]>
Commit | Line | Data |
---|---|---|
ed9a39eb | 1 | /* Common target dependent code for GDB on ARM systems. |
0fd88904 | 2 | |
0b302171 JB |
3 | Copyright (C) 1988-1989, 1991-1993, 1995-1996, 1998-2012 Free |
4 | Software Foundation, Inc. | |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c | 20 | |
0963b4bd | 21 | #include <ctype.h> /* XXX for isupper (). */ |
34e8f22d | 22 | |
c906108c SS |
23 | #include "defs.h" |
24 | #include "frame.h" | |
25 | #include "inferior.h" | |
26 | #include "gdbcmd.h" | |
27 | #include "gdbcore.h" | |
c906108c | 28 | #include "gdb_string.h" |
0963b4bd | 29 | #include "dis-asm.h" /* For register styles. */ |
4e052eda | 30 | #include "regcache.h" |
54483882 | 31 | #include "reggroups.h" |
d16aafd8 | 32 | #include "doublest.h" |
fd0407d6 | 33 | #include "value.h" |
34e8f22d | 34 | #include "arch-utils.h" |
4be87837 | 35 | #include "osabi.h" |
eb5492fa DJ |
36 | #include "frame-unwind.h" |
37 | #include "frame-base.h" | |
38 | #include "trad-frame.h" | |
842e1f1e DJ |
39 | #include "objfiles.h" |
40 | #include "dwarf2-frame.h" | |
e4c16157 | 41 | #include "gdbtypes.h" |
29d73ae4 | 42 | #include "prologue-value.h" |
123dc839 DJ |
43 | #include "target-descriptions.h" |
44 | #include "user-regs.h" | |
0e9e9abd | 45 | #include "observer.h" |
34e8f22d RE |
46 | |
47 | #include "arm-tdep.h" | |
26216b98 | 48 | #include "gdb/sim-arm.h" |
34e8f22d | 49 | |
082fc60d RE |
50 | #include "elf-bfd.h" |
51 | #include "coff/internal.h" | |
97e03143 | 52 | #include "elf/arm.h" |
c906108c | 53 | |
26216b98 | 54 | #include "gdb_assert.h" |
60c5725c | 55 | #include "vec.h" |
26216b98 | 56 | |
9779414d | 57 | #include "features/arm-with-m.c" |
ef7e8358 UW |
58 | #include "features/arm-with-iwmmxt.c" |
59 | #include "features/arm-with-vfpv2.c" | |
60 | #include "features/arm-with-vfpv3.c" | |
61 | #include "features/arm-with-neon.c" | |
9779414d | 62 | |
6529d2dd AC |
63 | static int arm_debug; |
64 | ||
082fc60d RE |
65 | /* Macros for setting and testing a bit in a minimal symbol that marks |
66 | it as Thumb function. The MSB of the minimal symbol's "info" field | |
f594e5e9 | 67 | is used for this purpose. |
082fc60d RE |
68 | |
69 | MSYMBOL_SET_SPECIAL Actually sets the "special" bit. | |
f594e5e9 | 70 | MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */ |
082fc60d | 71 | |
0963b4bd | 72 | #define MSYMBOL_SET_SPECIAL(msym) \ |
b887350f | 73 | MSYMBOL_TARGET_FLAG_1 (msym) = 1 |
082fc60d RE |
74 | |
75 | #define MSYMBOL_IS_SPECIAL(msym) \ | |
b887350f | 76 | MSYMBOL_TARGET_FLAG_1 (msym) |
082fc60d | 77 | |
60c5725c DJ |
78 | /* Per-objfile data used for mapping symbols. */ |
79 | static const struct objfile_data *arm_objfile_data_key; | |
80 | ||
81 | struct arm_mapping_symbol | |
82 | { | |
83 | bfd_vma value; | |
84 | char type; | |
85 | }; | |
86 | typedef struct arm_mapping_symbol arm_mapping_symbol_s; | |
87 | DEF_VEC_O(arm_mapping_symbol_s); | |
88 | ||
89 | struct arm_per_objfile | |
90 | { | |
91 | VEC(arm_mapping_symbol_s) **section_maps; | |
92 | }; | |
93 | ||
afd7eef0 RE |
94 | /* The list of available "set arm ..." and "show arm ..." commands. */ |
95 | static struct cmd_list_element *setarmcmdlist = NULL; | |
96 | static struct cmd_list_element *showarmcmdlist = NULL; | |
97 | ||
fd50bc42 RE |
98 | /* The type of floating-point to use. Keep this in sync with enum |
99 | arm_float_model, and the help string in _initialize_arm_tdep. */ | |
40478521 | 100 | static const char *const fp_model_strings[] = |
fd50bc42 RE |
101 | { |
102 | "auto", | |
103 | "softfpa", | |
104 | "fpa", | |
105 | "softvfp", | |
28e97307 DJ |
106 | "vfp", |
107 | NULL | |
fd50bc42 RE |
108 | }; |
109 | ||
110 | /* A variable that can be configured by the user. */ | |
111 | static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO; | |
112 | static const char *current_fp_model = "auto"; | |
113 | ||
28e97307 | 114 | /* The ABI to use. Keep this in sync with arm_abi_kind. */ |
40478521 | 115 | static const char *const arm_abi_strings[] = |
28e97307 DJ |
116 | { |
117 | "auto", | |
118 | "APCS", | |
119 | "AAPCS", | |
120 | NULL | |
121 | }; | |
122 | ||
123 | /* A variable that can be configured by the user. */ | |
124 | static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO; | |
125 | static const char *arm_abi_string = "auto"; | |
126 | ||
0428b8f5 | 127 | /* The execution mode to assume. */ |
40478521 | 128 | static const char *const arm_mode_strings[] = |
0428b8f5 DJ |
129 | { |
130 | "auto", | |
131 | "arm", | |
68770265 MGD |
132 | "thumb", |
133 | NULL | |
0428b8f5 DJ |
134 | }; |
135 | ||
136 | static const char *arm_fallback_mode_string = "auto"; | |
137 | static const char *arm_force_mode_string = "auto"; | |
138 | ||
18819fa6 UW |
139 | /* Internal override of the execution mode. -1 means no override, |
140 | 0 means override to ARM mode, 1 means override to Thumb mode. | |
141 | The effect is the same as if arm_force_mode has been set by the | |
142 | user (except the internal override has precedence over a user's | |
143 | arm_force_mode override). */ | |
144 | static int arm_override_mode = -1; | |
145 | ||
94c30b78 | 146 | /* Number of different reg name sets (options). */ |
afd7eef0 | 147 | static int num_disassembly_options; |
bc90b915 | 148 | |
f32bf4a4 YQ |
149 | /* The standard register names, and all the valid aliases for them. Note |
150 | that `fp', `sp' and `pc' are not added in this alias list, because they | |
151 | have been added as builtin user registers in | |
152 | std-regs.c:_initialize_frame_reg. */ | |
123dc839 DJ |
153 | static const struct |
154 | { | |
155 | const char *name; | |
156 | int regnum; | |
157 | } arm_register_aliases[] = { | |
158 | /* Basic register numbers. */ | |
159 | { "r0", 0 }, | |
160 | { "r1", 1 }, | |
161 | { "r2", 2 }, | |
162 | { "r3", 3 }, | |
163 | { "r4", 4 }, | |
164 | { "r5", 5 }, | |
165 | { "r6", 6 }, | |
166 | { "r7", 7 }, | |
167 | { "r8", 8 }, | |
168 | { "r9", 9 }, | |
169 | { "r10", 10 }, | |
170 | { "r11", 11 }, | |
171 | { "r12", 12 }, | |
172 | { "r13", 13 }, | |
173 | { "r14", 14 }, | |
174 | { "r15", 15 }, | |
175 | /* Synonyms (argument and variable registers). */ | |
176 | { "a1", 0 }, | |
177 | { "a2", 1 }, | |
178 | { "a3", 2 }, | |
179 | { "a4", 3 }, | |
180 | { "v1", 4 }, | |
181 | { "v2", 5 }, | |
182 | { "v3", 6 }, | |
183 | { "v4", 7 }, | |
184 | { "v5", 8 }, | |
185 | { "v6", 9 }, | |
186 | { "v7", 10 }, | |
187 | { "v8", 11 }, | |
188 | /* Other platform-specific names for r9. */ | |
189 | { "sb", 9 }, | |
190 | { "tr", 9 }, | |
191 | /* Special names. */ | |
192 | { "ip", 12 }, | |
123dc839 | 193 | { "lr", 14 }, |
123dc839 DJ |
194 | /* Names used by GCC (not listed in the ARM EABI). */ |
195 | { "sl", 10 }, | |
123dc839 DJ |
196 | /* A special name from the older ATPCS. */ |
197 | { "wr", 7 }, | |
198 | }; | |
bc90b915 | 199 | |
123dc839 | 200 | static const char *const arm_register_names[] = |
da59e081 JM |
201 | {"r0", "r1", "r2", "r3", /* 0 1 2 3 */ |
202 | "r4", "r5", "r6", "r7", /* 4 5 6 7 */ | |
203 | "r8", "r9", "r10", "r11", /* 8 9 10 11 */ | |
204 | "r12", "sp", "lr", "pc", /* 12 13 14 15 */ | |
205 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ | |
206 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
94c30b78 | 207 | "fps", "cpsr" }; /* 24 25 */ |
ed9a39eb | 208 | |
afd7eef0 RE |
209 | /* Valid register name styles. */ |
210 | static const char **valid_disassembly_styles; | |
ed9a39eb | 211 | |
afd7eef0 RE |
212 | /* Disassembly style to use. Default to "std" register names. */ |
213 | static const char *disassembly_style; | |
96baa820 | 214 | |
ed9a39eb | 215 | /* This is used to keep the bfd arch_info in sync with the disassembly |
afd7eef0 RE |
216 | style. */ |
217 | static void set_disassembly_style_sfunc(char *, int, | |
ed9a39eb | 218 | struct cmd_list_element *); |
afd7eef0 | 219 | static void set_disassembly_style (void); |
ed9a39eb | 220 | |
b508a996 | 221 | static void convert_from_extended (const struct floatformat *, const void *, |
be8626e0 | 222 | void *, int); |
b508a996 | 223 | static void convert_to_extended (const struct floatformat *, void *, |
be8626e0 | 224 | const void *, int); |
ed9a39eb | 225 | |
05d1431c PA |
226 | static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch, |
227 | struct regcache *regcache, | |
228 | int regnum, gdb_byte *buf); | |
58d6951d DJ |
229 | static void arm_neon_quad_write (struct gdbarch *gdbarch, |
230 | struct regcache *regcache, | |
231 | int regnum, const gdb_byte *buf); | |
232 | ||
db24da6d YQ |
233 | static int thumb_insn_size (unsigned short inst1); |
234 | ||
9b8d791a | 235 | struct arm_prologue_cache |
c3b4394c | 236 | { |
eb5492fa DJ |
237 | /* The stack pointer at the time this frame was created; i.e. the |
238 | caller's stack pointer when this function was called. It is used | |
239 | to identify this frame. */ | |
240 | CORE_ADDR prev_sp; | |
241 | ||
4be43953 DJ |
242 | /* The frame base for this frame is just prev_sp - frame size. |
243 | FRAMESIZE is the distance from the frame pointer to the | |
244 | initial stack pointer. */ | |
eb5492fa | 245 | |
c3b4394c | 246 | int framesize; |
eb5492fa DJ |
247 | |
248 | /* The register used to hold the frame pointer for this frame. */ | |
c3b4394c | 249 | int framereg; |
eb5492fa DJ |
250 | |
251 | /* Saved register offsets. */ | |
252 | struct trad_frame_saved_reg *saved_regs; | |
c3b4394c | 253 | }; |
ed9a39eb | 254 | |
0d39a070 DJ |
255 | static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch, |
256 | CORE_ADDR prologue_start, | |
257 | CORE_ADDR prologue_end, | |
258 | struct arm_prologue_cache *cache); | |
259 | ||
cca44b1b JB |
260 | /* Architecture version for displaced stepping. This effects the behaviour of |
261 | certain instructions, and really should not be hard-wired. */ | |
262 | ||
263 | #define DISPLACED_STEPPING_ARCH_VERSION 5 | |
264 | ||
bc90b915 FN |
265 | /* Addresses for calling Thumb functions have the bit 0 set. |
266 | Here are some macros to test, set, or clear bit 0 of addresses. */ | |
267 | #define IS_THUMB_ADDR(addr) ((addr) & 1) | |
268 | #define MAKE_THUMB_ADDR(addr) ((addr) | 1) | |
269 | #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) | |
270 | ||
94c30b78 | 271 | /* Set to true if the 32-bit mode is in use. */ |
c906108c SS |
272 | |
273 | int arm_apcs_32 = 1; | |
274 | ||
9779414d DJ |
275 | /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */ |
276 | ||
478fd957 | 277 | int |
9779414d DJ |
278 | arm_psr_thumb_bit (struct gdbarch *gdbarch) |
279 | { | |
280 | if (gdbarch_tdep (gdbarch)->is_m) | |
281 | return XPSR_T; | |
282 | else | |
283 | return CPSR_T; | |
284 | } | |
285 | ||
b39cc962 DJ |
286 | /* Determine if FRAME is executing in Thumb mode. */ |
287 | ||
25b41d01 | 288 | int |
b39cc962 DJ |
289 | arm_frame_is_thumb (struct frame_info *frame) |
290 | { | |
291 | CORE_ADDR cpsr; | |
9779414d | 292 | ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame)); |
b39cc962 DJ |
293 | |
294 | /* Every ARM frame unwinder can unwind the T bit of the CPSR, either | |
295 | directly (from a signal frame or dummy frame) or by interpreting | |
296 | the saved LR (from a prologue or DWARF frame). So consult it and | |
297 | trust the unwinders. */ | |
298 | cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM); | |
299 | ||
9779414d | 300 | return (cpsr & t_bit) != 0; |
b39cc962 DJ |
301 | } |
302 | ||
60c5725c DJ |
303 | /* Callback for VEC_lower_bound. */ |
304 | ||
305 | static inline int | |
306 | arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs, | |
307 | const struct arm_mapping_symbol *rhs) | |
308 | { | |
309 | return lhs->value < rhs->value; | |
310 | } | |
311 | ||
f9d67f43 DJ |
312 | /* Search for the mapping symbol covering MEMADDR. If one is found, |
313 | return its type. Otherwise, return 0. If START is non-NULL, | |
314 | set *START to the location of the mapping symbol. */ | |
c906108c | 315 | |
f9d67f43 DJ |
316 | static char |
317 | arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start) | |
c906108c | 318 | { |
60c5725c | 319 | struct obj_section *sec; |
0428b8f5 | 320 | |
60c5725c DJ |
321 | /* If there are mapping symbols, consult them. */ |
322 | sec = find_pc_section (memaddr); | |
323 | if (sec != NULL) | |
324 | { | |
325 | struct arm_per_objfile *data; | |
326 | VEC(arm_mapping_symbol_s) *map; | |
aded6f54 PA |
327 | struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec), |
328 | 0 }; | |
60c5725c DJ |
329 | unsigned int idx; |
330 | ||
331 | data = objfile_data (sec->objfile, arm_objfile_data_key); | |
332 | if (data != NULL) | |
333 | { | |
334 | map = data->section_maps[sec->the_bfd_section->index]; | |
335 | if (!VEC_empty (arm_mapping_symbol_s, map)) | |
336 | { | |
337 | struct arm_mapping_symbol *map_sym; | |
338 | ||
339 | idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key, | |
340 | arm_compare_mapping_symbols); | |
341 | ||
342 | /* VEC_lower_bound finds the earliest ordered insertion | |
343 | point. If the following symbol starts at this exact | |
344 | address, we use that; otherwise, the preceding | |
345 | mapping symbol covers this address. */ | |
346 | if (idx < VEC_length (arm_mapping_symbol_s, map)) | |
347 | { | |
348 | map_sym = VEC_index (arm_mapping_symbol_s, map, idx); | |
349 | if (map_sym->value == map_key.value) | |
f9d67f43 DJ |
350 | { |
351 | if (start) | |
352 | *start = map_sym->value + obj_section_addr (sec); | |
353 | return map_sym->type; | |
354 | } | |
60c5725c DJ |
355 | } |
356 | ||
357 | if (idx > 0) | |
358 | { | |
359 | map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1); | |
f9d67f43 DJ |
360 | if (start) |
361 | *start = map_sym->value + obj_section_addr (sec); | |
362 | return map_sym->type; | |
60c5725c DJ |
363 | } |
364 | } | |
365 | } | |
366 | } | |
367 | ||
f9d67f43 DJ |
368 | return 0; |
369 | } | |
370 | ||
371 | /* Determine if the program counter specified in MEMADDR is in a Thumb | |
372 | function. This function should be called for addresses unrelated to | |
373 | any executing frame; otherwise, prefer arm_frame_is_thumb. */ | |
374 | ||
e3039479 | 375 | int |
9779414d | 376 | arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr) |
f9d67f43 DJ |
377 | { |
378 | struct obj_section *sec; | |
379 | struct minimal_symbol *sym; | |
380 | char type; | |
a42244db YQ |
381 | struct displaced_step_closure* dsc |
382 | = get_displaced_step_closure_by_addr(memaddr); | |
383 | ||
384 | /* If checking the mode of displaced instruction in copy area, the mode | |
385 | should be determined by instruction on the original address. */ | |
386 | if (dsc) | |
387 | { | |
388 | if (debug_displaced) | |
389 | fprintf_unfiltered (gdb_stdlog, | |
390 | "displaced: check mode of %.8lx instead of %.8lx\n", | |
391 | (unsigned long) dsc->insn_addr, | |
392 | (unsigned long) memaddr); | |
393 | memaddr = dsc->insn_addr; | |
394 | } | |
f9d67f43 DJ |
395 | |
396 | /* If bit 0 of the address is set, assume this is a Thumb address. */ | |
397 | if (IS_THUMB_ADDR (memaddr)) | |
398 | return 1; | |
399 | ||
18819fa6 UW |
400 | /* Respect internal mode override if active. */ |
401 | if (arm_override_mode != -1) | |
402 | return arm_override_mode; | |
403 | ||
f9d67f43 DJ |
404 | /* If the user wants to override the symbol table, let him. */ |
405 | if (strcmp (arm_force_mode_string, "arm") == 0) | |
406 | return 0; | |
407 | if (strcmp (arm_force_mode_string, "thumb") == 0) | |
408 | return 1; | |
409 | ||
9779414d DJ |
410 | /* ARM v6-M and v7-M are always in Thumb mode. */ |
411 | if (gdbarch_tdep (gdbarch)->is_m) | |
412 | return 1; | |
413 | ||
f9d67f43 DJ |
414 | /* If there are mapping symbols, consult them. */ |
415 | type = arm_find_mapping_symbol (memaddr, NULL); | |
416 | if (type) | |
417 | return type == 't'; | |
418 | ||
ed9a39eb | 419 | /* Thumb functions have a "special" bit set in minimal symbols. */ |
c906108c SS |
420 | sym = lookup_minimal_symbol_by_pc (memaddr); |
421 | if (sym) | |
0428b8f5 DJ |
422 | return (MSYMBOL_IS_SPECIAL (sym)); |
423 | ||
424 | /* If the user wants to override the fallback mode, let them. */ | |
425 | if (strcmp (arm_fallback_mode_string, "arm") == 0) | |
426 | return 0; | |
427 | if (strcmp (arm_fallback_mode_string, "thumb") == 0) | |
428 | return 1; | |
429 | ||
430 | /* If we couldn't find any symbol, but we're talking to a running | |
431 | target, then trust the current value of $cpsr. This lets | |
432 | "display/i $pc" always show the correct mode (though if there is | |
433 | a symbol table we will not reach here, so it still may not be | |
18819fa6 | 434 | displayed in the mode it will be executed). */ |
0428b8f5 | 435 | if (target_has_registers) |
18819fa6 | 436 | return arm_frame_is_thumb (get_current_frame ()); |
0428b8f5 DJ |
437 | |
438 | /* Otherwise we're out of luck; we assume ARM. */ | |
439 | return 0; | |
c906108c SS |
440 | } |
441 | ||
181c1381 | 442 | /* Remove useless bits from addresses in a running program. */ |
34e8f22d | 443 | static CORE_ADDR |
24568a2c | 444 | arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val) |
c906108c | 445 | { |
a3a2ee65 | 446 | if (arm_apcs_32) |
dd6be234 | 447 | return UNMAKE_THUMB_ADDR (val); |
c906108c | 448 | else |
a3a2ee65 | 449 | return (val & 0x03fffffc); |
c906108c SS |
450 | } |
451 | ||
181c1381 RE |
452 | /* When reading symbols, we need to zap the low bit of the address, |
453 | which may be set to 1 for Thumb functions. */ | |
34e8f22d | 454 | static CORE_ADDR |
24568a2c | 455 | arm_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR val) |
181c1381 RE |
456 | { |
457 | return val & ~1; | |
458 | } | |
459 | ||
0d39a070 | 460 | /* Return 1 if PC is the start of a compiler helper function which |
e0634ccf UW |
461 | can be safely ignored during prologue skipping. IS_THUMB is true |
462 | if the function is known to be a Thumb function due to the way it | |
463 | is being called. */ | |
0d39a070 | 464 | static int |
e0634ccf | 465 | skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb) |
0d39a070 | 466 | { |
e0634ccf | 467 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
0d39a070 | 468 | struct minimal_symbol *msym; |
0d39a070 DJ |
469 | |
470 | msym = lookup_minimal_symbol_by_pc (pc); | |
e0634ccf UW |
471 | if (msym != NULL |
472 | && SYMBOL_VALUE_ADDRESS (msym) == pc | |
473 | && SYMBOL_LINKAGE_NAME (msym) != NULL) | |
474 | { | |
475 | const char *name = SYMBOL_LINKAGE_NAME (msym); | |
0d39a070 | 476 | |
e0634ccf UW |
477 | /* The GNU linker's Thumb call stub to foo is named |
478 | __foo_from_thumb. */ | |
479 | if (strstr (name, "_from_thumb") != NULL) | |
480 | name += 2; | |
0d39a070 | 481 | |
e0634ccf UW |
482 | /* On soft-float targets, __truncdfsf2 is called to convert promoted |
483 | arguments to their argument types in non-prototyped | |
484 | functions. */ | |
485 | if (strncmp (name, "__truncdfsf2", strlen ("__truncdfsf2")) == 0) | |
486 | return 1; | |
487 | if (strncmp (name, "__aeabi_d2f", strlen ("__aeabi_d2f")) == 0) | |
488 | return 1; | |
0d39a070 | 489 | |
e0634ccf UW |
490 | /* Internal functions related to thread-local storage. */ |
491 | if (strncmp (name, "__tls_get_addr", strlen ("__tls_get_addr")) == 0) | |
492 | return 1; | |
493 | if (strncmp (name, "__aeabi_read_tp", strlen ("__aeabi_read_tp")) == 0) | |
494 | return 1; | |
495 | } | |
496 | else | |
497 | { | |
498 | /* If we run against a stripped glibc, we may be unable to identify | |
499 | special functions by name. Check for one important case, | |
500 | __aeabi_read_tp, by comparing the *code* against the default | |
501 | implementation (this is hand-written ARM assembler in glibc). */ | |
502 | ||
503 | if (!is_thumb | |
504 | && read_memory_unsigned_integer (pc, 4, byte_order_for_code) | |
505 | == 0xe3e00a0f /* mov r0, #0xffff0fff */ | |
506 | && read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code) | |
507 | == 0xe240f01f) /* sub pc, r0, #31 */ | |
508 | return 1; | |
509 | } | |
ec3d575a | 510 | |
0d39a070 DJ |
511 | return 0; |
512 | } | |
513 | ||
514 | /* Support routines for instruction parsing. */ | |
515 | #define submask(x) ((1L << ((x) + 1)) - 1) | |
516 | #define bit(obj,st) (((obj) >> (st)) & 1) | |
517 | #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) | |
518 | #define sbits(obj,st,fn) \ | |
519 | ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st)))) | |
520 | #define BranchDest(addr,instr) \ | |
521 | ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2))) | |
522 | ||
621c6d5b YQ |
523 | /* Extract the immediate from instruction movw/movt of encoding T. INSN1 is |
524 | the first 16-bit of instruction, and INSN2 is the second 16-bit of | |
525 | instruction. */ | |
526 | #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \ | |
527 | ((bits ((insn1), 0, 3) << 12) \ | |
528 | | (bits ((insn1), 10, 10) << 11) \ | |
529 | | (bits ((insn2), 12, 14) << 8) \ | |
530 | | bits ((insn2), 0, 7)) | |
531 | ||
532 | /* Extract the immediate from instruction movw/movt of encoding A. INSN is | |
533 | the 32-bit instruction. */ | |
534 | #define EXTRACT_MOVW_MOVT_IMM_A(insn) \ | |
535 | ((bits ((insn), 16, 19) << 12) \ | |
536 | | bits ((insn), 0, 11)) | |
537 | ||
ec3d575a UW |
538 | /* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */ |
539 | ||
540 | static unsigned int | |
541 | thumb_expand_immediate (unsigned int imm) | |
542 | { | |
543 | unsigned int count = imm >> 7; | |
544 | ||
545 | if (count < 8) | |
546 | switch (count / 2) | |
547 | { | |
548 | case 0: | |
549 | return imm & 0xff; | |
550 | case 1: | |
551 | return (imm & 0xff) | ((imm & 0xff) << 16); | |
552 | case 2: | |
553 | return ((imm & 0xff) << 8) | ((imm & 0xff) << 24); | |
554 | case 3: | |
555 | return (imm & 0xff) | ((imm & 0xff) << 8) | |
556 | | ((imm & 0xff) << 16) | ((imm & 0xff) << 24); | |
557 | } | |
558 | ||
559 | return (0x80 | (imm & 0x7f)) << (32 - count); | |
560 | } | |
561 | ||
562 | /* Return 1 if the 16-bit Thumb instruction INST might change | |
563 | control flow, 0 otherwise. */ | |
564 | ||
565 | static int | |
566 | thumb_instruction_changes_pc (unsigned short inst) | |
567 | { | |
568 | if ((inst & 0xff00) == 0xbd00) /* pop {rlist, pc} */ | |
569 | return 1; | |
570 | ||
571 | if ((inst & 0xf000) == 0xd000) /* conditional branch */ | |
572 | return 1; | |
573 | ||
574 | if ((inst & 0xf800) == 0xe000) /* unconditional branch */ | |
575 | return 1; | |
576 | ||
577 | if ((inst & 0xff00) == 0x4700) /* bx REG, blx REG */ | |
578 | return 1; | |
579 | ||
ad8b5167 UW |
580 | if ((inst & 0xff87) == 0x4687) /* mov pc, REG */ |
581 | return 1; | |
582 | ||
ec3d575a UW |
583 | if ((inst & 0xf500) == 0xb100) /* CBNZ or CBZ. */ |
584 | return 1; | |
585 | ||
586 | return 0; | |
587 | } | |
588 | ||
589 | /* Return 1 if the 32-bit Thumb instruction in INST1 and INST2 | |
590 | might change control flow, 0 otherwise. */ | |
591 | ||
592 | static int | |
593 | thumb2_instruction_changes_pc (unsigned short inst1, unsigned short inst2) | |
594 | { | |
595 | if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000) | |
596 | { | |
597 | /* Branches and miscellaneous control instructions. */ | |
598 | ||
599 | if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000) | |
600 | { | |
601 | /* B, BL, BLX. */ | |
602 | return 1; | |
603 | } | |
604 | else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00) | |
605 | { | |
606 | /* SUBS PC, LR, #imm8. */ | |
607 | return 1; | |
608 | } | |
609 | else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380) | |
610 | { | |
611 | /* Conditional branch. */ | |
612 | return 1; | |
613 | } | |
614 | ||
615 | return 0; | |
616 | } | |
617 | ||
618 | if ((inst1 & 0xfe50) == 0xe810) | |
619 | { | |
620 | /* Load multiple or RFE. */ | |
621 | ||
622 | if (bit (inst1, 7) && !bit (inst1, 8)) | |
623 | { | |
624 | /* LDMIA or POP */ | |
625 | if (bit (inst2, 15)) | |
626 | return 1; | |
627 | } | |
628 | else if (!bit (inst1, 7) && bit (inst1, 8)) | |
629 | { | |
630 | /* LDMDB */ | |
631 | if (bit (inst2, 15)) | |
632 | return 1; | |
633 | } | |
634 | else if (bit (inst1, 7) && bit (inst1, 8)) | |
635 | { | |
636 | /* RFEIA */ | |
637 | return 1; | |
638 | } | |
639 | else if (!bit (inst1, 7) && !bit (inst1, 8)) | |
640 | { | |
641 | /* RFEDB */ | |
642 | return 1; | |
643 | } | |
644 | ||
645 | return 0; | |
646 | } | |
647 | ||
648 | if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00) | |
649 | { | |
650 | /* MOV PC or MOVS PC. */ | |
651 | return 1; | |
652 | } | |
653 | ||
654 | if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000) | |
655 | { | |
656 | /* LDR PC. */ | |
657 | if (bits (inst1, 0, 3) == 15) | |
658 | return 1; | |
659 | if (bit (inst1, 7)) | |
660 | return 1; | |
661 | if (bit (inst2, 11)) | |
662 | return 1; | |
663 | if ((inst2 & 0x0fc0) == 0x0000) | |
664 | return 1; | |
665 | ||
666 | return 0; | |
667 | } | |
668 | ||
669 | if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000) | |
670 | { | |
671 | /* TBB. */ | |
672 | return 1; | |
673 | } | |
674 | ||
675 | if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010) | |
676 | { | |
677 | /* TBH. */ | |
678 | return 1; | |
679 | } | |
680 | ||
681 | return 0; | |
682 | } | |
683 | ||
29d73ae4 DJ |
684 | /* Analyze a Thumb prologue, looking for a recognizable stack frame |
685 | and frame pointer. Scan until we encounter a store that could | |
0d39a070 DJ |
686 | clobber the stack frame unexpectedly, or an unknown instruction. |
687 | Return the last address which is definitely safe to skip for an | |
688 | initial breakpoint. */ | |
c906108c SS |
689 | |
690 | static CORE_ADDR | |
29d73ae4 DJ |
691 | thumb_analyze_prologue (struct gdbarch *gdbarch, |
692 | CORE_ADDR start, CORE_ADDR limit, | |
693 | struct arm_prologue_cache *cache) | |
c906108c | 694 | { |
0d39a070 | 695 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
e17a4113 | 696 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
29d73ae4 DJ |
697 | int i; |
698 | pv_t regs[16]; | |
699 | struct pv_area *stack; | |
700 | struct cleanup *back_to; | |
701 | CORE_ADDR offset; | |
ec3d575a | 702 | CORE_ADDR unrecognized_pc = 0; |
da3c6d4a | 703 | |
29d73ae4 DJ |
704 | for (i = 0; i < 16; i++) |
705 | regs[i] = pv_register (i, 0); | |
55f960e1 | 706 | stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
29d73ae4 DJ |
707 | back_to = make_cleanup_free_pv_area (stack); |
708 | ||
29d73ae4 | 709 | while (start < limit) |
c906108c | 710 | { |
29d73ae4 DJ |
711 | unsigned short insn; |
712 | ||
e17a4113 | 713 | insn = read_memory_unsigned_integer (start, 2, byte_order_for_code); |
9d4fde75 | 714 | |
94c30b78 | 715 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
da59e081 | 716 | { |
29d73ae4 DJ |
717 | int regno; |
718 | int mask; | |
4be43953 DJ |
719 | |
720 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) | |
721 | break; | |
29d73ae4 DJ |
722 | |
723 | /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says | |
724 | whether to save LR (R14). */ | |
725 | mask = (insn & 0xff) | ((insn & 0x100) << 6); | |
726 | ||
727 | /* Calculate offsets of saved R0-R7 and LR. */ | |
728 | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) | |
729 | if (mask & (1 << regno)) | |
730 | { | |
29d73ae4 DJ |
731 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], |
732 | -4); | |
733 | pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]); | |
734 | } | |
da59e081 | 735 | } |
da3c6d4a MS |
736 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR |
737 | sub sp, #simm */ | |
da59e081 | 738 | { |
29d73ae4 DJ |
739 | offset = (insn & 0x7f) << 2; /* get scaled offset */ |
740 | if (insn & 0x80) /* Check for SUB. */ | |
741 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], | |
742 | -offset); | |
da59e081 | 743 | else |
29d73ae4 DJ |
744 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], |
745 | offset); | |
da59e081 | 746 | } |
0d39a070 DJ |
747 | else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */ |
748 | regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM], | |
749 | (insn & 0xff) << 2); | |
750 | else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */ | |
751 | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) | |
752 | regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)], | |
753 | bits (insn, 6, 8)); | |
754 | else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */ | |
755 | && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) | |
756 | regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)], | |
757 | bits (insn, 0, 7)); | |
758 | else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */ | |
759 | && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM) | |
760 | && pv_is_constant (regs[bits (insn, 3, 5)])) | |
761 | regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)], | |
762 | regs[bits (insn, 6, 8)]); | |
763 | else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */ | |
764 | && pv_is_constant (regs[bits (insn, 3, 6)])) | |
765 | { | |
766 | int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2); | |
767 | int rm = bits (insn, 3, 6); | |
768 | regs[rd] = pv_add (regs[rd], regs[rm]); | |
769 | } | |
29d73ae4 | 770 | else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */ |
da59e081 | 771 | { |
29d73ae4 DJ |
772 | int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4); |
773 | int src_reg = (insn & 0x78) >> 3; | |
774 | regs[dst_reg] = regs[src_reg]; | |
da59e081 | 775 | } |
29d73ae4 | 776 | else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */ |
da59e081 | 777 | { |
29d73ae4 DJ |
778 | /* Handle stores to the stack. Normally pushes are used, |
779 | but with GCC -mtpcs-frame, there may be other stores | |
780 | in the prologue to create the frame. */ | |
781 | int regno = (insn >> 8) & 0x7; | |
782 | pv_t addr; | |
783 | ||
784 | offset = (insn & 0xff) << 2; | |
785 | addr = pv_add_constant (regs[ARM_SP_REGNUM], offset); | |
786 | ||
787 | if (pv_area_store_would_trash (stack, addr)) | |
788 | break; | |
789 | ||
790 | pv_area_store (stack, addr, 4, regs[regno]); | |
da59e081 | 791 | } |
0d39a070 DJ |
792 | else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */ |
793 | { | |
794 | int rd = bits (insn, 0, 2); | |
795 | int rn = bits (insn, 3, 5); | |
796 | pv_t addr; | |
797 | ||
798 | offset = bits (insn, 6, 10) << 2; | |
799 | addr = pv_add_constant (regs[rn], offset); | |
800 | ||
801 | if (pv_area_store_would_trash (stack, addr)) | |
802 | break; | |
803 | ||
804 | pv_area_store (stack, addr, 4, regs[rd]); | |
805 | } | |
806 | else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */ | |
807 | || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */ | |
808 | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) | |
809 | /* Ignore stores of argument registers to the stack. */ | |
810 | ; | |
811 | else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */ | |
812 | && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) | |
813 | /* Ignore block loads from the stack, potentially copying | |
814 | parameters from memory. */ | |
815 | ; | |
816 | else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */ | |
817 | || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */ | |
818 | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))) | |
819 | /* Similarly ignore single loads from the stack. */ | |
820 | ; | |
821 | else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */ | |
822 | || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */ | |
823 | /* Skip register copies, i.e. saves to another register | |
824 | instead of the stack. */ | |
825 | ; | |
826 | else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */ | |
827 | /* Recognize constant loads; even with small stacks these are necessary | |
828 | on Thumb. */ | |
829 | regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7)); | |
830 | else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */ | |
831 | { | |
832 | /* Constant pool loads, for the same reason. */ | |
833 | unsigned int constant; | |
834 | CORE_ADDR loc; | |
835 | ||
836 | loc = start + 4 + bits (insn, 0, 7) * 4; | |
837 | constant = read_memory_unsigned_integer (loc, 4, byte_order); | |
838 | regs[bits (insn, 8, 10)] = pv_constant (constant); | |
839 | } | |
db24da6d | 840 | else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */ |
0d39a070 | 841 | { |
0d39a070 DJ |
842 | unsigned short inst2; |
843 | ||
844 | inst2 = read_memory_unsigned_integer (start + 2, 2, | |
845 | byte_order_for_code); | |
846 | ||
847 | if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800) | |
848 | { | |
849 | /* BL, BLX. Allow some special function calls when | |
850 | skipping the prologue; GCC generates these before | |
851 | storing arguments to the stack. */ | |
852 | CORE_ADDR nextpc; | |
853 | int j1, j2, imm1, imm2; | |
854 | ||
855 | imm1 = sbits (insn, 0, 10); | |
856 | imm2 = bits (inst2, 0, 10); | |
857 | j1 = bit (inst2, 13); | |
858 | j2 = bit (inst2, 11); | |
859 | ||
860 | offset = ((imm1 << 12) + (imm2 << 1)); | |
861 | offset ^= ((!j2) << 22) | ((!j1) << 23); | |
862 | ||
863 | nextpc = start + 4 + offset; | |
864 | /* For BLX make sure to clear the low bits. */ | |
865 | if (bit (inst2, 12) == 0) | |
866 | nextpc = nextpc & 0xfffffffc; | |
867 | ||
e0634ccf UW |
868 | if (!skip_prologue_function (gdbarch, nextpc, |
869 | bit (inst2, 12) != 0)) | |
0d39a070 DJ |
870 | break; |
871 | } | |
ec3d575a | 872 | |
0963b4bd MS |
873 | else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!}, |
874 | { registers } */ | |
ec3d575a UW |
875 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
876 | { | |
877 | pv_t addr = regs[bits (insn, 0, 3)]; | |
878 | int regno; | |
879 | ||
880 | if (pv_area_store_would_trash (stack, addr)) | |
881 | break; | |
882 | ||
883 | /* Calculate offsets of saved registers. */ | |
884 | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) | |
885 | if (inst2 & (1 << regno)) | |
886 | { | |
887 | addr = pv_add_constant (addr, -4); | |
888 | pv_area_store (stack, addr, 4, regs[regno]); | |
889 | } | |
890 | ||
891 | if (insn & 0x0020) | |
892 | regs[bits (insn, 0, 3)] = addr; | |
893 | } | |
894 | ||
0963b4bd MS |
895 | else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2, |
896 | [Rn, #+/-imm]{!} */ | |
ec3d575a UW |
897 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
898 | { | |
899 | int regno1 = bits (inst2, 12, 15); | |
900 | int regno2 = bits (inst2, 8, 11); | |
901 | pv_t addr = regs[bits (insn, 0, 3)]; | |
902 | ||
903 | offset = inst2 & 0xff; | |
904 | if (insn & 0x0080) | |
905 | addr = pv_add_constant (addr, offset); | |
906 | else | |
907 | addr = pv_add_constant (addr, -offset); | |
908 | ||
909 | if (pv_area_store_would_trash (stack, addr)) | |
910 | break; | |
911 | ||
912 | pv_area_store (stack, addr, 4, regs[regno1]); | |
913 | pv_area_store (stack, pv_add_constant (addr, 4), | |
914 | 4, regs[regno2]); | |
915 | ||
916 | if (insn & 0x0020) | |
917 | regs[bits (insn, 0, 3)] = addr; | |
918 | } | |
919 | ||
920 | else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */ | |
921 | && (inst2 & 0x0c00) == 0x0c00 | |
922 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | |
923 | { | |
924 | int regno = bits (inst2, 12, 15); | |
925 | pv_t addr = regs[bits (insn, 0, 3)]; | |
926 | ||
927 | offset = inst2 & 0xff; | |
928 | if (inst2 & 0x0200) | |
929 | addr = pv_add_constant (addr, offset); | |
930 | else | |
931 | addr = pv_add_constant (addr, -offset); | |
932 | ||
933 | if (pv_area_store_would_trash (stack, addr)) | |
934 | break; | |
935 | ||
936 | pv_area_store (stack, addr, 4, regs[regno]); | |
937 | ||
938 | if (inst2 & 0x0100) | |
939 | regs[bits (insn, 0, 3)] = addr; | |
940 | } | |
941 | ||
942 | else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */ | |
943 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | |
944 | { | |
945 | int regno = bits (inst2, 12, 15); | |
946 | pv_t addr; | |
947 | ||
948 | offset = inst2 & 0xfff; | |
949 | addr = pv_add_constant (regs[bits (insn, 0, 3)], offset); | |
950 | ||
951 | if (pv_area_store_would_trash (stack, addr)) | |
952 | break; | |
953 | ||
954 | pv_area_store (stack, addr, 4, regs[regno]); | |
955 | } | |
956 | ||
957 | else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */ | |
0d39a070 | 958 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 959 | /* Ignore stores of argument registers to the stack. */ |
0d39a070 | 960 | ; |
ec3d575a UW |
961 | |
962 | else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */ | |
963 | && (inst2 & 0x0d00) == 0x0c00 | |
0d39a070 | 964 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 965 | /* Ignore stores of argument registers to the stack. */ |
0d39a070 | 966 | ; |
ec3d575a | 967 | |
0963b4bd MS |
968 | else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!], |
969 | { registers } */ | |
ec3d575a UW |
970 | && (inst2 & 0x8000) == 0x0000 |
971 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | |
972 | /* Ignore block loads from the stack, potentially copying | |
973 | parameters from memory. */ | |
0d39a070 | 974 | ; |
ec3d575a | 975 | |
0963b4bd MS |
976 | else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2, |
977 | [Rn, #+/-imm] */ | |
0d39a070 | 978 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 979 | /* Similarly ignore dual loads from the stack. */ |
0d39a070 | 980 | ; |
ec3d575a UW |
981 | |
982 | else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */ | |
983 | && (inst2 & 0x0d00) == 0x0c00 | |
0d39a070 | 984 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 985 | /* Similarly ignore single loads from the stack. */ |
0d39a070 | 986 | ; |
ec3d575a UW |
987 | |
988 | else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */ | |
0d39a070 | 989 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 990 | /* Similarly ignore single loads from the stack. */ |
0d39a070 | 991 | ; |
ec3d575a UW |
992 | |
993 | else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */ | |
994 | && (inst2 & 0x8000) == 0x0000) | |
995 | { | |
996 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
997 | | (bits (inst2, 12, 14) << 8) | |
998 | | bits (inst2, 0, 7)); | |
999 | ||
1000 | regs[bits (inst2, 8, 11)] | |
1001 | = pv_add_constant (regs[bits (insn, 0, 3)], | |
1002 | thumb_expand_immediate (imm)); | |
1003 | } | |
1004 | ||
1005 | else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */ | |
1006 | && (inst2 & 0x8000) == 0x0000) | |
0d39a070 | 1007 | { |
ec3d575a UW |
1008 | unsigned int imm = ((bits (insn, 10, 10) << 11) |
1009 | | (bits (inst2, 12, 14) << 8) | |
1010 | | bits (inst2, 0, 7)); | |
1011 | ||
1012 | regs[bits (inst2, 8, 11)] | |
1013 | = pv_add_constant (regs[bits (insn, 0, 3)], imm); | |
1014 | } | |
1015 | ||
1016 | else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */ | |
1017 | && (inst2 & 0x8000) == 0x0000) | |
1018 | { | |
1019 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
1020 | | (bits (inst2, 12, 14) << 8) | |
1021 | | bits (inst2, 0, 7)); | |
1022 | ||
1023 | regs[bits (inst2, 8, 11)] | |
1024 | = pv_add_constant (regs[bits (insn, 0, 3)], | |
1025 | - (CORE_ADDR) thumb_expand_immediate (imm)); | |
1026 | } | |
1027 | ||
1028 | else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */ | |
1029 | && (inst2 & 0x8000) == 0x0000) | |
1030 | { | |
1031 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
1032 | | (bits (inst2, 12, 14) << 8) | |
1033 | | bits (inst2, 0, 7)); | |
1034 | ||
1035 | regs[bits (inst2, 8, 11)] | |
1036 | = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm); | |
1037 | } | |
1038 | ||
1039 | else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */ | |
1040 | { | |
1041 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
1042 | | (bits (inst2, 12, 14) << 8) | |
1043 | | bits (inst2, 0, 7)); | |
1044 | ||
1045 | regs[bits (inst2, 8, 11)] | |
1046 | = pv_constant (thumb_expand_immediate (imm)); | |
1047 | } | |
1048 | ||
1049 | else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */ | |
1050 | { | |
621c6d5b YQ |
1051 | unsigned int imm |
1052 | = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2); | |
ec3d575a UW |
1053 | |
1054 | regs[bits (inst2, 8, 11)] = pv_constant (imm); | |
1055 | } | |
1056 | ||
1057 | else if (insn == 0xea5f /* mov.w Rd,Rm */ | |
1058 | && (inst2 & 0xf0f0) == 0) | |
1059 | { | |
1060 | int dst_reg = (inst2 & 0x0f00) >> 8; | |
1061 | int src_reg = inst2 & 0xf; | |
1062 | regs[dst_reg] = regs[src_reg]; | |
1063 | } | |
1064 | ||
1065 | else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */ | |
1066 | { | |
1067 | /* Constant pool loads. */ | |
1068 | unsigned int constant; | |
1069 | CORE_ADDR loc; | |
1070 | ||
1071 | offset = bits (insn, 0, 11); | |
1072 | if (insn & 0x0080) | |
1073 | loc = start + 4 + offset; | |
1074 | else | |
1075 | loc = start + 4 - offset; | |
1076 | ||
1077 | constant = read_memory_unsigned_integer (loc, 4, byte_order); | |
1078 | regs[bits (inst2, 12, 15)] = pv_constant (constant); | |
1079 | } | |
1080 | ||
1081 | else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */ | |
1082 | { | |
1083 | /* Constant pool loads. */ | |
1084 | unsigned int constant; | |
1085 | CORE_ADDR loc; | |
1086 | ||
1087 | offset = bits (insn, 0, 7) << 2; | |
1088 | if (insn & 0x0080) | |
1089 | loc = start + 4 + offset; | |
1090 | else | |
1091 | loc = start + 4 - offset; | |
1092 | ||
1093 | constant = read_memory_unsigned_integer (loc, 4, byte_order); | |
1094 | regs[bits (inst2, 12, 15)] = pv_constant (constant); | |
1095 | ||
1096 | constant = read_memory_unsigned_integer (loc + 4, 4, byte_order); | |
1097 | regs[bits (inst2, 8, 11)] = pv_constant (constant); | |
1098 | } | |
1099 | ||
1100 | else if (thumb2_instruction_changes_pc (insn, inst2)) | |
1101 | { | |
1102 | /* Don't scan past anything that might change control flow. */ | |
0d39a070 DJ |
1103 | break; |
1104 | } | |
ec3d575a UW |
1105 | else |
1106 | { | |
1107 | /* The optimizer might shove anything into the prologue, | |
1108 | so we just skip what we don't recognize. */ | |
1109 | unrecognized_pc = start; | |
1110 | } | |
0d39a070 DJ |
1111 | |
1112 | start += 2; | |
1113 | } | |
ec3d575a | 1114 | else if (thumb_instruction_changes_pc (insn)) |
3d74b771 | 1115 | { |
ec3d575a | 1116 | /* Don't scan past anything that might change control flow. */ |
da3c6d4a | 1117 | break; |
3d74b771 | 1118 | } |
ec3d575a UW |
1119 | else |
1120 | { | |
1121 | /* The optimizer might shove anything into the prologue, | |
1122 | so we just skip what we don't recognize. */ | |
1123 | unrecognized_pc = start; | |
1124 | } | |
29d73ae4 DJ |
1125 | |
1126 | start += 2; | |
c906108c SS |
1127 | } |
1128 | ||
0d39a070 DJ |
1129 | if (arm_debug) |
1130 | fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n", | |
1131 | paddress (gdbarch, start)); | |
1132 | ||
ec3d575a UW |
1133 | if (unrecognized_pc == 0) |
1134 | unrecognized_pc = start; | |
1135 | ||
29d73ae4 DJ |
1136 | if (cache == NULL) |
1137 | { | |
1138 | do_cleanups (back_to); | |
ec3d575a | 1139 | return unrecognized_pc; |
29d73ae4 DJ |
1140 | } |
1141 | ||
29d73ae4 DJ |
1142 | if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) |
1143 | { | |
1144 | /* Frame pointer is fp. Frame size is constant. */ | |
1145 | cache->framereg = ARM_FP_REGNUM; | |
1146 | cache->framesize = -regs[ARM_FP_REGNUM].k; | |
1147 | } | |
1148 | else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM)) | |
1149 | { | |
1150 | /* Frame pointer is r7. Frame size is constant. */ | |
1151 | cache->framereg = THUMB_FP_REGNUM; | |
1152 | cache->framesize = -regs[THUMB_FP_REGNUM].k; | |
1153 | } | |
72a2e3dc | 1154 | else |
29d73ae4 DJ |
1155 | { |
1156 | /* Try the stack pointer... this is a bit desperate. */ | |
1157 | cache->framereg = ARM_SP_REGNUM; | |
1158 | cache->framesize = -regs[ARM_SP_REGNUM].k; | |
1159 | } | |
29d73ae4 DJ |
1160 | |
1161 | for (i = 0; i < 16; i++) | |
1162 | if (pv_area_find_reg (stack, gdbarch, i, &offset)) | |
1163 | cache->saved_regs[i].addr = offset; | |
1164 | ||
1165 | do_cleanups (back_to); | |
ec3d575a | 1166 | return unrecognized_pc; |
c906108c SS |
1167 | } |
1168 | ||
621c6d5b YQ |
1169 | |
1170 | /* Try to analyze the instructions starting from PC, which load symbol | |
1171 | __stack_chk_guard. Return the address of instruction after loading this | |
1172 | symbol, set the dest register number to *BASEREG, and set the size of | |
1173 | instructions for loading symbol in OFFSET. Return 0 if instructions are | |
1174 | not recognized. */ | |
1175 | ||
1176 | static CORE_ADDR | |
1177 | arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch, | |
1178 | unsigned int *destreg, int *offset) | |
1179 | { | |
1180 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
1181 | int is_thumb = arm_pc_is_thumb (gdbarch, pc); | |
1182 | unsigned int low, high, address; | |
1183 | ||
1184 | address = 0; | |
1185 | if (is_thumb) | |
1186 | { | |
1187 | unsigned short insn1 | |
1188 | = read_memory_unsigned_integer (pc, 2, byte_order_for_code); | |
1189 | ||
1190 | if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */ | |
1191 | { | |
1192 | *destreg = bits (insn1, 8, 10); | |
1193 | *offset = 2; | |
1194 | address = bits (insn1, 0, 7); | |
1195 | } | |
1196 | else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */ | |
1197 | { | |
1198 | unsigned short insn2 | |
1199 | = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code); | |
1200 | ||
1201 | low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2); | |
1202 | ||
1203 | insn1 | |
1204 | = read_memory_unsigned_integer (pc + 4, 2, byte_order_for_code); | |
1205 | insn2 | |
1206 | = read_memory_unsigned_integer (pc + 6, 2, byte_order_for_code); | |
1207 | ||
1208 | /* movt Rd, #const */ | |
1209 | if ((insn1 & 0xfbc0) == 0xf2c0) | |
1210 | { | |
1211 | high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2); | |
1212 | *destreg = bits (insn2, 8, 11); | |
1213 | *offset = 8; | |
1214 | address = (high << 16 | low); | |
1215 | } | |
1216 | } | |
1217 | } | |
1218 | else | |
1219 | { | |
2e9e421f UW |
1220 | unsigned int insn |
1221 | = read_memory_unsigned_integer (pc, 4, byte_order_for_code); | |
1222 | ||
1223 | if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, #immed */ | |
1224 | { | |
1225 | address = bits (insn, 0, 11); | |
1226 | *destreg = bits (insn, 12, 15); | |
1227 | *offset = 4; | |
1228 | } | |
1229 | else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */ | |
1230 | { | |
1231 | low = EXTRACT_MOVW_MOVT_IMM_A (insn); | |
1232 | ||
1233 | insn | |
1234 | = read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code); | |
1235 | ||
1236 | if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */ | |
1237 | { | |
1238 | high = EXTRACT_MOVW_MOVT_IMM_A (insn); | |
1239 | *destreg = bits (insn, 12, 15); | |
1240 | *offset = 8; | |
1241 | address = (high << 16 | low); | |
1242 | } | |
1243 | } | |
621c6d5b YQ |
1244 | } |
1245 | ||
1246 | return address; | |
1247 | } | |
1248 | ||
1249 | /* Try to skip a sequence of instructions used for stack protector. If PC | |
0963b4bd MS |
1250 | points to the first instruction of this sequence, return the address of |
1251 | first instruction after this sequence, otherwise, return original PC. | |
621c6d5b YQ |
1252 | |
1253 | On arm, this sequence of instructions is composed of mainly three steps, | |
1254 | Step 1: load symbol __stack_chk_guard, | |
1255 | Step 2: load from address of __stack_chk_guard, | |
1256 | Step 3: store it to somewhere else. | |
1257 | ||
1258 | Usually, instructions on step 2 and step 3 are the same on various ARM | |
1259 | architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and | |
1260 | on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However, | |
1261 | instructions in step 1 vary from different ARM architectures. On ARMv7, | |
1262 | they are, | |
1263 | ||
1264 | movw Rn, #:lower16:__stack_chk_guard | |
1265 | movt Rn, #:upper16:__stack_chk_guard | |
1266 | ||
1267 | On ARMv5t, it is, | |
1268 | ||
1269 | ldr Rn, .Label | |
1270 | .... | |
1271 | .Lable: | |
1272 | .word __stack_chk_guard | |
1273 | ||
1274 | Since ldr/str is a very popular instruction, we can't use them as | |
1275 | 'fingerprint' or 'signature' of stack protector sequence. Here we choose | |
1276 | sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not | |
1277 | stripped, as the 'fingerprint' of a stack protector cdoe sequence. */ | |
1278 | ||
1279 | static CORE_ADDR | |
1280 | arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch) | |
1281 | { | |
1282 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
1283 | unsigned int address, basereg; | |
1284 | struct minimal_symbol *stack_chk_guard; | |
1285 | int offset; | |
1286 | int is_thumb = arm_pc_is_thumb (gdbarch, pc); | |
1287 | CORE_ADDR addr; | |
1288 | ||
1289 | /* Try to parse the instructions in Step 1. */ | |
1290 | addr = arm_analyze_load_stack_chk_guard (pc, gdbarch, | |
1291 | &basereg, &offset); | |
1292 | if (!addr) | |
1293 | return pc; | |
1294 | ||
1295 | stack_chk_guard = lookup_minimal_symbol_by_pc (addr); | |
1296 | /* If name of symbol doesn't start with '__stack_chk_guard', this | |
1297 | instruction sequence is not for stack protector. If symbol is | |
1298 | removed, we conservatively think this sequence is for stack protector. */ | |
1299 | if (stack_chk_guard | |
c1c2ab58 UW |
1300 | && strncmp (SYMBOL_LINKAGE_NAME (stack_chk_guard), "__stack_chk_guard", |
1301 | strlen ("__stack_chk_guard")) != 0) | |
621c6d5b YQ |
1302 | return pc; |
1303 | ||
1304 | if (is_thumb) | |
1305 | { | |
1306 | unsigned int destreg; | |
1307 | unsigned short insn | |
1308 | = read_memory_unsigned_integer (pc + offset, 2, byte_order_for_code); | |
1309 | ||
1310 | /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */ | |
1311 | if ((insn & 0xf800) != 0x6800) | |
1312 | return pc; | |
1313 | if (bits (insn, 3, 5) != basereg) | |
1314 | return pc; | |
1315 | destreg = bits (insn, 0, 2); | |
1316 | ||
1317 | insn = read_memory_unsigned_integer (pc + offset + 2, 2, | |
1318 | byte_order_for_code); | |
1319 | /* Step 3: str Rd, [Rn, #immed], encoding T1. */ | |
1320 | if ((insn & 0xf800) != 0x6000) | |
1321 | return pc; | |
1322 | if (destreg != bits (insn, 0, 2)) | |
1323 | return pc; | |
1324 | } | |
1325 | else | |
1326 | { | |
1327 | unsigned int destreg; | |
1328 | unsigned int insn | |
1329 | = read_memory_unsigned_integer (pc + offset, 4, byte_order_for_code); | |
1330 | ||
1331 | /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */ | |
1332 | if ((insn & 0x0e500000) != 0x04100000) | |
1333 | return pc; | |
1334 | if (bits (insn, 16, 19) != basereg) | |
1335 | return pc; | |
1336 | destreg = bits (insn, 12, 15); | |
1337 | /* Step 3: str Rd, [Rn, #immed], encoding A1. */ | |
1338 | insn = read_memory_unsigned_integer (pc + offset + 4, | |
1339 | 4, byte_order_for_code); | |
1340 | if ((insn & 0x0e500000) != 0x04000000) | |
1341 | return pc; | |
1342 | if (bits (insn, 12, 15) != destreg) | |
1343 | return pc; | |
1344 | } | |
1345 | /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8 | |
