algorithm. | |
1035 | ||
1036 | Rijndael appears to be consistently a very good performer in | |
1037 | both hardware and software across a wide range of computing | |
1038 | environments regardless of its use in feedback or non-feedback | |
1039 | modes. Its key setup time is excellent, and its key agility is | |
1040 | good. Rijndael's very low memory requirements make it very well | |
1041 | suited for restricted-space environments, in which it also | |
1042 | demonstrates excellent performance. Rijndael's operations are | |
1043 | among the easiest to defend against power and timing attacks. | |
1044 | ||
1045 | The AES specifies three key sizes: 128, 192 and 256 bits | |
1046 | ||
1047 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
1048 | ||
1049 | In addition to AES cipher algorithm support, the acceleration | |
1050 | for some popular block cipher mode is supported too, including | |
1051 | ECB and CBC. | |
1052 | ||
504c6143 MS |
1053 | config CRYPTO_AES_PPC_SPE |
1054 | tristate "AES cipher algorithms (PPC SPE)" | |
1055 | depends on PPC && SPE | |
1056 | help | |
1057 | AES cipher algorithms (FIPS-197). Additionally the acceleration | |
1058 | for popular block cipher modes ECB, CBC, CTR and XTS is supported. | |
1059 | This module should only be used for low power (router) devices | |
1060 | without hardware AES acceleration (e.g. caam crypto). It reduces the | |
1061 | size of the AES tables from 16KB to 8KB + 256 bytes and mitigates | |
1062 | timining attacks. Nevertheless it might be not as secure as other | |
1063 | architecture specific assembler implementations that work on 1KB | |
1064 | tables or 256 bytes S-boxes. | |
1065 | ||
584fffc8 SS |
1066 | config CRYPTO_ANUBIS |
1067 | tristate "Anubis cipher algorithm" | |
1068 | select CRYPTO_ALGAPI | |
1069 | help | |
1070 | Anubis cipher algorithm. | |
1071 | ||
1072 | Anubis is a variable key length cipher which can use keys from | |
1073 | 128 bits to 320 bits in length. It was evaluated as a entrant | |
1074 | in the NESSIE competition. | |
1075 | ||
1076 | See also: | |
6d8de74c JM |
1077 | <https://www.cosic.esat.kuleuven.be/nessie/reports/> |
1078 | <http://www.larc.usp.br/~pbarreto/AnubisPage.html> | |
584fffc8 SS |
1079 | |
1080 | config CRYPTO_ARC4 | |
1081 | tristate "ARC4 cipher algorithm" | |
b9b0f080 | 1082 | select CRYPTO_BLKCIPHER |
584fffc8 SS |
1083 | help |
1084 | ARC4 cipher algorithm. | |
1085 | ||
1086 | ARC4 is a stream cipher using keys ranging from 8 bits to 2048 | |
1087 | bits in length. This algorithm is required for driver-based | |
1088 | WEP, but it should not be for other purposes because of the | |
1089 | weakness of the algorithm. | |
1090 | ||
1091 | config CRYPTO_BLOWFISH | |
1092 | tristate "Blowfish cipher algorithm" | |
1093 | select CRYPTO_ALGAPI | |
52ba867c | 1094 | select CRYPTO_BLOWFISH_COMMON |
584fffc8 SS |
1095 | help |
1096 | Blowfish cipher algorithm, by Bruce Schneier. | |
1097 | ||
1098 | This is a variable key length cipher which can use keys from 32 | |
1099 | bits to 448 bits in length. It's fast, simple and specifically | |
1100 | designed for use on "large microprocessors". | |
1101 | ||
1102 | See also: | |
1103 | <http://www.schneier.com/blowfish.html> | |
1104 | ||
52ba867c JK |
1105 | config CRYPTO_BLOWFISH_COMMON |
1106 | tristate | |
1107 | help | |
1108 | Common parts of the Blowfish cipher algorithm shared by the | |
1109 | generic c and the assembler implementations. | |
1110 | ||
1111 | See also: | |
1112 | <http://www.schneier.com/blowfish.html> | |
1113 | ||
64b94cea JK |
1114 | config CRYPTO_BLOWFISH_X86_64 |
1115 | tristate "Blowfish cipher algorithm (x86_64)" | |
f21a7c19 | 1116 | depends on X86 && 64BIT |
64b94cea JK |
1117 | select CRYPTO_ALGAPI |
1118 | select CRYPTO_BLOWFISH_COMMON | |
1119 | help | |
