]>
Commit | Line | Data |
---|---|---|
8b93c638 | 1 | /* Implementation of the GDB variable objects API. |
bc8332bb | 2 | |
0fb0cc75 | 3 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
4c38e0a4 | 4 | 2009, 2010 Free Software Foundation, Inc. |
8b93c638 JM |
5 | |
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 8 | the Free Software Foundation; either version 3 of the License, or |
8b93c638 JM |
9 | (at your option) any later version. |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 17 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
8b93c638 JM |
18 | |
19 | #include "defs.h" | |
a6c442d8 | 20 | #include "exceptions.h" |
8b93c638 JM |
21 | #include "value.h" |
22 | #include "expression.h" | |
23 | #include "frame.h" | |
8b93c638 JM |
24 | #include "language.h" |
25 | #include "wrapper.h" | |
26 | #include "gdbcmd.h" | |
d2353924 | 27 | #include "block.h" |
79a45b7d | 28 | #include "valprint.h" |
a6c442d8 MK |
29 | |
30 | #include "gdb_assert.h" | |
b66d6d2e | 31 | #include "gdb_string.h" |
0cc7d26f | 32 | #include "gdb_regex.h" |
8b93c638 JM |
33 | |
34 | #include "varobj.h" | |
28335dcc | 35 | #include "vec.h" |
6208b47d VP |
36 | #include "gdbthread.h" |
37 | #include "inferior.h" | |
8b93c638 | 38 | |
b6313243 TT |
39 | #if HAVE_PYTHON |
40 | #include "python/python.h" | |
41 | #include "python/python-internal.h" | |
42 | #else | |
43 | typedef int PyObject; | |
44 | #endif | |
45 | ||
8b93c638 JM |
46 | /* Non-zero if we want to see trace of varobj level stuff. */ |
47 | ||
48 | int varobjdebug = 0; | |
920d2a44 AC |
49 | static void |
50 | show_varobjdebug (struct ui_file *file, int from_tty, | |
51 | struct cmd_list_element *c, const char *value) | |
52 | { | |
53 | fprintf_filtered (file, _("Varobj debugging is %s.\n"), value); | |
54 | } | |
8b93c638 JM |
55 | |
56 | /* String representations of gdb's format codes */ | |
57 | char *varobj_format_string[] = | |
72330bd6 | 58 | { "natural", "binary", "decimal", "hexadecimal", "octal" }; |
8b93c638 JM |
59 | |
60 | /* String representations of gdb's known languages */ | |
72330bd6 | 61 | char *varobj_language_string[] = { "unknown", "C", "C++", "Java" }; |
8b93c638 | 62 | |
0cc7d26f TT |
63 | /* True if we want to allow Python-based pretty-printing. */ |
64 | static int pretty_printing = 0; | |
65 | ||
66 | void | |
67 | varobj_enable_pretty_printing (void) | |
68 | { | |
69 | pretty_printing = 1; | |
70 | } | |
71 | ||
8b93c638 JM |
72 | /* Data structures */ |
73 | ||
74 | /* Every root variable has one of these structures saved in its | |
75 | varobj. Members which must be free'd are noted. */ | |
76 | struct varobj_root | |
72330bd6 | 77 | { |
8b93c638 | 78 | |
72330bd6 AC |
79 | /* Alloc'd expression for this parent. */ |
80 | struct expression *exp; | |
8b93c638 | 81 | |
72330bd6 AC |
82 | /* Block for which this expression is valid */ |
83 | struct block *valid_block; | |
8b93c638 | 84 | |
44a67aa7 VP |
85 | /* The frame for this expression. This field is set iff valid_block is |
86 | not NULL. */ | |
e64d9b3d | 87 | struct frame_id frame; |
8b93c638 | 88 | |
c5b48eac VP |
89 | /* The thread ID that this varobj_root belong to. This field |
90 | is only valid if valid_block is not NULL. | |
91 | When not 0, indicates which thread 'frame' belongs to. | |
92 | When 0, indicates that the thread list was empty when the varobj_root | |
93 | was created. */ | |
94 | int thread_id; | |
95 | ||
a5defcdc VP |
96 | /* If 1, the -var-update always recomputes the value in the |
97 | current thread and frame. Otherwise, variable object is | |
98 | always updated in the specific scope/thread/frame */ | |
99 | int floating; | |
73a93a32 | 100 | |
8756216b DP |
101 | /* Flag that indicates validity: set to 0 when this varobj_root refers |
102 | to symbols that do not exist anymore. */ | |
103 | int is_valid; | |
104 | ||
72330bd6 AC |
105 | /* Language info for this variable and its children */ |
106 | struct language_specific *lang; | |
8b93c638 | 107 | |
72330bd6 AC |
108 | /* The varobj for this root node. */ |
109 | struct varobj *rootvar; | |
8b93c638 | 110 | |
72330bd6 AC |
111 | /* Next root variable */ |
112 | struct varobj_root *next; | |
113 | }; | |
8b93c638 JM |
114 | |
115 | /* Every variable in the system has a structure of this type defined | |
116 | for it. This structure holds all information necessary to manipulate | |
117 | a particular object variable. Members which must be freed are noted. */ | |
118 | struct varobj | |
72330bd6 | 119 | { |
8b93c638 | 120 | |
72330bd6 AC |
121 | /* Alloc'd name of the variable for this object.. If this variable is a |
122 | child, then this name will be the child's source name. | |
123 | (bar, not foo.bar) */ | |
124 | /* NOTE: This is the "expression" */ | |
125 | char *name; | |
8b93c638 | 126 | |
02142340 VP |
127 | /* Alloc'd expression for this child. Can be used to create a |
128 | root variable corresponding to this child. */ | |
129 | char *path_expr; | |
130 | ||
72330bd6 AC |
131 | /* The alloc'd name for this variable's object. This is here for |
132 | convenience when constructing this object's children. */ | |
133 | char *obj_name; | |
8b93c638 | 134 | |
72330bd6 AC |
135 | /* Index of this variable in its parent or -1 */ |
136 | int index; | |
8b93c638 | 137 | |
202ddcaa VP |
138 | /* The type of this variable. This can be NULL |
139 | for artifial variable objects -- currently, the "accessibility" | |
140 | variable objects in C++. */ | |
72330bd6 | 141 | struct type *type; |
8b93c638 | 142 | |
b20d8971 VP |
143 | /* The value of this expression or subexpression. A NULL value |
144 | indicates there was an error getting this value. | |
b2c2bd75 VP |
145 | Invariant: if varobj_value_is_changeable_p (this) is non-zero, |
146 | the value is either NULL, or not lazy. */ | |
30b28db1 | 147 | struct value *value; |
8b93c638 | 148 | |
72330bd6 AC |
149 | /* The number of (immediate) children this variable has */ |
150 | int num_children; | |
8b93c638 | 151 | |
72330bd6 AC |
152 | /* If this object is a child, this points to its immediate parent. */ |
153 | struct varobj *parent; | |
8b93c638 | 154 | |
28335dcc VP |
155 | /* Children of this object. */ |
156 | VEC (varobj_p) *children; | |
8b93c638 | 157 | |
b6313243 TT |
158 | /* Whether the children of this varobj were requested. This field is |
159 | used to decide if dynamic varobj should recompute their children. | |
160 | In the event that the frontend never asked for the children, we | |
161 | can avoid that. */ | |
162 | int children_requested; | |
163 | ||
72330bd6 AC |
164 | /* Description of the root variable. Points to root variable for children. */ |
165 | struct varobj_root *root; | |
8b93c638 | 166 | |
72330bd6 AC |
167 | /* The format of the output for this object */ |
168 | enum varobj_display_formats format; | |
fb9b6b35 JJ |
169 | |
170 | /* Was this variable updated via a varobj_set_value operation */ | |
171 | int updated; | |
85265413 NR |
172 | |
173 | /* Last print value. */ | |
174 | char *print_value; | |
25d5ea92 VP |
175 | |
176 | /* Is this variable frozen. Frozen variables are never implicitly | |
177 | updated by -var-update * | |
178 | or -var-update <direct-or-indirect-parent>. */ | |
179 | int frozen; | |
180 | ||
181 | /* Is the value of this variable intentionally not fetched? It is | |
182 | not fetched if either the variable is frozen, or any parents is | |
183 | frozen. */ | |
184 | int not_fetched; | |
b6313243 | 185 | |
0cc7d26f TT |
186 | /* Sub-range of children which the MI consumer has requested. If |
187 | FROM < 0 or TO < 0, means that all children have been | |
188 | requested. */ | |
189 | int from; | |
190 | int to; | |
191 | ||
192 | /* The pretty-printer constructor. If NULL, then the default | |
193 | pretty-printer will be looked up. If None, then no | |
194 | pretty-printer will be installed. */ | |
195 | PyObject *constructor; | |
196 | ||
b6313243 TT |
197 | /* The pretty-printer that has been constructed. If NULL, then a |
198 | new printer object is needed, and one will be constructed. */ | |
199 | PyObject *pretty_printer; | |
0cc7d26f TT |
200 | |
201 | /* The iterator returned by the printer's 'children' method, or NULL | |
202 | if not available. */ | |
203 | PyObject *child_iter; | |
204 | ||
205 | /* We request one extra item from the iterator, so that we can | |
206 | report to the caller whether there are more items than we have | |
207 | already reported. However, we don't want to install this value | |
208 | when we read it, because that will mess up future updates. So, | |
209 | we stash it here instead. */ | |
210 | PyObject *saved_item; | |
72330bd6 | 211 | }; |
8b93c638 | 212 | |
8b93c638 | 213 | struct cpstack |
72330bd6 AC |
214 | { |
215 | char *name; | |
216 | struct cpstack *next; | |
217 | }; | |
8b93c638 JM |
218 | |
219 | /* A list of varobjs */ | |
220 | ||
221 | struct vlist | |
72330bd6 AC |
222 | { |
223 | struct varobj *var; | |
224 | struct vlist *next; | |
225 | }; | |
8b93c638 JM |
226 | |
227 | /* Private function prototypes */ | |
228 | ||
229 | /* Helper functions for the above subcommands. */ | |
230 | ||
a14ed312 | 231 | static int delete_variable (struct cpstack **, struct varobj *, int); |
8b93c638 | 232 | |
a14ed312 KB |
233 | static void delete_variable_1 (struct cpstack **, int *, |
234 | struct varobj *, int, int); | |
8b93c638 | 235 | |
a14ed312 | 236 | static int install_variable (struct varobj *); |
8b93c638 | 237 | |
a14ed312 | 238 | static void uninstall_variable (struct varobj *); |
8b93c638 | 239 | |
a14ed312 | 240 | static struct varobj *create_child (struct varobj *, int, char *); |
8b93c638 | 241 | |
b6313243 TT |
242 | static struct varobj * |
243 | create_child_with_value (struct varobj *parent, int index, const char *name, | |
244 | struct value *value); | |
245 | ||
8b93c638 JM |
246 | /* Utility routines */ |
247 | ||
a14ed312 | 248 | static struct varobj *new_variable (void); |
8b93c638 | 249 | |
a14ed312 | 250 | static struct varobj *new_root_variable (void); |
8b93c638 | 251 | |
a14ed312 | 252 | static void free_variable (struct varobj *var); |
8b93c638 | 253 | |
74b7792f AC |
254 | static struct cleanup *make_cleanup_free_variable (struct varobj *var); |
255 | ||
a14ed312 | 256 | static struct type *get_type (struct varobj *var); |
8b93c638 | 257 | |
6e2a9270 VP |
258 | static struct type *get_value_type (struct varobj *var); |
259 | ||
a14ed312 | 260 | static struct type *get_target_type (struct type *); |
8b93c638 | 261 | |
a14ed312 | 262 | static enum varobj_display_formats variable_default_display (struct varobj *); |
8b93c638 | 263 | |
a14ed312 | 264 | static void cppush (struct cpstack **pstack, char *name); |
8b93c638 | 265 | |
a14ed312 | 266 | static char *cppop (struct cpstack **pstack); |
8b93c638 | 267 | |
acd65feb VP |
268 | static int install_new_value (struct varobj *var, struct value *value, |
269 | int initial); | |
270 | ||
8b93c638 JM |
271 | /* Language-specific routines. */ |
272 | ||
a14ed312 | 273 | static enum varobj_languages variable_language (struct varobj *var); |
8b93c638 | 274 | |
a14ed312 | 275 | static int number_of_children (struct varobj *); |
8b93c638 | 276 | |
a14ed312 | 277 | static char *name_of_variable (struct varobj *); |
8b93c638 | 278 | |
a14ed312 | 279 | static char *name_of_child (struct varobj *, int); |
8b93c638 | 280 | |
30b28db1 | 281 | static struct value *value_of_root (struct varobj **var_handle, int *); |
8b93c638 | 282 | |
30b28db1 | 283 | static struct value *value_of_child (struct varobj *parent, int index); |
8b93c638 | 284 | |
de051565 MK |
285 | static char *my_value_of_variable (struct varobj *var, |
286 | enum varobj_display_formats format); | |
8b93c638 | 287 | |
85265413 | 288 | static char *value_get_print_value (struct value *value, |
b6313243 | 289 | enum varobj_display_formats format, |
d452c4bc | 290 | struct varobj *var); |
85265413 | 291 | |
b2c2bd75 VP |
292 | static int varobj_value_is_changeable_p (struct varobj *var); |
293 | ||
294 | static int is_root_p (struct varobj *var); | |
8b93c638 | 295 | |
d8b65138 JK |
296 | #if HAVE_PYTHON |
297 | ||
b6313243 TT |
298 | static struct varobj * |
299 | varobj_add_child (struct varobj *var, const char *name, struct value *value); | |
300 | ||
d8b65138 JK |
301 | #endif /* HAVE_PYTHON */ |
302 | ||
8b93c638 JM |
303 | /* C implementation */ |
304 | ||
a14ed312 | 305 | static int c_number_of_children (struct varobj *var); |
8b93c638 | 306 | |
a14ed312 | 307 | static char *c_name_of_variable (struct varobj *parent); |
8b93c638 | 308 | |
a14ed312 | 309 | static char *c_name_of_child (struct varobj *parent, int index); |
8b93c638 | 310 | |
02142340 VP |
311 | static char *c_path_expr_of_child (struct varobj *child); |
312 | ||
30b28db1 | 313 | static struct value *c_value_of_root (struct varobj **var_handle); |
8b93c638 | 314 | |
30b28db1 | 315 | static struct value *c_value_of_child (struct varobj *parent, int index); |
8b93c638 | 316 | |
a14ed312 | 317 | static struct type *c_type_of_child (struct varobj *parent, int index); |
8b93c638 | 318 | |
de051565 MK |
319 | static char *c_value_of_variable (struct varobj *var, |
320 | enum varobj_display_formats format); | |
8b93c638 JM |
321 | |
322 | /* C++ implementation */ | |
323 | ||
a14ed312 | 324 | static int cplus_number_of_children (struct varobj *var); |
8b93c638 | 325 | |
a14ed312 | 326 | static void cplus_class_num_children (struct type *type, int children[3]); |
8b93c638 | 327 | |
a14ed312 | 328 | static char *cplus_name_of_variable (struct varobj *parent); |
8b93c638 | 329 | |
a14ed312 | 330 | static char *cplus_name_of_child (struct varobj *parent, int index); |
8b93c638 | 331 | |
02142340 VP |
332 | static char *cplus_path_expr_of_child (struct varobj *child); |
333 | ||
30b28db1 | 334 | static struct value *cplus_value_of_root (struct varobj **var_handle); |
8b93c638 | 335 | |
30b28db1 | 336 | static struct value *cplus_value_of_child (struct varobj *parent, int index); |
8b93c638 | 337 | |
a14ed312 | 338 | static struct type *cplus_type_of_child (struct varobj *parent, int index); |
8b93c638 | 339 | |
de051565 MK |
340 | static char *cplus_value_of_variable (struct varobj *var, |
341 | enum varobj_display_formats format); | |
8b93c638 JM |
342 | |
343 | /* Java implementation */ | |
344 | ||
a14ed312 | 345 | static int java_number_of_children (struct varobj *var); |
8b93c638 | 346 | |
a14ed312 | 347 | static char *java_name_of_variable (struct varobj *parent); |
8b93c638 | 348 | |
a14ed312 | 349 | static char *java_name_of_child (struct varobj *parent, int index); |
8b93c638 | 350 | |
02142340 VP |
351 | static char *java_path_expr_of_child (struct varobj *child); |
352 | ||
30b28db1 | 353 | static struct value *java_value_of_root (struct varobj **var_handle); |
8b93c638 | 354 | |
30b28db1 | 355 | static struct value *java_value_of_child (struct varobj *parent, int index); |
8b93c638 | 356 | |
a14ed312 | 357 | static struct type *java_type_of_child (struct varobj *parent, int index); |
8b93c638 | 358 | |
de051565 MK |
359 | static char *java_value_of_variable (struct varobj *var, |
360 | enum varobj_display_formats format); | |
8b93c638 JM |
361 | |
362 | /* The language specific vector */ | |
363 | ||
364 | struct language_specific | |
72330bd6 | 365 | { |
8b93c638 | 366 | |
72330bd6 AC |
367 | /* The language of this variable */ |
368 | enum varobj_languages language; | |
8b93c638 | 369 | |
72330bd6 AC |
370 | /* The number of children of PARENT. */ |
371 | int (*number_of_children) (struct varobj * parent); | |
8b93c638 | 372 | |
72330bd6 AC |
373 | /* The name (expression) of a root varobj. */ |
374 | char *(*name_of_variable) (struct varobj * parent); | |
8b93c638 | 375 | |
72330bd6 AC |
376 | /* The name of the INDEX'th child of PARENT. */ |
377 | char *(*name_of_child) (struct varobj * parent, int index); | |
8b93c638 | 378 | |
02142340 VP |
379 | /* Returns the rooted expression of CHILD, which is a variable |
380 | obtain that has some parent. */ | |
381 | char *(*path_expr_of_child) (struct varobj * child); | |
382 | ||
30b28db1 AC |
383 | /* The ``struct value *'' of the root variable ROOT. */ |
384 | struct value *(*value_of_root) (struct varobj ** root_handle); | |
8b93c638 | 385 | |
30b28db1 AC |
386 | /* The ``struct value *'' of the INDEX'th child of PARENT. */ |
387 | struct value *(*value_of_child) (struct varobj * parent, int index); | |
8b93c638 | 388 | |
72330bd6 AC |
389 | /* The type of the INDEX'th child of PARENT. */ |
390 | struct type *(*type_of_child) (struct varobj * parent, int index); | |
8b93c638 | 391 | |
