]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the HP PA architecture, for GDB. |
cda5a58a AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, | |
1e698235 | 4 | 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. |
c906108c SS |
5 | |
6 | Contributed by the Center for Software Science at the | |
7 | University of Utah ([email protected]). | |
8 | ||
c5aa993b | 9 | This file is part of GDB. |
c906108c | 10 | |
c5aa993b JM |
11 | This program is free software; you can redistribute it and/or modify |
12 | it under the terms of the GNU General Public License as published by | |
13 | the Free Software Foundation; either version 2 of the License, or | |
14 | (at your option) any later version. | |
c906108c | 15 | |
c5aa993b JM |
16 | This program is distributed in the hope that it will be useful, |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
c906108c | 20 | |
c5aa993b JM |
21 | You should have received a copy of the GNU General Public License |
22 | along with this program; if not, write to the Free Software | |
23 | Foundation, Inc., 59 Temple Place - Suite 330, | |
24 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
25 | |
26 | #include "defs.h" | |
27 | #include "frame.h" | |
28 | #include "bfd.h" | |
29 | #include "inferior.h" | |
30 | #include "value.h" | |
4e052eda | 31 | #include "regcache.h" |
e5d66720 | 32 | #include "completer.h" |
d709c020 | 33 | #include "language.h" |
59623e27 | 34 | #include "osabi.h" |
a7ff40e7 | 35 | #include "gdb_assert.h" |
c906108c SS |
36 | |
37 | /* For argument passing to the inferior */ | |
38 | #include "symtab.h" | |
39 | ||
40 | #ifdef USG | |
41 | #include <sys/types.h> | |
42 | #endif | |
43 | ||
44 | #include <dl.h> | |
45 | #include <sys/param.h> | |
46 | #include <signal.h> | |
47 | ||
48 | #include <sys/ptrace.h> | |
49 | #include <machine/save_state.h> | |
50 | ||
51 | #ifdef COFF_ENCAPSULATE | |
52 | #include "a.out.encap.h" | |
53 | #else | |
54 | #endif | |
55 | ||
c5aa993b | 56 | /*#include <sys/user.h> After a.out.h */ |
c906108c SS |
57 | #include <sys/file.h> |
58 | #include "gdb_stat.h" | |
03f2053f | 59 | #include "gdb_wait.h" |
c906108c SS |
60 | |
61 | #include "gdbcore.h" | |
62 | #include "gdbcmd.h" | |
63 | #include "target.h" | |
64 | #include "symfile.h" | |
65 | #include "objfiles.h" | |
66 | ||
60383d10 JB |
67 | /* Some local constants. */ |
68 | static const int hppa_num_regs = 128; | |
69 | ||
c906108c SS |
70 | /* To support detection of the pseudo-initial frame |
71 | that threads have. */ | |
72 | #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit" | |
73 | #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL) | |
c5aa993b | 74 | |
a14ed312 | 75 | static int extract_5_load (unsigned int); |
c906108c | 76 | |
a14ed312 | 77 | static unsigned extract_5R_store (unsigned int); |
c906108c | 78 | |
a14ed312 | 79 | static unsigned extract_5r_store (unsigned int); |
c906108c | 80 | |
a14ed312 KB |
81 | static void find_dummy_frame_regs (struct frame_info *, |
82 | struct frame_saved_regs *); | |
c906108c | 83 | |
a14ed312 | 84 | static int find_proc_framesize (CORE_ADDR); |
c906108c | 85 | |
a14ed312 | 86 | static int find_return_regnum (CORE_ADDR); |
c906108c | 87 | |
a14ed312 | 88 | struct unwind_table_entry *find_unwind_entry (CORE_ADDR); |
c906108c | 89 | |
a14ed312 | 90 | static int extract_17 (unsigned int); |
c906108c | 91 | |
a14ed312 | 92 | static unsigned deposit_21 (unsigned int, unsigned int); |
c906108c | 93 | |
a14ed312 | 94 | static int extract_21 (unsigned); |
c906108c | 95 | |
a14ed312 | 96 | static unsigned deposit_14 (int, unsigned int); |
c906108c | 97 | |
a14ed312 | 98 | static int extract_14 (unsigned); |
c906108c | 99 | |
a14ed312 | 100 | static void unwind_command (char *, int); |
c906108c | 101 | |
a14ed312 | 102 | static int low_sign_extend (unsigned int, unsigned int); |
c906108c | 103 | |
a14ed312 | 104 | static int sign_extend (unsigned int, unsigned int); |
c906108c | 105 | |
a14ed312 | 106 | static int restore_pc_queue (struct frame_saved_regs *); |
c906108c | 107 | |
a14ed312 | 108 | static int hppa_alignof (struct type *); |
c906108c SS |
109 | |
110 | /* To support multi-threading and stepping. */ | |
a14ed312 | 111 | int hppa_prepare_to_proceed (); |
c906108c | 112 | |
a14ed312 | 113 | static int prologue_inst_adjust_sp (unsigned long); |
c906108c | 114 | |
a14ed312 | 115 | static int is_branch (unsigned long); |
c906108c | 116 | |
a14ed312 | 117 | static int inst_saves_gr (unsigned long); |
c906108c | 118 | |
a14ed312 | 119 | static int inst_saves_fr (unsigned long); |
c906108c | 120 | |
a14ed312 | 121 | static int pc_in_interrupt_handler (CORE_ADDR); |
c906108c | 122 | |
a14ed312 | 123 | static int pc_in_linker_stub (CORE_ADDR); |
c906108c | 124 | |
a14ed312 | 125 | static int compare_unwind_entries (const void *, const void *); |
c906108c | 126 | |
a14ed312 | 127 | static void read_unwind_info (struct objfile *); |
c906108c | 128 | |
a14ed312 KB |
129 | static void internalize_unwinds (struct objfile *, |
130 | struct unwind_table_entry *, | |
131 | asection *, unsigned int, | |
132 | unsigned int, CORE_ADDR); | |
133 | static void pa_print_registers (char *, int, int); | |
d9fcf2fb | 134 | static void pa_strcat_registers (char *, int, int, struct ui_file *); |
a14ed312 KB |
135 | static void pa_register_look_aside (char *, int, long *); |
136 | static void pa_print_fp_reg (int); | |
d9fcf2fb | 137 | static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type); |
a14ed312 | 138 | static void record_text_segment_lowaddr (bfd *, asection *, void *); |
d709c020 JB |
139 | /* FIXME: brobecker 2002-11-07: We will likely be able to make the |
140 | following functions static, once we hppa is partially multiarched. */ | |
141 | int hppa_reg_struct_has_addr (int gcc_p, struct type *type); | |
60383d10 JB |
142 | CORE_ADDR hppa_skip_prologue (CORE_ADDR pc); |
143 | CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc); | |
144 | int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name); | |
145 | int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name); | |
146 | CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame); | |
d709c020 JB |
147 | int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs); |
148 | CORE_ADDR hppa_stack_align (CORE_ADDR sp); | |
149 | int hppa_pc_requires_run_before_use (CORE_ADDR pc); | |
150 | int hppa_instruction_nullified (void); | |
60e1ff27 | 151 | int hppa_register_raw_size (int reg_nr); |
d709c020 JB |
152 | int hppa_register_byte (int reg_nr); |
153 | struct type * hppa_register_virtual_type (int reg_nr); | |
154 | void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp); | |
60383d10 JB |
155 | void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf); |
156 | int hppa_use_struct_convention (int gcc_p, struct type *type); | |
157 | void hppa_store_return_value (struct type *type, char *valbuf); | |
158 | CORE_ADDR hppa_extract_struct_value_address (char *regbuf); | |
d709c020 | 159 | int hppa_cannot_store_register (int regnum); |
60383d10 JB |
160 | void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame); |
161 | CORE_ADDR hppa_frame_chain (struct frame_info *frame); | |
162 | int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe); | |
163 | int hppa_frameless_function_invocation (struct frame_info *frame); | |
164 | CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame); | |
d709c020 JB |
165 | CORE_ADDR hppa_frame_args_address (struct frame_info *fi); |
166 | CORE_ADDR hppa_frame_locals_address (struct frame_info *fi); | |
60383d10 | 167 | int hppa_frame_num_args (struct frame_info *frame); |
7daf4f5b | 168 | void hppa_push_dummy_frame (void); |
60383d10 JB |
169 | void hppa_pop_frame (void); |
170 | CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, | |
171 | int nargs, struct value **args, | |
172 | struct type *type, int gcc_p); | |
173 | CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, | |
174 | int struct_return, CORE_ADDR struct_addr); | |
d709c020 | 175 | CORE_ADDR hppa_smash_text_address (CORE_ADDR addr); |
60383d10 JB |
176 | CORE_ADDR hppa_target_read_pc (ptid_t ptid); |
177 | void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid); | |
178 | CORE_ADDR hppa_target_read_fp (void); | |
c906108c | 179 | |
c5aa993b JM |
180 | typedef struct |
181 | { | |
182 | struct minimal_symbol *msym; | |
183 | CORE_ADDR solib_handle; | |
a0b3c4fd | 184 | CORE_ADDR return_val; |
c5aa993b JM |
185 | } |
186 | args_for_find_stub; | |
c906108c | 187 | |
4efb68b1 | 188 | static int cover_find_stub_with_shl_get (void *); |
c906108c | 189 | |
c5aa993b | 190 | static int is_pa_2 = 0; /* False */ |
c906108c | 191 | |
c5aa993b | 192 | /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */ |
c906108c SS |
193 | extern int hp_som_som_object_present; |
194 | ||
195 | /* In breakpoint.c */ | |
196 | extern int exception_catchpoints_are_fragile; | |
197 | ||
c906108c | 198 | /* Should call_function allocate stack space for a struct return? */ |
d709c020 | 199 | |
c906108c | 200 | int |
fba45db2 | 201 | hppa_use_struct_convention (int gcc_p, struct type *type) |
c906108c | 202 | { |
104c1213 | 203 | return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE); |
c906108c | 204 | } |
c906108c | 205 | \f |
c5aa993b | 206 | |
c906108c SS |
207 | /* Routines to extract various sized constants out of hppa |
208 | instructions. */ | |
209 | ||
210 | /* This assumes that no garbage lies outside of the lower bits of | |
211 | value. */ | |
212 | ||
213 | static int | |
fba45db2 | 214 | sign_extend (unsigned val, unsigned bits) |
c906108c | 215 | { |
c5aa993b | 216 | return (int) (val >> (bits - 1) ? (-1 << bits) | val : val); |
c906108c SS |
217 | } |
218 | ||
219 | /* For many immediate values the sign bit is the low bit! */ | |
220 | ||
221 | static int | |
fba45db2 | 222 | low_sign_extend (unsigned val, unsigned bits) |
c906108c | 223 | { |
c5aa993b | 224 | return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); |
c906108c SS |
225 | } |
226 | ||
227 | /* extract the immediate field from a ld{bhw}s instruction */ | |
228 | ||
c906108c | 229 | static int |
fba45db2 | 230 | extract_5_load (unsigned word) |
c906108c SS |
231 | { |
232 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
233 | } | |
234 | ||
c906108c SS |
235 | /* extract the immediate field from a break instruction */ |
236 | ||
237 | static unsigned | |
fba45db2 | 238 | extract_5r_store (unsigned word) |
c906108c SS |
239 | { |
240 | return (word & MASK_5); | |
241 | } | |
242 | ||
243 | /* extract the immediate field from a {sr}sm instruction */ | |
244 | ||
245 | static unsigned | |
fba45db2 | 246 | extract_5R_store (unsigned word) |
c906108c SS |
247 | { |
248 | return (word >> 16 & MASK_5); | |
249 | } | |
250 | ||
c906108c SS |
251 | /* extract a 14 bit immediate field */ |
252 | ||
253 | static int | |
fba45db2 | 254 | extract_14 (unsigned word) |
c906108c SS |
255 | { |
256 | return low_sign_extend (word & MASK_14, 14); | |
257 | } | |
258 | ||
259 | /* deposit a 14 bit constant in a word */ | |
260 | ||
261 | static unsigned | |
fba45db2 | 262 | deposit_14 (int opnd, unsigned word) |
c906108c SS |
263 | { |
264 | unsigned sign = (opnd < 0 ? 1 : 0); | |
265 | ||
c5aa993b | 266 | return word | ((unsigned) opnd << 1 & MASK_14) | sign; |
c906108c SS |
267 | } |
268 | ||
269 | /* extract a 21 bit constant */ | |
270 | ||
271 | static int | |
fba45db2 | 272 | extract_21 (unsigned word) |
c906108c SS |
273 | { |
274 | int val; | |
275 | ||
276 | word &= MASK_21; | |
277 | word <<= 11; | |
278 | val = GET_FIELD (word, 20, 20); | |
279 | val <<= 11; | |
280 | val |= GET_FIELD (word, 9, 19); | |
281 | val <<= 2; | |
282 | val |= GET_FIELD (word, 5, 6); | |
283 | val <<= 5; | |
284 | val |= GET_FIELD (word, 0, 4); | |
285 | val <<= 2; | |
286 | val |= GET_FIELD (word, 7, 8); | |
287 | return sign_extend (val, 21) << 11; | |
288 | } | |
289 | ||
290 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
291 | usually the top 21 bits of a 32 bit constant, we assume that only | |
292 | the low 21 bits of opnd are relevant */ | |
293 | ||
294 | static unsigned | |
fba45db2 | 295 | deposit_21 (unsigned opnd, unsigned word) |
c906108c SS |
296 | { |
297 | unsigned val = 0; | |
298 | ||
299 | val |= GET_FIELD (opnd, 11 + 14, 11 + 18); | |
300 | val <<= 2; | |
301 | val |= GET_FIELD (opnd, 11 + 12, 11 + 13); | |
302 | val <<= 2; | |
303 | val |= GET_FIELD (opnd, 11 + 19, 11 + 20); | |
304 | val <<= 11; | |
305 | val |= GET_FIELD (opnd, 11 + 1, 11 + 11); | |
306 | val <<= 1; | |
307 | val |= GET_FIELD (opnd, 11 + 0, 11 + 0); | |
308 | return word | val; | |
309 | } | |
310 | ||
c906108c SS |
311 | /* extract a 17 bit constant from branch instructions, returning the |
312 | 19 bit signed value. */ | |
313 | ||
314 | static int | |
fba45db2 | 315 | extract_17 (unsigned word) |
c906108c SS |
316 | { |
317 | return sign_extend (GET_FIELD (word, 19, 28) | | |
318 | GET_FIELD (word, 29, 29) << 10 | | |
319 | GET_FIELD (word, 11, 15) << 11 | | |
320 | (word & 0x1) << 16, 17) << 2; | |
321 | } | |
322 | \f | |
323 | ||
324 | /* Compare the start address for two unwind entries returning 1 if | |
325 | the first address is larger than the second, -1 if the second is | |
326 | larger than the first, and zero if they are equal. */ | |
327 | ||
328 | static int | |
fba45db2 | 329 | compare_unwind_entries (const void *arg1, const void *arg2) |
c906108c SS |
330 | { |
331 | const struct unwind_table_entry *a = arg1; | |
332 | const struct unwind_table_entry *b = arg2; | |
333 | ||
334 | if (a->region_start > b->region_start) | |
335 | return 1; | |
336 | else if (a->region_start < b->region_start) | |
337 | return -1; | |
338 | else | |
339 | return 0; | |
340 | } | |
341 | ||
53a5351d JM |
342 | static CORE_ADDR low_text_segment_address; |
343 | ||
344 | static void | |
8fef05cc | 345 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored) |
53a5351d | 346 | { |
bf9c25dc | 347 | if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
53a5351d JM |
348 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
349 | && section->vma < low_text_segment_address) | |
350 | low_text_segment_address = section->vma; | |
351 | } | |
352 | ||
c906108c | 353 | static void |
fba45db2 KB |
354 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
355 | asection *section, unsigned int entries, unsigned int size, | |
356 | CORE_ADDR text_offset) | |
c906108c SS |
357 | { |
358 | /* We will read the unwind entries into temporary memory, then | |
359 | fill in the actual unwind table. */ | |
360 | if (size > 0) | |
361 | { | |
362 | unsigned long tmp; | |
363 | unsigned i; | |
364 | char *buf = alloca (size); | |
365 | ||
53a5351d JM |
366 | low_text_segment_address = -1; |
367 | ||
368 | /* If addresses are 64 bits wide, then unwinds are supposed to | |
c2c6d25f JM |
369 | be segment relative offsets instead of absolute addresses. |
370 | ||
371 | Note that when loading a shared library (text_offset != 0) the | |
372 | unwinds are already relative to the text_offset that will be | |
373 | passed in. */ | |
374 | if (TARGET_PTR_BIT == 64 && text_offset == 0) | |
53a5351d JM |
375 | { |
376 | bfd_map_over_sections (objfile->obfd, | |
4efb68b1 | 377 | record_text_segment_lowaddr, NULL); |
53a5351d JM |
378 | |
379 | /* ?!? Mask off some low bits. Should this instead subtract | |
380 | out the lowest section's filepos or something like that? | |
381 | This looks very hokey to me. */ | |
382 | low_text_segment_address &= ~0xfff; | |
383 | text_offset += low_text_segment_address; | |
384 | } | |
385 | ||
c906108c SS |
386 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
387 | ||
388 | /* Now internalize the information being careful to handle host/target | |
c5aa993b | 389 | endian issues. */ |
c906108c SS |
390 | for (i = 0; i < entries; i++) |
391 | { | |
392 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
c5aa993b | 393 | (bfd_byte *) buf); |
c906108c SS |
394 | table[i].region_start += text_offset; |
395 | buf += 4; | |
c5aa993b | 396 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
397 | table[i].region_end += text_offset; |
398 | buf += 4; | |
c5aa993b | 399 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
400 | buf += 4; |
401 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
402 | table[i].Millicode = (tmp >> 30) & 0x1; | |
403 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
404 | table[i].Region_description = (tmp >> 27) & 0x3; | |
405 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
406 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
407 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
408 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
409 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
410 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
411 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
412 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
413 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
414 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
415 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
416 | table[i].cxx_info = (tmp >> 8) & 0x1; | |
417 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
418 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
419 | table[i].reserved2 = (tmp >> 5) & 0x1; | |
420 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
421 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
422 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
423 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
424 | table[i].Cleanup_defined = tmp & 0x1; | |
c5aa993b | 425 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
426 | buf += 4; |
427 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
428 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
429 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
430 | table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1; | |
431 | table[i].reserved4 = (tmp >> 27) & 0x1; | |
432 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
433 | ||
c5aa993b | 434 | /* Stub unwinds are handled elsewhere. */ |
c906108c SS |
435 | table[i].stub_unwind.stub_type = 0; |
436 | table[i].stub_unwind.padding = 0; | |
437 | } | |
438 | } | |
439 | } | |
440 | ||
441 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
442 | the object file. This info is used mainly by find_unwind_entry() to find | |
443 | out the stack frame size and frame pointer used by procedures. We put | |
444 | everything on the psymbol obstack in the objfile so that it automatically | |
445 | gets freed when the objfile is destroyed. */ | |
446 | ||
447 | static void | |
fba45db2 | 448 | read_unwind_info (struct objfile *objfile) |
c906108c | 449 | { |
d4f3574e SS |
450 | asection *unwind_sec, *stub_unwind_sec; |
451 | unsigned unwind_size, stub_unwind_size, total_size; | |
452 | unsigned index, unwind_entries; | |
c906108c SS |
453 | unsigned stub_entries, total_entries; |
454 | CORE_ADDR text_offset; | |
455 | struct obj_unwind_info *ui; | |
456 | obj_private_data_t *obj_private; | |
457 | ||
458 | text_offset = ANOFFSET (objfile->section_offsets, 0); | |
c5aa993b JM |
459 | ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack, |
460 | sizeof (struct obj_unwind_info)); | |
c906108c SS |
461 | |
462 | ui->table = NULL; | |
463 | ui->cache = NULL; | |
464 | ui->last = -1; | |
465 | ||
d4f3574e SS |
466 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
467 | sections in a single executable. So we just iterate over every | |
468 | section in the BFD looking for unwinder sections intead of trying | |
469 | to do a lookup with bfd_get_section_by_name. | |
c906108c | 470 | |
d4f3574e SS |
471 | First determine the total size of the unwind tables so that we |
472 | can allocate memory in a nice big hunk. */ | |
473 | total_entries = 0; | |
474 | for (unwind_sec = objfile->obfd->sections; | |
475 | unwind_sec; | |
476 | unwind_sec = unwind_sec->next) | |
c906108c | 477 | { |
d4f3574e SS |
478 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
479 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
480 | { | |
481 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
482 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
c906108c | 483 | |
d4f3574e SS |
484 | total_entries += unwind_entries; |
485 | } | |
c906108c SS |
486 | } |
487 | ||
d4f3574e SS |
488 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
489 | use stub unwinds at the curren time. */ | |
490 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); | |
491 | ||
c906108c SS |
492 | if (stub_unwind_sec) |
493 | { | |
494 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
495 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
496 | } | |
497 | else | |
498 | { | |
499 | stub_unwind_size = 0; | |
500 | stub_entries = 0; | |
501 | } | |
502 | ||
503 | /* Compute total number of unwind entries and their total size. */ | |
d4f3574e | 504 | total_entries += stub_entries; |
c906108c SS |
505 | total_size = total_entries * sizeof (struct unwind_table_entry); |
506 | ||
507 | /* Allocate memory for the unwind table. */ | |
508 | ui->table = (struct unwind_table_entry *) | |
509 | obstack_alloc (&objfile->psymbol_obstack, total_size); | |
c5aa993b | 510 | ui->last = total_entries - 1; |
c906108c | 511 | |
d4f3574e SS |
512 | /* Now read in each unwind section and internalize the standard unwind |
513 | entries. */ | |
c906108c | 514 | index = 0; |
d4f3574e SS |
515 | for (unwind_sec = objfile->obfd->sections; |
516 | unwind_sec; | |
517 | unwind_sec = unwind_sec->next) | |
518 | { | |
519 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
520 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
521 | { | |
522 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
523 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
524 | ||
525 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
526 | unwind_entries, unwind_size, text_offset); | |
527 | index += unwind_entries; | |
528 | } | |
529 | } | |
530 | ||
531 | /* Now read in and internalize the stub unwind entries. */ | |
c906108c SS |
532 | if (stub_unwind_size > 0) |
533 | { | |
534 | unsigned int i; | |
535 | char *buf = alloca (stub_unwind_size); | |
536 | ||
537 | /* Read in the stub unwind entries. */ | |
538 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
539 | 0, stub_unwind_size); | |
540 | ||
541 | /* Now convert them into regular unwind entries. */ | |
542 | for (i = 0; i < stub_entries; i++, index++) | |
543 | { | |
544 | /* Clear out the next unwind entry. */ | |
545 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
546 | ||
547 | /* Convert offset & size into region_start and region_end. | |
548 | Stuff away the stub type into "reserved" fields. */ | |
549 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
550 | (bfd_byte *) buf); | |
551 | ui->table[index].region_start += text_offset; | |
552 | buf += 4; | |
553 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
c5aa993b | 554 | (bfd_byte *) buf); |
c906108c SS |
555 | buf += 2; |
556 | ui->table[index].region_end | |
c5aa993b JM |
557 | = ui->table[index].region_start + 4 * |
558 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
c906108c SS |
559 | buf += 2; |
560 | } | |
561 | ||
562 | } | |
563 | ||
564 | /* Unwind table needs to be kept sorted. */ | |
565 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
566 | compare_unwind_entries); | |
567 | ||
568 | /* Keep a pointer to the unwind information. */ | |
c5aa993b | 569 | if (objfile->obj_private == NULL) |
c906108c SS |
570 | { |
571 | obj_private = (obj_private_data_t *) | |
c5aa993b JM |
572 | obstack_alloc (&objfile->psymbol_obstack, |
573 | sizeof (obj_private_data_t)); | |
c906108c | 574 | obj_private->unwind_info = NULL; |
c5aa993b | 575 | obj_private->so_info = NULL; |
53a5351d | 576 | obj_private->dp = 0; |
c5aa993b | 577 | |
4efb68b1 | 578 | objfile->obj_private = obj_private; |
c906108c | 579 | } |
c5aa993b | 580 | obj_private = (obj_private_data_t *) objfile->obj_private; |
c906108c SS |
581 | obj_private->unwind_info = ui; |
582 | } | |
583 | ||
584 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
585 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
586 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
587 | search of the unwind tables, we depend upon them to be sorted. */ | |
588 | ||
589 | struct unwind_table_entry * | |
fba45db2 | 590 | find_unwind_entry (CORE_ADDR pc) |
c906108c SS |
591 | { |
592 | int first, middle, last; | |
593 | struct objfile *objfile; | |
594 | ||
595 | /* A function at address 0? Not in HP-UX! */ | |
596 | if (pc == (CORE_ADDR) 0) | |
597 | return NULL; | |
598 | ||
599 | ALL_OBJFILES (objfile) | |
c5aa993b JM |
600 | { |
601 | struct obj_unwind_info *ui; | |
602 | ui = NULL; | |
603 | if (objfile->obj_private) | |
604 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; | |
c906108c | 605 | |
c5aa993b JM |
606 | if (!ui) |
607 | { | |
608 | read_unwind_info (objfile); | |
609 | if (objfile->obj_private == NULL) | |
104c1213 | 610 | error ("Internal error reading unwind information."); |
c5aa993b JM |
611 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; |
612 | } | |
c906108c | 613 | |
c5aa993b | 614 | /* First, check the cache */ |
c906108c | 615 | |
c5aa993b JM |
616 | if (ui->cache |
617 | && pc >= ui->cache->region_start | |
618 | && pc <= ui->cache->region_end) | |
619 | return ui->cache; | |
c906108c | 620 | |
c5aa993b | 621 | /* Not in the cache, do a binary search */ |
c906108c | 622 | |
c5aa993b JM |
623 | first = 0; |
624 | last = ui->last; | |
c906108c | 625 | |
c5aa993b JM |
626 | while (first <= last) |
627 | { | |
628 | middle = (first + last) / 2; | |
629 | if (pc >= ui->table[middle].region_start | |
630 | && pc <= ui->table[middle].region_end) | |
631 | { | |
632 | ui->cache = &ui->table[middle]; | |
633 | return &ui->table[middle]; | |
634 | } | |
c906108c | 635 | |
c5aa993b JM |
636 | if (pc < ui->table[middle].region_start) |
637 | last = middle - 1; | |
638 | else | |
639 | first = middle + 1; | |
640 | } | |
641 | } /* ALL_OBJFILES() */ | |
c906108c SS |
642 | return NULL; |
643 | } | |
644 | ||
645 | /* Return the adjustment necessary to make for addresses on the stack | |
646 | as presented by hpread.c. | |
647 | ||
648 | This is necessary because of the stack direction on the PA and the | |
649 | bizarre way in which someone (?) decided they wanted to handle | |
650 | frame pointerless code in GDB. */ | |
651 | int | |
fba45db2 | 652 | hpread_adjust_stack_address (CORE_ADDR func_addr) |
c906108c SS |
653 | { |
