]>
Commit | Line | Data |
---|---|---|
8b93c638 | 1 | /* Implementation of the GDB variable objects API. |
bc8332bb | 2 | |
32d0add0 | 3 | Copyright (C) 1999-2015 Free Software Foundation, Inc. |
8b93c638 JM |
4 | |
5 | This program is free software; you can redistribute it and/or modify | |
6 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 7 | the Free Software Foundation; either version 3 of the License, or |
8b93c638 JM |
8 | (at your option) any later version. |
9 | ||
10 | This program is distributed in the hope that it will be useful, | |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 | GNU General Public License for more details. | |
14 | ||
15 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 16 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
8b93c638 JM |
17 | |
18 | #include "defs.h" | |
19 | #include "value.h" | |
20 | #include "expression.h" | |
21 | #include "frame.h" | |
8b93c638 | 22 | #include "language.h" |
8b93c638 | 23 | #include "gdbcmd.h" |
d2353924 | 24 | #include "block.h" |
79a45b7d | 25 | #include "valprint.h" |
0cc7d26f | 26 | #include "gdb_regex.h" |
8b93c638 JM |
27 | |
28 | #include "varobj.h" | |
28335dcc | 29 | #include "vec.h" |
6208b47d VP |
30 | #include "gdbthread.h" |
31 | #include "inferior.h" | |
827f100c | 32 | #include "varobj-iter.h" |
8b93c638 | 33 | |
b6313243 TT |
34 | #if HAVE_PYTHON |
35 | #include "python/python.h" | |
36 | #include "python/python-internal.h" | |
50389644 PA |
37 | #else |
38 | typedef int PyObject; | |
b6313243 TT |
39 | #endif |
40 | ||
8b93c638 JM |
41 | /* Non-zero if we want to see trace of varobj level stuff. */ |
42 | ||
ccce17b0 | 43 | unsigned int varobjdebug = 0; |
920d2a44 AC |
44 | static void |
45 | show_varobjdebug (struct ui_file *file, int from_tty, | |
46 | struct cmd_list_element *c, const char *value) | |
47 | { | |
48 | fprintf_filtered (file, _("Varobj debugging is %s.\n"), value); | |
49 | } | |
8b93c638 | 50 | |
581e13c1 | 51 | /* String representations of gdb's format codes. */ |
8b93c638 | 52 | char *varobj_format_string[] = |
72330bd6 | 53 | { "natural", "binary", "decimal", "hexadecimal", "octal" }; |
8b93c638 | 54 | |
0cc7d26f TT |
55 | /* True if we want to allow Python-based pretty-printing. */ |
56 | static int pretty_printing = 0; | |
57 | ||
58 | void | |
59 | varobj_enable_pretty_printing (void) | |
60 | { | |
61 | pretty_printing = 1; | |
62 | } | |
63 | ||
8b93c638 JM |
64 | /* Data structures */ |
65 | ||
66 | /* Every root variable has one of these structures saved in its | |
581e13c1 | 67 | varobj. Members which must be free'd are noted. */ |
8b93c638 | 68 | struct varobj_root |
72330bd6 | 69 | { |
8b93c638 | 70 | |
581e13c1 | 71 | /* Alloc'd expression for this parent. */ |
72330bd6 | 72 | struct expression *exp; |
8b93c638 | 73 | |
581e13c1 | 74 | /* Block for which this expression is valid. */ |
270140bd | 75 | const struct block *valid_block; |
8b93c638 | 76 | |
44a67aa7 VP |
77 | /* The frame for this expression. This field is set iff valid_block is |
78 | not NULL. */ | |
e64d9b3d | 79 | struct frame_id frame; |
8b93c638 | 80 | |
c5b48eac | 81 | /* The thread ID that this varobj_root belong to. This field |
581e13c1 | 82 | is only valid if valid_block is not NULL. |
c5b48eac VP |
83 | When not 0, indicates which thread 'frame' belongs to. |
84 | When 0, indicates that the thread list was empty when the varobj_root | |
85 | was created. */ | |
86 | int thread_id; | |
87 | ||
a5defcdc VP |
88 | /* If 1, the -var-update always recomputes the value in the |
89 | current thread and frame. Otherwise, variable object is | |
581e13c1 | 90 | always updated in the specific scope/thread/frame. */ |
a5defcdc | 91 | int floating; |
73a93a32 | 92 | |
8756216b DP |
93 | /* Flag that indicates validity: set to 0 when this varobj_root refers |
94 | to symbols that do not exist anymore. */ | |
95 | int is_valid; | |
96 | ||
99ad9427 YQ |
97 | /* Language-related operations for this variable and its |
98 | children. */ | |
ca20d462 | 99 | const struct lang_varobj_ops *lang_ops; |
8b93c638 | 100 | |
581e13c1 | 101 | /* The varobj for this root node. */ |
72330bd6 | 102 | struct varobj *rootvar; |
8b93c638 | 103 | |
72330bd6 AC |
104 | /* Next root variable */ |
105 | struct varobj_root *next; | |
106 | }; | |
8b93c638 | 107 | |
bb5ce47a | 108 | /* Dynamic part of varobj. */ |
8b93c638 | 109 | |
bb5ce47a YQ |
110 | struct varobj_dynamic |
111 | { | |
b6313243 TT |
112 | /* Whether the children of this varobj were requested. This field is |
113 | used to decide if dynamic varobj should recompute their children. | |
114 | In the event that the frontend never asked for the children, we | |
115 | can avoid that. */ | |
116 | int children_requested; | |
117 | ||
0cc7d26f TT |
118 | /* The pretty-printer constructor. If NULL, then the default |
119 | pretty-printer will be looked up. If None, then no | |
120 | pretty-printer will be installed. */ | |
121 | PyObject *constructor; | |
122 | ||
b6313243 TT |
123 | /* The pretty-printer that has been constructed. If NULL, then a |
124 | new printer object is needed, and one will be constructed. */ | |
125 | PyObject *pretty_printer; | |
0cc7d26f TT |
126 | |
127 | /* The iterator returned by the printer's 'children' method, or NULL | |
128 | if not available. */ | |
e5250216 | 129 | struct varobj_iter *child_iter; |
0cc7d26f TT |
130 | |
131 | /* We request one extra item from the iterator, so that we can | |
132 | report to the caller whether there are more items than we have | |
133 | already reported. However, we don't want to install this value | |
134 | when we read it, because that will mess up future updates. So, | |
135 | we stash it here instead. */ | |
e5250216 | 136 | varobj_item *saved_item; |
72330bd6 | 137 | }; |
8b93c638 | 138 | |
8b93c638 | 139 | struct cpstack |
72330bd6 AC |
140 | { |
141 | char *name; | |
142 | struct cpstack *next; | |
143 | }; | |
8b93c638 JM |
144 | |
145 | /* A list of varobjs */ | |
146 | ||
147 | struct vlist | |
72330bd6 AC |
148 | { |
149 | struct varobj *var; | |
150 | struct vlist *next; | |
151 | }; | |
8b93c638 JM |
152 | |
153 | /* Private function prototypes */ | |
154 | ||
581e13c1 | 155 | /* Helper functions for the above subcommands. */ |
8b93c638 | 156 | |
a14ed312 | 157 | static int delete_variable (struct cpstack **, struct varobj *, int); |
8b93c638 | 158 | |
a14ed312 KB |
159 | static void delete_variable_1 (struct cpstack **, int *, |
160 | struct varobj *, int, int); | |
8b93c638 | 161 | |
a14ed312 | 162 | static int install_variable (struct varobj *); |
8b93c638 | 163 | |
a14ed312 | 164 | static void uninstall_variable (struct varobj *); |
8b93c638 | 165 | |
a14ed312 | 166 | static struct varobj *create_child (struct varobj *, int, char *); |
8b93c638 | 167 | |
b6313243 | 168 | static struct varobj * |
5a2e0d6e YQ |
169 | create_child_with_value (struct varobj *parent, int index, |
170 | struct varobj_item *item); | |
b6313243 | 171 | |
8b93c638 JM |
172 | /* Utility routines */ |
173 | ||
a14ed312 | 174 | static struct varobj *new_variable (void); |
8b93c638 | 175 | |
a14ed312 | 176 | static struct varobj *new_root_variable (void); |
8b93c638 | 177 | |
a14ed312 | 178 | static void free_variable (struct varobj *var); |
8b93c638 | 179 | |
74b7792f AC |
180 | static struct cleanup *make_cleanup_free_variable (struct varobj *var); |
181 | ||
a14ed312 | 182 | static enum varobj_display_formats variable_default_display (struct varobj *); |
8b93c638 | 183 | |
a14ed312 | 184 | static void cppush (struct cpstack **pstack, char *name); |
8b93c638 | 185 | |
a14ed312 | 186 | static char *cppop (struct cpstack **pstack); |
8b93c638 | 187 | |
8264ba82 AG |
188 | static int update_type_if_necessary (struct varobj *var, |
189 | struct value *new_value); | |
190 | ||
acd65feb VP |
191 | static int install_new_value (struct varobj *var, struct value *value, |
192 | int initial); | |
193 | ||
581e13c1 | 194 | /* Language-specific routines. */ |
8b93c638 | 195 | |
b09e2c59 | 196 | static int number_of_children (const struct varobj *); |
8b93c638 | 197 | |
b09e2c59 | 198 | static char *name_of_variable (const struct varobj *); |
8b93c638 | 199 | |
a14ed312 | 200 | static char *name_of_child (struct varobj *, int); |
8b93c638 | 201 | |
30b28db1 | 202 | static struct value *value_of_root (struct varobj **var_handle, int *); |
8b93c638 | 203 | |
c1cc6152 | 204 | static struct value *value_of_child (const struct varobj *parent, int index); |
8b93c638 | 205 | |
de051565 MK |
206 | static char *my_value_of_variable (struct varobj *var, |
207 | enum varobj_display_formats format); | |
8b93c638 | 208 | |
b09e2c59 | 209 | static int is_root_p (const struct varobj *var); |
8b93c638 | 210 | |
9a1edae6 | 211 | static struct varobj *varobj_add_child (struct varobj *var, |
5a2e0d6e | 212 | struct varobj_item *item); |
b6313243 | 213 | |
8b93c638 JM |
214 | /* Private data */ |
215 | ||
581e13c1 | 216 | /* Mappings of varobj_display_formats enums to gdb's format codes. */ |
72330bd6 | 217 | static int format_code[] = { 0, 't', 'd', 'x', 'o' }; |
8b93c638 | 218 | |
581e13c1 | 219 | /* Header of the list of root variable objects. */ |
8b93c638 | 220 | static struct varobj_root *rootlist; |
8b93c638 | 221 | |
581e13c1 MS |
222 | /* Prime number indicating the number of buckets in the hash table. */ |
223 | /* A prime large enough to avoid too many colisions. */ | |
8b93c638 JM |
224 | #define VAROBJ_TABLE_SIZE 227 |
225 | ||
581e13c1 | 226 | /* Pointer to the varobj hash table (built at run time). */ |
8b93c638 JM |
227 | static struct vlist **varobj_table; |
228 | ||
8b93c638 JM |
229 | \f |
230 | ||
231 | /* API Implementation */ | |
b2c2bd75 | 232 | static int |
b09e2c59 | 233 | is_root_p (const struct varobj *var) |
b2c2bd75 VP |
234 | { |
235 | return (var->root->rootvar == var); | |
236 | } | |
8b93c638 | 237 | |
d452c4bc UW |
238 | #ifdef HAVE_PYTHON |
239 | /* Helper function to install a Python environment suitable for | |
240 | use during operations on VAR. */ | |
e5250216 | 241 | struct cleanup * |
b09e2c59 | 242 | varobj_ensure_python_env (const struct varobj *var) |
d452c4bc UW |
243 | { |
244 | return ensure_python_env (var->root->exp->gdbarch, | |
245 | var->root->exp->language_defn); | |
246 | } | |
247 | #endif | |
248 | ||
581e13c1 | 249 | /* Creates a varobj (not its children). */ |
8b93c638 | 250 | |
7d8547c9 AC |
251 | /* Return the full FRAME which corresponds to the given CORE_ADDR |
252 | or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ | |
253 | ||
254 | static struct frame_info * | |
255 | find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) | |
256 | { | |
257 | struct frame_info *frame = NULL; | |
258 | ||
259 | if (frame_addr == (CORE_ADDR) 0) | |
260 | return NULL; | |
261 | ||
9d49bdc2 PA |
262 | for (frame = get_current_frame (); |
263 | frame != NULL; | |
264 | frame = get_prev_frame (frame)) | |
7d8547c9 | 265 | { |
1fac167a UW |
266 | /* The CORE_ADDR we get as argument was parsed from a string GDB |
267 | output as $fp. This output got truncated to gdbarch_addr_bit. | |
268 | Truncate the frame base address in the same manner before | |
269 | comparing it against our argument. */ | |
270 | CORE_ADDR frame_base = get_frame_base_address (frame); | |
271 | int addr_bit = gdbarch_addr_bit (get_frame_arch (frame)); | |
a109c7c1 | 272 | |
1fac167a UW |
273 | if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) |
274 | frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1; | |
275 | ||
276 | if (frame_base == frame_addr) | |
7d8547c9 AC |
277 | return frame; |
278 | } | |
9d49bdc2 PA |
279 | |
280 | return NULL; | |
7d8547c9 AC |
281 | } |
282 | ||
8b93c638 JM |
283 | struct varobj * |
284 | varobj_create (char *objname, | |
72330bd6 | 285 | char *expression, CORE_ADDR frame, enum varobj_type type) |
8b93c638 JM |
286 | { |
287 | struct varobj *var; | |
8b93c638 JM |
288 | struct cleanup *old_chain; |
289 | ||
581e13c1 | 290 | /* Fill out a varobj structure for the (root) variable being constructed. */ |
8b93c638 | 291 | var = new_root_variable (); |
74b7792f | 292 | old_chain = make_cleanup_free_variable (var); |
8b93c638 JM |
293 | |
294 | if (expression != NULL) | |
295 | { | |
e4195b40 | 296 | struct frame_info *fi; |
35633fef | 297 | struct frame_id old_id = null_frame_id; |
3977b71f | 298 | const struct block *block; |
bbc13ae3 | 299 | const char *p; |
e55dccf0 | 300 | struct value *value = NULL; |
1bb9788d | 301 | CORE_ADDR pc; |
8b93c638 | 302 | |
9d49bdc2 PA |
303 | /* Parse and evaluate the expression, filling in as much of the |
304 | variable's data as possible. */ | |
305 | ||
306 | if (has_stack_frames ()) | |
307 | { | |
581e13c1 | 308 | /* Allow creator to specify context of variable. */ |
9d49bdc2 PA |
309 | if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME)) |
310 | fi = get_selected_frame (NULL); | |
311 | else | |
312 | /* FIXME: cagney/2002-11-23: This code should be doing a | |
313 | lookup using the frame ID and not just the frame's | |
314 | ``address''. This, of course, means an interface | |
315 | change. However, with out that interface change ISAs, | |
316 | such as the ia64 with its two stacks, won't work. | |
317 | Similar goes for the case where there is a frameless | |
318 | function. */ | |
319 | fi = find_frame_addr_in_frame_chain (frame); | |
320 | } | |
8b93c638 | 321 | else |
9d49bdc2 | 322 | fi = NULL; |
8b93c638 | 323 | |
581e13c1 | 324 | /* frame = -2 means always use selected frame. */ |
73a93a32 | 325 | if (type == USE_SELECTED_FRAME) |
