]>
Commit | Line | Data |
---|---|---|
8b93c638 | 1 | /* Implementation of the GDB variable objects API. |
bc8332bb | 2 | |
9b254dd1 | 3 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 |
1ecb4ee0 | 4 | Free Software Foundation, Inc. |
8b93c638 JM |
5 | |
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 8 | the Free Software Foundation; either version 3 of the License, or |
8b93c638 JM |
9 | (at your option) any later version. |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 17 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
8b93c638 JM |
18 | |
19 | #include "defs.h" | |
a6c442d8 | 20 | #include "exceptions.h" |
8b93c638 JM |
21 | #include "value.h" |
22 | #include "expression.h" | |
23 | #include "frame.h" | |
8b93c638 JM |
24 | #include "language.h" |
25 | #include "wrapper.h" | |
26 | #include "gdbcmd.h" | |
d2353924 | 27 | #include "block.h" |
a6c442d8 MK |
28 | |
29 | #include "gdb_assert.h" | |
b66d6d2e | 30 | #include "gdb_string.h" |
8b93c638 JM |
31 | |
32 | #include "varobj.h" | |
28335dcc | 33 | #include "vec.h" |
6208b47d VP |
34 | #include "gdbthread.h" |
35 | #include "inferior.h" | |
8b93c638 JM |
36 | |
37 | /* Non-zero if we want to see trace of varobj level stuff. */ | |
38 | ||
39 | int varobjdebug = 0; | |
920d2a44 AC |
40 | static void |
41 | show_varobjdebug (struct ui_file *file, int from_tty, | |
42 | struct cmd_list_element *c, const char *value) | |
43 | { | |
44 | fprintf_filtered (file, _("Varobj debugging is %s.\n"), value); | |
45 | } | |
8b93c638 JM |
46 | |
47 | /* String representations of gdb's format codes */ | |
48 | char *varobj_format_string[] = | |
72330bd6 | 49 | { "natural", "binary", "decimal", "hexadecimal", "octal" }; |
8b93c638 JM |
50 | |
51 | /* String representations of gdb's known languages */ | |
72330bd6 | 52 | char *varobj_language_string[] = { "unknown", "C", "C++", "Java" }; |
8b93c638 JM |
53 | |
54 | /* Data structures */ | |
55 | ||
56 | /* Every root variable has one of these structures saved in its | |
57 | varobj. Members which must be free'd are noted. */ | |
58 | struct varobj_root | |
72330bd6 | 59 | { |
8b93c638 | 60 | |
72330bd6 AC |
61 | /* Alloc'd expression for this parent. */ |
62 | struct expression *exp; | |
8b93c638 | 63 | |
72330bd6 AC |
64 | /* Block for which this expression is valid */ |
65 | struct block *valid_block; | |
8b93c638 | 66 | |
44a67aa7 VP |
67 | /* The frame for this expression. This field is set iff valid_block is |
68 | not NULL. */ | |
e64d9b3d | 69 | struct frame_id frame; |
8b93c638 | 70 | |
c5b48eac VP |
71 | /* The thread ID that this varobj_root belong to. This field |
72 | is only valid if valid_block is not NULL. | |
73 | When not 0, indicates which thread 'frame' belongs to. | |
74 | When 0, indicates that the thread list was empty when the varobj_root | |
75 | was created. */ | |
76 | int thread_id; | |
77 | ||
a5defcdc VP |
78 | /* If 1, the -var-update always recomputes the value in the |
79 | current thread and frame. Otherwise, variable object is | |
80 | always updated in the specific scope/thread/frame */ | |
81 | int floating; | |
73a93a32 | 82 | |
8756216b DP |
83 | /* Flag that indicates validity: set to 0 when this varobj_root refers |
84 | to symbols that do not exist anymore. */ | |
85 | int is_valid; | |
86 | ||
72330bd6 AC |
87 | /* Language info for this variable and its children */ |
88 | struct language_specific *lang; | |
8b93c638 | 89 | |
72330bd6 AC |
90 | /* The varobj for this root node. */ |
91 | struct varobj *rootvar; | |
8b93c638 | 92 | |
72330bd6 AC |
93 | /* Next root variable */ |
94 | struct varobj_root *next; | |
95 | }; | |
8b93c638 JM |
96 | |
97 | /* Every variable in the system has a structure of this type defined | |
98 | for it. This structure holds all information necessary to manipulate | |
99 | a particular object variable. Members which must be freed are noted. */ | |
100 | struct varobj | |
72330bd6 | 101 | { |
8b93c638 | 102 | |
72330bd6 AC |
103 | /* Alloc'd name of the variable for this object.. If this variable is a |
104 | child, then this name will be the child's source name. | |
105 | (bar, not foo.bar) */ | |
106 | /* NOTE: This is the "expression" */ | |
107 | char *name; | |
8b93c638 | 108 | |
02142340 VP |
109 | /* Alloc'd expression for this child. Can be used to create a |
110 | root variable corresponding to this child. */ | |
111 | char *path_expr; | |
112 | ||
72330bd6 AC |
113 | /* The alloc'd name for this variable's object. This is here for |
114 | convenience when constructing this object's children. */ | |
115 | char *obj_name; | |
8b93c638 | 116 | |
72330bd6 AC |
117 | /* Index of this variable in its parent or -1 */ |
118 | int index; | |
8b93c638 | 119 | |
202ddcaa VP |
120 | /* The type of this variable. This can be NULL |
121 | for artifial variable objects -- currently, the "accessibility" | |
122 | variable objects in C++. */ | |
72330bd6 | 123 | struct type *type; |
8b93c638 | 124 | |
b20d8971 VP |
125 | /* The value of this expression or subexpression. A NULL value |
126 | indicates there was an error getting this value. | |
b2c2bd75 VP |
127 | Invariant: if varobj_value_is_changeable_p (this) is non-zero, |
128 | the value is either NULL, or not lazy. */ | |
30b28db1 | 129 | struct value *value; |
8b93c638 | 130 | |
72330bd6 AC |
131 | /* The number of (immediate) children this variable has */ |
132 | int num_children; | |
8b93c638 | 133 | |
72330bd6 AC |
134 | /* If this object is a child, this points to its immediate parent. */ |
135 | struct varobj *parent; | |
8b93c638 | 136 | |
28335dcc VP |
137 | /* Children of this object. */ |
138 | VEC (varobj_p) *children; | |
8b93c638 | 139 | |
72330bd6 AC |
140 | /* Description of the root variable. Points to root variable for children. */ |
141 | struct varobj_root *root; | |
8b93c638 | 142 | |
72330bd6 AC |
143 | /* The format of the output for this object */ |
144 | enum varobj_display_formats format; | |
fb9b6b35 JJ |
145 | |
146 | /* Was this variable updated via a varobj_set_value operation */ | |
147 | int updated; | |
85265413 NR |
148 | |
149 | /* Last print value. */ | |
150 | char *print_value; | |
25d5ea92 VP |
151 | |
152 | /* Is this variable frozen. Frozen variables are never implicitly | |
153 | updated by -var-update * | |
154 | or -var-update <direct-or-indirect-parent>. */ | |
155 | int frozen; | |
156 | ||
157 | /* Is the value of this variable intentionally not fetched? It is | |
158 | not fetched if either the variable is frozen, or any parents is | |
159 | frozen. */ | |
160 | int not_fetched; | |
72330bd6 | 161 | }; |
8b93c638 | 162 | |
8b93c638 | 163 | struct cpstack |
72330bd6 AC |
164 | { |
165 | char *name; | |
166 | struct cpstack *next; | |
167 | }; | |
8b93c638 JM |
168 | |
169 | /* A list of varobjs */ | |
170 | ||
171 | struct vlist | |
72330bd6 AC |
172 | { |
173 | struct varobj *var; | |
174 | struct vlist *next; | |
175 | }; | |
8b93c638 JM |
176 | |
177 | /* Private function prototypes */ | |
178 | ||
179 | /* Helper functions for the above subcommands. */ | |
180 | ||
a14ed312 | 181 | static int delete_variable (struct cpstack **, struct varobj *, int); |
8b93c638 | 182 | |
a14ed312 KB |
183 | static void delete_variable_1 (struct cpstack **, int *, |
184 | struct varobj *, int, int); | |
8b93c638 | 185 | |
a14ed312 | 186 | static int install_variable (struct varobj *); |
8b93c638 | 187 | |
a14ed312 | 188 | static void uninstall_variable (struct varobj *); |
8b93c638 | 189 | |
a14ed312 | 190 | static struct varobj *create_child (struct varobj *, int, char *); |
8b93c638 | 191 | |
8b93c638 JM |
192 | /* Utility routines */ |
193 | ||
a14ed312 | 194 | static struct varobj *new_variable (void); |
8b93c638 | 195 | |
a14ed312 | 196 | static struct varobj *new_root_variable (void); |
8b93c638 | 197 | |
a14ed312 | 198 | static void free_variable (struct varobj *var); |
8b93c638 | 199 | |
74b7792f AC |
200 | static struct cleanup *make_cleanup_free_variable (struct varobj *var); |
201 | ||
a14ed312 | 202 | static struct type *get_type (struct varobj *var); |
8b93c638 | 203 | |
6e2a9270 VP |
204 | static struct type *get_value_type (struct varobj *var); |
205 | ||
a14ed312 | 206 | static struct type *get_target_type (struct type *); |
8b93c638 | 207 | |
a14ed312 | 208 | static enum varobj_display_formats variable_default_display (struct varobj *); |
8b93c638 | 209 | |
a14ed312 | 210 | static void cppush (struct cpstack **pstack, char *name); |
8b93c638 | 211 | |
a14ed312 | 212 | static char *cppop (struct cpstack **pstack); |
8b93c638 | 213 | |
acd65feb VP |
214 | static int install_new_value (struct varobj *var, struct value *value, |
215 | int initial); | |
216 | ||
8b93c638 JM |
217 | /* Language-specific routines. */ |
218 | ||
a14ed312 | 219 | static enum varobj_languages variable_language (struct varobj *var); |
8b93c638 | 220 | |
a14ed312 | 221 | static int number_of_children (struct varobj *); |
8b93c638 | 222 | |
a14ed312 | 223 | static char *name_of_variable (struct varobj *); |
8b93c638 | 224 | |
a14ed312 | 225 | static char *name_of_child (struct varobj *, int); |
8b93c638 | 226 | |
30b28db1 | 227 | static struct value *value_of_root (struct varobj **var_handle, int *); |
8b93c638 | 228 | |
30b28db1 | 229 | static struct value *value_of_child (struct varobj *parent, int index); |
8b93c638 | 230 | |
a14ed312 | 231 | static char *my_value_of_variable (struct varobj *var); |
8b93c638 | 232 | |
85265413 NR |
233 | static char *value_get_print_value (struct value *value, |
234 | enum varobj_display_formats format); | |
235 | ||
b2c2bd75 VP |
236 | static int varobj_value_is_changeable_p (struct varobj *var); |
237 | ||
238 | static int is_root_p (struct varobj *var); | |
8b93c638 JM |
239 | |
240 | /* C implementation */ | |
241 | ||
a14ed312 | 242 | static int c_number_of_children (struct varobj *var); |
8b93c638 | 243 | |
a14ed312 | 244 | static char *c_name_of_variable (struct varobj *parent); |
8b93c638 | 245 | |
a14ed312 | 246 | static char *c_name_of_child (struct varobj *parent, int index); |
8b93c638 | 247 | |
02142340 VP |
248 | static char *c_path_expr_of_child (struct varobj *child); |
249 | ||
30b28db1 | 250 | static struct value *c_value_of_root (struct varobj **var_handle); |
8b93c638 | 251 | |
30b28db1 | 252 | static struct value *c_value_of_child (struct varobj *parent, int index); |
8b93c638 | 253 | |
a14ed312 | 254 | static struct type *c_type_of_child (struct varobj *parent, int index); |
8b93c638 | 255 | |
a14ed312 | 256 | static char *c_value_of_variable (struct varobj *var); |
8b93c638 JM |
257 | |
258 | /* C++ implementation */ | |
259 | ||
a14ed312 | 260 | static int cplus_number_of_children (struct varobj *var); |
8b93c638 | 261 | |
a14ed312 | 262 | static void cplus_class_num_children (struct type *type, int children[3]); |
8b93c638 | 263 | |
a14ed312 | 264 | static char *cplus_name_of_variable (struct varobj *parent); |
8b93c638 | 265 | |
a14ed312 | 266 | static char *cplus_name_of_child (struct varobj *parent, int index); |
8b93c638 | 267 | |
02142340 VP |
268 | static char *cplus_path_expr_of_child (struct varobj *child); |
269 | ||
30b28db1 | 270 | static struct value *cplus_value_of_root (struct varobj **var_handle); |
8b93c638 | 271 | |
30b28db1 | 272 | static struct value *cplus_value_of_child (struct varobj *parent, int index); |
8b93c638 | 273 | |
a14ed312 | 274 | static struct type *cplus_type_of_child (struct varobj *parent, int index); |
8b93c638 | 275 | |
a14ed312 | 276 | static char *cplus_value_of_variable (struct varobj *var); |
8b93c638 JM |
277 | |
278 | /* Java implementation */ | |
279 | ||
a14ed312 | 280 | static int java_number_of_children (struct varobj *var); |
8b93c638 | 281 | |
a14ed312 | 282 | static char *java_name_of_variable (struct varobj *parent); |
8b93c638 | 283 | |
a14ed312 | 284 | static char *java_name_of_child (struct varobj *parent, int index); |
8b93c638 | 285 | |
02142340 VP |
286 | static char *java_path_expr_of_child (struct varobj *child); |
287 | ||
30b28db1 | 288 | static struct value *java_value_of_root (struct varobj **var_handle); |
8b93c638 | 289 | |
30b28db1 | 290 | static struct value *java_value_of_child (struct varobj *parent, int index); |
8b93c638 | 291 | |
a14ed312 | 292 | static struct type *java_type_of_child (struct varobj *parent, int index); |
8b93c638 | 293 | |
a14ed312 | 294 | static char *java_value_of_variable (struct varobj *var); |
8b93c638 JM |
295 | |
296 | /* The language specific vector */ | |
297 | ||
298 | struct language_specific | |
72330bd6 | 299 | { |
8b93c638 | 300 | |
72330bd6 AC |
301 | /* The language of this variable */ |
302 | enum varobj_languages language; | |
8b93c638 | 303 | |
72330bd6 AC |
304 | /* The number of children of PARENT. */ |
305 | int (*number_of_children) (struct varobj * parent); | |
8b93c638 | 306 | |
