]>
Commit | Line | Data |
---|---|---|
ed9a39eb | 1 | /* Common target dependent code for GDB on ARM systems. |
0fd88904 | 2 | |
0b302171 JB |
3 | Copyright (C) 1988-1989, 1991-1993, 1995-1996, 1998-2012 Free |
4 | Software Foundation, Inc. | |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c | 20 | |
0baeab03 PA |
21 | #include "defs.h" |
22 | ||
0963b4bd | 23 | #include <ctype.h> /* XXX for isupper (). */ |
34e8f22d | 24 | |
c906108c SS |
25 | #include "frame.h" |
26 | #include "inferior.h" | |
27 | #include "gdbcmd.h" | |
28 | #include "gdbcore.h" | |
c906108c | 29 | #include "gdb_string.h" |
0963b4bd | 30 | #include "dis-asm.h" /* For register styles. */ |
4e052eda | 31 | #include "regcache.h" |
54483882 | 32 | #include "reggroups.h" |
d16aafd8 | 33 | #include "doublest.h" |
fd0407d6 | 34 | #include "value.h" |
34e8f22d | 35 | #include "arch-utils.h" |
4be87837 | 36 | #include "osabi.h" |
eb5492fa DJ |
37 | #include "frame-unwind.h" |
38 | #include "frame-base.h" | |
39 | #include "trad-frame.h" | |
842e1f1e DJ |
40 | #include "objfiles.h" |
41 | #include "dwarf2-frame.h" | |
e4c16157 | 42 | #include "gdbtypes.h" |
29d73ae4 | 43 | #include "prologue-value.h" |
25f8c692 | 44 | #include "remote.h" |
123dc839 DJ |
45 | #include "target-descriptions.h" |
46 | #include "user-regs.h" | |
0e9e9abd | 47 | #include "observer.h" |
34e8f22d RE |
48 | |
49 | #include "arm-tdep.h" | |
26216b98 | 50 | #include "gdb/sim-arm.h" |
34e8f22d | 51 | |
082fc60d RE |
52 | #include "elf-bfd.h" |
53 | #include "coff/internal.h" | |
97e03143 | 54 | #include "elf/arm.h" |
c906108c | 55 | |
26216b98 | 56 | #include "gdb_assert.h" |
60c5725c | 57 | #include "vec.h" |
26216b98 | 58 | |
72508ac0 PO |
59 | #include "record.h" |
60 | ||
9779414d | 61 | #include "features/arm-with-m.c" |
25f8c692 | 62 | #include "features/arm-with-m-fpa-layout.c" |
3184d3f9 | 63 | #include "features/arm-with-m-vfp-d16.c" |
ef7e8358 UW |
64 | #include "features/arm-with-iwmmxt.c" |
65 | #include "features/arm-with-vfpv2.c" | |
66 | #include "features/arm-with-vfpv3.c" | |
67 | #include "features/arm-with-neon.c" | |
9779414d | 68 | |
6529d2dd AC |
69 | static int arm_debug; |
70 | ||
082fc60d RE |
71 | /* Macros for setting and testing a bit in a minimal symbol that marks |
72 | it as Thumb function. The MSB of the minimal symbol's "info" field | |
f594e5e9 | 73 | is used for this purpose. |
082fc60d RE |
74 | |
75 | MSYMBOL_SET_SPECIAL Actually sets the "special" bit. | |
f594e5e9 | 76 | MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */ |
082fc60d | 77 | |
0963b4bd | 78 | #define MSYMBOL_SET_SPECIAL(msym) \ |
b887350f | 79 | MSYMBOL_TARGET_FLAG_1 (msym) = 1 |
082fc60d RE |
80 | |
81 | #define MSYMBOL_IS_SPECIAL(msym) \ | |
b887350f | 82 | MSYMBOL_TARGET_FLAG_1 (msym) |
082fc60d | 83 | |
60c5725c DJ |
84 | /* Per-objfile data used for mapping symbols. */ |
85 | static const struct objfile_data *arm_objfile_data_key; | |
86 | ||
87 | struct arm_mapping_symbol | |
88 | { | |
89 | bfd_vma value; | |
90 | char type; | |
91 | }; | |
92 | typedef struct arm_mapping_symbol arm_mapping_symbol_s; | |
93 | DEF_VEC_O(arm_mapping_symbol_s); | |
94 | ||
95 | struct arm_per_objfile | |
96 | { | |
97 | VEC(arm_mapping_symbol_s) **section_maps; | |
98 | }; | |
99 | ||
afd7eef0 RE |
100 | /* The list of available "set arm ..." and "show arm ..." commands. */ |
101 | static struct cmd_list_element *setarmcmdlist = NULL; | |
102 | static struct cmd_list_element *showarmcmdlist = NULL; | |
103 | ||
fd50bc42 RE |
104 | /* The type of floating-point to use. Keep this in sync with enum |
105 | arm_float_model, and the help string in _initialize_arm_tdep. */ | |
40478521 | 106 | static const char *const fp_model_strings[] = |
fd50bc42 RE |
107 | { |
108 | "auto", | |
109 | "softfpa", | |
110 | "fpa", | |
111 | "softvfp", | |
28e97307 DJ |
112 | "vfp", |
113 | NULL | |
fd50bc42 RE |
114 | }; |
115 | ||
116 | /* A variable that can be configured by the user. */ | |
117 | static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO; | |
118 | static const char *current_fp_model = "auto"; | |
119 | ||
28e97307 | 120 | /* The ABI to use. Keep this in sync with arm_abi_kind. */ |
40478521 | 121 | static const char *const arm_abi_strings[] = |
28e97307 DJ |
122 | { |
123 | "auto", | |
124 | "APCS", | |
125 | "AAPCS", | |
126 | NULL | |
127 | }; | |
128 | ||
129 | /* A variable that can be configured by the user. */ | |
130 | static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO; | |
131 | static const char *arm_abi_string = "auto"; | |
132 | ||
0428b8f5 | 133 | /* The execution mode to assume. */ |
40478521 | 134 | static const char *const arm_mode_strings[] = |
0428b8f5 DJ |
135 | { |
136 | "auto", | |
137 | "arm", | |
68770265 MGD |
138 | "thumb", |
139 | NULL | |
0428b8f5 DJ |
140 | }; |
141 | ||
142 | static const char *arm_fallback_mode_string = "auto"; | |
143 | static const char *arm_force_mode_string = "auto"; | |
144 | ||
18819fa6 UW |
145 | /* Internal override of the execution mode. -1 means no override, |
146 | 0 means override to ARM mode, 1 means override to Thumb mode. | |
147 | The effect is the same as if arm_force_mode has been set by the | |
148 | user (except the internal override has precedence over a user's | |
149 | arm_force_mode override). */ | |
150 | static int arm_override_mode = -1; | |
151 | ||
94c30b78 | 152 | /* Number of different reg name sets (options). */ |
afd7eef0 | 153 | static int num_disassembly_options; |
bc90b915 | 154 | |
f32bf4a4 YQ |
155 | /* The standard register names, and all the valid aliases for them. Note |
156 | that `fp', `sp' and `pc' are not added in this alias list, because they | |
157 | have been added as builtin user registers in | |
158 | std-regs.c:_initialize_frame_reg. */ | |
123dc839 DJ |
159 | static const struct |
160 | { | |
161 | const char *name; | |
162 | int regnum; | |
163 | } arm_register_aliases[] = { | |
164 | /* Basic register numbers. */ | |
165 | { "r0", 0 }, | |
166 | { "r1", 1 }, | |
167 | { "r2", 2 }, | |
168 | { "r3", 3 }, | |
169 | { "r4", 4 }, | |
170 | { "r5", 5 }, | |
171 | { "r6", 6 }, | |
172 | { "r7", 7 }, | |
173 | { "r8", 8 }, | |
174 | { "r9", 9 }, | |
175 | { "r10", 10 }, | |
176 | { "r11", 11 }, | |
177 | { "r12", 12 }, | |
178 | { "r13", 13 }, | |
179 | { "r14", 14 }, | |
180 | { "r15", 15 }, | |
181 | /* Synonyms (argument and variable registers). */ | |
182 | { "a1", 0 }, | |
183 | { "a2", 1 }, | |
184 | { "a3", 2 }, | |
185 | { "a4", 3 }, | |
186 | { "v1", 4 }, | |
187 | { "v2", 5 }, | |
188 | { "v3", 6 }, | |
189 | { "v4", 7 }, | |
190 | { "v5", 8 }, | |
191 | { "v6", 9 }, | |
192 | { "v7", 10 }, | |
193 | { "v8", 11 }, | |
194 | /* Other platform-specific names for r9. */ | |
195 | { "sb", 9 }, | |
196 | { "tr", 9 }, | |
197 | /* Special names. */ | |
198 | { "ip", 12 }, | |
123dc839 | 199 | { "lr", 14 }, |
123dc839 DJ |
200 | /* Names used by GCC (not listed in the ARM EABI). */ |
201 | { "sl", 10 }, | |
123dc839 DJ |
202 | /* A special name from the older ATPCS. */ |
203 | { "wr", 7 }, | |
204 | }; | |
bc90b915 | 205 | |
123dc839 | 206 | static const char *const arm_register_names[] = |
da59e081 JM |
207 | {"r0", "r1", "r2", "r3", /* 0 1 2 3 */ |
208 | "r4", "r5", "r6", "r7", /* 4 5 6 7 */ | |
209 | "r8", "r9", "r10", "r11", /* 8 9 10 11 */ | |
210 | "r12", "sp", "lr", "pc", /* 12 13 14 15 */ | |
211 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ | |
212 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
94c30b78 | 213 | "fps", "cpsr" }; /* 24 25 */ |
ed9a39eb | 214 | |
afd7eef0 RE |
215 | /* Valid register name styles. */ |
216 | static const char **valid_disassembly_styles; | |
ed9a39eb | 217 | |
afd7eef0 RE |
218 | /* Disassembly style to use. Default to "std" register names. */ |
219 | static const char *disassembly_style; | |
96baa820 | 220 | |
ed9a39eb | 221 | /* This is used to keep the bfd arch_info in sync with the disassembly |
afd7eef0 RE |
222 | style. */ |
223 | static void set_disassembly_style_sfunc(char *, int, | |
ed9a39eb | 224 | struct cmd_list_element *); |
afd7eef0 | 225 | static void set_disassembly_style (void); |
ed9a39eb | 226 | |
b508a996 | 227 | static void convert_from_extended (const struct floatformat *, const void *, |
be8626e0 | 228 | void *, int); |
b508a996 | 229 | static void convert_to_extended (const struct floatformat *, void *, |
be8626e0 | 230 | const void *, int); |
ed9a39eb | 231 | |
05d1431c PA |
232 | static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch, |
233 | struct regcache *regcache, | |
234 | int regnum, gdb_byte *buf); | |
58d6951d DJ |
235 | static void arm_neon_quad_write (struct gdbarch *gdbarch, |
236 | struct regcache *regcache, | |
237 | int regnum, const gdb_byte *buf); | |
238 | ||
db24da6d YQ |
239 | static int thumb_insn_size (unsigned short inst1); |
240 | ||
9b8d791a | 241 | struct arm_prologue_cache |
c3b4394c | 242 | { |
eb5492fa DJ |
243 | /* The stack pointer at the time this frame was created; i.e. the |
244 | caller's stack pointer when this function was called. It is used | |
245 | to identify this frame. */ | |
246 | CORE_ADDR prev_sp; | |
247 | ||
4be43953 DJ |
248 | /* The frame base for this frame is just prev_sp - frame size. |
249 | FRAMESIZE is the distance from the frame pointer to the | |
250 | initial stack pointer. */ | |
eb5492fa | 251 | |
c3b4394c | 252 | int framesize; |
eb5492fa DJ |
253 | |
254 | /* The register used to hold the frame pointer for this frame. */ | |
c3b4394c | 255 | int framereg; |
eb5492fa DJ |
256 | |
257 | /* Saved register offsets. */ | |
258 | struct trad_frame_saved_reg *saved_regs; | |
c3b4394c | 259 | }; |
ed9a39eb | 260 | |
0d39a070 DJ |
261 | static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch, |
262 | CORE_ADDR prologue_start, | |
263 | CORE_ADDR prologue_end, | |
264 | struct arm_prologue_cache *cache); | |
265 | ||
cca44b1b JB |
266 | /* Architecture version for displaced stepping. This effects the behaviour of |
267 | certain instructions, and really should not be hard-wired. */ | |
268 | ||
269 | #define DISPLACED_STEPPING_ARCH_VERSION 5 | |
270 | ||
bc90b915 FN |
271 | /* Addresses for calling Thumb functions have the bit 0 set. |
272 | Here are some macros to test, set, or clear bit 0 of addresses. */ | |
273 | #define IS_THUMB_ADDR(addr) ((addr) & 1) | |
274 | #define MAKE_THUMB_ADDR(addr) ((addr) | 1) | |
275 | #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) | |
276 | ||
94c30b78 | 277 | /* Set to true if the 32-bit mode is in use. */ |
c906108c SS |
278 | |
279 | int arm_apcs_32 = 1; | |
280 | ||
9779414d DJ |
281 | /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */ |
282 | ||
478fd957 | 283 | int |
9779414d DJ |
284 | arm_psr_thumb_bit (struct gdbarch *gdbarch) |
285 | { | |
286 | if (gdbarch_tdep (gdbarch)->is_m) | |
287 | return XPSR_T; | |
288 | else | |
289 | return CPSR_T; | |
290 | } | |
291 | ||
b39cc962 DJ |
292 | /* Determine if FRAME is executing in Thumb mode. */ |
293 | ||
25b41d01 | 294 | int |
b39cc962 DJ |
295 | arm_frame_is_thumb (struct frame_info *frame) |
296 | { | |
297 | CORE_ADDR cpsr; | |
9779414d | 298 | ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame)); |
b39cc962 DJ |
299 | |
300 | /* Every ARM frame unwinder can unwind the T bit of the CPSR, either | |
301 | directly (from a signal frame or dummy frame) or by interpreting | |
302 | the saved LR (from a prologue or DWARF frame). So consult it and | |
303 | trust the unwinders. */ | |
304 | cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM); | |
305 | ||
9779414d | 306 | return (cpsr & t_bit) != 0; |
b39cc962 DJ |
307 | } |
308 | ||
60c5725c DJ |
309 | /* Callback for VEC_lower_bound. */ |
310 | ||
311 | static inline int | |
312 | arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs, | |
313 | const struct arm_mapping_symbol *rhs) | |
314 | { | |
315 | return lhs->value < rhs->value; | |
316 | } | |
317 | ||
f9d67f43 DJ |
318 | /* Search for the mapping symbol covering MEMADDR. If one is found, |
319 | return its type. Otherwise, return 0. If START is non-NULL, | |
320 | set *START to the location of the mapping symbol. */ | |
c906108c | 321 | |
f9d67f43 DJ |
322 | static char |
323 | arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start) | |
c906108c | 324 | { |
60c5725c | 325 | struct obj_section *sec; |
0428b8f5 | 326 | |
60c5725c DJ |
327 | /* If there are mapping symbols, consult them. */ |
328 | sec = find_pc_section (memaddr); | |
329 | if (sec != NULL) | |
330 | { | |
331 | struct arm_per_objfile *data; | |
332 | VEC(arm_mapping_symbol_s) *map; | |
aded6f54 PA |
333 | struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec), |
334 | 0 }; | |
60c5725c DJ |
335 | unsigned int idx; |
336 | ||
337 | data = objfile_data (sec->objfile, arm_objfile_data_key); | |
338 | if (data != NULL) | |
339 | { | |
340 | map = data->section_maps[sec->the_bfd_section->index]; | |
341 | if (!VEC_empty (arm_mapping_symbol_s, map)) | |
342 | { | |
343 | struct arm_mapping_symbol *map_sym; | |
344 | ||
345 | idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key, | |
346 | arm_compare_mapping_symbols); | |
347 | ||
348 | /* VEC_lower_bound finds the earliest ordered insertion | |
349 | point. If the following symbol starts at this exact | |
350 | address, we use that; otherwise, the preceding | |
351 | mapping symbol covers this address. */ | |
352 | if (idx < VEC_length (arm_mapping_symbol_s, map)) | |
353 | { | |
354 | map_sym = VEC_index (arm_mapping_symbol_s, map, idx); | |
355 | if (map_sym->value == map_key.value) | |
f9d67f43 DJ |
356 | { |
357 | if (start) | |
358 | *start = map_sym->value + obj_section_addr (sec); | |
359 | return map_sym->type; | |
360 | } | |
60c5725c DJ |
361 | } |
362 | ||
363 | if (idx > 0) | |
364 | { | |
365 | map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1); | |
f9d67f43 DJ |
366 | if (start) |
367 | *start = map_sym->value + obj_section_addr (sec); | |
368 | return map_sym->type; | |
60c5725c DJ |
369 | } |
370 | } | |
371 | } | |
372 | } | |
373 | ||
f9d67f43 DJ |
374 | return 0; |
375 | } | |
376 | ||
377 | /* Determine if the program counter specified in MEMADDR is in a Thumb | |
378 | function. This function should be called for addresses unrelated to | |
379 | any executing frame; otherwise, prefer arm_frame_is_thumb. */ | |
380 | ||
e3039479 | 381 | int |
9779414d | 382 | arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr) |
f9d67f43 | 383 | { |
f9d67f43 DJ |
384 | struct minimal_symbol *sym; |
385 | char type; | |
a42244db YQ |
386 | struct displaced_step_closure* dsc |
387 | = get_displaced_step_closure_by_addr(memaddr); | |
388 | ||
389 | /* If checking the mode of displaced instruction in copy area, the mode | |
390 | should be determined by instruction on the original address. */ | |
391 | if (dsc) | |
392 | { | |
393 | if (debug_displaced) | |
394 | fprintf_unfiltered (gdb_stdlog, | |
395 | "displaced: check mode of %.8lx instead of %.8lx\n", | |
396 | (unsigned long) dsc->insn_addr, | |
397 | (unsigned long) memaddr); | |
398 | memaddr = dsc->insn_addr; | |
399 | } | |
f9d67f43 DJ |
400 | |
401 | /* If bit 0 of the address is set, assume this is a Thumb address. */ | |
402 | if (IS_THUMB_ADDR (memaddr)) | |
403 | return 1; | |
404 | ||
18819fa6 UW |
405 | /* Respect internal mode override if active. */ |
406 | if (arm_override_mode != -1) | |
407 | return arm_override_mode; | |
408 | ||
f9d67f43 DJ |
409 | /* If the user wants to override the symbol table, let him. */ |
410 | if (strcmp (arm_force_mode_string, "arm") == 0) | |
411 | return 0; | |
412 | if (strcmp (arm_force_mode_string, "thumb") == 0) | |
413 | return 1; | |
414 | ||
9779414d DJ |
415 | /* ARM v6-M and v7-M are always in Thumb mode. */ |
416 | if (gdbarch_tdep (gdbarch)->is_m) | |
417 | return 1; | |
418 | ||
f9d67f43 DJ |
419 | /* If there are mapping symbols, consult them. */ |
420 | type = arm_find_mapping_symbol (memaddr, NULL); | |
421 | if (type) | |
422 | return type == 't'; | |
423 | ||
ed9a39eb | 424 | /* Thumb functions have a "special" bit set in minimal symbols. */ |
c906108c SS |
425 | sym = lookup_minimal_symbol_by_pc (memaddr); |
426 | if (sym) | |
0428b8f5 DJ |
427 | return (MSYMBOL_IS_SPECIAL (sym)); |
428 | ||
429 | /* If the user wants to override the fallback mode, let them. */ | |
430 | if (strcmp (arm_fallback_mode_string, "arm") == 0) | |
431 | return 0; | |
432 | if (strcmp (arm_fallback_mode_string, "thumb") == 0) | |
433 | return 1; | |
434 | ||
435 | /* If we couldn't find any symbol, but we're talking to a running | |
436 | target, then trust the current value of $cpsr. This lets | |
437 | "display/i $pc" always show the correct mode (though if there is | |
438 | a symbol table we will not reach here, so it still may not be | |
18819fa6 | 439 | displayed in the mode it will be executed). */ |
0428b8f5 | 440 | if (target_has_registers) |
18819fa6 | 441 | return arm_frame_is_thumb (get_current_frame ()); |
0428b8f5 DJ |
442 | |
443 | /* Otherwise we're out of luck; we assume ARM. */ | |
444 | return 0; | |
c906108c SS |
445 | } |
446 | ||
181c1381 | 447 | /* Remove useless bits from addresses in a running program. */ |
34e8f22d | 448 | static CORE_ADDR |
24568a2c | 449 | arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val) |
c906108c | 450 | { |
2ae28aa9 YQ |
451 | /* On M-profile devices, do not strip the low bit from EXC_RETURN |
452 | (the magic exception return address). */ | |
453 | if (gdbarch_tdep (gdbarch)->is_m | |
454 | && (val & 0xfffffff0) == 0xfffffff0) | |
455 | return val; | |
456 | ||
a3a2ee65 | 457 | if (arm_apcs_32) |
dd6be234 | 458 | return UNMAKE_THUMB_ADDR (val); |
c906108c | 459 | else |
a3a2ee65 | 460 | return (val & 0x03fffffc); |
c906108c SS |
461 | } |
462 | ||
181c1381 RE |
463 | /* When reading symbols, we need to zap the low bit of the address, |
464 | which may be set to 1 for Thumb functions. */ | |
34e8f22d | 465 | static CORE_ADDR |
24568a2c | 466 | arm_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR val) |
181c1381 RE |
467 | { |
468 | return val & ~1; | |
469 | } | |
470 | ||
0d39a070 | 471 | /* Return 1 if PC is the start of a compiler helper function which |
e0634ccf UW |
472 | can be safely ignored during prologue skipping. IS_THUMB is true |
473 | if the function is known to be a Thumb function due to the way it | |
474 | is being called. */ | |
0d39a070 | 475 | static int |
e0634ccf | 476 | skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb) |
0d39a070 | 477 | { |
e0634ccf | 478 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
0d39a070 | 479 | struct minimal_symbol *msym; |
0d39a070 DJ |
480 | |
481 | msym = lookup_minimal_symbol_by_pc (pc); | |
e0634ccf UW |
482 | if (msym != NULL |
483 | && SYMBOL_VALUE_ADDRESS (msym) == pc | |
484 | && SYMBOL_LINKAGE_NAME (msym) != NULL) | |
485 | { | |
486 | const char *name = SYMBOL_LINKAGE_NAME (msym); | |
0d39a070 | 487 | |
e0634ccf UW |
488 | /* The GNU linker's Thumb call stub to foo is named |
489 | __foo_from_thumb. */ | |
490 | if (strstr (name, "_from_thumb") != NULL) | |
491 | name += 2; | |
0d39a070 | 492 | |
e0634ccf UW |
493 | /* On soft-float targets, __truncdfsf2 is called to convert promoted |
494 | arguments to their argument types in non-prototyped | |
495 | functions. */ | |
496 | if (strncmp (name, "__truncdfsf2", strlen ("__truncdfsf2")) == 0) | |
497 | return 1; | |
498 | if (strncmp (name, "__aeabi_d2f", strlen ("__aeabi_d2f")) == 0) | |
499 | return 1; | |
0d39a070 | 500 | |
e0634ccf UW |
501 | /* Internal functions related to thread-local storage. */ |
502 | if (strncmp (name, "__tls_get_addr", strlen ("__tls_get_addr")) == 0) | |
503 | return 1; | |
504 | if (strncmp (name, "__aeabi_read_tp", strlen ("__aeabi_read_tp")) == 0) | |
505 | return 1; | |
506 | } | |
507 | else | |
508 | { | |
509 | /* If we run against a stripped glibc, we may be unable to identify | |
510 | special functions by name. Check for one important case, | |
511 | __aeabi_read_tp, by comparing the *code* against the default | |
512 | implementation (this is hand-written ARM assembler in glibc). */ | |
513 | ||
514 | if (!is_thumb | |
515 | && read_memory_unsigned_integer (pc, 4, byte_order_for_code) | |
516 | == 0xe3e00a0f /* mov r0, #0xffff0fff */ | |
517 | && read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code) | |
518 | == 0xe240f01f) /* sub pc, r0, #31 */ | |
519 | return 1; | |
520 | } | |
ec3d575a | 521 | |
0d39a070 DJ |
522 | return 0; |
523 | } | |
524 | ||
525 | /* Support routines for instruction parsing. */ | |
526 | #define submask(x) ((1L << ((x) + 1)) - 1) | |
527 | #define bit(obj,st) (((obj) >> (st)) & 1) | |
528 | #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) | |
529 | #define sbits(obj,st,fn) \ | |
530 | ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st)))) | |
531 | #define BranchDest(addr,instr) \ | |
532 | ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2))) | |
533 | ||
621c6d5b YQ |
534 | /* Extract the immediate from instruction movw/movt of encoding T. INSN1 is |
535 | the first 16-bit of instruction, and INSN2 is the second 16-bit of | |
536 | instruction. */ | |
537 | #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \ | |
538 | ((bits ((insn1), 0, 3) << 12) \ | |
539 | | (bits ((insn1), 10, 10) << 11) \ | |
540 | | (bits ((insn2), 12, 14) << 8) \ | |
541 | | bits ((insn2), 0, 7)) | |
542 | ||
543 | /* Extract the immediate from instruction movw/movt of encoding A. INSN is | |
544 | the 32-bit instruction. */ | |
545 | #define EXTRACT_MOVW_MOVT_IMM_A(insn) \ | |
546 | ((bits ((insn), 16, 19) << 12) \ | |
547 | | bits ((insn), 0, 11)) | |
548 | ||
ec3d575a UW |
549 | /* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */ |
550 | ||
551 | static unsigned int | |
552 | thumb_expand_immediate (unsigned int imm) | |
553 | { | |
554 | unsigned int count = imm >> 7; | |
555 | ||
556 | if (count < 8) | |
557 | switch (count / 2) | |
558 | { | |
559 | case 0: | |
560 | return imm & 0xff; | |
561 | case 1: | |
562 | return (imm & 0xff) | ((imm & 0xff) << 16); | |
563 | case 2: | |
564 | return ((imm & 0xff) << 8) | ((imm & 0xff) << 24); | |
565 | case 3: | |
566 | return (imm & 0xff) | ((imm & 0xff) << 8) | |
567 | | ((imm & 0xff) << 16) | ((imm & 0xff) << 24); | |
568 | } | |
569 | ||
570 | return (0x80 | (imm & 0x7f)) << (32 - count); | |
571 | } | |
572 | ||
573 | /* Return 1 if the 16-bit Thumb instruction INST might change | |
574 | control flow, 0 otherwise. */ | |
575 | ||
576 | static int | |
577 | thumb_instruction_changes_pc (unsigned short inst) | |
578 | { | |
579 | if ((inst & 0xff00) == 0xbd00) /* pop {rlist, pc} */ | |
580 | return 1; | |
581 | ||
582 | if ((inst & 0xf000) == 0xd000) /* conditional branch */ | |
583 | return 1; | |
584 | ||
585 | if ((inst & 0xf800) == 0xe000) /* unconditional branch */ | |
586 | return 1; | |
587 | ||
588 | if ((inst & 0xff00) == 0x4700) /* bx REG, blx REG */ | |
589 | return 1; | |
590 | ||
ad8b5167 UW |
591 | if ((inst & 0xff87) == 0x4687) /* mov pc, REG */ |
592 | return 1; | |
593 | ||
ec3d575a UW |
594 | if ((inst & 0xf500) == 0xb100) /* CBNZ or CBZ. */ |
595 | return 1; | |
596 | ||
597 | return 0; | |
598 | } | |
599 | ||
600 | /* Return 1 if the 32-bit Thumb instruction in INST1 and INST2 | |
601 | might change control flow, 0 otherwise. */ | |
602 | ||
603 | static int | |
604 | thumb2_instruction_changes_pc (unsigned short inst1, unsigned short inst2) | |
605 | { | |
606 | if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000) | |
607 | { | |
608 | /* Branches and miscellaneous control instructions. */ | |
609 | ||
610 | if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000) | |
611 | { | |
612 | /* B, BL, BLX. */ | |
613 | return 1; | |
614 | } | |
615 | else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00) | |
616 | { | |
617 | /* SUBS PC, LR, #imm8. */ | |
618 | return 1; | |
619 | } | |
620 | else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380) | |
621 | { | |
622 | /* Conditional branch. */ | |
623 | return 1; | |
624 | } | |
625 | ||
626 | return 0; | |
627 | } | |
628 | ||
629 | if ((inst1 & 0xfe50) == 0xe810) | |
630 | { | |
631 | /* Load multiple or RFE. */ | |
632 | ||
633 | if (bit (inst1, 7) && !bit (inst1, 8)) | |
634 | { | |
635 | /* LDMIA or POP */ | |
636 | if (bit (inst2, 15)) | |
637 | return 1; | |
638 | } | |
639 | else if (!bit (inst1, 7) && bit (inst1, 8)) | |
640 | { | |
641 | /* LDMDB */ | |
642 | if (bit (inst2, 15)) | |
643 | return 1; | |
644 | } | |
645 | else if (bit (inst1, 7) && bit (inst1, 8)) | |
646 | { | |
647 | /* RFEIA */ | |
648 | return 1; | |
649 | } | |
650 | else if (!bit (inst1, 7) && !bit (inst1, 8)) | |
651 | { | |
652 | /* RFEDB */ | |
653 | return 1; | |
654 | } | |
655 | ||
656 | return 0; | |
657 | } | |
658 | ||
659 | if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00) | |
660 | { | |
661 | /* MOV PC or MOVS PC. */ | |
662 | return 1; | |
663 | } | |
664 | ||
665 | if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000) | |
666 | { | |
667 | /* LDR PC. */ | |
668 | if (bits (inst1, 0, 3) == 15) | |
669 | return 1; | |
670 | if (bit (inst1, 7)) | |
671 | return 1; | |
672 | if (bit (inst2, 11)) | |
673 | return 1; | |
674 | if ((inst2 & 0x0fc0) == 0x0000) | |
675 | return 1; | |
676 | ||
677 | return 0; | |
678 | } | |
679 | ||
680 | if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000) | |
681 | { | |
682 | /* TBB. */ | |
683 | return 1; | |
684 | } | |
685 | ||
686 | if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010) | |
687 | { | |
688 | /* TBH. */ | |
689 | return 1; | |
690 | } | |
691 | ||
692 | return 0; | |
693 | } | |
694 | ||
29d73ae4 DJ |
695 | /* Analyze a Thumb prologue, looking for a recognizable stack frame |
696 | and frame pointer. Scan until we encounter a store that could | |
0d39a070 DJ |
697 | clobber the stack frame unexpectedly, or an unknown instruction. |
698 | Return the last address which is definitely safe to skip for an | |
699 | initial breakpoint. */ | |
c906108c SS |
700 | |
701 | static CORE_ADDR | |
29d73ae4 DJ |
702 | thumb_analyze_prologue (struct gdbarch *gdbarch, |
703 | CORE_ADDR start, CORE_ADDR limit, | |
704 | struct arm_prologue_cache *cache) | |
c906108c | 705 | { |
0d39a070 | 706 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
e17a4113 | 707 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
29d73ae4 DJ |
708 | int i; |
709 | pv_t regs[16]; | |
710 | struct pv_area *stack; | |
711 | struct cleanup *back_to; | |
712 | CORE_ADDR offset; | |
ec3d575a | 713 | CORE_ADDR unrecognized_pc = 0; |
da3c6d4a | 714 | |
29d73ae4 DJ |
715 | for (i = 0; i < 16; i++) |
716 | regs[i] = pv_register (i, 0); | |
55f960e1 | 717 | stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
29d73ae4 DJ |
718 | back_to = make_cleanup_free_pv_area (stack); |
719 | ||
29d73ae4 | 720 | while (start < limit) |
c906108c | 721 | { |
29d73ae4 DJ |
722 | unsigned short insn; |
723 | ||
e17a4113 | 724 | insn = read_memory_unsigned_integer (start, 2, byte_order_for_code); |
9d4fde75 | 725 | |
94c30b78 | 726 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
da59e081 | 727 | { |
29d73ae4 DJ |
728 | int regno; |
729 | int mask; | |
4be43953 DJ |
730 | |
731 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) | |
732 | break; | |
29d73ae4 DJ |
733 | |
734 | /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says | |
735 | whether to save LR (R14). */ | |
736 | mask = (insn & 0xff) | ((insn & 0x100) << 6); | |
737 | ||
738 | /* Calculate offsets of saved R0-R7 and LR. */ | |
739 | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) | |
740 | if (mask & (1 << regno)) | |
741 | { | |
29d73ae4 DJ |
742 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], |
743 | -4); | |
744 | pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]); | |
745 | } | |
da59e081 | 746 | } |
da3c6d4a MS |
747 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR |
748 | sub sp, #simm */ | |
da59e081 | 749 | { |
29d73ae4 DJ |
750 | offset = (insn & 0x7f) << 2; /* get scaled offset */ |
751 | if (insn & 0x80) /* Check for SUB. */ | |
752 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], | |
753 | -offset); | |
da59e081 | 754 | else |
29d73ae4 DJ |
755 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], |
756 | offset); | |
da59e081 | 757 | } |
0d39a070 DJ |
758 | else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */ |
759 | regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM], | |
760 | (insn & 0xff) << 2); | |
761 | else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */ | |
762 | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) | |
763 | regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)], | |
764 | bits (insn, 6, 8)); | |
765 | else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */ | |
766 | && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) | |
767 | regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)], | |
768 | bits (insn, 0, 7)); | |
769 | else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */ | |
770 | && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM) | |
771 | && pv_is_constant (regs[bits (insn, 3, 5)])) | |
772 | regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)], | |
773 | regs[bits (insn, 6, 8)]); | |
774 | else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */ | |
775 | && pv_is_constant (regs[bits (insn, 3, 6)])) | |
776 | { | |
777 | int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2); | |
778 | int rm = bits (insn, 3, 6); | |
779 | regs[rd] = pv_add (regs[rd], regs[rm]); | |
780 | } | |
29d73ae4 | 781 | else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */ |
da59e081 | 782 | { |
29d73ae4 DJ |
783 | int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4); |
784 | int src_reg = (insn & 0x78) >> 3; | |
785 | regs[dst_reg] = regs[src_reg]; | |
da59e081 | 786 | } |
29d73ae4 | 787 | else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */ |
da59e081 | 788 | { |
29d73ae4 DJ |
789 | /* Handle stores to the stack. Normally pushes are used, |
790 | but with GCC -mtpcs-frame, there may be other stores | |
791 | in the prologue to create the frame. */ | |
792 | int regno = (insn >> 8) & 0x7; | |
793 | pv_t addr; | |
794 | ||
795 | offset = (insn & 0xff) << 2; | |
796 | addr = pv_add_constant (regs[ARM_SP_REGNUM], offset); | |
797 | ||
798 | if (pv_area_store_would_trash (stack, addr)) | |
799 | break; | |
800 | ||
801 | pv_area_store (stack, addr, 4, regs[regno]); | |
da59e081 | 802 | } |
0d39a070 DJ |
803 | else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */ |
804 | { | |
805 | int rd = bits (insn, 0, 2); | |
806 | int rn = bits (insn, 3, 5); | |
807 | pv_t addr; | |
808 | ||
809 | offset = bits (insn, 6, 10) << 2; | |
810 | addr = pv_add_constant (regs[rn], offset); | |
811 | ||
812 | if (pv_area_store_would_trash (stack, addr)) | |
813 | break; | |
814 | ||
815 | pv_area_store (stack, addr, 4, regs[rd]); | |
816 | } | |
817 | else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */ | |
818 | || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */ | |
819 | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) | |
820 | /* Ignore stores of argument registers to the stack. */ | |
821 | ; | |
822 | else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */ | |
823 | && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) | |
824 | /* Ignore block loads from the stack, potentially copying | |
825 | parameters from memory. */ | |
826 | ; | |
827 | else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */ | |
828 | || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */ | |
829 | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))) | |
830 | /* Similarly ignore single loads from the stack. */ | |
831 | ; | |
832 | else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */ | |
833 | || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */ | |
834 | /* Skip register copies, i.e. saves to another register | |
835 | instead of the stack. */ | |
836 | ; | |
837 | else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */ | |
838 | /* Recognize constant loads; even with small stacks these are necessary | |
839 | on Thumb. */ | |
840 | regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7)); | |
841 | else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */ | |
842 | { | |
843 | /* Constant pool loads, for the same reason. */ | |
844 | unsigned int constant; | |
845 | CORE_ADDR loc; | |
846 | ||
847 | loc = start + 4 + bits (insn, 0, 7) * 4; | |
848 | constant = read_memory_unsigned_integer (loc, 4, byte_order); | |
849 | regs[bits (insn, 8, 10)] = pv_constant (constant); | |
850 | } | |
db24da6d | 851 | else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */ |
0d39a070 | 852 | { |
0d39a070 DJ |
853 | unsigned short inst2; |
854 | ||
855 | inst2 = read_memory_unsigned_integer (start + 2, 2, | |
856 | byte_order_for_code); | |
857 | ||
858 | if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800) | |
859 | { | |
860 | /* BL, BLX. Allow some special function calls when | |
861 | skipping the prologue; GCC generates these before | |
862 | storing arguments to the stack. */ | |
863 | CORE_ADDR nextpc; | |
864 | int j1, j2, imm1, imm2; | |
865 | ||
866 | imm1 = sbits (insn, 0, 10); | |
867 | imm2 = bits (inst2, 0, 10); | |
868 | j1 = bit (inst2, 13); | |
869 | j2 = bit (inst2, 11); | |
870 | ||
871 | offset = ((imm1 << 12) + (imm2 << 1)); | |
872 | offset ^= ((!j2) << 22) | ((!j1) << 23); | |
873 | ||
874 | nextpc = start + 4 + offset; | |
875 | /* For BLX make sure to clear the low bits. */ | |
876 | if (bit (inst2, 12) == 0) | |
877 | nextpc = nextpc & 0xfffffffc; | |
878 | ||
e0634ccf UW |
879 | if (!skip_prologue_function (gdbarch, nextpc, |
880 | bit (inst2, 12) != 0)) | |
0d39a070 DJ |
881 | break; |
882 | } | |
ec3d575a | 883 | |
0963b4bd MS |
884 | else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!}, |
885 | { registers } */ | |
ec3d575a UW |
886 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
887 | { | |
888 | pv_t addr = regs[bits (insn, 0, 3)]; | |
889 | int regno; | |
890 | ||
891 | if (pv_area_store_would_trash (stack, addr)) | |
892 | break; | |
893 | ||
894 | /* Calculate offsets of saved registers. */ | |
895 | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) | |
896 | if (inst2 & (1 << regno)) | |
897 | { | |
898 | addr = pv_add_constant (addr, -4); | |
899 | pv_area_store (stack, addr, 4, regs[regno]); | |
900 | } | |
901 | ||
902 | if (insn & 0x0020) | |
903 | regs[bits (insn, 0, 3)] = addr; | |
904 | } | |
905 | ||
0963b4bd MS |
906 | else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2, |
907 | [Rn, #+/-imm]{!} */ | |
ec3d575a UW |
908 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
909 | { | |
910 | int regno1 = bits (inst2, 12, 15); | |
911 | int regno2 = bits (inst2, 8, 11); | |
912 | pv_t addr = regs[bits (insn, 0, 3)]; | |
913 | ||
914 | offset = inst2 & 0xff; | |
915 | if (insn & 0x0080) | |
916 | addr = pv_add_constant (addr, offset); | |
917 | else | |
918 | addr = pv_add_constant (addr, -offset); | |
919 | ||
920 | if (pv_area_store_would_trash (stack, addr)) | |
921 | break; | |
922 | ||
923 | pv_area_store (stack, addr, 4, regs[regno1]); | |
924 | pv_area_store (stack, pv_add_constant (addr, 4), | |
925 | 4, regs[regno2]); | |
926 | ||
927 | if (insn & 0x0020) | |
928 | regs[bits (insn, 0, 3)] = addr; | |
929 | } | |
930 | ||
931 | else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */ | |
932 | && (inst2 & 0x0c00) == 0x0c00 | |
933 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | |
934 | { | |
935 | int regno = bits (inst2, 12, 15); | |
936 | pv_t addr = regs[bits (insn, 0, 3)]; | |
937 | ||
938 | offset = inst2 & 0xff; | |
939 | if (inst2 & 0x0200) | |
940 | addr = pv_add_constant (addr, offset); | |
941 | else | |
942 | addr = pv_add_constant (addr, -offset); | |
943 | ||
944 | if (pv_area_store_would_trash (stack, addr)) | |
945 | break; | |
946 | ||
947 | pv_area_store (stack, addr, 4, regs[regno]); | |
948 | ||
949 | if (inst2 & 0x0100) | |
950 | regs[bits (insn, 0, 3)] = addr; | |
951 | } | |
952 | ||
953 | else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */ | |
954 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | |
955 | { | |
956 | int regno = bits (inst2, 12, 15); | |
957 | pv_t addr; | |
958 | ||
959 | offset = inst2 & 0xfff; | |
960 | addr = pv_add_constant (regs[bits (insn, 0, 3)], offset); | |
961 | ||
962 | if (pv_area_store_would_trash (stack, addr)) | |
963 | break; | |
964 | ||
965 | pv_area_store (stack, addr, 4, regs[regno]); | |
966 | } | |
967 | ||
968 | else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */ | |
0d39a070 | 969 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 970 | /* Ignore stores of argument registers to the stack. */ |
0d39a070 | 971 | ; |
ec3d575a UW |
972 | |
973 | else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */ | |
974 | && (inst2 & 0x0d00) == 0x0c00 | |
0d39a070 | 975 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 976 | /* Ignore stores of argument registers to the stack. */ |
0d39a070 | 977 | ; |
ec3d575a | 978 | |
0963b4bd MS |
979 | else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!], |
980 | { registers } */ | |
ec3d575a UW |
981 | && (inst2 & 0x8000) == 0x0000 |
982 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | |
983 | /* Ignore block loads from the stack, potentially copying | |
984 | parameters from memory. */ | |
0d39a070 | 985 | ; |
ec3d575a | 986 | |
0963b4bd MS |
987 | else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2, |
988 | [Rn, #+/-imm] */ | |
0d39a070 | 989 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 990 | /* Similarly ignore dual loads from the stack. */ |
0d39a070 | 991 | ; |
ec3d575a UW |
992 | |
993 | else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */ | |
994 | && (inst2 & 0x0d00) == 0x0c00 | |
0d39a070 | 995 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 996 | /* Similarly ignore single loads from the stack. */ |
0d39a070 | 997 | ; |
ec3d575a UW |
998 | |
999 | else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */ | |
0d39a070 | 1000 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 1001 | /* Similarly ignore single loads from the stack. */ |
0d39a070 | 1002 | ; |
ec3d575a UW |
1003 | |
1004 | else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */ | |
1005 | && (inst2 & 0x8000) == 0x0000) | |
1006 | { | |
1007 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
1008 | | (bits (inst2, 12, 14) << 8) | |
1009 | | bits (inst2, 0, 7)); | |
1010 | ||
1011 | regs[bits (inst2, 8, 11)] | |
1012 | = pv_add_constant (regs[bits (insn, 0, 3)], | |
1013 | thumb_expand_immediate (imm)); | |
1014 | } | |
1015 | ||
1016 | else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */ | |
1017 | && (inst2 & 0x8000) == 0x0000) | |
0d39a070 | 1018 | { |
ec3d575a UW |
1019 | unsigned int imm = ((bits (insn, 10, 10) << 11) |
1020 | | (bits (inst2, 12, 14) << 8) | |
1021 | | bits (inst2, 0, 7)); | |
1022 | ||
1023 | regs[bits (inst2, 8, 11)] | |
1024 | = pv_add_constant (regs[bits (insn, 0, 3)], imm); | |
1025 | } | |
1026 | ||
1027 | else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */ | |
1028 | && (inst2 & 0x8000) == 0x0000) | |
1029 | { | |
1030 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
1031 | | (bits (inst2, 12, 14) << 8) | |
1032 | | bits (inst2, 0, 7)); | |
1033 | ||
1034 | regs[bits (inst2, 8, 11)] | |
1035 | = pv_add_constant (regs[bits (insn, 0, 3)], | |
1036 | - (CORE_ADDR) thumb_expand_immediate (imm)); | |
1037 | } | |
1038 | ||
1039 | else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */ | |
1040 | && (inst2 & 0x8000) == 0x0000) | |
1041 | { | |
1042 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
1043 | | (bits (inst2, 12, 14) << 8) | |
1044 | | bits (inst2, 0, 7)); | |
1045 | ||
1046 | regs[bits (inst2, 8, 11)] | |
1047 | = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm); | |
1048 | } | |
1049 | ||
1050 | else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */ | |
1051 | { | |
1052 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
1053 | | (bits (inst2, 12, 14) << 8) | |
1054 | | bits (inst2, 0, 7)); | |
1055 | ||
1056 | regs[bits (inst2, 8, 11)] | |
1057 | = pv_constant (thumb_expand_immediate (imm)); | |
1058 | } | |
1059 | ||
1060 | else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */ | |
1061 | { | |
621c6d5b YQ |
1062 | unsigned int imm |
1063 | = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2); | |
ec3d575a UW |
1064 | |
1065 | regs[bits (inst2, 8, 11)] = pv_constant (imm); | |
1066 | } | |
1067 | ||
1068 | else if (insn == 0xea5f /* mov.w Rd,Rm */ | |
1069 | && (inst2 & 0xf0f0) == 0) | |
1070 | { | |
1071 | int dst_reg = (inst2 & 0x0f00) >> 8; | |
1072 | int src_reg = inst2 & 0xf; | |
1073 | regs[dst_reg] = regs[src_reg]; | |
1074 | } | |
1075 | ||
1076 | else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */ | |
1077 | { | |
1078 | /* Constant pool loads. */ | |
1079 | unsigned int constant; | |
1080 | CORE_ADDR loc; | |
1081 | ||
1082 | offset = bits (insn, 0, 11); | |
1083 | if (insn & 0x0080) | |
1084 | loc = start + 4 + offset; | |
1085 | else | |
1086 | loc = start + 4 - offset; | |
1087 | ||
1088 | constant = read_memory_unsigned_integer (loc, 4, byte_order); | |
1089 | regs[bits (inst2, 12, 15)] = pv_constant (constant); | |
1090 | } | |
1091 | ||
1092 | else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */ | |
1093 | { | |
1094 | /* Constant pool loads. */ | |
1095 | unsigned int constant; | |
1096 | CORE_ADDR loc; | |
1097 | ||
1098 | offset = bits (insn, 0, 7) << 2; | |
1099 | if (insn & 0x0080) | |
1100 | loc = start + 4 + offset; | |
1101 | else | |
1102 | loc = start + 4 - offset; | |
1103 | ||
1104 | constant = read_memory_unsigned_integer (loc, 4, byte_order); | |
1105 | regs[bits (inst2, 12, 15)] = pv_constant (constant); | |
1106 | ||
1107 | constant = read_memory_unsigned_integer (loc + 4, 4, byte_order); | |
1108 | regs[bits (inst2, 8, 11)] = pv_constant (constant); | |
1109 | } | |
1110 | ||
1111 | else if (thumb2_instruction_changes_pc (insn, inst2)) | |
1112 | { | |
1113 | /* Don't scan past anything that might change control flow. */ | |
0d39a070 DJ |
1114 | break; |
1115 | } | |
ec3d575a UW |
1116 | else |
1117 | { | |
1118 | /* The optimizer might shove anything into the prologue, | |
1119 | so we just skip what we don't recognize. */ | |
1120 | unrecognized_pc = start; | |
1121 | } | |
0d39a070 DJ |
1122 | |
1123 | start += 2; | |
1124 | } | |
ec3d575a | 1125 | else if (thumb_instruction_changes_pc (insn)) |
3d74b771 | 1126 | { |
ec3d575a | 1127 | /* Don't scan past anything that might change control flow. */ |
da3c6d4a | 1128 | break; |
3d74b771 | 1129 | } |
ec3d575a UW |
1130 | else |
1131 | { | |
1132 | /* The optimizer might shove anything into the prologue, | |
1133 | so we just skip what we don't recognize. */ | |
1134 | unrecognized_pc = start; | |
1135 | } | |
29d73ae4 DJ |
1136 | |
1137 | start += 2; | |
c906108c SS |
1138 | } |
1139 | ||
0d39a070 DJ |
1140 | if (arm_debug) |
1141 | fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n", | |
1142 | paddress (gdbarch, start)); | |
1143 | ||
ec3d575a UW |
1144 | if (unrecognized_pc == 0) |
1145 | unrecognized_pc = start; | |
1146 | ||
29d73ae4 DJ |
1147 | if (cache == NULL) |
1148 | { | |
1149 | do_cleanups (back_to); | |
ec3d575a | 1150 | return unrecognized_pc; |
29d73ae4 DJ |
1151 | } |
1152 | ||
29d73ae4 DJ |
1153 | if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) |
1154 | { | |
1155 | /* Frame pointer is fp. Frame size is constant. */ | |
1156 | cache->framereg = ARM_FP_REGNUM; | |
1157 | cache->framesize = -regs[ARM_FP_REGNUM].k; | |
1158 | } | |
1159 | else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM)) | |
1160 | { | |
1161 | /* Frame pointer is r7. Frame size is constant. */ | |
1162 | cache->framereg = THUMB_FP_REGNUM; | |
1163 | cache->framesize = -regs[THUMB_FP_REGNUM].k; | |
1164 | } | |
72a2e3dc | 1165 | else |
29d73ae4 DJ |
1166 | { |
1167 | /* Try the stack pointer... this is a bit desperate. */ | |
1168 | cache->framereg = ARM_SP_REGNUM; | |
1169 | cache->framesize = -regs[ARM_SP_REGNUM].k; | |
1170 | } | |
29d73ae4 DJ |
1171 | |
1172 | for (i = 0; i < 16; i++) | |
1173 | if (pv_area_find_reg (stack, gdbarch, i, &offset)) | |
1174 | cache->saved_regs[i].addr = offset; | |
1175 | ||
1176 | do_cleanups (back_to); | |
ec3d575a | 1177 | return unrecognized_pc; |
c906108c SS |
1178 | } |
1179 | ||
621c6d5b YQ |
1180 | |
1181 | /* Try to analyze the instructions starting from PC, which load symbol | |
1182 | __stack_chk_guard. Return the address of instruction after loading this | |
1183 | symbol, set the dest register number to *BASEREG, and set the size of | |
1184 | instructions for loading symbol in OFFSET. Return 0 if instructions are | |
1185 | not recognized. */ | |
1186 | ||
1187 | static CORE_ADDR | |
1188 | arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch, | |
1189 | unsigned int *destreg, int *offset) | |
1190 | { | |
1191 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
1192 | int is_thumb = arm_pc_is_thumb (gdbarch, pc); | |
1193 | unsigned int low, high, address; | |
1194 | ||
1195 | address = 0; | |
1196 | if (is_thumb) | |
1197 | { | |
1198 | unsigned short insn1 | |
1199 | = read_memory_unsigned_integer (pc, 2, byte_order_for_code); | |
1200 | ||
1201 | if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */ | |
1202 | { | |
1203 | *destreg = bits (insn1, 8, 10); | |
1204 | *offset = 2; | |
1205 | address = bits (insn1, 0, 7); | |
1206 | } | |
1207 | else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */ | |
1208 | { | |
1209 | unsigned short insn2 | |
1210 | = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code); | |
1211 | ||
1212 | low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2); | |
1213 | ||
1214 | insn1 | |
1215 | = read_memory_unsigned_integer (pc + 4, 2, byte_order_for_code); | |
1216 | insn2 | |
1217 | = read_memory_unsigned_integer (pc + 6, 2, byte_order_for_code); | |
1218 | ||
1219 | /* movt Rd, #const */ | |
1220 | if ((insn1 & 0xfbc0) == 0xf2c0) | |
1221 | { | |
1222 | high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2); | |
1223 | *destreg = bits (insn2, 8, 11); | |
1224 | *offset = 8; | |
1225 | address = (high << 16 | low); | |
1226 | } | |
1227 | } | |
1228 | } | |
1229 | else | |
1230 | { | |
2e9e421f UW |
1231 | unsigned int insn |
1232 | = read_memory_unsigned_integer (pc, 4, byte_order_for_code); | |
1233 | ||
1234 | if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, #immed */ | |
1235 | { | |
1236 | address = bits (insn, 0, 11); | |
1237 | *destreg = bits (insn, 12, 15); | |
1238 | *offset = 4; | |
1239 | } | |
1240 | else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */ | |
1241 | { | |
1242 | low = EXTRACT_MOVW_MOVT_IMM_A (insn); | |
1243 | ||
1244 | insn | |
1245 | = read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code); | |
1246 | ||
1247 | if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */ | |
1248 | { | |
1249 | high = EXTRACT_MOVW_MOVT_IMM_A (insn); | |
1250 | *destreg = bits (insn, 12, 15); | |
1251 | *offset = 8; | |
1252 | address = (high << 16 | low); | |
1253 | } | |
1254 | } | |
621c6d5b YQ |
1255 | } |
1256 | ||
1257 | return address; | |
1258 | } | |
1259 | ||
1260 | /* Try to skip a sequence of instructions used for stack protector. If PC | |
0963b4bd MS |
1261 | points to the first instruction of this sequence, return the address of |
1262 | first instruction after this sequence, otherwise, return original PC. | |
621c6d5b YQ |
1263 | |
1264 | On arm, this sequence of instructions is composed of mainly three steps, | |
1265 | Step 1: load symbol __stack_chk_guard, | |
1266 | Step 2: load from address of __stack_chk_guard, | |
1267 | Step 3: store it to somewhere else. | |
1268 | ||
1269 | Usually, instructions on step 2 and step 3 are the same on various ARM | |
1270 | architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and | |
1271 | on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However, | |
1272 | instructions in step 1 vary from different ARM architectures. On ARMv7, | |
1273 | they are, | |
1274 | ||
1275 | movw Rn, #:lower16:__stack_chk_guard | |
1276 | movt Rn, #:upper16:__stack_chk_guard | |
1277 | ||
1278 | On ARMv5t, it is, | |
1279 | ||
1280 | ldr Rn, .Label | |
1281 | .... | |
1282 | .Lable: | |
1283 | .word __stack_chk_guard | |
1284 | ||
1285 | Since ldr/str is a very popular instruction, we can't use them as | |
1286 | 'fingerprint' or 'signature' of stack protector sequence. Here we choose | |
1287 | sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not | |
1288 | stripped, as the 'fingerprint' of a stack protector cdoe sequence. */ | |
1289 | ||
1290 | static CORE_ADDR | |
1291 | arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch) | |
1292 | { | |
1293 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
22e048c9 | 1294 | unsigned int basereg; |
621c6d5b YQ |
1295 | struct minimal_symbol *stack_chk_guard; |
1296 | int offset; | |
1297 | int is_thumb = arm_pc_is_thumb (gdbarch, pc); | |
1298 | CORE_ADDR addr; | |
1299 | ||
1300 | /* Try to parse the instructions in Step 1. */ | |
1301 | addr = arm_analyze_load_stack_chk_guard (pc, gdbarch, | |
1302 | &basereg, &offset); | |
1303 | if (!addr) | |
1304 | return pc; | |
1305 | ||
1306 | stack_chk_guard = lookup_minimal_symbol_by_pc (addr); | |
1307 | /* If name of symbol doesn't start with '__stack_chk_guard', this | |
1308 | instruction sequence is not for stack protector. If symbol is | |
1309 | removed, we conservatively think this sequence is for stack protector. */ | |
1310 | if (stack_chk_guard | |
c1c2ab58 UW |
1311 | && strncmp (SYMBOL_LINKAGE_NAME (stack_chk_guard), "__stack_chk_guard", |
1312 | strlen ("__stack_chk_guard")) != 0) | |
621c6d5b YQ |
1313 | return pc; |
1314 | ||
1315 | if (is_thumb) | |
1316 | { | |
1317 | unsigned int destreg; | |
1318 | unsigned short insn | |
1319 | = read_memory_unsigned_integer (pc + offset, 2, byte_order_for_code); | |
1320 | ||
1321 | /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */ | |
1322 | if ((insn & 0xf800) != 0x6800) | |
1323 | return pc; | |
1324 | if (bits (insn, 3, 5) != basereg) | |
1325 | return pc; | |
1326 | destreg = bits (insn, 0, 2); | |
1327 | ||
1328 | insn = read_memory_unsigned_integer (pc + offset + 2, 2, | |
1329 | byte_order_for_code); | |
1330 | /* Step 3: str Rd, [Rn, #immed], encoding T1. */ | |
1331 | if ((insn & 0xf800) != 0x6000) | |
1332 | return pc; | |
1333 | if (destreg != bits (insn, 0, 2)) | |
1334 | return pc; | |
1335 | } | |
1336 | else | |
1337 | { | |
1338 | unsigned int destreg; | |
1339 | unsigned int insn | |
1340 | = read_memory_unsigned_integer (pc + offset, 4, byte_order_for_code); | |
1341 | ||
1342 | /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */ | |
1343 | if ((insn & 0x0e500000) != 0x04100000) | |
1344 | return pc; | |
1345 | if (bits (insn, 16, 19) != basereg) | |
1346 | return pc; | |
1347 | destreg = bits (insn, 12, 15); | |
1348 | /* Step 3: str Rd, [Rn, #immed], encoding A1. */ | |
1349 | insn = read_memory_unsigned_integer (pc + offset + 4, | |
1350 | 4, byte_order_for_code); | |
1351 | if ((insn & 0x0e500000) != 0x04000000) | |
1352 | return pc; | |
1353 | if (bits (insn, 12, 15) != destreg) | |
1354 | return pc; | |
1355 | } | |
1356 | /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8 | |
1357 | on arm. */ | |
1358 | if (is_thumb) | |
1359 | return pc + offset + 4; | |
1360 | else | |
1361 | return pc + offset + 8; | |
1362 | } | |
1363 | ||
da3c6d4a MS |
1364 | /* Advance the PC across any function entry prologue instructions to |
1365 | reach some "real" code. | |
34e8f22d RE |
1366 | |
1367 | The APCS (ARM Procedure Call Standard) defines the following | |
ed9a39eb | 1368 | prologue: |
c906108c | 1369 | |
c5aa993b JM |
1370 | mov ip, sp |
1371 | [stmfd sp!, {a1,a2,a3,a4}] | |
1372 | stmfd sp!, {...,fp,ip,lr,pc} | |
ed9a39eb JM |
1373 | [stfe f7, [sp, #-12]!] |
1374 | [stfe f6, [sp, #-12]!] | |
1375 | [stfe f5, [sp, #-12]!] | |
1376 | [stfe f4, [sp, #-12]!] | |
0963b4bd | 1377 | sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */ |
c906108c | 1378 | |
34e8f22d | 1379 | static CORE_ADDR |
6093d2eb | 1380 | arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
c906108c | 1381 | { |
e17a4113 | 1382 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
c906108c SS |
1383 | unsigned long inst; |
1384 | CORE_ADDR skip_pc; | |
a89fea3c | 1385 | CORE_ADDR func_addr, limit_pc; |
c906108c | 1386 | |
a89fea3c JL |
1387 | /* See if we can determine the end of the prologue via the symbol table. |
1388 | If so, then return either PC, or the PC after the prologue, whichever | |
1389 | is greater. */ | |
1390 | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) | |
c906108c | 1391 | { |
d80b854b UW |
1392 | CORE_ADDR post_prologue_pc |
1393 | = skip_prologue_using_sal (gdbarch, func_addr); | |
0d39a070 DJ |
1394 | struct symtab *s = find_pc_symtab (func_addr); |
1395 | ||
621c6d5b YQ |
1396 | if (post_prologue_pc) |
1397 | post_prologue_pc | |
1398 | = arm_skip_stack_protector (post_prologue_pc, gdbarch); | |
1399 | ||
1400 | ||
0d39a070 DJ |
1401 | /* GCC always emits a line note before the prologue and another |
1402 | one after, even if the two are at the same address or on the | |
1403 | same line. Take advantage of this so that we do not need to | |
1404 | know every instruction that might appear in the prologue. We | |
1405 | will have producer information for most binaries; if it is | |
1406 | missing (e.g. for -gstabs), assuming the GNU tools. */ | |
1407 | if (post_prologue_pc | |
1408 | && (s == NULL | |
1409 | || s->producer == NULL | |
9ead7ae4 KB |
1410 | || strncmp (s->producer, "GNU ", sizeof ("GNU ") - 1) == 0 |
1411 | || strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0)) | |
0d39a070 DJ |
1412 | return post_prologue_pc; |
1413 | ||
a89fea3c | 1414 | if (post_prologue_pc != 0) |
0d39a070 DJ |
1415 | { |
1416 | CORE_ADDR analyzed_limit; | |
1417 | ||
1418 | /* For non-GCC compilers, make sure the entire line is an | |
1419 | acceptable prologue; GDB will round this function's | |
1420 | return value up to the end of the following line so we | |
1421 | can not skip just part of a line (and we do not want to). | |
1422 | ||
1423 | RealView does not treat the prologue specially, but does | |
1424 | associate prologue code with the opening brace; so this | |
1425 | lets us skip the first line if we think it is the opening | |
1426 | brace. */ | |
9779414d | 1427 | if (arm_pc_is_thumb (gdbarch, func_addr)) |
0d39a070 DJ |
1428 | analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr, |
1429 | post_prologue_pc, NULL); | |
1430 | else | |
1431 | analyzed_limit = arm_analyze_prologue (gdbarch, func_addr, | |
1432 | post_prologue_pc, NULL); | |
1433 | ||
1434 | if (analyzed_limit != post_prologue_pc) | |
1435 | return func_addr; | |
1436 | ||
1437 | return post_prologue_pc; | |
1438 | } | |
c906108c SS |
1439 | } |
1440 | ||
a89fea3c JL |
1441 | /* Can't determine prologue from the symbol table, need to examine |
1442 | instructions. */ | |
c906108c | 1443 | |
a89fea3c JL |
1444 | /* Find an upper limit on the function prologue using the debug |
1445 | information. If the debug information could not be used to provide | |
1446 | that bound, then use an arbitrary large number as the upper bound. */ | |
0963b4bd | 1447 | /* Like arm_scan_prologue, stop no later than pc + 64. */ |
d80b854b | 1448 | limit_pc = skip_prologue_using_sal (gdbarch, pc); |
a89fea3c JL |
1449 | if (limit_pc == 0) |
1450 | limit_pc = pc + 64; /* Magic. */ | |
1451 | ||
c906108c | 1452 | |
29d73ae4 | 1453 | /* Check if this is Thumb code. */ |
9779414d | 1454 | if (arm_pc_is_thumb (gdbarch, pc)) |
a89fea3c | 1455 | return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL); |
29d73ae4 | 1456 | |
a89fea3c | 1457 | for (skip_pc = pc; skip_pc < limit_pc; skip_pc += 4) |
f43845b3 | 1458 | { |
e17a4113 | 1459 | inst = read_memory_unsigned_integer (skip_pc, 4, byte_order_for_code); |
9d4fde75 | 1460 | |
b8d5e71d MS |
1461 | /* "mov ip, sp" is no longer a required part of the prologue. */ |
1462 | if (inst == 0xe1a0c00d) /* mov ip, sp */ | |
1463 | continue; | |
c906108c | 1464 | |
28cd8767 JG |
1465 | if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */ |
1466 | continue; | |
1467 | ||
1468 | if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */ | |
1469 | continue; | |
1470 | ||
b8d5e71d MS |
1471 | /* Some prologues begin with "str lr, [sp, #-4]!". */ |
1472 | if (inst == 0xe52de004) /* str lr, [sp, #-4]! */ | |
1473 | continue; | |
c906108c | 1474 | |
b8d5e71d MS |
1475 | if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */ |
1476 | continue; | |
c906108c | 1477 | |
b8d5e71d MS |
1478 | if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */ |
1479 | continue; | |
11d3b27d | 1480 | |
b8d5e71d MS |
1481 | /* Any insns after this point may float into the code, if it makes |
1482 | for better instruction scheduling, so we skip them only if we | |
1483 | find them, but still consider the function to be frame-ful. */ | |
f43845b3 | 1484 | |
b8d5e71d MS |
1485 | /* We may have either one sfmfd instruction here, or several stfe |
1486 | insns, depending on the version of floating point code we | |
1487 | support. */ | |
1488 | if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */ | |
1489 | continue; | |
1490 | ||
1491 | if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */ | |
1492 | continue; | |
1493 | ||
1494 | if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */ | |
1495 | continue; | |
1496 | ||
1497 | if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */ | |
1498 | continue; | |
1499 | ||
f8bf5763 PM |
1500 | if ((inst & 0xffffc000) == 0xe54b0000 /* strb r(0123),[r11,#-nn] */ |
1501 | || (inst & 0xffffc0f0) == 0xe14b00b0 /* strh r(0123),[r11,#-nn] */ | |
1502 | || (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */ | |
b8d5e71d MS |
1503 | continue; |
1504 | ||
f8bf5763 PM |
1505 | if ((inst & 0xffffc000) == 0xe5cd0000 /* strb r(0123),[sp,#nn] */ |
1506 | || (inst & 0xffffc0f0) == 0xe1cd00b0 /* strh r(0123),[sp,#nn] */ | |
1507 | || (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */ | |
b8d5e71d MS |
1508 | continue; |
1509 | ||
1510 | /* Un-recognized instruction; stop scanning. */ | |
1511 | break; | |
f43845b3 | 1512 | } |
c906108c | 1513 | |
0963b4bd | 1514 | return skip_pc; /* End of prologue. */ |
c906108c | 1515 | } |
94c30b78 | 1516 | |
c5aa993b | 1517 | /* *INDENT-OFF* */ |
c906108c SS |
1518 | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) |
1519 | This function decodes a Thumb function prologue to determine: | |
1520 | 1) the size of the stack frame | |
1521 | 2) which registers are saved on it | |
1522 | 3) the offsets of saved regs | |
1523 | 4) the offset from the stack pointer to the frame pointer | |
c906108c | 1524 | |
da59e081 JM |
1525 | A typical Thumb function prologue would create this stack frame |
1526 | (offsets relative to FP) | |
c906108c SS |
1527 | old SP -> 24 stack parameters |
1528 | 20 LR | |
1529 | 16 R7 | |
1530 | R7 -> 0 local variables (16 bytes) | |
1531 | SP -> -12 additional stack space (12 bytes) | |
1532 | The frame size would thus be 36 bytes, and the frame offset would be | |
0963b4bd | 1533 | 12 bytes. The frame register is R7. |
da59e081 | 1534 | |
da3c6d4a MS |
1535 | The comments for thumb_skip_prolog() describe the algorithm we use |
1536 | to detect the end of the prolog. */ | |
c5aa993b JM |
1537 | /* *INDENT-ON* */ |
1538 | ||
c906108c | 1539 | static void |
be8626e0 | 1540 | thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc, |
b39cc962 | 1541 | CORE_ADDR block_addr, struct arm_prologue_cache *cache) |
c906108c SS |
1542 | { |
1543 | CORE_ADDR prologue_start; | |
1544 | CORE_ADDR prologue_end; | |
c906108c | 1545 | |
b39cc962 DJ |
1546 | if (find_pc_partial_function (block_addr, NULL, &prologue_start, |
1547 | &prologue_end)) | |
c906108c | 1548 | { |
ec3d575a UW |
1549 | /* See comment in arm_scan_prologue for an explanation of |
1550 | this heuristics. */ | |
1551 | if (prologue_end > prologue_start + 64) | |
1552 | { | |
1553 | prologue_end = prologue_start + 64; | |
1554 | } | |
c906108c SS |
1555 | } |
1556 | else | |
f7060f85 DJ |
1557 | /* We're in the boondocks: we have no idea where the start of the |
1558 | function is. */ | |
1559 | return; | |
c906108c | 1560 | |
eb5492fa | 1561 | prologue_end = min (prologue_end, prev_pc); |
c906108c | 1562 | |
be8626e0 | 1563 | thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache); |
c906108c SS |
1564 | } |
1565 | ||
0d39a070 | 1566 | /* Return 1 if THIS_INSTR might change control flow, 0 otherwise. */ |
c906108c | 1567 | |
0d39a070 DJ |
1568 | static int |
1569 | arm_instruction_changes_pc (uint32_t this_instr) | |
c906108c | 1570 | { |
0d39a070 DJ |
1571 | if (bits (this_instr, 28, 31) == INST_NV) |
1572 | /* Unconditional instructions. */ | |
1573 | switch (bits (this_instr, 24, 27)) | |
1574 | { | |
1575 | case 0xa: | |
1576 | case 0xb: | |
1577 | /* Branch with Link and change to Thumb. */ | |
