]>
Commit | Line | Data |
---|---|---|
669caa9c SS |
1 | /* Target-dependent code for the HP PA architecture, for GDB. |
2 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994 | |
3 | Free Software Foundation, Inc. | |
66a1aa07 SG |
4 | |
5 | Contributed by the Center for Software Science at the | |
6 | University of Utah ([email protected]). | |
7 | ||
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
23 | ||
24 | #include "defs.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "value.h" | |
28 | ||
29 | /* For argument passing to the inferior */ | |
30 | #include "symtab.h" | |
31 | ||
32 | #ifdef USG | |
33 | #include <sys/types.h> | |
34 | #endif | |
35 | ||
36 | #include <sys/param.h> | |
37 | #include <sys/dir.h> | |
38 | #include <signal.h> | |
66a1aa07 SG |
39 | |
40 | #ifdef COFF_ENCAPSULATE | |
41 | #include "a.out.encap.h" | |
42 | #else | |
66a1aa07 SG |
43 | #endif |
44 | #ifndef N_SET_MAGIC | |
45 | #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val)) | |
46 | #endif | |
47 | ||
48 | /*#include <sys/user.h> After a.out.h */ | |
49 | #include <sys/file.h> | |
50 | #include <sys/stat.h> | |
66a1aa07 SG |
51 | #include "wait.h" |
52 | ||
53 | #include "gdbcore.h" | |
54 | #include "gdbcmd.h" | |
55 | #include "target.h" | |
56 | #include "symfile.h" | |
57 | #include "objfiles.h" | |
58 | ||
669caa9c SS |
59 | static int restore_pc_queue PARAMS ((struct frame_saved_regs *)); |
60 | ||
61 | static int hppa_alignof PARAMS ((struct type *)); | |
62 | ||
63 | CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *)); | |
64 | ||
c598654a | 65 | static int prologue_inst_adjust_sp PARAMS ((unsigned long)); |
669caa9c | 66 | |
c598654a | 67 | static int is_branch PARAMS ((unsigned long)); |
669caa9c | 68 | |
c598654a | 69 | static int inst_saves_gr PARAMS ((unsigned long)); |
669caa9c | 70 | |
c598654a | 71 | static int inst_saves_fr PARAMS ((unsigned long)); |
669caa9c | 72 | |
70e43abe | 73 | static int pc_in_interrupt_handler PARAMS ((CORE_ADDR)); |
669caa9c | 74 | |
70e43abe | 75 | static int pc_in_linker_stub PARAMS ((CORE_ADDR)); |
669caa9c SS |
76 | |
77 | static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *, | |
f81eee9d | 78 | const struct unwind_table_entry *)); |
669caa9c | 79 | |
c5152d42 | 80 | static void read_unwind_info PARAMS ((struct objfile *)); |
669caa9c | 81 | |
c5152d42 JL |
82 | static void internalize_unwinds PARAMS ((struct objfile *, |
83 | struct unwind_table_entry *, | |
84 | asection *, unsigned int, | |
d782a995 | 85 | unsigned int)); |
66a1aa07 SG |
86 | |
87 | \f | |
88 | /* Routines to extract various sized constants out of hppa | |
89 | instructions. */ | |
90 | ||
91 | /* This assumes that no garbage lies outside of the lower bits of | |
92 | value. */ | |
93 | ||
94 | int | |
95 | sign_extend (val, bits) | |
96 | unsigned val, bits; | |
97 | { | |
98 | return (int)(val >> bits - 1 ? (-1 << bits) | val : val); | |
99 | } | |
100 | ||
101 | /* For many immediate values the sign bit is the low bit! */ | |
102 | ||
103 | int | |
104 | low_sign_extend (val, bits) | |
105 | unsigned val, bits; | |
106 | { | |
107 | return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); | |
108 | } | |
109 | /* extract the immediate field from a ld{bhw}s instruction */ | |
110 | ||
111 | unsigned | |
112 | get_field (val, from, to) | |
113 | unsigned val, from, to; | |
114 | { | |
115 | val = val >> 31 - to; | |
116 | return val & ((1 << 32 - from) - 1); | |
117 | } | |
118 | ||
119 | unsigned | |
120 | set_field (val, from, to, new_val) | |
121 | unsigned *val, from, to; | |
122 | { | |
123 | unsigned mask = ~((1 << (to - from + 1)) << (31 - from)); | |
124 | return *val = *val & mask | (new_val << (31 - from)); | |
125 | } | |
126 | ||
127 | /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */ | |
128 | ||
129 | extract_3 (word) | |
130 | unsigned word; | |
131 | { | |
132 | return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17); | |
133 | } | |
134 | ||
135 | extract_5_load (word) | |
136 | unsigned word; | |
137 | { | |
138 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
139 | } | |
140 | ||
141 | /* extract the immediate field from a st{bhw}s instruction */ | |
142 | ||
143 | int | |
144 | extract_5_store (word) | |
145 | unsigned word; | |
146 | { | |
147 | return low_sign_extend (word & MASK_5, 5); | |
148 | } | |
149 | ||
68c8d698 SG |
150 | /* extract the immediate field from a break instruction */ |
151 | ||
152 | unsigned | |
153 | extract_5r_store (word) | |
154 | unsigned word; | |
155 | { | |
156 | return (word & MASK_5); | |
157 | } | |
158 | ||
159 | /* extract the immediate field from a {sr}sm instruction */ | |
160 | ||
161 | unsigned | |
162 | extract_5R_store (word) | |
163 | unsigned word; | |
164 | { | |
165 | return (word >> 16 & MASK_5); | |
166 | } | |
167 | ||
66a1aa07 SG |
168 | /* extract an 11 bit immediate field */ |
169 | ||
170 | int | |
171 | extract_11 (word) | |
172 | unsigned word; | |
173 | { | |
174 | return low_sign_extend (word & MASK_11, 11); | |
175 | } | |
176 | ||
177 | /* extract a 14 bit immediate field */ | |
178 | ||
179 | int | |
180 | extract_14 (word) | |
181 | unsigned word; | |
182 | { | |
183 | return low_sign_extend (word & MASK_14, 14); | |
184 | } | |
185 | ||
186 | /* deposit a 14 bit constant in a word */ | |
187 | ||
188 | unsigned | |
189 | deposit_14 (opnd, word) | |
190 | int opnd; | |
191 | unsigned word; | |
192 | { | |
193 | unsigned sign = (opnd < 0 ? 1 : 0); | |
194 | ||
195 | return word | ((unsigned)opnd << 1 & MASK_14) | sign; | |
196 | } | |
197 | ||
198 | /* extract a 21 bit constant */ | |
199 | ||
200 | int | |
201 | extract_21 (word) | |
202 | unsigned word; | |
203 | { | |
204 | int val; | |
205 | ||
206 | word &= MASK_21; | |
207 | word <<= 11; | |
208 | val = GET_FIELD (word, 20, 20); | |
209 | val <<= 11; | |
210 | val |= GET_FIELD (word, 9, 19); | |
211 | val <<= 2; | |
212 | val |= GET_FIELD (word, 5, 6); | |
213 | val <<= 5; | |
214 | val |= GET_FIELD (word, 0, 4); | |
215 | val <<= 2; | |
216 | val |= GET_FIELD (word, 7, 8); | |
217 | return sign_extend (val, 21) << 11; | |
218 | } | |
219 | ||
220 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
221 | usually the top 21 bits of a 32 bit constant, we assume that only | |
222 | the low 21 bits of opnd are relevant */ | |
223 | ||
224 | unsigned | |
225 | deposit_21 (opnd, word) | |
226 | unsigned opnd, word; | |
227 | { | |
228 | unsigned val = 0; | |
229 | ||
230 | val |= GET_FIELD (opnd, 11 + 14, 11 + 18); | |
231 | val <<= 2; | |
232 | val |= GET_FIELD (opnd, 11 + 12, 11 + 13); | |
233 | val <<= 2; | |
234 | val |= GET_FIELD (opnd, 11 + 19, 11 + 20); | |
235 | val <<= 11; | |
236 | val |= GET_FIELD (opnd, 11 + 1, 11 + 11); | |
237 | val <<= 1; | |
238 | val |= GET_FIELD (opnd, 11 + 0, 11 + 0); | |
239 | return word | val; | |
240 | } | |
241 | ||
242 | /* extract a 12 bit constant from branch instructions */ | |
243 | ||
244 | int | |
245 | extract_12 (word) | |
246 | unsigned word; | |
247 | { | |
248 | return sign_extend (GET_FIELD (word, 19, 28) | | |
249 | GET_FIELD (word, 29, 29) << 10 | | |
250 | (word & 0x1) << 11, 12) << 2; | |
251 | } | |
252 | ||
253 | /* extract a 17 bit constant from branch instructions, returning the | |
254 | 19 bit signed value. */ | |
255 | ||
256 | int | |
257 | extract_17 (word) | |
258 | unsigned word; | |
259 | { | |
260 | return sign_extend (GET_FIELD (word, 19, 28) | | |
261 | GET_FIELD (word, 29, 29) << 10 | | |
262 | GET_FIELD (word, 11, 15) << 11 | | |
263 | (word & 0x1) << 16, 17) << 2; | |
264 | } | |
265 | \f | |
c5152d42 JL |
266 | |
267 | /* Compare the start address for two unwind entries returning 1 if | |
268 | the first address is larger than the second, -1 if the second is | |
269 | larger than the first, and zero if they are equal. */ | |
270 | ||
271 | static int | |
272 | compare_unwind_entries (a, b) | |
f81eee9d JL |
273 | const struct unwind_table_entry *a; |
274 | const struct unwind_table_entry *b; | |
c5152d42 JL |
275 | { |
276 | if (a->region_start > b->region_start) | |
277 | return 1; | |
278 | else if (a->region_start < b->region_start) | |
279 | return -1; | |
280 | else | |
281 | return 0; | |
282 | } | |
283 | ||
284 | static void | |
d782a995 | 285 | internalize_unwinds (objfile, table, section, entries, size) |
c5152d42 JL |
286 | struct objfile *objfile; |
287 | struct unwind_table_entry *table; | |
288 | asection *section; | |
289 | unsigned int entries, size; | |
c5152d42 JL |
290 | { |
291 | /* We will read the unwind entries into temporary memory, then | |
292 | fill in the actual unwind table. */ | |
293 | if (size > 0) | |
294 | { | |
295 | unsigned long tmp; | |
296 | unsigned i; | |
297 | char *buf = alloca (size); | |
298 | ||
299 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); | |
300 | ||
301 | /* Now internalize the information being careful to handle host/target | |
302 | endian issues. */ | |
303 | for (i = 0; i < entries; i++) | |
304 | { | |
305 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
306 | (bfd_byte *)buf); | |
307 | buf += 4; | |
308 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
309 | buf += 4; | |
310 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
311 | buf += 4; | |
312 | table[i].Cannot_unwind = (tmp >> 31) & 0x1;; | |
313 | table[i].Millicode = (tmp >> 30) & 0x1; | |
314 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
315 | table[i].Region_description = (tmp >> 27) & 0x3; | |
316 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
317 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
318 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
319 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
320 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
321 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
322 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
323 | table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1; | |
324 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
325 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
326 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
327 | table[i].reserved2 = (tmp >> 5) & 0xf; | |
328 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
329 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
330 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
331 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
332 | table[i].Cleanup_defined = tmp & 0x1; | |
333 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
334 | buf += 4; | |