1120 | Blowfish cipher algorithm (x86_64), by Bruce Schneier. | |
1121 | ||
1122 | This is a variable key length cipher which can use keys from 32 | |
1123 | bits to 448 bits in length. It's fast, simple and specifically | |
1124 | designed for use on "large microprocessors". | |
1125 | ||
1126 | See also: | |
1127 | <http://www.schneier.com/blowfish.html> | |
1128 | ||
584fffc8 SS |
1129 | config CRYPTO_CAMELLIA |
1130 | tristate "Camellia cipher algorithms" | |
1131 | depends on CRYPTO | |
1132 | select CRYPTO_ALGAPI | |
1133 | help | |
1134 | Camellia cipher algorithms module. | |
1135 | ||
1136 | Camellia is a symmetric key block cipher developed jointly | |
1137 | at NTT and Mitsubishi Electric Corporation. | |
1138 | ||
1139 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1140 | ||
1141 | See also: | |
1142 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1143 | ||
0b95ec56 JK |
1144 | config CRYPTO_CAMELLIA_X86_64 |
1145 | tristate "Camellia cipher algorithm (x86_64)" | |
f21a7c19 | 1146 | depends on X86 && 64BIT |
0b95ec56 JK |
1147 | depends on CRYPTO |
1148 | select CRYPTO_ALGAPI | |
964263af | 1149 | select CRYPTO_GLUE_HELPER_X86 |
0b95ec56 JK |
1150 | select CRYPTO_LRW |
1151 | select CRYPTO_XTS | |
1152 | help | |
1153 | Camellia cipher algorithm module (x86_64). | |
1154 | ||
1155 | Camellia is a symmetric key block cipher developed jointly | |
1156 | at NTT and Mitsubishi Electric Corporation. | |
1157 | ||
1158 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1159 | ||
1160 | See also: | |
d9b1d2e7 JK |
1161 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
1162 | ||
1163 | config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 | |
1164 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" | |
1165 | depends on X86 && 64BIT | |
1166 | depends on CRYPTO | |
1167 | select CRYPTO_ALGAPI | |
1168 | select CRYPTO_CRYPTD | |
801201aa | 1169 | select CRYPTO_ABLK_HELPER |
d9b1d2e7 JK |
1170 | select CRYPTO_GLUE_HELPER_X86 |
1171 | select CRYPTO_CAMELLIA_X86_64 | |
1172 | select CRYPTO_LRW | |
1173 | select CRYPTO_XTS | |
1174 | help | |
1175 | Camellia cipher algorithm module (x86_64/AES-NI/AVX). | |
1176 | ||
1177 | Camellia is a symmetric key block cipher developed jointly | |
1178 | at NTT and Mitsubishi Electric Corporation. | |
1179 | ||
1180 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1181 | ||
1182 | See also: | |
0b95ec56 JK |
1183 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
1184 | ||
f3f935a7 JK |
1185 | config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 |
1186 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" | |
1187 | depends on X86 && 64BIT | |
1188 | depends on CRYPTO | |
1189 | select CRYPTO_ALGAPI | |
1190 | select CRYPTO_CRYPTD | |
801201aa | 1191 | select CRYPTO_ABLK_HELPER |
f3f935a7 JK |
1192 | select CRYPTO_GLUE_HELPER_X86 |
1193 | select CRYPTO_CAMELLIA_X86_64 | |
1194 | select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 | |
1195 | select CRYPTO_LRW | |
1196 | select CRYPTO_XTS | |
1197 | help | |
1198 | Camellia cipher algorithm module (x86_64/AES-NI/AVX2). | |
1199 | ||
1200 | Camellia is a symmetric key block cipher developed jointly | |
1201 | at NTT and Mitsubishi Electric Corporation. | |
1202 | ||
1203 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1204 | ||
1205 | See also: | |
1206 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1207 | ||
81658ad0 DM |
1208 | config CRYPTO_CAMELLIA_SPARC64 |
1209 | tristate "Camellia cipher algorithm (SPARC64)" | |
1210 | depends on SPARC64 | |
1211 | depends on CRYPTO | |
1212 | select CRYPTO_ALGAPI | |
1213 | help | |
1214 | Camellia cipher algorithm module (SPARC64). | |
1215 | ||
1216 | Camellia is a symmetric key block cipher developed jointly | |
1217 | at NTT and Mitsubishi Electric Corporation. | |