1578 | return 1; | |
1579 | case 0xc: | |
1580 | case 0xd: | |
1581 | case 0xe: | |
1582 | /* Coprocessor register transfer. */ | |
1583 | if (bits (this_instr, 12, 15) == 15) | |
1584 | error (_("Invalid update to pc in instruction")); | |
1585 | return 0; | |
1586 | default: | |
1587 | return 0; | |
1588 | } | |
1589 | else | |
1590 | switch (bits (this_instr, 25, 27)) | |
1591 | { | |
1592 | case 0x0: | |
1593 | if (bits (this_instr, 23, 24) == 2 && bit (this_instr, 20) == 0) | |
1594 | { | |
1595 | /* Multiplies and extra load/stores. */ | |
1596 | if (bit (this_instr, 4) == 1 && bit (this_instr, 7) == 1) | |
1597 | /* Neither multiplies nor extension load/stores are allowed | |
1598 | to modify PC. */ | |
1599 | return 0; | |
1600 | ||
1601 | /* Otherwise, miscellaneous instructions. */ | |
1602 | ||
1603 | /* BX <reg>, BXJ <reg>, BLX <reg> */ | |
1604 | if (bits (this_instr, 4, 27) == 0x12fff1 | |
1605 | || bits (this_instr, 4, 27) == 0x12fff2 | |
1606 | || bits (this_instr, 4, 27) == 0x12fff3) | |
1607 | return 1; | |
1608 | ||
1609 | /* Other miscellaneous instructions are unpredictable if they | |
1610 | modify PC. */ | |
1611 | return 0; | |
1612 | } | |
1613 | /* Data processing instruction. Fall through. */ | |
c906108c | 1614 | |
0d39a070 DJ |
1615 | case 0x1: |
1616 | if (bits (this_instr, 12, 15) == 15) | |
1617 | return 1; | |
1618 | else | |
1619 | return 0; | |
c906108c | 1620 | |
0d39a070 DJ |
1621 | case 0x2: |
1622 | case 0x3: | |
1623 | /* Media instructions and architecturally undefined instructions. */ | |
1624 | if (bits (this_instr, 25, 27) == 3 && bit (this_instr, 4) == 1) | |
1625 | return 0; | |
c906108c | 1626 | |
0d39a070 DJ |
1627 | /* Stores. */ |
1628 | if (bit (this_instr, 20) == 0) | |
1629 | return 0; | |
2a451106 | 1630 | |
0d39a070 DJ |
1631 | /* Loads. */ |
1632 | if (bits (this_instr, 12, 15) == ARM_PC_REGNUM) | |
1633 | return 1; | |
1634 | else | |
1635 | return 0; | |
2a451106 | 1636 | |
0d39a070 DJ |
1637 | case 0x4: |
1638 | /* Load/store multiple. */ | |
1639 | if (bit (this_instr, 20) == 1 && bit (this_instr, 15) == 1) | |
1640 | return 1; | |
1641 | else | |
1642 | return 0; | |
2a451106 | 1643 | |
0d39a070 DJ |
1644 | case 0x5: |
1645 | /* Branch and branch with link. */ | |
1646 | return 1; | |
2a451106 | 1647 | |
0d39a070 DJ |
1648 | case 0x6: |
1649 | case 0x7: | |
1650 | /* Coprocessor transfers or SWIs can not affect PC. */ | |
1651 | return 0; | |
eb5492fa | 1652 | |
0d39a070 | 1653 | default: |
9b20d036 | 1654 | internal_error (__FILE__, __LINE__, _("bad value in switch")); |
0d39a070 DJ |
1655 | } |
1656 | } | |
c906108c | 1657 | |
0d39a070 DJ |
1658 | /* Analyze an ARM mode prologue starting at PROLOGUE_START and |
1659 | continuing no further than PROLOGUE_END. If CACHE is non-NULL, | |
1660 | fill it in. Return the first address not recognized as a prologue | |
1661 | instruction. | |
eb5492fa | 1662 | |
0d39a070 DJ |
1663 | We recognize all the instructions typically found in ARM prologues, |
1664 | plus harmless instructions which can be skipped (either for analysis | |
1665 | purposes, or a more restrictive set that can be skipped when finding | |
1666 | the end of the prologue). */ | |
1667 | ||
1668 | static CORE_ADDR | |
1669 | arm_analyze_prologue (struct gdbarch *gdbarch, | |
1670 | CORE_ADDR prologue_start, CORE_ADDR prologue_end, | |
1671 | struct arm_prologue_cache *cache) | |
1672 | { | |
1673 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1674 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
1675 | int regno; | |
1676 | CORE_ADDR offset, current_pc; | |
1677 | pv_t regs[ARM_FPS_REGNUM]; | |
1678 | struct pv_area *stack; | |
1679 | struct cleanup *back_to; | |
1680 | int framereg, framesize; | |
1681 | CORE_ADDR unrecognized_pc = 0; | |
1682 | ||
1683 | /* Search the prologue looking for instructions that set up the | |
96baa820 | 1684 | frame pointer, adjust the stack pointer, and save registers. |
ed9a39eb | 1685 | |
96baa820 JM |
1686 | Be careful, however, and if it doesn't look like a prologue, |
1687 | don't try to scan it. If, for instance, a frameless function | |
1688 | begins with stmfd sp!, then we will tell ourselves there is | |
b8d5e71d | 1689 | a frame, which will confuse stack traceback, as well as "finish" |
96baa820 | 1690 | and other operations that rely on a knowledge of the stack |
0d39a070 | 1691 | traceback. */ |
d4473757 | 1692 | |
4be43953 DJ |
1693 | for (regno = 0; regno < ARM_FPS_REGNUM; regno++) |
1694 | regs[regno] = pv_register (regno, 0); | |
55f960e1 | 1695 | stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
4be43953 DJ |
1696 | back_to = make_cleanup_free_pv_area (stack); |
1697 | ||
94c30b78 MS |
1698 | for (current_pc = prologue_start; |
1699 | current_pc < prologue_end; | |
f43845b3 | 1700 | current_pc += 4) |
96baa820 | 1701 | { |
e17a4113 UW |
1702 | unsigned int insn |
1703 | = read_memory_unsigned_integer (current_pc, 4, byte_order_for_code); | |
9d4fde75 | 1704 | |
94c30b78 | 1705 | if (insn == 0xe1a0c00d) /* mov ip, sp */ |
f43845b3 | 1706 | { |
4be43953 | 1707 | regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM]; |
28cd8767 JG |
1708 | continue; |
1709 | } | |
0d39a070 DJ |
1710 | else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */ |
1711 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
28cd8767 JG |
1712 | { |
1713 | unsigned imm = insn & 0xff; /* immediate value */ | |
1714 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
0d39a070 | 1715 | int rd = bits (insn, 12, 15); |
28cd8767 | 1716 | imm = (imm >> rot) | (imm << (32 - rot)); |
0d39a070 | 1717 | regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm); |
28cd8767 JG |
1718 | continue; |
1719 | } | |
0d39a070 DJ |
1720 | else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */ |
1721 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
28cd8767 JG |
1722 | { |
1723 | unsigned imm = insn & 0xff; /* immediate value */ | |
1724 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
0d39a070 | 1725 | int rd = bits (insn, 12, 15); |
28cd8767 | 1726 | imm = (imm >> rot) | (imm << (32 - rot)); |
0d39a070 | 1727 | regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm); |
f43845b3 MS |
1728 | continue; |
1729 | } | |
0963b4bd MS |
1730 | else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd, |
1731 | [sp, #-4]! */ | |
f43845b3 | 1732 | { |
4be43953 DJ |
1733 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1734 | break; | |
1735 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4); | |
0d39a070 DJ |
1736 | pv_area_store (stack, regs[ARM_SP_REGNUM], 4, |
1737 | regs[bits (insn, 12, 15)]); | |
f43845b3 MS |
1738 | continue; |
1739 | } | |
1740 | else if ((insn & 0xffff0000) == 0xe92d0000) | |
d4473757 KB |
1741 | /* stmfd sp!, {..., fp, ip, lr, pc} |
1742 | or | |
1743 | stmfd sp!, {a1, a2, a3, a4} */ | |
c906108c | 1744 | { |
d4473757 | 1745 | int mask = insn & 0xffff; |
ed9a39eb | 1746 | |
4be43953 DJ |
1747 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1748 | break; | |
1749 | ||
94c30b78 | 1750 | /* Calculate offsets of saved registers. */ |
34e8f22d | 1751 | for (regno = ARM_PC_REGNUM; regno >= 0; regno--) |
d4473757 KB |
1752 | if (mask & (1 << regno)) |
1753 | { | |
0963b4bd MS |
1754 | regs[ARM_SP_REGNUM] |
1755 | = pv_add_constant (regs[ARM_SP_REGNUM], -4); | |
4be43953 | 1756 | pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]); |
d4473757 KB |
1757 | } |
1758 | } | |
0d39a070 DJ |
1759 | else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */ |
1760 | || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */ | |
f8bf5763 | 1761 | || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */ |
b8d5e71d MS |
1762 | { |
1763 | /* No need to add this to saved_regs -- it's just an arg reg. */ | |
1764 | continue; | |
1765 | } | |
0d39a070 DJ |
1766 | else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */ |
1767 | || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */ | |
f8bf5763 | 1768 | || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */ |
f43845b3 MS |
1769 | { |
1770 | /* No need to add this to saved_regs -- it's just an arg reg. */ | |
1771 | continue; | |
1772 | } | |
0963b4bd MS |
1773 | else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn, |
1774 | { registers } */ | |
0d39a070 DJ |
1775 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) |
1776 | { | |
1777 | /* No need to add this to saved_regs -- it's just arg regs. */ | |
1778 | continue; | |
1779 | } | |
d4473757 KB |
1780 | else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ |
1781 | { | |
94c30b78 MS |
1782 | unsigned imm = insn & 0xff; /* immediate value */ |
1783 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
d4473757 | 1784 | imm = (imm >> rot) | (imm << (32 - rot)); |
4be43953 | 1785 | regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm); |
d4473757 KB |
1786 | } |
1787 | else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ | |
1788 | { | |
94c30b78 MS |
1789 | unsigned imm = insn & 0xff; /* immediate value */ |
1790 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
d4473757 | 1791 | imm = (imm >> rot) | (imm << (32 - rot)); |
4be43953 | 1792 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm); |
d4473757 | 1793 | } |
0963b4bd MS |
1794 | else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, |
1795 | [sp, -#c]! */ | |
2af46ca0 | 1796 | && gdbarch_tdep (gdbarch)->have_fpa_registers) |
d4473757 | 1797 | { |
4be43953 DJ |
1798 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1799 | break; | |
1800 | ||
1801 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); | |
34e8f22d | 1802 | regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07); |
4be43953 | 1803 | pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]); |
d4473757 | 1804 | } |
0963b4bd MS |
1805 | else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, |
1806 | [sp!] */ | |
2af46ca0 | 1807 | && gdbarch_tdep (gdbarch)->have_fpa_registers) |
d4473757 KB |
1808 | { |
1809 | int n_saved_fp_regs; | |
1810 | unsigned int fp_start_reg, fp_bound_reg; | |
1811 | ||
4be43953 DJ |
1812 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1813 | break; | |
1814 | ||
94c30b78 | 1815 | if ((insn & 0x800) == 0x800) /* N0 is set */ |
96baa820 | 1816 | { |
d4473757 KB |
1817 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
1818 | n_saved_fp_regs = 3; | |
1819 | else | |
1820 | n_saved_fp_regs = 1; | |
96baa820 | 1821 | } |
d4473757 | 1822 | else |
96baa820 | 1823 | { |
d4473757 KB |
1824 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
1825 | n_saved_fp_regs = 2; | |
1826 | else | |
1827 | n_saved_fp_regs = 4; | |
96baa820 | 1828 | } |
d4473757 | 1829 | |
34e8f22d | 1830 | fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7); |
d4473757 KB |
1831 | fp_bound_reg = fp_start_reg + n_saved_fp_regs; |
1832 | for (; fp_start_reg < fp_bound_reg; fp_start_reg++) | |
96baa820 | 1833 | { |
4be43953 DJ |
1834 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); |
1835 | pv_area_store (stack, regs[ARM_SP_REGNUM], 12, | |
1836 | regs[fp_start_reg++]); | |
96baa820 | 1837 | } |
c906108c | 1838 | } |
0d39a070 DJ |
1839 | else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */ |
1840 | { | |
1841 | /* Allow some special function calls when skipping the | |
1842 | prologue; GCC generates these before storing arguments to | |
1843 | the stack. */ | |
1844 | CORE_ADDR dest = BranchDest (current_pc, insn); | |
1845 | ||
e0634ccf | 1846 | if (skip_prologue_function (gdbarch, dest, 0)) |
0d39a070 DJ |
1847 | continue; |
1848 | else | |
1849 | break; | |
1850 | } | |
d4473757 | 1851 | else if ((insn & 0xf0000000) != 0xe0000000) |
0963b4bd | 1852 | break; /* Condition not true, exit early. */ |
0d39a070 DJ |
1853 | else if (arm_instruction_changes_pc (insn)) |
1854 | /* Don't scan past anything that might change control flow. */ | |
1855 | break; | |
d19f7eee UW |
1856 | else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */ |
1857 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
1858 | /* Ignore block loads from the stack, potentially copying | |
1859 | parameters from memory. */ | |
1860 | continue; | |
1861 | else if ((insn & 0xfc500000) == 0xe4100000 | |
1862 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
1863 | /* Similarly ignore single loads from the stack. */ | |
1864 | continue; | |
0d39a070 DJ |
1865 | else if ((insn & 0xffff0ff0) == 0xe1a00000) |
1866 | /* MOV Rd, Rm. Skip register copies, i.e. saves to another | |
1867 | register instead of the stack. */ | |
d4473757 | 1868 | continue; |
0d39a070 DJ |
1869 | else |
1870 | { | |
1871 | /* The optimizer might shove anything into the prologue, | |
1872 | so we just skip what we don't recognize. */ | |
1873 | unrecognized_pc = current_pc; | |
1874 | continue; | |
1875 | } | |
c906108c SS |
1876 | } |
1877 | ||
0d39a070 DJ |
1878 | if (unrecognized_pc == 0) |
1879 | unrecognized_pc = current_pc; | |
1880 | ||
4be43953 DJ |
1881 | /* The frame size is just the distance from the frame register |
1882 | to the original stack pointer. */ | |
1883 | if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) | |
1884 | { | |
1885 | /* Frame pointer is fp. */ | |
0d39a070 DJ |
1886 | framereg = ARM_FP_REGNUM; |
1887 | framesize = -regs[ARM_FP_REGNUM].k; | |
4be43953 | 1888 | } |
72a2e3dc | 1889 | else |
4be43953 DJ |
1890 | { |
1891 | /* Try the stack pointer... this is a bit desperate. */ | |
0d39a070 DJ |
1892 | framereg = ARM_SP_REGNUM; |
1893 | framesize = -regs[ARM_SP_REGNUM].k; | |
4be43953 | 1894 | } |
4be43953 | 1895 | |
0d39a070 DJ |
1896 | if (cache) |
1897 | { | |
1898 | cache->framereg = framereg; | |
1899 | cache->framesize = framesize; | |
1900 | ||
1901 | for (regno = 0; regno < ARM_FPS_REGNUM; regno++) | |
1902 | if (pv_area_find_reg (stack, gdbarch, regno, &offset)) | |
1903 | cache->saved_regs[regno].addr = offset; | |
1904 | } | |
1905 | ||
1906 | if (arm_debug) | |
1907 | fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n", | |
1908 | paddress (gdbarch, unrecognized_pc)); | |
4be43953 DJ |
1909 | |
1910 | do_cleanups (back_to); | |
0d39a070 DJ |
1911 | return unrecognized_pc; |
1912 | } | |
1913 | ||
1914 | static void | |
1915 | arm_scan_prologue (struct frame_info *this_frame, | |
1916 | struct arm_prologue_cache *cache) | |
1917 | { | |
1918 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
1919 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1920 | int regno; | |
1921 | CORE_ADDR prologue_start, prologue_end, current_pc; | |
1922 | CORE_ADDR prev_pc = get_frame_pc (this_frame); | |
1923 | CORE_ADDR block_addr = get_frame_address_in_block (this_frame); | |
1924 | pv_t regs[ARM_FPS_REGNUM]; | |
1925 | struct pv_area *stack; | |
1926 | struct cleanup *back_to; | |
1927 | CORE_ADDR offset; | |
1928 | ||
1929 | /* Assume there is no frame until proven otherwise. */ | |
1930 | cache->framereg = ARM_SP_REGNUM; | |
1931 | cache->framesize = 0; | |
1932 | ||
1933 | /* Check for Thumb prologue. */ | |
1934 | if (arm_frame_is_thumb (this_frame)) | |
1935 | { | |
1936 | thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache); | |
1937 | return; | |
1938 | } | |
1939 | ||
1940 | /* Find the function prologue. If we can't find the function in | |
1941 | the symbol table, peek in the stack frame to find the PC. */ | |
1942 | if (find_pc_partial_function (block_addr, NULL, &prologue_start, | |
1943 | &prologue_end)) | |
1944 | { | |
1945 | /* One way to find the end of the prologue (which works well | |
1946 | for unoptimized code) is to do the following: | |
1947 | ||
1948 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
1949 | ||
1950 | if (sal.line == 0) | |
1951 | prologue_end = prev_pc; | |
1952 | else if (sal.end < prologue_end) | |
1953 | prologue_end = sal.end; | |
1954 | ||
1955 | This mechanism is very accurate so long as the optimizer | |
1956 | doesn't move any instructions from the function body into the | |
1957 | prologue. If this happens, sal.end will be the last | |
1958 | instruction in the first hunk of prologue code just before | |
1959 | the first instruction that the scheduler has moved from | |
1960 | the body to the prologue. | |
1961 | ||
1962 | In order to make sure that we scan all of the prologue | |
1963 | instructions, we use a slightly less accurate mechanism which | |
1964 | may scan more than necessary. To help compensate for this | |
1965 | lack of accuracy, the prologue scanning loop below contains | |
1966 | several clauses which'll cause the loop to terminate early if | |
1967 | an implausible prologue instruction is encountered. | |
1968 | ||
1969 | The expression | |
1970 | ||
1971 | prologue_start + 64 | |
1972 | ||
1973 | is a suitable endpoint since it accounts for the largest | |
1974 | possible prologue plus up to five instructions inserted by | |
1975 | the scheduler. */ | |
1976 | ||
1977 | if (prologue_end > prologue_start + 64) | |
1978 | { | |
1979 | prologue_end = prologue_start + 64; /* See above. */ | |
1980 | } | |
1981 | } | |
1982 | else | |
1983 | { | |
1984 | /* We have no symbol information. Our only option is to assume this | |
1985 | function has a standard stack frame and the normal frame register. | |
1986 | Then, we can find the value of our frame pointer on entrance to | |
1987 | the callee (or at the present moment if this is the innermost frame). | |
1988 | The value stored there should be the address of the stmfd + 8. */ | |
1989 | CORE_ADDR frame_loc; | |
1990 | LONGEST return_value; | |
1991 | ||
1992 | frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM); | |
1993 | if (!safe_read_memory_integer (frame_loc, 4, byte_order, &return_value)) | |
1994 | return; | |
1995 | else | |
1996 | { | |
1997 | prologue_start = gdbarch_addr_bits_remove | |
1998 | (gdbarch, return_value) - 8; | |
1999 | prologue_end = prologue_start + 64; /* See above. */ | |
2000 | } | |
2001 | } | |
2002 | ||
2003 | if (prev_pc < prologue_end) | |
2004 | prologue_end = prev_pc; | |
2005 | ||
2006 | arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache); | |
c906108c SS |
2007 | } |
2008 | ||
eb5492fa | 2009 | static struct arm_prologue_cache * |
a262aec2 | 2010 | arm_make_prologue_cache (struct frame_info *this_frame) |
c906108c | 2011 | { |
eb5492fa DJ |
2012 | int reg; |
2013 | struct arm_prologue_cache *cache; | |
2014 | CORE_ADDR unwound_fp; | |
c5aa993b | 2015 | |
35d5d4ee | 2016 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
a262aec2 | 2017 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
c906108c | 2018 | |
a262aec2 | 2019 | arm_scan_prologue (this_frame, cache); |
848cfffb | 2020 | |
a262aec2 | 2021 | unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg); |
eb5492fa DJ |
2022 | if (unwound_fp == 0) |
2023 | return cache; | |
c906108c | 2024 | |
4be43953 | 2025 | cache->prev_sp = unwound_fp + cache->framesize; |
c906108c | 2026 | |
eb5492fa DJ |
2027 | /* Calculate actual addresses of saved registers using offsets |
2028 | determined by arm_scan_prologue. */ | |
a262aec2 | 2029 | for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++) |
e28a332c | 2030 | if (trad_frame_addr_p (cache->saved_regs, reg)) |
eb5492fa DJ |
2031 | cache->saved_regs[reg].addr += cache->prev_sp; |
2032 | ||
2033 | return cache; | |
c906108c SS |
2034 | } |
2035 | ||
eb5492fa DJ |
2036 | /* Our frame ID for a normal frame is the current function's starting PC |
2037 | and the caller's SP when we were called. */ | |
c906108c | 2038 | |
148754e5 | 2039 | static void |
a262aec2 | 2040 | arm_prologue_this_id (struct frame_info *this_frame, |
eb5492fa DJ |
2041 | void **this_cache, |
2042 | struct frame_id *this_id) | |
c906108c | 2043 | { |
eb5492fa DJ |
2044 | struct arm_prologue_cache *cache; |
2045 | struct frame_id id; | |
2c404490 | 2046 | CORE_ADDR pc, func; |
f079148d | 2047 | |
eb5492fa | 2048 | if (*this_cache == NULL) |
a262aec2 | 2049 | *this_cache = arm_make_prologue_cache (this_frame); |
eb5492fa | 2050 | cache = *this_cache; |
2a451106 | 2051 | |
2c404490 DJ |
2052 | /* This is meant to halt the backtrace at "_start". */ |
2053 | pc = get_frame_pc (this_frame); | |
2054 | if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc) | |
eb5492fa | 2055 | return; |
5a203e44 | 2056 | |
eb5492fa DJ |
2057 | /* If we've hit a wall, stop. */ |
2058 | if (cache->prev_sp == 0) | |
2059 | return; | |
24de872b | 2060 | |
0e9e9abd UW |
2061 | /* Use function start address as part of the frame ID. If we cannot |
2062 | identify the start address (due to missing symbol information), | |
2063 | fall back to just using the current PC. */ | |
2c404490 | 2064 | func = get_frame_func (this_frame); |
0e9e9abd UW |
2065 | if (!func) |
2066 | func = pc; | |
2067 | ||
eb5492fa | 2068 | id = frame_id_build (cache->prev_sp, func); |
eb5492fa | 2069 | *this_id = id; |
c906108c SS |
2070 | } |
2071 | ||
a262aec2 DJ |
2072 | static struct value * |
2073 | arm_prologue_prev_register (struct frame_info *this_frame, | |
eb5492fa | 2074 | void **this_cache, |
a262aec2 | 2075 | int prev_regnum) |
24de872b | 2076 | { |
24568a2c | 2077 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
24de872b DJ |
2078 | struct arm_prologue_cache *cache; |
2079 | ||
eb5492fa | 2080 | if (*this_cache == NULL) |
a262aec2 | 2081 | *this_cache = arm_make_prologue_cache (this_frame); |
eb5492fa | 2082 | cache = *this_cache; |
24de872b | 2083 | |
eb5492fa | 2084 | /* If we are asked to unwind the PC, then we need to return the LR |
b39cc962 DJ |
2085 | instead. The prologue may save PC, but it will point into this |
2086 | frame's prologue, not the next frame's resume location. Also | |
2087 | strip the saved T bit. A valid LR may have the low bit set, but | |
2088 | a valid PC never does. */ | |
eb5492fa | 2089 | if (prev_regnum == ARM_PC_REGNUM) |
b39cc962 DJ |
2090 | { |
2091 | CORE_ADDR lr; | |
2092 | ||
2093 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
2094 | return frame_unwind_got_constant (this_frame, prev_regnum, | |
24568a2c | 2095 | arm_addr_bits_remove (gdbarch, lr)); |
b39cc962 | 2096 | } |
24de872b | 2097 | |
eb5492fa | 2098 | /* SP is generally not saved to the stack, but this frame is |
a262aec2 | 2099 | identified by the next frame's stack pointer at the time of the call. |
eb5492fa DJ |
2100 | The value was already reconstructed into PREV_SP. */ |
2101 | if (prev_regnum == ARM_SP_REGNUM) | |
a262aec2 | 2102 | return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp); |
eb5492fa | 2103 | |
b39cc962 DJ |
2104 | /* The CPSR may have been changed by the call instruction and by the |
2105 | called function. The only bit we can reconstruct is the T bit, | |
2106 | by checking the low bit of LR as of the call. This is a reliable | |
2107 | indicator of Thumb-ness except for some ARM v4T pre-interworking | |
2108 | Thumb code, which could get away with a clear low bit as long as | |
2109 | the called function did not use bx. Guess that all other | |
2110 | bits are unchanged; the condition flags are presumably lost, | |
2111 | but the processor status is likely valid. */ | |
2112 | if (prev_regnum == ARM_PS_REGNUM) | |
2113 | { | |
2114 | CORE_ADDR lr, cpsr; | |
9779414d | 2115 | ULONGEST t_bit = arm_psr_thumb_bit (gdbarch); |
b39cc962 DJ |
2116 | |
2117 | cpsr = get_frame_register_unsigned (this_frame, prev_regnum); | |
2118 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
2119 | if (IS_THUMB_ADDR (lr)) | |
9779414d | 2120 | cpsr |= t_bit; |
b39cc962 | 2121 | else |
9779414d | 2122 | cpsr &= ~t_bit; |
b39cc962 DJ |
2123 | return frame_unwind_got_constant (this_frame, prev_regnum, cpsr); |
2124 | } | |
2125 | ||
a262aec2 DJ |
2126 | return trad_frame_get_prev_register (this_frame, cache->saved_regs, |
2127 | prev_regnum); | |
eb5492fa DJ |
2128 | } |
2129 | ||
2130 | struct frame_unwind arm_prologue_unwind = { | |
2131 | NORMAL_FRAME, | |
8fbca658 | 2132 | default_frame_unwind_stop_reason, |
eb5492fa | 2133 | arm_prologue_this_id, |
a262aec2 DJ |
2134 | arm_prologue_prev_register, |
2135 | NULL, | |
2136 | default_frame_sniffer | |
eb5492fa DJ |
2137 | }; |
2138 | ||
0e9e9abd UW |
2139 | /* Maintain a list of ARM exception table entries per objfile, similar to the |
2140 | list of mapping symbols. We only cache entries for standard ARM-defined | |
2141 | personality routines; the cache will contain only the frame unwinding | |
2142 | instructions associated with the entry (not the descriptors). */ | |
2143 | ||
2144 | static const struct objfile_data *arm_exidx_data_key; | |
2145 | ||
2146 | struct arm_exidx_entry | |
2147 | { | |
2148 | bfd_vma addr; | |
2149 | gdb_byte *entry; | |
2150 | }; | |
2151 | typedef struct arm_exidx_entry arm_exidx_entry_s; | |
2152 | DEF_VEC_O(arm_exidx_entry_s); | |
2153 | ||
2154 | struct arm_exidx_data | |
2155 | { | |
2156 | VEC(arm_exidx_entry_s) **section_maps; | |
2157 | }; | |
2158 | ||
2159 | static void | |
2160 | arm_exidx_data_free (struct objfile *objfile, void *arg) | |
2161 | { | |
2162 | struct arm_exidx_data *data = arg; | |
2163 | unsigned int i; | |
2164 | ||
2165 | for (i = 0; i < objfile->obfd->section_count; i++) | |
2166 | VEC_free (arm_exidx_entry_s, data->section_maps[i]); | |
2167 | } | |
2168 | ||
2169 | static inline int | |
2170 | arm_compare_exidx_entries (const struct arm_exidx_entry *lhs, | |
2171 | const struct arm_exidx_entry *rhs) | |
2172 | { | |
2173 | return lhs->addr < rhs->addr; | |
2174 | } | |
2175 | ||
2176 | static struct obj_section * | |
2177 | arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma) | |
2178 | { | |
2179 | struct obj_section *osect; | |
2180 | ||
2181 | ALL_OBJFILE_OSECTIONS (objfile, osect) | |
2182 | if (bfd_get_section_flags (objfile->obfd, | |
2183 | osect->the_bfd_section) & SEC_ALLOC) | |
2184 | { | |
2185 | bfd_vma start, size; | |
2186 | start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section); | |
2187 | size = bfd_get_section_size (osect->the_bfd_section); | |
2188 | ||
2189 | if (start <= vma && vma < start + size) | |
2190 | return osect; | |
2191 | } | |
2192 | ||
2193 | return NULL; | |
2194 | } | |
2195 | ||
2196 | /* Parse contents of exception table and exception index sections | |
2197 | of OBJFILE, and fill in the exception table entry cache. | |
2198 | ||
2199 | For each entry that refers to a standard ARM-defined personality | |
2200 | routine, extract the frame unwinding instructions (from either | |
2201 | the index or the table section). The unwinding instructions | |
2202 | are normalized by: | |
2203 | - extracting them from the rest of the table data | |
2204 | - converting to host endianness | |
2205 | - appending the implicit 0xb0 ("Finish") code | |
2206 | ||
2207 | The extracted and normalized instructions are stored for later | |
2208 | retrieval by the arm_find_exidx_entry routine. */ | |
2209 | ||
2210 | static void | |
2211 | arm_exidx_new_objfile (struct objfile *objfile) | |
2212 | { | |
3bb47e8b | 2213 | struct cleanup *cleanups; |
0e9e9abd UW |
2214 | struct arm_exidx_data *data; |
2215 | asection *exidx, *extab; | |
2216 | bfd_vma exidx_vma = 0, extab_vma = 0; | |
2217 | bfd_size_type exidx_size = 0, extab_size = 0; | |
2218 | gdb_byte *exidx_data = NULL, *extab_data = NULL; | |
2219 | LONGEST i; | |
2220 | ||
2221 | /* If we've already touched this file, do nothing. */ | |
2222 | if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL) | |
2223 | return; | |
3bb47e8b | 2224 | cleanups = make_cleanup (null_cleanup, NULL); |
0e9e9abd UW |
2225 | |
2226 | /* Read contents of exception table and index. */ | |
2227 | exidx = bfd_get_section_by_name (objfile->obfd, ".ARM.exidx"); | |
2228 | if (exidx) | |
2229 | { | |
2230 | exidx_vma = bfd_section_vma (objfile->obfd, exidx); | |
2231 | exidx_size = bfd_get_section_size (exidx); | |
2232 | exidx_data = xmalloc (exidx_size); | |
2233 | make_cleanup (xfree, exidx_data); | |
2234 | ||
2235 | if (!bfd_get_section_contents (objfile->obfd, exidx, | |
2236 | exidx_data, 0, exidx_size)) | |
2237 | { | |
2238 | do_cleanups (cleanups); | |
2239 | return; | |
2240 | } | |
2241 | } | |
2242 | ||
2243 | extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab"); | |
2244 | if (extab) | |
2245 | { | |
2246 | extab_vma = bfd_section_vma (objfile->obfd, extab); | |
2247 | extab_size = bfd_get_section_size (extab); | |
2248 | extab_data = xmalloc (extab_size); | |
2249 | make_cleanup (xfree, extab_data); | |
2250 | ||
2251 | if (!bfd_get_section_contents (objfile->obfd, extab, | |
2252 | extab_data, 0, extab_size)) | |
2253 | { | |
2254 | do_cleanups (cleanups); | |
2255 | return; | |
2256 | } | |
2257 | } | |
2258 | ||
2259 | /* Allocate exception table data structure. */ | |
2260 | data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data); | |
2261 | set_objfile_data (objfile, arm_exidx_data_key, data); | |
2262 | data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack, | |
2263 | objfile->obfd->section_count, | |
2264 | VEC(arm_exidx_entry_s) *); | |
2265 | ||
2266 | /* Fill in exception table. */ | |
2267 | for (i = 0; i < exidx_size / 8; i++) | |
2268 | { | |
2269 | struct arm_exidx_entry new_exidx_entry; | |
2270 | bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8); | |
2271 | bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4); | |
2272 | bfd_vma addr = 0, word = 0; | |
2273 | int n_bytes = 0, n_words = 0; | |
2274 | struct obj_section *sec; | |
2275 | gdb_byte *entry = NULL; | |
2276 | ||
2277 | /* Extract address of start of function. */ | |
2278 | idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000; | |
2279 | idx += exidx_vma + i * 8; | |
2280 | ||
2281 | /* Find section containing function and compute section offset. */ | |
2282 | sec = arm_obj_section_from_vma (objfile, idx); | |
2283 | if (sec == NULL) | |
2284 | continue; | |
2285 | idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section); | |
2286 | ||
2287 | /* Determine address of exception table entry. */ | |
2288 | if (val == 1) | |
2289 | { | |
2290 | /* EXIDX_CANTUNWIND -- no exception table entry present. */ | |
2291 | } | |
2292 | else if ((val & 0xff000000) == 0x80000000) | |
2293 | { | |
2294 | /* Exception table entry embedded in .ARM.exidx | |
2295 | -- must be short form. */ | |
2296 | word = val; | |
2297 | n_bytes = 3; | |
2298 | } | |
2299 | else if (!(val & 0x80000000)) | |
2300 | { | |
2301 | /* Exception table entry in .ARM.extab. */ | |
2302 | addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000; | |
2303 | addr += exidx_vma + i * 8 + 4; | |
2304 | ||
2305 | if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size) | |
2306 | { | |
2307 | word = bfd_h_get_32 (objfile->obfd, | |
2308 | extab_data + addr - extab_vma); | |
2309 | addr += 4; | |
2310 | ||
2311 | if ((word & 0xff000000) == 0x80000000) | |
2312 | { | |
2313 | /* Short form. */ | |
2314 | n_bytes = 3; | |
2315 | } | |
2316 | else if ((word & 0xff000000) == 0x81000000 | |
2317 | || (word & 0xff000000) == 0x82000000) | |
2318 | { | |
2319 | /* Long form. */ | |
2320 | n_bytes = 2; | |
2321 | n_words = ((word >> 16) & 0xff); | |
2322 | } | |
2323 | else if (!(word & 0x80000000)) | |
2324 | { | |
2325 | bfd_vma pers; | |
2326 | struct obj_section *pers_sec; | |
2327 | int gnu_personality = 0; | |
2328 | ||
2329 | /* Custom personality routine. */ | |
2330 | pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000; | |
2331 | pers = UNMAKE_THUMB_ADDR (pers + addr - 4); | |
2332 | ||
2333 | /* Check whether we've got one of the variants of the | |
2334 | GNU personality routines. */ | |
2335 | pers_sec = arm_obj_section_from_vma (objfile, pers); | |
2336 | if (pers_sec) | |
2337 | { | |
2338 | static const char *personality[] = | |
2339 | { | |
2340 | "__gcc_personality_v0", | |
2341 | "__gxx_personality_v0", | |
2342 | "__gcj_personality_v0", | |
2343 | "__gnu_objc_personality_v0", | |
2344 | NULL | |
2345 | }; | |
2346 | ||
2347 | CORE_ADDR pc = pers + obj_section_offset (pers_sec); | |
2348 | int k; | |
2349 | ||
2350 | for (k = 0; personality[k]; k++) | |
2351 | if (lookup_minimal_symbol_by_pc_name | |
2352 | (pc, personality[k], objfile)) | |
2353 | { | |
2354 | gnu_personality = 1; | |
2355 | break; | |
2356 | } | |
2357 | } | |
2358 | ||
2359 | /* If so, the next word contains a word count in the high | |
2360 | byte, followed by the same unwind instructions as the | |
2361 | pre-defined forms. */ | |
2362 | if (gnu_personality | |
2363 | && addr + 4 <= extab_vma + extab_size) | |
2364 | { | |
2365 | word = bfd_h_get_32 (objfile->obfd, | |
2366 | extab_data + addr - extab_vma); | |
2367 | addr += 4; | |
2368 | n_bytes = 3; | |
2369 | n_words = ((word >> 24) & 0xff); | |
2370 | } | |
2371 | } | |
2372 | } | |
2373 | } | |
2374 | ||
2375 | /* Sanity check address. */ | |
2376 | if (n_words) | |
2377 | if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size) | |
2378 | n_words = n_bytes = 0; | |
2379 | ||
2380 | /* The unwind instructions reside in WORD (only the N_BYTES least | |
2381 | significant bytes are valid), followed by N_WORDS words in the | |
2382 | extab section starting at ADDR. */ | |
2383 | if (n_bytes || n_words) | |
2384 | { | |
2385 | gdb_byte *p = entry = obstack_alloc (&objfile->objfile_obstack, | |
2386 | n_bytes + n_words * 4 + 1); | |
2387 | ||
2388 | while (n_bytes--) | |
2389 | *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff); | |
2390 | ||
2391 | while (n_words--) | |
2392 | { | |
2393 | word = bfd_h_get_32 (objfile->obfd, | |
2394 | extab_data + addr - extab_vma); | |
2395 | addr += 4; | |
2396 | ||
2397 | *p++ = (gdb_byte) ((word >> 24) & 0xff); | |
2398 | *p++ = (gdb_byte) ((word >> 16) & 0xff); | |
2399 | *p++ = (gdb_byte) ((word >> 8) & 0xff); | |
2400 | *p++ = (gdb_byte) (word & 0xff); | |
2401 | } | |
2402 | ||
2403 | /* Implied "Finish" to terminate the list. */ | |
2404 | *p++ = 0xb0; | |
2405 | } | |
2406 | ||
2407 | /* Push entry onto vector. They are guaranteed to always | |
2408 | appear in order of increasing addresses. */ | |
2409 | new_exidx_entry.addr = idx; | |
2410 | new_exidx_entry.entry = entry; | |
2411 | VEC_safe_push (arm_exidx_entry_s, | |
2412 | data->section_maps[sec->the_bfd_section->index], | |
2413 | &new_exidx_entry); | |
2414 | } | |
2415 | ||
2416 | do_cleanups (cleanups); | |
2417 | } | |
2418 | ||
2419 | /* Search for the exception table entry covering MEMADDR. If one is found, | |
2420 | return a pointer to its data. Otherwise, return 0. If START is non-NULL, | |
2421 | set *START to the start of the region covered by this entry. */ | |
2422 | ||
2423 | static gdb_byte * | |
2424 | arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start) | |
2425 | { | |
2426 | struct obj_section *sec; | |
2427 | ||
2428 | sec = find_pc_section (memaddr); | |
2429 | if (sec != NULL) | |
2430 | { | |
2431 | struct arm_exidx_data *data; | |
2432 | VEC(arm_exidx_entry_s) *map; | |
2433 | struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 }; | |
2434 | unsigned int idx; | |
2435 | ||
2436 | data = objfile_data (sec->objfile, arm_exidx_data_key); | |
2437 | if (data != NULL) | |
2438 | { | |
2439 | map = data->section_maps[sec->the_bfd_section->index]; | |
2440 | if (!VEC_empty (arm_exidx_entry_s, map)) | |
2441 | { | |
2442 | struct arm_exidx_entry *map_sym; | |
2443 | ||
2444 | idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key, | |
2445 | arm_compare_exidx_entries); | |
2446 | ||
2447 | /* VEC_lower_bound finds the earliest ordered insertion | |
2448 | point. If the following symbol starts at this exact | |
2449 | address, we use that; otherwise, the preceding | |
2450 | exception table entry covers this address. */ | |
2451 | if (idx < VEC_length (arm_exidx_entry_s, map)) | |
2452 | { | |
2453 | map_sym = VEC_index (arm_exidx_entry_s, map, idx); | |
2454 | if (map_sym->addr == map_key.addr) | |
2455 | { | |
2456 | if (start) | |
2457 | *start = map_sym->addr + obj_section_addr (sec); | |
2458 | return map_sym->entry; | |
2459 | } | |
2460 | } | |
2461 | ||
2462 | if (idx > 0) | |
2463 | { | |
2464 | map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1); | |
2465 | if (start) | |
2466 | *start = map_sym->addr + obj_section_addr (sec); | |
2467 | return map_sym->entry; | |
2468 | } | |
2469 | } | |
2470 | } | |
2471 | } | |
2472 | ||
2473 | return NULL; | |
2474 | } | |
2475 | ||
2476 | /* Given the current frame THIS_FRAME, and its associated frame unwinding | |
2477 | instruction list from the ARM exception table entry ENTRY, allocate and | |
2478 | return a prologue cache structure describing how to unwind this frame. | |
2479 | ||
2480 | Return NULL if the unwinding instruction list contains a "spare", | |
2481 | "reserved" or "refuse to unwind" instruction as defined in section | |
2482 | "9.3 Frame unwinding instructions" of the "Exception Handling ABI | |
2483 | for the ARM Architecture" document. */ | |
2484 | ||
2485 | static struct arm_prologue_cache * | |
2486 | arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry) | |
2487 | { | |
2488 | CORE_ADDR vsp = 0; | |
2489 | int vsp_valid = 0; | |
2490 | ||
2491 | struct arm_prologue_cache *cache; | |
2492 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); | |
2493 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
2494 | ||
2495 | for (;;) | |
2496 | { | |
2497 | gdb_byte insn; | |
2498 | ||
2499 | /* Whenever we reload SP, we actually have to retrieve its | |
2500 | actual value in the current frame. */ | |
2501 | if (!vsp_valid) | |
2502 | { | |
2503 | if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM)) | |
2504 | { | |
2505 | int reg = cache->saved_regs[ARM_SP_REGNUM].realreg; | |
2506 | vsp = get_frame_register_unsigned (this_frame, reg); | |
2507 | } | |
2508 | else | |
2509 | { | |
2510 | CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr; | |
2511 | vsp = get_frame_memory_unsigned (this_frame, addr, 4); | |
2512 | } | |
2513 | ||
2514 | vsp_valid = 1; | |
2515 | } | |
2516 | ||
2517 | /* Decode next unwind instruction. */ | |
2518 | insn = *entry++; | |
2519 | ||
2520 | if ((insn & 0xc0) == 0) | |
2521 | { | |
2522 | int offset = insn & 0x3f; | |
2523 | vsp += (offset << 2) + 4; | |
2524 | } | |
2525 | else if ((insn & 0xc0) == 0x40) | |
2526 | { | |
2527 | int offset = insn & 0x3f; | |
2528 | vsp -= (offset << 2) + 4; | |
2529 | } | |
2530 | else if ((insn & 0xf0) == 0x80) | |
2531 | { | |
2532 | int mask = ((insn & 0xf) << 8) | *entry++; | |
2533 | int i; | |
2534 | ||
2535 | /* The special case of an all-zero mask identifies | |
2536 | "Refuse to unwind". We return NULL to fall back | |
2537 | to the prologue analyzer. */ | |
2538 | if (mask == 0) | |
2539 | return NULL; | |
2540 | ||
2541 | /* Pop registers r4..r15 under mask. */ | |
2542 | for (i = 0; i < 12; i++) | |
2543 | if (mask & (1 << i)) | |
2544 | { | |
2545 | cache->saved_regs[4 + i].addr = vsp; | |
2546 | vsp += 4; | |
2547 | } | |
2548 | ||
2549 | /* Special-case popping SP -- we need to reload vsp. */ | |
2550 | if (mask & (1 << (ARM_SP_REGNUM - 4))) | |
2551 | vsp_valid = 0; | |
2552 | } | |
2553 | else if ((insn & 0xf0) == 0x90) | |
2554 | { | |
2555 | int reg = insn & 0xf; | |
2556 | ||
2557 | /* Reserved cases. */ | |
2558 | if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM) | |
2559 | return NULL; | |
2560 | ||
2561 | /* Set SP from another register and mark VSP for reload. */ | |
2562 | cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg]; | |
2563 | vsp_valid = 0; | |
2564 | } | |
2565 | else if ((insn & 0xf0) == 0xa0) | |
2566 | { | |
2567 | int count = insn & 0x7; | |
2568 | int pop_lr = (insn & 0x8) != 0; | |
2569 | int i; | |
2570 | ||
2571 | /* Pop r4..r[4+count]. */ | |
2572 | for (i = 0; i <= count; i++) | |
2573 | { | |
2574 | cache->saved_regs[4 + i].addr = vsp; | |
2575 | vsp += 4; | |
2576 | } | |
2577 | ||
2578 | /* If indicated by flag, pop LR as well. */ | |
2579 | if (pop_lr) | |
2580 | { | |
2581 | cache->saved_regs[ARM_LR_REGNUM].addr = vsp; | |
2582 | vsp += 4; | |
2583 | } | |
2584 | } | |
2585 | else if (insn == 0xb0) | |
2586 | { | |
2587 | /* We could only have updated PC by popping into it; if so, it | |
2588 | will show up as address. Otherwise, copy LR into PC. */ | |
2589 | if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM)) | |
2590 | cache->saved_regs[ARM_PC_REGNUM] | |
2591 | = cache->saved_regs[ARM_LR_REGNUM]; | |
2592 | ||
2593 | /* We're done. */ | |
2594 | break; | |
2595 | } | |
2596 | else if (insn == 0xb1) | |
2597 | { | |
2598 | int mask = *entry++; | |
2599 | int i; | |
2600 | ||
2601 | /* All-zero mask and mask >= 16 is "spare". */ | |
2602 | if (mask == 0 || mask >= 16) | |
2603 | return NULL; | |
2604 | ||
2605 | /* Pop r0..r3 under mask. */ | |
2606 | for (i = 0; i < 4; i++) | |
2607 | if (mask & (1 << i)) | |
2608 | { | |
2609 | cache->saved_regs[i].addr = vsp; | |
2610 | vsp += 4; | |
2611 | } | |
2612 | } | |
2613 | else if (insn == 0xb2) | |
2614 | { | |
2615 | ULONGEST offset = 0; | |
2616 | unsigned shift = 0; | |
2617 | ||
2618 | do | |
2619 | { | |
2620 | offset |= (*entry & 0x7f) << shift; | |
2621 | shift += 7; | |
2622 | } | |
2623 | while (*entry++ & 0x80); | |
2624 | ||
2625 | vsp += 0x204 + (offset << 2); | |
2626 | } | |
2627 | else if (insn == 0xb3) | |
2628 | { | |
2629 | int start = *entry >> 4; | |
2630 | int count = (*entry++) & 0xf; | |
2631 | int i; | |
2632 | ||
2633 | /* Only registers D0..D15 are valid here. */ | |
2634 | if (start + count >= 16) | |
2635 | return NULL; | |
2636 | ||
2637 | /* Pop VFP double-precision registers D[start]..D[start+count]. */ | |
2638 | for (i = 0; i <= count; i++) | |
2639 | { | |
2640 | cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp; | |
2641 | vsp += 8; | |
2642 | } | |
2643 | ||
2644 | /* Add an extra 4 bytes for FSTMFDX-style stack. */ | |
2645 | vsp += 4; | |
2646 | } | |
2647 | else if ((insn & 0xf8) == 0xb8) | |
2648 | { | |
2649 | int count = insn & 0x7; | |
2650 | int i; | |
2651 | ||
2652 | /* Pop VFP double-precision registers D[8]..D[8+count]. */ | |
2653 | for (i = 0; i <= count; i++) | |
2654 | { | |
2655 | cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp; | |
2656 | vsp += 8; | |
2657 | } | |
2658 | ||
2659 | /* Add an extra 4 bytes for FSTMFDX-style stack. */ | |
2660 | vsp += 4; | |
2661 | } | |
2662 | else if (insn == 0xc6) | |
2663 | { | |
2664 | int start = *entry >> 4; | |
2665 | int count = (*entry++) & 0xf; | |
2666 | int i; | |
2667 | ||
2668 | /* Only registers WR0..WR15 are valid. */ | |
2669 | if (start + count >= 16) | |
2670 | return NULL; | |
2671 | ||
2672 | /* Pop iwmmx registers WR[start]..WR[start+count]. */ | |
2673 | for (i = 0; i <= count; i++) | |
2674 | { | |
2675 | cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp; | |
2676 | vsp += 8; | |
2677 | } | |
2678 | } | |
2679 | else if (insn == 0xc7) | |
2680 | { | |
2681 | int mask = *entry++; | |
2682 | int i; | |
2683 | ||
2684 | /* All-zero mask and mask >= 16 is "spare". */ | |
2685 | if (mask == 0 || mask >= 16) | |
2686 | return NULL; | |
2687 | ||
2688 | /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */ | |
2689 | for (i = 0; i < 4; i++) | |
2690 | if (mask & (1 << i)) | |
2691 | { | |
2692 | cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp; | |
2693 | vsp += 4; | |
2694 | } | |
2695 | } | |
2696 | else if ((insn & 0xf8) == 0xc0) | |
2697 | { | |
2698 | int count = insn & 0x7; | |
2699 | int i; | |
2700 | ||
2701 | /* Pop iwmmx registers WR[10]..WR[10+count]. */ | |
2702 | for (i = 0; i <= count; i++) | |
2703 | { | |
2704 | cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp; | |
2705 | vsp += 8; | |
2706 | } | |
2707 | } | |
2708 | else if (insn == 0xc8) | |
2709 | { | |
2710 | int start = *entry >> 4; | |
2711 | int count = (*entry++) & 0xf; | |
2712 | int i; | |
2713 | ||
2714 | /* Only registers D0..D31 are valid. */ | |
2715 | if (start + count >= 16) | |
2716 | return NULL; | |
2717 | ||
2718 | /* Pop VFP double-precision registers | |
2719 | D[16+start]..D[16+start+count]. */ | |
2720 | for (i = 0; i <= count; i++) | |
2721 | { | |
2722 | cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp; | |
2723 | vsp += 8; | |
2724 | } | |
2725 | } | |
2726 | else if (insn == 0xc9) | |
2727 | { | |
2728 | int start = *entry >> 4; | |
2729 | int count = (*entry++) & 0xf; | |
2730 | int i; | |
2731 | ||
2732 | /* Pop VFP double-precision registers D[start]..D[start+count]. */ | |
2733 | for (i = 0; i <= count; i++) | |
2734 | { | |
2735 | cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp; | |
2736 | vsp += 8; | |
2737 | } | |
2738 | } | |
2739 | else if ((insn & 0xf8) == 0xd0) | |
2740 | { | |
2741 | int count = insn & 0x7; | |
2742 | int i; | |
2743 | ||
2744 | /* Pop VFP double-precision registers D[8]..D[8+count]. */ | |
2745 | for (i = 0; i <= count; i++) | |
2746 | { | |
2747 | cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp; | |
2748 | vsp += 8; | |
2749 | } | |
2750 | } | |
2751 | else | |
2752 | { | |
2753 | /* Everything else is "spare". */ | |
2754 | return NULL; | |
2755 | } | |
2756 | } | |
2757 | ||
2758 | /* If we restore SP from a register, assume this was the frame register. | |
2759 | Otherwise just fall back to SP as frame register. */ | |
2760 | if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM)) | |
2761 | cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg; | |
2762 | else | |
2763 | cache->framereg = ARM_SP_REGNUM; | |
2764 | ||
2765 | /* Determine offset to previous frame. */ | |
2766 | cache->framesize | |
2767 | = vsp - get_frame_register_unsigned (this_frame, cache->framereg); | |
2768 | ||
2769 | /* We already got the previous SP. */ | |
2770 | cache->prev_sp = vsp; | |
2771 | ||
2772 | return cache; | |
2773 | } | |
2774 | ||
2775 | /* Unwinding via ARM exception table entries. Note that the sniffer | |
2776 | already computes a filled-in prologue cache, which is then used | |
2777 | with the same arm_prologue_this_id and arm_prologue_prev_register | |
2778 | routines also used for prologue-parsing based unwinding. */ | |
2779 | ||
2780 | static int | |
2781 | arm_exidx_unwind_sniffer (const struct frame_unwind *self, | |
2782 | struct frame_info *this_frame, | |
2783 | void **this_prologue_cache) | |
2784 | { | |
2785 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
2786 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
2787 | CORE_ADDR addr_in_block, exidx_region, func_start; | |
2788 | struct arm_prologue_cache *cache; | |
2789 | gdb_byte *entry; | |
2790 | ||
2791 | /* See if we have an ARM exception table entry covering this address. */ | |
2792 | addr_in_block = get_frame_address_in_block (this_frame); | |
2793 | entry = arm_find_exidx_entry (addr_in_block, &exidx_region); | |
2794 | if (!entry) | |
2795 | return 0; | |
2796 | ||
2797 | /* The ARM exception table does not describe unwind information | |
2798 | for arbitrary PC values, but is guaranteed to be correct only | |
2799 | at call sites. We have to decide here whether we want to use | |
2800 | ARM exception table information for this frame, or fall back | |
2801 | to using prologue parsing. (Note that if we have DWARF CFI, | |
2802 | this sniffer isn't even called -- CFI is always preferred.) | |
2803 | ||
2804 | Before we make this decision, however, we check whether we | |
2805 | actually have *symbol* information for the current frame. | |
2806 | If not, prologue parsing would not work anyway, so we might | |
2807 | as well use the exception table and hope for the best. */ | |
2808 | if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL)) | |
2809 | { | |
2810 | int exc_valid = 0; | |
2811 | ||
2812 | /* If the next frame is "normal", we are at a call site in this | |
2813 | frame, so exception information is guaranteed to be valid. */ | |
2814 | if (get_next_frame (this_frame) | |
2815 | && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME) | |
2816 | exc_valid = 1; | |
2817 | ||
2818 | /* We also assume exception information is valid if we're currently | |
2819 | blocked in a system call. The system library is supposed to | |
2820 | ensure this, so that e.g. pthread cancellation works. */ | |
2821 | if (arm_frame_is_thumb (this_frame)) | |
2822 | { | |
2823 | LONGEST insn; | |
2824 | ||
2825 | if (safe_read_memory_integer (get_frame_pc (this_frame) - 2, 2, | |
2826 | byte_order_for_code, &insn) | |
2827 | && (insn & 0xff00) == 0xdf00 /* svc */) | |
2828 | exc_valid = 1; | |
2829 | } | |
2830 | else | |
2831 | { | |
2832 | LONGEST insn; | |
2833 | ||
2834 | if (safe_read_memory_integer (get_frame_pc (this_frame) - 4, 4, | |
2835 | byte_order_for_code, &insn) | |
2836 | && (insn & 0x0f000000) == 0x0f000000 /* svc */) | |
2837 | exc_valid = 1; | |
2838 | } | |
2839 | ||
2840 | /* Bail out if we don't know that exception information is valid. */ | |
2841 | if (!exc_valid) | |
2842 | return 0; | |
2843 | ||
2844 | /* The ARM exception index does not mark the *end* of the region | |
2845 | covered by the entry, and some functions will not have any entry. | |
2846 | To correctly recognize the end of the covered region, the linker | |
2847 | should have inserted dummy records with a CANTUNWIND marker. | |
2848 | ||
2849 | Unfortunately, current versions of GNU ld do not reliably do | |
2850 | this, and thus we may have found an incorrect entry above. | |
2851 | As a (temporary) sanity check, we only use the entry if it | |
2852 | lies *within* the bounds of the function. Note that this check | |
2853 | might reject perfectly valid entries that just happen to cover | |
2854 | multiple functions; therefore this check ought to be removed | |
2855 | once the linker is fixed. */ | |
2856 | if (func_start > exidx_region) | |
2857 | return 0; | |
2858 | } | |
2859 | ||
2860 | /* Decode the list of unwinding instructions into a prologue cache. | |
2861 | Note that this may fail due to e.g. a "refuse to unwind" code. */ | |
2862 | cache = arm_exidx_fill_cache (this_frame, entry); | |
2863 | if (!cache) | |
2864 | return 0; | |
2865 | ||
2866 | *this_prologue_cache = cache; | |
2867 | return 1; | |
2868 | } | |
2869 | ||
2870 | struct frame_unwind arm_exidx_unwind = { | |
2871 | NORMAL_FRAME, | |
8fbca658 | 2872 | default_frame_unwind_stop_reason, |
0e9e9abd UW |
2873 | arm_prologue_this_id, |
2874 | arm_prologue_prev_register, | |
2875 | NULL, | |
2876 | arm_exidx_unwind_sniffer | |
2877 | }; | |
2878 | ||
909cf6ea | 2879 | static struct arm_prologue_cache * |
a262aec2 | 2880 | arm_make_stub_cache (struct frame_info *this_frame) |
909cf6ea | 2881 | { |
909cf6ea | 2882 | struct arm_prologue_cache *cache; |
909cf6ea | 2883 | |
35d5d4ee | 2884 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
a262aec2 | 2885 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
909cf6ea | 2886 | |
a262aec2 | 2887 | cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); |
909cf6ea DJ |
2888 | |
2889 | return cache; | |
2890 | } | |
2891 | ||
2892 | /* Our frame ID for a stub frame is the current SP and LR. */ | |
2893 | ||
2894 | static void | |
a262aec2 | 2895 | arm_stub_this_id (struct frame_info *this_frame, |
909cf6ea DJ |
2896 | void **this_cache, |
2897 | struct frame_id *this_id) | |
2898 | { | |
2899 | struct arm_prologue_cache *cache; | |
2900 | ||
2901 | if (*this_cache == NULL) | |
a262aec2 | 2902 | *this_cache = arm_make_stub_cache (this_frame); |
909cf6ea DJ |
2903 | cache = *this_cache; |
2904 | ||
a262aec2 | 2905 | *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame)); |
909cf6ea DJ |
2906 | } |
2907 | ||
a262aec2 DJ |
2908 | static int |
2909 | arm_stub_unwind_sniffer (const struct frame_unwind *self, | |
2910 | struct frame_info *this_frame, | |
2911 | void **this_prologue_cache) | |
909cf6ea | 2912 | { |
93d42b30 | 2913 | CORE_ADDR addr_in_block; |
909cf6ea DJ |
2914 | char dummy[4]; |
2915 | ||
a262aec2 | 2916 | addr_in_block = get_frame_address_in_block (this_frame); |
93d42b30 | 2917 | if (in_plt_section (addr_in_block, NULL) |
fc36e839 DE |
2918 | /* We also use the stub winder if the target memory is unreadable |
2919 | to avoid having the prologue unwinder trying to read it. */ | |
a262aec2 DJ |
2920 | || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0) |
2921 | return 1; | |
909cf6ea | 2922 | |
a262aec2 | 2923 | return 0; |
909cf6ea DJ |
2924 | } |
2925 | ||
a262aec2 DJ |
2926 | struct frame_unwind arm_stub_unwind = { |
2927 | NORMAL_FRAME, | |
8fbca658 | 2928 | default_frame_unwind_stop_reason, |
a262aec2 DJ |
2929 | arm_stub_this_id, |
2930 | arm_prologue_prev_register, | |
2931 | NULL, | |
2932 | arm_stub_unwind_sniffer | |
2933 | }; | |
2934 | ||
2ae28aa9 YQ |
2935 | /* Put here the code to store, into CACHE->saved_regs, the addresses |
2936 | of the saved registers of frame described by THIS_FRAME. CACHE is | |
2937 | returned. */ | |
2938 | ||
2939 | static struct arm_prologue_cache * | |
2940 | arm_m_exception_cache (struct frame_info *this_frame) | |
2941 | { | |
2942 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
2943 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
2944 | struct arm_prologue_cache *cache; | |
2945 | CORE_ADDR unwound_sp; | |
2946 | LONGEST xpsr; | |
2947 | ||
2948 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); | |
2949 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
2950 | ||
2951 | unwound_sp = get_frame_register_unsigned (this_frame, | |
2952 | ARM_SP_REGNUM); | |
2953 | ||
2954 | /* The hardware saves eight 32-bit words, comprising xPSR, | |
2955 | ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in | |
2956 | "B1.5.6 Exception entry behavior" in | |
2957 | "ARMv7-M Architecture Reference Manual". */ | |
2958 | cache->saved_regs[0].addr = unwound_sp; | |
2959 | cache->saved_regs[1].addr = unwound_sp + 4; | |
2960 | cache->saved_regs[2].addr = unwound_sp + 8; | |
2961 | cache->saved_regs[3].addr = unwound_sp + 12; | |
2962 | cache->saved_regs[12].addr = unwound_sp + 16; | |
2963 | cache->saved_regs[14].addr = unwound_sp + 20; | |
2964 | cache->saved_regs[15].addr = unwound_sp + 24; | |
2965 | cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28; | |
2966 | ||
2967 | /* If bit 9 of the saved xPSR is set, then there is a four-byte | |
2968 | aligner between the top of the 32-byte stack frame and the | |
2969 | previous context's stack pointer. */ | |
2970 | cache->prev_sp = unwound_sp + 32; | |
2971 | if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr) | |
2972 | && (xpsr & (1 << 9)) != 0) | |
2973 | cache->prev_sp += 4; | |
2974 | ||
2975 | return cache; | |
2976 | } | |
2977 | ||
2978 | /* Implementation of function hook 'this_id' in | |
2979 | 'struct frame_uwnind'. */ | |
2980 | ||
2981 | static void | |
2982 | arm_m_exception_this_id (struct frame_info *this_frame, | |
2983 | void **this_cache, | |
2984 | struct frame_id *this_id) | |
2985 | { | |
2986 | struct arm_prologue_cache *cache; | |
2987 | ||
2988 | if (*this_cache == NULL) | |
2989 | *this_cache = arm_m_exception_cache (this_frame); | |
2990 | cache = *this_cache; | |
2991 | ||
2992 | /* Our frame ID for a stub frame is the current SP and LR. */ | |
2993 | *this_id = frame_id_build (cache->prev_sp, | |
2994 | get_frame_pc (this_frame)); | |
2995 | } | |
2996 | ||
2997 | /* Implementation of function hook 'prev_register' in | |
2998 | 'struct frame_uwnind'. */ | |
2999 | ||
3000 | static struct value * | |
3001 | arm_m_exception_prev_register (struct frame_info *this_frame, | |
3002 | void **this_cache, | |
3003 | int prev_regnum) | |
3004 | { | |
3005 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
3006 | struct arm_prologue_cache *cache; | |
3007 | ||
3008 | if (*this_cache == NULL) | |
3009 | *this_cache = arm_m_exception_cache (this_frame); | |
3010 | cache = *this_cache; | |
3011 | ||
3012 | /* The value was already reconstructed into PREV_SP. */ | |
3013 | if (prev_regnum == ARM_SP_REGNUM) | |
3014 | return frame_unwind_got_constant (this_frame, prev_regnum, | |
3015 | cache->prev_sp); | |
3016 | ||
3017 | return trad_frame_get_prev_register (this_frame, cache->saved_regs, | |
3018 | prev_regnum); | |
3019 | } | |
3020 | ||
3021 | /* Implementation of function hook 'sniffer' in | |
3022 | 'struct frame_uwnind'. */ | |
3023 | ||
3024 | static int | |
3025 | arm_m_exception_unwind_sniffer (const struct frame_unwind *self, | |
3026 | struct frame_info *this_frame, | |
3027 | void **this_prologue_cache) | |
3028 | { | |
3029 | CORE_ADDR this_pc = get_frame_pc (this_frame); | |
3030 | ||
3031 | /* No need to check is_m; this sniffer is only registered for | |
3032 | M-profile architectures. */ | |
3033 | ||
3034 | /* Exception frames return to one of these magic PCs. Other values | |
3035 | are not defined as of v7-M. See details in "B1.5.8 Exception | |
3036 | return behavior" in "ARMv7-M Architecture Reference Manual". */ | |
3037 | if (this_pc == 0xfffffff1 || this_pc == 0xfffffff9 | |
3038 | || this_pc == 0xfffffffd) | |
3039 | return 1; | |
3040 | ||
3041 | return 0; | |
3042 | } | |
3043 | ||
3044 | /* Frame unwinder for M-profile exceptions. */ | |
3045 | ||
3046 | struct frame_unwind arm_m_exception_unwind = | |
3047 | { | |
3048 | SIGTRAMP_FRAME, | |
3049 | default_frame_unwind_stop_reason, | |
3050 | arm_m_exception_this_id, | |
3051 | arm_m_exception_prev_register, | |
3052 | NULL, | |
3053 | arm_m_exception_unwind_sniffer | |
3054 | }; | |
3055 | ||
24de872b | 3056 | static CORE_ADDR |
a262aec2 | 3057 | arm_normal_frame_base (struct frame_info *this_frame, void **this_cache) |
24de872b DJ |
3058 | { |
3059 | struct arm_prologue_cache *cache; | |
3060 | ||
eb5492fa | 3061 | if (*this_cache == NULL) |
a262aec2 | 3062 | *this_cache = arm_make_prologue_cache (this_frame); |
eb5492fa DJ |
3063 | cache = *this_cache; |
3064 | ||
4be43953 | 3065 | return cache->prev_sp - cache->framesize; |
24de872b DJ |
3066 | } |
3067 | ||
eb5492fa DJ |
3068 | struct frame_base arm_normal_base = { |
3069 | &arm_prologue_unwind, | |
3070 | arm_normal_frame_base, | |
3071 | arm_normal_frame_base, | |
3072 | arm_normal_frame_base | |
3073 | }; | |
3074 | ||
a262aec2 | 3075 | /* Assuming THIS_FRAME is a dummy, return the frame ID of that |
eb5492fa DJ |
3076 | dummy frame. The frame ID's base needs to match the TOS value |
3077 | saved by save_dummy_frame_tos() and returned from | |
3078 | arm_push_dummy_call, and the PC needs to match the dummy frame's | |
3079 | breakpoint. */ | |
c906108c | 3080 | |
eb5492fa | 3081 | static struct frame_id |
a262aec2 | 3082 | arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
c906108c | 3083 | { |
0963b4bd MS |
3084 | return frame_id_build (get_frame_register_unsigned (this_frame, |
3085 | ARM_SP_REGNUM), | |
a262aec2 | 3086 | get_frame_pc (this_frame)); |
eb5492fa | 3087 | } |
c3b4394c | 3088 | |
eb5492fa DJ |
3089 | /* Given THIS_FRAME, find the previous frame's resume PC (which will |
3090 | be used to construct the previous frame's ID, after looking up the | |
3091 | containing function). */ | |
c3b4394c | 3092 | |
eb5492fa DJ |
3093 | static CORE_ADDR |
3094 | arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
3095 | { | |
3096 | CORE_ADDR pc; | |
3097 | pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM); | |
24568a2c | 3098 | return arm_addr_bits_remove (gdbarch, pc); |
eb5492fa DJ |
3099 | } |
3100 | ||
3101 | static CORE_ADDR | |
3102 | arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
3103 | { | |
3104 | return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM); | |
c906108c SS |
3105 | } |
3106 | ||
b39cc962 DJ |
3107 | static struct value * |
3108 | arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache, | |
3109 | int regnum) | |
3110 | { | |
24568a2c | 3111 | struct gdbarch * gdbarch = get_frame_arch (this_frame); |
b39cc962 | 3112 | CORE_ADDR lr, cpsr; |
9779414d | 3113 | ULONGEST t_bit = arm_psr_thumb_bit (gdbarch); |
b39cc962 DJ |
3114 | |
3115 | switch (regnum) | |
3116 | { | |
3117 | case ARM_PC_REGNUM: | |
3118 | /* The PC is normally copied from the return column, which | |
3119 | describes saves of LR. However, that version may have an | |
3120 | extra bit set to indicate Thumb state. The bit is not | |
3121 | part of the PC. */ | |
3122 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
3123 | return frame_unwind_got_constant (this_frame, regnum, | |
24568a2c | 3124 | arm_addr_bits_remove (gdbarch, lr)); |
b39cc962 DJ |
3125 | |
3126 | case ARM_PS_REGNUM: | |
3127 | /* Reconstruct the T bit; see arm_prologue_prev_register for details. */ | |
ca38c58e | 3128 | cpsr = get_frame_register_unsigned (this_frame, regnum); |
b39cc962 DJ |
3129 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); |
3130 | if (IS_THUMB_ADDR (lr)) | |
9779414d | 3131 | cpsr |= t_bit; |
b39cc962 | 3132 | else |
9779414d | 3133 | cpsr &= ~t_bit; |
ca38c58e | 3134 | return frame_unwind_got_constant (this_frame, regnum, cpsr); |
b39cc962 DJ |
3135 | |
3136 | default: | |
3137 | internal_error (__FILE__, __LINE__, | |
3138 | _("Unexpected register %d"), regnum); | |
3139 | } | |
3140 | } | |
3141 | ||
3142 | static void | |
3143 | arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
3144 | struct dwarf2_frame_state_reg *reg, | |
3145 | struct frame_info *this_frame) | |
3146 | { | |
3147 | switch (regnum) | |
3148 | { | |
3149 | case ARM_PC_REGNUM: | |
3150 | case ARM_PS_REGNUM: | |
3151 | reg->how = DWARF2_FRAME_REG_FN; | |
3152 | reg->loc.fn = arm_dwarf2_prev_register; | |
3153 | break; | |