335 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
336 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
337 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
338 | table[i].reserved4 = (tmp >> 27) & 0x3; | |
339 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
340 | } | |
341 | } | |
342 | } | |
343 | ||
344 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
345 | the object file. This info is used mainly by find_unwind_entry() to find | |
346 | out the stack frame size and frame pointer used by procedures. We put | |
347 | everything on the psymbol obstack in the objfile so that it automatically | |
348 | gets freed when the objfile is destroyed. */ | |
349 | ||
9c842e0c | 350 | static void |
c5152d42 JL |
351 | read_unwind_info (objfile) |
352 | struct objfile *objfile; | |
353 | { | |
354 | asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec; | |
355 | unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size; | |
356 | unsigned index, unwind_entries, elf_unwind_entries; | |
357 | unsigned stub_entries, total_entries; | |
358 | struct obj_unwind_info *ui; | |
359 | ||
360 | ui = obstack_alloc (&objfile->psymbol_obstack, | |
361 | sizeof (struct obj_unwind_info)); | |
362 | ||
363 | ui->table = NULL; | |
364 | ui->cache = NULL; | |
365 | ui->last = -1; | |
366 | ||
367 | /* Get hooks to all unwind sections. Note there is no linker-stub unwind | |
368 | section in ELF at the moment. */ | |
369 | unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$"); | |
0fc27289 | 370 | elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind"); |
c5152d42 JL |
371 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); |
372 | ||
373 | /* Get sizes and unwind counts for all sections. */ | |
374 | if (unwind_sec) | |
375 | { | |
376 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
377 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
378 | } | |
379 | else | |
380 | { | |
381 | unwind_size = 0; | |
382 | unwind_entries = 0; | |
383 | } | |
384 | ||
385 | if (elf_unwind_sec) | |
386 | { | |
387 | elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec); | |
388 | elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE; | |
389 | } | |
f55179cb JL |
390 | else |
391 | { | |
392 | elf_unwind_size = 0; | |
393 | elf_unwind_entries = 0; | |
394 | } | |
c5152d42 JL |
395 | |
396 | if (stub_unwind_sec) | |
397 | { | |
398 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
399 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
400 | } | |
401 | else | |
402 | { | |
403 | stub_unwind_size = 0; | |
404 | stub_entries = 0; | |
405 | } | |
406 | ||
407 | /* Compute total number of unwind entries and their total size. */ | |
408 | total_entries = unwind_entries + elf_unwind_entries + stub_entries; | |
409 | total_size = total_entries * sizeof (struct unwind_table_entry); | |
410 | ||
411 | /* Allocate memory for the unwind table. */ | |
412 | ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size); | |
413 | ui->last = total_entries - 1; | |
414 | ||
415 | /* Internalize the standard unwind entries. */ | |
416 | index = 0; | |
417 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
418 | unwind_entries, unwind_size); | |
419 | index += unwind_entries; | |
420 | internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec, | |
421 | elf_unwind_entries, elf_unwind_size); | |
422 | index += elf_unwind_entries; | |
423 | ||
424 | /* Now internalize the stub unwind entries. */ | |
425 | if (stub_unwind_size > 0) | |
426 | { | |
427 | unsigned int i; | |
428 | char *buf = alloca (stub_unwind_size); | |
429 | ||
430 | /* Read in the stub unwind entries. */ | |
431 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
432 | 0, stub_unwind_size); | |
433 | ||
434 | /* Now convert them into regular unwind entries. */ | |
435 | for (i = 0; i < stub_entries; i++, index++) | |
436 | { | |
437 | /* Clear out the next unwind entry. */ | |
438 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
439 | ||
440 | /* Convert offset & size into region_start and region_end. | |
441 | Stuff away the stub type into "reserved" fields. */ | |
442 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
443 | (bfd_byte *) buf); | |
444 | buf += 4; | |
445 | ui->table[index].stub_type = bfd_get_8 (objfile->obfd, | |
446 | (bfd_byte *) buf); | |
447 | buf += 2; | |
448 | ui->table[index].region_end | |
449 | = ui->table[index].region_start + 4 * | |
450 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
451 | buf += 2; | |
452 | } | |
453 | ||
454 | } | |
455 | ||
456 | /* Unwind table needs to be kept sorted. */ | |
457 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
458 | compare_unwind_entries); | |
459 | ||
460 | /* Keep a pointer to the unwind information. */ | |
461 | objfile->obj_private = (PTR) ui; | |
462 | } | |
463 | ||
66a1aa07 SG |
464 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all |
465 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
466 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
467 | search of the unwind tables, we depend upon them to be sorted. */ | |
468 | ||
469 | static struct unwind_table_entry * | |
470 | find_unwind_entry(pc) | |
471 | CORE_ADDR pc; | |
472 | { | |
473 | int first, middle, last; | |
474 | struct objfile *objfile; | |
475 | ||
476 | ALL_OBJFILES (objfile) | |
477 | { | |
478 | struct obj_unwind_info *ui; | |
479 | ||
480 | ui = OBJ_UNWIND_INFO (objfile); | |
481 | ||
482 | if (!ui) | |
c5152d42 JL |
483 | { |
484 | read_unwind_info (objfile); | |
485 | ui = OBJ_UNWIND_INFO (objfile); | |
486 | } | |
66a1aa07 SG |
487 | |
488 | /* First, check the cache */ | |
489 | ||
490 | if (ui->cache | |
491 | && pc >= ui->cache->region_start | |
492 | && pc <= ui->cache->region_end) | |
493 | return ui->cache; | |
494 | ||
495 | /* Not in the cache, do a binary search */ | |
496 | ||
497 | first = 0; | |
498 | last = ui->last; | |
499 | ||
500 | while (first <= last) | |
501 | { | |
502 | middle = (first + last) / 2; | |
503 | if (pc >= ui->table[middle].region_start | |
504 | && pc <= ui->table[middle].region_end) | |
505 | { | |
506 | ui->cache = &ui->table[middle]; | |
507 | return &ui->table[middle]; | |
508 | } | |
509 | ||
510 | if (pc < ui->table[middle].region_start) | |
511 | last = middle - 1; | |
512 | else | |
513 | first = middle + 1; | |
514 | } | |
515 | } /* ALL_OBJFILES() */ | |
516 | return NULL; | |
517 | } | |
518 | ||
98c0e047 JL |
519 | /* start-sanitize-hpread */ |
520 | /* Return the adjustment necessary to make for addresses on the stack | |
521 | as presented by hpread.c. | |
522 | ||
523 | This is necessary because of the stack direction on the PA and the | |
524 | bizarre way in which someone (?) decided they wanted to handle | |
525 | frame pointerless code in GDB. */ | |
526 | int | |
527 | hpread_adjust_stack_address (func_addr) | |
528 | CORE_ADDR func_addr; | |
529 | { | |
530 | struct unwind_table_entry *u; | |
531 | ||
532 | u = find_unwind_entry (func_addr); | |
533 | if (!u) | |
534 | return 0; | |
535 | else | |
536 | return u->Total_frame_size << 3; | |
537 | } | |
538 | /* end-sanitize-hpread */ | |
539 | ||
70e43abe JL |
540 | /* Called to determine if PC is in an interrupt handler of some |
541 | kind. */ | |
542 | ||
543 | static int | |
544 | pc_in_interrupt_handler (pc) | |
545 | CORE_ADDR pc; | |
546 | { | |
547 | struct unwind_table_entry *u; | |
548 | struct minimal_symbol *msym_us; | |
549 | ||
550 | u = find_unwind_entry (pc); | |
551 | if (!u) | |
552 | return 0; | |
553 | ||
554 | /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though | |
555 | its frame isn't a pure interrupt frame. Deal with this. */ | |
556 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
557 | ||
558 | return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)); | |
559 | } | |
560 | ||
5ac7f56e JK |
561 | /* Called when no unwind descriptor was found for PC. Returns 1 if it |
562 | appears that PC is in a linker stub. */ | |
5ac7f56e JK |
563 | |
564 | static int | |
565 | pc_in_linker_stub (pc) | |
566 | CORE_ADDR pc; | |
567 | { | |
5ac7f56e JK |
568 | int found_magic_instruction = 0; |
569 | int i; | |
08ecd8f3 JK |
570 | char buf[4]; |
571 | ||
572 | /* If unable to read memory, assume pc is not in a linker stub. */ | |
573 | if (target_read_memory (pc, buf, 4) != 0) | |
574 | return 0; | |
5ac7f56e | 575 | |
d08c6f4c JK |
576 | /* We are looking for something like |
577 | ||
578 | ; $$dyncall jams RP into this special spot in the frame (RP') | |
579 | ; before calling the "call stub" | |
580 | ldw -18(sp),rp | |
581 | ||
582 | ldsid (rp),r1 ; Get space associated with RP into r1 | |
583 | mtsp r1,sp ; Move it into space register 0 | |
584 | be,n 0(sr0),rp) ; back to your regularly scheduled program | |
585 | */ | |
586 | ||
5ac7f56e JK |
587 | /* Maximum known linker stub size is 4 instructions. Search forward |
588 | from the given PC, then backward. */ | |
589 | for (i = 0; i < 4; i++) | |
590 | { | |
6e35b037 | 591 | /* If we hit something with an unwind, stop searching this direction. */ |
5ac7f56e JK |
592 | |
593 | if (find_unwind_entry (pc + i * 4) != 0) | |
594 | break; | |
595 | ||
596 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
597 | return from a cross-space function call. */ | |
598 | if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) | |
599 | { | |
600 | found_magic_instruction = 1; | |
601 | break; | |
602 | } | |
603 | /* Add code to handle long call/branch and argument relocation stubs | |
604 | here. */ | |
605 | } | |
606 | ||
607 | if (found_magic_instruction != 0) | |
608 | return 1; | |
609 | ||
610 | /* Now look backward. */ | |
611 | for (i = 0; i < 4; i++) | |
612 | { | |
6e35b037 | 613 | /* If we hit something with an unwind, stop searching this direction. */ |
5ac7f56e JK |
614 | |
615 | if (find_unwind_entry (pc - i * 4) != 0) | |
616 | break; | |
617 | ||
618 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
619 | return from a cross-space function call. */ | |
620 | if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) | |
621 | { | |
622 | found_magic_instruction = 1; | |
623 | break; | |
624 | } | |
625 | /* Add code to handle long call/branch and argument relocation stubs | |
626 | here. */ | |
627 | } | |
628 | return found_magic_instruction; | |
629 | } | |
630 | ||
66a1aa07 SG |
631 | static int |
632 | find_return_regnum(pc) | |
633 | CORE_ADDR pc; | |
634 | { | |
635 | struct unwind_table_entry *u; | |
636 | ||
637 | u = find_unwind_entry (pc); | |
638 | ||
639 | if (!u) | |
640 | return RP_REGNUM; | |
