]>
Commit | Line | Data |
---|---|---|
669caa9c | 1 | /* Target-dependent code for the HP PA architecture, for GDB. |
18b46e7c | 2 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995 |
669caa9c | 3 | Free Software Foundation, Inc. |
66a1aa07 SG |
4 | |
5 | Contributed by the Center for Software Science at the | |
6 | University of Utah ([email protected]). | |
7 | ||
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
23 | ||
24 | #include "defs.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "value.h" | |
28 | ||
29 | /* For argument passing to the inferior */ | |
30 | #include "symtab.h" | |
31 | ||
32 | #ifdef USG | |
33 | #include <sys/types.h> | |
34 | #endif | |
35 | ||
36 | #include <sys/param.h> | |
66a1aa07 | 37 | #include <signal.h> |
66a1aa07 SG |
38 | |
39 | #ifdef COFF_ENCAPSULATE | |
40 | #include "a.out.encap.h" | |
41 | #else | |
66a1aa07 SG |
42 | #endif |
43 | #ifndef N_SET_MAGIC | |
44 | #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val)) | |
45 | #endif | |
46 | ||
47 | /*#include <sys/user.h> After a.out.h */ | |
48 | #include <sys/file.h> | |
49 | #include <sys/stat.h> | |
66a1aa07 SG |
50 | #include "wait.h" |
51 | ||
52 | #include "gdbcore.h" | |
53 | #include "gdbcmd.h" | |
54 | #include "target.h" | |
55 | #include "symfile.h" | |
56 | #include "objfiles.h" | |
57 | ||
15edf525 RS |
58 | #define SWAP_TARGET_AND_HOST(buffer,len) \ |
59 | do \ | |
60 | { \ | |
61 | if (TARGET_BYTE_ORDER != HOST_BYTE_ORDER) \ | |
62 | { \ | |
63 | char tmp; \ | |
64 | char *p = (char *)(buffer); \ | |
65 | char *q = ((char *)(buffer)) + len - 1; \ | |
66 | for (; p < q; p++, q--) \ | |
67 | { \ | |
68 | tmp = *q; \ | |
69 | *q = *p; \ | |
70 | *p = tmp; \ | |
71 | } \ | |
72 | } \ | |
73 | } \ | |
74 | while (0) | |
75 | ||
669caa9c SS |
76 | static int restore_pc_queue PARAMS ((struct frame_saved_regs *)); |
77 | ||
78 | static int hppa_alignof PARAMS ((struct type *)); | |
79 | ||
80 | CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *)); | |
81 | ||
c598654a | 82 | static int prologue_inst_adjust_sp PARAMS ((unsigned long)); |
669caa9c | 83 | |
c598654a | 84 | static int is_branch PARAMS ((unsigned long)); |
669caa9c | 85 | |
c598654a | 86 | static int inst_saves_gr PARAMS ((unsigned long)); |
669caa9c | 87 | |
c598654a | 88 | static int inst_saves_fr PARAMS ((unsigned long)); |
669caa9c | 89 | |
70e43abe | 90 | static int pc_in_interrupt_handler PARAMS ((CORE_ADDR)); |
669caa9c | 91 | |
70e43abe | 92 | static int pc_in_linker_stub PARAMS ((CORE_ADDR)); |
669caa9c SS |
93 | |
94 | static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *, | |
f81eee9d | 95 | const struct unwind_table_entry *)); |
669caa9c | 96 | |
c5152d42 | 97 | static void read_unwind_info PARAMS ((struct objfile *)); |
669caa9c | 98 | |
c5152d42 JL |
99 | static void internalize_unwinds PARAMS ((struct objfile *, |
100 | struct unwind_table_entry *, | |
101 | asection *, unsigned int, | |
bfaef242 | 102 | unsigned int, CORE_ADDR)); |
e43169eb JL |
103 | static void pa_print_registers PARAMS ((char *, int, int)); |
104 | static void pa_print_fp_reg PARAMS ((int)); | |
66a1aa07 SG |
105 | |
106 | \f | |
107 | /* Routines to extract various sized constants out of hppa | |
108 | instructions. */ | |
109 | ||
110 | /* This assumes that no garbage lies outside of the lower bits of | |
111 | value. */ | |
112 | ||
113 | int | |
114 | sign_extend (val, bits) | |
115 | unsigned val, bits; | |
116 | { | |
117 | return (int)(val >> bits - 1 ? (-1 << bits) | val : val); | |
118 | } | |
119 | ||
120 | /* For many immediate values the sign bit is the low bit! */ | |
121 | ||
122 | int | |
123 | low_sign_extend (val, bits) | |
124 | unsigned val, bits; | |
125 | { | |
126 | return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); | |
127 | } | |
128 | /* extract the immediate field from a ld{bhw}s instruction */ | |
129 | ||
130 | unsigned | |
131 | get_field (val, from, to) | |
132 | unsigned val, from, to; | |
133 | { | |
134 | val = val >> 31 - to; | |
135 | return val & ((1 << 32 - from) - 1); | |
136 | } | |
137 | ||
138 | unsigned | |
139 | set_field (val, from, to, new_val) | |
140 | unsigned *val, from, to; | |
141 | { | |
142 | unsigned mask = ~((1 << (to - from + 1)) << (31 - from)); | |
143 | return *val = *val & mask | (new_val << (31 - from)); | |
144 | } | |
145 | ||
146 | /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */ | |
147 | ||
148 | extract_3 (word) | |
149 | unsigned word; | |
150 | { | |
151 | return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17); | |
152 | } | |
153 | ||
154 | extract_5_load (word) | |
155 | unsigned word; | |
156 | { | |
157 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
158 | } | |
159 | ||
160 | /* extract the immediate field from a st{bhw}s instruction */ | |
161 | ||
162 | int | |
163 | extract_5_store (word) | |
164 | unsigned word; | |
165 | { | |
166 | return low_sign_extend (word & MASK_5, 5); | |
167 | } | |
168 | ||
68c8d698 SG |
169 | /* extract the immediate field from a break instruction */ |
170 | ||
171 | unsigned | |
172 | extract_5r_store (word) | |
173 | unsigned word; | |
174 | { | |
175 | return (word & MASK_5); | |
176 | } | |
177 | ||
178 | /* extract the immediate field from a {sr}sm instruction */ | |
179 | ||
180 | unsigned | |
181 | extract_5R_store (word) | |
182 | unsigned word; | |
183 | { | |
184 | return (word >> 16 & MASK_5); | |
185 | } | |
186 | ||
66a1aa07 SG |
187 | /* extract an 11 bit immediate field */ |
188 | ||
189 | int | |
190 | extract_11 (word) | |
191 | unsigned word; | |
192 | { | |
193 | return low_sign_extend (word & MASK_11, 11); | |
194 | } | |
195 | ||
196 | /* extract a 14 bit immediate field */ | |
197 | ||
198 | int | |
199 | extract_14 (word) | |
200 | unsigned word; | |
201 | { | |
202 | return low_sign_extend (word & MASK_14, 14); | |
203 | } | |
204 | ||
205 | /* deposit a 14 bit constant in a word */ | |
206 | ||
207 | unsigned | |
208 | deposit_14 (opnd, word) | |
209 | int opnd; | |
210 | unsigned word; | |
211 | { | |
212 | unsigned sign = (opnd < 0 ? 1 : 0); | |
213 | ||
214 | return word | ((unsigned)opnd << 1 & MASK_14) | sign; | |
215 | } | |
216 | ||
217 | /* extract a 21 bit constant */ | |
218 | ||
219 | int | |
220 | extract_21 (word) | |
221 | unsigned word; | |
222 | { | |
223 | int val; | |
224 | ||
225 | word &= MASK_21; | |
226 | word <<= 11; | |
227 | val = GET_FIELD (word, 20, 20); | |
228 | val <<= 11; | |
229 | val |= GET_FIELD (word, 9, 19); | |
230 | val <<= 2; | |
231 | val |= GET_FIELD (word, 5, 6); | |
232 | val <<= 5; | |
233 | val |= GET_FIELD (word, 0, 4); | |
234 | val <<= 2; | |
235 | val |= GET_FIELD (word, 7, 8); | |
236 | return sign_extend (val, 21) << 11; | |
237 | } | |
238 | ||
239 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
240 | usually the top 21 bits of a 32 bit constant, we assume that only | |
241 | the low 21 bits of opnd are relevant */ | |
242 | ||
243 | unsigned | |
244 | deposit_21 (opnd, word) | |
245 | unsigned opnd, word; | |
246 | { | |
247 | unsigned val = 0; | |
248 | ||
249 | val |= GET_FIELD (opnd, 11 + 14, 11 + 18); | |
250 | val <<= 2; | |
251 | val |= GET_FIELD (opnd, 11 + 12, 11 + 13); | |
252 | val <<= 2; | |
253 | val |= GET_FIELD (opnd, 11 + 19, 11 + 20); | |
254 | val <<= 11; | |
255 | val |= GET_FIELD (opnd, 11 + 1, 11 + 11); | |
256 | val <<= 1; | |
257 | val |= GET_FIELD (opnd, 11 + 0, 11 + 0); | |
258 | return word | val; | |
259 | } | |
260 | ||
261 | /* extract a 12 bit constant from branch instructions */ | |
262 | ||
263 | int | |
264 | extract_12 (word) | |
265 | unsigned word; | |
266 | { | |
267 | return sign_extend (GET_FIELD (word, 19, 28) | | |
268 | GET_FIELD (word, 29, 29) << 10 | | |
269 | (word & 0x1) << 11, 12) << 2; | |
270 | } | |
271 | ||
272 | /* extract a 17 bit constant from branch instructions, returning the | |
273 | 19 bit signed value. */ | |
274 | ||
275 | int | |
276 | extract_17 (word) | |
277 | unsigned word; | |
278 | { | |
279 | return sign_extend (GET_FIELD (word, 19, 28) | | |
280 | GET_FIELD (word, 29, 29) << 10 | | |
281 | GET_FIELD (word, 11, 15) << 11 | | |
282 | (word & 0x1) << 16, 17) << 2; | |
283 | } | |
284 | \f | |
c5152d42 JL |
285 | |
286 | /* Compare the start address for two unwind entries returning 1 if | |
287 | the first address is larger than the second, -1 if the second is | |
288 | larger than the first, and zero if they are equal. */ | |
289 | ||
290 | static int | |
291 | compare_unwind_entries (a, b) | |
f81eee9d JL |
292 | const struct unwind_table_entry *a; |
293 | const struct unwind_table_entry *b; | |
c5152d42 JL |
294 | { |
295 | if (a->region_start > b->region_start) | |
296 | return 1; | |
297 | else if (a->region_start < b->region_start) | |
298 | return -1; | |
299 | else | |
300 | return 0; | |
301 | } | |
302 | ||
303 | static void | |
bfaef242 | 304 | internalize_unwinds (objfile, table, section, entries, size, text_offset) |
c5152d42 JL |
305 | struct objfile *objfile; |
306 | struct unwind_table_entry *table; | |
307 | asection *section; | |
308 | unsigned int entries, size; | |
bfaef242 | 309 | CORE_ADDR text_offset; |
c5152d42 JL |
310 | { |
311 | /* We will read the unwind entries into temporary memory, then | |
312 | fill in the actual unwind table. */ | |
313 | if (size > 0) | |
314 | { | |
315 | unsigned long tmp; | |
316 | unsigned i; | |
317 | char *buf = alloca (size); | |
318 | ||
319 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); | |
320 | ||
321 | /* Now internalize the information being careful to handle host/target | |
322 | endian issues. */ | |
323 | for (i = 0; i < entries; i++) | |
324 | { | |
325 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
326 | (bfd_byte *)buf); | |
bfaef242 | 327 | table[i].region_start += text_offset; |
c5152d42 JL |
328 | buf += 4; |
329 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
bfaef242 | 330 | table[i].region_end += text_offset; |
c5152d42 JL |
331 | buf += 4; |
332 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
333 | buf += 4; | |
e43169eb | 334 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; |
c5152d42 JL |
335 | table[i].Millicode = (tmp >> 30) & 0x1; |
336 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
337 | table[i].Region_description = (tmp >> 27) & 0x3; | |
338 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
339 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
340 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
341 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
342 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
343 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
344 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
345 | table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1; | |
346 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
347 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
348 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
349 | table[i].reserved2 = (tmp >> 5) & 0xf; | |
350 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
351 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
352 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
353 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
354 | table[i].Cleanup_defined = tmp & 0x1; | |
355 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
356 | buf += 4; | |
357 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
358 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
359 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
360 | table[i].reserved4 = (tmp >> 27) & 0x3; | |
361 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
362 | } | |
363 | } | |
364 | } | |
365 | ||
366 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
367 | the object file. This info is used mainly by find_unwind_entry() to find | |
368 | out the stack frame size and frame pointer used by procedures. We put | |
369 | everything on the psymbol obstack in the objfile so that it automatically | |
370 | gets freed when the objfile is destroyed. */ | |
371 | ||
9c842e0c | 372 | static void |
c5152d42 JL |
373 | read_unwind_info (objfile) |
374 | struct objfile *objfile; | |
375 | { | |
376 | asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec; | |
377 | unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size; | |
378 | unsigned index, unwind_entries, elf_unwind_entries; | |
379 | unsigned stub_entries, total_entries; | |