72330bd6 | 392 | /* The current value of VAR. */ |
de051565 MK |
393 | char *(*value_of_variable) (struct varobj * var, |
394 | enum varobj_display_formats format); | |
72330bd6 | 395 | }; |
8b93c638 JM |
396 | |
397 | /* Array of known source language routines. */ | |
d5d6fca5 | 398 | static struct language_specific languages[vlang_end] = { |
8b93c638 JM |
399 | /* Unknown (try treating as C */ |
400 | { | |
72330bd6 AC |
401 | vlang_unknown, |
402 | c_number_of_children, | |
403 | c_name_of_variable, | |
404 | c_name_of_child, | |
02142340 | 405 | c_path_expr_of_child, |
72330bd6 AC |
406 | c_value_of_root, |
407 | c_value_of_child, | |
408 | c_type_of_child, | |
72330bd6 | 409 | c_value_of_variable} |
8b93c638 JM |
410 | , |
411 | /* C */ | |
412 | { | |
72330bd6 AC |
413 | vlang_c, |
414 | c_number_of_children, | |
415 | c_name_of_variable, | |
416 | c_name_of_child, | |
02142340 | 417 | c_path_expr_of_child, |
72330bd6 AC |
418 | c_value_of_root, |
419 | c_value_of_child, | |
420 | c_type_of_child, | |
72330bd6 | 421 | c_value_of_variable} |
8b93c638 JM |
422 | , |
423 | /* C++ */ | |
424 | { | |
72330bd6 AC |
425 | vlang_cplus, |
426 | cplus_number_of_children, | |
427 | cplus_name_of_variable, | |
428 | cplus_name_of_child, | |
02142340 | 429 | cplus_path_expr_of_child, |
72330bd6 AC |
430 | cplus_value_of_root, |
431 | cplus_value_of_child, | |
432 | cplus_type_of_child, | |
72330bd6 | 433 | cplus_value_of_variable} |
8b93c638 JM |
434 | , |
435 | /* Java */ | |
436 | { | |
72330bd6 AC |
437 | vlang_java, |
438 | java_number_of_children, | |
439 | java_name_of_variable, | |
440 | java_name_of_child, | |
02142340 | 441 | java_path_expr_of_child, |
72330bd6 AC |
442 | java_value_of_root, |
443 | java_value_of_child, | |
444 | java_type_of_child, | |
72330bd6 | 445 | java_value_of_variable} |
8b93c638 JM |
446 | }; |
447 | ||
448 | /* A little convenience enum for dealing with C++/Java */ | |
449 | enum vsections | |
72330bd6 AC |
450 | { |
451 | v_public = 0, v_private, v_protected | |
452 | }; | |
8b93c638 JM |
453 | |
454 | /* Private data */ | |
455 | ||
456 | /* Mappings of varobj_display_formats enums to gdb's format codes */ | |
72330bd6 | 457 | static int format_code[] = { 0, 't', 'd', 'x', 'o' }; |
8b93c638 JM |
458 | |
459 | /* Header of the list of root variable objects */ | |
460 | static struct varobj_root *rootlist; | |
8b93c638 JM |
461 | |
462 | /* Prime number indicating the number of buckets in the hash table */ | |
463 | /* A prime large enough to avoid too many colisions */ | |
464 | #define VAROBJ_TABLE_SIZE 227 | |
465 | ||
466 | /* Pointer to the varobj hash table (built at run time) */ | |
467 | static struct vlist **varobj_table; | |
468 | ||
8b93c638 JM |
469 | /* Is the variable X one of our "fake" children? */ |
470 | #define CPLUS_FAKE_CHILD(x) \ | |
471 | ((x) != NULL && (x)->type == NULL && (x)->value == NULL) | |
472 | \f | |
473 | ||
474 | /* API Implementation */ | |
b2c2bd75 VP |
475 | static int |
476 | is_root_p (struct varobj *var) | |
477 | { | |
478 | return (var->root->rootvar == var); | |
479 | } | |
8b93c638 | 480 | |
d452c4bc UW |
481 | #ifdef HAVE_PYTHON |
482 | /* Helper function to install a Python environment suitable for | |
483 | use during operations on VAR. */ | |
484 | struct cleanup * | |
485 | varobj_ensure_python_env (struct varobj *var) | |
486 | { | |
487 | return ensure_python_env (var->root->exp->gdbarch, | |
488 | var->root->exp->language_defn); | |
489 | } | |
490 | #endif | |
491 | ||
8b93c638 JM |
492 | /* Creates a varobj (not its children) */ |
493 | ||
7d8547c9 AC |
494 | /* Return the full FRAME which corresponds to the given CORE_ADDR |
495 | or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ | |
496 | ||
497 | static struct frame_info * | |
498 | find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) | |
499 | { | |
500 | struct frame_info *frame = NULL; | |
501 | ||
502 | if (frame_addr == (CORE_ADDR) 0) | |
503 | return NULL; | |
504 | ||
9d49bdc2 PA |
505 | for (frame = get_current_frame (); |
506 | frame != NULL; | |
507 | frame = get_prev_frame (frame)) | |
7d8547c9 | 508 | { |
1fac167a UW |
509 | /* The CORE_ADDR we get as argument was parsed from a string GDB |
510 | output as $fp. This output got truncated to gdbarch_addr_bit. | |
511 | Truncate the frame base address in the same manner before | |
512 | comparing it against our argument. */ | |
513 | CORE_ADDR frame_base = get_frame_base_address (frame); | |
514 | int addr_bit = gdbarch_addr_bit (get_frame_arch (frame)); | |
515 | if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) | |
516 | frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1; | |
517 | ||
518 | if (frame_base == frame_addr) | |
7d8547c9 AC |
519 | return frame; |
520 | } | |
9d49bdc2 PA |
521 | |
522 | return NULL; | |
7d8547c9 AC |
523 | } |
524 | ||
8b93c638 JM |
525 | struct varobj * |
526 | varobj_create (char *objname, | |
72330bd6 | 527 | char *expression, CORE_ADDR frame, enum varobj_type type) |
8b93c638 JM |
528 | { |
529 | struct varobj *var; | |
2c67cb8b AC |
530 | struct frame_info *fi; |
531 | struct frame_info *old_fi = NULL; | |
8b93c638 JM |
532 | struct block *block; |
533 | struct cleanup *old_chain; | |
534 | ||
535 | /* Fill out a varobj structure for the (root) variable being constructed. */ | |
536 | var = new_root_variable (); | |
74b7792f | 537 | old_chain = make_cleanup_free_variable (var); |
8b93c638 JM |
538 | |
539 | if (expression != NULL) | |
540 | { | |
541 | char *p; | |
542 | enum varobj_languages lang; | |
e55dccf0 | 543 | struct value *value = NULL; |
8b93c638 | 544 | |
9d49bdc2 PA |
545 | /* Parse and evaluate the expression, filling in as much of the |
546 | variable's data as possible. */ | |
547 | ||
548 | if (has_stack_frames ()) | |
549 | { | |
550 | /* Allow creator to specify context of variable */ | |
551 | if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME)) | |
552 | fi = get_selected_frame (NULL); | |
553 | else | |
554 | /* FIXME: cagney/2002-11-23: This code should be doing a | |
555 | lookup using the frame ID and not just the frame's | |
556 | ``address''. This, of course, means an interface | |
557 | change. However, with out that interface change ISAs, | |
558 | such as the ia64 with its two stacks, won't work. | |
559 | Similar goes for the case where there is a frameless | |
560 | function. */ | |
561 | fi = find_frame_addr_in_frame_chain (frame); | |
562 | } | |
8b93c638 | 563 | else |
9d49bdc2 | 564 | fi = NULL; |
8b93c638 | 565 | |
73a93a32 JI |
566 | /* frame = -2 means always use selected frame */ |
567 | if (type == USE_SELECTED_FRAME) | |
a5defcdc | 568 | var->root->floating = 1; |
73a93a32 | 569 | |
8b93c638 JM |
570 | block = NULL; |
571 | if (fi != NULL) | |
ae767bfb | 572 | block = get_frame_block (fi, 0); |
8b93c638 JM |
573 | |
574 | p = expression; | |
575 | innermost_block = NULL; | |
73a93a32 JI |
576 | /* Wrap the call to parse expression, so we can |
577 | return a sensible error. */ | |
578 | if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp)) | |
579 | { | |
580 | return NULL; | |
581 | } | |
8b93c638 JM |
582 | |
583 | /* Don't allow variables to be created for types. */ | |
584 | if (var->root->exp->elts[0].opcode == OP_TYPE) | |
585 | { | |
586 | do_cleanups (old_chain); | |
bc8332bb AC |
587 | fprintf_unfiltered (gdb_stderr, "Attempt to use a type name" |
588 | " as an expression.\n"); | |
8b93c638 JM |
589 | return NULL; |
590 | } | |
591 | ||
592 | var->format = variable_default_display (var); | |
593 | var->root->valid_block = innermost_block; | |
1b36a34b | 594 | var->name = xstrdup (expression); |
02142340 | 595 | /* For a root var, the name and the expr are the same. */ |
1b36a34b | 596 | var->path_expr = xstrdup (expression); |
8b93c638 JM |
597 | |
598 | /* When the frame is different from the current frame, | |
599 | we must select the appropriate frame before parsing | |
600 | the expression, otherwise the value will not be current. | |
601 | Since select_frame is so benign, just call it for all cases. */ | |
4e22772d | 602 | if (innermost_block) |
8b93c638 | 603 | { |
4e22772d JK |
604 | /* User could specify explicit FRAME-ADDR which was not found but |
605 | EXPRESSION is frame specific and we would not be able to evaluate | |
606 | it correctly next time. With VALID_BLOCK set we must also set | |
607 | FRAME and THREAD_ID. */ | |
608 | if (fi == NULL) | |
609 | error (_("Failed to find the specified frame")); | |
610 | ||
7a424e99 | 611 | var->root->frame = get_frame_id (fi); |
c5b48eac | 612 | var->root->thread_id = pid_to_thread_id (inferior_ptid); |
206415a3 | 613 | old_fi = get_selected_frame (NULL); |
c5b48eac | 614 | select_frame (fi); |
8b93c638 JM |
615 | } |
616 | ||
340a7723 | 617 | /* We definitely need to catch errors here. |
8b93c638 JM |
618 | If evaluate_expression succeeds we got the value we wanted. |
619 | But if it fails, we still go on with a call to evaluate_type() */ | |
acd65feb | 620 | if (!gdb_evaluate_expression (var->root->exp, &value)) |
e55dccf0 VP |
621 | { |
622 | /* Error getting the value. Try to at least get the | |
623 | right type. */ | |
624 | struct value *type_only_value = evaluate_type (var->root->exp); | |
625 | var->type = value_type (type_only_value); | |
626 | } | |
627 | else | |
628 | var->type = value_type (value); | |
acd65feb | 629 | |
acd65feb | 630 | install_new_value (var, value, 1 /* Initial assignment */); |
8b93c638 JM |
631 | |
632 | /* Set language info */ | |
633 | lang = variable_language (var); | |
d5d6fca5 | 634 | var->root->lang = &languages[lang]; |
8b93c638 JM |
635 | |
636 | /* Set ourselves as our root */ | |
637 | var->root->rootvar = var; | |
638 | ||
639 | /* Reset the selected frame */ | |
e21458b2 | 640 | if (old_fi != NULL) |
0f7d239c | 641 | select_frame (old_fi); |
8b93c638 JM |
642 | } |
643 | ||
73a93a32 JI |
644 | /* If the variable object name is null, that means this |
645 | is a temporary variable, so don't install it. */ | |
646 | ||
647 | if ((var != NULL) && (objname != NULL)) | |
8b93c638 | 648 | { |
1b36a34b | 649 | var->obj_name = xstrdup (objname); |
8b93c638 JM |
650 | |
651 | /* If a varobj name is duplicated, the install will fail so | |
652 | we must clenup */ | |
653 | if (!install_variable (var)) | |
654 | { | |
655 | do_cleanups (old_chain); | |
656 | return NULL; | |
657 | } | |
658 | } | |
659 | ||
660 | discard_cleanups (old_chain); | |
661 | return var; | |
662 | } | |
663 | ||
664 | /* Generates an unique name that can be used for a varobj */ | |
665 | ||
666 | char * | |
667 | varobj_gen_name (void) | |
668 | { | |
669 | static int id = 0; | |
e64d9b3d | 670 | char *obj_name; |
8b93c638 JM |
671 | |
672 | /* generate a name for this object */ | |
673 | id++; | |
b435e160 | 674 | obj_name = xstrprintf ("var%d", id); |
8b93c638 | 675 | |
e64d9b3d | 676 | return obj_name; |
8b93c638 JM |
677 | } |
678 | ||
61d8f275 JK |
679 | /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call |
680 | error if OBJNAME cannot be found. */ | |
8b93c638 JM |
681 | |
682 | struct varobj * | |
683 | varobj_get_handle (char *objname) | |
684 | { | |
685 | struct vlist *cv; | |
686 | const char *chp; | |
687 | unsigned int index = 0; | |
688 | unsigned int i = 1; | |
689 | ||
690 | for (chp = objname; *chp; chp++) | |
691 | { | |
692 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
693 | } | |
694 | ||
695 | cv = *(varobj_table + index); | |
696 | while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0)) | |
697 | cv = cv->next; | |
698 | ||
699 | if (cv == NULL) | |
8a3fe4f8 | 700 | error (_("Variable object not found")); |
8b93c638 JM |
701 | |
702 | return cv->var; | |
703 | } | |
704 | ||
705 | /* Given the handle, return the name of the object */ | |
706 | ||
707 | char * | |
708 | varobj_get_objname (struct varobj *var) | |
709 | { | |
710 | return var->obj_name; | |
711 | } | |
712 | ||
713 | /* Given the handle, return the expression represented by the object */ | |
714 | ||
715 | char * | |
716 | varobj_get_expression (struct varobj *var) | |
717 | { | |
718 | return name_of_variable (var); | |
719 | } | |
720 | ||
721 | /* Deletes a varobj and all its children if only_children == 0, | |
722 | otherwise deletes only the children; returns a malloc'ed list of all the | |
723 | (malloc'ed) names of the variables that have been deleted (NULL terminated) */ | |
724 | ||
725 | int | |
726 | varobj_delete (struct varobj *var, char ***dellist, int only_children) | |
727 | { | |
728 | int delcount; | |
729 | int mycount; | |
730 | struct cpstack *result = NULL; | |
731 | char **cp; | |
732 | ||
733 | /* Initialize a stack for temporary results */ | |
734 | cppush (&result, NULL); | |
735 | ||
736 | if (only_children) | |
737 | /* Delete only the variable children */ | |
738 | delcount = delete_variable (&result, var, 1 /* only the children */ ); | |
739 | else | |
740 | /* Delete the variable and all its children */ | |
741 | delcount = delete_variable (&result, var, 0 /* parent+children */ ); | |
742 | ||
743 | /* We may have been asked to return a list of what has been deleted */ | |
744 | if (dellist != NULL) | |
745 | { | |
746 | *dellist = xmalloc ((delcount + 1) * sizeof (char *)); | |
747 | ||
748 | cp = *dellist; | |
749 | mycount = delcount; | |
750 | *cp = cppop (&result); | |
751 | while ((*cp != NULL) && (mycount > 0)) | |
752 | { | |
753 | mycount--; | |
754 | cp++; | |
755 | *cp = cppop (&result); | |
756 | } | |
757 | ||
758 | if (mycount || (*cp != NULL)) | |
8a3fe4f8 | 759 | warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"), |
72330bd6 | 760 | mycount); |
8b93c638 JM |
761 | } |
762 | ||
763 | return delcount; | |
764 | } | |
765 | ||
d8b65138 JK |
766 | #if HAVE_PYTHON |
767 | ||
b6313243 TT |
768 | /* Convenience function for varobj_set_visualizer. Instantiate a |
769 | pretty-printer for a given value. */ | |
770 | static PyObject * | |
771 | instantiate_pretty_printer (PyObject *constructor, struct value *value) | |
772 | { | |
b6313243 TT |
773 | PyObject *val_obj = NULL; |
774 | PyObject *printer; | |
b6313243 | 775 | |
b6313243 | 776 | val_obj = value_to_value_object (value); |
b6313243 TT |
777 | if (! val_obj) |
778 | return NULL; | |
779 | ||
780 | printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL); | |
781 | Py_DECREF (val_obj); | |
782 | return printer; | |
b6313243 TT |
783 | return NULL; |
784 | } | |
785 | ||
d8b65138 JK |
786 | #endif |
787 | ||
8b93c638 JM |
788 | /* Set/Get variable object display format */ |
789 | ||
790 | enum varobj_display_formats | |
791 | varobj_set_display_format (struct varobj *var, | |
792 | enum varobj_display_formats format) | |
793 | { | |
794 | switch (format) | |
795 | { | |
796 | case FORMAT_NATURAL: | |
797 | case FORMAT_BINARY: | |
798 | case FORMAT_DECIMAL: | |
799 | case FORMAT_HEXADECIMAL: | |
800 | case FORMAT_OCTAL: | |
801 | var->format = format; | |
802 | break; | |
803 | ||
804 | default: | |
805 | var->format = variable_default_display (var); | |
806 | } | |
807 | ||
ae7d22a6 VP |
808 | if (varobj_value_is_changeable_p (var) |
809 | && var->value && !value_lazy (var->value)) | |
810 | { | |
6c761d9c | 811 | xfree (var->print_value); |
d452c4bc | 812 | var->print_value = value_get_print_value (var->value, var->format, var); |
ae7d22a6 VP |
813 | } |
814 | ||
8b93c638 JM |
815 | return var->format; |
816 | } | |
817 | ||
818 | enum varobj_display_formats | |
819 | varobj_get_display_format (struct varobj *var) | |
820 | { | |
821 | return var->format; | |
822 | } | |
823 | ||
b6313243 TT |
824 | char * |
825 | varobj_get_display_hint (struct varobj *var) | |
826 | { | |
827 | char *result = NULL; | |
828 | ||
829 | #if HAVE_PYTHON | |
d452c4bc UW |
830 | struct cleanup *back_to = varobj_ensure_python_env (var); |
831 | ||
b6313243 TT |
832 | if (var->pretty_printer) |
833 | result = gdbpy_get_display_hint (var->pretty_printer); | |
d452c4bc UW |
834 | |
835 | do_cleanups (back_to); | |
b6313243 TT |
836 | #endif |
837 | ||
838 | return result; | |
839 | } | |
840 | ||
0cc7d26f TT |
841 | /* Return true if the varobj has items after TO, false otherwise. */ |
842 | ||
843 | int | |
844 | varobj_has_more (struct varobj *var, int to) | |
845 | { | |
846 | if (VEC_length (varobj_p, var->children) > to) | |
847 | return 1; | |
848 | return ((to == -1 || VEC_length (varobj_p, var->children) == to) | |
849 | && var->saved_item != NULL); | |
850 | } | |
851 | ||
c5b48eac VP |
852 | /* If the variable object is bound to a specific thread, that |
853 | is its evaluation can always be done in context of a frame | |
