]>
Commit | Line | Data |
---|---|---|
ca557f44 AC |
1 | /* Target-struct-independent code to start (run) and stop an inferior |
2 | process. | |
8926118c | 3 | |
618f726f | 4 | Copyright (C) 1986-2016 Free Software Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
20 | |
21 | #include "defs.h" | |
45741a9c | 22 | #include "infrun.h" |
c906108c SS |
23 | #include <ctype.h> |
24 | #include "symtab.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "breakpoint.h" | |
03f2053f | 28 | #include "gdb_wait.h" |
c906108c SS |
29 | #include "gdbcore.h" |
30 | #include "gdbcmd.h" | |
210661e7 | 31 | #include "cli/cli-script.h" |
c906108c SS |
32 | #include "target.h" |
33 | #include "gdbthread.h" | |
34 | #include "annotate.h" | |
1adeb98a | 35 | #include "symfile.h" |
7a292a7a | 36 | #include "top.h" |
c906108c | 37 | #include <signal.h> |
2acceee2 | 38 | #include "inf-loop.h" |
4e052eda | 39 | #include "regcache.h" |
fd0407d6 | 40 | #include "value.h" |
06600e06 | 41 | #include "observer.h" |
f636b87d | 42 | #include "language.h" |
a77053c2 | 43 | #include "solib.h" |
f17517ea | 44 | #include "main.h" |
186c406b TT |
45 | #include "dictionary.h" |
46 | #include "block.h" | |
034dad6f | 47 | #include "mi/mi-common.h" |
4f8d22e3 | 48 | #include "event-top.h" |
96429cc8 | 49 | #include "record.h" |
d02ed0bb | 50 | #include "record-full.h" |
edb3359d | 51 | #include "inline-frame.h" |
4efc6507 | 52 | #include "jit.h" |
06cd862c | 53 | #include "tracepoint.h" |
be34f849 | 54 | #include "continuations.h" |
b4a14fd0 | 55 | #include "interps.h" |
1bfeeb0f | 56 | #include "skip.h" |
28106bc2 SDJ |
57 | #include "probe.h" |
58 | #include "objfiles.h" | |
de0bea00 | 59 | #include "completer.h" |
9107fc8d | 60 | #include "target-descriptions.h" |
f15cb84a | 61 | #include "target-dcache.h" |
d83ad864 | 62 | #include "terminal.h" |
ff862be4 | 63 | #include "solist.h" |
372316f1 | 64 | #include "event-loop.h" |
243a9253 | 65 | #include "thread-fsm.h" |
8d297bbf | 66 | #include "common/enum-flags.h" |
c906108c SS |
67 | |
68 | /* Prototypes for local functions */ | |
69 | ||
96baa820 | 70 | static void signals_info (char *, int); |
c906108c | 71 | |
96baa820 | 72 | static void handle_command (char *, int); |
c906108c | 73 | |
2ea28649 | 74 | static void sig_print_info (enum gdb_signal); |
c906108c | 75 | |
96baa820 | 76 | static void sig_print_header (void); |
c906108c | 77 | |
74b7792f | 78 | static void resume_cleanups (void *); |
c906108c | 79 | |
96baa820 | 80 | static int hook_stop_stub (void *); |
c906108c | 81 | |
96baa820 JM |
82 | static int restore_selected_frame (void *); |
83 | ||
4ef3f3be | 84 | static int follow_fork (void); |
96baa820 | 85 | |
d83ad864 DB |
86 | static int follow_fork_inferior (int follow_child, int detach_fork); |
87 | ||
88 | static void follow_inferior_reset_breakpoints (void); | |
89 | ||
96baa820 | 90 | static void set_schedlock_func (char *args, int from_tty, |
488f131b | 91 | struct cmd_list_element *c); |
96baa820 | 92 | |
a289b8f6 JK |
93 | static int currently_stepping (struct thread_info *tp); |
94 | ||
96baa820 | 95 | void _initialize_infrun (void); |
43ff13b4 | 96 | |
e58b0e63 PA |
97 | void nullify_last_target_wait_ptid (void); |
98 | ||
2c03e5be | 99 | static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *); |
2484c66b UW |
100 | |
101 | static void insert_step_resume_breakpoint_at_caller (struct frame_info *); | |
102 | ||
2484c66b UW |
103 | static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR); |
104 | ||
8550d3b3 YQ |
105 | static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc); |
106 | ||
372316f1 PA |
107 | /* Asynchronous signal handler registered as event loop source for |
108 | when we have pending events ready to be passed to the core. */ | |
109 | static struct async_event_handler *infrun_async_inferior_event_token; | |
110 | ||
111 | /* Stores whether infrun_async was previously enabled or disabled. | |
112 | Starts off as -1, indicating "never enabled/disabled". */ | |
113 | static int infrun_is_async = -1; | |
114 | ||
115 | /* See infrun.h. */ | |
116 | ||
117 | void | |
118 | infrun_async (int enable) | |
119 | { | |
120 | if (infrun_is_async != enable) | |
121 | { | |
122 | infrun_is_async = enable; | |
123 | ||
124 | if (debug_infrun) | |
125 | fprintf_unfiltered (gdb_stdlog, | |
126 | "infrun: infrun_async(%d)\n", | |
127 | enable); | |
128 | ||
129 | if (enable) | |
130 | mark_async_event_handler (infrun_async_inferior_event_token); | |
131 | else | |
132 | clear_async_event_handler (infrun_async_inferior_event_token); | |
133 | } | |
134 | } | |
135 | ||
0b333c5e PA |
136 | /* See infrun.h. */ |
137 | ||
138 | void | |
139 | mark_infrun_async_event_handler (void) | |
140 | { | |
141 | mark_async_event_handler (infrun_async_inferior_event_token); | |
142 | } | |
143 | ||
5fbbeb29 CF |
144 | /* When set, stop the 'step' command if we enter a function which has |
145 | no line number information. The normal behavior is that we step | |
146 | over such function. */ | |
147 | int step_stop_if_no_debug = 0; | |
920d2a44 AC |
148 | static void |
149 | show_step_stop_if_no_debug (struct ui_file *file, int from_tty, | |
150 | struct cmd_list_element *c, const char *value) | |
151 | { | |
152 | fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); | |
153 | } | |
5fbbeb29 | 154 | |
1777feb0 | 155 | /* In asynchronous mode, but simulating synchronous execution. */ |
96baa820 | 156 | |
43ff13b4 JM |
157 | int sync_execution = 0; |
158 | ||
b9f437de PA |
159 | /* proceed and normal_stop use this to notify the user when the |
160 | inferior stopped in a different thread than it had been running | |
161 | in. */ | |
96baa820 | 162 | |
39f77062 | 163 | static ptid_t previous_inferior_ptid; |
7a292a7a | 164 | |
07107ca6 LM |
165 | /* If set (default for legacy reasons), when following a fork, GDB |
166 | will detach from one of the fork branches, child or parent. | |
167 | Exactly which branch is detached depends on 'set follow-fork-mode' | |
168 | setting. */ | |
169 | ||
170 | static int detach_fork = 1; | |
6c95b8df | 171 | |
237fc4c9 PA |
172 | int debug_displaced = 0; |
173 | static void | |
174 | show_debug_displaced (struct ui_file *file, int from_tty, | |
175 | struct cmd_list_element *c, const char *value) | |
176 | { | |
177 | fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value); | |
178 | } | |
179 | ||
ccce17b0 | 180 | unsigned int debug_infrun = 0; |
920d2a44 AC |
181 | static void |
182 | show_debug_infrun (struct ui_file *file, int from_tty, | |
183 | struct cmd_list_element *c, const char *value) | |
184 | { | |
185 | fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); | |
186 | } | |
527159b7 | 187 | |
03583c20 UW |
188 | |
189 | /* Support for disabling address space randomization. */ | |
190 | ||
191 | int disable_randomization = 1; | |
192 | ||
193 | static void | |
194 | show_disable_randomization (struct ui_file *file, int from_tty, | |
195 | struct cmd_list_element *c, const char *value) | |
196 | { | |
197 | if (target_supports_disable_randomization ()) | |
198 | fprintf_filtered (file, | |
199 | _("Disabling randomization of debuggee's " | |
200 | "virtual address space is %s.\n"), | |
201 | value); | |
202 | else | |
203 | fputs_filtered (_("Disabling randomization of debuggee's " | |
204 | "virtual address space is unsupported on\n" | |
205 | "this platform.\n"), file); | |
206 | } | |
207 | ||
208 | static void | |
209 | set_disable_randomization (char *args, int from_tty, | |
210 | struct cmd_list_element *c) | |
211 | { | |
212 | if (!target_supports_disable_randomization ()) | |
213 | error (_("Disabling randomization of debuggee's " | |
214 | "virtual address space is unsupported on\n" | |
215 | "this platform.")); | |
216 | } | |
217 | ||
d32dc48e PA |
218 | /* User interface for non-stop mode. */ |
219 | ||
220 | int non_stop = 0; | |
221 | static int non_stop_1 = 0; | |
222 | ||
223 | static void | |
224 | set_non_stop (char *args, int from_tty, | |
225 | struct cmd_list_element *c) | |
226 | { | |
227 | if (target_has_execution) | |
228 | { | |
229 | non_stop_1 = non_stop; | |
230 | error (_("Cannot change this setting while the inferior is running.")); | |
231 | } | |
232 | ||
233 | non_stop = non_stop_1; | |
234 | } | |
235 | ||
236 | static void | |
237 | show_non_stop (struct ui_file *file, int from_tty, | |
238 | struct cmd_list_element *c, const char *value) | |
239 | { | |
240 | fprintf_filtered (file, | |
241 | _("Controlling the inferior in non-stop mode is %s.\n"), | |
242 | value); | |
243 | } | |
244 | ||
d914c394 SS |
245 | /* "Observer mode" is somewhat like a more extreme version of |
246 | non-stop, in which all GDB operations that might affect the | |
247 | target's execution have been disabled. */ | |
248 | ||
d914c394 SS |
249 | int observer_mode = 0; |
250 | static int observer_mode_1 = 0; | |
251 | ||
252 | static void | |
253 | set_observer_mode (char *args, int from_tty, | |
254 | struct cmd_list_element *c) | |
255 | { | |
d914c394 SS |
256 | if (target_has_execution) |
257 | { | |
258 | observer_mode_1 = observer_mode; | |
259 | error (_("Cannot change this setting while the inferior is running.")); | |
260 | } | |
261 | ||
262 | observer_mode = observer_mode_1; | |
263 | ||
264 | may_write_registers = !observer_mode; | |
265 | may_write_memory = !observer_mode; | |
266 | may_insert_breakpoints = !observer_mode; | |
267 | may_insert_tracepoints = !observer_mode; | |
268 | /* We can insert fast tracepoints in or out of observer mode, | |
269 | but enable them if we're going into this mode. */ | |
270 | if (observer_mode) | |
271 | may_insert_fast_tracepoints = 1; | |
272 | may_stop = !observer_mode; | |
273 | update_target_permissions (); | |
274 | ||
275 | /* Going *into* observer mode we must force non-stop, then | |
276 | going out we leave it that way. */ | |
277 | if (observer_mode) | |
278 | { | |
d914c394 SS |
279 | pagination_enabled = 0; |
280 | non_stop = non_stop_1 = 1; | |
281 | } | |
282 | ||
283 | if (from_tty) | |
284 | printf_filtered (_("Observer mode is now %s.\n"), | |
285 | (observer_mode ? "on" : "off")); | |
286 | } | |
287 | ||
288 | static void | |
289 | show_observer_mode (struct ui_file *file, int from_tty, | |
290 | struct cmd_list_element *c, const char *value) | |
291 | { | |
292 | fprintf_filtered (file, _("Observer mode is %s.\n"), value); | |
293 | } | |
294 | ||
295 | /* This updates the value of observer mode based on changes in | |
296 | permissions. Note that we are deliberately ignoring the values of | |
297 | may-write-registers and may-write-memory, since the user may have | |
298 | reason to enable these during a session, for instance to turn on a | |
299 | debugging-related global. */ | |
300 | ||
301 | void | |
302 | update_observer_mode (void) | |
303 | { | |
304 | int newval; | |
305 | ||
306 | newval = (!may_insert_breakpoints | |
307 | && !may_insert_tracepoints | |
308 | && may_insert_fast_tracepoints | |
309 | && !may_stop | |
310 | && non_stop); | |
311 | ||
312 | /* Let the user know if things change. */ | |
313 | if (newval != observer_mode) | |
314 | printf_filtered (_("Observer mode is now %s.\n"), | |
315 | (newval ? "on" : "off")); | |
316 | ||
317 | observer_mode = observer_mode_1 = newval; | |
318 | } | |
c2c6d25f | 319 | |
c906108c SS |
320 | /* Tables of how to react to signals; the user sets them. */ |
321 | ||
322 | static unsigned char *signal_stop; | |
323 | static unsigned char *signal_print; | |
324 | static unsigned char *signal_program; | |
325 | ||
ab04a2af TT |
326 | /* Table of signals that are registered with "catch signal". A |
327 | non-zero entry indicates that the signal is caught by some "catch | |
328 | signal" command. This has size GDB_SIGNAL_LAST, to accommodate all | |
329 | signals. */ | |
330 | static unsigned char *signal_catch; | |
331 | ||
2455069d UW |
332 | /* Table of signals that the target may silently handle. |
333 | This is automatically determined from the flags above, | |
334 | and simply cached here. */ | |
335 | static unsigned char *signal_pass; | |
336 | ||
c906108c SS |
337 | #define SET_SIGS(nsigs,sigs,flags) \ |
338 | do { \ | |
339 | int signum = (nsigs); \ | |
340 | while (signum-- > 0) \ | |
341 | if ((sigs)[signum]) \ | |
342 | (flags)[signum] = 1; \ | |
343 | } while (0) | |
344 | ||
345 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
346 | do { \ | |
347 | int signum = (nsigs); \ | |
348 | while (signum-- > 0) \ | |
349 | if ((sigs)[signum]) \ | |
350 | (flags)[signum] = 0; \ | |
351 | } while (0) | |
352 | ||
9b224c5e PA |
353 | /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of |
354 | this function is to avoid exporting `signal_program'. */ | |
355 | ||
356 | void | |
357 | update_signals_program_target (void) | |
358 | { | |
a493e3e2 | 359 | target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); |
9b224c5e PA |
360 | } |
361 | ||
1777feb0 | 362 | /* Value to pass to target_resume() to cause all threads to resume. */ |
39f77062 | 363 | |
edb3359d | 364 | #define RESUME_ALL minus_one_ptid |
c906108c SS |
365 | |
366 | /* Command list pointer for the "stop" placeholder. */ | |
367 | ||
368 | static struct cmd_list_element *stop_command; | |
369 | ||
c906108c SS |
370 | /* Nonzero if we want to give control to the user when we're notified |
371 | of shared library events by the dynamic linker. */ | |
628fe4e4 | 372 | int stop_on_solib_events; |
f9e14852 GB |
373 | |
374 | /* Enable or disable optional shared library event breakpoints | |
375 | as appropriate when the above flag is changed. */ | |
376 | ||
377 | static void | |
378 | set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c) | |
379 | { | |
380 | update_solib_breakpoints (); | |
381 | } | |
382 | ||
920d2a44 AC |
383 | static void |
384 | show_stop_on_solib_events (struct ui_file *file, int from_tty, | |
385 | struct cmd_list_element *c, const char *value) | |
386 | { | |
387 | fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), | |
388 | value); | |
389 | } | |
c906108c | 390 | |
c906108c SS |
391 | /* Nonzero after stop if current stack frame should be printed. */ |
392 | ||
393 | static int stop_print_frame; | |
394 | ||
e02bc4cc | 395 | /* This is a cached copy of the pid/waitstatus of the last event |
9a4105ab AC |
396 | returned by target_wait()/deprecated_target_wait_hook(). This |
397 | information is returned by get_last_target_status(). */ | |
39f77062 | 398 | static ptid_t target_last_wait_ptid; |
e02bc4cc DS |
399 | static struct target_waitstatus target_last_waitstatus; |
400 | ||
0d1e5fa7 PA |
401 | static void context_switch (ptid_t ptid); |
402 | ||
4e1c45ea | 403 | void init_thread_stepping_state (struct thread_info *tss); |
0d1e5fa7 | 404 | |
53904c9e AC |
405 | static const char follow_fork_mode_child[] = "child"; |
406 | static const char follow_fork_mode_parent[] = "parent"; | |
407 | ||
40478521 | 408 | static const char *const follow_fork_mode_kind_names[] = { |
53904c9e AC |
409 | follow_fork_mode_child, |
410 | follow_fork_mode_parent, | |
411 | NULL | |
ef346e04 | 412 | }; |
c906108c | 413 | |
53904c9e | 414 | static const char *follow_fork_mode_string = follow_fork_mode_parent; |
920d2a44 AC |
415 | static void |
416 | show_follow_fork_mode_string (struct ui_file *file, int from_tty, | |
417 | struct cmd_list_element *c, const char *value) | |
418 | { | |
3e43a32a MS |
419 | fprintf_filtered (file, |
420 | _("Debugger response to a program " | |
421 | "call of fork or vfork is \"%s\".\n"), | |
920d2a44 AC |
422 | value); |
423 | } | |
c906108c SS |
424 | \f |
425 | ||
d83ad864 DB |
426 | /* Handle changes to the inferior list based on the type of fork, |
427 | which process is being followed, and whether the other process | |
428 | should be detached. On entry inferior_ptid must be the ptid of | |
429 | the fork parent. At return inferior_ptid is the ptid of the | |
430 | followed inferior. */ | |
431 | ||
432 | static int | |
433 | follow_fork_inferior (int follow_child, int detach_fork) | |
434 | { | |
435 | int has_vforked; | |
79639e11 | 436 | ptid_t parent_ptid, child_ptid; |
d83ad864 DB |
437 | |
438 | has_vforked = (inferior_thread ()->pending_follow.kind | |
439 | == TARGET_WAITKIND_VFORKED); | |
79639e11 PA |
440 | parent_ptid = inferior_ptid; |
441 | child_ptid = inferior_thread ()->pending_follow.value.related_pid; | |
d83ad864 DB |
442 | |
443 | if (has_vforked | |
444 | && !non_stop /* Non-stop always resumes both branches. */ | |
445 | && (!target_is_async_p () || sync_execution) | |
446 | && !(follow_child || detach_fork || sched_multi)) | |
447 | { | |
448 | /* The parent stays blocked inside the vfork syscall until the | |
449 | child execs or exits. If we don't let the child run, then | |
450 | the parent stays blocked. If we're telling the parent to run | |
451 | in the foreground, the user will not be able to ctrl-c to get | |
452 | back the terminal, effectively hanging the debug session. */ | |
453 | fprintf_filtered (gdb_stderr, _("\ | |
454 | Can not resume the parent process over vfork in the foreground while\n\ | |
455 | holding the child stopped. Try \"set detach-on-fork\" or \ | |
456 | \"set schedule-multiple\".\n")); | |
457 | /* FIXME output string > 80 columns. */ | |
458 | return 1; | |
459 | } | |
460 | ||
461 | if (!follow_child) | |
462 | { | |
463 | /* Detach new forked process? */ | |
464 | if (detach_fork) | |
465 | { | |
466 | struct cleanup *old_chain; | |
467 | ||
468 | /* Before detaching from the child, remove all breakpoints | |
469 | from it. If we forked, then this has already been taken | |
470 | care of by infrun.c. If we vforked however, any | |
471 | breakpoint inserted in the parent is visible in the | |
472 | child, even those added while stopped in a vfork | |
473 | catchpoint. This will remove the breakpoints from the | |
474 | parent also, but they'll be reinserted below. */ | |
475 | if (has_vforked) | |
476 | { | |
477 | /* Keep breakpoints list in sync. */ | |
478 | remove_breakpoints_pid (ptid_get_pid (inferior_ptid)); | |
479 | } | |
480 | ||
481 | if (info_verbose || debug_infrun) | |
482 | { | |
8dd06f7a DB |
483 | /* Ensure that we have a process ptid. */ |
484 | ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid)); | |
485 | ||
6f259a23 | 486 | target_terminal_ours_for_output (); |
d83ad864 | 487 | fprintf_filtered (gdb_stdlog, |
79639e11 | 488 | _("Detaching after %s from child %s.\n"), |
6f259a23 | 489 | has_vforked ? "vfork" : "fork", |
8dd06f7a | 490 | target_pid_to_str (process_ptid)); |
d83ad864 DB |
491 | } |
492 | } | |
493 | else | |
494 | { | |
495 | struct inferior *parent_inf, *child_inf; | |
496 | struct cleanup *old_chain; | |
497 | ||
498 | /* Add process to GDB's tables. */ | |
79639e11 | 499 | child_inf = add_inferior (ptid_get_pid (child_ptid)); |
d83ad864 DB |
500 | |
501 | parent_inf = current_inferior (); | |
502 | child_inf->attach_flag = parent_inf->attach_flag; | |
503 | copy_terminal_info (child_inf, parent_inf); | |
504 | child_inf->gdbarch = parent_inf->gdbarch; | |
505 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
506 | ||
507 | old_chain = save_inferior_ptid (); | |
508 | save_current_program_space (); | |
509 | ||
79639e11 | 510 | inferior_ptid = child_ptid; |
d83ad864 DB |
511 | add_thread (inferior_ptid); |
512 | child_inf->symfile_flags = SYMFILE_NO_READ; | |
513 | ||
514 | /* If this is a vfork child, then the address-space is | |
515 | shared with the parent. */ | |
516 | if (has_vforked) | |
517 | { | |
518 | child_inf->pspace = parent_inf->pspace; | |
519 | child_inf->aspace = parent_inf->aspace; | |
520 | ||
521 | /* The parent will be frozen until the child is done | |
522 | with the shared region. Keep track of the | |
523 | parent. */ | |
524 | child_inf->vfork_parent = parent_inf; | |
525 | child_inf->pending_detach = 0; | |
526 | parent_inf->vfork_child = child_inf; | |
527 | parent_inf->pending_detach = 0; | |
528 | } | |
529 | else | |
530 | { | |
531 | child_inf->aspace = new_address_space (); | |
532 | child_inf->pspace = add_program_space (child_inf->aspace); | |
533 | child_inf->removable = 1; | |
534 | set_current_program_space (child_inf->pspace); | |
535 | clone_program_space (child_inf->pspace, parent_inf->pspace); | |
536 | ||
537 | /* Let the shared library layer (e.g., solib-svr4) learn | |
538 | about this new process, relocate the cloned exec, pull | |
539 | in shared libraries, and install the solib event | |
540 | breakpoint. If a "cloned-VM" event was propagated | |
541 | better throughout the core, this wouldn't be | |
542 | required. */ | |
543 | solib_create_inferior_hook (0); | |
544 | } | |
545 | ||
546 | do_cleanups (old_chain); | |
547 | } | |
548 | ||
549 | if (has_vforked) | |
550 | { | |
551 | struct inferior *parent_inf; | |
552 | ||
553 | parent_inf = current_inferior (); | |
554 | ||
555 | /* If we detached from the child, then we have to be careful | |
556 | to not insert breakpoints in the parent until the child | |
557 | is done with the shared memory region. However, if we're | |
558 | staying attached to the child, then we can and should | |
559 | insert breakpoints, so that we can debug it. A | |
560 | subsequent child exec or exit is enough to know when does | |
561 | the child stops using the parent's address space. */ | |
562 | parent_inf->waiting_for_vfork_done = detach_fork; | |
563 | parent_inf->pspace->breakpoints_not_allowed = detach_fork; | |
564 | } | |
565 | } | |
566 | else | |
567 | { | |
568 | /* Follow the child. */ | |
569 | struct inferior *parent_inf, *child_inf; | |
570 | struct program_space *parent_pspace; | |
571 | ||
572 | if (info_verbose || debug_infrun) | |
573 | { | |
6f259a23 DB |
574 | target_terminal_ours_for_output (); |
575 | fprintf_filtered (gdb_stdlog, | |
79639e11 PA |
576 | _("Attaching after %s %s to child %s.\n"), |
577 | target_pid_to_str (parent_ptid), | |
6f259a23 | 578 | has_vforked ? "vfork" : "fork", |
79639e11 | 579 | target_pid_to_str (child_ptid)); |
d83ad864 DB |
580 | } |
581 | ||
582 | /* Add the new inferior first, so that the target_detach below | |
583 | doesn't unpush the target. */ | |
584 | ||
79639e11 | 585 | child_inf = add_inferior (ptid_get_pid (child_ptid)); |
d83ad864 DB |
586 | |
587 | parent_inf = current_inferior (); | |
588 | child_inf->attach_flag = parent_inf->attach_flag; | |
589 | copy_terminal_info (child_inf, parent_inf); | |
590 | child_inf->gdbarch = parent_inf->gdbarch; | |
591 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
592 | ||
593 | parent_pspace = parent_inf->pspace; | |
594 | ||
595 | /* If we're vforking, we want to hold on to the parent until the | |
596 | child exits or execs. At child exec or exit time we can | |
597 | remove the old breakpoints from the parent and detach or | |
598 | resume debugging it. Otherwise, detach the parent now; we'll | |
599 | want to reuse it's program/address spaces, but we can't set | |
600 | them to the child before removing breakpoints from the | |
601 | parent, otherwise, the breakpoints module could decide to | |
602 | remove breakpoints from the wrong process (since they'd be | |
603 | assigned to the same address space). */ | |
604 | ||
605 | if (has_vforked) | |
606 | { | |
607 | gdb_assert (child_inf->vfork_parent == NULL); | |
608 | gdb_assert (parent_inf->vfork_child == NULL); | |
609 | child_inf->vfork_parent = parent_inf; | |
610 | child_inf->pending_detach = 0; | |
611 | parent_inf->vfork_child = child_inf; | |
612 | parent_inf->pending_detach = detach_fork; | |
613 | parent_inf->waiting_for_vfork_done = 0; | |
614 | } | |
615 | else if (detach_fork) | |
6f259a23 DB |
616 | { |
617 | if (info_verbose || debug_infrun) | |
618 | { | |
8dd06f7a DB |
619 | /* Ensure that we have a process ptid. */ |
620 | ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid)); | |
621 | ||
6f259a23 DB |
622 | target_terminal_ours_for_output (); |
623 | fprintf_filtered (gdb_stdlog, | |
624 | _("Detaching after fork from " | |
79639e11 | 625 | "child %s.\n"), |
8dd06f7a | 626 | target_pid_to_str (process_ptid)); |
6f259a23 DB |
627 | } |
628 | ||
629 | target_detach (NULL, 0); | |
630 | } | |
d83ad864 DB |
631 | |
632 | /* Note that the detach above makes PARENT_INF dangling. */ | |
633 | ||
634 | /* Add the child thread to the appropriate lists, and switch to | |
635 | this new thread, before cloning the program space, and | |
636 | informing the solib layer about this new process. */ | |
637 | ||
79639e11 | 638 | inferior_ptid = child_ptid; |
d83ad864 DB |
639 | add_thread (inferior_ptid); |
640 | ||
641 | /* If this is a vfork child, then the address-space is shared | |
642 | with the parent. If we detached from the parent, then we can | |
643 | reuse the parent's program/address spaces. */ | |
644 | if (has_vforked || detach_fork) | |
645 | { | |
646 | child_inf->pspace = parent_pspace; | |
647 | child_inf->aspace = child_inf->pspace->aspace; | |
648 | } | |
649 | else | |
650 | { | |
651 | child_inf->aspace = new_address_space (); | |
652 | child_inf->pspace = add_program_space (child_inf->aspace); | |
653 | child_inf->removable = 1; | |
654 | child_inf->symfile_flags = SYMFILE_NO_READ; | |
655 | set_current_program_space (child_inf->pspace); | |
656 | clone_program_space (child_inf->pspace, parent_pspace); | |
657 | ||
658 | /* Let the shared library layer (e.g., solib-svr4) learn | |
659 | about this new process, relocate the cloned exec, pull in | |
660 | shared libraries, and install the solib event breakpoint. | |
661 | If a "cloned-VM" event was propagated better throughout | |
662 | the core, this wouldn't be required. */ | |
663 | solib_create_inferior_hook (0); | |
664 | } | |
665 | } | |
666 | ||
667 | return target_follow_fork (follow_child, detach_fork); | |
668 | } | |
669 | ||
e58b0e63 PA |
670 | /* Tell the target to follow the fork we're stopped at. Returns true |
671 | if the inferior should be resumed; false, if the target for some | |
672 | reason decided it's best not to resume. */ | |
673 | ||
6604731b | 674 | static int |
4ef3f3be | 675 | follow_fork (void) |
c906108c | 676 | { |
ea1dd7bc | 677 | int follow_child = (follow_fork_mode_string == follow_fork_mode_child); |
e58b0e63 PA |
678 | int should_resume = 1; |
679 | struct thread_info *tp; | |
680 | ||
681 | /* Copy user stepping state to the new inferior thread. FIXME: the | |
682 | followed fork child thread should have a copy of most of the | |
4e3990f4 DE |
683 | parent thread structure's run control related fields, not just these. |
684 | Initialized to avoid "may be used uninitialized" warnings from gcc. */ | |
685 | struct breakpoint *step_resume_breakpoint = NULL; | |
186c406b | 686 | struct breakpoint *exception_resume_breakpoint = NULL; |
4e3990f4 DE |
687 | CORE_ADDR step_range_start = 0; |
688 | CORE_ADDR step_range_end = 0; | |
689 | struct frame_id step_frame_id = { 0 }; | |
17b2616c | 690 | struct interp *command_interp = NULL; |
e58b0e63 PA |
691 | |
692 | if (!non_stop) | |
693 | { | |
694 | ptid_t wait_ptid; | |
695 | struct target_waitstatus wait_status; | |
696 | ||
697 | /* Get the last target status returned by target_wait(). */ | |
698 | get_last_target_status (&wait_ptid, &wait_status); | |
699 | ||
700 | /* If not stopped at a fork event, then there's nothing else to | |
701 | do. */ | |
702 | if (wait_status.kind != TARGET_WAITKIND_FORKED | |
703 | && wait_status.kind != TARGET_WAITKIND_VFORKED) | |
704 | return 1; | |
705 | ||
706 | /* Check if we switched over from WAIT_PTID, since the event was | |
707 | reported. */ | |
708 | if (!ptid_equal (wait_ptid, minus_one_ptid) | |
709 | && !ptid_equal (inferior_ptid, wait_ptid)) | |
710 | { | |
711 | /* We did. Switch back to WAIT_PTID thread, to tell the | |
712 | target to follow it (in either direction). We'll | |
713 | afterwards refuse to resume, and inform the user what | |
714 | happened. */ | |
715 | switch_to_thread (wait_ptid); | |
716 | should_resume = 0; | |
717 | } | |
718 | } | |
719 | ||
720 | tp = inferior_thread (); | |
721 | ||
722 | /* If there were any forks/vforks that were caught and are now to be | |
723 | followed, then do so now. */ | |
724 | switch (tp->pending_follow.kind) | |
725 | { | |
726 | case TARGET_WAITKIND_FORKED: | |
727 | case TARGET_WAITKIND_VFORKED: | |
728 | { | |
729 | ptid_t parent, child; | |
730 | ||
731 | /* If the user did a next/step, etc, over a fork call, | |
732 | preserve the stepping state in the fork child. */ | |
733 | if (follow_child && should_resume) | |
734 | { | |
8358c15c JK |
735 | step_resume_breakpoint = clone_momentary_breakpoint |
736 | (tp->control.step_resume_breakpoint); | |
16c381f0 JK |
737 | step_range_start = tp->control.step_range_start; |
738 | step_range_end = tp->control.step_range_end; | |
739 | step_frame_id = tp->control.step_frame_id; | |
186c406b TT |
740 | exception_resume_breakpoint |
741 | = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint); | |
17b2616c | 742 | command_interp = tp->control.command_interp; |
e58b0e63 PA |
743 | |
744 | /* For now, delete the parent's sr breakpoint, otherwise, | |
745 | parent/child sr breakpoints are considered duplicates, | |
746 | and the child version will not be installed. Remove | |
747 | this when the breakpoints module becomes aware of | |
748 | inferiors and address spaces. */ | |
749 | delete_step_resume_breakpoint (tp); | |
16c381f0 JK |
750 | tp->control.step_range_start = 0; |
751 | tp->control.step_range_end = 0; | |
752 | tp->control.step_frame_id = null_frame_id; | |
186c406b | 753 | delete_exception_resume_breakpoint (tp); |
17b2616c | 754 | tp->control.command_interp = NULL; |
e58b0e63 PA |
755 | } |
756 | ||
757 | parent = inferior_ptid; | |
758 | child = tp->pending_follow.value.related_pid; | |
759 | ||
d83ad864 DB |
760 | /* Set up inferior(s) as specified by the caller, and tell the |
761 | target to do whatever is necessary to follow either parent | |
762 | or child. */ | |
763 | if (follow_fork_inferior (follow_child, detach_fork)) | |
e58b0e63 PA |
764 | { |
765 | /* Target refused to follow, or there's some other reason | |
766 | we shouldn't resume. */ | |
767 | should_resume = 0; | |
768 | } | |
769 | else | |
770 | { | |
771 | /* This pending follow fork event is now handled, one way | |
772 | or another. The previous selected thread may be gone | |
773 | from the lists by now, but if it is still around, need | |
774 | to clear the pending follow request. */ | |
e09875d4 | 775 | tp = find_thread_ptid (parent); |
e58b0e63 PA |
776 | if (tp) |
777 | tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS; | |
778 | ||
779 | /* This makes sure we don't try to apply the "Switched | |
780 | over from WAIT_PID" logic above. */ | |
781 | nullify_last_target_wait_ptid (); | |
782 | ||
1777feb0 | 783 | /* If we followed the child, switch to it... */ |
e58b0e63 PA |
784 | if (follow_child) |
785 | { | |
786 | switch_to_thread (child); | |
787 | ||
788 | /* ... and preserve the stepping state, in case the | |
789 | user was stepping over the fork call. */ | |
790 | if (should_resume) | |
791 | { | |
792 | tp = inferior_thread (); | |
8358c15c JK |
793 | tp->control.step_resume_breakpoint |
794 | = step_resume_breakpoint; | |
16c381f0 JK |
795 | tp->control.step_range_start = step_range_start; |
796 | tp->control.step_range_end = step_range_end; | |
797 | tp->control.step_frame_id = step_frame_id; | |
186c406b TT |
798 | tp->control.exception_resume_breakpoint |
799 | = exception_resume_breakpoint; | |
17b2616c | 800 | tp->control.command_interp = command_interp; |
e58b0e63 PA |
801 | } |
802 | else | |
803 | { | |
804 | /* If we get here, it was because we're trying to | |
805 | resume from a fork catchpoint, but, the user | |
806 | has switched threads away from the thread that | |
807 | forked. In that case, the resume command | |
808 | issued is most likely not applicable to the | |
809 | child, so just warn, and refuse to resume. */ | |
3e43a32a | 810 | warning (_("Not resuming: switched threads " |
fd7dcb94 | 811 | "before following fork child.")); |
e58b0e63 PA |
812 | } |
813 | ||
814 | /* Reset breakpoints in the child as appropriate. */ | |
815 | follow_inferior_reset_breakpoints (); | |
816 | } | |
817 | else | |
818 | switch_to_thread (parent); | |
819 | } | |
820 | } | |
821 | break; | |
822 | case TARGET_WAITKIND_SPURIOUS: | |
823 | /* Nothing to follow. */ | |
824 | break; | |
825 | default: | |
826 | internal_error (__FILE__, __LINE__, | |
827 | "Unexpected pending_follow.kind %d\n", | |
828 | tp->pending_follow.kind); | |
829 | break; | |
830 | } | |
c906108c | 831 | |
e58b0e63 | 832 | return should_resume; |
c906108c SS |
833 | } |
834 | ||
d83ad864 | 835 | static void |
6604731b | 836 | follow_inferior_reset_breakpoints (void) |
c906108c | 837 | { |
4e1c45ea PA |
838 | struct thread_info *tp = inferior_thread (); |
839 | ||
6604731b DJ |
840 | /* Was there a step_resume breakpoint? (There was if the user |
841 | did a "next" at the fork() call.) If so, explicitly reset its | |
a1aa2221 LM |
842 | thread number. Cloned step_resume breakpoints are disabled on |
843 | creation, so enable it here now that it is associated with the | |
844 | correct thread. | |
6604731b DJ |
845 | |
846 | step_resumes are a form of bp that are made to be per-thread. | |
847 | Since we created the step_resume bp when the parent process | |
848 | was being debugged, and now are switching to the child process, | |
849 | from the breakpoint package's viewpoint, that's a switch of | |
850 | "threads". We must update the bp's notion of which thread | |
851 | it is for, or it'll be ignored when it triggers. */ | |
852 | ||
8358c15c | 853 | if (tp->control.step_resume_breakpoint) |
a1aa2221 LM |
854 | { |
855 | breakpoint_re_set_thread (tp->control.step_resume_breakpoint); | |
856 | tp->control.step_resume_breakpoint->loc->enabled = 1; | |
857 | } | |
6604731b | 858 | |
a1aa2221 | 859 | /* Treat exception_resume breakpoints like step_resume breakpoints. */ |
186c406b | 860 | if (tp->control.exception_resume_breakpoint) |
a1aa2221 LM |
861 | { |
862 | breakpoint_re_set_thread (tp->control.exception_resume_breakpoint); | |
863 | tp->control.exception_resume_breakpoint->loc->enabled = 1; | |
864 | } | |
186c406b | 865 | |
6604731b DJ |
866 | /* Reinsert all breakpoints in the child. The user may have set |
867 | breakpoints after catching the fork, in which case those | |
868 | were never set in the child, but only in the parent. This makes | |
869 | sure the inserted breakpoints match the breakpoint list. */ | |
870 | ||
871 | breakpoint_re_set (); | |
872 | insert_breakpoints (); | |
c906108c | 873 | } |
c906108c | 874 | |
6c95b8df PA |
875 | /* The child has exited or execed: resume threads of the parent the |
876 | user wanted to be executing. */ | |
877 | ||
878 | static int | |
879 | proceed_after_vfork_done (struct thread_info *thread, | |
880 | void *arg) | |
881 | { | |
882 | int pid = * (int *) arg; | |
883 | ||
884 | if (ptid_get_pid (thread->ptid) == pid | |
885 | && is_running (thread->ptid) | |
886 | && !is_executing (thread->ptid) | |
887 | && !thread->stop_requested | |
a493e3e2 | 888 | && thread->suspend.stop_signal == GDB_SIGNAL_0) |
6c95b8df PA |
889 | { |
890 | if (debug_infrun) | |
891 | fprintf_unfiltered (gdb_stdlog, | |
892 | "infrun: resuming vfork parent thread %s\n", | |
893 | target_pid_to_str (thread->ptid)); | |
894 | ||
895 | switch_to_thread (thread->ptid); | |
70509625 | 896 | clear_proceed_status (0); |
64ce06e4 | 897 | proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT); |
6c95b8df PA |
898 | } |
899 | ||
900 | return 0; | |
901 | } | |
902 | ||
903 | /* Called whenever we notice an exec or exit event, to handle | |
904 | detaching or resuming a vfork parent. */ | |
905 | ||
906 | static void | |
907 | handle_vfork_child_exec_or_exit (int exec) | |
908 | { | |
909 | struct inferior *inf = current_inferior (); | |
910 | ||
911 | if (inf->vfork_parent) | |
912 | { | |
913 | int resume_parent = -1; | |
914 | ||
915 | /* This exec or exit marks the end of the shared memory region | |
916 | between the parent and the child. If the user wanted to | |
917 | detach from the parent, now is the time. */ | |
918 | ||
919 | if (inf->vfork_parent->pending_detach) | |
920 | { | |
921 | struct thread_info *tp; | |
922 | struct cleanup *old_chain; | |
923 | struct program_space *pspace; | |
924 | struct address_space *aspace; | |
925 | ||
1777feb0 | 926 | /* follow-fork child, detach-on-fork on. */ |
6c95b8df | 927 | |
68c9da30 PA |
928 | inf->vfork_parent->pending_detach = 0; |
929 | ||
f50f4e56 PA |
930 | if (!exec) |
931 | { | |
932 | /* If we're handling a child exit, then inferior_ptid | |
933 | points at the inferior's pid, not to a thread. */ | |
934 | old_chain = save_inferior_ptid (); | |
935 | save_current_program_space (); | |
936 | save_current_inferior (); | |
937 | } | |
938 | else | |
939 | old_chain = save_current_space_and_thread (); | |
6c95b8df PA |
940 | |
941 | /* We're letting loose of the parent. */ | |
942 | tp = any_live_thread_of_process (inf->vfork_parent->pid); | |
943 | switch_to_thread (tp->ptid); | |
944 | ||
945 | /* We're about to detach from the parent, which implicitly | |
946 | removes breakpoints from its address space. There's a | |
947 | catch here: we want to reuse the spaces for the child, | |
948 | but, parent/child are still sharing the pspace at this | |
949 | point, although the exec in reality makes the kernel give | |
950 | the child a fresh set of new pages. The problem here is | |
951 | that the breakpoints module being unaware of this, would | |
952 | likely chose the child process to write to the parent | |
953 | address space. Swapping the child temporarily away from | |
954 | the spaces has the desired effect. Yes, this is "sort | |
955 | of" a hack. */ | |
956 | ||
957 | pspace = inf->pspace; | |
958 | aspace = inf->aspace; | |
959 | inf->aspace = NULL; | |
960 | inf->pspace = NULL; | |
961 | ||
962 | if (debug_infrun || info_verbose) | |
963 | { | |
6f259a23 | 964 | target_terminal_ours_for_output (); |
6c95b8df PA |
965 | |
966 | if (exec) | |
6f259a23 DB |
967 | { |
968 | fprintf_filtered (gdb_stdlog, | |
969 | _("Detaching vfork parent process " | |
970 | "%d after child exec.\n"), | |
971 | inf->vfork_parent->pid); | |
972 | } | |
6c95b8df | 973 | else |
6f259a23 DB |
974 | { |
975 | fprintf_filtered (gdb_stdlog, | |
976 | _("Detaching vfork parent process " | |
977 | "%d after child exit.\n"), | |
978 | inf->vfork_parent->pid); | |
979 | } | |
6c95b8df PA |
980 | } |
981 | ||
982 | target_detach (NULL, 0); | |
983 | ||
984 | /* Put it back. */ | |
985 | inf->pspace = pspace; | |
986 | inf->aspace = aspace; | |
987 | ||
988 | do_cleanups (old_chain); | |
989 | } | |
990 | else if (exec) | |
991 | { | |
992 | /* We're staying attached to the parent, so, really give the | |
993 | child a new address space. */ | |
994 | inf->pspace = add_program_space (maybe_new_address_space ()); | |
995 | inf->aspace = inf->pspace->aspace; | |
996 | inf->removable = 1; | |
997 | set_current_program_space (inf->pspace); | |
998 | ||
999 | resume_parent = inf->vfork_parent->pid; | |
1000 | ||
1001 | /* Break the bonds. */ | |
1002 | inf->vfork_parent->vfork_child = NULL; | |
1003 | } | |
1004 | else | |
1005 | { | |
1006 | struct cleanup *old_chain; | |
1007 | struct program_space *pspace; | |
1008 | ||
1009 | /* If this is a vfork child exiting, then the pspace and | |
1010 | aspaces were shared with the parent. Since we're | |
1011 | reporting the process exit, we'll be mourning all that is | |
1012 | found in the address space, and switching to null_ptid, | |
1013 | preparing to start a new inferior. But, since we don't | |
1014 | want to clobber the parent's address/program spaces, we | |
1015 | go ahead and create a new one for this exiting | |
1016 | inferior. */ | |
1017 | ||
1018 | /* Switch to null_ptid, so that clone_program_space doesn't want | |
1019 | to read the selected frame of a dead process. */ | |
1020 | old_chain = save_inferior_ptid (); | |
1021 | inferior_ptid = null_ptid; | |
1022 | ||
1023 | /* This inferior is dead, so avoid giving the breakpoints | |
1024 | module the option to write through to it (cloning a | |
1025 | program space resets breakpoints). */ | |
1026 | inf->aspace = NULL; | |
1027 | inf->pspace = NULL; | |
1028 | pspace = add_program_space (maybe_new_address_space ()); | |
1029 | set_current_program_space (pspace); | |
1030 | inf->removable = 1; | |
7dcd53a0 | 1031 | inf->symfile_flags = SYMFILE_NO_READ; |
6c95b8df PA |
1032 | clone_program_space (pspace, inf->vfork_parent->pspace); |
1033 | inf->pspace = pspace; | |
1034 | inf->aspace = pspace->aspace; | |
1035 | ||
1036 | /* Put back inferior_ptid. We'll continue mourning this | |
1777feb0 | 1037 | inferior. */ |
6c95b8df PA |
1038 | do_cleanups (old_chain); |
1039 | ||
1040 | resume_parent = inf->vfork_parent->pid; | |
1041 | /* Break the bonds. */ | |
1042 | inf->vfork_parent->vfork_child = NULL; | |
1043 | } | |
1044 | ||
1045 | inf->vfork_parent = NULL; | |
1046 | ||
1047 | gdb_assert (current_program_space == inf->pspace); | |
1048 | ||
1049 | if (non_stop && resume_parent != -1) | |
1050 | { | |
1051 | /* If the user wanted the parent to be running, let it go | |
1052 | free now. */ | |
1053 | struct cleanup *old_chain = make_cleanup_restore_current_thread (); | |
1054 | ||
1055 | if (debug_infrun) | |
3e43a32a MS |
1056 | fprintf_unfiltered (gdb_stdlog, |
1057 | "infrun: resuming vfork parent process %d\n", | |
6c95b8df PA |
1058 | resume_parent); |
1059 | ||
1060 | iterate_over_threads (proceed_after_vfork_done, &resume_parent); | |
1061 | ||
1062 | do_cleanups (old_chain); | |
1063 | } | |
1064 | } | |
1065 | } | |
1066 | ||
eb6c553b | 1067 | /* Enum strings for "set|show follow-exec-mode". */ |
6c95b8df PA |
1068 | |
1069 | static const char follow_exec_mode_new[] = "new"; | |
1070 | static const char follow_exec_mode_same[] = "same"; | |
40478521 | 1071 | static const char *const follow_exec_mode_names[] = |
6c95b8df PA |
1072 | { |
1073 | follow_exec_mode_new, | |
1074 | follow_exec_mode_same, | |
1075 | NULL, | |
1076 | }; | |
1077 | ||
1078 | static const char *follow_exec_mode_string = follow_exec_mode_same; | |
1079 | static void | |
1080 | show_follow_exec_mode_string (struct ui_file *file, int from_tty, | |
1081 | struct cmd_list_element *c, const char *value) | |
1082 | { | |
1083 | fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value); | |
1084 | } | |
1085 | ||
1777feb0 | 1086 | /* EXECD_PATHNAME is assumed to be non-NULL. */ |
1adeb98a | 1087 | |
c906108c | 1088 | static void |
95e50b27 | 1089 | follow_exec (ptid_t ptid, char *execd_pathname) |
c906108c | 1090 | { |
95e50b27 | 1091 | struct thread_info *th, *tmp; |
6c95b8df | 1092 | struct inferior *inf = current_inferior (); |
95e50b27 | 1093 | int pid = ptid_get_pid (ptid); |
94585166 | 1094 | ptid_t process_ptid; |
7a292a7a | 1095 | |
c906108c SS |
1096 | /* This is an exec event that we actually wish to pay attention to. |
1097 | Refresh our symbol table to the newly exec'd program, remove any | |
1098 | momentary bp's, etc. | |
1099 | ||
1100 | If there are breakpoints, they aren't really inserted now, | |
1101 | since the exec() transformed our inferior into a fresh set | |
1102 | of instructions. | |
1103 | ||
1104 | We want to preserve symbolic breakpoints on the list, since | |
1105 | we have hopes that they can be reset after the new a.out's | |
1106 | symbol table is read. | |
1107 | ||
1108 | However, any "raw" breakpoints must be removed from the list | |
1109 | (e.g., the solib bp's), since their address is probably invalid | |
1110 | now. | |
1111 | ||
1112 | And, we DON'T want to call delete_breakpoints() here, since | |
1113 | that may write the bp's "shadow contents" (the instruction | |
1114 | value that was overwritten witha TRAP instruction). Since | |
1777feb0 | 1115 | we now have a new a.out, those shadow contents aren't valid. */ |
6c95b8df PA |
1116 | |
1117 | mark_breakpoints_out (); | |
1118 | ||
95e50b27 PA |
1119 | /* The target reports the exec event to the main thread, even if |
1120 | some other thread does the exec, and even if the main thread was | |
1121 | stopped or already gone. We may still have non-leader threads of | |
1122 | the process on our list. E.g., on targets that don't have thread | |
1123 | exit events (like remote); or on native Linux in non-stop mode if | |
1124 | there were only two threads in the inferior and the non-leader | |
1125 | one is the one that execs (and nothing forces an update of the | |
1126 | thread list up to here). When debugging remotely, it's best to | |
1127 | avoid extra traffic, when possible, so avoid syncing the thread | |
1128 | list with the target, and instead go ahead and delete all threads | |
1129 | of the process but one that reported the event. Note this must | |
1130 | be done before calling update_breakpoints_after_exec, as | |
1131 | otherwise clearing the threads' resources would reference stale | |
1132 | thread breakpoints -- it may have been one of these threads that | |
1133 | stepped across the exec. We could just clear their stepping | |
1134 | states, but as long as we're iterating, might as well delete | |
1135 | them. Deleting them now rather than at the next user-visible | |
1136 | stop provides a nicer sequence of events for user and MI | |
1137 | notifications. */ | |
8a06aea7 | 1138 | ALL_THREADS_SAFE (th, tmp) |
95e50b27 PA |
1139 | if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid)) |
1140 | delete_thread (th->ptid); | |
1141 | ||
1142 | /* We also need to clear any left over stale state for the | |
1143 | leader/event thread. E.g., if there was any step-resume | |
1144 | breakpoint or similar, it's gone now. We cannot truly | |
1145 | step-to-next statement through an exec(). */ | |
1146 | th = inferior_thread (); | |
8358c15c | 1147 | th->control.step_resume_breakpoint = NULL; |
186c406b | 1148 | th->control.exception_resume_breakpoint = NULL; |
34b7e8a6 | 1149 | th->control.single_step_breakpoints = NULL; |
16c381f0 JK |
1150 | th->control.step_range_start = 0; |
1151 | th->control.step_range_end = 0; | |
c906108c | 1152 | |
95e50b27 PA |
1153 | /* The user may have had the main thread held stopped in the |
1154 | previous image (e.g., schedlock on, or non-stop). Release | |
1155 | it now. */ | |
a75724bc PA |
1156 | th->stop_requested = 0; |
1157 | ||
95e50b27 PA |
1158 | update_breakpoints_after_exec (); |
1159 | ||
1777feb0 | 1160 | /* What is this a.out's name? */ |
94585166 | 1161 | process_ptid = pid_to_ptid (pid); |
6c95b8df | 1162 | printf_unfiltered (_("%s is executing new program: %s\n"), |
94585166 | 1163 | target_pid_to_str (process_ptid), |
6c95b8df | 1164 | execd_pathname); |
c906108c SS |
1165 | |
1166 | /* We've followed the inferior through an exec. Therefore, the | |
1777feb0 | 1167 | inferior has essentially been killed & reborn. */ |
7a292a7a | 1168 | |
c906108c | 1169 | gdb_flush (gdb_stdout); |
6ca15a4b PA |
1170 | |
1171 | breakpoint_init_inferior (inf_execd); | |
e85a822c | 1172 | |
a3be80c3 | 1173 | if (*gdb_sysroot != '\0') |
e85a822c | 1174 | { |
998d2a3e | 1175 | char *name = exec_file_find (execd_pathname, NULL); |
ff862be4 | 1176 | |
224c3ddb | 1177 | execd_pathname = (char *) alloca (strlen (name) + 1); |
ff862be4 GB |
1178 | strcpy (execd_pathname, name); |
1179 | xfree (name); | |
e85a822c | 1180 | } |
c906108c | 1181 | |
cce9b6bf PA |
1182 | /* Reset the shared library package. This ensures that we get a |
1183 | shlib event when the child reaches "_start", at which point the | |
1184 | dld will have had a chance to initialize the child. */ | |
1185 | /* Also, loading a symbol file below may trigger symbol lookups, and | |
1186 | we don't want those to be satisfied by the libraries of the | |
1187 | previous incarnation of this process. */ | |
1188 | no_shared_libraries (NULL, 0); | |
1189 | ||
6c95b8df PA |
1190 | if (follow_exec_mode_string == follow_exec_mode_new) |
1191 | { | |
6c95b8df PA |
1192 | /* The user wants to keep the old inferior and program spaces |
1193 | around. Create a new fresh one, and switch to it. */ | |
1194 | ||
17d8546e DB |
1195 | /* Do exit processing for the original inferior before adding |
1196 | the new inferior so we don't have two active inferiors with | |
1197 | the same ptid, which can confuse find_inferior_ptid. */ | |
1198 | exit_inferior_num_silent (current_inferior ()->num); | |
1199 | ||
94585166 DB |
1200 | inf = add_inferior_with_spaces (); |
1201 | inf->pid = pid; | |
1202 | target_follow_exec (inf, execd_pathname); | |
6c95b8df PA |
1203 | |
1204 | set_current_inferior (inf); | |
94585166 DB |
1205 | set_current_program_space (inf->pspace); |
1206 | add_thread (ptid); | |
6c95b8df | 1207 | } |
9107fc8d PA |
1208 | else |
1209 | { | |
1210 | /* The old description may no longer be fit for the new image. | |
1211 | E.g, a 64-bit process exec'ed a 32-bit process. Clear the | |
1212 | old description; we'll read a new one below. No need to do | |
1213 | this on "follow-exec-mode new", as the old inferior stays | |
1214 | around (its description is later cleared/refetched on | |
1215 | restart). */ | |
1216 | target_clear_description (); | |
1217 | } | |
6c95b8df PA |
1218 | |
1219 | gdb_assert (current_program_space == inf->pspace); | |
1220 | ||
1777feb0 | 1221 | /* That a.out is now the one to use. */ |
6c95b8df PA |
1222 | exec_file_attach (execd_pathname, 0); |
1223 | ||
c1e56572 JK |
1224 | /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE |
1225 | (Position Independent Executable) main symbol file will get applied by | |
1226 | solib_create_inferior_hook below. breakpoint_re_set would fail to insert | |
1227 | the breakpoints with the zero displacement. */ | |
1228 | ||
7dcd53a0 TT |
1229 | symbol_file_add (execd_pathname, |
1230 | (inf->symfile_flags | |
1231 | | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET), | |
c1e56572 JK |
1232 | NULL, 0); |
1233 | ||
7dcd53a0 TT |
1234 | if ((inf->symfile_flags & SYMFILE_NO_READ) == 0) |
1235 | set_initial_language (); | |
c906108c | 1236 | |
9107fc8d PA |
1237 | /* If the target can specify a description, read it. Must do this |
1238 | after flipping to the new executable (because the target supplied | |
1239 | description must be compatible with the executable's | |
1240 | architecture, and the old executable may e.g., be 32-bit, while | |
1241 | the new one 64-bit), and before anything involving memory or | |
1242 | registers. */ | |
1243 | target_find_description (); | |
