]>
Commit | Line | Data |
---|---|---|
8b93c638 | 1 | /* Implementation of the GDB variable objects API. |
bc8332bb | 2 | |
0fb0cc75 JB |
3 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
4 | 2009 Free Software Foundation, Inc. | |
8b93c638 JM |
5 | |
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 8 | the Free Software Foundation; either version 3 of the License, or |
8b93c638 JM |
9 | (at your option) any later version. |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 17 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
8b93c638 JM |
18 | |
19 | #include "defs.h" | |
a6c442d8 | 20 | #include "exceptions.h" |
8b93c638 JM |
21 | #include "value.h" |
22 | #include "expression.h" | |
23 | #include "frame.h" | |
8b93c638 JM |
24 | #include "language.h" |
25 | #include "wrapper.h" | |
26 | #include "gdbcmd.h" | |
d2353924 | 27 | #include "block.h" |
79a45b7d | 28 | #include "valprint.h" |
a6c442d8 MK |
29 | |
30 | #include "gdb_assert.h" | |
b66d6d2e | 31 | #include "gdb_string.h" |
8b93c638 JM |
32 | |
33 | #include "varobj.h" | |
28335dcc | 34 | #include "vec.h" |
6208b47d VP |
35 | #include "gdbthread.h" |
36 | #include "inferior.h" | |
8b93c638 | 37 | |
b6313243 TT |
38 | #if HAVE_PYTHON |
39 | #include "python/python.h" | |
40 | #include "python/python-internal.h" | |
41 | #else | |
42 | typedef int PyObject; | |
43 | #endif | |
44 | ||
8b93c638 JM |
45 | /* Non-zero if we want to see trace of varobj level stuff. */ |
46 | ||
47 | int varobjdebug = 0; | |
920d2a44 AC |
48 | static void |
49 | show_varobjdebug (struct ui_file *file, int from_tty, | |
50 | struct cmd_list_element *c, const char *value) | |
51 | { | |
52 | fprintf_filtered (file, _("Varobj debugging is %s.\n"), value); | |
53 | } | |
8b93c638 JM |
54 | |
55 | /* String representations of gdb's format codes */ | |
56 | char *varobj_format_string[] = | |
72330bd6 | 57 | { "natural", "binary", "decimal", "hexadecimal", "octal" }; |
8b93c638 JM |
58 | |
59 | /* String representations of gdb's known languages */ | |
72330bd6 | 60 | char *varobj_language_string[] = { "unknown", "C", "C++", "Java" }; |
8b93c638 JM |
61 | |
62 | /* Data structures */ | |
63 | ||
64 | /* Every root variable has one of these structures saved in its | |
65 | varobj. Members which must be free'd are noted. */ | |
66 | struct varobj_root | |
72330bd6 | 67 | { |
8b93c638 | 68 | |
72330bd6 AC |
69 | /* Alloc'd expression for this parent. */ |
70 | struct expression *exp; | |
8b93c638 | 71 | |
72330bd6 AC |
72 | /* Block for which this expression is valid */ |
73 | struct block *valid_block; | |
8b93c638 | 74 | |
44a67aa7 VP |
75 | /* The frame for this expression. This field is set iff valid_block is |
76 | not NULL. */ | |
e64d9b3d | 77 | struct frame_id frame; |
8b93c638 | 78 | |
c5b48eac VP |
79 | /* The thread ID that this varobj_root belong to. This field |
80 | is only valid if valid_block is not NULL. | |
81 | When not 0, indicates which thread 'frame' belongs to. | |
82 | When 0, indicates that the thread list was empty when the varobj_root | |
83 | was created. */ | |
84 | int thread_id; | |
85 | ||
a5defcdc VP |
86 | /* If 1, the -var-update always recomputes the value in the |
87 | current thread and frame. Otherwise, variable object is | |
88 | always updated in the specific scope/thread/frame */ | |
89 | int floating; | |
73a93a32 | 90 | |
8756216b DP |
91 | /* Flag that indicates validity: set to 0 when this varobj_root refers |
92 | to symbols that do not exist anymore. */ | |
93 | int is_valid; | |
94 | ||
72330bd6 AC |
95 | /* Language info for this variable and its children */ |
96 | struct language_specific *lang; | |
8b93c638 | 97 | |
72330bd6 AC |
98 | /* The varobj for this root node. */ |
99 | struct varobj *rootvar; | |
8b93c638 | 100 | |
72330bd6 AC |
101 | /* Next root variable */ |
102 | struct varobj_root *next; | |
103 | }; | |
8b93c638 JM |
104 | |
105 | /* Every variable in the system has a structure of this type defined | |
106 | for it. This structure holds all information necessary to manipulate | |
107 | a particular object variable. Members which must be freed are noted. */ | |
108 | struct varobj | |
72330bd6 | 109 | { |
8b93c638 | 110 | |
72330bd6 AC |
111 | /* Alloc'd name of the variable for this object.. If this variable is a |
112 | child, then this name will be the child's source name. | |
113 | (bar, not foo.bar) */ | |
114 | /* NOTE: This is the "expression" */ | |
115 | char *name; | |
8b93c638 | 116 | |
02142340 VP |
117 | /* Alloc'd expression for this child. Can be used to create a |
118 | root variable corresponding to this child. */ | |
119 | char *path_expr; | |
120 | ||
72330bd6 AC |
121 | /* The alloc'd name for this variable's object. This is here for |
122 | convenience when constructing this object's children. */ | |
123 | char *obj_name; | |
8b93c638 | 124 | |
72330bd6 AC |
125 | /* Index of this variable in its parent or -1 */ |
126 | int index; | |
8b93c638 | 127 | |
202ddcaa VP |
128 | /* The type of this variable. This can be NULL |
129 | for artifial variable objects -- currently, the "accessibility" | |
130 | variable objects in C++. */ | |
72330bd6 | 131 | struct type *type; |
8b93c638 | 132 | |
b20d8971 VP |
133 | /* The value of this expression or subexpression. A NULL value |
134 | indicates there was an error getting this value. | |
b2c2bd75 VP |
135 | Invariant: if varobj_value_is_changeable_p (this) is non-zero, |
136 | the value is either NULL, or not lazy. */ | |
30b28db1 | 137 | struct value *value; |
8b93c638 | 138 | |
72330bd6 AC |
139 | /* The number of (immediate) children this variable has */ |
140 | int num_children; | |
8b93c638 | 141 | |
72330bd6 AC |
142 | /* If this object is a child, this points to its immediate parent. */ |
143 | struct varobj *parent; | |
8b93c638 | 144 | |
28335dcc VP |
145 | /* Children of this object. */ |
146 | VEC (varobj_p) *children; | |
8b93c638 | 147 | |
b6313243 TT |
148 | /* Whether the children of this varobj were requested. This field is |
149 | used to decide if dynamic varobj should recompute their children. | |
150 | In the event that the frontend never asked for the children, we | |
151 | can avoid that. */ | |
152 | int children_requested; | |
153 | ||
72330bd6 AC |
154 | /* Description of the root variable. Points to root variable for children. */ |
155 | struct varobj_root *root; | |
8b93c638 | 156 | |
72330bd6 AC |
157 | /* The format of the output for this object */ |
158 | enum varobj_display_formats format; | |
fb9b6b35 JJ |
159 | |
160 | /* Was this variable updated via a varobj_set_value operation */ | |
161 | int updated; | |
85265413 NR |
162 | |
163 | /* Last print value. */ | |
164 | char *print_value; | |
25d5ea92 VP |
165 | |
166 | /* Is this variable frozen. Frozen variables are never implicitly | |
167 | updated by -var-update * | |
168 | or -var-update <direct-or-indirect-parent>. */ | |
169 | int frozen; | |
170 | ||
171 | /* Is the value of this variable intentionally not fetched? It is | |
172 | not fetched if either the variable is frozen, or any parents is | |
173 | frozen. */ | |
174 | int not_fetched; | |
b6313243 TT |
175 | |
176 | /* The pretty-printer that has been constructed. If NULL, then a | |
177 | new printer object is needed, and one will be constructed. */ | |
178 | PyObject *pretty_printer; | |
72330bd6 | 179 | }; |
8b93c638 | 180 | |
8b93c638 | 181 | struct cpstack |
72330bd6 AC |
182 | { |
183 | char *name; | |
184 | struct cpstack *next; | |
185 | }; | |
8b93c638 JM |
186 | |
187 | /* A list of varobjs */ | |
188 | ||
189 | struct vlist | |
72330bd6 AC |
190 | { |
191 | struct varobj *var; | |
192 | struct vlist *next; | |
193 | }; | |
8b93c638 JM |
194 | |
195 | /* Private function prototypes */ | |
196 | ||
197 | /* Helper functions for the above subcommands. */ | |
198 | ||
a14ed312 | 199 | static int delete_variable (struct cpstack **, struct varobj *, int); |
8b93c638 | 200 | |
a14ed312 KB |
201 | static void delete_variable_1 (struct cpstack **, int *, |
202 | struct varobj *, int, int); | |
8b93c638 | 203 | |
a14ed312 | 204 | static int install_variable (struct varobj *); |
8b93c638 | 205 | |
a14ed312 | 206 | static void uninstall_variable (struct varobj *); |
8b93c638 | 207 | |
a14ed312 | 208 | static struct varobj *create_child (struct varobj *, int, char *); |
8b93c638 | 209 | |
b6313243 TT |
210 | static struct varobj * |
211 | create_child_with_value (struct varobj *parent, int index, const char *name, | |
212 | struct value *value); | |
213 | ||
8b93c638 JM |
214 | /* Utility routines */ |
215 | ||
a14ed312 | 216 | static struct varobj *new_variable (void); |
8b93c638 | 217 | |
a14ed312 | 218 | static struct varobj *new_root_variable (void); |
8b93c638 | 219 | |
a14ed312 | 220 | static void free_variable (struct varobj *var); |
8b93c638 | 221 | |
74b7792f AC |
222 | static struct cleanup *make_cleanup_free_variable (struct varobj *var); |
223 | ||
a14ed312 | 224 | static struct type *get_type (struct varobj *var); |
8b93c638 | 225 | |
6e2a9270 VP |
226 | static struct type *get_value_type (struct varobj *var); |
227 | ||
a14ed312 | 228 | static struct type *get_target_type (struct type *); |
8b93c638 | 229 | |
a14ed312 | 230 | static enum varobj_display_formats variable_default_display (struct varobj *); |
8b93c638 | 231 | |
a14ed312 | 232 | static void cppush (struct cpstack **pstack, char *name); |
8b93c638 | 233 | |
a14ed312 | 234 | static char *cppop (struct cpstack **pstack); |
8b93c638 | 235 | |
acd65feb VP |
236 | static int install_new_value (struct varobj *var, struct value *value, |
237 | int initial); | |
238 | ||
b6313243 TT |
239 | static void install_default_visualizer (struct varobj *var); |
240 | ||
8b93c638 JM |
241 | /* Language-specific routines. */ |
242 | ||
a14ed312 | 243 | static enum varobj_languages variable_language (struct varobj *var); |
8b93c638 | 244 | |
a14ed312 | 245 | static int number_of_children (struct varobj *); |
8b93c638 | 246 | |
a14ed312 | 247 | static char *name_of_variable (struct varobj *); |
8b93c638 | 248 | |
a14ed312 | 249 | static char *name_of_child (struct varobj *, int); |
8b93c638 | 250 | |
30b28db1 | 251 | static struct value *value_of_root (struct varobj **var_handle, int *); |
8b93c638 | 252 | |
30b28db1 | 253 | static struct value *value_of_child (struct varobj *parent, int index); |
8b93c638 | 254 | |
de051565 MK |
255 | static char *my_value_of_variable (struct varobj *var, |
256 | enum varobj_display_formats format); | |
8b93c638 | 257 | |
85265413 | 258 | static char *value_get_print_value (struct value *value, |
b6313243 | 259 | enum varobj_display_formats format, |
d452c4bc | 260 | struct varobj *var); |
85265413 | 261 | |
b2c2bd75 VP |
262 | static int varobj_value_is_changeable_p (struct varobj *var); |
263 | ||
264 | static int is_root_p (struct varobj *var); | |
8b93c638 | 265 | |
b6313243 TT |
266 | static struct varobj * |
267 | varobj_add_child (struct varobj *var, const char *name, struct value *value); | |
268 | ||
8b93c638 JM |
269 | /* C implementation */ |
270 | ||
a14ed312 | 271 | static int c_number_of_children (struct varobj *var); |
8b93c638 | 272 | |
a14ed312 | 273 | static char *c_name_of_variable (struct varobj *parent); |
8b93c638 | 274 | |
a14ed312 | 275 | static char *c_name_of_child (struct varobj *parent, int index); |
8b93c638 | 276 | |
02142340 VP |
277 | static char *c_path_expr_of_child (struct varobj *child); |
278 | ||
30b28db1 | 279 | static struct value *c_value_of_root (struct varobj **var_handle); |
8b93c638 | 280 | |
30b28db1 | 281 | static struct value *c_value_of_child (struct varobj *parent, int index); |
8b93c638 | 282 | |
a14ed312 | 283 | static struct type *c_type_of_child (struct varobj *parent, int index); |
8b93c638 | 284 | |
de051565 MK |
285 | static char *c_value_of_variable (struct varobj *var, |
286 | enum varobj_display_formats format); | |
8b93c638 JM |
287 | |
288 | /* C++ implementation */ | |
289 | ||
a14ed312 | 290 | static int cplus_number_of_children (struct varobj *var); |
8b93c638 | 291 | |
a14ed312 | 292 | static void cplus_class_num_children (struct type *type, int children[3]); |
8b93c638 | 293 | |
a14ed312 | 294 | static char *cplus_name_of_variable (struct varobj *parent); |
8b93c638 | 295 | |
a14ed312 | 296 | static char *cplus_name_of_child (struct varobj *parent, int index); |
8b93c638 | 297 | |
02142340 VP |
298 | static char *cplus_path_expr_of_child (struct varobj *child); |
299 | ||
30b28db1 | 300 | static struct value *cplus_value_of_root (struct varobj **var_handle); |
8b93c638 | 301 | |
30b28db1 | 302 | static struct value *cplus_value_of_child (struct varobj *parent, int index); |
8b93c638 | 303 | |
a14ed312 | 304 | static struct type *cplus_type_of_child (struct varobj *parent, int index); |
8b93c638 | 305 | |
de051565 MK |
306 | static char *cplus_value_of_variable (struct varobj *var, |
307 | enum varobj_display_formats format); | |
8b93c638 JM |
308 | |
309 | /* Java implementation */ | |
310 | ||
a14ed312 | 311 | static int java_number_of_children (struct varobj *var); |
8b93c638 | 312 | |
a14ed312 | 313 | static char *java_name_of_variable (struct varobj *parent); |
8b93c638 | 314 | |
a14ed312 | 315 | static char *java_name_of_child (struct varobj *parent, int index); |
8b93c638 | 316 | |
02142340 VP |
317 | static char *java_path_expr_of_child (struct varobj *child); |
318 | ||
30b28db1 | 319 | static struct value *java_value_of_root (struct varobj **var_handle); |
8b93c638 | 320 | |
30b28db1 | 321 | static struct value *java_value_of_child (struct varobj *parent, int index); |
8b93c638 | 322 | |
a14ed312 | 323 | static struct type *java_type_of_child (struct varobj *parent, int index); |
8b93c638 | 324 | |
de051565 MK |
325 | static char *java_value_of_variable (struct varobj *var, |
326 | enum varobj_display_formats format); | |
8b93c638 JM |
327 | |
328 | /* The language specific vector */ | |
329 | ||
330 | struct language_specific | |
72330bd6 | 331 | { |
8b93c638 | 332 | |
72330bd6 AC |
333 | /* The language of this variable */ |
334 | enum varobj_languages language; | |
8b93c638 | 335 | |
72330bd6 AC |
336 | /* The number of children of PARENT. */ |
337 | int (*number_of_children) (struct varobj * parent); | |
8b93c638 | 338 | |
72330bd6 AC |
339 | /* The name (expression) of a root varobj. */ |
340 | char *(*name_of_variable) (struct varobj * parent); | |
8b93c638 | 341 | |
72330bd6 AC |
342 | /* The name of the INDEX'th child of PARENT. */ |
343 | char *(*name_of_child) (struct varobj * parent, int index); | |
8b93c638 | 344 | |
02142340 VP |
345 | /* Returns the rooted expression of CHILD, which is a variable |
346 | obtain that has some parent. */ | |
347 | char *(*path_expr_of_child) (struct varobj * child); | |
348 | ||
30b28db1 AC |
349 | /* The ``struct value *'' of the root variable ROOT. */ |
350 | struct value *(*value_of_root) (struct varobj ** root_handle); | |
8b93c638 | 351 | |
30b28db1 AC |
352 | /* The ``struct value *'' of the INDEX'th child of PARENT. */ |
353 | struct value *(*value_of_child) (struct varobj * parent, int index); | |
8b93c638 | 354 | |
72330bd6 AC |