1346 | on arm. */ | |
1347 | if (is_thumb) | |
1348 | return pc + offset + 4; | |
1349 | else | |
1350 | return pc + offset + 8; | |
1351 | } | |
1352 | ||
da3c6d4a MS |
1353 | /* Advance the PC across any function entry prologue instructions to |
1354 | reach some "real" code. | |
34e8f22d RE |
1355 | |
1356 | The APCS (ARM Procedure Call Standard) defines the following | |
ed9a39eb | 1357 | prologue: |
c906108c | 1358 | |
c5aa993b JM |
1359 | mov ip, sp |
1360 | [stmfd sp!, {a1,a2,a3,a4}] | |
1361 | stmfd sp!, {...,fp,ip,lr,pc} | |
ed9a39eb JM |
1362 | [stfe f7, [sp, #-12]!] |
1363 | [stfe f6, [sp, #-12]!] | |
1364 | [stfe f5, [sp, #-12]!] | |
1365 | [stfe f4, [sp, #-12]!] | |
0963b4bd | 1366 | sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */ |
c906108c | 1367 | |
34e8f22d | 1368 | static CORE_ADDR |
6093d2eb | 1369 | arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
c906108c | 1370 | { |
e17a4113 | 1371 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
c906108c SS |
1372 | unsigned long inst; |
1373 | CORE_ADDR skip_pc; | |
a89fea3c | 1374 | CORE_ADDR func_addr, limit_pc; |
c906108c SS |
1375 | struct symtab_and_line sal; |
1376 | ||
a89fea3c JL |
1377 | /* See if we can determine the end of the prologue via the symbol table. |
1378 | If so, then return either PC, or the PC after the prologue, whichever | |
1379 | is greater. */ | |
1380 | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) | |
c906108c | 1381 | { |
d80b854b UW |
1382 | CORE_ADDR post_prologue_pc |
1383 | = skip_prologue_using_sal (gdbarch, func_addr); | |
0d39a070 DJ |
1384 | struct symtab *s = find_pc_symtab (func_addr); |
1385 | ||
621c6d5b YQ |
1386 | if (post_prologue_pc) |
1387 | post_prologue_pc | |
1388 | = arm_skip_stack_protector (post_prologue_pc, gdbarch); | |
1389 | ||
1390 | ||
0d39a070 DJ |
1391 | /* GCC always emits a line note before the prologue and another |
1392 | one after, even if the two are at the same address or on the | |
1393 | same line. Take advantage of this so that we do not need to | |
1394 | know every instruction that might appear in the prologue. We | |
1395 | will have producer information for most binaries; if it is | |
1396 | missing (e.g. for -gstabs), assuming the GNU tools. */ | |
1397 | if (post_prologue_pc | |
1398 | && (s == NULL | |
1399 | || s->producer == NULL | |
1400 | || strncmp (s->producer, "GNU ", sizeof ("GNU ") - 1) == 0)) | |
1401 | return post_prologue_pc; | |
1402 | ||
a89fea3c | 1403 | if (post_prologue_pc != 0) |
0d39a070 DJ |
1404 | { |
1405 | CORE_ADDR analyzed_limit; | |
1406 | ||
1407 | /* For non-GCC compilers, make sure the entire line is an | |
1408 | acceptable prologue; GDB will round this function's | |
1409 | return value up to the end of the following line so we | |
1410 | can not skip just part of a line (and we do not want to). | |
1411 | ||
1412 | RealView does not treat the prologue specially, but does | |
1413 | associate prologue code with the opening brace; so this | |
1414 | lets us skip the first line if we think it is the opening | |
1415 | brace. */ | |
9779414d | 1416 | if (arm_pc_is_thumb (gdbarch, func_addr)) |
0d39a070 DJ |
1417 | analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr, |
1418 | post_prologue_pc, NULL); | |
1419 | else | |
1420 | analyzed_limit = arm_analyze_prologue (gdbarch, func_addr, | |
1421 | post_prologue_pc, NULL); | |
1422 | ||
1423 | if (analyzed_limit != post_prologue_pc) | |
1424 | return func_addr; | |
1425 | ||
1426 | return post_prologue_pc; | |
1427 | } | |
c906108c SS |
1428 | } |
1429 | ||
a89fea3c JL |
1430 | /* Can't determine prologue from the symbol table, need to examine |
1431 | instructions. */ | |
c906108c | 1432 | |
a89fea3c JL |
1433 | /* Find an upper limit on the function prologue using the debug |
1434 | information. If the debug information could not be used to provide | |
1435 | that bound, then use an arbitrary large number as the upper bound. */ | |
0963b4bd | 1436 | /* Like arm_scan_prologue, stop no later than pc + 64. */ |
d80b854b | 1437 | limit_pc = skip_prologue_using_sal (gdbarch, pc); |
a89fea3c JL |
1438 | if (limit_pc == 0) |
1439 | limit_pc = pc + 64; /* Magic. */ | |
1440 | ||
c906108c | 1441 | |
29d73ae4 | 1442 | /* Check if this is Thumb code. */ |
9779414d | 1443 | if (arm_pc_is_thumb (gdbarch, pc)) |
a89fea3c | 1444 | return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL); |
29d73ae4 | 1445 | |
a89fea3c | 1446 | for (skip_pc = pc; skip_pc < limit_pc; skip_pc += 4) |
f43845b3 | 1447 | { |
e17a4113 | 1448 | inst = read_memory_unsigned_integer (skip_pc, 4, byte_order_for_code); |
9d4fde75 | 1449 | |
b8d5e71d MS |
1450 | /* "mov ip, sp" is no longer a required part of the prologue. */ |
1451 | if (inst == 0xe1a0c00d) /* mov ip, sp */ | |
1452 | continue; | |
c906108c | 1453 | |
28cd8767 JG |
1454 | if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */ |
1455 | continue; | |
1456 | ||
1457 | if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */ | |
1458 | continue; | |
1459 | ||
b8d5e71d MS |
1460 | /* Some prologues begin with "str lr, [sp, #-4]!". */ |
1461 | if (inst == 0xe52de004) /* str lr, [sp, #-4]! */ | |
1462 | continue; | |
c906108c | 1463 | |
b8d5e71d MS |
1464 | if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */ |
1465 | continue; | |
c906108c | 1466 | |
b8d5e71d MS |
1467 | if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */ |
1468 | continue; | |
11d3b27d | 1469 | |
b8d5e71d MS |
1470 | /* Any insns after this point may float into the code, if it makes |
1471 | for better instruction scheduling, so we skip them only if we | |
1472 | find them, but still consider the function to be frame-ful. */ | |
f43845b3 | 1473 | |
b8d5e71d MS |
1474 | /* We may have either one sfmfd instruction here, or several stfe |
1475 | insns, depending on the version of floating point code we | |
1476 | support. */ | |
1477 | if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */ | |
1478 | continue; | |
1479 | ||
1480 | if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */ | |
1481 | continue; | |
1482 | ||
1483 | if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */ | |
1484 | continue; | |
1485 | ||
1486 | if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */ | |
1487 | continue; | |
1488 | ||
f8bf5763 PM |
1489 | if ((inst & 0xffffc000) == 0xe54b0000 /* strb r(0123),[r11,#-nn] */ |
1490 | || (inst & 0xffffc0f0) == 0xe14b00b0 /* strh r(0123),[r11,#-nn] */ | |
1491 | || (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */ | |
b8d5e71d MS |
1492 | continue; |
1493 | ||
f8bf5763 PM |
1494 | if ((inst & 0xffffc000) == 0xe5cd0000 /* strb r(0123),[sp,#nn] */ |
1495 | || (inst & 0xffffc0f0) == 0xe1cd00b0 /* strh r(0123),[sp,#nn] */ | |
1496 | || (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */ | |
b8d5e71d MS |
1497 | continue; |
1498 | ||
1499 | /* Un-recognized instruction; stop scanning. */ | |
1500 | break; | |
f43845b3 | 1501 | } |
c906108c | 1502 | |
0963b4bd | 1503 | return skip_pc; /* End of prologue. */ |
c906108c | 1504 | } |
94c30b78 | 1505 | |
c5aa993b | 1506 | /* *INDENT-OFF* */ |
c906108c SS |
1507 | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) |
1508 | This function decodes a Thumb function prologue to determine: | |
1509 | 1) the size of the stack frame | |
1510 | 2) which registers are saved on it | |
1511 | 3) the offsets of saved regs | |
1512 | 4) the offset from the stack pointer to the frame pointer | |
c906108c | 1513 | |
da59e081 JM |
1514 | A typical Thumb function prologue would create this stack frame |
1515 | (offsets relative to FP) | |
c906108c SS |
1516 | old SP -> 24 stack parameters |
1517 | 20 LR | |
1518 | 16 R7 | |
1519 | R7 -> 0 local variables (16 bytes) | |
1520 | SP -> -12 additional stack space (12 bytes) | |
1521 | The frame size would thus be 36 bytes, and the frame offset would be | |
0963b4bd | 1522 | 12 bytes. The frame register is R7. |
da59e081 | 1523 | |
da3c6d4a MS |
1524 | The comments for thumb_skip_prolog() describe the algorithm we use |
1525 | to detect the end of the prolog. */ | |
c5aa993b JM |
1526 | /* *INDENT-ON* */ |
1527 | ||
c906108c | 1528 | static void |
be8626e0 | 1529 | thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc, |
b39cc962 | 1530 | CORE_ADDR block_addr, struct arm_prologue_cache *cache) |
c906108c SS |
1531 | { |
1532 | CORE_ADDR prologue_start; | |
1533 | CORE_ADDR prologue_end; | |
1534 | CORE_ADDR current_pc; | |
c906108c | 1535 | |
b39cc962 DJ |
1536 | if (find_pc_partial_function (block_addr, NULL, &prologue_start, |
1537 | &prologue_end)) | |
c906108c | 1538 | { |
ec3d575a UW |
1539 | /* See comment in arm_scan_prologue for an explanation of |
1540 | this heuristics. */ | |
1541 | if (prologue_end > prologue_start + 64) | |
1542 | { | |
1543 | prologue_end = prologue_start + 64; | |
1544 | } | |
c906108c SS |
1545 | } |
1546 | else | |
f7060f85 DJ |
1547 | /* We're in the boondocks: we have no idea where the start of the |
1548 | function is. */ | |
1549 | return; | |
c906108c | 1550 | |
eb5492fa | 1551 | prologue_end = min (prologue_end, prev_pc); |
c906108c | 1552 | |
be8626e0 | 1553 | thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache); |
c906108c SS |
1554 | } |
1555 | ||
0d39a070 | 1556 | /* Return 1 if THIS_INSTR might change control flow, 0 otherwise. */ |
c906108c | 1557 | |
0d39a070 DJ |
1558 | static int |
1559 | arm_instruction_changes_pc (uint32_t this_instr) | |
c906108c | 1560 | { |
0d39a070 DJ |
1561 | if (bits (this_instr, 28, 31) == INST_NV) |
1562 | /* Unconditional instructions. */ | |
1563 | switch (bits (this_instr, 24, 27)) | |
1564 | { | |
1565 | case 0xa: | |
1566 | case 0xb: | |
1567 | /* Branch with Link and change to Thumb. */ | |
1568 | return 1; | |
1569 | case 0xc: | |
1570 | case 0xd: | |
1571 | case 0xe: | |
1572 | /* Coprocessor register transfer. */ | |
1573 | if (bits (this_instr, 12, 15) == 15) | |
1574 | error (_("Invalid update to pc in instruction")); | |
1575 | return 0; | |
1576 | default: | |
1577 | return 0; | |
1578 | } | |
1579 | else | |
1580 | switch (bits (this_instr, 25, 27)) | |
1581 | { | |
1582 | case 0x0: | |
1583 | if (bits (this_instr, 23, 24) == 2 && bit (this_instr, 20) == 0) | |
1584 | { | |
1585 | /* Multiplies and extra load/stores. */ | |
1586 | if (bit (this_instr, 4) == 1 && bit (this_instr, 7) == 1) | |
1587 | /* Neither multiplies nor extension load/stores are allowed | |
1588 | to modify PC. */ | |
1589 | return 0; | |
1590 | ||
1591 | /* Otherwise, miscellaneous instructions. */ | |
1592 | ||
1593 | /* BX <reg>, BXJ <reg>, BLX <reg> */ | |
1594 | if (bits (this_instr, 4, 27) == 0x12fff1 | |
1595 | || bits (this_instr, 4, 27) == 0x12fff2 | |
1596 | || bits (this_instr, 4, 27) == 0x12fff3) | |
1597 | return 1; | |
1598 | ||
1599 | /* Other miscellaneous instructions are unpredictable if they | |
1600 | modify PC. */ | |
1601 | return 0; | |
1602 | } | |
1603 | /* Data processing instruction. Fall through. */ | |
c906108c | 1604 | |
0d39a070 DJ |
1605 | case 0x1: |
1606 | if (bits (this_instr, 12, 15) == 15) | |
1607 | return 1; | |
1608 | else | |
1609 | return 0; | |
c906108c | 1610 | |
0d39a070 DJ |
1611 | case 0x2: |
1612 | case 0x3: | |
1613 | /* Media instructions and architecturally undefined instructions. */ | |
1614 | if (bits (this_instr, 25, 27) == 3 && bit (this_instr, 4) == 1) | |
1615 | return 0; | |
c906108c | 1616 | |
0d39a070 DJ |
1617 | /* Stores. */ |
1618 | if (bit (this_instr, 20) == 0) | |
1619 | return 0; | |
2a451106 | 1620 | |
0d39a070 DJ |
1621 | /* Loads. */ |
1622 | if (bits (this_instr, 12, 15) == ARM_PC_REGNUM) | |
1623 | return 1; | |
1624 | else | |
1625 | return 0; | |
2a451106 | 1626 | |
0d39a070 DJ |
1627 | case 0x4: |
1628 | /* Load/store multiple. */ | |
1629 | if (bit (this_instr, 20) == 1 && bit (this_instr, 15) == 1) | |
1630 | return 1; | |
1631 | else | |
1632 | return 0; | |
2a451106 | 1633 | |
0d39a070 DJ |
1634 | case 0x5: |
1635 | /* Branch and branch with link. */ | |
1636 | return 1; | |
2a451106 | 1637 | |
0d39a070 DJ |
1638 | case 0x6: |
1639 | case 0x7: | |
1640 | /* Coprocessor transfers or SWIs can not affect PC. */ | |
1641 | return 0; | |
eb5492fa | 1642 | |
0d39a070 | 1643 | default: |
9b20d036 | 1644 | internal_error (__FILE__, __LINE__, _("bad value in switch")); |
0d39a070 DJ |
1645 | } |
1646 | } | |
c906108c | 1647 | |
0d39a070 DJ |
1648 | /* Analyze an ARM mode prologue starting at PROLOGUE_START and |
1649 | continuing no further than PROLOGUE_END. If CACHE is non-NULL, | |
1650 | fill it in. Return the first address not recognized as a prologue | |
1651 | instruction. | |
eb5492fa | 1652 | |
0d39a070 DJ |
1653 | We recognize all the instructions typically found in ARM prologues, |
1654 | plus harmless instructions which can be skipped (either for analysis | |
1655 | purposes, or a more restrictive set that can be skipped when finding | |
1656 | the end of the prologue). */ | |
1657 | ||
1658 | static CORE_ADDR | |
1659 | arm_analyze_prologue (struct gdbarch *gdbarch, | |
1660 | CORE_ADDR prologue_start, CORE_ADDR prologue_end, | |
1661 | struct arm_prologue_cache *cache) | |
1662 | { | |
1663 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1664 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
1665 | int regno; | |
1666 | CORE_ADDR offset, current_pc; | |
1667 | pv_t regs[ARM_FPS_REGNUM]; | |
1668 | struct pv_area *stack; | |
1669 | struct cleanup *back_to; | |
1670 | int framereg, framesize; | |
1671 | CORE_ADDR unrecognized_pc = 0; | |
1672 | ||
1673 | /* Search the prologue looking for instructions that set up the | |
96baa820 | 1674 | frame pointer, adjust the stack pointer, and save registers. |
ed9a39eb | 1675 | |
96baa820 JM |
1676 | Be careful, however, and if it doesn't look like a prologue, |
1677 | don't try to scan it. If, for instance, a frameless function | |
1678 | begins with stmfd sp!, then we will tell ourselves there is | |
b8d5e71d | 1679 | a frame, which will confuse stack traceback, as well as "finish" |
96baa820 | 1680 | and other operations that rely on a knowledge of the stack |
0d39a070 | 1681 | traceback. */ |
d4473757 | 1682 | |
4be43953 DJ |
1683 | for (regno = 0; regno < ARM_FPS_REGNUM; regno++) |
1684 | regs[regno] = pv_register (regno, 0); | |
55f960e1 | 1685 | stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
4be43953 DJ |
1686 | back_to = make_cleanup_free_pv_area (stack); |
1687 | ||
94c30b78 MS |
1688 | for (current_pc = prologue_start; |
1689 | current_pc < prologue_end; | |
f43845b3 | 1690 | current_pc += 4) |
96baa820 | 1691 | { |
e17a4113 UW |
1692 | unsigned int insn |
1693 | = read_memory_unsigned_integer (current_pc, 4, byte_order_for_code); | |
9d4fde75 | 1694 | |
94c30b78 | 1695 | if (insn == 0xe1a0c00d) /* mov ip, sp */ |
f43845b3 | 1696 | { |
4be43953 | 1697 | regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM]; |
28cd8767 JG |
1698 | continue; |
1699 | } | |
0d39a070 DJ |
1700 | else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */ |
1701 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
28cd8767 JG |
1702 | { |
1703 | unsigned imm = insn & 0xff; /* immediate value */ | |
1704 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
0d39a070 | 1705 | int rd = bits (insn, 12, 15); |
28cd8767 | 1706 | imm = (imm >> rot) | (imm << (32 - rot)); |
0d39a070 | 1707 | regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm); |
28cd8767 JG |
1708 | continue; |
1709 | } | |
0d39a070 DJ |
1710 | else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */ |
1711 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
28cd8767 JG |
1712 | { |
1713 | unsigned imm = insn & 0xff; /* immediate value */ | |
1714 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
0d39a070 | 1715 | int rd = bits (insn, 12, 15); |
28cd8767 | 1716 | imm = (imm >> rot) | (imm << (32 - rot)); |
0d39a070 | 1717 | regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm); |
f43845b3 MS |
1718 | continue; |
1719 | } | |
0963b4bd MS |
1720 | else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd, |
1721 | [sp, #-4]! */ | |
f43845b3 | 1722 | { |
4be43953 DJ |
1723 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1724 | break; | |
1725 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4); | |
0d39a070 DJ |
1726 | pv_area_store (stack, regs[ARM_SP_REGNUM], 4, |
1727 | regs[bits (insn, 12, 15)]); | |
f43845b3 MS |
1728 | continue; |
1729 | } | |
1730 | else if ((insn & 0xffff0000) == 0xe92d0000) | |
d4473757 KB |
1731 | /* stmfd sp!, {..., fp, ip, lr, pc} |
1732 | or | |
1733 | stmfd sp!, {a1, a2, a3, a4} */ | |
c906108c | 1734 | { |
d4473757 | 1735 | int mask = insn & 0xffff; |
ed9a39eb | 1736 | |
4be43953 DJ |
1737 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1738 | break; | |
1739 | ||
94c30b78 | 1740 | /* Calculate offsets of saved registers. */ |
34e8f22d | 1741 | for (regno = ARM_PC_REGNUM; regno >= 0; regno--) |
d4473757 KB |
1742 | if (mask & (1 << regno)) |
1743 | { | |
0963b4bd MS |
1744 | regs[ARM_SP_REGNUM] |
1745 | = pv_add_constant (regs[ARM_SP_REGNUM], -4); | |
4be43953 | 1746 | pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]); |
d4473757 KB |
1747 | } |
1748 | } | |
0d39a070 DJ |
1749 | else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */ |
1750 | || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */ | |
f8bf5763 | 1751 | || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */ |
b8d5e71d MS |
1752 | { |
1753 | /* No need to add this to saved_regs -- it's just an arg reg. */ | |
1754 | continue; | |
1755 | } | |
0d39a070 DJ |
1756 | else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */ |
1757 | || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */ | |
f8bf5763 | 1758 | || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */ |
f43845b3 MS |
1759 | { |
1760 | /* No need to add this to saved_regs -- it's just an arg reg. */ | |
1761 | continue; | |
1762 | } | |
0963b4bd MS |
1763 | else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn, |
1764 | { registers } */ | |
0d39a070 DJ |
1765 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) |
1766 | { | |
1767 | /* No need to add this to saved_regs -- it's just arg regs. */ | |
1768 | continue; | |
1769 | } | |
d4473757 KB |
1770 | else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ |
1771 | { | |
94c30b78 MS |
1772 | unsigned imm = insn & 0xff; /* immediate value */ |
1773 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
d4473757 | 1774 | imm = (imm >> rot) | (imm << (32 - rot)); |
4be43953 | 1775 | regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm); |
d4473757 KB |
1776 | } |
1777 | else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ | |
1778 | { | |
94c30b78 MS |
1779 | unsigned imm = insn & 0xff; /* immediate value */ |
1780 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
d4473757 | 1781 | imm = (imm >> rot) | (imm << (32 - rot)); |
4be43953 | 1782 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm); |
d4473757 | 1783 | } |
0963b4bd MS |
1784 | else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, |
1785 | [sp, -#c]! */ | |
2af46ca0 | 1786 | && gdbarch_tdep (gdbarch)->have_fpa_registers) |
d4473757 | 1787 | { |
4be43953 DJ |
1788 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1789 | break; | |
1790 | ||
1791 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); | |
34e8f22d | 1792 | regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07); |
4be43953 | 1793 | pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]); |
d4473757 | 1794 | } |
0963b4bd MS |
1795 | else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, |
1796 | [sp!] */ | |
2af46ca0 | 1797 | && gdbarch_tdep (gdbarch)->have_fpa_registers) |
d4473757 KB |
1798 | { |
1799 | int n_saved_fp_regs; | |
1800 | unsigned int fp_start_reg, fp_bound_reg; | |
1801 | ||
4be43953 DJ |
1802 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1803 | break; | |
1804 | ||
94c30b78 | 1805 | if ((insn & 0x800) == 0x800) /* N0 is set */ |
96baa820 | 1806 | { |
d4473757 KB |
1807 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
1808 | n_saved_fp_regs = 3; | |
1809 | else | |
1810 | n_saved_fp_regs = 1; | |
96baa820 | 1811 | } |
d4473757 | 1812 | else |
96baa820 | 1813 | { |
d4473757 KB |
1814 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
1815 | n_saved_fp_regs = 2; | |
1816 | else | |
1817 | n_saved_fp_regs = 4; | |
96baa820 | 1818 | } |
d4473757 | 1819 | |
34e8f22d | 1820 | fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7); |
d4473757 KB |
1821 | fp_bound_reg = fp_start_reg + n_saved_fp_regs; |
1822 | for (; fp_start_reg < fp_bound_reg; fp_start_reg++) | |
96baa820 | 1823 | { |
4be43953 DJ |
1824 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); |
1825 | pv_area_store (stack, regs[ARM_SP_REGNUM], 12, | |
1826 | regs[fp_start_reg++]); | |
96baa820 | 1827 | } |
c906108c | 1828 | } |
0d39a070 DJ |
1829 | else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */ |
1830 | { | |
1831 | /* Allow some special function calls when skipping the | |
1832 | prologue; GCC generates these before storing arguments to | |
1833 | the stack. */ | |
1834 | CORE_ADDR dest = BranchDest (current_pc, insn); | |
1835 | ||
e0634ccf | 1836 | if (skip_prologue_function (gdbarch, dest, 0)) |
0d39a070 DJ |
1837 | continue; |
1838 | else | |
1839 | break; | |
1840 | } | |
d4473757 | 1841 | else if ((insn & 0xf0000000) != 0xe0000000) |
0963b4bd | 1842 | break; /* Condition not true, exit early. */ |
0d39a070 DJ |
1843 | else if (arm_instruction_changes_pc (insn)) |
1844 | /* Don't scan past anything that might change control flow. */ | |
1845 | break; | |
d19f7eee UW |
1846 | else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */ |
1847 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
1848 | /* Ignore block loads from the stack, potentially copying | |
1849 | parameters from memory. */ | |
1850 | continue; | |
1851 | else if ((insn & 0xfc500000) == 0xe4100000 | |
1852 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
1853 | /* Similarly ignore single loads from the stack. */ | |
1854 | continue; | |
0d39a070 DJ |
1855 | else if ((insn & 0xffff0ff0) == 0xe1a00000) |
1856 | /* MOV Rd, Rm. Skip register copies, i.e. saves to another | |
1857 | register instead of the stack. */ | |
d4473757 | 1858 | continue; |
0d39a070 DJ |
1859 | else |
1860 | { | |
1861 | /* The optimizer might shove anything into the prologue, | |
1862 | so we just skip what we don't recognize. */ | |
1863 | unrecognized_pc = current_pc; | |
1864 | continue; | |
1865 | } | |
c906108c SS |
1866 | } |
1867 | ||
0d39a070 DJ |
1868 | if (unrecognized_pc == 0) |
1869 | unrecognized_pc = current_pc; | |
1870 | ||
4be43953 DJ |
1871 | /* The frame size is just the distance from the frame register |
1872 | to the original stack pointer. */ | |
1873 | if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) | |
1874 | { | |
1875 | /* Frame pointer is fp. */ | |
0d39a070 DJ |
1876 | framereg = ARM_FP_REGNUM; |
1877 | framesize = -regs[ARM_FP_REGNUM].k; | |
4be43953 | 1878 | } |
72a2e3dc | 1879 | else |
4be43953 DJ |
1880 | { |
1881 | /* Try the stack pointer... this is a bit desperate. */ | |
0d39a070 DJ |
1882 | framereg = ARM_SP_REGNUM; |
1883 | framesize = -regs[ARM_SP_REGNUM].k; | |
4be43953 | 1884 | } |
4be43953 | 1885 | |
0d39a070 DJ |
1886 | if (cache) |
1887 | { | |
1888 | cache->framereg = framereg; | |
1889 | cache->framesize = framesize; | |
1890 | ||
1891 | for (regno = 0; regno < ARM_FPS_REGNUM; regno++) | |
1892 | if (pv_area_find_reg (stack, gdbarch, regno, &offset)) | |
1893 | cache->saved_regs[regno].addr = offset; | |
1894 | } | |
1895 | ||
1896 | if (arm_debug) | |
1897 | fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n", | |
1898 | paddress (gdbarch, unrecognized_pc)); | |
4be43953 DJ |
1899 | |
1900 | do_cleanups (back_to); | |
0d39a070 DJ |
1901 | return unrecognized_pc; |
1902 | } | |
1903 | ||
1904 | static void | |
1905 | arm_scan_prologue (struct frame_info *this_frame, | |
1906 | struct arm_prologue_cache *cache) | |
1907 | { | |
1908 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
1909 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1910 | int regno; | |
1911 | CORE_ADDR prologue_start, prologue_end, current_pc; | |
1912 | CORE_ADDR prev_pc = get_frame_pc (this_frame); | |
1913 | CORE_ADDR block_addr = get_frame_address_in_block (this_frame); | |
1914 | pv_t regs[ARM_FPS_REGNUM]; | |
1915 | struct pv_area *stack; | |
1916 | struct cleanup *back_to; | |
1917 | CORE_ADDR offset; | |
1918 | ||
1919 | /* Assume there is no frame until proven otherwise. */ | |
1920 | cache->framereg = ARM_SP_REGNUM; | |
1921 | cache->framesize = 0; | |
1922 | ||
1923 | /* Check for Thumb prologue. */ | |
1924 | if (arm_frame_is_thumb (this_frame)) | |
1925 | { | |
1926 | thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache); | |
1927 | return; | |
1928 | } | |
1929 | ||
1930 | /* Find the function prologue. If we can't find the function in | |
1931 | the symbol table, peek in the stack frame to find the PC. */ | |
1932 | if (find_pc_partial_function (block_addr, NULL, &prologue_start, | |
1933 | &prologue_end)) | |
1934 | { | |
1935 | /* One way to find the end of the prologue (which works well | |
1936 | for unoptimized code) is to do the following: | |
1937 | ||
1938 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
1939 | ||
1940 | if (sal.line == 0) | |
1941 | prologue_end = prev_pc; | |
1942 | else if (sal.end < prologue_end) | |
1943 | prologue_end = sal.end; | |
1944 | ||
1945 | This mechanism is very accurate so long as the optimizer | |
1946 | doesn't move any instructions from the function body into the | |
1947 | prologue. If this happens, sal.end will be the last | |
1948 | instruction in the first hunk of prologue code just before | |
1949 | the first instruction that the scheduler has moved from | |
1950 | the body to the prologue. | |
1951 | ||
1952 | In order to make sure that we scan all of the prologue | |
1953 | instructions, we use a slightly less accurate mechanism which | |
1954 | may scan more than necessary. To help compensate for this | |
1955 | lack of accuracy, the prologue scanning loop below contains | |
1956 | several clauses which'll cause the loop to terminate early if | |
1957 | an implausible prologue instruction is encountered. | |
1958 | ||
1959 | The expression | |
1960 | ||
1961 | prologue_start + 64 | |
1962 | ||
1963 | is a suitable endpoint since it accounts for the largest | |
1964 | possible prologue plus up to five instructions inserted by | |
1965 | the scheduler. */ | |
1966 | ||
1967 | if (prologue_end > prologue_start + 64) | |
1968 | { | |
1969 | prologue_end = prologue_start + 64; /* See above. */ | |
1970 | } | |
1971 | } | |
1972 | else | |
1973 | { | |
1974 | /* We have no symbol information. Our only option is to assume this | |
1975 | function has a standard stack frame and the normal frame register. | |
1976 | Then, we can find the value of our frame pointer on entrance to | |
1977 | the callee (or at the present moment if this is the innermost frame). | |
1978 | The value stored there should be the address of the stmfd + 8. */ | |
1979 | CORE_ADDR frame_loc; | |
1980 | LONGEST return_value; | |
1981 | ||
1982 | frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM); | |
1983 | if (!safe_read_memory_integer (frame_loc, 4, byte_order, &return_value)) | |
1984 | return; | |
1985 | else | |
1986 | { | |
1987 | prologue_start = gdbarch_addr_bits_remove | |
1988 | (gdbarch, return_value) - 8; | |
1989 | prologue_end = prologue_start + 64; /* See above. */ | |
1990 | } | |
1991 | } | |
1992 | ||
1993 | if (prev_pc < prologue_end) | |
1994 | prologue_end = prev_pc; | |
1995 | ||
1996 | arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache); | |
c906108c SS |
1997 | } |
1998 | ||
eb5492fa | 1999 | static struct arm_prologue_cache * |
a262aec2 | 2000 | arm_make_prologue_cache (struct frame_info *this_frame) |
c906108c | 2001 | { |
eb5492fa DJ |
2002 | int reg; |
2003 | struct arm_prologue_cache *cache; | |
2004 | CORE_ADDR unwound_fp; | |
c5aa993b | 2005 | |
35d5d4ee | 2006 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
a262aec2 | 2007 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
c906108c | 2008 | |
a262aec2 | 2009 | arm_scan_prologue (this_frame, cache); |
848cfffb | 2010 | |
a262aec2 | 2011 | unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg); |
eb5492fa DJ |
2012 | if (unwound_fp == 0) |
2013 | return cache; | |
c906108c | 2014 | |
4be43953 | 2015 | cache->prev_sp = unwound_fp + cache->framesize; |
c906108c | 2016 | |
eb5492fa DJ |
2017 | /* Calculate actual addresses of saved registers using offsets |
2018 | determined by arm_scan_prologue. */ | |
a262aec2 | 2019 | for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++) |
e28a332c | 2020 | if (trad_frame_addr_p (cache->saved_regs, reg)) |
eb5492fa DJ |
2021 | cache->saved_regs[reg].addr += cache->prev_sp; |
2022 | ||
2023 | return cache; | |
c906108c SS |
2024 | } |
2025 | ||
eb5492fa DJ |
2026 | /* Our frame ID for a normal frame is the current function's starting PC |
2027 | and the caller's SP when we were called. */ | |
c906108c | 2028 | |
148754e5 | 2029 | static void |
a262aec2 | 2030 | arm_prologue_this_id (struct frame_info *this_frame, |
eb5492fa DJ |
2031 | void **this_cache, |
2032 | struct frame_id *this_id) | |
c906108c | 2033 | { |
eb5492fa DJ |
2034 | struct arm_prologue_cache *cache; |
2035 | struct frame_id id; | |
2c404490 | 2036 | CORE_ADDR pc, func; |
f079148d | 2037 | |
eb5492fa | 2038 | if (*this_cache == NULL) |
a262aec2 | 2039 | *this_cache = arm_make_prologue_cache (this_frame); |
eb5492fa | 2040 | cache = *this_cache; |
2a451106 | 2041 | |
2c404490 DJ |
2042 | /* This is meant to halt the backtrace at "_start". */ |
2043 | pc = get_frame_pc (this_frame); | |
2044 | if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc) | |
eb5492fa | 2045 | return; |
5a203e44 | 2046 | |
eb5492fa DJ |
2047 | /* If we've hit a wall, stop. */ |
2048 | if (cache->prev_sp == 0) | |
2049 | return; | |
24de872b | 2050 | |
0e9e9abd UW |
2051 | /* Use function start address as part of the frame ID. If we cannot |
2052 | identify the start address (due to missing symbol information), | |
2053 | fall back to just using the current PC. */ | |
2c404490 | 2054 | func = get_frame_func (this_frame); |
0e9e9abd UW |
2055 | if (!func) |
2056 | func = pc; | |
2057 | ||
eb5492fa | 2058 | id = frame_id_build (cache->prev_sp, func); |
eb5492fa | 2059 | *this_id = id; |
c906108c SS |
2060 | } |
2061 | ||
a262aec2 DJ |
2062 | static struct value * |
2063 | arm_prologue_prev_register (struct frame_info *this_frame, | |
eb5492fa | 2064 | void **this_cache, |
a262aec2 | 2065 | int prev_regnum) |
24de872b | 2066 | { |
24568a2c | 2067 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
24de872b DJ |
2068 | struct arm_prologue_cache *cache; |
2069 | ||
eb5492fa | 2070 | if (*this_cache == NULL) |
a262aec2 | 2071 | *this_cache = arm_make_prologue_cache (this_frame); |
eb5492fa | 2072 | cache = *this_cache; |
24de872b | 2073 | |
eb5492fa | 2074 | /* If we are asked to unwind the PC, then we need to return the LR |
b39cc962 DJ |
2075 | instead. The prologue may save PC, but it will point into this |
2076 | frame's prologue, not the next frame's resume location. Also | |
2077 | strip the saved T bit. A valid LR may have the low bit set, but | |
2078 | a valid PC never does. */ | |
eb5492fa | 2079 | if (prev_regnum == ARM_PC_REGNUM) |
b39cc962 DJ |
2080 | { |
2081 | CORE_ADDR lr; | |
2082 | ||
2083 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
2084 | return frame_unwind_got_constant (this_frame, prev_regnum, | |
24568a2c | 2085 | arm_addr_bits_remove (gdbarch, lr)); |
b39cc962 | 2086 | } |
24de872b | 2087 | |
eb5492fa | 2088 | /* SP is generally not saved to the stack, but this frame is |
a262aec2 | 2089 | identified by the next frame's stack pointer at the time of the call. |
eb5492fa DJ |
2090 | The value was already reconstructed into PREV_SP. */ |
2091 | if (prev_regnum == ARM_SP_REGNUM) | |
a262aec2 | 2092 | return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp); |
eb5492fa | 2093 | |
b39cc962 DJ |
2094 | /* The CPSR may have been changed by the call instruction and by the |
2095 | called function. The only bit we can reconstruct is the T bit, | |
2096 | by checking the low bit of LR as of the call. This is a reliable | |
2097 | indicator of Thumb-ness except for some ARM v4T pre-interworking | |
2098 | Thumb code, which could get away with a clear low bit as long as | |
2099 | the called function did not use bx. Guess that all other | |
2100 | bits are unchanged; the condition flags are presumably lost, | |
2101 | but the processor status is likely valid. */ | |
2102 | if (prev_regnum == ARM_PS_REGNUM) | |
2103 | { | |
2104 | CORE_ADDR lr, cpsr; | |
9779414d | 2105 | ULONGEST t_bit = arm_psr_thumb_bit (gdbarch); |
b39cc962 DJ |
2106 | |
2107 | cpsr = get_frame_register_unsigned (this_frame, prev_regnum); | |
2108 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
2109 | if (IS_THUMB_ADDR (lr)) | |
9779414d | 2110 | cpsr |= t_bit; |
b39cc962 | 2111 | else |
9779414d | 2112 | cpsr &= ~t_bit; |
b39cc962 DJ |
2113 | return frame_unwind_got_constant (this_frame, prev_regnum, cpsr); |
2114 | } | |
2115 | ||
a262aec2 DJ |
2116 | return trad_frame_get_prev_register (this_frame, cache->saved_regs, |
2117 | prev_regnum); | |
eb5492fa DJ |
2118 | } |
2119 | ||
2120 | struct frame_unwind arm_prologue_unwind = { | |
2121 | NORMAL_FRAME, | |
8fbca658 | 2122 | default_frame_unwind_stop_reason, |
eb5492fa | 2123 | arm_prologue_this_id, |
a262aec2 DJ |
2124 | arm_prologue_prev_register, |
2125 | NULL, | |
2126 | default_frame_sniffer | |
eb5492fa DJ |
2127 | }; |
2128 | ||
0e9e9abd UW |
2129 | /* Maintain a list of ARM exception table entries per objfile, similar to the |
2130 | list of mapping symbols. We only cache entries for standard ARM-defined | |
2131 | personality routines; the cache will contain only the frame unwinding | |
2132 | instructions associated with the entry (not the descriptors). */ | |
2133 | ||
2134 | static const struct objfile_data *arm_exidx_data_key; | |
2135 | ||
2136 | struct arm_exidx_entry | |
2137 | { | |
2138 | bfd_vma addr; | |
2139 | gdb_byte *entry; | |
2140 | }; | |
2141 | typedef struct arm_exidx_entry arm_exidx_entry_s; | |
2142 | DEF_VEC_O(arm_exidx_entry_s); | |
2143 | ||
2144 | struct arm_exidx_data | |
2145 | { | |
2146 | VEC(arm_exidx_entry_s) **section_maps; | |
2147 | }; | |
2148 | ||
2149 | static void | |
2150 | arm_exidx_data_free (struct objfile *objfile, void *arg) | |
2151 | { | |
2152 | struct arm_exidx_data *data = arg; | |
2153 | unsigned int i; | |
2154 | ||
2155 | for (i = 0; i < objfile->obfd->section_count; i++) | |
2156 | VEC_free (arm_exidx_entry_s, data->section_maps[i]); | |
2157 | } | |
2158 | ||
2159 | static inline int | |
2160 | arm_compare_exidx_entries (const struct arm_exidx_entry *lhs, | |
2161 | const struct arm_exidx_entry *rhs) | |
2162 | { | |
2163 | return lhs->addr < rhs->addr; | |
2164 | } | |
2165 | ||
2166 | static struct obj_section * | |
2167 | arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma) | |
2168 | { | |
2169 | struct obj_section *osect; | |
2170 | ||
2171 | ALL_OBJFILE_OSECTIONS (objfile, osect) | |
2172 | if (bfd_get_section_flags (objfile->obfd, | |
2173 | osect->the_bfd_section) & SEC_ALLOC) | |
2174 | { | |
2175 | bfd_vma start, size; | |
2176 | start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section); | |
2177 | size = bfd_get_section_size (osect->the_bfd_section); | |
2178 | ||
2179 | if (start <= vma && vma < start + size) | |
2180 | return osect; | |
2181 | } | |
2182 | ||
2183 | return NULL; | |
2184 | } | |
2185 | ||
2186 | /* Parse contents of exception table and exception index sections | |
2187 | of OBJFILE, and fill in the exception table entry cache. | |
2188 | ||
2189 | For each entry that refers to a standard ARM-defined personality | |
2190 | routine, extract the frame unwinding instructions (from either | |
2191 | the index or the table section). The unwinding instructions | |
2192 | are normalized by: | |
2193 | - extracting them from the rest of the table data | |
2194 | - converting to host endianness | |
2195 | - appending the implicit 0xb0 ("Finish") code | |
2196 | ||
2197 | The extracted and normalized instructions are stored for later | |
2198 | retrieval by the arm_find_exidx_entry routine. */ | |
2199 | ||
2200 | static void | |
2201 | arm_exidx_new_objfile (struct objfile *objfile) | |
2202 | { | |
3bb47e8b | 2203 | struct cleanup *cleanups; |
0e9e9abd UW |
2204 | struct arm_exidx_data *data; |
2205 | asection *exidx, *extab; | |
2206 | bfd_vma exidx_vma = 0, extab_vma = 0; | |
2207 | bfd_size_type exidx_size = 0, extab_size = 0; | |
2208 | gdb_byte *exidx_data = NULL, *extab_data = NULL; | |
2209 | LONGEST i; | |
2210 | ||
2211 | /* If we've already touched this file, do nothing. */ | |
2212 | if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL) | |
2213 | return; | |
3bb47e8b | 2214 | cleanups = make_cleanup (null_cleanup, NULL); |
0e9e9abd UW |
2215 | |
2216 | /* Read contents of exception table and index. */ | |
2217 | exidx = bfd_get_section_by_name (objfile->obfd, ".ARM.exidx"); | |
2218 | if (exidx) | |
2219 | { | |
2220 | exidx_vma = bfd_section_vma (objfile->obfd, exidx); | |
2221 | exidx_size = bfd_get_section_size (exidx); | |
2222 | exidx_data = xmalloc (exidx_size); | |
2223 | make_cleanup (xfree, exidx_data); | |
2224 | ||
2225 | if (!bfd_get_section_contents (objfile->obfd, exidx, | |
2226 | exidx_data, 0, exidx_size)) | |
2227 | { | |
2228 | do_cleanups (cleanups); | |
2229 | return; | |
2230 | } | |
2231 | } | |
2232 | ||
2233 | extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab"); | |
2234 | if (extab) | |
2235 | { | |
2236 | extab_vma = bfd_section_vma (objfile->obfd, extab); | |
2237 | extab_size = bfd_get_section_size (extab); | |
2238 | extab_data = xmalloc (extab_size); | |
2239 | make_cleanup (xfree, extab_data); | |
2240 | ||
2241 | if (!bfd_get_section_contents (objfile->obfd, extab, | |
2242 | extab_data, 0, extab_size)) | |
2243 | { | |
2244 | do_cleanups (cleanups); | |
2245 | return; | |
2246 | } | |
2247 | } | |
2248 | ||
2249 | /* Allocate exception table data structure. */ | |
2250 | data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data); | |
2251 | set_objfile_data (objfile, arm_exidx_data_key, data); | |
2252 | data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack, | |
2253 | objfile->obfd->section_count, | |
2254 | VEC(arm_exidx_entry_s) *); | |
2255 | ||
2256 | /* Fill in exception table. */ | |
2257 | for (i = 0; i < exidx_size / 8; i++) | |
2258 | { | |
2259 | struct arm_exidx_entry new_exidx_entry; | |
2260 | bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8); | |
2261 | bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4); | |
2262 | bfd_vma addr = 0, word = 0; | |
2263 | int n_bytes = 0, n_words = 0; | |
2264 | struct obj_section *sec; | |
2265 | gdb_byte *entry = NULL; | |
2266 | ||
2267 | /* Extract address of start of function. */ | |
2268 | idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000; | |
2269 | idx += exidx_vma + i * 8; | |
2270 | ||
2271 | /* Find section containing function and compute section offset. */ | |
2272 | sec = arm_obj_section_from_vma (objfile, idx); | |
2273 | if (sec == NULL) | |
2274 | continue; | |
2275 | idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section); | |
2276 | ||
2277 | /* Determine address of exception table entry. */ | |
2278 | if (val == 1) | |
2279 | { | |
2280 | /* EXIDX_CANTUNWIND -- no exception table entry present. */ | |
2281 | } | |
2282 | else if ((val & 0xff000000) == 0x80000000) | |
2283 | { | |
2284 | /* Exception table entry embedded in .ARM.exidx | |
2285 | -- must be short form. */ | |
2286 | word = val; | |
2287 | n_bytes = 3; | |
2288 | } | |
2289 | else if (!(val & 0x80000000)) | |
2290 | { | |
2291 | /* Exception table entry in .ARM.extab. */ | |
2292 | addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000; | |
2293 | addr += exidx_vma + i * 8 + 4; | |
2294 | ||
2295 | if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size) | |
2296 | { | |
2297 | word = bfd_h_get_32 (objfile->obfd, | |
2298 | extab_data + addr - extab_vma); | |
2299 | addr += 4; | |
2300 | ||
2301 | if ((word & 0xff000000) == 0x80000000) | |
2302 | { | |
2303 | /* Short form. */ | |
2304 | n_bytes = 3; | |
2305 | } | |
2306 | else if ((word & 0xff000000) == 0x81000000 | |
2307 | || (word & 0xff000000) == 0x82000000) | |
2308 | { | |
2309 | /* Long form. */ | |
2310 | n_bytes = 2; | |
2311 | n_words = ((word >> 16) & 0xff); | |
2312 | } | |
2313 | else if (!(word & 0x80000000)) | |
2314 | { | |
2315 | bfd_vma pers; | |
2316 | struct obj_section *pers_sec; | |
2317 | int gnu_personality = 0; | |
2318 | ||
2319 | /* Custom personality routine. */ | |
2320 | pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000; | |
2321 | pers = UNMAKE_THUMB_ADDR (pers + addr - 4); | |
2322 | ||
2323 | /* Check whether we've got one of the variants of the | |
2324 | GNU personality routines. */ | |
2325 | pers_sec = arm_obj_section_from_vma (objfile, pers); | |
2326 | if (pers_sec) | |
2327 | { | |
2328 | static const char *personality[] = | |
2329 | { | |
2330 | "__gcc_personality_v0", | |
2331 | "__gxx_personality_v0", | |
2332 | "__gcj_personality_v0", | |
2333 | "__gnu_objc_personality_v0", | |
2334 | NULL | |
2335 | }; | |
2336 | ||
2337 | CORE_ADDR pc = pers + obj_section_offset (pers_sec); | |
2338 | int k; | |
2339 | ||
2340 | for (k = 0; personality[k]; k++) | |
2341 | if (lookup_minimal_symbol_by_pc_name | |
2342 | (pc, personality[k], objfile)) | |
2343 | { | |
2344 | gnu_personality = 1; | |
2345 | break; | |
2346 | } | |
2347 | } | |
2348 | ||
2349 | /* If so, the next word contains a word count in the high | |
2350 | byte, followed by the same unwind instructions as the | |
2351 | pre-defined forms. */ | |
2352 | if (gnu_personality | |
2353 | && addr + 4 <= extab_vma + extab_size) | |
2354 | { | |
2355 | word = bfd_h_get_32 (objfile->obfd, | |
2356 | extab_data + addr - extab_vma); | |
2357 | addr += 4; | |
2358 | n_bytes = 3; | |
2359 | n_words = ((word >> 24) & 0xff); | |
2360 | } | |
2361 | } | |
2362 | } | |
2363 | } | |
2364 | ||
2365 | /* Sanity check address. */ | |
2366 | if (n_words) | |
2367 | if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size) | |
2368 | n_words = n_bytes = 0; | |
2369 | ||
2370 | /* The unwind instructions reside in WORD (only the N_BYTES least | |
2371 | significant bytes are valid), followed by N_WORDS words in the | |
2372 | extab section starting at ADDR. */ | |
2373 | if (n_bytes || n_words) | |
2374 | { | |
2375 | gdb_byte *p = entry = obstack_alloc (&objfile->objfile_obstack, | |
2376 | n_bytes + n_words * 4 + 1); | |
2377 | ||
2378 | while (n_bytes--) | |
2379 | *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff); | |
2380 | ||
2381 | while (n_words--) | |
2382 | { | |
2383 | word = bfd_h_get_32 (objfile->obfd, | |
2384 | extab_data + addr - extab_vma); | |
2385 | addr += 4; | |
2386 | ||
2387 | *p++ = (gdb_byte) ((word >> 24) & 0xff); | |
2388 | *p++ = (gdb_byte) ((word >> 16) & 0xff); | |
2389 | *p++ = (gdb_byte) ((word >> 8) & 0xff); | |
2390 | *p++ = (gdb_byte) (word & 0xff); | |
2391 | } | |
2392 | ||
2393 | /* Implied "Finish" to terminate the list. */ | |
2394 | *p++ = 0xb0; | |
2395 | } | |
2396 | ||
2397 | /* Push entry onto vector. They are guaranteed to always | |
2398 | appear in order of increasing addresses. */ | |
2399 | new_exidx_entry.addr = idx; | |
2400 | new_exidx_entry.entry = entry; | |
2401 | VEC_safe_push (arm_exidx_entry_s, | |
2402 | data->section_maps[sec->the_bfd_section->index], | |
2403 | &new_exidx_entry); | |
2404 | } | |
2405 | ||
2406 | do_cleanups (cleanups); | |
2407 | } | |
2408 | ||
2409 | /* Search for the exception table entry covering MEMADDR. If one is found, | |
2410 | return a pointer to its data. Otherwise, return 0. If START is non-NULL, | |
2411 | set *START to the start of the region covered by this entry. */ | |
2412 | ||
2413 | static gdb_byte * | |
2414 | arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start) | |
2415 | { | |
2416 | struct obj_section *sec; | |
2417 | ||
2418 | sec = find_pc_section (memaddr); | |
2419 | if (sec != NULL) | |
2420 | { | |
2421 | struct arm_exidx_data *data; | |
2422 | VEC(arm_exidx_entry_s) *map; | |
2423 | struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 }; | |
2424 | unsigned int idx; | |
2425 | ||
2426 | data = objfile_data (sec->objfile, arm_exidx_data_key); | |
2427 | if (data != NULL) | |
2428 | { | |
2429 | map = data->section_maps[sec->the_bfd_section->index]; | |
2430 | if (!VEC_empty (arm_exidx_entry_s, map)) | |
2431 | { | |
2432 | struct arm_exidx_entry *map_sym; | |
2433 | ||
2434 | idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key, | |
2435 | arm_compare_exidx_entries); | |
2436 | ||
2437 | /* VEC_lower_bound finds the earliest ordered insertion | |
2438 | point. If the following symbol starts at this exact | |
2439 | address, we use that; otherwise, the preceding | |
2440 | exception table entry covers this address. */ | |
2441 | if (idx < VEC_length (arm_exidx_entry_s, map)) | |
2442 | { | |
2443 | map_sym = VEC_index (arm_exidx_entry_s, map, idx); | |
2444 | if (map_sym->addr == map_key.addr) | |
2445 | { | |
2446 | if (start) | |
2447 | *start = map_sym->addr + obj_section_addr (sec); | |
2448 | return map_sym->entry; | |
2449 | } | |
2450 | } | |
2451 | ||
2452 | if (idx > 0) | |
2453 | { | |
2454 | map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1); | |
2455 | if (start) | |
2456 | *start = map_sym->addr + obj_section_addr (sec); | |
2457 | return map_sym->entry; | |
2458 | } | |
2459 | } | |
2460 | } | |
2461 | } | |
2462 | ||
2463 | return NULL; | |
2464 | } | |
2465 | ||
2466 | /* Given the current frame THIS_FRAME, and its associated frame unwinding | |
2467 | instruction list from the ARM exception table entry ENTRY, allocate and | |
2468 | return a prologue cache structure describing how to unwind this frame. | |
2469 | ||
2470 | Return NULL if the unwinding instruction list contains a "spare", | |
2471 | "reserved" or "refuse to unwind" instruction as defined in section | |
2472 | "9.3 Frame unwinding instructions" of the "Exception Handling ABI | |
2473 | for the ARM Architecture" document. */ | |
2474 | ||
2475 | static struct arm_prologue_cache * | |
2476 | arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry) | |
2477 | { | |
2478 | CORE_ADDR vsp = 0; | |
2479 | int vsp_valid = 0; | |
2480 | ||
2481 | struct arm_prologue_cache *cache; | |
2482 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); | |
2483 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
2484 | ||
2485 | for (;;) | |
2486 | { | |
2487 | gdb_byte insn; | |
2488 | ||
2489 | /* Whenever we reload SP, we actually have to retrieve its | |
2490 | actual value in the current frame. */ | |
2491 | if (!vsp_valid) | |
2492 | { | |
2493 | if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM)) | |
2494 | { | |
2495 | int reg = cache->saved_regs[ARM_SP_REGNUM].realreg; | |
2496 | vsp = get_frame_register_unsigned (this_frame, reg); | |
2497 | } | |
2498 | else | |
2499 | { | |
2500 | CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr; | |
2501 | vsp = get_frame_memory_unsigned (this_frame, addr, 4); | |
2502 | } | |
2503 | ||
2504 | vsp_valid = 1; | |
2505 | } | |
2506 | ||
2507 | /* Decode next unwind instruction. */ | |
2508 | insn = *entry++; | |
2509 | ||
2510 | if ((insn & 0xc0) == 0) | |
2511 | { | |
2512 | int offset = insn & 0x3f; | |
2513 | vsp += (offset << 2) + 4; | |
2514 | } | |
2515 | else if ((insn & 0xc0) == 0x40) | |
2516 | { | |
2517 | int offset = insn & 0x3f; | |
2518 | vsp -= (offset << 2) + 4; | |
2519 | } | |
2520 | else if ((insn & 0xf0) == 0x80) | |
2521 | { | |
2522 | int mask = ((insn & 0xf) << 8) | *entry++; | |
2523 | int i; | |
2524 | ||
2525 | /* The special case of an all-zero mask identifies | |
2526 | "Refuse to unwind". We return NULL to fall back | |
2527 | to the prologue analyzer. */ | |
2528 | if (mask == 0) | |
2529 | return NULL; | |
2530 | ||
2531 | /* Pop registers r4..r15 under mask. */ | |
2532 | for (i = 0; i < 12; i++) | |
2533 | if (mask & (1 << i)) | |
2534 | { | |
2535 | cache->saved_regs[4 + i].addr = vsp; | |
2536 | vsp += 4; | |
2537 | } | |
2538 | ||
2539 | /* Special-case popping SP -- we need to reload vsp. */ | |
2540 | if (mask & (1 << (ARM_SP_REGNUM - 4))) | |
2541 | vsp_valid = 0; | |
2542 | } | |
2543 | else if ((insn & 0xf0) == 0x90) | |
2544 | { | |
2545 | int reg = insn & 0xf; | |
2546 | ||
2547 | /* Reserved cases. */ | |
2548 | if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM) | |
2549 | return NULL; | |
2550 | ||
2551 | /* Set SP from another register and mark VSP for reload. */ | |
2552 | cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg]; | |
2553 | vsp_valid = 0; | |
2554 | } | |
2555 | else if ((insn & 0xf0) == 0xa0) | |
2556 | { | |
2557 | int count = insn & 0x7; | |
2558 | int pop_lr = (insn & 0x8) != 0; | |
2559 | int i; | |
2560 | ||
2561 | /* Pop r4..r[4+count]. */ | |
2562 | for (i = 0; i <= count; i++) | |
2563 | { | |
2564 | cache->saved_regs[4 + i].addr = vsp; | |
2565 | vsp += 4; | |
2566 | } | |
2567 | ||
2568 | /* If indicated by flag, pop LR as well. */ | |
2569 | if (pop_lr) | |
2570 | { | |
2571 | cache->saved_regs[ARM_LR_REGNUM].addr = vsp; | |
2572 | vsp += 4; | |
2573 | } | |
2574 | } | |
2575 | else if (insn == 0xb0) | |
2576 | { | |
2577 | /* We could only have updated PC by popping into it; if so, it | |
2578 | will show up as address. Otherwise, copy LR into PC. */ | |
2579 | if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM)) | |
2580 | cache->saved_regs[ARM_PC_REGNUM] | |
2581 | = cache->saved_regs[ARM_LR_REGNUM]; | |
2582 | ||
2583 | /* We're done. */ | |
2584 | break; | |
2585 | } | |
2586 | else if (insn == 0xb1) | |
2587 | { | |
2588 | int mask = *entry++; | |
2589 | int i; | |
2590 | ||
2591 | /* All-zero mask and mask >= 16 is "spare". */ | |
2592 | if (mask == 0 || mask >= 16) | |
2593 | return NULL; | |
2594 | ||
2595 | /* Pop r0..r3 under mask. */ | |
2596 | for (i = 0; i < 4; i++) | |
2597 | if (mask & (1 << i)) | |
2598 | { | |
2599 | cache->saved_regs[i].addr = vsp; | |
2600 | vsp += 4; | |
2601 | } | |
2602 | } | |
2603 | else if (insn == 0xb2) | |
2604 | { | |
2605 | ULONGEST offset = 0; | |
2606 | unsigned shift = 0; | |
2607 | ||
2608 | do | |
2609 | { | |
2610 | offset |= (*entry & 0x7f) << shift; | |
2611 | shift += 7; | |
2612 | } | |
2613 | while (*entry++ & 0x80); | |
2614 | ||
2615 | vsp += 0x204 + (offset << 2); | |
2616 | } | |
2617 | else if (insn == 0xb3) | |
2618 | { | |
2619 | int start = *entry >> 4; | |
2620 | int count = (*entry++) & 0xf; | |
2621 | int i; | |
2622 | ||