654 | struct unwind_table_entry *u; | |
655 | ||
656 | u = find_unwind_entry (func_addr); | |
657 | if (!u) | |
658 | return 0; | |
659 | else | |
660 | return u->Total_frame_size << 3; | |
661 | } | |
662 | ||
663 | /* Called to determine if PC is in an interrupt handler of some | |
664 | kind. */ | |
665 | ||
666 | static int | |
fba45db2 | 667 | pc_in_interrupt_handler (CORE_ADDR pc) |
c906108c SS |
668 | { |
669 | struct unwind_table_entry *u; | |
670 | struct minimal_symbol *msym_us; | |
671 | ||
672 | u = find_unwind_entry (pc); | |
673 | if (!u) | |
674 | return 0; | |
675 | ||
676 | /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though | |
677 | its frame isn't a pure interrupt frame. Deal with this. */ | |
678 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
679 | ||
d7bd68ca | 680 | return (u->HP_UX_interrupt_marker |
22abf04a | 681 | && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us))); |
c906108c SS |
682 | } |
683 | ||
684 | /* Called when no unwind descriptor was found for PC. Returns 1 if it | |
104c1213 JM |
685 | appears that PC is in a linker stub. |
686 | ||
687 | ?!? Need to handle stubs which appear in PA64 code. */ | |
c906108c SS |
688 | |
689 | static int | |
fba45db2 | 690 | pc_in_linker_stub (CORE_ADDR pc) |
c906108c SS |
691 | { |
692 | int found_magic_instruction = 0; | |
693 | int i; | |
694 | char buf[4]; | |
695 | ||
696 | /* If unable to read memory, assume pc is not in a linker stub. */ | |
697 | if (target_read_memory (pc, buf, 4) != 0) | |
698 | return 0; | |
699 | ||
700 | /* We are looking for something like | |
701 | ||
702 | ; $$dyncall jams RP into this special spot in the frame (RP') | |
703 | ; before calling the "call stub" | |
704 | ldw -18(sp),rp | |
705 | ||
706 | ldsid (rp),r1 ; Get space associated with RP into r1 | |
707 | mtsp r1,sp ; Move it into space register 0 | |
708 | be,n 0(sr0),rp) ; back to your regularly scheduled program */ | |
709 | ||
710 | /* Maximum known linker stub size is 4 instructions. Search forward | |
711 | from the given PC, then backward. */ | |
712 | for (i = 0; i < 4; i++) | |
713 | { | |
714 | /* If we hit something with an unwind, stop searching this direction. */ | |
715 | ||
716 | if (find_unwind_entry (pc + i * 4) != 0) | |
717 | break; | |
718 | ||
719 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
c5aa993b | 720 | return from a cross-space function call. */ |
c906108c SS |
721 | if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) |
722 | { | |
723 | found_magic_instruction = 1; | |
724 | break; | |
725 | } | |
726 | /* Add code to handle long call/branch and argument relocation stubs | |
c5aa993b | 727 | here. */ |
c906108c SS |
728 | } |
729 | ||
730 | if (found_magic_instruction != 0) | |
731 | return 1; | |
732 | ||
733 | /* Now look backward. */ | |
734 | for (i = 0; i < 4; i++) | |
735 | { | |
736 | /* If we hit something with an unwind, stop searching this direction. */ | |
737 | ||
738 | if (find_unwind_entry (pc - i * 4) != 0) | |
739 | break; | |
740 | ||
741 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
c5aa993b | 742 | return from a cross-space function call. */ |
c906108c SS |
743 | if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) |
744 | { | |
745 | found_magic_instruction = 1; | |
746 | break; | |
747 | } | |
748 | /* Add code to handle long call/branch and argument relocation stubs | |
c5aa993b | 749 | here. */ |
c906108c SS |
750 | } |
751 | return found_magic_instruction; | |
752 | } | |
753 | ||
754 | static int | |
fba45db2 | 755 | find_return_regnum (CORE_ADDR pc) |
c906108c SS |
756 | { |
757 | struct unwind_table_entry *u; | |
758 | ||
759 | u = find_unwind_entry (pc); | |
760 | ||
761 | if (!u) | |
762 | return RP_REGNUM; | |
763 | ||
764 | if (u->Millicode) | |
765 | return 31; | |
766 | ||
767 | return RP_REGNUM; | |
768 | } | |
769 | ||
770 | /* Return size of frame, or -1 if we should use a frame pointer. */ | |
771 | static int | |
fba45db2 | 772 | find_proc_framesize (CORE_ADDR pc) |
c906108c SS |
773 | { |
774 | struct unwind_table_entry *u; | |
775 | struct minimal_symbol *msym_us; | |
776 | ||
777 | /* This may indicate a bug in our callers... */ | |
c5aa993b | 778 | if (pc == (CORE_ADDR) 0) |
c906108c | 779 | return -1; |
c5aa993b | 780 | |
c906108c SS |
781 | u = find_unwind_entry (pc); |
782 | ||
783 | if (!u) | |
784 | { | |
785 | if (pc_in_linker_stub (pc)) | |
786 | /* Linker stubs have a zero size frame. */ | |
787 | return 0; | |
788 | else | |
789 | return -1; | |
790 | } | |
791 | ||
792 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
793 | ||
794 | /* If Save_SP is set, and we're not in an interrupt or signal caller, | |
795 | then we have a frame pointer. Use it. */ | |
3fa41cdb JL |
796 | if (u->Save_SP |
797 | && !pc_in_interrupt_handler (pc) | |
798 | && msym_us | |
22abf04a | 799 | && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us))) |
c906108c SS |
800 | return -1; |
801 | ||
802 | return u->Total_frame_size << 3; | |
803 | } | |
804 | ||
805 | /* Return offset from sp at which rp is saved, or 0 if not saved. */ | |
a14ed312 | 806 | static int rp_saved (CORE_ADDR); |
c906108c SS |
807 | |
808 | static int | |
fba45db2 | 809 | rp_saved (CORE_ADDR pc) |
c906108c SS |
810 | { |
811 | struct unwind_table_entry *u; | |
812 | ||
813 | /* A function at, and thus a return PC from, address 0? Not in HP-UX! */ | |
814 | if (pc == (CORE_ADDR) 0) | |
815 | return 0; | |
816 | ||
817 | u = find_unwind_entry (pc); | |
818 | ||
819 | if (!u) | |
820 | { | |
821 | if (pc_in_linker_stub (pc)) | |
822 | /* This is the so-called RP'. */ | |
823 | return -24; | |
824 | else | |
825 | return 0; | |
826 | } | |
827 | ||
828 | if (u->Save_RP) | |
53a5351d | 829 | return (TARGET_PTR_BIT == 64 ? -16 : -20); |
c906108c SS |
830 | else if (u->stub_unwind.stub_type != 0) |
831 | { | |
832 | switch (u->stub_unwind.stub_type) | |
833 | { | |
834 | case EXPORT: | |
835 | case IMPORT: | |
836 | return -24; | |
837 | case PARAMETER_RELOCATION: | |
838 | return -8; | |
839 | default: | |
840 | return 0; | |
841 | } | |
842 | } | |
843 | else | |
844 | return 0; | |
845 | } | |
846 | \f | |
847 | int | |
60383d10 | 848 | hppa_frameless_function_invocation (struct frame_info *frame) |
c906108c SS |
849 | { |
850 | struct unwind_table_entry *u; | |
851 | ||
852 | u = find_unwind_entry (frame->pc); | |
853 | ||
854 | if (u == 0) | |
855 | return 0; | |
856 | ||
857 | return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0); | |
858 | } | |
859 | ||
d709c020 JB |
860 | /* Immediately after a function call, return the saved pc. |
861 | Can't go through the frames for this because on some machines | |
862 | the new frame is not set up until the new function executes | |
863 | some instructions. */ | |
864 | ||
c906108c | 865 | CORE_ADDR |
60383d10 | 866 | hppa_saved_pc_after_call (struct frame_info *frame) |
c906108c SS |
867 | { |
868 | int ret_regnum; | |
869 | CORE_ADDR pc; | |
870 | struct unwind_table_entry *u; | |
871 | ||
872 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
873 | pc = read_register (ret_regnum) & ~0x3; | |
c5aa993b | 874 | |
c906108c SS |
875 | /* If PC is in a linker stub, then we need to dig the address |
876 | the stub will return to out of the stack. */ | |
877 | u = find_unwind_entry (pc); | |
878 | if (u && u->stub_unwind.stub_type != 0) | |
8bedc050 | 879 | return DEPRECATED_FRAME_SAVED_PC (frame); |
c906108c SS |
880 | else |
881 | return pc; | |
882 | } | |
883 | \f | |
884 | CORE_ADDR | |
fba45db2 | 885 | hppa_frame_saved_pc (struct frame_info *frame) |
c906108c SS |
886 | { |
887 | CORE_ADDR pc = get_frame_pc (frame); | |
888 | struct unwind_table_entry *u; | |
889 | CORE_ADDR old_pc; | |
c5aa993b JM |
890 | int spun_around_loop = 0; |
891 | int rp_offset = 0; | |
c906108c SS |
892 | |
893 | /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner | |
894 | at the base of the frame in an interrupt handler. Registers within | |
895 | are saved in the exact same order as GDB numbers registers. How | |
896 | convienent. */ | |
897 | if (pc_in_interrupt_handler (pc)) | |
53a5351d JM |
898 | return read_memory_integer (frame->frame + PC_REGNUM * 4, |
899 | TARGET_PTR_BIT / 8) & ~0x3; | |
c906108c | 900 | |
104c1213 JM |
901 | if ((frame->pc >= frame->frame |
902 | && frame->pc <= (frame->frame | |
903 | /* A call dummy is sized in words, but it is | |
904 | actually a series of instructions. Account | |
905 | for that scaling factor. */ | |
906 | + ((REGISTER_SIZE / INSTRUCTION_SIZE) | |
907 | * CALL_DUMMY_LENGTH) | |
908 | /* Similarly we have to account for 64bit | |
909 | wide register saves. */ | |
910 | + (32 * REGISTER_SIZE) | |
911 | /* We always consider FP regs 8 bytes long. */ | |
912 | + (NUM_REGS - FP0_REGNUM) * 8 | |
913 | /* Similarly we have to account for 64bit | |
914 | wide register saves. */ | |
915 | + (6 * REGISTER_SIZE)))) | |
916 | { | |
917 | return read_memory_integer ((frame->frame | |
918 | + (TARGET_PTR_BIT == 64 ? -16 : -20)), | |
919 | TARGET_PTR_BIT / 8) & ~0x3; | |
920 | } | |
921 | ||
c906108c SS |
922 | #ifdef FRAME_SAVED_PC_IN_SIGTRAMP |
923 | /* Deal with signal handler caller frames too. */ | |
5a203e44 | 924 | if ((get_frame_type (frame) == SIGTRAMP_FRAME)) |
c906108c SS |
925 | { |
926 | CORE_ADDR rp; | |
927 | FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); | |
928 | return rp & ~0x3; | |
929 | } | |
930 | #endif | |
931 | ||
60383d10 | 932 | if (hppa_frameless_function_invocation (frame)) |
c906108c SS |
933 | { |
934 | int ret_regnum; | |
935 | ||
936 | ret_regnum = find_return_regnum (pc); | |
937 | ||
938 | /* If the next frame is an interrupt frame or a signal | |
c5aa993b JM |
939 | handler caller, then we need to look in the saved |
940 | register area to get the return pointer (the values | |
941 | in the registers may not correspond to anything useful). */ | |
942 | if (frame->next | |
5a203e44 | 943 | && ((get_frame_type (frame->next) == SIGTRAMP_FRAME) |
c906108c SS |
944 | || pc_in_interrupt_handler (frame->next->pc))) |
945 | { | |
946 | struct frame_saved_regs saved_regs; | |
947 | ||
95486978 | 948 | deprecated_get_frame_saved_regs (frame->next, &saved_regs); |
53a5351d JM |
949 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], |
950 | TARGET_PTR_BIT / 8) & 0x2) | |
c906108c | 951 | { |
53a5351d JM |
952 | pc = read_memory_integer (saved_regs.regs[31], |
953 | TARGET_PTR_BIT / 8) & ~0x3; | |
c906108c SS |
954 | |
955 | /* Syscalls are really two frames. The syscall stub itself | |
c5aa993b JM |
956 | with a return pointer in %rp and the kernel call with |
957 | a return pointer in %r31. We return the %rp variant | |
958 | if %r31 is the same as frame->pc. */ | |
c906108c | 959 | if (pc == frame->pc) |
53a5351d JM |
960 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], |
961 | TARGET_PTR_BIT / 8) & ~0x3; | |
c906108c SS |
962 | } |
963 | else | |
53a5351d JM |
964 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], |
965 | TARGET_PTR_BIT / 8) & ~0x3; | |
c906108c SS |
966 | } |
967 | else | |
968 | pc = read_register (ret_regnum) & ~0x3; | |
969 | } | |
970 | else | |
971 | { | |
972 | spun_around_loop = 0; | |
c5aa993b | 973 | old_pc = pc; |
c906108c | 974 | |
c5aa993b | 975 | restart: |
c906108c SS |
976 | rp_offset = rp_saved (pc); |
977 | ||
978 | /* Similar to code in frameless function case. If the next | |
c5aa993b JM |
979 | frame is a signal or interrupt handler, then dig the right |
980 | information out of the saved register info. */ | |
c906108c SS |
981 | if (rp_offset == 0 |
982 | && frame->next | |
5a203e44 | 983 | && ((get_frame_type (frame->next) == SIGTRAMP_FRAME) |
c906108c SS |
984 | || pc_in_interrupt_handler (frame->next->pc))) |
985 | { | |
986 | struct frame_saved_regs saved_regs; | |
987 | ||
95486978 | 988 | deprecated_get_frame_saved_regs (frame->next, &saved_regs); |
53a5351d JM |
989 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], |
990 | TARGET_PTR_BIT / 8) & 0x2) | |
c906108c | 991 | { |
53a5351d JM |
992 | pc = read_memory_integer (saved_regs.regs[31], |
993 | TARGET_PTR_BIT / 8) & ~0x3; | |
c906108c SS |
994 | |
995 | /* Syscalls are really two frames. The syscall stub itself | |
c5aa993b JM |
996 | with a return pointer in %rp and the kernel call with |
997 | a return pointer in %r31. We return the %rp variant | |
998 | if %r31 is the same as frame->pc. */ | |
c906108c | 999 | if (pc == frame->pc) |
53a5351d JM |
1000 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], |
1001 | TARGET_PTR_BIT / 8) & ~0x3; | |
c906108c SS |
1002 | } |
1003 | else | |
53a5351d JM |
1004 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], |
1005 | TARGET_PTR_BIT / 8) & ~0x3; | |
c906108c SS |
1006 | } |
1007 | else if (rp_offset == 0) | |
c5aa993b JM |
1008 | { |
1009 | old_pc = pc; | |
1010 | pc = read_register (RP_REGNUM) & ~0x3; | |
1011 | } | |
c906108c | 1012 | else |
c5aa993b JM |
1013 | { |
1014 | old_pc = pc; | |
53a5351d JM |
1015 | pc = read_memory_integer (frame->frame + rp_offset, |
1016 | TARGET_PTR_BIT / 8) & ~0x3; | |
c5aa993b | 1017 | } |
c906108c SS |
1018 | } |
1019 | ||
1020 | /* If PC is inside a linker stub, then dig out the address the stub | |
1021 | will return to. | |
1022 | ||
1023 | Don't do this for long branch stubs. Why? For some unknown reason | |
1024 | _start is marked as a long branch stub in hpux10. */ | |
1025 | u = find_unwind_entry (pc); | |
1026 | if (u && u->stub_unwind.stub_type != 0 | |
1027 | && u->stub_unwind.stub_type != LONG_BRANCH) | |
1028 | { | |
1029 | unsigned int insn; | |
1030 | ||
1031 | /* If this is a dynamic executable, and we're in a signal handler, | |
c5aa993b JM |
1032 | then the call chain will eventually point us into the stub for |
1033 | _sigreturn. Unlike most cases, we'll be pointed to the branch | |
1034 | to the real sigreturn rather than the code after the real branch!. | |
c906108c | 1035 | |
c5aa993b JM |
1036 | Else, try to dig the address the stub will return to in the normal |
1037 | fashion. */ | |
c906108c SS |
1038 | insn = read_memory_integer (pc, 4); |
1039 | if ((insn & 0xfc00e000) == 0xe8000000) | |
1040 | return (pc + extract_17 (insn) + 8) & ~0x3; | |
1041 | else | |
1042 | { | |
c5aa993b JM |
1043 | if (old_pc == pc) |
1044 | spun_around_loop++; | |
1045 | ||
1046 | if (spun_around_loop > 1) | |
1047 | { | |
1048 | /* We're just about to go around the loop again with | |
1049 | no more hope of success. Die. */ | |
1050 | error ("Unable to find return pc for this frame"); | |
1051 | } | |
1052 | else | |
1053 | goto restart; | |
c906108c SS |
1054 | } |
1055 | } | |
1056 | ||
1057 | return pc; | |
1058 | } | |
1059 | \f | |
1060 | /* We need to correct the PC and the FP for the outermost frame when we are | |
1061 | in a system call. */ | |
1062 | ||
1063 | void | |
60383d10 | 1064 | hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame) |
c906108c SS |
1065 | { |
1066 | int flags; | |
1067 | int framesize; | |
1068 | ||
1069 | if (frame->next && !fromleaf) | |
1070 | return; | |
1071 | ||
1072 | /* If the next frame represents a frameless function invocation | |
1073 | then we have to do some adjustments that are normally done by | |
1074 | FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */ | |
1075 | if (fromleaf) | |
1076 | { | |
1077 | /* Find the framesize of *this* frame without peeking at the PC | |
c5aa993b | 1078 | in the current frame structure (it isn't set yet). */ |
8bedc050 | 1079 | framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame))); |
c906108c SS |
1080 | |
1081 | /* Now adjust our base frame accordingly. If we have a frame pointer | |
c5aa993b JM |
1082 | use it, else subtract the size of this frame from the current |
1083 | frame. (we always want frame->frame to point at the lowest address | |
1084 | in the frame). */ | |
c906108c SS |
1085 | if (framesize == -1) |
1086 | frame->frame = TARGET_READ_FP (); | |
1087 | else | |
1088 | frame->frame -= framesize; | |
1089 | return; | |
1090 | } | |
1091 | ||
1092 | flags = read_register (FLAGS_REGNUM); | |
c5aa993b | 1093 | if (flags & 2) /* In system call? */ |
c906108c SS |
1094 | frame->pc = read_register (31) & ~0x3; |
1095 | ||
1096 | /* The outermost frame is always derived from PC-framesize | |
1097 | ||
1098 | One might think frameless innermost frames should have | |
1099 | a frame->frame that is the same as the parent's frame->frame. | |
1100 | That is wrong; frame->frame in that case should be the *high* | |
1101 | address of the parent's frame. It's complicated as hell to | |
1102 | explain, but the parent *always* creates some stack space for | |
1103 | the child. So the child actually does have a frame of some | |
1104 | sorts, and its base is the high address in its parent's frame. */ | |
c5aa993b | 1105 | framesize = find_proc_framesize (frame->pc); |
c906108c SS |
1106 | if (framesize == -1) |
1107 | frame->frame = TARGET_READ_FP (); | |
1108 | else | |
1109 | frame->frame = read_register (SP_REGNUM) - framesize; | |
1110 | } | |
1111 | \f | |
a5afb99f AC |
1112 | /* Given a GDB frame, determine the address of the calling function's |
1113 | frame. This will be used to create a new GDB frame struct, and | |
e9582e71 AC |
1114 | then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC |
1115 | will be called for the new frame. | |
c906108c SS |
1116 | |
1117 | This may involve searching through prologues for several functions | |
1118 | at boundaries where GCC calls HP C code, or where code which has | |
1119 | a frame pointer calls code without a frame pointer. */ | |
1120 | ||
1121 | CORE_ADDR | |
60383d10 | 1122 | hppa_frame_chain (struct frame_info *frame) |
c906108c SS |
1123 | { |
1124 | int my_framesize, caller_framesize; | |
1125 | struct unwind_table_entry *u; | |
1126 | CORE_ADDR frame_base; | |
1127 | struct frame_info *tmp_frame; | |
1128 | ||
c2c6d25f JM |
1129 | /* A frame in the current frame list, or zero. */ |
1130 | struct frame_info *saved_regs_frame = 0; | |
1131 | /* Where the registers were saved in saved_regs_frame. | |
1132 | If saved_regs_frame is zero, this is garbage. */ | |
1133 | struct frame_saved_regs saved_regs; | |
1134 | ||
c5aa993b | 1135 | CORE_ADDR caller_pc; |
c906108c SS |
1136 | |
1137 | struct minimal_symbol *min_frame_symbol; | |
c5aa993b JM |
1138 | struct symbol *frame_symbol; |
1139 | char *frame_symbol_name; | |
c906108c SS |
1140 | |
1141 | /* If this is a threaded application, and we see the | |
1142 | routine "__pthread_exit", treat it as the stack root | |
1143 | for this thread. */ | |
c5aa993b JM |
1144 | min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc); |
1145 | frame_symbol = find_pc_function (frame->pc); | |
c906108c | 1146 | |
c5aa993b | 1147 | if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ ) |
c906108c | 1148 | { |
c5aa993b JM |
1149 | /* The test above for "no user function name" would defend |
1150 | against the slim likelihood that a user might define a | |
1151 | routine named "__pthread_exit" and then try to debug it. | |
1152 | ||
1153 | If it weren't commented out, and you tried to debug the | |
1154 | pthread library itself, you'd get errors. | |
1155 | ||
1156 | So for today, we don't make that check. */ | |
22abf04a | 1157 | frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol); |
c5aa993b JM |
1158 | if (frame_symbol_name != 0) |
1159 | { | |
1160 | if (0 == strncmp (frame_symbol_name, | |
1161 | THREAD_INITIAL_FRAME_SYMBOL, | |
1162 | THREAD_INITIAL_FRAME_SYM_LEN)) | |
1163 | { | |
1164 | /* Pretend we've reached the bottom of the stack. */ | |
1165 | return (CORE_ADDR) 0; | |
1166 | } | |
1167 | } | |
1168 | } /* End of hacky code for threads. */ | |
1169 | ||
c906108c SS |
1170 | /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These |
1171 | are easy; at *sp we have a full save state strucutre which we can | |
1172 | pull the old stack pointer from. Also see frame_saved_pc for | |
1173 | code to dig a saved PC out of the save state structure. */ | |
1174 | if (pc_in_interrupt_handler (frame->pc)) | |
53a5351d JM |
1175 | frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, |
1176 | TARGET_PTR_BIT / 8); | |
c906108c | 1177 | #ifdef FRAME_BASE_BEFORE_SIGTRAMP |
5a203e44 | 1178 | else if ((get_frame_type (frame) == SIGTRAMP_FRAME)) |
c906108c SS |
1179 | { |
1180 | FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); | |
1181 | } | |
1182 | #endif | |
1183 | else | |
1184 | frame_base = frame->frame; | |
1185 | ||
1186 | /* Get frame sizes for the current frame and the frame of the | |
1187 | caller. */ | |
1188 | my_framesize = find_proc_framesize (frame->pc); | |
8bedc050 | 1189 | caller_pc = DEPRECATED_FRAME_SAVED_PC (frame); |
c906108c SS |
1190 | |
1191 | /* If we can't determine the caller's PC, then it's not likely we can | |
1192 | really determine anything meaningful about its frame. We'll consider | |
1193 | this to be stack bottom. */ | |
1194 | if (caller_pc == (CORE_ADDR) 0) | |
1195 | return (CORE_ADDR) 0; | |
1196 | ||
8bedc050 | 1197 | caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1198 | |
1199 | /* If caller does not have a frame pointer, then its frame | |
1200 | can be found at current_frame - caller_framesize. */ | |
1201 | if (caller_framesize != -1) | |
1202 | { | |
1203 | return frame_base - caller_framesize; | |
1204 | } | |
1205 | /* Both caller and callee have frame pointers and are GCC compiled | |
1206 | (SAVE_SP bit in unwind descriptor is on for both functions. | |
1207 | The previous frame pointer is found at the top of the current frame. */ | |
1208 | if (caller_framesize == -1 && my_framesize == -1) | |
1209 | { | |
53a5351d | 1210 | return read_memory_integer (frame_base, TARGET_PTR_BIT / 8); |
c906108c SS |
1211 | } |
1212 | /* Caller has a frame pointer, but callee does not. This is a little | |
1213 | more difficult as GCC and HP C lay out locals and callee register save | |
1214 | areas very differently. | |
1215 | ||
1216 | The previous frame pointer could be in a register, or in one of | |
1217 | several areas on the stack. | |
1218 | ||
1219 | Walk from the current frame to the innermost frame examining | |
1220 | unwind descriptors to determine if %r3 ever gets saved into the | |
1221 | stack. If so return whatever value got saved into the stack. | |
1222 | If it was never saved in the stack, then the value in %r3 is still | |
1223 | valid, so use it. | |
1224 | ||
1225 | We use information from unwind descriptors to determine if %r3 | |
1226 | is saved into the stack (Entry_GR field has this information). */ | |
1227 | ||
c2c6d25f | 1228 | for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next) |
c906108c SS |
1229 | { |
1230 | u = find_unwind_entry (tmp_frame->pc); | |
1231 | ||
1232 | if (!u) | |
1233 | { | |
1234 | /* We could find this information by examining prologues. I don't | |
1235 | think anyone has actually written any tools (not even "strip") | |
1236 | which leave them out of an executable, so maybe this is a moot | |
1237 | point. */ | |
c5aa993b JM |
1238 | /* ??rehrauer: Actually, it's quite possible to stepi your way into |
1239 | code that doesn't have unwind entries. For example, stepping into | |
1240 | the dynamic linker will give you a PC that has none. Thus, I've | |
1241 | disabled this warning. */ | |
c906108c SS |
1242 | #if 0 |
1243 | warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc); | |
1244 | #endif | |
1245 | return (CORE_ADDR) 0; | |
1246 | } | |
1247 | ||
c2c6d25f | 1248 | if (u->Save_SP |
5a203e44 | 1249 | || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME) |
c906108c SS |
1250 | || pc_in_interrupt_handler (tmp_frame->pc)) |
1251 | break; | |
c2c6d25f JM |
1252 | |
1253 | /* Entry_GR specifies the number of callee-saved general registers | |
1254 | saved in the stack. It starts at %r3, so %r3 would be 1. */ | |
1255 | if (u->Entry_GR >= 1) | |
1256 | { | |
1257 | /* The unwind entry claims that r3 is saved here. However, | |
1258 | in optimized code, GCC often doesn't actually save r3. | |
1259 | We'll discover this if we look at the prologue. */ | |
95486978 | 1260 | deprecated_get_frame_saved_regs (tmp_frame, &saved_regs); |
c2c6d25f JM |
1261 | saved_regs_frame = tmp_frame; |
1262 | ||
1263 | /* If we have an address for r3, that's good. */ | |
1264 | if (saved_regs.regs[FP_REGNUM]) | |
1265 | break; | |
1266 | } | |
c906108c SS |
1267 | } |
1268 | ||
1269 | if (tmp_frame) | |
1270 | { | |
1271 | /* We may have walked down the chain into a function with a frame | |
c5aa993b | 1272 | pointer. */ |
c906108c | 1273 | if (u->Save_SP |
5a203e44 | 1274 | && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME) |
c906108c SS |
1275 | && !pc_in_interrupt_handler (tmp_frame->pc)) |
1276 | { | |
53a5351d | 1277 | return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8); |
c906108c SS |
1278 | } |
1279 | /* %r3 was saved somewhere in the stack. Dig it out. */ | |
c5aa993b | 1280 | else |
c906108c | 1281 | { |
c906108c SS |
1282 | /* Sick. |
1283 | ||
1284 | For optimization purposes many kernels don't have the | |
1285 | callee saved registers into the save_state structure upon | |
1286 | entry into the kernel for a syscall; the optimization | |
1287 | is usually turned off if the process is being traced so | |
1288 | that the debugger can get full register state for the | |
1289 | process. | |
c5aa993b | 1290 | |
c906108c SS |
1291 | This scheme works well except for two cases: |
1292 | ||
c5aa993b JM |
1293 | * Attaching to a process when the process is in the |
1294 | kernel performing a system call (debugger can't get | |
1295 | full register state for the inferior process since | |
1296 | the process wasn't being traced when it entered the | |
1297 | system call). | |
c906108c | 1298 | |
c5aa993b JM |
1299 | * Register state is not complete if the system call |
1300 | causes the process to core dump. | |
c906108c SS |
1301 | |
1302 | ||
1303 | The following heinous code is an attempt to deal with | |
1304 | the lack of register state in a core dump. It will | |
1305 | fail miserably if the function which performs the | |
1306 | system call has a variable sized stack frame. */ | |
1307 | ||
c2c6d25f | 1308 | if (tmp_frame != saved_regs_frame) |
95486978 | 1309 | deprecated_get_frame_saved_regs (tmp_frame, &saved_regs); |
c906108c SS |
1310 | |
1311 | /* Abominable hack. */ | |
1312 | if (current_target.to_has_execution == 0 | |
1313 | && ((saved_regs.regs[FLAGS_REGNUM] | |
53a5351d JM |
1314 | && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], |
1315 | TARGET_PTR_BIT / 8) | |
c906108c SS |
1316 | & 0x2)) |
1317 | || (saved_regs.regs[FLAGS_REGNUM] == 0 | |