355 | /* The type of the INDEX'th child of PARENT. */ |
356 | struct type *(*type_of_child) (struct varobj * parent, int index); | |
8b93c638 | 357 | |
72330bd6 | 358 | /* The current value of VAR. */ |
de051565 MK |
359 | char *(*value_of_variable) (struct varobj * var, |
360 | enum varobj_display_formats format); | |
72330bd6 | 361 | }; |
8b93c638 JM |
362 | |
363 | /* Array of known source language routines. */ | |
d5d6fca5 | 364 | static struct language_specific languages[vlang_end] = { |
8b93c638 JM |
365 | /* Unknown (try treating as C */ |
366 | { | |
72330bd6 AC |
367 | vlang_unknown, |
368 | c_number_of_children, | |
369 | c_name_of_variable, | |
370 | c_name_of_child, | |
02142340 | 371 | c_path_expr_of_child, |
72330bd6 AC |
372 | c_value_of_root, |
373 | c_value_of_child, | |
374 | c_type_of_child, | |
72330bd6 | 375 | c_value_of_variable} |
8b93c638 JM |
376 | , |
377 | /* C */ | |
378 | { | |
72330bd6 AC |
379 | vlang_c, |
380 | c_number_of_children, | |
381 | c_name_of_variable, | |
382 | c_name_of_child, | |
02142340 | 383 | c_path_expr_of_child, |
72330bd6 AC |
384 | c_value_of_root, |
385 | c_value_of_child, | |
386 | c_type_of_child, | |
72330bd6 | 387 | c_value_of_variable} |
8b93c638 JM |
388 | , |
389 | /* C++ */ | |
390 | { | |
72330bd6 AC |
391 | vlang_cplus, |
392 | cplus_number_of_children, | |
393 | cplus_name_of_variable, | |
394 | cplus_name_of_child, | |
02142340 | 395 | cplus_path_expr_of_child, |
72330bd6 AC |
396 | cplus_value_of_root, |
397 | cplus_value_of_child, | |
398 | cplus_type_of_child, | |
72330bd6 | 399 | cplus_value_of_variable} |
8b93c638 JM |
400 | , |
401 | /* Java */ | |
402 | { | |
72330bd6 AC |
403 | vlang_java, |
404 | java_number_of_children, | |
405 | java_name_of_variable, | |
406 | java_name_of_child, | |
02142340 | 407 | java_path_expr_of_child, |
72330bd6 AC |
408 | java_value_of_root, |
409 | java_value_of_child, | |
410 | java_type_of_child, | |
72330bd6 | 411 | java_value_of_variable} |
8b93c638 JM |
412 | }; |
413 | ||
414 | /* A little convenience enum for dealing with C++/Java */ | |
415 | enum vsections | |
72330bd6 AC |
416 | { |
417 | v_public = 0, v_private, v_protected | |
418 | }; | |
8b93c638 JM |
419 | |
420 | /* Private data */ | |
421 | ||
422 | /* Mappings of varobj_display_formats enums to gdb's format codes */ | |
72330bd6 | 423 | static int format_code[] = { 0, 't', 'd', 'x', 'o' }; |
8b93c638 JM |
424 | |
425 | /* Header of the list of root variable objects */ | |
426 | static struct varobj_root *rootlist; | |
8b93c638 JM |
427 | |
428 | /* Prime number indicating the number of buckets in the hash table */ | |
429 | /* A prime large enough to avoid too many colisions */ | |
430 | #define VAROBJ_TABLE_SIZE 227 | |
431 | ||
432 | /* Pointer to the varobj hash table (built at run time) */ | |
433 | static struct vlist **varobj_table; | |
434 | ||
8b93c638 JM |
435 | /* Is the variable X one of our "fake" children? */ |
436 | #define CPLUS_FAKE_CHILD(x) \ | |
437 | ((x) != NULL && (x)->type == NULL && (x)->value == NULL) | |
438 | \f | |
439 | ||
440 | /* API Implementation */ | |
b2c2bd75 VP |
441 | static int |
442 | is_root_p (struct varobj *var) | |
443 | { | |
444 | return (var->root->rootvar == var); | |
445 | } | |
8b93c638 | 446 | |
d452c4bc UW |
447 | #ifdef HAVE_PYTHON |
448 | /* Helper function to install a Python environment suitable for | |
449 | use during operations on VAR. */ | |
450 | struct cleanup * | |
451 | varobj_ensure_python_env (struct varobj *var) | |
452 | { | |
453 | return ensure_python_env (var->root->exp->gdbarch, | |
454 | var->root->exp->language_defn); | |
455 | } | |
456 | #endif | |
457 | ||
8b93c638 JM |
458 | /* Creates a varobj (not its children) */ |
459 | ||
7d8547c9 AC |
460 | /* Return the full FRAME which corresponds to the given CORE_ADDR |
461 | or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ | |
462 | ||
463 | static struct frame_info * | |
464 | find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) | |
465 | { | |
466 | struct frame_info *frame = NULL; | |
467 | ||
468 | if (frame_addr == (CORE_ADDR) 0) | |
469 | return NULL; | |
470 | ||
9d49bdc2 PA |
471 | for (frame = get_current_frame (); |
472 | frame != NULL; | |
473 | frame = get_prev_frame (frame)) | |
7d8547c9 | 474 | { |
1fac167a UW |
475 | /* The CORE_ADDR we get as argument was parsed from a string GDB |
476 | output as $fp. This output got truncated to gdbarch_addr_bit. | |
477 | Truncate the frame base address in the same manner before | |
478 | comparing it against our argument. */ | |
479 | CORE_ADDR frame_base = get_frame_base_address (frame); | |
480 | int addr_bit = gdbarch_addr_bit (get_frame_arch (frame)); | |
481 | if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) | |
482 | frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1; | |
483 | ||
484 | if (frame_base == frame_addr) | |
7d8547c9 AC |
485 | return frame; |
486 | } | |
9d49bdc2 PA |
487 | |
488 | return NULL; | |
7d8547c9 AC |
489 | } |
490 | ||
8b93c638 JM |
491 | struct varobj * |
492 | varobj_create (char *objname, | |
72330bd6 | 493 | char *expression, CORE_ADDR frame, enum varobj_type type) |
8b93c638 JM |
494 | { |
495 | struct varobj *var; | |
2c67cb8b AC |
496 | struct frame_info *fi; |
497 | struct frame_info *old_fi = NULL; | |
8b93c638 JM |
498 | struct block *block; |
499 | struct cleanup *old_chain; | |
500 | ||
501 | /* Fill out a varobj structure for the (root) variable being constructed. */ | |
502 | var = new_root_variable (); | |
74b7792f | 503 | old_chain = make_cleanup_free_variable (var); |
8b93c638 JM |
504 | |
505 | if (expression != NULL) | |
506 | { | |
507 | char *p; | |
508 | enum varobj_languages lang; | |
e55dccf0 | 509 | struct value *value = NULL; |
8b93c638 | 510 | |
9d49bdc2 PA |
511 | /* Parse and evaluate the expression, filling in as much of the |
512 | variable's data as possible. */ | |
513 | ||
514 | if (has_stack_frames ()) | |
515 | { | |
516 | /* Allow creator to specify context of variable */ | |
517 | if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME)) | |
518 | fi = get_selected_frame (NULL); | |
519 | else | |
520 | /* FIXME: cagney/2002-11-23: This code should be doing a | |
521 | lookup using the frame ID and not just the frame's | |
522 | ``address''. This, of course, means an interface | |
523 | change. However, with out that interface change ISAs, | |
524 | such as the ia64 with its two stacks, won't work. | |
525 | Similar goes for the case where there is a frameless | |
526 | function. */ | |
527 | fi = find_frame_addr_in_frame_chain (frame); | |
528 | } | |
8b93c638 | 529 | else |
9d49bdc2 | 530 | fi = NULL; |
8b93c638 | 531 | |
73a93a32 JI |
532 | /* frame = -2 means always use selected frame */ |
533 | if (type == USE_SELECTED_FRAME) | |
a5defcdc | 534 | var->root->floating = 1; |
73a93a32 | 535 | |
8b93c638 JM |
536 | block = NULL; |
537 | if (fi != NULL) | |
ae767bfb | 538 | block = get_frame_block (fi, 0); |
8b93c638 JM |
539 | |
540 | p = expression; | |
541 | innermost_block = NULL; | |
73a93a32 JI |
542 | /* Wrap the call to parse expression, so we can |
543 | return a sensible error. */ | |
544 | if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp)) | |
545 | { | |
546 | return NULL; | |
547 | } | |
8b93c638 JM |
548 | |
549 | /* Don't allow variables to be created for types. */ | |
550 | if (var->root->exp->elts[0].opcode == OP_TYPE) | |
551 | { | |
552 | do_cleanups (old_chain); | |
bc8332bb AC |
553 | fprintf_unfiltered (gdb_stderr, "Attempt to use a type name" |
554 | " as an expression.\n"); | |
8b93c638 JM |
555 | return NULL; |
556 | } | |
557 | ||
558 | var->format = variable_default_display (var); | |
559 | var->root->valid_block = innermost_block; | |
1b36a34b | 560 | var->name = xstrdup (expression); |
02142340 | 561 | /* For a root var, the name and the expr are the same. */ |
1b36a34b | 562 | var->path_expr = xstrdup (expression); |
8b93c638 JM |
563 | |
564 | /* When the frame is different from the current frame, | |
565 | we must select the appropriate frame before parsing | |
566 | the expression, otherwise the value will not be current. | |
567 | Since select_frame is so benign, just call it for all cases. */ | |
44a67aa7 | 568 | if (innermost_block && fi != NULL) |
8b93c638 | 569 | { |
7a424e99 | 570 | var->root->frame = get_frame_id (fi); |
c5b48eac | 571 | var->root->thread_id = pid_to_thread_id (inferior_ptid); |
206415a3 | 572 | old_fi = get_selected_frame (NULL); |
c5b48eac | 573 | select_frame (fi); |
8b93c638 JM |
574 | } |
575 | ||
340a7723 | 576 | /* We definitely need to catch errors here. |
8b93c638 JM |
577 | If evaluate_expression succeeds we got the value we wanted. |
578 | But if it fails, we still go on with a call to evaluate_type() */ | |
acd65feb | 579 | if (!gdb_evaluate_expression (var->root->exp, &value)) |
e55dccf0 VP |
580 | { |
581 | /* Error getting the value. Try to at least get the | |
582 | right type. */ | |
583 | struct value *type_only_value = evaluate_type (var->root->exp); | |
584 | var->type = value_type (type_only_value); | |
585 | } | |
586 | else | |
587 | var->type = value_type (value); | |
acd65feb | 588 | |
acd65feb | 589 | install_new_value (var, value, 1 /* Initial assignment */); |
8b93c638 JM |
590 | |
591 | /* Set language info */ | |
592 | lang = variable_language (var); | |
d5d6fca5 | 593 | var->root->lang = &languages[lang]; |
8b93c638 JM |
594 | |
595 | /* Set ourselves as our root */ | |
596 | var->root->rootvar = var; | |
597 | ||
598 | /* Reset the selected frame */ | |
e21458b2 | 599 | if (old_fi != NULL) |
0f7d239c | 600 | select_frame (old_fi); |
8b93c638 JM |
601 | } |
602 | ||
73a93a32 JI |
603 | /* If the variable object name is null, that means this |
604 | is a temporary variable, so don't install it. */ | |
605 | ||
606 | if ((var != NULL) && (objname != NULL)) | |
8b93c638 | 607 | { |
1b36a34b | 608 | var->obj_name = xstrdup (objname); |
8b93c638 JM |
609 | |
610 | /* If a varobj name is duplicated, the install will fail so | |
611 | we must clenup */ | |
612 | if (!install_variable (var)) | |
613 | { | |
614 | do_cleanups (old_chain); | |
615 | return NULL; | |
616 | } | |
617 | } | |
618 | ||
b6313243 | 619 | install_default_visualizer (var); |
8b93c638 JM |
620 | discard_cleanups (old_chain); |
621 | return var; | |
622 | } | |
623 | ||
624 | /* Generates an unique name that can be used for a varobj */ | |
625 | ||
626 | char * | |
627 | varobj_gen_name (void) | |
628 | { | |
629 | static int id = 0; | |
e64d9b3d | 630 | char *obj_name; |
8b93c638 JM |
631 | |
632 | /* generate a name for this object */ | |
633 | id++; | |
b435e160 | 634 | obj_name = xstrprintf ("var%d", id); |
8b93c638 | 635 | |
e64d9b3d | 636 | return obj_name; |
8b93c638 JM |
637 | } |
638 | ||
61d8f275 JK |
639 | /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call |
640 | error if OBJNAME cannot be found. */ | |
8b93c638 JM |
641 | |
642 | struct varobj * | |
643 | varobj_get_handle (char *objname) | |
644 | { | |
645 | struct vlist *cv; | |
646 | const char *chp; | |
647 | unsigned int index = 0; | |
648 | unsigned int i = 1; | |
649 | ||
650 | for (chp = objname; *chp; chp++) | |
651 | { | |
652 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
653 | } | |
654 | ||
655 | cv = *(varobj_table + index); | |
656 | while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0)) | |
657 | cv = cv->next; | |
658 | ||
659 | if (cv == NULL) | |
8a3fe4f8 | 660 | error (_("Variable object not found")); |
8b93c638 JM |
661 | |
662 | return cv->var; | |
663 | } | |
664 | ||
665 | /* Given the handle, return the name of the object */ | |
666 | ||
667 | char * | |
668 | varobj_get_objname (struct varobj *var) | |
669 | { | |
670 | return var->obj_name; | |
671 | } | |
672 | ||
673 | /* Given the handle, return the expression represented by the object */ | |
674 | ||
675 | char * | |
676 | varobj_get_expression (struct varobj *var) | |
677 | { | |
678 | return name_of_variable (var); | |
679 | } | |
680 | ||
681 | /* Deletes a varobj and all its children if only_children == 0, | |
682 | otherwise deletes only the children; returns a malloc'ed list of all the | |
683 | (malloc'ed) names of the variables that have been deleted (NULL terminated) */ | |
684 | ||
685 | int | |
686 | varobj_delete (struct varobj *var, char ***dellist, int only_children) | |
687 | { | |
688 | int delcount; | |
689 | int mycount; | |
690 | struct cpstack *result = NULL; | |
691 | char **cp; | |
692 | ||
693 | /* Initialize a stack for temporary results */ | |
694 | cppush (&result, NULL); | |
695 | ||
696 | if (only_children) | |
697 | /* Delete only the variable children */ | |
698 | delcount = delete_variable (&result, var, 1 /* only the children */ ); | |
699 | else | |
700 | /* Delete the variable and all its children */ | |
701 | delcount = delete_variable (&result, var, 0 /* parent+children */ ); | |
702 | ||
703 | /* We may have been asked to return a list of what has been deleted */ | |
704 | if (dellist != NULL) | |
705 | { | |
706 | *dellist = xmalloc ((delcount + 1) * sizeof (char *)); | |
707 | ||
708 | cp = *dellist; | |
709 | mycount = delcount; | |
710 | *cp = cppop (&result); | |
711 | while ((*cp != NULL) && (mycount > 0)) | |
712 | { | |
713 | mycount--; | |
714 | cp++; | |
715 | *cp = cppop (&result); | |
716 | } | |
717 | ||
718 | if (mycount || (*cp != NULL)) | |
8a3fe4f8 | 719 | warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"), |
72330bd6 | 720 | mycount); |
8b93c638 JM |
721 | } |
722 | ||
723 | return delcount; | |
724 | } | |
725 | ||
b6313243 TT |
726 | /* Convenience function for varobj_set_visualizer. Instantiate a |
727 | pretty-printer for a given value. */ | |
728 | static PyObject * | |
729 | instantiate_pretty_printer (PyObject *constructor, struct value *value) | |
730 | { | |
731 | #if HAVE_PYTHON | |
732 | PyObject *val_obj = NULL; | |
733 | PyObject *printer; | |
734 | volatile struct gdb_exception except; | |
735 | ||
736 | TRY_CATCH (except, RETURN_MASK_ALL) | |
737 | { | |
738 | value = value_copy (value); | |
739 | } | |
740 | GDB_PY_HANDLE_EXCEPTION (except); | |
741 | val_obj = value_to_value_object (value); | |
742 | ||
743 | if (! val_obj) | |
744 | return NULL; | |
745 | ||
746 | printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL); | |
747 | Py_DECREF (val_obj); | |
748 | return printer; | |
749 | #endif | |
750 | return NULL; | |
751 | } | |
752 | ||
8b93c638 JM |
753 | /* Set/Get variable object display format */ |
754 | ||
755 | enum varobj_display_formats | |
756 | varobj_set_display_format (struct varobj *var, | |
757 | enum varobj_display_formats format) | |
758 | { | |
759 | switch (format) | |
760 | { | |
761 | case FORMAT_NATURAL: | |
762 | case FORMAT_BINARY: | |
763 | case FORMAT_DECIMAL: | |
764 | case FORMAT_HEXADECIMAL: | |
765 | case FORMAT_OCTAL: | |
766 | var->format = format; | |
767 | break; | |
768 | ||
769 | default: | |
770 | var->format = variable_default_display (var); | |
771 | } | |
772 | ||
ae7d22a6 VP |
773 | if (varobj_value_is_changeable_p (var) |
774 | && var->value && !value_lazy (var->value)) | |
775 | { | |
