]>
Commit | Line | Data |
---|---|---|
669caa9c SS |
1 | /* Target-dependent code for the HP PA architecture, for GDB. |
2 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994 | |
3 | Free Software Foundation, Inc. | |
66a1aa07 SG |
4 | |
5 | Contributed by the Center for Software Science at the | |
6 | University of Utah ([email protected]). | |
7 | ||
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
23 | ||
24 | #include "defs.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "value.h" | |
28 | ||
29 | /* For argument passing to the inferior */ | |
30 | #include "symtab.h" | |
31 | ||
32 | #ifdef USG | |
33 | #include <sys/types.h> | |
34 | #endif | |
35 | ||
36 | #include <sys/param.h> | |
66a1aa07 | 37 | #include <signal.h> |
66a1aa07 SG |
38 | |
39 | #ifdef COFF_ENCAPSULATE | |
40 | #include "a.out.encap.h" | |
41 | #else | |
66a1aa07 SG |
42 | #endif |
43 | #ifndef N_SET_MAGIC | |
44 | #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val)) | |
45 | #endif | |
46 | ||
47 | /*#include <sys/user.h> After a.out.h */ | |
48 | #include <sys/file.h> | |
49 | #include <sys/stat.h> | |
66a1aa07 SG |
50 | #include "wait.h" |
51 | ||
52 | #include "gdbcore.h" | |
53 | #include "gdbcmd.h" | |
54 | #include "target.h" | |
55 | #include "symfile.h" | |
56 | #include "objfiles.h" | |
57 | ||
669caa9c SS |
58 | static int restore_pc_queue PARAMS ((struct frame_saved_regs *)); |
59 | ||
60 | static int hppa_alignof PARAMS ((struct type *)); | |
61 | ||
62 | CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *)); | |
63 | ||
c598654a | 64 | static int prologue_inst_adjust_sp PARAMS ((unsigned long)); |
669caa9c | 65 | |
c598654a | 66 | static int is_branch PARAMS ((unsigned long)); |
669caa9c | 67 | |
c598654a | 68 | static int inst_saves_gr PARAMS ((unsigned long)); |
669caa9c | 69 | |
c598654a | 70 | static int inst_saves_fr PARAMS ((unsigned long)); |
669caa9c | 71 | |
70e43abe | 72 | static int pc_in_interrupt_handler PARAMS ((CORE_ADDR)); |
669caa9c | 73 | |
70e43abe | 74 | static int pc_in_linker_stub PARAMS ((CORE_ADDR)); |
669caa9c SS |
75 | |
76 | static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *, | |
f81eee9d | 77 | const struct unwind_table_entry *)); |
669caa9c | 78 | |
c5152d42 | 79 | static void read_unwind_info PARAMS ((struct objfile *)); |
669caa9c | 80 | |
c5152d42 JL |
81 | static void internalize_unwinds PARAMS ((struct objfile *, |
82 | struct unwind_table_entry *, | |
83 | asection *, unsigned int, | |
bfaef242 | 84 | unsigned int, CORE_ADDR)); |
66a1aa07 SG |
85 | |
86 | \f | |
87 | /* Routines to extract various sized constants out of hppa | |
88 | instructions. */ | |
89 | ||
90 | /* This assumes that no garbage lies outside of the lower bits of | |
91 | value. */ | |
92 | ||
93 | int | |
94 | sign_extend (val, bits) | |
95 | unsigned val, bits; | |
96 | { | |
97 | return (int)(val >> bits - 1 ? (-1 << bits) | val : val); | |
98 | } | |
99 | ||
100 | /* For many immediate values the sign bit is the low bit! */ | |
101 | ||
102 | int | |
103 | low_sign_extend (val, bits) | |
104 | unsigned val, bits; | |
105 | { | |
106 | return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); | |
107 | } | |
108 | /* extract the immediate field from a ld{bhw}s instruction */ | |
109 | ||
110 | unsigned | |
111 | get_field (val, from, to) | |
112 | unsigned val, from, to; | |
113 | { | |
114 | val = val >> 31 - to; | |
115 | return val & ((1 << 32 - from) - 1); | |
116 | } | |
117 | ||
118 | unsigned | |
119 | set_field (val, from, to, new_val) | |
120 | unsigned *val, from, to; | |
121 | { | |
122 | unsigned mask = ~((1 << (to - from + 1)) << (31 - from)); | |
123 | return *val = *val & mask | (new_val << (31 - from)); | |
124 | } | |
125 | ||
126 | /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */ | |
127 | ||
128 | extract_3 (word) | |
129 | unsigned word; | |
130 | { | |
131 | return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17); | |
132 | } | |
133 | ||
134 | extract_5_load (word) | |
135 | unsigned word; | |
136 | { | |
137 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
138 | } | |
139 | ||
140 | /* extract the immediate field from a st{bhw}s instruction */ | |
141 | ||
142 | int | |
143 | extract_5_store (word) | |
144 | unsigned word; | |
145 | { | |
146 | return low_sign_extend (word & MASK_5, 5); | |
147 | } | |
148 | ||
68c8d698 SG |
149 | /* extract the immediate field from a break instruction */ |
150 | ||
151 | unsigned | |
152 | extract_5r_store (word) | |
153 | unsigned word; | |
154 | { | |
155 | return (word & MASK_5); | |
156 | } | |
157 | ||
158 | /* extract the immediate field from a {sr}sm instruction */ | |
159 | ||
160 | unsigned | |
161 | extract_5R_store (word) | |
162 | unsigned word; | |
163 | { | |
164 | return (word >> 16 & MASK_5); | |
165 | } | |
166 | ||
66a1aa07 SG |
167 | /* extract an 11 bit immediate field */ |
168 | ||
169 | int | |
170 | extract_11 (word) | |
171 | unsigned word; | |
172 | { | |
173 | return low_sign_extend (word & MASK_11, 11); | |
174 | } | |
175 | ||
176 | /* extract a 14 bit immediate field */ | |
177 | ||
178 | int | |
179 | extract_14 (word) | |
180 | unsigned word; | |
181 | { | |
182 | return low_sign_extend (word & MASK_14, 14); | |
183 | } | |
184 | ||
185 | /* deposit a 14 bit constant in a word */ | |
186 | ||
187 | unsigned | |
188 | deposit_14 (opnd, word) | |
189 | int opnd; | |
190 | unsigned word; | |
191 | { | |
192 | unsigned sign = (opnd < 0 ? 1 : 0); | |
193 | ||
194 | return word | ((unsigned)opnd << 1 & MASK_14) | sign; | |
195 | } | |
196 | ||
197 | /* extract a 21 bit constant */ | |
198 | ||
199 | int | |
200 | extract_21 (word) | |
201 | unsigned word; | |
202 | { | |
203 | int val; | |
204 | ||
205 | word &= MASK_21; | |
206 | word <<= 11; | |
207 | val = GET_FIELD (word, 20, 20); | |
208 | val <<= 11; | |
209 | val |= GET_FIELD (word, 9, 19); | |
210 | val <<= 2; | |
211 | val |= GET_FIELD (word, 5, 6); | |
212 | val <<= 5; | |
213 | val |= GET_FIELD (word, 0, 4); | |
214 | val <<= 2; | |
215 | val |= GET_FIELD (word, 7, 8); | |
216 | return sign_extend (val, 21) << 11; | |
217 | } | |
218 | ||
219 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
220 | usually the top 21 bits of a 32 bit constant, we assume that only | |
221 | the low 21 bits of opnd are relevant */ | |
222 | ||
223 | unsigned | |
224 | deposit_21 (opnd, word) | |
225 | unsigned opnd, word; | |
226 | { | |
227 | unsigned val = 0; | |
228 | ||
229 | val |= GET_FIELD (opnd, 11 + 14, 11 + 18); | |
230 | val <<= 2; | |
231 | val |= GET_FIELD (opnd, 11 + 12, 11 + 13); | |
232 | val <<= 2; | |
233 | val |= GET_FIELD (opnd, 11 + 19, 11 + 20); | |
234 | val <<= 11; | |
235 | val |= GET_FIELD (opnd, 11 + 1, 11 + 11); | |
236 | val <<= 1; | |
237 | val |= GET_FIELD (opnd, 11 + 0, 11 + 0); | |
238 | return word | val; | |
239 | } | |
240 | ||
241 | /* extract a 12 bit constant from branch instructions */ | |
242 | ||
243 | int | |
244 | extract_12 (word) | |
245 | unsigned word; | |
246 | { | |
247 | return sign_extend (GET_FIELD (word, 19, 28) | | |
248 | GET_FIELD (word, 29, 29) << 10 | | |
249 | (word & 0x1) << 11, 12) << 2; | |
250 | } | |
251 | ||
252 | /* extract a 17 bit constant from branch instructions, returning the | |
253 | 19 bit signed value. */ | |
254 | ||
255 | int | |
256 | extract_17 (word) | |
257 | unsigned word; | |
258 | { | |
259 | return sign_extend (GET_FIELD (word, 19, 28) | | |
260 | GET_FIELD (word, 29, 29) << 10 | | |
261 | GET_FIELD (word, 11, 15) << 11 | | |
262 | (word & 0x1) << 16, 17) << 2; | |
263 | } | |
264 | \f | |
c5152d42 JL |
265 | |
266 | /* Compare the start address for two unwind entries returning 1 if | |
267 | the first address is larger than the second, -1 if the second is | |
268 | larger than the first, and zero if they are equal. */ | |
269 | ||
270 | static int | |
271 | compare_unwind_entries (a, b) | |
f81eee9d JL |
272 | const struct unwind_table_entry *a; |
273 | const struct unwind_table_entry *b; | |
c5152d42 JL |
274 | { |
275 | if (a->region_start > b->region_start) | |
276 | return 1; | |
277 | else if (a->region_start < b->region_start) | |
278 | return -1; | |
279 | else | |
280 | return 0; | |
281 | } | |
282 | ||
283 | static void | |
bfaef242 | 284 | internalize_unwinds (objfile, table, section, entries, size, text_offset) |
c5152d42 JL |
285 | struct objfile *objfile; |
286 | struct unwind_table_entry *table; | |
287 | asection *section; | |
288 | unsigned int entries, size; | |
bfaef242 | 289 | CORE_ADDR text_offset; |
c5152d42 JL |
290 | { |
291 | /* We will read the unwind entries into temporary memory, then | |
292 | fill in the actual unwind table. */ | |
293 | if (size > 0) | |
294 | { | |
295 | unsigned long tmp; | |
296 | unsigned i; | |
297 | char *buf = alloca (size); | |
298 | ||
299 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); | |
300 | ||
301 | /* Now internalize the information being careful to handle host/target | |
302 | endian issues. */ | |
303 | for (i = 0; i < entries; i++) | |
304 | { | |
305 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
306 | (bfd_byte *)buf); | |
bfaef242 | 307 | table[i].region_start += text_offset; |
c5152d42 JL |
308 | buf += 4; |
309 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
bfaef242 | 310 | table[i].region_end += text_offset; |
c5152d42 JL |
311 | buf += 4; |
312 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
313 | buf += 4; | |
314 | table[i].Cannot_unwind = (tmp >> 31) & 0x1;; | |
315 | table[i].Millicode = (tmp >> 30) & 0x1; | |
316 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
317 | table[i].Region_description = (tmp >> 27) & 0x3; | |
318 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
319 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
320 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
321 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
322 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
323 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
324 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
325 | table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1; | |
326 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
327 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
328 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
329 | table[i].reserved2 = (tmp >> 5) & 0xf; | |
330 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
331 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
332 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
333 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
334 | table[i].Cleanup_defined = tmp & 0x1; | |
335 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
336 | buf += 4; | |
337 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
338 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
339 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
340 | table[i].reserved4 = (tmp >> 27) & 0x3; | |
341 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
342 | } | |
343 | } | |
344 | } | |
345 | ||
346 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
347 | the object file. This info is used mainly by find_unwind_entry() to find | |
348 | out the stack frame size and frame pointer used by procedures. We put | |
349 | everything on the psymbol obstack in the objfile so that it automatically | |
350 | gets freed when the objfile is destroyed. */ | |
351 | ||
9c842e0c | 352 | static void |
c5152d42 JL |
353 | read_unwind_info (objfile) |
354 | struct objfile *objfile; | |
355 | { | |
356 | asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec; | |
357 | unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size; | |
358 | unsigned index, unwind_entries, elf_unwind_entries; | |