1318 | && read_register (FLAGS_REGNUM) & 0x2))) | |
1319 | { | |
8bedc050 | 1320 | u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1321 | if (!u) |
1322 | { | |
53a5351d JM |
1323 | return read_memory_integer (saved_regs.regs[FP_REGNUM], |
1324 | TARGET_PTR_BIT / 8); | |
c906108c SS |
1325 | } |
1326 | else | |
1327 | { | |
1328 | return frame_base - (u->Total_frame_size << 3); | |
1329 | } | |
1330 | } | |
c5aa993b | 1331 | |
53a5351d JM |
1332 | return read_memory_integer (saved_regs.regs[FP_REGNUM], |
1333 | TARGET_PTR_BIT / 8); | |
c906108c SS |
1334 | } |
1335 | } | |
1336 | else | |
1337 | { | |
c906108c SS |
1338 | /* Get the innermost frame. */ |
1339 | tmp_frame = frame; | |
1340 | while (tmp_frame->next != NULL) | |
1341 | tmp_frame = tmp_frame->next; | |
1342 | ||
c2c6d25f | 1343 | if (tmp_frame != saved_regs_frame) |
95486978 | 1344 | deprecated_get_frame_saved_regs (tmp_frame, &saved_regs); |
c2c6d25f | 1345 | |
c906108c SS |
1346 | /* Abominable hack. See above. */ |
1347 | if (current_target.to_has_execution == 0 | |
1348 | && ((saved_regs.regs[FLAGS_REGNUM] | |
53a5351d JM |
1349 | && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], |
1350 | TARGET_PTR_BIT / 8) | |
c906108c SS |
1351 | & 0x2)) |
1352 | || (saved_regs.regs[FLAGS_REGNUM] == 0 | |
c5aa993b | 1353 | && read_register (FLAGS_REGNUM) & 0x2))) |
c906108c | 1354 | { |
8bedc050 | 1355 | u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1356 | if (!u) |
1357 | { | |
53a5351d JM |
1358 | return read_memory_integer (saved_regs.regs[FP_REGNUM], |
1359 | TARGET_PTR_BIT / 8); | |
c906108c | 1360 | } |
c5aa993b JM |
1361 | else |
1362 | { | |
1363 | return frame_base - (u->Total_frame_size << 3); | |
1364 | } | |
c906108c | 1365 | } |
c5aa993b | 1366 | |
c906108c | 1367 | /* The value in %r3 was never saved into the stack (thus %r3 still |
c5aa993b | 1368 | holds the value of the previous frame pointer). */ |
c906108c SS |
1369 | return TARGET_READ_FP (); |
1370 | } | |
1371 | } | |
c906108c | 1372 | \f |
c5aa993b | 1373 | |
c906108c SS |
1374 | /* To see if a frame chain is valid, see if the caller looks like it |
1375 | was compiled with gcc. */ | |
1376 | ||
1377 | int | |
fba45db2 | 1378 | hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c SS |
1379 | { |
1380 | struct minimal_symbol *msym_us; | |
1381 | struct minimal_symbol *msym_start; | |
1382 | struct unwind_table_entry *u, *next_u = NULL; | |
1383 | struct frame_info *next; | |
1384 | ||
c906108c SS |
1385 | u = find_unwind_entry (thisframe->pc); |
1386 | ||
1387 | if (u == NULL) | |
1388 | return 1; | |
1389 | ||
1390 | /* We can't just check that the same of msym_us is "_start", because | |
1391 | someone idiotically decided that they were going to make a Ltext_end | |
1392 | symbol with the same address. This Ltext_end symbol is totally | |
1393 | indistinguishable (as nearly as I can tell) from the symbol for a function | |
1394 | which is (legitimately, since it is in the user's namespace) | |
1395 | named Ltext_end, so we can't just ignore it. */ | |
8bedc050 | 1396 | msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe)); |
c906108c SS |
1397 | msym_start = lookup_minimal_symbol ("_start", NULL, NULL); |
1398 | if (msym_us | |
1399 | && msym_start | |
1400 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1401 | return 0; | |
1402 | ||
1403 | /* Grrrr. Some new idiot decided that they don't want _start for the | |
1404 | PRO configurations; $START$ calls main directly.... Deal with it. */ | |
1405 | msym_start = lookup_minimal_symbol ("$START$", NULL, NULL); | |
1406 | if (msym_us | |
1407 | && msym_start | |
1408 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1409 | return 0; | |
1410 | ||
1411 | next = get_next_frame (thisframe); | |
1412 | if (next) | |
1413 | next_u = find_unwind_entry (next->pc); | |
1414 | ||
1415 | /* If this frame does not save SP, has no stack, isn't a stub, | |
1416 | and doesn't "call" an interrupt routine or signal handler caller, | |
1417 | then its not valid. */ | |
1418 | if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0 | |
5a203e44 | 1419 | || (thisframe->next && (get_frame_type (thisframe->next) == SIGTRAMP_FRAME)) |
c906108c SS |
1420 | || (next_u && next_u->HP_UX_interrupt_marker)) |
1421 | return 1; | |
1422 | ||
1423 | if (pc_in_linker_stub (thisframe->pc)) | |
1424 | return 1; | |
1425 | ||
1426 | return 0; | |
1427 | } | |
1428 | ||
7daf4f5b JB |
1429 | /* These functions deal with saving and restoring register state |
1430 | around a function call in the inferior. They keep the stack | |
1431 | double-word aligned; eventually, on an hp700, the stack will have | |
1432 | to be aligned to a 64-byte boundary. */ | |
c906108c SS |
1433 | |
1434 | void | |
7daf4f5b | 1435 | hppa_push_dummy_frame (void) |
c906108c SS |
1436 | { |
1437 | CORE_ADDR sp, pc, pcspace; | |
1438 | register int regnum; | |
53a5351d | 1439 | CORE_ADDR int_buffer; |
c906108c SS |
1440 | double freg_buffer; |
1441 | ||
60383d10 | 1442 | pc = hppa_target_read_pc (inferior_ptid); |
c906108c SS |
1443 | int_buffer = read_register (FLAGS_REGNUM); |
1444 | if (int_buffer & 0x2) | |
1445 | { | |
3371ccc0 | 1446 | const unsigned int sid = (pc >> 30) & 0x3; |
c906108c SS |
1447 | if (sid == 0) |
1448 | pcspace = read_register (SR4_REGNUM); | |
1449 | else | |
1450 | pcspace = read_register (SR4_REGNUM + 4 + sid); | |
c906108c SS |
1451 | } |
1452 | else | |
1453 | pcspace = read_register (PCSQ_HEAD_REGNUM); | |
1454 | ||
1455 | /* Space for "arguments"; the RP goes in here. */ | |
1456 | sp = read_register (SP_REGNUM) + 48; | |
1457 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
53a5351d JM |
1458 | |
1459 | /* The 32bit and 64bit ABIs save the return pointer into different | |
1460 | stack slots. */ | |
1461 | if (REGISTER_SIZE == 8) | |
1462 | write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE); | |
1463 | else | |
1464 | write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE); | |
c906108c SS |
1465 | |
1466 | int_buffer = TARGET_READ_FP (); | |
53a5351d | 1467 | write_memory (sp, (char *) &int_buffer, REGISTER_SIZE); |
c906108c SS |
1468 | |
1469 | write_register (FP_REGNUM, sp); | |
1470 | ||
53a5351d | 1471 | sp += 2 * REGISTER_SIZE; |
c906108c SS |
1472 | |
1473 | for (regnum = 1; regnum < 32; regnum++) | |
1474 | if (regnum != RP_REGNUM && regnum != FP_REGNUM) | |
1475 | sp = push_word (sp, read_register (regnum)); | |
1476 | ||
53a5351d JM |
1477 | /* This is not necessary for the 64bit ABI. In fact it is dangerous. */ |
1478 | if (REGISTER_SIZE != 8) | |
1479 | sp += 4; | |
c906108c SS |
1480 | |
1481 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
1482 | { | |
73937e03 AC |
1483 | deprecated_read_register_bytes (REGISTER_BYTE (regnum), |
1484 | (char *) &freg_buffer, 8); | |
c5aa993b | 1485 | sp = push_bytes (sp, (char *) &freg_buffer, 8); |
c906108c SS |
1486 | } |
1487 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
1488 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
1489 | sp = push_word (sp, pc); | |
1490 | sp = push_word (sp, pcspace); | |
1491 | sp = push_word (sp, pc + 4); | |
1492 | sp = push_word (sp, pcspace); | |
1493 | write_register (SP_REGNUM, sp); | |
1494 | } | |
1495 | ||
1496 | static void | |
fba45db2 KB |
1497 | find_dummy_frame_regs (struct frame_info *frame, |
1498 | struct frame_saved_regs *frame_saved_regs) | |
c906108c SS |
1499 | { |
1500 | CORE_ADDR fp = frame->frame; | |
1501 | int i; | |
1502 | ||
53a5351d JM |
1503 | /* The 32bit and 64bit ABIs save RP into different locations. */ |
1504 | if (REGISTER_SIZE == 8) | |
1505 | frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3; | |
1506 | else | |
1507 | frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3; | |
1508 | ||
c906108c | 1509 | frame_saved_regs->regs[FP_REGNUM] = fp; |
c906108c | 1510 | |
53a5351d JM |
1511 | frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE); |
1512 | ||
1513 | for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++) | |
c906108c SS |
1514 | { |
1515 | if (i != FP_REGNUM) | |
1516 | { | |
1517 | frame_saved_regs->regs[i] = fp; | |
53a5351d | 1518 | fp += REGISTER_SIZE; |
c906108c SS |
1519 | } |
1520 | } | |
1521 | ||
53a5351d JM |
1522 | /* This is not necessary or desirable for the 64bit ABI. */ |
1523 | if (REGISTER_SIZE != 8) | |
1524 | fp += 4; | |
1525 | ||
c906108c SS |
1526 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) |
1527 | frame_saved_regs->regs[i] = fp; | |
1528 | ||
1529 | frame_saved_regs->regs[IPSW_REGNUM] = fp; | |
53a5351d JM |
1530 | frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE; |
1531 | frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE; | |
1532 | frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE; | |
1533 | frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE; | |
1534 | frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE; | |
c906108c SS |
1535 | } |
1536 | ||
1537 | void | |
fba45db2 | 1538 | hppa_pop_frame (void) |
c906108c SS |
1539 | { |
1540 | register struct frame_info *frame = get_current_frame (); | |
1541 | register CORE_ADDR fp, npc, target_pc; | |
1542 | register int regnum; | |
1543 | struct frame_saved_regs fsr; | |
1544 | double freg_buffer; | |
1545 | ||
c193f6ac | 1546 | fp = get_frame_base (frame); |
95486978 | 1547 | deprecated_get_frame_saved_regs (frame, &fsr); |
c906108c SS |
1548 | |
1549 | #ifndef NO_PC_SPACE_QUEUE_RESTORE | |
c5aa993b | 1550 | if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ |
c906108c SS |
1551 | restore_pc_queue (&fsr); |
1552 | #endif | |
1553 | ||
1554 | for (regnum = 31; regnum > 0; regnum--) | |
1555 | if (fsr.regs[regnum]) | |
53a5351d JM |
1556 | write_register (regnum, read_memory_integer (fsr.regs[regnum], |
1557 | REGISTER_SIZE)); | |
c906108c | 1558 | |
c5aa993b | 1559 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--) |
c906108c SS |
1560 | if (fsr.regs[regnum]) |
1561 | { | |
c5aa993b | 1562 | read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8); |
73937e03 AC |
1563 | deprecated_write_register_bytes (REGISTER_BYTE (regnum), |
1564 | (char *) &freg_buffer, 8); | |
c906108c SS |
1565 | } |
1566 | ||
1567 | if (fsr.regs[IPSW_REGNUM]) | |
1568 | write_register (IPSW_REGNUM, | |
53a5351d JM |
1569 | read_memory_integer (fsr.regs[IPSW_REGNUM], |
1570 | REGISTER_SIZE)); | |
c906108c SS |
1571 | |
1572 | if (fsr.regs[SAR_REGNUM]) | |
1573 | write_register (SAR_REGNUM, | |
53a5351d JM |
1574 | read_memory_integer (fsr.regs[SAR_REGNUM], |
1575 | REGISTER_SIZE)); | |
c906108c SS |
1576 | |
1577 | /* If the PC was explicitly saved, then just restore it. */ | |
1578 | if (fsr.regs[PCOQ_TAIL_REGNUM]) | |
1579 | { | |
53a5351d JM |
1580 | npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], |
1581 | REGISTER_SIZE); | |
c906108c SS |
1582 | write_register (PCOQ_TAIL_REGNUM, npc); |
1583 | } | |
1584 | /* Else use the value in %rp to set the new PC. */ | |
c5aa993b | 1585 | else |
c906108c SS |
1586 | { |
1587 | npc = read_register (RP_REGNUM); | |
1588 | write_pc (npc); | |
1589 | } | |
1590 | ||
53a5351d | 1591 | write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE)); |
c906108c | 1592 | |
c5aa993b | 1593 | if (fsr.regs[IPSW_REGNUM]) /* call dummy */ |
c906108c SS |
1594 | write_register (SP_REGNUM, fp - 48); |
1595 | else | |
1596 | write_register (SP_REGNUM, fp); | |
1597 | ||
1598 | /* The PC we just restored may be inside a return trampoline. If so | |
1599 | we want to restart the inferior and run it through the trampoline. | |
1600 | ||
1601 | Do this by setting a momentary breakpoint at the location the | |
1602 | trampoline returns to. | |
1603 | ||
1604 | Don't skip through the trampoline if we're popping a dummy frame. */ | |
1605 | target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3; | |
1606 | if (target_pc && !fsr.regs[IPSW_REGNUM]) | |
1607 | { | |
1608 | struct symtab_and_line sal; | |
1609 | struct breakpoint *breakpoint; | |
1610 | struct cleanup *old_chain; | |
1611 | ||
1612 | /* Set up our breakpoint. Set it to be silent as the MI code | |
c5aa993b | 1613 | for "return_command" will print the frame we returned to. */ |
c906108c SS |
1614 | sal = find_pc_line (target_pc, 0); |
1615 | sal.pc = target_pc; | |
516b1f28 | 1616 | breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish); |
c906108c SS |
1617 | breakpoint->silent = 1; |
1618 | ||
1619 | /* So we can clean things up. */ | |
4d6140d9 | 1620 | old_chain = make_cleanup_delete_breakpoint (breakpoint); |
c906108c SS |
1621 | |
1622 | /* Start up the inferior. */ | |
1623 | clear_proceed_status (); | |
1624 | proceed_to_finish = 1; | |
2acceee2 | 1625 | proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0); |
c906108c SS |
1626 | |
1627 | /* Perform our cleanups. */ | |
1628 | do_cleanups (old_chain); | |
1629 | } | |
1630 | flush_cached_frames (); | |
1631 | } | |
1632 | ||
1633 | /* After returning to a dummy on the stack, restore the instruction | |
1634 | queue space registers. */ | |
1635 | ||
1636 | static int | |
fba45db2 | 1637 | restore_pc_queue (struct frame_saved_regs *fsr) |
c906108c SS |
1638 | { |
1639 | CORE_ADDR pc = read_pc (); | |
53a5351d JM |
1640 | CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], |
1641 | TARGET_PTR_BIT / 8); | |
c906108c SS |
1642 | struct target_waitstatus w; |
1643 | int insn_count; | |
1644 | ||
1645 | /* Advance past break instruction in the call dummy. */ | |
1646 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
1647 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
1648 | ||
1649 | /* HPUX doesn't let us set the space registers or the space | |
1650 | registers of the PC queue through ptrace. Boo, hiss. | |
1651 | Conveniently, the call dummy has this sequence of instructions | |
1652 | after the break: | |
c5aa993b JM |
1653 | mtsp r21, sr0 |
1654 | ble,n 0(sr0, r22) | |
1655 | ||
c906108c SS |
1656 | So, load up the registers and single step until we are in the |
1657 | right place. */ | |
1658 | ||
53a5351d JM |
1659 | write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], |
1660 | REGISTER_SIZE)); | |
c906108c SS |
1661 | write_register (22, new_pc); |
1662 | ||
1663 | for (insn_count = 0; insn_count < 3; insn_count++) | |
1664 | { | |
1665 | /* FIXME: What if the inferior gets a signal right now? Want to | |
c5aa993b JM |
1666 | merge this into wait_for_inferior (as a special kind of |
1667 | watchpoint? By setting a breakpoint at the end? Is there | |
1668 | any other choice? Is there *any* way to do this stuff with | |
1669 | ptrace() or some equivalent?). */ | |
c906108c | 1670 | resume (1, 0); |
39f77062 | 1671 | target_wait (inferior_ptid, &w); |
c906108c SS |
1672 | |
1673 | if (w.kind == TARGET_WAITKIND_SIGNALLED) | |
c5aa993b JM |
1674 | { |
1675 | stop_signal = w.value.sig; | |
1676 | terminal_ours_for_output (); | |
1677 | printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", | |
c906108c SS |
1678 | target_signal_to_name (stop_signal), |
1679 | target_signal_to_string (stop_signal)); | |
c5aa993b JM |
1680 | gdb_flush (gdb_stdout); |
1681 | return 0; | |
1682 | } | |
c906108c SS |
1683 | } |
1684 | target_terminal_ours (); | |
1685 | target_fetch_registers (-1); | |
1686 | return 1; | |
1687 | } | |
1688 | ||
c2c6d25f JM |
1689 | |
1690 | #ifdef PA20W_CALLING_CONVENTIONS | |
1691 | ||
53a5351d JM |
1692 | /* This function pushes a stack frame with arguments as part of the |
1693 | inferior function calling mechanism. | |
c906108c | 1694 | |
c2c6d25f JM |
1695 | This is the version for the PA64, in which later arguments appear |
1696 | at higher addresses. (The stack always grows towards higher | |
1697 | addresses.) | |
c906108c | 1698 | |
53a5351d JM |
1699 | We simply allocate the appropriate amount of stack space and put |
1700 | arguments into their proper slots. The call dummy code will copy | |
1701 | arguments into registers as needed by the ABI. | |
c906108c | 1702 | |
c2c6d25f JM |
1703 | This ABI also requires that the caller provide an argument pointer |
1704 | to the callee, so we do that too. */ | |
53a5351d | 1705 | |
c906108c | 1706 | CORE_ADDR |
ea7c478f | 1707 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1708 | int struct_return, CORE_ADDR struct_addr) |
c906108c SS |
1709 | { |
1710 | /* array of arguments' offsets */ | |
c5aa993b | 1711 | int *offset = (int *) alloca (nargs * sizeof (int)); |
53a5351d JM |
1712 | |
1713 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
1714 | word size */ | |
c5aa993b | 1715 | int *lengths = (int *) alloca (nargs * sizeof (int)); |
c906108c | 1716 | |
53a5351d JM |
1717 | /* The value of SP as it was passed into this function after |
1718 | aligning. */ | |
1719 | CORE_ADDR orig_sp = STACK_ALIGN (sp); | |
c906108c | 1720 | |
53a5351d JM |
1721 | /* The number of stack bytes occupied by the current argument. */ |
1722 | int bytes_reserved; | |
1723 | ||
1724 | /* The total number of bytes reserved for the arguments. */ | |
1725 | int cum_bytes_reserved = 0; | |
c906108c | 1726 | |
53a5351d JM |
1727 | /* Similarly, but aligned. */ |
1728 | int cum_bytes_aligned = 0; | |
1729 | int i; | |
c5aa993b | 1730 | |
53a5351d | 1731 | /* Iterate over each argument provided by the user. */ |
c906108c SS |
1732 | for (i = 0; i < nargs; i++) |
1733 | { | |
c2c6d25f JM |
1734 | struct type *arg_type = VALUE_TYPE (args[i]); |
1735 | ||
1736 | /* Integral scalar values smaller than a register are padded on | |
1737 | the left. We do this by promoting them to full-width, | |
1738 | although the ABI says to pad them with garbage. */ | |
1739 | if (is_integral_type (arg_type) | |
1740 | && TYPE_LENGTH (arg_type) < REGISTER_SIZE) | |
1741 | { | |
1742 | args[i] = value_cast ((TYPE_UNSIGNED (arg_type) | |
1743 | ? builtin_type_unsigned_long | |
1744 | : builtin_type_long), | |
1745 | args[i]); | |
1746 | arg_type = VALUE_TYPE (args[i]); | |
1747 | } | |
1748 | ||
1749 | lengths[i] = TYPE_LENGTH (arg_type); | |
c906108c | 1750 | |
53a5351d JM |
1751 | /* Align the size of the argument to the word size for this |
1752 | target. */ | |
1753 | bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE; | |
c906108c | 1754 | |
53a5351d JM |
1755 | offset[i] = cum_bytes_reserved; |
1756 | ||
c2c6d25f JM |
1757 | /* Aggregates larger than eight bytes (the only types larger |
1758 | than eight bytes we have) are aligned on a 16-byte boundary, | |
1759 | possibly padded on the right with garbage. This may leave an | |
1760 | empty word on the stack, and thus an unused register, as per | |
1761 | the ABI. */ | |
1762 | if (bytes_reserved > 8) | |
1763 | { | |
1764 | /* Round up the offset to a multiple of two slots. */ | |
1765 | int new_offset = ((offset[i] + 2*REGISTER_SIZE-1) | |
1766 | & -(2*REGISTER_SIZE)); | |
c906108c | 1767 | |
c2c6d25f JM |
1768 | /* Note the space we've wasted, if any. */ |
1769 | bytes_reserved += new_offset - offset[i]; | |
1770 | offset[i] = new_offset; | |
1771 | } | |
53a5351d | 1772 | |
c2c6d25f JM |
1773 | cum_bytes_reserved += bytes_reserved; |
1774 | } | |
1775 | ||
1776 | /* CUM_BYTES_RESERVED already accounts for all the arguments | |
1777 | passed by the user. However, the ABIs mandate minimum stack space | |
1778 | allocations for outgoing arguments. | |
1779 | ||
1780 | The ABIs also mandate minimum stack alignments which we must | |
1781 | preserve. */ | |
1782 | cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved); | |
1783 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); | |
1784 | ||
1785 | /* Now write each of the args at the proper offset down the stack. */ | |
1786 | for (i = 0; i < nargs; i++) | |
1787 | write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
1788 | ||
1789 | /* If a structure has to be returned, set up register 28 to hold its | |
1790 | address */ | |
1791 | if (struct_return) | |
1792 | write_register (28, struct_addr); | |
1793 | ||
1794 | /* For the PA64 we must pass a pointer to the outgoing argument list. | |
1795 | The ABI mandates that the pointer should point to the first byte of | |
1796 | storage beyond the register flushback area. | |
1797 | ||
1798 | However, the call dummy expects the outgoing argument pointer to | |
1799 | be passed in register %r4. */ | |
1800 | write_register (4, orig_sp + REG_PARM_STACK_SPACE); | |
1801 | ||
1802 | /* ?!? This needs further work. We need to set up the global data | |
1803 | pointer for this procedure. This assumes the same global pointer | |
1804 | for every procedure. The call dummy expects the dp value to | |
1805 | be passed in register %r6. */ | |
1806 | write_register (6, read_register (27)); | |
1807 | ||
1808 | /* The stack will have 64 bytes of additional space for a frame marker. */ | |
1809 | return sp + 64; | |
1810 | } | |
1811 | ||
1812 | #else | |
1813 | ||
1814 | /* This function pushes a stack frame with arguments as part of the | |
1815 | inferior function calling mechanism. | |
1816 | ||
1817 | This is the version of the function for the 32-bit PA machines, in | |
1818 | which later arguments appear at lower addresses. (The stack always | |
1819 | grows towards higher addresses.) | |
1820 | ||
1821 | We simply allocate the appropriate amount of stack space and put | |
1822 | arguments into their proper slots. The call dummy code will copy | |
1823 | arguments into registers as needed by the ABI. */ | |
1824 | ||
1825 | CORE_ADDR | |
ea7c478f | 1826 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1827 | int struct_return, CORE_ADDR struct_addr) |
c2c6d25f JM |
1828 | { |
1829 | /* array of arguments' offsets */ | |
1830 | int *offset = (int *) alloca (nargs * sizeof (int)); | |
1831 | ||
1832 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
1833 | word size */ | |
1834 | int *lengths = (int *) alloca (nargs * sizeof (int)); | |
1835 | ||
1836 | /* The number of stack bytes occupied by the current argument. */ | |
1837 | int bytes_reserved; | |
1838 | ||
1839 | /* The total number of bytes reserved for the arguments. */ | |
1840 | int cum_bytes_reserved = 0; | |
1841 | ||
1842 | /* Similarly, but aligned. */ | |
1843 | int cum_bytes_aligned = 0; | |
1844 | int i; | |
1845 | ||
1846 | /* Iterate over each argument provided by the user. */ | |
1847 | for (i = 0; i < nargs; i++) | |
1848 | { | |
1849 | lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i])); | |
1850 | ||
1851 | /* Align the size of the argument to the word size for this | |
1852 | target. */ | |
1853 | bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE; | |
1854 | ||
b6649e88 AC |
1855 | offset[i] = (cum_bytes_reserved |
1856 | + (lengths[i] > 4 ? bytes_reserved : lengths[i])); | |
c2c6d25f JM |
1857 | |
1858 | /* If the argument is a double word argument, then it needs to be | |
1859 | double word aligned. */ | |
53a5351d | 1860 | if ((bytes_reserved == 2 * REGISTER_SIZE) |
c2c6d25f | 1861 | && (offset[i] % 2 * REGISTER_SIZE)) |
c5aa993b JM |
1862 | { |
1863 | int new_offset = 0; | |
53a5351d JM |
1864 | /* BYTES_RESERVED is already aligned to the word, so we put |
1865 | the argument at one word more down the stack. | |
1866 | ||
1867 | This will leave one empty word on the stack, and one unused | |
1868 | register as mandated by the ABI. */ | |
1869 | new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1) | |
1870 | & -(2 * REGISTER_SIZE)); | |
1871 | ||
1872 | if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE) | |
c5aa993b | 1873 | { |
53a5351d JM |
1874 | bytes_reserved += REGISTER_SIZE; |
1875 | offset[i] += REGISTER_SIZE; | |
c5aa993b JM |
1876 | } |
1877 | } | |
c906108c SS |
1878 | |
1879 | cum_bytes_reserved += bytes_reserved; | |
1880 | ||
1881 | } | |
1882 | ||
c2c6d25f JM |
1883 | /* CUM_BYTES_RESERVED already accounts for all the arguments passed |
1884 | by the user. However, the ABI mandates minimum stack space | |
53a5351d JM |
1885 | allocations for outgoing arguments. |
1886 | ||
c2c6d25f | 1887 | The ABI also mandates minimum stack alignments which we must |
53a5351d | 1888 | preserve. */ |
c906108c | 1889 | cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved); |
53a5351d JM |
1890 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); |
1891 | ||
1892 | /* Now write each of the args at the proper offset down the stack. | |
53a5351d JM |
1893 | ?!? We need to promote values to a full register instead of skipping |
1894 | words in the stack. */ | |
c906108c SS |
1895 | for (i = 0; i < nargs; i++) |
1896 | write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
c906108c | 1897 | |
53a5351d JM |
1898 | /* If a structure has to be returned, set up register 28 to hold its |
1899 | address */ | |
c906108c SS |
1900 | if (struct_return) |
1901 | write_register (28, struct_addr); | |
1902 | ||
53a5351d | 1903 | /* The stack will have 32 bytes of additional space for a frame marker. */ |
c906108c SS |
1904 | return sp + 32; |
1905 | } | |
1906 | ||
c2c6d25f | 1907 | #endif |
c906108c SS |
1908 | |
1909 | /* elz: this function returns a value which is built looking at the given address. | |
1910 | It is called from call_function_by_hand, in case we need to return a | |
1911 | value which is larger than 64 bits, and it is stored in the stack rather than | |
1912 | in the registers r28 and r29 or fr4. | |
1913 | This function does the same stuff as value_being_returned in values.c, but | |
1914 | gets the value from the stack rather than from the buffer where all the | |
1915 | registers were saved when the function called completed. */ | |
ea7c478f | 1916 | struct value * |
fba45db2 | 1917 | hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr) |
c906108c | 1918 | { |
ea7c478f | 1919 | register struct value *val; |
c906108c SS |
1920 | |
1921 | val = allocate_value (valtype); | |
1922 | CHECK_TYPEDEF (valtype); | |
c5aa993b | 1923 | target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype)); |
c906108c SS |
1924 | |
1925 | return val; | |
1926 | } | |
1927 | ||
1928 | ||
1929 | ||
1930 | /* elz: Used to lookup a symbol in the shared libraries. | |
c5aa993b JM |
1931 | This function calls shl_findsym, indirectly through a |
1932 | call to __d_shl_get. __d_shl_get is in end.c, which is always | |
1933 | linked in by the hp compilers/linkers. | |
1934 | The call to shl_findsym cannot be made directly because it needs | |
1935 | to be active in target address space. | |
1936 | inputs: - minimal symbol pointer for the function we want to look up | |
1937 | - address in target space of the descriptor for the library | |
1938 | where we want to look the symbol up. | |
1939 | This address is retrieved using the | |
1940 | som_solib_get_solib_by_pc function (somsolib.c). | |