bfaef242 | 380 | CORE_ADDR text_offset; |
c5152d42 JL |
381 | struct obj_unwind_info *ui; |
382 | ||
bfaef242 | 383 | text_offset = ANOFFSET (objfile->section_offsets, 0); |
c5152d42 JL |
384 | ui = obstack_alloc (&objfile->psymbol_obstack, |
385 | sizeof (struct obj_unwind_info)); | |
386 | ||
387 | ui->table = NULL; | |
388 | ui->cache = NULL; | |
389 | ui->last = -1; | |
390 | ||
391 | /* Get hooks to all unwind sections. Note there is no linker-stub unwind | |
392 | section in ELF at the moment. */ | |
393 | unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$"); | |
0fc27289 | 394 | elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind"); |
c5152d42 JL |
395 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); |
396 | ||
397 | /* Get sizes and unwind counts for all sections. */ | |
398 | if (unwind_sec) | |
399 | { | |
400 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
401 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
402 | } | |
403 | else | |
404 | { | |
405 | unwind_size = 0; | |
406 | unwind_entries = 0; | |
407 | } | |
408 | ||
409 | if (elf_unwind_sec) | |
410 | { | |
411 | elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec); | |
412 | elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE; | |
413 | } | |
f55179cb JL |
414 | else |
415 | { | |
416 | elf_unwind_size = 0; | |
417 | elf_unwind_entries = 0; | |
418 | } | |
c5152d42 JL |
419 | |
420 | if (stub_unwind_sec) | |
421 | { | |
422 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
423 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
424 | } | |
425 | else | |
426 | { | |
427 | stub_unwind_size = 0; | |
428 | stub_entries = 0; | |
429 | } | |
430 | ||
431 | /* Compute total number of unwind entries and their total size. */ | |
432 | total_entries = unwind_entries + elf_unwind_entries + stub_entries; | |
433 | total_size = total_entries * sizeof (struct unwind_table_entry); | |
434 | ||
435 | /* Allocate memory for the unwind table. */ | |
436 | ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size); | |
437 | ui->last = total_entries - 1; | |
438 | ||
439 | /* Internalize the standard unwind entries. */ | |
440 | index = 0; | |
441 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
bfaef242 | 442 | unwind_entries, unwind_size, text_offset); |
c5152d42 JL |
443 | index += unwind_entries; |
444 | internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec, | |
bfaef242 | 445 | elf_unwind_entries, elf_unwind_size, text_offset); |
c5152d42 JL |
446 | index += elf_unwind_entries; |
447 | ||
448 | /* Now internalize the stub unwind entries. */ | |
449 | if (stub_unwind_size > 0) | |
450 | { | |
451 | unsigned int i; | |
452 | char *buf = alloca (stub_unwind_size); | |
453 | ||
454 | /* Read in the stub unwind entries. */ | |
455 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
456 | 0, stub_unwind_size); | |
457 | ||
458 | /* Now convert them into regular unwind entries. */ | |
459 | for (i = 0; i < stub_entries; i++, index++) | |
460 | { | |
461 | /* Clear out the next unwind entry. */ | |
462 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
463 | ||
464 | /* Convert offset & size into region_start and region_end. | |
465 | Stuff away the stub type into "reserved" fields. */ | |
466 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
467 | (bfd_byte *) buf); | |
73a25072 | 468 | ui->table[index].region_start += text_offset; |
c5152d42 JL |
469 | buf += 4; |
470 | ui->table[index].stub_type = bfd_get_8 (objfile->obfd, | |
471 | (bfd_byte *) buf); | |
472 | buf += 2; | |
473 | ui->table[index].region_end | |
474 | = ui->table[index].region_start + 4 * | |
475 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
476 | buf += 2; | |
477 | } | |
478 | ||
479 | } | |
480 | ||
481 | /* Unwind table needs to be kept sorted. */ | |
482 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
483 | compare_unwind_entries); | |
484 | ||
485 | /* Keep a pointer to the unwind information. */ | |
486 | objfile->obj_private = (PTR) ui; | |
487 | } | |
488 | ||
66a1aa07 SG |
489 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all |
490 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
491 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
492 | search of the unwind tables, we depend upon them to be sorted. */ | |
493 | ||
494 | static struct unwind_table_entry * | |
495 | find_unwind_entry(pc) | |
496 | CORE_ADDR pc; | |
497 | { | |
498 | int first, middle, last; | |
499 | struct objfile *objfile; | |
500 | ||
501 | ALL_OBJFILES (objfile) | |
502 | { | |
503 | struct obj_unwind_info *ui; | |
504 | ||
505 | ui = OBJ_UNWIND_INFO (objfile); | |
506 | ||
507 | if (!ui) | |
c5152d42 JL |
508 | { |
509 | read_unwind_info (objfile); | |
510 | ui = OBJ_UNWIND_INFO (objfile); | |
511 | } | |
66a1aa07 SG |
512 | |
513 | /* First, check the cache */ | |
514 | ||
515 | if (ui->cache | |
516 | && pc >= ui->cache->region_start | |
517 | && pc <= ui->cache->region_end) | |
518 | return ui->cache; | |
519 | ||
520 | /* Not in the cache, do a binary search */ | |
521 | ||
522 | first = 0; | |
523 | last = ui->last; | |
524 | ||
525 | while (first <= last) | |
526 | { | |
527 | middle = (first + last) / 2; | |
528 | if (pc >= ui->table[middle].region_start | |
529 | && pc <= ui->table[middle].region_end) | |
530 | { | |
531 | ui->cache = &ui->table[middle]; | |
532 | return &ui->table[middle]; | |
533 | } | |
534 | ||
535 | if (pc < ui->table[middle].region_start) | |
536 | last = middle - 1; | |
537 | else | |
538 | first = middle + 1; | |
539 | } | |
540 | } /* ALL_OBJFILES() */ | |
541 | return NULL; | |
542 | } | |
543 | ||
98c0e047 JL |
544 | /* Return the adjustment necessary to make for addresses on the stack |
545 | as presented by hpread.c. | |
546 | ||
547 | This is necessary because of the stack direction on the PA and the | |
548 | bizarre way in which someone (?) decided they wanted to handle | |
549 | frame pointerless code in GDB. */ | |
550 | int | |
551 | hpread_adjust_stack_address (func_addr) | |
552 | CORE_ADDR func_addr; | |
553 | { | |
554 | struct unwind_table_entry *u; | |
555 | ||
556 | u = find_unwind_entry (func_addr); | |
557 | if (!u) | |
558 | return 0; | |
559 | else | |
560 | return u->Total_frame_size << 3; | |
561 | } | |
98c0e047 | 562 | |
70e43abe JL |
563 | /* Called to determine if PC is in an interrupt handler of some |
564 | kind. */ | |
565 | ||
566 | static int | |
567 | pc_in_interrupt_handler (pc) | |
568 | CORE_ADDR pc; | |
569 | { | |
570 | struct unwind_table_entry *u; | |
571 | struct minimal_symbol *msym_us; | |
572 | ||
573 | u = find_unwind_entry (pc); | |
574 | if (!u) | |
575 | return 0; | |
576 | ||
577 | /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though | |
578 | its frame isn't a pure interrupt frame. Deal with this. */ | |
579 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
580 | ||
581 | return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)); | |
582 | } | |
583 | ||
5ac7f56e JK |
584 | /* Called when no unwind descriptor was found for PC. Returns 1 if it |
585 | appears that PC is in a linker stub. */ | |
5ac7f56e JK |
586 | |
587 | static int | |
588 | pc_in_linker_stub (pc) | |
589 | CORE_ADDR pc; | |
590 | { | |
5ac7f56e JK |
591 | int found_magic_instruction = 0; |
592 | int i; | |
08ecd8f3 JK |
593 | char buf[4]; |
594 | ||
595 | /* If unable to read memory, assume pc is not in a linker stub. */ | |
596 | if (target_read_memory (pc, buf, 4) != 0) | |
597 | return 0; | |
5ac7f56e | 598 | |
d08c6f4c JK |
599 | /* We are looking for something like |
600 | ||
601 | ; $$dyncall jams RP into this special spot in the frame (RP') | |
602 | ; before calling the "call stub" | |
603 | ldw -18(sp),rp | |
604 | ||
605 | ldsid (rp),r1 ; Get space associated with RP into r1 | |
606 | mtsp r1,sp ; Move it into space register 0 | |
607 | be,n 0(sr0),rp) ; back to your regularly scheduled program | |
608 | */ | |
609 | ||
5ac7f56e JK |
610 | /* Maximum known linker stub size is 4 instructions. Search forward |
611 | from the given PC, then backward. */ | |
612 | for (i = 0; i < 4; i++) | |
613 | { | |
6e35b037 | 614 | /* If we hit something with an unwind, stop searching this direction. */ |
5ac7f56e JK |
615 | |
616 | if (find_unwind_entry (pc + i * 4) != 0) | |
617 | break; | |
618 | ||
619 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
620 | return from a cross-space function call. */ | |
621 | if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) | |
622 | { | |
623 | found_magic_instruction = 1; | |
624 | break; | |
625 | } | |
626 | /* Add code to handle long call/branch and argument relocation stubs | |
627 | here. */ | |
628 | } | |
629 | ||
630 | if (found_magic_instruction != 0) | |
631 | return 1; | |
632 | ||
633 | /* Now look backward. */ | |
634 | for (i = 0; i < 4; i++) | |
635 | { | |
6e35b037 | 636 | /* If we hit something with an unwind, stop searching this direction. */ |
5ac7f56e JK |
637 | |
638 | if (find_unwind_entry (pc - i * 4) != 0) | |
639 | break; | |
640 | ||
641 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
642 | return from a cross-space function call. */ | |
643 | if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) | |
644 | { | |
645 | found_magic_instruction = 1; | |
646 | break; | |
647 | } | |
648 | /* Add code to handle long call/branch and argument relocation stubs | |
649 | here. */ | |
650 | } | |
651 | return found_magic_instruction; | |
652 | } | |
653 | ||
66a1aa07 SG |
654 | static int |
655 | find_return_regnum(pc) | |
656 | CORE_ADDR pc; | |
657 | { | |
658 | struct unwind_table_entry *u; | |
659 | ||
660 | u = find_unwind_entry (pc); | |
661 | ||
662 | if (!u) | |
663 | return RP_REGNUM; | |
664 | ||
665 | if (u->Millicode) | |
666 | return 31; | |
667 | ||
668 | return RP_REGNUM; | |
669 | } | |
670 | ||
5ac7f56e | 671 | /* Return size of frame, or -1 if we should use a frame pointer. */ |
66a1aa07 | 672 | int |
70e43abe | 673 | find_proc_framesize (pc) |
66a1aa07 SG |
674 | CORE_ADDR pc; |
675 | { | |
676 | struct unwind_table_entry *u; | |
70e43abe | 677 | struct minimal_symbol *msym_us; |
66a1aa07 | 678 | |
66a1aa07 SG |
679 | u = find_unwind_entry (pc); |
680 | ||
681 | if (!u) | |
5ac7f56e JK |
682 | { |
683 | if (pc_in_linker_stub (pc)) | |
684 | /* Linker stubs have a zero size frame. */ | |
685 | return 0; | |
686 | else | |
687 | return -1; | |
688 | } | |
66a1aa07 | 689 | |
70e43abe JL |
690 | msym_us = lookup_minimal_symbol_by_pc (pc); |
691 | ||
692 | /* If Save_SP is set, and we're not in an interrupt or signal caller, | |
693 | then we have a frame pointer. Use it. */ | |
694 | if (u->Save_SP && !pc_in_interrupt_handler (pc) | |
695 | && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us))) | |
eabbe766 JK |
696 | return -1; |
697 | ||
66a1aa07 SG |
698 | return u->Total_frame_size << 3; |
699 | } | |
700 | ||
5ac7f56e JK |
701 | /* Return offset from sp at which rp is saved, or 0 if not saved. */ |
702 | static int rp_saved PARAMS ((CORE_ADDR)); | |
703 | ||
704 | static int | |
705 | rp_saved (pc) | |
706 | CORE_ADDR pc; | |
66a1aa07 SG |
707 | { |
708 | struct unwind_table_entry *u; | |
709 | ||
710 | u = find_unwind_entry (pc); | |
711 | ||
712 | if (!u) | |
5ac7f56e JK |
713 | { |
714 | if (pc_in_linker_stub (pc)) | |
715 | /* This is the so-called RP'. */ | |
716 | return -24; | |
717 | else | |
718 | return 0; | |
719 | } | |
66a1aa07 SG |
720 | |
721 | if (u->Save_RP) | |
5ac7f56e | 722 | return -20; |
c7f3b703 JL |
723 | else if (u->stub_type != 0) |
724 | { | |
725 | switch (u->stub_type) | |
726 | { | |
727 | case EXPORT: | |
c2e00af6 | 728 | case IMPORT: |
c7f3b703 JL |
729 | return -24; |
730 | case PARAMETER_RELOCATION: | |
731 | return -8; | |
732 | default: | |
733 | return 0; | |
734 | } | |
735 | } | |
66a1aa07 SG |
736 | else |
737 | return 0; | |
738 | } | |
739 | \f | |
8fa74880 SG |
740 | int |
741 | frameless_function_invocation (frame) | |
669caa9c | 742 | struct frame_info *frame; |
8fa74880 | 743 | { |
b8ec9a79 | 744 | struct unwind_table_entry *u; |
8fa74880 | 745 | |
b8ec9a79 | 746 | u = find_unwind_entry (frame->pc); |
8fa74880 | 747 | |
b8ec9a79 | 748 | if (u == 0) |
7f43b9b7 | 749 | return 0; |
b8ec9a79 | 750 | |
c7f3b703 | 751 | return (u->Total_frame_size == 0 && u->stub_type == 0); |
8fa74880 SG |
752 | } |
753 | ||
66a1aa07 SG |
754 | CORE_ADDR |
755 | saved_pc_after_call (frame) | |
669caa9c | 756 | struct frame_info *frame; |