359 | unsigned stub_entries, total_entries; | |
bfaef242 | 360 | CORE_ADDR text_offset; |
c5152d42 JL |
361 | struct obj_unwind_info *ui; |
362 | ||
bfaef242 | 363 | text_offset = ANOFFSET (objfile->section_offsets, 0); |
c5152d42 JL |
364 | ui = obstack_alloc (&objfile->psymbol_obstack, |
365 | sizeof (struct obj_unwind_info)); | |
366 | ||
367 | ui->table = NULL; | |
368 | ui->cache = NULL; | |
369 | ui->last = -1; | |
370 | ||
371 | /* Get hooks to all unwind sections. Note there is no linker-stub unwind | |
372 | section in ELF at the moment. */ | |
373 | unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$"); | |
0fc27289 | 374 | elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind"); |
c5152d42 JL |
375 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); |
376 | ||
377 | /* Get sizes and unwind counts for all sections. */ | |
378 | if (unwind_sec) | |
379 | { | |
380 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
381 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
382 | } | |
383 | else | |
384 | { | |
385 | unwind_size = 0; | |
386 | unwind_entries = 0; | |
387 | } | |
388 | ||
389 | if (elf_unwind_sec) | |
390 | { | |
391 | elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec); | |
392 | elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE; | |
393 | } | |
f55179cb JL |
394 | else |
395 | { | |
396 | elf_unwind_size = 0; | |
397 | elf_unwind_entries = 0; | |
398 | } | |
c5152d42 JL |
399 | |
400 | if (stub_unwind_sec) | |
401 | { | |
402 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
403 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
404 | } | |
405 | else | |
406 | { | |
407 | stub_unwind_size = 0; | |
408 | stub_entries = 0; | |
409 | } | |
410 | ||
411 | /* Compute total number of unwind entries and their total size. */ | |
412 | total_entries = unwind_entries + elf_unwind_entries + stub_entries; | |
413 | total_size = total_entries * sizeof (struct unwind_table_entry); | |
414 | ||
415 | /* Allocate memory for the unwind table. */ | |
416 | ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size); | |
417 | ui->last = total_entries - 1; | |
418 | ||
419 | /* Internalize the standard unwind entries. */ | |
420 | index = 0; | |
421 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
bfaef242 | 422 | unwind_entries, unwind_size, text_offset); |
c5152d42 JL |
423 | index += unwind_entries; |
424 | internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec, | |
bfaef242 | 425 | elf_unwind_entries, elf_unwind_size, text_offset); |
c5152d42 JL |
426 | index += elf_unwind_entries; |
427 | ||
428 | /* Now internalize the stub unwind entries. */ | |
429 | if (stub_unwind_size > 0) | |
430 | { | |
431 | unsigned int i; | |
432 | char *buf = alloca (stub_unwind_size); | |
433 | ||
434 | /* Read in the stub unwind entries. */ | |
435 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
436 | 0, stub_unwind_size); | |
437 | ||
438 | /* Now convert them into regular unwind entries. */ | |
439 | for (i = 0; i < stub_entries; i++, index++) | |
440 | { | |
441 | /* Clear out the next unwind entry. */ | |
442 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
443 | ||
444 | /* Convert offset & size into region_start and region_end. | |
445 | Stuff away the stub type into "reserved" fields. */ | |
446 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
447 | (bfd_byte *) buf); | |
73a25072 | 448 | ui->table[index].region_start += text_offset; |
c5152d42 JL |
449 | buf += 4; |
450 | ui->table[index].stub_type = bfd_get_8 (objfile->obfd, | |
451 | (bfd_byte *) buf); | |
452 | buf += 2; | |
453 | ui->table[index].region_end | |
454 | = ui->table[index].region_start + 4 * | |
455 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
456 | buf += 2; | |
457 | } | |
458 | ||
459 | } | |
460 | ||
461 | /* Unwind table needs to be kept sorted. */ | |
462 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
463 | compare_unwind_entries); | |
464 | ||
465 | /* Keep a pointer to the unwind information. */ | |
466 | objfile->obj_private = (PTR) ui; | |
467 | } | |
468 | ||
66a1aa07 SG |
469 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all |
470 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
471 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
472 | search of the unwind tables, we depend upon them to be sorted. */ | |
473 | ||
474 | static struct unwind_table_entry * | |
475 | find_unwind_entry(pc) | |
476 | CORE_ADDR pc; | |
477 | { | |
478 | int first, middle, last; | |
479 | struct objfile *objfile; | |
480 | ||
481 | ALL_OBJFILES (objfile) | |
482 | { | |
483 | struct obj_unwind_info *ui; | |
484 | ||
485 | ui = OBJ_UNWIND_INFO (objfile); | |
486 | ||
487 | if (!ui) | |
c5152d42 JL |
488 | { |
489 | read_unwind_info (objfile); | |
490 | ui = OBJ_UNWIND_INFO (objfile); | |
491 | } | |
66a1aa07 SG |
492 | |
493 | /* First, check the cache */ | |
494 | ||
495 | if (ui->cache | |
496 | && pc >= ui->cache->region_start | |
497 | && pc <= ui->cache->region_end) | |
498 | return ui->cache; | |
499 | ||
500 | /* Not in the cache, do a binary search */ | |
501 | ||
502 | first = 0; | |
503 | last = ui->last; | |
504 | ||
505 | while (first <= last) | |
506 | { | |
507 | middle = (first + last) / 2; | |
508 | if (pc >= ui->table[middle].region_start | |
509 | && pc <= ui->table[middle].region_end) | |
510 | { | |
511 | ui->cache = &ui->table[middle]; | |
512 | return &ui->table[middle]; | |
513 | } | |
514 | ||
515 | if (pc < ui->table[middle].region_start) | |
516 | last = middle - 1; | |
517 | else | |
518 | first = middle + 1; | |
519 | } | |
520 | } /* ALL_OBJFILES() */ | |
521 | return NULL; | |
522 | } | |
523 | ||
98c0e047 JL |
524 | /* Return the adjustment necessary to make for addresses on the stack |
525 | as presented by hpread.c. | |
526 | ||
527 | This is necessary because of the stack direction on the PA and the | |
528 | bizarre way in which someone (?) decided they wanted to handle | |
529 | frame pointerless code in GDB. */ | |
530 | int | |
531 | hpread_adjust_stack_address (func_addr) | |
532 | CORE_ADDR func_addr; | |
533 | { | |
534 | struct unwind_table_entry *u; | |
535 | ||
536 | u = find_unwind_entry (func_addr); | |
537 | if (!u) | |
538 | return 0; | |
539 | else | |
540 | return u->Total_frame_size << 3; | |
541 | } | |
98c0e047 | 542 | |
70e43abe JL |
543 | /* Called to determine if PC is in an interrupt handler of some |
544 | kind. */ | |
545 | ||
546 | static int | |
547 | pc_in_interrupt_handler (pc) | |
548 | CORE_ADDR pc; | |
549 | { | |
550 | struct unwind_table_entry *u; | |
551 | struct minimal_symbol *msym_us; | |
552 | ||
553 | u = find_unwind_entry (pc); | |
554 | if (!u) | |
555 | return 0; | |
556 | ||
557 | /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though | |
558 | its frame isn't a pure interrupt frame. Deal with this. */ | |
559 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
560 | ||
561 | return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)); | |
562 | } | |
563 | ||
5ac7f56e JK |
564 | /* Called when no unwind descriptor was found for PC. Returns 1 if it |
565 | appears that PC is in a linker stub. */ | |
5ac7f56e JK |
566 | |
567 | static int | |
568 | pc_in_linker_stub (pc) | |
569 | CORE_ADDR pc; | |
570 | { | |
5ac7f56e JK |
571 | int found_magic_instruction = 0; |
572 | int i; | |
08ecd8f3 JK |
573 | char buf[4]; |
574 | ||
575 | /* If unable to read memory, assume pc is not in a linker stub. */ | |
576 | if (target_read_memory (pc, buf, 4) != 0) | |
577 | return 0; | |
5ac7f56e | 578 | |
d08c6f4c JK |
579 | /* We are looking for something like |
580 | ||
581 | ; $$dyncall jams RP into this special spot in the frame (RP') | |
582 | ; before calling the "call stub" | |
583 | ldw -18(sp),rp | |
584 | ||
585 | ldsid (rp),r1 ; Get space associated with RP into r1 | |
586 | mtsp r1,sp ; Move it into space register 0 | |
587 | be,n 0(sr0),rp) ; back to your regularly scheduled program | |
588 | */ | |
589 | ||
5ac7f56e JK |
590 | /* Maximum known linker stub size is 4 instructions. Search forward |
591 | from the given PC, then backward. */ | |
592 | for (i = 0; i < 4; i++) | |
593 | { | |
6e35b037 | 594 | /* If we hit something with an unwind, stop searching this direction. */ |
5ac7f56e JK |
595 | |
596 | if (find_unwind_entry (pc + i * 4) != 0) | |
597 | break; | |
598 | ||
599 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
600 | return from a cross-space function call. */ | |
601 | if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) | |
602 | { | |
603 | found_magic_instruction = 1; | |
604 | break; | |
605 | } | |
606 | /* Add code to handle long call/branch and argument relocation stubs | |
607 | here. */ | |
608 | } | |
609 | ||
610 | if (found_magic_instruction != 0) | |
611 | return 1; | |
612 | ||
613 | /* Now look backward. */ | |
614 | for (i = 0; i < 4; i++) | |
615 | { | |
6e35b037 | 616 | /* If we hit something with an unwind, stop searching this direction. */ |
5ac7f56e JK |
617 | |
618 | if (find_unwind_entry (pc - i * 4) != 0) | |
619 | break; | |
620 | ||
621 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
622 | return from a cross-space function call. */ | |
623 | if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) | |
624 | { | |
625 | found_magic_instruction = 1; | |
626 | break; | |
627 | } | |
628 | /* Add code to handle long call/branch and argument relocation stubs | |
629 | here. */ | |
630 | } | |
631 | return found_magic_instruction; | |
632 | } | |
633 | ||
66a1aa07 SG |
634 | static int |
635 | find_return_regnum(pc) | |
636 | CORE_ADDR pc; | |
637 | { | |
638 | struct unwind_table_entry *u; | |
639 | ||
640 | u = find_unwind_entry (pc); | |
641 | ||
642 | if (!u) | |
643 | return RP_REGNUM; | |
644 | ||
645 | if (u->Millicode) | |
646 | return 31; | |
647 | ||
648 | return RP_REGNUM; | |
649 | } | |
650 | ||
5ac7f56e | 651 | /* Return size of frame, or -1 if we should use a frame pointer. */ |
66a1aa07 | 652 | int |
70e43abe | 653 | find_proc_framesize (pc) |
66a1aa07 SG |
654 | CORE_ADDR pc; |
655 | { | |
656 | struct unwind_table_entry *u; | |
70e43abe | 657 | struct minimal_symbol *msym_us; |
66a1aa07 | 658 | |
66a1aa07 SG |
659 | u = find_unwind_entry (pc); |
660 | ||
661 | if (!u) | |
5ac7f56e JK |
662 | { |
663 | if (pc_in_linker_stub (pc)) | |
664 | /* Linker stubs have a zero size frame. */ | |
665 | return 0; | |
666 | else | |
667 | return -1; | |
668 | } | |
66a1aa07 | 669 | |
70e43abe JL |
670 | msym_us = lookup_minimal_symbol_by_pc (pc); |
671 | ||
672 | /* If Save_SP is set, and we're not in an interrupt or signal caller, | |
673 | then we have a frame pointer. Use it. */ | |
674 | if (u->Save_SP && !pc_in_interrupt_handler (pc) | |
675 | && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us))) | |
eabbe766 JK |
676 | return -1; |
677 | ||
66a1aa07 SG |
678 | return u->Total_frame_size << 3; |
679 | } | |
680 | ||
5ac7f56e JK |
681 | /* Return offset from sp at which rp is saved, or 0 if not saved. */ |
682 | static int rp_saved PARAMS ((CORE_ADDR)); | |
683 | ||
684 | static int | |
685 | rp_saved (pc) | |
686 | CORE_ADDR pc; | |
66a1aa07 SG |
687 | { |
688 | struct unwind_table_entry *u; | |
689 | ||
690 | u = find_unwind_entry (pc); | |
691 | ||
692 | if (!u) | |
5ac7f56e JK |
693 | { |
694 | if (pc_in_linker_stub (pc)) | |
695 | /* This is the so-called RP'. */ | |
696 | return -24; | |
697 | else | |
698 | return 0; | |
699 | } | |
66a1aa07 SG |
700 | |
701 | if (u->Save_RP) | |
5ac7f56e | 702 | return -20; |
c7f3b703 JL |
703 | else if (u->stub_type != 0) |
704 | { | |
705 | switch (u->stub_type) | |
706 | { | |
707 | case EXPORT: | |
c2e00af6 | 708 | case IMPORT: |
c7f3b703 JL |
709 | return -24; |
710 | case PARAMETER_RELOCATION: | |