3154 | case ARM_SP_REGNUM: | |
3155 | reg->how = DWARF2_FRAME_REG_CFA; | |
3156 | break; | |
3157 | } | |
3158 | } | |
3159 | ||
4024ca99 UW |
3160 | /* Return true if we are in the function's epilogue, i.e. after the |
3161 | instruction that destroyed the function's stack frame. */ | |
3162 | ||
3163 | static int | |
3164 | thumb_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
3165 | { | |
3166 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
3167 | unsigned int insn, insn2; | |
3168 | int found_return = 0, found_stack_adjust = 0; | |
3169 | CORE_ADDR func_start, func_end; | |
3170 | CORE_ADDR scan_pc; | |
3171 | gdb_byte buf[4]; | |
3172 | ||
3173 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | |
3174 | return 0; | |
3175 | ||
3176 | /* The epilogue is a sequence of instructions along the following lines: | |
3177 | ||
3178 | - add stack frame size to SP or FP | |
3179 | - [if frame pointer used] restore SP from FP | |
3180 | - restore registers from SP [may include PC] | |
3181 | - a return-type instruction [if PC wasn't already restored] | |
3182 | ||
3183 | In a first pass, we scan forward from the current PC and verify the | |
3184 | instructions we find as compatible with this sequence, ending in a | |
3185 | return instruction. | |
3186 | ||
3187 | However, this is not sufficient to distinguish indirect function calls | |
3188 | within a function from indirect tail calls in the epilogue in some cases. | |
3189 | Therefore, if we didn't already find any SP-changing instruction during | |
3190 | forward scan, we add a backward scanning heuristic to ensure we actually | |
3191 | are in the epilogue. */ | |
3192 | ||
3193 | scan_pc = pc; | |
3194 | while (scan_pc < func_end && !found_return) | |
3195 | { | |
3196 | if (target_read_memory (scan_pc, buf, 2)) | |
3197 | break; | |
3198 | ||
3199 | scan_pc += 2; | |
3200 | insn = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
3201 | ||
3202 | if ((insn & 0xff80) == 0x4700) /* bx <Rm> */ | |
3203 | found_return = 1; | |
3204 | else if (insn == 0x46f7) /* mov pc, lr */ | |
3205 | found_return = 1; | |
3206 | else if (insn == 0x46bd) /* mov sp, r7 */ | |
3207 | found_stack_adjust = 1; | |
3208 | else if ((insn & 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */ | |
3209 | found_stack_adjust = 1; | |
3210 | else if ((insn & 0xfe00) == 0xbc00) /* pop <registers> */ | |
3211 | { | |
3212 | found_stack_adjust = 1; | |
3213 | if (insn & 0x0100) /* <registers> include PC. */ | |
3214 | found_return = 1; | |
3215 | } | |
db24da6d | 3216 | else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */ |
4024ca99 UW |
3217 | { |
3218 | if (target_read_memory (scan_pc, buf, 2)) | |
3219 | break; | |
3220 | ||
3221 | scan_pc += 2; | |
3222 | insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
3223 | ||
3224 | if (insn == 0xe8bd) /* ldm.w sp!, <registers> */ | |
3225 | { | |
3226 | found_stack_adjust = 1; | |
3227 | if (insn2 & 0x8000) /* <registers> include PC. */ | |
3228 | found_return = 1; | |
3229 | } | |
3230 | else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */ | |
3231 | && (insn2 & 0x0fff) == 0x0b04) | |
3232 | { | |
3233 | found_stack_adjust = 1; | |
3234 | if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */ | |
3235 | found_return = 1; | |
3236 | } | |
3237 | else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */ | |
3238 | && (insn2 & 0x0e00) == 0x0a00) | |
3239 | found_stack_adjust = 1; | |
3240 | else | |
3241 | break; | |
3242 | } | |
3243 | else | |
3244 | break; | |
3245 | } | |
3246 | ||
3247 | if (!found_return) | |
3248 | return 0; | |
3249 | ||
3250 | /* Since any instruction in the epilogue sequence, with the possible | |
3251 | exception of return itself, updates the stack pointer, we need to | |
3252 | scan backwards for at most one instruction. Try either a 16-bit or | |
3253 | a 32-bit instruction. This is just a heuristic, so we do not worry | |
0963b4bd | 3254 | too much about false positives. */ |
4024ca99 UW |
3255 | |
3256 | if (!found_stack_adjust) | |
3257 | { | |
3258 | if (pc - 4 < func_start) | |
3259 | return 0; | |
3260 | if (target_read_memory (pc - 4, buf, 4)) | |
3261 | return 0; | |
3262 | ||
3263 | insn = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
3264 | insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code); | |
3265 | ||
3266 | if (insn2 == 0x46bd) /* mov sp, r7 */ | |
3267 | found_stack_adjust = 1; | |
3268 | else if ((insn2 & 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */ | |
3269 | found_stack_adjust = 1; | |
3270 | else if ((insn2 & 0xff00) == 0xbc00) /* pop <registers> without PC */ | |
3271 | found_stack_adjust = 1; | |
3272 | else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */ | |
3273 | found_stack_adjust = 1; | |
3274 | else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */ | |
3275 | && (insn2 & 0x0fff) == 0x0b04) | |
3276 | found_stack_adjust = 1; | |
3277 | else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */ | |
3278 | && (insn2 & 0x0e00) == 0x0a00) | |
3279 | found_stack_adjust = 1; | |
3280 | } | |
3281 | ||
3282 | return found_stack_adjust; | |
3283 | } | |
3284 | ||
3285 | /* Return true if we are in the function's epilogue, i.e. after the | |
3286 | instruction that destroyed the function's stack frame. */ | |
3287 | ||
3288 | static int | |
3289 | arm_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
3290 | { | |
3291 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
3292 | unsigned int insn; | |
3293 | int found_return, found_stack_adjust; | |
3294 | CORE_ADDR func_start, func_end; | |
3295 | ||
3296 | if (arm_pc_is_thumb (gdbarch, pc)) | |
3297 | return thumb_in_function_epilogue_p (gdbarch, pc); | |
3298 | ||
3299 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | |
3300 | return 0; | |
3301 | ||
3302 | /* We are in the epilogue if the previous instruction was a stack | |
3303 | adjustment and the next instruction is a possible return (bx, mov | |
3304 | pc, or pop). We could have to scan backwards to find the stack | |
3305 | adjustment, or forwards to find the return, but this is a decent | |
3306 | approximation. First scan forwards. */ | |
3307 | ||
3308 | found_return = 0; | |
3309 | insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code); | |
3310 | if (bits (insn, 28, 31) != INST_NV) | |
3311 | { | |
3312 | if ((insn & 0x0ffffff0) == 0x012fff10) | |
3313 | /* BX. */ | |
3314 | found_return = 1; | |
3315 | else if ((insn & 0x0ffffff0) == 0x01a0f000) | |
3316 | /* MOV PC. */ | |
3317 | found_return = 1; | |
3318 | else if ((insn & 0x0fff0000) == 0x08bd0000 | |
3319 | && (insn & 0x0000c000) != 0) | |
3320 | /* POP (LDMIA), including PC or LR. */ | |
3321 | found_return = 1; | |
3322 | } | |
3323 | ||
3324 | if (!found_return) | |
3325 | return 0; | |
3326 | ||
3327 | /* Scan backwards. This is just a heuristic, so do not worry about | |
3328 | false positives from mode changes. */ | |
3329 | ||
3330 | if (pc < func_start + 4) | |
3331 | return 0; | |
3332 | ||
73c964d6 | 3333 | found_stack_adjust = 0; |
4024ca99 UW |
3334 | insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code); |
3335 | if (bits (insn, 28, 31) != INST_NV) | |
3336 | { | |
3337 | if ((insn & 0x0df0f000) == 0x0080d000) | |
3338 | /* ADD SP (register or immediate). */ | |
3339 | found_stack_adjust = 1; | |
3340 | else if ((insn & 0x0df0f000) == 0x0040d000) | |
3341 | /* SUB SP (register or immediate). */ | |
3342 | found_stack_adjust = 1; | |
3343 | else if ((insn & 0x0ffffff0) == 0x01a0d000) | |
3344 | /* MOV SP. */ | |
77bc0675 | 3345 | found_stack_adjust = 1; |
4024ca99 UW |
3346 | else if ((insn & 0x0fff0000) == 0x08bd0000) |
3347 | /* POP (LDMIA). */ | |
3348 | found_stack_adjust = 1; | |
fc51cce1 MGD |
3349 | else if ((insn & 0x0fff0000) == 0x049d0000) |
3350 | /* POP of a single register. */ | |
3351 | found_stack_adjust = 1; | |
4024ca99 UW |
3352 | } |
3353 | ||
3354 | if (found_stack_adjust) | |
3355 | return 1; | |
3356 | ||
3357 | return 0; | |
3358 | } | |
3359 | ||
3360 | ||
2dd604e7 RE |
3361 | /* When arguments must be pushed onto the stack, they go on in reverse |
3362 | order. The code below implements a FILO (stack) to do this. */ | |
3363 | ||
3364 | struct stack_item | |
3365 | { | |
3366 | int len; | |
3367 | struct stack_item *prev; | |
3368 | void *data; | |
3369 | }; | |
3370 | ||
3371 | static struct stack_item * | |
8c6363cf | 3372 | push_stack_item (struct stack_item *prev, const void *contents, int len) |
2dd604e7 RE |
3373 | { |
3374 | struct stack_item *si; | |
3375 | si = xmalloc (sizeof (struct stack_item)); | |
226c7fbc | 3376 | si->data = xmalloc (len); |
2dd604e7 RE |
3377 | si->len = len; |
3378 | si->prev = prev; | |
3379 | memcpy (si->data, contents, len); | |
3380 | return si; | |
3381 | } | |
3382 | ||
3383 | static struct stack_item * | |
3384 | pop_stack_item (struct stack_item *si) | |
3385 | { | |
3386 | struct stack_item *dead = si; | |
3387 | si = si->prev; | |
3388 | xfree (dead->data); | |
3389 | xfree (dead); | |
3390 | return si; | |
3391 | } | |
3392 | ||
2af48f68 PB |
3393 | |
3394 | /* Return the alignment (in bytes) of the given type. */ | |
3395 | ||
3396 | static int | |
3397 | arm_type_align (struct type *t) | |
3398 | { | |
3399 | int n; | |
3400 | int align; | |
3401 | int falign; | |
3402 | ||
3403 | t = check_typedef (t); | |
3404 | switch (TYPE_CODE (t)) | |
3405 | { | |
3406 | default: | |
3407 | /* Should never happen. */ | |
3408 | internal_error (__FILE__, __LINE__, _("unknown type alignment")); | |
3409 | return 4; | |
3410 | ||
3411 | case TYPE_CODE_PTR: | |
3412 | case TYPE_CODE_ENUM: | |
3413 | case TYPE_CODE_INT: | |
3414 | case TYPE_CODE_FLT: | |
3415 | case TYPE_CODE_SET: | |
3416 | case TYPE_CODE_RANGE: | |
2af48f68 PB |
3417 | case TYPE_CODE_REF: |
3418 | case TYPE_CODE_CHAR: | |
3419 | case TYPE_CODE_BOOL: | |
3420 | return TYPE_LENGTH (t); | |
3421 | ||
3422 | case TYPE_CODE_ARRAY: | |
3423 | case TYPE_CODE_COMPLEX: | |
3424 | /* TODO: What about vector types? */ | |
3425 | return arm_type_align (TYPE_TARGET_TYPE (t)); | |
3426 | ||
3427 | case TYPE_CODE_STRUCT: | |
3428 | case TYPE_CODE_UNION: | |
3429 | align = 1; | |
3430 | for (n = 0; n < TYPE_NFIELDS (t); n++) | |
3431 | { | |
3432 | falign = arm_type_align (TYPE_FIELD_TYPE (t, n)); | |
3433 | if (falign > align) | |
3434 | align = falign; | |
3435 | } | |
3436 | return align; | |
3437 | } | |
3438 | } | |
3439 | ||
90445bd3 DJ |
3440 | /* Possible base types for a candidate for passing and returning in |
3441 | VFP registers. */ | |
3442 | ||
3443 | enum arm_vfp_cprc_base_type | |
3444 | { | |
3445 | VFP_CPRC_UNKNOWN, | |
3446 | VFP_CPRC_SINGLE, | |
3447 | VFP_CPRC_DOUBLE, | |
3448 | VFP_CPRC_VEC64, | |
3449 | VFP_CPRC_VEC128 | |
3450 | }; | |
3451 | ||
3452 | /* The length of one element of base type B. */ | |
3453 | ||
3454 | static unsigned | |
3455 | arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b) | |
3456 | { | |
3457 | switch (b) | |
3458 | { | |
3459 | case VFP_CPRC_SINGLE: | |
3460 | return 4; | |
3461 | case VFP_CPRC_DOUBLE: | |
3462 | return 8; | |
3463 | case VFP_CPRC_VEC64: | |
3464 | return 8; | |
3465 | case VFP_CPRC_VEC128: | |
3466 | return 16; | |
3467 | default: | |
3468 | internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."), | |
3469 | (int) b); | |
3470 | } | |
3471 | } | |
3472 | ||
3473 | /* The character ('s', 'd' or 'q') for the type of VFP register used | |
3474 | for passing base type B. */ | |
3475 | ||
3476 | static int | |
3477 | arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b) | |
3478 | { | |
3479 | switch (b) | |
3480 | { | |
3481 | case VFP_CPRC_SINGLE: | |
3482 | return 's'; | |
3483 | case VFP_CPRC_DOUBLE: | |
3484 | return 'd'; | |
3485 | case VFP_CPRC_VEC64: | |
3486 | return 'd'; | |
3487 | case VFP_CPRC_VEC128: | |
3488 | return 'q'; | |
3489 | default: | |
3490 | internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."), | |
3491 | (int) b); | |
3492 | } | |
3493 | } | |
3494 | ||
3495 | /* Determine whether T may be part of a candidate for passing and | |
3496 | returning in VFP registers, ignoring the limit on the total number | |
3497 | of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the | |
3498 | classification of the first valid component found; if it is not | |
3499 | VFP_CPRC_UNKNOWN, all components must have the same classification | |
3500 | as *BASE_TYPE. If it is found that T contains a type not permitted | |
3501 | for passing and returning in VFP registers, a type differently | |
3502 | classified from *BASE_TYPE, or two types differently classified | |
3503 | from each other, return -1, otherwise return the total number of | |
3504 | base-type elements found (possibly 0 in an empty structure or | |
3505 | array). Vectors and complex types are not currently supported, | |
3506 | matching the generic AAPCS support. */ | |
3507 | ||
3508 | static int | |
3509 | arm_vfp_cprc_sub_candidate (struct type *t, | |
3510 | enum arm_vfp_cprc_base_type *base_type) | |
3511 | { | |
3512 | t = check_typedef (t); | |
3513 | switch (TYPE_CODE (t)) | |
3514 | { | |
3515 | case TYPE_CODE_FLT: | |
3516 | switch (TYPE_LENGTH (t)) | |
3517 | { | |
3518 | case 4: | |
3519 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3520 | *base_type = VFP_CPRC_SINGLE; | |
3521 | else if (*base_type != VFP_CPRC_SINGLE) | |
3522 | return -1; | |
3523 | return 1; | |
3524 | ||
3525 | case 8: | |
3526 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3527 | *base_type = VFP_CPRC_DOUBLE; | |
3528 | else if (*base_type != VFP_CPRC_DOUBLE) | |
3529 | return -1; | |
3530 | return 1; | |
3531 | ||
3532 | default: | |
3533 | return -1; | |
3534 | } | |
3535 | break; | |
3536 | ||
3537 | case TYPE_CODE_ARRAY: | |
3538 | { | |
3539 | int count; | |
3540 | unsigned unitlen; | |
3541 | count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t), base_type); | |
3542 | if (count == -1) | |
3543 | return -1; | |
3544 | if (TYPE_LENGTH (t) == 0) | |
3545 | { | |
3546 | gdb_assert (count == 0); | |
3547 | return 0; | |
3548 | } | |
3549 | else if (count == 0) | |
3550 | return -1; | |
3551 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
3552 | gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0); | |
3553 | return TYPE_LENGTH (t) / unitlen; | |
3554 | } | |
3555 | break; | |
3556 | ||
3557 | case TYPE_CODE_STRUCT: | |
3558 | { | |
3559 | int count = 0; | |
3560 | unsigned unitlen; | |
3561 | int i; | |
3562 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
3563 | { | |
3564 | int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i), | |
3565 | base_type); | |
3566 | if (sub_count == -1) | |
3567 | return -1; | |
3568 | count += sub_count; | |
3569 | } | |
3570 | if (TYPE_LENGTH (t) == 0) | |
3571 | { | |
3572 | gdb_assert (count == 0); | |
3573 | return 0; | |
3574 | } | |
3575 | else if (count == 0) | |
3576 | return -1; | |
3577 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
3578 | if (TYPE_LENGTH (t) != unitlen * count) | |
3579 | return -1; | |
3580 | return count; | |
3581 | } | |
3582 | ||
3583 | case TYPE_CODE_UNION: | |
3584 | { | |
3585 | int count = 0; | |
3586 | unsigned unitlen; | |
3587 | int i; | |
3588 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
3589 | { | |
3590 | int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i), | |
3591 | base_type); | |
3592 | if (sub_count == -1) | |
3593 | return -1; | |
3594 | count = (count > sub_count ? count : sub_count); | |
3595 | } | |
3596 | if (TYPE_LENGTH (t) == 0) | |
3597 | { | |
3598 | gdb_assert (count == 0); | |
3599 | return 0; | |
3600 | } | |
3601 | else if (count == 0) | |
3602 | return -1; | |
3603 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
3604 | if (TYPE_LENGTH (t) != unitlen * count) | |
3605 | return -1; | |
3606 | return count; | |
3607 | } | |
3608 | ||
3609 | default: | |
3610 | break; | |
3611 | } | |
3612 | ||
3613 | return -1; | |
3614 | } | |
3615 | ||
3616 | /* Determine whether T is a VFP co-processor register candidate (CPRC) | |
3617 | if passed to or returned from a non-variadic function with the VFP | |
3618 | ABI in effect. Return 1 if it is, 0 otherwise. If it is, set | |
3619 | *BASE_TYPE to the base type for T and *COUNT to the number of | |
3620 | elements of that base type before returning. */ | |
3621 | ||
3622 | static int | |
3623 | arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type, | |
3624 | int *count) | |
3625 | { | |
3626 | enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN; | |
3627 | int c = arm_vfp_cprc_sub_candidate (t, &b); | |
3628 | if (c <= 0 || c > 4) | |
3629 | return 0; | |
3630 | *base_type = b; | |
3631 | *count = c; | |
3632 | return 1; | |
3633 | } | |
3634 | ||
3635 | /* Return 1 if the VFP ABI should be used for passing arguments to and | |
3636 | returning values from a function of type FUNC_TYPE, 0 | |
3637 | otherwise. */ | |
3638 | ||
3639 | static int | |
3640 | arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type) | |
3641 | { | |
3642 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3643 | /* Variadic functions always use the base ABI. Assume that functions | |
3644 | without debug info are not variadic. */ | |
3645 | if (func_type && TYPE_VARARGS (check_typedef (func_type))) | |
3646 | return 0; | |
3647 | /* The VFP ABI is only supported as a variant of AAPCS. */ | |
3648 | if (tdep->arm_abi != ARM_ABI_AAPCS) | |
3649 | return 0; | |
3650 | return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP; | |
3651 | } | |
3652 | ||
3653 | /* We currently only support passing parameters in integer registers, which | |
3654 | conforms with GCC's default model, and VFP argument passing following | |
3655 | the VFP variant of AAPCS. Several other variants exist and | |
2dd604e7 RE |
3656 | we should probably support some of them based on the selected ABI. */ |
3657 | ||
3658 | static CORE_ADDR | |
7d9b040b | 3659 | arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
6a65450a AC |
3660 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, |
3661 | struct value **args, CORE_ADDR sp, int struct_return, | |
3662 | CORE_ADDR struct_addr) | |
2dd604e7 | 3663 | { |
e17a4113 | 3664 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
2dd604e7 RE |
3665 | int argnum; |
3666 | int argreg; | |
3667 | int nstack; | |
3668 | struct stack_item *si = NULL; | |
90445bd3 DJ |
3669 | int use_vfp_abi; |
3670 | struct type *ftype; | |
3671 | unsigned vfp_regs_free = (1 << 16) - 1; | |
3672 | ||
3673 | /* Determine the type of this function and whether the VFP ABI | |
3674 | applies. */ | |
3675 | ftype = check_typedef (value_type (function)); | |
3676 | if (TYPE_CODE (ftype) == TYPE_CODE_PTR) | |
3677 | ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); | |
3678 | use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype); | |
2dd604e7 | 3679 | |
6a65450a AC |
3680 | /* Set the return address. For the ARM, the return breakpoint is |
3681 | always at BP_ADDR. */ | |
9779414d | 3682 | if (arm_pc_is_thumb (gdbarch, bp_addr)) |
9dca5578 | 3683 | bp_addr |= 1; |
6a65450a | 3684 | regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr); |
2dd604e7 RE |
3685 | |
3686 | /* Walk through the list of args and determine how large a temporary | |
3687 | stack is required. Need to take care here as structs may be | |
7a9dd1b2 | 3688 | passed on the stack, and we have to push them. */ |
2dd604e7 RE |
3689 | nstack = 0; |
3690 | ||
3691 | argreg = ARM_A1_REGNUM; | |
3692 | nstack = 0; | |
3693 | ||
2dd604e7 RE |
3694 | /* The struct_return pointer occupies the first parameter |
3695 | passing register. */ | |
3696 | if (struct_return) | |
3697 | { | |
3698 | if (arm_debug) | |
5af949e3 | 3699 | fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n", |
2af46ca0 | 3700 | gdbarch_register_name (gdbarch, argreg), |
5af949e3 | 3701 | paddress (gdbarch, struct_addr)); |
2dd604e7 RE |
3702 | regcache_cooked_write_unsigned (regcache, argreg, struct_addr); |
3703 | argreg++; | |
3704 | } | |
3705 | ||
3706 | for (argnum = 0; argnum < nargs; argnum++) | |
3707 | { | |
3708 | int len; | |
3709 | struct type *arg_type; | |
3710 | struct type *target_type; | |
3711 | enum type_code typecode; | |
8c6363cf | 3712 | const bfd_byte *val; |
2af48f68 | 3713 | int align; |
90445bd3 DJ |
3714 | enum arm_vfp_cprc_base_type vfp_base_type; |
3715 | int vfp_base_count; | |
3716 | int may_use_core_reg = 1; | |
2dd604e7 | 3717 | |
df407dfe | 3718 | arg_type = check_typedef (value_type (args[argnum])); |
2dd604e7 RE |
3719 | len = TYPE_LENGTH (arg_type); |
3720 | target_type = TYPE_TARGET_TYPE (arg_type); | |
3721 | typecode = TYPE_CODE (arg_type); | |
8c6363cf | 3722 | val = value_contents (args[argnum]); |
2dd604e7 | 3723 | |
2af48f68 PB |
3724 | align = arm_type_align (arg_type); |
3725 | /* Round alignment up to a whole number of words. */ | |
3726 | align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1); | |
3727 | /* Different ABIs have different maximum alignments. */ | |
3728 | if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS) | |
3729 | { | |
3730 | /* The APCS ABI only requires word alignment. */ | |
3731 | align = INT_REGISTER_SIZE; | |
3732 | } | |
3733 | else | |
3734 | { | |
3735 | /* The AAPCS requires at most doubleword alignment. */ | |
3736 | if (align > INT_REGISTER_SIZE * 2) | |
3737 | align = INT_REGISTER_SIZE * 2; | |
3738 | } | |
3739 | ||
90445bd3 DJ |
3740 | if (use_vfp_abi |
3741 | && arm_vfp_call_candidate (arg_type, &vfp_base_type, | |
3742 | &vfp_base_count)) | |
3743 | { | |
3744 | int regno; | |
3745 | int unit_length; | |
3746 | int shift; | |
3747 | unsigned mask; | |
3748 | ||
3749 | /* Because this is a CPRC it cannot go in a core register or | |
3750 | cause a core register to be skipped for alignment. | |
3751 | Either it goes in VFP registers and the rest of this loop | |
3752 | iteration is skipped for this argument, or it goes on the | |
3753 | stack (and the stack alignment code is correct for this | |
3754 | case). */ | |
3755 | may_use_core_reg = 0; | |
3756 | ||
3757 | unit_length = arm_vfp_cprc_unit_length (vfp_base_type); | |
3758 | shift = unit_length / 4; | |
3759 | mask = (1 << (shift * vfp_base_count)) - 1; | |
3760 | for (regno = 0; regno < 16; regno += shift) | |
3761 | if (((vfp_regs_free >> regno) & mask) == mask) | |
3762 | break; | |
3763 | ||
3764 | if (regno < 16) | |
3765 | { | |
3766 | int reg_char; | |
3767 | int reg_scaled; | |
3768 | int i; | |
3769 | ||
3770 | vfp_regs_free &= ~(mask << regno); | |
3771 | reg_scaled = regno / shift; | |
3772 | reg_char = arm_vfp_cprc_reg_char (vfp_base_type); | |
3773 | for (i = 0; i < vfp_base_count; i++) | |
3774 | { | |
3775 | char name_buf[4]; | |
3776 | int regnum; | |
58d6951d DJ |
3777 | if (reg_char == 'q') |
3778 | arm_neon_quad_write (gdbarch, regcache, reg_scaled + i, | |
90445bd3 | 3779 | val + i * unit_length); |
58d6951d DJ |
3780 | else |
3781 | { | |
3782 | sprintf (name_buf, "%c%d", reg_char, reg_scaled + i); | |
3783 | regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
3784 | strlen (name_buf)); | |
3785 | regcache_cooked_write (regcache, regnum, | |
3786 | val + i * unit_length); | |
3787 | } | |
90445bd3 DJ |
3788 | } |
3789 | continue; | |
3790 | } | |
3791 | else | |
3792 | { | |
3793 | /* This CPRC could not go in VFP registers, so all VFP | |
3794 | registers are now marked as used. */ | |
3795 | vfp_regs_free = 0; | |
3796 | } | |
3797 | } | |
3798 | ||
2af48f68 PB |
3799 | /* Push stack padding for dowubleword alignment. */ |
3800 | if (nstack & (align - 1)) | |
3801 | { | |
3802 | si = push_stack_item (si, val, INT_REGISTER_SIZE); | |
3803 | nstack += INT_REGISTER_SIZE; | |
3804 | } | |
3805 | ||
3806 | /* Doubleword aligned quantities must go in even register pairs. */ | |
90445bd3 DJ |
3807 | if (may_use_core_reg |
3808 | && argreg <= ARM_LAST_ARG_REGNUM | |
2af48f68 PB |
3809 | && align > INT_REGISTER_SIZE |
3810 | && argreg & 1) | |
3811 | argreg++; | |
3812 | ||
2dd604e7 RE |
3813 | /* If the argument is a pointer to a function, and it is a |
3814 | Thumb function, create a LOCAL copy of the value and set | |
3815 | the THUMB bit in it. */ | |
3816 | if (TYPE_CODE_PTR == typecode | |
3817 | && target_type != NULL | |
f96b8fa0 | 3818 | && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type))) |
2dd604e7 | 3819 | { |
e17a4113 | 3820 | CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order); |
9779414d | 3821 | if (arm_pc_is_thumb (gdbarch, regval)) |
2dd604e7 | 3822 | { |
8c6363cf TT |
3823 | bfd_byte *copy = alloca (len); |
3824 | store_unsigned_integer (copy, len, byte_order, | |
e17a4113 | 3825 | MAKE_THUMB_ADDR (regval)); |
8c6363cf | 3826 | val = copy; |
2dd604e7 RE |
3827 | } |
3828 | } | |
3829 | ||
3830 | /* Copy the argument to general registers or the stack in | |
3831 | register-sized pieces. Large arguments are split between | |
3832 | registers and stack. */ | |
3833 | while (len > 0) | |
3834 | { | |
f0c9063c | 3835 | int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE; |
2dd604e7 | 3836 | |
90445bd3 | 3837 | if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM) |
2dd604e7 RE |
3838 | { |
3839 | /* The argument is being passed in a general purpose | |
3840 | register. */ | |
e17a4113 UW |
3841 | CORE_ADDR regval |
3842 | = extract_unsigned_integer (val, partial_len, byte_order); | |
3843 | if (byte_order == BFD_ENDIAN_BIG) | |
8bf8793c | 3844 | regval <<= (INT_REGISTER_SIZE - partial_len) * 8; |
2dd604e7 RE |
3845 | if (arm_debug) |
3846 | fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n", | |
c9f4d572 UW |
3847 | argnum, |
3848 | gdbarch_register_name | |
2af46ca0 | 3849 | (gdbarch, argreg), |
f0c9063c | 3850 | phex (regval, INT_REGISTER_SIZE)); |
2dd604e7 RE |
3851 | regcache_cooked_write_unsigned (regcache, argreg, regval); |
3852 | argreg++; | |
3853 | } | |
3854 | else | |
3855 | { | |
3856 | /* Push the arguments onto the stack. */ | |
3857 | if (arm_debug) | |
3858 | fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n", | |
3859 | argnum, nstack); | |
f0c9063c UW |
3860 | si = push_stack_item (si, val, INT_REGISTER_SIZE); |
3861 | nstack += INT_REGISTER_SIZE; | |
2dd604e7 RE |
3862 | } |
3863 | ||
3864 | len -= partial_len; | |
3865 | val += partial_len; | |
3866 | } | |
3867 | } | |
3868 | /* If we have an odd number of words to push, then decrement the stack | |
3869 | by one word now, so first stack argument will be dword aligned. */ | |
3870 | if (nstack & 4) | |
3871 | sp -= 4; | |
3872 | ||
3873 | while (si) | |
3874 | { | |
3875 | sp -= si->len; | |
3876 | write_memory (sp, si->data, si->len); | |
3877 | si = pop_stack_item (si); | |
3878 | } | |
3879 | ||
3880 | /* Finally, update teh SP register. */ | |
3881 | regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp); | |
3882 | ||
3883 | return sp; | |
3884 | } | |
3885 | ||
f53f0d0b PB |
3886 | |
3887 | /* Always align the frame to an 8-byte boundary. This is required on | |
3888 | some platforms and harmless on the rest. */ | |
3889 | ||
3890 | static CORE_ADDR | |
3891 | arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
3892 | { | |
3893 | /* Align the stack to eight bytes. */ | |
3894 | return sp & ~ (CORE_ADDR) 7; | |
3895 | } | |
3896 | ||
c906108c | 3897 | static void |
ed9a39eb | 3898 | print_fpu_flags (int flags) |
c906108c | 3899 | { |
c5aa993b JM |
3900 | if (flags & (1 << 0)) |
3901 | fputs ("IVO ", stdout); | |
3902 | if (flags & (1 << 1)) | |
3903 | fputs ("DVZ ", stdout); | |
3904 | if (flags & (1 << 2)) | |
3905 | fputs ("OFL ", stdout); | |
3906 | if (flags & (1 << 3)) | |
3907 | fputs ("UFL ", stdout); | |
3908 | if (flags & (1 << 4)) | |
3909 | fputs ("INX ", stdout); | |
3910 | putchar ('\n'); | |
c906108c SS |
3911 | } |
3912 | ||
5e74b15c RE |
3913 | /* Print interesting information about the floating point processor |
3914 | (if present) or emulator. */ | |
34e8f22d | 3915 | static void |
d855c300 | 3916 | arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, |
23e3a7ac | 3917 | struct frame_info *frame, const char *args) |
c906108c | 3918 | { |
9c9acae0 | 3919 | unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM); |
c5aa993b JM |
3920 | int type; |
3921 | ||
3922 | type = (status >> 24) & 127; | |
edefbb7c AC |
3923 | if (status & (1 << 31)) |
3924 | printf (_("Hardware FPU type %d\n"), type); | |
3925 | else | |
3926 | printf (_("Software FPU type %d\n"), type); | |
3927 | /* i18n: [floating point unit] mask */ | |
3928 | fputs (_("mask: "), stdout); | |
c5aa993b | 3929 | print_fpu_flags (status >> 16); |
edefbb7c AC |
3930 | /* i18n: [floating point unit] flags */ |
3931 | fputs (_("flags: "), stdout); | |
c5aa993b | 3932 | print_fpu_flags (status); |
c906108c SS |
3933 | } |
3934 | ||
27067745 UW |
3935 | /* Construct the ARM extended floating point type. */ |
3936 | static struct type * | |
3937 | arm_ext_type (struct gdbarch *gdbarch) | |
3938 | { | |
3939 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3940 | ||
3941 | if (!tdep->arm_ext_type) | |
3942 | tdep->arm_ext_type | |
e9bb382b | 3943 | = arch_float_type (gdbarch, -1, "builtin_type_arm_ext", |
27067745 UW |
3944 | floatformats_arm_ext); |
3945 | ||
3946 | return tdep->arm_ext_type; | |
3947 | } | |
3948 | ||
58d6951d DJ |
3949 | static struct type * |
3950 | arm_neon_double_type (struct gdbarch *gdbarch) | |
3951 | { | |
3952 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3953 | ||
3954 | if (tdep->neon_double_type == NULL) | |
3955 | { | |
3956 | struct type *t, *elem; | |
3957 | ||
3958 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d", | |
3959 | TYPE_CODE_UNION); | |
3960 | elem = builtin_type (gdbarch)->builtin_uint8; | |
3961 | append_composite_type_field (t, "u8", init_vector_type (elem, 8)); | |
3962 | elem = builtin_type (gdbarch)->builtin_uint16; | |
3963 | append_composite_type_field (t, "u16", init_vector_type (elem, 4)); | |
3964 | elem = builtin_type (gdbarch)->builtin_uint32; | |
3965 | append_composite_type_field (t, "u32", init_vector_type (elem, 2)); | |
3966 | elem = builtin_type (gdbarch)->builtin_uint64; | |
3967 | append_composite_type_field (t, "u64", elem); | |
3968 | elem = builtin_type (gdbarch)->builtin_float; | |
3969 | append_composite_type_field (t, "f32", init_vector_type (elem, 2)); | |
3970 | elem = builtin_type (gdbarch)->builtin_double; | |
3971 | append_composite_type_field (t, "f64", elem); | |
3972 | ||
3973 | TYPE_VECTOR (t) = 1; | |
3974 | TYPE_NAME (t) = "neon_d"; | |
3975 | tdep->neon_double_type = t; | |
3976 | } | |
3977 | ||
3978 | return tdep->neon_double_type; | |
3979 | } | |
3980 | ||
3981 | /* FIXME: The vector types are not correctly ordered on big-endian | |
3982 | targets. Just as s0 is the low bits of d0, d0[0] is also the low | |
3983 | bits of d0 - regardless of what unit size is being held in d0. So | |
3984 | the offset of the first uint8 in d0 is 7, but the offset of the | |
3985 | first float is 4. This code works as-is for little-endian | |
3986 | targets. */ | |
3987 | ||
3988 | static struct type * | |
3989 | arm_neon_quad_type (struct gdbarch *gdbarch) | |
3990 | { | |
3991 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3992 | ||
3993 | if (tdep->neon_quad_type == NULL) | |
3994 | { | |
3995 | struct type *t, *elem; | |
3996 | ||
3997 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q", | |
3998 | TYPE_CODE_UNION); | |
3999 | elem = builtin_type (gdbarch)->builtin_uint8; | |
4000 | append_composite_type_field (t, "u8", init_vector_type (elem, 16)); | |
4001 | elem = builtin_type (gdbarch)->builtin_uint16; | |
4002 | append_composite_type_field (t, "u16", init_vector_type (elem, 8)); | |
4003 | elem = builtin_type (gdbarch)->builtin_uint32; | |
4004 | append_composite_type_field (t, "u32", init_vector_type (elem, 4)); | |
4005 | elem = builtin_type (gdbarch)->builtin_uint64; | |
4006 | append_composite_type_field (t, "u64", init_vector_type (elem, 2)); | |
4007 | elem = builtin_type (gdbarch)->builtin_float; | |
4008 | append_composite_type_field (t, "f32", init_vector_type (elem, 4)); | |
4009 | elem = builtin_type (gdbarch)->builtin_double; | |
4010 | append_composite_type_field (t, "f64", init_vector_type (elem, 2)); | |
4011 | ||
4012 | TYPE_VECTOR (t) = 1; | |
4013 | TYPE_NAME (t) = "neon_q"; | |
4014 | tdep->neon_quad_type = t; | |
4015 | } | |
4016 | ||
4017 | return tdep->neon_quad_type; | |
4018 | } | |
4019 | ||
34e8f22d RE |
4020 | /* Return the GDB type object for the "standard" data type of data in |
4021 | register N. */ | |
4022 | ||
4023 | static struct type * | |
7a5ea0d4 | 4024 | arm_register_type (struct gdbarch *gdbarch, int regnum) |
032758dc | 4025 | { |
58d6951d DJ |
4026 | int num_regs = gdbarch_num_regs (gdbarch); |
4027 | ||
4028 | if (gdbarch_tdep (gdbarch)->have_vfp_pseudos | |
4029 | && regnum >= num_regs && regnum < num_regs + 32) | |
4030 | return builtin_type (gdbarch)->builtin_float; | |
4031 | ||
4032 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos | |
4033 | && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16) | |
4034 | return arm_neon_quad_type (gdbarch); | |
4035 | ||
4036 | /* If the target description has register information, we are only | |
4037 | in this function so that we can override the types of | |
4038 | double-precision registers for NEON. */ | |
4039 | if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) | |
4040 | { | |
4041 | struct type *t = tdesc_register_type (gdbarch, regnum); | |
4042 | ||
4043 | if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32 | |
4044 | && TYPE_CODE (t) == TYPE_CODE_FLT | |
4045 | && gdbarch_tdep (gdbarch)->have_neon) | |
4046 | return arm_neon_double_type (gdbarch); | |
4047 | else | |
4048 | return t; | |
4049 | } | |
4050 | ||
34e8f22d | 4051 | if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS) |
58d6951d DJ |
4052 | { |
4053 | if (!gdbarch_tdep (gdbarch)->have_fpa_registers) | |
4054 | return builtin_type (gdbarch)->builtin_void; | |
4055 | ||
4056 | return arm_ext_type (gdbarch); | |
4057 | } | |
e4c16157 | 4058 | else if (regnum == ARM_SP_REGNUM) |
0dfff4cb | 4059 | return builtin_type (gdbarch)->builtin_data_ptr; |
e4c16157 | 4060 | else if (regnum == ARM_PC_REGNUM) |
0dfff4cb | 4061 | return builtin_type (gdbarch)->builtin_func_ptr; |
ff6f572f DJ |
4062 | else if (regnum >= ARRAY_SIZE (arm_register_names)) |
4063 | /* These registers are only supported on targets which supply | |
4064 | an XML description. */ | |
df4df182 | 4065 | return builtin_type (gdbarch)->builtin_int0; |
032758dc | 4066 | else |
df4df182 | 4067 | return builtin_type (gdbarch)->builtin_uint32; |
032758dc AC |
4068 | } |
4069 | ||
ff6f572f DJ |
4070 | /* Map a DWARF register REGNUM onto the appropriate GDB register |
4071 | number. */ | |
4072 | ||
4073 | static int | |
d3f73121 | 4074 | arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
ff6f572f DJ |
4075 | { |
4076 | /* Core integer regs. */ | |
4077 | if (reg >= 0 && reg <= 15) | |
4078 | return reg; | |
4079 | ||
4080 | /* Legacy FPA encoding. These were once used in a way which | |
4081 | overlapped with VFP register numbering, so their use is | |
4082 | discouraged, but GDB doesn't support the ARM toolchain | |
4083 | which used them for VFP. */ | |
4084 | if (reg >= 16 && reg <= 23) | |
4085 | return ARM_F0_REGNUM + reg - 16; | |
4086 | ||
4087 | /* New assignments for the FPA registers. */ | |
4088 | if (reg >= 96 && reg <= 103) | |
4089 | return ARM_F0_REGNUM + reg - 96; | |
4090 | ||
4091 | /* WMMX register assignments. */ | |
4092 | if (reg >= 104 && reg <= 111) | |
4093 | return ARM_WCGR0_REGNUM + reg - 104; | |
4094 | ||
4095 | if (reg >= 112 && reg <= 127) | |
4096 | return ARM_WR0_REGNUM + reg - 112; | |
4097 | ||
4098 | if (reg >= 192 && reg <= 199) | |
4099 | return ARM_WC0_REGNUM + reg - 192; | |
4100 | ||
58d6951d DJ |
4101 | /* VFP v2 registers. A double precision value is actually |
4102 | in d1 rather than s2, but the ABI only defines numbering | |
4103 | for the single precision registers. This will "just work" | |
4104 | in GDB for little endian targets (we'll read eight bytes, | |
4105 | starting in s0 and then progressing to s1), but will be | |
4106 | reversed on big endian targets with VFP. This won't | |
4107 | be a problem for the new Neon quad registers; you're supposed | |
4108 | to use DW_OP_piece for those. */ | |
4109 | if (reg >= 64 && reg <= 95) | |
4110 | { | |
4111 | char name_buf[4]; | |
4112 | ||
4113 | sprintf (name_buf, "s%d", reg - 64); | |
4114 | return user_reg_map_name_to_regnum (gdbarch, name_buf, | |
4115 | strlen (name_buf)); | |
4116 | } | |
4117 | ||
4118 | /* VFP v3 / Neon registers. This range is also used for VFP v2 | |
4119 | registers, except that it now describes d0 instead of s0. */ | |
4120 | if (reg >= 256 && reg <= 287) | |
4121 | { | |
4122 | char name_buf[4]; | |
4123 | ||
4124 | sprintf (name_buf, "d%d", reg - 256); | |
4125 | return user_reg_map_name_to_regnum (gdbarch, name_buf, | |
4126 | strlen (name_buf)); | |
4127 | } | |
4128 | ||
ff6f572f DJ |
4129 | return -1; |
4130 | } | |
4131 | ||
26216b98 AC |
4132 | /* Map GDB internal REGNUM onto the Arm simulator register numbers. */ |
4133 | static int | |
e7faf938 | 4134 | arm_register_sim_regno (struct gdbarch *gdbarch, int regnum) |
26216b98 AC |
4135 | { |
4136 | int reg = regnum; | |
e7faf938 | 4137 | gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch)); |
26216b98 | 4138 | |
ff6f572f DJ |
4139 | if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM) |
4140 | return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM; | |
4141 | ||
4142 | if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM) | |
4143 | return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM; | |
4144 | ||
4145 | if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM) | |
4146 | return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM; | |
4147 | ||
26216b98 AC |
4148 | if (reg < NUM_GREGS) |
4149 | return SIM_ARM_R0_REGNUM + reg; | |
4150 | reg -= NUM_GREGS; | |
4151 | ||
4152 | if (reg < NUM_FREGS) | |
4153 | return SIM_ARM_FP0_REGNUM + reg; | |
4154 | reg -= NUM_FREGS; | |
4155 | ||
4156 | if (reg < NUM_SREGS) | |
4157 | return SIM_ARM_FPS_REGNUM + reg; | |
4158 | reg -= NUM_SREGS; | |
4159 | ||
edefbb7c | 4160 | internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum); |
26216b98 | 4161 | } |
34e8f22d | 4162 | |
a37b3cc0 AC |
4163 | /* NOTE: cagney/2001-08-20: Both convert_from_extended() and |
4164 | convert_to_extended() use floatformat_arm_ext_littlebyte_bigword. | |
4165 | It is thought that this is is the floating-point register format on | |
4166 | little-endian systems. */ | |
c906108c | 4167 | |
ed9a39eb | 4168 | static void |
b508a996 | 4169 | convert_from_extended (const struct floatformat *fmt, const void *ptr, |
be8626e0 | 4170 | void *dbl, int endianess) |
c906108c | 4171 | { |
a37b3cc0 | 4172 | DOUBLEST d; |
be8626e0 MD |
4173 | |
4174 | if (endianess == BFD_ENDIAN_BIG) | |
a37b3cc0 AC |
4175 | floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d); |
4176 | else | |
4177 | floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
4178 | ptr, &d); | |
b508a996 | 4179 | floatformat_from_doublest (fmt, &d, dbl); |
c906108c SS |
4180 | } |
4181 | ||
34e8f22d | 4182 | static void |
be8626e0 MD |
4183 | convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr, |
4184 | int endianess) | |
c906108c | 4185 | { |
a37b3cc0 | 4186 | DOUBLEST d; |
be8626e0 | 4187 | |
b508a996 | 4188 | floatformat_to_doublest (fmt, ptr, &d); |
be8626e0 | 4189 | if (endianess == BFD_ENDIAN_BIG) |
a37b3cc0 AC |
4190 | floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl); |
4191 | else | |
4192 | floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
4193 | &d, dbl); | |
c906108c | 4194 | } |
ed9a39eb | 4195 | |
c906108c | 4196 | static int |
ed9a39eb | 4197 | condition_true (unsigned long cond, unsigned long status_reg) |
c906108c SS |
4198 | { |
4199 | if (cond == INST_AL || cond == INST_NV) | |
4200 | return 1; | |
4201 | ||
4202 | switch (cond) | |
4203 | { | |
4204 | case INST_EQ: | |
4205 | return ((status_reg & FLAG_Z) != 0); | |
4206 | case INST_NE: | |
4207 | return ((status_reg & FLAG_Z) == 0); | |
4208 | case INST_CS: | |
4209 | return ((status_reg & FLAG_C) != 0); | |
4210 | case INST_CC: | |
4211 | return ((status_reg & FLAG_C) == 0); | |
4212 | case INST_MI: | |
4213 | return ((status_reg & FLAG_N) != 0); | |
4214 | case INST_PL: | |
4215 | return ((status_reg & FLAG_N) == 0); | |
4216 | case INST_VS: | |
4217 | return ((status_reg & FLAG_V) != 0); | |
4218 | case INST_VC: | |
4219 | return ((status_reg & FLAG_V) == 0); | |
4220 | case INST_HI: | |
4221 | return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C); | |
4222 | case INST_LS: | |
4223 | return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C); | |
4224 | case INST_GE: | |
4225 | return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)); | |
4226 | case INST_LT: | |
4227 | return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)); | |
4228 | case INST_GT: | |
f8bf5763 PM |
4229 | return (((status_reg & FLAG_Z) == 0) |
4230 | && (((status_reg & FLAG_N) == 0) | |
4231 | == ((status_reg & FLAG_V) == 0))); | |
c906108c | 4232 | case INST_LE: |
f8bf5763 PM |
4233 | return (((status_reg & FLAG_Z) != 0) |
4234 | || (((status_reg & FLAG_N) == 0) | |
4235 | != ((status_reg & FLAG_V) == 0))); | |
c906108c SS |
4236 | } |
4237 | return 1; | |
4238 | } | |
4239 | ||
c906108c | 4240 | static unsigned long |
0b1b3e42 UW |
4241 | shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry, |
4242 | unsigned long pc_val, unsigned long status_reg) | |
c906108c SS |
4243 | { |
4244 | unsigned long res, shift; | |
4245 | int rm = bits (inst, 0, 3); | |
4246 | unsigned long shifttype = bits (inst, 5, 6); | |
c5aa993b JM |
4247 | |
4248 | if (bit (inst, 4)) | |
c906108c SS |
4249 | { |
4250 | int rs = bits (inst, 8, 11); | |
0b1b3e42 UW |
4251 | shift = (rs == 15 ? pc_val + 8 |
4252 | : get_frame_register_unsigned (frame, rs)) & 0xFF; | |
c906108c SS |
4253 | } |
4254 | else | |
4255 | shift = bits (inst, 7, 11); | |
c5aa993b | 4256 | |
bf9f652a | 4257 | res = (rm == ARM_PC_REGNUM |
0d39a070 | 4258 | ? (pc_val + (bit (inst, 4) ? 12 : 8)) |
0b1b3e42 | 4259 | : get_frame_register_unsigned (frame, rm)); |
c906108c SS |
4260 | |
4261 | switch (shifttype) | |
4262 | { | |
c5aa993b | 4263 | case 0: /* LSL */ |
c906108c SS |
4264 | res = shift >= 32 ? 0 : res << shift; |
4265 | break; | |
c5aa993b JM |
4266 | |
4267 | case 1: /* LSR */ | |
c906108c SS |
4268 | res = shift >= 32 ? 0 : res >> shift; |
4269 | break; | |
4270 | ||
c5aa993b JM |
4271 | case 2: /* ASR */ |
4272 | if (shift >= 32) | |
4273 | shift = 31; | |
c906108c SS |
4274 | res = ((res & 0x80000000L) |
4275 | ? ~((~res) >> shift) : res >> shift); | |
4276 | break; | |
4277 | ||
c5aa993b | 4278 | case 3: /* ROR/RRX */ |
c906108c SS |
4279 | shift &= 31; |
4280 | if (shift == 0) | |
4281 | res = (res >> 1) | (carry ? 0x80000000L : 0); | |
4282 | else | |
c5aa993b | 4283 | res = (res >> shift) | (res << (32 - shift)); |
c906108c SS |
4284 | break; |
4285 | } | |
4286 | ||
4287 | return res & 0xffffffff; | |
4288 | } | |
4289 | ||
c906108c SS |
4290 | /* Return number of 1-bits in VAL. */ |
4291 | ||
4292 | static int | |
ed9a39eb | 4293 | bitcount (unsigned long val) |
c906108c SS |
4294 | { |
4295 | int nbits; | |
4296 | for (nbits = 0; val != 0; nbits++) | |
0963b4bd | 4297 | val &= val - 1; /* Delete rightmost 1-bit in val. */ |
c906108c SS |
4298 | return nbits; |
4299 | } | |
4300 | ||
177321bd DJ |
4301 | /* Return the size in bytes of the complete Thumb instruction whose |
4302 | first halfword is INST1. */ | |
4303 | ||
4304 | static int | |
4305 | thumb_insn_size (unsigned short inst1) | |
4306 | { | |
4307 | if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0) | |
4308 | return 4; | |
4309 | else | |
4310 | return 2; | |
4311 | } | |
4312 | ||
4313 | static int | |
4314 | thumb_advance_itstate (unsigned int itstate) | |
4315 | { | |
4316 | /* Preserve IT[7:5], the first three bits of the condition. Shift | |
4317 | the upcoming condition flags left by one bit. */ | |
4318 | itstate = (itstate & 0xe0) | ((itstate << 1) & 0x1f); | |
4319 | ||
4320 | /* If we have finished the IT block, clear the state. */ | |
4321 | if ((itstate & 0x0f) == 0) | |
4322 | itstate = 0; | |
4323 | ||
4324 | return itstate; | |
4325 | } | |
4326 | ||
4327 | /* Find the next PC after the current instruction executes. In some | |
4328 | cases we can not statically determine the answer (see the IT state | |
4329 | handling in this function); in that case, a breakpoint may be | |
4330 | inserted in addition to the returned PC, which will be used to set | |
4331 | another breakpoint by our caller. */ | |
4332 | ||
ad527d2e | 4333 | static CORE_ADDR |
18819fa6 | 4334 | thumb_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 4335 | { |
2af46ca0 | 4336 | struct gdbarch *gdbarch = get_frame_arch (frame); |
177321bd | 4337 | struct address_space *aspace = get_frame_address_space (frame); |
e17a4113 UW |
4338 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
4339 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
c5aa993b | 4340 | unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */ |
e17a4113 | 4341 | unsigned short inst1; |
0963b4bd | 4342 | CORE_ADDR nextpc = pc + 2; /* Default is next instruction. */ |
c906108c | 4343 | unsigned long offset; |
177321bd | 4344 | ULONGEST status, itstate; |
c906108c | 4345 | |
50e98be4 DJ |
4346 | nextpc = MAKE_THUMB_ADDR (nextpc); |
4347 | pc_val = MAKE_THUMB_ADDR (pc_val); | |
4348 | ||
e17a4113 | 4349 | inst1 = read_memory_unsigned_integer (pc, 2, byte_order_for_code); |
9d4fde75 | 4350 | |
9dca5578 DJ |
4351 | /* Thumb-2 conditional execution support. There are eight bits in |
4352 | the CPSR which describe conditional execution state. Once | |
4353 | reconstructed (they're in a funny order), the low five bits | |
4354 | describe the low bit of the condition for each instruction and | |
4355 | how many instructions remain. The high three bits describe the | |
4356 | base condition. One of the low four bits will be set if an IT | |
4357 | block is active. These bits read as zero on earlier | |
4358 | processors. */ | |
4359 | status = get_frame_register_unsigned (frame, ARM_PS_REGNUM); | |
177321bd | 4360 | itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3); |
9dca5578 | 4361 | |
177321bd DJ |
4362 | /* If-Then handling. On GNU/Linux, where this routine is used, we |
4363 | use an undefined instruction as a breakpoint. Unlike BKPT, IT | |
4364 | can disable execution of the undefined instruction. So we might | |
4365 | miss the breakpoint if we set it on a skipped conditional | |
4366 | instruction. Because conditional instructions can change the | |
4367 | flags, affecting the execution of further instructions, we may | |
4368 | need to set two breakpoints. */ | |
9dca5578 | 4369 | |
177321bd DJ |
4370 | if (gdbarch_tdep (gdbarch)->thumb2_breakpoint != NULL) |
4371 | { | |
4372 | if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) | |
4373 | { | |
4374 | /* An IT instruction. Because this instruction does not | |
4375 | modify the flags, we can accurately predict the next | |
4376 | executed instruction. */ | |
4377 | itstate = inst1 & 0x00ff; | |
4378 | pc += thumb_insn_size (inst1); | |
4379 | ||
4380 | while (itstate != 0 && ! condition_true (itstate >> 4, status)) | |
4381 | { | |
0963b4bd MS |
4382 | inst1 = read_memory_unsigned_integer (pc, 2, |
4383 | byte_order_for_code); | |
177321bd DJ |
4384 | pc += thumb_insn_size (inst1); |
4385 | itstate = thumb_advance_itstate (itstate); | |
4386 | } | |
4387 | ||
50e98be4 | 4388 | return MAKE_THUMB_ADDR (pc); |
177321bd DJ |
4389 | } |
4390 | else if (itstate != 0) | |
4391 | { | |
4392 | /* We are in a conditional block. Check the condition. */ | |
4393 | if (! condition_true (itstate >> 4, status)) | |
4394 | { | |
4395 | /* Advance to the next executed instruction. */ | |
4396 | pc += thumb_insn_size (inst1); | |
4397 | itstate = thumb_advance_itstate (itstate); | |
4398 | ||
4399 | while (itstate != 0 && ! condition_true (itstate >> 4, status)) | |
4400 | { | |
0963b4bd MS |
4401 | inst1 = read_memory_unsigned_integer (pc, 2, |
4402 | byte_order_for_code); | |
177321bd DJ |
4403 | pc += thumb_insn_size (inst1); |
4404 | itstate = thumb_advance_itstate (itstate); | |
4405 | } | |
4406 | ||
50e98be4 | 4407 | return MAKE_THUMB_ADDR (pc); |
177321bd DJ |
4408 | } |
4409 | else if ((itstate & 0x0f) == 0x08) | |
4410 | { | |
4411 | /* This is the last instruction of the conditional | |
4412 | block, and it is executed. We can handle it normally | |
4413 | because the following instruction is not conditional, | |
4414 | and we must handle it normally because it is | |
4415 | permitted to branch. Fall through. */ | |
4416 | } | |
4417 | else | |
4418 | { | |
4419 | int cond_negated; | |
4420 | ||
4421 | /* There are conditional instructions after this one. | |
4422 | If this instruction modifies the flags, then we can | |
4423 | not predict what the next executed instruction will | |
4424 | be. Fortunately, this instruction is architecturally | |
4425 | forbidden to branch; we know it will fall through. | |
4426 | Start by skipping past it. */ | |
4427 | pc += thumb_insn_size (inst1); | |
4428 | itstate = thumb_advance_itstate (itstate); | |
4429 | ||
4430 | /* Set a breakpoint on the following instruction. */ | |
4431 | gdb_assert ((itstate & 0x0f) != 0); | |
18819fa6 UW |
4432 | arm_insert_single_step_breakpoint (gdbarch, aspace, |
4433 | MAKE_THUMB_ADDR (pc)); | |
177321bd DJ |
4434 | cond_negated = (itstate >> 4) & 1; |
4435 | ||
4436 | /* Skip all following instructions with the same | |
4437 | condition. If there is a later instruction in the IT | |
4438 | block with the opposite condition, set the other | |
4439 | breakpoint there. If not, then set a breakpoint on | |
4440 | the instruction after the IT block. */ | |
4441 | do | |
4442 | { | |
0963b4bd MS |
4443 | inst1 = read_memory_unsigned_integer (pc, 2, |
4444 | byte_order_for_code); | |
177321bd DJ |
4445 | pc += thumb_insn_size (inst1); |
4446 | itstate = thumb_advance_itstate (itstate); | |
4447 | } | |
4448 | while (itstate != 0 && ((itstate >> 4) & 1) == cond_negated); | |
4449 | ||
50e98be4 | 4450 | return MAKE_THUMB_ADDR (pc); |
177321bd DJ |
4451 | } |
4452 | } | |
4453 | } | |
4454 | else if (itstate & 0x0f) | |
9dca5578 DJ |
4455 | { |
4456 | /* We are in a conditional block. Check the condition. */ | |
177321bd | 4457 | int cond = itstate >> 4; |
9dca5578 DJ |
4458 | |
4459 | if (! condition_true (cond, status)) | |
db24da6d YQ |
4460 | /* Advance to the next instruction. All the 32-bit |
4461 | instructions share a common prefix. */ | |
4462 | return MAKE_THUMB_ADDR (pc + thumb_insn_size (inst1)); | |
177321bd DJ |
4463 | |
4464 | /* Otherwise, handle the instruction normally. */ | |
9dca5578 DJ |
4465 | } |
4466 | ||
c906108c SS |
4467 | if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */ |
4468 | { | |
4469 | CORE_ADDR sp; | |
4470 | ||
4471 | /* Fetch the saved PC from the stack. It's stored above | |
4472 | all of the other registers. */ | |
f0c9063c | 4473 | offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE; |
0b1b3e42 | 4474 | sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM); |
e17a4113 | 4475 | nextpc = read_memory_unsigned_integer (sp + offset, 4, byte_order); |
c906108c SS |
4476 | } |
4477 | else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */ | |
4478 | { | |
c5aa993b | 4479 | unsigned long cond = bits (inst1, 8, 11); |
25b41d01 YQ |
4480 | if (cond == 0x0f) /* 0x0f = SWI */ |
4481 | { | |
4482 | struct gdbarch_tdep *tdep; | |
4483 | tdep = gdbarch_tdep (gdbarch); | |
4484 | ||
4485 | if (tdep->syscall_next_pc != NULL) | |
4486 | nextpc = tdep->syscall_next_pc (frame); | |
4487 | ||
4488 | } | |
4489 | else if (cond != 0x0f && condition_true (cond, status)) | |
c906108c SS |
4490 | nextpc = pc_val + (sbits (inst1, 0, 7) << 1); |
4491 | } | |
4492 | else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */ | |
4493 | { | |
4494 | nextpc = pc_val + (sbits (inst1, 0, 10) << 1); | |
4495 | } | |
db24da6d | 4496 | else if (thumb_insn_size (inst1) == 4) /* 32-bit instruction */ |
c906108c | 4497 | { |
e17a4113 UW |
4498 | unsigned short inst2; |
4499 | inst2 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code); | |
9dca5578 DJ |
4500 | |
4501 | /* Default to the next instruction. */ | |
4502 | nextpc = pc + 4; | |
50e98be4 | 4503 | nextpc = MAKE_THUMB_ADDR (nextpc); |
9dca5578 DJ |
4504 | |
4505 | if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000) | |
4506 | { | |
4507 | /* Branches and miscellaneous control instructions. */ | |
4508 | ||
4509 | if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000) | |
4510 | { | |
4511 | /* B, BL, BLX. */ | |
4512 | int j1, j2, imm1, imm2; | |
4513 | ||
4514 | imm1 = sbits (inst1, 0, 10); | |
4515 | imm2 = bits (inst2, 0, 10); | |
4516 | j1 = bit (inst2, 13); | |
4517 | j2 = bit (inst2, 11); | |
4518 | ||
4519 | offset = ((imm1 << 12) + (imm2 << 1)); | |
4520 | offset ^= ((!j2) << 22) | ((!j1) << 23); | |
4521 | ||
4522 | nextpc = pc_val + offset; | |
4523 | /* For BLX make sure to clear the low bits. */ | |
4524 | if (bit (inst2, 12) == 0) | |
4525 | nextpc = nextpc & 0xfffffffc; | |
4526 | } | |
4527 | else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00) | |
4528 | { | |
4529 | /* SUBS PC, LR, #imm8. */ | |
4530 | nextpc = get_frame_register_unsigned (frame, ARM_LR_REGNUM); | |
4531 | nextpc -= inst2 & 0x00ff; | |
4532 | } | |
4069ebbe | 4533 | else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380) |
9dca5578 DJ |
4534 | { |
4535 | /* Conditional branch. */ | |
4536 | if (condition_true (bits (inst1, 6, 9), status)) | |
4537 | { | |
4538 | int sign, j1, j2, imm1, imm2; | |
4539 | ||
4540 | sign = sbits (inst1, 10, 10); | |
4541 | imm1 = bits (inst1, 0, 5); | |
4542 | imm2 = bits (inst2, 0, 10); | |
4543 | j1 = bit (inst2, 13); | |
4544 | j2 = bit (inst2, 11); | |
4545 | ||
4546 | offset = (sign << 20) + (j2 << 19) + (j1 << 18); | |
4547 | offset += (imm1 << 12) + (imm2 << 1); | |
4548 | ||
4549 | nextpc = pc_val + offset; | |
4550 | } | |
4551 | } | |
4552 | } | |
4553 | else if ((inst1 & 0xfe50) == 0xe810) | |
4554 | { | |
4555 | /* Load multiple or RFE. */ | |
4556 | int rn, offset, load_pc = 1; | |
4557 | ||
4558 | rn = bits (inst1, 0, 3); | |
4559 | if (bit (inst1, 7) && !bit (inst1, 8)) | |
4560 | { | |
4561 | /* LDMIA or POP */ | |
4562 | if (!bit (inst2, 15)) | |
4563 | load_pc = 0; | |
4564 | offset = bitcount (inst2) * 4 - 4; | |
4565 | } | |
4566 | else if (!bit (inst1, 7) && bit (inst1, 8)) | |
4567 | { | |
4568 | /* LDMDB */ | |
4569 | if (!bit (inst2, 15)) | |
4570 | load_pc = 0; | |
4571 | offset = -4; | |
4572 | } | |
4573 | else if (bit (inst1, 7) && bit (inst1, 8)) | |
4574 | { | |
4575 | /* RFEIA */ | |
4576 | offset = 0; | |
4577 | } | |
4578 | else if (!bit (inst1, 7) && !bit (inst1, 8)) | |
4579 | { | |
4580 | /* RFEDB */ | |
4581 | offset = -8; | |
4582 | } | |
4583 | else | |
4584 | load_pc = 0; | |
4585 | ||
4586 | if (load_pc) | |
4587 | { | |
4588 | CORE_ADDR addr = get_frame_register_unsigned (frame, rn); | |
4589 | nextpc = get_frame_memory_unsigned (frame, addr + offset, 4); | |
4590 | } | |
4591 | } | |
4592 | else if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00) | |
4593 | { | |
4594 | /* MOV PC or MOVS PC. */ | |
4595 | nextpc = get_frame_register_unsigned (frame, bits (inst2, 0, 3)); | |
50e98be4 | 4596 | nextpc = MAKE_THUMB_ADDR (nextpc); |
9dca5578 DJ |
4597 | } |
4598 | else if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000) | |
4599 | { | |
4600 | /* LDR PC. */ | |
4601 | CORE_ADDR base; | |
4602 | int rn, load_pc = 1; | |
4603 | ||
4604 | rn = bits (inst1, 0, 3); | |
4605 | base = get_frame_register_unsigned (frame, rn); | |
bf9f652a | 4606 | if (rn == ARM_PC_REGNUM) |
9dca5578 DJ |
4607 | { |
4608 | base = (base + 4) & ~(CORE_ADDR) 0x3; | |
4609 | if (bit (inst1, 7)) | |
4610 | base += bits (inst2, 0, 11); | |
4611 | else | |
4612 | base -= bits (inst2, 0, 11); | |
4613 | } | |
4614 | else if (bit (inst1, 7)) | |
4615 | base += bits (inst2, 0, 11); | |
4616 | else if (bit (inst2, 11)) | |
4617 | { | |
4618 | if (bit (inst2, 10)) | |
4619 | { | |
4620 | if (bit (inst2, 9)) | |
4621 | base += bits (inst2, 0, 7); | |
4622 | else | |
4623 | base -= bits (inst2, 0, 7); | |
4624 | } | |
4625 | } | |
4626 | else if ((inst2 & 0x0fc0) == 0x0000) | |
4627 | { | |
4628 | int shift = bits (inst2, 4, 5), rm = bits (inst2, 0, 3); | |
4629 | base += get_frame_register_unsigned (frame, rm) << shift; | |
4630 | } | |
4631 | else | |
4632 | /* Reserved. */ | |
4633 | load_pc = 0; | |
4634 | ||
4635 | if (load_pc) | |
4636 | nextpc = get_frame_memory_unsigned (frame, base, 4); | |
4637 | } | |
4638 | else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000) | |
4639 | { | |
4640 | /* TBB. */ | |
d476da0e RE |
4641 | CORE_ADDR tbl_reg, table, offset, length; |
4642 | ||
4643 | tbl_reg = bits (inst1, 0, 3); | |
4644 | if (tbl_reg == 0x0f) | |
4645 | table = pc + 4; /* Regcache copy of PC isn't right yet. */ | |
4646 | else | |
4647 | table = get_frame_register_unsigned (frame, tbl_reg); | |
9dca5578 | 4648 | |
9dca5578 DJ |
4649 | offset = get_frame_register_unsigned (frame, bits (inst2, 0, 3)); |
4650 | length = 2 * get_frame_memory_unsigned (frame, table + offset, 1); | |
4651 | nextpc = pc_val + length; | |
4652 | } | |
d476da0e | 4653 | else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010) |
9dca5578 DJ |
4654 | { |
4655 | /* TBH. */ | |
d476da0e RE |
4656 | CORE_ADDR tbl_reg, table, offset, length; |
4657 | ||
4658 | tbl_reg = bits (inst1, 0, 3); | |
4659 | if (tbl_reg == 0x0f) | |
4660 | table = pc + 4; /* Regcache copy of PC isn't right yet. */ | |
4661 | else | |
4662 | table = get_frame_register_unsigned (frame, tbl_reg); | |
9dca5578 | 4663 | |
9dca5578 DJ |
4664 | offset = 2 * get_frame_register_unsigned (frame, bits (inst2, 0, 3)); |
4665 | length = 2 * get_frame_memory_unsigned (frame, table + offset, 2); | |
4666 | nextpc = pc_val + length; | |
4667 | } | |
c906108c | 4668 | } |
aa17d93e | 4669 | else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */ |
9498281f DJ |
4670 | { |
4671 | if (bits (inst1, 3, 6) == 0x0f) | |
6ca1b147 | 4672 | nextpc = UNMAKE_THUMB_ADDR (pc_val); |
9498281f | 4673 | else |
0b1b3e42 | 4674 | nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6)); |
9498281f | 4675 | } |
ad8b5167 UW |
4676 | else if ((inst1 & 0xff87) == 0x4687) /* mov pc, REG */ |
4677 | { | |
4678 | if (bits (inst1, 3, 6) == 0x0f) | |
4679 | nextpc = pc_val; | |
4680 | else | |
4681 | nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6)); | |
4682 | ||
4683 | nextpc = MAKE_THUMB_ADDR (nextpc); | |
4684 | } | |
9dca5578 DJ |
4685 | else if ((inst1 & 0xf500) == 0xb100) |
4686 | { | |
4687 | /* CBNZ or CBZ. */ | |
4688 | int imm = (bit (inst1, 9) << 6) + (bits (inst1, 3, 7) << 1); | |
4689 | ULONGEST reg = get_frame_register_unsigned (frame, bits (inst1, 0, 2)); | |
4690 | ||
4691 | if (bit (inst1, 11) && reg != 0) | |
4692 | nextpc = pc_val + imm; | |
4693 | else if (!bit (inst1, 11) && reg == 0) | |
4694 | nextpc = pc_val + imm; | |
4695 | } | |
c906108c SS |
4696 | return nextpc; |
4697 | } | |
4698 | ||
50e98be4 | 4699 | /* Get the raw next address. PC is the current program counter, in |
18819fa6 | 4700 | FRAME, which is assumed to be executing in ARM mode. |
50e98be4 DJ |
4701 | |
4702 | The value returned has the execution state of the next instruction | |
4703 | encoded in it. Use IS_THUMB_ADDR () to see whether the instruction is | |
4704 | in Thumb-State, and gdbarch_addr_bits_remove () to get the plain memory | |
0963b4bd MS |
4705 | address. */ |
4706 | ||
50e98be4 | 4707 | static CORE_ADDR |
18819fa6 | 4708 | arm_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 4709 | { |
2af46ca0 | 4710 | struct gdbarch *gdbarch = get_frame_arch (frame); |
e17a4113 UW |
4711 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
4712 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
c906108c SS |
4713 | unsigned long pc_val; |
4714 | unsigned long this_instr; | |
4715 | unsigned long status; | |
4716 | CORE_ADDR nextpc; | |
4717 | ||
c906108c | 4718 | pc_val = (unsigned long) pc; |
e17a4113 | 4719 | this_instr = read_memory_unsigned_integer (pc, 4, byte_order_for_code); |
9d4fde75 | 4720 | |
0b1b3e42 | 4721 | status = get_frame_register_unsigned (frame, ARM_PS_REGNUM); |
c5aa993b | 4722 | nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */ |
c906108c | 4723 | |
daddc3c1 DJ |
4724 | if (bits (this_instr, 28, 31) == INST_NV) |
4725 | switch (bits (this_instr, 24, 27)) | |
4726 | { | |
4727 | case 0xa: | |
4728 | case 0xb: | |
4729 | { | |
4730 | /* Branch with Link and change to Thumb. */ | |
4731 | nextpc = BranchDest (pc, this_instr); | |
4732 | nextpc |= bit (this_instr, 24) << 1; | |
50e98be4 | 4733 | nextpc = MAKE_THUMB_ADDR (nextpc); |
daddc3c1 DJ |
4734 | break; |
4735 | } | |
4736 | case 0xc: | |
4737 | case 0xd: | |
4738 | case 0xe: | |
4739 | /* Coprocessor register transfer. */ | |
4740 | if (bits (this_instr, 12, 15) == 15) | |