641 | ||
642 | if (u->Millicode) | |
643 | return 31; | |
644 | ||
645 | return RP_REGNUM; | |
646 | } | |
647 | ||
5ac7f56e | 648 | /* Return size of frame, or -1 if we should use a frame pointer. */ |
66a1aa07 | 649 | int |
70e43abe | 650 | find_proc_framesize (pc) |
66a1aa07 SG |
651 | CORE_ADDR pc; |
652 | { | |
653 | struct unwind_table_entry *u; | |
70e43abe | 654 | struct minimal_symbol *msym_us; |
66a1aa07 | 655 | |
66a1aa07 SG |
656 | u = find_unwind_entry (pc); |
657 | ||
658 | if (!u) | |
5ac7f56e JK |
659 | { |
660 | if (pc_in_linker_stub (pc)) | |
661 | /* Linker stubs have a zero size frame. */ | |
662 | return 0; | |
663 | else | |
664 | return -1; | |
665 | } | |
66a1aa07 | 666 | |
70e43abe JL |
667 | msym_us = lookup_minimal_symbol_by_pc (pc); |
668 | ||
669 | /* If Save_SP is set, and we're not in an interrupt or signal caller, | |
670 | then we have a frame pointer. Use it. */ | |
671 | if (u->Save_SP && !pc_in_interrupt_handler (pc) | |
672 | && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us))) | |
eabbe766 JK |
673 | return -1; |
674 | ||
66a1aa07 SG |
675 | return u->Total_frame_size << 3; |
676 | } | |
677 | ||
5ac7f56e JK |
678 | /* Return offset from sp at which rp is saved, or 0 if not saved. */ |
679 | static int rp_saved PARAMS ((CORE_ADDR)); | |
680 | ||
681 | static int | |
682 | rp_saved (pc) | |
683 | CORE_ADDR pc; | |
66a1aa07 SG |
684 | { |
685 | struct unwind_table_entry *u; | |
686 | ||
687 | u = find_unwind_entry (pc); | |
688 | ||
689 | if (!u) | |
5ac7f56e JK |
690 | { |
691 | if (pc_in_linker_stub (pc)) | |
692 | /* This is the so-called RP'. */ | |
693 | return -24; | |
694 | else | |
695 | return 0; | |
696 | } | |
66a1aa07 SG |
697 | |
698 | if (u->Save_RP) | |
5ac7f56e | 699 | return -20; |
c7f3b703 JL |
700 | else if (u->stub_type != 0) |
701 | { | |
702 | switch (u->stub_type) | |
703 | { | |
704 | case EXPORT: | |
705 | return -24; | |
706 | case PARAMETER_RELOCATION: | |
707 | return -8; | |
708 | default: | |
709 | return 0; | |
710 | } | |
711 | } | |
66a1aa07 SG |
712 | else |
713 | return 0; | |
714 | } | |
715 | \f | |
8fa74880 SG |
716 | int |
717 | frameless_function_invocation (frame) | |
669caa9c | 718 | struct frame_info *frame; |
8fa74880 | 719 | { |
b8ec9a79 | 720 | struct unwind_table_entry *u; |
8fa74880 | 721 | |
b8ec9a79 | 722 | u = find_unwind_entry (frame->pc); |
8fa74880 | 723 | |
b8ec9a79 | 724 | if (u == 0) |
7f43b9b7 | 725 | return 0; |
b8ec9a79 | 726 | |
c7f3b703 | 727 | return (u->Total_frame_size == 0 && u->stub_type == 0); |
8fa74880 SG |
728 | } |
729 | ||
66a1aa07 SG |
730 | CORE_ADDR |
731 | saved_pc_after_call (frame) | |
669caa9c | 732 | struct frame_info *frame; |
66a1aa07 SG |
733 | { |
734 | int ret_regnum; | |
edd86fb0 JL |
735 | CORE_ADDR pc; |
736 | struct unwind_table_entry *u; | |
66a1aa07 SG |
737 | |
738 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
edd86fb0 JL |
739 | pc = read_register (ret_regnum) & ~0x3; |
740 | ||
741 | /* If PC is in a linker stub, then we need to dig the address | |
742 | the stub will return to out of the stack. */ | |
743 | u = find_unwind_entry (pc); | |
744 | if (u && u->stub_type != 0) | |
745 | return frame_saved_pc (frame); | |
746 | else | |
747 | return pc; | |
66a1aa07 SG |
748 | } |
749 | \f | |
750 | CORE_ADDR | |
751 | frame_saved_pc (frame) | |
669caa9c | 752 | struct frame_info *frame; |
66a1aa07 SG |
753 | { |
754 | CORE_ADDR pc = get_frame_pc (frame); | |
7f43b9b7 | 755 | struct unwind_table_entry *u; |
66a1aa07 | 756 | |
70e43abe JL |
757 | /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner |
758 | at the base of the frame in an interrupt handler. Registers within | |
759 | are saved in the exact same order as GDB numbers registers. How | |
760 | convienent. */ | |
761 | if (pc_in_interrupt_handler (pc)) | |
762 | return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3; | |
763 | ||
764 | /* Deal with signal handler caller frames too. */ | |
765 | if (frame->signal_handler_caller) | |
766 | { | |
767 | CORE_ADDR rp; | |
768 | FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); | |
769 | return rp; | |
770 | } | |
771 | ||
8fa74880 | 772 | if (frameless_function_invocation (frame)) |
66a1aa07 SG |
773 | { |
774 | int ret_regnum; | |
775 | ||
776 | ret_regnum = find_return_regnum (pc); | |
777 | ||
70e43abe JL |
778 | /* If the next frame is an interrupt frame or a signal |
779 | handler caller, then we need to look in the saved | |
780 | register area to get the return pointer (the values | |
781 | in the registers may not correspond to anything useful). */ | |
782 | if (frame->next | |
783 | && (frame->next->signal_handler_caller | |
784 | || pc_in_interrupt_handler (frame->next->pc))) | |
785 | { | |
70e43abe JL |
786 | struct frame_saved_regs saved_regs; |
787 | ||
669caa9c | 788 | get_frame_saved_regs (frame, &saved_regs); |
471fb8d8 | 789 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) |
7f43b9b7 | 790 | pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; |
70e43abe | 791 | else |
7f43b9b7 | 792 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; |
70e43abe JL |
793 | } |
794 | else | |
7f43b9b7 | 795 | pc = read_register (ret_regnum) & ~0x3; |
66a1aa07 | 796 | } |
66a1aa07 | 797 | else |
5ac7f56e | 798 | { |
edd86fb0 | 799 | int rp_offset; |
5ac7f56e | 800 | |
edd86fb0 JL |
801 | restart: |
802 | rp_offset = rp_saved (pc); | |
70e43abe JL |
803 | /* Similar to code in frameless function case. If the next |
804 | frame is a signal or interrupt handler, then dig the right | |
805 | information out of the saved register info. */ | |
806 | if (rp_offset == 0 | |
807 | && frame->next | |
808 | && (frame->next->signal_handler_caller | |
809 | || pc_in_interrupt_handler (frame->next->pc))) | |
810 | { | |
70e43abe JL |
811 | struct frame_saved_regs saved_regs; |
812 | ||
669caa9c | 813 | get_frame_saved_regs (frame->next, &saved_regs); |
471fb8d8 | 814 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) |
7f43b9b7 | 815 | pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; |
70e43abe | 816 | else |
7f43b9b7 | 817 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; |
70e43abe JL |
818 | } |
819 | else if (rp_offset == 0) | |
7f43b9b7 | 820 | pc = read_register (RP_REGNUM) & ~0x3; |
5ac7f56e | 821 | else |
7f43b9b7 | 822 | pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3; |
5ac7f56e | 823 | } |
7f43b9b7 JL |
824 | |
825 | /* If PC is inside a linker stub, then dig out the address the stub | |
826 | will return to. */ | |
827 | u = find_unwind_entry (pc); | |
828 | if (u && u->stub_type != 0) | |
829 | goto restart; | |
830 | ||
831 | return pc; | |
66a1aa07 SG |
832 | } |
833 | \f | |
834 | /* We need to correct the PC and the FP for the outermost frame when we are | |
835 | in a system call. */ | |
836 | ||
837 | void | |
838 | init_extra_frame_info (fromleaf, frame) | |
839 | int fromleaf; | |
840 | struct frame_info *frame; | |
841 | { | |
842 | int flags; | |
843 | int framesize; | |
844 | ||
192c3eeb | 845 | if (frame->next && !fromleaf) |
66a1aa07 SG |
846 | return; |
847 | ||
192c3eeb JL |
848 | /* If the next frame represents a frameless function invocation |
849 | then we have to do some adjustments that are normally done by | |
850 | FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */ | |
851 | if (fromleaf) | |
852 | { | |
853 | /* Find the framesize of *this* frame without peeking at the PC | |
854 | in the current frame structure (it isn't set yet). */ | |
855 | framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame))); | |
856 | ||
857 | /* Now adjust our base frame accordingly. If we have a frame pointer | |
858 | use it, else subtract the size of this frame from the current | |
859 | frame. (we always want frame->frame to point at the lowest address | |
860 | in the frame). */ | |
861 | if (framesize == -1) | |
862 | frame->frame = read_register (FP_REGNUM); | |
863 | else | |
864 | frame->frame -= framesize; | |
865 | return; | |
866 | } | |
867 | ||
66a1aa07 SG |
868 | flags = read_register (FLAGS_REGNUM); |
869 | if (flags & 2) /* In system call? */ | |
870 | frame->pc = read_register (31) & ~0x3; | |
871 | ||
192c3eeb JL |
872 | /* The outermost frame is always derived from PC-framesize |
873 | ||
874 | One might think frameless innermost frames should have | |
875 | a frame->frame that is the same as the parent's frame->frame. | |
876 | That is wrong; frame->frame in that case should be the *high* | |
877 | address of the parent's frame. It's complicated as hell to | |
878 | explain, but the parent *always* creates some stack space for | |
879 | the child. So the child actually does have a frame of some | |
880 | sorts, and its base is the high address in its parent's frame. */ | |
66a1aa07 SG |
881 | framesize = find_proc_framesize(frame->pc); |
882 | if (framesize == -1) | |
883 | frame->frame = read_register (FP_REGNUM); | |
884 | else | |
885 | frame->frame = read_register (SP_REGNUM) - framesize; | |
66a1aa07 SG |
886 | } |
887 | \f | |
8966221d JK |
888 | /* Given a GDB frame, determine the address of the calling function's frame. |
889 | This will be used to create a new GDB frame struct, and then | |
890 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
891 | ||
892 | This may involve searching through prologues for several functions | |
893 | at boundaries where GCC calls HP C code, or where code which has | |
894 | a frame pointer calls code without a frame pointer. */ | |
8966221d | 895 | |
669caa9c | 896 | CORE_ADDR |
66a1aa07 SG |
897 | frame_chain (frame) |
898 | struct frame_info *frame; | |
899 | { | |
8966221d JK |
900 | int my_framesize, caller_framesize; |
901 | struct unwind_table_entry *u; | |
70e43abe JL |
902 | CORE_ADDR frame_base; |
903 | ||
904 | /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These | |
905 | are easy; at *sp we have a full save state strucutre which we can | |
906 | pull the old stack pointer from. Also see frame_saved_pc for | |
907 | code to dig a saved PC out of the save state structure. */ | |
908 | if (pc_in_interrupt_handler (frame->pc)) | |
909 | frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4); | |
910 | else if (frame->signal_handler_caller) | |
911 | { | |
912 | FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); | |
913 | } | |
914 | else | |
915 | frame_base = frame->frame; | |
66a1aa07 | 916 | |
8966221d JK |
917 | /* Get frame sizes for the current frame and the frame of the |
918 | caller. */ | |
919 | my_framesize = find_proc_framesize (frame->pc); | |