711 | return -8; | |
712 | default: | |
713 | return 0; | |
714 | } | |
715 | } | |
66a1aa07 SG |
716 | else |
717 | return 0; | |
718 | } | |
719 | \f | |
8fa74880 SG |
720 | int |
721 | frameless_function_invocation (frame) | |
669caa9c | 722 | struct frame_info *frame; |
8fa74880 | 723 | { |
b8ec9a79 | 724 | struct unwind_table_entry *u; |
8fa74880 | 725 | |
b8ec9a79 | 726 | u = find_unwind_entry (frame->pc); |
8fa74880 | 727 | |
b8ec9a79 | 728 | if (u == 0) |
7f43b9b7 | 729 | return 0; |
b8ec9a79 | 730 | |
c7f3b703 | 731 | return (u->Total_frame_size == 0 && u->stub_type == 0); |
8fa74880 SG |
732 | } |
733 | ||
66a1aa07 SG |
734 | CORE_ADDR |
735 | saved_pc_after_call (frame) | |
669caa9c | 736 | struct frame_info *frame; |
66a1aa07 SG |
737 | { |
738 | int ret_regnum; | |
edd86fb0 JL |
739 | CORE_ADDR pc; |
740 | struct unwind_table_entry *u; | |
66a1aa07 SG |
741 | |
742 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
edd86fb0 JL |
743 | pc = read_register (ret_regnum) & ~0x3; |
744 | ||
745 | /* If PC is in a linker stub, then we need to dig the address | |
746 | the stub will return to out of the stack. */ | |
747 | u = find_unwind_entry (pc); | |
748 | if (u && u->stub_type != 0) | |
749 | return frame_saved_pc (frame); | |
750 | else | |
751 | return pc; | |
66a1aa07 SG |
752 | } |
753 | \f | |
754 | CORE_ADDR | |
755 | frame_saved_pc (frame) | |
669caa9c | 756 | struct frame_info *frame; |
66a1aa07 SG |
757 | { |
758 | CORE_ADDR pc = get_frame_pc (frame); | |
7f43b9b7 | 759 | struct unwind_table_entry *u; |
66a1aa07 | 760 | |
70e43abe JL |
761 | /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner |
762 | at the base of the frame in an interrupt handler. Registers within | |
763 | are saved in the exact same order as GDB numbers registers. How | |
764 | convienent. */ | |
765 | if (pc_in_interrupt_handler (pc)) | |
766 | return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3; | |
767 | ||
768 | /* Deal with signal handler caller frames too. */ | |
769 | if (frame->signal_handler_caller) | |
770 | { | |
771 | CORE_ADDR rp; | |
772 | FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); | |
54b2555b | 773 | return rp & ~0x3; |
70e43abe JL |
774 | } |
775 | ||
8fa74880 | 776 | if (frameless_function_invocation (frame)) |
66a1aa07 SG |
777 | { |
778 | int ret_regnum; | |
779 | ||
780 | ret_regnum = find_return_regnum (pc); | |
781 | ||
70e43abe JL |
782 | /* If the next frame is an interrupt frame or a signal |
783 | handler caller, then we need to look in the saved | |
784 | register area to get the return pointer (the values | |
785 | in the registers may not correspond to anything useful). */ | |
786 | if (frame->next | |
787 | && (frame->next->signal_handler_caller | |
788 | || pc_in_interrupt_handler (frame->next->pc))) | |
789 | { | |
70e43abe JL |
790 | struct frame_saved_regs saved_regs; |
791 | ||
54b2555b | 792 | get_frame_saved_regs (frame->next, &saved_regs); |
471fb8d8 | 793 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) |
54b2555b JL |
794 | { |
795 | pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; | |
796 | ||
797 | /* Syscalls are really two frames. The syscall stub itself | |
798 | with a return pointer in %rp and the kernel call with | |
799 | a return pointer in %r31. We return the %rp variant | |
800 | if %r31 is the same as frame->pc. */ | |
801 | if (pc == frame->pc) | |
802 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; | |
803 | } | |
70e43abe | 804 | else |
7f43b9b7 | 805 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; |
70e43abe JL |
806 | } |
807 | else | |
7f43b9b7 | 808 | pc = read_register (ret_regnum) & ~0x3; |
66a1aa07 | 809 | } |
66a1aa07 | 810 | else |
5ac7f56e | 811 | { |
edd86fb0 | 812 | int rp_offset; |
5ac7f56e | 813 | |
edd86fb0 JL |
814 | restart: |
815 | rp_offset = rp_saved (pc); | |
70e43abe JL |
816 | /* Similar to code in frameless function case. If the next |
817 | frame is a signal or interrupt handler, then dig the right | |
818 | information out of the saved register info. */ | |
819 | if (rp_offset == 0 | |
820 | && frame->next | |
821 | && (frame->next->signal_handler_caller | |
822 | || pc_in_interrupt_handler (frame->next->pc))) | |
823 | { | |
70e43abe JL |
824 | struct frame_saved_regs saved_regs; |
825 | ||
669caa9c | 826 | get_frame_saved_regs (frame->next, &saved_regs); |
471fb8d8 | 827 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) |
54b2555b JL |
828 | { |
829 | pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; | |
830 | ||
831 | /* Syscalls are really two frames. The syscall stub itself | |
832 | with a return pointer in %rp and the kernel call with | |
833 | a return pointer in %r31. We return the %rp variant | |
834 | if %r31 is the same as frame->pc. */ | |
835 | if (pc == frame->pc) | |
836 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; | |
837 | } | |
70e43abe | 838 | else |
7f43b9b7 | 839 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; |
70e43abe JL |
840 | } |
841 | else if (rp_offset == 0) | |
7f43b9b7 | 842 | pc = read_register (RP_REGNUM) & ~0x3; |
5ac7f56e | 843 | else |
7f43b9b7 | 844 | pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3; |
5ac7f56e | 845 | } |
7f43b9b7 JL |
846 | |
847 | /* If PC is inside a linker stub, then dig out the address the stub | |
848 | will return to. */ | |
849 | u = find_unwind_entry (pc); | |
850 | if (u && u->stub_type != 0) | |
851 | goto restart; | |
852 | ||
853 | return pc; | |
66a1aa07 SG |
854 | } |
855 | \f | |
856 | /* We need to correct the PC and the FP for the outermost frame when we are | |
857 | in a system call. */ | |
858 | ||
859 | void | |
860 | init_extra_frame_info (fromleaf, frame) | |
861 | int fromleaf; | |
862 | struct frame_info *frame; | |
863 | { | |
864 | int flags; | |
865 | int framesize; | |
866 | ||
192c3eeb | 867 | if (frame->next && !fromleaf) |
66a1aa07 SG |
868 | return; |
869 | ||
192c3eeb JL |
870 | /* If the next frame represents a frameless function invocation |
871 | then we have to do some adjustments that are normally done by | |
872 | FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */ | |
873 | if (fromleaf) | |
874 | { | |
875 | /* Find the framesize of *this* frame without peeking at the PC | |
876 | in the current frame structure (it isn't set yet). */ | |
877 | framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame))); | |
878 | ||
879 | /* Now adjust our base frame accordingly. If we have a frame pointer | |
880 | use it, else subtract the size of this frame from the current | |
881 | frame. (we always want frame->frame to point at the lowest address | |
882 | in the frame). */ | |
883 | if (framesize == -1) | |
884 | frame->frame = read_register (FP_REGNUM); | |
885 | else | |
886 | frame->frame -= framesize; | |
887 | return; | |
888 | } | |
889 | ||
66a1aa07 SG |
890 | flags = read_register (FLAGS_REGNUM); |
891 | if (flags & 2) /* In system call? */ | |
892 | frame->pc = read_register (31) & ~0x3; | |
893 | ||
192c3eeb JL |
894 | /* The outermost frame is always derived from PC-framesize |
895 | ||
896 | One might think frameless innermost frames should have | |
897 | a frame->frame that is the same as the parent's frame->frame. | |
898 | That is wrong; frame->frame in that case should be the *high* | |
899 | address of the parent's frame. It's complicated as hell to | |
900 | explain, but the parent *always* creates some stack space for | |
901 | the child. So the child actually does have a frame of some | |
902 | sorts, and its base is the high address in its parent's frame. */ | |
66a1aa07 SG |
903 | framesize = find_proc_framesize(frame->pc); |
904 | if (framesize == -1) | |
905 | frame->frame = read_register (FP_REGNUM); | |
906 | else | |
907 | frame->frame = read_register (SP_REGNUM) - framesize; | |
66a1aa07 SG |
908 | } |
909 | \f | |
8966221d JK |
910 | /* Given a GDB frame, determine the address of the calling function's frame. |
911 | This will be used to create a new GDB frame struct, and then | |
912 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
913 | ||
914 | This may involve searching through prologues for several functions | |
915 | at boundaries where GCC calls HP C code, or where code which has | |
916 | a frame pointer calls code without a frame pointer. */ | |
8966221d | 917 | |
669caa9c | 918 | CORE_ADDR |
66a1aa07 SG |
919 | frame_chain (frame) |
920 | struct frame_info *frame; | |
921 | { | |
8966221d JK |
922 | int my_framesize, caller_framesize; |
923 | struct unwind_table_entry *u; | |
70e43abe JL |
924 | CORE_ADDR frame_base; |
925 | ||
926 | /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These | |
927 | are easy; at *sp we have a full save state strucutre which we can | |
928 | pull the old stack pointer from. Also see frame_saved_pc for | |
929 | code to dig a saved PC out of the save state structure. */ | |
930 | if (pc_in_interrupt_handler (frame->pc)) | |
931 | frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4); | |
932 | else if (frame->signal_handler_caller) | |
933 | { | |
934 | FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); | |
935 | } | |
936 | else | |
937 | frame_base = frame->frame; | |
66a1aa07 | 938 | |
8966221d JK |
939 | /* Get frame sizes for the current frame and the frame of the |
940 | caller. */ | |
941 | my_framesize = find_proc_framesize (frame->pc); | |
942 | caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame)); | |
66a1aa07 | 943 | |
8966221d JK |
944 | /* If caller does not have a frame pointer, then its frame |
945 | can be found at current_frame - caller_framesize. */ | |
946 | if (caller_framesize != -1) | |
70e43abe | 947 | return frame_base - caller_framesize; |
8966221d JK |
948 | |
949 | /* Both caller and callee have frame pointers and are GCC compiled | |
950 | (SAVE_SP bit in unwind descriptor is on for both functions. | |
951 | The previous frame pointer is found at the top of the current frame. */ | |
952 | if (caller_framesize == -1 && my_framesize == -1) | |
70e43abe | 953 | return read_memory_integer (frame_base, 4); |
8966221d JK |
954 | |
955 | /* Caller has a frame pointer, but callee does not. This is a little | |
956 | more difficult as GCC and HP C lay out locals and callee register save | |
957 | areas very differently. | |
958 | ||
959 | The previous frame pointer could be in a register, or in one of | |
960 | several areas on the stack. | |
961 | ||
962 | Walk from the current frame to the innermost frame examining | |
2f8c3639 | 963 | unwind descriptors to determine if %r3 ever gets saved into the |
8966221d | 964 | stack. If so return whatever value got saved into the stack. |
2f8c3639 | 965 | If it was never saved in the stack, then the value in %r3 is still |
8966221d JK |
966 | valid, so use it. |
967 | ||
2f8c3639 | 968 | We use information from unwind descriptors to determine if %r3 |
8966221d JK |
969 | is saved into the stack (Entry_GR field has this information). */ |
970 | ||
971 | while (frame) | |
972 | { | |
973 | u = find_unwind_entry (frame->pc); | |
974 | ||
975 | if (!u) | |
976 | { | |
01a03545 JK |
977 | /* We could find this information by examining prologues. I don't |
978 | think anyone has actually written any tools (not even "strip") | |
979 | which leave them out of an executable, so maybe this is a moot | |
980 | point. */ | |
8966221d JK |
981 | warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc); |
982 | return 0; | |
983 | } | |
984 | ||
985 | /* Entry_GR specifies the number of callee-saved general registers | |
2f8c3639 | 986 | saved in the stack. It starts at %r3, so %r3 would be 1. */ |
70e43abe JL |
987 | if (u->Entry_GR >= 1 || u->Save_SP |
988 | || frame->signal_handler_caller | |
989 | || pc_in_interrupt_handler (frame->pc)) | |