72330bd6 AC |
307 | /* The name (expression) of a root varobj. */ |
308 | char *(*name_of_variable) (struct varobj * parent); | |
8b93c638 | 309 | |
72330bd6 AC |
310 | /* The name of the INDEX'th child of PARENT. */ |
311 | char *(*name_of_child) (struct varobj * parent, int index); | |
8b93c638 | 312 | |
02142340 VP |
313 | /* Returns the rooted expression of CHILD, which is a variable |
314 | obtain that has some parent. */ | |
315 | char *(*path_expr_of_child) (struct varobj * child); | |
316 | ||
30b28db1 AC |
317 | /* The ``struct value *'' of the root variable ROOT. */ |
318 | struct value *(*value_of_root) (struct varobj ** root_handle); | |
8b93c638 | 319 | |
30b28db1 AC |
320 | /* The ``struct value *'' of the INDEX'th child of PARENT. */ |
321 | struct value *(*value_of_child) (struct varobj * parent, int index); | |
8b93c638 | 322 | |
72330bd6 AC |
323 | /* The type of the INDEX'th child of PARENT. */ |
324 | struct type *(*type_of_child) (struct varobj * parent, int index); | |
8b93c638 | 325 | |
72330bd6 AC |
326 | /* The current value of VAR. */ |
327 | char *(*value_of_variable) (struct varobj * var); | |
328 | }; | |
8b93c638 JM |
329 | |
330 | /* Array of known source language routines. */ | |
d5d6fca5 | 331 | static struct language_specific languages[vlang_end] = { |
8b93c638 JM |
332 | /* Unknown (try treating as C */ |
333 | { | |
72330bd6 AC |
334 | vlang_unknown, |
335 | c_number_of_children, | |
336 | c_name_of_variable, | |
337 | c_name_of_child, | |
02142340 | 338 | c_path_expr_of_child, |
72330bd6 AC |
339 | c_value_of_root, |
340 | c_value_of_child, | |
341 | c_type_of_child, | |
72330bd6 | 342 | c_value_of_variable} |
8b93c638 JM |
343 | , |
344 | /* C */ | |
345 | { | |
72330bd6 AC |
346 | vlang_c, |
347 | c_number_of_children, | |
348 | c_name_of_variable, | |
349 | c_name_of_child, | |
02142340 | 350 | c_path_expr_of_child, |
72330bd6 AC |
351 | c_value_of_root, |
352 | c_value_of_child, | |
353 | c_type_of_child, | |
72330bd6 | 354 | c_value_of_variable} |
8b93c638 JM |
355 | , |
356 | /* C++ */ | |
357 | { | |
72330bd6 AC |
358 | vlang_cplus, |
359 | cplus_number_of_children, | |
360 | cplus_name_of_variable, | |
361 | cplus_name_of_child, | |
02142340 | 362 | cplus_path_expr_of_child, |
72330bd6 AC |
363 | cplus_value_of_root, |
364 | cplus_value_of_child, | |
365 | cplus_type_of_child, | |
72330bd6 | 366 | cplus_value_of_variable} |
8b93c638 JM |
367 | , |
368 | /* Java */ | |
369 | { | |
72330bd6 AC |
370 | vlang_java, |
371 | java_number_of_children, | |
372 | java_name_of_variable, | |
373 | java_name_of_child, | |
02142340 | 374 | java_path_expr_of_child, |
72330bd6 AC |
375 | java_value_of_root, |
376 | java_value_of_child, | |
377 | java_type_of_child, | |
72330bd6 | 378 | java_value_of_variable} |
8b93c638 JM |
379 | }; |
380 | ||
381 | /* A little convenience enum for dealing with C++/Java */ | |
382 | enum vsections | |
72330bd6 AC |
383 | { |
384 | v_public = 0, v_private, v_protected | |
385 | }; | |
8b93c638 JM |
386 | |
387 | /* Private data */ | |
388 | ||
389 | /* Mappings of varobj_display_formats enums to gdb's format codes */ | |
72330bd6 | 390 | static int format_code[] = { 0, 't', 'd', 'x', 'o' }; |
8b93c638 JM |
391 | |
392 | /* Header of the list of root variable objects */ | |
393 | static struct varobj_root *rootlist; | |
394 | static int rootcount = 0; /* number of root varobjs in the list */ | |
395 | ||
396 | /* Prime number indicating the number of buckets in the hash table */ | |
397 | /* A prime large enough to avoid too many colisions */ | |
398 | #define VAROBJ_TABLE_SIZE 227 | |
399 | ||
400 | /* Pointer to the varobj hash table (built at run time) */ | |
401 | static struct vlist **varobj_table; | |
402 | ||
8b93c638 JM |
403 | /* Is the variable X one of our "fake" children? */ |
404 | #define CPLUS_FAKE_CHILD(x) \ | |
405 | ((x) != NULL && (x)->type == NULL && (x)->value == NULL) | |
406 | \f | |
407 | ||
408 | /* API Implementation */ | |
b2c2bd75 VP |
409 | static int |
410 | is_root_p (struct varobj *var) | |
411 | { | |
412 | return (var->root->rootvar == var); | |
413 | } | |
8b93c638 JM |
414 | |
415 | /* Creates a varobj (not its children) */ | |
416 | ||
7d8547c9 AC |
417 | /* Return the full FRAME which corresponds to the given CORE_ADDR |
418 | or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ | |
419 | ||
420 | static struct frame_info * | |
421 | find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) | |
422 | { | |
423 | struct frame_info *frame = NULL; | |
424 | ||
425 | if (frame_addr == (CORE_ADDR) 0) | |
426 | return NULL; | |
427 | ||
428 | while (1) | |
429 | { | |
430 | frame = get_prev_frame (frame); | |
431 | if (frame == NULL) | |
432 | return NULL; | |
eb5492fa | 433 | if (get_frame_base_address (frame) == frame_addr) |
7d8547c9 AC |
434 | return frame; |
435 | } | |
436 | } | |
437 | ||
8b93c638 JM |
438 | struct varobj * |
439 | varobj_create (char *objname, | |
72330bd6 | 440 | char *expression, CORE_ADDR frame, enum varobj_type type) |
8b93c638 JM |
441 | { |
442 | struct varobj *var; | |
2c67cb8b AC |
443 | struct frame_info *fi; |
444 | struct frame_info *old_fi = NULL; | |
8b93c638 JM |
445 | struct block *block; |
446 | struct cleanup *old_chain; | |
447 | ||
448 | /* Fill out a varobj structure for the (root) variable being constructed. */ | |
449 | var = new_root_variable (); | |
74b7792f | 450 | old_chain = make_cleanup_free_variable (var); |
8b93c638 JM |
451 | |
452 | if (expression != NULL) | |
453 | { | |
454 | char *p; | |
455 | enum varobj_languages lang; | |
e55dccf0 | 456 | struct value *value = NULL; |
02142340 | 457 | int expr_len; |
8b93c638 JM |
458 | |
459 | /* Parse and evaluate the expression, filling in as much | |
460 | of the variable's data as possible */ | |
461 | ||
462 | /* Allow creator to specify context of variable */ | |
72330bd6 | 463 | if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME)) |
206415a3 | 464 | fi = deprecated_safe_get_selected_frame (); |
8b93c638 | 465 | else |
7d8547c9 AC |
466 | /* FIXME: cagney/2002-11-23: This code should be doing a |
467 | lookup using the frame ID and not just the frame's | |
468 | ``address''. This, of course, means an interface change. | |
469 | However, with out that interface change ISAs, such as the | |
470 | ia64 with its two stacks, won't work. Similar goes for the | |
471 | case where there is a frameless function. */ | |
8b93c638 JM |
472 | fi = find_frame_addr_in_frame_chain (frame); |
473 | ||
73a93a32 JI |
474 | /* frame = -2 means always use selected frame */ |
475 | if (type == USE_SELECTED_FRAME) | |
a5defcdc | 476 | var->root->floating = 1; |
73a93a32 | 477 | |
8b93c638 JM |
478 | block = NULL; |
479 | if (fi != NULL) | |
ae767bfb | 480 | block = get_frame_block (fi, 0); |
8b93c638 JM |
481 | |
482 | p = expression; | |
483 | innermost_block = NULL; | |
73a93a32 JI |
484 | /* Wrap the call to parse expression, so we can |
485 | return a sensible error. */ | |
486 | if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp)) | |
487 | { | |
488 | return NULL; | |
489 | } | |
8b93c638 JM |
490 | |
491 | /* Don't allow variables to be created for types. */ | |
492 | if (var->root->exp->elts[0].opcode == OP_TYPE) | |
493 | { | |
494 | do_cleanups (old_chain); | |
bc8332bb AC |
495 | fprintf_unfiltered (gdb_stderr, "Attempt to use a type name" |
496 | " as an expression.\n"); | |
8b93c638 JM |
497 | return NULL; |
498 | } | |
499 | ||
500 | var->format = variable_default_display (var); | |
501 | var->root->valid_block = innermost_block; | |
02142340 VP |
502 | expr_len = strlen (expression); |
503 | var->name = savestring (expression, expr_len); | |
504 | /* For a root var, the name and the expr are the same. */ | |
505 | var->path_expr = savestring (expression, expr_len); | |
8b93c638 JM |
506 | |
507 | /* When the frame is different from the current frame, | |
508 | we must select the appropriate frame before parsing | |
509 | the expression, otherwise the value will not be current. | |
510 | Since select_frame is so benign, just call it for all cases. */ | |
44a67aa7 | 511 | if (innermost_block && fi != NULL) |
8b93c638 | 512 | { |
7a424e99 | 513 | var->root->frame = get_frame_id (fi); |
c5b48eac | 514 | var->root->thread_id = pid_to_thread_id (inferior_ptid); |
206415a3 | 515 | old_fi = get_selected_frame (NULL); |
c5b48eac | 516 | select_frame (fi); |
8b93c638 JM |
517 | } |
518 | ||
340a7723 | 519 | /* We definitely need to catch errors here. |
8b93c638 JM |
520 | If evaluate_expression succeeds we got the value we wanted. |
521 | But if it fails, we still go on with a call to evaluate_type() */ | |
acd65feb | 522 | if (!gdb_evaluate_expression (var->root->exp, &value)) |
e55dccf0 VP |
523 | { |
524 | /* Error getting the value. Try to at least get the | |
525 | right type. */ | |
526 | struct value *type_only_value = evaluate_type (var->root->exp); | |
527 | var->type = value_type (type_only_value); | |
528 | } | |
529 | else | |
530 | var->type = value_type (value); | |
acd65feb | 531 | |
acd65feb | 532 | install_new_value (var, value, 1 /* Initial assignment */); |
8b93c638 JM |
533 | |
534 | /* Set language info */ | |
535 | lang = variable_language (var); | |
d5d6fca5 | 536 | var->root->lang = &languages[lang]; |
8b93c638 JM |
537 | |
538 | /* Set ourselves as our root */ | |
539 | var->root->rootvar = var; | |
540 | ||
541 | /* Reset the selected frame */ | |
542 | if (fi != NULL) | |
0f7d239c | 543 | select_frame (old_fi); |
8b93c638 JM |
544 | } |
545 | ||
73a93a32 JI |
546 | /* If the variable object name is null, that means this |
547 | is a temporary variable, so don't install it. */ | |
548 | ||
549 | if ((var != NULL) && (objname != NULL)) | |
8b93c638 JM |
550 | { |
551 | var->obj_name = savestring (objname, strlen (objname)); | |
552 | ||
553 | /* If a varobj name is duplicated, the install will fail so | |
554 | we must clenup */ | |
555 | if (!install_variable (var)) | |
556 | { | |
557 | do_cleanups (old_chain); | |
558 | return NULL; | |
559 | } | |
560 | } | |
561 | ||
562 | discard_cleanups (old_chain); | |
563 | return var; | |
564 | } | |
565 | ||
566 | /* Generates an unique name that can be used for a varobj */ | |
567 | ||
568 | char * | |
569 | varobj_gen_name (void) | |
570 | { | |
571 | static int id = 0; | |
e64d9b3d | 572 | char *obj_name; |
8b93c638 JM |
573 | |
574 | /* generate a name for this object */ | |
575 | id++; | |
b435e160 | 576 | obj_name = xstrprintf ("var%d", id); |
8b93c638 | 577 | |
e64d9b3d | 578 | return obj_name; |
8b93c638 JM |
579 | } |
580 | ||
581 | /* Given an "objname", returns the pointer to the corresponding varobj | |
582 | or NULL if not found */ | |
583 | ||
584 | struct varobj * | |
585 | varobj_get_handle (char *objname) | |
586 | { | |
587 | struct vlist *cv; | |
588 | const char *chp; | |
589 | unsigned int index = 0; | |
590 | unsigned int i = 1; | |
591 | ||
592 | for (chp = objname; *chp; chp++) | |
593 | { | |
594 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
595 | } | |
596 | ||
597 | cv = *(varobj_table + index); | |
598 | while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0)) | |
599 | cv = cv->next; | |
600 | ||
601 | if (cv == NULL) | |
8a3fe4f8 | 602 | error (_("Variable object not found")); |
8b93c638 JM |
603 | |
604 | return cv->var; | |
605 | } | |
606 | ||
607 | /* Given the handle, return the name of the object */ | |
608 | ||
609 | char * | |
610 | varobj_get_objname (struct varobj *var) | |
611 | { | |
612 | return var->obj_name; | |
613 | } | |
614 | ||
615 | /* Given the handle, return the expression represented by the object */ | |
616 | ||
617 | char * | |
618 | varobj_get_expression (struct varobj *var) | |
619 | { | |
620 | return name_of_variable (var); | |
621 | } | |
622 | ||
623 | /* Deletes a varobj and all its children if only_children == 0, | |
624 | otherwise deletes only the children; returns a malloc'ed list of all the | |
625 | (malloc'ed) names of the variables that have been deleted (NULL terminated) */ | |
626 | ||
627 | int | |
628 | varobj_delete (struct varobj *var, char ***dellist, int only_children) | |
629 | { | |
630 | int delcount; | |
631 | int mycount; | |
632 | struct cpstack *result = NULL; | |
633 | char **cp; | |
634 | ||
635 | /* Initialize a stack for temporary results */ | |
636 | cppush (&result, NULL); | |
637 | ||
638 | if (only_children) | |
639 | /* Delete only the variable children */ | |
640 | delcount = delete_variable (&result, var, 1 /* only the children */ ); | |
641 | else | |
642 | /* Delete the variable and all its children */ | |
643 | delcount = delete_variable (&result, var, 0 /* parent+children */ ); | |
644 | ||
645 | /* We may have been asked to return a list of what has been deleted */ | |
646 | if (dellist != NULL) | |
647 | { | |