2623 | /* Only registers D0..D15 are valid here. */ | |
2624 | if (start + count >= 16) | |
2625 | return NULL; | |
2626 | ||
2627 | /* Pop VFP double-precision registers D[start]..D[start+count]. */ | |
2628 | for (i = 0; i <= count; i++) | |
2629 | { | |
2630 | cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp; | |
2631 | vsp += 8; | |
2632 | } | |
2633 | ||
2634 | /* Add an extra 4 bytes for FSTMFDX-style stack. */ | |
2635 | vsp += 4; | |
2636 | } | |
2637 | else if ((insn & 0xf8) == 0xb8) | |
2638 | { | |
2639 | int count = insn & 0x7; | |
2640 | int i; | |
2641 | ||
2642 | /* Pop VFP double-precision registers D[8]..D[8+count]. */ | |
2643 | for (i = 0; i <= count; i++) | |
2644 | { | |
2645 | cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp; | |
2646 | vsp += 8; | |
2647 | } | |
2648 | ||
2649 | /* Add an extra 4 bytes for FSTMFDX-style stack. */ | |
2650 | vsp += 4; | |
2651 | } | |
2652 | else if (insn == 0xc6) | |
2653 | { | |
2654 | int start = *entry >> 4; | |
2655 | int count = (*entry++) & 0xf; | |
2656 | int i; | |
2657 | ||
2658 | /* Only registers WR0..WR15 are valid. */ | |
2659 | if (start + count >= 16) | |
2660 | return NULL; | |
2661 | ||
2662 | /* Pop iwmmx registers WR[start]..WR[start+count]. */ | |
2663 | for (i = 0; i <= count; i++) | |
2664 | { | |
2665 | cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp; | |
2666 | vsp += 8; | |
2667 | } | |
2668 | } | |
2669 | else if (insn == 0xc7) | |
2670 | { | |
2671 | int mask = *entry++; | |
2672 | int i; | |
2673 | ||
2674 | /* All-zero mask and mask >= 16 is "spare". */ | |
2675 | if (mask == 0 || mask >= 16) | |
2676 | return NULL; | |
2677 | ||
2678 | /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */ | |
2679 | for (i = 0; i < 4; i++) | |
2680 | if (mask & (1 << i)) | |
2681 | { | |
2682 | cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp; | |
2683 | vsp += 4; | |
2684 | } | |
2685 | } | |
2686 | else if ((insn & 0xf8) == 0xc0) | |
2687 | { | |
2688 | int count = insn & 0x7; | |
2689 | int i; | |
2690 | ||
2691 | /* Pop iwmmx registers WR[10]..WR[10+count]. */ | |
2692 | for (i = 0; i <= count; i++) | |
2693 | { | |
2694 | cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp; | |
2695 | vsp += 8; | |
2696 | } | |
2697 | } | |
2698 | else if (insn == 0xc8) | |
2699 | { | |
2700 | int start = *entry >> 4; | |
2701 | int count = (*entry++) & 0xf; | |
2702 | int i; | |
2703 | ||
2704 | /* Only registers D0..D31 are valid. */ | |
2705 | if (start + count >= 16) | |
2706 | return NULL; | |
2707 | ||
2708 | /* Pop VFP double-precision registers | |
2709 | D[16+start]..D[16+start+count]. */ | |
2710 | for (i = 0; i <= count; i++) | |
2711 | { | |
2712 | cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp; | |
2713 | vsp += 8; | |
2714 | } | |
2715 | } | |
2716 | else if (insn == 0xc9) | |
2717 | { | |
2718 | int start = *entry >> 4; | |
2719 | int count = (*entry++) & 0xf; | |
2720 | int i; | |
2721 | ||
2722 | /* Pop VFP double-precision registers D[start]..D[start+count]. */ | |
2723 | for (i = 0; i <= count; i++) | |
2724 | { | |
2725 | cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp; | |
2726 | vsp += 8; | |
2727 | } | |
2728 | } | |
2729 | else if ((insn & 0xf8) == 0xd0) | |
2730 | { | |
2731 | int count = insn & 0x7; | |
2732 | int i; | |
2733 | ||
2734 | /* Pop VFP double-precision registers D[8]..D[8+count]. */ | |
2735 | for (i = 0; i <= count; i++) | |
2736 | { | |
2737 | cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp; | |
2738 | vsp += 8; | |
2739 | } | |
2740 | } | |
2741 | else | |
2742 | { | |
2743 | /* Everything else is "spare". */ | |
2744 | return NULL; | |
2745 | } | |
2746 | } | |
2747 | ||
2748 | /* If we restore SP from a register, assume this was the frame register. | |
2749 | Otherwise just fall back to SP as frame register. */ | |
2750 | if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM)) | |
2751 | cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg; | |
2752 | else | |
2753 | cache->framereg = ARM_SP_REGNUM; | |
2754 | ||
2755 | /* Determine offset to previous frame. */ | |
2756 | cache->framesize | |
2757 | = vsp - get_frame_register_unsigned (this_frame, cache->framereg); | |
2758 | ||
2759 | /* We already got the previous SP. */ | |
2760 | cache->prev_sp = vsp; | |
2761 | ||
2762 | return cache; | |
2763 | } | |
2764 | ||
2765 | /* Unwinding via ARM exception table entries. Note that the sniffer | |
2766 | already computes a filled-in prologue cache, which is then used | |
2767 | with the same arm_prologue_this_id and arm_prologue_prev_register | |
2768 | routines also used for prologue-parsing based unwinding. */ | |
2769 | ||
2770 | static int | |
2771 | arm_exidx_unwind_sniffer (const struct frame_unwind *self, | |
2772 | struct frame_info *this_frame, | |
2773 | void **this_prologue_cache) | |
2774 | { | |
2775 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
2776 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
2777 | CORE_ADDR addr_in_block, exidx_region, func_start; | |
2778 | struct arm_prologue_cache *cache; | |
2779 | gdb_byte *entry; | |
2780 | ||
2781 | /* See if we have an ARM exception table entry covering this address. */ | |
2782 | addr_in_block = get_frame_address_in_block (this_frame); | |
2783 | entry = arm_find_exidx_entry (addr_in_block, &exidx_region); | |
2784 | if (!entry) | |
2785 | return 0; | |
2786 | ||
2787 | /* The ARM exception table does not describe unwind information | |
2788 | for arbitrary PC values, but is guaranteed to be correct only | |
2789 | at call sites. We have to decide here whether we want to use | |
2790 | ARM exception table information for this frame, or fall back | |
2791 | to using prologue parsing. (Note that if we have DWARF CFI, | |
2792 | this sniffer isn't even called -- CFI is always preferred.) | |
2793 | ||
2794 | Before we make this decision, however, we check whether we | |
2795 | actually have *symbol* information for the current frame. | |
2796 | If not, prologue parsing would not work anyway, so we might | |
2797 | as well use the exception table and hope for the best. */ | |
2798 | if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL)) | |
2799 | { | |
2800 | int exc_valid = 0; | |
2801 | ||
2802 | /* If the next frame is "normal", we are at a call site in this | |
2803 | frame, so exception information is guaranteed to be valid. */ | |
2804 | if (get_next_frame (this_frame) | |
2805 | && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME) | |
2806 | exc_valid = 1; | |
2807 | ||
2808 | /* We also assume exception information is valid if we're currently | |
2809 | blocked in a system call. The system library is supposed to | |
2810 | ensure this, so that e.g. pthread cancellation works. */ | |
2811 | if (arm_frame_is_thumb (this_frame)) | |
2812 | { | |
2813 | LONGEST insn; | |
2814 | ||
2815 | if (safe_read_memory_integer (get_frame_pc (this_frame) - 2, 2, | |
2816 | byte_order_for_code, &insn) | |
2817 | && (insn & 0xff00) == 0xdf00 /* svc */) | |
2818 | exc_valid = 1; | |
2819 | } | |
2820 | else | |
2821 | { | |
2822 | LONGEST insn; | |
2823 | ||
2824 | if (safe_read_memory_integer (get_frame_pc (this_frame) - 4, 4, | |
2825 | byte_order_for_code, &insn) | |
2826 | && (insn & 0x0f000000) == 0x0f000000 /* svc */) | |
2827 | exc_valid = 1; | |
2828 | } | |
2829 | ||
2830 | /* Bail out if we don't know that exception information is valid. */ | |
2831 | if (!exc_valid) | |
2832 | return 0; | |
2833 | ||
2834 | /* The ARM exception index does not mark the *end* of the region | |
2835 | covered by the entry, and some functions will not have any entry. | |
2836 | To correctly recognize the end of the covered region, the linker | |
2837 | should have inserted dummy records with a CANTUNWIND marker. | |
2838 | ||
2839 | Unfortunately, current versions of GNU ld do not reliably do | |
2840 | this, and thus we may have found an incorrect entry above. | |
2841 | As a (temporary) sanity check, we only use the entry if it | |
2842 | lies *within* the bounds of the function. Note that this check | |
2843 | might reject perfectly valid entries that just happen to cover | |
2844 | multiple functions; therefore this check ought to be removed | |
2845 | once the linker is fixed. */ | |
2846 | if (func_start > exidx_region) | |
2847 | return 0; | |
2848 | } | |
2849 | ||
2850 | /* Decode the list of unwinding instructions into a prologue cache. | |
2851 | Note that this may fail due to e.g. a "refuse to unwind" code. */ | |
2852 | cache = arm_exidx_fill_cache (this_frame, entry); | |
2853 | if (!cache) | |
2854 | return 0; | |
2855 | ||
2856 | *this_prologue_cache = cache; | |
2857 | return 1; | |
2858 | } | |
2859 | ||
2860 | struct frame_unwind arm_exidx_unwind = { | |
2861 | NORMAL_FRAME, | |
8fbca658 | 2862 | default_frame_unwind_stop_reason, |
0e9e9abd UW |
2863 | arm_prologue_this_id, |
2864 | arm_prologue_prev_register, | |
2865 | NULL, | |
2866 | arm_exidx_unwind_sniffer | |
2867 | }; | |
2868 | ||
909cf6ea | 2869 | static struct arm_prologue_cache * |
a262aec2 | 2870 | arm_make_stub_cache (struct frame_info *this_frame) |
909cf6ea | 2871 | { |
909cf6ea | 2872 | struct arm_prologue_cache *cache; |
909cf6ea | 2873 | |
35d5d4ee | 2874 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
a262aec2 | 2875 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
909cf6ea | 2876 | |
a262aec2 | 2877 | cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); |
909cf6ea DJ |
2878 | |
2879 | return cache; | |
2880 | } | |
2881 | ||
2882 | /* Our frame ID for a stub frame is the current SP and LR. */ | |
2883 | ||
2884 | static void | |
a262aec2 | 2885 | arm_stub_this_id (struct frame_info *this_frame, |
909cf6ea DJ |
2886 | void **this_cache, |
2887 | struct frame_id *this_id) | |
2888 | { | |
2889 | struct arm_prologue_cache *cache; | |
2890 | ||
2891 | if (*this_cache == NULL) | |
a262aec2 | 2892 | *this_cache = arm_make_stub_cache (this_frame); |
909cf6ea DJ |
2893 | cache = *this_cache; |
2894 | ||
a262aec2 | 2895 | *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame)); |
909cf6ea DJ |
2896 | } |
2897 | ||
a262aec2 DJ |
2898 | static int |
2899 | arm_stub_unwind_sniffer (const struct frame_unwind *self, | |
2900 | struct frame_info *this_frame, | |
2901 | void **this_prologue_cache) | |
909cf6ea | 2902 | { |
93d42b30 | 2903 | CORE_ADDR addr_in_block; |
909cf6ea DJ |
2904 | char dummy[4]; |
2905 | ||
a262aec2 | 2906 | addr_in_block = get_frame_address_in_block (this_frame); |
93d42b30 | 2907 | if (in_plt_section (addr_in_block, NULL) |
fc36e839 DE |
2908 | /* We also use the stub winder if the target memory is unreadable |
2909 | to avoid having the prologue unwinder trying to read it. */ | |
a262aec2 DJ |
2910 | || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0) |
2911 | return 1; | |
909cf6ea | 2912 | |
a262aec2 | 2913 | return 0; |
909cf6ea DJ |
2914 | } |
2915 | ||
a262aec2 DJ |
2916 | struct frame_unwind arm_stub_unwind = { |
2917 | NORMAL_FRAME, | |
8fbca658 | 2918 | default_frame_unwind_stop_reason, |
a262aec2 DJ |
2919 | arm_stub_this_id, |
2920 | arm_prologue_prev_register, | |
2921 | NULL, | |
2922 | arm_stub_unwind_sniffer | |
2923 | }; | |
2924 | ||
24de872b | 2925 | static CORE_ADDR |
a262aec2 | 2926 | arm_normal_frame_base (struct frame_info *this_frame, void **this_cache) |
24de872b DJ |
2927 | { |
2928 | struct arm_prologue_cache *cache; | |
2929 | ||
eb5492fa | 2930 | if (*this_cache == NULL) |
a262aec2 | 2931 | *this_cache = arm_make_prologue_cache (this_frame); |
eb5492fa DJ |
2932 | cache = *this_cache; |
2933 | ||
4be43953 | 2934 | return cache->prev_sp - cache->framesize; |
24de872b DJ |
2935 | } |
2936 | ||
eb5492fa DJ |
2937 | struct frame_base arm_normal_base = { |
2938 | &arm_prologue_unwind, | |
2939 | arm_normal_frame_base, | |
2940 | arm_normal_frame_base, | |
2941 | arm_normal_frame_base | |
2942 | }; | |
2943 | ||
a262aec2 | 2944 | /* Assuming THIS_FRAME is a dummy, return the frame ID of that |
eb5492fa DJ |
2945 | dummy frame. The frame ID's base needs to match the TOS value |
2946 | saved by save_dummy_frame_tos() and returned from | |
2947 | arm_push_dummy_call, and the PC needs to match the dummy frame's | |
2948 | breakpoint. */ | |
c906108c | 2949 | |
eb5492fa | 2950 | static struct frame_id |
a262aec2 | 2951 | arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
c906108c | 2952 | { |
0963b4bd MS |
2953 | return frame_id_build (get_frame_register_unsigned (this_frame, |
2954 | ARM_SP_REGNUM), | |
a262aec2 | 2955 | get_frame_pc (this_frame)); |
eb5492fa | 2956 | } |
c3b4394c | 2957 | |
eb5492fa DJ |
2958 | /* Given THIS_FRAME, find the previous frame's resume PC (which will |
2959 | be used to construct the previous frame's ID, after looking up the | |
2960 | containing function). */ | |
c3b4394c | 2961 | |
eb5492fa DJ |
2962 | static CORE_ADDR |
2963 | arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
2964 | { | |
2965 | CORE_ADDR pc; | |
2966 | pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM); | |
24568a2c | 2967 | return arm_addr_bits_remove (gdbarch, pc); |
eb5492fa DJ |
2968 | } |
2969 | ||
2970 | static CORE_ADDR | |
2971 | arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
2972 | { | |
2973 | return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM); | |
c906108c SS |
2974 | } |
2975 | ||
b39cc962 DJ |
2976 | static struct value * |
2977 | arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache, | |
2978 | int regnum) | |
2979 | { | |
24568a2c | 2980 | struct gdbarch * gdbarch = get_frame_arch (this_frame); |
b39cc962 | 2981 | CORE_ADDR lr, cpsr; |
9779414d | 2982 | ULONGEST t_bit = arm_psr_thumb_bit (gdbarch); |
b39cc962 DJ |
2983 | |
2984 | switch (regnum) | |
2985 | { | |
2986 | case ARM_PC_REGNUM: | |
2987 | /* The PC is normally copied from the return column, which | |
2988 | describes saves of LR. However, that version may have an | |
2989 | extra bit set to indicate Thumb state. The bit is not | |
2990 | part of the PC. */ | |
2991 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
2992 | return frame_unwind_got_constant (this_frame, regnum, | |
24568a2c | 2993 | arm_addr_bits_remove (gdbarch, lr)); |
b39cc962 DJ |
2994 | |
2995 | case ARM_PS_REGNUM: | |
2996 | /* Reconstruct the T bit; see arm_prologue_prev_register for details. */ | |
ca38c58e | 2997 | cpsr = get_frame_register_unsigned (this_frame, regnum); |
b39cc962 DJ |
2998 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); |
2999 | if (IS_THUMB_ADDR (lr)) | |
9779414d | 3000 | cpsr |= t_bit; |
b39cc962 | 3001 | else |
9779414d | 3002 | cpsr &= ~t_bit; |
ca38c58e | 3003 | return frame_unwind_got_constant (this_frame, regnum, cpsr); |
b39cc962 DJ |
3004 | |
3005 | default: | |
3006 | internal_error (__FILE__, __LINE__, | |
3007 | _("Unexpected register %d"), regnum); | |
3008 | } | |
3009 | } | |
3010 | ||
3011 | static void | |
3012 | arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
3013 | struct dwarf2_frame_state_reg *reg, | |
3014 | struct frame_info *this_frame) | |
3015 | { | |
3016 | switch (regnum) | |
3017 | { | |
3018 | case ARM_PC_REGNUM: | |
3019 | case ARM_PS_REGNUM: | |
3020 | reg->how = DWARF2_FRAME_REG_FN; | |
3021 | reg->loc.fn = arm_dwarf2_prev_register; | |
3022 | break; | |
3023 | case ARM_SP_REGNUM: | |
3024 | reg->how = DWARF2_FRAME_REG_CFA; | |
3025 | break; | |
3026 | } | |
3027 | } | |
3028 | ||
4024ca99 UW |
3029 | /* Return true if we are in the function's epilogue, i.e. after the |
3030 | instruction that destroyed the function's stack frame. */ | |
3031 | ||
3032 | static int | |
3033 | thumb_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
3034 | { | |
3035 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
3036 | unsigned int insn, insn2; | |
3037 | int found_return = 0, found_stack_adjust = 0; | |
3038 | CORE_ADDR func_start, func_end; | |
3039 | CORE_ADDR scan_pc; | |
3040 | gdb_byte buf[4]; | |
3041 | ||
3042 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | |
3043 | return 0; | |
3044 | ||
3045 | /* The epilogue is a sequence of instructions along the following lines: | |
3046 | ||
3047 | - add stack frame size to SP or FP | |
3048 | - [if frame pointer used] restore SP from FP | |
3049 | - restore registers from SP [may include PC] | |
3050 | - a return-type instruction [if PC wasn't already restored] | |
3051 | ||
3052 | In a first pass, we scan forward from the current PC and verify the | |
3053 | instructions we find as compatible with this sequence, ending in a | |
3054 | return instruction. | |
3055 | ||
3056 | However, this is not sufficient to distinguish indirect function calls | |
3057 | within a function from indirect tail calls in the epilogue in some cases. | |
3058 | Therefore, if we didn't already find any SP-changing instruction during | |
3059 | forward scan, we add a backward scanning heuristic to ensure we actually | |
3060 | are in the epilogue. */ | |
3061 | ||
3062 | scan_pc = pc; | |
3063 | while (scan_pc < func_end && !found_return) | |
3064 | { | |
3065 | if (target_read_memory (scan_pc, buf, 2)) | |
3066 | break; | |
3067 | ||
3068 | scan_pc += 2; | |
3069 | insn = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
3070 | ||
3071 | if ((insn & 0xff80) == 0x4700) /* bx <Rm> */ | |
3072 | found_return = 1; | |
3073 | else if (insn == 0x46f7) /* mov pc, lr */ | |
3074 | found_return = 1; | |
3075 | else if (insn == 0x46bd) /* mov sp, r7 */ | |
3076 | found_stack_adjust = 1; | |
3077 | else if ((insn & 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */ | |
3078 | found_stack_adjust = 1; | |
3079 | else if ((insn & 0xfe00) == 0xbc00) /* pop <registers> */ | |
3080 | { | |
3081 | found_stack_adjust = 1; | |
3082 | if (insn & 0x0100) /* <registers> include PC. */ | |
3083 | found_return = 1; | |
3084 | } | |
db24da6d | 3085 | else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */ |
4024ca99 UW |
3086 | { |
3087 | if (target_read_memory (scan_pc, buf, 2)) | |
3088 | break; | |
3089 | ||
3090 | scan_pc += 2; | |
3091 | insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
3092 | ||
3093 | if (insn == 0xe8bd) /* ldm.w sp!, <registers> */ | |
3094 | { | |
3095 | found_stack_adjust = 1; | |
3096 | if (insn2 & 0x8000) /* <registers> include PC. */ | |
3097 | found_return = 1; | |
3098 | } | |
3099 | else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */ | |
3100 | && (insn2 & 0x0fff) == 0x0b04) | |
3101 | { | |
3102 | found_stack_adjust = 1; | |
3103 | if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */ | |
3104 | found_return = 1; | |
3105 | } | |
3106 | else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */ | |
3107 | && (insn2 & 0x0e00) == 0x0a00) | |
3108 | found_stack_adjust = 1; | |
3109 | else | |
3110 | break; | |
3111 | } | |
3112 | else | |
3113 | break; | |
3114 | } | |
3115 | ||
3116 | if (!found_return) | |
3117 | return 0; | |
3118 | ||
3119 | /* Since any instruction in the epilogue sequence, with the possible | |
3120 | exception of return itself, updates the stack pointer, we need to | |
3121 | scan backwards for at most one instruction. Try either a 16-bit or | |
3122 | a 32-bit instruction. This is just a heuristic, so we do not worry | |
0963b4bd | 3123 | too much about false positives. */ |
4024ca99 UW |
3124 | |
3125 | if (!found_stack_adjust) | |
3126 | { | |
3127 | if (pc - 4 < func_start) | |
3128 | return 0; | |
3129 | if (target_read_memory (pc - 4, buf, 4)) | |
3130 | return 0; | |
3131 | ||
3132 | insn = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
3133 | insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code); | |
3134 | ||
3135 | if (insn2 == 0x46bd) /* mov sp, r7 */ | |
3136 | found_stack_adjust = 1; | |
3137 | else if ((insn2 & 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */ | |
3138 | found_stack_adjust = 1; | |
3139 | else if ((insn2 & 0xff00) == 0xbc00) /* pop <registers> without PC */ | |
3140 | found_stack_adjust = 1; | |
3141 | else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */ | |
3142 | found_stack_adjust = 1; | |
3143 | else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */ | |
3144 | && (insn2 & 0x0fff) == 0x0b04) | |
3145 | found_stack_adjust = 1; | |
3146 | else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */ | |
3147 | && (insn2 & 0x0e00) == 0x0a00) | |
3148 | found_stack_adjust = 1; | |
3149 | } | |
3150 | ||
3151 | return found_stack_adjust; | |
3152 | } | |
3153 | ||
3154 | /* Return true if we are in the function's epilogue, i.e. after the | |
3155 | instruction that destroyed the function's stack frame. */ | |
3156 | ||
3157 | static int | |
3158 | arm_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
3159 | { | |
3160 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
3161 | unsigned int insn; | |
3162 | int found_return, found_stack_adjust; | |
3163 | CORE_ADDR func_start, func_end; | |
3164 | ||
3165 | if (arm_pc_is_thumb (gdbarch, pc)) | |
3166 | return thumb_in_function_epilogue_p (gdbarch, pc); | |
3167 | ||
3168 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | |
3169 | return 0; | |
3170 | ||
3171 | /* We are in the epilogue if the previous instruction was a stack | |
3172 | adjustment and the next instruction is a possible return (bx, mov | |
3173 | pc, or pop). We could have to scan backwards to find the stack | |
3174 | adjustment, or forwards to find the return, but this is a decent | |
3175 | approximation. First scan forwards. */ | |
3176 | ||
3177 | found_return = 0; | |
3178 | insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code); | |
3179 | if (bits (insn, 28, 31) != INST_NV) | |
3180 | { | |
3181 | if ((insn & 0x0ffffff0) == 0x012fff10) | |
3182 | /* BX. */ | |
3183 | found_return = 1; | |
3184 | else if ((insn & 0x0ffffff0) == 0x01a0f000) | |
3185 | /* MOV PC. */ | |
3186 | found_return = 1; | |
3187 | else if ((insn & 0x0fff0000) == 0x08bd0000 | |
3188 | && (insn & 0x0000c000) != 0) | |
3189 | /* POP (LDMIA), including PC or LR. */ | |
3190 | found_return = 1; | |
3191 | } | |
3192 | ||
3193 | if (!found_return) | |
3194 | return 0; | |
3195 | ||
3196 | /* Scan backwards. This is just a heuristic, so do not worry about | |
3197 | false positives from mode changes. */ | |
3198 | ||
3199 | if (pc < func_start + 4) | |
3200 | return 0; | |
3201 | ||
73c964d6 | 3202 | found_stack_adjust = 0; |
4024ca99 UW |
3203 | insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code); |
3204 | if (bits (insn, 28, 31) != INST_NV) | |
3205 | { | |
3206 | if ((insn & 0x0df0f000) == 0x0080d000) | |
3207 | /* ADD SP (register or immediate). */ | |
3208 | found_stack_adjust = 1; | |
3209 | else if ((insn & 0x0df0f000) == 0x0040d000) | |
3210 | /* SUB SP (register or immediate). */ | |
3211 | found_stack_adjust = 1; | |
3212 | else if ((insn & 0x0ffffff0) == 0x01a0d000) | |
3213 | /* MOV SP. */ | |
77bc0675 | 3214 | found_stack_adjust = 1; |
4024ca99 UW |
3215 | else if ((insn & 0x0fff0000) == 0x08bd0000) |
3216 | /* POP (LDMIA). */ | |
3217 | found_stack_adjust = 1; | |
3218 | } | |
3219 | ||
3220 | if (found_stack_adjust) | |
3221 | return 1; | |
3222 | ||
3223 | return 0; | |
3224 | } | |
3225 | ||
3226 | ||
2dd604e7 RE |
3227 | /* When arguments must be pushed onto the stack, they go on in reverse |
3228 | order. The code below implements a FILO (stack) to do this. */ | |
3229 | ||
3230 | struct stack_item | |
3231 | { | |
3232 | int len; | |
3233 | struct stack_item *prev; | |
3234 | void *data; | |
3235 | }; | |
3236 | ||
3237 | static struct stack_item * | |
8c6363cf | 3238 | push_stack_item (struct stack_item *prev, const void *contents, int len) |
2dd604e7 RE |
3239 | { |
3240 | struct stack_item *si; | |
3241 | si = xmalloc (sizeof (struct stack_item)); | |
226c7fbc | 3242 | si->data = xmalloc (len); |
2dd604e7 RE |
3243 | si->len = len; |
3244 | si->prev = prev; | |
3245 | memcpy (si->data, contents, len); | |
3246 | return si; | |
3247 | } | |
3248 | ||
3249 | static struct stack_item * | |
3250 | pop_stack_item (struct stack_item *si) | |
3251 | { | |
3252 | struct stack_item *dead = si; | |
3253 | si = si->prev; | |
3254 | xfree (dead->data); | |
3255 | xfree (dead); | |
3256 | return si; | |
3257 | } | |
3258 | ||
2af48f68 PB |
3259 | |
3260 | /* Return the alignment (in bytes) of the given type. */ | |
3261 | ||
3262 | static int | |
3263 | arm_type_align (struct type *t) | |
3264 | { | |
3265 | int n; | |
3266 | int align; | |
3267 | int falign; | |
3268 | ||
3269 | t = check_typedef (t); | |
3270 | switch (TYPE_CODE (t)) | |
3271 | { | |
3272 | default: | |
3273 | /* Should never happen. */ | |
3274 | internal_error (__FILE__, __LINE__, _("unknown type alignment")); | |
3275 | return 4; | |
3276 | ||
3277 | case TYPE_CODE_PTR: | |
3278 | case TYPE_CODE_ENUM: | |
3279 | case TYPE_CODE_INT: | |
3280 | case TYPE_CODE_FLT: | |
3281 | case TYPE_CODE_SET: | |
3282 | case TYPE_CODE_RANGE: | |
3283 | case TYPE_CODE_BITSTRING: | |
3284 | case TYPE_CODE_REF: | |
3285 | case TYPE_CODE_CHAR: | |
3286 | case TYPE_CODE_BOOL: | |
3287 | return TYPE_LENGTH (t); | |
3288 | ||
3289 | case TYPE_CODE_ARRAY: | |
3290 | case TYPE_CODE_COMPLEX: | |
3291 | /* TODO: What about vector types? */ | |
3292 | return arm_type_align (TYPE_TARGET_TYPE (t)); | |
3293 | ||
3294 | case TYPE_CODE_STRUCT: | |
3295 | case TYPE_CODE_UNION: | |
3296 | align = 1; | |
3297 | for (n = 0; n < TYPE_NFIELDS (t); n++) | |
3298 | { | |
3299 | falign = arm_type_align (TYPE_FIELD_TYPE (t, n)); | |
3300 | if (falign > align) | |
3301 | align = falign; | |
3302 | } | |
3303 | return align; | |
3304 | } | |
3305 | } | |
3306 | ||
90445bd3 DJ |
3307 | /* Possible base types for a candidate for passing and returning in |
3308 | VFP registers. */ | |
3309 | ||
3310 | enum arm_vfp_cprc_base_type | |
3311 | { | |
3312 | VFP_CPRC_UNKNOWN, | |
3313 | VFP_CPRC_SINGLE, | |
3314 | VFP_CPRC_DOUBLE, | |
3315 | VFP_CPRC_VEC64, | |
3316 | VFP_CPRC_VEC128 | |
3317 | }; | |
3318 | ||
3319 | /* The length of one element of base type B. */ | |
3320 | ||
3321 | static unsigned | |
3322 | arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b) | |
3323 | { | |
3324 | switch (b) | |
3325 | { | |
3326 | case VFP_CPRC_SINGLE: | |
3327 | return 4; | |
3328 | case VFP_CPRC_DOUBLE: | |
3329 | return 8; | |
3330 | case VFP_CPRC_VEC64: | |
3331 | return 8; | |
3332 | case VFP_CPRC_VEC128: | |
3333 | return 16; | |
3334 | default: | |
3335 | internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."), | |
3336 | (int) b); | |
3337 | } | |
3338 | } | |
3339 | ||
3340 | /* The character ('s', 'd' or 'q') for the type of VFP register used | |
3341 | for passing base type B. */ | |
3342 | ||
3343 | static int | |
3344 | arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b) | |
3345 | { | |
3346 | switch (b) | |
3347 | { | |
3348 | case VFP_CPRC_SINGLE: | |
3349 | return 's'; | |
3350 | case VFP_CPRC_DOUBLE: | |
3351 | return 'd'; | |
3352 | case VFP_CPRC_VEC64: | |
3353 | return 'd'; | |
3354 | case VFP_CPRC_VEC128: | |
3355 | return 'q'; | |
3356 | default: | |
3357 | internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."), | |
3358 | (int) b); | |
3359 | } | |
3360 | } | |
3361 | ||
3362 | /* Determine whether T may be part of a candidate for passing and | |
3363 | returning in VFP registers, ignoring the limit on the total number | |
3364 | of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the | |
3365 | classification of the first valid component found; if it is not | |
3366 | VFP_CPRC_UNKNOWN, all components must have the same classification | |
3367 | as *BASE_TYPE. If it is found that T contains a type not permitted | |
3368 | for passing and returning in VFP registers, a type differently | |
3369 | classified from *BASE_TYPE, or two types differently classified | |
3370 | from each other, return -1, otherwise return the total number of | |
3371 | base-type elements found (possibly 0 in an empty structure or | |
3372 | array). Vectors and complex types are not currently supported, | |
3373 | matching the generic AAPCS support. */ | |
3374 | ||
3375 | static int | |
3376 | arm_vfp_cprc_sub_candidate (struct type *t, | |
3377 | enum arm_vfp_cprc_base_type *base_type) | |
3378 | { | |
3379 | t = check_typedef (t); | |
3380 | switch (TYPE_CODE (t)) | |
3381 | { | |
3382 | case TYPE_CODE_FLT: | |
3383 | switch (TYPE_LENGTH (t)) | |
3384 | { | |
3385 | case 4: | |
3386 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3387 | *base_type = VFP_CPRC_SINGLE; | |
3388 | else if (*base_type != VFP_CPRC_SINGLE) | |
3389 | return -1; | |
3390 | return 1; | |
3391 | ||
3392 | case 8: | |
3393 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3394 | *base_type = VFP_CPRC_DOUBLE; | |
3395 | else if (*base_type != VFP_CPRC_DOUBLE) | |
3396 | return -1; | |
3397 | return 1; | |
3398 | ||
3399 | default: | |
3400 | return -1; | |
3401 | } | |
3402 | break; | |
3403 | ||
3404 | case TYPE_CODE_ARRAY: | |
3405 | { | |
3406 | int count; | |
3407 | unsigned unitlen; | |
3408 | count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t), base_type); | |
3409 | if (count == -1) | |
3410 | return -1; | |
3411 | if (TYPE_LENGTH (t) == 0) | |
3412 | { | |
3413 | gdb_assert (count == 0); | |
3414 | return 0; | |
3415 | } | |
3416 | else if (count == 0) | |
3417 | return -1; | |
3418 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
3419 | gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0); | |
3420 | return TYPE_LENGTH (t) / unitlen; | |
3421 | } | |
3422 | break; | |
3423 | ||
3424 | case TYPE_CODE_STRUCT: | |
3425 | { | |
3426 | int count = 0; | |
3427 | unsigned unitlen; | |
3428 | int i; | |
3429 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
3430 | { | |
3431 | int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i), | |
3432 | base_type); | |
3433 | if (sub_count == -1) | |
3434 | return -1; | |
3435 | count += sub_count; | |
3436 | } | |
3437 | if (TYPE_LENGTH (t) == 0) | |
3438 | { | |
3439 | gdb_assert (count == 0); | |
3440 | return 0; | |
3441 | } | |
3442 | else if (count == 0) | |
3443 | return -1; | |
3444 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
3445 | if (TYPE_LENGTH (t) != unitlen * count) | |
3446 | return -1; | |
3447 | return count; | |
3448 | } | |
3449 | ||
3450 | case TYPE_CODE_UNION: | |
3451 | { | |
3452 | int count = 0; | |
3453 | unsigned unitlen; | |
3454 | int i; | |
3455 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
3456 | { | |
3457 | int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i), | |
3458 | base_type); | |
3459 | if (sub_count == -1) | |
3460 | return -1; | |
3461 | count = (count > sub_count ? count : sub_count); | |
3462 | } | |
3463 | if (TYPE_LENGTH (t) == 0) | |
3464 | { | |
3465 | gdb_assert (count == 0); | |
3466 | return 0; | |
3467 | } | |
3468 | else if (count == 0) | |
3469 | return -1; | |
3470 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
3471 | if (TYPE_LENGTH (t) != unitlen * count) | |
3472 | return -1; | |
3473 | return count; | |
3474 | } | |
3475 | ||
3476 | default: | |
3477 | break; | |
3478 | } | |
3479 | ||
3480 | return -1; | |
3481 | } | |
3482 | ||
3483 | /* Determine whether T is a VFP co-processor register candidate (CPRC) | |
3484 | if passed to or returned from a non-variadic function with the VFP | |
3485 | ABI in effect. Return 1 if it is, 0 otherwise. If it is, set | |
3486 | *BASE_TYPE to the base type for T and *COUNT to the number of | |
3487 | elements of that base type before returning. */ | |
3488 | ||
3489 | static int | |
3490 | arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type, | |
3491 | int *count) | |
3492 | { | |
3493 | enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN; | |
3494 | int c = arm_vfp_cprc_sub_candidate (t, &b); | |
3495 | if (c <= 0 || c > 4) | |
3496 | return 0; | |
3497 | *base_type = b; | |
3498 | *count = c; | |
3499 | return 1; | |
3500 | } | |
3501 | ||
3502 | /* Return 1 if the VFP ABI should be used for passing arguments to and | |
3503 | returning values from a function of type FUNC_TYPE, 0 | |
3504 | otherwise. */ | |
3505 | ||
3506 | static int | |
3507 | arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type) | |
3508 | { | |
3509 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3510 | /* Variadic functions always use the base ABI. Assume that functions | |
3511 | without debug info are not variadic. */ | |
3512 | if (func_type && TYPE_VARARGS (check_typedef (func_type))) | |
3513 | return 0; | |
3514 | /* The VFP ABI is only supported as a variant of AAPCS. */ | |
3515 | if (tdep->arm_abi != ARM_ABI_AAPCS) | |
3516 | return 0; | |
3517 | return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP; | |
3518 | } | |
3519 | ||
3520 | /* We currently only support passing parameters in integer registers, which | |
3521 | conforms with GCC's default model, and VFP argument passing following | |
3522 | the VFP variant of AAPCS. Several other variants exist and | |
2dd604e7 RE |
3523 | we should probably support some of them based on the selected ABI. */ |
3524 | ||
3525 | static CORE_ADDR | |
7d9b040b | 3526 | arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
6a65450a AC |
3527 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, |
3528 | struct value **args, CORE_ADDR sp, int struct_return, | |
3529 | CORE_ADDR struct_addr) | |
2dd604e7 | 3530 | { |
e17a4113 | 3531 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
2dd604e7 RE |
3532 | int argnum; |
3533 | int argreg; | |
3534 | int nstack; | |
3535 | struct stack_item *si = NULL; | |
90445bd3 DJ |
3536 | int use_vfp_abi; |
3537 | struct type *ftype; | |
3538 | unsigned vfp_regs_free = (1 << 16) - 1; | |
3539 | ||
3540 | /* Determine the type of this function and whether the VFP ABI | |
3541 | applies. */ | |
3542 | ftype = check_typedef (value_type (function)); | |
3543 | if (TYPE_CODE (ftype) == TYPE_CODE_PTR) | |
3544 | ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); | |
3545 | use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype); | |
2dd604e7 | 3546 | |
6a65450a AC |
3547 | /* Set the return address. For the ARM, the return breakpoint is |
3548 | always at BP_ADDR. */ | |
9779414d | 3549 | if (arm_pc_is_thumb (gdbarch, bp_addr)) |
9dca5578 | 3550 | bp_addr |= 1; |
6a65450a | 3551 | regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr); |
2dd604e7 RE |
3552 | |
3553 | /* Walk through the list of args and determine how large a temporary | |
3554 | stack is required. Need to take care here as structs may be | |
7a9dd1b2 | 3555 | passed on the stack, and we have to push them. */ |
2dd604e7 RE |
3556 | nstack = 0; |
3557 | ||
3558 | argreg = ARM_A1_REGNUM; | |
3559 | nstack = 0; | |
3560 | ||
2dd604e7 RE |
3561 | /* The struct_return pointer occupies the first parameter |
3562 | passing register. */ | |
3563 | if (struct_return) | |
3564 | { | |
3565 | if (arm_debug) | |
5af949e3 | 3566 | fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n", |
2af46ca0 | 3567 | gdbarch_register_name (gdbarch, argreg), |
5af949e3 | 3568 | paddress (gdbarch, struct_addr)); |
2dd604e7 RE |
3569 | regcache_cooked_write_unsigned (regcache, argreg, struct_addr); |
3570 | argreg++; | |
3571 | } | |
3572 | ||
3573 | for (argnum = 0; argnum < nargs; argnum++) | |
3574 | { | |
3575 | int len; | |
3576 | struct type *arg_type; | |
3577 | struct type *target_type; | |
3578 | enum type_code typecode; | |
8c6363cf | 3579 | const bfd_byte *val; |
2af48f68 | 3580 | int align; |
90445bd3 DJ |
3581 | enum arm_vfp_cprc_base_type vfp_base_type; |
3582 | int vfp_base_count; | |
3583 | int may_use_core_reg = 1; | |
2dd604e7 | 3584 | |
df407dfe | 3585 | arg_type = check_typedef (value_type (args[argnum])); |
2dd604e7 RE |
3586 | len = TYPE_LENGTH (arg_type); |
3587 | target_type = TYPE_TARGET_TYPE (arg_type); | |
3588 | typecode = TYPE_CODE (arg_type); | |
8c6363cf | 3589 | val = value_contents (args[argnum]); |
2dd604e7 | 3590 | |
2af48f68 PB |
3591 | align = arm_type_align (arg_type); |
3592 | /* Round alignment up to a whole number of words. */ | |
3593 | align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1); | |
3594 | /* Different ABIs have different maximum alignments. */ | |
3595 | if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS) | |
3596 | { | |
3597 | /* The APCS ABI only requires word alignment. */ | |
3598 | align = INT_REGISTER_SIZE; | |
3599 | } | |
3600 | else | |
3601 | { | |
3602 | /* The AAPCS requires at most doubleword alignment. */ | |
3603 | if (align > INT_REGISTER_SIZE * 2) | |
3604 | align = INT_REGISTER_SIZE * 2; | |
3605 | } | |
3606 | ||
90445bd3 DJ |
3607 | if (use_vfp_abi |
3608 | && arm_vfp_call_candidate (arg_type, &vfp_base_type, | |
3609 | &vfp_base_count)) | |
3610 | { | |
3611 | int regno; | |
3612 | int unit_length; | |
3613 | int shift; | |
3614 | unsigned mask; | |
3615 | ||
3616 | /* Because this is a CPRC it cannot go in a core register or | |
3617 | cause a core register to be skipped for alignment. | |
3618 | Either it goes in VFP registers and the rest of this loop | |
3619 | iteration is skipped for this argument, or it goes on the | |
3620 | stack (and the stack alignment code is correct for this | |
3621 | case). */ | |
3622 | may_use_core_reg = 0; | |
3623 | ||
3624 | unit_length = arm_vfp_cprc_unit_length (vfp_base_type); | |
3625 | shift = unit_length / 4; | |
3626 | mask = (1 << (shift * vfp_base_count)) - 1; | |
3627 | for (regno = 0; regno < 16; regno += shift) | |
3628 | if (((vfp_regs_free >> regno) & mask) == mask) | |
3629 | break; | |
3630 | ||
3631 | if (regno < 16) | |
3632 | { | |
3633 | int reg_char; | |
3634 | int reg_scaled; | |
3635 | int i; | |
3636 | ||
3637 | vfp_regs_free &= ~(mask << regno); | |
3638 | reg_scaled = regno / shift; | |
3639 | reg_char = arm_vfp_cprc_reg_char (vfp_base_type); | |
3640 | for (i = 0; i < vfp_base_count; i++) | |
3641 | { | |
3642 | char name_buf[4]; | |
3643 | int regnum; | |
58d6951d DJ |
3644 | if (reg_char == 'q') |
3645 | arm_neon_quad_write (gdbarch, regcache, reg_scaled + i, | |
90445bd3 | 3646 | val + i * unit_length); |
58d6951d DJ |
3647 | else |
3648 | { | |
3649 | sprintf (name_buf, "%c%d", reg_char, reg_scaled + i); | |
3650 | regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
3651 | strlen (name_buf)); | |
3652 | regcache_cooked_write (regcache, regnum, | |
3653 | val + i * unit_length); | |
3654 | } | |
90445bd3 DJ |
3655 | } |
3656 | continue; | |
3657 | } | |
3658 | else | |
3659 | { | |
3660 | /* This CPRC could not go in VFP registers, so all VFP | |
3661 | registers are now marked as used. */ | |
3662 | vfp_regs_free = 0; | |
3663 | } | |
3664 | } | |
3665 | ||
2af48f68 PB |
3666 | /* Push stack padding for dowubleword alignment. */ |
3667 | if (nstack & (align - 1)) | |
3668 | { | |
3669 | si = push_stack_item (si, val, INT_REGISTER_SIZE); | |
3670 | nstack += INT_REGISTER_SIZE; | |
3671 | } | |
3672 | ||
3673 | /* Doubleword aligned quantities must go in even register pairs. */ | |
90445bd3 DJ |
3674 | if (may_use_core_reg |
3675 | && argreg <= ARM_LAST_ARG_REGNUM | |
2af48f68 PB |
3676 | && align > INT_REGISTER_SIZE |
3677 | && argreg & 1) | |
3678 | argreg++; | |
3679 | ||
2dd604e7 RE |
3680 | /* If the argument is a pointer to a function, and it is a |
3681 | Thumb function, create a LOCAL copy of the value and set | |
3682 | the THUMB bit in it. */ | |
3683 | if (TYPE_CODE_PTR == typecode | |
3684 | && target_type != NULL | |
f96b8fa0 | 3685 | && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type))) |
2dd604e7 | 3686 | { |
e17a4113 | 3687 | CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order); |
9779414d | 3688 | if (arm_pc_is_thumb (gdbarch, regval)) |
2dd604e7 | 3689 | { |
8c6363cf TT |
3690 | bfd_byte *copy = alloca (len); |
3691 | store_unsigned_integer (copy, len, byte_order, | |
e17a4113 | 3692 | MAKE_THUMB_ADDR (regval)); |
8c6363cf | 3693 | val = copy; |
2dd604e7 RE |
3694 | } |
3695 | } | |
3696 | ||
3697 | /* Copy the argument to general registers or the stack in | |
3698 | register-sized pieces. Large arguments are split between | |
3699 | registers and stack. */ | |
3700 | while (len > 0) | |
3701 | { | |
f0c9063c | 3702 | int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE; |
2dd604e7 | 3703 | |
90445bd3 | 3704 | if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM) |
2dd604e7 RE |
3705 | { |
3706 | /* The argument is being passed in a general purpose | |
3707 | register. */ | |
e17a4113 UW |
3708 | CORE_ADDR regval |
3709 | = extract_unsigned_integer (val, partial_len, byte_order); | |
3710 | if (byte_order == BFD_ENDIAN_BIG) | |
8bf8793c | 3711 | regval <<= (INT_REGISTER_SIZE - partial_len) * 8; |
2dd604e7 RE |
3712 | if (arm_debug) |
3713 | fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n", | |
c9f4d572 UW |
3714 | argnum, |
3715 | gdbarch_register_name | |
2af46ca0 | 3716 | (gdbarch, argreg), |
f0c9063c | 3717 | phex (regval, INT_REGISTER_SIZE)); |
2dd604e7 RE |
3718 | regcache_cooked_write_unsigned (regcache, argreg, regval); |
3719 | argreg++; | |
3720 | } | |
3721 | else | |
3722 | { | |
3723 | /* Push the arguments onto the stack. */ | |
3724 | if (arm_debug) | |
3725 | fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n", | |
3726 | argnum, nstack); | |
f0c9063c UW |
3727 | si = push_stack_item (si, val, INT_REGISTER_SIZE); |
3728 | nstack += INT_REGISTER_SIZE; | |
2dd604e7 RE |
3729 | } |
3730 | ||
3731 | len -= partial_len; | |
3732 | val += partial_len; | |
3733 | } | |
3734 | } | |
3735 | /* If we have an odd number of words to push, then decrement the stack | |
3736 | by one word now, so first stack argument will be dword aligned. */ | |
3737 | if (nstack & 4) | |
3738 | sp -= 4; | |
3739 | ||
3740 | while (si) | |
3741 | { | |
3742 | sp -= si->len; | |
3743 | write_memory (sp, si->data, si->len); | |
3744 | si = pop_stack_item (si); | |
3745 | } | |
3746 | ||
3747 | /* Finally, update teh SP register. */ | |
3748 | regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp); | |
3749 | ||
3750 | return sp; | |
3751 | } | |
3752 | ||
f53f0d0b PB |
3753 | |
3754 | /* Always align the frame to an 8-byte boundary. This is required on | |
3755 | some platforms and harmless on the rest. */ | |
3756 | ||
3757 | static CORE_ADDR | |
3758 | arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
3759 | { | |
3760 | /* Align the stack to eight bytes. */ | |
3761 | return sp & ~ (CORE_ADDR) 7; | |
3762 | } | |
3763 | ||
c906108c | 3764 | static void |
ed9a39eb | 3765 | print_fpu_flags (int flags) |
c906108c | 3766 | { |
c5aa993b JM |
3767 | if (flags & (1 << 0)) |
3768 | fputs ("IVO ", stdout); | |
3769 | if (flags & (1 << 1)) | |
3770 | fputs ("DVZ ", stdout); | |
3771 | if (flags & (1 << 2)) | |
3772 | fputs ("OFL ", stdout); | |
3773 | if (flags & (1 << 3)) | |
3774 | fputs ("UFL ", stdout); | |
3775 | if (flags & (1 << 4)) | |
3776 | fputs ("INX ", stdout); | |
3777 | putchar ('\n'); | |
c906108c SS |
3778 | } |
3779 | ||
5e74b15c RE |
3780 | /* Print interesting information about the floating point processor |
3781 | (if present) or emulator. */ | |
34e8f22d | 3782 | static void |
d855c300 | 3783 | arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, |
23e3a7ac | 3784 | struct frame_info *frame, const char *args) |
c906108c | 3785 | { |
9c9acae0 | 3786 | unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM); |
c5aa993b JM |
3787 | int type; |
3788 | ||
3789 | type = (status >> 24) & 127; | |
edefbb7c AC |
3790 | if (status & (1 << 31)) |
3791 | printf (_("Hardware FPU type %d\n"), type); | |
3792 | else | |
3793 | printf (_("Software FPU type %d\n"), type); | |
3794 | /* i18n: [floating point unit] mask */ | |
3795 | fputs (_("mask: "), stdout); | |
c5aa993b | 3796 | print_fpu_flags (status >> 16); |
edefbb7c AC |
3797 | /* i18n: [floating point unit] flags */ |
3798 | fputs (_("flags: "), stdout); | |
c5aa993b | 3799 | print_fpu_flags (status); |
c906108c SS |
3800 | } |
3801 | ||
27067745 UW |
3802 | /* Construct the ARM extended floating point type. */ |
3803 | static struct type * | |
3804 | arm_ext_type (struct gdbarch *gdbarch) | |
3805 | { | |
3806 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3807 | ||
3808 | if (!tdep->arm_ext_type) | |
3809 | tdep->arm_ext_type | |
e9bb382b | 3810 | = arch_float_type (gdbarch, -1, "builtin_type_arm_ext", |
27067745 UW |
3811 | floatformats_arm_ext); |
3812 | ||
3813 | return tdep->arm_ext_type; | |
3814 | } | |
3815 | ||
58d6951d DJ |
3816 | static struct type * |
3817 | arm_neon_double_type (struct gdbarch *gdbarch) | |
3818 | { | |
3819 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3820 | ||
3821 | if (tdep->neon_double_type == NULL) | |
3822 | { | |
3823 | struct type *t, *elem; | |
3824 | ||
3825 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d", | |
3826 | TYPE_CODE_UNION); | |
3827 | elem = builtin_type (gdbarch)->builtin_uint8; | |
3828 | append_composite_type_field (t, "u8", init_vector_type (elem, 8)); | |
3829 | elem = builtin_type (gdbarch)->builtin_uint16; | |
3830 | append_composite_type_field (t, "u16", init_vector_type (elem, 4)); | |
3831 | elem = builtin_type (gdbarch)->builtin_uint32; | |
3832 | append_composite_type_field (t, "u32", init_vector_type (elem, 2)); | |
3833 | elem = builtin_type (gdbarch)->builtin_uint64; | |
3834 | append_composite_type_field (t, "u64", elem); | |
3835 | elem = builtin_type (gdbarch)->builtin_float; | |
3836 | append_composite_type_field (t, "f32", init_vector_type (elem, 2)); | |
3837 | elem = builtin_type (gdbarch)->builtin_double; | |
3838 | append_composite_type_field (t, "f64", elem); | |
3839 | ||
3840 | TYPE_VECTOR (t) = 1; | |
3841 | TYPE_NAME (t) = "neon_d"; | |
3842 | tdep->neon_double_type = t; | |
3843 | } | |
3844 | ||
3845 | return tdep->neon_double_type; | |
3846 | } | |
3847 | ||
3848 | /* FIXME: The vector types are not correctly ordered on big-endian | |
3849 | targets. Just as s0 is the low bits of d0, d0[0] is also the low | |
3850 | bits of d0 - regardless of what unit size is being held in d0. So | |
3851 | the offset of the first uint8 in d0 is 7, but the offset of the | |
3852 | first float is 4. This code works as-is for little-endian | |
3853 | targets. */ | |
3854 | ||
3855 | static struct type * | |
3856 | arm_neon_quad_type (struct gdbarch *gdbarch) | |
3857 | { | |
3858 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3859 | ||
3860 | if (tdep->neon_quad_type == NULL) | |
3861 | { | |
3862 | struct type *t, *elem; | |
3863 | ||
3864 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q", | |
3865 | TYPE_CODE_UNION); | |
3866 | elem = builtin_type (gdbarch)->builtin_uint8; | |
3867 | append_composite_type_field (t, "u8", init_vector_type (elem, 16)); | |
3868 | elem = builtin_type (gdbarch)->builtin_uint16; | |
3869 | append_composite_type_field (t, "u16", init_vector_type (elem, 8)); | |
3870 | elem = builtin_type (gdbarch)->builtin_uint32; | |
3871 | append_composite_type_field (t, "u32", init_vector_type (elem, 4)); | |
3872 | elem = builtin_type (gdbarch)->builtin_uint64; | |
3873 | append_composite_type_field (t, "u64", init_vector_type (elem, 2)); | |
3874 | elem = builtin_type (gdbarch)->builtin_float; | |
3875 | append_composite_type_field (t, "f32", init_vector_type (elem, 4)); | |
3876 | elem = builtin_type (gdbarch)->builtin_double; | |
3877 | append_composite_type_field (t, "f64", init_vector_type (elem, 2)); | |
3878 | ||
3879 | TYPE_VECTOR (t) = 1; | |
3880 | TYPE_NAME (t) = "neon_q"; | |
3881 | tdep->neon_quad_type = t; | |
3882 | } | |
3883 | ||
3884 | return tdep->neon_quad_type; | |
3885 | } | |
3886 | ||
34e8f22d RE |
3887 | /* Return the GDB type object for the "standard" data type of data in |
3888 | register N. */ | |
3889 | ||
3890 | static struct type * | |
7a5ea0d4 | 3891 | arm_register_type (struct gdbarch *gdbarch, int regnum) |
032758dc | 3892 | { |
58d6951d DJ |
3893 | int num_regs = gdbarch_num_regs (gdbarch); |
3894 | ||
3895 | if (gdbarch_tdep (gdbarch)->have_vfp_pseudos | |
3896 | && regnum >= num_regs && regnum < num_regs + 32) | |
3897 | return builtin_type (gdbarch)->builtin_float; | |
3898 | ||
3899 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos | |
3900 | && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16) | |
3901 | return arm_neon_quad_type (gdbarch); | |
3902 | ||
3903 | /* If the target description has register information, we are only | |
3904 | in this function so that we can override the types of | |
3905 | double-precision registers for NEON. */ | |
3906 | if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) | |
3907 | { | |
3908 | struct type *t = tdesc_register_type (gdbarch, regnum); | |
3909 | ||
3910 | if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32 | |
3911 | && TYPE_CODE (t) == TYPE_CODE_FLT | |
3912 | && gdbarch_tdep (gdbarch)->have_neon) | |
3913 | return arm_neon_double_type (gdbarch); | |
3914 | else | |
3915 | return t; | |
3916 | } | |
3917 | ||
34e8f22d | 3918 | if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS) |
58d6951d DJ |
3919 | { |
3920 | if (!gdbarch_tdep (gdbarch)->have_fpa_registers) | |
3921 | return builtin_type (gdbarch)->builtin_void; | |
3922 | ||
3923 | return arm_ext_type (gdbarch); | |
3924 | } | |
e4c16157 | 3925 | else if (regnum == ARM_SP_REGNUM) |
0dfff4cb | 3926 | return builtin_type (gdbarch)->builtin_data_ptr; |
e4c16157 | 3927 | else if (regnum == ARM_PC_REGNUM) |
0dfff4cb | 3928 | return builtin_type (gdbarch)->builtin_func_ptr; |
ff6f572f DJ |
3929 | else if (regnum >= ARRAY_SIZE (arm_register_names)) |
3930 | /* These registers are only supported on targets which supply | |
3931 | an XML description. */ | |
df4df182 | 3932 | return builtin_type (gdbarch)->builtin_int0; |
032758dc | 3933 | else |
df4df182 | 3934 | return builtin_type (gdbarch)->builtin_uint32; |
032758dc AC |
3935 | } |
3936 | ||
ff6f572f DJ |
3937 | /* Map a DWARF register REGNUM onto the appropriate GDB register |
3938 | number. */ | |
3939 | ||
3940 | static int | |
d3f73121 | 3941 | arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
ff6f572f DJ |
3942 | { |
3943 | /* Core integer regs. */ | |
3944 | if (reg >= 0 && reg <= 15) | |
3945 | return reg; | |
3946 | ||
3947 | /* Legacy FPA encoding. These were once used in a way which | |
3948 | overlapped with VFP register numbering, so their use is | |
3949 | discouraged, but GDB doesn't support the ARM toolchain | |
3950 | which used them for VFP. */ | |
3951 | if (reg >= 16 && reg <= 23) | |
3952 | return ARM_F0_REGNUM + reg - 16; | |
3953 | ||
3954 | /* New assignments for the FPA registers. */ | |
3955 | if (reg >= 96 && reg <= 103) | |
3956 | return ARM_F0_REGNUM + reg - 96; | |
3957 | ||
3958 | /* WMMX register assignments. */ | |
3959 | if (reg >= 104 && reg <= 111) | |
3960 | return ARM_WCGR0_REGNUM + reg - 104; | |
3961 | ||
3962 | if (reg >= 112 && reg <= 127) | |
3963 | return ARM_WR0_REGNUM + reg - 112; | |
3964 | ||
3965 | if (reg >= 192 && reg <= 199) | |
3966 | return ARM_WC0_REGNUM + reg - 192; | |
3967 | ||
58d6951d DJ |
3968 | /* VFP v2 registers. A double precision value is actually |