6c761d9c | 776 | xfree (var->print_value); |
d452c4bc | 777 | var->print_value = value_get_print_value (var->value, var->format, var); |
ae7d22a6 VP |
778 | } |
779 | ||
8b93c638 JM |
780 | return var->format; |
781 | } | |
782 | ||
783 | enum varobj_display_formats | |
784 | varobj_get_display_format (struct varobj *var) | |
785 | { | |
786 | return var->format; | |
787 | } | |
788 | ||
b6313243 TT |
789 | char * |
790 | varobj_get_display_hint (struct varobj *var) | |
791 | { | |
792 | char *result = NULL; | |
793 | ||
794 | #if HAVE_PYTHON | |
d452c4bc UW |
795 | struct cleanup *back_to = varobj_ensure_python_env (var); |
796 | ||
b6313243 TT |
797 | if (var->pretty_printer) |
798 | result = gdbpy_get_display_hint (var->pretty_printer); | |
d452c4bc UW |
799 | |
800 | do_cleanups (back_to); | |
b6313243 TT |
801 | #endif |
802 | ||
803 | return result; | |
804 | } | |
805 | ||
c5b48eac VP |
806 | /* If the variable object is bound to a specific thread, that |
807 | is its evaluation can always be done in context of a frame | |
808 | inside that thread, returns GDB id of the thread -- which | |
809 | is always positive. Otherwise, returns -1. */ | |
810 | int | |
811 | varobj_get_thread_id (struct varobj *var) | |
812 | { | |
813 | if (var->root->valid_block && var->root->thread_id > 0) | |
814 | return var->root->thread_id; | |
815 | else | |
816 | return -1; | |
817 | } | |
818 | ||
25d5ea92 VP |
819 | void |
820 | varobj_set_frozen (struct varobj *var, int frozen) | |
821 | { | |
822 | /* When a variable is unfrozen, we don't fetch its value. | |
823 | The 'not_fetched' flag remains set, so next -var-update | |
824 | won't complain. | |
825 | ||
826 | We don't fetch the value, because for structures the client | |
827 | should do -var-update anyway. It would be bad to have different | |
828 | client-size logic for structure and other types. */ | |
829 | var->frozen = frozen; | |
830 | } | |
831 | ||
832 | int | |
833 | varobj_get_frozen (struct varobj *var) | |
834 | { | |
835 | return var->frozen; | |
836 | } | |
837 | ||
b6313243 TT |
838 | static int |
839 | update_dynamic_varobj_children (struct varobj *var, | |
840 | VEC (varobj_p) **changed, | |
841 | VEC (varobj_p) **new_and_unchanged, | |
842 | int *cchanged) | |
843 | ||
844 | { | |
845 | #if HAVE_PYTHON | |
846 | /* FIXME: we *might* want to provide this functionality as | |
847 | a standalone function, so that other interested parties | |
848 | than varobj code can benefit for this. */ | |
849 | struct cleanup *back_to; | |
850 | PyObject *children; | |
851 | PyObject *iterator; | |
852 | int i; | |
853 | int children_changed = 0; | |
854 | PyObject *printer = var->pretty_printer; | |
b6313243 | 855 | |
d452c4bc | 856 | back_to = varobj_ensure_python_env (var); |
b6313243 TT |
857 | |
858 | *cchanged = 0; | |
859 | if (!PyObject_HasAttr (printer, gdbpy_children_cst)) | |
860 | { | |
861 | do_cleanups (back_to); | |
862 | return 0; | |
863 | } | |
864 | ||
865 | children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst, | |
866 | NULL); | |
867 | ||
868 | if (!children) | |
869 | { | |
870 | gdbpy_print_stack (); | |
da1f2771 | 871 | error (_("Null value returned for children")); |
b6313243 TT |
872 | } |
873 | ||
874 | make_cleanup_py_decref (children); | |
875 | ||
876 | if (!PyIter_Check (children)) | |
da1f2771 | 877 | error (_("Returned value is not iterable")); |
b6313243 TT |
878 | |
879 | iterator = PyObject_GetIter (children); | |
880 | if (!iterator) | |
881 | { | |
882 | gdbpy_print_stack (); | |
da1f2771 | 883 | error (_("Could not get children iterator")); |
b6313243 TT |
884 | } |
885 | make_cleanup_py_decref (iterator); | |
886 | ||
887 | for (i = 0; ; ++i) | |
888 | { | |
889 | PyObject *item = PyIter_Next (iterator); | |
890 | PyObject *py_v; | |
891 | struct value *v; | |
892 | char *name; | |
893 | struct cleanup *inner; | |
894 | ||
895 | if (!item) | |
896 | break; | |
897 | inner = make_cleanup_py_decref (item); | |
898 | ||
899 | if (!PyArg_ParseTuple (item, "sO", &name, &py_v)) | |
da1f2771 | 900 | error (_("Invalid item from the child list")); |
b6313243 | 901 | |
4e7a5ef5 | 902 | v = convert_value_from_python (py_v); |
b6313243 TT |
903 | |
904 | /* TODO: This assume the name of the i-th child never changes. */ | |
905 | ||
906 | /* Now see what to do here. */ | |
907 | if (VEC_length (varobj_p, var->children) < i + 1) | |
908 | { | |
909 | /* There's no child yet. */ | |
910 | struct varobj *child = varobj_add_child (var, name, v); | |
911 | if (new_and_unchanged) | |
912 | VEC_safe_push (varobj_p, *new_and_unchanged, child); | |
913 | children_changed = 1; | |
914 | } | |
915 | else | |
916 | { | |
917 | varobj_p existing = VEC_index (varobj_p, var->children, i); | |
918 | if (install_new_value (existing, v, 0) && changed) | |
919 | { | |
920 | if (changed) | |
921 | VEC_safe_push (varobj_p, *changed, existing); | |
922 | } | |
923 | else | |
924 | { | |
925 | if (new_and_unchanged) | |
926 | VEC_safe_push (varobj_p, *new_and_unchanged, existing); | |
927 | } | |
928 | } | |
929 | ||
930 | do_cleanups (inner); | |
931 | } | |
932 | ||
933 | if (i < VEC_length (varobj_p, var->children)) | |
934 | { | |
935 | int i; | |
936 | children_changed = 1; | |
937 | for (i = 0; i < VEC_length (varobj_p, var->children); ++i) | |
938 | varobj_delete (VEC_index (varobj_p, var->children, i), NULL, 0); | |
939 | } | |
940 | VEC_truncate (varobj_p, var->children, i); | |
941 | var->num_children = VEC_length (varobj_p, var->children); | |
942 | ||
943 | do_cleanups (back_to); | |
944 | ||
945 | *cchanged = children_changed; | |
946 | return 1; | |
947 | #else | |
948 | gdb_assert (0 && "should never be called if Python is not enabled"); | |
949 | #endif | |
950 | } | |
25d5ea92 | 951 | |
8b93c638 JM |
952 | int |
953 | varobj_get_num_children (struct varobj *var) | |
954 | { | |
955 | if (var->num_children == -1) | |
b6313243 TT |
956 | { |
957 | int changed; | |
958 | if (!var->pretty_printer | |
959 | || !update_dynamic_varobj_children (var, NULL, NULL, &changed)) | |
960 | var->num_children = number_of_children (var); | |
961 | } | |
8b93c638 JM |
962 | |
963 | return var->num_children; | |
964 | } | |
965 | ||
966 | /* Creates a list of the immediate children of a variable object; | |
967 | the return code is the number of such children or -1 on error */ | |
968 | ||
d56d46f5 VP |
969 | VEC (varobj_p)* |
970 | varobj_list_children (struct varobj *var) | |
8b93c638 JM |
971 | { |
972 | struct varobj *child; | |
973 | char *name; | |
b6313243 TT |
974 | int i, children_changed; |
975 | ||
976 | var->children_requested = 1; | |
977 | ||
978 | if (var->pretty_printer | |
979 | /* This, in theory, can result in the number of children changing without | |
980 | frontend noticing. But well, calling -var-list-children on the same | |
981 | varobj twice is not something a sane frontend would do. */ | |
982 | && update_dynamic_varobj_children (var, NULL, NULL, &children_changed)) | |
983 | return var->children; | |
8b93c638 | 984 | |
8b93c638 JM |
985 | if (var->num_children == -1) |
986 | var->num_children = number_of_children (var); | |
987 | ||
74a44383 DJ |
988 | /* If that failed, give up. */ |
989 | if (var->num_children == -1) | |
d56d46f5 | 990 | return var->children; |
74a44383 | 991 | |
28335dcc VP |
992 | /* If we're called when the list of children is not yet initialized, |
993 | allocate enough elements in it. */ | |
994 | while (VEC_length (varobj_p, var->children) < var->num_children) | |
995 | VEC_safe_push (varobj_p, var->children, NULL); | |
996 | ||
8b93c638 JM |
997 | for (i = 0; i < var->num_children; i++) |
998 | { | |
d56d46f5 | 999 | varobj_p existing = VEC_index (varobj_p, var->children, i); |
28335dcc VP |
1000 | |
1001 | if (existing == NULL) | |
1002 | { | |
1003 | /* Either it's the first call to varobj_list_children for | |
1004 | this variable object, and the child was never created, | |
1005 | or it was explicitly deleted by the client. */ | |
1006 | name = name_of_child (var, i); | |
1007 | existing = create_child (var, i, name); | |
1008 | VEC_replace (varobj_p, var->children, i, existing); | |
b6313243 | 1009 | install_default_visualizer (existing); |
28335dcc | 1010 | } |
8b93c638 JM |
1011 | } |
1012 | ||
d56d46f5 | 1013 | return var->children; |
8b93c638 JM |
1014 | } |
1015 | ||
b6313243 TT |
1016 | static struct varobj * |
1017 | varobj_add_child (struct varobj *var, const char *name, struct value *value) | |
1018 | { | |
1019 | varobj_p v = create_child_with_value (var, | |
1020 | VEC_length (varobj_p, var->children), | |
1021 | name, value); | |
1022 | VEC_safe_push (varobj_p, var->children, v); | |
1023 | install_default_visualizer (v); | |
1024 | return v; | |
1025 | } | |
1026 | ||
8b93c638 JM |
1027 | /* Obtain the type of an object Variable as a string similar to the one gdb |
1028 | prints on the console */ | |
1029 | ||
1030 | char * | |
1031 | varobj_get_type (struct varobj *var) | |
1032 | { | |
8b93c638 | 1033 | /* For the "fake" variables, do not return a type. (It's type is |
8756216b DP |
1034 | NULL, too.) |
1035 | Do not return a type for invalid variables as well. */ | |
1036 | if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid) | |
8b93c638 JM |
1037 | return NULL; |
1038 | ||
1a4300e9 | 1039 | return type_to_string (var->type); |
8b93c638 JM |
1040 | } |
1041 | ||
1ecb4ee0 DJ |
1042 | /* Obtain the type of an object variable. */ |
1043 | ||
1044 | struct type * | |
1045 | varobj_get_gdb_type (struct varobj *var) | |
1046 | { | |
1047 | return var->type; | |
1048 | } | |
1049 | ||
02142340 VP |
1050 | /* Return a pointer to the full rooted expression of varobj VAR. |
1051 | If it has not been computed yet, compute it. */ | |
1052 | char * | |
1053 | varobj_get_path_expr (struct varobj *var) | |
1054 | { | |
1055 | if (var->path_expr != NULL) | |
1056 | return var->path_expr; | |
1057 | else | |
1058 | { | |
1059 | /* For root varobjs, we initialize path_expr | |
1060 | when creating varobj, so here it should be | |
1061 | child varobj. */ | |
1062 | gdb_assert (!is_root_p (var)); | |
1063 | return (*var->root->lang->path_expr_of_child) (var); | |
1064 | } | |
1065 | } | |
1066 | ||
8b93c638 JM |
1067 | enum varobj_languages |
1068 | varobj_get_language (struct varobj *var) | |
1069 | { | |
1070 | return variable_language (var); | |
1071 | } | |
1072 | ||
1073 | int | |
1074 | varobj_get_attributes (struct varobj *var) | |
1075 | { | |
1076 | int attributes = 0; | |
1077 | ||
340a7723 | 1078 | if (varobj_editable_p (var)) |
8b93c638 JM |
1079 | /* FIXME: define masks for attributes */ |
1080 | attributes |= 0x00000001; /* Editable */ | |
1081 | ||
1082 | return attributes; | |
1083 | } | |
1084 | ||
de051565 MK |
1085 | char * |
1086 | varobj_get_formatted_value (struct varobj *var, | |
1087 | enum varobj_display_formats format) | |
1088 | { | |
1089 | return my_value_of_variable (var, format); | |
1090 | } | |
1091 | ||
8b93c638 JM |
1092 | char * |
1093 | varobj_get_value (struct varobj *var) | |
1094 | { | |
de051565 | 1095 | return my_value_of_variable (var, var->format); |
8b93c638 JM |
1096 | } |
1097 | ||
1098 | /* Set the value of an object variable (if it is editable) to the | |
1099 | value of the given expression */ | |
1100 | /* Note: Invokes functions that can call error() */ | |
1101 | ||
1102 | int | |
1103 | varobj_set_value (struct varobj *var, char *expression) | |
1104 | { | |
30b28db1 | 1105 | struct value *val; |
8b93c638 | 1106 | int offset = 0; |
a6c442d8 | 1107 | int error = 0; |
8b93c638 JM |
1108 | |
1109 | /* The argument "expression" contains the variable's new value. | |
1110 | We need to first construct a legal expression for this -- ugh! */ | |
1111 | /* Does this cover all the bases? */ | |
1112 | struct expression *exp; | |
30b28db1 | 1113 | struct value *value; |
8b93c638 | 1114 | int saved_input_radix = input_radix; |
340a7723 NR |
1115 | char *s = expression; |
1116 | int i; | |
8b93c638 | 1117 | |
340a7723 | 1118 | gdb_assert (varobj_editable_p (var)); |
8b93c638 | 1119 | |
340a7723 NR |
1120 | input_radix = 10; /* ALWAYS reset to decimal temporarily */ |
1121 | exp = parse_exp_1 (&s, 0, 0); | |
1122 | if (!gdb_evaluate_expression (exp, &value)) | |
1123 | { | |
1124 | /* We cannot proceed without a valid expression. */ | |
1125 | xfree (exp); | |
1126 | return 0; | |
8b93c638 JM |
1127 | } |
1128 | ||
340a7723 NR |
1129 | /* All types that are editable must also be changeable. */ |
1130 | gdb_assert (varobj_value_is_changeable_p (var)); | |
1131 | ||
1132 | /* The value of a changeable variable object must not be lazy. */ | |
1133 | gdb_assert (!value_lazy (var->value)); | |
1134 | ||
1135 | /* Need to coerce the input. We want to check if the | |
1136 | value of the variable object will be different | |
1137 | after assignment, and the first thing value_assign | |
1138 | does is coerce the input. | |
1139 | For example, if we are assigning an array to a pointer variable we | |
1140 | should compare the pointer with the the array's address, not with the | |
1141 | array's content. */ | |
1142 | value = coerce_array (value); | |
1143 | ||
1144 | /* The new value may be lazy. gdb_value_assign, or | |
1145 | rather value_contents, will take care of this. | |
1146 | If fetching of the new value will fail, gdb_value_assign | |
1147 | with catch the exception. */ | |
1148 | if (!gdb_value_assign (var->value, value, &val)) | |
1149 | return 0; | |
1150 | ||
1151 | /* If the value has changed, record it, so that next -var-update can | |
1152 | report this change. If a variable had a value of '1', we've set it | |
1153 | to '333' and then set again to '1', when -var-update will report this | |
1154 | variable as changed -- because the first assignment has set the | |
1155 | 'updated' flag. There's no need to optimize that, because return value | |
1156 | of -var-update should be considered an approximation. */ | |
1157 | var->updated = install_new_value (var, val, 0 /* Compare values. */); | |
1158 | input_radix = saved_input_radix; | |
1159 | return 1; | |
8b93c638 JM |
1160 | } |
1161 | ||
acd65feb VP |
1162 | /* Assign a new value to a variable object. If INITIAL is non-zero, |
1163 | this is the first assignement after the variable object was just | |
1164 | created, or changed type. In that case, just assign the value | |
1165 | and return 0. | |
ee342b23 VP |
1166 | Otherwise, assign the new value, and return 1 if the value is different |
1167 | from the current one, 0 otherwise. The comparison is done on textual | |
1168 | representation of value. Therefore, some types need not be compared. E.g. | |
1169 | for structures the reported value is always "{...}", so no comparison is | |
1170 | necessary here. If the old value was NULL and new one is not, or vice versa, | |
1171 | we always return 1. | |
b26ed50d VP |
1172 | |
1173 | The VALUE parameter should not be released -- the function will | |
1174 | take care of releasing it when needed. */ | |
acd65feb VP |
1175 | static int |
1176 | install_new_value (struct varobj *var, struct value *value, int initial) | |
1177 | { | |
1178 | int changeable; | |