1244 | ||
268a4a75 | 1245 | solib_create_inferior_hook (0); |
c906108c | 1246 | |
4efc6507 DE |
1247 | jit_inferior_created_hook (); |
1248 | ||
c1e56572 JK |
1249 | breakpoint_re_set (); |
1250 | ||
c906108c SS |
1251 | /* Reinsert all breakpoints. (Those which were symbolic have |
1252 | been reset to the proper address in the new a.out, thanks | |
1777feb0 | 1253 | to symbol_file_command...). */ |
c906108c SS |
1254 | insert_breakpoints (); |
1255 | ||
1256 | /* The next resume of this inferior should bring it to the shlib | |
1257 | startup breakpoints. (If the user had also set bp's on | |
1258 | "main" from the old (parent) process, then they'll auto- | |
1777feb0 | 1259 | matically get reset there in the new process.). */ |
c906108c SS |
1260 | } |
1261 | ||
c2829269 PA |
1262 | /* The queue of threads that need to do a step-over operation to get |
1263 | past e.g., a breakpoint. What technique is used to step over the | |
1264 | breakpoint/watchpoint does not matter -- all threads end up in the | |
1265 | same queue, to maintain rough temporal order of execution, in order | |
1266 | to avoid starvation, otherwise, we could e.g., find ourselves | |
1267 | constantly stepping the same couple threads past their breakpoints | |
1268 | over and over, if the single-step finish fast enough. */ | |
1269 | struct thread_info *step_over_queue_head; | |
1270 | ||
6c4cfb24 PA |
1271 | /* Bit flags indicating what the thread needs to step over. */ |
1272 | ||
8d297bbf | 1273 | enum step_over_what_flag |
6c4cfb24 PA |
1274 | { |
1275 | /* Step over a breakpoint. */ | |
1276 | STEP_OVER_BREAKPOINT = 1, | |
1277 | ||
1278 | /* Step past a non-continuable watchpoint, in order to let the | |
1279 | instruction execute so we can evaluate the watchpoint | |
1280 | expression. */ | |
1281 | STEP_OVER_WATCHPOINT = 2 | |
1282 | }; | |
8d297bbf | 1283 | DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what); |
6c4cfb24 | 1284 | |
963f9c80 | 1285 | /* Info about an instruction that is being stepped over. */ |
31e77af2 PA |
1286 | |
1287 | struct step_over_info | |
1288 | { | |
963f9c80 PA |
1289 | /* If we're stepping past a breakpoint, this is the address space |
1290 | and address of the instruction the breakpoint is set at. We'll | |
1291 | skip inserting all breakpoints here. Valid iff ASPACE is | |
1292 | non-NULL. */ | |
31e77af2 | 1293 | struct address_space *aspace; |
31e77af2 | 1294 | CORE_ADDR address; |
963f9c80 PA |
1295 | |
1296 | /* The instruction being stepped over triggers a nonsteppable | |
1297 | watchpoint. If true, we'll skip inserting watchpoints. */ | |
1298 | int nonsteppable_watchpoint_p; | |
31e77af2 PA |
1299 | }; |
1300 | ||
1301 | /* The step-over info of the location that is being stepped over. | |
1302 | ||
1303 | Note that with async/breakpoint always-inserted mode, a user might | |
1304 | set a new breakpoint/watchpoint/etc. exactly while a breakpoint is | |
1305 | being stepped over. As setting a new breakpoint inserts all | |
1306 | breakpoints, we need to make sure the breakpoint being stepped over | |
1307 | isn't inserted then. We do that by only clearing the step-over | |
1308 | info when the step-over is actually finished (or aborted). | |
1309 | ||
1310 | Presently GDB can only step over one breakpoint at any given time. | |
1311 | Given threads that can't run code in the same address space as the | |
1312 | breakpoint's can't really miss the breakpoint, GDB could be taught | |
1313 | to step-over at most one breakpoint per address space (so this info | |
1314 | could move to the address space object if/when GDB is extended). | |
1315 | The set of breakpoints being stepped over will normally be much | |
1316 | smaller than the set of all breakpoints, so a flag in the | |
1317 | breakpoint location structure would be wasteful. A separate list | |
1318 | also saves complexity and run-time, as otherwise we'd have to go | |
1319 | through all breakpoint locations clearing their flag whenever we | |
1320 | start a new sequence. Similar considerations weigh against storing | |
1321 | this info in the thread object. Plus, not all step overs actually | |
1322 | have breakpoint locations -- e.g., stepping past a single-step | |
1323 | breakpoint, or stepping to complete a non-continuable | |
1324 | watchpoint. */ | |
1325 | static struct step_over_info step_over_info; | |
1326 | ||
1327 | /* Record the address of the breakpoint/instruction we're currently | |
1328 | stepping over. */ | |
1329 | ||
1330 | static void | |
963f9c80 PA |
1331 | set_step_over_info (struct address_space *aspace, CORE_ADDR address, |
1332 | int nonsteppable_watchpoint_p) | |
31e77af2 PA |
1333 | { |
1334 | step_over_info.aspace = aspace; | |
1335 | step_over_info.address = address; | |
963f9c80 | 1336 | step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p; |
31e77af2 PA |
1337 | } |
1338 | ||
1339 | /* Called when we're not longer stepping over a breakpoint / an | |
1340 | instruction, so all breakpoints are free to be (re)inserted. */ | |
1341 | ||
1342 | static void | |
1343 | clear_step_over_info (void) | |
1344 | { | |
372316f1 PA |
1345 | if (debug_infrun) |
1346 | fprintf_unfiltered (gdb_stdlog, | |
1347 | "infrun: clear_step_over_info\n"); | |
31e77af2 PA |
1348 | step_over_info.aspace = NULL; |
1349 | step_over_info.address = 0; | |
963f9c80 | 1350 | step_over_info.nonsteppable_watchpoint_p = 0; |
31e77af2 PA |
1351 | } |
1352 | ||
7f89fd65 | 1353 | /* See infrun.h. */ |
31e77af2 PA |
1354 | |
1355 | int | |
1356 | stepping_past_instruction_at (struct address_space *aspace, | |
1357 | CORE_ADDR address) | |
1358 | { | |
1359 | return (step_over_info.aspace != NULL | |
1360 | && breakpoint_address_match (aspace, address, | |
1361 | step_over_info.aspace, | |
1362 | step_over_info.address)); | |
1363 | } | |
1364 | ||
963f9c80 PA |
1365 | /* See infrun.h. */ |
1366 | ||
1367 | int | |
1368 | stepping_past_nonsteppable_watchpoint (void) | |
1369 | { | |
1370 | return step_over_info.nonsteppable_watchpoint_p; | |
1371 | } | |
1372 | ||
6cc83d2a PA |
1373 | /* Returns true if step-over info is valid. */ |
1374 | ||
1375 | static int | |
1376 | step_over_info_valid_p (void) | |
1377 | { | |
963f9c80 PA |
1378 | return (step_over_info.aspace != NULL |
1379 | || stepping_past_nonsteppable_watchpoint ()); | |
6cc83d2a PA |
1380 | } |
1381 | ||
c906108c | 1382 | \f |
237fc4c9 PA |
1383 | /* Displaced stepping. */ |
1384 | ||
1385 | /* In non-stop debugging mode, we must take special care to manage | |
1386 | breakpoints properly; in particular, the traditional strategy for | |
1387 | stepping a thread past a breakpoint it has hit is unsuitable. | |
1388 | 'Displaced stepping' is a tactic for stepping one thread past a | |
1389 | breakpoint it has hit while ensuring that other threads running | |
1390 | concurrently will hit the breakpoint as they should. | |
1391 | ||
1392 | The traditional way to step a thread T off a breakpoint in a | |
1393 | multi-threaded program in all-stop mode is as follows: | |
1394 | ||
1395 | a0) Initially, all threads are stopped, and breakpoints are not | |
1396 | inserted. | |
1397 | a1) We single-step T, leaving breakpoints uninserted. | |
1398 | a2) We insert breakpoints, and resume all threads. | |
1399 | ||
1400 | In non-stop debugging, however, this strategy is unsuitable: we | |
1401 | don't want to have to stop all threads in the system in order to | |
1402 | continue or step T past a breakpoint. Instead, we use displaced | |
1403 | stepping: | |
1404 | ||
1405 | n0) Initially, T is stopped, other threads are running, and | |
1406 | breakpoints are inserted. | |
1407 | n1) We copy the instruction "under" the breakpoint to a separate | |
1408 | location, outside the main code stream, making any adjustments | |
1409 | to the instruction, register, and memory state as directed by | |
1410 | T's architecture. | |
1411 | n2) We single-step T over the instruction at its new location. | |
1412 | n3) We adjust the resulting register and memory state as directed | |
1413 | by T's architecture. This includes resetting T's PC to point | |
1414 | back into the main instruction stream. | |
1415 | n4) We resume T. | |
1416 | ||
1417 | This approach depends on the following gdbarch methods: | |
1418 | ||
1419 | - gdbarch_max_insn_length and gdbarch_displaced_step_location | |
1420 | indicate where to copy the instruction, and how much space must | |
1421 | be reserved there. We use these in step n1. | |
1422 | ||
1423 | - gdbarch_displaced_step_copy_insn copies a instruction to a new | |
1424 | address, and makes any necessary adjustments to the instruction, | |
1425 | register contents, and memory. We use this in step n1. | |
1426 | ||
1427 | - gdbarch_displaced_step_fixup adjusts registers and memory after | |
1428 | we have successfuly single-stepped the instruction, to yield the | |
1429 | same effect the instruction would have had if we had executed it | |
1430 | at its original address. We use this in step n3. | |
1431 | ||
1432 | - gdbarch_displaced_step_free_closure provides cleanup. | |
1433 | ||
1434 | The gdbarch_displaced_step_copy_insn and | |
1435 | gdbarch_displaced_step_fixup functions must be written so that | |
1436 | copying an instruction with gdbarch_displaced_step_copy_insn, | |
1437 | single-stepping across the copied instruction, and then applying | |
1438 | gdbarch_displaced_insn_fixup should have the same effects on the | |
1439 | thread's memory and registers as stepping the instruction in place | |
1440 | would have. Exactly which responsibilities fall to the copy and | |
1441 | which fall to the fixup is up to the author of those functions. | |
1442 | ||
1443 | See the comments in gdbarch.sh for details. | |
1444 | ||
1445 | Note that displaced stepping and software single-step cannot | |
1446 | currently be used in combination, although with some care I think | |
1447 | they could be made to. Software single-step works by placing | |
1448 | breakpoints on all possible subsequent instructions; if the | |
1449 | displaced instruction is a PC-relative jump, those breakpoints | |
1450 | could fall in very strange places --- on pages that aren't | |
1451 | executable, or at addresses that are not proper instruction | |
1452 | boundaries. (We do generally let other threads run while we wait | |
1453 | to hit the software single-step breakpoint, and they might | |
1454 | encounter such a corrupted instruction.) One way to work around | |
1455 | this would be to have gdbarch_displaced_step_copy_insn fully | |
1456 | simulate the effect of PC-relative instructions (and return NULL) | |
1457 | on architectures that use software single-stepping. | |
1458 | ||
1459 | In non-stop mode, we can have independent and simultaneous step | |
1460 | requests, so more than one thread may need to simultaneously step | |
1461 | over a breakpoint. The current implementation assumes there is | |
1462 | only one scratch space per process. In this case, we have to | |
1463 | serialize access to the scratch space. If thread A wants to step | |
1464 | over a breakpoint, but we are currently waiting for some other | |
1465 | thread to complete a displaced step, we leave thread A stopped and | |
1466 | place it in the displaced_step_request_queue. Whenever a displaced | |
1467 | step finishes, we pick the next thread in the queue and start a new | |
1468 | displaced step operation on it. See displaced_step_prepare and | |
1469 | displaced_step_fixup for details. */ | |
1470 | ||
fc1cf338 PA |
1471 | /* Per-inferior displaced stepping state. */ |
1472 | struct displaced_step_inferior_state | |
1473 | { | |
1474 | /* Pointer to next in linked list. */ | |
1475 | struct displaced_step_inferior_state *next; | |
1476 | ||
1477 | /* The process this displaced step state refers to. */ | |
1478 | int pid; | |
1479 | ||
3fc8eb30 PA |
1480 | /* True if preparing a displaced step ever failed. If so, we won't |
1481 | try displaced stepping for this inferior again. */ | |
1482 | int failed_before; | |
1483 | ||
fc1cf338 PA |
1484 | /* If this is not null_ptid, this is the thread carrying out a |
1485 | displaced single-step in process PID. This thread's state will | |
1486 | require fixing up once it has completed its step. */ | |
1487 | ptid_t step_ptid; | |
1488 | ||
1489 | /* The architecture the thread had when we stepped it. */ | |
1490 | struct gdbarch *step_gdbarch; | |
1491 | ||
1492 | /* The closure provided gdbarch_displaced_step_copy_insn, to be used | |
1493 | for post-step cleanup. */ | |
1494 | struct displaced_step_closure *step_closure; | |
1495 | ||
1496 | /* The address of the original instruction, and the copy we | |
1497 | made. */ | |
1498 | CORE_ADDR step_original, step_copy; | |
1499 | ||
1500 | /* Saved contents of copy area. */ | |
1501 | gdb_byte *step_saved_copy; | |
1502 | }; | |
1503 | ||
1504 | /* The list of states of processes involved in displaced stepping | |
1505 | presently. */ | |
1506 | static struct displaced_step_inferior_state *displaced_step_inferior_states; | |
1507 | ||
1508 | /* Get the displaced stepping state of process PID. */ | |
1509 | ||
1510 | static struct displaced_step_inferior_state * | |
1511 | get_displaced_stepping_state (int pid) | |
1512 | { | |
1513 | struct displaced_step_inferior_state *state; | |
1514 | ||
1515 | for (state = displaced_step_inferior_states; | |
1516 | state != NULL; | |
1517 | state = state->next) | |
1518 | if (state->pid == pid) | |
1519 | return state; | |
1520 | ||
1521 | return NULL; | |
1522 | } | |
1523 | ||
372316f1 PA |
1524 | /* Returns true if any inferior has a thread doing a displaced |
1525 | step. */ | |
1526 | ||
1527 | static int | |
1528 | displaced_step_in_progress_any_inferior (void) | |
1529 | { | |
1530 | struct displaced_step_inferior_state *state; | |
1531 | ||
1532 | for (state = displaced_step_inferior_states; | |
1533 | state != NULL; | |
1534 | state = state->next) | |
1535 | if (!ptid_equal (state->step_ptid, null_ptid)) | |
1536 | return 1; | |
1537 | ||
1538 | return 0; | |
1539 | } | |
1540 | ||
c0987663 YQ |
1541 | /* Return true if thread represented by PTID is doing a displaced |
1542 | step. */ | |
1543 | ||
1544 | static int | |
1545 | displaced_step_in_progress_thread (ptid_t ptid) | |
1546 | { | |
1547 | struct displaced_step_inferior_state *displaced; | |
1548 | ||
1549 | gdb_assert (!ptid_equal (ptid, null_ptid)); | |
1550 | ||
1551 | displaced = get_displaced_stepping_state (ptid_get_pid (ptid)); | |
1552 | ||
1553 | return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid)); | |
1554 | } | |
1555 | ||
8f572e5c PA |
1556 | /* Return true if process PID has a thread doing a displaced step. */ |
1557 | ||
1558 | static int | |
1559 | displaced_step_in_progress (int pid) | |
1560 | { | |
1561 | struct displaced_step_inferior_state *displaced; | |
1562 | ||
1563 | displaced = get_displaced_stepping_state (pid); | |
1564 | if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid)) | |
1565 | return 1; | |
1566 | ||
1567 | return 0; | |
1568 | } | |
1569 | ||
fc1cf338 PA |
1570 | /* Add a new displaced stepping state for process PID to the displaced |
1571 | stepping state list, or return a pointer to an already existing | |
1572 | entry, if it already exists. Never returns NULL. */ | |
1573 | ||
1574 | static struct displaced_step_inferior_state * | |
1575 | add_displaced_stepping_state (int pid) | |
1576 | { | |
1577 | struct displaced_step_inferior_state *state; | |
1578 | ||
1579 | for (state = displaced_step_inferior_states; | |
1580 | state != NULL; | |
1581 | state = state->next) | |
1582 | if (state->pid == pid) | |
1583 | return state; | |
237fc4c9 | 1584 | |
8d749320 | 1585 | state = XCNEW (struct displaced_step_inferior_state); |
fc1cf338 PA |
1586 | state->pid = pid; |
1587 | state->next = displaced_step_inferior_states; | |
1588 | displaced_step_inferior_states = state; | |
237fc4c9 | 1589 | |
fc1cf338 PA |
1590 | return state; |
1591 | } | |
1592 | ||
a42244db YQ |
1593 | /* If inferior is in displaced stepping, and ADDR equals to starting address |
1594 | of copy area, return corresponding displaced_step_closure. Otherwise, | |
1595 | return NULL. */ | |
1596 | ||
1597 | struct displaced_step_closure* | |
1598 | get_displaced_step_closure_by_addr (CORE_ADDR addr) | |
1599 | { | |
1600 | struct displaced_step_inferior_state *displaced | |
1601 | = get_displaced_stepping_state (ptid_get_pid (inferior_ptid)); | |
1602 | ||
1603 | /* If checking the mode of displaced instruction in copy area. */ | |
1604 | if (displaced && !ptid_equal (displaced->step_ptid, null_ptid) | |
1605 | && (displaced->step_copy == addr)) | |
1606 | return displaced->step_closure; | |
1607 | ||
1608 | return NULL; | |
1609 | } | |
1610 | ||
fc1cf338 | 1611 | /* Remove the displaced stepping state of process PID. */ |
237fc4c9 | 1612 | |
fc1cf338 PA |
1613 | static void |
1614 | remove_displaced_stepping_state (int pid) | |
1615 | { | |
1616 | struct displaced_step_inferior_state *it, **prev_next_p; | |
237fc4c9 | 1617 | |
fc1cf338 PA |
1618 | gdb_assert (pid != 0); |
1619 | ||
1620 | it = displaced_step_inferior_states; | |
1621 | prev_next_p = &displaced_step_inferior_states; | |
1622 | while (it) | |
1623 | { | |
1624 | if (it->pid == pid) | |
1625 | { | |
1626 | *prev_next_p = it->next; | |
1627 | xfree (it); | |
1628 | return; | |
1629 | } | |
1630 | ||
1631 | prev_next_p = &it->next; | |
1632 | it = *prev_next_p; | |
1633 | } | |
1634 | } | |
1635 | ||
1636 | static void | |
1637 | infrun_inferior_exit (struct inferior *inf) | |
1638 | { | |
1639 | remove_displaced_stepping_state (inf->pid); | |
1640 | } | |
237fc4c9 | 1641 | |
fff08868 HZ |
1642 | /* If ON, and the architecture supports it, GDB will use displaced |
1643 | stepping to step over breakpoints. If OFF, or if the architecture | |
1644 | doesn't support it, GDB will instead use the traditional | |
1645 | hold-and-step approach. If AUTO (which is the default), GDB will | |
1646 | decide which technique to use to step over breakpoints depending on | |
1647 | which of all-stop or non-stop mode is active --- displaced stepping | |
1648 | in non-stop mode; hold-and-step in all-stop mode. */ | |
1649 | ||
72d0e2c5 | 1650 | static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO; |
fff08868 | 1651 | |
237fc4c9 PA |
1652 | static void |
1653 | show_can_use_displaced_stepping (struct ui_file *file, int from_tty, | |
1654 | struct cmd_list_element *c, | |
1655 | const char *value) | |
1656 | { | |
72d0e2c5 | 1657 | if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO) |
3e43a32a MS |
1658 | fprintf_filtered (file, |
1659 | _("Debugger's willingness to use displaced stepping " | |
1660 | "to step over breakpoints is %s (currently %s).\n"), | |
fbea99ea | 1661 | value, target_is_non_stop_p () ? "on" : "off"); |
fff08868 | 1662 | else |
3e43a32a MS |
1663 | fprintf_filtered (file, |
1664 | _("Debugger's willingness to use displaced stepping " | |
1665 | "to step over breakpoints is %s.\n"), value); | |
237fc4c9 PA |
1666 | } |
1667 | ||
fff08868 | 1668 | /* Return non-zero if displaced stepping can/should be used to step |
3fc8eb30 | 1669 | over breakpoints of thread TP. */ |
fff08868 | 1670 | |
237fc4c9 | 1671 | static int |
3fc8eb30 | 1672 | use_displaced_stepping (struct thread_info *tp) |
237fc4c9 | 1673 | { |
3fc8eb30 PA |
1674 | struct regcache *regcache = get_thread_regcache (tp->ptid); |
1675 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
1676 | struct displaced_step_inferior_state *displaced_state; | |
1677 | ||
1678 | displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid)); | |
1679 | ||
fbea99ea PA |
1680 | return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO |
1681 | && target_is_non_stop_p ()) | |
72d0e2c5 | 1682 | || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) |
96429cc8 | 1683 | && gdbarch_displaced_step_copy_insn_p (gdbarch) |
3fc8eb30 PA |
1684 | && find_record_target () == NULL |
1685 | && (displaced_state == NULL | |
1686 | || !displaced_state->failed_before)); | |
237fc4c9 PA |
1687 | } |
1688 | ||
1689 | /* Clean out any stray displaced stepping state. */ | |
1690 | static void | |
fc1cf338 | 1691 | displaced_step_clear (struct displaced_step_inferior_state *displaced) |
237fc4c9 PA |
1692 | { |
1693 | /* Indicate that there is no cleanup pending. */ | |
fc1cf338 | 1694 | displaced->step_ptid = null_ptid; |
237fc4c9 | 1695 | |
fc1cf338 | 1696 | if (displaced->step_closure) |
237fc4c9 | 1697 | { |
fc1cf338 PA |
1698 | gdbarch_displaced_step_free_closure (displaced->step_gdbarch, |
1699 | displaced->step_closure); | |
1700 | displaced->step_closure = NULL; | |
237fc4c9 PA |
1701 | } |
1702 | } | |
1703 | ||
1704 | static void | |
fc1cf338 | 1705 | displaced_step_clear_cleanup (void *arg) |
237fc4c9 | 1706 | { |
9a3c8263 SM |
1707 | struct displaced_step_inferior_state *state |
1708 | = (struct displaced_step_inferior_state *) arg; | |
fc1cf338 PA |
1709 | |
1710 | displaced_step_clear (state); | |
237fc4c9 PA |
1711 | } |
1712 | ||
1713 | /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */ | |
1714 | void | |
1715 | displaced_step_dump_bytes (struct ui_file *file, | |
1716 | const gdb_byte *buf, | |
1717 | size_t len) | |
1718 | { | |
1719 | int i; | |
1720 | ||
1721 | for (i = 0; i < len; i++) | |
1722 | fprintf_unfiltered (file, "%02x ", buf[i]); | |
1723 | fputs_unfiltered ("\n", file); | |
1724 | } | |
1725 | ||
1726 | /* Prepare to single-step, using displaced stepping. | |
1727 | ||
1728 | Note that we cannot use displaced stepping when we have a signal to | |
1729 | deliver. If we have a signal to deliver and an instruction to step | |
1730 | over, then after the step, there will be no indication from the | |
1731 | target whether the thread entered a signal handler or ignored the | |
1732 | signal and stepped over the instruction successfully --- both cases | |
1733 | result in a simple SIGTRAP. In the first case we mustn't do a | |
1734 | fixup, and in the second case we must --- but we can't tell which. | |
1735 | Comments in the code for 'random signals' in handle_inferior_event | |
1736 | explain how we handle this case instead. | |
1737 | ||
1738 | Returns 1 if preparing was successful -- this thread is going to be | |
7f03bd92 PA |
1739 | stepped now; 0 if displaced stepping this thread got queued; or -1 |
1740 | if this instruction can't be displaced stepped. */ | |
1741 | ||
237fc4c9 | 1742 | static int |
3fc8eb30 | 1743 | displaced_step_prepare_throw (ptid_t ptid) |
237fc4c9 | 1744 | { |
ad53cd71 | 1745 | struct cleanup *old_cleanups, *ignore_cleanups; |
c1e36e3e | 1746 | struct thread_info *tp = find_thread_ptid (ptid); |
237fc4c9 PA |
1747 | struct regcache *regcache = get_thread_regcache (ptid); |
1748 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
d35ae833 | 1749 | struct address_space *aspace = get_regcache_aspace (regcache); |
237fc4c9 PA |
1750 | CORE_ADDR original, copy; |
1751 | ULONGEST len; | |
1752 | struct displaced_step_closure *closure; | |
fc1cf338 | 1753 | struct displaced_step_inferior_state *displaced; |
9e529e1d | 1754 | int status; |
237fc4c9 PA |
1755 | |
1756 | /* We should never reach this function if the architecture does not | |
1757 | support displaced stepping. */ | |
1758 | gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch)); | |
1759 | ||
c2829269 PA |
1760 | /* Nor if the thread isn't meant to step over a breakpoint. */ |
1761 | gdb_assert (tp->control.trap_expected); | |
1762 | ||
c1e36e3e PA |
1763 | /* Disable range stepping while executing in the scratch pad. We |
1764 | want a single-step even if executing the displaced instruction in | |
1765 | the scratch buffer lands within the stepping range (e.g., a | |
1766 | jump/branch). */ | |
1767 | tp->control.may_range_step = 0; | |
1768 | ||
fc1cf338 PA |
1769 | /* We have to displaced step one thread at a time, as we only have |
1770 | access to a single scratch space per inferior. */ | |
237fc4c9 | 1771 | |
fc1cf338 PA |
1772 | displaced = add_displaced_stepping_state (ptid_get_pid (ptid)); |
1773 | ||
1774 | if (!ptid_equal (displaced->step_ptid, null_ptid)) | |
237fc4c9 PA |
1775 | { |
1776 | /* Already waiting for a displaced step to finish. Defer this | |
1777 | request and place in queue. */ | |
237fc4c9 PA |
1778 | |
1779 | if (debug_displaced) | |
1780 | fprintf_unfiltered (gdb_stdlog, | |
c2829269 | 1781 | "displaced: deferring step of %s\n", |
237fc4c9 PA |
1782 | target_pid_to_str (ptid)); |
1783 | ||
c2829269 | 1784 | thread_step_over_chain_enqueue (tp); |
237fc4c9 PA |
1785 | return 0; |
1786 | } | |
1787 | else | |
1788 | { | |
1789 | if (debug_displaced) | |
1790 | fprintf_unfiltered (gdb_stdlog, | |
1791 | "displaced: stepping %s now\n", | |
1792 | target_pid_to_str (ptid)); | |
1793 | } | |
1794 | ||
fc1cf338 | 1795 | displaced_step_clear (displaced); |
237fc4c9 | 1796 | |
ad53cd71 PA |
1797 | old_cleanups = save_inferior_ptid (); |
1798 | inferior_ptid = ptid; | |
1799 | ||
515630c5 | 1800 | original = regcache_read_pc (regcache); |
237fc4c9 PA |
1801 | |
1802 | copy = gdbarch_displaced_step_location (gdbarch); | |
1803 | len = gdbarch_max_insn_length (gdbarch); | |
1804 | ||
d35ae833 PA |
1805 | if (breakpoint_in_range_p (aspace, copy, len)) |
1806 | { | |
1807 | /* There's a breakpoint set in the scratch pad location range | |
1808 | (which is usually around the entry point). We'd either | |
1809 | install it before resuming, which would overwrite/corrupt the | |
1810 | scratch pad, or if it was already inserted, this displaced | |
1811 | step would overwrite it. The latter is OK in the sense that | |
1812 | we already assume that no thread is going to execute the code | |
1813 | in the scratch pad range (after initial startup) anyway, but | |
1814 | the former is unacceptable. Simply punt and fallback to | |
1815 | stepping over this breakpoint in-line. */ | |
1816 | if (debug_displaced) | |
1817 | { | |
1818 | fprintf_unfiltered (gdb_stdlog, | |
1819 | "displaced: breakpoint set in scratch pad. " | |
1820 | "Stepping over breakpoint in-line instead.\n"); | |
1821 | } | |
1822 | ||
1823 | do_cleanups (old_cleanups); | |
1824 | return -1; | |
1825 | } | |
1826 | ||
237fc4c9 | 1827 | /* Save the original contents of the copy area. */ |
224c3ddb | 1828 | displaced->step_saved_copy = (gdb_byte *) xmalloc (len); |
ad53cd71 | 1829 | ignore_cleanups = make_cleanup (free_current_contents, |
fc1cf338 | 1830 | &displaced->step_saved_copy); |
9e529e1d JK |
1831 | status = target_read_memory (copy, displaced->step_saved_copy, len); |
1832 | if (status != 0) | |
1833 | throw_error (MEMORY_ERROR, | |
1834 | _("Error accessing memory address %s (%s) for " | |
1835 | "displaced-stepping scratch space."), | |
1836 | paddress (gdbarch, copy), safe_strerror (status)); | |
237fc4c9 PA |
1837 | if (debug_displaced) |
1838 | { | |
5af949e3 UW |
1839 | fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ", |
1840 | paddress (gdbarch, copy)); | |
fc1cf338 PA |
1841 | displaced_step_dump_bytes (gdb_stdlog, |
1842 | displaced->step_saved_copy, | |
1843 | len); | |
237fc4c9 PA |
1844 | }; |
1845 | ||
1846 | closure = gdbarch_displaced_step_copy_insn (gdbarch, | |
ad53cd71 | 1847 | original, copy, regcache); |
7f03bd92 PA |
1848 | if (closure == NULL) |
1849 | { | |
1850 | /* The architecture doesn't know how or want to displaced step | |
1851 | this instruction or instruction sequence. Fallback to | |
1852 | stepping over the breakpoint in-line. */ | |
1853 | do_cleanups (old_cleanups); | |
1854 | return -1; | |
1855 | } | |
237fc4c9 | 1856 | |
9f5a595d UW |
1857 | /* Save the information we need to fix things up if the step |
1858 | succeeds. */ | |
fc1cf338 PA |
1859 | displaced->step_ptid = ptid; |
1860 | displaced->step_gdbarch = gdbarch; | |
1861 | displaced->step_closure = closure; | |
1862 | displaced->step_original = original; | |
1863 | displaced->step_copy = copy; | |
9f5a595d | 1864 | |
fc1cf338 | 1865 | make_cleanup (displaced_step_clear_cleanup, displaced); |
237fc4c9 PA |
1866 | |
1867 | /* Resume execution at the copy. */ | |
515630c5 | 1868 | regcache_write_pc (regcache, copy); |
237fc4c9 | 1869 | |
ad53cd71 PA |
1870 | discard_cleanups (ignore_cleanups); |
1871 | ||
1872 | do_cleanups (old_cleanups); | |
237fc4c9 PA |
1873 | |
1874 | if (debug_displaced) | |
5af949e3 UW |
1875 | fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n", |
1876 | paddress (gdbarch, copy)); | |
237fc4c9 | 1877 | |
237fc4c9 PA |
1878 | return 1; |
1879 | } | |
1880 | ||
3fc8eb30 PA |
1881 | /* Wrapper for displaced_step_prepare_throw that disabled further |
1882 | attempts at displaced stepping if we get a memory error. */ | |
1883 | ||
1884 | static int | |
1885 | displaced_step_prepare (ptid_t ptid) | |
1886 | { | |
1887 | int prepared = -1; | |
1888 | ||
1889 | TRY | |
1890 | { | |
1891 | prepared = displaced_step_prepare_throw (ptid); | |
1892 | } | |
1893 | CATCH (ex, RETURN_MASK_ERROR) | |
1894 | { | |
1895 | struct displaced_step_inferior_state *displaced_state; | |
1896 | ||
16b41842 PA |
1897 | if (ex.error != MEMORY_ERROR |
1898 | && ex.error != NOT_SUPPORTED_ERROR) | |
3fc8eb30 PA |
1899 | throw_exception (ex); |
1900 | ||
1901 | if (debug_infrun) | |
1902 | { | |
1903 | fprintf_unfiltered (gdb_stdlog, | |
1904 | "infrun: disabling displaced stepping: %s\n", | |
1905 | ex.message); | |
1906 | } | |
1907 | ||
1908 | /* Be verbose if "set displaced-stepping" is "on", silent if | |
1909 | "auto". */ | |
1910 | if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) | |
1911 | { | |
fd7dcb94 | 1912 | warning (_("disabling displaced stepping: %s"), |
3fc8eb30 PA |
1913 | ex.message); |
1914 | } | |
1915 | ||
1916 | /* Disable further displaced stepping attempts. */ | |
1917 | displaced_state | |
1918 | = get_displaced_stepping_state (ptid_get_pid (ptid)); | |
1919 | displaced_state->failed_before = 1; | |
1920 | } | |
1921 | END_CATCH | |
1922 | ||
1923 | return prepared; | |
1924 | } | |
1925 | ||
237fc4c9 | 1926 | static void |
3e43a32a MS |
1927 | write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, |
1928 | const gdb_byte *myaddr, int len) | |
237fc4c9 PA |
1929 | { |
1930 | struct cleanup *ptid_cleanup = save_inferior_ptid (); | |
abbb1732 | 1931 | |
237fc4c9 PA |
1932 | inferior_ptid = ptid; |
1933 | write_memory (memaddr, myaddr, len); | |
1934 | do_cleanups (ptid_cleanup); | |
1935 | } | |
1936 | ||
e2d96639 YQ |
1937 | /* Restore the contents of the copy area for thread PTID. */ |
1938 | ||
1939 | static void | |
1940 | displaced_step_restore (struct displaced_step_inferior_state *displaced, | |
1941 | ptid_t ptid) | |
1942 | { | |
1943 | ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch); | |
1944 | ||
1945 | write_memory_ptid (ptid, displaced->step_copy, | |
1946 | displaced->step_saved_copy, len); | |
1947 | if (debug_displaced) | |
1948 | fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n", | |
1949 | target_pid_to_str (ptid), | |
1950 | paddress (displaced->step_gdbarch, | |
1951 | displaced->step_copy)); | |
1952 | } | |
1953 | ||
372316f1 PA |
1954 | /* If we displaced stepped an instruction successfully, adjust |
1955 | registers and memory to yield the same effect the instruction would | |
1956 | have had if we had executed it at its original address, and return | |
1957 | 1. If the instruction didn't complete, relocate the PC and return | |
1958 | -1. If the thread wasn't displaced stepping, return 0. */ | |
1959 | ||
1960 | static int | |
2ea28649 | 1961 | displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal) |
237fc4c9 PA |
1962 | { |
1963 | struct cleanup *old_cleanups; | |
fc1cf338 PA |
1964 | struct displaced_step_inferior_state *displaced |
1965 | = get_displaced_stepping_state (ptid_get_pid (event_ptid)); | |
372316f1 | 1966 | int ret; |
fc1cf338 PA |
1967 | |
1968 | /* Was any thread of this process doing a displaced step? */ | |
1969 | if (displaced == NULL) | |
372316f1 | 1970 | return 0; |
237fc4c9 PA |
1971 | |
1972 | /* Was this event for the pid we displaced? */ | |
fc1cf338 PA |
1973 | if (ptid_equal (displaced->step_ptid, null_ptid) |
1974 | || ! ptid_equal (displaced->step_ptid, event_ptid)) | |
372316f1 | 1975 | return 0; |
237fc4c9 | 1976 | |
fc1cf338 | 1977 | old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced); |
237fc4c9 | 1978 | |
e2d96639 | 1979 | displaced_step_restore (displaced, displaced->step_ptid); |
237fc4c9 | 1980 | |
cb71640d PA |
1981 | /* Fixup may need to read memory/registers. Switch to the thread |
1982 | that we're fixing up. Also, target_stopped_by_watchpoint checks | |
1983 | the current thread. */ | |
1984 | switch_to_thread (event_ptid); | |
1985 | ||
237fc4c9 | 1986 | /* Did the instruction complete successfully? */ |
cb71640d PA |
1987 | if (signal == GDB_SIGNAL_TRAP |
1988 | && !(target_stopped_by_watchpoint () | |
1989 | && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch) | |
1990 | || target_have_steppable_watchpoint))) | |
237fc4c9 PA |
1991 | { |
1992 | /* Fix up the resulting state. */ | |
fc1cf338 PA |
1993 | gdbarch_displaced_step_fixup (displaced->step_gdbarch, |
1994 | displaced->step_closure, | |
1995 | displaced->step_original, | |
1996 | displaced->step_copy, | |
1997 | get_thread_regcache (displaced->step_ptid)); | |
372316f1 | 1998 | ret = 1; |
237fc4c9 PA |
1999 | } |
2000 | else | |
2001 | { | |
2002 | /* Since the instruction didn't complete, all we can do is | |
2003 | relocate the PC. */ | |
515630c5 UW |
2004 | struct regcache *regcache = get_thread_regcache (event_ptid); |
2005 | CORE_ADDR pc = regcache_read_pc (regcache); | |
abbb1732 | 2006 | |
fc1cf338 | 2007 | pc = displaced->step_original + (pc - displaced->step_copy); |
515630c5 | 2008 | regcache_write_pc (regcache, pc); |
372316f1 | 2009 | ret = -1; |
237fc4c9 PA |
2010 | } |
2011 | ||
2012 | do_cleanups (old_cleanups); | |
2013 | ||
fc1cf338 | 2014 | displaced->step_ptid = null_ptid; |
372316f1 PA |
2015 | |
2016 | return ret; | |
c2829269 | 2017 | } |
1c5cfe86 | 2018 | |
4d9d9d04 PA |
2019 | /* Data to be passed around while handling an event. This data is |
2020 | discarded between events. */ | |
2021 | struct execution_control_state | |
2022 | { | |
2023 | ptid_t ptid; | |
2024 | /* The thread that got the event, if this was a thread event; NULL | |
2025 | otherwise. */ | |
2026 | struct thread_info *event_thread; | |
2027 | ||
2028 | struct target_waitstatus ws; | |
2029 | int stop_func_filled_in; | |
2030 | CORE_ADDR stop_func_start; | |
2031 | CORE_ADDR stop_func_end; | |
2032 | const char *stop_func_name; | |
2033 | int wait_some_more; | |
2034 | ||
2035 | /* True if the event thread hit the single-step breakpoint of | |
2036 | another thread. Thus the event doesn't cause a stop, the thread | |
2037 | needs to be single-stepped past the single-step breakpoint before | |
2038 | we can switch back to the original stepping thread. */ | |
2039 | int hit_singlestep_breakpoint; | |
2040 | }; | |
2041 | ||
2042 | /* Clear ECS and set it to point at TP. */ | |
c2829269 PA |
2043 | |
2044 | static void | |
4d9d9d04 PA |
2045 | reset_ecs (struct execution_control_state *ecs, struct thread_info *tp) |
2046 | { | |
2047 | memset (ecs, 0, sizeof (*ecs)); | |
2048 | ecs->event_thread = tp; | |
2049 | ecs->ptid = tp->ptid; | |
2050 | } | |
2051 | ||
2052 | static void keep_going_pass_signal (struct execution_control_state *ecs); | |
2053 | static void prepare_to_wait (struct execution_control_state *ecs); | |
2ac7589c | 2054 | static int keep_going_stepped_thread (struct thread_info *tp); |
8d297bbf | 2055 | static step_over_what thread_still_needs_step_over (struct thread_info *tp); |
4d9d9d04 PA |
2056 | |
2057 | /* Are there any pending step-over requests? If so, run all we can | |
2058 | now and return true. Otherwise, return false. */ | |
2059 | ||
2060 | static int | |
c2829269 PA |
2061 | start_step_over (void) |
2062 | { | |
2063 | struct thread_info *tp, *next; | |
2064 | ||
372316f1 PA |
2065 | /* Don't start a new step-over if we already have an in-line |
2066 | step-over operation ongoing. */ | |
2067 | if (step_over_info_valid_p ()) | |
2068 | return 0; | |
2069 | ||
c2829269 | 2070 | for (tp = step_over_queue_head; tp != NULL; tp = next) |
237fc4c9 | 2071 | { |
4d9d9d04 PA |
2072 | struct execution_control_state ecss; |
2073 | struct execution_control_state *ecs = &ecss; | |
8d297bbf | 2074 | step_over_what step_what; |
372316f1 | 2075 | int must_be_in_line; |
c2829269 PA |
2076 | |
2077 | next = thread_step_over_chain_next (tp); | |
237fc4c9 | 2078 | |
c2829269 PA |
2079 | /* If this inferior already has a displaced step in process, |
2080 | don't start a new one. */ | |
4d9d9d04 | 2081 | if (displaced_step_in_progress (ptid_get_pid (tp->ptid))) |
c2829269 PA |
2082 | continue; |
2083 | ||
372316f1 PA |
2084 | step_what = thread_still_needs_step_over (tp); |
2085 | must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT) | |
2086 | || ((step_what & STEP_OVER_BREAKPOINT) | |
3fc8eb30 | 2087 | && !use_displaced_stepping (tp))); |
372316f1 PA |
2088 | |
2089 | /* We currently stop all threads of all processes to step-over | |
2090 | in-line. If we need to start a new in-line step-over, let | |
2091 | any pending displaced steps finish first. */ | |
2092 | if (must_be_in_line && displaced_step_in_progress_any_inferior ()) | |
2093 | return 0; | |
2094 | ||
c2829269 PA |
2095 | thread_step_over_chain_remove (tp); |
2096 | ||
2097 | if (step_over_queue_head == NULL) | |
2098 | { | |
2099 | if (debug_infrun) | |
2100 | fprintf_unfiltered (gdb_stdlog, | |
2101 | "infrun: step-over queue now empty\n"); | |
2102 | } | |
2103 | ||
372316f1 PA |
2104 | if (tp->control.trap_expected |
2105 | || tp->resumed | |
2106 | || tp->executing) | |
ad53cd71 | 2107 | { |
4d9d9d04 PA |
2108 | internal_error (__FILE__, __LINE__, |
2109 | "[%s] has inconsistent state: " | |
372316f1 | 2110 | "trap_expected=%d, resumed=%d, executing=%d\n", |
4d9d9d04 PA |
2111 | target_pid_to_str (tp->ptid), |
2112 | tp->control.trap_expected, | |
372316f1 | 2113 | tp->resumed, |
4d9d9d04 | 2114 | tp->executing); |
ad53cd71 | 2115 | } |
1c5cfe86 | 2116 | |
4d9d9d04 PA |
2117 | if (debug_infrun) |
2118 | fprintf_unfiltered (gdb_stdlog, | |
2119 | "infrun: resuming [%s] for step-over\n", | |
2120 | target_pid_to_str (tp->ptid)); | |
2121 | ||
2122 | /* keep_going_pass_signal skips the step-over if the breakpoint | |
2123 | is no longer inserted. In all-stop, we want to keep looking | |
2124 | for a thread that needs a step-over instead of resuming TP, | |
2125 | because we wouldn't be able to resume anything else until the | |
2126 | target stops again. In non-stop, the resume always resumes | |
2127 | only TP, so it's OK to let the thread resume freely. */ | |
fbea99ea | 2128 | if (!target_is_non_stop_p () && !step_what) |
4d9d9d04 | 2129 | continue; |
8550d3b3 | 2130 | |
4d9d9d04 PA |
2131 | switch_to_thread (tp->ptid); |
2132 | reset_ecs (ecs, tp); | |
2133 | keep_going_pass_signal (ecs); | |
1c5cfe86 | 2134 | |
4d9d9d04 PA |
2135 | if (!ecs->wait_some_more) |
2136 | error (_("Command aborted.")); | |
1c5cfe86 | 2137 | |
372316f1 PA |
2138 | gdb_assert (tp->resumed); |
2139 | ||
2140 | /* If we started a new in-line step-over, we're done. */ | |
2141 | if (step_over_info_valid_p ()) | |
2142 | { | |
2143 | gdb_assert (tp->control.trap_expected); | |
2144 | return 1; | |
2145 | } | |
2146 | ||
fbea99ea | 2147 | if (!target_is_non_stop_p ()) |
4d9d9d04 PA |
2148 | { |
2149 | /* On all-stop, shouldn't have resumed unless we needed a | |
2150 | step over. */ | |
2151 | gdb_assert (tp->control.trap_expected | |
2152 | || tp->step_after_step_resume_breakpoint); | |
2153 | ||
2154 | /* With remote targets (at least), in all-stop, we can't | |
2155 | issue any further remote commands until the program stops | |
2156 | again. */ | |
2157 | return 1; | |
1c5cfe86 | 2158 | } |
c2829269 | 2159 | |
4d9d9d04 PA |
2160 | /* Either the thread no longer needed a step-over, or a new |
2161 | displaced stepping sequence started. Even in the latter | |
2162 | case, continue looking. Maybe we can also start another | |
2163 | displaced step on a thread of other process. */ | |
237fc4c9 | 2164 | } |
4d9d9d04 PA |
2165 | |
2166 | return 0; | |
237fc4c9 PA |
2167 | } |
2168 | ||
5231c1fd PA |
2169 | /* Update global variables holding ptids to hold NEW_PTID if they were |
2170 | holding OLD_PTID. */ | |
2171 | static void | |
2172 | infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) | |
2173 | { | |
2174 | struct displaced_step_request *it; | |
fc1cf338 | 2175 | struct displaced_step_inferior_state *displaced; |
5231c1fd PA |
2176 | |
2177 | if (ptid_equal (inferior_ptid, old_ptid)) | |
2178 | inferior_ptid = new_ptid; | |
2179 | ||
fc1cf338 PA |
2180 | for (displaced = displaced_step_inferior_states; |
2181 | displaced; | |
2182 | displaced = displaced->next) | |
2183 | { | |
2184 | if (ptid_equal (displaced->step_ptid, old_ptid)) | |
2185 | displaced->step_ptid = new_ptid; | |
fc1cf338 | 2186 | } |
5231c1fd PA |
2187 | } |
2188 | ||
237fc4c9 PA |
2189 | \f |
2190 | /* Resuming. */ | |
c906108c SS |
2191 | |
2192 | /* Things to clean up if we QUIT out of resume (). */ | |
c906108c | 2193 | static void |
74b7792f | 2194 | resume_cleanups (void *ignore) |
c906108c | 2195 | { |
34b7e8a6 PA |
2196 | if (!ptid_equal (inferior_ptid, null_ptid)) |
2197 | delete_single_step_breakpoints (inferior_thread ()); | |
7c16b83e | 2198 | |
c906108c SS |
2199 | normal_stop (); |
2200 | } | |
2201 | ||
53904c9e AC |
2202 | static const char schedlock_off[] = "off"; |
2203 | static const char schedlock_on[] = "on"; | |
2204 | static const char schedlock_step[] = "step"; | |
f2665db5 | 2205 | static const char schedlock_replay[] = "replay"; |
40478521 | 2206 | static const char *const scheduler_enums[] = { |
ef346e04 AC |
2207 | schedlock_off, |
2208 | schedlock_on, | |
2209 | schedlock_step, | |
f2665db5 | 2210 | schedlock_replay, |
ef346e04 AC |
2211 | NULL |
2212 | }; | |
f2665db5 | 2213 | static const char *scheduler_mode = schedlock_replay; |
920d2a44 AC |
2214 | static void |
2215 | show_scheduler_mode (struct ui_file *file, int from_tty, | |
2216 | struct cmd_list_element *c, const char *value) | |
2217 | { | |
3e43a32a MS |
2218 | fprintf_filtered (file, |
2219 | _("Mode for locking scheduler " | |
2220 | "during execution is \"%s\".\n"), | |
920d2a44 AC |
2221 | value); |
2222 | } | |
c906108c SS |
2223 | |
2224 | static void | |
96baa820 | 2225 | set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 2226 | { |
eefe576e AC |
2227 | if (!target_can_lock_scheduler) |
2228 | { | |
2229 | scheduler_mode = schedlock_off; | |
2230 | error (_("Target '%s' cannot support this command."), target_shortname); | |
2231 | } | |
c906108c SS |
2232 | } |
2233 | ||
d4db2f36 PA |
2234 | /* True if execution commands resume all threads of all processes by |
2235 | default; otherwise, resume only threads of the current inferior | |
2236 | process. */ | |
2237 | int sched_multi = 0; | |
2238 | ||
2facfe5c DD |
2239 | /* Try to setup for software single stepping over the specified location. |
2240 | Return 1 if target_resume() should use hardware single step. | |
2241 | ||
2242 | GDBARCH the current gdbarch. | |
2243 | PC the location to step over. */ | |
2244 | ||
2245 | static int | |
2246 | maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc) | |
2247 | { | |
2248 | int hw_step = 1; | |
2249 | ||
f02253f1 HZ |
2250 | if (execution_direction == EXEC_FORWARD |
2251 | && gdbarch_software_single_step_p (gdbarch) | |
99e40580 | 2252 | && gdbarch_software_single_step (gdbarch, get_current_frame ())) |
2facfe5c | 2253 | { |
99e40580 | 2254 | hw_step = 0; |
2facfe5c DD |
2255 | } |
2256 | return hw_step; | |
2257 | } | |
c906108c | 2258 | |
f3263aa4 PA |
2259 | /* See infrun.h. */ |
2260 | ||
09cee04b PA |
2261 | ptid_t |
2262 | user_visible_resume_ptid (int step) | |
2263 | { | |
f3263aa4 | 2264 | ptid_t resume_ptid; |
09cee04b | 2265 | |
09cee04b PA |
2266 | if (non_stop) |
2267 | { | |
2268 | /* With non-stop mode on, threads are always handled | |
2269 | individually. */ | |
2270 | resume_ptid = inferior_ptid; | |
2271 | } | |
2272 | else if ((scheduler_mode == schedlock_on) | |
03d46957 | 2273 | || (scheduler_mode == schedlock_step && step)) |
09cee04b | 2274 | { |
f3263aa4 PA |
2275 | /* User-settable 'scheduler' mode requires solo thread |
2276 | resume. */ | |
09cee04b PA |
2277 | resume_ptid = inferior_ptid; |
2278 | } | |
f2665db5 MM |
2279 | else if ((scheduler_mode == schedlock_replay) |
2280 | && target_record_will_replay (minus_one_ptid, execution_direction)) | |
2281 | { | |
2282 | /* User-settable 'scheduler' mode requires solo thread resume in replay | |
2283 | mode. */ | |
2284 | resume_ptid = inferior_ptid; | |
2285 | } | |
f3263aa4 PA |
2286 | else if (!sched_multi && target_supports_multi_process ()) |
2287 | { | |
2288 | /* Resume all threads of the current process (and none of other | |
2289 | processes). */ | |
2290 | resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); | |
2291 | } | |
2292 | else | |
2293 | { | |
2294 | /* Resume all threads of all processes. */ | |
2295 | resume_ptid = RESUME_ALL; | |
2296 | } | |
09cee04b PA |
2297 | |
2298 | return resume_ptid; | |
2299 | } | |
2300 | ||
fbea99ea PA |
2301 | /* Return a ptid representing the set of threads that we will resume, |
2302 | in the perspective of the target, assuming run control handling | |
2303 | does not require leaving some threads stopped (e.g., stepping past | |
2304 | breakpoint). USER_STEP indicates whether we're about to start the | |
2305 | target for a stepping command. */ | |
2306 | ||
2307 | static ptid_t | |
2308 | internal_resume_ptid (int user_step) | |
2309 | { | |
2310 | /* In non-stop, we always control threads individually. Note that | |
2311 | the target may always work in non-stop mode even with "set | |
2312 | non-stop off", in which case user_visible_resume_ptid could | |
2313 | return a wildcard ptid. */ | |
2314 | if (target_is_non_stop_p ()) | |
2315 | return inferior_ptid; | |
2316 | else | |
2317 | return user_visible_resume_ptid (user_step); | |
2318 | } | |
2319 | ||
64ce06e4 PA |
2320 | /* Wrapper for target_resume, that handles infrun-specific |
2321 | bookkeeping. */ | |
2322 | ||
2323 | static void | |
2324 | do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig) | |
2325 | { | |
2326 | struct thread_info *tp = inferior_thread (); | |
2327 | ||
2328 | /* Install inferior's terminal modes. */ | |
2329 | target_terminal_inferior (); | |
2330 | ||
2331 | /* Avoid confusing the next resume, if the next stop/resume | |
2332 | happens to apply to another thread. */ | |
2333 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2334 | ||
8f572e5c PA |
2335 | /* Advise target which signals may be handled silently. |
2336 | ||
2337 | If we have removed breakpoints because we are stepping over one | |
2338 | in-line (in any thread), we need to receive all signals to avoid | |
2339 | accidentally skipping a breakpoint during execution of a signal | |
2340 | handler. | |
2341 | ||
2342 | Likewise if we're displaced stepping, otherwise a trap for a | |
2343 | breakpoint in a signal handler might be confused with the | |
2344 | displaced step finishing. We don't make the displaced_step_fixup | |
2345 | step distinguish the cases instead, because: | |
2346 | ||
2347 | - a backtrace while stopped in the signal handler would show the | |
2348 | scratch pad as frame older than the signal handler, instead of | |
2349 | the real mainline code. | |
2350 | ||
2351 | - when the thread is later resumed, the signal handler would | |
2352 | return to the scratch pad area, which would no longer be | |
2353 | valid. */ | |
2354 | if (step_over_info_valid_p () | |
2355 | || displaced_step_in_progress (ptid_get_pid (tp->ptid))) | |
64ce06e4 PA |
2356 | target_pass_signals (0, NULL); |
2357 | else | |
2358 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); | |
2359 | ||
2360 | target_resume (resume_ptid, step, sig); | |
2361 | } | |
2362 | ||
c906108c SS |
2363 | /* Resume the inferior, but allow a QUIT. This is useful if the user |
2364 | wants to interrupt some lengthy single-stepping operation | |
2365 | (for child processes, the SIGINT goes to the inferior, and so | |
2366 | we get a SIGINT random_signal, but for remote debugging and perhaps | |
2367 | other targets, that's not true). | |
2368 | ||
c906108c SS |
2369 | SIG is the signal to give the inferior (zero for none). */ |
2370 | void | |
64ce06e4 | 2371 | resume (enum gdb_signal sig) |
c906108c | 2372 | { |
74b7792f | 2373 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); |
515630c5 UW |
2374 | struct regcache *regcache = get_current_regcache (); |
2375 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
4e1c45ea | 2376 | struct thread_info *tp = inferior_thread (); |
515630c5 | 2377 | CORE_ADDR pc = regcache_read_pc (regcache); |
6c95b8df | 2378 | struct address_space *aspace = get_regcache_aspace (regcache); |
b0f16a3e | 2379 | ptid_t resume_ptid; |
856e7dd6 PA |
2380 | /* This represents the user's step vs continue request. When |
2381 | deciding whether "set scheduler-locking step" applies, it's the | |
2382 | user's intention that counts. */ | |
2383 | const int user_step = tp->control.stepping_command; | |
64ce06e4 PA |
2384 | /* This represents what we'll actually request the target to do. |
2385 | This can decay from a step to a continue, if e.g., we need to | |
2386 | implement single-stepping with breakpoints (software | |
2387 | single-step). */ | |
6b403daa | 2388 | int step; |
c7e8a53c | 2389 | |
c2829269 PA |
2390 | gdb_assert (!thread_is_in_step_over_chain (tp)); |
2391 | ||
c906108c SS |
2392 | QUIT; |
2393 | ||
372316f1 PA |
2394 | if (tp->suspend.waitstatus_pending_p) |
2395 | { | |
2396 | if (debug_infrun) | |
2397 | { | |
2398 | char *statstr; | |
2399 | ||
2400 | statstr = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
2401 | fprintf_unfiltered (gdb_stdlog, | |
2402 | "infrun: resume: thread %s has pending wait status %s " | |
2403 | "(currently_stepping=%d).\n", | |
2404 | target_pid_to_str (tp->ptid), statstr, | |
2405 | currently_stepping (tp)); | |
2406 | xfree (statstr); | |
2407 | } | |
2408 | ||
2409 | tp->resumed = 1; | |
2410 | ||
2411 | /* FIXME: What should we do if we are supposed to resume this | |
2412 | thread with a signal? Maybe we should maintain a queue of | |
2413 | pending signals to deliver. */ | |
2414 | if (sig != GDB_SIGNAL_0) | |
2415 | { | |