4741 | error (_("Invalid update to pc in instruction")); | |
4742 | break; | |
4743 | } | |
4744 | else if (condition_true (bits (this_instr, 28, 31), status)) | |
c906108c SS |
4745 | { |
4746 | switch (bits (this_instr, 24, 27)) | |
4747 | { | |
c5aa993b | 4748 | case 0x0: |
94c30b78 | 4749 | case 0x1: /* data processing */ |
c5aa993b JM |
4750 | case 0x2: |
4751 | case 0x3: | |
c906108c SS |
4752 | { |
4753 | unsigned long operand1, operand2, result = 0; | |
4754 | unsigned long rn; | |
4755 | int c; | |
c5aa993b | 4756 | |
c906108c SS |
4757 | if (bits (this_instr, 12, 15) != 15) |
4758 | break; | |
4759 | ||
4760 | if (bits (this_instr, 22, 25) == 0 | |
c5aa993b | 4761 | && bits (this_instr, 4, 7) == 9) /* multiply */ |
edefbb7c | 4762 | error (_("Invalid update to pc in instruction")); |
c906108c | 4763 | |
9498281f | 4764 | /* BX <reg>, BLX <reg> */ |
e150acc7 PB |
4765 | if (bits (this_instr, 4, 27) == 0x12fff1 |
4766 | || bits (this_instr, 4, 27) == 0x12fff3) | |
9498281f DJ |
4767 | { |
4768 | rn = bits (this_instr, 0, 3); | |
bf9f652a YQ |
4769 | nextpc = ((rn == ARM_PC_REGNUM) |
4770 | ? (pc_val + 8) | |
4771 | : get_frame_register_unsigned (frame, rn)); | |
4772 | ||
9498281f DJ |
4773 | return nextpc; |
4774 | } | |
4775 | ||
0963b4bd | 4776 | /* Multiply into PC. */ |
c906108c SS |
4777 | c = (status & FLAG_C) ? 1 : 0; |
4778 | rn = bits (this_instr, 16, 19); | |
bf9f652a YQ |
4779 | operand1 = ((rn == ARM_PC_REGNUM) |
4780 | ? (pc_val + 8) | |
4781 | : get_frame_register_unsigned (frame, rn)); | |
c5aa993b | 4782 | |
c906108c SS |
4783 | if (bit (this_instr, 25)) |
4784 | { | |
4785 | unsigned long immval = bits (this_instr, 0, 7); | |
4786 | unsigned long rotate = 2 * bits (this_instr, 8, 11); | |
c5aa993b JM |
4787 | operand2 = ((immval >> rotate) | (immval << (32 - rotate))) |
4788 | & 0xffffffff; | |
c906108c | 4789 | } |
0963b4bd MS |
4790 | else /* operand 2 is a shifted register. */ |
4791 | operand2 = shifted_reg_val (frame, this_instr, c, | |
4792 | pc_val, status); | |
c5aa993b | 4793 | |
c906108c SS |
4794 | switch (bits (this_instr, 21, 24)) |
4795 | { | |
c5aa993b | 4796 | case 0x0: /*and */ |
c906108c SS |
4797 | result = operand1 & operand2; |
4798 | break; | |
4799 | ||
c5aa993b | 4800 | case 0x1: /*eor */ |
c906108c SS |
4801 | result = operand1 ^ operand2; |
4802 | break; | |
4803 | ||
c5aa993b | 4804 | case 0x2: /*sub */ |
c906108c SS |
4805 | result = operand1 - operand2; |
4806 | break; | |
4807 | ||
c5aa993b | 4808 | case 0x3: /*rsb */ |
c906108c SS |
4809 | result = operand2 - operand1; |
4810 | break; | |
4811 | ||
c5aa993b | 4812 | case 0x4: /*add */ |
c906108c SS |
4813 | result = operand1 + operand2; |
4814 | break; | |
4815 | ||
c5aa993b | 4816 | case 0x5: /*adc */ |
c906108c SS |
4817 | result = operand1 + operand2 + c; |
4818 | break; | |
4819 | ||
c5aa993b | 4820 | case 0x6: /*sbc */ |
c906108c SS |
4821 | result = operand1 - operand2 + c; |
4822 | break; | |
4823 | ||
c5aa993b | 4824 | case 0x7: /*rsc */ |
c906108c SS |
4825 | result = operand2 - operand1 + c; |
4826 | break; | |
4827 | ||
c5aa993b JM |
4828 | case 0x8: |
4829 | case 0x9: | |
4830 | case 0xa: | |
4831 | case 0xb: /* tst, teq, cmp, cmn */ | |
c906108c SS |
4832 | result = (unsigned long) nextpc; |
4833 | break; | |
4834 | ||
c5aa993b | 4835 | case 0xc: /*orr */ |
c906108c SS |
4836 | result = operand1 | operand2; |
4837 | break; | |
4838 | ||
c5aa993b | 4839 | case 0xd: /*mov */ |
c906108c SS |
4840 | /* Always step into a function. */ |
4841 | result = operand2; | |
c5aa993b | 4842 | break; |
c906108c | 4843 | |
c5aa993b | 4844 | case 0xe: /*bic */ |
c906108c SS |
4845 | result = operand1 & ~operand2; |
4846 | break; | |
4847 | ||
c5aa993b | 4848 | case 0xf: /*mvn */ |
c906108c SS |
4849 | result = ~operand2; |
4850 | break; | |
4851 | } | |
c906108c | 4852 | |
50e98be4 DJ |
4853 | /* In 26-bit APCS the bottom two bits of the result are |
4854 | ignored, and we always end up in ARM state. */ | |
4855 | if (!arm_apcs_32) | |
4856 | nextpc = arm_addr_bits_remove (gdbarch, result); | |
4857 | else | |
4858 | nextpc = result; | |
4859 | ||
c906108c SS |
4860 | break; |
4861 | } | |
c5aa993b JM |
4862 | |
4863 | case 0x4: | |
4864 | case 0x5: /* data transfer */ | |
4865 | case 0x6: | |
4866 | case 0x7: | |
c906108c SS |
4867 | if (bit (this_instr, 20)) |
4868 | { | |
4869 | /* load */ | |
4870 | if (bits (this_instr, 12, 15) == 15) | |
4871 | { | |
4872 | /* rd == pc */ | |
c5aa993b | 4873 | unsigned long rn; |
c906108c | 4874 | unsigned long base; |
c5aa993b | 4875 | |
c906108c | 4876 | if (bit (this_instr, 22)) |
edefbb7c | 4877 | error (_("Invalid update to pc in instruction")); |
c906108c SS |
4878 | |
4879 | /* byte write to PC */ | |
4880 | rn = bits (this_instr, 16, 19); | |
bf9f652a YQ |
4881 | base = ((rn == ARM_PC_REGNUM) |
4882 | ? (pc_val + 8) | |
4883 | : get_frame_register_unsigned (frame, rn)); | |
4884 | ||
c906108c SS |
4885 | if (bit (this_instr, 24)) |
4886 | { | |
4887 | /* pre-indexed */ | |
4888 | int c = (status & FLAG_C) ? 1 : 0; | |
4889 | unsigned long offset = | |
c5aa993b | 4890 | (bit (this_instr, 25) |
0b1b3e42 | 4891 | ? shifted_reg_val (frame, this_instr, c, pc_val, status) |
c5aa993b | 4892 | : bits (this_instr, 0, 11)); |
c906108c SS |
4893 | |
4894 | if (bit (this_instr, 23)) | |
4895 | base += offset; | |
4896 | else | |
4897 | base -= offset; | |
4898 | } | |
51370a33 YQ |
4899 | nextpc = |
4900 | (CORE_ADDR) read_memory_unsigned_integer ((CORE_ADDR) base, | |
4901 | 4, byte_order); | |
c906108c SS |
4902 | } |
4903 | } | |
4904 | break; | |
c5aa993b JM |
4905 | |
4906 | case 0x8: | |
4907 | case 0x9: /* block transfer */ | |
c906108c SS |
4908 | if (bit (this_instr, 20)) |
4909 | { | |
4910 | /* LDM */ | |
4911 | if (bit (this_instr, 15)) | |
4912 | { | |
4913 | /* loading pc */ | |
4914 | int offset = 0; | |
51370a33 YQ |
4915 | unsigned long rn_val |
4916 | = get_frame_register_unsigned (frame, | |
4917 | bits (this_instr, 16, 19)); | |
c906108c SS |
4918 | |
4919 | if (bit (this_instr, 23)) | |
4920 | { | |
4921 | /* up */ | |
4922 | unsigned long reglist = bits (this_instr, 0, 14); | |
4923 | offset = bitcount (reglist) * 4; | |
c5aa993b | 4924 | if (bit (this_instr, 24)) /* pre */ |
c906108c SS |
4925 | offset += 4; |
4926 | } | |
4927 | else if (bit (this_instr, 24)) | |
4928 | offset = -4; | |
c5aa993b | 4929 | |
51370a33 YQ |
4930 | nextpc = |
4931 | (CORE_ADDR) read_memory_unsigned_integer ((CORE_ADDR) | |
4932 | (rn_val + offset), | |
4933 | 4, byte_order); | |
c906108c SS |
4934 | } |
4935 | } | |
4936 | break; | |
c5aa993b JM |
4937 | |
4938 | case 0xb: /* branch & link */ | |
4939 | case 0xa: /* branch */ | |
c906108c SS |
4940 | { |
4941 | nextpc = BranchDest (pc, this_instr); | |
c906108c SS |
4942 | break; |
4943 | } | |
c5aa993b JM |
4944 | |
4945 | case 0xc: | |
4946 | case 0xd: | |
4947 | case 0xe: /* coproc ops */ | |
25b41d01 | 4948 | break; |
c5aa993b | 4949 | case 0xf: /* SWI */ |
25b41d01 YQ |
4950 | { |
4951 | struct gdbarch_tdep *tdep; | |
4952 | tdep = gdbarch_tdep (gdbarch); | |
4953 | ||
4954 | if (tdep->syscall_next_pc != NULL) | |
4955 | nextpc = tdep->syscall_next_pc (frame); | |
4956 | ||
4957 | } | |
c906108c SS |
4958 | break; |
4959 | ||
4960 | default: | |
edefbb7c | 4961 | fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n")); |
c906108c SS |
4962 | return (pc); |
4963 | } | |
4964 | } | |
4965 | ||
4966 | return nextpc; | |
4967 | } | |
4968 | ||
18819fa6 UW |
4969 | /* Determine next PC after current instruction executes. Will call either |
4970 | arm_get_next_pc_raw or thumb_get_next_pc_raw. Error out if infinite | |
4971 | loop is detected. */ | |
4972 | ||
50e98be4 DJ |
4973 | CORE_ADDR |
4974 | arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc) | |
4975 | { | |
18819fa6 UW |
4976 | CORE_ADDR nextpc; |
4977 | ||
4978 | if (arm_frame_is_thumb (frame)) | |
4979 | { | |
4980 | nextpc = thumb_get_next_pc_raw (frame, pc); | |
4981 | if (nextpc == MAKE_THUMB_ADDR (pc)) | |
4982 | error (_("Infinite loop detected")); | |
4983 | } | |
4984 | else | |
4985 | { | |
4986 | nextpc = arm_get_next_pc_raw (frame, pc); | |
4987 | if (nextpc == pc) | |
4988 | error (_("Infinite loop detected")); | |
4989 | } | |
4990 | ||
50e98be4 DJ |
4991 | return nextpc; |
4992 | } | |
4993 | ||
18819fa6 UW |
4994 | /* Like insert_single_step_breakpoint, but make sure we use a breakpoint |
4995 | of the appropriate mode (as encoded in the PC value), even if this | |
4996 | differs from what would be expected according to the symbol tables. */ | |
4997 | ||
4998 | void | |
4999 | arm_insert_single_step_breakpoint (struct gdbarch *gdbarch, | |
5000 | struct address_space *aspace, | |
5001 | CORE_ADDR pc) | |
5002 | { | |
5003 | struct cleanup *old_chain | |
5004 | = make_cleanup_restore_integer (&arm_override_mode); | |
5005 | ||
5006 | arm_override_mode = IS_THUMB_ADDR (pc); | |
5007 | pc = gdbarch_addr_bits_remove (gdbarch, pc); | |
5008 | ||
5009 | insert_single_step_breakpoint (gdbarch, aspace, pc); | |
5010 | ||
5011 | do_cleanups (old_chain); | |
5012 | } | |
5013 | ||
35f73cfc UW |
5014 | /* Checks for an atomic sequence of instructions beginning with a LDREX{,B,H,D} |
5015 | instruction and ending with a STREX{,B,H,D} instruction. If such a sequence | |
5016 | is found, attempt to step through it. A breakpoint is placed at the end of | |
5017 | the sequence. */ | |
5018 | ||
5019 | static int | |
5020 | thumb_deal_with_atomic_sequence_raw (struct frame_info *frame) | |
5021 | { | |
5022 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
5023 | struct address_space *aspace = get_frame_address_space (frame); | |
5024 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
5025 | CORE_ADDR pc = get_frame_pc (frame); | |
5026 | CORE_ADDR breaks[2] = {-1, -1}; | |
5027 | CORE_ADDR loc = pc; | |
5028 | unsigned short insn1, insn2; | |
5029 | int insn_count; | |
5030 | int index; | |
5031 | int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */ | |
5032 | const int atomic_sequence_length = 16; /* Instruction sequence length. */ | |
5033 | ULONGEST status, itstate; | |
5034 | ||
5035 | /* We currently do not support atomic sequences within an IT block. */ | |
5036 | status = get_frame_register_unsigned (frame, ARM_PS_REGNUM); | |
5037 | itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3); | |
5038 | if (itstate & 0x0f) | |
5039 | return 0; | |
5040 | ||
5041 | /* Assume all atomic sequences start with a ldrex{,b,h,d} instruction. */ | |
5042 | insn1 = read_memory_unsigned_integer (loc, 2, byte_order_for_code); | |
5043 | loc += 2; | |
5044 | if (thumb_insn_size (insn1) != 4) | |
5045 | return 0; | |
5046 | ||
5047 | insn2 = read_memory_unsigned_integer (loc, 2, byte_order_for_code); | |
5048 | loc += 2; | |
5049 | if (!((insn1 & 0xfff0) == 0xe850 | |
5050 | || ((insn1 & 0xfff0) == 0xe8d0 && (insn2 & 0x00c0) == 0x0040))) | |
5051 | return 0; | |
5052 | ||
5053 | /* Assume that no atomic sequence is longer than "atomic_sequence_length" | |
5054 | instructions. */ | |
5055 | for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count) | |
5056 | { | |
5057 | insn1 = read_memory_unsigned_integer (loc, 2, byte_order_for_code); | |
5058 | loc += 2; | |
5059 | ||
5060 | if (thumb_insn_size (insn1) != 4) | |
5061 | { | |
5062 | /* Assume that there is at most one conditional branch in the | |
5063 | atomic sequence. If a conditional branch is found, put a | |
5064 | breakpoint in its destination address. */ | |
5065 | if ((insn1 & 0xf000) == 0xd000 && bits (insn1, 8, 11) != 0x0f) | |
5066 | { | |
5067 | if (last_breakpoint > 0) | |
5068 | return 0; /* More than one conditional branch found, | |
5069 | fallback to the standard code. */ | |
5070 | ||
5071 | breaks[1] = loc + 2 + (sbits (insn1, 0, 7) << 1); | |
5072 | last_breakpoint++; | |
5073 | } | |
5074 | ||
5075 | /* We do not support atomic sequences that use any *other* | |
5076 | instructions but conditional branches to change the PC. | |
5077 | Fall back to standard code to avoid losing control of | |
5078 | execution. */ | |
5079 | else if (thumb_instruction_changes_pc (insn1)) | |
5080 | return 0; | |
5081 | } | |
5082 | else | |
5083 | { | |
5084 | insn2 = read_memory_unsigned_integer (loc, 2, byte_order_for_code); | |
5085 | loc += 2; | |
5086 | ||
5087 | /* Assume that there is at most one conditional branch in the | |
5088 | atomic sequence. If a conditional branch is found, put a | |
5089 | breakpoint in its destination address. */ | |
5090 | if ((insn1 & 0xf800) == 0xf000 | |
5091 | && (insn2 & 0xd000) == 0x8000 | |
5092 | && (insn1 & 0x0380) != 0x0380) | |
5093 | { | |
5094 | int sign, j1, j2, imm1, imm2; | |
5095 | unsigned int offset; | |
5096 | ||
5097 | sign = sbits (insn1, 10, 10); | |
5098 | imm1 = bits (insn1, 0, 5); | |
5099 | imm2 = bits (insn2, 0, 10); | |
5100 | j1 = bit (insn2, 13); | |
5101 | j2 = bit (insn2, 11); | |
5102 | ||
5103 | offset = (sign << 20) + (j2 << 19) + (j1 << 18); | |
5104 | offset += (imm1 << 12) + (imm2 << 1); | |
5105 | ||
5106 | if (last_breakpoint > 0) | |
5107 | return 0; /* More than one conditional branch found, | |
5108 | fallback to the standard code. */ | |
5109 | ||
5110 | breaks[1] = loc + offset; | |
5111 | last_breakpoint++; | |
5112 | } | |
5113 | ||
5114 | /* We do not support atomic sequences that use any *other* | |
5115 | instructions but conditional branches to change the PC. | |
5116 | Fall back to standard code to avoid losing control of | |
5117 | execution. */ | |
5118 | else if (thumb2_instruction_changes_pc (insn1, insn2)) | |
5119 | return 0; | |
5120 | ||
5121 | /* If we find a strex{,b,h,d}, we're done. */ | |
5122 | if ((insn1 & 0xfff0) == 0xe840 | |
5123 | || ((insn1 & 0xfff0) == 0xe8c0 && (insn2 & 0x00c0) == 0x0040)) | |
5124 | break; | |
5125 | } | |
5126 | } | |
5127 | ||
5128 | /* If we didn't find the strex{,b,h,d}, we cannot handle the sequence. */ | |
5129 | if (insn_count == atomic_sequence_length) | |
5130 | return 0; | |
5131 | ||
5132 | /* Insert a breakpoint right after the end of the atomic sequence. */ | |
5133 | breaks[0] = loc; | |
5134 | ||
5135 | /* Check for duplicated breakpoints. Check also for a breakpoint | |
5136 | placed (branch instruction's destination) anywhere in sequence. */ | |
5137 | if (last_breakpoint | |
5138 | && (breaks[1] == breaks[0] | |
5139 | || (breaks[1] >= pc && breaks[1] < loc))) | |
5140 | last_breakpoint = 0; | |
5141 | ||
5142 | /* Effectively inserts the breakpoints. */ | |
5143 | for (index = 0; index <= last_breakpoint; index++) | |
5144 | arm_insert_single_step_breakpoint (gdbarch, aspace, | |
5145 | MAKE_THUMB_ADDR (breaks[index])); | |
5146 | ||
5147 | return 1; | |
5148 | } | |
5149 | ||
5150 | static int | |
5151 | arm_deal_with_atomic_sequence_raw (struct frame_info *frame) | |
5152 | { | |
5153 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
5154 | struct address_space *aspace = get_frame_address_space (frame); | |
5155 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
5156 | CORE_ADDR pc = get_frame_pc (frame); | |
5157 | CORE_ADDR breaks[2] = {-1, -1}; | |
5158 | CORE_ADDR loc = pc; | |
5159 | unsigned int insn; | |
5160 | int insn_count; | |
5161 | int index; | |
5162 | int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */ | |
5163 | const int atomic_sequence_length = 16; /* Instruction sequence length. */ | |
5164 | ||
5165 | /* Assume all atomic sequences start with a ldrex{,b,h,d} instruction. | |
5166 | Note that we do not currently support conditionally executed atomic | |
5167 | instructions. */ | |
5168 | insn = read_memory_unsigned_integer (loc, 4, byte_order_for_code); | |
5169 | loc += 4; | |
5170 | if ((insn & 0xff9000f0) != 0xe1900090) | |
5171 | return 0; | |
5172 | ||
5173 | /* Assume that no atomic sequence is longer than "atomic_sequence_length" | |
5174 | instructions. */ | |
5175 | for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count) | |
5176 | { | |
5177 | insn = read_memory_unsigned_integer (loc, 4, byte_order_for_code); | |
5178 | loc += 4; | |
5179 | ||
5180 | /* Assume that there is at most one conditional branch in the atomic | |
5181 | sequence. If a conditional branch is found, put a breakpoint in | |
5182 | its destination address. */ | |
5183 | if (bits (insn, 24, 27) == 0xa) | |
5184 | { | |
5185 | if (last_breakpoint > 0) | |
5186 | return 0; /* More than one conditional branch found, fallback | |
5187 | to the standard single-step code. */ | |
5188 | ||
5189 | breaks[1] = BranchDest (loc - 4, insn); | |
5190 | last_breakpoint++; | |
5191 | } | |
5192 | ||
5193 | /* We do not support atomic sequences that use any *other* instructions | |
5194 | but conditional branches to change the PC. Fall back to standard | |
5195 | code to avoid losing control of execution. */ | |
5196 | else if (arm_instruction_changes_pc (insn)) | |
5197 | return 0; | |
5198 | ||
5199 | /* If we find a strex{,b,h,d}, we're done. */ | |
5200 | if ((insn & 0xff9000f0) == 0xe1800090) | |
5201 | break; | |
5202 | } | |
5203 | ||
5204 | /* If we didn't find the strex{,b,h,d}, we cannot handle the sequence. */ | |
5205 | if (insn_count == atomic_sequence_length) | |
5206 | return 0; | |
5207 | ||
5208 | /* Insert a breakpoint right after the end of the atomic sequence. */ | |
5209 | breaks[0] = loc; | |
5210 | ||
5211 | /* Check for duplicated breakpoints. Check also for a breakpoint | |
5212 | placed (branch instruction's destination) anywhere in sequence. */ | |
5213 | if (last_breakpoint | |
5214 | && (breaks[1] == breaks[0] | |
5215 | || (breaks[1] >= pc && breaks[1] < loc))) | |
5216 | last_breakpoint = 0; | |
5217 | ||
5218 | /* Effectively inserts the breakpoints. */ | |
5219 | for (index = 0; index <= last_breakpoint; index++) | |
5220 | arm_insert_single_step_breakpoint (gdbarch, aspace, breaks[index]); | |
5221 | ||
5222 | return 1; | |
5223 | } | |
5224 | ||
5225 | int | |
5226 | arm_deal_with_atomic_sequence (struct frame_info *frame) | |
5227 | { | |
5228 | if (arm_frame_is_thumb (frame)) | |
5229 | return thumb_deal_with_atomic_sequence_raw (frame); | |
5230 | else | |
5231 | return arm_deal_with_atomic_sequence_raw (frame); | |
5232 | } | |
5233 | ||
9512d7fd FN |
5234 | /* single_step() is called just before we want to resume the inferior, |
5235 | if we want to single-step it but there is no hardware or kernel | |
5236 | single-step support. We find the target of the coming instruction | |
e0cd558a | 5237 | and breakpoint it. */ |
9512d7fd | 5238 | |
190dce09 | 5239 | int |
0b1b3e42 | 5240 | arm_software_single_step (struct frame_info *frame) |
9512d7fd | 5241 | { |
a6d9a66e | 5242 | struct gdbarch *gdbarch = get_frame_arch (frame); |
6c95b8df | 5243 | struct address_space *aspace = get_frame_address_space (frame); |
35f73cfc UW |
5244 | CORE_ADDR next_pc; |
5245 | ||
5246 | if (arm_deal_with_atomic_sequence (frame)) | |
5247 | return 1; | |
18819fa6 | 5248 | |
35f73cfc | 5249 | next_pc = arm_get_next_pc (frame, get_frame_pc (frame)); |
18819fa6 | 5250 | arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc); |
e6590a1b UW |
5251 | |
5252 | return 1; | |
9512d7fd | 5253 | } |
9512d7fd | 5254 | |
f9d67f43 DJ |
5255 | /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand |
5256 | the buffer to be NEW_LEN bytes ending at ENDADDR. Return | |
5257 | NULL if an error occurs. BUF is freed. */ | |
5258 | ||
5259 | static gdb_byte * | |
5260 | extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr, | |
5261 | int old_len, int new_len) | |
5262 | { | |
22e048c9 | 5263 | gdb_byte *new_buf; |
f9d67f43 DJ |
5264 | int bytes_to_read = new_len - old_len; |
5265 | ||
5266 | new_buf = xmalloc (new_len); | |
5267 | memcpy (new_buf + bytes_to_read, buf, old_len); | |
5268 | xfree (buf); | |
5269 | if (target_read_memory (endaddr - new_len, new_buf, bytes_to_read) != 0) | |
5270 | { | |
5271 | xfree (new_buf); | |
5272 | return NULL; | |
5273 | } | |
5274 | return new_buf; | |
5275 | } | |
5276 | ||
5277 | /* An IT block is at most the 2-byte IT instruction followed by | |
5278 | four 4-byte instructions. The furthest back we must search to | |
5279 | find an IT block that affects the current instruction is thus | |
5280 | 2 + 3 * 4 == 14 bytes. */ | |
5281 | #define MAX_IT_BLOCK_PREFIX 14 | |
5282 | ||
5283 | /* Use a quick scan if there are more than this many bytes of | |
5284 | code. */ | |
5285 | #define IT_SCAN_THRESHOLD 32 | |
5286 | ||
5287 | /* Adjust a breakpoint's address to move breakpoints out of IT blocks. | |
5288 | A breakpoint in an IT block may not be hit, depending on the | |
5289 | condition flags. */ | |
5290 | static CORE_ADDR | |
5291 | arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr) | |
5292 | { | |
5293 | gdb_byte *buf; | |
5294 | char map_type; | |
5295 | CORE_ADDR boundary, func_start; | |
22e048c9 | 5296 | int buf_len; |
f9d67f43 DJ |
5297 | enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch); |
5298 | int i, any, last_it, last_it_count; | |
5299 | ||
5300 | /* If we are using BKPT breakpoints, none of this is necessary. */ | |
5301 | if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL) | |
5302 | return bpaddr; | |
5303 | ||
5304 | /* ARM mode does not have this problem. */ | |
9779414d | 5305 | if (!arm_pc_is_thumb (gdbarch, bpaddr)) |
f9d67f43 DJ |
5306 | return bpaddr; |
5307 | ||
5308 | /* We are setting a breakpoint in Thumb code that could potentially | |
5309 | contain an IT block. The first step is to find how much Thumb | |
5310 | code there is; we do not need to read outside of known Thumb | |
5311 | sequences. */ | |
5312 | map_type = arm_find_mapping_symbol (bpaddr, &boundary); | |
5313 | if (map_type == 0) | |
5314 | /* Thumb-2 code must have mapping symbols to have a chance. */ | |
5315 | return bpaddr; | |
5316 | ||
5317 | bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr); | |
5318 | ||
5319 | if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL) | |
5320 | && func_start > boundary) | |
5321 | boundary = func_start; | |
5322 | ||
5323 | /* Search for a candidate IT instruction. We have to do some fancy | |
5324 | footwork to distinguish a real IT instruction from the second | |
5325 | half of a 32-bit instruction, but there is no need for that if | |
5326 | there's no candidate. */ | |
5327 | buf_len = min (bpaddr - boundary, MAX_IT_BLOCK_PREFIX); | |
5328 | if (buf_len == 0) | |
5329 | /* No room for an IT instruction. */ | |
5330 | return bpaddr; | |
5331 | ||
5332 | buf = xmalloc (buf_len); | |
5333 | if (target_read_memory (bpaddr - buf_len, buf, buf_len) != 0) | |
5334 | return bpaddr; | |
5335 | any = 0; | |
5336 | for (i = 0; i < buf_len; i += 2) | |
5337 | { | |
5338 | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | |
5339 | if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) | |
5340 | { | |
5341 | any = 1; | |
5342 | break; | |
5343 | } | |
5344 | } | |
5345 | if (any == 0) | |
5346 | { | |
5347 | xfree (buf); | |
5348 | return bpaddr; | |
5349 | } | |
5350 | ||
5351 | /* OK, the code bytes before this instruction contain at least one | |
5352 | halfword which resembles an IT instruction. We know that it's | |
5353 | Thumb code, but there are still two possibilities. Either the | |
5354 | halfword really is an IT instruction, or it is the second half of | |
5355 | a 32-bit Thumb instruction. The only way we can tell is to | |
5356 | scan forwards from a known instruction boundary. */ | |
5357 | if (bpaddr - boundary > IT_SCAN_THRESHOLD) | |
5358 | { | |
5359 | int definite; | |
5360 | ||
5361 | /* There's a lot of code before this instruction. Start with an | |
5362 | optimistic search; it's easy to recognize halfwords that can | |
5363 | not be the start of a 32-bit instruction, and use that to | |
5364 | lock on to the instruction boundaries. */ | |
5365 | buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD); | |
5366 | if (buf == NULL) | |
5367 | return bpaddr; | |
5368 | buf_len = IT_SCAN_THRESHOLD; | |
5369 | ||
5370 | definite = 0; | |
5371 | for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2) | |
5372 | { | |
5373 | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | |
5374 | if (thumb_insn_size (inst1) == 2) | |
5375 | { | |
5376 | definite = 1; | |
5377 | break; | |
5378 | } | |
5379 | } | |
5380 | ||
5381 | /* At this point, if DEFINITE, BUF[I] is the first place we | |
5382 | are sure that we know the instruction boundaries, and it is far | |
5383 | enough from BPADDR that we could not miss an IT instruction | |
5384 | affecting BPADDR. If ! DEFINITE, give up - start from a | |
5385 | known boundary. */ | |
5386 | if (! definite) | |
5387 | { | |
0963b4bd MS |
5388 | buf = extend_buffer_earlier (buf, bpaddr, buf_len, |
5389 | bpaddr - boundary); | |
f9d67f43 DJ |
5390 | if (buf == NULL) |
5391 | return bpaddr; | |
5392 | buf_len = bpaddr - boundary; | |
5393 | i = 0; | |
5394 | } | |
5395 | } | |
5396 | else | |
5397 | { | |
5398 | buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary); | |
5399 | if (buf == NULL) | |
5400 | return bpaddr; | |
5401 | buf_len = bpaddr - boundary; | |
5402 | i = 0; | |
5403 | } | |
5404 | ||
5405 | /* Scan forwards. Find the last IT instruction before BPADDR. */ | |
5406 | last_it = -1; | |
5407 | last_it_count = 0; | |
5408 | while (i < buf_len) | |
5409 | { | |
5410 | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | |
5411 | last_it_count--; | |
5412 | if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) | |
5413 | { | |
5414 | last_it = i; | |
5415 | if (inst1 & 0x0001) | |
5416 | last_it_count = 4; | |
5417 | else if (inst1 & 0x0002) | |
5418 | last_it_count = 3; | |
5419 | else if (inst1 & 0x0004) | |
5420 | last_it_count = 2; | |
5421 | else | |
5422 | last_it_count = 1; | |
5423 | } | |
5424 | i += thumb_insn_size (inst1); | |
5425 | } | |
5426 | ||
5427 | xfree (buf); | |
5428 | ||
5429 | if (last_it == -1) | |
5430 | /* There wasn't really an IT instruction after all. */ | |
5431 | return bpaddr; | |
5432 | ||
5433 | if (last_it_count < 1) | |
5434 | /* It was too far away. */ | |
5435 | return bpaddr; | |
5436 | ||
5437 | /* This really is a trouble spot. Move the breakpoint to the IT | |
5438 | instruction. */ | |
5439 | return bpaddr - buf_len + last_it; | |
5440 | } | |
5441 | ||
cca44b1b | 5442 | /* ARM displaced stepping support. |
c906108c | 5443 | |
cca44b1b | 5444 | Generally ARM displaced stepping works as follows: |
c906108c | 5445 | |
cca44b1b JB |
5446 | 1. When an instruction is to be single-stepped, it is first decoded by |
5447 | arm_process_displaced_insn (called from arm_displaced_step_copy_insn). | |
5448 | Depending on the type of instruction, it is then copied to a scratch | |
5449 | location, possibly in a modified form. The copy_* set of functions | |
0963b4bd | 5450 | performs such modification, as necessary. A breakpoint is placed after |
cca44b1b JB |
5451 | the modified instruction in the scratch space to return control to GDB. |
5452 | Note in particular that instructions which modify the PC will no longer | |
5453 | do so after modification. | |
c5aa993b | 5454 | |
cca44b1b JB |
5455 | 2. The instruction is single-stepped, by setting the PC to the scratch |
5456 | location address, and resuming. Control returns to GDB when the | |
5457 | breakpoint is hit. | |
c5aa993b | 5458 | |
cca44b1b JB |
5459 | 3. A cleanup function (cleanup_*) is called corresponding to the copy_* |
5460 | function used for the current instruction. This function's job is to | |
5461 | put the CPU/memory state back to what it would have been if the | |
5462 | instruction had been executed unmodified in its original location. */ | |
c5aa993b | 5463 | |
cca44b1b JB |
5464 | /* NOP instruction (mov r0, r0). */ |
5465 | #define ARM_NOP 0xe1a00000 | |
34518530 | 5466 | #define THUMB_NOP 0x4600 |
cca44b1b JB |
5467 | |
5468 | /* Helper for register reads for displaced stepping. In particular, this | |
5469 | returns the PC as it would be seen by the instruction at its original | |
5470 | location. */ | |
5471 | ||
5472 | ULONGEST | |
36073a92 YQ |
5473 | displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc, |
5474 | int regno) | |
cca44b1b JB |
5475 | { |
5476 | ULONGEST ret; | |
36073a92 | 5477 | CORE_ADDR from = dsc->insn_addr; |
cca44b1b | 5478 | |
bf9f652a | 5479 | if (regno == ARM_PC_REGNUM) |
cca44b1b | 5480 | { |
4db71c0b YQ |
5481 | /* Compute pipeline offset: |
5482 | - When executing an ARM instruction, PC reads as the address of the | |
5483 | current instruction plus 8. | |
5484 | - When executing a Thumb instruction, PC reads as the address of the | |
5485 | current instruction plus 4. */ | |
5486 | ||
36073a92 | 5487 | if (!dsc->is_thumb) |
4db71c0b YQ |
5488 | from += 8; |
5489 | else | |
5490 | from += 4; | |
5491 | ||
cca44b1b JB |
5492 | if (debug_displaced) |
5493 | fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n", | |
4db71c0b YQ |
5494 | (unsigned long) from); |
5495 | return (ULONGEST) from; | |
cca44b1b | 5496 | } |
c906108c | 5497 | else |
cca44b1b JB |
5498 | { |
5499 | regcache_cooked_read_unsigned (regs, regno, &ret); | |
5500 | if (debug_displaced) | |
5501 | fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n", | |
5502 | regno, (unsigned long) ret); | |
5503 | return ret; | |
5504 | } | |
c906108c SS |
5505 | } |
5506 | ||
cca44b1b JB |
5507 | static int |
5508 | displaced_in_arm_mode (struct regcache *regs) | |
5509 | { | |
5510 | ULONGEST ps; | |
9779414d | 5511 | ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs)); |
66e810cd | 5512 | |
cca44b1b | 5513 | regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); |
66e810cd | 5514 | |
9779414d | 5515 | return (ps & t_bit) == 0; |
cca44b1b | 5516 | } |
66e810cd | 5517 | |
cca44b1b | 5518 | /* Write to the PC as from a branch instruction. */ |
c906108c | 5519 | |
cca44b1b | 5520 | static void |
36073a92 YQ |
5521 | branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc, |
5522 | ULONGEST val) | |
c906108c | 5523 | { |
36073a92 | 5524 | if (!dsc->is_thumb) |
cca44b1b JB |
5525 | /* Note: If bits 0/1 are set, this branch would be unpredictable for |
5526 | architecture versions < 6. */ | |
0963b4bd MS |
5527 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
5528 | val & ~(ULONGEST) 0x3); | |
cca44b1b | 5529 | else |
0963b4bd MS |
5530 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
5531 | val & ~(ULONGEST) 0x1); | |
cca44b1b | 5532 | } |
66e810cd | 5533 | |
cca44b1b JB |
5534 | /* Write to the PC as from a branch-exchange instruction. */ |
5535 | ||
5536 | static void | |
5537 | bx_write_pc (struct regcache *regs, ULONGEST val) | |
5538 | { | |
5539 | ULONGEST ps; | |
9779414d | 5540 | ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs)); |
cca44b1b JB |
5541 | |
5542 | regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); | |
5543 | ||
5544 | if ((val & 1) == 1) | |
c906108c | 5545 | { |
9779414d | 5546 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit); |
cca44b1b JB |
5547 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe); |
5548 | } | |
5549 | else if ((val & 2) == 0) | |
5550 | { | |
9779414d | 5551 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit); |
cca44b1b | 5552 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val); |
c906108c SS |
5553 | } |
5554 | else | |
5555 | { | |
cca44b1b JB |
5556 | /* Unpredictable behaviour. Try to do something sensible (switch to ARM |
5557 | mode, align dest to 4 bytes). */ | |
5558 | warning (_("Single-stepping BX to non-word-aligned ARM instruction.")); | |
9779414d | 5559 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit); |
cca44b1b | 5560 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc); |
c906108c SS |
5561 | } |
5562 | } | |
ed9a39eb | 5563 | |
cca44b1b | 5564 | /* Write to the PC as if from a load instruction. */ |
ed9a39eb | 5565 | |
34e8f22d | 5566 | static void |
36073a92 YQ |
5567 | load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc, |
5568 | ULONGEST val) | |
ed9a39eb | 5569 | { |
cca44b1b JB |
5570 | if (DISPLACED_STEPPING_ARCH_VERSION >= 5) |
5571 | bx_write_pc (regs, val); | |
5572 | else | |
36073a92 | 5573 | branch_write_pc (regs, dsc, val); |
cca44b1b | 5574 | } |
be8626e0 | 5575 | |
cca44b1b JB |
5576 | /* Write to the PC as if from an ALU instruction. */ |
5577 | ||
5578 | static void | |
36073a92 YQ |
5579 | alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc, |
5580 | ULONGEST val) | |
cca44b1b | 5581 | { |
36073a92 | 5582 | if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb) |
cca44b1b JB |
5583 | bx_write_pc (regs, val); |
5584 | else | |
36073a92 | 5585 | branch_write_pc (regs, dsc, val); |
cca44b1b JB |
5586 | } |
5587 | ||
5588 | /* Helper for writing to registers for displaced stepping. Writing to the PC | |
5589 | has a varying effects depending on the instruction which does the write: | |
5590 | this is controlled by the WRITE_PC argument. */ | |
5591 | ||
5592 | void | |
5593 | displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc, | |
5594 | int regno, ULONGEST val, enum pc_write_style write_pc) | |
5595 | { | |
bf9f652a | 5596 | if (regno == ARM_PC_REGNUM) |
08216dd7 | 5597 | { |
cca44b1b JB |
5598 | if (debug_displaced) |
5599 | fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n", | |
5600 | (unsigned long) val); | |
5601 | switch (write_pc) | |
08216dd7 | 5602 | { |
cca44b1b | 5603 | case BRANCH_WRITE_PC: |
36073a92 | 5604 | branch_write_pc (regs, dsc, val); |
08216dd7 RE |
5605 | break; |
5606 | ||
cca44b1b JB |
5607 | case BX_WRITE_PC: |
5608 | bx_write_pc (regs, val); | |
5609 | break; | |
5610 | ||
5611 | case LOAD_WRITE_PC: | |
36073a92 | 5612 | load_write_pc (regs, dsc, val); |
cca44b1b JB |
5613 | break; |
5614 | ||
5615 | case ALU_WRITE_PC: | |
36073a92 | 5616 | alu_write_pc (regs, dsc, val); |
cca44b1b JB |
5617 | break; |
5618 | ||
5619 | case CANNOT_WRITE_PC: | |
5620 | warning (_("Instruction wrote to PC in an unexpected way when " | |
5621 | "single-stepping")); | |
08216dd7 RE |
5622 | break; |
5623 | ||
5624 | default: | |
97b9747c JB |
5625 | internal_error (__FILE__, __LINE__, |
5626 | _("Invalid argument to displaced_write_reg")); | |
08216dd7 | 5627 | } |
b508a996 | 5628 | |
cca44b1b | 5629 | dsc->wrote_to_pc = 1; |
b508a996 | 5630 | } |
ed9a39eb | 5631 | else |
b508a996 | 5632 | { |
cca44b1b JB |
5633 | if (debug_displaced) |
5634 | fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n", | |
5635 | regno, (unsigned long) val); | |
5636 | regcache_cooked_write_unsigned (regs, regno, val); | |
b508a996 | 5637 | } |
34e8f22d RE |
5638 | } |
5639 | ||
cca44b1b JB |
5640 | /* This function is used to concisely determine if an instruction INSN |
5641 | references PC. Register fields of interest in INSN should have the | |
0963b4bd MS |
5642 | corresponding fields of BITMASK set to 0b1111. The function |
5643 | returns return 1 if any of these fields in INSN reference the PC | |
5644 | (also 0b1111, r15), else it returns 0. */ | |
67255d04 RE |
5645 | |
5646 | static int | |
cca44b1b | 5647 | insn_references_pc (uint32_t insn, uint32_t bitmask) |
67255d04 | 5648 | { |
cca44b1b | 5649 | uint32_t lowbit = 1; |
67255d04 | 5650 | |
cca44b1b JB |
5651 | while (bitmask != 0) |
5652 | { | |
5653 | uint32_t mask; | |
44e1a9eb | 5654 | |
cca44b1b JB |
5655 | for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1) |
5656 | ; | |
67255d04 | 5657 | |
cca44b1b JB |
5658 | if (!lowbit) |
5659 | break; | |
67255d04 | 5660 | |
cca44b1b | 5661 | mask = lowbit * 0xf; |
67255d04 | 5662 | |
cca44b1b JB |
5663 | if ((insn & mask) == mask) |
5664 | return 1; | |
5665 | ||
5666 | bitmask &= ~mask; | |
67255d04 RE |
5667 | } |
5668 | ||
cca44b1b JB |
5669 | return 0; |
5670 | } | |
2af48f68 | 5671 | |
cca44b1b JB |
5672 | /* The simplest copy function. Many instructions have the same effect no |
5673 | matter what address they are executed at: in those cases, use this. */ | |
67255d04 | 5674 | |
cca44b1b | 5675 | static int |
7ff120b4 YQ |
5676 | arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn, |
5677 | const char *iname, struct displaced_step_closure *dsc) | |
cca44b1b JB |
5678 | { |
5679 | if (debug_displaced) | |
5680 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, " | |
5681 | "opcode/class '%s' unmodified\n", (unsigned long) insn, | |
5682 | iname); | |
67255d04 | 5683 | |
cca44b1b | 5684 | dsc->modinsn[0] = insn; |
67255d04 | 5685 | |
cca44b1b JB |
5686 | return 0; |
5687 | } | |
5688 | ||
34518530 YQ |
5689 | static int |
5690 | thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1, | |
5691 | uint16_t insn2, const char *iname, | |
5692 | struct displaced_step_closure *dsc) | |
5693 | { | |
5694 | if (debug_displaced) | |
5695 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, " | |
5696 | "opcode/class '%s' unmodified\n", insn1, insn2, | |
5697 | iname); | |
5698 | ||
5699 | dsc->modinsn[0] = insn1; | |
5700 | dsc->modinsn[1] = insn2; | |
5701 | dsc->numinsns = 2; | |
5702 | ||
5703 | return 0; | |
5704 | } | |
5705 | ||
5706 | /* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any | |
5707 | modification. */ | |
5708 | static int | |
5709 | thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, unsigned int insn, | |
5710 | const char *iname, | |
5711 | struct displaced_step_closure *dsc) | |
5712 | { | |
5713 | if (debug_displaced) | |
5714 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, " | |
5715 | "opcode/class '%s' unmodified\n", insn, | |
5716 | iname); | |
5717 | ||
5718 | dsc->modinsn[0] = insn; | |
5719 | ||
5720 | return 0; | |
5721 | } | |
5722 | ||
cca44b1b JB |
5723 | /* Preload instructions with immediate offset. */ |
5724 | ||
5725 | static void | |
6e39997a | 5726 | cleanup_preload (struct gdbarch *gdbarch, |
cca44b1b JB |
5727 | struct regcache *regs, struct displaced_step_closure *dsc) |
5728 | { | |
5729 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
5730 | if (!dsc->u.preload.immed) | |
5731 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
5732 | } | |
5733 | ||
7ff120b4 YQ |
5734 | static void |
5735 | install_preload (struct gdbarch *gdbarch, struct regcache *regs, | |
5736 | struct displaced_step_closure *dsc, unsigned int rn) | |
cca44b1b | 5737 | { |
cca44b1b | 5738 | ULONGEST rn_val; |
cca44b1b JB |
5739 | /* Preload instructions: |
5740 | ||
5741 | {pli/pld} [rn, #+/-imm] | |
5742 | -> | |
5743 | {pli/pld} [r0, #+/-imm]. */ | |
5744 | ||
36073a92 YQ |
5745 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
5746 | rn_val = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 5747 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); |
cca44b1b JB |
5748 | dsc->u.preload.immed = 1; |
5749 | ||
cca44b1b | 5750 | dsc->cleanup = &cleanup_preload; |
cca44b1b JB |
5751 | } |
5752 | ||
cca44b1b | 5753 | static int |
7ff120b4 | 5754 | arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, |
cca44b1b JB |
5755 | struct displaced_step_closure *dsc) |
5756 | { | |
5757 | unsigned int rn = bits (insn, 16, 19); | |
cca44b1b | 5758 | |
7ff120b4 YQ |
5759 | if (!insn_references_pc (insn, 0x000f0000ul)) |
5760 | return arm_copy_unmodified (gdbarch, insn, "preload", dsc); | |
cca44b1b JB |
5761 | |
5762 | if (debug_displaced) | |
5763 | fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n", | |
5764 | (unsigned long) insn); | |
5765 | ||
7ff120b4 YQ |
5766 | dsc->modinsn[0] = insn & 0xfff0ffff; |
5767 | ||
5768 | install_preload (gdbarch, regs, dsc, rn); | |
5769 | ||
5770 | return 0; | |
5771 | } | |
5772 | ||
34518530 YQ |
5773 | static int |
5774 | thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, | |
5775 | struct regcache *regs, struct displaced_step_closure *dsc) | |
5776 | { | |
5777 | unsigned int rn = bits (insn1, 0, 3); | |
5778 | unsigned int u_bit = bit (insn1, 7); | |
5779 | int imm12 = bits (insn2, 0, 11); | |
5780 | ULONGEST pc_val; | |
5781 | ||
5782 | if (rn != ARM_PC_REGNUM) | |
5783 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc); | |
5784 | ||
5785 | /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and | |
5786 | PLD (literal) Encoding T1. */ | |
5787 | if (debug_displaced) | |
5788 | fprintf_unfiltered (gdb_stdlog, | |
5789 | "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n", | |
5790 | (unsigned int) dsc->insn_addr, u_bit ? '+' : '-', | |
5791 | imm12); | |
5792 | ||
5793 | if (!u_bit) | |
5794 | imm12 = -1 * imm12; | |
5795 | ||
5796 | /* Rewrite instruction {pli/pld} PC imm12 into: | |
5797 | Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12 | |
5798 | ||
5799 | {pli/pld} [r0, r1] | |
5800 | ||
5801 | Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */ | |
5802 | ||
5803 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
5804 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
5805 | ||
5806 | pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
5807 | ||
5808 | displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC); | |
5809 | displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC); | |
5810 | dsc->u.preload.immed = 0; | |
5811 | ||
5812 | /* {pli/pld} [r0, r1] */ | |
5813 | dsc->modinsn[0] = insn1 & 0xfff0; | |
5814 | dsc->modinsn[1] = 0xf001; | |
5815 | dsc->numinsns = 2; | |
5816 | ||
5817 | dsc->cleanup = &cleanup_preload; | |
5818 | return 0; | |
5819 | } | |
5820 | ||
7ff120b4 YQ |
5821 | /* Preload instructions with register offset. */ |
5822 | ||
5823 | static void | |
5824 | install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs, | |
5825 | struct displaced_step_closure *dsc, unsigned int rn, | |
5826 | unsigned int rm) | |
5827 | { | |
5828 | ULONGEST rn_val, rm_val; | |
5829 | ||
cca44b1b JB |
5830 | /* Preload register-offset instructions: |
5831 | ||
5832 | {pli/pld} [rn, rm {, shift}] | |
5833 | -> | |
5834 | {pli/pld} [r0, r1 {, shift}]. */ | |
5835 | ||
36073a92 YQ |
5836 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
5837 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
5838 | rn_val = displaced_read_reg (regs, dsc, rn); | |
5839 | rm_val = displaced_read_reg (regs, dsc, rm); | |
cca44b1b JB |
5840 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); |
5841 | displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC); | |
cca44b1b JB |
5842 | dsc->u.preload.immed = 0; |
5843 | ||
cca44b1b | 5844 | dsc->cleanup = &cleanup_preload; |
7ff120b4 YQ |
5845 | } |
5846 | ||
5847 | static int | |
5848 | arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn, | |
5849 | struct regcache *regs, | |
5850 | struct displaced_step_closure *dsc) | |
5851 | { | |
5852 | unsigned int rn = bits (insn, 16, 19); | |
5853 | unsigned int rm = bits (insn, 0, 3); | |
5854 | ||
5855 | ||
5856 | if (!insn_references_pc (insn, 0x000f000ful)) | |
5857 | return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc); | |
5858 | ||
5859 | if (debug_displaced) | |
5860 | fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n", | |
5861 | (unsigned long) insn); | |
5862 | ||
5863 | dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1; | |
cca44b1b | 5864 | |
7ff120b4 | 5865 | install_preload_reg (gdbarch, regs, dsc, rn, rm); |
cca44b1b JB |
5866 | return 0; |
5867 | } | |
5868 | ||
5869 | /* Copy/cleanup coprocessor load and store instructions. */ | |
5870 | ||
5871 | static void | |
6e39997a | 5872 | cleanup_copro_load_store (struct gdbarch *gdbarch, |
cca44b1b JB |
5873 | struct regcache *regs, |
5874 | struct displaced_step_closure *dsc) | |
5875 | { | |
36073a92 | 5876 | ULONGEST rn_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
5877 | |
5878 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
5879 | ||
5880 | if (dsc->u.ldst.writeback) | |
5881 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC); | |
5882 | } | |
5883 | ||
7ff120b4 YQ |
5884 | static void |
5885 | install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs, | |
5886 | struct displaced_step_closure *dsc, | |
5887 | int writeback, unsigned int rn) | |
cca44b1b | 5888 | { |
cca44b1b | 5889 | ULONGEST rn_val; |
cca44b1b | 5890 | |
cca44b1b JB |
5891 | /* Coprocessor load/store instructions: |
5892 | ||
5893 | {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes) | |
5894 | -> | |
5895 | {stc/stc2} [r0, #+/-imm]. | |
5896 | ||
5897 | ldc/ldc2 are handled identically. */ | |
5898 | ||
36073a92 YQ |
5899 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
5900 | rn_val = displaced_read_reg (regs, dsc, rn); | |
2b16b2e3 YQ |
5901 | /* PC should be 4-byte aligned. */ |
5902 | rn_val = rn_val & 0xfffffffc; | |
cca44b1b JB |
5903 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); |
5904 | ||
7ff120b4 | 5905 | dsc->u.ldst.writeback = writeback; |
cca44b1b JB |
5906 | dsc->u.ldst.rn = rn; |
5907 | ||
7ff120b4 YQ |
5908 | dsc->cleanup = &cleanup_copro_load_store; |
5909 | } | |
5910 | ||
5911 | static int | |
5912 | arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn, | |
5913 | struct regcache *regs, | |
5914 | struct displaced_step_closure *dsc) | |
5915 | { | |
5916 | unsigned int rn = bits (insn, 16, 19); | |
5917 | ||
5918 | if (!insn_references_pc (insn, 0x000f0000ul)) | |
5919 | return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc); | |
5920 | ||
5921 | if (debug_displaced) | |
5922 | fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor " | |
5923 | "load/store insn %.8lx\n", (unsigned long) insn); | |
5924 | ||
cca44b1b JB |
5925 | dsc->modinsn[0] = insn & 0xfff0ffff; |
5926 | ||
7ff120b4 | 5927 | install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn); |
cca44b1b JB |
5928 | |
5929 | return 0; | |
5930 | } | |
5931 | ||
34518530 YQ |
5932 | static int |
5933 | thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1, | |
5934 | uint16_t insn2, struct regcache *regs, | |
5935 | struct displaced_step_closure *dsc) | |
5936 | { | |
5937 | unsigned int rn = bits (insn1, 0, 3); | |
5938 | ||
5939 | if (rn != ARM_PC_REGNUM) | |
5940 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
5941 | "copro load/store", dsc); | |
5942 | ||
5943 | if (debug_displaced) | |
5944 | fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor " | |
5945 | "load/store insn %.4x%.4x\n", insn1, insn2); | |
5946 | ||
5947 | dsc->modinsn[0] = insn1 & 0xfff0; | |
5948 | dsc->modinsn[1] = insn2; | |
5949 | dsc->numinsns = 2; | |
5950 | ||
5951 | /* This function is called for copying instruction LDC/LDC2/VLDR, which | |
5952 | doesn't support writeback, so pass 0. */ | |
5953 | install_copro_load_store (gdbarch, regs, dsc, 0, rn); | |
5954 | ||
5955 | return 0; | |
5956 | } | |
5957 | ||
cca44b1b JB |
5958 | /* Clean up branch instructions (actually perform the branch, by setting |
5959 | PC). */ | |
5960 | ||
5961 | static void | |
6e39997a | 5962 | cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs, |
cca44b1b JB |
5963 | struct displaced_step_closure *dsc) |
5964 | { | |
36073a92 | 5965 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
cca44b1b JB |
5966 | int branch_taken = condition_true (dsc->u.branch.cond, status); |
5967 | enum pc_write_style write_pc = dsc->u.branch.exchange | |
5968 | ? BX_WRITE_PC : BRANCH_WRITE_PC; | |
5969 | ||
5970 | if (!branch_taken) | |
5971 | return; | |
5972 | ||
5973 | if (dsc->u.branch.link) | |
5974 | { | |
8c8dba6d YQ |
5975 | /* The value of LR should be the next insn of current one. In order |
5976 | not to confuse logic hanlding later insn `bx lr', if current insn mode | |
5977 | is Thumb, the bit 0 of LR value should be set to 1. */ | |
5978 | ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size; | |
5979 | ||
5980 | if (dsc->is_thumb) | |
5981 | next_insn_addr |= 0x1; | |
5982 | ||
5983 | displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr, | |
5984 | CANNOT_WRITE_PC); | |
cca44b1b JB |
5985 | } |
5986 | ||
bf9f652a | 5987 | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc); |
cca44b1b JB |
5988 | } |
5989 | ||
5990 | /* Copy B/BL/BLX instructions with immediate destinations. */ | |
5991 | ||
7ff120b4 YQ |
5992 | static void |
5993 | install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs, | |
5994 | struct displaced_step_closure *dsc, | |
5995 | unsigned int cond, int exchange, int link, long offset) | |
5996 | { | |
5997 | /* Implement "BL<cond> <label>" as: | |
5998 | ||
5999 | Preparation: cond <- instruction condition | |
6000 | Insn: mov r0, r0 (nop) | |
6001 | Cleanup: if (condition true) { r14 <- pc; pc <- label }. | |
6002 | ||
6003 | B<cond> similar, but don't set r14 in cleanup. */ | |
6004 | ||
6005 | dsc->u.branch.cond = cond; | |
6006 | dsc->u.branch.link = link; | |
6007 | dsc->u.branch.exchange = exchange; | |
6008 | ||
2b16b2e3 YQ |
6009 | dsc->u.branch.dest = dsc->insn_addr; |
6010 | if (link && exchange) | |
6011 | /* For BLX, offset is computed from the Align (PC, 4). */ | |
6012 | dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc; | |
6013 | ||
7ff120b4 | 6014 | if (dsc->is_thumb) |
2b16b2e3 | 6015 | dsc->u.branch.dest += 4 + offset; |
7ff120b4 | 6016 | else |
2b16b2e3 | 6017 | dsc->u.branch.dest += 8 + offset; |
7ff120b4 YQ |
6018 | |
6019 | dsc->cleanup = &cleanup_branch; | |
6020 | } | |
cca44b1b | 6021 | static int |
7ff120b4 YQ |
6022 | arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn, |
6023 | struct regcache *regs, struct displaced_step_closure *dsc) | |
cca44b1b JB |
6024 | { |
6025 | unsigned int cond = bits (insn, 28, 31); | |
6026 | int exchange = (cond == 0xf); | |
6027 | int link = exchange || bit (insn, 24); | |
cca44b1b JB |
6028 | long offset; |
6029 | ||
6030 | if (debug_displaced) | |
6031 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn " | |
6032 | "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b", | |
6033 | (unsigned long) insn); | |
cca44b1b JB |
6034 | if (exchange) |
6035 | /* For BLX, set bit 0 of the destination. The cleanup_branch function will | |
6036 | then arrange the switch into Thumb mode. */ | |
6037 | offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1; | |
6038 | else | |
6039 | offset = bits (insn, 0, 23) << 2; | |
6040 | ||
6041 | if (bit (offset, 25)) | |
6042 | offset = offset | ~0x3ffffff; | |
6043 | ||
cca44b1b JB |
6044 | dsc->modinsn[0] = ARM_NOP; |
6045 | ||
7ff120b4 | 6046 | install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset); |
cca44b1b JB |
6047 | return 0; |
6048 | } | |
6049 | ||
34518530 YQ |
6050 | static int |
6051 | thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1, | |
6052 | uint16_t insn2, struct regcache *regs, | |
6053 | struct displaced_step_closure *dsc) | |
6054 | { | |
6055 | int link = bit (insn2, 14); | |
6056 | int exchange = link && !bit (insn2, 12); | |
6057 | int cond = INST_AL; | |
6058 | long offset = 0; | |
6059 | int j1 = bit (insn2, 13); | |
6060 | int j2 = bit (insn2, 11); | |
6061 | int s = sbits (insn1, 10, 10); | |
6062 | int i1 = !(j1 ^ bit (insn1, 10)); | |
6063 | int i2 = !(j2 ^ bit (insn1, 10)); | |
6064 | ||
6065 | if (!link && !exchange) /* B */ | |
6066 | { | |
6067 | offset = (bits (insn2, 0, 10) << 1); | |
6068 | if (bit (insn2, 12)) /* Encoding T4 */ | |
6069 | { | |
6070 | offset |= (bits (insn1, 0, 9) << 12) | |
6071 | | (i2 << 22) | |
6072 | | (i1 << 23) | |
6073 | | (s << 24); | |
6074 | cond = INST_AL; | |
6075 | } | |
6076 | else /* Encoding T3 */ | |
6077 | { | |
6078 | offset |= (bits (insn1, 0, 5) << 12) | |
6079 | | (j1 << 18) | |
6080 | | (j2 << 19) | |
6081 | | (s << 20); | |
6082 | cond = bits (insn1, 6, 9); | |
6083 | } | |
6084 | } | |
6085 | else | |
6086 | { | |
6087 | offset = (bits (insn1, 0, 9) << 12); | |
6088 | offset |= ((i2 << 22) | (i1 << 23) | (s << 24)); | |
6089 | offset |= exchange ? | |
6090 | (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1); | |
6091 | } | |
6092 | ||
6093 | if (debug_displaced) | |
6094 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn " | |
6095 | "%.4x %.4x with offset %.8lx\n", | |
6096 | link ? (exchange) ? "blx" : "bl" : "b", | |
6097 | insn1, insn2, offset); | |
6098 | ||
6099 | dsc->modinsn[0] = THUMB_NOP; | |
6100 | ||
6101 | install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset); | |
6102 | return 0; | |
6103 | } | |
6104 | ||
6105 | /* Copy B Thumb instructions. */ | |
6106 | static int | |
6107 | thumb_copy_b (struct gdbarch *gdbarch, unsigned short insn, | |
6108 | struct displaced_step_closure *dsc) | |
6109 | { | |
6110 | unsigned int cond = 0; | |
6111 | int offset = 0; | |
6112 | unsigned short bit_12_15 = bits (insn, 12, 15); | |
6113 | CORE_ADDR from = dsc->insn_addr; | |
6114 | ||
6115 | if (bit_12_15 == 0xd) | |
6116 | { | |
6117 | /* offset = SignExtend (imm8:0, 32) */ | |
6118 | offset = sbits ((insn << 1), 0, 8); | |
6119 | cond = bits (insn, 8, 11); | |
6120 | } | |
6121 | else if (bit_12_15 == 0xe) /* Encoding T2 */ | |
6122 | { | |
6123 | offset = sbits ((insn << 1), 0, 11); | |
6124 | cond = INST_AL; | |
6125 | } | |
6126 | ||
6127 | if (debug_displaced) | |
6128 | fprintf_unfiltered (gdb_stdlog, | |
6129 | "displaced: copying b immediate insn %.4x " | |
6130 | "with offset %d\n", insn, offset); | |
6131 | ||
6132 | dsc->u.branch.cond = cond; | |
6133 | dsc->u.branch.link = 0; | |
6134 | dsc->u.branch.exchange = 0; | |
6135 | dsc->u.branch.dest = from + 4 + offset; | |
6136 | ||
6137 | dsc->modinsn[0] = THUMB_NOP; | |
6138 | ||
6139 | dsc->cleanup = &cleanup_branch; | |
6140 | ||
6141 | return 0; | |
6142 | } | |
6143 | ||
cca44b1b JB |
6144 | /* Copy BX/BLX with register-specified destinations. */ |
6145 | ||
7ff120b4 YQ |
6146 | static void |
6147 | install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs, | |
6148 | struct displaced_step_closure *dsc, int link, | |
6149 | unsigned int cond, unsigned int rm) | |
cca44b1b | 6150 | { |
cca44b1b JB |
6151 | /* Implement {BX,BLX}<cond> <reg>" as: |
6152 | ||
6153 | Preparation: cond <- instruction condition | |
6154 | Insn: mov r0, r0 (nop) | |
6155 | Cleanup: if (condition true) { r14 <- pc; pc <- dest; }. | |
6156 | ||
6157 | Don't set r14 in cleanup for BX. */ | |
6158 | ||
36073a92 | 6159 | dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm); |
cca44b1b JB |
6160 | |
6161 | dsc->u.branch.cond = cond; | |
6162 | dsc->u.branch.link = link; | |
cca44b1b | 6163 | |
7ff120b4 | 6164 | dsc->u.branch.exchange = 1; |
cca44b1b JB |
6165 | |
6166 | dsc->cleanup = &cleanup_branch; | |
7ff120b4 | 6167 | } |
cca44b1b | 6168 | |
7ff120b4 YQ |
6169 | static int |
6170 | arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn, | |
6171 | struct regcache *regs, struct displaced_step_closure *dsc) | |
6172 | { | |
6173 | unsigned int cond = bits (insn, 28, 31); | |
6174 | /* BX: x12xxx1x | |
6175 | BLX: x12xxx3x. */ | |
6176 | int link = bit (insn, 5); | |
6177 | unsigned int rm = bits (insn, 0, 3); | |
6178 | ||
6179 | if (debug_displaced) | |
6180 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx", | |
6181 | (unsigned long) insn); | |
6182 | ||
6183 | dsc->modinsn[0] = ARM_NOP; | |
6184 | ||
6185 | install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm); | |
cca44b1b JB |
6186 | return 0; |
6187 | } | |
6188 | ||
34518530 YQ |
6189 | static int |
6190 | thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn, | |
6191 | struct regcache *regs, | |
6192 | struct displaced_step_closure *dsc) | |
6193 | { | |
6194 | int link = bit (insn, 7); | |
6195 | unsigned int rm = bits (insn, 3, 6); | |
6196 | ||
6197 | if (debug_displaced) | |
6198 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x", | |
6199 | (unsigned short) insn); | |
6200 | ||
6201 | dsc->modinsn[0] = THUMB_NOP; | |
6202 | ||
6203 | install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm); | |
6204 | ||
6205 | return 0; | |
6206 | } | |
6207 | ||
6208 | ||
0963b4bd | 6209 | /* Copy/cleanup arithmetic/logic instruction with immediate RHS. */ |
cca44b1b JB |
6210 | |
6211 | static void | |
6e39997a | 6212 | cleanup_alu_imm (struct gdbarch *gdbarch, |
cca44b1b JB |
6213 | struct regcache *regs, struct displaced_step_closure *dsc) |
6214 | { | |
36073a92 | 6215 | ULONGEST rd_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
6216 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); |
6217 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
6218 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
6219 | } | |
6220 | ||
6221 | static int | |
7ff120b4 YQ |
6222 | arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, |
6223 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
6224 | { |
6225 | unsigned int rn = bits (insn, 16, 19); | |
6226 | unsigned int rd = bits (insn, 12, 15); | |
6227 | unsigned int op = bits (insn, 21, 24); | |
6228 | int is_mov = (op == 0xd); | |
6229 | ULONGEST rd_val, rn_val; | |
cca44b1b JB |
6230 | |
6231 | if (!insn_references_pc (insn, 0x000ff000ul)) | |
7ff120b4 | 6232 | return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc); |
cca44b1b JB |
6233 | |
6234 | if (debug_displaced) | |
6235 | fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn " | |
6236 | "%.8lx\n", is_mov ? "move" : "ALU", | |
6237 | (unsigned long) insn); | |
6238 | ||
6239 | /* Instruction is of form: | |
6240 | ||
6241 | <op><cond> rd, [rn,] #imm | |
6242 | ||
6243 | Rewrite as: | |
6244 | ||
6245 | Preparation: tmp1, tmp2 <- r0, r1; | |
6246 | r0, r1 <- rd, rn | |
6247 | Insn: <op><cond> r0, r1, #imm | |
6248 | Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2 | |
6249 | */ | |
6250 | ||
36073a92 YQ |
6251 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
6252 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
6253 | rn_val = displaced_read_reg (regs, dsc, rn); | |
6254 | rd_val = displaced_read_reg (regs, dsc, rd); | |
cca44b1b JB |
6255 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
6256 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
6257 | dsc->rd = rd; | |
6258 | ||
6259 | if (is_mov) | |
6260 | dsc->modinsn[0] = insn & 0xfff00fff; | |
6261 | else | |
6262 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000; | |
6263 | ||
6264 | dsc->cleanup = &cleanup_alu_imm; | |
6265 | ||
6266 | return 0; | |
6267 | } | |
6268 | ||
34518530 YQ |
6269 | static int |
6270 | thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1, | |
6271 | uint16_t insn2, struct regcache *regs, | |
6272 | struct displaced_step_closure *dsc) | |
6273 | { | |
6274 | unsigned int op = bits (insn1, 5, 8); | |
6275 | unsigned int rn, rm, rd; | |
6276 | ULONGEST rd_val, rn_val; | |
6277 | ||
6278 | rn = bits (insn1, 0, 3); /* Rn */ | |
6279 | rm = bits (insn2, 0, 3); /* Rm */ | |
6280 | rd = bits (insn2, 8, 11); /* Rd */ | |
6281 | ||
6282 | /* This routine is only called for instruction MOV. */ | |
6283 | gdb_assert (op == 0x2 && rn == 0xf); | |
6284 | ||
6285 | if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM) | |
6286 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc); | |
6287 | ||
6288 | if (debug_displaced) | |
6289 | fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n", | |
6290 | "ALU", insn1, insn2); | |
6291 | ||
6292 | /* Instruction is of form: | |
6293 | ||
6294 | <op><cond> rd, [rn,] #imm | |
6295 | ||
6296 | Rewrite as: | |
6297 | ||
6298 | Preparation: tmp1, tmp2 <- r0, r1; | |
6299 | r0, r1 <- rd, rn | |
6300 | Insn: <op><cond> r0, r1, #imm | |
6301 | Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2 | |
6302 | */ | |
6303 | ||
6304 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
6305 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
6306 | rn_val = displaced_read_reg (regs, dsc, rn); | |
6307 | rd_val = displaced_read_reg (regs, dsc, rd); | |
6308 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); | |
6309 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
6310 | dsc->rd = rd; | |
6311 | ||
6312 | dsc->modinsn[0] = insn1; | |
6313 | dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1); | |
6314 | dsc->numinsns = 2; | |
6315 | ||
6316 | dsc->cleanup = &cleanup_alu_imm; | |
6317 | ||
6318 | return 0; | |
6319 | } | |
6320 | ||
cca44b1b JB |
6321 | /* Copy/cleanup arithmetic/logic insns with register RHS. */ |
6322 | ||
6323 | static void | |
6e39997a | 6324 | cleanup_alu_reg (struct gdbarch *gdbarch, |
cca44b1b JB |
6325 | struct regcache *regs, struct displaced_step_closure *dsc) |
6326 | { | |
6327 | ULONGEST rd_val; | |
6328 | int i; | |
6329 | ||
36073a92 | 6330 | rd_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
6331 | |
6332 | for (i = 0; i < 3; i++) | |
6333 | displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); | |
6334 | ||
6335 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
6336 | } | |
6337 | ||
7ff120b4 YQ |
6338 | static void |
6339 | install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs, | |
6340 | struct displaced_step_closure *dsc, | |
6341 | unsigned int rd, unsigned int rn, unsigned int rm) | |
cca44b1b | 6342 | { |
cca44b1b | 6343 | ULONGEST rd_val, rn_val, rm_val; |
cca44b1b | 6344 | |
cca44b1b JB |
6345 | /* Instruction is of form: |
6346 | ||
6347 | <op><cond> rd, [rn,] rm [, <shift>] | |
6348 | ||
6349 | Rewrite as: | |
6350 | ||
6351 | Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2; | |
6352 | r0, r1, r2 <- rd, rn, rm | |
6353 | Insn: <op><cond> r0, r1, r2 [, <shift>] | |
6354 | Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3 | |
6355 | */ | |
6356 | ||
36073a92 YQ |
6357 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
6358 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
6359 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