1218 | ||
1219 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1220 | ||
1221 | See also: | |
1222 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1223 | ||
044ab525 JK |
1224 | config CRYPTO_CAST_COMMON |
1225 | tristate | |
1226 | help | |
1227 | Common parts of the CAST cipher algorithms shared by the | |
1228 | generic c and the assembler implementations. | |
1229 | ||
1da177e4 LT |
1230 | config CRYPTO_CAST5 |
1231 | tristate "CAST5 (CAST-128) cipher algorithm" | |
cce9e06d | 1232 | select CRYPTO_ALGAPI |
044ab525 | 1233 | select CRYPTO_CAST_COMMON |
1da177e4 LT |
1234 | help |
1235 | The CAST5 encryption algorithm (synonymous with CAST-128) is | |
1236 | described in RFC2144. | |
1237 | ||
4d6d6a2c JG |
1238 | config CRYPTO_CAST5_AVX_X86_64 |
1239 | tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" | |
1240 | depends on X86 && 64BIT | |
1241 | select CRYPTO_ALGAPI | |
1242 | select CRYPTO_CRYPTD | |
801201aa | 1243 | select CRYPTO_ABLK_HELPER |
044ab525 | 1244 | select CRYPTO_CAST_COMMON |
4d6d6a2c JG |
1245 | select CRYPTO_CAST5 |
1246 | help | |
1247 | The CAST5 encryption algorithm (synonymous with CAST-128) is | |
1248 | described in RFC2144. | |
1249 | ||
1250 | This module provides the Cast5 cipher algorithm that processes | |
1251 | sixteen blocks parallel using the AVX instruction set. | |
1252 | ||
1da177e4 LT |
1253 | config CRYPTO_CAST6 |
1254 | tristate "CAST6 (CAST-256) cipher algorithm" | |
cce9e06d | 1255 | select CRYPTO_ALGAPI |
044ab525 | 1256 | select CRYPTO_CAST_COMMON |
1da177e4 LT |
1257 | help |
1258 | The CAST6 encryption algorithm (synonymous with CAST-256) is | |
1259 | described in RFC2612. | |
1260 | ||
4ea1277d JG |
1261 | config CRYPTO_CAST6_AVX_X86_64 |
1262 | tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" | |
1263 | depends on X86 && 64BIT | |
1264 | select CRYPTO_ALGAPI | |
1265 | select CRYPTO_CRYPTD | |
801201aa | 1266 | select CRYPTO_ABLK_HELPER |
4ea1277d | 1267 | select CRYPTO_GLUE_HELPER_X86 |
044ab525 | 1268 | select CRYPTO_CAST_COMMON |
4ea1277d JG |
1269 | select CRYPTO_CAST6 |
1270 | select CRYPTO_LRW | |
1271 | select CRYPTO_XTS | |
1272 | help | |
1273 | The CAST6 encryption algorithm (synonymous with CAST-256) is | |
1274 | described in RFC2612. | |
1275 | ||
1276 | This module provides the Cast6 cipher algorithm that processes | |
1277 | eight blocks parallel using the AVX instruction set. | |
1278 | ||
584fffc8 SS |
1279 | config CRYPTO_DES |
1280 | tristate "DES and Triple DES EDE cipher algorithms" | |
cce9e06d | 1281 | select CRYPTO_ALGAPI |
1da177e4 | 1282 | help |
584fffc8 | 1283 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). |
fb4f10ed | 1284 | |
c5aac2df DM |
1285 | config CRYPTO_DES_SPARC64 |
1286 | tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" | |
97da37b3 | 1287 | depends on SPARC64 |
c5aac2df DM |
1288 | select CRYPTO_ALGAPI |
1289 | select CRYPTO_DES | |
1290 | help | |
1291 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), | |
1292 | optimized using SPARC64 crypto opcodes. | |
1293 | ||
6574e6c6 JK |
1294 | config CRYPTO_DES3_EDE_X86_64 |
1295 | tristate "Triple DES EDE cipher algorithm (x86-64)" | |
1296 | depends on X86 && 64BIT | |
1297 | select CRYPTO_ALGAPI | |
1298 | select CRYPTO_DES | |
1299 | help | |
1300 | Triple DES EDE (FIPS 46-3) algorithm. | |
1301 | ||
1302 | This module provides implementation of the Triple DES EDE cipher | |
1303 | algorithm that is optimized for x86-64 processors. Two versions of | |
1304 | algorithm are provided; regular processing one input block and | |
1305 | one that processes three blocks parallel. | |
1306 | ||
584fffc8 SS |
1307 | config CRYPTO_FCRYPT |
1308 | tristate "FCrypt cipher algorithm" | |
cce9e06d | 1309 | select CRYPTO_ALGAPI |
584fffc8 | 1310 | select CRYPTO_BLKCIPHER |