648 | *dellist = xmalloc ((delcount + 1) * sizeof (char *)); | |
649 | ||
650 | cp = *dellist; | |
651 | mycount = delcount; | |
652 | *cp = cppop (&result); | |
653 | while ((*cp != NULL) && (mycount > 0)) | |
654 | { | |
655 | mycount--; | |
656 | cp++; | |
657 | *cp = cppop (&result); | |
658 | } | |
659 | ||
660 | if (mycount || (*cp != NULL)) | |
8a3fe4f8 | 661 | warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"), |
72330bd6 | 662 | mycount); |
8b93c638 JM |
663 | } |
664 | ||
665 | return delcount; | |
666 | } | |
667 | ||
668 | /* Set/Get variable object display format */ | |
669 | ||
670 | enum varobj_display_formats | |
671 | varobj_set_display_format (struct varobj *var, | |
672 | enum varobj_display_formats format) | |
673 | { | |
674 | switch (format) | |
675 | { | |
676 | case FORMAT_NATURAL: | |
677 | case FORMAT_BINARY: | |
678 | case FORMAT_DECIMAL: | |
679 | case FORMAT_HEXADECIMAL: | |
680 | case FORMAT_OCTAL: | |
681 | var->format = format; | |
682 | break; | |
683 | ||
684 | default: | |
685 | var->format = variable_default_display (var); | |
686 | } | |
687 | ||
ae7d22a6 VP |
688 | if (varobj_value_is_changeable_p (var) |
689 | && var->value && !value_lazy (var->value)) | |
690 | { | |
691 | free (var->print_value); | |
692 | var->print_value = value_get_print_value (var->value, var->format); | |
693 | } | |
694 | ||
8b93c638 JM |
695 | return var->format; |
696 | } | |
697 | ||
698 | enum varobj_display_formats | |
699 | varobj_get_display_format (struct varobj *var) | |
700 | { | |
701 | return var->format; | |
702 | } | |
703 | ||
c5b48eac VP |
704 | /* If the variable object is bound to a specific thread, that |
705 | is its evaluation can always be done in context of a frame | |
706 | inside that thread, returns GDB id of the thread -- which | |
707 | is always positive. Otherwise, returns -1. */ | |
708 | int | |
709 | varobj_get_thread_id (struct varobj *var) | |
710 | { | |
711 | if (var->root->valid_block && var->root->thread_id > 0) | |
712 | return var->root->thread_id; | |
713 | else | |
714 | return -1; | |
715 | } | |
716 | ||
25d5ea92 VP |
717 | void |
718 | varobj_set_frozen (struct varobj *var, int frozen) | |
719 | { | |
720 | /* When a variable is unfrozen, we don't fetch its value. | |
721 | The 'not_fetched' flag remains set, so next -var-update | |
722 | won't complain. | |
723 | ||
724 | We don't fetch the value, because for structures the client | |
725 | should do -var-update anyway. It would be bad to have different | |
726 | client-size logic for structure and other types. */ | |
727 | var->frozen = frozen; | |
728 | } | |
729 | ||
730 | int | |
731 | varobj_get_frozen (struct varobj *var) | |
732 | { | |
733 | return var->frozen; | |
734 | } | |
735 | ||
736 | ||
8b93c638 JM |
737 | int |
738 | varobj_get_num_children (struct varobj *var) | |
739 | { | |
740 | if (var->num_children == -1) | |
741 | var->num_children = number_of_children (var); | |
742 | ||
743 | return var->num_children; | |
744 | } | |
745 | ||
746 | /* Creates a list of the immediate children of a variable object; | |
747 | the return code is the number of such children or -1 on error */ | |
748 | ||
d56d46f5 VP |
749 | VEC (varobj_p)* |
750 | varobj_list_children (struct varobj *var) | |
8b93c638 JM |
751 | { |
752 | struct varobj *child; | |
753 | char *name; | |
754 | int i; | |
755 | ||
8b93c638 JM |
756 | if (var->num_children == -1) |
757 | var->num_children = number_of_children (var); | |
758 | ||
74a44383 DJ |
759 | /* If that failed, give up. */ |
760 | if (var->num_children == -1) | |
d56d46f5 | 761 | return var->children; |
74a44383 | 762 | |
28335dcc VP |
763 | /* If we're called when the list of children is not yet initialized, |
764 | allocate enough elements in it. */ | |
765 | while (VEC_length (varobj_p, var->children) < var->num_children) | |
766 | VEC_safe_push (varobj_p, var->children, NULL); | |
767 | ||
8b93c638 JM |
768 | for (i = 0; i < var->num_children; i++) |
769 | { | |
d56d46f5 | 770 | varobj_p existing = VEC_index (varobj_p, var->children, i); |
28335dcc VP |
771 | |
772 | if (existing == NULL) | |
773 | { | |
774 | /* Either it's the first call to varobj_list_children for | |
775 | this variable object, and the child was never created, | |
776 | or it was explicitly deleted by the client. */ | |
777 | name = name_of_child (var, i); | |
778 | existing = create_child (var, i, name); | |
779 | VEC_replace (varobj_p, var->children, i, existing); | |
780 | } | |
8b93c638 JM |
781 | } |
782 | ||
d56d46f5 | 783 | return var->children; |
8b93c638 JM |
784 | } |
785 | ||
786 | /* Obtain the type of an object Variable as a string similar to the one gdb | |
787 | prints on the console */ | |
788 | ||
789 | char * | |
790 | varobj_get_type (struct varobj *var) | |
791 | { | |
30b28db1 | 792 | struct value *val; |
8b93c638 JM |
793 | struct cleanup *old_chain; |
794 | struct ui_file *stb; | |
795 | char *thetype; | |
796 | long length; | |
797 | ||
798 | /* For the "fake" variables, do not return a type. (It's type is | |
8756216b DP |
799 | NULL, too.) |
800 | Do not return a type for invalid variables as well. */ | |
801 | if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid) | |
8b93c638 JM |
802 | return NULL; |
803 | ||
804 | stb = mem_fileopen (); | |
805 | old_chain = make_cleanup_ui_file_delete (stb); | |
806 | ||
30b28db1 | 807 | /* To print the type, we simply create a zero ``struct value *'' and |
8b93c638 JM |
808 | cast it to our type. We then typeprint this variable. */ |
809 | val = value_zero (var->type, not_lval); | |
df407dfe | 810 | type_print (value_type (val), "", stb, -1); |
8b93c638 JM |
811 | |
812 | thetype = ui_file_xstrdup (stb, &length); | |
813 | do_cleanups (old_chain); | |
814 | return thetype; | |
815 | } | |
816 | ||
1ecb4ee0 DJ |
817 | /* Obtain the type of an object variable. */ |
818 | ||
819 | struct type * | |
820 | varobj_get_gdb_type (struct varobj *var) | |
821 | { | |
822 | return var->type; | |
823 | } | |
824 | ||
02142340 VP |
825 | /* Return a pointer to the full rooted expression of varobj VAR. |
826 | If it has not been computed yet, compute it. */ | |
827 | char * | |
828 | varobj_get_path_expr (struct varobj *var) | |
829 | { | |
830 | if (var->path_expr != NULL) | |
831 | return var->path_expr; | |
832 | else | |
833 | { | |
834 | /* For root varobjs, we initialize path_expr | |
835 | when creating varobj, so here it should be | |
836 | child varobj. */ | |
837 | gdb_assert (!is_root_p (var)); | |
838 | return (*var->root->lang->path_expr_of_child) (var); | |
839 | } | |
840 | } | |
841 | ||
8b93c638 JM |
842 | enum varobj_languages |
843 | varobj_get_language (struct varobj *var) | |
844 | { | |
845 | return variable_language (var); | |
846 | } | |
847 | ||
848 | int | |
849 | varobj_get_attributes (struct varobj *var) | |
850 | { | |
851 | int attributes = 0; | |
852 | ||
340a7723 | 853 | if (varobj_editable_p (var)) |
8b93c638 JM |
854 | /* FIXME: define masks for attributes */ |
855 | attributes |= 0x00000001; /* Editable */ | |
856 | ||
857 | return attributes; | |
858 | } | |
859 | ||
860 | char * | |
861 | varobj_get_value (struct varobj *var) | |
862 | { | |
863 | return my_value_of_variable (var); | |
864 | } | |
865 | ||
866 | /* Set the value of an object variable (if it is editable) to the | |
867 | value of the given expression */ | |
868 | /* Note: Invokes functions that can call error() */ | |
869 | ||
870 | int | |
871 | varobj_set_value (struct varobj *var, char *expression) | |
872 | { | |
30b28db1 | 873 | struct value *val; |
8b93c638 | 874 | int offset = 0; |
a6c442d8 | 875 | int error = 0; |
8b93c638 JM |
876 | |
877 | /* The argument "expression" contains the variable's new value. | |
878 | We need to first construct a legal expression for this -- ugh! */ | |
879 | /* Does this cover all the bases? */ | |
880 | struct expression *exp; | |
30b28db1 | 881 | struct value *value; |
8b93c638 | 882 | int saved_input_radix = input_radix; |
340a7723 NR |
883 | char *s = expression; |
884 | int i; | |
8b93c638 | 885 | |
340a7723 | 886 | gdb_assert (varobj_editable_p (var)); |
8b93c638 | 887 | |
340a7723 NR |
888 | input_radix = 10; /* ALWAYS reset to decimal temporarily */ |
889 | exp = parse_exp_1 (&s, 0, 0); | |
890 | if (!gdb_evaluate_expression (exp, &value)) | |
891 | { | |
892 | /* We cannot proceed without a valid expression. */ | |
893 | xfree (exp); | |
894 | return 0; | |
8b93c638 JM |
895 | } |
896 | ||
340a7723 NR |
897 | /* All types that are editable must also be changeable. */ |
898 | gdb_assert (varobj_value_is_changeable_p (var)); | |
899 | ||
900 | /* The value of a changeable variable object must not be lazy. */ | |
901 | gdb_assert (!value_lazy (var->value)); | |
902 | ||
903 | /* Need to coerce the input. We want to check if the | |
904 | value of the variable object will be different | |
905 | after assignment, and the first thing value_assign | |
906 | does is coerce the input. | |
907 | For example, if we are assigning an array to a pointer variable we | |
908 | should compare the pointer with the the array's address, not with the | |
909 | array's content. */ | |
910 | value = coerce_array (value); | |
911 | ||
912 | /* The new value may be lazy. gdb_value_assign, or | |
913 | rather value_contents, will take care of this. | |
914 | If fetching of the new value will fail, gdb_value_assign | |
915 | with catch the exception. */ | |
916 | if (!gdb_value_assign (var->value, value, &val)) | |
917 | return 0; | |
918 | ||
919 | /* If the value has changed, record it, so that next -var-update can | |
920 | report this change. If a variable had a value of '1', we've set it | |
921 | to '333' and then set again to '1', when -var-update will report this | |
922 | variable as changed -- because the first assignment has set the | |
923 | 'updated' flag. There's no need to optimize that, because return value | |
924 | of -var-update should be considered an approximation. */ | |
925 | var->updated = install_new_value (var, val, 0 /* Compare values. */); | |
926 | input_radix = saved_input_radix; | |
927 | return 1; | |
8b93c638 JM |
928 | } |
929 | ||
930 | /* Returns a malloc'ed list with all root variable objects */ | |
931 | int | |
932 | varobj_list (struct varobj ***varlist) | |
933 | { | |
934 | struct varobj **cv; | |
935 | struct varobj_root *croot; | |
936 | int mycount = rootcount; | |
937 | ||
938 | /* Alloc (rootcount + 1) entries for the result */ | |
939 | *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *)); | |
940 | ||
941 | cv = *varlist; | |
942 | croot = rootlist; | |
943 | while ((croot != NULL) && (mycount > 0)) | |
944 | { | |
945 | *cv = croot->rootvar; | |
946 | mycount--; | |
947 | cv++; | |
948 | croot = croot->next; | |
949 | } | |
950 | /* Mark the end of the list */ | |
951 | *cv = NULL; | |
952 | ||
953 | if (mycount || (croot != NULL)) | |
72330bd6 AC |
954 | warning |
955 | ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)", | |
956 | rootcount, mycount); | |
8b93c638 JM |
957 | |
958 | return rootcount; | |
959 | } | |
960 | ||
acd65feb VP |
961 | /* Assign a new value to a variable object. If INITIAL is non-zero, |
962 | this is the first assignement after the variable object was just | |
963 | created, or changed type. In that case, just assign the value | |
964 | and return 0. | |
965 | Otherwise, assign the value and if type_changeable returns non-zero, | |
966 | find if the new value is different from the current value. | |
b26ed50d VP |
967 | Return 1 if so, and 0 if the values are equal. |
968 | ||
969 | The VALUE parameter should not be released -- the function will | |
970 | take care of releasing it when needed. */ | |
acd65feb VP |
971 | static int |
972 | install_new_value (struct varobj *var, struct value *value, int initial) | |
973 | { | |
974 | int changeable; | |
975 | int need_to_fetch; | |
976 | int changed = 0; | |
25d5ea92 | 977 | int intentionally_not_fetched = 0; |
7a4d50bf | 978 | char *print_value = NULL; |
acd65feb | 979 | |
acd65feb VP |
980 | /* We need to know the varobj's type to decide if the value should |
981 | be fetched or not. C++ fake children (public/protected/private) don't have | |
982 | a type. */ | |
983 | gdb_assert (var->type || CPLUS_FAKE_CHILD (var)); | |
b2c2bd75 | 984 | changeable = varobj_value_is_changeable_p (var); |
acd65feb VP |
985 | need_to_fetch = changeable; |
986 | ||
b26ed50d VP |
987 | /* We are not interested in the address of references, and given |
988 | that in C++ a reference is not rebindable, it cannot | |
989 | meaningfully change. So, get hold of the real value. */ | |
990 | if (value) | |
991 | { | |
992 | value = coerce_ref (value); | |
993 | release_value (value); | |
994 | } | |
995 | ||
acd65feb VP |
996 | if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION) |