854 | inside that thread, returns GDB id of the thread -- which | |
855 | is always positive. Otherwise, returns -1. */ | |
856 | int | |
857 | varobj_get_thread_id (struct varobj *var) | |
858 | { | |
859 | if (var->root->valid_block && var->root->thread_id > 0) | |
860 | return var->root->thread_id; | |
861 | else | |
862 | return -1; | |
863 | } | |
864 | ||
25d5ea92 VP |
865 | void |
866 | varobj_set_frozen (struct varobj *var, int frozen) | |
867 | { | |
868 | /* When a variable is unfrozen, we don't fetch its value. | |
869 | The 'not_fetched' flag remains set, so next -var-update | |
870 | won't complain. | |
871 | ||
872 | We don't fetch the value, because for structures the client | |
873 | should do -var-update anyway. It would be bad to have different | |
874 | client-size logic for structure and other types. */ | |
875 | var->frozen = frozen; | |
876 | } | |
877 | ||
878 | int | |
879 | varobj_get_frozen (struct varobj *var) | |
880 | { | |
881 | return var->frozen; | |
882 | } | |
883 | ||
0cc7d26f TT |
884 | /* A helper function that restricts a range to what is actually |
885 | available in a VEC. This follows the usual rules for the meaning | |
886 | of FROM and TO -- if either is negative, the entire range is | |
887 | used. */ | |
888 | ||
889 | static void | |
890 | restrict_range (VEC (varobj_p) *children, int *from, int *to) | |
891 | { | |
892 | if (*from < 0 || *to < 0) | |
893 | { | |
894 | *from = 0; | |
895 | *to = VEC_length (varobj_p, children); | |
896 | } | |
897 | else | |
898 | { | |
899 | if (*from > VEC_length (varobj_p, children)) | |
900 | *from = VEC_length (varobj_p, children); | |
901 | if (*to > VEC_length (varobj_p, children)) | |
902 | *to = VEC_length (varobj_p, children); | |
903 | if (*from > *to) | |
904 | *from = *to; | |
905 | } | |
906 | } | |
907 | ||
d8b65138 JK |
908 | #if HAVE_PYTHON |
909 | ||
0cc7d26f TT |
910 | /* A helper for update_dynamic_varobj_children that installs a new |
911 | child when needed. */ | |
912 | ||
913 | static void | |
914 | install_dynamic_child (struct varobj *var, | |
915 | VEC (varobj_p) **changed, | |
916 | VEC (varobj_p) **new, | |
917 | VEC (varobj_p) **unchanged, | |
918 | int *cchanged, | |
919 | int index, | |
920 | const char *name, | |
921 | struct value *value) | |
922 | { | |
923 | if (VEC_length (varobj_p, var->children) < index + 1) | |
924 | { | |
925 | /* There's no child yet. */ | |
926 | struct varobj *child = varobj_add_child (var, name, value); | |
927 | if (new) | |
928 | { | |
929 | VEC_safe_push (varobj_p, *new, child); | |
930 | *cchanged = 1; | |
931 | } | |
932 | } | |
933 | else | |
934 | { | |
935 | varobj_p existing = VEC_index (varobj_p, var->children, index); | |
936 | if (install_new_value (existing, value, 0)) | |
937 | { | |
938 | if (changed) | |
939 | VEC_safe_push (varobj_p, *changed, existing); | |
940 | } | |
941 | else if (unchanged) | |
942 | VEC_safe_push (varobj_p, *unchanged, existing); | |
943 | } | |
944 | } | |
945 | ||
0cc7d26f TT |
946 | static int |
947 | dynamic_varobj_has_child_method (struct varobj *var) | |
948 | { | |
949 | struct cleanup *back_to; | |
950 | PyObject *printer = var->pretty_printer; | |
951 | int result; | |
952 | ||
953 | back_to = varobj_ensure_python_env (var); | |
954 | result = PyObject_HasAttr (printer, gdbpy_children_cst); | |
955 | do_cleanups (back_to); | |
956 | return result; | |
957 | } | |
958 | ||
959 | #endif | |
960 | ||
b6313243 TT |
961 | static int |
962 | update_dynamic_varobj_children (struct varobj *var, | |
963 | VEC (varobj_p) **changed, | |
0cc7d26f TT |
964 | VEC (varobj_p) **new, |
965 | VEC (varobj_p) **unchanged, | |
966 | int *cchanged, | |
967 | int update_children, | |
968 | int from, | |
969 | int to) | |
b6313243 TT |
970 | { |
971 | #if HAVE_PYTHON | |
b6313243 TT |
972 | struct cleanup *back_to; |
973 | PyObject *children; | |
b6313243 | 974 | int i; |
b6313243 | 975 | PyObject *printer = var->pretty_printer; |
b6313243 | 976 | |
d452c4bc | 977 | back_to = varobj_ensure_python_env (var); |
b6313243 TT |
978 | |
979 | *cchanged = 0; | |
980 | if (!PyObject_HasAttr (printer, gdbpy_children_cst)) | |
981 | { | |
982 | do_cleanups (back_to); | |
983 | return 0; | |
984 | } | |
985 | ||
0cc7d26f | 986 | if (update_children || !var->child_iter) |
b6313243 | 987 | { |
0cc7d26f TT |
988 | children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst, |
989 | NULL); | |
b6313243 | 990 | |
0cc7d26f TT |
991 | if (!children) |
992 | { | |
993 | gdbpy_print_stack (); | |
994 | error (_("Null value returned for children")); | |
995 | } | |
b6313243 | 996 | |
0cc7d26f | 997 | make_cleanup_py_decref (children); |
b6313243 | 998 | |
0cc7d26f TT |
999 | if (!PyIter_Check (children)) |
1000 | error (_("Returned value is not iterable")); | |
1001 | ||
1002 | Py_XDECREF (var->child_iter); | |
1003 | var->child_iter = PyObject_GetIter (children); | |
1004 | if (!var->child_iter) | |
1005 | { | |
1006 | gdbpy_print_stack (); | |
1007 | error (_("Could not get children iterator")); | |
1008 | } | |
1009 | ||
1010 | Py_XDECREF (var->saved_item); | |
1011 | var->saved_item = NULL; | |
1012 | ||
1013 | i = 0; | |
b6313243 | 1014 | } |
0cc7d26f TT |
1015 | else |
1016 | i = VEC_length (varobj_p, var->children); | |
b6313243 | 1017 | |
0cc7d26f TT |
1018 | /* We ask for one extra child, so that MI can report whether there |
1019 | are more children. */ | |
1020 | for (; to < 0 || i < to + 1; ++i) | |
b6313243 | 1021 | { |
0cc7d26f | 1022 | PyObject *item; |
b6313243 | 1023 | |
0cc7d26f TT |
1024 | /* See if there was a leftover from last time. */ |
1025 | if (var->saved_item) | |
1026 | { | |
1027 | item = var->saved_item; | |
1028 | var->saved_item = NULL; | |
1029 | } | |
1030 | else | |
1031 | item = PyIter_Next (var->child_iter); | |
b6313243 | 1032 | |
0cc7d26f TT |
1033 | if (!item) |
1034 | break; | |
b6313243 | 1035 | |
0cc7d26f TT |
1036 | /* We don't want to push the extra child on any report list. */ |
1037 | if (to < 0 || i < to) | |
b6313243 | 1038 | { |
0cc7d26f TT |
1039 | PyObject *py_v; |
1040 | char *name; | |
1041 | struct value *v; | |
1042 | struct cleanup *inner; | |
1043 | int can_mention = from < 0 || i >= from; | |
1044 | ||
1045 | inner = make_cleanup_py_decref (item); | |
1046 | ||
1047 | if (!PyArg_ParseTuple (item, "sO", &name, &py_v)) | |
1048 | error (_("Invalid item from the child list")); | |
1049 | ||
1050 | v = convert_value_from_python (py_v); | |
1051 | install_dynamic_child (var, can_mention ? changed : NULL, | |
1052 | can_mention ? new : NULL, | |
1053 | can_mention ? unchanged : NULL, | |
1054 | can_mention ? cchanged : NULL, i, name, v); | |
1055 | do_cleanups (inner); | |
b6313243 | 1056 | } |
0cc7d26f | 1057 | else |
b6313243 | 1058 | { |
0cc7d26f TT |
1059 | Py_XDECREF (var->saved_item); |
1060 | var->saved_item = item; | |
b6313243 | 1061 | |
0cc7d26f TT |
1062 | /* We want to truncate the child list just before this |
1063 | element. */ | |
1064 | break; | |
1065 | } | |
b6313243 TT |
1066 | } |
1067 | ||
1068 | if (i < VEC_length (varobj_p, var->children)) | |
1069 | { | |
0cc7d26f TT |
1070 | int j; |
1071 | *cchanged = 1; | |
1072 | for (j = i; j < VEC_length (varobj_p, var->children); ++j) | |
1073 | varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0); | |
1074 | VEC_truncate (varobj_p, var->children, i); | |
b6313243 | 1075 | } |
0cc7d26f TT |
1076 | |
1077 | /* If there are fewer children than requested, note that the list of | |
1078 | children changed. */ | |
1079 | if (to >= 0 && VEC_length (varobj_p, var->children) < to) | |
1080 | *cchanged = 1; | |
1081 | ||
b6313243 TT |
1082 | var->num_children = VEC_length (varobj_p, var->children); |
1083 | ||
1084 | do_cleanups (back_to); | |
1085 | ||
b6313243 TT |
1086 | return 1; |
1087 | #else | |
1088 | gdb_assert (0 && "should never be called if Python is not enabled"); | |
1089 | #endif | |
1090 | } | |
25d5ea92 | 1091 | |
8b93c638 JM |
1092 | int |
1093 | varobj_get_num_children (struct varobj *var) | |
1094 | { | |
1095 | if (var->num_children == -1) | |
b6313243 | 1096 | { |
0cc7d26f TT |
1097 | if (var->pretty_printer) |
1098 | { | |
1099 | int dummy; | |
1100 | ||
1101 | /* If we have a dynamic varobj, don't report -1 children. | |
1102 | So, try to fetch some children first. */ | |
1103 | update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy, | |
1104 | 0, 0, 0); | |
1105 | } | |
1106 | else | |
b6313243 TT |
1107 | var->num_children = number_of_children (var); |
1108 | } | |
8b93c638 | 1109 | |
0cc7d26f | 1110 | return var->num_children >= 0 ? var->num_children : 0; |
8b93c638 JM |
1111 | } |
1112 | ||
1113 | /* Creates a list of the immediate children of a variable object; | |
1114 | the return code is the number of such children or -1 on error */ | |
1115 | ||
d56d46f5 | 1116 | VEC (varobj_p)* |
0cc7d26f | 1117 | varobj_list_children (struct varobj *var, int *from, int *to) |
8b93c638 | 1118 | { |
8b93c638 | 1119 | char *name; |
b6313243 TT |
1120 | int i, children_changed; |
1121 | ||
1122 | var->children_requested = 1; | |
1123 | ||
0cc7d26f TT |
1124 | if (var->pretty_printer) |
1125 | { | |
b6313243 TT |
1126 | /* This, in theory, can result in the number of children changing without |
1127 | frontend noticing. But well, calling -var-list-children on the same | |
1128 | varobj twice is not something a sane frontend would do. */ | |
0cc7d26f TT |
1129 | update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed, |
1130 | 0, 0, *to); | |
1131 | restrict_range (var->children, from, to); | |
1132 | return var->children; | |
1133 | } | |
8b93c638 | 1134 | |
8b93c638 JM |
1135 | if (var->num_children == -1) |
1136 | var->num_children = number_of_children (var); | |
1137 | ||
74a44383 DJ |
1138 | /* If that failed, give up. */ |
1139 | if (var->num_children == -1) | |
d56d46f5 | 1140 | return var->children; |
74a44383 | 1141 | |
28335dcc VP |
1142 | /* If we're called when the list of children is not yet initialized, |
1143 | allocate enough elements in it. */ | |
1144 | while (VEC_length (varobj_p, var->children) < var->num_children) | |
1145 | VEC_safe_push (varobj_p, var->children, NULL); | |
1146 | ||
8b93c638 JM |
1147 | for (i = 0; i < var->num_children; i++) |
1148 | { | |
d56d46f5 | 1149 | varobj_p existing = VEC_index (varobj_p, var->children, i); |
28335dcc VP |
1150 | |
1151 | if (existing == NULL) | |
1152 | { | |
1153 | /* Either it's the first call to varobj_list_children for | |
1154 | this variable object, and the child was never created, | |
1155 | or it was explicitly deleted by the client. */ | |
1156 | name = name_of_child (var, i); | |
1157 | existing = create_child (var, i, name); | |
1158 | VEC_replace (varobj_p, var->children, i, existing); | |
1159 | } | |
8b93c638 JM |
1160 | } |
1161 | ||
0cc7d26f | 1162 | restrict_range (var->children, from, to); |
d56d46f5 | 1163 | return var->children; |
8b93c638 JM |
1164 | } |
1165 | ||
d8b65138 JK |
1166 | #if HAVE_PYTHON |
1167 | ||
b6313243 TT |
1168 | static struct varobj * |
1169 | varobj_add_child (struct varobj *var, const char *name, struct value *value) | |
1170 | { | |
1171 | varobj_p v = create_child_with_value (var, | |
1172 | VEC_length (varobj_p, var->children), | |
1173 | name, value); | |
1174 | VEC_safe_push (varobj_p, var->children, v); | |
b6313243 TT |
1175 | return v; |
1176 | } | |
1177 | ||
d8b65138 JK |
1178 | #endif /* HAVE_PYTHON */ |
1179 | ||
8b93c638 JM |
1180 | /* Obtain the type of an object Variable as a string similar to the one gdb |
1181 | prints on the console */ | |
1182 | ||
1183 | char * | |
1184 | varobj_get_type (struct varobj *var) | |
1185 | { | |
8b93c638 | 1186 | /* For the "fake" variables, do not return a type. (It's type is |
8756216b DP |
1187 | NULL, too.) |
1188 | Do not return a type for invalid variables as well. */ | |
1189 | if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid) | |
8b93c638 JM |
1190 | return NULL; |
1191 | ||
1a4300e9 | 1192 | return type_to_string (var->type); |
8b93c638 JM |
1193 | } |
1194 | ||
1ecb4ee0 DJ |
1195 | /* Obtain the type of an object variable. */ |
1196 | ||
1197 | struct type * | |
1198 | varobj_get_gdb_type (struct varobj *var) | |
1199 | { | |
1200 | return var->type; | |
1201 | } | |
1202 | ||
02142340 VP |
1203 | /* Return a pointer to the full rooted expression of varobj VAR. |
1204 | If it has not been computed yet, compute it. */ | |
1205 | char * | |
1206 | varobj_get_path_expr (struct varobj *var) | |
1207 | { | |
1208 | if (var->path_expr != NULL) | |
1209 | return var->path_expr; | |
1210 | else | |
1211 | { | |
1212 | /* For root varobjs, we initialize path_expr | |
1213 | when creating varobj, so here it should be | |
1214 | child varobj. */ | |
1215 | gdb_assert (!is_root_p (var)); | |
1216 | return (*var->root->lang->path_expr_of_child) (var); | |
1217 | } | |
1218 | } | |
1219 | ||
8b93c638 JM |
1220 | enum varobj_languages |
1221 | varobj_get_language (struct varobj *var) | |
1222 | { | |
1223 | return variable_language (var); | |
1224 | } | |
1225 | ||
1226 | int | |
1227 | varobj_get_attributes (struct varobj *var) | |
1228 | { | |
1229 | int attributes = 0; | |
1230 | ||
340a7723 | 1231 | if (varobj_editable_p (var)) |
8b93c638 JM |
1232 | /* FIXME: define masks for attributes */ |
1233 | attributes |= 0x00000001; /* Editable */ | |
1234 | ||
1235 | return attributes; | |
1236 | } | |
1237 | ||
0cc7d26f TT |
1238 | int |
1239 | varobj_pretty_printed_p (struct varobj *var) | |
1240 | { | |
1241 | return var->pretty_printer != NULL; | |
1242 | } | |
1243 | ||
de051565 MK |
1244 | char * |
1245 | varobj_get_formatted_value (struct varobj *var, | |
1246 | enum varobj_display_formats format) | |
1247 | { | |
1248 | return my_value_of_variable (var, format); | |
1249 | } | |
1250 | ||
8b93c638 JM |
1251 | char * |
1252 | varobj_get_value (struct varobj *var) | |
1253 | { | |
de051565 | 1254 | return my_value_of_variable (var, var->format); |
8b93c638 JM |
1255 | } |
1256 | ||
1257 | /* Set the value of an object variable (if it is editable) to the | |
1258 | value of the given expression */ | |
1259 | /* Note: Invokes functions that can call error() */ | |
1260 | ||
1261 | int | |
1262 | varobj_set_value (struct varobj *var, char *expression) | |
1263 | { | |
30b28db1 | 1264 | struct value *val; |
8b93c638 JM |
1265 | |
1266 | /* The argument "expression" contains the variable's new value. | |
1267 | We need to first construct a legal expression for this -- ugh! */ | |
1268 | /* Does this cover all the bases? */ | |
1269 | struct expression *exp; | |
30b28db1 | 1270 | struct value *value; |
8b93c638 | 1271 | int saved_input_radix = input_radix; |
340a7723 | 1272 | char *s = expression; |
8b93c638 | 1273 | |
340a7723 | 1274 | gdb_assert (varobj_editable_p (var)); |
8b93c638 | 1275 | |
340a7723 NR |
1276 | input_radix = 10; /* ALWAYS reset to decimal temporarily */ |
1277 | exp = parse_exp_1 (&s, 0, 0); | |
1278 | if (!gdb_evaluate_expression (exp, &value)) | |
1279 | { | |
1280 | /* We cannot proceed without a valid expression. */ | |
1281 | xfree (exp); | |
1282 | return 0; | |
8b93c638 JM |
1283 | } |
1284 | ||
340a7723 NR |
1285 | /* All types that are editable must also be changeable. */ |
1286 | gdb_assert (varobj_value_is_changeable_p (var)); | |
1287 | ||
1288 | /* The value of a changeable variable object must not be lazy. */ | |
1289 | gdb_assert (!value_lazy (var->value)); | |
1290 | ||
1291 | /* Need to coerce the input. We want to check if the | |
1292 | value of the variable object will be different | |
1293 | after assignment, and the first thing value_assign | |
1294 | does is coerce the input. | |
1295 | For example, if we are assigning an array to a pointer variable we | |
1296 | should compare the pointer with the the array's address, not with the | |
1297 | array's content. */ | |
1298 | value = coerce_array (value); | |
1299 | ||
1300 | /* The new value may be lazy. gdb_value_assign, or | |
1301 | rather value_contents, will take care of this. | |
1302 | If fetching of the new value will fail, gdb_value_assign | |
1303 | with catch the exception. */ | |
1304 | if (!gdb_value_assign (var->value, value, &val)) | |
1305 | return 0; | |
1306 | ||
1307 | /* If the value has changed, record it, so that next -var-update can | |
1308 | report this change. If a variable had a value of '1', we've set it | |
1309 | to '333' and then set again to '1', when -var-update will report this | |
1310 | variable as changed -- because the first assignment has set the | |
1311 | 'updated' flag. There's no need to optimize that, because return value | |
1312 | of -var-update should be considered an approximation. */ | |