3969 | in d1 rather than s2, but the ABI only defines numbering | |
3970 | for the single precision registers. This will "just work" | |
3971 | in GDB for little endian targets (we'll read eight bytes, | |
3972 | starting in s0 and then progressing to s1), but will be | |
3973 | reversed on big endian targets with VFP. This won't | |
3974 | be a problem for the new Neon quad registers; you're supposed | |
3975 | to use DW_OP_piece for those. */ | |
3976 | if (reg >= 64 && reg <= 95) | |
3977 | { | |
3978 | char name_buf[4]; | |
3979 | ||
3980 | sprintf (name_buf, "s%d", reg - 64); | |
3981 | return user_reg_map_name_to_regnum (gdbarch, name_buf, | |
3982 | strlen (name_buf)); | |
3983 | } | |
3984 | ||
3985 | /* VFP v3 / Neon registers. This range is also used for VFP v2 | |
3986 | registers, except that it now describes d0 instead of s0. */ | |
3987 | if (reg >= 256 && reg <= 287) | |
3988 | { | |
3989 | char name_buf[4]; | |
3990 | ||
3991 | sprintf (name_buf, "d%d", reg - 256); | |
3992 | return user_reg_map_name_to_regnum (gdbarch, name_buf, | |
3993 | strlen (name_buf)); | |
3994 | } | |
3995 | ||
ff6f572f DJ |
3996 | return -1; |
3997 | } | |
3998 | ||
26216b98 AC |
3999 | /* Map GDB internal REGNUM onto the Arm simulator register numbers. */ |
4000 | static int | |
e7faf938 | 4001 | arm_register_sim_regno (struct gdbarch *gdbarch, int regnum) |
26216b98 AC |
4002 | { |
4003 | int reg = regnum; | |
e7faf938 | 4004 | gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch)); |
26216b98 | 4005 | |
ff6f572f DJ |
4006 | if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM) |
4007 | return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM; | |
4008 | ||
4009 | if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM) | |
4010 | return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM; | |
4011 | ||
4012 | if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM) | |
4013 | return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM; | |
4014 | ||
26216b98 AC |
4015 | if (reg < NUM_GREGS) |
4016 | return SIM_ARM_R0_REGNUM + reg; | |
4017 | reg -= NUM_GREGS; | |
4018 | ||
4019 | if (reg < NUM_FREGS) | |
4020 | return SIM_ARM_FP0_REGNUM + reg; | |
4021 | reg -= NUM_FREGS; | |
4022 | ||
4023 | if (reg < NUM_SREGS) | |
4024 | return SIM_ARM_FPS_REGNUM + reg; | |
4025 | reg -= NUM_SREGS; | |
4026 | ||
edefbb7c | 4027 | internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum); |
26216b98 | 4028 | } |
34e8f22d | 4029 | |
a37b3cc0 AC |
4030 | /* NOTE: cagney/2001-08-20: Both convert_from_extended() and |
4031 | convert_to_extended() use floatformat_arm_ext_littlebyte_bigword. | |
4032 | It is thought that this is is the floating-point register format on | |
4033 | little-endian systems. */ | |
c906108c | 4034 | |
ed9a39eb | 4035 | static void |
b508a996 | 4036 | convert_from_extended (const struct floatformat *fmt, const void *ptr, |
be8626e0 | 4037 | void *dbl, int endianess) |
c906108c | 4038 | { |
a37b3cc0 | 4039 | DOUBLEST d; |
be8626e0 MD |
4040 | |
4041 | if (endianess == BFD_ENDIAN_BIG) | |
a37b3cc0 AC |
4042 | floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d); |
4043 | else | |
4044 | floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
4045 | ptr, &d); | |
b508a996 | 4046 | floatformat_from_doublest (fmt, &d, dbl); |
c906108c SS |
4047 | } |
4048 | ||
34e8f22d | 4049 | static void |
be8626e0 MD |
4050 | convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr, |
4051 | int endianess) | |
c906108c | 4052 | { |
a37b3cc0 | 4053 | DOUBLEST d; |
be8626e0 | 4054 | |
b508a996 | 4055 | floatformat_to_doublest (fmt, ptr, &d); |
be8626e0 | 4056 | if (endianess == BFD_ENDIAN_BIG) |
a37b3cc0 AC |
4057 | floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl); |
4058 | else | |
4059 | floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
4060 | &d, dbl); | |
c906108c | 4061 | } |
ed9a39eb | 4062 | |
c906108c | 4063 | static int |
ed9a39eb | 4064 | condition_true (unsigned long cond, unsigned long status_reg) |
c906108c SS |
4065 | { |
4066 | if (cond == INST_AL || cond == INST_NV) | |
4067 | return 1; | |
4068 | ||
4069 | switch (cond) | |
4070 | { | |
4071 | case INST_EQ: | |
4072 | return ((status_reg & FLAG_Z) != 0); | |
4073 | case INST_NE: | |
4074 | return ((status_reg & FLAG_Z) == 0); | |
4075 | case INST_CS: | |
4076 | return ((status_reg & FLAG_C) != 0); | |
4077 | case INST_CC: | |
4078 | return ((status_reg & FLAG_C) == 0); | |
4079 | case INST_MI: | |
4080 | return ((status_reg & FLAG_N) != 0); | |
4081 | case INST_PL: | |
4082 | return ((status_reg & FLAG_N) == 0); | |
4083 | case INST_VS: | |
4084 | return ((status_reg & FLAG_V) != 0); | |
4085 | case INST_VC: | |
4086 | return ((status_reg & FLAG_V) == 0); | |
4087 | case INST_HI: | |
4088 | return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C); | |
4089 | case INST_LS: | |
4090 | return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C); | |
4091 | case INST_GE: | |
4092 | return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)); | |
4093 | case INST_LT: | |
4094 | return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)); | |
4095 | case INST_GT: | |
f8bf5763 PM |
4096 | return (((status_reg & FLAG_Z) == 0) |
4097 | && (((status_reg & FLAG_N) == 0) | |
4098 | == ((status_reg & FLAG_V) == 0))); | |
c906108c | 4099 | case INST_LE: |
f8bf5763 PM |
4100 | return (((status_reg & FLAG_Z) != 0) |
4101 | || (((status_reg & FLAG_N) == 0) | |
4102 | != ((status_reg & FLAG_V) == 0))); | |
c906108c SS |
4103 | } |
4104 | return 1; | |
4105 | } | |
4106 | ||
c906108c | 4107 | static unsigned long |
0b1b3e42 UW |
4108 | shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry, |
4109 | unsigned long pc_val, unsigned long status_reg) | |
c906108c SS |
4110 | { |
4111 | unsigned long res, shift; | |
4112 | int rm = bits (inst, 0, 3); | |
4113 | unsigned long shifttype = bits (inst, 5, 6); | |
c5aa993b JM |
4114 | |
4115 | if (bit (inst, 4)) | |
c906108c SS |
4116 | { |
4117 | int rs = bits (inst, 8, 11); | |
0b1b3e42 UW |
4118 | shift = (rs == 15 ? pc_val + 8 |
4119 | : get_frame_register_unsigned (frame, rs)) & 0xFF; | |
c906108c SS |
4120 | } |
4121 | else | |
4122 | shift = bits (inst, 7, 11); | |
c5aa993b | 4123 | |
bf9f652a | 4124 | res = (rm == ARM_PC_REGNUM |
0d39a070 | 4125 | ? (pc_val + (bit (inst, 4) ? 12 : 8)) |
0b1b3e42 | 4126 | : get_frame_register_unsigned (frame, rm)); |
c906108c SS |
4127 | |
4128 | switch (shifttype) | |
4129 | { | |
c5aa993b | 4130 | case 0: /* LSL */ |
c906108c SS |
4131 | res = shift >= 32 ? 0 : res << shift; |
4132 | break; | |
c5aa993b JM |
4133 | |
4134 | case 1: /* LSR */ | |
c906108c SS |
4135 | res = shift >= 32 ? 0 : res >> shift; |
4136 | break; | |
4137 | ||
c5aa993b JM |
4138 | case 2: /* ASR */ |
4139 | if (shift >= 32) | |
4140 | shift = 31; | |
c906108c SS |
4141 | res = ((res & 0x80000000L) |
4142 | ? ~((~res) >> shift) : res >> shift); | |
4143 | break; | |
4144 | ||
c5aa993b | 4145 | case 3: /* ROR/RRX */ |
c906108c SS |
4146 | shift &= 31; |
4147 | if (shift == 0) | |
4148 | res = (res >> 1) | (carry ? 0x80000000L : 0); | |
4149 | else | |
c5aa993b | 4150 | res = (res >> shift) | (res << (32 - shift)); |
c906108c SS |
4151 | break; |
4152 | } | |
4153 | ||
4154 | return res & 0xffffffff; | |
4155 | } | |
4156 | ||
c906108c SS |
4157 | /* Return number of 1-bits in VAL. */ |
4158 | ||
4159 | static int | |
ed9a39eb | 4160 | bitcount (unsigned long val) |
c906108c SS |
4161 | { |
4162 | int nbits; | |
4163 | for (nbits = 0; val != 0; nbits++) | |
0963b4bd | 4164 | val &= val - 1; /* Delete rightmost 1-bit in val. */ |
c906108c SS |
4165 | return nbits; |
4166 | } | |
4167 | ||
177321bd DJ |
4168 | /* Return the size in bytes of the complete Thumb instruction whose |
4169 | first halfword is INST1. */ | |
4170 | ||
4171 | static int | |
4172 | thumb_insn_size (unsigned short inst1) | |
4173 | { | |
4174 | if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0) | |
4175 | return 4; | |
4176 | else | |
4177 | return 2; | |
4178 | } | |
4179 | ||
4180 | static int | |
4181 | thumb_advance_itstate (unsigned int itstate) | |
4182 | { | |
4183 | /* Preserve IT[7:5], the first three bits of the condition. Shift | |
4184 | the upcoming condition flags left by one bit. */ | |
4185 | itstate = (itstate & 0xe0) | ((itstate << 1) & 0x1f); | |
4186 | ||
4187 | /* If we have finished the IT block, clear the state. */ | |
4188 | if ((itstate & 0x0f) == 0) | |
4189 | itstate = 0; | |
4190 | ||
4191 | return itstate; | |
4192 | } | |
4193 | ||
4194 | /* Find the next PC after the current instruction executes. In some | |
4195 | cases we can not statically determine the answer (see the IT state | |
4196 | handling in this function); in that case, a breakpoint may be | |
4197 | inserted in addition to the returned PC, which will be used to set | |
4198 | another breakpoint by our caller. */ | |
4199 | ||
ad527d2e | 4200 | static CORE_ADDR |
18819fa6 | 4201 | thumb_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 4202 | { |
2af46ca0 | 4203 | struct gdbarch *gdbarch = get_frame_arch (frame); |
177321bd | 4204 | struct address_space *aspace = get_frame_address_space (frame); |
e17a4113 UW |
4205 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
4206 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
c5aa993b | 4207 | unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */ |
e17a4113 | 4208 | unsigned short inst1; |
0963b4bd | 4209 | CORE_ADDR nextpc = pc + 2; /* Default is next instruction. */ |
c906108c | 4210 | unsigned long offset; |
177321bd | 4211 | ULONGEST status, itstate; |
c906108c | 4212 | |
50e98be4 DJ |
4213 | nextpc = MAKE_THUMB_ADDR (nextpc); |
4214 | pc_val = MAKE_THUMB_ADDR (pc_val); | |
4215 | ||
e17a4113 | 4216 | inst1 = read_memory_unsigned_integer (pc, 2, byte_order_for_code); |
9d4fde75 | 4217 | |
9dca5578 DJ |
4218 | /* Thumb-2 conditional execution support. There are eight bits in |
4219 | the CPSR which describe conditional execution state. Once | |
4220 | reconstructed (they're in a funny order), the low five bits | |
4221 | describe the low bit of the condition for each instruction and | |
4222 | how many instructions remain. The high three bits describe the | |
4223 | base condition. One of the low four bits will be set if an IT | |
4224 | block is active. These bits read as zero on earlier | |
4225 | processors. */ | |
4226 | status = get_frame_register_unsigned (frame, ARM_PS_REGNUM); | |
177321bd | 4227 | itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3); |
9dca5578 | 4228 | |
177321bd DJ |
4229 | /* If-Then handling. On GNU/Linux, where this routine is used, we |
4230 | use an undefined instruction as a breakpoint. Unlike BKPT, IT | |
4231 | can disable execution of the undefined instruction. So we might | |
4232 | miss the breakpoint if we set it on a skipped conditional | |
4233 | instruction. Because conditional instructions can change the | |
4234 | flags, affecting the execution of further instructions, we may | |
4235 | need to set two breakpoints. */ | |
9dca5578 | 4236 | |
177321bd DJ |
4237 | if (gdbarch_tdep (gdbarch)->thumb2_breakpoint != NULL) |
4238 | { | |
4239 | if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) | |
4240 | { | |
4241 | /* An IT instruction. Because this instruction does not | |
4242 | modify the flags, we can accurately predict the next | |
4243 | executed instruction. */ | |
4244 | itstate = inst1 & 0x00ff; | |
4245 | pc += thumb_insn_size (inst1); | |
4246 | ||
4247 | while (itstate != 0 && ! condition_true (itstate >> 4, status)) | |
4248 | { | |
0963b4bd MS |
4249 | inst1 = read_memory_unsigned_integer (pc, 2, |
4250 | byte_order_for_code); | |
177321bd DJ |
4251 | pc += thumb_insn_size (inst1); |
4252 | itstate = thumb_advance_itstate (itstate); | |
4253 | } | |
4254 | ||
50e98be4 | 4255 | return MAKE_THUMB_ADDR (pc); |
177321bd DJ |
4256 | } |
4257 | else if (itstate != 0) | |
4258 | { | |
4259 | /* We are in a conditional block. Check the condition. */ | |
4260 | if (! condition_true (itstate >> 4, status)) | |
4261 | { | |
4262 | /* Advance to the next executed instruction. */ | |
4263 | pc += thumb_insn_size (inst1); | |
4264 | itstate = thumb_advance_itstate (itstate); | |
4265 | ||
4266 | while (itstate != 0 && ! condition_true (itstate >> 4, status)) | |
4267 | { | |
0963b4bd MS |
4268 | inst1 = read_memory_unsigned_integer (pc, 2, |
4269 | byte_order_for_code); | |
177321bd DJ |
4270 | pc += thumb_insn_size (inst1); |
4271 | itstate = thumb_advance_itstate (itstate); | |
4272 | } | |
4273 | ||
50e98be4 | 4274 | return MAKE_THUMB_ADDR (pc); |
177321bd DJ |
4275 | } |
4276 | else if ((itstate & 0x0f) == 0x08) | |
4277 | { | |
4278 | /* This is the last instruction of the conditional | |
4279 | block, and it is executed. We can handle it normally | |
4280 | because the following instruction is not conditional, | |
4281 | and we must handle it normally because it is | |
4282 | permitted to branch. Fall through. */ | |
4283 | } | |
4284 | else | |
4285 | { | |
4286 | int cond_negated; | |
4287 | ||
4288 | /* There are conditional instructions after this one. | |
4289 | If this instruction modifies the flags, then we can | |
4290 | not predict what the next executed instruction will | |
4291 | be. Fortunately, this instruction is architecturally | |
4292 | forbidden to branch; we know it will fall through. | |
4293 | Start by skipping past it. */ | |
4294 | pc += thumb_insn_size (inst1); | |
4295 | itstate = thumb_advance_itstate (itstate); | |
4296 | ||
4297 | /* Set a breakpoint on the following instruction. */ | |
4298 | gdb_assert ((itstate & 0x0f) != 0); | |
18819fa6 UW |
4299 | arm_insert_single_step_breakpoint (gdbarch, aspace, |
4300 | MAKE_THUMB_ADDR (pc)); | |
177321bd DJ |
4301 | cond_negated = (itstate >> 4) & 1; |
4302 | ||
4303 | /* Skip all following instructions with the same | |
4304 | condition. If there is a later instruction in the IT | |
4305 | block with the opposite condition, set the other | |
4306 | breakpoint there. If not, then set a breakpoint on | |
4307 | the instruction after the IT block. */ | |
4308 | do | |
4309 | { | |
0963b4bd MS |
4310 | inst1 = read_memory_unsigned_integer (pc, 2, |
4311 | byte_order_for_code); | |
177321bd DJ |
4312 | pc += thumb_insn_size (inst1); |
4313 | itstate = thumb_advance_itstate (itstate); | |
4314 | } | |
4315 | while (itstate != 0 && ((itstate >> 4) & 1) == cond_negated); | |
4316 | ||
50e98be4 | 4317 | return MAKE_THUMB_ADDR (pc); |
177321bd DJ |
4318 | } |
4319 | } | |
4320 | } | |
4321 | else if (itstate & 0x0f) | |
9dca5578 DJ |
4322 | { |
4323 | /* We are in a conditional block. Check the condition. */ | |
177321bd | 4324 | int cond = itstate >> 4; |
9dca5578 DJ |
4325 | |
4326 | if (! condition_true (cond, status)) | |
db24da6d YQ |
4327 | /* Advance to the next instruction. All the 32-bit |
4328 | instructions share a common prefix. */ | |
4329 | return MAKE_THUMB_ADDR (pc + thumb_insn_size (inst1)); | |
177321bd DJ |
4330 | |
4331 | /* Otherwise, handle the instruction normally. */ | |
9dca5578 DJ |
4332 | } |
4333 | ||
c906108c SS |
4334 | if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */ |
4335 | { | |
4336 | CORE_ADDR sp; | |
4337 | ||
4338 | /* Fetch the saved PC from the stack. It's stored above | |
4339 | all of the other registers. */ | |
f0c9063c | 4340 | offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE; |
0b1b3e42 | 4341 | sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM); |
e17a4113 | 4342 | nextpc = read_memory_unsigned_integer (sp + offset, 4, byte_order); |
c906108c SS |
4343 | } |
4344 | else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */ | |
4345 | { | |
c5aa993b | 4346 | unsigned long cond = bits (inst1, 8, 11); |
25b41d01 YQ |
4347 | if (cond == 0x0f) /* 0x0f = SWI */ |
4348 | { | |
4349 | struct gdbarch_tdep *tdep; | |
4350 | tdep = gdbarch_tdep (gdbarch); | |
4351 | ||
4352 | if (tdep->syscall_next_pc != NULL) | |
4353 | nextpc = tdep->syscall_next_pc (frame); | |
4354 | ||
4355 | } | |
4356 | else if (cond != 0x0f && condition_true (cond, status)) | |
c906108c SS |
4357 | nextpc = pc_val + (sbits (inst1, 0, 7) << 1); |
4358 | } | |
4359 | else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */ | |
4360 | { | |
4361 | nextpc = pc_val + (sbits (inst1, 0, 10) << 1); | |
4362 | } | |
db24da6d | 4363 | else if (thumb_insn_size (inst1) == 4) /* 32-bit instruction */ |
c906108c | 4364 | { |
e17a4113 UW |
4365 | unsigned short inst2; |
4366 | inst2 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code); | |
9dca5578 DJ |
4367 | |
4368 | /* Default to the next instruction. */ | |
4369 | nextpc = pc + 4; | |
50e98be4 | 4370 | nextpc = MAKE_THUMB_ADDR (nextpc); |
9dca5578 DJ |
4371 | |
4372 | if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000) | |
4373 | { | |
4374 | /* Branches and miscellaneous control instructions. */ | |
4375 | ||
4376 | if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000) | |
4377 | { | |
4378 | /* B, BL, BLX. */ | |
4379 | int j1, j2, imm1, imm2; | |
4380 | ||
4381 | imm1 = sbits (inst1, 0, 10); | |
4382 | imm2 = bits (inst2, 0, 10); | |
4383 | j1 = bit (inst2, 13); | |
4384 | j2 = bit (inst2, 11); | |
4385 | ||
4386 | offset = ((imm1 << 12) + (imm2 << 1)); | |
4387 | offset ^= ((!j2) << 22) | ((!j1) << 23); | |
4388 | ||
4389 | nextpc = pc_val + offset; | |
4390 | /* For BLX make sure to clear the low bits. */ | |
4391 | if (bit (inst2, 12) == 0) | |
4392 | nextpc = nextpc & 0xfffffffc; | |
4393 | } | |
4394 | else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00) | |
4395 | { | |
4396 | /* SUBS PC, LR, #imm8. */ | |
4397 | nextpc = get_frame_register_unsigned (frame, ARM_LR_REGNUM); | |
4398 | nextpc -= inst2 & 0x00ff; | |
4399 | } | |
4069ebbe | 4400 | else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380) |
9dca5578 DJ |
4401 | { |
4402 | /* Conditional branch. */ | |
4403 | if (condition_true (bits (inst1, 6, 9), status)) | |
4404 | { | |
4405 | int sign, j1, j2, imm1, imm2; | |
4406 | ||
4407 | sign = sbits (inst1, 10, 10); | |
4408 | imm1 = bits (inst1, 0, 5); | |
4409 | imm2 = bits (inst2, 0, 10); | |
4410 | j1 = bit (inst2, 13); | |
4411 | j2 = bit (inst2, 11); | |
4412 | ||
4413 | offset = (sign << 20) + (j2 << 19) + (j1 << 18); | |
4414 | offset += (imm1 << 12) + (imm2 << 1); | |
4415 | ||
4416 | nextpc = pc_val + offset; | |
4417 | } | |
4418 | } | |
4419 | } | |
4420 | else if ((inst1 & 0xfe50) == 0xe810) | |
4421 | { | |
4422 | /* Load multiple or RFE. */ | |
4423 | int rn, offset, load_pc = 1; | |
4424 | ||
4425 | rn = bits (inst1, 0, 3); | |
4426 | if (bit (inst1, 7) && !bit (inst1, 8)) | |
4427 | { | |
4428 | /* LDMIA or POP */ | |
4429 | if (!bit (inst2, 15)) | |
4430 | load_pc = 0; | |
4431 | offset = bitcount (inst2) * 4 - 4; | |
4432 | } | |
4433 | else if (!bit (inst1, 7) && bit (inst1, 8)) | |
4434 | { | |
4435 | /* LDMDB */ | |
4436 | if (!bit (inst2, 15)) | |
4437 | load_pc = 0; | |
4438 | offset = -4; | |
4439 | } | |
4440 | else if (bit (inst1, 7) && bit (inst1, 8)) | |
4441 | { | |
4442 | /* RFEIA */ | |
4443 | offset = 0; | |
4444 | } | |
4445 | else if (!bit (inst1, 7) && !bit (inst1, 8)) | |
4446 | { | |
4447 | /* RFEDB */ | |
4448 | offset = -8; | |
4449 | } | |
4450 | else | |
4451 | load_pc = 0; | |
4452 | ||
4453 | if (load_pc) | |
4454 | { | |
4455 | CORE_ADDR addr = get_frame_register_unsigned (frame, rn); | |
4456 | nextpc = get_frame_memory_unsigned (frame, addr + offset, 4); | |
4457 | } | |
4458 | } | |
4459 | else if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00) | |
4460 | { | |
4461 | /* MOV PC or MOVS PC. */ | |
4462 | nextpc = get_frame_register_unsigned (frame, bits (inst2, 0, 3)); | |
50e98be4 | 4463 | nextpc = MAKE_THUMB_ADDR (nextpc); |
9dca5578 DJ |
4464 | } |
4465 | else if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000) | |
4466 | { | |
4467 | /* LDR PC. */ | |
4468 | CORE_ADDR base; | |
4469 | int rn, load_pc = 1; | |
4470 | ||
4471 | rn = bits (inst1, 0, 3); | |
4472 | base = get_frame_register_unsigned (frame, rn); | |
bf9f652a | 4473 | if (rn == ARM_PC_REGNUM) |
9dca5578 DJ |
4474 | { |
4475 | base = (base + 4) & ~(CORE_ADDR) 0x3; | |
4476 | if (bit (inst1, 7)) | |
4477 | base += bits (inst2, 0, 11); | |
4478 | else | |
4479 | base -= bits (inst2, 0, 11); | |
4480 | } | |
4481 | else if (bit (inst1, 7)) | |
4482 | base += bits (inst2, 0, 11); | |
4483 | else if (bit (inst2, 11)) | |
4484 | { | |
4485 | if (bit (inst2, 10)) | |
4486 | { | |
4487 | if (bit (inst2, 9)) | |
4488 | base += bits (inst2, 0, 7); | |
4489 | else | |
4490 | base -= bits (inst2, 0, 7); | |
4491 | } | |
4492 | } | |
4493 | else if ((inst2 & 0x0fc0) == 0x0000) | |
4494 | { | |
4495 | int shift = bits (inst2, 4, 5), rm = bits (inst2, 0, 3); | |
4496 | base += get_frame_register_unsigned (frame, rm) << shift; | |
4497 | } | |
4498 | else | |
4499 | /* Reserved. */ | |
4500 | load_pc = 0; | |
4501 | ||
4502 | if (load_pc) | |
4503 | nextpc = get_frame_memory_unsigned (frame, base, 4); | |
4504 | } | |
4505 | else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000) | |
4506 | { | |
4507 | /* TBB. */ | |
d476da0e RE |
4508 | CORE_ADDR tbl_reg, table, offset, length; |
4509 | ||
4510 | tbl_reg = bits (inst1, 0, 3); | |
4511 | if (tbl_reg == 0x0f) | |
4512 | table = pc + 4; /* Regcache copy of PC isn't right yet. */ | |
4513 | else | |
4514 | table = get_frame_register_unsigned (frame, tbl_reg); | |
9dca5578 | 4515 | |
9dca5578 DJ |
4516 | offset = get_frame_register_unsigned (frame, bits (inst2, 0, 3)); |
4517 | length = 2 * get_frame_memory_unsigned (frame, table + offset, 1); | |
4518 | nextpc = pc_val + length; | |
4519 | } | |
d476da0e | 4520 | else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010) |
9dca5578 DJ |
4521 | { |
4522 | /* TBH. */ | |
d476da0e RE |
4523 | CORE_ADDR tbl_reg, table, offset, length; |
4524 | ||
4525 | tbl_reg = bits (inst1, 0, 3); | |
4526 | if (tbl_reg == 0x0f) | |
4527 | table = pc + 4; /* Regcache copy of PC isn't right yet. */ | |
4528 | else | |
4529 | table = get_frame_register_unsigned (frame, tbl_reg); | |
9dca5578 | 4530 | |
9dca5578 DJ |
4531 | offset = 2 * get_frame_register_unsigned (frame, bits (inst2, 0, 3)); |
4532 | length = 2 * get_frame_memory_unsigned (frame, table + offset, 2); | |
4533 | nextpc = pc_val + length; | |
4534 | } | |
c906108c | 4535 | } |
aa17d93e | 4536 | else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */ |
9498281f DJ |
4537 | { |
4538 | if (bits (inst1, 3, 6) == 0x0f) | |
4539 | nextpc = pc_val; | |
4540 | else | |
0b1b3e42 | 4541 | nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6)); |
9498281f | 4542 | } |
ad8b5167 UW |
4543 | else if ((inst1 & 0xff87) == 0x4687) /* mov pc, REG */ |
4544 | { | |
4545 | if (bits (inst1, 3, 6) == 0x0f) | |
4546 | nextpc = pc_val; | |
4547 | else | |
4548 | nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6)); | |
4549 | ||
4550 | nextpc = MAKE_THUMB_ADDR (nextpc); | |
4551 | } | |
9dca5578 DJ |
4552 | else if ((inst1 & 0xf500) == 0xb100) |
4553 | { | |
4554 | /* CBNZ or CBZ. */ | |
4555 | int imm = (bit (inst1, 9) << 6) + (bits (inst1, 3, 7) << 1); | |
4556 | ULONGEST reg = get_frame_register_unsigned (frame, bits (inst1, 0, 2)); | |
4557 | ||
4558 | if (bit (inst1, 11) && reg != 0) | |
4559 | nextpc = pc_val + imm; | |
4560 | else if (!bit (inst1, 11) && reg == 0) | |
4561 | nextpc = pc_val + imm; | |
4562 | } | |
c906108c SS |
4563 | return nextpc; |
4564 | } | |
4565 | ||
50e98be4 | 4566 | /* Get the raw next address. PC is the current program counter, in |
18819fa6 | 4567 | FRAME, which is assumed to be executing in ARM mode. |
50e98be4 DJ |
4568 | |
4569 | The value returned has the execution state of the next instruction | |
4570 | encoded in it. Use IS_THUMB_ADDR () to see whether the instruction is | |
4571 | in Thumb-State, and gdbarch_addr_bits_remove () to get the plain memory | |
0963b4bd MS |
4572 | address. */ |
4573 | ||
50e98be4 | 4574 | static CORE_ADDR |
18819fa6 | 4575 | arm_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 4576 | { |
2af46ca0 | 4577 | struct gdbarch *gdbarch = get_frame_arch (frame); |
e17a4113 UW |
4578 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
4579 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
c906108c SS |
4580 | unsigned long pc_val; |
4581 | unsigned long this_instr; | |
4582 | unsigned long status; | |
4583 | CORE_ADDR nextpc; | |
4584 | ||
c906108c | 4585 | pc_val = (unsigned long) pc; |
e17a4113 | 4586 | this_instr = read_memory_unsigned_integer (pc, 4, byte_order_for_code); |
9d4fde75 | 4587 | |
0b1b3e42 | 4588 | status = get_frame_register_unsigned (frame, ARM_PS_REGNUM); |
c5aa993b | 4589 | nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */ |
c906108c | 4590 | |
daddc3c1 DJ |
4591 | if (bits (this_instr, 28, 31) == INST_NV) |
4592 | switch (bits (this_instr, 24, 27)) | |
4593 | { | |
4594 | case 0xa: | |
4595 | case 0xb: | |
4596 | { | |
4597 | /* Branch with Link and change to Thumb. */ | |
4598 | nextpc = BranchDest (pc, this_instr); | |
4599 | nextpc |= bit (this_instr, 24) << 1; | |
50e98be4 | 4600 | nextpc = MAKE_THUMB_ADDR (nextpc); |
daddc3c1 DJ |
4601 | break; |
4602 | } | |
4603 | case 0xc: | |
4604 | case 0xd: | |
4605 | case 0xe: | |
4606 | /* Coprocessor register transfer. */ | |
4607 | if (bits (this_instr, 12, 15) == 15) | |
4608 | error (_("Invalid update to pc in instruction")); | |
4609 | break; | |
4610 | } | |
4611 | else if (condition_true (bits (this_instr, 28, 31), status)) | |
c906108c SS |
4612 | { |
4613 | switch (bits (this_instr, 24, 27)) | |
4614 | { | |
c5aa993b | 4615 | case 0x0: |
94c30b78 | 4616 | case 0x1: /* data processing */ |
c5aa993b JM |
4617 | case 0x2: |
4618 | case 0x3: | |
c906108c SS |
4619 | { |
4620 | unsigned long operand1, operand2, result = 0; | |
4621 | unsigned long rn; | |
4622 | int c; | |
c5aa993b | 4623 | |
c906108c SS |
4624 | if (bits (this_instr, 12, 15) != 15) |
4625 | break; | |
4626 | ||
4627 | if (bits (this_instr, 22, 25) == 0 | |
c5aa993b | 4628 | && bits (this_instr, 4, 7) == 9) /* multiply */ |
edefbb7c | 4629 | error (_("Invalid update to pc in instruction")); |
c906108c | 4630 | |
9498281f | 4631 | /* BX <reg>, BLX <reg> */ |
e150acc7 PB |
4632 | if (bits (this_instr, 4, 27) == 0x12fff1 |
4633 | || bits (this_instr, 4, 27) == 0x12fff3) | |
9498281f DJ |
4634 | { |
4635 | rn = bits (this_instr, 0, 3); | |
bf9f652a YQ |
4636 | nextpc = ((rn == ARM_PC_REGNUM) |
4637 | ? (pc_val + 8) | |
4638 | : get_frame_register_unsigned (frame, rn)); | |
4639 | ||
9498281f DJ |
4640 | return nextpc; |
4641 | } | |
4642 | ||
0963b4bd | 4643 | /* Multiply into PC. */ |
c906108c SS |
4644 | c = (status & FLAG_C) ? 1 : 0; |
4645 | rn = bits (this_instr, 16, 19); | |
bf9f652a YQ |
4646 | operand1 = ((rn == ARM_PC_REGNUM) |
4647 | ? (pc_val + 8) | |
4648 | : get_frame_register_unsigned (frame, rn)); | |
c5aa993b | 4649 | |
c906108c SS |
4650 | if (bit (this_instr, 25)) |
4651 | { | |
4652 | unsigned long immval = bits (this_instr, 0, 7); | |
4653 | unsigned long rotate = 2 * bits (this_instr, 8, 11); | |
c5aa993b JM |
4654 | operand2 = ((immval >> rotate) | (immval << (32 - rotate))) |
4655 | & 0xffffffff; | |
c906108c | 4656 | } |
0963b4bd MS |
4657 | else /* operand 2 is a shifted register. */ |
4658 | operand2 = shifted_reg_val (frame, this_instr, c, | |
4659 | pc_val, status); | |
c5aa993b | 4660 | |
c906108c SS |
4661 | switch (bits (this_instr, 21, 24)) |
4662 | { | |
c5aa993b | 4663 | case 0x0: /*and */ |
c906108c SS |
4664 | result = operand1 & operand2; |
4665 | break; | |
4666 | ||
c5aa993b | 4667 | case 0x1: /*eor */ |
c906108c SS |
4668 | result = operand1 ^ operand2; |
4669 | break; | |
4670 | ||
c5aa993b | 4671 | case 0x2: /*sub */ |
c906108c SS |
4672 | result = operand1 - operand2; |
4673 | break; | |
4674 | ||
c5aa993b | 4675 | case 0x3: /*rsb */ |
c906108c SS |
4676 | result = operand2 - operand1; |
4677 | break; | |
4678 | ||
c5aa993b | 4679 | case 0x4: /*add */ |
c906108c SS |
4680 | result = operand1 + operand2; |
4681 | break; | |
4682 | ||
c5aa993b | 4683 | case 0x5: /*adc */ |
c906108c SS |
4684 | result = operand1 + operand2 + c; |
4685 | break; | |
4686 | ||
c5aa993b | 4687 | case 0x6: /*sbc */ |
c906108c SS |
4688 | result = operand1 - operand2 + c; |
4689 | break; | |
4690 | ||
c5aa993b | 4691 | case 0x7: /*rsc */ |
c906108c SS |
4692 | result = operand2 - operand1 + c; |
4693 | break; | |
4694 | ||
c5aa993b JM |
4695 | case 0x8: |
4696 | case 0x9: | |
4697 | case 0xa: | |
4698 | case 0xb: /* tst, teq, cmp, cmn */ | |
c906108c SS |
4699 | result = (unsigned long) nextpc; |
4700 | break; | |
4701 | ||
c5aa993b | 4702 | case 0xc: /*orr */ |
c906108c SS |
4703 | result = operand1 | operand2; |
4704 | break; | |
4705 | ||
c5aa993b | 4706 | case 0xd: /*mov */ |
c906108c SS |
4707 | /* Always step into a function. */ |
4708 | result = operand2; | |
c5aa993b | 4709 | break; |
c906108c | 4710 | |
c5aa993b | 4711 | case 0xe: /*bic */ |
c906108c SS |
4712 | result = operand1 & ~operand2; |
4713 | break; | |
4714 | ||
c5aa993b | 4715 | case 0xf: /*mvn */ |
c906108c SS |
4716 | result = ~operand2; |
4717 | break; | |
4718 | } | |
c906108c | 4719 | |
50e98be4 DJ |
4720 | /* In 26-bit APCS the bottom two bits of the result are |
4721 | ignored, and we always end up in ARM state. */ | |
4722 | if (!arm_apcs_32) | |
4723 | nextpc = arm_addr_bits_remove (gdbarch, result); | |
4724 | else | |
4725 | nextpc = result; | |
4726 | ||
c906108c SS |
4727 | break; |
4728 | } | |
c5aa993b JM |
4729 | |
4730 | case 0x4: | |
4731 | case 0x5: /* data transfer */ | |
4732 | case 0x6: | |
4733 | case 0x7: | |
c906108c SS |
4734 | if (bit (this_instr, 20)) |
4735 | { | |
4736 | /* load */ | |
4737 | if (bits (this_instr, 12, 15) == 15) | |
4738 | { | |
4739 | /* rd == pc */ | |
c5aa993b | 4740 | unsigned long rn; |
c906108c | 4741 | unsigned long base; |
c5aa993b | 4742 | |
c906108c | 4743 | if (bit (this_instr, 22)) |
edefbb7c | 4744 | error (_("Invalid update to pc in instruction")); |
c906108c SS |
4745 | |
4746 | /* byte write to PC */ | |
4747 | rn = bits (this_instr, 16, 19); | |
bf9f652a YQ |
4748 | base = ((rn == ARM_PC_REGNUM) |
4749 | ? (pc_val + 8) | |
4750 | : get_frame_register_unsigned (frame, rn)); | |
4751 | ||
c906108c SS |
4752 | if (bit (this_instr, 24)) |
4753 | { | |
4754 | /* pre-indexed */ | |
4755 | int c = (status & FLAG_C) ? 1 : 0; | |
4756 | unsigned long offset = | |
c5aa993b | 4757 | (bit (this_instr, 25) |
0b1b3e42 | 4758 | ? shifted_reg_val (frame, this_instr, c, pc_val, status) |
c5aa993b | 4759 | : bits (this_instr, 0, 11)); |
c906108c SS |
4760 | |
4761 | if (bit (this_instr, 23)) | |
4762 | base += offset; | |
4763 | else | |
4764 | base -= offset; | |
4765 | } | |
51370a33 YQ |
4766 | nextpc = |
4767 | (CORE_ADDR) read_memory_unsigned_integer ((CORE_ADDR) base, | |
4768 | 4, byte_order); | |
c906108c SS |
4769 | } |
4770 | } | |
4771 | break; | |
c5aa993b JM |
4772 | |
4773 | case 0x8: | |
4774 | case 0x9: /* block transfer */ | |
c906108c SS |
4775 | if (bit (this_instr, 20)) |
4776 | { | |
4777 | /* LDM */ | |
4778 | if (bit (this_instr, 15)) | |
4779 | { | |
4780 | /* loading pc */ | |
4781 | int offset = 0; | |
51370a33 YQ |
4782 | unsigned long rn_val |
4783 | = get_frame_register_unsigned (frame, | |
4784 | bits (this_instr, 16, 19)); | |
c906108c SS |
4785 | |
4786 | if (bit (this_instr, 23)) | |
4787 | { | |
4788 | /* up */ | |
4789 | unsigned long reglist = bits (this_instr, 0, 14); | |
4790 | offset = bitcount (reglist) * 4; | |
c5aa993b | 4791 | if (bit (this_instr, 24)) /* pre */ |
c906108c SS |
4792 | offset += 4; |
4793 | } | |
4794 | else if (bit (this_instr, 24)) | |
4795 | offset = -4; | |
c5aa993b | 4796 | |
51370a33 YQ |
4797 | nextpc = |
4798 | (CORE_ADDR) read_memory_unsigned_integer ((CORE_ADDR) | |
4799 | (rn_val + offset), | |
4800 | 4, byte_order); | |
c906108c SS |
4801 | } |
4802 | } | |
4803 | break; | |
c5aa993b JM |
4804 | |
4805 | case 0xb: /* branch & link */ | |
4806 | case 0xa: /* branch */ | |
c906108c SS |
4807 | { |
4808 | nextpc = BranchDest (pc, this_instr); | |
c906108c SS |
4809 | break; |
4810 | } | |
c5aa993b JM |
4811 | |
4812 | case 0xc: | |
4813 | case 0xd: | |
4814 | case 0xe: /* coproc ops */ | |
25b41d01 | 4815 | break; |
c5aa993b | 4816 | case 0xf: /* SWI */ |
25b41d01 YQ |
4817 | { |
4818 | struct gdbarch_tdep *tdep; | |
4819 | tdep = gdbarch_tdep (gdbarch); | |
4820 | ||
4821 | if (tdep->syscall_next_pc != NULL) | |
4822 | nextpc = tdep->syscall_next_pc (frame); | |
4823 | ||
4824 | } | |
c906108c SS |
4825 | break; |
4826 | ||
4827 | default: | |
edefbb7c | 4828 | fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n")); |
c906108c SS |
4829 | return (pc); |
4830 | } | |
4831 | } | |
4832 | ||
4833 | return nextpc; | |
4834 | } | |
4835 | ||
18819fa6 UW |
4836 | /* Determine next PC after current instruction executes. Will call either |
4837 | arm_get_next_pc_raw or thumb_get_next_pc_raw. Error out if infinite | |
4838 | loop is detected. */ | |
4839 | ||
50e98be4 DJ |
4840 | CORE_ADDR |
4841 | arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc) | |
4842 | { | |
18819fa6 UW |
4843 | CORE_ADDR nextpc; |
4844 | ||
4845 | if (arm_frame_is_thumb (frame)) | |
4846 | { | |
4847 | nextpc = thumb_get_next_pc_raw (frame, pc); | |
4848 | if (nextpc == MAKE_THUMB_ADDR (pc)) | |
4849 | error (_("Infinite loop detected")); | |
4850 | } | |
4851 | else | |
4852 | { | |
4853 | nextpc = arm_get_next_pc_raw (frame, pc); | |
4854 | if (nextpc == pc) | |
4855 | error (_("Infinite loop detected")); | |
4856 | } | |
4857 | ||
50e98be4 DJ |
4858 | return nextpc; |
4859 | } | |
4860 | ||
18819fa6 UW |
4861 | /* Like insert_single_step_breakpoint, but make sure we use a breakpoint |
4862 | of the appropriate mode (as encoded in the PC value), even if this | |
4863 | differs from what would be expected according to the symbol tables. */ | |
4864 | ||
4865 | void | |
4866 | arm_insert_single_step_breakpoint (struct gdbarch *gdbarch, | |
4867 | struct address_space *aspace, | |
4868 | CORE_ADDR pc) | |
4869 | { | |
4870 | struct cleanup *old_chain | |
4871 | = make_cleanup_restore_integer (&arm_override_mode); | |
4872 | ||
4873 | arm_override_mode = IS_THUMB_ADDR (pc); | |
4874 | pc = gdbarch_addr_bits_remove (gdbarch, pc); | |
4875 | ||
4876 | insert_single_step_breakpoint (gdbarch, aspace, pc); | |
4877 | ||
4878 | do_cleanups (old_chain); | |
4879 | } | |
4880 | ||
35f73cfc UW |
4881 | /* Checks for an atomic sequence of instructions beginning with a LDREX{,B,H,D} |
4882 | instruction and ending with a STREX{,B,H,D} instruction. If such a sequence | |
4883 | is found, attempt to step through it. A breakpoint is placed at the end of | |
4884 | the sequence. */ | |
4885 | ||
4886 | static int | |
4887 | thumb_deal_with_atomic_sequence_raw (struct frame_info *frame) | |
4888 | { | |
4889 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
4890 | struct address_space *aspace = get_frame_address_space (frame); | |
4891 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
4892 | CORE_ADDR pc = get_frame_pc (frame); | |
4893 | CORE_ADDR breaks[2] = {-1, -1}; | |
4894 | CORE_ADDR loc = pc; | |
4895 | unsigned short insn1, insn2; | |
4896 | int insn_count; | |
4897 | int index; | |
4898 | int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */ | |
4899 | const int atomic_sequence_length = 16; /* Instruction sequence length. */ | |
4900 | ULONGEST status, itstate; | |
4901 | ||
4902 | /* We currently do not support atomic sequences within an IT block. */ | |
4903 | status = get_frame_register_unsigned (frame, ARM_PS_REGNUM); | |
4904 | itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3); | |
4905 | if (itstate & 0x0f) | |
4906 | return 0; | |
4907 | ||
4908 | /* Assume all atomic sequences start with a ldrex{,b,h,d} instruction. */ | |
4909 | insn1 = read_memory_unsigned_integer (loc, 2, byte_order_for_code); | |
4910 | loc += 2; | |
4911 | if (thumb_insn_size (insn1) != 4) | |
4912 | return 0; | |
4913 | ||
4914 | insn2 = read_memory_unsigned_integer (loc, 2, byte_order_for_code); | |
4915 | loc += 2; | |
4916 | if (!((insn1 & 0xfff0) == 0xe850 | |
4917 | || ((insn1 & 0xfff0) == 0xe8d0 && (insn2 & 0x00c0) == 0x0040))) | |
4918 | return 0; | |
4919 | ||
4920 | /* Assume that no atomic sequence is longer than "atomic_sequence_length" | |
4921 | instructions. */ | |
4922 | for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count) | |
4923 | { | |
4924 | insn1 = read_memory_unsigned_integer (loc, 2, byte_order_for_code); | |
4925 | loc += 2; | |
4926 | ||
4927 | if (thumb_insn_size (insn1) != 4) | |
4928 | { | |
4929 | /* Assume that there is at most one conditional branch in the | |
4930 | atomic sequence. If a conditional branch is found, put a | |
4931 | breakpoint in its destination address. */ | |
4932 | if ((insn1 & 0xf000) == 0xd000 && bits (insn1, 8, 11) != 0x0f) | |
4933 | { | |
4934 | if (last_breakpoint > 0) | |
4935 | return 0; /* More than one conditional branch found, | |
4936 | fallback to the standard code. */ | |
4937 | ||
4938 | breaks[1] = loc + 2 + (sbits (insn1, 0, 7) << 1); | |
4939 | last_breakpoint++; | |
4940 | } | |
4941 | ||
4942 | /* We do not support atomic sequences that use any *other* | |
4943 | instructions but conditional branches to change the PC. | |
4944 | Fall back to standard code to avoid losing control of | |
4945 | execution. */ | |
4946 | else if (thumb_instruction_changes_pc (insn1)) | |
4947 | return 0; | |
4948 | } | |
4949 | else | |
4950 | { | |
4951 | insn2 = read_memory_unsigned_integer (loc, 2, byte_order_for_code); | |
4952 | loc += 2; | |
4953 | ||
4954 | /* Assume that there is at most one conditional branch in the | |
4955 | atomic sequence. If a conditional branch is found, put a | |
4956 | breakpoint in its destination address. */ | |
4957 | if ((insn1 & 0xf800) == 0xf000 | |
4958 | && (insn2 & 0xd000) == 0x8000 | |
4959 | && (insn1 & 0x0380) != 0x0380) | |
4960 | { | |
4961 | int sign, j1, j2, imm1, imm2; | |
4962 | unsigned int offset; | |
4963 | ||
4964 | sign = sbits (insn1, 10, 10); | |
4965 | imm1 = bits (insn1, 0, 5); | |
4966 | imm2 = bits (insn2, 0, 10); | |
4967 | j1 = bit (insn2, 13); | |
4968 | j2 = bit (insn2, 11); | |
4969 | ||
4970 | offset = (sign << 20) + (j2 << 19) + (j1 << 18); | |
4971 | offset += (imm1 << 12) + (imm2 << 1); | |
4972 | ||
4973 | if (last_breakpoint > 0) | |
4974 | return 0; /* More than one conditional branch found, | |
4975 | fallback to the standard code. */ | |
4976 | ||
4977 | breaks[1] = loc + offset; | |
4978 | last_breakpoint++; | |
4979 | } | |
4980 | ||
4981 | /* We do not support atomic sequences that use any *other* | |
4982 | instructions but conditional branches to change the PC. | |
4983 | Fall back to standard code to avoid losing control of | |
4984 | execution. */ | |
4985 | else if (thumb2_instruction_changes_pc (insn1, insn2)) | |
4986 | return 0; | |
4987 | ||
4988 | /* If we find a strex{,b,h,d}, we're done. */ | |
4989 | if ((insn1 & 0xfff0) == 0xe840 | |
4990 | || ((insn1 & 0xfff0) == 0xe8c0 && (insn2 & 0x00c0) == 0x0040)) | |
4991 | break; | |
4992 | } | |
4993 | } | |
4994 | ||
4995 | /* If we didn't find the strex{,b,h,d}, we cannot handle the sequence. */ | |
4996 | if (insn_count == atomic_sequence_length) | |
4997 | return 0; | |
4998 | ||
4999 | /* Insert a breakpoint right after the end of the atomic sequence. */ | |
5000 | breaks[0] = loc; | |
5001 | ||
5002 | /* Check for duplicated breakpoints. Check also for a breakpoint | |
5003 | placed (branch instruction's destination) anywhere in sequence. */ | |
5004 | if (last_breakpoint | |
5005 | && (breaks[1] == breaks[0] | |
5006 | || (breaks[1] >= pc && breaks[1] < loc))) | |
5007 | last_breakpoint = 0; | |
5008 | ||
5009 | /* Effectively inserts the breakpoints. */ | |
5010 | for (index = 0; index <= last_breakpoint; index++) | |
5011 | arm_insert_single_step_breakpoint (gdbarch, aspace, | |
5012 | MAKE_THUMB_ADDR (breaks[index])); | |
5013 | ||
5014 | return 1; | |
5015 | } | |
5016 | ||
5017 | static int | |
5018 | arm_deal_with_atomic_sequence_raw (struct frame_info *frame) | |
5019 | { | |
5020 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
5021 | struct address_space *aspace = get_frame_address_space (frame); | |
5022 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
5023 | CORE_ADDR pc = get_frame_pc (frame); | |
5024 | CORE_ADDR breaks[2] = {-1, -1}; | |
5025 | CORE_ADDR loc = pc; | |
5026 | unsigned int insn; | |
5027 | int insn_count; | |
5028 | int index; | |
5029 | int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */ | |
5030 | const int atomic_sequence_length = 16; /* Instruction sequence length. */ | |
5031 | ||
5032 | /* Assume all atomic sequences start with a ldrex{,b,h,d} instruction. | |
5033 | Note that we do not currently support conditionally executed atomic | |
5034 | instructions. */ | |
5035 | insn = read_memory_unsigned_integer (loc, 4, byte_order_for_code); | |
5036 | loc += 4; | |
5037 | if ((insn & 0xff9000f0) != 0xe1900090) | |
5038 | return 0; | |
5039 | ||
5040 | /* Assume that no atomic sequence is longer than "atomic_sequence_length" | |
5041 | instructions. */ | |
5042 | for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count) | |
5043 | { | |
5044 | insn = read_memory_unsigned_integer (loc, 4, byte_order_for_code); | |
5045 | loc += 4; | |
5046 | ||
5047 | /* Assume that there is at most one conditional branch in the atomic | |
5048 | sequence. If a conditional branch is found, put a breakpoint in | |
5049 | its destination address. */ | |
5050 | if (bits (insn, 24, 27) == 0xa) | |
5051 | { | |
5052 | if (last_breakpoint > 0) | |
5053 | return 0; /* More than one conditional branch found, fallback | |
5054 | to the standard single-step code. */ | |
5055 | ||
5056 | breaks[1] = BranchDest (loc - 4, insn); | |
5057 | last_breakpoint++; | |
5058 | } | |
5059 | ||
5060 | /* We do not support atomic sequences that use any *other* instructions | |
5061 | but conditional branches to change the PC. Fall back to standard | |
5062 | code to avoid losing control of execution. */ | |
5063 | else if (arm_instruction_changes_pc (insn)) | |
5064 | return 0; | |
5065 | ||
5066 | /* If we find a strex{,b,h,d}, we're done. */ | |
5067 | if ((insn & 0xff9000f0) == 0xe1800090) | |
5068 | break; | |
5069 | } | |
5070 | ||
5071 | /* If we didn't find the strex{,b,h,d}, we cannot handle the sequence. */ | |
5072 | if (insn_count == atomic_sequence_length) | |
5073 | return 0; | |
5074 | ||
5075 | /* Insert a breakpoint right after the end of the atomic sequence. */ | |
5076 | breaks[0] = loc; | |
5077 | ||
5078 | /* Check for duplicated breakpoints. Check also for a breakpoint | |
5079 | placed (branch instruction's destination) anywhere in sequence. */ | |
5080 | if (last_breakpoint | |
5081 | && (breaks[1] == breaks[0] | |
5082 | || (breaks[1] >= pc && breaks[1] < loc))) | |
5083 | last_breakpoint = 0; | |
5084 | ||
5085 | /* Effectively inserts the breakpoints. */ | |
5086 | for (index = 0; index <= last_breakpoint; index++) | |
5087 | arm_insert_single_step_breakpoint (gdbarch, aspace, breaks[index]); | |
5088 | ||
5089 | return 1; | |
5090 | } | |
5091 | ||
5092 | int | |
5093 | arm_deal_with_atomic_sequence (struct frame_info *frame) | |
5094 | { | |
5095 | if (arm_frame_is_thumb (frame)) | |
5096 | return thumb_deal_with_atomic_sequence_raw (frame); | |
5097 | else | |
5098 | return arm_deal_with_atomic_sequence_raw (frame); | |
5099 | } | |
5100 | ||
9512d7fd FN |
5101 | /* single_step() is called just before we want to resume the inferior, |
5102 | if we want to single-step it but there is no hardware or kernel | |
5103 | single-step support. We find the target of the coming instruction | |
e0cd558a | 5104 | and breakpoint it. */ |
9512d7fd | 5105 | |
190dce09 | 5106 | int |
0b1b3e42 | 5107 | arm_software_single_step (struct frame_info *frame) |
9512d7fd | 5108 | { |
a6d9a66e | 5109 | struct gdbarch *gdbarch = get_frame_arch (frame); |
6c95b8df | 5110 | struct address_space *aspace = get_frame_address_space (frame); |
35f73cfc UW |
5111 | CORE_ADDR next_pc; |
5112 | ||
5113 | if (arm_deal_with_atomic_sequence (frame)) | |
5114 | return 1; | |
18819fa6 | 5115 | |
35f73cfc | 5116 | next_pc = arm_get_next_pc (frame, get_frame_pc (frame)); |
18819fa6 | 5117 | arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc); |
e6590a1b UW |
5118 | |
5119 | return 1; | |
9512d7fd | 5120 | } |
9512d7fd | 5121 | |
f9d67f43 DJ |
5122 | /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand |
5123 | the buffer to be NEW_LEN bytes ending at ENDADDR. Return | |
5124 | NULL if an error occurs. BUF is freed. */ | |
5125 | ||
5126 | static gdb_byte * | |
5127 | extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr, | |
5128 | int old_len, int new_len) | |
5129 | { | |
5130 | gdb_byte *new_buf, *middle; | |
5131 | int bytes_to_read = new_len - old_len; | |
5132 | ||
5133 | new_buf = xmalloc (new_len); | |
5134 | memcpy (new_buf + bytes_to_read, buf, old_len); | |
5135 | xfree (buf); | |
5136 | if (target_read_memory (endaddr - new_len, new_buf, bytes_to_read) != 0) | |
5137 | { | |
5138 | xfree (new_buf); | |
5139 | return NULL; | |
5140 | } | |
5141 | return new_buf; | |
5142 | } | |
5143 | ||
5144 | /* An IT block is at most the 2-byte IT instruction followed by | |
5145 | four 4-byte instructions. The furthest back we must search to | |
5146 | find an IT block that affects the current instruction is thus | |
5147 | 2 + 3 * 4 == 14 bytes. */ | |
5148 | #define MAX_IT_BLOCK_PREFIX 14 | |
5149 | ||
5150 | /* Use a quick scan if there are more than this many bytes of | |
5151 | code. */ | |
5152 | #define IT_SCAN_THRESHOLD 32 | |
5153 | ||
5154 | /* Adjust a breakpoint's address to move breakpoints out of IT blocks. | |
5155 | A breakpoint in an IT block may not be hit, depending on the | |
5156 | condition flags. */ | |
5157 | static CORE_ADDR | |
5158 | arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr) | |
5159 | { | |
5160 | gdb_byte *buf; | |
5161 | char map_type; | |
5162 | CORE_ADDR boundary, func_start; | |
5163 | int buf_len, buf2_len; | |
5164 | enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch); | |
5165 | int i, any, last_it, last_it_count; | |
5166 | ||
5167 | /* If we are using BKPT breakpoints, none of this is necessary. */ | |
5168 | if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL) | |
5169 | return bpaddr; | |
5170 | ||
5171 | /* ARM mode does not have this problem. */ | |
9779414d | 5172 | if (!arm_pc_is_thumb (gdbarch, bpaddr)) |
f9d67f43 DJ |
5173 | return bpaddr; |
5174 | ||
5175 | /* We are setting a breakpoint in Thumb code that could potentially | |
5176 | contain an IT block. The first step is to find how much Thumb | |
5177 | code there is; we do not need to read outside of known Thumb | |
5178 | sequences. */ | |
5179 | map_type = arm_find_mapping_symbol (bpaddr, &boundary); | |
5180 | if (map_type == 0) | |
5181 | /* Thumb-2 code must have mapping symbols to have a chance. */ | |
5182 | return bpaddr; | |
5183 | ||
5184 | bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr); | |
5185 | ||
5186 | if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL) | |
5187 | && func_start > boundary) | |
5188 | boundary = func_start; | |
5189 | ||
5190 | /* Search for a candidate IT instruction. We have to do some fancy | |
5191 | footwork to distinguish a real IT instruction from the second | |
5192 | half of a 32-bit instruction, but there is no need for that if | |
5193 | there's no candidate. */ | |
5194 | buf_len = min (bpaddr - boundary, MAX_IT_BLOCK_PREFIX); | |
5195 | if (buf_len == 0) | |
5196 | /* No room for an IT instruction. */ | |
5197 | return bpaddr; | |
5198 | ||
5199 | buf = xmalloc (buf_len); | |
5200 | if (target_read_memory (bpaddr - buf_len, buf, buf_len) != 0) | |
5201 | return bpaddr; | |
5202 | any = 0; | |
5203 | for (i = 0; i < buf_len; i += 2) | |
5204 | { | |
5205 | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | |
5206 | if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) | |
5207 | { | |
5208 | any = 1; | |
5209 | break; | |
5210 | } | |
5211 | } | |
5212 | if (any == 0) | |
5213 | { | |
5214 | xfree (buf); | |
5215 | return bpaddr; | |
5216 | } | |
5217 | ||
5218 | /* OK, the code bytes before this instruction contain at least one | |
5219 | halfword which resembles an IT instruction. We know that it's | |
5220 | Thumb code, but there are still two possibilities. Either the | |
5221 | halfword really is an IT instruction, or it is the second half of | |
5222 | a 32-bit Thumb instruction. The only way we can tell is to | |
5223 | scan forwards from a known instruction boundary. */ | |
5224 | if (bpaddr - boundary > IT_SCAN_THRESHOLD) | |
5225 | { | |
5226 | int definite; | |
5227 | ||
5228 | /* There's a lot of code before this instruction. Start with an | |
5229 | optimistic search; it's easy to recognize halfwords that can | |
5230 | not be the start of a 32-bit instruction, and use that to | |
5231 | lock on to the instruction boundaries. */ | |
5232 | buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD); | |
5233 | if (buf == NULL) | |
5234 | return bpaddr; | |
5235 | buf_len = IT_SCAN_THRESHOLD; | |
5236 | ||
5237 | definite = 0; | |
5238 | for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2) | |
5239 | { | |
5240 | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | |
5241 | if (thumb_insn_size (inst1) == 2) | |
5242 | { | |
5243 | definite = 1; | |
5244 | break; | |
5245 | } | |
5246 | } | |
5247 | ||
5248 | /* At this point, if DEFINITE, BUF[I] is the first place we | |
5249 | are sure that we know the instruction boundaries, and it is far | |
5250 | enough from BPADDR that we could not miss an IT instruction | |
5251 | affecting BPADDR. If ! DEFINITE, give up - start from a | |
5252 | known boundary. */ | |
5253 | if (! definite) | |
5254 | { | |
0963b4bd MS |
5255 | buf = extend_buffer_earlier (buf, bpaddr, buf_len, |
5256 | bpaddr - boundary); | |
f9d67f43 DJ |
5257 | if (buf == NULL) |
5258 | return bpaddr; | |
5259 | buf_len = bpaddr - boundary; | |
5260 | i = 0; | |
5261 | } | |
5262 | } | |
5263 | else | |
5264 | { | |
5265 | buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary); | |
5266 | if (buf == NULL) | |
5267 | return bpaddr; | |
5268 | buf_len = bpaddr - boundary; | |
5269 | i = 0; | |
5270 | } | |
5271 | ||
5272 | /* Scan forwards. Find the last IT instruction before BPADDR. */ | |
5273 | last_it = -1; | |
5274 | last_it_count = 0; | |
5275 | while (i < buf_len) | |
5276 | { | |
5277 | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | |
5278 | last_it_count--; | |
5279 | if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) | |
5280 | { | |
5281 | last_it = i; | |
5282 | if (inst1 & 0x0001) | |
5283 | last_it_count = 4; | |
5284 | else if (inst1 & 0x0002) | |
5285 | last_it_count = 3; | |
5286 | else if (inst1 & 0x0004) | |
5287 | last_it_count = 2; | |
5288 | else | |