1179 | int need_to_fetch; | |
1180 | int changed = 0; | |
25d5ea92 | 1181 | int intentionally_not_fetched = 0; |
7a4d50bf | 1182 | char *print_value = NULL; |
acd65feb | 1183 | |
acd65feb VP |
1184 | /* We need to know the varobj's type to decide if the value should |
1185 | be fetched or not. C++ fake children (public/protected/private) don't have | |
1186 | a type. */ | |
1187 | gdb_assert (var->type || CPLUS_FAKE_CHILD (var)); | |
b2c2bd75 | 1188 | changeable = varobj_value_is_changeable_p (var); |
b6313243 TT |
1189 | |
1190 | /* If the type has custom visualizer, we consider it to be always | |
1191 | changeable. FIXME: need to make sure this behaviour will not | |
1192 | mess up read-sensitive values. */ | |
1193 | if (var->pretty_printer) | |
1194 | changeable = 1; | |
1195 | ||
acd65feb VP |
1196 | need_to_fetch = changeable; |
1197 | ||
b26ed50d VP |
1198 | /* We are not interested in the address of references, and given |
1199 | that in C++ a reference is not rebindable, it cannot | |
1200 | meaningfully change. So, get hold of the real value. */ | |
1201 | if (value) | |
1202 | { | |
1203 | value = coerce_ref (value); | |
1204 | release_value (value); | |
1205 | } | |
1206 | ||
acd65feb VP |
1207 | if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION) |
1208 | /* For unions, we need to fetch the value implicitly because | |
1209 | of implementation of union member fetch. When gdb | |
1210 | creates a value for a field and the value of the enclosing | |
1211 | structure is not lazy, it immediately copies the necessary | |
1212 | bytes from the enclosing values. If the enclosing value is | |
1213 | lazy, the call to value_fetch_lazy on the field will read | |
1214 | the data from memory. For unions, that means we'll read the | |
1215 | same memory more than once, which is not desirable. So | |
1216 | fetch now. */ | |
1217 | need_to_fetch = 1; | |
1218 | ||
1219 | /* The new value might be lazy. If the type is changeable, | |
1220 | that is we'll be comparing values of this type, fetch the | |
1221 | value now. Otherwise, on the next update the old value | |
1222 | will be lazy, which means we've lost that old value. */ | |
1223 | if (need_to_fetch && value && value_lazy (value)) | |
1224 | { | |
25d5ea92 VP |
1225 | struct varobj *parent = var->parent; |
1226 | int frozen = var->frozen; | |
1227 | for (; !frozen && parent; parent = parent->parent) | |
1228 | frozen |= parent->frozen; | |
1229 | ||
1230 | if (frozen && initial) | |
1231 | { | |
1232 | /* For variables that are frozen, or are children of frozen | |
1233 | variables, we don't do fetch on initial assignment. | |
1234 | For non-initial assignemnt we do the fetch, since it means we're | |
1235 | explicitly asked to compare the new value with the old one. */ | |
1236 | intentionally_not_fetched = 1; | |
1237 | } | |
1238 | else if (!gdb_value_fetch_lazy (value)) | |
acd65feb | 1239 | { |
acd65feb VP |
1240 | /* Set the value to NULL, so that for the next -var-update, |
1241 | we don't try to compare the new value with this value, | |
1242 | that we couldn't even read. */ | |
1243 | value = NULL; | |
1244 | } | |
acd65feb VP |
1245 | } |
1246 | ||
b6313243 | 1247 | |
7a4d50bf VP |
1248 | /* Below, we'll be comparing string rendering of old and new |
1249 | values. Don't get string rendering if the value is | |
1250 | lazy -- if it is, the code above has decided that the value | |
1251 | should not be fetched. */ | |
1252 | if (value && !value_lazy (value)) | |
d452c4bc | 1253 | print_value = value_get_print_value (value, var->format, var); |
7a4d50bf | 1254 | |
acd65feb VP |
1255 | /* If the type is changeable, compare the old and the new values. |
1256 | If this is the initial assignment, we don't have any old value | |
1257 | to compare with. */ | |
7a4d50bf | 1258 | if (!initial && changeable) |
acd65feb VP |
1259 | { |
1260 | /* If the value of the varobj was changed by -var-set-value, then the | |
1261 | value in the varobj and in the target is the same. However, that value | |
1262 | is different from the value that the varobj had after the previous | |
57e66780 | 1263 | -var-update. So need to the varobj as changed. */ |
acd65feb | 1264 | if (var->updated) |
57e66780 | 1265 | { |
57e66780 DJ |
1266 | changed = 1; |
1267 | } | |
acd65feb VP |
1268 | else |
1269 | { | |
1270 | /* Try to compare the values. That requires that both | |
1271 | values are non-lazy. */ | |
25d5ea92 VP |
1272 | if (var->not_fetched && value_lazy (var->value)) |
1273 | { | |
1274 | /* This is a frozen varobj and the value was never read. | |
1275 | Presumably, UI shows some "never read" indicator. | |
1276 | Now that we've fetched the real value, we need to report | |
1277 | this varobj as changed so that UI can show the real | |
1278 | value. */ | |
1279 | changed = 1; | |
1280 | } | |
1281 | else if (var->value == NULL && value == NULL) | |
acd65feb VP |
1282 | /* Equal. */ |
1283 | ; | |
1284 | else if (var->value == NULL || value == NULL) | |
57e66780 | 1285 | { |
57e66780 DJ |
1286 | changed = 1; |
1287 | } | |
acd65feb VP |
1288 | else |
1289 | { | |
1290 | gdb_assert (!value_lazy (var->value)); | |
1291 | gdb_assert (!value_lazy (value)); | |
85265413 | 1292 | |
57e66780 | 1293 | gdb_assert (var->print_value != NULL && print_value != NULL); |
85265413 | 1294 | if (strcmp (var->print_value, print_value) != 0) |
7a4d50bf | 1295 | changed = 1; |
acd65feb VP |
1296 | } |
1297 | } | |
1298 | } | |
85265413 | 1299 | |
ee342b23 VP |
1300 | if (!initial && !changeable) |
1301 | { | |
1302 | /* For values that are not changeable, we don't compare the values. | |
1303 | However, we want to notice if a value was not NULL and now is NULL, | |
1304 | or vise versa, so that we report when top-level varobjs come in scope | |
1305 | and leave the scope. */ | |
1306 | changed = (var->value != NULL) != (value != NULL); | |
1307 | } | |
1308 | ||
acd65feb | 1309 | /* We must always keep the new value, since children depend on it. */ |
25d5ea92 | 1310 | if (var->value != NULL && var->value != value) |
acd65feb VP |
1311 | value_free (var->value); |
1312 | var->value = value; | |
7a4d50bf VP |
1313 | if (var->print_value) |
1314 | xfree (var->print_value); | |
1315 | var->print_value = print_value; | |
25d5ea92 VP |
1316 | if (value && value_lazy (value) && intentionally_not_fetched) |
1317 | var->not_fetched = 1; | |
1318 | else | |
1319 | var->not_fetched = 0; | |
acd65feb | 1320 | var->updated = 0; |
85265413 | 1321 | |
b26ed50d | 1322 | gdb_assert (!var->value || value_type (var->value)); |
acd65feb VP |
1323 | |
1324 | return changed; | |
1325 | } | |
acd65feb | 1326 | |
b6313243 TT |
1327 | static void |
1328 | install_visualizer (struct varobj *var, PyObject *visualizer) | |
1329 | { | |
1330 | #if HAVE_PYTHON | |
1331 | /* If there are any children now, wipe them. */ | |
1332 | varobj_delete (var, NULL, 1 /* children only */); | |
1333 | var->num_children = -1; | |
1334 | ||
1335 | Py_XDECREF (var->pretty_printer); | |
1336 | var->pretty_printer = visualizer; | |
1337 | ||
1338 | install_new_value (var, var->value, 1); | |
1339 | ||
1340 | /* If we removed the visualizer, and the user ever requested the | |
1341 | object's children, then we must compute the list of children. | |
1342 | Note that we needn't do this when installing a visualizer, | |
1343 | because updating will recompute dynamic children. */ | |
1344 | if (!visualizer && var->children_requested) | |
1345 | varobj_list_children (var); | |
1346 | #else | |
da1f2771 | 1347 | error (_("Python support required")); |
b6313243 TT |
1348 | #endif |
1349 | } | |
1350 | ||
1351 | static void | |
1352 | install_default_visualizer (struct varobj *var) | |
1353 | { | |
1354 | #if HAVE_PYTHON | |
1355 | struct cleanup *cleanup; | |
b6313243 TT |
1356 | PyObject *pretty_printer = NULL; |
1357 | ||
d452c4bc | 1358 | cleanup = varobj_ensure_python_env (var); |
b6313243 TT |
1359 | |
1360 | if (var->value) | |
1361 | { | |
1362 | pretty_printer = gdbpy_get_varobj_pretty_printer (var->value); | |
1363 | if (! pretty_printer) | |
1364 | { | |
1365 | gdbpy_print_stack (); | |
1366 | error (_("Cannot instantiate printer for default visualizer")); | |
1367 | } | |
1368 | } | |
1369 | ||
1370 | if (pretty_printer == Py_None) | |
1371 | { | |
1372 | Py_DECREF (pretty_printer); | |
1373 | pretty_printer = NULL; | |
1374 | } | |
1375 | ||
1376 | install_visualizer (var, pretty_printer); | |
1377 | do_cleanups (cleanup); | |
1378 | #else | |
1379 | /* No error is right as this function is inserted just as a hook. */ | |
1380 | #endif | |
1381 | } | |
1382 | ||
1383 | void | |
1384 | varobj_set_visualizer (struct varobj *var, const char *visualizer) | |
1385 | { | |
1386 | #if HAVE_PYTHON | |
1387 | PyObject *mainmod, *globals, *pretty_printer, *constructor; | |
1388 | struct cleanup *back_to, *value; | |
b6313243 | 1389 | |
d452c4bc | 1390 | back_to = varobj_ensure_python_env (var); |
b6313243 TT |
1391 | |
1392 | mainmod = PyImport_AddModule ("__main__"); | |
1393 | globals = PyModule_GetDict (mainmod); | |
1394 | Py_INCREF (globals); | |
1395 | make_cleanup_py_decref (globals); | |
1396 | ||
1397 | constructor = PyRun_String (visualizer, Py_eval_input, globals, globals); | |
1398 | ||
1399 | /* Do not instantiate NoneType. */ | |
1400 | if (constructor == Py_None) | |
1401 | { | |
1402 | pretty_printer = Py_None; | |
1403 | Py_INCREF (pretty_printer); | |
1404 | } | |
1405 | else | |
1406 | pretty_printer = instantiate_pretty_printer (constructor, var->value); | |
1407 | ||
1408 | Py_XDECREF (constructor); | |
1409 | ||
1410 | if (! pretty_printer) | |
1411 | { | |
1412 | gdbpy_print_stack (); | |
da1f2771 | 1413 | error (_("Could not evaluate visualizer expression: %s"), visualizer); |
b6313243 TT |
1414 | } |
1415 | ||
1416 | if (pretty_printer == Py_None) | |
1417 | { | |
1418 | Py_DECREF (pretty_printer); | |
1419 | pretty_printer = NULL; | |
1420 | } | |
1421 | ||
1422 | install_visualizer (var, pretty_printer); | |
1423 | ||
1424 | do_cleanups (back_to); | |
1425 | #else | |
da1f2771 | 1426 | error (_("Python support required")); |
b6313243 TT |
1427 | #endif |
1428 | } | |
1429 | ||
8b93c638 JM |
1430 | /* Update the values for a variable and its children. This is a |
1431 | two-pronged attack. First, re-parse the value for the root's | |
1432 | expression to see if it's changed. Then go all the way | |
1433 | through its children, reconstructing them and noting if they've | |
1434 | changed. | |
1435 | ||
25d5ea92 VP |
1436 | The EXPLICIT parameter specifies if this call is result |
1437 | of MI request to update this specific variable, or | |
1438 | result of implicit -var-update *. For implicit request, we don't | |
1439 | update frozen variables. | |
705da579 KS |
1440 | |
1441 | NOTE: This function may delete the caller's varobj. If it | |
8756216b DP |
1442 | returns TYPE_CHANGED, then it has done this and VARP will be modified |
1443 | to point to the new varobj. */ | |
8b93c638 | 1444 | |
f7f9ae2c | 1445 | VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit) |
8b93c638 JM |
1446 | { |
1447 | int changed = 0; | |
25d5ea92 | 1448 | int type_changed = 0; |
8b93c638 JM |
1449 | int i; |
1450 | int vleft; | |
8b93c638 JM |
1451 | struct varobj *v; |
1452 | struct varobj **cv; | |
2c67cb8b | 1453 | struct varobj **templist = NULL; |
30b28db1 | 1454 | struct value *new; |
b6313243 | 1455 | VEC (varobj_update_result) *stack = NULL; |
f7f9ae2c | 1456 | VEC (varobj_update_result) *result = NULL; |
e64d9b3d | 1457 | struct frame_info *fi; |
8b93c638 | 1458 | |
25d5ea92 VP |
1459 | /* Frozen means frozen -- we don't check for any change in |
1460 | this varobj, including its going out of scope, or | |
1461 | changing type. One use case for frozen varobjs is | |
1462 | retaining previously evaluated expressions, and we don't | |
1463 | want them to be reevaluated at all. */ | |
1464 | if (!explicit && (*varp)->frozen) | |
f7f9ae2c | 1465 | return result; |
8756216b DP |
1466 | |
1467 | if (!(*varp)->root->is_valid) | |
f7f9ae2c VP |
1468 | { |
1469 | varobj_update_result r = {*varp}; | |
1470 | r.status = VAROBJ_INVALID; | |
1471 | VEC_safe_push (varobj_update_result, result, &r); | |
1472 | return result; | |
1473 | } | |
8b93c638 | 1474 | |
25d5ea92 | 1475 | if ((*varp)->root->rootvar == *varp) |
ae093f96 | 1476 | { |
f7f9ae2c VP |
1477 | varobj_update_result r = {*varp}; |
1478 | r.status = VAROBJ_IN_SCOPE; | |
1479 | ||
25d5ea92 VP |
1480 | /* Update the root variable. value_of_root can return NULL |
1481 | if the variable is no longer around, i.e. we stepped out of | |
1482 | the frame in which a local existed. We are letting the | |
1483 | value_of_root variable dispose of the varobj if the type | |
1484 | has changed. */ | |
25d5ea92 | 1485 | new = value_of_root (varp, &type_changed); |
f7f9ae2c VP |
1486 | r.varobj = *varp; |
1487 | ||
1488 | r.type_changed = type_changed; | |
ea56f9c2 | 1489 | if (install_new_value ((*varp), new, type_changed)) |
f7f9ae2c | 1490 | r.changed = 1; |
ea56f9c2 | 1491 | |
25d5ea92 | 1492 | if (new == NULL) |
f7f9ae2c | 1493 | r.status = VAROBJ_NOT_IN_SCOPE; |
b6313243 | 1494 | r.value_installed = 1; |
f7f9ae2c VP |
1495 | |
1496 | if (r.status == VAROBJ_NOT_IN_SCOPE) | |
b6313243 | 1497 | { |
0b4bc29a JK |
1498 | if (r.type_changed || r.changed) |
1499 | VEC_safe_push (varobj_update_result, result, &r); | |
b6313243 TT |
1500 | return result; |
1501 | } | |
1502 | ||
1503 | VEC_safe_push (varobj_update_result, stack, &r); | |
1504 | } | |
1505 | else | |
1506 | { | |
1507 | varobj_update_result r = {*varp}; | |
1508 | VEC_safe_push (varobj_update_result, stack, &r); | |
b20d8971 | 1509 | } |
8b93c638 | 1510 | |
8756216b | 1511 | /* Walk through the children, reconstructing them all. */ |
b6313243 | 1512 | while (!VEC_empty (varobj_update_result, stack)) |
8b93c638 | 1513 | { |
b6313243 TT |
1514 | varobj_update_result r = *(VEC_last (varobj_update_result, stack)); |
1515 | struct varobj *v = r.varobj; | |
1516 | ||
1517 | VEC_pop (varobj_update_result, stack); | |
1518 | ||
1519 | /* Update this variable, unless it's a root, which is already | |
1520 | updated. */ | |
1521 | if (!r.value_installed) | |
1522 | { | |
1523 | new = value_of_child (v->parent, v->index); | |
1524 | if (install_new_value (v, new, 0 /* type not changed */)) | |
1525 | { | |
1526 | r.changed = 1; | |
1527 | v->updated = 0; | |
1528 | } | |
1529 | } | |
1530 | ||
1531 | /* We probably should not get children of a varobj that has a | |
1532 | pretty-printer, but for which -var-list-children was never | |
1533 | invoked. Presumably, such varobj is not yet expanded in the | |
1534 | UI, so we need not bother getting it. */ | |
1535 | if (v->pretty_printer) | |
1536 | { | |
1537 | VEC (varobj_p) *changed = 0, *new_and_unchanged = 0; | |
1538 | int i, children_changed; | |
1539 | varobj_p tmp; | |
1540 | ||
1541 | if (!v->children_requested) | |
1542 | continue; | |
1543 | ||
1544 | if (v->frozen) | |
1545 | continue; | |
1546 | ||
1547 | /* If update_dynamic_varobj_children returns 0, then we have | |
1548 | a non-conforming pretty-printer, so we skip it. */ | |