1313 | var->updated = install_new_value (var, val, 0 /* Compare values. */); | |
1314 | input_radix = saved_input_radix; | |
1315 | return 1; | |
8b93c638 JM |
1316 | } |
1317 | ||
0cc7d26f TT |
1318 | #if HAVE_PYTHON |
1319 | ||
1320 | /* A helper function to install a constructor function and visualizer | |
1321 | in a varobj. */ | |
1322 | ||
1323 | static void | |
1324 | install_visualizer (struct varobj *var, PyObject *constructor, | |
1325 | PyObject *visualizer) | |
1326 | { | |
1327 | Py_XDECREF (var->constructor); | |
1328 | var->constructor = constructor; | |
1329 | ||
1330 | Py_XDECREF (var->pretty_printer); | |
1331 | var->pretty_printer = visualizer; | |
1332 | ||
1333 | Py_XDECREF (var->child_iter); | |
1334 | var->child_iter = NULL; | |
1335 | } | |
1336 | ||
1337 | /* Install the default visualizer for VAR. */ | |
1338 | ||
1339 | static void | |
1340 | install_default_visualizer (struct varobj *var) | |
1341 | { | |
1342 | if (pretty_printing) | |
1343 | { | |
1344 | PyObject *pretty_printer = NULL; | |
1345 | ||
1346 | if (var->value) | |
1347 | { | |
1348 | pretty_printer = gdbpy_get_varobj_pretty_printer (var->value); | |
1349 | if (! pretty_printer) | |
1350 | { | |
1351 | gdbpy_print_stack (); | |
1352 | error (_("Cannot instantiate printer for default visualizer")); | |
1353 | } | |
1354 | } | |
1355 | ||
1356 | if (pretty_printer == Py_None) | |
1357 | { | |
1358 | Py_DECREF (pretty_printer); | |
1359 | pretty_printer = NULL; | |
1360 | } | |
1361 | ||
1362 | install_visualizer (var, NULL, pretty_printer); | |
1363 | } | |
1364 | } | |
1365 | ||
1366 | /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to | |
1367 | make a new object. */ | |
1368 | ||
1369 | static void | |
1370 | construct_visualizer (struct varobj *var, PyObject *constructor) | |
1371 | { | |
1372 | PyObject *pretty_printer; | |
1373 | ||
1374 | Py_INCREF (constructor); | |
1375 | if (constructor == Py_None) | |
1376 | pretty_printer = NULL; | |
1377 | else | |
1378 | { | |
1379 | pretty_printer = instantiate_pretty_printer (constructor, var->value); | |
1380 | if (! pretty_printer) | |
1381 | { | |
1382 | gdbpy_print_stack (); | |
1383 | Py_DECREF (constructor); | |
1384 | constructor = Py_None; | |
1385 | Py_INCREF (constructor); | |
1386 | } | |
1387 | ||
1388 | if (pretty_printer == Py_None) | |
1389 | { | |
1390 | Py_DECREF (pretty_printer); | |
1391 | pretty_printer = NULL; | |
1392 | } | |
1393 | } | |
1394 | ||
1395 | install_visualizer (var, constructor, pretty_printer); | |
1396 | } | |
1397 | ||
1398 | #endif /* HAVE_PYTHON */ | |
1399 | ||
1400 | /* A helper function for install_new_value. This creates and installs | |
1401 | a visualizer for VAR, if appropriate. */ | |
1402 | ||
1403 | static void | |
1404 | install_new_value_visualizer (struct varobj *var) | |
1405 | { | |
1406 | #if HAVE_PYTHON | |
1407 | /* If the constructor is None, then we want the raw value. If VAR | |
1408 | does not have a value, just skip this. */ | |
1409 | if (var->constructor != Py_None && var->value) | |
1410 | { | |
1411 | struct cleanup *cleanup; | |
0cc7d26f TT |
1412 | |
1413 | cleanup = varobj_ensure_python_env (var); | |
1414 | ||
1415 | if (!var->constructor) | |
1416 | install_default_visualizer (var); | |
1417 | else | |
1418 | construct_visualizer (var, var->constructor); | |
1419 | ||
1420 | do_cleanups (cleanup); | |
1421 | } | |
1422 | #else | |
1423 | /* Do nothing. */ | |
1424 | #endif | |
1425 | } | |
1426 | ||
acd65feb VP |
1427 | /* Assign a new value to a variable object. If INITIAL is non-zero, |
1428 | this is the first assignement after the variable object was just | |
1429 | created, or changed type. In that case, just assign the value | |
1430 | and return 0. | |
ee342b23 VP |
1431 | Otherwise, assign the new value, and return 1 if the value is different |
1432 | from the current one, 0 otherwise. The comparison is done on textual | |
1433 | representation of value. Therefore, some types need not be compared. E.g. | |
1434 | for structures the reported value is always "{...}", so no comparison is | |
1435 | necessary here. If the old value was NULL and new one is not, or vice versa, | |
1436 | we always return 1. | |
b26ed50d VP |
1437 | |
1438 | The VALUE parameter should not be released -- the function will | |
1439 | take care of releasing it when needed. */ | |
acd65feb VP |
1440 | static int |
1441 | install_new_value (struct varobj *var, struct value *value, int initial) | |
1442 | { | |
1443 | int changeable; | |
1444 | int need_to_fetch; | |
1445 | int changed = 0; | |
25d5ea92 | 1446 | int intentionally_not_fetched = 0; |
7a4d50bf | 1447 | char *print_value = NULL; |
acd65feb | 1448 | |
acd65feb VP |
1449 | /* We need to know the varobj's type to decide if the value should |
1450 | be fetched or not. C++ fake children (public/protected/private) don't have | |
1451 | a type. */ | |
1452 | gdb_assert (var->type || CPLUS_FAKE_CHILD (var)); | |
b2c2bd75 | 1453 | changeable = varobj_value_is_changeable_p (var); |
b6313243 TT |
1454 | |
1455 | /* If the type has custom visualizer, we consider it to be always | |
1456 | changeable. FIXME: need to make sure this behaviour will not | |
1457 | mess up read-sensitive values. */ | |
1458 | if (var->pretty_printer) | |
1459 | changeable = 1; | |
1460 | ||
acd65feb VP |
1461 | need_to_fetch = changeable; |
1462 | ||
b26ed50d VP |
1463 | /* We are not interested in the address of references, and given |
1464 | that in C++ a reference is not rebindable, it cannot | |
1465 | meaningfully change. So, get hold of the real value. */ | |
1466 | if (value) | |
0cc7d26f | 1467 | value = coerce_ref (value); |
b26ed50d | 1468 | |
acd65feb VP |
1469 | if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION) |
1470 | /* For unions, we need to fetch the value implicitly because | |
1471 | of implementation of union member fetch. When gdb | |
1472 | creates a value for a field and the value of the enclosing | |
1473 | structure is not lazy, it immediately copies the necessary | |
1474 | bytes from the enclosing values. If the enclosing value is | |
1475 | lazy, the call to value_fetch_lazy on the field will read | |
1476 | the data from memory. For unions, that means we'll read the | |
1477 | same memory more than once, which is not desirable. So | |
1478 | fetch now. */ | |
1479 | need_to_fetch = 1; | |
1480 | ||
1481 | /* The new value might be lazy. If the type is changeable, | |
1482 | that is we'll be comparing values of this type, fetch the | |
1483 | value now. Otherwise, on the next update the old value | |
1484 | will be lazy, which means we've lost that old value. */ | |
1485 | if (need_to_fetch && value && value_lazy (value)) | |
1486 | { | |
25d5ea92 VP |
1487 | struct varobj *parent = var->parent; |
1488 | int frozen = var->frozen; | |
1489 | for (; !frozen && parent; parent = parent->parent) | |
1490 | frozen |= parent->frozen; | |
1491 | ||
1492 | if (frozen && initial) | |
1493 | { | |
1494 | /* For variables that are frozen, or are children of frozen | |
1495 | variables, we don't do fetch on initial assignment. | |
1496 | For non-initial assignemnt we do the fetch, since it means we're | |
1497 | explicitly asked to compare the new value with the old one. */ | |
1498 | intentionally_not_fetched = 1; | |
1499 | } | |
1500 | else if (!gdb_value_fetch_lazy (value)) | |
acd65feb | 1501 | { |
acd65feb VP |
1502 | /* Set the value to NULL, so that for the next -var-update, |
1503 | we don't try to compare the new value with this value, | |
1504 | that we couldn't even read. */ | |
1505 | value = NULL; | |
1506 | } | |
acd65feb VP |
1507 | } |
1508 | ||
b6313243 | 1509 | |
7a4d50bf VP |
1510 | /* Below, we'll be comparing string rendering of old and new |
1511 | values. Don't get string rendering if the value is | |
1512 | lazy -- if it is, the code above has decided that the value | |
1513 | should not be fetched. */ | |
0cc7d26f | 1514 | if (value && !value_lazy (value) && !var->pretty_printer) |
d452c4bc | 1515 | print_value = value_get_print_value (value, var->format, var); |
7a4d50bf | 1516 | |
acd65feb VP |
1517 | /* If the type is changeable, compare the old and the new values. |
1518 | If this is the initial assignment, we don't have any old value | |
1519 | to compare with. */ | |
7a4d50bf | 1520 | if (!initial && changeable) |
acd65feb VP |
1521 | { |
1522 | /* If the value of the varobj was changed by -var-set-value, then the | |
1523 | value in the varobj and in the target is the same. However, that value | |
1524 | is different from the value that the varobj had after the previous | |
57e66780 | 1525 | -var-update. So need to the varobj as changed. */ |
acd65feb | 1526 | if (var->updated) |
57e66780 | 1527 | { |
57e66780 DJ |
1528 | changed = 1; |
1529 | } | |
0cc7d26f | 1530 | else if (! var->pretty_printer) |
acd65feb VP |
1531 | { |
1532 | /* Try to compare the values. That requires that both | |
1533 | values are non-lazy. */ | |
25d5ea92 VP |
1534 | if (var->not_fetched && value_lazy (var->value)) |
1535 | { | |
1536 | /* This is a frozen varobj and the value was never read. | |
1537 | Presumably, UI shows some "never read" indicator. | |
1538 | Now that we've fetched the real value, we need to report | |
1539 | this varobj as changed so that UI can show the real | |
1540 | value. */ | |
1541 | changed = 1; | |
1542 | } | |
1543 | else if (var->value == NULL && value == NULL) | |
acd65feb VP |
1544 | /* Equal. */ |
1545 | ; | |
1546 | else if (var->value == NULL || value == NULL) | |
57e66780 | 1547 | { |
57e66780 DJ |
1548 | changed = 1; |
1549 | } | |
acd65feb VP |
1550 | else |
1551 | { | |
1552 | gdb_assert (!value_lazy (var->value)); | |
1553 | gdb_assert (!value_lazy (value)); | |
85265413 | 1554 | |
57e66780 | 1555 | gdb_assert (var->print_value != NULL && print_value != NULL); |
85265413 | 1556 | if (strcmp (var->print_value, print_value) != 0) |
7a4d50bf | 1557 | changed = 1; |
acd65feb VP |
1558 | } |
1559 | } | |
1560 | } | |
85265413 | 1561 | |
ee342b23 VP |
1562 | if (!initial && !changeable) |
1563 | { | |
1564 | /* For values that are not changeable, we don't compare the values. | |
1565 | However, we want to notice if a value was not NULL and now is NULL, | |
1566 | or vise versa, so that we report when top-level varobjs come in scope | |
1567 | and leave the scope. */ | |
1568 | changed = (var->value != NULL) != (value != NULL); | |
1569 | } | |
1570 | ||
acd65feb | 1571 | /* We must always keep the new value, since children depend on it. */ |
25d5ea92 | 1572 | if (var->value != NULL && var->value != value) |
acd65feb VP |
1573 | value_free (var->value); |
1574 | var->value = value; | |
0cc7d26f TT |
1575 | if (value != NULL) |
1576 | value_incref (value); | |
25d5ea92 VP |
1577 | if (value && value_lazy (value) && intentionally_not_fetched) |
1578 | var->not_fetched = 1; | |
1579 | else | |
1580 | var->not_fetched = 0; | |
acd65feb | 1581 | var->updated = 0; |
85265413 | 1582 | |
0cc7d26f TT |
1583 | install_new_value_visualizer (var); |
1584 | ||
1585 | /* If we installed a pretty-printer, re-compare the printed version | |
1586 | to see if the variable changed. */ | |
1587 | if (var->pretty_printer) | |
1588 | { | |
1589 | xfree (print_value); | |
1590 | print_value = value_get_print_value (var->value, var->format, var); | |
e8f781e2 TT |
1591 | if ((var->print_value == NULL && print_value != NULL) |
1592 | || (var->print_value != NULL && print_value == NULL) | |
1593 | || (var->print_value != NULL && print_value != NULL | |
1594 | && strcmp (var->print_value, print_value) != 0)) | |
0cc7d26f TT |
1595 | changed = 1; |
1596 | } | |
1597 | if (var->print_value) | |
1598 | xfree (var->print_value); | |
1599 | var->print_value = print_value; | |
1600 | ||
b26ed50d | 1601 | gdb_assert (!var->value || value_type (var->value)); |
acd65feb VP |
1602 | |
1603 | return changed; | |
1604 | } | |
acd65feb | 1605 | |
0cc7d26f TT |
1606 | /* Return the requested range for a varobj. VAR is the varobj. FROM |
1607 | and TO are out parameters; *FROM and *TO will be set to the | |
1608 | selected sub-range of VAR. If no range was selected using | |
1609 | -var-set-update-range, then both will be -1. */ | |
1610 | void | |
1611 | varobj_get_child_range (struct varobj *var, int *from, int *to) | |
b6313243 | 1612 | { |
0cc7d26f TT |
1613 | *from = var->from; |
1614 | *to = var->to; | |
b6313243 TT |
1615 | } |
1616 | ||
0cc7d26f TT |
1617 | /* Set the selected sub-range of children of VAR to start at index |
1618 | FROM and end at index TO. If either FROM or TO is less than zero, | |
1619 | this is interpreted as a request for all children. */ | |
1620 | void | |
1621 | varobj_set_child_range (struct varobj *var, int from, int to) | |
b6313243 | 1622 | { |
0cc7d26f TT |
1623 | var->from = from; |
1624 | var->to = to; | |
b6313243 TT |
1625 | } |
1626 | ||
1627 | void | |
1628 | varobj_set_visualizer (struct varobj *var, const char *visualizer) | |
1629 | { | |
1630 | #if HAVE_PYTHON | |
34fa1d9d MS |
1631 | PyObject *mainmod, *globals, *constructor; |
1632 | struct cleanup *back_to; | |
b6313243 | 1633 | |
d452c4bc | 1634 | back_to = varobj_ensure_python_env (var); |
b6313243 TT |
1635 | |
1636 | mainmod = PyImport_AddModule ("__main__"); | |
1637 | globals = PyModule_GetDict (mainmod); | |
1638 | Py_INCREF (globals); | |
1639 | make_cleanup_py_decref (globals); | |
1640 | ||
1641 | constructor = PyRun_String (visualizer, Py_eval_input, globals, globals); | |
b6313243 | 1642 | |
0cc7d26f | 1643 | if (! constructor) |
b6313243 TT |
1644 | { |
1645 | gdbpy_print_stack (); | |
da1f2771 | 1646 | error (_("Could not evaluate visualizer expression: %s"), visualizer); |
b6313243 TT |
1647 | } |
1648 | ||
0cc7d26f TT |
1649 | construct_visualizer (var, constructor); |
1650 | Py_XDECREF (constructor); | |
b6313243 | 1651 | |
0cc7d26f TT |
1652 | /* If there are any children now, wipe them. */ |
1653 | varobj_delete (var, NULL, 1 /* children only */); | |
1654 | var->num_children = -1; | |
b6313243 TT |
1655 | |
1656 | do_cleanups (back_to); | |
1657 | #else | |
da1f2771 | 1658 | error (_("Python support required")); |
b6313243 TT |
1659 | #endif |
1660 | } | |
1661 | ||
8b93c638 JM |
1662 | /* Update the values for a variable and its children. This is a |
1663 | two-pronged attack. First, re-parse the value for the root's | |
1664 | expression to see if it's changed. Then go all the way | |
1665 | through its children, reconstructing them and noting if they've | |
1666 | changed. | |
1667 | ||
25d5ea92 VP |
1668 | The EXPLICIT parameter specifies if this call is result |
1669 | of MI request to update this specific variable, or | |
1670 | result of implicit -var-update *. For implicit request, we don't | |
1671 | update frozen variables. | |
705da579 KS |
1672 | |
1673 | NOTE: This function may delete the caller's varobj. If it | |
8756216b DP |
1674 | returns TYPE_CHANGED, then it has done this and VARP will be modified |
1675 | to point to the new varobj. */ | |
8b93c638 | 1676 | |
f7f9ae2c | 1677 | VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit) |
8b93c638 JM |
1678 | { |
1679 | int changed = 0; | |
25d5ea92 | 1680 | int type_changed = 0; |
8b93c638 | 1681 | int i; |
30b28db1 | 1682 | struct value *new; |
b6313243 | 1683 | VEC (varobj_update_result) *stack = NULL; |
f7f9ae2c | 1684 | VEC (varobj_update_result) *result = NULL; |
8b93c638 | 1685 | |
25d5ea92 VP |
1686 | /* Frozen means frozen -- we don't check for any change in |
1687 | this varobj, including its going out of scope, or | |
1688 | changing type. One use case for frozen varobjs is | |
1689 | retaining previously evaluated expressions, and we don't | |
1690 | want them to be reevaluated at all. */ | |
1691 | if (!explicit && (*varp)->frozen) | |
f7f9ae2c | 1692 | return result; |
8756216b DP |
1693 | |
1694 | if (!(*varp)->root->is_valid) | |
f7f9ae2c | 1695 | { |
cfce2ea2 PA |
1696 | varobj_update_result r = {0}; |
1697 | r.varobj = *varp; | |
f7f9ae2c VP |
1698 | r.status = VAROBJ_INVALID; |
1699 | VEC_safe_push (varobj_update_result, result, &r); | |
1700 | return result; | |
1701 | } | |
8b93c638 | 1702 | |
25d5ea92 | 1703 | if ((*varp)->root->rootvar == *varp) |
ae093f96 | 1704 | { |
cfce2ea2 PA |
1705 | varobj_update_result r = {0}; |
1706 | r.varobj = *varp; | |
f7f9ae2c VP |
1707 | r.status = VAROBJ_IN_SCOPE; |
1708 | ||
25d5ea92 VP |
1709 | /* Update the root variable. value_of_root can return NULL |
1710 | if the variable is no longer around, i.e. we stepped out of | |
1711 | the frame in which a local existed. We are letting the | |