5289 | last_it_count = 1; | |
5290 | } | |
5291 | i += thumb_insn_size (inst1); | |
5292 | } | |
5293 | ||
5294 | xfree (buf); | |
5295 | ||
5296 | if (last_it == -1) | |
5297 | /* There wasn't really an IT instruction after all. */ | |
5298 | return bpaddr; | |
5299 | ||
5300 | if (last_it_count < 1) | |
5301 | /* It was too far away. */ | |
5302 | return bpaddr; | |
5303 | ||
5304 | /* This really is a trouble spot. Move the breakpoint to the IT | |
5305 | instruction. */ | |
5306 | return bpaddr - buf_len + last_it; | |
5307 | } | |
5308 | ||
cca44b1b | 5309 | /* ARM displaced stepping support. |
c906108c | 5310 | |
cca44b1b | 5311 | Generally ARM displaced stepping works as follows: |
c906108c | 5312 | |
cca44b1b JB |
5313 | 1. When an instruction is to be single-stepped, it is first decoded by |
5314 | arm_process_displaced_insn (called from arm_displaced_step_copy_insn). | |
5315 | Depending on the type of instruction, it is then copied to a scratch | |
5316 | location, possibly in a modified form. The copy_* set of functions | |
0963b4bd | 5317 | performs such modification, as necessary. A breakpoint is placed after |
cca44b1b JB |
5318 | the modified instruction in the scratch space to return control to GDB. |
5319 | Note in particular that instructions which modify the PC will no longer | |
5320 | do so after modification. | |
c5aa993b | 5321 | |
cca44b1b JB |
5322 | 2. The instruction is single-stepped, by setting the PC to the scratch |
5323 | location address, and resuming. Control returns to GDB when the | |
5324 | breakpoint is hit. | |
c5aa993b | 5325 | |
cca44b1b JB |
5326 | 3. A cleanup function (cleanup_*) is called corresponding to the copy_* |
5327 | function used for the current instruction. This function's job is to | |
5328 | put the CPU/memory state back to what it would have been if the | |
5329 | instruction had been executed unmodified in its original location. */ | |
c5aa993b | 5330 | |
cca44b1b JB |
5331 | /* NOP instruction (mov r0, r0). */ |
5332 | #define ARM_NOP 0xe1a00000 | |
34518530 | 5333 | #define THUMB_NOP 0x4600 |
cca44b1b JB |
5334 | |
5335 | /* Helper for register reads for displaced stepping. In particular, this | |
5336 | returns the PC as it would be seen by the instruction at its original | |
5337 | location. */ | |
5338 | ||
5339 | ULONGEST | |
36073a92 YQ |
5340 | displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc, |
5341 | int regno) | |
cca44b1b JB |
5342 | { |
5343 | ULONGEST ret; | |
36073a92 | 5344 | CORE_ADDR from = dsc->insn_addr; |
cca44b1b | 5345 | |
bf9f652a | 5346 | if (regno == ARM_PC_REGNUM) |
cca44b1b | 5347 | { |
4db71c0b YQ |
5348 | /* Compute pipeline offset: |
5349 | - When executing an ARM instruction, PC reads as the address of the | |
5350 | current instruction plus 8. | |
5351 | - When executing a Thumb instruction, PC reads as the address of the | |
5352 | current instruction plus 4. */ | |
5353 | ||
36073a92 | 5354 | if (!dsc->is_thumb) |
4db71c0b YQ |
5355 | from += 8; |
5356 | else | |
5357 | from += 4; | |
5358 | ||
cca44b1b JB |
5359 | if (debug_displaced) |
5360 | fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n", | |
4db71c0b YQ |
5361 | (unsigned long) from); |
5362 | return (ULONGEST) from; | |
cca44b1b | 5363 | } |
c906108c | 5364 | else |
cca44b1b JB |
5365 | { |
5366 | regcache_cooked_read_unsigned (regs, regno, &ret); | |
5367 | if (debug_displaced) | |
5368 | fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n", | |
5369 | regno, (unsigned long) ret); | |
5370 | return ret; | |
5371 | } | |
c906108c SS |
5372 | } |
5373 | ||
cca44b1b JB |
5374 | static int |
5375 | displaced_in_arm_mode (struct regcache *regs) | |
5376 | { | |
5377 | ULONGEST ps; | |
9779414d | 5378 | ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs)); |
66e810cd | 5379 | |
cca44b1b | 5380 | regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); |
66e810cd | 5381 | |
9779414d | 5382 | return (ps & t_bit) == 0; |
cca44b1b | 5383 | } |
66e810cd | 5384 | |
cca44b1b | 5385 | /* Write to the PC as from a branch instruction. */ |
c906108c | 5386 | |
cca44b1b | 5387 | static void |
36073a92 YQ |
5388 | branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc, |
5389 | ULONGEST val) | |
c906108c | 5390 | { |
36073a92 | 5391 | if (!dsc->is_thumb) |
cca44b1b JB |
5392 | /* Note: If bits 0/1 are set, this branch would be unpredictable for |
5393 | architecture versions < 6. */ | |
0963b4bd MS |
5394 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
5395 | val & ~(ULONGEST) 0x3); | |
cca44b1b | 5396 | else |
0963b4bd MS |
5397 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
5398 | val & ~(ULONGEST) 0x1); | |
cca44b1b | 5399 | } |
66e810cd | 5400 | |
cca44b1b JB |
5401 | /* Write to the PC as from a branch-exchange instruction. */ |
5402 | ||
5403 | static void | |
5404 | bx_write_pc (struct regcache *regs, ULONGEST val) | |
5405 | { | |
5406 | ULONGEST ps; | |
9779414d | 5407 | ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs)); |
cca44b1b JB |
5408 | |
5409 | regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); | |
5410 | ||
5411 | if ((val & 1) == 1) | |
c906108c | 5412 | { |
9779414d | 5413 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit); |
cca44b1b JB |
5414 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe); |
5415 | } | |
5416 | else if ((val & 2) == 0) | |
5417 | { | |
9779414d | 5418 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit); |
cca44b1b | 5419 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val); |
c906108c SS |
5420 | } |
5421 | else | |
5422 | { | |
cca44b1b JB |
5423 | /* Unpredictable behaviour. Try to do something sensible (switch to ARM |
5424 | mode, align dest to 4 bytes). */ | |
5425 | warning (_("Single-stepping BX to non-word-aligned ARM instruction.")); | |
9779414d | 5426 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit); |
cca44b1b | 5427 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc); |
c906108c SS |
5428 | } |
5429 | } | |
ed9a39eb | 5430 | |
cca44b1b | 5431 | /* Write to the PC as if from a load instruction. */ |
ed9a39eb | 5432 | |
34e8f22d | 5433 | static void |
36073a92 YQ |
5434 | load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc, |
5435 | ULONGEST val) | |
ed9a39eb | 5436 | { |
cca44b1b JB |
5437 | if (DISPLACED_STEPPING_ARCH_VERSION >= 5) |
5438 | bx_write_pc (regs, val); | |
5439 | else | |
36073a92 | 5440 | branch_write_pc (regs, dsc, val); |
cca44b1b | 5441 | } |
be8626e0 | 5442 | |
cca44b1b JB |
5443 | /* Write to the PC as if from an ALU instruction. */ |
5444 | ||
5445 | static void | |
36073a92 YQ |
5446 | alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc, |
5447 | ULONGEST val) | |
cca44b1b | 5448 | { |
36073a92 | 5449 | if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb) |
cca44b1b JB |
5450 | bx_write_pc (regs, val); |
5451 | else | |
36073a92 | 5452 | branch_write_pc (regs, dsc, val); |
cca44b1b JB |
5453 | } |
5454 | ||
5455 | /* Helper for writing to registers for displaced stepping. Writing to the PC | |
5456 | has a varying effects depending on the instruction which does the write: | |
5457 | this is controlled by the WRITE_PC argument. */ | |
5458 | ||
5459 | void | |
5460 | displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc, | |
5461 | int regno, ULONGEST val, enum pc_write_style write_pc) | |
5462 | { | |
bf9f652a | 5463 | if (regno == ARM_PC_REGNUM) |
08216dd7 | 5464 | { |
cca44b1b JB |
5465 | if (debug_displaced) |
5466 | fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n", | |
5467 | (unsigned long) val); | |
5468 | switch (write_pc) | |
08216dd7 | 5469 | { |
cca44b1b | 5470 | case BRANCH_WRITE_PC: |
36073a92 | 5471 | branch_write_pc (regs, dsc, val); |
08216dd7 RE |
5472 | break; |
5473 | ||
cca44b1b JB |
5474 | case BX_WRITE_PC: |
5475 | bx_write_pc (regs, val); | |
5476 | break; | |
5477 | ||
5478 | case LOAD_WRITE_PC: | |
36073a92 | 5479 | load_write_pc (regs, dsc, val); |
cca44b1b JB |
5480 | break; |
5481 | ||
5482 | case ALU_WRITE_PC: | |
36073a92 | 5483 | alu_write_pc (regs, dsc, val); |
cca44b1b JB |
5484 | break; |
5485 | ||
5486 | case CANNOT_WRITE_PC: | |
5487 | warning (_("Instruction wrote to PC in an unexpected way when " | |
5488 | "single-stepping")); | |
08216dd7 RE |
5489 | break; |
5490 | ||
5491 | default: | |
97b9747c JB |
5492 | internal_error (__FILE__, __LINE__, |
5493 | _("Invalid argument to displaced_write_reg")); | |
08216dd7 | 5494 | } |
b508a996 | 5495 | |
cca44b1b | 5496 | dsc->wrote_to_pc = 1; |
b508a996 | 5497 | } |
ed9a39eb | 5498 | else |
b508a996 | 5499 | { |
cca44b1b JB |
5500 | if (debug_displaced) |
5501 | fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n", | |
5502 | regno, (unsigned long) val); | |
5503 | regcache_cooked_write_unsigned (regs, regno, val); | |
b508a996 | 5504 | } |
34e8f22d RE |
5505 | } |
5506 | ||
cca44b1b JB |
5507 | /* This function is used to concisely determine if an instruction INSN |
5508 | references PC. Register fields of interest in INSN should have the | |
0963b4bd MS |
5509 | corresponding fields of BITMASK set to 0b1111. The function |
5510 | returns return 1 if any of these fields in INSN reference the PC | |
5511 | (also 0b1111, r15), else it returns 0. */ | |
67255d04 RE |
5512 | |
5513 | static int | |
cca44b1b | 5514 | insn_references_pc (uint32_t insn, uint32_t bitmask) |
67255d04 | 5515 | { |
cca44b1b | 5516 | uint32_t lowbit = 1; |
67255d04 | 5517 | |
cca44b1b JB |
5518 | while (bitmask != 0) |
5519 | { | |
5520 | uint32_t mask; | |
44e1a9eb | 5521 | |
cca44b1b JB |
5522 | for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1) |
5523 | ; | |
67255d04 | 5524 | |
cca44b1b JB |
5525 | if (!lowbit) |
5526 | break; | |
67255d04 | 5527 | |
cca44b1b | 5528 | mask = lowbit * 0xf; |
67255d04 | 5529 | |
cca44b1b JB |
5530 | if ((insn & mask) == mask) |
5531 | return 1; | |
5532 | ||
5533 | bitmask &= ~mask; | |
67255d04 RE |
5534 | } |
5535 | ||
cca44b1b JB |
5536 | return 0; |
5537 | } | |
2af48f68 | 5538 | |
cca44b1b JB |
5539 | /* The simplest copy function. Many instructions have the same effect no |
5540 | matter what address they are executed at: in those cases, use this. */ | |
67255d04 | 5541 | |
cca44b1b | 5542 | static int |
7ff120b4 YQ |
5543 | arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn, |
5544 | const char *iname, struct displaced_step_closure *dsc) | |
cca44b1b JB |
5545 | { |
5546 | if (debug_displaced) | |
5547 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, " | |
5548 | "opcode/class '%s' unmodified\n", (unsigned long) insn, | |
5549 | iname); | |
67255d04 | 5550 | |
cca44b1b | 5551 | dsc->modinsn[0] = insn; |
67255d04 | 5552 | |
cca44b1b JB |
5553 | return 0; |
5554 | } | |
5555 | ||
34518530 YQ |
5556 | static int |
5557 | thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1, | |
5558 | uint16_t insn2, const char *iname, | |
5559 | struct displaced_step_closure *dsc) | |
5560 | { | |
5561 | if (debug_displaced) | |
5562 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, " | |
5563 | "opcode/class '%s' unmodified\n", insn1, insn2, | |
5564 | iname); | |
5565 | ||
5566 | dsc->modinsn[0] = insn1; | |
5567 | dsc->modinsn[1] = insn2; | |
5568 | dsc->numinsns = 2; | |
5569 | ||
5570 | return 0; | |
5571 | } | |
5572 | ||
5573 | /* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any | |
5574 | modification. */ | |
5575 | static int | |
5576 | thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, unsigned int insn, | |
5577 | const char *iname, | |
5578 | struct displaced_step_closure *dsc) | |
5579 | { | |
5580 | if (debug_displaced) | |
5581 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, " | |
5582 | "opcode/class '%s' unmodified\n", insn, | |
5583 | iname); | |
5584 | ||
5585 | dsc->modinsn[0] = insn; | |
5586 | ||
5587 | return 0; | |
5588 | } | |
5589 | ||
cca44b1b JB |
5590 | /* Preload instructions with immediate offset. */ |
5591 | ||
5592 | static void | |
6e39997a | 5593 | cleanup_preload (struct gdbarch *gdbarch, |
cca44b1b JB |
5594 | struct regcache *regs, struct displaced_step_closure *dsc) |
5595 | { | |
5596 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
5597 | if (!dsc->u.preload.immed) | |
5598 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
5599 | } | |
5600 | ||
7ff120b4 YQ |
5601 | static void |
5602 | install_preload (struct gdbarch *gdbarch, struct regcache *regs, | |
5603 | struct displaced_step_closure *dsc, unsigned int rn) | |
cca44b1b | 5604 | { |
cca44b1b | 5605 | ULONGEST rn_val; |
cca44b1b JB |
5606 | /* Preload instructions: |
5607 | ||
5608 | {pli/pld} [rn, #+/-imm] | |
5609 | -> | |
5610 | {pli/pld} [r0, #+/-imm]. */ | |
5611 | ||
36073a92 YQ |
5612 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
5613 | rn_val = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 5614 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); |
cca44b1b JB |
5615 | dsc->u.preload.immed = 1; |
5616 | ||
cca44b1b | 5617 | dsc->cleanup = &cleanup_preload; |
cca44b1b JB |
5618 | } |
5619 | ||
cca44b1b | 5620 | static int |
7ff120b4 | 5621 | arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, |
cca44b1b JB |
5622 | struct displaced_step_closure *dsc) |
5623 | { | |
5624 | unsigned int rn = bits (insn, 16, 19); | |
cca44b1b | 5625 | |
7ff120b4 YQ |
5626 | if (!insn_references_pc (insn, 0x000f0000ul)) |
5627 | return arm_copy_unmodified (gdbarch, insn, "preload", dsc); | |
cca44b1b JB |
5628 | |
5629 | if (debug_displaced) | |
5630 | fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n", | |
5631 | (unsigned long) insn); | |
5632 | ||
7ff120b4 YQ |
5633 | dsc->modinsn[0] = insn & 0xfff0ffff; |
5634 | ||
5635 | install_preload (gdbarch, regs, dsc, rn); | |
5636 | ||
5637 | return 0; | |
5638 | } | |
5639 | ||
34518530 YQ |
5640 | static int |
5641 | thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, | |
5642 | struct regcache *regs, struct displaced_step_closure *dsc) | |
5643 | { | |
5644 | unsigned int rn = bits (insn1, 0, 3); | |
5645 | unsigned int u_bit = bit (insn1, 7); | |
5646 | int imm12 = bits (insn2, 0, 11); | |
5647 | ULONGEST pc_val; | |
5648 | ||
5649 | if (rn != ARM_PC_REGNUM) | |
5650 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc); | |
5651 | ||
5652 | /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and | |
5653 | PLD (literal) Encoding T1. */ | |
5654 | if (debug_displaced) | |
5655 | fprintf_unfiltered (gdb_stdlog, | |
5656 | "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n", | |
5657 | (unsigned int) dsc->insn_addr, u_bit ? '+' : '-', | |
5658 | imm12); | |
5659 | ||
5660 | if (!u_bit) | |
5661 | imm12 = -1 * imm12; | |
5662 | ||
5663 | /* Rewrite instruction {pli/pld} PC imm12 into: | |
5664 | Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12 | |
5665 | ||
5666 | {pli/pld} [r0, r1] | |
5667 | ||
5668 | Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */ | |
5669 | ||
5670 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
5671 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
5672 | ||
5673 | pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
5674 | ||
5675 | displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC); | |
5676 | displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC); | |
5677 | dsc->u.preload.immed = 0; | |
5678 | ||
5679 | /* {pli/pld} [r0, r1] */ | |
5680 | dsc->modinsn[0] = insn1 & 0xfff0; | |
5681 | dsc->modinsn[1] = 0xf001; | |
5682 | dsc->numinsns = 2; | |
5683 | ||
5684 | dsc->cleanup = &cleanup_preload; | |
5685 | return 0; | |
5686 | } | |
5687 | ||
7ff120b4 YQ |
5688 | /* Preload instructions with register offset. */ |
5689 | ||
5690 | static void | |
5691 | install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs, | |
5692 | struct displaced_step_closure *dsc, unsigned int rn, | |
5693 | unsigned int rm) | |
5694 | { | |
5695 | ULONGEST rn_val, rm_val; | |
5696 | ||
cca44b1b JB |
5697 | /* Preload register-offset instructions: |
5698 | ||
5699 | {pli/pld} [rn, rm {, shift}] | |
5700 | -> | |
5701 | {pli/pld} [r0, r1 {, shift}]. */ | |
5702 | ||
36073a92 YQ |
5703 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
5704 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
5705 | rn_val = displaced_read_reg (regs, dsc, rn); | |
5706 | rm_val = displaced_read_reg (regs, dsc, rm); | |
cca44b1b JB |
5707 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); |
5708 | displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC); | |
cca44b1b JB |
5709 | dsc->u.preload.immed = 0; |
5710 | ||
cca44b1b | 5711 | dsc->cleanup = &cleanup_preload; |
7ff120b4 YQ |
5712 | } |
5713 | ||
5714 | static int | |
5715 | arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn, | |
5716 | struct regcache *regs, | |
5717 | struct displaced_step_closure *dsc) | |
5718 | { | |
5719 | unsigned int rn = bits (insn, 16, 19); | |
5720 | unsigned int rm = bits (insn, 0, 3); | |
5721 | ||
5722 | ||
5723 | if (!insn_references_pc (insn, 0x000f000ful)) | |
5724 | return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc); | |
5725 | ||
5726 | if (debug_displaced) | |
5727 | fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n", | |
5728 | (unsigned long) insn); | |
5729 | ||
5730 | dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1; | |
cca44b1b | 5731 | |
7ff120b4 | 5732 | install_preload_reg (gdbarch, regs, dsc, rn, rm); |
cca44b1b JB |
5733 | return 0; |
5734 | } | |
5735 | ||
5736 | /* Copy/cleanup coprocessor load and store instructions. */ | |
5737 | ||
5738 | static void | |
6e39997a | 5739 | cleanup_copro_load_store (struct gdbarch *gdbarch, |
cca44b1b JB |
5740 | struct regcache *regs, |
5741 | struct displaced_step_closure *dsc) | |
5742 | { | |
36073a92 | 5743 | ULONGEST rn_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
5744 | |
5745 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
5746 | ||
5747 | if (dsc->u.ldst.writeback) | |
5748 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC); | |
5749 | } | |
5750 | ||
7ff120b4 YQ |
5751 | static void |
5752 | install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs, | |
5753 | struct displaced_step_closure *dsc, | |
5754 | int writeback, unsigned int rn) | |
cca44b1b | 5755 | { |
cca44b1b | 5756 | ULONGEST rn_val; |
cca44b1b | 5757 | |
cca44b1b JB |
5758 | /* Coprocessor load/store instructions: |
5759 | ||
5760 | {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes) | |
5761 | -> | |
5762 | {stc/stc2} [r0, #+/-imm]. | |
5763 | ||
5764 | ldc/ldc2 are handled identically. */ | |
5765 | ||
36073a92 YQ |
5766 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
5767 | rn_val = displaced_read_reg (regs, dsc, rn); | |
2b16b2e3 YQ |
5768 | /* PC should be 4-byte aligned. */ |
5769 | rn_val = rn_val & 0xfffffffc; | |
cca44b1b JB |
5770 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); |
5771 | ||
7ff120b4 | 5772 | dsc->u.ldst.writeback = writeback; |
cca44b1b JB |
5773 | dsc->u.ldst.rn = rn; |
5774 | ||
7ff120b4 YQ |
5775 | dsc->cleanup = &cleanup_copro_load_store; |
5776 | } | |
5777 | ||
5778 | static int | |
5779 | arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn, | |
5780 | struct regcache *regs, | |
5781 | struct displaced_step_closure *dsc) | |
5782 | { | |
5783 | unsigned int rn = bits (insn, 16, 19); | |
5784 | ||
5785 | if (!insn_references_pc (insn, 0x000f0000ul)) | |
5786 | return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc); | |
5787 | ||
5788 | if (debug_displaced) | |
5789 | fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor " | |
5790 | "load/store insn %.8lx\n", (unsigned long) insn); | |
5791 | ||
cca44b1b JB |
5792 | dsc->modinsn[0] = insn & 0xfff0ffff; |
5793 | ||
7ff120b4 | 5794 | install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn); |
cca44b1b JB |
5795 | |
5796 | return 0; | |
5797 | } | |
5798 | ||
34518530 YQ |
5799 | static int |
5800 | thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1, | |
5801 | uint16_t insn2, struct regcache *regs, | |
5802 | struct displaced_step_closure *dsc) | |
5803 | { | |
5804 | unsigned int rn = bits (insn1, 0, 3); | |
5805 | ||
5806 | if (rn != ARM_PC_REGNUM) | |
5807 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
5808 | "copro load/store", dsc); | |
5809 | ||
5810 | if (debug_displaced) | |
5811 | fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor " | |
5812 | "load/store insn %.4x%.4x\n", insn1, insn2); | |
5813 | ||
5814 | dsc->modinsn[0] = insn1 & 0xfff0; | |
5815 | dsc->modinsn[1] = insn2; | |
5816 | dsc->numinsns = 2; | |
5817 | ||
5818 | /* This function is called for copying instruction LDC/LDC2/VLDR, which | |
5819 | doesn't support writeback, so pass 0. */ | |
5820 | install_copro_load_store (gdbarch, regs, dsc, 0, rn); | |
5821 | ||
5822 | return 0; | |
5823 | } | |
5824 | ||
cca44b1b JB |
5825 | /* Clean up branch instructions (actually perform the branch, by setting |
5826 | PC). */ | |
5827 | ||
5828 | static void | |
6e39997a | 5829 | cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs, |
cca44b1b JB |
5830 | struct displaced_step_closure *dsc) |
5831 | { | |
36073a92 | 5832 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
cca44b1b JB |
5833 | int branch_taken = condition_true (dsc->u.branch.cond, status); |
5834 | enum pc_write_style write_pc = dsc->u.branch.exchange | |
5835 | ? BX_WRITE_PC : BRANCH_WRITE_PC; | |
5836 | ||
5837 | if (!branch_taken) | |
5838 | return; | |
5839 | ||
5840 | if (dsc->u.branch.link) | |
5841 | { | |
8c8dba6d YQ |
5842 | /* The value of LR should be the next insn of current one. In order |
5843 | not to confuse logic hanlding later insn `bx lr', if current insn mode | |
5844 | is Thumb, the bit 0 of LR value should be set to 1. */ | |
5845 | ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size; | |
5846 | ||
5847 | if (dsc->is_thumb) | |
5848 | next_insn_addr |= 0x1; | |
5849 | ||
5850 | displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr, | |
5851 | CANNOT_WRITE_PC); | |
cca44b1b JB |
5852 | } |
5853 | ||
bf9f652a | 5854 | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc); |
cca44b1b JB |
5855 | } |
5856 | ||
5857 | /* Copy B/BL/BLX instructions with immediate destinations. */ | |
5858 | ||
7ff120b4 YQ |
5859 | static void |
5860 | install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs, | |
5861 | struct displaced_step_closure *dsc, | |
5862 | unsigned int cond, int exchange, int link, long offset) | |
5863 | { | |
5864 | /* Implement "BL<cond> <label>" as: | |
5865 | ||
5866 | Preparation: cond <- instruction condition | |
5867 | Insn: mov r0, r0 (nop) | |
5868 | Cleanup: if (condition true) { r14 <- pc; pc <- label }. | |
5869 | ||
5870 | B<cond> similar, but don't set r14 in cleanup. */ | |
5871 | ||
5872 | dsc->u.branch.cond = cond; | |
5873 | dsc->u.branch.link = link; | |
5874 | dsc->u.branch.exchange = exchange; | |
5875 | ||
2b16b2e3 YQ |
5876 | dsc->u.branch.dest = dsc->insn_addr; |
5877 | if (link && exchange) | |
5878 | /* For BLX, offset is computed from the Align (PC, 4). */ | |
5879 | dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc; | |
5880 | ||
7ff120b4 | 5881 | if (dsc->is_thumb) |
2b16b2e3 | 5882 | dsc->u.branch.dest += 4 + offset; |
7ff120b4 | 5883 | else |
2b16b2e3 | 5884 | dsc->u.branch.dest += 8 + offset; |
7ff120b4 YQ |
5885 | |
5886 | dsc->cleanup = &cleanup_branch; | |
5887 | } | |
cca44b1b | 5888 | static int |
7ff120b4 YQ |
5889 | arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn, |
5890 | struct regcache *regs, struct displaced_step_closure *dsc) | |
cca44b1b JB |
5891 | { |
5892 | unsigned int cond = bits (insn, 28, 31); | |
5893 | int exchange = (cond == 0xf); | |
5894 | int link = exchange || bit (insn, 24); | |
cca44b1b JB |
5895 | long offset; |
5896 | ||
5897 | if (debug_displaced) | |
5898 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn " | |
5899 | "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b", | |
5900 | (unsigned long) insn); | |
cca44b1b JB |
5901 | if (exchange) |
5902 | /* For BLX, set bit 0 of the destination. The cleanup_branch function will | |
5903 | then arrange the switch into Thumb mode. */ | |
5904 | offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1; | |
5905 | else | |
5906 | offset = bits (insn, 0, 23) << 2; | |
5907 | ||
5908 | if (bit (offset, 25)) | |
5909 | offset = offset | ~0x3ffffff; | |
5910 | ||
cca44b1b JB |
5911 | dsc->modinsn[0] = ARM_NOP; |
5912 | ||
7ff120b4 | 5913 | install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset); |
cca44b1b JB |
5914 | return 0; |
5915 | } | |
5916 | ||
34518530 YQ |
5917 | static int |
5918 | thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1, | |
5919 | uint16_t insn2, struct regcache *regs, | |
5920 | struct displaced_step_closure *dsc) | |
5921 | { | |
5922 | int link = bit (insn2, 14); | |
5923 | int exchange = link && !bit (insn2, 12); | |
5924 | int cond = INST_AL; | |
5925 | long offset = 0; | |
5926 | int j1 = bit (insn2, 13); | |
5927 | int j2 = bit (insn2, 11); | |
5928 | int s = sbits (insn1, 10, 10); | |
5929 | int i1 = !(j1 ^ bit (insn1, 10)); | |
5930 | int i2 = !(j2 ^ bit (insn1, 10)); | |
5931 | ||
5932 | if (!link && !exchange) /* B */ | |
5933 | { | |
5934 | offset = (bits (insn2, 0, 10) << 1); | |
5935 | if (bit (insn2, 12)) /* Encoding T4 */ | |
5936 | { | |
5937 | offset |= (bits (insn1, 0, 9) << 12) | |
5938 | | (i2 << 22) | |
5939 | | (i1 << 23) | |
5940 | | (s << 24); | |
5941 | cond = INST_AL; | |
5942 | } | |
5943 | else /* Encoding T3 */ | |
5944 | { | |
5945 | offset |= (bits (insn1, 0, 5) << 12) | |
5946 | | (j1 << 18) | |
5947 | | (j2 << 19) | |
5948 | | (s << 20); | |
5949 | cond = bits (insn1, 6, 9); | |
5950 | } | |
5951 | } | |
5952 | else | |
5953 | { | |
5954 | offset = (bits (insn1, 0, 9) << 12); | |
5955 | offset |= ((i2 << 22) | (i1 << 23) | (s << 24)); | |
5956 | offset |= exchange ? | |
5957 | (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1); | |
5958 | } | |
5959 | ||
5960 | if (debug_displaced) | |
5961 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn " | |
5962 | "%.4x %.4x with offset %.8lx\n", | |
5963 | link ? (exchange) ? "blx" : "bl" : "b", | |
5964 | insn1, insn2, offset); | |
5965 | ||
5966 | dsc->modinsn[0] = THUMB_NOP; | |
5967 | ||
5968 | install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset); | |
5969 | return 0; | |
5970 | } | |
5971 | ||
5972 | /* Copy B Thumb instructions. */ | |
5973 | static int | |
5974 | thumb_copy_b (struct gdbarch *gdbarch, unsigned short insn, | |
5975 | struct displaced_step_closure *dsc) | |
5976 | { | |
5977 | unsigned int cond = 0; | |
5978 | int offset = 0; | |
5979 | unsigned short bit_12_15 = bits (insn, 12, 15); | |
5980 | CORE_ADDR from = dsc->insn_addr; | |
5981 | ||
5982 | if (bit_12_15 == 0xd) | |
5983 | { | |
5984 | /* offset = SignExtend (imm8:0, 32) */ | |
5985 | offset = sbits ((insn << 1), 0, 8); | |
5986 | cond = bits (insn, 8, 11); | |
5987 | } | |
5988 | else if (bit_12_15 == 0xe) /* Encoding T2 */ | |
5989 | { | |
5990 | offset = sbits ((insn << 1), 0, 11); | |
5991 | cond = INST_AL; | |
5992 | } | |
5993 | ||
5994 | if (debug_displaced) | |
5995 | fprintf_unfiltered (gdb_stdlog, | |
5996 | "displaced: copying b immediate insn %.4x " | |
5997 | "with offset %d\n", insn, offset); | |
5998 | ||
5999 | dsc->u.branch.cond = cond; | |
6000 | dsc->u.branch.link = 0; | |
6001 | dsc->u.branch.exchange = 0; | |
6002 | dsc->u.branch.dest = from + 4 + offset; | |
6003 | ||
6004 | dsc->modinsn[0] = THUMB_NOP; | |
6005 | ||
6006 | dsc->cleanup = &cleanup_branch; | |
6007 | ||
6008 | return 0; | |
6009 | } | |
6010 | ||
cca44b1b JB |
6011 | /* Copy BX/BLX with register-specified destinations. */ |
6012 | ||
7ff120b4 YQ |
6013 | static void |
6014 | install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs, | |
6015 | struct displaced_step_closure *dsc, int link, | |
6016 | unsigned int cond, unsigned int rm) | |
cca44b1b | 6017 | { |
cca44b1b JB |
6018 | /* Implement {BX,BLX}<cond> <reg>" as: |
6019 | ||
6020 | Preparation: cond <- instruction condition | |
6021 | Insn: mov r0, r0 (nop) | |
6022 | Cleanup: if (condition true) { r14 <- pc; pc <- dest; }. | |
6023 | ||
6024 | Don't set r14 in cleanup for BX. */ | |
6025 | ||
36073a92 | 6026 | dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm); |
cca44b1b JB |
6027 | |
6028 | dsc->u.branch.cond = cond; | |
6029 | dsc->u.branch.link = link; | |
cca44b1b | 6030 | |
7ff120b4 | 6031 | dsc->u.branch.exchange = 1; |
cca44b1b JB |
6032 | |
6033 | dsc->cleanup = &cleanup_branch; | |
7ff120b4 | 6034 | } |
cca44b1b | 6035 | |
7ff120b4 YQ |
6036 | static int |
6037 | arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn, | |
6038 | struct regcache *regs, struct displaced_step_closure *dsc) | |
6039 | { | |
6040 | unsigned int cond = bits (insn, 28, 31); | |
6041 | /* BX: x12xxx1x | |
6042 | BLX: x12xxx3x. */ | |
6043 | int link = bit (insn, 5); | |
6044 | unsigned int rm = bits (insn, 0, 3); | |
6045 | ||
6046 | if (debug_displaced) | |
6047 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx", | |
6048 | (unsigned long) insn); | |
6049 | ||
6050 | dsc->modinsn[0] = ARM_NOP; | |
6051 | ||
6052 | install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm); | |
cca44b1b JB |
6053 | return 0; |
6054 | } | |
6055 | ||
34518530 YQ |
6056 | static int |
6057 | thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn, | |
6058 | struct regcache *regs, | |
6059 | struct displaced_step_closure *dsc) | |
6060 | { | |
6061 | int link = bit (insn, 7); | |
6062 | unsigned int rm = bits (insn, 3, 6); | |
6063 | ||
6064 | if (debug_displaced) | |
6065 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x", | |
6066 | (unsigned short) insn); | |
6067 | ||
6068 | dsc->modinsn[0] = THUMB_NOP; | |
6069 | ||
6070 | install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm); | |
6071 | ||
6072 | return 0; | |
6073 | } | |
6074 | ||
6075 | ||
0963b4bd | 6076 | /* Copy/cleanup arithmetic/logic instruction with immediate RHS. */ |
cca44b1b JB |
6077 | |
6078 | static void | |
6e39997a | 6079 | cleanup_alu_imm (struct gdbarch *gdbarch, |
cca44b1b JB |
6080 | struct regcache *regs, struct displaced_step_closure *dsc) |
6081 | { | |
36073a92 | 6082 | ULONGEST rd_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
6083 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); |
6084 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
6085 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
6086 | } | |
6087 | ||
6088 | static int | |
7ff120b4 YQ |
6089 | arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, |
6090 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
6091 | { |
6092 | unsigned int rn = bits (insn, 16, 19); | |
6093 | unsigned int rd = bits (insn, 12, 15); | |
6094 | unsigned int op = bits (insn, 21, 24); | |
6095 | int is_mov = (op == 0xd); | |
6096 | ULONGEST rd_val, rn_val; | |
cca44b1b JB |
6097 | |
6098 | if (!insn_references_pc (insn, 0x000ff000ul)) | |
7ff120b4 | 6099 | return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc); |
cca44b1b JB |
6100 | |
6101 | if (debug_displaced) | |
6102 | fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn " | |
6103 | "%.8lx\n", is_mov ? "move" : "ALU", | |
6104 | (unsigned long) insn); | |
6105 | ||
6106 | /* Instruction is of form: | |
6107 | ||
6108 | <op><cond> rd, [rn,] #imm | |
6109 | ||
6110 | Rewrite as: | |
6111 | ||
6112 | Preparation: tmp1, tmp2 <- r0, r1; | |
6113 | r0, r1 <- rd, rn | |
6114 | Insn: <op><cond> r0, r1, #imm | |
6115 | Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2 | |
6116 | */ | |
6117 | ||
36073a92 YQ |
6118 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
6119 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
6120 | rn_val = displaced_read_reg (regs, dsc, rn); | |
6121 | rd_val = displaced_read_reg (regs, dsc, rd); | |
cca44b1b JB |
6122 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
6123 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
6124 | dsc->rd = rd; | |
6125 | ||
6126 | if (is_mov) | |
6127 | dsc->modinsn[0] = insn & 0xfff00fff; | |
6128 | else | |
6129 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000; | |
6130 | ||
6131 | dsc->cleanup = &cleanup_alu_imm; | |
6132 | ||
6133 | return 0; | |
6134 | } | |
6135 | ||
34518530 YQ |
6136 | static int |
6137 | thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1, | |
6138 | uint16_t insn2, struct regcache *regs, | |
6139 | struct displaced_step_closure *dsc) | |
6140 | { | |
6141 | unsigned int op = bits (insn1, 5, 8); | |
6142 | unsigned int rn, rm, rd; | |
6143 | ULONGEST rd_val, rn_val; | |
6144 | ||
6145 | rn = bits (insn1, 0, 3); /* Rn */ | |
6146 | rm = bits (insn2, 0, 3); /* Rm */ | |
6147 | rd = bits (insn2, 8, 11); /* Rd */ | |
6148 | ||
6149 | /* This routine is only called for instruction MOV. */ | |
6150 | gdb_assert (op == 0x2 && rn == 0xf); | |
6151 | ||
6152 | if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM) | |
6153 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc); | |
6154 | ||
6155 | if (debug_displaced) | |
6156 | fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n", | |
6157 | "ALU", insn1, insn2); | |
6158 | ||
6159 | /* Instruction is of form: | |
6160 | ||
6161 | <op><cond> rd, [rn,] #imm | |
6162 | ||
6163 | Rewrite as: | |
6164 | ||
6165 | Preparation: tmp1, tmp2 <- r0, r1; | |
6166 | r0, r1 <- rd, rn | |
6167 | Insn: <op><cond> r0, r1, #imm | |
6168 | Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2 | |
6169 | */ | |
6170 | ||
6171 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
6172 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
6173 | rn_val = displaced_read_reg (regs, dsc, rn); | |
6174 | rd_val = displaced_read_reg (regs, dsc, rd); | |
6175 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); | |
6176 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
6177 | dsc->rd = rd; | |
6178 | ||
6179 | dsc->modinsn[0] = insn1; | |
6180 | dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1); | |
6181 | dsc->numinsns = 2; | |
6182 | ||
6183 | dsc->cleanup = &cleanup_alu_imm; | |
6184 | ||
6185 | return 0; | |
6186 | } | |
6187 | ||
cca44b1b JB |
6188 | /* Copy/cleanup arithmetic/logic insns with register RHS. */ |
6189 | ||
6190 | static void | |
6e39997a | 6191 | cleanup_alu_reg (struct gdbarch *gdbarch, |
cca44b1b JB |
6192 | struct regcache *regs, struct displaced_step_closure *dsc) |
6193 | { | |
6194 | ULONGEST rd_val; | |
6195 | int i; | |
6196 | ||
36073a92 | 6197 | rd_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
6198 | |
6199 | for (i = 0; i < 3; i++) | |
6200 | displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); | |
6201 | ||
6202 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
6203 | } | |
6204 | ||
7ff120b4 YQ |
6205 | static void |
6206 | install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs, | |
6207 | struct displaced_step_closure *dsc, | |
6208 | unsigned int rd, unsigned int rn, unsigned int rm) | |
cca44b1b | 6209 | { |
cca44b1b | 6210 | ULONGEST rd_val, rn_val, rm_val; |
cca44b1b | 6211 | |
cca44b1b JB |
6212 | /* Instruction is of form: |
6213 | ||
6214 | <op><cond> rd, [rn,] rm [, <shift>] | |
6215 | ||
6216 | Rewrite as: | |
6217 | ||
6218 | Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2; | |
6219 | r0, r1, r2 <- rd, rn, rm | |
6220 | Insn: <op><cond> r0, r1, r2 [, <shift>] | |
6221 | Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3 | |
6222 | */ | |
6223 | ||
36073a92 YQ |
6224 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
6225 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
6226 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
6227 | rd_val = displaced_read_reg (regs, dsc, rd); | |
6228 | rn_val = displaced_read_reg (regs, dsc, rn); | |
6229 | rm_val = displaced_read_reg (regs, dsc, rm); | |
cca44b1b JB |
6230 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
6231 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
6232 | displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); | |
6233 | dsc->rd = rd; | |
6234 | ||
7ff120b4 YQ |
6235 | dsc->cleanup = &cleanup_alu_reg; |
6236 | } | |
6237 | ||
6238 | static int | |
6239 | arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | |
6240 | struct displaced_step_closure *dsc) | |
6241 | { | |
6242 | unsigned int op = bits (insn, 21, 24); | |
6243 | int is_mov = (op == 0xd); | |
6244 | ||
6245 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
6246 | return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc); | |
6247 | ||
6248 | if (debug_displaced) | |
6249 | fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n", | |
6250 | is_mov ? "move" : "ALU", (unsigned long) insn); | |
6251 | ||
cca44b1b JB |
6252 | if (is_mov) |
6253 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2; | |
6254 | else | |
6255 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002; | |
6256 | ||
7ff120b4 YQ |
6257 | install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19), |
6258 | bits (insn, 0, 3)); | |
cca44b1b JB |
6259 | return 0; |
6260 | } | |
6261 | ||
34518530 YQ |
6262 | static int |
6263 | thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn, | |
6264 | struct regcache *regs, | |
6265 | struct displaced_step_closure *dsc) | |
6266 | { | |
6267 | unsigned rn, rm, rd; | |
6268 | ||
6269 | rd = bits (insn, 3, 6); | |
6270 | rn = (bit (insn, 7) << 3) | bits (insn, 0, 2); | |
6271 | rm = 2; | |
6272 | ||
6273 | if (rd != ARM_PC_REGNUM && rn != ARM_PC_REGNUM) | |
6274 | return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc); | |
6275 | ||
6276 | if (debug_displaced) | |
6277 | fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x\n", | |
6278 | "ALU", (unsigned short) insn); | |
6279 | ||
6280 | dsc->modinsn[0] = ((insn & 0xff00) | 0x08); | |
6281 | ||
6282 | install_alu_reg (gdbarch, regs, dsc, rd, rn, rm); | |
6283 | ||
6284 | return 0; | |
6285 | } | |
6286 | ||
cca44b1b JB |
6287 | /* Cleanup/copy arithmetic/logic insns with shifted register RHS. */ |
6288 | ||
6289 | static void | |
6e39997a | 6290 | cleanup_alu_shifted_reg (struct gdbarch *gdbarch, |
cca44b1b JB |
6291 | struct regcache *regs, |
6292 | struct displaced_step_closure *dsc) | |
6293 | { | |
36073a92 | 6294 | ULONGEST rd_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
6295 | int i; |
6296 | ||
6297 | for (i = 0; i < 4; i++) | |
6298 | displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); | |
6299 | ||
6300 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
6301 | } | |
6302 | ||
7ff120b4 YQ |
6303 | static void |
6304 | install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs, | |
6305 | struct displaced_step_closure *dsc, | |
6306 | unsigned int rd, unsigned int rn, unsigned int rm, | |
6307 | unsigned rs) | |
cca44b1b | 6308 | { |
7ff120b4 | 6309 | int i; |
cca44b1b | 6310 | ULONGEST rd_val, rn_val, rm_val, rs_val; |
cca44b1b | 6311 | |
cca44b1b JB |
6312 | /* Instruction is of form: |
6313 | ||
6314 | <op><cond> rd, [rn,] rm, <shift> rs | |
6315 | ||
6316 | Rewrite as: | |
6317 | ||
6318 | Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3 | |
6319 | r0, r1, r2, r3 <- rd, rn, rm, rs | |
6320 | Insn: <op><cond> r0, r1, r2, <shift> r3 | |
6321 | Cleanup: tmp5 <- r0 | |
6322 | r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4 | |
6323 | rd <- tmp5 | |
6324 | */ | |
6325 | ||
6326 | for (i = 0; i < 4; i++) | |
36073a92 | 6327 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); |
cca44b1b | 6328 | |
36073a92 YQ |
6329 | rd_val = displaced_read_reg (regs, dsc, rd); |
6330 | rn_val = displaced_read_reg (regs, dsc, rn); | |
6331 | rm_val = displaced_read_reg (regs, dsc, rm); | |
6332 | rs_val = displaced_read_reg (regs, dsc, rs); | |
cca44b1b JB |
6333 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
6334 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
6335 | displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); | |
6336 | displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC); | |
6337 | dsc->rd = rd; | |
7ff120b4 YQ |
6338 | dsc->cleanup = &cleanup_alu_shifted_reg; |
6339 | } | |
6340 | ||
6341 | static int | |
6342 | arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn, | |
6343 | struct regcache *regs, | |
6344 | struct displaced_step_closure *dsc) | |
6345 | { | |
6346 | unsigned int op = bits (insn, 21, 24); | |
6347 | int is_mov = (op == 0xd); | |
6348 | unsigned int rd, rn, rm, rs; | |
6349 | ||
6350 | if (!insn_references_pc (insn, 0x000fff0ful)) | |
6351 | return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc); | |
6352 | ||
6353 | if (debug_displaced) | |
6354 | fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn " | |
6355 | "%.8lx\n", is_mov ? "move" : "ALU", | |
6356 | (unsigned long) insn); | |
6357 | ||
6358 | rn = bits (insn, 16, 19); | |
6359 | rm = bits (insn, 0, 3); | |
6360 | rs = bits (insn, 8, 11); | |
6361 | rd = bits (insn, 12, 15); | |
cca44b1b JB |
6362 | |
6363 | if (is_mov) | |
6364 | dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302; | |
6365 | else | |
6366 | dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302; | |
6367 | ||
7ff120b4 | 6368 | install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs); |
cca44b1b JB |
6369 | |
6370 | return 0; | |
6371 | } | |
6372 | ||
6373 | /* Clean up load instructions. */ | |
6374 | ||
6375 | static void | |
6e39997a | 6376 | cleanup_load (struct gdbarch *gdbarch, struct regcache *regs, |
cca44b1b JB |
6377 | struct displaced_step_closure *dsc) |
6378 | { | |
6379 | ULONGEST rt_val, rt_val2 = 0, rn_val; | |
cca44b1b | 6380 | |
36073a92 | 6381 | rt_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b | 6382 | if (dsc->u.ldst.xfersize == 8) |
36073a92 YQ |
6383 | rt_val2 = displaced_read_reg (regs, dsc, 1); |
6384 | rn_val = displaced_read_reg (regs, dsc, 2); | |
cca44b1b JB |
6385 | |
6386 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
6387 | if (dsc->u.ldst.xfersize > 4) | |
6388 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
6389 | displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); | |
6390 | if (!dsc->u.ldst.immed) | |
6391 | displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); | |
6392 | ||
6393 | /* Handle register writeback. */ | |
6394 | if (dsc->u.ldst.writeback) | |
6395 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); | |
6396 | /* Put result in right place. */ | |
6397 | displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC); | |
6398 | if (dsc->u.ldst.xfersize == 8) | |
6399 | displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC); | |
6400 | } | |
6401 | ||
6402 | /* Clean up store instructions. */ | |
6403 | ||
6404 | static void | |
6e39997a | 6405 | cleanup_store (struct gdbarch *gdbarch, struct regcache *regs, |
cca44b1b JB |
6406 | struct displaced_step_closure *dsc) |
6407 | { | |
36073a92 | 6408 | ULONGEST rn_val = displaced_read_reg (regs, dsc, 2); |
cca44b1b JB |
6409 | |
6410 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
6411 | if (dsc->u.ldst.xfersize > 4) | |
6412 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
6413 | displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); | |
6414 | if (!dsc->u.ldst.immed) | |
6415 | displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); | |
6416 | if (!dsc->u.ldst.restore_r4) | |
6417 | displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC); | |
6418 | ||
6419 | /* Writeback. */ | |
6420 | if (dsc->u.ldst.writeback) | |
6421 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); | |
6422 | } | |
6423 | ||
6424 | /* Copy "extra" load/store instructions. These are halfword/doubleword | |
6425 | transfers, which have a different encoding to byte/word transfers. */ | |
6426 | ||
6427 | static int | |
7ff120b4 YQ |
6428 | arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unpriveleged, |
6429 | struct regcache *regs, struct displaced_step_closure *dsc) | |
cca44b1b JB |
6430 | { |
6431 | unsigned int op1 = bits (insn, 20, 24); | |
6432 | unsigned int op2 = bits (insn, 5, 6); | |
6433 | unsigned int rt = bits (insn, 12, 15); | |
6434 | unsigned int rn = bits (insn, 16, 19); | |
6435 | unsigned int rm = bits (insn, 0, 3); | |
6436 | char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1}; | |
6437 | char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2}; | |
6438 | int immed = (op1 & 0x4) != 0; | |
6439 | int opcode; | |
6440 | ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0; | |
cca44b1b JB |
6441 | |
6442 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
7ff120b4 | 6443 | return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc); |
cca44b1b JB |
6444 | |
6445 | if (debug_displaced) | |
6446 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store " | |
6447 | "insn %.8lx\n", unpriveleged ? "unpriveleged " : "", | |
6448 | (unsigned long) insn); | |
6449 | ||
6450 | opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4; | |
6451 | ||
6452 | if (opcode < 0) | |
6453 | internal_error (__FILE__, __LINE__, | |
6454 | _("copy_extra_ld_st: instruction decode error")); | |
6455 | ||
36073a92 YQ |
6456 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
6457 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
6458 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
cca44b1b | 6459 | if (!immed) |
36073a92 | 6460 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); |
cca44b1b | 6461 | |
36073a92 | 6462 | rt_val = displaced_read_reg (regs, dsc, rt); |
cca44b1b | 6463 | if (bytesize[opcode] == 8) |
36073a92 YQ |
6464 | rt_val2 = displaced_read_reg (regs, dsc, rt + 1); |
6465 | rn_val = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 6466 | if (!immed) |
36073a92 | 6467 | rm_val = displaced_read_reg (regs, dsc, rm); |
cca44b1b JB |
6468 | |
6469 | displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); | |
6470 | if (bytesize[opcode] == 8) | |
6471 | displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC); | |
6472 | displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); | |
6473 | if (!immed) | |
6474 | displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); | |
6475 | ||
6476 | dsc->rd = rt; | |
6477 | dsc->u.ldst.xfersize = bytesize[opcode]; | |
6478 | dsc->u.ldst.rn = rn; | |
6479 | dsc->u.ldst.immed = immed; | |
6480 | dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0; | |
6481 | dsc->u.ldst.restore_r4 = 0; | |
6482 | ||
6483 | if (immed) | |
6484 | /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm] | |
6485 | -> | |
6486 | {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */ | |
6487 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; | |
6488 | else | |
6489 | /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm] | |
6490 | -> | |
6491 | {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */ | |
6492 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; | |
6493 | ||
6494 | dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store; | |
6495 | ||
6496 | return 0; | |
6497 | } | |
6498 | ||
0f6f04ba | 6499 | /* Copy byte/half word/word loads and stores. */ |
cca44b1b | 6500 | |
7ff120b4 | 6501 | static void |
0f6f04ba YQ |
6502 | install_load_store (struct gdbarch *gdbarch, struct regcache *regs, |
6503 | struct displaced_step_closure *dsc, int load, | |
6504 | int immed, int writeback, int size, int usermode, | |
6505 | int rt, int rm, int rn) | |
cca44b1b | 6506 | { |
cca44b1b | 6507 | ULONGEST rt_val, rn_val, rm_val = 0; |
cca44b1b | 6508 | |
36073a92 YQ |
6509 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
6510 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
cca44b1b | 6511 | if (!immed) |
36073a92 | 6512 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); |
cca44b1b | 6513 | if (!load) |
36073a92 | 6514 | dsc->tmp[4] = displaced_read_reg (regs, dsc, 4); |
cca44b1b | 6515 | |
36073a92 YQ |
6516 | rt_val = displaced_read_reg (regs, dsc, rt); |
6517 | rn_val = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 6518 | if (!immed) |
36073a92 | 6519 | rm_val = displaced_read_reg (regs, dsc, rm); |
cca44b1b JB |
6520 | |
6521 | displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); | |
6522 | displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); | |
6523 | if (!immed) | |
6524 | displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); | |
cca44b1b | 6525 | dsc->rd = rt; |
0f6f04ba | 6526 | dsc->u.ldst.xfersize = size; |
cca44b1b JB |
6527 | dsc->u.ldst.rn = rn; |
6528 | dsc->u.ldst.immed = immed; | |
7ff120b4 | 6529 | dsc->u.ldst.writeback = writeback; |
cca44b1b JB |
6530 | |
6531 | /* To write PC we can do: | |
6532 | ||
494e194e YQ |
6533 | Before this sequence of instructions: |
6534 | r0 is the PC value got from displaced_read_reg, so r0 = from + 8; | |
6535 | r2 is the Rn value got from dispalced_read_reg. | |
6536 | ||
6537 | Insn1: push {pc} Write address of STR instruction + offset on stack | |
6538 | Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset | |
6539 | Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc | |
6540 | = addr(Insn1) + offset - addr(Insn3) - 8 | |
6541 | = offset - 16 | |
6542 | Insn4: add r4, r4, #8 r4 = offset - 8 | |
6543 | Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8 | |
6544 | = from + offset | |
6545 | Insn6: str r0, [r2, #imm] (or str r0, [r2, r3]) | |
cca44b1b JB |
6546 | |
6547 | Otherwise we don't know what value to write for PC, since the offset is | |
494e194e YQ |
6548 | architecture-dependent (sometimes PC+8, sometimes PC+12). More details |
6549 | of this can be found in Section "Saving from r15" in | |
6550 | http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */ | |
cca44b1b | 6551 | |
7ff120b4 YQ |
6552 | dsc->cleanup = load ? &cleanup_load : &cleanup_store; |
6553 | } | |
6554 | ||
34518530 YQ |
6555 | |
6556 | static int | |
6557 | thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1, | |
6558 | uint16_t insn2, struct regcache *regs, | |
6559 | struct displaced_step_closure *dsc, int size) | |
6560 | { | |
6561 | unsigned int u_bit = bit (insn1, 7); | |
6562 | unsigned int rt = bits (insn2, 12, 15); | |
6563 | int imm12 = bits (insn2, 0, 11); | |
6564 | ULONGEST pc_val; | |
6565 | ||
6566 | if (debug_displaced) | |
6567 | fprintf_unfiltered (gdb_stdlog, | |
6568 | "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n", | |
6569 | (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-', | |
6570 | imm12); | |
6571 | ||
6572 | if (!u_bit) | |
6573 | imm12 = -1 * imm12; | |
6574 | ||
6575 | /* Rewrite instruction LDR Rt imm12 into: | |
6576 | ||
6577 | Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12 | |
6578 | ||
6579 | LDR R0, R2, R3, | |
6580 | ||
6581 | Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */ | |
6582 | ||
6583 | ||
6584 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
6585 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
6586 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); | |
6587 | ||
6588 | pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
6589 | ||
6590 | pc_val = pc_val & 0xfffffffc; | |
6591 | ||
6592 | displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC); | |
6593 | displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC); | |