997 | /* For unions, we need to fetch the value implicitly because | |
998 | of implementation of union member fetch. When gdb | |
999 | creates a value for a field and the value of the enclosing | |
1000 | structure is not lazy, it immediately copies the necessary | |
1001 | bytes from the enclosing values. If the enclosing value is | |
1002 | lazy, the call to value_fetch_lazy on the field will read | |
1003 | the data from memory. For unions, that means we'll read the | |
1004 | same memory more than once, which is not desirable. So | |
1005 | fetch now. */ | |
1006 | need_to_fetch = 1; | |
1007 | ||
1008 | /* The new value might be lazy. If the type is changeable, | |
1009 | that is we'll be comparing values of this type, fetch the | |
1010 | value now. Otherwise, on the next update the old value | |
1011 | will be lazy, which means we've lost that old value. */ | |
1012 | if (need_to_fetch && value && value_lazy (value)) | |
1013 | { | |
25d5ea92 VP |
1014 | struct varobj *parent = var->parent; |
1015 | int frozen = var->frozen; | |
1016 | for (; !frozen && parent; parent = parent->parent) | |
1017 | frozen |= parent->frozen; | |
1018 | ||
1019 | if (frozen && initial) | |
1020 | { | |
1021 | /* For variables that are frozen, or are children of frozen | |
1022 | variables, we don't do fetch on initial assignment. | |
1023 | For non-initial assignemnt we do the fetch, since it means we're | |
1024 | explicitly asked to compare the new value with the old one. */ | |
1025 | intentionally_not_fetched = 1; | |
1026 | } | |
1027 | else if (!gdb_value_fetch_lazy (value)) | |
acd65feb | 1028 | { |
acd65feb VP |
1029 | /* Set the value to NULL, so that for the next -var-update, |
1030 | we don't try to compare the new value with this value, | |
1031 | that we couldn't even read. */ | |
1032 | value = NULL; | |
1033 | } | |
acd65feb VP |
1034 | } |
1035 | ||
7a4d50bf VP |
1036 | /* Below, we'll be comparing string rendering of old and new |
1037 | values. Don't get string rendering if the value is | |
1038 | lazy -- if it is, the code above has decided that the value | |
1039 | should not be fetched. */ | |
1040 | if (value && !value_lazy (value)) | |
1041 | print_value = value_get_print_value (value, var->format); | |
1042 | ||
acd65feb VP |
1043 | /* If the type is changeable, compare the old and the new values. |
1044 | If this is the initial assignment, we don't have any old value | |
1045 | to compare with. */ | |
7a4d50bf | 1046 | if (!initial && changeable) |
acd65feb VP |
1047 | { |
1048 | /* If the value of the varobj was changed by -var-set-value, then the | |
1049 | value in the varobj and in the target is the same. However, that value | |
1050 | is different from the value that the varobj had after the previous | |
57e66780 | 1051 | -var-update. So need to the varobj as changed. */ |
acd65feb | 1052 | if (var->updated) |
57e66780 | 1053 | { |
57e66780 DJ |
1054 | changed = 1; |
1055 | } | |
acd65feb VP |
1056 | else |
1057 | { | |
1058 | /* Try to compare the values. That requires that both | |
1059 | values are non-lazy. */ | |
25d5ea92 VP |
1060 | if (var->not_fetched && value_lazy (var->value)) |
1061 | { | |
1062 | /* This is a frozen varobj and the value was never read. | |
1063 | Presumably, UI shows some "never read" indicator. | |
1064 | Now that we've fetched the real value, we need to report | |
1065 | this varobj as changed so that UI can show the real | |
1066 | value. */ | |
1067 | changed = 1; | |
1068 | } | |
1069 | else if (var->value == NULL && value == NULL) | |
acd65feb VP |
1070 | /* Equal. */ |
1071 | ; | |
1072 | else if (var->value == NULL || value == NULL) | |
57e66780 | 1073 | { |
57e66780 DJ |
1074 | changed = 1; |
1075 | } | |
acd65feb VP |
1076 | else |
1077 | { | |
1078 | gdb_assert (!value_lazy (var->value)); | |
1079 | gdb_assert (!value_lazy (value)); | |
85265413 | 1080 | |
57e66780 | 1081 | gdb_assert (var->print_value != NULL && print_value != NULL); |
85265413 | 1082 | if (strcmp (var->print_value, print_value) != 0) |
7a4d50bf | 1083 | changed = 1; |
acd65feb VP |
1084 | } |
1085 | } | |
1086 | } | |
85265413 | 1087 | |
acd65feb | 1088 | /* We must always keep the new value, since children depend on it. */ |
25d5ea92 | 1089 | if (var->value != NULL && var->value != value) |
acd65feb VP |
1090 | value_free (var->value); |
1091 | var->value = value; | |
7a4d50bf VP |
1092 | if (var->print_value) |
1093 | xfree (var->print_value); | |
1094 | var->print_value = print_value; | |
25d5ea92 VP |
1095 | if (value && value_lazy (value) && intentionally_not_fetched) |
1096 | var->not_fetched = 1; | |
1097 | else | |
1098 | var->not_fetched = 0; | |
acd65feb | 1099 | var->updated = 0; |
85265413 | 1100 | |
b26ed50d | 1101 | gdb_assert (!var->value || value_type (var->value)); |
acd65feb VP |
1102 | |
1103 | return changed; | |
1104 | } | |
acd65feb | 1105 | |
8b93c638 JM |
1106 | /* Update the values for a variable and its children. This is a |
1107 | two-pronged attack. First, re-parse the value for the root's | |
1108 | expression to see if it's changed. Then go all the way | |
1109 | through its children, reconstructing them and noting if they've | |
1110 | changed. | |
8756216b DP |
1111 | Return value: |
1112 | < 0 for error values, see varobj.h. | |
1113 | Otherwise it is the number of children + parent changed. | |
8b93c638 | 1114 | |
25d5ea92 VP |
1115 | The EXPLICIT parameter specifies if this call is result |
1116 | of MI request to update this specific variable, or | |
1117 | result of implicit -var-update *. For implicit request, we don't | |
1118 | update frozen variables. | |
705da579 KS |
1119 | |
1120 | NOTE: This function may delete the caller's varobj. If it | |
8756216b DP |
1121 | returns TYPE_CHANGED, then it has done this and VARP will be modified |
1122 | to point to the new varobj. */ | |
8b93c638 JM |
1123 | |
1124 | int | |
25d5ea92 VP |
1125 | varobj_update (struct varobj **varp, struct varobj ***changelist, |
1126 | int explicit) | |
8b93c638 JM |
1127 | { |
1128 | int changed = 0; | |
25d5ea92 | 1129 | int type_changed = 0; |
8b93c638 JM |
1130 | int i; |
1131 | int vleft; | |
8b93c638 JM |
1132 | struct varobj *v; |
1133 | struct varobj **cv; | |
2c67cb8b | 1134 | struct varobj **templist = NULL; |
30b28db1 | 1135 | struct value *new; |
28335dcc VP |
1136 | VEC (varobj_p) *stack = NULL; |
1137 | VEC (varobj_p) *result = NULL; | |
e64d9b3d | 1138 | struct frame_info *fi; |
8b93c638 | 1139 | |
8756216b | 1140 | /* sanity check: have we been passed a pointer? */ |
a1f42e84 | 1141 | gdb_assert (changelist); |
8b93c638 | 1142 | |
25d5ea92 VP |
1143 | /* Frozen means frozen -- we don't check for any change in |
1144 | this varobj, including its going out of scope, or | |
1145 | changing type. One use case for frozen varobjs is | |
1146 | retaining previously evaluated expressions, and we don't | |
1147 | want them to be reevaluated at all. */ | |
1148 | if (!explicit && (*varp)->frozen) | |
1149 | return 0; | |
8756216b DP |
1150 | |
1151 | if (!(*varp)->root->is_valid) | |
1152 | return INVALID; | |
8b93c638 | 1153 | |
25d5ea92 | 1154 | if ((*varp)->root->rootvar == *varp) |
ae093f96 | 1155 | { |
25d5ea92 VP |
1156 | /* Update the root variable. value_of_root can return NULL |
1157 | if the variable is no longer around, i.e. we stepped out of | |
1158 | the frame in which a local existed. We are letting the | |
1159 | value_of_root variable dispose of the varobj if the type | |
1160 | has changed. */ | |
25d5ea92 | 1161 | new = value_of_root (varp, &type_changed); |
25d5ea92 | 1162 | |
a5defcdc | 1163 | /* If this is a floating varobj, and its type has changed, |
25d5ea92 VP |
1164 | them note that it's changed. */ |
1165 | if (type_changed) | |
1166 | VEC_safe_push (varobj_p, result, *varp); | |
1167 | ||
1168 | if (install_new_value ((*varp), new, type_changed)) | |
1169 | { | |
1170 | /* If type_changed is 1, install_new_value will never return | |
1171 | non-zero, so we'll never report the same variable twice. */ | |
1172 | gdb_assert (!type_changed); | |
1173 | VEC_safe_push (varobj_p, result, *varp); | |
1174 | } | |
8b93c638 | 1175 | |
25d5ea92 VP |
1176 | if (new == NULL) |
1177 | { | |
1178 | /* This means the varobj itself is out of scope. | |
1179 | Report it. */ | |
1180 | VEC_free (varobj_p, result); | |
1181 | return NOT_IN_SCOPE; | |
1182 | } | |
b20d8971 VP |
1183 | } |
1184 | ||
28335dcc | 1185 | VEC_safe_push (varobj_p, stack, *varp); |
8b93c638 | 1186 | |
8756216b | 1187 | /* Walk through the children, reconstructing them all. */ |
28335dcc | 1188 | while (!VEC_empty (varobj_p, stack)) |
8b93c638 | 1189 | { |
28335dcc VP |
1190 | v = VEC_pop (varobj_p, stack); |
1191 | ||
1192 | /* Push any children. Use reverse order so that the first | |
1193 | child is popped from the work stack first, and so | |
1194 | will be added to result first. This does not | |
1195 | affect correctness, just "nicer". */ | |
1196 | for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i) | |
8b93c638 | 1197 | { |
28335dcc VP |
1198 | varobj_p c = VEC_index (varobj_p, v->children, i); |
1199 | /* Child may be NULL if explicitly deleted by -var-delete. */ | |
25d5ea92 | 1200 | if (c != NULL && !c->frozen) |
28335dcc | 1201 | VEC_safe_push (varobj_p, stack, c); |
8b93c638 JM |
1202 | } |
1203 | ||
28335dcc VP |
1204 | /* Update this variable, unless it's a root, which is already |
1205 | updated. */ | |
25d5ea92 | 1206 | if (v->root->rootvar != v) |
28335dcc VP |
1207 | { |
1208 | new = value_of_child (v->parent, v->index); | |
1209 | if (install_new_value (v, new, 0 /* type not changed */)) | |
1210 | { | |
1211 | /* Note that it's changed */ | |
1212 | VEC_safe_push (varobj_p, result, v); | |
1213 | v->updated = 0; | |
1214 | } | |
8b93c638 | 1215 | } |
8b93c638 JM |
1216 | } |
1217 | ||
8756216b | 1218 | /* Alloc (changed + 1) list entries. */ |
28335dcc | 1219 | changed = VEC_length (varobj_p, result); |
8b93c638 | 1220 | *changelist = xmalloc ((changed + 1) * sizeof (struct varobj *)); |
28335dcc | 1221 | cv = *changelist; |
8b93c638 | 1222 | |
28335dcc | 1223 | for (i = 0; i < changed; ++i) |
8b93c638 | 1224 | { |
28335dcc VP |
1225 | *cv = VEC_index (varobj_p, result, i); |
1226 | gdb_assert (*cv != NULL); | |
1227 | ++cv; | |
8b93c638 | 1228 | } |
28335dcc | 1229 | *cv = 0; |
8b93c638 | 1230 | |
93b979d6 NR |
1231 | VEC_free (varobj_p, stack); |
1232 | VEC_free (varobj_p, result); | |
1233 | ||
73a93a32 | 1234 | if (type_changed) |
8756216b | 1235 | return TYPE_CHANGED; |
73a93a32 JI |
1236 | else |
1237 | return changed; | |
8b93c638 JM |
1238 | } |
1239 | \f | |
1240 | ||
1241 | /* Helper functions */ | |
1242 | ||
1243 | /* | |
1244 | * Variable object construction/destruction | |
1245 | */ | |
1246 | ||
1247 | static int | |
fba45db2 KB |
1248 | delete_variable (struct cpstack **resultp, struct varobj *var, |
1249 | int only_children_p) | |
8b93c638 JM |
1250 | { |
1251 | int delcount = 0; | |
1252 | ||
1253 | delete_variable_1 (resultp, &delcount, var, | |
1254 | only_children_p, 1 /* remove_from_parent_p */ ); | |
1255 | ||
1256 | return delcount; | |
1257 | } | |
1258 | ||
1259 | /* Delete the variable object VAR and its children */ | |
1260 | /* IMPORTANT NOTE: If we delete a variable which is a child | |
1261 | and the parent is not removed we dump core. It must be always | |
1262 | initially called with remove_from_parent_p set */ | |
1263 | static void | |
72330bd6 AC |
1264 | delete_variable_1 (struct cpstack **resultp, int *delcountp, |
1265 | struct varobj *var, int only_children_p, | |
1266 | int remove_from_parent_p) | |
8b93c638 | 1267 | { |
28335dcc | 1268 | int i; |
8b93c638 JM |
1269 | |
1270 | /* Delete any children of this variable, too. */ | |
28335dcc VP |
1271 | for (i = 0; i < VEC_length (varobj_p, var->children); ++i) |
1272 | { | |
1273 | varobj_p child = VEC_index (varobj_p, var->children, i); | |
214270ab VP |
1274 | if (!child) |
1275 | continue; | |
8b93c638 | 1276 | if (!remove_from_parent_p) |
28335dcc VP |
1277 | child->parent = NULL; |
1278 | delete_variable_1 (resultp, delcountp, child, 0, only_children_p); | |
8b93c638 | 1279 | } |
28335dcc | 1280 | VEC_free (varobj_p, var->children); |
8b93c638 JM |
1281 | |
1282 | /* if we were called to delete only the children we are done here */ | |
1283 | if (only_children_p) | |
1284 | return; | |
1285 | ||
1286 | /* Otherwise, add it to the list of deleted ones and proceed to do so */ | |
73a93a32 JI |
1287 | /* If the name is null, this is a temporary variable, that has not |
1288 | yet been installed, don't report it, it belongs to the caller... */ | |
1289 | if (var->obj_name != NULL) | |
8b93c638 | 1290 | { |
5b616ba1 | 1291 | cppush (resultp, xstrdup (var->obj_name)); |
8b93c638 JM |
1292 | *delcountp = *delcountp + 1; |
1293 | } | |
1294 | ||
1295 | /* If this variable has a parent, remove it from its parent's list */ | |