fd7dcb94 | 2416 | warning (_("Couldn't deliver signal %s to %s."), |
372316f1 PA |
2417 | gdb_signal_to_name (sig), target_pid_to_str (tp->ptid)); |
2418 | } | |
2419 | ||
2420 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2421 | discard_cleanups (old_cleanups); | |
2422 | ||
2423 | if (target_can_async_p ()) | |
2424 | target_async (1); | |
2425 | return; | |
2426 | } | |
2427 | ||
2428 | tp->stepped_breakpoint = 0; | |
2429 | ||
6b403daa PA |
2430 | /* Depends on stepped_breakpoint. */ |
2431 | step = currently_stepping (tp); | |
2432 | ||
74609e71 YQ |
2433 | if (current_inferior ()->waiting_for_vfork_done) |
2434 | { | |
48f9886d PA |
2435 | /* Don't try to single-step a vfork parent that is waiting for |
2436 | the child to get out of the shared memory region (by exec'ing | |
2437 | or exiting). This is particularly important on software | |
2438 | single-step archs, as the child process would trip on the | |
2439 | software single step breakpoint inserted for the parent | |
2440 | process. Since the parent will not actually execute any | |
2441 | instruction until the child is out of the shared region (such | |
2442 | are vfork's semantics), it is safe to simply continue it. | |
2443 | Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for | |
2444 | the parent, and tell it to `keep_going', which automatically | |
2445 | re-sets it stepping. */ | |
74609e71 YQ |
2446 | if (debug_infrun) |
2447 | fprintf_unfiltered (gdb_stdlog, | |
2448 | "infrun: resume : clear step\n"); | |
a09dd441 | 2449 | step = 0; |
74609e71 YQ |
2450 | } |
2451 | ||
527159b7 | 2452 | if (debug_infrun) |
237fc4c9 | 2453 | fprintf_unfiltered (gdb_stdlog, |
c9737c08 | 2454 | "infrun: resume (step=%d, signal=%s), " |
0d9a9a5f | 2455 | "trap_expected=%d, current thread [%s] at %s\n", |
c9737c08 PA |
2456 | step, gdb_signal_to_symbol_string (sig), |
2457 | tp->control.trap_expected, | |
0d9a9a5f PA |
2458 | target_pid_to_str (inferior_ptid), |
2459 | paddress (gdbarch, pc)); | |
c906108c | 2460 | |
c2c6d25f JM |
2461 | /* Normally, by the time we reach `resume', the breakpoints are either |
2462 | removed or inserted, as appropriate. The exception is if we're sitting | |
2463 | at a permanent breakpoint; we need to step over it, but permanent | |
2464 | breakpoints can't be removed. So we have to test for it here. */ | |
6c95b8df | 2465 | if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) |
6d350bb5 | 2466 | { |
af48d08f PA |
2467 | if (sig != GDB_SIGNAL_0) |
2468 | { | |
2469 | /* We have a signal to pass to the inferior. The resume | |
2470 | may, or may not take us to the signal handler. If this | |
2471 | is a step, we'll need to stop in the signal handler, if | |
2472 | there's one, (if the target supports stepping into | |
2473 | handlers), or in the next mainline instruction, if | |
2474 | there's no handler. If this is a continue, we need to be | |
2475 | sure to run the handler with all breakpoints inserted. | |
2476 | In all cases, set a breakpoint at the current address | |
2477 | (where the handler returns to), and once that breakpoint | |
2478 | is hit, resume skipping the permanent breakpoint. If | |
2479 | that breakpoint isn't hit, then we've stepped into the | |
2480 | signal handler (or hit some other event). We'll delete | |
2481 | the step-resume breakpoint then. */ | |
2482 | ||
2483 | if (debug_infrun) | |
2484 | fprintf_unfiltered (gdb_stdlog, | |
2485 | "infrun: resume: skipping permanent breakpoint, " | |
2486 | "deliver signal first\n"); | |
2487 | ||
2488 | clear_step_over_info (); | |
2489 | tp->control.trap_expected = 0; | |
2490 | ||
2491 | if (tp->control.step_resume_breakpoint == NULL) | |
2492 | { | |
2493 | /* Set a "high-priority" step-resume, as we don't want | |
2494 | user breakpoints at PC to trigger (again) when this | |
2495 | hits. */ | |
2496 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); | |
2497 | gdb_assert (tp->control.step_resume_breakpoint->loc->permanent); | |
2498 | ||
2499 | tp->step_after_step_resume_breakpoint = step; | |
2500 | } | |
2501 | ||
2502 | insert_breakpoints (); | |
2503 | } | |
2504 | else | |
2505 | { | |
2506 | /* There's no signal to pass, we can go ahead and skip the | |
2507 | permanent breakpoint manually. */ | |
2508 | if (debug_infrun) | |
2509 | fprintf_unfiltered (gdb_stdlog, | |
2510 | "infrun: resume: skipping permanent breakpoint\n"); | |
2511 | gdbarch_skip_permanent_breakpoint (gdbarch, regcache); | |
2512 | /* Update pc to reflect the new address from which we will | |
2513 | execute instructions. */ | |
2514 | pc = regcache_read_pc (regcache); | |
2515 | ||
2516 | if (step) | |
2517 | { | |
2518 | /* We've already advanced the PC, so the stepping part | |
2519 | is done. Now we need to arrange for a trap to be | |
2520 | reported to handle_inferior_event. Set a breakpoint | |
2521 | at the current PC, and run to it. Don't update | |
2522 | prev_pc, because if we end in | |
44a1ee51 PA |
2523 | switch_back_to_stepped_thread, we want the "expected |
2524 | thread advanced also" branch to be taken. IOW, we | |
2525 | don't want this thread to step further from PC | |
af48d08f | 2526 | (overstep). */ |
1ac806b8 | 2527 | gdb_assert (!step_over_info_valid_p ()); |
af48d08f PA |
2528 | insert_single_step_breakpoint (gdbarch, aspace, pc); |
2529 | insert_breakpoints (); | |
2530 | ||
fbea99ea | 2531 | resume_ptid = internal_resume_ptid (user_step); |
1ac806b8 | 2532 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
af48d08f | 2533 | discard_cleanups (old_cleanups); |
372316f1 | 2534 | tp->resumed = 1; |
af48d08f PA |
2535 | return; |
2536 | } | |
2537 | } | |
6d350bb5 | 2538 | } |
c2c6d25f | 2539 | |
c1e36e3e PA |
2540 | /* If we have a breakpoint to step over, make sure to do a single |
2541 | step only. Same if we have software watchpoints. */ | |
2542 | if (tp->control.trap_expected || bpstat_should_step ()) | |
2543 | tp->control.may_range_step = 0; | |
2544 | ||
237fc4c9 PA |
2545 | /* If enabled, step over breakpoints by executing a copy of the |
2546 | instruction at a different address. | |
2547 | ||
2548 | We can't use displaced stepping when we have a signal to deliver; | |
2549 | the comments for displaced_step_prepare explain why. The | |
2550 | comments in the handle_inferior event for dealing with 'random | |
74609e71 YQ |
2551 | signals' explain what we do instead. |
2552 | ||
2553 | We can't use displaced stepping when we are waiting for vfork_done | |
2554 | event, displaced stepping breaks the vfork child similarly as single | |
2555 | step software breakpoint. */ | |
3fc8eb30 PA |
2556 | if (tp->control.trap_expected |
2557 | && use_displaced_stepping (tp) | |
cb71640d | 2558 | && !step_over_info_valid_p () |
a493e3e2 | 2559 | && sig == GDB_SIGNAL_0 |
74609e71 | 2560 | && !current_inferior ()->waiting_for_vfork_done) |
237fc4c9 | 2561 | { |
3fc8eb30 | 2562 | int prepared = displaced_step_prepare (inferior_ptid); |
fc1cf338 | 2563 | |
3fc8eb30 | 2564 | if (prepared == 0) |
d56b7306 | 2565 | { |
4d9d9d04 PA |
2566 | if (debug_infrun) |
2567 | fprintf_unfiltered (gdb_stdlog, | |
2568 | "Got placed in step-over queue\n"); | |
2569 | ||
2570 | tp->control.trap_expected = 0; | |
d56b7306 VP |
2571 | discard_cleanups (old_cleanups); |
2572 | return; | |
2573 | } | |
3fc8eb30 PA |
2574 | else if (prepared < 0) |
2575 | { | |
2576 | /* Fallback to stepping over the breakpoint in-line. */ | |
2577 | ||
2578 | if (target_is_non_stop_p ()) | |
2579 | stop_all_threads (); | |
2580 | ||
2581 | set_step_over_info (get_regcache_aspace (regcache), | |
2582 | regcache_read_pc (regcache), 0); | |
2583 | ||
2584 | step = maybe_software_singlestep (gdbarch, pc); | |
2585 | ||
2586 | insert_breakpoints (); | |
2587 | } | |
2588 | else if (prepared > 0) | |
2589 | { | |
2590 | struct displaced_step_inferior_state *displaced; | |
99e40580 | 2591 | |
3fc8eb30 PA |
2592 | /* Update pc to reflect the new address from which we will |
2593 | execute instructions due to displaced stepping. */ | |
2594 | pc = regcache_read_pc (get_thread_regcache (inferior_ptid)); | |
ca7781d2 | 2595 | |
3fc8eb30 PA |
2596 | displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid)); |
2597 | step = gdbarch_displaced_step_hw_singlestep (gdbarch, | |
2598 | displaced->step_closure); | |
2599 | } | |
237fc4c9 PA |
2600 | } |
2601 | ||
2facfe5c | 2602 | /* Do we need to do it the hard way, w/temp breakpoints? */ |
99e40580 | 2603 | else if (step) |
2facfe5c | 2604 | step = maybe_software_singlestep (gdbarch, pc); |
c906108c | 2605 | |
30852783 UW |
2606 | /* Currently, our software single-step implementation leads to different |
2607 | results than hardware single-stepping in one situation: when stepping | |
2608 | into delivering a signal which has an associated signal handler, | |
2609 | hardware single-step will stop at the first instruction of the handler, | |
2610 | while software single-step will simply skip execution of the handler. | |
2611 | ||
2612 | For now, this difference in behavior is accepted since there is no | |
2613 | easy way to actually implement single-stepping into a signal handler | |
2614 | without kernel support. | |
2615 | ||
2616 | However, there is one scenario where this difference leads to follow-on | |
2617 | problems: if we're stepping off a breakpoint by removing all breakpoints | |
2618 | and then single-stepping. In this case, the software single-step | |
2619 | behavior means that even if there is a *breakpoint* in the signal | |
2620 | handler, GDB still would not stop. | |
2621 | ||
2622 | Fortunately, we can at least fix this particular issue. We detect | |
2623 | here the case where we are about to deliver a signal while software | |
2624 | single-stepping with breakpoints removed. In this situation, we | |
2625 | revert the decisions to remove all breakpoints and insert single- | |
2626 | step breakpoints, and instead we install a step-resume breakpoint | |
2627 | at the current address, deliver the signal without stepping, and | |
2628 | once we arrive back at the step-resume breakpoint, actually step | |
2629 | over the breakpoint we originally wanted to step over. */ | |
34b7e8a6 | 2630 | if (thread_has_single_step_breakpoints_set (tp) |
6cc83d2a PA |
2631 | && sig != GDB_SIGNAL_0 |
2632 | && step_over_info_valid_p ()) | |
30852783 UW |
2633 | { |
2634 | /* If we have nested signals or a pending signal is delivered | |
2635 | immediately after a handler returns, might might already have | |
2636 | a step-resume breakpoint set on the earlier handler. We cannot | |
2637 | set another step-resume breakpoint; just continue on until the | |
2638 | original breakpoint is hit. */ | |
2639 | if (tp->control.step_resume_breakpoint == NULL) | |
2640 | { | |
2c03e5be | 2641 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); |
30852783 UW |
2642 | tp->step_after_step_resume_breakpoint = 1; |
2643 | } | |
2644 | ||
34b7e8a6 | 2645 | delete_single_step_breakpoints (tp); |
30852783 | 2646 | |
31e77af2 | 2647 | clear_step_over_info (); |
30852783 | 2648 | tp->control.trap_expected = 0; |
31e77af2 PA |
2649 | |
2650 | insert_breakpoints (); | |
30852783 UW |
2651 | } |
2652 | ||
b0f16a3e SM |
2653 | /* If STEP is set, it's a request to use hardware stepping |
2654 | facilities. But in that case, we should never | |
2655 | use singlestep breakpoint. */ | |
34b7e8a6 | 2656 | gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step)); |
dfcd3bfb | 2657 | |
fbea99ea | 2658 | /* Decide the set of threads to ask the target to resume. */ |
1946c4cc | 2659 | if (tp->control.trap_expected) |
b0f16a3e SM |
2660 | { |
2661 | /* We're allowing a thread to run past a breakpoint it has | |
1946c4cc YQ |
2662 | hit, either by single-stepping the thread with the breakpoint |
2663 | removed, or by displaced stepping, with the breakpoint inserted. | |
2664 | In the former case, we need to single-step only this thread, | |
2665 | and keep others stopped, as they can miss this breakpoint if | |
2666 | allowed to run. That's not really a problem for displaced | |
2667 | stepping, but, we still keep other threads stopped, in case | |
2668 | another thread is also stopped for a breakpoint waiting for | |
2669 | its turn in the displaced stepping queue. */ | |
b0f16a3e SM |
2670 | resume_ptid = inferior_ptid; |
2671 | } | |
fbea99ea PA |
2672 | else |
2673 | resume_ptid = internal_resume_ptid (user_step); | |
d4db2f36 | 2674 | |
7f5ef605 PA |
2675 | if (execution_direction != EXEC_REVERSE |
2676 | && step && breakpoint_inserted_here_p (aspace, pc)) | |
b0f16a3e | 2677 | { |
372316f1 PA |
2678 | /* There are two cases where we currently need to step a |
2679 | breakpoint instruction when we have a signal to deliver: | |
2680 | ||
2681 | - See handle_signal_stop where we handle random signals that | |
2682 | could take out us out of the stepping range. Normally, in | |
2683 | that case we end up continuing (instead of stepping) over the | |
7f5ef605 PA |
2684 | signal handler with a breakpoint at PC, but there are cases |
2685 | where we should _always_ single-step, even if we have a | |
2686 | step-resume breakpoint, like when a software watchpoint is | |
2687 | set. Assuming single-stepping and delivering a signal at the | |
2688 | same time would takes us to the signal handler, then we could | |
2689 | have removed the breakpoint at PC to step over it. However, | |
2690 | some hardware step targets (like e.g., Mac OS) can't step | |
2691 | into signal handlers, and for those, we need to leave the | |
2692 | breakpoint at PC inserted, as otherwise if the handler | |
2693 | recurses and executes PC again, it'll miss the breakpoint. | |
2694 | So we leave the breakpoint inserted anyway, but we need to | |
2695 | record that we tried to step a breakpoint instruction, so | |
372316f1 PA |
2696 | that adjust_pc_after_break doesn't end up confused. |
2697 | ||
2698 | - In non-stop if we insert a breakpoint (e.g., a step-resume) | |
2699 | in one thread after another thread that was stepping had been | |
2700 | momentarily paused for a step-over. When we re-resume the | |
2701 | stepping thread, it may be resumed from that address with a | |
2702 | breakpoint that hasn't trapped yet. Seen with | |
2703 | gdb.threads/non-stop-fair-events.exp, on targets that don't | |
2704 | do displaced stepping. */ | |
2705 | ||
2706 | if (debug_infrun) | |
2707 | fprintf_unfiltered (gdb_stdlog, | |
2708 | "infrun: resume: [%s] stepped breakpoint\n", | |
2709 | target_pid_to_str (tp->ptid)); | |
7f5ef605 PA |
2710 | |
2711 | tp->stepped_breakpoint = 1; | |
2712 | ||
b0f16a3e SM |
2713 | /* Most targets can step a breakpoint instruction, thus |
2714 | executing it normally. But if this one cannot, just | |
2715 | continue and we will hit it anyway. */ | |
7f5ef605 | 2716 | if (gdbarch_cannot_step_breakpoint (gdbarch)) |
b0f16a3e SM |
2717 | step = 0; |
2718 | } | |
ef5cf84e | 2719 | |
b0f16a3e | 2720 | if (debug_displaced |
cb71640d | 2721 | && tp->control.trap_expected |
3fc8eb30 | 2722 | && use_displaced_stepping (tp) |
cb71640d | 2723 | && !step_over_info_valid_p ()) |
b0f16a3e | 2724 | { |
d9b67d9f | 2725 | struct regcache *resume_regcache = get_thread_regcache (tp->ptid); |
b0f16a3e SM |
2726 | struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache); |
2727 | CORE_ADDR actual_pc = regcache_read_pc (resume_regcache); | |
2728 | gdb_byte buf[4]; | |
2729 | ||
2730 | fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", | |
2731 | paddress (resume_gdbarch, actual_pc)); | |
2732 | read_memory (actual_pc, buf, sizeof (buf)); | |
2733 | displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); | |
2734 | } | |
237fc4c9 | 2735 | |
b0f16a3e SM |
2736 | if (tp->control.may_range_step) |
2737 | { | |
2738 | /* If we're resuming a thread with the PC out of the step | |
2739 | range, then we're doing some nested/finer run control | |
2740 | operation, like stepping the thread out of the dynamic | |
2741 | linker or the displaced stepping scratch pad. We | |
2742 | shouldn't have allowed a range step then. */ | |
2743 | gdb_assert (pc_in_thread_step_range (pc, tp)); | |
2744 | } | |
c1e36e3e | 2745 | |
64ce06e4 | 2746 | do_target_resume (resume_ptid, step, sig); |
372316f1 | 2747 | tp->resumed = 1; |
c906108c SS |
2748 | discard_cleanups (old_cleanups); |
2749 | } | |
2750 | \f | |
237fc4c9 | 2751 | /* Proceeding. */ |
c906108c | 2752 | |
4c2f2a79 PA |
2753 | /* See infrun.h. */ |
2754 | ||
2755 | /* Counter that tracks number of user visible stops. This can be used | |
2756 | to tell whether a command has proceeded the inferior past the | |
2757 | current location. This allows e.g., inferior function calls in | |
2758 | breakpoint commands to not interrupt the command list. When the | |
2759 | call finishes successfully, the inferior is standing at the same | |
2760 | breakpoint as if nothing happened (and so we don't call | |
2761 | normal_stop). */ | |
2762 | static ULONGEST current_stop_id; | |
2763 | ||
2764 | /* See infrun.h. */ | |
2765 | ||
2766 | ULONGEST | |
2767 | get_stop_id (void) | |
2768 | { | |
2769 | return current_stop_id; | |
2770 | } | |
2771 | ||
2772 | /* Called when we report a user visible stop. */ | |
2773 | ||
2774 | static void | |
2775 | new_stop_id (void) | |
2776 | { | |
2777 | current_stop_id++; | |
2778 | } | |
2779 | ||
c906108c SS |
2780 | /* Clear out all variables saying what to do when inferior is continued. |
2781 | First do this, then set the ones you want, then call `proceed'. */ | |
2782 | ||
a7212384 UW |
2783 | static void |
2784 | clear_proceed_status_thread (struct thread_info *tp) | |
c906108c | 2785 | { |
a7212384 UW |
2786 | if (debug_infrun) |
2787 | fprintf_unfiltered (gdb_stdlog, | |
2788 | "infrun: clear_proceed_status_thread (%s)\n", | |
2789 | target_pid_to_str (tp->ptid)); | |
d6b48e9c | 2790 | |
372316f1 PA |
2791 | /* If we're starting a new sequence, then the previous finished |
2792 | single-step is no longer relevant. */ | |
2793 | if (tp->suspend.waitstatus_pending_p) | |
2794 | { | |
2795 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP) | |
2796 | { | |
2797 | if (debug_infrun) | |
2798 | fprintf_unfiltered (gdb_stdlog, | |
2799 | "infrun: clear_proceed_status: pending " | |
2800 | "event of %s was a finished step. " | |
2801 | "Discarding.\n", | |
2802 | target_pid_to_str (tp->ptid)); | |
2803 | ||
2804 | tp->suspend.waitstatus_pending_p = 0; | |
2805 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
2806 | } | |
2807 | else if (debug_infrun) | |
2808 | { | |
2809 | char *statstr; | |
2810 | ||
2811 | statstr = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
2812 | fprintf_unfiltered (gdb_stdlog, | |
2813 | "infrun: clear_proceed_status_thread: thread %s " | |
2814 | "has pending wait status %s " | |
2815 | "(currently_stepping=%d).\n", | |
2816 | target_pid_to_str (tp->ptid), statstr, | |
2817 | currently_stepping (tp)); | |
2818 | xfree (statstr); | |
2819 | } | |
2820 | } | |
2821 | ||
70509625 PA |
2822 | /* If this signal should not be seen by program, give it zero. |
2823 | Used for debugging signals. */ | |
2824 | if (!signal_pass_state (tp->suspend.stop_signal)) | |
2825 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2826 | ||
243a9253 PA |
2827 | thread_fsm_delete (tp->thread_fsm); |
2828 | tp->thread_fsm = NULL; | |
2829 | ||
16c381f0 JK |
2830 | tp->control.trap_expected = 0; |
2831 | tp->control.step_range_start = 0; | |
2832 | tp->control.step_range_end = 0; | |
c1e36e3e | 2833 | tp->control.may_range_step = 0; |
16c381f0 JK |
2834 | tp->control.step_frame_id = null_frame_id; |
2835 | tp->control.step_stack_frame_id = null_frame_id; | |
2836 | tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE; | |
885eeb5b | 2837 | tp->control.step_start_function = NULL; |
a7212384 | 2838 | tp->stop_requested = 0; |
4e1c45ea | 2839 | |
16c381f0 | 2840 | tp->control.stop_step = 0; |
32400beb | 2841 | |
16c381f0 | 2842 | tp->control.proceed_to_finish = 0; |
414c69f7 | 2843 | |
17b2616c | 2844 | tp->control.command_interp = NULL; |
856e7dd6 | 2845 | tp->control.stepping_command = 0; |
17b2616c | 2846 | |
a7212384 | 2847 | /* Discard any remaining commands or status from previous stop. */ |
16c381f0 | 2848 | bpstat_clear (&tp->control.stop_bpstat); |
a7212384 | 2849 | } |
32400beb | 2850 | |
a7212384 | 2851 | void |
70509625 | 2852 | clear_proceed_status (int step) |
a7212384 | 2853 | { |
f2665db5 MM |
2854 | /* With scheduler-locking replay, stop replaying other threads if we're |
2855 | not replaying the user-visible resume ptid. | |
2856 | ||
2857 | This is a convenience feature to not require the user to explicitly | |
2858 | stop replaying the other threads. We're assuming that the user's | |
2859 | intent is to resume tracing the recorded process. */ | |
2860 | if (!non_stop && scheduler_mode == schedlock_replay | |
2861 | && target_record_is_replaying (minus_one_ptid) | |
2862 | && !target_record_will_replay (user_visible_resume_ptid (step), | |
2863 | execution_direction)) | |
2864 | target_record_stop_replaying (); | |
2865 | ||
6c95b8df PA |
2866 | if (!non_stop) |
2867 | { | |
70509625 PA |
2868 | struct thread_info *tp; |
2869 | ptid_t resume_ptid; | |
2870 | ||
2871 | resume_ptid = user_visible_resume_ptid (step); | |
2872 | ||
2873 | /* In all-stop mode, delete the per-thread status of all threads | |
2874 | we're about to resume, implicitly and explicitly. */ | |
2875 | ALL_NON_EXITED_THREADS (tp) | |
2876 | { | |
2877 | if (!ptid_match (tp->ptid, resume_ptid)) | |
2878 | continue; | |
2879 | clear_proceed_status_thread (tp); | |
2880 | } | |
6c95b8df PA |
2881 | } |
2882 | ||
a7212384 UW |
2883 | if (!ptid_equal (inferior_ptid, null_ptid)) |
2884 | { | |
2885 | struct inferior *inferior; | |
2886 | ||
2887 | if (non_stop) | |
2888 | { | |
6c95b8df PA |
2889 | /* If in non-stop mode, only delete the per-thread status of |
2890 | the current thread. */ | |
a7212384 UW |
2891 | clear_proceed_status_thread (inferior_thread ()); |
2892 | } | |
6c95b8df | 2893 | |
d6b48e9c | 2894 | inferior = current_inferior (); |
16c381f0 | 2895 | inferior->control.stop_soon = NO_STOP_QUIETLY; |
4e1c45ea PA |
2896 | } |
2897 | ||
f3b1572e | 2898 | observer_notify_about_to_proceed (); |
c906108c SS |
2899 | } |
2900 | ||
99619bea PA |
2901 | /* Returns true if TP is still stopped at a breakpoint that needs |
2902 | stepping-over in order to make progress. If the breakpoint is gone | |
2903 | meanwhile, we can skip the whole step-over dance. */ | |
ea67f13b DJ |
2904 | |
2905 | static int | |
6c4cfb24 | 2906 | thread_still_needs_step_over_bp (struct thread_info *tp) |
99619bea PA |
2907 | { |
2908 | if (tp->stepping_over_breakpoint) | |
2909 | { | |
2910 | struct regcache *regcache = get_thread_regcache (tp->ptid); | |
2911 | ||
2912 | if (breakpoint_here_p (get_regcache_aspace (regcache), | |
af48d08f PA |
2913 | regcache_read_pc (regcache)) |
2914 | == ordinary_breakpoint_here) | |
99619bea PA |
2915 | return 1; |
2916 | ||
2917 | tp->stepping_over_breakpoint = 0; | |
2918 | } | |
2919 | ||
2920 | return 0; | |
2921 | } | |
2922 | ||
6c4cfb24 PA |
2923 | /* Check whether thread TP still needs to start a step-over in order |
2924 | to make progress when resumed. Returns an bitwise or of enum | |
2925 | step_over_what bits, indicating what needs to be stepped over. */ | |
2926 | ||
8d297bbf | 2927 | static step_over_what |
6c4cfb24 PA |
2928 | thread_still_needs_step_over (struct thread_info *tp) |
2929 | { | |
2930 | struct inferior *inf = find_inferior_ptid (tp->ptid); | |
8d297bbf | 2931 | step_over_what what = 0; |
6c4cfb24 PA |
2932 | |
2933 | if (thread_still_needs_step_over_bp (tp)) | |
2934 | what |= STEP_OVER_BREAKPOINT; | |
2935 | ||
2936 | if (tp->stepping_over_watchpoint | |
2937 | && !target_have_steppable_watchpoint) | |
2938 | what |= STEP_OVER_WATCHPOINT; | |
2939 | ||
2940 | return what; | |
2941 | } | |
2942 | ||
483805cf PA |
2943 | /* Returns true if scheduler locking applies. STEP indicates whether |
2944 | we're about to do a step/next-like command to a thread. */ | |
2945 | ||
2946 | static int | |
856e7dd6 | 2947 | schedlock_applies (struct thread_info *tp) |
483805cf PA |
2948 | { |
2949 | return (scheduler_mode == schedlock_on | |
2950 | || (scheduler_mode == schedlock_step | |
f2665db5 MM |
2951 | && tp->control.stepping_command) |
2952 | || (scheduler_mode == schedlock_replay | |
2953 | && target_record_will_replay (minus_one_ptid, | |
2954 | execution_direction))); | |
483805cf PA |
2955 | } |
2956 | ||
c906108c SS |
2957 | /* Basic routine for continuing the program in various fashions. |
2958 | ||
2959 | ADDR is the address to resume at, or -1 for resume where stopped. | |
2960 | SIGGNAL is the signal to give it, or 0 for none, | |
c5aa993b | 2961 | or -1 for act according to how it stopped. |
c906108c | 2962 | STEP is nonzero if should trap after one instruction. |
c5aa993b JM |
2963 | -1 means return after that and print nothing. |
2964 | You should probably set various step_... variables | |
2965 | before calling here, if you are stepping. | |
c906108c SS |
2966 | |
2967 | You should call clear_proceed_status before calling proceed. */ | |
2968 | ||
2969 | void | |
64ce06e4 | 2970 | proceed (CORE_ADDR addr, enum gdb_signal siggnal) |
c906108c | 2971 | { |
e58b0e63 PA |
2972 | struct regcache *regcache; |
2973 | struct gdbarch *gdbarch; | |
4e1c45ea | 2974 | struct thread_info *tp; |
e58b0e63 | 2975 | CORE_ADDR pc; |
6c95b8df | 2976 | struct address_space *aspace; |
4d9d9d04 PA |
2977 | ptid_t resume_ptid; |
2978 | struct execution_control_state ecss; | |
2979 | struct execution_control_state *ecs = &ecss; | |
2980 | struct cleanup *old_chain; | |
2981 | int started; | |
c906108c | 2982 | |
e58b0e63 PA |
2983 | /* If we're stopped at a fork/vfork, follow the branch set by the |
2984 | "set follow-fork-mode" command; otherwise, we'll just proceed | |
2985 | resuming the current thread. */ | |
2986 | if (!follow_fork ()) | |
2987 | { | |
2988 | /* The target for some reason decided not to resume. */ | |
2989 | normal_stop (); | |
f148b27e PA |
2990 | if (target_can_async_p ()) |
2991 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
e58b0e63 PA |
2992 | return; |
2993 | } | |
2994 | ||
842951eb PA |
2995 | /* We'll update this if & when we switch to a new thread. */ |
2996 | previous_inferior_ptid = inferior_ptid; | |
2997 | ||
e58b0e63 PA |
2998 | regcache = get_current_regcache (); |
2999 | gdbarch = get_regcache_arch (regcache); | |
6c95b8df | 3000 | aspace = get_regcache_aspace (regcache); |
e58b0e63 | 3001 | pc = regcache_read_pc (regcache); |
2adfaa28 | 3002 | tp = inferior_thread (); |
e58b0e63 | 3003 | |
99619bea PA |
3004 | /* Fill in with reasonable starting values. */ |
3005 | init_thread_stepping_state (tp); | |
3006 | ||
c2829269 PA |
3007 | gdb_assert (!thread_is_in_step_over_chain (tp)); |
3008 | ||
2acceee2 | 3009 | if (addr == (CORE_ADDR) -1) |
c906108c | 3010 | { |
af48d08f PA |
3011 | if (pc == stop_pc |
3012 | && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here | |
b2175913 | 3013 | && execution_direction != EXEC_REVERSE) |
3352ef37 AC |
3014 | /* There is a breakpoint at the address we will resume at, |
3015 | step one instruction before inserting breakpoints so that | |
3016 | we do not stop right away (and report a second hit at this | |
b2175913 MS |
3017 | breakpoint). |
3018 | ||
3019 | Note, we don't do this in reverse, because we won't | |
3020 | actually be executing the breakpoint insn anyway. | |
3021 | We'll be (un-)executing the previous instruction. */ | |
99619bea | 3022 | tp->stepping_over_breakpoint = 1; |
515630c5 UW |
3023 | else if (gdbarch_single_step_through_delay_p (gdbarch) |
3024 | && gdbarch_single_step_through_delay (gdbarch, | |
3025 | get_current_frame ())) | |
3352ef37 AC |
3026 | /* We stepped onto an instruction that needs to be stepped |
3027 | again before re-inserting the breakpoint, do so. */ | |
99619bea | 3028 | tp->stepping_over_breakpoint = 1; |
c906108c SS |
3029 | } |
3030 | else | |
3031 | { | |
515630c5 | 3032 | regcache_write_pc (regcache, addr); |
c906108c SS |
3033 | } |
3034 | ||
70509625 PA |
3035 | if (siggnal != GDB_SIGNAL_DEFAULT) |
3036 | tp->suspend.stop_signal = siggnal; | |
3037 | ||
17b2616c PA |
3038 | /* Record the interpreter that issued the execution command that |
3039 | caused this thread to resume. If the top level interpreter is | |
3040 | MI/async, and the execution command was a CLI command | |
3041 | (next/step/etc.), we'll want to print stop event output to the MI | |
3042 | console channel (the stepped-to line, etc.), as if the user | |
3043 | entered the execution command on a real GDB console. */ | |
4d9d9d04 PA |
3044 | tp->control.command_interp = command_interp (); |
3045 | ||
3046 | resume_ptid = user_visible_resume_ptid (tp->control.stepping_command); | |
3047 | ||
3048 | /* If an exception is thrown from this point on, make sure to | |
3049 | propagate GDB's knowledge of the executing state to the | |
3050 | frontend/user running state. */ | |
3051 | old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid); | |
3052 | ||
3053 | /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer | |
3054 | threads (e.g., we might need to set threads stepping over | |
3055 | breakpoints first), from the user/frontend's point of view, all | |
3056 | threads in RESUME_PTID are now running. Unless we're calling an | |
3057 | inferior function, as in that case we pretend the inferior | |
3058 | doesn't run at all. */ | |
3059 | if (!tp->control.in_infcall) | |
3060 | set_running (resume_ptid, 1); | |
17b2616c | 3061 | |
527159b7 | 3062 | if (debug_infrun) |
8a9de0e4 | 3063 | fprintf_unfiltered (gdb_stdlog, |
64ce06e4 | 3064 | "infrun: proceed (addr=%s, signal=%s)\n", |
c9737c08 | 3065 | paddress (gdbarch, addr), |
64ce06e4 | 3066 | gdb_signal_to_symbol_string (siggnal)); |
527159b7 | 3067 | |
4d9d9d04 PA |
3068 | annotate_starting (); |
3069 | ||
3070 | /* Make sure that output from GDB appears before output from the | |
3071 | inferior. */ | |
3072 | gdb_flush (gdb_stdout); | |
3073 | ||
3074 | /* In a multi-threaded task we may select another thread and | |
3075 | then continue or step. | |
3076 | ||
3077 | But if a thread that we're resuming had stopped at a breakpoint, | |
3078 | it will immediately cause another breakpoint stop without any | |
3079 | execution (i.e. it will report a breakpoint hit incorrectly). So | |
3080 | we must step over it first. | |
3081 | ||
3082 | Look for threads other than the current (TP) that reported a | |
3083 | breakpoint hit and haven't been resumed yet since. */ | |
3084 | ||
3085 | /* If scheduler locking applies, we can avoid iterating over all | |
3086 | threads. */ | |
3087 | if (!non_stop && !schedlock_applies (tp)) | |
94cc34af | 3088 | { |
4d9d9d04 PA |
3089 | struct thread_info *current = tp; |
3090 | ||
3091 | ALL_NON_EXITED_THREADS (tp) | |
3092 | { | |
3093 | /* Ignore the current thread here. It's handled | |
3094 | afterwards. */ | |
3095 | if (tp == current) | |
3096 | continue; | |
99619bea | 3097 | |
4d9d9d04 PA |
3098 | /* Ignore threads of processes we're not resuming. */ |
3099 | if (!ptid_match (tp->ptid, resume_ptid)) | |
3100 | continue; | |
c906108c | 3101 | |
4d9d9d04 PA |
3102 | if (!thread_still_needs_step_over (tp)) |
3103 | continue; | |
3104 | ||
3105 | gdb_assert (!thread_is_in_step_over_chain (tp)); | |
c906108c | 3106 | |
99619bea PA |
3107 | if (debug_infrun) |
3108 | fprintf_unfiltered (gdb_stdlog, | |
3109 | "infrun: need to step-over [%s] first\n", | |
4d9d9d04 | 3110 | target_pid_to_str (tp->ptid)); |
99619bea | 3111 | |
4d9d9d04 | 3112 | thread_step_over_chain_enqueue (tp); |
2adfaa28 | 3113 | } |
31e77af2 | 3114 | |
4d9d9d04 | 3115 | tp = current; |
30852783 UW |
3116 | } |
3117 | ||
4d9d9d04 PA |
3118 | /* Enqueue the current thread last, so that we move all other |
3119 | threads over their breakpoints first. */ | |
3120 | if (tp->stepping_over_breakpoint) | |
3121 | thread_step_over_chain_enqueue (tp); | |
30852783 | 3122 | |
4d9d9d04 PA |
3123 | /* If the thread isn't started, we'll still need to set its prev_pc, |
3124 | so that switch_back_to_stepped_thread knows the thread hasn't | |
3125 | advanced. Must do this before resuming any thread, as in | |
3126 | all-stop/remote, once we resume we can't send any other packet | |
3127 | until the target stops again. */ | |
3128 | tp->prev_pc = regcache_read_pc (regcache); | |
99619bea | 3129 | |
4d9d9d04 | 3130 | started = start_step_over (); |
c906108c | 3131 | |
4d9d9d04 PA |
3132 | if (step_over_info_valid_p ()) |
3133 | { | |
3134 | /* Either this thread started a new in-line step over, or some | |
3135 | other thread was already doing one. In either case, don't | |
3136 | resume anything else until the step-over is finished. */ | |
3137 | } | |
fbea99ea | 3138 | else if (started && !target_is_non_stop_p ()) |
4d9d9d04 PA |
3139 | { |
3140 | /* A new displaced stepping sequence was started. In all-stop, | |
3141 | we can't talk to the target anymore until it next stops. */ | |
3142 | } | |
fbea99ea PA |
3143 | else if (!non_stop && target_is_non_stop_p ()) |
3144 | { | |
3145 | /* In all-stop, but the target is always in non-stop mode. | |
3146 | Start all other threads that are implicitly resumed too. */ | |
3147 | ALL_NON_EXITED_THREADS (tp) | |
3148 | { | |
3149 | /* Ignore threads of processes we're not resuming. */ | |
3150 | if (!ptid_match (tp->ptid, resume_ptid)) | |
3151 | continue; | |
3152 | ||
3153 | if (tp->resumed) | |
3154 | { | |
3155 | if (debug_infrun) | |
3156 | fprintf_unfiltered (gdb_stdlog, | |
3157 | "infrun: proceed: [%s] resumed\n", | |
3158 | target_pid_to_str (tp->ptid)); | |
3159 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); | |
3160 | continue; | |
3161 | } | |
3162 | ||
3163 | if (thread_is_in_step_over_chain (tp)) | |
3164 | { | |
3165 | if (debug_infrun) | |
3166 | fprintf_unfiltered (gdb_stdlog, | |
3167 | "infrun: proceed: [%s] needs step-over\n", | |
3168 | target_pid_to_str (tp->ptid)); | |
3169 | continue; | |
3170 | } | |
3171 | ||
3172 | if (debug_infrun) | |
3173 | fprintf_unfiltered (gdb_stdlog, | |
3174 | "infrun: proceed: resuming %s\n", | |
3175 | target_pid_to_str (tp->ptid)); | |
3176 | ||
3177 | reset_ecs (ecs, tp); | |
3178 | switch_to_thread (tp->ptid); | |
3179 | keep_going_pass_signal (ecs); | |
3180 | if (!ecs->wait_some_more) | |
fd7dcb94 | 3181 | error (_("Command aborted.")); |
fbea99ea PA |
3182 | } |
3183 | } | |
372316f1 | 3184 | else if (!tp->resumed && !thread_is_in_step_over_chain (tp)) |
4d9d9d04 PA |
3185 | { |
3186 | /* The thread wasn't started, and isn't queued, run it now. */ | |
3187 | reset_ecs (ecs, tp); | |
3188 | switch_to_thread (tp->ptid); | |
3189 | keep_going_pass_signal (ecs); | |
3190 | if (!ecs->wait_some_more) | |
fd7dcb94 | 3191 | error (_("Command aborted.")); |
4d9d9d04 | 3192 | } |
c906108c | 3193 | |
4d9d9d04 | 3194 | discard_cleanups (old_chain); |
c906108c | 3195 | |
0b333c5e PA |
3196 | /* Tell the event loop to wait for it to stop. If the target |
3197 | supports asynchronous execution, it'll do this from within | |
3198 | target_resume. */ | |
362646f5 | 3199 | if (!target_can_async_p ()) |
0b333c5e | 3200 | mark_async_event_handler (infrun_async_inferior_event_token); |
c906108c | 3201 | } |
c906108c SS |
3202 | \f |
3203 | ||
3204 | /* Start remote-debugging of a machine over a serial link. */ | |
96baa820 | 3205 | |
c906108c | 3206 | void |
8621d6a9 | 3207 | start_remote (int from_tty) |
c906108c | 3208 | { |
d6b48e9c | 3209 | struct inferior *inferior; |
d6b48e9c PA |
3210 | |
3211 | inferior = current_inferior (); | |
16c381f0 | 3212 | inferior->control.stop_soon = STOP_QUIETLY_REMOTE; |
43ff13b4 | 3213 | |
1777feb0 | 3214 | /* Always go on waiting for the target, regardless of the mode. */ |
6426a772 | 3215 | /* FIXME: cagney/1999-09-23: At present it isn't possible to |
7e73cedf | 3216 | indicate to wait_for_inferior that a target should timeout if |
6426a772 JM |
3217 | nothing is returned (instead of just blocking). Because of this, |
3218 | targets expecting an immediate response need to, internally, set | |
3219 | things up so that the target_wait() is forced to eventually | |
1777feb0 | 3220 | timeout. */ |
6426a772 JM |
3221 | /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to |
3222 | differentiate to its caller what the state of the target is after | |
3223 | the initial open has been performed. Here we're assuming that | |
3224 | the target has stopped. It should be possible to eventually have | |
3225 | target_open() return to the caller an indication that the target | |
3226 | is currently running and GDB state should be set to the same as | |
1777feb0 | 3227 | for an async run. */ |
e4c8541f | 3228 | wait_for_inferior (); |
8621d6a9 DJ |
3229 | |
3230 | /* Now that the inferior has stopped, do any bookkeeping like | |
3231 | loading shared libraries. We want to do this before normal_stop, | |
3232 | so that the displayed frame is up to date. */ | |
3233 | post_create_inferior (¤t_target, from_tty); | |
3234 | ||
6426a772 | 3235 | normal_stop (); |
c906108c SS |
3236 | } |
3237 | ||
3238 | /* Initialize static vars when a new inferior begins. */ | |
3239 | ||
3240 | void | |
96baa820 | 3241 | init_wait_for_inferior (void) |
c906108c SS |
3242 | { |
3243 | /* These are meaningless until the first time through wait_for_inferior. */ | |
c906108c | 3244 | |
c906108c SS |
3245 | breakpoint_init_inferior (inf_starting); |
3246 | ||
70509625 | 3247 | clear_proceed_status (0); |
9f976b41 | 3248 | |
ca005067 | 3249 | target_last_wait_ptid = minus_one_ptid; |
237fc4c9 | 3250 | |
842951eb | 3251 | previous_inferior_ptid = inferior_ptid; |
0d1e5fa7 | 3252 | |
edb3359d DJ |
3253 | /* Discard any skipped inlined frames. */ |
3254 | clear_inline_frame_state (minus_one_ptid); | |
c906108c | 3255 | } |
237fc4c9 | 3256 | |
c906108c | 3257 | \f |
488f131b | 3258 | |
ec9499be | 3259 | static void handle_inferior_event (struct execution_control_state *ecs); |
cd0fc7c3 | 3260 | |
568d6575 UW |
3261 | static void handle_step_into_function (struct gdbarch *gdbarch, |
3262 | struct execution_control_state *ecs); | |
3263 | static void handle_step_into_function_backward (struct gdbarch *gdbarch, | |
3264 | struct execution_control_state *ecs); | |
4f5d7f63 | 3265 | static void handle_signal_stop (struct execution_control_state *ecs); |
186c406b | 3266 | static void check_exception_resume (struct execution_control_state *, |
28106bc2 | 3267 | struct frame_info *); |
611c83ae | 3268 | |
bdc36728 | 3269 | static void end_stepping_range (struct execution_control_state *ecs); |
22bcd14b | 3270 | static void stop_waiting (struct execution_control_state *ecs); |
d4f3574e | 3271 | static void keep_going (struct execution_control_state *ecs); |
94c57d6a | 3272 | static void process_event_stop_test (struct execution_control_state *ecs); |
c447ac0b | 3273 | static int switch_back_to_stepped_thread (struct execution_control_state *ecs); |
104c1213 | 3274 | |
252fbfc8 PA |
3275 | /* Callback for iterate over threads. If the thread is stopped, but |
3276 | the user/frontend doesn't know about that yet, go through | |
3277 | normal_stop, as if the thread had just stopped now. ARG points at | |
3278 | a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If | |
3279 | ptid_is_pid(PTID) is true, applies to all threads of the process | |
3280 | pointed at by PTID. Otherwise, apply only to the thread pointed by | |
3281 | PTID. */ | |
3282 | ||
3283 | static int | |
3284 | infrun_thread_stop_requested_callback (struct thread_info *info, void *arg) | |
3285 | { | |
3286 | ptid_t ptid = * (ptid_t *) arg; | |
3287 | ||
3288 | if ((ptid_equal (info->ptid, ptid) | |
3289 | || ptid_equal (minus_one_ptid, ptid) | |
3290 | || (ptid_is_pid (ptid) | |
3291 | && ptid_get_pid (ptid) == ptid_get_pid (info->ptid))) | |
3292 | && is_running (info->ptid) | |
3293 | && !is_executing (info->ptid)) | |
3294 | { | |
3295 | struct cleanup *old_chain; | |
3296 | struct execution_control_state ecss; | |
3297 | struct execution_control_state *ecs = &ecss; | |
3298 | ||
3299 | memset (ecs, 0, sizeof (*ecs)); | |
3300 | ||
3301 | old_chain = make_cleanup_restore_current_thread (); | |
3302 | ||
f15cb84a YQ |
3303 | overlay_cache_invalid = 1; |
3304 | /* Flush target cache before starting to handle each event. | |
3305 | Target was running and cache could be stale. This is just a | |
3306 | heuristic. Running threads may modify target memory, but we | |
3307 | don't get any event. */ | |
3308 | target_dcache_invalidate (); | |
3309 | ||
252fbfc8 PA |
3310 | /* Go through handle_inferior_event/normal_stop, so we always |
3311 | have consistent output as if the stop event had been | |
3312 | reported. */ | |
3313 | ecs->ptid = info->ptid; | |
243a9253 | 3314 | ecs->event_thread = info; |
252fbfc8 | 3315 | ecs->ws.kind = TARGET_WAITKIND_STOPPED; |
a493e3e2 | 3316 | ecs->ws.value.sig = GDB_SIGNAL_0; |
252fbfc8 PA |
3317 | |
3318 | handle_inferior_event (ecs); | |
3319 | ||
3320 | if (!ecs->wait_some_more) | |
3321 | { | |
243a9253 PA |
3322 | /* Cancel any running execution command. */ |
3323 | thread_cancel_execution_command (info); | |
3324 | ||
252fbfc8 | 3325 | normal_stop (); |
252fbfc8 PA |
3326 | } |
3327 | ||
3328 | do_cleanups (old_chain); | |
3329 | } | |
3330 | ||
3331 | return 0; | |
3332 | } | |
3333 | ||
3334 | /* This function is attached as a "thread_stop_requested" observer. | |
3335 | Cleanup local state that assumed the PTID was to be resumed, and | |
3336 | report the stop to the frontend. */ | |
3337 | ||
2c0b251b | 3338 | static void |
252fbfc8 PA |
3339 | infrun_thread_stop_requested (ptid_t ptid) |
3340 | { | |
c2829269 | 3341 | struct thread_info *tp; |
252fbfc8 | 3342 | |
c2829269 PA |
3343 | /* PTID was requested to stop. Remove matching threads from the |
3344 | step-over queue, so we don't try to resume them | |
3345 | automatically. */ | |
3346 | ALL_NON_EXITED_THREADS (tp) | |
3347 | if (ptid_match (tp->ptid, ptid)) | |
3348 | { | |
3349 | if (thread_is_in_step_over_chain (tp)) | |
3350 | thread_step_over_chain_remove (tp); | |
3351 | } | |
252fbfc8 PA |
3352 | |
3353 | iterate_over_threads (infrun_thread_stop_requested_callback, &ptid); | |
3354 | } | |
3355 | ||
a07daef3 PA |
3356 | static void |
3357 | infrun_thread_thread_exit (struct thread_info *tp, int silent) | |
3358 | { | |
3359 | if (ptid_equal (target_last_wait_ptid, tp->ptid)) | |
3360 | nullify_last_target_wait_ptid (); | |
3361 | } | |
3362 | ||
0cbcdb96 PA |
3363 | /* Delete the step resume, single-step and longjmp/exception resume |
3364 | breakpoints of TP. */ | |
4e1c45ea | 3365 | |
0cbcdb96 PA |
3366 | static void |
3367 | delete_thread_infrun_breakpoints (struct thread_info *tp) | |
4e1c45ea | 3368 | { |
0cbcdb96 PA |
3369 | delete_step_resume_breakpoint (tp); |
3370 | delete_exception_resume_breakpoint (tp); | |
34b7e8a6 | 3371 | delete_single_step_breakpoints (tp); |
4e1c45ea PA |
3372 | } |
3373 | ||
0cbcdb96 PA |
3374 | /* If the target still has execution, call FUNC for each thread that |
3375 | just stopped. In all-stop, that's all the non-exited threads; in | |
3376 | non-stop, that's the current thread, only. */ | |
3377 | ||
3378 | typedef void (*for_each_just_stopped_thread_callback_func) | |
3379 | (struct thread_info *tp); | |
4e1c45ea PA |
3380 | |
3381 | static void | |
0cbcdb96 | 3382 | for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func) |
4e1c45ea | 3383 | { |
0cbcdb96 | 3384 | if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid)) |
4e1c45ea PA |
3385 | return; |
3386 | ||
fbea99ea | 3387 | if (target_is_non_stop_p ()) |
4e1c45ea | 3388 | { |
0cbcdb96 PA |
3389 | /* If in non-stop mode, only the current thread stopped. */ |
3390 | func (inferior_thread ()); | |
4e1c45ea PA |
3391 | } |
3392 | else | |
0cbcdb96 PA |
3393 | { |
3394 | struct thread_info *tp; | |
3395 | ||
3396 | /* In all-stop mode, all threads have stopped. */ | |
3397 | ALL_NON_EXITED_THREADS (tp) | |
3398 | { | |
3399 | func (tp); | |
3400 | } | |
3401 | } | |
3402 | } | |
3403 | ||
3404 | /* Delete the step resume and longjmp/exception resume breakpoints of | |
3405 | the threads that just stopped. */ | |
3406 | ||
3407 | static void | |
3408 | delete_just_stopped_threads_infrun_breakpoints (void) | |
3409 | { | |
3410 | for_each_just_stopped_thread (delete_thread_infrun_breakpoints); | |
34b7e8a6 PA |
3411 | } |
3412 | ||
3413 | /* Delete the single-step breakpoints of the threads that just | |
3414 | stopped. */ | |
7c16b83e | 3415 | |
34b7e8a6 PA |
3416 | static void |
3417 | delete_just_stopped_threads_single_step_breakpoints (void) | |
3418 | { | |
3419 | for_each_just_stopped_thread (delete_single_step_breakpoints); | |
4e1c45ea PA |
3420 | } |
3421 | ||
1777feb0 | 3422 | /* A cleanup wrapper. */ |
4e1c45ea PA |
3423 | |
3424 | static void | |
0cbcdb96 | 3425 | delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg) |
4e1c45ea | 3426 | { |
0cbcdb96 | 3427 | delete_just_stopped_threads_infrun_breakpoints (); |
4e1c45ea PA |
3428 | } |
3429 | ||
221e1a37 | 3430 | /* See infrun.h. */ |
223698f8 | 3431 | |
221e1a37 | 3432 | void |
223698f8 DE |
3433 | print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid, |
3434 | const struct target_waitstatus *ws) | |
3435 | { | |
3436 | char *status_string = target_waitstatus_to_string (ws); | |
3437 | struct ui_file *tmp_stream = mem_fileopen (); | |
3438 | char *text; | |
223698f8 DE |
3439 | |
3440 | /* The text is split over several lines because it was getting too long. | |
3441 | Call fprintf_unfiltered (gdb_stdlog) once so that the text is still | |
3442 | output as a unit; we want only one timestamp printed if debug_timestamp | |
3443 | is set. */ | |
3444 | ||
3445 | fprintf_unfiltered (tmp_stream, | |
1176ecec PA |
3446 | "infrun: target_wait (%d.%ld.%ld", |
3447 | ptid_get_pid (waiton_ptid), | |
3448 | ptid_get_lwp (waiton_ptid), | |
3449 | ptid_get_tid (waiton_ptid)); | |
dfd4cc63 | 3450 | if (ptid_get_pid (waiton_ptid) != -1) |
223698f8 DE |
3451 | fprintf_unfiltered (tmp_stream, |
3452 | " [%s]", target_pid_to_str (waiton_ptid)); | |
3453 | fprintf_unfiltered (tmp_stream, ", status) =\n"); | |
3454 | fprintf_unfiltered (tmp_stream, | |
1176ecec | 3455 | "infrun: %d.%ld.%ld [%s],\n", |
dfd4cc63 | 3456 | ptid_get_pid (result_ptid), |
1176ecec PA |
3457 | ptid_get_lwp (result_ptid), |
3458 | ptid_get_tid (result_ptid), | |
dfd4cc63 | 3459 | target_pid_to_str (result_ptid)); |
223698f8 DE |
3460 | fprintf_unfiltered (tmp_stream, |
3461 | "infrun: %s\n", | |
3462 | status_string); | |
3463 | ||
759ef836 | 3464 | text = ui_file_xstrdup (tmp_stream, NULL); |
223698f8 DE |
3465 | |
3466 | /* This uses %s in part to handle %'s in the text, but also to avoid | |
3467 | a gcc error: the format attribute requires a string literal. */ | |
3468 | fprintf_unfiltered (gdb_stdlog, "%s", text); | |
3469 | ||
3470 | xfree (status_string); | |
3471 | xfree (text); | |
3472 | ui_file_delete (tmp_stream); | |
3473 | } | |
3474 | ||
372316f1 PA |
3475 | /* Select a thread at random, out of those which are resumed and have |
3476 | had events. */ | |
3477 | ||
3478 | static struct thread_info * | |
3479 | random_pending_event_thread (ptid_t waiton_ptid) | |
3480 | { | |
3481 | struct thread_info *event_tp; | |
3482 | int num_events = 0; | |
3483 | int random_selector; | |
3484 | ||
3485 | /* First see how many events we have. Count only resumed threads | |
3486 | that have an event pending. */ | |
3487 | ALL_NON_EXITED_THREADS (event_tp) | |
3488 | if (ptid_match (event_tp->ptid, waiton_ptid) | |
3489 | && event_tp->resumed | |
3490 | && event_tp->suspend.waitstatus_pending_p) | |
3491 | num_events++; | |
3492 | ||
3493 | if (num_events == 0) | |
3494 | return NULL; | |
3495 | ||
3496 | /* Now randomly pick a thread out of those that have had events. */ | |
3497 | random_selector = (int) | |
3498 | ((num_events * (double) rand ()) / (RAND_MAX + 1.0)); | |
3499 | ||
3500 | if (debug_infrun && num_events > 1) | |
3501 | fprintf_unfiltered (gdb_stdlog, | |
3502 | "infrun: Found %d events, selecting #%d\n", | |
3503 | num_events, random_selector); | |
3504 | ||
3505 | /* Select the Nth thread that has had an event. */ | |
3506 | ALL_NON_EXITED_THREADS (event_tp) | |
3507 | if (ptid_match (event_tp->ptid, waiton_ptid) | |
3508 | && event_tp->resumed | |
3509 | && event_tp->suspend.waitstatus_pending_p) | |
3510 | if (random_selector-- == 0) | |
3511 | break; | |
3512 | ||
3513 | return event_tp; | |
3514 | } | |
3515 | ||
3516 | /* Wrapper for target_wait that first checks whether threads have | |
3517 | pending statuses to report before actually asking the target for | |
3518 | more events. */ | |
3519 | ||
3520 | static ptid_t | |
3521 | do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options) | |
3522 | { | |
3523 | ptid_t event_ptid; | |
3524 | struct thread_info *tp; | |
3525 | ||
3526 | /* First check if there is a resumed thread with a wait status | |
3527 | pending. */ | |
3528 | if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid)) | |
3529 | { | |
3530 | tp = random_pending_event_thread (ptid); | |
3531 | } | |
3532 | else | |
3533 | { | |
3534 | if (debug_infrun) | |
3535 | fprintf_unfiltered (gdb_stdlog, | |
3536 | "infrun: Waiting for specific thread %s.\n", | |
3537 | target_pid_to_str (ptid)); | |
3538 | ||
3539 | /* We have a specific thread to check. */ | |
3540 | tp = find_thread_ptid (ptid); | |
3541 | gdb_assert (tp != NULL); | |
3542 | if (!tp->suspend.waitstatus_pending_p) | |
3543 | tp = NULL; | |
3544 | } | |
3545 | ||
3546 | if (tp != NULL | |
3547 | && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3548 | || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)) | |
3549 | { | |
3550 | struct regcache *regcache = get_thread_regcache (tp->ptid); | |
3551 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
3552 | CORE_ADDR pc; | |
3553 | int discard = 0; | |
3554 | ||
3555 | pc = regcache_read_pc (regcache); | |
3556 | ||
3557 | if (pc != tp->suspend.stop_pc) | |
3558 | { | |
3559 | if (debug_infrun) | |
3560 | fprintf_unfiltered (gdb_stdlog, | |
3561 | "infrun: PC of %s changed. was=%s, now=%s\n", | |
3562 | target_pid_to_str (tp->ptid), | |
3563 | paddress (gdbarch, tp->prev_pc), | |
3564 | paddress (gdbarch, pc)); | |
3565 | discard = 1; | |
3566 | } | |
3567 | else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc)) | |
3568 | { | |
3569 | if (debug_infrun) | |
3570 | fprintf_unfiltered (gdb_stdlog, | |
3571 | "infrun: previous breakpoint of %s, at %s gone\n", | |
