]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | # SPDX-License-Identifier: GPL-2.0 |
685784aa DW |
2 | # |
3 | # Generic algorithms support | |
4 | # | |
5 | config XOR_BLOCKS | |
6 | tristate | |
7 | ||
1da177e4 | 8 | # |
9bc89cd8 | 9 | # async_tx api: hardware offloaded memory transfer/transform support |
1da177e4 | 10 | # |
9bc89cd8 | 11 | source "crypto/async_tx/Kconfig" |
1da177e4 | 12 | |
9bc89cd8 DW |
13 | # |
14 | # Cryptographic API Configuration | |
15 | # | |
2e290f43 | 16 | menuconfig CRYPTO |
c3715cb9 | 17 | tristate "Cryptographic API" |
1da177e4 LT |
18 | help |
19 | This option provides the core Cryptographic API. | |
20 | ||
cce9e06d HX |
21 | if CRYPTO |
22 | ||
584fffc8 SS |
23 | comment "Crypto core or helper" |
24 | ||
ccb778e1 NH |
25 | config CRYPTO_FIPS |
26 | bool "FIPS 200 compliance" | |
f2c89a10 | 27 | depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS |
1f696097 | 28 | depends on (MODULE_SIG || !MODULES) |
ccb778e1 | 29 | help |
d99324c2 GU |
30 | This option enables the fips boot option which is |
31 | required if you want the system to operate in a FIPS 200 | |
ccb778e1 | 32 | certification. You should say no unless you know what |
e84c5480 | 33 | this is. |
ccb778e1 | 34 | |
cce9e06d HX |
35 | config CRYPTO_ALGAPI |
36 | tristate | |
6a0fcbb4 | 37 | select CRYPTO_ALGAPI2 |
cce9e06d HX |
38 | help |
39 | This option provides the API for cryptographic algorithms. | |
40 | ||
6a0fcbb4 HX |
41 | config CRYPTO_ALGAPI2 |
42 | tristate | |
43 | ||
1ae97820 HX |
44 | config CRYPTO_AEAD |
45 | tristate | |
6a0fcbb4 | 46 | select CRYPTO_AEAD2 |
1ae97820 HX |
47 | select CRYPTO_ALGAPI |
48 | ||
6a0fcbb4 HX |
49 | config CRYPTO_AEAD2 |
50 | tristate | |
51 | select CRYPTO_ALGAPI2 | |
149a3971 HX |
52 | select CRYPTO_NULL2 |
53 | select CRYPTO_RNG2 | |
6a0fcbb4 | 54 | |
b95bba5d | 55 | config CRYPTO_SKCIPHER |
5cde0af2 | 56 | tristate |
b95bba5d | 57 | select CRYPTO_SKCIPHER2 |
5cde0af2 | 58 | select CRYPTO_ALGAPI |
6a0fcbb4 | 59 | |
b95bba5d | 60 | config CRYPTO_SKCIPHER2 |
6a0fcbb4 HX |
61 | tristate |
62 | select CRYPTO_ALGAPI2 | |
63 | select CRYPTO_RNG2 | |
5cde0af2 | 64 | |
055bcee3 HX |
65 | config CRYPTO_HASH |
66 | tristate | |
6a0fcbb4 | 67 | select CRYPTO_HASH2 |
055bcee3 HX |
68 | select CRYPTO_ALGAPI |
69 | ||
6a0fcbb4 HX |
70 | config CRYPTO_HASH2 |
71 | tristate | |
72 | select CRYPTO_ALGAPI2 | |
73 | ||
17f0f4a4 NH |
74 | config CRYPTO_RNG |
75 | tristate | |
6a0fcbb4 | 76 | select CRYPTO_RNG2 |
17f0f4a4 NH |
77 | select CRYPTO_ALGAPI |
78 | ||
6a0fcbb4 HX |
79 | config CRYPTO_RNG2 |
80 | tristate | |
81 | select CRYPTO_ALGAPI2 | |
82 | ||
401e4238 HX |
83 | config CRYPTO_RNG_DEFAULT |
84 | tristate | |
85 | select CRYPTO_DRBG_MENU | |
86 | ||
3c339ab8 TS |
87 | config CRYPTO_AKCIPHER2 |
88 | tristate | |
89 | select CRYPTO_ALGAPI2 | |
90 | ||
91 | config CRYPTO_AKCIPHER | |
92 | tristate | |
93 | select CRYPTO_AKCIPHER2 | |
94 | select CRYPTO_ALGAPI | |
95 | ||
4e5f2c40 SB |
96 | config CRYPTO_KPP2 |
97 | tristate | |
98 | select CRYPTO_ALGAPI2 | |
99 | ||
100 | config CRYPTO_KPP | |
101 | tristate | |
102 | select CRYPTO_ALGAPI | |
103 | select CRYPTO_KPP2 | |
104 | ||
2ebda74f GC |
105 | config CRYPTO_ACOMP2 |
106 | tristate | |
107 | select CRYPTO_ALGAPI2 | |
8cd579d2 | 108 | select SGL_ALLOC |
2ebda74f GC |
109 | |
110 | config CRYPTO_ACOMP | |
111 | tristate | |
112 | select CRYPTO_ALGAPI | |
113 | select CRYPTO_ACOMP2 | |
114 | ||
2b8c19db HX |
115 | config CRYPTO_MANAGER |
116 | tristate "Cryptographic algorithm manager" | |
6a0fcbb4 | 117 | select CRYPTO_MANAGER2 |
2b8c19db HX |
118 | help |
119 | Create default cryptographic template instantiations such as | |
120 | cbc(aes). | |
121 | ||
6a0fcbb4 HX |
122 | config CRYPTO_MANAGER2 |
123 | def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) | |
124 | select CRYPTO_AEAD2 | |
125 | select CRYPTO_HASH2 | |
b95bba5d | 126 | select CRYPTO_SKCIPHER2 |
946cc463 | 127 | select CRYPTO_AKCIPHER2 |
4e5f2c40 | 128 | select CRYPTO_KPP2 |
2ebda74f | 129 | select CRYPTO_ACOMP2 |
6a0fcbb4 | 130 | |
a38f7907 SK |
131 | config CRYPTO_USER |
132 | tristate "Userspace cryptographic algorithm configuration" | |
5db017aa | 133 | depends on NET |
a38f7907 SK |
134 | select CRYPTO_MANAGER |
135 | help | |
d19978f5 | 136 | Userspace configuration for cryptographic instantiations such as |
a38f7907 SK |
137 | cbc(aes). |
138 | ||
929d34ca EB |
139 | if CRYPTO_MANAGER2 |
140 | ||
326a6346 HX |
141 | config CRYPTO_MANAGER_DISABLE_TESTS |
142 | bool "Disable run-time self tests" | |
00ca28a5 | 143 | default y |
0b767f96 | 144 | help |
326a6346 HX |
145 | Disable run-time self tests that normally take place at |
146 | algorithm registration. | |
0b767f96 | 147 | |
5b2706a4 EB |
148 | config CRYPTO_MANAGER_EXTRA_TESTS |
149 | bool "Enable extra run-time crypto self tests" | |
150 | depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS | |
151 | help | |
152 | Enable extra run-time self tests of registered crypto algorithms, | |
153 | including randomized fuzz tests. | |
154 | ||
155 | This is intended for developer use only, as these tests take much | |
156 | longer to run than the normal self tests. | |
157 | ||
929d34ca EB |
158 | endif # if CRYPTO_MANAGER2 |
159 | ||
584fffc8 | 160 | config CRYPTO_GF128MUL |
e590e132 | 161 | tristate |
333b0d7e | 162 | |
1da177e4 LT |
163 | config CRYPTO_NULL |
164 | tristate "Null algorithms" | |
149a3971 | 165 | select CRYPTO_NULL2 |
1da177e4 LT |
166 | help |
167 | These are 'Null' algorithms, used by IPsec, which do nothing. | |
168 | ||
149a3971 | 169 | config CRYPTO_NULL2 |
dd43c4e9 | 170 | tristate |
149a3971 | 171 | select CRYPTO_ALGAPI2 |
b95bba5d | 172 | select CRYPTO_SKCIPHER2 |
149a3971 HX |
173 | select CRYPTO_HASH2 |
174 | ||
5068c7a8 | 175 | config CRYPTO_PCRYPT |
3b4afaf2 KC |
176 | tristate "Parallel crypto engine" |
177 | depends on SMP | |
5068c7a8 SK |
178 | select PADATA |
179 | select CRYPTO_MANAGER | |
180 | select CRYPTO_AEAD | |
181 | help | |
182 | This converts an arbitrary crypto algorithm into a parallel | |
183 | algorithm that executes in kernel threads. | |
184 | ||
584fffc8 SS |
185 | config CRYPTO_CRYPTD |
186 | tristate "Software async crypto daemon" | |
b95bba5d | 187 | select CRYPTO_SKCIPHER |
b8a28251 | 188 | select CRYPTO_HASH |
584fffc8 | 189 | select CRYPTO_MANAGER |
1da177e4 | 190 | help |
584fffc8 SS |
191 | This is a generic software asynchronous crypto daemon that |
192 | converts an arbitrary synchronous software crypto algorithm | |
193 | into an asynchronous algorithm that executes in a kernel thread. | |
1da177e4 | 194 | |
584fffc8 SS |
195 | config CRYPTO_AUTHENC |
196 | tristate "Authenc support" | |
197 | select CRYPTO_AEAD | |
b95bba5d | 198 | select CRYPTO_SKCIPHER |
584fffc8 SS |
199 | select CRYPTO_MANAGER |
200 | select CRYPTO_HASH | |
e94c6a7a | 201 | select CRYPTO_NULL |
1da177e4 | 202 | help |
584fffc8 SS |
203 | Authenc: Combined mode wrapper for IPsec. |
204 | This is required for IPSec. | |
1da177e4 | 205 | |
584fffc8 SS |
206 | config CRYPTO_TEST |
207 | tristate "Testing module" | |
208 | depends on m | |
da7f033d | 209 | select CRYPTO_MANAGER |
1da177e4 | 210 | help |
584fffc8 | 211 | Quick & dirty crypto test module. |
1da177e4 | 212 | |
266d0516 HX |
213 | config CRYPTO_SIMD |
214 | tristate | |
ffaf9156 JK |
215 | select CRYPTO_CRYPTD |
216 | ||
596d8750 JK |
217 | config CRYPTO_GLUE_HELPER_X86 |
218 | tristate | |
219 | depends on X86 | |
b95bba5d | 220 | select CRYPTO_SKCIPHER |
596d8750 | 221 | |
735d37b5 BW |
222 | config CRYPTO_ENGINE |
223 | tristate | |
224 | ||
3d6228a5 VC |
225 | comment "Public-key cryptography" |
226 | ||
227 | config CRYPTO_RSA | |
228 | tristate "RSA algorithm" | |
229 | select CRYPTO_AKCIPHER | |
230 | select CRYPTO_MANAGER | |
231 | select MPILIB | |
232 | select ASN1 | |
233 | help | |
234 | Generic implementation of the RSA public key algorithm. | |
235 | ||
236 | config CRYPTO_DH | |
237 | tristate "Diffie-Hellman algorithm" | |
238 | select CRYPTO_KPP | |
239 | select MPILIB | |
240 | help | |
241 | Generic implementation of the Diffie-Hellman algorithm. | |
242 | ||
4a2289da VC |
243 | config CRYPTO_ECC |
244 | tristate | |
245 | ||
3d6228a5 VC |
246 | config CRYPTO_ECDH |
247 | tristate "ECDH algorithm" | |
4a2289da | 248 | select CRYPTO_ECC |
3d6228a5 VC |
249 | select CRYPTO_KPP |
250 | select CRYPTO_RNG_DEFAULT | |
251 | help | |
252 | Generic implementation of the ECDH algorithm | |
253 | ||
0d7a7864 VC |
254 | config CRYPTO_ECRDSA |
255 | tristate "EC-RDSA (GOST 34.10) algorithm" | |
256 | select CRYPTO_ECC | |
257 | select CRYPTO_AKCIPHER | |
258 | select CRYPTO_STREEBOG | |
1036633e VC |
259 | select OID_REGISTRY |
260 | select ASN1 | |
0d7a7864 VC |
261 | help |
262 | Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, | |
263 | RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic | |
264 | standard algorithms (called GOST algorithms). Only signature verification | |
265 | is implemented. | |
266 | ||
584fffc8 | 267 | comment "Authenticated Encryption with Associated Data" |
cd12fb90 | 268 | |
584fffc8 SS |
269 | config CRYPTO_CCM |
270 | tristate "CCM support" | |
271 | select CRYPTO_CTR | |
f15f05b0 | 272 | select CRYPTO_HASH |
584fffc8 | 273 | select CRYPTO_AEAD |
c8a3315a | 274 | select CRYPTO_MANAGER |
1da177e4 | 275 | help |
584fffc8 | 276 | Support for Counter with CBC MAC. Required for IPsec. |
1da177e4 | 277 | |
584fffc8 SS |
278 | config CRYPTO_GCM |
279 | tristate "GCM/GMAC support" | |
280 | select CRYPTO_CTR | |
281 | select CRYPTO_AEAD | |
9382d97a | 282 | select CRYPTO_GHASH |
9489667d | 283 | select CRYPTO_NULL |
c8a3315a | 284 | select CRYPTO_MANAGER |
1da177e4 | 285 | help |