8966221d JK |
990 | break; |
991 | else | |
992 | frame = frame->next; | |
993 | } | |
994 | ||
995 | if (frame) | |
996 | { | |
997 | /* We may have walked down the chain into a function with a frame | |
998 | pointer. */ | |
70e43abe JL |
999 | if (u->Save_SP |
1000 | && !frame->signal_handler_caller | |
1001 | && !pc_in_interrupt_handler (frame->pc)) | |
8966221d | 1002 | return read_memory_integer (frame->frame, 4); |
2f8c3639 | 1003 | /* %r3 was saved somewhere in the stack. Dig it out. */ |
8966221d | 1004 | else |
c598654a | 1005 | { |
c598654a JL |
1006 | struct frame_saved_regs saved_regs; |
1007 | ||
669caa9c | 1008 | get_frame_saved_regs (frame, &saved_regs); |
c598654a JL |
1009 | return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); |
1010 | } | |
8966221d JK |
1011 | } |
1012 | else | |
1013 | { | |
2f8c3639 | 1014 | /* The value in %r3 was never saved into the stack (thus %r3 still |
8966221d | 1015 | holds the value of the previous frame pointer). */ |
2f8c3639 | 1016 | return read_register (FP_REGNUM); |
8966221d JK |
1017 | } |
1018 | } | |
66a1aa07 | 1019 | |
66a1aa07 SG |
1020 | \f |
1021 | /* To see if a frame chain is valid, see if the caller looks like it | |
1022 | was compiled with gcc. */ | |
1023 | ||
1024 | int | |
1025 | frame_chain_valid (chain, thisframe) | |
669caa9c SS |
1026 | CORE_ADDR chain; |
1027 | struct frame_info *thisframe; | |
66a1aa07 | 1028 | { |
247145e6 JK |
1029 | struct minimal_symbol *msym_us; |
1030 | struct minimal_symbol *msym_start; | |
70e43abe | 1031 | struct unwind_table_entry *u, *next_u = NULL; |
669caa9c | 1032 | struct frame_info *next; |
66a1aa07 SG |
1033 | |
1034 | if (!chain) | |
1035 | return 0; | |
1036 | ||
b8ec9a79 | 1037 | u = find_unwind_entry (thisframe->pc); |
4b01383b | 1038 | |
70e43abe JL |
1039 | if (u == NULL) |
1040 | return 1; | |
1041 | ||
247145e6 JK |
1042 | /* We can't just check that the same of msym_us is "_start", because |
1043 | someone idiotically decided that they were going to make a Ltext_end | |
1044 | symbol with the same address. This Ltext_end symbol is totally | |
1045 | indistinguishable (as nearly as I can tell) from the symbol for a function | |
1046 | which is (legitimately, since it is in the user's namespace) | |
1047 | named Ltext_end, so we can't just ignore it. */ | |
1048 | msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe)); | |
1049 | msym_start = lookup_minimal_symbol ("_start", NULL); | |
1050 | if (msym_us | |
1051 | && msym_start | |
1052 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
b8ec9a79 | 1053 | return 0; |
5ac7f56e | 1054 | |
70e43abe JL |
1055 | next = get_next_frame (thisframe); |
1056 | if (next) | |
1057 | next_u = find_unwind_entry (next->pc); | |
5ac7f56e | 1058 | |
70e43abe JL |
1059 | /* If this frame does not save SP, has no stack, isn't a stub, |
1060 | and doesn't "call" an interrupt routine or signal handler caller, | |
1061 | then its not valid. */ | |
1062 | if (u->Save_SP || u->Total_frame_size || u->stub_type != 0 | |
1063 | || (thisframe->next && thisframe->next->signal_handler_caller) | |
1064 | || (next_u && next_u->HP_UX_interrupt_marker)) | |
b8ec9a79 | 1065 | return 1; |
5ac7f56e | 1066 | |
b8ec9a79 JK |
1067 | if (pc_in_linker_stub (thisframe->pc)) |
1068 | return 1; | |
4b01383b | 1069 | |
b8ec9a79 | 1070 | return 0; |
66a1aa07 SG |
1071 | } |
1072 | ||
66a1aa07 SG |
1073 | /* |
1074 | * These functions deal with saving and restoring register state | |
1075 | * around a function call in the inferior. They keep the stack | |
1076 | * double-word aligned; eventually, on an hp700, the stack will have | |
1077 | * to be aligned to a 64-byte boundary. | |
1078 | */ | |
1079 | ||
1080 | int | |
1081 | push_dummy_frame () | |
1082 | { | |
1083 | register CORE_ADDR sp; | |
1084 | register int regnum; | |
1085 | int int_buffer; | |
1086 | double freg_buffer; | |
1087 | ||
1088 | /* Space for "arguments"; the RP goes in here. */ | |
1089 | sp = read_register (SP_REGNUM) + 48; | |
1090 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
1091 | write_memory (sp - 20, (char *)&int_buffer, 4); | |
1092 | ||
1093 | int_buffer = read_register (FP_REGNUM); | |
1094 | write_memory (sp, (char *)&int_buffer, 4); | |
1095 | ||
1096 | write_register (FP_REGNUM, sp); | |
1097 | ||
1098 | sp += 8; | |
1099 | ||
1100 | for (regnum = 1; regnum < 32; regnum++) | |
1101 | if (regnum != RP_REGNUM && regnum != FP_REGNUM) | |
1102 | sp = push_word (sp, read_register (regnum)); | |
1103 | ||
1104 | sp += 4; | |
1105 | ||
1106 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
1107 | { | |
1108 | read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
1109 | sp = push_bytes (sp, (char *)&freg_buffer, 8); | |
1110 | } | |
1111 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
1112 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
1113 | sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM)); | |
1114 | sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM)); | |
1115 | sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM)); | |
1116 | sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM)); | |
1117 | write_register (SP_REGNUM, sp); | |
1118 | } | |
1119 | ||
1120 | find_dummy_frame_regs (frame, frame_saved_regs) | |
1121 | struct frame_info *frame; | |
1122 | struct frame_saved_regs *frame_saved_regs; | |
1123 | { | |
1124 | CORE_ADDR fp = frame->frame; | |
1125 | int i; | |
1126 | ||
1127 | frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3; | |
1128 | frame_saved_regs->regs[FP_REGNUM] = fp; | |
1129 | frame_saved_regs->regs[1] = fp + 8; | |
66a1aa07 | 1130 | |
b227992a SG |
1131 | for (fp += 12, i = 3; i < 32; i++) |
1132 | { | |
1133 | if (i != FP_REGNUM) | |
1134 | { | |
1135 | frame_saved_regs->regs[i] = fp; | |
1136 | fp += 4; | |
1137 | } | |
1138 | } | |
66a1aa07 SG |
1139 | |
1140 | fp += 4; | |
1141 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) | |
1142 | frame_saved_regs->regs[i] = fp; | |
1143 | ||
1144 | frame_saved_regs->regs[IPSW_REGNUM] = fp; | |
b227992a SG |
1145 | frame_saved_regs->regs[SAR_REGNUM] = fp + 4; |
1146 | frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8; | |
1147 | frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12; | |
1148 | frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16; | |
1149 | frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20; | |
66a1aa07 SG |
1150 | } |
1151 | ||
1152 | int | |
1153 | hppa_pop_frame () | |
1154 | { | |
669caa9c | 1155 | register struct frame_info *frame = get_current_frame (); |
66a1aa07 SG |
1156 | register CORE_ADDR fp; |
1157 | register int regnum; | |
1158 | struct frame_saved_regs fsr; | |
66a1aa07 SG |
1159 | double freg_buffer; |
1160 | ||
669caa9c SS |
1161 | fp = FRAME_FP (frame); |
1162 | get_frame_saved_regs (frame, &fsr); | |
66a1aa07 | 1163 | |
0a64709e | 1164 | #ifndef NO_PC_SPACE_QUEUE_RESTORE |
66a1aa07 SG |
1165 | if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ |
1166 | restore_pc_queue (&fsr); | |
0a64709e | 1167 | #endif |
66a1aa07 SG |
1168 | |
1169 | for (regnum = 31; regnum > 0; regnum--) | |
1170 | if (fsr.regs[regnum]) | |
1171 | write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); | |
1172 | ||
1173 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--) | |
1174 | if (fsr.regs[regnum]) | |
1175 | { | |
1176 | read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8); | |
1177 | write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
1178 | } | |
1179 | ||
1180 | if (fsr.regs[IPSW_REGNUM]) | |
1181 | write_register (IPSW_REGNUM, | |
1182 | read_memory_integer (fsr.regs[IPSW_REGNUM], 4)); | |
1183 | ||
1184 | if (fsr.regs[SAR_REGNUM]) | |
1185 | write_register (SAR_REGNUM, | |
1186 | read_memory_integer (fsr.regs[SAR_REGNUM], 4)); | |
1187 | ||
ed1a07ad | 1188 | /* If the PC was explicitly saved, then just restore it. */ |
66a1aa07 SG |
1189 | if (fsr.regs[PCOQ_TAIL_REGNUM]) |
1190 | write_register (PCOQ_TAIL_REGNUM, | |
1191 | read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4)); | |
1192 | ||
ed1a07ad JK |
1193 | /* Else use the value in %rp to set the new PC. */ |
1194 | else | |
e9a3cde8 | 1195 | target_write_pc (read_register (RP_REGNUM), 0); |
ed1a07ad | 1196 | |
66a1aa07 SG |
1197 | write_register (FP_REGNUM, read_memory_integer (fp, 4)); |
1198 | ||
1199 | if (fsr.regs[IPSW_REGNUM]) /* call dummy */ | |
1200 | write_register (SP_REGNUM, fp - 48); | |
1201 | else | |
1202 | write_register (SP_REGNUM, fp); | |
1203 | ||
1204 | flush_cached_frames (); | |
66a1aa07 SG |
1205 | } |
1206 | ||
1207 | /* | |
1208 | * After returning to a dummy on the stack, restore the instruction | |
1209 | * queue space registers. */ | |
1210 | ||
1211 | static int | |
1212 | restore_pc_queue (fsr) | |
1213 | struct frame_saved_regs *fsr; | |
1214 | { | |
1215 | CORE_ADDR pc = read_pc (); | |
1216 | CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4); | |
1217 | int pid; | |
67ac9759 | 1218 | struct target_waitstatus w; |
66a1aa07 SG |
1219 | int insn_count; |
1220 | ||
1221 | /* Advance past break instruction in the call dummy. */ | |
1222 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
1223 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
1224 | ||
1225 | /* | |
1226 | * HPUX doesn't let us set the space registers or the space | |
1227 | * registers of the PC queue through ptrace. Boo, hiss. | |
1228 | * Conveniently, the call dummy has this sequence of instructions | |
1229 | * after the break: | |
1230 | * mtsp r21, sr0 | |
1231 | * ble,n 0(sr0, r22) | |
1232 | * | |
1233 | * So, load up the registers and single step until we are in the | |
1234 | * right place. | |
1235 | */ | |
1236 | ||
1237 | write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4)); | |
1238 | write_register (22, new_pc); | |
1239 | ||
1240 | for (insn_count = 0; insn_count < 3; insn_count++) | |
1241 | { | |
8c5e0021 JK |
1242 | /* FIXME: What if the inferior gets a signal right now? Want to |
1243 | merge this into wait_for_inferior (as a special kind of | |
1244 | watchpoint? By setting a breakpoint at the end? Is there | |
1245 | any other choice? Is there *any* way to do this stuff with | |
1246 | ptrace() or some equivalent?). */ | |
66a1aa07 | 1247 | resume (1, 0); |
67ac9759 | 1248 | target_wait (inferior_pid, &w); |
66a1aa07 | 1249 | |
67ac9759 | 1250 | if (w.kind == TARGET_WAITKIND_SIGNALLED) |
66a1aa07 | 1251 | { |
67ac9759 | 1252 | stop_signal = w.value.sig; |
66a1aa07 | 1253 | terminal_ours_for_output (); |
67ac9759 JK |
1254 | printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", |
1255 | target_signal_to_name (stop_signal), | |
1256 | target_signal_to_string (stop_signal)); | |
199b2450 | 1257 | gdb_flush (gdb_stdout); |
66a1aa07 SG |
1258 | return 0; |
1259 | } | |
1260 | } | |
8c5e0021 | 1261 | target_terminal_ours (); |
cad1498f | 1262 | target_fetch_registers (-1); |
66a1aa07 SG |
1263 | return 1; |
1264 | } | |
1265 | ||
1266 | CORE_ADDR | |
1267 | hppa_push_arguments (nargs, args, sp, struct_return, struct_addr) | |
1268 | int nargs; | |
4fd5eed4 | 1269 | value_ptr *args; |
66a1aa07 SG |
1270 | CORE_ADDR sp; |
1271 | int struct_return; | |
1272 | CORE_ADDR struct_addr; | |
1273 | { | |
1274 | /* array of arguments' offsets */ | |
1edc5cd2 | 1275 | int *offset = (int *)alloca(nargs * sizeof (int)); |
66a1aa07 SG |
1276 | int cum = 0; |
1277 | int i, alignment; | |
1278 | ||
1279 | for (i = 0; i < nargs; i++) | |
1280 | { | |
1281 | /* Coerce chars to int & float to double if necessary */ | |
1282 | args[i] = value_arg_coerce (args[i]); | |
1283 | ||
1284 | cum += TYPE_LENGTH (VALUE_TYPE (args[i])); | |
1285 | ||
1286 | /* value must go at proper alignment. Assume alignment is a | |
1287 | power of two.*/ | |