1941 | output: - real address in the library of the function. | |
1942 | note: the handle can be null, in which case shl_findsym will look for | |
1943 | the symbol in all the loaded shared libraries. | |
1944 | files to look at if you need reference on this stuff: | |
1945 | dld.c, dld_shl_findsym.c | |
1946 | end.c | |
1947 | man entry for shl_findsym */ | |
c906108c SS |
1948 | |
1949 | CORE_ADDR | |
fba45db2 | 1950 | find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle) |
c906108c | 1951 | { |
c5aa993b JM |
1952 | struct symbol *get_sym, *symbol2; |
1953 | struct minimal_symbol *buff_minsym, *msymbol; | |
1954 | struct type *ftype; | |
ea7c478f AC |
1955 | struct value **args; |
1956 | struct value *funcval; | |
1957 | struct value *val; | |
c5aa993b JM |
1958 | |
1959 | int x, namelen, err_value, tmp = -1; | |
1960 | CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr; | |
1961 | CORE_ADDR stub_addr; | |
1962 | ||
1963 | ||
ea7c478f | 1964 | args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */ |
c5aa993b JM |
1965 | funcval = find_function_in_inferior ("__d_shl_get"); |
1966 | get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL); | |
1967 | buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL); | |
1968 | msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL); | |
1969 | symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL); | |
1970 | endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym); | |
22abf04a | 1971 | namelen = strlen (DEPRECATED_SYMBOL_NAME (function)); |
c5aa993b JM |
1972 | value_return_addr = endo_buff_addr + namelen; |
1973 | ftype = check_typedef (SYMBOL_TYPE (get_sym)); | |
1974 | ||
1975 | /* do alignment */ | |
1976 | if ((x = value_return_addr % 64) != 0) | |
1977 | value_return_addr = value_return_addr + 64 - x; | |
1978 | ||
1979 | errno_return_addr = value_return_addr + 64; | |
1980 | ||
1981 | ||
1982 | /* set up stuff needed by __d_shl_get in buffer in end.o */ | |
1983 | ||
22abf04a | 1984 | target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen); |
c5aa993b JM |
1985 | |
1986 | target_write_memory (value_return_addr, (char *) &tmp, 4); | |
1987 | ||
1988 | target_write_memory (errno_return_addr, (char *) &tmp, 4); | |
1989 | ||
1990 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
1991 | (char *) &handle, 4); | |
1992 | ||
1993 | /* now prepare the arguments for the call */ | |
1994 | ||
1995 | args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12); | |
4478b372 JB |
1996 | args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol)); |
1997 | args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr); | |
c5aa993b | 1998 | args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE); |
4478b372 JB |
1999 | args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr); |
2000 | args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr); | |
c5aa993b JM |
2001 | |
2002 | /* now call the function */ | |
2003 | ||
2004 | val = call_function_by_hand (funcval, 6, args); | |
2005 | ||
2006 | /* now get the results */ | |
2007 | ||
2008 | target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value)); | |
2009 | ||
2010 | target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr)); | |
2011 | if (stub_addr <= 0) | |
104c1213 | 2012 | error ("call to __d_shl_get failed, error code is %d", err_value); |
c5aa993b JM |
2013 | |
2014 | return (stub_addr); | |
c906108c SS |
2015 | } |
2016 | ||
c5aa993b | 2017 | /* Cover routine for find_stub_with_shl_get to pass to catch_errors */ |
a0b3c4fd | 2018 | static int |
4efb68b1 | 2019 | cover_find_stub_with_shl_get (void *args_untyped) |
c906108c | 2020 | { |
a0b3c4fd JM |
2021 | args_for_find_stub *args = args_untyped; |
2022 | args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle); | |
2023 | return 0; | |
c906108c SS |
2024 | } |
2025 | ||
c906108c SS |
2026 | /* Insert the specified number of args and function address |
2027 | into a call sequence of the above form stored at DUMMYNAME. | |
2028 | ||
2029 | On the hppa we need to call the stack dummy through $$dyncall. | |
2030 | Therefore our version of FIX_CALL_DUMMY takes an extra argument, | |
2031 | real_pc, which is the location where gdb should start up the | |
cce74817 JM |
2032 | inferior to do the function call. |
2033 | ||
2034 | This has to work across several versions of hpux, bsd, osf1. It has to | |
2035 | work regardless of what compiler was used to build the inferior program. | |
2036 | It should work regardless of whether or not end.o is available. It has | |
2037 | to work even if gdb can not call into the dynamic loader in the inferior | |
2038 | to query it for symbol names and addresses. | |
2039 | ||
2040 | Yes, all those cases should work. Luckily code exists to handle most | |
2041 | of them. The complexity is in selecting exactly what scheme should | |
2042 | be used to perform the inferior call. | |
2043 | ||
2044 | At the current time this routine is known not to handle cases where | |
2045 | the program was linked with HP's compiler without including end.o. | |
2046 | ||
2047 | Please contact Jeff Law ([email protected]) before changing this code. */ | |
c906108c SS |
2048 | |
2049 | CORE_ADDR | |
fba45db2 | 2050 | hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, |
ea7c478f | 2051 | struct value **args, struct type *type, int gcc_p) |
c906108c SS |
2052 | { |
2053 | CORE_ADDR dyncall_addr; | |
2054 | struct minimal_symbol *msymbol; | |
2055 | struct minimal_symbol *trampoline; | |
2056 | int flags = read_register (FLAGS_REGNUM); | |
cce74817 JM |
2057 | struct unwind_table_entry *u = NULL; |
2058 | CORE_ADDR new_stub = 0; | |
2059 | CORE_ADDR solib_handle = 0; | |
2060 | ||
2061 | /* Nonzero if we will use GCC's PLT call routine. This routine must be | |
c2c6d25f JM |
2062 | passed an import stub, not a PLABEL. It is also necessary to set %r19 |
2063 | (the PIC register) before performing the call. | |
c906108c | 2064 | |
cce74817 JM |
2065 | If zero, then we are using __d_plt_call (HP's PLT call routine) or we |
2066 | are calling the target directly. When using __d_plt_call we want to | |
2067 | use a PLABEL instead of an import stub. */ | |
2068 | int using_gcc_plt_call = 1; | |
2069 | ||
53a5351d JM |
2070 | #ifdef GDB_TARGET_IS_HPPA_20W |
2071 | /* We currently use completely different code for the PA2.0W inferior | |
2072 | function call sequences. This needs to be cleaned up. */ | |
2073 | { | |
2074 | CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5; | |
2075 | struct target_waitstatus w; | |
2076 | int inst1, inst2; | |
2077 | char buf[4]; | |
2078 | int status; | |
2079 | struct objfile *objfile; | |
2080 | ||
2081 | /* We can not modify the PC space queues directly, so we start | |
2082 | up the inferior and execute a couple instructions to set the | |
2083 | space queues so that they point to the call dummy in the stack. */ | |
2084 | pcsqh = read_register (PCSQ_HEAD_REGNUM); | |
2085 | sr5 = read_register (SR5_REGNUM); | |
2086 | if (1) | |
2087 | { | |
2088 | pcoqh = read_register (PCOQ_HEAD_REGNUM); | |
2089 | pcoqt = read_register (PCOQ_TAIL_REGNUM); | |
2090 | if (target_read_memory (pcoqh, buf, 4) != 0) | |
2091 | error ("Couldn't modify space queue\n"); | |
2092 | inst1 = extract_unsigned_integer (buf, 4); | |
2093 | ||
2094 | if (target_read_memory (pcoqt, buf, 4) != 0) | |
2095 | error ("Couldn't modify space queue\n"); | |
2096 | inst2 = extract_unsigned_integer (buf, 4); | |
2097 | ||
2098 | /* BVE (r1) */ | |
2099 | *((int *) buf) = 0xe820d000; | |
2100 | if (target_write_memory (pcoqh, buf, 4) != 0) | |
2101 | error ("Couldn't modify space queue\n"); | |
2102 | ||
2103 | /* NOP */ | |
2104 | *((int *) buf) = 0x08000240; | |
2105 | if (target_write_memory (pcoqt, buf, 4) != 0) | |
2106 | { | |
2107 | *((int *) buf) = inst1; | |
2108 | target_write_memory (pcoqh, buf, 4); | |
2109 | error ("Couldn't modify space queue\n"); | |
2110 | } | |
2111 | ||
2112 | write_register (1, pc); | |
2113 | ||
2114 | /* Single step twice, the BVE instruction will set the space queue | |
2115 | such that it points to the PC value written immediately above | |
2116 | (ie the call dummy). */ | |
2117 | resume (1, 0); | |
39f77062 | 2118 | target_wait (inferior_ptid, &w); |
53a5351d | 2119 | resume (1, 0); |
39f77062 | 2120 | target_wait (inferior_ptid, &w); |
53a5351d JM |
2121 | |
2122 | /* Restore the two instructions at the old PC locations. */ | |
2123 | *((int *) buf) = inst1; | |
2124 | target_write_memory (pcoqh, buf, 4); | |
2125 | *((int *) buf) = inst2; | |
2126 | target_write_memory (pcoqt, buf, 4); | |
2127 | } | |
2128 | ||
2129 | /* The call dummy wants the ultimate destination address initially | |
2130 | in register %r5. */ | |
2131 | write_register (5, fun); | |
2132 | ||
2133 | /* We need to see if this objfile has a different DP value than our | |
c2c6d25f | 2134 | own (it could be a shared library for example). */ |
53a5351d JM |
2135 | ALL_OBJFILES (objfile) |
2136 | { | |
2137 | struct obj_section *s; | |
2138 | obj_private_data_t *obj_private; | |
2139 | ||
2140 | /* See if FUN is in any section within this shared library. */ | |
2141 | for (s = objfile->sections; s < objfile->sections_end; s++) | |
2142 | if (s->addr <= fun && fun < s->endaddr) | |
2143 | break; | |
2144 | ||
2145 | if (s >= objfile->sections_end) | |
2146 | continue; | |
2147 | ||
2148 | obj_private = (obj_private_data_t *) objfile->obj_private; | |
2149 | ||
2150 | /* The DP value may be different for each objfile. But within an | |
2151 | objfile each function uses the same dp value. Thus we do not need | |
2152 | to grope around the opd section looking for dp values. | |
2153 | ||
2154 | ?!? This is not strictly correct since we may be in a shared library | |
2155 | and want to call back into the main program. To make that case | |
2156 | work correctly we need to set obj_private->dp for the main program's | |
2157 | objfile, then remove this conditional. */ | |
2158 | if (obj_private->dp) | |
2159 | write_register (27, obj_private->dp); | |
2160 | break; | |
2161 | } | |
2162 | return pc; | |
2163 | } | |
2164 | #endif | |
2165 | ||
2166 | #ifndef GDB_TARGET_IS_HPPA_20W | |
cce74817 | 2167 | /* Prefer __gcc_plt_call over the HP supplied routine because |
c5aa993b | 2168 | __gcc_plt_call works for any number of arguments. */ |
c906108c | 2169 | trampoline = NULL; |
cce74817 JM |
2170 | if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL) |
2171 | using_gcc_plt_call = 0; | |
2172 | ||
c906108c SS |
2173 | msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL); |
2174 | if (msymbol == NULL) | |
cce74817 | 2175 | error ("Can't find an address for $$dyncall trampoline"); |
c906108c SS |
2176 | |
2177 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2178 | ||
2179 | /* FUN could be a procedure label, in which case we have to get | |
cce74817 JM |
2180 | its real address and the value of its GOT/DP if we plan to |
2181 | call the routine via gcc_plt_call. */ | |
2182 | if ((fun & 0x2) && using_gcc_plt_call) | |
c906108c SS |
2183 | { |
2184 | /* Get the GOT/DP value for the target function. It's | |
c5aa993b JM |
2185 | at *(fun+4). Note the call dummy is *NOT* allowed to |
2186 | trash %r19 before calling the target function. */ | |
53a5351d JM |
2187 | write_register (19, read_memory_integer ((fun & ~0x3) + 4, |
2188 | REGISTER_SIZE)); | |
c906108c SS |
2189 | |
2190 | /* Now get the real address for the function we are calling, it's | |
c5aa993b | 2191 | at *fun. */ |
53a5351d JM |
2192 | fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, |
2193 | TARGET_PTR_BIT / 8); | |
c906108c SS |
2194 | } |
2195 | else | |
2196 | { | |
2197 | ||
2198 | #ifndef GDB_TARGET_IS_PA_ELF | |
cce74817 | 2199 | /* FUN could be an export stub, the real address of a function, or |
c5aa993b JM |
2200 | a PLABEL. When using gcc's PLT call routine we must call an import |
2201 | stub rather than the export stub or real function for lazy binding | |
2202 | to work correctly | |
cce74817 | 2203 | |
39f77062 | 2204 | If we are using the gcc PLT call routine, then we need to |
c5aa993b | 2205 | get the import stub for the target function. */ |
cce74817 | 2206 | if (using_gcc_plt_call && som_solib_get_got_by_pc (fun)) |
c906108c SS |
2207 | { |
2208 | struct objfile *objfile; | |
2209 | struct minimal_symbol *funsymbol, *stub_symbol; | |
2210 | CORE_ADDR newfun = 0; | |
2211 | ||
2212 | funsymbol = lookup_minimal_symbol_by_pc (fun); | |
2213 | if (!funsymbol) | |
4ce44c66 | 2214 | error ("Unable to find minimal symbol for target function.\n"); |
c906108c SS |
2215 | |
2216 | /* Search all the object files for an import symbol with the | |
2217 | right name. */ | |
2218 | ALL_OBJFILES (objfile) | |
c5aa993b JM |
2219 | { |
2220 | stub_symbol | |
2221 | = lookup_minimal_symbol_solib_trampoline | |
22abf04a | 2222 | (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile); |
c5aa993b JM |
2223 | |
2224 | if (!stub_symbol) | |
22abf04a | 2225 | stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol), |
c5aa993b JM |
2226 | NULL, objfile); |
2227 | ||
2228 | /* Found a symbol with the right name. */ | |
2229 | if (stub_symbol) | |
2230 | { | |
2231 | struct unwind_table_entry *u; | |
2232 | /* It must be a shared library trampoline. */ | |
2233 | if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline) | |
2234 | continue; | |
2235 | ||
2236 | /* It must also be an import stub. */ | |
2237 | u = find_unwind_entry (SYMBOL_VALUE (stub_symbol)); | |
6426a772 JM |
2238 | if (u == NULL |
2239 | || (u->stub_unwind.stub_type != IMPORT | |
2240 | #ifdef GDB_NATIVE_HPUX_11 | |
2241 | /* Sigh. The hpux 10.20 dynamic linker will blow | |
2242 | chunks if we perform a call to an unbound function | |
2243 | via the IMPORT_SHLIB stub. The hpux 11.00 dynamic | |
2244 | linker will blow chunks if we do not call the | |
2245 | unbound function via the IMPORT_SHLIB stub. | |
2246 | ||
2247 | We currently have no way to select bevahior on just | |
2248 | the target. However, we only support HPUX/SOM in | |
2249 | native mode. So we conditinalize on a native | |
2250 | #ifdef. Ugly. Ugly. Ugly */ | |
2251 | && u->stub_unwind.stub_type != IMPORT_SHLIB | |
2252 | #endif | |
2253 | )) | |
c5aa993b JM |
2254 | continue; |
2255 | ||
2256 | /* OK. Looks like the correct import stub. */ | |
2257 | newfun = SYMBOL_VALUE (stub_symbol); | |
2258 | fun = newfun; | |
6426a772 JM |
2259 | |
2260 | /* If we found an IMPORT stub, then we want to stop | |
2261 | searching now. If we found an IMPORT_SHLIB, we want | |
2262 | to continue the search in the hopes that we will find | |
2263 | an IMPORT stub. */ | |
2264 | if (u->stub_unwind.stub_type == IMPORT) | |
2265 | break; | |
c5aa993b JM |
2266 | } |
2267 | } | |
cce74817 JM |
2268 | |
2269 | /* Ouch. We did not find an import stub. Make an attempt to | |
2270 | do the right thing instead of just croaking. Most of the | |
2271 | time this will actually work. */ | |
c906108c SS |
2272 | if (newfun == 0) |
2273 | write_register (19, som_solib_get_got_by_pc (fun)); | |
cce74817 JM |
2274 | |
2275 | u = find_unwind_entry (fun); | |
c5aa993b | 2276 | if (u |
cce74817 JM |
2277 | && (u->stub_unwind.stub_type == IMPORT |
2278 | || u->stub_unwind.stub_type == IMPORT_SHLIB)) | |
2279 | trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL); | |
2280 | ||
2281 | /* If we found the import stub in the shared library, then we have | |
2282 | to set %r19 before we call the stub. */ | |
2283 | if (u && u->stub_unwind.stub_type == IMPORT_SHLIB) | |
2284 | write_register (19, som_solib_get_got_by_pc (fun)); | |
c906108c | 2285 | } |
c906108c SS |
2286 | #endif |
2287 | } | |
2288 | ||
cce74817 JM |
2289 | /* If we are calling into another load module then have sr4export call the |
2290 | magic __d_plt_call routine which is linked in from end.o. | |
c906108c | 2291 | |
cce74817 JM |
2292 | You can't use _sr4export to make the call as the value in sp-24 will get |
2293 | fried and you end up returning to the wrong location. You can't call the | |
2294 | target as the code to bind the PLT entry to a function can't return to a | |
2295 | stack address. | |
2296 | ||
2297 | Also, query the dynamic linker in the inferior to provide a suitable | |
2298 | PLABEL for the target function. */ | |
c5aa993b | 2299 | if (!using_gcc_plt_call) |
c906108c SS |
2300 | { |
2301 | CORE_ADDR new_fun; | |
2302 | ||
cce74817 | 2303 | /* Get a handle for the shared library containing FUN. Given the |
c5aa993b | 2304 | handle we can query the shared library for a PLABEL. */ |
cce74817 | 2305 | solib_handle = som_solib_get_solib_by_pc (fun); |
c906108c | 2306 | |
cce74817 | 2307 | if (solib_handle) |
c906108c | 2308 | { |
cce74817 | 2309 | struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun); |
c906108c | 2310 | |
cce74817 JM |
2311 | trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL); |
2312 | ||
2313 | if (trampoline == NULL) | |
2314 | { | |
2315 | error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc."); | |
2316 | } | |
2317 | ||
2318 | /* This is where sr4export will jump to. */ | |
2319 | new_fun = SYMBOL_VALUE_ADDRESS (trampoline); | |
2320 | ||
2321 | /* If the function is in a shared library, then call __d_shl_get to | |
2322 | get a PLABEL for the target function. */ | |
2323 | new_stub = find_stub_with_shl_get (fmsymbol, solib_handle); | |
2324 | ||
c5aa993b | 2325 | if (new_stub == 0) |
22abf04a | 2326 | error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol)); |
c906108c SS |
2327 | |
2328 | /* We have to store the address of the stub in __shlib_funcptr. */ | |
cce74817 | 2329 | msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL, |
c5aa993b | 2330 | (struct objfile *) NULL); |
c906108c | 2331 | |
cce74817 JM |
2332 | if (msymbol == NULL) |
2333 | error ("Can't find an address for __shlib_funcptr"); | |
2334 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
c5aa993b | 2335 | (char *) &new_stub, 4); |
c906108c SS |
2336 | |
2337 | /* We want sr4export to call __d_plt_call, so we claim it is | |
2338 | the final target. Clear trampoline. */ | |
cce74817 JM |
2339 | fun = new_fun; |
2340 | trampoline = NULL; | |
c906108c SS |
2341 | } |
2342 | } | |
2343 | ||
2344 | /* Store upper 21 bits of function address into ldil. fun will either be | |
2345 | the final target (most cases) or __d_plt_call when calling into a shared | |
2346 | library and __gcc_plt_call is not available. */ | |
2347 | store_unsigned_integer | |
2348 | (&dummy[FUNC_LDIL_OFFSET], | |
2349 | INSTRUCTION_SIZE, | |
2350 | deposit_21 (fun >> 11, | |
2351 | extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET], | |
2352 | INSTRUCTION_SIZE))); | |
2353 | ||
2354 | /* Store lower 11 bits of function address into ldo */ | |
2355 | store_unsigned_integer | |
2356 | (&dummy[FUNC_LDO_OFFSET], | |
2357 | INSTRUCTION_SIZE, | |
2358 | deposit_14 (fun & MASK_11, | |
2359 | extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET], | |
2360 | INSTRUCTION_SIZE))); | |
2361 | #ifdef SR4EXPORT_LDIL_OFFSET | |
2362 | ||
2363 | { | |
2364 | CORE_ADDR trampoline_addr; | |
2365 | ||
2366 | /* We may still need sr4export's address too. */ | |
2367 | ||
2368 | if (trampoline == NULL) | |
2369 | { | |
2370 | msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
2371 | if (msymbol == NULL) | |
cce74817 | 2372 | error ("Can't find an address for _sr4export trampoline"); |
c906108c SS |
2373 | |
2374 | trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2375 | } | |
2376 | else | |
2377 | trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline); | |
2378 | ||
2379 | ||
2380 | /* Store upper 21 bits of trampoline's address into ldil */ | |
2381 | store_unsigned_integer | |
2382 | (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2383 | INSTRUCTION_SIZE, | |
2384 | deposit_21 (trampoline_addr >> 11, | |
2385 | extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2386 | INSTRUCTION_SIZE))); | |
2387 | ||
2388 | /* Store lower 11 bits of trampoline's address into ldo */ | |
2389 | store_unsigned_integer | |
2390 | (&dummy[SR4EXPORT_LDO_OFFSET], | |
2391 | INSTRUCTION_SIZE, | |
2392 | deposit_14 (trampoline_addr & MASK_11, | |
2393 | extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET], | |
2394 | INSTRUCTION_SIZE))); | |
2395 | } | |
2396 | #endif | |
2397 | ||
2398 | write_register (22, pc); | |
2399 | ||
2400 | /* If we are in a syscall, then we should call the stack dummy | |
2401 | directly. $$dyncall is not needed as the kernel sets up the | |
2402 | space id registers properly based on the value in %r31. In | |
2403 | fact calling $$dyncall will not work because the value in %r22 | |
2404 | will be clobbered on the syscall exit path. | |
2405 | ||
2406 | Similarly if the current PC is in a shared library. Note however, | |
2407 | this scheme won't work if the shared library isn't mapped into | |
2408 | the same space as the stack. */ | |
2409 | if (flags & 2) | |
2410 | return pc; | |
2411 | #ifndef GDB_TARGET_IS_PA_ELF | |
60383d10 | 2412 | else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid))) |
c906108c SS |
2413 | return pc; |
2414 | #endif | |
2415 | else | |
2416 | return dyncall_addr; | |
53a5351d | 2417 | #endif |
c906108c SS |
2418 | } |
2419 | ||
c906108c SS |
2420 | /* If the pid is in a syscall, then the FP register is not readable. |
2421 | We'll return zero in that case, rather than attempting to read it | |
2422 | and cause a warning. */ | |
60383d10 | 2423 | |
c906108c | 2424 | CORE_ADDR |
60383d10 | 2425 | hppa_read_fp (int pid) |
c906108c SS |
2426 | { |
2427 | int flags = read_register (FLAGS_REGNUM); | |
2428 | ||
c5aa993b JM |
2429 | if (flags & 2) |
2430 | { | |
2431 | return (CORE_ADDR) 0; | |
2432 | } | |
c906108c SS |
2433 | |
2434 | /* This is the only site that may directly read_register () the FP | |
2435 | register. All others must use TARGET_READ_FP (). */ | |
2436 | return read_register (FP_REGNUM); | |
2437 | } | |
2438 | ||
60383d10 JB |
2439 | CORE_ADDR |
2440 | hppa_target_read_fp (void) | |
2441 | { | |
2442 | return hppa_read_fp (PIDGET (inferior_ptid)); | |
2443 | } | |
c906108c SS |
2444 | |
2445 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege | |
2446 | bits. */ | |
2447 | ||
2448 | CORE_ADDR | |
60383d10 | 2449 | hppa_target_read_pc (ptid_t ptid) |
c906108c | 2450 | { |
39f77062 | 2451 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
2452 | |
2453 | /* The following test does not belong here. It is OS-specific, and belongs | |
2454 | in native code. */ | |
2455 | /* Test SS_INSYSCALL */ | |
2456 | if (flags & 2) | |
39f77062 | 2457 | return read_register_pid (31, ptid) & ~0x3; |
c906108c | 2458 | |
39f77062 | 2459 | return read_register_pid (PC_REGNUM, ptid) & ~0x3; |
c906108c SS |
2460 | } |
2461 | ||
2462 | /* Write out the PC. If currently in a syscall, then also write the new | |
2463 | PC value into %r31. */ | |
2464 | ||
2465 | void | |
60383d10 | 2466 | hppa_target_write_pc (CORE_ADDR v, ptid_t ptid) |
c906108c | 2467 | { |
39f77062 | 2468 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
2469 | |
2470 | /* The following test does not belong here. It is OS-specific, and belongs | |
2471 | in native code. */ | |
2472 | /* If in a syscall, then set %r31. Also make sure to get the | |
2473 | privilege bits set correctly. */ | |
2474 | /* Test SS_INSYSCALL */ | |
2475 | if (flags & 2) | |
39f77062 | 2476 | write_register_pid (31, v | 0x3, ptid); |
c906108c | 2477 | |
39f77062 KB |
2478 | write_register_pid (PC_REGNUM, v, ptid); |
2479 | write_register_pid (NPC_REGNUM, v + 4, ptid); | |
c906108c SS |
2480 | } |
2481 | ||
2482 | /* return the alignment of a type in bytes. Structures have the maximum | |
2483 | alignment required by their fields. */ | |
2484 | ||
2485 | static int | |
fba45db2 | 2486 | hppa_alignof (struct type *type) |
c906108c SS |
2487 | { |
2488 | int max_align, align, i; | |
2489 | CHECK_TYPEDEF (type); | |
2490 | switch (TYPE_CODE (type)) | |
2491 | { | |
2492 | case TYPE_CODE_PTR: | |
2493 | case TYPE_CODE_INT: | |
2494 | case TYPE_CODE_FLT: | |
2495 | return TYPE_LENGTH (type); | |
2496 | case TYPE_CODE_ARRAY: | |
2497 | return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); | |
2498 | case TYPE_CODE_STRUCT: | |
2499 | case TYPE_CODE_UNION: | |
2500 | max_align = 1; | |
2501 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
2502 | { | |
2503 | /* Bit fields have no real alignment. */ | |
2504 | /* if (!TYPE_FIELD_BITPOS (type, i)) */ | |
c5aa993b | 2505 | if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */ |
c906108c SS |
2506 | { |
2507 | align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); | |
2508 | max_align = max (max_align, align); | |
2509 | } | |
2510 | } | |
2511 | return max_align; | |
2512 | default: | |
2513 | return 4; | |
2514 | } | |
2515 | } | |
2516 | ||
2517 | /* Print the register regnum, or all registers if regnum is -1 */ | |
2518 | ||
2519 | void | |
fba45db2 | 2520 | pa_do_registers_info (int regnum, int fpregs) |
c906108c | 2521 | { |
c5aa993b | 2522 | char raw_regs[REGISTER_BYTES]; |
c906108c SS |
2523 | int i; |
2524 | ||
2525 | /* Make a copy of gdb's save area (may cause actual | |
2526 | reads from the target). */ | |
2527 | for (i = 0; i < NUM_REGS; i++) | |
6e7f8b9c | 2528 | frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i)); |
c906108c SS |
2529 | |
2530 | if (regnum == -1) | |
2531 | pa_print_registers (raw_regs, regnum, fpregs); | |
c5aa993b JM |
2532 | else if (regnum < FP4_REGNUM) |
2533 | { | |
2534 | long reg_val[2]; | |
2535 | ||
2536 | /* Why is the value not passed through "extract_signed_integer" | |
2537 | as in "pa_print_registers" below? */ | |
2538 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
2539 | ||
2540 | if (!is_pa_2) | |
2541 | { | |
ce414844 | 2542 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2543 | } |
c906108c | 2544 | else |
c5aa993b JM |
2545 | { |
2546 | /* Fancy % formats to prevent leading zeros. */ | |
2547 | if (reg_val[0] == 0) | |
ce414844 | 2548 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2549 | else |
ce414844 | 2550 | printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum), |
c5aa993b JM |
2551 | reg_val[0], reg_val[1]); |
2552 | } | |
c906108c | 2553 | } |
c906108c | 2554 | else |
c5aa993b JM |
2555 | /* Note that real floating point values only start at |
2556 | FP4_REGNUM. FP0 and up are just status and error | |
2557 | registers, which have integral (bit) values. */ | |
c906108c SS |
2558 | pa_print_fp_reg (regnum); |
2559 | } | |
2560 | ||
2561 | /********** new function ********************/ | |