a5defcdc | 326 | var->root->floating = 1; |
73a93a32 | 327 | |
1bb9788d | 328 | pc = 0; |
8b93c638 JM |
329 | block = NULL; |
330 | if (fi != NULL) | |
1bb9788d TT |
331 | { |
332 | block = get_frame_block (fi, 0); | |
333 | pc = get_frame_pc (fi); | |
334 | } | |
8b93c638 JM |
335 | |
336 | p = expression; | |
337 | innermost_block = NULL; | |
73a93a32 | 338 | /* Wrap the call to parse expression, so we can |
581e13c1 | 339 | return a sensible error. */ |
492d29ea | 340 | TRY |
8e7b59a5 | 341 | { |
1bb9788d | 342 | var->root->exp = parse_exp_1 (&p, pc, block, 0); |
8e7b59a5 KS |
343 | } |
344 | ||
492d29ea | 345 | CATCH (except, RETURN_MASK_ERROR) |
73a93a32 | 346 | { |
f748fb40 | 347 | do_cleanups (old_chain); |
73a93a32 JI |
348 | return NULL; |
349 | } | |
492d29ea | 350 | END_CATCH |
8b93c638 | 351 | |
581e13c1 | 352 | /* Don't allow variables to be created for types. */ |
608b4967 TT |
353 | if (var->root->exp->elts[0].opcode == OP_TYPE |
354 | || var->root->exp->elts[0].opcode == OP_TYPEOF | |
355 | || var->root->exp->elts[0].opcode == OP_DECLTYPE) | |
8b93c638 JM |
356 | { |
357 | do_cleanups (old_chain); | |
bc8332bb AC |
358 | fprintf_unfiltered (gdb_stderr, "Attempt to use a type name" |
359 | " as an expression.\n"); | |
8b93c638 JM |
360 | return NULL; |
361 | } | |
362 | ||
363 | var->format = variable_default_display (var); | |
364 | var->root->valid_block = innermost_block; | |
1b36a34b | 365 | var->name = xstrdup (expression); |
02142340 | 366 | /* For a root var, the name and the expr are the same. */ |
1b36a34b | 367 | var->path_expr = xstrdup (expression); |
8b93c638 JM |
368 | |
369 | /* When the frame is different from the current frame, | |
370 | we must select the appropriate frame before parsing | |
371 | the expression, otherwise the value will not be current. | |
581e13c1 | 372 | Since select_frame is so benign, just call it for all cases. */ |
4e22772d | 373 | if (innermost_block) |
8b93c638 | 374 | { |
4e22772d JK |
375 | /* User could specify explicit FRAME-ADDR which was not found but |
376 | EXPRESSION is frame specific and we would not be able to evaluate | |
377 | it correctly next time. With VALID_BLOCK set we must also set | |
378 | FRAME and THREAD_ID. */ | |
379 | if (fi == NULL) | |
380 | error (_("Failed to find the specified frame")); | |
381 | ||
7a424e99 | 382 | var->root->frame = get_frame_id (fi); |
c5b48eac | 383 | var->root->thread_id = pid_to_thread_id (inferior_ptid); |
35633fef | 384 | old_id = get_frame_id (get_selected_frame (NULL)); |
c5b48eac | 385 | select_frame (fi); |
8b93c638 JM |
386 | } |
387 | ||
340a7723 | 388 | /* We definitely need to catch errors here. |
8b93c638 | 389 | If evaluate_expression succeeds we got the value we wanted. |
581e13c1 | 390 | But if it fails, we still go on with a call to evaluate_type(). */ |
492d29ea | 391 | TRY |
8e7b59a5 KS |
392 | { |
393 | value = evaluate_expression (var->root->exp); | |
394 | } | |
492d29ea | 395 | CATCH (except, RETURN_MASK_ERROR) |
e55dccf0 VP |
396 | { |
397 | /* Error getting the value. Try to at least get the | |
398 | right type. */ | |
399 | struct value *type_only_value = evaluate_type (var->root->exp); | |
a109c7c1 | 400 | |
e55dccf0 VP |
401 | var->type = value_type (type_only_value); |
402 | } | |
492d29ea | 403 | END_CATCH |
8264ba82 | 404 | |
492d29ea PA |
405 | if (value != NULL) |
406 | { | |
407 | int real_type_found = 0; | |
408 | ||
409 | var->type = value_actual_type (value, 0, &real_type_found); | |
410 | if (real_type_found) | |
411 | value = value_cast (var->type, value); | |
412 | } | |
acd65feb | 413 | |
8b93c638 | 414 | /* Set language info */ |
ca20d462 | 415 | var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops; |
8b93c638 | 416 | |
d32cafc7 JB |
417 | install_new_value (var, value, 1 /* Initial assignment */); |
418 | ||
581e13c1 | 419 | /* Set ourselves as our root. */ |
8b93c638 JM |
420 | var->root->rootvar = var; |
421 | ||
581e13c1 | 422 | /* Reset the selected frame. */ |
35633fef JK |
423 | if (frame_id_p (old_id)) |
424 | select_frame (frame_find_by_id (old_id)); | |
8b93c638 JM |
425 | } |
426 | ||
73a93a32 | 427 | /* If the variable object name is null, that means this |
581e13c1 | 428 | is a temporary variable, so don't install it. */ |
73a93a32 JI |
429 | |
430 | if ((var != NULL) && (objname != NULL)) | |
8b93c638 | 431 | { |
1b36a34b | 432 | var->obj_name = xstrdup (objname); |
8b93c638 JM |
433 | |
434 | /* If a varobj name is duplicated, the install will fail so | |
581e13c1 | 435 | we must cleanup. */ |
8b93c638 JM |
436 | if (!install_variable (var)) |
437 | { | |
438 | do_cleanups (old_chain); | |
439 | return NULL; | |
440 | } | |
441 | } | |
442 | ||
443 | discard_cleanups (old_chain); | |
444 | return var; | |
445 | } | |
446 | ||
581e13c1 | 447 | /* Generates an unique name that can be used for a varobj. */ |
8b93c638 JM |
448 | |
449 | char * | |
450 | varobj_gen_name (void) | |
451 | { | |
452 | static int id = 0; | |
e64d9b3d | 453 | char *obj_name; |
8b93c638 | 454 | |
581e13c1 | 455 | /* Generate a name for this object. */ |
8b93c638 | 456 | id++; |
b435e160 | 457 | obj_name = xstrprintf ("var%d", id); |
8b93c638 | 458 | |
e64d9b3d | 459 | return obj_name; |
8b93c638 JM |
460 | } |
461 | ||
61d8f275 JK |
462 | /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call |
463 | error if OBJNAME cannot be found. */ | |
8b93c638 JM |
464 | |
465 | struct varobj * | |
466 | varobj_get_handle (char *objname) | |
467 | { | |
468 | struct vlist *cv; | |
469 | const char *chp; | |
470 | unsigned int index = 0; | |
471 | unsigned int i = 1; | |
472 | ||
473 | for (chp = objname; *chp; chp++) | |
474 | { | |
475 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
476 | } | |
477 | ||
478 | cv = *(varobj_table + index); | |
479 | while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0)) | |
480 | cv = cv->next; | |
481 | ||
482 | if (cv == NULL) | |
8a3fe4f8 | 483 | error (_("Variable object not found")); |
8b93c638 JM |
484 | |
485 | return cv->var; | |
486 | } | |
487 | ||
581e13c1 | 488 | /* Given the handle, return the name of the object. */ |
8b93c638 JM |
489 | |
490 | char * | |
b09e2c59 | 491 | varobj_get_objname (const struct varobj *var) |
8b93c638 JM |
492 | { |
493 | return var->obj_name; | |
494 | } | |
495 | ||
ca83fa81 SM |
496 | /* Given the handle, return the expression represented by the object. The |
497 | result must be freed by the caller. */ | |
8b93c638 JM |
498 | |
499 | char * | |
b09e2c59 | 500 | varobj_get_expression (const struct varobj *var) |
8b93c638 JM |
501 | { |
502 | return name_of_variable (var); | |
503 | } | |
504 | ||
505 | /* Deletes a varobj and all its children if only_children == 0, | |
6da58d3e SM |
506 | otherwise deletes only the children. If DELLIST is non-NULL, it is |
507 | assigned a malloc'ed list of all the (malloc'ed) names of the variables | |
508 | that have been deleted (NULL terminated). Returns the number of deleted | |
509 | variables. */ | |
8b93c638 JM |
510 | |
511 | int | |
512 | varobj_delete (struct varobj *var, char ***dellist, int only_children) | |
513 | { | |
514 | int delcount; | |
515 | int mycount; | |
516 | struct cpstack *result = NULL; | |
517 | char **cp; | |
518 | ||
581e13c1 | 519 | /* Initialize a stack for temporary results. */ |
8b93c638 JM |
520 | cppush (&result, NULL); |
521 | ||
522 | if (only_children) | |
581e13c1 | 523 | /* Delete only the variable children. */ |
8b93c638 JM |
524 | delcount = delete_variable (&result, var, 1 /* only the children */ ); |
525 | else | |
581e13c1 | 526 | /* Delete the variable and all its children. */ |
8b93c638 JM |
527 | delcount = delete_variable (&result, var, 0 /* parent+children */ ); |
528 | ||
581e13c1 | 529 | /* We may have been asked to return a list of what has been deleted. */ |
8b93c638 JM |
530 | if (dellist != NULL) |
531 | { | |
224c3ddb | 532 | *dellist = XNEWVEC (char *, delcount + 1); |
8b93c638 JM |
533 | |
534 | cp = *dellist; | |
535 | mycount = delcount; | |
536 | *cp = cppop (&result); | |
537 | while ((*cp != NULL) && (mycount > 0)) | |
538 | { | |
539 | mycount--; | |
540 | cp++; | |
541 | *cp = cppop (&result); | |
542 | } | |
543 | ||
544 | if (mycount || (*cp != NULL)) | |
8a3fe4f8 | 545 | warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"), |
72330bd6 | 546 | mycount); |
8b93c638 JM |
547 | } |
548 | ||
549 | return delcount; | |
550 | } | |
551 | ||
d8b65138 JK |
552 | #if HAVE_PYTHON |
553 | ||
b6313243 TT |
554 | /* Convenience function for varobj_set_visualizer. Instantiate a |
555 | pretty-printer for a given value. */ | |
556 | static PyObject * | |
557 | instantiate_pretty_printer (PyObject *constructor, struct value *value) | |
558 | { | |
b6313243 TT |
559 | PyObject *val_obj = NULL; |
560 | PyObject *printer; | |
b6313243 | 561 | |
b6313243 | 562 | val_obj = value_to_value_object (value); |
b6313243 TT |
563 | if (! val_obj) |
564 | return NULL; | |
565 | ||
566 | printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL); | |
567 | Py_DECREF (val_obj); | |
568 | return printer; | |
b6313243 TT |
569 | } |
570 | ||
d8b65138 JK |
571 | #endif |
572 | ||
581e13c1 | 573 | /* Set/Get variable object display format. */ |
8b93c638 JM |
574 | |
575 | enum varobj_display_formats | |
576 | varobj_set_display_format (struct varobj *var, | |
577 | enum varobj_display_formats format) | |
578 | { | |
579 | switch (format) | |
580 | { | |
581 | case FORMAT_NATURAL: | |
582 | case FORMAT_BINARY: | |
583 | case FORMAT_DECIMAL: | |
584 | case FORMAT_HEXADECIMAL: | |
585 | case FORMAT_OCTAL: | |
586 | var->format = format; | |
587 | break; | |
588 | ||
589 | default: | |
590 | var->format = variable_default_display (var); | |
591 | } | |
592 | ||
ae7d22a6 VP |
593 | if (varobj_value_is_changeable_p (var) |
594 | && var->value && !value_lazy (var->value)) | |
595 | { | |
6c761d9c | 596 | xfree (var->print_value); |
99ad9427 YQ |
597 | var->print_value = varobj_value_get_print_value (var->value, |
598 | var->format, var); | |
ae7d22a6 VP |
599 | } |
600 | ||
8b93c638 JM |
601 | return var->format; |
602 | } | |
603 | ||
604 | enum varobj_display_formats | |
b09e2c59 | 605 | varobj_get_display_format (const struct varobj *var) |
8b93c638 JM |
606 | { |
607 | return var->format; | |
608 | } | |
609 | ||
b6313243 | 610 | char * |
b09e2c59 | 611 | varobj_get_display_hint (const struct varobj *var) |
b6313243 TT |
612 | { |
613 | char *result = NULL; | |
614 | ||
615 | #if HAVE_PYTHON | |
0646da15 TT |
616 | struct cleanup *back_to; |
617 | ||
618 | if (!gdb_python_initialized) | |
619 | return NULL; | |
620 | ||
621 | back_to = varobj_ensure_python_env (var); | |
d452c4bc | 622 | |
bb5ce47a YQ |
623 | if (var->dynamic->pretty_printer != NULL) |
624 | result = gdbpy_get_display_hint (var->dynamic->pretty_printer); | |
d452c4bc UW |
625 | |
626 | do_cleanups (back_to); | |
b6313243 TT |
627 | #endif |
628 | ||
629 | return result; | |
630 | } | |
631 | ||
0cc7d26f TT |
632 | /* Return true if the varobj has items after TO, false otherwise. */ |
633 | ||
634 | int | |
b09e2c59 | 635 | varobj_has_more (const struct varobj *var, int to) |
0cc7d26f TT |
636 | { |
637 | if (VEC_length (varobj_p, var->children) > to) | |
638 | return 1; | |
639 | return ((to == -1 || VEC_length (varobj_p, var->children) == to) | |
bb5ce47a | 640 | && (var->dynamic->saved_item != NULL)); |
0cc7d26f TT |
641 | } |
642 | ||
c5b48eac VP |
643 | /* If the variable object is bound to a specific thread, that |
644 | is its evaluation can always be done in context of a frame | |
645 | inside that thread, returns GDB id of the thread -- which | |
581e13c1 | 646 | is always positive. Otherwise, returns -1. */ |
c5b48eac | 647 | int |
b09e2c59 | 648 | varobj_get_thread_id (const struct varobj *var) |
c5b48eac VP |
649 | { |
650 | if (var->root->valid_block && var->root->thread_id > 0) | |
651 | return var->root->thread_id; | |
652 | else | |
653 | return -1; | |
654 | } | |
655 | ||
25d5ea92 VP |
656 | void |
657 | varobj_set_frozen (struct varobj *var, int frozen) | |
658 | { | |
659 | /* When a variable is unfrozen, we don't fetch its value. | |
660 | The 'not_fetched' flag remains set, so next -var-update | |
661 | won't complain. | |
662 | ||
663 | We don't fetch the value, because for structures the client | |
664 | should do -var-update anyway. It would be bad to have different | |
665 | client-size logic for structure and other types. */ | |
666 | var->frozen = frozen; | |
667 | } | |
668 | ||
669 | int | |
b09e2c59 | 670 | varobj_get_frozen (const struct varobj *var) |
25d5ea92 VP |
671 | { |
672 | return var->frozen; | |
673 | } | |
674 | ||
0cc7d26f TT |
675 | /* A helper function that restricts a range to what is actually |
676 | available in a VEC. This follows the usual rules for the meaning | |
677 | of FROM and TO -- if either is negative, the entire range is | |
678 | used. */ | |
679 | ||
99ad9427 YQ |
680 | void |
681 | varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to) | |
0cc7d26f TT |
682 | { |
683 | if (*from < 0 || *to < 0) | |
684 | { | |
685 | *from = 0; | |
686 | *to = VEC_length (varobj_p, children); | |
687 | } | |
688 | else | |
689 | { | |
690 | if (*from > VEC_length (varobj_p, children)) | |
691 | *from = VEC_length (varobj_p, children); | |
692 | if (*to > VEC_length (varobj_p, children)) | |
693 | *to = VEC_length (varobj_p, children); | |
694 | if (*from > *to) | |
695 | *from = *to; | |
696 | } | |
697 | } | |
698 | ||
699 | /* A helper for update_dynamic_varobj_children that installs a new | |