1288 | alignment = hppa_alignof (VALUE_TYPE (args[i])); | |
1289 | if (cum % alignment) | |
1290 | cum = (cum + alignment) & -alignment; | |
1291 | offset[i] = -cum; | |
1292 | } | |
558f4183 | 1293 | sp += max ((cum + 7) & -8, 16); |
66a1aa07 SG |
1294 | |
1295 | for (i = 0; i < nargs; i++) | |
1296 | write_memory (sp + offset[i], VALUE_CONTENTS (args[i]), | |
1297 | TYPE_LENGTH (VALUE_TYPE (args[i]))); | |
1298 | ||
1299 | if (struct_return) | |
1300 | write_register (28, struct_addr); | |
1301 | return sp + 32; | |
1302 | } | |
1303 | ||
1304 | /* | |
1305 | * Insert the specified number of args and function address | |
1306 | * into a call sequence of the above form stored at DUMMYNAME. | |
1307 | * | |
1308 | * On the hppa we need to call the stack dummy through $$dyncall. | |
1309 | * Therefore our version of FIX_CALL_DUMMY takes an extra argument, | |
1310 | * real_pc, which is the location where gdb should start up the | |
1311 | * inferior to do the function call. | |
1312 | */ | |
1313 | ||
1314 | CORE_ADDR | |
1315 | hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) | |
f4f0d174 | 1316 | char *dummy; |
66a1aa07 SG |
1317 | CORE_ADDR pc; |
1318 | CORE_ADDR fun; | |
1319 | int nargs; | |
4fd5eed4 | 1320 | value_ptr *args; |
66a1aa07 SG |
1321 | struct type *type; |
1322 | int gcc_p; | |
1323 | { | |
1324 | CORE_ADDR dyncall_addr, sr4export_addr; | |
1325 | struct minimal_symbol *msymbol; | |
6cfec929 | 1326 | int flags = read_register (FLAGS_REGNUM); |
19cd0c1f | 1327 | struct unwind_table_entry *u; |
66a1aa07 SG |
1328 | |
1329 | msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL); | |
1330 | if (msymbol == NULL) | |
1331 | error ("Can't find an address for $$dyncall trampoline"); | |
1332 | ||
1333 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
1334 | ||
4f915914 JL |
1335 | /* FUN could be a procedure label, in which case we have to get |
1336 | its real address and the value of its GOT/DP. */ | |
1337 | if (fun & 0x2) | |
1338 | { | |
1339 | /* Get the GOT/DP value for the target function. It's | |
1340 | at *(fun+4). Note the call dummy is *NOT* allowed to | |
1341 | trash %r19 before calling the target function. */ | |
1342 | write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4)); | |
1343 | ||
1344 | /* Now get the real address for the function we are calling, it's | |
1345 | at *fun. */ | |
1346 | fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4); | |
1347 | } | |
1348 | ||
19cd0c1f JL |
1349 | /* If we are calling an import stub (eg calling into a dynamic library) |
1350 | then have sr4export call the magic __d_plt_call routine which is linked | |
1351 | in from end.o. (You can't use _sr4export to call the import stub as | |
1352 | the value in sp-24 will get fried and you end up returning to the | |
1353 | wrong location. You can't call the import stub directly as the code | |
1354 | to bind the PLT entry to a function can't return to a stack address.) */ | |
1355 | u = find_unwind_entry (fun); | |
1356 | if (u && u->stub_type == IMPORT) | |
1357 | { | |
1358 | CORE_ADDR new_fun; | |
1359 | msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL); | |
1360 | if (msymbol == NULL) | |
1361 | error ("Can't find an address for __d_plt_call trampoline"); | |
1362 | ||
1363 | /* This is where sr4export will jump to. */ | |
1364 | new_fun = SYMBOL_VALUE_ADDRESS (msymbol); | |
1365 | ||
1366 | /* We have to store the address of the stub in __shlib_funcptr. */ | |
1367 | msymbol = lookup_minimal_symbol ("__shlib_funcptr", | |
1368 | (struct objfile *)NULL); | |
1369 | if (msymbol == NULL) | |
1370 | error ("Can't find an address for __shlib_funcptr"); | |
1371 | ||
1372 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4); | |
1373 | fun = new_fun; | |
1374 | ||
1375 | } | |
1376 | ||
1377 | /* We still need sr4export's address too. */ | |
66a1aa07 SG |
1378 | msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL); |
1379 | if (msymbol == NULL) | |
1380 | error ("Can't find an address for _sr4export trampoline"); | |
1381 | ||
1382 | sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
1383 | ||
f4f0d174 JK |
1384 | store_unsigned_integer |
1385 | (&dummy[9*REGISTER_SIZE], | |
1386 | REGISTER_SIZE, | |
1387 | deposit_21 (fun >> 11, | |
1388 | extract_unsigned_integer (&dummy[9*REGISTER_SIZE], | |
1389 | REGISTER_SIZE))); | |
1390 | store_unsigned_integer | |
1391 | (&dummy[10*REGISTER_SIZE], | |
1392 | REGISTER_SIZE, | |
1393 | deposit_14 (fun & MASK_11, | |
1394 | extract_unsigned_integer (&dummy[10*REGISTER_SIZE], | |
1395 | REGISTER_SIZE))); | |
1396 | store_unsigned_integer | |
1397 | (&dummy[12*REGISTER_SIZE], | |
1398 | REGISTER_SIZE, | |
1399 | deposit_21 (sr4export_addr >> 11, | |
1400 | extract_unsigned_integer (&dummy[12*REGISTER_SIZE], | |
1401 | REGISTER_SIZE))); | |
1402 | store_unsigned_integer | |
1403 | (&dummy[13*REGISTER_SIZE], | |
1404 | REGISTER_SIZE, | |
1405 | deposit_14 (sr4export_addr & MASK_11, | |
1406 | extract_unsigned_integer (&dummy[13*REGISTER_SIZE], | |
1407 | REGISTER_SIZE))); | |
66a1aa07 SG |
1408 | |
1409 | write_register (22, pc); | |
1410 | ||
6cfec929 JK |
1411 | /* If we are in a syscall, then we should call the stack dummy |
1412 | directly. $$dyncall is not needed as the kernel sets up the | |
1413 | space id registers properly based on the value in %r31. In | |
1414 | fact calling $$dyncall will not work because the value in %r22 | |
1415 | will be clobbered on the syscall exit path. */ | |
1416 | if (flags & 2) | |
1417 | return pc; | |
1418 | else | |
1419 | return dyncall_addr; | |
1420 | ||
66a1aa07 SG |
1421 | } |
1422 | ||
d3862cae JK |
1423 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege |
1424 | bits. */ | |
669caa9c | 1425 | |
d3862cae | 1426 | CORE_ADDR |
e9a3cde8 JL |
1427 | target_read_pc (pid) |
1428 | int pid; | |
d3862cae JK |
1429 | { |
1430 | int flags = read_register (FLAGS_REGNUM); | |
1431 | ||
1432 | if (flags & 2) | |
1433 | return read_register (31) & ~0x3; | |
1434 | return read_register (PC_REGNUM) & ~0x3; | |
1435 | } | |
1436 | ||
6cfec929 JK |
1437 | /* Write out the PC. If currently in a syscall, then also write the new |
1438 | PC value into %r31. */ | |
669caa9c | 1439 | |
6cfec929 | 1440 | void |
e9a3cde8 | 1441 | target_write_pc (v, pid) |
6cfec929 | 1442 | CORE_ADDR v; |
e9a3cde8 | 1443 | int pid; |
6cfec929 JK |
1444 | { |
1445 | int flags = read_register (FLAGS_REGNUM); | |
1446 | ||
1447 | /* If in a syscall, then set %r31. Also make sure to get the | |
1448 | privilege bits set correctly. */ | |
1449 | if (flags & 2) | |
1450 | write_register (31, (long) (v | 0x3)); | |
1451 | ||
1452 | write_register (PC_REGNUM, (long) v); | |
1453 | write_register (NPC_REGNUM, (long) v + 4); | |
1454 | } | |
1455 | ||
66a1aa07 SG |
1456 | /* return the alignment of a type in bytes. Structures have the maximum |
1457 | alignment required by their fields. */ | |
1458 | ||
1459 | static int | |
1460 | hppa_alignof (arg) | |
1461 | struct type *arg; | |
1462 | { | |
1463 | int max_align, align, i; | |
1464 | switch (TYPE_CODE (arg)) | |
1465 | { | |
1466 | case TYPE_CODE_PTR: | |
1467 | case TYPE_CODE_INT: | |
1468 | case TYPE_CODE_FLT: | |
1469 | return TYPE_LENGTH (arg); | |
1470 | case TYPE_CODE_ARRAY: | |
1471 | return hppa_alignof (TYPE_FIELD_TYPE (arg, 0)); | |
1472 | case TYPE_CODE_STRUCT: | |
1473 | case TYPE_CODE_UNION: | |
1474 | max_align = 2; | |
1475 | for (i = 0; i < TYPE_NFIELDS (arg); i++) | |
1476 | { | |
1477 | /* Bit fields have no real alignment. */ | |
1478 | if (!TYPE_FIELD_BITPOS (arg, i)) | |
1479 | { | |
1480 | align = hppa_alignof (TYPE_FIELD_TYPE (arg, i)); | |
1481 | max_align = max (max_align, align); | |
1482 | } | |
1483 | } | |
1484 | return max_align; | |
1485 | default: | |
1486 | return 4; | |
1487 | } | |
1488 | } | |
1489 | ||
1490 | /* Print the register regnum, or all registers if regnum is -1 */ | |
1491 | ||
1492 | pa_do_registers_info (regnum, fpregs) | |
1493 | int regnum; | |
1494 | int fpregs; | |
1495 | { | |
1496 | char raw_regs [REGISTER_BYTES]; | |
1497 | int i; | |
1498 | ||
1499 | for (i = 0; i < NUM_REGS; i++) | |
1500 | read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i)); | |
1501 | if (regnum == -1) | |
1502 | pa_print_registers (raw_regs, regnum, fpregs); | |
1503 | else if (regnum < FP0_REGNUM) | |
199b2450 | 1504 | printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs + |
66a1aa07 SG |
1505 | REGISTER_BYTE (regnum))); |
1506 | else | |
1507 | pa_print_fp_reg (regnum); | |
1508 | } | |
1509 | ||
1510 | pa_print_registers (raw_regs, regnum, fpregs) | |
1511 | char *raw_regs; | |
1512 | int regnum; | |
1513 | int fpregs; | |
1514 | { | |
1515 | int i; | |
1516 | ||
1517 | for (i = 0; i < 18; i++) | |
199b2450 | 1518 | printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n", |
66a1aa07 SG |
1519 | reg_names[i], |
1520 | *(int *)(raw_regs + REGISTER_BYTE (i)), | |
1521 | reg_names[i + 18], | |
1522 | *(int *)(raw_regs + REGISTER_BYTE (i + 18)), | |
1523 | reg_names[i + 36], | |
1524 | *(int *)(raw_regs + REGISTER_BYTE (i + 36)), | |
1525 | reg_names[i + 54], | |
1526 | *(int *)(raw_regs + REGISTER_BYTE (i + 54))); | |
1527 | ||
1528 | if (fpregs) | |
1529 | for (i = 72; i < NUM_REGS; i++) | |
1530 | pa_print_fp_reg (i); | |
1531 | } | |
1532 | ||
1533 | pa_print_fp_reg (i) | |
1534 | int i; | |
1535 | { | |
1536 | unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
1537 | unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
66a1aa07 | 1538 | |
eb1167c6 | 1539 | /* Get 32bits of data. */ |
66a1aa07 | 1540 | read_relative_register_raw_bytes (i, raw_buffer); |
ad09cb2b | 1541 | |
eb1167c6 JL |
1542 | /* Put it in the buffer. No conversions are ever necessary. */ |
1543 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
66a1aa07 | 1544 | |
199b2450 | 1545 | fputs_filtered (reg_names[i], gdb_stdout); |
eb1167c6 JL |
1546 | print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); |
1547 | fputs_filtered ("(single precision) ", gdb_stdout); | |
66a1aa07 | 1548 | |
199b2450 | 1549 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0, |
66a1aa07 SG |
1550 | 1, 0, Val_pretty_default); |
1551 | printf_filtered ("\n"); | |
eb1167c6 JL |
1552 | |
1553 | /* If "i" is even, then this register can also be a double-precision | |
1554 | FP register. Dump it out as such. */ | |
1555 | if ((i % 2) == 0) | |
1556 | { | |
1557 | /* Get the data in raw format for the 2nd half. */ | |
1558 | read_relative_register_raw_bytes (i + 1, raw_buffer); | |
1559 | ||
1560 | /* Copy it into the appropriate part of the virtual buffer. */ | |
1561 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer, | |
1562 | REGISTER_RAW_SIZE (i)); | |
1563 | ||
1564 | /* Dump it as a double. */ | |
1565 | fputs_filtered (reg_names[i], gdb_stdout); | |
1566 | print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); | |
1567 | fputs_filtered ("(double precision) ", gdb_stdout); | |
1568 | ||
1569 | val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0, | |
1570 | 1, 0, Val_pretty_default); | |
1571 | printf_filtered ("\n"); | |
1572 | } | |
66a1aa07 SG |
1573 | } |
1574 | ||
a76c2240 JL |
1575 | /* Return one if PC is in the call path of a trampoline, else return zero. |
1576 | ||
1577 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
1578 | just shared library trampolines (import, export). */ | |
481faa25 JL |
1579 | |
1580 | in_solib_call_trampoline (pc, name) | |
1581 | CORE_ADDR pc; | |
1582 | char *name; | |
1583 | { | |
1584 | struct minimal_symbol *minsym; | |
1585 | struct unwind_table_entry *u; | |
a76c2240 JL |
1586 | static CORE_ADDR dyncall = 0; |
1587 | static CORE_ADDR sr4export = 0; | |
1588 | ||
1589 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a | |