66a1aa07 SG |
757 | { |
758 | int ret_regnum; | |
edd86fb0 JL |
759 | CORE_ADDR pc; |
760 | struct unwind_table_entry *u; | |
66a1aa07 SG |
761 | |
762 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
edd86fb0 JL |
763 | pc = read_register (ret_regnum) & ~0x3; |
764 | ||
765 | /* If PC is in a linker stub, then we need to dig the address | |
766 | the stub will return to out of the stack. */ | |
767 | u = find_unwind_entry (pc); | |
768 | if (u && u->stub_type != 0) | |
769 | return frame_saved_pc (frame); | |
770 | else | |
771 | return pc; | |
66a1aa07 SG |
772 | } |
773 | \f | |
774 | CORE_ADDR | |
775 | frame_saved_pc (frame) | |
669caa9c | 776 | struct frame_info *frame; |
66a1aa07 SG |
777 | { |
778 | CORE_ADDR pc = get_frame_pc (frame); | |
7f43b9b7 | 779 | struct unwind_table_entry *u; |
66a1aa07 | 780 | |
70e43abe JL |
781 | /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner |
782 | at the base of the frame in an interrupt handler. Registers within | |
783 | are saved in the exact same order as GDB numbers registers. How | |
784 | convienent. */ | |
785 | if (pc_in_interrupt_handler (pc)) | |
786 | return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3; | |
787 | ||
788 | /* Deal with signal handler caller frames too. */ | |
789 | if (frame->signal_handler_caller) | |
790 | { | |
791 | CORE_ADDR rp; | |
792 | FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); | |
54b2555b | 793 | return rp & ~0x3; |
70e43abe JL |
794 | } |
795 | ||
8fa74880 | 796 | if (frameless_function_invocation (frame)) |
66a1aa07 SG |
797 | { |
798 | int ret_regnum; | |
799 | ||
800 | ret_regnum = find_return_regnum (pc); | |
801 | ||
70e43abe JL |
802 | /* If the next frame is an interrupt frame or a signal |
803 | handler caller, then we need to look in the saved | |
804 | register area to get the return pointer (the values | |
805 | in the registers may not correspond to anything useful). */ | |
806 | if (frame->next | |
807 | && (frame->next->signal_handler_caller | |
808 | || pc_in_interrupt_handler (frame->next->pc))) | |
809 | { | |
70e43abe JL |
810 | struct frame_saved_regs saved_regs; |
811 | ||
54b2555b | 812 | get_frame_saved_regs (frame->next, &saved_regs); |
471fb8d8 | 813 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) |
54b2555b JL |
814 | { |
815 | pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; | |
816 | ||
817 | /* Syscalls are really two frames. The syscall stub itself | |
818 | with a return pointer in %rp and the kernel call with | |
819 | a return pointer in %r31. We return the %rp variant | |
820 | if %r31 is the same as frame->pc. */ | |
821 | if (pc == frame->pc) | |
822 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; | |
823 | } | |
70e43abe | 824 | else |
7f43b9b7 | 825 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; |
70e43abe JL |
826 | } |
827 | else | |
7f43b9b7 | 828 | pc = read_register (ret_regnum) & ~0x3; |
66a1aa07 | 829 | } |
66a1aa07 | 830 | else |
5ac7f56e | 831 | { |
edd86fb0 | 832 | int rp_offset; |
5ac7f56e | 833 | |
edd86fb0 JL |
834 | restart: |
835 | rp_offset = rp_saved (pc); | |
70e43abe JL |
836 | /* Similar to code in frameless function case. If the next |
837 | frame is a signal or interrupt handler, then dig the right | |
838 | information out of the saved register info. */ | |
839 | if (rp_offset == 0 | |
840 | && frame->next | |
841 | && (frame->next->signal_handler_caller | |
842 | || pc_in_interrupt_handler (frame->next->pc))) | |
843 | { | |
70e43abe JL |
844 | struct frame_saved_regs saved_regs; |
845 | ||
669caa9c | 846 | get_frame_saved_regs (frame->next, &saved_regs); |
471fb8d8 | 847 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) |
54b2555b JL |
848 | { |
849 | pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; | |
850 | ||
851 | /* Syscalls are really two frames. The syscall stub itself | |
852 | with a return pointer in %rp and the kernel call with | |
853 | a return pointer in %r31. We return the %rp variant | |
854 | if %r31 is the same as frame->pc. */ | |
855 | if (pc == frame->pc) | |
856 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; | |
857 | } | |
70e43abe | 858 | else |
7f43b9b7 | 859 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; |
70e43abe JL |
860 | } |
861 | else if (rp_offset == 0) | |
7f43b9b7 | 862 | pc = read_register (RP_REGNUM) & ~0x3; |
5ac7f56e | 863 | else |
7f43b9b7 | 864 | pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3; |
5ac7f56e | 865 | } |
7f43b9b7 JL |
866 | |
867 | /* If PC is inside a linker stub, then dig out the address the stub | |
868 | will return to. */ | |
869 | u = find_unwind_entry (pc); | |
870 | if (u && u->stub_type != 0) | |
871 | goto restart; | |
872 | ||
873 | return pc; | |
66a1aa07 SG |
874 | } |
875 | \f | |
876 | /* We need to correct the PC and the FP for the outermost frame when we are | |
877 | in a system call. */ | |
878 | ||
879 | void | |
880 | init_extra_frame_info (fromleaf, frame) | |
881 | int fromleaf; | |
882 | struct frame_info *frame; | |
883 | { | |
884 | int flags; | |
885 | int framesize; | |
886 | ||
192c3eeb | 887 | if (frame->next && !fromleaf) |
66a1aa07 SG |
888 | return; |
889 | ||
192c3eeb JL |
890 | /* If the next frame represents a frameless function invocation |
891 | then we have to do some adjustments that are normally done by | |
892 | FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */ | |
893 | if (fromleaf) | |
894 | { | |
895 | /* Find the framesize of *this* frame without peeking at the PC | |
896 | in the current frame structure (it isn't set yet). */ | |
897 | framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame))); | |
898 | ||
899 | /* Now adjust our base frame accordingly. If we have a frame pointer | |
900 | use it, else subtract the size of this frame from the current | |
901 | frame. (we always want frame->frame to point at the lowest address | |
902 | in the frame). */ | |
903 | if (framesize == -1) | |
904 | frame->frame = read_register (FP_REGNUM); | |
905 | else | |
906 | frame->frame -= framesize; | |
907 | return; | |
908 | } | |
909 | ||
66a1aa07 SG |
910 | flags = read_register (FLAGS_REGNUM); |
911 | if (flags & 2) /* In system call? */ | |
912 | frame->pc = read_register (31) & ~0x3; | |
913 | ||
192c3eeb JL |
914 | /* The outermost frame is always derived from PC-framesize |
915 | ||
916 | One might think frameless innermost frames should have | |
917 | a frame->frame that is the same as the parent's frame->frame. | |
918 | That is wrong; frame->frame in that case should be the *high* | |
919 | address of the parent's frame. It's complicated as hell to | |
920 | explain, but the parent *always* creates some stack space for | |
921 | the child. So the child actually does have a frame of some | |
922 | sorts, and its base is the high address in its parent's frame. */ | |
66a1aa07 SG |
923 | framesize = find_proc_framesize(frame->pc); |
924 | if (framesize == -1) | |
925 | frame->frame = read_register (FP_REGNUM); | |
926 | else | |
927 | frame->frame = read_register (SP_REGNUM) - framesize; | |
66a1aa07 SG |
928 | } |
929 | \f | |
8966221d JK |
930 | /* Given a GDB frame, determine the address of the calling function's frame. |
931 | This will be used to create a new GDB frame struct, and then | |
932 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
933 | ||
934 | This may involve searching through prologues for several functions | |
935 | at boundaries where GCC calls HP C code, or where code which has | |
936 | a frame pointer calls code without a frame pointer. */ | |
8966221d | 937 | |
669caa9c | 938 | CORE_ADDR |
66a1aa07 SG |
939 | frame_chain (frame) |
940 | struct frame_info *frame; | |
941 | { | |
8966221d JK |
942 | int my_framesize, caller_framesize; |
943 | struct unwind_table_entry *u; | |
70e43abe JL |
944 | CORE_ADDR frame_base; |
945 | ||
946 | /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These | |
947 | are easy; at *sp we have a full save state strucutre which we can | |
948 | pull the old stack pointer from. Also see frame_saved_pc for | |
949 | code to dig a saved PC out of the save state structure. */ | |
950 | if (pc_in_interrupt_handler (frame->pc)) | |
951 | frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4); | |
952 | else if (frame->signal_handler_caller) | |
953 | { | |
954 | FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); | |
955 | } | |
956 | else | |
957 | frame_base = frame->frame; | |
66a1aa07 | 958 | |
8966221d JK |
959 | /* Get frame sizes for the current frame and the frame of the |
960 | caller. */ | |
961 | my_framesize = find_proc_framesize (frame->pc); | |
962 | caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame)); | |
66a1aa07 | 963 | |
8966221d JK |
964 | /* If caller does not have a frame pointer, then its frame |
965 | can be found at current_frame - caller_framesize. */ | |
966 | if (caller_framesize != -1) | |
70e43abe | 967 | return frame_base - caller_framesize; |
8966221d JK |
968 | |
969 | /* Both caller and callee have frame pointers and are GCC compiled | |
970 | (SAVE_SP bit in unwind descriptor is on for both functions. | |
971 | The previous frame pointer is found at the top of the current frame. */ | |
972 | if (caller_framesize == -1 && my_framesize == -1) | |
70e43abe | 973 | return read_memory_integer (frame_base, 4); |
8966221d JK |
974 | |
975 | /* Caller has a frame pointer, but callee does not. This is a little | |
976 | more difficult as GCC and HP C lay out locals and callee register save | |
977 | areas very differently. | |
978 | ||
979 | The previous frame pointer could be in a register, or in one of | |
980 | several areas on the stack. | |
981 | ||
982 | Walk from the current frame to the innermost frame examining | |
2f8c3639 | 983 | unwind descriptors to determine if %r3 ever gets saved into the |
8966221d | 984 | stack. If so return whatever value got saved into the stack. |
2f8c3639 | 985 | If it was never saved in the stack, then the value in %r3 is still |
8966221d JK |
986 | valid, so use it. |
987 | ||
2f8c3639 | 988 | We use information from unwind descriptors to determine if %r3 |
8966221d JK |
989 | is saved into the stack (Entry_GR field has this information). */ |
990 | ||
991 | while (frame) | |
992 | { | |
993 | u = find_unwind_entry (frame->pc); | |
994 | ||
995 | if (!u) | |
996 | { | |
01a03545 JK |
997 | /* We could find this information by examining prologues. I don't |
998 | think anyone has actually written any tools (not even "strip") | |
999 | which leave them out of an executable, so maybe this is a moot | |
1000 | point. */ | |
8966221d JK |
1001 | warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc); |
1002 | return 0; | |
1003 | } | |
1004 | ||
1005 | /* Entry_GR specifies the number of callee-saved general registers | |
2f8c3639 | 1006 | saved in the stack. It starts at %r3, so %r3 would be 1. */ |
70e43abe JL |
1007 | if (u->Entry_GR >= 1 || u->Save_SP |
1008 | || frame->signal_handler_caller | |
1009 | || pc_in_interrupt_handler (frame->pc)) | |
8966221d JK |
1010 | break; |
1011 | else | |
1012 | frame = frame->next; | |
1013 | } | |
1014 | ||
1015 | if (frame) | |
1016 | { | |
1017 | /* We may have walked down the chain into a function with a frame | |
1018 | pointer. */ | |
70e43abe JL |
1019 | if (u->Save_SP |
1020 | && !frame->signal_handler_caller | |
1021 | && !pc_in_interrupt_handler (frame->pc)) | |
8966221d | 1022 | return read_memory_integer (frame->frame, 4); |
2f8c3639 | 1023 | /* %r3 was saved somewhere in the stack. Dig it out. */ |
8966221d | 1024 | else |
c598654a | 1025 | { |
c598654a JL |
1026 | struct frame_saved_regs saved_regs; |
1027 | ||
669caa9c | 1028 | get_frame_saved_regs (frame, &saved_regs); |
c598654a JL |
1029 | return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); |
1030 | } | |
8966221d JK |
1031 | } |
1032 | else | |
1033 | { | |
2f8c3639 | 1034 | /* The value in %r3 was never saved into the stack (thus %r3 still |
8966221d | 1035 | holds the value of the previous frame pointer). */ |
2f8c3639 | 1036 | return read_register (FP_REGNUM); |
8966221d JK |
1037 | } |
1038 | } | |
66a1aa07 | 1039 | |
66a1aa07 SG |
1040 | \f |
1041 | /* To see if a frame chain is valid, see if the caller looks like it | |
1042 | was compiled with gcc. */ | |
1043 | ||
1044 | int | |
1045 | frame_chain_valid (chain, thisframe) | |
669caa9c SS |
1046 | CORE_ADDR chain; |
1047 | struct frame_info *thisframe; | |