700 | child when needed. */ | |
701 | ||
702 | static void | |
703 | install_dynamic_child (struct varobj *var, | |
704 | VEC (varobj_p) **changed, | |
8264ba82 | 705 | VEC (varobj_p) **type_changed, |
fe978cb0 | 706 | VEC (varobj_p) **newobj, |
0cc7d26f TT |
707 | VEC (varobj_p) **unchanged, |
708 | int *cchanged, | |
709 | int index, | |
5a2e0d6e | 710 | struct varobj_item *item) |
0cc7d26f TT |
711 | { |
712 | if (VEC_length (varobj_p, var->children) < index + 1) | |
713 | { | |
714 | /* There's no child yet. */ | |
5a2e0d6e | 715 | struct varobj *child = varobj_add_child (var, item); |
a109c7c1 | 716 | |
fe978cb0 | 717 | if (newobj) |
0cc7d26f | 718 | { |
fe978cb0 | 719 | VEC_safe_push (varobj_p, *newobj, child); |
0cc7d26f TT |
720 | *cchanged = 1; |
721 | } | |
722 | } | |
bf8793bb | 723 | else |
0cc7d26f TT |
724 | { |
725 | varobj_p existing = VEC_index (varobj_p, var->children, index); | |
5a2e0d6e | 726 | int type_updated = update_type_if_necessary (existing, item->value); |
bf8793bb | 727 | |
8264ba82 AG |
728 | if (type_updated) |
729 | { | |
730 | if (type_changed) | |
731 | VEC_safe_push (varobj_p, *type_changed, existing); | |
732 | } | |
5a2e0d6e | 733 | if (install_new_value (existing, item->value, 0)) |
0cc7d26f | 734 | { |
8264ba82 | 735 | if (!type_updated && changed) |
0cc7d26f TT |
736 | VEC_safe_push (varobj_p, *changed, existing); |
737 | } | |
8264ba82 | 738 | else if (!type_updated && unchanged) |
0cc7d26f TT |
739 | VEC_safe_push (varobj_p, *unchanged, existing); |
740 | } | |
741 | } | |
742 | ||
576ea091 YQ |
743 | #if HAVE_PYTHON |
744 | ||
0cc7d26f | 745 | static int |
b09e2c59 | 746 | dynamic_varobj_has_child_method (const struct varobj *var) |
0cc7d26f TT |
747 | { |
748 | struct cleanup *back_to; | |
bb5ce47a | 749 | PyObject *printer = var->dynamic->pretty_printer; |
0cc7d26f TT |
750 | int result; |
751 | ||
0646da15 TT |
752 | if (!gdb_python_initialized) |
753 | return 0; | |
754 | ||
0cc7d26f TT |
755 | back_to = varobj_ensure_python_env (var); |
756 | result = PyObject_HasAttr (printer, gdbpy_children_cst); | |
757 | do_cleanups (back_to); | |
758 | return result; | |
759 | } | |
576ea091 | 760 | #endif |
0cc7d26f | 761 | |
e5250216 YQ |
762 | /* A factory for creating dynamic varobj's iterators. Returns an |
763 | iterator object suitable for iterating over VAR's children. */ | |
764 | ||
765 | static struct varobj_iter * | |
766 | varobj_get_iterator (struct varobj *var) | |
767 | { | |
576ea091 | 768 | #if HAVE_PYTHON |
e5250216 YQ |
769 | if (var->dynamic->pretty_printer) |
770 | return py_varobj_get_iterator (var, var->dynamic->pretty_printer); | |
576ea091 | 771 | #endif |
e5250216 YQ |
772 | |
773 | gdb_assert_not_reached (_("\ | |
774 | requested an iterator from a non-dynamic varobj")); | |
775 | } | |
776 | ||
827f100c YQ |
777 | /* Release and clear VAR's saved item, if any. */ |
778 | ||
779 | static void | |
780 | varobj_clear_saved_item (struct varobj_dynamic *var) | |
781 | { | |
782 | if (var->saved_item != NULL) | |
783 | { | |
784 | value_free (var->saved_item->value); | |
785 | xfree (var->saved_item); | |
786 | var->saved_item = NULL; | |
787 | } | |
788 | } | |
0cc7d26f | 789 | |
b6313243 TT |
790 | static int |
791 | update_dynamic_varobj_children (struct varobj *var, | |
792 | VEC (varobj_p) **changed, | |
8264ba82 | 793 | VEC (varobj_p) **type_changed, |
fe978cb0 | 794 | VEC (varobj_p) **newobj, |
0cc7d26f TT |
795 | VEC (varobj_p) **unchanged, |
796 | int *cchanged, | |
797 | int update_children, | |
798 | int from, | |
799 | int to) | |
b6313243 | 800 | { |
b6313243 | 801 | int i; |
b6313243 | 802 | |
b6313243 | 803 | *cchanged = 0; |
b6313243 | 804 | |
bb5ce47a | 805 | if (update_children || var->dynamic->child_iter == NULL) |
b6313243 | 806 | { |
e5250216 YQ |
807 | varobj_iter_delete (var->dynamic->child_iter); |
808 | var->dynamic->child_iter = varobj_get_iterator (var); | |
b6313243 | 809 | |
827f100c | 810 | varobj_clear_saved_item (var->dynamic); |
b6313243 | 811 | |
e5250216 | 812 | i = 0; |
b6313243 | 813 | |
bb5ce47a | 814 | if (var->dynamic->child_iter == NULL) |
827f100c | 815 | return 0; |
b6313243 | 816 | } |
0cc7d26f TT |
817 | else |
818 | i = VEC_length (varobj_p, var->children); | |
b6313243 | 819 | |
0cc7d26f TT |
820 | /* We ask for one extra child, so that MI can report whether there |
821 | are more children. */ | |
822 | for (; to < 0 || i < to + 1; ++i) | |
b6313243 | 823 | { |
827f100c | 824 | varobj_item *item; |
b6313243 | 825 | |
0cc7d26f | 826 | /* See if there was a leftover from last time. */ |
827f100c | 827 | if (var->dynamic->saved_item != NULL) |
0cc7d26f | 828 | { |
bb5ce47a YQ |
829 | item = var->dynamic->saved_item; |
830 | var->dynamic->saved_item = NULL; | |
0cc7d26f TT |
831 | } |
832 | else | |
a4c8e806 | 833 | { |
e5250216 | 834 | item = varobj_iter_next (var->dynamic->child_iter); |
827f100c YQ |
835 | /* Release vitem->value so its lifetime is not bound to the |
836 | execution of a command. */ | |
837 | if (item != NULL && item->value != NULL) | |
838 | release_value_or_incref (item->value); | |
a4c8e806 | 839 | } |
b6313243 | 840 | |
e5250216 YQ |
841 | if (item == NULL) |
842 | { | |
843 | /* Iteration is done. Remove iterator from VAR. */ | |
844 | varobj_iter_delete (var->dynamic->child_iter); | |
845 | var->dynamic->child_iter = NULL; | |
846 | break; | |
847 | } | |
0cc7d26f TT |
848 | /* We don't want to push the extra child on any report list. */ |
849 | if (to < 0 || i < to) | |
b6313243 | 850 | { |
0cc7d26f TT |
851 | int can_mention = from < 0 || i >= from; |
852 | ||
0cc7d26f | 853 | install_dynamic_child (var, can_mention ? changed : NULL, |
8264ba82 | 854 | can_mention ? type_changed : NULL, |
fe978cb0 | 855 | can_mention ? newobj : NULL, |
0cc7d26f | 856 | can_mention ? unchanged : NULL, |
5e5ac9a5 | 857 | can_mention ? cchanged : NULL, i, |
827f100c YQ |
858 | item); |
859 | ||
860 | xfree (item); | |
b6313243 | 861 | } |
0cc7d26f | 862 | else |
b6313243 | 863 | { |
bb5ce47a | 864 | var->dynamic->saved_item = item; |
b6313243 | 865 | |
0cc7d26f TT |
866 | /* We want to truncate the child list just before this |
867 | element. */ | |
868 | break; | |
869 | } | |
b6313243 TT |
870 | } |
871 | ||
872 | if (i < VEC_length (varobj_p, var->children)) | |
873 | { | |
0cc7d26f | 874 | int j; |
a109c7c1 | 875 | |
0cc7d26f TT |
876 | *cchanged = 1; |
877 | for (j = i; j < VEC_length (varobj_p, var->children); ++j) | |
878 | varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0); | |
879 | VEC_truncate (varobj_p, var->children, i); | |
b6313243 | 880 | } |
0cc7d26f TT |
881 | |
882 | /* If there are fewer children than requested, note that the list of | |
883 | children changed. */ | |
884 | if (to >= 0 && VEC_length (varobj_p, var->children) < to) | |
885 | *cchanged = 1; | |
886 | ||
b6313243 | 887 | var->num_children = VEC_length (varobj_p, var->children); |
b6313243 | 888 | |
b6313243 | 889 | return 1; |
b6313243 | 890 | } |
25d5ea92 | 891 | |
8b93c638 JM |
892 | int |
893 | varobj_get_num_children (struct varobj *var) | |
894 | { | |
895 | if (var->num_children == -1) | |
b6313243 | 896 | { |
31f628ae | 897 | if (varobj_is_dynamic_p (var)) |
0cc7d26f TT |
898 | { |
899 | int dummy; | |
900 | ||
901 | /* If we have a dynamic varobj, don't report -1 children. | |
902 | So, try to fetch some children first. */ | |
8264ba82 | 903 | update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy, |
0cc7d26f TT |
904 | 0, 0, 0); |
905 | } | |
906 | else | |
b6313243 TT |
907 | var->num_children = number_of_children (var); |
908 | } | |
8b93c638 | 909 | |
0cc7d26f | 910 | return var->num_children >= 0 ? var->num_children : 0; |
8b93c638 JM |
911 | } |
912 | ||
913 | /* Creates a list of the immediate children of a variable object; | |
581e13c1 | 914 | the return code is the number of such children or -1 on error. */ |
8b93c638 | 915 | |
d56d46f5 | 916 | VEC (varobj_p)* |
0cc7d26f | 917 | varobj_list_children (struct varobj *var, int *from, int *to) |
8b93c638 | 918 | { |
8b93c638 | 919 | char *name; |
b6313243 TT |
920 | int i, children_changed; |
921 | ||
bb5ce47a | 922 | var->dynamic->children_requested = 1; |
b6313243 | 923 | |
31f628ae | 924 | if (varobj_is_dynamic_p (var)) |
0cc7d26f | 925 | { |
b6313243 TT |
926 | /* This, in theory, can result in the number of children changing without |
927 | frontend noticing. But well, calling -var-list-children on the same | |
928 | varobj twice is not something a sane frontend would do. */ | |
8264ba82 AG |
929 | update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, |
930 | &children_changed, 0, 0, *to); | |
99ad9427 | 931 | varobj_restrict_range (var->children, from, to); |
0cc7d26f TT |
932 | return var->children; |
933 | } | |
8b93c638 | 934 | |
8b93c638 JM |
935 | if (var->num_children == -1) |
936 | var->num_children = number_of_children (var); | |
937 | ||
74a44383 DJ |
938 | /* If that failed, give up. */ |
939 | if (var->num_children == -1) | |
d56d46f5 | 940 | return var->children; |
74a44383 | 941 | |
28335dcc VP |
942 | /* If we're called when the list of children is not yet initialized, |
943 | allocate enough elements in it. */ | |
944 | while (VEC_length (varobj_p, var->children) < var->num_children) | |
945 | VEC_safe_push (varobj_p, var->children, NULL); | |
946 | ||
8b93c638 JM |
947 | for (i = 0; i < var->num_children; i++) |
948 | { | |
d56d46f5 | 949 | varobj_p existing = VEC_index (varobj_p, var->children, i); |
28335dcc VP |
950 | |
951 | if (existing == NULL) | |
952 | { | |
953 | /* Either it's the first call to varobj_list_children for | |
954 | this variable object, and the child was never created, | |
955 | or it was explicitly deleted by the client. */ | |
956 | name = name_of_child (var, i); | |
957 | existing = create_child (var, i, name); | |
958 | VEC_replace (varobj_p, var->children, i, existing); | |
959 | } | |
8b93c638 JM |
960 | } |
961 | ||
99ad9427 | 962 | varobj_restrict_range (var->children, from, to); |
d56d46f5 | 963 | return var->children; |
8b93c638 JM |
964 | } |
965 | ||
b6313243 | 966 | static struct varobj * |
5a2e0d6e | 967 | varobj_add_child (struct varobj *var, struct varobj_item *item) |
b6313243 | 968 | { |
5a2e0d6e | 969 | varobj_p v = create_child_with_value (var, |
b6313243 | 970 | VEC_length (varobj_p, var->children), |
5a2e0d6e | 971 | item); |
a109c7c1 | 972 | |
b6313243 | 973 | VEC_safe_push (varobj_p, var->children, v); |
b6313243 TT |
974 | return v; |
975 | } | |
976 | ||
8b93c638 | 977 | /* Obtain the type of an object Variable as a string similar to the one gdb |
afa269ae SM |
978 | prints on the console. The caller is responsible for freeing the string. |
979 | */ | |
8b93c638 JM |
980 | |
981 | char * | |
982 | varobj_get_type (struct varobj *var) | |
983 | { | |
8ab91b96 | 984 | /* For the "fake" variables, do not return a type. (Its type is |
8756216b DP |
985 | NULL, too.) |
986 | Do not return a type for invalid variables as well. */ | |
987 | if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid) | |
8b93c638 JM |
988 | return NULL; |
989 | ||
1a4300e9 | 990 | return type_to_string (var->type); |
8b93c638 JM |
991 | } |
992 | ||
1ecb4ee0 DJ |
993 | /* Obtain the type of an object variable. */ |
994 | ||
995 | struct type * | |
b09e2c59 | 996 | varobj_get_gdb_type (const struct varobj *var) |
1ecb4ee0 DJ |
997 | { |
998 | return var->type; | |
999 | } | |
1000 | ||
85254831 KS |
1001 | /* Is VAR a path expression parent, i.e., can it be used to construct |
1002 | a valid path expression? */ | |
1003 | ||
1004 | static int | |
b09e2c59 | 1005 | is_path_expr_parent (const struct varobj *var) |
85254831 | 1006 | { |
9a9a7608 AB |
1007 | gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL); |
1008 | return var->root->lang_ops->is_path_expr_parent (var); | |
1009 | } | |
85254831 | 1010 | |
9a9a7608 AB |
1011 | /* Is VAR a path expression parent, i.e., can it be used to construct |
1012 | a valid path expression? By default we assume any VAR can be a path | |
1013 | parent. */ | |
85254831 | 1014 | |
9a9a7608 | 1015 | int |
b09e2c59 | 1016 | varobj_default_is_path_expr_parent (const struct varobj *var) |
9a9a7608 AB |
1017 | { |
1018 | return 1; | |
85254831 KS |
1019 | } |
1020 | ||
1021 | /* Return the path expression parent for VAR. */ | |
1022 | ||
c1cc6152 SM |
1023 | const struct varobj * |
1024 | varobj_get_path_expr_parent (const struct varobj *var) | |
85254831 | 1025 | { |
c1cc6152 | 1026 | const struct varobj *parent = var; |
85254831 KS |
1027 | |
1028 | while (!is_root_p (parent) && !is_path_expr_parent (parent)) | |
1029 | parent = parent->parent; | |
1030 | ||
1031 | return parent; | |
1032 | } | |
1033 | ||
02142340 VP |
1034 | /* Return a pointer to the full rooted expression of varobj VAR. |
1035 | If it has not been computed yet, compute it. */ | |
1036 | char * | |
c1cc6152 | 1037 | varobj_get_path_expr (const struct varobj *var) |
02142340 | 1038 | { |
2568868e | 1039 | if (var->path_expr == NULL) |
02142340 VP |
1040 | { |
1041 | /* For root varobjs, we initialize path_expr | |
1042 | when creating varobj, so here it should be | |
1043 | child varobj. */ | |
c1cc6152 | 1044 | struct varobj *mutable_var = (struct varobj *) var; |
02142340 | 1045 | gdb_assert (!is_root_p (var)); |
2568868e | 1046 | |
c1cc6152 | 1047 | mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var); |
02142340 | 1048 | } |
2568868e SM |
1049 | |
1050 | return var->path_expr; | |
02142340 VP |
1051 | } |
1052 | ||
fa4d0c40 | 1053 | const struct language_defn * |