6594 | ||
6595 | dsc->rd = rt; | |
6596 | ||
6597 | dsc->u.ldst.xfersize = size; | |
6598 | dsc->u.ldst.immed = 0; | |
6599 | dsc->u.ldst.writeback = 0; | |
6600 | dsc->u.ldst.restore_r4 = 0; | |
6601 | ||
6602 | /* LDR R0, R2, R3 */ | |
6603 | dsc->modinsn[0] = 0xf852; | |
6604 | dsc->modinsn[1] = 0x3; | |
6605 | dsc->numinsns = 2; | |
6606 | ||
6607 | dsc->cleanup = &cleanup_load; | |
6608 | ||
6609 | return 0; | |
6610 | } | |
6611 | ||
6612 | static int | |
6613 | thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1, | |
6614 | uint16_t insn2, struct regcache *regs, | |
6615 | struct displaced_step_closure *dsc, | |
6616 | int writeback, int immed) | |
6617 | { | |
6618 | unsigned int rt = bits (insn2, 12, 15); | |
6619 | unsigned int rn = bits (insn1, 0, 3); | |
6620 | unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */ | |
6621 | /* In LDR (register), there is also a register Rm, which is not allowed to | |
6622 | be PC, so we don't have to check it. */ | |
6623 | ||
6624 | if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM) | |
6625 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load", | |
6626 | dsc); | |
6627 | ||
6628 | if (debug_displaced) | |
6629 | fprintf_unfiltered (gdb_stdlog, | |
6630 | "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n", | |
6631 | rt, rn, insn1, insn2); | |
6632 | ||
6633 | install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4, | |
6634 | 0, rt, rm, rn); | |
6635 | ||
6636 | dsc->u.ldst.restore_r4 = 0; | |
6637 | ||
6638 | if (immed) | |
6639 | /* ldr[b]<cond> rt, [rn, #imm], etc. | |
6640 | -> | |
6641 | ldr[b]<cond> r0, [r2, #imm]. */ | |
6642 | { | |
6643 | dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2; | |
6644 | dsc->modinsn[1] = insn2 & 0x0fff; | |
6645 | } | |
6646 | else | |
6647 | /* ldr[b]<cond> rt, [rn, rm], etc. | |
6648 | -> | |
6649 | ldr[b]<cond> r0, [r2, r3]. */ | |
6650 | { | |
6651 | dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2; | |
6652 | dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3; | |
6653 | } | |
6654 | ||
6655 | dsc->numinsns = 2; | |
6656 | ||
6657 | return 0; | |
6658 | } | |
6659 | ||
6660 | ||
7ff120b4 YQ |
6661 | static int |
6662 | arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn, | |
6663 | struct regcache *regs, | |
6664 | struct displaced_step_closure *dsc, | |
0f6f04ba | 6665 | int load, int size, int usermode) |
7ff120b4 YQ |
6666 | { |
6667 | int immed = !bit (insn, 25); | |
6668 | int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0); | |
6669 | unsigned int rt = bits (insn, 12, 15); | |
6670 | unsigned int rn = bits (insn, 16, 19); | |
6671 | unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */ | |
6672 | ||
6673 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
6674 | return arm_copy_unmodified (gdbarch, insn, "load/store", dsc); | |
6675 | ||
6676 | if (debug_displaced) | |
6677 | fprintf_unfiltered (gdb_stdlog, | |
6678 | "displaced: copying %s%s r%d [r%d] insn %.8lx\n", | |
0f6f04ba YQ |
6679 | load ? (size == 1 ? "ldrb" : "ldr") |
6680 | : (size == 1 ? "strb" : "str"), usermode ? "t" : "", | |
7ff120b4 YQ |
6681 | rt, rn, |
6682 | (unsigned long) insn); | |
6683 | ||
0f6f04ba YQ |
6684 | install_load_store (gdbarch, regs, dsc, load, immed, writeback, size, |
6685 | usermode, rt, rm, rn); | |
7ff120b4 | 6686 | |
bf9f652a | 6687 | if (load || rt != ARM_PC_REGNUM) |
cca44b1b JB |
6688 | { |
6689 | dsc->u.ldst.restore_r4 = 0; | |
6690 | ||
6691 | if (immed) | |
6692 | /* {ldr,str}[b]<cond> rt, [rn, #imm], etc. | |
6693 | -> | |
6694 | {ldr,str}[b]<cond> r0, [r2, #imm]. */ | |
6695 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; | |
6696 | else | |
6697 | /* {ldr,str}[b]<cond> rt, [rn, rm], etc. | |
6698 | -> | |
6699 | {ldr,str}[b]<cond> r0, [r2, r3]. */ | |
6700 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; | |
6701 | } | |
6702 | else | |
6703 | { | |
6704 | /* We need to use r4 as scratch. Make sure it's restored afterwards. */ | |
6705 | dsc->u.ldst.restore_r4 = 1; | |
494e194e YQ |
6706 | dsc->modinsn[0] = 0xe92d8000; /* push {pc} */ |
6707 | dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */ | |
cca44b1b JB |
6708 | dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */ |
6709 | dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */ | |
6710 | dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */ | |
6711 | ||
6712 | /* As above. */ | |
6713 | if (immed) | |
6714 | dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000; | |
6715 | else | |
6716 | dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003; | |
6717 | ||
cca44b1b JB |
6718 | dsc->numinsns = 6; |
6719 | } | |
6720 | ||
6721 | dsc->cleanup = load ? &cleanup_load : &cleanup_store; | |
6722 | ||
6723 | return 0; | |
6724 | } | |
6725 | ||
6726 | /* Cleanup LDM instructions with fully-populated register list. This is an | |
6727 | unfortunate corner case: it's impossible to implement correctly by modifying | |
6728 | the instruction. The issue is as follows: we have an instruction, | |
6729 | ||
6730 | ldm rN, {r0-r15} | |
6731 | ||
6732 | which we must rewrite to avoid loading PC. A possible solution would be to | |
6733 | do the load in two halves, something like (with suitable cleanup | |
6734 | afterwards): | |
6735 | ||
6736 | mov r8, rN | |
6737 | ldm[id][ab] r8!, {r0-r7} | |
6738 | str r7, <temp> | |
6739 | ldm[id][ab] r8, {r7-r14} | |
6740 | <bkpt> | |
6741 | ||
6742 | but at present there's no suitable place for <temp>, since the scratch space | |
6743 | is overwritten before the cleanup routine is called. For now, we simply | |
6744 | emulate the instruction. */ | |
6745 | ||
6746 | static void | |
6747 | cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs, | |
6748 | struct displaced_step_closure *dsc) | |
6749 | { | |
cca44b1b JB |
6750 | int inc = dsc->u.block.increment; |
6751 | int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0; | |
6752 | int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4); | |
6753 | uint32_t regmask = dsc->u.block.regmask; | |
6754 | int regno = inc ? 0 : 15; | |
6755 | CORE_ADDR xfer_addr = dsc->u.block.xfer_addr; | |
6756 | int exception_return = dsc->u.block.load && dsc->u.block.user | |
6757 | && (regmask & 0x8000) != 0; | |
36073a92 | 6758 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
cca44b1b JB |
6759 | int do_transfer = condition_true (dsc->u.block.cond, status); |
6760 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
6761 | ||
6762 | if (!do_transfer) | |
6763 | return; | |
6764 | ||
6765 | /* If the instruction is ldm rN, {...pc}^, I don't think there's anything | |
6766 | sensible we can do here. Complain loudly. */ | |
6767 | if (exception_return) | |
6768 | error (_("Cannot single-step exception return")); | |
6769 | ||
6770 | /* We don't handle any stores here for now. */ | |
6771 | gdb_assert (dsc->u.block.load != 0); | |
6772 | ||
6773 | if (debug_displaced) | |
6774 | fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: " | |
6775 | "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm", | |
6776 | dsc->u.block.increment ? "inc" : "dec", | |
6777 | dsc->u.block.before ? "before" : "after"); | |
6778 | ||
6779 | while (regmask) | |
6780 | { | |
6781 | uint32_t memword; | |
6782 | ||
6783 | if (inc) | |
bf9f652a | 6784 | while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0) |
cca44b1b JB |
6785 | regno++; |
6786 | else | |
6787 | while (regno >= 0 && (regmask & (1 << regno)) == 0) | |
6788 | regno--; | |
6789 | ||
6790 | xfer_addr += bump_before; | |
6791 | ||
6792 | memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order); | |
6793 | displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC); | |
6794 | ||
6795 | xfer_addr += bump_after; | |
6796 | ||
6797 | regmask &= ~(1 << regno); | |
6798 | } | |
6799 | ||
6800 | if (dsc->u.block.writeback) | |
6801 | displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr, | |
6802 | CANNOT_WRITE_PC); | |
6803 | } | |
6804 | ||
6805 | /* Clean up an STM which included the PC in the register list. */ | |
6806 | ||
6807 | static void | |
6808 | cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs, | |
6809 | struct displaced_step_closure *dsc) | |
6810 | { | |
36073a92 | 6811 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
cca44b1b JB |
6812 | int store_executed = condition_true (dsc->u.block.cond, status); |
6813 | CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask); | |
6814 | CORE_ADDR stm_insn_addr; | |
6815 | uint32_t pc_val; | |
6816 | long offset; | |
6817 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
6818 | ||
6819 | /* If condition code fails, there's nothing else to do. */ | |
6820 | if (!store_executed) | |
6821 | return; | |
6822 | ||
6823 | if (dsc->u.block.increment) | |
6824 | { | |
6825 | pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs; | |
6826 | ||
6827 | if (dsc->u.block.before) | |
6828 | pc_stored_at += 4; | |
6829 | } | |
6830 | else | |
6831 | { | |
6832 | pc_stored_at = dsc->u.block.xfer_addr; | |
6833 | ||
6834 | if (dsc->u.block.before) | |
6835 | pc_stored_at -= 4; | |
6836 | } | |
6837 | ||
6838 | pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order); | |
6839 | stm_insn_addr = dsc->scratch_base; | |
6840 | offset = pc_val - stm_insn_addr; | |
6841 | ||
6842 | if (debug_displaced) | |
6843 | fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for " | |
6844 | "STM instruction\n", offset); | |
6845 | ||
6846 | /* Rewrite the stored PC to the proper value for the non-displaced original | |
6847 | instruction. */ | |
6848 | write_memory_unsigned_integer (pc_stored_at, 4, byte_order, | |
6849 | dsc->insn_addr + offset); | |
6850 | } | |
6851 | ||
6852 | /* Clean up an LDM which includes the PC in the register list. We clumped all | |
6853 | the registers in the transferred list into a contiguous range r0...rX (to | |
6854 | avoid loading PC directly and losing control of the debugged program), so we | |
6855 | must undo that here. */ | |
6856 | ||
6857 | static void | |
6e39997a | 6858 | cleanup_block_load_pc (struct gdbarch *gdbarch, |
cca44b1b JB |
6859 | struct regcache *regs, |
6860 | struct displaced_step_closure *dsc) | |
6861 | { | |
36073a92 | 6862 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
cca44b1b | 6863 | int load_executed = condition_true (dsc->u.block.cond, status), i; |
bf9f652a | 6864 | unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM; |
cca44b1b JB |
6865 | unsigned int regs_loaded = bitcount (mask); |
6866 | unsigned int num_to_shuffle = regs_loaded, clobbered; | |
6867 | ||
6868 | /* The method employed here will fail if the register list is fully populated | |
6869 | (we need to avoid loading PC directly). */ | |
6870 | gdb_assert (num_to_shuffle < 16); | |
6871 | ||
6872 | if (!load_executed) | |
6873 | return; | |
6874 | ||
6875 | clobbered = (1 << num_to_shuffle) - 1; | |
6876 | ||
6877 | while (num_to_shuffle > 0) | |
6878 | { | |
6879 | if ((mask & (1 << write_reg)) != 0) | |
6880 | { | |
6881 | unsigned int read_reg = num_to_shuffle - 1; | |
6882 | ||
6883 | if (read_reg != write_reg) | |
6884 | { | |
36073a92 | 6885 | ULONGEST rval = displaced_read_reg (regs, dsc, read_reg); |
cca44b1b JB |
6886 | displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC); |
6887 | if (debug_displaced) | |
6888 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move " | |
6889 | "loaded register r%d to r%d\n"), read_reg, | |
6890 | write_reg); | |
6891 | } | |
6892 | else if (debug_displaced) | |
6893 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register " | |
6894 | "r%d already in the right place\n"), | |
6895 | write_reg); | |
6896 | ||
6897 | clobbered &= ~(1 << write_reg); | |
6898 | ||
6899 | num_to_shuffle--; | |
6900 | } | |
6901 | ||
6902 | write_reg--; | |
6903 | } | |
6904 | ||
6905 | /* Restore any registers we scribbled over. */ | |
6906 | for (write_reg = 0; clobbered != 0; write_reg++) | |
6907 | { | |
6908 | if ((clobbered & (1 << write_reg)) != 0) | |
6909 | { | |
6910 | displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg], | |
6911 | CANNOT_WRITE_PC); | |
6912 | if (debug_displaced) | |
6913 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored " | |
6914 | "clobbered register r%d\n"), write_reg); | |
6915 | clobbered &= ~(1 << write_reg); | |
6916 | } | |
6917 | } | |
6918 | ||
6919 | /* Perform register writeback manually. */ | |
6920 | if (dsc->u.block.writeback) | |
6921 | { | |
6922 | ULONGEST new_rn_val = dsc->u.block.xfer_addr; | |
6923 | ||
6924 | if (dsc->u.block.increment) | |
6925 | new_rn_val += regs_loaded * 4; | |
6926 | else | |
6927 | new_rn_val -= regs_loaded * 4; | |
6928 | ||
6929 | displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val, | |
6930 | CANNOT_WRITE_PC); | |
6931 | } | |
6932 | } | |
6933 | ||
6934 | /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur | |
6935 | in user-level code (in particular exception return, ldm rn, {...pc}^). */ | |
6936 | ||
6937 | static int | |
7ff120b4 YQ |
6938 | arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn, |
6939 | struct regcache *regs, | |
6940 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
6941 | { |
6942 | int load = bit (insn, 20); | |
6943 | int user = bit (insn, 22); | |
6944 | int increment = bit (insn, 23); | |
6945 | int before = bit (insn, 24); | |
6946 | int writeback = bit (insn, 21); | |
6947 | int rn = bits (insn, 16, 19); | |
cca44b1b | 6948 | |
0963b4bd MS |
6949 | /* Block transfers which don't mention PC can be run directly |
6950 | out-of-line. */ | |
bf9f652a | 6951 | if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0) |
7ff120b4 | 6952 | return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc); |
cca44b1b | 6953 | |
bf9f652a | 6954 | if (rn == ARM_PC_REGNUM) |
cca44b1b | 6955 | { |
0963b4bd MS |
6956 | warning (_("displaced: Unpredictable LDM or STM with " |
6957 | "base register r15")); | |
7ff120b4 | 6958 | return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc); |
cca44b1b JB |
6959 | } |
6960 | ||
6961 | if (debug_displaced) | |
6962 | fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn " | |
6963 | "%.8lx\n", (unsigned long) insn); | |
6964 | ||
36073a92 | 6965 | dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn); |
cca44b1b JB |
6966 | dsc->u.block.rn = rn; |
6967 | ||
6968 | dsc->u.block.load = load; | |
6969 | dsc->u.block.user = user; | |
6970 | dsc->u.block.increment = increment; | |
6971 | dsc->u.block.before = before; | |
6972 | dsc->u.block.writeback = writeback; | |
6973 | dsc->u.block.cond = bits (insn, 28, 31); | |
6974 | ||
6975 | dsc->u.block.regmask = insn & 0xffff; | |
6976 | ||
6977 | if (load) | |
6978 | { | |
6979 | if ((insn & 0xffff) == 0xffff) | |
6980 | { | |
6981 | /* LDM with a fully-populated register list. This case is | |
6982 | particularly tricky. Implement for now by fully emulating the | |
6983 | instruction (which might not behave perfectly in all cases, but | |
6984 | these instructions should be rare enough for that not to matter | |
6985 | too much). */ | |
6986 | dsc->modinsn[0] = ARM_NOP; | |
6987 | ||
6988 | dsc->cleanup = &cleanup_block_load_all; | |
6989 | } | |
6990 | else | |
6991 | { | |
6992 | /* LDM of a list of registers which includes PC. Implement by | |
6993 | rewriting the list of registers to be transferred into a | |
6994 | contiguous chunk r0...rX before doing the transfer, then shuffling | |
6995 | registers into the correct places in the cleanup routine. */ | |
6996 | unsigned int regmask = insn & 0xffff; | |
6997 | unsigned int num_in_list = bitcount (regmask), new_regmask, bit = 1; | |
6998 | unsigned int to = 0, from = 0, i, new_rn; | |
6999 | ||
7000 | for (i = 0; i < num_in_list; i++) | |
36073a92 | 7001 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); |
cca44b1b JB |
7002 | |
7003 | /* Writeback makes things complicated. We need to avoid clobbering | |
7004 | the base register with one of the registers in our modified | |
7005 | register list, but just using a different register can't work in | |
7006 | all cases, e.g.: | |
7007 | ||
7008 | ldm r14!, {r0-r13,pc} | |
7009 | ||
7010 | which would need to be rewritten as: | |
7011 | ||
7012 | ldm rN!, {r0-r14} | |
7013 | ||
7014 | but that can't work, because there's no free register for N. | |
7015 | ||
7016 | Solve this by turning off the writeback bit, and emulating | |
7017 | writeback manually in the cleanup routine. */ | |
7018 | ||
7019 | if (writeback) | |
7020 | insn &= ~(1 << 21); | |
7021 | ||
7022 | new_regmask = (1 << num_in_list) - 1; | |
7023 | ||
7024 | if (debug_displaced) | |
7025 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, " | |
7026 | "{..., pc}: original reg list %.4x, modified " | |
7027 | "list %.4x\n"), rn, writeback ? "!" : "", | |
7028 | (int) insn & 0xffff, new_regmask); | |
7029 | ||
7030 | dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff); | |
7031 | ||
7032 | dsc->cleanup = &cleanup_block_load_pc; | |
7033 | } | |
7034 | } | |
7035 | else | |
7036 | { | |
7037 | /* STM of a list of registers which includes PC. Run the instruction | |
7038 | as-is, but out of line: this will store the wrong value for the PC, | |
7039 | so we must manually fix up the memory in the cleanup routine. | |
7040 | Doing things this way has the advantage that we can auto-detect | |
7041 | the offset of the PC write (which is architecture-dependent) in | |
7042 | the cleanup routine. */ | |
7043 | dsc->modinsn[0] = insn; | |
7044 | ||
7045 | dsc->cleanup = &cleanup_block_store_pc; | |
7046 | } | |
7047 | ||
7048 | return 0; | |
7049 | } | |
7050 | ||
34518530 YQ |
7051 | static int |
7052 | thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, | |
7053 | struct regcache *regs, | |
7054 | struct displaced_step_closure *dsc) | |
cca44b1b | 7055 | { |
34518530 YQ |
7056 | int rn = bits (insn1, 0, 3); |
7057 | int load = bit (insn1, 4); | |
7058 | int writeback = bit (insn1, 5); | |
cca44b1b | 7059 | |
34518530 YQ |
7060 | /* Block transfers which don't mention PC can be run directly |
7061 | out-of-line. */ | |
7062 | if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0) | |
7063 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc); | |
7ff120b4 | 7064 | |
34518530 YQ |
7065 | if (rn == ARM_PC_REGNUM) |
7066 | { | |
7067 | warning (_("displaced: Unpredictable LDM or STM with " | |
7068 | "base register r15")); | |
7069 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7070 | "unpredictable ldm/stm", dsc); | |
7071 | } | |
cca44b1b JB |
7072 | |
7073 | if (debug_displaced) | |
34518530 YQ |
7074 | fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn " |
7075 | "%.4x%.4x\n", insn1, insn2); | |
cca44b1b | 7076 | |
34518530 YQ |
7077 | /* Clear bit 13, since it should be always zero. */ |
7078 | dsc->u.block.regmask = (insn2 & 0xdfff); | |
7079 | dsc->u.block.rn = rn; | |
cca44b1b | 7080 | |
34518530 YQ |
7081 | dsc->u.block.load = load; |
7082 | dsc->u.block.user = 0; | |
7083 | dsc->u.block.increment = bit (insn1, 7); | |
7084 | dsc->u.block.before = bit (insn1, 8); | |
7085 | dsc->u.block.writeback = writeback; | |
7086 | dsc->u.block.cond = INST_AL; | |
7087 | dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 7088 | |
34518530 YQ |
7089 | if (load) |
7090 | { | |
7091 | if (dsc->u.block.regmask == 0xffff) | |
7092 | { | |
7093 | /* This branch is impossible to happen. */ | |
7094 | gdb_assert (0); | |
7095 | } | |
7096 | else | |
7097 | { | |
7098 | unsigned int regmask = dsc->u.block.regmask; | |
7099 | unsigned int num_in_list = bitcount (regmask), new_regmask, bit = 1; | |
7100 | unsigned int to = 0, from = 0, i, new_rn; | |
7101 | ||
7102 | for (i = 0; i < num_in_list; i++) | |
7103 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); | |
7104 | ||
7105 | if (writeback) | |
7106 | insn1 &= ~(1 << 5); | |
7107 | ||
7108 | new_regmask = (1 << num_in_list) - 1; | |
7109 | ||
7110 | if (debug_displaced) | |
7111 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, " | |
7112 | "{..., pc}: original reg list %.4x, modified " | |
7113 | "list %.4x\n"), rn, writeback ? "!" : "", | |
7114 | (int) dsc->u.block.regmask, new_regmask); | |
7115 | ||
7116 | dsc->modinsn[0] = insn1; | |
7117 | dsc->modinsn[1] = (new_regmask & 0xffff); | |
7118 | dsc->numinsns = 2; | |
7119 | ||
7120 | dsc->cleanup = &cleanup_block_load_pc; | |
7121 | } | |
7122 | } | |
7123 | else | |
7124 | { | |
7125 | dsc->modinsn[0] = insn1; | |
7126 | dsc->modinsn[1] = insn2; | |
7127 | dsc->numinsns = 2; | |
7128 | dsc->cleanup = &cleanup_block_store_pc; | |
7129 | } | |
7130 | return 0; | |
7131 | } | |
7132 | ||
7133 | /* Cleanup/copy SVC (SWI) instructions. These two functions are overridden | |
7134 | for Linux, where some SVC instructions must be treated specially. */ | |
7135 | ||
7136 | static void | |
7137 | cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs, | |
7138 | struct displaced_step_closure *dsc) | |
7139 | { | |
7140 | CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size; | |
7141 | ||
7142 | if (debug_displaced) | |
7143 | fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at " | |
7144 | "%.8lx\n", (unsigned long) resume_addr); | |
7145 | ||
7146 | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC); | |
7147 | } | |
7148 | ||
7149 | ||
7150 | /* Common copy routine for svc instruciton. */ | |
7151 | ||
7152 | static int | |
7153 | install_svc (struct gdbarch *gdbarch, struct regcache *regs, | |
7154 | struct displaced_step_closure *dsc) | |
7155 | { | |
7156 | /* Preparation: none. | |
7157 | Insn: unmodified svc. | |
7158 | Cleanup: pc <- insn_addr + insn_size. */ | |
7159 | ||
7160 | /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next | |
7161 | instruction. */ | |
7162 | dsc->wrote_to_pc = 1; | |
7163 | ||
7164 | /* Allow OS-specific code to override SVC handling. */ | |
bd18283a YQ |
7165 | if (dsc->u.svc.copy_svc_os) |
7166 | return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc); | |
7167 | else | |
7168 | { | |
7169 | dsc->cleanup = &cleanup_svc; | |
7170 | return 0; | |
7171 | } | |
34518530 YQ |
7172 | } |
7173 | ||
7174 | static int | |
7175 | arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn, | |
7176 | struct regcache *regs, struct displaced_step_closure *dsc) | |
7177 | { | |
7178 | ||
7179 | if (debug_displaced) | |
7180 | fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n", | |
7181 | (unsigned long) insn); | |
7182 | ||
7183 | dsc->modinsn[0] = insn; | |
7184 | ||
7185 | return install_svc (gdbarch, regs, dsc); | |
7186 | } | |
7187 | ||
7188 | static int | |
7189 | thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn, | |
7190 | struct regcache *regs, struct displaced_step_closure *dsc) | |
7191 | { | |
7192 | ||
7193 | if (debug_displaced) | |
7194 | fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n", | |
7195 | insn); | |
bd18283a | 7196 | |
34518530 YQ |
7197 | dsc->modinsn[0] = insn; |
7198 | ||
7199 | return install_svc (gdbarch, regs, dsc); | |
cca44b1b JB |
7200 | } |
7201 | ||
7202 | /* Copy undefined instructions. */ | |
7203 | ||
7204 | static int | |
7ff120b4 YQ |
7205 | arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn, |
7206 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7207 | { |
7208 | if (debug_displaced) | |
0963b4bd MS |
7209 | fprintf_unfiltered (gdb_stdlog, |
7210 | "displaced: copying undefined insn %.8lx\n", | |
cca44b1b JB |
7211 | (unsigned long) insn); |
7212 | ||
7213 | dsc->modinsn[0] = insn; | |
7214 | ||
7215 | return 0; | |
7216 | } | |
7217 | ||
34518530 YQ |
7218 | static int |
7219 | thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, | |
7220 | struct displaced_step_closure *dsc) | |
7221 | { | |
7222 | ||
7223 | if (debug_displaced) | |
7224 | fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn " | |
7225 | "%.4x %.4x\n", (unsigned short) insn1, | |
7226 | (unsigned short) insn2); | |
7227 | ||
7228 | dsc->modinsn[0] = insn1; | |
7229 | dsc->modinsn[1] = insn2; | |
7230 | dsc->numinsns = 2; | |
7231 | ||
7232 | return 0; | |
7233 | } | |
7234 | ||
cca44b1b JB |
7235 | /* Copy unpredictable instructions. */ |
7236 | ||
7237 | static int | |
7ff120b4 YQ |
7238 | arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn, |
7239 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7240 | { |
7241 | if (debug_displaced) | |
7242 | fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn " | |
7243 | "%.8lx\n", (unsigned long) insn); | |
7244 | ||
7245 | dsc->modinsn[0] = insn; | |
7246 | ||
7247 | return 0; | |
7248 | } | |
7249 | ||
7250 | /* The decode_* functions are instruction decoding helpers. They mostly follow | |
7251 | the presentation in the ARM ARM. */ | |
7252 | ||
7253 | static int | |
7ff120b4 YQ |
7254 | arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn, |
7255 | struct regcache *regs, | |
7256 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7257 | { |
7258 | unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7); | |
7259 | unsigned int rn = bits (insn, 16, 19); | |
7260 | ||
7261 | if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0) | |
7ff120b4 | 7262 | return arm_copy_unmodified (gdbarch, insn, "cps", dsc); |
cca44b1b | 7263 | else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1) |
7ff120b4 | 7264 | return arm_copy_unmodified (gdbarch, insn, "setend", dsc); |
cca44b1b | 7265 | else if ((op1 & 0x60) == 0x20) |
7ff120b4 | 7266 | return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc); |
cca44b1b | 7267 | else if ((op1 & 0x71) == 0x40) |
7ff120b4 YQ |
7268 | return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store", |
7269 | dsc); | |
cca44b1b | 7270 | else if ((op1 & 0x77) == 0x41) |
7ff120b4 | 7271 | return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); |
cca44b1b | 7272 | else if ((op1 & 0x77) == 0x45) |
7ff120b4 | 7273 | return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */ |
cca44b1b JB |
7274 | else if ((op1 & 0x77) == 0x51) |
7275 | { | |
7276 | if (rn != 0xf) | |
7ff120b4 | 7277 | return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */ |
cca44b1b | 7278 | else |
7ff120b4 | 7279 | return arm_copy_unpred (gdbarch, insn, dsc); |
cca44b1b JB |
7280 | } |
7281 | else if ((op1 & 0x77) == 0x55) | |
7ff120b4 | 7282 | return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */ |
cca44b1b JB |
7283 | else if (op1 == 0x57) |
7284 | switch (op2) | |
7285 | { | |
7ff120b4 YQ |
7286 | case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc); |
7287 | case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc); | |
7288 | case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc); | |
7289 | case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc); | |
7290 | default: return arm_copy_unpred (gdbarch, insn, dsc); | |
cca44b1b JB |
7291 | } |
7292 | else if ((op1 & 0x63) == 0x43) | |
7ff120b4 | 7293 | return arm_copy_unpred (gdbarch, insn, dsc); |
cca44b1b JB |
7294 | else if ((op2 & 0x1) == 0x0) |
7295 | switch (op1 & ~0x80) | |
7296 | { | |
7297 | case 0x61: | |
7ff120b4 | 7298 | return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); |
cca44b1b | 7299 | case 0x65: |
7ff120b4 | 7300 | return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */ |
cca44b1b JB |
7301 | case 0x71: case 0x75: |
7302 | /* pld/pldw reg. */ | |
7ff120b4 | 7303 | return arm_copy_preload_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 7304 | case 0x63: case 0x67: case 0x73: case 0x77: |
7ff120b4 | 7305 | return arm_copy_unpred (gdbarch, insn, dsc); |
cca44b1b | 7306 | default: |
7ff120b4 | 7307 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7308 | } |
7309 | else | |
7ff120b4 | 7310 | return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */ |
cca44b1b JB |
7311 | } |
7312 | ||
7313 | static int | |
7ff120b4 YQ |
7314 | arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn, |
7315 | struct regcache *regs, | |
7316 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7317 | { |
7318 | if (bit (insn, 27) == 0) | |
7ff120b4 | 7319 | return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7320 | /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */ |
7321 | else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20)) | |
7322 | { | |
7323 | case 0x0: case 0x2: | |
7ff120b4 | 7324 | return arm_copy_unmodified (gdbarch, insn, "srs", dsc); |
cca44b1b JB |
7325 | |
7326 | case 0x1: case 0x3: | |
7ff120b4 | 7327 | return arm_copy_unmodified (gdbarch, insn, "rfe", dsc); |
cca44b1b JB |
7328 | |
7329 | case 0x4: case 0x5: case 0x6: case 0x7: | |
7ff120b4 | 7330 | return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7331 | |
7332 | case 0x8: | |
7333 | switch ((insn & 0xe00000) >> 21) | |
7334 | { | |
7335 | case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7: | |
7336 | /* stc/stc2. */ | |
7ff120b4 | 7337 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7338 | |
7339 | case 0x2: | |
7ff120b4 | 7340 | return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); |
cca44b1b JB |
7341 | |
7342 | default: | |
7ff120b4 | 7343 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7344 | } |
7345 | ||
7346 | case 0x9: | |
7347 | { | |
7348 | int rn_f = (bits (insn, 16, 19) == 0xf); | |
7349 | switch ((insn & 0xe00000) >> 21) | |
7350 | { | |
7351 | case 0x1: case 0x3: | |
7352 | /* ldc/ldc2 imm (undefined for rn == pc). */ | |
7ff120b4 YQ |
7353 | return rn_f ? arm_copy_undef (gdbarch, insn, dsc) |
7354 | : arm_copy_copro_load_store (gdbarch, insn, regs, dsc); | |
cca44b1b JB |
7355 | |
7356 | case 0x2: | |
7ff120b4 | 7357 | return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); |
cca44b1b JB |
7358 | |
7359 | case 0x4: case 0x5: case 0x6: case 0x7: | |
7360 | /* ldc/ldc2 lit (undefined for rn != pc). */ | |
7ff120b4 YQ |
7361 | return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc) |
7362 | : arm_copy_undef (gdbarch, insn, dsc); | |
cca44b1b JB |
7363 | |
7364 | default: | |
7ff120b4 | 7365 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7366 | } |
7367 | } | |
7368 | ||
7369 | case 0xa: | |
7ff120b4 | 7370 | return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc); |
cca44b1b JB |
7371 | |
7372 | case 0xb: | |
7373 | if (bits (insn, 16, 19) == 0xf) | |
7374 | /* ldc/ldc2 lit. */ | |
7ff120b4 | 7375 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b | 7376 | else |
7ff120b4 | 7377 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7378 | |
7379 | case 0xc: | |
7380 | if (bit (insn, 4)) | |
7ff120b4 | 7381 | return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); |
cca44b1b | 7382 | else |
7ff120b4 | 7383 | return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); |
cca44b1b JB |
7384 | |
7385 | case 0xd: | |
7386 | if (bit (insn, 4)) | |
7ff120b4 | 7387 | return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); |
cca44b1b | 7388 | else |
7ff120b4 | 7389 | return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); |
cca44b1b JB |
7390 | |
7391 | default: | |
7ff120b4 | 7392 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7393 | } |
7394 | } | |
7395 | ||
7396 | /* Decode miscellaneous instructions in dp/misc encoding space. */ | |
7397 | ||
7398 | static int | |
7ff120b4 YQ |
7399 | arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn, |
7400 | struct regcache *regs, | |
7401 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7402 | { |
7403 | unsigned int op2 = bits (insn, 4, 6); | |
7404 | unsigned int op = bits (insn, 21, 22); | |
7405 | unsigned int op1 = bits (insn, 16, 19); | |
7406 | ||
7407 | switch (op2) | |
7408 | { | |
7409 | case 0x0: | |
7ff120b4 | 7410 | return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc); |
cca44b1b JB |
7411 | |
7412 | case 0x1: | |
7413 | if (op == 0x1) /* bx. */ | |
7ff120b4 | 7414 | return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 7415 | else if (op == 0x3) |
7ff120b4 | 7416 | return arm_copy_unmodified (gdbarch, insn, "clz", dsc); |
cca44b1b | 7417 | else |
7ff120b4 | 7418 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7419 | |
7420 | case 0x2: | |
7421 | if (op == 0x1) | |
7422 | /* Not really supported. */ | |
7ff120b4 | 7423 | return arm_copy_unmodified (gdbarch, insn, "bxj", dsc); |
cca44b1b | 7424 | else |
7ff120b4 | 7425 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7426 | |
7427 | case 0x3: | |
7428 | if (op == 0x1) | |
7ff120b4 | 7429 | return arm_copy_bx_blx_reg (gdbarch, insn, |
0963b4bd | 7430 | regs, dsc); /* blx register. */ |
cca44b1b | 7431 | else |
7ff120b4 | 7432 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7433 | |
7434 | case 0x5: | |
7ff120b4 | 7435 | return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc); |
cca44b1b JB |
7436 | |
7437 | case 0x7: | |
7438 | if (op == 0x1) | |
7ff120b4 | 7439 | return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc); |
cca44b1b JB |
7440 | else if (op == 0x3) |
7441 | /* Not really supported. */ | |
7ff120b4 | 7442 | return arm_copy_unmodified (gdbarch, insn, "smc", dsc); |
cca44b1b JB |
7443 | |
7444 | default: | |
7ff120b4 | 7445 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7446 | } |
7447 | } | |
7448 | ||
7449 | static int | |
7ff120b4 YQ |
7450 | arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn, |
7451 | struct regcache *regs, | |
7452 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7453 | { |
7454 | if (bit (insn, 25)) | |
7455 | switch (bits (insn, 20, 24)) | |
7456 | { | |
7457 | case 0x10: | |
7ff120b4 | 7458 | return arm_copy_unmodified (gdbarch, insn, "movw", dsc); |
cca44b1b JB |
7459 | |
7460 | case 0x14: | |
7ff120b4 | 7461 | return arm_copy_unmodified (gdbarch, insn, "movt", dsc); |
cca44b1b JB |
7462 | |
7463 | case 0x12: case 0x16: | |
7ff120b4 | 7464 | return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc); |
cca44b1b JB |
7465 | |
7466 | default: | |
7ff120b4 | 7467 | return arm_copy_alu_imm (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7468 | } |
7469 | else | |
7470 | { | |
7471 | uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7); | |
7472 | ||
7473 | if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0) | |
7ff120b4 | 7474 | return arm_copy_alu_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 7475 | else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1) |
7ff120b4 | 7476 | return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 7477 | else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0) |
7ff120b4 | 7478 | return arm_decode_miscellaneous (gdbarch, insn, regs, dsc); |
cca44b1b | 7479 | else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8) |
7ff120b4 | 7480 | return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc); |
cca44b1b | 7481 | else if ((op1 & 0x10) == 0x00 && op2 == 0x9) |
7ff120b4 | 7482 | return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc); |
cca44b1b | 7483 | else if ((op1 & 0x10) == 0x10 && op2 == 0x9) |
7ff120b4 | 7484 | return arm_copy_unmodified (gdbarch, insn, "synch", dsc); |
cca44b1b JB |
7485 | else if (op2 == 0xb || (op2 & 0xd) == 0xd) |
7486 | /* 2nd arg means "unpriveleged". */ | |
7ff120b4 YQ |
7487 | return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs, |
7488 | dsc); | |
cca44b1b JB |
7489 | } |
7490 | ||
7491 | /* Should be unreachable. */ | |
7492 | return 1; | |
7493 | } | |
7494 | ||
7495 | static int | |
7ff120b4 YQ |
7496 | arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn, |
7497 | struct regcache *regs, | |
7498 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7499 | { |
7500 | int a = bit (insn, 25), b = bit (insn, 4); | |
7501 | uint32_t op1 = bits (insn, 20, 24); | |
7502 | int rn_f = bits (insn, 16, 19) == 0xf; | |
7503 | ||
7504 | if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02) | |
7505 | || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b)) | |
0f6f04ba | 7506 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0); |
cca44b1b JB |
7507 | else if ((!a && (op1 & 0x17) == 0x02) |
7508 | || (a && (op1 & 0x17) == 0x02 && !b)) | |
0f6f04ba | 7509 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1); |
cca44b1b JB |
7510 | else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03) |
7511 | || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b)) | |
0f6f04ba | 7512 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0); |
cca44b1b JB |
7513 | else if ((!a && (op1 & 0x17) == 0x03) |
7514 | || (a && (op1 & 0x17) == 0x03 && !b)) | |
0f6f04ba | 7515 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1); |
cca44b1b JB |
7516 | else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06) |
7517 | || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b)) | |
7ff120b4 | 7518 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0); |
cca44b1b JB |
7519 | else if ((!a && (op1 & 0x17) == 0x06) |
7520 | || (a && (op1 & 0x17) == 0x06 && !b)) | |
7ff120b4 | 7521 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1); |
cca44b1b JB |
7522 | else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07) |
7523 | || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b)) | |
7ff120b4 | 7524 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0); |
cca44b1b JB |
7525 | else if ((!a && (op1 & 0x17) == 0x07) |
7526 | || (a && (op1 & 0x17) == 0x07 && !b)) | |
7ff120b4 | 7527 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1); |
cca44b1b JB |
7528 | |
7529 | /* Should be unreachable. */ | |
7530 | return 1; | |
7531 | } | |
7532 | ||
7533 | static int | |
7ff120b4 YQ |
7534 | arm_decode_media (struct gdbarch *gdbarch, uint32_t insn, |
7535 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7536 | { |
7537 | switch (bits (insn, 20, 24)) | |
7538 | { | |
7539 | case 0x00: case 0x01: case 0x02: case 0x03: | |
7ff120b4 | 7540 | return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc); |
cca44b1b JB |
7541 | |
7542 | case 0x04: case 0x05: case 0x06: case 0x07: | |
7ff120b4 | 7543 | return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc); |
cca44b1b JB |
7544 | |
7545 | case 0x08: case 0x09: case 0x0a: case 0x0b: | |
7546 | case 0x0c: case 0x0d: case 0x0e: case 0x0f: | |
7ff120b4 | 7547 | return arm_copy_unmodified (gdbarch, insn, |
cca44b1b JB |
7548 | "decode/pack/unpack/saturate/reverse", dsc); |
7549 | ||
7550 | case 0x18: | |
7551 | if (bits (insn, 5, 7) == 0) /* op2. */ | |
7552 | { | |
7553 | if (bits (insn, 12, 15) == 0xf) | |
7ff120b4 | 7554 | return arm_copy_unmodified (gdbarch, insn, "usad8", dsc); |
cca44b1b | 7555 | else |
7ff120b4 | 7556 | return arm_copy_unmodified (gdbarch, insn, "usada8", dsc); |
cca44b1b JB |
7557 | } |
7558 | else | |
7ff120b4 | 7559 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7560 | |
7561 | case 0x1a: case 0x1b: | |
7562 | if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */ | |
7ff120b4 | 7563 | return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc); |
cca44b1b | 7564 | else |
7ff120b4 | 7565 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7566 | |
7567 | case 0x1c: case 0x1d: | |
7568 | if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */ | |
7569 | { | |
7570 | if (bits (insn, 0, 3) == 0xf) | |
7ff120b4 | 7571 | return arm_copy_unmodified (gdbarch, insn, "bfc", dsc); |
cca44b1b | 7572 | else |
7ff120b4 | 7573 | return arm_copy_unmodified (gdbarch, insn, "bfi", dsc); |
cca44b1b JB |
7574 | } |
7575 | else | |
7ff120b4 | 7576 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7577 | |
7578 | case 0x1e: case 0x1f: | |
7579 | if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */ | |
7ff120b4 | 7580 | return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc); |
cca44b1b | 7581 | else |
7ff120b4 | 7582 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
7583 | } |
7584 | ||
7585 | /* Should be unreachable. */ | |
7586 | return 1; | |
7587 | } | |
7588 | ||
7589 | static int | |
7ff120b4 YQ |
7590 | arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, int32_t insn, |
7591 | struct regcache *regs, | |
7592 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7593 | { |
7594 | if (bit (insn, 25)) | |
7ff120b4 | 7595 | return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc); |
cca44b1b | 7596 | else |
7ff120b4 | 7597 | return arm_copy_block_xfer (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7598 | } |
7599 | ||
7600 | static int | |
7ff120b4 YQ |
7601 | arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn, |
7602 | struct regcache *regs, | |
7603 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
7604 | { |
7605 | unsigned int opcode = bits (insn, 20, 24); | |
7606 | ||
7607 | switch (opcode) | |
7608 | { | |
7609 | case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */ | |
7ff120b4 | 7610 | return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc); |
cca44b1b JB |
7611 | |
7612 | case 0x08: case 0x0a: case 0x0c: case 0x0e: | |
7613 | case 0x12: case 0x16: | |
7ff120b4 | 7614 | return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc); |
cca44b1b JB |
7615 | |
7616 | case 0x09: case 0x0b: case 0x0d: case 0x0f: | |
7617 | case 0x13: case 0x17: | |
7ff120b4 | 7618 | return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc); |
cca44b1b JB |
7619 | |
7620 | case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */ | |
7621 | case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */ | |
7622 | /* Note: no writeback for these instructions. Bit 25 will always be | |
7623 | zero though (via caller), so the following works OK. */ | |
7ff120b4 | 7624 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7625 | } |
7626 | ||
7627 | /* Should be unreachable. */ | |
7628 | return 1; | |
7629 | } | |
7630 | ||
34518530 YQ |
7631 | /* Decode shifted register instructions. */ |
7632 | ||
7633 | static int | |
7634 | thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1, | |
7635 | uint16_t insn2, struct regcache *regs, | |
7636 | struct displaced_step_closure *dsc) | |
7637 | { | |
7638 | /* PC is only allowed to be used in instruction MOV. */ | |
7639 | ||
7640 | unsigned int op = bits (insn1, 5, 8); | |
7641 | unsigned int rn = bits (insn1, 0, 3); | |
7642 | ||
7643 | if (op == 0x2 && rn == 0xf) /* MOV */ | |
7644 | return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc); | |
7645 | else | |
7646 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7647 | "dp (shift reg)", dsc); | |
7648 | } | |
7649 | ||
7650 | ||
7651 | /* Decode extension register load/store. Exactly the same as | |
7652 | arm_decode_ext_reg_ld_st. */ | |
7653 | ||
7654 | static int | |
7655 | thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1, | |
7656 | uint16_t insn2, struct regcache *regs, | |
7657 | struct displaced_step_closure *dsc) | |
7658 | { | |
7659 | unsigned int opcode = bits (insn1, 4, 8); | |
7660 | ||
7661 | switch (opcode) | |
7662 | { | |
7663 | case 0x04: case 0x05: | |
7664 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7665 | "vfp/neon vmov", dsc); | |
7666 | ||
7667 | case 0x08: case 0x0c: /* 01x00 */ | |
7668 | case 0x0a: case 0x0e: /* 01x10 */ | |
7669 | case 0x12: case 0x16: /* 10x10 */ | |
7670 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7671 | "vfp/neon vstm/vpush", dsc); | |
7672 | ||
7673 | case 0x09: case 0x0d: /* 01x01 */ | |
7674 | case 0x0b: case 0x0f: /* 01x11 */ | |
7675 | case 0x13: case 0x17: /* 10x11 */ | |
7676 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7677 | "vfp/neon vldm/vpop", dsc); | |
7678 | ||
7679 | case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */ | |
7680 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7681 | "vstr", dsc); | |
7682 | case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */ | |
7683 | return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc); | |
7684 | } | |
7685 | ||
7686 | /* Should be unreachable. */ | |
7687 | return 1; | |
7688 | } | |
7689 | ||
cca44b1b | 7690 | static int |
7ff120b4 YQ |
7691 | arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to, |
7692 | struct regcache *regs, struct displaced_step_closure *dsc) | |
cca44b1b JB |
7693 | { |
7694 | unsigned int op1 = bits (insn, 20, 25); | |
7695 | int op = bit (insn, 4); | |
7696 | unsigned int coproc = bits (insn, 8, 11); | |
7697 | unsigned int rn = bits (insn, 16, 19); | |
7698 | ||
7699 | if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa) | |
7ff120b4 | 7700 | return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7701 | else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00 |
7702 | && (coproc & 0xe) != 0xa) | |
7703 | /* stc/stc2. */ | |
7ff120b4 | 7704 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7705 | else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00 |
7706 | && (coproc & 0xe) != 0xa) | |
7707 | /* ldc/ldc2 imm/lit. */ | |
7ff120b4 | 7708 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b | 7709 | else if ((op1 & 0x3e) == 0x00) |
7ff120b4 | 7710 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b | 7711 | else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa) |
7ff120b4 | 7712 | return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc); |
cca44b1b | 7713 | else if (op1 == 0x04 && (coproc & 0xe) != 0xa) |
7ff120b4 | 7714 | return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); |
cca44b1b | 7715 | else if (op1 == 0x05 && (coproc & 0xe) != 0xa) |
7ff120b4 | 7716 | return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); |
cca44b1b JB |
7717 | else if ((op1 & 0x30) == 0x20 && !op) |
7718 | { | |
7719 | if ((coproc & 0xe) == 0xa) | |
7ff120b4 | 7720 | return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc); |
cca44b1b | 7721 | else |
7ff120b4 | 7722 | return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); |
cca44b1b JB |
7723 | } |
7724 | else if ((op1 & 0x30) == 0x20 && op) | |
7ff120b4 | 7725 | return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc); |
cca44b1b | 7726 | else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa) |
7ff120b4 | 7727 | return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); |
cca44b1b | 7728 | else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa) |
7ff120b4 | 7729 | return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); |
cca44b1b | 7730 | else if ((op1 & 0x30) == 0x30) |
7ff120b4 | 7731 | return arm_copy_svc (gdbarch, insn, regs, dsc); |
cca44b1b | 7732 | else |
7ff120b4 | 7733 | return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */ |
cca44b1b JB |
7734 | } |
7735 | ||
34518530 YQ |
7736 | static int |
7737 | thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1, | |
7738 | uint16_t insn2, struct regcache *regs, | |
7739 | struct displaced_step_closure *dsc) | |
7740 | { | |
7741 | unsigned int coproc = bits (insn2, 8, 11); | |
7742 | unsigned int op1 = bits (insn1, 4, 9); | |
7743 | unsigned int bit_5_8 = bits (insn1, 5, 8); | |
7744 | unsigned int bit_9 = bit (insn1, 9); | |
7745 | unsigned int bit_4 = bit (insn1, 4); | |
7746 | unsigned int rn = bits (insn1, 0, 3); | |
7747 | ||
7748 | if (bit_9 == 0) | |
7749 | { | |
7750 | if (bit_5_8 == 2) | |
7751 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7752 | "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2", | |
7753 | dsc); | |
7754 | else if (bit_5_8 == 0) /* UNDEFINED. */ | |
7755 | return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc); | |
7756 | else | |
7757 | { | |
7758 | /*coproc is 101x. SIMD/VFP, ext registers load/store. */ | |
7759 | if ((coproc & 0xe) == 0xa) | |
7760 | return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs, | |
7761 | dsc); | |
7762 | else /* coproc is not 101x. */ | |
7763 | { | |
7764 | if (bit_4 == 0) /* STC/STC2. */ | |
7765 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7766 | "stc/stc2", dsc); | |
7767 | else /* LDC/LDC2 {literal, immeidate}. */ | |
7768 | return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, | |
7769 | regs, dsc); | |
7770 | } | |
7771 | } | |
7772 | } | |
7773 | else | |
7774 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc); | |
7775 | ||
7776 | return 0; | |
7777 | } | |
7778 | ||
7779 | static void | |
7780 | install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs, | |
7781 | struct displaced_step_closure *dsc, int rd) | |
7782 | { | |
7783 | /* ADR Rd, #imm | |
7784 | ||
7785 | Rewrite as: | |
7786 | ||
7787 | Preparation: Rd <- PC | |
7788 | Insn: ADD Rd, #imm | |
7789 | Cleanup: Null. | |
7790 | */ | |
7791 | ||
7792 | /* Rd <- PC */ | |
7793 | int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
7794 | displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC); | |
7795 | } | |
7796 | ||
7797 | static int | |
7798 | thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs, | |
7799 | struct displaced_step_closure *dsc, | |
7800 | int rd, unsigned int imm) | |
7801 | { | |
7802 | ||
7803 | /* Encoding T2: ADDS Rd, #imm */ | |
7804 | dsc->modinsn[0] = (0x3000 | (rd << 8) | imm); | |
7805 | ||
7806 | install_pc_relative (gdbarch, regs, dsc, rd); | |
7807 | ||
7808 | return 0; | |
7809 | } | |
7810 | ||
7811 | static int | |
7812 | thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn, | |
7813 | struct regcache *regs, | |
7814 | struct displaced_step_closure *dsc) | |
7815 | { | |
7816 | unsigned int rd = bits (insn, 8, 10); | |
7817 | unsigned int imm8 = bits (insn, 0, 7); | |
7818 | ||
7819 | if (debug_displaced) | |
7820 | fprintf_unfiltered (gdb_stdlog, | |
7821 | "displaced: copying thumb adr r%d, #%d insn %.4x\n", | |
7822 | rd, imm8, insn); | |
7823 | ||
7824 | return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8); | |
7825 | } | |
7826 | ||
7827 | static int | |
7828 | thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1, | |
7829 | uint16_t insn2, struct regcache *regs, | |
7830 | struct displaced_step_closure *dsc) | |
7831 | { | |
7832 | unsigned int rd = bits (insn2, 8, 11); | |
7833 | /* Since immediate has the same encoding in ADR ADD and SUB, so we simply | |
7834 | extract raw immediate encoding rather than computing immediate. When | |
7835 | generating ADD or SUB instruction, we can simply perform OR operation to | |
7836 | set immediate into ADD. */ | |
7837 | unsigned int imm_3_8 = insn2 & 0x70ff; | |
7838 | unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */ | |
7839 | ||
7840 | if (debug_displaced) | |
7841 | fprintf_unfiltered (gdb_stdlog, | |
7842 | "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n", | |
7843 | rd, imm_i, imm_3_8, insn1, insn2); | |
7844 | ||
7845 | if (bit (insn1, 7)) /* Encoding T2 */ | |
7846 | { | |
7847 | /* Encoding T3: SUB Rd, Rd, #imm */ | |
7848 | dsc->modinsn[0] = (0xf1a0 | rd | imm_i); | |
7849 | dsc->modinsn[1] = ((rd << 8) | imm_3_8); | |
7850 | } | |
7851 | else /* Encoding T3 */ | |
7852 | { | |
7853 | /* Encoding T3: ADD Rd, Rd, #imm */ | |
7854 | dsc->modinsn[0] = (0xf100 | rd | imm_i); | |
7855 | dsc->modinsn[1] = ((rd << 8) | imm_3_8); | |
7856 | } | |
7857 | dsc->numinsns = 2; | |
7858 | ||
7859 | install_pc_relative (gdbarch, regs, dsc, rd); | |
7860 | ||
7861 | return 0; | |
7862 | } | |
7863 | ||
7864 | static int | |
7865 | thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, unsigned short insn1, | |
7866 | struct regcache *regs, | |
7867 | struct displaced_step_closure *dsc) | |