66a1aa07 | 1048 | { |
247145e6 JK |
1049 | struct minimal_symbol *msym_us; |
1050 | struct minimal_symbol *msym_start; | |
70e43abe | 1051 | struct unwind_table_entry *u, *next_u = NULL; |
669caa9c | 1052 | struct frame_info *next; |
66a1aa07 SG |
1053 | |
1054 | if (!chain) | |
1055 | return 0; | |
1056 | ||
b8ec9a79 | 1057 | u = find_unwind_entry (thisframe->pc); |
4b01383b | 1058 | |
70e43abe JL |
1059 | if (u == NULL) |
1060 | return 1; | |
1061 | ||
247145e6 JK |
1062 | /* We can't just check that the same of msym_us is "_start", because |
1063 | someone idiotically decided that they were going to make a Ltext_end | |
1064 | symbol with the same address. This Ltext_end symbol is totally | |
1065 | indistinguishable (as nearly as I can tell) from the symbol for a function | |
1066 | which is (legitimately, since it is in the user's namespace) | |
1067 | named Ltext_end, so we can't just ignore it. */ | |
1068 | msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe)); | |
1069 | msym_start = lookup_minimal_symbol ("_start", NULL); | |
1070 | if (msym_us | |
1071 | && msym_start | |
1072 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
b8ec9a79 | 1073 | return 0; |
5ac7f56e | 1074 | |
70e43abe JL |
1075 | next = get_next_frame (thisframe); |
1076 | if (next) | |
1077 | next_u = find_unwind_entry (next->pc); | |
5ac7f56e | 1078 | |
70e43abe JL |
1079 | /* If this frame does not save SP, has no stack, isn't a stub, |
1080 | and doesn't "call" an interrupt routine or signal handler caller, | |
1081 | then its not valid. */ | |
1082 | if (u->Save_SP || u->Total_frame_size || u->stub_type != 0 | |
1083 | || (thisframe->next && thisframe->next->signal_handler_caller) | |
1084 | || (next_u && next_u->HP_UX_interrupt_marker)) | |
b8ec9a79 | 1085 | return 1; |
5ac7f56e | 1086 | |
b8ec9a79 JK |
1087 | if (pc_in_linker_stub (thisframe->pc)) |
1088 | return 1; | |
4b01383b | 1089 | |
b8ec9a79 | 1090 | return 0; |
66a1aa07 SG |
1091 | } |
1092 | ||
66a1aa07 SG |
1093 | /* |
1094 | * These functions deal with saving and restoring register state | |
1095 | * around a function call in the inferior. They keep the stack | |
1096 | * double-word aligned; eventually, on an hp700, the stack will have | |
1097 | * to be aligned to a 64-byte boundary. | |
1098 | */ | |
1099 | ||
e43169eb JL |
1100 | void |
1101 | push_dummy_frame (inf_status) | |
1102 | struct inferior_status *inf_status; | |
66a1aa07 | 1103 | { |
e43169eb | 1104 | CORE_ADDR sp, pc, pcspace; |
66a1aa07 SG |
1105 | register int regnum; |
1106 | int int_buffer; | |
1107 | double freg_buffer; | |
1108 | ||
e43169eb JL |
1109 | /* Oh, what a hack. If we're trying to perform an inferior call |
1110 | while the inferior is asleep, we have to make sure to clear | |
1111 | the "in system call" bit in the flag register (the call will | |
1112 | start after the syscall returns, so we're no longer in the system | |
1113 | call!) This state is kept in "inf_status", change it there. | |
1114 | ||
1115 | We also need a number of horrid hacks to deal with lossage in the | |
1116 | PC queue registers (apparently they're not valid when the in syscall | |
1117 | bit is set). */ | |
1118 | pc = target_read_pc (inferior_pid); | |
1119 | int_buffer = read_register (FLAGS_REGNUM); | |
1120 | if (int_buffer & 0x2) | |
1121 | { | |
244f7460 | 1122 | unsigned int sid; |
e43169eb JL |
1123 | int_buffer &= ~0x2; |
1124 | memcpy (inf_status->registers, &int_buffer, 4); | |
1125 | memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4); | |
1126 | pc += 4; | |
1127 | memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4); | |
1128 | pc -= 4; | |
244f7460 JL |
1129 | sid = (pc >> 30) & 0x3; |
1130 | if (sid == 0) | |
1131 | pcspace = read_register (SR4_REGNUM); | |
1132 | else | |
1133 | pcspace = read_register (SR4_REGNUM + 4 + sid); | |
e43169eb JL |
1134 | memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM), |
1135 | &pcspace, 4); | |
1136 | memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM), | |
1137 | &pcspace, 4); | |
1138 | } | |
1139 | else | |
1140 | pcspace = read_register (PCSQ_HEAD_REGNUM); | |
1141 | ||
66a1aa07 SG |
1142 | /* Space for "arguments"; the RP goes in here. */ |
1143 | sp = read_register (SP_REGNUM) + 48; | |
1144 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
1145 | write_memory (sp - 20, (char *)&int_buffer, 4); | |
1146 | ||
1147 | int_buffer = read_register (FP_REGNUM); | |
1148 | write_memory (sp, (char *)&int_buffer, 4); | |
1149 | ||
1150 | write_register (FP_REGNUM, sp); | |
1151 | ||
1152 | sp += 8; | |
1153 | ||
1154 | for (regnum = 1; regnum < 32; regnum++) | |
1155 | if (regnum != RP_REGNUM && regnum != FP_REGNUM) | |
1156 | sp = push_word (sp, read_register (regnum)); | |
1157 | ||
1158 | sp += 4; | |
1159 | ||
1160 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
1161 | { | |
1162 | read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
1163 | sp = push_bytes (sp, (char *)&freg_buffer, 8); | |
1164 | } | |
1165 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
1166 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
e43169eb JL |
1167 | sp = push_word (sp, pc); |
1168 | sp = push_word (sp, pcspace); | |
1169 | sp = push_word (sp, pc + 4); | |
1170 | sp = push_word (sp, pcspace); | |
66a1aa07 SG |
1171 | write_register (SP_REGNUM, sp); |
1172 | } | |
1173 | ||
e43169eb | 1174 | void |
66a1aa07 SG |
1175 | find_dummy_frame_regs (frame, frame_saved_regs) |
1176 | struct frame_info *frame; | |
1177 | struct frame_saved_regs *frame_saved_regs; | |
1178 | { | |
1179 | CORE_ADDR fp = frame->frame; | |
1180 | int i; | |
1181 | ||
1182 | frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3; | |
1183 | frame_saved_regs->regs[FP_REGNUM] = fp; | |
1184 | frame_saved_regs->regs[1] = fp + 8; | |
66a1aa07 | 1185 | |
b227992a SG |
1186 | for (fp += 12, i = 3; i < 32; i++) |
1187 | { | |
1188 | if (i != FP_REGNUM) | |
1189 | { | |
1190 | frame_saved_regs->regs[i] = fp; | |
1191 | fp += 4; | |
1192 | } | |
1193 | } | |
66a1aa07 SG |
1194 | |
1195 | fp += 4; | |
1196 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) | |
1197 | frame_saved_regs->regs[i] = fp; | |
1198 | ||
1199 | frame_saved_regs->regs[IPSW_REGNUM] = fp; | |
b227992a SG |
1200 | frame_saved_regs->regs[SAR_REGNUM] = fp + 4; |
1201 | frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8; | |
1202 | frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12; | |
1203 | frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16; | |
1204 | frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20; | |
66a1aa07 SG |
1205 | } |
1206 | ||
e43169eb | 1207 | void |
66a1aa07 SG |
1208 | hppa_pop_frame () |
1209 | { | |
669caa9c | 1210 | register struct frame_info *frame = get_current_frame (); |
54576db3 | 1211 | register CORE_ADDR fp, npc, target_pc; |
66a1aa07 SG |
1212 | register int regnum; |
1213 | struct frame_saved_regs fsr; | |
66a1aa07 SG |
1214 | double freg_buffer; |
1215 | ||
669caa9c SS |
1216 | fp = FRAME_FP (frame); |
1217 | get_frame_saved_regs (frame, &fsr); | |
66a1aa07 | 1218 | |
0a64709e | 1219 | #ifndef NO_PC_SPACE_QUEUE_RESTORE |
66a1aa07 SG |
1220 | if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ |
1221 | restore_pc_queue (&fsr); | |
0a64709e | 1222 | #endif |
66a1aa07 SG |
1223 | |
1224 | for (regnum = 31; regnum > 0; regnum--) | |
1225 | if (fsr.regs[regnum]) | |
1226 | write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); | |
1227 | ||
1228 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--) | |
1229 | if (fsr.regs[regnum]) | |
1230 | { | |
1231 | read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8); | |
1232 | write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
1233 | } | |
1234 | ||
1235 | if (fsr.regs[IPSW_REGNUM]) | |
1236 | write_register (IPSW_REGNUM, | |
1237 | read_memory_integer (fsr.regs[IPSW_REGNUM], 4)); | |
1238 | ||
1239 | if (fsr.regs[SAR_REGNUM]) | |
1240 | write_register (SAR_REGNUM, | |
1241 | read_memory_integer (fsr.regs[SAR_REGNUM], 4)); | |
1242 | ||
ed1a07ad | 1243 | /* If the PC was explicitly saved, then just restore it. */ |
66a1aa07 | 1244 | if (fsr.regs[PCOQ_TAIL_REGNUM]) |
54576db3 JL |
1245 | { |
1246 | npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4); | |
1247 | write_register (PCOQ_TAIL_REGNUM, npc); | |
1248 | } | |
ed1a07ad JK |
1249 | /* Else use the value in %rp to set the new PC. */ |
1250 | else | |
54576db3 JL |
1251 | { |
1252 | npc = read_register (RP_REGNUM); | |
1253 | target_write_pc (npc, 0); | |
1254 | } | |
ed1a07ad | 1255 | |
66a1aa07 SG |
1256 | write_register (FP_REGNUM, read_memory_integer (fp, 4)); |
1257 | ||
1258 | if (fsr.regs[IPSW_REGNUM]) /* call dummy */ | |
1259 | write_register (SP_REGNUM, fp - 48); | |
1260 | else | |
1261 | write_register (SP_REGNUM, fp); | |
1262 | ||
54576db3 JL |
1263 | /* The PC we just restored may be inside a return trampoline. If so |
1264 | we want to restart the inferior and run it through the trampoline. | |
1265 | ||
1266 | Do this by setting a momentary breakpoint at the location the | |
244f7460 JL |
1267 | trampoline returns to. |
1268 | ||
1269 | Don't skip through the trampoline if we're popping a dummy frame. */ | |
54576db3 | 1270 | target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3; |
244f7460 | 1271 | if (target_pc && !fsr.regs[IPSW_REGNUM]) |
54576db3 JL |
1272 | { |
1273 | struct symtab_and_line sal; | |
1274 | struct breakpoint *breakpoint; | |
1275 | struct cleanup *old_chain; | |
1276 | ||
1277 | /* Set up our breakpoint. Set it to be silent as the MI code | |
1278 | for "return_command" will print the frame we returned to. */ | |
1279 | sal = find_pc_line (target_pc, 0); | |
1280 | sal.pc = target_pc; | |
1281 | breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish); | |
1282 | breakpoint->silent = 1; | |
1283 | ||
1284 | /* So we can clean things up. */ | |
1285 | old_chain = make_cleanup (delete_breakpoint, breakpoint); | |
1286 | ||
1287 | /* Start up the inferior. */ | |
1288 | proceed_to_finish = 1; | |
1289 | proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0); | |
1290 | ||
1291 | /* Perform our cleanups. */ | |
1292 | do_cleanups (old_chain); | |
1293 | } | |
66a1aa07 | 1294 | flush_cached_frames (); |
66a1aa07 SG |
1295 | } |
1296 | ||
1297 | /* | |
1298 | * After returning to a dummy on the stack, restore the instruction | |
1299 | * queue space registers. */ | |
1300 | ||
1301 | static int | |
1302 | restore_pc_queue (fsr) | |
1303 | struct frame_saved_regs *fsr; | |
1304 | { | |
1305 | CORE_ADDR pc = read_pc (); | |
1306 | CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4); | |
67ac9759 | 1307 | struct target_waitstatus w; |
66a1aa07 SG |
1308 | int insn_count; |
1309 | ||
1310 | /* Advance past break instruction in the call dummy. */ | |
1311 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
1312 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
1313 | ||
1314 | /* | |
1315 | * HPUX doesn't let us set the space registers or the space | |
1316 | * registers of the PC queue through ptrace. Boo, hiss. | |
1317 | * Conveniently, the call dummy has this sequence of instructions | |
1318 | * after the break: | |
1319 | * mtsp r21, sr0 | |
1320 | * ble,n 0(sr0, r22) | |
1321 | * | |
1322 | * So, load up the registers and single step until we are in the | |
1323 | * right place. | |
1324 | */ | |
1325 | ||
1326 | write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4)); | |
1327 | write_register (22, new_pc); | |
1328 | ||
1329 | for (insn_count = 0; insn_count < 3; insn_count++) | |
1330 | { | |
8c5e0021 JK |
1331 | /* FIXME: What if the inferior gets a signal right now? Want to |
1332 | merge this into wait_for_inferior (as a special kind of | |
1333 | watchpoint? By setting a breakpoint at the end? Is there | |
1334 | any other choice? Is there *any* way to do this stuff with | |
1335 | ptrace() or some equivalent?). */ | |
66a1aa07 | 1336 | resume (1, 0); |
67ac9759 | 1337 | target_wait (inferior_pid, &w); |
66a1aa07 | 1338 | |
67ac9759 | 1339 | if (w.kind == TARGET_WAITKIND_SIGNALLED) |
66a1aa07 | 1340 | { |
67ac9759 | 1341 | stop_signal = w.value.sig; |
66a1aa07 | 1342 | terminal_ours_for_output (); |
67ac9759 JK |
1343 | printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", |
1344 | target_signal_to_name (stop_signal), | |
1345 | target_signal_to_string (stop_signal)); | |
199b2450 | 1346 | gdb_flush (gdb_stdout); |