584fffc8 SS |
286 | Support for Galois/Counter Mode (GCM) and Galois Message |
287 | Authentication Code (GMAC). Required for IPSec. | |
1da177e4 | 288 | |
71ebc4d1 MW |
289 | config CRYPTO_CHACHA20POLY1305 |
290 | tristate "ChaCha20-Poly1305 AEAD support" | |
291 | select CRYPTO_CHACHA20 | |
292 | select CRYPTO_POLY1305 | |
293 | select CRYPTO_AEAD | |
c8a3315a | 294 | select CRYPTO_MANAGER |
71ebc4d1 MW |
295 | help |
296 | ChaCha20-Poly1305 AEAD support, RFC7539. | |
297 | ||
298 | Support for the AEAD wrapper using the ChaCha20 stream cipher combined | |
299 | with the Poly1305 authenticator. It is defined in RFC7539 for use in | |
300 | IETF protocols. | |
301 | ||
f606a88e OM |
302 | config CRYPTO_AEGIS128 |
303 | tristate "AEGIS-128 AEAD algorithm" | |
304 | select CRYPTO_AEAD | |
305 | select CRYPTO_AES # for AES S-box tables | |
306 | help | |
307 | Support for the AEGIS-128 dedicated AEAD algorithm. | |
308 | ||
a4397635 AB |
309 | config CRYPTO_AEGIS128_SIMD |
310 | bool "Support SIMD acceleration for AEGIS-128" | |
311 | depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) | |
83053677 | 312 | depends on !ARM || CC_IS_CLANG || GCC_VERSION >= 40800 |
a4397635 AB |
313 | default y |
314 | ||
1d373d4e OM |
315 | config CRYPTO_AEGIS128_AESNI_SSE2 |
316 | tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" | |
317 | depends on X86 && 64BIT | |
318 | select CRYPTO_AEAD | |
de272ca7 | 319 | select CRYPTO_SIMD |
1d373d4e | 320 | help |
4e5180eb | 321 | AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. |
1d373d4e | 322 | |
584fffc8 SS |
323 | config CRYPTO_SEQIV |
324 | tristate "Sequence Number IV Generator" | |
325 | select CRYPTO_AEAD | |
b95bba5d | 326 | select CRYPTO_SKCIPHER |
856e3f40 | 327 | select CRYPTO_NULL |
401e4238 | 328 | select CRYPTO_RNG_DEFAULT |
c8a3315a | 329 | select CRYPTO_MANAGER |
1da177e4 | 330 | help |
584fffc8 SS |
331 | This IV generator generates an IV based on a sequence number by |
332 | xoring it with a salt. This algorithm is mainly useful for CTR | |
1da177e4 | 333 | |
a10f554f HX |
334 | config CRYPTO_ECHAINIV |
335 | tristate "Encrypted Chain IV Generator" | |
336 | select CRYPTO_AEAD | |
337 | select CRYPTO_NULL | |
401e4238 | 338 | select CRYPTO_RNG_DEFAULT |
c8a3315a | 339 | select CRYPTO_MANAGER |
a10f554f HX |
340 | help |
341 | This IV generator generates an IV based on the encryption of | |
342 | a sequence number xored with a salt. This is the default | |
343 | algorithm for CBC. | |
344 | ||
584fffc8 | 345 | comment "Block modes" |
c494e070 | 346 | |
584fffc8 SS |
347 | config CRYPTO_CBC |
348 | tristate "CBC support" | |
b95bba5d | 349 | select CRYPTO_SKCIPHER |
43518407 | 350 | select CRYPTO_MANAGER |
db131ef9 | 351 | help |
584fffc8 SS |
352 | CBC: Cipher Block Chaining mode |
353 | This block cipher algorithm is required for IPSec. | |
db131ef9 | 354 | |
a7d85e06 JB |
355 | config CRYPTO_CFB |
356 | tristate "CFB support" | |
b95bba5d | 357 | select CRYPTO_SKCIPHER |
a7d85e06 JB |
358 | select CRYPTO_MANAGER |
359 | help | |
360 | CFB: Cipher FeedBack mode | |
361 | This block cipher algorithm is required for TPM2 Cryptography. | |
362 | ||
584fffc8 SS |
363 | config CRYPTO_CTR |
364 | tristate "CTR support" | |
b95bba5d | 365 | select CRYPTO_SKCIPHER |
584fffc8 | 366 | select CRYPTO_SEQIV |
43518407 | 367 | select CRYPTO_MANAGER |
db131ef9 | 368 | help |
584fffc8 | 369 | CTR: Counter mode |
db131ef9 HX |
370 | This block cipher algorithm is required for IPSec. |
371 | ||
584fffc8 SS |
372 | config CRYPTO_CTS |
373 | tristate "CTS support" | |
b95bba5d | 374 | select CRYPTO_SKCIPHER |
c8a3315a | 375 | select CRYPTO_MANAGER |
584fffc8 SS |
376 | help |
377 | CTS: Cipher Text Stealing | |
378 | This is the Cipher Text Stealing mode as described by | |
ecd6d5c9 GBY |
379 | Section 8 of rfc2040 and referenced by rfc3962 |
380 | (rfc3962 includes errata information in its Appendix A) or | |
381 | CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. | |
584fffc8 SS |
382 | This mode is required for Kerberos gss mechanism support |
383 | for AES encryption. | |
384 | ||
ecd6d5c9 GBY |
385 | See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final |
386 | ||
584fffc8 SS |
387 | config CRYPTO_ECB |
388 | tristate "ECB support" | |
b95bba5d | 389 | select CRYPTO_SKCIPHER |
91652be5 | 390 | select CRYPTO_MANAGER |
91652be5 | 391 | help |
584fffc8 SS |
392 | ECB: Electronic CodeBook mode |
393 | This is the simplest block cipher algorithm. It simply encrypts | |
394 | the input block by block. | |
91652be5 | 395 | |
64470f1b | 396 | config CRYPTO_LRW |
2470a2b2 | 397 | tristate "LRW support" |
b95bba5d | 398 | select CRYPTO_SKCIPHER |
64470f1b RS |
399 | select CRYPTO_MANAGER |
400 | select CRYPTO_GF128MUL | |
401 | help | |
402 | LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable | |
403 | narrow block cipher mode for dm-crypt. Use it with cipher | |
404 | specification string aes-lrw-benbi, the key must be 256, 320 or 384. | |
405 | The first 128, 192 or 256 bits in the key are used for AES and the | |
406 | rest is used to tie each cipher block to its logical position. | |
407 | ||
e497c518 GBY |
408 | config CRYPTO_OFB |
409 | tristate "OFB support" | |
b95bba5d | 410 | select CRYPTO_SKCIPHER |
e497c518 GBY |
411 | select CRYPTO_MANAGER |
412 | help | |
413 | OFB: the Output Feedback mode makes a block cipher into a synchronous | |
414 | stream cipher. It generates keystream blocks, which are then XORed | |
415 | with the plaintext blocks to get the ciphertext. Flipping a bit in the | |
416 | ciphertext produces a flipped bit in the plaintext at the same | |
417 | location. This property allows many error correcting codes to function | |
418 | normally even when applied before encryption. | |
419 | ||
584fffc8 SS |
420 | config CRYPTO_PCBC |
421 | tristate "PCBC support" | |
b95bba5d | 422 | select CRYPTO_SKCIPHER |
584fffc8 SS |
423 | select CRYPTO_MANAGER |
424 | help | |
425 | PCBC: Propagating Cipher Block Chaining mode | |
426 | This block cipher algorithm is required for RxRPC. | |
427 | ||
f19f5111 | 428 | config CRYPTO_XTS |
5bcf8e6d | 429 | tristate "XTS support" |
b95bba5d | 430 | select CRYPTO_SKCIPHER |
f19f5111 | 431 | select CRYPTO_MANAGER |
12cb3a1c | 432 | select CRYPTO_ECB |
f19f5111 RS |
433 | help |
434 | XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, | |
435 | key size 256, 384 or 512 bits. This implementation currently | |
436 | can't handle a sectorsize which is not a multiple of 16 bytes. | |
437 | ||
1c49678e SM |
438 | config CRYPTO_KEYWRAP |
439 | tristate "Key wrapping support" | |
b95bba5d | 440 | select CRYPTO_SKCIPHER |
c8a3315a | 441 | select CRYPTO_MANAGER |
1c49678e SM |
442 | help |
443 | Support for key wrapping (NIST SP800-38F / RFC3394) without | |
444 | padding. | |
445 | ||
26609a21 EB |
446 | config CRYPTO_NHPOLY1305 |
447 | tristate | |
448 | select CRYPTO_HASH | |
48ea8c6e | 449 | select CRYPTO_LIB_POLY1305_GENERIC |
26609a21 | 450 | |
012c8238 EB |
451 | config CRYPTO_NHPOLY1305_SSE2 |
452 | tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" | |
453 | depends on X86 && 64BIT | |
454 | select CRYPTO_NHPOLY1305 | |
455 | help | |
456 | SSE2 optimized implementation of the hash function used by the | |
457 | Adiantum encryption mode. | |
458 | ||
0f961f9f EB |
459 | config CRYPTO_NHPOLY1305_AVX2 |
460 | tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" | |
461 | depends on X86 && 64BIT | |
462 | select CRYPTO_NHPOLY1305 | |
463 | help | |
464 | AVX2 optimized implementation of the hash function used by the | |
465 | Adiantum encryption mode. | |
466 | ||
059c2a4d EB |
467 | config CRYPTO_ADIANTUM |
468 | tristate "Adiantum support" | |
469 | select CRYPTO_CHACHA20 | |
48ea8c6e | 470 | select CRYPTO_LIB_POLY1305_GENERIC |
059c2a4d | 471 | select CRYPTO_NHPOLY1305 |
c8a3315a | 472 | select CRYPTO_MANAGER |
059c2a4d EB |
473 | help |
474 | Adiantum is a tweakable, length-preserving encryption mode | |
475 | designed for fast and secure disk encryption, especially on | |
476 | CPUs without dedicated crypto instructions. It encrypts | |
477 | each sector using the XChaCha12 stream cipher, two passes of | |
478 | an ε-almost-∆-universal hash function, and an invocation of | |
479 | the AES-256 block cipher on a single 16-byte block. On CPUs | |
480 | without AES instructions, Adiantum is much faster than | |
481 | AES-XTS. | |
482 | ||
483 | Adiantum's security is provably reducible to that of its | |
484 | underlying stream and block ciphers, subject to a security | |
485 | bound. Unlike XTS, Adiantum is a true wide-block encryption | |
486 | mode, so it actually provides an even stronger notion of | |
487 | security than XTS, subject to the security bound. | |
488 | ||
489 | If unsure, say N. | |
490 | ||
be1eb7f7 AB |
491 | config CRYPTO_ESSIV |
492 | tristate "ESSIV support for block encryption" | |
493 | select CRYPTO_AUTHENC | |
494 | help | |
495 | Encrypted salt-sector initialization vector (ESSIV) is an IV | |
496 | generation method that is used in some cases by fscrypt and/or | |
497 | dm-crypt. It uses the hash of the block encryption key as the | |
498 | symmetric key for a block encryption pass applied to the input | |
499 | IV, making low entropy IV sources more suitable for block | |
500 | encryption. | |
501 | ||
502 | This driver implements a crypto API template that can be | |
503 | instantiated either as a skcipher or as a aead (depending on the | |
504 | type of the first template argument), and which defers encryption | |
505 | and decryption requests to the encapsulated cipher after applying | |
506 | ESSIV to the input IV. Note that in the aead case, it is assumed | |