1549 | if (update_dynamic_varobj_children (v, &changed, &new_and_unchanged, | |
1550 | &children_changed)) | |
1551 | { | |
1552 | if (children_changed) | |
1553 | r.children_changed = 1; | |
1554 | for (i = 0; VEC_iterate (varobj_p, changed, i, tmp); ++i) | |
1555 | { | |
1556 | varobj_update_result r = {tmp}; | |
1557 | r.changed = 1; | |
1558 | r.value_installed = 1; | |
1559 | VEC_safe_push (varobj_update_result, stack, &r); | |
1560 | } | |
1561 | for (i = 0; | |
1562 | VEC_iterate (varobj_p, new_and_unchanged, i, tmp); | |
1563 | ++i) | |
1564 | { | |
1565 | varobj_update_result r = {tmp}; | |
1566 | r.value_installed = 1; | |
1567 | VEC_safe_push (varobj_update_result, stack, &r); | |
1568 | } | |
1569 | if (r.changed || r.children_changed) | |
1570 | VEC_safe_push (varobj_update_result, result, &r); | |
1571 | continue; | |
1572 | } | |
1573 | } | |
28335dcc VP |
1574 | |
1575 | /* Push any children. Use reverse order so that the first | |
1576 | child is popped from the work stack first, and so | |
1577 | will be added to result first. This does not | |
1578 | affect correctness, just "nicer". */ | |
1579 | for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i) | |
8b93c638 | 1580 | { |
28335dcc VP |
1581 | varobj_p c = VEC_index (varobj_p, v->children, i); |
1582 | /* Child may be NULL if explicitly deleted by -var-delete. */ | |
25d5ea92 | 1583 | if (c != NULL && !c->frozen) |
28335dcc | 1584 | { |
b6313243 TT |
1585 | varobj_update_result r = {c}; |
1586 | VEC_safe_push (varobj_update_result, stack, &r); | |
28335dcc | 1587 | } |
8b93c638 | 1588 | } |
b6313243 TT |
1589 | |
1590 | if (r.changed || r.type_changed) | |
1591 | VEC_safe_push (varobj_update_result, result, &r); | |
8b93c638 JM |
1592 | } |
1593 | ||
b6313243 TT |
1594 | VEC_free (varobj_update_result, stack); |
1595 | ||
f7f9ae2c | 1596 | return result; |
8b93c638 JM |
1597 | } |
1598 | \f | |
1599 | ||
1600 | /* Helper functions */ | |
1601 | ||
1602 | /* | |
1603 | * Variable object construction/destruction | |
1604 | */ | |
1605 | ||
1606 | static int | |
fba45db2 KB |
1607 | delete_variable (struct cpstack **resultp, struct varobj *var, |
1608 | int only_children_p) | |
8b93c638 JM |
1609 | { |
1610 | int delcount = 0; | |
1611 | ||
1612 | delete_variable_1 (resultp, &delcount, var, | |
1613 | only_children_p, 1 /* remove_from_parent_p */ ); | |
1614 | ||
1615 | return delcount; | |
1616 | } | |
1617 | ||
1618 | /* Delete the variable object VAR and its children */ | |
1619 | /* IMPORTANT NOTE: If we delete a variable which is a child | |
1620 | and the parent is not removed we dump core. It must be always | |
1621 | initially called with remove_from_parent_p set */ | |
1622 | static void | |
72330bd6 AC |
1623 | delete_variable_1 (struct cpstack **resultp, int *delcountp, |
1624 | struct varobj *var, int only_children_p, | |
1625 | int remove_from_parent_p) | |
8b93c638 | 1626 | { |
28335dcc | 1627 | int i; |
8b93c638 JM |
1628 | |
1629 | /* Delete any children of this variable, too. */ | |
28335dcc VP |
1630 | for (i = 0; i < VEC_length (varobj_p, var->children); ++i) |
1631 | { | |
1632 | varobj_p child = VEC_index (varobj_p, var->children, i); | |
214270ab VP |
1633 | if (!child) |
1634 | continue; | |
8b93c638 | 1635 | if (!remove_from_parent_p) |
28335dcc VP |
1636 | child->parent = NULL; |
1637 | delete_variable_1 (resultp, delcountp, child, 0, only_children_p); | |
8b93c638 | 1638 | } |
28335dcc | 1639 | VEC_free (varobj_p, var->children); |
8b93c638 JM |
1640 | |
1641 | /* if we were called to delete only the children we are done here */ | |
1642 | if (only_children_p) | |
1643 | return; | |
1644 | ||
1645 | /* Otherwise, add it to the list of deleted ones and proceed to do so */ | |
73a93a32 JI |
1646 | /* If the name is null, this is a temporary variable, that has not |
1647 | yet been installed, don't report it, it belongs to the caller... */ | |
1648 | if (var->obj_name != NULL) | |
8b93c638 | 1649 | { |
5b616ba1 | 1650 | cppush (resultp, xstrdup (var->obj_name)); |
8b93c638 JM |
1651 | *delcountp = *delcountp + 1; |
1652 | } | |
1653 | ||
1654 | /* If this variable has a parent, remove it from its parent's list */ | |
1655 | /* OPTIMIZATION: if the parent of this variable is also being deleted, | |
1656 | (as indicated by remove_from_parent_p) we don't bother doing an | |
1657 | expensive list search to find the element to remove when we are | |
1658 | discarding the list afterwards */ | |
72330bd6 | 1659 | if ((remove_from_parent_p) && (var->parent != NULL)) |
8b93c638 | 1660 | { |
28335dcc | 1661 | VEC_replace (varobj_p, var->parent->children, var->index, NULL); |
8b93c638 | 1662 | } |
72330bd6 | 1663 | |
73a93a32 JI |
1664 | if (var->obj_name != NULL) |
1665 | uninstall_variable (var); | |
8b93c638 JM |
1666 | |
1667 | /* Free memory associated with this variable */ | |
1668 | free_variable (var); | |
1669 | } | |
1670 | ||
1671 | /* Install the given variable VAR with the object name VAR->OBJ_NAME. */ | |
1672 | static int | |
fba45db2 | 1673 | install_variable (struct varobj *var) |
8b93c638 JM |
1674 | { |
1675 | struct vlist *cv; | |
1676 | struct vlist *newvl; | |
1677 | const char *chp; | |
1678 | unsigned int index = 0; | |
1679 | unsigned int i = 1; | |
1680 | ||
1681 | for (chp = var->obj_name; *chp; chp++) | |
1682 | { | |
1683 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1684 | } | |
1685 | ||
1686 | cv = *(varobj_table + index); | |
1687 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1688 | cv = cv->next; | |
1689 | ||
1690 | if (cv != NULL) | |
8a3fe4f8 | 1691 | error (_("Duplicate variable object name")); |
8b93c638 JM |
1692 | |
1693 | /* Add varobj to hash table */ | |
1694 | newvl = xmalloc (sizeof (struct vlist)); | |
1695 | newvl->next = *(varobj_table + index); | |
1696 | newvl->var = var; | |
1697 | *(varobj_table + index) = newvl; | |
1698 | ||
1699 | /* If root, add varobj to root list */ | |
b2c2bd75 | 1700 | if (is_root_p (var)) |
8b93c638 JM |
1701 | { |
1702 | /* Add to list of root variables */ | |
1703 | if (rootlist == NULL) | |
1704 | var->root->next = NULL; | |
1705 | else | |
1706 | var->root->next = rootlist; | |
1707 | rootlist = var->root; | |
8b93c638 JM |
1708 | } |
1709 | ||
1710 | return 1; /* OK */ | |
1711 | } | |
1712 | ||
1713 | /* Unistall the object VAR. */ | |
1714 | static void | |
fba45db2 | 1715 | uninstall_variable (struct varobj *var) |
8b93c638 JM |
1716 | { |
1717 | struct vlist *cv; | |
1718 | struct vlist *prev; | |
1719 | struct varobj_root *cr; | |
1720 | struct varobj_root *prer; | |
1721 | const char *chp; | |
1722 | unsigned int index = 0; | |
1723 | unsigned int i = 1; | |
1724 | ||
1725 | /* Remove varobj from hash table */ | |
1726 | for (chp = var->obj_name; *chp; chp++) | |
1727 | { | |
1728 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1729 | } | |
1730 | ||
1731 | cv = *(varobj_table + index); | |
1732 | prev = NULL; | |
1733 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1734 | { | |
1735 | prev = cv; | |
1736 | cv = cv->next; | |
1737 | } | |
1738 | ||
1739 | if (varobjdebug) | |
1740 | fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name); | |
1741 | ||
1742 | if (cv == NULL) | |
1743 | { | |
72330bd6 AC |
1744 | warning |
1745 | ("Assertion failed: Could not find variable object \"%s\" to delete", | |
1746 | var->obj_name); | |
8b93c638 JM |
1747 | return; |
1748 | } | |
1749 | ||
1750 | if (prev == NULL) | |
1751 | *(varobj_table + index) = cv->next; | |
1752 | else | |
1753 | prev->next = cv->next; | |
1754 | ||
b8c9b27d | 1755 | xfree (cv); |
8b93c638 JM |
1756 | |
1757 | /* If root, remove varobj from root list */ | |
b2c2bd75 | 1758 | if (is_root_p (var)) |
8b93c638 JM |
1759 | { |
1760 | /* Remove from list of root variables */ | |
1761 | if (rootlist == var->root) | |
1762 | rootlist = var->root->next; | |
1763 | else | |
1764 | { | |
1765 | prer = NULL; | |
1766 | cr = rootlist; | |
1767 | while ((cr != NULL) && (cr->rootvar != var)) | |
1768 | { | |
1769 | prer = cr; | |
1770 | cr = cr->next; | |
1771 | } | |
1772 | if (cr == NULL) | |
1773 | { | |
72330bd6 AC |
1774 | warning |
1775 | ("Assertion failed: Could not find varobj \"%s\" in root list", | |
1776 | var->obj_name); | |
8b93c638 JM |
1777 | return; |
1778 | } | |
1779 | if (prer == NULL) | |
1780 | rootlist = NULL; | |
1781 | else | |
1782 | prer->next = cr->next; | |
1783 | } | |
8b93c638 JM |
1784 | } |
1785 | ||
1786 | } | |
1787 | ||
8b93c638 JM |
1788 | /* Create and install a child of the parent of the given name */ |
1789 | static struct varobj * | |
fba45db2 | 1790 | create_child (struct varobj *parent, int index, char *name) |
b6313243 TT |
1791 | { |
1792 | return create_child_with_value (parent, index, name, | |
1793 | value_of_child (parent, index)); | |
1794 | } | |
1795 | ||
1796 | static struct varobj * | |
1797 | create_child_with_value (struct varobj *parent, int index, const char *name, | |
1798 | struct value *value) | |
8b93c638 JM |
1799 | { |
1800 | struct varobj *child; | |
1801 | char *childs_name; | |
1802 | ||
1803 | child = new_variable (); | |
1804 | ||
1805 | /* name is allocated by name_of_child */ | |
b6313243 TT |
1806 | /* FIXME: xstrdup should not be here. */ |
1807 | child->name = xstrdup (name); | |
8b93c638 | 1808 | child->index = index; |
8b93c638 JM |
1809 | child->parent = parent; |
1810 | child->root = parent->root; | |
b435e160 | 1811 | childs_name = xstrprintf ("%s.%s", parent->obj_name, name); |
8b93c638 JM |
1812 | child->obj_name = childs_name; |
1813 | install_variable (child); | |
1814 | ||
acd65feb VP |
1815 | /* Compute the type of the child. Must do this before |
1816 | calling install_new_value. */ | |
1817 | if (value != NULL) | |
1818 | /* If the child had no evaluation errors, var->value | |
1819 | will be non-NULL and contain a valid type. */ | |
1820 | child->type = value_type (value); | |
1821 | else | |
1822 | /* Otherwise, we must compute the type. */ | |
1823 | child->type = (*child->root->lang->type_of_child) (child->parent, | |
1824 | child->index); | |
1825 | install_new_value (child, value, 1); | |
1826 | ||
8b93c638 JM |
1827 | return child; |
1828 | } | |
8b93c638 JM |
1829 | \f |
1830 | ||
1831 | /* | |
1832 | * Miscellaneous utility functions. | |
1833 | */ | |
1834 | ||
1835 | /* Allocate memory and initialize a new variable */ | |
1836 | static struct varobj * | |
1837 | new_variable (void) | |
1838 | { | |
1839 | struct varobj *var; | |
1840 | ||
1841 | var = (struct varobj *) xmalloc (sizeof (struct varobj)); | |
1842 | var->name = NULL; | |
02142340 | 1843 | var->path_expr = NULL; |
8b93c638 JM |
1844 | var->obj_name = NULL; |
1845 | var->index = -1; | |
1846 | var->type = NULL; | |
1847 | var->value = NULL; | |
8b93c638 JM |
1848 | var->num_children = -1; |
1849 | var->parent = NULL; | |
1850 | var->children = NULL; | |
1851 | var->format = 0; | |
1852 | var->root = NULL; | |
fb9b6b35 | 1853 | var->updated = 0; |
85265413 | 1854 | var->print_value = NULL; |
25d5ea92 VP |
1855 | var->frozen = 0; |
1856 | var->not_fetched = 0; | |
b6313243 TT |
1857 | var->children_requested = 0; |
1858 | var->pretty_printer = 0; | |
8b93c638 JM |
1859 | |
1860 | return var; | |
1861 | } | |
1862 | ||
1863 | /* Allocate memory and initialize a new root variable */ | |
1864 | static struct varobj * | |
1865 | new_root_variable (void) | |
1866 | { | |
1867 | struct varobj *var = new_variable (); | |
1868 | var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));; | |
1869 | var->root->lang = NULL; | |
1870 | var->root->exp = NULL; | |
1871 | var->root->valid_block = NULL; | |
7a424e99 | 1872 | var->root->frame = null_frame_id; |
a5defcdc | 1873 | var->root->floating = 0; |
8b93c638 | 1874 | var->root->rootvar = NULL; |
8756216b | 1875 | var->root->is_valid = 1; |
8b93c638 JM |
1876 | |
1877 | return var; | |
1878 | } | |
1879 | ||
1880 | /* Free any allocated memory associated with VAR. */ | |
1881 | static void | |
fba45db2 | 1882 | free_variable (struct varobj *var) |
8b93c638 | 1883 | { |
d452c4bc UW |
1884 | #if HAVE_PYTHON |
1885 | if (var->pretty_printer) | |
1886 | { | |
1887 | struct cleanup *cleanup = varobj_ensure_python_env (var); | |
1888 | Py_DECREF (var->pretty_printer); | |
1889 | do_cleanups (cleanup); | |
1890 | } | |
1891 | #endif | |
1892 | ||
36746093 JK |
1893 | value_free (var->value); |
1894 | ||
8b93c638 | 1895 | /* Free the expression if this is a root variable. */ |
b2c2bd75 | 1896 | if (is_root_p (var)) |
8b93c638 | 1897 | { |
3038237c | 1898 | xfree (var->root->exp); |
8038e1e2 | 1899 | xfree (var->root); |
8b93c638 JM |
1900 | } |
1901 | ||
8038e1e2 AC |
1902 | xfree (var->name); |
1903 | xfree (var->obj_name); | |
85265413 | 1904 | xfree (var->print_value); |
02142340 | 1905 | xfree (var->path_expr); |
8038e1e2 | 1906 | xfree (var); |
8b93c638 JM |
1907 | } |
1908 | ||
74b7792f AC |
1909 | static void |
1910 | do_free_variable_cleanup (void *var) | |
1911 | { | |
1912 | free_variable (var); | |
1913 | } | |
1914 | ||
1915 | static struct cleanup * | |
1916 | make_cleanup_free_variable (struct varobj *var) | |
1917 | { | |
1918 | return make_cleanup (do_free_variable_cleanup, var); | |
1919 | } | |
1920 | ||
6766a268 DJ |
1921 | /* This returns the type of the variable. It also skips past typedefs |
1922 | to return the real type of the variable. | |
94b66fa7 KS |
1923 | |
1924 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
1925 | except within get_target_type and get_type. */ | |
8b93c638 | 1926 | static struct type * |
fba45db2 | 1927 | get_type (struct varobj *var) |
8b93c638 JM |
1928 | { |
1929 | struct type *type; | |
1930 | type = var->type; | |
1931 | ||
6766a268 DJ |
1932 | if (type != NULL) |
1933 | type = check_typedef (type); | |
8b93c638 JM |
1934 | |
1935 | return type; | |
1936 | } | |
1937 | ||
6e2a9270 VP |
1938 | /* Return the type of the value that's stored in VAR, |
1939 | or that would have being stored there if the | |
1940 | value were accessible. | |
1941 | ||
1942 | This differs from VAR->type in that VAR->type is always | |
1943 | the true type of the expession in the source language. | |
1944 | The return value of this function is the type we're | |
1945 | actually storing in varobj, and using for displaying | |
1946 | the values and for comparing previous and new values. | |
1947 | ||
1948 | For example, top-level references are always stripped. */ | |
1949 | static struct type * | |
1950 | get_value_type (struct varobj *var) | |
1951 | { | |
1952 | struct type *type; | |
1953 | ||
1954 | if (var->value) | |
1955 | type = value_type (var->value); | |
1956 | else | |
1957 | type = var->type; | |
1958 | ||
1959 | type = check_typedef (type); | |
1960 | ||
1961 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
1962 | type = get_target_type (type); | |
1963 | ||
1964 | type = check_typedef (type); | |
1965 | ||
1966 | return type; | |
1967 | } | |
1968 | ||
8b93c638 | 1969 | /* This returns the target type (or NULL) of TYPE, also skipping |
94b66fa7 KS |
1970 | past typedefs, just like get_type (). |
1971 | ||
1972 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