1296 | /* OPTIMIZATION: if the parent of this variable is also being deleted, | |
1297 | (as indicated by remove_from_parent_p) we don't bother doing an | |
1298 | expensive list search to find the element to remove when we are | |
1299 | discarding the list afterwards */ | |
72330bd6 | 1300 | if ((remove_from_parent_p) && (var->parent != NULL)) |
8b93c638 | 1301 | { |
28335dcc | 1302 | VEC_replace (varobj_p, var->parent->children, var->index, NULL); |
8b93c638 | 1303 | } |
72330bd6 | 1304 | |
73a93a32 JI |
1305 | if (var->obj_name != NULL) |
1306 | uninstall_variable (var); | |
8b93c638 JM |
1307 | |
1308 | /* Free memory associated with this variable */ | |
1309 | free_variable (var); | |
1310 | } | |
1311 | ||
1312 | /* Install the given variable VAR with the object name VAR->OBJ_NAME. */ | |
1313 | static int | |
fba45db2 | 1314 | install_variable (struct varobj *var) |
8b93c638 JM |
1315 | { |
1316 | struct vlist *cv; | |
1317 | struct vlist *newvl; | |
1318 | const char *chp; | |
1319 | unsigned int index = 0; | |
1320 | unsigned int i = 1; | |
1321 | ||
1322 | for (chp = var->obj_name; *chp; chp++) | |
1323 | { | |
1324 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1325 | } | |
1326 | ||
1327 | cv = *(varobj_table + index); | |
1328 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1329 | cv = cv->next; | |
1330 | ||
1331 | if (cv != NULL) | |
8a3fe4f8 | 1332 | error (_("Duplicate variable object name")); |
8b93c638 JM |
1333 | |
1334 | /* Add varobj to hash table */ | |
1335 | newvl = xmalloc (sizeof (struct vlist)); | |
1336 | newvl->next = *(varobj_table + index); | |
1337 | newvl->var = var; | |
1338 | *(varobj_table + index) = newvl; | |
1339 | ||
1340 | /* If root, add varobj to root list */ | |
b2c2bd75 | 1341 | if (is_root_p (var)) |
8b93c638 JM |
1342 | { |
1343 | /* Add to list of root variables */ | |
1344 | if (rootlist == NULL) | |
1345 | var->root->next = NULL; | |
1346 | else | |
1347 | var->root->next = rootlist; | |
1348 | rootlist = var->root; | |
1349 | rootcount++; | |
1350 | } | |
1351 | ||
1352 | return 1; /* OK */ | |
1353 | } | |
1354 | ||
1355 | /* Unistall the object VAR. */ | |
1356 | static void | |
fba45db2 | 1357 | uninstall_variable (struct varobj *var) |
8b93c638 JM |
1358 | { |
1359 | struct vlist *cv; | |
1360 | struct vlist *prev; | |
1361 | struct varobj_root *cr; | |
1362 | struct varobj_root *prer; | |
1363 | const char *chp; | |
1364 | unsigned int index = 0; | |
1365 | unsigned int i = 1; | |
1366 | ||
1367 | /* Remove varobj from hash table */ | |
1368 | for (chp = var->obj_name; *chp; chp++) | |
1369 | { | |
1370 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1371 | } | |
1372 | ||
1373 | cv = *(varobj_table + index); | |
1374 | prev = NULL; | |
1375 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1376 | { | |
1377 | prev = cv; | |
1378 | cv = cv->next; | |
1379 | } | |
1380 | ||
1381 | if (varobjdebug) | |
1382 | fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name); | |
1383 | ||
1384 | if (cv == NULL) | |
1385 | { | |
72330bd6 AC |
1386 | warning |
1387 | ("Assertion failed: Could not find variable object \"%s\" to delete", | |
1388 | var->obj_name); | |
8b93c638 JM |
1389 | return; |
1390 | } | |
1391 | ||
1392 | if (prev == NULL) | |
1393 | *(varobj_table + index) = cv->next; | |
1394 | else | |
1395 | prev->next = cv->next; | |
1396 | ||
b8c9b27d | 1397 | xfree (cv); |
8b93c638 JM |
1398 | |
1399 | /* If root, remove varobj from root list */ | |
b2c2bd75 | 1400 | if (is_root_p (var)) |
8b93c638 JM |
1401 | { |
1402 | /* Remove from list of root variables */ | |
1403 | if (rootlist == var->root) | |
1404 | rootlist = var->root->next; | |
1405 | else | |
1406 | { | |
1407 | prer = NULL; | |
1408 | cr = rootlist; | |
1409 | while ((cr != NULL) && (cr->rootvar != var)) | |
1410 | { | |
1411 | prer = cr; | |
1412 | cr = cr->next; | |
1413 | } | |
1414 | if (cr == NULL) | |
1415 | { | |
72330bd6 AC |
1416 | warning |
1417 | ("Assertion failed: Could not find varobj \"%s\" in root list", | |
1418 | var->obj_name); | |
8b93c638 JM |
1419 | return; |
1420 | } | |
1421 | if (prer == NULL) | |
1422 | rootlist = NULL; | |
1423 | else | |
1424 | prer->next = cr->next; | |
1425 | } | |
1426 | rootcount--; | |
1427 | } | |
1428 | ||
1429 | } | |
1430 | ||
8b93c638 JM |
1431 | /* Create and install a child of the parent of the given name */ |
1432 | static struct varobj * | |
fba45db2 | 1433 | create_child (struct varobj *parent, int index, char *name) |
8b93c638 JM |
1434 | { |
1435 | struct varobj *child; | |
1436 | char *childs_name; | |
acd65feb | 1437 | struct value *value; |
8b93c638 JM |
1438 | |
1439 | child = new_variable (); | |
1440 | ||
1441 | /* name is allocated by name_of_child */ | |
1442 | child->name = name; | |
1443 | child->index = index; | |
acd65feb | 1444 | value = value_of_child (parent, index); |
8b93c638 JM |
1445 | child->parent = parent; |
1446 | child->root = parent->root; | |
b435e160 | 1447 | childs_name = xstrprintf ("%s.%s", parent->obj_name, name); |
8b93c638 JM |
1448 | child->obj_name = childs_name; |
1449 | install_variable (child); | |
1450 | ||
acd65feb VP |
1451 | /* Compute the type of the child. Must do this before |
1452 | calling install_new_value. */ | |
1453 | if (value != NULL) | |
1454 | /* If the child had no evaluation errors, var->value | |
1455 | will be non-NULL and contain a valid type. */ | |
1456 | child->type = value_type (value); | |
1457 | else | |
1458 | /* Otherwise, we must compute the type. */ | |
1459 | child->type = (*child->root->lang->type_of_child) (child->parent, | |
1460 | child->index); | |
1461 | install_new_value (child, value, 1); | |
1462 | ||
8b93c638 JM |
1463 | return child; |
1464 | } | |
8b93c638 JM |
1465 | \f |
1466 | ||
1467 | /* | |
1468 | * Miscellaneous utility functions. | |
1469 | */ | |
1470 | ||
1471 | /* Allocate memory and initialize a new variable */ | |
1472 | static struct varobj * | |
1473 | new_variable (void) | |
1474 | { | |
1475 | struct varobj *var; | |
1476 | ||
1477 | var = (struct varobj *) xmalloc (sizeof (struct varobj)); | |
1478 | var->name = NULL; | |
02142340 | 1479 | var->path_expr = NULL; |
8b93c638 JM |
1480 | var->obj_name = NULL; |
1481 | var->index = -1; | |
1482 | var->type = NULL; | |
1483 | var->value = NULL; | |
8b93c638 JM |
1484 | var->num_children = -1; |
1485 | var->parent = NULL; | |
1486 | var->children = NULL; | |
1487 | var->format = 0; | |
1488 | var->root = NULL; | |
fb9b6b35 | 1489 | var->updated = 0; |
85265413 | 1490 | var->print_value = NULL; |
25d5ea92 VP |
1491 | var->frozen = 0; |
1492 | var->not_fetched = 0; | |
8b93c638 JM |
1493 | |
1494 | return var; | |
1495 | } | |
1496 | ||
1497 | /* Allocate memory and initialize a new root variable */ | |
1498 | static struct varobj * | |
1499 | new_root_variable (void) | |
1500 | { | |
1501 | struct varobj *var = new_variable (); | |
1502 | var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));; | |
1503 | var->root->lang = NULL; | |
1504 | var->root->exp = NULL; | |
1505 | var->root->valid_block = NULL; | |
7a424e99 | 1506 | var->root->frame = null_frame_id; |
a5defcdc | 1507 | var->root->floating = 0; |
8b93c638 | 1508 | var->root->rootvar = NULL; |
8756216b | 1509 | var->root->is_valid = 1; |
8b93c638 JM |
1510 | |
1511 | return var; | |
1512 | } | |
1513 | ||
1514 | /* Free any allocated memory associated with VAR. */ | |
1515 | static void | |
fba45db2 | 1516 | free_variable (struct varobj *var) |
8b93c638 JM |
1517 | { |
1518 | /* Free the expression if this is a root variable. */ | |
b2c2bd75 | 1519 | if (is_root_p (var)) |
8b93c638 | 1520 | { |
96c1eda2 | 1521 | free_current_contents (&var->root->exp); |
8038e1e2 | 1522 | xfree (var->root); |
8b93c638 JM |
1523 | } |
1524 | ||
8038e1e2 AC |
1525 | xfree (var->name); |
1526 | xfree (var->obj_name); | |
85265413 | 1527 | xfree (var->print_value); |
02142340 | 1528 | xfree (var->path_expr); |
8038e1e2 | 1529 | xfree (var); |
8b93c638 JM |
1530 | } |
1531 | ||
74b7792f AC |
1532 | static void |
1533 | do_free_variable_cleanup (void *var) | |
1534 | { | |
1535 | free_variable (var); | |
1536 | } | |
1537 | ||
1538 | static struct cleanup * | |
1539 | make_cleanup_free_variable (struct varobj *var) | |
1540 | { | |
1541 | return make_cleanup (do_free_variable_cleanup, var); | |
1542 | } | |
1543 | ||
6766a268 DJ |
1544 | /* This returns the type of the variable. It also skips past typedefs |
1545 | to return the real type of the variable. | |
94b66fa7 KS |
1546 | |
1547 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
1548 | except within get_target_type and get_type. */ | |
8b93c638 | 1549 | static struct type * |
fba45db2 | 1550 | get_type (struct varobj *var) |
8b93c638 JM |
1551 | { |
1552 | struct type *type; | |
1553 | type = var->type; | |
1554 | ||
6766a268 DJ |
1555 | if (type != NULL) |
1556 | type = check_typedef (type); | |
8b93c638 JM |
1557 | |
1558 | return type; | |
1559 | } | |
1560 | ||
6e2a9270 VP |
1561 | /* Return the type of the value that's stored in VAR, |
1562 | or that would have being stored there if the | |
1563 | value were accessible. | |
1564 | ||
1565 | This differs from VAR->type in that VAR->type is always | |
1566 | the true type of the expession in the source language. | |
1567 | The return value of this function is the type we're | |
1568 | actually storing in varobj, and using for displaying | |
1569 | the values and for comparing previous and new values. | |
1570 | ||
1571 | For example, top-level references are always stripped. */ | |
1572 | static struct type * | |
1573 | get_value_type (struct varobj *var) | |
1574 | { | |
1575 | struct type *type; | |
1576 | ||
1577 | if (var->value) | |
1578 | type = value_type (var->value); | |
1579 | else | |
1580 | type = var->type; | |
1581 | ||
1582 | type = check_typedef (type); | |
1583 | ||
1584 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
1585 | type = get_target_type (type); | |
1586 | ||
1587 | type = check_typedef (type); | |
1588 | ||
1589 | return type; | |
1590 | } | |
1591 | ||
8b93c638 | 1592 | /* This returns the target type (or NULL) of TYPE, also skipping |
94b66fa7 KS |
1593 | past typedefs, just like get_type (). |
1594 | ||
1595 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
1596 | except within get_target_type and get_type. */ | |
8b93c638 | 1597 | static struct type * |
fba45db2 | 1598 | get_target_type (struct type *type) |
8b93c638 JM |
1599 | { |
1600 | if (type != NULL) | |
1601 | { | |
1602 | type = TYPE_TARGET_TYPE (type); | |
6766a268 DJ |
1603 | if (type != NULL) |
1604 | type = check_typedef (type); | |
8b93c638 JM |
1605 | } |
1606 | ||
1607 | return type; | |
1608 | } | |
1609 | ||
1610 | /* What is the default display for this variable? We assume that | |
1611 | everything is "natural". Any exceptions? */ | |
1612 | static enum varobj_display_formats | |
fba45db2 | 1613 | variable_default_display (struct varobj *var) |
8b93c638 JM |
1614 | { |
1615 | return FORMAT_NATURAL; | |
1616 | } | |
1617 | ||
8b93c638 JM |
1618 | /* FIXME: The following should be generic for any pointer */ |
1619 | static void | |
fba45db2 | 1620 | cppush (struct cpstack **pstack, char *name) |
8b93c638 JM |
1621 | { |
1622 | struct cpstack *s; | |
1623 | ||
1624 | s = (struct cpstack *) xmalloc (sizeof (struct cpstack)); | |
1625 | s->name = name; | |
1626 | s->next = *pstack; | |
1627 | *pstack = s; | |
1628 | } | |
1629 | ||
1630 | /* FIXME: The following should be generic for any pointer */ | |
1631 | static char * | |
fba45db2 | 1632 | cppop (struct cpstack **pstack) |
8b93c638 JM |
1633 | { |
1634 | struct cpstack *s; | |
1635 | char *v; | |
1636 | ||
1637 | if ((*pstack)->name == NULL && (*pstack)->next == NULL) | |
1638 | return NULL; | |
1639 | ||
1640 | s = *pstack; | |
1641 | v = s->name; | |
1642 | *pstack = (*pstack)->next; | |
b8c9b27d | 1643 | xfree (s); |
8b93c638 JM |
1644 | |
1645 | return v; | |
1646 | } | |
1647 | \f | |
1648 | /* | |
1649 | * Language-dependencies | |
1650 | */ | |
1651 | ||
1652 | /* Common entry points */ | |
1653 | ||
1654 | /* Get the language of variable VAR. */ | |
1655 | static enum varobj_languages | |
fba45db2 | 1656 | variable_language (struct varobj *var) |
8b93c638 JM |
1657 | { |
1658 | enum varobj_languages lang; | |
1659 | ||
1660 | switch (var->root->exp->language_defn->la_language) | |
1661 | { | |
1662 | default: | |
1663 | case language_c: | |
1664 | lang = vlang_c; | |
1665 | break; | |
1666 | case language_cplus: | |
1667 | lang = vlang_cplus; | |
1668 | break; | |
1669 | case language_java: | |
1670 | lang = vlang_java; | |
1671 | break; | |
1672 | } | |
1673 | ||
1674 | return lang; | |
1675 | } | |
1676 | ||
1677 | /* Return the number of children for a given variable. | |