920 | caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame)); | |
66a1aa07 | 921 | |
8966221d JK |
922 | /* If caller does not have a frame pointer, then its frame |
923 | can be found at current_frame - caller_framesize. */ | |
924 | if (caller_framesize != -1) | |
70e43abe | 925 | return frame_base - caller_framesize; |
8966221d JK |
926 | |
927 | /* Both caller and callee have frame pointers and are GCC compiled | |
928 | (SAVE_SP bit in unwind descriptor is on for both functions. | |
929 | The previous frame pointer is found at the top of the current frame. */ | |
930 | if (caller_framesize == -1 && my_framesize == -1) | |
70e43abe | 931 | return read_memory_integer (frame_base, 4); |
8966221d JK |
932 | |
933 | /* Caller has a frame pointer, but callee does not. This is a little | |
934 | more difficult as GCC and HP C lay out locals and callee register save | |
935 | areas very differently. | |
936 | ||
937 | The previous frame pointer could be in a register, or in one of | |
938 | several areas on the stack. | |
939 | ||
940 | Walk from the current frame to the innermost frame examining | |
2f8c3639 | 941 | unwind descriptors to determine if %r3 ever gets saved into the |
8966221d | 942 | stack. If so return whatever value got saved into the stack. |
2f8c3639 | 943 | If it was never saved in the stack, then the value in %r3 is still |
8966221d JK |
944 | valid, so use it. |
945 | ||
2f8c3639 | 946 | We use information from unwind descriptors to determine if %r3 |
8966221d JK |
947 | is saved into the stack (Entry_GR field has this information). */ |
948 | ||
949 | while (frame) | |
950 | { | |
951 | u = find_unwind_entry (frame->pc); | |
952 | ||
953 | if (!u) | |
954 | { | |
01a03545 JK |
955 | /* We could find this information by examining prologues. I don't |
956 | think anyone has actually written any tools (not even "strip") | |
957 | which leave them out of an executable, so maybe this is a moot | |
958 | point. */ | |
8966221d JK |
959 | warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc); |
960 | return 0; | |
961 | } | |
962 | ||
963 | /* Entry_GR specifies the number of callee-saved general registers | |
2f8c3639 | 964 | saved in the stack. It starts at %r3, so %r3 would be 1. */ |
70e43abe JL |
965 | if (u->Entry_GR >= 1 || u->Save_SP |
966 | || frame->signal_handler_caller | |
967 | || pc_in_interrupt_handler (frame->pc)) | |
8966221d JK |
968 | break; |
969 | else | |
970 | frame = frame->next; | |
971 | } | |
972 | ||
973 | if (frame) | |
974 | { | |
975 | /* We may have walked down the chain into a function with a frame | |
976 | pointer. */ | |
70e43abe JL |
977 | if (u->Save_SP |
978 | && !frame->signal_handler_caller | |
979 | && !pc_in_interrupt_handler (frame->pc)) | |
8966221d | 980 | return read_memory_integer (frame->frame, 4); |
2f8c3639 | 981 | /* %r3 was saved somewhere in the stack. Dig it out. */ |
8966221d | 982 | else |
c598654a | 983 | { |
c598654a JL |
984 | struct frame_saved_regs saved_regs; |
985 | ||
669caa9c | 986 | get_frame_saved_regs (frame, &saved_regs); |
c598654a JL |
987 | return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); |
988 | } | |
8966221d JK |
989 | } |
990 | else | |
991 | { | |
2f8c3639 | 992 | /* The value in %r3 was never saved into the stack (thus %r3 still |
8966221d | 993 | holds the value of the previous frame pointer). */ |
2f8c3639 | 994 | return read_register (FP_REGNUM); |
8966221d JK |
995 | } |
996 | } | |
66a1aa07 | 997 | |
66a1aa07 SG |
998 | \f |
999 | /* To see if a frame chain is valid, see if the caller looks like it | |
1000 | was compiled with gcc. */ | |
1001 | ||
1002 | int | |
1003 | frame_chain_valid (chain, thisframe) | |
669caa9c SS |
1004 | CORE_ADDR chain; |
1005 | struct frame_info *thisframe; | |
66a1aa07 | 1006 | { |
247145e6 JK |
1007 | struct minimal_symbol *msym_us; |
1008 | struct minimal_symbol *msym_start; | |
70e43abe | 1009 | struct unwind_table_entry *u, *next_u = NULL; |
669caa9c | 1010 | struct frame_info *next; |
66a1aa07 SG |
1011 | |
1012 | if (!chain) | |
1013 | return 0; | |
1014 | ||
b8ec9a79 | 1015 | u = find_unwind_entry (thisframe->pc); |
4b01383b | 1016 | |
70e43abe JL |
1017 | if (u == NULL) |
1018 | return 1; | |
1019 | ||
247145e6 JK |
1020 | /* We can't just check that the same of msym_us is "_start", because |
1021 | someone idiotically decided that they were going to make a Ltext_end | |
1022 | symbol with the same address. This Ltext_end symbol is totally | |
1023 | indistinguishable (as nearly as I can tell) from the symbol for a function | |
1024 | which is (legitimately, since it is in the user's namespace) | |
1025 | named Ltext_end, so we can't just ignore it. */ | |
1026 | msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe)); | |
1027 | msym_start = lookup_minimal_symbol ("_start", NULL); | |
1028 | if (msym_us | |
1029 | && msym_start | |
1030 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
b8ec9a79 | 1031 | return 0; |
5ac7f56e | 1032 | |
70e43abe JL |
1033 | next = get_next_frame (thisframe); |
1034 | if (next) | |
1035 | next_u = find_unwind_entry (next->pc); | |
5ac7f56e | 1036 | |
70e43abe JL |
1037 | /* If this frame does not save SP, has no stack, isn't a stub, |
1038 | and doesn't "call" an interrupt routine or signal handler caller, | |
1039 | then its not valid. */ | |
1040 | if (u->Save_SP || u->Total_frame_size || u->stub_type != 0 | |
1041 | || (thisframe->next && thisframe->next->signal_handler_caller) | |
1042 | || (next_u && next_u->HP_UX_interrupt_marker)) | |
b8ec9a79 | 1043 | return 1; |
5ac7f56e | 1044 | |
b8ec9a79 JK |
1045 | if (pc_in_linker_stub (thisframe->pc)) |
1046 | return 1; | |
4b01383b | 1047 | |
b8ec9a79 | 1048 | return 0; |
66a1aa07 SG |
1049 | } |
1050 | ||
66a1aa07 SG |
1051 | /* |
1052 | * These functions deal with saving and restoring register state | |
1053 | * around a function call in the inferior. They keep the stack | |
1054 | * double-word aligned; eventually, on an hp700, the stack will have | |
1055 | * to be aligned to a 64-byte boundary. | |
1056 | */ | |
1057 | ||
1058 | int | |
1059 | push_dummy_frame () | |
1060 | { | |
1061 | register CORE_ADDR sp; | |
1062 | register int regnum; | |
1063 | int int_buffer; | |
1064 | double freg_buffer; | |
1065 | ||
1066 | /* Space for "arguments"; the RP goes in here. */ | |
1067 | sp = read_register (SP_REGNUM) + 48; | |
1068 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
1069 | write_memory (sp - 20, (char *)&int_buffer, 4); | |
1070 | ||
1071 | int_buffer = read_register (FP_REGNUM); | |
1072 | write_memory (sp, (char *)&int_buffer, 4); | |
1073 | ||
1074 | write_register (FP_REGNUM, sp); | |
1075 | ||
1076 | sp += 8; | |
1077 | ||
1078 | for (regnum = 1; regnum < 32; regnum++) | |
1079 | if (regnum != RP_REGNUM && regnum != FP_REGNUM) | |
1080 | sp = push_word (sp, read_register (regnum)); | |
1081 | ||
1082 | sp += 4; | |
1083 | ||
1084 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
1085 | { | |
1086 | read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
1087 | sp = push_bytes (sp, (char *)&freg_buffer, 8); | |
1088 | } | |
1089 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
1090 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
1091 | sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM)); | |
1092 | sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM)); | |
1093 | sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM)); | |
1094 | sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM)); | |
1095 | write_register (SP_REGNUM, sp); | |
1096 | } | |
1097 | ||
1098 | find_dummy_frame_regs (frame, frame_saved_regs) | |
1099 | struct frame_info *frame; | |
1100 | struct frame_saved_regs *frame_saved_regs; | |
1101 | { | |
1102 | CORE_ADDR fp = frame->frame; | |
1103 | int i; | |
1104 | ||
1105 | frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3; | |
1106 | frame_saved_regs->regs[FP_REGNUM] = fp; | |
1107 | frame_saved_regs->regs[1] = fp + 8; | |
66a1aa07 | 1108 | |
b227992a SG |
1109 | for (fp += 12, i = 3; i < 32; i++) |
1110 | { | |
1111 | if (i != FP_REGNUM) | |
1112 | { | |
1113 | frame_saved_regs->regs[i] = fp; | |
1114 | fp += 4; | |
1115 | } | |
1116 | } | |
66a1aa07 SG |
1117 | |
1118 | fp += 4; | |
1119 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) | |
1120 | frame_saved_regs->regs[i] = fp; | |
1121 | ||
1122 | frame_saved_regs->regs[IPSW_REGNUM] = fp; | |
b227992a SG |
1123 | frame_saved_regs->regs[SAR_REGNUM] = fp + 4; |
1124 | frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8; | |
1125 | frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12; | |
1126 | frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16; | |
1127 | frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20; | |
66a1aa07 SG |
1128 | } |
1129 | ||
1130 | int | |
1131 | hppa_pop_frame () | |
1132 | { | |
669caa9c | 1133 | register struct frame_info *frame = get_current_frame (); |
66a1aa07 SG |
1134 | register CORE_ADDR fp; |
1135 | register int regnum; | |
1136 | struct frame_saved_regs fsr; | |
66a1aa07 SG |
1137 | double freg_buffer; |
1138 | ||
669caa9c SS |
1139 | fp = FRAME_FP (frame); |
1140 | get_frame_saved_regs (frame, &fsr); | |
66a1aa07 | 1141 | |
0a64709e | 1142 | #ifndef NO_PC_SPACE_QUEUE_RESTORE |
66a1aa07 SG |
1143 | if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ |
1144 | restore_pc_queue (&fsr); | |
0a64709e | 1145 | #endif |
66a1aa07 SG |
1146 | |
1147 | for (regnum = 31; regnum > 0; regnum--) | |
1148 | if (fsr.regs[regnum]) | |
1149 | write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); | |
1150 | ||
1151 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--) | |
1152 | if (fsr.regs[regnum]) | |
1153 | { | |
1154 | read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8); | |
1155 | write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
1156 | } | |
1157 | ||
1158 | if (fsr.regs[IPSW_REGNUM]) | |
1159 | write_register (IPSW_REGNUM, | |
1160 | read_memory_integer (fsr.regs[IPSW_REGNUM], 4)); | |
1161 | ||
1162 | if (fsr.regs[SAR_REGNUM]) | |
1163 | write_register (SAR_REGNUM, | |
1164 | read_memory_integer (fsr.regs[SAR_REGNUM], 4)); | |
1165 | ||
ed1a07ad | 1166 | /* If the PC was explicitly saved, then just restore it. */ |
66a1aa07 SG |
1167 | if (fsr.regs[PCOQ_TAIL_REGNUM]) |
1168 | write_register (PCOQ_TAIL_REGNUM, | |
1169 | read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4)); | |
1170 | ||
ed1a07ad JK |
1171 | /* Else use the value in %rp to set the new PC. */ |
1172 | else | |
e9a3cde8 | 1173 | target_write_pc (read_register (RP_REGNUM), 0); |