1590 | new exec file */ | |
1591 | ||
1592 | /* First see if PC is in one of the two C-library trampolines. */ | |
1593 | if (!dyncall) | |
1594 | { | |
1595 | minsym = lookup_minimal_symbol ("$$dyncall", NULL); | |
1596 | if (minsym) | |
1597 | dyncall = SYMBOL_VALUE_ADDRESS (minsym); | |
1598 | else | |
1599 | dyncall = -1; | |
1600 | } | |
1601 | ||
1602 | if (!sr4export) | |
1603 | { | |
1604 | minsym = lookup_minimal_symbol ("_sr4export", NULL); | |
1605 | if (minsym) | |
1606 | sr4export = SYMBOL_VALUE_ADDRESS (minsym); | |
1607 | else | |
1608 | sr4export = -1; | |
1609 | } | |
1610 | ||
1611 | if (pc == dyncall || pc == sr4export) | |
1612 | return 1; | |
481faa25 JL |
1613 | |
1614 | /* Get the unwind descriptor corresponding to PC, return zero | |
1615 | if no unwind was found. */ | |
1616 | u = find_unwind_entry (pc); | |
1617 | if (!u) | |
1618 | return 0; | |
1619 | ||
1620 | /* If this isn't a linker stub, then return now. */ | |
a76c2240 | 1621 | if (u->stub_type == 0) |
481faa25 JL |
1622 | return 0; |
1623 | ||
a76c2240 JL |
1624 | /* By definition a long-branch stub is a call stub. */ |
1625 | if (u->stub_type == LONG_BRANCH) | |
1626 | return 1; | |
1627 | ||
481faa25 JL |
1628 | /* The call and return path execute the same instructions within |
1629 | an IMPORT stub! So an IMPORT stub is both a call and return | |
1630 | trampoline. */ | |
1631 | if (u->stub_type == IMPORT) | |
1632 | return 1; | |
1633 | ||
a76c2240 JL |
1634 | if (u->stub_type == EXPORT) |
1635 | { | |
1636 | /* The linker may group many EXPORT stubs into one unwind entry. So | |
1637 | lookup the minimal symbol and use that as the beginning of this | |
1638 | particular stub. */ | |
1639 | minsym = lookup_minimal_symbol_by_pc (pc); | |
1640 | if (minsym == NULL) | |
1641 | return 0; | |
1642 | ||
1643 | /* Export stubs have distinct call and return paths. The first | |
1644 | two instructions are the call path, following four are the | |
1645 | return path. */ | |
1646 | return (pc >= SYMBOL_VALUE (minsym) && pc < SYMBOL_VALUE (minsym) + 8); | |
1647 | } | |
481faa25 | 1648 | |
a76c2240 | 1649 | /* Parameter relocation stubs always have a call path and may have a |
481faa25 | 1650 | return path. */ |
a76c2240 JL |
1651 | if (u->stub_type == PARAMETER_RELOCATION) |
1652 | { | |
1653 | CORE_ADDR addr; | |
1654 | ||
1655 | /* Search forward from the current PC until we hit a branch | |
1656 | or the end of the stub. */ | |
1657 | for (addr = pc; addr <= u->region_end; addr += 4) | |
1658 | { | |
1659 | unsigned long insn; | |
1660 | ||
1661 | insn = read_memory_integer (addr, 4); | |
1662 | ||
1663 | /* Does it look like a bl? If so then it's the call path, if | |
1664 | we find a bv first, then we're on the return path. */ | |
1665 | if ((insn & 0xfc00e000) == 0xe8000000) | |
1666 | return 1; | |
1667 | else if ((insn & 0xfc00e001) == 0xe800c000) | |
1668 | return 0; | |
1669 | } | |
1670 | ||
1671 | /* Should never happen. */ | |
1672 | warning ("Unable to find branch in parameter relocation stub.\n"); | |
1673 | return 0; | |
1674 | } | |
1675 | ||
1676 | /* Unknown stub type. For now, just return zero. */ | |
1677 | return 0; | |
481faa25 JL |
1678 | } |
1679 | ||
a76c2240 JL |
1680 | /* Return one if PC is in the return path of a trampoline, else return zero. |
1681 | ||
1682 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
1683 | just shared library trampolines (import, export). */ | |
481faa25 JL |
1684 | |
1685 | in_solib_return_trampoline (pc, name) | |
1686 | CORE_ADDR pc; | |
1687 | char *name; | |
1688 | { | |
1689 | struct minimal_symbol *minsym; | |
1690 | struct unwind_table_entry *u; | |
1691 | ||
1692 | /* Get the unwind descriptor corresponding to PC, return zero | |
1693 | if no unwind was found. */ | |
1694 | u = find_unwind_entry (pc); | |
1695 | if (!u) | |
1696 | return 0; | |
1697 | ||
a76c2240 JL |
1698 | /* If this isn't a linker stub or it's just a long branch stub, then |
1699 | return zero. */ | |
1700 | if (u->stub_type == 0 || u->stub_type == LONG_BRANCH) | |
481faa25 JL |
1701 | return 0; |
1702 | ||
1703 | /* The call and return path execute the same instructions within | |
1704 | an IMPORT stub! So an IMPORT stub is both a call and return | |
1705 | trampoline. */ | |
1706 | if (u->stub_type == IMPORT) | |
1707 | return 1; | |
1708 | ||
a76c2240 JL |
1709 | if (u->stub_type == EXPORT) |
1710 | { | |
1711 | /* The linker may group many EXPORT stubs into one unwind entry. So | |
1712 | lookup the minimal symbol and use that as the beginning of this | |
1713 | particular stub. */ | |
1714 | minsym = lookup_minimal_symbol_by_pc (pc); | |
1715 | if (minsym == NULL) | |
1716 | return 0; | |
1717 | ||
1718 | /* Export stubs have distinct call and return paths. The first | |
1719 | two instructions are the call path, following four are the | |
1720 | return path. */ | |
1721 | return (pc >= SYMBOL_VALUE (minsym) + 8 | |
1722 | && pc < SYMBOL_VALUE (minsym) + 20); | |
1723 | } | |
481faa25 | 1724 | |
a76c2240 | 1725 | /* Parameter relocation stubs always have a call path and may have a |
481faa25 | 1726 | return path. */ |
a76c2240 JL |
1727 | if (u->stub_type == PARAMETER_RELOCATION) |
1728 | { | |
1729 | CORE_ADDR addr; | |
1730 | ||
1731 | /* Search forward from the current PC until we hit a branch | |
1732 | or the end of the stub. */ | |
1733 | for (addr = pc; addr <= u->region_end; addr += 4) | |
1734 | { | |
1735 | unsigned long insn; | |
1736 | ||
1737 | insn = read_memory_integer (addr, 4); | |
1738 | ||
1739 | /* Does it look like a bl? If so then it's the call path, if | |
1740 | we find a bv first, then we're on the return path. */ | |
1741 | if ((insn & 0xfc00e000) == 0xe8000000) | |
1742 | return 0; | |
1743 | else if ((insn & 0xfc00e001) == 0xe800c000) | |
1744 | return 1; | |
1745 | } | |
1746 | ||
1747 | /* Should never happen. */ | |
1748 | warning ("Unable to find branch in parameter relocation stub.\n"); | |
1749 | return 0; | |
1750 | } | |
1751 | ||
1752 | /* Unknown stub type. For now, just return zero. */ | |
1753 | return 0; | |
1754 | ||
481faa25 JL |
1755 | } |
1756 | ||
de482138 JL |
1757 | /* Figure out if PC is in a trampoline, and if so find out where |
1758 | the trampoline will jump to. If not in a trampoline, return zero. | |
66a1aa07 | 1759 | |
de482138 JL |
1760 | Simple code examination probably is not a good idea since the code |
1761 | sequences in trampolines can also appear in user code. | |
1762 | ||
1763 | We use unwinds and information from the minimal symbol table to | |
1764 | determine when we're in a trampoline. This won't work for ELF | |
1765 | (yet) since it doesn't create stub unwind entries. Whether or | |
1766 | not ELF will create stub unwinds or normal unwinds for linker | |
1767 | stubs is still being debated. | |
1768 | ||
1769 | This should handle simple calls through dyncall or sr4export, | |
1770 | long calls, argument relocation stubs, and dyncall/sr4export | |
1771 | calling an argument relocation stub. It even handles some stubs | |
1772 | used in dynamic executables. */ | |
66a1aa07 SG |
1773 | |
1774 | CORE_ADDR | |
1775 | skip_trampoline_code (pc, name) | |
1776 | CORE_ADDR pc; | |
1777 | char *name; | |
1778 | { | |
de482138 JL |
1779 | long orig_pc = pc; |
1780 | long prev_inst, curr_inst, loc; | |
66a1aa07 | 1781 | static CORE_ADDR dyncall = 0; |
de482138 | 1782 | static CORE_ADDR sr4export = 0; |
66a1aa07 | 1783 | struct minimal_symbol *msym; |
de482138 | 1784 | struct unwind_table_entry *u; |
66a1aa07 | 1785 | |
de482138 JL |
1786 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a |
1787 | new exec file */ | |
66a1aa07 SG |
1788 | |
1789 | if (!dyncall) | |
1790 | { | |
1791 | msym = lookup_minimal_symbol ("$$dyncall", NULL); | |
1792 | if (msym) | |
1793 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
1794 | else | |
1795 | dyncall = -1; | |
1796 | } | |
1797 | ||
de482138 JL |
1798 | if (!sr4export) |
1799 | { | |
1800 | msym = lookup_minimal_symbol ("_sr4export", NULL); | |
1801 | if (msym) | |
1802 | sr4export = SYMBOL_VALUE_ADDRESS (msym); | |
1803 | else | |
1804 | sr4export = -1; | |
1805 | } | |
1806 | ||
1807 | /* Addresses passed to dyncall may *NOT* be the actual address | |
669caa9c | 1808 | of the function. So we may have to do something special. */ |
66a1aa07 | 1809 | if (pc == dyncall) |
de482138 JL |
1810 | { |
1811 | pc = (CORE_ADDR) read_register (22); | |
66a1aa07 | 1812 | |
de482138 JL |
1813 | /* If bit 30 (counting from the left) is on, then pc is the address of |
1814 | the PLT entry for this function, not the address of the function | |
1815 | itself. Bit 31 has meaning too, but only for MPE. */ | |
1816 | if (pc & 0x2) | |
1817 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4); | |
1818 | } | |
1819 | else if (pc == sr4export) | |
1820 | pc = (CORE_ADDR) (read_register (22)); | |
66a1aa07 | 1821 | |
de482138 JL |
1822 | /* Get the unwind descriptor corresponding to PC, return zero |
1823 | if no unwind was found. */ | |
1824 | u = find_unwind_entry (pc); | |
1825 | if (!u) | |
1826 | return 0; | |
1827 | ||
1828 | /* If this isn't a linker stub, then return now. */ | |
1829 | if (u->stub_type == 0) | |
1830 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1831 | ||
1832 | /* It's a stub. Search for a branch and figure out where it goes. | |
1833 | Note we have to handle multi insn branch sequences like ldil;ble. | |
1834 | Most (all?) other branches can be determined by examining the contents | |
1835 | of certain registers and the stack. */ | |
1836 | loc = pc; | |
1837 | curr_inst = 0; | |
1838 | prev_inst = 0; | |
1839 | while (1) | |
1840 | { | |
1841 | /* Make sure we haven't walked outside the range of this stub. */ | |
1842 | if (u != find_unwind_entry (loc)) | |
1843 | { | |
1844 | warning ("Unable to find branch in linker stub"); | |
1845 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1846 | } | |
1847 | ||
1848 | prev_inst = curr_inst; | |
1849 | curr_inst = read_memory_integer (loc, 4); | |
66a1aa07 | 1850 | |
de482138 JL |
1851 | /* Does it look like a branch external using %r1? Then it's the |
1852 | branch from the stub to the actual function. */ | |
1853 | if ((curr_inst & 0xffe0e000) == 0xe0202000) | |
1854 | { | |
1855 | /* Yup. See if the previous instruction loaded | |
1856 | a value into %r1. If so compute and return the jump address. */ | |
4cbc4bf1 | 1857 | if ((prev_inst & 0xffe00000) == 0x20200000) |
de482138 JL |
1858 | return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; |
1859 | else | |
1860 | { | |
1861 | warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); | |
1862 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1863 | } | |
1864 | } | |
1865 | ||
f32fc5f9 JL |
1866 | /* Does it look like a be 0(sr0,%r21)? That's the branch from an |
1867 | import stub to an export stub. | |
1868 | ||
1869 | It is impossible to determine the target of the branch via | |
1870 | simple examination of instructions and/or data (consider | |
1871 | that the address in the plabel may be the address of the | |
1872 | bind-on-reference routine in the dynamic loader). | |
1873 | ||
1874 | So we have try an alternative approach. | |
1875 | ||
1876 | Get the name of the symbol at our current location; it should | |
1877 | be a stub symbol with the same name as the symbol in the | |
1878 | shared library. | |
1879 | ||
1880 | Then lookup a minimal symbol with the same name; we should | |
1881 | get the minimal symbol for the target routine in the shared | |
1882 | library as those take precedence of import/export stubs. */ | |
1883 | if (curr_inst == 0xe2a00000) | |
1884 | { | |
1885 | struct minimal_symbol *stubsym, *libsym; | |
1886 | ||