6360 | rd_val = displaced_read_reg (regs, dsc, rd); | |
6361 | rn_val = displaced_read_reg (regs, dsc, rn); | |
6362 | rm_val = displaced_read_reg (regs, dsc, rm); | |
cca44b1b JB |
6363 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
6364 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
6365 | displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); | |
6366 | dsc->rd = rd; | |
6367 | ||
7ff120b4 YQ |
6368 | dsc->cleanup = &cleanup_alu_reg; |
6369 | } | |
6370 | ||
6371 | static int | |
6372 | arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | |
6373 | struct displaced_step_closure *dsc) | |
6374 | { | |
6375 | unsigned int op = bits (insn, 21, 24); | |
6376 | int is_mov = (op == 0xd); | |
6377 | ||
6378 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
6379 | return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc); | |
6380 | ||
6381 | if (debug_displaced) | |
6382 | fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n", | |
6383 | is_mov ? "move" : "ALU", (unsigned long) insn); | |
6384 | ||
cca44b1b JB |
6385 | if (is_mov) |
6386 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2; | |
6387 | else | |
6388 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002; | |
6389 | ||
7ff120b4 YQ |
6390 | install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19), |
6391 | bits (insn, 0, 3)); | |
cca44b1b JB |
6392 | return 0; |
6393 | } | |
6394 | ||
34518530 YQ |
6395 | static int |
6396 | thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn, | |
6397 | struct regcache *regs, | |
6398 | struct displaced_step_closure *dsc) | |
6399 | { | |
6400 | unsigned rn, rm, rd; | |
6401 | ||
6402 | rd = bits (insn, 3, 6); | |
6403 | rn = (bit (insn, 7) << 3) | bits (insn, 0, 2); | |
6404 | rm = 2; | |
6405 | ||
6406 | if (rd != ARM_PC_REGNUM && rn != ARM_PC_REGNUM) | |
6407 | return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc); | |
6408 | ||
6409 | if (debug_displaced) | |
6410 | fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x\n", | |
6411 | "ALU", (unsigned short) insn); | |
6412 | ||
6413 | dsc->modinsn[0] = ((insn & 0xff00) | 0x08); | |
6414 | ||
6415 | install_alu_reg (gdbarch, regs, dsc, rd, rn, rm); | |
6416 | ||
6417 | return 0; | |
6418 | } | |
6419 | ||
cca44b1b JB |
6420 | /* Cleanup/copy arithmetic/logic insns with shifted register RHS. */ |
6421 | ||
6422 | static void | |
6e39997a | 6423 | cleanup_alu_shifted_reg (struct gdbarch *gdbarch, |
cca44b1b JB |
6424 | struct regcache *regs, |
6425 | struct displaced_step_closure *dsc) | |
6426 | { | |
36073a92 | 6427 | ULONGEST rd_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
6428 | int i; |
6429 | ||
6430 | for (i = 0; i < 4; i++) | |
6431 | displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); | |
6432 | ||
6433 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
6434 | } | |
6435 | ||
7ff120b4 YQ |
6436 | static void |
6437 | install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs, | |
6438 | struct displaced_step_closure *dsc, | |
6439 | unsigned int rd, unsigned int rn, unsigned int rm, | |
6440 | unsigned rs) | |
cca44b1b | 6441 | { |
7ff120b4 | 6442 | int i; |
cca44b1b | 6443 | ULONGEST rd_val, rn_val, rm_val, rs_val; |
cca44b1b | 6444 | |
cca44b1b JB |
6445 | /* Instruction is of form: |
6446 | ||
6447 | <op><cond> rd, [rn,] rm, <shift> rs | |
6448 | ||
6449 | Rewrite as: | |
6450 | ||
6451 | Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3 | |
6452 | r0, r1, r2, r3 <- rd, rn, rm, rs | |
6453 | Insn: <op><cond> r0, r1, r2, <shift> r3 | |
6454 | Cleanup: tmp5 <- r0 | |
6455 | r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4 | |
6456 | rd <- tmp5 | |
6457 | */ | |
6458 | ||
6459 | for (i = 0; i < 4; i++) | |
36073a92 | 6460 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); |
cca44b1b | 6461 | |
36073a92 YQ |
6462 | rd_val = displaced_read_reg (regs, dsc, rd); |
6463 | rn_val = displaced_read_reg (regs, dsc, rn); | |
6464 | rm_val = displaced_read_reg (regs, dsc, rm); | |
6465 | rs_val = displaced_read_reg (regs, dsc, rs); | |
cca44b1b JB |
6466 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
6467 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
6468 | displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); | |
6469 | displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC); | |
6470 | dsc->rd = rd; | |
7ff120b4 YQ |
6471 | dsc->cleanup = &cleanup_alu_shifted_reg; |
6472 | } | |
6473 | ||
6474 | static int | |
6475 | arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn, | |
6476 | struct regcache *regs, | |
6477 | struct displaced_step_closure *dsc) | |
6478 | { | |
6479 | unsigned int op = bits (insn, 21, 24); | |
6480 | int is_mov = (op == 0xd); | |
6481 | unsigned int rd, rn, rm, rs; | |
6482 | ||
6483 | if (!insn_references_pc (insn, 0x000fff0ful)) | |
6484 | return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc); | |
6485 | ||
6486 | if (debug_displaced) | |
6487 | fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn " | |
6488 | "%.8lx\n", is_mov ? "move" : "ALU", | |
6489 | (unsigned long) insn); | |
6490 | ||
6491 | rn = bits (insn, 16, 19); | |
6492 | rm = bits (insn, 0, 3); | |
6493 | rs = bits (insn, 8, 11); | |
6494 | rd = bits (insn, 12, 15); | |
cca44b1b JB |
6495 | |
6496 | if (is_mov) | |
6497 | dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302; | |
6498 | else | |
6499 | dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302; | |
6500 | ||
7ff120b4 | 6501 | install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs); |
cca44b1b JB |
6502 | |
6503 | return 0; | |
6504 | } | |
6505 | ||
6506 | /* Clean up load instructions. */ | |
6507 | ||
6508 | static void | |
6e39997a | 6509 | cleanup_load (struct gdbarch *gdbarch, struct regcache *regs, |
cca44b1b JB |
6510 | struct displaced_step_closure *dsc) |
6511 | { | |
6512 | ULONGEST rt_val, rt_val2 = 0, rn_val; | |
cca44b1b | 6513 | |
36073a92 | 6514 | rt_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b | 6515 | if (dsc->u.ldst.xfersize == 8) |
36073a92 YQ |
6516 | rt_val2 = displaced_read_reg (regs, dsc, 1); |
6517 | rn_val = displaced_read_reg (regs, dsc, 2); | |
cca44b1b JB |
6518 | |
6519 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
6520 | if (dsc->u.ldst.xfersize > 4) | |
6521 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
6522 | displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); | |
6523 | if (!dsc->u.ldst.immed) | |
6524 | displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); | |
6525 | ||
6526 | /* Handle register writeback. */ | |
6527 | if (dsc->u.ldst.writeback) | |
6528 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); | |
6529 | /* Put result in right place. */ | |
6530 | displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC); | |
6531 | if (dsc->u.ldst.xfersize == 8) | |
6532 | displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC); | |
6533 | } | |
6534 | ||
6535 | /* Clean up store instructions. */ | |
6536 | ||
6537 | static void | |
6e39997a | 6538 | cleanup_store (struct gdbarch *gdbarch, struct regcache *regs, |
cca44b1b JB |
6539 | struct displaced_step_closure *dsc) |
6540 | { | |
36073a92 | 6541 | ULONGEST rn_val = displaced_read_reg (regs, dsc, 2); |
cca44b1b JB |
6542 | |
6543 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
6544 | if (dsc->u.ldst.xfersize > 4) | |
6545 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
6546 | displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); | |
6547 | if (!dsc->u.ldst.immed) | |
6548 | displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); | |
6549 | if (!dsc->u.ldst.restore_r4) | |
6550 | displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC); | |
6551 | ||
6552 | /* Writeback. */ | |
6553 | if (dsc->u.ldst.writeback) | |
6554 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); | |
6555 | } | |
6556 | ||
6557 | /* Copy "extra" load/store instructions. These are halfword/doubleword | |
6558 | transfers, which have a different encoding to byte/word transfers. */ | |
6559 | ||
6560 | static int | |
7ff120b4 YQ |
6561 | arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unpriveleged, |
6562 | struct regcache *regs, struct displaced_step_closure *dsc) | |
cca44b1b JB |
6563 | { |
6564 | unsigned int op1 = bits (insn, 20, 24); | |
6565 | unsigned int op2 = bits (insn, 5, 6); | |
6566 | unsigned int rt = bits (insn, 12, 15); | |
6567 | unsigned int rn = bits (insn, 16, 19); | |
6568 | unsigned int rm = bits (insn, 0, 3); | |
6569 | char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1}; | |
6570 | char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2}; | |
6571 | int immed = (op1 & 0x4) != 0; | |
6572 | int opcode; | |
6573 | ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0; | |
cca44b1b JB |
6574 | |
6575 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
7ff120b4 | 6576 | return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc); |
cca44b1b JB |
6577 | |
6578 | if (debug_displaced) | |
6579 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store " | |
6580 | "insn %.8lx\n", unpriveleged ? "unpriveleged " : "", | |
6581 | (unsigned long) insn); | |
6582 | ||
6583 | opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4; | |
6584 | ||
6585 | if (opcode < 0) | |
6586 | internal_error (__FILE__, __LINE__, | |
6587 | _("copy_extra_ld_st: instruction decode error")); | |
6588 | ||
36073a92 YQ |
6589 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
6590 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
6591 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
cca44b1b | 6592 | if (!immed) |
36073a92 | 6593 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); |
cca44b1b | 6594 | |
36073a92 | 6595 | rt_val = displaced_read_reg (regs, dsc, rt); |
cca44b1b | 6596 | if (bytesize[opcode] == 8) |
36073a92 YQ |
6597 | rt_val2 = displaced_read_reg (regs, dsc, rt + 1); |
6598 | rn_val = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 6599 | if (!immed) |
36073a92 | 6600 | rm_val = displaced_read_reg (regs, dsc, rm); |
cca44b1b JB |
6601 | |
6602 | displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); | |
6603 | if (bytesize[opcode] == 8) | |
6604 | displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC); | |
6605 | displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); | |
6606 | if (!immed) | |
6607 | displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); | |
6608 | ||
6609 | dsc->rd = rt; | |
6610 | dsc->u.ldst.xfersize = bytesize[opcode]; | |
6611 | dsc->u.ldst.rn = rn; | |
6612 | dsc->u.ldst.immed = immed; | |
6613 | dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0; | |
6614 | dsc->u.ldst.restore_r4 = 0; | |
6615 | ||
6616 | if (immed) | |
6617 | /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm] | |
6618 | -> | |
6619 | {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */ | |
6620 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; | |
6621 | else | |
6622 | /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm] | |
6623 | -> | |
6624 | {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */ | |
6625 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; | |
6626 | ||
6627 | dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store; | |
6628 | ||
6629 | return 0; | |
6630 | } | |
6631 | ||
0f6f04ba | 6632 | /* Copy byte/half word/word loads and stores. */ |
cca44b1b | 6633 | |
7ff120b4 | 6634 | static void |
0f6f04ba YQ |
6635 | install_load_store (struct gdbarch *gdbarch, struct regcache *regs, |
6636 | struct displaced_step_closure *dsc, int load, | |
6637 | int immed, int writeback, int size, int usermode, | |
6638 | int rt, int rm, int rn) | |
cca44b1b | 6639 | { |
cca44b1b | 6640 | ULONGEST rt_val, rn_val, rm_val = 0; |
cca44b1b | 6641 | |
36073a92 YQ |
6642 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
6643 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
cca44b1b | 6644 | if (!immed) |
36073a92 | 6645 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); |
cca44b1b | 6646 | if (!load) |
36073a92 | 6647 | dsc->tmp[4] = displaced_read_reg (regs, dsc, 4); |
cca44b1b | 6648 | |
36073a92 YQ |
6649 | rt_val = displaced_read_reg (regs, dsc, rt); |
6650 | rn_val = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 6651 | if (!immed) |
36073a92 | 6652 | rm_val = displaced_read_reg (regs, dsc, rm); |
cca44b1b JB |
6653 | |
6654 | displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); | |
6655 | displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); | |
6656 | if (!immed) | |
6657 | displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); | |
cca44b1b | 6658 | dsc->rd = rt; |
0f6f04ba | 6659 | dsc->u.ldst.xfersize = size; |
cca44b1b JB |
6660 | dsc->u.ldst.rn = rn; |
6661 | dsc->u.ldst.immed = immed; | |
7ff120b4 | 6662 | dsc->u.ldst.writeback = writeback; |
cca44b1b JB |
6663 | |
6664 | /* To write PC we can do: | |
6665 | ||
494e194e YQ |
6666 | Before this sequence of instructions: |
6667 | r0 is the PC value got from displaced_read_reg, so r0 = from + 8; | |
6668 | r2 is the Rn value got from dispalced_read_reg. | |
6669 | ||
6670 | Insn1: push {pc} Write address of STR instruction + offset on stack | |
6671 | Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset | |
6672 | Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc | |
6673 | = addr(Insn1) + offset - addr(Insn3) - 8 | |
6674 | = offset - 16 | |
6675 | Insn4: add r4, r4, #8 r4 = offset - 8 | |
6676 | Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8 | |
6677 | = from + offset | |
6678 | Insn6: str r0, [r2, #imm] (or str r0, [r2, r3]) | |
cca44b1b JB |
6679 | |
6680 | Otherwise we don't know what value to write for PC, since the offset is | |
494e194e YQ |
6681 | architecture-dependent (sometimes PC+8, sometimes PC+12). More details |
6682 | of this can be found in Section "Saving from r15" in | |
6683 | http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */ | |
cca44b1b | 6684 | |
7ff120b4 YQ |
6685 | dsc->cleanup = load ? &cleanup_load : &cleanup_store; |
6686 | } | |
6687 | ||
34518530 YQ |
6688 | |
6689 | static int | |
6690 | thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1, | |
6691 | uint16_t insn2, struct regcache *regs, | |
6692 | struct displaced_step_closure *dsc, int size) | |
6693 | { | |
6694 | unsigned int u_bit = bit (insn1, 7); | |
6695 | unsigned int rt = bits (insn2, 12, 15); | |
6696 | int imm12 = bits (insn2, 0, 11); | |
6697 | ULONGEST pc_val; | |
6698 | ||
6699 | if (debug_displaced) | |
6700 | fprintf_unfiltered (gdb_stdlog, | |
6701 | "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n", | |
6702 | (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-', | |
6703 | imm12); | |
6704 | ||
6705 | if (!u_bit) | |
6706 | imm12 = -1 * imm12; | |
6707 | ||
6708 | /* Rewrite instruction LDR Rt imm12 into: | |
6709 | ||
6710 | Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12 | |
6711 | ||
6712 | LDR R0, R2, R3, | |
6713 | ||
6714 | Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */ | |
6715 | ||
6716 | ||
6717 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
6718 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
6719 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); | |
6720 | ||
6721 | pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
6722 | ||
6723 | pc_val = pc_val & 0xfffffffc; | |
6724 | ||
6725 | displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC); | |
6726 | displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC); | |
6727 | ||
6728 | dsc->rd = rt; | |
6729 | ||
6730 | dsc->u.ldst.xfersize = size; | |
6731 | dsc->u.ldst.immed = 0; | |
6732 | dsc->u.ldst.writeback = 0; | |
6733 | dsc->u.ldst.restore_r4 = 0; | |
6734 | ||
6735 | /* LDR R0, R2, R3 */ | |
6736 | dsc->modinsn[0] = 0xf852; | |
6737 | dsc->modinsn[1] = 0x3; | |
6738 | dsc->numinsns = 2; | |
6739 | ||
6740 | dsc->cleanup = &cleanup_load; | |
6741 | ||
6742 | return 0; | |
6743 | } | |
6744 | ||
6745 | static int | |
6746 | thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1, | |
6747 | uint16_t insn2, struct regcache *regs, | |
6748 | struct displaced_step_closure *dsc, | |
6749 | int writeback, int immed) | |
6750 | { | |
6751 | unsigned int rt = bits (insn2, 12, 15); | |
6752 | unsigned int rn = bits (insn1, 0, 3); | |
6753 | unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */ | |
6754 | /* In LDR (register), there is also a register Rm, which is not allowed to | |
6755 | be PC, so we don't have to check it. */ | |
6756 | ||
6757 | if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM) | |
6758 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load", | |
6759 | dsc); | |
6760 | ||
6761 | if (debug_displaced) | |
6762 | fprintf_unfiltered (gdb_stdlog, | |
6763 | "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n", | |
6764 | rt, rn, insn1, insn2); | |
6765 | ||
6766 | install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4, | |
6767 | 0, rt, rm, rn); | |
6768 | ||
6769 | dsc->u.ldst.restore_r4 = 0; | |
6770 | ||
6771 | if (immed) | |
6772 | /* ldr[b]<cond> rt, [rn, #imm], etc. | |
6773 | -> | |
6774 | ldr[b]<cond> r0, [r2, #imm]. */ | |
6775 | { | |
6776 | dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2; | |
6777 | dsc->modinsn[1] = insn2 & 0x0fff; | |
6778 | } | |
6779 | else | |
6780 | /* ldr[b]<cond> rt, [rn, rm], etc. | |
6781 | -> | |
6782 | ldr[b]<cond> r0, [r2, r3]. */ | |
6783 | { | |
6784 | dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2; | |
6785 | dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3; | |
6786 | } | |
6787 | ||
6788 | dsc->numinsns = 2; | |
6789 | ||
6790 | return 0; | |
6791 | } | |
6792 | ||
6793 | ||
7ff120b4 YQ |
6794 | static int |
6795 | arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn, | |
6796 | struct regcache *regs, | |
6797 | struct displaced_step_closure *dsc, | |
0f6f04ba | 6798 | int load, int size, int usermode) |
7ff120b4 YQ |
6799 | { |
6800 | int immed = !bit (insn, 25); | |
6801 | int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0); | |
6802 | unsigned int rt = bits (insn, 12, 15); | |
6803 | unsigned int rn = bits (insn, 16, 19); | |
6804 | unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */ | |
6805 | ||
6806 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
6807 | return arm_copy_unmodified (gdbarch, insn, "load/store", dsc); | |
6808 | ||
6809 | if (debug_displaced) | |
6810 | fprintf_unfiltered (gdb_stdlog, | |
6811 | "displaced: copying %s%s r%d [r%d] insn %.8lx\n", | |
0f6f04ba YQ |
6812 | load ? (size == 1 ? "ldrb" : "ldr") |
6813 | : (size == 1 ? "strb" : "str"), usermode ? "t" : "", | |
7ff120b4 YQ |
6814 | rt, rn, |
6815 | (unsigned long) insn); | |
6816 | ||
0f6f04ba YQ |
6817 | install_load_store (gdbarch, regs, dsc, load, immed, writeback, size, |
6818 | usermode, rt, rm, rn); | |
7ff120b4 | 6819 | |
bf9f652a | 6820 | if (load || rt != ARM_PC_REGNUM) |
cca44b1b JB |
6821 | { |
6822 | dsc->u.ldst.restore_r4 = 0; | |
6823 | ||
6824 | if (immed) | |
6825 | /* {ldr,str}[b]<cond> rt, [rn, #imm], etc. | |
6826 | -> | |
6827 | {ldr,str}[b]<cond> r0, [r2, #imm]. */ | |
6828 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; | |
6829 | else | |
6830 | /* {ldr,str}[b]<cond> rt, [rn, rm], etc. | |
6831 | -> | |
6832 | {ldr,str}[b]<cond> r0, [r2, r3]. */ | |
6833 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; | |
6834 | } | |
6835 | else | |
6836 | { | |
6837 | /* We need to use r4 as scratch. Make sure it's restored afterwards. */ | |
6838 | dsc->u.ldst.restore_r4 = 1; | |
494e194e YQ |
6839 | dsc->modinsn[0] = 0xe92d8000; /* push {pc} */ |
6840 | dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */ | |
cca44b1b JB |
6841 | dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */ |
6842 | dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */ | |
6843 | dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */ | |
6844 | ||
6845 | /* As above. */ | |
6846 | if (immed) | |
6847 | dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000; | |
6848 | else | |
6849 | dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003; | |
6850 | ||
cca44b1b JB |
6851 | dsc->numinsns = 6; |
6852 | } | |
6853 | ||
6854 | dsc->cleanup = load ? &cleanup_load : &cleanup_store; | |
6855 | ||
6856 | return 0; | |
6857 | } | |
6858 | ||
6859 | /* Cleanup LDM instructions with fully-populated register list. This is an | |
6860 | unfortunate corner case: it's impossible to implement correctly by modifying | |
6861 | the instruction. The issue is as follows: we have an instruction, | |
6862 | ||
6863 | ldm rN, {r0-r15} | |
6864 | ||
6865 | which we must rewrite to avoid loading PC. A possible solution would be to | |
6866 | do the load in two halves, something like (with suitable cleanup | |
6867 | afterwards): | |
6868 | ||
6869 | mov r8, rN | |
6870 | ldm[id][ab] r8!, {r0-r7} | |
6871 | str r7, <temp> | |
6872 | ldm[id][ab] r8, {r7-r14} | |
6873 | <bkpt> | |
6874 | ||
6875 | but at present there's no suitable place for <temp>, since the scratch space | |
6876 | is overwritten before the cleanup routine is called. For now, we simply | |
6877 | emulate the instruction. */ | |
6878 | ||
6879 | static void | |
6880 | cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs, | |
6881 | struct displaced_step_closure *dsc) | |
6882 | { | |
cca44b1b JB |
6883 | int inc = dsc->u.block.increment; |
6884 | int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0; | |
6885 | int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4); | |
6886 | uint32_t regmask = dsc->u.block.regmask; | |
6887 | int regno = inc ? 0 : 15; | |
6888 | CORE_ADDR xfer_addr = dsc->u.block.xfer_addr; | |
6889 | int exception_return = dsc->u.block.load && dsc->u.block.user | |
6890 | && (regmask & 0x8000) != 0; | |
36073a92 | 6891 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
cca44b1b JB |
6892 | int do_transfer = condition_true (dsc->u.block.cond, status); |
6893 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
6894 | ||
6895 | if (!do_transfer) | |
6896 | return; | |
6897 | ||
6898 | /* If the instruction is ldm rN, {...pc}^, I don't think there's anything | |
6899 | sensible we can do here. Complain loudly. */ | |
6900 | if (exception_return) | |
6901 | error (_("Cannot single-step exception return")); | |
6902 | ||
6903 | /* We don't handle any stores here for now. */ | |
6904 | gdb_assert (dsc->u.block.load != 0); | |
6905 | ||
6906 | if (debug_displaced) | |
6907 | fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: " | |
6908 | "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm", | |
6909 | dsc->u.block.increment ? "inc" : "dec", | |
6910 | dsc->u.block.before ? "before" : "after"); | |
6911 | ||
6912 | while (regmask) | |
6913 | { | |
6914 | uint32_t memword; | |
6915 | ||
6916 | if (inc) | |
bf9f652a | 6917 | while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0) |
cca44b1b JB |
6918 | regno++; |
6919 | else | |
6920 | while (regno >= 0 && (regmask & (1 << regno)) == 0) | |
6921 | regno--; | |
6922 | ||
6923 | xfer_addr += bump_before; | |
6924 | ||
6925 | memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order); | |
6926 | displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC); | |
6927 | ||
6928 | xfer_addr += bump_after; | |
6929 | ||
6930 | regmask &= ~(1 << regno); | |
6931 | } | |
6932 | ||
6933 | if (dsc->u.block.writeback) | |
6934 | displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr, | |
6935 | CANNOT_WRITE_PC); | |
6936 | } | |
6937 | ||
6938 | /* Clean up an STM which included the PC in the register list. */ | |
6939 | ||
6940 | static void | |
6941 | cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs, | |
6942 | struct displaced_step_closure *dsc) | |
6943 | { | |
36073a92 | 6944 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
cca44b1b JB |
6945 | int store_executed = condition_true (dsc->u.block.cond, status); |
6946 | CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask); | |
6947 | CORE_ADDR stm_insn_addr; | |
6948 | uint32_t pc_val; | |
6949 | long offset; | |
6950 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
6951 | ||
6952 | /* If condition code fails, there's nothing else to do. */ | |
6953 | if (!store_executed) | |
6954 | return; | |
6955 | ||
6956 | if (dsc->u.block.increment) | |
6957 | { | |
6958 | pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs; | |
6959 | ||
6960 | if (dsc->u.block.before) | |
6961 | pc_stored_at += 4; | |
6962 | } | |
6963 | else | |
6964 | { | |
6965 | pc_stored_at = dsc->u.block.xfer_addr; | |
6966 | ||
6967 | if (dsc->u.block.before) | |
6968 | pc_stored_at -= 4; | |
6969 | } | |
6970 | ||
6971 | pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order); | |
6972 | stm_insn_addr = dsc->scratch_base; | |
6973 | offset = pc_val - stm_insn_addr; | |
6974 | ||
6975 | if (debug_displaced) | |
6976 | fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for " | |
6977 | "STM instruction\n", offset); | |
6978 | ||
6979 | /* Rewrite the stored PC to the proper value for the non-displaced original | |
6980 | instruction. */ | |
6981 | write_memory_unsigned_integer (pc_stored_at, 4, byte_order, | |
6982 | dsc->insn_addr + offset); | |
6983 | } | |
6984 | ||
6985 | /* Clean up an LDM which includes the PC in the register list. We clumped all | |
6986 | the registers in the transferred list into a contiguous range r0...rX (to | |
6987 | avoid loading PC directly and losing control of the debugged program), so we | |
6988 | must undo that here. */ | |
6989 | ||
6990 | static void | |
6e39997a | 6991 | cleanup_block_load_pc (struct gdbarch *gdbarch, |
cca44b1b JB |
6992 | struct regcache *regs, |
6993 | struct displaced_step_closure *dsc) | |
6994 | { | |
36073a92 | 6995 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
22e048c9 | 6996 | int load_executed = condition_true (dsc->u.block.cond, status); |
bf9f652a | 6997 | unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM; |
cca44b1b JB |
6998 | unsigned int regs_loaded = bitcount (mask); |
6999 | unsigned int num_to_shuffle = regs_loaded, clobbered; | |
7000 | ||
7001 | /* The method employed here will fail if the register list is fully populated | |
7002 | (we need to avoid loading PC directly). */ | |
7003 | gdb_assert (num_to_shuffle < 16); | |
7004 | ||
7005 | if (!load_executed) | |
7006 | return; | |
7007 | ||
7008 | clobbered = (1 << num_to_shuffle) - 1; | |
7009 | ||
7010 | while (num_to_shuffle > 0) | |
7011 | { | |
7012 | if ((mask & (1 << write_reg)) != 0) | |
7013 | { | |
7014 | unsigned int read_reg = num_to_shuffle - 1; | |
7015 | ||
7016 | if (read_reg != write_reg) | |
7017 | { | |
36073a92 | 7018 | ULONGEST rval = displaced_read_reg (regs, dsc, read_reg); |
cca44b1b JB |
7019 | displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC); |
7020 | if (debug_displaced) | |
7021 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move " | |
7022 | "loaded register r%d to r%d\n"), read_reg, | |
7023 | write_reg); | |
7024 | } | |
7025 | else if (debug_displaced) | |
7026 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register " | |
7027 | "r%d already in the right place\n"), | |
7028 | write_reg); | |
7029 | ||
7030 | clobbered &= ~(1 << write_reg); | |
7031 | ||
7032 | num_to_shuffle--; | |
7033 | } | |
7034 | ||
7035 | write_reg--; | |
7036 | } | |
7037 | ||
7038 | /* Restore any registers we scribbled over. */ | |
7039 | for (write_reg = 0; clobbered != 0; write_reg++) | |
7040 | { | |
7041 | if ((clobbered & (1 << write_reg)) != 0) | |
7042 | { | |
7043 | displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg], | |
7044 | CANNOT_WRITE_PC); | |
7045 | if (debug_displaced) | |
7046 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored " | |
7047 | "clobbered register r%d\n"), write_reg); | |
7048 | clobbered &= ~(1 << write_reg); | |
7049 | } | |
7050 | } | |
7051 | ||
7052 | /* Perform register writeback manually. */ | |
7053 | if (dsc->u.block.writeback) | |
7054 | { | |
7055 | ULONGEST new_rn_val = dsc->u.block.xfer_addr; | |
7056 | ||
7057 | if (dsc->u.block.increment) | |
7058 | new_rn_val += regs_loaded * 4; | |
7059 | else | |
7060 | new_rn_val -= regs_loaded * 4; | |
7061 | ||
7062 | displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val, | |
7063 | CANNOT_WRITE_PC); | |
7064 | } | |
7065 | } | |
7066 | ||
7067 | /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur | |
7068 | in user-level code (in particular exception return, ldm rn, {...pc}^). */ | |
7069 | ||
7070 | static int | |
7ff120b4 YQ |
7071 | arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn, |
7072 | struct regcache *regs, | |
7073 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7074 | { |
7075 | int load = bit (insn, 20); | |
7076 | int user = bit (insn, 22); | |
7077 | int increment = bit (insn, 23); | |
7078 | int before = bit (insn, 24); | |
7079 | int writeback = bit (insn, 21); | |
7080 | int rn = bits (insn, 16, 19); | |
cca44b1b | 7081 | |
0963b4bd MS |
7082 | /* Block transfers which don't mention PC can be run directly |
7083 | out-of-line. */ | |
bf9f652a | 7084 | if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0) |
7ff120b4 | 7085 | return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc); |
cca44b1b | 7086 | |
bf9f652a | 7087 | if (rn == ARM_PC_REGNUM) |
cca44b1b | 7088 | { |
0963b4bd MS |
7089 | warning (_("displaced: Unpredictable LDM or STM with " |
7090 | "base register r15")); | |
7ff120b4 | 7091 | return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc); |
cca44b1b JB |
7092 | } |
7093 | ||
7094 | if (debug_displaced) | |
7095 | fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn " | |
7096 | "%.8lx\n", (unsigned long) insn); | |
7097 | ||
36073a92 | 7098 | dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn); |
cca44b1b JB |
7099 | dsc->u.block.rn = rn; |
7100 | ||
7101 | dsc->u.block.load = load; | |
7102 | dsc->u.block.user = user; | |
7103 | dsc->u.block.increment = increment; | |
7104 | dsc->u.block.before = before; | |
7105 | dsc->u.block.writeback = writeback; | |
7106 | dsc->u.block.cond = bits (insn, 28, 31); | |
7107 | ||
7108 | dsc->u.block.regmask = insn & 0xffff; | |
7109 | ||
7110 | if (load) | |
7111 | { | |
7112 | if ((insn & 0xffff) == 0xffff) | |
7113 | { | |
7114 | /* LDM with a fully-populated register list. This case is | |
7115 | particularly tricky. Implement for now by fully emulating the | |
7116 | instruction (which might not behave perfectly in all cases, but | |
7117 | these instructions should be rare enough for that not to matter | |
7118 | too much). */ | |
7119 | dsc->modinsn[0] = ARM_NOP; | |
7120 | ||
7121 | dsc->cleanup = &cleanup_block_load_all; | |
7122 | } | |
7123 | else | |
7124 | { | |
7125 | /* LDM of a list of registers which includes PC. Implement by | |
7126 | rewriting the list of registers to be transferred into a | |
7127 | contiguous chunk r0...rX before doing the transfer, then shuffling | |
7128 | registers into the correct places in the cleanup routine. */ | |
7129 | unsigned int regmask = insn & 0xffff; | |
7130 | unsigned int num_in_list = bitcount (regmask), new_regmask, bit = 1; | |
7131 | unsigned int to = 0, from = 0, i, new_rn; | |
7132 | ||
7133 | for (i = 0; i < num_in_list; i++) | |
36073a92 | 7134 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); |
cca44b1b JB |
7135 | |
7136 | /* Writeback makes things complicated. We need to avoid clobbering | |
7137 | the base register with one of the registers in our modified | |
7138 | register list, but just using a different register can't work in | |
7139 | all cases, e.g.: | |
7140 | ||
7141 | ldm r14!, {r0-r13,pc} | |
7142 | ||
7143 | which would need to be rewritten as: | |
7144 | ||
7145 | ldm rN!, {r0-r14} | |
7146 | ||
7147 | but that can't work, because there's no free register for N. | |
7148 | ||
7149 | Solve this by turning off the writeback bit, and emulating | |
7150 | writeback manually in the cleanup routine. */ | |
7151 | ||
7152 | if (writeback) | |
7153 | insn &= ~(1 << 21); | |
7154 | ||
7155 | new_regmask = (1 << num_in_list) - 1; | |
7156 | ||
7157 | if (debug_displaced) | |
7158 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, " | |
7159 | "{..., pc}: original reg list %.4x, modified " | |
7160 | "list %.4x\n"), rn, writeback ? "!" : "", | |
7161 | (int) insn & 0xffff, new_regmask); | |
7162 | ||
7163 | dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff); | |
7164 | ||
7165 | dsc->cleanup = &cleanup_block_load_pc; | |
7166 | } | |
7167 | } | |
7168 | else | |
7169 | { | |
7170 | /* STM of a list of registers which includes PC. Run the instruction | |
7171 | as-is, but out of line: this will store the wrong value for the PC, | |
7172 | so we must manually fix up the memory in the cleanup routine. | |
7173 | Doing things this way has the advantage that we can auto-detect | |
7174 | the offset of the PC write (which is architecture-dependent) in | |
7175 | the cleanup routine. */ | |
7176 | dsc->modinsn[0] = insn; | |
7177 | ||
7178 | dsc->cleanup = &cleanup_block_store_pc; | |
7179 | } | |
7180 | ||
7181 | return 0; | |
7182 | } | |
7183 | ||
34518530 YQ |
7184 | static int |
7185 | thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, | |
7186 | struct regcache *regs, | |
7187 | struct displaced_step_closure *dsc) | |
cca44b1b | 7188 | { |
34518530 YQ |
7189 | int rn = bits (insn1, 0, 3); |
7190 | int load = bit (insn1, 4); | |
7191 | int writeback = bit (insn1, 5); | |
cca44b1b | 7192 | |
34518530 YQ |
7193 | /* Block transfers which don't mention PC can be run directly |
7194 | out-of-line. */ | |
7195 | if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0) | |
7196 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc); | |
7ff120b4 | 7197 | |
34518530 YQ |
7198 | if (rn == ARM_PC_REGNUM) |
7199 | { | |
7200 | warning (_("displaced: Unpredictable LDM or STM with " | |
7201 | "base register r15")); | |
7202 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7203 | "unpredictable ldm/stm", dsc); | |
7204 | } | |
cca44b1b JB |
7205 | |
7206 | if (debug_displaced) | |
34518530 YQ |
7207 | fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn " |
7208 | "%.4x%.4x\n", insn1, insn2); | |
cca44b1b | 7209 | |
34518530 YQ |
7210 | /* Clear bit 13, since it should be always zero. */ |
7211 | dsc->u.block.regmask = (insn2 & 0xdfff); | |
7212 | dsc->u.block.rn = rn; | |
cca44b1b | 7213 | |
34518530 YQ |
7214 | dsc->u.block.load = load; |
7215 | dsc->u.block.user = 0; | |
7216 | dsc->u.block.increment = bit (insn1, 7); | |
7217 | dsc->u.block.before = bit (insn1, 8); | |
7218 | dsc->u.block.writeback = writeback; | |
7219 | dsc->u.block.cond = INST_AL; | |
7220 | dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 7221 | |
34518530 YQ |
7222 | if (load) |
7223 | { | |
7224 | if (dsc->u.block.regmask == 0xffff) | |
7225 | { | |
7226 | /* This branch is impossible to happen. */ | |
7227 | gdb_assert (0); | |
7228 | } | |
7229 | else | |
7230 | { | |
7231 | unsigned int regmask = dsc->u.block.regmask; | |
7232 | unsigned int num_in_list = bitcount (regmask), new_regmask, bit = 1; | |
7233 | unsigned int to = 0, from = 0, i, new_rn; | |
7234 | ||
7235 | for (i = 0; i < num_in_list; i++) | |
7236 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); | |
7237 | ||
7238 | if (writeback) | |
7239 | insn1 &= ~(1 << 5); | |
7240 | ||
7241 | new_regmask = (1 << num_in_list) - 1; | |
7242 | ||
7243 | if (debug_displaced) | |
7244 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, " | |
7245 | "{..., pc}: original reg list %.4x, modified " | |
7246 | "list %.4x\n"), rn, writeback ? "!" : "", | |
7247 | (int) dsc->u.block.regmask, new_regmask); | |
7248 | ||
7249 | dsc->modinsn[0] = insn1; | |
7250 | dsc->modinsn[1] = (new_regmask & 0xffff); | |
7251 | dsc->numinsns = 2; | |
7252 | ||
7253 | dsc->cleanup = &cleanup_block_load_pc; | |
7254 | } | |
7255 | } | |
7256 | else | |
7257 | { | |
7258 | dsc->modinsn[0] = insn1; | |
7259 | dsc->modinsn[1] = insn2; | |
7260 | dsc->numinsns = 2; | |
7261 | dsc->cleanup = &cleanup_block_store_pc; | |
7262 | } | |
7263 | return 0; | |
7264 | } | |
7265 | ||
7266 | /* Cleanup/copy SVC (SWI) instructions. These two functions are overridden | |
7267 | for Linux, where some SVC instructions must be treated specially. */ | |
7268 | ||
7269 | static void | |
7270 | cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs, | |
7271 | struct displaced_step_closure *dsc) | |
7272 | { | |
7273 | CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size; | |
7274 | ||
7275 | if (debug_displaced) | |
7276 | fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at " | |
7277 | "%.8lx\n", (unsigned long) resume_addr); | |
7278 | ||
7279 | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC); | |
7280 | } | |
7281 | ||
7282 | ||
7283 | /* Common copy routine for svc instruciton. */ | |
7284 | ||
7285 | static int | |
7286 | install_svc (struct gdbarch *gdbarch, struct regcache *regs, | |
7287 | struct displaced_step_closure *dsc) | |
7288 | { | |
7289 | /* Preparation: none. | |
7290 | Insn: unmodified svc. | |
7291 | Cleanup: pc <- insn_addr + insn_size. */ | |
7292 | ||
7293 | /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next | |
7294 | instruction. */ | |
7295 | dsc->wrote_to_pc = 1; | |
7296 | ||
7297 | /* Allow OS-specific code to override SVC handling. */ | |
bd18283a YQ |
7298 | if (dsc->u.svc.copy_svc_os) |
7299 | return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc); | |
7300 | else | |
7301 | { | |
7302 | dsc->cleanup = &cleanup_svc; | |
7303 | return 0; | |
7304 | } | |
34518530 YQ |
7305 | } |
7306 | ||
7307 | static int | |
7308 | arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn, | |
7309 | struct regcache *regs, struct displaced_step_closure *dsc) | |
7310 | { | |
7311 | ||
7312 | if (debug_displaced) | |
7313 | fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n", | |
7314 | (unsigned long) insn); | |
7315 | ||
7316 | dsc->modinsn[0] = insn; | |
7317 | ||
7318 | return install_svc (gdbarch, regs, dsc); | |
7319 | } | |
7320 | ||
7321 | static int | |
7322 | thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn, | |
7323 | struct regcache *regs, struct displaced_step_closure *dsc) | |
7324 | { | |
7325 | ||
7326 | if (debug_displaced) | |
7327 | fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n", | |
7328 | insn); | |
bd18283a | 7329 | |
34518530 YQ |
7330 | dsc->modinsn[0] = insn; |
7331 | ||
7332 | return install_svc (gdbarch, regs, dsc); | |
cca44b1b JB |
7333 | } |
7334 | ||
7335 | /* Copy undefined instructions. */ | |
7336 | ||
7337 | static int | |
7ff120b4 YQ |
7338 | arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn, |
7339 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7340 | { |
7341 | if (debug_displaced) | |
0963b4bd MS |
7342 | fprintf_unfiltered (gdb_stdlog, |
7343 | "displaced: copying undefined insn %.8lx\n", | |
cca44b1b JB |
7344 | (unsigned long) insn); |
7345 | ||
7346 | dsc->modinsn[0] = insn; | |
7347 | ||
7348 | return 0; | |
7349 | } | |
7350 | ||
34518530 YQ |
7351 | static int |
7352 | thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, | |
7353 | struct displaced_step_closure *dsc) | |
7354 | { | |
7355 | ||
7356 | if (debug_displaced) | |
7357 | fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn " | |
7358 | "%.4x %.4x\n", (unsigned short) insn1, | |
7359 | (unsigned short) insn2); | |
7360 | ||
7361 | dsc->modinsn[0] = insn1; | |
7362 | dsc->modinsn[1] = insn2; | |
7363 | dsc->numinsns = 2; | |
7364 | ||
7365 | return 0; | |
7366 | } | |
7367 | ||
cca44b1b JB |
7368 | /* Copy unpredictable instructions. */ |
7369 | ||
7370 | static int | |
7ff120b4 YQ |
7371 | arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn, |
7372 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7373 | { |
7374 | if (debug_displaced) | |
7375 | fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn " | |
7376 | "%.8lx\n", (unsigned long) insn); | |
7377 | ||
7378 | dsc->modinsn[0] = insn; | |
7379 | ||
7380 | return 0; | |
7381 | } | |
7382 | ||
7383 | /* The decode_* functions are instruction decoding helpers. They mostly follow | |
7384 | the presentation in the ARM ARM. */ | |
7385 | ||
7386 | static int | |
7ff120b4 YQ |
7387 | arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn, |
7388 | struct regcache *regs, | |
7389 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7390 | { |
7391 | unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7); | |
7392 | unsigned int rn = bits (insn, 16, 19); | |
7393 | ||
7394 | if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0) | |
7ff120b4 | 7395 | return arm_copy_unmodified (gdbarch, insn, "cps", dsc); |
cca44b1b | 7396 | else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1) |
7ff120b4 | 7397 | return arm_copy_unmodified (gdbarch, insn, "setend", dsc); |
cca44b1b | 7398 | else if ((op1 & 0x60) == 0x20) |
7ff120b4 | 7399 | return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc); |
cca44b1b | 7400 | else if ((op1 & 0x71) == 0x40) |
7ff120b4 YQ |
7401 | return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store", |
7402 | dsc); | |
cca44b1b | 7403 | else if ((op1 & 0x77) == 0x41) |
7ff120b4 | 7404 | return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); |
cca44b1b | 7405 | else if ((op1 & 0x77) == 0x45) |
7ff120b4 | 7406 | return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */ |
cca44b1b JB |
7407 | else if ((op1 & 0x77) == 0x51) |
7408 | { | |
7409 | if (rn != 0xf) | |
7ff120b4 | 7410 | return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */ |
cca44b1b | 7411 | else |
7ff120b4 | 7412 | return arm_copy_unpred (gdbarch, insn, dsc); |
cca44b1b JB |
7413 | } |
7414 | else if ((op1 & 0x77) == 0x55) | |
7ff120b4 | 7415 | return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */ |
cca44b1b JB |
7416 | else if (op1 == 0x57) |
7417 | switch (op2) | |
7418 | { | |
7ff120b4 YQ |
7419 | case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc); |
7420 | case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc); | |
7421 | case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc); | |
7422 | case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc); | |
7423 | default: return arm_copy_unpred (gdbarch, insn, dsc); | |
cca44b1b JB |
7424 | } |
7425 | else if ((op1 & 0x63) == 0x43) | |
7ff120b4 | 7426 | return arm_copy_unpred (gdbarch, insn, dsc); |
cca44b1b JB |
7427 | else if ((op2 & 0x1) == 0x0) |
7428 | switch (op1 & ~0x80) | |
7429 | { | |
7430 | case 0x61: | |
7ff120b4 | 7431 | return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); |
cca44b1b | 7432 | case 0x65: |
7ff120b4 | 7433 | return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */ |
cca44b1b JB |
7434 | case 0x71: case 0x75: |
7435 | /* pld/pldw reg. */ | |
7ff120b4 | 7436 | return arm_copy_preload_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 7437 | case 0x63: case 0x67: case 0x73: case 0x77: |
7ff120b4 | 7438 | return arm_copy_unpred (gdbarch, insn, dsc); |
cca44b1b | 7439 | default: |
7ff120b4 | 7440 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7441 | } |
7442 | else | |
7ff120b4 | 7443 | return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */ |
cca44b1b JB |
7444 | } |
7445 | ||
7446 | static int | |
7ff120b4 YQ |
7447 | arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn, |
7448 | struct regcache *regs, | |
7449 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7450 | { |
7451 | if (bit (insn, 27) == 0) | |
7ff120b4 | 7452 | return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7453 | /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */ |
7454 | else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20)) | |
7455 | { | |
7456 | case 0x0: case 0x2: | |
7ff120b4 | 7457 | return arm_copy_unmodified (gdbarch, insn, "srs", dsc); |
cca44b1b JB |
7458 | |
7459 | case 0x1: case 0x3: | |
7ff120b4 | 7460 | return arm_copy_unmodified (gdbarch, insn, "rfe", dsc); |
cca44b1b JB |
7461 | |
7462 | case 0x4: case 0x5: case 0x6: case 0x7: | |
7ff120b4 | 7463 | return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7464 | |
7465 | case 0x8: | |
7466 | switch ((insn & 0xe00000) >> 21) | |
7467 | { | |
7468 | case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7: | |
7469 | /* stc/stc2. */ | |
7ff120b4 | 7470 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7471 | |
7472 | case 0x2: | |
7ff120b4 | 7473 | return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); |
cca44b1b JB |
7474 | |
7475 | default: | |
7ff120b4 | 7476 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7477 | } |
7478 | ||
7479 | case 0x9: | |
7480 | { | |
7481 | int rn_f = (bits (insn, 16, 19) == 0xf); | |
7482 | switch ((insn & 0xe00000) >> 21) | |
7483 | { | |
7484 | case 0x1: case 0x3: | |
7485 | /* ldc/ldc2 imm (undefined for rn == pc). */ | |
7ff120b4 YQ |
7486 | return rn_f ? arm_copy_undef (gdbarch, insn, dsc) |
7487 | : arm_copy_copro_load_store (gdbarch, insn, regs, dsc); | |
cca44b1b JB |
7488 | |
7489 | case 0x2: | |
7ff120b4 | 7490 | return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); |
cca44b1b JB |
7491 | |
7492 | case 0x4: case 0x5: case 0x6: case 0x7: | |
7493 | /* ldc/ldc2 lit (undefined for rn != pc). */ | |
7ff120b4 YQ |
7494 | return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc) |
7495 | : arm_copy_undef (gdbarch, insn, dsc); | |
cca44b1b JB |
7496 | |
7497 | default: | |
7ff120b4 | 7498 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7499 | } |
7500 | } | |
7501 | ||
7502 | case 0xa: | |
7ff120b4 | 7503 | return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc); |
cca44b1b JB |
7504 | |
7505 | case 0xb: | |
7506 | if (bits (insn, 16, 19) == 0xf) | |
7507 | /* ldc/ldc2 lit. */ | |
7ff120b4 | 7508 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b | 7509 | else |
7ff120b4 | 7510 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7511 | |
7512 | case 0xc: | |
7513 | if (bit (insn, 4)) | |
7ff120b4 | 7514 | return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); |
cca44b1b | 7515 | else |
7ff120b4 | 7516 | return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); |
cca44b1b JB |
7517 | |
7518 | case 0xd: | |
7519 | if (bit (insn, 4)) | |
7ff120b4 | 7520 | return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); |
cca44b1b | 7521 | else |
7ff120b4 | 7522 | return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); |
cca44b1b JB |
7523 | |
7524 | default: | |
7ff120b4 | 7525 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7526 | } |
7527 | } | |
7528 | ||
7529 | /* Decode miscellaneous instructions in dp/misc encoding space. */ | |
7530 | ||
7531 | static int | |
7ff120b4 YQ |
7532 | arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn, |
7533 | struct regcache *regs, | |
7534 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7535 | { |
7536 | unsigned int op2 = bits (insn, 4, 6); | |
7537 | unsigned int op = bits (insn, 21, 22); | |
7538 | unsigned int op1 = bits (insn, 16, 19); | |
7539 | ||
7540 | switch (op2) | |
7541 | { | |
7542 | case 0x0: | |
7ff120b4 | 7543 | return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc); |
cca44b1b JB |
7544 | |
7545 | case 0x1: | |
7546 | if (op == 0x1) /* bx. */ | |
7ff120b4 | 7547 | return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 7548 | else if (op == 0x3) |
7ff120b4 | 7549 | return arm_copy_unmodified (gdbarch, insn, "clz", dsc); |
cca44b1b | 7550 | else |
7ff120b4 | 7551 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7552 | |
7553 | case 0x2: | |
7554 | if (op == 0x1) | |
7555 | /* Not really supported. */ | |
7ff120b4 | 7556 | return arm_copy_unmodified (gdbarch, insn, "bxj", dsc); |
cca44b1b | 7557 | else |
7ff120b4 | 7558 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7559 | |
7560 | case 0x3: | |
7561 | if (op == 0x1) | |
7ff120b4 | 7562 | return arm_copy_bx_blx_reg (gdbarch, insn, |
0963b4bd | 7563 | regs, dsc); /* blx register. */ |
cca44b1b | 7564 | else |
7ff120b4 | 7565 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7566 | |
7567 | case 0x5: | |
7ff120b4 | 7568 | return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc); |
cca44b1b JB |
7569 | |
7570 | case 0x7: | |
7571 | if (op == 0x1) | |
7ff120b4 | 7572 | return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc); |
cca44b1b JB |
7573 | else if (op == 0x3) |
7574 | /* Not really supported. */ | |
7ff120b4 | 7575 | return arm_copy_unmodified (gdbarch, insn, "smc", dsc); |
cca44b1b JB |
7576 | |
7577 | default: | |
7ff120b4 | 7578 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7579 | } |
7580 | } | |
7581 | ||
7582 | static int | |
7ff120b4 YQ |
7583 | arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn, |
7584 | struct regcache *regs, | |
7585 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7586 | { |
7587 | if (bit (insn, 25)) | |
7588 | switch (bits (insn, 20, 24)) | |
7589 | { | |
7590 | case 0x10: | |
7ff120b4 | 7591 | return arm_copy_unmodified (gdbarch, insn, "movw", dsc); |
cca44b1b JB |
7592 | |
7593 | case 0x14: | |
7ff120b4 | 7594 | return arm_copy_unmodified (gdbarch, insn, "movt", dsc); |
cca44b1b JB |
7595 | |
7596 | case 0x12: case 0x16: | |
7ff120b4 | 7597 | return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc); |
cca44b1b JB |
7598 | |
7599 | default: | |
7ff120b4 | 7600 | return arm_copy_alu_imm (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7601 | } |
7602 | else | |
7603 | { | |
7604 | uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7); | |
7605 | ||
7606 | if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0) | |
7ff120b4 | 7607 | return arm_copy_alu_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 7608 | else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1) |
7ff120b4 | 7609 | return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 7610 | else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0) |
7ff120b4 | 7611 | return arm_decode_miscellaneous (gdbarch, insn, regs, dsc); |
cca44b1b | 7612 | else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8) |
7ff120b4 | 7613 | return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc); |
cca44b1b | 7614 | else if ((op1 & 0x10) == 0x00 && op2 == 0x9) |
7ff120b4 | 7615 | return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc); |
cca44b1b | 7616 | else if ((op1 & 0x10) == 0x10 && op2 == 0x9) |
7ff120b4 | 7617 | return arm_copy_unmodified (gdbarch, insn, "synch", dsc); |
cca44b1b JB |
7618 | else if (op2 == 0xb || (op2 & 0xd) == 0xd) |
7619 | /* 2nd arg means "unpriveleged". */ | |
7ff120b4 YQ |
7620 | return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs, |
7621 | dsc); | |
cca44b1b JB |
7622 | } |
7623 | ||
7624 | /* Should be unreachable. */ | |
7625 | return 1; | |
7626 | } | |
7627 | ||
7628 | static int | |
7ff120b4 YQ |
7629 | arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn, |
7630 | struct regcache *regs, | |
7631 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7632 | { |
7633 | int a = bit (insn, 25), b = bit (insn, 4); | |
7634 | uint32_t op1 = bits (insn, 20, 24); | |
7635 | int rn_f = bits (insn, 16, 19) == 0xf; | |
7636 | ||
7637 | if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02) | |
7638 | || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b)) | |
0f6f04ba | 7639 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0); |
cca44b1b JB |
7640 | else if ((!a && (op1 & 0x17) == 0x02) |
7641 | || (a && (op1 & 0x17) == 0x02 && !b)) | |
0f6f04ba | 7642 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1); |
cca44b1b JB |
7643 | else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03) |
7644 | || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b)) | |
0f6f04ba | 7645 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0); |
cca44b1b JB |
7646 | else if ((!a && (op1 & 0x17) == 0x03) |
7647 | || (a && (op1 & 0x17) == 0x03 && !b)) | |
0f6f04ba | 7648 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1); |
cca44b1b JB |
7649 | else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06) |
7650 | || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b)) | |
7ff120b4 | 7651 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0); |
cca44b1b JB |
7652 | else if ((!a && (op1 & 0x17) == 0x06) |
7653 | || (a && (op1 & 0x17) == 0x06 && !b)) | |
7ff120b4 | 7654 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1); |
cca44b1b JB |
7655 | else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07) |
7656 | || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b)) | |
7ff120b4 | 7657 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0); |
cca44b1b JB |
7658 | else if ((!a && (op1 & 0x17) == 0x07) |
7659 | || (a && (op1 & 0x17) == 0x07 && !b)) | |
7ff120b4 | 7660 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1); |
cca44b1b JB |
7661 | |
7662 | /* Should be unreachable. */ | |
7663 | return 1; | |
7664 | } | |
7665 | ||
7666 | static int | |
7ff120b4 YQ |
7667 | arm_decode_media (struct gdbarch *gdbarch, uint32_t insn, |
7668 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7669 | { |
7670 | switch (bits (insn, 20, 24)) | |
7671 | { | |
7672 | case 0x00: case 0x01: case 0x02: case 0x03: | |
7ff120b4 | 7673 | return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc); |
cca44b1b JB |
7674 | |
7675 | case 0x04: case 0x05: case 0x06: case 0x07: | |
7ff120b4 | 7676 | return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc); |
cca44b1b JB |
7677 | |
7678 | case 0x08: case 0x09: case 0x0a: case 0x0b: | |
7679 | case 0x0c: case 0x0d: case 0x0e: case 0x0f: | |
7ff120b4 | 7680 | return arm_copy_unmodified (gdbarch, insn, |
cca44b1b JB |
7681 | "decode/pack/unpack/saturate/reverse", dsc); |
7682 | ||
7683 | case 0x18: | |
7684 | if (bits (insn, 5, 7) == 0) /* op2. */ | |
7685 | { | |
7686 | if (bits (insn, 12, 15) == 0xf) | |
7ff120b4 | 7687 | return arm_copy_unmodified (gdbarch, insn, "usad8", dsc); |
cca44b1b | 7688 | else |
7ff120b4 | 7689 | return arm_copy_unmodified (gdbarch, insn, "usada8", dsc); |
cca44b1b JB |
7690 | } |
7691 | else | |
7ff120b4 | 7692 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7693 | |
7694 | case 0x1a: case 0x1b: | |
7695 | if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */ | |
7ff120b4 | 7696 | return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc); |
cca44b1b | 7697 | else |
7ff120b4 | 7698 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7699 | |
7700 | case 0x1c: case 0x1d: | |
7701 | if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */ | |
7702 | { | |
7703 | if (bits (insn, 0, 3) == 0xf) | |
7ff120b4 | 7704 | return arm_copy_unmodified (gdbarch, insn, "bfc", dsc); |
cca44b1b | 7705 | else |
7ff120b4 | 7706 | return arm_copy_unmodified (gdbarch, insn, "bfi", dsc); |
cca44b1b JB |
7707 | } |
7708 | else | |
7ff120b4 | 7709 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7710 | |
7711 | case 0x1e: case 0x1f: | |
7712 | if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */ | |
7ff120b4 | 7713 | return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc); |
cca44b1b | 7714 | else |
7ff120b4 | 7715 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7716 | } |
7717 | ||
7718 | /* Should be unreachable. */ | |
7719 | return 1; | |
7720 | } | |
7721 | ||
7722 | static int | |
7ff120b4 YQ |
7723 | arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, int32_t insn, |
7724 | struct regcache *regs, | |
7725 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7726 | { |
7727 | if (bit (insn, 25)) | |
7ff120b4 | 7728 | return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc); |
cca44b1b | 7729 | else |
7ff120b4 | 7730 | return arm_copy_block_xfer (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7731 | } |
7732 | ||
7733 | static int | |
7ff120b4 YQ |
7734 | arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn, |
7735 | struct regcache *regs, | |
7736 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7737 | { |
7738 | unsigned int opcode = bits (insn, 20, 24); | |
7739 | ||
7740 | switch (opcode) | |
7741 | { | |
7742 | case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */ | |
7ff120b4 | 7743 | return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc); |
cca44b1b JB |
7744 | |
7745 | case 0x08: case 0x0a: case 0x0c: case 0x0e: | |
7746 | case 0x12: case 0x16: | |
7ff120b4 | 7747 | return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc); |
cca44b1b JB |
7748 | |
7749 | case 0x09: case 0x0b: case 0x0d: case 0x0f: | |
7750 | case 0x13: case 0x17: | |
7ff120b4 | 7751 | return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc); |
cca44b1b JB |
7752 | |
7753 | case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */ | |
7754 | case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */ | |
7755 | /* Note: no writeback for these instructions. Bit 25 will always be | |
7756 | zero though (via caller), so the following works OK. */ | |
7ff120b4 | 7757 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7758 | } |
7759 | ||
7760 | /* Should be unreachable. */ | |
7761 | return 1; | |
7762 | } | |
7763 | ||
34518530 YQ |
7764 | /* Decode shifted register instructions. */ |
7765 | ||
7766 | static int | |
7767 | thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1, | |
7768 | uint16_t insn2, struct regcache *regs, | |
7769 | struct displaced_step_closure *dsc) | |
7770 | { | |
7771 | /* PC is only allowed to be used in instruction MOV. */ | |
7772 | ||
7773 | unsigned int op = bits (insn1, 5, 8); | |
7774 | unsigned int rn = bits (insn1, 0, 3); | |
7775 | ||
7776 | if (op == 0x2 && rn == 0xf) /* MOV */ | |
7777 | return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc); | |
7778 | else | |
7779 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7780 | "dp (shift reg)", dsc); | |
7781 | } | |
7782 | ||
7783 | ||
7784 | /* Decode extension register load/store. Exactly the same as | |
7785 | arm_decode_ext_reg_ld_st. */ | |
7786 | ||
7787 | static int | |
7788 | thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1, | |
7789 | uint16_t insn2, struct regcache *regs, | |
7790 | struct displaced_step_closure *dsc) | |
7791 | { | |
7792 | unsigned int opcode = bits (insn1, 4, 8); | |
7793 | ||
7794 | switch (opcode) | |
7795 | { | |
7796 | case 0x04: case 0x05: | |
7797 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7798 | "vfp/neon vmov", dsc); | |
7799 | ||
7800 | case 0x08: case 0x0c: /* 01x00 */ | |
7801 | case 0x0a: case 0x0e: /* 01x10 */ | |
7802 | case 0x12: case 0x16: /* 10x10 */ | |
7803 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7804 | "vfp/neon vstm/vpush", dsc); | |
7805 | ||
7806 | case 0x09: case 0x0d: /* 01x01 */ | |
7807 | case 0x0b: case 0x0f: /* 01x11 */ | |
7808 | case 0x13: case 0x17: /* 10x11 */ | |
7809 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7810 | "vfp/neon vldm/vpop", dsc); | |
7811 | ||
7812 | case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */ | |
7813 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7814 | "vstr", dsc); | |
7815 | case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */ | |
7816 | return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc); | |
7817 | } | |
7818 | ||
7819 | /* Should be unreachable. */ | |
7820 | return 1; | |
7821 | } | |
7822 | ||
cca44b1b | 7823 | static int |
7ff120b4 YQ |
7824 | arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to, |
7825 | struct regcache *regs, struct displaced_step_closure *dsc) | |
cca44b1b JB |
7826 | { |
7827 | unsigned int op1 = bits (insn, 20, 25); | |
7828 | int op = bit (insn, 4); | |
7829 | unsigned int coproc = bits (insn, 8, 11); | |
7830 | unsigned int rn = bits (insn, 16, 19); | |
7831 | ||
7832 | if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa) | |
7ff120b4 | 7833 | return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7834 | else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00 |
7835 | && (coproc & 0xe) != 0xa) | |
7836 | /* stc/stc2. */ | |
7ff120b4 | 7837 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7838 | else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00 |
7839 | && (coproc & 0xe) != 0xa) | |
7840 | /* ldc/ldc2 imm/lit. */ | |
7ff120b4 | 7841 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b | 7842 | else if ((op1 & 0x3e) == 0x00) |
7ff120b4 | 7843 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b | 7844 | else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa) |
7ff120b4 | 7845 | return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc); |
cca44b1b | 7846 | else if (op1 == 0x04 && (coproc & 0xe) != 0xa) |
7ff120b4 | 7847 | return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); |
cca44b1b | 7848 | else if (op1 == 0x05 && (coproc & 0xe) != 0xa) |
7ff120b4 | 7849 | return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); |
cca44b1b JB |
7850 | else if ((op1 & 0x30) == 0x20 && !op) |
7851 | { | |
7852 | if ((coproc & 0xe) == 0xa) | |
7ff120b4 | 7853 | return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc); |
cca44b1b | 7854 | else |
7ff120b4 | 7855 | return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); |
cca44b1b JB |
7856 | } |
7857 | else if ((op1 & 0x30) == 0x20 && op) | |
7ff120b4 | 7858 | return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc); |
cca44b1b | 7859 | else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa) |
7ff120b4 | 7860 | return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); |