3572 | target_pid_to_str (tp->ptid), | |
3573 | paddress (gdbarch, pc)); | |
3574 | ||
3575 | discard = 1; | |
3576 | } | |
3577 | ||
3578 | if (discard) | |
3579 | { | |
3580 | if (debug_infrun) | |
3581 | fprintf_unfiltered (gdb_stdlog, | |
3582 | "infrun: pending event of %s cancelled.\n", | |
3583 | target_pid_to_str (tp->ptid)); | |
3584 | ||
3585 | tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS; | |
3586 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3587 | } | |
3588 | } | |
3589 | ||
3590 | if (tp != NULL) | |
3591 | { | |
3592 | if (debug_infrun) | |
3593 | { | |
3594 | char *statstr; | |
3595 | ||
3596 | statstr = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
3597 | fprintf_unfiltered (gdb_stdlog, | |
3598 | "infrun: Using pending wait status %s for %s.\n", | |
3599 | statstr, | |
3600 | target_pid_to_str (tp->ptid)); | |
3601 | xfree (statstr); | |
3602 | } | |
3603 | ||
3604 | /* Now that we've selected our final event LWP, un-adjust its PC | |
3605 | if it was a software breakpoint (and the target doesn't | |
3606 | always adjust the PC itself). */ | |
3607 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3608 | && !target_supports_stopped_by_sw_breakpoint ()) | |
3609 | { | |
3610 | struct regcache *regcache; | |
3611 | struct gdbarch *gdbarch; | |
3612 | int decr_pc; | |
3613 | ||
3614 | regcache = get_thread_regcache (tp->ptid); | |
3615 | gdbarch = get_regcache_arch (regcache); | |
3616 | ||
3617 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); | |
3618 | if (decr_pc != 0) | |
3619 | { | |
3620 | CORE_ADDR pc; | |
3621 | ||
3622 | pc = regcache_read_pc (regcache); | |
3623 | regcache_write_pc (regcache, pc + decr_pc); | |
3624 | } | |
3625 | } | |
3626 | ||
3627 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3628 | *status = tp->suspend.waitstatus; | |
3629 | tp->suspend.waitstatus_pending_p = 0; | |
3630 | ||
3631 | /* Wake up the event loop again, until all pending events are | |
3632 | processed. */ | |
3633 | if (target_is_async_p ()) | |
3634 | mark_async_event_handler (infrun_async_inferior_event_token); | |
3635 | return tp->ptid; | |
3636 | } | |
3637 | ||
3638 | /* But if we don't find one, we'll have to wait. */ | |
3639 | ||
3640 | if (deprecated_target_wait_hook) | |
3641 | event_ptid = deprecated_target_wait_hook (ptid, status, options); | |
3642 | else | |
3643 | event_ptid = target_wait (ptid, status, options); | |
3644 | ||
3645 | return event_ptid; | |
3646 | } | |
3647 | ||
24291992 PA |
3648 | /* Prepare and stabilize the inferior for detaching it. E.g., |
3649 | detaching while a thread is displaced stepping is a recipe for | |
3650 | crashing it, as nothing would readjust the PC out of the scratch | |
3651 | pad. */ | |
3652 | ||
3653 | void | |
3654 | prepare_for_detach (void) | |
3655 | { | |
3656 | struct inferior *inf = current_inferior (); | |
3657 | ptid_t pid_ptid = pid_to_ptid (inf->pid); | |
3658 | struct cleanup *old_chain_1; | |
3659 | struct displaced_step_inferior_state *displaced; | |
3660 | ||
3661 | displaced = get_displaced_stepping_state (inf->pid); | |
3662 | ||
3663 | /* Is any thread of this process displaced stepping? If not, | |
3664 | there's nothing else to do. */ | |
3665 | if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid)) | |
3666 | return; | |
3667 | ||
3668 | if (debug_infrun) | |
3669 | fprintf_unfiltered (gdb_stdlog, | |
3670 | "displaced-stepping in-process while detaching"); | |
3671 | ||
3672 | old_chain_1 = make_cleanup_restore_integer (&inf->detaching); | |
3673 | inf->detaching = 1; | |
3674 | ||
3675 | while (!ptid_equal (displaced->step_ptid, null_ptid)) | |
3676 | { | |
3677 | struct cleanup *old_chain_2; | |
3678 | struct execution_control_state ecss; | |
3679 | struct execution_control_state *ecs; | |
3680 | ||
3681 | ecs = &ecss; | |
3682 | memset (ecs, 0, sizeof (*ecs)); | |
3683 | ||
3684 | overlay_cache_invalid = 1; | |
f15cb84a YQ |
3685 | /* Flush target cache before starting to handle each event. |
3686 | Target was running and cache could be stale. This is just a | |
3687 | heuristic. Running threads may modify target memory, but we | |
3688 | don't get any event. */ | |
3689 | target_dcache_invalidate (); | |
24291992 | 3690 | |
372316f1 | 3691 | ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0); |
24291992 PA |
3692 | |
3693 | if (debug_infrun) | |
3694 | print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws); | |
3695 | ||
3696 | /* If an error happens while handling the event, propagate GDB's | |
3697 | knowledge of the executing state to the frontend/user running | |
3698 | state. */ | |
3e43a32a MS |
3699 | old_chain_2 = make_cleanup (finish_thread_state_cleanup, |
3700 | &minus_one_ptid); | |
24291992 PA |
3701 | |
3702 | /* Now figure out what to do with the result of the result. */ | |
3703 | handle_inferior_event (ecs); | |
3704 | ||
3705 | /* No error, don't finish the state yet. */ | |
3706 | discard_cleanups (old_chain_2); | |
3707 | ||
3708 | /* Breakpoints and watchpoints are not installed on the target | |
3709 | at this point, and signals are passed directly to the | |
3710 | inferior, so this must mean the process is gone. */ | |
3711 | if (!ecs->wait_some_more) | |
3712 | { | |
3713 | discard_cleanups (old_chain_1); | |
3714 | error (_("Program exited while detaching")); | |
3715 | } | |
3716 | } | |
3717 | ||
3718 | discard_cleanups (old_chain_1); | |
3719 | } | |
3720 | ||
cd0fc7c3 | 3721 | /* Wait for control to return from inferior to debugger. |
ae123ec6 | 3722 | |
cd0fc7c3 SS |
3723 | If inferior gets a signal, we may decide to start it up again |
3724 | instead of returning. That is why there is a loop in this function. | |
3725 | When this function actually returns it means the inferior | |
3726 | should be left stopped and GDB should read more commands. */ | |
3727 | ||
3728 | void | |
e4c8541f | 3729 | wait_for_inferior (void) |
cd0fc7c3 SS |
3730 | { |
3731 | struct cleanup *old_cleanups; | |
e6f5c25b | 3732 | struct cleanup *thread_state_chain; |
c906108c | 3733 | |
527159b7 | 3734 | if (debug_infrun) |
ae123ec6 | 3735 | fprintf_unfiltered |
e4c8541f | 3736 | (gdb_stdlog, "infrun: wait_for_inferior ()\n"); |
527159b7 | 3737 | |
0cbcdb96 PA |
3738 | old_cleanups |
3739 | = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, | |
3740 | NULL); | |
cd0fc7c3 | 3741 | |
e6f5c25b PA |
3742 | /* If an error happens while handling the event, propagate GDB's |
3743 | knowledge of the executing state to the frontend/user running | |
3744 | state. */ | |
3745 | thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
3746 | ||
c906108c SS |
3747 | while (1) |
3748 | { | |
ae25568b PA |
3749 | struct execution_control_state ecss; |
3750 | struct execution_control_state *ecs = &ecss; | |
963f9c80 | 3751 | ptid_t waiton_ptid = minus_one_ptid; |
29f49a6a | 3752 | |
ae25568b PA |
3753 | memset (ecs, 0, sizeof (*ecs)); |
3754 | ||
ec9499be | 3755 | overlay_cache_invalid = 1; |
ec9499be | 3756 | |
f15cb84a YQ |
3757 | /* Flush target cache before starting to handle each event. |
3758 | Target was running and cache could be stale. This is just a | |
3759 | heuristic. Running threads may modify target memory, but we | |
3760 | don't get any event. */ | |
3761 | target_dcache_invalidate (); | |
3762 | ||
372316f1 | 3763 | ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0); |
c906108c | 3764 | |
f00150c9 | 3765 | if (debug_infrun) |
223698f8 | 3766 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 3767 | |
cd0fc7c3 SS |
3768 | /* Now figure out what to do with the result of the result. */ |
3769 | handle_inferior_event (ecs); | |
c906108c | 3770 | |
cd0fc7c3 SS |
3771 | if (!ecs->wait_some_more) |
3772 | break; | |
3773 | } | |
4e1c45ea | 3774 | |
e6f5c25b PA |
3775 | /* No error, don't finish the state yet. */ |
3776 | discard_cleanups (thread_state_chain); | |
3777 | ||
cd0fc7c3 SS |
3778 | do_cleanups (old_cleanups); |
3779 | } | |
c906108c | 3780 | |
d3d4baed PA |
3781 | /* Cleanup that reinstalls the readline callback handler, if the |
3782 | target is running in the background. If while handling the target | |
3783 | event something triggered a secondary prompt, like e.g., a | |
3784 | pagination prompt, we'll have removed the callback handler (see | |
3785 | gdb_readline_wrapper_line). Need to do this as we go back to the | |
3786 | event loop, ready to process further input. Note this has no | |
3787 | effect if the handler hasn't actually been removed, because calling | |
3788 | rl_callback_handler_install resets the line buffer, thus losing | |
3789 | input. */ | |
3790 | ||
3791 | static void | |
3792 | reinstall_readline_callback_handler_cleanup (void *arg) | |
3793 | { | |
6c400b59 PA |
3794 | if (!interpreter_async) |
3795 | { | |
3796 | /* We're not going back to the top level event loop yet. Don't | |
3797 | install the readline callback, as it'd prep the terminal, | |
3798 | readline-style (raw, noecho) (e.g., --batch). We'll install | |
3799 | it the next time the prompt is displayed, when we're ready | |
3800 | for input. */ | |
3801 | return; | |
3802 | } | |
3803 | ||
d3d4baed PA |
3804 | if (async_command_editing_p && !sync_execution) |
3805 | gdb_rl_callback_handler_reinstall (); | |
3806 | } | |
3807 | ||
243a9253 PA |
3808 | /* Clean up the FSMs of threads that are now stopped. In non-stop, |
3809 | that's just the event thread. In all-stop, that's all threads. */ | |
3810 | ||
3811 | static void | |
3812 | clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs) | |
3813 | { | |
3814 | struct thread_info *thr = ecs->event_thread; | |
3815 | ||
3816 | if (thr != NULL && thr->thread_fsm != NULL) | |
3817 | thread_fsm_clean_up (thr->thread_fsm); | |
3818 | ||
3819 | if (!non_stop) | |
3820 | { | |
3821 | ALL_NON_EXITED_THREADS (thr) | |
3822 | { | |
3823 | if (thr->thread_fsm == NULL) | |
3824 | continue; | |
3825 | if (thr == ecs->event_thread) | |
3826 | continue; | |
3827 | ||
3828 | switch_to_thread (thr->ptid); | |
3829 | thread_fsm_clean_up (thr->thread_fsm); | |
3830 | } | |
3831 | ||
3832 | if (ecs->event_thread != NULL) | |
3833 | switch_to_thread (ecs->event_thread->ptid); | |
3834 | } | |
3835 | } | |
3836 | ||
170742de PA |
3837 | /* A cleanup that restores the execution direction to the value saved |
3838 | in *ARG. */ | |
3839 | ||
3840 | static void | |
3841 | restore_execution_direction (void *arg) | |
3842 | { | |
3843 | enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg; | |
3844 | ||
3845 | execution_direction = *save_exec_dir; | |
3846 | } | |
3847 | ||
1777feb0 | 3848 | /* Asynchronous version of wait_for_inferior. It is called by the |
43ff13b4 | 3849 | event loop whenever a change of state is detected on the file |
1777feb0 MS |
3850 | descriptor corresponding to the target. It can be called more than |
3851 | once to complete a single execution command. In such cases we need | |
3852 | to keep the state in a global variable ECSS. If it is the last time | |
a474d7c2 PA |
3853 | that this function is called for a single execution command, then |
3854 | report to the user that the inferior has stopped, and do the | |
1777feb0 | 3855 | necessary cleanups. */ |
43ff13b4 JM |
3856 | |
3857 | void | |
fba45db2 | 3858 | fetch_inferior_event (void *client_data) |
43ff13b4 | 3859 | { |
0d1e5fa7 | 3860 | struct execution_control_state ecss; |
a474d7c2 | 3861 | struct execution_control_state *ecs = &ecss; |
4f8d22e3 | 3862 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
29f49a6a | 3863 | struct cleanup *ts_old_chain; |
4f8d22e3 | 3864 | int was_sync = sync_execution; |
170742de | 3865 | enum exec_direction_kind save_exec_dir = execution_direction; |
0f641c01 | 3866 | int cmd_done = 0; |
963f9c80 | 3867 | ptid_t waiton_ptid = minus_one_ptid; |
43ff13b4 | 3868 | |
0d1e5fa7 PA |
3869 | memset (ecs, 0, sizeof (*ecs)); |
3870 | ||
d3d4baed PA |
3871 | /* End up with readline processing input, if necessary. */ |
3872 | make_cleanup (reinstall_readline_callback_handler_cleanup, NULL); | |
3873 | ||
c5187ac6 PA |
3874 | /* We're handling a live event, so make sure we're doing live |
3875 | debugging. If we're looking at traceframes while the target is | |
3876 | running, we're going to need to get back to that mode after | |
3877 | handling the event. */ | |
3878 | if (non_stop) | |
3879 | { | |
3880 | make_cleanup_restore_current_traceframe (); | |
e6e4e701 | 3881 | set_current_traceframe (-1); |
c5187ac6 PA |
3882 | } |
3883 | ||
4f8d22e3 PA |
3884 | if (non_stop) |
3885 | /* In non-stop mode, the user/frontend should not notice a thread | |
3886 | switch due to internal events. Make sure we reverse to the | |
3887 | user selected thread and frame after handling the event and | |
3888 | running any breakpoint commands. */ | |
3889 | make_cleanup_restore_current_thread (); | |
3890 | ||
ec9499be | 3891 | overlay_cache_invalid = 1; |
f15cb84a YQ |
3892 | /* Flush target cache before starting to handle each event. Target |
3893 | was running and cache could be stale. This is just a heuristic. | |
3894 | Running threads may modify target memory, but we don't get any | |
3895 | event. */ | |
3896 | target_dcache_invalidate (); | |
3dd5b83d | 3897 | |
170742de | 3898 | make_cleanup (restore_execution_direction, &save_exec_dir); |
32231432 PA |
3899 | execution_direction = target_execution_direction (); |
3900 | ||
0b333c5e PA |
3901 | ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, |
3902 | target_can_async_p () ? TARGET_WNOHANG : 0); | |
43ff13b4 | 3903 | |
f00150c9 | 3904 | if (debug_infrun) |
223698f8 | 3905 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 3906 | |
29f49a6a PA |
3907 | /* If an error happens while handling the event, propagate GDB's |
3908 | knowledge of the executing state to the frontend/user running | |
3909 | state. */ | |
fbea99ea | 3910 | if (!target_is_non_stop_p ()) |
29f49a6a PA |
3911 | ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); |
3912 | else | |
3913 | ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid); | |
3914 | ||
353d1d73 JK |
3915 | /* Get executed before make_cleanup_restore_current_thread above to apply |
3916 | still for the thread which has thrown the exception. */ | |
3917 | make_bpstat_clear_actions_cleanup (); | |
3918 | ||
7c16b83e PA |
3919 | make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL); |
3920 | ||
43ff13b4 | 3921 | /* Now figure out what to do with the result of the result. */ |
a474d7c2 | 3922 | handle_inferior_event (ecs); |
43ff13b4 | 3923 | |
a474d7c2 | 3924 | if (!ecs->wait_some_more) |
43ff13b4 | 3925 | { |
c9657e70 | 3926 | struct inferior *inf = find_inferior_ptid (ecs->ptid); |
243a9253 PA |
3927 | int should_stop = 1; |
3928 | struct thread_info *thr = ecs->event_thread; | |
388a7084 | 3929 | int should_notify_stop = 1; |
d6b48e9c | 3930 | |
0cbcdb96 | 3931 | delete_just_stopped_threads_infrun_breakpoints (); |
f107f563 | 3932 | |
243a9253 PA |
3933 | if (thr != NULL) |
3934 | { | |
3935 | struct thread_fsm *thread_fsm = thr->thread_fsm; | |
3936 | ||
3937 | if (thread_fsm != NULL) | |
3938 | should_stop = thread_fsm_should_stop (thread_fsm); | |
3939 | } | |
3940 | ||
3941 | if (!should_stop) | |
3942 | { | |
3943 | keep_going (ecs); | |
3944 | } | |
c2d11a7d | 3945 | else |
0f641c01 | 3946 | { |
243a9253 PA |
3947 | clean_up_just_stopped_threads_fsms (ecs); |
3948 | ||
388a7084 PA |
3949 | if (thr != NULL && thr->thread_fsm != NULL) |
3950 | { | |
3951 | should_notify_stop | |
3952 | = thread_fsm_should_notify_stop (thr->thread_fsm); | |
3953 | } | |
3954 | ||
3955 | if (should_notify_stop) | |
3956 | { | |
4c2f2a79 PA |
3957 | int proceeded = 0; |
3958 | ||
388a7084 PA |
3959 | /* We may not find an inferior if this was a process exit. */ |
3960 | if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY) | |
4c2f2a79 | 3961 | proceeded = normal_stop (); |
243a9253 | 3962 | |
4c2f2a79 PA |
3963 | if (!proceeded) |
3964 | { | |
3965 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
3966 | cmd_done = 1; | |
3967 | } | |
388a7084 | 3968 | } |
0f641c01 | 3969 | } |
43ff13b4 | 3970 | } |
4f8d22e3 | 3971 | |
29f49a6a PA |
3972 | /* No error, don't finish the thread states yet. */ |
3973 | discard_cleanups (ts_old_chain); | |
3974 | ||
4f8d22e3 PA |
3975 | /* Revert thread and frame. */ |
3976 | do_cleanups (old_chain); | |
3977 | ||
3978 | /* If the inferior was in sync execution mode, and now isn't, | |
0f641c01 PA |
3979 | restore the prompt (a synchronous execution command has finished, |
3980 | and we're ready for input). */ | |
b4a14fd0 | 3981 | if (interpreter_async && was_sync && !sync_execution) |
92bcb5f9 | 3982 | observer_notify_sync_execution_done (); |
0f641c01 PA |
3983 | |
3984 | if (cmd_done | |
3985 | && !was_sync | |
3986 | && exec_done_display_p | |
3987 | && (ptid_equal (inferior_ptid, null_ptid) | |
3988 | || !is_running (inferior_ptid))) | |
3989 | printf_unfiltered (_("completed.\n")); | |
43ff13b4 JM |
3990 | } |
3991 | ||
edb3359d DJ |
3992 | /* Record the frame and location we're currently stepping through. */ |
3993 | void | |
3994 | set_step_info (struct frame_info *frame, struct symtab_and_line sal) | |
3995 | { | |
3996 | struct thread_info *tp = inferior_thread (); | |
3997 | ||
16c381f0 JK |
3998 | tp->control.step_frame_id = get_frame_id (frame); |
3999 | tp->control.step_stack_frame_id = get_stack_frame_id (frame); | |
edb3359d DJ |
4000 | |
4001 | tp->current_symtab = sal.symtab; | |
4002 | tp->current_line = sal.line; | |
4003 | } | |
4004 | ||
0d1e5fa7 PA |
4005 | /* Clear context switchable stepping state. */ |
4006 | ||
4007 | void | |
4e1c45ea | 4008 | init_thread_stepping_state (struct thread_info *tss) |
0d1e5fa7 | 4009 | { |
7f5ef605 | 4010 | tss->stepped_breakpoint = 0; |
0d1e5fa7 | 4011 | tss->stepping_over_breakpoint = 0; |
963f9c80 | 4012 | tss->stepping_over_watchpoint = 0; |
0d1e5fa7 | 4013 | tss->step_after_step_resume_breakpoint = 0; |
cd0fc7c3 SS |
4014 | } |
4015 | ||
c32c64b7 DE |
4016 | /* Set the cached copy of the last ptid/waitstatus. */ |
4017 | ||
6efcd9a8 | 4018 | void |
c32c64b7 DE |
4019 | set_last_target_status (ptid_t ptid, struct target_waitstatus status) |
4020 | { | |
4021 | target_last_wait_ptid = ptid; | |
4022 | target_last_waitstatus = status; | |
4023 | } | |
4024 | ||
e02bc4cc | 4025 | /* Return the cached copy of the last pid/waitstatus returned by |
9a4105ab AC |
4026 | target_wait()/deprecated_target_wait_hook(). The data is actually |
4027 | cached by handle_inferior_event(), which gets called immediately | |
4028 | after target_wait()/deprecated_target_wait_hook(). */ | |
e02bc4cc DS |
4029 | |
4030 | void | |
488f131b | 4031 | get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) |
e02bc4cc | 4032 | { |
39f77062 | 4033 | *ptidp = target_last_wait_ptid; |
e02bc4cc DS |
4034 | *status = target_last_waitstatus; |
4035 | } | |
4036 | ||
ac264b3b MS |
4037 | void |
4038 | nullify_last_target_wait_ptid (void) | |
4039 | { | |
4040 | target_last_wait_ptid = minus_one_ptid; | |
4041 | } | |
4042 | ||
dcf4fbde | 4043 | /* Switch thread contexts. */ |
dd80620e MS |
4044 | |
4045 | static void | |
0d1e5fa7 | 4046 | context_switch (ptid_t ptid) |
dd80620e | 4047 | { |
4b51d87b | 4048 | if (debug_infrun && !ptid_equal (ptid, inferior_ptid)) |
fd48f117 DJ |
4049 | { |
4050 | fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ", | |
4051 | target_pid_to_str (inferior_ptid)); | |
4052 | fprintf_unfiltered (gdb_stdlog, "to %s\n", | |
0d1e5fa7 | 4053 | target_pid_to_str (ptid)); |
fd48f117 DJ |
4054 | } |
4055 | ||
0d1e5fa7 | 4056 | switch_to_thread (ptid); |
dd80620e MS |
4057 | } |
4058 | ||
d8dd4d5f PA |
4059 | /* If the target can't tell whether we've hit breakpoints |
4060 | (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP, | |
4061 | check whether that could have been caused by a breakpoint. If so, | |
4062 | adjust the PC, per gdbarch_decr_pc_after_break. */ | |
4063 | ||
4fa8626c | 4064 | static void |
d8dd4d5f PA |
4065 | adjust_pc_after_break (struct thread_info *thread, |
4066 | struct target_waitstatus *ws) | |
4fa8626c | 4067 | { |
24a73cce UW |
4068 | struct regcache *regcache; |
4069 | struct gdbarch *gdbarch; | |
6c95b8df | 4070 | struct address_space *aspace; |
118e6252 | 4071 | CORE_ADDR breakpoint_pc, decr_pc; |
4fa8626c | 4072 | |
4fa8626c DJ |
4073 | /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If |
4074 | we aren't, just return. | |
9709f61c DJ |
4075 | |
4076 | We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not | |
b798847d UW |
4077 | affected by gdbarch_decr_pc_after_break. Other waitkinds which are |
4078 | implemented by software breakpoints should be handled through the normal | |
4079 | breakpoint layer. | |
8fb3e588 | 4080 | |
4fa8626c DJ |
4081 | NOTE drow/2004-01-31: On some targets, breakpoints may generate |
4082 | different signals (SIGILL or SIGEMT for instance), but it is less | |
4083 | clear where the PC is pointing afterwards. It may not match | |
b798847d UW |
4084 | gdbarch_decr_pc_after_break. I don't know any specific target that |
4085 | generates these signals at breakpoints (the code has been in GDB since at | |
4086 | least 1992) so I can not guess how to handle them here. | |
8fb3e588 | 4087 | |
e6cf7916 UW |
4088 | In earlier versions of GDB, a target with |
4089 | gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a | |
b798847d UW |
4090 | watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any |
4091 | target with both of these set in GDB history, and it seems unlikely to be | |
4092 | correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ | |
4fa8626c | 4093 | |
d8dd4d5f | 4094 | if (ws->kind != TARGET_WAITKIND_STOPPED) |
4fa8626c DJ |
4095 | return; |
4096 | ||
d8dd4d5f | 4097 | if (ws->value.sig != GDB_SIGNAL_TRAP) |
4fa8626c DJ |
4098 | return; |
4099 | ||
4058b839 PA |
4100 | /* In reverse execution, when a breakpoint is hit, the instruction |
4101 | under it has already been de-executed. The reported PC always | |
4102 | points at the breakpoint address, so adjusting it further would | |
4103 | be wrong. E.g., consider this case on a decr_pc_after_break == 1 | |
4104 | architecture: | |
4105 | ||
4106 | B1 0x08000000 : INSN1 | |
4107 | B2 0x08000001 : INSN2 | |
4108 | 0x08000002 : INSN3 | |
4109 | PC -> 0x08000003 : INSN4 | |
4110 | ||
4111 | Say you're stopped at 0x08000003 as above. Reverse continuing | |
4112 | from that point should hit B2 as below. Reading the PC when the | |
4113 | SIGTRAP is reported should read 0x08000001 and INSN2 should have | |
4114 | been de-executed already. | |
4115 | ||
4116 | B1 0x08000000 : INSN1 | |
4117 | B2 PC -> 0x08000001 : INSN2 | |
4118 | 0x08000002 : INSN3 | |
4119 | 0x08000003 : INSN4 | |
4120 | ||
4121 | We can't apply the same logic as for forward execution, because | |
4122 | we would wrongly adjust the PC to 0x08000000, since there's a | |
4123 | breakpoint at PC - 1. We'd then report a hit on B1, although | |
4124 | INSN1 hadn't been de-executed yet. Doing nothing is the correct | |
4125 | behaviour. */ | |
4126 | if (execution_direction == EXEC_REVERSE) | |
4127 | return; | |
4128 | ||
1cf4d951 PA |
4129 | /* If the target can tell whether the thread hit a SW breakpoint, |
4130 | trust it. Targets that can tell also adjust the PC | |
4131 | themselves. */ | |
4132 | if (target_supports_stopped_by_sw_breakpoint ()) | |
4133 | return; | |
4134 | ||
4135 | /* Note that relying on whether a breakpoint is planted in memory to | |
4136 | determine this can fail. E.g,. the breakpoint could have been | |
4137 | removed since. Or the thread could have been told to step an | |
4138 | instruction the size of a breakpoint instruction, and only | |
4139 | _after_ was a breakpoint inserted at its address. */ | |
4140 | ||
24a73cce UW |
4141 | /* If this target does not decrement the PC after breakpoints, then |
4142 | we have nothing to do. */ | |
d8dd4d5f | 4143 | regcache = get_thread_regcache (thread->ptid); |
24a73cce | 4144 | gdbarch = get_regcache_arch (regcache); |
118e6252 | 4145 | |
527a273a | 4146 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
118e6252 | 4147 | if (decr_pc == 0) |
24a73cce UW |
4148 | return; |
4149 | ||
6c95b8df PA |
4150 | aspace = get_regcache_aspace (regcache); |
4151 | ||
8aad930b AC |
4152 | /* Find the location where (if we've hit a breakpoint) the |
4153 | breakpoint would be. */ | |
118e6252 | 4154 | breakpoint_pc = regcache_read_pc (regcache) - decr_pc; |
8aad930b | 4155 | |
1cf4d951 PA |
4156 | /* If the target can't tell whether a software breakpoint triggered, |
4157 | fallback to figuring it out based on breakpoints we think were | |
4158 | inserted in the target, and on whether the thread was stepped or | |
4159 | continued. */ | |
4160 | ||
1c5cfe86 PA |
4161 | /* Check whether there actually is a software breakpoint inserted at |
4162 | that location. | |
4163 | ||
4164 | If in non-stop mode, a race condition is possible where we've | |
4165 | removed a breakpoint, but stop events for that breakpoint were | |
4166 | already queued and arrive later. To suppress those spurious | |
4167 | SIGTRAPs, we keep a list of such breakpoint locations for a bit, | |
1cf4d951 PA |
4168 | and retire them after a number of stop events are reported. Note |
4169 | this is an heuristic and can thus get confused. The real fix is | |
4170 | to get the "stopped by SW BP and needs adjustment" info out of | |
4171 | the target/kernel (and thus never reach here; see above). */ | |
6c95b8df | 4172 | if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc) |
fbea99ea PA |
4173 | || (target_is_non_stop_p () |
4174 | && moribund_breakpoint_here_p (aspace, breakpoint_pc))) | |
8aad930b | 4175 | { |
77f9e713 | 4176 | struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL); |
abbb1732 | 4177 | |
8213266a | 4178 | if (record_full_is_used ()) |
77f9e713 | 4179 | record_full_gdb_operation_disable_set (); |
96429cc8 | 4180 | |
1c0fdd0e UW |
4181 | /* When using hardware single-step, a SIGTRAP is reported for both |
4182 | a completed single-step and a software breakpoint. Need to | |
4183 | differentiate between the two, as the latter needs adjusting | |
4184 | but the former does not. | |
4185 | ||
4186 | The SIGTRAP can be due to a completed hardware single-step only if | |
4187 | - we didn't insert software single-step breakpoints | |
1c0fdd0e UW |
4188 | - this thread is currently being stepped |
4189 | ||
4190 | If any of these events did not occur, we must have stopped due | |
4191 | to hitting a software breakpoint, and have to back up to the | |
4192 | breakpoint address. | |
4193 | ||
4194 | As a special case, we could have hardware single-stepped a | |
4195 | software breakpoint. In this case (prev_pc == breakpoint_pc), | |
4196 | we also need to back up to the breakpoint address. */ | |
4197 | ||
d8dd4d5f PA |
4198 | if (thread_has_single_step_breakpoints_set (thread) |
4199 | || !currently_stepping (thread) | |
4200 | || (thread->stepped_breakpoint | |
4201 | && thread->prev_pc == breakpoint_pc)) | |
515630c5 | 4202 | regcache_write_pc (regcache, breakpoint_pc); |
96429cc8 | 4203 | |
77f9e713 | 4204 | do_cleanups (old_cleanups); |
8aad930b | 4205 | } |
4fa8626c DJ |
4206 | } |
4207 | ||
edb3359d DJ |
4208 | static int |
4209 | stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id) | |
4210 | { | |
4211 | for (frame = get_prev_frame (frame); | |
4212 | frame != NULL; | |
4213 | frame = get_prev_frame (frame)) | |
4214 | { | |
4215 | if (frame_id_eq (get_frame_id (frame), step_frame_id)) | |
4216 | return 1; | |
4217 | if (get_frame_type (frame) != INLINE_FRAME) | |
4218 | break; | |
4219 | } | |
4220 | ||
4221 | return 0; | |
4222 | } | |
4223 | ||
a96d9b2e SDJ |
4224 | /* Auxiliary function that handles syscall entry/return events. |
4225 | It returns 1 if the inferior should keep going (and GDB | |
4226 | should ignore the event), or 0 if the event deserves to be | |
4227 | processed. */ | |
ca2163eb | 4228 | |
a96d9b2e | 4229 | static int |
ca2163eb | 4230 | handle_syscall_event (struct execution_control_state *ecs) |
a96d9b2e | 4231 | { |
ca2163eb | 4232 | struct regcache *regcache; |
ca2163eb PA |
4233 | int syscall_number; |
4234 | ||
4235 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
4236 | context_switch (ecs->ptid); | |
4237 | ||
4238 | regcache = get_thread_regcache (ecs->ptid); | |
f90263c1 | 4239 | syscall_number = ecs->ws.value.syscall_number; |
ca2163eb PA |
4240 | stop_pc = regcache_read_pc (regcache); |
4241 | ||
a96d9b2e SDJ |
4242 | if (catch_syscall_enabled () > 0 |
4243 | && catching_syscall_number (syscall_number) > 0) | |
4244 | { | |
4245 | if (debug_infrun) | |
4246 | fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n", | |
4247 | syscall_number); | |
a96d9b2e | 4248 | |
16c381f0 | 4249 | ecs->event_thread->control.stop_bpstat |
6c95b8df | 4250 | = bpstat_stop_status (get_regcache_aspace (regcache), |
09ac7c10 | 4251 | stop_pc, ecs->ptid, &ecs->ws); |
ab04a2af | 4252 | |
ce12b012 | 4253 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
ca2163eb PA |
4254 | { |
4255 | /* Catchpoint hit. */ | |
ca2163eb PA |
4256 | return 0; |
4257 | } | |
a96d9b2e | 4258 | } |
ca2163eb PA |
4259 | |
4260 | /* If no catchpoint triggered for this, then keep going. */ | |
ca2163eb PA |
4261 | keep_going (ecs); |
4262 | return 1; | |
a96d9b2e SDJ |
4263 | } |
4264 | ||
7e324e48 GB |
4265 | /* Lazily fill in the execution_control_state's stop_func_* fields. */ |
4266 | ||
4267 | static void | |
4268 | fill_in_stop_func (struct gdbarch *gdbarch, | |
4269 | struct execution_control_state *ecs) | |
4270 | { | |
4271 | if (!ecs->stop_func_filled_in) | |
4272 | { | |
4273 | /* Don't care about return value; stop_func_start and stop_func_name | |
4274 | will both be 0 if it doesn't work. */ | |
4275 | find_pc_partial_function (stop_pc, &ecs->stop_func_name, | |
4276 | &ecs->stop_func_start, &ecs->stop_func_end); | |
4277 | ecs->stop_func_start | |
4278 | += gdbarch_deprecated_function_start_offset (gdbarch); | |
4279 | ||
591a12a1 UW |
4280 | if (gdbarch_skip_entrypoint_p (gdbarch)) |
4281 | ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch, | |
4282 | ecs->stop_func_start); | |
4283 | ||
7e324e48 GB |
4284 | ecs->stop_func_filled_in = 1; |
4285 | } | |
4286 | } | |
4287 | ||
4f5d7f63 PA |
4288 | |
4289 | /* Return the STOP_SOON field of the inferior pointed at by PTID. */ | |
4290 | ||
4291 | static enum stop_kind | |
4292 | get_inferior_stop_soon (ptid_t ptid) | |
4293 | { | |
c9657e70 | 4294 | struct inferior *inf = find_inferior_ptid (ptid); |
4f5d7f63 PA |
4295 | |
4296 | gdb_assert (inf != NULL); | |
4297 | return inf->control.stop_soon; | |
4298 | } | |
4299 | ||
372316f1 PA |
4300 | /* Wait for one event. Store the resulting waitstatus in WS, and |
4301 | return the event ptid. */ | |
4302 | ||
4303 | static ptid_t | |
4304 | wait_one (struct target_waitstatus *ws) | |
4305 | { | |
4306 | ptid_t event_ptid; | |
4307 | ptid_t wait_ptid = minus_one_ptid; | |
4308 | ||
4309 | overlay_cache_invalid = 1; | |
4310 | ||
4311 | /* Flush target cache before starting to handle each event. | |
4312 | Target was running and cache could be stale. This is just a | |
4313 | heuristic. Running threads may modify target memory, but we | |
4314 | don't get any event. */ | |
4315 | target_dcache_invalidate (); | |
4316 | ||
4317 | if (deprecated_target_wait_hook) | |
4318 | event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0); | |
4319 | else | |
4320 | event_ptid = target_wait (wait_ptid, ws, 0); | |
4321 | ||
4322 | if (debug_infrun) | |
4323 | print_target_wait_results (wait_ptid, event_ptid, ws); | |
4324 | ||
4325 | return event_ptid; | |
4326 | } | |
4327 | ||
4328 | /* Generate a wrapper for target_stopped_by_REASON that works on PTID | |
4329 | instead of the current thread. */ | |
4330 | #define THREAD_STOPPED_BY(REASON) \ | |
4331 | static int \ | |
4332 | thread_stopped_by_ ## REASON (ptid_t ptid) \ | |
4333 | { \ | |
4334 | struct cleanup *old_chain; \ | |
4335 | int res; \ | |
4336 | \ | |
4337 | old_chain = save_inferior_ptid (); \ | |
4338 | inferior_ptid = ptid; \ | |
4339 | \ | |
4340 | res = target_stopped_by_ ## REASON (); \ | |
4341 | \ | |
4342 | do_cleanups (old_chain); \ | |
4343 | \ | |
4344 | return res; \ | |
4345 | } | |
4346 | ||
4347 | /* Generate thread_stopped_by_watchpoint. */ | |
4348 | THREAD_STOPPED_BY (watchpoint) | |
4349 | /* Generate thread_stopped_by_sw_breakpoint. */ | |
4350 | THREAD_STOPPED_BY (sw_breakpoint) | |
4351 | /* Generate thread_stopped_by_hw_breakpoint. */ | |
4352 | THREAD_STOPPED_BY (hw_breakpoint) | |
4353 | ||
4354 | /* Cleanups that switches to the PTID pointed at by PTID_P. */ | |
4355 | ||
4356 | static void | |
4357 | switch_to_thread_cleanup (void *ptid_p) | |
4358 | { | |
4359 | ptid_t ptid = *(ptid_t *) ptid_p; | |
4360 | ||
4361 | switch_to_thread (ptid); | |
4362 | } | |
4363 | ||
4364 | /* Save the thread's event and stop reason to process it later. */ | |
4365 | ||
4366 | static void | |
4367 | save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws) | |
4368 | { | |
4369 | struct regcache *regcache; | |
4370 | struct address_space *aspace; | |
4371 | ||
4372 | if (debug_infrun) | |
4373 | { | |
4374 | char *statstr; | |
4375 | ||
4376 | statstr = target_waitstatus_to_string (ws); | |
4377 | fprintf_unfiltered (gdb_stdlog, | |
4378 | "infrun: saving status %s for %d.%ld.%ld\n", | |
4379 | statstr, | |
4380 | ptid_get_pid (tp->ptid), | |
4381 | ptid_get_lwp (tp->ptid), | |
4382 | ptid_get_tid (tp->ptid)); | |
4383 | xfree (statstr); | |
4384 | } | |
4385 | ||
4386 | /* Record for later. */ | |
4387 | tp->suspend.waitstatus = *ws; | |
4388 | tp->suspend.waitstatus_pending_p = 1; | |
4389 | ||
4390 | regcache = get_thread_regcache (tp->ptid); | |
4391 | aspace = get_regcache_aspace (regcache); | |
4392 | ||
4393 | if (ws->kind == TARGET_WAITKIND_STOPPED | |
4394 | && ws->value.sig == GDB_SIGNAL_TRAP) | |
4395 | { | |
4396 | CORE_ADDR pc = regcache_read_pc (regcache); | |
4397 | ||
4398 | adjust_pc_after_break (tp, &tp->suspend.waitstatus); | |
4399 | ||
4400 | if (thread_stopped_by_watchpoint (tp->ptid)) | |
4401 | { | |
4402 | tp->suspend.stop_reason | |
4403 | = TARGET_STOPPED_BY_WATCHPOINT; | |
4404 | } | |
4405 | else if (target_supports_stopped_by_sw_breakpoint () | |
4406 | && thread_stopped_by_sw_breakpoint (tp->ptid)) | |
4407 | { | |
4408 | tp->suspend.stop_reason | |
4409 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4410 | } | |
4411 | else if (target_supports_stopped_by_hw_breakpoint () | |
4412 | && thread_stopped_by_hw_breakpoint (tp->ptid)) | |
4413 | { | |
4414 | tp->suspend.stop_reason | |
4415 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4416 | } | |
4417 | else if (!target_supports_stopped_by_hw_breakpoint () | |
4418 | && hardware_breakpoint_inserted_here_p (aspace, | |
4419 | pc)) | |
4420 | { | |
4421 | tp->suspend.stop_reason | |
4422 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4423 | } | |
4424 | else if (!target_supports_stopped_by_sw_breakpoint () | |
4425 | && software_breakpoint_inserted_here_p (aspace, | |
4426 | pc)) | |
4427 | { | |
4428 | tp->suspend.stop_reason | |
4429 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4430 | } | |
4431 | else if (!thread_has_single_step_breakpoints_set (tp) | |
4432 | && currently_stepping (tp)) | |
4433 | { | |
4434 | tp->suspend.stop_reason | |
4435 | = TARGET_STOPPED_BY_SINGLE_STEP; | |
4436 | } | |
4437 | } | |
4438 | } | |
4439 | ||
65706a29 PA |
4440 | /* A cleanup that disables thread create/exit events. */ |
4441 | ||
4442 | static void | |
4443 | disable_thread_events (void *arg) | |
4444 | { | |
4445 | target_thread_events (0); | |
4446 | } | |
4447 | ||
6efcd9a8 | 4448 | /* See infrun.h. */ |
372316f1 | 4449 | |
6efcd9a8 | 4450 | void |
372316f1 PA |
4451 | stop_all_threads (void) |
4452 | { | |
4453 | /* We may need multiple passes to discover all threads. */ | |
4454 | int pass; | |
4455 | int iterations = 0; | |
4456 | ptid_t entry_ptid; | |
4457 | struct cleanup *old_chain; | |
4458 | ||
fbea99ea | 4459 | gdb_assert (target_is_non_stop_p ()); |
372316f1 PA |
4460 | |
4461 | if (debug_infrun) | |
4462 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n"); | |
4463 | ||
4464 | entry_ptid = inferior_ptid; | |
4465 | old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid); | |
4466 | ||
65706a29 PA |
4467 | target_thread_events (1); |
4468 | make_cleanup (disable_thread_events, NULL); | |
4469 | ||
372316f1 PA |
4470 | /* Request threads to stop, and then wait for the stops. Because |
4471 | threads we already know about can spawn more threads while we're | |
4472 | trying to stop them, and we only learn about new threads when we | |
4473 | update the thread list, do this in a loop, and keep iterating | |
4474 | until two passes find no threads that need to be stopped. */ | |
4475 | for (pass = 0; pass < 2; pass++, iterations++) | |
4476 | { | |
4477 | if (debug_infrun) | |
4478 | fprintf_unfiltered (gdb_stdlog, | |
4479 | "infrun: stop_all_threads, pass=%d, " | |
4480 | "iterations=%d\n", pass, iterations); | |
4481 | while (1) | |
4482 | { | |
4483 | ptid_t event_ptid; | |
4484 | struct target_waitstatus ws; | |
4485 | int need_wait = 0; | |
4486 | struct thread_info *t; | |
4487 | ||
4488 | update_thread_list (); | |
4489 | ||
4490 | /* Go through all threads looking for threads that we need | |
4491 | to tell the target to stop. */ | |
4492 | ALL_NON_EXITED_THREADS (t) | |
4493 | { | |
4494 | if (t->executing) | |
4495 | { | |
4496 | /* If already stopping, don't request a stop again. | |
4497 | We just haven't seen the notification yet. */ | |
4498 | if (!t->stop_requested) | |
4499 | { | |
4500 | if (debug_infrun) | |
4501 | fprintf_unfiltered (gdb_stdlog, | |
4502 | "infrun: %s executing, " | |
4503 | "need stop\n", | |
4504 | target_pid_to_str (t->ptid)); | |
4505 | target_stop (t->ptid); | |
4506 | t->stop_requested = 1; | |
4507 | } | |
4508 | else | |
4509 | { | |
4510 | if (debug_infrun) | |
4511 | fprintf_unfiltered (gdb_stdlog, | |
4512 | "infrun: %s executing, " | |
4513 | "already stopping\n", | |
4514 | target_pid_to_str (t->ptid)); | |
4515 | } | |
4516 | ||
4517 | if (t->stop_requested) | |
4518 | need_wait = 1; | |
4519 | } | |
4520 | else | |
4521 | { | |
4522 | if (debug_infrun) | |
4523 | fprintf_unfiltered (gdb_stdlog, | |
4524 | "infrun: %s not executing\n", | |
4525 | target_pid_to_str (t->ptid)); | |
4526 | ||
4527 | /* The thread may be not executing, but still be | |
4528 | resumed with a pending status to process. */ | |
4529 | t->resumed = 0; | |
4530 | } | |
4531 | } | |
4532 | ||
4533 | if (!need_wait) | |
4534 | break; | |
4535 | ||
4536 | /* If we find new threads on the second iteration, restart | |
4537 | over. We want to see two iterations in a row with all | |
4538 | threads stopped. */ | |
4539 | if (pass > 0) | |
4540 | pass = -1; | |
4541 | ||
4542 | event_ptid = wait_one (&ws); | |
4543 | if (ws.kind == TARGET_WAITKIND_NO_RESUMED) | |
4544 | { | |
4545 | /* All resumed threads exited. */ | |
4546 | } | |
65706a29 PA |
4547 | else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED |
4548 | || ws.kind == TARGET_WAITKIND_EXITED | |
372316f1 PA |
4549 | || ws.kind == TARGET_WAITKIND_SIGNALLED) |
4550 | { | |
4551 | if (debug_infrun) | |
4552 | { | |
4553 | ptid_t ptid = pid_to_ptid (ws.value.integer); | |
4554 | ||
4555 | fprintf_unfiltered (gdb_stdlog, | |
4556 | "infrun: %s exited while " | |
4557 | "stopping threads\n", | |
4558 | target_pid_to_str (ptid)); | |
4559 | } | |
4560 | } | |
4561 | else | |
4562 | { | |
6efcd9a8 PA |
4563 | struct inferior *inf; |
4564 | ||
372316f1 PA |
4565 | t = find_thread_ptid (event_ptid); |
4566 | if (t == NULL) | |
4567 | t = add_thread (event_ptid); | |
4568 | ||
4569 | t->stop_requested = 0; | |
4570 | t->executing = 0; | |
4571 | t->resumed = 0; | |
4572 | t->control.may_range_step = 0; | |
4573 | ||
6efcd9a8 PA |
4574 | /* This may be the first time we see the inferior report |
4575 | a stop. */ | |
4576 | inf = find_inferior_ptid (event_ptid); | |
4577 | if (inf->needs_setup) | |
4578 | { | |
4579 | switch_to_thread_no_regs (t); | |
4580 | setup_inferior (0); | |
4581 | } | |
4582 | ||
372316f1 PA |
4583 | if (ws.kind == TARGET_WAITKIND_STOPPED |
4584 | && ws.value.sig == GDB_SIGNAL_0) | |
4585 | { | |
4586 | /* We caught the event that we intended to catch, so | |
4587 | there's no event pending. */ | |
4588 | t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE; | |
4589 | t->suspend.waitstatus_pending_p = 0; | |
4590 | ||
4591 | if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0) | |
4592 | { | |
4593 | /* Add it back to the step-over queue. */ | |
4594 | if (debug_infrun) | |
4595 | { | |
4596 | fprintf_unfiltered (gdb_stdlog, | |
4597 | "infrun: displaced-step of %s " | |
4598 | "canceled: adding back to the " | |
4599 | "step-over queue\n", | |
4600 | target_pid_to_str (t->ptid)); | |
4601 | } | |
4602 | t->control.trap_expected = 0; | |
4603 | thread_step_over_chain_enqueue (t); | |
4604 | } | |
4605 | } | |
4606 | else | |
4607 | { | |
4608 | enum gdb_signal sig; | |
4609 | struct regcache *regcache; | |
4610 | struct address_space *aspace; | |
4611 | ||
4612 | if (debug_infrun) | |
4613 | { | |
4614 | char *statstr; | |
4615 | ||
4616 | statstr = target_waitstatus_to_string (&ws); | |
4617 | fprintf_unfiltered (gdb_stdlog, | |
4618 | "infrun: target_wait %s, saving " | |
4619 | "status for %d.%ld.%ld\n", | |
4620 | statstr, | |
4621 | ptid_get_pid (t->ptid), | |
4622 | ptid_get_lwp (t->ptid), | |
4623 | ptid_get_tid (t->ptid)); | |
4624 | xfree (statstr); | |
4625 | } | |
4626 | ||
4627 | /* Record for later. */ | |
4628 | save_waitstatus (t, &ws); | |
4629 | ||
4630 | sig = (ws.kind == TARGET_WAITKIND_STOPPED | |
4631 | ? ws.value.sig : GDB_SIGNAL_0); | |
4632 | ||
4633 | if (displaced_step_fixup (t->ptid, sig) < 0) | |
4634 | { | |
4635 | /* Add it back to the step-over queue. */ | |
4636 | t->control.trap_expected = 0; | |
4637 | thread_step_over_chain_enqueue (t); | |
4638 | } | |
4639 | ||
4640 | regcache = get_thread_regcache (t->ptid); | |
4641 | t->suspend.stop_pc = regcache_read_pc (regcache); | |
4642 | ||
4643 | if (debug_infrun) | |
4644 | { | |
4645 | fprintf_unfiltered (gdb_stdlog, | |
4646 | "infrun: saved stop_pc=%s for %s " | |
4647 | "(currently_stepping=%d)\n", | |
4648 | paddress (target_gdbarch (), | |
4649 | t->suspend.stop_pc), | |
4650 | target_pid_to_str (t->ptid), | |
4651 | currently_stepping (t)); | |
4652 | } | |
4653 | } | |
4654 | } | |
4655 | } | |
4656 | } | |
4657 | ||
4658 | do_cleanups (old_chain); | |
4659 | ||
4660 | if (debug_infrun) | |
4661 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n"); | |
4662 | } | |
4663 | ||
f4836ba9 PA |
4664 | /* Handle a TARGET_WAITKIND_NO_RESUMED event. */ |
4665 | ||
4666 | static int | |
4667 | handle_no_resumed (struct execution_control_state *ecs) | |
4668 | { | |
4669 | struct inferior *inf; | |
4670 | struct thread_info *thread; | |
4671 | ||
4672 | if (target_can_async_p () && !sync_execution) | |
4673 | { | |
4674 | /* There were no unwaited-for children left in the target, but, | |
4675 | we're not synchronously waiting for events either. Just | |
4676 | ignore. */ | |
4677 | ||
4678 | if (debug_infrun) | |
4679 | fprintf_unfiltered (gdb_stdlog, | |
4680 | "infrun: TARGET_WAITKIND_NO_RESUMED " "(ignoring: bg)\n"); | |
4681 | prepare_to_wait (ecs); | |
4682 | return 1; | |
4683 | } | |
4684 | ||
4685 | /* Otherwise, if we were running a synchronous execution command, we | |
4686 | may need to cancel it and give the user back the terminal. | |
4687 | ||
4688 | In non-stop mode, the target can't tell whether we've already | |
4689 | consumed previous stop events, so it can end up sending us a | |
4690 | no-resumed event like so: | |
4691 | ||
4692 | #0 - thread 1 is left stopped | |
4693 | ||
4694 | #1 - thread 2 is resumed and hits breakpoint | |
4695 | -> TARGET_WAITKIND_STOPPED | |
4696 | ||
4697 | #2 - thread 3 is resumed and exits | |
4698 | this is the last resumed thread, so | |
4699 | -> TARGET_WAITKIND_NO_RESUMED | |
4700 | ||
4701 | #3 - gdb processes stop for thread 2 and decides to re-resume | |
4702 | it. | |
4703 | ||
4704 | #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event. | |
4705 | thread 2 is now resumed, so the event should be ignored. | |
4706 | ||
4707 | IOW, if the stop for thread 2 doesn't end a foreground command, | |
4708 | then we need to ignore the following TARGET_WAITKIND_NO_RESUMED | |
4709 | event. But it could be that the event meant that thread 2 itself | |
4710 | (or whatever other thread was the last resumed thread) exited. | |
4711 | ||
4712 | To address this we refresh the thread list and check whether we | |
4713 | have resumed threads _now_. In the example above, this removes | |
4714 | thread 3 from the thread list. If thread 2 was re-resumed, we | |
4715 | ignore this event. If we find no thread resumed, then we cancel | |
4716 | the synchronous command show "no unwaited-for " to the user. */ | |
4717 | update_thread_list (); | |
4718 | ||
4719 | ALL_NON_EXITED_THREADS (thread) | |
4720 | { | |
4721 | if (thread->executing | |
4722 | || thread->suspend.waitstatus_pending_p) | |
4723 | { | |
4724 | /* There were no unwaited-for children left in the target at | |
4725 | some point, but there are now. Just ignore. */ | |
4726 | if (debug_infrun) | |
4727 | fprintf_unfiltered (gdb_stdlog, | |
4728 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4729 | "(ignoring: found resumed)\n"); | |
4730 | prepare_to_wait (ecs); | |
4731 | return 1; | |
4732 | } | |
4733 | } | |
4734 | ||
4735 | /* Note however that we may find no resumed thread because the whole | |
4736 | process exited meanwhile (thus updating the thread list results | |
4737 | in an empty thread list). In this case we know we'll be getting | |
4738 | a process exit event shortly. */ | |
4739 | ALL_INFERIORS (inf) | |
4740 | { | |
4741 | if (inf->pid == 0) | |
4742 | continue; | |
4743 | ||
4744 | thread = any_live_thread_of_process (inf->pid); | |
4745 | if (thread == NULL) | |
4746 | { | |
4747 | if (debug_infrun) | |
4748 | fprintf_unfiltered (gdb_stdlog, | |
4749 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4750 | "(expect process exit)\n"); | |
4751 | prepare_to_wait (ecs); | |
4752 | return 1; | |
4753 | } | |
4754 | } | |
4755 | ||
4756 | /* Go ahead and report the event. */ | |
4757 | return 0; | |
4758 | } | |
4759 | ||
05ba8510 PA |
4760 | /* Given an execution control state that has been freshly filled in by |
4761 | an event from the inferior, figure out what it means and take | |
4762 | appropriate action. | |
4763 | ||
4764 | The alternatives are: | |
4765 | ||
22bcd14b | 4766 | 1) stop_waiting and return; to really stop and return to the |
05ba8510 PA |
4767 | debugger. |
4768 | ||
4769 | 2) keep_going and return; to wait for the next event (set | |
4770 | ecs->event_thread->stepping_over_breakpoint to 1 to single step | |
4771 | once). */ | |
c906108c | 4772 | |
ec9499be | 4773 | static void |
0b6e5e10 | 4774 | handle_inferior_event_1 (struct execution_control_state *ecs) |
cd0fc7c3 | 4775 | { |
d6b48e9c PA |
4776 | enum stop_kind stop_soon; |
4777 | ||
28736962 PA |
4778 | if (ecs->ws.kind == TARGET_WAITKIND_IGNORE) |
4779 | { | |
4780 | /* We had an event in the inferior, but we are not interested in | |
4781 | handling it at this level. The lower layers have already | |
4782 | done what needs to be done, if anything. | |
4783 | ||
4784 | One of the possible circumstances for this is when the | |
4785 | inferior produces output for the console. The inferior has | |
4786 | not stopped, and we are ignoring the event. Another possible | |
4787 | circumstance is any event which the lower level knows will be | |
4788 | reported multiple times without an intervening resume. */ | |
4789 | if (debug_infrun) | |
4790 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n"); | |
4791 | prepare_to_wait (ecs); | |
4792 | return; | |
4793 | } | |
4794 | ||
65706a29 PA |
4795 | if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED) |
4796 | { | |
4797 | if (debug_infrun) | |
4798 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n"); | |
4799 | prepare_to_wait (ecs); | |
4800 | return; | |
4801 | } | |
4802 | ||
0e5bf2a8 | 4803 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED |
f4836ba9 PA |
4804 | && handle_no_resumed (ecs)) |
4805 | return; | |
0e5bf2a8 | 4806 | |
1777feb0 | 4807 | /* Cache the last pid/waitstatus. */ |
c32c64b7 | 4808 | set_last_target_status (ecs->ptid, ecs->ws); |
e02bc4cc | 4809 | |
ca005067 | 4810 | /* Always clear state belonging to the previous time we stopped. */ |
aa7d318d | 4811 | stop_stack_dummy = STOP_NONE; |
ca005067 | 4812 | |
0e5bf2a8 PA |
4813 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED) |
4814 | { | |
4815 | /* No unwaited-for children left. IOW, all resumed children | |
4816 | have exited. */ | |
4817 | if (debug_infrun) | |
4818 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n"); | |
4819 | ||
4820 | stop_print_frame = 0; | |
22bcd14b | 4821 | stop_waiting (ecs); |
0e5bf2a8 PA |
4822 | return; |
4823 | } | |
4824 | ||
8c90c137 | 4825 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED |
64776a0b | 4826 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) |
359f5fe6 PA |
4827 | { |
4828 | ecs->event_thread = find_thread_ptid (ecs->ptid); | |
4829 | /* If it's a new thread, add it to the thread database. */ | |
4830 | if (ecs->event_thread == NULL) | |
4831 | ecs->event_thread = add_thread (ecs->ptid); | |
c1e36e3e PA |
4832 | |
4833 | /* Disable range stepping. If the next step request could use a | |
4834 | range, this will be end up re-enabled then. */ | |
4835 | ecs->event_thread->control.may_range_step = 0; | |
359f5fe6 | 4836 | } |
88ed393a JK |
4837 | |
4838 | /* Dependent on valid ECS->EVENT_THREAD. */ | |
d8dd4d5f | 4839 | adjust_pc_after_break (ecs->event_thread, &ecs->ws); |
88ed393a JK |
4840 | |
4841 | /* Dependent on the current PC value modified by adjust_pc_after_break. */ | |
4842 | reinit_frame_cache (); | |
4843 | ||
28736962 PA |
4844 | breakpoint_retire_moribund (); |
4845 | ||
2b009048 DJ |
4846 | /* First, distinguish signals caused by the debugger from signals |
4847 | that have to do with the program's own actions. Note that | |
4848 | breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending | |
4849 | on the operating system version. Here we detect when a SIGILL or | |