b09e2c59 | 1054 | varobj_get_language (const struct varobj *var) |
8b93c638 | 1055 | { |
fa4d0c40 | 1056 | return var->root->exp->language_defn; |
8b93c638 JM |
1057 | } |
1058 | ||
1059 | int | |
b09e2c59 | 1060 | varobj_get_attributes (const struct varobj *var) |
8b93c638 JM |
1061 | { |
1062 | int attributes = 0; | |
1063 | ||
340a7723 | 1064 | if (varobj_editable_p (var)) |
581e13c1 | 1065 | /* FIXME: define masks for attributes. */ |
8b93c638 JM |
1066 | attributes |= 0x00000001; /* Editable */ |
1067 | ||
1068 | return attributes; | |
1069 | } | |
1070 | ||
cde5ef40 YQ |
1071 | /* Return true if VAR is a dynamic varobj. */ |
1072 | ||
0cc7d26f | 1073 | int |
b09e2c59 | 1074 | varobj_is_dynamic_p (const struct varobj *var) |
0cc7d26f | 1075 | { |
bb5ce47a | 1076 | return var->dynamic->pretty_printer != NULL; |
0cc7d26f TT |
1077 | } |
1078 | ||
de051565 MK |
1079 | char * |
1080 | varobj_get_formatted_value (struct varobj *var, | |
1081 | enum varobj_display_formats format) | |
1082 | { | |
1083 | return my_value_of_variable (var, format); | |
1084 | } | |
1085 | ||
8b93c638 JM |
1086 | char * |
1087 | varobj_get_value (struct varobj *var) | |
1088 | { | |
de051565 | 1089 | return my_value_of_variable (var, var->format); |
8b93c638 JM |
1090 | } |
1091 | ||
1092 | /* Set the value of an object variable (if it is editable) to the | |
581e13c1 MS |
1093 | value of the given expression. */ |
1094 | /* Note: Invokes functions that can call error(). */ | |
8b93c638 JM |
1095 | |
1096 | int | |
1097 | varobj_set_value (struct varobj *var, char *expression) | |
1098 | { | |
34365054 | 1099 | struct value *val = NULL; /* Initialize to keep gcc happy. */ |
8b93c638 | 1100 | /* The argument "expression" contains the variable's new value. |
581e13c1 MS |
1101 | We need to first construct a legal expression for this -- ugh! */ |
1102 | /* Does this cover all the bases? */ | |
8b93c638 | 1103 | struct expression *exp; |
34365054 | 1104 | struct value *value = NULL; /* Initialize to keep gcc happy. */ |
8b93c638 | 1105 | int saved_input_radix = input_radix; |
bbc13ae3 | 1106 | const char *s = expression; |
8b93c638 | 1107 | |
340a7723 | 1108 | gdb_assert (varobj_editable_p (var)); |
8b93c638 | 1109 | |
581e13c1 | 1110 | input_radix = 10; /* ALWAYS reset to decimal temporarily. */ |
1bb9788d | 1111 | exp = parse_exp_1 (&s, 0, 0, 0); |
492d29ea | 1112 | TRY |
8e7b59a5 KS |
1113 | { |
1114 | value = evaluate_expression (exp); | |
1115 | } | |
1116 | ||
492d29ea | 1117 | CATCH (except, RETURN_MASK_ERROR) |
340a7723 | 1118 | { |
581e13c1 | 1119 | /* We cannot proceed without a valid expression. */ |
340a7723 NR |
1120 | xfree (exp); |
1121 | return 0; | |
8b93c638 | 1122 | } |
492d29ea | 1123 | END_CATCH |
8b93c638 | 1124 | |
340a7723 NR |
1125 | /* All types that are editable must also be changeable. */ |
1126 | gdb_assert (varobj_value_is_changeable_p (var)); | |
1127 | ||
1128 | /* The value of a changeable variable object must not be lazy. */ | |
1129 | gdb_assert (!value_lazy (var->value)); | |
1130 | ||
1131 | /* Need to coerce the input. We want to check if the | |
1132 | value of the variable object will be different | |
1133 | after assignment, and the first thing value_assign | |
1134 | does is coerce the input. | |
1135 | For example, if we are assigning an array to a pointer variable we | |
b021a221 | 1136 | should compare the pointer with the array's address, not with the |
340a7723 NR |
1137 | array's content. */ |
1138 | value = coerce_array (value); | |
1139 | ||
8e7b59a5 KS |
1140 | /* The new value may be lazy. value_assign, or |
1141 | rather value_contents, will take care of this. */ | |
492d29ea | 1142 | TRY |
8e7b59a5 KS |
1143 | { |
1144 | val = value_assign (var->value, value); | |
1145 | } | |
1146 | ||
492d29ea PA |
1147 | CATCH (except, RETURN_MASK_ERROR) |
1148 | { | |
1149 | return 0; | |
1150 | } | |
1151 | END_CATCH | |
8e7b59a5 | 1152 | |
340a7723 NR |
1153 | /* If the value has changed, record it, so that next -var-update can |
1154 | report this change. If a variable had a value of '1', we've set it | |
1155 | to '333' and then set again to '1', when -var-update will report this | |
1156 | variable as changed -- because the first assignment has set the | |
1157 | 'updated' flag. There's no need to optimize that, because return value | |
1158 | of -var-update should be considered an approximation. */ | |
581e13c1 | 1159 | var->updated = install_new_value (var, val, 0 /* Compare values. */); |
340a7723 NR |
1160 | input_radix = saved_input_radix; |
1161 | return 1; | |
8b93c638 JM |
1162 | } |
1163 | ||
0cc7d26f TT |
1164 | #if HAVE_PYTHON |
1165 | ||
1166 | /* A helper function to install a constructor function and visualizer | |
bb5ce47a | 1167 | in a varobj_dynamic. */ |
0cc7d26f TT |
1168 | |
1169 | static void | |
bb5ce47a | 1170 | install_visualizer (struct varobj_dynamic *var, PyObject *constructor, |
0cc7d26f TT |
1171 | PyObject *visualizer) |
1172 | { | |
1173 | Py_XDECREF (var->constructor); | |
1174 | var->constructor = constructor; | |
1175 | ||
1176 | Py_XDECREF (var->pretty_printer); | |
1177 | var->pretty_printer = visualizer; | |
1178 | ||
e5250216 | 1179 | varobj_iter_delete (var->child_iter); |
0cc7d26f TT |
1180 | var->child_iter = NULL; |
1181 | } | |
1182 | ||
1183 | /* Install the default visualizer for VAR. */ | |
1184 | ||
1185 | static void | |
1186 | install_default_visualizer (struct varobj *var) | |
1187 | { | |
d65aec65 PM |
1188 | /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */ |
1189 | if (CPLUS_FAKE_CHILD (var)) | |
1190 | return; | |
1191 | ||
0cc7d26f TT |
1192 | if (pretty_printing) |
1193 | { | |
1194 | PyObject *pretty_printer = NULL; | |
1195 | ||
1196 | if (var->value) | |
1197 | { | |
1198 | pretty_printer = gdbpy_get_varobj_pretty_printer (var->value); | |
1199 | if (! pretty_printer) | |
1200 | { | |
1201 | gdbpy_print_stack (); | |
1202 | error (_("Cannot instantiate printer for default visualizer")); | |
1203 | } | |
1204 | } | |
1205 | ||
1206 | if (pretty_printer == Py_None) | |
1207 | { | |
1208 | Py_DECREF (pretty_printer); | |
1209 | pretty_printer = NULL; | |
1210 | } | |
1211 | ||
bb5ce47a | 1212 | install_visualizer (var->dynamic, NULL, pretty_printer); |
0cc7d26f TT |
1213 | } |
1214 | } | |
1215 | ||
1216 | /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to | |
1217 | make a new object. */ | |
1218 | ||
1219 | static void | |
1220 | construct_visualizer (struct varobj *var, PyObject *constructor) | |
1221 | { | |
1222 | PyObject *pretty_printer; | |
1223 | ||
d65aec65 PM |
1224 | /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */ |
1225 | if (CPLUS_FAKE_CHILD (var)) | |
1226 | return; | |
1227 | ||
0cc7d26f TT |
1228 | Py_INCREF (constructor); |
1229 | if (constructor == Py_None) | |
1230 | pretty_printer = NULL; | |
1231 | else | |
1232 | { | |
1233 | pretty_printer = instantiate_pretty_printer (constructor, var->value); | |
1234 | if (! pretty_printer) | |
1235 | { | |
1236 | gdbpy_print_stack (); | |
1237 | Py_DECREF (constructor); | |
1238 | constructor = Py_None; | |
1239 | Py_INCREF (constructor); | |
1240 | } | |
1241 | ||
1242 | if (pretty_printer == Py_None) | |
1243 | { | |
1244 | Py_DECREF (pretty_printer); | |
1245 | pretty_printer = NULL; | |
1246 | } | |
1247 | } | |
1248 | ||
bb5ce47a | 1249 | install_visualizer (var->dynamic, constructor, pretty_printer); |
0cc7d26f TT |
1250 | } |
1251 | ||
1252 | #endif /* HAVE_PYTHON */ | |
1253 | ||
1254 | /* A helper function for install_new_value. This creates and installs | |
1255 | a visualizer for VAR, if appropriate. */ | |
1256 | ||
1257 | static void | |
1258 | install_new_value_visualizer (struct varobj *var) | |
1259 | { | |
1260 | #if HAVE_PYTHON | |
1261 | /* If the constructor is None, then we want the raw value. If VAR | |
1262 | does not have a value, just skip this. */ | |
0646da15 TT |
1263 | if (!gdb_python_initialized) |
1264 | return; | |
1265 | ||
bb5ce47a | 1266 | if (var->dynamic->constructor != Py_None && var->value != NULL) |
0cc7d26f TT |
1267 | { |
1268 | struct cleanup *cleanup; | |
0cc7d26f TT |
1269 | |
1270 | cleanup = varobj_ensure_python_env (var); | |
1271 | ||
bb5ce47a | 1272 | if (var->dynamic->constructor == NULL) |
0cc7d26f TT |
1273 | install_default_visualizer (var); |
1274 | else | |
bb5ce47a | 1275 | construct_visualizer (var, var->dynamic->constructor); |
0cc7d26f TT |
1276 | |
1277 | do_cleanups (cleanup); | |
1278 | } | |
1279 | #else | |
1280 | /* Do nothing. */ | |
1281 | #endif | |
1282 | } | |
1283 | ||
8264ba82 AG |
1284 | /* When using RTTI to determine variable type it may be changed in runtime when |
1285 | the variable value is changed. This function checks whether type of varobj | |
1286 | VAR will change when a new value NEW_VALUE is assigned and if it is so | |
1287 | updates the type of VAR. */ | |
1288 | ||
1289 | static int | |
1290 | update_type_if_necessary (struct varobj *var, struct value *new_value) | |
1291 | { | |
1292 | if (new_value) | |
1293 | { | |
1294 | struct value_print_options opts; | |
1295 | ||
1296 | get_user_print_options (&opts); | |
1297 | if (opts.objectprint) | |
1298 | { | |
1299 | struct type *new_type; | |
1300 | char *curr_type_str, *new_type_str; | |
afa269ae | 1301 | int type_name_changed; |
8264ba82 AG |
1302 | |
1303 | new_type = value_actual_type (new_value, 0, 0); | |
1304 | new_type_str = type_to_string (new_type); | |
1305 | curr_type_str = varobj_get_type (var); | |
afa269ae SM |
1306 | type_name_changed = strcmp (curr_type_str, new_type_str) != 0; |
1307 | xfree (curr_type_str); | |
1308 | xfree (new_type_str); | |
1309 | ||
1310 | if (type_name_changed) | |
8264ba82 AG |
1311 | { |
1312 | var->type = new_type; | |
1313 | ||
1314 | /* This information may be not valid for a new type. */ | |
1315 | varobj_delete (var, NULL, 1); | |
1316 | VEC_free (varobj_p, var->children); | |
1317 | var->num_children = -1; | |
1318 | return 1; | |
1319 | } | |
1320 | } | |
1321 | } | |
1322 | ||
1323 | return 0; | |
1324 | } | |
1325 | ||
acd65feb VP |
1326 | /* Assign a new value to a variable object. If INITIAL is non-zero, |
1327 | this is the first assignement after the variable object was just | |
1328 | created, or changed type. In that case, just assign the value | |
1329 | and return 0. | |
581e13c1 MS |
1330 | Otherwise, assign the new value, and return 1 if the value is |
1331 | different from the current one, 0 otherwise. The comparison is | |
1332 | done on textual representation of value. Therefore, some types | |
1333 | need not be compared. E.g. for structures the reported value is | |
1334 | always "{...}", so no comparison is necessary here. If the old | |
1335 | value was NULL and new one is not, or vice versa, we always return 1. | |
b26ed50d VP |
1336 | |
1337 | The VALUE parameter should not be released -- the function will | |
1338 | take care of releasing it when needed. */ | |
acd65feb VP |
1339 | static int |
1340 | install_new_value (struct varobj *var, struct value *value, int initial) | |
1341 | { | |
1342 | int changeable; | |
1343 | int need_to_fetch; | |
1344 | int changed = 0; | |
25d5ea92 | 1345 | int intentionally_not_fetched = 0; |
7a4d50bf | 1346 | char *print_value = NULL; |
acd65feb | 1347 | |
acd65feb | 1348 | /* We need to know the varobj's type to decide if the value should |
3e43a32a | 1349 | be fetched or not. C++ fake children (public/protected/private) |
581e13c1 | 1350 | don't have a type. */ |
acd65feb | 1351 | gdb_assert (var->type || CPLUS_FAKE_CHILD (var)); |
b2c2bd75 | 1352 | changeable = varobj_value_is_changeable_p (var); |
b6313243 TT |
1353 | |
1354 | /* If the type has custom visualizer, we consider it to be always | |
581e13c1 | 1355 | changeable. FIXME: need to make sure this behaviour will not |
b6313243 | 1356 | mess up read-sensitive values. */ |
bb5ce47a | 1357 | if (var->dynamic->pretty_printer != NULL) |
b6313243 TT |
1358 | changeable = 1; |
1359 | ||
acd65feb VP |
1360 | need_to_fetch = changeable; |
1361 | ||
b26ed50d VP |
1362 | /* We are not interested in the address of references, and given |
1363 | that in C++ a reference is not rebindable, it cannot | |
1364 | meaningfully change. So, get hold of the real value. */ | |
1365 | if (value) | |
0cc7d26f | 1366 | value = coerce_ref (value); |
b26ed50d | 1367 | |
acd65feb VP |
1368 | if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION) |
1369 | /* For unions, we need to fetch the value implicitly because | |
1370 | of implementation of union member fetch. When gdb | |
1371 | creates a value for a field and the value of the enclosing | |
1372 | structure is not lazy, it immediately copies the necessary | |
1373 | bytes from the enclosing values. If the enclosing value is | |
1374 | lazy, the call to value_fetch_lazy on the field will read | |
1375 | the data from memory. For unions, that means we'll read the | |
1376 | same memory more than once, which is not desirable. So | |
1377 | fetch now. */ | |
1378 | need_to_fetch = 1; | |
1379 | ||
1380 | /* The new value might be lazy. If the type is changeable, | |
1381 | that is we'll be comparing values of this type, fetch the | |
1382 | value now. Otherwise, on the next update the old value | |
1383 | will be lazy, which means we've lost that old value. */ | |
1384 | if (need_to_fetch && value && value_lazy (value)) | |
1385 | { | |
c1cc6152 | 1386 | const struct varobj *parent = var->parent; |
25d5ea92 | 1387 | int frozen = var->frozen; |
a109c7c1 | 1388 | |
25d5ea92 VP |