66a1aa07 SG |
1347 | return 0; |
1348 | } | |
1349 | } | |
8c5e0021 | 1350 | target_terminal_ours (); |
cad1498f | 1351 | target_fetch_registers (-1); |
66a1aa07 SG |
1352 | return 1; |
1353 | } | |
1354 | ||
1355 | CORE_ADDR | |
1356 | hppa_push_arguments (nargs, args, sp, struct_return, struct_addr) | |
1357 | int nargs; | |
4fd5eed4 | 1358 | value_ptr *args; |
66a1aa07 SG |
1359 | CORE_ADDR sp; |
1360 | int struct_return; | |
1361 | CORE_ADDR struct_addr; | |
1362 | { | |
1363 | /* array of arguments' offsets */ | |
1edc5cd2 | 1364 | int *offset = (int *)alloca(nargs * sizeof (int)); |
66a1aa07 SG |
1365 | int cum = 0; |
1366 | int i, alignment; | |
1367 | ||
1368 | for (i = 0; i < nargs; i++) | |
1369 | { | |
1370 | /* Coerce chars to int & float to double if necessary */ | |
1371 | args[i] = value_arg_coerce (args[i]); | |
1372 | ||
1373 | cum += TYPE_LENGTH (VALUE_TYPE (args[i])); | |
1374 | ||
1375 | /* value must go at proper alignment. Assume alignment is a | |
1376 | power of two.*/ | |
1377 | alignment = hppa_alignof (VALUE_TYPE (args[i])); | |
1378 | if (cum % alignment) | |
1379 | cum = (cum + alignment) & -alignment; | |
1380 | offset[i] = -cum; | |
1381 | } | |
558f4183 | 1382 | sp += max ((cum + 7) & -8, 16); |
66a1aa07 SG |
1383 | |
1384 | for (i = 0; i < nargs; i++) | |
1385 | write_memory (sp + offset[i], VALUE_CONTENTS (args[i]), | |
1386 | TYPE_LENGTH (VALUE_TYPE (args[i]))); | |
1387 | ||
1388 | if (struct_return) | |
1389 | write_register (28, struct_addr); | |
1390 | return sp + 32; | |
1391 | } | |
1392 | ||
1393 | /* | |
1394 | * Insert the specified number of args and function address | |
1395 | * into a call sequence of the above form stored at DUMMYNAME. | |
1396 | * | |
1397 | * On the hppa we need to call the stack dummy through $$dyncall. | |
1398 | * Therefore our version of FIX_CALL_DUMMY takes an extra argument, | |
1399 | * real_pc, which is the location where gdb should start up the | |
1400 | * inferior to do the function call. | |
1401 | */ | |
1402 | ||
1403 | CORE_ADDR | |
1404 | hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) | |
f4f0d174 | 1405 | char *dummy; |
66a1aa07 SG |
1406 | CORE_ADDR pc; |
1407 | CORE_ADDR fun; | |
1408 | int nargs; | |
4fd5eed4 | 1409 | value_ptr *args; |
66a1aa07 SG |
1410 | struct type *type; |
1411 | int gcc_p; | |
1412 | { | |
1413 | CORE_ADDR dyncall_addr, sr4export_addr; | |
1414 | struct minimal_symbol *msymbol; | |
6cfec929 | 1415 | int flags = read_register (FLAGS_REGNUM); |
19cd0c1f | 1416 | struct unwind_table_entry *u; |
66a1aa07 SG |
1417 | |
1418 | msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL); | |
1419 | if (msymbol == NULL) | |
1420 | error ("Can't find an address for $$dyncall trampoline"); | |
1421 | ||
1422 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
1423 | ||
4f915914 JL |
1424 | /* FUN could be a procedure label, in which case we have to get |
1425 | its real address and the value of its GOT/DP. */ | |
1426 | if (fun & 0x2) | |
1427 | { | |
1428 | /* Get the GOT/DP value for the target function. It's | |
1429 | at *(fun+4). Note the call dummy is *NOT* allowed to | |
1430 | trash %r19 before calling the target function. */ | |
1431 | write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4)); | |
1432 | ||
1433 | /* Now get the real address for the function we are calling, it's | |
1434 | at *fun. */ | |
1435 | fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4); | |
1436 | } | |
b1bbe38b JL |
1437 | else |
1438 | { | |
1439 | ||
3200aa59 | 1440 | #ifndef GDB_TARGET_IS_PA_ELF |
b1bbe38b | 1441 | /* FUN could be either an export stub, or the real address of a |
3200aa59 JL |
1442 | function in a shared library. We must call an import stub |
1443 | rather than the export stub or real function for lazy binding | |
1444 | to work correctly. */ | |
1445 | if (som_solib_get_got_by_pc (fun)) | |
1446 | { | |
1447 | struct objfile *objfile; | |
1448 | struct minimal_symbol *funsymbol, *stub_symbol; | |
1449 | CORE_ADDR newfun = 0; | |
b1bbe38b | 1450 | |
3200aa59 JL |
1451 | funsymbol = lookup_minimal_symbol_by_pc (fun); |
1452 | if (!funsymbol) | |
1453 | error ("Unable to find minimal symbol for target fucntion.\n"); | |
b1bbe38b | 1454 | |
3200aa59 JL |
1455 | /* Search all the object files for an import symbol with the |
1456 | right name. */ | |
1457 | ALL_OBJFILES (objfile) | |
1458 | { | |
1459 | stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol), | |
1460 | objfile); | |
1461 | /* Found a symbol with the right name. */ | |
1462 | if (stub_symbol) | |
1463 | { | |
1464 | struct unwind_table_entry *u; | |
1465 | /* It must be a shared library trampoline. */ | |
1466 | if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline) | |
1467 | continue; | |
1468 | ||
1469 | /* It must also be an import stub. */ | |
1470 | u = find_unwind_entry (SYMBOL_VALUE (stub_symbol)); | |
1471 | if (!u || u->stub_type != IMPORT) | |
1472 | continue; | |
1473 | ||
1474 | /* OK. Looks like the correct import stub. */ | |
1475 | newfun = SYMBOL_VALUE (stub_symbol); | |
1476 | fun = newfun; | |
1477 | } | |
1478 | } | |
1479 | if (newfun == 0) | |
1480 | write_register (19, som_solib_get_got_by_pc (fun)); | |
1481 | } | |
bd2b724a | 1482 | #endif |
b1bbe38b | 1483 | } |
4f915914 | 1484 | |
19cd0c1f JL |
1485 | /* If we are calling an import stub (eg calling into a dynamic library) |
1486 | then have sr4export call the magic __d_plt_call routine which is linked | |
1487 | in from end.o. (You can't use _sr4export to call the import stub as | |
1488 | the value in sp-24 will get fried and you end up returning to the | |
1489 | wrong location. You can't call the import stub directly as the code | |
1490 | to bind the PLT entry to a function can't return to a stack address.) */ | |
1491 | u = find_unwind_entry (fun); | |
1492 | if (u && u->stub_type == IMPORT) | |
1493 | { | |
1494 | CORE_ADDR new_fun; | |
1495 | msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL); | |
1496 | if (msymbol == NULL) | |
3200aa59 JL |
1497 | msymbol = lookup_minimal_symbol ("__gcc_plt_call", NULL); |
1498 | ||
1499 | if (msymbol == NULL) | |
1500 | error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline"); | |
19cd0c1f JL |
1501 | |
1502 | /* This is where sr4export will jump to. */ | |
1503 | new_fun = SYMBOL_VALUE_ADDRESS (msymbol); | |
1504 | ||
3200aa59 JL |
1505 | if (strcmp (SYMBOL_NAME (msymbol), "__d_plt_call")) |
1506 | write_register (22, fun); | |
1507 | else | |
1508 | { | |
1509 | /* We have to store the address of the stub in __shlib_funcptr. */ | |
1510 | msymbol = lookup_minimal_symbol ("__shlib_funcptr", | |
1511 | (struct objfile *)NULL); | |
1512 | if (msymbol == NULL) | |
1513 | error ("Can't find an address for __shlib_funcptr"); | |
19cd0c1f | 1514 | |
3200aa59 JL |
1515 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4); |
1516 | } | |
19cd0c1f | 1517 | fun = new_fun; |
19cd0c1f JL |
1518 | } |
1519 | ||
1520 | /* We still need sr4export's address too. */ | |
66a1aa07 SG |
1521 | msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL); |
1522 | if (msymbol == NULL) | |
1523 | error ("Can't find an address for _sr4export trampoline"); | |
1524 | ||
1525 | sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
1526 | ||
f4f0d174 JK |
1527 | store_unsigned_integer |
1528 | (&dummy[9*REGISTER_SIZE], | |
1529 | REGISTER_SIZE, | |
1530 | deposit_21 (fun >> 11, | |
1531 | extract_unsigned_integer (&dummy[9*REGISTER_SIZE], | |
1532 | REGISTER_SIZE))); | |
1533 | store_unsigned_integer | |
1534 | (&dummy[10*REGISTER_SIZE], | |
1535 | REGISTER_SIZE, | |
1536 | deposit_14 (fun & MASK_11, | |
1537 | extract_unsigned_integer (&dummy[10*REGISTER_SIZE], | |
1538 | REGISTER_SIZE))); | |
1539 | store_unsigned_integer | |
1540 | (&dummy[12*REGISTER_SIZE], | |
1541 | REGISTER_SIZE, | |
1542 | deposit_21 (sr4export_addr >> 11, | |
1543 | extract_unsigned_integer (&dummy[12*REGISTER_SIZE], | |
1544 | REGISTER_SIZE))); | |
1545 | store_unsigned_integer | |
1546 | (&dummy[13*REGISTER_SIZE], | |
1547 | REGISTER_SIZE, | |
1548 | deposit_14 (sr4export_addr & MASK_11, | |
1549 | extract_unsigned_integer (&dummy[13*REGISTER_SIZE], | |
1550 | REGISTER_SIZE))); | |
66a1aa07 SG |
1551 | |
1552 | write_register (22, pc); | |
1553 | ||
6cfec929 JK |
1554 | /* If we are in a syscall, then we should call the stack dummy |
1555 | directly. $$dyncall is not needed as the kernel sets up the | |
1556 | space id registers properly based on the value in %r31. In | |
1557 | fact calling $$dyncall will not work because the value in %r22 | |
244f7460 JL |
1558 | will be clobbered on the syscall exit path. |
1559 | ||
1560 | Similarly if the current PC is in a shared library. Note however, | |
1561 | this scheme won't work if the shared library isn't mapped into | |
1562 | the same space as the stack. */ | |
6cfec929 JK |
1563 | if (flags & 2) |
1564 | return pc; | |
244f7460 JL |
1565 | #ifndef GDB_TARGET_IS_PA_ELF |
1566 | else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid))) | |
1567 | return pc; | |
1568 | #endif | |
6cfec929 JK |
1569 | else |
1570 | return dyncall_addr; | |
1571 | ||
66a1aa07 SG |
1572 | } |
1573 | ||
d3862cae JK |
1574 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege |
1575 | bits. */ | |
669caa9c | 1576 | |
d3862cae | 1577 | CORE_ADDR |
e9a3cde8 JL |
1578 | target_read_pc (pid) |
1579 | int pid; | |
d3862cae JK |
1580 | { |
1581 | int flags = read_register (FLAGS_REGNUM); | |
1582 | ||
15edf525 | 1583 | if (flags & 2) { |
d3862cae | 1584 | return read_register (31) & ~0x3; |
15edf525 | 1585 | } |
d3862cae JK |
1586 | return read_register (PC_REGNUM) & ~0x3; |
1587 | } | |
1588 | ||
6cfec929 JK |
1589 | /* Write out the PC. If currently in a syscall, then also write the new |
1590 | PC value into %r31. */ | |
669caa9c | 1591 | |
6cfec929 | 1592 | void |
e9a3cde8 | 1593 | target_write_pc (v, pid) |
6cfec929 | 1594 | CORE_ADDR v; |
e9a3cde8 | 1595 | int pid; |
6cfec929 JK |
1596 | { |
1597 | int flags = read_register (FLAGS_REGNUM); | |
1598 | ||
1599 | /* If in a syscall, then set %r31. Also make sure to get the | |
1600 | privilege bits set correctly. */ | |
1601 | if (flags & 2) | |
1602 | write_register (31, (long) (v | 0x3)); | |
1603 | ||
1604 | write_register (PC_REGNUM, (long) v); | |
1605 | write_register (NPC_REGNUM, (long) v + 4); | |
1606 | } | |
1607 | ||
66a1aa07 SG |
1608 | /* return the alignment of a type in bytes. Structures have the maximum |
1609 | alignment required by their fields. */ | |
1610 | ||
1611 | static int | |
1612 | hppa_alignof (arg) | |
1613 | struct type *arg; | |
1614 | { | |
1615 | int max_align, align, i; | |
1616 | switch (TYPE_CODE (arg)) | |
1617 | { | |
1618 | case TYPE_CODE_PTR: | |
1619 | case TYPE_CODE_INT: | |
1620 | case TYPE_CODE_FLT: | |
1621 | return TYPE_LENGTH (arg); | |
1622 | case TYPE_CODE_ARRAY: | |
1623 | return hppa_alignof (TYPE_FIELD_TYPE (arg, 0)); | |
1624 | case TYPE_CODE_STRUCT: | |
1625 | case TYPE_CODE_UNION: | |
1626 | max_align = 2; | |
1627 | for (i = 0; i < TYPE_NFIELDS (arg); i++) | |
1628 | { | |
1629 | /* Bit fields have no real alignment. */ | |
1630 | if (!TYPE_FIELD_BITPOS (arg, i)) | |
1631 | { | |
1632 | align = hppa_alignof (TYPE_FIELD_TYPE (arg, i)); | |
1633 | max_align = max (max_align, align); | |
1634 | } | |
1635 | } | |
1636 | return max_align; | |
1637 | default: | |
1638 | return 4; | |
1639 | } | |
1640 | } | |
1641 | ||
1642 | /* Print the register regnum, or all registers if regnum is -1 */ | |
1643 | ||
e43169eb | 1644 | void |
66a1aa07 SG |
1645 | pa_do_registers_info (regnum, fpregs) |
1646 | int regnum; | |
1647 | int fpregs; | |
1648 | { | |
1649 | char raw_regs [REGISTER_BYTES]; | |
1650 | int i; | |
1651 | ||
1652 | for (i = 0; i < NUM_REGS; i++) | |
1653 | read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i)); | |
1654 | if (regnum == -1) | |
1655 | pa_print_registers (raw_regs, regnum, fpregs); | |
1656 | else if (regnum < FP0_REGNUM) | |
199b2450 | 1657 | printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs + |
66a1aa07 SG |
1658 | REGISTER_BYTE (regnum))); |
1659 | else | |
1660 | pa_print_fp_reg (regnum); | |
1661 | } | |
1662 | ||
e43169eb | 1663 | static void |
66a1aa07 SG |
1664 | pa_print_registers (raw_regs, regnum, fpregs) |
1665 | char *raw_regs; | |
1666 | int regnum; | |
1667 | int fpregs; | |
1668 | { | |
15edf525 RS |
1669 | int i,j; |
1670 | long val; | |