4850 | SIGEMT is really a breakpoint and change it to SIGTRAP. We do | |
4851 | something similar for SIGSEGV, since a SIGSEGV will be generated | |
4852 | when we're trying to execute a breakpoint instruction on a | |
4853 | non-executable stack. This happens for call dummy breakpoints | |
4854 | for architectures like SPARC that place call dummies on the | |
4855 | stack. */ | |
2b009048 | 4856 | if (ecs->ws.kind == TARGET_WAITKIND_STOPPED |
a493e3e2 PA |
4857 | && (ecs->ws.value.sig == GDB_SIGNAL_ILL |
4858 | || ecs->ws.value.sig == GDB_SIGNAL_SEGV | |
4859 | || ecs->ws.value.sig == GDB_SIGNAL_EMT)) | |
2b009048 | 4860 | { |
de0a0249 UW |
4861 | struct regcache *regcache = get_thread_regcache (ecs->ptid); |
4862 | ||
4863 | if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), | |
4864 | regcache_read_pc (regcache))) | |
4865 | { | |
4866 | if (debug_infrun) | |
4867 | fprintf_unfiltered (gdb_stdlog, | |
4868 | "infrun: Treating signal as SIGTRAP\n"); | |
a493e3e2 | 4869 | ecs->ws.value.sig = GDB_SIGNAL_TRAP; |
de0a0249 | 4870 | } |
2b009048 DJ |
4871 | } |
4872 | ||
28736962 PA |
4873 | /* Mark the non-executing threads accordingly. In all-stop, all |
4874 | threads of all processes are stopped when we get any event | |
e1316e60 | 4875 | reported. In non-stop mode, only the event thread stops. */ |
372316f1 PA |
4876 | { |
4877 | ptid_t mark_ptid; | |
4878 | ||
fbea99ea | 4879 | if (!target_is_non_stop_p ()) |
372316f1 PA |
4880 | mark_ptid = minus_one_ptid; |
4881 | else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED | |
4882 | || ecs->ws.kind == TARGET_WAITKIND_EXITED) | |
4883 | { | |
4884 | /* If we're handling a process exit in non-stop mode, even | |
4885 | though threads haven't been deleted yet, one would think | |
4886 | that there is nothing to do, as threads of the dead process | |
4887 | will be soon deleted, and threads of any other process were | |
4888 | left running. However, on some targets, threads survive a | |
4889 | process exit event. E.g., for the "checkpoint" command, | |
4890 | when the current checkpoint/fork exits, linux-fork.c | |
4891 | automatically switches to another fork from within | |
4892 | target_mourn_inferior, by associating the same | |
4893 | inferior/thread to another fork. We haven't mourned yet at | |
4894 | this point, but we must mark any threads left in the | |
4895 | process as not-executing so that finish_thread_state marks | |
4896 | them stopped (in the user's perspective) if/when we present | |
4897 | the stop to the user. */ | |
4898 | mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid)); | |
4899 | } | |
4900 | else | |
4901 | mark_ptid = ecs->ptid; | |
4902 | ||
4903 | set_executing (mark_ptid, 0); | |
4904 | ||
4905 | /* Likewise the resumed flag. */ | |
4906 | set_resumed (mark_ptid, 0); | |
4907 | } | |
8c90c137 | 4908 | |
488f131b JB |
4909 | switch (ecs->ws.kind) |
4910 | { | |
4911 | case TARGET_WAITKIND_LOADED: | |
527159b7 | 4912 | if (debug_infrun) |
8a9de0e4 | 4913 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n"); |
5c09a2c5 PA |
4914 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
4915 | context_switch (ecs->ptid); | |
b0f4b84b DJ |
4916 | /* Ignore gracefully during startup of the inferior, as it might |
4917 | be the shell which has just loaded some objects, otherwise | |
4918 | add the symbols for the newly loaded objects. Also ignore at | |
4919 | the beginning of an attach or remote session; we will query | |
4920 | the full list of libraries once the connection is | |
4921 | established. */ | |
4f5d7f63 PA |
4922 | |
4923 | stop_soon = get_inferior_stop_soon (ecs->ptid); | |
c0236d92 | 4924 | if (stop_soon == NO_STOP_QUIETLY) |
488f131b | 4925 | { |
edcc5120 TT |
4926 | struct regcache *regcache; |
4927 | ||
edcc5120 TT |
4928 | regcache = get_thread_regcache (ecs->ptid); |
4929 | ||
4930 | handle_solib_event (); | |
4931 | ||
4932 | ecs->event_thread->control.stop_bpstat | |
4933 | = bpstat_stop_status (get_regcache_aspace (regcache), | |
4934 | stop_pc, ecs->ptid, &ecs->ws); | |
ab04a2af | 4935 | |
ce12b012 | 4936 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
edcc5120 TT |
4937 | { |
4938 | /* A catchpoint triggered. */ | |
94c57d6a PA |
4939 | process_event_stop_test (ecs); |
4940 | return; | |
edcc5120 | 4941 | } |
488f131b | 4942 | |
b0f4b84b DJ |
4943 | /* If requested, stop when the dynamic linker notifies |
4944 | gdb of events. This allows the user to get control | |
4945 | and place breakpoints in initializer routines for | |
4946 | dynamically loaded objects (among other things). */ | |
a493e3e2 | 4947 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
b0f4b84b DJ |
4948 | if (stop_on_solib_events) |
4949 | { | |
55409f9d DJ |
4950 | /* Make sure we print "Stopped due to solib-event" in |
4951 | normal_stop. */ | |
4952 | stop_print_frame = 1; | |
4953 | ||
22bcd14b | 4954 | stop_waiting (ecs); |
b0f4b84b DJ |
4955 | return; |
4956 | } | |
488f131b | 4957 | } |
b0f4b84b DJ |
4958 | |
4959 | /* If we are skipping through a shell, or through shared library | |
4960 | loading that we aren't interested in, resume the program. If | |
5c09a2c5 | 4961 | we're running the program normally, also resume. */ |
b0f4b84b DJ |
4962 | if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY) |
4963 | { | |
74960c60 VP |
4964 | /* Loading of shared libraries might have changed breakpoint |
4965 | addresses. Make sure new breakpoints are inserted. */ | |
a25a5a45 | 4966 | if (stop_soon == NO_STOP_QUIETLY) |
74960c60 | 4967 | insert_breakpoints (); |
64ce06e4 | 4968 | resume (GDB_SIGNAL_0); |
b0f4b84b DJ |
4969 | prepare_to_wait (ecs); |
4970 | return; | |
4971 | } | |
4972 | ||
5c09a2c5 PA |
4973 | /* But stop if we're attaching or setting up a remote |
4974 | connection. */ | |
4975 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
4976 | || stop_soon == STOP_QUIETLY_REMOTE) | |
4977 | { | |
4978 | if (debug_infrun) | |
4979 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
22bcd14b | 4980 | stop_waiting (ecs); |
5c09a2c5 PA |
4981 | return; |
4982 | } | |
4983 | ||
4984 | internal_error (__FILE__, __LINE__, | |
4985 | _("unhandled stop_soon: %d"), (int) stop_soon); | |
c5aa993b | 4986 | |
488f131b | 4987 | case TARGET_WAITKIND_SPURIOUS: |
527159b7 | 4988 | if (debug_infrun) |
8a9de0e4 | 4989 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n"); |
64776a0b | 4990 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
8b3ee56d | 4991 | context_switch (ecs->ptid); |
64ce06e4 | 4992 | resume (GDB_SIGNAL_0); |
488f131b JB |
4993 | prepare_to_wait (ecs); |
4994 | return; | |
c5aa993b | 4995 | |
65706a29 PA |
4996 | case TARGET_WAITKIND_THREAD_CREATED: |
4997 | if (debug_infrun) | |
4998 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n"); | |
4999 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
5000 | context_switch (ecs->ptid); | |
5001 | if (!switch_back_to_stepped_thread (ecs)) | |
5002 | keep_going (ecs); | |
5003 | return; | |
5004 | ||
488f131b | 5005 | case TARGET_WAITKIND_EXITED: |
940c3c06 | 5006 | case TARGET_WAITKIND_SIGNALLED: |
527159b7 | 5007 | if (debug_infrun) |
940c3c06 PA |
5008 | { |
5009 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) | |
5010 | fprintf_unfiltered (gdb_stdlog, | |
5011 | "infrun: TARGET_WAITKIND_EXITED\n"); | |
5012 | else | |
5013 | fprintf_unfiltered (gdb_stdlog, | |
5014 | "infrun: TARGET_WAITKIND_SIGNALLED\n"); | |
5015 | } | |
5016 | ||
fb66883a | 5017 | inferior_ptid = ecs->ptid; |
c9657e70 | 5018 | set_current_inferior (find_inferior_ptid (ecs->ptid)); |
6c95b8df PA |
5019 | set_current_program_space (current_inferior ()->pspace); |
5020 | handle_vfork_child_exec_or_exit (0); | |
1777feb0 | 5021 | target_terminal_ours (); /* Must do this before mourn anyway. */ |
488f131b | 5022 | |
0c557179 SDJ |
5023 | /* Clearing any previous state of convenience variables. */ |
5024 | clear_exit_convenience_vars (); | |
5025 | ||
940c3c06 PA |
5026 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) |
5027 | { | |
5028 | /* Record the exit code in the convenience variable $_exitcode, so | |
5029 | that the user can inspect this again later. */ | |
5030 | set_internalvar_integer (lookup_internalvar ("_exitcode"), | |
5031 | (LONGEST) ecs->ws.value.integer); | |
5032 | ||
5033 | /* Also record this in the inferior itself. */ | |
5034 | current_inferior ()->has_exit_code = 1; | |
5035 | current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer; | |
8cf64490 | 5036 | |
98eb56a4 PA |
5037 | /* Support the --return-child-result option. */ |
5038 | return_child_result_value = ecs->ws.value.integer; | |
5039 | ||
fd664c91 | 5040 | observer_notify_exited (ecs->ws.value.integer); |
940c3c06 PA |
5041 | } |
5042 | else | |
0c557179 SDJ |
5043 | { |
5044 | struct regcache *regcache = get_thread_regcache (ecs->ptid); | |
5045 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
5046 | ||
5047 | if (gdbarch_gdb_signal_to_target_p (gdbarch)) | |
5048 | { | |
5049 | /* Set the value of the internal variable $_exitsignal, | |
5050 | which holds the signal uncaught by the inferior. */ | |
5051 | set_internalvar_integer (lookup_internalvar ("_exitsignal"), | |
5052 | gdbarch_gdb_signal_to_target (gdbarch, | |
5053 | ecs->ws.value.sig)); | |
5054 | } | |
5055 | else | |
5056 | { | |
5057 | /* We don't have access to the target's method used for | |
5058 | converting between signal numbers (GDB's internal | |
5059 | representation <-> target's representation). | |
5060 | Therefore, we cannot do a good job at displaying this | |
5061 | information to the user. It's better to just warn | |
5062 | her about it (if infrun debugging is enabled), and | |
5063 | give up. */ | |
5064 | if (debug_infrun) | |
5065 | fprintf_filtered (gdb_stdlog, _("\ | |
5066 | Cannot fill $_exitsignal with the correct signal number.\n")); | |
5067 | } | |
5068 | ||
fd664c91 | 5069 | observer_notify_signal_exited (ecs->ws.value.sig); |
0c557179 | 5070 | } |
8cf64490 | 5071 | |
488f131b JB |
5072 | gdb_flush (gdb_stdout); |
5073 | target_mourn_inferior (); | |
488f131b | 5074 | stop_print_frame = 0; |
22bcd14b | 5075 | stop_waiting (ecs); |
488f131b | 5076 | return; |
c5aa993b | 5077 | |
488f131b | 5078 | /* The following are the only cases in which we keep going; |
1777feb0 | 5079 | the above cases end in a continue or goto. */ |
488f131b | 5080 | case TARGET_WAITKIND_FORKED: |
deb3b17b | 5081 | case TARGET_WAITKIND_VFORKED: |
527159b7 | 5082 | if (debug_infrun) |
fed708ed PA |
5083 | { |
5084 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
5085 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n"); | |
5086 | else | |
5087 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n"); | |
5088 | } | |
c906108c | 5089 | |
e2d96639 YQ |
5090 | /* Check whether the inferior is displaced stepping. */ |
5091 | { | |
5092 | struct regcache *regcache = get_thread_regcache (ecs->ptid); | |
5093 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
e2d96639 YQ |
5094 | |
5095 | /* If checking displaced stepping is supported, and thread | |
5096 | ecs->ptid is displaced stepping. */ | |
c0987663 | 5097 | if (displaced_step_in_progress_thread (ecs->ptid)) |
e2d96639 YQ |
5098 | { |
5099 | struct inferior *parent_inf | |
c9657e70 | 5100 | = find_inferior_ptid (ecs->ptid); |
e2d96639 YQ |
5101 | struct regcache *child_regcache; |
5102 | CORE_ADDR parent_pc; | |
5103 | ||
5104 | /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED, | |
5105 | indicating that the displaced stepping of syscall instruction | |
5106 | has been done. Perform cleanup for parent process here. Note | |
5107 | that this operation also cleans up the child process for vfork, | |
5108 | because their pages are shared. */ | |
a493e3e2 | 5109 | displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP); |
c2829269 PA |
5110 | /* Start a new step-over in another thread if there's one |
5111 | that needs it. */ | |
5112 | start_step_over (); | |
e2d96639 YQ |
5113 | |
5114 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
5115 | { | |
c0987663 YQ |
5116 | struct displaced_step_inferior_state *displaced |
5117 | = get_displaced_stepping_state (ptid_get_pid (ecs->ptid)); | |
5118 | ||
e2d96639 YQ |
5119 | /* Restore scratch pad for child process. */ |
5120 | displaced_step_restore (displaced, ecs->ws.value.related_pid); | |
5121 | } | |
5122 | ||
5123 | /* Since the vfork/fork syscall instruction was executed in the scratchpad, | |
5124 | the child's PC is also within the scratchpad. Set the child's PC | |
5125 | to the parent's PC value, which has already been fixed up. | |
5126 | FIXME: we use the parent's aspace here, although we're touching | |
5127 | the child, because the child hasn't been added to the inferior | |
5128 | list yet at this point. */ | |
5129 | ||
5130 | child_regcache | |
5131 | = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid, | |
5132 | gdbarch, | |
5133 | parent_inf->aspace); | |
5134 | /* Read PC value of parent process. */ | |
5135 | parent_pc = regcache_read_pc (regcache); | |
5136 | ||
5137 | if (debug_displaced) | |
5138 | fprintf_unfiltered (gdb_stdlog, | |
5139 | "displaced: write child pc from %s to %s\n", | |
5140 | paddress (gdbarch, | |
5141 | regcache_read_pc (child_regcache)), | |
5142 | paddress (gdbarch, parent_pc)); | |
5143 | ||
5144 | regcache_write_pc (child_regcache, parent_pc); | |
5145 | } | |
5146 | } | |
5147 | ||
5a2901d9 | 5148 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
c3a01a22 | 5149 | context_switch (ecs->ptid); |
5a2901d9 | 5150 | |
b242c3c2 PA |
5151 | /* Immediately detach breakpoints from the child before there's |
5152 | any chance of letting the user delete breakpoints from the | |
5153 | breakpoint lists. If we don't do this early, it's easy to | |
5154 | leave left over traps in the child, vis: "break foo; catch | |
5155 | fork; c; <fork>; del; c; <child calls foo>". We only follow | |
5156 | the fork on the last `continue', and by that time the | |
5157 | breakpoint at "foo" is long gone from the breakpoint table. | |
5158 | If we vforked, then we don't need to unpatch here, since both | |
5159 | parent and child are sharing the same memory pages; we'll | |
5160 | need to unpatch at follow/detach time instead to be certain | |
5161 | that new breakpoints added between catchpoint hit time and | |
5162 | vfork follow are detached. */ | |
5163 | if (ecs->ws.kind != TARGET_WAITKIND_VFORKED) | |
5164 | { | |
b242c3c2 PA |
5165 | /* This won't actually modify the breakpoint list, but will |
5166 | physically remove the breakpoints from the child. */ | |
d80ee84f | 5167 | detach_breakpoints (ecs->ws.value.related_pid); |
b242c3c2 PA |
5168 | } |
5169 | ||
34b7e8a6 | 5170 | delete_just_stopped_threads_single_step_breakpoints (); |
d03285ec | 5171 | |
e58b0e63 PA |
5172 | /* In case the event is caught by a catchpoint, remember that |
5173 | the event is to be followed at the next resume of the thread, | |
5174 | and not immediately. */ | |
5175 | ecs->event_thread->pending_follow = ecs->ws; | |
5176 | ||
fb14de7b | 5177 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
675bf4cb | 5178 | |
16c381f0 | 5179 | ecs->event_thread->control.stop_bpstat |
6c95b8df | 5180 | = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), |
09ac7c10 | 5181 | stop_pc, ecs->ptid, &ecs->ws); |
675bf4cb | 5182 | |
ce12b012 PA |
5183 | /* If no catchpoint triggered for this, then keep going. Note |
5184 | that we're interested in knowing the bpstat actually causes a | |
5185 | stop, not just if it may explain the signal. Software | |
5186 | watchpoints, for example, always appear in the bpstat. */ | |
5187 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) | |
04e68871 | 5188 | { |
6c95b8df PA |
5189 | ptid_t parent; |
5190 | ptid_t child; | |
e58b0e63 | 5191 | int should_resume; |
3e43a32a MS |
5192 | int follow_child |
5193 | = (follow_fork_mode_string == follow_fork_mode_child); | |
e58b0e63 | 5194 | |
a493e3e2 | 5195 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
e58b0e63 PA |
5196 | |
5197 | should_resume = follow_fork (); | |
5198 | ||
6c95b8df PA |
5199 | parent = ecs->ptid; |
5200 | child = ecs->ws.value.related_pid; | |
5201 | ||
a2077e25 PA |
5202 | /* At this point, the parent is marked running, and the |
5203 | child is marked stopped. */ | |
5204 | ||
5205 | /* If not resuming the parent, mark it stopped. */ | |
5206 | if (follow_child && !detach_fork && !non_stop && !sched_multi) | |
5207 | set_running (parent, 0); | |
5208 | ||
5209 | /* If resuming the child, mark it running. */ | |
5210 | if (follow_child || (!detach_fork && (non_stop || sched_multi))) | |
5211 | set_running (child, 1); | |
5212 | ||
6c95b8df | 5213 | /* In non-stop mode, also resume the other branch. */ |
fbea99ea PA |
5214 | if (!detach_fork && (non_stop |
5215 | || (sched_multi && target_is_non_stop_p ()))) | |
6c95b8df PA |
5216 | { |
5217 | if (follow_child) | |
5218 | switch_to_thread (parent); | |
5219 | else | |
5220 | switch_to_thread (child); | |
5221 | ||
5222 | ecs->event_thread = inferior_thread (); | |
5223 | ecs->ptid = inferior_ptid; | |
5224 | keep_going (ecs); | |
5225 | } | |
5226 | ||
5227 | if (follow_child) | |
5228 | switch_to_thread (child); | |
5229 | else | |
5230 | switch_to_thread (parent); | |
5231 | ||
e58b0e63 PA |
5232 | ecs->event_thread = inferior_thread (); |
5233 | ecs->ptid = inferior_ptid; | |
5234 | ||
5235 | if (should_resume) | |
5236 | keep_going (ecs); | |
5237 | else | |
22bcd14b | 5238 | stop_waiting (ecs); |
04e68871 DJ |
5239 | return; |
5240 | } | |
94c57d6a PA |
5241 | process_event_stop_test (ecs); |
5242 | return; | |
488f131b | 5243 | |
6c95b8df PA |
5244 | case TARGET_WAITKIND_VFORK_DONE: |
5245 | /* Done with the shared memory region. Re-insert breakpoints in | |
5246 | the parent, and keep going. */ | |
5247 | ||
5248 | if (debug_infrun) | |
3e43a32a MS |
5249 | fprintf_unfiltered (gdb_stdlog, |
5250 | "infrun: TARGET_WAITKIND_VFORK_DONE\n"); | |
6c95b8df PA |
5251 | |
5252 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
5253 | context_switch (ecs->ptid); | |
5254 | ||
5255 | current_inferior ()->waiting_for_vfork_done = 0; | |
56710373 | 5256 | current_inferior ()->pspace->breakpoints_not_allowed = 0; |
6c95b8df PA |
5257 | /* This also takes care of reinserting breakpoints in the |
5258 | previously locked inferior. */ | |
5259 | keep_going (ecs); | |
5260 | return; | |
5261 | ||
488f131b | 5262 | case TARGET_WAITKIND_EXECD: |
527159b7 | 5263 | if (debug_infrun) |
fc5261f2 | 5264 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n"); |
488f131b | 5265 | |
5a2901d9 | 5266 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
c3a01a22 | 5267 | context_switch (ecs->ptid); |
5a2901d9 | 5268 | |
fb14de7b | 5269 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
795e548f | 5270 | |
6c95b8df PA |
5271 | /* Do whatever is necessary to the parent branch of the vfork. */ |
5272 | handle_vfork_child_exec_or_exit (1); | |
5273 | ||
795e548f PA |
5274 | /* This causes the eventpoints and symbol table to be reset. |
5275 | Must do this now, before trying to determine whether to | |
5276 | stop. */ | |
71b43ef8 | 5277 | follow_exec (inferior_ptid, ecs->ws.value.execd_pathname); |
795e548f | 5278 | |
17d8546e DB |
5279 | /* In follow_exec we may have deleted the original thread and |
5280 | created a new one. Make sure that the event thread is the | |
5281 | execd thread for that case (this is a nop otherwise). */ | |
5282 | ecs->event_thread = inferior_thread (); | |
5283 | ||
16c381f0 | 5284 | ecs->event_thread->control.stop_bpstat |
6c95b8df | 5285 | = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), |
09ac7c10 | 5286 | stop_pc, ecs->ptid, &ecs->ws); |
795e548f | 5287 | |
71b43ef8 PA |
5288 | /* Note that this may be referenced from inside |
5289 | bpstat_stop_status above, through inferior_has_execd. */ | |
5290 | xfree (ecs->ws.value.execd_pathname); | |
5291 | ecs->ws.value.execd_pathname = NULL; | |
5292 | ||
04e68871 | 5293 | /* If no catchpoint triggered for this, then keep going. */ |
ce12b012 | 5294 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
04e68871 | 5295 | { |
a493e3e2 | 5296 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
04e68871 DJ |
5297 | keep_going (ecs); |
5298 | return; | |
5299 | } | |
94c57d6a PA |
5300 | process_event_stop_test (ecs); |
5301 | return; | |
488f131b | 5302 | |
b4dc5ffa MK |
5303 | /* Be careful not to try to gather much state about a thread |
5304 | that's in a syscall. It's frequently a losing proposition. */ | |
488f131b | 5305 | case TARGET_WAITKIND_SYSCALL_ENTRY: |
527159b7 | 5306 | if (debug_infrun) |
3e43a32a MS |
5307 | fprintf_unfiltered (gdb_stdlog, |
5308 | "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n"); | |
1777feb0 | 5309 | /* Getting the current syscall number. */ |
94c57d6a PA |
5310 | if (handle_syscall_event (ecs) == 0) |
5311 | process_event_stop_test (ecs); | |
5312 | return; | |
c906108c | 5313 | |
488f131b JB |
5314 | /* Before examining the threads further, step this thread to |
5315 | get it entirely out of the syscall. (We get notice of the | |
5316 | event when the thread is just on the verge of exiting a | |
5317 | syscall. Stepping one instruction seems to get it back | |
b4dc5ffa | 5318 | into user code.) */ |
488f131b | 5319 | case TARGET_WAITKIND_SYSCALL_RETURN: |
527159b7 | 5320 | if (debug_infrun) |
3e43a32a MS |
5321 | fprintf_unfiltered (gdb_stdlog, |
5322 | "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n"); | |
94c57d6a PA |
5323 | if (handle_syscall_event (ecs) == 0) |
5324 | process_event_stop_test (ecs); | |
5325 | return; | |
c906108c | 5326 | |
488f131b | 5327 | case TARGET_WAITKIND_STOPPED: |
527159b7 | 5328 | if (debug_infrun) |
8a9de0e4 | 5329 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n"); |
16c381f0 | 5330 | ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig; |
4f5d7f63 PA |
5331 | handle_signal_stop (ecs); |
5332 | return; | |
c906108c | 5333 | |
b2175913 | 5334 | case TARGET_WAITKIND_NO_HISTORY: |
4b4e080e PA |
5335 | if (debug_infrun) |
5336 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n"); | |
b2175913 | 5337 | /* Reverse execution: target ran out of history info. */ |
eab402df | 5338 | |
d1988021 MM |
5339 | /* Switch to the stopped thread. */ |
5340 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
5341 | context_switch (ecs->ptid); | |
5342 | if (debug_infrun) | |
5343 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); | |
5344 | ||
34b7e8a6 | 5345 | delete_just_stopped_threads_single_step_breakpoints (); |
d1988021 | 5346 | stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid)); |
fd664c91 | 5347 | observer_notify_no_history (); |
22bcd14b | 5348 | stop_waiting (ecs); |
b2175913 | 5349 | return; |
488f131b | 5350 | } |
4f5d7f63 PA |
5351 | } |
5352 | ||
0b6e5e10 JB |
5353 | /* A wrapper around handle_inferior_event_1, which also makes sure |
5354 | that all temporary struct value objects that were created during | |
5355 | the handling of the event get deleted at the end. */ | |
5356 | ||
5357 | static void | |
5358 | handle_inferior_event (struct execution_control_state *ecs) | |
5359 | { | |
5360 | struct value *mark = value_mark (); | |
5361 | ||
5362 | handle_inferior_event_1 (ecs); | |
5363 | /* Purge all temporary values created during the event handling, | |
5364 | as it could be a long time before we return to the command level | |
5365 | where such values would otherwise be purged. */ | |
5366 | value_free_to_mark (mark); | |
5367 | } | |
5368 | ||
372316f1 PA |
5369 | /* Restart threads back to what they were trying to do back when we |
5370 | paused them for an in-line step-over. The EVENT_THREAD thread is | |
5371 | ignored. */ | |
4d9d9d04 PA |
5372 | |
5373 | static void | |
372316f1 PA |
5374 | restart_threads (struct thread_info *event_thread) |
5375 | { | |
5376 | struct thread_info *tp; | |
5377 | struct thread_info *step_over = NULL; | |
5378 | ||
5379 | /* In case the instruction just stepped spawned a new thread. */ | |
5380 | update_thread_list (); | |
5381 | ||
5382 | ALL_NON_EXITED_THREADS (tp) | |
5383 | { | |
5384 | if (tp == event_thread) | |
5385 | { | |
5386 | if (debug_infrun) | |
5387 | fprintf_unfiltered (gdb_stdlog, | |
5388 | "infrun: restart threads: " | |
5389 | "[%s] is event thread\n", | |
5390 | target_pid_to_str (tp->ptid)); | |
5391 | continue; | |
5392 | } | |
5393 | ||
5394 | if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall)) | |
5395 | { | |
5396 | if (debug_infrun) | |
5397 | fprintf_unfiltered (gdb_stdlog, | |
5398 | "infrun: restart threads: " | |
5399 | "[%s] not meant to be running\n", | |
5400 | target_pid_to_str (tp->ptid)); | |
5401 | continue; | |
5402 | } | |
5403 | ||
5404 | if (tp->resumed) | |
5405 | { | |
5406 | if (debug_infrun) | |
5407 | fprintf_unfiltered (gdb_stdlog, | |
5408 | "infrun: restart threads: [%s] resumed\n", | |
5409 | target_pid_to_str (tp->ptid)); | |
5410 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); | |
5411 | continue; | |
5412 | } | |
5413 | ||
5414 | if (thread_is_in_step_over_chain (tp)) | |
5415 | { | |
5416 | if (debug_infrun) | |
5417 | fprintf_unfiltered (gdb_stdlog, | |
5418 | "infrun: restart threads: " | |
5419 | "[%s] needs step-over\n", | |
5420 | target_pid_to_str (tp->ptid)); | |
5421 | gdb_assert (!tp->resumed); | |
5422 | continue; | |
5423 | } | |
5424 | ||
5425 | ||
5426 | if (tp->suspend.waitstatus_pending_p) | |
5427 | { | |
5428 | if (debug_infrun) | |
5429 | fprintf_unfiltered (gdb_stdlog, | |
5430 | "infrun: restart threads: " | |
5431 | "[%s] has pending status\n", | |
5432 | target_pid_to_str (tp->ptid)); | |
5433 | tp->resumed = 1; | |
5434 | continue; | |
5435 | } | |
5436 | ||
5437 | /* If some thread needs to start a step-over at this point, it | |
5438 | should still be in the step-over queue, and thus skipped | |
5439 | above. */ | |
5440 | if (thread_still_needs_step_over (tp)) | |
5441 | { | |
5442 | internal_error (__FILE__, __LINE__, | |
5443 | "thread [%s] needs a step-over, but not in " | |
5444 | "step-over queue\n", | |
5445 | target_pid_to_str (tp->ptid)); | |
5446 | } | |
5447 | ||
5448 | if (currently_stepping (tp)) | |
5449 | { | |
5450 | if (debug_infrun) | |
5451 | fprintf_unfiltered (gdb_stdlog, | |
5452 | "infrun: restart threads: [%s] was stepping\n", | |
5453 | target_pid_to_str (tp->ptid)); | |
5454 | keep_going_stepped_thread (tp); | |
5455 | } | |
5456 | else | |
5457 | { | |
5458 | struct execution_control_state ecss; | |
5459 | struct execution_control_state *ecs = &ecss; | |
5460 | ||
5461 | if (debug_infrun) | |
5462 | fprintf_unfiltered (gdb_stdlog, | |
5463 | "infrun: restart threads: [%s] continuing\n", | |
5464 | target_pid_to_str (tp->ptid)); | |
5465 | reset_ecs (ecs, tp); | |
5466 | switch_to_thread (tp->ptid); | |
5467 | keep_going_pass_signal (ecs); | |
5468 | } | |
5469 | } | |
5470 | } | |
5471 | ||
5472 | /* Callback for iterate_over_threads. Find a resumed thread that has | |
5473 | a pending waitstatus. */ | |
5474 | ||
5475 | static int | |
5476 | resumed_thread_with_pending_status (struct thread_info *tp, | |
5477 | void *arg) | |
5478 | { | |
5479 | return (tp->resumed | |
5480 | && tp->suspend.waitstatus_pending_p); | |
5481 | } | |
5482 | ||
5483 | /* Called when we get an event that may finish an in-line or | |
5484 | out-of-line (displaced stepping) step-over started previously. | |
5485 | Return true if the event is processed and we should go back to the | |
5486 | event loop; false if the caller should continue processing the | |
5487 | event. */ | |
5488 | ||
5489 | static int | |
4d9d9d04 PA |
5490 | finish_step_over (struct execution_control_state *ecs) |
5491 | { | |
372316f1 PA |
5492 | int had_step_over_info; |
5493 | ||
4d9d9d04 PA |
5494 | displaced_step_fixup (ecs->ptid, |
5495 | ecs->event_thread->suspend.stop_signal); | |
5496 | ||
372316f1 PA |
5497 | had_step_over_info = step_over_info_valid_p (); |
5498 | ||
5499 | if (had_step_over_info) | |
4d9d9d04 PA |
5500 | { |
5501 | /* If we're stepping over a breakpoint with all threads locked, | |
5502 | then only the thread that was stepped should be reporting | |
5503 | back an event. */ | |
5504 | gdb_assert (ecs->event_thread->control.trap_expected); | |
5505 | ||
5506 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
5507 | clear_step_over_info (); | |
5508 | } | |
5509 | ||
fbea99ea | 5510 | if (!target_is_non_stop_p ()) |
372316f1 | 5511 | return 0; |
4d9d9d04 PA |
5512 | |
5513 | /* Start a new step-over in another thread if there's one that | |
5514 | needs it. */ | |
5515 | start_step_over (); | |
372316f1 PA |
5516 | |
5517 | /* If we were stepping over a breakpoint before, and haven't started | |
5518 | a new in-line step-over sequence, then restart all other threads | |
5519 | (except the event thread). We can't do this in all-stop, as then | |
5520 | e.g., we wouldn't be able to issue any other remote packet until | |
5521 | these other threads stop. */ | |
5522 | if (had_step_over_info && !step_over_info_valid_p ()) | |
5523 | { | |
5524 | struct thread_info *pending; | |
5525 | ||
5526 | /* If we only have threads with pending statuses, the restart | |
5527 | below won't restart any thread and so nothing re-inserts the | |
5528 | breakpoint we just stepped over. But we need it inserted | |
5529 | when we later process the pending events, otherwise if | |
5530 | another thread has a pending event for this breakpoint too, | |
5531 | we'd discard its event (because the breakpoint that | |
5532 | originally caused the event was no longer inserted). */ | |
5533 | context_switch (ecs->ptid); | |
5534 | insert_breakpoints (); | |
5535 | ||
5536 | restart_threads (ecs->event_thread); | |
5537 | ||
5538 | /* If we have events pending, go through handle_inferior_event | |
5539 | again, picking up a pending event at random. This avoids | |
5540 | thread starvation. */ | |
5541 | ||
5542 | /* But not if we just stepped over a watchpoint in order to let | |
5543 | the instruction execute so we can evaluate its expression. | |
5544 | The set of watchpoints that triggered is recorded in the | |
5545 | breakpoint objects themselves (see bp->watchpoint_triggered). | |
5546 | If we processed another event first, that other event could | |
5547 | clobber this info. */ | |
5548 | if (ecs->event_thread->stepping_over_watchpoint) | |
5549 | return 0; | |
5550 | ||
5551 | pending = iterate_over_threads (resumed_thread_with_pending_status, | |
5552 | NULL); | |
5553 | if (pending != NULL) | |
5554 | { | |
5555 | struct thread_info *tp = ecs->event_thread; | |
5556 | struct regcache *regcache; | |
5557 | ||
5558 | if (debug_infrun) | |
5559 | { | |
5560 | fprintf_unfiltered (gdb_stdlog, | |
5561 | "infrun: found resumed threads with " | |
5562 | "pending events, saving status\n"); | |
5563 | } | |
5564 | ||
5565 | gdb_assert (pending != tp); | |
5566 | ||
5567 | /* Record the event thread's event for later. */ | |
5568 | save_waitstatus (tp, &ecs->ws); | |
5569 | /* This was cleared early, by handle_inferior_event. Set it | |
5570 | so this pending event is considered by | |
5571 | do_target_wait. */ | |
5572 | tp->resumed = 1; | |
5573 | ||
5574 | gdb_assert (!tp->executing); | |
5575 | ||
5576 | regcache = get_thread_regcache (tp->ptid); | |
5577 | tp->suspend.stop_pc = regcache_read_pc (regcache); | |
5578 | ||
5579 | if (debug_infrun) | |
5580 | { | |
5581 | fprintf_unfiltered (gdb_stdlog, | |
5582 | "infrun: saved stop_pc=%s for %s " | |
5583 | "(currently_stepping=%d)\n", | |
5584 | paddress (target_gdbarch (), | |
5585 | tp->suspend.stop_pc), | |
5586 | target_pid_to_str (tp->ptid), | |
5587 | currently_stepping (tp)); | |
5588 | } | |
5589 | ||
5590 | /* This in-line step-over finished; clear this so we won't | |
5591 | start a new one. This is what handle_signal_stop would | |
5592 | do, if we returned false. */ | |
5593 | tp->stepping_over_breakpoint = 0; | |
5594 | ||
5595 | /* Wake up the event loop again. */ | |
5596 | mark_async_event_handler (infrun_async_inferior_event_token); | |
5597 | ||
5598 | prepare_to_wait (ecs); | |
5599 | return 1; | |
5600 | } | |
5601 | } | |
5602 | ||
5603 | return 0; | |
4d9d9d04 PA |
5604 | } |
5605 | ||
4f5d7f63 PA |
5606 | /* Come here when the program has stopped with a signal. */ |
5607 | ||
5608 | static void | |
5609 | handle_signal_stop (struct execution_control_state *ecs) | |
5610 | { | |
5611 | struct frame_info *frame; | |
5612 | struct gdbarch *gdbarch; | |
5613 | int stopped_by_watchpoint; | |
5614 | enum stop_kind stop_soon; | |
5615 | int random_signal; | |
c906108c | 5616 | |
f0407826 DE |
5617 | gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED); |
5618 | ||
5619 | /* Do we need to clean up the state of a thread that has | |
5620 | completed a displaced single-step? (Doing so usually affects | |
5621 | the PC, so do it here, before we set stop_pc.) */ | |
372316f1 PA |
5622 | if (finish_step_over (ecs)) |
5623 | return; | |
f0407826 DE |
5624 | |
5625 | /* If we either finished a single-step or hit a breakpoint, but | |
5626 | the user wanted this thread to be stopped, pretend we got a | |
5627 | SIG0 (generic unsignaled stop). */ | |
5628 | if (ecs->event_thread->stop_requested | |
5629 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
5630 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
237fc4c9 | 5631 | |
515630c5 | 5632 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
488f131b | 5633 | |
527159b7 | 5634 | if (debug_infrun) |
237fc4c9 | 5635 | { |
5af949e3 UW |
5636 | struct regcache *regcache = get_thread_regcache (ecs->ptid); |
5637 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
7f82dfc7 JK |
5638 | struct cleanup *old_chain = save_inferior_ptid (); |
5639 | ||
5640 | inferior_ptid = ecs->ptid; | |
5af949e3 UW |
5641 | |
5642 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n", | |
5643 | paddress (gdbarch, stop_pc)); | |
d92524f1 | 5644 | if (target_stopped_by_watchpoint ()) |
237fc4c9 PA |
5645 | { |
5646 | CORE_ADDR addr; | |
abbb1732 | 5647 | |
237fc4c9 PA |
5648 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n"); |
5649 | ||
5650 | if (target_stopped_data_address (¤t_target, &addr)) | |
5651 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
5652 | "infrun: stopped data address = %s\n", |
5653 | paddress (gdbarch, addr)); | |
237fc4c9 PA |
5654 | else |
5655 | fprintf_unfiltered (gdb_stdlog, | |
5656 | "infrun: (no data address available)\n"); | |
5657 | } | |
7f82dfc7 JK |
5658 | |
5659 | do_cleanups (old_chain); | |
237fc4c9 | 5660 | } |
527159b7 | 5661 | |
36fa8042 PA |
5662 | /* This is originated from start_remote(), start_inferior() and |
5663 | shared libraries hook functions. */ | |
5664 | stop_soon = get_inferior_stop_soon (ecs->ptid); | |
5665 | if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) | |
5666 | { | |
5667 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
5668 | context_switch (ecs->ptid); | |
5669 | if (debug_infrun) | |
5670 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
5671 | stop_print_frame = 1; | |
22bcd14b | 5672 | stop_waiting (ecs); |
36fa8042 PA |
5673 | return; |
5674 | } | |
5675 | ||
36fa8042 PA |
5676 | /* This originates from attach_command(). We need to overwrite |
5677 | the stop_signal here, because some kernels don't ignore a | |
5678 | SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call. | |
5679 | See more comments in inferior.h. On the other hand, if we | |
5680 | get a non-SIGSTOP, report it to the user - assume the backend | |
5681 | will handle the SIGSTOP if it should show up later. | |
5682 | ||
5683 | Also consider that the attach is complete when we see a | |
5684 | SIGTRAP. Some systems (e.g. Windows), and stubs supporting | |
5685 | target extended-remote report it instead of a SIGSTOP | |
5686 | (e.g. gdbserver). We already rely on SIGTRAP being our | |
5687 | signal, so this is no exception. | |
5688 | ||
5689 | Also consider that the attach is complete when we see a | |
5690 | GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell | |
5691 | the target to stop all threads of the inferior, in case the | |
5692 | low level attach operation doesn't stop them implicitly. If | |
5693 | they weren't stopped implicitly, then the stub will report a | |
5694 | GDB_SIGNAL_0, meaning: stopped for no particular reason | |
5695 | other than GDB's request. */ | |
5696 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
5697 | && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP | |
5698 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
5699 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0)) | |
5700 | { | |
5701 | stop_print_frame = 1; | |
22bcd14b | 5702 | stop_waiting (ecs); |
36fa8042 PA |
5703 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
5704 | return; | |
5705 | } | |
5706 | ||
488f131b | 5707 | /* See if something interesting happened to the non-current thread. If |
b40c7d58 DJ |
5708 | so, then switch to that thread. */ |
5709 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
488f131b | 5710 | { |
527159b7 | 5711 | if (debug_infrun) |
8a9de0e4 | 5712 | fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); |
527159b7 | 5713 | |
0d1e5fa7 | 5714 | context_switch (ecs->ptid); |
c5aa993b | 5715 | |
9a4105ab | 5716 | if (deprecated_context_hook) |
5d5658a1 | 5717 | deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid)); |
488f131b | 5718 | } |
c906108c | 5719 | |
568d6575 UW |
5720 | /* At this point, get hold of the now-current thread's frame. */ |
5721 | frame = get_current_frame (); | |
5722 | gdbarch = get_frame_arch (frame); | |
5723 | ||
2adfaa28 | 5724 | /* Pull the single step breakpoints out of the target. */ |
af48d08f | 5725 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) |
488f131b | 5726 | { |
af48d08f PA |
5727 | struct regcache *regcache; |
5728 | struct address_space *aspace; | |
5729 | CORE_ADDR pc; | |
2adfaa28 | 5730 | |
af48d08f PA |
5731 | regcache = get_thread_regcache (ecs->ptid); |
5732 | aspace = get_regcache_aspace (regcache); | |
5733 | pc = regcache_read_pc (regcache); | |
34b7e8a6 | 5734 | |
af48d08f PA |
5735 | /* However, before doing so, if this single-step breakpoint was |
5736 | actually for another thread, set this thread up for moving | |
5737 | past it. */ | |
5738 | if (!thread_has_single_step_breakpoint_here (ecs->event_thread, | |
5739 | aspace, pc)) | |
5740 | { | |
5741 | if (single_step_breakpoint_inserted_here_p (aspace, pc)) | |
2adfaa28 PA |
5742 | { |
5743 | if (debug_infrun) | |
5744 | { | |
5745 | fprintf_unfiltered (gdb_stdlog, | |
af48d08f | 5746 | "infrun: [%s] hit another thread's " |
34b7e8a6 PA |
5747 | "single-step breakpoint\n", |
5748 | target_pid_to_str (ecs->ptid)); | |
2adfaa28 | 5749 | } |
af48d08f PA |
5750 | ecs->hit_singlestep_breakpoint = 1; |
5751 | } | |
5752 | } | |
5753 | else | |
5754 | { | |
5755 | if (debug_infrun) | |
5756 | { | |
5757 | fprintf_unfiltered (gdb_stdlog, | |
5758 | "infrun: [%s] hit its " | |
5759 | "single-step breakpoint\n", | |
5760 | target_pid_to_str (ecs->ptid)); | |
2adfaa28 PA |
5761 | } |
5762 | } | |
488f131b | 5763 | } |
af48d08f | 5764 | delete_just_stopped_threads_single_step_breakpoints (); |
c906108c | 5765 | |
963f9c80 PA |
5766 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
5767 | && ecs->event_thread->control.trap_expected | |
5768 | && ecs->event_thread->stepping_over_watchpoint) | |
d983da9c DJ |
5769 | stopped_by_watchpoint = 0; |
5770 | else | |
5771 | stopped_by_watchpoint = watchpoints_triggered (&ecs->ws); | |
5772 | ||
5773 | /* If necessary, step over this watchpoint. We'll be back to display | |
5774 | it in a moment. */ | |
5775 | if (stopped_by_watchpoint | |
d92524f1 | 5776 | && (target_have_steppable_watchpoint |
568d6575 | 5777 | || gdbarch_have_nonsteppable_watchpoint (gdbarch))) |
488f131b | 5778 | { |
488f131b JB |
5779 | /* At this point, we are stopped at an instruction which has |
5780 | attempted to write to a piece of memory under control of | |
5781 | a watchpoint. The instruction hasn't actually executed | |
5782 | yet. If we were to evaluate the watchpoint expression | |
5783 | now, we would get the old value, and therefore no change | |
5784 | would seem to have occurred. | |
5785 | ||
5786 | In order to make watchpoints work `right', we really need | |
5787 | to complete the memory write, and then evaluate the | |
d983da9c DJ |
5788 | watchpoint expression. We do this by single-stepping the |
5789 | target. | |
5790 | ||
7f89fd65 | 5791 | It may not be necessary to disable the watchpoint to step over |
d983da9c DJ |
5792 | it. For example, the PA can (with some kernel cooperation) |
5793 | single step over a watchpoint without disabling the watchpoint. | |
5794 | ||
5795 | It is far more common to need to disable a watchpoint to step | |
5796 | the inferior over it. If we have non-steppable watchpoints, | |
5797 | we must disable the current watchpoint; it's simplest to | |
963f9c80 PA |
5798 | disable all watchpoints. |
5799 | ||
5800 | Any breakpoint at PC must also be stepped over -- if there's | |
5801 | one, it will have already triggered before the watchpoint | |
5802 | triggered, and we either already reported it to the user, or | |
5803 | it didn't cause a stop and we called keep_going. In either | |
5804 | case, if there was a breakpoint at PC, we must be trying to | |
5805 | step past it. */ | |
5806 | ecs->event_thread->stepping_over_watchpoint = 1; | |
5807 | keep_going (ecs); | |
488f131b JB |
5808 | return; |
5809 | } | |
5810 | ||
4e1c45ea | 5811 | ecs->event_thread->stepping_over_breakpoint = 0; |
963f9c80 | 5812 | ecs->event_thread->stepping_over_watchpoint = 0; |
16c381f0 JK |
5813 | bpstat_clear (&ecs->event_thread->control.stop_bpstat); |
5814 | ecs->event_thread->control.stop_step = 0; | |
488f131b | 5815 | stop_print_frame = 1; |
488f131b | 5816 | stopped_by_random_signal = 0; |
488f131b | 5817 | |
edb3359d DJ |
5818 | /* Hide inlined functions starting here, unless we just performed stepi or |
5819 | nexti. After stepi and nexti, always show the innermost frame (not any | |
5820 | inline function call sites). */ | |
16c381f0 | 5821 | if (ecs->event_thread->control.step_range_end != 1) |
0574c78f GB |
5822 | { |
5823 | struct address_space *aspace = | |
5824 | get_regcache_aspace (get_thread_regcache (ecs->ptid)); | |
5825 | ||
5826 | /* skip_inline_frames is expensive, so we avoid it if we can | |
5827 | determine that the address is one where functions cannot have | |
5828 | been inlined. This improves performance with inferiors that | |
5829 | load a lot of shared libraries, because the solib event | |
5830 | breakpoint is defined as the address of a function (i.e. not | |
5831 | inline). Note that we have to check the previous PC as well | |
5832 | as the current one to catch cases when we have just | |
5833 | single-stepped off a breakpoint prior to reinstating it. | |
5834 | Note that we're assuming that the code we single-step to is | |
5835 | not inline, but that's not definitive: there's nothing | |
5836 | preventing the event breakpoint function from containing | |
5837 | inlined code, and the single-step ending up there. If the | |
5838 | user had set a breakpoint on that inlined code, the missing | |
5839 | skip_inline_frames call would break things. Fortunately | |
5840 | that's an extremely unlikely scenario. */ | |
09ac7c10 | 5841 | if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws) |
a210c238 MR |
5842 | && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
5843 | && ecs->event_thread->control.trap_expected | |
5844 | && pc_at_non_inline_function (aspace, | |
5845 | ecs->event_thread->prev_pc, | |
09ac7c10 | 5846 | &ecs->ws))) |
1c5a993e MR |
5847 | { |
5848 | skip_inline_frames (ecs->ptid); | |
5849 | ||
5850 | /* Re-fetch current thread's frame in case that invalidated | |
5851 | the frame cache. */ | |
5852 | frame = get_current_frame (); | |
5853 | gdbarch = get_frame_arch (frame); | |
5854 | } | |
0574c78f | 5855 | } |
edb3359d | 5856 | |
a493e3e2 | 5857 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
16c381f0 | 5858 | && ecs->event_thread->control.trap_expected |
568d6575 | 5859 | && gdbarch_single_step_through_delay_p (gdbarch) |
4e1c45ea | 5860 | && currently_stepping (ecs->event_thread)) |
3352ef37 | 5861 | { |
b50d7442 | 5862 | /* We're trying to step off a breakpoint. Turns out that we're |
3352ef37 | 5863 | also on an instruction that needs to be stepped multiple |
1777feb0 | 5864 | times before it's been fully executing. E.g., architectures |
3352ef37 AC |
5865 | with a delay slot. It needs to be stepped twice, once for |
5866 | the instruction and once for the delay slot. */ | |
5867 | int step_through_delay | |
568d6575 | 5868 | = gdbarch_single_step_through_delay (gdbarch, frame); |
abbb1732 | 5869 | |
527159b7 | 5870 | if (debug_infrun && step_through_delay) |
8a9de0e4 | 5871 | fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); |
16c381f0 JK |
5872 | if (ecs->event_thread->control.step_range_end == 0 |
5873 | && step_through_delay) | |
3352ef37 AC |
5874 | { |
5875 | /* The user issued a continue when stopped at a breakpoint. | |
5876 | Set up for another trap and get out of here. */ | |
4e1c45ea | 5877 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
5878 | keep_going (ecs); |
5879 | return; | |
5880 | } | |
5881 | else if (step_through_delay) | |
5882 | { | |
5883 | /* The user issued a step when stopped at a breakpoint. | |
5884 | Maybe we should stop, maybe we should not - the delay | |
5885 | slot *might* correspond to a line of source. In any | |
ca67fcb8 VP |
5886 | case, don't decide that here, just set |
5887 | ecs->stepping_over_breakpoint, making sure we | |
5888 | single-step again before breakpoints are re-inserted. */ | |
4e1c45ea | 5889 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
5890 | } |
5891 | } | |
5892 | ||
ab04a2af TT |
5893 | /* See if there is a breakpoint/watchpoint/catchpoint/etc. that |
5894 | handles this event. */ | |
5895 | ecs->event_thread->control.stop_bpstat | |
5896 | = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), | |
5897 | stop_pc, ecs->ptid, &ecs->ws); | |
db82e815 | 5898 | |
ab04a2af TT |
5899 | /* Following in case break condition called a |
5900 | function. */ | |
5901 | stop_print_frame = 1; | |
73dd234f | 5902 | |
ab04a2af TT |
5903 | /* This is where we handle "moribund" watchpoints. Unlike |
5904 | software breakpoints traps, hardware watchpoint traps are | |
5905 | always distinguishable from random traps. If no high-level | |
5906 | watchpoint is associated with the reported stop data address | |
5907 | anymore, then the bpstat does not explain the signal --- | |
5908 | simply make sure to ignore it if `stopped_by_watchpoint' is | |
5909 | set. */ | |
5910 | ||
5911 | if (debug_infrun | |
5912 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
47591c29 | 5913 | && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, |
427cd150 | 5914 | GDB_SIGNAL_TRAP) |
ab04a2af TT |
5915 | && stopped_by_watchpoint) |
5916 | fprintf_unfiltered (gdb_stdlog, | |
5917 | "infrun: no user watchpoint explains " | |
5918 | "watchpoint SIGTRAP, ignoring\n"); | |
73dd234f | 5919 | |
bac7d97b | 5920 | /* NOTE: cagney/2003-03-29: These checks for a random signal |
ab04a2af TT |
5921 | at one stage in the past included checks for an inferior |
5922 | function call's call dummy's return breakpoint. The original | |
5923 | comment, that went with the test, read: | |
03cebad2 | 5924 | |
ab04a2af TT |
5925 | ``End of a stack dummy. Some systems (e.g. Sony news) give |
5926 | another signal besides SIGTRAP, so check here as well as | |
5927 | above.'' | |
73dd234f | 5928 | |
ab04a2af TT |
5929 | If someone ever tries to get call dummys on a |
5930 | non-executable stack to work (where the target would stop | |
5931 | with something like a SIGSEGV), then those tests might need | |
5932 | to be re-instated. Given, however, that the tests were only | |
5933 | enabled when momentary breakpoints were not being used, I | |
5934 | suspect that it won't be the case. | |
488f131b | 5935 | |
ab04a2af TT |
5936 | NOTE: kettenis/2004-02-05: Indeed such checks don't seem to |
5937 | be necessary for call dummies on a non-executable stack on | |
5938 | SPARC. */ | |
488f131b | 5939 | |
bac7d97b | 5940 | /* See if the breakpoints module can explain the signal. */ |
47591c29 PA |
5941 | random_signal |
5942 | = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, | |
5943 | ecs->event_thread->suspend.stop_signal); | |
bac7d97b | 5944 | |
1cf4d951 PA |
5945 | /* Maybe this was a trap for a software breakpoint that has since |
5946 | been removed. */ | |
5947 | if (random_signal && target_stopped_by_sw_breakpoint ()) | |
5948 | { | |
5949 | if (program_breakpoint_here_p (gdbarch, stop_pc)) | |
5950 | { | |
5951 | struct regcache *regcache; | |
5952 | int decr_pc; | |
5953 | ||
5954 | /* Re-adjust PC to what the program would see if GDB was not | |
5955 | debugging it. */ | |
5956 | regcache = get_thread_regcache (ecs->event_thread->ptid); | |
527a273a | 5957 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
1cf4d951 PA |
5958 | if (decr_pc != 0) |
5959 | { | |
5960 | struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL); | |
5961 | ||
5962 | if (record_full_is_used ()) | |
5963 | record_full_gdb_operation_disable_set (); | |
5964 | ||
5965 | regcache_write_pc (regcache, stop_pc + decr_pc); | |
5966 | ||
5967 | do_cleanups (old_cleanups); | |
5968 | } | |
5969 | } | |
5970 | else | |
5971 | { | |
5972 | /* A delayed software breakpoint event. Ignore the trap. */ | |
5973 | if (debug_infrun) | |
5974 | fprintf_unfiltered (gdb_stdlog, | |
5975 | "infrun: delayed software breakpoint " | |
5976 | "trap, ignoring\n"); | |
5977 | random_signal = 0; | |
5978 | } | |
5979 | } | |
5980 | ||
5981 | /* Maybe this was a trap for a hardware breakpoint/watchpoint that | |
5982 | has since been removed. */ | |
5983 | if (random_signal && target_stopped_by_hw_breakpoint ()) | |
5984 | { | |
5985 | /* A delayed hardware breakpoint event. Ignore the trap. */ | |
5986 | if (debug_infrun) | |
5987 | fprintf_unfiltered (gdb_stdlog, | |
5988 | "infrun: delayed hardware breakpoint/watchpoint " | |
5989 | "trap, ignoring\n"); | |
5990 | random_signal = 0; | |
5991 | } | |
5992 | ||
bac7d97b PA |
5993 | /* If not, perhaps stepping/nexting can. */ |
5994 | if (random_signal) | |
5995 | random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
5996 | && currently_stepping (ecs->event_thread)); | |
ab04a2af | 5997 | |