1678 | The result of this function is defined by the language | |
1679 | implementation. The number of children returned by this function | |
1680 | is the number of children that the user will see in the variable | |
1681 | display. */ | |
1682 | static int | |
fba45db2 | 1683 | number_of_children (struct varobj *var) |
8b93c638 JM |
1684 | { |
1685 | return (*var->root->lang->number_of_children) (var);; | |
1686 | } | |
1687 | ||
1688 | /* What is the expression for the root varobj VAR? Returns a malloc'd string. */ | |
1689 | static char * | |
fba45db2 | 1690 | name_of_variable (struct varobj *var) |
8b93c638 JM |
1691 | { |
1692 | return (*var->root->lang->name_of_variable) (var); | |
1693 | } | |
1694 | ||
1695 | /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */ | |
1696 | static char * | |
fba45db2 | 1697 | name_of_child (struct varobj *var, int index) |
8b93c638 JM |
1698 | { |
1699 | return (*var->root->lang->name_of_child) (var, index); | |
1700 | } | |
1701 | ||
a5defcdc VP |
1702 | /* What is the ``struct value *'' of the root variable VAR? |
1703 | For floating variable object, evaluation can get us a value | |
1704 | of different type from what is stored in varobj already. In | |
1705 | that case: | |
1706 | - *type_changed will be set to 1 | |
1707 | - old varobj will be freed, and new one will be | |
1708 | created, with the same name. | |
1709 | - *var_handle will be set to the new varobj | |
1710 | Otherwise, *type_changed will be set to 0. */ | |
30b28db1 | 1711 | static struct value * |
fba45db2 | 1712 | value_of_root (struct varobj **var_handle, int *type_changed) |
8b93c638 | 1713 | { |
73a93a32 JI |
1714 | struct varobj *var; |
1715 | ||
1716 | if (var_handle == NULL) | |
1717 | return NULL; | |
1718 | ||
1719 | var = *var_handle; | |
1720 | ||
1721 | /* This should really be an exception, since this should | |
1722 | only get called with a root variable. */ | |
1723 | ||
b2c2bd75 | 1724 | if (!is_root_p (var)) |
73a93a32 JI |
1725 | return NULL; |
1726 | ||
a5defcdc | 1727 | if (var->root->floating) |
73a93a32 JI |
1728 | { |
1729 | struct varobj *tmp_var; | |
1730 | char *old_type, *new_type; | |
6225abfa | 1731 | |
73a93a32 JI |
1732 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, |
1733 | USE_SELECTED_FRAME); | |
1734 | if (tmp_var == NULL) | |
1735 | { | |
1736 | return NULL; | |
1737 | } | |
6225abfa | 1738 | old_type = varobj_get_type (var); |
73a93a32 | 1739 | new_type = varobj_get_type (tmp_var); |
72330bd6 | 1740 | if (strcmp (old_type, new_type) == 0) |
73a93a32 JI |
1741 | { |
1742 | varobj_delete (tmp_var, NULL, 0); | |
1743 | *type_changed = 0; | |
1744 | } | |
1745 | else | |
1746 | { | |
a5defcdc VP |
1747 | tmp_var->obj_name = |
1748 | savestring (var->obj_name, strlen (var->obj_name)); | |
1749 | varobj_delete (var, NULL, 0); | |
1750 | ||
73a93a32 JI |
1751 | install_variable (tmp_var); |
1752 | *var_handle = tmp_var; | |
705da579 | 1753 | var = *var_handle; |
73a93a32 JI |
1754 | *type_changed = 1; |
1755 | } | |
74dddad3 MS |
1756 | xfree (old_type); |
1757 | xfree (new_type); | |
73a93a32 JI |
1758 | } |
1759 | else | |
1760 | { | |
1761 | *type_changed = 0; | |
1762 | } | |
1763 | ||
1764 | return (*var->root->lang->value_of_root) (var_handle); | |
8b93c638 JM |
1765 | } |
1766 | ||
30b28db1 AC |
1767 | /* What is the ``struct value *'' for the INDEX'th child of PARENT? */ |
1768 | static struct value * | |
fba45db2 | 1769 | value_of_child (struct varobj *parent, int index) |
8b93c638 | 1770 | { |
30b28db1 | 1771 | struct value *value; |
8b93c638 JM |
1772 | |
1773 | value = (*parent->root->lang->value_of_child) (parent, index); | |
1774 | ||
8b93c638 JM |
1775 | return value; |
1776 | } | |
1777 | ||
8b93c638 JM |
1778 | /* GDB already has a command called "value_of_variable". Sigh. */ |
1779 | static char * | |
fba45db2 | 1780 | my_value_of_variable (struct varobj *var) |
8b93c638 | 1781 | { |
8756216b DP |
1782 | if (var->root->is_valid) |
1783 | return (*var->root->lang->value_of_variable) (var); | |
1784 | else | |
1785 | return NULL; | |
8b93c638 JM |
1786 | } |
1787 | ||
85265413 NR |
1788 | static char * |
1789 | value_get_print_value (struct value *value, enum varobj_display_formats format) | |
1790 | { | |
1791 | long dummy; | |
57e66780 DJ |
1792 | struct ui_file *stb; |
1793 | struct cleanup *old_chain; | |
85265413 | 1794 | char *thevalue; |
57e66780 DJ |
1795 | |
1796 | if (value == NULL) | |
1797 | return NULL; | |
1798 | ||
1799 | stb = mem_fileopen (); | |
1800 | old_chain = make_cleanup_ui_file_delete (stb); | |
1801 | ||
85265413 NR |
1802 | common_val_print (value, stb, format_code[(int) format], 1, 0, 0); |
1803 | thevalue = ui_file_xstrdup (stb, &dummy); | |
57e66780 | 1804 | |
85265413 NR |
1805 | do_cleanups (old_chain); |
1806 | return thevalue; | |
1807 | } | |
1808 | ||
340a7723 NR |
1809 | int |
1810 | varobj_editable_p (struct varobj *var) | |
1811 | { | |
1812 | struct type *type; | |
1813 | struct value *value; | |
1814 | ||
1815 | if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value))) | |
1816 | return 0; | |
1817 | ||
1818 | type = get_value_type (var); | |
1819 | ||
1820 | switch (TYPE_CODE (type)) | |
1821 | { | |
1822 | case TYPE_CODE_STRUCT: | |
1823 | case TYPE_CODE_UNION: | |
1824 | case TYPE_CODE_ARRAY: | |
1825 | case TYPE_CODE_FUNC: | |
1826 | case TYPE_CODE_METHOD: | |
1827 | return 0; | |
1828 | break; | |
1829 | ||
1830 | default: | |
1831 | return 1; | |
1832 | break; | |
1833 | } | |
1834 | } | |
1835 | ||
acd65feb VP |
1836 | /* Return non-zero if changes in value of VAR |
1837 | must be detected and reported by -var-update. | |
1838 | Return zero is -var-update should never report | |
1839 | changes of such values. This makes sense for structures | |
1840 | (since the changes in children values will be reported separately), | |
1841 | or for artifical objects (like 'public' pseudo-field in C++). | |
1842 | ||
1843 | Return value of 0 means that gdb need not call value_fetch_lazy | |
1844 | for the value of this variable object. */ | |
8b93c638 | 1845 | static int |
b2c2bd75 | 1846 | varobj_value_is_changeable_p (struct varobj *var) |
8b93c638 JM |
1847 | { |
1848 | int r; | |
1849 | struct type *type; | |
1850 | ||
1851 | if (CPLUS_FAKE_CHILD (var)) | |
1852 | return 0; | |
1853 | ||
6e2a9270 | 1854 | type = get_value_type (var); |
8b93c638 JM |
1855 | |
1856 | switch (TYPE_CODE (type)) | |
1857 | { | |
72330bd6 AC |
1858 | case TYPE_CODE_STRUCT: |
1859 | case TYPE_CODE_UNION: | |
1860 | case TYPE_CODE_ARRAY: | |
1861 | r = 0; | |
1862 | break; | |
8b93c638 | 1863 | |
72330bd6 AC |
1864 | default: |
1865 | r = 1; | |
8b93c638 JM |
1866 | } |
1867 | ||
1868 | return r; | |
1869 | } | |
1870 | ||
2024f65a VP |
1871 | /* Given the value and the type of a variable object, |
1872 | adjust the value and type to those necessary | |
1873 | for getting children of the variable object. | |
1874 | This includes dereferencing top-level references | |
1875 | to all types and dereferencing pointers to | |
1876 | structures. | |
1877 | ||
1878 | Both TYPE and *TYPE should be non-null. VALUE | |
1879 | can be null if we want to only translate type. | |
1880 | *VALUE can be null as well -- if the parent | |
02142340 VP |
1881 | value is not known. |
1882 | ||
1883 | If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1 | |
1884 | depending on whether pointer was deferenced | |
1885 | in this function. */ | |
2024f65a VP |
1886 | static void |
1887 | adjust_value_for_child_access (struct value **value, | |
02142340 VP |
1888 | struct type **type, |
1889 | int *was_ptr) | |
2024f65a VP |
1890 | { |
1891 | gdb_assert (type && *type); | |
1892 | ||
02142340 VP |
1893 | if (was_ptr) |
1894 | *was_ptr = 0; | |
1895 | ||
2024f65a VP |
1896 | *type = check_typedef (*type); |
1897 | ||
1898 | /* The type of value stored in varobj, that is passed | |
1899 | to us, is already supposed to be | |
1900 | reference-stripped. */ | |
1901 | ||
1902 | gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF); | |
1903 | ||
1904 | /* Pointers to structures are treated just like | |
1905 | structures when accessing children. Don't | |
1906 | dererences pointers to other types. */ | |
1907 | if (TYPE_CODE (*type) == TYPE_CODE_PTR) | |
1908 | { | |
1909 | struct type *target_type = get_target_type (*type); | |
1910 | if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT | |
1911 | || TYPE_CODE (target_type) == TYPE_CODE_UNION) | |
1912 | { | |
1913 | if (value && *value) | |
3f4178d6 DJ |
1914 | { |
1915 | int success = gdb_value_ind (*value, value); | |
1916 | if (!success) | |
1917 | *value = NULL; | |
1918 | } | |
2024f65a | 1919 | *type = target_type; |
02142340 VP |
1920 | if (was_ptr) |
1921 | *was_ptr = 1; | |
2024f65a VP |
1922 | } |
1923 | } | |
1924 | ||
1925 | /* The 'get_target_type' function calls check_typedef on | |
1926 | result, so we can immediately check type code. No | |
1927 | need to call check_typedef here. */ | |
1928 | } | |
1929 | ||
8b93c638 JM |
1930 | /* C */ |
1931 | static int | |
fba45db2 | 1932 | c_number_of_children (struct varobj *var) |
8b93c638 | 1933 | { |
2024f65a VP |
1934 | struct type *type = get_value_type (var); |
1935 | int children = 0; | |
8b93c638 | 1936 | struct type *target; |
8b93c638 | 1937 | |
02142340 | 1938 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 | 1939 | target = get_target_type (type); |
8b93c638 JM |
1940 | |
1941 | switch (TYPE_CODE (type)) | |
1942 | { | |
1943 | case TYPE_CODE_ARRAY: | |
1944 | if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0 | |
72330bd6 | 1945 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) != BOUND_CANNOT_BE_DETERMINED) |
8b93c638 JM |
1946 | children = TYPE_LENGTH (type) / TYPE_LENGTH (target); |
1947 | else | |
74a44383 DJ |
1948 | /* If we don't know how many elements there are, don't display |
1949 | any. */ | |
1950 | children = 0; | |
8b93c638 JM |
1951 | break; |
1952 | ||
1953 | case TYPE_CODE_STRUCT: | |
1954 | case TYPE_CODE_UNION: | |
1955 | children = TYPE_NFIELDS (type); | |
1956 | break; | |
1957 | ||
1958 | case TYPE_CODE_PTR: | |
2024f65a VP |
1959 | /* The type here is a pointer to non-struct. Typically, pointers |
1960 | have one child, except for function ptrs, which have no children, | |
1961 | and except for void*, as we don't know what to show. | |
1962 | ||
0755e6c1 FN |
1963 | We can show char* so we allow it to be dereferenced. If you decide |
1964 | to test for it, please mind that a little magic is necessary to | |
1965 | properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and | |
1966 | TYPE_NAME == "char" */ | |
2024f65a VP |
1967 | if (TYPE_CODE (target) == TYPE_CODE_FUNC |
1968 | || TYPE_CODE (target) == TYPE_CODE_VOID) | |
1969 | children = 0; | |
1970 | else | |
1971 | children = 1; | |
8b93c638 JM |
1972 | break; |
1973 | ||
1974 | default: | |
1975 | /* Other types have no children */ | |
1976 | break; | |
1977 | } | |
1978 | ||
1979 | return children; | |
1980 | } | |
1981 | ||
1982 | static char * | |
fba45db2 | 1983 | c_name_of_variable (struct varobj *parent) |
8b93c638 JM |
1984 | { |
1985 | return savestring (parent->name, strlen (parent->name)); | |
1986 | } | |
1987 | ||
bbec2603 VP |
1988 | /* Return the value of element TYPE_INDEX of a structure |
1989 | value VALUE. VALUE's type should be a structure, | |
1990 | or union, or a typedef to struct/union. | |
1991 | ||
1992 | Returns NULL if getting the value fails. Never throws. */ | |
1993 | static struct value * | |
1994 | value_struct_element_index (struct value *value, int type_index) | |
8b93c638 | 1995 | { |
bbec2603 VP |
1996 | struct value *result = NULL; |
1997 | volatile struct gdb_exception e; | |
8b93c638 | 1998 | |
bbec2603 VP |
1999 | struct type *type = value_type (value); |
2000 | type = check_typedef (type); | |
2001 | ||
2002 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
2003 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
8b93c638 | 2004 | |
bbec2603 VP |
2005 | TRY_CATCH (e, RETURN_MASK_ERROR) |
2006 | { | |
2007 | if (TYPE_FIELD_STATIC (type, type_index)) | |
2008 | result = value_static_field (type, type_index); | |
2009 | else | |
2010 | result = value_primitive_field (value, 0, type_index, type); | |
2011 | } | |
2012 | if (e.reason < 0) | |
2013 | { | |
2014 | return NULL; | |
2015 | } | |
2016 | else | |
2017 | { | |
2018 | return result; | |
2019 | } | |
2020 | } | |
2021 | ||
2022 | /* Obtain the information about child INDEX of the variable | |
2023 | object PARENT. | |
2024 | If CNAME is not null, sets *CNAME to the name of the child relative | |
2025 | to the parent. | |
2026 | If CVALUE is not null, sets *CVALUE to the value of the child. | |
2027 | If CTYPE is not null, sets *CTYPE to the type of the child. | |
2028 | ||
2029 | If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding | |
2030 | information cannot be determined, set *CNAME, *CVALUE, or *CTYPE | |
2031 | to NULL. */ | |
2032 | static void | |
2033 | c_describe_child (struct varobj *parent, int index, | |
02142340 VP |
2034 | char **cname, struct value **cvalue, struct type **ctype, |
2035 | char **cfull_expression) | |
bbec2603 VP |
2036 | { |
2037 | struct value *value = parent->value; | |
2024f65a | 2038 | struct type *type = get_value_type (parent); |
02142340 VP |
2039 | char *parent_expression = NULL; |
2040 | int was_ptr; | |
bbec2603 VP |
2041 | |
2042 | if (cname) | |
2043 | *cname = NULL; | |
2044 | if (cvalue) | |
2045 | *cvalue = NULL; | |
2046 | if (ctype) | |
2047 | *ctype = NULL; | |
02142340 VP |
2048 | if (cfull_expression) |
2049 | { | |
2050 | *cfull_expression = NULL; | |
2051 | parent_expression = varobj_get_path_expr (parent); | |
2052 | } | |
2053 | adjust_value_for_child_access (&value, &type, &was_ptr); | |
bbec2603 | 2054 | |
8b93c638 JM |
2055 | switch (TYPE_CODE (type)) |
2056 | { | |
2057 | case TYPE_CODE_ARRAY: | |
bbec2603 VP |
2058 | if (cname) |
2059 | *cname = xstrprintf ("%d", index | |
2060 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))); | |
2061 | ||
2062 | if (cvalue && value) | |
2063 | { | |
2064 | int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)); | |
2065 | struct value *indval = | |
2066 | value_from_longest (builtin_type_int, (LONGEST) real_index); | |
2067 | gdb_value_subscript (value, indval, cvalue); | |
2068 | } | |
2069 | ||
2070 | if (ctype) | |
2071 | *ctype = get_target_type (type); | |
2072 | ||
02142340 VP |
2073 | if (cfull_expression) |
2074 | *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression, | |
2075 | index | |
2076 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))); | |
2077 | ||
2078 | ||
8b93c638 JM |
2079 | break; |
2080 | ||
2081 | case TYPE_CODE_STRUCT: | |
2082 | case TYPE_CODE_UNION: | |
bbec2603 VP |
2083 | if (cname) |
2084 | { | |
2085 | char *string = TYPE_FIELD_NAME (type, index); | |
2086 | *cname = savestring (string, strlen (string)); | |
2087 | } | |
2088 | ||
2089 | if (cvalue && value) | |
2090 | { | |
2091 | /* For C, varobj index is the same as type index. */ | |
2092 | *cvalue = value_struct_element_index (value, index); | |
2093 | } | |
2094 | ||
2095 | if (ctype) | |
2096 | *ctype = TYPE_FIELD_TYPE (type, index); | |
2097 | ||
02142340 VP |
2098 | if (cfull_expression) |
2099 | { | |
2100 | char *join = was_ptr ? "->" : "."; | |
2101 | *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join, | |
2102 | TYPE_FIELD_NAME (type, index)); | |
2103 | } | |
2104 | ||
8b93c638 JM |
2105 | break; |
2106 | ||
2107 | case TYPE_CODE_PTR: | |
bbec2603 VP |
2108 | if (cname) |
2109 | *cname = xstrprintf ("*%s", parent->name); | |
8b93c638 | 2110 | |
bbec2603 | 2111 | if (cvalue && value) |
3f4178d6 DJ |
2112 | { |
2113 | int success = gdb_value_ind (value, cvalue); | |
2114 | if (!success) | |
2115 | *cvalue = NULL; | |
2116 | } | |
bbec2603 | 2117 | |
2024f65a VP |
2118 | /* Don't use get_target_type because it calls |
2119 | check_typedef and here, we want to show the true | |
2120 | declared type of the variable. */ | |
bbec2603 | 2121 | if (ctype) |
2024f65a | 2122 | *ctype = TYPE_TARGET_TYPE (type); |
02142340 VP |
2123 | |
2124 | if (cfull_expression) | |
2125 | *cfull_expression = xstrprintf ("*(%s)", parent_expression); | |
bbec2603 | 2126 | |
8b93c638 JM |
2127 | break; |
2128 | ||
2129 | default: | |
2130 | /* This should not happen */ | |
bbec2603 VP |
2131 | if (cname) |
2132 | *cname = xstrdup ("???"); | |
02142340 VP |
2133 | if (cfull_expression) |
2134 | *cfull_expression = xstrdup ("???"); | |
bbec2603 | 2135 | /* Don't set value and type, we don't know then. */ |
8b93c638 | 2136 | } |
bbec2603 | 2137 | } |
8b93c638 | 2138 | |
bbec2603 VP |
2139 | static char * |
2140 | c_name_of_child (struct varobj *parent, int index) | |
2141 | { | |
2142 | char *name; | |
02142340 | 2143 | c_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
2144 | return name; |
2145 | } | |
2146 | ||
02142340 VP |
2147 | static char * |
2148 | c_path_expr_of_child (struct varobj *child) | |
2149 | { | |
2150 | c_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
2151 | &child->path_expr); | |
2152 | return child->path_expr; | |
2153 | } | |
2154 | ||
c5b48eac VP |
2155 | /* If frame associated with VAR can be found, switch |
2156 | to it and return 1. Otherwise, return 0. */ | |
2157 | static int | |
2158 | check_scope (struct varobj *var) | |
2159 | { | |
2160 | struct frame_info *fi; | |
2161 | int scope; | |
2162 | ||
2163 | fi = frame_find_by_id (var->root->frame); | |
2164 | scope = fi != NULL; | |
2165 | ||
2166 | if (fi) | |
2167 | { | |
2168 | CORE_ADDR pc = get_frame_pc (fi); | |
2169 | if (pc < BLOCK_START (var->root->valid_block) || | |
2170 | pc >= BLOCK_END (var->root->valid_block)) | |
2171 | scope = 0; | |
2172 | else | |
2173 | select_frame (fi); | |
2174 | } | |
2175 | return scope; | |
2176 | } | |
2177 | ||
30b28db1 | 2178 | static struct value * |
fba45db2 | 2179 | c_value_of_root (struct varobj **var_handle) |
8b93c638 | 2180 | { |
5e572bb4 | 2181 | struct value *new_val = NULL; |
73a93a32 | 2182 | struct varobj *var = *var_handle; |
8b93c638 | 2183 | struct frame_info *fi; |
c5b48eac | 2184 | int within_scope = 0; |
6208b47d VP |
2185 | struct cleanup *back_to; |
2186 | ||
73a93a32 | 2187 | /* Only root variables can be updated... */ |
b2c2bd75 | 2188 | if (!is_root_p (var)) |
73a93a32 JI |
2189 | /* Not a root var */ |
2190 | return NULL; | |
2191 | ||
6208b47d VP |
2192 | back_to = make_cleanup_restore_current_thread ( |
2193 | inferior_ptid, get_frame_id (deprecated_safe_get_selected_frame ())); | |
72330bd6 | 2194 | |
8b93c638 | 2195 | /* Determine whether the variable is still around. */ |
a5defcdc | 2196 | if (var->root->valid_block == NULL || var->root->floating) |
8b93c638 | 2197 | within_scope = 1; |
c5b48eac VP |
2198 | else if (var->root->thread_id == 0) |
2199 | { | |
2200 | /* The program was single-threaded when the variable object was | |
2201 | created. Technically, it's possible that the program became | |
2202 | multi-threaded since then, but we don't support such | |
2203 | scenario yet. */ | |
2204 | within_scope = check_scope (var); | |
2205 | } | |
8b93c638 JM |
2206 | else |
2207 | { | |
c5b48eac VP |
2208 | ptid_t ptid = thread_id_to_pid (var->root->thread_id); |
2209 | if (in_thread_list (ptid)) | |
d2353924 | 2210 | { |
c5b48eac VP |
2211 | switch_to_thread (ptid); |
2212 | within_scope = check_scope (var); | |
2213 | } | |
8b93c638 | 2214 | } |
72330bd6 | 2215 | |
8b93c638 JM |
2216 | if (within_scope) |
2217 | { | |
73a93a32 | 2218 | /* We need to catch errors here, because if evaluate |
85d93f1d VP |
2219 | expression fails we want to just return NULL. */ |
2220 | gdb_evaluate_expression (var->root->exp, &new_val); | |
8b93c638 JM |
2221 | return new_val; |
2222 | } | |
2223 | ||
6208b47d VP |
2224 | do_cleanups (back_to); |
2225 | ||
8b93c638 JM |
2226 | return NULL; |
2227 | } | |
2228 | ||
30b28db1 | 2229 | static struct value * |
fba45db2 | 2230 | c_value_of_child (struct varobj *parent, int index) |
8b93c638 | 2231 | { |
bbec2603 | 2232 | struct value *value = NULL; |
02142340 | 2233 | c_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
2234 | |
2235 | return value; | |
2236 | } | |
2237 | ||
2238 | static struct type * | |
fba45db2 | 2239 | c_type_of_child (struct varobj *parent, int index) |
8b93c638 | 2240 | { |
bbec2603 | 2241 | struct type *type = NULL; |
02142340 | 2242 | c_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
2243 | return type; |
2244 | } | |
2245 | ||
8b93c638 | 2246 | static char * |
fba45db2 | 2247 | c_value_of_variable (struct varobj *var) |
8b93c638 | 2248 | { |
14b3d9c9 JB |
2249 | /* BOGUS: if val_print sees a struct/class, or a reference to one, |
2250 | it will print out its children instead of "{...}". So we need to | |
2251 | catch that case explicitly. */ | |
2252 | struct type *type = get_type (var); | |
e64d9b3d | 2253 | |
14b3d9c9 JB |
2254 | /* Strip top-level references. */ |
2255 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
2256 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
2257 | ||
2258 | switch (TYPE_CODE (type)) | |
8b93c638 JM |
2259 | { |
2260 | case TYPE_CODE_STRUCT: | |
2261 | case TYPE_CODE_UNION: | |
2262 | return xstrdup ("{...}"); | |
2263 | /* break; */ | |
2264 | ||
2265 | case TYPE_CODE_ARRAY: | |
2266 | { | |
e64d9b3d | 2267 | char *number; |
b435e160 | 2268 | number = xstrprintf ("[%d]", var->num_children); |
e64d9b3d | 2269 | return (number); |
8b93c638 JM |
2270 | } |
2271 | /* break; */ | |
2272 | ||
2273 | default: | |
2274 | { | |
575bbeb6 KS |
2275 | if (var->value == NULL) |
2276 | { | |
2277 | /* This can happen if we attempt to get the value of a struct | |
2278 | member when the parent is an invalid pointer. This is an | |
2279 | error condition, so we should tell the caller. */ | |
2280 | return NULL; | |
2281 | } | |
2282 | else | |
2283 | { | |
25d5ea92 VP |
2284 | if (var->not_fetched && value_lazy (var->value)) |
2285 | /* Frozen variable and no value yet. We don't | |
2286 | implicitly fetch the value. MI response will | |
2287 | use empty string for the value, which is OK. */ | |
2288 | return NULL; | |
2289 | ||
b2c2bd75 | 2290 | gdb_assert (varobj_value_is_changeable_p (var)); |
acd65feb | 2291 | gdb_assert (!value_lazy (var->value)); |
c39c8256 | 2292 | return xstrdup (var->print_value); |
85265413 | 2293 | } |
e64d9b3d | 2294 | } |
8b93c638 JM |
2295 | } |
2296 | } | |
2297 | \f | |
2298 | ||
2299 | /* C++ */ | |
2300 | ||
2301 | static int | |
fba45db2 | 2302 | cplus_number_of_children (struct varobj *var) |
8b93c638 JM |
2303 | { |
2304 | struct type *type; | |
2305 | int children, dont_know; | |
2306 | ||
2307 | dont_know = 1; | |
2308 | children = 0; | |
2309 | ||
2310 | if (!CPLUS_FAKE_CHILD (var)) | |
2311 | { | |
2024f65a | 2312 | type = get_value_type (var); |
02142340 | 2313 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
2314 | |
2315 | if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) || | |
72330bd6 | 2316 | ((TYPE_CODE (type)) == TYPE_CODE_UNION)) |
8b93c638 JM |
2317 | { |
2318 | int kids[3]; | |
2319 | ||
2320 | cplus_class_num_children (type, kids); | |
2321 | if (kids[v_public] != 0) | |
2322 | children++; | |
2323 | if (kids[v_private] != 0) | |
2324 | children++; | |
2325 | if (kids[v_protected] != 0) | |
2326 | children++; | |
2327 | ||
2328 | /* Add any baseclasses */ | |
2329 | children += TYPE_N_BASECLASSES (type); | |
2330 | dont_know = 0; | |
2331 | ||
2332 | /* FIXME: save children in var */ | |
2333 | } | |
2334 | } | |
2335 | else | |
2336 | { | |
2337 | int kids[3]; | |
2338 | ||
2024f65a | 2339 | type = get_value_type (var->parent); |
02142340 | 2340 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
2341 | |
2342 | cplus_class_num_children (type, kids); | |
6e382aa3 | 2343 | if (strcmp (var->name, "public") == 0) |
8b93c638 | 2344 | children = kids[v_public]; |
6e382aa3 | 2345 | else if (strcmp (var->name, "private") == 0) |
8b93c638 JM |
2346 | children = kids[v_private]; |
2347 | else | |
2348 | children = kids[v_protected]; | |
2349 | dont_know = 0; | |
2350 | } | |
2351 | ||
2352 | if (dont_know) | |
2353 | children = c_number_of_children (var); | |
2354 | ||
2355 | return children; | |
2356 | } | |
2357 | ||
2358 | /* Compute # of public, private, and protected variables in this class. | |
2359 | That means we need to descend into all baseclasses and find out | |
2360 | how many are there, too. */ | |
2361 | static void | |
1669605f | 2362 | cplus_class_num_children (struct type *type, int children[3]) |
8b93c638 JM |
2363 | { |
2364 | int i; | |
2365 | ||
2366 | children[v_public] = 0; | |
2367 | children[v_private] = 0; | |
2368 | children[v_protected] = 0; | |
2369 | ||
2370 | for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++) | |
2371 | { | |
2372 | /* If we have a virtual table pointer, omit it. */ | |
72330bd6 | 2373 | if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i) |
8b93c638 JM |
2374 | continue; |
2375 | ||
2376 | if (TYPE_FIELD_PROTECTED (type, i)) | |
2377 | children[v_protected]++; | |
2378 | else if (TYPE_FIELD_PRIVATE (type, i)) | |
2379 | children[v_private]++; | |
2380 | else | |
2381 | children[v_public]++; | |
2382 | } | |
2383 | } | |
2384 | ||
2385 | static char * | |
fba45db2 | 2386 | cplus_name_of_variable (struct varobj *parent) |
8b93c638 JM |
2387 | { |
2388 | return c_name_of_variable (parent); | |
2389 | } | |
2390 | ||
2024f65a VP |
2391 | enum accessibility { private_field, protected_field, public_field }; |
2392 | ||
2393 | /* Check if field INDEX of TYPE has the specified accessibility. | |
2394 | Return 0 if so and 1 otherwise. */ | |
2395 | static int | |