cca44b1b | 7861 | else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa) |
7ff120b4 | 7862 | return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); |
cca44b1b | 7863 | else if ((op1 & 0x30) == 0x30) |
7ff120b4 | 7864 | return arm_copy_svc (gdbarch, insn, regs, dsc); |
cca44b1b | 7865 | else |
7ff120b4 | 7866 | return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */ |
cca44b1b JB |
7867 | } |
7868 | ||
34518530 YQ |
7869 | static int |
7870 | thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1, | |
7871 | uint16_t insn2, struct regcache *regs, | |
7872 | struct displaced_step_closure *dsc) | |
7873 | { | |
7874 | unsigned int coproc = bits (insn2, 8, 11); | |
7875 | unsigned int op1 = bits (insn1, 4, 9); | |
7876 | unsigned int bit_5_8 = bits (insn1, 5, 8); | |
7877 | unsigned int bit_9 = bit (insn1, 9); | |
7878 | unsigned int bit_4 = bit (insn1, 4); | |
7879 | unsigned int rn = bits (insn1, 0, 3); | |
7880 | ||
7881 | if (bit_9 == 0) | |
7882 | { | |
7883 | if (bit_5_8 == 2) | |
7884 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7885 | "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2", | |
7886 | dsc); | |
7887 | else if (bit_5_8 == 0) /* UNDEFINED. */ | |
7888 | return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc); | |
7889 | else | |
7890 | { | |
7891 | /*coproc is 101x. SIMD/VFP, ext registers load/store. */ | |
7892 | if ((coproc & 0xe) == 0xa) | |
7893 | return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs, | |
7894 | dsc); | |
7895 | else /* coproc is not 101x. */ | |
7896 | { | |
7897 | if (bit_4 == 0) /* STC/STC2. */ | |
7898 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7899 | "stc/stc2", dsc); | |
7900 | else /* LDC/LDC2 {literal, immeidate}. */ | |
7901 | return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, | |
7902 | regs, dsc); | |
7903 | } | |
7904 | } | |
7905 | } | |
7906 | else | |
7907 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc); | |
7908 | ||
7909 | return 0; | |
7910 | } | |
7911 | ||
7912 | static void | |
7913 | install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs, | |
7914 | struct displaced_step_closure *dsc, int rd) | |
7915 | { | |
7916 | /* ADR Rd, #imm | |
7917 | ||
7918 | Rewrite as: | |
7919 | ||
7920 | Preparation: Rd <- PC | |
7921 | Insn: ADD Rd, #imm | |
7922 | Cleanup: Null. | |
7923 | */ | |
7924 | ||
7925 | /* Rd <- PC */ | |
7926 | int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
7927 | displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC); | |
7928 | } | |
7929 | ||
7930 | static int | |
7931 | thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs, | |
7932 | struct displaced_step_closure *dsc, | |
7933 | int rd, unsigned int imm) | |
7934 | { | |
7935 | ||
7936 | /* Encoding T2: ADDS Rd, #imm */ | |
7937 | dsc->modinsn[0] = (0x3000 | (rd << 8) | imm); | |
7938 | ||
7939 | install_pc_relative (gdbarch, regs, dsc, rd); | |
7940 | ||
7941 | return 0; | |
7942 | } | |
7943 | ||
7944 | static int | |
7945 | thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn, | |
7946 | struct regcache *regs, | |
7947 | struct displaced_step_closure *dsc) | |
7948 | { | |
7949 | unsigned int rd = bits (insn, 8, 10); | |
7950 | unsigned int imm8 = bits (insn, 0, 7); | |
7951 | ||
7952 | if (debug_displaced) | |
7953 | fprintf_unfiltered (gdb_stdlog, | |
7954 | "displaced: copying thumb adr r%d, #%d insn %.4x\n", | |
7955 | rd, imm8, insn); | |
7956 | ||
7957 | return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8); | |
7958 | } | |
7959 | ||
7960 | static int | |
7961 | thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1, | |
7962 | uint16_t insn2, struct regcache *regs, | |
7963 | struct displaced_step_closure *dsc) | |
7964 | { | |
7965 | unsigned int rd = bits (insn2, 8, 11); | |
7966 | /* Since immediate has the same encoding in ADR ADD and SUB, so we simply | |
7967 | extract raw immediate encoding rather than computing immediate. When | |
7968 | generating ADD or SUB instruction, we can simply perform OR operation to | |
7969 | set immediate into ADD. */ | |
7970 | unsigned int imm_3_8 = insn2 & 0x70ff; | |
7971 | unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */ | |
7972 | ||
7973 | if (debug_displaced) | |
7974 | fprintf_unfiltered (gdb_stdlog, | |
7975 | "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n", | |
7976 | rd, imm_i, imm_3_8, insn1, insn2); | |
7977 | ||
7978 | if (bit (insn1, 7)) /* Encoding T2 */ | |
7979 | { | |
7980 | /* Encoding T3: SUB Rd, Rd, #imm */ | |
7981 | dsc->modinsn[0] = (0xf1a0 | rd | imm_i); | |
7982 | dsc->modinsn[1] = ((rd << 8) | imm_3_8); | |
7983 | } | |
7984 | else /* Encoding T3 */ | |
7985 | { | |
7986 | /* Encoding T3: ADD Rd, Rd, #imm */ | |
7987 | dsc->modinsn[0] = (0xf100 | rd | imm_i); | |
7988 | dsc->modinsn[1] = ((rd << 8) | imm_3_8); | |
7989 | } | |
7990 | dsc->numinsns = 2; | |
7991 | ||
7992 | install_pc_relative (gdbarch, regs, dsc, rd); | |
7993 | ||
7994 | return 0; | |
7995 | } | |
7996 | ||
7997 | static int | |
7998 | thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, unsigned short insn1, | |
7999 | struct regcache *regs, | |
8000 | struct displaced_step_closure *dsc) | |
8001 | { | |
8002 | unsigned int rt = bits (insn1, 8, 10); | |
8003 | unsigned int pc; | |
8004 | int imm8 = (bits (insn1, 0, 7) << 2); | |
8005 | CORE_ADDR from = dsc->insn_addr; | |
8006 | ||
8007 | /* LDR Rd, #imm8 | |
8008 | ||
8009 | Rwrite as: | |
8010 | ||
8011 | Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8; | |
8012 | ||
8013 | Insn: LDR R0, [R2, R3]; | |
8014 | Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */ | |
8015 | ||
8016 | if (debug_displaced) | |
8017 | fprintf_unfiltered (gdb_stdlog, | |
8018 | "displaced: copying thumb ldr r%d [pc #%d]\n" | |
8019 | , rt, imm8); | |
8020 | ||
8021 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
8022 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
8023 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); | |
8024 | pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
8025 | /* The assembler calculates the required value of the offset from the | |
8026 | Align(PC,4) value of this instruction to the label. */ | |
8027 | pc = pc & 0xfffffffc; | |
8028 | ||
8029 | displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC); | |
8030 | displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC); | |
8031 | ||
8032 | dsc->rd = rt; | |
8033 | dsc->u.ldst.xfersize = 4; | |
8034 | dsc->u.ldst.rn = 0; | |
8035 | dsc->u.ldst.immed = 0; | |
8036 | dsc->u.ldst.writeback = 0; | |
8037 | dsc->u.ldst.restore_r4 = 0; | |
8038 | ||
8039 | dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/ | |
8040 | ||
8041 | dsc->cleanup = &cleanup_load; | |
8042 | ||
8043 | return 0; | |
8044 | } | |
8045 | ||
8046 | /* Copy Thumb cbnz/cbz insruction. */ | |
8047 | ||
8048 | static int | |
8049 | thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1, | |
8050 | struct regcache *regs, | |
8051 | struct displaced_step_closure *dsc) | |
8052 | { | |
8053 | int non_zero = bit (insn1, 11); | |
8054 | unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1); | |
8055 | CORE_ADDR from = dsc->insn_addr; | |
8056 | int rn = bits (insn1, 0, 2); | |
8057 | int rn_val = displaced_read_reg (regs, dsc, rn); | |
8058 | ||
8059 | dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero); | |
8060 | /* CBNZ and CBZ do not affect the condition flags. If condition is true, | |
8061 | set it INST_AL, so cleanup_branch will know branch is taken, otherwise, | |
8062 | condition is false, let it be, cleanup_branch will do nothing. */ | |
8063 | if (dsc->u.branch.cond) | |
8064 | { | |
8065 | dsc->u.branch.cond = INST_AL; | |
8066 | dsc->u.branch.dest = from + 4 + imm5; | |
8067 | } | |
8068 | else | |
8069 | dsc->u.branch.dest = from + 2; | |
8070 | ||
8071 | dsc->u.branch.link = 0; | |
8072 | dsc->u.branch.exchange = 0; | |
8073 | ||
8074 | if (debug_displaced) | |
8075 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]" | |
8076 | " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz", | |
8077 | rn, rn_val, insn1, dsc->u.branch.dest); | |
8078 | ||
8079 | dsc->modinsn[0] = THUMB_NOP; | |
8080 | ||
8081 | dsc->cleanup = &cleanup_branch; | |
8082 | return 0; | |
8083 | } | |
8084 | ||
8085 | /* Copy Table Branch Byte/Halfword */ | |
8086 | static int | |
8087 | thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1, | |
8088 | uint16_t insn2, struct regcache *regs, | |
8089 | struct displaced_step_closure *dsc) | |
8090 | { | |
8091 | ULONGEST rn_val, rm_val; | |
8092 | int is_tbh = bit (insn2, 4); | |
8093 | CORE_ADDR halfwords = 0; | |
8094 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
8095 | ||
8096 | rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3)); | |
8097 | rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3)); | |
8098 | ||
8099 | if (is_tbh) | |
8100 | { | |
8101 | gdb_byte buf[2]; | |
8102 | ||
8103 | target_read_memory (rn_val + 2 * rm_val, buf, 2); | |
8104 | halfwords = extract_unsigned_integer (buf, 2, byte_order); | |
8105 | } | |
8106 | else | |
8107 | { | |
8108 | gdb_byte buf[1]; | |
8109 | ||
8110 | target_read_memory (rn_val + rm_val, buf, 1); | |
8111 | halfwords = extract_unsigned_integer (buf, 1, byte_order); | |
8112 | } | |
8113 | ||
8114 | if (debug_displaced) | |
8115 | fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x" | |
8116 | " offset 0x%x\n", is_tbh ? "tbh" : "tbb", | |
8117 | (unsigned int) rn_val, (unsigned int) rm_val, | |
8118 | (unsigned int) halfwords); | |
8119 | ||
8120 | dsc->u.branch.cond = INST_AL; | |
8121 | dsc->u.branch.link = 0; | |
8122 | dsc->u.branch.exchange = 0; | |
8123 | dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords; | |
8124 | ||
8125 | dsc->cleanup = &cleanup_branch; | |
8126 | ||
8127 | return 0; | |
8128 | } | |
8129 | ||
8130 | static void | |
8131 | cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs, | |
8132 | struct displaced_step_closure *dsc) | |
8133 | { | |
8134 | /* PC <- r7 */ | |
8135 | int val = displaced_read_reg (regs, dsc, 7); | |
8136 | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC); | |
8137 | ||
8138 | /* r7 <- r8 */ | |
8139 | val = displaced_read_reg (regs, dsc, 8); | |
8140 | displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC); | |
8141 | ||
8142 | /* r8 <- tmp[0] */ | |
8143 | displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC); | |
8144 | ||
8145 | } | |
8146 | ||
8147 | static int | |
8148 | thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, unsigned short insn1, | |
8149 | struct regcache *regs, | |
8150 | struct displaced_step_closure *dsc) | |
8151 | { | |
8152 | dsc->u.block.regmask = insn1 & 0x00ff; | |
8153 | ||
8154 | /* Rewrite instruction: POP {rX, rY, ...,rZ, PC} | |
8155 | to : | |
8156 | ||
8157 | (1) register list is full, that is, r0-r7 are used. | |
8158 | Prepare: tmp[0] <- r8 | |
8159 | ||
8160 | POP {r0, r1, ...., r6, r7}; remove PC from reglist | |
8161 | MOV r8, r7; Move value of r7 to r8; | |
8162 | POP {r7}; Store PC value into r7. | |
8163 | ||
8164 | Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0] | |
8165 | ||
8166 | (2) register list is not full, supposing there are N registers in | |
8167 | register list (except PC, 0 <= N <= 7). | |
8168 | Prepare: for each i, 0 - N, tmp[i] <- ri. | |
8169 | ||
8170 | POP {r0, r1, ...., rN}; | |
8171 | ||
8172 | Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN | |
8173 | from tmp[] properly. | |
8174 | */ | |
8175 | if (debug_displaced) | |
8176 | fprintf_unfiltered (gdb_stdlog, | |
8177 | "displaced: copying thumb pop {%.8x, pc} insn %.4x\n", | |
8178 | dsc->u.block.regmask, insn1); | |
8179 | ||
8180 | if (dsc->u.block.regmask == 0xff) | |
8181 | { | |
8182 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 8); | |
8183 | ||
8184 | dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */ | |
8185 | dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */ | |
8186 | dsc->modinsn[2] = 0xbc80; /* POP {r7} */ | |
8187 | ||
8188 | dsc->numinsns = 3; | |
8189 | dsc->cleanup = &cleanup_pop_pc_16bit_all; | |
8190 | } | |
8191 | else | |
8192 | { | |
8193 | unsigned int num_in_list = bitcount (dsc->u.block.regmask); | |
8194 | unsigned int new_regmask, bit = 1; | |
8195 | unsigned int to = 0, from = 0, i, new_rn; | |
8196 | ||
8197 | for (i = 0; i < num_in_list + 1; i++) | |
8198 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); | |
8199 | ||
8200 | new_regmask = (1 << (num_in_list + 1)) - 1; | |
8201 | ||
8202 | if (debug_displaced) | |
8203 | fprintf_unfiltered (gdb_stdlog, _("displaced: POP " | |
8204 | "{..., pc}: original reg list %.4x," | |
8205 | " modified list %.4x\n"), | |
8206 | (int) dsc->u.block.regmask, new_regmask); | |
8207 | ||
8208 | dsc->u.block.regmask |= 0x8000; | |
8209 | dsc->u.block.writeback = 0; | |
8210 | dsc->u.block.cond = INST_AL; | |
8211 | ||
8212 | dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff); | |
8213 | ||
8214 | dsc->cleanup = &cleanup_block_load_pc; | |
8215 | } | |
8216 | ||
8217 | return 0; | |
8218 | } | |
8219 | ||
8220 | static void | |
8221 | thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1, | |
8222 | struct regcache *regs, | |
8223 | struct displaced_step_closure *dsc) | |
8224 | { | |
8225 | unsigned short op_bit_12_15 = bits (insn1, 12, 15); | |
8226 | unsigned short op_bit_10_11 = bits (insn1, 10, 11); | |
8227 | int err = 0; | |
8228 | ||
8229 | /* 16-bit thumb instructions. */ | |
8230 | switch (op_bit_12_15) | |
8231 | { | |
8232 | /* Shift (imme), add, subtract, move and compare. */ | |
8233 | case 0: case 1: case 2: case 3: | |
8234 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, | |
8235 | "shift/add/sub/mov/cmp", | |
8236 | dsc); | |
8237 | break; | |
8238 | case 4: | |
8239 | switch (op_bit_10_11) | |
8240 | { | |
8241 | case 0: /* Data-processing */ | |
8242 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, | |
8243 | "data-processing", | |
8244 | dsc); | |
8245 | break; | |
8246 | case 1: /* Special data instructions and branch and exchange. */ | |
8247 | { | |
8248 | unsigned short op = bits (insn1, 7, 9); | |
8249 | if (op == 6 || op == 7) /* BX or BLX */ | |
8250 | err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc); | |
8251 | else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */ | |
8252 | err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc); | |
8253 | else | |
8254 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data", | |
8255 | dsc); | |
8256 | } | |
8257 | break; | |
8258 | default: /* LDR (literal) */ | |
8259 | err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc); | |
8260 | } | |
8261 | break; | |
8262 | case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */ | |
8263 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc); | |
8264 | break; | |
8265 | case 10: | |
8266 | if (op_bit_10_11 < 2) /* Generate PC-relative address */ | |
8267 | err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc); | |
8268 | else /* Generate SP-relative address */ | |
8269 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc); | |
8270 | break; | |
8271 | case 11: /* Misc 16-bit instructions */ | |
8272 | { | |
8273 | switch (bits (insn1, 8, 11)) | |
8274 | { | |
8275 | case 1: case 3: case 9: case 11: /* CBNZ, CBZ */ | |
8276 | err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc); | |
8277 | break; | |
8278 | case 12: case 13: /* POP */ | |
8279 | if (bit (insn1, 8)) /* PC is in register list. */ | |
8280 | err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc); | |
8281 | else | |
8282 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc); | |
8283 | break; | |
8284 | case 15: /* If-Then, and hints */ | |
8285 | if (bits (insn1, 0, 3)) | |
8286 | /* If-Then makes up to four following instructions conditional. | |
8287 | IT instruction itself is not conditional, so handle it as a | |
8288 | common unmodified instruction. */ | |
8289 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then", | |
8290 | dsc); | |
8291 | else | |
8292 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc); | |
8293 | break; | |
8294 | default: | |
8295 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc); | |
8296 | } | |
8297 | } | |
8298 | break; | |
8299 | case 12: | |
8300 | if (op_bit_10_11 < 2) /* Store multiple registers */ | |
8301 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc); | |
8302 | else /* Load multiple registers */ | |
8303 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc); | |
8304 | break; | |
8305 | case 13: /* Conditional branch and supervisor call */ | |
8306 | if (bits (insn1, 9, 11) != 7) /* conditional branch */ | |
8307 | err = thumb_copy_b (gdbarch, insn1, dsc); | |
8308 | else | |
8309 | err = thumb_copy_svc (gdbarch, insn1, regs, dsc); | |
8310 | break; | |
8311 | case 14: /* Unconditional branch */ | |
8312 | err = thumb_copy_b (gdbarch, insn1, dsc); | |
8313 | break; | |
8314 | default: | |
8315 | err = 1; | |
8316 | } | |
8317 | ||
8318 | if (err) | |
8319 | internal_error (__FILE__, __LINE__, | |
8320 | _("thumb_process_displaced_16bit_insn: Instruction decode error")); | |
8321 | } | |
8322 | ||
8323 | static int | |
8324 | decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch, | |
8325 | uint16_t insn1, uint16_t insn2, | |
8326 | struct regcache *regs, | |
8327 | struct displaced_step_closure *dsc) | |
8328 | { | |
8329 | int rt = bits (insn2, 12, 15); | |
8330 | int rn = bits (insn1, 0, 3); | |
8331 | int op1 = bits (insn1, 7, 8); | |
8332 | int err = 0; | |
8333 | ||
8334 | switch (bits (insn1, 5, 6)) | |
8335 | { | |
8336 | case 0: /* Load byte and memory hints */ | |
8337 | if (rt == 0xf) /* PLD/PLI */ | |
8338 | { | |
8339 | if (rn == 0xf) | |
8340 | /* PLD literal or Encoding T3 of PLI(immediate, literal). */ | |
8341 | return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc); | |
8342 | else | |
8343 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8344 | "pli/pld", dsc); | |
8345 | } | |
8346 | else | |
8347 | { | |
8348 | if (rn == 0xf) /* LDRB/LDRSB (literal) */ | |
8349 | return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, | |
8350 | 1); | |
8351 | else | |
8352 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8353 | "ldrb{reg, immediate}/ldrbt", | |
8354 | dsc); | |
8355 | } | |
8356 | ||
8357 | break; | |
8358 | case 1: /* Load halfword and memory hints. */ | |
8359 | if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */ | |
8360 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8361 | "pld/unalloc memhint", dsc); | |
8362 | else | |
8363 | { | |
8364 | if (rn == 0xf) | |
8365 | return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, | |
8366 | 2); | |
8367 | else | |
8368 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8369 | "ldrh/ldrht", dsc); | |
8370 | } | |
8371 | break; | |
8372 | case 2: /* Load word */ | |
8373 | { | |
8374 | int insn2_bit_8_11 = bits (insn2, 8, 11); | |
8375 | ||
8376 | if (rn == 0xf) | |
8377 | return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4); | |
8378 | else if (op1 == 0x1) /* Encoding T3 */ | |
8379 | return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc, | |
8380 | 0, 1); | |
8381 | else /* op1 == 0x0 */ | |
8382 | { | |
8383 | if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9) | |
8384 | /* LDR (immediate) */ | |
8385 | return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, | |
8386 | dsc, bit (insn2, 8), 1); | |
8387 | else if (insn2_bit_8_11 == 0xe) /* LDRT */ | |
8388 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8389 | "ldrt", dsc); | |
8390 | else | |
8391 | /* LDR (register) */ | |
8392 | return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, | |
8393 | dsc, 0, 0); | |
8394 | } | |
8395 | break; | |
8396 | } | |
8397 | default: | |
8398 | return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc); | |
8399 | break; | |
8400 | } | |
8401 | return 0; | |
8402 | } | |
8403 | ||
8404 | static void | |
8405 | thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1, | |
8406 | uint16_t insn2, struct regcache *regs, | |
8407 | struct displaced_step_closure *dsc) | |
8408 | { | |
8409 | int err = 0; | |
8410 | unsigned short op = bit (insn2, 15); | |
8411 | unsigned int op1 = bits (insn1, 11, 12); | |
8412 | ||
8413 | switch (op1) | |
8414 | { | |
8415 | case 1: | |
8416 | { | |
8417 | switch (bits (insn1, 9, 10)) | |
8418 | { | |
8419 | case 0: | |
8420 | if (bit (insn1, 6)) | |
8421 | { | |
8422 | /* Load/store {dual, execlusive}, table branch. */ | |
8423 | if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1 | |
8424 | && bits (insn2, 5, 7) == 0) | |
8425 | err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs, | |
8426 | dsc); | |
8427 | else | |
8428 | /* PC is not allowed to use in load/store {dual, exclusive} | |
8429 | instructions. */ | |
8430 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8431 | "load/store dual/ex", dsc); | |
8432 | } | |
8433 | else /* load/store multiple */ | |
8434 | { | |
8435 | switch (bits (insn1, 7, 8)) | |
8436 | { | |
8437 | case 0: case 3: /* SRS, RFE */ | |
8438 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8439 | "srs/rfe", dsc); | |
8440 | break; | |
8441 | case 1: case 2: /* LDM/STM/PUSH/POP */ | |
8442 | err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc); | |
8443 | break; | |
8444 | } | |
8445 | } | |
8446 | break; | |
8447 | ||
8448 | case 1: | |
8449 | /* Data-processing (shift register). */ | |
8450 | err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs, | |
8451 | dsc); | |
8452 | break; | |
8453 | default: /* Coprocessor instructions. */ | |
8454 | err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc); | |
8455 | break; | |
8456 | } | |
8457 | break; | |
8458 | } | |
8459 | case 2: /* op1 = 2 */ | |
8460 | if (op) /* Branch and misc control. */ | |
8461 | { | |
8462 | if (bit (insn2, 14) /* BLX/BL */ | |
8463 | || bit (insn2, 12) /* Unconditional branch */ | |
8464 | || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */ | |
8465 | err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc); | |
8466 | else | |
8467 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8468 | "misc ctrl", dsc); | |
8469 | } | |
8470 | else | |
8471 | { | |
8472 | if (bit (insn1, 9)) /* Data processing (plain binary imm). */ | |
8473 | { | |
8474 | int op = bits (insn1, 4, 8); | |
8475 | int rn = bits (insn1, 0, 3); | |
8476 | if ((op == 0 || op == 0xa) && rn == 0xf) | |
8477 | err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2, | |
8478 | regs, dsc); | |
8479 | else | |
8480 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8481 | "dp/pb", dsc); | |
8482 | } | |
8483 | else /* Data processing (modified immeidate) */ | |
8484 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8485 | "dp/mi", dsc); | |
8486 | } | |
8487 | break; | |
8488 | case 3: /* op1 = 3 */ | |
8489 | switch (bits (insn1, 9, 10)) | |
8490 | { | |
8491 | case 0: | |
8492 | if (bit (insn1, 4)) | |
8493 | err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2, | |
8494 | regs, dsc); | |
8495 | else /* NEON Load/Store and Store single data item */ | |
8496 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8497 | "neon elt/struct load/store", | |
8498 | dsc); | |
8499 | break; | |
8500 | case 1: /* op1 = 3, bits (9, 10) == 1 */ | |
8501 | switch (bits (insn1, 7, 8)) | |
8502 | { | |
8503 | case 0: case 1: /* Data processing (register) */ | |
8504 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8505 | "dp(reg)", dsc); | |
8506 | break; | |
8507 | case 2: /* Multiply and absolute difference */ | |
8508 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8509 | "mul/mua/diff", dsc); | |
8510 | break; | |
8511 | case 3: /* Long multiply and divide */ | |
8512 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8513 | "lmul/lmua", dsc); | |
8514 | break; | |
8515 | } | |
8516 | break; | |
8517 | default: /* Coprocessor instructions */ | |
8518 | err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc); | |
8519 | break; | |
8520 | } | |
8521 | break; | |
8522 | default: | |
8523 | err = 1; | |
8524 | } | |
8525 | ||
8526 | if (err) | |
8527 | internal_error (__FILE__, __LINE__, | |
8528 | _("thumb_process_displaced_32bit_insn: Instruction decode error")); | |
8529 | ||
8530 | } | |
8531 | ||
b434a28f YQ |
8532 | static void |
8533 | thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from, | |
8534 | CORE_ADDR to, struct regcache *regs, | |
8535 | struct displaced_step_closure *dsc) | |
8536 | { | |
34518530 YQ |
8537 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
8538 | uint16_t insn1 | |
8539 | = read_memory_unsigned_integer (from, 2, byte_order_for_code); | |
8540 | ||
8541 | if (debug_displaced) | |
8542 | fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x " | |
8543 | "at %.8lx\n", insn1, (unsigned long) from); | |
8544 | ||
8545 | dsc->is_thumb = 1; | |
8546 | dsc->insn_size = thumb_insn_size (insn1); | |
8547 | if (thumb_insn_size (insn1) == 4) | |
8548 | { | |
8549 | uint16_t insn2 | |
8550 | = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code); | |
8551 | thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc); | |
8552 | } | |
8553 | else | |
8554 | thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc); | |
b434a28f YQ |
8555 | } |
8556 | ||
cca44b1b | 8557 | void |
b434a28f YQ |
8558 | arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from, |
8559 | CORE_ADDR to, struct regcache *regs, | |
cca44b1b JB |
8560 | struct displaced_step_closure *dsc) |
8561 | { | |
8562 | int err = 0; | |
b434a28f YQ |
8563 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
8564 | uint32_t insn; | |
cca44b1b JB |
8565 | |
8566 | /* Most displaced instructions use a 1-instruction scratch space, so set this | |
8567 | here and override below if/when necessary. */ | |
8568 | dsc->numinsns = 1; | |
8569 | dsc->insn_addr = from; | |
8570 | dsc->scratch_base = to; | |
8571 | dsc->cleanup = NULL; | |
8572 | dsc->wrote_to_pc = 0; | |
8573 | ||
b434a28f YQ |
8574 | if (!displaced_in_arm_mode (regs)) |
8575 | return thumb_process_displaced_insn (gdbarch, from, to, regs, dsc); | |
8576 | ||
4db71c0b YQ |
8577 | dsc->is_thumb = 0; |
8578 | dsc->insn_size = 4; | |
b434a28f YQ |
8579 | insn = read_memory_unsigned_integer (from, 4, byte_order_for_code); |
8580 | if (debug_displaced) | |
8581 | fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx " | |
8582 | "at %.8lx\n", (unsigned long) insn, | |
8583 | (unsigned long) from); | |
8584 | ||
cca44b1b | 8585 | if ((insn & 0xf0000000) == 0xf0000000) |
7ff120b4 | 8586 | err = arm_decode_unconditional (gdbarch, insn, regs, dsc); |
cca44b1b JB |
8587 | else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24)) |
8588 | { | |
8589 | case 0x0: case 0x1: case 0x2: case 0x3: | |
7ff120b4 | 8590 | err = arm_decode_dp_misc (gdbarch, insn, regs, dsc); |
cca44b1b JB |
8591 | break; |
8592 | ||
8593 | case 0x4: case 0x5: case 0x6: | |
7ff120b4 | 8594 | err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc); |
cca44b1b JB |
8595 | break; |
8596 | ||
8597 | case 0x7: | |
7ff120b4 | 8598 | err = arm_decode_media (gdbarch, insn, dsc); |
cca44b1b JB |
8599 | break; |
8600 | ||
8601 | case 0x8: case 0x9: case 0xa: case 0xb: | |
7ff120b4 | 8602 | err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc); |
cca44b1b JB |
8603 | break; |
8604 | ||
8605 | case 0xc: case 0xd: case 0xe: case 0xf: | |
7ff120b4 | 8606 | err = arm_decode_svc_copro (gdbarch, insn, to, regs, dsc); |
cca44b1b JB |
8607 | break; |
8608 | } | |
8609 | ||
8610 | if (err) | |
8611 | internal_error (__FILE__, __LINE__, | |
8612 | _("arm_process_displaced_insn: Instruction decode error")); | |
8613 | } | |
8614 | ||
8615 | /* Actually set up the scratch space for a displaced instruction. */ | |
8616 | ||
8617 | void | |
8618 | arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from, | |
8619 | CORE_ADDR to, struct displaced_step_closure *dsc) | |
8620 | { | |
8621 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
4db71c0b | 8622 | unsigned int i, len, offset; |
cca44b1b | 8623 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
4db71c0b YQ |
8624 | int size = dsc->is_thumb? 2 : 4; |
8625 | const unsigned char *bkp_insn; | |
cca44b1b | 8626 | |
4db71c0b | 8627 | offset = 0; |
cca44b1b JB |
8628 | /* Poke modified instruction(s). */ |
8629 | for (i = 0; i < dsc->numinsns; i++) | |
8630 | { | |
8631 | if (debug_displaced) | |
4db71c0b YQ |
8632 | { |
8633 | fprintf_unfiltered (gdb_stdlog, "displaced: writing insn "); | |
8634 | if (size == 4) | |
8635 | fprintf_unfiltered (gdb_stdlog, "%.8lx", | |
8636 | dsc->modinsn[i]); | |
8637 | else if (size == 2) | |
8638 | fprintf_unfiltered (gdb_stdlog, "%.4x", | |
8639 | (unsigned short)dsc->modinsn[i]); | |
8640 | ||
8641 | fprintf_unfiltered (gdb_stdlog, " at %.8lx\n", | |
8642 | (unsigned long) to + offset); | |
8643 | ||
8644 | } | |
8645 | write_memory_unsigned_integer (to + offset, size, | |
8646 | byte_order_for_code, | |
cca44b1b | 8647 | dsc->modinsn[i]); |
4db71c0b YQ |
8648 | offset += size; |
8649 | } | |
8650 | ||
8651 | /* Choose the correct breakpoint instruction. */ | |
8652 | if (dsc->is_thumb) | |
8653 | { | |
8654 | bkp_insn = tdep->thumb_breakpoint; | |
8655 | len = tdep->thumb_breakpoint_size; | |
8656 | } | |
8657 | else | |
8658 | { | |
8659 | bkp_insn = tdep->arm_breakpoint; | |
8660 | len = tdep->arm_breakpoint_size; | |
cca44b1b JB |
8661 | } |
8662 | ||
8663 | /* Put breakpoint afterwards. */ | |
4db71c0b | 8664 | write_memory (to + offset, bkp_insn, len); |
cca44b1b JB |
8665 | |
8666 | if (debug_displaced) | |
8667 | fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", | |
8668 | paddress (gdbarch, from), paddress (gdbarch, to)); | |
8669 | } | |
8670 | ||
8671 | /* Entry point for copying an instruction into scratch space for displaced | |
8672 | stepping. */ | |
8673 | ||
8674 | struct displaced_step_closure * | |
8675 | arm_displaced_step_copy_insn (struct gdbarch *gdbarch, | |
8676 | CORE_ADDR from, CORE_ADDR to, | |
8677 | struct regcache *regs) | |
8678 | { | |
8679 | struct displaced_step_closure *dsc | |
8680 | = xmalloc (sizeof (struct displaced_step_closure)); | |
b434a28f | 8681 | arm_process_displaced_insn (gdbarch, from, to, regs, dsc); |
cca44b1b JB |
8682 | arm_displaced_init_closure (gdbarch, from, to, dsc); |
8683 | ||
8684 | return dsc; | |
8685 | } | |
8686 | ||
8687 | /* Entry point for cleaning things up after a displaced instruction has been | |
8688 | single-stepped. */ | |
8689 | ||
8690 | void | |
8691 | arm_displaced_step_fixup (struct gdbarch *gdbarch, | |
8692 | struct displaced_step_closure *dsc, | |
8693 | CORE_ADDR from, CORE_ADDR to, | |
8694 | struct regcache *regs) | |
8695 | { | |
8696 | if (dsc->cleanup) | |
8697 | dsc->cleanup (gdbarch, regs, dsc); | |
8698 | ||
8699 | if (!dsc->wrote_to_pc) | |
4db71c0b YQ |
8700 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
8701 | dsc->insn_addr + dsc->insn_size); | |
8702 | ||
cca44b1b JB |
8703 | } |
8704 | ||
8705 | #include "bfd-in2.h" | |
8706 | #include "libcoff.h" | |
8707 | ||
8708 | static int | |
8709 | gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) | |
8710 | { | |
9779414d DJ |
8711 | struct gdbarch *gdbarch = info->application_data; |
8712 | ||
8713 | if (arm_pc_is_thumb (gdbarch, memaddr)) | |
cca44b1b JB |
8714 | { |
8715 | static asymbol *asym; | |
8716 | static combined_entry_type ce; | |
8717 | static struct coff_symbol_struct csym; | |
8718 | static struct bfd fake_bfd; | |
8719 | static bfd_target fake_target; | |
8720 | ||
8721 | if (csym.native == NULL) | |
8722 | { | |
8723 | /* Create a fake symbol vector containing a Thumb symbol. | |
8724 | This is solely so that the code in print_insn_little_arm() | |
8725 | and print_insn_big_arm() in opcodes/arm-dis.c will detect | |
8726 | the presence of a Thumb symbol and switch to decoding | |
8727 | Thumb instructions. */ | |
8728 | ||
8729 | fake_target.flavour = bfd_target_coff_flavour; | |
8730 | fake_bfd.xvec = &fake_target; | |
8731 | ce.u.syment.n_sclass = C_THUMBEXTFUNC; | |
8732 | csym.native = &ce; | |
8733 | csym.symbol.the_bfd = &fake_bfd; | |
8734 | csym.symbol.name = "fake"; | |
8735 | asym = (asymbol *) & csym; | |
8736 | } | |
8737 | ||
8738 | memaddr = UNMAKE_THUMB_ADDR (memaddr); | |
8739 | info->symbols = &asym; | |
8740 | } | |
8741 | else | |
8742 | info->symbols = NULL; | |
8743 | ||
8744 | if (info->endian == BFD_ENDIAN_BIG) | |
8745 | return print_insn_big_arm (memaddr, info); | |
8746 | else | |
8747 | return print_insn_little_arm (memaddr, info); | |
8748 | } | |
8749 | ||
8750 | /* The following define instruction sequences that will cause ARM | |
8751 | cpu's to take an undefined instruction trap. These are used to | |
8752 | signal a breakpoint to GDB. | |
8753 | ||
8754 | The newer ARMv4T cpu's are capable of operating in ARM or Thumb | |
8755 | modes. A different instruction is required for each mode. The ARM | |
8756 | cpu's can also be big or little endian. Thus four different | |
8757 | instructions are needed to support all cases. | |
8758 | ||
8759 | Note: ARMv4 defines several new instructions that will take the | |
8760 | undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does | |
8761 | not in fact add the new instructions. The new undefined | |
8762 | instructions in ARMv4 are all instructions that had no defined | |
8763 | behaviour in earlier chips. There is no guarantee that they will | |
8764 | raise an exception, but may be treated as NOP's. In practice, it | |
8765 | may only safe to rely on instructions matching: | |
8766 | ||
8767 | 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 | |
8768 | 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 | |
8769 | C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x | |
8770 | ||
0963b4bd | 8771 | Even this may only true if the condition predicate is true. The |
cca44b1b JB |
8772 | following use a condition predicate of ALWAYS so it is always TRUE. |
8773 | ||
8774 | There are other ways of forcing a breakpoint. GNU/Linux, RISC iX, | |
8775 | and NetBSD all use a software interrupt rather than an undefined | |
8776 | instruction to force a trap. This can be handled by by the | |
8777 | abi-specific code during establishment of the gdbarch vector. */ | |
8778 | ||
8779 | #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7} | |
8780 | #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE} | |
8781 | #define THUMB_LE_BREAKPOINT {0xbe,0xbe} | |
8782 | #define THUMB_BE_BREAKPOINT {0xbe,0xbe} | |
8783 | ||
8784 | static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT; | |
8785 | static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT; | |
8786 | static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT; | |
8787 | static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT; | |
8788 | ||
8789 | /* Determine the type and size of breakpoint to insert at PCPTR. Uses | |
8790 | the program counter value to determine whether a 16-bit or 32-bit | |
8791 | breakpoint should be used. It returns a pointer to a string of | |
8792 | bytes that encode a breakpoint instruction, stores the length of | |
8793 | the string to *lenptr, and adjusts the program counter (if | |
8794 | necessary) to point to the actual memory location where the | |
8795 | breakpoint should be inserted. */ | |
8796 | ||
8797 | static const unsigned char * | |
8798 | arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) | |
8799 | { | |
8800 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
177321bd | 8801 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
cca44b1b | 8802 | |
9779414d | 8803 | if (arm_pc_is_thumb (gdbarch, *pcptr)) |
cca44b1b JB |
8804 | { |
8805 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
177321bd DJ |
8806 | |
8807 | /* If we have a separate 32-bit breakpoint instruction for Thumb-2, | |
8808 | check whether we are replacing a 32-bit instruction. */ | |
8809 | if (tdep->thumb2_breakpoint != NULL) | |
8810 | { | |
8811 | gdb_byte buf[2]; | |
8812 | if (target_read_memory (*pcptr, buf, 2) == 0) | |
8813 | { | |
8814 | unsigned short inst1; | |
8815 | inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
db24da6d | 8816 | if (thumb_insn_size (inst1) == 4) |
177321bd DJ |
8817 | { |
8818 | *lenptr = tdep->thumb2_breakpoint_size; | |
8819 | return tdep->thumb2_breakpoint; | |
8820 | } | |
8821 | } | |
8822 | } | |
8823 | ||
cca44b1b JB |
8824 | *lenptr = tdep->thumb_breakpoint_size; |
8825 | return tdep->thumb_breakpoint; | |
8826 | } | |
8827 | else | |
8828 | { | |
8829 | *lenptr = tdep->arm_breakpoint_size; | |
8830 | return tdep->arm_breakpoint; | |
8831 | } | |
8832 | } | |
8833 | ||
177321bd DJ |
8834 | static void |
8835 | arm_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, | |
8836 | int *kindptr) | |
8837 | { | |
177321bd DJ |
8838 | arm_breakpoint_from_pc (gdbarch, pcptr, kindptr); |
8839 | ||
9779414d | 8840 | if (arm_pc_is_thumb (gdbarch, *pcptr) && *kindptr == 4) |
177321bd DJ |
8841 | /* The documented magic value for a 32-bit Thumb-2 breakpoint, so |
8842 | that this is not confused with a 32-bit ARM breakpoint. */ | |
8843 | *kindptr = 3; | |
8844 | } | |
8845 | ||
cca44b1b JB |
8846 | /* Extract from an array REGBUF containing the (raw) register state a |
8847 | function return value of type TYPE, and copy that, in virtual | |
8848 | format, into VALBUF. */ | |
8849 | ||
8850 | static void | |
8851 | arm_extract_return_value (struct type *type, struct regcache *regs, | |
8852 | gdb_byte *valbuf) | |
8853 | { | |
8854 | struct gdbarch *gdbarch = get_regcache_arch (regs); | |
8855 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
8856 | ||
8857 | if (TYPE_CODE_FLT == TYPE_CODE (type)) | |
8858 | { | |
8859 | switch (gdbarch_tdep (gdbarch)->fp_model) | |
8860 | { | |
8861 | case ARM_FLOAT_FPA: | |
8862 | { | |
8863 | /* The value is in register F0 in internal format. We need to | |
8864 | extract the raw value and then convert it to the desired | |
8865 | internal type. */ | |
8866 | bfd_byte tmpbuf[FP_REGISTER_SIZE]; | |
8867 | ||
8868 | regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf); | |
8869 | convert_from_extended (floatformat_from_type (type), tmpbuf, | |
8870 | valbuf, gdbarch_byte_order (gdbarch)); | |
8871 | } | |
8872 | break; | |
8873 | ||
8874 | case ARM_FLOAT_SOFT_FPA: | |
8875 | case ARM_FLOAT_SOFT_VFP: | |
8876 | /* ARM_FLOAT_VFP can arise if this is a variadic function so | |
8877 | not using the VFP ABI code. */ | |
8878 | case ARM_FLOAT_VFP: | |
8879 | regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf); | |
8880 | if (TYPE_LENGTH (type) > 4) | |
8881 | regcache_cooked_read (regs, ARM_A1_REGNUM + 1, | |
8882 | valbuf + INT_REGISTER_SIZE); | |
8883 | break; | |
8884 | ||
8885 | default: | |
0963b4bd MS |
8886 | internal_error (__FILE__, __LINE__, |
8887 | _("arm_extract_return_value: " | |
8888 | "Floating point model not supported")); | |
cca44b1b JB |
8889 | break; |
8890 | } | |
8891 | } | |
8892 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
8893 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
8894 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
8895 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
8896 | || TYPE_CODE (type) == TYPE_CODE_REF | |
8897 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8898 | { | |
b021a221 MS |
8899 | /* If the type is a plain integer, then the access is |
8900 | straight-forward. Otherwise we have to play around a bit | |
8901 | more. */ | |
cca44b1b JB |
8902 | int len = TYPE_LENGTH (type); |
8903 | int regno = ARM_A1_REGNUM; | |
8904 | ULONGEST tmp; | |
8905 | ||
8906 | while (len > 0) | |
8907 | { | |
8908 | /* By using store_unsigned_integer we avoid having to do | |
8909 | anything special for small big-endian values. */ | |
8910 | regcache_cooked_read_unsigned (regs, regno++, &tmp); | |
8911 | store_unsigned_integer (valbuf, | |
8912 | (len > INT_REGISTER_SIZE | |
8913 | ? INT_REGISTER_SIZE : len), | |
8914 | byte_order, tmp); | |
8915 | len -= INT_REGISTER_SIZE; | |
8916 | valbuf += INT_REGISTER_SIZE; | |
8917 | } | |
8918 | } | |
8919 | else | |
8920 | { | |
8921 | /* For a structure or union the behaviour is as if the value had | |
8922 | been stored to word-aligned memory and then loaded into | |
8923 | registers with 32-bit load instruction(s). */ | |
8924 | int len = TYPE_LENGTH (type); | |
8925 | int regno = ARM_A1_REGNUM; | |
8926 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; | |
8927 | ||
8928 | while (len > 0) | |
8929 | { | |
8930 | regcache_cooked_read (regs, regno++, tmpbuf); | |
8931 | memcpy (valbuf, tmpbuf, | |
8932 | len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len); | |
8933 | len -= INT_REGISTER_SIZE; | |
8934 | valbuf += INT_REGISTER_SIZE; | |
8935 | } | |
8936 | } | |
8937 | } | |
8938 | ||
8939 | ||
8940 | /* Will a function return an aggregate type in memory or in a | |
8941 | register? Return 0 if an aggregate type can be returned in a | |
8942 | register, 1 if it must be returned in memory. */ | |
8943 | ||
8944 | static int | |
8945 | arm_return_in_memory (struct gdbarch *gdbarch, struct type *type) | |
8946 | { | |
8947 | int nRc; | |
8948 | enum type_code code; | |
8949 | ||
8950 | CHECK_TYPEDEF (type); | |
8951 | ||
8952 | /* In the ARM ABI, "integer" like aggregate types are returned in | |
8953 | registers. For an aggregate type to be integer like, its size | |
8954 | must be less than or equal to INT_REGISTER_SIZE and the | |
8955 | offset of each addressable subfield must be zero. Note that bit | |
8956 | fields are not addressable, and all addressable subfields of | |
8957 | unions always start at offset zero. | |
8958 | ||
8959 | This function is based on the behaviour of GCC 2.95.1. | |
8960 | See: gcc/arm.c: arm_return_in_memory() for details. | |
8961 | ||
8962 | Note: All versions of GCC before GCC 2.95.2 do not set up the | |
8963 | parameters correctly for a function returning the following | |
8964 | structure: struct { float f;}; This should be returned in memory, | |
8965 | not a register. Richard Earnshaw sent me a patch, but I do not | |
8966 | know of any way to detect if a function like the above has been | |
8967 | compiled with the correct calling convention. */ | |
8968 | ||
8969 | /* All aggregate types that won't fit in a register must be returned | |
8970 | in memory. */ | |
8971 | if (TYPE_LENGTH (type) > INT_REGISTER_SIZE) | |
8972 | { | |
8973 | return 1; | |
8974 | } | |
8975 | ||
8976 | /* The AAPCS says all aggregates not larger than a word are returned | |
8977 | in a register. */ | |
8978 | if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS) | |
8979 | return 0; | |
8980 | ||
8981 | /* The only aggregate types that can be returned in a register are | |
8982 | structs and unions. Arrays must be returned in memory. */ | |
8983 | code = TYPE_CODE (type); | |
8984 | if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code)) | |
8985 | { | |
8986 | return 1; | |
8987 | } | |
8988 | ||
8989 | /* Assume all other aggregate types can be returned in a register. | |
8990 | Run a check for structures, unions and arrays. */ | |
8991 | nRc = 0; | |
8992 | ||
8993 | if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) | |
8994 | { | |
8995 | int i; | |
8996 | /* Need to check if this struct/union is "integer" like. For | |
8997 | this to be true, its size must be less than or equal to | |
8998 | INT_REGISTER_SIZE and the offset of each addressable | |
8999 | subfield must be zero. Note that bit fields are not | |
9000 | addressable, and unions always start at offset zero. If any | |
9001 | of the subfields is a floating point type, the struct/union | |
9002 | cannot be an integer type. */ | |
9003 | ||
9004 | /* For each field in the object, check: | |
9005 | 1) Is it FP? --> yes, nRc = 1; | |
67255d04 RE |
9006 | 2) Is it addressable (bitpos != 0) and |
9007 | not packed (bitsize == 0)? | |
9008 | --> yes, nRc = 1 | |
9009 | */ | |
9010 | ||
9011 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
9012 | { | |
9013 | enum type_code field_type_code; | |
0963b4bd MS |
9014 | field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, |
9015 | i))); | |
67255d04 RE |
9016 | |
9017 | /* Is it a floating point type field? */ | |
9018 | if (field_type_code == TYPE_CODE_FLT) | |
9019 | { | |
9020 | nRc = 1; | |
9021 | break; | |
9022 | } | |
9023 | ||
9024 | /* If bitpos != 0, then we have to care about it. */ | |
9025 | if (TYPE_FIELD_BITPOS (type, i) != 0) | |
9026 | { | |
9027 | /* Bitfields are not addressable. If the field bitsize is | |
9028 | zero, then the field is not packed. Hence it cannot be | |
9029 | a bitfield or any other packed type. */ | |
9030 | if (TYPE_FIELD_BITSIZE (type, i) == 0) | |
9031 | { | |
9032 | nRc = 1; | |
9033 | break; | |
9034 | } | |
9035 | } | |
9036 | } | |
9037 | } | |
9038 | ||
9039 | return nRc; | |
9040 | } | |
9041 | ||
34e8f22d RE |
9042 | /* Write into appropriate registers a function return value of type |
9043 | TYPE, given in virtual format. */ | |
9044 | ||
9045 | static void | |
b508a996 | 9046 | arm_store_return_value (struct type *type, struct regcache *regs, |
5238cf52 | 9047 | const gdb_byte *valbuf) |
34e8f22d | 9048 | { |
be8626e0 | 9049 | struct gdbarch *gdbarch = get_regcache_arch (regs); |
e17a4113 | 9050 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
be8626e0 | 9051 | |
34e8f22d RE |
9052 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
9053 | { | |
7a5ea0d4 | 9054 | char buf[MAX_REGISTER_SIZE]; |
34e8f22d | 9055 | |
be8626e0 | 9056 | switch (gdbarch_tdep (gdbarch)->fp_model) |
08216dd7 RE |
9057 | { |
9058 | case ARM_FLOAT_FPA: | |
9059 | ||
be8626e0 MD |
9060 | convert_to_extended (floatformat_from_type (type), buf, valbuf, |
9061 | gdbarch_byte_order (gdbarch)); | |
b508a996 | 9062 | regcache_cooked_write (regs, ARM_F0_REGNUM, buf); |
08216dd7 RE |
9063 | break; |
9064 | ||
fd50bc42 | 9065 | case ARM_FLOAT_SOFT_FPA: |
08216dd7 | 9066 | case ARM_FLOAT_SOFT_VFP: |
90445bd3 DJ |
9067 | /* ARM_FLOAT_VFP can arise if this is a variadic function so |
9068 | not using the VFP ABI code. */ | |
9069 | case ARM_FLOAT_VFP: | |
b508a996 RE |
9070 | regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf); |
9071 | if (TYPE_LENGTH (type) > 4) | |
9072 | regcache_cooked_write (regs, ARM_A1_REGNUM + 1, | |
7a5ea0d4 | 9073 | valbuf + INT_REGISTER_SIZE); |
08216dd7 RE |
9074 | break; |
9075 | ||
9076 | default: | |
9b20d036 MS |
9077 | internal_error (__FILE__, __LINE__, |
9078 | _("arm_store_return_value: Floating " | |
9079 | "point model not supported")); | |
08216dd7 RE |
9080 | break; |
9081 | } | |
34e8f22d | 9082 | } |
b508a996 RE |
9083 | else if (TYPE_CODE (type) == TYPE_CODE_INT |
9084 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
9085 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
9086 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
9087 | || TYPE_CODE (type) == TYPE_CODE_REF | |
9088 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
9089 | { | |
9090 | if (TYPE_LENGTH (type) <= 4) | |
9091 | { | |
9092 | /* Values of one word or less are zero/sign-extended and | |
9093 | returned in r0. */ | |
7a5ea0d4 | 9094 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; |
b508a996 RE |
9095 | LONGEST val = unpack_long (type, valbuf); |
9096 | ||
e17a4113 | 9097 | store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val); |
b508a996 RE |
9098 | regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf); |
9099 | } | |
9100 | else | |
9101 | { | |
9102 | /* Integral values greater than one word are stored in consecutive | |
9103 | registers starting with r0. This will always be a multiple of | |
9104 | the regiser size. */ | |
9105 | int len = TYPE_LENGTH (type); | |
9106 | int regno = ARM_A1_REGNUM; | |
9107 | ||
9108 | while (len > 0) | |
9109 | { | |
9110 | regcache_cooked_write (regs, regno++, valbuf); | |
7a5ea0d4 DJ |
9111 | len -= INT_REGISTER_SIZE; |
9112 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
9113 | } |
9114 | } | |
9115 | } | |
34e8f22d | 9116 | else |
b508a996 RE |
9117 | { |
9118 | /* For a structure or union the behaviour is as if the value had | |
9119 | been stored to word-aligned memory and then loaded into | |
9120 | registers with 32-bit load instruction(s). */ | |
9121 | int len = TYPE_LENGTH (type); | |
9122 | int regno = ARM_A1_REGNUM; | |
7a5ea0d4 | 9123 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; |
b508a996 RE |
9124 | |
9125 | while (len > 0) | |
9126 | { | |
9127 | memcpy (tmpbuf, valbuf, | |
7a5ea0d4 | 9128 | len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len); |
b508a996 | 9129 | regcache_cooked_write (regs, regno++, tmpbuf); |
7a5ea0d4 DJ |
9130 | len -= INT_REGISTER_SIZE; |
9131 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
9132 | } |
9133 | } | |
34e8f22d RE |
9134 | } |
9135 | ||
2af48f68 PB |
9136 | |
9137 | /* Handle function return values. */ | |
9138 | ||
9139 | static enum return_value_convention | |
6a3a010b | 9140 | arm_return_value (struct gdbarch *gdbarch, struct value *function, |
c055b101 CV |
9141 | struct type *valtype, struct regcache *regcache, |
9142 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
2af48f68 | 9143 | { |
7c00367c | 9144 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
6a3a010b | 9145 | struct type *func_type = function ? value_type (function) : NULL; |
90445bd3 DJ |
9146 | enum arm_vfp_cprc_base_type vfp_base_type; |
9147 | int vfp_base_count; | |
9148 | ||
9149 | if (arm_vfp_abi_for_function (gdbarch, func_type) | |
9150 | && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count)) | |
9151 | { | |
9152 | int reg_char = arm_vfp_cprc_reg_char (vfp_base_type); | |
9153 | int unit_length = arm_vfp_cprc_unit_length (vfp_base_type); | |
9154 | int i; | |
9155 | for (i = 0; i < vfp_base_count; i++) | |
9156 | { | |
58d6951d DJ |
9157 | if (reg_char == 'q') |
9158 | { | |
9159 | if (writebuf) | |
9160 | arm_neon_quad_write (gdbarch, regcache, i, | |
9161 | writebuf + i * unit_length); | |
9162 | ||
9163 | if (readbuf) | |
9164 | arm_neon_quad_read (gdbarch, regcache, i, | |
9165 | readbuf + i * unit_length); | |
9166 | } | |
9167 | else | |
9168 | { | |
9169 | char name_buf[4]; | |
9170 | int regnum; | |
9171 | ||
9172 | sprintf (name_buf, "%c%d", reg_char, i); | |
9173 | regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
9174 | strlen (name_buf)); | |
9175 | if (writebuf) | |
9176 | regcache_cooked_write (regcache, regnum, | |
9177 | writebuf + i * unit_length); | |
9178 | if (readbuf) | |
9179 | regcache_cooked_read (regcache, regnum, | |
9180 | readbuf + i * unit_length); | |
9181 | } | |
90445bd3 DJ |
9182 | } |
9183 | return RETURN_VALUE_REGISTER_CONVENTION; | |
9184 | } | |
7c00367c | 9185 | |
2af48f68 PB |
9186 | if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT |
9187 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
9188 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
9189 | { | |
7c00367c MK |
9190 | if (tdep->struct_return == pcc_struct_return |
9191 | || arm_return_in_memory (gdbarch, valtype)) | |
2af48f68 PB |
9192 | return RETURN_VALUE_STRUCT_CONVENTION; |
9193 | } | |
9194 | ||
7052e42c UW |
9195 | /* AAPCS returns complex types longer than a register in memory. */ |
9196 | if (tdep->arm_abi != ARM_ABI_APCS | |
9197 | && TYPE_CODE (valtype) == TYPE_CODE_COMPLEX | |
9198 | && TYPE_LENGTH (valtype) > INT_REGISTER_SIZE) | |
9199 | return RETURN_VALUE_STRUCT_CONVENTION; | |
9200 | ||
2af48f68 PB |
9201 | if (writebuf) |
9202 | arm_store_return_value (valtype, regcache, writebuf); | |
9203 | ||
9204 | if (readbuf) | |
9205 | arm_extract_return_value (valtype, regcache, readbuf); | |
9206 | ||
9207 | return RETURN_VALUE_REGISTER_CONVENTION; | |
9208 | } | |
9209 | ||
9210 | ||
9df628e0 | 9211 | static int |
60ade65d | 9212 | arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) |
9df628e0 | 9213 | { |
e17a4113 UW |
9214 | struct gdbarch *gdbarch = get_frame_arch (frame); |
9215 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
9216 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
9df628e0 | 9217 | CORE_ADDR jb_addr; |
7a5ea0d4 | 9218 | char buf[INT_REGISTER_SIZE]; |
9df628e0 | 9219 | |
60ade65d | 9220 | jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM); |
9df628e0 RE |
9221 | |
9222 | if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf, | |
7a5ea0d4 | 9223 | INT_REGISTER_SIZE)) |
9df628e0 RE |
9224 | return 0; |
9225 | ||
e17a4113 | 9226 | *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order); |
9df628e0 RE |
9227 | return 1; |
9228 | } | |
9229 | ||
faa95490 DJ |
9230 | /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline, |
9231 | return the target PC. Otherwise return 0. */ | |
c906108c SS |
9232 | |
9233 | CORE_ADDR | |
52f729a7 | 9234 | arm_skip_stub (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 9235 | { |
2c02bd72 | 9236 | const char *name; |
faa95490 | 9237 | int namelen; |
c906108c SS |
9238 | CORE_ADDR start_addr; |
9239 | ||
9240 | /* Find the starting address and name of the function containing the PC. */ | |
9241 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
9242 | return 0; | |
9243 | ||
faa95490 DJ |
9244 | /* If PC is in a Thumb call or return stub, return the address of the |
9245 | target PC, which is in a register. The thunk functions are called | |
9246 | _call_via_xx, where x is the register name. The possible names | |
3d8d5e79 DJ |
9247 | are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar |
9248 | functions, named __ARM_call_via_r[0-7]. */ | |
9249 | if (strncmp (name, "_call_via_", 10) == 0 | |
9250 | || strncmp (name, "__ARM_call_via_", strlen ("__ARM_call_via_")) == 0) | |
c906108c | 9251 | { |
ed9a39eb JM |
9252 | /* Use the name suffix to determine which register contains the |
9253 | target PC. */ | |
c5aa993b JM |
9254 | static char *table[15] = |
9255 | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
9256 | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | |
9257 | }; | |
c906108c | 9258 | int regno; |
faa95490 | 9259 | int offset = strlen (name) - 2; |
c906108c SS |
9260 | |
9261 | for (regno = 0; regno <= 14; regno++) | |
faa95490 | 9262 | if (strcmp (&name[offset], table[regno]) == 0) |
52f729a7 | 9263 | return get_frame_register_unsigned (frame, regno); |
c906108c | 9264 | } |
ed9a39eb | 9265 | |
faa95490 DJ |
9266 | /* GNU ld generates __foo_from_arm or __foo_from_thumb for |
9267 | non-interworking calls to foo. We could decode the stubs | |
9268 | to find the target but it's easier to use the symbol table. */ | |
9269 | namelen = strlen (name); | |
9270 | if (name[0] == '_' && name[1] == '_' | |
9271 | && ((namelen > 2 + strlen ("_from_thumb") | |
9272 | && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb", | |
9273 | strlen ("_from_thumb")) == 0) | |
9274 | || (namelen > 2 + strlen ("_from_arm") | |
9275 | && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm", | |
9276 | strlen ("_from_arm")) == 0))) | |
9277 | { | |
9278 | char *target_name; | |
9279 | int target_len = namelen - 2; | |
9280 | struct minimal_symbol *minsym; | |
9281 | struct objfile *objfile; | |
9282 | struct obj_section *sec; | |
9283 | ||
9284 | if (name[namelen - 1] == 'b') | |
9285 | target_len -= strlen ("_from_thumb"); | |
9286 | else | |
9287 | target_len -= strlen ("_from_arm"); | |
9288 | ||
9289 | target_name = alloca (target_len + 1); | |
9290 | memcpy (target_name, name + 2, target_len); | |
9291 | target_name[target_len] = '\0'; | |
9292 | ||
9293 | sec = find_pc_section (pc); | |
9294 | objfile = (sec == NULL) ? NULL : sec->objfile; | |
9295 | minsym = lookup_minimal_symbol (target_name, NULL, objfile); | |
9296 | if (minsym != NULL) | |
9297 | return SYMBOL_VALUE_ADDRESS (minsym); | |
9298 | else | |
9299 | return 0; | |
9300 | } | |
9301 | ||
c5aa993b | 9302 | return 0; /* not a stub */ |
c906108c SS |
9303 | } |
9304 | ||
afd7eef0 RE |
9305 | static void |
9306 | set_arm_command (char *args, int from_tty) | |
9307 | { | |
edefbb7c AC |
9308 | printf_unfiltered (_("\ |
9309 | \"set arm\" must be followed by an apporpriate subcommand.\n")); | |
afd7eef0 RE |
9310 | help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout); |
9311 | } | |
9312 | ||
9313 | static void | |
9314 | show_arm_command (char *args, int from_tty) | |
9315 | { | |
26304000 | 9316 | cmd_show_list (showarmcmdlist, from_tty, ""); |
afd7eef0 RE |
9317 | } |
9318 | ||
28e97307 DJ |
9319 | static void |
9320 | arm_update_current_architecture (void) | |
fd50bc42 | 9321 | { |
28e97307 | 9322 | struct gdbarch_info info; |
fd50bc42 | 9323 | |
28e97307 | 9324 | /* If the current architecture is not ARM, we have nothing to do. */ |
f5656ead | 9325 | if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm) |
28e97307 | 9326 | return; |
fd50bc42 | 9327 | |
28e97307 DJ |
9328 | /* Update the architecture. */ |
9329 | gdbarch_info_init (&info); | |
fd50bc42 | 9330 | |
28e97307 | 9331 | if (!gdbarch_update_p (info)) |
9b20d036 | 9332 | internal_error (__FILE__, __LINE__, _("could not update architecture")); |
fd50bc42 RE |
9333 | } |
9334 | ||
9335 | static void | |
9336 | set_fp_model_sfunc (char *args, int from_tty, | |
9337 | struct cmd_list_element *c) | |
9338 | { | |
9339 | enum arm_float_model fp_model; | |
9340 | ||
9341 | for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++) | |
9342 | if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0) | |
9343 | { | |
9344 | arm_fp_model = fp_model; | |
9345 | break; | |
9346 | } | |
9347 | ||
9348 | if (fp_model == ARM_FLOAT_LAST) | |
edefbb7c | 9349 | internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."), |
fd50bc42 RE |
9350 | current_fp_model); |
9351 | ||
28e97307 | 9352 | arm_update_current_architecture (); |
fd50bc42 RE |
9353 | } |
9354 | ||
9355 | static void | |
08546159 AC |
9356 | show_fp_model (struct ui_file *file, int from_tty, |
9357 | struct cmd_list_element *c, const char *value) | |
fd50bc42 | 9358 | { |
f5656ead | 9359 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ()); |
fd50bc42 | 9360 | |
28e97307 | 9361 | if (arm_fp_model == ARM_FLOAT_AUTO |
f5656ead | 9362 | && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm) |
28e97307 DJ |
9363 | fprintf_filtered (file, _("\ |
9364 | The current ARM floating point model is \"auto\" (currently \"%s\").\n"), | |
9365 | fp_model_strings[tdep->fp_model]); | |
9366 | else | |
9367 | fprintf_filtered (file, _("\ | |
9368 | The current ARM floating point model is \"%s\".\n"), | |
9369 | fp_model_strings[arm_fp_model]); | |
9370 | } | |
9371 | ||
9372 | static void | |
9373 | arm_set_abi (char *args, int from_tty, | |
9374 | struct cmd_list_element *c) | |
9375 | { | |
9376 | enum arm_abi_kind arm_abi; | |
9377 | ||
9378 | for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++) | |
9379 | if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0) | |
9380 | { | |
9381 | arm_abi_global = arm_abi; | |
9382 | break; | |
9383 | } | |
9384 | ||
9385 | if (arm_abi == ARM_ABI_LAST) | |
9386 | internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."), | |
9387 | arm_abi_string); | |
9388 | ||
9389 | arm_update_current_architecture (); | |
9390 | } | |
9391 | ||
9392 | static void | |
9393 | arm_show_abi (struct ui_file *file, int from_tty, | |
9394 | struct cmd_list_element *c, const char *value) | |
9395 | { | |
f5656ead | 9396 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ()); |
28e97307 DJ |
9397 | |
9398 | if (arm_abi_global == ARM_ABI_AUTO | |
f5656ead | 9399 | && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm) |
28e97307 DJ |
9400 | fprintf_filtered (file, _("\ |
9401 | The current ARM ABI is \"auto\" (currently \"%s\").\n"), | |
9402 | arm_abi_strings[tdep->arm_abi]); | |
9403 | else | |
9404 | fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"), | |
9405 | arm_abi_string); | |
fd50bc42 RE |
9406 | } |
9407 | ||
0428b8f5 DJ |
9408 | static void |
9409 | arm_show_fallback_mode (struct ui_file *file, int from_tty, | |
9410 | struct cmd_list_element *c, const char *value) | |
9411 | { | |
0963b4bd MS |
9412 | fprintf_filtered (file, |
9413 | _("The current execution mode assumed " | |
9414 | "(when symbols are unavailable) is \"%s\".\n"), | |
0428b8f5 DJ |
9415 | arm_fallback_mode_string); |
9416 | } | |
9417 | ||
9418 | static void | |
9419 | arm_show_force_mode (struct ui_file *file, int from_tty, | |
9420 | struct cmd_list_element *c, const char *value) | |
9421 | { | |
f5656ead | 9422 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ()); |
0428b8f5 | 9423 | |
0963b4bd MS |
9424 | fprintf_filtered (file, |
9425 | _("The current execution mode assumed " | |
9426 | "(even when symbols are available) is \"%s\".\n"), | |
0428b8f5 DJ |
9427 | arm_force_mode_string); |
9428 | } | |
9429 | ||
afd7eef0 RE |
9430 | /* If the user changes the register disassembly style used for info |
9431 | register and other commands, we have to also switch the style used | |
9432 | in opcodes for disassembly output. This function is run in the "set | |
9433 | arm disassembly" command, and does that. */ | |
bc90b915 FN |
9434 | |
9435 | static void | |
afd7eef0 | 9436 | set_disassembly_style_sfunc (char *args, int from_tty, |
bc90b915 FN |