2562 | void | |
fba45db2 KB |
2563 | pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream, |
2564 | enum precision_type precision) | |
c906108c | 2565 | { |
c5aa993b | 2566 | char raw_regs[REGISTER_BYTES]; |
c906108c SS |
2567 | int i; |
2568 | ||
2569 | /* Make a copy of gdb's save area (may cause actual | |
c5aa993b | 2570 | reads from the target). */ |
c906108c | 2571 | for (i = 0; i < NUM_REGS; i++) |
6e7f8b9c | 2572 | frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i)); |
c906108c SS |
2573 | |
2574 | if (regnum == -1) | |
2575 | pa_strcat_registers (raw_regs, regnum, fpregs, stream); | |
2576 | ||
c5aa993b JM |
2577 | else if (regnum < FP4_REGNUM) |
2578 | { | |
2579 | long reg_val[2]; | |
2580 | ||
2581 | /* Why is the value not passed through "extract_signed_integer" | |
2582 | as in "pa_print_registers" below? */ | |
2583 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
c906108c | 2584 | |
c5aa993b JM |
2585 | if (!is_pa_2) |
2586 | { | |
ce414844 | 2587 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2588 | } |
c906108c | 2589 | else |
c5aa993b JM |
2590 | { |
2591 | /* Fancy % formats to prevent leading zeros. */ | |
2592 | if (reg_val[0] == 0) | |
ce414844 | 2593 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), |
c5aa993b JM |
2594 | reg_val[1]); |
2595 | else | |
ce414844 | 2596 | fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum), |
c5aa993b JM |
2597 | reg_val[0], reg_val[1]); |
2598 | } | |
c906108c | 2599 | } |
c906108c | 2600 | else |
c5aa993b JM |
2601 | /* Note that real floating point values only start at |
2602 | FP4_REGNUM. FP0 and up are just status and error | |
2603 | registers, which have integral (bit) values. */ | |
c906108c SS |
2604 | pa_strcat_fp_reg (regnum, stream, precision); |
2605 | } | |
2606 | ||
2607 | /* If this is a PA2.0 machine, fetch the real 64-bit register | |
2608 | value. Otherwise use the info from gdb's saved register area. | |
2609 | ||
2610 | Note that reg_val is really expected to be an array of longs, | |
2611 | with two elements. */ | |
2612 | static void | |
fba45db2 | 2613 | pa_register_look_aside (char *raw_regs, int regnum, long *raw_val) |
c906108c | 2614 | { |
c5aa993b | 2615 | static int know_which = 0; /* False */ |
c906108c | 2616 | |
c5aa993b | 2617 | int regaddr; |
c906108c SS |
2618 | unsigned int offset; |
2619 | register int i; | |
c5aa993b JM |
2620 | int start; |
2621 | ||
2622 | ||
6789195b | 2623 | char *buf = alloca (max_register_size (current_gdbarch)); |
c906108c SS |
2624 | long long reg_val; |
2625 | ||
c5aa993b JM |
2626 | if (!know_which) |
2627 | { | |
2628 | if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION)) | |
2629 | { | |
2630 | is_pa_2 = (1 == 1); | |
2631 | } | |
2632 | ||
2633 | know_which = 1; /* True */ | |
2634 | } | |
c906108c SS |
2635 | |
2636 | raw_val[0] = 0; | |
2637 | raw_val[1] = 0; | |
2638 | ||
c5aa993b JM |
2639 | if (!is_pa_2) |
2640 | { | |
2641 | raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum)); | |
c906108c | 2642 | return; |
c5aa993b | 2643 | } |
c906108c SS |
2644 | |
2645 | /* Code below copied from hppah-nat.c, with fixes for wide | |
2646 | registers, using different area of save_state, etc. */ | |
2647 | if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM || | |
c5aa993b JM |
2648 | !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE) |
2649 | { | |
c906108c | 2650 | /* Use narrow regs area of save_state and default macro. */ |
c5aa993b JM |
2651 | offset = U_REGS_OFFSET; |
2652 | regaddr = register_addr (regnum, offset); | |
2653 | start = 1; | |
2654 | } | |
2655 | else | |
2656 | { | |
c906108c SS |
2657 | /* Use wide regs area, and calculate registers as 8 bytes wide. |
2658 | ||
2659 | We'd like to do this, but current version of "C" doesn't | |
2660 | permit "offsetof": | |
2661 | ||
c5aa993b | 2662 | offset = offsetof(save_state_t, ss_wide); |
c906108c SS |
2663 | |
2664 | Note that to avoid "C" doing typed pointer arithmetic, we | |
2665 | have to cast away the type in our offset calculation: | |
2666 | otherwise we get an offset of 1! */ | |
2667 | ||
7a292a7a | 2668 | /* NB: save_state_t is not available before HPUX 9. |
c5aa993b | 2669 | The ss_wide field is not available previous to HPUX 10.20, |
7a292a7a SS |
2670 | so to avoid compile-time warnings, we only compile this for |
2671 | PA 2.0 processors. This control path should only be followed | |
2672 | if we're debugging a PA 2.0 processor, so this should not cause | |
2673 | problems. */ | |
2674 | ||
c906108c SS |
2675 | /* #if the following code out so that this file can still be |
2676 | compiled on older HPUX boxes (< 10.20) which don't have | |
2677 | this structure/structure member. */ | |
2678 | #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1 | |
2679 | save_state_t temp; | |
2680 | ||
2681 | offset = ((int) &temp.ss_wide) - ((int) &temp); | |
2682 | regaddr = offset + regnum * 8; | |
c5aa993b | 2683 | start = 0; |
c906108c | 2684 | #endif |
c5aa993b JM |
2685 | } |
2686 | ||
2687 | for (i = start; i < 2; i++) | |
c906108c SS |
2688 | { |
2689 | errno = 0; | |
39f77062 | 2690 | raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid), |
c5aa993b | 2691 | (PTRACE_ARG3_TYPE) regaddr, 0); |
c906108c SS |
2692 | if (errno != 0) |
2693 | { | |
2694 | /* Warning, not error, in case we are attached; sometimes the | |
2695 | kernel doesn't let us at the registers. */ | |
2696 | char *err = safe_strerror (errno); | |
2697 | char *msg = alloca (strlen (err) + 128); | |
2698 | sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err); | |
2699 | warning (msg); | |
2700 | goto error_exit; | |
2701 | } | |
2702 | ||
2703 | regaddr += sizeof (long); | |
2704 | } | |
c5aa993b | 2705 | |
c906108c | 2706 | if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM) |
c5aa993b | 2707 | raw_val[1] &= ~0x3; /* I think we're masking out space bits */ |
c906108c SS |
2708 | |
2709 | error_exit: | |
2710 | ; | |
2711 | } | |
2712 | ||
2713 | /* "Info all-reg" command */ | |
c5aa993b | 2714 | |
c906108c | 2715 | static void |
fba45db2 | 2716 | pa_print_registers (char *raw_regs, int regnum, int fpregs) |
c906108c | 2717 | { |
c5aa993b | 2718 | int i, j; |
adf40b2e JM |
2719 | /* Alas, we are compiled so that "long long" is 32 bits */ |
2720 | long raw_val[2]; | |
c906108c | 2721 | long long_val; |
a0b3c4fd | 2722 | int rows = 48, columns = 2; |
c906108c | 2723 | |
adf40b2e | 2724 | for (i = 0; i < rows; i++) |
c906108c | 2725 | { |
adf40b2e | 2726 | for (j = 0; j < columns; j++) |
c906108c | 2727 | { |
adf40b2e JM |
2728 | /* We display registers in column-major order. */ |
2729 | int regnum = i + j * rows; | |
2730 | ||
c5aa993b JM |
2731 | /* Q: Why is the value passed through "extract_signed_integer", |
2732 | while above, in "pa_do_registers_info" it isn't? | |
2733 | A: ? */ | |
adf40b2e | 2734 | pa_register_look_aside (raw_regs, regnum, &raw_val[0]); |
c5aa993b JM |
2735 | |
2736 | /* Even fancier % formats to prevent leading zeros | |
2737 | and still maintain the output in columns. */ | |
2738 | if (!is_pa_2) | |
2739 | { | |
2740 | /* Being big-endian, on this machine the low bits | |
2741 | (the ones we want to look at) are in the second longword. */ | |
2742 | long_val = extract_signed_integer (&raw_val[1], 4); | |
ce414844 | 2743 | printf_filtered ("%10.10s: %8lx ", |
adf40b2e | 2744 | REGISTER_NAME (regnum), long_val); |
c5aa993b JM |
2745 | } |
2746 | else | |
2747 | { | |
2748 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
2749 | if (raw_val[0] == 0) | |
ce414844 | 2750 | printf_filtered ("%10.10s: %8lx ", |
adf40b2e | 2751 | REGISTER_NAME (regnum), raw_val[1]); |
c5aa993b | 2752 | else |
ce414844 | 2753 | printf_filtered ("%10.10s: %8lx%8.8lx ", |
a0b3c4fd | 2754 | REGISTER_NAME (regnum), |
c5aa993b JM |
2755 | raw_val[0], raw_val[1]); |
2756 | } | |
c906108c SS |
2757 | } |
2758 | printf_unfiltered ("\n"); | |
2759 | } | |
c5aa993b | 2760 | |
c906108c | 2761 | if (fpregs) |
c5aa993b | 2762 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ |
c906108c SS |
2763 | pa_print_fp_reg (i); |
2764 | } | |
2765 | ||
c5aa993b | 2766 | /************* new function ******************/ |
c906108c | 2767 | static void |
fba45db2 KB |
2768 | pa_strcat_registers (char *raw_regs, int regnum, int fpregs, |
2769 | struct ui_file *stream) | |
c906108c | 2770 | { |
c5aa993b JM |
2771 | int i, j; |
2772 | long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */ | |
c906108c SS |
2773 | long long_val; |
2774 | enum precision_type precision; | |
2775 | ||
2776 | precision = unspecified_precision; | |
2777 | ||
2778 | for (i = 0; i < 18; i++) | |
2779 | { | |
2780 | for (j = 0; j < 4; j++) | |
2781 | { | |
c5aa993b JM |
2782 | /* Q: Why is the value passed through "extract_signed_integer", |
2783 | while above, in "pa_do_registers_info" it isn't? | |
2784 | A: ? */ | |
2785 | pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]); | |
2786 | ||
2787 | /* Even fancier % formats to prevent leading zeros | |
2788 | and still maintain the output in columns. */ | |
2789 | if (!is_pa_2) | |
2790 | { | |
2791 | /* Being big-endian, on this machine the low bits | |
2792 | (the ones we want to look at) are in the second longword. */ | |
2793 | long_val = extract_signed_integer (&raw_val[1], 4); | |
ce414844 AC |
2794 | fprintf_filtered (stream, "%8.8s: %8lx ", |
2795 | REGISTER_NAME (i + (j * 18)), long_val); | |
c5aa993b JM |
2796 | } |
2797 | else | |
2798 | { | |
2799 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
2800 | if (raw_val[0] == 0) | |
ce414844 AC |
2801 | fprintf_filtered (stream, "%8.8s: %8lx ", |
2802 | REGISTER_NAME (i + (j * 18)), raw_val[1]); | |
c5aa993b | 2803 | else |
ce414844 AC |
2804 | fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ", |
2805 | REGISTER_NAME (i + (j * 18)), raw_val[0], | |
2806 | raw_val[1]); | |
c5aa993b | 2807 | } |
c906108c SS |
2808 | } |
2809 | fprintf_unfiltered (stream, "\n"); | |
2810 | } | |
c5aa993b | 2811 | |
c906108c | 2812 | if (fpregs) |
c5aa993b | 2813 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ |
c906108c SS |
2814 | pa_strcat_fp_reg (i, stream, precision); |
2815 | } | |
2816 | ||
2817 | static void | |
fba45db2 | 2818 | pa_print_fp_reg (int i) |
c906108c | 2819 | { |
6789195b AC |
2820 | char *raw_buffer = alloca (max_register_size (current_gdbarch)); |
2821 | char *virtual_buffer = alloca (max_register_size (current_gdbarch)); | |
c906108c SS |
2822 | |
2823 | /* Get 32bits of data. */ | |
6e7f8b9c | 2824 | frame_register_read (deprecated_selected_frame, i, raw_buffer); |
c906108c SS |
2825 | |
2826 | /* Put it in the buffer. No conversions are ever necessary. */ | |
2827 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
2828 | ||
2829 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
2830 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
2831 | fputs_filtered ("(single precision) ", gdb_stdout); | |
2832 | ||
2833 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0, | |
2834 | 1, 0, Val_pretty_default); | |
2835 | printf_filtered ("\n"); | |
2836 | ||
2837 | /* If "i" is even, then this register can also be a double-precision | |
2838 | FP register. Dump it out as such. */ | |
2839 | if ((i % 2) == 0) | |
2840 | { | |
2841 | /* Get the data in raw format for the 2nd half. */ | |
6e7f8b9c | 2842 | frame_register_read (deprecated_selected_frame, i + 1, raw_buffer); |
c906108c SS |
2843 | |
2844 | /* Copy it into the appropriate part of the virtual buffer. */ | |
2845 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer, | |
2846 | REGISTER_RAW_SIZE (i)); | |
2847 | ||
2848 | /* Dump it as a double. */ | |
2849 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
2850 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
2851 | fputs_filtered ("(double precision) ", gdb_stdout); | |
2852 | ||
2853 | val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0, | |
2854 | 1, 0, Val_pretty_default); | |
2855 | printf_filtered ("\n"); | |
2856 | } | |
2857 | } | |
2858 | ||
2859 | /*************** new function ***********************/ | |
2860 | static void | |
fba45db2 | 2861 | pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision) |
c906108c | 2862 | { |
6789195b AC |
2863 | char *raw_buffer = alloca (max_register_size (current_gdbarch)); |
2864 | char *virtual_buffer = alloca (max_register_size (current_gdbarch)); | |
c906108c SS |
2865 | |
2866 | fputs_filtered (REGISTER_NAME (i), stream); | |
2867 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream); | |
2868 | ||
2869 | /* Get 32bits of data. */ | |
6e7f8b9c | 2870 | frame_register_read (deprecated_selected_frame, i, raw_buffer); |
c906108c SS |
2871 | |
2872 | /* Put it in the buffer. No conversions are ever necessary. */ | |
2873 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
2874 | ||
2875 | if (precision == double_precision && (i % 2) == 0) | |
2876 | { | |
2877 | ||
6789195b | 2878 | char *raw_buf = alloca (max_register_size (current_gdbarch)); |
c5aa993b JM |
2879 | |
2880 | /* Get the data in raw format for the 2nd half. */ | |
6e7f8b9c | 2881 | frame_register_read (deprecated_selected_frame, i + 1, raw_buf); |
c5aa993b JM |
2882 | |
2883 | /* Copy it into the appropriate part of the virtual buffer. */ | |
2884 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i)); | |
c906108c | 2885 | |
c5aa993b JM |
2886 | val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0, |
2887 | 1, 0, Val_pretty_default); | |
c906108c SS |
2888 | |
2889 | } | |
c5aa993b JM |
2890 | else |
2891 | { | |
2892 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0, | |
2893 | 1, 0, Val_pretty_default); | |
2894 | } | |
c906108c SS |
2895 | |
2896 | } | |
2897 | ||
2898 | /* Return one if PC is in the call path of a trampoline, else return zero. | |
2899 | ||
2900 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
2901 | just shared library trampolines (import, export). */ | |
2902 | ||
2903 | int | |
60383d10 | 2904 | hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
2905 | { |
2906 | struct minimal_symbol *minsym; | |
2907 | struct unwind_table_entry *u; | |
2908 | static CORE_ADDR dyncall = 0; | |
2909 | static CORE_ADDR sr4export = 0; | |
2910 | ||
c2c6d25f JM |
2911 | #ifdef GDB_TARGET_IS_HPPA_20W |
2912 | /* PA64 has a completely different stub/trampoline scheme. Is it | |
2913 | better? Maybe. It's certainly harder to determine with any | |
2914 | certainty that we are in a stub because we can not refer to the | |
2915 | unwinders to help. | |
2916 | ||
2917 | The heuristic is simple. Try to lookup the current PC value in th | |
2918 | minimal symbol table. If that fails, then assume we are not in a | |
2919 | stub and return. | |
2920 | ||
2921 | Then see if the PC value falls within the section bounds for the | |
2922 | section containing the minimal symbol we found in the first | |
2923 | step. If it does, then assume we are not in a stub and return. | |
2924 | ||
2925 | Finally peek at the instructions to see if they look like a stub. */ | |
2926 | { | |
2927 | struct minimal_symbol *minsym; | |
2928 | asection *sec; | |
2929 | CORE_ADDR addr; | |
2930 | int insn, i; | |
2931 | ||
2932 | minsym = lookup_minimal_symbol_by_pc (pc); | |
2933 | if (! minsym) | |
2934 | return 0; | |
2935 | ||
2936 | sec = SYMBOL_BFD_SECTION (minsym); | |
2937 | ||
2938 | if (sec->vma <= pc | |
2939 | && sec->vma + sec->_cooked_size < pc) | |
2940 | return 0; | |
2941 | ||
2942 | /* We might be in a stub. Peek at the instructions. Stubs are 3 | |
2943 | instructions long. */ | |
2944 | insn = read_memory_integer (pc, 4); | |
2945 | ||
b84a8afe | 2946 | /* Find out where we think we are within the stub. */ |
c2c6d25f JM |
2947 | if ((insn & 0xffffc00e) == 0x53610000) |
2948 | addr = pc; | |
2949 | else if ((insn & 0xffffffff) == 0xe820d000) | |
2950 | addr = pc - 4; | |
2951 | else if ((insn & 0xffffc00e) == 0x537b0000) | |
2952 | addr = pc - 8; | |
2953 | else | |
2954 | return 0; | |
2955 | ||
2956 | /* Now verify each insn in the range looks like a stub instruction. */ | |
2957 | insn = read_memory_integer (addr, 4); | |
2958 | if ((insn & 0xffffc00e) != 0x53610000) | |
2959 | return 0; | |
2960 | ||
2961 | /* Now verify each insn in the range looks like a stub instruction. */ | |
2962 | insn = read_memory_integer (addr + 4, 4); | |
2963 | if ((insn & 0xffffffff) != 0xe820d000) | |
2964 | return 0; | |
2965 | ||
2966 | /* Now verify each insn in the range looks like a stub instruction. */ | |
2967 | insn = read_memory_integer (addr + 8, 4); | |
2968 | if ((insn & 0xffffc00e) != 0x537b0000) | |
2969 | return 0; | |
2970 | ||
2971 | /* Looks like a stub. */ | |
2972 | return 1; | |
2973 | } | |
2974 | #endif | |
2975 | ||
2976 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a | |
2977 | new exec file */ | |
c906108c SS |
2978 | |
2979 | /* First see if PC is in one of the two C-library trampolines. */ | |
2980 | if (!dyncall) | |
2981 | { | |
2982 | minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
2983 | if (minsym) | |
2984 | dyncall = SYMBOL_VALUE_ADDRESS (minsym); | |
2985 | else | |
2986 | dyncall = -1; | |
2987 | } | |
2988 | ||
2989 | if (!sr4export) | |
2990 | { | |
2991 | minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
2992 | if (minsym) | |
2993 | sr4export = SYMBOL_VALUE_ADDRESS (minsym); | |
2994 | else | |
2995 | sr4export = -1; | |
2996 | } | |
2997 | ||
2998 | if (pc == dyncall || pc == sr4export) | |
2999 | return 1; | |
3000 | ||
104c1213 | 3001 | minsym = lookup_minimal_symbol_by_pc (pc); |
22abf04a | 3002 | if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0) |
104c1213 JM |
3003 | return 1; |
3004 | ||
c906108c SS |
3005 | /* Get the unwind descriptor corresponding to PC, return zero |
3006 | if no unwind was found. */ | |
3007 | u = find_unwind_entry (pc); | |
3008 | if (!u) | |
3009 | return 0; | |
3010 | ||
3011 | /* If this isn't a linker stub, then return now. */ | |
3012 | if (u->stub_unwind.stub_type == 0) | |
3013 | return 0; | |
3014 | ||
3015 | /* By definition a long-branch stub is a call stub. */ | |
3016 | if (u->stub_unwind.stub_type == LONG_BRANCH) | |
3017 | return 1; | |
3018 | ||
3019 | /* The call and return path execute the same instructions within | |
3020 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3021 | trampoline. */ | |
3022 | if (u->stub_unwind.stub_type == IMPORT) | |
3023 | return 1; | |
3024 | ||
3025 | /* Parameter relocation stubs always have a call path and may have a | |
3026 | return path. */ | |
3027 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3028 | || u->stub_unwind.stub_type == EXPORT) | |
3029 | { | |
3030 | CORE_ADDR addr; | |
3031 | ||
3032 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 3033 | or the end of the stub. */ |
c906108c SS |
3034 | for (addr = pc; addr <= u->region_end; addr += 4) |
3035 | { | |
3036 | unsigned long insn; | |
3037 | ||
3038 | insn = read_memory_integer (addr, 4); | |
3039 | ||
3040 | /* Does it look like a bl? If so then it's the call path, if | |
3041 | we find a bv or be first, then we're on the return path. */ | |
3042 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3043 | return 1; | |
3044 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3045 | || (insn & 0xfc000000) == 0xe0000000) | |
3046 | return 0; | |
3047 | } | |
3048 | ||
3049 | /* Should never happen. */ | |
104c1213 JM |
3050 | warning ("Unable to find branch in parameter relocation stub.\n"); |
3051 | return 0; | |
c906108c SS |
3052 | } |
3053 | ||
3054 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 3055 | return 0; |
c906108c SS |
3056 | } |
3057 | ||
3058 | /* Return one if PC is in the return path of a trampoline, else return zero. | |
3059 | ||
3060 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
3061 | just shared library trampolines (import, export). */ | |
3062 | ||
3063 | int | |
60383d10 | 3064 | hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
3065 | { |
3066 | struct unwind_table_entry *u; | |
3067 | ||
3068 | /* Get the unwind descriptor corresponding to PC, return zero | |
3069 | if no unwind was found. */ | |
3070 | u = find_unwind_entry (pc); | |
3071 | if (!u) | |
3072 | return 0; | |
3073 | ||
3074 | /* If this isn't a linker stub or it's just a long branch stub, then | |
3075 | return zero. */ | |
3076 | if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH) | |
3077 | return 0; | |
3078 | ||
3079 | /* The call and return path execute the same instructions within | |
3080 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3081 | trampoline. */ | |
3082 | if (u->stub_unwind.stub_type == IMPORT) | |
3083 | return 1; | |
3084 | ||
3085 | /* Parameter relocation stubs always have a call path and may have a | |
3086 | return path. */ | |
3087 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3088 | || u->stub_unwind.stub_type == EXPORT) | |
3089 | { | |
3090 | CORE_ADDR addr; | |
3091 | ||
3092 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 3093 | or the end of the stub. */ |
c906108c SS |
3094 | for (addr = pc; addr <= u->region_end; addr += 4) |
3095 | { | |
3096 | unsigned long insn; | |
3097 | ||
3098 | insn = read_memory_integer (addr, 4); | |
3099 | ||
3100 | /* Does it look like a bl? If so then it's the call path, if | |
3101 | we find a bv or be first, then we're on the return path. */ | |
3102 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3103 | return 0; | |
3104 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3105 | || (insn & 0xfc000000) == 0xe0000000) | |
3106 | return 1; | |
3107 | } | |
3108 | ||
3109 | /* Should never happen. */ | |
104c1213 JM |
3110 | warning ("Unable to find branch in parameter relocation stub.\n"); |
3111 | return 0; | |
c906108c SS |
3112 | } |
3113 | ||
3114 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 3115 | return 0; |
c906108c SS |
3116 | |
3117 | } | |
3118 | ||
3119 | /* Figure out if PC is in a trampoline, and if so find out where | |
3120 | the trampoline will jump to. If not in a trampoline, return zero. | |
3121 | ||
3122 | Simple code examination probably is not a good idea since the code | |
3123 | sequences in trampolines can also appear in user code. | |
3124 | ||
3125 | We use unwinds and information from the minimal symbol table to | |
3126 | determine when we're in a trampoline. This won't work for ELF | |
3127 | (yet) since it doesn't create stub unwind entries. Whether or | |
3128 | not ELF will create stub unwinds or normal unwinds for linker | |
3129 | stubs is still being debated. | |
3130 | ||
3131 | This should handle simple calls through dyncall or sr4export, | |
3132 | long calls, argument relocation stubs, and dyncall/sr4export | |
3133 | calling an argument relocation stub. It even handles some stubs | |
3134 | used in dynamic executables. */ | |
3135 | ||
c906108c | 3136 | CORE_ADDR |
60383d10 | 3137 | hppa_skip_trampoline_code (CORE_ADDR pc) |
c906108c SS |
3138 | { |
3139 | long orig_pc = pc; | |
3140 | long prev_inst, curr_inst, loc; | |
3141 | static CORE_ADDR dyncall = 0; | |
3142 | static CORE_ADDR dyncall_external = 0; | |
3143 | static CORE_ADDR sr4export = 0; | |
3144 | struct minimal_symbol *msym; | |
3145 | struct unwind_table_entry *u; | |
3146 | ||
c2c6d25f JM |
3147 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a |
3148 | new exec file */ | |
c906108c SS |
3149 | |
3150 | if (!dyncall) | |
3151 | { | |
3152 | msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
3153 | if (msym) | |
3154 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
3155 | else | |
3156 | dyncall = -1; | |
3157 | } | |
3158 | ||
3159 | if (!dyncall_external) | |
3160 | { | |
3161 | msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL); | |
3162 | if (msym) | |
3163 | dyncall_external = SYMBOL_VALUE_ADDRESS (msym); | |
3164 | else | |
3165 | dyncall_external = -1; | |
3166 | } | |
3167 | ||
3168 | if (!sr4export) | |
3169 | { | |
3170 | msym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
3171 | if (msym) | |
3172 | sr4export = SYMBOL_VALUE_ADDRESS (msym); | |
3173 | else | |
3174 | sr4export = -1; | |
3175 | } | |
3176 | ||
3177 | /* Addresses passed to dyncall may *NOT* be the actual address | |
3178 | of the function. So we may have to do something special. */ | |
3179 | if (pc == dyncall) | |
3180 | { | |
3181 | pc = (CORE_ADDR) read_register (22); | |
3182 | ||
3183 | /* If bit 30 (counting from the left) is on, then pc is the address of | |
c5aa993b JM |
3184 | the PLT entry for this function, not the address of the function |
3185 | itself. Bit 31 has meaning too, but only for MPE. */ | |
c906108c | 3186 | if (pc & 0x2) |
53a5351d | 3187 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
3188 | } |
3189 | if (pc == dyncall_external) | |
3190 | { | |
3191 | pc = (CORE_ADDR) read_register (22); | |
53a5351d | 3192 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
3193 | } |
3194 | else if (pc == sr4export) | |
3195 | pc = (CORE_ADDR) (read_register (22)); | |
3196 | ||
3197 | /* Get the unwind descriptor corresponding to PC, return zero | |
3198 | if no unwind was found. */ | |
3199 | u = find_unwind_entry (pc); | |
3200 | if (!u) | |
3201 | return 0; | |
3202 | ||
3203 | /* If this isn't a linker stub, then return now. */ | |
3204 | /* elz: attention here! (FIXME) because of a compiler/linker | |
3205 | error, some stubs which should have a non zero stub_unwind.stub_type | |
3206 | have unfortunately a value of zero. So this function would return here | |
3207 | as if we were not in a trampoline. To fix this, we go look at the partial | |
3208 | symbol information, which reports this guy as a stub. | |
3209 | (FIXME): Unfortunately, we are not that lucky: it turns out that the | |
3210 | partial symbol information is also wrong sometimes. This is because | |
3211 | when it is entered (somread.c::som_symtab_read()) it can happen that | |
3212 | if the type of the symbol (from the som) is Entry, and the symbol is | |
3213 | in a shared library, then it can also be a trampoline. This would | |
3214 | be OK, except that I believe the way they decide if we are ina shared library | |
3215 | does not work. SOOOO..., even if we have a regular function w/o trampolines | |
3216 | its minimal symbol can be assigned type mst_solib_trampoline. | |
3217 | Also, if we find that the symbol is a real stub, then we fix the unwind | |
3218 | descriptor, and define the stub type to be EXPORT. | |
c5aa993b | 3219 | Hopefully this is correct most of the times. */ |
c906108c | 3220 | if (u->stub_unwind.stub_type == 0) |
c5aa993b | 3221 | { |
c906108c SS |
3222 | |