1389 | for (; !frozen && parent; parent = parent->parent) |
1390 | frozen |= parent->frozen; | |
1391 | ||
1392 | if (frozen && initial) | |
1393 | { | |
1394 | /* For variables that are frozen, or are children of frozen | |
1395 | variables, we don't do fetch on initial assignment. | |
1396 | For non-initial assignemnt we do the fetch, since it means we're | |
1397 | explicitly asked to compare the new value with the old one. */ | |
1398 | intentionally_not_fetched = 1; | |
1399 | } | |
8e7b59a5 | 1400 | else |
acd65feb | 1401 | { |
8e7b59a5 | 1402 | |
492d29ea | 1403 | TRY |
8e7b59a5 KS |
1404 | { |
1405 | value_fetch_lazy (value); | |
1406 | } | |
1407 | ||
492d29ea | 1408 | CATCH (except, RETURN_MASK_ERROR) |
8e7b59a5 KS |
1409 | { |
1410 | /* Set the value to NULL, so that for the next -var-update, | |
1411 | we don't try to compare the new value with this value, | |
1412 | that we couldn't even read. */ | |
1413 | value = NULL; | |
1414 | } | |
492d29ea | 1415 | END_CATCH |
acd65feb | 1416 | } |
acd65feb VP |
1417 | } |
1418 | ||
e848a8a5 TT |
1419 | /* Get a reference now, before possibly passing it to any Python |
1420 | code that might release it. */ | |
1421 | if (value != NULL) | |
1422 | value_incref (value); | |
b6313243 | 1423 | |
7a4d50bf VP |
1424 | /* Below, we'll be comparing string rendering of old and new |
1425 | values. Don't get string rendering if the value is | |
1426 | lazy -- if it is, the code above has decided that the value | |
1427 | should not be fetched. */ | |
bb5ce47a YQ |
1428 | if (value != NULL && !value_lazy (value) |
1429 | && var->dynamic->pretty_printer == NULL) | |
99ad9427 | 1430 | print_value = varobj_value_get_print_value (value, var->format, var); |
7a4d50bf | 1431 | |
acd65feb VP |
1432 | /* If the type is changeable, compare the old and the new values. |
1433 | If this is the initial assignment, we don't have any old value | |
1434 | to compare with. */ | |
7a4d50bf | 1435 | if (!initial && changeable) |
acd65feb | 1436 | { |
3e43a32a MS |
1437 | /* If the value of the varobj was changed by -var-set-value, |
1438 | then the value in the varobj and in the target is the same. | |
1439 | However, that value is different from the value that the | |
581e13c1 | 1440 | varobj had after the previous -var-update. So need to the |
3e43a32a | 1441 | varobj as changed. */ |
acd65feb | 1442 | if (var->updated) |
57e66780 | 1443 | { |
57e66780 DJ |
1444 | changed = 1; |
1445 | } | |
bb5ce47a | 1446 | else if (var->dynamic->pretty_printer == NULL) |
acd65feb VP |
1447 | { |
1448 | /* Try to compare the values. That requires that both | |
1449 | values are non-lazy. */ | |
25d5ea92 VP |
1450 | if (var->not_fetched && value_lazy (var->value)) |
1451 | { | |
1452 | /* This is a frozen varobj and the value was never read. | |
1453 | Presumably, UI shows some "never read" indicator. | |
1454 | Now that we've fetched the real value, we need to report | |
1455 | this varobj as changed so that UI can show the real | |
1456 | value. */ | |
1457 | changed = 1; | |
1458 | } | |
1459 | else if (var->value == NULL && value == NULL) | |
581e13c1 | 1460 | /* Equal. */ |
acd65feb VP |
1461 | ; |
1462 | else if (var->value == NULL || value == NULL) | |
57e66780 | 1463 | { |
57e66780 DJ |
1464 | changed = 1; |
1465 | } | |
acd65feb VP |
1466 | else |
1467 | { | |
1468 | gdb_assert (!value_lazy (var->value)); | |
1469 | gdb_assert (!value_lazy (value)); | |
85265413 | 1470 | |
57e66780 | 1471 | gdb_assert (var->print_value != NULL && print_value != NULL); |
85265413 | 1472 | if (strcmp (var->print_value, print_value) != 0) |
7a4d50bf | 1473 | changed = 1; |
acd65feb VP |
1474 | } |
1475 | } | |
1476 | } | |
85265413 | 1477 | |
ee342b23 VP |
1478 | if (!initial && !changeable) |
1479 | { | |
1480 | /* For values that are not changeable, we don't compare the values. | |
1481 | However, we want to notice if a value was not NULL and now is NULL, | |
1482 | or vise versa, so that we report when top-level varobjs come in scope | |
1483 | and leave the scope. */ | |
1484 | changed = (var->value != NULL) != (value != NULL); | |
1485 | } | |
1486 | ||
acd65feb | 1487 | /* We must always keep the new value, since children depend on it. */ |
25d5ea92 | 1488 | if (var->value != NULL && var->value != value) |
acd65feb VP |
1489 | value_free (var->value); |
1490 | var->value = value; | |
25d5ea92 VP |
1491 | if (value && value_lazy (value) && intentionally_not_fetched) |
1492 | var->not_fetched = 1; | |
1493 | else | |
1494 | var->not_fetched = 0; | |
acd65feb | 1495 | var->updated = 0; |
85265413 | 1496 | |
0cc7d26f TT |
1497 | install_new_value_visualizer (var); |
1498 | ||
1499 | /* If we installed a pretty-printer, re-compare the printed version | |
1500 | to see if the variable changed. */ | |
bb5ce47a | 1501 | if (var->dynamic->pretty_printer != NULL) |
0cc7d26f TT |
1502 | { |
1503 | xfree (print_value); | |
99ad9427 YQ |
1504 | print_value = varobj_value_get_print_value (var->value, var->format, |
1505 | var); | |
e8f781e2 TT |
1506 | if ((var->print_value == NULL && print_value != NULL) |
1507 | || (var->print_value != NULL && print_value == NULL) | |
1508 | || (var->print_value != NULL && print_value != NULL | |
1509 | && strcmp (var->print_value, print_value) != 0)) | |
0cc7d26f TT |
1510 | changed = 1; |
1511 | } | |
1512 | if (var->print_value) | |
1513 | xfree (var->print_value); | |
1514 | var->print_value = print_value; | |
1515 | ||
b26ed50d | 1516 | gdb_assert (!var->value || value_type (var->value)); |
acd65feb VP |
1517 | |
1518 | return changed; | |
1519 | } | |
acd65feb | 1520 | |
0cc7d26f TT |
1521 | /* Return the requested range for a varobj. VAR is the varobj. FROM |
1522 | and TO are out parameters; *FROM and *TO will be set to the | |
1523 | selected sub-range of VAR. If no range was selected using | |
1524 | -var-set-update-range, then both will be -1. */ | |
1525 | void | |
b09e2c59 | 1526 | varobj_get_child_range (const struct varobj *var, int *from, int *to) |
b6313243 | 1527 | { |
0cc7d26f TT |
1528 | *from = var->from; |
1529 | *to = var->to; | |
b6313243 TT |
1530 | } |
1531 | ||
0cc7d26f TT |
1532 | /* Set the selected sub-range of children of VAR to start at index |
1533 | FROM and end at index TO. If either FROM or TO is less than zero, | |
1534 | this is interpreted as a request for all children. */ | |
1535 | void | |
1536 | varobj_set_child_range (struct varobj *var, int from, int to) | |
b6313243 | 1537 | { |
0cc7d26f TT |
1538 | var->from = from; |
1539 | var->to = to; | |
b6313243 TT |
1540 | } |
1541 | ||
1542 | void | |
1543 | varobj_set_visualizer (struct varobj *var, const char *visualizer) | |
1544 | { | |
1545 | #if HAVE_PYTHON | |
34fa1d9d MS |
1546 | PyObject *mainmod, *globals, *constructor; |
1547 | struct cleanup *back_to; | |
b6313243 | 1548 | |
0646da15 TT |
1549 | if (!gdb_python_initialized) |
1550 | return; | |
1551 | ||
d452c4bc | 1552 | back_to = varobj_ensure_python_env (var); |
b6313243 TT |
1553 | |
1554 | mainmod = PyImport_AddModule ("__main__"); | |
1555 | globals = PyModule_GetDict (mainmod); | |
1556 | Py_INCREF (globals); | |
1557 | make_cleanup_py_decref (globals); | |
1558 | ||
1559 | constructor = PyRun_String (visualizer, Py_eval_input, globals, globals); | |
b6313243 | 1560 | |
0cc7d26f | 1561 | if (! constructor) |
b6313243 TT |
1562 | { |
1563 | gdbpy_print_stack (); | |
da1f2771 | 1564 | error (_("Could not evaluate visualizer expression: %s"), visualizer); |
b6313243 TT |
1565 | } |
1566 | ||
0cc7d26f TT |
1567 | construct_visualizer (var, constructor); |
1568 | Py_XDECREF (constructor); | |
b6313243 | 1569 | |
0cc7d26f TT |
1570 | /* If there are any children now, wipe them. */ |
1571 | varobj_delete (var, NULL, 1 /* children only */); | |
1572 | var->num_children = -1; | |
b6313243 TT |
1573 | |
1574 | do_cleanups (back_to); | |
1575 | #else | |
da1f2771 | 1576 | error (_("Python support required")); |
b6313243 TT |
1577 | #endif |
1578 | } | |
1579 | ||
7a290c40 JB |
1580 | /* If NEW_VALUE is the new value of the given varobj (var), return |
1581 | non-zero if var has mutated. In other words, if the type of | |
1582 | the new value is different from the type of the varobj's old | |
1583 | value. | |
1584 | ||
1585 | NEW_VALUE may be NULL, if the varobj is now out of scope. */ | |
1586 | ||
1587 | static int | |
b09e2c59 | 1588 | varobj_value_has_mutated (const struct varobj *var, struct value *new_value, |
7a290c40 JB |
1589 | struct type *new_type) |
1590 | { | |
1591 | /* If we haven't previously computed the number of children in var, | |
1592 | it does not matter from the front-end's perspective whether | |
1593 | the type has mutated or not. For all intents and purposes, | |
1594 | it has not mutated. */ | |
1595 | if (var->num_children < 0) | |
1596 | return 0; | |
1597 | ||
ca20d462 | 1598 | if (var->root->lang_ops->value_has_mutated) |
8776cfe9 JB |
1599 | { |
1600 | /* The varobj module, when installing new values, explicitly strips | |
1601 | references, saying that we're not interested in those addresses. | |
1602 | But detection of mutation happens before installing the new | |
1603 | value, so our value may be a reference that we need to strip | |
1604 | in order to remain consistent. */ | |
1605 | if (new_value != NULL) | |
1606 | new_value = coerce_ref (new_value); | |
1607 | return var->root->lang_ops->value_has_mutated (var, new_value, new_type); | |
1608 | } | |
7a290c40 JB |
1609 | else |
1610 | return 0; | |
1611 | } | |
1612 | ||
8b93c638 JM |
1613 | /* Update the values for a variable and its children. This is a |
1614 | two-pronged attack. First, re-parse the value for the root's | |
1615 | expression to see if it's changed. Then go all the way | |
1616 | through its children, reconstructing them and noting if they've | |
1617 | changed. | |
1618 | ||
25d5ea92 VP |
1619 | The EXPLICIT parameter specifies if this call is result |
1620 | of MI request to update this specific variable, or | |
581e13c1 | 1621 | result of implicit -var-update *. For implicit request, we don't |
25d5ea92 | 1622 | update frozen variables. |
705da579 | 1623 | |
581e13c1 | 1624 | NOTE: This function may delete the caller's varobj. If it |
8756216b DP |
1625 | returns TYPE_CHANGED, then it has done this and VARP will be modified |
1626 | to point to the new varobj. */ | |
8b93c638 | 1627 | |
1417b39d | 1628 | VEC(varobj_update_result) * |
fe978cb0 | 1629 | varobj_update (struct varobj **varp, int is_explicit) |
8b93c638 | 1630 | { |
25d5ea92 | 1631 | int type_changed = 0; |
8b93c638 | 1632 | int i; |
fe978cb0 | 1633 | struct value *newobj; |
b6313243 | 1634 | VEC (varobj_update_result) *stack = NULL; |
f7f9ae2c | 1635 | VEC (varobj_update_result) *result = NULL; |
8b93c638 | 1636 | |
25d5ea92 VP |
1637 | /* Frozen means frozen -- we don't check for any change in |
1638 | this varobj, including its going out of scope, or | |
1639 | changing type. One use case for frozen varobjs is | |
1640 | retaining previously evaluated expressions, and we don't | |
1641 | want them to be reevaluated at all. */ | |
fe978cb0 | 1642 | if (!is_explicit && (*varp)->frozen) |
f7f9ae2c | 1643 | return result; |
8756216b DP |
1644 | |
1645 | if (!(*varp)->root->is_valid) | |
f7f9ae2c | 1646 | { |
cfce2ea2 | 1647 | varobj_update_result r = {0}; |
a109c7c1 | 1648 | |
cfce2ea2 | 1649 | r.varobj = *varp; |
f7f9ae2c VP |
1650 | r.status = VAROBJ_INVALID; |
1651 | VEC_safe_push (varobj_update_result, result, &r); | |
1652 | return result; | |
1653 | } | |
8b93c638 | 1654 | |
25d5ea92 | 1655 | if ((*varp)->root->rootvar == *varp) |
ae093f96 | 1656 | { |
cfce2ea2 | 1657 | varobj_update_result r = {0}; |
a109c7c1 | 1658 | |
cfce2ea2 | 1659 | r.varobj = *varp; |
f7f9ae2c VP |
1660 | r.status = VAROBJ_IN_SCOPE; |
1661 | ||
581e13c1 | 1662 | /* Update the root variable. value_of_root can return NULL |
25d5ea92 | 1663 | if the variable is no longer around, i.e. we stepped out of |
581e13c1 | 1664 | the frame in which a local existed. We are letting the |
25d5ea92 VP |
1665 | value_of_root variable dispose of the varobj if the type |
1666 | has changed. */ | |
fe978cb0 PA |
1667 | newobj = value_of_root (varp, &type_changed); |
1668 | if (update_type_if_necessary(*varp, newobj)) | |
8264ba82 | 1669 | type_changed = 1; |
f7f9ae2c | 1670 | r.varobj = *varp; |
f7f9ae2c | 1671 | r.type_changed = type_changed; |
fe978cb0 | 1672 | if (install_new_value ((*varp), newobj, type_changed)) |
f7f9ae2c | 1673 | r.changed = 1; |
ea56f9c2 | 1674 | |
fe978cb0 | 1675 | if (newobj == NULL) |
f7f9ae2c | 1676 | r.status = VAROBJ_NOT_IN_SCOPE; |
b6313243 | 1677 | r.value_installed = 1; |
f7f9ae2c VP |
1678 | |
1679 | if (r.status == VAROBJ_NOT_IN_SCOPE) | |
b6313243 | 1680 | { |
0b4bc29a JK |
1681 | if (r.type_changed || r.changed) |
1682 | VEC_safe_push (varobj_update_result, result, &r); | |
b6313243 TT |
1683 | return result; |
1684 | } | |
1685 | ||
1686 | VEC_safe_push (varobj_update_result, stack, &r); | |
1687 | } | |
1688 | else | |
1689 | { | |
cfce2ea2 | 1690 | varobj_update_result r = {0}; |
a109c7c1 | 1691 | |
cfce2ea2 | 1692 | r.varobj = *varp; |
b6313243 | 1693 | VEC_safe_push (varobj_update_result, stack, &r); |
b20d8971 | 1694 | } |
8b93c638 | 1695 | |
8756216b | 1696 | /* Walk through the children, reconstructing them all. */ |
b6313243 | 1697 | while (!VEC_empty (varobj_update_result, stack)) |
8b93c638 | 1698 | { |
b6313243 TT |
1699 | varobj_update_result r = *(VEC_last (varobj_update_result, stack)); |
1700 | struct varobj *v = r.varobj; | |
1701 | ||
1702 | VEC_pop (varobj_update_result, stack); | |