507 | that the keys are presented in the same format used by the authenc | |
508 | template, and that the IV appears at the end of the authenticated | |
509 | associated data (AAD) region (which is how dm-crypt uses it.) | |
510 | ||
511 | Note that the use of ESSIV is not recommended for new deployments, | |
512 | and so this only needs to be enabled when interoperability with | |
513 | existing encrypted volumes of filesystems is required, or when | |
514 | building for a particular system that requires it (e.g., when | |
515 | the SoC in question has accelerated CBC but not XTS, making CBC | |
516 | combined with ESSIV the only feasible mode for h/w accelerated | |
517 | block encryption) | |
518 | ||
584fffc8 SS |
519 | comment "Hash modes" |
520 | ||
93b5e86a JK |
521 | config CRYPTO_CMAC |
522 | tristate "CMAC support" | |
523 | select CRYPTO_HASH | |
524 | select CRYPTO_MANAGER | |
525 | help | |
526 | Cipher-based Message Authentication Code (CMAC) specified by | |
527 | The National Institute of Standards and Technology (NIST). | |
528 | ||
529 | https://tools.ietf.org/html/rfc4493 | |
530 | http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf | |
531 | ||
584fffc8 SS |
532 | config CRYPTO_HMAC |
533 | tristate "HMAC support" | |
534 | select CRYPTO_HASH | |
23e353c8 | 535 | select CRYPTO_MANAGER |
23e353c8 | 536 | help |
584fffc8 SS |
537 | HMAC: Keyed-Hashing for Message Authentication (RFC2104). |
538 | This is required for IPSec. | |
23e353c8 | 539 | |
584fffc8 SS |
540 | config CRYPTO_XCBC |
541 | tristate "XCBC support" | |
584fffc8 SS |
542 | select CRYPTO_HASH |
543 | select CRYPTO_MANAGER | |
76cb9521 | 544 | help |
584fffc8 SS |
545 | XCBC: Keyed-Hashing with encryption algorithm |
546 | http://www.ietf.org/rfc/rfc3566.txt | |
547 | http://csrc.nist.gov/encryption/modes/proposedmodes/ | |
548 | xcbc-mac/xcbc-mac-spec.pdf | |
76cb9521 | 549 | |
f1939f7c SW |
550 | config CRYPTO_VMAC |
551 | tristate "VMAC support" | |
f1939f7c SW |
552 | select CRYPTO_HASH |
553 | select CRYPTO_MANAGER | |
554 | help | |
555 | VMAC is a message authentication algorithm designed for | |
556 | very high speed on 64-bit architectures. | |
557 | ||
558 | See also: | |
559 | <http://fastcrypto.org/vmac> | |
560 | ||
584fffc8 | 561 | comment "Digest" |
28db8e3e | 562 | |
584fffc8 SS |
563 | config CRYPTO_CRC32C |
564 | tristate "CRC32c CRC algorithm" | |
5773a3e6 | 565 | select CRYPTO_HASH |
6a0962b2 | 566 | select CRC32 |
4a49b499 | 567 | help |
584fffc8 SS |
568 | Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used |
569 | by iSCSI for header and data digests and by others. | |
69c35efc | 570 | See Castagnoli93. Module will be crc32c. |
4a49b499 | 571 | |
8cb51ba8 AZ |
572 | config CRYPTO_CRC32C_INTEL |
573 | tristate "CRC32c INTEL hardware acceleration" | |
574 | depends on X86 | |
575 | select CRYPTO_HASH | |
576 | help | |
577 | In Intel processor with SSE4.2 supported, the processor will | |
578 | support CRC32C implementation using hardware accelerated CRC32 | |
579 | instruction. This option will create 'crc32c-intel' module, | |
580 | which will enable any routine to use the CRC32 instruction to | |
581 | gain performance compared with software implementation. | |
582 | Module will be crc32c-intel. | |
583 | ||
7cf31864 | 584 | config CRYPTO_CRC32C_VPMSUM |
6dd7a82c | 585 | tristate "CRC32c CRC algorithm (powerpc64)" |
c12abf34 | 586 | depends on PPC64 && ALTIVEC |
6dd7a82c AB |
587 | select CRYPTO_HASH |
588 | select CRC32 | |
589 | help | |
590 | CRC32c algorithm implemented using vector polynomial multiply-sum | |
591 | (vpmsum) instructions, introduced in POWER8. Enable on POWER8 | |
592 | and newer processors for improved performance. | |
593 | ||
594 | ||
442a7c40 DM |
595 | config CRYPTO_CRC32C_SPARC64 |
596 | tristate "CRC32c CRC algorithm (SPARC64)" | |
597 | depends on SPARC64 | |
598 | select CRYPTO_HASH | |
599 | select CRC32 | |
600 | help | |
601 | CRC32c CRC algorithm implemented using sparc64 crypto instructions, | |
602 | when available. | |
603 | ||
78c37d19 AB |
604 | config CRYPTO_CRC32 |
605 | tristate "CRC32 CRC algorithm" | |
606 | select CRYPTO_HASH | |
607 | select CRC32 | |
608 | help | |
609 | CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. | |
610 | Shash crypto api wrappers to crc32_le function. | |
611 | ||
612 | config CRYPTO_CRC32_PCLMUL | |
613 | tristate "CRC32 PCLMULQDQ hardware acceleration" | |
614 | depends on X86 | |
615 | select CRYPTO_HASH | |
616 | select CRC32 | |
617 | help | |
618 | From Intel Westmere and AMD Bulldozer processor with SSE4.2 | |
619 | and PCLMULQDQ supported, the processor will support | |
620 | CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ | |
af8cb01f | 621 | instruction. This option will create 'crc32-pclmul' module, |
78c37d19 AB |
622 | which will enable any routine to use the CRC-32-IEEE 802.3 checksum |
623 | and gain better performance as compared with the table implementation. | |
624 | ||
4a5dc51e MN |
625 | config CRYPTO_CRC32_MIPS |
626 | tristate "CRC32c and CRC32 CRC algorithm (MIPS)" | |
627 | depends on MIPS_CRC_SUPPORT | |
628 | select CRYPTO_HASH | |
629 | help | |
630 | CRC32c and CRC32 CRC algorithms implemented using mips crypto | |
631 | instructions, when available. | |
632 | ||
633 | ||
67882e76 NB |
634 | config CRYPTO_XXHASH |
635 | tristate "xxHash hash algorithm" | |
636 | select CRYPTO_HASH | |
637 | select XXHASH | |
638 | help | |
639 | xxHash non-cryptographic hash algorithm. Extremely fast, working at | |
640 | speeds close to RAM limits. | |
641 | ||
91d68933 DS |
642 | config CRYPTO_BLAKE2B |
643 | tristate "BLAKE2b digest algorithm" | |
644 | select CRYPTO_HASH | |
645 | help | |
646 | Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), | |
647 | optimized for 64bit platforms and can produce digests of any size | |
648 | between 1 to 64. The keyed hash is also implemented. | |
649 | ||
650 | This module provides the following algorithms: | |
651 | ||
652 | - blake2b-160 | |
653 | - blake2b-256 | |
654 | - blake2b-384 | |
655 | - blake2b-512 | |
656 | ||
657 | See https://blake2.net for further information. | |
658 | ||
68411521 HX |
659 | config CRYPTO_CRCT10DIF |
660 | tristate "CRCT10DIF algorithm" | |
661 | select CRYPTO_HASH | |
662 | help | |
663 | CRC T10 Data Integrity Field computation is being cast as | |
664 | a crypto transform. This allows for faster crc t10 diff | |
665 | transforms to be used if they are available. | |
666 | ||
667 | config CRYPTO_CRCT10DIF_PCLMUL | |
668 | tristate "CRCT10DIF PCLMULQDQ hardware acceleration" | |
669 | depends on X86 && 64BIT && CRC_T10DIF | |
670 | select CRYPTO_HASH | |
671 | help | |
672 | For x86_64 processors with SSE4.2 and PCLMULQDQ supported, | |
673 | CRC T10 DIF PCLMULQDQ computation can be hardware | |
674 | accelerated PCLMULQDQ instruction. This option will create | |
af8cb01f | 675 | 'crct10dif-pclmul' module, which is faster when computing the |
68411521 HX |
676 | crct10dif checksum as compared with the generic table implementation. |
677 | ||
b01df1c1 DA |
678 | config CRYPTO_CRCT10DIF_VPMSUM |
679 | tristate "CRC32T10DIF powerpc64 hardware acceleration" | |
680 | depends on PPC64 && ALTIVEC && CRC_T10DIF | |
681 | select CRYPTO_HASH | |
682 | help | |
683 | CRC10T10DIF algorithm implemented using vector polynomial | |
684 | multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on | |
685 | POWER8 and newer processors for improved performance. | |
686 | ||
146c8688 DA |
687 | config CRYPTO_VPMSUM_TESTER |
688 | tristate "Powerpc64 vpmsum hardware acceleration tester" | |
689 | depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM | |
690 | help | |
691 | Stress test for CRC32c and CRC-T10DIF algorithms implemented with | |
692 | POWER8 vpmsum instructions. | |
693 | Unless you are testing these algorithms, you don't need this. | |
694 | ||
2cdc6899 | 695 | config CRYPTO_GHASH |
8dfa20fc | 696 | tristate "GHASH hash function" |
2cdc6899 | 697 | select CRYPTO_GF128MUL |
578c60fb | 698 | select CRYPTO_HASH |
2cdc6899 | 699 | help |
8dfa20fc EB |
700 | GHASH is the hash function used in GCM (Galois/Counter Mode). |
701 | It is not a general-purpose cryptographic hash function. | |
2cdc6899 | 702 | |
f979e014 MW |
703 | config CRYPTO_POLY1305 |
704 | tristate "Poly1305 authenticator algorithm" | |
578c60fb | 705 | select CRYPTO_HASH |
48ea8c6e | 706 | select CRYPTO_LIB_POLY1305_GENERIC |
f979e014 MW |
707 | help |
708 | Poly1305 authenticator algorithm, RFC7539. | |
709 | ||
710 | Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. | |
711 | It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use | |
712 | in IETF protocols. This is the portable C implementation of Poly1305. | |
713 | ||
c70f4abe | 714 | config CRYPTO_POLY1305_X86_64 |
b1ccc8f4 | 715 | tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" |
c70f4abe | 716 | depends on X86 && 64BIT |
1b2c6a51 | 717 | select CRYPTO_LIB_POLY1305_GENERIC |
f0e89bcf | 718 | select CRYPTO_ARCH_HAVE_LIB_POLY1305 |
c70f4abe MW |
719 | help |
720 | Poly1305 authenticator algorithm, RFC7539. | |
721 | ||
722 | Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. | |
723 | It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use | |
724 | in IETF protocols. This is the x86_64 assembler implementation using SIMD | |
725 | instructions. | |
726 | ||
a11d055e AB |
727 | config CRYPTO_POLY1305_MIPS |
728 | tristate "Poly1305 authenticator algorithm (MIPS optimized)" | |
729 | depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT) | |
730 | select CRYPTO_ARCH_HAVE_LIB_POLY1305 | |
731 | ||
584fffc8 SS |
732 | config CRYPTO_MD4 |
733 | tristate "MD4 digest algorithm" | |
808a1763 | 734 | select CRYPTO_HASH |