ed1a07ad | 1174 | |
66a1aa07 SG |
1175 | write_register (FP_REGNUM, read_memory_integer (fp, 4)); |
1176 | ||
1177 | if (fsr.regs[IPSW_REGNUM]) /* call dummy */ | |
1178 | write_register (SP_REGNUM, fp - 48); | |
1179 | else | |
1180 | write_register (SP_REGNUM, fp); | |
1181 | ||
1182 | flush_cached_frames (); | |
66a1aa07 SG |
1183 | } |
1184 | ||
1185 | /* | |
1186 | * After returning to a dummy on the stack, restore the instruction | |
1187 | * queue space registers. */ | |
1188 | ||
1189 | static int | |
1190 | restore_pc_queue (fsr) | |
1191 | struct frame_saved_regs *fsr; | |
1192 | { | |
1193 | CORE_ADDR pc = read_pc (); | |
1194 | CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4); | |
1195 | int pid; | |
67ac9759 | 1196 | struct target_waitstatus w; |
66a1aa07 SG |
1197 | int insn_count; |
1198 | ||
1199 | /* Advance past break instruction in the call dummy. */ | |
1200 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
1201 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
1202 | ||
1203 | /* | |
1204 | * HPUX doesn't let us set the space registers or the space | |
1205 | * registers of the PC queue through ptrace. Boo, hiss. | |
1206 | * Conveniently, the call dummy has this sequence of instructions | |
1207 | * after the break: | |
1208 | * mtsp r21, sr0 | |
1209 | * ble,n 0(sr0, r22) | |
1210 | * | |
1211 | * So, load up the registers and single step until we are in the | |
1212 | * right place. | |
1213 | */ | |
1214 | ||
1215 | write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4)); | |
1216 | write_register (22, new_pc); | |
1217 | ||
1218 | for (insn_count = 0; insn_count < 3; insn_count++) | |
1219 | { | |
8c5e0021 JK |
1220 | /* FIXME: What if the inferior gets a signal right now? Want to |
1221 | merge this into wait_for_inferior (as a special kind of | |
1222 | watchpoint? By setting a breakpoint at the end? Is there | |
1223 | any other choice? Is there *any* way to do this stuff with | |
1224 | ptrace() or some equivalent?). */ | |
66a1aa07 | 1225 | resume (1, 0); |
67ac9759 | 1226 | target_wait (inferior_pid, &w); |
66a1aa07 | 1227 | |
67ac9759 | 1228 | if (w.kind == TARGET_WAITKIND_SIGNALLED) |
66a1aa07 | 1229 | { |
67ac9759 | 1230 | stop_signal = w.value.sig; |
66a1aa07 | 1231 | terminal_ours_for_output (); |
67ac9759 JK |
1232 | printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", |
1233 | target_signal_to_name (stop_signal), | |
1234 | target_signal_to_string (stop_signal)); | |
199b2450 | 1235 | gdb_flush (gdb_stdout); |
66a1aa07 SG |
1236 | return 0; |
1237 | } | |
1238 | } | |
8c5e0021 | 1239 | target_terminal_ours (); |
cad1498f | 1240 | target_fetch_registers (-1); |
66a1aa07 SG |
1241 | return 1; |
1242 | } | |
1243 | ||
1244 | CORE_ADDR | |
1245 | hppa_push_arguments (nargs, args, sp, struct_return, struct_addr) | |
1246 | int nargs; | |
4fd5eed4 | 1247 | value_ptr *args; |
66a1aa07 SG |
1248 | CORE_ADDR sp; |
1249 | int struct_return; | |
1250 | CORE_ADDR struct_addr; | |
1251 | { | |
1252 | /* array of arguments' offsets */ | |
1edc5cd2 | 1253 | int *offset = (int *)alloca(nargs * sizeof (int)); |
66a1aa07 SG |
1254 | int cum = 0; |
1255 | int i, alignment; | |
1256 | ||
1257 | for (i = 0; i < nargs; i++) | |
1258 | { | |
1259 | /* Coerce chars to int & float to double if necessary */ | |
1260 | args[i] = value_arg_coerce (args[i]); | |
1261 | ||
1262 | cum += TYPE_LENGTH (VALUE_TYPE (args[i])); | |
1263 | ||
1264 | /* value must go at proper alignment. Assume alignment is a | |
1265 | power of two.*/ | |
1266 | alignment = hppa_alignof (VALUE_TYPE (args[i])); | |
1267 | if (cum % alignment) | |
1268 | cum = (cum + alignment) & -alignment; | |
1269 | offset[i] = -cum; | |
1270 | } | |
558f4183 | 1271 | sp += max ((cum + 7) & -8, 16); |
66a1aa07 SG |
1272 | |
1273 | for (i = 0; i < nargs; i++) | |
1274 | write_memory (sp + offset[i], VALUE_CONTENTS (args[i]), | |
1275 | TYPE_LENGTH (VALUE_TYPE (args[i]))); | |
1276 | ||
1277 | if (struct_return) | |
1278 | write_register (28, struct_addr); | |
1279 | return sp + 32; | |
1280 | } | |
1281 | ||
1282 | /* | |
1283 | * Insert the specified number of args and function address | |
1284 | * into a call sequence of the above form stored at DUMMYNAME. | |
1285 | * | |
1286 | * On the hppa we need to call the stack dummy through $$dyncall. | |
1287 | * Therefore our version of FIX_CALL_DUMMY takes an extra argument, | |
1288 | * real_pc, which is the location where gdb should start up the | |
1289 | * inferior to do the function call. | |
1290 | */ | |
1291 | ||
1292 | CORE_ADDR | |
1293 | hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) | |
f4f0d174 | 1294 | char *dummy; |
66a1aa07 SG |
1295 | CORE_ADDR pc; |
1296 | CORE_ADDR fun; | |
1297 | int nargs; | |
4fd5eed4 | 1298 | value_ptr *args; |
66a1aa07 SG |
1299 | struct type *type; |
1300 | int gcc_p; | |
1301 | { | |
1302 | CORE_ADDR dyncall_addr, sr4export_addr; | |
1303 | struct minimal_symbol *msymbol; | |
6cfec929 | 1304 | int flags = read_register (FLAGS_REGNUM); |
19cd0c1f | 1305 | struct unwind_table_entry *u; |
66a1aa07 SG |
1306 | |
1307 | msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL); | |
1308 | if (msymbol == NULL) | |
1309 | error ("Can't find an address for $$dyncall trampoline"); | |
1310 | ||
1311 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
1312 | ||
4f915914 JL |
1313 | /* FUN could be a procedure label, in which case we have to get |
1314 | its real address and the value of its GOT/DP. */ | |
1315 | if (fun & 0x2) | |
1316 | { | |
1317 | /* Get the GOT/DP value for the target function. It's | |
1318 | at *(fun+4). Note the call dummy is *NOT* allowed to | |
1319 | trash %r19 before calling the target function. */ | |
1320 | write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4)); | |
1321 | ||
1322 | /* Now get the real address for the function we are calling, it's | |
1323 | at *fun. */ | |
1324 | fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4); | |
1325 | } | |
1326 | ||
19cd0c1f JL |
1327 | /* If we are calling an import stub (eg calling into a dynamic library) |
1328 | then have sr4export call the magic __d_plt_call routine which is linked | |
1329 | in from end.o. (You can't use _sr4export to call the import stub as | |
1330 | the value in sp-24 will get fried and you end up returning to the | |
1331 | wrong location. You can't call the import stub directly as the code | |
1332 | to bind the PLT entry to a function can't return to a stack address.) */ | |
1333 | u = find_unwind_entry (fun); | |
1334 | if (u && u->stub_type == IMPORT) | |
1335 | { | |
1336 | CORE_ADDR new_fun; | |
1337 | msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL); | |
1338 | if (msymbol == NULL) | |
1339 | error ("Can't find an address for __d_plt_call trampoline"); | |
1340 | ||
1341 | /* This is where sr4export will jump to. */ | |
1342 | new_fun = SYMBOL_VALUE_ADDRESS (msymbol); | |
1343 | ||
1344 | /* We have to store the address of the stub in __shlib_funcptr. */ | |
1345 | msymbol = lookup_minimal_symbol ("__shlib_funcptr", | |
1346 | (struct objfile *)NULL); | |
1347 | if (msymbol == NULL) | |
1348 | error ("Can't find an address for __shlib_funcptr"); | |
1349 | ||
1350 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4); | |
1351 | fun = new_fun; | |
1352 | ||
1353 | } | |
1354 | ||
1355 | /* We still need sr4export's address too. */ | |
66a1aa07 SG |
1356 | msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL); |
1357 | if (msymbol == NULL) | |
1358 | error ("Can't find an address for _sr4export trampoline"); | |
1359 | ||
1360 | sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
1361 | ||
f4f0d174 JK |
1362 | store_unsigned_integer |
1363 | (&dummy[9*REGISTER_SIZE], | |
1364 | REGISTER_SIZE, | |
1365 | deposit_21 (fun >> 11, | |
1366 | extract_unsigned_integer (&dummy[9*REGISTER_SIZE], | |
1367 | REGISTER_SIZE))); | |
1368 | store_unsigned_integer | |
1369 | (&dummy[10*REGISTER_SIZE], | |
1370 | REGISTER_SIZE, | |
1371 | deposit_14 (fun & MASK_11, | |
1372 | extract_unsigned_integer (&dummy[10*REGISTER_SIZE], | |
1373 | REGISTER_SIZE))); | |
1374 | store_unsigned_integer | |
1375 | (&dummy[12*REGISTER_SIZE], | |
1376 | REGISTER_SIZE, | |
1377 | deposit_21 (sr4export_addr >> 11, | |
1378 | extract_unsigned_integer (&dummy[12*REGISTER_SIZE], | |
1379 | REGISTER_SIZE))); | |
1380 | store_unsigned_integer | |
1381 | (&dummy[13*REGISTER_SIZE], | |
1382 | REGISTER_SIZE, | |
1383 | deposit_14 (sr4export_addr & MASK_11, | |
1384 | extract_unsigned_integer (&dummy[13*REGISTER_SIZE], | |
1385 | REGISTER_SIZE))); | |
66a1aa07 SG |
1386 | |
1387 | write_register (22, pc); | |
1388 | ||
6cfec929 JK |
1389 | /* If we are in a syscall, then we should call the stack dummy |
1390 | directly. $$dyncall is not needed as the kernel sets up the | |
1391 | space id registers properly based on the value in %r31. In | |
1392 | fact calling $$dyncall will not work because the value in %r22 | |
1393 | will be clobbered on the syscall exit path. */ | |
1394 | if (flags & 2) | |
1395 | return pc; | |
1396 | else | |
1397 | return dyncall_addr; | |
1398 | ||
66a1aa07 SG |
1399 | } |
1400 | ||
d3862cae JK |
1401 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege |
1402 | bits. */ | |
669caa9c | 1403 | |
d3862cae | 1404 | CORE_ADDR |
e9a3cde8 JL |
1405 | target_read_pc (pid) |
1406 | int pid; | |
d3862cae JK |
1407 | { |
1408 | int flags = read_register (FLAGS_REGNUM); | |
1409 | ||
1410 | if (flags & 2) | |
1411 | return read_register (31) & ~0x3; | |
1412 | return read_register (PC_REGNUM) & ~0x3; | |
1413 | } | |
1414 | ||
6cfec929 JK |
1415 | /* Write out the PC. If currently in a syscall, then also write the new |
1416 | PC value into %r31. */ | |
669caa9c | 1417 | |
6cfec929 | 1418 | void |
e9a3cde8 | 1419 | target_write_pc (v, pid) |
6cfec929 | 1420 | CORE_ADDR v; |
e9a3cde8 | 1421 | int pid; |
6cfec929 JK |
1422 | { |
1423 | int flags = read_register (FLAGS_REGNUM); | |
1424 | ||
1425 | /* If in a syscall, then set %r31. Also make sure to get the | |
1426 | privilege bits set correctly. */ | |
1427 | if (flags & 2) | |
1428 | write_register (31, (long) (v | 0x3)); | |
1429 | ||
1430 | write_register (PC_REGNUM, (long) v); | |
1431 | write_register (NPC_REGNUM, (long) v + 4); | |
1432 | } | |
1433 | ||
66a1aa07 SG |
1434 | /* return the alignment of a type in bytes. Structures have the maximum |
1435 | alignment required by their fields. */ | |
1436 | ||
1437 | static int | |
1438 | hppa_alignof (arg) | |
1439 | struct type *arg; | |