66a1aa07 SG |
1671 | |
1672 | for (i = 0; i < 18; i++) | |
15edf525 RS |
1673 | { |
1674 | for (j = 0; j < 4; j++) | |
1675 | { | |
1676 | val = *(int *)(raw_regs + REGISTER_BYTE (i+(j*18))); | |
1677 | SWAP_TARGET_AND_HOST (&val, 4); | |
1678 | printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val); | |
1679 | } | |
1680 | printf_unfiltered ("\n"); | |
1681 | } | |
1682 | ||
66a1aa07 SG |
1683 | if (fpregs) |
1684 | for (i = 72; i < NUM_REGS; i++) | |
1685 | pa_print_fp_reg (i); | |
1686 | } | |
1687 | ||
e43169eb | 1688 | static void |
66a1aa07 SG |
1689 | pa_print_fp_reg (i) |
1690 | int i; | |
1691 | { | |
1692 | unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
1693 | unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
66a1aa07 | 1694 | |
eb1167c6 | 1695 | /* Get 32bits of data. */ |
66a1aa07 | 1696 | read_relative_register_raw_bytes (i, raw_buffer); |
ad09cb2b | 1697 | |
eb1167c6 JL |
1698 | /* Put it in the buffer. No conversions are ever necessary. */ |
1699 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
66a1aa07 | 1700 | |
199b2450 | 1701 | fputs_filtered (reg_names[i], gdb_stdout); |
eb1167c6 JL |
1702 | print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); |
1703 | fputs_filtered ("(single precision) ", gdb_stdout); | |
66a1aa07 | 1704 | |
199b2450 | 1705 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0, |
66a1aa07 SG |
1706 | 1, 0, Val_pretty_default); |
1707 | printf_filtered ("\n"); | |
eb1167c6 JL |
1708 | |
1709 | /* If "i" is even, then this register can also be a double-precision | |
1710 | FP register. Dump it out as such. */ | |
1711 | if ((i % 2) == 0) | |
1712 | { | |
1713 | /* Get the data in raw format for the 2nd half. */ | |
1714 | read_relative_register_raw_bytes (i + 1, raw_buffer); | |
1715 | ||
1716 | /* Copy it into the appropriate part of the virtual buffer. */ | |
1717 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer, | |
1718 | REGISTER_RAW_SIZE (i)); | |
1719 | ||
1720 | /* Dump it as a double. */ | |
1721 | fputs_filtered (reg_names[i], gdb_stdout); | |
1722 | print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); | |
1723 | fputs_filtered ("(double precision) ", gdb_stdout); | |
1724 | ||
1725 | val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0, | |
1726 | 1, 0, Val_pretty_default); | |
1727 | printf_filtered ("\n"); | |
1728 | } | |
66a1aa07 SG |
1729 | } |
1730 | ||
a76c2240 JL |
1731 | /* Return one if PC is in the call path of a trampoline, else return zero. |
1732 | ||
1733 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
1734 | just shared library trampolines (import, export). */ | |
481faa25 | 1735 | |
e43169eb | 1736 | int |
481faa25 JL |
1737 | in_solib_call_trampoline (pc, name) |
1738 | CORE_ADDR pc; | |
1739 | char *name; | |
1740 | { | |
1741 | struct minimal_symbol *minsym; | |
1742 | struct unwind_table_entry *u; | |
a76c2240 JL |
1743 | static CORE_ADDR dyncall = 0; |
1744 | static CORE_ADDR sr4export = 0; | |
1745 | ||
1746 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a | |
1747 | new exec file */ | |
1748 | ||
1749 | /* First see if PC is in one of the two C-library trampolines. */ | |
1750 | if (!dyncall) | |
1751 | { | |
1752 | minsym = lookup_minimal_symbol ("$$dyncall", NULL); | |
1753 | if (minsym) | |
1754 | dyncall = SYMBOL_VALUE_ADDRESS (minsym); | |
1755 | else | |
1756 | dyncall = -1; | |
1757 | } | |
1758 | ||
1759 | if (!sr4export) | |
1760 | { | |
1761 | minsym = lookup_minimal_symbol ("_sr4export", NULL); | |
1762 | if (minsym) | |
1763 | sr4export = SYMBOL_VALUE_ADDRESS (minsym); | |
1764 | else | |
1765 | sr4export = -1; | |
1766 | } | |
1767 | ||
1768 | if (pc == dyncall || pc == sr4export) | |
1769 | return 1; | |
481faa25 JL |
1770 | |
1771 | /* Get the unwind descriptor corresponding to PC, return zero | |
1772 | if no unwind was found. */ | |
1773 | u = find_unwind_entry (pc); | |
1774 | if (!u) | |
1775 | return 0; | |
1776 | ||
1777 | /* If this isn't a linker stub, then return now. */ | |
a76c2240 | 1778 | if (u->stub_type == 0) |
481faa25 JL |
1779 | return 0; |
1780 | ||
a76c2240 JL |
1781 | /* By definition a long-branch stub is a call stub. */ |
1782 | if (u->stub_type == LONG_BRANCH) | |
1783 | return 1; | |
1784 | ||
481faa25 JL |
1785 | /* The call and return path execute the same instructions within |
1786 | an IMPORT stub! So an IMPORT stub is both a call and return | |
1787 | trampoline. */ | |
1788 | if (u->stub_type == IMPORT) | |
1789 | return 1; | |
1790 | ||
a76c2240 | 1791 | /* Parameter relocation stubs always have a call path and may have a |
481faa25 | 1792 | return path. */ |
54576db3 JL |
1793 | if (u->stub_type == PARAMETER_RELOCATION |
1794 | || u->stub_type == EXPORT) | |
a76c2240 JL |
1795 | { |
1796 | CORE_ADDR addr; | |
1797 | ||
1798 | /* Search forward from the current PC until we hit a branch | |
1799 | or the end of the stub. */ | |
1800 | for (addr = pc; addr <= u->region_end; addr += 4) | |
1801 | { | |
1802 | unsigned long insn; | |
1803 | ||
1804 | insn = read_memory_integer (addr, 4); | |
1805 | ||
1806 | /* Does it look like a bl? If so then it's the call path, if | |
54576db3 | 1807 | we find a bv or be first, then we're on the return path. */ |
a76c2240 JL |
1808 | if ((insn & 0xfc00e000) == 0xe8000000) |
1809 | return 1; | |
54576db3 JL |
1810 | else if ((insn & 0xfc00e001) == 0xe800c000 |
1811 | || (insn & 0xfc000000) == 0xe0000000) | |
a76c2240 JL |
1812 | return 0; |
1813 | } | |
1814 | ||
1815 | /* Should never happen. */ | |
1816 | warning ("Unable to find branch in parameter relocation stub.\n"); | |
1817 | return 0; | |
1818 | } | |
1819 | ||
1820 | /* Unknown stub type. For now, just return zero. */ | |
1821 | return 0; | |
481faa25 JL |
1822 | } |
1823 | ||
a76c2240 JL |
1824 | /* Return one if PC is in the return path of a trampoline, else return zero. |
1825 | ||
1826 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
1827 | just shared library trampolines (import, export). */ | |
481faa25 | 1828 | |
e43169eb | 1829 | int |
481faa25 JL |
1830 | in_solib_return_trampoline (pc, name) |
1831 | CORE_ADDR pc; | |
1832 | char *name; | |
1833 | { | |
481faa25 JL |
1834 | struct unwind_table_entry *u; |
1835 | ||
1836 | /* Get the unwind descriptor corresponding to PC, return zero | |
1837 | if no unwind was found. */ | |
1838 | u = find_unwind_entry (pc); | |
1839 | if (!u) | |
1840 | return 0; | |
1841 | ||
a76c2240 JL |
1842 | /* If this isn't a linker stub or it's just a long branch stub, then |
1843 | return zero. */ | |
1844 | if (u->stub_type == 0 || u->stub_type == LONG_BRANCH) | |
481faa25 JL |
1845 | return 0; |
1846 | ||
1847 | /* The call and return path execute the same instructions within | |
1848 | an IMPORT stub! So an IMPORT stub is both a call and return | |
1849 | trampoline. */ | |
1850 | if (u->stub_type == IMPORT) | |
1851 | return 1; | |
1852 | ||
a76c2240 | 1853 | /* Parameter relocation stubs always have a call path and may have a |
481faa25 | 1854 | return path. */ |
54576db3 JL |
1855 | if (u->stub_type == PARAMETER_RELOCATION |
1856 | || u->stub_type == EXPORT) | |
a76c2240 JL |
1857 | { |
1858 | CORE_ADDR addr; | |
1859 | ||
1860 | /* Search forward from the current PC until we hit a branch | |
1861 | or the end of the stub. */ | |
1862 | for (addr = pc; addr <= u->region_end; addr += 4) | |
1863 | { | |
1864 | unsigned long insn; | |
1865 | ||
1866 | insn = read_memory_integer (addr, 4); | |
1867 | ||
1868 | /* Does it look like a bl? If so then it's the call path, if | |
54576db3 | 1869 | we find a bv or be first, then we're on the return path. */ |
a76c2240 JL |
1870 | if ((insn & 0xfc00e000) == 0xe8000000) |
1871 | return 0; | |
54576db3 JL |
1872 | else if ((insn & 0xfc00e001) == 0xe800c000 |
1873 | || (insn & 0xfc000000) == 0xe0000000) | |
a76c2240 JL |
1874 | return 1; |
1875 | } | |
1876 | ||
1877 | /* Should never happen. */ | |
1878 | warning ("Unable to find branch in parameter relocation stub.\n"); | |
1879 | return 0; | |
1880 | } | |
1881 | ||
1882 | /* Unknown stub type. For now, just return zero. */ | |
1883 | return 0; | |
1884 | ||
481faa25 JL |
1885 | } |
1886 | ||
de482138 JL |
1887 | /* Figure out if PC is in a trampoline, and if so find out where |
1888 | the trampoline will jump to. If not in a trampoline, return zero. | |
66a1aa07 | 1889 | |
de482138 JL |
1890 | Simple code examination probably is not a good idea since the code |
1891 | sequences in trampolines can also appear in user code. | |
1892 | ||
1893 | We use unwinds and information from the minimal symbol table to | |
1894 | determine when we're in a trampoline. This won't work for ELF | |
1895 | (yet) since it doesn't create stub unwind entries. Whether or | |
1896 | not ELF will create stub unwinds or normal unwinds for linker | |
1897 | stubs is still being debated. | |
1898 | ||
1899 | This should handle simple calls through dyncall or sr4export, | |
1900 | long calls, argument relocation stubs, and dyncall/sr4export | |
1901 | calling an argument relocation stub. It even handles some stubs | |
1902 | used in dynamic executables. */ | |
66a1aa07 SG |
1903 | |
1904 | CORE_ADDR | |
1905 | skip_trampoline_code (pc, name) | |
1906 | CORE_ADDR pc; | |
1907 | char *name; | |
1908 | { | |
de482138 JL |
1909 | long orig_pc = pc; |
1910 | long prev_inst, curr_inst, loc; | |
66a1aa07 | 1911 | static CORE_ADDR dyncall = 0; |
de482138 | 1912 | static CORE_ADDR sr4export = 0; |
66a1aa07 | 1913 | struct minimal_symbol *msym; |
de482138 | 1914 | struct unwind_table_entry *u; |
66a1aa07 | 1915 | |
de482138 JL |
1916 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a |
1917 | new exec file */ | |
66a1aa07 SG |
1918 | |
1919 | if (!dyncall) | |
1920 | { | |
1921 | msym = lookup_minimal_symbol ("$$dyncall", NULL); | |
1922 | if (msym) | |
1923 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
1924 | else | |
1925 | dyncall = -1; | |
1926 | } | |
1927 | ||
de482138 JL |
1928 | if (!sr4export) |
1929 | { | |
1930 | msym = lookup_minimal_symbol ("_sr4export", NULL); | |
1931 | if (msym) | |
1932 | sr4export = SYMBOL_VALUE_ADDRESS (msym); | |
1933 | else | |
1934 | sr4export = -1; | |
1935 | } | |
1936 | ||
1937 | /* Addresses passed to dyncall may *NOT* be the actual address | |
669caa9c | 1938 | of the function. So we may have to do something special. */ |
66a1aa07 | 1939 | if (pc == dyncall) |
de482138 JL |
1940 | { |
1941 | pc = (CORE_ADDR) read_register (22); | |
66a1aa07 | 1942 | |
de482138 JL |
1943 | /* If bit 30 (counting from the left) is on, then pc is the address of |
1944 | the PLT entry for this function, not the address of the function | |
1945 | itself. Bit 31 has meaning too, but only for MPE. */ | |
1946 | if (pc & 0x2) | |
1947 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4); | |
1948 | } | |
1949 | else if (pc == sr4export) | |
1950 | pc = (CORE_ADDR) (read_register (22)); | |
66a1aa07 | 1951 | |
de482138 JL |
1952 | /* Get the unwind descriptor corresponding to PC, return zero |
1953 | if no unwind was found. */ | |
1954 | u = find_unwind_entry (pc); | |
1955 | if (!u) | |
1956 | return 0; | |
1957 | ||
1958 | /* If this isn't a linker stub, then return now. */ | |
1959 | if (u->stub_type == 0) | |
1960 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1961 | ||
1962 | /* It's a stub. Search for a branch and figure out where it goes. | |
1963 | Note we have to handle multi insn branch sequences like ldil;ble. | |
1964 | Most (all?) other branches can be determined by examining the contents | |
1965 | of certain registers and the stack. */ | |
1966 | loc = pc; | |
1967 | curr_inst = 0; | |
1968 | prev_inst = 0; | |
1969 | while (1) | |
1970 | { | |
1971 | /* Make sure we haven't walked outside the range of this stub. */ | |
1972 | if (u != find_unwind_entry (loc)) | |
1973 | { | |
1974 | warning ("Unable to find branch in linker stub"); | |
1975 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1976 | } | |
1977 | ||
1978 | prev_inst = curr_inst; | |
1979 | curr_inst = read_memory_integer (loc, 4); | |
66a1aa07 | 1980 | |
de482138 JL |
1981 | /* Does it look like a branch external using %r1? Then it's the |
1982 | branch from the stub to the actual function. */ | |
1983 | if ((curr_inst & 0xffe0e000) == 0xe0202000) | |
1984 | { | |
1985 | /* Yup. See if the previous instruction loaded | |
1986 | a value into %r1. If so compute and return the jump address. */ | |