1da177e4 | 1311 | help |
584fffc8 | 1312 | FCrypt algorithm used by RxRPC. |
1da177e4 LT |
1313 | |
1314 | config CRYPTO_KHAZAD | |
1315 | tristate "Khazad cipher algorithm" | |
cce9e06d | 1316 | select CRYPTO_ALGAPI |
1da177e4 LT |
1317 | help |
1318 | Khazad cipher algorithm. | |
1319 | ||
1320 | Khazad was a finalist in the initial NESSIE competition. It is | |
1321 | an algorithm optimized for 64-bit processors with good performance | |
1322 | on 32-bit processors. Khazad uses an 128 bit key size. | |
1323 | ||
1324 | See also: | |
6d8de74c | 1325 | <http://www.larc.usp.br/~pbarreto/KhazadPage.html> |
1da177e4 | 1326 | |
2407d608 | 1327 | config CRYPTO_SALSA20 |
3b4afaf2 | 1328 | tristate "Salsa20 stream cipher algorithm" |
2407d608 TSH |
1329 | select CRYPTO_BLKCIPHER |
1330 | help | |
1331 | Salsa20 stream cipher algorithm. | |
1332 | ||
1333 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT | |
1334 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> | |
974e4b75 TSH |
1335 | |
1336 | The Salsa20 stream cipher algorithm is designed by Daniel J. | |
1337 | Bernstein <[email protected]>. See <http://cr.yp.to/snuffle.html> | |
1338 | ||
1339 | config CRYPTO_SALSA20_586 | |
3b4afaf2 | 1340 | tristate "Salsa20 stream cipher algorithm (i586)" |
974e4b75 | 1341 | depends on (X86 || UML_X86) && !64BIT |
974e4b75 | 1342 | select CRYPTO_BLKCIPHER |
c9a3ff8f | 1343 | select CRYPTO_SALSA20 |
974e4b75 TSH |
1344 | help |
1345 | Salsa20 stream cipher algorithm. | |
1346 | ||
1347 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT | |
1348 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> | |
9a7dafbb TSH |
1349 | |
1350 | The Salsa20 stream cipher algorithm is designed by Daniel J. | |
1351 | Bernstein <[email protected]>. See <http://cr.yp.to/snuffle.html> | |
1352 | ||
1353 | config CRYPTO_SALSA20_X86_64 | |
3b4afaf2 | 1354 | tristate "Salsa20 stream cipher algorithm (x86_64)" |
9a7dafbb | 1355 | depends on (X86 || UML_X86) && 64BIT |
9a7dafbb | 1356 | select CRYPTO_BLKCIPHER |
c9a3ff8f | 1357 | select CRYPTO_SALSA20 |
9a7dafbb TSH |
1358 | help |
1359 | Salsa20 stream cipher algorithm. | |
1360 | ||
1361 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT | |
1362 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> | |
2407d608 TSH |
1363 | |
1364 | The Salsa20 stream cipher algorithm is designed by Daniel J. | |
1365 | Bernstein <[email protected]>. See <http://cr.yp.to/snuffle.html> | |
1da177e4 | 1366 | |
c08d0e64 MW |
1367 | config CRYPTO_CHACHA20 |
1368 | tristate "ChaCha20 cipher algorithm" | |
1369 | select CRYPTO_BLKCIPHER | |
1370 | help | |
1371 | ChaCha20 cipher algorithm, RFC7539. | |
1372 | ||
1373 | ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. | |
1374 | Bernstein and further specified in RFC7539 for use in IETF protocols. | |
1375 | This is the portable C implementation of ChaCha20. | |
1376 | ||
1377 | See also: | |
1378 | <http://cr.yp.to/chacha/chacha-20080128.pdf> | |
1379 | ||
c9320b6d | 1380 | config CRYPTO_CHACHA20_X86_64 |
3d1e93cd | 1381 | tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" |
c9320b6d MW |
1382 | depends on X86 && 64BIT |
1383 | select CRYPTO_BLKCIPHER | |
1384 | select CRYPTO_CHACHA20 | |
1385 | help | |
1386 | ChaCha20 cipher algorithm, RFC7539. | |
1387 | ||
1388 | ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. | |
1389 | Bernstein and further specified in RFC7539 for use in IETF protocols. | |
1390 | This is the x86_64 assembler implementation using SIMD instructions. | |
1391 | ||
1392 | See also: | |
1393 | <http://cr.yp.to/chacha/chacha-20080128.pdf> | |
1394 | ||
584fffc8 SS |
1395 | config CRYPTO_SEED |
1396 | tristate "SEED cipher algorithm" | |
cce9e06d | 1397 | select CRYPTO_ALGAPI |
1da177e4 | 1398 | help |
584fffc8 | 1399 | SEED cipher algorithm (RFC4269). |