2adfaa28 PA |
5998 | /* Perhaps the thread hit a single-step breakpoint of _another_ |
5999 | thread. Single-step breakpoints are transparent to the | |
6000 | breakpoints module. */ | |
6001 | if (random_signal) | |
6002 | random_signal = !ecs->hit_singlestep_breakpoint; | |
6003 | ||
bac7d97b PA |
6004 | /* No? Perhaps we got a moribund watchpoint. */ |
6005 | if (random_signal) | |
6006 | random_signal = !stopped_by_watchpoint; | |
ab04a2af | 6007 | |
488f131b JB |
6008 | /* For the program's own signals, act according to |
6009 | the signal handling tables. */ | |
6010 | ||
ce12b012 | 6011 | if (random_signal) |
488f131b JB |
6012 | { |
6013 | /* Signal not for debugging purposes. */ | |
c9657e70 | 6014 | struct inferior *inf = find_inferior_ptid (ecs->ptid); |
c9737c08 | 6015 | enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal; |
488f131b | 6016 | |
527159b7 | 6017 | if (debug_infrun) |
c9737c08 PA |
6018 | fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n", |
6019 | gdb_signal_to_symbol_string (stop_signal)); | |
527159b7 | 6020 | |
488f131b JB |
6021 | stopped_by_random_signal = 1; |
6022 | ||
252fbfc8 PA |
6023 | /* Always stop on signals if we're either just gaining control |
6024 | of the program, or the user explicitly requested this thread | |
6025 | to remain stopped. */ | |
d6b48e9c | 6026 | if (stop_soon != NO_STOP_QUIETLY |
252fbfc8 | 6027 | || ecs->event_thread->stop_requested |
24291992 | 6028 | || (!inf->detaching |
16c381f0 | 6029 | && signal_stop_state (ecs->event_thread->suspend.stop_signal))) |
488f131b | 6030 | { |
22bcd14b | 6031 | stop_waiting (ecs); |
488f131b JB |
6032 | return; |
6033 | } | |
b57bacec PA |
6034 | |
6035 | /* Notify observers the signal has "handle print" set. Note we | |
6036 | returned early above if stopping; normal_stop handles the | |
6037 | printing in that case. */ | |
6038 | if (signal_print[ecs->event_thread->suspend.stop_signal]) | |
6039 | { | |
6040 | /* The signal table tells us to print about this signal. */ | |
6041 | target_terminal_ours_for_output (); | |
6042 | observer_notify_signal_received (ecs->event_thread->suspend.stop_signal); | |
6043 | target_terminal_inferior (); | |
6044 | } | |
488f131b JB |
6045 | |
6046 | /* Clear the signal if it should not be passed. */ | |
16c381f0 | 6047 | if (signal_program[ecs->event_thread->suspend.stop_signal] == 0) |
a493e3e2 | 6048 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
488f131b | 6049 | |
fb14de7b | 6050 | if (ecs->event_thread->prev_pc == stop_pc |
16c381f0 | 6051 | && ecs->event_thread->control.trap_expected |
8358c15c | 6052 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
68f53502 | 6053 | { |
372316f1 PA |
6054 | int was_in_line; |
6055 | ||
68f53502 AC |
6056 | /* We were just starting a new sequence, attempting to |
6057 | single-step off of a breakpoint and expecting a SIGTRAP. | |
237fc4c9 | 6058 | Instead this signal arrives. This signal will take us out |
68f53502 AC |
6059 | of the stepping range so GDB needs to remember to, when |
6060 | the signal handler returns, resume stepping off that | |
6061 | breakpoint. */ | |
6062 | /* To simplify things, "continue" is forced to use the same | |
6063 | code paths as single-step - set a breakpoint at the | |
6064 | signal return address and then, once hit, step off that | |
6065 | breakpoint. */ | |
237fc4c9 PA |
6066 | if (debug_infrun) |
6067 | fprintf_unfiltered (gdb_stdlog, | |
6068 | "infrun: signal arrived while stepping over " | |
6069 | "breakpoint\n"); | |
d3169d93 | 6070 | |
372316f1 PA |
6071 | was_in_line = step_over_info_valid_p (); |
6072 | clear_step_over_info (); | |
2c03e5be | 6073 | insert_hp_step_resume_breakpoint_at_frame (frame); |
4e1c45ea | 6074 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
6075 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
6076 | ecs->event_thread->control.trap_expected = 0; | |
d137e6dc | 6077 | |
fbea99ea | 6078 | if (target_is_non_stop_p ()) |
372316f1 | 6079 | { |
fbea99ea PA |
6080 | /* Either "set non-stop" is "on", or the target is |
6081 | always in non-stop mode. In this case, we have a bit | |
6082 | more work to do. Resume the current thread, and if | |
6083 | we had paused all threads, restart them while the | |
6084 | signal handler runs. */ | |
372316f1 PA |
6085 | keep_going (ecs); |
6086 | ||
372316f1 PA |
6087 | if (was_in_line) |
6088 | { | |
372316f1 PA |
6089 | restart_threads (ecs->event_thread); |
6090 | } | |
6091 | else if (debug_infrun) | |
6092 | { | |
6093 | fprintf_unfiltered (gdb_stdlog, | |
6094 | "infrun: no need to restart threads\n"); | |
6095 | } | |
6096 | return; | |
6097 | } | |
6098 | ||
d137e6dc PA |
6099 | /* If we were nexting/stepping some other thread, switch to |
6100 | it, so that we don't continue it, losing control. */ | |
6101 | if (!switch_back_to_stepped_thread (ecs)) | |
6102 | keep_going (ecs); | |
9d799f85 | 6103 | return; |
68f53502 | 6104 | } |
9d799f85 | 6105 | |
e5f8a7cc PA |
6106 | if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0 |
6107 | && (pc_in_thread_step_range (stop_pc, ecs->event_thread) | |
6108 | || ecs->event_thread->control.step_range_end == 1) | |
edb3359d | 6109 | && frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 6110 | ecs->event_thread->control.step_stack_frame_id) |
8358c15c | 6111 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
d303a6c7 AC |
6112 | { |
6113 | /* The inferior is about to take a signal that will take it | |
6114 | out of the single step range. Set a breakpoint at the | |
6115 | current PC (which is presumably where the signal handler | |
6116 | will eventually return) and then allow the inferior to | |
6117 | run free. | |
6118 | ||
6119 | Note that this is only needed for a signal delivered | |
6120 | while in the single-step range. Nested signals aren't a | |
6121 | problem as they eventually all return. */ | |
237fc4c9 PA |
6122 | if (debug_infrun) |
6123 | fprintf_unfiltered (gdb_stdlog, | |
6124 | "infrun: signal may take us out of " | |
6125 | "single-step range\n"); | |
6126 | ||
372316f1 | 6127 | clear_step_over_info (); |
2c03e5be | 6128 | insert_hp_step_resume_breakpoint_at_frame (frame); |
e5f8a7cc | 6129 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
6130 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
6131 | ecs->event_thread->control.trap_expected = 0; | |
9d799f85 AC |
6132 | keep_going (ecs); |
6133 | return; | |
d303a6c7 | 6134 | } |
9d799f85 AC |
6135 | |
6136 | /* Note: step_resume_breakpoint may be non-NULL. This occures | |
6137 | when either there's a nested signal, or when there's a | |
6138 | pending signal enabled just as the signal handler returns | |
6139 | (leaving the inferior at the step-resume-breakpoint without | |
6140 | actually executing it). Either way continue until the | |
6141 | breakpoint is really hit. */ | |
c447ac0b PA |
6142 | |
6143 | if (!switch_back_to_stepped_thread (ecs)) | |
6144 | { | |
6145 | if (debug_infrun) | |
6146 | fprintf_unfiltered (gdb_stdlog, | |
6147 | "infrun: random signal, keep going\n"); | |
6148 | ||
6149 | keep_going (ecs); | |
6150 | } | |
6151 | return; | |
488f131b | 6152 | } |
94c57d6a PA |
6153 | |
6154 | process_event_stop_test (ecs); | |
6155 | } | |
6156 | ||
6157 | /* Come here when we've got some debug event / signal we can explain | |
6158 | (IOW, not a random signal), and test whether it should cause a | |
6159 | stop, or whether we should resume the inferior (transparently). | |
6160 | E.g., could be a breakpoint whose condition evaluates false; we | |
6161 | could be still stepping within the line; etc. */ | |
6162 | ||
6163 | static void | |
6164 | process_event_stop_test (struct execution_control_state *ecs) | |
6165 | { | |
6166 | struct symtab_and_line stop_pc_sal; | |
6167 | struct frame_info *frame; | |
6168 | struct gdbarch *gdbarch; | |
cdaa5b73 PA |
6169 | CORE_ADDR jmp_buf_pc; |
6170 | struct bpstat_what what; | |
94c57d6a | 6171 | |
cdaa5b73 | 6172 | /* Handle cases caused by hitting a breakpoint. */ |
611c83ae | 6173 | |
cdaa5b73 PA |
6174 | frame = get_current_frame (); |
6175 | gdbarch = get_frame_arch (frame); | |
fcf3daef | 6176 | |
cdaa5b73 | 6177 | what = bpstat_what (ecs->event_thread->control.stop_bpstat); |
611c83ae | 6178 | |
cdaa5b73 PA |
6179 | if (what.call_dummy) |
6180 | { | |
6181 | stop_stack_dummy = what.call_dummy; | |
6182 | } | |
186c406b | 6183 | |
243a9253 PA |
6184 | /* A few breakpoint types have callbacks associated (e.g., |
6185 | bp_jit_event). Run them now. */ | |
6186 | bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat); | |
6187 | ||
cdaa5b73 PA |
6188 | /* If we hit an internal event that triggers symbol changes, the |
6189 | current frame will be invalidated within bpstat_what (e.g., if we | |
6190 | hit an internal solib event). Re-fetch it. */ | |
6191 | frame = get_current_frame (); | |
6192 | gdbarch = get_frame_arch (frame); | |
e2e4d78b | 6193 | |
cdaa5b73 PA |
6194 | switch (what.main_action) |
6195 | { | |
6196 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: | |
6197 | /* If we hit the breakpoint at longjmp while stepping, we | |
6198 | install a momentary breakpoint at the target of the | |
6199 | jmp_buf. */ | |
186c406b | 6200 | |
cdaa5b73 PA |
6201 | if (debug_infrun) |
6202 | fprintf_unfiltered (gdb_stdlog, | |
6203 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); | |
186c406b | 6204 | |
cdaa5b73 | 6205 | ecs->event_thread->stepping_over_breakpoint = 1; |
611c83ae | 6206 | |
cdaa5b73 PA |
6207 | if (what.is_longjmp) |
6208 | { | |
6209 | struct value *arg_value; | |
6210 | ||
6211 | /* If we set the longjmp breakpoint via a SystemTap probe, | |
6212 | then use it to extract the arguments. The destination PC | |
6213 | is the third argument to the probe. */ | |
6214 | arg_value = probe_safe_evaluate_at_pc (frame, 2); | |
6215 | if (arg_value) | |
8fa0c4f8 AA |
6216 | { |
6217 | jmp_buf_pc = value_as_address (arg_value); | |
6218 | jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc); | |
6219 | } | |
cdaa5b73 PA |
6220 | else if (!gdbarch_get_longjmp_target_p (gdbarch) |
6221 | || !gdbarch_get_longjmp_target (gdbarch, | |
6222 | frame, &jmp_buf_pc)) | |
e2e4d78b | 6223 | { |
cdaa5b73 PA |
6224 | if (debug_infrun) |
6225 | fprintf_unfiltered (gdb_stdlog, | |
6226 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME " | |
6227 | "(!gdbarch_get_longjmp_target)\n"); | |
6228 | keep_going (ecs); | |
6229 | return; | |
e2e4d78b | 6230 | } |
e2e4d78b | 6231 | |
cdaa5b73 PA |
6232 | /* Insert a breakpoint at resume address. */ |
6233 | insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc); | |
6234 | } | |
6235 | else | |
6236 | check_exception_resume (ecs, frame); | |
6237 | keep_going (ecs); | |
6238 | return; | |
e81a37f7 | 6239 | |
cdaa5b73 PA |
6240 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: |
6241 | { | |
6242 | struct frame_info *init_frame; | |
e81a37f7 | 6243 | |
cdaa5b73 | 6244 | /* There are several cases to consider. |
c906108c | 6245 | |
cdaa5b73 PA |
6246 | 1. The initiating frame no longer exists. In this case we |
6247 | must stop, because the exception or longjmp has gone too | |
6248 | far. | |
2c03e5be | 6249 | |
cdaa5b73 PA |
6250 | 2. The initiating frame exists, and is the same as the |
6251 | current frame. We stop, because the exception or longjmp | |
6252 | has been caught. | |
2c03e5be | 6253 | |
cdaa5b73 PA |
6254 | 3. The initiating frame exists and is different from the |
6255 | current frame. This means the exception or longjmp has | |
6256 | been caught beneath the initiating frame, so keep going. | |
c906108c | 6257 | |
cdaa5b73 PA |
6258 | 4. longjmp breakpoint has been placed just to protect |
6259 | against stale dummy frames and user is not interested in | |
6260 | stopping around longjmps. */ | |
c5aa993b | 6261 | |
cdaa5b73 PA |
6262 | if (debug_infrun) |
6263 | fprintf_unfiltered (gdb_stdlog, | |
6264 | "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); | |
c5aa993b | 6265 | |
cdaa5b73 PA |
6266 | gdb_assert (ecs->event_thread->control.exception_resume_breakpoint |
6267 | != NULL); | |
6268 | delete_exception_resume_breakpoint (ecs->event_thread); | |
c5aa993b | 6269 | |
cdaa5b73 PA |
6270 | if (what.is_longjmp) |
6271 | { | |
b67a2c6f | 6272 | check_longjmp_breakpoint_for_call_dummy (ecs->event_thread); |
c5aa993b | 6273 | |
cdaa5b73 | 6274 | if (!frame_id_p (ecs->event_thread->initiating_frame)) |
e5ef252a | 6275 | { |
cdaa5b73 PA |
6276 | /* Case 4. */ |
6277 | keep_going (ecs); | |
6278 | return; | |
e5ef252a | 6279 | } |
cdaa5b73 | 6280 | } |
c5aa993b | 6281 | |
cdaa5b73 | 6282 | init_frame = frame_find_by_id (ecs->event_thread->initiating_frame); |
527159b7 | 6283 | |
cdaa5b73 PA |
6284 | if (init_frame) |
6285 | { | |
6286 | struct frame_id current_id | |
6287 | = get_frame_id (get_current_frame ()); | |
6288 | if (frame_id_eq (current_id, | |
6289 | ecs->event_thread->initiating_frame)) | |
6290 | { | |
6291 | /* Case 2. Fall through. */ | |
6292 | } | |
6293 | else | |
6294 | { | |
6295 | /* Case 3. */ | |
6296 | keep_going (ecs); | |
6297 | return; | |
6298 | } | |
68f53502 | 6299 | } |
488f131b | 6300 | |
cdaa5b73 PA |
6301 | /* For Cases 1 and 2, remove the step-resume breakpoint, if it |
6302 | exists. */ | |
6303 | delete_step_resume_breakpoint (ecs->event_thread); | |
e5ef252a | 6304 | |
bdc36728 | 6305 | end_stepping_range (ecs); |
cdaa5b73 PA |
6306 | } |
6307 | return; | |
e5ef252a | 6308 | |
cdaa5b73 PA |
6309 | case BPSTAT_WHAT_SINGLE: |
6310 | if (debug_infrun) | |
6311 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); | |
6312 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6313 | /* Still need to check other stuff, at least the case where we | |
6314 | are stepping and step out of the right range. */ | |
6315 | break; | |
e5ef252a | 6316 | |
cdaa5b73 PA |
6317 | case BPSTAT_WHAT_STEP_RESUME: |
6318 | if (debug_infrun) | |
6319 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); | |
e5ef252a | 6320 | |
cdaa5b73 PA |
6321 | delete_step_resume_breakpoint (ecs->event_thread); |
6322 | if (ecs->event_thread->control.proceed_to_finish | |
6323 | && execution_direction == EXEC_REVERSE) | |
6324 | { | |
6325 | struct thread_info *tp = ecs->event_thread; | |
6326 | ||
6327 | /* We are finishing a function in reverse, and just hit the | |
6328 | step-resume breakpoint at the start address of the | |
6329 | function, and we're almost there -- just need to back up | |
6330 | by one more single-step, which should take us back to the | |
6331 | function call. */ | |
6332 | tp->control.step_range_start = tp->control.step_range_end = 1; | |
6333 | keep_going (ecs); | |
e5ef252a | 6334 | return; |
cdaa5b73 PA |
6335 | } |
6336 | fill_in_stop_func (gdbarch, ecs); | |
6337 | if (stop_pc == ecs->stop_func_start | |
6338 | && execution_direction == EXEC_REVERSE) | |
6339 | { | |
6340 | /* We are stepping over a function call in reverse, and just | |
6341 | hit the step-resume breakpoint at the start address of | |
6342 | the function. Go back to single-stepping, which should | |
6343 | take us back to the function call. */ | |
6344 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6345 | keep_going (ecs); | |
6346 | return; | |
6347 | } | |
6348 | break; | |
e5ef252a | 6349 | |
cdaa5b73 PA |
6350 | case BPSTAT_WHAT_STOP_NOISY: |
6351 | if (debug_infrun) | |
6352 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); | |
6353 | stop_print_frame = 1; | |
e5ef252a | 6354 | |
99619bea PA |
6355 | /* Assume the thread stopped for a breapoint. We'll still check |
6356 | whether a/the breakpoint is there when the thread is next | |
6357 | resumed. */ | |
6358 | ecs->event_thread->stepping_over_breakpoint = 1; | |
e5ef252a | 6359 | |
22bcd14b | 6360 | stop_waiting (ecs); |
cdaa5b73 | 6361 | return; |
e5ef252a | 6362 | |
cdaa5b73 PA |
6363 | case BPSTAT_WHAT_STOP_SILENT: |
6364 | if (debug_infrun) | |
6365 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); | |
6366 | stop_print_frame = 0; | |
e5ef252a | 6367 | |
99619bea PA |
6368 | /* Assume the thread stopped for a breapoint. We'll still check |
6369 | whether a/the breakpoint is there when the thread is next | |
6370 | resumed. */ | |
6371 | ecs->event_thread->stepping_over_breakpoint = 1; | |
22bcd14b | 6372 | stop_waiting (ecs); |
cdaa5b73 PA |
6373 | return; |
6374 | ||
6375 | case BPSTAT_WHAT_HP_STEP_RESUME: | |
6376 | if (debug_infrun) | |
6377 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n"); | |
6378 | ||
6379 | delete_step_resume_breakpoint (ecs->event_thread); | |
6380 | if (ecs->event_thread->step_after_step_resume_breakpoint) | |
6381 | { | |
6382 | /* Back when the step-resume breakpoint was inserted, we | |
6383 | were trying to single-step off a breakpoint. Go back to | |
6384 | doing that. */ | |
6385 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6386 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6387 | keep_going (ecs); | |
6388 | return; | |
e5ef252a | 6389 | } |
cdaa5b73 PA |
6390 | break; |
6391 | ||
6392 | case BPSTAT_WHAT_KEEP_CHECKING: | |
6393 | break; | |
e5ef252a | 6394 | } |
c906108c | 6395 | |
af48d08f PA |
6396 | /* If we stepped a permanent breakpoint and we had a high priority |
6397 | step-resume breakpoint for the address we stepped, but we didn't | |
6398 | hit it, then we must have stepped into the signal handler. The | |
6399 | step-resume was only necessary to catch the case of _not_ | |
6400 | stepping into the handler, so delete it, and fall through to | |
6401 | checking whether the step finished. */ | |
6402 | if (ecs->event_thread->stepped_breakpoint) | |
6403 | { | |
6404 | struct breakpoint *sr_bp | |
6405 | = ecs->event_thread->control.step_resume_breakpoint; | |
6406 | ||
8d707a12 PA |
6407 | if (sr_bp != NULL |
6408 | && sr_bp->loc->permanent | |
af48d08f PA |
6409 | && sr_bp->type == bp_hp_step_resume |
6410 | && sr_bp->loc->address == ecs->event_thread->prev_pc) | |
6411 | { | |
6412 | if (debug_infrun) | |
6413 | fprintf_unfiltered (gdb_stdlog, | |
6414 | "infrun: stepped permanent breakpoint, stopped in " | |
6415 | "handler\n"); | |
6416 | delete_step_resume_breakpoint (ecs->event_thread); | |
6417 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6418 | } | |
6419 | } | |
6420 | ||
cdaa5b73 PA |
6421 | /* We come here if we hit a breakpoint but should not stop for it. |
6422 | Possibly we also were stepping and should stop for that. So fall | |
6423 | through and test for stepping. But, if not stepping, do not | |
6424 | stop. */ | |
c906108c | 6425 | |
a7212384 UW |
6426 | /* In all-stop mode, if we're currently stepping but have stopped in |
6427 | some other thread, we need to switch back to the stepped thread. */ | |
c447ac0b PA |
6428 | if (switch_back_to_stepped_thread (ecs)) |
6429 | return; | |
776f04fa | 6430 | |
8358c15c | 6431 | if (ecs->event_thread->control.step_resume_breakpoint) |
488f131b | 6432 | { |
527159b7 | 6433 | if (debug_infrun) |
d3169d93 DJ |
6434 | fprintf_unfiltered (gdb_stdlog, |
6435 | "infrun: step-resume breakpoint is inserted\n"); | |
527159b7 | 6436 | |
488f131b JB |
6437 | /* Having a step-resume breakpoint overrides anything |
6438 | else having to do with stepping commands until | |
6439 | that breakpoint is reached. */ | |
488f131b JB |
6440 | keep_going (ecs); |
6441 | return; | |
6442 | } | |
c5aa993b | 6443 | |
16c381f0 | 6444 | if (ecs->event_thread->control.step_range_end == 0) |
488f131b | 6445 | { |
527159b7 | 6446 | if (debug_infrun) |
8a9de0e4 | 6447 | fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); |
488f131b | 6448 | /* Likewise if we aren't even stepping. */ |
488f131b JB |
6449 | keep_going (ecs); |
6450 | return; | |
6451 | } | |
c5aa993b | 6452 | |
4b7703ad JB |
6453 | /* Re-fetch current thread's frame in case the code above caused |
6454 | the frame cache to be re-initialized, making our FRAME variable | |
6455 | a dangling pointer. */ | |
6456 | frame = get_current_frame (); | |
628fe4e4 | 6457 | gdbarch = get_frame_arch (frame); |
7e324e48 | 6458 | fill_in_stop_func (gdbarch, ecs); |
4b7703ad | 6459 | |
488f131b | 6460 | /* If stepping through a line, keep going if still within it. |
c906108c | 6461 | |
488f131b JB |
6462 | Note that step_range_end is the address of the first instruction |
6463 | beyond the step range, and NOT the address of the last instruction | |
31410e84 MS |
6464 | within it! |
6465 | ||
6466 | Note also that during reverse execution, we may be stepping | |
6467 | through a function epilogue and therefore must detect when | |
6468 | the current-frame changes in the middle of a line. */ | |
6469 | ||
ce4c476a | 6470 | if (pc_in_thread_step_range (stop_pc, ecs->event_thread) |
31410e84 | 6471 | && (execution_direction != EXEC_REVERSE |
388a8562 | 6472 | || frame_id_eq (get_frame_id (frame), |
16c381f0 | 6473 | ecs->event_thread->control.step_frame_id))) |
488f131b | 6474 | { |
527159b7 | 6475 | if (debug_infrun) |
5af949e3 UW |
6476 | fprintf_unfiltered |
6477 | (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n", | |
16c381f0 JK |
6478 | paddress (gdbarch, ecs->event_thread->control.step_range_start), |
6479 | paddress (gdbarch, ecs->event_thread->control.step_range_end)); | |
b2175913 | 6480 | |
c1e36e3e PA |
6481 | /* Tentatively re-enable range stepping; `resume' disables it if |
6482 | necessary (e.g., if we're stepping over a breakpoint or we | |
6483 | have software watchpoints). */ | |
6484 | ecs->event_thread->control.may_range_step = 1; | |
6485 | ||
b2175913 MS |
6486 | /* When stepping backward, stop at beginning of line range |
6487 | (unless it's the function entry point, in which case | |
6488 | keep going back to the call point). */ | |
16c381f0 | 6489 | if (stop_pc == ecs->event_thread->control.step_range_start |
b2175913 MS |
6490 | && stop_pc != ecs->stop_func_start |
6491 | && execution_direction == EXEC_REVERSE) | |
bdc36728 | 6492 | end_stepping_range (ecs); |
b2175913 MS |
6493 | else |
6494 | keep_going (ecs); | |
6495 | ||
488f131b JB |
6496 | return; |
6497 | } | |
c5aa993b | 6498 | |
488f131b | 6499 | /* We stepped out of the stepping range. */ |
c906108c | 6500 | |
488f131b | 6501 | /* If we are stepping at the source level and entered the runtime |
388a8562 MS |
6502 | loader dynamic symbol resolution code... |
6503 | ||
6504 | EXEC_FORWARD: we keep on single stepping until we exit the run | |
6505 | time loader code and reach the callee's address. | |
6506 | ||
6507 | EXEC_REVERSE: we've already executed the callee (backward), and | |
6508 | the runtime loader code is handled just like any other | |
6509 | undebuggable function call. Now we need only keep stepping | |
6510 | backward through the trampoline code, and that's handled further | |
6511 | down, so there is nothing for us to do here. */ | |
6512 | ||
6513 | if (execution_direction != EXEC_REVERSE | |
16c381f0 | 6514 | && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
cfd8ab24 | 6515 | && in_solib_dynsym_resolve_code (stop_pc)) |
488f131b | 6516 | { |
4c8c40e6 | 6517 | CORE_ADDR pc_after_resolver = |
568d6575 | 6518 | gdbarch_skip_solib_resolver (gdbarch, stop_pc); |
c906108c | 6519 | |
527159b7 | 6520 | if (debug_infrun) |
3e43a32a MS |
6521 | fprintf_unfiltered (gdb_stdlog, |
6522 | "infrun: stepped into dynsym resolve code\n"); | |
527159b7 | 6523 | |
488f131b JB |
6524 | if (pc_after_resolver) |
6525 | { | |
6526 | /* Set up a step-resume breakpoint at the address | |
6527 | indicated by SKIP_SOLIB_RESOLVER. */ | |
6528 | struct symtab_and_line sr_sal; | |
abbb1732 | 6529 | |
fe39c653 | 6530 | init_sal (&sr_sal); |
488f131b | 6531 | sr_sal.pc = pc_after_resolver; |
6c95b8df | 6532 | sr_sal.pspace = get_frame_program_space (frame); |
488f131b | 6533 | |
a6d9a66e UW |
6534 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6535 | sr_sal, null_frame_id); | |
c5aa993b | 6536 | } |
c906108c | 6537 | |
488f131b JB |
6538 | keep_going (ecs); |
6539 | return; | |
6540 | } | |
c906108c | 6541 | |
16c381f0 JK |
6542 | if (ecs->event_thread->control.step_range_end != 1 |
6543 | && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE | |
6544 | || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) | |
568d6575 | 6545 | && get_frame_type (frame) == SIGTRAMP_FRAME) |
488f131b | 6546 | { |
527159b7 | 6547 | if (debug_infrun) |
3e43a32a MS |
6548 | fprintf_unfiltered (gdb_stdlog, |
6549 | "infrun: stepped into signal trampoline\n"); | |
42edda50 | 6550 | /* The inferior, while doing a "step" or "next", has ended up in |
8fb3e588 AC |
6551 | a signal trampoline (either by a signal being delivered or by |
6552 | the signal handler returning). Just single-step until the | |
6553 | inferior leaves the trampoline (either by calling the handler | |
6554 | or returning). */ | |
488f131b JB |
6555 | keep_going (ecs); |
6556 | return; | |
6557 | } | |
c906108c | 6558 | |
14132e89 MR |
6559 | /* If we're in the return path from a shared library trampoline, |
6560 | we want to proceed through the trampoline when stepping. */ | |
6561 | /* macro/2012-04-25: This needs to come before the subroutine | |
6562 | call check below as on some targets return trampolines look | |
6563 | like subroutine calls (MIPS16 return thunks). */ | |
6564 | if (gdbarch_in_solib_return_trampoline (gdbarch, | |
6565 | stop_pc, ecs->stop_func_name) | |
6566 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) | |
6567 | { | |
6568 | /* Determine where this trampoline returns. */ | |
6569 | CORE_ADDR real_stop_pc; | |
6570 | ||
6571 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); | |
6572 | ||
6573 | if (debug_infrun) | |
6574 | fprintf_unfiltered (gdb_stdlog, | |
6575 | "infrun: stepped into solib return tramp\n"); | |
6576 | ||
6577 | /* Only proceed through if we know where it's going. */ | |
6578 | if (real_stop_pc) | |
6579 | { | |
6580 | /* And put the step-breakpoint there and go until there. */ | |
6581 | struct symtab_and_line sr_sal; | |
6582 | ||
6583 | init_sal (&sr_sal); /* initialize to zeroes */ | |
6584 | sr_sal.pc = real_stop_pc; | |
6585 | sr_sal.section = find_pc_overlay (sr_sal.pc); | |
6586 | sr_sal.pspace = get_frame_program_space (frame); | |
6587 | ||
6588 | /* Do not specify what the fp should be when we stop since | |
6589 | on some machines the prologue is where the new fp value | |
6590 | is established. */ | |
6591 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6592 | sr_sal, null_frame_id); | |
6593 | ||
6594 | /* Restart without fiddling with the step ranges or | |
6595 | other state. */ | |
6596 | keep_going (ecs); | |
6597 | return; | |
6598 | } | |
6599 | } | |
6600 | ||
c17eaafe DJ |
6601 | /* Check for subroutine calls. The check for the current frame |
6602 | equalling the step ID is not necessary - the check of the | |
6603 | previous frame's ID is sufficient - but it is a common case and | |
6604 | cheaper than checking the previous frame's ID. | |
14e60db5 DJ |
6605 | |
6606 | NOTE: frame_id_eq will never report two invalid frame IDs as | |
6607 | being equal, so to get into this block, both the current and | |
6608 | previous frame must have valid frame IDs. */ | |
005ca36a JB |
6609 | /* The outer_frame_id check is a heuristic to detect stepping |
6610 | through startup code. If we step over an instruction which | |
6611 | sets the stack pointer from an invalid value to a valid value, | |
6612 | we may detect that as a subroutine call from the mythical | |
6613 | "outermost" function. This could be fixed by marking | |
6614 | outermost frames as !stack_p,code_p,special_p. Then the | |
6615 | initial outermost frame, before sp was valid, would | |
ce6cca6d | 6616 | have code_addr == &_start. See the comment in frame_id_eq |
005ca36a | 6617 | for more. */ |
edb3359d | 6618 | if (!frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 6619 | ecs->event_thread->control.step_stack_frame_id) |
005ca36a | 6620 | && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()), |
16c381f0 JK |
6621 | ecs->event_thread->control.step_stack_frame_id) |
6622 | && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id, | |
005ca36a | 6623 | outer_frame_id) |
885eeb5b PA |
6624 | || (ecs->event_thread->control.step_start_function |
6625 | != find_pc_function (stop_pc))))) | |
488f131b | 6626 | { |
95918acb | 6627 | CORE_ADDR real_stop_pc; |
8fb3e588 | 6628 | |
527159b7 | 6629 | if (debug_infrun) |
8a9de0e4 | 6630 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); |
527159b7 | 6631 | |
b7a084be | 6632 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE) |
95918acb AC |
6633 | { |
6634 | /* I presume that step_over_calls is only 0 when we're | |
6635 | supposed to be stepping at the assembly language level | |
6636 | ("stepi"). Just stop. */ | |
388a8562 | 6637 | /* And this works the same backward as frontward. MVS */ |
bdc36728 | 6638 | end_stepping_range (ecs); |
95918acb AC |
6639 | return; |
6640 | } | |
8fb3e588 | 6641 | |
388a8562 MS |
6642 | /* Reverse stepping through solib trampolines. */ |
6643 | ||
6644 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6645 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE |
388a8562 MS |
6646 | && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) |
6647 | || (ecs->stop_func_start == 0 | |
6648 | && in_solib_dynsym_resolve_code (stop_pc)))) | |
6649 | { | |
6650 | /* Any solib trampoline code can be handled in reverse | |
6651 | by simply continuing to single-step. We have already | |
6652 | executed the solib function (backwards), and a few | |
6653 | steps will take us back through the trampoline to the | |
6654 | caller. */ | |
6655 | keep_going (ecs); | |
6656 | return; | |
6657 | } | |
6658 | ||
16c381f0 | 6659 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
8567c30f | 6660 | { |
b2175913 MS |
6661 | /* We're doing a "next". |
6662 | ||
6663 | Normal (forward) execution: set a breakpoint at the | |
6664 | callee's return address (the address at which the caller | |
6665 | will resume). | |
6666 | ||
6667 | Reverse (backward) execution. set the step-resume | |
6668 | breakpoint at the start of the function that we just | |
6669 | stepped into (backwards), and continue to there. When we | |
6130d0b7 | 6670 | get there, we'll need to single-step back to the caller. */ |
b2175913 MS |
6671 | |
6672 | if (execution_direction == EXEC_REVERSE) | |
6673 | { | |
acf9414f JK |
6674 | /* If we're already at the start of the function, we've either |
6675 | just stepped backward into a single instruction function, | |
6676 | or stepped back out of a signal handler to the first instruction | |
6677 | of the function. Just keep going, which will single-step back | |
6678 | to the caller. */ | |
58c48e72 | 6679 | if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0) |
acf9414f JK |
6680 | { |
6681 | struct symtab_and_line sr_sal; | |
6682 | ||
6683 | /* Normal function call return (static or dynamic). */ | |
6684 | init_sal (&sr_sal); | |
6685 | sr_sal.pc = ecs->stop_func_start; | |
6686 | sr_sal.pspace = get_frame_program_space (frame); | |
6687 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6688 | sr_sal, null_frame_id); | |
6689 | } | |
b2175913 MS |
6690 | } |
6691 | else | |
568d6575 | 6692 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6693 | |
8567c30f AC |
6694 | keep_going (ecs); |
6695 | return; | |
6696 | } | |
a53c66de | 6697 | |
95918acb | 6698 | /* If we are in a function call trampoline (a stub between the |
8fb3e588 AC |
6699 | calling routine and the real function), locate the real |
6700 | function. That's what tells us (a) whether we want to step | |
6701 | into it at all, and (b) what prologue we want to run to the | |
6702 | end of, if we do step into it. */ | |
568d6575 | 6703 | real_stop_pc = skip_language_trampoline (frame, stop_pc); |
95918acb | 6704 | if (real_stop_pc == 0) |
568d6575 | 6705 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); |
95918acb AC |
6706 | if (real_stop_pc != 0) |
6707 | ecs->stop_func_start = real_stop_pc; | |
8fb3e588 | 6708 | |
db5f024e | 6709 | if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc)) |
1b2bfbb9 RC |
6710 | { |
6711 | struct symtab_and_line sr_sal; | |
abbb1732 | 6712 | |
1b2bfbb9 RC |
6713 | init_sal (&sr_sal); |
6714 | sr_sal.pc = ecs->stop_func_start; | |
6c95b8df | 6715 | sr_sal.pspace = get_frame_program_space (frame); |
1b2bfbb9 | 6716 | |
a6d9a66e UW |
6717 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6718 | sr_sal, null_frame_id); | |
8fb3e588 AC |
6719 | keep_going (ecs); |
6720 | return; | |
1b2bfbb9 RC |
6721 | } |
6722 | ||
95918acb | 6723 | /* If we have line number information for the function we are |
1bfeeb0f JL |
6724 | thinking of stepping into and the function isn't on the skip |
6725 | list, step into it. | |
95918acb | 6726 | |
8fb3e588 AC |
6727 | If there are several symtabs at that PC (e.g. with include |
6728 | files), just want to know whether *any* of them have line | |
6729 | numbers. find_pc_line handles this. */ | |
95918acb AC |
6730 | { |
6731 | struct symtab_and_line tmp_sal; | |
8fb3e588 | 6732 | |
95918acb | 6733 | tmp_sal = find_pc_line (ecs->stop_func_start, 0); |
2b914b52 | 6734 | if (tmp_sal.line != 0 |
85817405 JK |
6735 | && !function_name_is_marked_for_skip (ecs->stop_func_name, |
6736 | &tmp_sal)) | |
95918acb | 6737 | { |
b2175913 | 6738 | if (execution_direction == EXEC_REVERSE) |
568d6575 | 6739 | handle_step_into_function_backward (gdbarch, ecs); |
b2175913 | 6740 | else |
568d6575 | 6741 | handle_step_into_function (gdbarch, ecs); |
95918acb AC |
6742 | return; |
6743 | } | |
6744 | } | |
6745 | ||
6746 | /* If we have no line number and the step-stop-if-no-debug is | |
8fb3e588 AC |
6747 | set, we stop the step so that the user has a chance to switch |
6748 | in assembly mode. */ | |
16c381f0 | 6749 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
078130d0 | 6750 | && step_stop_if_no_debug) |
95918acb | 6751 | { |
bdc36728 | 6752 | end_stepping_range (ecs); |
95918acb AC |
6753 | return; |
6754 | } | |
6755 | ||
b2175913 MS |
6756 | if (execution_direction == EXEC_REVERSE) |
6757 | { | |
acf9414f JK |
6758 | /* If we're already at the start of the function, we've either just |
6759 | stepped backward into a single instruction function without line | |
6760 | number info, or stepped back out of a signal handler to the first | |
6761 | instruction of the function without line number info. Just keep | |
6762 | going, which will single-step back to the caller. */ | |
6763 | if (ecs->stop_func_start != stop_pc) | |
6764 | { | |
6765 | /* Set a breakpoint at callee's start address. | |
6766 | From there we can step once and be back in the caller. */ | |
6767 | struct symtab_and_line sr_sal; | |
abbb1732 | 6768 | |
acf9414f JK |
6769 | init_sal (&sr_sal); |
6770 | sr_sal.pc = ecs->stop_func_start; | |
6771 | sr_sal.pspace = get_frame_program_space (frame); | |
6772 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6773 | sr_sal, null_frame_id); | |
6774 | } | |
b2175913 MS |
6775 | } |
6776 | else | |
6777 | /* Set a breakpoint at callee's return address (the address | |
6778 | at which the caller will resume). */ | |
568d6575 | 6779 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6780 | |
95918acb | 6781 | keep_going (ecs); |
488f131b | 6782 | return; |
488f131b | 6783 | } |
c906108c | 6784 | |
fdd654f3 MS |
6785 | /* Reverse stepping through solib trampolines. */ |
6786 | ||
6787 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6788 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) |
fdd654f3 MS |
6789 | { |
6790 | if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) | |
6791 | || (ecs->stop_func_start == 0 | |
6792 | && in_solib_dynsym_resolve_code (stop_pc))) | |
6793 | { | |
6794 | /* Any solib trampoline code can be handled in reverse | |
6795 | by simply continuing to single-step. We have already | |
6796 | executed the solib function (backwards), and a few | |
6797 | steps will take us back through the trampoline to the | |
6798 | caller. */ | |
6799 | keep_going (ecs); | |
6800 | return; | |
6801 | } | |
6802 | else if (in_solib_dynsym_resolve_code (stop_pc)) | |
6803 | { | |
6804 | /* Stepped backward into the solib dynsym resolver. | |
6805 | Set a breakpoint at its start and continue, then | |
6806 | one more step will take us out. */ | |
6807 | struct symtab_and_line sr_sal; | |
abbb1732 | 6808 | |
fdd654f3 MS |
6809 | init_sal (&sr_sal); |
6810 | sr_sal.pc = ecs->stop_func_start; | |
9d1807c3 | 6811 | sr_sal.pspace = get_frame_program_space (frame); |
fdd654f3 MS |
6812 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6813 | sr_sal, null_frame_id); | |
6814 | keep_going (ecs); | |
6815 | return; | |
6816 | } | |
6817 | } | |
6818 | ||
2afb61aa | 6819 | stop_pc_sal = find_pc_line (stop_pc, 0); |
7ed0fe66 | 6820 | |
1b2bfbb9 RC |
6821 | /* NOTE: tausq/2004-05-24: This if block used to be done before all |
6822 | the trampoline processing logic, however, there are some trampolines | |
6823 | that have no names, so we should do trampoline handling first. */ | |
16c381f0 | 6824 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
7ed0fe66 | 6825 | && ecs->stop_func_name == NULL |
2afb61aa | 6826 | && stop_pc_sal.line == 0) |
1b2bfbb9 | 6827 | { |
527159b7 | 6828 | if (debug_infrun) |
3e43a32a MS |
6829 | fprintf_unfiltered (gdb_stdlog, |
6830 | "infrun: stepped into undebuggable function\n"); | |
527159b7 | 6831 | |
1b2bfbb9 | 6832 | /* The inferior just stepped into, or returned to, an |
7ed0fe66 DJ |
6833 | undebuggable function (where there is no debugging information |
6834 | and no line number corresponding to the address where the | |
1b2bfbb9 RC |
6835 | inferior stopped). Since we want to skip this kind of code, |
6836 | we keep going until the inferior returns from this | |
14e60db5 DJ |
6837 | function - unless the user has asked us not to (via |
6838 | set step-mode) or we no longer know how to get back | |
6839 | to the call site. */ | |
6840 | if (step_stop_if_no_debug | |
c7ce8faa | 6841 | || !frame_id_p (frame_unwind_caller_id (frame))) |
1b2bfbb9 RC |
6842 | { |
6843 | /* If we have no line number and the step-stop-if-no-debug | |
6844 | is set, we stop the step so that the user has a chance to | |
6845 | switch in assembly mode. */ | |
bdc36728 | 6846 | end_stepping_range (ecs); |
1b2bfbb9 RC |
6847 | return; |
6848 | } | |
6849 | else | |
6850 | { | |
6851 | /* Set a breakpoint at callee's return address (the address | |
6852 | at which the caller will resume). */ | |
568d6575 | 6853 | insert_step_resume_breakpoint_at_caller (frame); |
1b2bfbb9 RC |
6854 | keep_going (ecs); |
6855 | return; | |
6856 | } | |
6857 | } | |
6858 | ||
16c381f0 | 6859 | if (ecs->event_thread->control.step_range_end == 1) |
1b2bfbb9 RC |
6860 | { |
6861 | /* It is stepi or nexti. We always want to stop stepping after | |
6862 | one instruction. */ | |
527159b7 | 6863 | if (debug_infrun) |
8a9de0e4 | 6864 | fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); |
bdc36728 | 6865 | end_stepping_range (ecs); |
1b2bfbb9 RC |
6866 | return; |
6867 | } | |
6868 | ||
2afb61aa | 6869 | if (stop_pc_sal.line == 0) |
488f131b JB |
6870 | { |
6871 | /* We have no line number information. That means to stop | |
6872 | stepping (does this always happen right after one instruction, | |
6873 | when we do "s" in a function with no line numbers, | |
6874 | or can this happen as a result of a return or longjmp?). */ | |
527159b7 | 6875 | if (debug_infrun) |
8a9de0e4 | 6876 | fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); |
bdc36728 | 6877 | end_stepping_range (ecs); |
488f131b JB |
6878 | return; |
6879 | } | |
c906108c | 6880 | |
edb3359d DJ |
6881 | /* Look for "calls" to inlined functions, part one. If the inline |
6882 | frame machinery detected some skipped call sites, we have entered | |
6883 | a new inline function. */ | |
6884 | ||
6885 | if (frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 6886 | ecs->event_thread->control.step_frame_id) |
edb3359d DJ |
6887 | && inline_skipped_frames (ecs->ptid)) |
6888 | { | |
6889 | struct symtab_and_line call_sal; | |
6890 | ||
6891 | if (debug_infrun) | |
6892 | fprintf_unfiltered (gdb_stdlog, | |
6893 | "infrun: stepped into inlined function\n"); | |
6894 | ||
6895 | find_frame_sal (get_current_frame (), &call_sal); | |
6896 | ||
16c381f0 | 6897 | if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL) |
edb3359d DJ |
6898 | { |
6899 | /* For "step", we're going to stop. But if the call site | |
6900 | for this inlined function is on the same source line as | |
6901 | we were previously stepping, go down into the function | |
6902 | first. Otherwise stop at the call site. */ | |
6903 | ||
6904 | if (call_sal.line == ecs->event_thread->current_line | |
6905 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
6906 | step_into_inline_frame (ecs->ptid); | |
6907 | ||
bdc36728 | 6908 | end_stepping_range (ecs); |
edb3359d DJ |
6909 | return; |
6910 | } | |
6911 | else | |
6912 | { | |
6913 | /* For "next", we should stop at the call site if it is on a | |
6914 | different source line. Otherwise continue through the | |
6915 | inlined function. */ | |
6916 | if (call_sal.line == ecs->event_thread->current_line | |
6917 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
6918 | keep_going (ecs); | |
6919 | else | |
bdc36728 | 6920 | end_stepping_range (ecs); |
edb3359d DJ |
6921 | return; |
6922 | } | |
6923 | } | |
6924 | ||
6925 | /* Look for "calls" to inlined functions, part two. If we are still | |
6926 | in the same real function we were stepping through, but we have | |
6927 | to go further up to find the exact frame ID, we are stepping | |
6928 | through a more inlined call beyond its call site. */ | |
6929 | ||
6930 | if (get_frame_type (get_current_frame ()) == INLINE_FRAME | |
6931 | && !frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 6932 | ecs->event_thread->control.step_frame_id) |
edb3359d | 6933 | && stepped_in_from (get_current_frame (), |
16c381f0 | 6934 | ecs->event_thread->control.step_frame_id)) |
edb3359d DJ |
6935 | { |
6936 | if (debug_infrun) | |
6937 | fprintf_unfiltered (gdb_stdlog, | |
6938 | "infrun: stepping through inlined function\n"); | |
6939 | ||
16c381f0 | 6940 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
edb3359d DJ |
6941 | keep_going (ecs); |
6942 | else | |
bdc36728 | 6943 | end_stepping_range (ecs); |
edb3359d DJ |
6944 | return; |
6945 | } | |
6946 | ||
2afb61aa | 6947 | if ((stop_pc == stop_pc_sal.pc) |
4e1c45ea PA |
6948 | && (ecs->event_thread->current_line != stop_pc_sal.line |
6949 | || ecs->event_thread->current_symtab != stop_pc_sal.symtab)) | |
488f131b JB |
6950 | { |
6951 | /* We are at the start of a different line. So stop. Note that | |
6952 | we don't stop if we step into the middle of a different line. | |
6953 | That is said to make things like for (;;) statements work | |
6954 | better. */ | |
527159b7 | 6955 | if (debug_infrun) |
3e43a32a MS |
6956 | fprintf_unfiltered (gdb_stdlog, |
6957 | "infrun: stepped to a different line\n"); | |
bdc36728 | 6958 | end_stepping_range (ecs); |
488f131b JB |
6959 | return; |
6960 | } | |
c906108c | 6961 | |
488f131b | 6962 | /* We aren't done stepping. |
c906108c | 6963 | |
488f131b JB |
6964 | Optimize by setting the stepping range to the line. |
6965 | (We might not be in the original line, but if we entered a | |
6966 | new line in mid-statement, we continue stepping. This makes | |
6967 | things like for(;;) statements work better.) */ | |
c906108c | 6968 | |
16c381f0 JK |
6969 | ecs->event_thread->control.step_range_start = stop_pc_sal.pc; |
6970 | ecs->event_thread->control.step_range_end = stop_pc_sal.end; | |
c1e36e3e | 6971 | ecs->event_thread->control.may_range_step = 1; |
edb3359d | 6972 | set_step_info (frame, stop_pc_sal); |
488f131b | 6973 | |
527159b7 | 6974 | if (debug_infrun) |
8a9de0e4 | 6975 | fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); |
488f131b | 6976 | keep_going (ecs); |
104c1213 JM |
6977 | } |
6978 | ||
c447ac0b PA |
6979 | /* In all-stop mode, if we're currently stepping but have stopped in |
6980 | some other thread, we may need to switch back to the stepped | |
6981 | thread. Returns true we set the inferior running, false if we left | |
6982 | it stopped (and the event needs further processing). */ | |
6983 | ||
6984 | static int | |
6985 | switch_back_to_stepped_thread (struct execution_control_state *ecs) | |
6986 | { | |
fbea99ea | 6987 | if (!target_is_non_stop_p ()) |
c447ac0b PA |
6988 | { |
6989 | struct thread_info *tp; | |
99619bea PA |
6990 | struct thread_info *stepping_thread; |
6991 | ||
6992 | /* If any thread is blocked on some internal breakpoint, and we | |
6993 | simply need to step over that breakpoint to get it going | |
6994 | again, do that first. */ | |
6995 | ||
6996 | /* However, if we see an event for the stepping thread, then we | |
6997 | know all other threads have been moved past their breakpoints | |
6998 | already. Let the caller check whether the step is finished, | |
6999 | etc., before deciding to move it past a breakpoint. */ | |
7000 | if (ecs->event_thread->control.step_range_end != 0) | |
7001 | return 0; | |
7002 | ||
7003 | /* Check if the current thread is blocked on an incomplete | |
7004 | step-over, interrupted by a random signal. */ | |
7005 | if (ecs->event_thread->control.trap_expected | |
7006 | && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP) | |
c447ac0b | 7007 | { |
99619bea PA |
7008 | if (debug_infrun) |
7009 | { | |
7010 | fprintf_unfiltered (gdb_stdlog, | |
7011 | "infrun: need to finish step-over of [%s]\n", | |
7012 | target_pid_to_str (ecs->event_thread->ptid)); | |
7013 | } | |
7014 | keep_going (ecs); | |
7015 | return 1; | |
7016 | } | |
2adfaa28 | 7017 | |
99619bea PA |
7018 | /* Check if the current thread is blocked by a single-step |
7019 | breakpoint of another thread. */ | |
7020 | if (ecs->hit_singlestep_breakpoint) | |
7021 | { | |
7022 | if (debug_infrun) | |
7023 | { | |
7024 | fprintf_unfiltered (gdb_stdlog, | |
7025 | "infrun: need to step [%s] over single-step " | |
7026 | "breakpoint\n", | |
7027 | target_pid_to_str (ecs->ptid)); | |
7028 | } | |
7029 | keep_going (ecs); | |
7030 | return 1; | |
7031 | } | |
7032 | ||
4d9d9d04 PA |
7033 | /* If this thread needs yet another step-over (e.g., stepping |
7034 | through a delay slot), do it first before moving on to | |
7035 | another thread. */ | |
7036 | if (thread_still_needs_step_over (ecs->event_thread)) | |
7037 | { | |
7038 | if (debug_infrun) | |
7039 | { | |
7040 | fprintf_unfiltered (gdb_stdlog, | |
7041 | "infrun: thread [%s] still needs step-over\n", | |
7042 | target_pid_to_str (ecs->event_thread->ptid)); | |
7043 | } | |
7044 | keep_going (ecs); | |
7045 | return 1; | |
7046 | } | |
70509625 | 7047 | |
483805cf PA |
7048 | /* If scheduler locking applies even if not stepping, there's no |
7049 | need to walk over threads. Above we've checked whether the | |
7050 | current thread is stepping. If some other thread not the | |
7051 | event thread is stepping, then it must be that scheduler | |
7052 | locking is not in effect. */ | |
856e7dd6 | 7053 | if (schedlock_applies (ecs->event_thread)) |
483805cf PA |
7054 | return 0; |
7055 | ||
4d9d9d04 PA |
7056 | /* Otherwise, we no longer expect a trap in the current thread. |
7057 | Clear the trap_expected flag before switching back -- this is | |
7058 | what keep_going does as well, if we call it. */ | |
7059 | ecs->event_thread->control.trap_expected = 0; | |
7060 | ||
7061 | /* Likewise, clear the signal if it should not be passed. */ | |
7062 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
7063 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
7064 | ||
7065 | /* Do all pending step-overs before actually proceeding with | |
483805cf | 7066 | step/next/etc. */ |
4d9d9d04 PA |
7067 | if (start_step_over ()) |
7068 | { | |
7069 | prepare_to_wait (ecs); | |
7070 | return 1; | |
7071 | } | |
7072 | ||
7073 | /* Look for the stepping/nexting thread. */ | |
483805cf | 7074 | stepping_thread = NULL; |
4d9d9d04 | 7075 | |
034f788c | 7076 | ALL_NON_EXITED_THREADS (tp) |
483805cf | 7077 | { |
fbea99ea PA |
7078 | /* Ignore threads of processes the caller is not |
7079 | resuming. */ | |
483805cf | 7080 | if (!sched_multi |
1afd5965 | 7081 | && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid)) |
483805cf PA |
7082 | continue; |
7083 | ||
7084 | /* When stepping over a breakpoint, we lock all threads | |
7085 | except the one that needs to move past the breakpoint. | |
7086 | If a non-event thread has this set, the "incomplete | |
7087 | step-over" check above should have caught it earlier. */ | |
372316f1 PA |
7088 | if (tp->control.trap_expected) |
7089 | { | |
7090 | internal_error (__FILE__, __LINE__, | |
7091 | "[%s] has inconsistent state: " | |
7092 | "trap_expected=%d\n", | |
7093 | target_pid_to_str (tp->ptid), | |
7094 | tp->control.trap_expected); | |
7095 | } | |
483805cf PA |
7096 | |
7097 | /* Did we find the stepping thread? */ | |
7098 | if (tp->control.step_range_end) | |
7099 | { | |
7100 | /* Yep. There should only one though. */ | |
7101 | gdb_assert (stepping_thread == NULL); | |
7102 | ||
7103 | /* The event thread is handled at the top, before we | |
7104 | enter this loop. */ | |
7105 | gdb_assert (tp != ecs->event_thread); | |
7106 | ||
7107 | /* If some thread other than the event thread is | |
7108 | stepping, then scheduler locking can't be in effect, | |
7109 | otherwise we wouldn't have resumed the current event | |
7110 | thread in the first place. */ | |
856e7dd6 | 7111 | gdb_assert (!schedlock_applies (tp)); |
483805cf PA |
7112 | |
7113 | stepping_thread = tp; | |
7114 | } | |
99619bea PA |
7115 | } |
7116 | ||
483805cf | 7117 | if (stepping_thread != NULL) |
99619bea | 7118 | { |
c447ac0b PA |
7119 | if (debug_infrun) |
7120 | fprintf_unfiltered (gdb_stdlog, | |
7121 | "infrun: switching back to stepped thread\n"); | |
7122 | ||
2ac7589c PA |
7123 | if (keep_going_stepped_thread (stepping_thread)) |
7124 | { | |
7125 | prepare_to_wait (ecs); | |
7126 | return 1; | |
7127 | } | |
7128 | } | |
7129 | } | |
2adfaa28 | 7130 | |
2ac7589c PA |
7131 | return 0; |
7132 | } | |
2adfaa28 | 7133 | |
2ac7589c PA |
7134 | /* Set a previously stepped thread back to stepping. Returns true on |
7135 | success, false if the resume is not possible (e.g., the thread | |
7136 | vanished). */ | |
7137 | ||
7138 | static int | |
7139 | keep_going_stepped_thread (struct thread_info *tp) | |
7140 | { | |
7141 | struct frame_info *frame; | |
7142 | struct gdbarch *gdbarch; | |