124b53d0 | 735 | help |
584fffc8 | 736 | MD4 message digest algorithm (RFC1320). |
124b53d0 | 737 | |
584fffc8 SS |
738 | config CRYPTO_MD5 |
739 | tristate "MD5 digest algorithm" | |
14b75ba7 | 740 | select CRYPTO_HASH |
1da177e4 | 741 | help |
584fffc8 | 742 | MD5 message digest algorithm (RFC1321). |
1da177e4 | 743 | |
d69e75de AK |
744 | config CRYPTO_MD5_OCTEON |
745 | tristate "MD5 digest algorithm (OCTEON)" | |
746 | depends on CPU_CAVIUM_OCTEON | |
747 | select CRYPTO_MD5 | |
748 | select CRYPTO_HASH | |
749 | help | |
750 | MD5 message digest algorithm (RFC1321) implemented | |
751 | using OCTEON crypto instructions, when available. | |
752 | ||
e8e59953 MS |
753 | config CRYPTO_MD5_PPC |
754 | tristate "MD5 digest algorithm (PPC)" | |
755 | depends on PPC | |
756 | select CRYPTO_HASH | |
757 | help | |
758 | MD5 message digest algorithm (RFC1321) implemented | |
759 | in PPC assembler. | |
760 | ||
fa4dfedc DM |
761 | config CRYPTO_MD5_SPARC64 |
762 | tristate "MD5 digest algorithm (SPARC64)" | |
763 | depends on SPARC64 | |
764 | select CRYPTO_MD5 | |
765 | select CRYPTO_HASH | |
766 | help | |
767 | MD5 message digest algorithm (RFC1321) implemented | |
768 | using sparc64 crypto instructions, when available. | |
769 | ||
584fffc8 SS |
770 | config CRYPTO_MICHAEL_MIC |
771 | tristate "Michael MIC keyed digest algorithm" | |
19e2bf14 | 772 | select CRYPTO_HASH |
90831639 | 773 | help |
584fffc8 SS |
774 | Michael MIC is used for message integrity protection in TKIP |
775 | (IEEE 802.11i). This algorithm is required for TKIP, but it | |
776 | should not be used for other purposes because of the weakness | |
777 | of the algorithm. | |
90831639 | 778 | |
82798f90 | 779 | config CRYPTO_RMD128 |
b6d44341 | 780 | tristate "RIPEMD-128 digest algorithm" |
7c4468bc | 781 | select CRYPTO_HASH |
b6d44341 AB |
782 | help |
783 | RIPEMD-128 (ISO/IEC 10118-3:2004). | |
82798f90 | 784 | |
b6d44341 | 785 | RIPEMD-128 is a 128-bit cryptographic hash function. It should only |
35ed4b35 | 786 | be used as a secure replacement for RIPEMD. For other use cases, |
b6d44341 | 787 | RIPEMD-160 should be used. |
82798f90 | 788 | |
b6d44341 | 789 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 790 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
82798f90 AKR |
791 | |
792 | config CRYPTO_RMD160 | |
b6d44341 | 793 | tristate "RIPEMD-160 digest algorithm" |
e5835fba | 794 | select CRYPTO_HASH |
b6d44341 AB |
795 | help |
796 | RIPEMD-160 (ISO/IEC 10118-3:2004). | |
82798f90 | 797 | |
b6d44341 AB |
798 | RIPEMD-160 is a 160-bit cryptographic hash function. It is intended |
799 | to be used as a secure replacement for the 128-bit hash functions | |
800 | MD4, MD5 and it's predecessor RIPEMD | |
801 | (not to be confused with RIPEMD-128). | |
82798f90 | 802 | |
b6d44341 AB |
803 | It's speed is comparable to SHA1 and there are no known attacks |
804 | against RIPEMD-160. | |
534fe2c1 | 805 | |
b6d44341 | 806 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 807 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
534fe2c1 AKR |
808 | |
809 | config CRYPTO_RMD256 | |
b6d44341 | 810 | tristate "RIPEMD-256 digest algorithm" |
d8a5e2e9 | 811 | select CRYPTO_HASH |
b6d44341 AB |
812 | help |
813 | RIPEMD-256 is an optional extension of RIPEMD-128 with a | |
814 | 256 bit hash. It is intended for applications that require | |
815 | longer hash-results, without needing a larger security level | |
816 | (than RIPEMD-128). | |
534fe2c1 | 817 | |
b6d44341 | 818 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 819 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
534fe2c1 AKR |
820 | |
821 | config CRYPTO_RMD320 | |
b6d44341 | 822 | tristate "RIPEMD-320 digest algorithm" |
3b8efb4c | 823 | select CRYPTO_HASH |
b6d44341 AB |
824 | help |
825 | RIPEMD-320 is an optional extension of RIPEMD-160 with a | |
826 | 320 bit hash. It is intended for applications that require | |
827 | longer hash-results, without needing a larger security level | |
828 | (than RIPEMD-160). | |
534fe2c1 | 829 | |
b6d44341 | 830 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 831 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
82798f90 | 832 | |
584fffc8 SS |
833 | config CRYPTO_SHA1 |
834 | tristate "SHA1 digest algorithm" | |
54ccb367 | 835 | select CRYPTO_HASH |
1da177e4 | 836 | help |
584fffc8 | 837 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). |
1da177e4 | 838 | |
66be8951 | 839 | config CRYPTO_SHA1_SSSE3 |
e38b6b7f | 840 | tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" |
66be8951 MK |
841 | depends on X86 && 64BIT |
842 | select CRYPTO_SHA1 | |
843 | select CRYPTO_HASH | |
844 | help | |
845 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
846 | using Supplemental SSE3 (SSSE3) instructions or Advanced Vector | |
e38b6b7f | 847 | Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), |
848 | when available. | |
66be8951 | 849 | |
8275d1aa | 850 | config CRYPTO_SHA256_SSSE3 |
e38b6b7f | 851 | tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" |
8275d1aa TC |
852 | depends on X86 && 64BIT |
853 | select CRYPTO_SHA256 | |
854 | select CRYPTO_HASH | |
855 | help | |
856 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
857 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector | |
858 | Extensions version 1 (AVX1), or Advanced Vector Extensions | |
e38b6b7f | 859 | version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New |
860 | Instructions) when available. | |
87de4579 TC |
861 | |
862 | config CRYPTO_SHA512_SSSE3 | |
863 | tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" | |
864 | depends on X86 && 64BIT | |
865 | select CRYPTO_SHA512 | |
866 | select CRYPTO_HASH | |
867 | help | |
868 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
869 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector | |
870 | Extensions version 1 (AVX1), or Advanced Vector Extensions | |
8275d1aa TC |
871 | version 2 (AVX2) instructions, when available. |
872 | ||
efdb6f6e AK |
873 | config CRYPTO_SHA1_OCTEON |
874 | tristate "SHA1 digest algorithm (OCTEON)" | |
875 | depends on CPU_CAVIUM_OCTEON | |
876 | select CRYPTO_SHA1 | |
877 | select CRYPTO_HASH | |
878 | help | |
879 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
880 | using OCTEON crypto instructions, when available. | |
881 | ||
4ff28d4c DM |
882 | config CRYPTO_SHA1_SPARC64 |
883 | tristate "SHA1 digest algorithm (SPARC64)" | |
884 | depends on SPARC64 | |
885 | select CRYPTO_SHA1 | |
886 | select CRYPTO_HASH | |
887 | help | |
888 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
889 | using sparc64 crypto instructions, when available. | |
890 | ||
323a6bf1 ME |
891 | config CRYPTO_SHA1_PPC |
892 | tristate "SHA1 digest algorithm (powerpc)" | |
893 | depends on PPC | |
894 | help | |
895 | This is the powerpc hardware accelerated implementation of the | |
896 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). | |
897 | ||
d9850fc5 MS |
898 | config CRYPTO_SHA1_PPC_SPE |
899 | tristate "SHA1 digest algorithm (PPC SPE)" | |
900 | depends on PPC && SPE | |
901 | help | |
902 | SHA-1 secure hash standard (DFIPS 180-4) implemented | |
903 | using powerpc SPE SIMD instruction set. | |
904 | ||
584fffc8 SS |
905 | config CRYPTO_SHA256 |
906 | tristate "SHA224 and SHA256 digest algorithm" | |
50e109b5 | 907 | select CRYPTO_HASH |
08c327f6 | 908 | select CRYPTO_LIB_SHA256 |
1da177e4 | 909 | help |
584fffc8 | 910 | SHA256 secure hash standard (DFIPS 180-2). |
1da177e4 | 911 | |
584fffc8 SS |
912 | This version of SHA implements a 256 bit hash with 128 bits of |
913 | security against collision attacks. | |
2729bb42 | 914 | |
b6d44341 AB |
915 | This code also includes SHA-224, a 224 bit hash with 112 bits |
916 | of security against collision attacks. | |
584fffc8 | 917 | |
2ecc1e95 MS |
918 | config CRYPTO_SHA256_PPC_SPE |
919 | tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" | |
920 | depends on PPC && SPE | |
921 | select CRYPTO_SHA256 | |
922 | select CRYPTO_HASH | |
923 | help | |
924 | SHA224 and SHA256 secure hash standard (DFIPS 180-2) | |
925 | implemented using powerpc SPE SIMD instruction set. | |
926 | ||
efdb6f6e AK |
927 | config CRYPTO_SHA256_OCTEON |
928 | tristate "SHA224 and SHA256 digest algorithm (OCTEON)" | |
929 | depends on CPU_CAVIUM_OCTEON | |
930 | select CRYPTO_SHA256 | |
931 | select CRYPTO_HASH | |
932 | help | |
933 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
934 | using OCTEON crypto instructions, when available. | |
935 | ||
86c93b24 DM |
936 | config CRYPTO_SHA256_SPARC64 |
937 | tristate "SHA224 and SHA256 digest algorithm (SPARC64)" | |
938 | depends on SPARC64 | |
939 | select CRYPTO_SHA256 | |
940 | select CRYPTO_HASH | |
941 | help | |
942 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
943 | using sparc64 crypto instructions, when available. | |
944 | ||
584fffc8 SS |
945 | config CRYPTO_SHA512 |
946 | tristate "SHA384 and SHA512 digest algorithms" | |
bd9d20db | 947 | select CRYPTO_HASH |
b9f535ff | 948 | help |
584fffc8 | 949 | SHA512 secure hash standard (DFIPS 180-2). |
b9f535ff | 950 | |
584fffc8 SS |
951 | This version of SHA implements a 512 bit hash with 256 bits of |
952 | security against collision attacks. | |
b9f535ff | 953 | |
584fffc8 SS |
954 | This code also includes SHA-384, a 384 bit hash with 192 bits |
955 | of security against collision attacks. | |
b9f535ff | 956 | |
efdb6f6e AK |
957 | config CRYPTO_SHA512_OCTEON |
958 | tristate "SHA384 and SHA512 digest algorithms (OCTEON)" | |
959 | depends on CPU_CAVIUM_OCTEON | |
960 | select CRYPTO_SHA512 | |
961 | select CRYPTO_HASH | |
962 | help | |
963 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