1703 | ||
1704 | /* Update this variable, unless it's a root, which is already | |
1705 | updated. */ | |
1706 | if (!r.value_installed) | |
7a290c40 JB |
1707 | { |
1708 | struct type *new_type; | |
1709 | ||
fe978cb0 PA |
1710 | newobj = value_of_child (v->parent, v->index); |
1711 | if (update_type_if_necessary(v, newobj)) | |
8264ba82 | 1712 | r.type_changed = 1; |
fe978cb0 PA |
1713 | if (newobj) |
1714 | new_type = value_type (newobj); | |
7a290c40 | 1715 | else |
ca20d462 | 1716 | new_type = v->root->lang_ops->type_of_child (v->parent, v->index); |
7a290c40 | 1717 | |
fe978cb0 | 1718 | if (varobj_value_has_mutated (v, newobj, new_type)) |
7a290c40 JB |
1719 | { |
1720 | /* The children are no longer valid; delete them now. | |
1721 | Report the fact that its type changed as well. */ | |
1722 | varobj_delete (v, NULL, 1 /* only_children */); | |
1723 | v->num_children = -1; | |
1724 | v->to = -1; | |
1725 | v->from = -1; | |
1726 | v->type = new_type; | |
1727 | r.type_changed = 1; | |
1728 | } | |
1729 | ||
fe978cb0 | 1730 | if (install_new_value (v, newobj, r.type_changed)) |
b6313243 TT |
1731 | { |
1732 | r.changed = 1; | |
1733 | v->updated = 0; | |
1734 | } | |
1735 | } | |
1736 | ||
31f628ae YQ |
1737 | /* We probably should not get children of a dynamic varobj, but |
1738 | for which -var-list-children was never invoked. */ | |
1739 | if (varobj_is_dynamic_p (v)) | |
b6313243 | 1740 | { |
8264ba82 | 1741 | VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0; |
fe978cb0 | 1742 | VEC (varobj_p) *newobj = 0; |
26f9bcee | 1743 | int i, children_changed = 0; |
b6313243 TT |
1744 | |
1745 | if (v->frozen) | |
1746 | continue; | |
1747 | ||
bb5ce47a | 1748 | if (!v->dynamic->children_requested) |
0cc7d26f TT |
1749 | { |
1750 | int dummy; | |
1751 | ||
1752 | /* If we initially did not have potential children, but | |
1753 | now we do, consider the varobj as changed. | |
1754 | Otherwise, if children were never requested, consider | |
1755 | it as unchanged -- presumably, such varobj is not yet | |
1756 | expanded in the UI, so we need not bother getting | |
1757 | it. */ | |
1758 | if (!varobj_has_more (v, 0)) | |
1759 | { | |
8264ba82 | 1760 | update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL, |
0cc7d26f TT |
1761 | &dummy, 0, 0, 0); |
1762 | if (varobj_has_more (v, 0)) | |
1763 | r.changed = 1; | |
1764 | } | |
1765 | ||
1766 | if (r.changed) | |
1767 | VEC_safe_push (varobj_update_result, result, &r); | |
1768 | ||
1769 | continue; | |
1770 | } | |
1771 | ||
b6313243 TT |
1772 | /* If update_dynamic_varobj_children returns 0, then we have |
1773 | a non-conforming pretty-printer, so we skip it. */ | |
fe978cb0 | 1774 | if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj, |
8264ba82 | 1775 | &unchanged, &children_changed, 1, |
0cc7d26f | 1776 | v->from, v->to)) |
b6313243 | 1777 | { |
fe978cb0 | 1778 | if (children_changed || newobj) |
b6313243 | 1779 | { |
0cc7d26f | 1780 | r.children_changed = 1; |
fe978cb0 | 1781 | r.newobj = newobj; |
b6313243 | 1782 | } |
0cc7d26f TT |
1783 | /* Push in reverse order so that the first child is |
1784 | popped from the work stack first, and so will be | |
1785 | added to result first. This does not affect | |
1786 | correctness, just "nicer". */ | |
8264ba82 AG |
1787 | for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i) |
1788 | { | |
1789 | varobj_p tmp = VEC_index (varobj_p, type_changed, i); | |
1790 | varobj_update_result r = {0}; | |
1791 | ||
1792 | /* Type may change only if value was changed. */ | |
1793 | r.varobj = tmp; | |
1794 | r.changed = 1; | |
1795 | r.type_changed = 1; | |
1796 | r.value_installed = 1; | |
1797 | VEC_safe_push (varobj_update_result, stack, &r); | |
1798 | } | |
0cc7d26f | 1799 | for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i) |
b6313243 | 1800 | { |
0cc7d26f | 1801 | varobj_p tmp = VEC_index (varobj_p, changed, i); |
cfce2ea2 | 1802 | varobj_update_result r = {0}; |
a109c7c1 | 1803 | |
cfce2ea2 | 1804 | r.varobj = tmp; |
0cc7d26f | 1805 | r.changed = 1; |
b6313243 TT |
1806 | r.value_installed = 1; |
1807 | VEC_safe_push (varobj_update_result, stack, &r); | |
1808 | } | |
0cc7d26f TT |
1809 | for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i) |
1810 | { | |
1811 | varobj_p tmp = VEC_index (varobj_p, unchanged, i); | |
a109c7c1 | 1812 | |
0cc7d26f TT |
1813 | if (!tmp->frozen) |
1814 | { | |
cfce2ea2 | 1815 | varobj_update_result r = {0}; |
a109c7c1 | 1816 | |
cfce2ea2 | 1817 | r.varobj = tmp; |
0cc7d26f TT |
1818 | r.value_installed = 1; |
1819 | VEC_safe_push (varobj_update_result, stack, &r); | |
1820 | } | |
1821 | } | |
b6313243 TT |
1822 | if (r.changed || r.children_changed) |
1823 | VEC_safe_push (varobj_update_result, result, &r); | |
0cc7d26f | 1824 | |
8264ba82 AG |
1825 | /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW, |
1826 | because NEW has been put into the result vector. */ | |
0cc7d26f | 1827 | VEC_free (varobj_p, changed); |
8264ba82 | 1828 | VEC_free (varobj_p, type_changed); |
0cc7d26f TT |
1829 | VEC_free (varobj_p, unchanged); |
1830 | ||
b6313243 TT |
1831 | continue; |
1832 | } | |
1833 | } | |
28335dcc VP |
1834 | |
1835 | /* Push any children. Use reverse order so that the first | |
1836 | child is popped from the work stack first, and so | |
1837 | will be added to result first. This does not | |
1838 | affect correctness, just "nicer". */ | |
1839 | for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i) | |
8b93c638 | 1840 | { |
28335dcc | 1841 | varobj_p c = VEC_index (varobj_p, v->children, i); |
a109c7c1 | 1842 | |
28335dcc | 1843 | /* Child may be NULL if explicitly deleted by -var-delete. */ |
25d5ea92 | 1844 | if (c != NULL && !c->frozen) |
28335dcc | 1845 | { |
cfce2ea2 | 1846 | varobj_update_result r = {0}; |
a109c7c1 | 1847 | |
cfce2ea2 | 1848 | r.varobj = c; |
b6313243 | 1849 | VEC_safe_push (varobj_update_result, stack, &r); |
28335dcc | 1850 | } |
8b93c638 | 1851 | } |
b6313243 TT |
1852 | |
1853 | if (r.changed || r.type_changed) | |
1854 | VEC_safe_push (varobj_update_result, result, &r); | |
8b93c638 JM |
1855 | } |
1856 | ||
b6313243 TT |
1857 | VEC_free (varobj_update_result, stack); |
1858 | ||
f7f9ae2c | 1859 | return result; |
8b93c638 JM |
1860 | } |
1861 | \f | |
1862 | ||
1863 | /* Helper functions */ | |
1864 | ||
1865 | /* | |
1866 | * Variable object construction/destruction | |
1867 | */ | |
1868 | ||
1869 | static int | |
fba45db2 KB |
1870 | delete_variable (struct cpstack **resultp, struct varobj *var, |
1871 | int only_children_p) | |
8b93c638 JM |
1872 | { |
1873 | int delcount = 0; | |
1874 | ||
1875 | delete_variable_1 (resultp, &delcount, var, | |
1876 | only_children_p, 1 /* remove_from_parent_p */ ); | |
1877 | ||
1878 | return delcount; | |
1879 | } | |
1880 | ||
581e13c1 | 1881 | /* Delete the variable object VAR and its children. */ |
8b93c638 JM |
1882 | /* IMPORTANT NOTE: If we delete a variable which is a child |
1883 | and the parent is not removed we dump core. It must be always | |
581e13c1 | 1884 | initially called with remove_from_parent_p set. */ |
8b93c638 | 1885 | static void |
72330bd6 AC |
1886 | delete_variable_1 (struct cpstack **resultp, int *delcountp, |
1887 | struct varobj *var, int only_children_p, | |
1888 | int remove_from_parent_p) | |
8b93c638 | 1889 | { |
28335dcc | 1890 | int i; |
8b93c638 | 1891 | |
581e13c1 | 1892 | /* Delete any children of this variable, too. */ |
28335dcc VP |
1893 | for (i = 0; i < VEC_length (varobj_p, var->children); ++i) |
1894 | { | |
1895 | varobj_p child = VEC_index (varobj_p, var->children, i); | |
a109c7c1 | 1896 | |
214270ab VP |
1897 | if (!child) |
1898 | continue; | |
8b93c638 | 1899 | if (!remove_from_parent_p) |
28335dcc VP |
1900 | child->parent = NULL; |
1901 | delete_variable_1 (resultp, delcountp, child, 0, only_children_p); | |
8b93c638 | 1902 | } |
28335dcc | 1903 | VEC_free (varobj_p, var->children); |
8b93c638 | 1904 | |
581e13c1 | 1905 | /* if we were called to delete only the children we are done here. */ |
8b93c638 JM |
1906 | if (only_children_p) |
1907 | return; | |
1908 | ||
581e13c1 | 1909 | /* Otherwise, add it to the list of deleted ones and proceed to do so. */ |
73a93a32 | 1910 | /* If the name is null, this is a temporary variable, that has not |
581e13c1 | 1911 | yet been installed, don't report it, it belongs to the caller... */ |
73a93a32 | 1912 | if (var->obj_name != NULL) |
8b93c638 | 1913 | { |
5b616ba1 | 1914 | cppush (resultp, xstrdup (var->obj_name)); |
8b93c638 JM |
1915 | *delcountp = *delcountp + 1; |
1916 | } | |
1917 | ||
581e13c1 | 1918 | /* If this variable has a parent, remove it from its parent's list. */ |
8b93c638 JM |
1919 | /* OPTIMIZATION: if the parent of this variable is also being deleted, |
1920 | (as indicated by remove_from_parent_p) we don't bother doing an | |
1921 | expensive list search to find the element to remove when we are | |
581e13c1 | 1922 | discarding the list afterwards. */ |
72330bd6 | 1923 | if ((remove_from_parent_p) && (var->parent != NULL)) |
8b93c638 | 1924 | { |
28335dcc | 1925 | VEC_replace (varobj_p, var->parent->children, var->index, NULL); |
8b93c638 | 1926 | } |
72330bd6 | 1927 | |
73a93a32 JI |
1928 | if (var->obj_name != NULL) |
1929 | uninstall_variable (var); | |
8b93c638 | 1930 | |
581e13c1 | 1931 | /* Free memory associated with this variable. */ |
8b93c638 JM |
1932 | free_variable (var); |
1933 | } | |
1934 | ||
581e13c1 | 1935 | /* Install the given variable VAR with the object name VAR->OBJ_NAME. */ |
8b93c638 | 1936 | static int |
fba45db2 | 1937 | install_variable (struct varobj *var) |
8b93c638 JM |
1938 | { |
1939 | struct vlist *cv; | |
1940 | struct vlist *newvl; | |
1941 | const char *chp; | |
1942 | unsigned int index = 0; | |
1943 | unsigned int i = 1; | |
1944 | ||
1945 | for (chp = var->obj_name; *chp; chp++) | |
1946 | { | |
1947 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1948 | } | |
1949 | ||
1950 | cv = *(varobj_table + index); | |
1951 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1952 | cv = cv->next; | |
1953 | ||
1954 | if (cv != NULL) | |
8a3fe4f8 | 1955 | error (_("Duplicate variable object name")); |
8b93c638 | 1956 | |
581e13c1 | 1957 | /* Add varobj to hash table. */ |
8d749320 | 1958 | newvl = XNEW (struct vlist); |
8b93c638 JM |
1959 | newvl->next = *(varobj_table + index); |
1960 | newvl->var = var; | |
1961 | *(varobj_table + index) = newvl; | |
1962 | ||
581e13c1 | 1963 | /* If root, add varobj to root list. */ |
b2c2bd75 | 1964 | if (is_root_p (var)) |
8b93c638 | 1965 | { |
581e13c1 | 1966 | /* Add to list of root variables. */ |
8b93c638 JM |
1967 | if (rootlist == NULL) |
1968 | var->root->next = NULL; | |
1969 | else | |
1970 | var->root->next = rootlist; | |
1971 | rootlist = var->root; | |
8b93c638 JM |
1972 | } |
1973 | ||
1974 | return 1; /* OK */ | |
1975 | } | |
1976 | ||
581e13c1 | 1977 | /* Unistall the object VAR. */ |
8b93c638 | 1978 | static void |
fba45db2 | 1979 | uninstall_variable (struct varobj *var) |
8b93c638 JM |
1980 | { |
1981 | struct vlist *cv; | |
1982 | struct vlist *prev; | |
1983 | struct varobj_root *cr; | |
1984 | struct varobj_root *prer; | |
1985 | const char *chp; | |
1986 | unsigned int index = 0; | |
1987 | unsigned int i = 1; | |
1988 | ||
581e13c1 | 1989 | /* Remove varobj from hash table. */ |
8b93c638 JM |
1990 | for (chp = var->obj_name; *chp; chp++) |
1991 | { | |
1992 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1993 | } | |
1994 | ||
1995 | cv = *(varobj_table + index); | |
1996 | prev = NULL; | |
1997 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1998 | { | |
1999 | prev = cv; | |
2000 | cv = cv->next; | |
2001 | } | |
2002 | ||
2003 | if (varobjdebug) | |
2004 | fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name); | |
2005 | ||
2006 | if (cv == NULL) | |
2007 | { | |
72330bd6 AC |
2008 | warning |
2009 | ("Assertion failed: Could not find variable object \"%s\" to delete", | |
2010 | var->obj_name); | |
8b93c638 JM |
2011 | return; |
2012 | } | |
2013 | ||
2014 | if (prev == NULL) | |
2015 | *(varobj_table + index) = cv->next; | |
2016 | else | |
2017 | prev->next = cv->next; | |
2018 | ||
b8c9b27d | 2019 | xfree (cv); |
8b93c638 | 2020 | |
581e13c1 | 2021 | /* If root, remove varobj from root list. */ |
b2c2bd75 | 2022 | if (is_root_p (var)) |
8b93c638 | 2023 | { |
581e13c1 | 2024 | /* Remove from list of root variables. */ |
8b93c638 JM |
2025 | if (rootlist == var->root) |
2026 | rootlist = var->root->next; | |
2027 | else | |
2028 | { | |
2029 | prer = NULL; | |
2030 | cr = rootlist; | |
2031 | while ((cr != NULL) && (cr->rootvar != var)) | |
2032 | { | |
2033 | prer = cr; | |
2034 | cr = cr->next; | |
2035 | } | |
2036 | if (cr == NULL) | |
2037 | { | |
8f7e195f JB |
2038 | warning (_("Assertion failed: Could not find " |
2039 | "varobj \"%s\" in root list"), | |
3e43a32a | 2040 | var->obj_name); |
8b93c638 JM |
2041 | return; |
2042 | } | |
2043 | if (prer == NULL) | |
2044 | rootlist = NULL; | |
2045 | else | |
2046 | prer->next = cr->next; | |
2047 | } | |
8b93c638 JM |
2048 | } |
2049 | ||
2050 | } | |
2051 | ||
837ce252 SM |
2052 | /* Create and install a child of the parent of the given name. |
2053 | ||
2054 | The created VAROBJ takes ownership of the allocated NAME. */ | |
2055 | ||
8b93c638 | 2056 | static struct varobj * |
fba45db2 | 2057 | create_child (struct varobj *parent, int index, char *name) |
b6313243 | 2058 | { |
5a2e0d6e YQ |
2059 | struct varobj_item item; |
2060 | ||
2061 | item.name = name; | |