1712 | value_of_root variable dispose of the varobj if the type | |
1713 | has changed. */ | |
25d5ea92 | 1714 | new = value_of_root (varp, &type_changed); |
f7f9ae2c VP |
1715 | r.varobj = *varp; |
1716 | ||
1717 | r.type_changed = type_changed; | |
ea56f9c2 | 1718 | if (install_new_value ((*varp), new, type_changed)) |
f7f9ae2c | 1719 | r.changed = 1; |
ea56f9c2 | 1720 | |
25d5ea92 | 1721 | if (new == NULL) |
f7f9ae2c | 1722 | r.status = VAROBJ_NOT_IN_SCOPE; |
b6313243 | 1723 | r.value_installed = 1; |
f7f9ae2c VP |
1724 | |
1725 | if (r.status == VAROBJ_NOT_IN_SCOPE) | |
b6313243 | 1726 | { |
0b4bc29a JK |
1727 | if (r.type_changed || r.changed) |
1728 | VEC_safe_push (varobj_update_result, result, &r); | |
b6313243 TT |
1729 | return result; |
1730 | } | |
1731 | ||
1732 | VEC_safe_push (varobj_update_result, stack, &r); | |
1733 | } | |
1734 | else | |
1735 | { | |
cfce2ea2 PA |
1736 | varobj_update_result r = {0}; |
1737 | r.varobj = *varp; | |
b6313243 | 1738 | VEC_safe_push (varobj_update_result, stack, &r); |
b20d8971 | 1739 | } |
8b93c638 | 1740 | |
8756216b | 1741 | /* Walk through the children, reconstructing them all. */ |
b6313243 | 1742 | while (!VEC_empty (varobj_update_result, stack)) |
8b93c638 | 1743 | { |
b6313243 TT |
1744 | varobj_update_result r = *(VEC_last (varobj_update_result, stack)); |
1745 | struct varobj *v = r.varobj; | |
1746 | ||
1747 | VEC_pop (varobj_update_result, stack); | |
1748 | ||
1749 | /* Update this variable, unless it's a root, which is already | |
1750 | updated. */ | |
1751 | if (!r.value_installed) | |
1752 | { | |
1753 | new = value_of_child (v->parent, v->index); | |
1754 | if (install_new_value (v, new, 0 /* type not changed */)) | |
1755 | { | |
1756 | r.changed = 1; | |
1757 | v->updated = 0; | |
1758 | } | |
1759 | } | |
1760 | ||
1761 | /* We probably should not get children of a varobj that has a | |
1762 | pretty-printer, but for which -var-list-children was never | |
0cc7d26f | 1763 | invoked. */ |
b6313243 TT |
1764 | if (v->pretty_printer) |
1765 | { | |
0cc7d26f | 1766 | VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0; |
26f9bcee | 1767 | int i, children_changed = 0; |
b6313243 TT |
1768 | |
1769 | if (v->frozen) | |
1770 | continue; | |
1771 | ||
0cc7d26f TT |
1772 | if (!v->children_requested) |
1773 | { | |
1774 | int dummy; | |
1775 | ||
1776 | /* If we initially did not have potential children, but | |
1777 | now we do, consider the varobj as changed. | |
1778 | Otherwise, if children were never requested, consider | |
1779 | it as unchanged -- presumably, such varobj is not yet | |
1780 | expanded in the UI, so we need not bother getting | |
1781 | it. */ | |
1782 | if (!varobj_has_more (v, 0)) | |
1783 | { | |
1784 | update_dynamic_varobj_children (v, NULL, NULL, NULL, | |
1785 | &dummy, 0, 0, 0); | |
1786 | if (varobj_has_more (v, 0)) | |
1787 | r.changed = 1; | |
1788 | } | |
1789 | ||
1790 | if (r.changed) | |
1791 | VEC_safe_push (varobj_update_result, result, &r); | |
1792 | ||
1793 | continue; | |
1794 | } | |
1795 | ||
b6313243 TT |
1796 | /* If update_dynamic_varobj_children returns 0, then we have |
1797 | a non-conforming pretty-printer, so we skip it. */ | |
0cc7d26f TT |
1798 | if (update_dynamic_varobj_children (v, &changed, &new, &unchanged, |
1799 | &children_changed, 1, | |
1800 | v->from, v->to)) | |
b6313243 | 1801 | { |
0cc7d26f | 1802 | if (children_changed || new) |
b6313243 | 1803 | { |
0cc7d26f TT |
1804 | r.children_changed = 1; |
1805 | r.new = new; | |
b6313243 | 1806 | } |
0cc7d26f TT |
1807 | /* Push in reverse order so that the first child is |
1808 | popped from the work stack first, and so will be | |
1809 | added to result first. This does not affect | |
1810 | correctness, just "nicer". */ | |
1811 | for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i) | |
b6313243 | 1812 | { |
0cc7d26f | 1813 | varobj_p tmp = VEC_index (varobj_p, changed, i); |
cfce2ea2 PA |
1814 | varobj_update_result r = {0}; |
1815 | r.varobj = tmp; | |
0cc7d26f | 1816 | r.changed = 1; |
b6313243 TT |
1817 | r.value_installed = 1; |
1818 | VEC_safe_push (varobj_update_result, stack, &r); | |
1819 | } | |
0cc7d26f TT |
1820 | for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i) |
1821 | { | |
1822 | varobj_p tmp = VEC_index (varobj_p, unchanged, i); | |
1823 | if (!tmp->frozen) | |
1824 | { | |
cfce2ea2 PA |
1825 | varobj_update_result r = {0}; |
1826 | r.varobj = tmp; | |
0cc7d26f TT |
1827 | r.value_installed = 1; |
1828 | VEC_safe_push (varobj_update_result, stack, &r); | |
1829 | } | |
1830 | } | |
b6313243 TT |
1831 | if (r.changed || r.children_changed) |
1832 | VEC_safe_push (varobj_update_result, result, &r); | |
0cc7d26f TT |
1833 | |
1834 | /* Free CHANGED and UNCHANGED, but not NEW, because NEW | |
1835 | has been put into the result vector. */ | |
1836 | VEC_free (varobj_p, changed); | |
1837 | VEC_free (varobj_p, unchanged); | |
1838 | ||
b6313243 TT |
1839 | continue; |
1840 | } | |
1841 | } | |
28335dcc VP |
1842 | |
1843 | /* Push any children. Use reverse order so that the first | |
1844 | child is popped from the work stack first, and so | |
1845 | will be added to result first. This does not | |
1846 | affect correctness, just "nicer". */ | |
1847 | for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i) | |
8b93c638 | 1848 | { |
28335dcc VP |
1849 | varobj_p c = VEC_index (varobj_p, v->children, i); |
1850 | /* Child may be NULL if explicitly deleted by -var-delete. */ | |
25d5ea92 | 1851 | if (c != NULL && !c->frozen) |
28335dcc | 1852 | { |
cfce2ea2 PA |
1853 | varobj_update_result r = {0}; |
1854 | r.varobj = c; | |
b6313243 | 1855 | VEC_safe_push (varobj_update_result, stack, &r); |
28335dcc | 1856 | } |
8b93c638 | 1857 | } |
b6313243 TT |
1858 | |
1859 | if (r.changed || r.type_changed) | |
1860 | VEC_safe_push (varobj_update_result, result, &r); | |
8b93c638 JM |
1861 | } |
1862 | ||
b6313243 TT |
1863 | VEC_free (varobj_update_result, stack); |
1864 | ||
f7f9ae2c | 1865 | return result; |
8b93c638 JM |
1866 | } |
1867 | \f | |
1868 | ||
1869 | /* Helper functions */ | |
1870 | ||
1871 | /* | |
1872 | * Variable object construction/destruction | |
1873 | */ | |
1874 | ||
1875 | static int | |
fba45db2 KB |
1876 | delete_variable (struct cpstack **resultp, struct varobj *var, |
1877 | int only_children_p) | |
8b93c638 JM |
1878 | { |
1879 | int delcount = 0; | |
1880 | ||
1881 | delete_variable_1 (resultp, &delcount, var, | |
1882 | only_children_p, 1 /* remove_from_parent_p */ ); | |
1883 | ||
1884 | return delcount; | |
1885 | } | |
1886 | ||
1887 | /* Delete the variable object VAR and its children */ | |
1888 | /* IMPORTANT NOTE: If we delete a variable which is a child | |
1889 | and the parent is not removed we dump core. It must be always | |
1890 | initially called with remove_from_parent_p set */ | |
1891 | static void | |
72330bd6 AC |
1892 | delete_variable_1 (struct cpstack **resultp, int *delcountp, |
1893 | struct varobj *var, int only_children_p, | |
1894 | int remove_from_parent_p) | |
8b93c638 | 1895 | { |
28335dcc | 1896 | int i; |
8b93c638 JM |
1897 | |
1898 | /* Delete any children of this variable, too. */ | |
28335dcc VP |
1899 | for (i = 0; i < VEC_length (varobj_p, var->children); ++i) |
1900 | { | |
1901 | varobj_p child = VEC_index (varobj_p, var->children, i); | |
214270ab VP |
1902 | if (!child) |
1903 | continue; | |
8b93c638 | 1904 | if (!remove_from_parent_p) |
28335dcc VP |
1905 | child->parent = NULL; |
1906 | delete_variable_1 (resultp, delcountp, child, 0, only_children_p); | |
8b93c638 | 1907 | } |
28335dcc | 1908 | VEC_free (varobj_p, var->children); |
8b93c638 JM |
1909 | |
1910 | /* if we were called to delete only the children we are done here */ | |
1911 | if (only_children_p) | |
1912 | return; | |
1913 | ||
1914 | /* Otherwise, add it to the list of deleted ones and proceed to do so */ | |
73a93a32 JI |
1915 | /* If the name is null, this is a temporary variable, that has not |
1916 | yet been installed, don't report it, it belongs to the caller... */ | |
1917 | if (var->obj_name != NULL) | |
8b93c638 | 1918 | { |
5b616ba1 | 1919 | cppush (resultp, xstrdup (var->obj_name)); |
8b93c638 JM |
1920 | *delcountp = *delcountp + 1; |
1921 | } | |
1922 | ||
1923 | /* If this variable has a parent, remove it from its parent's list */ | |
1924 | /* OPTIMIZATION: if the parent of this variable is also being deleted, | |
1925 | (as indicated by remove_from_parent_p) we don't bother doing an | |
1926 | expensive list search to find the element to remove when we are | |
1927 | discarding the list afterwards */ | |
72330bd6 | 1928 | if ((remove_from_parent_p) && (var->parent != NULL)) |
8b93c638 | 1929 | { |
28335dcc | 1930 | VEC_replace (varobj_p, var->parent->children, var->index, NULL); |
8b93c638 | 1931 | } |
72330bd6 | 1932 | |
73a93a32 JI |
1933 | if (var->obj_name != NULL) |
1934 | uninstall_variable (var); | |
8b93c638 JM |
1935 | |
1936 | /* Free memory associated with this variable */ | |
1937 | free_variable (var); | |
1938 | } | |
1939 | ||
1940 | /* Install the given variable VAR with the object name VAR->OBJ_NAME. */ | |
1941 | static int | |
fba45db2 | 1942 | install_variable (struct varobj *var) |
8b93c638 JM |
1943 | { |
1944 | struct vlist *cv; | |
1945 | struct vlist *newvl; | |
1946 | const char *chp; | |
1947 | unsigned int index = 0; | |
1948 | unsigned int i = 1; | |
1949 | ||
1950 | for (chp = var->obj_name; *chp; chp++) | |
1951 | { | |
1952 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1953 | } | |
1954 | ||
1955 | cv = *(varobj_table + index); | |
1956 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1957 | cv = cv->next; | |
1958 | ||
1959 | if (cv != NULL) | |
8a3fe4f8 | 1960 | error (_("Duplicate variable object name")); |
8b93c638 JM |
1961 | |
1962 | /* Add varobj to hash table */ | |
1963 | newvl = xmalloc (sizeof (struct vlist)); | |
1964 | newvl->next = *(varobj_table + index); | |
1965 | newvl->var = var; | |
1966 | *(varobj_table + index) = newvl; | |
1967 | ||
1968 | /* If root, add varobj to root list */ | |
b2c2bd75 | 1969 | if (is_root_p (var)) |
8b93c638 JM |
1970 | { |
1971 | /* Add to list of root variables */ | |
1972 | if (rootlist == NULL) | |
1973 | var->root->next = NULL; | |
1974 | else | |
1975 | var->root->next = rootlist; | |
1976 | rootlist = var->root; | |
8b93c638 JM |
1977 | } |
1978 | ||
1979 | return 1; /* OK */ | |
1980 | } | |
1981 | ||
1982 | /* Unistall the object VAR. */ | |
1983 | static void | |
fba45db2 | 1984 | uninstall_variable (struct varobj *var) |
8b93c638 JM |
1985 | { |
1986 | struct vlist *cv; | |
1987 | struct vlist *prev; | |
1988 | struct varobj_root *cr; | |
1989 | struct varobj_root *prer; | |
1990 | const char *chp; | |
1991 | unsigned int index = 0; | |
1992 | unsigned int i = 1; | |
1993 | ||
1994 | /* Remove varobj from hash table */ | |
1995 | for (chp = var->obj_name; *chp; chp++) | |
1996 | { | |
1997 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1998 | } | |
1999 | ||
2000 | cv = *(varobj_table + index); | |
2001 | prev = NULL; | |
2002 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
2003 | { | |
2004 | prev = cv; | |
2005 | cv = cv->next; | |
2006 | } | |
2007 | ||
2008 | if (varobjdebug) | |
2009 | fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name); | |
2010 | ||
2011 | if (cv == NULL) | |
2012 | { | |
72330bd6 AC |
2013 | warning |
2014 | ("Assertion failed: Could not find variable object \"%s\" to delete", | |
2015 | var->obj_name); | |
8b93c638 JM |
2016 | return; |
2017 | } | |
2018 | ||
2019 | if (prev == NULL) | |
2020 | *(varobj_table + index) = cv->next; | |
2021 | else | |
2022 | prev->next = cv->next; | |
2023 | ||
b8c9b27d | 2024 | xfree (cv); |
8b93c638 JM |
2025 | |
2026 | /* If root, remove varobj from root list */ | |
b2c2bd75 | 2027 | if (is_root_p (var)) |
8b93c638 JM |
2028 | { |
2029 | /* Remove from list of root variables */ | |
2030 | if (rootlist == var->root) | |
2031 | rootlist = var->root->next; | |
2032 | else | |
2033 | { | |
2034 | prer = NULL; | |
2035 | cr = rootlist; | |
2036 | while ((cr != NULL) && (cr->rootvar != var)) | |
2037 | { | |
2038 | prer = cr; | |
2039 | cr = cr->next; | |
2040 | } | |
2041 | if (cr == NULL) | |
2042 | { | |
72330bd6 AC |
2043 | warning |
2044 | ("Assertion failed: Could not find varobj \"%s\" in root list", | |
2045 | var->obj_name); | |
8b93c638 JM |
2046 | return; |
2047 | } | |
2048 | if (prer == NULL) | |
2049 | rootlist = NULL; | |
2050 | else | |
2051 | prer->next = cr->next; | |
2052 | } | |
8b93c638 JM |
2053 | } |
2054 | ||
2055 | } | |
2056 | ||
8b93c638 JM |
2057 | /* Create and install a child of the parent of the given name */ |
2058 | static struct varobj * | |
fba45db2 | 2059 | create_child (struct varobj *parent, int index, char *name) |
b6313243 TT |
2060 | { |
2061 | return create_child_with_value (parent, index, name, | |
2062 | value_of_child (parent, index)); | |
2063 | } | |
2064 | ||
2065 | static struct varobj * | |
2066 | create_child_with_value (struct varobj *parent, int index, const char *name, | |
2067 | struct value *value) | |
8b93c638 JM |
2068 | { |
2069 | struct varobj *child; | |
2070 | char *childs_name; | |
2071 | ||
2072 | child = new_variable (); | |
2073 | ||
2074 | /* name is allocated by name_of_child */ | |
b6313243 TT |
2075 | /* FIXME: xstrdup should not be here. */ |
2076 | child->name = xstrdup (name); | |
8b93c638 | 2077 | child->index = index; |
8b93c638 JM |
2078 | child->parent = parent; |
2079 | child->root = parent->root; | |
b435e160 | 2080 | childs_name = xstrprintf ("%s.%s", parent->obj_name, name); |
8b93c638 JM |
2081 | child->obj_name = childs_name; |
2082 | install_variable (child); | |
2083 | ||
acd65feb VP |
2084 | /* Compute the type of the child. Must do this before |
2085 | calling install_new_value. */ | |
2086 | if (value != NULL) | |
2087 | /* If the child had no evaluation errors, var->value | |
2088 | will be non-NULL and contain a valid type. */ | |
2089 | child->type = value_type (value); | |
2090 | else | |
2091 | /* Otherwise, we must compute the type. */ | |
2092 | child->type = (*child->root->lang->type_of_child) (child->parent, | |
2093 | child->index); | |
2094 | install_new_value (child, value, 1); | |
2095 | ||
8b93c638 JM |
2096 | return child; |
2097 | } | |
8b93c638 JM |
2098 | \f |
2099 | ||
2100 | /* | |
2101 | * Miscellaneous utility functions. | |
2102 | */ | |
2103 | ||
2104 | /* Allocate memory and initialize a new variable */ | |
2105 | static struct varobj * | |
2106 | new_variable (void) | |
2107 | { | |
2108 | struct varobj *var; | |
2109 | ||
2110 | var = (struct varobj *) xmalloc (sizeof (struct varobj)); | |
2111 | var->name = NULL; | |
02142340 | 2112 | var->path_expr = NULL; |
8b93c638 JM |
2113 | var->obj_name = NULL; |
2114 | var->index = -1; | |
2115 | var->type = NULL; | |
2116 | var->value = NULL; | |
8b93c638 JM |
2117 | var->num_children = -1; |
2118 | var->parent = NULL; | |
2119 | var->children = NULL; | |
2120 | var->format = 0; | |
2121 | var->root = NULL; | |
fb9b6b35 | 2122 | var->updated = 0; |
85265413 | 2123 | var->print_value = NULL; |
25d5ea92 VP |
2124 | var->frozen = 0; |
2125 | var->not_fetched = 0; | |
b6313243 | 2126 | var->children_requested = 0; |
0cc7d26f TT |
2127 | var->from = -1; |
2128 | var->to = -1; | |
2129 | var->constructor = 0; | |
b6313243 | 2130 | var->pretty_printer = 0; |
0cc7d26f TT |
2131 | var->child_iter = 0; |
2132 | var->saved_item = 0; | |
8b93c638 JM |
2133 | |
2134 | return var; | |
2135 | } | |
2136 | ||
2137 | /* Allocate memory and initialize a new root variable */ | |
2138 | static struct varobj * | |
2139 | new_root_variable (void) | |
2140 | { | |
2141 | struct varobj *var = new_variable (); | |
2142 | var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));; | |
2143 | var->root->lang = NULL; | |
2144 | var->root->exp = NULL; | |
2145 | var->root->valid_block = NULL; | |
7a424e99 | 2146 | var->root->frame = null_frame_id; |
a5defcdc | 2147 | var->root->floating = 0; |
8b93c638 | 2148 | var->root->rootvar = NULL; |
8756216b | 2149 | var->root->is_valid = 1; |
8b93c638 JM |
2150 | |
2151 | return var; | |
2152 | } | |
2153 | ||
2154 | /* Free any allocated memory associated with VAR. */ | |
2155 | static void | |
fba45db2 | 2156 | free_variable (struct varobj *var) |
8b93c638 | 2157 | { |
d452c4bc UW |
2158 | #if HAVE_PYTHON |
2159 | if (var->pretty_printer) | |
2160 | { | |
2161 | struct cleanup *cleanup = varobj_ensure_python_env (var); | |
0cc7d26f TT |
2162 | Py_XDECREF (var->constructor); |
2163 | Py_XDECREF (var->pretty_printer); | |