3223 | /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed | |
3224 | we can delete all the code which appears between the lines */ | |
3225 | /*--------------------------------------------------------------------------*/ | |
c5aa993b | 3226 | msym = lookup_minimal_symbol_by_pc (pc); |
c906108c | 3227 | |
c5aa993b JM |
3228 | if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline) |
3229 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3230 | ||
3231 | else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline) | |
3232 | { | |
3233 | struct objfile *objfile; | |
3234 | struct minimal_symbol *msymbol; | |
3235 | int function_found = 0; | |
3236 | ||
3237 | /* go look if there is another minimal symbol with the same name as | |
3238 | this one, but with type mst_text. This would happen if the msym | |
3239 | is an actual trampoline, in which case there would be another | |
3240 | symbol with the same name corresponding to the real function */ | |
3241 | ||
3242 | ALL_MSYMBOLS (objfile, msymbol) | |
3243 | { | |
3244 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
22abf04a | 3245 | && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym))) |
c5aa993b JM |
3246 | { |
3247 | function_found = 1; | |
3248 | break; | |
3249 | } | |
3250 | } | |
3251 | ||
3252 | if (function_found) | |
3253 | /* the type of msym is correct (mst_solib_trampoline), but | |
3254 | the unwind info is wrong, so set it to the correct value */ | |
3255 | u->stub_unwind.stub_type = EXPORT; | |
3256 | else | |
3257 | /* the stub type info in the unwind is correct (this is not a | |
3258 | trampoline), but the msym type information is wrong, it | |
3259 | should be mst_text. So we need to fix the msym, and also | |
3260 | get out of this function */ | |
3261 | { | |
3262 | MSYMBOL_TYPE (msym) = mst_text; | |
3263 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3264 | } | |
3265 | } | |
c906108c | 3266 | |
c906108c | 3267 | /*--------------------------------------------------------------------------*/ |
c5aa993b | 3268 | } |
c906108c SS |
3269 | |
3270 | /* It's a stub. Search for a branch and figure out where it goes. | |
3271 | Note we have to handle multi insn branch sequences like ldil;ble. | |
3272 | Most (all?) other branches can be determined by examining the contents | |
3273 | of certain registers and the stack. */ | |
3274 | ||
3275 | loc = pc; | |
3276 | curr_inst = 0; | |
3277 | prev_inst = 0; | |
3278 | while (1) | |
3279 | { | |
3280 | /* Make sure we haven't walked outside the range of this stub. */ | |
3281 | if (u != find_unwind_entry (loc)) | |
3282 | { | |
3283 | warning ("Unable to find branch in linker stub"); | |
3284 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3285 | } | |
3286 | ||
3287 | prev_inst = curr_inst; | |
3288 | curr_inst = read_memory_integer (loc, 4); | |
3289 | ||
3290 | /* Does it look like a branch external using %r1? Then it's the | |
c5aa993b | 3291 | branch from the stub to the actual function. */ |
c906108c SS |
3292 | if ((curr_inst & 0xffe0e000) == 0xe0202000) |
3293 | { | |
3294 | /* Yup. See if the previous instruction loaded | |
3295 | a value into %r1. If so compute and return the jump address. */ | |
3296 | if ((prev_inst & 0xffe00000) == 0x20200000) | |
3297 | return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; | |
3298 | else | |
3299 | { | |
3300 | warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); | |
3301 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3302 | } | |
3303 | } | |
3304 | ||
3305 | /* Does it look like a be 0(sr0,%r21)? OR | |
3306 | Does it look like a be, n 0(sr0,%r21)? OR | |
3307 | Does it look like a bve (r21)? (this is on PA2.0) | |
3308 | Does it look like a bve, n(r21)? (this is also on PA2.0) | |
3309 | That's the branch from an | |
c5aa993b | 3310 | import stub to an export stub. |
c906108c | 3311 | |
c5aa993b JM |
3312 | It is impossible to determine the target of the branch via |
3313 | simple examination of instructions and/or data (consider | |
3314 | that the address in the plabel may be the address of the | |
3315 | bind-on-reference routine in the dynamic loader). | |
c906108c | 3316 | |
c5aa993b | 3317 | So we have try an alternative approach. |
c906108c | 3318 | |
c5aa993b JM |
3319 | Get the name of the symbol at our current location; it should |
3320 | be a stub symbol with the same name as the symbol in the | |
3321 | shared library. | |
c906108c | 3322 | |
c5aa993b JM |
3323 | Then lookup a minimal symbol with the same name; we should |
3324 | get the minimal symbol for the target routine in the shared | |
3325 | library as those take precedence of import/export stubs. */ | |
c906108c | 3326 | if ((curr_inst == 0xe2a00000) || |
c5aa993b JM |
3327 | (curr_inst == 0xe2a00002) || |
3328 | (curr_inst == 0xeaa0d000) || | |
3329 | (curr_inst == 0xeaa0d002)) | |
c906108c SS |
3330 | { |
3331 | struct minimal_symbol *stubsym, *libsym; | |
3332 | ||
3333 | stubsym = lookup_minimal_symbol_by_pc (loc); | |
3334 | if (stubsym == NULL) | |
3335 | { | |
ce414844 | 3336 | warning ("Unable to find symbol for 0x%lx", loc); |
c906108c SS |
3337 | return orig_pc == pc ? 0 : pc & ~0x3; |
3338 | } | |
3339 | ||
22abf04a | 3340 | libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL); |
c906108c SS |
3341 | if (libsym == NULL) |
3342 | { | |
3343 | warning ("Unable to find library symbol for %s\n", | |
22abf04a | 3344 | DEPRECATED_SYMBOL_NAME (stubsym)); |
c906108c SS |
3345 | return orig_pc == pc ? 0 : pc & ~0x3; |
3346 | } | |
3347 | ||
3348 | return SYMBOL_VALUE (libsym); | |
3349 | } | |
3350 | ||
3351 | /* Does it look like bl X,%rp or bl X,%r0? Another way to do a | |
c5aa993b JM |
3352 | branch from the stub to the actual function. */ |
3353 | /*elz */ | |
c906108c SS |
3354 | else if ((curr_inst & 0xffe0e000) == 0xe8400000 |
3355 | || (curr_inst & 0xffe0e000) == 0xe8000000 | |
c5aa993b | 3356 | || (curr_inst & 0xffe0e000) == 0xe800A000) |
c906108c SS |
3357 | return (loc + extract_17 (curr_inst) + 8) & ~0x3; |
3358 | ||
3359 | /* Does it look like bv (rp)? Note this depends on the | |
c5aa993b JM |
3360 | current stack pointer being the same as the stack |
3361 | pointer in the stub itself! This is a branch on from the | |
3362 | stub back to the original caller. */ | |
3363 | /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */ | |
c906108c SS |
3364 | else if ((curr_inst & 0xffe0f000) == 0xe840c000) |
3365 | { | |
3366 | /* Yup. See if the previous instruction loaded | |
3367 | rp from sp - 8. */ | |
3368 | if (prev_inst == 0x4bc23ff1) | |
3369 | return (read_memory_integer | |
3370 | (read_register (SP_REGNUM) - 8, 4)) & ~0x3; | |
3371 | else | |
3372 | { | |
3373 | warning ("Unable to find restore of %%rp before bv (%%rp)."); | |
3374 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3375 | } | |
3376 | } | |
3377 | ||
3378 | /* elz: added this case to capture the new instruction | |
3379 | at the end of the return part of an export stub used by | |
3380 | the PA2.0: BVE, n (rp) */ | |
3381 | else if ((curr_inst & 0xffe0f000) == 0xe840d000) | |
3382 | { | |
c5aa993b | 3383 | return (read_memory_integer |
53a5351d | 3384 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
3385 | } |
3386 | ||
3387 | /* What about be,n 0(sr0,%rp)? It's just another way we return to | |
c5aa993b | 3388 | the original caller from the stub. Used in dynamic executables. */ |
c906108c SS |
3389 | else if (curr_inst == 0xe0400002) |
3390 | { | |
3391 | /* The value we jump to is sitting in sp - 24. But that's | |
3392 | loaded several instructions before the be instruction. | |
3393 | I guess we could check for the previous instruction being | |
3394 | mtsp %r1,%sr0 if we want to do sanity checking. */ | |
c5aa993b | 3395 | return (read_memory_integer |
53a5351d | 3396 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
3397 | } |
3398 | ||
3399 | /* Haven't found the branch yet, but we're still in the stub. | |
c5aa993b | 3400 | Keep looking. */ |
c906108c SS |
3401 | loc += 4; |
3402 | } | |
3403 | } | |
3404 | ||
3405 | ||
3406 | /* For the given instruction (INST), return any adjustment it makes | |
3407 | to the stack pointer or zero for no adjustment. | |
3408 | ||
3409 | This only handles instructions commonly found in prologues. */ | |
3410 | ||
3411 | static int | |
fba45db2 | 3412 | prologue_inst_adjust_sp (unsigned long inst) |
c906108c SS |
3413 | { |
3414 | /* This must persist across calls. */ | |
3415 | static int save_high21; | |
3416 | ||
3417 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
3418 | if ((inst & 0xffffc000) == 0x37de0000) | |
3419 | return extract_14 (inst); | |
3420 | ||
3421 | /* stwm X,D(sp) */ | |
3422 | if ((inst & 0xffe00000) == 0x6fc00000) | |
3423 | return extract_14 (inst); | |
3424 | ||
104c1213 JM |
3425 | /* std,ma X,D(sp) */ |
3426 | if ((inst & 0xffe00008) == 0x73c00008) | |
d4f3574e | 3427 | return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 | 3428 | |
c906108c SS |
3429 | /* addil high21,%r1; ldo low11,(%r1),%r30) |
3430 | save high bits in save_high21 for later use. */ | |
3431 | if ((inst & 0xffe00000) == 0x28200000) | |
3432 | { | |
3433 | save_high21 = extract_21 (inst); | |
3434 | return 0; | |
3435 | } | |
3436 | ||
3437 | if ((inst & 0xffff0000) == 0x343e0000) | |
3438 | return save_high21 + extract_14 (inst); | |
3439 | ||
3440 | /* fstws as used by the HP compilers. */ | |
3441 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
3442 | return extract_5_load (inst); | |
3443 | ||
3444 | /* No adjustment. */ | |
3445 | return 0; | |
3446 | } | |
3447 | ||
3448 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
3449 | ||
3450 | static int | |
fba45db2 | 3451 | is_branch (unsigned long inst) |
c906108c SS |
3452 | { |
3453 | switch (inst >> 26) | |
3454 | { | |
3455 | case 0x20: | |
3456 | case 0x21: | |
3457 | case 0x22: | |
3458 | case 0x23: | |
7be570e7 | 3459 | case 0x27: |
c906108c SS |
3460 | case 0x28: |
3461 | case 0x29: | |
3462 | case 0x2a: | |
3463 | case 0x2b: | |
7be570e7 | 3464 | case 0x2f: |
c906108c SS |
3465 | case 0x30: |
3466 | case 0x31: | |
3467 | case 0x32: | |
3468 | case 0x33: | |
3469 | case 0x38: | |
3470 | case 0x39: | |
3471 | case 0x3a: | |
7be570e7 | 3472 | case 0x3b: |
c906108c SS |
3473 | return 1; |
3474 | ||
3475 | default: | |
3476 | return 0; | |
3477 | } | |
3478 | } | |
3479 | ||
3480 | /* Return the register number for a GR which is saved by INST or | |
3481 | zero it INST does not save a GR. */ | |
3482 | ||
3483 | static int | |
fba45db2 | 3484 | inst_saves_gr (unsigned long inst) |
c906108c SS |
3485 | { |
3486 | /* Does it look like a stw? */ | |
7be570e7 JM |
3487 | if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b |
3488 | || (inst >> 26) == 0x1f | |
3489 | || ((inst >> 26) == 0x1f | |
3490 | && ((inst >> 6) == 0xa))) | |
3491 | return extract_5R_store (inst); | |
3492 | ||
3493 | /* Does it look like a std? */ | |
3494 | if ((inst >> 26) == 0x1c | |
3495 | || ((inst >> 26) == 0x03 | |
3496 | && ((inst >> 6) & 0xf) == 0xb)) | |
c906108c SS |
3497 | return extract_5R_store (inst); |
3498 | ||
3499 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ | |
3500 | if ((inst >> 26) == 0x1b) | |
3501 | return extract_5R_store (inst); | |
3502 | ||
3503 | /* Does it look like sth or stb? HPC versions 9.0 and later use these | |
3504 | too. */ | |
7be570e7 JM |
3505 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18 |
3506 | || ((inst >> 26) == 0x3 | |
3507 | && (((inst >> 6) & 0xf) == 0x8 | |
3508 | || (inst >> 6) & 0xf) == 0x9)) | |
c906108c | 3509 | return extract_5R_store (inst); |
c5aa993b | 3510 | |
c906108c SS |
3511 | return 0; |
3512 | } | |
3513 | ||
3514 | /* Return the register number for a FR which is saved by INST or | |
3515 | zero it INST does not save a FR. | |
3516 | ||
3517 | Note we only care about full 64bit register stores (that's the only | |
3518 | kind of stores the prologue will use). | |
3519 | ||
3520 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
3521 | ||
3522 | static int | |
fba45db2 | 3523 | inst_saves_fr (unsigned long inst) |
c906108c | 3524 | { |
7be570e7 | 3525 | /* is this an FSTD ? */ |
c906108c SS |
3526 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
3527 | return extract_5r_store (inst); | |
7be570e7 JM |
3528 | if ((inst & 0xfc000002) == 0x70000002) |
3529 | return extract_5R_store (inst); | |
3530 | /* is this an FSTW ? */ | |
c906108c SS |
3531 | if ((inst & 0xfc00df80) == 0x24001200) |
3532 | return extract_5r_store (inst); | |
7be570e7 JM |
3533 | if ((inst & 0xfc000002) == 0x7c000000) |
3534 | return extract_5R_store (inst); | |
c906108c SS |
3535 | return 0; |
3536 | } | |
3537 | ||
3538 | /* Advance PC across any function entry prologue instructions | |
3539 | to reach some "real" code. | |
3540 | ||
3541 | Use information in the unwind table to determine what exactly should | |
3542 | be in the prologue. */ | |
3543 | ||
3544 | ||
3545 | CORE_ADDR | |
fba45db2 | 3546 | skip_prologue_hard_way (CORE_ADDR pc) |
c906108c SS |
3547 | { |
3548 | char buf[4]; | |
3549 | CORE_ADDR orig_pc = pc; | |
3550 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
3551 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
3552 | struct unwind_table_entry *u; | |
3553 | ||
3554 | restart_gr = 0; | |
3555 | restart_fr = 0; | |
3556 | ||
3557 | restart: | |
3558 | u = find_unwind_entry (pc); | |
3559 | if (!u) | |
3560 | return pc; | |
3561 | ||
c5aa993b | 3562 | /* If we are not at the beginning of a function, then return now. */ |
c906108c SS |
3563 | if ((pc & ~0x3) != u->region_start) |
3564 | return pc; | |
3565 | ||
3566 | /* This is how much of a frame adjustment we need to account for. */ | |
3567 | stack_remaining = u->Total_frame_size << 3; | |
3568 | ||
3569 | /* Magic register saves we want to know about. */ | |
3570 | save_rp = u->Save_RP; | |
3571 | save_sp = u->Save_SP; | |
3572 | ||
3573 | /* An indication that args may be stored into the stack. Unfortunately | |
3574 | the HPUX compilers tend to set this in cases where no args were | |
3575 | stored too!. */ | |
3576 | args_stored = 1; | |
3577 | ||
3578 | /* Turn the Entry_GR field into a bitmask. */ | |
3579 | save_gr = 0; | |
3580 | for (i = 3; i < u->Entry_GR + 3; i++) | |
3581 | { | |
3582 | /* Frame pointer gets saved into a special location. */ | |
3583 | if (u->Save_SP && i == FP_REGNUM) | |
3584 | continue; | |
3585 | ||
3586 | save_gr |= (1 << i); | |
3587 | } | |
3588 | save_gr &= ~restart_gr; | |
3589 | ||
3590 | /* Turn the Entry_FR field into a bitmask too. */ | |
3591 | save_fr = 0; | |
3592 | for (i = 12; i < u->Entry_FR + 12; i++) | |
3593 | save_fr |= (1 << i); | |
3594 | save_fr &= ~restart_fr; | |
3595 | ||
3596 | /* Loop until we find everything of interest or hit a branch. | |
3597 | ||
3598 | For unoptimized GCC code and for any HP CC code this will never ever | |
3599 | examine any user instructions. | |
3600 | ||
3601 | For optimzied GCC code we're faced with problems. GCC will schedule | |
3602 | its prologue and make prologue instructions available for delay slot | |
3603 | filling. The end result is user code gets mixed in with the prologue | |
3604 | and a prologue instruction may be in the delay slot of the first branch | |
3605 | or call. | |
3606 | ||
3607 | Some unexpected things are expected with debugging optimized code, so | |
3608 | we allow this routine to walk past user instructions in optimized | |
3609 | GCC code. */ | |
3610 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
3611 | || args_stored) | |
3612 | { | |
3613 | unsigned int reg_num; | |
3614 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
3615 | unsigned long old_save_rp, old_save_sp, next_inst; | |
3616 | ||
3617 | /* Save copies of all the triggers so we can compare them later | |
c5aa993b | 3618 | (only for HPC). */ |
c906108c SS |
3619 | old_save_gr = save_gr; |
3620 | old_save_fr = save_fr; | |
3621 | old_save_rp = save_rp; | |
3622 | old_save_sp = save_sp; | |
3623 | old_stack_remaining = stack_remaining; | |
3624 | ||
3625 | status = target_read_memory (pc, buf, 4); | |
3626 | inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 3627 | |
c906108c SS |
3628 | /* Yow! */ |
3629 | if (status != 0) | |
3630 | return pc; | |
3631 | ||
3632 | /* Note the interesting effects of this instruction. */ | |
3633 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
3634 | ||
7be570e7 JM |
3635 | /* There are limited ways to store the return pointer into the |
3636 | stack. */ | |
3637 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1) | |
c906108c SS |
3638 | save_rp = 0; |
3639 | ||
104c1213 | 3640 | /* These are the only ways we save SP into the stack. At this time |
c5aa993b | 3641 | the HP compilers never bother to save SP into the stack. */ |
104c1213 JM |
3642 | if ((inst & 0xffffc000) == 0x6fc10000 |
3643 | || (inst & 0xffffc00c) == 0x73c10008) | |
c906108c SS |
3644 | save_sp = 0; |
3645 | ||
6426a772 JM |
3646 | /* Are we loading some register with an offset from the argument |
3647 | pointer? */ | |
3648 | if ((inst & 0xffe00000) == 0x37a00000 | |
3649 | || (inst & 0xffffffe0) == 0x081d0240) | |
3650 | { | |
3651 | pc += 4; | |
3652 | continue; | |
3653 | } | |
3654 | ||
c906108c SS |
3655 | /* Account for general and floating-point register saves. */ |
3656 | reg_num = inst_saves_gr (inst); | |
3657 | save_gr &= ~(1 << reg_num); | |
3658 | ||
3659 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
3660 | Unfortunately args_stored only tells us that some arguments |
3661 | where stored into the stack. Not how many or what kind! | |
c906108c | 3662 | |
c5aa993b JM |
3663 | This is a kludge as on the HP compiler sets this bit and it |
3664 | never does prologue scheduling. So once we see one, skip past | |
3665 | all of them. We have similar code for the fp arg stores below. | |
c906108c | 3666 | |
c5aa993b JM |
3667 | FIXME. Can still die if we have a mix of GR and FR argument |
3668 | stores! */ | |
6426a772 | 3669 | if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c | 3670 | { |
6426a772 | 3671 | while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c SS |
3672 | { |
3673 | pc += 4; | |
3674 | status = target_read_memory (pc, buf, 4); | |
3675 | inst = extract_unsigned_integer (buf, 4); | |
3676 | if (status != 0) | |
3677 | return pc; | |
3678 | reg_num = inst_saves_gr (inst); | |
3679 | } | |
3680 | args_stored = 0; | |
3681 | continue; | |
3682 | } | |
3683 | ||
3684 | reg_num = inst_saves_fr (inst); | |
3685 | save_fr &= ~(1 << reg_num); | |
3686 | ||
3687 | status = target_read_memory (pc + 4, buf, 4); | |
3688 | next_inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 3689 | |
c906108c SS |
3690 | /* Yow! */ |
3691 | if (status != 0) | |
3692 | return pc; | |
3693 | ||
3694 | /* We've got to be read to handle the ldo before the fp register | |
c5aa993b | 3695 | save. */ |
c906108c SS |
3696 | if ((inst & 0xfc000000) == 0x34000000 |
3697 | && inst_saves_fr (next_inst) >= 4 | |
6426a772 | 3698 | && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
3699 | { |
3700 | /* So we drop into the code below in a reasonable state. */ | |
3701 | reg_num = inst_saves_fr (next_inst); | |
3702 | pc -= 4; | |
3703 | } | |
3704 | ||
3705 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
3706 | This is a kludge as on the HP compiler sets this bit and it |
3707 | never does prologue scheduling. So once we see one, skip past | |
3708 | all of them. */ | |
6426a772 | 3709 | if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c | 3710 | { |
6426a772 | 3711 | while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
3712 | { |
3713 | pc += 8; | |
3714 | status = target_read_memory (pc, buf, 4); | |
3715 | inst = extract_unsigned_integer (buf, 4); | |
3716 | if (status != 0) | |
3717 | return pc; | |
3718 | if ((inst & 0xfc000000) != 0x34000000) | |
3719 | break; | |
3720 | status = target_read_memory (pc + 4, buf, 4); | |
3721 | next_inst = extract_unsigned_integer (buf, 4); | |
3722 | if (status != 0) | |
3723 | return pc; | |
3724 | reg_num = inst_saves_fr (next_inst); | |
3725 | } | |
3726 | args_stored = 0; | |
3727 | continue; | |
3728 | } | |
3729 | ||
3730 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
c5aa993b | 3731 | instruction is in the delay slot of the first call/branch. */ |
c906108c SS |
3732 | if (is_branch (inst)) |
3733 | break; | |
3734 | ||
3735 | /* What a crock. The HP compilers set args_stored even if no | |
c5aa993b JM |
3736 | arguments were stored into the stack (boo hiss). This could |
3737 | cause this code to then skip a bunch of user insns (up to the | |
3738 | first branch). | |
3739 | ||
3740 | To combat this we try to identify when args_stored was bogusly | |
3741 | set and clear it. We only do this when args_stored is nonzero, | |
3742 | all other resources are accounted for, and nothing changed on | |
3743 | this pass. */ | |
c906108c | 3744 | if (args_stored |
c5aa993b | 3745 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
c906108c SS |
3746 | && old_save_gr == save_gr && old_save_fr == save_fr |
3747 | && old_save_rp == save_rp && old_save_sp == save_sp | |
3748 | && old_stack_remaining == stack_remaining) | |
3749 | break; | |
c5aa993b | 3750 | |
c906108c SS |
3751 | /* Bump the PC. */ |
3752 | pc += 4; | |
3753 | } | |
3754 | ||
3755 | /* We've got a tenative location for the end of the prologue. However | |
3756 | because of limitations in the unwind descriptor mechanism we may | |
3757 | have went too far into user code looking for the save of a register | |
3758 | that does not exist. So, if there registers we expected to be saved | |
3759 | but never were, mask them out and restart. | |
3760 | ||
3761 | This should only happen in optimized code, and should be very rare. */ | |
c5aa993b | 3762 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
c906108c SS |
3763 | { |
3764 | pc = orig_pc; | |
3765 | restart_gr = save_gr; | |
3766 | restart_fr = save_fr; | |
3767 | goto restart; | |
3768 | } | |
3769 | ||
3770 | return pc; | |
3771 | } | |
3772 | ||
3773 | ||
7be570e7 JM |
3774 | /* Return the address of the PC after the last prologue instruction if |
3775 | we can determine it from the debug symbols. Else return zero. */ | |
c906108c SS |
3776 | |
3777 | static CORE_ADDR | |
fba45db2 | 3778 | after_prologue (CORE_ADDR pc) |
c906108c SS |
3779 | { |
3780 | struct symtab_and_line sal; | |
3781 | CORE_ADDR func_addr, func_end; | |
3782 | struct symbol *f; | |
3783 | ||
7be570e7 JM |
3784 | /* If we can not find the symbol in the partial symbol table, then |
3785 | there is no hope we can determine the function's start address | |
3786 | with this code. */ | |
c906108c | 3787 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
7be570e7 | 3788 | return 0; |
c906108c | 3789 | |
7be570e7 | 3790 | /* Get the line associated with FUNC_ADDR. */ |
c906108c SS |
3791 | sal = find_pc_line (func_addr, 0); |
3792 | ||
7be570e7 JM |
3793 | /* There are only two cases to consider. First, the end of the source line |
3794 | is within the function bounds. In that case we return the end of the | |
3795 | source line. Second is the end of the source line extends beyond the | |
3796 | bounds of the current function. We need to use the slow code to | |
3797 | examine instructions in that case. | |
c906108c | 3798 | |
7be570e7 JM |
3799 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
3800 | the wrong thing to do. In fact, it should be entirely possible for this | |
3801 | function to always return zero since the slow instruction scanning code | |
3802 | is supposed to *always* work. If it does not, then it is a bug. */ | |
3803 | if (sal.end < func_end) | |
3804 | return sal.end; | |
c5aa993b | 3805 | else |
7be570e7 | 3806 | return 0; |
c906108c SS |
3807 | } |
3808 | ||
3809 | /* To skip prologues, I use this predicate. Returns either PC itself | |
3810 | if the code at PC does not look like a function prologue; otherwise | |
3811 | returns an address that (if we're lucky) follows the prologue. If | |
3812 | LENIENT, then we must skip everything which is involved in setting | |
3813 | up the frame (it's OK to skip more, just so long as we don't skip | |
3814 | anything which might clobber the registers which are being saved. | |
3815 | Currently we must not skip more on the alpha, but we might the lenient | |
3816 | stuff some day. */ | |
3817 | ||
3818 | CORE_ADDR | |
fba45db2 | 3819 | hppa_skip_prologue (CORE_ADDR pc) |
c906108c | 3820 | { |
c5aa993b JM |
3821 | unsigned long inst; |
3822 | int offset; | |
3823 | CORE_ADDR post_prologue_pc; | |
3824 | char buf[4]; | |
c906108c | 3825 | |
c5aa993b JM |
3826 | /* See if we can determine the end of the prologue via the symbol table. |
3827 | If so, then return either PC, or the PC after the prologue, whichever | |
3828 | is greater. */ | |
c906108c | 3829 | |
c5aa993b | 3830 | post_prologue_pc = after_prologue (pc); |
c906108c | 3831 | |
7be570e7 JM |
3832 | /* If after_prologue returned a useful address, then use it. Else |
3833 | fall back on the instruction skipping code. | |
3834 | ||
3835 | Some folks have claimed this causes problems because the breakpoint | |
3836 | may be the first instruction of the prologue. If that happens, then | |
3837 | the instruction skipping code has a bug that needs to be fixed. */ | |
c5aa993b JM |
3838 | if (post_prologue_pc != 0) |
3839 | return max (pc, post_prologue_pc); | |
c5aa993b JM |
3840 | else |
3841 | return (skip_prologue_hard_way (pc)); | |
c906108c SS |
3842 | } |
3843 | ||
3844 | /* Put here the code to store, into a struct frame_saved_regs, | |
3845 | the addresses of the saved registers of frame described by FRAME_INFO. | |
3846 | This includes special registers such as pc and fp saved in special | |
3847 | ways in the stack frame. sp is even more special: | |
3848 | the address we return for it IS the sp for the next frame. */ | |
3849 | ||
3850 | void | |
fba45db2 KB |
3851 | hppa_frame_find_saved_regs (struct frame_info *frame_info, |
3852 | struct frame_saved_regs *frame_saved_regs) | |
c906108c SS |
3853 | { |
3854 | CORE_ADDR pc; | |
3855 | struct unwind_table_entry *u; | |
3856 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
3857 | int status, i, reg; | |
3858 | char buf[4]; | |
3859 | int fp_loc = -1; | |
d4f3574e | 3860 | int final_iteration; |
c906108c SS |
3861 | |
3862 | /* Zero out everything. */ | |
3863 | memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs)); | |
3864 | ||
3865 | /* Call dummy frames always look the same, so there's no need to | |
3866 | examine the dummy code to determine locations of saved registers; | |