7868 | { | |
7869 | unsigned int rt = bits (insn1, 8, 10); | |
7870 | unsigned int pc; | |
7871 | int imm8 = (bits (insn1, 0, 7) << 2); | |
7872 | CORE_ADDR from = dsc->insn_addr; | |
7873 | ||
7874 | /* LDR Rd, #imm8 | |
7875 | ||
7876 | Rwrite as: | |
7877 | ||
7878 | Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8; | |
7879 | ||
7880 | Insn: LDR R0, [R2, R3]; | |
7881 | Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */ | |
7882 | ||
7883 | if (debug_displaced) | |
7884 | fprintf_unfiltered (gdb_stdlog, | |
7885 | "displaced: copying thumb ldr r%d [pc #%d]\n" | |
7886 | , rt, imm8); | |
7887 | ||
7888 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
7889 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
7890 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); | |
7891 | pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
7892 | /* The assembler calculates the required value of the offset from the | |
7893 | Align(PC,4) value of this instruction to the label. */ | |
7894 | pc = pc & 0xfffffffc; | |
7895 | ||
7896 | displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC); | |
7897 | displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC); | |
7898 | ||
7899 | dsc->rd = rt; | |
7900 | dsc->u.ldst.xfersize = 4; | |
7901 | dsc->u.ldst.rn = 0; | |
7902 | dsc->u.ldst.immed = 0; | |
7903 | dsc->u.ldst.writeback = 0; | |
7904 | dsc->u.ldst.restore_r4 = 0; | |
7905 | ||
7906 | dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/ | |
7907 | ||
7908 | dsc->cleanup = &cleanup_load; | |
7909 | ||
7910 | return 0; | |
7911 | } | |
7912 | ||
7913 | /* Copy Thumb cbnz/cbz insruction. */ | |
7914 | ||
7915 | static int | |
7916 | thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1, | |
7917 | struct regcache *regs, | |
7918 | struct displaced_step_closure *dsc) | |
7919 | { | |
7920 | int non_zero = bit (insn1, 11); | |
7921 | unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1); | |
7922 | CORE_ADDR from = dsc->insn_addr; | |
7923 | int rn = bits (insn1, 0, 2); | |
7924 | int rn_val = displaced_read_reg (regs, dsc, rn); | |
7925 | ||
7926 | dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero); | |
7927 | /* CBNZ and CBZ do not affect the condition flags. If condition is true, | |
7928 | set it INST_AL, so cleanup_branch will know branch is taken, otherwise, | |
7929 | condition is false, let it be, cleanup_branch will do nothing. */ | |
7930 | if (dsc->u.branch.cond) | |
7931 | { | |
7932 | dsc->u.branch.cond = INST_AL; | |
7933 | dsc->u.branch.dest = from + 4 + imm5; | |
7934 | } | |
7935 | else | |
7936 | dsc->u.branch.dest = from + 2; | |
7937 | ||
7938 | dsc->u.branch.link = 0; | |
7939 | dsc->u.branch.exchange = 0; | |
7940 | ||
7941 | if (debug_displaced) | |
7942 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]" | |
7943 | " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz", | |
7944 | rn, rn_val, insn1, dsc->u.branch.dest); | |
7945 | ||
7946 | dsc->modinsn[0] = THUMB_NOP; | |
7947 | ||
7948 | dsc->cleanup = &cleanup_branch; | |
7949 | return 0; | |
7950 | } | |
7951 | ||
7952 | /* Copy Table Branch Byte/Halfword */ | |
7953 | static int | |
7954 | thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1, | |
7955 | uint16_t insn2, struct regcache *regs, | |
7956 | struct displaced_step_closure *dsc) | |
7957 | { | |
7958 | ULONGEST rn_val, rm_val; | |
7959 | int is_tbh = bit (insn2, 4); | |
7960 | CORE_ADDR halfwords = 0; | |
7961 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
7962 | ||
7963 | rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3)); | |
7964 | rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3)); | |
7965 | ||
7966 | if (is_tbh) | |
7967 | { | |
7968 | gdb_byte buf[2]; | |
7969 | ||
7970 | target_read_memory (rn_val + 2 * rm_val, buf, 2); | |
7971 | halfwords = extract_unsigned_integer (buf, 2, byte_order); | |
7972 | } | |
7973 | else | |
7974 | { | |
7975 | gdb_byte buf[1]; | |
7976 | ||
7977 | target_read_memory (rn_val + rm_val, buf, 1); | |
7978 | halfwords = extract_unsigned_integer (buf, 1, byte_order); | |
7979 | } | |
7980 | ||
7981 | if (debug_displaced) | |
7982 | fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x" | |
7983 | " offset 0x%x\n", is_tbh ? "tbh" : "tbb", | |
7984 | (unsigned int) rn_val, (unsigned int) rm_val, | |
7985 | (unsigned int) halfwords); | |
7986 | ||
7987 | dsc->u.branch.cond = INST_AL; | |
7988 | dsc->u.branch.link = 0; | |
7989 | dsc->u.branch.exchange = 0; | |
7990 | dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords; | |
7991 | ||
7992 | dsc->cleanup = &cleanup_branch; | |
7993 | ||
7994 | return 0; | |
7995 | } | |
7996 | ||
7997 | static void | |
7998 | cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs, | |
7999 | struct displaced_step_closure *dsc) | |
8000 | { | |
8001 | /* PC <- r7 */ | |
8002 | int val = displaced_read_reg (regs, dsc, 7); | |
8003 | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC); | |
8004 | ||
8005 | /* r7 <- r8 */ | |
8006 | val = displaced_read_reg (regs, dsc, 8); | |
8007 | displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC); | |
8008 | ||
8009 | /* r8 <- tmp[0] */ | |
8010 | displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC); | |
8011 | ||
8012 | } | |
8013 | ||
8014 | static int | |
8015 | thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, unsigned short insn1, | |
8016 | struct regcache *regs, | |
8017 | struct displaced_step_closure *dsc) | |
8018 | { | |
8019 | dsc->u.block.regmask = insn1 & 0x00ff; | |
8020 | ||
8021 | /* Rewrite instruction: POP {rX, rY, ...,rZ, PC} | |
8022 | to : | |
8023 | ||
8024 | (1) register list is full, that is, r0-r7 are used. | |
8025 | Prepare: tmp[0] <- r8 | |
8026 | ||
8027 | POP {r0, r1, ...., r6, r7}; remove PC from reglist | |
8028 | MOV r8, r7; Move value of r7 to r8; | |
8029 | POP {r7}; Store PC value into r7. | |
8030 | ||
8031 | Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0] | |
8032 | ||
8033 | (2) register list is not full, supposing there are N registers in | |
8034 | register list (except PC, 0 <= N <= 7). | |
8035 | Prepare: for each i, 0 - N, tmp[i] <- ri. | |
8036 | ||
8037 | POP {r0, r1, ...., rN}; | |
8038 | ||
8039 | Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN | |
8040 | from tmp[] properly. | |
8041 | */ | |
8042 | if (debug_displaced) | |
8043 | fprintf_unfiltered (gdb_stdlog, | |
8044 | "displaced: copying thumb pop {%.8x, pc} insn %.4x\n", | |
8045 | dsc->u.block.regmask, insn1); | |
8046 | ||
8047 | if (dsc->u.block.regmask == 0xff) | |
8048 | { | |
8049 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 8); | |
8050 | ||
8051 | dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */ | |
8052 | dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */ | |
8053 | dsc->modinsn[2] = 0xbc80; /* POP {r7} */ | |
8054 | ||
8055 | dsc->numinsns = 3; | |
8056 | dsc->cleanup = &cleanup_pop_pc_16bit_all; | |
8057 | } | |
8058 | else | |
8059 | { | |
8060 | unsigned int num_in_list = bitcount (dsc->u.block.regmask); | |
8061 | unsigned int new_regmask, bit = 1; | |
8062 | unsigned int to = 0, from = 0, i, new_rn; | |
8063 | ||
8064 | for (i = 0; i < num_in_list + 1; i++) | |
8065 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); | |
8066 | ||
8067 | new_regmask = (1 << (num_in_list + 1)) - 1; | |
8068 | ||
8069 | if (debug_displaced) | |
8070 | fprintf_unfiltered (gdb_stdlog, _("displaced: POP " | |
8071 | "{..., pc}: original reg list %.4x," | |
8072 | " modified list %.4x\n"), | |
8073 | (int) dsc->u.block.regmask, new_regmask); | |
8074 | ||
8075 | dsc->u.block.regmask |= 0x8000; | |
8076 | dsc->u.block.writeback = 0; | |
8077 | dsc->u.block.cond = INST_AL; | |
8078 | ||
8079 | dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff); | |
8080 | ||
8081 | dsc->cleanup = &cleanup_block_load_pc; | |
8082 | } | |
8083 | ||
8084 | return 0; | |
8085 | } | |
8086 | ||
8087 | static void | |
8088 | thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1, | |
8089 | struct regcache *regs, | |
8090 | struct displaced_step_closure *dsc) | |
8091 | { | |
8092 | unsigned short op_bit_12_15 = bits (insn1, 12, 15); | |
8093 | unsigned short op_bit_10_11 = bits (insn1, 10, 11); | |
8094 | int err = 0; | |
8095 | ||
8096 | /* 16-bit thumb instructions. */ | |
8097 | switch (op_bit_12_15) | |
8098 | { | |
8099 | /* Shift (imme), add, subtract, move and compare. */ | |
8100 | case 0: case 1: case 2: case 3: | |
8101 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, | |
8102 | "shift/add/sub/mov/cmp", | |
8103 | dsc); | |
8104 | break; | |
8105 | case 4: | |
8106 | switch (op_bit_10_11) | |
8107 | { | |
8108 | case 0: /* Data-processing */ | |
8109 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, | |
8110 | "data-processing", | |
8111 | dsc); | |
8112 | break; | |
8113 | case 1: /* Special data instructions and branch and exchange. */ | |
8114 | { | |
8115 | unsigned short op = bits (insn1, 7, 9); | |
8116 | if (op == 6 || op == 7) /* BX or BLX */ | |
8117 | err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc); | |
8118 | else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */ | |
8119 | err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc); | |
8120 | else | |
8121 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data", | |
8122 | dsc); | |
8123 | } | |
8124 | break; | |
8125 | default: /* LDR (literal) */ | |
8126 | err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc); | |
8127 | } | |
8128 | break; | |
8129 | case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */ | |
8130 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc); | |
8131 | break; | |
8132 | case 10: | |
8133 | if (op_bit_10_11 < 2) /* Generate PC-relative address */ | |
8134 | err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc); | |
8135 | else /* Generate SP-relative address */ | |
8136 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc); | |
8137 | break; | |
8138 | case 11: /* Misc 16-bit instructions */ | |
8139 | { | |
8140 | switch (bits (insn1, 8, 11)) | |
8141 | { | |
8142 | case 1: case 3: case 9: case 11: /* CBNZ, CBZ */ | |
8143 | err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc); | |
8144 | break; | |
8145 | case 12: case 13: /* POP */ | |
8146 | if (bit (insn1, 8)) /* PC is in register list. */ | |
8147 | err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc); | |
8148 | else | |
8149 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc); | |
8150 | break; | |
8151 | case 15: /* If-Then, and hints */ | |
8152 | if (bits (insn1, 0, 3)) | |
8153 | /* If-Then makes up to four following instructions conditional. | |
8154 | IT instruction itself is not conditional, so handle it as a | |
8155 | common unmodified instruction. */ | |
8156 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then", | |
8157 | dsc); | |
8158 | else | |
8159 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc); | |
8160 | break; | |
8161 | default: | |
8162 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc); | |
8163 | } | |
8164 | } | |
8165 | break; | |
8166 | case 12: | |
8167 | if (op_bit_10_11 < 2) /* Store multiple registers */ | |
8168 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc); | |
8169 | else /* Load multiple registers */ | |
8170 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc); | |
8171 | break; | |
8172 | case 13: /* Conditional branch and supervisor call */ | |
8173 | if (bits (insn1, 9, 11) != 7) /* conditional branch */ | |
8174 | err = thumb_copy_b (gdbarch, insn1, dsc); | |
8175 | else | |
8176 | err = thumb_copy_svc (gdbarch, insn1, regs, dsc); | |
8177 | break; | |
8178 | case 14: /* Unconditional branch */ | |
8179 | err = thumb_copy_b (gdbarch, insn1, dsc); | |
8180 | break; | |
8181 | default: | |
8182 | err = 1; | |
8183 | } | |
8184 | ||
8185 | if (err) | |
8186 | internal_error (__FILE__, __LINE__, | |
8187 | _("thumb_process_displaced_16bit_insn: Instruction decode error")); | |
8188 | } | |
8189 | ||
8190 | static int | |
8191 | decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch, | |
8192 | uint16_t insn1, uint16_t insn2, | |
8193 | struct regcache *regs, | |
8194 | struct displaced_step_closure *dsc) | |
8195 | { | |
8196 | int rt = bits (insn2, 12, 15); | |
8197 | int rn = bits (insn1, 0, 3); | |
8198 | int op1 = bits (insn1, 7, 8); | |
8199 | int err = 0; | |
8200 | ||
8201 | switch (bits (insn1, 5, 6)) | |
8202 | { | |
8203 | case 0: /* Load byte and memory hints */ | |
8204 | if (rt == 0xf) /* PLD/PLI */ | |
8205 | { | |
8206 | if (rn == 0xf) | |
8207 | /* PLD literal or Encoding T3 of PLI(immediate, literal). */ | |
8208 | return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc); | |
8209 | else | |
8210 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8211 | "pli/pld", dsc); | |
8212 | } | |
8213 | else | |
8214 | { | |
8215 | if (rn == 0xf) /* LDRB/LDRSB (literal) */ | |
8216 | return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, | |
8217 | 1); | |
8218 | else | |
8219 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8220 | "ldrb{reg, immediate}/ldrbt", | |
8221 | dsc); | |
8222 | } | |
8223 | ||
8224 | break; | |
8225 | case 1: /* Load halfword and memory hints. */ | |
8226 | if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */ | |
8227 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8228 | "pld/unalloc memhint", dsc); | |
8229 | else | |
8230 | { | |
8231 | if (rn == 0xf) | |
8232 | return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, | |
8233 | 2); | |
8234 | else | |
8235 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8236 | "ldrh/ldrht", dsc); | |
8237 | } | |
8238 | break; | |
8239 | case 2: /* Load word */ | |
8240 | { | |
8241 | int insn2_bit_8_11 = bits (insn2, 8, 11); | |
8242 | ||
8243 | if (rn == 0xf) | |
8244 | return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4); | |
8245 | else if (op1 == 0x1) /* Encoding T3 */ | |
8246 | return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc, | |
8247 | 0, 1); | |
8248 | else /* op1 == 0x0 */ | |
8249 | { | |
8250 | if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9) | |
8251 | /* LDR (immediate) */ | |
8252 | return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, | |
8253 | dsc, bit (insn2, 8), 1); | |
8254 | else if (insn2_bit_8_11 == 0xe) /* LDRT */ | |
8255 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8256 | "ldrt", dsc); | |
8257 | else | |
8258 | /* LDR (register) */ | |
8259 | return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, | |
8260 | dsc, 0, 0); | |
8261 | } | |
8262 | break; | |
8263 | } | |
8264 | default: | |
8265 | return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc); | |
8266 | break; | |
8267 | } | |
8268 | return 0; | |
8269 | } | |
8270 | ||
8271 | static void | |
8272 | thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1, | |
8273 | uint16_t insn2, struct regcache *regs, | |
8274 | struct displaced_step_closure *dsc) | |
8275 | { | |
8276 | int err = 0; | |
8277 | unsigned short op = bit (insn2, 15); | |
8278 | unsigned int op1 = bits (insn1, 11, 12); | |
8279 | ||
8280 | switch (op1) | |
8281 | { | |
8282 | case 1: | |
8283 | { | |
8284 | switch (bits (insn1, 9, 10)) | |
8285 | { | |
8286 | case 0: | |
8287 | if (bit (insn1, 6)) | |
8288 | { | |
8289 | /* Load/store {dual, execlusive}, table branch. */ | |
8290 | if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1 | |
8291 | && bits (insn2, 5, 7) == 0) | |
8292 | err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs, | |
8293 | dsc); | |
8294 | else | |
8295 | /* PC is not allowed to use in load/store {dual, exclusive} | |
8296 | instructions. */ | |
8297 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8298 | "load/store dual/ex", dsc); | |
8299 | } | |
8300 | else /* load/store multiple */ | |
8301 | { | |
8302 | switch (bits (insn1, 7, 8)) | |
8303 | { | |
8304 | case 0: case 3: /* SRS, RFE */ | |
8305 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8306 | "srs/rfe", dsc); | |
8307 | break; | |
8308 | case 1: case 2: /* LDM/STM/PUSH/POP */ | |
8309 | err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc); | |
8310 | break; | |
8311 | } | |
8312 | } | |
8313 | break; | |
8314 | ||
8315 | case 1: | |
8316 | /* Data-processing (shift register). */ | |
8317 | err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs, | |
8318 | dsc); | |
8319 | break; | |
8320 | default: /* Coprocessor instructions. */ | |
8321 | err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc); | |
8322 | break; | |
8323 | } | |
8324 | break; | |
8325 | } | |
8326 | case 2: /* op1 = 2 */ | |
8327 | if (op) /* Branch and misc control. */ | |
8328 | { | |
8329 | if (bit (insn2, 14) /* BLX/BL */ | |
8330 | || bit (insn2, 12) /* Unconditional branch */ | |
8331 | || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */ | |
8332 | err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc); | |
8333 | else | |
8334 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8335 | "misc ctrl", dsc); | |
8336 | } | |
8337 | else | |
8338 | { | |
8339 | if (bit (insn1, 9)) /* Data processing (plain binary imm). */ | |
8340 | { | |
8341 | int op = bits (insn1, 4, 8); | |
8342 | int rn = bits (insn1, 0, 3); | |
8343 | if ((op == 0 || op == 0xa) && rn == 0xf) | |
8344 | err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2, | |
8345 | regs, dsc); | |
8346 | else | |
8347 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8348 | "dp/pb", dsc); | |
8349 | } | |
8350 | else /* Data processing (modified immeidate) */ | |
8351 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8352 | "dp/mi", dsc); | |
8353 | } | |
8354 | break; | |
8355 | case 3: /* op1 = 3 */ | |
8356 | switch (bits (insn1, 9, 10)) | |
8357 | { | |
8358 | case 0: | |
8359 | if (bit (insn1, 4)) | |
8360 | err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2, | |
8361 | regs, dsc); | |
8362 | else /* NEON Load/Store and Store single data item */ | |
8363 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8364 | "neon elt/struct load/store", | |
8365 | dsc); | |
8366 | break; | |
8367 | case 1: /* op1 = 3, bits (9, 10) == 1 */ | |
8368 | switch (bits (insn1, 7, 8)) | |
8369 | { | |
8370 | case 0: case 1: /* Data processing (register) */ | |
8371 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8372 | "dp(reg)", dsc); | |
8373 | break; | |
8374 | case 2: /* Multiply and absolute difference */ | |
8375 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8376 | "mul/mua/diff", dsc); | |
8377 | break; | |
8378 | case 3: /* Long multiply and divide */ | |
8379 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
8380 | "lmul/lmua", dsc); | |
8381 | break; | |
8382 | } | |
8383 | break; | |
8384 | default: /* Coprocessor instructions */ | |
8385 | err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc); | |
8386 | break; | |
8387 | } | |
8388 | break; | |
8389 | default: | |
8390 | err = 1; | |
8391 | } | |
8392 | ||
8393 | if (err) | |
8394 | internal_error (__FILE__, __LINE__, | |
8395 | _("thumb_process_displaced_32bit_insn: Instruction decode error")); | |
8396 | ||
8397 | } | |
8398 | ||
b434a28f YQ |
8399 | static void |
8400 | thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from, | |
8401 | CORE_ADDR to, struct regcache *regs, | |
8402 | struct displaced_step_closure *dsc) | |
8403 | { | |
34518530 YQ |
8404 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
8405 | uint16_t insn1 | |
8406 | = read_memory_unsigned_integer (from, 2, byte_order_for_code); | |
8407 | ||
8408 | if (debug_displaced) | |
8409 | fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x " | |
8410 | "at %.8lx\n", insn1, (unsigned long) from); | |
8411 | ||
8412 | dsc->is_thumb = 1; | |
8413 | dsc->insn_size = thumb_insn_size (insn1); | |
8414 | if (thumb_insn_size (insn1) == 4) | |
8415 | { | |
8416 | uint16_t insn2 | |
8417 | = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code); | |
8418 | thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc); | |
8419 | } | |
8420 | else | |
8421 | thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc); | |
b434a28f YQ |
8422 | } |
8423 | ||
cca44b1b | 8424 | void |
b434a28f YQ |
8425 | arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from, |
8426 | CORE_ADDR to, struct regcache *regs, | |
cca44b1b JB |
8427 | struct displaced_step_closure *dsc) |
8428 | { | |
8429 | int err = 0; | |
b434a28f YQ |
8430 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
8431 | uint32_t insn; | |
cca44b1b JB |
8432 | |
8433 | /* Most displaced instructions use a 1-instruction scratch space, so set this | |
8434 | here and override below if/when necessary. */ | |
8435 | dsc->numinsns = 1; | |
8436 | dsc->insn_addr = from; | |
8437 | dsc->scratch_base = to; | |
8438 | dsc->cleanup = NULL; | |
8439 | dsc->wrote_to_pc = 0; | |
8440 | ||
b434a28f YQ |
8441 | if (!displaced_in_arm_mode (regs)) |
8442 | return thumb_process_displaced_insn (gdbarch, from, to, regs, dsc); | |
8443 | ||
4db71c0b YQ |
8444 | dsc->is_thumb = 0; |
8445 | dsc->insn_size = 4; | |
b434a28f YQ |
8446 | insn = read_memory_unsigned_integer (from, 4, byte_order_for_code); |
8447 | if (debug_displaced) | |
8448 | fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx " | |
8449 | "at %.8lx\n", (unsigned long) insn, | |
8450 | (unsigned long) from); | |
8451 | ||
cca44b1b | 8452 | if ((insn & 0xf0000000) == 0xf0000000) |
7ff120b4 | 8453 | err = arm_decode_unconditional (gdbarch, insn, regs, dsc); |
cca44b1b JB |
8454 | else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24)) |
8455 | { | |
8456 | case 0x0: case 0x1: case 0x2: case 0x3: | |
7ff120b4 | 8457 | err = arm_decode_dp_misc (gdbarch, insn, regs, dsc); |
cca44b1b JB |
8458 | break; |
8459 | ||
8460 | case 0x4: case 0x5: case 0x6: | |
7ff120b4 | 8461 | err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc); |
cca44b1b JB |
8462 | break; |
8463 | ||
8464 | case 0x7: | |
7ff120b4 | 8465 | err = arm_decode_media (gdbarch, insn, dsc); |
cca44b1b JB |
8466 | break; |
8467 | ||
8468 | case 0x8: case 0x9: case 0xa: case 0xb: | |
7ff120b4 | 8469 | err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc); |
cca44b1b JB |
8470 | break; |
8471 | ||
8472 | case 0xc: case 0xd: case 0xe: case 0xf: | |
7ff120b4 | 8473 | err = arm_decode_svc_copro (gdbarch, insn, to, regs, dsc); |
cca44b1b JB |
8474 | break; |
8475 | } | |
8476 | ||
8477 | if (err) | |
8478 | internal_error (__FILE__, __LINE__, | |
8479 | _("arm_process_displaced_insn: Instruction decode error")); | |
8480 | } | |
8481 | ||
8482 | /* Actually set up the scratch space for a displaced instruction. */ | |
8483 | ||
8484 | void | |
8485 | arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from, | |
8486 | CORE_ADDR to, struct displaced_step_closure *dsc) | |
8487 | { | |
8488 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
4db71c0b | 8489 | unsigned int i, len, offset; |
cca44b1b | 8490 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
4db71c0b YQ |
8491 | int size = dsc->is_thumb? 2 : 4; |
8492 | const unsigned char *bkp_insn; | |
cca44b1b | 8493 | |
4db71c0b | 8494 | offset = 0; |
cca44b1b JB |
8495 | /* Poke modified instruction(s). */ |
8496 | for (i = 0; i < dsc->numinsns; i++) | |
8497 | { | |
8498 | if (debug_displaced) | |
4db71c0b YQ |
8499 | { |
8500 | fprintf_unfiltered (gdb_stdlog, "displaced: writing insn "); | |
8501 | if (size == 4) | |
8502 | fprintf_unfiltered (gdb_stdlog, "%.8lx", | |
8503 | dsc->modinsn[i]); | |
8504 | else if (size == 2) | |
8505 | fprintf_unfiltered (gdb_stdlog, "%.4x", | |
8506 | (unsigned short)dsc->modinsn[i]); | |
8507 | ||
8508 | fprintf_unfiltered (gdb_stdlog, " at %.8lx\n", | |
8509 | (unsigned long) to + offset); | |
8510 | ||
8511 | } | |
8512 | write_memory_unsigned_integer (to + offset, size, | |
8513 | byte_order_for_code, | |
cca44b1b | 8514 | dsc->modinsn[i]); |
4db71c0b YQ |
8515 | offset += size; |
8516 | } | |
8517 | ||
8518 | /* Choose the correct breakpoint instruction. */ | |
8519 | if (dsc->is_thumb) | |
8520 | { | |
8521 | bkp_insn = tdep->thumb_breakpoint; | |
8522 | len = tdep->thumb_breakpoint_size; | |
8523 | } | |
8524 | else | |
8525 | { | |
8526 | bkp_insn = tdep->arm_breakpoint; | |
8527 | len = tdep->arm_breakpoint_size; | |
cca44b1b JB |
8528 | } |
8529 | ||
8530 | /* Put breakpoint afterwards. */ | |
4db71c0b | 8531 | write_memory (to + offset, bkp_insn, len); |
cca44b1b JB |
8532 | |
8533 | if (debug_displaced) | |
8534 | fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", | |
8535 | paddress (gdbarch, from), paddress (gdbarch, to)); | |
8536 | } | |
8537 | ||
8538 | /* Entry point for copying an instruction into scratch space for displaced | |
8539 | stepping. */ | |
8540 | ||
8541 | struct displaced_step_closure * | |
8542 | arm_displaced_step_copy_insn (struct gdbarch *gdbarch, | |
8543 | CORE_ADDR from, CORE_ADDR to, | |
8544 | struct regcache *regs) | |
8545 | { | |
8546 | struct displaced_step_closure *dsc | |
8547 | = xmalloc (sizeof (struct displaced_step_closure)); | |
b434a28f | 8548 | arm_process_displaced_insn (gdbarch, from, to, regs, dsc); |
cca44b1b JB |
8549 | arm_displaced_init_closure (gdbarch, from, to, dsc); |
8550 | ||
8551 | return dsc; | |
8552 | } | |
8553 | ||
8554 | /* Entry point for cleaning things up after a displaced instruction has been | |
8555 | single-stepped. */ | |
8556 | ||
8557 | void | |
8558 | arm_displaced_step_fixup (struct gdbarch *gdbarch, | |
8559 | struct displaced_step_closure *dsc, | |
8560 | CORE_ADDR from, CORE_ADDR to, | |
8561 | struct regcache *regs) | |
8562 | { | |
8563 | if (dsc->cleanup) | |
8564 | dsc->cleanup (gdbarch, regs, dsc); | |
8565 | ||
8566 | if (!dsc->wrote_to_pc) | |
4db71c0b YQ |
8567 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
8568 | dsc->insn_addr + dsc->insn_size); | |
8569 | ||
cca44b1b JB |
8570 | } |
8571 | ||
8572 | #include "bfd-in2.h" | |
8573 | #include "libcoff.h" | |
8574 | ||
8575 | static int | |
8576 | gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) | |
8577 | { | |
9779414d DJ |
8578 | struct gdbarch *gdbarch = info->application_data; |
8579 | ||
8580 | if (arm_pc_is_thumb (gdbarch, memaddr)) | |
cca44b1b JB |
8581 | { |
8582 | static asymbol *asym; | |
8583 | static combined_entry_type ce; | |
8584 | static struct coff_symbol_struct csym; | |
8585 | static struct bfd fake_bfd; | |
8586 | static bfd_target fake_target; | |
8587 | ||
8588 | if (csym.native == NULL) | |
8589 | { | |
8590 | /* Create a fake symbol vector containing a Thumb symbol. | |
8591 | This is solely so that the code in print_insn_little_arm() | |
8592 | and print_insn_big_arm() in opcodes/arm-dis.c will detect | |
8593 | the presence of a Thumb symbol and switch to decoding | |
8594 | Thumb instructions. */ | |
8595 | ||
8596 | fake_target.flavour = bfd_target_coff_flavour; | |
8597 | fake_bfd.xvec = &fake_target; | |
8598 | ce.u.syment.n_sclass = C_THUMBEXTFUNC; | |
8599 | csym.native = &ce; | |
8600 | csym.symbol.the_bfd = &fake_bfd; | |
8601 | csym.symbol.name = "fake"; | |
8602 | asym = (asymbol *) & csym; | |
8603 | } | |
8604 | ||
8605 | memaddr = UNMAKE_THUMB_ADDR (memaddr); | |
8606 | info->symbols = &asym; | |
8607 | } | |
8608 | else | |
8609 | info->symbols = NULL; | |
8610 | ||
8611 | if (info->endian == BFD_ENDIAN_BIG) | |
8612 | return print_insn_big_arm (memaddr, info); | |
8613 | else | |
8614 | return print_insn_little_arm (memaddr, info); | |
8615 | } | |
8616 | ||
8617 | /* The following define instruction sequences that will cause ARM | |
8618 | cpu's to take an undefined instruction trap. These are used to | |
8619 | signal a breakpoint to GDB. | |
8620 | ||
8621 | The newer ARMv4T cpu's are capable of operating in ARM or Thumb | |
8622 | modes. A different instruction is required for each mode. The ARM | |
8623 | cpu's can also be big or little endian. Thus four different | |
8624 | instructions are needed to support all cases. | |
8625 | ||
8626 | Note: ARMv4 defines several new instructions that will take the | |
8627 | undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does | |
8628 | not in fact add the new instructions. The new undefined | |
8629 | instructions in ARMv4 are all instructions that had no defined | |
8630 | behaviour in earlier chips. There is no guarantee that they will | |
8631 | raise an exception, but may be treated as NOP's. In practice, it | |
8632 | may only safe to rely on instructions matching: | |
8633 | ||
8634 | 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 | |
8635 | 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 | |
8636 | C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x | |
8637 | ||
0963b4bd | 8638 | Even this may only true if the condition predicate is true. The |
cca44b1b JB |
8639 | following use a condition predicate of ALWAYS so it is always TRUE. |
8640 | ||
8641 | There are other ways of forcing a breakpoint. GNU/Linux, RISC iX, | |
8642 | and NetBSD all use a software interrupt rather than an undefined | |
8643 | instruction to force a trap. This can be handled by by the | |
8644 | abi-specific code during establishment of the gdbarch vector. */ | |
8645 | ||
8646 | #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7} | |
8647 | #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE} | |
8648 | #define THUMB_LE_BREAKPOINT {0xbe,0xbe} | |
8649 | #define THUMB_BE_BREAKPOINT {0xbe,0xbe} | |
8650 | ||
8651 | static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT; | |
8652 | static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT; | |
8653 | static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT; | |
8654 | static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT; | |
8655 | ||
8656 | /* Determine the type and size of breakpoint to insert at PCPTR. Uses | |
8657 | the program counter value to determine whether a 16-bit or 32-bit | |
8658 | breakpoint should be used. It returns a pointer to a string of | |
8659 | bytes that encode a breakpoint instruction, stores the length of | |
8660 | the string to *lenptr, and adjusts the program counter (if | |
8661 | necessary) to point to the actual memory location where the | |
8662 | breakpoint should be inserted. */ | |
8663 | ||
8664 | static const unsigned char * | |
8665 | arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) | |
8666 | { | |
8667 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
177321bd | 8668 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
cca44b1b | 8669 | |
9779414d | 8670 | if (arm_pc_is_thumb (gdbarch, *pcptr)) |
cca44b1b JB |
8671 | { |
8672 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
177321bd DJ |
8673 | |
8674 | /* If we have a separate 32-bit breakpoint instruction for Thumb-2, | |
8675 | check whether we are replacing a 32-bit instruction. */ | |
8676 | if (tdep->thumb2_breakpoint != NULL) | |
8677 | { | |
8678 | gdb_byte buf[2]; | |
8679 | if (target_read_memory (*pcptr, buf, 2) == 0) | |
8680 | { | |
8681 | unsigned short inst1; | |
8682 | inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
db24da6d | 8683 | if (thumb_insn_size (inst1) == 4) |
177321bd DJ |
8684 | { |
8685 | *lenptr = tdep->thumb2_breakpoint_size; | |
8686 | return tdep->thumb2_breakpoint; | |
8687 | } | |
8688 | } | |
8689 | } | |
8690 | ||
cca44b1b JB |
8691 | *lenptr = tdep->thumb_breakpoint_size; |
8692 | return tdep->thumb_breakpoint; | |
8693 | } | |
8694 | else | |
8695 | { | |
8696 | *lenptr = tdep->arm_breakpoint_size; | |
8697 | return tdep->arm_breakpoint; | |
8698 | } | |
8699 | } | |
8700 | ||
177321bd DJ |
8701 | static void |
8702 | arm_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, | |
8703 | int *kindptr) | |
8704 | { | |
8705 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
8706 | ||
8707 | arm_breakpoint_from_pc (gdbarch, pcptr, kindptr); | |
8708 | ||
9779414d | 8709 | if (arm_pc_is_thumb (gdbarch, *pcptr) && *kindptr == 4) |
177321bd DJ |
8710 | /* The documented magic value for a 32-bit Thumb-2 breakpoint, so |
8711 | that this is not confused with a 32-bit ARM breakpoint. */ | |
8712 | *kindptr = 3; | |
8713 | } | |
8714 | ||
cca44b1b JB |
8715 | /* Extract from an array REGBUF containing the (raw) register state a |
8716 | function return value of type TYPE, and copy that, in virtual | |
8717 | format, into VALBUF. */ | |
8718 | ||
8719 | static void | |
8720 | arm_extract_return_value (struct type *type, struct regcache *regs, | |
8721 | gdb_byte *valbuf) | |
8722 | { | |
8723 | struct gdbarch *gdbarch = get_regcache_arch (regs); | |
8724 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
8725 | ||
8726 | if (TYPE_CODE_FLT == TYPE_CODE (type)) | |
8727 | { | |
8728 | switch (gdbarch_tdep (gdbarch)->fp_model) | |
8729 | { | |
8730 | case ARM_FLOAT_FPA: | |
8731 | { | |
8732 | /* The value is in register F0 in internal format. We need to | |
8733 | extract the raw value and then convert it to the desired | |
8734 | internal type. */ | |
8735 | bfd_byte tmpbuf[FP_REGISTER_SIZE]; | |
8736 | ||
8737 | regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf); | |
8738 | convert_from_extended (floatformat_from_type (type), tmpbuf, | |
8739 | valbuf, gdbarch_byte_order (gdbarch)); | |
8740 | } | |
8741 | break; | |
8742 | ||
8743 | case ARM_FLOAT_SOFT_FPA: | |
8744 | case ARM_FLOAT_SOFT_VFP: | |
8745 | /* ARM_FLOAT_VFP can arise if this is a variadic function so | |
8746 | not using the VFP ABI code. */ | |
8747 | case ARM_FLOAT_VFP: | |
8748 | regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf); | |
8749 | if (TYPE_LENGTH (type) > 4) | |
8750 | regcache_cooked_read (regs, ARM_A1_REGNUM + 1, | |
8751 | valbuf + INT_REGISTER_SIZE); | |
8752 | break; | |
8753 | ||
8754 | default: | |
0963b4bd MS |
8755 | internal_error (__FILE__, __LINE__, |
8756 | _("arm_extract_return_value: " | |
8757 | "Floating point model not supported")); | |
cca44b1b JB |
8758 | break; |
8759 | } | |
8760 | } | |
8761 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
8762 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
8763 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
8764 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
8765 | || TYPE_CODE (type) == TYPE_CODE_REF | |
8766 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8767 | { | |
b021a221 MS |
8768 | /* If the type is a plain integer, then the access is |
8769 | straight-forward. Otherwise we have to play around a bit | |
8770 | more. */ | |
cca44b1b JB |
8771 | int len = TYPE_LENGTH (type); |
8772 | int regno = ARM_A1_REGNUM; | |
8773 | ULONGEST tmp; | |
8774 | ||
8775 | while (len > 0) | |
8776 | { | |
8777 | /* By using store_unsigned_integer we avoid having to do | |
8778 | anything special for small big-endian values. */ | |
8779 | regcache_cooked_read_unsigned (regs, regno++, &tmp); | |
8780 | store_unsigned_integer (valbuf, | |
8781 | (len > INT_REGISTER_SIZE | |
8782 | ? INT_REGISTER_SIZE : len), | |
8783 | byte_order, tmp); | |
8784 | len -= INT_REGISTER_SIZE; | |
8785 | valbuf += INT_REGISTER_SIZE; | |
8786 | } | |
8787 | } | |
8788 | else | |
8789 | { | |
8790 | /* For a structure or union the behaviour is as if the value had | |
8791 | been stored to word-aligned memory and then loaded into | |
8792 | registers with 32-bit load instruction(s). */ | |
8793 | int len = TYPE_LENGTH (type); | |
8794 | int regno = ARM_A1_REGNUM; | |
8795 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; | |
8796 | ||
8797 | while (len > 0) | |
8798 | { | |
8799 | regcache_cooked_read (regs, regno++, tmpbuf); | |
8800 | memcpy (valbuf, tmpbuf, | |
8801 | len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len); | |
8802 | len -= INT_REGISTER_SIZE; | |
8803 | valbuf += INT_REGISTER_SIZE; | |
8804 | } | |
8805 | } | |
8806 | } | |
8807 | ||
8808 | ||
8809 | /* Will a function return an aggregate type in memory or in a | |
8810 | register? Return 0 if an aggregate type can be returned in a | |
8811 | register, 1 if it must be returned in memory. */ | |
8812 | ||
8813 | static int | |
8814 | arm_return_in_memory (struct gdbarch *gdbarch, struct type *type) | |
8815 | { | |
8816 | int nRc; | |
8817 | enum type_code code; | |
8818 | ||
8819 | CHECK_TYPEDEF (type); | |
8820 | ||
8821 | /* In the ARM ABI, "integer" like aggregate types are returned in | |
8822 | registers. For an aggregate type to be integer like, its size | |
8823 | must be less than or equal to INT_REGISTER_SIZE and the | |
8824 | offset of each addressable subfield must be zero. Note that bit | |
8825 | fields are not addressable, and all addressable subfields of | |
8826 | unions always start at offset zero. | |
8827 | ||
8828 | This function is based on the behaviour of GCC 2.95.1. | |
8829 | See: gcc/arm.c: arm_return_in_memory() for details. | |
8830 | ||
8831 | Note: All versions of GCC before GCC 2.95.2 do not set up the | |
8832 | parameters correctly for a function returning the following | |
8833 | structure: struct { float f;}; This should be returned in memory, | |
8834 | not a register. Richard Earnshaw sent me a patch, but I do not | |
8835 | know of any way to detect if a function like the above has been | |
8836 | compiled with the correct calling convention. */ | |
8837 | ||
8838 | /* All aggregate types that won't fit in a register must be returned | |
8839 | in memory. */ | |
8840 | if (TYPE_LENGTH (type) > INT_REGISTER_SIZE) | |
8841 | { | |
8842 | return 1; | |
8843 | } | |
8844 | ||
8845 | /* The AAPCS says all aggregates not larger than a word are returned | |
8846 | in a register. */ | |
8847 | if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS) | |
8848 | return 0; | |
8849 | ||
8850 | /* The only aggregate types that can be returned in a register are | |
8851 | structs and unions. Arrays must be returned in memory. */ | |
8852 | code = TYPE_CODE (type); | |
8853 | if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code)) | |
8854 | { | |
8855 | return 1; | |
8856 | } | |
8857 | ||
8858 | /* Assume all other aggregate types can be returned in a register. | |
8859 | Run a check for structures, unions and arrays. */ | |
8860 | nRc = 0; | |
8861 | ||
8862 | if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) | |
8863 | { | |
8864 | int i; | |
8865 | /* Need to check if this struct/union is "integer" like. For | |
8866 | this to be true, its size must be less than or equal to | |
8867 | INT_REGISTER_SIZE and the offset of each addressable | |
8868 | subfield must be zero. Note that bit fields are not | |
8869 | addressable, and unions always start at offset zero. If any | |
8870 | of the subfields is a floating point type, the struct/union | |
8871 | cannot be an integer type. */ | |
8872 | ||
8873 | /* For each field in the object, check: | |
8874 | 1) Is it FP? --> yes, nRc = 1; | |
67255d04 RE |
8875 | 2) Is it addressable (bitpos != 0) and |
8876 | not packed (bitsize == 0)? | |
8877 | --> yes, nRc = 1 | |
8878 | */ | |
8879 | ||
8880 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
8881 | { | |
8882 | enum type_code field_type_code; | |
0963b4bd MS |
8883 | field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, |
8884 | i))); | |
67255d04 RE |
8885 | |
8886 | /* Is it a floating point type field? */ | |
8887 | if (field_type_code == TYPE_CODE_FLT) | |
8888 | { | |
8889 | nRc = 1; | |
8890 | break; | |
8891 | } | |
8892 | ||
8893 | /* If bitpos != 0, then we have to care about it. */ | |
8894 | if (TYPE_FIELD_BITPOS (type, i) != 0) | |
8895 | { | |
8896 | /* Bitfields are not addressable. If the field bitsize is | |
8897 | zero, then the field is not packed. Hence it cannot be | |
8898 | a bitfield or any other packed type. */ | |
8899 | if (TYPE_FIELD_BITSIZE (type, i) == 0) | |
8900 | { | |
8901 | nRc = 1; | |
8902 | break; | |
8903 | } | |
8904 | } | |
8905 | } | |
8906 | } | |
8907 | ||
8908 | return nRc; | |
8909 | } | |
8910 | ||
34e8f22d RE |
8911 | /* Write into appropriate registers a function return value of type |
8912 | TYPE, given in virtual format. */ | |
8913 | ||
8914 | static void | |
b508a996 | 8915 | arm_store_return_value (struct type *type, struct regcache *regs, |
5238cf52 | 8916 | const gdb_byte *valbuf) |
34e8f22d | 8917 | { |
be8626e0 | 8918 | struct gdbarch *gdbarch = get_regcache_arch (regs); |
e17a4113 | 8919 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
be8626e0 | 8920 | |
34e8f22d RE |
8921 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
8922 | { | |
7a5ea0d4 | 8923 | char buf[MAX_REGISTER_SIZE]; |
34e8f22d | 8924 | |
be8626e0 | 8925 | switch (gdbarch_tdep (gdbarch)->fp_model) |
08216dd7 RE |
8926 | { |
8927 | case ARM_FLOAT_FPA: | |
8928 | ||
be8626e0 MD |
8929 | convert_to_extended (floatformat_from_type (type), buf, valbuf, |
8930 | gdbarch_byte_order (gdbarch)); | |
b508a996 | 8931 | regcache_cooked_write (regs, ARM_F0_REGNUM, buf); |
08216dd7 RE |
8932 | break; |
8933 | ||
fd50bc42 | 8934 | case ARM_FLOAT_SOFT_FPA: |
08216dd7 | 8935 | case ARM_FLOAT_SOFT_VFP: |
90445bd3 DJ |
8936 | /* ARM_FLOAT_VFP can arise if this is a variadic function so |
8937 | not using the VFP ABI code. */ | |
8938 | case ARM_FLOAT_VFP: | |
b508a996 RE |
8939 | regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf); |
8940 | if (TYPE_LENGTH (type) > 4) | |
8941 | regcache_cooked_write (regs, ARM_A1_REGNUM + 1, | |
7a5ea0d4 | 8942 | valbuf + INT_REGISTER_SIZE); |
08216dd7 RE |
8943 | break; |
8944 | ||
8945 | default: | |
9b20d036 MS |
8946 | internal_error (__FILE__, __LINE__, |
8947 | _("arm_store_return_value: Floating " | |
8948 | "point model not supported")); | |
08216dd7 RE |
8949 | break; |
8950 | } | |
34e8f22d | 8951 | } |
b508a996 RE |
8952 | else if (TYPE_CODE (type) == TYPE_CODE_INT |
8953 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
8954 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
8955 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
8956 | || TYPE_CODE (type) == TYPE_CODE_REF | |
8957 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8958 | { | |
8959 | if (TYPE_LENGTH (type) <= 4) | |
8960 | { | |
8961 | /* Values of one word or less are zero/sign-extended and | |
8962 | returned in r0. */ | |
7a5ea0d4 | 8963 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; |
b508a996 RE |
8964 | LONGEST val = unpack_long (type, valbuf); |
8965 | ||
e17a4113 | 8966 | store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val); |
b508a996 RE |
8967 | regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf); |
8968 | } | |
8969 | else | |
8970 | { | |
8971 | /* Integral values greater than one word are stored in consecutive | |
8972 | registers starting with r0. This will always be a multiple of | |
8973 | the regiser size. */ | |
8974 | int len = TYPE_LENGTH (type); | |
8975 | int regno = ARM_A1_REGNUM; | |
8976 | ||
8977 | while (len > 0) | |
8978 | { | |
8979 | regcache_cooked_write (regs, regno++, valbuf); | |
7a5ea0d4 DJ |
8980 | len -= INT_REGISTER_SIZE; |
8981 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
8982 | } |
8983 | } | |
8984 | } | |
34e8f22d | 8985 | else |
b508a996 RE |
8986 | { |
8987 | /* For a structure or union the behaviour is as if the value had | |
8988 | been stored to word-aligned memory and then loaded into | |
8989 | registers with 32-bit load instruction(s). */ | |
8990 | int len = TYPE_LENGTH (type); | |
8991 | int regno = ARM_A1_REGNUM; | |
7a5ea0d4 | 8992 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; |
b508a996 RE |
8993 | |
8994 | while (len > 0) | |
8995 | { | |
8996 | memcpy (tmpbuf, valbuf, | |
7a5ea0d4 | 8997 | len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len); |
b508a996 | 8998 | regcache_cooked_write (regs, regno++, tmpbuf); |
7a5ea0d4 DJ |
8999 | len -= INT_REGISTER_SIZE; |
9000 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
9001 | } |
9002 | } | |
34e8f22d RE |
9003 | } |
9004 | ||
2af48f68 PB |
9005 | |
9006 | /* Handle function return values. */ | |
9007 | ||
9008 | static enum return_value_convention | |
c055b101 CV |
9009 | arm_return_value (struct gdbarch *gdbarch, struct type *func_type, |
9010 | struct type *valtype, struct regcache *regcache, | |
9011 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
2af48f68 | 9012 | { |
7c00367c | 9013 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
90445bd3 DJ |
9014 | enum arm_vfp_cprc_base_type vfp_base_type; |
9015 | int vfp_base_count; | |
9016 | ||
9017 | if (arm_vfp_abi_for_function (gdbarch, func_type) | |
9018 | && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count)) | |
9019 | { | |
9020 | int reg_char = arm_vfp_cprc_reg_char (vfp_base_type); | |
9021 | int unit_length = arm_vfp_cprc_unit_length (vfp_base_type); | |
9022 | int i; | |
9023 | for (i = 0; i < vfp_base_count; i++) | |
9024 | { | |
58d6951d DJ |
9025 | if (reg_char == 'q') |
9026 | { | |
9027 | if (writebuf) | |
9028 | arm_neon_quad_write (gdbarch, regcache, i, | |
9029 | writebuf + i * unit_length); | |
9030 | ||
9031 | if (readbuf) | |
9032 | arm_neon_quad_read (gdbarch, regcache, i, | |
9033 | readbuf + i * unit_length); | |
9034 | } | |
9035 | else | |
9036 | { | |
9037 | char name_buf[4]; | |
9038 | int regnum; | |
9039 | ||
9040 | sprintf (name_buf, "%c%d", reg_char, i); | |
9041 | regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
9042 | strlen (name_buf)); | |
9043 | if (writebuf) | |
9044 | regcache_cooked_write (regcache, regnum, | |
9045 | writebuf + i * unit_length); | |
9046 | if (readbuf) | |
9047 | regcache_cooked_read (regcache, regnum, | |
9048 | readbuf + i * unit_length); | |
9049 | } | |
90445bd3 DJ |
9050 | } |
9051 | return RETURN_VALUE_REGISTER_CONVENTION; | |
9052 | } | |
7c00367c | 9053 | |
2af48f68 PB |
9054 | if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT |
9055 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
9056 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
9057 | { | |
7c00367c MK |
9058 | if (tdep->struct_return == pcc_struct_return |
9059 | || arm_return_in_memory (gdbarch, valtype)) | |
2af48f68 PB |
9060 | return RETURN_VALUE_STRUCT_CONVENTION; |
9061 | } | |
9062 | ||
7052e42c UW |
9063 | /* AAPCS returns complex types longer than a register in memory. */ |
9064 | if (tdep->arm_abi != ARM_ABI_APCS | |
9065 | && TYPE_CODE (valtype) == TYPE_CODE_COMPLEX | |
9066 | && TYPE_LENGTH (valtype) > INT_REGISTER_SIZE) | |
9067 | return RETURN_VALUE_STRUCT_CONVENTION; | |
9068 | ||
2af48f68 PB |
9069 | if (writebuf) |
9070 | arm_store_return_value (valtype, regcache, writebuf); | |
9071 | ||
9072 | if (readbuf) | |
9073 | arm_extract_return_value (valtype, regcache, readbuf); | |
9074 | ||
9075 | return RETURN_VALUE_REGISTER_CONVENTION; | |
9076 | } | |
9077 | ||
9078 | ||
9df628e0 | 9079 | static int |
60ade65d | 9080 | arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) |
9df628e0 | 9081 | { |
e17a4113 UW |
9082 | struct gdbarch *gdbarch = get_frame_arch (frame); |
9083 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
9084 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
9df628e0 | 9085 | CORE_ADDR jb_addr; |
7a5ea0d4 | 9086 | char buf[INT_REGISTER_SIZE]; |
9df628e0 | 9087 | |
60ade65d | 9088 | jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM); |
9df628e0 RE |
9089 | |
9090 | if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf, | |
7a5ea0d4 | 9091 | INT_REGISTER_SIZE)) |
9df628e0 RE |
9092 | return 0; |
9093 | ||
e17a4113 | 9094 | *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order); |
9df628e0 RE |
9095 | return 1; |
9096 | } | |
9097 | ||
faa95490 DJ |
9098 | /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline, |
9099 | return the target PC. Otherwise return 0. */ | |
c906108c SS |
9100 | |
9101 | CORE_ADDR | |
52f729a7 | 9102 | arm_skip_stub (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 9103 | { |
c5aa993b | 9104 | char *name; |
faa95490 | 9105 | int namelen; |
c906108c SS |
9106 | CORE_ADDR start_addr; |
9107 | ||
9108 | /* Find the starting address and name of the function containing the PC. */ | |
9109 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
9110 | return 0; | |
9111 | ||
faa95490 DJ |
9112 | /* If PC is in a Thumb call or return stub, return the address of the |
9113 | target PC, which is in a register. The thunk functions are called | |
9114 | _call_via_xx, where x is the register name. The possible names | |
3d8d5e79 DJ |
9115 | are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar |
9116 | functions, named __ARM_call_via_r[0-7]. */ | |
9117 | if (strncmp (name, "_call_via_", 10) == 0 | |
9118 | || strncmp (name, "__ARM_call_via_", strlen ("__ARM_call_via_")) == 0) | |
c906108c | 9119 | { |
ed9a39eb JM |
9120 | /* Use the name suffix to determine which register contains the |
9121 | target PC. */ | |
c5aa993b JM |
9122 | static char *table[15] = |
9123 | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
9124 | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | |
9125 | }; | |
c906108c | 9126 | int regno; |
faa95490 | 9127 | int offset = strlen (name) - 2; |
c906108c SS |
9128 | |
9129 | for (regno = 0; regno <= 14; regno++) | |
faa95490 | 9130 | if (strcmp (&name[offset], table[regno]) == 0) |
52f729a7 | 9131 | return get_frame_register_unsigned (frame, regno); |
c906108c | 9132 | } |
ed9a39eb | 9133 | |
faa95490 DJ |
9134 | /* GNU ld generates __foo_from_arm or __foo_from_thumb for |
9135 | non-interworking calls to foo. We could decode the stubs | |
9136 | to find the target but it's easier to use the symbol table. */ | |
9137 | namelen = strlen (name); | |
9138 | if (name[0] == '_' && name[1] == '_' | |
9139 | && ((namelen > 2 + strlen ("_from_thumb") | |
9140 | && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb", | |
9141 | strlen ("_from_thumb")) == 0) | |
9142 | || (namelen > 2 + strlen ("_from_arm") | |
9143 | && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm", | |
9144 | strlen ("_from_arm")) == 0))) | |
9145 | { | |
9146 | char *target_name; | |
9147 | int target_len = namelen - 2; | |
9148 | struct minimal_symbol *minsym; | |
9149 | struct objfile *objfile; | |
9150 | struct obj_section *sec; | |
9151 | ||
9152 | if (name[namelen - 1] == 'b') | |
9153 | target_len -= strlen ("_from_thumb"); | |
9154 | else | |
9155 | target_len -= strlen ("_from_arm"); | |
9156 | ||
9157 | target_name = alloca (target_len + 1); | |
9158 | memcpy (target_name, name + 2, target_len); | |
9159 | target_name[target_len] = '\0'; | |
9160 | ||
9161 | sec = find_pc_section (pc); | |
9162 | objfile = (sec == NULL) ? NULL : sec->objfile; | |
9163 | minsym = lookup_minimal_symbol (target_name, NULL, objfile); | |
9164 | if (minsym != NULL) | |
9165 | return SYMBOL_VALUE_ADDRESS (minsym); | |
9166 | else | |
9167 | return 0; | |
9168 | } | |
9169 | ||
c5aa993b | 9170 | return 0; /* not a stub */ |
c906108c SS |
9171 | } |
9172 | ||
afd7eef0 RE |
9173 | static void |
9174 | set_arm_command (char *args, int from_tty) | |
9175 | { | |
edefbb7c AC |
9176 | printf_unfiltered (_("\ |
9177 | \"set arm\" must be followed by an apporpriate subcommand.\n")); | |
afd7eef0 RE |
9178 | help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout); |
9179 | } | |