2062 | item.value = value_of_child (parent, index); | |
2063 | ||
2064 | return create_child_with_value (parent, index, &item); | |
b6313243 TT |
2065 | } |
2066 | ||
2067 | static struct varobj * | |
5a2e0d6e YQ |
2068 | create_child_with_value (struct varobj *parent, int index, |
2069 | struct varobj_item *item) | |
8b93c638 JM |
2070 | { |
2071 | struct varobj *child; | |
2072 | char *childs_name; | |
2073 | ||
2074 | child = new_variable (); | |
2075 | ||
5e5ac9a5 | 2076 | /* NAME is allocated by caller. */ |
5a2e0d6e | 2077 | child->name = item->name; |
8b93c638 | 2078 | child->index = index; |
8b93c638 JM |
2079 | child->parent = parent; |
2080 | child->root = parent->root; | |
85254831 | 2081 | |
99ad9427 | 2082 | if (varobj_is_anonymous_child (child)) |
85254831 KS |
2083 | childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index); |
2084 | else | |
5a2e0d6e | 2085 | childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name); |
8b93c638 | 2086 | child->obj_name = childs_name; |
85254831 | 2087 | |
8b93c638 JM |
2088 | install_variable (child); |
2089 | ||
acd65feb VP |
2090 | /* Compute the type of the child. Must do this before |
2091 | calling install_new_value. */ | |
5a2e0d6e | 2092 | if (item->value != NULL) |
acd65feb | 2093 | /* If the child had no evaluation errors, var->value |
581e13c1 | 2094 | will be non-NULL and contain a valid type. */ |
5a2e0d6e | 2095 | child->type = value_actual_type (item->value, 0, NULL); |
acd65feb | 2096 | else |
581e13c1 | 2097 | /* Otherwise, we must compute the type. */ |
ca20d462 YQ |
2098 | child->type = (*child->root->lang_ops->type_of_child) (child->parent, |
2099 | child->index); | |
5a2e0d6e | 2100 | install_new_value (child, item->value, 1); |
acd65feb | 2101 | |
8b93c638 JM |
2102 | return child; |
2103 | } | |
8b93c638 JM |
2104 | \f |
2105 | ||
2106 | /* | |
2107 | * Miscellaneous utility functions. | |
2108 | */ | |
2109 | ||
581e13c1 | 2110 | /* Allocate memory and initialize a new variable. */ |
8b93c638 JM |
2111 | static struct varobj * |
2112 | new_variable (void) | |
2113 | { | |
2114 | struct varobj *var; | |
2115 | ||
8d749320 | 2116 | var = XNEW (struct varobj); |
8b93c638 | 2117 | var->name = NULL; |
02142340 | 2118 | var->path_expr = NULL; |
8b93c638 JM |
2119 | var->obj_name = NULL; |
2120 | var->index = -1; | |
2121 | var->type = NULL; | |
2122 | var->value = NULL; | |
8b93c638 JM |
2123 | var->num_children = -1; |
2124 | var->parent = NULL; | |
2125 | var->children = NULL; | |
f486487f | 2126 | var->format = FORMAT_NATURAL; |
8b93c638 | 2127 | var->root = NULL; |
fb9b6b35 | 2128 | var->updated = 0; |
85265413 | 2129 | var->print_value = NULL; |
25d5ea92 VP |
2130 | var->frozen = 0; |
2131 | var->not_fetched = 0; | |
8d749320 | 2132 | var->dynamic = XNEW (struct varobj_dynamic); |
bb5ce47a | 2133 | var->dynamic->children_requested = 0; |
0cc7d26f TT |
2134 | var->from = -1; |
2135 | var->to = -1; | |
bb5ce47a YQ |
2136 | var->dynamic->constructor = 0; |
2137 | var->dynamic->pretty_printer = 0; | |
2138 | var->dynamic->child_iter = 0; | |
2139 | var->dynamic->saved_item = 0; | |
8b93c638 JM |
2140 | |
2141 | return var; | |
2142 | } | |
2143 | ||
581e13c1 | 2144 | /* Allocate memory and initialize a new root variable. */ |
8b93c638 JM |
2145 | static struct varobj * |
2146 | new_root_variable (void) | |
2147 | { | |
2148 | struct varobj *var = new_variable (); | |
a109c7c1 | 2149 | |
8d749320 | 2150 | var->root = XNEW (struct varobj_root); |
ca20d462 | 2151 | var->root->lang_ops = NULL; |
8b93c638 JM |
2152 | var->root->exp = NULL; |
2153 | var->root->valid_block = NULL; | |
7a424e99 | 2154 | var->root->frame = null_frame_id; |
a5defcdc | 2155 | var->root->floating = 0; |
8b93c638 | 2156 | var->root->rootvar = NULL; |
8756216b | 2157 | var->root->is_valid = 1; |
8b93c638 JM |
2158 | |
2159 | return var; | |
2160 | } | |
2161 | ||
581e13c1 | 2162 | /* Free any allocated memory associated with VAR. */ |
8b93c638 | 2163 | static void |
fba45db2 | 2164 | free_variable (struct varobj *var) |
8b93c638 | 2165 | { |
d452c4bc | 2166 | #if HAVE_PYTHON |
bb5ce47a | 2167 | if (var->dynamic->pretty_printer != NULL) |
d452c4bc UW |
2168 | { |
2169 | struct cleanup *cleanup = varobj_ensure_python_env (var); | |
bb5ce47a YQ |
2170 | |
2171 | Py_XDECREF (var->dynamic->constructor); | |
2172 | Py_XDECREF (var->dynamic->pretty_printer); | |
d452c4bc UW |
2173 | do_cleanups (cleanup); |
2174 | } | |
2175 | #endif | |
2176 | ||
827f100c YQ |
2177 | varobj_iter_delete (var->dynamic->child_iter); |
2178 | varobj_clear_saved_item (var->dynamic); | |
36746093 JK |
2179 | value_free (var->value); |
2180 | ||
581e13c1 | 2181 | /* Free the expression if this is a root variable. */ |
b2c2bd75 | 2182 | if (is_root_p (var)) |
8b93c638 | 2183 | { |
3038237c | 2184 | xfree (var->root->exp); |
8038e1e2 | 2185 | xfree (var->root); |
8b93c638 JM |
2186 | } |
2187 | ||
8038e1e2 AC |
2188 | xfree (var->name); |
2189 | xfree (var->obj_name); | |
85265413 | 2190 | xfree (var->print_value); |
02142340 | 2191 | xfree (var->path_expr); |
bb5ce47a | 2192 | xfree (var->dynamic); |
8038e1e2 | 2193 | xfree (var); |
8b93c638 JM |
2194 | } |
2195 | ||
74b7792f AC |
2196 | static void |
2197 | do_free_variable_cleanup (void *var) | |
2198 | { | |
19ba03f4 | 2199 | free_variable ((struct varobj *) var); |
74b7792f AC |
2200 | } |
2201 | ||
2202 | static struct cleanup * | |
2203 | make_cleanup_free_variable (struct varobj *var) | |
2204 | { | |
2205 | return make_cleanup (do_free_variable_cleanup, var); | |
2206 | } | |
2207 | ||
6e2a9270 VP |
2208 | /* Return the type of the value that's stored in VAR, |
2209 | or that would have being stored there if the | |
581e13c1 | 2210 | value were accessible. |
6e2a9270 VP |
2211 | |
2212 | This differs from VAR->type in that VAR->type is always | |
2213 | the true type of the expession in the source language. | |
2214 | The return value of this function is the type we're | |
2215 | actually storing in varobj, and using for displaying | |
2216 | the values and for comparing previous and new values. | |
2217 | ||
2218 | For example, top-level references are always stripped. */ | |
99ad9427 | 2219 | struct type * |
b09e2c59 | 2220 | varobj_get_value_type (const struct varobj *var) |
6e2a9270 VP |
2221 | { |
2222 | struct type *type; | |
2223 | ||
2224 | if (var->value) | |
2225 | type = value_type (var->value); | |
2226 | else | |
2227 | type = var->type; | |
2228 | ||
2229 | type = check_typedef (type); | |
2230 | ||
2231 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
2232 | type = get_target_type (type); | |
2233 | ||
2234 | type = check_typedef (type); | |
2235 | ||
2236 | return type; | |
2237 | } | |
2238 | ||
8b93c638 | 2239 | /* What is the default display for this variable? We assume that |
581e13c1 | 2240 | everything is "natural". Any exceptions? */ |
8b93c638 | 2241 | static enum varobj_display_formats |
fba45db2 | 2242 | variable_default_display (struct varobj *var) |
8b93c638 JM |
2243 | { |
2244 | return FORMAT_NATURAL; | |
2245 | } | |
2246 | ||
581e13c1 | 2247 | /* FIXME: The following should be generic for any pointer. */ |
8b93c638 | 2248 | static void |
fba45db2 | 2249 | cppush (struct cpstack **pstack, char *name) |
8b93c638 JM |
2250 | { |
2251 | struct cpstack *s; | |
2252 | ||
8d749320 | 2253 | s = XNEW (struct cpstack); |
8b93c638 JM |
2254 | s->name = name; |
2255 | s->next = *pstack; | |
2256 | *pstack = s; | |
2257 | } | |
2258 | ||
581e13c1 | 2259 | /* FIXME: The following should be generic for any pointer. */ |
8b93c638 | 2260 | static char * |
fba45db2 | 2261 | cppop (struct cpstack **pstack) |
8b93c638 JM |
2262 | { |
2263 | struct cpstack *s; | |
2264 | char *v; | |
2265 | ||
2266 | if ((*pstack)->name == NULL && (*pstack)->next == NULL) | |
2267 | return NULL; | |
2268 | ||
2269 | s = *pstack; | |
2270 | v = s->name; | |
2271 | *pstack = (*pstack)->next; | |
b8c9b27d | 2272 | xfree (s); |
8b93c638 JM |
2273 | |
2274 | return v; | |
2275 | } | |
2276 | \f | |
2277 | /* | |
2278 | * Language-dependencies | |
2279 | */ | |
2280 | ||
2281 | /* Common entry points */ | |
2282 | ||
8b93c638 JM |
2283 | /* Return the number of children for a given variable. |
2284 | The result of this function is defined by the language | |
581e13c1 | 2285 | implementation. The number of children returned by this function |
8b93c638 | 2286 | is the number of children that the user will see in the variable |
581e13c1 | 2287 | display. */ |
8b93c638 | 2288 | static int |
b09e2c59 | 2289 | number_of_children (const struct varobj *var) |
8b93c638 | 2290 | { |
ca20d462 | 2291 | return (*var->root->lang_ops->number_of_children) (var); |
8b93c638 JM |
2292 | } |
2293 | ||
3e43a32a | 2294 | /* What is the expression for the root varobj VAR? Returns a malloc'd |
581e13c1 | 2295 | string. */ |
8b93c638 | 2296 | static char * |
b09e2c59 | 2297 | name_of_variable (const struct varobj *var) |
8b93c638 | 2298 | { |
ca20d462 | 2299 | return (*var->root->lang_ops->name_of_variable) (var); |
8b93c638 JM |
2300 | } |
2301 | ||
3e43a32a | 2302 | /* What is the name of the INDEX'th child of VAR? Returns a malloc'd |
581e13c1 | 2303 | string. */ |
8b93c638 | 2304 | static char * |
fba45db2 | 2305 | name_of_child (struct varobj *var, int index) |
8b93c638 | 2306 | { |
ca20d462 | 2307 | return (*var->root->lang_ops->name_of_child) (var, index); |
8b93c638 JM |
2308 | } |
2309 | ||
2213e2be YQ |
2310 | /* If frame associated with VAR can be found, switch |
2311 | to it and return 1. Otherwise, return 0. */ | |
2312 | ||
2313 | static int | |
b09e2c59 | 2314 | check_scope (const struct varobj *var) |
2213e2be YQ |
2315 | { |
2316 | struct frame_info *fi; | |
2317 | int scope; | |
2318 | ||
2319 | fi = frame_find_by_id (var->root->frame); | |
2320 | scope = fi != NULL; | |
2321 | ||
2322 | if (fi) | |
2323 | { | |
2324 | CORE_ADDR pc = get_frame_pc (fi); | |
2325 | ||
2326 | if (pc < BLOCK_START (var->root->valid_block) || | |
2327 | pc >= BLOCK_END (var->root->valid_block)) | |
2328 | scope = 0; | |
2329 | else | |
2330 | select_frame (fi); | |
2331 | } | |
2332 | return scope; | |
2333 | } | |
2334 | ||
2335 | /* Helper function to value_of_root. */ | |
2336 | ||
2337 | static struct value * | |
2338 | value_of_root_1 (struct varobj **var_handle) | |
2339 | { | |
2340 | struct value *new_val = NULL; | |
2341 | struct varobj *var = *var_handle; | |
2342 | int within_scope = 0; | |
2343 | struct cleanup *back_to; | |
2344 | ||
2345 | /* Only root variables can be updated... */ | |
2346 | if (!is_root_p (var)) | |
2347 | /* Not a root var. */ | |
2348 | return NULL; | |
2349 | ||
2350 | back_to = make_cleanup_restore_current_thread (); | |
2351 | ||
2352 | /* Determine whether the variable is still around. */ | |
2353 | if (var->root->valid_block == NULL || var->root->floating) | |
2354 | within_scope = 1; | |
2355 | else if (var->root->thread_id == 0) | |
2356 | { | |
2357 | /* The program was single-threaded when the variable object was | |
2358 | created. Technically, it's possible that the program became | |
2359 | multi-threaded since then, but we don't support such | |
2360 | scenario yet. */ | |
2361 | within_scope = check_scope (var); | |
2362 | } | |
2363 | else | |
2364 | { | |
2365 | ptid_t ptid = thread_id_to_pid (var->root->thread_id); | |
2366 | if (in_thread_list (ptid)) | |
2367 | { | |
2368 | switch_to_thread (ptid); | |
2369 | within_scope = check_scope (var); | |
2370 | } | |
2371 | } | |
2372 | ||
2373 | if (within_scope) | |
2374 | { | |
2213e2be YQ |
2375 | |
2376 | /* We need to catch errors here, because if evaluate | |
2377 | expression fails we want to just return NULL. */ | |
492d29ea | 2378 | TRY |
2213e2be YQ |
2379 | { |
2380 | new_val = evaluate_expression (var->root->exp); | |
2381 | } | |
492d29ea PA |
2382 | CATCH (except, RETURN_MASK_ERROR) |
2383 | { | |
2384 | } | |
2385 | END_CATCH | |
2213e2be YQ |
2386 | } |
2387 | ||
2388 | do_cleanups (back_to); | |
2389 | ||
2390 | return new_val; | |
2391 | } | |
2392 | ||
a5defcdc VP |
2393 | /* What is the ``struct value *'' of the root variable VAR? |
2394 | For floating variable object, evaluation can get us a value | |
2395 | of different type from what is stored in varobj already. In | |
2396 | that case: | |
2397 | - *type_changed will be set to 1 | |
2398 | - old varobj will be freed, and new one will be | |
2399 | created, with the same name. | |
2400 | - *var_handle will be set to the new varobj | |
2401 | Otherwise, *type_changed will be set to 0. */ | |
30b28db1 | 2402 | static struct value * |
fba45db2 | 2403 | value_of_root (struct varobj **var_handle, int *type_changed) |
8b93c638 | 2404 | { |
73a93a32 JI |
2405 | struct varobj *var; |
2406 | ||
2407 | if (var_handle == NULL) | |
2408 | return NULL; | |
2409 | ||
2410 | var = *var_handle; | |
2411 | ||
2412 | /* This should really be an exception, since this should | |
581e13c1 | 2413 | only get called with a root variable. */ |
73a93a32 | 2414 | |
b2c2bd75 | 2415 | if (!is_root_p (var)) |
73a93a32 JI |
2416 | return NULL; |
2417 | ||
a5defcdc | 2418 | if (var->root->floating) |
73a93a32 JI |
2419 | { |
2420 | struct varobj *tmp_var; | |
2421 | char *old_type, *new_type; | |
6225abfa | 2422 | |
73a93a32 JI |
2423 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, |
2424 | USE_SELECTED_FRAME); | |
2425 | if (tmp_var == NULL) | |
2426 | { | |
2427 | return NULL; | |
2428 | } | |
6225abfa | 2429 | old_type = varobj_get_type (var); |
73a93a32 | 2430 | new_type = varobj_get_type (tmp_var); |