964 | using OCTEON crypto instructions, when available. | |
965 | ||
775e0c69 DM |
966 | config CRYPTO_SHA512_SPARC64 |
967 | tristate "SHA384 and SHA512 digest algorithm (SPARC64)" | |
968 | depends on SPARC64 | |
969 | select CRYPTO_SHA512 | |
970 | select CRYPTO_HASH | |
971 | help | |
972 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
973 | using sparc64 crypto instructions, when available. | |
974 | ||
53964b9e JG |
975 | config CRYPTO_SHA3 |
976 | tristate "SHA3 digest algorithm" | |
977 | select CRYPTO_HASH | |
978 | help | |
979 | SHA-3 secure hash standard (DFIPS 202). It's based on | |
980 | cryptographic sponge function family called Keccak. | |
981 | ||
982 | References: | |
983 | http://keccak.noekeon.org/ | |
984 | ||
4f0fc160 GBY |
985 | config CRYPTO_SM3 |
986 | tristate "SM3 digest algorithm" | |
987 | select CRYPTO_HASH | |
988 | help | |
989 | SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). | |
990 | It is part of the Chinese Commercial Cryptography suite. | |
991 | ||
992 | References: | |
993 | http://www.oscca.gov.cn/UpFile/20101222141857786.pdf | |
994 | https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash | |
995 | ||
fe18957e VC |
996 | config CRYPTO_STREEBOG |
997 | tristate "Streebog Hash Function" | |
998 | select CRYPTO_HASH | |
999 | help | |
1000 | Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian | |
1001 | cryptographic standard algorithms (called GOST algorithms). | |
1002 | This setting enables two hash algorithms with 256 and 512 bits output. | |
1003 | ||
1004 | References: | |
1005 | https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf | |
1006 | https://tools.ietf.org/html/rfc6986 | |
1007 | ||
584fffc8 SS |
1008 | config CRYPTO_TGR192 |
1009 | tristate "Tiger digest algorithms" | |
f63fbd3d | 1010 | select CRYPTO_HASH |
eaf44088 | 1011 | help |
584fffc8 | 1012 | Tiger hash algorithm 192, 160 and 128-bit hashes |
eaf44088 | 1013 | |
584fffc8 SS |
1014 | Tiger is a hash function optimized for 64-bit processors while |
1015 | still having decent performance on 32-bit processors. | |
1016 | Tiger was developed by Ross Anderson and Eli Biham. | |
eaf44088 JF |
1017 | |
1018 | See also: | |
584fffc8 | 1019 | <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. |
eaf44088 | 1020 | |
584fffc8 SS |
1021 | config CRYPTO_WP512 |
1022 | tristate "Whirlpool digest algorithms" | |
4946510b | 1023 | select CRYPTO_HASH |
1da177e4 | 1024 | help |
584fffc8 | 1025 | Whirlpool hash algorithm 512, 384 and 256-bit hashes |
1da177e4 | 1026 | |
584fffc8 SS |
1027 | Whirlpool-512 is part of the NESSIE cryptographic primitives. |
1028 | Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard | |
1da177e4 LT |
1029 | |
1030 | See also: | |
6d8de74c | 1031 | <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> |
584fffc8 | 1032 | |
0e1227d3 | 1033 | config CRYPTO_GHASH_CLMUL_NI_INTEL |
8dfa20fc | 1034 | tristate "GHASH hash function (CLMUL-NI accelerated)" |
8af00860 | 1035 | depends on X86 && 64BIT |
0e1227d3 YH |
1036 | select CRYPTO_CRYPTD |
1037 | help | |
8dfa20fc EB |
1038 | This is the x86_64 CLMUL-NI accelerated implementation of |
1039 | GHASH, the hash function used in GCM (Galois/Counter mode). | |
0e1227d3 | 1040 | |
584fffc8 | 1041 | comment "Ciphers" |
1da177e4 LT |
1042 | |
1043 | config CRYPTO_AES | |
1044 | tristate "AES cipher algorithms" | |
cce9e06d | 1045 | select CRYPTO_ALGAPI |
5bb12d78 | 1046 | select CRYPTO_LIB_AES |
1da177e4 | 1047 | help |
584fffc8 | 1048 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
1da177e4 LT |
1049 | algorithm. |
1050 | ||
1051 | Rijndael appears to be consistently a very good performer in | |
584fffc8 SS |
1052 | both hardware and software across a wide range of computing |
1053 | environments regardless of its use in feedback or non-feedback | |
1054 | modes. Its key setup time is excellent, and its key agility is | |
1055 | good. Rijndael's very low memory requirements make it very well | |
1056 | suited for restricted-space environments, in which it also | |
1057 | demonstrates excellent performance. Rijndael's operations are | |
1058 | among the easiest to defend against power and timing attacks. | |
1da177e4 | 1059 | |
584fffc8 | 1060 | The AES specifies three key sizes: 128, 192 and 256 bits |
1da177e4 LT |
1061 | |
1062 | See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. | |
1063 | ||
b5e0b032 AB |
1064 | config CRYPTO_AES_TI |
1065 | tristate "Fixed time AES cipher" | |
1066 | select CRYPTO_ALGAPI | |
e59c1c98 | 1067 | select CRYPTO_LIB_AES |
b5e0b032 AB |
1068 | help |
1069 | This is a generic implementation of AES that attempts to eliminate | |
1070 | data dependent latencies as much as possible without affecting | |
1071 | performance too much. It is intended for use by the generic CCM | |
1072 | and GCM drivers, and other CTR or CMAC/XCBC based modes that rely | |
1073 | solely on encryption (although decryption is supported as well, but | |
1074 | with a more dramatic performance hit) | |
1075 | ||
1076 | Instead of using 16 lookup tables of 1 KB each, (8 for encryption and | |
1077 | 8 for decryption), this implementation only uses just two S-boxes of | |
1078 | 256 bytes each, and attempts to eliminate data dependent latencies by | |
1079 | prefetching the entire table into the cache at the start of each | |
0a6a40c2 EB |
1080 | block. Interrupts are also disabled to avoid races where cachelines |
1081 | are evicted when the CPU is interrupted to do something else. | |
b5e0b032 | 1082 | |
54b6a1bd YH |
1083 | config CRYPTO_AES_NI_INTEL |
1084 | tristate "AES cipher algorithms (AES-NI)" | |
8af00860 | 1085 | depends on X86 |
85671860 | 1086 | select CRYPTO_AEAD |
2c53fd11 | 1087 | select CRYPTO_LIB_AES |
54b6a1bd | 1088 | select CRYPTO_ALGAPI |
b95bba5d | 1089 | select CRYPTO_SKCIPHER |
7643a11a | 1090 | select CRYPTO_GLUE_HELPER_X86 if 64BIT |
85671860 | 1091 | select CRYPTO_SIMD |
54b6a1bd YH |
1092 | help |
1093 | Use Intel AES-NI instructions for AES algorithm. | |
1094 | ||
1095 | AES cipher algorithms (FIPS-197). AES uses the Rijndael | |
1096 | algorithm. | |
1097 | ||
1098 | Rijndael appears to be consistently a very good performer in | |
1099 | both hardware and software across a wide range of computing | |
1100 | environments regardless of its use in feedback or non-feedback | |
1101 | modes. Its key setup time is excellent, and its key agility is | |
584fffc8 SS |
1102 | good. Rijndael's very low memory requirements make it very well |
1103 | suited for restricted-space environments, in which it also | |
1104 | demonstrates excellent performance. Rijndael's operations are | |
1105 | among the easiest to defend against power and timing attacks. | |
a2a892a2 | 1106 | |
584fffc8 | 1107 | The AES specifies three key sizes: 128, 192 and 256 bits |
1da177e4 LT |
1108 | |
1109 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
1110 | ||
0d258efb MK |
1111 | In addition to AES cipher algorithm support, the acceleration |
1112 | for some popular block cipher mode is supported too, including | |
944585a6 | 1113 | ECB, CBC, LRW, XTS. The 64 bit version has additional |
0d258efb | 1114 | acceleration for CTR. |
2cf4ac8b | 1115 | |
9bf4852d DM |
1116 | config CRYPTO_AES_SPARC64 |
1117 | tristate "AES cipher algorithms (SPARC64)" | |
1118 | depends on SPARC64 | |
b95bba5d | 1119 | select CRYPTO_SKCIPHER |
9bf4852d DM |
1120 | help |
1121 | Use SPARC64 crypto opcodes for AES algorithm. | |
1122 | ||
1123 | AES cipher algorithms (FIPS-197). AES uses the Rijndael | |
1124 | algorithm. | |
1125 | ||
1126 | Rijndael appears to be consistently a very good performer in | |
1127 | both hardware and software across a wide range of computing | |
1128 | environments regardless of its use in feedback or non-feedback | |
1129 | modes. Its key setup time is excellent, and its key agility is | |
1130 | good. Rijndael's very low memory requirements make it very well | |
1131 | suited for restricted-space environments, in which it also | |
1132 | demonstrates excellent performance. Rijndael's operations are | |
1133 | among the easiest to defend against power and timing attacks. | |
1134 | ||
1135 | The AES specifies three key sizes: 128, 192 and 256 bits | |
1136 | ||
1137 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
1138 | ||
1139 | In addition to AES cipher algorithm support, the acceleration | |
1140 | for some popular block cipher mode is supported too, including | |
1141 | ECB and CBC. | |
1142 | ||
504c6143 MS |
1143 | config CRYPTO_AES_PPC_SPE |
1144 | tristate "AES cipher algorithms (PPC SPE)" | |
1145 | depends on PPC && SPE | |
b95bba5d | 1146 | select CRYPTO_SKCIPHER |
504c6143 MS |
1147 | help |
1148 | AES cipher algorithms (FIPS-197). Additionally the acceleration | |
1149 | for popular block cipher modes ECB, CBC, CTR and XTS is supported. | |
1150 | This module should only be used for low power (router) devices | |
1151 | without hardware AES acceleration (e.g. caam crypto). It reduces the | |
1152 | size of the AES tables from 16KB to 8KB + 256 bytes and mitigates | |
1153 | timining attacks. Nevertheless it might be not as secure as other | |
1154 | architecture specific assembler implementations that work on 1KB | |
1155 | tables or 256 bytes S-boxes. | |
1156 | ||
584fffc8 SS |
1157 | config CRYPTO_ANUBIS |
1158 | tristate "Anubis cipher algorithm" | |
1159 | select CRYPTO_ALGAPI | |
1160 | help | |
1161 | Anubis cipher algorithm. | |
1162 | ||
1163 | Anubis is a variable key length cipher which can use keys from | |
1164 | 128 bits to 320 bits in length. It was evaluated as a entrant | |
1165 | in the NESSIE competition. | |
1166 | ||
1167 | See also: | |
6d8de74c JM |