2164 | Py_XDECREF (var->child_iter); | |
2165 | Py_XDECREF (var->saved_item); | |
d452c4bc UW |
2166 | do_cleanups (cleanup); |
2167 | } | |
2168 | #endif | |
2169 | ||
36746093 JK |
2170 | value_free (var->value); |
2171 | ||
8b93c638 | 2172 | /* Free the expression if this is a root variable. */ |
b2c2bd75 | 2173 | if (is_root_p (var)) |
8b93c638 | 2174 | { |
3038237c | 2175 | xfree (var->root->exp); |
8038e1e2 | 2176 | xfree (var->root); |
8b93c638 JM |
2177 | } |
2178 | ||
8038e1e2 AC |
2179 | xfree (var->name); |
2180 | xfree (var->obj_name); | |
85265413 | 2181 | xfree (var->print_value); |
02142340 | 2182 | xfree (var->path_expr); |
8038e1e2 | 2183 | xfree (var); |
8b93c638 JM |
2184 | } |
2185 | ||
74b7792f AC |
2186 | static void |
2187 | do_free_variable_cleanup (void *var) | |
2188 | { | |
2189 | free_variable (var); | |
2190 | } | |
2191 | ||
2192 | static struct cleanup * | |
2193 | make_cleanup_free_variable (struct varobj *var) | |
2194 | { | |
2195 | return make_cleanup (do_free_variable_cleanup, var); | |
2196 | } | |
2197 | ||
6766a268 DJ |
2198 | /* This returns the type of the variable. It also skips past typedefs |
2199 | to return the real type of the variable. | |
94b66fa7 KS |
2200 | |
2201 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
2202 | except within get_target_type and get_type. */ | |
8b93c638 | 2203 | static struct type * |
fba45db2 | 2204 | get_type (struct varobj *var) |
8b93c638 JM |
2205 | { |
2206 | struct type *type; | |
2207 | type = var->type; | |
2208 | ||
6766a268 DJ |
2209 | if (type != NULL) |
2210 | type = check_typedef (type); | |
8b93c638 JM |
2211 | |
2212 | return type; | |
2213 | } | |
2214 | ||
6e2a9270 VP |
2215 | /* Return the type of the value that's stored in VAR, |
2216 | or that would have being stored there if the | |
2217 | value were accessible. | |
2218 | ||
2219 | This differs from VAR->type in that VAR->type is always | |
2220 | the true type of the expession in the source language. | |
2221 | The return value of this function is the type we're | |
2222 | actually storing in varobj, and using for displaying | |
2223 | the values and for comparing previous and new values. | |
2224 | ||
2225 | For example, top-level references are always stripped. */ | |
2226 | static struct type * | |
2227 | get_value_type (struct varobj *var) | |
2228 | { | |
2229 | struct type *type; | |
2230 | ||
2231 | if (var->value) | |
2232 | type = value_type (var->value); | |
2233 | else | |
2234 | type = var->type; | |
2235 | ||
2236 | type = check_typedef (type); | |
2237 | ||
2238 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
2239 | type = get_target_type (type); | |
2240 | ||
2241 | type = check_typedef (type); | |
2242 | ||
2243 | return type; | |
2244 | } | |
2245 | ||
8b93c638 | 2246 | /* This returns the target type (or NULL) of TYPE, also skipping |
94b66fa7 KS |
2247 | past typedefs, just like get_type (). |
2248 | ||
2249 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
2250 | except within get_target_type and get_type. */ | |
8b93c638 | 2251 | static struct type * |
fba45db2 | 2252 | get_target_type (struct type *type) |
8b93c638 JM |
2253 | { |
2254 | if (type != NULL) | |
2255 | { | |
2256 | type = TYPE_TARGET_TYPE (type); | |
6766a268 DJ |
2257 | if (type != NULL) |
2258 | type = check_typedef (type); | |
8b93c638 JM |
2259 | } |
2260 | ||
2261 | return type; | |
2262 | } | |
2263 | ||
2264 | /* What is the default display for this variable? We assume that | |
2265 | everything is "natural". Any exceptions? */ | |
2266 | static enum varobj_display_formats | |
fba45db2 | 2267 | variable_default_display (struct varobj *var) |
8b93c638 JM |
2268 | { |
2269 | return FORMAT_NATURAL; | |
2270 | } | |
2271 | ||
8b93c638 JM |
2272 | /* FIXME: The following should be generic for any pointer */ |
2273 | static void | |
fba45db2 | 2274 | cppush (struct cpstack **pstack, char *name) |
8b93c638 JM |
2275 | { |
2276 | struct cpstack *s; | |
2277 | ||
2278 | s = (struct cpstack *) xmalloc (sizeof (struct cpstack)); | |
2279 | s->name = name; | |
2280 | s->next = *pstack; | |
2281 | *pstack = s; | |
2282 | } | |
2283 | ||
2284 | /* FIXME: The following should be generic for any pointer */ | |
2285 | static char * | |
fba45db2 | 2286 | cppop (struct cpstack **pstack) |
8b93c638 JM |
2287 | { |
2288 | struct cpstack *s; | |
2289 | char *v; | |
2290 | ||
2291 | if ((*pstack)->name == NULL && (*pstack)->next == NULL) | |
2292 | return NULL; | |
2293 | ||
2294 | s = *pstack; | |
2295 | v = s->name; | |
2296 | *pstack = (*pstack)->next; | |
b8c9b27d | 2297 | xfree (s); |
8b93c638 JM |
2298 | |
2299 | return v; | |
2300 | } | |
2301 | \f | |
2302 | /* | |
2303 | * Language-dependencies | |
2304 | */ | |
2305 | ||
2306 | /* Common entry points */ | |
2307 | ||
2308 | /* Get the language of variable VAR. */ | |
2309 | static enum varobj_languages | |
fba45db2 | 2310 | variable_language (struct varobj *var) |
8b93c638 JM |
2311 | { |
2312 | enum varobj_languages lang; | |
2313 | ||
2314 | switch (var->root->exp->language_defn->la_language) | |
2315 | { | |
2316 | default: | |
2317 | case language_c: | |
2318 | lang = vlang_c; | |
2319 | break; | |
2320 | case language_cplus: | |
2321 | lang = vlang_cplus; | |
2322 | break; | |
2323 | case language_java: | |
2324 | lang = vlang_java; | |
2325 | break; | |
2326 | } | |
2327 | ||
2328 | return lang; | |
2329 | } | |
2330 | ||
2331 | /* Return the number of children for a given variable. | |
2332 | The result of this function is defined by the language | |
2333 | implementation. The number of children returned by this function | |
2334 | is the number of children that the user will see in the variable | |
2335 | display. */ | |
2336 | static int | |
fba45db2 | 2337 | number_of_children (struct varobj *var) |
8b93c638 JM |
2338 | { |
2339 | return (*var->root->lang->number_of_children) (var);; | |
2340 | } | |
2341 | ||
2342 | /* What is the expression for the root varobj VAR? Returns a malloc'd string. */ | |
2343 | static char * | |
fba45db2 | 2344 | name_of_variable (struct varobj *var) |
8b93c638 JM |
2345 | { |
2346 | return (*var->root->lang->name_of_variable) (var); | |
2347 | } | |
2348 | ||
2349 | /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */ | |
2350 | static char * | |
fba45db2 | 2351 | name_of_child (struct varobj *var, int index) |
8b93c638 JM |
2352 | { |
2353 | return (*var->root->lang->name_of_child) (var, index); | |
2354 | } | |
2355 | ||
a5defcdc VP |
2356 | /* What is the ``struct value *'' of the root variable VAR? |
2357 | For floating variable object, evaluation can get us a value | |
2358 | of different type from what is stored in varobj already. In | |
2359 | that case: | |
2360 | - *type_changed will be set to 1 | |
2361 | - old varobj will be freed, and new one will be | |
2362 | created, with the same name. | |
2363 | - *var_handle will be set to the new varobj | |
2364 | Otherwise, *type_changed will be set to 0. */ | |
30b28db1 | 2365 | static struct value * |
fba45db2 | 2366 | value_of_root (struct varobj **var_handle, int *type_changed) |
8b93c638 | 2367 | { |
73a93a32 JI |
2368 | struct varobj *var; |
2369 | ||
2370 | if (var_handle == NULL) | |
2371 | return NULL; | |
2372 | ||
2373 | var = *var_handle; | |
2374 | ||
2375 | /* This should really be an exception, since this should | |
2376 | only get called with a root variable. */ | |
2377 | ||
b2c2bd75 | 2378 | if (!is_root_p (var)) |
73a93a32 JI |
2379 | return NULL; |
2380 | ||
a5defcdc | 2381 | if (var->root->floating) |
73a93a32 JI |
2382 | { |
2383 | struct varobj *tmp_var; | |
2384 | char *old_type, *new_type; | |
6225abfa | 2385 | |
73a93a32 JI |
2386 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, |
2387 | USE_SELECTED_FRAME); | |
2388 | if (tmp_var == NULL) | |
2389 | { | |
2390 | return NULL; | |
2391 | } | |
6225abfa | 2392 | old_type = varobj_get_type (var); |
73a93a32 | 2393 | new_type = varobj_get_type (tmp_var); |
72330bd6 | 2394 | if (strcmp (old_type, new_type) == 0) |
73a93a32 | 2395 | { |
fcacd99f VP |
2396 | /* The expression presently stored inside var->root->exp |
2397 | remembers the locations of local variables relatively to | |
2398 | the frame where the expression was created (in DWARF location | |
2399 | button, for example). Naturally, those locations are not | |
2400 | correct in other frames, so update the expression. */ | |
2401 | ||
2402 | struct expression *tmp_exp = var->root->exp; | |
2403 | var->root->exp = tmp_var->root->exp; | |
2404 | tmp_var->root->exp = tmp_exp; | |
2405 | ||
73a93a32 JI |
2406 | varobj_delete (tmp_var, NULL, 0); |
2407 | *type_changed = 0; | |
2408 | } | |
2409 | else | |
2410 | { | |
1b36a34b | 2411 | tmp_var->obj_name = xstrdup (var->obj_name); |
0cc7d26f TT |
2412 | tmp_var->from = var->from; |
2413 | tmp_var->to = var->to; | |
a5defcdc VP |
2414 | varobj_delete (var, NULL, 0); |
2415 | ||
73a93a32 JI |
2416 | install_variable (tmp_var); |
2417 | *var_handle = tmp_var; | |
705da579 | 2418 | var = *var_handle; |
73a93a32 JI |
2419 | *type_changed = 1; |
2420 | } | |
74dddad3 MS |
2421 | xfree (old_type); |
2422 | xfree (new_type); | |
73a93a32 JI |
2423 | } |
2424 | else | |
2425 | { | |
2426 | *type_changed = 0; | |
2427 | } | |
2428 | ||
2429 | return (*var->root->lang->value_of_root) (var_handle); | |
8b93c638 JM |
2430 | } |
2431 | ||
30b28db1 AC |
2432 | /* What is the ``struct value *'' for the INDEX'th child of PARENT? */ |
2433 | static struct value * | |
fba45db2 | 2434 | value_of_child (struct varobj *parent, int index) |
8b93c638 | 2435 | { |
30b28db1 | 2436 | struct value *value; |
8b93c638 JM |
2437 | |
2438 | value = (*parent->root->lang->value_of_child) (parent, index); | |
2439 | ||
8b93c638 JM |
2440 | return value; |
2441 | } | |
2442 | ||
8b93c638 JM |
2443 | /* GDB already has a command called "value_of_variable". Sigh. */ |
2444 | static char * | |
de051565 | 2445 | my_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 2446 | { |
8756216b | 2447 | if (var->root->is_valid) |
0cc7d26f TT |
2448 | { |
2449 | if (var->pretty_printer) | |
2450 | return value_get_print_value (var->value, var->format, var); | |
2451 | return (*var->root->lang->value_of_variable) (var, format); | |
2452 | } | |
8756216b DP |
2453 | else |
2454 | return NULL; | |
8b93c638 JM |
2455 | } |
2456 | ||
85265413 | 2457 | static char * |
b6313243 | 2458 | value_get_print_value (struct value *value, enum varobj_display_formats format, |
d452c4bc | 2459 | struct varobj *var) |
85265413 | 2460 | { |
57e66780 DJ |
2461 | struct ui_file *stb; |
2462 | struct cleanup *old_chain; | |
fbb8f299 | 2463 | gdb_byte *thevalue = NULL; |
79a45b7d | 2464 | struct value_print_options opts; |
be759fcf PM |
2465 | struct type *type = NULL; |
2466 | long len = 0; | |
2467 | char *encoding = NULL; | |
2468 | struct gdbarch *gdbarch = NULL; | |
57e66780 DJ |
2469 | |
2470 | if (value == NULL) | |
2471 | return NULL; | |
2472 | ||
be759fcf | 2473 | gdbarch = get_type_arch (value_type (value)); |
b6313243 TT |
2474 | #if HAVE_PYTHON |
2475 | { | |
d452c4bc UW |
2476 | struct cleanup *back_to = varobj_ensure_python_env (var); |
2477 | PyObject *value_formatter = var->pretty_printer; | |
2478 | ||
0cc7d26f | 2479 | if (value_formatter) |
b6313243 | 2480 | { |
0cc7d26f TT |
2481 | /* First check to see if we have any children at all. If so, |
2482 | we simply return {...}. */ | |
2483 | if (dynamic_varobj_has_child_method (var)) | |
2484 | return xstrdup ("{...}"); | |
b6313243 | 2485 | |
0cc7d26f | 2486 | if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst)) |
b6313243 | 2487 | { |
0cc7d26f TT |
2488 | char *hint; |
2489 | struct value *replacement; | |
2490 | int string_print = 0; | |
2491 | PyObject *output = NULL; | |
2492 | ||
2493 | hint = gdbpy_get_display_hint (value_formatter); | |
2494 | if (hint) | |
2495 | { | |
2496 | if (!strcmp (hint, "string")) | |
2497 | string_print = 1; | |
2498 | xfree (hint); | |
2499 | } | |
b6313243 | 2500 | |
0cc7d26f TT |
2501 | output = apply_varobj_pretty_printer (value_formatter, |
2502 | &replacement); | |
2503 | if (output) | |
2504 | { | |
be759fcf | 2505 | if (gdbpy_is_lazy_string (output)) |
0cc7d26f | 2506 | { |
be759fcf PM |
2507 | thevalue = gdbpy_extract_lazy_string (output, &type, |
2508 | &len, &encoding); | |
2509 | string_print = 1; | |
2510 | } | |
2511 | else | |
2512 | { | |
2513 | PyObject *py_str | |
2514 | = python_string_to_target_python_string (output); | |
2515 | if (py_str) | |
2516 | { | |
2517 | char *s = PyString_AsString (py_str); | |
2518 | len = PyString_Size (py_str); | |
2519 | thevalue = xmemdup (s, len + 1, len + 1); | |
2520 | type = builtin_type (gdbarch)->builtin_char; | |
2521 | Py_DECREF (py_str); | |
2522 | } | |
0cc7d26f TT |
2523 | } |
2524 | Py_DECREF (output); | |
fbb8f299 | 2525 | } |
0cc7d26f TT |
2526 | if (thevalue && !string_print) |
2527 | { | |
2528 | do_cleanups (back_to); | |
be759fcf | 2529 | xfree (encoding); |
0cc7d26f TT |
2530 | return thevalue; |
2531 | } | |
2532 | if (replacement) | |
2533 | value = replacement; | |
b6313243 | 2534 | } |
b6313243 | 2535 | } |
d452c4bc | 2536 | do_cleanups (back_to); |
b6313243 TT |
2537 | } |
2538 | #endif | |
2539 | ||
57e66780 DJ |
2540 | stb = mem_fileopen (); |
2541 | old_chain = make_cleanup_ui_file_delete (stb); | |
2542 | ||
79a45b7d TT |
2543 | get_formatted_print_options (&opts, format_code[(int) format]); |
2544 | opts.deref_ref = 0; | |
b6313243 TT |
2545 | opts.raw = 1; |
2546 | if (thevalue) | |
2547 | { | |
2548 | make_cleanup (xfree, thevalue); | |
be759fcf PM |
2549 | make_cleanup (xfree, encoding); |
2550 | LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts); | |
b6313243 TT |
2551 | } |
2552 | else | |
2553 | common_val_print (value, stb, 0, &opts, current_language); | |
759ef836 | 2554 | thevalue = ui_file_xstrdup (stb, NULL); |
57e66780 | 2555 | |
85265413 NR |
2556 | do_cleanups (old_chain); |
2557 | return thevalue; | |
2558 | } | |
2559 | ||
340a7723 NR |
2560 | int |
2561 | varobj_editable_p (struct varobj *var) | |
2562 | { | |
2563 | struct type *type; | |
340a7723 NR |
2564 | |
2565 | if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value))) | |
2566 | return 0; | |
2567 | ||
2568 | type = get_value_type (var); | |
2569 | ||
2570 | switch (TYPE_CODE (type)) | |
2571 | { | |
2572 | case TYPE_CODE_STRUCT: | |
2573 | case TYPE_CODE_UNION: | |
2574 | case TYPE_CODE_ARRAY: | |
2575 | case TYPE_CODE_FUNC: | |
2576 | case TYPE_CODE_METHOD: | |
2577 | return 0; | |
2578 | break; | |
2579 | ||
2580 | default: | |
2581 | return 1; | |
2582 | break; | |
2583 | } | |
2584 | } | |
2585 | ||
acd65feb VP |
2586 | /* Return non-zero if changes in value of VAR |
2587 | must be detected and reported by -var-update. | |
2588 | Return zero is -var-update should never report | |
2589 | changes of such values. This makes sense for structures | |
2590 | (since the changes in children values will be reported separately), | |
2591 | or for artifical objects (like 'public' pseudo-field in C++). | |
2592 | ||
2593 | Return value of 0 means that gdb need not call value_fetch_lazy | |
2594 | for the value of this variable object. */ | |
8b93c638 | 2595 | static int |
b2c2bd75 | 2596 | varobj_value_is_changeable_p (struct varobj *var) |
8b93c638 JM |
2597 | { |
2598 | int r; | |
2599 | struct type *type; | |
2600 | ||
2601 | if (CPLUS_FAKE_CHILD (var)) | |
2602 | return 0; | |
2603 | ||
6e2a9270 | 2604 | type = get_value_type (var); |
8b93c638 JM |
2605 | |
2606 | switch (TYPE_CODE (type)) | |
2607 | { | |
72330bd6 AC |
2608 | case TYPE_CODE_STRUCT: |
2609 | case TYPE_CODE_UNION: | |
2610 | case TYPE_CODE_ARRAY: | |
2611 | r = 0; | |
2612 | break; | |
8b93c638 | 2613 | |
72330bd6 AC |
2614 | default: |
2615 | r = 1; | |
8b93c638 JM |
2616 | } |
2617 | ||
2618 | return r; | |
2619 | } | |
2620 | ||
5a413362 VP |
2621 | /* Return 1 if that varobj is floating, that is is always evaluated in the |
2622 | selected frame, and not bound to thread/frame. Such variable objects | |
2623 | are created using '@' as frame specifier to -var-create. */ | |
2624 | int | |
2625 | varobj_floating_p (struct varobj *var) | |
2626 | { | |
2627 | return var->root->floating; | |
2628 | } | |
2629 | ||
2024f65a VP |
2630 | /* Given the value and the type of a variable object, |
2631 | adjust the value and type to those necessary | |
2632 | for getting children of the variable object. | |
2633 | This includes dereferencing top-level references | |
2634 | to all types and dereferencing pointers to | |
2635 | structures. | |
2636 | ||
2637 | Both TYPE and *TYPE should be non-null. VALUE | |