1da177e4 | 1400 | |
584fffc8 SS |
1401 | SEED is a 128-bit symmetric key block cipher that has been |
1402 | developed by KISA (Korea Information Security Agency) as a | |
1403 | national standard encryption algorithm of the Republic of Korea. | |
1404 | It is a 16 round block cipher with the key size of 128 bit. | |
1405 | ||
1406 | See also: | |
1407 | <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> | |
1408 | ||
1409 | config CRYPTO_SERPENT | |
1410 | tristate "Serpent cipher algorithm" | |
cce9e06d | 1411 | select CRYPTO_ALGAPI |
1da177e4 | 1412 | help |
584fffc8 | 1413 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
1da177e4 | 1414 | |
584fffc8 SS |
1415 | Keys are allowed to be from 0 to 256 bits in length, in steps |
1416 | of 8 bits. Also includes the 'Tnepres' algorithm, a reversed | |
1417 | variant of Serpent for compatibility with old kerneli.org code. | |
1418 | ||
1419 | See also: | |
1420 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
1421 | ||
937c30d7 JK |
1422 | config CRYPTO_SERPENT_SSE2_X86_64 |
1423 | tristate "Serpent cipher algorithm (x86_64/SSE2)" | |
1424 | depends on X86 && 64BIT | |
1425 | select CRYPTO_ALGAPI | |
341975bf | 1426 | select CRYPTO_CRYPTD |
801201aa | 1427 | select CRYPTO_ABLK_HELPER |
596d8750 | 1428 | select CRYPTO_GLUE_HELPER_X86 |
937c30d7 | 1429 | select CRYPTO_SERPENT |
feaf0cfc JK |
1430 | select CRYPTO_LRW |
1431 | select CRYPTO_XTS | |
937c30d7 JK |
1432 | help |
1433 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1434 | ||
1435 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1436 | of 8 bits. | |
1437 | ||
1e6232f8 | 1438 | This module provides Serpent cipher algorithm that processes eight |
937c30d7 JK |
1439 | blocks parallel using SSE2 instruction set. |
1440 | ||
1441 | See also: | |
1442 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
1443 | ||
251496db JK |
1444 | config CRYPTO_SERPENT_SSE2_586 |
1445 | tristate "Serpent cipher algorithm (i586/SSE2)" | |
1446 | depends on X86 && !64BIT | |
1447 | select CRYPTO_ALGAPI | |
341975bf | 1448 | select CRYPTO_CRYPTD |
801201aa | 1449 | select CRYPTO_ABLK_HELPER |
596d8750 | 1450 | select CRYPTO_GLUE_HELPER_X86 |
251496db | 1451 | select CRYPTO_SERPENT |
feaf0cfc JK |
1452 | select CRYPTO_LRW |
1453 | select CRYPTO_XTS | |
251496db JK |
1454 | help |
1455 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1456 | ||
1457 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1458 | of 8 bits. | |
1459 | ||
1460 | This module provides Serpent cipher algorithm that processes four | |
1461 | blocks parallel using SSE2 instruction set. | |
1462 | ||
1463 | See also: | |
1464 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
7efe4076 JG |
1465 | |
1466 | config CRYPTO_SERPENT_AVX_X86_64 | |
1467 | tristate "Serpent cipher algorithm (x86_64/AVX)" | |
1468 | depends on X86 && 64BIT | |
1469 | select CRYPTO_ALGAPI | |
1470 | select CRYPTO_CRYPTD | |
801201aa | 1471 | select CRYPTO_ABLK_HELPER |
1d0debbd | 1472 | select CRYPTO_GLUE_HELPER_X86 |
7efe4076 JG |
1473 | select CRYPTO_SERPENT |
1474 | select CRYPTO_LRW | |
1475 | select CRYPTO_XTS | |
1476 | help | |
1477 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1478 | ||
1479 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1480 | of 8 bits. | |
1481 | ||
1482 | This module provides the Serpent cipher algorithm that processes | |
1483 | eight blocks parallel using the AVX instruction set. | |
1484 | ||
1485 | See also: | |
1486 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
251496db | 1487 | |
56d76c96 JK |
1488 | config CRYPTO_SERPENT_AVX2_X86_64 |
1489 | tristate "Serpent cipher algorithm (x86_64/AVX2)" | |
1490 | depends on X86 && 64BIT | |
1491 | select CRYPTO_ALGAPI | |
1492 | select CRYPTO_CRYPTD | |
801201aa | 1493 | select CRYPTO_ABLK_HELPER |