3867 | instead, let find_dummy_frame_regs fill in the correct offsets | |
3868 | for the saved registers. */ | |
3869 | if ((frame_info->pc >= frame_info->frame | |
53a5351d JM |
3870 | && frame_info->pc <= (frame_info->frame |
3871 | /* A call dummy is sized in words, but it is | |
3872 | actually a series of instructions. Account | |
3873 | for that scaling factor. */ | |
3874 | + ((REGISTER_SIZE / INSTRUCTION_SIZE) | |
3875 | * CALL_DUMMY_LENGTH) | |
3876 | /* Similarly we have to account for 64bit | |
3877 | wide register saves. */ | |
3878 | + (32 * REGISTER_SIZE) | |
3879 | /* We always consider FP regs 8 bytes long. */ | |
3880 | + (NUM_REGS - FP0_REGNUM) * 8 | |
3881 | /* Similarly we have to account for 64bit | |
3882 | wide register saves. */ | |
3883 | + (6 * REGISTER_SIZE)))) | |
c906108c SS |
3884 | find_dummy_frame_regs (frame_info, frame_saved_regs); |
3885 | ||
3886 | /* Interrupt handlers are special too. They lay out the register | |
3887 | state in the exact same order as the register numbers in GDB. */ | |
3888 | if (pc_in_interrupt_handler (frame_info->pc)) | |
3889 | { | |
3890 | for (i = 0; i < NUM_REGS; i++) | |
3891 | { | |
3892 | /* SP is a little special. */ | |
3893 | if (i == SP_REGNUM) | |
3894 | frame_saved_regs->regs[SP_REGNUM] | |
53a5351d JM |
3895 | = read_memory_integer (frame_info->frame + SP_REGNUM * 4, |
3896 | TARGET_PTR_BIT / 8); | |
c906108c SS |
3897 | else |
3898 | frame_saved_regs->regs[i] = frame_info->frame + i * 4; | |
3899 | } | |
3900 | return; | |
3901 | } | |
3902 | ||
3903 | #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP | |
3904 | /* Handle signal handler callers. */ | |
5a203e44 | 3905 | if ((get_frame_type (frame_info) == SIGTRAMP_FRAME)) |
c906108c SS |
3906 | { |
3907 | FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); | |
3908 | return; | |
3909 | } | |
3910 | #endif | |
3911 | ||
3912 | /* Get the starting address of the function referred to by the PC | |
3913 | saved in frame. */ | |
3914 | pc = get_pc_function_start (frame_info->pc); | |
3915 | ||
3916 | /* Yow! */ | |
3917 | u = find_unwind_entry (pc); | |
3918 | if (!u) | |
3919 | return; | |
3920 | ||
3921 | /* This is how much of a frame adjustment we need to account for. */ | |
3922 | stack_remaining = u->Total_frame_size << 3; | |
3923 | ||
3924 | /* Magic register saves we want to know about. */ | |
3925 | save_rp = u->Save_RP; | |
3926 | save_sp = u->Save_SP; | |
3927 | ||
3928 | /* Turn the Entry_GR field into a bitmask. */ | |
3929 | save_gr = 0; | |
3930 | for (i = 3; i < u->Entry_GR + 3; i++) | |
3931 | { | |
3932 | /* Frame pointer gets saved into a special location. */ | |
3933 | if (u->Save_SP && i == FP_REGNUM) | |
3934 | continue; | |
3935 | ||
3936 | save_gr |= (1 << i); | |
3937 | } | |
3938 | ||
3939 | /* Turn the Entry_FR field into a bitmask too. */ | |
3940 | save_fr = 0; | |
3941 | for (i = 12; i < u->Entry_FR + 12; i++) | |
3942 | save_fr |= (1 << i); | |
3943 | ||
3944 | /* The frame always represents the value of %sp at entry to the | |
3945 | current function (and is thus equivalent to the "saved" stack | |
3946 | pointer. */ | |
3947 | frame_saved_regs->regs[SP_REGNUM] = frame_info->frame; | |
3948 | ||
3949 | /* Loop until we find everything of interest or hit a branch. | |
3950 | ||
3951 | For unoptimized GCC code and for any HP CC code this will never ever | |
3952 | examine any user instructions. | |
3953 | ||
7be570e7 | 3954 | For optimized GCC code we're faced with problems. GCC will schedule |
c906108c SS |
3955 | its prologue and make prologue instructions available for delay slot |
3956 | filling. The end result is user code gets mixed in with the prologue | |
3957 | and a prologue instruction may be in the delay slot of the first branch | |
3958 | or call. | |
3959 | ||
3960 | Some unexpected things are expected with debugging optimized code, so | |
3961 | we allow this routine to walk past user instructions in optimized | |
3962 | GCC code. */ | |
d4f3574e SS |
3963 | final_iteration = 0; |
3964 | while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
3965 | && pc <= frame_info->pc) | |
c906108c SS |
3966 | { |
3967 | status = target_read_memory (pc, buf, 4); | |
3968 | inst = extract_unsigned_integer (buf, 4); | |
3969 | ||
3970 | /* Yow! */ | |
3971 | if (status != 0) | |
3972 | return; | |
3973 | ||
3974 | /* Note the interesting effects of this instruction. */ | |
3975 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
3976 | ||
104c1213 JM |
3977 | /* There are limited ways to store the return pointer into the |
3978 | stack. */ | |
c2c6d25f | 3979 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ |
c906108c SS |
3980 | { |
3981 | save_rp = 0; | |
3982 | frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20; | |
3983 | } | |
c2c6d25f JM |
3984 | else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */ |
3985 | { | |
3986 | save_rp = 0; | |
3987 | frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16; | |
3988 | } | |
c906108c | 3989 | |
104c1213 JM |
3990 | /* Note if we saved SP into the stack. This also happens to indicate |
3991 | the location of the saved frame pointer. */ | |
c2c6d25f JM |
3992 | if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ |
3993 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
104c1213 JM |
3994 | { |
3995 | frame_saved_regs->regs[FP_REGNUM] = frame_info->frame; | |
3996 | save_sp = 0; | |
3997 | } | |
c906108c SS |
3998 | |
3999 | /* Account for general and floating-point register saves. */ | |
4000 | reg = inst_saves_gr (inst); | |
4001 | if (reg >= 3 && reg <= 18 | |
4002 | && (!u->Save_SP || reg != FP_REGNUM)) | |
4003 | { | |
4004 | save_gr &= ~(1 << reg); | |
4005 | ||
4006 | /* stwm with a positive displacement is a *post modify*. */ | |
4007 | if ((inst >> 26) == 0x1b | |
4008 | && extract_14 (inst) >= 0) | |
4009 | frame_saved_regs->regs[reg] = frame_info->frame; | |
104c1213 JM |
4010 | /* A std has explicit post_modify forms. */ |
4011 | else if ((inst & 0xfc00000c0) == 0x70000008) | |
4012 | frame_saved_regs->regs[reg] = frame_info->frame; | |
c906108c SS |
4013 | else |
4014 | { | |
104c1213 JM |
4015 | CORE_ADDR offset; |
4016 | ||
4017 | if ((inst >> 26) == 0x1c) | |
d4f3574e | 4018 | offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 JM |
4019 | else if ((inst >> 26) == 0x03) |
4020 | offset = low_sign_extend (inst & 0x1f, 5); | |
4021 | else | |
4022 | offset = extract_14 (inst); | |
4023 | ||
c906108c SS |
4024 | /* Handle code with and without frame pointers. */ |
4025 | if (u->Save_SP) | |
4026 | frame_saved_regs->regs[reg] | |
104c1213 | 4027 | = frame_info->frame + offset; |
c906108c SS |
4028 | else |
4029 | frame_saved_regs->regs[reg] | |
104c1213 JM |
4030 | = (frame_info->frame + (u->Total_frame_size << 3) |
4031 | + offset); | |
c906108c SS |
4032 | } |
4033 | } | |
4034 | ||
4035 | ||
4036 | /* GCC handles callee saved FP regs a little differently. | |
4037 | ||
c5aa993b JM |
4038 | It emits an instruction to put the value of the start of |
4039 | the FP store area into %r1. It then uses fstds,ma with | |
4040 | a basereg of %r1 for the stores. | |
c906108c | 4041 | |
c5aa993b JM |
4042 | HP CC emits them at the current stack pointer modifying |
4043 | the stack pointer as it stores each register. */ | |
c906108c SS |
4044 | |
4045 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
4046 | if ((inst & 0xffffc000) == 0x34610000 | |
4047 | || (inst & 0xffffc000) == 0x37c10000) | |
4048 | fp_loc = extract_14 (inst); | |
c5aa993b | 4049 | |
c906108c SS |
4050 | reg = inst_saves_fr (inst); |
4051 | if (reg >= 12 && reg <= 21) | |
4052 | { | |
4053 | /* Note +4 braindamage below is necessary because the FP status | |
4054 | registers are internally 8 registers rather than the expected | |
4055 | 4 registers. */ | |
4056 | save_fr &= ~(1 << reg); | |
4057 | if (fp_loc == -1) | |
4058 | { | |
4059 | /* 1st HP CC FP register store. After this instruction | |
c5aa993b JM |
4060 | we've set enough state that the GCC and HPCC code are |
4061 | both handled in the same manner. */ | |
c906108c SS |
4062 | frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame; |
4063 | fp_loc = 8; | |
4064 | } | |
4065 | else | |
4066 | { | |
4067 | frame_saved_regs->regs[reg + FP0_REGNUM + 4] | |
4068 | = frame_info->frame + fp_loc; | |
4069 | fp_loc += 8; | |
4070 | } | |
4071 | } | |
4072 | ||
39f77062 | 4073 | /* Quit if we hit any kind of branch the previous iteration. */ |
d4f3574e | 4074 | if (final_iteration) |
c906108c SS |
4075 | break; |
4076 | ||
d4f3574e SS |
4077 | /* We want to look precisely one instruction beyond the branch |
4078 | if we have not found everything yet. */ | |
4079 | if (is_branch (inst)) | |
4080 | final_iteration = 1; | |
4081 | ||
c906108c SS |
4082 | /* Bump the PC. */ |
4083 | pc += 4; | |
4084 | } | |
4085 | } | |
4086 | ||
4087 | ||
4088 | /* Exception handling support for the HP-UX ANSI C++ compiler. | |
4089 | The compiler (aCC) provides a callback for exception events; | |
4090 | GDB can set a breakpoint on this callback and find out what | |
4091 | exception event has occurred. */ | |
4092 | ||
4093 | /* The name of the hook to be set to point to the callback function */ | |
c5aa993b JM |
4094 | static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook"; |
4095 | /* The name of the function to be used to set the hook value */ | |
4096 | static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value"; | |
4097 | /* The name of the callback function in end.o */ | |
c906108c | 4098 | static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback"; |
c5aa993b JM |
4099 | /* Name of function in end.o on which a break is set (called by above) */ |
4100 | static char HP_ACC_EH_break[] = "__d_eh_break"; | |
4101 | /* Name of flag (in end.o) that enables catching throws */ | |
4102 | static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw"; | |
4103 | /* Name of flag (in end.o) that enables catching catching */ | |
4104 | static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch"; | |
4105 | /* The enum used by aCC */ | |
4106 | typedef enum | |
4107 | { | |
4108 | __EH_NOTIFY_THROW, | |
4109 | __EH_NOTIFY_CATCH | |
4110 | } | |
4111 | __eh_notification; | |
c906108c SS |
4112 | |
4113 | /* Is exception-handling support available with this executable? */ | |
4114 | static int hp_cxx_exception_support = 0; | |
4115 | /* Has the initialize function been run? */ | |
4116 | int hp_cxx_exception_support_initialized = 0; | |
4117 | /* Similar to above, but imported from breakpoint.c -- non-target-specific */ | |
4118 | extern int exception_support_initialized; | |
4119 | /* Address of __eh_notify_hook */ | |
a0b3c4fd | 4120 | static CORE_ADDR eh_notify_hook_addr = 0; |
c906108c | 4121 | /* Address of __d_eh_notify_callback */ |
a0b3c4fd | 4122 | static CORE_ADDR eh_notify_callback_addr = 0; |
c906108c | 4123 | /* Address of __d_eh_break */ |
a0b3c4fd | 4124 | static CORE_ADDR eh_break_addr = 0; |
c906108c | 4125 | /* Address of __d_eh_catch_catch */ |
a0b3c4fd | 4126 | static CORE_ADDR eh_catch_catch_addr = 0; |
c906108c | 4127 | /* Address of __d_eh_catch_throw */ |
a0b3c4fd | 4128 | static CORE_ADDR eh_catch_throw_addr = 0; |
c906108c | 4129 | /* Sal for __d_eh_break */ |
a0b3c4fd | 4130 | static struct symtab_and_line *break_callback_sal = 0; |
c906108c SS |
4131 | |
4132 | /* Code in end.c expects __d_pid to be set in the inferior, | |
4133 | otherwise __d_eh_notify_callback doesn't bother to call | |
4134 | __d_eh_break! So we poke the pid into this symbol | |
4135 | ourselves. | |
4136 | 0 => success | |
c5aa993b | 4137 | 1 => failure */ |
c906108c | 4138 | int |
fba45db2 | 4139 | setup_d_pid_in_inferior (void) |
c906108c SS |
4140 | { |
4141 | CORE_ADDR anaddr; | |
c5aa993b JM |
4142 | struct minimal_symbol *msymbol; |
4143 | char buf[4]; /* FIXME 32x64? */ | |
4144 | ||
c906108c SS |
4145 | /* Slam the pid of the process into __d_pid; failing is only a warning! */ |
4146 | msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile); | |
4147 | if (msymbol == NULL) | |
4148 | { | |
4149 | warning ("Unable to find __d_pid symbol in object file."); | |
4150 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4151 | return 1; | |
4152 | } | |
4153 | ||
4154 | anaddr = SYMBOL_VALUE_ADDRESS (msymbol); | |
39f77062 | 4155 | store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */ |
c5aa993b | 4156 | if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */ |
c906108c SS |
4157 | { |
4158 | warning ("Unable to write __d_pid"); | |
4159 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4160 | return 1; | |
4161 | } | |
4162 | return 0; | |
4163 | } | |
4164 | ||
4165 | /* Initialize exception catchpoint support by looking for the | |
4166 | necessary hooks/callbacks in end.o, etc., and set the hook value to | |
4167 | point to the required debug function | |
4168 | ||
4169 | Return 0 => failure | |
c5aa993b | 4170 | 1 => success */ |
c906108c SS |
4171 | |
4172 | static int | |
fba45db2 | 4173 | initialize_hp_cxx_exception_support (void) |
c906108c SS |
4174 | { |
4175 | struct symtabs_and_lines sals; | |
c5aa993b JM |
4176 | struct cleanup *old_chain; |
4177 | struct cleanup *canonical_strings_chain = NULL; | |
c906108c | 4178 | int i; |
c5aa993b JM |
4179 | char *addr_start; |
4180 | char *addr_end = NULL; | |
4181 | char **canonical = (char **) NULL; | |
c906108c | 4182 | int thread = -1; |
c5aa993b JM |
4183 | struct symbol *sym = NULL; |
4184 | struct minimal_symbol *msym = NULL; | |
4185 | struct objfile *objfile; | |
c906108c SS |
4186 | asection *shlib_info; |
4187 | ||
4188 | /* Detect and disallow recursion. On HP-UX with aCC, infinite | |
4189 | recursion is a possibility because finding the hook for exception | |
4190 | callbacks involves making a call in the inferior, which means | |
4191 | re-inserting breakpoints which can re-invoke this code */ | |
4192 | ||
c5aa993b JM |
4193 | static int recurse = 0; |
4194 | if (recurse > 0) | |
c906108c SS |
4195 | { |
4196 | hp_cxx_exception_support_initialized = 0; | |
4197 | exception_support_initialized = 0; | |
4198 | return 0; | |
4199 | } | |
4200 | ||
4201 | hp_cxx_exception_support = 0; | |
4202 | ||
4203 | /* First check if we have seen any HP compiled objects; if not, | |
4204 | it is very unlikely that HP's idiosyncratic callback mechanism | |
4205 | for exception handling debug support will be available! | |
4206 | This will percolate back up to breakpoint.c, where our callers | |
4207 | will decide to try the g++ exception-handling support instead. */ | |
4208 | if (!hp_som_som_object_present) | |
4209 | return 0; | |
c5aa993b | 4210 | |
c906108c SS |
4211 | /* We have a SOM executable with SOM debug info; find the hooks */ |
4212 | ||
4213 | /* First look for the notify hook provided by aCC runtime libs */ | |
4214 | /* If we find this symbol, we conclude that the executable must | |
4215 | have HP aCC exception support built in. If this symbol is not | |
4216 | found, even though we're a HP SOM-SOM file, we may have been | |
4217 | built with some other compiler (not aCC). This results percolates | |
4218 | back up to our callers in breakpoint.c which can decide to | |
4219 | try the g++ style of exception support instead. | |
4220 | If this symbol is found but the other symbols we require are | |
4221 | not found, there is something weird going on, and g++ support | |
4222 | should *not* be tried as an alternative. | |
c5aa993b | 4223 | |
c906108c SS |
4224 | ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined. |
4225 | ASSUMPTION: HP aCC and g++ modules cannot be linked together. */ | |
c5aa993b | 4226 | |
c906108c SS |
4227 | /* libCsup has this hook; it'll usually be non-debuggable */ |
4228 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL); | |
4229 | if (msym) | |
4230 | { | |
4231 | eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4232 | hp_cxx_exception_support = 1; | |
c5aa993b | 4233 | } |
c906108c SS |
4234 | else |
4235 | { | |
4236 | warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook); | |
4237 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4238 | warning ("GDB will be unable to intercept exception events."); | |
4239 | eh_notify_hook_addr = 0; | |
4240 | hp_cxx_exception_support = 0; | |
4241 | return 0; | |
4242 | } | |
4243 | ||
c906108c | 4244 | /* Next look for the notify callback routine in end.o */ |
c5aa993b | 4245 | /* This is always available in the SOM symbol dictionary if end.o is linked in */ |
c906108c SS |
4246 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL); |
4247 | if (msym) | |
4248 | { | |
4249 | eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4250 | hp_cxx_exception_support = 1; | |
c5aa993b JM |
4251 | } |
4252 | else | |
c906108c SS |
4253 | { |
4254 | warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback); | |
4255 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4256 | warning ("GDB will be unable to intercept exception events."); | |
4257 | eh_notify_callback_addr = 0; | |
4258 | return 0; | |
4259 | } | |
4260 | ||
53a5351d | 4261 | #ifndef GDB_TARGET_IS_HPPA_20W |
c906108c SS |
4262 | /* Check whether the executable is dynamically linked or archive bound */ |
4263 | /* With an archive-bound executable we can use the raw addresses we find | |
4264 | for the callback function, etc. without modification. For an executable | |
4265 | with shared libraries, we have to do more work to find the plabel, which | |
4266 | can be the target of a call through $$dyncall from the aCC runtime support | |
4267 | library (libCsup) which is linked shared by default by aCC. */ | |
4268 | /* This test below was copied from somsolib.c/somread.c. It may not be a very | |
c5aa993b | 4269 | reliable one to test that an executable is linked shared. pai/1997-07-18 */ |
c906108c SS |
4270 | shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$"); |
4271 | if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0)) | |
4272 | { | |
4273 | /* The minsym we have has the local code address, but that's not the | |
4274 | plabel that can be used by an inter-load-module call. */ | |
4275 | /* Find solib handle for main image (which has end.o), and use that | |
4276 | and the min sym as arguments to __d_shl_get() (which does the equivalent | |
c5aa993b | 4277 | of shl_findsym()) to find the plabel. */ |
c906108c SS |
4278 | |
4279 | args_for_find_stub args; | |
4280 | static char message[] = "Error while finding exception callback hook:\n"; | |
c5aa993b | 4281 | |
c906108c SS |
4282 | args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr); |
4283 | args.msym = msym; | |
a0b3c4fd | 4284 | args.return_val = 0; |
c5aa993b | 4285 | |
c906108c | 4286 | recurse++; |
4efb68b1 | 4287 | catch_errors (cover_find_stub_with_shl_get, &args, message, |
a0b3c4fd JM |
4288 | RETURN_MASK_ALL); |
4289 | eh_notify_callback_addr = args.return_val; | |
c906108c | 4290 | recurse--; |
c5aa993b | 4291 | |
c906108c | 4292 | exception_catchpoints_are_fragile = 1; |
c5aa993b | 4293 | |
c906108c | 4294 | if (!eh_notify_callback_addr) |
c5aa993b JM |
4295 | { |
4296 | /* We can get here either if there is no plabel in the export list | |
1faa59a8 | 4297 | for the main image, or if something strange happened (?) */ |
c5aa993b JM |
4298 | warning ("Couldn't find a plabel (indirect function label) for the exception callback."); |
4299 | warning ("GDB will not be able to intercept exception events."); | |
4300 | return 0; | |
4301 | } | |
c906108c SS |
4302 | } |
4303 | else | |
4304 | exception_catchpoints_are_fragile = 0; | |
53a5351d | 4305 | #endif |
c906108c | 4306 | |
c906108c | 4307 | /* Now, look for the breakpointable routine in end.o */ |
c5aa993b | 4308 | /* This should also be available in the SOM symbol dict. if end.o linked in */ |
c906108c SS |
4309 | msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL); |
4310 | if (msym) | |
4311 | { | |
4312 | eh_break_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4313 | hp_cxx_exception_support = 1; | |
c5aa993b | 4314 | } |
c906108c SS |
4315 | else |
4316 | { | |
4317 | warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break); | |
4318 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4319 | warning ("GDB will be unable to intercept exception events."); | |
4320 | eh_break_addr = 0; | |
4321 | return 0; | |
4322 | } | |
4323 | ||
c906108c SS |
4324 | /* Next look for the catch enable flag provided in end.o */ |
4325 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
c5aa993b JM |
4326 | VAR_NAMESPACE, 0, (struct symtab **) NULL); |
4327 | if (sym) /* sometimes present in debug info */ | |
c906108c SS |
4328 | { |
4329 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym); | |
4330 | hp_cxx_exception_support = 1; | |
4331 | } | |
c5aa993b JM |
4332 | else |
4333 | /* otherwise look in SOM symbol dict. */ | |
c906108c SS |
4334 | { |
4335 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL); | |
4336 | if (msym) | |
c5aa993b JM |
4337 | { |
4338 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4339 | hp_cxx_exception_support = 1; | |
4340 | } | |
c906108c | 4341 | else |
c5aa993b JM |
4342 | { |
4343 | warning ("Unable to enable interception of exception catches."); | |
4344 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4345 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4346 | return 0; | |
4347 | } | |
c906108c SS |
4348 | } |
4349 | ||
c906108c SS |
4350 | /* Next look for the catch enable flag provided end.o */ |
4351 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
c5aa993b JM |
4352 | VAR_NAMESPACE, 0, (struct symtab **) NULL); |
4353 | if (sym) /* sometimes present in debug info */ | |
c906108c SS |
4354 | { |
4355 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym); | |
4356 | hp_cxx_exception_support = 1; | |
4357 | } | |
c5aa993b JM |
4358 | else |
4359 | /* otherwise look in SOM symbol dict. */ | |
c906108c SS |
4360 | { |
4361 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL); | |
4362 | if (msym) | |
c5aa993b JM |
4363 | { |
4364 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4365 | hp_cxx_exception_support = 1; | |
4366 | } | |
c906108c | 4367 | else |
c5aa993b JM |
4368 | { |
4369 | warning ("Unable to enable interception of exception throws."); | |
4370 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4371 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4372 | return 0; | |
4373 | } | |
c906108c SS |
4374 | } |
4375 | ||
c5aa993b JM |
4376 | /* Set the flags */ |
4377 | hp_cxx_exception_support = 2; /* everything worked so far */ | |
c906108c SS |
4378 | hp_cxx_exception_support_initialized = 1; |
4379 | exception_support_initialized = 1; | |
4380 | ||
4381 | return 1; | |
4382 | } | |
4383 | ||
4384 | /* Target operation for enabling or disabling interception of | |
4385 | exception events. | |
4386 | KIND is either EX_EVENT_THROW or EX_EVENT_CATCH | |
4387 | ENABLE is either 0 (disable) or 1 (enable). | |
4388 | Return value is NULL if no support found; | |
4389 | -1 if something went wrong, | |
4390 | or a pointer to a symtab/line struct if the breakpointable | |
c5aa993b | 4391 | address was found. */ |
c906108c | 4392 | |
c5aa993b | 4393 | struct symtab_and_line * |
fba45db2 | 4394 | child_enable_exception_callback (enum exception_event_kind kind, int enable) |
c906108c SS |
4395 | { |
4396 | char buf[4]; | |
4397 | ||
4398 | if (!exception_support_initialized || !hp_cxx_exception_support_initialized) | |
4399 | if (!initialize_hp_cxx_exception_support ()) | |
4400 | return NULL; | |
4401 | ||
4402 | switch (hp_cxx_exception_support) | |
4403 | { | |
c5aa993b JM |
4404 | case 0: |
4405 | /* Assuming no HP support at all */ | |
4406 | return NULL; | |
4407 | case 1: | |
4408 | /* HP support should be present, but something went wrong */ | |
4409 | return (struct symtab_and_line *) -1; /* yuck! */ | |
4410 | /* there may be other cases in the future */ | |
c906108c | 4411 | } |
c5aa993b | 4412 | |
c906108c | 4413 | /* Set the EH hook to point to the callback routine */ |
c5aa993b | 4414 | store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */ |
c906108c | 4415 | /* pai: (temp) FIXME should there be a pack operation first? */ |
c5aa993b | 4416 | if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */ |
c906108c SS |
4417 | { |
4418 | warning ("Could not write to target memory for exception event callback."); | |
4419 | warning ("Interception of exception events may not work."); | |
c5aa993b | 4420 | return (struct symtab_and_line *) -1; |
c906108c SS |
4421 | } |
4422 | if (enable) | |
4423 | { | |
c5aa993b | 4424 | /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */ |
39f77062 | 4425 | if (PIDGET (inferior_ptid) > 0) |
c5aa993b JM |
4426 | { |
4427 | if (setup_d_pid_in_inferior ()) | |
4428 | return (struct symtab_and_line *) -1; | |
4429 | } | |
c906108c | 4430 | else |
c5aa993b | 4431 | { |
104c1213 JM |
4432 | warning ("Internal error: Invalid inferior pid? Cannot intercept exception events."); |
4433 | return (struct symtab_and_line *) -1; | |
c5aa993b | 4434 | } |
c906108c | 4435 | } |
c5aa993b | 4436 | |
c906108c SS |
4437 | switch (kind) |
4438 | { | |
c5aa993b JM |
4439 | case EX_EVENT_THROW: |
4440 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
4441 | if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */ | |
4442 | { | |
4443 | warning ("Couldn't enable exception throw interception."); | |
4444 | return (struct symtab_and_line *) -1; | |
4445 | } | |
4446 | break; | |
4447 | case EX_EVENT_CATCH: | |
4448 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
4449 | if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */ | |
4450 | { | |
4451 | warning ("Couldn't enable exception catch interception."); | |
4452 | return (struct symtab_and_line *) -1; | |
4453 | } | |
4454 | break; | |
104c1213 JM |
4455 | default: |
4456 | error ("Request to enable unknown or unsupported exception event."); | |
c906108c | 4457 | } |
c5aa993b | 4458 | |
c906108c SS |
4459 | /* Copy break address into new sal struct, malloc'ing if needed. */ |
4460 | if (!break_callback_sal) | |
4461 | { | |
4462 | break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line)); | |
4463 | } | |
fe39c653 | 4464 | init_sal (break_callback_sal); |
c906108c SS |
4465 | break_callback_sal->symtab = NULL; |
4466 | break_callback_sal->pc = eh_break_addr; | |
4467 | break_callback_sal->line = 0; | |
4468 | break_callback_sal->end = eh_break_addr; | |
c5aa993b | 4469 | |
c906108c SS |
4470 | return break_callback_sal; |
4471 | } | |
4472 | ||