1168 | <https://www.cosic.esat.kuleuven.be/nessie/reports/> |
1169 | <http://www.larc.usp.br/~pbarreto/AnubisPage.html> | |
584fffc8 SS |
1170 | |
1171 | config CRYPTO_ARC4 | |
1172 | tristate "ARC4 cipher algorithm" | |
b95bba5d | 1173 | select CRYPTO_SKCIPHER |
dc51f257 | 1174 | select CRYPTO_LIB_ARC4 |
584fffc8 SS |
1175 | help |
1176 | ARC4 cipher algorithm. | |
1177 | ||
1178 | ARC4 is a stream cipher using keys ranging from 8 bits to 2048 | |
1179 | bits in length. This algorithm is required for driver-based | |
1180 | WEP, but it should not be for other purposes because of the | |
1181 | weakness of the algorithm. | |
1182 | ||
1183 | config CRYPTO_BLOWFISH | |
1184 | tristate "Blowfish cipher algorithm" | |
1185 | select CRYPTO_ALGAPI | |
52ba867c | 1186 | select CRYPTO_BLOWFISH_COMMON |
584fffc8 SS |
1187 | help |
1188 | Blowfish cipher algorithm, by Bruce Schneier. | |
1189 | ||
1190 | This is a variable key length cipher which can use keys from 32 | |
1191 | bits to 448 bits in length. It's fast, simple and specifically | |
1192 | designed for use on "large microprocessors". | |
1193 | ||
1194 | See also: | |
1195 | <http://www.schneier.com/blowfish.html> | |
1196 | ||
52ba867c JK |
1197 | config CRYPTO_BLOWFISH_COMMON |
1198 | tristate | |
1199 | help | |
1200 | Common parts of the Blowfish cipher algorithm shared by the | |
1201 | generic c and the assembler implementations. | |
1202 | ||
1203 | See also: | |
1204 | <http://www.schneier.com/blowfish.html> | |
1205 | ||
64b94cea JK |
1206 | config CRYPTO_BLOWFISH_X86_64 |
1207 | tristate "Blowfish cipher algorithm (x86_64)" | |
f21a7c19 | 1208 | depends on X86 && 64BIT |
b95bba5d | 1209 | select CRYPTO_SKCIPHER |
64b94cea JK |
1210 | select CRYPTO_BLOWFISH_COMMON |
1211 | help | |
1212 | Blowfish cipher algorithm (x86_64), by Bruce Schneier. | |
1213 | ||
1214 | This is a variable key length cipher which can use keys from 32 | |
1215 | bits to 448 bits in length. It's fast, simple and specifically | |
1216 | designed for use on "large microprocessors". | |
1217 | ||
1218 | See also: | |
1219 | <http://www.schneier.com/blowfish.html> | |
1220 | ||
584fffc8 SS |
1221 | config CRYPTO_CAMELLIA |
1222 | tristate "Camellia cipher algorithms" | |
1223 | depends on CRYPTO | |
1224 | select CRYPTO_ALGAPI | |
1225 | help | |
1226 | Camellia cipher algorithms module. | |
1227 | ||
1228 | Camellia is a symmetric key block cipher developed jointly | |
1229 | at NTT and Mitsubishi Electric Corporation. | |
1230 | ||
1231 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1232 | ||
1233 | See also: | |
1234 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1235 | ||
0b95ec56 JK |
1236 | config CRYPTO_CAMELLIA_X86_64 |
1237 | tristate "Camellia cipher algorithm (x86_64)" | |
f21a7c19 | 1238 | depends on X86 && 64BIT |
0b95ec56 | 1239 | depends on CRYPTO |
b95bba5d | 1240 | select CRYPTO_SKCIPHER |
964263af | 1241 | select CRYPTO_GLUE_HELPER_X86 |
0b95ec56 JK |
1242 | help |
1243 | Camellia cipher algorithm module (x86_64). | |
1244 | ||
1245 | Camellia is a symmetric key block cipher developed jointly | |
1246 | at NTT and Mitsubishi Electric Corporation. | |
1247 | ||
1248 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1249 | ||
1250 | See also: | |
d9b1d2e7 JK |
1251 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
1252 | ||
1253 | config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 | |
1254 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" | |
1255 | depends on X86 && 64BIT | |
1256 | depends on CRYPTO | |
b95bba5d | 1257 | select CRYPTO_SKCIPHER |
d9b1d2e7 | 1258 | select CRYPTO_CAMELLIA_X86_64 |
44893bc2 EB |
1259 | select CRYPTO_GLUE_HELPER_X86 |
1260 | select CRYPTO_SIMD | |
d9b1d2e7 JK |
1261 | select CRYPTO_XTS |
1262 | help | |
1263 | Camellia cipher algorithm module (x86_64/AES-NI/AVX). | |
1264 | ||
1265 | Camellia is a symmetric key block cipher developed jointly | |
1266 | at NTT and Mitsubishi Electric Corporation. | |
1267 | ||
1268 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1269 | ||
1270 | See also: | |
0b95ec56 JK |
1271 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
1272 | ||
f3f935a7 JK |
1273 | config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 |
1274 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" | |
1275 | depends on X86 && 64BIT | |
1276 | depends on CRYPTO | |
f3f935a7 | 1277 | select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 |
f3f935a7 JK |
1278 | help |
1279 | Camellia cipher algorithm module (x86_64/AES-NI/AVX2). | |
1280 | ||
1281 | Camellia is a symmetric key block cipher developed jointly | |
1282 | at NTT and Mitsubishi Electric Corporation. | |
1283 | ||
1284 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1285 | ||
1286 | See also: | |
1287 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1288 | ||
81658ad0 DM |
1289 | config CRYPTO_CAMELLIA_SPARC64 |
1290 | tristate "Camellia cipher algorithm (SPARC64)" | |
1291 | depends on SPARC64 | |
1292 | depends on CRYPTO | |
1293 | select CRYPTO_ALGAPI | |
b95bba5d | 1294 | select CRYPTO_SKCIPHER |
81658ad0 DM |
1295 | help |
1296 | Camellia cipher algorithm module (SPARC64). | |
1297 | ||
1298 | Camellia is a symmetric key block cipher developed jointly | |
1299 | at NTT and Mitsubishi Electric Corporation. | |
1300 | ||
1301 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1302 | ||
1303 | See also: | |
1304 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1305 | ||
044ab525 JK |
1306 | config CRYPTO_CAST_COMMON |
1307 | tristate | |
1308 | help | |
1309 | Common parts of the CAST cipher algorithms shared by the | |
1310 | generic c and the assembler implementations. | |
1311 | ||
1da177e4 LT |
1312 | config CRYPTO_CAST5 |
1313 | tristate "CAST5 (CAST-128) cipher algorithm" | |
cce9e06d | 1314 | select CRYPTO_ALGAPI |
044ab525 | 1315 | select CRYPTO_CAST_COMMON |
1da177e4 LT |
1316 | help |
1317 | The CAST5 encryption algorithm (synonymous with CAST-128) is | |
1318 | described in RFC2144. | |
1319 | ||
4d6d6a2c JG |
1320 | config CRYPTO_CAST5_AVX_X86_64 |
1321 | tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" | |
1322 | depends on X86 && 64BIT | |
b95bba5d | 1323 | select CRYPTO_SKCIPHER |
4d6d6a2c | 1324 | select CRYPTO_CAST5 |
1e63183a EB |
1325 | select CRYPTO_CAST_COMMON |
1326 | select CRYPTO_SIMD | |
4d6d6a2c JG |
1327 | help |
1328 | The CAST5 encryption algorithm (synonymous with CAST-128) is | |
1329 | described in RFC2144. | |
1330 | ||
1331 | This module provides the Cast5 cipher algorithm that processes | |
1332 | sixteen blocks parallel using the AVX instruction set. | |
1333 | ||
1da177e4 LT |
1334 | config CRYPTO_CAST6 |
1335 | tristate "CAST6 (CAST-256) cipher algorithm" | |
cce9e06d | 1336 | select CRYPTO_ALGAPI |
044ab525 | 1337 | select CRYPTO_CAST_COMMON |
1da177e4 LT |
1338 | help |
1339 | The CAST6 encryption algorithm (synonymous with CAST-256) is | |
1340 | described in RFC2612. | |
1341 | ||
4ea1277d JG |
1342 | config CRYPTO_CAST6_AVX_X86_64 |
1343 | tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" | |
1344 | depends on X86 && 64BIT | |
b95bba5d | 1345 | select CRYPTO_SKCIPHER |
4ea1277d | 1346 | select CRYPTO_CAST6 |
4bd96924 EB |
1347 | select CRYPTO_CAST_COMMON |
1348 | select CRYPTO_GLUE_HELPER_X86 | |
1349 | select CRYPTO_SIMD | |
4ea1277d JG |
1350 | select CRYPTO_XTS |
1351 | help | |
1352 | The CAST6 encryption algorithm (synonymous with CAST-256) is | |
1353 | described in RFC2612. | |
1354 | ||
1355 | This module provides the Cast6 cipher algorithm that processes | |
1356 | eight blocks parallel using the AVX instruction set. | |
1357 | ||
584fffc8 SS |
1358 | config CRYPTO_DES |
1359 | tristate "DES and Triple DES EDE cipher algorithms" | |
cce9e06d | 1360 | select CRYPTO_ALGAPI |
04007b0e | 1361 | select CRYPTO_LIB_DES |
1da177e4 | 1362 | help |
584fffc8 | 1363 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). |
fb4f10ed | 1364 | |
c5aac2df DM |
1365 | config CRYPTO_DES_SPARC64 |
1366 | tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" | |
97da37b3 | 1367 | depends on SPARC64 |
c5aac2df | 1368 | select CRYPTO_ALGAPI |
04007b0e | 1369 | select CRYPTO_LIB_DES |
b95bba5d | 1370 | select CRYPTO_SKCIPHER |
c5aac2df DM |
1371 | help |
1372 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), | |
1373 | optimized using SPARC64 crypto opcodes. | |
1374 | ||
6574e6c6 JK |
1375 | config CRYPTO_DES3_EDE_X86_64 |
1376 | tristate "Triple DES EDE cipher algorithm (x86-64)" | |
1377 | depends on X86 && 64BIT | |
b95bba5d | 1378 | select CRYPTO_SKCIPHER |
04007b0e | 1379 | select CRYPTO_LIB_DES |
6574e6c6 JK |
1380 | help |
1381 | Triple DES EDE (FIPS 46-3) algorithm. | |
1382 | ||
1383 | This module provides implementation of the Triple DES EDE cipher | |
1384 | algorithm that is optimized for x86-64 processors. Two versions of | |
1385 | algorithm are provided; regular processing one input block and | |
1386 | one that processes three blocks parallel. | |
1387 | ||
584fffc8 SS |
1388 | config CRYPTO_FCRYPT |
1389 | tristate "FCrypt cipher algorithm" | |
cce9e06d | 1390 | select CRYPTO_ALGAPI |
b95bba5d | 1391 | select CRYPTO_SKCIPHER |
1da177e4 | 1392 | help |
584fffc8 | 1393 | FCrypt algorithm used by RxRPC. |
1da177e4 LT |
1394 | |
1395 | config CRYPTO_KHAZAD | |
1396 | tristate "Khazad cipher algorithm" | |
cce9e06d | 1397 | select CRYPTO_ALGAPI |
1da177e4 LT |
1398 | help |
1399 | Khazad cipher algorithm. | |
1400 | ||
1401 | Khazad was a finalist in the initial NESSIE competition. It is | |
1402 | an algorithm optimized for 64-bit processors with good performance | |
1403 | on 32-bit processors. Khazad uses an 128 bit key size. | |
1404 | ||
1405 | See also: | |