7143 | struct execution_control_state ecss; | |
7144 | struct execution_control_state *ecs = &ecss; | |
2adfaa28 | 7145 | |
2ac7589c PA |
7146 | /* If the stepping thread exited, then don't try to switch back and |
7147 | resume it, which could fail in several different ways depending | |
7148 | on the target. Instead, just keep going. | |
2adfaa28 | 7149 | |
2ac7589c PA |
7150 | We can find a stepping dead thread in the thread list in two |
7151 | cases: | |
2adfaa28 | 7152 | |
2ac7589c PA |
7153 | - The target supports thread exit events, and when the target |
7154 | tries to delete the thread from the thread list, inferior_ptid | |
7155 | pointed at the exiting thread. In such case, calling | |
7156 | delete_thread does not really remove the thread from the list; | |
7157 | instead, the thread is left listed, with 'exited' state. | |
64ce06e4 | 7158 | |
2ac7589c PA |
7159 | - The target's debug interface does not support thread exit |
7160 | events, and so we have no idea whatsoever if the previously | |
7161 | stepping thread is still alive. For that reason, we need to | |
7162 | synchronously query the target now. */ | |
2adfaa28 | 7163 | |
2ac7589c PA |
7164 | if (is_exited (tp->ptid) |
7165 | || !target_thread_alive (tp->ptid)) | |
7166 | { | |
7167 | if (debug_infrun) | |
7168 | fprintf_unfiltered (gdb_stdlog, | |
7169 | "infrun: not resuming previously " | |
7170 | "stepped thread, it has vanished\n"); | |
7171 | ||
7172 | delete_thread (tp->ptid); | |
7173 | return 0; | |
c447ac0b | 7174 | } |
2ac7589c PA |
7175 | |
7176 | if (debug_infrun) | |
7177 | fprintf_unfiltered (gdb_stdlog, | |
7178 | "infrun: resuming previously stepped thread\n"); | |
7179 | ||
7180 | reset_ecs (ecs, tp); | |
7181 | switch_to_thread (tp->ptid); | |
7182 | ||
7183 | stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid)); | |
7184 | frame = get_current_frame (); | |
7185 | gdbarch = get_frame_arch (frame); | |
7186 | ||
7187 | /* If the PC of the thread we were trying to single-step has | |
7188 | changed, then that thread has trapped or been signaled, but the | |
7189 | event has not been reported to GDB yet. Re-poll the target | |
7190 | looking for this particular thread's event (i.e. temporarily | |
7191 | enable schedlock) by: | |
7192 | ||
7193 | - setting a break at the current PC | |
7194 | - resuming that particular thread, only (by setting trap | |
7195 | expected) | |
7196 | ||
7197 | This prevents us continuously moving the single-step breakpoint | |
7198 | forward, one instruction at a time, overstepping. */ | |
7199 | ||
7200 | if (stop_pc != tp->prev_pc) | |
7201 | { | |
7202 | ptid_t resume_ptid; | |
7203 | ||
7204 | if (debug_infrun) | |
7205 | fprintf_unfiltered (gdb_stdlog, | |
7206 | "infrun: expected thread advanced also (%s -> %s)\n", | |
7207 | paddress (target_gdbarch (), tp->prev_pc), | |
7208 | paddress (target_gdbarch (), stop_pc)); | |
7209 | ||
7210 | /* Clear the info of the previous step-over, as it's no longer | |
7211 | valid (if the thread was trying to step over a breakpoint, it | |
7212 | has already succeeded). It's what keep_going would do too, | |
7213 | if we called it. Do this before trying to insert the sss | |
7214 | breakpoint, otherwise if we were previously trying to step | |
7215 | over this exact address in another thread, the breakpoint is | |
7216 | skipped. */ | |
7217 | clear_step_over_info (); | |
7218 | tp->control.trap_expected = 0; | |
7219 | ||
7220 | insert_single_step_breakpoint (get_frame_arch (frame), | |
7221 | get_frame_address_space (frame), | |
7222 | stop_pc); | |
7223 | ||
372316f1 | 7224 | tp->resumed = 1; |
fbea99ea | 7225 | resume_ptid = internal_resume_ptid (tp->control.stepping_command); |
2ac7589c PA |
7226 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
7227 | } | |
7228 | else | |
7229 | { | |
7230 | if (debug_infrun) | |
7231 | fprintf_unfiltered (gdb_stdlog, | |
7232 | "infrun: expected thread still hasn't advanced\n"); | |
7233 | ||
7234 | keep_going_pass_signal (ecs); | |
7235 | } | |
7236 | return 1; | |
c447ac0b PA |
7237 | } |
7238 | ||
8b061563 PA |
7239 | /* Is thread TP in the middle of (software or hardware) |
7240 | single-stepping? (Note the result of this function must never be | |
7241 | passed directly as target_resume's STEP parameter.) */ | |
104c1213 | 7242 | |
a289b8f6 | 7243 | static int |
b3444185 | 7244 | currently_stepping (struct thread_info *tp) |
a7212384 | 7245 | { |
8358c15c JK |
7246 | return ((tp->control.step_range_end |
7247 | && tp->control.step_resume_breakpoint == NULL) | |
7248 | || tp->control.trap_expected | |
af48d08f | 7249 | || tp->stepped_breakpoint |
8358c15c | 7250 | || bpstat_should_step ()); |
a7212384 UW |
7251 | } |
7252 | ||
b2175913 MS |
7253 | /* Inferior has stepped into a subroutine call with source code that |
7254 | we should not step over. Do step to the first line of code in | |
7255 | it. */ | |
c2c6d25f JM |
7256 | |
7257 | static void | |
568d6575 UW |
7258 | handle_step_into_function (struct gdbarch *gdbarch, |
7259 | struct execution_control_state *ecs) | |
c2c6d25f | 7260 | { |
43f3e411 | 7261 | struct compunit_symtab *cust; |
2afb61aa | 7262 | struct symtab_and_line stop_func_sal, sr_sal; |
c2c6d25f | 7263 | |
7e324e48 GB |
7264 | fill_in_stop_func (gdbarch, ecs); |
7265 | ||
43f3e411 DE |
7266 | cust = find_pc_compunit_symtab (stop_pc); |
7267 | if (cust != NULL && compunit_language (cust) != language_asm) | |
568d6575 | 7268 | ecs->stop_func_start = gdbarch_skip_prologue (gdbarch, |
b2175913 | 7269 | ecs->stop_func_start); |
c2c6d25f | 7270 | |
2afb61aa | 7271 | stop_func_sal = find_pc_line (ecs->stop_func_start, 0); |
c2c6d25f JM |
7272 | /* Use the step_resume_break to step until the end of the prologue, |
7273 | even if that involves jumps (as it seems to on the vax under | |
7274 | 4.2). */ | |
7275 | /* If the prologue ends in the middle of a source line, continue to | |
7276 | the end of that source line (if it is still within the function). | |
7277 | Otherwise, just go to end of prologue. */ | |
2afb61aa PA |
7278 | if (stop_func_sal.end |
7279 | && stop_func_sal.pc != ecs->stop_func_start | |
7280 | && stop_func_sal.end < ecs->stop_func_end) | |
7281 | ecs->stop_func_start = stop_func_sal.end; | |
c2c6d25f | 7282 | |
2dbd5e30 KB |
7283 | /* Architectures which require breakpoint adjustment might not be able |
7284 | to place a breakpoint at the computed address. If so, the test | |
7285 | ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust | |
7286 | ecs->stop_func_start to an address at which a breakpoint may be | |
7287 | legitimately placed. | |
8fb3e588 | 7288 | |
2dbd5e30 KB |
7289 | Note: kevinb/2004-01-19: On FR-V, if this adjustment is not |
7290 | made, GDB will enter an infinite loop when stepping through | |
7291 | optimized code consisting of VLIW instructions which contain | |
7292 | subinstructions corresponding to different source lines. On | |
7293 | FR-V, it's not permitted to place a breakpoint on any but the | |
7294 | first subinstruction of a VLIW instruction. When a breakpoint is | |
7295 | set, GDB will adjust the breakpoint address to the beginning of | |
7296 | the VLIW instruction. Thus, we need to make the corresponding | |
7297 | adjustment here when computing the stop address. */ | |
8fb3e588 | 7298 | |
568d6575 | 7299 | if (gdbarch_adjust_breakpoint_address_p (gdbarch)) |
2dbd5e30 KB |
7300 | { |
7301 | ecs->stop_func_start | |
568d6575 | 7302 | = gdbarch_adjust_breakpoint_address (gdbarch, |
8fb3e588 | 7303 | ecs->stop_func_start); |
2dbd5e30 KB |
7304 | } |
7305 | ||
c2c6d25f JM |
7306 | if (ecs->stop_func_start == stop_pc) |
7307 | { | |
7308 | /* We are already there: stop now. */ | |
bdc36728 | 7309 | end_stepping_range (ecs); |
c2c6d25f JM |
7310 | return; |
7311 | } | |
7312 | else | |
7313 | { | |
7314 | /* Put the step-breakpoint there and go until there. */ | |
fe39c653 | 7315 | init_sal (&sr_sal); /* initialize to zeroes */ |
c2c6d25f JM |
7316 | sr_sal.pc = ecs->stop_func_start; |
7317 | sr_sal.section = find_pc_overlay (ecs->stop_func_start); | |
6c95b8df | 7318 | sr_sal.pspace = get_frame_program_space (get_current_frame ()); |
44cbf7b5 | 7319 | |
c2c6d25f | 7320 | /* Do not specify what the fp should be when we stop since on |
488f131b JB |
7321 | some machines the prologue is where the new fp value is |
7322 | established. */ | |
a6d9a66e | 7323 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id); |
c2c6d25f JM |
7324 | |
7325 | /* And make sure stepping stops right away then. */ | |
16c381f0 JK |
7326 | ecs->event_thread->control.step_range_end |
7327 | = ecs->event_thread->control.step_range_start; | |
c2c6d25f JM |
7328 | } |
7329 | keep_going (ecs); | |
7330 | } | |
d4f3574e | 7331 | |
b2175913 MS |
7332 | /* Inferior has stepped backward into a subroutine call with source |
7333 | code that we should not step over. Do step to the beginning of the | |
7334 | last line of code in it. */ | |
7335 | ||
7336 | static void | |
568d6575 UW |
7337 | handle_step_into_function_backward (struct gdbarch *gdbarch, |
7338 | struct execution_control_state *ecs) | |
b2175913 | 7339 | { |
43f3e411 | 7340 | struct compunit_symtab *cust; |
167e4384 | 7341 | struct symtab_and_line stop_func_sal; |
b2175913 | 7342 | |
7e324e48 GB |
7343 | fill_in_stop_func (gdbarch, ecs); |
7344 | ||
43f3e411 DE |
7345 | cust = find_pc_compunit_symtab (stop_pc); |
7346 | if (cust != NULL && compunit_language (cust) != language_asm) | |
568d6575 | 7347 | ecs->stop_func_start = gdbarch_skip_prologue (gdbarch, |
b2175913 MS |
7348 | ecs->stop_func_start); |
7349 | ||
7350 | stop_func_sal = find_pc_line (stop_pc, 0); | |
7351 | ||
7352 | /* OK, we're just going to keep stepping here. */ | |
7353 | if (stop_func_sal.pc == stop_pc) | |
7354 | { | |
7355 | /* We're there already. Just stop stepping now. */ | |
bdc36728 | 7356 | end_stepping_range (ecs); |
b2175913 MS |
7357 | } |
7358 | else | |
7359 | { | |
7360 | /* Else just reset the step range and keep going. | |
7361 | No step-resume breakpoint, they don't work for | |
7362 | epilogues, which can have multiple entry paths. */ | |
16c381f0 JK |
7363 | ecs->event_thread->control.step_range_start = stop_func_sal.pc; |
7364 | ecs->event_thread->control.step_range_end = stop_func_sal.end; | |
b2175913 MS |
7365 | keep_going (ecs); |
7366 | } | |
7367 | return; | |
7368 | } | |
7369 | ||
d3169d93 | 7370 | /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. |
44cbf7b5 AC |
7371 | This is used to both functions and to skip over code. */ |
7372 | ||
7373 | static void | |
2c03e5be PA |
7374 | insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch, |
7375 | struct symtab_and_line sr_sal, | |
7376 | struct frame_id sr_id, | |
7377 | enum bptype sr_type) | |
44cbf7b5 | 7378 | { |
611c83ae PA |
7379 | /* There should never be more than one step-resume or longjmp-resume |
7380 | breakpoint per thread, so we should never be setting a new | |
44cbf7b5 | 7381 | step_resume_breakpoint when one is already active. */ |
8358c15c | 7382 | gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL); |
2c03e5be | 7383 | gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume); |
d3169d93 DJ |
7384 | |
7385 | if (debug_infrun) | |
7386 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7387 | "infrun: inserting step-resume breakpoint at %s\n", |
7388 | paddress (gdbarch, sr_sal.pc)); | |
d3169d93 | 7389 | |
8358c15c | 7390 | inferior_thread ()->control.step_resume_breakpoint |
2c03e5be PA |
7391 | = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type); |
7392 | } | |
7393 | ||
9da8c2a0 | 7394 | void |
2c03e5be PA |
7395 | insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, |
7396 | struct symtab_and_line sr_sal, | |
7397 | struct frame_id sr_id) | |
7398 | { | |
7399 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, | |
7400 | sr_sal, sr_id, | |
7401 | bp_step_resume); | |
44cbf7b5 | 7402 | } |
7ce450bd | 7403 | |
2c03e5be PA |
7404 | /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc. |
7405 | This is used to skip a potential signal handler. | |
7ce450bd | 7406 | |
14e60db5 DJ |
7407 | This is called with the interrupted function's frame. The signal |
7408 | handler, when it returns, will resume the interrupted function at | |
7409 | RETURN_FRAME.pc. */ | |
d303a6c7 AC |
7410 | |
7411 | static void | |
2c03e5be | 7412 | insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame) |
d303a6c7 AC |
7413 | { |
7414 | struct symtab_and_line sr_sal; | |
a6d9a66e | 7415 | struct gdbarch *gdbarch; |
d303a6c7 | 7416 | |
f4c1edd8 | 7417 | gdb_assert (return_frame != NULL); |
d303a6c7 AC |
7418 | init_sal (&sr_sal); /* initialize to zeros */ |
7419 | ||
a6d9a66e | 7420 | gdbarch = get_frame_arch (return_frame); |
568d6575 | 7421 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame)); |
d303a6c7 | 7422 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7423 | sr_sal.pspace = get_frame_program_space (return_frame); |
d303a6c7 | 7424 | |
2c03e5be PA |
7425 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal, |
7426 | get_stack_frame_id (return_frame), | |
7427 | bp_hp_step_resume); | |
d303a6c7 AC |
7428 | } |
7429 | ||
2c03e5be PA |
7430 | /* Insert a "step-resume breakpoint" at the previous frame's PC. This |
7431 | is used to skip a function after stepping into it (for "next" or if | |
7432 | the called function has no debugging information). | |
14e60db5 DJ |
7433 | |
7434 | The current function has almost always been reached by single | |
7435 | stepping a call or return instruction. NEXT_FRAME belongs to the | |
7436 | current function, and the breakpoint will be set at the caller's | |
7437 | resume address. | |
7438 | ||
7439 | This is a separate function rather than reusing | |
2c03e5be | 7440 | insert_hp_step_resume_breakpoint_at_frame in order to avoid |
14e60db5 | 7441 | get_prev_frame, which may stop prematurely (see the implementation |
c7ce8faa | 7442 | of frame_unwind_caller_id for an example). */ |
14e60db5 DJ |
7443 | |
7444 | static void | |
7445 | insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) | |
7446 | { | |
7447 | struct symtab_and_line sr_sal; | |
a6d9a66e | 7448 | struct gdbarch *gdbarch; |
14e60db5 DJ |
7449 | |
7450 | /* We shouldn't have gotten here if we don't know where the call site | |
7451 | is. */ | |
c7ce8faa | 7452 | gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame))); |
14e60db5 DJ |
7453 | |
7454 | init_sal (&sr_sal); /* initialize to zeros */ | |
7455 | ||
a6d9a66e | 7456 | gdbarch = frame_unwind_caller_arch (next_frame); |
c7ce8faa DJ |
7457 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, |
7458 | frame_unwind_caller_pc (next_frame)); | |
14e60db5 | 7459 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7460 | sr_sal.pspace = frame_unwind_program_space (next_frame); |
14e60db5 | 7461 | |
a6d9a66e | 7462 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, |
c7ce8faa | 7463 | frame_unwind_caller_id (next_frame)); |
14e60db5 DJ |
7464 | } |
7465 | ||
611c83ae PA |
7466 | /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a |
7467 | new breakpoint at the target of a jmp_buf. The handling of | |
7468 | longjmp-resume uses the same mechanisms used for handling | |
7469 | "step-resume" breakpoints. */ | |
7470 | ||
7471 | static void | |
a6d9a66e | 7472 | insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc) |
611c83ae | 7473 | { |
e81a37f7 TT |
7474 | /* There should never be more than one longjmp-resume breakpoint per |
7475 | thread, so we should never be setting a new | |
611c83ae | 7476 | longjmp_resume_breakpoint when one is already active. */ |
e81a37f7 | 7477 | gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL); |
611c83ae PA |
7478 | |
7479 | if (debug_infrun) | |
7480 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7481 | "infrun: inserting longjmp-resume breakpoint at %s\n", |
7482 | paddress (gdbarch, pc)); | |
611c83ae | 7483 | |
e81a37f7 | 7484 | inferior_thread ()->control.exception_resume_breakpoint = |
a6d9a66e | 7485 | set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume); |
611c83ae PA |
7486 | } |
7487 | ||
186c406b TT |
7488 | /* Insert an exception resume breakpoint. TP is the thread throwing |
7489 | the exception. The block B is the block of the unwinder debug hook | |
7490 | function. FRAME is the frame corresponding to the call to this | |
7491 | function. SYM is the symbol of the function argument holding the | |
7492 | target PC of the exception. */ | |
7493 | ||
7494 | static void | |
7495 | insert_exception_resume_breakpoint (struct thread_info *tp, | |
3977b71f | 7496 | const struct block *b, |
186c406b TT |
7497 | struct frame_info *frame, |
7498 | struct symbol *sym) | |
7499 | { | |
492d29ea | 7500 | TRY |
186c406b | 7501 | { |
63e43d3a | 7502 | struct block_symbol vsym; |
186c406b TT |
7503 | struct value *value; |
7504 | CORE_ADDR handler; | |
7505 | struct breakpoint *bp; | |
7506 | ||
63e43d3a PMR |
7507 | vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL); |
7508 | value = read_var_value (vsym.symbol, vsym.block, frame); | |
186c406b TT |
7509 | /* If the value was optimized out, revert to the old behavior. */ |
7510 | if (! value_optimized_out (value)) | |
7511 | { | |
7512 | handler = value_as_address (value); | |
7513 | ||
7514 | if (debug_infrun) | |
7515 | fprintf_unfiltered (gdb_stdlog, | |
7516 | "infrun: exception resume at %lx\n", | |
7517 | (unsigned long) handler); | |
7518 | ||
7519 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
7520 | handler, bp_exception_resume); | |
c70a6932 JK |
7521 | |
7522 | /* set_momentary_breakpoint_at_pc invalidates FRAME. */ | |
7523 | frame = NULL; | |
7524 | ||
5d5658a1 | 7525 | bp->thread = tp->global_num; |
186c406b TT |
7526 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7527 | } | |
7528 | } | |
492d29ea PA |
7529 | CATCH (e, RETURN_MASK_ERROR) |
7530 | { | |
7531 | /* We want to ignore errors here. */ | |
7532 | } | |
7533 | END_CATCH | |
186c406b TT |
7534 | } |
7535 | ||
28106bc2 SDJ |
7536 | /* A helper for check_exception_resume that sets an |
7537 | exception-breakpoint based on a SystemTap probe. */ | |
7538 | ||
7539 | static void | |
7540 | insert_exception_resume_from_probe (struct thread_info *tp, | |
729662a5 | 7541 | const struct bound_probe *probe, |
28106bc2 SDJ |
7542 | struct frame_info *frame) |
7543 | { | |
7544 | struct value *arg_value; | |
7545 | CORE_ADDR handler; | |
7546 | struct breakpoint *bp; | |
7547 | ||
7548 | arg_value = probe_safe_evaluate_at_pc (frame, 1); | |
7549 | if (!arg_value) | |
7550 | return; | |
7551 | ||
7552 | handler = value_as_address (arg_value); | |
7553 | ||
7554 | if (debug_infrun) | |
7555 | fprintf_unfiltered (gdb_stdlog, | |
7556 | "infrun: exception resume at %s\n", | |
6bac7473 | 7557 | paddress (get_objfile_arch (probe->objfile), |
28106bc2 SDJ |
7558 | handler)); |
7559 | ||
7560 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
7561 | handler, bp_exception_resume); | |
5d5658a1 | 7562 | bp->thread = tp->global_num; |
28106bc2 SDJ |
7563 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7564 | } | |
7565 | ||
186c406b TT |
7566 | /* This is called when an exception has been intercepted. Check to |
7567 | see whether the exception's destination is of interest, and if so, | |
7568 | set an exception resume breakpoint there. */ | |
7569 | ||
7570 | static void | |
7571 | check_exception_resume (struct execution_control_state *ecs, | |
28106bc2 | 7572 | struct frame_info *frame) |
186c406b | 7573 | { |
729662a5 | 7574 | struct bound_probe probe; |
28106bc2 SDJ |
7575 | struct symbol *func; |
7576 | ||
7577 | /* First see if this exception unwinding breakpoint was set via a | |
7578 | SystemTap probe point. If so, the probe has two arguments: the | |
7579 | CFA and the HANDLER. We ignore the CFA, extract the handler, and | |
7580 | set a breakpoint there. */ | |
6bac7473 | 7581 | probe = find_probe_by_pc (get_frame_pc (frame)); |
729662a5 | 7582 | if (probe.probe) |
28106bc2 | 7583 | { |
729662a5 | 7584 | insert_exception_resume_from_probe (ecs->event_thread, &probe, frame); |
28106bc2 SDJ |
7585 | return; |
7586 | } | |
7587 | ||
7588 | func = get_frame_function (frame); | |
7589 | if (!func) | |
7590 | return; | |
186c406b | 7591 | |
492d29ea | 7592 | TRY |
186c406b | 7593 | { |
3977b71f | 7594 | const struct block *b; |
8157b174 | 7595 | struct block_iterator iter; |
186c406b TT |
7596 | struct symbol *sym; |
7597 | int argno = 0; | |
7598 | ||
7599 | /* The exception breakpoint is a thread-specific breakpoint on | |
7600 | the unwinder's debug hook, declared as: | |
7601 | ||
7602 | void _Unwind_DebugHook (void *cfa, void *handler); | |
7603 | ||
7604 | The CFA argument indicates the frame to which control is | |
7605 | about to be transferred. HANDLER is the destination PC. | |
7606 | ||
7607 | We ignore the CFA and set a temporary breakpoint at HANDLER. | |
7608 | This is not extremely efficient but it avoids issues in gdb | |
7609 | with computing the DWARF CFA, and it also works even in weird | |
7610 | cases such as throwing an exception from inside a signal | |
7611 | handler. */ | |
7612 | ||
7613 | b = SYMBOL_BLOCK_VALUE (func); | |
7614 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
7615 | { | |
7616 | if (!SYMBOL_IS_ARGUMENT (sym)) | |
7617 | continue; | |
7618 | ||
7619 | if (argno == 0) | |
7620 | ++argno; | |
7621 | else | |
7622 | { | |
7623 | insert_exception_resume_breakpoint (ecs->event_thread, | |
7624 | b, frame, sym); | |
7625 | break; | |
7626 | } | |
7627 | } | |
7628 | } | |
492d29ea PA |
7629 | CATCH (e, RETURN_MASK_ERROR) |
7630 | { | |
7631 | } | |
7632 | END_CATCH | |
186c406b TT |
7633 | } |
7634 | ||
104c1213 | 7635 | static void |
22bcd14b | 7636 | stop_waiting (struct execution_control_state *ecs) |
104c1213 | 7637 | { |
527159b7 | 7638 | if (debug_infrun) |
22bcd14b | 7639 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n"); |
527159b7 | 7640 | |
31e77af2 PA |
7641 | clear_step_over_info (); |
7642 | ||
cd0fc7c3 SS |
7643 | /* Let callers know we don't want to wait for the inferior anymore. */ |
7644 | ecs->wait_some_more = 0; | |
fbea99ea PA |
7645 | |
7646 | /* If all-stop, but the target is always in non-stop mode, stop all | |
7647 | threads now that we're presenting the stop to the user. */ | |
7648 | if (!non_stop && target_is_non_stop_p ()) | |
7649 | stop_all_threads (); | |
cd0fc7c3 SS |
7650 | } |
7651 | ||
4d9d9d04 PA |
7652 | /* Like keep_going, but passes the signal to the inferior, even if the |
7653 | signal is set to nopass. */ | |
d4f3574e SS |
7654 | |
7655 | static void | |
4d9d9d04 | 7656 | keep_going_pass_signal (struct execution_control_state *ecs) |
d4f3574e | 7657 | { |
c4dbc9af PA |
7658 | /* Make sure normal_stop is called if we get a QUIT handled before |
7659 | reaching resume. */ | |
7660 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); | |
7661 | ||
4d9d9d04 | 7662 | gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid)); |
372316f1 | 7663 | gdb_assert (!ecs->event_thread->resumed); |
4d9d9d04 | 7664 | |
d4f3574e | 7665 | /* Save the pc before execution, to compare with pc after stop. */ |
fb14de7b UW |
7666 | ecs->event_thread->prev_pc |
7667 | = regcache_read_pc (get_thread_regcache (ecs->ptid)); | |
d4f3574e | 7668 | |
4d9d9d04 | 7669 | if (ecs->event_thread->control.trap_expected) |
d4f3574e | 7670 | { |
4d9d9d04 PA |
7671 | struct thread_info *tp = ecs->event_thread; |
7672 | ||
7673 | if (debug_infrun) | |
7674 | fprintf_unfiltered (gdb_stdlog, | |
7675 | "infrun: %s has trap_expected set, " | |
7676 | "resuming to collect trap\n", | |
7677 | target_pid_to_str (tp->ptid)); | |
7678 | ||
a9ba6bae PA |
7679 | /* We haven't yet gotten our trap, and either: intercepted a |
7680 | non-signal event (e.g., a fork); or took a signal which we | |
7681 | are supposed to pass through to the inferior. Simply | |
7682 | continue. */ | |
c4dbc9af | 7683 | discard_cleanups (old_cleanups); |
64ce06e4 | 7684 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e | 7685 | } |
372316f1 PA |
7686 | else if (step_over_info_valid_p ()) |
7687 | { | |
7688 | /* Another thread is stepping over a breakpoint in-line. If | |
7689 | this thread needs a step-over too, queue the request. In | |
7690 | either case, this resume must be deferred for later. */ | |
7691 | struct thread_info *tp = ecs->event_thread; | |
7692 | ||
7693 | if (ecs->hit_singlestep_breakpoint | |
7694 | || thread_still_needs_step_over (tp)) | |
7695 | { | |
7696 | if (debug_infrun) | |
7697 | fprintf_unfiltered (gdb_stdlog, | |
7698 | "infrun: step-over already in progress: " | |
7699 | "step-over for %s deferred\n", | |
7700 | target_pid_to_str (tp->ptid)); | |
7701 | thread_step_over_chain_enqueue (tp); | |
7702 | } | |
7703 | else | |
7704 | { | |
7705 | if (debug_infrun) | |
7706 | fprintf_unfiltered (gdb_stdlog, | |
7707 | "infrun: step-over in progress: " | |
7708 | "resume of %s deferred\n", | |
7709 | target_pid_to_str (tp->ptid)); | |
7710 | } | |
7711 | ||
7712 | discard_cleanups (old_cleanups); | |
7713 | } | |
d4f3574e SS |
7714 | else |
7715 | { | |
31e77af2 | 7716 | struct regcache *regcache = get_current_regcache (); |
963f9c80 PA |
7717 | int remove_bp; |
7718 | int remove_wps; | |
8d297bbf | 7719 | step_over_what step_what; |
31e77af2 | 7720 | |
d4f3574e | 7721 | /* Either the trap was not expected, but we are continuing |
a9ba6bae PA |
7722 | anyway (if we got a signal, the user asked it be passed to |
7723 | the child) | |
7724 | -- or -- | |
7725 | We got our expected trap, but decided we should resume from | |
7726 | it. | |
d4f3574e | 7727 | |
a9ba6bae | 7728 | We're going to run this baby now! |
d4f3574e | 7729 | |
c36b740a VP |
7730 | Note that insert_breakpoints won't try to re-insert |
7731 | already inserted breakpoints. Therefore, we don't | |
7732 | care if breakpoints were already inserted, or not. */ | |
a9ba6bae | 7733 | |
31e77af2 PA |
7734 | /* If we need to step over a breakpoint, and we're not using |
7735 | displaced stepping to do so, insert all breakpoints | |
7736 | (watchpoints, etc.) but the one we're stepping over, step one | |
7737 | instruction, and then re-insert the breakpoint when that step | |
7738 | is finished. */ | |
963f9c80 | 7739 | |
6c4cfb24 PA |
7740 | step_what = thread_still_needs_step_over (ecs->event_thread); |
7741 | ||
963f9c80 | 7742 | remove_bp = (ecs->hit_singlestep_breakpoint |
6c4cfb24 PA |
7743 | || (step_what & STEP_OVER_BREAKPOINT)); |
7744 | remove_wps = (step_what & STEP_OVER_WATCHPOINT); | |
963f9c80 | 7745 | |
cb71640d PA |
7746 | /* We can't use displaced stepping if we need to step past a |
7747 | watchpoint. The instruction copied to the scratch pad would | |
7748 | still trigger the watchpoint. */ | |
7749 | if (remove_bp | |
3fc8eb30 | 7750 | && (remove_wps || !use_displaced_stepping (ecs->event_thread))) |
45e8c884 | 7751 | { |
31e77af2 | 7752 | set_step_over_info (get_regcache_aspace (regcache), |
963f9c80 | 7753 | regcache_read_pc (regcache), remove_wps); |
45e8c884 | 7754 | } |
963f9c80 PA |
7755 | else if (remove_wps) |
7756 | set_step_over_info (NULL, 0, remove_wps); | |
372316f1 PA |
7757 | |
7758 | /* If we now need to do an in-line step-over, we need to stop | |
7759 | all other threads. Note this must be done before | |
7760 | insert_breakpoints below, because that removes the breakpoint | |
7761 | we're about to step over, otherwise other threads could miss | |
7762 | it. */ | |
fbea99ea | 7763 | if (step_over_info_valid_p () && target_is_non_stop_p ()) |
372316f1 | 7764 | stop_all_threads (); |
abbb1732 | 7765 | |
31e77af2 | 7766 | /* Stop stepping if inserting breakpoints fails. */ |
492d29ea | 7767 | TRY |
31e77af2 PA |
7768 | { |
7769 | insert_breakpoints (); | |
7770 | } | |
492d29ea | 7771 | CATCH (e, RETURN_MASK_ERROR) |
31e77af2 PA |
7772 | { |
7773 | exception_print (gdb_stderr, e); | |
22bcd14b | 7774 | stop_waiting (ecs); |
de1fe8c8 | 7775 | discard_cleanups (old_cleanups); |
31e77af2 | 7776 | return; |
d4f3574e | 7777 | } |
492d29ea | 7778 | END_CATCH |
d4f3574e | 7779 | |
963f9c80 | 7780 | ecs->event_thread->control.trap_expected = (remove_bp || remove_wps); |
d4f3574e | 7781 | |
c4dbc9af | 7782 | discard_cleanups (old_cleanups); |
64ce06e4 | 7783 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e SS |
7784 | } |
7785 | ||
488f131b | 7786 | prepare_to_wait (ecs); |
d4f3574e SS |
7787 | } |
7788 | ||
4d9d9d04 PA |
7789 | /* Called when we should continue running the inferior, because the |
7790 | current event doesn't cause a user visible stop. This does the | |
7791 | resuming part; waiting for the next event is done elsewhere. */ | |
7792 | ||
7793 | static void | |
7794 | keep_going (struct execution_control_state *ecs) | |
7795 | { | |
7796 | if (ecs->event_thread->control.trap_expected | |
7797 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
7798 | ecs->event_thread->control.trap_expected = 0; | |
7799 | ||
7800 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
7801 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
7802 | keep_going_pass_signal (ecs); | |
7803 | } | |
7804 | ||
104c1213 JM |
7805 | /* This function normally comes after a resume, before |
7806 | handle_inferior_event exits. It takes care of any last bits of | |
7807 | housekeeping, and sets the all-important wait_some_more flag. */ | |
cd0fc7c3 | 7808 | |
104c1213 JM |
7809 | static void |
7810 | prepare_to_wait (struct execution_control_state *ecs) | |
cd0fc7c3 | 7811 | { |
527159b7 | 7812 | if (debug_infrun) |
8a9de0e4 | 7813 | fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); |
104c1213 | 7814 | |
104c1213 | 7815 | ecs->wait_some_more = 1; |
0b333c5e PA |
7816 | |
7817 | if (!target_is_async_p ()) | |
7818 | mark_infrun_async_event_handler (); | |
c906108c | 7819 | } |
11cf8741 | 7820 | |
fd664c91 | 7821 | /* We are done with the step range of a step/next/si/ni command. |
b57bacec | 7822 | Called once for each n of a "step n" operation. */ |
fd664c91 PA |
7823 | |
7824 | static void | |
bdc36728 | 7825 | end_stepping_range (struct execution_control_state *ecs) |
fd664c91 | 7826 | { |
bdc36728 | 7827 | ecs->event_thread->control.stop_step = 1; |
bdc36728 | 7828 | stop_waiting (ecs); |
fd664c91 PA |
7829 | } |
7830 | ||
33d62d64 JK |
7831 | /* Several print_*_reason functions to print why the inferior has stopped. |
7832 | We always print something when the inferior exits, or receives a signal. | |
7833 | The rest of the cases are dealt with later on in normal_stop and | |
7834 | print_it_typical. Ideally there should be a call to one of these | |
7835 | print_*_reason functions functions from handle_inferior_event each time | |
22bcd14b | 7836 | stop_waiting is called. |
33d62d64 | 7837 | |
fd664c91 PA |
7838 | Note that we don't call these directly, instead we delegate that to |
7839 | the interpreters, through observers. Interpreters then call these | |
7840 | with whatever uiout is right. */ | |
33d62d64 | 7841 | |
fd664c91 PA |
7842 | void |
7843 | print_end_stepping_range_reason (struct ui_out *uiout) | |
33d62d64 | 7844 | { |
fd664c91 | 7845 | /* For CLI-like interpreters, print nothing. */ |
33d62d64 | 7846 | |
fd664c91 PA |
7847 | if (ui_out_is_mi_like_p (uiout)) |
7848 | { | |
7849 | ui_out_field_string (uiout, "reason", | |
7850 | async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); | |
7851 | } | |
7852 | } | |
33d62d64 | 7853 | |
fd664c91 PA |
7854 | void |
7855 | print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
11cf8741 | 7856 | { |
33d62d64 JK |
7857 | annotate_signalled (); |
7858 | if (ui_out_is_mi_like_p (uiout)) | |
7859 | ui_out_field_string | |
7860 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); | |
7861 | ui_out_text (uiout, "\nProgram terminated with signal "); | |
7862 | annotate_signal_name (); | |
7863 | ui_out_field_string (uiout, "signal-name", | |
2ea28649 | 7864 | gdb_signal_to_name (siggnal)); |
33d62d64 JK |
7865 | annotate_signal_name_end (); |
7866 | ui_out_text (uiout, ", "); | |
7867 | annotate_signal_string (); | |
7868 | ui_out_field_string (uiout, "signal-meaning", | |
2ea28649 | 7869 | gdb_signal_to_string (siggnal)); |
33d62d64 JK |
7870 | annotate_signal_string_end (); |
7871 | ui_out_text (uiout, ".\n"); | |
7872 | ui_out_text (uiout, "The program no longer exists.\n"); | |
7873 | } | |
7874 | ||
fd664c91 PA |
7875 | void |
7876 | print_exited_reason (struct ui_out *uiout, int exitstatus) | |
33d62d64 | 7877 | { |
fda326dd TT |
7878 | struct inferior *inf = current_inferior (); |
7879 | const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid)); | |
7880 | ||
33d62d64 JK |
7881 | annotate_exited (exitstatus); |
7882 | if (exitstatus) | |
7883 | { | |
7884 | if (ui_out_is_mi_like_p (uiout)) | |
7885 | ui_out_field_string (uiout, "reason", | |
7886 | async_reason_lookup (EXEC_ASYNC_EXITED)); | |
fda326dd TT |
7887 | ui_out_text (uiout, "[Inferior "); |
7888 | ui_out_text (uiout, plongest (inf->num)); | |
7889 | ui_out_text (uiout, " ("); | |
7890 | ui_out_text (uiout, pidstr); | |
7891 | ui_out_text (uiout, ") exited with code "); | |
33d62d64 | 7892 | ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus); |
fda326dd | 7893 | ui_out_text (uiout, "]\n"); |
33d62d64 JK |
7894 | } |
7895 | else | |
11cf8741 | 7896 | { |
9dc5e2a9 | 7897 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f | 7898 | ui_out_field_string |
33d62d64 | 7899 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); |
fda326dd TT |
7900 | ui_out_text (uiout, "[Inferior "); |
7901 | ui_out_text (uiout, plongest (inf->num)); | |
7902 | ui_out_text (uiout, " ("); | |
7903 | ui_out_text (uiout, pidstr); | |
7904 | ui_out_text (uiout, ") exited normally]\n"); | |
33d62d64 | 7905 | } |
33d62d64 JK |
7906 | } |
7907 | ||
012b3a21 WT |
7908 | /* Some targets/architectures can do extra processing/display of |
7909 | segmentation faults. E.g., Intel MPX boundary faults. | |
7910 | Call the architecture dependent function to handle the fault. */ | |
7911 | ||
7912 | static void | |
7913 | handle_segmentation_fault (struct ui_out *uiout) | |
7914 | { | |
7915 | struct regcache *regcache = get_current_regcache (); | |
7916 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
7917 | ||
7918 | if (gdbarch_handle_segmentation_fault_p (gdbarch)) | |
7919 | gdbarch_handle_segmentation_fault (gdbarch, uiout); | |
7920 | } | |
7921 | ||
fd664c91 PA |
7922 | void |
7923 | print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
33d62d64 | 7924 | { |
f303dbd6 PA |
7925 | struct thread_info *thr = inferior_thread (); |
7926 | ||
33d62d64 JK |
7927 | annotate_signal (); |
7928 | ||
f303dbd6 PA |
7929 | if (ui_out_is_mi_like_p (uiout)) |
7930 | ; | |
7931 | else if (show_thread_that_caused_stop ()) | |
33d62d64 | 7932 | { |
f303dbd6 | 7933 | const char *name; |
33d62d64 | 7934 | |
f303dbd6 PA |
7935 | ui_out_text (uiout, "\nThread "); |
7936 | ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr)); | |
7937 | ||
7938 | name = thr->name != NULL ? thr->name : target_thread_name (thr); | |
7939 | if (name != NULL) | |
7940 | { | |
7941 | ui_out_text (uiout, " \""); | |
7942 | ui_out_field_fmt (uiout, "name", "%s", name); | |
7943 | ui_out_text (uiout, "\""); | |
7944 | } | |
33d62d64 | 7945 | } |
f303dbd6 PA |
7946 | else |
7947 | ui_out_text (uiout, "\nProgram"); | |
7948 | ||
7949 | if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout)) | |
7950 | ui_out_text (uiout, " stopped"); | |
33d62d64 JK |
7951 | else |
7952 | { | |
f303dbd6 | 7953 | ui_out_text (uiout, " received signal "); |
8b93c638 | 7954 | annotate_signal_name (); |
33d62d64 JK |
7955 | if (ui_out_is_mi_like_p (uiout)) |
7956 | ui_out_field_string | |
7957 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); | |
488f131b | 7958 | ui_out_field_string (uiout, "signal-name", |
2ea28649 | 7959 | gdb_signal_to_name (siggnal)); |
8b93c638 JM |
7960 | annotate_signal_name_end (); |
7961 | ui_out_text (uiout, ", "); | |
7962 | annotate_signal_string (); | |
488f131b | 7963 | ui_out_field_string (uiout, "signal-meaning", |
2ea28649 | 7964 | gdb_signal_to_string (siggnal)); |
012b3a21 WT |
7965 | |
7966 | if (siggnal == GDB_SIGNAL_SEGV) | |
7967 | handle_segmentation_fault (uiout); | |
7968 | ||
8b93c638 | 7969 | annotate_signal_string_end (); |
33d62d64 JK |
7970 | } |
7971 | ui_out_text (uiout, ".\n"); | |
7972 | } | |
252fbfc8 | 7973 | |
fd664c91 PA |
7974 | void |
7975 | print_no_history_reason (struct ui_out *uiout) | |
33d62d64 | 7976 | { |
fd664c91 | 7977 | ui_out_text (uiout, "\nNo more reverse-execution history.\n"); |
11cf8741 | 7978 | } |
43ff13b4 | 7979 | |
0c7e1a46 PA |
7980 | /* Print current location without a level number, if we have changed |
7981 | functions or hit a breakpoint. Print source line if we have one. | |
7982 | bpstat_print contains the logic deciding in detail what to print, | |
7983 | based on the event(s) that just occurred. */ | |
7984 | ||
243a9253 PA |
7985 | static void |
7986 | print_stop_location (struct target_waitstatus *ws) | |
0c7e1a46 PA |
7987 | { |
7988 | int bpstat_ret; | |
f486487f | 7989 | enum print_what source_flag; |
0c7e1a46 PA |
7990 | int do_frame_printing = 1; |
7991 | struct thread_info *tp = inferior_thread (); | |
7992 | ||
7993 | bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind); | |
7994 | switch (bpstat_ret) | |
7995 | { | |
7996 | case PRINT_UNKNOWN: | |
7997 | /* FIXME: cagney/2002-12-01: Given that a frame ID does (or | |
7998 | should) carry around the function and does (or should) use | |
7999 | that when doing a frame comparison. */ | |
8000 | if (tp->control.stop_step | |
8001 | && frame_id_eq (tp->control.step_frame_id, | |
8002 | get_frame_id (get_current_frame ())) | |
885eeb5b | 8003 | && tp->control.step_start_function == find_pc_function (stop_pc)) |
0c7e1a46 PA |
8004 | { |
8005 | /* Finished step, just print source line. */ | |
8006 | source_flag = SRC_LINE; | |
8007 | } | |
8008 | else | |
8009 | { | |
8010 | /* Print location and source line. */ | |
8011 | source_flag = SRC_AND_LOC; | |
8012 | } | |
8013 | break; | |
8014 | case PRINT_SRC_AND_LOC: | |
8015 | /* Print location and source line. */ | |
8016 | source_flag = SRC_AND_LOC; | |
8017 | break; | |
8018 | case PRINT_SRC_ONLY: | |
8019 | source_flag = SRC_LINE; | |
8020 | break; | |
8021 | case PRINT_NOTHING: | |
8022 | /* Something bogus. */ | |
8023 | source_flag = SRC_LINE; | |
8024 | do_frame_printing = 0; | |
8025 | break; | |
8026 | default: | |
8027 | internal_error (__FILE__, __LINE__, _("Unknown value.")); | |
8028 | } | |
8029 | ||
8030 | /* The behavior of this routine with respect to the source | |
8031 | flag is: | |
8032 | SRC_LINE: Print only source line | |
8033 | LOCATION: Print only location | |
8034 | SRC_AND_LOC: Print location and source line. */ | |
8035 | if (do_frame_printing) | |
8036 | print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1); | |
243a9253 PA |
8037 | } |
8038 | ||
8039 | /* Cleanup that restores a previous current uiout. */ | |
8040 | ||
8041 | static void | |
8042 | restore_current_uiout_cleanup (void *arg) | |
8043 | { | |
9a3c8263 | 8044 | struct ui_out *saved_uiout = (struct ui_out *) arg; |
243a9253 PA |
8045 | |
8046 | current_uiout = saved_uiout; | |
8047 | } | |
8048 | ||
8049 | /* See infrun.h. */ | |
8050 | ||
8051 | void | |
8052 | print_stop_event (struct ui_out *uiout) | |
8053 | { | |
8054 | struct cleanup *old_chain; | |
8055 | struct target_waitstatus last; | |
8056 | ptid_t last_ptid; | |
8057 | struct thread_info *tp; | |
8058 | ||
8059 | get_last_target_status (&last_ptid, &last); | |
8060 | ||
8061 | old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout); | |
8062 | current_uiout = uiout; | |
8063 | ||
8064 | print_stop_location (&last); | |
0c7e1a46 PA |
8065 | |
8066 | /* Display the auto-display expressions. */ | |
8067 | do_displays (); | |
243a9253 PA |
8068 | |
8069 | do_cleanups (old_chain); | |
8070 | ||
8071 | tp = inferior_thread (); | |
8072 | if (tp->thread_fsm != NULL | |
8073 | && thread_fsm_finished_p (tp->thread_fsm)) | |
8074 | { | |
8075 | struct return_value_info *rv; | |
8076 | ||
8077 | rv = thread_fsm_return_value (tp->thread_fsm); | |
8078 | if (rv != NULL) | |
8079 | print_return_value (uiout, rv); | |
8080 | } | |
0c7e1a46 PA |
8081 | } |
8082 | ||
388a7084 PA |
8083 | /* See infrun.h. */ |
8084 | ||
8085 | void | |
8086 | maybe_remove_breakpoints (void) | |
8087 | { | |
8088 | if (!breakpoints_should_be_inserted_now () && target_has_execution) | |
8089 | { | |
8090 | if (remove_breakpoints ()) | |
8091 | { | |
8092 | target_terminal_ours_for_output (); | |
8093 | printf_filtered (_("Cannot remove breakpoints because " | |
8094 | "program is no longer writable.\nFurther " | |
8095 | "execution is probably impossible.\n")); | |
8096 | } | |
8097 | } | |
8098 | } | |
8099 | ||
4c2f2a79 PA |
8100 | /* The execution context that just caused a normal stop. */ |
8101 | ||
8102 | struct stop_context | |
8103 | { | |
8104 | /* The stop ID. */ | |
8105 | ULONGEST stop_id; | |
c906108c | 8106 | |
4c2f2a79 | 8107 | /* The event PTID. */ |
c906108c | 8108 | |
4c2f2a79 PA |
8109 | ptid_t ptid; |
8110 | ||
8111 | /* If stopp for a thread event, this is the thread that caused the | |
8112 | stop. */ | |
8113 | struct thread_info *thread; | |
8114 | ||
8115 | /* The inferior that caused the stop. */ | |
8116 | int inf_num; | |
8117 | }; | |
8118 | ||
8119 | /* Returns a new stop context. If stopped for a thread event, this | |
8120 | takes a strong reference to the thread. */ | |
8121 | ||
8122 | static struct stop_context * | |
8123 | save_stop_context (void) | |
8124 | { | |
224c3ddb | 8125 | struct stop_context *sc = XNEW (struct stop_context); |
4c2f2a79 PA |
8126 | |
8127 | sc->stop_id = get_stop_id (); | |
8128 | sc->ptid = inferior_ptid; | |
8129 | sc->inf_num = current_inferior ()->num; | |
8130 | ||
8131 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
8132 | { | |
8133 | /* Take a strong reference so that the thread can't be deleted | |
8134 | yet. */ | |
8135 | sc->thread = inferior_thread (); | |
8136 | sc->thread->refcount++; | |
8137 | } | |
8138 | else | |
8139 | sc->thread = NULL; | |
8140 | ||
8141 | return sc; | |
8142 | } | |
8143 | ||
8144 | /* Release a stop context previously created with save_stop_context. | |
8145 | Releases the strong reference to the thread as well. */ | |
8146 | ||
8147 | static void | |
8148 | release_stop_context_cleanup (void *arg) | |
8149 | { | |
9a3c8263 | 8150 | struct stop_context *sc = (struct stop_context *) arg; |
4c2f2a79 PA |
8151 | |
8152 | if (sc->thread != NULL) | |
8153 | sc->thread->refcount--; | |
8154 | xfree (sc); | |
8155 | } | |
8156 | ||
8157 | /* Return true if the current context no longer matches the saved stop | |
8158 | context. */ | |
8159 | ||
8160 | static int | |
8161 | stop_context_changed (struct stop_context *prev) | |
8162 | { | |
8163 | if (!ptid_equal (prev->ptid, inferior_ptid)) | |
8164 | return 1; | |
8165 | if (prev->inf_num != current_inferior ()->num) | |
8166 | return 1; | |
8167 | if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED) | |
8168 | return 1; | |
8169 | if (get_stop_id () != prev->stop_id) | |
8170 | return 1; | |
8171 | return 0; | |
8172 | } | |
8173 | ||
8174 | /* See infrun.h. */ | |
8175 | ||
8176 | int | |
96baa820 | 8177 | normal_stop (void) |
c906108c | 8178 | { |
73b65bb0 DJ |
8179 | struct target_waitstatus last; |
8180 | ptid_t last_ptid; | |
29f49a6a | 8181 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
e1316e60 | 8182 | ptid_t pid_ptid; |
73b65bb0 DJ |
8183 | |
8184 | get_last_target_status (&last_ptid, &last); | |
8185 | ||
4c2f2a79 PA |
8186 | new_stop_id (); |
8187 | ||
29f49a6a PA |
8188 | /* If an exception is thrown from this point on, make sure to |
8189 | propagate GDB's knowledge of the executing state to the | |
8190 | frontend/user running state. A QUIT is an easy exception to see | |
8191 | here, so do this before any filtered output. */ | |
c35b1492 PA |
8192 | if (!non_stop) |
8193 | make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
e1316e60 PA |
8194 | else if (last.kind == TARGET_WAITKIND_SIGNALLED |
8195 | || last.kind == TARGET_WAITKIND_EXITED) | |
8196 | { | |
8197 | /* On some targets, we may still have live threads in the | |
8198 | inferior when we get a process exit event. E.g., for | |
8199 | "checkpoint", when the current checkpoint/fork exits, | |
8200 | linux-fork.c automatically switches to another fork from | |
8201 | within target_mourn_inferior. */ | |
8202 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
8203 | { | |
8204 | pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); | |
8205 | make_cleanup (finish_thread_state_cleanup, &pid_ptid); | |
8206 | } | |
8207 | } | |
8208 | else if (last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c35b1492 | 8209 | make_cleanup (finish_thread_state_cleanup, &inferior_ptid); |
29f49a6a | 8210 | |
b57bacec PA |
8211 | /* As we're presenting a stop, and potentially removing breakpoints, |
8212 | update the thread list so we can tell whether there are threads | |
8213 | running on the target. With target remote, for example, we can | |
8214 | only learn about new threads when we explicitly update the thread | |
8215 | list. Do this before notifying the interpreters about signal | |
8216 | stops, end of stepping ranges, etc., so that the "new thread" | |
8217 | output is emitted before e.g., "Program received signal FOO", | |
8218 | instead of after. */ | |
8219 | update_thread_list (); | |
8220 | ||
8221 | if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal) | |
8222 | observer_notify_signal_received (inferior_thread ()->suspend.stop_signal); | |
8223 | ||
c906108c SS |
8224 | /* As with the notification of thread events, we want to delay |
8225 | notifying the user that we've switched thread context until | |
8226 | the inferior actually stops. | |
8227 | ||
73b65bb0 DJ |
8228 | There's no point in saying anything if the inferior has exited. |
8229 | Note that SIGNALLED here means "exited with a signal", not | |
b65dc60b PA |
8230 | "received a signal". |
8231 | ||
8232 | Also skip saying anything in non-stop mode. In that mode, as we | |
8233 | don't want GDB to switch threads behind the user's back, to avoid | |
8234 | races where the user is typing a command to apply to thread x, | |
8235 | but GDB switches to thread y before the user finishes entering | |
8236 | the command, fetch_inferior_event installs a cleanup to restore | |
8237 | the current thread back to the thread the user had selected right | |
8238 | after this event is handled, so we're not really switching, only | |
8239 | informing of a stop. */ | |
4f8d22e3 PA |
8240 | if (!non_stop |
8241 | && !ptid_equal (previous_inferior_ptid, inferior_ptid) | |
73b65bb0 DJ |
8242 | && target_has_execution |
8243 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
0e5bf2a8 PA |
8244 | && last.kind != TARGET_WAITKIND_EXITED |
8245 | && last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c906108c SS |
8246 | { |
8247 | target_terminal_ours_for_output (); | |
a3f17187 | 8248 | printf_filtered (_("[Switching to %s]\n"), |
c95310c6 | 8249 | target_pid_to_str (inferior_ptid)); |
b8fa951a | 8250 | annotate_thread_changed (); |
39f77062 | 8251 | previous_inferior_ptid = inferior_ptid; |
c906108c | 8252 | } |
c906108c | 8253 | |
0e5bf2a8 PA |
8254 | if (last.kind == TARGET_WAITKIND_NO_RESUMED) |
8255 | { | |
8256 | gdb_assert (sync_execution || !target_can_async_p ()); | |
8257 | ||
8258 | target_terminal_ours_for_output (); | |
8259 | printf_filtered (_("No unwaited-for children left.\n")); | |
8260 | } | |
8261 | ||
b57bacec | 8262 | /* Note: this depends on the update_thread_list call above. */ |
388a7084 | 8263 | maybe_remove_breakpoints (); |
c906108c | 8264 | |
c906108c SS |
8265 | /* If an auto-display called a function and that got a signal, |
8266 | delete that auto-display to avoid an infinite recursion. */ | |
8267 | ||
8268 | if (stopped_by_random_signal) | |
8269 | disable_current_display (); | |
8270 | ||
c906108c | 8271 | target_terminal_ours (); |
0f641c01 | 8272 | async_enable_stdin (); |
c906108c | 8273 | |
388a7084 PA |
8274 | /* Let the user/frontend see the threads as stopped. */ |
8275 | do_cleanups (old_chain); | |
8276 | ||
8277 | /* Select innermost stack frame - i.e., current frame is frame 0, | |
8278 | and current location is based on that. Handle the case where the | |
8279 | dummy call is returning after being stopped. E.g. the dummy call | |
8280 | previously hit a breakpoint. (If the dummy call returns | |
8281 | normally, we won't reach here.) Do this before the stop hook is | |
8282 | run, so that it doesn't get to see the temporary dummy frame, | |
8283 | which is not where we'll present the stop. */ | |
8284 | if (has_stack_frames ()) | |
8285 | { | |
8286 | if (stop_stack_dummy == STOP_STACK_DUMMY) | |
8287 | { | |
8288 | /* Pop the empty frame that contains the stack dummy. This | |
8289 | also restores inferior state prior to the call (struct | |
8290 | infcall_suspend_state). */ | |
8291 | struct frame_info *frame = get_current_frame (); | |
8292 | ||
8293 | gdb_assert (get_frame_type (frame) == DUMMY_FRAME); | |
8294 | frame_pop (frame); | |
8295 | /* frame_pop calls reinit_frame_cache as the last thing it | |
8296 | does which means there's now no selected frame. */ | |
8297 | } | |
8298 | ||
8299 | select_frame (get_current_frame ()); | |
8300 | ||
8301 | /* Set the current source location. */ | |
8302 | set_current_sal_from_frame (get_current_frame ()); | |
8303 | } | |
dd7e2d2b PA |
8304 | |
8305 | /* Look up the hook_stop and run it (CLI internally handles problem | |
8306 | of stop_command's pre-hook not existing). */ | |
4c2f2a79 PA |
8307 | if (stop_command != NULL) |
8308 | { | |
8309 | struct stop_context *saved_context = save_stop_context (); | |
8310 | struct cleanup *old_chain | |
8311 | = make_cleanup (release_stop_context_cleanup, saved_context); | |
8312 | ||
8313 | catch_errors (hook_stop_stub, stop_command, | |
8314 | "Error while running hook_stop:\n", RETURN_MASK_ALL); | |
8315 | ||
8316 | /* If the stop hook resumes the target, then there's no point in | |
8317 | trying to notify about the previous stop; its context is | |
8318 | gone. Likewise if the command switches thread or inferior -- | |
8319 | the observers would print a stop for the wrong | |
8320 | thread/inferior. */ | |
8321 | if (stop_context_changed (saved_context)) | |
8322 | { | |
8323 | do_cleanups (old_chain); | |