1973 | except within get_target_type and get_type. */ | |
8b93c638 | 1974 | static struct type * |
fba45db2 | 1975 | get_target_type (struct type *type) |
8b93c638 JM |
1976 | { |
1977 | if (type != NULL) | |
1978 | { | |
1979 | type = TYPE_TARGET_TYPE (type); | |
6766a268 DJ |
1980 | if (type != NULL) |
1981 | type = check_typedef (type); | |
8b93c638 JM |
1982 | } |
1983 | ||
1984 | return type; | |
1985 | } | |
1986 | ||
1987 | /* What is the default display for this variable? We assume that | |
1988 | everything is "natural". Any exceptions? */ | |
1989 | static enum varobj_display_formats | |
fba45db2 | 1990 | variable_default_display (struct varobj *var) |
8b93c638 JM |
1991 | { |
1992 | return FORMAT_NATURAL; | |
1993 | } | |
1994 | ||
8b93c638 JM |
1995 | /* FIXME: The following should be generic for any pointer */ |
1996 | static void | |
fba45db2 | 1997 | cppush (struct cpstack **pstack, char *name) |
8b93c638 JM |
1998 | { |
1999 | struct cpstack *s; | |
2000 | ||
2001 | s = (struct cpstack *) xmalloc (sizeof (struct cpstack)); | |
2002 | s->name = name; | |
2003 | s->next = *pstack; | |
2004 | *pstack = s; | |
2005 | } | |
2006 | ||
2007 | /* FIXME: The following should be generic for any pointer */ | |
2008 | static char * | |
fba45db2 | 2009 | cppop (struct cpstack **pstack) |
8b93c638 JM |
2010 | { |
2011 | struct cpstack *s; | |
2012 | char *v; | |
2013 | ||
2014 | if ((*pstack)->name == NULL && (*pstack)->next == NULL) | |
2015 | return NULL; | |
2016 | ||
2017 | s = *pstack; | |
2018 | v = s->name; | |
2019 | *pstack = (*pstack)->next; | |
b8c9b27d | 2020 | xfree (s); |
8b93c638 JM |
2021 | |
2022 | return v; | |
2023 | } | |
2024 | \f | |
2025 | /* | |
2026 | * Language-dependencies | |
2027 | */ | |
2028 | ||
2029 | /* Common entry points */ | |
2030 | ||
2031 | /* Get the language of variable VAR. */ | |
2032 | static enum varobj_languages | |
fba45db2 | 2033 | variable_language (struct varobj *var) |
8b93c638 JM |
2034 | { |
2035 | enum varobj_languages lang; | |
2036 | ||
2037 | switch (var->root->exp->language_defn->la_language) | |
2038 | { | |
2039 | default: | |
2040 | case language_c: | |
2041 | lang = vlang_c; | |
2042 | break; | |
2043 | case language_cplus: | |
2044 | lang = vlang_cplus; | |
2045 | break; | |
2046 | case language_java: | |
2047 | lang = vlang_java; | |
2048 | break; | |
2049 | } | |
2050 | ||
2051 | return lang; | |
2052 | } | |
2053 | ||
2054 | /* Return the number of children for a given variable. | |
2055 | The result of this function is defined by the language | |
2056 | implementation. The number of children returned by this function | |
2057 | is the number of children that the user will see in the variable | |
2058 | display. */ | |
2059 | static int | |
fba45db2 | 2060 | number_of_children (struct varobj *var) |
8b93c638 JM |
2061 | { |
2062 | return (*var->root->lang->number_of_children) (var);; | |
2063 | } | |
2064 | ||
2065 | /* What is the expression for the root varobj VAR? Returns a malloc'd string. */ | |
2066 | static char * | |
fba45db2 | 2067 | name_of_variable (struct varobj *var) |
8b93c638 JM |
2068 | { |
2069 | return (*var->root->lang->name_of_variable) (var); | |
2070 | } | |
2071 | ||
2072 | /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */ | |
2073 | static char * | |
fba45db2 | 2074 | name_of_child (struct varobj *var, int index) |
8b93c638 JM |
2075 | { |
2076 | return (*var->root->lang->name_of_child) (var, index); | |
2077 | } | |
2078 | ||
a5defcdc VP |
2079 | /* What is the ``struct value *'' of the root variable VAR? |
2080 | For floating variable object, evaluation can get us a value | |
2081 | of different type from what is stored in varobj already. In | |
2082 | that case: | |
2083 | - *type_changed will be set to 1 | |
2084 | - old varobj will be freed, and new one will be | |
2085 | created, with the same name. | |
2086 | - *var_handle will be set to the new varobj | |
2087 | Otherwise, *type_changed will be set to 0. */ | |
30b28db1 | 2088 | static struct value * |
fba45db2 | 2089 | value_of_root (struct varobj **var_handle, int *type_changed) |
8b93c638 | 2090 | { |
73a93a32 JI |
2091 | struct varobj *var; |
2092 | ||
2093 | if (var_handle == NULL) | |
2094 | return NULL; | |
2095 | ||
2096 | var = *var_handle; | |
2097 | ||
2098 | /* This should really be an exception, since this should | |
2099 | only get called with a root variable. */ | |
2100 | ||
b2c2bd75 | 2101 | if (!is_root_p (var)) |
73a93a32 JI |
2102 | return NULL; |
2103 | ||
a5defcdc | 2104 | if (var->root->floating) |
73a93a32 JI |
2105 | { |
2106 | struct varobj *tmp_var; | |
2107 | char *old_type, *new_type; | |
6225abfa | 2108 | |
73a93a32 JI |
2109 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, |
2110 | USE_SELECTED_FRAME); | |
2111 | if (tmp_var == NULL) | |
2112 | { | |
2113 | return NULL; | |
2114 | } | |
6225abfa | 2115 | old_type = varobj_get_type (var); |
73a93a32 | 2116 | new_type = varobj_get_type (tmp_var); |
72330bd6 | 2117 | if (strcmp (old_type, new_type) == 0) |
73a93a32 | 2118 | { |
fcacd99f VP |
2119 | /* The expression presently stored inside var->root->exp |
2120 | remembers the locations of local variables relatively to | |
2121 | the frame where the expression was created (in DWARF location | |
2122 | button, for example). Naturally, those locations are not | |
2123 | correct in other frames, so update the expression. */ | |
2124 | ||
2125 | struct expression *tmp_exp = var->root->exp; | |
2126 | var->root->exp = tmp_var->root->exp; | |
2127 | tmp_var->root->exp = tmp_exp; | |
2128 | ||
73a93a32 JI |
2129 | varobj_delete (tmp_var, NULL, 0); |
2130 | *type_changed = 0; | |
2131 | } | |
2132 | else | |
2133 | { | |
1b36a34b | 2134 | tmp_var->obj_name = xstrdup (var->obj_name); |
a5defcdc VP |
2135 | varobj_delete (var, NULL, 0); |
2136 | ||
73a93a32 JI |
2137 | install_variable (tmp_var); |
2138 | *var_handle = tmp_var; | |
705da579 | 2139 | var = *var_handle; |
73a93a32 JI |
2140 | *type_changed = 1; |
2141 | } | |
74dddad3 MS |
2142 | xfree (old_type); |
2143 | xfree (new_type); | |
73a93a32 JI |
2144 | } |
2145 | else | |
2146 | { | |
2147 | *type_changed = 0; | |
2148 | } | |
2149 | ||
2150 | return (*var->root->lang->value_of_root) (var_handle); | |
8b93c638 JM |
2151 | } |
2152 | ||
30b28db1 AC |
2153 | /* What is the ``struct value *'' for the INDEX'th child of PARENT? */ |
2154 | static struct value * | |
fba45db2 | 2155 | value_of_child (struct varobj *parent, int index) |
8b93c638 | 2156 | { |
30b28db1 | 2157 | struct value *value; |
8b93c638 JM |
2158 | |
2159 | value = (*parent->root->lang->value_of_child) (parent, index); | |
2160 | ||
8b93c638 JM |
2161 | return value; |
2162 | } | |
2163 | ||
8b93c638 JM |
2164 | /* GDB already has a command called "value_of_variable". Sigh. */ |
2165 | static char * | |
de051565 | 2166 | my_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 2167 | { |
8756216b | 2168 | if (var->root->is_valid) |
de051565 | 2169 | return (*var->root->lang->value_of_variable) (var, format); |
8756216b DP |
2170 | else |
2171 | return NULL; | |
8b93c638 JM |
2172 | } |
2173 | ||
85265413 | 2174 | static char * |
b6313243 | 2175 | value_get_print_value (struct value *value, enum varobj_display_formats format, |
d452c4bc | 2176 | struct varobj *var) |
85265413 NR |
2177 | { |
2178 | long dummy; | |
57e66780 DJ |
2179 | struct ui_file *stb; |
2180 | struct cleanup *old_chain; | |
fbb8f299 | 2181 | gdb_byte *thevalue = NULL; |
79a45b7d | 2182 | struct value_print_options opts; |
fbb8f299 | 2183 | int len = 0; |
57e66780 DJ |
2184 | |
2185 | if (value == NULL) | |
2186 | return NULL; | |
2187 | ||
b6313243 TT |
2188 | #if HAVE_PYTHON |
2189 | { | |
d452c4bc UW |
2190 | struct cleanup *back_to = varobj_ensure_python_env (var); |
2191 | PyObject *value_formatter = var->pretty_printer; | |
2192 | ||
b6313243 TT |
2193 | if (value_formatter && PyObject_HasAttr (value_formatter, |
2194 | gdbpy_to_string_cst)) | |
2195 | { | |
2196 | char *hint; | |
2197 | struct value *replacement; | |
2198 | int string_print = 0; | |
fbb8f299 | 2199 | PyObject *output = NULL; |
b6313243 TT |
2200 | |
2201 | hint = gdbpy_get_display_hint (value_formatter); | |
2202 | if (hint) | |
2203 | { | |
2204 | if (!strcmp (hint, "string")) | |
2205 | string_print = 1; | |
2206 | xfree (hint); | |
2207 | } | |
2208 | ||
fbb8f299 PM |
2209 | output = apply_varobj_pretty_printer (value_formatter, |
2210 | &replacement); | |
2211 | if (output) | |
2212 | { | |
2213 | PyObject *py_str = python_string_to_target_python_string (output); | |
2214 | if (py_str) | |
2215 | { | |
2216 | char *s = PyString_AsString (py_str); | |
2217 | len = PyString_Size (py_str); | |
2218 | thevalue = xmemdup (s, len + 1, len + 1); | |
2219 | Py_DECREF (py_str); | |
2220 | } | |
2221 | Py_DECREF (output); | |
2222 | } | |
b6313243 TT |
2223 | if (thevalue && !string_print) |
2224 | { | |
d452c4bc | 2225 | do_cleanups (back_to); |
b6313243 TT |
2226 | return thevalue; |
2227 | } | |
2228 | if (replacement) | |
2229 | value = replacement; | |
2230 | } | |
d452c4bc | 2231 | do_cleanups (back_to); |
b6313243 TT |
2232 | } |
2233 | #endif | |
2234 | ||
57e66780 DJ |
2235 | stb = mem_fileopen (); |
2236 | old_chain = make_cleanup_ui_file_delete (stb); | |
2237 | ||
79a45b7d TT |
2238 | get_formatted_print_options (&opts, format_code[(int) format]); |
2239 | opts.deref_ref = 0; | |
b6313243 TT |
2240 | opts.raw = 1; |
2241 | if (thevalue) | |
2242 | { | |
50810684 | 2243 | struct gdbarch *gdbarch = get_type_arch (value_type (value)); |
b6313243 | 2244 | make_cleanup (xfree, thevalue); |
50810684 | 2245 | LA_PRINT_STRING (stb, builtin_type (gdbarch)->builtin_char, |
fbb8f299 | 2246 | thevalue, len, 0, &opts); |
b6313243 TT |
2247 | } |
2248 | else | |
2249 | common_val_print (value, stb, 0, &opts, current_language); | |
85265413 | 2250 | thevalue = ui_file_xstrdup (stb, &dummy); |
57e66780 | 2251 | |
85265413 NR |
2252 | do_cleanups (old_chain); |
2253 | return thevalue; | |
2254 | } | |
2255 | ||
340a7723 NR |
2256 | int |
2257 | varobj_editable_p (struct varobj *var) | |
2258 | { | |
2259 | struct type *type; | |
2260 | struct value *value; | |
2261 | ||
2262 | if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value))) | |
2263 | return 0; | |
2264 | ||
2265 | type = get_value_type (var); | |
2266 | ||
2267 | switch (TYPE_CODE (type)) | |
2268 | { | |
2269 | case TYPE_CODE_STRUCT: | |
2270 | case TYPE_CODE_UNION: | |
2271 | case TYPE_CODE_ARRAY: | |
2272 | case TYPE_CODE_FUNC: | |
2273 | case TYPE_CODE_METHOD: | |
2274 | return 0; | |
2275 | break; | |
2276 | ||
2277 | default: | |
2278 | return 1; | |
2279 | break; | |
2280 | } | |
2281 | } | |
2282 | ||
acd65feb VP |
2283 | /* Return non-zero if changes in value of VAR |
2284 | must be detected and reported by -var-update. | |
2285 | Return zero is -var-update should never report | |
2286 | changes of such values. This makes sense for structures | |
2287 | (since the changes in children values will be reported separately), | |
2288 | or for artifical objects (like 'public' pseudo-field in C++). | |
2289 | ||
2290 | Return value of 0 means that gdb need not call value_fetch_lazy | |
2291 | for the value of this variable object. */ | |
8b93c638 | 2292 | static int |
b2c2bd75 | 2293 | varobj_value_is_changeable_p (struct varobj *var) |
8b93c638 JM |
2294 | { |
2295 | int r; | |
2296 | struct type *type; | |
2297 | ||
2298 | if (CPLUS_FAKE_CHILD (var)) | |
2299 | return 0; | |
2300 | ||
6e2a9270 | 2301 | type = get_value_type (var); |
8b93c638 JM |
2302 | |
2303 | switch (TYPE_CODE (type)) | |
2304 | { | |
72330bd6 AC |
2305 | case TYPE_CODE_STRUCT: |
2306 | case TYPE_CODE_UNION: | |
2307 | case TYPE_CODE_ARRAY: | |
2308 | r = 0; | |
2309 | break; | |
8b93c638 | 2310 | |
72330bd6 AC |
2311 | default: |
2312 | r = 1; | |
8b93c638 JM |
2313 | } |
2314 | ||
2315 | return r; | |
2316 | } | |
2317 | ||
5a413362 VP |
2318 | /* Return 1 if that varobj is floating, that is is always evaluated in the |
2319 | selected frame, and not bound to thread/frame. Such variable objects | |
2320 | are created using '@' as frame specifier to -var-create. */ | |
2321 | int | |
2322 | varobj_floating_p (struct varobj *var) | |
2323 | { | |
2324 | return var->root->floating; | |
2325 | } | |
2326 | ||
2024f65a VP |
2327 | /* Given the value and the type of a variable object, |
2328 | adjust the value and type to those necessary | |
2329 | for getting children of the variable object. | |
2330 | This includes dereferencing top-level references | |
2331 | to all types and dereferencing pointers to | |
2332 | structures. | |
2333 | ||
2334 | Both TYPE and *TYPE should be non-null. VALUE | |
2335 | can be null if we want to only translate type. | |
2336 | *VALUE can be null as well -- if the parent | |
02142340 VP |
2337 | value is not known. |
2338 | ||
2339 | If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1 | |
b6313243 | 2340 | depending on whether pointer was dereferenced |
02142340 | 2341 | in this function. */ |
2024f65a VP |
2342 | static void |
2343 | adjust_value_for_child_access (struct value **value, | |
02142340 VP |
2344 | struct type **type, |
2345 | int *was_ptr) | |
2024f65a VP |
2346 | { |
2347 | gdb_assert (type && *type); | |
2348 | ||
02142340 VP |
2349 | if (was_ptr) |
2350 | *was_ptr = 0; | |
2351 | ||
2024f65a VP |
2352 | *type = check_typedef (*type); |
2353 | ||
2354 | /* The type of value stored in varobj, that is passed | |
2355 | to us, is already supposed to be | |
2356 | reference-stripped. */ | |
2357 | ||
2358 | gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF); | |
2359 | ||
2360 | /* Pointers to structures are treated just like | |
2361 | structures when accessing children. Don't | |
2362 | dererences pointers to other types. */ | |
2363 | if (TYPE_CODE (*type) == TYPE_CODE_PTR) | |
2364 | { | |
2365 | struct type *target_type = get_target_type (*type); | |
2366 | if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT | |
2367 | || TYPE_CODE (target_type) == TYPE_CODE_UNION) | |
2368 | { | |
2369 | if (value && *value) | |
3f4178d6 DJ |
2370 | { |
2371 | int success = gdb_value_ind (*value, value); | |
2372 | if (!success) | |
2373 | *value = NULL; | |
2374 | } | |
2024f65a | 2375 | *type = target_type; |
02142340 VP |
2376 | if (was_ptr) |
2377 | *was_ptr = 1; | |
2024f65a VP |
2378 | } |
2379 | } | |
2380 | ||
2381 | /* The 'get_target_type' function calls check_typedef on | |
2382 | result, so we can immediately check type code. No | |
2383 | need to call check_typedef here. */ | |
2384 | } | |
2385 | ||
8b93c638 JM |
2386 | /* C */ |
2387 | static int | |
fba45db2 | 2388 | c_number_of_children (struct varobj *var) |
8b93c638 | 2389 | { |
2024f65a VP |
2390 | struct type *type = get_value_type (var); |
2391 | int children = 0; | |
8b93c638 | 2392 | struct type *target; |
8b93c638 | 2393 | |
02142340 | 2394 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 | 2395 | target = get_target_type (type); |
8b93c638 JM |
2396 | |
2397 | switch (TYPE_CODE (type)) | |
2398 | { | |
2399 | case TYPE_CODE_ARRAY: | |
2400 | if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0 | |