72330bd6 | 2431 | if (strcmp (old_type, new_type) == 0) |
73a93a32 | 2432 | { |
fcacd99f VP |
2433 | /* The expression presently stored inside var->root->exp |
2434 | remembers the locations of local variables relatively to | |
2435 | the frame where the expression was created (in DWARF location | |
2436 | button, for example). Naturally, those locations are not | |
2437 | correct in other frames, so update the expression. */ | |
2438 | ||
2439 | struct expression *tmp_exp = var->root->exp; | |
a109c7c1 | 2440 | |
fcacd99f VP |
2441 | var->root->exp = tmp_var->root->exp; |
2442 | tmp_var->root->exp = tmp_exp; | |
2443 | ||
73a93a32 JI |
2444 | varobj_delete (tmp_var, NULL, 0); |
2445 | *type_changed = 0; | |
2446 | } | |
2447 | else | |
2448 | { | |
1b36a34b | 2449 | tmp_var->obj_name = xstrdup (var->obj_name); |
0cc7d26f TT |
2450 | tmp_var->from = var->from; |
2451 | tmp_var->to = var->to; | |
a5defcdc VP |
2452 | varobj_delete (var, NULL, 0); |
2453 | ||
73a93a32 JI |
2454 | install_variable (tmp_var); |
2455 | *var_handle = tmp_var; | |
705da579 | 2456 | var = *var_handle; |
73a93a32 JI |
2457 | *type_changed = 1; |
2458 | } | |
74dddad3 MS |
2459 | xfree (old_type); |
2460 | xfree (new_type); | |
73a93a32 JI |
2461 | } |
2462 | else | |
2463 | { | |
2464 | *type_changed = 0; | |
2465 | } | |
2466 | ||
7a290c40 JB |
2467 | { |
2468 | struct value *value; | |
2469 | ||
2213e2be | 2470 | value = value_of_root_1 (var_handle); |
7a290c40 JB |
2471 | if (var->value == NULL || value == NULL) |
2472 | { | |
2473 | /* For root varobj-s, a NULL value indicates a scoping issue. | |
2474 | So, nothing to do in terms of checking for mutations. */ | |
2475 | } | |
2476 | else if (varobj_value_has_mutated (var, value, value_type (value))) | |
2477 | { | |
2478 | /* The type has mutated, so the children are no longer valid. | |
2479 | Just delete them, and tell our caller that the type has | |
2480 | changed. */ | |
2481 | varobj_delete (var, NULL, 1 /* only_children */); | |
2482 | var->num_children = -1; | |
2483 | var->to = -1; | |
2484 | var->from = -1; | |
2485 | *type_changed = 1; | |
2486 | } | |
2487 | return value; | |
2488 | } | |
8b93c638 JM |
2489 | } |
2490 | ||
581e13c1 | 2491 | /* What is the ``struct value *'' for the INDEX'th child of PARENT? */ |
30b28db1 | 2492 | static struct value * |
c1cc6152 | 2493 | value_of_child (const struct varobj *parent, int index) |
8b93c638 | 2494 | { |
30b28db1 | 2495 | struct value *value; |
8b93c638 | 2496 | |
ca20d462 | 2497 | value = (*parent->root->lang_ops->value_of_child) (parent, index); |
8b93c638 | 2498 | |
8b93c638 JM |
2499 | return value; |
2500 | } | |
2501 | ||
581e13c1 | 2502 | /* GDB already has a command called "value_of_variable". Sigh. */ |
8b93c638 | 2503 | static char * |
de051565 | 2504 | my_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 2505 | { |
8756216b | 2506 | if (var->root->is_valid) |
0cc7d26f | 2507 | { |
bb5ce47a | 2508 | if (var->dynamic->pretty_printer != NULL) |
99ad9427 | 2509 | return varobj_value_get_print_value (var->value, var->format, var); |
ca20d462 | 2510 | return (*var->root->lang_ops->value_of_variable) (var, format); |
0cc7d26f | 2511 | } |
8756216b DP |
2512 | else |
2513 | return NULL; | |
8b93c638 JM |
2514 | } |
2515 | ||
99ad9427 YQ |
2516 | void |
2517 | varobj_formatted_print_options (struct value_print_options *opts, | |
2518 | enum varobj_display_formats format) | |
2519 | { | |
2520 | get_formatted_print_options (opts, format_code[(int) format]); | |
2521 | opts->deref_ref = 0; | |
2522 | opts->raw = 1; | |
2523 | } | |
2524 | ||
2525 | char * | |
2526 | varobj_value_get_print_value (struct value *value, | |
2527 | enum varobj_display_formats format, | |
b09e2c59 | 2528 | const struct varobj *var) |
85265413 | 2529 | { |
57e66780 | 2530 | struct ui_file *stb; |
621c8364 | 2531 | struct cleanup *old_chain; |
ac91cd70 | 2532 | char *thevalue = NULL; |
79a45b7d | 2533 | struct value_print_options opts; |
be759fcf PM |
2534 | struct type *type = NULL; |
2535 | long len = 0; | |
2536 | char *encoding = NULL; | |
2537 | struct gdbarch *gdbarch = NULL; | |
3a182a69 JK |
2538 | /* Initialize it just to avoid a GCC false warning. */ |
2539 | CORE_ADDR str_addr = 0; | |
09ca9e2e | 2540 | int string_print = 0; |
57e66780 DJ |
2541 | |
2542 | if (value == NULL) | |
2543 | return NULL; | |
2544 | ||
621c8364 TT |
2545 | stb = mem_fileopen (); |
2546 | old_chain = make_cleanup_ui_file_delete (stb); | |
2547 | ||
be759fcf | 2548 | gdbarch = get_type_arch (value_type (value)); |
b6313243 | 2549 | #if HAVE_PYTHON |
0646da15 TT |
2550 | if (gdb_python_initialized) |
2551 | { | |
bb5ce47a | 2552 | PyObject *value_formatter = var->dynamic->pretty_printer; |
d452c4bc | 2553 | |
0646da15 | 2554 | varobj_ensure_python_env (var); |
09ca9e2e | 2555 | |
0646da15 TT |
2556 | if (value_formatter) |
2557 | { | |
2558 | /* First check to see if we have any children at all. If so, | |
2559 | we simply return {...}. */ | |
2560 | if (dynamic_varobj_has_child_method (var)) | |
2561 | { | |
2562 | do_cleanups (old_chain); | |
2563 | return xstrdup ("{...}"); | |
2564 | } | |
b6313243 | 2565 | |
0646da15 TT |
2566 | if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst)) |
2567 | { | |
2568 | struct value *replacement; | |
2569 | PyObject *output = NULL; | |
2570 | ||
2571 | output = apply_varobj_pretty_printer (value_formatter, | |
2572 | &replacement, | |
2573 | stb); | |
2574 | ||
2575 | /* If we have string like output ... */ | |
2576 | if (output) | |
2577 | { | |
2578 | make_cleanup_py_decref (output); | |
2579 | ||
2580 | /* If this is a lazy string, extract it. For lazy | |
2581 | strings we always print as a string, so set | |
2582 | string_print. */ | |
2583 | if (gdbpy_is_lazy_string (output)) | |
2584 | { | |
2585 | gdbpy_extract_lazy_string (output, &str_addr, &type, | |
2586 | &len, &encoding); | |
2587 | make_cleanup (free_current_contents, &encoding); | |
2588 | string_print = 1; | |
2589 | } | |
2590 | else | |
2591 | { | |
2592 | /* If it is a regular (non-lazy) string, extract | |
2593 | it and copy the contents into THEVALUE. If the | |
2594 | hint says to print it as a string, set | |
2595 | string_print. Otherwise just return the extracted | |
2596 | string as a value. */ | |
2597 | ||
2598 | char *s = python_string_to_target_string (output); | |
2599 | ||
2600 | if (s) | |
2601 | { | |
2602 | char *hint; | |
2603 | ||
2604 | hint = gdbpy_get_display_hint (value_formatter); | |
2605 | if (hint) | |
2606 | { | |
2607 | if (!strcmp (hint, "string")) | |
2608 | string_print = 1; | |
2609 | xfree (hint); | |
2610 | } | |
2611 | ||
2612 | len = strlen (s); | |
224c3ddb | 2613 | thevalue = (char *) xmemdup (s, len + 1, len + 1); |
0646da15 TT |
2614 | type = builtin_type (gdbarch)->builtin_char; |
2615 | xfree (s); | |
2616 | ||
2617 | if (!string_print) | |
2618 | { | |
2619 | do_cleanups (old_chain); | |
2620 | return thevalue; | |
2621 | } | |
2622 | ||
2623 | make_cleanup (xfree, thevalue); | |
2624 | } | |
2625 | else | |
2626 | gdbpy_print_stack (); | |
2627 | } | |
2628 | } | |
2629 | /* If the printer returned a replacement value, set VALUE | |
2630 | to REPLACEMENT. If there is not a replacement value, | |
2631 | just use the value passed to this function. */ | |
2632 | if (replacement) | |
2633 | value = replacement; | |
2634 | } | |
2635 | } | |
2636 | } | |
b6313243 TT |
2637 | #endif |
2638 | ||
99ad9427 | 2639 | varobj_formatted_print_options (&opts, format); |
00bd41d6 PM |
2640 | |
2641 | /* If the THEVALUE has contents, it is a regular string. */ | |
b6313243 | 2642 | if (thevalue) |
ac91cd70 | 2643 | LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts); |
09ca9e2e | 2644 | else if (string_print) |
00bd41d6 PM |
2645 | /* Otherwise, if string_print is set, and it is not a regular |
2646 | string, it is a lazy string. */ | |
09ca9e2e | 2647 | val_print_string (type, encoding, str_addr, len, stb, &opts); |
b6313243 | 2648 | else |
00bd41d6 | 2649 | /* All other cases. */ |
b6313243 | 2650 | common_val_print (value, stb, 0, &opts, current_language); |
00bd41d6 | 2651 | |
759ef836 | 2652 | thevalue = ui_file_xstrdup (stb, NULL); |
57e66780 | 2653 | |
85265413 NR |
2654 | do_cleanups (old_chain); |
2655 | return thevalue; | |
2656 | } | |
2657 | ||
340a7723 | 2658 | int |
b09e2c59 | 2659 | varobj_editable_p (const struct varobj *var) |
340a7723 NR |
2660 | { |
2661 | struct type *type; | |
340a7723 NR |
2662 | |
2663 | if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value))) | |
2664 | return 0; | |
2665 | ||
99ad9427 | 2666 | type = varobj_get_value_type (var); |
340a7723 NR |
2667 | |
2668 | switch (TYPE_CODE (type)) | |
2669 | { | |
2670 | case TYPE_CODE_STRUCT: | |
2671 | case TYPE_CODE_UNION: | |
2672 | case TYPE_CODE_ARRAY: | |
2673 | case TYPE_CODE_FUNC: | |
2674 | case TYPE_CODE_METHOD: | |
2675 | return 0; | |
2676 | break; | |
2677 | ||
2678 | default: | |
2679 | return 1; | |
2680 | break; | |
2681 | } | |
2682 | } | |
2683 | ||
d32cafc7 | 2684 | /* Call VAR's value_is_changeable_p language-specific callback. */ |
acd65feb | 2685 | |
99ad9427 | 2686 | int |
b09e2c59 | 2687 | varobj_value_is_changeable_p (const struct varobj *var) |
8b93c638 | 2688 | { |
ca20d462 | 2689 | return var->root->lang_ops->value_is_changeable_p (var); |
8b93c638 JM |
2690 | } |
2691 | ||
5a413362 VP |
2692 | /* Return 1 if that varobj is floating, that is is always evaluated in the |
2693 | selected frame, and not bound to thread/frame. Such variable objects | |
2694 | are created using '@' as frame specifier to -var-create. */ | |
2695 | int | |
b09e2c59 | 2696 | varobj_floating_p (const struct varobj *var) |
5a413362 VP |
2697 | { |
2698 | return var->root->floating; | |
2699 | } | |
2700 | ||
d32cafc7 JB |
2701 | /* Implement the "value_is_changeable_p" varobj callback for most |
2702 | languages. */ | |
2703 | ||
99ad9427 | 2704 | int |
b09e2c59 | 2705 | varobj_default_value_is_changeable_p (const struct varobj *var) |
d32cafc7 JB |
2706 | { |
2707 | int r; | |
2708 | struct type *type; | |
2709 | ||
2710 | if (CPLUS_FAKE_CHILD (var)) | |
2711 | return 0; | |
2712 | ||
99ad9427 | 2713 | type = varobj_get_value_type (var); |
d32cafc7 JB |
2714 | |
2715 | switch (TYPE_CODE (type)) | |
2716 | { | |
2717 | case TYPE_CODE_STRUCT: | |
2718 | case TYPE_CODE_UNION: | |
2719 | case TYPE_CODE_ARRAY: | |
2720 | r = 0; | |
2721 | break; | |
2722 | ||
2723 | default: | |
2724 | r = 1; | |
2725 | } | |
2726 | ||
2727 | return r; | |
2728 | } | |
2729 | ||
54333c3b JK |
2730 | /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them |
2731 | with an arbitrary caller supplied DATA pointer. */ | |
2732 | ||
2733 | void | |
2734 | all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data) | |
2735 | { | |
2736 | struct varobj_root *var_root, *var_root_next; | |
2737 | ||
2738 | /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */ | |
2739 | ||
2740 | for (var_root = rootlist; var_root != NULL; var_root = var_root_next) | |
2741 | { | |
2742 | var_root_next = var_root->next; | |
2743 | ||
2744 | (*func) (var_root->rootvar, data); | |
2745 | } | |
2746 | } | |
8756216b | 2747 | |
54333c3b | 2748 | /* Invalidate varobj VAR if it is tied to locals and re-create it if it is |
4e969b4f AB |
2749 | defined on globals. It is a helper for varobj_invalidate. |
2750 | ||
2751 | This function is called after changing the symbol file, in this case the | |
2752 | pointers to "struct type" stored by the varobj are no longer valid. All | |
2753 | varobj must be either re-evaluated, or marked as invalid here. */ | |
2dbd25e5 | 2754 | |
54333c3b JK |
2755 | static void |
2756 | varobj_invalidate_iter (struct varobj *var, void *unused) | |
8756216b | 2757 | { |
4e969b4f AB |
2758 | /* global and floating var must be re-evaluated. */ |
2759 | if (var->root->floating || var->root->valid_block == NULL) | |
2dbd25e5 | 2760 | { |
54333c3b | 2761 | struct varobj *tmp_var; |
2dbd25e5 | 2762 | |
54333c3b JK |
2763 | /* Try to create a varobj with same expression. If we succeed |
2764 | replace the old varobj, otherwise invalidate it. */ | |
2765 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, | |
2766 | USE_CURRENT_FRAME); | |
2767 | if (tmp_var != NULL) | |
2768 | { | |
2769 | tmp_var->obj_name = xstrdup (var->obj_name); | |
2770 | varobj_delete (var, NULL, 0); | |
2771 | install_variable (tmp_var); | |
2dbd25e5 | 2772 | } |
54333c3b JK |
2773 | else |
2774 | var->root->is_valid = 0; | |
2dbd25e5 | 2775 | } |
54333c3b JK |
2776 | else /* locals must be invalidated. */ |
2777 | var->root->is_valid = 0; | |
2778 | } | |
2779 | ||
2780 | /* Invalidate the varobjs that are tied to locals and re-create the ones that | |
2781 | are defined on globals. | |
2782 | Invalidated varobjs will be always printed in_scope="invalid". */ | |
2783 | ||
2784 | void | |
2785 | varobj_invalidate (void) | |
2786 | { | |
2787 | all_root_varobjs (varobj_invalidate_iter, NULL); | |
8756216b | 2788 | } |
1c3569d4 MR |
2789 | \f |
2790 | extern void _initialize_varobj (void); | |
2791 | void | |
2792 | _initialize_varobj (void) | |
2793 | { | |
8d749320 | 2794 | varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE); |
1c3569d4 MR |
2795 | |
2796 | add_setshow_zuinteger_cmd ("varobj", class_maintenance, | |
2797 | &varobjdebug, | |
2798 | _("Set varobj debugging."), | |
2799 | _("Show varobj debugging."), | |
2800 | _("When non-zero, varobj debugging is enabled."), | |
2801 | NULL, show_varobjdebug, | |
2802 | &setdebuglist, &showdebuglist); | |
2803 | } |