8324 | return 1; | |
8325 | } | |
8326 | do_cleanups (old_chain); | |
8327 | } | |
dd7e2d2b | 8328 | |
388a7084 PA |
8329 | /* Notify observers about the stop. This is where the interpreters |
8330 | print the stop event. */ | |
8331 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
8332 | observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat, | |
8333 | stop_print_frame); | |
8334 | else | |
8335 | observer_notify_normal_stop (NULL, stop_print_frame); | |
347bddb7 | 8336 | |
243a9253 PA |
8337 | annotate_stopped (); |
8338 | ||
48844aa6 PA |
8339 | if (target_has_execution) |
8340 | { | |
8341 | if (last.kind != TARGET_WAITKIND_SIGNALLED | |
8342 | && last.kind != TARGET_WAITKIND_EXITED) | |
8343 | /* Delete the breakpoint we stopped at, if it wants to be deleted. | |
8344 | Delete any breakpoint that is to be deleted at the next stop. */ | |
16c381f0 | 8345 | breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat); |
94cc34af | 8346 | } |
6c95b8df PA |
8347 | |
8348 | /* Try to get rid of automatically added inferiors that are no | |
8349 | longer needed. Keeping those around slows down things linearly. | |
8350 | Note that this never removes the current inferior. */ | |
8351 | prune_inferiors (); | |
4c2f2a79 PA |
8352 | |
8353 | return 0; | |
c906108c SS |
8354 | } |
8355 | ||
8356 | static int | |
96baa820 | 8357 | hook_stop_stub (void *cmd) |
c906108c | 8358 | { |
5913bcb0 | 8359 | execute_cmd_pre_hook ((struct cmd_list_element *) cmd); |
c906108c SS |
8360 | return (0); |
8361 | } | |
8362 | \f | |
c5aa993b | 8363 | int |
96baa820 | 8364 | signal_stop_state (int signo) |
c906108c | 8365 | { |
d6b48e9c | 8366 | return signal_stop[signo]; |
c906108c SS |
8367 | } |
8368 | ||
c5aa993b | 8369 | int |
96baa820 | 8370 | signal_print_state (int signo) |
c906108c SS |
8371 | { |
8372 | return signal_print[signo]; | |
8373 | } | |
8374 | ||
c5aa993b | 8375 | int |
96baa820 | 8376 | signal_pass_state (int signo) |
c906108c SS |
8377 | { |
8378 | return signal_program[signo]; | |
8379 | } | |
8380 | ||
2455069d UW |
8381 | static void |
8382 | signal_cache_update (int signo) | |
8383 | { | |
8384 | if (signo == -1) | |
8385 | { | |
a493e3e2 | 8386 | for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++) |
2455069d UW |
8387 | signal_cache_update (signo); |
8388 | ||
8389 | return; | |
8390 | } | |
8391 | ||
8392 | signal_pass[signo] = (signal_stop[signo] == 0 | |
8393 | && signal_print[signo] == 0 | |
ab04a2af TT |
8394 | && signal_program[signo] == 1 |
8395 | && signal_catch[signo] == 0); | |
2455069d UW |
8396 | } |
8397 | ||
488f131b | 8398 | int |
7bda5e4a | 8399 | signal_stop_update (int signo, int state) |
d4f3574e SS |
8400 | { |
8401 | int ret = signal_stop[signo]; | |
abbb1732 | 8402 | |
d4f3574e | 8403 | signal_stop[signo] = state; |
2455069d | 8404 | signal_cache_update (signo); |
d4f3574e SS |
8405 | return ret; |
8406 | } | |
8407 | ||
488f131b | 8408 | int |
7bda5e4a | 8409 | signal_print_update (int signo, int state) |
d4f3574e SS |
8410 | { |
8411 | int ret = signal_print[signo]; | |
abbb1732 | 8412 | |
d4f3574e | 8413 | signal_print[signo] = state; |
2455069d | 8414 | signal_cache_update (signo); |
d4f3574e SS |
8415 | return ret; |
8416 | } | |
8417 | ||
488f131b | 8418 | int |
7bda5e4a | 8419 | signal_pass_update (int signo, int state) |
d4f3574e SS |
8420 | { |
8421 | int ret = signal_program[signo]; | |
abbb1732 | 8422 | |
d4f3574e | 8423 | signal_program[signo] = state; |
2455069d | 8424 | signal_cache_update (signo); |
d4f3574e SS |
8425 | return ret; |
8426 | } | |
8427 | ||
ab04a2af TT |
8428 | /* Update the global 'signal_catch' from INFO and notify the |
8429 | target. */ | |
8430 | ||
8431 | void | |
8432 | signal_catch_update (const unsigned int *info) | |
8433 | { | |
8434 | int i; | |
8435 | ||
8436 | for (i = 0; i < GDB_SIGNAL_LAST; ++i) | |
8437 | signal_catch[i] = info[i] > 0; | |
8438 | signal_cache_update (-1); | |
8439 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); | |
8440 | } | |
8441 | ||
c906108c | 8442 | static void |
96baa820 | 8443 | sig_print_header (void) |
c906108c | 8444 | { |
3e43a32a MS |
8445 | printf_filtered (_("Signal Stop\tPrint\tPass " |
8446 | "to program\tDescription\n")); | |
c906108c SS |
8447 | } |
8448 | ||
8449 | static void | |
2ea28649 | 8450 | sig_print_info (enum gdb_signal oursig) |
c906108c | 8451 | { |
2ea28649 | 8452 | const char *name = gdb_signal_to_name (oursig); |
c906108c | 8453 | int name_padding = 13 - strlen (name); |
96baa820 | 8454 | |
c906108c SS |
8455 | if (name_padding <= 0) |
8456 | name_padding = 0; | |
8457 | ||
8458 | printf_filtered ("%s", name); | |
488f131b | 8459 | printf_filtered ("%*.*s ", name_padding, name_padding, " "); |
c906108c SS |
8460 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); |
8461 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
8462 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
2ea28649 | 8463 | printf_filtered ("%s\n", gdb_signal_to_string (oursig)); |
c906108c SS |
8464 | } |
8465 | ||
8466 | /* Specify how various signals in the inferior should be handled. */ | |
8467 | ||
8468 | static void | |
96baa820 | 8469 | handle_command (char *args, int from_tty) |
c906108c SS |
8470 | { |
8471 | char **argv; | |
8472 | int digits, wordlen; | |
8473 | int sigfirst, signum, siglast; | |
2ea28649 | 8474 | enum gdb_signal oursig; |
c906108c SS |
8475 | int allsigs; |
8476 | int nsigs; | |
8477 | unsigned char *sigs; | |
8478 | struct cleanup *old_chain; | |
8479 | ||
8480 | if (args == NULL) | |
8481 | { | |
e2e0b3e5 | 8482 | error_no_arg (_("signal to handle")); |
c906108c SS |
8483 | } |
8484 | ||
1777feb0 | 8485 | /* Allocate and zero an array of flags for which signals to handle. */ |
c906108c | 8486 | |
a493e3e2 | 8487 | nsigs = (int) GDB_SIGNAL_LAST; |
c906108c SS |
8488 | sigs = (unsigned char *) alloca (nsigs); |
8489 | memset (sigs, 0, nsigs); | |
8490 | ||
1777feb0 | 8491 | /* Break the command line up into args. */ |
c906108c | 8492 | |
d1a41061 | 8493 | argv = gdb_buildargv (args); |
7a292a7a | 8494 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
8495 | |
8496 | /* Walk through the args, looking for signal oursigs, signal names, and | |
8497 | actions. Signal numbers and signal names may be interspersed with | |
8498 | actions, with the actions being performed for all signals cumulatively | |
1777feb0 | 8499 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ |
c906108c SS |
8500 | |
8501 | while (*argv != NULL) | |
8502 | { | |
8503 | wordlen = strlen (*argv); | |
8504 | for (digits = 0; isdigit ((*argv)[digits]); digits++) | |
8505 | {; | |
8506 | } | |
8507 | allsigs = 0; | |
8508 | sigfirst = siglast = -1; | |
8509 | ||
8510 | if (wordlen >= 1 && !strncmp (*argv, "all", wordlen)) | |
8511 | { | |
8512 | /* Apply action to all signals except those used by the | |
1777feb0 | 8513 | debugger. Silently skip those. */ |
c906108c SS |
8514 | allsigs = 1; |
8515 | sigfirst = 0; | |
8516 | siglast = nsigs - 1; | |
8517 | } | |
8518 | else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen)) | |
8519 | { | |
8520 | SET_SIGS (nsigs, sigs, signal_stop); | |
8521 | SET_SIGS (nsigs, sigs, signal_print); | |
8522 | } | |
8523 | else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen)) | |
8524 | { | |
8525 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8526 | } | |
8527 | else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen)) | |
8528 | { | |
8529 | SET_SIGS (nsigs, sigs, signal_print); | |
8530 | } | |
8531 | else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen)) | |
8532 | { | |
8533 | SET_SIGS (nsigs, sigs, signal_program); | |
8534 | } | |
8535 | else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen)) | |
8536 | { | |
8537 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8538 | } | |
8539 | else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen)) | |
8540 | { | |
8541 | SET_SIGS (nsigs, sigs, signal_program); | |
8542 | } | |
8543 | else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen)) | |
8544 | { | |
8545 | UNSET_SIGS (nsigs, sigs, signal_print); | |
8546 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8547 | } | |
8548 | else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen)) | |
8549 | { | |
8550 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8551 | } | |
8552 | else if (digits > 0) | |
8553 | { | |
8554 | /* It is numeric. The numeric signal refers to our own | |
8555 | internal signal numbering from target.h, not to host/target | |
8556 | signal number. This is a feature; users really should be | |
8557 | using symbolic names anyway, and the common ones like | |
8558 | SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ | |
8559 | ||
8560 | sigfirst = siglast = (int) | |
2ea28649 | 8561 | gdb_signal_from_command (atoi (*argv)); |
c906108c SS |
8562 | if ((*argv)[digits] == '-') |
8563 | { | |
8564 | siglast = (int) | |
2ea28649 | 8565 | gdb_signal_from_command (atoi ((*argv) + digits + 1)); |
c906108c SS |
8566 | } |
8567 | if (sigfirst > siglast) | |
8568 | { | |
1777feb0 | 8569 | /* Bet he didn't figure we'd think of this case... */ |
c906108c SS |
8570 | signum = sigfirst; |
8571 | sigfirst = siglast; | |
8572 | siglast = signum; | |
8573 | } | |
8574 | } | |
8575 | else | |
8576 | { | |
2ea28649 | 8577 | oursig = gdb_signal_from_name (*argv); |
a493e3e2 | 8578 | if (oursig != GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8579 | { |
8580 | sigfirst = siglast = (int) oursig; | |
8581 | } | |
8582 | else | |
8583 | { | |
8584 | /* Not a number and not a recognized flag word => complain. */ | |
8a3fe4f8 | 8585 | error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv); |
c906108c SS |
8586 | } |
8587 | } | |
8588 | ||
8589 | /* If any signal numbers or symbol names were found, set flags for | |
1777feb0 | 8590 | which signals to apply actions to. */ |
c906108c SS |
8591 | |
8592 | for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) | |
8593 | { | |
2ea28649 | 8594 | switch ((enum gdb_signal) signum) |
c906108c | 8595 | { |
a493e3e2 PA |
8596 | case GDB_SIGNAL_TRAP: |
8597 | case GDB_SIGNAL_INT: | |
c906108c SS |
8598 | if (!allsigs && !sigs[signum]) |
8599 | { | |
9e2f0ad4 | 8600 | if (query (_("%s is used by the debugger.\n\ |
3e43a32a | 8601 | Are you sure you want to change it? "), |
2ea28649 | 8602 | gdb_signal_to_name ((enum gdb_signal) signum))) |
c906108c SS |
8603 | { |
8604 | sigs[signum] = 1; | |
8605 | } | |
8606 | else | |
8607 | { | |
a3f17187 | 8608 | printf_unfiltered (_("Not confirmed, unchanged.\n")); |
c906108c SS |
8609 | gdb_flush (gdb_stdout); |
8610 | } | |
8611 | } | |
8612 | break; | |
a493e3e2 PA |
8613 | case GDB_SIGNAL_0: |
8614 | case GDB_SIGNAL_DEFAULT: | |
8615 | case GDB_SIGNAL_UNKNOWN: | |
c906108c SS |
8616 | /* Make sure that "all" doesn't print these. */ |
8617 | break; | |
8618 | default: | |
8619 | sigs[signum] = 1; | |
8620 | break; | |
8621 | } | |
8622 | } | |
8623 | ||
8624 | argv++; | |
8625 | } | |
8626 | ||
3a031f65 PA |
8627 | for (signum = 0; signum < nsigs; signum++) |
8628 | if (sigs[signum]) | |
8629 | { | |
2455069d | 8630 | signal_cache_update (-1); |
a493e3e2 PA |
8631 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); |
8632 | target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); | |
c906108c | 8633 | |
3a031f65 PA |
8634 | if (from_tty) |
8635 | { | |
8636 | /* Show the results. */ | |
8637 | sig_print_header (); | |
8638 | for (; signum < nsigs; signum++) | |
8639 | if (sigs[signum]) | |
aead7601 | 8640 | sig_print_info ((enum gdb_signal) signum); |
3a031f65 PA |
8641 | } |
8642 | ||
8643 | break; | |
8644 | } | |
c906108c SS |
8645 | |
8646 | do_cleanups (old_chain); | |
8647 | } | |
8648 | ||
de0bea00 MF |
8649 | /* Complete the "handle" command. */ |
8650 | ||
8651 | static VEC (char_ptr) * | |
8652 | handle_completer (struct cmd_list_element *ignore, | |
6f937416 | 8653 | const char *text, const char *word) |
de0bea00 MF |
8654 | { |
8655 | VEC (char_ptr) *vec_signals, *vec_keywords, *return_val; | |
8656 | static const char * const keywords[] = | |
8657 | { | |
8658 | "all", | |
8659 | "stop", | |
8660 | "ignore", | |
8661 | "print", | |
8662 | "pass", | |
8663 | "nostop", | |
8664 | "noignore", | |
8665 | "noprint", | |
8666 | "nopass", | |
8667 | NULL, | |
8668 | }; | |
8669 | ||
8670 | vec_signals = signal_completer (ignore, text, word); | |
8671 | vec_keywords = complete_on_enum (keywords, word, word); | |
8672 | ||
8673 | return_val = VEC_merge (char_ptr, vec_signals, vec_keywords); | |
8674 | VEC_free (char_ptr, vec_signals); | |
8675 | VEC_free (char_ptr, vec_keywords); | |
8676 | return return_val; | |
8677 | } | |
8678 | ||
2ea28649 PA |
8679 | enum gdb_signal |
8680 | gdb_signal_from_command (int num) | |
ed01b82c PA |
8681 | { |
8682 | if (num >= 1 && num <= 15) | |
2ea28649 | 8683 | return (enum gdb_signal) num; |
ed01b82c PA |
8684 | error (_("Only signals 1-15 are valid as numeric signals.\n\ |
8685 | Use \"info signals\" for a list of symbolic signals.")); | |
8686 | } | |
8687 | ||
c906108c SS |
8688 | /* Print current contents of the tables set by the handle command. |
8689 | It is possible we should just be printing signals actually used | |
8690 | by the current target (but for things to work right when switching | |
8691 | targets, all signals should be in the signal tables). */ | |
8692 | ||
8693 | static void | |
96baa820 | 8694 | signals_info (char *signum_exp, int from_tty) |
c906108c | 8695 | { |
2ea28649 | 8696 | enum gdb_signal oursig; |
abbb1732 | 8697 | |
c906108c SS |
8698 | sig_print_header (); |
8699 | ||
8700 | if (signum_exp) | |
8701 | { | |
8702 | /* First see if this is a symbol name. */ | |
2ea28649 | 8703 | oursig = gdb_signal_from_name (signum_exp); |
a493e3e2 | 8704 | if (oursig == GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8705 | { |
8706 | /* No, try numeric. */ | |
8707 | oursig = | |
2ea28649 | 8708 | gdb_signal_from_command (parse_and_eval_long (signum_exp)); |
c906108c SS |
8709 | } |
8710 | sig_print_info (oursig); | |
8711 | return; | |
8712 | } | |
8713 | ||
8714 | printf_filtered ("\n"); | |
8715 | /* These ugly casts brought to you by the native VAX compiler. */ | |
a493e3e2 PA |
8716 | for (oursig = GDB_SIGNAL_FIRST; |
8717 | (int) oursig < (int) GDB_SIGNAL_LAST; | |
2ea28649 | 8718 | oursig = (enum gdb_signal) ((int) oursig + 1)) |
c906108c SS |
8719 | { |
8720 | QUIT; | |
8721 | ||
a493e3e2 PA |
8722 | if (oursig != GDB_SIGNAL_UNKNOWN |
8723 | && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0) | |
c906108c SS |
8724 | sig_print_info (oursig); |
8725 | } | |
8726 | ||
3e43a32a MS |
8727 | printf_filtered (_("\nUse the \"handle\" command " |
8728 | "to change these tables.\n")); | |
c906108c | 8729 | } |
4aa995e1 PA |
8730 | |
8731 | /* The $_siginfo convenience variable is a bit special. We don't know | |
8732 | for sure the type of the value until we actually have a chance to | |
7a9dd1b2 | 8733 | fetch the data. The type can change depending on gdbarch, so it is |
4aa995e1 PA |
8734 | also dependent on which thread you have selected. |
8735 | ||
8736 | 1. making $_siginfo be an internalvar that creates a new value on | |
8737 | access. | |
8738 | ||
8739 | 2. making the value of $_siginfo be an lval_computed value. */ | |
8740 | ||
8741 | /* This function implements the lval_computed support for reading a | |
8742 | $_siginfo value. */ | |
8743 | ||
8744 | static void | |
8745 | siginfo_value_read (struct value *v) | |
8746 | { | |
8747 | LONGEST transferred; | |
8748 | ||
a911d87a PA |
8749 | /* If we can access registers, so can we access $_siginfo. Likewise |
8750 | vice versa. */ | |
8751 | validate_registers_access (); | |
c709acd1 | 8752 | |
4aa995e1 PA |
8753 | transferred = |
8754 | target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, | |
8755 | NULL, | |
8756 | value_contents_all_raw (v), | |
8757 | value_offset (v), | |
8758 | TYPE_LENGTH (value_type (v))); | |
8759 | ||
8760 | if (transferred != TYPE_LENGTH (value_type (v))) | |
8761 | error (_("Unable to read siginfo")); | |
8762 | } | |
8763 | ||
8764 | /* This function implements the lval_computed support for writing a | |
8765 | $_siginfo value. */ | |
8766 | ||
8767 | static void | |
8768 | siginfo_value_write (struct value *v, struct value *fromval) | |
8769 | { | |
8770 | LONGEST transferred; | |
8771 | ||
a911d87a PA |
8772 | /* If we can access registers, so can we access $_siginfo. Likewise |
8773 | vice versa. */ | |
8774 | validate_registers_access (); | |
c709acd1 | 8775 | |
4aa995e1 PA |
8776 | transferred = target_write (¤t_target, |
8777 | TARGET_OBJECT_SIGNAL_INFO, | |
8778 | NULL, | |
8779 | value_contents_all_raw (fromval), | |
8780 | value_offset (v), | |
8781 | TYPE_LENGTH (value_type (fromval))); | |
8782 | ||
8783 | if (transferred != TYPE_LENGTH (value_type (fromval))) | |
8784 | error (_("Unable to write siginfo")); | |
8785 | } | |
8786 | ||
c8f2448a | 8787 | static const struct lval_funcs siginfo_value_funcs = |
4aa995e1 PA |
8788 | { |
8789 | siginfo_value_read, | |
8790 | siginfo_value_write | |
8791 | }; | |
8792 | ||
8793 | /* Return a new value with the correct type for the siginfo object of | |
78267919 UW |
8794 | the current thread using architecture GDBARCH. Return a void value |
8795 | if there's no object available. */ | |
4aa995e1 | 8796 | |
2c0b251b | 8797 | static struct value * |
22d2b532 SDJ |
8798 | siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var, |
8799 | void *ignore) | |
4aa995e1 | 8800 | { |
4aa995e1 | 8801 | if (target_has_stack |
78267919 UW |
8802 | && !ptid_equal (inferior_ptid, null_ptid) |
8803 | && gdbarch_get_siginfo_type_p (gdbarch)) | |
4aa995e1 | 8804 | { |
78267919 | 8805 | struct type *type = gdbarch_get_siginfo_type (gdbarch); |
abbb1732 | 8806 | |
78267919 | 8807 | return allocate_computed_value (type, &siginfo_value_funcs, NULL); |
4aa995e1 PA |
8808 | } |
8809 | ||
78267919 | 8810 | return allocate_value (builtin_type (gdbarch)->builtin_void); |
4aa995e1 PA |
8811 | } |
8812 | ||
c906108c | 8813 | \f |
16c381f0 JK |
8814 | /* infcall_suspend_state contains state about the program itself like its |
8815 | registers and any signal it received when it last stopped. | |
8816 | This state must be restored regardless of how the inferior function call | |
8817 | ends (either successfully, or after it hits a breakpoint or signal) | |
8818 | if the program is to properly continue where it left off. */ | |
8819 | ||
8820 | struct infcall_suspend_state | |
7a292a7a | 8821 | { |
16c381f0 | 8822 | struct thread_suspend_state thread_suspend; |
16c381f0 JK |
8823 | |
8824 | /* Other fields: */ | |
7a292a7a | 8825 | CORE_ADDR stop_pc; |
b89667eb | 8826 | struct regcache *registers; |
1736ad11 | 8827 | |
35515841 | 8828 | /* Format of SIGINFO_DATA or NULL if it is not present. */ |
1736ad11 JK |
8829 | struct gdbarch *siginfo_gdbarch; |
8830 | ||
8831 | /* The inferior format depends on SIGINFO_GDBARCH and it has a length of | |
8832 | TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the | |
8833 | content would be invalid. */ | |
8834 | gdb_byte *siginfo_data; | |
b89667eb DE |
8835 | }; |
8836 | ||
16c381f0 JK |
8837 | struct infcall_suspend_state * |
8838 | save_infcall_suspend_state (void) | |
b89667eb | 8839 | { |
16c381f0 | 8840 | struct infcall_suspend_state *inf_state; |
b89667eb | 8841 | struct thread_info *tp = inferior_thread (); |
1736ad11 JK |
8842 | struct regcache *regcache = get_current_regcache (); |
8843 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
8844 | gdb_byte *siginfo_data = NULL; | |
8845 | ||
8846 | if (gdbarch_get_siginfo_type_p (gdbarch)) | |
8847 | { | |
8848 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
8849 | size_t len = TYPE_LENGTH (type); | |
8850 | struct cleanup *back_to; | |
8851 | ||
224c3ddb | 8852 | siginfo_data = (gdb_byte *) xmalloc (len); |
1736ad11 JK |
8853 | back_to = make_cleanup (xfree, siginfo_data); |
8854 | ||
8855 | if (target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, | |
8856 | siginfo_data, 0, len) == len) | |
8857 | discard_cleanups (back_to); | |
8858 | else | |
8859 | { | |
8860 | /* Errors ignored. */ | |
8861 | do_cleanups (back_to); | |
8862 | siginfo_data = NULL; | |
8863 | } | |
8864 | } | |
8865 | ||
41bf6aca | 8866 | inf_state = XCNEW (struct infcall_suspend_state); |
1736ad11 JK |
8867 | |
8868 | if (siginfo_data) | |
8869 | { | |
8870 | inf_state->siginfo_gdbarch = gdbarch; | |
8871 | inf_state->siginfo_data = siginfo_data; | |
8872 | } | |
b89667eb | 8873 | |
16c381f0 | 8874 | inf_state->thread_suspend = tp->suspend; |
16c381f0 | 8875 | |
35515841 | 8876 | /* run_inferior_call will not use the signal due to its `proceed' call with |
a493e3e2 PA |
8877 | GDB_SIGNAL_0 anyway. */ |
8878 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
35515841 | 8879 | |
b89667eb DE |
8880 | inf_state->stop_pc = stop_pc; |
8881 | ||
1736ad11 | 8882 | inf_state->registers = regcache_dup (regcache); |
b89667eb DE |
8883 | |
8884 | return inf_state; | |
8885 | } | |
8886 | ||
8887 | /* Restore inferior session state to INF_STATE. */ | |
8888 | ||
8889 | void | |
16c381f0 | 8890 | restore_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb DE |
8891 | { |
8892 | struct thread_info *tp = inferior_thread (); | |
1736ad11 JK |
8893 | struct regcache *regcache = get_current_regcache (); |
8894 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
b89667eb | 8895 | |
16c381f0 | 8896 | tp->suspend = inf_state->thread_suspend; |
16c381f0 | 8897 | |
b89667eb DE |
8898 | stop_pc = inf_state->stop_pc; |
8899 | ||
1736ad11 JK |
8900 | if (inf_state->siginfo_gdbarch == gdbarch) |
8901 | { | |
8902 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
1736ad11 JK |
8903 | |
8904 | /* Errors ignored. */ | |
8905 | target_write (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, | |
6acef6cd | 8906 | inf_state->siginfo_data, 0, TYPE_LENGTH (type)); |
1736ad11 JK |
8907 | } |
8908 | ||
b89667eb DE |
8909 | /* The inferior can be gone if the user types "print exit(0)" |
8910 | (and perhaps other times). */ | |
8911 | if (target_has_execution) | |
8912 | /* NB: The register write goes through to the target. */ | |
1736ad11 | 8913 | regcache_cpy (regcache, inf_state->registers); |
803b5f95 | 8914 | |
16c381f0 | 8915 | discard_infcall_suspend_state (inf_state); |
b89667eb DE |
8916 | } |
8917 | ||
8918 | static void | |
16c381f0 | 8919 | do_restore_infcall_suspend_state_cleanup (void *state) |
b89667eb | 8920 | { |
9a3c8263 | 8921 | restore_infcall_suspend_state ((struct infcall_suspend_state *) state); |
b89667eb DE |
8922 | } |
8923 | ||
8924 | struct cleanup * | |
16c381f0 JK |
8925 | make_cleanup_restore_infcall_suspend_state |
8926 | (struct infcall_suspend_state *inf_state) | |
b89667eb | 8927 | { |
16c381f0 | 8928 | return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state); |
b89667eb DE |
8929 | } |
8930 | ||
8931 | void | |
16c381f0 | 8932 | discard_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb DE |
8933 | { |
8934 | regcache_xfree (inf_state->registers); | |
803b5f95 | 8935 | xfree (inf_state->siginfo_data); |
b89667eb DE |
8936 | xfree (inf_state); |
8937 | } | |
8938 | ||
8939 | struct regcache * | |
16c381f0 | 8940 | get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state) |
b89667eb DE |
8941 | { |
8942 | return inf_state->registers; | |
8943 | } | |
8944 | ||
16c381f0 JK |
8945 | /* infcall_control_state contains state regarding gdb's control of the |
8946 | inferior itself like stepping control. It also contains session state like | |
8947 | the user's currently selected frame. */ | |
b89667eb | 8948 | |
16c381f0 | 8949 | struct infcall_control_state |
b89667eb | 8950 | { |
16c381f0 JK |
8951 | struct thread_control_state thread_control; |
8952 | struct inferior_control_state inferior_control; | |
d82142e2 JK |
8953 | |
8954 | /* Other fields: */ | |
8955 | enum stop_stack_kind stop_stack_dummy; | |
8956 | int stopped_by_random_signal; | |
7a292a7a | 8957 | |
b89667eb | 8958 | /* ID if the selected frame when the inferior function call was made. */ |
101dcfbe | 8959 | struct frame_id selected_frame_id; |
7a292a7a SS |
8960 | }; |
8961 | ||
c906108c | 8962 | /* Save all of the information associated with the inferior<==>gdb |
b89667eb | 8963 | connection. */ |
c906108c | 8964 | |
16c381f0 JK |
8965 | struct infcall_control_state * |
8966 | save_infcall_control_state (void) | |
c906108c | 8967 | { |
8d749320 SM |
8968 | struct infcall_control_state *inf_status = |
8969 | XNEW (struct infcall_control_state); | |
4e1c45ea | 8970 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 8971 | struct inferior *inf = current_inferior (); |
7a292a7a | 8972 | |
16c381f0 JK |
8973 | inf_status->thread_control = tp->control; |
8974 | inf_status->inferior_control = inf->control; | |
d82142e2 | 8975 | |
8358c15c | 8976 | tp->control.step_resume_breakpoint = NULL; |
5b79abe7 | 8977 | tp->control.exception_resume_breakpoint = NULL; |
8358c15c | 8978 | |
16c381f0 JK |
8979 | /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of |
8980 | chain. If caller's caller is walking the chain, they'll be happier if we | |
8981 | hand them back the original chain when restore_infcall_control_state is | |
8982 | called. */ | |
8983 | tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat); | |
d82142e2 JK |
8984 | |
8985 | /* Other fields: */ | |
8986 | inf_status->stop_stack_dummy = stop_stack_dummy; | |
8987 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
c5aa993b | 8988 | |
206415a3 | 8989 | inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL)); |
b89667eb | 8990 | |
7a292a7a | 8991 | return inf_status; |
c906108c SS |
8992 | } |
8993 | ||
c906108c | 8994 | static int |
96baa820 | 8995 | restore_selected_frame (void *args) |
c906108c | 8996 | { |
488f131b | 8997 | struct frame_id *fid = (struct frame_id *) args; |
c906108c | 8998 | struct frame_info *frame; |
c906108c | 8999 | |
101dcfbe | 9000 | frame = frame_find_by_id (*fid); |
c906108c | 9001 | |
aa0cd9c1 AC |
9002 | /* If inf_status->selected_frame_id is NULL, there was no previously |
9003 | selected frame. */ | |
101dcfbe | 9004 | if (frame == NULL) |
c906108c | 9005 | { |
8a3fe4f8 | 9006 | warning (_("Unable to restore previously selected frame.")); |
c906108c SS |
9007 | return 0; |
9008 | } | |
9009 | ||
0f7d239c | 9010 | select_frame (frame); |
c906108c SS |
9011 | |
9012 | return (1); | |
9013 | } | |
9014 | ||
b89667eb DE |
9015 | /* Restore inferior session state to INF_STATUS. */ |
9016 | ||
c906108c | 9017 | void |
16c381f0 | 9018 | restore_infcall_control_state (struct infcall_control_state *inf_status) |
c906108c | 9019 | { |
4e1c45ea | 9020 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 9021 | struct inferior *inf = current_inferior (); |
4e1c45ea | 9022 | |
8358c15c JK |
9023 | if (tp->control.step_resume_breakpoint) |
9024 | tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop; | |
9025 | ||
5b79abe7 TT |
9026 | if (tp->control.exception_resume_breakpoint) |
9027 | tp->control.exception_resume_breakpoint->disposition | |
9028 | = disp_del_at_next_stop; | |
9029 | ||
d82142e2 | 9030 | /* Handle the bpstat_copy of the chain. */ |
16c381f0 | 9031 | bpstat_clear (&tp->control.stop_bpstat); |
d82142e2 | 9032 | |
16c381f0 JK |
9033 | tp->control = inf_status->thread_control; |
9034 | inf->control = inf_status->inferior_control; | |
d82142e2 JK |
9035 | |
9036 | /* Other fields: */ | |
9037 | stop_stack_dummy = inf_status->stop_stack_dummy; | |
9038 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
c906108c | 9039 | |
b89667eb | 9040 | if (target_has_stack) |
c906108c | 9041 | { |
c906108c | 9042 | /* The point of catch_errors is that if the stack is clobbered, |
101dcfbe AC |
9043 | walking the stack might encounter a garbage pointer and |
9044 | error() trying to dereference it. */ | |
488f131b JB |
9045 | if (catch_errors |
9046 | (restore_selected_frame, &inf_status->selected_frame_id, | |
9047 | "Unable to restore previously selected frame:\n", | |
9048 | RETURN_MASK_ERROR) == 0) | |
c906108c SS |
9049 | /* Error in restoring the selected frame. Select the innermost |
9050 | frame. */ | |
0f7d239c | 9051 | select_frame (get_current_frame ()); |
c906108c | 9052 | } |
c906108c | 9053 | |
72cec141 | 9054 | xfree (inf_status); |
7a292a7a | 9055 | } |
c906108c | 9056 | |
74b7792f | 9057 | static void |
16c381f0 | 9058 | do_restore_infcall_control_state_cleanup (void *sts) |
74b7792f | 9059 | { |
9a3c8263 | 9060 | restore_infcall_control_state ((struct infcall_control_state *) sts); |
74b7792f AC |
9061 | } |
9062 | ||
9063 | struct cleanup * | |
16c381f0 JK |
9064 | make_cleanup_restore_infcall_control_state |
9065 | (struct infcall_control_state *inf_status) | |
74b7792f | 9066 | { |
16c381f0 | 9067 | return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status); |
74b7792f AC |
9068 | } |
9069 | ||
c906108c | 9070 | void |
16c381f0 | 9071 | discard_infcall_control_state (struct infcall_control_state *inf_status) |
7a292a7a | 9072 | { |
8358c15c JK |
9073 | if (inf_status->thread_control.step_resume_breakpoint) |
9074 | inf_status->thread_control.step_resume_breakpoint->disposition | |
9075 | = disp_del_at_next_stop; | |
9076 | ||
5b79abe7 TT |
9077 | if (inf_status->thread_control.exception_resume_breakpoint) |
9078 | inf_status->thread_control.exception_resume_breakpoint->disposition | |
9079 | = disp_del_at_next_stop; | |
9080 | ||
1777feb0 | 9081 | /* See save_infcall_control_state for info on stop_bpstat. */ |
16c381f0 | 9082 | bpstat_clear (&inf_status->thread_control.stop_bpstat); |
8358c15c | 9083 | |
72cec141 | 9084 | xfree (inf_status); |
7a292a7a | 9085 | } |
b89667eb | 9086 | \f |
ca6724c1 KB |
9087 | /* restore_inferior_ptid() will be used by the cleanup machinery |
9088 | to restore the inferior_ptid value saved in a call to | |
9089 | save_inferior_ptid(). */ | |
ce696e05 KB |
9090 | |
9091 | static void | |
9092 | restore_inferior_ptid (void *arg) | |
9093 | { | |
9a3c8263 | 9094 | ptid_t *saved_ptid_ptr = (ptid_t *) arg; |
abbb1732 | 9095 | |
ce696e05 KB |
9096 | inferior_ptid = *saved_ptid_ptr; |
9097 | xfree (arg); | |
9098 | } | |
9099 | ||
9100 | /* Save the value of inferior_ptid so that it may be restored by a | |
9101 | later call to do_cleanups(). Returns the struct cleanup pointer | |
9102 | needed for later doing the cleanup. */ | |
9103 | ||
9104 | struct cleanup * | |
9105 | save_inferior_ptid (void) | |
9106 | { | |
8d749320 | 9107 | ptid_t *saved_ptid_ptr = XNEW (ptid_t); |
ce696e05 | 9108 | |
ce696e05 KB |
9109 | *saved_ptid_ptr = inferior_ptid; |
9110 | return make_cleanup (restore_inferior_ptid, saved_ptid_ptr); | |
9111 | } | |
0c557179 | 9112 | |
7f89fd65 | 9113 | /* See infrun.h. */ |
0c557179 SDJ |
9114 | |
9115 | void | |
9116 | clear_exit_convenience_vars (void) | |
9117 | { | |
9118 | clear_internalvar (lookup_internalvar ("_exitsignal")); | |
9119 | clear_internalvar (lookup_internalvar ("_exitcode")); | |
9120 | } | |
c5aa993b | 9121 | \f |
488f131b | 9122 | |
b2175913 MS |
9123 | /* User interface for reverse debugging: |
9124 | Set exec-direction / show exec-direction commands | |
9125 | (returns error unless target implements to_set_exec_direction method). */ | |
9126 | ||
170742de | 9127 | enum exec_direction_kind execution_direction = EXEC_FORWARD; |
b2175913 MS |
9128 | static const char exec_forward[] = "forward"; |
9129 | static const char exec_reverse[] = "reverse"; | |
9130 | static const char *exec_direction = exec_forward; | |
40478521 | 9131 | static const char *const exec_direction_names[] = { |
b2175913 MS |
9132 | exec_forward, |
9133 | exec_reverse, | |
9134 | NULL | |
9135 | }; | |
9136 | ||
9137 | static void | |
9138 | set_exec_direction_func (char *args, int from_tty, | |
9139 | struct cmd_list_element *cmd) | |
9140 | { | |
9141 | if (target_can_execute_reverse) | |
9142 | { | |
9143 | if (!strcmp (exec_direction, exec_forward)) | |
9144 | execution_direction = EXEC_FORWARD; | |
9145 | else if (!strcmp (exec_direction, exec_reverse)) | |
9146 | execution_direction = EXEC_REVERSE; | |
9147 | } | |
8bbed405 MS |
9148 | else |
9149 | { | |
9150 | exec_direction = exec_forward; | |
9151 | error (_("Target does not support this operation.")); | |
9152 | } | |
b2175913 MS |
9153 | } |
9154 | ||
9155 | static void | |
9156 | show_exec_direction_func (struct ui_file *out, int from_tty, | |
9157 | struct cmd_list_element *cmd, const char *value) | |
9158 | { | |
9159 | switch (execution_direction) { | |
9160 | case EXEC_FORWARD: | |
9161 | fprintf_filtered (out, _("Forward.\n")); | |
9162 | break; | |
9163 | case EXEC_REVERSE: | |
9164 | fprintf_filtered (out, _("Reverse.\n")); | |
9165 | break; | |
b2175913 | 9166 | default: |
d8b34453 PA |
9167 | internal_error (__FILE__, __LINE__, |
9168 | _("bogus execution_direction value: %d"), | |
9169 | (int) execution_direction); | |
b2175913 MS |
9170 | } |
9171 | } | |
9172 | ||
d4db2f36 PA |
9173 | static void |
9174 | show_schedule_multiple (struct ui_file *file, int from_tty, | |
9175 | struct cmd_list_element *c, const char *value) | |
9176 | { | |
3e43a32a MS |
9177 | fprintf_filtered (file, _("Resuming the execution of threads " |
9178 | "of all processes is %s.\n"), value); | |
d4db2f36 | 9179 | } |
ad52ddc6 | 9180 | |
22d2b532 SDJ |
9181 | /* Implementation of `siginfo' variable. */ |
9182 | ||
9183 | static const struct internalvar_funcs siginfo_funcs = | |
9184 | { | |
9185 | siginfo_make_value, | |
9186 | NULL, | |
9187 | NULL | |
9188 | }; | |
9189 | ||
372316f1 PA |
9190 | /* Callback for infrun's target events source. This is marked when a |
9191 | thread has a pending status to process. */ | |
9192 | ||
9193 | static void | |
9194 | infrun_async_inferior_event_handler (gdb_client_data data) | |
9195 | { | |
372316f1 PA |
9196 | inferior_event_handler (INF_REG_EVENT, NULL); |
9197 | } | |
9198 | ||
c906108c | 9199 | void |
96baa820 | 9200 | _initialize_infrun (void) |
c906108c | 9201 | { |
52f0bd74 AC |
9202 | int i; |
9203 | int numsigs; | |
de0bea00 | 9204 | struct cmd_list_element *c; |
c906108c | 9205 | |
372316f1 PA |
9206 | /* Register extra event sources in the event loop. */ |
9207 | infrun_async_inferior_event_token | |
9208 | = create_async_event_handler (infrun_async_inferior_event_handler, NULL); | |
9209 | ||
1bedd215 AC |
9210 | add_info ("signals", signals_info, _("\ |
9211 | What debugger does when program gets various signals.\n\ | |
9212 | Specify a signal as argument to print info on that signal only.")); | |
c906108c SS |
9213 | add_info_alias ("handle", "signals", 0); |
9214 | ||
de0bea00 | 9215 | c = add_com ("handle", class_run, handle_command, _("\ |
dfbd5e7b | 9216 | Specify how to handle signals.\n\ |
486c7739 | 9217 | Usage: handle SIGNAL [ACTIONS]\n\ |
c906108c | 9218 | Args are signals and actions to apply to those signals.\n\ |
dfbd5e7b | 9219 | If no actions are specified, the current settings for the specified signals\n\ |
486c7739 MF |
9220 | will be displayed instead.\n\ |
9221 | \n\ | |
c906108c SS |
9222 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ |
9223 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
9224 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
9225 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 | 9226 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
486c7739 | 9227 | \n\ |
1bedd215 | 9228 | Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ |
c906108c SS |
9229 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
9230 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
9231 | Print means print a message if this signal happens.\n\ | |
9232 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
9233 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
dfbd5e7b PA |
9234 | Pass and Stop may be combined.\n\ |
9235 | \n\ | |
9236 | Multiple signals may be specified. Signal numbers and signal names\n\ | |
9237 | may be interspersed with actions, with the actions being performed for\n\ | |
9238 | all signals cumulatively specified.")); | |
de0bea00 | 9239 | set_cmd_completer (c, handle_completer); |
486c7739 | 9240 | |
c906108c | 9241 | if (!dbx_commands) |
1a966eab AC |
9242 | stop_command = add_cmd ("stop", class_obscure, |
9243 | not_just_help_class_command, _("\ | |
9244 | There is no `stop' command, but you can set a hook on `stop'.\n\ | |
c906108c | 9245 | This allows you to set a list of commands to be run each time execution\n\ |
1a966eab | 9246 | of the program stops."), &cmdlist); |
c906108c | 9247 | |
ccce17b0 | 9248 | add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ |
85c07804 AC |
9249 | Set inferior debugging."), _("\ |
9250 | Show inferior debugging."), _("\ | |
9251 | When non-zero, inferior specific debugging is enabled."), | |
ccce17b0 YQ |
9252 | NULL, |
9253 | show_debug_infrun, | |
9254 | &setdebuglist, &showdebuglist); | |
527159b7 | 9255 | |
3e43a32a MS |
9256 | add_setshow_boolean_cmd ("displaced", class_maintenance, |
9257 | &debug_displaced, _("\ | |
237fc4c9 PA |
9258 | Set displaced stepping debugging."), _("\ |
9259 | Show displaced stepping debugging."), _("\ | |
9260 | When non-zero, displaced stepping specific debugging is enabled."), | |
9261 | NULL, | |
9262 | show_debug_displaced, | |
9263 | &setdebuglist, &showdebuglist); | |
9264 | ||
ad52ddc6 PA |
9265 | add_setshow_boolean_cmd ("non-stop", no_class, |
9266 | &non_stop_1, _("\ | |
9267 | Set whether gdb controls the inferior in non-stop mode."), _("\ | |
9268 | Show whether gdb controls the inferior in non-stop mode."), _("\ | |
9269 | When debugging a multi-threaded program and this setting is\n\ | |
9270 | off (the default, also called all-stop mode), when one thread stops\n\ | |
9271 | (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\ | |
9272 | all other threads in the program while you interact with the thread of\n\ | |
9273 | interest. When you continue or step a thread, you can allow the other\n\ | |
9274 | threads to run, or have them remain stopped, but while you inspect any\n\ | |
9275 | thread's state, all threads stop.\n\ | |
9276 | \n\ | |
9277 | In non-stop mode, when one thread stops, other threads can continue\n\ | |
9278 | to run freely. You'll be able to step each thread independently,\n\ | |
9279 | leave it stopped or free to run as needed."), | |
9280 | set_non_stop, | |
9281 | show_non_stop, | |
9282 | &setlist, | |
9283 | &showlist); | |
9284 | ||
a493e3e2 | 9285 | numsigs = (int) GDB_SIGNAL_LAST; |
8d749320 SM |
9286 | signal_stop = XNEWVEC (unsigned char, numsigs); |
9287 | signal_print = XNEWVEC (unsigned char, numsigs); | |
9288 | signal_program = XNEWVEC (unsigned char, numsigs); | |
9289 | signal_catch = XNEWVEC (unsigned char, numsigs); | |
9290 | signal_pass = XNEWVEC (unsigned char, numsigs); | |
c906108c SS |
9291 | for (i = 0; i < numsigs; i++) |
9292 | { | |
9293 | signal_stop[i] = 1; | |
9294 | signal_print[i] = 1; | |
9295 | signal_program[i] = 1; | |
ab04a2af | 9296 | signal_catch[i] = 0; |
c906108c SS |
9297 | } |
9298 | ||
4d9d9d04 PA |
9299 | /* Signals caused by debugger's own actions should not be given to |
9300 | the program afterwards. | |
9301 | ||
9302 | Do not deliver GDB_SIGNAL_TRAP by default, except when the user | |
9303 | explicitly specifies that it should be delivered to the target | |
9304 | program. Typically, that would occur when a user is debugging a | |
9305 | target monitor on a simulator: the target monitor sets a | |
9306 | breakpoint; the simulator encounters this breakpoint and halts | |
9307 | the simulation handing control to GDB; GDB, noting that the stop | |
9308 | address doesn't map to any known breakpoint, returns control back | |
9309 | to the simulator; the simulator then delivers the hardware | |
9310 | equivalent of a GDB_SIGNAL_TRAP to the program being | |
9311 | debugged. */ | |
a493e3e2 PA |
9312 | signal_program[GDB_SIGNAL_TRAP] = 0; |
9313 | signal_program[GDB_SIGNAL_INT] = 0; | |
c906108c SS |
9314 | |
9315 | /* Signals that are not errors should not normally enter the debugger. */ | |
a493e3e2 PA |
9316 | signal_stop[GDB_SIGNAL_ALRM] = 0; |
9317 | signal_print[GDB_SIGNAL_ALRM] = 0; | |
9318 | signal_stop[GDB_SIGNAL_VTALRM] = 0; | |
9319 | signal_print[GDB_SIGNAL_VTALRM] = 0; | |
9320 | signal_stop[GDB_SIGNAL_PROF] = 0; | |
9321 | signal_print[GDB_SIGNAL_PROF] = 0; | |
9322 | signal_stop[GDB_SIGNAL_CHLD] = 0; | |
9323 | signal_print[GDB_SIGNAL_CHLD] = 0; | |
9324 | signal_stop[GDB_SIGNAL_IO] = 0; | |
9325 | signal_print[GDB_SIGNAL_IO] = 0; | |
9326 | signal_stop[GDB_SIGNAL_POLL] = 0; | |
9327 | signal_print[GDB_SIGNAL_POLL] = 0; | |
9328 | signal_stop[GDB_SIGNAL_URG] = 0; | |
9329 | signal_print[GDB_SIGNAL_URG] = 0; | |
9330 | signal_stop[GDB_SIGNAL_WINCH] = 0; | |
9331 | signal_print[GDB_SIGNAL_WINCH] = 0; | |
9332 | signal_stop[GDB_SIGNAL_PRIO] = 0; | |
9333 | signal_print[GDB_SIGNAL_PRIO] = 0; | |
c906108c | 9334 | |
cd0fc7c3 SS |
9335 | /* These signals are used internally by user-level thread |
9336 | implementations. (See signal(5) on Solaris.) Like the above | |
9337 | signals, a healthy program receives and handles them as part of | |
9338 | its normal operation. */ | |
a493e3e2 PA |
9339 | signal_stop[GDB_SIGNAL_LWP] = 0; |
9340 | signal_print[GDB_SIGNAL_LWP] = 0; | |
9341 | signal_stop[GDB_SIGNAL_WAITING] = 0; | |
9342 | signal_print[GDB_SIGNAL_WAITING] = 0; | |
9343 | signal_stop[GDB_SIGNAL_CANCEL] = 0; | |
9344 | signal_print[GDB_SIGNAL_CANCEL] = 0; | |
cd0fc7c3 | 9345 | |
2455069d UW |
9346 | /* Update cached state. */ |
9347 | signal_cache_update (-1); | |
9348 | ||
85c07804 AC |
9349 | add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, |
9350 | &stop_on_solib_events, _("\ | |
9351 | Set stopping for shared library events."), _("\ | |
9352 | Show stopping for shared library events."), _("\ | |
c906108c SS |
9353 | If nonzero, gdb will give control to the user when the dynamic linker\n\ |
9354 | notifies gdb of shared library events. The most common event of interest\n\ | |
85c07804 | 9355 | to the user would be loading/unloading of a new library."), |
f9e14852 | 9356 | set_stop_on_solib_events, |
920d2a44 | 9357 | show_stop_on_solib_events, |
85c07804 | 9358 | &setlist, &showlist); |
c906108c | 9359 | |
7ab04401 AC |
9360 | add_setshow_enum_cmd ("follow-fork-mode", class_run, |
9361 | follow_fork_mode_kind_names, | |
9362 | &follow_fork_mode_string, _("\ | |
9363 | Set debugger response to a program call of fork or vfork."), _("\ | |
9364 | Show debugger response to a program call of fork or vfork."), _("\ | |
c906108c SS |
9365 | A fork or vfork creates a new process. follow-fork-mode can be:\n\ |
9366 | parent - the original process is debugged after a fork\n\ | |
9367 | child - the new process is debugged after a fork\n\ | |
ea1dd7bc | 9368 | The unfollowed process will continue to run.\n\ |
7ab04401 AC |
9369 | By default, the debugger will follow the parent process."), |
9370 | NULL, | |
920d2a44 | 9371 | show_follow_fork_mode_string, |
7ab04401 AC |
9372 | &setlist, &showlist); |
9373 | ||
6c95b8df PA |
9374 | add_setshow_enum_cmd ("follow-exec-mode", class_run, |
9375 | follow_exec_mode_names, | |
9376 | &follow_exec_mode_string, _("\ | |
9377 | Set debugger response to a program call of exec."), _("\ | |
9378 | Show debugger response to a program call of exec."), _("\ | |
9379 | An exec call replaces the program image of a process.\n\ | |
9380 | \n\ | |
9381 | follow-exec-mode can be:\n\ | |
9382 | \n\ | |
cce7e648 | 9383 | new - the debugger creates a new inferior and rebinds the process\n\ |
6c95b8df PA |
9384 | to this new inferior. The program the process was running before\n\ |
9385 | the exec call can be restarted afterwards by restarting the original\n\ | |
9386 | inferior.\n\ | |
9387 | \n\ | |
9388 | same - the debugger keeps the process bound to the same inferior.\n\ | |
9389 | The new executable image replaces the previous executable loaded in\n\ | |
9390 | the inferior. Restarting the inferior after the exec call restarts\n\ | |
9391 | the executable the process was running after the exec call.\n\ | |
9392 | \n\ | |
9393 | By default, the debugger will use the same inferior."), | |
9394 | NULL, | |
9395 | show_follow_exec_mode_string, | |
9396 | &setlist, &showlist); | |
9397 | ||
7ab04401 AC |
9398 | add_setshow_enum_cmd ("scheduler-locking", class_run, |
9399 | scheduler_enums, &scheduler_mode, _("\ | |
9400 | Set mode for locking scheduler during execution."), _("\ | |
9401 | Show mode for locking scheduler during execution."), _("\ | |
f2665db5 MM |
9402 | off == no locking (threads may preempt at any time)\n\ |
9403 | on == full locking (no thread except the current thread may run)\n\ | |
9404 | This applies to both normal execution and replay mode.\n\ | |
9405 | step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\ | |
9406 | In this mode, other threads may run during other commands.\n\ | |
9407 | This applies to both normal execution and replay mode.\n\ | |
9408 | replay == scheduler locked in replay mode and unlocked during normal execution."), | |
7ab04401 | 9409 | set_schedlock_func, /* traps on target vector */ |
920d2a44 | 9410 | show_scheduler_mode, |
7ab04401 | 9411 | &setlist, &showlist); |
5fbbeb29 | 9412 | |
d4db2f36 PA |
9413 | add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\ |
9414 | Set mode for resuming threads of all processes."), _("\ | |
9415 | Show mode for resuming threads of all processes."), _("\ | |
9416 | When on, execution commands (such as 'continue' or 'next') resume all\n\ | |
9417 | threads of all processes. When off (which is the default), execution\n\ | |
9418 | commands only resume the threads of the current process. The set of\n\ | |
9419 | threads that are resumed is further refined by the scheduler-locking\n\ | |
9420 | mode (see help set scheduler-locking)."), | |
9421 | NULL, | |
9422 | show_schedule_multiple, | |
9423 | &setlist, &showlist); | |
9424 | ||
5bf193a2 AC |
9425 | add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ |
9426 | Set mode of the step operation."), _("\ | |
9427 | Show mode of the step operation."), _("\ | |
9428 | When set, doing a step over a function without debug line information\n\ | |
9429 | will stop at the first instruction of that function. Otherwise, the\n\ | |
9430 | function is skipped and the step command stops at a different source line."), | |
9431 | NULL, | |
920d2a44 | 9432 | show_step_stop_if_no_debug, |
5bf193a2 | 9433 | &setlist, &showlist); |
ca6724c1 | 9434 | |
72d0e2c5 YQ |
9435 | add_setshow_auto_boolean_cmd ("displaced-stepping", class_run, |
9436 | &can_use_displaced_stepping, _("\ | |
237fc4c9 PA |
9437 | Set debugger's willingness to use displaced stepping."), _("\ |
9438 | Show debugger's willingness to use displaced stepping."), _("\ | |
fff08868 HZ |
9439 | If on, gdb will use displaced stepping to step over breakpoints if it is\n\ |
9440 | supported by the target architecture. If off, gdb will not use displaced\n\ | |
9441 | stepping to step over breakpoints, even if such is supported by the target\n\ | |
9442 | architecture. If auto (which is the default), gdb will use displaced stepping\n\ | |
9443 | if the target architecture supports it and non-stop mode is active, but will not\n\ | |
9444 | use it in all-stop mode (see help set non-stop)."), | |
72d0e2c5 YQ |
9445 | NULL, |
9446 | show_can_use_displaced_stepping, | |
9447 | &setlist, &showlist); | |
237fc4c9 | 9448 | |
b2175913 MS |
9449 | add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names, |
9450 | &exec_direction, _("Set direction of execution.\n\ | |
9451 | Options are 'forward' or 'reverse'."), | |
9452 | _("Show direction of execution (forward/reverse)."), | |
9453 | _("Tells gdb whether to execute forward or backward."), | |
9454 | set_exec_direction_func, show_exec_direction_func, | |
9455 | &setlist, &showlist); | |
9456 | ||
6c95b8df PA |
9457 | /* Set/show detach-on-fork: user-settable mode. */ |
9458 | ||
9459 | add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\ | |
9460 | Set whether gdb will detach the child of a fork."), _("\ | |
9461 | Show whether gdb will detach the child of a fork."), _("\ | |
9462 | Tells gdb whether to detach the child of a fork."), | |
9463 | NULL, NULL, &setlist, &showlist); | |
9464 | ||
03583c20 UW |
9465 | /* Set/show disable address space randomization mode. */ |
9466 | ||
9467 | add_setshow_boolean_cmd ("disable-randomization", class_support, | |
9468 | &disable_randomization, _("\ | |
9469 | Set disabling of debuggee's virtual address space randomization."), _("\ | |
9470 | Show disabling of debuggee's virtual address space randomization."), _("\ | |
9471 | When this mode is on (which is the default), randomization of the virtual\n\ | |
9472 | address space is disabled. Standalone programs run with the randomization\n\ | |
9473 | enabled by default on some platforms."), | |
9474 | &set_disable_randomization, | |
9475 | &show_disable_randomization, | |
9476 | &setlist, &showlist); | |
9477 | ||
ca6724c1 | 9478 | /* ptid initializations */ |
ca6724c1 KB |
9479 | inferior_ptid = null_ptid; |
9480 | target_last_wait_ptid = minus_one_ptid; | |
5231c1fd PA |
9481 | |
9482 | observer_attach_thread_ptid_changed (infrun_thread_ptid_changed); | |
252fbfc8 | 9483 | observer_attach_thread_stop_requested (infrun_thread_stop_requested); |
a07daef3 | 9484 | observer_attach_thread_exit (infrun_thread_thread_exit); |
fc1cf338 | 9485 | observer_attach_inferior_exit (infrun_inferior_exit); |
4aa995e1 PA |
9486 | |
9487 | /* Explicitly create without lookup, since that tries to create a | |
9488 | value with a void typed value, and when we get here, gdbarch | |
9489 | isn't initialized yet. At this point, we're quite sure there | |
9490 | isn't another convenience variable of the same name. */ | |
22d2b532 | 9491 | create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL); |
d914c394 SS |
9492 | |
9493 | add_setshow_boolean_cmd ("observer", no_class, | |
9494 | &observer_mode_1, _("\ | |
9495 | Set whether gdb controls the inferior in observer mode."), _("\ | |
9496 | Show whether gdb controls the inferior in observer mode."), _("\ | |
9497 | In observer mode, GDB can get data from the inferior, but not\n\ | |
9498 | affect its execution. Registers and memory may not be changed,\n\ | |
9499 | breakpoints may not be set, and the program cannot be interrupted\n\ | |
9500 | or signalled."), | |
9501 | set_observer_mode, | |
9502 | show_observer_mode, | |
9503 | &setlist, | |
9504 | &showlist); | |
c906108c | 9505 | } |