2638 | can be null if we want to only translate type. | |
2639 | *VALUE can be null as well -- if the parent | |
02142340 VP |
2640 | value is not known. |
2641 | ||
2642 | If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1 | |
b6313243 | 2643 | depending on whether pointer was dereferenced |
02142340 | 2644 | in this function. */ |
2024f65a VP |
2645 | static void |
2646 | adjust_value_for_child_access (struct value **value, | |
02142340 VP |
2647 | struct type **type, |
2648 | int *was_ptr) | |
2024f65a VP |
2649 | { |
2650 | gdb_assert (type && *type); | |
2651 | ||
02142340 VP |
2652 | if (was_ptr) |
2653 | *was_ptr = 0; | |
2654 | ||
2024f65a VP |
2655 | *type = check_typedef (*type); |
2656 | ||
2657 | /* The type of value stored in varobj, that is passed | |
2658 | to us, is already supposed to be | |
2659 | reference-stripped. */ | |
2660 | ||
2661 | gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF); | |
2662 | ||
2663 | /* Pointers to structures are treated just like | |
2664 | structures when accessing children. Don't | |
2665 | dererences pointers to other types. */ | |
2666 | if (TYPE_CODE (*type) == TYPE_CODE_PTR) | |
2667 | { | |
2668 | struct type *target_type = get_target_type (*type); | |
2669 | if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT | |
2670 | || TYPE_CODE (target_type) == TYPE_CODE_UNION) | |
2671 | { | |
2672 | if (value && *value) | |
3f4178d6 DJ |
2673 | { |
2674 | int success = gdb_value_ind (*value, value); | |
2675 | if (!success) | |
2676 | *value = NULL; | |
2677 | } | |
2024f65a | 2678 | *type = target_type; |
02142340 VP |
2679 | if (was_ptr) |
2680 | *was_ptr = 1; | |
2024f65a VP |
2681 | } |
2682 | } | |
2683 | ||
2684 | /* The 'get_target_type' function calls check_typedef on | |
2685 | result, so we can immediately check type code. No | |
2686 | need to call check_typedef here. */ | |
2687 | } | |
2688 | ||
8b93c638 JM |
2689 | /* C */ |
2690 | static int | |
fba45db2 | 2691 | c_number_of_children (struct varobj *var) |
8b93c638 | 2692 | { |
2024f65a VP |
2693 | struct type *type = get_value_type (var); |
2694 | int children = 0; | |
8b93c638 | 2695 | struct type *target; |
8b93c638 | 2696 | |
02142340 | 2697 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 | 2698 | target = get_target_type (type); |
8b93c638 JM |
2699 | |
2700 | switch (TYPE_CODE (type)) | |
2701 | { | |
2702 | case TYPE_CODE_ARRAY: | |
2703 | if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0 | |
d78df370 | 2704 | && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) |
8b93c638 JM |
2705 | children = TYPE_LENGTH (type) / TYPE_LENGTH (target); |
2706 | else | |
74a44383 DJ |
2707 | /* If we don't know how many elements there are, don't display |
2708 | any. */ | |
2709 | children = 0; | |
8b93c638 JM |
2710 | break; |
2711 | ||
2712 | case TYPE_CODE_STRUCT: | |
2713 | case TYPE_CODE_UNION: | |
2714 | children = TYPE_NFIELDS (type); | |
2715 | break; | |
2716 | ||
2717 | case TYPE_CODE_PTR: | |
2024f65a VP |
2718 | /* The type here is a pointer to non-struct. Typically, pointers |
2719 | have one child, except for function ptrs, which have no children, | |
2720 | and except for void*, as we don't know what to show. | |
2721 | ||
0755e6c1 FN |
2722 | We can show char* so we allow it to be dereferenced. If you decide |
2723 | to test for it, please mind that a little magic is necessary to | |
2724 | properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and | |
2725 | TYPE_NAME == "char" */ | |
2024f65a VP |
2726 | if (TYPE_CODE (target) == TYPE_CODE_FUNC |
2727 | || TYPE_CODE (target) == TYPE_CODE_VOID) | |
2728 | children = 0; | |
2729 | else | |
2730 | children = 1; | |
8b93c638 JM |
2731 | break; |
2732 | ||
2733 | default: | |
2734 | /* Other types have no children */ | |
2735 | break; | |
2736 | } | |
2737 | ||
2738 | return children; | |
2739 | } | |
2740 | ||
2741 | static char * | |
fba45db2 | 2742 | c_name_of_variable (struct varobj *parent) |
8b93c638 | 2743 | { |
1b36a34b | 2744 | return xstrdup (parent->name); |
8b93c638 JM |
2745 | } |
2746 | ||
bbec2603 VP |
2747 | /* Return the value of element TYPE_INDEX of a structure |
2748 | value VALUE. VALUE's type should be a structure, | |
2749 | or union, or a typedef to struct/union. | |
2750 | ||
2751 | Returns NULL if getting the value fails. Never throws. */ | |
2752 | static struct value * | |
2753 | value_struct_element_index (struct value *value, int type_index) | |
8b93c638 | 2754 | { |
bbec2603 VP |
2755 | struct value *result = NULL; |
2756 | volatile struct gdb_exception e; | |
8b93c638 | 2757 | |
bbec2603 VP |
2758 | struct type *type = value_type (value); |
2759 | type = check_typedef (type); | |
2760 | ||
2761 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
2762 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
8b93c638 | 2763 | |
bbec2603 VP |
2764 | TRY_CATCH (e, RETURN_MASK_ERROR) |
2765 | { | |
d6a843b5 | 2766 | if (field_is_static (&TYPE_FIELD (type, type_index))) |
bbec2603 VP |
2767 | result = value_static_field (type, type_index); |
2768 | else | |
2769 | result = value_primitive_field (value, 0, type_index, type); | |
2770 | } | |
2771 | if (e.reason < 0) | |
2772 | { | |
2773 | return NULL; | |
2774 | } | |
2775 | else | |
2776 | { | |
2777 | return result; | |
2778 | } | |
2779 | } | |
2780 | ||
2781 | /* Obtain the information about child INDEX of the variable | |
2782 | object PARENT. | |
2783 | If CNAME is not null, sets *CNAME to the name of the child relative | |
2784 | to the parent. | |
2785 | If CVALUE is not null, sets *CVALUE to the value of the child. | |
2786 | If CTYPE is not null, sets *CTYPE to the type of the child. | |
2787 | ||
2788 | If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding | |
2789 | information cannot be determined, set *CNAME, *CVALUE, or *CTYPE | |
2790 | to NULL. */ | |
2791 | static void | |
2792 | c_describe_child (struct varobj *parent, int index, | |
02142340 VP |
2793 | char **cname, struct value **cvalue, struct type **ctype, |
2794 | char **cfull_expression) | |
bbec2603 VP |
2795 | { |
2796 | struct value *value = parent->value; | |
2024f65a | 2797 | struct type *type = get_value_type (parent); |
02142340 VP |
2798 | char *parent_expression = NULL; |
2799 | int was_ptr; | |
bbec2603 VP |
2800 | |
2801 | if (cname) | |
2802 | *cname = NULL; | |
2803 | if (cvalue) | |
2804 | *cvalue = NULL; | |
2805 | if (ctype) | |
2806 | *ctype = NULL; | |
02142340 VP |
2807 | if (cfull_expression) |
2808 | { | |
2809 | *cfull_expression = NULL; | |
2810 | parent_expression = varobj_get_path_expr (parent); | |
2811 | } | |
2812 | adjust_value_for_child_access (&value, &type, &was_ptr); | |
bbec2603 | 2813 | |
8b93c638 JM |
2814 | switch (TYPE_CODE (type)) |
2815 | { | |
2816 | case TYPE_CODE_ARRAY: | |
bbec2603 | 2817 | if (cname) |
43bbcdc2 PH |
2818 | *cname = xstrdup (int_string (index |
2819 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)), | |
2820 | 10, 1, 0, 0)); | |
bbec2603 VP |
2821 | |
2822 | if (cvalue && value) | |
2823 | { | |
2824 | int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)); | |
2497b498 | 2825 | gdb_value_subscript (value, real_index, cvalue); |
bbec2603 VP |
2826 | } |
2827 | ||
2828 | if (ctype) | |
2829 | *ctype = get_target_type (type); | |
2830 | ||
02142340 | 2831 | if (cfull_expression) |
43bbcdc2 PH |
2832 | *cfull_expression = |
2833 | xstrprintf ("(%s)[%s]", parent_expression, | |
2834 | int_string (index | |
2835 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)), | |
2836 | 10, 1, 0, 0)); | |
02142340 VP |
2837 | |
2838 | ||
8b93c638 JM |
2839 | break; |
2840 | ||
2841 | case TYPE_CODE_STRUCT: | |
2842 | case TYPE_CODE_UNION: | |
bbec2603 | 2843 | if (cname) |
1b36a34b | 2844 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); |
bbec2603 VP |
2845 | |
2846 | if (cvalue && value) | |
2847 | { | |
2848 | /* For C, varobj index is the same as type index. */ | |
2849 | *cvalue = value_struct_element_index (value, index); | |
2850 | } | |
2851 | ||
2852 | if (ctype) | |
2853 | *ctype = TYPE_FIELD_TYPE (type, index); | |
2854 | ||
02142340 VP |
2855 | if (cfull_expression) |
2856 | { | |
2857 | char *join = was_ptr ? "->" : "."; | |
2858 | *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join, | |
2859 | TYPE_FIELD_NAME (type, index)); | |
2860 | } | |
2861 | ||
8b93c638 JM |
2862 | break; |
2863 | ||
2864 | case TYPE_CODE_PTR: | |
bbec2603 VP |
2865 | if (cname) |
2866 | *cname = xstrprintf ("*%s", parent->name); | |
8b93c638 | 2867 | |
bbec2603 | 2868 | if (cvalue && value) |
3f4178d6 DJ |
2869 | { |
2870 | int success = gdb_value_ind (value, cvalue); | |
2871 | if (!success) | |
2872 | *cvalue = NULL; | |
2873 | } | |
bbec2603 | 2874 | |
2024f65a VP |
2875 | /* Don't use get_target_type because it calls |
2876 | check_typedef and here, we want to show the true | |
2877 | declared type of the variable. */ | |
bbec2603 | 2878 | if (ctype) |
2024f65a | 2879 | *ctype = TYPE_TARGET_TYPE (type); |
02142340 VP |
2880 | |
2881 | if (cfull_expression) | |
2882 | *cfull_expression = xstrprintf ("*(%s)", parent_expression); | |
bbec2603 | 2883 | |
8b93c638 JM |
2884 | break; |
2885 | ||
2886 | default: | |
2887 | /* This should not happen */ | |
bbec2603 VP |
2888 | if (cname) |
2889 | *cname = xstrdup ("???"); | |
02142340 VP |
2890 | if (cfull_expression) |
2891 | *cfull_expression = xstrdup ("???"); | |
bbec2603 | 2892 | /* Don't set value and type, we don't know then. */ |
8b93c638 | 2893 | } |
bbec2603 | 2894 | } |
8b93c638 | 2895 | |
bbec2603 VP |
2896 | static char * |
2897 | c_name_of_child (struct varobj *parent, int index) | |
2898 | { | |
2899 | char *name; | |
02142340 | 2900 | c_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
2901 | return name; |
2902 | } | |
2903 | ||
02142340 VP |
2904 | static char * |
2905 | c_path_expr_of_child (struct varobj *child) | |
2906 | { | |
2907 | c_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
2908 | &child->path_expr); | |
2909 | return child->path_expr; | |
2910 | } | |
2911 | ||
c5b48eac VP |
2912 | /* If frame associated with VAR can be found, switch |
2913 | to it and return 1. Otherwise, return 0. */ | |
2914 | static int | |
2915 | check_scope (struct varobj *var) | |
2916 | { | |
2917 | struct frame_info *fi; | |
2918 | int scope; | |
2919 | ||
2920 | fi = frame_find_by_id (var->root->frame); | |
2921 | scope = fi != NULL; | |
2922 | ||
2923 | if (fi) | |
2924 | { | |
2925 | CORE_ADDR pc = get_frame_pc (fi); | |
2926 | if (pc < BLOCK_START (var->root->valid_block) || | |
2927 | pc >= BLOCK_END (var->root->valid_block)) | |
2928 | scope = 0; | |
2929 | else | |
2930 | select_frame (fi); | |
2931 | } | |
2932 | return scope; | |
2933 | } | |
2934 | ||
30b28db1 | 2935 | static struct value * |
fba45db2 | 2936 | c_value_of_root (struct varobj **var_handle) |
8b93c638 | 2937 | { |
5e572bb4 | 2938 | struct value *new_val = NULL; |
73a93a32 | 2939 | struct varobj *var = *var_handle; |
c5b48eac | 2940 | int within_scope = 0; |
6208b47d VP |
2941 | struct cleanup *back_to; |
2942 | ||
73a93a32 | 2943 | /* Only root variables can be updated... */ |
b2c2bd75 | 2944 | if (!is_root_p (var)) |
73a93a32 JI |
2945 | /* Not a root var */ |
2946 | return NULL; | |
2947 | ||
4f8d22e3 | 2948 | back_to = make_cleanup_restore_current_thread (); |
72330bd6 | 2949 | |
8b93c638 | 2950 | /* Determine whether the variable is still around. */ |
a5defcdc | 2951 | if (var->root->valid_block == NULL || var->root->floating) |
8b93c638 | 2952 | within_scope = 1; |
c5b48eac VP |
2953 | else if (var->root->thread_id == 0) |
2954 | { | |
2955 | /* The program was single-threaded when the variable object was | |
2956 | created. Technically, it's possible that the program became | |
2957 | multi-threaded since then, but we don't support such | |
2958 | scenario yet. */ | |
2959 | within_scope = check_scope (var); | |
2960 | } | |
8b93c638 JM |
2961 | else |
2962 | { | |
c5b48eac VP |
2963 | ptid_t ptid = thread_id_to_pid (var->root->thread_id); |
2964 | if (in_thread_list (ptid)) | |
d2353924 | 2965 | { |
c5b48eac VP |
2966 | switch_to_thread (ptid); |
2967 | within_scope = check_scope (var); | |
2968 | } | |
8b93c638 | 2969 | } |
72330bd6 | 2970 | |
8b93c638 JM |
2971 | if (within_scope) |
2972 | { | |
73a93a32 | 2973 | /* We need to catch errors here, because if evaluate |
85d93f1d VP |
2974 | expression fails we want to just return NULL. */ |
2975 | gdb_evaluate_expression (var->root->exp, &new_val); | |
8b93c638 JM |
2976 | return new_val; |
2977 | } | |
2978 | ||
6208b47d VP |
2979 | do_cleanups (back_to); |
2980 | ||
8b93c638 JM |
2981 | return NULL; |
2982 | } | |
2983 | ||
30b28db1 | 2984 | static struct value * |
fba45db2 | 2985 | c_value_of_child (struct varobj *parent, int index) |
8b93c638 | 2986 | { |
bbec2603 | 2987 | struct value *value = NULL; |
02142340 | 2988 | c_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
2989 | |
2990 | return value; | |
2991 | } | |
2992 | ||
2993 | static struct type * | |
fba45db2 | 2994 | c_type_of_child (struct varobj *parent, int index) |
8b93c638 | 2995 | { |
bbec2603 | 2996 | struct type *type = NULL; |
02142340 | 2997 | c_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
2998 | return type; |
2999 | } | |
3000 | ||
8b93c638 | 3001 | static char * |
de051565 | 3002 | c_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 3003 | { |
14b3d9c9 JB |
3004 | /* BOGUS: if val_print sees a struct/class, or a reference to one, |
3005 | it will print out its children instead of "{...}". So we need to | |
3006 | catch that case explicitly. */ | |
3007 | struct type *type = get_type (var); | |
e64d9b3d | 3008 | |
b6313243 TT |
3009 | /* If we have a custom formatter, return whatever string it has |
3010 | produced. */ | |
3011 | if (var->pretty_printer && var->print_value) | |
3012 | return xstrdup (var->print_value); | |
3013 | ||
14b3d9c9 JB |
3014 | /* Strip top-level references. */ |
3015 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
3016 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
3017 | ||
3018 | switch (TYPE_CODE (type)) | |
8b93c638 JM |
3019 | { |
3020 | case TYPE_CODE_STRUCT: | |
3021 | case TYPE_CODE_UNION: | |
3022 | return xstrdup ("{...}"); | |
3023 | /* break; */ | |
3024 | ||
3025 | case TYPE_CODE_ARRAY: | |
3026 | { | |
e64d9b3d | 3027 | char *number; |
b435e160 | 3028 | number = xstrprintf ("[%d]", var->num_children); |
e64d9b3d | 3029 | return (number); |
8b93c638 JM |
3030 | } |
3031 | /* break; */ | |
3032 | ||
3033 | default: | |
3034 | { | |
575bbeb6 KS |
3035 | if (var->value == NULL) |
3036 | { | |
3037 | /* This can happen if we attempt to get the value of a struct | |
3038 | member when the parent is an invalid pointer. This is an | |
3039 | error condition, so we should tell the caller. */ | |
3040 | return NULL; | |
3041 | } | |
3042 | else | |
3043 | { | |
25d5ea92 VP |
3044 | if (var->not_fetched && value_lazy (var->value)) |
3045 | /* Frozen variable and no value yet. We don't | |
3046 | implicitly fetch the value. MI response will | |
3047 | use empty string for the value, which is OK. */ | |
3048 | return NULL; | |
3049 | ||
b2c2bd75 | 3050 | gdb_assert (varobj_value_is_changeable_p (var)); |
acd65feb | 3051 | gdb_assert (!value_lazy (var->value)); |
de051565 MK |
3052 | |
3053 | /* If the specified format is the current one, | |
3054 | we can reuse print_value */ | |
3055 | if (format == var->format) | |
3056 | return xstrdup (var->print_value); | |
3057 | else | |
d452c4bc | 3058 | return value_get_print_value (var->value, format, var); |
85265413 | 3059 | } |
e64d9b3d | 3060 | } |
8b93c638 JM |
3061 | } |
3062 | } | |
3063 | \f | |
3064 | ||
3065 | /* C++ */ | |
3066 | ||
3067 | static int | |
fba45db2 | 3068 | cplus_number_of_children (struct varobj *var) |
8b93c638 JM |
3069 | { |
3070 | struct type *type; | |
3071 | int children, dont_know; | |
3072 | ||
3073 | dont_know = 1; | |
3074 | children = 0; | |
3075 | ||
3076 | if (!CPLUS_FAKE_CHILD (var)) | |
3077 | { | |
2024f65a | 3078 | type = get_value_type (var); |
02142340 | 3079 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
3080 | |
3081 | if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) || | |
72330bd6 | 3082 | ((TYPE_CODE (type)) == TYPE_CODE_UNION)) |
8b93c638 JM |
3083 | { |
3084 | int kids[3]; | |
3085 | ||
3086 | cplus_class_num_children (type, kids); | |
3087 | if (kids[v_public] != 0) | |
3088 | children++; | |
3089 | if (kids[v_private] != 0) | |
3090 | children++; | |
3091 | if (kids[v_protected] != 0) | |
3092 | children++; | |
3093 | ||
3094 | /* Add any baseclasses */ | |