9180 | ||
9181 | static void | |
9182 | show_arm_command (char *args, int from_tty) | |
9183 | { | |
26304000 | 9184 | cmd_show_list (showarmcmdlist, from_tty, ""); |
afd7eef0 RE |
9185 | } |
9186 | ||
28e97307 DJ |
9187 | static void |
9188 | arm_update_current_architecture (void) | |
fd50bc42 | 9189 | { |
28e97307 | 9190 | struct gdbarch_info info; |
fd50bc42 | 9191 | |
28e97307 | 9192 | /* If the current architecture is not ARM, we have nothing to do. */ |
1cf3db46 | 9193 | if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_arm) |
28e97307 | 9194 | return; |
fd50bc42 | 9195 | |
28e97307 DJ |
9196 | /* Update the architecture. */ |
9197 | gdbarch_info_init (&info); | |
fd50bc42 | 9198 | |
28e97307 | 9199 | if (!gdbarch_update_p (info)) |
9b20d036 | 9200 | internal_error (__FILE__, __LINE__, _("could not update architecture")); |
fd50bc42 RE |
9201 | } |
9202 | ||
9203 | static void | |
9204 | set_fp_model_sfunc (char *args, int from_tty, | |
9205 | struct cmd_list_element *c) | |
9206 | { | |
9207 | enum arm_float_model fp_model; | |
9208 | ||
9209 | for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++) | |
9210 | if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0) | |
9211 | { | |
9212 | arm_fp_model = fp_model; | |
9213 | break; | |
9214 | } | |
9215 | ||
9216 | if (fp_model == ARM_FLOAT_LAST) | |
edefbb7c | 9217 | internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."), |
fd50bc42 RE |
9218 | current_fp_model); |
9219 | ||
28e97307 | 9220 | arm_update_current_architecture (); |
fd50bc42 RE |
9221 | } |
9222 | ||
9223 | static void | |
08546159 AC |
9224 | show_fp_model (struct ui_file *file, int from_tty, |
9225 | struct cmd_list_element *c, const char *value) | |
fd50bc42 | 9226 | { |
1cf3db46 | 9227 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch); |
fd50bc42 | 9228 | |
28e97307 | 9229 | if (arm_fp_model == ARM_FLOAT_AUTO |
1cf3db46 | 9230 | && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm) |
28e97307 DJ |
9231 | fprintf_filtered (file, _("\ |
9232 | The current ARM floating point model is \"auto\" (currently \"%s\").\n"), | |
9233 | fp_model_strings[tdep->fp_model]); | |
9234 | else | |
9235 | fprintf_filtered (file, _("\ | |
9236 | The current ARM floating point model is \"%s\".\n"), | |
9237 | fp_model_strings[arm_fp_model]); | |
9238 | } | |
9239 | ||
9240 | static void | |
9241 | arm_set_abi (char *args, int from_tty, | |
9242 | struct cmd_list_element *c) | |
9243 | { | |
9244 | enum arm_abi_kind arm_abi; | |
9245 | ||
9246 | for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++) | |
9247 | if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0) | |
9248 | { | |
9249 | arm_abi_global = arm_abi; | |
9250 | break; | |
9251 | } | |
9252 | ||
9253 | if (arm_abi == ARM_ABI_LAST) | |
9254 | internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."), | |
9255 | arm_abi_string); | |
9256 | ||
9257 | arm_update_current_architecture (); | |
9258 | } | |
9259 | ||
9260 | static void | |
9261 | arm_show_abi (struct ui_file *file, int from_tty, | |
9262 | struct cmd_list_element *c, const char *value) | |
9263 | { | |
1cf3db46 | 9264 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch); |
28e97307 DJ |
9265 | |
9266 | if (arm_abi_global == ARM_ABI_AUTO | |
1cf3db46 | 9267 | && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm) |
28e97307 DJ |
9268 | fprintf_filtered (file, _("\ |
9269 | The current ARM ABI is \"auto\" (currently \"%s\").\n"), | |
9270 | arm_abi_strings[tdep->arm_abi]); | |
9271 | else | |
9272 | fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"), | |
9273 | arm_abi_string); | |
fd50bc42 RE |
9274 | } |
9275 | ||
0428b8f5 DJ |
9276 | static void |
9277 | arm_show_fallback_mode (struct ui_file *file, int from_tty, | |
9278 | struct cmd_list_element *c, const char *value) | |
9279 | { | |
1cf3db46 | 9280 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch); |
0428b8f5 | 9281 | |
0963b4bd MS |
9282 | fprintf_filtered (file, |
9283 | _("The current execution mode assumed " | |
9284 | "(when symbols are unavailable) is \"%s\".\n"), | |
0428b8f5 DJ |
9285 | arm_fallback_mode_string); |
9286 | } | |
9287 | ||
9288 | static void | |
9289 | arm_show_force_mode (struct ui_file *file, int from_tty, | |
9290 | struct cmd_list_element *c, const char *value) | |
9291 | { | |
1cf3db46 | 9292 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch); |
0428b8f5 | 9293 | |
0963b4bd MS |
9294 | fprintf_filtered (file, |
9295 | _("The current execution mode assumed " | |
9296 | "(even when symbols are available) is \"%s\".\n"), | |
0428b8f5 DJ |
9297 | arm_force_mode_string); |
9298 | } | |
9299 | ||
afd7eef0 RE |
9300 | /* If the user changes the register disassembly style used for info |
9301 | register and other commands, we have to also switch the style used | |
9302 | in opcodes for disassembly output. This function is run in the "set | |
9303 | arm disassembly" command, and does that. */ | |
bc90b915 FN |
9304 | |
9305 | static void | |
afd7eef0 | 9306 | set_disassembly_style_sfunc (char *args, int from_tty, |
bc90b915 FN |
9307 | struct cmd_list_element *c) |
9308 | { | |
afd7eef0 | 9309 | set_disassembly_style (); |
bc90b915 FN |
9310 | } |
9311 | \f | |
966fbf70 | 9312 | /* Return the ARM register name corresponding to register I. */ |
a208b0cb | 9313 | static const char * |
d93859e2 | 9314 | arm_register_name (struct gdbarch *gdbarch, int i) |
966fbf70 | 9315 | { |
58d6951d DJ |
9316 | const int num_regs = gdbarch_num_regs (gdbarch); |
9317 | ||
9318 | if (gdbarch_tdep (gdbarch)->have_vfp_pseudos | |
9319 | && i >= num_regs && i < num_regs + 32) | |
9320 | { | |
9321 | static const char *const vfp_pseudo_names[] = { | |
9322 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
9323 | "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", | |
9324 | "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23", | |
9325 | "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31", | |
9326 | }; | |
9327 | ||
9328 | return vfp_pseudo_names[i - num_regs]; | |
9329 | } | |
9330 | ||
9331 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos | |
9332 | && i >= num_regs + 32 && i < num_regs + 32 + 16) | |
9333 | { | |
9334 | static const char *const neon_pseudo_names[] = { | |
9335 | "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", | |
9336 | "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", | |
9337 | }; | |
9338 | ||
9339 | return neon_pseudo_names[i - num_regs - 32]; | |
9340 | } | |
9341 | ||
ff6f572f DJ |
9342 | if (i >= ARRAY_SIZE (arm_register_names)) |
9343 | /* These registers are only supported on targets which supply | |
9344 | an XML description. */ | |
9345 | return ""; | |
9346 | ||
966fbf70 RE |
9347 | return arm_register_names[i]; |
9348 | } | |
9349 | ||
bc90b915 | 9350 | static void |
afd7eef0 | 9351 | set_disassembly_style (void) |
bc90b915 | 9352 | { |
123dc839 | 9353 | int current; |
bc90b915 | 9354 | |
123dc839 DJ |
9355 | /* Find the style that the user wants. */ |
9356 | for (current = 0; current < num_disassembly_options; current++) | |
9357 | if (disassembly_style == valid_disassembly_styles[current]) | |
9358 | break; | |
9359 | gdb_assert (current < num_disassembly_options); | |
bc90b915 | 9360 | |
94c30b78 | 9361 | /* Synchronize the disassembler. */ |
bc90b915 FN |
9362 | set_arm_regname_option (current); |
9363 | } | |
9364 | ||
082fc60d RE |
9365 | /* Test whether the coff symbol specific value corresponds to a Thumb |
9366 | function. */ | |
9367 | ||
9368 | static int | |
9369 | coff_sym_is_thumb (int val) | |
9370 | { | |
f8bf5763 PM |
9371 | return (val == C_THUMBEXT |
9372 | || val == C_THUMBSTAT | |
9373 | || val == C_THUMBEXTFUNC | |
9374 | || val == C_THUMBSTATFUNC | |
9375 | || val == C_THUMBLABEL); | |
082fc60d RE |
9376 | } |
9377 | ||
9378 | /* arm_coff_make_msymbol_special() | |
9379 | arm_elf_make_msymbol_special() | |
9380 | ||
9381 | These functions test whether the COFF or ELF symbol corresponds to | |
9382 | an address in thumb code, and set a "special" bit in a minimal | |
9383 | symbol to indicate that it does. */ | |
9384 | ||
34e8f22d | 9385 | static void |
082fc60d RE |
9386 | arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym) |
9387 | { | |
467d42c4 UW |
9388 | if (ARM_SYM_BRANCH_TYPE (&((elf_symbol_type *)sym)->internal_elf_sym) |
9389 | == ST_BRANCH_TO_THUMB) | |
082fc60d RE |
9390 | MSYMBOL_SET_SPECIAL (msym); |
9391 | } | |
9392 | ||
34e8f22d | 9393 | static void |
082fc60d RE |
9394 | arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym) |
9395 | { | |
9396 | if (coff_sym_is_thumb (val)) | |
9397 | MSYMBOL_SET_SPECIAL (msym); | |
9398 | } | |
9399 | ||
60c5725c | 9400 | static void |
c1bd65d0 | 9401 | arm_objfile_data_free (struct objfile *objfile, void *arg) |
60c5725c DJ |
9402 | { |
9403 | struct arm_per_objfile *data = arg; | |
9404 | unsigned int i; | |
9405 | ||
9406 | for (i = 0; i < objfile->obfd->section_count; i++) | |
9407 | VEC_free (arm_mapping_symbol_s, data->section_maps[i]); | |
9408 | } | |
9409 | ||
9410 | static void | |
9411 | arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile, | |
9412 | asymbol *sym) | |
9413 | { | |
9414 | const char *name = bfd_asymbol_name (sym); | |
9415 | struct arm_per_objfile *data; | |
9416 | VEC(arm_mapping_symbol_s) **map_p; | |
9417 | struct arm_mapping_symbol new_map_sym; | |
9418 | ||
9419 | gdb_assert (name[0] == '$'); | |
9420 | if (name[1] != 'a' && name[1] != 't' && name[1] != 'd') | |
9421 | return; | |
9422 | ||
9423 | data = objfile_data (objfile, arm_objfile_data_key); | |
9424 | if (data == NULL) | |
9425 | { | |
9426 | data = OBSTACK_ZALLOC (&objfile->objfile_obstack, | |
9427 | struct arm_per_objfile); | |
9428 | set_objfile_data (objfile, arm_objfile_data_key, data); | |
9429 | data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack, | |
9430 | objfile->obfd->section_count, | |
9431 | VEC(arm_mapping_symbol_s) *); | |
9432 | } | |
9433 | map_p = &data->section_maps[bfd_get_section (sym)->index]; | |
9434 | ||
9435 | new_map_sym.value = sym->value; | |
9436 | new_map_sym.type = name[1]; | |
9437 | ||
9438 | /* Assume that most mapping symbols appear in order of increasing | |
9439 | value. If they were randomly distributed, it would be faster to | |
9440 | always push here and then sort at first use. */ | |
9441 | if (!VEC_empty (arm_mapping_symbol_s, *map_p)) | |
9442 | { | |
9443 | struct arm_mapping_symbol *prev_map_sym; | |
9444 | ||
9445 | prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p); | |
9446 | if (prev_map_sym->value >= sym->value) | |
9447 | { | |
9448 | unsigned int idx; | |
9449 | idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym, | |
9450 | arm_compare_mapping_symbols); | |
9451 | VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym); | |
9452 | return; | |
9453 | } | |
9454 | } | |
9455 | ||
9456 | VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym); | |
9457 | } | |
9458 | ||
756fe439 | 9459 | static void |
61a1198a | 9460 | arm_write_pc (struct regcache *regcache, CORE_ADDR pc) |
756fe439 | 9461 | { |
9779414d | 9462 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
61a1198a | 9463 | regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc); |
756fe439 DJ |
9464 | |
9465 | /* If necessary, set the T bit. */ | |
9466 | if (arm_apcs_32) | |
9467 | { | |
9779414d | 9468 | ULONGEST val, t_bit; |
61a1198a | 9469 | regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val); |
9779414d DJ |
9470 | t_bit = arm_psr_thumb_bit (gdbarch); |
9471 | if (arm_pc_is_thumb (gdbarch, pc)) | |
9472 | regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, | |
9473 | val | t_bit); | |
756fe439 | 9474 | else |
61a1198a | 9475 | regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, |
9779414d | 9476 | val & ~t_bit); |
756fe439 DJ |
9477 | } |
9478 | } | |
123dc839 | 9479 | |
58d6951d DJ |
9480 | /* Read the contents of a NEON quad register, by reading from two |
9481 | double registers. This is used to implement the quad pseudo | |
9482 | registers, and for argument passing in case the quad registers are | |
9483 | missing; vectors are passed in quad registers when using the VFP | |
9484 | ABI, even if a NEON unit is not present. REGNUM is the index of | |
9485 | the quad register, in [0, 15]. */ | |
9486 | ||
05d1431c | 9487 | static enum register_status |
58d6951d DJ |
9488 | arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache, |
9489 | int regnum, gdb_byte *buf) | |
9490 | { | |
9491 | char name_buf[4]; | |
9492 | gdb_byte reg_buf[8]; | |
9493 | int offset, double_regnum; | |
05d1431c | 9494 | enum register_status status; |
58d6951d DJ |
9495 | |
9496 | sprintf (name_buf, "d%d", regnum << 1); | |
9497 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
9498 | strlen (name_buf)); | |
9499 | ||
9500 | /* d0 is always the least significant half of q0. */ | |
9501 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
9502 | offset = 8; | |
9503 | else | |
9504 | offset = 0; | |
9505 | ||
05d1431c PA |
9506 | status = regcache_raw_read (regcache, double_regnum, reg_buf); |
9507 | if (status != REG_VALID) | |
9508 | return status; | |
58d6951d DJ |
9509 | memcpy (buf + offset, reg_buf, 8); |
9510 | ||
9511 | offset = 8 - offset; | |
05d1431c PA |
9512 | status = regcache_raw_read (regcache, double_regnum + 1, reg_buf); |
9513 | if (status != REG_VALID) | |
9514 | return status; | |
58d6951d | 9515 | memcpy (buf + offset, reg_buf, 8); |
05d1431c PA |
9516 | |
9517 | return REG_VALID; | |
58d6951d DJ |
9518 | } |
9519 | ||
05d1431c | 9520 | static enum register_status |
58d6951d DJ |
9521 | arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache, |
9522 | int regnum, gdb_byte *buf) | |
9523 | { | |
9524 | const int num_regs = gdbarch_num_regs (gdbarch); | |
9525 | char name_buf[4]; | |
9526 | gdb_byte reg_buf[8]; | |
9527 | int offset, double_regnum; | |
9528 | ||
9529 | gdb_assert (regnum >= num_regs); | |
9530 | regnum -= num_regs; | |
9531 | ||
9532 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48) | |
9533 | /* Quad-precision register. */ | |
05d1431c | 9534 | return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf); |
58d6951d DJ |
9535 | else |
9536 | { | |
05d1431c PA |
9537 | enum register_status status; |
9538 | ||
58d6951d DJ |
9539 | /* Single-precision register. */ |
9540 | gdb_assert (regnum < 32); | |
9541 | ||
9542 | /* s0 is always the least significant half of d0. */ | |
9543 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
9544 | offset = (regnum & 1) ? 0 : 4; | |
9545 | else | |
9546 | offset = (regnum & 1) ? 4 : 0; | |
9547 | ||
9548 | sprintf (name_buf, "d%d", regnum >> 1); | |
9549 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
9550 | strlen (name_buf)); | |
9551 | ||
05d1431c PA |
9552 | status = regcache_raw_read (regcache, double_regnum, reg_buf); |
9553 | if (status == REG_VALID) | |
9554 | memcpy (buf, reg_buf + offset, 4); | |
9555 | return status; | |
58d6951d DJ |
9556 | } |
9557 | } | |
9558 | ||
9559 | /* Store the contents of BUF to a NEON quad register, by writing to | |
9560 | two double registers. This is used to implement the quad pseudo | |
9561 | registers, and for argument passing in case the quad registers are | |
9562 | missing; vectors are passed in quad registers when using the VFP | |
9563 | ABI, even if a NEON unit is not present. REGNUM is the index | |
9564 | of the quad register, in [0, 15]. */ | |
9565 | ||
9566 | static void | |
9567 | arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
9568 | int regnum, const gdb_byte *buf) | |
9569 | { | |
9570 | char name_buf[4]; | |
9571 | gdb_byte reg_buf[8]; | |
9572 | int offset, double_regnum; | |
9573 | ||
9574 | sprintf (name_buf, "d%d", regnum << 1); | |
9575 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
9576 | strlen (name_buf)); | |
9577 | ||
9578 | /* d0 is always the least significant half of q0. */ | |
9579 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
9580 | offset = 8; | |
9581 | else | |
9582 | offset = 0; | |
9583 | ||
9584 | regcache_raw_write (regcache, double_regnum, buf + offset); | |
9585 | offset = 8 - offset; | |
9586 | regcache_raw_write (regcache, double_regnum + 1, buf + offset); | |
9587 | } | |
9588 | ||
9589 | static void | |
9590 | arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
9591 | int regnum, const gdb_byte *buf) | |
9592 | { | |
9593 | const int num_regs = gdbarch_num_regs (gdbarch); | |
9594 | char name_buf[4]; | |
9595 | gdb_byte reg_buf[8]; | |
9596 | int offset, double_regnum; | |
9597 | ||
9598 | gdb_assert (regnum >= num_regs); | |
9599 | regnum -= num_regs; | |
9600 | ||
9601 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48) | |
9602 | /* Quad-precision register. */ | |
9603 | arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf); | |
9604 | else | |
9605 | { | |
9606 | /* Single-precision register. */ | |
9607 | gdb_assert (regnum < 32); | |
9608 | ||
9609 | /* s0 is always the least significant half of d0. */ | |
9610 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
9611 | offset = (regnum & 1) ? 0 : 4; | |
9612 | else | |
9613 | offset = (regnum & 1) ? 4 : 0; | |
9614 | ||
9615 | sprintf (name_buf, "d%d", regnum >> 1); | |
9616 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | |
9617 | strlen (name_buf)); | |
9618 | ||
9619 | regcache_raw_read (regcache, double_regnum, reg_buf); | |
9620 | memcpy (reg_buf + offset, buf, 4); | |
9621 | regcache_raw_write (regcache, double_regnum, reg_buf); | |
9622 | } | |
9623 | } | |
9624 | ||
123dc839 DJ |
9625 | static struct value * |
9626 | value_of_arm_user_reg (struct frame_info *frame, const void *baton) | |
9627 | { | |
9628 | const int *reg_p = baton; | |
9629 | return value_of_register (*reg_p, frame); | |
9630 | } | |
97e03143 | 9631 | \f |
70f80edf JT |
9632 | static enum gdb_osabi |
9633 | arm_elf_osabi_sniffer (bfd *abfd) | |
97e03143 | 9634 | { |
2af48f68 | 9635 | unsigned int elfosabi; |
70f80edf | 9636 | enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; |
97e03143 | 9637 | |
70f80edf | 9638 | elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI]; |
97e03143 | 9639 | |
28e97307 DJ |
9640 | if (elfosabi == ELFOSABI_ARM) |
9641 | /* GNU tools use this value. Check note sections in this case, | |
9642 | as well. */ | |
9643 | bfd_map_over_sections (abfd, | |
9644 | generic_elf_osabi_sniff_abi_tag_sections, | |
9645 | &osabi); | |
97e03143 | 9646 | |
28e97307 | 9647 | /* Anything else will be handled by the generic ELF sniffer. */ |
70f80edf | 9648 | return osabi; |
97e03143 RE |
9649 | } |
9650 | ||
54483882 YQ |
9651 | static int |
9652 | arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
9653 | struct reggroup *group) | |
9654 | { | |
2c291032 YQ |
9655 | /* FPS register's type is INT, but belongs to float_reggroup. Beside |
9656 | this, FPS register belongs to save_regroup, restore_reggroup, and | |
9657 | all_reggroup, of course. */ | |
54483882 | 9658 | if (regnum == ARM_FPS_REGNUM) |
2c291032 YQ |
9659 | return (group == float_reggroup |
9660 | || group == save_reggroup | |
9661 | || group == restore_reggroup | |
9662 | || group == all_reggroup); | |
54483882 YQ |
9663 | else |
9664 | return default_register_reggroup_p (gdbarch, regnum, group); | |
9665 | } | |
9666 | ||
70f80edf | 9667 | \f |
da3c6d4a MS |
9668 | /* Initialize the current architecture based on INFO. If possible, |
9669 | re-use an architecture from ARCHES, which is a list of | |
9670 | architectures already created during this debugging session. | |
97e03143 | 9671 | |
da3c6d4a MS |
9672 | Called e.g. at program startup, when reading a core file, and when |
9673 | reading a binary file. */ | |
97e03143 | 9674 | |
39bbf761 RE |
9675 | static struct gdbarch * |
9676 | arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
9677 | { | |
97e03143 | 9678 | struct gdbarch_tdep *tdep; |
39bbf761 | 9679 | struct gdbarch *gdbarch; |
28e97307 DJ |
9680 | struct gdbarch_list *best_arch; |
9681 | enum arm_abi_kind arm_abi = arm_abi_global; | |
9682 | enum arm_float_model fp_model = arm_fp_model; | |
123dc839 | 9683 | struct tdesc_arch_data *tdesc_data = NULL; |
9779414d | 9684 | int i, is_m = 0; |
58d6951d DJ |
9685 | int have_vfp_registers = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0; |
9686 | int have_neon = 0; | |
ff6f572f | 9687 | int have_fpa_registers = 1; |
9779414d DJ |
9688 | const struct target_desc *tdesc = info.target_desc; |
9689 | ||
9690 | /* If we have an object to base this architecture on, try to determine | |
9691 | its ABI. */ | |
9692 | ||
9693 | if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL) | |
9694 | { | |
9695 | int ei_osabi, e_flags; | |
9696 | ||
9697 | switch (bfd_get_flavour (info.abfd)) | |
9698 | { | |
9699 | case bfd_target_aout_flavour: | |
9700 | /* Assume it's an old APCS-style ABI. */ | |
9701 | arm_abi = ARM_ABI_APCS; | |
9702 | break; | |
9703 | ||
9704 | case bfd_target_coff_flavour: | |
9705 | /* Assume it's an old APCS-style ABI. */ | |
9706 | /* XXX WinCE? */ | |
9707 | arm_abi = ARM_ABI_APCS; | |
9708 | break; | |
9709 | ||
9710 | case bfd_target_elf_flavour: | |
9711 | ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI]; | |
9712 | e_flags = elf_elfheader (info.abfd)->e_flags; | |
9713 | ||
9714 | if (ei_osabi == ELFOSABI_ARM) | |
9715 | { | |
9716 | /* GNU tools used to use this value, but do not for EABI | |
9717 | objects. There's nowhere to tag an EABI version | |
9718 | anyway, so assume APCS. */ | |
9719 | arm_abi = ARM_ABI_APCS; | |
9720 | } | |
9721 | else if (ei_osabi == ELFOSABI_NONE) | |
9722 | { | |
9723 | int eabi_ver = EF_ARM_EABI_VERSION (e_flags); | |
9724 | int attr_arch, attr_profile; | |
9725 | ||
9726 | switch (eabi_ver) | |
9727 | { | |
9728 | case EF_ARM_EABI_UNKNOWN: | |
9729 | /* Assume GNU tools. */ | |
9730 | arm_abi = ARM_ABI_APCS; | |
9731 | break; | |
9732 | ||
9733 | case EF_ARM_EABI_VER4: | |
9734 | case EF_ARM_EABI_VER5: | |
9735 | arm_abi = ARM_ABI_AAPCS; | |
9736 | /* EABI binaries default to VFP float ordering. | |
9737 | They may also contain build attributes that can | |
9738 | be used to identify if the VFP argument-passing | |
9739 | ABI is in use. */ | |
9740 | if (fp_model == ARM_FLOAT_AUTO) | |
9741 | { | |
9742 | #ifdef HAVE_ELF | |
9743 | switch (bfd_elf_get_obj_attr_int (info.abfd, | |
9744 | OBJ_ATTR_PROC, | |
9745 | Tag_ABI_VFP_args)) | |
9746 | { | |
9747 | case 0: | |
9748 | /* "The user intended FP parameter/result | |
9749 | passing to conform to AAPCS, base | |
9750 | variant". */ | |
9751 | fp_model = ARM_FLOAT_SOFT_VFP; | |
9752 | break; | |
9753 | case 1: | |
9754 | /* "The user intended FP parameter/result | |
9755 | passing to conform to AAPCS, VFP | |
9756 | variant". */ | |
9757 | fp_model = ARM_FLOAT_VFP; | |
9758 | break; | |
9759 | case 2: | |
9760 | /* "The user intended FP parameter/result | |
9761 | passing to conform to tool chain-specific | |
9762 | conventions" - we don't know any such | |
9763 | conventions, so leave it as "auto". */ | |
9764 | break; | |
9765 | default: | |
9766 | /* Attribute value not mentioned in the | |
9767 | October 2008 ABI, so leave it as | |
9768 | "auto". */ | |
9769 | break; | |
9770 | } | |
9771 | #else | |
9772 | fp_model = ARM_FLOAT_SOFT_VFP; | |
9773 | #endif | |
9774 | } | |
9775 | break; | |
9776 | ||
9777 | default: | |
9778 | /* Leave it as "auto". */ | |
9779 | warning (_("unknown ARM EABI version 0x%x"), eabi_ver); | |
9780 | break; | |
9781 | } | |
9782 | ||
9783 | #ifdef HAVE_ELF | |
9784 | /* Detect M-profile programs. This only works if the | |
9785 | executable file includes build attributes; GCC does | |
9786 | copy them to the executable, but e.g. RealView does | |
9787 | not. */ | |
9788 | attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC, | |
9789 | Tag_CPU_arch); | |
0963b4bd MS |
9790 | attr_profile = bfd_elf_get_obj_attr_int (info.abfd, |
9791 | OBJ_ATTR_PROC, | |
9779414d DJ |
9792 | Tag_CPU_arch_profile); |
9793 | /* GCC specifies the profile for v6-M; RealView only | |
9794 | specifies the profile for architectures starting with | |
9795 | V7 (as opposed to architectures with a tag | |
9796 | numerically greater than TAG_CPU_ARCH_V7). */ | |
9797 | if (!tdesc_has_registers (tdesc) | |
9798 | && (attr_arch == TAG_CPU_ARCH_V6_M | |
9799 | || attr_arch == TAG_CPU_ARCH_V6S_M | |
9800 | || attr_profile == 'M')) | |
9801 | tdesc = tdesc_arm_with_m; | |
9802 | #endif | |
9803 | } | |
9804 | ||
9805 | if (fp_model == ARM_FLOAT_AUTO) | |
9806 | { | |
9807 | int e_flags = elf_elfheader (info.abfd)->e_flags; | |
9808 | ||
9809 | switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT)) | |
9810 | { | |
9811 | case 0: | |
9812 | /* Leave it as "auto". Strictly speaking this case | |
9813 | means FPA, but almost nobody uses that now, and | |
9814 | many toolchains fail to set the appropriate bits | |
9815 | for the floating-point model they use. */ | |
9816 | break; | |
9817 | case EF_ARM_SOFT_FLOAT: | |
9818 | fp_model = ARM_FLOAT_SOFT_FPA; | |
9819 | break; | |
9820 | case EF_ARM_VFP_FLOAT: | |
9821 | fp_model = ARM_FLOAT_VFP; | |
9822 | break; | |
9823 | case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT: | |
9824 | fp_model = ARM_FLOAT_SOFT_VFP; | |
9825 | break; | |
9826 | } | |
9827 | } | |
9828 | ||
9829 | if (e_flags & EF_ARM_BE8) | |
9830 | info.byte_order_for_code = BFD_ENDIAN_LITTLE; | |
9831 | ||
9832 | break; | |
9833 | ||
9834 | default: | |
9835 | /* Leave it as "auto". */ | |
9836 | break; | |
9837 | } | |
9838 | } | |
123dc839 DJ |
9839 | |
9840 | /* Check any target description for validity. */ | |
9779414d | 9841 | if (tdesc_has_registers (tdesc)) |
123dc839 DJ |
9842 | { |
9843 | /* For most registers we require GDB's default names; but also allow | |
9844 | the numeric names for sp / lr / pc, as a convenience. */ | |
9845 | static const char *const arm_sp_names[] = { "r13", "sp", NULL }; | |
9846 | static const char *const arm_lr_names[] = { "r14", "lr", NULL }; | |
9847 | static const char *const arm_pc_names[] = { "r15", "pc", NULL }; | |
9848 | ||
9849 | const struct tdesc_feature *feature; | |
58d6951d | 9850 | int valid_p; |
123dc839 | 9851 | |
9779414d | 9852 | feature = tdesc_find_feature (tdesc, |
123dc839 DJ |
9853 | "org.gnu.gdb.arm.core"); |
9854 | if (feature == NULL) | |
9779414d DJ |
9855 | { |
9856 | feature = tdesc_find_feature (tdesc, | |
9857 | "org.gnu.gdb.arm.m-profile"); | |
9858 | if (feature == NULL) | |
9859 | return NULL; | |
9860 | else | |
9861 | is_m = 1; | |
9862 | } | |
123dc839 DJ |
9863 | |
9864 | tdesc_data = tdesc_data_alloc (); | |
9865 | ||
9866 | valid_p = 1; | |
9867 | for (i = 0; i < ARM_SP_REGNUM; i++) | |
9868 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
9869 | arm_register_names[i]); | |
9870 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
9871 | ARM_SP_REGNUM, | |
9872 | arm_sp_names); | |
9873 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
9874 | ARM_LR_REGNUM, | |
9875 | arm_lr_names); | |
9876 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
9877 | ARM_PC_REGNUM, | |
9878 | arm_pc_names); | |
9779414d DJ |
9879 | if (is_m) |
9880 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
9881 | ARM_PS_REGNUM, "xpsr"); | |
9882 | else | |
9883 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
9884 | ARM_PS_REGNUM, "cpsr"); | |
123dc839 DJ |
9885 | |
9886 | if (!valid_p) | |
9887 | { | |
9888 | tdesc_data_cleanup (tdesc_data); | |
9889 | return NULL; | |
9890 | } | |
9891 | ||
9779414d | 9892 | feature = tdesc_find_feature (tdesc, |
123dc839 DJ |
9893 | "org.gnu.gdb.arm.fpa"); |
9894 | if (feature != NULL) | |
9895 | { | |
9896 | valid_p = 1; | |
9897 | for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++) | |
9898 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
9899 | arm_register_names[i]); | |
9900 | if (!valid_p) | |
9901 | { | |
9902 | tdesc_data_cleanup (tdesc_data); | |
9903 | return NULL; | |
9904 | } | |
9905 | } | |
ff6f572f DJ |
9906 | else |
9907 | have_fpa_registers = 0; | |
9908 | ||
9779414d | 9909 | feature = tdesc_find_feature (tdesc, |
ff6f572f DJ |
9910 | "org.gnu.gdb.xscale.iwmmxt"); |
9911 | if (feature != NULL) | |
9912 | { | |
9913 | static const char *const iwmmxt_names[] = { | |
9914 | "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7", | |
9915 | "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15", | |
9916 | "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "", | |
9917 | "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "", | |
9918 | }; | |
9919 | ||
9920 | valid_p = 1; | |
9921 | for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++) | |
9922 | valid_p | |
9923 | &= tdesc_numbered_register (feature, tdesc_data, i, | |
9924 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
9925 | ||
9926 | /* Check for the control registers, but do not fail if they | |
9927 | are missing. */ | |
9928 | for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++) | |
9929 | tdesc_numbered_register (feature, tdesc_data, i, | |
9930 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
9931 | ||
9932 | for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++) | |
9933 | valid_p | |
9934 | &= tdesc_numbered_register (feature, tdesc_data, i, | |
9935 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
9936 | ||
9937 | if (!valid_p) | |
9938 | { | |
9939 | tdesc_data_cleanup (tdesc_data); | |
9940 | return NULL; | |
9941 | } | |
9942 | } | |
58d6951d DJ |
9943 | |
9944 | /* If we have a VFP unit, check whether the single precision registers | |
9945 | are present. If not, then we will synthesize them as pseudo | |
9946 | registers. */ | |
9779414d | 9947 | feature = tdesc_find_feature (tdesc, |
58d6951d DJ |
9948 | "org.gnu.gdb.arm.vfp"); |
9949 | if (feature != NULL) | |
9950 | { | |
9951 | static const char *const vfp_double_names[] = { | |
9952 | "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", | |
9953 | "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", | |
9954 | "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", | |
9955 | "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31", | |
9956 | }; | |
9957 | ||
9958 | /* Require the double precision registers. There must be either | |
9959 | 16 or 32. */ | |
9960 | valid_p = 1; | |
9961 | for (i = 0; i < 32; i++) | |
9962 | { | |
9963 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
9964 | ARM_D0_REGNUM + i, | |
9965 | vfp_double_names[i]); | |
9966 | if (!valid_p) | |
9967 | break; | |
9968 | } | |
2b9e5ea6 UW |
9969 | if (!valid_p && i == 16) |
9970 | valid_p = 1; | |
58d6951d | 9971 | |
2b9e5ea6 UW |
9972 | /* Also require FPSCR. */ |
9973 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
9974 | ARM_FPSCR_REGNUM, "fpscr"); | |
9975 | if (!valid_p) | |
58d6951d DJ |
9976 | { |
9977 | tdesc_data_cleanup (tdesc_data); | |
9978 | return NULL; | |
9979 | } | |
9980 | ||
9981 | if (tdesc_unnumbered_register (feature, "s0") == 0) | |
9982 | have_vfp_pseudos = 1; | |
9983 | ||
9984 | have_vfp_registers = 1; | |
9985 | ||
9986 | /* If we have VFP, also check for NEON. The architecture allows | |
9987 | NEON without VFP (integer vector operations only), but GDB | |
9988 | does not support that. */ | |
9779414d | 9989 | feature = tdesc_find_feature (tdesc, |
58d6951d DJ |
9990 | "org.gnu.gdb.arm.neon"); |
9991 | if (feature != NULL) | |
9992 | { | |
9993 | /* NEON requires 32 double-precision registers. */ | |
9994 | if (i != 32) | |
9995 | { | |
9996 | tdesc_data_cleanup (tdesc_data); | |
9997 | return NULL; | |
9998 | } | |
9999 | ||
10000 | /* If there are quad registers defined by the stub, use | |
10001 | their type; otherwise (normally) provide them with | |
10002 | the default type. */ | |
10003 | if (tdesc_unnumbered_register (feature, "q0") == 0) | |
10004 | have_neon_pseudos = 1; | |
10005 | ||
10006 | have_neon = 1; | |
10007 | } | |
10008 | } | |
123dc839 | 10009 | } |
39bbf761 | 10010 | |
28e97307 DJ |
10011 | /* If there is already a candidate, use it. */ |
10012 | for (best_arch = gdbarch_list_lookup_by_info (arches, &info); | |
10013 | best_arch != NULL; | |
10014 | best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) | |
10015 | { | |
b8926edc DJ |
10016 | if (arm_abi != ARM_ABI_AUTO |
10017 | && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi) | |
28e97307 DJ |
10018 | continue; |
10019 | ||
b8926edc DJ |
10020 | if (fp_model != ARM_FLOAT_AUTO |
10021 | && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model) | |
28e97307 DJ |
10022 | continue; |
10023 | ||
58d6951d DJ |
10024 | /* There are various other properties in tdep that we do not |
10025 | need to check here: those derived from a target description, | |
10026 | since gdbarches with a different target description are | |
10027 | automatically disqualified. */ | |
10028 | ||
9779414d DJ |
10029 | /* Do check is_m, though, since it might come from the binary. */ |
10030 | if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m) | |
10031 | continue; | |
10032 | ||
28e97307 DJ |
10033 | /* Found a match. */ |
10034 | break; | |
10035 | } | |
97e03143 | 10036 | |
28e97307 | 10037 | if (best_arch != NULL) |
123dc839 DJ |
10038 | { |
10039 | if (tdesc_data != NULL) | |
10040 | tdesc_data_cleanup (tdesc_data); | |
10041 | return best_arch->gdbarch; | |
10042 | } | |
28e97307 DJ |
10043 | |
10044 | tdep = xcalloc (1, sizeof (struct gdbarch_tdep)); | |
97e03143 RE |
10045 | gdbarch = gdbarch_alloc (&info, tdep); |
10046 | ||
28e97307 DJ |
10047 | /* Record additional information about the architecture we are defining. |
10048 | These are gdbarch discriminators, like the OSABI. */ | |
10049 | tdep->arm_abi = arm_abi; | |
10050 | tdep->fp_model = fp_model; | |
9779414d | 10051 | tdep->is_m = is_m; |
ff6f572f | 10052 | tdep->have_fpa_registers = have_fpa_registers; |
58d6951d DJ |
10053 | tdep->have_vfp_registers = have_vfp_registers; |
10054 | tdep->have_vfp_pseudos = have_vfp_pseudos; | |
10055 | tdep->have_neon_pseudos = have_neon_pseudos; | |
10056 | tdep->have_neon = have_neon; | |
08216dd7 RE |
10057 | |
10058 | /* Breakpoints. */ | |
9d4fde75 | 10059 | switch (info.byte_order_for_code) |
67255d04 RE |
10060 | { |
10061 | case BFD_ENDIAN_BIG: | |
66e810cd RE |
10062 | tdep->arm_breakpoint = arm_default_arm_be_breakpoint; |
10063 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint); | |
10064 | tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint; | |
10065 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint); | |
10066 | ||
67255d04 RE |
10067 | break; |
10068 | ||
10069 | case BFD_ENDIAN_LITTLE: | |
66e810cd RE |
10070 | tdep->arm_breakpoint = arm_default_arm_le_breakpoint; |
10071 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint); | |
10072 | tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint; | |
10073 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint); | |
10074 | ||
67255d04 RE |
10075 | break; |
10076 | ||
10077 | default: | |
10078 | internal_error (__FILE__, __LINE__, | |
edefbb7c | 10079 | _("arm_gdbarch_init: bad byte order for float format")); |
67255d04 RE |
10080 | } |
10081 | ||
d7b486e7 RE |
10082 | /* On ARM targets char defaults to unsigned. */ |
10083 | set_gdbarch_char_signed (gdbarch, 0); | |
10084 | ||
cca44b1b JB |
10085 | /* Note: for displaced stepping, this includes the breakpoint, and one word |
10086 | of additional scratch space. This setting isn't used for anything beside | |
10087 | displaced stepping at present. */ | |
10088 | set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS); | |
10089 | ||
9df628e0 | 10090 | /* This should be low enough for everything. */ |
97e03143 | 10091 | tdep->lowest_pc = 0x20; |
94c30b78 | 10092 | tdep->jb_pc = -1; /* Longjump support not enabled by default. */ |
97e03143 | 10093 | |
7c00367c MK |
10094 | /* The default, for both APCS and AAPCS, is to return small |
10095 | structures in registers. */ | |
10096 | tdep->struct_return = reg_struct_return; | |
10097 | ||
2dd604e7 | 10098 | set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call); |
f53f0d0b | 10099 | set_gdbarch_frame_align (gdbarch, arm_frame_align); |
39bbf761 | 10100 | |
756fe439 DJ |
10101 | set_gdbarch_write_pc (gdbarch, arm_write_pc); |
10102 | ||
148754e5 | 10103 | /* Frame handling. */ |
a262aec2 | 10104 | set_gdbarch_dummy_id (gdbarch, arm_dummy_id); |
eb5492fa DJ |
10105 | set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc); |
10106 | set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp); | |
10107 | ||
eb5492fa | 10108 | frame_base_set_default (gdbarch, &arm_normal_base); |
148754e5 | 10109 | |
34e8f22d RE |
10110 | /* Address manipulation. */ |
10111 | set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address); | |
10112 | set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove); | |
10113 | ||
34e8f22d RE |
10114 | /* Advance PC across function entry code. */ |
10115 | set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue); | |
10116 | ||
4024ca99 UW |
10117 | /* Detect whether PC is in function epilogue. */ |
10118 | set_gdbarch_in_function_epilogue_p (gdbarch, arm_in_function_epilogue_p); | |
10119 | ||
190dce09 UW |
10120 | /* Skip trampolines. */ |
10121 | set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub); | |
10122 | ||
34e8f22d RE |
10123 | /* The stack grows downward. */ |
10124 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
10125 | ||
10126 | /* Breakpoint manipulation. */ | |
10127 | set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc); | |
177321bd DJ |
10128 | set_gdbarch_remote_breakpoint_from_pc (gdbarch, |
10129 | arm_remote_breakpoint_from_pc); | |
34e8f22d RE |
10130 | |
10131 | /* Information about registers, etc. */ | |
34e8f22d RE |
10132 | set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM); |
10133 | set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM); | |
ff6f572f | 10134 | set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS); |
7a5ea0d4 | 10135 | set_gdbarch_register_type (gdbarch, arm_register_type); |
54483882 | 10136 | set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p); |
34e8f22d | 10137 | |
ff6f572f DJ |
10138 | /* This "info float" is FPA-specific. Use the generic version if we |
10139 | do not have FPA. */ | |
10140 | if (gdbarch_tdep (gdbarch)->have_fpa_registers) | |
10141 | set_gdbarch_print_float_info (gdbarch, arm_print_float_info); | |
10142 | ||
26216b98 | 10143 | /* Internal <-> external register number maps. */ |
ff6f572f | 10144 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum); |
26216b98 AC |
10145 | set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno); |
10146 | ||
34e8f22d RE |
10147 | set_gdbarch_register_name (gdbarch, arm_register_name); |
10148 | ||
10149 | /* Returning results. */ | |
2af48f68 | 10150 | set_gdbarch_return_value (gdbarch, arm_return_value); |
34e8f22d | 10151 | |
03d48a7d RE |
10152 | /* Disassembly. */ |
10153 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm); | |
10154 | ||
34e8f22d RE |
10155 | /* Minsymbol frobbing. */ |
10156 | set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special); | |
10157 | set_gdbarch_coff_make_msymbol_special (gdbarch, | |
10158 | arm_coff_make_msymbol_special); | |
60c5725c | 10159 | set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol); |
34e8f22d | 10160 | |
f9d67f43 DJ |
10161 | /* Thumb-2 IT block support. */ |
10162 | set_gdbarch_adjust_breakpoint_address (gdbarch, | |
10163 | arm_adjust_breakpoint_address); | |
10164 | ||
0d5de010 DJ |
10165 | /* Virtual tables. */ |
10166 | set_gdbarch_vbit_in_delta (gdbarch, 1); | |
10167 | ||
97e03143 | 10168 | /* Hook in the ABI-specific overrides, if they have been registered. */ |
4be87837 | 10169 | gdbarch_init_osabi (info, gdbarch); |
97e03143 | 10170 | |
b39cc962 DJ |
10171 | dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg); |
10172 | ||
eb5492fa | 10173 | /* Add some default predicates. */ |
a262aec2 DJ |
10174 | frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind); |
10175 | dwarf2_append_unwinders (gdbarch); | |
0e9e9abd | 10176 | frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind); |
a262aec2 | 10177 | frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind); |
eb5492fa | 10178 | |
97e03143 RE |
10179 | /* Now we have tuned the configuration, set a few final things, |
10180 | based on what the OS ABI has told us. */ | |
10181 | ||
b8926edc DJ |
10182 | /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI |
10183 | binaries are always marked. */ | |
10184 | if (tdep->arm_abi == ARM_ABI_AUTO) | |
10185 | tdep->arm_abi = ARM_ABI_APCS; | |
10186 | ||
e3039479 UW |
10187 | /* Watchpoints are not steppable. */ |
10188 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
10189 | ||
b8926edc DJ |
10190 | /* We used to default to FPA for generic ARM, but almost nobody |
10191 | uses that now, and we now provide a way for the user to force | |
10192 | the model. So default to the most useful variant. */ | |
10193 | if (tdep->fp_model == ARM_FLOAT_AUTO) | |
10194 | tdep->fp_model = ARM_FLOAT_SOFT_FPA; | |
10195 | ||
9df628e0 RE |
10196 | if (tdep->jb_pc >= 0) |
10197 | set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target); | |
10198 | ||
08216dd7 | 10199 | /* Floating point sizes and format. */ |
8da61cc4 | 10200 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
b8926edc | 10201 | if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA) |
08216dd7 | 10202 | { |
8da61cc4 DJ |
10203 | set_gdbarch_double_format |
10204 | (gdbarch, floatformats_ieee_double_littlebyte_bigword); | |
10205 | set_gdbarch_long_double_format | |
10206 | (gdbarch, floatformats_ieee_double_littlebyte_bigword); | |
10207 | } | |
10208 | else | |
10209 | { | |
10210 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
10211 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | |
08216dd7 RE |
10212 | } |
10213 | ||
58d6951d DJ |
10214 | if (have_vfp_pseudos) |
10215 | { | |
10216 | /* NOTE: These are the only pseudo registers used by | |
10217 | the ARM target at the moment. If more are added, a | |
10218 | little more care in numbering will be needed. */ | |
10219 | ||
10220 | int num_pseudos = 32; | |
10221 | if (have_neon_pseudos) | |
10222 | num_pseudos += 16; | |
10223 | set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos); | |
10224 | set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read); | |
10225 | set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write); | |
10226 | } | |
10227 | ||
123dc839 | 10228 | if (tdesc_data) |
58d6951d DJ |
10229 | { |
10230 | set_tdesc_pseudo_register_name (gdbarch, arm_register_name); | |
10231 | ||
9779414d | 10232 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); |
58d6951d DJ |
10233 | |
10234 | /* Override tdesc_register_type to adjust the types of VFP | |
10235 | registers for NEON. */ | |
10236 | set_gdbarch_register_type (gdbarch, arm_register_type); | |
10237 | } | |
123dc839 DJ |
10238 | |
10239 | /* Add standard register aliases. We add aliases even for those | |
10240 | nanes which are used by the current architecture - it's simpler, | |
10241 | and does no harm, since nothing ever lists user registers. */ | |
10242 | for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++) | |
10243 | user_reg_add (gdbarch, arm_register_aliases[i].name, | |
10244 | value_of_arm_user_reg, &arm_register_aliases[i].regnum); | |
10245 | ||
39bbf761 RE |
10246 | return gdbarch; |
10247 | } | |
10248 | ||
97e03143 | 10249 | static void |
2af46ca0 | 10250 | arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
97e03143 | 10251 | { |
2af46ca0 | 10252 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
97e03143 RE |
10253 | |
10254 | if (tdep == NULL) | |
10255 | return; | |
10256 | ||
edefbb7c | 10257 | fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"), |
97e03143 RE |
10258 | (unsigned long) tdep->lowest_pc); |
10259 | } | |
10260 | ||
a78f21af AC |
10261 | extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */ |
10262 | ||
c906108c | 10263 | void |
ed9a39eb | 10264 | _initialize_arm_tdep (void) |
c906108c | 10265 | { |
bc90b915 FN |
10266 | struct ui_file *stb; |
10267 | long length; | |
26304000 | 10268 | struct cmd_list_element *new_set, *new_show; |
53904c9e AC |
10269 | const char *setname; |
10270 | const char *setdesc; | |
4bd7b427 | 10271 | const char *const *regnames; |
bc90b915 FN |
10272 | int numregs, i, j; |
10273 | static char *helptext; | |
edefbb7c AC |
10274 | char regdesc[1024], *rdptr = regdesc; |
10275 | size_t rest = sizeof (regdesc); | |
085dd6e6 | 10276 | |
42cf1509 | 10277 | gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep); |
97e03143 | 10278 | |
60c5725c | 10279 | arm_objfile_data_key |
c1bd65d0 | 10280 | = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free); |
60c5725c | 10281 | |
0e9e9abd UW |
10282 | /* Add ourselves to objfile event chain. */ |
10283 | observer_attach_new_objfile (arm_exidx_new_objfile); | |
10284 | arm_exidx_data_key | |
10285 | = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free); | |
10286 | ||
70f80edf JT |
10287 | /* Register an ELF OS ABI sniffer for ARM binaries. */ |
10288 | gdbarch_register_osabi_sniffer (bfd_arch_arm, | |
10289 | bfd_target_elf_flavour, | |
10290 | arm_elf_osabi_sniffer); | |
10291 | ||
9779414d DJ |
10292 | /* Initialize the standard target descriptions. */ |
10293 | initialize_tdesc_arm_with_m (); | |
ef7e8358 UW |
10294 | initialize_tdesc_arm_with_iwmmxt (); |
10295 | initialize_tdesc_arm_with_vfpv2 (); | |
10296 | initialize_tdesc_arm_with_vfpv3 (); | |
10297 | initialize_tdesc_arm_with_neon (); | |
9779414d | 10298 | |
94c30b78 | 10299 | /* Get the number of possible sets of register names defined in opcodes. */ |
afd7eef0 RE |
10300 | num_disassembly_options = get_arm_regname_num_options (); |
10301 | ||
10302 | /* Add root prefix command for all "set arm"/"show arm" commands. */ | |
10303 | add_prefix_cmd ("arm", no_class, set_arm_command, | |
edefbb7c | 10304 | _("Various ARM-specific commands."), |
afd7eef0 RE |
10305 | &setarmcmdlist, "set arm ", 0, &setlist); |
10306 | ||
10307 | add_prefix_cmd ("arm", no_class, show_arm_command, | |
edefbb7c | 10308 | _("Various ARM-specific commands."), |
afd7eef0 | 10309 | &showarmcmdlist, "show arm ", 0, &showlist); |
bc90b915 | 10310 | |
94c30b78 | 10311 | /* Sync the opcode insn printer with our register viewer. */ |
bc90b915 | 10312 | parse_arm_disassembler_option ("reg-names-std"); |
c5aa993b | 10313 | |
eefe576e AC |
10314 | /* Initialize the array that will be passed to |
10315 | add_setshow_enum_cmd(). */ | |
afd7eef0 RE |
10316 | valid_disassembly_styles |
10317 | = xmalloc ((num_disassembly_options + 1) * sizeof (char *)); | |
10318 | for (i = 0; i < num_disassembly_options; i++) | |
bc90b915 FN |
10319 | { |
10320 | numregs = get_arm_regnames (i, &setname, &setdesc, ®names); | |
afd7eef0 | 10321 | valid_disassembly_styles[i] = setname; |
edefbb7c AC |
10322 | length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc); |
10323 | rdptr += length; | |
10324 | rest -= length; | |
123dc839 DJ |
10325 | /* When we find the default names, tell the disassembler to use |
10326 | them. */ | |
bc90b915 FN |
10327 | if (!strcmp (setname, "std")) |
10328 | { | |
afd7eef0 | 10329 | disassembly_style = setname; |
bc90b915 FN |
10330 | set_arm_regname_option (i); |
10331 | } | |
10332 | } | |
94c30b78 | 10333 | /* Mark the end of valid options. */ |
afd7eef0 | 10334 | valid_disassembly_styles[num_disassembly_options] = NULL; |
c906108c | 10335 | |
edefbb7c AC |
10336 | /* Create the help text. */ |
10337 | stb = mem_fileopen (); | |
10338 | fprintf_unfiltered (stb, "%s%s%s", | |
10339 | _("The valid values are:\n"), | |
10340 | regdesc, | |
10341 | _("The default is \"std\".")); | |
759ef836 | 10342 | helptext = ui_file_xstrdup (stb, NULL); |
bc90b915 | 10343 | ui_file_delete (stb); |
ed9a39eb | 10344 | |
edefbb7c AC |
10345 | add_setshow_enum_cmd("disassembler", no_class, |
10346 | valid_disassembly_styles, &disassembly_style, | |
10347 | _("Set the disassembly style."), | |
10348 | _("Show the disassembly style."), | |
10349 | helptext, | |
2c5b56ce | 10350 | set_disassembly_style_sfunc, |
0963b4bd MS |
10351 | NULL, /* FIXME: i18n: The disassembly style is |
10352 | \"%s\". */ | |
7376b4c2 | 10353 | &setarmcmdlist, &showarmcmdlist); |
edefbb7c AC |
10354 | |
10355 | add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32, | |
10356 | _("Set usage of ARM 32-bit mode."), | |
10357 | _("Show usage of ARM 32-bit mode."), | |
10358 | _("When off, a 26-bit PC will be used."), | |
2c5b56ce | 10359 | NULL, |
0963b4bd MS |
10360 | NULL, /* FIXME: i18n: Usage of ARM 32-bit |
10361 | mode is %s. */ | |
26304000 | 10362 | &setarmcmdlist, &showarmcmdlist); |
c906108c | 10363 | |
fd50bc42 | 10364 | /* Add a command to allow the user to force the FPU model. */ |
edefbb7c AC |
10365 | add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, ¤t_fp_model, |
10366 | _("Set the floating point type."), | |
10367 | _("Show the floating point type."), | |
10368 | _("auto - Determine the FP typefrom the OS-ABI.\n\ | |
10369 | softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\ | |
10370 | fpa - FPA co-processor (GCC compiled).\n\ | |
10371 | softvfp - Software FP with pure-endian doubles.\n\ | |
10372 | vfp - VFP co-processor."), | |
edefbb7c | 10373 | set_fp_model_sfunc, show_fp_model, |
7376b4c2 | 10374 | &setarmcmdlist, &showarmcmdlist); |
fd50bc42 | 10375 | |
28e97307 DJ |
10376 | /* Add a command to allow the user to force the ABI. */ |
10377 | add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string, | |
10378 | _("Set the ABI."), | |
10379 | _("Show the ABI."), | |
10380 | NULL, arm_set_abi, arm_show_abi, | |
10381 | &setarmcmdlist, &showarmcmdlist); | |
10382 | ||
0428b8f5 DJ |
10383 | /* Add two commands to allow the user to force the assumed |
10384 | execution mode. */ | |
10385 | add_setshow_enum_cmd ("fallback-mode", class_support, | |
10386 | arm_mode_strings, &arm_fallback_mode_string, | |
10387 | _("Set the mode assumed when symbols are unavailable."), | |
10388 | _("Show the mode assumed when symbols are unavailable."), | |
10389 | NULL, NULL, arm_show_fallback_mode, | |
10390 | &setarmcmdlist, &showarmcmdlist); | |
10391 | add_setshow_enum_cmd ("force-mode", class_support, | |
10392 | arm_mode_strings, &arm_force_mode_string, | |
10393 | _("Set the mode assumed even when symbols are available."), | |
10394 | _("Show the mode assumed even when symbols are available."), | |
10395 | NULL, NULL, arm_show_force_mode, | |
10396 | &setarmcmdlist, &showarmcmdlist); | |
10397 | ||
6529d2dd | 10398 | /* Debugging flag. */ |
edefbb7c AC |
10399 | add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug, |
10400 | _("Set ARM debugging."), | |
10401 | _("Show ARM debugging."), | |
10402 | _("When on, arm-specific debugging is enabled."), | |
2c5b56ce | 10403 | NULL, |
7915a72c | 10404 | NULL, /* FIXME: i18n: "ARM debugging is %s. */ |
26304000 | 10405 | &setdebuglist, &showdebuglist); |
c906108c | 10406 | } |