d78df370 | 2401 | && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) |
8b93c638 JM |
2402 | children = TYPE_LENGTH (type) / TYPE_LENGTH (target); |
2403 | else | |
74a44383 DJ |
2404 | /* If we don't know how many elements there are, don't display |
2405 | any. */ | |
2406 | children = 0; | |
8b93c638 JM |
2407 | break; |
2408 | ||
2409 | case TYPE_CODE_STRUCT: | |
2410 | case TYPE_CODE_UNION: | |
2411 | children = TYPE_NFIELDS (type); | |
2412 | break; | |
2413 | ||
2414 | case TYPE_CODE_PTR: | |
2024f65a VP |
2415 | /* The type here is a pointer to non-struct. Typically, pointers |
2416 | have one child, except for function ptrs, which have no children, | |
2417 | and except for void*, as we don't know what to show. | |
2418 | ||
0755e6c1 FN |
2419 | We can show char* so we allow it to be dereferenced. If you decide |
2420 | to test for it, please mind that a little magic is necessary to | |
2421 | properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and | |
2422 | TYPE_NAME == "char" */ | |
2024f65a VP |
2423 | if (TYPE_CODE (target) == TYPE_CODE_FUNC |
2424 | || TYPE_CODE (target) == TYPE_CODE_VOID) | |
2425 | children = 0; | |
2426 | else | |
2427 | children = 1; | |
8b93c638 JM |
2428 | break; |
2429 | ||
2430 | default: | |
2431 | /* Other types have no children */ | |
2432 | break; | |
2433 | } | |
2434 | ||
2435 | return children; | |
2436 | } | |
2437 | ||
2438 | static char * | |
fba45db2 | 2439 | c_name_of_variable (struct varobj *parent) |
8b93c638 | 2440 | { |
1b36a34b | 2441 | return xstrdup (parent->name); |
8b93c638 JM |
2442 | } |
2443 | ||
bbec2603 VP |
2444 | /* Return the value of element TYPE_INDEX of a structure |
2445 | value VALUE. VALUE's type should be a structure, | |
2446 | or union, or a typedef to struct/union. | |
2447 | ||
2448 | Returns NULL if getting the value fails. Never throws. */ | |
2449 | static struct value * | |
2450 | value_struct_element_index (struct value *value, int type_index) | |
8b93c638 | 2451 | { |
bbec2603 VP |
2452 | struct value *result = NULL; |
2453 | volatile struct gdb_exception e; | |
8b93c638 | 2454 | |
bbec2603 VP |
2455 | struct type *type = value_type (value); |
2456 | type = check_typedef (type); | |
2457 | ||
2458 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
2459 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
8b93c638 | 2460 | |
bbec2603 VP |
2461 | TRY_CATCH (e, RETURN_MASK_ERROR) |
2462 | { | |
d6a843b5 | 2463 | if (field_is_static (&TYPE_FIELD (type, type_index))) |
bbec2603 VP |
2464 | result = value_static_field (type, type_index); |
2465 | else | |
2466 | result = value_primitive_field (value, 0, type_index, type); | |
2467 | } | |
2468 | if (e.reason < 0) | |
2469 | { | |
2470 | return NULL; | |
2471 | } | |
2472 | else | |
2473 | { | |
2474 | return result; | |
2475 | } | |
2476 | } | |
2477 | ||
2478 | /* Obtain the information about child INDEX of the variable | |
2479 | object PARENT. | |
2480 | If CNAME is not null, sets *CNAME to the name of the child relative | |
2481 | to the parent. | |
2482 | If CVALUE is not null, sets *CVALUE to the value of the child. | |
2483 | If CTYPE is not null, sets *CTYPE to the type of the child. | |
2484 | ||
2485 | If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding | |
2486 | information cannot be determined, set *CNAME, *CVALUE, or *CTYPE | |
2487 | to NULL. */ | |
2488 | static void | |
2489 | c_describe_child (struct varobj *parent, int index, | |
02142340 VP |
2490 | char **cname, struct value **cvalue, struct type **ctype, |
2491 | char **cfull_expression) | |
bbec2603 VP |
2492 | { |
2493 | struct value *value = parent->value; | |
2024f65a | 2494 | struct type *type = get_value_type (parent); |
02142340 VP |
2495 | char *parent_expression = NULL; |
2496 | int was_ptr; | |
bbec2603 VP |
2497 | |
2498 | if (cname) | |
2499 | *cname = NULL; | |
2500 | if (cvalue) | |
2501 | *cvalue = NULL; | |
2502 | if (ctype) | |
2503 | *ctype = NULL; | |
02142340 VP |
2504 | if (cfull_expression) |
2505 | { | |
2506 | *cfull_expression = NULL; | |
2507 | parent_expression = varobj_get_path_expr (parent); | |
2508 | } | |
2509 | adjust_value_for_child_access (&value, &type, &was_ptr); | |
bbec2603 | 2510 | |
8b93c638 JM |
2511 | switch (TYPE_CODE (type)) |
2512 | { | |
2513 | case TYPE_CODE_ARRAY: | |
bbec2603 VP |
2514 | if (cname) |
2515 | *cname = xstrprintf ("%d", index | |
2516 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))); | |
2517 | ||
2518 | if (cvalue && value) | |
2519 | { | |
2520 | int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)); | |
2497b498 | 2521 | gdb_value_subscript (value, real_index, cvalue); |
bbec2603 VP |
2522 | } |
2523 | ||
2524 | if (ctype) | |
2525 | *ctype = get_target_type (type); | |
2526 | ||
02142340 VP |
2527 | if (cfull_expression) |
2528 | *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression, | |
2529 | index | |
2530 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))); | |
2531 | ||
2532 | ||
8b93c638 JM |
2533 | break; |
2534 | ||
2535 | case TYPE_CODE_STRUCT: | |
2536 | case TYPE_CODE_UNION: | |
bbec2603 | 2537 | if (cname) |
1b36a34b | 2538 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); |
bbec2603 VP |
2539 | |
2540 | if (cvalue && value) | |
2541 | { | |
2542 | /* For C, varobj index is the same as type index. */ | |
2543 | *cvalue = value_struct_element_index (value, index); | |
2544 | } | |
2545 | ||
2546 | if (ctype) | |
2547 | *ctype = TYPE_FIELD_TYPE (type, index); | |
2548 | ||
02142340 VP |
2549 | if (cfull_expression) |
2550 | { | |
2551 | char *join = was_ptr ? "->" : "."; | |
2552 | *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join, | |
2553 | TYPE_FIELD_NAME (type, index)); | |
2554 | } | |
2555 | ||
8b93c638 JM |
2556 | break; |
2557 | ||
2558 | case TYPE_CODE_PTR: | |
bbec2603 VP |
2559 | if (cname) |
2560 | *cname = xstrprintf ("*%s", parent->name); | |
8b93c638 | 2561 | |
bbec2603 | 2562 | if (cvalue && value) |
3f4178d6 DJ |
2563 | { |
2564 | int success = gdb_value_ind (value, cvalue); | |
2565 | if (!success) | |
2566 | *cvalue = NULL; | |
2567 | } | |
bbec2603 | 2568 | |
2024f65a VP |
2569 | /* Don't use get_target_type because it calls |
2570 | check_typedef and here, we want to show the true | |
2571 | declared type of the variable. */ | |
bbec2603 | 2572 | if (ctype) |
2024f65a | 2573 | *ctype = TYPE_TARGET_TYPE (type); |
02142340 VP |
2574 | |
2575 | if (cfull_expression) | |
2576 | *cfull_expression = xstrprintf ("*(%s)", parent_expression); | |
bbec2603 | 2577 | |
8b93c638 JM |
2578 | break; |
2579 | ||
2580 | default: | |
2581 | /* This should not happen */ | |
bbec2603 VP |
2582 | if (cname) |
2583 | *cname = xstrdup ("???"); | |
02142340 VP |
2584 | if (cfull_expression) |
2585 | *cfull_expression = xstrdup ("???"); | |
bbec2603 | 2586 | /* Don't set value and type, we don't know then. */ |
8b93c638 | 2587 | } |
bbec2603 | 2588 | } |
8b93c638 | 2589 | |
bbec2603 VP |
2590 | static char * |
2591 | c_name_of_child (struct varobj *parent, int index) | |
2592 | { | |
2593 | char *name; | |
02142340 | 2594 | c_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
2595 | return name; |
2596 | } | |
2597 | ||
02142340 VP |
2598 | static char * |
2599 | c_path_expr_of_child (struct varobj *child) | |
2600 | { | |
2601 | c_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
2602 | &child->path_expr); | |
2603 | return child->path_expr; | |
2604 | } | |
2605 | ||
c5b48eac VP |
2606 | /* If frame associated with VAR can be found, switch |
2607 | to it and return 1. Otherwise, return 0. */ | |
2608 | static int | |
2609 | check_scope (struct varobj *var) | |
2610 | { | |
2611 | struct frame_info *fi; | |
2612 | int scope; | |
2613 | ||
2614 | fi = frame_find_by_id (var->root->frame); | |
2615 | scope = fi != NULL; | |
2616 | ||
2617 | if (fi) | |
2618 | { | |
2619 | CORE_ADDR pc = get_frame_pc (fi); | |
2620 | if (pc < BLOCK_START (var->root->valid_block) || | |
2621 | pc >= BLOCK_END (var->root->valid_block)) | |
2622 | scope = 0; | |
2623 | else | |
2624 | select_frame (fi); | |
2625 | } | |
2626 | return scope; | |
2627 | } | |
2628 | ||
30b28db1 | 2629 | static struct value * |
fba45db2 | 2630 | c_value_of_root (struct varobj **var_handle) |
8b93c638 | 2631 | { |
5e572bb4 | 2632 | struct value *new_val = NULL; |
73a93a32 | 2633 | struct varobj *var = *var_handle; |
8b93c638 | 2634 | struct frame_info *fi; |
c5b48eac | 2635 | int within_scope = 0; |
6208b47d VP |
2636 | struct cleanup *back_to; |
2637 | ||
73a93a32 | 2638 | /* Only root variables can be updated... */ |
b2c2bd75 | 2639 | if (!is_root_p (var)) |
73a93a32 JI |
2640 | /* Not a root var */ |
2641 | return NULL; | |
2642 | ||
4f8d22e3 | 2643 | back_to = make_cleanup_restore_current_thread (); |
72330bd6 | 2644 | |
8b93c638 | 2645 | /* Determine whether the variable is still around. */ |
a5defcdc | 2646 | if (var->root->valid_block == NULL || var->root->floating) |
8b93c638 | 2647 | within_scope = 1; |
c5b48eac VP |
2648 | else if (var->root->thread_id == 0) |
2649 | { | |
2650 | /* The program was single-threaded when the variable object was | |
2651 | created. Technically, it's possible that the program became | |
2652 | multi-threaded since then, but we don't support such | |
2653 | scenario yet. */ | |
2654 | within_scope = check_scope (var); | |
2655 | } | |
8b93c638 JM |
2656 | else |
2657 | { | |
c5b48eac VP |
2658 | ptid_t ptid = thread_id_to_pid (var->root->thread_id); |
2659 | if (in_thread_list (ptid)) | |
d2353924 | 2660 | { |
c5b48eac VP |
2661 | switch_to_thread (ptid); |
2662 | within_scope = check_scope (var); | |
2663 | } | |
8b93c638 | 2664 | } |
72330bd6 | 2665 | |
8b93c638 JM |
2666 | if (within_scope) |
2667 | { | |
73a93a32 | 2668 | /* We need to catch errors here, because if evaluate |
85d93f1d VP |
2669 | expression fails we want to just return NULL. */ |
2670 | gdb_evaluate_expression (var->root->exp, &new_val); | |
8b93c638 JM |
2671 | return new_val; |
2672 | } | |
2673 | ||
6208b47d VP |
2674 | do_cleanups (back_to); |
2675 | ||
8b93c638 JM |
2676 | return NULL; |
2677 | } | |
2678 | ||
30b28db1 | 2679 | static struct value * |
fba45db2 | 2680 | c_value_of_child (struct varobj *parent, int index) |
8b93c638 | 2681 | { |
bbec2603 | 2682 | struct value *value = NULL; |
02142340 | 2683 | c_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
2684 | |
2685 | return value; | |
2686 | } | |
2687 | ||
2688 | static struct type * | |
fba45db2 | 2689 | c_type_of_child (struct varobj *parent, int index) |
8b93c638 | 2690 | { |
bbec2603 | 2691 | struct type *type = NULL; |
02142340 | 2692 | c_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
2693 | return type; |
2694 | } | |
2695 | ||
8b93c638 | 2696 | static char * |
de051565 | 2697 | c_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 2698 | { |
14b3d9c9 JB |
2699 | /* BOGUS: if val_print sees a struct/class, or a reference to one, |
2700 | it will print out its children instead of "{...}". So we need to | |
2701 | catch that case explicitly. */ | |
2702 | struct type *type = get_type (var); | |
e64d9b3d | 2703 | |
b6313243 TT |
2704 | /* If we have a custom formatter, return whatever string it has |
2705 | produced. */ | |
2706 | if (var->pretty_printer && var->print_value) | |
2707 | return xstrdup (var->print_value); | |
2708 | ||
14b3d9c9 JB |
2709 | /* Strip top-level references. */ |
2710 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
2711 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
2712 | ||
2713 | switch (TYPE_CODE (type)) | |
8b93c638 JM |
2714 | { |
2715 | case TYPE_CODE_STRUCT: | |
2716 | case TYPE_CODE_UNION: | |
2717 | return xstrdup ("{...}"); | |
2718 | /* break; */ | |
2719 | ||
2720 | case TYPE_CODE_ARRAY: | |
2721 | { | |
e64d9b3d | 2722 | char *number; |
b435e160 | 2723 | number = xstrprintf ("[%d]", var->num_children); |
e64d9b3d | 2724 | return (number); |
8b93c638 JM |
2725 | } |
2726 | /* break; */ | |
2727 | ||
2728 | default: | |
2729 | { | |
575bbeb6 KS |
2730 | if (var->value == NULL) |
2731 | { | |
2732 | /* This can happen if we attempt to get the value of a struct | |
2733 | member when the parent is an invalid pointer. This is an | |
2734 | error condition, so we should tell the caller. */ | |
2735 | return NULL; | |
2736 | } | |
2737 | else | |
2738 | { | |
25d5ea92 VP |
2739 | if (var->not_fetched && value_lazy (var->value)) |
2740 | /* Frozen variable and no value yet. We don't | |
2741 | implicitly fetch the value. MI response will | |
2742 | use empty string for the value, which is OK. */ | |
2743 | return NULL; | |
2744 | ||
b2c2bd75 | 2745 | gdb_assert (varobj_value_is_changeable_p (var)); |
acd65feb | 2746 | gdb_assert (!value_lazy (var->value)); |
de051565 MK |
2747 | |
2748 | /* If the specified format is the current one, | |
2749 | we can reuse print_value */ | |
2750 | if (format == var->format) | |
2751 | return xstrdup (var->print_value); | |
2752 | else | |
d452c4bc | 2753 | return value_get_print_value (var->value, format, var); |
85265413 | 2754 | } |
e64d9b3d | 2755 | } |
8b93c638 JM |
2756 | } |
2757 | } | |
2758 | \f | |
2759 | ||
2760 | /* C++ */ | |
2761 | ||
2762 | static int | |
fba45db2 | 2763 | cplus_number_of_children (struct varobj *var) |
8b93c638 JM |
2764 | { |
2765 | struct type *type; | |
2766 | int children, dont_know; | |
2767 | ||
2768 | dont_know = 1; | |
2769 | children = 0; | |
2770 | ||
2771 | if (!CPLUS_FAKE_CHILD (var)) | |
2772 | { | |
2024f65a | 2773 | type = get_value_type (var); |
02142340 | 2774 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
2775 | |
2776 | if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) || | |
72330bd6 | 2777 | ((TYPE_CODE (type)) == TYPE_CODE_UNION)) |
8b93c638 JM |
2778 | { |
2779 | int kids[3]; | |
2780 | ||
2781 | cplus_class_num_children (type, kids); | |
2782 | if (kids[v_public] != 0) | |
2783 | children++; | |
2784 | if (kids[v_private] != 0) | |
2785 | children++; | |
2786 | if (kids[v_protected] != 0) | |
2787 | children++; | |
2788 | ||
2789 | /* Add any baseclasses */ | |
2790 | children += TYPE_N_BASECLASSES (type); | |
2791 | dont_know = 0; | |
2792 | ||
2793 | /* FIXME: save children in var */ | |
2794 | } | |
2795 | } | |
2796 | else | |
2797 | { | |
2798 | int kids[3]; | |
2799 | ||
2024f65a | 2800 | type = get_value_type (var->parent); |
02142340 | 2801 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
2802 | |
2803 | cplus_class_num_children (type, kids); | |
6e382aa3 | 2804 | if (strcmp (var->name, "public") == 0) |
8b93c638 | 2805 | children = kids[v_public]; |
6e382aa3 | 2806 | else if (strcmp (var->name, "private") == 0) |
8b93c638 JM |
2807 | children = kids[v_private]; |
2808 | else | |
2809 | children = kids[v_protected]; | |
2810 | dont_know = 0; | |
2811 | } | |
2812 | ||
2813 | if (dont_know) | |
2814 | children = c_number_of_children (var); | |
2815 | ||
2816 | return children; | |
2817 | } | |
2818 | ||
2819 | /* Compute # of public, private, and protected variables in this class. | |
2820 | That means we need to descend into all baseclasses and find out | |
2821 | how many are there, too. */ | |
2822 | static void | |