3095 | children += TYPE_N_BASECLASSES (type); | |
3096 | dont_know = 0; | |
3097 | ||
3098 | /* FIXME: save children in var */ | |
3099 | } | |
3100 | } | |
3101 | else | |
3102 | { | |
3103 | int kids[3]; | |
3104 | ||
2024f65a | 3105 | type = get_value_type (var->parent); |
02142340 | 3106 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
3107 | |
3108 | cplus_class_num_children (type, kids); | |
6e382aa3 | 3109 | if (strcmp (var->name, "public") == 0) |
8b93c638 | 3110 | children = kids[v_public]; |
6e382aa3 | 3111 | else if (strcmp (var->name, "private") == 0) |
8b93c638 JM |
3112 | children = kids[v_private]; |
3113 | else | |
3114 | children = kids[v_protected]; | |
3115 | dont_know = 0; | |
3116 | } | |
3117 | ||
3118 | if (dont_know) | |
3119 | children = c_number_of_children (var); | |
3120 | ||
3121 | return children; | |
3122 | } | |
3123 | ||
3124 | /* Compute # of public, private, and protected variables in this class. | |
3125 | That means we need to descend into all baseclasses and find out | |
3126 | how many are there, too. */ | |
3127 | static void | |
1669605f | 3128 | cplus_class_num_children (struct type *type, int children[3]) |
8b93c638 | 3129 | { |
d48cc9dd DJ |
3130 | int i, vptr_fieldno; |
3131 | struct type *basetype = NULL; | |
8b93c638 JM |
3132 | |
3133 | children[v_public] = 0; | |
3134 | children[v_private] = 0; | |
3135 | children[v_protected] = 0; | |
3136 | ||
d48cc9dd | 3137 | vptr_fieldno = get_vptr_fieldno (type, &basetype); |
8b93c638 JM |
3138 | for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++) |
3139 | { | |
d48cc9dd DJ |
3140 | /* If we have a virtual table pointer, omit it. Even if virtual |
3141 | table pointers are not specifically marked in the debug info, | |
3142 | they should be artificial. */ | |
3143 | if ((type == basetype && i == vptr_fieldno) | |
3144 | || TYPE_FIELD_ARTIFICIAL (type, i)) | |
8b93c638 JM |
3145 | continue; |
3146 | ||
3147 | if (TYPE_FIELD_PROTECTED (type, i)) | |
3148 | children[v_protected]++; | |
3149 | else if (TYPE_FIELD_PRIVATE (type, i)) | |
3150 | children[v_private]++; | |
3151 | else | |
3152 | children[v_public]++; | |
3153 | } | |
3154 | } | |
3155 | ||
3156 | static char * | |
fba45db2 | 3157 | cplus_name_of_variable (struct varobj *parent) |
8b93c638 JM |
3158 | { |
3159 | return c_name_of_variable (parent); | |
3160 | } | |
3161 | ||
2024f65a VP |
3162 | enum accessibility { private_field, protected_field, public_field }; |
3163 | ||
3164 | /* Check if field INDEX of TYPE has the specified accessibility. | |
3165 | Return 0 if so and 1 otherwise. */ | |
3166 | static int | |
3167 | match_accessibility (struct type *type, int index, enum accessibility acc) | |
8b93c638 | 3168 | { |
2024f65a VP |
3169 | if (acc == private_field && TYPE_FIELD_PRIVATE (type, index)) |
3170 | return 1; | |
3171 | else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index)) | |
3172 | return 1; | |
3173 | else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index) | |
3174 | && !TYPE_FIELD_PROTECTED (type, index)) | |
3175 | return 1; | |
3176 | else | |
3177 | return 0; | |
3178 | } | |
3179 | ||
3180 | static void | |
3181 | cplus_describe_child (struct varobj *parent, int index, | |
02142340 VP |
3182 | char **cname, struct value **cvalue, struct type **ctype, |
3183 | char **cfull_expression) | |
2024f65a | 3184 | { |
2024f65a | 3185 | struct value *value; |
8b93c638 | 3186 | struct type *type; |
02142340 VP |
3187 | int was_ptr; |
3188 | char *parent_expression = NULL; | |
8b93c638 | 3189 | |
2024f65a VP |
3190 | if (cname) |
3191 | *cname = NULL; | |
3192 | if (cvalue) | |
3193 | *cvalue = NULL; | |
3194 | if (ctype) | |
3195 | *ctype = NULL; | |
02142340 VP |
3196 | if (cfull_expression) |
3197 | *cfull_expression = NULL; | |
2024f65a | 3198 | |
8b93c638 JM |
3199 | if (CPLUS_FAKE_CHILD (parent)) |
3200 | { | |
2024f65a VP |
3201 | value = parent->parent->value; |
3202 | type = get_value_type (parent->parent); | |
02142340 VP |
3203 | if (cfull_expression) |
3204 | parent_expression = varobj_get_path_expr (parent->parent); | |
8b93c638 JM |
3205 | } |
3206 | else | |
2024f65a VP |
3207 | { |
3208 | value = parent->value; | |
3209 | type = get_value_type (parent); | |
02142340 VP |
3210 | if (cfull_expression) |
3211 | parent_expression = varobj_get_path_expr (parent); | |
2024f65a | 3212 | } |
8b93c638 | 3213 | |
02142340 | 3214 | adjust_value_for_child_access (&value, &type, &was_ptr); |
2024f65a VP |
3215 | |
3216 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3f4178d6 | 3217 | || TYPE_CODE (type) == TYPE_CODE_UNION) |
8b93c638 | 3218 | { |
02142340 | 3219 | char *join = was_ptr ? "->" : "."; |
8b93c638 JM |
3220 | if (CPLUS_FAKE_CHILD (parent)) |
3221 | { | |
6e382aa3 JJ |
3222 | /* The fields of the class type are ordered as they |
3223 | appear in the class. We are given an index for a | |
3224 | particular access control type ("public","protected", | |
3225 | or "private"). We must skip over fields that don't | |
3226 | have the access control we are looking for to properly | |
3227 | find the indexed field. */ | |
3228 | int type_index = TYPE_N_BASECLASSES (type); | |
2024f65a | 3229 | enum accessibility acc = public_field; |
d48cc9dd DJ |
3230 | int vptr_fieldno; |
3231 | struct type *basetype = NULL; | |
3232 | ||
3233 | vptr_fieldno = get_vptr_fieldno (type, &basetype); | |
6e382aa3 | 3234 | if (strcmp (parent->name, "private") == 0) |
2024f65a | 3235 | acc = private_field; |
6e382aa3 | 3236 | else if (strcmp (parent->name, "protected") == 0) |
2024f65a VP |
3237 | acc = protected_field; |
3238 | ||
3239 | while (index >= 0) | |
6e382aa3 | 3240 | { |
d48cc9dd DJ |
3241 | if ((type == basetype && type_index == vptr_fieldno) |
3242 | || TYPE_FIELD_ARTIFICIAL (type, type_index)) | |
2024f65a VP |
3243 | ; /* ignore vptr */ |
3244 | else if (match_accessibility (type, type_index, acc)) | |
6e382aa3 JJ |
3245 | --index; |
3246 | ++type_index; | |
6e382aa3 | 3247 | } |
2024f65a VP |
3248 | --type_index; |
3249 | ||
3250 | if (cname) | |
3251 | *cname = xstrdup (TYPE_FIELD_NAME (type, type_index)); | |
3252 | ||
3253 | if (cvalue && value) | |
3254 | *cvalue = value_struct_element_index (value, type_index); | |
3255 | ||
3256 | if (ctype) | |
3257 | *ctype = TYPE_FIELD_TYPE (type, type_index); | |
02142340 VP |
3258 | |
3259 | if (cfull_expression) | |
3260 | *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression, | |
3261 | join, | |
3262 | TYPE_FIELD_NAME (type, type_index)); | |
2024f65a VP |
3263 | } |
3264 | else if (index < TYPE_N_BASECLASSES (type)) | |
3265 | { | |
3266 | /* This is a baseclass. */ | |
3267 | if (cname) | |
3268 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); | |
3269 | ||
3270 | if (cvalue && value) | |
0cc7d26f | 3271 | *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value); |
6e382aa3 | 3272 | |
2024f65a VP |
3273 | if (ctype) |
3274 | { | |
3275 | *ctype = TYPE_FIELD_TYPE (type, index); | |
3276 | } | |
02142340 VP |
3277 | |
3278 | if (cfull_expression) | |
3279 | { | |
3280 | char *ptr = was_ptr ? "*" : ""; | |
3281 | /* Cast the parent to the base' type. Note that in gdb, | |
3282 | expression like | |
3283 | (Base1)d | |
3284 | will create an lvalue, for all appearences, so we don't | |
3285 | need to use more fancy: | |
3286 | *(Base1*)(&d) | |
3287 | construct. */ | |
3288 | *cfull_expression = xstrprintf ("(%s(%s%s) %s)", | |
3289 | ptr, | |
3290 | TYPE_FIELD_NAME (type, index), | |
3291 | ptr, | |
3292 | parent_expression); | |
3293 | } | |
8b93c638 | 3294 | } |
8b93c638 JM |
3295 | else |
3296 | { | |
348144ba | 3297 | char *access = NULL; |
6e382aa3 | 3298 | int children[3]; |
2024f65a | 3299 | cplus_class_num_children (type, children); |
6e382aa3 | 3300 | |
8b93c638 | 3301 | /* Everything beyond the baseclasses can |
6e382aa3 JJ |
3302 | only be "public", "private", or "protected" |
3303 | ||
3304 | The special "fake" children are always output by varobj in | |
3305 | this order. So if INDEX == 2, it MUST be "protected". */ | |
8b93c638 JM |
3306 | index -= TYPE_N_BASECLASSES (type); |
3307 | switch (index) | |
3308 | { | |
3309 | case 0: | |
6e382aa3 | 3310 | if (children[v_public] > 0) |
2024f65a | 3311 | access = "public"; |
6e382aa3 | 3312 | else if (children[v_private] > 0) |
2024f65a | 3313 | access = "private"; |
6e382aa3 | 3314 | else |
2024f65a | 3315 | access = "protected"; |
6e382aa3 | 3316 | break; |
8b93c638 | 3317 | case 1: |
6e382aa3 | 3318 | if (children[v_public] > 0) |
8b93c638 | 3319 | { |
6e382aa3 | 3320 | if (children[v_private] > 0) |
2024f65a | 3321 | access = "private"; |
6e382aa3 | 3322 | else |
2024f65a | 3323 | access = "protected"; |
8b93c638 | 3324 | } |
6e382aa3 | 3325 | else if (children[v_private] > 0) |
2024f65a | 3326 | access = "protected"; |
6e382aa3 | 3327 | break; |
8b93c638 | 3328 | case 2: |
6e382aa3 | 3329 | /* Must be protected */ |
2024f65a | 3330 | access = "protected"; |
6e382aa3 | 3331 | break; |
8b93c638 JM |
3332 | default: |
3333 | /* error! */ | |
3334 | break; | |
3335 | } | |
348144ba MS |
3336 | |
3337 | gdb_assert (access); | |
2024f65a VP |
3338 | if (cname) |
3339 | *cname = xstrdup (access); | |
8b93c638 | 3340 | |
02142340 | 3341 | /* Value and type and full expression are null here. */ |
2024f65a | 3342 | } |
8b93c638 | 3343 | } |
8b93c638 JM |
3344 | else |
3345 | { | |
02142340 | 3346 | c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression); |
2024f65a VP |
3347 | } |
3348 | } | |
8b93c638 | 3349 | |
2024f65a VP |
3350 | static char * |
3351 | cplus_name_of_child (struct varobj *parent, int index) | |
3352 | { | |
3353 | char *name = NULL; | |
02142340 | 3354 | cplus_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
3355 | return name; |
3356 | } | |
3357 | ||
02142340 VP |
3358 | static char * |
3359 | cplus_path_expr_of_child (struct varobj *child) | |
3360 | { | |
3361 | cplus_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
3362 | &child->path_expr); | |
3363 | return child->path_expr; | |
3364 | } | |
3365 | ||
30b28db1 | 3366 | static struct value * |
fba45db2 | 3367 | cplus_value_of_root (struct varobj **var_handle) |
8b93c638 | 3368 | { |
73a93a32 | 3369 | return c_value_of_root (var_handle); |
8b93c638 JM |
3370 | } |
3371 | ||
30b28db1 | 3372 | static struct value * |
fba45db2 | 3373 | cplus_value_of_child (struct varobj *parent, int index) |
8b93c638 | 3374 | { |
2024f65a | 3375 | struct value *value = NULL; |
02142340 | 3376 | cplus_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
3377 | return value; |
3378 | } | |
3379 | ||
3380 | static struct type * | |
fba45db2 | 3381 | cplus_type_of_child (struct varobj *parent, int index) |
8b93c638 | 3382 | { |
2024f65a | 3383 | struct type *type = NULL; |
02142340 | 3384 | cplus_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
3385 | return type; |
3386 | } | |
3387 | ||
8b93c638 | 3388 | static char * |
de051565 | 3389 | cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 JM |
3390 | { |
3391 | ||
3392 | /* If we have one of our special types, don't print out | |
3393 | any value. */ | |
3394 | if (CPLUS_FAKE_CHILD (var)) | |
3395 | return xstrdup (""); | |
3396 | ||
de051565 | 3397 | return c_value_of_variable (var, format); |
8b93c638 JM |
3398 | } |
3399 | \f | |
3400 | /* Java */ | |
3401 | ||
3402 | static int | |
fba45db2 | 3403 | java_number_of_children (struct varobj *var) |
8b93c638 JM |
3404 | { |
3405 | return cplus_number_of_children (var); | |
3406 | } | |
3407 | ||
3408 | static char * | |
fba45db2 | 3409 | java_name_of_variable (struct varobj *parent) |
8b93c638 JM |
3410 | { |
3411 | char *p, *name; | |
3412 | ||
3413 | name = cplus_name_of_variable (parent); | |
3414 | /* If the name has "-" in it, it is because we | |
3415 | needed to escape periods in the name... */ | |
3416 | p = name; | |
3417 | ||
3418 | while (*p != '\000') | |
3419 | { | |
3420 | if (*p == '-') | |
3421 | *p = '.'; | |
3422 | p++; | |
3423 | } | |
3424 | ||
3425 | return name; | |
3426 | } | |
3427 | ||
3428 | static char * | |
fba45db2 | 3429 | java_name_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3430 | { |
3431 | char *name, *p; | |
3432 | ||
3433 | name = cplus_name_of_child (parent, index); | |
3434 | /* Escape any periods in the name... */ | |
3435 | p = name; | |
3436 | ||
3437 | while (*p != '\000') | |
3438 | { | |
3439 | if (*p == '.') | |
3440 | *p = '-'; | |
3441 | p++; | |
3442 | } | |
3443 | ||
3444 | return name; | |
3445 | } | |
3446 | ||
02142340 VP |
3447 | static char * |
3448 | java_path_expr_of_child (struct varobj *child) | |
3449 | { | |
3450 | return NULL; | |
3451 | } | |
3452 | ||
30b28db1 | 3453 | static struct value * |
fba45db2 | 3454 | java_value_of_root (struct varobj **var_handle) |
8b93c638 | 3455 | { |
73a93a32 | 3456 | return cplus_value_of_root (var_handle); |
8b93c638 JM |
3457 | } |
3458 | ||
30b28db1 | 3459 | static struct value * |
fba45db2 | 3460 | java_value_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3461 | { |
3462 | return cplus_value_of_child (parent, index); | |
3463 | } | |
3464 | ||
3465 | static struct type * | |
fba45db2 | 3466 | java_type_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3467 | { |
3468 | return cplus_type_of_child (parent, index); | |
3469 | } | |
3470 | ||
8b93c638 | 3471 | static char * |
de051565 | 3472 | java_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 3473 | { |
de051565 | 3474 | return cplus_value_of_variable (var, format); |
8b93c638 | 3475 | } |
54333c3b JK |
3476 | |
3477 | /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them | |
3478 | with an arbitrary caller supplied DATA pointer. */ | |
3479 | ||
3480 | void | |
3481 | all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data) | |
3482 | { | |
3483 | struct varobj_root *var_root, *var_root_next; | |
3484 | ||
3485 | /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */ | |
3486 | ||
3487 | for (var_root = rootlist; var_root != NULL; var_root = var_root_next) | |
3488 | { | |
3489 | var_root_next = var_root->next; | |
3490 | ||
3491 | (*func) (var_root->rootvar, data); | |
3492 | } | |
3493 | } | |
8b93c638 JM |
3494 | \f |
3495 | extern void _initialize_varobj (void); | |
3496 | void | |
3497 | _initialize_varobj (void) | |
3498 | { | |
3499 | int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE; | |
3500 | ||
3501 | varobj_table = xmalloc (sizeof_table); | |
3502 | memset (varobj_table, 0, sizeof_table); | |
3503 | ||
85c07804 AC |
3504 | add_setshow_zinteger_cmd ("debugvarobj", class_maintenance, |
3505 | &varobjdebug, _("\ | |
3506 | Set varobj debugging."), _("\ | |
3507 | Show varobj debugging."), _("\ | |
3508 | When non-zero, varobj debugging is enabled."), | |
3509 | NULL, | |
920d2a44 | 3510 | show_varobjdebug, |
85c07804 | 3511 | &setlist, &showlist); |
8b93c638 | 3512 | } |
8756216b | 3513 | |
54333c3b JK |
3514 | /* Invalidate varobj VAR if it is tied to locals and re-create it if it is |
3515 | defined on globals. It is a helper for varobj_invalidate. */ | |
2dbd25e5 | 3516 | |
54333c3b JK |
3517 | static void |
3518 | varobj_invalidate_iter (struct varobj *var, void *unused) | |
8756216b | 3519 | { |
54333c3b JK |
3520 | /* Floating varobjs are reparsed on each stop, so we don't care if the |
3521 | presently parsed expression refers to something that's gone. */ | |
3522 | if (var->root->floating) | |
3523 | return; | |
8756216b | 3524 | |
54333c3b JK |
3525 | /* global var must be re-evaluated. */ |
3526 | if (var->root->valid_block == NULL) | |
2dbd25e5 | 3527 | { |
54333c3b | 3528 | struct varobj *tmp_var; |
2dbd25e5 | 3529 | |
54333c3b JK |
3530 | /* Try to create a varobj with same expression. If we succeed |
3531 | replace the old varobj, otherwise invalidate it. */ | |
3532 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, | |
3533 | USE_CURRENT_FRAME); | |
3534 | if (tmp_var != NULL) | |
3535 | { | |
3536 | tmp_var->obj_name = xstrdup (var->obj_name); | |
3537 | varobj_delete (var, NULL, 0); | |
3538 | install_variable (tmp_var); | |
2dbd25e5 | 3539 | } |
54333c3b JK |
3540 | else |
3541 | var->root->is_valid = 0; | |
2dbd25e5 | 3542 | } |
54333c3b JK |
3543 | else /* locals must be invalidated. */ |
3544 | var->root->is_valid = 0; | |
3545 | } | |
3546 | ||
3547 | /* Invalidate the varobjs that are tied to locals and re-create the ones that | |
3548 | are defined on globals. | |
3549 | Invalidated varobjs will be always printed in_scope="invalid". */ | |
3550 | ||
3551 | void | |
3552 | varobj_invalidate (void) | |
3553 | { | |
3554 | all_root_varobjs (varobj_invalidate_iter, NULL); | |
8756216b | 3555 | } |