9437 | struct cmd_list_element *c) |
9438 | { | |
afd7eef0 | 9439 | set_disassembly_style (); |
bc90b915 FN |
9440 | } |
9441 | \f | |
966fbf70 | 9442 | /* Return the ARM register name corresponding to register I. */ |
a208b0cb | 9443 | static const char * |
d93859e2 | 9444 | arm_register_name (struct gdbarch *gdbarch, int i) |
966fbf70 | 9445 | { |
58d6951d DJ |
9446 | const int num_regs = gdbarch_num_regs (gdbarch); |
9447 | ||
9448 | if (gdbarch_tdep (gdbarch)->have_vfp_pseudos | |
9449 | && i >= num_regs && i < num_regs + 32) | |
9450 | { | |
9451 | static const char *const vfp_pseudo_names[] = { | |
9452 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
9453 | "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", | |
9454 | "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23", | |
9455 | "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31", | |
9456 | }; | |
9457 | ||
9458 | return vfp_pseudo_names[i - num_regs]; | |
9459 | } | |
9460 | ||
9461 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos | |
9462 | && i >= num_regs + 32 && i < num_regs + 32 + 16) | |
9463 | { | |
9464 | static const char *const neon_pseudo_names[] = { | |
9465 | "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", | |
9466 | "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", | |
9467 | }; | |
9468 | ||
9469 | return neon_pseudo_names[i - num_regs - 32]; | |
9470 | } | |
9471 | ||
ff6f572f DJ |
9472 | if (i >= ARRAY_SIZE (arm_register_names)) |
9473 | /* These registers are only supported on targets which supply | |
9474 | an XML description. */ | |
9475 | return ""; | |
9476 | ||
966fbf70 RE |
9477 | return arm_register_names[i]; |
9478 | } | |
9479 | ||
bc90b915 | 9480 | static void |
afd7eef0 | 9481 | set_disassembly_style (void) |
bc90b915 | 9482 | { |
123dc839 | 9483 | int current; |
bc90b915 | 9484 | |
123dc839 DJ |
9485 | /* Find the style that the user wants. */ |
9486 | for (current = 0; current < num_disassembly_options; current++) | |
9487 | if (disassembly_style == valid_disassembly_styles[current]) | |
9488 | break; | |
9489 | gdb_assert (current < num_disassembly_options); | |
bc90b915 | 9490 | |
94c30b78 | 9491 | /* Synchronize the disassembler. */ |
bc90b915 FN |
9492 | set_arm_regname_option (current); |
9493 | } | |
9494 | ||
082fc60d RE |
9495 | /* Test whether the coff symbol specific value corresponds to a Thumb |
9496 | function. */ | |
9497 | ||
9498 | static int | |
9499 | coff_sym_is_thumb (int val) | |
9500 | { | |
f8bf5763 PM |
9501 | return (val == C_THUMBEXT |
9502 | || val == C_THUMBSTAT | |
9503 | || val == C_THUMBEXTFUNC | |
9504 | || val == C_THUMBSTATFUNC | |
9505 | || val == C_THUMBLABEL); | |
082fc60d RE |
9506 | } |
9507 | ||
9508 | /* arm_coff_make_msymbol_special() | |
9509 | arm_elf_make_msymbol_special() | |
9510 | ||
9511 | These functions test whether the COFF or ELF symbol corresponds to | |
9512 | an address in thumb code, and set a "special" bit in a minimal | |
9513 | symbol to indicate that it does. */ | |
9514 | ||
34e8f22d | 9515 | static void |
082fc60d RE |
9516 | arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym) |
9517 | { | |
467d42c4 UW |
9518 | if (ARM_SYM_BRANCH_TYPE (&((elf_symbol_type *)sym)->internal_elf_sym) |
9519 | == ST_BRANCH_TO_THUMB) | |
082fc60d RE |
9520 | MSYMBOL_SET_SPECIAL (msym); |
9521 | } | |
9522 | ||
34e8f22d | 9523 | static void |
082fc60d RE |
9524 | arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym) |
9525 | { | |
9526 | if (coff_sym_is_thumb (val)) | |
9527 | MSYMBOL_SET_SPECIAL (msym); | |
9528 | } | |
9529 | ||
60c5725c | 9530 | static void |
c1bd65d0 | 9531 | arm_objfile_data_free (struct objfile *objfile, void *arg) |
60c5725c DJ |
9532 | { |
9533 | struct arm_per_objfile *data = arg; | |
9534 | unsigned int i; | |
9535 | ||
9536 | for (i = 0; i < objfile->obfd->section_count; i++) | |
9537 | VEC_free (arm_mapping_symbol_s, data->section_maps[i]); | |
9538 | } | |
9539 | ||
9540 | static void | |
9541 | arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile, | |
9542 | asymbol *sym) | |
9543 | { | |
9544 | const char *name = bfd_asymbol_name (sym); | |
9545 | struct arm_per_objfile *data; | |
9546 | VEC(arm_mapping_symbol_s) **map_p; | |
9547 | struct arm_mapping_symbol new_map_sym; | |
9548 | ||
9549 | gdb_assert (name[0] == '$'); | |
9550 | if (name[1] != 'a' && name[1] != 't' && name[1] != 'd') | |
9551 | return; | |
9552 | ||
9553 | data = objfile_data (objfile, arm_objfile_data_key); | |
9554 | if (data == NULL) | |
9555 | { | |
9556 | data = OBSTACK_ZALLOC (&objfile->objfile_obstack, | |
9557 | struct arm_per_objfile); | |
9558 | set_objfile_data (objfile, arm_objfile_data_key, data); | |
9559 | data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack, | |
9560 | objfile->obfd->section_count, | |
9561 | VEC(arm_mapping_symbol_s) *); | |
9562 | } | |
9563 | map_p = &data->section_maps[bfd_get_section (sym)->index]; | |
9564 | ||
9565 | new_map_sym.value = sym->value; | |
9566 | new_map_sym.type = name[1]; | |
9567 | ||
9568 | /* Assume that most mapping symbols appear in order of increasing | |
9569 | value. If they were randomly distributed, it would be faster to | |
9570 | always push here and then sort at first use. */ | |
9571 | if (!VEC_empty (arm_mapping_symbol_s, *map_p)) | |
9572 | { | |
9573 | struct arm_mapping_symbol *prev_map_sym; | |
9574 | ||
9575 | prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p); | |
9576 | if (prev_map_sym->value >= sym->value) | |
9577 | { | |
9578 | unsigned int idx; | |
9579 | idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym, | |
9580 | arm_compare_mapping_symbols); | |
9581 | VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym); | |
9582 | return; | |
9583 | } | |
9584 | } | |
9585 | ||
9586 | VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym); | |
9587 | } | |
9588 | ||
756fe439 | 9589 | static void |
61a1198a | 9590 | arm_write_pc (struct regcache *regcache, CORE_ADDR pc) |
756fe439 | 9591 | { |
9779414d | 9592 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
61a1198a | 9593 | regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc); |
756fe439 DJ |
9594 | |
9595 | /* If necessary, set the T bit. */ | |
9596 | if (arm_apcs_32) | |
9597 | { | |
9779414d | 9598 | ULONGEST val, t_bit; |
61a1198a | 9599 | regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val); |
9779414d DJ |
9600 | t_bit = arm_psr_thumb_bit (gdbarch); |
9601 | if (arm_pc_is_thumb (gdbarch, pc)) | |
9602 | regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, | |
9603 | val | t_bit); | |
756fe439 | 9604 | else |
61a1198a | 9605 | regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, |
9779414d | 9606 | val & ~t_bit); |
756fe439 DJ |
9607 | } |
9608 | } | |
123dc839 | 9609 | |
58d6951d DJ |
9610 | /* Read the contents of a NEON quad register, by reading from two |
9611 | double registers. This is used to implement the quad pseudo | |
9612 | registers, and for argument passing in case the quad registers are | |
9613 | missing; vectors are passed in quad registers when using the VFP | |
9614 | ABI, even if a NEON unit is not present. REGNUM is the index of | |
9615 | the quad register, in [0, 15]. */ | |
9616 | ||
05d1431c | 9617 | static enum register_status |
58d6951d DJ |
9618 | arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache, |
9619 | int regnum, gdb_byte *buf) | |
9620 | { | |
9621 | char name_buf[4]; | |
9622 | gdb_byte reg_buf[8]; | |
9623 | int offset, double_regnum; | |
05d1431c | 9624 | enum register_status status; |
58d6951d DJ |
9625 | |
9626 | sprintf (name_buf, "d%d", regnum << 1); | |
9627 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
9628 | strlen (name_buf)); | |
9629 | ||
9630 | /* d0 is always the least significant half of q0. */ | |
9631 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
9632 | offset = 8; | |
9633 | else | |
9634 | offset = 0; | |
9635 | ||
05d1431c PA |
9636 | status = regcache_raw_read (regcache, double_regnum, reg_buf); |
9637 | if (status != REG_VALID) | |
9638 | return status; | |
58d6951d DJ |
9639 | memcpy (buf + offset, reg_buf, 8); |
9640 | ||
9641 | offset = 8 - offset; | |
05d1431c PA |
9642 | status = regcache_raw_read (regcache, double_regnum + 1, reg_buf); |
9643 | if (status != REG_VALID) | |
9644 | return status; | |
58d6951d | 9645 | memcpy (buf + offset, reg_buf, 8); |
05d1431c PA |
9646 | |
9647 | return REG_VALID; | |
58d6951d DJ |
9648 | } |
9649 | ||
05d1431c | 9650 | static enum register_status |
58d6951d DJ |
9651 | arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache, |
9652 | int regnum, gdb_byte *buf) | |
9653 | { | |
9654 | const int num_regs = gdbarch_num_regs (gdbarch); | |
9655 | char name_buf[4]; | |
9656 | gdb_byte reg_buf[8]; | |
9657 | int offset, double_regnum; | |
9658 | ||
9659 | gdb_assert (regnum >= num_regs); | |
9660 | regnum -= num_regs; | |
9661 | ||
9662 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48) | |
9663 | /* Quad-precision register. */ | |
05d1431c | 9664 | return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf); |
58d6951d DJ |
9665 | else |
9666 | { | |
05d1431c PA |
9667 | enum register_status status; |
9668 | ||
58d6951d DJ |
9669 | /* Single-precision register. */ |
9670 | gdb_assert (regnum < 32); | |
9671 | ||
9672 | /* s0 is always the least significant half of d0. */ | |
9673 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
9674 | offset = (regnum & 1) ? 0 : 4; | |
9675 | else | |
9676 | offset = (regnum & 1) ? 4 : 0; | |
9677 | ||
9678 | sprintf (name_buf, "d%d", regnum >> 1); | |
9679 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
9680 | strlen (name_buf)); | |
9681 | ||
05d1431c PA |
9682 | status = regcache_raw_read (regcache, double_regnum, reg_buf); |
9683 | if (status == REG_VALID) | |
9684 | memcpy (buf, reg_buf + offset, 4); | |
9685 | return status; | |
58d6951d DJ |
9686 | } |
9687 | } | |
9688 | ||
9689 | /* Store the contents of BUF to a NEON quad register, by writing to | |
9690 | two double registers. This is used to implement the quad pseudo | |
9691 | registers, and for argument passing in case the quad registers are | |
9692 | missing; vectors are passed in quad registers when using the VFP | |
9693 | ABI, even if a NEON unit is not present. REGNUM is the index | |
9694 | of the quad register, in [0, 15]. */ | |
9695 | ||
9696 | static void | |
9697 | arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
9698 | int regnum, const gdb_byte *buf) | |
9699 | { | |
9700 | char name_buf[4]; | |
58d6951d DJ |
9701 | int offset, double_regnum; |
9702 | ||
9703 | sprintf (name_buf, "d%d", regnum << 1); | |
9704 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
9705 | strlen (name_buf)); | |
9706 | ||
9707 | /* d0 is always the least significant half of q0. */ | |
9708 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
9709 | offset = 8; | |
9710 | else | |
9711 | offset = 0; | |
9712 | ||
9713 | regcache_raw_write (regcache, double_regnum, buf + offset); | |
9714 | offset = 8 - offset; | |
9715 | regcache_raw_write (regcache, double_regnum + 1, buf + offset); | |
9716 | } | |
9717 | ||
9718 | static void | |
9719 | arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
9720 | int regnum, const gdb_byte *buf) | |
9721 | { | |
9722 | const int num_regs = gdbarch_num_regs (gdbarch); | |
9723 | char name_buf[4]; | |
9724 | gdb_byte reg_buf[8]; | |
9725 | int offset, double_regnum; | |
9726 | ||
9727 | gdb_assert (regnum >= num_regs); | |
9728 | regnum -= num_regs; | |
9729 | ||
9730 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48) | |
9731 | /* Quad-precision register. */ | |
9732 | arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf); | |
9733 | else | |
9734 | { | |
9735 | /* Single-precision register. */ | |
9736 | gdb_assert (regnum < 32); | |
9737 | ||
9738 | /* s0 is always the least significant half of d0. */ | |
9739 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
9740 | offset = (regnum & 1) ? 0 : 4; | |
9741 | else | |
9742 | offset = (regnum & 1) ? 4 : 0; | |
9743 | ||
9744 | sprintf (name_buf, "d%d", regnum >> 1); | |
9745 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
9746 | strlen (name_buf)); | |
9747 | ||
9748 | regcache_raw_read (regcache, double_regnum, reg_buf); | |
9749 | memcpy (reg_buf + offset, buf, 4); | |
9750 | regcache_raw_write (regcache, double_regnum, reg_buf); | |
9751 | } | |
9752 | } | |
9753 | ||
123dc839 DJ |
9754 | static struct value * |
9755 | value_of_arm_user_reg (struct frame_info *frame, const void *baton) | |
9756 | { | |
9757 | const int *reg_p = baton; | |
9758 | return value_of_register (*reg_p, frame); | |
9759 | } | |
97e03143 | 9760 | \f |
70f80edf JT |
9761 | static enum gdb_osabi |
9762 | arm_elf_osabi_sniffer (bfd *abfd) | |
97e03143 | 9763 | { |
2af48f68 | 9764 | unsigned int elfosabi; |
70f80edf | 9765 | enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; |
97e03143 | 9766 | |
70f80edf | 9767 | elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI]; |
97e03143 | 9768 | |
28e97307 DJ |
9769 | if (elfosabi == ELFOSABI_ARM) |
9770 | /* GNU tools use this value. Check note sections in this case, | |
9771 | as well. */ | |
9772 | bfd_map_over_sections (abfd, | |
9773 | generic_elf_osabi_sniff_abi_tag_sections, | |
9774 | &osabi); | |
97e03143 | 9775 | |
28e97307 | 9776 | /* Anything else will be handled by the generic ELF sniffer. */ |
70f80edf | 9777 | return osabi; |
97e03143 RE |
9778 | } |
9779 | ||
54483882 YQ |
9780 | static int |
9781 | arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
9782 | struct reggroup *group) | |
9783 | { | |
2c291032 YQ |
9784 | /* FPS register's type is INT, but belongs to float_reggroup. Beside |
9785 | this, FPS register belongs to save_regroup, restore_reggroup, and | |
9786 | all_reggroup, of course. */ | |
54483882 | 9787 | if (regnum == ARM_FPS_REGNUM) |
2c291032 YQ |
9788 | return (group == float_reggroup |
9789 | || group == save_reggroup | |
9790 | || group == restore_reggroup | |
9791 | || group == all_reggroup); | |
54483882 YQ |
9792 | else |
9793 | return default_register_reggroup_p (gdbarch, regnum, group); | |
9794 | } | |
9795 | ||
25f8c692 JL |
9796 | \f |
9797 | /* For backward-compatibility we allow two 'g' packet lengths with | |
9798 | the remote protocol depending on whether FPA registers are | |
9799 | supplied. M-profile targets do not have FPA registers, but some | |
9800 | stubs already exist in the wild which use a 'g' packet which | |
9801 | supplies them albeit with dummy values. The packet format which | |
9802 | includes FPA registers should be considered deprecated for | |
9803 | M-profile targets. */ | |
9804 | ||
9805 | static void | |
9806 | arm_register_g_packet_guesses (struct gdbarch *gdbarch) | |
9807 | { | |
9808 | if (gdbarch_tdep (gdbarch)->is_m) | |
9809 | { | |
9810 | /* If we know from the executable this is an M-profile target, | |
9811 | cater for remote targets whose register set layout is the | |
9812 | same as the FPA layout. */ | |
9813 | register_remote_g_packet_guess (gdbarch, | |
03145bf4 | 9814 | /* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */ |
25f8c692 JL |
9815 | (16 * INT_REGISTER_SIZE) |
9816 | + (8 * FP_REGISTER_SIZE) | |
9817 | + (2 * INT_REGISTER_SIZE), | |
9818 | tdesc_arm_with_m_fpa_layout); | |
9819 | ||
9820 | /* The regular M-profile layout. */ | |
9821 | register_remote_g_packet_guess (gdbarch, | |
9822 | /* r0-r12,sp,lr,pc; xpsr */ | |
9823 | (16 * INT_REGISTER_SIZE) | |
9824 | + INT_REGISTER_SIZE, | |
9825 | tdesc_arm_with_m); | |
3184d3f9 JL |
9826 | |
9827 | /* M-profile plus M4F VFP. */ | |
9828 | register_remote_g_packet_guess (gdbarch, | |
9829 | /* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */ | |
9830 | (16 * INT_REGISTER_SIZE) | |
9831 | + (16 * VFP_REGISTER_SIZE) | |
9832 | + (2 * INT_REGISTER_SIZE), | |
9833 | tdesc_arm_with_m_vfp_d16); | |
25f8c692 JL |
9834 | } |
9835 | ||
9836 | /* Otherwise we don't have a useful guess. */ | |
9837 | } | |
9838 | ||
70f80edf | 9839 | \f |
da3c6d4a MS |
9840 | /* Initialize the current architecture based on INFO. If possible, |
9841 | re-use an architecture from ARCHES, which is a list of | |
9842 | architectures already created during this debugging session. | |
97e03143 | 9843 | |
da3c6d4a MS |
9844 | Called e.g. at program startup, when reading a core file, and when |
9845 | reading a binary file. */ | |
97e03143 | 9846 | |
39bbf761 RE |
9847 | static struct gdbarch * |
9848 | arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
9849 | { | |
97e03143 | 9850 | struct gdbarch_tdep *tdep; |
39bbf761 | 9851 | struct gdbarch *gdbarch; |
28e97307 DJ |
9852 | struct gdbarch_list *best_arch; |
9853 | enum arm_abi_kind arm_abi = arm_abi_global; | |
9854 | enum arm_float_model fp_model = arm_fp_model; | |
123dc839 | 9855 | struct tdesc_arch_data *tdesc_data = NULL; |
9779414d | 9856 | int i, is_m = 0; |
58d6951d DJ |
9857 | int have_vfp_registers = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0; |
9858 | int have_neon = 0; | |
ff6f572f | 9859 | int have_fpa_registers = 1; |
9779414d DJ |
9860 | const struct target_desc *tdesc = info.target_desc; |
9861 | ||
9862 | /* If we have an object to base this architecture on, try to determine | |
9863 | its ABI. */ | |
9864 | ||
9865 | if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL) | |
9866 | { | |
9867 | int ei_osabi, e_flags; | |
9868 | ||
9869 | switch (bfd_get_flavour (info.abfd)) | |
9870 | { | |
9871 | case bfd_target_aout_flavour: | |
9872 | /* Assume it's an old APCS-style ABI. */ | |
9873 | arm_abi = ARM_ABI_APCS; | |
9874 | break; | |
9875 | ||
9876 | case bfd_target_coff_flavour: | |
9877 | /* Assume it's an old APCS-style ABI. */ | |
9878 | /* XXX WinCE? */ | |
9879 | arm_abi = ARM_ABI_APCS; | |
9880 | break; | |
9881 | ||
9882 | case bfd_target_elf_flavour: | |
9883 | ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI]; | |
9884 | e_flags = elf_elfheader (info.abfd)->e_flags; | |
9885 | ||
9886 | if (ei_osabi == ELFOSABI_ARM) | |
9887 | { | |
9888 | /* GNU tools used to use this value, but do not for EABI | |
9889 | objects. There's nowhere to tag an EABI version | |
9890 | anyway, so assume APCS. */ | |
9891 | arm_abi = ARM_ABI_APCS; | |
9892 | } | |
9893 | else if (ei_osabi == ELFOSABI_NONE) | |
9894 | { | |
9895 | int eabi_ver = EF_ARM_EABI_VERSION (e_flags); | |
9896 | int attr_arch, attr_profile; | |
9897 | ||
9898 | switch (eabi_ver) | |
9899 | { | |
9900 | case EF_ARM_EABI_UNKNOWN: | |
9901 | /* Assume GNU tools. */ | |
9902 | arm_abi = ARM_ABI_APCS; | |
9903 | break; | |
9904 | ||
9905 | case EF_ARM_EABI_VER4: | |
9906 | case EF_ARM_EABI_VER5: | |
9907 | arm_abi = ARM_ABI_AAPCS; | |
9908 | /* EABI binaries default to VFP float ordering. | |
9909 | They may also contain build attributes that can | |
9910 | be used to identify if the VFP argument-passing | |
9911 | ABI is in use. */ | |
9912 | if (fp_model == ARM_FLOAT_AUTO) | |
9913 | { | |
9914 | #ifdef HAVE_ELF | |
9915 | switch (bfd_elf_get_obj_attr_int (info.abfd, | |
9916 | OBJ_ATTR_PROC, | |
9917 | Tag_ABI_VFP_args)) | |
9918 | { | |
9919 | case 0: | |
9920 | /* "The user intended FP parameter/result | |
9921 | passing to conform to AAPCS, base | |
9922 | variant". */ | |
9923 | fp_model = ARM_FLOAT_SOFT_VFP; | |
9924 | break; | |
9925 | case 1: | |
9926 | /* "The user intended FP parameter/result | |
9927 | passing to conform to AAPCS, VFP | |
9928 | variant". */ | |
9929 | fp_model = ARM_FLOAT_VFP; | |
9930 | break; | |
9931 | case 2: | |
9932 | /* "The user intended FP parameter/result | |
9933 | passing to conform to tool chain-specific | |
9934 | conventions" - we don't know any such | |
9935 | conventions, so leave it as "auto". */ | |
9936 | break; | |
9937 | default: | |
9938 | /* Attribute value not mentioned in the | |
9939 | October 2008 ABI, so leave it as | |
9940 | "auto". */ | |
9941 | break; | |
9942 | } | |
9943 | #else | |
9944 | fp_model = ARM_FLOAT_SOFT_VFP; | |
9945 | #endif | |
9946 | } | |
9947 | break; | |
9948 | ||
9949 | default: | |
9950 | /* Leave it as "auto". */ | |
9951 | warning (_("unknown ARM EABI version 0x%x"), eabi_ver); | |
9952 | break; | |
9953 | } | |
9954 | ||
9955 | #ifdef HAVE_ELF | |
9956 | /* Detect M-profile programs. This only works if the | |
9957 | executable file includes build attributes; GCC does | |
9958 | copy them to the executable, but e.g. RealView does | |
9959 | not. */ | |
9960 | attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC, | |
9961 | Tag_CPU_arch); | |
0963b4bd MS |
9962 | attr_profile = bfd_elf_get_obj_attr_int (info.abfd, |
9963 | OBJ_ATTR_PROC, | |
9779414d DJ |
9964 | Tag_CPU_arch_profile); |
9965 | /* GCC specifies the profile for v6-M; RealView only | |
9966 | specifies the profile for architectures starting with | |
9967 | V7 (as opposed to architectures with a tag | |
9968 | numerically greater than TAG_CPU_ARCH_V7). */ | |
9969 | if (!tdesc_has_registers (tdesc) | |
9970 | && (attr_arch == TAG_CPU_ARCH_V6_M | |
9971 | || attr_arch == TAG_CPU_ARCH_V6S_M | |
9972 | || attr_profile == 'M')) | |
25f8c692 | 9973 | is_m = 1; |
9779414d DJ |
9974 | #endif |
9975 | } | |
9976 | ||
9977 | if (fp_model == ARM_FLOAT_AUTO) | |
9978 | { | |
9979 | int e_flags = elf_elfheader (info.abfd)->e_flags; | |
9980 | ||
9981 | switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT)) | |
9982 | { | |
9983 | case 0: | |
9984 | /* Leave it as "auto". Strictly speaking this case | |
9985 | means FPA, but almost nobody uses that now, and | |
9986 | many toolchains fail to set the appropriate bits | |
9987 | for the floating-point model they use. */ | |
9988 | break; | |
9989 | case EF_ARM_SOFT_FLOAT: | |
9990 | fp_model = ARM_FLOAT_SOFT_FPA; | |
9991 | break; | |
9992 | case EF_ARM_VFP_FLOAT: | |
9993 | fp_model = ARM_FLOAT_VFP; | |
9994 | break; | |
9995 | case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT: | |
9996 | fp_model = ARM_FLOAT_SOFT_VFP; | |
9997 | break; | |
9998 | } | |
9999 | } | |
10000 | ||
10001 | if (e_flags & EF_ARM_BE8) | |
10002 | info.byte_order_for_code = BFD_ENDIAN_LITTLE; | |
10003 | ||
10004 | break; | |
10005 | ||
10006 | default: | |
10007 | /* Leave it as "auto". */ | |
10008 | break; | |
10009 | } | |
10010 | } | |
123dc839 DJ |
10011 | |
10012 | /* Check any target description for validity. */ | |
9779414d | 10013 | if (tdesc_has_registers (tdesc)) |
123dc839 DJ |
10014 | { |
10015 | /* For most registers we require GDB's default names; but also allow | |
10016 | the numeric names for sp / lr / pc, as a convenience. */ | |
10017 | static const char *const arm_sp_names[] = { "r13", "sp", NULL }; | |
10018 | static const char *const arm_lr_names[] = { "r14", "lr", NULL }; | |
10019 | static const char *const arm_pc_names[] = { "r15", "pc", NULL }; | |
10020 | ||
10021 | const struct tdesc_feature *feature; | |
58d6951d | 10022 | int valid_p; |
123dc839 | 10023 | |
9779414d | 10024 | feature = tdesc_find_feature (tdesc, |
123dc839 DJ |
10025 | "org.gnu.gdb.arm.core"); |
10026 | if (feature == NULL) | |
9779414d DJ |
10027 | { |
10028 | feature = tdesc_find_feature (tdesc, | |
10029 | "org.gnu.gdb.arm.m-profile"); | |
10030 | if (feature == NULL) | |
10031 | return NULL; | |
10032 | else | |
10033 | is_m = 1; | |
10034 | } | |
123dc839 DJ |
10035 | |
10036 | tdesc_data = tdesc_data_alloc (); | |
10037 | ||
10038 | valid_p = 1; | |
10039 | for (i = 0; i < ARM_SP_REGNUM; i++) | |
10040 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
10041 | arm_register_names[i]); | |
10042 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
10043 | ARM_SP_REGNUM, | |
10044 | arm_sp_names); | |
10045 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
10046 | ARM_LR_REGNUM, | |
10047 | arm_lr_names); | |
10048 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
10049 | ARM_PC_REGNUM, | |
10050 | arm_pc_names); | |
9779414d DJ |
10051 | if (is_m) |
10052 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
10053 | ARM_PS_REGNUM, "xpsr"); | |
10054 | else | |
10055 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
10056 | ARM_PS_REGNUM, "cpsr"); | |
123dc839 DJ |
10057 | |
10058 | if (!valid_p) | |
10059 | { | |
10060 | tdesc_data_cleanup (tdesc_data); | |
10061 | return NULL; | |
10062 | } | |
10063 | ||
9779414d | 10064 | feature = tdesc_find_feature (tdesc, |
123dc839 DJ |
10065 | "org.gnu.gdb.arm.fpa"); |
10066 | if (feature != NULL) | |
10067 | { | |
10068 | valid_p = 1; | |
10069 | for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++) | |
10070 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
10071 | arm_register_names[i]); | |
10072 | if (!valid_p) | |
10073 | { | |
10074 | tdesc_data_cleanup (tdesc_data); | |
10075 | return NULL; | |
10076 | } | |
10077 | } | |
ff6f572f DJ |
10078 | else |
10079 | have_fpa_registers = 0; | |
10080 | ||
9779414d | 10081 | feature = tdesc_find_feature (tdesc, |
ff6f572f DJ |
10082 | "org.gnu.gdb.xscale.iwmmxt"); |
10083 | if (feature != NULL) | |
10084 | { | |
10085 | static const char *const iwmmxt_names[] = { | |
10086 | "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7", | |
10087 | "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15", | |
10088 | "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "", | |
10089 | "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "", | |
10090 | }; | |
10091 | ||
10092 | valid_p = 1; | |
10093 | for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++) | |
10094 | valid_p | |
10095 | &= tdesc_numbered_register (feature, tdesc_data, i, | |
10096 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
10097 | ||
10098 | /* Check for the control registers, but do not fail if they | |
10099 | are missing. */ | |
10100 | for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++) | |
10101 | tdesc_numbered_register (feature, tdesc_data, i, | |
10102 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
10103 | ||
10104 | for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++) | |
10105 | valid_p | |
10106 | &= tdesc_numbered_register (feature, tdesc_data, i, | |
10107 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
10108 | ||
10109 | if (!valid_p) | |
10110 | { | |
10111 | tdesc_data_cleanup (tdesc_data); | |
10112 | return NULL; | |
10113 | } | |
10114 | } | |
58d6951d DJ |
10115 | |
10116 | /* If we have a VFP unit, check whether the single precision registers | |
10117 | are present. If not, then we will synthesize them as pseudo | |
10118 | registers. */ | |
9779414d | 10119 | feature = tdesc_find_feature (tdesc, |
58d6951d DJ |
10120 | "org.gnu.gdb.arm.vfp"); |
10121 | if (feature != NULL) | |
10122 | { | |
10123 | static const char *const vfp_double_names[] = { | |
10124 | "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", | |
10125 | "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", | |
10126 | "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", | |
10127 | "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31", | |
10128 | }; | |
10129 | ||
10130 | /* Require the double precision registers. There must be either | |
10131 | 16 or 32. */ | |
10132 | valid_p = 1; | |
10133 | for (i = 0; i < 32; i++) | |
10134 | { | |
10135 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
10136 | ARM_D0_REGNUM + i, | |
10137 | vfp_double_names[i]); | |
10138 | if (!valid_p) | |
10139 | break; | |
10140 | } | |
2b9e5ea6 UW |
10141 | if (!valid_p && i == 16) |
10142 | valid_p = 1; | |
58d6951d | 10143 | |
2b9e5ea6 UW |
10144 | /* Also require FPSCR. */ |
10145 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
10146 | ARM_FPSCR_REGNUM, "fpscr"); | |
10147 | if (!valid_p) | |
58d6951d DJ |
10148 | { |
10149 | tdesc_data_cleanup (tdesc_data); | |
10150 | return NULL; | |
10151 | } | |
10152 | ||
10153 | if (tdesc_unnumbered_register (feature, "s0") == 0) | |
10154 | have_vfp_pseudos = 1; | |
10155 | ||
10156 | have_vfp_registers = 1; | |
10157 | ||
10158 | /* If we have VFP, also check for NEON. The architecture allows | |
10159 | NEON without VFP (integer vector operations only), but GDB | |
10160 | does not support that. */ | |
9779414d | 10161 | feature = tdesc_find_feature (tdesc, |
58d6951d DJ |
10162 | "org.gnu.gdb.arm.neon"); |
10163 | if (feature != NULL) | |
10164 | { | |
10165 | /* NEON requires 32 double-precision registers. */ | |
10166 | if (i != 32) | |
10167 | { | |
10168 | tdesc_data_cleanup (tdesc_data); | |
10169 | return NULL; | |
10170 | } | |
10171 | ||
10172 | /* If there are quad registers defined by the stub, use | |
10173 | their type; otherwise (normally) provide them with | |
10174 | the default type. */ | |
10175 | if (tdesc_unnumbered_register (feature, "q0") == 0) | |
10176 | have_neon_pseudos = 1; | |
10177 | ||
10178 | have_neon = 1; | |
10179 | } | |
10180 | } | |
123dc839 | 10181 | } |
39bbf761 | 10182 | |
28e97307 DJ |
10183 | /* If there is already a candidate, use it. */ |
10184 | for (best_arch = gdbarch_list_lookup_by_info (arches, &info); | |
10185 | best_arch != NULL; | |
10186 | best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) | |
10187 | { | |
b8926edc DJ |
10188 | if (arm_abi != ARM_ABI_AUTO |
10189 | && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi) | |
28e97307 DJ |
10190 | continue; |
10191 | ||
b8926edc DJ |
10192 | if (fp_model != ARM_FLOAT_AUTO |
10193 | && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model) | |
28e97307 DJ |
10194 | continue; |
10195 | ||
58d6951d DJ |
10196 | /* There are various other properties in tdep that we do not |
10197 | need to check here: those derived from a target description, | |
10198 | since gdbarches with a different target description are | |
10199 | automatically disqualified. */ | |
10200 | ||
9779414d DJ |
10201 | /* Do check is_m, though, since it might come from the binary. */ |
10202 | if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m) | |
10203 | continue; | |
10204 | ||
28e97307 DJ |
10205 | /* Found a match. */ |
10206 | break; | |
10207 | } | |
97e03143 | 10208 | |
28e97307 | 10209 | if (best_arch != NULL) |
123dc839 DJ |
10210 | { |
10211 | if (tdesc_data != NULL) | |
10212 | tdesc_data_cleanup (tdesc_data); | |
10213 | return best_arch->gdbarch; | |
10214 | } | |
28e97307 DJ |
10215 | |
10216 | tdep = xcalloc (1, sizeof (struct gdbarch_tdep)); | |
97e03143 RE |
10217 | gdbarch = gdbarch_alloc (&info, tdep); |
10218 | ||
28e97307 DJ |
10219 | /* Record additional information about the architecture we are defining. |
10220 | These are gdbarch discriminators, like the OSABI. */ | |
10221 | tdep->arm_abi = arm_abi; | |
10222 | tdep->fp_model = fp_model; | |
9779414d | 10223 | tdep->is_m = is_m; |
ff6f572f | 10224 | tdep->have_fpa_registers = have_fpa_registers; |
58d6951d DJ |
10225 | tdep->have_vfp_registers = have_vfp_registers; |
10226 | tdep->have_vfp_pseudos = have_vfp_pseudos; | |
10227 | tdep->have_neon_pseudos = have_neon_pseudos; | |
10228 | tdep->have_neon = have_neon; | |
08216dd7 | 10229 | |
25f8c692 JL |
10230 | arm_register_g_packet_guesses (gdbarch); |
10231 | ||
08216dd7 | 10232 | /* Breakpoints. */ |
9d4fde75 | 10233 | switch (info.byte_order_for_code) |
67255d04 RE |
10234 | { |
10235 | case BFD_ENDIAN_BIG: | |
66e810cd RE |
10236 | tdep->arm_breakpoint = arm_default_arm_be_breakpoint; |
10237 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint); | |
10238 | tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint; | |
10239 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint); | |
10240 | ||
67255d04 RE |
10241 | break; |
10242 | ||
10243 | case BFD_ENDIAN_LITTLE: | |
66e810cd RE |
10244 | tdep->arm_breakpoint = arm_default_arm_le_breakpoint; |
10245 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint); | |
10246 | tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint; | |
10247 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint); | |
10248 | ||
67255d04 RE |
10249 | break; |
10250 | ||
10251 | default: | |
10252 | internal_error (__FILE__, __LINE__, | |
edefbb7c | 10253 | _("arm_gdbarch_init: bad byte order for float format")); |
67255d04 RE |
10254 | } |
10255 | ||
d7b486e7 RE |
10256 | /* On ARM targets char defaults to unsigned. */ |
10257 | set_gdbarch_char_signed (gdbarch, 0); | |
10258 | ||
cca44b1b JB |
10259 | /* Note: for displaced stepping, this includes the breakpoint, and one word |
10260 | of additional scratch space. This setting isn't used for anything beside | |
10261 | displaced stepping at present. */ | |
10262 | set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS); | |
10263 | ||
9df628e0 | 10264 | /* This should be low enough for everything. */ |
97e03143 | 10265 | tdep->lowest_pc = 0x20; |
94c30b78 | 10266 | tdep->jb_pc = -1; /* Longjump support not enabled by default. */ |
97e03143 | 10267 | |
7c00367c MK |
10268 | /* The default, for both APCS and AAPCS, is to return small |
10269 | structures in registers. */ | |
10270 | tdep->struct_return = reg_struct_return; | |
10271 | ||
2dd604e7 | 10272 | set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call); |
f53f0d0b | 10273 | set_gdbarch_frame_align (gdbarch, arm_frame_align); |
39bbf761 | 10274 | |
756fe439 DJ |
10275 | set_gdbarch_write_pc (gdbarch, arm_write_pc); |
10276 | ||
148754e5 | 10277 | /* Frame handling. */ |
a262aec2 | 10278 | set_gdbarch_dummy_id (gdbarch, arm_dummy_id); |
eb5492fa DJ |
10279 | set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc); |
10280 | set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp); | |
10281 | ||
eb5492fa | 10282 | frame_base_set_default (gdbarch, &arm_normal_base); |
148754e5 | 10283 | |
34e8f22d RE |
10284 | /* Address manipulation. */ |
10285 | set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address); | |
10286 | set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove); | |
10287 | ||
34e8f22d RE |
10288 | /* Advance PC across function entry code. */ |
10289 | set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue); | |
10290 | ||
4024ca99 UW |
10291 | /* Detect whether PC is in function epilogue. */ |
10292 | set_gdbarch_in_function_epilogue_p (gdbarch, arm_in_function_epilogue_p); | |
10293 | ||
190dce09 UW |
10294 | /* Skip trampolines. */ |
10295 | set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub); | |
10296 | ||
34e8f22d RE |
10297 | /* The stack grows downward. */ |
10298 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
10299 | ||
10300 | /* Breakpoint manipulation. */ | |
10301 | set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc); | |
177321bd DJ |
10302 | set_gdbarch_remote_breakpoint_from_pc (gdbarch, |
10303 | arm_remote_breakpoint_from_pc); | |
34e8f22d RE |
10304 | |
10305 | /* Information about registers, etc. */ | |
34e8f22d RE |
10306 | set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM); |
10307 | set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM); | |
ff6f572f | 10308 | set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS); |
7a5ea0d4 | 10309 | set_gdbarch_register_type (gdbarch, arm_register_type); |
54483882 | 10310 | set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p); |
34e8f22d | 10311 | |
ff6f572f DJ |
10312 | /* This "info float" is FPA-specific. Use the generic version if we |
10313 | do not have FPA. */ | |
10314 | if (gdbarch_tdep (gdbarch)->have_fpa_registers) | |
10315 | set_gdbarch_print_float_info (gdbarch, arm_print_float_info); | |
10316 | ||
26216b98 | 10317 | /* Internal <-> external register number maps. */ |
ff6f572f | 10318 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum); |
26216b98 AC |
10319 | set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno); |
10320 | ||
34e8f22d RE |
10321 | set_gdbarch_register_name (gdbarch, arm_register_name); |
10322 | ||
10323 | /* Returning results. */ | |
2af48f68 | 10324 | set_gdbarch_return_value (gdbarch, arm_return_value); |
34e8f22d | 10325 | |
03d48a7d RE |
10326 | /* Disassembly. */ |
10327 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm); | |
10328 | ||
34e8f22d RE |
10329 | /* Minsymbol frobbing. */ |
10330 | set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special); | |
10331 | set_gdbarch_coff_make_msymbol_special (gdbarch, | |
10332 | arm_coff_make_msymbol_special); | |
60c5725c | 10333 | set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol); |
34e8f22d | 10334 | |
f9d67f43 DJ |
10335 | /* Thumb-2 IT block support. */ |
10336 | set_gdbarch_adjust_breakpoint_address (gdbarch, | |
10337 | arm_adjust_breakpoint_address); | |
10338 | ||
0d5de010 DJ |
10339 | /* Virtual tables. */ |
10340 | set_gdbarch_vbit_in_delta (gdbarch, 1); | |
10341 | ||
97e03143 | 10342 | /* Hook in the ABI-specific overrides, if they have been registered. */ |
4be87837 | 10343 | gdbarch_init_osabi (info, gdbarch); |
97e03143 | 10344 | |
b39cc962 DJ |
10345 | dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg); |
10346 | ||
eb5492fa | 10347 | /* Add some default predicates. */ |
2ae28aa9 YQ |
10348 | if (is_m) |
10349 | frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind); | |
a262aec2 DJ |
10350 | frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind); |
10351 | dwarf2_append_unwinders (gdbarch); | |
0e9e9abd | 10352 | frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind); |
a262aec2 | 10353 | frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind); |
eb5492fa | 10354 | |
97e03143 RE |
10355 | /* Now we have tuned the configuration, set a few final things, |
10356 | based on what the OS ABI has told us. */ | |
10357 | ||
b8926edc DJ |
10358 | /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI |
10359 | binaries are always marked. */ | |
10360 | if (tdep->arm_abi == ARM_ABI_AUTO) | |
10361 | tdep->arm_abi = ARM_ABI_APCS; | |
10362 | ||
e3039479 UW |
10363 | /* Watchpoints are not steppable. */ |
10364 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
10365 | ||
b8926edc DJ |
10366 | /* We used to default to FPA for generic ARM, but almost nobody |
10367 | uses that now, and we now provide a way for the user to force | |
10368 | the model. So default to the most useful variant. */ | |
10369 | if (tdep->fp_model == ARM_FLOAT_AUTO) | |
10370 | tdep->fp_model = ARM_FLOAT_SOFT_FPA; | |
10371 | ||
9df628e0 RE |
10372 | if (tdep->jb_pc >= 0) |
10373 | set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target); | |
10374 | ||
08216dd7 | 10375 | /* Floating point sizes and format. */ |
8da61cc4 | 10376 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
b8926edc | 10377 | if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA) |
08216dd7 | 10378 | { |
8da61cc4 DJ |
10379 | set_gdbarch_double_format |
10380 | (gdbarch, floatformats_ieee_double_littlebyte_bigword); | |
10381 | set_gdbarch_long_double_format | |
10382 | (gdbarch, floatformats_ieee_double_littlebyte_bigword); | |
10383 | } | |
10384 | else | |
10385 | { | |
10386 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
10387 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | |
08216dd7 RE |
10388 | } |
10389 | ||
58d6951d DJ |
10390 | if (have_vfp_pseudos) |
10391 | { | |
10392 | /* NOTE: These are the only pseudo registers used by | |
10393 | the ARM target at the moment. If more are added, a | |
10394 | little more care in numbering will be needed. */ | |
10395 | ||
10396 | int num_pseudos = 32; | |
10397 | if (have_neon_pseudos) | |
10398 | num_pseudos += 16; | |
10399 | set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos); | |
10400 | set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read); | |
10401 | set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write); | |
10402 | } | |
10403 | ||
123dc839 | 10404 | if (tdesc_data) |
58d6951d DJ |
10405 | { |
10406 | set_tdesc_pseudo_register_name (gdbarch, arm_register_name); | |
10407 | ||
9779414d | 10408 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); |
58d6951d DJ |
10409 | |
10410 | /* Override tdesc_register_type to adjust the types of VFP | |
10411 | registers for NEON. */ | |
10412 | set_gdbarch_register_type (gdbarch, arm_register_type); | |
10413 | } | |
123dc839 DJ |
10414 | |
10415 | /* Add standard register aliases. We add aliases even for those | |
10416 | nanes which are used by the current architecture - it's simpler, | |
10417 | and does no harm, since nothing ever lists user registers. */ | |
10418 | for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++) | |
10419 | user_reg_add (gdbarch, arm_register_aliases[i].name, | |
10420 | value_of_arm_user_reg, &arm_register_aliases[i].regnum); | |
10421 | ||
39bbf761 RE |
10422 | return gdbarch; |
10423 | } | |
10424 | ||
97e03143 | 10425 | static void |
2af46ca0 | 10426 | arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
97e03143 | 10427 | { |
2af46ca0 | 10428 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
97e03143 RE |
10429 | |
10430 | if (tdep == NULL) | |
10431 | return; | |
10432 | ||
edefbb7c | 10433 | fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"), |
97e03143 RE |
10434 | (unsigned long) tdep->lowest_pc); |
10435 | } | |
10436 | ||
a78f21af AC |
10437 | extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */ |
10438 | ||
c906108c | 10439 | void |
ed9a39eb | 10440 | _initialize_arm_tdep (void) |
c906108c | 10441 | { |
bc90b915 FN |
10442 | struct ui_file *stb; |
10443 | long length; | |
26304000 | 10444 | struct cmd_list_element *new_set, *new_show; |
53904c9e AC |
10445 | const char *setname; |
10446 | const char *setdesc; | |
4bd7b427 | 10447 | const char *const *regnames; |
bc90b915 FN |
10448 | int numregs, i, j; |
10449 | static char *helptext; | |
edefbb7c AC |
10450 | char regdesc[1024], *rdptr = regdesc; |
10451 | size_t rest = sizeof (regdesc); | |
085dd6e6 | 10452 | |
42cf1509 | 10453 | gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep); |
97e03143 | 10454 | |
60c5725c | 10455 | arm_objfile_data_key |
c1bd65d0 | 10456 | = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free); |
60c5725c | 10457 | |
0e9e9abd UW |
10458 | /* Add ourselves to objfile event chain. */ |
10459 | observer_attach_new_objfile (arm_exidx_new_objfile); | |
10460 | arm_exidx_data_key | |
10461 | = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free); | |
10462 | ||
70f80edf JT |
10463 | /* Register an ELF OS ABI sniffer for ARM binaries. */ |
10464 | gdbarch_register_osabi_sniffer (bfd_arch_arm, | |
10465 | bfd_target_elf_flavour, | |
10466 | arm_elf_osabi_sniffer); | |
10467 | ||
9779414d DJ |
10468 | /* Initialize the standard target descriptions. */ |
10469 | initialize_tdesc_arm_with_m (); | |
25f8c692 | 10470 | initialize_tdesc_arm_with_m_fpa_layout (); |
3184d3f9 | 10471 | initialize_tdesc_arm_with_m_vfp_d16 (); |
ef7e8358 UW |
10472 | initialize_tdesc_arm_with_iwmmxt (); |
10473 | initialize_tdesc_arm_with_vfpv2 (); | |
10474 | initialize_tdesc_arm_with_vfpv3 (); | |
10475 | initialize_tdesc_arm_with_neon (); | |
9779414d | 10476 | |
94c30b78 | 10477 | /* Get the number of possible sets of register names defined in opcodes. */ |
afd7eef0 RE |
10478 | num_disassembly_options = get_arm_regname_num_options (); |
10479 | ||
10480 | /* Add root prefix command for all "set arm"/"show arm" commands. */ | |
10481 | add_prefix_cmd ("arm", no_class, set_arm_command, | |
edefbb7c | 10482 | _("Various ARM-specific commands."), |
afd7eef0 RE |
10483 | &setarmcmdlist, "set arm ", 0, &setlist); |
10484 | ||
10485 | add_prefix_cmd ("arm", no_class, show_arm_command, | |
edefbb7c | 10486 | _("Various ARM-specific commands."), |
afd7eef0 | 10487 | &showarmcmdlist, "show arm ", 0, &showlist); |
bc90b915 | 10488 | |
94c30b78 | 10489 | /* Sync the opcode insn printer with our register viewer. */ |
bc90b915 | 10490 | parse_arm_disassembler_option ("reg-names-std"); |
c5aa993b | 10491 | |
eefe576e AC |
10492 | /* Initialize the array that will be passed to |
10493 | add_setshow_enum_cmd(). */ | |
afd7eef0 RE |
10494 | valid_disassembly_styles |
10495 | = xmalloc ((num_disassembly_options + 1) * sizeof (char *)); | |
10496 | for (i = 0; i < num_disassembly_options; i++) | |
bc90b915 FN |
10497 | { |
10498 | numregs = get_arm_regnames (i, &setname, &setdesc, ®names); | |
afd7eef0 | 10499 | valid_disassembly_styles[i] = setname; |
edefbb7c AC |
10500 | length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc); |
10501 | rdptr += length; | |
10502 | rest -= length; | |
123dc839 DJ |
10503 | /* When we find the default names, tell the disassembler to use |
10504 | them. */ | |
bc90b915 FN |
10505 | if (!strcmp (setname, "std")) |
10506 | { | |
afd7eef0 | 10507 | disassembly_style = setname; |
bc90b915 FN |
10508 | set_arm_regname_option (i); |
10509 | } | |
10510 | } | |
94c30b78 | 10511 | /* Mark the end of valid options. */ |
afd7eef0 | 10512 | valid_disassembly_styles[num_disassembly_options] = NULL; |
c906108c | 10513 | |
edefbb7c AC |
10514 | /* Create the help text. */ |
10515 | stb = mem_fileopen (); | |
10516 | fprintf_unfiltered (stb, "%s%s%s", | |
10517 | _("The valid values are:\n"), | |
10518 | regdesc, | |
10519 | _("The default is \"std\".")); | |
759ef836 | 10520 | helptext = ui_file_xstrdup (stb, NULL); |
bc90b915 | 10521 | ui_file_delete (stb); |
ed9a39eb | 10522 | |
edefbb7c AC |
10523 | add_setshow_enum_cmd("disassembler", no_class, |
10524 | valid_disassembly_styles, &disassembly_style, | |
10525 | _("Set the disassembly style."), | |
10526 | _("Show the disassembly style."), | |
10527 | helptext, | |
2c5b56ce | 10528 | set_disassembly_style_sfunc, |
0963b4bd MS |
10529 | NULL, /* FIXME: i18n: The disassembly style is |
10530 | \"%s\". */ | |
7376b4c2 | 10531 | &setarmcmdlist, &showarmcmdlist); |
edefbb7c AC |
10532 | |
10533 | add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32, | |
10534 | _("Set usage of ARM 32-bit mode."), | |
10535 | _("Show usage of ARM 32-bit mode."), | |
10536 | _("When off, a 26-bit PC will be used."), | |
2c5b56ce | 10537 | NULL, |
0963b4bd MS |
10538 | NULL, /* FIXME: i18n: Usage of ARM 32-bit |
10539 | mode is %s. */ | |
26304000 | 10540 | &setarmcmdlist, &showarmcmdlist); |
c906108c | 10541 | |
fd50bc42 | 10542 | /* Add a command to allow the user to force the FPU model. */ |
edefbb7c AC |
10543 | add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, ¤t_fp_model, |
10544 | _("Set the floating point type."), | |
10545 | _("Show the floating point type."), | |
10546 | _("auto - Determine the FP typefrom the OS-ABI.\n\ | |
10547 | softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\ | |
10548 | fpa - FPA co-processor (GCC compiled).\n\ | |
10549 | softvfp - Software FP with pure-endian doubles.\n\ | |
10550 | vfp - VFP co-processor."), | |
edefbb7c | 10551 | set_fp_model_sfunc, show_fp_model, |
7376b4c2 | 10552 | &setarmcmdlist, &showarmcmdlist); |
fd50bc42 | 10553 | |
28e97307 DJ |
10554 | /* Add a command to allow the user to force the ABI. */ |
10555 | add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string, | |
10556 | _("Set the ABI."), | |
10557 | _("Show the ABI."), | |
10558 | NULL, arm_set_abi, arm_show_abi, | |
10559 | &setarmcmdlist, &showarmcmdlist); | |
10560 | ||
0428b8f5 DJ |
10561 | /* Add two commands to allow the user to force the assumed |
10562 | execution mode. */ | |
10563 | add_setshow_enum_cmd ("fallback-mode", class_support, | |
10564 | arm_mode_strings, &arm_fallback_mode_string, | |
10565 | _("Set the mode assumed when symbols are unavailable."), | |
10566 | _("Show the mode assumed when symbols are unavailable."), | |
10567 | NULL, NULL, arm_show_fallback_mode, | |
10568 | &setarmcmdlist, &showarmcmdlist); | |
10569 | add_setshow_enum_cmd ("force-mode", class_support, | |
10570 | arm_mode_strings, &arm_force_mode_string, | |
10571 | _("Set the mode assumed even when symbols are available."), | |
10572 | _("Show the mode assumed even when symbols are available."), | |
10573 | NULL, NULL, arm_show_force_mode, | |
10574 | &setarmcmdlist, &showarmcmdlist); | |
10575 | ||
6529d2dd | 10576 | /* Debugging flag. */ |
edefbb7c AC |
10577 | add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug, |
10578 | _("Set ARM debugging."), | |
10579 | _("Show ARM debugging."), | |
10580 | _("When on, arm-specific debugging is enabled."), | |
2c5b56ce | 10581 | NULL, |
7915a72c | 10582 | NULL, /* FIXME: i18n: "ARM debugging is %s. */ |
26304000 | 10583 | &setdebuglist, &showdebuglist); |
c906108c | 10584 | } |
72508ac0 PO |
10585 | |
10586 | /* ARM-reversible process record data structures. */ | |
10587 | ||
10588 | #define ARM_INSN_SIZE_BYTES 4 | |
10589 | #define THUMB_INSN_SIZE_BYTES 2 | |
10590 | #define THUMB2_INSN_SIZE_BYTES 4 | |
10591 | ||
10592 | ||
10593 | #define INSN_S_L_BIT_NUM 20 | |
10594 | ||
10595 | #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \ | |
10596 | do \ | |
10597 | { \ | |
10598 | unsigned int reg_len = LENGTH; \ | |
10599 | if (reg_len) \ | |
10600 | { \ | |
10601 | REGS = XNEWVEC (uint32_t, reg_len); \ | |
10602 | memcpy(®S[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \ | |
10603 | } \ | |
10604 | } \ | |
10605 | while (0) | |
10606 | ||
10607 | #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \ | |
10608 | do \ | |
10609 | { \ | |
10610 | unsigned int mem_len = LENGTH; \ | |
10611 | if (mem_len) \ | |
10612 | { \ | |
10613 | MEMS = XNEWVEC (struct arm_mem_r, mem_len); \ | |
10614 | memcpy(&MEMS->len, &RECORD_BUF[0], \ | |
10615 | sizeof(struct arm_mem_r) * LENGTH); \ | |
10616 | } \ | |
10617 | } \ | |
10618 | while (0) | |
10619 | ||
10620 | /* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */ | |
10621 | #define INSN_RECORDED(ARM_RECORD) \ | |
10622 | (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count) | |
10623 | ||
10624 | /* ARM memory record structure. */ | |
10625 | struct arm_mem_r | |
10626 | { | |
10627 | uint32_t len; /* Record length. */ | |
10628 | CORE_ADDR addr; /* Memory address. */ | |
10629 | }; | |
10630 | ||
10631 | /* ARM instruction record contains opcode of current insn | |
10632 | and execution state (before entry to decode_insn()), | |
10633 | contains list of to-be-modified registers and | |
10634 | memory blocks (on return from decode_insn()). */ | |
10635 | ||
10636 | typedef struct insn_decode_record_t | |
10637 | { | |
10638 | struct gdbarch *gdbarch; | |
10639 | struct regcache *regcache; | |
10640 | CORE_ADDR this_addr; /* Address of the insn being decoded. */ | |
10641 | uint32_t arm_insn; /* Should accommodate thumb. */ | |
10642 | uint32_t cond; /* Condition code. */ | |
10643 | uint32_t opcode; /* Insn opcode. */ | |
10644 | uint32_t decode; /* Insn decode bits. */ | |
10645 | uint32_t mem_rec_count; /* No of mem records. */ | |
10646 | uint32_t reg_rec_count; /* No of reg records. */ | |
10647 | uint32_t *arm_regs; /* Registers to be saved for this record. */ | |
10648 | struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */ | |
10649 | } insn_decode_record; | |
10650 | ||
10651 | ||
10652 | /* Checks ARM SBZ and SBO mandatory fields. */ | |
10653 | ||
10654 | static int | |
10655 | sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo) | |
10656 | { | |
10657 | uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1)); | |
10658 | ||
10659 | if (!len) | |
10660 | return 1; | |
10661 | ||
10662 | if (!sbo) | |
10663 | ones = ~ones; | |
10664 | ||
10665 | while (ones) | |
10666 | { | |
10667 | if (!(ones & sbo)) | |
10668 | { | |
10669 | return 0; | |
10670 | } | |
10671 | ones = ones >> 1; | |
10672 | } | |
10673 | return 1; | |
10674 | } | |
10675 | ||
10676 | typedef enum | |
10677 | { | |
10678 | ARM_RECORD_STRH=1, | |
10679 | ARM_RECORD_STRD | |
10680 | } arm_record_strx_t; | |
10681 | ||
10682 | typedef enum | |
10683 | { | |
10684 | ARM_RECORD=1, | |
10685 | THUMB_RECORD, | |
10686 | THUMB2_RECORD | |
10687 | } record_type_t; | |
10688 | ||
10689 | ||
10690 | static int | |
10691 | arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf, | |
10692 | uint32_t *record_buf_mem, arm_record_strx_t str_type) | |
10693 | { | |
10694 | ||
10695 | struct regcache *reg_cache = arm_insn_r->regcache; | |
10696 | ULONGEST u_regval[2]= {0}; | |
10697 | ||
10698 | uint32_t reg_src1 = 0, reg_src2 = 0; | |
10699 | uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0; | |
10700 | uint32_t opcode1 = 0; | |
10701 | ||
10702 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); | |
10703 | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | |
10704 | opcode1 = bits (arm_insn_r->arm_insn, 20, 24); | |
10705 | ||
10706 | ||
10707 | if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode) | |
10708 | { | |
10709 | /* 1) Handle misc store, immediate offset. */ | |
10710 | immed_low = bits (arm_insn_r->arm_insn, 0, 3); | |
10711 | immed_high = bits (arm_insn_r->arm_insn, 8, 11); | |
10712 | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | |
10713 | regcache_raw_read_unsigned (reg_cache, reg_src1, | |
10714 | &u_regval[0]); | |
10715 | if (ARM_PC_REGNUM == reg_src1) | |
10716 | { | |
10717 | /* If R15 was used as Rn, hence current PC+8. */ | |
10718 | u_regval[0] = u_regval[0] + 8; | |
10719 | } | |
10720 | offset_8 = (immed_high << 4) | immed_low; | |
10721 | /* Calculate target store address. */ | |
10722 | if (14 == arm_insn_r->opcode) | |
10723 | { | |
10724 | tgt_mem_addr = u_regval[0] + offset_8; | |
10725 | } | |
10726 | else | |
10727 | { | |
10728 | tgt_mem_addr = u_regval[0] - offset_8; | |
10729 | } | |
10730 | if (ARM_RECORD_STRH == str_type) | |
10731 | { | |
10732 | record_buf_mem[0] = 2; | |
10733 | record_buf_mem[1] = tgt_mem_addr; | |
10734 | arm_insn_r->mem_rec_count = 1; | |
10735 | } | |
10736 | else if (ARM_RECORD_STRD == str_type) | |
10737 | { | |
10738 | record_buf_mem[0] = 4; | |
10739 | record_buf_mem[1] = tgt_mem_addr; | |
10740 | record_buf_mem[2] = 4; | |
10741 | record_buf_mem[3] = tgt_mem_addr + 4; | |
10742 | arm_insn_r->mem_rec_count = 2; | |
10743 | } | |
10744 | } | |
10745 | else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode) | |
10746 | { | |
10747 | /* 2) Store, register offset. */ | |
10748 | /* Get Rm. */ | |
10749 | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | |
10750 | /* Get Rn. */ | |
10751 | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | |
10752 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
10753 | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | |
10754 | if (15 == reg_src2) | |
10755 | { | |
10756 | /* If R15 was used as Rn, hence current PC+8. */ | |
10757 | u_regval[0] = u_regval[0] + 8; | |
10758 | } | |
10759 | /* Calculate target store address, Rn +/- Rm, register offset. */ | |
10760 | if (12 == arm_insn_r->opcode) | |
10761 | { | |
10762 | tgt_mem_addr = u_regval[0] + u_regval[1]; | |
10763 | } | |
10764 | else | |
10765 | { | |
10766 | tgt_mem_addr = u_regval[1] - u_regval[0]; | |
10767 | } | |
10768 | if (ARM_RECORD_STRH == str_type) | |
10769 | { | |
10770 | record_buf_mem[0] = 2; | |
10771 | record_buf_mem[1] = tgt_mem_addr; | |
10772 | arm_insn_r->mem_rec_count = 1; | |
10773 | } | |
10774 | else if (ARM_RECORD_STRD == str_type) | |
10775 | { | |
10776 | record_buf_mem[0] = 4; | |
10777 | record_buf_mem[1] = tgt_mem_addr; | |
10778 | record_buf_mem[2] = 4; | |
10779 | record_buf_mem[3] = tgt_mem_addr + 4; | |
10780 | arm_insn_r->mem_rec_count = 2; | |
10781 | } | |
10782 | } | |
10783 | else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode | |
10784 | || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode) | |
10785 | { | |
10786 | /* 3) Store, immediate pre-indexed. */ | |
10787 | /* 5) Store, immediate post-indexed. */ | |
10788 | immed_low = bits (arm_insn_r->arm_insn, 0, 3); | |
10789 | immed_high = bits (arm_insn_r->arm_insn, 8, 11); | |
10790 | offset_8 = (immed_high << 4) | immed_low; | |
10791 | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | |
10792 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
10793 | /* Calculate target store address, Rn +/- Rm, register offset. */ | |
10794 | if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode) | |
10795 | { | |
10796 | tgt_mem_addr = u_regval[0] + offset_8; | |
10797 | } | |
10798 | else | |
10799 | { | |
10800 | tgt_mem_addr = u_regval[0] - offset_8; | |
10801 | } | |
10802 | if (ARM_RECORD_STRH == str_type) | |
10803 | { | |
10804 | record_buf_mem[0] = 2; | |
10805 | record_buf_mem[1] = tgt_mem_addr; | |
10806 | arm_insn_r->mem_rec_count = 1; | |
10807 | } | |
10808 | else if (ARM_RECORD_STRD == str_type) | |
10809 | { | |
10810 | record_buf_mem[0] = 4; | |
10811 | record_buf_mem[1] = tgt_mem_addr; | |
10812 | record_buf_mem[2] = 4; | |
10813 | record_buf_mem[3] = tgt_mem_addr + 4; | |
10814 | arm_insn_r->mem_rec_count = 2; | |
10815 | } | |
10816 | /* Record Rn also as it changes. */ | |
10817 | *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19); | |
10818 | arm_insn_r->reg_rec_count = 1; | |
10819 | } | |
10820 | else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode | |
10821 | || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode) | |
10822 | { | |
10823 | /* 4) Store, register pre-indexed. */ | |
10824 | /* 6) Store, register post -indexed. */ | |
10825 | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | |
10826 | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | |
10827 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
10828 | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | |
10829 | /* Calculate target store address, Rn +/- Rm, register offset. */ | |
10830 | if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode) | |
10831 | { | |
10832 | tgt_mem_addr = u_regval[0] + u_regval[1]; | |
10833 | } | |
10834 | else | |
10835 | { | |
10836 | tgt_mem_addr = u_regval[1] - u_regval[0]; | |
10837 | } | |
10838 | if (ARM_RECORD_STRH == str_type) | |
10839 | { | |
10840 | record_buf_mem[0] = 2; | |
10841 | record_buf_mem[1] = tgt_mem_addr; | |
10842 | arm_insn_r->mem_rec_count = 1; | |
10843 | } | |
10844 | else if (ARM_RECORD_STRD == str_type) | |
10845 | { | |
10846 | record_buf_mem[0] = 4; | |
10847 | record_buf_mem[1] = tgt_mem_addr; | |
10848 | record_buf_mem[2] = 4; | |
10849 | record_buf_mem[3] = tgt_mem_addr + 4; | |
10850 | arm_insn_r->mem_rec_count = 2; | |
10851 | } | |
10852 | /* Record Rn also as it changes. */ | |
10853 | *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19); | |
10854 | arm_insn_r->reg_rec_count = 1; | |
10855 | } | |
10856 | return 0; | |
10857 | } | |
10858 | ||
10859 | /* Handling ARM extension space insns. */ | |
10860 | ||
10861 | static int | |
10862 | arm_record_extension_space (insn_decode_record *arm_insn_r) | |
10863 | { | |
10864 | uint32_t ret = 0; /* Return value: -1:record failure ; 0:success */ | |
10865 | uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0; | |
10866 | uint32_t record_buf[8], record_buf_mem[8]; | |
10867 | uint32_t reg_src1 = 0; | |
10868 | uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0; | |
10869 | struct regcache *reg_cache = arm_insn_r->regcache; | |
10870 | ULONGEST u_regval = 0; | |
10871 | ||
10872 | gdb_assert (!INSN_RECORDED(arm_insn_r)); | |
10873 | /* Handle unconditional insn extension space. */ | |
10874 | ||
10875 | opcode1 = bits (arm_insn_r->arm_insn, 20, 27); | |
10876 | opcode2 = bits (arm_insn_r->arm_insn, 4, 7); | |
10877 | if (arm_insn_r->cond) | |
10878 | { | |
10879 | /* PLD has no affect on architectural state, it just affects | |
10880 | the caches. */ | |
10881 | if (5 == ((opcode1 & 0xE0) >> 5)) | |
10882 | { | |
10883 | /* BLX(1) */ | |
10884 | record_buf[0] = ARM_PS_REGNUM; | |
10885 | record_buf[1] = ARM_LR_REGNUM; | |
10886 | arm_insn_r->reg_rec_count = 2; | |
10887 | } | |
10888 | /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */ | |
10889 | } | |
10890 | ||
10891 | ||
10892 | opcode1 = bits (arm_insn_r->arm_insn, 25, 27); | |
10893 | if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4)) | |
10894 | { | |
10895 | ret = -1; | |
10896 | /* Undefined instruction on ARM V5; need to handle if later | |
10897 | versions define it. */ | |
10898 | } | |
10899 | ||
10900 | opcode1 = bits (arm_insn_r->arm_insn, 24, 27); | |
10901 | opcode2 = bits (arm_insn_r->arm_insn, 4, 7); | |
10902 | insn_op1 = bits (arm_insn_r->arm_insn, 20, 23); | |
10903 | ||
10904 | /* Handle arithmetic insn extension space. */ | |
10905 | if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond | |
10906 | && !INSN_RECORDED(arm_insn_r)) | |
10907 | { | |
10908 | /* Handle MLA(S) and MUL(S). */ | |
10909 | if (0 <= insn_op1 && 3 >= insn_op1) | |
10910 | { | |
10911 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10912 | record_buf[1] = ARM_PS_REGNUM; | |
10913 | arm_insn_r->reg_rec_count = 2; | |
10914 | } | |
10915 | else if (4 <= insn_op1 && 15 >= insn_op1) | |
10916 | { | |
10917 | /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */ | |
10918 | record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19); | |
10919 | record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15); | |
10920 | record_buf[2] = ARM_PS_REGNUM; | |
10921 | arm_insn_r->reg_rec_count = 3; | |
10922 | } | |
10923 | } | |
10924 | ||
10925 | opcode1 = bits (arm_insn_r->arm_insn, 26, 27); | |
10926 | opcode2 = bits (arm_insn_r->arm_insn, 23, 24); | |
10927 | insn_op1 = bits (arm_insn_r->arm_insn, 21, 22); | |
10928 | ||
10929 | /* Handle control insn extension space. */ | |
10930 | ||
10931 | if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20) | |
10932 | && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r)) | |