56d76c96 JK |
1494 | select CRYPTO_GLUE_HELPER_X86 |
1495 | select CRYPTO_SERPENT | |
1496 | select CRYPTO_SERPENT_AVX_X86_64 | |
1497 | select CRYPTO_LRW | |
1498 | select CRYPTO_XTS | |
1499 | help | |
1500 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1501 | ||
1502 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1503 | of 8 bits. | |
1504 | ||
1505 | This module provides Serpent cipher algorithm that processes 16 | |
1506 | blocks parallel using AVX2 instruction set. | |
1507 | ||
1508 | See also: | |
1509 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
1510 | ||
584fffc8 SS |
1511 | config CRYPTO_TEA |
1512 | tristate "TEA, XTEA and XETA cipher algorithms" | |
cce9e06d | 1513 | select CRYPTO_ALGAPI |
1da177e4 | 1514 | help |
584fffc8 | 1515 | TEA cipher algorithm. |
1da177e4 | 1516 | |
584fffc8 SS |
1517 | Tiny Encryption Algorithm is a simple cipher that uses |
1518 | many rounds for security. It is very fast and uses | |
1519 | little memory. | |
1520 | ||
1521 | Xtendend Tiny Encryption Algorithm is a modification to | |
1522 | the TEA algorithm to address a potential key weakness | |
1523 | in the TEA algorithm. | |
1524 | ||
1525 | Xtendend Encryption Tiny Algorithm is a mis-implementation | |
1526 | of the XTEA algorithm for compatibility purposes. | |
1527 | ||
1528 | config CRYPTO_TWOFISH | |
1529 | tristate "Twofish cipher algorithm" | |
04ac7db3 | 1530 | select CRYPTO_ALGAPI |
584fffc8 | 1531 | select CRYPTO_TWOFISH_COMMON |
04ac7db3 | 1532 | help |
584fffc8 | 1533 | Twofish cipher algorithm. |
04ac7db3 | 1534 | |
584fffc8 SS |
1535 | Twofish was submitted as an AES (Advanced Encryption Standard) |
1536 | candidate cipher by researchers at CounterPane Systems. It is a | |
1537 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1538 | bits. | |
04ac7db3 | 1539 | |
584fffc8 SS |
1540 | See also: |
1541 | <http://www.schneier.com/twofish.html> | |
1542 | ||
1543 | config CRYPTO_TWOFISH_COMMON | |
1544 | tristate | |
1545 | help | |
1546 | Common parts of the Twofish cipher algorithm shared by the | |
1547 | generic c and the assembler implementations. | |
1548 | ||
1549 | config CRYPTO_TWOFISH_586 | |
1550 | tristate "Twofish cipher algorithms (i586)" | |
1551 | depends on (X86 || UML_X86) && !64BIT | |
1552 | select CRYPTO_ALGAPI | |
1553 | select CRYPTO_TWOFISH_COMMON | |
1554 | help | |
1555 | Twofish cipher algorithm. | |
1556 | ||
1557 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1558 | candidate cipher by researchers at CounterPane Systems. It is a | |
1559 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1560 | bits. | |
04ac7db3 NT |
1561 | |
1562 | See also: | |
584fffc8 | 1563 | <http://www.schneier.com/twofish.html> |
04ac7db3 | 1564 | |
584fffc8 SS |
1565 | config CRYPTO_TWOFISH_X86_64 |
1566 | tristate "Twofish cipher algorithm (x86_64)" | |
1567 | depends on (X86 || UML_X86) && 64BIT | |
cce9e06d | 1568 | select CRYPTO_ALGAPI |
584fffc8 | 1569 | select CRYPTO_TWOFISH_COMMON |
1da177e4 | 1570 | help |
584fffc8 | 1571 | Twofish cipher algorithm (x86_64). |
1da177e4 | 1572 | |
584fffc8 SS |
1573 | Twofish was submitted as an AES (Advanced Encryption Standard) |
1574 | candidate cipher by researchers at CounterPane Systems. It is a | |
1575 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1576 | bits. | |
1577 | ||
1578 | See also: | |
1579 | <http://www.schneier.com/twofish.html> | |
1580 | ||
8280daad JK |
1581 | config CRYPTO_TWOFISH_X86_64_3WAY |
1582 | tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" | |
f21a7c19 | 1583 | depends on X86 && 64BIT |
8280daad JK |
1584 | select CRYPTO_ALGAPI |
1585 | select CRYPTO_TWOFISH_COMMON | |
1586 | select CRYPTO_TWOFISH_X86_64 | |
414cb5e7 | 1587 | select CRYPTO_GLUE_HELPER_X86 |
e7cda5d2 JK |
1588 | select CRYPTO_LRW |