4cbc4bf1 | 1987 | if ((prev_inst & 0xffe00000) == 0x20200000) |
de482138 JL |
1988 | return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; |
1989 | else | |
1990 | { | |
1991 | warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); | |
1992 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1993 | } | |
1994 | } | |
1995 | ||
f32fc5f9 JL |
1996 | /* Does it look like a be 0(sr0,%r21)? That's the branch from an |
1997 | import stub to an export stub. | |
1998 | ||
1999 | It is impossible to determine the target of the branch via | |
2000 | simple examination of instructions and/or data (consider | |
2001 | that the address in the plabel may be the address of the | |
2002 | bind-on-reference routine in the dynamic loader). | |
2003 | ||
2004 | So we have try an alternative approach. | |
2005 | ||
2006 | Get the name of the symbol at our current location; it should | |
2007 | be a stub symbol with the same name as the symbol in the | |
2008 | shared library. | |
2009 | ||
2010 | Then lookup a minimal symbol with the same name; we should | |
2011 | get the minimal symbol for the target routine in the shared | |
2012 | library as those take precedence of import/export stubs. */ | |
2013 | if (curr_inst == 0xe2a00000) | |
2014 | { | |
2015 | struct minimal_symbol *stubsym, *libsym; | |
2016 | ||
2017 | stubsym = lookup_minimal_symbol_by_pc (loc); | |
2018 | if (stubsym == NULL) | |
2019 | { | |
2020 | warning ("Unable to find symbol for 0x%x", loc); | |
2021 | return orig_pc == pc ? 0 : pc & ~0x3; | |
2022 | } | |
2023 | ||
2024 | libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL); | |
2025 | if (libsym == NULL) | |
2026 | { | |
2027 | warning ("Unable to find library symbol for %s\n", | |
2028 | SYMBOL_NAME (stubsym)); | |
2029 | return orig_pc == pc ? 0 : pc & ~0x3; | |
2030 | } | |
2031 | ||
2032 | return SYMBOL_VALUE (libsym); | |
2033 | } | |
2034 | ||
88b91d4a JL |
2035 | /* Does it look like bl X,%rp or bl X,%r0? Another way to do a |
2036 | branch from the stub to the actual function. */ | |
2037 | else if ((curr_inst & 0xffe0e000) == 0xe8400000 | |
2038 | || (curr_inst & 0xffe0e000) == 0xe8000000) | |
de482138 JL |
2039 | return (loc + extract_17 (curr_inst) + 8) & ~0x3; |
2040 | ||
2041 | /* Does it look like bv (rp)? Note this depends on the | |
2042 | current stack pointer being the same as the stack | |
2043 | pointer in the stub itself! This is a branch on from the | |
2044 | stub back to the original caller. */ | |
2045 | else if ((curr_inst & 0xffe0e000) == 0xe840c000) | |
2046 | { | |
2047 | /* Yup. See if the previous instruction loaded | |
2048 | rp from sp - 8. */ | |
2049 | if (prev_inst == 0x4bc23ff1) | |
2050 | return (read_memory_integer | |
2051 | (read_register (SP_REGNUM) - 8, 4)) & ~0x3; | |
2052 | else | |
2053 | { | |
2054 | warning ("Unable to find restore of %%rp before bv (%%rp)."); | |
2055 | return orig_pc == pc ? 0 : pc & ~0x3; | |
2056 | } | |
2057 | } | |
2058 | ||
2059 | /* What about be,n 0(sr0,%rp)? It's just another way we return to | |
2060 | the original caller from the stub. Used in dynamic executables. */ | |
2061 | else if (curr_inst == 0xe0400002) | |
2062 | { | |
2063 | /* The value we jump to is sitting in sp - 24. But that's | |
2064 | loaded several instructions before the be instruction. | |
2065 | I guess we could check for the previous instruction being | |
2066 | mtsp %r1,%sr0 if we want to do sanity checking. */ | |
2067 | return (read_memory_integer | |
2068 | (read_register (SP_REGNUM) - 24, 4)) & ~0x3; | |
2069 | } | |
2070 | ||
2071 | /* Haven't found the branch yet, but we're still in the stub. | |
2072 | Keep looking. */ | |
2073 | loc += 4; | |
2074 | } | |
66a1aa07 SG |
2075 | } |
2076 | ||
c598654a JL |
2077 | /* For the given instruction (INST), return any adjustment it makes |
2078 | to the stack pointer or zero for no adjustment. | |
2079 | ||
2080 | This only handles instructions commonly found in prologues. */ | |
2081 | ||
2082 | static int | |
2083 | prologue_inst_adjust_sp (inst) | |
2084 | unsigned long inst; | |
2085 | { | |
2086 | /* This must persist across calls. */ | |
2087 | static int save_high21; | |
2088 | ||
2089 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
2090 | if ((inst & 0xffffc000) == 0x37de0000) | |
2091 | return extract_14 (inst); | |
2092 | ||
2093 | /* stwm X,D(sp) */ | |
2094 | if ((inst & 0xffe00000) == 0x6fc00000) | |
2095 | return extract_14 (inst); | |
2096 | ||
2097 | /* addil high21,%r1; ldo low11,(%r1),%r30) | |
2098 | save high bits in save_high21 for later use. */ | |
2099 | if ((inst & 0xffe00000) == 0x28200000) | |
2100 | { | |
2101 | save_high21 = extract_21 (inst); | |
2102 | return 0; | |
2103 | } | |
2104 | ||
2105 | if ((inst & 0xffff0000) == 0x343e0000) | |
2106 | return save_high21 + extract_14 (inst); | |
2107 | ||
2108 | /* fstws as used by the HP compilers. */ | |
2109 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
2110 | return extract_5_load (inst); | |
2111 | ||
2112 | /* No adjustment. */ | |
2113 | return 0; | |
2114 | } | |
2115 | ||
2116 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
2117 | ||
2118 | static int | |
2119 | is_branch (inst) | |
2120 | unsigned long inst; | |
2121 | { | |
2122 | switch (inst >> 26) | |
2123 | { | |
2124 | case 0x20: | |
2125 | case 0x21: | |
2126 | case 0x22: | |
2127 | case 0x23: | |
2128 | case 0x28: | |
2129 | case 0x29: | |
2130 | case 0x2a: | |
2131 | case 0x2b: | |
2132 | case 0x30: | |
2133 | case 0x31: | |
2134 | case 0x32: | |
2135 | case 0x33: | |
2136 | case 0x38: | |
2137 | case 0x39: | |
2138 | case 0x3a: | |
2139 | return 1; | |
2140 | ||
2141 | default: | |
2142 | return 0; | |
2143 | } | |
2144 | } | |
2145 | ||
2146 | /* Return the register number for a GR which is saved by INST or | |
edd86fb0 | 2147 | zero it INST does not save a GR. */ |
c598654a JL |
2148 | |
2149 | static int | |
2150 | inst_saves_gr (inst) | |
2151 | unsigned long inst; | |
2152 | { | |
2153 | /* Does it look like a stw? */ | |
2154 | if ((inst >> 26) == 0x1a) | |
2155 | return extract_5R_store (inst); | |
2156 | ||
edd86fb0 | 2157 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ |
c598654a JL |
2158 | if ((inst >> 26) == 0x1b) |
2159 | return extract_5R_store (inst); | |
2160 | ||
edd86fb0 JL |
2161 | /* Does it look like sth or stb? HPC versions 9.0 and later use these |
2162 | too. */ | |
2163 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18) | |
2164 | return extract_5R_store (inst); | |
2165 | ||
c598654a JL |
2166 | return 0; |
2167 | } | |
2168 | ||
2169 | /* Return the register number for a FR which is saved by INST or | |
2170 | zero it INST does not save a FR. | |
2171 | ||
2172 | Note we only care about full 64bit register stores (that's the only | |
edd86fb0 JL |
2173 | kind of stores the prologue will use). |
2174 | ||
2175 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
c598654a JL |
2176 | |
2177 | static int | |
2178 | inst_saves_fr (inst) | |
2179 | unsigned long inst; | |
2180 | { | |
edd86fb0 | 2181 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
c598654a JL |
2182 | return extract_5r_store (inst); |
2183 | return 0; | |
2184 | } | |
2185 | ||
66a1aa07 | 2186 | /* Advance PC across any function entry prologue instructions |
c598654a | 2187 | to reach some "real" code. |
66a1aa07 | 2188 | |
c598654a JL |
2189 | Use information in the unwind table to determine what exactly should |
2190 | be in the prologue. */ | |
66a1aa07 SG |
2191 | |
2192 | CORE_ADDR | |
de482138 | 2193 | skip_prologue (pc) |
66a1aa07 SG |
2194 | CORE_ADDR pc; |
2195 | { | |
34df79fc | 2196 | char buf[4]; |
c598654a | 2197 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; |
edd86fb0 | 2198 | unsigned long args_stored, status, i; |
c598654a | 2199 | struct unwind_table_entry *u; |
66a1aa07 | 2200 | |
c598654a JL |
2201 | u = find_unwind_entry (pc); |
2202 | if (!u) | |
fdafbfad | 2203 | return pc; |
c598654a | 2204 | |
de482138 JL |
2205 | /* If we are not at the beginning of a function, then return now. */ |
2206 | if ((pc & ~0x3) != u->region_start) | |
2207 | return pc; | |
2208 | ||
c598654a JL |
2209 | /* This is how much of a frame adjustment we need to account for. */ |
2210 | stack_remaining = u->Total_frame_size << 3; | |
66a1aa07 | 2211 | |
c598654a JL |
2212 | /* Magic register saves we want to know about. */ |
2213 | save_rp = u->Save_RP; | |
2214 | save_sp = u->Save_SP; | |
2215 | ||
edd86fb0 JL |
2216 | /* An indication that args may be stored into the stack. Unfortunately |
2217 | the HPUX compilers tend to set this in cases where no args were | |
2218 | stored too!. */ | |
2219 | args_stored = u->Args_stored; | |
2220 | ||
c598654a JL |
2221 | /* Turn the Entry_GR field into a bitmask. */ |
2222 | save_gr = 0; | |
2223 | for (i = 3; i < u->Entry_GR + 3; i++) | |
66a1aa07 | 2224 | { |
c598654a JL |
2225 | /* Frame pointer gets saved into a special location. */ |
2226 | if (u->Save_SP && i == FP_REGNUM) | |
2227 | continue; | |
2228 | ||
2229 | save_gr |= (1 << i); | |
2230 | } | |
2231 | ||
2232 | /* Turn the Entry_FR field into a bitmask too. */ | |
2233 | save_fr = 0; | |
2234 | for (i = 12; i < u->Entry_FR + 12; i++) | |
2235 | save_fr |= (1 << i); | |
2236 | ||
2237 | /* Loop until we find everything of interest or hit a branch. | |
2238 | ||
2239 | For unoptimized GCC code and for any HP CC code this will never ever | |
2240 | examine any user instructions. | |
2241 | ||
2242 | For optimzied GCC code we're faced with problems. GCC will schedule | |
2243 | its prologue and make prologue instructions available for delay slot | |
2244 | filling. The end result is user code gets mixed in with the prologue | |
2245 | and a prologue instruction may be in the delay slot of the first branch | |
2246 | or call. | |
2247 | ||
2248 | Some unexpected things are expected with debugging optimized code, so | |
2249 | we allow this routine to walk past user instructions in optimized | |
2250 | GCC code. */ | |
edd86fb0 JL |
2251 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 |
2252 | || args_stored) | |
c598654a | 2253 | { |
edd86fb0 JL |
2254 | unsigned int reg_num; |
2255 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
e43169eb | 2256 | unsigned long old_save_rp, old_save_sp, next_inst; |
edd86fb0 JL |
2257 | |
2258 | /* Save copies of all the triggers so we can compare them later | |
2259 | (only for HPC). */ | |
2260 | old_save_gr = save_gr; | |
2261 | old_save_fr = save_fr; | |
2262 | old_save_rp = save_rp; | |
2263 | old_save_sp = save_sp; | |
2264 | old_stack_remaining = stack_remaining; | |
2265 | ||
c598654a JL |
2266 | status = target_read_memory (pc, buf, 4); |
2267 | inst = extract_unsigned_integer (buf, 4); | |
edd86fb0 | 2268 | |
c598654a JL |
2269 | /* Yow! */ |
2270 | if (status != 0) | |
2271 | return pc; | |
2272 | ||
2273 | /* Note the interesting effects of this instruction. */ | |
2274 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
2275 | ||
2276 | /* There is only one instruction used for saving RP into the stack. */ | |
2277 | if (inst == 0x6bc23fd9) | |
2278 | save_rp = 0; | |
2279 | ||
2280 | /* This is the only way we save SP into the stack. At this time | |
2281 | the HP compilers never bother to save SP into the stack. */ | |
2282 | if ((inst & 0xffffc000) == 0x6fc10000) | |
2283 | save_sp = 0; | |
2284 | ||
2285 | /* Account for general and floating-point register saves. */ | |
edd86fb0 JL |
2286 | reg_num = inst_saves_gr (inst); |
2287 | save_gr &= ~(1 << reg_num); | |
2288 | ||
2289 | /* Ugh. Also account for argument stores into the stack. | |
2290 | Unfortunately args_stored only tells us that some arguments | |
2291 | where stored into the stack. Not how many or what kind! | |
2292 | ||
2293 | This is a kludge as on the HP compiler sets this bit and it | |
2294 | never does prologue scheduling. So once we see one, skip past | |
2295 | all of them. We have similar code for the fp arg stores below. | |
2296 | ||
2297 | FIXME. Can still die if we have a mix of GR and FR argument | |
2298 | stores! */ | |
2299 | if (reg_num >= 23 && reg_num <= 26) | |
2300 | { | |
2301 | while (reg_num >= 23 && reg_num <= 26) | |
2302 | { | |
2303 | pc += 4; | |
2304 | status = target_read_memory (pc, buf, 4); | |
2305 | inst = extract_unsigned_integer (buf, 4); | |
2306 | if (status != 0) | |
2307 | return pc; | |
2308 | reg_num = inst_saves_gr (inst); | |
2309 | } | |
2310 | args_stored = 0; | |