6d8de74c | 1406 | <http://www.larc.usp.br/~pbarreto/KhazadPage.html> |
1da177e4 | 1407 | |
2407d608 | 1408 | config CRYPTO_SALSA20 |
3b4afaf2 | 1409 | tristate "Salsa20 stream cipher algorithm" |
b95bba5d | 1410 | select CRYPTO_SKCIPHER |
2407d608 TSH |
1411 | help |
1412 | Salsa20 stream cipher algorithm. | |
1413 | ||
1414 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT | |
1415 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> | |
974e4b75 TSH |
1416 | |
1417 | The Salsa20 stream cipher algorithm is designed by Daniel J. | |
1418 | Bernstein <[email protected]>. See <http://cr.yp.to/snuffle.html> | |
1419 | ||
c08d0e64 | 1420 | config CRYPTO_CHACHA20 |
aa762409 | 1421 | tristate "ChaCha stream cipher algorithms" |
5fb8ef25 | 1422 | select CRYPTO_LIB_CHACHA_GENERIC |
b95bba5d | 1423 | select CRYPTO_SKCIPHER |
c08d0e64 | 1424 | help |
aa762409 | 1425 | The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. |
c08d0e64 MW |
1426 | |
1427 | ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. | |
1428 | Bernstein and further specified in RFC7539 for use in IETF protocols. | |
de61d7ae | 1429 | This is the portable C implementation of ChaCha20. See also: |
c08d0e64 MW |
1430 | <http://cr.yp.to/chacha/chacha-20080128.pdf> |
1431 | ||
de61d7ae EB |
1432 | XChaCha20 is the application of the XSalsa20 construction to ChaCha20 |
1433 | rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length | |
1434 | from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, | |
1435 | while provably retaining ChaCha20's security. See also: | |
1436 | <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> | |
1437 | ||
aa762409 EB |
1438 | XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly |
1439 | reduced security margin but increased performance. It can be needed | |
1440 | in some performance-sensitive scenarios. | |
1441 | ||
c9320b6d | 1442 | config CRYPTO_CHACHA20_X86_64 |
4af78261 | 1443 | tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" |
c9320b6d | 1444 | depends on X86 && 64BIT |
b95bba5d | 1445 | select CRYPTO_SKCIPHER |
28e8d89b | 1446 | select CRYPTO_LIB_CHACHA_GENERIC |
84e03fa3 | 1447 | select CRYPTO_ARCH_HAVE_LIB_CHACHA |
c9320b6d | 1448 | help |
7a507d62 EB |
1449 | SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, |
1450 | XChaCha20, and XChaCha12 stream ciphers. | |
c9320b6d | 1451 | |
3a2f58f3 AB |
1452 | config CRYPTO_CHACHA_MIPS |
1453 | tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" | |
1454 | depends on CPU_MIPS32_R2 | |
1455 | select CRYPTO_BLKCIPHER | |
1456 | select CRYPTO_ARCH_HAVE_LIB_CHACHA | |
1457 | ||
584fffc8 SS |
1458 | config CRYPTO_SEED |
1459 | tristate "SEED cipher algorithm" | |
cce9e06d | 1460 | select CRYPTO_ALGAPI |
1da177e4 | 1461 | help |
584fffc8 | 1462 | SEED cipher algorithm (RFC4269). |
1da177e4 | 1463 | |
584fffc8 SS |
1464 | SEED is a 128-bit symmetric key block cipher that has been |
1465 | developed by KISA (Korea Information Security Agency) as a | |
1466 | national standard encryption algorithm of the Republic of Korea. | |
1467 | It is a 16 round block cipher with the key size of 128 bit. | |
1468 | ||
1469 | See also: | |
1470 | <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> | |
1471 | ||
1472 | config CRYPTO_SERPENT | |
1473 | tristate "Serpent cipher algorithm" | |
cce9e06d | 1474 | select CRYPTO_ALGAPI |
1da177e4 | 1475 | help |
584fffc8 | 1476 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
1da177e4 | 1477 | |
584fffc8 SS |
1478 | Keys are allowed to be from 0 to 256 bits in length, in steps |
1479 | of 8 bits. Also includes the 'Tnepres' algorithm, a reversed | |
1480 | variant of Serpent for compatibility with old kerneli.org code. | |
1481 | ||
1482 | See also: | |
1483 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
1484 | ||
937c30d7 JK |
1485 | config CRYPTO_SERPENT_SSE2_X86_64 |
1486 | tristate "Serpent cipher algorithm (x86_64/SSE2)" | |
1487 | depends on X86 && 64BIT | |
b95bba5d | 1488 | select CRYPTO_SKCIPHER |
596d8750 | 1489 | select CRYPTO_GLUE_HELPER_X86 |
937c30d7 | 1490 | select CRYPTO_SERPENT |
e0f409dc | 1491 | select CRYPTO_SIMD |
937c30d7 JK |
1492 | help |
1493 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1494 | ||
1495 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1496 | of 8 bits. | |
1497 | ||
1e6232f8 | 1498 | This module provides Serpent cipher algorithm that processes eight |
937c30d7 JK |
1499 | blocks parallel using SSE2 instruction set. |
1500 | ||
1501 | See also: | |
1502 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
1503 | ||
251496db JK |
1504 | config CRYPTO_SERPENT_SSE2_586 |
1505 | tristate "Serpent cipher algorithm (i586/SSE2)" | |
1506 | depends on X86 && !64BIT | |
b95bba5d | 1507 | select CRYPTO_SKCIPHER |
596d8750 | 1508 | select CRYPTO_GLUE_HELPER_X86 |
251496db | 1509 | select CRYPTO_SERPENT |
e0f409dc | 1510 | select CRYPTO_SIMD |
251496db JK |
1511 | help |
1512 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1513 | ||
1514 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1515 | of 8 bits. | |
1516 | ||
1517 | This module provides Serpent cipher algorithm that processes four | |
1518 | blocks parallel using SSE2 instruction set. | |
1519 | ||
1520 | See also: | |
1521 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
7efe4076 JG |
1522 | |
1523 | config CRYPTO_SERPENT_AVX_X86_64 | |
1524 | tristate "Serpent cipher algorithm (x86_64/AVX)" | |
1525 | depends on X86 && 64BIT | |
b95bba5d | 1526 | select CRYPTO_SKCIPHER |
1d0debbd | 1527 | select CRYPTO_GLUE_HELPER_X86 |
7efe4076 | 1528 | select CRYPTO_SERPENT |
e16bf974 | 1529 | select CRYPTO_SIMD |
7efe4076 JG |
1530 | select CRYPTO_XTS |
1531 | help | |
1532 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1533 | ||
1534 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1535 | of 8 bits. | |
1536 | ||
1537 | This module provides the Serpent cipher algorithm that processes | |
1538 | eight blocks parallel using the AVX instruction set. | |
1539 | ||
1540 | See also: | |
1541 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
251496db | 1542 | |
56d76c96 JK |
1543 | config CRYPTO_SERPENT_AVX2_X86_64 |
1544 | tristate "Serpent cipher algorithm (x86_64/AVX2)" | |
1545 | depends on X86 && 64BIT | |
56d76c96 | 1546 | select CRYPTO_SERPENT_AVX_X86_64 |
56d76c96 JK |
1547 | help |
1548 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1549 | ||
1550 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1551 | of 8 bits. | |
1552 | ||
1553 | This module provides Serpent cipher algorithm that processes 16 | |
1554 | blocks parallel using AVX2 instruction set. | |
1555 | ||
1556 | See also: | |
1557 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
1558 | ||
747c8ce4 GBY |
1559 | config CRYPTO_SM4 |
1560 | tristate "SM4 cipher algorithm" | |
1561 | select CRYPTO_ALGAPI | |
1562 | help | |
1563 | SM4 cipher algorithms (OSCCA GB/T 32907-2016). | |
1564 | ||
1565 | SM4 (GBT.32907-2016) is a cryptographic standard issued by the | |
1566 | Organization of State Commercial Administration of China (OSCCA) | |
1567 | as an authorized cryptographic algorithms for the use within China. | |
1568 | ||
1569 | SMS4 was originally created for use in protecting wireless | |
1570 | networks, and is mandated in the Chinese National Standard for | |
1571 | Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) | |
1572 | (GB.15629.11-2003). | |
1573 | ||
1574 | The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and | |
1575 | standardized through TC 260 of the Standardization Administration | |
1576 | of the People's Republic of China (SAC). | |
1577 | ||
1578 | The input, output, and key of SMS4 are each 128 bits. | |
1579 | ||
1580 | See also: <https://eprint.iacr.org/2008/329.pdf> | |
1581 | ||
1582 | If unsure, say N. | |
1583 | ||
584fffc8 SS |
1584 | config CRYPTO_TEA |
1585 | tristate "TEA, XTEA and XETA cipher algorithms" | |
cce9e06d | 1586 | select CRYPTO_ALGAPI |
1da177e4 | 1587 | help |
584fffc8 | 1588 | TEA cipher algorithm. |
1da177e4 | 1589 | |
584fffc8 SS |
1590 | Tiny Encryption Algorithm is a simple cipher that uses |
1591 | many rounds for security. It is very fast and uses | |
1592 | little memory. | |
1593 | ||
1594 | Xtendend Tiny Encryption Algorithm is a modification to | |
1595 | the TEA algorithm to address a potential key weakness | |
1596 | in the TEA algorithm. | |
1597 | ||
1598 | Xtendend Encryption Tiny Algorithm is a mis-implementation | |
1599 | of the XTEA algorithm for compatibility purposes. | |
1600 | ||
1601 | config CRYPTO_TWOFISH | |
1602 | tristate "Twofish cipher algorithm" | |
04ac7db3 | 1603 | select CRYPTO_ALGAPI |
584fffc8 | 1604 | select CRYPTO_TWOFISH_COMMON |
04ac7db3 | 1605 | help |
584fffc8 | 1606 | Twofish cipher algorithm. |
04ac7db3 | 1607 | |
584fffc8 SS |
1608 | Twofish was submitted as an AES (Advanced Encryption Standard) |
1609 | candidate cipher by researchers at CounterPane Systems. It is a | |
1610 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1611 | bits. | |
04ac7db3 | 1612 | |
584fffc8 SS |
1613 | See also: |
1614 | <http://www.schneier.com/twofish.html> | |
1615 | ||
1616 | config CRYPTO_TWOFISH_COMMON | |
1617 | tristate | |
1618 | help | |
1619 | Common parts of the Twofish cipher algorithm shared by the | |
1620 | generic c and the assembler implementations. | |
1621 | ||
1622 | config CRYPTO_TWOFISH_586 | |
1623 | tristate "Twofish cipher algorithms (i586)" | |
1624 | depends on (X86 || UML_X86) && !64BIT | |
1625 | select CRYPTO_ALGAPI | |
1626 | select CRYPTO_TWOFISH_COMMON | |
1627 | help | |
1628 | Twofish cipher algorithm. | |
1629 | ||
1630 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1631 | candidate cipher by researchers at CounterPane Systems. It is a | |