1589 | select CRYPTO_XTS | |
8280daad JK |
1590 | help |
1591 | Twofish cipher algorithm (x86_64, 3-way parallel). | |
1592 | ||
1593 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1594 | candidate cipher by researchers at CounterPane Systems. It is a | |
1595 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1596 | bits. | |
1597 | ||
1598 | This module provides Twofish cipher algorithm that processes three | |
1599 | blocks parallel, utilizing resources of out-of-order CPUs better. | |
1600 | ||
1601 | See also: | |
1602 | <http://www.schneier.com/twofish.html> | |
1603 | ||
107778b5 JG |
1604 | config CRYPTO_TWOFISH_AVX_X86_64 |
1605 | tristate "Twofish cipher algorithm (x86_64/AVX)" | |
1606 | depends on X86 && 64BIT | |
1607 | select CRYPTO_ALGAPI | |
1608 | select CRYPTO_CRYPTD | |
801201aa | 1609 | select CRYPTO_ABLK_HELPER |
a7378d4e | 1610 | select CRYPTO_GLUE_HELPER_X86 |
107778b5 JG |
1611 | select CRYPTO_TWOFISH_COMMON |
1612 | select CRYPTO_TWOFISH_X86_64 | |
1613 | select CRYPTO_TWOFISH_X86_64_3WAY | |
1614 | select CRYPTO_LRW | |
1615 | select CRYPTO_XTS | |
1616 | help | |
1617 | Twofish cipher algorithm (x86_64/AVX). | |
1618 | ||
1619 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1620 | candidate cipher by researchers at CounterPane Systems. It is a | |
1621 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1622 | bits. | |
1623 | ||
1624 | This module provides the Twofish cipher algorithm that processes | |
1625 | eight blocks parallel using the AVX Instruction Set. | |
1626 | ||
1627 | See also: | |
1628 | <http://www.schneier.com/twofish.html> | |
1629 | ||
584fffc8 SS |
1630 | comment "Compression" |
1631 | ||
1632 | config CRYPTO_DEFLATE | |
1633 | tristate "Deflate compression algorithm" | |
1634 | select CRYPTO_ALGAPI | |
f6ded09d | 1635 | select CRYPTO_ACOMP2 |
584fffc8 SS |
1636 | select ZLIB_INFLATE |
1637 | select ZLIB_DEFLATE | |
3c09f17c | 1638 | help |
584fffc8 SS |
1639 | This is the Deflate algorithm (RFC1951), specified for use in |
1640 | IPSec with the IPCOMP protocol (RFC3173, RFC2394). | |
1641 | ||
1642 | You will most probably want this if using IPSec. | |
3c09f17c | 1643 | |
0b77abb3 ZS |
1644 | config CRYPTO_LZO |
1645 | tristate "LZO compression algorithm" | |
1646 | select CRYPTO_ALGAPI | |
ac9d2c4b | 1647 | select CRYPTO_ACOMP2 |
0b77abb3 ZS |
1648 | select LZO_COMPRESS |
1649 | select LZO_DECOMPRESS | |
1650 | help | |
1651 | This is the LZO algorithm. | |
1652 | ||
35a1fc18 SJ |
1653 | config CRYPTO_842 |
1654 | tristate "842 compression algorithm" | |
2062c5b6 | 1655 | select CRYPTO_ALGAPI |
6a8de3ae | 1656 | select CRYPTO_ACOMP2 |
2062c5b6 DS |
1657 | select 842_COMPRESS |
1658 | select 842_DECOMPRESS | |
35a1fc18 SJ |
1659 | help |
1660 | This is the 842 algorithm. | |
0ea8530d CM |
1661 | |
1662 | config CRYPTO_LZ4 | |
1663 | tristate "LZ4 compression algorithm" | |
1664 | select CRYPTO_ALGAPI | |
8cd9330e | 1665 | select CRYPTO_ACOMP2 |
0ea8530d CM |
1666 | select LZ4_COMPRESS |
1667 | select LZ4_DECOMPRESS | |
1668 | help | |
1669 | This is the LZ4 algorithm. | |
1670 | ||
1671 | config CRYPTO_LZ4HC | |
1672 | tristate "LZ4HC compression algorithm" | |
1673 | select CRYPTO_ALGAPI | |
91d53d96 | 1674 | select CRYPTO_ACOMP2 |
0ea8530d CM |
1675 | select LZ4HC_COMPRESS |
1676 | select LZ4_DECOMPRESS | |
1677 | help | |
1678 | This is the LZ4 high compression mode algorithm. | |
35a1fc18 | 1679 | |
17f0f4a4 NH |
1680 | comment "Random Number Generation" |
1681 | ||
1682 | config CRYPTO_ANSI_CPRNG | |
1683 | tristate "Pseudo Random Number Generation for Cryptographic modules" | |
1684 | select CRYPTO_AES | |
1685 | select CRYPTO_RNG | |
17f0f4a4 NH |
1686 | help |
1687 | This option enables the generic pseudo random number generator | |
1688 | for cryptographic modules. Uses the Algorithm specified in | |