1440 | { | |
1441 | int max_align, align, i; | |
1442 | switch (TYPE_CODE (arg)) | |
1443 | { | |
1444 | case TYPE_CODE_PTR: | |
1445 | case TYPE_CODE_INT: | |
1446 | case TYPE_CODE_FLT: | |
1447 | return TYPE_LENGTH (arg); | |
1448 | case TYPE_CODE_ARRAY: | |
1449 | return hppa_alignof (TYPE_FIELD_TYPE (arg, 0)); | |
1450 | case TYPE_CODE_STRUCT: | |
1451 | case TYPE_CODE_UNION: | |
1452 | max_align = 2; | |
1453 | for (i = 0; i < TYPE_NFIELDS (arg); i++) | |
1454 | { | |
1455 | /* Bit fields have no real alignment. */ | |
1456 | if (!TYPE_FIELD_BITPOS (arg, i)) | |
1457 | { | |
1458 | align = hppa_alignof (TYPE_FIELD_TYPE (arg, i)); | |
1459 | max_align = max (max_align, align); | |
1460 | } | |
1461 | } | |
1462 | return max_align; | |
1463 | default: | |
1464 | return 4; | |
1465 | } | |
1466 | } | |
1467 | ||
1468 | /* Print the register regnum, or all registers if regnum is -1 */ | |
1469 | ||
1470 | pa_do_registers_info (regnum, fpregs) | |
1471 | int regnum; | |
1472 | int fpregs; | |
1473 | { | |
1474 | char raw_regs [REGISTER_BYTES]; | |
1475 | int i; | |
1476 | ||
1477 | for (i = 0; i < NUM_REGS; i++) | |
1478 | read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i)); | |
1479 | if (regnum == -1) | |
1480 | pa_print_registers (raw_regs, regnum, fpregs); | |
1481 | else if (regnum < FP0_REGNUM) | |
199b2450 | 1482 | printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs + |
66a1aa07 SG |
1483 | REGISTER_BYTE (regnum))); |
1484 | else | |
1485 | pa_print_fp_reg (regnum); | |
1486 | } | |
1487 | ||
1488 | pa_print_registers (raw_regs, regnum, fpregs) | |
1489 | char *raw_regs; | |
1490 | int regnum; | |
1491 | int fpregs; | |
1492 | { | |
1493 | int i; | |
1494 | ||
1495 | for (i = 0; i < 18; i++) | |
199b2450 | 1496 | printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n", |
66a1aa07 SG |
1497 | reg_names[i], |
1498 | *(int *)(raw_regs + REGISTER_BYTE (i)), | |
1499 | reg_names[i + 18], | |
1500 | *(int *)(raw_regs + REGISTER_BYTE (i + 18)), | |
1501 | reg_names[i + 36], | |
1502 | *(int *)(raw_regs + REGISTER_BYTE (i + 36)), | |
1503 | reg_names[i + 54], | |
1504 | *(int *)(raw_regs + REGISTER_BYTE (i + 54))); | |
1505 | ||
1506 | if (fpregs) | |
1507 | for (i = 72; i < NUM_REGS; i++) | |
1508 | pa_print_fp_reg (i); | |
1509 | } | |
1510 | ||
1511 | pa_print_fp_reg (i) | |
1512 | int i; | |
1513 | { | |
1514 | unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
1515 | unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
66a1aa07 | 1516 | |
eb1167c6 | 1517 | /* Get 32bits of data. */ |
66a1aa07 | 1518 | read_relative_register_raw_bytes (i, raw_buffer); |
ad09cb2b | 1519 | |
eb1167c6 JL |
1520 | /* Put it in the buffer. No conversions are ever necessary. */ |
1521 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
66a1aa07 | 1522 | |
199b2450 | 1523 | fputs_filtered (reg_names[i], gdb_stdout); |
eb1167c6 JL |
1524 | print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); |
1525 | fputs_filtered ("(single precision) ", gdb_stdout); | |
66a1aa07 | 1526 | |
199b2450 | 1527 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0, |
66a1aa07 SG |
1528 | 1, 0, Val_pretty_default); |
1529 | printf_filtered ("\n"); | |
eb1167c6 JL |
1530 | |
1531 | /* If "i" is even, then this register can also be a double-precision | |
1532 | FP register. Dump it out as such. */ | |
1533 | if ((i % 2) == 0) | |
1534 | { | |
1535 | /* Get the data in raw format for the 2nd half. */ | |
1536 | read_relative_register_raw_bytes (i + 1, raw_buffer); | |
1537 | ||
1538 | /* Copy it into the appropriate part of the virtual buffer. */ | |
1539 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer, | |
1540 | REGISTER_RAW_SIZE (i)); | |
1541 | ||
1542 | /* Dump it as a double. */ | |
1543 | fputs_filtered (reg_names[i], gdb_stdout); | |
1544 | print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); | |
1545 | fputs_filtered ("(double precision) ", gdb_stdout); | |
1546 | ||
1547 | val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0, | |
1548 | 1, 0, Val_pretty_default); | |
1549 | printf_filtered ("\n"); | |
1550 | } | |
66a1aa07 SG |
1551 | } |
1552 | ||
de482138 JL |
1553 | /* Figure out if PC is in a trampoline, and if so find out where |
1554 | the trampoline will jump to. If not in a trampoline, return zero. | |
66a1aa07 | 1555 | |
de482138 JL |
1556 | Simple code examination probably is not a good idea since the code |
1557 | sequences in trampolines can also appear in user code. | |
1558 | ||
1559 | We use unwinds and information from the minimal symbol table to | |
1560 | determine when we're in a trampoline. This won't work for ELF | |
1561 | (yet) since it doesn't create stub unwind entries. Whether or | |
1562 | not ELF will create stub unwinds or normal unwinds for linker | |
1563 | stubs is still being debated. | |
1564 | ||
1565 | This should handle simple calls through dyncall or sr4export, | |
1566 | long calls, argument relocation stubs, and dyncall/sr4export | |
1567 | calling an argument relocation stub. It even handles some stubs | |
1568 | used in dynamic executables. */ | |
66a1aa07 SG |
1569 | |
1570 | CORE_ADDR | |
1571 | skip_trampoline_code (pc, name) | |
1572 | CORE_ADDR pc; | |
1573 | char *name; | |
1574 | { | |
de482138 JL |
1575 | long orig_pc = pc; |
1576 | long prev_inst, curr_inst, loc; | |
66a1aa07 | 1577 | static CORE_ADDR dyncall = 0; |
de482138 | 1578 | static CORE_ADDR sr4export = 0; |
66a1aa07 | 1579 | struct minimal_symbol *msym; |
de482138 | 1580 | struct unwind_table_entry *u; |
66a1aa07 | 1581 | |
de482138 JL |
1582 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a |
1583 | new exec file */ | |
66a1aa07 SG |
1584 | |
1585 | if (!dyncall) | |
1586 | { | |
1587 | msym = lookup_minimal_symbol ("$$dyncall", NULL); | |
1588 | if (msym) | |
1589 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
1590 | else | |
1591 | dyncall = -1; | |
1592 | } | |
1593 | ||
de482138 JL |
1594 | if (!sr4export) |
1595 | { | |
1596 | msym = lookup_minimal_symbol ("_sr4export", NULL); | |
1597 | if (msym) | |
1598 | sr4export = SYMBOL_VALUE_ADDRESS (msym); | |
1599 | else | |
1600 | sr4export = -1; | |
1601 | } | |
1602 | ||
1603 | /* Addresses passed to dyncall may *NOT* be the actual address | |
669caa9c | 1604 | of the function. So we may have to do something special. */ |
66a1aa07 | 1605 | if (pc == dyncall) |
de482138 JL |
1606 | { |
1607 | pc = (CORE_ADDR) read_register (22); | |
66a1aa07 | 1608 | |
de482138 JL |
1609 | /* If bit 30 (counting from the left) is on, then pc is the address of |
1610 | the PLT entry for this function, not the address of the function | |
1611 | itself. Bit 31 has meaning too, but only for MPE. */ | |
1612 | if (pc & 0x2) | |
1613 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4); | |
1614 | } | |
1615 | else if (pc == sr4export) | |
1616 | pc = (CORE_ADDR) (read_register (22)); | |
66a1aa07 | 1617 | |
de482138 JL |
1618 | /* Get the unwind descriptor corresponding to PC, return zero |
1619 | if no unwind was found. */ | |
1620 | u = find_unwind_entry (pc); | |
1621 | if (!u) | |
1622 | return 0; | |
1623 | ||
1624 | /* If this isn't a linker stub, then return now. */ | |
1625 | if (u->stub_type == 0) | |
1626 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1627 | ||
1628 | /* It's a stub. Search for a branch and figure out where it goes. | |
1629 | Note we have to handle multi insn branch sequences like ldil;ble. | |
1630 | Most (all?) other branches can be determined by examining the contents | |
1631 | of certain registers and the stack. */ | |
1632 | loc = pc; | |
1633 | curr_inst = 0; | |
1634 | prev_inst = 0; | |
1635 | while (1) | |
1636 | { | |
1637 | /* Make sure we haven't walked outside the range of this stub. */ | |
1638 | if (u != find_unwind_entry (loc)) | |
1639 | { | |
1640 | warning ("Unable to find branch in linker stub"); | |
1641 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1642 | } | |
1643 | ||
1644 | prev_inst = curr_inst; | |
1645 | curr_inst = read_memory_integer (loc, 4); | |
66a1aa07 | 1646 | |
de482138 JL |
1647 | /* Does it look like a branch external using %r1? Then it's the |
1648 | branch from the stub to the actual function. */ | |
1649 | if ((curr_inst & 0xffe0e000) == 0xe0202000) | |
1650 | { | |
1651 | /* Yup. See if the previous instruction loaded | |
1652 | a value into %r1. If so compute and return the jump address. */ | |
4cbc4bf1 | 1653 | if ((prev_inst & 0xffe00000) == 0x20200000) |
de482138 JL |
1654 | return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; |
1655 | else | |
1656 | { | |
1657 | warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); | |
1658 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1659 | } | |
1660 | } | |
1661 | ||
88b91d4a JL |
1662 | /* Does it look like bl X,%rp or bl X,%r0? Another way to do a |
1663 | branch from the stub to the actual function. */ | |
1664 | else if ((curr_inst & 0xffe0e000) == 0xe8400000 | |
1665 | || (curr_inst & 0xffe0e000) == 0xe8000000) | |
de482138 JL |
1666 | return (loc + extract_17 (curr_inst) + 8) & ~0x3; |
1667 | ||
1668 | /* Does it look like bv (rp)? Note this depends on the | |
1669 | current stack pointer being the same as the stack | |
1670 | pointer in the stub itself! This is a branch on from the | |
1671 | stub back to the original caller. */ | |
1672 | else if ((curr_inst & 0xffe0e000) == 0xe840c000) | |
1673 | { | |
1674 | /* Yup. See if the previous instruction loaded | |
1675 | rp from sp - 8. */ | |
1676 | if (prev_inst == 0x4bc23ff1) | |
1677 | return (read_memory_integer | |
1678 | (read_register (SP_REGNUM) - 8, 4)) & ~0x3; | |
1679 | else | |
1680 | { | |
1681 | warning ("Unable to find restore of %%rp before bv (%%rp)."); | |
1682 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1683 | } | |
1684 | } | |
1685 | ||
1686 | /* What about be,n 0(sr0,%rp)? It's just another way we return to | |
1687 | the original caller from the stub. Used in dynamic executables. */ | |
1688 | else if (curr_inst == 0xe0400002) | |
1689 | { | |
1690 | /* The value we jump to is sitting in sp - 24. But that's | |
1691 | loaded several instructions before the be instruction. | |
1692 | I guess we could check for the previous instruction being | |
1693 | mtsp %r1,%sr0 if we want to do sanity checking. */ | |
1694 | return (read_memory_integer | |
1695 | (read_register (SP_REGNUM) - 24, 4)) & ~0x3; | |
1696 | } | |
1697 | ||
1698 | /* Haven't found the branch yet, but we're still in the stub. | |
1699 | Keep looking. */ | |
1700 | loc += 4; | |
1701 | } | |