1669605f | 2823 | cplus_class_num_children (struct type *type, int children[3]) |
8b93c638 JM |
2824 | { |
2825 | int i; | |
2826 | ||
2827 | children[v_public] = 0; | |
2828 | children[v_private] = 0; | |
2829 | children[v_protected] = 0; | |
2830 | ||
2831 | for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++) | |
2832 | { | |
2833 | /* If we have a virtual table pointer, omit it. */ | |
72330bd6 | 2834 | if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i) |
8b93c638 JM |
2835 | continue; |
2836 | ||
2837 | if (TYPE_FIELD_PROTECTED (type, i)) | |
2838 | children[v_protected]++; | |
2839 | else if (TYPE_FIELD_PRIVATE (type, i)) | |
2840 | children[v_private]++; | |
2841 | else | |
2842 | children[v_public]++; | |
2843 | } | |
2844 | } | |
2845 | ||
2846 | static char * | |
fba45db2 | 2847 | cplus_name_of_variable (struct varobj *parent) |
8b93c638 JM |
2848 | { |
2849 | return c_name_of_variable (parent); | |
2850 | } | |
2851 | ||
2024f65a VP |
2852 | enum accessibility { private_field, protected_field, public_field }; |
2853 | ||
2854 | /* Check if field INDEX of TYPE has the specified accessibility. | |
2855 | Return 0 if so and 1 otherwise. */ | |
2856 | static int | |
2857 | match_accessibility (struct type *type, int index, enum accessibility acc) | |
8b93c638 | 2858 | { |
2024f65a VP |
2859 | if (acc == private_field && TYPE_FIELD_PRIVATE (type, index)) |
2860 | return 1; | |
2861 | else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index)) | |
2862 | return 1; | |
2863 | else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index) | |
2864 | && !TYPE_FIELD_PROTECTED (type, index)) | |
2865 | return 1; | |
2866 | else | |
2867 | return 0; | |
2868 | } | |
2869 | ||
2870 | static void | |
2871 | cplus_describe_child (struct varobj *parent, int index, | |
02142340 VP |
2872 | char **cname, struct value **cvalue, struct type **ctype, |
2873 | char **cfull_expression) | |
2024f65a | 2874 | { |
348144ba | 2875 | char *name = NULL; |
2024f65a | 2876 | struct value *value; |
8b93c638 | 2877 | struct type *type; |
02142340 VP |
2878 | int was_ptr; |
2879 | char *parent_expression = NULL; | |
8b93c638 | 2880 | |
2024f65a VP |
2881 | if (cname) |
2882 | *cname = NULL; | |
2883 | if (cvalue) | |
2884 | *cvalue = NULL; | |
2885 | if (ctype) | |
2886 | *ctype = NULL; | |
02142340 VP |
2887 | if (cfull_expression) |
2888 | *cfull_expression = NULL; | |
2024f65a | 2889 | |
8b93c638 JM |
2890 | if (CPLUS_FAKE_CHILD (parent)) |
2891 | { | |
2024f65a VP |
2892 | value = parent->parent->value; |
2893 | type = get_value_type (parent->parent); | |
02142340 VP |
2894 | if (cfull_expression) |
2895 | parent_expression = varobj_get_path_expr (parent->parent); | |
8b93c638 JM |
2896 | } |
2897 | else | |
2024f65a VP |
2898 | { |
2899 | value = parent->value; | |
2900 | type = get_value_type (parent); | |
02142340 VP |
2901 | if (cfull_expression) |
2902 | parent_expression = varobj_get_path_expr (parent); | |
2024f65a | 2903 | } |
8b93c638 | 2904 | |
02142340 | 2905 | adjust_value_for_child_access (&value, &type, &was_ptr); |
2024f65a VP |
2906 | |
2907 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3f4178d6 | 2908 | || TYPE_CODE (type) == TYPE_CODE_UNION) |
8b93c638 | 2909 | { |
02142340 | 2910 | char *join = was_ptr ? "->" : "."; |
8b93c638 JM |
2911 | if (CPLUS_FAKE_CHILD (parent)) |
2912 | { | |
6e382aa3 JJ |
2913 | /* The fields of the class type are ordered as they |
2914 | appear in the class. We are given an index for a | |
2915 | particular access control type ("public","protected", | |
2916 | or "private"). We must skip over fields that don't | |
2917 | have the access control we are looking for to properly | |
2918 | find the indexed field. */ | |
2919 | int type_index = TYPE_N_BASECLASSES (type); | |
2024f65a | 2920 | enum accessibility acc = public_field; |
6e382aa3 | 2921 | if (strcmp (parent->name, "private") == 0) |
2024f65a | 2922 | acc = private_field; |
6e382aa3 | 2923 | else if (strcmp (parent->name, "protected") == 0) |
2024f65a VP |
2924 | acc = protected_field; |
2925 | ||
2926 | while (index >= 0) | |
6e382aa3 | 2927 | { |
2024f65a VP |
2928 | if (TYPE_VPTR_BASETYPE (type) == type |
2929 | && type_index == TYPE_VPTR_FIELDNO (type)) | |
2930 | ; /* ignore vptr */ | |
2931 | else if (match_accessibility (type, type_index, acc)) | |
6e382aa3 JJ |
2932 | --index; |
2933 | ++type_index; | |
6e382aa3 | 2934 | } |
2024f65a VP |
2935 | --type_index; |
2936 | ||
2937 | if (cname) | |
2938 | *cname = xstrdup (TYPE_FIELD_NAME (type, type_index)); | |
2939 | ||
2940 | if (cvalue && value) | |
2941 | *cvalue = value_struct_element_index (value, type_index); | |
2942 | ||
2943 | if (ctype) | |
2944 | *ctype = TYPE_FIELD_TYPE (type, type_index); | |
02142340 VP |
2945 | |
2946 | if (cfull_expression) | |
2947 | *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression, | |
2948 | join, | |
2949 | TYPE_FIELD_NAME (type, type_index)); | |
2024f65a VP |
2950 | } |
2951 | else if (index < TYPE_N_BASECLASSES (type)) | |
2952 | { | |
2953 | /* This is a baseclass. */ | |
2954 | if (cname) | |
2955 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); | |
2956 | ||
2957 | if (cvalue && value) | |
6e382aa3 | 2958 | { |
2024f65a | 2959 | *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value); |
02142340 | 2960 | release_value (*cvalue); |
6e382aa3 JJ |
2961 | } |
2962 | ||
2024f65a VP |
2963 | if (ctype) |
2964 | { | |
2965 | *ctype = TYPE_FIELD_TYPE (type, index); | |
2966 | } | |
02142340 VP |
2967 | |
2968 | if (cfull_expression) | |
2969 | { | |
2970 | char *ptr = was_ptr ? "*" : ""; | |
2971 | /* Cast the parent to the base' type. Note that in gdb, | |
2972 | expression like | |
2973 | (Base1)d | |
2974 | will create an lvalue, for all appearences, so we don't | |
2975 | need to use more fancy: | |
2976 | *(Base1*)(&d) | |
2977 | construct. */ | |
2978 | *cfull_expression = xstrprintf ("(%s(%s%s) %s)", | |
2979 | ptr, | |
2980 | TYPE_FIELD_NAME (type, index), | |
2981 | ptr, | |
2982 | parent_expression); | |
2983 | } | |
8b93c638 | 2984 | } |
8b93c638 JM |
2985 | else |
2986 | { | |
348144ba | 2987 | char *access = NULL; |
6e382aa3 | 2988 | int children[3]; |
2024f65a | 2989 | cplus_class_num_children (type, children); |
6e382aa3 | 2990 | |
8b93c638 | 2991 | /* Everything beyond the baseclasses can |
6e382aa3 JJ |
2992 | only be "public", "private", or "protected" |
2993 | ||
2994 | The special "fake" children are always output by varobj in | |
2995 | this order. So if INDEX == 2, it MUST be "protected". */ | |
8b93c638 JM |
2996 | index -= TYPE_N_BASECLASSES (type); |
2997 | switch (index) | |
2998 | { | |
2999 | case 0: | |
6e382aa3 | 3000 | if (children[v_public] > 0) |
2024f65a | 3001 | access = "public"; |
6e382aa3 | 3002 | else if (children[v_private] > 0) |
2024f65a | 3003 | access = "private"; |
6e382aa3 | 3004 | else |
2024f65a | 3005 | access = "protected"; |
6e382aa3 | 3006 | break; |
8b93c638 | 3007 | case 1: |
6e382aa3 | 3008 | if (children[v_public] > 0) |
8b93c638 | 3009 | { |
6e382aa3 | 3010 | if (children[v_private] > 0) |
2024f65a | 3011 | access = "private"; |
6e382aa3 | 3012 | else |
2024f65a | 3013 | access = "protected"; |
8b93c638 | 3014 | } |
6e382aa3 | 3015 | else if (children[v_private] > 0) |
2024f65a | 3016 | access = "protected"; |
6e382aa3 | 3017 | break; |
8b93c638 | 3018 | case 2: |
6e382aa3 | 3019 | /* Must be protected */ |
2024f65a | 3020 | access = "protected"; |
6e382aa3 | 3021 | break; |
8b93c638 JM |
3022 | default: |
3023 | /* error! */ | |
3024 | break; | |
3025 | } | |
348144ba MS |
3026 | |
3027 | gdb_assert (access); | |
2024f65a VP |
3028 | if (cname) |
3029 | *cname = xstrdup (access); | |
8b93c638 | 3030 | |
02142340 | 3031 | /* Value and type and full expression are null here. */ |
2024f65a | 3032 | } |
8b93c638 | 3033 | } |
8b93c638 JM |
3034 | else |
3035 | { | |
02142340 | 3036 | c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression); |
2024f65a VP |
3037 | } |
3038 | } | |
8b93c638 | 3039 | |
2024f65a VP |
3040 | static char * |
3041 | cplus_name_of_child (struct varobj *parent, int index) | |
3042 | { | |
3043 | char *name = NULL; | |
02142340 | 3044 | cplus_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
3045 | return name; |
3046 | } | |
3047 | ||
02142340 VP |
3048 | static char * |
3049 | cplus_path_expr_of_child (struct varobj *child) | |
3050 | { | |
3051 | cplus_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
3052 | &child->path_expr); | |
3053 | return child->path_expr; | |
3054 | } | |
3055 | ||
30b28db1 | 3056 | static struct value * |
fba45db2 | 3057 | cplus_value_of_root (struct varobj **var_handle) |
8b93c638 | 3058 | { |
73a93a32 | 3059 | return c_value_of_root (var_handle); |
8b93c638 JM |
3060 | } |
3061 | ||
30b28db1 | 3062 | static struct value * |
fba45db2 | 3063 | cplus_value_of_child (struct varobj *parent, int index) |
8b93c638 | 3064 | { |
2024f65a | 3065 | struct value *value = NULL; |
02142340 | 3066 | cplus_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
3067 | return value; |
3068 | } | |
3069 | ||
3070 | static struct type * | |
fba45db2 | 3071 | cplus_type_of_child (struct varobj *parent, int index) |
8b93c638 | 3072 | { |
2024f65a | 3073 | struct type *type = NULL; |
02142340 | 3074 | cplus_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
3075 | return type; |
3076 | } | |
3077 | ||
8b93c638 | 3078 | static char * |
de051565 | 3079 | cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 JM |
3080 | { |
3081 | ||
3082 | /* If we have one of our special types, don't print out | |
3083 | any value. */ | |
3084 | if (CPLUS_FAKE_CHILD (var)) | |
3085 | return xstrdup (""); | |
3086 | ||
de051565 | 3087 | return c_value_of_variable (var, format); |
8b93c638 JM |
3088 | } |
3089 | \f | |
3090 | /* Java */ | |
3091 | ||
3092 | static int | |
fba45db2 | 3093 | java_number_of_children (struct varobj *var) |
8b93c638 JM |
3094 | { |
3095 | return cplus_number_of_children (var); | |
3096 | } | |
3097 | ||
3098 | static char * | |
fba45db2 | 3099 | java_name_of_variable (struct varobj *parent) |
8b93c638 JM |
3100 | { |
3101 | char *p, *name; | |
3102 | ||
3103 | name = cplus_name_of_variable (parent); | |
3104 | /* If the name has "-" in it, it is because we | |
3105 | needed to escape periods in the name... */ | |
3106 | p = name; | |
3107 | ||
3108 | while (*p != '\000') | |
3109 | { | |
3110 | if (*p == '-') | |
3111 | *p = '.'; | |
3112 | p++; | |
3113 | } | |
3114 | ||
3115 | return name; | |
3116 | } | |
3117 | ||
3118 | static char * | |
fba45db2 | 3119 | java_name_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3120 | { |
3121 | char *name, *p; | |
3122 | ||
3123 | name = cplus_name_of_child (parent, index); | |
3124 | /* Escape any periods in the name... */ | |
3125 | p = name; | |
3126 | ||
3127 | while (*p != '\000') | |
3128 | { | |
3129 | if (*p == '.') | |
3130 | *p = '-'; | |
3131 | p++; | |
3132 | } | |
3133 | ||
3134 | return name; | |
3135 | } | |
3136 | ||
02142340 VP |
3137 | static char * |
3138 | java_path_expr_of_child (struct varobj *child) | |
3139 | { | |
3140 | return NULL; | |
3141 | } | |
3142 | ||
30b28db1 | 3143 | static struct value * |
fba45db2 | 3144 | java_value_of_root (struct varobj **var_handle) |
8b93c638 | 3145 | { |
73a93a32 | 3146 | return cplus_value_of_root (var_handle); |
8b93c638 JM |
3147 | } |
3148 | ||
30b28db1 | 3149 | static struct value * |
fba45db2 | 3150 | java_value_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3151 | { |
3152 | return cplus_value_of_child (parent, index); | |
3153 | } | |
3154 | ||
3155 | static struct type * | |
fba45db2 | 3156 | java_type_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3157 | { |
3158 | return cplus_type_of_child (parent, index); | |
3159 | } | |
3160 | ||
8b93c638 | 3161 | static char * |
de051565 | 3162 | java_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 3163 | { |
de051565 | 3164 | return cplus_value_of_variable (var, format); |
8b93c638 | 3165 | } |
54333c3b JK |
3166 | |
3167 | /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them | |
3168 | with an arbitrary caller supplied DATA pointer. */ | |
3169 | ||
3170 | void | |
3171 | all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data) | |
3172 | { | |
3173 | struct varobj_root *var_root, *var_root_next; | |
3174 | ||
3175 | /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */ | |
3176 | ||
3177 | for (var_root = rootlist; var_root != NULL; var_root = var_root_next) | |
3178 | { | |
3179 | var_root_next = var_root->next; | |
3180 | ||
3181 | (*func) (var_root->rootvar, data); | |
3182 | } | |
3183 | } | |
8b93c638 JM |
3184 | \f |
3185 | extern void _initialize_varobj (void); | |
3186 | void | |
3187 | _initialize_varobj (void) | |
3188 | { | |
3189 | int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE; | |
3190 | ||
3191 | varobj_table = xmalloc (sizeof_table); | |
3192 | memset (varobj_table, 0, sizeof_table); | |
3193 | ||
85c07804 AC |
3194 | add_setshow_zinteger_cmd ("debugvarobj", class_maintenance, |
3195 | &varobjdebug, _("\ | |
3196 | Set varobj debugging."), _("\ | |
3197 | Show varobj debugging."), _("\ | |
3198 | When non-zero, varobj debugging is enabled."), | |
3199 | NULL, | |
920d2a44 | 3200 | show_varobjdebug, |
85c07804 | 3201 | &setlist, &showlist); |
8b93c638 | 3202 | } |
8756216b | 3203 | |
54333c3b JK |
3204 | /* Invalidate varobj VAR if it is tied to locals and re-create it if it is |
3205 | defined on globals. It is a helper for varobj_invalidate. */ | |
2dbd25e5 | 3206 | |
54333c3b JK |
3207 | static void |
3208 | varobj_invalidate_iter (struct varobj *var, void *unused) | |
8756216b | 3209 | { |
54333c3b JK |
3210 | /* Floating varobjs are reparsed on each stop, so we don't care if the |
3211 | presently parsed expression refers to something that's gone. */ | |
3212 | if (var->root->floating) | |
3213 | return; | |
8756216b | 3214 | |
54333c3b JK |
3215 | /* global var must be re-evaluated. */ |
3216 | if (var->root->valid_block == NULL) | |
2dbd25e5 | 3217 | { |
54333c3b | 3218 | struct varobj *tmp_var; |
2dbd25e5 | 3219 | |
54333c3b JK |
3220 | /* Try to create a varobj with same expression. If we succeed |
3221 | replace the old varobj, otherwise invalidate it. */ | |
3222 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, | |
3223 | USE_CURRENT_FRAME); | |
3224 | if (tmp_var != NULL) | |
3225 | { | |
3226 | tmp_var->obj_name = xstrdup (var->obj_name); | |
3227 | varobj_delete (var, NULL, 0); | |
3228 | install_variable (tmp_var); | |
2dbd25e5 | 3229 | } |
54333c3b JK |
3230 | else |
3231 | var->root->is_valid = 0; | |
2dbd25e5 | 3232 | } |
54333c3b JK |
3233 | else /* locals must be invalidated. */ |
3234 | var->root->is_valid = 0; | |
3235 | } | |
3236 | ||
3237 | /* Invalidate the varobjs that are tied to locals and re-create the ones that | |
3238 | are defined on globals. | |
3239 | Invalidated varobjs will be always printed in_scope="invalid". */ | |
3240 | ||
3241 | void | |
3242 | varobj_invalidate (void) | |
3243 | { | |
3244 | all_root_varobjs (varobj_invalidate_iter, NULL); | |
8756216b | 3245 | } |