7dd607e8 JK |
1689 | ANSI X9.31 A.2.4. Note that this option must be enabled if |
1690 | CRYPTO_FIPS is selected | |
17f0f4a4 | 1691 | |
f2c89a10 | 1692 | menuconfig CRYPTO_DRBG_MENU |
419090c6 | 1693 | tristate "NIST SP800-90A DRBG" |
419090c6 SM |
1694 | help |
1695 | NIST SP800-90A compliant DRBG. In the following submenu, one or | |
1696 | more of the DRBG types must be selected. | |
1697 | ||
f2c89a10 | 1698 | if CRYPTO_DRBG_MENU |
419090c6 SM |
1699 | |
1700 | config CRYPTO_DRBG_HMAC | |
401e4238 | 1701 | bool |
419090c6 | 1702 | default y |
419090c6 | 1703 | select CRYPTO_HMAC |
826775bb | 1704 | select CRYPTO_SHA256 |
419090c6 SM |
1705 | |
1706 | config CRYPTO_DRBG_HASH | |
1707 | bool "Enable Hash DRBG" | |
826775bb | 1708 | select CRYPTO_SHA256 |
419090c6 SM |
1709 | help |
1710 | Enable the Hash DRBG variant as defined in NIST SP800-90A. | |
1711 | ||
1712 | config CRYPTO_DRBG_CTR | |
1713 | bool "Enable CTR DRBG" | |
419090c6 | 1714 | select CRYPTO_AES |
35591285 | 1715 | depends on CRYPTO_CTR |
419090c6 SM |
1716 | help |
1717 | Enable the CTR DRBG variant as defined in NIST SP800-90A. | |
1718 | ||
f2c89a10 HX |
1719 | config CRYPTO_DRBG |
1720 | tristate | |
401e4238 | 1721 | default CRYPTO_DRBG_MENU |
f2c89a10 | 1722 | select CRYPTO_RNG |
bb5530e4 | 1723 | select CRYPTO_JITTERENTROPY |
f2c89a10 HX |
1724 | |
1725 | endif # if CRYPTO_DRBG_MENU | |
419090c6 | 1726 | |
bb5530e4 SM |
1727 | config CRYPTO_JITTERENTROPY |
1728 | tristate "Jitterentropy Non-Deterministic Random Number Generator" | |
2f313e02 | 1729 | select CRYPTO_RNG |
bb5530e4 SM |
1730 | help |
1731 | The Jitterentropy RNG is a noise that is intended | |
1732 | to provide seed to another RNG. The RNG does not | |
1733 | perform any cryptographic whitening of the generated | |
1734 | random numbers. This Jitterentropy RNG registers with | |
1735 | the kernel crypto API and can be used by any caller. | |
1736 | ||
03c8efc1 HX |
1737 | config CRYPTO_USER_API |
1738 | tristate | |
1739 | ||
fe869cdb HX |
1740 | config CRYPTO_USER_API_HASH |
1741 | tristate "User-space interface for hash algorithms" | |
7451708f | 1742 | depends on NET |
fe869cdb HX |
1743 | select CRYPTO_HASH |
1744 | select CRYPTO_USER_API | |
1745 | help | |
1746 | This option enables the user-spaces interface for hash | |
1747 | algorithms. | |
1748 | ||
8ff59090 HX |
1749 | config CRYPTO_USER_API_SKCIPHER |
1750 | tristate "User-space interface for symmetric key cipher algorithms" | |
7451708f | 1751 | depends on NET |
8ff59090 HX |
1752 | select CRYPTO_BLKCIPHER |
1753 | select CRYPTO_USER_API | |
1754 | help | |
1755 | This option enables the user-spaces interface for symmetric | |
1756 | key cipher algorithms. | |
1757 | ||
2f375538 SM |
1758 | config CRYPTO_USER_API_RNG |
1759 | tristate "User-space interface for random number generator algorithms" | |
1760 | depends on NET | |
1761 | select CRYPTO_RNG | |
1762 | select CRYPTO_USER_API | |
1763 | help | |
1764 | This option enables the user-spaces interface for random | |
1765 | number generator algorithms. | |
1766 | ||
b64a2d95 HX |
1767 | config CRYPTO_USER_API_AEAD |
1768 | tristate "User-space interface for AEAD cipher algorithms" | |
1769 | depends on NET | |
1770 | select CRYPTO_AEAD | |
72548b09 SM |
1771 | select CRYPTO_BLKCIPHER |
1772 | select CRYPTO_NULL | |
b64a2d95 HX |
1773 | select CRYPTO_USER_API |
1774 | help | |
1775 | This option enables the user-spaces interface for AEAD | |
1776 | cipher algorithms. | |
1777 | ||
ee08997f DK |
1778 | config CRYPTO_HASH_INFO |
1779 | bool | |
1780 | ||
1da177e4 | 1781 | source "drivers/crypto/Kconfig" |
964f3b3b | 1782 | source crypto/asymmetric_keys/Kconfig |
cfc411e7 | 1783 | source certs/Kconfig |
1da177e4 | 1784 | |
cce9e06d | 1785 | endif # if CRYPTO |