1887 | stubsym = lookup_minimal_symbol_by_pc (loc); | |
1888 | if (stubsym == NULL) | |
1889 | { | |
1890 | warning ("Unable to find symbol for 0x%x", loc); | |
1891 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1892 | } | |
1893 | ||
1894 | libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL); | |
1895 | if (libsym == NULL) | |
1896 | { | |
1897 | warning ("Unable to find library symbol for %s\n", | |
1898 | SYMBOL_NAME (stubsym)); | |
1899 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1900 | } | |
1901 | ||
1902 | return SYMBOL_VALUE (libsym); | |
1903 | } | |
1904 | ||
88b91d4a JL |
1905 | /* Does it look like bl X,%rp or bl X,%r0? Another way to do a |
1906 | branch from the stub to the actual function. */ | |
1907 | else if ((curr_inst & 0xffe0e000) == 0xe8400000 | |
1908 | || (curr_inst & 0xffe0e000) == 0xe8000000) | |
de482138 JL |
1909 | return (loc + extract_17 (curr_inst) + 8) & ~0x3; |
1910 | ||
1911 | /* Does it look like bv (rp)? Note this depends on the | |
1912 | current stack pointer being the same as the stack | |
1913 | pointer in the stub itself! This is a branch on from the | |
1914 | stub back to the original caller. */ | |
1915 | else if ((curr_inst & 0xffe0e000) == 0xe840c000) | |
1916 | { | |
1917 | /* Yup. See if the previous instruction loaded | |
1918 | rp from sp - 8. */ | |
1919 | if (prev_inst == 0x4bc23ff1) | |
1920 | return (read_memory_integer | |
1921 | (read_register (SP_REGNUM) - 8, 4)) & ~0x3; | |
1922 | else | |
1923 | { | |
1924 | warning ("Unable to find restore of %%rp before bv (%%rp)."); | |
1925 | return orig_pc == pc ? 0 : pc & ~0x3; | |
1926 | } | |
1927 | } | |
1928 | ||
1929 | /* What about be,n 0(sr0,%rp)? It's just another way we return to | |
1930 | the original caller from the stub. Used in dynamic executables. */ | |
1931 | else if (curr_inst == 0xe0400002) | |
1932 | { | |
1933 | /* The value we jump to is sitting in sp - 24. But that's | |
1934 | loaded several instructions before the be instruction. | |
1935 | I guess we could check for the previous instruction being | |
1936 | mtsp %r1,%sr0 if we want to do sanity checking. */ | |
1937 | return (read_memory_integer | |
1938 | (read_register (SP_REGNUM) - 24, 4)) & ~0x3; | |
1939 | } | |
1940 | ||
1941 | /* Haven't found the branch yet, but we're still in the stub. | |
1942 | Keep looking. */ | |
1943 | loc += 4; | |
1944 | } | |
66a1aa07 SG |
1945 | } |
1946 | ||
c598654a JL |
1947 | /* For the given instruction (INST), return any adjustment it makes |
1948 | to the stack pointer or zero for no adjustment. | |
1949 | ||
1950 | This only handles instructions commonly found in prologues. */ | |
1951 | ||
1952 | static int | |
1953 | prologue_inst_adjust_sp (inst) | |
1954 | unsigned long inst; | |
1955 | { | |
1956 | /* This must persist across calls. */ | |
1957 | static int save_high21; | |
1958 | ||
1959 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
1960 | if ((inst & 0xffffc000) == 0x37de0000) | |
1961 | return extract_14 (inst); | |
1962 | ||
1963 | /* stwm X,D(sp) */ | |
1964 | if ((inst & 0xffe00000) == 0x6fc00000) | |
1965 | return extract_14 (inst); | |
1966 | ||
1967 | /* addil high21,%r1; ldo low11,(%r1),%r30) | |
1968 | save high bits in save_high21 for later use. */ | |
1969 | if ((inst & 0xffe00000) == 0x28200000) | |
1970 | { | |
1971 | save_high21 = extract_21 (inst); | |
1972 | return 0; | |
1973 | } | |
1974 | ||
1975 | if ((inst & 0xffff0000) == 0x343e0000) | |
1976 | return save_high21 + extract_14 (inst); | |
1977 | ||
1978 | /* fstws as used by the HP compilers. */ | |
1979 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
1980 | return extract_5_load (inst); | |
1981 | ||
1982 | /* No adjustment. */ | |
1983 | return 0; | |
1984 | } | |
1985 | ||
1986 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
1987 | ||
1988 | static int | |
1989 | is_branch (inst) | |
1990 | unsigned long inst; | |
1991 | { | |
1992 | switch (inst >> 26) | |
1993 | { | |
1994 | case 0x20: | |
1995 | case 0x21: | |
1996 | case 0x22: | |
1997 | case 0x23: | |
1998 | case 0x28: | |
1999 | case 0x29: | |
2000 | case 0x2a: | |
2001 | case 0x2b: | |
2002 | case 0x30: | |
2003 | case 0x31: | |
2004 | case 0x32: | |
2005 | case 0x33: | |
2006 | case 0x38: | |
2007 | case 0x39: | |
2008 | case 0x3a: | |
2009 | return 1; | |
2010 | ||
2011 | default: | |
2012 | return 0; | |
2013 | } | |
2014 | } | |
2015 | ||
2016 | /* Return the register number for a GR which is saved by INST or | |
edd86fb0 | 2017 | zero it INST does not save a GR. */ |
c598654a JL |
2018 | |
2019 | static int | |
2020 | inst_saves_gr (inst) | |
2021 | unsigned long inst; | |
2022 | { | |
2023 | /* Does it look like a stw? */ | |
2024 | if ((inst >> 26) == 0x1a) | |
2025 | return extract_5R_store (inst); | |
2026 | ||
edd86fb0 | 2027 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ |
c598654a JL |
2028 | if ((inst >> 26) == 0x1b) |
2029 | return extract_5R_store (inst); | |
2030 | ||
edd86fb0 JL |
2031 | /* Does it look like sth or stb? HPC versions 9.0 and later use these |
2032 | too. */ | |
2033 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18) | |
2034 | return extract_5R_store (inst); | |
2035 | ||
c598654a JL |
2036 | return 0; |
2037 | } | |
2038 | ||
2039 | /* Return the register number for a FR which is saved by INST or | |
2040 | zero it INST does not save a FR. | |
2041 | ||
2042 | Note we only care about full 64bit register stores (that's the only | |
edd86fb0 JL |
2043 | kind of stores the prologue will use). |
2044 | ||
2045 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
c598654a JL |
2046 | |
2047 | static int | |
2048 | inst_saves_fr (inst) | |
2049 | unsigned long inst; | |
2050 | { | |
edd86fb0 | 2051 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
c598654a JL |
2052 | return extract_5r_store (inst); |
2053 | return 0; | |
2054 | } | |
2055 | ||
66a1aa07 | 2056 | /* Advance PC across any function entry prologue instructions |
c598654a | 2057 | to reach some "real" code. |
66a1aa07 | 2058 | |
c598654a JL |
2059 | Use information in the unwind table to determine what exactly should |
2060 | be in the prologue. */ | |
66a1aa07 SG |
2061 | |
2062 | CORE_ADDR | |
de482138 | 2063 | skip_prologue (pc) |
66a1aa07 SG |
2064 | CORE_ADDR pc; |
2065 | { | |
34df79fc | 2066 | char buf[4]; |
c598654a | 2067 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; |
edd86fb0 | 2068 | unsigned long args_stored, status, i; |
c598654a | 2069 | struct unwind_table_entry *u; |
66a1aa07 | 2070 | |
c598654a JL |
2071 | u = find_unwind_entry (pc); |
2072 | if (!u) | |
fdafbfad | 2073 | return pc; |
c598654a | 2074 | |
de482138 JL |
2075 | /* If we are not at the beginning of a function, then return now. */ |
2076 | if ((pc & ~0x3) != u->region_start) | |
2077 | return pc; | |
2078 | ||
c598654a JL |
2079 | /* This is how much of a frame adjustment we need to account for. */ |
2080 | stack_remaining = u->Total_frame_size << 3; | |
66a1aa07 | 2081 | |
c598654a JL |
2082 | /* Magic register saves we want to know about. */ |
2083 | save_rp = u->Save_RP; | |
2084 | save_sp = u->Save_SP; | |
2085 | ||
edd86fb0 JL |
2086 | /* An indication that args may be stored into the stack. Unfortunately |
2087 | the HPUX compilers tend to set this in cases where no args were | |
2088 | stored too!. */ | |
2089 | args_stored = u->Args_stored; | |
2090 | ||
c598654a JL |
2091 | /* Turn the Entry_GR field into a bitmask. */ |
2092 | save_gr = 0; | |
2093 | for (i = 3; i < u->Entry_GR + 3; i++) | |
66a1aa07 | 2094 | { |
c598654a JL |
2095 | /* Frame pointer gets saved into a special location. */ |
2096 | if (u->Save_SP && i == FP_REGNUM) | |
2097 | continue; | |
2098 | ||
2099 | save_gr |= (1 << i); | |
2100 | } | |
2101 | ||
2102 | /* Turn the Entry_FR field into a bitmask too. */ | |
2103 | save_fr = 0; | |
2104 | for (i = 12; i < u->Entry_FR + 12; i++) | |
2105 | save_fr |= (1 << i); | |
2106 | ||
2107 | /* Loop until we find everything of interest or hit a branch. | |
2108 | ||
2109 | For unoptimized GCC code and for any HP CC code this will never ever | |
2110 | examine any user instructions. | |
2111 | ||
2112 | For optimzied GCC code we're faced with problems. GCC will schedule | |
2113 | its prologue and make prologue instructions available for delay slot | |
2114 | filling. The end result is user code gets mixed in with the prologue | |
2115 | and a prologue instruction may be in the delay slot of the first branch | |
2116 | or call. | |
2117 | ||
2118 | Some unexpected things are expected with debugging optimized code, so | |
2119 | we allow this routine to walk past user instructions in optimized | |
2120 | GCC code. */ | |
edd86fb0 JL |
2121 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 |
2122 | || args_stored) | |
c598654a | 2123 | { |
edd86fb0 JL |
2124 | unsigned int reg_num; |
2125 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
2126 | unsigned long old_save_rp, old_save_sp, old_args_stored, next_inst; | |
2127 | ||
2128 | /* Save copies of all the triggers so we can compare them later | |
2129 | (only for HPC). */ | |
2130 | old_save_gr = save_gr; | |
2131 | old_save_fr = save_fr; | |
2132 | old_save_rp = save_rp; | |
2133 | old_save_sp = save_sp; | |
2134 | old_stack_remaining = stack_remaining; | |
2135 | ||
c598654a JL |
2136 | status = target_read_memory (pc, buf, 4); |
2137 | inst = extract_unsigned_integer (buf, 4); | |
edd86fb0 | 2138 | |
c598654a JL |
2139 | /* Yow! */ |
2140 | if (status != 0) | |
2141 | return pc; | |
2142 | ||
2143 | /* Note the interesting effects of this instruction. */ | |
2144 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
2145 | ||
2146 | /* There is only one instruction used for saving RP into the stack. */ | |
2147 | if (inst == 0x6bc23fd9) | |
2148 | save_rp = 0; | |
2149 | ||
2150 | /* This is the only way we save SP into the stack. At this time | |
2151 | the HP compilers never bother to save SP into the stack. */ | |
2152 | if ((inst & 0xffffc000) == 0x6fc10000) | |
2153 | save_sp = 0; | |
2154 | ||
2155 | /* Account for general and floating-point register saves. */ | |
edd86fb0 JL |
2156 | reg_num = inst_saves_gr (inst); |
2157 | save_gr &= ~(1 << reg_num); | |
2158 | ||
2159 | /* Ugh. Also account for argument stores into the stack. | |
2160 | Unfortunately args_stored only tells us that some arguments | |
2161 | where stored into the stack. Not how many or what kind! | |
2162 | ||
2163 | This is a kludge as on the HP compiler sets this bit and it | |
2164 | never does prologue scheduling. So once we see one, skip past | |
2165 | all of them. We have similar code for the fp arg stores below. | |
2166 | ||
2167 | FIXME. Can still die if we have a mix of GR and FR argument | |
2168 | stores! */ | |
2169 | if (reg_num >= 23 && reg_num <= 26) | |
2170 | { | |
2171 | while (reg_num >= 23 && reg_num <= 26) | |
2172 | { | |
2173 | pc += 4; | |
2174 | status = target_read_memory (pc, buf, 4); | |
2175 | inst = extract_unsigned_integer (buf, 4); | |
2176 | if (status != 0) | |
2177 | return pc; | |
2178 | reg_num = inst_saves_gr (inst); | |
2179 | } | |
2180 | args_stored = 0; | |
2181 | continue; | |
2182 | } | |
2183 | ||
2184 | reg_num = inst_saves_fr (inst); | |
2185 | save_fr &= ~(1 << reg_num); | |
2186 | ||
2187 | status = target_read_memory (pc + 4, buf, 4); | |
2188 | next_inst = extract_unsigned_integer (buf, 4); | |
2189 | ||
2190 | /* Yow! */ | |
2191 | if (status != 0) | |
2192 | return pc; | |
2193 | ||
2194 | /* We've got to be read to handle the ldo before the fp register | |
2195 | save. */ | |
2196 | if ((inst & 0xfc000000) == 0x34000000 | |
2197 | && inst_saves_fr (next_inst) >= 4 | |
2198 | && inst_saves_fr (next_inst) <= 7) | |
2199 | { | |
2200 | /* So we drop into the code below in a reasonable state. */ | |