10933 | { | |
10934 | if (!bit (arm_insn_r->arm_insn,25)) | |
10935 | { | |
10936 | if (!bits (arm_insn_r->arm_insn, 4, 7)) | |
10937 | { | |
10938 | if ((0 == insn_op1) || (2 == insn_op1)) | |
10939 | { | |
10940 | /* MRS. */ | |
10941 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10942 | arm_insn_r->reg_rec_count = 1; | |
10943 | } | |
10944 | else if (1 == insn_op1) | |
10945 | { | |
10946 | /* CSPR is going to be changed. */ | |
10947 | record_buf[0] = ARM_PS_REGNUM; | |
10948 | arm_insn_r->reg_rec_count = 1; | |
10949 | } | |
10950 | else if (3 == insn_op1) | |
10951 | { | |
10952 | /* SPSR is going to be changed. */ | |
10953 | /* We need to get SPSR value, which is yet to be done. */ | |
10954 | printf_unfiltered (_("Process record does not support " | |
10955 | "instruction 0x%0x at address %s.\n"), | |
10956 | arm_insn_r->arm_insn, | |
10957 | paddress (arm_insn_r->gdbarch, | |
10958 | arm_insn_r->this_addr)); | |
10959 | return -1; | |
10960 | } | |
10961 | } | |
10962 | else if (1 == bits (arm_insn_r->arm_insn, 4, 7)) | |
10963 | { | |
10964 | if (1 == insn_op1) | |
10965 | { | |
10966 | /* BX. */ | |
10967 | record_buf[0] = ARM_PS_REGNUM; | |
10968 | arm_insn_r->reg_rec_count = 1; | |
10969 | } | |
10970 | else if (3 == insn_op1) | |
10971 | { | |
10972 | /* CLZ. */ | |
10973 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10974 | arm_insn_r->reg_rec_count = 1; | |
10975 | } | |
10976 | } | |
10977 | else if (3 == bits (arm_insn_r->arm_insn, 4, 7)) | |
10978 | { | |
10979 | /* BLX. */ | |
10980 | record_buf[0] = ARM_PS_REGNUM; | |
10981 | record_buf[1] = ARM_LR_REGNUM; | |
10982 | arm_insn_r->reg_rec_count = 2; | |
10983 | } | |
10984 | else if (5 == bits (arm_insn_r->arm_insn, 4, 7)) | |
10985 | { | |
10986 | /* QADD, QSUB, QDADD, QDSUB */ | |
10987 | record_buf[0] = ARM_PS_REGNUM; | |
10988 | record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15); | |
10989 | arm_insn_r->reg_rec_count = 2; | |
10990 | } | |
10991 | else if (7 == bits (arm_insn_r->arm_insn, 4, 7)) | |
10992 | { | |
10993 | /* BKPT. */ | |
10994 | record_buf[0] = ARM_PS_REGNUM; | |
10995 | record_buf[1] = ARM_LR_REGNUM; | |
10996 | arm_insn_r->reg_rec_count = 2; | |
10997 | ||
10998 | /* Save SPSR also;how? */ | |
10999 | printf_unfiltered (_("Process record does not support " | |
11000 | "instruction 0x%0x at address %s.\n"), | |
11001 | arm_insn_r->arm_insn, | |
11002 | paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr)); | |
11003 | return -1; | |
11004 | } | |
11005 | else if(8 == bits (arm_insn_r->arm_insn, 4, 7) | |
11006 | || 10 == bits (arm_insn_r->arm_insn, 4, 7) | |
11007 | || 12 == bits (arm_insn_r->arm_insn, 4, 7) | |
11008 | || 14 == bits (arm_insn_r->arm_insn, 4, 7) | |
11009 | ) | |
11010 | { | |
11011 | if (0 == insn_op1 || 1 == insn_op1) | |
11012 | { | |
11013 | /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */ | |
11014 | /* We dont do optimization for SMULW<y> where we | |
11015 | need only Rd. */ | |
11016 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11017 | record_buf[1] = ARM_PS_REGNUM; | |
11018 | arm_insn_r->reg_rec_count = 2; | |
11019 | } | |
11020 | else if (2 == insn_op1) | |
11021 | { | |
11022 | /* SMLAL<x><y>. */ | |
11023 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11024 | record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19); | |
11025 | arm_insn_r->reg_rec_count = 2; | |
11026 | } | |
11027 | else if (3 == insn_op1) | |
11028 | { | |
11029 | /* SMUL<x><y>. */ | |
11030 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11031 | arm_insn_r->reg_rec_count = 1; | |
11032 | } | |
11033 | } | |
11034 | } | |
11035 | else | |
11036 | { | |
11037 | /* MSR : immediate form. */ | |
11038 | if (1 == insn_op1) | |
11039 | { | |
11040 | /* CSPR is going to be changed. */ | |
11041 | record_buf[0] = ARM_PS_REGNUM; | |
11042 | arm_insn_r->reg_rec_count = 1; | |
11043 | } | |
11044 | else if (3 == insn_op1) | |
11045 | { | |
11046 | /* SPSR is going to be changed. */ | |
11047 | /* we need to get SPSR value, which is yet to be done */ | |
11048 | printf_unfiltered (_("Process record does not support " | |
11049 | "instruction 0x%0x at address %s.\n"), | |
11050 | arm_insn_r->arm_insn, | |
11051 | paddress (arm_insn_r->gdbarch, | |
11052 | arm_insn_r->this_addr)); | |
11053 | return -1; | |
11054 | } | |
11055 | } | |
11056 | } | |
11057 | ||
11058 | opcode1 = bits (arm_insn_r->arm_insn, 25, 27); | |
11059 | opcode2 = bits (arm_insn_r->arm_insn, 20, 24); | |
11060 | insn_op1 = bits (arm_insn_r->arm_insn, 5, 6); | |
11061 | ||
11062 | /* Handle load/store insn extension space. */ | |
11063 | ||
11064 | if (!opcode1 && bit (arm_insn_r->arm_insn, 7) | |
11065 | && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond | |
11066 | && !INSN_RECORDED(arm_insn_r)) | |
11067 | { | |
11068 | /* SWP/SWPB. */ | |
11069 | if (0 == insn_op1) | |
11070 | { | |
11071 | /* These insn, changes register and memory as well. */ | |
11072 | /* SWP or SWPB insn. */ | |
11073 | /* Get memory address given by Rn. */ | |
11074 | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | |
11075 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | |
11076 | /* SWP insn ?, swaps word. */ | |
11077 | if (8 == arm_insn_r->opcode) | |
11078 | { | |
11079 | record_buf_mem[0] = 4; | |
11080 | } | |
11081 | else | |
11082 | { | |
11083 | /* SWPB insn, swaps only byte. */ | |
11084 | record_buf_mem[0] = 1; | |
11085 | } | |
11086 | record_buf_mem[1] = u_regval; | |
11087 | arm_insn_r->mem_rec_count = 1; | |
11088 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11089 | arm_insn_r->reg_rec_count = 1; | |
11090 | } | |
11091 | else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20)) | |
11092 | { | |
11093 | /* STRH. */ | |
11094 | arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0], | |
11095 | ARM_RECORD_STRH); | |
11096 | } | |
11097 | else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20)) | |
11098 | { | |
11099 | /* LDRD. */ | |
11100 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11101 | record_buf[1] = record_buf[0] + 1; | |
11102 | arm_insn_r->reg_rec_count = 2; | |
11103 | } | |
11104 | else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20)) | |
11105 | { | |
11106 | /* STRD. */ | |
11107 | arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0], | |
11108 | ARM_RECORD_STRD); | |
11109 | } | |
11110 | else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3) | |
11111 | { | |
11112 | /* LDRH, LDRSB, LDRSH. */ | |
11113 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11114 | arm_insn_r->reg_rec_count = 1; | |
11115 | } | |
11116 | ||
11117 | } | |
11118 | ||
11119 | opcode1 = bits (arm_insn_r->arm_insn, 23, 27); | |
11120 | if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21) | |
11121 | && !INSN_RECORDED(arm_insn_r)) | |
11122 | { | |
11123 | ret = -1; | |
11124 | /* Handle coprocessor insn extension space. */ | |
11125 | } | |
11126 | ||
11127 | /* To be done for ARMv5 and later; as of now we return -1. */ | |
11128 | if (-1 == ret) | |
11129 | printf_unfiltered (_("Process record does not support instruction x%0x " | |
11130 | "at address %s.\n"),arm_insn_r->arm_insn, | |
11131 | paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr)); | |
11132 | ||
11133 | ||
11134 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11135 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
11136 | ||
11137 | return ret; | |
11138 | } | |
11139 | ||
11140 | /* Handling opcode 000 insns. */ | |
11141 | ||
11142 | static int | |
11143 | arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r) | |
11144 | { | |
11145 | struct regcache *reg_cache = arm_insn_r->regcache; | |
11146 | uint32_t record_buf[8], record_buf_mem[8]; | |
11147 | ULONGEST u_regval[2] = {0}; | |
11148 | ||
11149 | uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0; | |
11150 | uint32_t immed_high = 0, immed_low = 0, offset_8 = 0, tgt_mem_addr = 0; | |
11151 | uint32_t opcode1 = 0; | |
11152 | ||
11153 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); | |
11154 | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | |
11155 | opcode1 = bits (arm_insn_r->arm_insn, 20, 24); | |
11156 | ||
11157 | /* Data processing insn /multiply insn. */ | |
11158 | if (9 == arm_insn_r->decode | |
11159 | && ((4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode) | |
11160 | || (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode))) | |
11161 | { | |
11162 | /* Handle multiply instructions. */ | |
11163 | /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */ | |
11164 | if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode) | |
11165 | { | |
11166 | /* Handle MLA and MUL. */ | |
11167 | record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19); | |
11168 | record_buf[1] = ARM_PS_REGNUM; | |
11169 | arm_insn_r->reg_rec_count = 2; | |
11170 | } | |
11171 | else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode) | |
11172 | { | |
11173 | /* Handle SMLAL, SMULL, UMLAL, UMULL. */ | |
11174 | record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19); | |
11175 | record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15); | |
11176 | record_buf[2] = ARM_PS_REGNUM; | |
11177 | arm_insn_r->reg_rec_count = 3; | |
11178 | } | |
11179 | } | |
11180 | else if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM) | |
11181 | && (11 == arm_insn_r->decode || 13 == arm_insn_r->decode)) | |
11182 | { | |
11183 | /* Handle misc load insns, as 20th bit (L = 1). */ | |
11184 | /* LDR insn has a capability to do branching, if | |
11185 | MOV LR, PC is precceded by LDR insn having Rn as R15 | |
11186 | in that case, it emulates branch and link insn, and hence we | |
11187 | need to save CSPR and PC as well. I am not sure this is right | |
11188 | place; as opcode = 010 LDR insn make this happen, if R15 was | |
11189 | used. */ | |
11190 | reg_dest = bits (arm_insn_r->arm_insn, 12, 15); | |
11191 | if (15 != reg_dest) | |
11192 | { | |
11193 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11194 | arm_insn_r->reg_rec_count = 1; | |
11195 | } | |
11196 | else | |
11197 | { | |
11198 | record_buf[0] = reg_dest; | |
11199 | record_buf[1] = ARM_PS_REGNUM; | |
11200 | arm_insn_r->reg_rec_count = 2; | |
11201 | } | |
11202 | } | |
11203 | else if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode) | |
11204 | && sbo_sbz (arm_insn_r->arm_insn, 5, 12, 0) | |
11205 | && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1) | |
11206 | && 2 == bits (arm_insn_r->arm_insn, 20, 21)) | |
11207 | { | |
11208 | /* Handle MSR insn. */ | |
11209 | if (9 == arm_insn_r->opcode) | |
11210 | { | |
11211 | /* CSPR is going to be changed. */ | |
11212 | record_buf[0] = ARM_PS_REGNUM; | |
11213 | arm_insn_r->reg_rec_count = 1; | |
11214 | } | |
11215 | else | |
11216 | { | |
11217 | /* SPSR is going to be changed. */ | |
11218 | /* How to read SPSR value? */ | |
11219 | printf_unfiltered (_("Process record does not support instruction " | |
11220 | "0x%0x at address %s.\n"), | |
11221 | arm_insn_r->arm_insn, | |
11222 | paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr)); | |
11223 | return -1; | |
11224 | } | |
11225 | } | |
11226 | else if (9 == arm_insn_r->decode | |
11227 | && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode) | |
11228 | && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
11229 | { | |
11230 | /* Handling SWP, SWPB. */ | |
11231 | /* These insn, changes register and memory as well. */ | |
11232 | /* SWP or SWPB insn. */ | |
11233 | ||
11234 | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | |
11235 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
11236 | /* SWP insn ?, swaps word. */ | |
11237 | if (8 == arm_insn_r->opcode) | |
11238 | { | |
11239 | record_buf_mem[0] = 4; | |
11240 | } | |
11241 | else | |
11242 | { | |
11243 | /* SWPB insn, swaps only byte. */ | |
11244 | record_buf_mem[0] = 1; | |
11245 | } | |
11246 | record_buf_mem[1] = u_regval[0]; | |
11247 | arm_insn_r->mem_rec_count = 1; | |
11248 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11249 | arm_insn_r->reg_rec_count = 1; | |
11250 | } | |
11251 | else if (3 == arm_insn_r->decode && 0x12 == opcode1 | |
11252 | && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1)) | |
11253 | { | |
11254 | /* Handle BLX, branch and link/exchange. */ | |
11255 | if (9 == arm_insn_r->opcode) | |
11256 | { | |
11257 | /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm, | |
11258 | and R14 stores the return address. */ | |
11259 | record_buf[0] = ARM_PS_REGNUM; | |
11260 | record_buf[1] = ARM_LR_REGNUM; | |
11261 | arm_insn_r->reg_rec_count = 2; | |
11262 | } | |
11263 | } | |
11264 | else if (7 == arm_insn_r->decode && 0x12 == opcode1) | |
11265 | { | |
11266 | /* Handle enhanced software breakpoint insn, BKPT. */ | |
11267 | /* CPSR is changed to be executed in ARM state, disabling normal | |
11268 | interrupts, entering abort mode. */ | |
11269 | /* According to high vector configuration PC is set. */ | |
11270 | /* user hit breakpoint and type reverse, in | |
11271 | that case, we need to go back with previous CPSR and | |
11272 | Program Counter. */ | |
11273 | record_buf[0] = ARM_PS_REGNUM; | |
11274 | record_buf[1] = ARM_LR_REGNUM; | |
11275 | arm_insn_r->reg_rec_count = 2; | |
11276 | ||
11277 | /* Save SPSR also; how? */ | |
11278 | printf_unfiltered (_("Process record does not support instruction " | |
11279 | "0x%0x at address %s.\n"),arm_insn_r->arm_insn, | |
11280 | paddress (arm_insn_r->gdbarch, | |
11281 | arm_insn_r->this_addr)); | |
11282 | return -1; | |
11283 | } | |
11284 | else if (11 == arm_insn_r->decode | |
11285 | && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
11286 | { | |
11287 | /* Handle enhanced store insns and DSP insns (e.g. LDRD). */ | |
11288 | ||
11289 | /* Handle str(x) insn */ | |
11290 | arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0], | |
11291 | ARM_RECORD_STRH); | |
11292 | } | |
11293 | else if (1 == arm_insn_r->decode && 0x12 == opcode1 | |
11294 | && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1)) | |
11295 | { | |
11296 | /* Handle BX, branch and link/exchange. */ | |
11297 | /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */ | |
11298 | record_buf[0] = ARM_PS_REGNUM; | |
11299 | arm_insn_r->reg_rec_count = 1; | |
11300 | } | |
11301 | else if (1 == arm_insn_r->decode && 0x16 == opcode1 | |
11302 | && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1) | |
11303 | && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)) | |
11304 | { | |
11305 | /* Count leading zeros: CLZ. */ | |
11306 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11307 | arm_insn_r->reg_rec_count = 1; | |
11308 | } | |
11309 | else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM) | |
11310 | && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode) | |
11311 | && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1) | |
11312 | && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0) | |
11313 | ) | |
11314 | { | |
11315 | /* Handle MRS insn. */ | |
11316 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11317 | arm_insn_r->reg_rec_count = 1; | |
11318 | } | |
11319 | else if (arm_insn_r->opcode <= 15) | |
11320 | { | |
11321 | /* Normal data processing insns. */ | |
11322 | /* Out of 11 shifter operands mode, all the insn modifies destination | |
11323 | register, which is specified by 13-16 decode. */ | |
11324 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11325 | record_buf[1] = ARM_PS_REGNUM; | |
11326 | arm_insn_r->reg_rec_count = 2; | |
11327 | } | |
11328 | else | |
11329 | { | |
11330 | return -1; | |
11331 | } | |
11332 | ||
11333 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11334 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
11335 | return 0; | |
11336 | } | |
11337 | ||
11338 | /* Handling opcode 001 insns. */ | |
11339 | ||
11340 | static int | |
11341 | arm_record_data_proc_imm (insn_decode_record *arm_insn_r) | |
11342 | { | |
11343 | uint32_t record_buf[8], record_buf_mem[8]; | |
11344 | ||
11345 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); | |
11346 | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | |
11347 | ||
11348 | if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode) | |
11349 | && 2 == bits (arm_insn_r->arm_insn, 20, 21) | |
11350 | && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1) | |
11351 | ) | |
11352 | { | |
11353 | /* Handle MSR insn. */ | |
11354 | if (9 == arm_insn_r->opcode) | |
11355 | { | |
11356 | /* CSPR is going to be changed. */ | |
11357 | record_buf[0] = ARM_PS_REGNUM; | |
11358 | arm_insn_r->reg_rec_count = 1; | |
11359 | } | |
11360 | else | |
11361 | { | |
11362 | /* SPSR is going to be changed. */ | |
11363 | } | |
11364 | } | |
11365 | else if (arm_insn_r->opcode <= 15) | |
11366 | { | |
11367 | /* Normal data processing insns. */ | |
11368 | /* Out of 11 shifter operands mode, all the insn modifies destination | |
11369 | register, which is specified by 13-16 decode. */ | |
11370 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11371 | record_buf[1] = ARM_PS_REGNUM; | |
11372 | arm_insn_r->reg_rec_count = 2; | |
11373 | } | |
11374 | else | |
11375 | { | |
11376 | return -1; | |
11377 | } | |
11378 | ||
11379 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11380 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
11381 | return 0; | |
11382 | } | |
11383 | ||
11384 | /* Handling opcode 010 insns. */ | |
11385 | ||
11386 | static int | |
11387 | arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r) | |
11388 | { | |
11389 | struct regcache *reg_cache = arm_insn_r->regcache; | |
11390 | ||
11391 | uint32_t reg_src1 = 0 , reg_dest = 0; | |
11392 | uint32_t offset_12 = 0, tgt_mem_addr = 0; | |
11393 | uint32_t record_buf[8], record_buf_mem[8]; | |
11394 | ||
11395 | ULONGEST u_regval = 0; | |
11396 | ||
11397 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); | |
11398 | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | |
11399 | ||
11400 | if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
11401 | { | |
11402 | reg_dest = bits (arm_insn_r->arm_insn, 12, 15); | |
11403 | /* LDR insn has a capability to do branching, if | |
11404 | MOV LR, PC is precedded by LDR insn having Rn as R15 | |
11405 | in that case, it emulates branch and link insn, and hence we | |
11406 | need to save CSPR and PC as well. */ | |
11407 | if (ARM_PC_REGNUM != reg_dest) | |
11408 | { | |
11409 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11410 | arm_insn_r->reg_rec_count = 1; | |
11411 | } | |
11412 | else | |
11413 | { | |
11414 | record_buf[0] = reg_dest; | |
11415 | record_buf[1] = ARM_PS_REGNUM; | |
11416 | arm_insn_r->reg_rec_count = 2; | |
11417 | } | |
11418 | } | |
11419 | else | |
11420 | { | |
11421 | /* Store, immediate offset, immediate pre-indexed, | |
11422 | immediate post-indexed. */ | |
11423 | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | |
11424 | offset_12 = bits (arm_insn_r->arm_insn, 0, 11); | |
11425 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | |
11426 | /* U == 1 */ | |
11427 | if (bit (arm_insn_r->arm_insn, 23)) | |
11428 | { | |
11429 | tgt_mem_addr = u_regval + offset_12; | |
11430 | } | |
11431 | else | |
11432 | { | |
11433 | tgt_mem_addr = u_regval - offset_12; | |
11434 | } | |
11435 | ||
11436 | switch (arm_insn_r->opcode) | |
11437 | { | |
11438 | /* STR. */ | |
11439 | case 8: | |
11440 | case 12: | |
11441 | /* STR. */ | |
11442 | case 9: | |
11443 | case 13: | |
11444 | /* STRT. */ | |
11445 | case 1: | |
11446 | case 5: | |
11447 | /* STR. */ | |
11448 | case 4: | |
11449 | case 0: | |
11450 | record_buf_mem[0] = 4; | |
11451 | break; | |
11452 | ||
11453 | /* STRB. */ | |
11454 | case 10: | |
11455 | case 14: | |
11456 | /* STRB. */ | |
11457 | case 11: | |
11458 | case 15: | |
11459 | /* STRBT. */ | |
11460 | case 3: | |
11461 | case 7: | |
11462 | /* STRB. */ | |
11463 | case 2: | |
11464 | case 6: | |
11465 | record_buf_mem[0] = 1; | |
11466 | break; | |
11467 | ||
11468 | default: | |
11469 | gdb_assert_not_reached ("no decoding pattern found"); | |
11470 | break; | |
11471 | } | |
11472 | record_buf_mem[1] = tgt_mem_addr; | |
11473 | arm_insn_r->mem_rec_count = 1; | |
11474 | ||
11475 | if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode | |
11476 | || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode | |
11477 | || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode | |
11478 | || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode | |
11479 | || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode | |
11480 | || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode | |
11481 | ) | |
11482 | { | |
11483 | /* We are handling pre-indexed mode; post-indexed mode; | |
11484 | where Rn is going to be changed. */ | |
11485 | record_buf[0] = reg_src1; | |
11486 | arm_insn_r->reg_rec_count = 1; | |
11487 | } | |
11488 | } | |
11489 | ||
11490 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11491 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
11492 | return 0; | |
11493 | } | |
11494 | ||
11495 | /* Handling opcode 011 insns. */ | |
11496 | ||
11497 | static int | |
11498 | arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r) | |
11499 | { | |
11500 | struct regcache *reg_cache = arm_insn_r->regcache; | |
11501 | ||
11502 | uint32_t shift_imm = 0; | |
11503 | uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0; | |
11504 | uint32_t offset_12 = 0, tgt_mem_addr = 0; | |
11505 | uint32_t record_buf[8], record_buf_mem[8]; | |
11506 | ||
11507 | LONGEST s_word; | |
11508 | ULONGEST u_regval[2]; | |
11509 | ||
11510 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); | |
11511 | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | |
11512 | ||
11513 | /* Handle enhanced store insns and LDRD DSP insn, | |
11514 | order begins according to addressing modes for store insns | |
11515 | STRH insn. */ | |
11516 | ||
11517 | /* LDR or STR? */ | |
11518 | if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
11519 | { | |
11520 | reg_dest = bits (arm_insn_r->arm_insn, 12, 15); | |
11521 | /* LDR insn has a capability to do branching, if | |
11522 | MOV LR, PC is precedded by LDR insn having Rn as R15 | |
11523 | in that case, it emulates branch and link insn, and hence we | |
11524 | need to save CSPR and PC as well. */ | |
11525 | if (15 != reg_dest) | |
11526 | { | |
11527 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11528 | arm_insn_r->reg_rec_count = 1; | |
11529 | } | |
11530 | else | |
11531 | { | |
11532 | record_buf[0] = reg_dest; | |
11533 | record_buf[1] = ARM_PS_REGNUM; | |
11534 | arm_insn_r->reg_rec_count = 2; | |
11535 | } | |
11536 | } | |
11537 | else | |
11538 | { | |
11539 | if (! bits (arm_insn_r->arm_insn, 4, 11)) | |
11540 | { | |
11541 | /* Store insn, register offset and register pre-indexed, | |
11542 | register post-indexed. */ | |
11543 | /* Get Rm. */ | |
11544 | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | |
11545 | /* Get Rn. */ | |
11546 | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | |
11547 | regcache_raw_read_unsigned (reg_cache, reg_src1 | |
11548 | , &u_regval[0]); | |
11549 | regcache_raw_read_unsigned (reg_cache, reg_src2 | |
11550 | , &u_regval[1]); | |
11551 | if (15 == reg_src2) | |
11552 | { | |
11553 | /* If R15 was used as Rn, hence current PC+8. */ | |
11554 | /* Pre-indexed mode doesnt reach here ; illegal insn. */ | |
11555 | u_regval[0] = u_regval[0] + 8; | |
11556 | } | |
11557 | /* Calculate target store address, Rn +/- Rm, register offset. */ | |
11558 | /* U == 1. */ | |
11559 | if (bit (arm_insn_r->arm_insn, 23)) | |
11560 | { | |
11561 | tgt_mem_addr = u_regval[0] + u_regval[1]; | |
11562 | } | |
11563 | else | |
11564 | { | |
11565 | tgt_mem_addr = u_regval[1] - u_regval[0]; | |
11566 | } | |
11567 | ||
11568 | switch (arm_insn_r->opcode) | |
11569 | { | |
11570 | /* STR. */ | |
11571 | case 8: | |
11572 | case 12: | |
11573 | /* STR. */ | |
11574 | case 9: | |
11575 | case 13: | |
11576 | /* STRT. */ | |
11577 | case 1: | |
11578 | case 5: | |
11579 | /* STR. */ | |
11580 | case 0: | |
11581 | case 4: | |
11582 | record_buf_mem[0] = 4; | |
11583 | break; | |
11584 | ||
11585 | /* STRB. */ | |
11586 | case 10: | |
11587 | case 14: | |
11588 | /* STRB. */ | |
11589 | case 11: | |
11590 | case 15: | |
11591 | /* STRBT. */ | |
11592 | case 3: | |
11593 | case 7: | |
11594 | /* STRB. */ | |
11595 | case 2: | |
11596 | case 6: | |
11597 | record_buf_mem[0] = 1; | |
11598 | break; | |
11599 | ||
11600 | default: | |
11601 | gdb_assert_not_reached ("no decoding pattern found"); | |
11602 | break; | |
11603 | } | |
11604 | record_buf_mem[1] = tgt_mem_addr; | |
11605 | arm_insn_r->mem_rec_count = 1; | |
11606 | ||
11607 | if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode | |
11608 | || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode | |
11609 | || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode | |
11610 | || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode | |
11611 | || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode | |
11612 | || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode | |
11613 | ) | |
11614 | { | |
11615 | /* Rn is going to be changed in pre-indexed mode and | |
11616 | post-indexed mode as well. */ | |
11617 | record_buf[0] = reg_src2; | |
11618 | arm_insn_r->reg_rec_count = 1; | |
11619 | } | |
11620 | } | |
11621 | else | |
11622 | { | |
11623 | /* Store insn, scaled register offset; scaled pre-indexed. */ | |
11624 | offset_12 = bits (arm_insn_r->arm_insn, 5, 6); | |
11625 | /* Get Rm. */ | |
11626 | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | |
11627 | /* Get Rn. */ | |
11628 | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | |
11629 | /* Get shift_imm. */ | |
11630 | shift_imm = bits (arm_insn_r->arm_insn, 7, 11); | |
11631 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
11632 | regcache_raw_read_signed (reg_cache, reg_src1, &s_word); | |
11633 | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | |
11634 | /* Offset_12 used as shift. */ | |
11635 | switch (offset_12) | |
11636 | { | |
11637 | case 0: | |
11638 | /* Offset_12 used as index. */ | |
11639 | offset_12 = u_regval[0] << shift_imm; | |
11640 | break; | |
11641 | ||
11642 | case 1: | |
11643 | offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm; | |
11644 | break; | |
11645 | ||
11646 | case 2: | |
11647 | if (!shift_imm) | |
11648 | { | |
11649 | if (bit (u_regval[0], 31)) | |
11650 | { | |
11651 | offset_12 = 0xFFFFFFFF; | |
11652 | } | |
11653 | else | |
11654 | { | |
11655 | offset_12 = 0; | |
11656 | } | |
11657 | } | |
11658 | else | |
11659 | { | |
11660 | /* This is arithmetic shift. */ | |
11661 | offset_12 = s_word >> shift_imm; | |
11662 | } | |
11663 | break; | |
11664 | ||
11665 | case 3: | |
11666 | if (!shift_imm) | |
11667 | { | |
11668 | regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM, | |
11669 | &u_regval[1]); | |
11670 | /* Get C flag value and shift it by 31. */ | |
11671 | offset_12 = (((bit (u_regval[1], 29)) << 31) \ | |
11672 | | (u_regval[0]) >> 1); | |
11673 | } | |
11674 | else | |
11675 | { | |
11676 | offset_12 = (u_regval[0] >> shift_imm) \ | |
11677 | | (u_regval[0] << | |
11678 | (sizeof(uint32_t) - shift_imm)); | |
11679 | } | |
11680 | break; | |
11681 | ||
11682 | default: | |
11683 | gdb_assert_not_reached ("no decoding pattern found"); | |
11684 | break; | |
11685 | } | |
11686 | ||
11687 | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | |
11688 | /* bit U set. */ | |
11689 | if (bit (arm_insn_r->arm_insn, 23)) | |
11690 | { | |
11691 | tgt_mem_addr = u_regval[1] + offset_12; | |
11692 | } | |
11693 | else | |
11694 | { | |
11695 | tgt_mem_addr = u_regval[1] - offset_12; | |
11696 | } | |
11697 | ||
11698 | switch (arm_insn_r->opcode) | |
11699 | { | |
11700 | /* STR. */ | |
11701 | case 8: | |
11702 | case 12: | |
11703 | /* STR. */ | |
11704 | case 9: | |
11705 | case 13: | |
11706 | /* STRT. */ | |
11707 | case 1: | |
11708 | case 5: | |
11709 | /* STR. */ | |
11710 | case 0: | |
11711 | case 4: | |
11712 | record_buf_mem[0] = 4; | |
11713 | break; | |
11714 | ||
11715 | /* STRB. */ | |
11716 | case 10: | |
11717 | case 14: | |
11718 | /* STRB. */ | |
11719 | case 11: | |
11720 | case 15: | |
11721 | /* STRBT. */ | |
11722 | case 3: | |
11723 | case 7: | |
11724 | /* STRB. */ | |
11725 | case 2: | |
11726 | case 6: | |
11727 | record_buf_mem[0] = 1; | |
11728 | break; | |
11729 | ||
11730 | default: | |
11731 | gdb_assert_not_reached ("no decoding pattern found"); | |
11732 | break; | |
11733 | } | |
11734 | record_buf_mem[1] = tgt_mem_addr; | |
11735 | arm_insn_r->mem_rec_count = 1; | |
11736 | ||
11737 | if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode | |
11738 | || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode | |
11739 | || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode | |
11740 | || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode | |
11741 | || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode | |
11742 | || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode | |
11743 | ) | |
11744 | { | |
11745 | /* Rn is going to be changed in register scaled pre-indexed | |
11746 | mode,and scaled post indexed mode. */ | |
11747 | record_buf[0] = reg_src2; | |
11748 | arm_insn_r->reg_rec_count = 1; | |
11749 | } | |
11750 | } | |
11751 | } | |
11752 | ||
11753 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11754 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
11755 | return 0; | |
11756 | } | |
11757 | ||
11758 | /* Handling opcode 100 insns. */ | |
11759 | ||
11760 | static int | |
11761 | arm_record_ld_st_multiple (insn_decode_record *arm_insn_r) | |
11762 | { | |
11763 | struct regcache *reg_cache = arm_insn_r->regcache; | |
11764 | ||
11765 | uint32_t register_list[16] = {0}, register_count = 0, register_bits = 0; | |
11766 | uint32_t reg_src1 = 0, addr_mode = 0, no_of_regs = 0; | |
11767 | uint32_t start_address = 0, index = 0; | |
11768 | uint32_t record_buf[24], record_buf_mem[48]; | |
11769 | ||
11770 | ULONGEST u_regval[2] = {0}; | |
11771 | ||
11772 | /* This mode is exclusively for load and store multiple. */ | |
11773 | /* Handle incremenrt after/before and decrment after.before mode; | |
11774 | Rn is changing depending on W bit, but as of now we store Rn too | |
11775 | without optimization. */ | |
11776 | ||
11777 | if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
11778 | { | |
11779 | /* LDM (1,2,3) where LDM (3) changes CPSR too. */ | |
11780 | ||
11781 | if (bit (arm_insn_r->arm_insn, 20) && !bit (arm_insn_r->arm_insn, 22)) | |
11782 | { | |
11783 | register_bits = bits (arm_insn_r->arm_insn, 0, 15); | |
11784 | no_of_regs = 15; | |
11785 | } | |
11786 | else | |
11787 | { | |
11788 | register_bits = bits (arm_insn_r->arm_insn, 0, 14); | |
11789 | no_of_regs = 14; | |
11790 | } | |
11791 | /* Get Rn. */ | |
11792 | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | |
11793 | while (register_bits) | |
11794 | { | |
11795 | if (register_bits & 0x00000001) | |
11796 | register_list[register_count++] = 1; | |
11797 | register_bits = register_bits >> 1; | |
11798 | } | |
11799 | ||
11800 | /* Extra space for Base Register and CPSR; wihtout optimization. */ | |
11801 | record_buf[register_count] = reg_src1; | |
11802 | record_buf[register_count + 1] = ARM_PS_REGNUM; | |
11803 | arm_insn_r->reg_rec_count = register_count + 2; | |
11804 | ||
11805 | for (register_count = 0; register_count < no_of_regs; register_count++) | |
11806 | { | |
11807 | if (register_list[register_count]) | |
11808 | { | |
11809 | /* Register_count gives total no of registers | |
11810 | and dually working as reg number. */ | |
11811 | record_buf[index] = register_count; | |
11812 | index++; | |
11813 | } | |
11814 | } | |
11815 | ||
11816 | } | |
11817 | else | |
11818 | { | |
11819 | /* It handles both STM(1) and STM(2). */ | |
11820 | addr_mode = bits (arm_insn_r->arm_insn, 23, 24); | |
11821 | ||
11822 | register_bits = bits (arm_insn_r->arm_insn, 0, 15); | |
11823 | /* Get Rn. */ | |
11824 | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | |
11825 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
11826 | while (register_bits) | |
11827 | { | |
11828 | if (register_bits & 0x00000001) | |
11829 | register_count++; | |
11830 | register_bits = register_bits >> 1; | |
11831 | } | |
11832 | ||
11833 | switch (addr_mode) | |
11834 | { | |
11835 | /* Decrement after. */ | |
11836 | case 0: | |
11837 | start_address = (u_regval[0]) - (register_count * 4) + 4; | |
11838 | arm_insn_r->mem_rec_count = register_count; | |
11839 | while (register_count) | |
11840 | { | |
11841 | record_buf_mem[(register_count * 2) - 1] = start_address; | |
11842 | record_buf_mem[(register_count * 2) - 2] = 4; | |
11843 | start_address = start_address + 4; | |
11844 | register_count--; | |
11845 | } | |
11846 | break; | |
11847 | ||
11848 | /* Increment after. */ | |
11849 | case 1: | |
11850 | start_address = u_regval[0]; | |
11851 | arm_insn_r->mem_rec_count = register_count; | |
11852 | while (register_count) | |
11853 | { | |
11854 | record_buf_mem[(register_count * 2) - 1] = start_address; | |
11855 | record_buf_mem[(register_count * 2) - 2] = 4; | |
11856 | start_address = start_address + 4; | |
11857 | register_count--; | |
11858 | } | |
11859 | break; | |
11860 | ||
11861 | /* Decrement before. */ | |
11862 | case 2: | |
11863 | ||
11864 | start_address = (u_regval[0]) - (register_count * 4); | |
11865 | arm_insn_r->mem_rec_count = register_count; | |
11866 | while (register_count) | |
11867 | { | |
11868 | record_buf_mem[(register_count * 2) - 1] = start_address; | |
11869 | record_buf_mem[(register_count * 2) - 2] = 4; | |
11870 | start_address = start_address + 4; | |
11871 | register_count--; | |
11872 | } | |
11873 | break; | |
11874 | ||
11875 | /* Increment before. */ | |
11876 | case 3: | |
11877 | start_address = u_regval[0] + 4; | |
11878 | arm_insn_r->mem_rec_count = register_count; | |
11879 | while (register_count) | |
11880 | { | |
11881 | record_buf_mem[(register_count * 2) - 1] = start_address; | |
11882 | record_buf_mem[(register_count * 2) - 2] = 4; | |
11883 | start_address = start_address + 4; | |
11884 | register_count--; | |
11885 | } | |
11886 | break; | |
11887 | ||
11888 | default: | |
11889 | gdb_assert_not_reached ("no decoding pattern found"); | |
11890 | break; | |
11891 | } | |
11892 | ||
11893 | /* Base register also changes; based on condition and W bit. */ | |
11894 | /* We save it anyway without optimization. */ | |
11895 | record_buf[0] = reg_src1; | |
11896 | arm_insn_r->reg_rec_count = 1; | |
11897 | } | |
11898 | ||
11899 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11900 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
11901 | return 0; | |
11902 | } | |
11903 | ||
11904 | /* Handling opcode 101 insns. */ | |
11905 | ||
11906 | static int | |
11907 | arm_record_b_bl (insn_decode_record *arm_insn_r) | |
11908 | { | |
11909 | uint32_t record_buf[8]; | |
11910 | ||
11911 | /* Handle B, BL, BLX(1) insns. */ | |
11912 | /* B simply branches so we do nothing here. */ | |
11913 | /* Note: BLX(1) doesnt fall here but instead it falls into | |
11914 | extension space. */ | |
11915 | if (bit (arm_insn_r->arm_insn, 24)) | |
11916 | { | |
11917 | record_buf[0] = ARM_LR_REGNUM; | |
11918 | arm_insn_r->reg_rec_count = 1; | |
11919 | } | |
11920 | ||
11921 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11922 | ||
11923 | return 0; | |
11924 | } | |
11925 | ||
11926 | /* Handling opcode 110 insns. */ | |
11927 | ||
11928 | static int | |
11929 | arm_record_coproc (insn_decode_record *arm_insn_r) | |
11930 | { | |
11931 | printf_unfiltered (_("Process record does not support instruction " | |
11932 | "0x%0x at address %s.\n"),arm_insn_r->arm_insn, | |
11933 | paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr)); | |
11934 | ||
11935 | return -1; | |
11936 | } | |
11937 | ||
11938 | /* Handling opcode 111 insns. */ | |
11939 | ||
11940 | static int | |
11941 | arm_record_coproc_data_proc (insn_decode_record *arm_insn_r) | |
11942 | { | |
11943 | struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch); | |
11944 | struct regcache *reg_cache = arm_insn_r->regcache; | |
11945 | uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */ | |
11946 | ||
11947 | /* Handle SWI insn; system call would be handled over here. */ | |
11948 | ||
11949 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27); | |
11950 | if (15 == arm_insn_r->opcode) | |
11951 | { | |
11952 | /* Handle arm syscall insn. */ | |
11953 | if (tdep->arm_swi_record != NULL) | |
11954 | { | |
11955 | ret = tdep->arm_swi_record(reg_cache); | |
11956 | } | |
11957 | else | |
11958 | { | |
11959 | printf_unfiltered (_("no syscall record support\n")); | |
11960 | ret = -1; | |
11961 | } | |
11962 | } | |
11963 | ||
11964 | printf_unfiltered (_("Process record does not support instruction " | |
11965 | "0x%0x at address %s.\n"),arm_insn_r->arm_insn, | |
11966 | paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr)); | |
11967 | return ret; | |
11968 | } | |
11969 | ||
11970 | /* Handling opcode 000 insns. */ | |
11971 | ||
11972 | static int | |
11973 | thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r) | |
11974 | { | |
11975 | uint32_t record_buf[8]; | |
11976 | uint32_t reg_src1 = 0; | |
11977 | ||
11978 | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | |
11979 | ||
11980 | record_buf[0] = ARM_PS_REGNUM; | |
11981 | record_buf[1] = reg_src1; | |
11982 | thumb_insn_r->reg_rec_count = 2; | |
11983 | ||
11984 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
11985 | ||
11986 | return 0; | |
11987 | } | |
11988 | ||
11989 | ||
11990 | /* Handling opcode 001 insns. */ | |
11991 | ||
11992 | static int | |
11993 | thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r) | |
11994 | { | |
11995 | uint32_t record_buf[8]; | |
11996 | uint32_t reg_src1 = 0; | |
11997 | ||
11998 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
11999 | ||
12000 | record_buf[0] = ARM_PS_REGNUM; | |
12001 | record_buf[1] = reg_src1; | |
12002 | thumb_insn_r->reg_rec_count = 2; | |
12003 | ||
12004 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
12005 | ||
12006 | return 0; | |
12007 | } | |
12008 | ||
12009 | /* Handling opcode 010 insns. */ | |
12010 | ||
12011 | static int | |
12012 | thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r) | |
12013 | { | |
12014 | struct regcache *reg_cache = thumb_insn_r->regcache; | |
12015 | uint32_t record_buf[8], record_buf_mem[8]; | |
12016 | ||
12017 | uint32_t reg_src1 = 0, reg_src2 = 0; | |
12018 | uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0; | |
12019 | ||
12020 | ULONGEST u_regval[2] = {0}; | |
12021 | ||
12022 | opcode1 = bits (thumb_insn_r->arm_insn, 10, 12); | |
12023 | ||
12024 | if (bit (thumb_insn_r->arm_insn, 12)) | |
12025 | { | |
12026 | /* Handle load/store register offset. */ | |
12027 | opcode2 = bits (thumb_insn_r->arm_insn, 9, 10); | |
12028 | if (opcode2 >= 12 && opcode2 <= 15) | |
12029 | { | |
12030 | /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */ | |
12031 | reg_src1 = bits (thumb_insn_r->arm_insn,0, 2); | |
12032 | record_buf[0] = reg_src1; | |
12033 | thumb_insn_r->reg_rec_count = 1; | |
12034 | } | |
12035 | else if (opcode2 >= 8 && opcode2 <= 10) | |
12036 | { | |
12037 | /* STR(2), STRB(2), STRH(2) . */ | |
12038 | reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5); | |
12039 | reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8); | |
12040 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
12041 | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | |
12042 | if (8 == opcode2) | |
12043 | record_buf_mem[0] = 4; /* STR (2). */ | |
12044 | else if (10 == opcode2) | |
12045 | record_buf_mem[0] = 1; /* STRB (2). */ | |
12046 | else if (9 == opcode2) | |
12047 | record_buf_mem[0] = 2; /* STRH (2). */ | |
12048 | record_buf_mem[1] = u_regval[0] + u_regval[1]; | |
12049 | thumb_insn_r->mem_rec_count = 1; | |
12050 | } | |
12051 | } | |
12052 | else if (bit (thumb_insn_r->arm_insn, 11)) | |
12053 | { | |
12054 | /* Handle load from literal pool. */ | |
12055 | /* LDR(3). */ | |
12056 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
12057 | record_buf[0] = reg_src1; | |
12058 | thumb_insn_r->reg_rec_count = 1; | |
12059 | } | |
12060 | else if (opcode1) | |
12061 | { | |
12062 | opcode2 = bits (thumb_insn_r->arm_insn, 8, 9); | |
12063 | opcode3 = bits (thumb_insn_r->arm_insn, 0, 2); | |
12064 | if ((3 == opcode2) && (!opcode3)) | |
12065 | { | |
12066 | /* Branch with exchange. */ | |
12067 | record_buf[0] = ARM_PS_REGNUM; | |
12068 | thumb_insn_r->reg_rec_count = 1; | |
12069 | } | |
12070 | else | |
12071 | { | |
12072 | /* Format 8; special data processing insns. */ | |
12073 | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | |
12074 | record_buf[0] = ARM_PS_REGNUM; | |
12075 | record_buf[1] = reg_src1; | |
12076 | thumb_insn_r->reg_rec_count = 2; | |
12077 | } | |
12078 | } | |
12079 | else | |
12080 | { | |
12081 | /* Format 5; data processing insns. */ | |
12082 | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | |
12083 | if (bit (thumb_insn_r->arm_insn, 7)) | |
12084 | { | |
12085 | reg_src1 = reg_src1 + 8; | |
12086 | } | |
12087 | record_buf[0] = ARM_PS_REGNUM; | |
12088 | record_buf[1] = reg_src1; | |
12089 | thumb_insn_r->reg_rec_count = 2; | |
12090 | } | |
12091 | ||
12092 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
12093 | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | |
12094 | record_buf_mem); | |
12095 | ||
12096 | return 0; | |
12097 | } | |
12098 | ||
12099 | /* Handling opcode 001 insns. */ | |
12100 | ||
12101 | static int | |
12102 | thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r) | |
12103 | { | |
12104 | struct regcache *reg_cache = thumb_insn_r->regcache; | |
12105 | uint32_t record_buf[8], record_buf_mem[8]; | |
12106 | ||
12107 | uint32_t reg_src1 = 0; | |
12108 | uint32_t opcode = 0, immed_5 = 0; | |
12109 | ||
12110 | ULONGEST u_regval = 0; | |
12111 | ||
12112 | opcode = bits (thumb_insn_r->arm_insn, 11, 12); | |
12113 | ||
12114 | if (opcode) | |
12115 | { | |
12116 | /* LDR(1). */ | |
12117 | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | |
12118 | record_buf[0] = reg_src1; | |
12119 | thumb_insn_r->reg_rec_count = 1; | |
12120 | } | |
12121 | else | |
12122 | { | |
12123 | /* STR(1). */ | |
12124 | reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5); | |
12125 | immed_5 = bits (thumb_insn_r->arm_insn, 6, 10); | |
12126 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | |
12127 | record_buf_mem[0] = 4; | |
12128 | record_buf_mem[1] = u_regval + (immed_5 * 4); | |
12129 | thumb_insn_r->mem_rec_count = 1; | |
12130 | } | |
12131 | ||
12132 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
12133 | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | |
12134 | record_buf_mem); | |
12135 | ||
12136 | return 0; | |
12137 | } | |
12138 | ||
12139 | /* Handling opcode 100 insns. */ | |
12140 | ||
12141 | static int | |
12142 | thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r) | |
12143 | { | |
12144 | struct regcache *reg_cache = thumb_insn_r->regcache; | |
12145 | uint32_t record_buf[8], record_buf_mem[8]; | |
12146 | ||
12147 | uint32_t reg_src1 = 0; | |
12148 | uint32_t opcode = 0, immed_8 = 0, immed_5 = 0; | |
12149 | ||
12150 | ULONGEST u_regval = 0; | |
12151 | ||
12152 | opcode = bits (thumb_insn_r->arm_insn, 11, 12); | |
12153 | ||
12154 | if (3 == opcode) | |
12155 | { | |
12156 | /* LDR(4). */ | |
12157 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
12158 | record_buf[0] = reg_src1; | |
12159 | thumb_insn_r->reg_rec_count = 1; | |
12160 | } | |
12161 | else if (1 == opcode) | |
12162 | { | |
12163 | /* LDRH(1). */ | |
12164 | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | |
12165 | record_buf[0] = reg_src1; | |
12166 | thumb_insn_r->reg_rec_count = 1; | |
12167 | } | |
12168 | else if (2 == opcode) | |
12169 | { | |
12170 | /* STR(3). */ | |
12171 | immed_8 = bits (thumb_insn_r->arm_insn, 0, 7); | |
12172 | regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval); | |
12173 | record_buf_mem[0] = 4; | |
12174 | record_buf_mem[1] = u_regval + (immed_8 * 4); | |
12175 | thumb_insn_r->mem_rec_count = 1; | |
12176 | } | |
12177 | else if (0 == opcode) | |
12178 | { | |
12179 | /* STRH(1). */ | |
12180 | immed_5 = bits (thumb_insn_r->arm_insn, 6, 10); | |
12181 | reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5); | |
12182 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | |
12183 | record_buf_mem[0] = 2; | |
12184 | record_buf_mem[1] = u_regval + (immed_5 * 2); | |
12185 | thumb_insn_r->mem_rec_count = 1; | |
12186 | } | |
12187 | ||
12188 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
12189 | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | |
12190 | record_buf_mem); | |
12191 | ||
12192 | return 0; | |
12193 | } | |
12194 | ||
12195 | /* Handling opcode 101 insns. */ | |
12196 | ||
12197 | static int | |
12198 | thumb_record_misc (insn_decode_record *thumb_insn_r) | |
12199 | { | |
12200 | struct regcache *reg_cache = thumb_insn_r->regcache; | |
12201 | ||
12202 | uint32_t opcode = 0, opcode1 = 0, opcode2 = 0; | |
12203 | uint32_t register_bits = 0, register_count = 0; | |
12204 | uint32_t register_list[8] = {0}, index = 0, start_address = 0; | |
12205 | uint32_t record_buf[24], record_buf_mem[48]; | |
12206 | uint32_t reg_src1; | |
12207 | ||
12208 | ULONGEST u_regval = 0; | |
12209 | ||
12210 | opcode = bits (thumb_insn_r->arm_insn, 11, 12); | |
12211 | opcode1 = bits (thumb_insn_r->arm_insn, 8, 12); | |
12212 | opcode2 = bits (thumb_insn_r->arm_insn, 9, 12); | |
12213 | ||
12214 | if (14 == opcode2) | |
12215 | { | |
12216 | /* POP. */ | |
12217 | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | |
12218 | while (register_bits) | |
12219 | { | |
12220 | if (register_bits & 0x00000001) | |
12221 | register_list[register_count++] = 1; | |
12222 | register_bits = register_bits >> 1; | |
12223 | } | |
12224 | record_buf[register_count] = ARM_PS_REGNUM; | |
12225 | record_buf[register_count + 1] = ARM_SP_REGNUM; | |
12226 | thumb_insn_r->reg_rec_count = register_count + 2; | |
12227 | for (register_count = 0; register_count < 8; register_count++) | |
12228 | { | |
12229 | if (register_list[register_count]) | |
12230 | { | |
12231 | record_buf[index] = register_count; | |
12232 | index++; | |
12233 | } | |
12234 | } | |
12235 | } | |
12236 | else if (10 == opcode2) | |
12237 | { | |
12238 | /* PUSH. */ | |
12239 | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | |
12240 | regcache_raw_read_unsigned (reg_cache, ARM_PC_REGNUM, &u_regval); | |
12241 | while (register_bits) | |
12242 | { | |
12243 | if (register_bits & 0x00000001) | |
12244 | register_count++; | |
12245 | register_bits = register_bits >> 1; | |
12246 | } | |
12247 | start_address = u_regval - \ | |
12248 | (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count)); | |
12249 | thumb_insn_r->mem_rec_count = register_count; | |
12250 | while (register_count) | |
12251 | { | |
12252 | record_buf_mem[(register_count * 2) - 1] = start_address; | |
12253 | record_buf_mem[(register_count * 2) - 2] = 4; | |
12254 | start_address = start_address + 4; | |
12255 | register_count--; | |
12256 | } | |
12257 | record_buf[0] = ARM_SP_REGNUM; | |
12258 | thumb_insn_r->reg_rec_count = 1; | |
12259 | } | |
12260 | else if (0x1E == opcode1) | |
12261 | { | |
12262 | /* BKPT insn. */ | |
12263 | /* Handle enhanced software breakpoint insn, BKPT. */ | |
12264 | /* CPSR is changed to be executed in ARM state, disabling normal | |
12265 | interrupts, entering abort mode. */ | |
12266 | /* According to high vector configuration PC is set. */ | |
12267 | /* User hits breakpoint and type reverse, in that case, we need to go back with | |
12268 | previous CPSR and Program Counter. */ | |
12269 | record_buf[0] = ARM_PS_REGNUM; | |
12270 | record_buf[1] = ARM_LR_REGNUM; | |
12271 | thumb_insn_r->reg_rec_count = 2; | |
12272 | /* We need to save SPSR value, which is not yet done. */ | |
12273 | printf_unfiltered (_("Process record does not support instruction " | |
12274 | "0x%0x at address %s.\n"), | |
12275 | thumb_insn_r->arm_insn, | |
12276 | paddress (thumb_insn_r->gdbarch, | |
12277 | thumb_insn_r->this_addr)); | |
12278 | return -1; | |
12279 | } | |
12280 | else if ((0 == opcode) || (1 == opcode)) | |
12281 | { | |
12282 | /* ADD(5), ADD(6). */ | |
12283 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
12284 | record_buf[0] = reg_src1; | |
12285 | thumb_insn_r->reg_rec_count = 1; | |
12286 | } | |
12287 | else if (2 == opcode) | |
12288 | { | |
12289 | /* ADD(7), SUB(4). */ | |
12290 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
12291 | record_buf[0] = ARM_SP_REGNUM; | |
12292 | thumb_insn_r->reg_rec_count = 1; | |
12293 | } | |
12294 | ||
12295 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
12296 | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | |
12297 | record_buf_mem); | |
12298 | ||
12299 | return 0; | |
12300 | } | |
12301 | ||
12302 | /* Handling opcode 110 insns. */ | |
12303 | ||
12304 | static int | |
12305 | thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r) | |
12306 | { | |
12307 | struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch); | |
12308 | struct regcache *reg_cache = thumb_insn_r->regcache; | |
12309 | ||
12310 | uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */ | |
12311 | uint32_t reg_src1 = 0; | |
12312 | uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0; | |
12313 | uint32_t register_list[8] = {0}, index = 0, start_address = 0; | |
12314 | uint32_t record_buf[24], record_buf_mem[48]; | |
12315 | ||
12316 | ULONGEST u_regval = 0; | |
12317 | ||
12318 | opcode1 = bits (thumb_insn_r->arm_insn, 8, 12); | |
12319 | opcode2 = bits (thumb_insn_r->arm_insn, 11, 12); | |
12320 | ||
12321 | if (1 == opcode2) | |
12322 | { | |
12323 | ||
12324 | /* LDMIA. */ | |
12325 | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | |
12326 | /* Get Rn. */ | |
12327 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
12328 | while (register_bits) | |
12329 | { | |
12330 | if (register_bits & 0x00000001) | |
12331 | register_list[register_count++] = 1; | |
12332 | register_bits = register_bits >> 1; | |
12333 | } | |
12334 | record_buf[register_count] = reg_src1; | |
12335 | thumb_insn_r->reg_rec_count = register_count + 1; | |
12336 | for (register_count = 0; register_count < 8; register_count++) | |
12337 | { | |
12338 | if (register_list[register_count]) | |
12339 | { | |
12340 | record_buf[index] = register_count; | |
12341 | index++; | |
12342 | } | |
12343 | } | |
12344 | } | |
12345 | else if (0 == opcode2) | |
12346 | { | |
12347 | /* It handles both STMIA. */ | |
12348 | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | |
12349 | /* Get Rn. */ | |
12350 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
12351 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | |
12352 | while (register_bits) | |
12353 | { | |
12354 | if (register_bits & 0x00000001) | |
12355 | register_count++; | |
12356 | register_bits = register_bits >> 1; | |
12357 | } | |
12358 | start_address = u_regval; | |
12359 | thumb_insn_r->mem_rec_count = register_count; | |
12360 | while (register_count) | |
12361 | { | |
12362 | record_buf_mem[(register_count * 2) - 1] = start_address; | |
12363 | record_buf_mem[(register_count * 2) - 2] = 4; | |
12364 | start_address = start_address + 4; | |
12365 | register_count--; | |
12366 | } | |
12367 | } | |
12368 | else if (0x1F == opcode1) | |
12369 | { | |
12370 | /* Handle arm syscall insn. */ | |
12371 | if (tdep->arm_swi_record != NULL) | |
12372 | { | |
12373 | ret = tdep->arm_swi_record(reg_cache); | |
12374 | } | |
12375 | else | |
12376 | { | |
12377 | printf_unfiltered (_("no syscall record support\n")); | |
12378 | return -1; | |
12379 | } | |
12380 | } | |
12381 | ||
12382 | /* B (1), conditional branch is automatically taken care in process_record, | |
12383 | as PC is saved there. */ | |
12384 | ||
12385 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
12386 | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | |
12387 | record_buf_mem); | |
12388 | ||
12389 | return ret; | |
12390 | } | |
12391 | ||
12392 | /* Handling opcode 111 insns. */ | |
12393 | ||
12394 | static int | |
12395 | thumb_record_branch (insn_decode_record *thumb_insn_r) | |
12396 | { | |
12397 | uint32_t record_buf[8]; | |
12398 | uint32_t bits_h = 0; | |
12399 | ||
12400 | bits_h = bits (thumb_insn_r->arm_insn, 11, 12); | |
12401 | ||
12402 | if (2 == bits_h || 3 == bits_h) | |
12403 | { | |
12404 | /* BL */ | |
12405 | record_buf[0] = ARM_LR_REGNUM; | |
12406 | thumb_insn_r->reg_rec_count = 1; | |
12407 | } | |
12408 | else if (1 == bits_h) | |
12409 | { | |
12410 | /* BLX(1). */ | |
12411 | record_buf[0] = ARM_PS_REGNUM; | |
12412 | record_buf[1] = ARM_LR_REGNUM; | |
12413 | thumb_insn_r->reg_rec_count = 2; | |
12414 | } | |
12415 | ||
12416 | /* B(2) is automatically taken care in process_record, as PC is | |
12417 | saved there. */ | |
12418 | ||
12419 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
12420 | ||
12421 | return 0; | |
12422 | } | |
12423 | ||
12424 | ||
12425 | /* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success | |
12426 | and positive val on fauilure. */ | |
12427 | ||
12428 | static int | |
12429 | extract_arm_insn (insn_decode_record *insn_record, uint32_t insn_size) | |
12430 | { | |
12431 | gdb_byte buf[insn_size]; | |
12432 | ||
12433 | memset (&buf[0], 0, insn_size); | |
12434 | ||
12435 | if (target_read_memory (insn_record->this_addr, &buf[0], insn_size)) | |
12436 | return 1; | |
12437 | insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0], | |
12438 | insn_size, | |
12439 | gdbarch_byte_order (insn_record->gdbarch)); | |
12440 | return 0; | |
12441 | } | |
12442 | ||
12443 | typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*); | |
12444 | ||
12445 | /* Decode arm/thumb insn depending on condition cods and opcodes; and | |
12446 | dispatch it. */ | |
12447 | ||
12448 | static int | |
12449 | decode_insn (insn_decode_record *arm_record, record_type_t record_type, | |
12450 | uint32_t insn_size) | |
12451 | { | |
12452 | ||
12453 | /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm instruction. */ | |
12454 | static const sti_arm_hdl_fp_t const arm_handle_insn[8] = | |
12455 | { | |
12456 | arm_record_data_proc_misc_ld_str, /* 000. */ | |
12457 | arm_record_data_proc_imm, /* 001. */ | |
12458 | arm_record_ld_st_imm_offset, /* 010. */ | |
12459 | arm_record_ld_st_reg_offset, /* 011. */ | |
12460 | arm_record_ld_st_multiple, /* 100. */ | |
12461 | arm_record_b_bl, /* 101. */ | |
12462 | arm_record_coproc, /* 110. */ | |
12463 | arm_record_coproc_data_proc /* 111. */ | |
12464 | }; | |
12465 | ||
12466 | /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb instruction. */ | |
12467 | static const sti_arm_hdl_fp_t const thumb_handle_insn[8] = | |
12468 | { \ | |
12469 | thumb_record_shift_add_sub, /* 000. */ | |
12470 | thumb_record_add_sub_cmp_mov, /* 001. */ | |
12471 | thumb_record_ld_st_reg_offset, /* 010. */ | |
12472 | thumb_record_ld_st_imm_offset, /* 011. */ | |
12473 | thumb_record_ld_st_stack, /* 100. */ | |
12474 | thumb_record_misc, /* 101. */ | |
12475 | thumb_record_ldm_stm_swi, /* 110. */ | |
12476 | thumb_record_branch /* 111. */ | |
12477 | }; | |
12478 | ||
12479 | uint32_t ret = 0; /* return value: negative:failure 0:success. */ | |
12480 | uint32_t insn_id = 0; | |
12481 | ||
12482 | if (extract_arm_insn (arm_record, insn_size)) | |
12483 | { | |
12484 | if (record_debug) | |
12485 | { | |
12486 | printf_unfiltered (_("Process record: error reading memory at " | |
12487 | "addr %s len = %d.\n"), | |
12488 | paddress (arm_record->gdbarch, arm_record->this_addr), insn_size); | |
12489 | } | |
12490 | return -1; | |
12491 | } | |
12492 | else if (ARM_RECORD == record_type) | |
12493 | { | |
12494 | arm_record->cond = bits (arm_record->arm_insn, 28, 31); | |
12495 | insn_id = bits (arm_record->arm_insn, 25, 27); | |
12496 | ret = arm_record_extension_space (arm_record); | |
12497 | /* If this insn has fallen into extension space | |
12498 | then we need not decode it anymore. */ | |
12499 | if (ret != -1 && !INSN_RECORDED(arm_record)) | |
12500 | { | |
12501 | ret = arm_handle_insn[insn_id] (arm_record); | |
12502 | } | |
12503 | } | |
12504 | else if (THUMB_RECORD == record_type) | |
12505 | { | |
12506 | /* As thumb does not have condition codes, we set negative. */ | |
12507 | arm_record->cond = -1; | |
12508 | insn_id = bits (arm_record->arm_insn, 13, 15); | |
12509 | ret = thumb_handle_insn[insn_id] (arm_record); | |
12510 | } | |
12511 | else if (THUMB2_RECORD == record_type) | |
12512 | { | |
12513 | printf_unfiltered (_("Process record doesnt support thumb32 instruction " | |
12514 | "0x%0x at address %s.\n"),arm_record->arm_insn, | |
12515 | paddress (arm_record->gdbarch, | |
12516 | arm_record->this_addr)); | |
12517 | ret = -1; | |
12518 | } | |
12519 | else | |
12520 | { | |
12521 | /* Throw assertion. */ | |
12522 | gdb_assert_not_reached ("not a valid instruction, could not decode"); | |
12523 | } | |
12524 | ||
12525 | return ret; | |
12526 | } | |
12527 | ||
12528 | ||
12529 | /* Cleans up local record registers and memory allocations. */ | |
12530 | ||
12531 | static void | |
12532 | deallocate_reg_mem (insn_decode_record *record) | |
12533 | { | |
12534 | xfree (record->arm_regs); | |
12535 | xfree (record->arm_mems); | |
12536 | } | |
12537 | ||
12538 | ||
12539 | /* Parse the current instruction and record the values of the registers and | |
12540 | memory that will be changed in current instruction to record_arch_list". | |
12541 | Return -1 if something is wrong. */ | |
12542 | ||
12543 | int | |
12544 | arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache, | |
12545 | CORE_ADDR insn_addr) | |
12546 | { | |
12547 | ||
12548 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
12549 | uint32_t no_of_rec = 0; | |
12550 | uint32_t ret = 0; /* return value: -1:record failure ; 0:success */ | |
12551 | ULONGEST t_bit = 0, insn_id = 0; | |
12552 | ||
12553 | ULONGEST u_regval = 0; | |
12554 | ||
12555 | insn_decode_record arm_record; | |
12556 | ||
12557 | memset (&arm_record, 0, sizeof (insn_decode_record)); | |
12558 | arm_record.regcache = regcache; | |
12559 | arm_record.this_addr = insn_addr; | |
12560 | arm_record.gdbarch = gdbarch; | |
12561 | ||
12562 | ||
12563 | if (record_debug > 1) | |
12564 | { | |
12565 | fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record " | |
12566 | "addr = %s\n", | |
12567 | paddress (gdbarch, arm_record.this_addr)); | |
12568 | } | |
12569 | ||
12570 | if (extract_arm_insn (&arm_record, 2)) | |
12571 | { | |
12572 | if (record_debug) | |
12573 | { | |
12574 | printf_unfiltered (_("Process record: error reading memory at " | |
12575 | "addr %s len = %d.\n"), | |
12576 | paddress (arm_record.gdbarch, | |
12577 | arm_record.this_addr), 2); | |
12578 | } | |
12579 | return -1; | |
12580 | } | |
12581 | ||
12582 | /* Check the insn, whether it is thumb or arm one. */ | |
12583 | ||
12584 | t_bit = arm_psr_thumb_bit (arm_record.gdbarch); | |
12585 | regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval); | |
12586 | ||
12587 | ||
12588 | if (!(u_regval & t_bit)) | |
12589 | { | |
12590 | /* We are decoding arm insn. */ | |
12591 | ret = decode_insn (&arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES); | |
12592 | } | |
12593 | else | |
12594 | { | |
12595 | insn_id = bits (arm_record.arm_insn, 11, 15); | |
12596 | /* is it thumb2 insn? */ | |
12597 | if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id)) | |
12598 | { | |
12599 | ret = decode_insn (&arm_record, THUMB2_RECORD, | |
12600 | THUMB2_INSN_SIZE_BYTES); | |
12601 | } | |
12602 | else | |
12603 | { | |
12604 | /* We are decoding thumb insn. */ | |
12605 | ret = decode_insn (&arm_record, THUMB_RECORD, THUMB_INSN_SIZE_BYTES); | |
12606 | } | |
12607 | } | |
12608 | ||
12609 | if (0 == ret) | |
12610 | { | |
12611 | /* Record registers. */ | |
12612 | record_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM); | |
12613 | if (arm_record.arm_regs) | |
12614 | { | |
12615 | for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++) | |
12616 | { | |
12617 | if (record_arch_list_add_reg (arm_record.regcache , | |
12618 | arm_record.arm_regs[no_of_rec])) | |
12619 | ret = -1; | |
12620 | } | |
12621 | } | |
12622 | /* Record memories. */ | |
12623 | if (arm_record.arm_mems) | |
12624 | { | |
12625 | for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++) | |
12626 | { | |
12627 | if (record_arch_list_add_mem | |
12628 | ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr, | |
12629 | arm_record.arm_mems[no_of_rec].len)) | |
12630 | ret = -1; | |
12631 | } | |
12632 | } | |
12633 | ||
12634 | if (record_arch_list_add_end ()) | |
12635 | ret = -1; | |
12636 | } | |
12637 | ||
12638 | ||
12639 | deallocate_reg_mem (&arm_record); | |
12640 | ||
12641 | return ret; | |
12642 | } | |
12643 |