2396 | match_accessibility (struct type *type, int index, enum accessibility acc) | |
8b93c638 | 2397 | { |
2024f65a VP |
2398 | if (acc == private_field && TYPE_FIELD_PRIVATE (type, index)) |
2399 | return 1; | |
2400 | else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index)) | |
2401 | return 1; | |
2402 | else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index) | |
2403 | && !TYPE_FIELD_PROTECTED (type, index)) | |
2404 | return 1; | |
2405 | else | |
2406 | return 0; | |
2407 | } | |
2408 | ||
2409 | static void | |
2410 | cplus_describe_child (struct varobj *parent, int index, | |
02142340 VP |
2411 | char **cname, struct value **cvalue, struct type **ctype, |
2412 | char **cfull_expression) | |
2024f65a | 2413 | { |
348144ba | 2414 | char *name = NULL; |
2024f65a | 2415 | struct value *value; |
8b93c638 | 2416 | struct type *type; |
02142340 VP |
2417 | int was_ptr; |
2418 | char *parent_expression = NULL; | |
8b93c638 | 2419 | |
2024f65a VP |
2420 | if (cname) |
2421 | *cname = NULL; | |
2422 | if (cvalue) | |
2423 | *cvalue = NULL; | |
2424 | if (ctype) | |
2425 | *ctype = NULL; | |
02142340 VP |
2426 | if (cfull_expression) |
2427 | *cfull_expression = NULL; | |
2024f65a | 2428 | |
8b93c638 JM |
2429 | if (CPLUS_FAKE_CHILD (parent)) |
2430 | { | |
2024f65a VP |
2431 | value = parent->parent->value; |
2432 | type = get_value_type (parent->parent); | |
02142340 VP |
2433 | if (cfull_expression) |
2434 | parent_expression = varobj_get_path_expr (parent->parent); | |
8b93c638 JM |
2435 | } |
2436 | else | |
2024f65a VP |
2437 | { |
2438 | value = parent->value; | |
2439 | type = get_value_type (parent); | |
02142340 VP |
2440 | if (cfull_expression) |
2441 | parent_expression = varobj_get_path_expr (parent); | |
2024f65a | 2442 | } |
8b93c638 | 2443 | |
02142340 | 2444 | adjust_value_for_child_access (&value, &type, &was_ptr); |
2024f65a VP |
2445 | |
2446 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3f4178d6 | 2447 | || TYPE_CODE (type) == TYPE_CODE_UNION) |
8b93c638 | 2448 | { |
02142340 | 2449 | char *join = was_ptr ? "->" : "."; |
8b93c638 JM |
2450 | if (CPLUS_FAKE_CHILD (parent)) |
2451 | { | |
6e382aa3 JJ |
2452 | /* The fields of the class type are ordered as they |
2453 | appear in the class. We are given an index for a | |
2454 | particular access control type ("public","protected", | |
2455 | or "private"). We must skip over fields that don't | |
2456 | have the access control we are looking for to properly | |
2457 | find the indexed field. */ | |
2458 | int type_index = TYPE_N_BASECLASSES (type); | |
2024f65a | 2459 | enum accessibility acc = public_field; |
6e382aa3 | 2460 | if (strcmp (parent->name, "private") == 0) |
2024f65a | 2461 | acc = private_field; |
6e382aa3 | 2462 | else if (strcmp (parent->name, "protected") == 0) |
2024f65a VP |
2463 | acc = protected_field; |
2464 | ||
2465 | while (index >= 0) | |
6e382aa3 | 2466 | { |
2024f65a VP |
2467 | if (TYPE_VPTR_BASETYPE (type) == type |
2468 | && type_index == TYPE_VPTR_FIELDNO (type)) | |
2469 | ; /* ignore vptr */ | |
2470 | else if (match_accessibility (type, type_index, acc)) | |
6e382aa3 JJ |
2471 | --index; |
2472 | ++type_index; | |
6e382aa3 | 2473 | } |
2024f65a VP |
2474 | --type_index; |
2475 | ||
2476 | if (cname) | |
2477 | *cname = xstrdup (TYPE_FIELD_NAME (type, type_index)); | |
2478 | ||
2479 | if (cvalue && value) | |
2480 | *cvalue = value_struct_element_index (value, type_index); | |
2481 | ||
2482 | if (ctype) | |
2483 | *ctype = TYPE_FIELD_TYPE (type, type_index); | |
02142340 VP |
2484 | |
2485 | if (cfull_expression) | |
2486 | *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression, | |
2487 | join, | |
2488 | TYPE_FIELD_NAME (type, type_index)); | |
2024f65a VP |
2489 | } |
2490 | else if (index < TYPE_N_BASECLASSES (type)) | |
2491 | { | |
2492 | /* This is a baseclass. */ | |
2493 | if (cname) | |
2494 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); | |
2495 | ||
2496 | if (cvalue && value) | |
6e382aa3 | 2497 | { |
2024f65a | 2498 | *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value); |
02142340 | 2499 | release_value (*cvalue); |
6e382aa3 JJ |
2500 | } |
2501 | ||
2024f65a VP |
2502 | if (ctype) |
2503 | { | |
2504 | *ctype = TYPE_FIELD_TYPE (type, index); | |
2505 | } | |
02142340 VP |
2506 | |
2507 | if (cfull_expression) | |
2508 | { | |
2509 | char *ptr = was_ptr ? "*" : ""; | |
2510 | /* Cast the parent to the base' type. Note that in gdb, | |
2511 | expression like | |
2512 | (Base1)d | |
2513 | will create an lvalue, for all appearences, so we don't | |
2514 | need to use more fancy: | |
2515 | *(Base1*)(&d) | |
2516 | construct. */ | |
2517 | *cfull_expression = xstrprintf ("(%s(%s%s) %s)", | |
2518 | ptr, | |
2519 | TYPE_FIELD_NAME (type, index), | |
2520 | ptr, | |
2521 | parent_expression); | |
2522 | } | |
8b93c638 | 2523 | } |
8b93c638 JM |
2524 | else |
2525 | { | |
348144ba | 2526 | char *access = NULL; |
6e382aa3 | 2527 | int children[3]; |
2024f65a | 2528 | cplus_class_num_children (type, children); |
6e382aa3 | 2529 | |
8b93c638 | 2530 | /* Everything beyond the baseclasses can |
6e382aa3 JJ |
2531 | only be "public", "private", or "protected" |
2532 | ||
2533 | The special "fake" children are always output by varobj in | |
2534 | this order. So if INDEX == 2, it MUST be "protected". */ | |
8b93c638 JM |
2535 | index -= TYPE_N_BASECLASSES (type); |
2536 | switch (index) | |
2537 | { | |
2538 | case 0: | |
6e382aa3 | 2539 | if (children[v_public] > 0) |
2024f65a | 2540 | access = "public"; |
6e382aa3 | 2541 | else if (children[v_private] > 0) |
2024f65a | 2542 | access = "private"; |
6e382aa3 | 2543 | else |
2024f65a | 2544 | access = "protected"; |
6e382aa3 | 2545 | break; |
8b93c638 | 2546 | case 1: |
6e382aa3 | 2547 | if (children[v_public] > 0) |
8b93c638 | 2548 | { |
6e382aa3 | 2549 | if (children[v_private] > 0) |
2024f65a | 2550 | access = "private"; |
6e382aa3 | 2551 | else |
2024f65a | 2552 | access = "protected"; |
8b93c638 | 2553 | } |
6e382aa3 | 2554 | else if (children[v_private] > 0) |
2024f65a | 2555 | access = "protected"; |
6e382aa3 | 2556 | break; |
8b93c638 | 2557 | case 2: |
6e382aa3 | 2558 | /* Must be protected */ |
2024f65a | 2559 | access = "protected"; |
6e382aa3 | 2560 | break; |
8b93c638 JM |
2561 | default: |
2562 | /* error! */ | |
2563 | break; | |
2564 | } | |
348144ba MS |
2565 | |
2566 | gdb_assert (access); | |
2024f65a VP |
2567 | if (cname) |
2568 | *cname = xstrdup (access); | |
8b93c638 | 2569 | |
02142340 | 2570 | /* Value and type and full expression are null here. */ |
2024f65a | 2571 | } |
8b93c638 | 2572 | } |
8b93c638 JM |
2573 | else |
2574 | { | |
02142340 | 2575 | c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression); |
2024f65a VP |
2576 | } |
2577 | } | |
8b93c638 | 2578 | |
2024f65a VP |
2579 | static char * |
2580 | cplus_name_of_child (struct varobj *parent, int index) | |
2581 | { | |
2582 | char *name = NULL; | |
02142340 | 2583 | cplus_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
2584 | return name; |
2585 | } | |
2586 | ||
02142340 VP |
2587 | static char * |
2588 | cplus_path_expr_of_child (struct varobj *child) | |
2589 | { | |
2590 | cplus_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
2591 | &child->path_expr); | |
2592 | return child->path_expr; | |
2593 | } | |
2594 | ||
30b28db1 | 2595 | static struct value * |
fba45db2 | 2596 | cplus_value_of_root (struct varobj **var_handle) |
8b93c638 | 2597 | { |
73a93a32 | 2598 | return c_value_of_root (var_handle); |
8b93c638 JM |
2599 | } |
2600 | ||
30b28db1 | 2601 | static struct value * |
fba45db2 | 2602 | cplus_value_of_child (struct varobj *parent, int index) |
8b93c638 | 2603 | { |
2024f65a | 2604 | struct value *value = NULL; |
02142340 | 2605 | cplus_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
2606 | return value; |
2607 | } | |
2608 | ||
2609 | static struct type * | |
fba45db2 | 2610 | cplus_type_of_child (struct varobj *parent, int index) |
8b93c638 | 2611 | { |
2024f65a | 2612 | struct type *type = NULL; |
02142340 | 2613 | cplus_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
2614 | return type; |
2615 | } | |
2616 | ||
8b93c638 | 2617 | static char * |
fba45db2 | 2618 | cplus_value_of_variable (struct varobj *var) |
8b93c638 JM |
2619 | { |
2620 | ||
2621 | /* If we have one of our special types, don't print out | |
2622 | any value. */ | |
2623 | if (CPLUS_FAKE_CHILD (var)) | |
2624 | return xstrdup (""); | |
2625 | ||
2626 | return c_value_of_variable (var); | |
2627 | } | |
2628 | \f | |
2629 | /* Java */ | |
2630 | ||
2631 | static int | |
fba45db2 | 2632 | java_number_of_children (struct varobj *var) |
8b93c638 JM |
2633 | { |
2634 | return cplus_number_of_children (var); | |
2635 | } | |
2636 | ||
2637 | static char * | |
fba45db2 | 2638 | java_name_of_variable (struct varobj *parent) |
8b93c638 JM |
2639 | { |
2640 | char *p, *name; | |
2641 | ||
2642 | name = cplus_name_of_variable (parent); | |
2643 | /* If the name has "-" in it, it is because we | |
2644 | needed to escape periods in the name... */ | |
2645 | p = name; | |
2646 | ||
2647 | while (*p != '\000') | |
2648 | { | |
2649 | if (*p == '-') | |
2650 | *p = '.'; | |
2651 | p++; | |
2652 | } | |
2653 | ||
2654 | return name; | |
2655 | } | |
2656 | ||
2657 | static char * | |
fba45db2 | 2658 | java_name_of_child (struct varobj *parent, int index) |
8b93c638 JM |
2659 | { |
2660 | char *name, *p; | |
2661 | ||
2662 | name = cplus_name_of_child (parent, index); | |
2663 | /* Escape any periods in the name... */ | |
2664 | p = name; | |
2665 | ||
2666 | while (*p != '\000') | |
2667 | { | |
2668 | if (*p == '.') | |
2669 | *p = '-'; | |
2670 | p++; | |
2671 | } | |
2672 | ||
2673 | return name; | |
2674 | } | |
2675 | ||
02142340 VP |
2676 | static char * |
2677 | java_path_expr_of_child (struct varobj *child) | |
2678 | { | |
2679 | return NULL; | |
2680 | } | |
2681 | ||
30b28db1 | 2682 | static struct value * |
fba45db2 | 2683 | java_value_of_root (struct varobj **var_handle) |
8b93c638 | 2684 | { |
73a93a32 | 2685 | return cplus_value_of_root (var_handle); |
8b93c638 JM |
2686 | } |
2687 | ||
30b28db1 | 2688 | static struct value * |
fba45db2 | 2689 | java_value_of_child (struct varobj *parent, int index) |
8b93c638 JM |
2690 | { |
2691 | return cplus_value_of_child (parent, index); | |
2692 | } | |
2693 | ||
2694 | static struct type * | |
fba45db2 | 2695 | java_type_of_child (struct varobj *parent, int index) |
8b93c638 JM |
2696 | { |
2697 | return cplus_type_of_child (parent, index); | |
2698 | } | |
2699 | ||
8b93c638 | 2700 | static char * |
fba45db2 | 2701 | java_value_of_variable (struct varobj *var) |
8b93c638 JM |
2702 | { |
2703 | return cplus_value_of_variable (var); | |
2704 | } | |
2705 | \f | |
2706 | extern void _initialize_varobj (void); | |
2707 | void | |
2708 | _initialize_varobj (void) | |
2709 | { | |
2710 | int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE; | |
2711 | ||
2712 | varobj_table = xmalloc (sizeof_table); | |
2713 | memset (varobj_table, 0, sizeof_table); | |
2714 | ||
85c07804 AC |
2715 | add_setshow_zinteger_cmd ("debugvarobj", class_maintenance, |
2716 | &varobjdebug, _("\ | |
2717 | Set varobj debugging."), _("\ | |
2718 | Show varobj debugging."), _("\ | |
2719 | When non-zero, varobj debugging is enabled."), | |
2720 | NULL, | |
920d2a44 | 2721 | show_varobjdebug, |
85c07804 | 2722 | &setlist, &showlist); |
8b93c638 | 2723 | } |
8756216b DP |
2724 | |
2725 | /* Invalidate the varobjs that are tied to locals and re-create the ones that | |
2726 | are defined on globals. | |
2727 | Invalidated varobjs will be always printed in_scope="invalid". */ | |
2728 | void | |
2729 | varobj_invalidate (void) | |
2730 | { | |
2731 | struct varobj **all_rootvarobj; | |
2732 | struct varobj **varp; | |
2733 | ||
2734 | if (varobj_list (&all_rootvarobj) > 0) | |
2735 | { | |
2736 | varp = all_rootvarobj; | |
2737 | while (*varp != NULL) | |
2738 | { | |
2739 | /* global var must be re-evaluated. */ | |
2740 | if ((*varp)->root->valid_block == NULL) | |
2741 | { | |
2742 | struct varobj *tmp_var; | |
2743 | ||
2744 | /* Try to create a varobj with same expression. If we succeed replace | |
2745 | the old varobj, otherwise invalidate it. */ | |
2746 | tmp_var = varobj_create (NULL, (*varp)->name, (CORE_ADDR) 0, USE_CURRENT_FRAME); | |
2747 | if (tmp_var != NULL) | |
2748 | { | |
2749 | tmp_var->obj_name = xstrdup ((*varp)->obj_name); | |
2750 | varobj_delete (*varp, NULL, 0); | |
2751 | install_variable (tmp_var); | |
2752 | } | |
2753 | else | |
2754 | (*varp)->root->is_valid = 0; | |
2755 | } | |
2756 | else /* locals must be invalidated. */ | |
2757 | (*varp)->root->is_valid = 0; | |
2758 | ||
2759 | varp++; | |
2760 | } | |
2761 | xfree (all_rootvarobj); | |
2762 | } | |
2763 | return; | |
2764 | } |