2201 | reg_num = inst_saves_fr (next_inst); | |
2202 | pc -= 4; | |
2203 | } | |
2204 | ||
2205 | /* Ugh. Also account for argument stores into the stack. | |
2206 | This is a kludge as on the HP compiler sets this bit and it | |
2207 | never does prologue scheduling. So once we see one, skip past | |
2208 | all of them. */ | |
2209 | if (reg_num >= 4 && reg_num <= 7) | |
2210 | { | |
2211 | while (reg_num >= 4 && reg_num <= 7) | |
2212 | { | |
2213 | pc += 8; | |
2214 | status = target_read_memory (pc, buf, 4); | |
2215 | inst = extract_unsigned_integer (buf, 4); | |
2216 | if (status != 0) | |
2217 | return pc; | |
2218 | if ((inst & 0xfc000000) != 0x34000000) | |
2219 | break; | |
2220 | status = target_read_memory (pc + 4, buf, 4); | |
2221 | next_inst = extract_unsigned_integer (buf, 4); | |
2222 | if (status != 0) | |
2223 | return pc; | |
2224 | reg_num = inst_saves_fr (next_inst); | |
2225 | } | |
2226 | args_stored = 0; | |
2227 | continue; | |
2228 | } | |
c598654a JL |
2229 | |
2230 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
2231 | instruction is in the delay slot of the first call/branch. */ | |
2232 | if (is_branch (inst)) | |
2233 | break; | |
2234 | ||
edd86fb0 JL |
2235 | /* What a crock. The HP compilers set args_stored even if no |
2236 | arguments were stored into the stack (boo hiss). This could | |
2237 | cause this code to then skip a bunch of user insns (up to the | |
2238 | first branch). | |
2239 | ||
2240 | To combat this we try to identify when args_stored was bogusly | |
2241 | set and clear it. We only do this when args_stored is nonzero, | |
2242 | all other resources are accounted for, and nothing changed on | |
2243 | this pass. */ | |
2244 | if (args_stored | |
2245 | && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
2246 | && old_save_gr == save_gr && old_save_fr == save_fr | |
2247 | && old_save_rp == save_rp && old_save_sp == save_sp | |
2248 | && old_stack_remaining == stack_remaining) | |
2249 | break; | |
2250 | ||
c598654a JL |
2251 | /* Bump the PC. */ |
2252 | pc += 4; | |
66a1aa07 | 2253 | } |
66a1aa07 SG |
2254 | |
2255 | return pc; | |
2256 | } | |
2257 | ||
c598654a JL |
2258 | /* Put here the code to store, into a struct frame_saved_regs, |
2259 | the addresses of the saved registers of frame described by FRAME_INFO. | |
2260 | This includes special registers such as pc and fp saved in special | |
2261 | ways in the stack frame. sp is even more special: | |
2262 | the address we return for it IS the sp for the next frame. */ | |
2263 | ||
2264 | void | |
2265 | hppa_frame_find_saved_regs (frame_info, frame_saved_regs) | |
cb5f7128 | 2266 | struct frame_info *frame_info; |
c598654a JL |
2267 | struct frame_saved_regs *frame_saved_regs; |
2268 | { | |
2269 | CORE_ADDR pc; | |
2270 | struct unwind_table_entry *u; | |
2271 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
2272 | int status, i, reg; | |
2273 | char buf[4]; | |
2274 | int fp_loc = -1; | |
2275 | ||
2276 | /* Zero out everything. */ | |
2277 | memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs)); | |
2278 | ||
2279 | /* Call dummy frames always look the same, so there's no need to | |
2280 | examine the dummy code to determine locations of saved registers; | |
2281 | instead, let find_dummy_frame_regs fill in the correct offsets | |
2282 | for the saved registers. */ | |
cb5f7128 JL |
2283 | if ((frame_info->pc >= frame_info->frame |
2284 | && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH | |
2285 | + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8 | |
2286 | + 6 * 4))) | |
2287 | find_dummy_frame_regs (frame_info, frame_saved_regs); | |
c598654a | 2288 | |
70e43abe JL |
2289 | /* Interrupt handlers are special too. They lay out the register |
2290 | state in the exact same order as the register numbers in GDB. */ | |
cb5f7128 | 2291 | if (pc_in_interrupt_handler (frame_info->pc)) |
70e43abe JL |
2292 | { |
2293 | for (i = 0; i < NUM_REGS; i++) | |
2294 | { | |
2295 | /* SP is a little special. */ | |
2296 | if (i == SP_REGNUM) | |
2297 | frame_saved_regs->regs[SP_REGNUM] | |
cb5f7128 | 2298 | = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4); |
70e43abe | 2299 | else |
cb5f7128 | 2300 | frame_saved_regs->regs[i] = frame_info->frame + i * 4; |
70e43abe JL |
2301 | } |
2302 | return; | |
2303 | } | |
2304 | ||
2305 | /* Handle signal handler callers. */ | |
cb5f7128 | 2306 | if (frame_info->signal_handler_caller) |
70e43abe | 2307 | { |
cb5f7128 | 2308 | FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); |
70e43abe JL |
2309 | return; |
2310 | } | |
2311 | ||
c598654a | 2312 | /* Get the starting address of the function referred to by the PC |
669caa9c | 2313 | saved in frame. */ |
cb5f7128 | 2314 | pc = get_pc_function_start (frame_info->pc); |
c598654a JL |
2315 | |
2316 | /* Yow! */ | |
2317 | u = find_unwind_entry (pc); | |
2318 | if (!u) | |
2319 | return; | |
2320 | ||
2321 | /* This is how much of a frame adjustment we need to account for. */ | |
2322 | stack_remaining = u->Total_frame_size << 3; | |
2323 | ||
2324 | /* Magic register saves we want to know about. */ | |
2325 | save_rp = u->Save_RP; | |
2326 | save_sp = u->Save_SP; | |
2327 | ||
2328 | /* Turn the Entry_GR field into a bitmask. */ | |
2329 | save_gr = 0; | |
2330 | for (i = 3; i < u->Entry_GR + 3; i++) | |
2331 | { | |
2332 | /* Frame pointer gets saved into a special location. */ | |
2333 | if (u->Save_SP && i == FP_REGNUM) | |
2334 | continue; | |
2335 | ||
2336 | save_gr |= (1 << i); | |
2337 | } | |
2338 | ||
2339 | /* Turn the Entry_FR field into a bitmask too. */ | |
2340 | save_fr = 0; | |
2341 | for (i = 12; i < u->Entry_FR + 12; i++) | |
2342 | save_fr |= (1 << i); | |
2343 | ||
70e43abe JL |
2344 | /* The frame always represents the value of %sp at entry to the |
2345 | current function (and is thus equivalent to the "saved" stack | |
2346 | pointer. */ | |
cb5f7128 | 2347 | frame_saved_regs->regs[SP_REGNUM] = frame_info->frame; |
70e43abe | 2348 | |
c598654a JL |
2349 | /* Loop until we find everything of interest or hit a branch. |
2350 | ||
2351 | For unoptimized GCC code and for any HP CC code this will never ever | |
2352 | examine any user instructions. | |
2353 | ||
2354 | For optimzied GCC code we're faced with problems. GCC will schedule | |
2355 | its prologue and make prologue instructions available for delay slot | |
2356 | filling. The end result is user code gets mixed in with the prologue | |
2357 | and a prologue instruction may be in the delay slot of the first branch | |
2358 | or call. | |
2359 | ||
2360 | Some unexpected things are expected with debugging optimized code, so | |
2361 | we allow this routine to walk past user instructions in optimized | |
2362 | GCC code. */ | |
2363 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
2364 | { | |
2365 | status = target_read_memory (pc, buf, 4); | |
2366 | inst = extract_unsigned_integer (buf, 4); | |
2367 | ||
2368 | /* Yow! */ | |
2369 | if (status != 0) | |
2370 | return; | |
2371 | ||
2372 | /* Note the interesting effects of this instruction. */ | |
2373 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
2374 | ||
2375 | /* There is only one instruction used for saving RP into the stack. */ | |
2376 | if (inst == 0x6bc23fd9) | |
2377 | { | |
2378 | save_rp = 0; | |
cb5f7128 | 2379 | frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20; |
c598654a JL |
2380 | } |
2381 | ||
70e43abe JL |
2382 | /* Just note that we found the save of SP into the stack. The |
2383 | value for frame_saved_regs was computed above. */ | |
c598654a | 2384 | if ((inst & 0xffffc000) == 0x6fc10000) |
70e43abe | 2385 | save_sp = 0; |
c598654a JL |
2386 | |
2387 | /* Account for general and floating-point register saves. */ | |
2388 | reg = inst_saves_gr (inst); | |
2389 | if (reg >= 3 && reg <= 18 | |
2390 | && (!u->Save_SP || reg != FP_REGNUM)) | |
2391 | { | |
2392 | save_gr &= ~(1 << reg); | |
2393 | ||
2394 | /* stwm with a positive displacement is a *post modify*. */ | |
2395 | if ((inst >> 26) == 0x1b | |
2396 | && extract_14 (inst) >= 0) | |
cb5f7128 | 2397 | frame_saved_regs->regs[reg] = frame_info->frame; |
c598654a JL |
2398 | else |
2399 | { | |
2400 | /* Handle code with and without frame pointers. */ | |
2401 | if (u->Save_SP) | |
2402 | frame_saved_regs->regs[reg] | |
cb5f7128 | 2403 | = frame_info->frame + extract_14 (inst); |
c598654a JL |
2404 | else |
2405 | frame_saved_regs->regs[reg] | |
cb5f7128 | 2406 | = frame_info->frame + (u->Total_frame_size << 3) |
c598654a JL |
2407 | + extract_14 (inst); |
2408 | } | |
2409 | } | |
2410 | ||
2411 | ||
2412 | /* GCC handles callee saved FP regs a little differently. | |
2413 | ||
2414 | It emits an instruction to put the value of the start of | |
2415 | the FP store area into %r1. It then uses fstds,ma with | |
2416 | a basereg of %r1 for the stores. | |
2417 | ||
2418 | HP CC emits them at the current stack pointer modifying | |
2419 | the stack pointer as it stores each register. */ | |
2420 | ||
2421 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
2422 | if ((inst & 0xffffc000) == 0x34610000 | |
2423 | || (inst & 0xffffc000) == 0x37c10000) | |
2424 | fp_loc = extract_14 (inst); | |
2425 | ||
2426 | reg = inst_saves_fr (inst); | |
2427 | if (reg >= 12 && reg <= 21) | |
2428 | { | |
2429 | /* Note +4 braindamage below is necessary because the FP status | |
2430 | registers are internally 8 registers rather than the expected | |
2431 | 4 registers. */ | |
2432 | save_fr &= ~(1 << reg); | |
2433 | if (fp_loc == -1) | |
2434 | { | |
2435 | /* 1st HP CC FP register store. After this instruction | |
2436 | we've set enough state that the GCC and HPCC code are | |
2437 | both handled in the same manner. */ | |
cb5f7128 | 2438 | frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame; |
c598654a JL |
2439 | fp_loc = 8; |
2440 | } | |
2441 | else | |
2442 | { | |
2443 | frame_saved_regs->regs[reg + FP0_REGNUM + 4] | |
cb5f7128 | 2444 | = frame_info->frame + fp_loc; |
c598654a JL |
2445 | fp_loc += 8; |
2446 | } | |
2447 | } | |
2448 | ||
2449 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
2450 | instruction is in the delay slot of the first call/branch. */ | |
2451 | if (is_branch (inst)) | |
2452 | break; | |
2453 | ||
2454 | /* Bump the PC. */ | |
2455 | pc += 4; | |
2456 | } | |
2457 | } | |
2458 | ||
63757ecd JK |
2459 | #ifdef MAINTENANCE_CMDS |
2460 | ||
66a1aa07 SG |
2461 | static void |
2462 | unwind_command (exp, from_tty) | |
2463 | char *exp; | |
2464 | int from_tty; | |
2465 | { | |
2466 | CORE_ADDR address; | |
2467 | union | |
2468 | { | |
2469 | int *foo; | |
2470 | struct unwind_table_entry *u; | |
2471 | } xxx; | |
2472 | ||
2473 | /* If we have an expression, evaluate it and use it as the address. */ | |
2474 | ||
2475 | if (exp != 0 && *exp != 0) | |
2476 | address = parse_and_eval_address (exp); | |
2477 | else | |
2478 | return; | |
2479 | ||
2480 | xxx.u = find_unwind_entry (address); | |
2481 | ||
2482 | if (!xxx.u) | |
2483 | { | |
199b2450 | 2484 | printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address); |
66a1aa07 SG |
2485 | return; |
2486 | } | |
2487 | ||
199b2450 | 2488 | printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2], |
66a1aa07 SG |
2489 | xxx.foo[3]); |
2490 | } | |
976bb0be | 2491 | #endif /* MAINTENANCE_CMDS */ |
63757ecd JK |
2492 | |
2493 | void | |
2494 | _initialize_hppa_tdep () | |
2495 | { | |
976bb0be | 2496 | #ifdef MAINTENANCE_CMDS |
63757ecd JK |
2497 | add_cmd ("unwind", class_maintenance, unwind_command, |
2498 | "Print unwind table entry at given address.", | |
2499 | &maintenanceprintlist); | |
63757ecd | 2500 | #endif /* MAINTENANCE_CMDS */ |
976bb0be | 2501 | } |