2311 | continue; | |
2312 | } | |
2313 | ||
2314 | reg_num = inst_saves_fr (inst); | |
2315 | save_fr &= ~(1 << reg_num); | |
2316 | ||
2317 | status = target_read_memory (pc + 4, buf, 4); | |
2318 | next_inst = extract_unsigned_integer (buf, 4); | |
2319 | ||
2320 | /* Yow! */ | |
2321 | if (status != 0) | |
2322 | return pc; | |
2323 | ||
2324 | /* We've got to be read to handle the ldo before the fp register | |
2325 | save. */ | |
2326 | if ((inst & 0xfc000000) == 0x34000000 | |
2327 | && inst_saves_fr (next_inst) >= 4 | |
2328 | && inst_saves_fr (next_inst) <= 7) | |
2329 | { | |
2330 | /* So we drop into the code below in a reasonable state. */ | |
2331 | reg_num = inst_saves_fr (next_inst); | |
2332 | pc -= 4; | |
2333 | } | |
2334 | ||
2335 | /* Ugh. Also account for argument stores into the stack. | |
2336 | This is a kludge as on the HP compiler sets this bit and it | |
2337 | never does prologue scheduling. So once we see one, skip past | |
2338 | all of them. */ | |
2339 | if (reg_num >= 4 && reg_num <= 7) | |
2340 | { | |
2341 | while (reg_num >= 4 && reg_num <= 7) | |
2342 | { | |
2343 | pc += 8; | |
2344 | status = target_read_memory (pc, buf, 4); | |
2345 | inst = extract_unsigned_integer (buf, 4); | |
2346 | if (status != 0) | |
2347 | return pc; | |
2348 | if ((inst & 0xfc000000) != 0x34000000) | |
2349 | break; | |
2350 | status = target_read_memory (pc + 4, buf, 4); | |
2351 | next_inst = extract_unsigned_integer (buf, 4); | |
2352 | if (status != 0) | |
2353 | return pc; | |
2354 | reg_num = inst_saves_fr (next_inst); | |
2355 | } | |
2356 | args_stored = 0; | |
2357 | continue; | |
2358 | } | |
c598654a JL |
2359 | |
2360 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
2361 | instruction is in the delay slot of the first call/branch. */ | |
2362 | if (is_branch (inst)) | |
2363 | break; | |
2364 | ||
edd86fb0 JL |
2365 | /* What a crock. The HP compilers set args_stored even if no |
2366 | arguments were stored into the stack (boo hiss). This could | |
2367 | cause this code to then skip a bunch of user insns (up to the | |
2368 | first branch). | |
2369 | ||
2370 | To combat this we try to identify when args_stored was bogusly | |
2371 | set and clear it. We only do this when args_stored is nonzero, | |
2372 | all other resources are accounted for, and nothing changed on | |
2373 | this pass. */ | |
2374 | if (args_stored | |
2375 | && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
2376 | && old_save_gr == save_gr && old_save_fr == save_fr | |
2377 | && old_save_rp == save_rp && old_save_sp == save_sp | |
2378 | && old_stack_remaining == stack_remaining) | |
2379 | break; | |
2380 | ||
c598654a JL |
2381 | /* Bump the PC. */ |
2382 | pc += 4; | |
66a1aa07 | 2383 | } |
66a1aa07 SG |
2384 | |
2385 | return pc; | |
2386 | } | |
2387 | ||
c598654a JL |
2388 | /* Put here the code to store, into a struct frame_saved_regs, |
2389 | the addresses of the saved registers of frame described by FRAME_INFO. | |
2390 | This includes special registers such as pc and fp saved in special | |
2391 | ways in the stack frame. sp is even more special: | |
2392 | the address we return for it IS the sp for the next frame. */ | |
2393 | ||
2394 | void | |
2395 | hppa_frame_find_saved_regs (frame_info, frame_saved_regs) | |
cb5f7128 | 2396 | struct frame_info *frame_info; |
c598654a JL |
2397 | struct frame_saved_regs *frame_saved_regs; |
2398 | { | |
2399 | CORE_ADDR pc; | |
2400 | struct unwind_table_entry *u; | |
2401 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
2402 | int status, i, reg; | |
2403 | char buf[4]; | |
2404 | int fp_loc = -1; | |
2405 | ||
2406 | /* Zero out everything. */ | |
2407 | memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs)); | |
2408 | ||
2409 | /* Call dummy frames always look the same, so there's no need to | |
2410 | examine the dummy code to determine locations of saved registers; | |
2411 | instead, let find_dummy_frame_regs fill in the correct offsets | |
2412 | for the saved registers. */ | |
cb5f7128 JL |
2413 | if ((frame_info->pc >= frame_info->frame |
2414 | && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH | |
2415 | + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8 | |
2416 | + 6 * 4))) | |
2417 | find_dummy_frame_regs (frame_info, frame_saved_regs); | |
c598654a | 2418 | |
70e43abe JL |
2419 | /* Interrupt handlers are special too. They lay out the register |
2420 | state in the exact same order as the register numbers in GDB. */ | |
cb5f7128 | 2421 | if (pc_in_interrupt_handler (frame_info->pc)) |
70e43abe JL |
2422 | { |
2423 | for (i = 0; i < NUM_REGS; i++) | |
2424 | { | |
2425 | /* SP is a little special. */ | |
2426 | if (i == SP_REGNUM) | |
2427 | frame_saved_regs->regs[SP_REGNUM] | |
cb5f7128 | 2428 | = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4); |
70e43abe | 2429 | else |
cb5f7128 | 2430 | frame_saved_regs->regs[i] = frame_info->frame + i * 4; |
70e43abe JL |
2431 | } |
2432 | return; | |
2433 | } | |
2434 | ||
2435 | /* Handle signal handler callers. */ | |
cb5f7128 | 2436 | if (frame_info->signal_handler_caller) |
70e43abe | 2437 | { |
cb5f7128 | 2438 | FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); |
70e43abe JL |
2439 | return; |
2440 | } | |
2441 | ||
c598654a | 2442 | /* Get the starting address of the function referred to by the PC |
669caa9c | 2443 | saved in frame. */ |
cb5f7128 | 2444 | pc = get_pc_function_start (frame_info->pc); |
c598654a JL |
2445 | |
2446 | /* Yow! */ | |
2447 | u = find_unwind_entry (pc); | |
2448 | if (!u) | |
2449 | return; | |
2450 | ||
2451 | /* This is how much of a frame adjustment we need to account for. */ | |
2452 | stack_remaining = u->Total_frame_size << 3; | |
2453 | ||
2454 | /* Magic register saves we want to know about. */ | |
2455 | save_rp = u->Save_RP; | |
2456 | save_sp = u->Save_SP; | |
2457 | ||
2458 | /* Turn the Entry_GR field into a bitmask. */ | |
2459 | save_gr = 0; | |
2460 | for (i = 3; i < u->Entry_GR + 3; i++) | |
2461 | { | |
2462 | /* Frame pointer gets saved into a special location. */ | |
2463 | if (u->Save_SP && i == FP_REGNUM) | |
2464 | continue; | |
2465 | ||
2466 | save_gr |= (1 << i); | |
2467 | } | |
2468 | ||
2469 | /* Turn the Entry_FR field into a bitmask too. */ | |
2470 | save_fr = 0; | |
2471 | for (i = 12; i < u->Entry_FR + 12; i++) | |
2472 | save_fr |= (1 << i); | |
2473 | ||
70e43abe JL |
2474 | /* The frame always represents the value of %sp at entry to the |
2475 | current function (and is thus equivalent to the "saved" stack | |
2476 | pointer. */ | |
cb5f7128 | 2477 | frame_saved_regs->regs[SP_REGNUM] = frame_info->frame; |
70e43abe | 2478 | |
c598654a JL |
2479 | /* Loop until we find everything of interest or hit a branch. |
2480 | ||
2481 | For unoptimized GCC code and for any HP CC code this will never ever | |
2482 | examine any user instructions. | |
2483 | ||
2484 | For optimzied GCC code we're faced with problems. GCC will schedule | |
2485 | its prologue and make prologue instructions available for delay slot | |
2486 | filling. The end result is user code gets mixed in with the prologue | |
2487 | and a prologue instruction may be in the delay slot of the first branch | |
2488 | or call. | |
2489 | ||
2490 | Some unexpected things are expected with debugging optimized code, so | |
2491 | we allow this routine to walk past user instructions in optimized | |
2492 | GCC code. */ | |
2493 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
2494 | { | |
2495 | status = target_read_memory (pc, buf, 4); | |
2496 | inst = extract_unsigned_integer (buf, 4); | |
2497 | ||
2498 | /* Yow! */ | |
2499 | if (status != 0) | |
2500 | return; | |
2501 | ||
2502 | /* Note the interesting effects of this instruction. */ | |
2503 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
2504 | ||
2505 | /* There is only one instruction used for saving RP into the stack. */ | |
2506 | if (inst == 0x6bc23fd9) | |
2507 | { | |
2508 | save_rp = 0; | |
cb5f7128 | 2509 | frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20; |
c598654a JL |
2510 | } |
2511 | ||
70e43abe JL |
2512 | /* Just note that we found the save of SP into the stack. The |
2513 | value for frame_saved_regs was computed above. */ | |
c598654a | 2514 | if ((inst & 0xffffc000) == 0x6fc10000) |
70e43abe | 2515 | save_sp = 0; |
c598654a JL |
2516 | |
2517 | /* Account for general and floating-point register saves. */ | |
2518 | reg = inst_saves_gr (inst); | |
2519 | if (reg >= 3 && reg <= 18 | |
2520 | && (!u->Save_SP || reg != FP_REGNUM)) | |
2521 | { | |
2522 | save_gr &= ~(1 << reg); | |
2523 | ||
2524 | /* stwm with a positive displacement is a *post modify*. */ | |
2525 | if ((inst >> 26) == 0x1b | |
2526 | && extract_14 (inst) >= 0) | |
cb5f7128 | 2527 | frame_saved_regs->regs[reg] = frame_info->frame; |
c598654a JL |
2528 | else |
2529 | { | |
2530 | /* Handle code with and without frame pointers. */ | |
2531 | if (u->Save_SP) | |
2532 | frame_saved_regs->regs[reg] | |
cb5f7128 | 2533 | = frame_info->frame + extract_14 (inst); |
c598654a JL |
2534 | else |
2535 | frame_saved_regs->regs[reg] | |
cb5f7128 | 2536 | = frame_info->frame + (u->Total_frame_size << 3) |
c598654a JL |
2537 | + extract_14 (inst); |
2538 | } | |
2539 | } | |
2540 | ||
2541 | ||
2542 | /* GCC handles callee saved FP regs a little differently. | |
2543 | ||
2544 | It emits an instruction to put the value of the start of | |
2545 | the FP store area into %r1. It then uses fstds,ma with | |
2546 | a basereg of %r1 for the stores. | |
2547 | ||
2548 | HP CC emits them at the current stack pointer modifying | |
2549 | the stack pointer as it stores each register. */ | |
2550 | ||
2551 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
2552 | if ((inst & 0xffffc000) == 0x34610000 | |
2553 | || (inst & 0xffffc000) == 0x37c10000) | |
2554 | fp_loc = extract_14 (inst); | |
2555 | ||
2556 | reg = inst_saves_fr (inst); | |
2557 | if (reg >= 12 && reg <= 21) | |
2558 | { | |
2559 | /* Note +4 braindamage below is necessary because the FP status | |
2560 | registers are internally 8 registers rather than the expected | |
2561 | 4 registers. */ | |
2562 | save_fr &= ~(1 << reg); | |
2563 | if (fp_loc == -1) | |
2564 | { | |
2565 | /* 1st HP CC FP register store. After this instruction | |
2566 | we've set enough state that the GCC and HPCC code are | |
2567 | both handled in the same manner. */ | |
cb5f7128 | 2568 | frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame; |
c598654a JL |
2569 | fp_loc = 8; |
2570 | } | |
2571 | else | |
2572 | { | |
2573 | frame_saved_regs->regs[reg + FP0_REGNUM + 4] | |
cb5f7128 | 2574 | = frame_info->frame + fp_loc; |
c598654a JL |
2575 | fp_loc += 8; |
2576 | } | |
2577 | } | |
2578 | ||
2579 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
2580 | instruction is in the delay slot of the first call/branch. */ | |
2581 | if (is_branch (inst)) | |
2582 | break; | |
2583 | ||
2584 | /* Bump the PC. */ | |
2585 | pc += 4; | |
2586 | } | |
2587 | } | |
2588 | ||
63757ecd JK |
2589 | #ifdef MAINTENANCE_CMDS |
2590 | ||
66a1aa07 SG |
2591 | static void |
2592 | unwind_command (exp, from_tty) | |
2593 | char *exp; | |
2594 | int from_tty; | |
2595 | { | |
2596 | CORE_ADDR address; | |
2597 | union | |
2598 | { | |
2599 | int *foo; | |
2600 | struct unwind_table_entry *u; | |
2601 | } xxx; | |
2602 | ||
2603 | /* If we have an expression, evaluate it and use it as the address. */ | |
2604 | ||
2605 | if (exp != 0 && *exp != 0) | |
2606 | address = parse_and_eval_address (exp); | |
2607 | else | |
2608 | return; | |
2609 | ||
2610 | xxx.u = find_unwind_entry (address); | |
2611 | ||
2612 | if (!xxx.u) | |
2613 | { | |
199b2450 | 2614 | printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address); |
66a1aa07 SG |
2615 | return; |
2616 | } | |
2617 | ||
199b2450 | 2618 | printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2], |
66a1aa07 SG |
2619 | xxx.foo[3]); |
2620 | } | |
976bb0be | 2621 | #endif /* MAINTENANCE_CMDS */ |
63757ecd JK |
2622 | |
2623 | void | |
2624 | _initialize_hppa_tdep () | |
2625 | { | |
18b46e7c SS |
2626 | tm_print_insn = print_insn_hppa; |
2627 | ||
976bb0be | 2628 | #ifdef MAINTENANCE_CMDS |
63757ecd JK |
2629 | add_cmd ("unwind", class_maintenance, unwind_command, |
2630 | "Print unwind table entry at given address.", | |
2631 | &maintenanceprintlist); | |
63757ecd | 2632 | #endif /* MAINTENANCE_CMDS */ |
976bb0be | 2633 | } |