66a1aa07 SG |
1702 | } |
1703 | ||
c598654a JL |
1704 | /* For the given instruction (INST), return any adjustment it makes |
1705 | to the stack pointer or zero for no adjustment. | |
1706 | ||
1707 | This only handles instructions commonly found in prologues. */ | |
1708 | ||
1709 | static int | |
1710 | prologue_inst_adjust_sp (inst) | |
1711 | unsigned long inst; | |
1712 | { | |
1713 | /* This must persist across calls. */ | |
1714 | static int save_high21; | |
1715 | ||
1716 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
1717 | if ((inst & 0xffffc000) == 0x37de0000) | |
1718 | return extract_14 (inst); | |
1719 | ||
1720 | /* stwm X,D(sp) */ | |
1721 | if ((inst & 0xffe00000) == 0x6fc00000) | |
1722 | return extract_14 (inst); | |
1723 | ||
1724 | /* addil high21,%r1; ldo low11,(%r1),%r30) | |
1725 | save high bits in save_high21 for later use. */ | |
1726 | if ((inst & 0xffe00000) == 0x28200000) | |
1727 | { | |
1728 | save_high21 = extract_21 (inst); | |
1729 | return 0; | |
1730 | } | |
1731 | ||
1732 | if ((inst & 0xffff0000) == 0x343e0000) | |
1733 | return save_high21 + extract_14 (inst); | |
1734 | ||
1735 | /* fstws as used by the HP compilers. */ | |
1736 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
1737 | return extract_5_load (inst); | |
1738 | ||
1739 | /* No adjustment. */ | |
1740 | return 0; | |
1741 | } | |
1742 | ||
1743 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
1744 | ||
1745 | static int | |
1746 | is_branch (inst) | |
1747 | unsigned long inst; | |
1748 | { | |
1749 | switch (inst >> 26) | |
1750 | { | |
1751 | case 0x20: | |
1752 | case 0x21: | |
1753 | case 0x22: | |
1754 | case 0x23: | |
1755 | case 0x28: | |
1756 | case 0x29: | |
1757 | case 0x2a: | |
1758 | case 0x2b: | |
1759 | case 0x30: | |
1760 | case 0x31: | |
1761 | case 0x32: | |
1762 | case 0x33: | |
1763 | case 0x38: | |
1764 | case 0x39: | |
1765 | case 0x3a: | |
1766 | return 1; | |
1767 | ||
1768 | default: | |
1769 | return 0; | |
1770 | } | |
1771 | } | |
1772 | ||
1773 | /* Return the register number for a GR which is saved by INST or | |
edd86fb0 | 1774 | zero it INST does not save a GR. */ |
c598654a JL |
1775 | |
1776 | static int | |
1777 | inst_saves_gr (inst) | |
1778 | unsigned long inst; | |
1779 | { | |
1780 | /* Does it look like a stw? */ | |
1781 | if ((inst >> 26) == 0x1a) | |
1782 | return extract_5R_store (inst); | |
1783 | ||
edd86fb0 | 1784 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ |
c598654a JL |
1785 | if ((inst >> 26) == 0x1b) |
1786 | return extract_5R_store (inst); | |
1787 | ||
edd86fb0 JL |
1788 | /* Does it look like sth or stb? HPC versions 9.0 and later use these |
1789 | too. */ | |
1790 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18) | |
1791 | return extract_5R_store (inst); | |
1792 | ||
c598654a JL |
1793 | return 0; |
1794 | } | |
1795 | ||
1796 | /* Return the register number for a FR which is saved by INST or | |
1797 | zero it INST does not save a FR. | |
1798 | ||
1799 | Note we only care about full 64bit register stores (that's the only | |
edd86fb0 JL |
1800 | kind of stores the prologue will use). |
1801 | ||
1802 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
c598654a JL |
1803 | |
1804 | static int | |
1805 | inst_saves_fr (inst) | |
1806 | unsigned long inst; | |
1807 | { | |
edd86fb0 | 1808 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
c598654a JL |
1809 | return extract_5r_store (inst); |
1810 | return 0; | |
1811 | } | |
1812 | ||
66a1aa07 | 1813 | /* Advance PC across any function entry prologue instructions |
c598654a | 1814 | to reach some "real" code. |
66a1aa07 | 1815 | |
c598654a JL |
1816 | Use information in the unwind table to determine what exactly should |
1817 | be in the prologue. */ | |
66a1aa07 SG |
1818 | |
1819 | CORE_ADDR | |
de482138 | 1820 | skip_prologue (pc) |
66a1aa07 SG |
1821 | CORE_ADDR pc; |
1822 | { | |
34df79fc | 1823 | char buf[4]; |
c598654a | 1824 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; |
edd86fb0 | 1825 | unsigned long args_stored, status, i; |
c598654a | 1826 | struct unwind_table_entry *u; |
66a1aa07 | 1827 | |
c598654a JL |
1828 | u = find_unwind_entry (pc); |
1829 | if (!u) | |
fdafbfad | 1830 | return pc; |
c598654a | 1831 | |
de482138 JL |
1832 | /* If we are not at the beginning of a function, then return now. */ |
1833 | if ((pc & ~0x3) != u->region_start) | |
1834 | return pc; | |
1835 | ||
c598654a JL |
1836 | /* This is how much of a frame adjustment we need to account for. */ |
1837 | stack_remaining = u->Total_frame_size << 3; | |
66a1aa07 | 1838 | |
c598654a JL |
1839 | /* Magic register saves we want to know about. */ |
1840 | save_rp = u->Save_RP; | |
1841 | save_sp = u->Save_SP; | |
1842 | ||
edd86fb0 JL |
1843 | /* An indication that args may be stored into the stack. Unfortunately |
1844 | the HPUX compilers tend to set this in cases where no args were | |
1845 | stored too!. */ | |
1846 | args_stored = u->Args_stored; | |
1847 | ||
c598654a JL |
1848 | /* Turn the Entry_GR field into a bitmask. */ |
1849 | save_gr = 0; | |
1850 | for (i = 3; i < u->Entry_GR + 3; i++) | |
66a1aa07 | 1851 | { |
c598654a JL |
1852 | /* Frame pointer gets saved into a special location. */ |
1853 | if (u->Save_SP && i == FP_REGNUM) | |
1854 | continue; | |
1855 | ||
1856 | save_gr |= (1 << i); | |
1857 | } | |
1858 | ||
1859 | /* Turn the Entry_FR field into a bitmask too. */ | |
1860 | save_fr = 0; | |
1861 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1862 | save_fr |= (1 << i); | |
1863 | ||
1864 | /* Loop until we find everything of interest or hit a branch. | |
1865 | ||
1866 | For unoptimized GCC code and for any HP CC code this will never ever | |
1867 | examine any user instructions. | |
1868 | ||
1869 | For optimzied GCC code we're faced with problems. GCC will schedule | |
1870 | its prologue and make prologue instructions available for delay slot | |
1871 | filling. The end result is user code gets mixed in with the prologue | |
1872 | and a prologue instruction may be in the delay slot of the first branch | |
1873 | or call. | |
1874 | ||
1875 | Some unexpected things are expected with debugging optimized code, so | |
1876 | we allow this routine to walk past user instructions in optimized | |
1877 | GCC code. */ | |
edd86fb0 JL |
1878 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 |
1879 | || args_stored) | |
c598654a | 1880 | { |
edd86fb0 JL |
1881 | unsigned int reg_num; |
1882 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
1883 | unsigned long old_save_rp, old_save_sp, old_args_stored, next_inst; | |
1884 | ||
1885 | /* Save copies of all the triggers so we can compare them later | |
1886 | (only for HPC). */ | |
1887 | old_save_gr = save_gr; | |
1888 | old_save_fr = save_fr; | |
1889 | old_save_rp = save_rp; | |
1890 | old_save_sp = save_sp; | |
1891 | old_stack_remaining = stack_remaining; | |
1892 | ||
c598654a JL |
1893 | status = target_read_memory (pc, buf, 4); |
1894 | inst = extract_unsigned_integer (buf, 4); | |
edd86fb0 | 1895 | |
c598654a JL |
1896 | /* Yow! */ |
1897 | if (status != 0) | |
1898 | return pc; | |
1899 | ||
1900 | /* Note the interesting effects of this instruction. */ | |
1901 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
1902 | ||
1903 | /* There is only one instruction used for saving RP into the stack. */ | |
1904 | if (inst == 0x6bc23fd9) | |
1905 | save_rp = 0; | |
1906 | ||
1907 | /* This is the only way we save SP into the stack. At this time | |
1908 | the HP compilers never bother to save SP into the stack. */ | |
1909 | if ((inst & 0xffffc000) == 0x6fc10000) | |
1910 | save_sp = 0; | |
1911 | ||
1912 | /* Account for general and floating-point register saves. */ | |
edd86fb0 JL |
1913 | reg_num = inst_saves_gr (inst); |
1914 | save_gr &= ~(1 << reg_num); | |
1915 | ||
1916 | /* Ugh. Also account for argument stores into the stack. | |
1917 | Unfortunately args_stored only tells us that some arguments | |
1918 | where stored into the stack. Not how many or what kind! | |
1919 | ||
1920 | This is a kludge as on the HP compiler sets this bit and it | |
1921 | never does prologue scheduling. So once we see one, skip past | |
1922 | all of them. We have similar code for the fp arg stores below. | |
1923 | ||
1924 | FIXME. Can still die if we have a mix of GR and FR argument | |
1925 | stores! */ | |
1926 | if (reg_num >= 23 && reg_num <= 26) | |
1927 | { | |
1928 | while (reg_num >= 23 && reg_num <= 26) | |
1929 | { | |
1930 | pc += 4; | |
1931 | status = target_read_memory (pc, buf, 4); | |
1932 | inst = extract_unsigned_integer (buf, 4); | |
1933 | if (status != 0) | |
1934 | return pc; | |
1935 | reg_num = inst_saves_gr (inst); | |
1936 | } | |
1937 | args_stored = 0; | |
1938 | continue; | |
1939 | } | |
1940 | ||
1941 | reg_num = inst_saves_fr (inst); | |
1942 | save_fr &= ~(1 << reg_num); | |
1943 | ||
1944 | status = target_read_memory (pc + 4, buf, 4); | |
1945 | next_inst = extract_unsigned_integer (buf, 4); | |
1946 | ||
1947 | /* Yow! */ | |
1948 | if (status != 0) | |
1949 | return pc; | |
1950 | ||
1951 | /* We've got to be read to handle the ldo before the fp register | |
1952 | save. */ | |
1953 | if ((inst & 0xfc000000) == 0x34000000 | |
1954 | && inst_saves_fr (next_inst) >= 4 | |
1955 | && inst_saves_fr (next_inst) <= 7) | |
1956 | { | |
1957 | /* So we drop into the code below in a reasonable state. */ | |
1958 | reg_num = inst_saves_fr (next_inst); | |
1959 | pc -= 4; | |
1960 | } | |
1961 | ||
1962 | /* Ugh. Also account for argument stores into the stack. | |
1963 | This is a kludge as on the HP compiler sets this bit and it | |
1964 | never does prologue scheduling. So once we see one, skip past | |
1965 | all of them. */ | |
1966 | if (reg_num >= 4 && reg_num <= 7) | |
1967 | { | |
1968 | while (reg_num >= 4 && reg_num <= 7) | |
1969 | { | |
1970 | pc += 8; | |
1971 | status = target_read_memory (pc, buf, 4); | |
1972 | inst = extract_unsigned_integer (buf, 4); | |
1973 | if (status != 0) | |
1974 | return pc; | |
1975 | if ((inst & 0xfc000000) != 0x34000000) | |
1976 | break; | |
1977 | status = target_read_memory (pc + 4, buf, 4); | |
1978 | next_inst = extract_unsigned_integer (buf, 4); | |
1979 | if (status != 0) | |
1980 | return pc; | |
1981 | reg_num = inst_saves_fr (next_inst); | |
1982 | } | |
1983 | args_stored = 0; | |
1984 | continue; | |
1985 | } | |
c598654a JL |
1986 | |
1987 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
1988 | instruction is in the delay slot of the first call/branch. */ | |