c5aa993b | 4473 | /* Record some information about the current exception event */ |
c906108c | 4474 | static struct exception_event_record current_ex_event; |
c5aa993b JM |
4475 | /* Convenience struct */ |
4476 | static struct symtab_and_line null_symtab_and_line = | |
4477 | {NULL, 0, 0, 0}; | |
c906108c SS |
4478 | |
4479 | /* Report current exception event. Returns a pointer to a record | |
4480 | that describes the kind of the event, where it was thrown from, | |
4481 | and where it will be caught. More information may be reported | |
c5aa993b | 4482 | in the future */ |
c906108c | 4483 | struct exception_event_record * |
fba45db2 | 4484 | child_get_current_exception_event (void) |
c906108c | 4485 | { |
c5aa993b JM |
4486 | CORE_ADDR event_kind; |
4487 | CORE_ADDR throw_addr; | |
4488 | CORE_ADDR catch_addr; | |
c906108c SS |
4489 | struct frame_info *fi, *curr_frame; |
4490 | int level = 1; | |
4491 | ||
c5aa993b | 4492 | curr_frame = get_current_frame (); |
c906108c SS |
4493 | if (!curr_frame) |
4494 | return (struct exception_event_record *) NULL; | |
4495 | ||
4496 | /* Go up one frame to __d_eh_notify_callback, because at the | |
4497 | point when this code is executed, there's garbage in the | |
4498 | arguments of __d_eh_break. */ | |
4499 | fi = find_relative_frame (curr_frame, &level); | |
4500 | if (level != 0) | |
4501 | return (struct exception_event_record *) NULL; | |
4502 | ||
0f7d239c | 4503 | select_frame (fi); |
c906108c SS |
4504 | |
4505 | /* Read in the arguments */ | |
4506 | /* __d_eh_notify_callback() is called with 3 arguments: | |
c5aa993b JM |
4507 | 1. event kind catch or throw |
4508 | 2. the target address if known | |
4509 | 3. a flag -- not sure what this is. pai/1997-07-17 */ | |
4510 | event_kind = read_register (ARG0_REGNUM); | |
c906108c SS |
4511 | catch_addr = read_register (ARG1_REGNUM); |
4512 | ||
4513 | /* Now go down to a user frame */ | |
4514 | /* For a throw, __d_eh_break is called by | |
c5aa993b JM |
4515 | __d_eh_notify_callback which is called by |
4516 | __notify_throw which is called | |
4517 | from user code. | |
c906108c | 4518 | For a catch, __d_eh_break is called by |
c5aa993b JM |
4519 | __d_eh_notify_callback which is called by |
4520 | <stackwalking stuff> which is called by | |
4521 | __throw__<stuff> or __rethrow_<stuff> which is called | |
4522 | from user code. */ | |
4523 | /* FIXME: Don't use such magic numbers; search for the frames */ | |
c906108c SS |
4524 | level = (event_kind == EX_EVENT_THROW) ? 3 : 4; |
4525 | fi = find_relative_frame (curr_frame, &level); | |
4526 | if (level != 0) | |
4527 | return (struct exception_event_record *) NULL; | |
4528 | ||
0f7d239c | 4529 | select_frame (fi); |
c906108c SS |
4530 | throw_addr = fi->pc; |
4531 | ||
4532 | /* Go back to original (top) frame */ | |
0f7d239c | 4533 | select_frame (curr_frame); |
c906108c SS |
4534 | |
4535 | current_ex_event.kind = (enum exception_event_kind) event_kind; | |
4536 | current_ex_event.throw_sal = find_pc_line (throw_addr, 1); | |
4537 | current_ex_event.catch_sal = find_pc_line (catch_addr, 1); | |
4538 | ||
4539 | return ¤t_ex_event; | |
4540 | } | |
4541 | ||
9a043c1d AC |
4542 | /* Instead of this nasty cast, add a method pvoid() that prints out a |
4543 | host VOID data type (remember %p isn't portable). */ | |
4544 | ||
4545 | static CORE_ADDR | |
4546 | hppa_pointer_to_address_hack (void *ptr) | |
4547 | { | |
4548 | gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr)); | |
4549 | return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr); | |
4550 | } | |
4551 | ||
c906108c | 4552 | static void |
fba45db2 | 4553 | unwind_command (char *exp, int from_tty) |
c906108c SS |
4554 | { |
4555 | CORE_ADDR address; | |
4556 | struct unwind_table_entry *u; | |
4557 | ||
4558 | /* If we have an expression, evaluate it and use it as the address. */ | |
4559 | ||
4560 | if (exp != 0 && *exp != 0) | |
4561 | address = parse_and_eval_address (exp); | |
4562 | else | |
4563 | return; | |
4564 | ||
4565 | u = find_unwind_entry (address); | |
4566 | ||
4567 | if (!u) | |
4568 | { | |
4569 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
4570 | return; | |
4571 | } | |
4572 | ||
ce414844 | 4573 | printf_unfiltered ("unwind_table_entry (0x%s):\n", |
9a043c1d | 4574 | paddr_nz (hppa_pointer_to_address_hack (u))); |
c906108c SS |
4575 | |
4576 | printf_unfiltered ("\tregion_start = "); | |
4577 | print_address (u->region_start, gdb_stdout); | |
4578 | ||
4579 | printf_unfiltered ("\n\tregion_end = "); | |
4580 | print_address (u->region_end, gdb_stdout); | |
4581 | ||
c906108c | 4582 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
c906108c SS |
4583 | |
4584 | printf_unfiltered ("\n\tflags ="); | |
4585 | pif (Cannot_unwind); | |
4586 | pif (Millicode); | |
4587 | pif (Millicode_save_sr0); | |
4588 | pif (Entry_SR); | |
4589 | pif (Args_stored); | |
4590 | pif (Variable_Frame); | |
4591 | pif (Separate_Package_Body); | |
4592 | pif (Frame_Extension_Millicode); | |
4593 | pif (Stack_Overflow_Check); | |
4594 | pif (Two_Instruction_SP_Increment); | |
4595 | pif (Ada_Region); | |
4596 | pif (Save_SP); | |
4597 | pif (Save_RP); | |
4598 | pif (Save_MRP_in_frame); | |
4599 | pif (extn_ptr_defined); | |
4600 | pif (Cleanup_defined); | |
4601 | pif (MPE_XL_interrupt_marker); | |
4602 | pif (HP_UX_interrupt_marker); | |
4603 | pif (Large_frame); | |
4604 | ||
4605 | putchar_unfiltered ('\n'); | |
4606 | ||
c906108c | 4607 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
c906108c SS |
4608 | |
4609 | pin (Region_description); | |
4610 | pin (Entry_FR); | |
4611 | pin (Entry_GR); | |
4612 | pin (Total_frame_size); | |
4613 | } | |
c906108c SS |
4614 | |
4615 | #ifdef PREPARE_TO_PROCEED | |
4616 | ||
4617 | /* If the user has switched threads, and there is a breakpoint | |
4618 | at the old thread's pc location, then switch to that thread | |
4619 | and return TRUE, else return FALSE and don't do a thread | |
4620 | switch (or rather, don't seem to have done a thread switch). | |
4621 | ||
4622 | Ptrace-based gdb will always return FALSE to the thread-switch | |
4623 | query, and thus also to PREPARE_TO_PROCEED. | |
4624 | ||
4625 | The important thing is whether there is a BPT instruction, | |
4626 | not how many user breakpoints there are. So we have to worry | |
4627 | about things like these: | |
4628 | ||
4629 | o Non-bp stop -- NO | |
4630 | ||
4631 | o User hits bp, no switch -- NO | |
4632 | ||
4633 | o User hits bp, switches threads -- YES | |
4634 | ||
4635 | o User hits bp, deletes bp, switches threads -- NO | |
4636 | ||
4637 | o User hits bp, deletes one of two or more bps | |
c5aa993b | 4638 | at that PC, user switches threads -- YES |
c906108c SS |
4639 | |
4640 | o Plus, since we're buffering events, the user may have hit a | |
c5aa993b JM |
4641 | breakpoint, deleted the breakpoint and then gotten another |
4642 | hit on that same breakpoint on another thread which | |
4643 | actually hit before the delete. (FIXME in breakpoint.c | |
4644 | so that "dead" breakpoints are ignored?) -- NO | |
c906108c SS |
4645 | |
4646 | For these reasons, we have to violate information hiding and | |
4647 | call "breakpoint_here_p". If core gdb thinks there is a bpt | |
4648 | here, that's what counts, as core gdb is the one which is | |
e02bc4cc DS |
4649 | putting the BPT instruction in and taking it out. |
4650 | ||
4651 | Note that this implementation is potentially redundant now that | |
8849f47d JL |
4652 | default_prepare_to_proceed() has been added. |
4653 | ||
4654 | FIXME This may not support switching threads after Ctrl-C | |
4655 | correctly. The default implementation does support this. */ | |
c906108c | 4656 | int |
fba45db2 | 4657 | hppa_prepare_to_proceed (void) |
c906108c SS |
4658 | { |
4659 | pid_t old_thread; | |
4660 | pid_t current_thread; | |
4661 | ||
39f77062 | 4662 | old_thread = hppa_switched_threads (PIDGET (inferior_ptid)); |
c906108c SS |
4663 | if (old_thread != 0) |
4664 | { | |
4665 | /* Switched over from "old_thread". Try to do | |
4666 | as little work as possible, 'cause mostly | |
4667 | we're going to switch back. */ | |
4668 | CORE_ADDR new_pc; | |
c5aa993b | 4669 | CORE_ADDR old_pc = read_pc (); |
c906108c SS |
4670 | |
4671 | /* Yuk, shouldn't use global to specify current | |
4672 | thread. But that's how gdb does it. */ | |
39f77062 KB |
4673 | current_thread = PIDGET (inferior_ptid); |
4674 | inferior_ptid = pid_to_ptid (old_thread); | |
c906108c | 4675 | |
c5aa993b JM |
4676 | new_pc = read_pc (); |
4677 | if (new_pc != old_pc /* If at same pc, no need */ | |
c906108c | 4678 | && breakpoint_here_p (new_pc)) |
c5aa993b | 4679 | { |
c906108c | 4680 | /* User hasn't deleted the BP. |
c5aa993b | 4681 | Return TRUE, finishing switch to "old_thread". */ |
c906108c SS |
4682 | flush_cached_frames (); |
4683 | registers_changed (); | |
4684 | #if 0 | |
c5aa993b | 4685 | printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n", |
39f77062 | 4686 | current_thread, PIDGET (inferior_ptid)); |
c906108c | 4687 | #endif |
c5aa993b | 4688 | |
c906108c | 4689 | return 1; |
c5aa993b | 4690 | } |
c906108c SS |
4691 | |
4692 | /* Otherwise switch back to the user-chosen thread. */ | |
39f77062 | 4693 | inferior_ptid = pid_to_ptid (current_thread); |
c5aa993b | 4694 | new_pc = read_pc (); /* Re-prime register cache */ |
c906108c SS |
4695 | } |
4696 | ||
4697 | return 0; | |
4698 | } | |
4699 | #endif /* PREPARE_TO_PROCEED */ | |
4700 | ||
c2c6d25f | 4701 | void |
fba45db2 | 4702 | hppa_skip_permanent_breakpoint (void) |
c2c6d25f JM |
4703 | { |
4704 | /* To step over a breakpoint instruction on the PA takes some | |
4705 | fiddling with the instruction address queue. | |
4706 | ||
4707 | When we stop at a breakpoint, the IA queue front (the instruction | |
4708 | we're executing now) points at the breakpoint instruction, and | |
4709 | the IA queue back (the next instruction to execute) points to | |
4710 | whatever instruction we would execute after the breakpoint, if it | |
4711 | were an ordinary instruction. This is the case even if the | |
4712 | breakpoint is in the delay slot of a branch instruction. | |
4713 | ||
4714 | Clearly, to step past the breakpoint, we need to set the queue | |
4715 | front to the back. But what do we put in the back? What | |
4716 | instruction comes after that one? Because of the branch delay | |
4717 | slot, the next insn is always at the back + 4. */ | |
4718 | write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM)); | |
4719 | write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM)); | |
4720 | ||
4721 | write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4); | |
4722 | /* We can leave the tail's space the same, since there's no jump. */ | |
4723 | } | |
4724 | ||
1cdb71fe JL |
4725 | /* Copy the function value from VALBUF into the proper location |
4726 | for a function return. | |
4727 | ||
4728 | Called only in the context of the "return" command. */ | |
4729 | ||
4730 | void | |
4731 | hppa_store_return_value (struct type *type, char *valbuf) | |
4732 | { | |
4733 | /* For software floating point, the return value goes into the | |
4734 | integer registers. But we do not have any flag to key this on, | |
4735 | so we always store the value into the integer registers. | |
4736 | ||
4737 | If its a float value, then we also store it into the floating | |
4738 | point registers. */ | |
73937e03 AC |
4739 | deprecated_write_register_bytes (REGISTER_BYTE (28) |
4740 | + (TYPE_LENGTH (type) > 4 | |
4741 | ? (8 - TYPE_LENGTH (type)) | |
4742 | : (4 - TYPE_LENGTH (type))), | |
4743 | valbuf, TYPE_LENGTH (type)); | |
1cdb71fe | 4744 | if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT) |
73937e03 AC |
4745 | deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM), |
4746 | valbuf, TYPE_LENGTH (type)); | |
1cdb71fe JL |
4747 | } |
4748 | ||
4749 | /* Copy the function's return value into VALBUF. | |
4750 | ||
4751 | This function is called only in the context of "target function calls", | |
4752 | ie. when the debugger forces a function to be called in the child, and | |
4753 | when the debugger forces a fucntion to return prematurely via the | |
4754 | "return" command. */ | |
4755 | ||
4756 | void | |
4757 | hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf) | |
4758 | { | |
4759 | if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT) | |
4760 | memcpy (valbuf, | |
4761 | (char *)regbuf + REGISTER_BYTE (FP4_REGNUM), | |
4762 | TYPE_LENGTH (type)); | |
4763 | else | |
4764 | memcpy (valbuf, | |
4765 | ((char *)regbuf | |
4766 | + REGISTER_BYTE (28) | |
4767 | + (TYPE_LENGTH (type) > 4 | |
4768 | ? (8 - TYPE_LENGTH (type)) | |
4769 | : (4 - TYPE_LENGTH (type)))), | |
4770 | TYPE_LENGTH (type)); | |
4771 | } | |
4facf7e8 | 4772 | |
d709c020 JB |
4773 | int |
4774 | hppa_reg_struct_has_addr (int gcc_p, struct type *type) | |
4775 | { | |
4776 | /* On the PA, any pass-by-value structure > 8 bytes is actually passed | |
4777 | via a pointer regardless of its type or the compiler used. */ | |
4778 | return (TYPE_LENGTH (type) > 8); | |
4779 | } | |
4780 | ||
4781 | int | |
4782 | hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs) | |
4783 | { | |
4784 | /* Stack grows upward */ | |
4785 | return (lhs > rhs); | |
4786 | } | |
4787 | ||
4788 | CORE_ADDR | |
4789 | hppa_stack_align (CORE_ADDR sp) | |
4790 | { | |
4791 | /* elz: adjust the quantity to the next highest value which is | |
4792 | 64-bit aligned. This is used in valops.c, when the sp is adjusted. | |
4793 | On hppa the sp must always be kept 64-bit aligned */ | |
4794 | return ((sp % 8) ? (sp + 7) & -8 : sp); | |
4795 | } | |
4796 | ||
4797 | int | |
4798 | hppa_pc_requires_run_before_use (CORE_ADDR pc) | |
4799 | { | |
4800 | /* Sometimes we may pluck out a minimal symbol that has a negative address. | |
4801 | ||
4802 | An example of this occurs when an a.out is linked against a foo.sl. | |
4803 | The foo.sl defines a global bar(), and the a.out declares a signature | |
4804 | for bar(). However, the a.out doesn't directly call bar(), but passes | |
4805 | its address in another call. | |
4806 | ||
4807 | If you have this scenario and attempt to "break bar" before running, | |
4808 | gdb will find a minimal symbol for bar() in the a.out. But that | |
4809 | symbol's address will be negative. What this appears to denote is | |
4810 | an index backwards from the base of the procedure linkage table (PLT) | |
4811 | into the data linkage table (DLT), the end of which is contiguous | |
4812 | with the start of the PLT. This is clearly not a valid address for | |
4813 | us to set a breakpoint on. | |
4814 | ||
4815 | Note that one must be careful in how one checks for a negative address. | |
4816 | 0xc0000000 is a legitimate address of something in a shared text | |
4817 | segment, for example. Since I don't know what the possible range | |
4818 | is of these "really, truly negative" addresses that come from the | |
4819 | minimal symbols, I'm resorting to the gross hack of checking the | |
4820 | top byte of the address for all 1's. Sigh. */ | |
4821 | ||
4822 | return (!target_has_stack && (pc & 0xFF000000)); | |
4823 | } | |
4824 | ||
4825 | int | |
4826 | hppa_instruction_nullified (void) | |
4827 | { | |
4828 | /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would | |
4829 | avoid the type cast. I'm leaving it as is for now as I'm doing | |
4830 | semi-mechanical multiarching-related changes. */ | |
4831 | const int ipsw = (int) read_register (IPSW_REGNUM); | |
4832 | const int flags = (int) read_register (FLAGS_REGNUM); | |
4833 | ||
4834 | return ((ipsw & 0x00200000) && !(flags & 0x2)); | |
4835 | } | |
4836 | ||
60e1ff27 JB |
4837 | int |
4838 | hppa_register_raw_size (int reg_nr) | |
4839 | { | |
4840 | /* All registers have the same size. */ | |
4841 | return REGISTER_SIZE; | |
4842 | } | |
4843 | ||
d709c020 JB |
4844 | /* Index within the register vector of the first byte of the space i |
4845 | used for register REG_NR. */ | |
4846 | ||
4847 | int | |
4848 | hppa_register_byte (int reg_nr) | |
4849 | { | |
4850 | return reg_nr * 4; | |
4851 | } | |
4852 | ||
4853 | /* Return the GDB type object for the "standard" data type of data | |
4854 | in register N. */ | |
4855 | ||
4856 | struct type * | |
4857 | hppa_register_virtual_type (int reg_nr) | |
4858 | { | |
4859 | if (reg_nr < FP4_REGNUM) | |
4860 | return builtin_type_int; | |
4861 | else | |
4862 | return builtin_type_float; | |
4863 | } | |
4864 | ||
4865 | /* Store the address of the place in which to copy the structure the | |
4866 | subroutine will return. This is called from call_function. */ | |
4867 | ||
4868 | void | |
4869 | hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
4870 | { | |
4871 | write_register (28, addr); | |
4872 | } | |
4873 | ||
60383d10 JB |
4874 | CORE_ADDR |
4875 | hppa_extract_struct_value_address (char *regbuf) | |
4876 | { | |
4877 | /* Extract from an array REGBUF containing the (raw) register state | |
4878 | the address in which a function should return its structure value, | |
4879 | as a CORE_ADDR (or an expression that can be used as one). */ | |
4880 | /* FIXME: brobecker 2002-12-26. | |
4881 | The current implementation is historical, but we should eventually | |
4882 | implement it in a more robust manner as it relies on the fact that | |
4883 | the address size is equal to the size of an int* _on the host_... | |
4884 | One possible implementation that crossed my mind is to use | |
4885 | extract_address. */ | |
4886 | return (*(int *)(regbuf + REGISTER_BYTE (28))); | |
4887 | } | |
4888 | ||
d709c020 JB |
4889 | /* Return True if REGNUM is not a register available to the user |
4890 | through ptrace(). */ | |
4891 | ||
4892 | int | |
4893 | hppa_cannot_store_register (int regnum) | |
4894 | { | |
4895 | return (regnum == 0 | |
4896 | || regnum == PCSQ_HEAD_REGNUM | |
4897 | || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM) | |
4898 | || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM)); | |
4899 | ||
4900 | } | |
4901 | ||
4902 | CORE_ADDR | |
4903 | hppa_frame_args_address (struct frame_info *fi) | |
4904 | { | |
4905 | return fi->frame; | |
4906 | } | |
4907 | ||
4908 | CORE_ADDR | |
4909 | hppa_frame_locals_address (struct frame_info *fi) | |
4910 | { | |
4911 | return fi->frame; | |
4912 | } | |
4913 | ||
60383d10 JB |
4914 | int |
4915 | hppa_frame_num_args (struct frame_info *frame) | |
4916 | { | |
4917 | /* We can't tell how many args there are now that the C compiler delays | |
4918 | popping them. */ | |
4919 | return -1; | |
4920 | } | |
4921 | ||
d709c020 JB |
4922 | CORE_ADDR |
4923 | hppa_smash_text_address (CORE_ADDR addr) | |
4924 | { | |
4925 | /* The low two bits of the PC on the PA contain the privilege level. | |
4926 | Some genius implementing a (non-GCC) compiler apparently decided | |
4927 | this means that "addresses" in a text section therefore include a | |
4928 | privilege level, and thus symbol tables should contain these bits. | |
4929 | This seems like a bonehead thing to do--anyway, it seems to work | |
4930 | for our purposes to just ignore those bits. */ | |
4931 | ||
4932 | return (addr &= ~0x3); | |
4933 | } | |
4934 | ||
e6e68f1f JB |
4935 | static struct gdbarch * |
4936 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
4937 | { | |
4938 | struct gdbarch *gdbarch; | |
59623e27 JB |
4939 | |
4940 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 4941 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
59623e27 | 4942 | { |
4be87837 DJ |
4943 | /* If it's a SOM file, assume it's HP/UX SOM. */ |
4944 | if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour) | |
4945 | info.osabi = GDB_OSABI_HPUX_SOM; | |
59623e27 | 4946 | } |
e6e68f1f JB |
4947 | |
4948 | /* find a candidate among the list of pre-declared architectures. */ | |
4949 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
4950 | if (arches != NULL) | |
4951 | return (arches->gdbarch); | |
4952 | ||
4953 | /* If none found, then allocate and initialize one. */ | |
4954 | gdbarch = gdbarch_alloc (&info, NULL); | |
4955 | ||
273f8429 | 4956 | /* Hook in ABI-specific overrides, if they have been registered. */ |
4be87837 | 4957 | gdbarch_init_osabi (info, gdbarch); |
273f8429 | 4958 | |
60383d10 JB |
4959 | set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr); |
4960 | set_gdbarch_function_start_offset (gdbarch, 0); | |
4961 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); | |
4962 | set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code); | |
4963 | set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline); | |
4964 | set_gdbarch_in_solib_return_trampoline (gdbarch, | |
4965 | hppa_in_solib_return_trampoline); | |
4966 | set_gdbarch_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call); | |
4967 | set_gdbarch_inner_than (gdbarch, hppa_inner_than); | |
4968 | set_gdbarch_stack_align (gdbarch, hppa_stack_align); | |
4969 | set_gdbarch_extra_stack_alignment_needed (gdbarch, 0); | |
4970 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
4971 | set_gdbarch_register_size (gdbarch, 4); | |
4972 | set_gdbarch_num_regs (gdbarch, hppa_num_regs); | |
4973 | set_gdbarch_fp_regnum (gdbarch, 3); | |
4974 | set_gdbarch_sp_regnum (gdbarch, 30); | |
4975 | set_gdbarch_fp0_regnum (gdbarch, 64); | |
4976 | set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM); | |
4977 | set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM); | |
4978 | set_gdbarch_register_raw_size (gdbarch, hppa_register_raw_size); | |
4979 | set_gdbarch_register_bytes (gdbarch, hppa_num_regs * 4); | |
4980 | set_gdbarch_register_byte (gdbarch, hppa_register_byte); | |
4981 | set_gdbarch_register_virtual_size (gdbarch, hppa_register_raw_size); | |
a0ed5532 AC |
4982 | set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4); |
4983 | set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8); | |
60383d10 JB |
4984 | set_gdbarch_register_virtual_type (gdbarch, hppa_register_virtual_type); |
4985 | set_gdbarch_store_struct_return (gdbarch, hppa_store_struct_return); | |
4986 | set_gdbarch_deprecated_extract_return_value (gdbarch, | |
4987 | hppa_extract_return_value); | |
4988 | set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention); | |
4989 | set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value); | |
4990 | set_gdbarch_deprecated_extract_struct_value_address | |
4991 | (gdbarch, hppa_extract_struct_value_address); | |
4992 | set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register); | |
e9582e71 | 4993 | set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info); |
60383d10 JB |
4994 | set_gdbarch_frame_chain (gdbarch, hppa_frame_chain); |
4995 | set_gdbarch_frame_chain_valid (gdbarch, hppa_frame_chain_valid); | |
4996 | set_gdbarch_frameless_function_invocation | |
4997 | (gdbarch, hppa_frameless_function_invocation); | |
8bedc050 | 4998 | set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc); |
60383d10 JB |
4999 | set_gdbarch_frame_args_address (gdbarch, hppa_frame_args_address); |
5000 | set_gdbarch_frame_locals_address (gdbarch, hppa_frame_locals_address); | |
5001 | set_gdbarch_frame_num_args (gdbarch, hppa_frame_num_args); | |
5002 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
f3824013 | 5003 | /* set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame); */ |
749b82f6 | 5004 | set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame); |
60383d10 JB |
5005 | set_gdbarch_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28); |
5006 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
5007 | /* set_gdbarch_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */ | |
5008 | set_gdbarch_push_arguments (gdbarch, hppa_push_arguments); | |
5009 | set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address); | |
5010 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
5011 | set_gdbarch_read_pc (gdbarch, hppa_target_read_pc); | |
5012 | set_gdbarch_write_pc (gdbarch, hppa_target_write_pc); | |
5013 | set_gdbarch_read_fp (gdbarch, hppa_target_read_fp); | |
60383d10 | 5014 | |
e6e68f1f JB |
5015 | return gdbarch; |
5016 | } | |
5017 | ||
5018 | static void | |
5019 | hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
5020 | { | |
5021 | /* Nothing to print for the moment. */ | |
5022 | } | |
5023 | ||
4facf7e8 JB |
5024 | void |
5025 | _initialize_hppa_tdep (void) | |
5026 | { | |
5027 | struct cmd_list_element *c; | |
5028 | void break_at_finish_command (char *arg, int from_tty); | |
5029 | void tbreak_at_finish_command (char *arg, int from_tty); | |
5030 | void break_at_finish_at_depth_command (char *arg, int from_tty); | |
5031 | ||
e6e68f1f | 5032 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
4facf7e8 JB |
5033 | tm_print_insn = print_insn_hppa; |
5034 | ||
5035 | add_cmd ("unwind", class_maintenance, unwind_command, | |
5036 | "Print unwind table entry at given address.", | |
5037 | &maintenanceprintlist); | |
5038 | ||
5039 | deprecate_cmd (add_com ("xbreak", class_breakpoint, | |
5040 | break_at_finish_command, | |
5041 | concat ("Set breakpoint at procedure exit. \n\ | |
5042 | Argument may be function name, or \"*\" and an address.\n\ | |
5043 | If function is specified, break at end of code for that function.\n\ | |
5044 | If an address is specified, break at the end of the function that contains \n\ | |
5045 | that exact address.\n", | |
5046 | "With no arg, uses current execution address of selected stack frame.\n\ | |
5047 | This is useful for breaking on return to a stack frame.\n\ | |
5048 | \n\ | |
5049 | Multiple breakpoints at one place are permitted, and useful if conditional.\n\ | |
5050 | \n\ | |
5051 | Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL); | |
5052 | deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL); | |
5053 | deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL); | |
5054 | deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL); | |
5055 | deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL); | |
5056 | ||
5057 | deprecate_cmd (c = add_com ("txbreak", class_breakpoint, | |
5058 | tbreak_at_finish_command, | |
5059 | "Set temporary breakpoint at procedure exit. Either there should\n\ | |
5060 | be no argument or the argument must be a depth.\n"), NULL); | |
5061 | set_cmd_completer (c, location_completer); | |
5062 | ||
5063 | if (xdb_commands) | |
5064 | deprecate_cmd (add_com ("bx", class_breakpoint, | |
5065 | break_at_finish_at_depth_command, | |
5066 | "Set breakpoint at procedure exit. Either there should\n\ | |
5067 | be no argument or the argument must be a depth.\n"), NULL); | |
5068 | } | |
5069 |