1632 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1633 | bits. | |
04ac7db3 NT |
1634 | |
1635 | See also: | |
584fffc8 | 1636 | <http://www.schneier.com/twofish.html> |
04ac7db3 | 1637 | |
584fffc8 SS |
1638 | config CRYPTO_TWOFISH_X86_64 |
1639 | tristate "Twofish cipher algorithm (x86_64)" | |
1640 | depends on (X86 || UML_X86) && 64BIT | |
cce9e06d | 1641 | select CRYPTO_ALGAPI |
584fffc8 | 1642 | select CRYPTO_TWOFISH_COMMON |
1da177e4 | 1643 | help |
584fffc8 | 1644 | Twofish cipher algorithm (x86_64). |
1da177e4 | 1645 | |
584fffc8 SS |
1646 | Twofish was submitted as an AES (Advanced Encryption Standard) |
1647 | candidate cipher by researchers at CounterPane Systems. It is a | |
1648 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1649 | bits. | |
1650 | ||
1651 | See also: | |
1652 | <http://www.schneier.com/twofish.html> | |
1653 | ||
8280daad JK |
1654 | config CRYPTO_TWOFISH_X86_64_3WAY |
1655 | tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" | |
f21a7c19 | 1656 | depends on X86 && 64BIT |
b95bba5d | 1657 | select CRYPTO_SKCIPHER |
8280daad JK |
1658 | select CRYPTO_TWOFISH_COMMON |
1659 | select CRYPTO_TWOFISH_X86_64 | |
414cb5e7 | 1660 | select CRYPTO_GLUE_HELPER_X86 |
8280daad JK |
1661 | help |
1662 | Twofish cipher algorithm (x86_64, 3-way parallel). | |
1663 | ||
1664 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1665 | candidate cipher by researchers at CounterPane Systems. It is a | |
1666 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1667 | bits. | |
1668 | ||
1669 | This module provides Twofish cipher algorithm that processes three | |
1670 | blocks parallel, utilizing resources of out-of-order CPUs better. | |
1671 | ||
1672 | See also: | |
1673 | <http://www.schneier.com/twofish.html> | |
1674 | ||
107778b5 JG |
1675 | config CRYPTO_TWOFISH_AVX_X86_64 |
1676 | tristate "Twofish cipher algorithm (x86_64/AVX)" | |
1677 | depends on X86 && 64BIT | |
b95bba5d | 1678 | select CRYPTO_SKCIPHER |
a7378d4e | 1679 | select CRYPTO_GLUE_HELPER_X86 |
0e6ab46d | 1680 | select CRYPTO_SIMD |
107778b5 JG |
1681 | select CRYPTO_TWOFISH_COMMON |
1682 | select CRYPTO_TWOFISH_X86_64 | |
1683 | select CRYPTO_TWOFISH_X86_64_3WAY | |
107778b5 JG |
1684 | help |
1685 | Twofish cipher algorithm (x86_64/AVX). | |
1686 | ||
1687 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1688 | candidate cipher by researchers at CounterPane Systems. It is a | |
1689 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1690 | bits. | |
1691 | ||
1692 | This module provides the Twofish cipher algorithm that processes | |
1693 | eight blocks parallel using the AVX Instruction Set. | |
1694 | ||
1695 | See also: | |
1696 | <http://www.schneier.com/twofish.html> | |
1697 | ||
584fffc8 SS |
1698 | comment "Compression" |
1699 | ||
1700 | config CRYPTO_DEFLATE | |
1701 | tristate "Deflate compression algorithm" | |
1702 | select CRYPTO_ALGAPI | |
f6ded09d | 1703 | select CRYPTO_ACOMP2 |
584fffc8 SS |
1704 | select ZLIB_INFLATE |
1705 | select ZLIB_DEFLATE | |
3c09f17c | 1706 | help |
584fffc8 SS |
1707 | This is the Deflate algorithm (RFC1951), specified for use in |
1708 | IPSec with the IPCOMP protocol (RFC3173, RFC2394). | |
1709 | ||
1710 | You will most probably want this if using IPSec. | |
3c09f17c | 1711 | |
0b77abb3 ZS |
1712 | config CRYPTO_LZO |
1713 | tristate "LZO compression algorithm" | |
1714 | select CRYPTO_ALGAPI | |
ac9d2c4b | 1715 | select CRYPTO_ACOMP2 |
0b77abb3 ZS |
1716 | select LZO_COMPRESS |
1717 | select LZO_DECOMPRESS | |
1718 | help | |
1719 | This is the LZO algorithm. | |
1720 | ||
35a1fc18 SJ |
1721 | config CRYPTO_842 |
1722 | tristate "842 compression algorithm" | |
2062c5b6 | 1723 | select CRYPTO_ALGAPI |
6a8de3ae | 1724 | select CRYPTO_ACOMP2 |
2062c5b6 DS |
1725 | select 842_COMPRESS |
1726 | select 842_DECOMPRESS | |
35a1fc18 SJ |
1727 | help |
1728 | This is the 842 algorithm. | |
0ea8530d CM |
1729 | |
1730 | config CRYPTO_LZ4 | |
1731 | tristate "LZ4 compression algorithm" | |
1732 | select CRYPTO_ALGAPI | |
8cd9330e | 1733 | select CRYPTO_ACOMP2 |
0ea8530d CM |
1734 | select LZ4_COMPRESS |
1735 | select LZ4_DECOMPRESS | |
1736 | help | |
1737 | This is the LZ4 algorithm. | |
1738 | ||
1739 | config CRYPTO_LZ4HC | |
1740 | tristate "LZ4HC compression algorithm" | |
1741 | select CRYPTO_ALGAPI | |
91d53d96 | 1742 | select CRYPTO_ACOMP2 |
0ea8530d CM |
1743 | select LZ4HC_COMPRESS |
1744 | select LZ4_DECOMPRESS | |
1745 | help | |
1746 | This is the LZ4 high compression mode algorithm. | |
35a1fc18 | 1747 | |
d28fc3db NT |
1748 | config CRYPTO_ZSTD |
1749 | tristate "Zstd compression algorithm" | |
1750 | select CRYPTO_ALGAPI | |
1751 | select CRYPTO_ACOMP2 | |
1752 | select ZSTD_COMPRESS | |
1753 | select ZSTD_DECOMPRESS | |
1754 | help | |
1755 | This is the zstd algorithm. | |
1756 | ||
17f0f4a4 NH |
1757 | comment "Random Number Generation" |
1758 | ||
1759 | config CRYPTO_ANSI_CPRNG | |
1760 | tristate "Pseudo Random Number Generation for Cryptographic modules" | |
1761 | select CRYPTO_AES | |
1762 | select CRYPTO_RNG | |
17f0f4a4 NH |
1763 | help |
1764 | This option enables the generic pseudo random number generator | |
1765 | for cryptographic modules. Uses the Algorithm specified in | |
7dd607e8 JK |
1766 | ANSI X9.31 A.2.4. Note that this option must be enabled if |
1767 | CRYPTO_FIPS is selected | |
17f0f4a4 | 1768 | |
f2c89a10 | 1769 | menuconfig CRYPTO_DRBG_MENU |
419090c6 | 1770 | tristate "NIST SP800-90A DRBG" |
419090c6 SM |
1771 | help |
1772 | NIST SP800-90A compliant DRBG. In the following submenu, one or | |
1773 | more of the DRBG types must be selected. | |
1774 | ||
f2c89a10 | 1775 | if CRYPTO_DRBG_MENU |
419090c6 SM |
1776 | |
1777 | config CRYPTO_DRBG_HMAC | |
401e4238 | 1778 | bool |
419090c6 | 1779 | default y |
419090c6 | 1780 | select CRYPTO_HMAC |
826775bb | 1781 | select CRYPTO_SHA256 |
419090c6 SM |
1782 | |
1783 | config CRYPTO_DRBG_HASH | |
1784 | bool "Enable Hash DRBG" | |
826775bb | 1785 | select CRYPTO_SHA256 |
419090c6 SM |
1786 | help |
1787 | Enable the Hash DRBG variant as defined in NIST SP800-90A. | |
1788 | ||
1789 | config CRYPTO_DRBG_CTR | |
1790 | bool "Enable CTR DRBG" | |
419090c6 | 1791 | select CRYPTO_AES |
35591285 | 1792 | depends on CRYPTO_CTR |
419090c6 SM |
1793 | help |
1794 | Enable the CTR DRBG variant as defined in NIST SP800-90A. | |
1795 | ||
f2c89a10 HX |
1796 | config CRYPTO_DRBG |
1797 | tristate | |
401e4238 | 1798 | default CRYPTO_DRBG_MENU |
f2c89a10 | 1799 | select CRYPTO_RNG |
bb5530e4 | 1800 | select CRYPTO_JITTERENTROPY |
f2c89a10 HX |
1801 | |
1802 | endif # if CRYPTO_DRBG_MENU | |
419090c6 | 1803 | |
bb5530e4 SM |
1804 | config CRYPTO_JITTERENTROPY |
1805 | tristate "Jitterentropy Non-Deterministic Random Number Generator" | |
2f313e02 | 1806 | select CRYPTO_RNG |
bb5530e4 SM |
1807 | help |
1808 | The Jitterentropy RNG is a noise that is intended | |
1809 | to provide seed to another RNG. The RNG does not | |
1810 | perform any cryptographic whitening of the generated | |
1811 | random numbers. This Jitterentropy RNG registers with | |
1812 | the kernel crypto API and can be used by any caller. | |
1813 | ||
03c8efc1 HX |
1814 | config CRYPTO_USER_API |
1815 | tristate | |
1816 | ||
fe869cdb HX |
1817 | config CRYPTO_USER_API_HASH |
1818 | tristate "User-space interface for hash algorithms" | |
7451708f | 1819 | depends on NET |
fe869cdb HX |
1820 | select CRYPTO_HASH |
1821 | select CRYPTO_USER_API | |
1822 | help | |
1823 | This option enables the user-spaces interface for hash | |
1824 | algorithms. | |
1825 | ||
8ff59090 HX |
1826 | config CRYPTO_USER_API_SKCIPHER |
1827 | tristate "User-space interface for symmetric key cipher algorithms" | |
7451708f | 1828 | depends on NET |
b95bba5d | 1829 | select CRYPTO_SKCIPHER |
8ff59090 HX |
1830 | select CRYPTO_USER_API |
1831 | help | |
1832 | This option enables the user-spaces interface for symmetric | |
1833 | key cipher algorithms. | |
1834 | ||
2f375538 SM |
1835 | config CRYPTO_USER_API_RNG |
1836 | tristate "User-space interface for random number generator algorithms" | |
1837 | depends on NET | |
1838 | select CRYPTO_RNG | |
1839 | select CRYPTO_USER_API | |
1840 | help | |
1841 | This option enables the user-spaces interface for random | |
1842 | number generator algorithms. | |
1843 | ||
b64a2d95 HX |
1844 | config CRYPTO_USER_API_AEAD |
1845 | tristate "User-space interface for AEAD cipher algorithms" | |
1846 | depends on NET | |
1847 | select CRYPTO_AEAD | |
b95bba5d | 1848 | select CRYPTO_SKCIPHER |
72548b09 | 1849 | select CRYPTO_NULL |
b64a2d95 HX |
1850 | select CRYPTO_USER_API |
1851 | help | |
1852 | This option enables the user-spaces interface for AEAD | |
1853 | cipher algorithms. | |
1854 | ||
cac5818c CL |
1855 | config CRYPTO_STATS |
1856 | bool "Crypto usage statistics for User-space" | |
a6a31385 | 1857 | depends on CRYPTO_USER |
cac5818c CL |
1858 | help |
1859 | This option enables the gathering of crypto stats. | |
1860 | This will collect: | |
1861 | - encrypt/decrypt size and numbers of symmeric operations | |
1862 | - compress/decompress size and numbers of compress operations | |
1863 | - size and numbers of hash operations | |
1864 | - encrypt/decrypt/sign/verify numbers for asymmetric operations | |
1865 | - generate/seed numbers for rng operations | |
1866 | ||
ee08997f DK |
1867 | config CRYPTO_HASH_INFO |
1868 | bool | |
1869 | ||
746b2e02 | 1870 | source "lib/crypto/Kconfig" |
1da177e4 | 1871 | source "drivers/crypto/Kconfig" |
8636a1f9 MY |
1872 | source "crypto/asymmetric_keys/Kconfig" |
1873 | source "certs/Kconfig" | |
1da177e4 | 1874 | |
cce9e06d | 1875 | endif # if CRYPTO |