1989 | if (is_branch (inst)) | |
1990 | break; | |
1991 | ||
edd86fb0 JL |
1992 | /* What a crock. The HP compilers set args_stored even if no |
1993 | arguments were stored into the stack (boo hiss). This could | |
1994 | cause this code to then skip a bunch of user insns (up to the | |
1995 | first branch). | |
1996 | ||
1997 | To combat this we try to identify when args_stored was bogusly | |
1998 | set and clear it. We only do this when args_stored is nonzero, | |
1999 | all other resources are accounted for, and nothing changed on | |
2000 | this pass. */ | |
2001 | if (args_stored | |
2002 | && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
2003 | && old_save_gr == save_gr && old_save_fr == save_fr | |
2004 | && old_save_rp == save_rp && old_save_sp == save_sp | |
2005 | && old_stack_remaining == stack_remaining) | |
2006 | break; | |
2007 | ||
c598654a JL |
2008 | /* Bump the PC. */ |
2009 | pc += 4; | |
66a1aa07 | 2010 | } |
66a1aa07 SG |
2011 | |
2012 | return pc; | |
2013 | } | |
2014 | ||
c598654a JL |
2015 | /* Put here the code to store, into a struct frame_saved_regs, |
2016 | the addresses of the saved registers of frame described by FRAME_INFO. | |
2017 | This includes special registers such as pc and fp saved in special | |
2018 | ways in the stack frame. sp is even more special: | |
2019 | the address we return for it IS the sp for the next frame. */ | |
2020 | ||
2021 | void | |
2022 | hppa_frame_find_saved_regs (frame_info, frame_saved_regs) | |
669caa9c | 2023 | struct frame_info *frame; |
c598654a JL |
2024 | struct frame_saved_regs *frame_saved_regs; |
2025 | { | |
2026 | CORE_ADDR pc; | |
2027 | struct unwind_table_entry *u; | |
2028 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
2029 | int status, i, reg; | |
2030 | char buf[4]; | |
2031 | int fp_loc = -1; | |
2032 | ||
2033 | /* Zero out everything. */ | |
2034 | memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs)); | |
2035 | ||
2036 | /* Call dummy frames always look the same, so there's no need to | |
2037 | examine the dummy code to determine locations of saved registers; | |
2038 | instead, let find_dummy_frame_regs fill in the correct offsets | |
2039 | for the saved registers. */ | |
669caa9c SS |
2040 | if ((frame->pc >= frame->frame |
2041 | && frame->pc <= (frame->frame + CALL_DUMMY_LENGTH | |
c598654a JL |
2042 | + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8 |
2043 | + 6 * 4))) | |
669caa9c | 2044 | find_dummy_frame_regs (frame, frame_saved_regs); |
c598654a | 2045 | |
70e43abe JL |
2046 | /* Interrupt handlers are special too. They lay out the register |
2047 | state in the exact same order as the register numbers in GDB. */ | |
669caa9c | 2048 | if (pc_in_interrupt_handler (frame->pc)) |
70e43abe JL |
2049 | { |
2050 | for (i = 0; i < NUM_REGS; i++) | |
2051 | { | |
2052 | /* SP is a little special. */ | |
2053 | if (i == SP_REGNUM) | |
2054 | frame_saved_regs->regs[SP_REGNUM] | |
669caa9c | 2055 | = read_memory_integer (frame->frame + SP_REGNUM * 4, 4); |
70e43abe | 2056 | else |
669caa9c | 2057 | frame_saved_regs->regs[i] = frame->frame + i * 4; |
70e43abe JL |
2058 | } |
2059 | return; | |
2060 | } | |
2061 | ||
2062 | /* Handle signal handler callers. */ | |
669caa9c | 2063 | if (frame->signal_handler_caller) |
70e43abe | 2064 | { |
669caa9c | 2065 | FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame, frame_saved_regs); |
70e43abe JL |
2066 | return; |
2067 | } | |
2068 | ||
c598654a | 2069 | /* Get the starting address of the function referred to by the PC |
669caa9c SS |
2070 | saved in frame. */ |
2071 | pc = get_pc_function_start (frame->pc); | |
c598654a JL |
2072 | |
2073 | /* Yow! */ | |
2074 | u = find_unwind_entry (pc); | |
2075 | if (!u) | |
2076 | return; | |
2077 | ||
2078 | /* This is how much of a frame adjustment we need to account for. */ | |
2079 | stack_remaining = u->Total_frame_size << 3; | |
2080 | ||
2081 | /* Magic register saves we want to know about. */ | |
2082 | save_rp = u->Save_RP; | |
2083 | save_sp = u->Save_SP; | |
2084 | ||
2085 | /* Turn the Entry_GR field into a bitmask. */ | |
2086 | save_gr = 0; | |
2087 | for (i = 3; i < u->Entry_GR + 3; i++) | |
2088 | { | |
2089 | /* Frame pointer gets saved into a special location. */ | |
2090 | if (u->Save_SP && i == FP_REGNUM) | |
2091 | continue; | |
2092 | ||
2093 | save_gr |= (1 << i); | |
2094 | } | |
2095 | ||
2096 | /* Turn the Entry_FR field into a bitmask too. */ | |
2097 | save_fr = 0; | |
2098 | for (i = 12; i < u->Entry_FR + 12; i++) | |
2099 | save_fr |= (1 << i); | |
2100 | ||
70e43abe JL |
2101 | /* The frame always represents the value of %sp at entry to the |
2102 | current function (and is thus equivalent to the "saved" stack | |
2103 | pointer. */ | |
669caa9c | 2104 | frame_saved_regs->regs[SP_REGNUM] = frame->frame; |
70e43abe | 2105 | |
c598654a JL |
2106 | /* Loop until we find everything of interest or hit a branch. |
2107 | ||
2108 | For unoptimized GCC code and for any HP CC code this will never ever | |
2109 | examine any user instructions. | |
2110 | ||
2111 | For optimzied GCC code we're faced with problems. GCC will schedule | |
2112 | its prologue and make prologue instructions available for delay slot | |
2113 | filling. The end result is user code gets mixed in with the prologue | |
2114 | and a prologue instruction may be in the delay slot of the first branch | |
2115 | or call. | |
2116 | ||
2117 | Some unexpected things are expected with debugging optimized code, so | |
2118 | we allow this routine to walk past user instructions in optimized | |
2119 | GCC code. */ | |
2120 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
2121 | { | |
2122 | status = target_read_memory (pc, buf, 4); | |
2123 | inst = extract_unsigned_integer (buf, 4); | |
2124 | ||
2125 | /* Yow! */ | |
2126 | if (status != 0) | |
2127 | return; | |
2128 | ||
2129 | /* Note the interesting effects of this instruction. */ | |
2130 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
2131 | ||
2132 | /* There is only one instruction used for saving RP into the stack. */ | |
2133 | if (inst == 0x6bc23fd9) | |
2134 | { | |
2135 | save_rp = 0; | |
669caa9c | 2136 | frame_saved_regs->regs[RP_REGNUM] = frame->frame - 20; |
c598654a JL |
2137 | } |
2138 | ||
70e43abe JL |
2139 | /* Just note that we found the save of SP into the stack. The |
2140 | value for frame_saved_regs was computed above. */ | |
c598654a | 2141 | if ((inst & 0xffffc000) == 0x6fc10000) |
70e43abe | 2142 | save_sp = 0; |
c598654a JL |
2143 | |
2144 | /* Account for general and floating-point register saves. */ | |
2145 | reg = inst_saves_gr (inst); | |
2146 | if (reg >= 3 && reg <= 18 | |
2147 | && (!u->Save_SP || reg != FP_REGNUM)) | |
2148 | { | |
2149 | save_gr &= ~(1 << reg); | |
2150 | ||
2151 | /* stwm with a positive displacement is a *post modify*. */ | |
2152 | if ((inst >> 26) == 0x1b | |
2153 | && extract_14 (inst) >= 0) | |
669caa9c | 2154 | frame_saved_regs->regs[reg] = frame->frame; |
c598654a JL |
2155 | else |
2156 | { | |
2157 | /* Handle code with and without frame pointers. */ | |
2158 | if (u->Save_SP) | |
2159 | frame_saved_regs->regs[reg] | |
669caa9c | 2160 | = frame->frame + extract_14 (inst); |
c598654a JL |
2161 | else |
2162 | frame_saved_regs->regs[reg] | |
669caa9c | 2163 | = frame->frame + (u->Total_frame_size << 3) |
c598654a JL |
2164 | + extract_14 (inst); |
2165 | } | |
2166 | } | |
2167 | ||
2168 | ||
2169 | /* GCC handles callee saved FP regs a little differently. | |
2170 | ||
2171 | It emits an instruction to put the value of the start of | |
2172 | the FP store area into %r1. It then uses fstds,ma with | |
2173 | a basereg of %r1 for the stores. | |
2174 | ||
2175 | HP CC emits them at the current stack pointer modifying | |
2176 | the stack pointer as it stores each register. */ | |
2177 | ||
2178 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
2179 | if ((inst & 0xffffc000) == 0x34610000 | |
2180 | || (inst & 0xffffc000) == 0x37c10000) | |
2181 | fp_loc = extract_14 (inst); | |
2182 | ||
2183 | reg = inst_saves_fr (inst); | |
2184 | if (reg >= 12 && reg <= 21) | |
2185 | { | |
2186 | /* Note +4 braindamage below is necessary because the FP status | |
2187 | registers are internally 8 registers rather than the expected | |
2188 | 4 registers. */ | |
2189 | save_fr &= ~(1 << reg); | |
2190 | if (fp_loc == -1) | |
2191 | { | |
2192 | /* 1st HP CC FP register store. After this instruction | |
2193 | we've set enough state that the GCC and HPCC code are | |
2194 | both handled in the same manner. */ | |
669caa9c | 2195 | frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame->frame; |
c598654a JL |
2196 | fp_loc = 8; |
2197 | } | |
2198 | else | |
2199 | { | |
2200 | frame_saved_regs->regs[reg + FP0_REGNUM + 4] | |
669caa9c | 2201 | = frame->frame + fp_loc; |
c598654a JL |
2202 | fp_loc += 8; |
2203 | } | |
2204 | } | |
2205 | ||
2206 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
2207 | instruction is in the delay slot of the first call/branch. */ | |
2208 | if (is_branch (inst)) | |
2209 | break; | |
2210 | ||
2211 | /* Bump the PC. */ | |
2212 | pc += 4; | |
2213 | } | |
2214 | } | |
2215 | ||
63757ecd JK |
2216 | #ifdef MAINTENANCE_CMDS |
2217 | ||
66a1aa07 SG |
2218 | static void |
2219 | unwind_command (exp, from_tty) | |
2220 | char *exp; | |
2221 | int from_tty; | |
2222 | { | |
2223 | CORE_ADDR address; | |
2224 | union | |
2225 | { | |
2226 | int *foo; | |
2227 | struct unwind_table_entry *u; | |
2228 | } xxx; | |
2229 | ||
2230 | /* If we have an expression, evaluate it and use it as the address. */ | |
2231 | ||
2232 | if (exp != 0 && *exp != 0) | |
2233 | address = parse_and_eval_address (exp); | |
2234 | else | |
2235 | return; | |
2236 | ||
2237 | xxx.u = find_unwind_entry (address); | |
2238 | ||
2239 | if (!xxx.u) | |
2240 | { | |
199b2450 | 2241 | printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address); |
66a1aa07 SG |
2242 | return; |
2243 | } | |
2244 | ||
199b2450 | 2245 | printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2], |
66a1aa07 SG |
2246 | xxx.foo[3]); |
2247 | } | |
976bb0be | 2248 | #endif /* MAINTENANCE_CMDS */ |
63757ecd JK |
2249 | |
2250 | void | |
2251 | _initialize_hppa_tdep () | |
2252 | { | |
976bb0be | 2253 | #ifdef MAINTENANCE_CMDS |
63757ecd JK |
2254 | add_cmd ("unwind", class_maintenance, unwind_command, |
2255 | "Print unwind table entry at given address.", | |
2256 | &maintenanceprintlist); | |
63757ecd | 2257 | #endif /* MAINTENANCE_CMDS */ |
976bb0be | 2258 | } |