]>
Commit | Line | Data |
---|---|---|
66a1aa07 SG |
1 | /* Machine-dependent code which would otherwise be in inflow.c and core.c, |
2 | for GDB, the GNU debugger. This code is for the HP PA-RISC cpu. | |
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc. | |
4 | ||
5 | Contributed by the Center for Software Science at the | |
6 | University of Utah ([email protected]). | |
7 | ||
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
23 | ||
24 | #include "defs.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "value.h" | |
28 | ||
29 | /* For argument passing to the inferior */ | |
30 | #include "symtab.h" | |
31 | ||
32 | #ifdef USG | |
33 | #include <sys/types.h> | |
34 | #endif | |
35 | ||
36 | #include <sys/param.h> | |
37 | #include <sys/dir.h> | |
38 | #include <signal.h> | |
39 | #include <sys/ioctl.h> | |
40 | ||
41 | #ifdef COFF_ENCAPSULATE | |
42 | #include "a.out.encap.h" | |
43 | #else | |
44 | #include <a.out.h> | |
45 | #endif | |
46 | #ifndef N_SET_MAGIC | |
47 | #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val)) | |
48 | #endif | |
49 | ||
50 | /*#include <sys/user.h> After a.out.h */ | |
51 | #include <sys/file.h> | |
52 | #include <sys/stat.h> | |
53 | #include <machine/psl.h> | |
54 | #include "wait.h" | |
55 | ||
56 | #include "gdbcore.h" | |
57 | #include "gdbcmd.h" | |
58 | #include "target.h" | |
59 | #include "symfile.h" | |
60 | #include "objfiles.h" | |
61 | ||
62 | static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr)); | |
63 | static int hppa_alignof PARAMS ((struct type *arg)); | |
64 | ||
65 | \f | |
66 | /* Routines to extract various sized constants out of hppa | |
67 | instructions. */ | |
68 | ||
69 | /* This assumes that no garbage lies outside of the lower bits of | |
70 | value. */ | |
71 | ||
72 | int | |
73 | sign_extend (val, bits) | |
74 | unsigned val, bits; | |
75 | { | |
76 | return (int)(val >> bits - 1 ? (-1 << bits) | val : val); | |
77 | } | |
78 | ||
79 | /* For many immediate values the sign bit is the low bit! */ | |
80 | ||
81 | int | |
82 | low_sign_extend (val, bits) | |
83 | unsigned val, bits; | |
84 | { | |
85 | return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); | |
86 | } | |
87 | /* extract the immediate field from a ld{bhw}s instruction */ | |
88 | ||
89 | unsigned | |
90 | get_field (val, from, to) | |
91 | unsigned val, from, to; | |
92 | { | |
93 | val = val >> 31 - to; | |
94 | return val & ((1 << 32 - from) - 1); | |
95 | } | |
96 | ||
97 | unsigned | |
98 | set_field (val, from, to, new_val) | |
99 | unsigned *val, from, to; | |
100 | { | |
101 | unsigned mask = ~((1 << (to - from + 1)) << (31 - from)); | |
102 | return *val = *val & mask | (new_val << (31 - from)); | |
103 | } | |
104 | ||
105 | /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */ | |
106 | ||
107 | extract_3 (word) | |
108 | unsigned word; | |
109 | { | |
110 | return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17); | |
111 | } | |
112 | ||
113 | extract_5_load (word) | |
114 | unsigned word; | |
115 | { | |
116 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
117 | } | |
118 | ||
119 | /* extract the immediate field from a st{bhw}s instruction */ | |
120 | ||
121 | int | |
122 | extract_5_store (word) | |
123 | unsigned word; | |
124 | { | |
125 | return low_sign_extend (word & MASK_5, 5); | |
126 | } | |
127 | ||
68c8d698 SG |
128 | /* extract the immediate field from a break instruction */ |
129 | ||
130 | unsigned | |
131 | extract_5r_store (word) | |
132 | unsigned word; | |
133 | { | |
134 | return (word & MASK_5); | |
135 | } | |
136 | ||
137 | /* extract the immediate field from a {sr}sm instruction */ | |
138 | ||
139 | unsigned | |
140 | extract_5R_store (word) | |
141 | unsigned word; | |
142 | { | |
143 | return (word >> 16 & MASK_5); | |
144 | } | |
145 | ||
66a1aa07 SG |
146 | /* extract an 11 bit immediate field */ |
147 | ||
148 | int | |
149 | extract_11 (word) | |
150 | unsigned word; | |
151 | { | |
152 | return low_sign_extend (word & MASK_11, 11); | |
153 | } | |
154 | ||
155 | /* extract a 14 bit immediate field */ | |
156 | ||
157 | int | |
158 | extract_14 (word) | |
159 | unsigned word; | |
160 | { | |
161 | return low_sign_extend (word & MASK_14, 14); | |
162 | } | |
163 | ||
164 | /* deposit a 14 bit constant in a word */ | |
165 | ||
166 | unsigned | |
167 | deposit_14 (opnd, word) | |
168 | int opnd; | |
169 | unsigned word; | |
170 | { | |
171 | unsigned sign = (opnd < 0 ? 1 : 0); | |
172 | ||
173 | return word | ((unsigned)opnd << 1 & MASK_14) | sign; | |
174 | } | |
175 | ||
176 | /* extract a 21 bit constant */ | |
177 | ||
178 | int | |
179 | extract_21 (word) | |
180 | unsigned word; | |
181 | { | |
182 | int val; | |
183 | ||
184 | word &= MASK_21; | |
185 | word <<= 11; | |
186 | val = GET_FIELD (word, 20, 20); | |
187 | val <<= 11; | |
188 | val |= GET_FIELD (word, 9, 19); | |
189 | val <<= 2; | |
190 | val |= GET_FIELD (word, 5, 6); | |
191 | val <<= 5; | |
192 | val |= GET_FIELD (word, 0, 4); | |
193 | val <<= 2; | |
194 | val |= GET_FIELD (word, 7, 8); | |
195 | return sign_extend (val, 21) << 11; | |
196 | } | |
197 | ||
198 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
199 | usually the top 21 bits of a 32 bit constant, we assume that only | |
200 | the low 21 bits of opnd are relevant */ | |
201 | ||
202 | unsigned | |
203 | deposit_21 (opnd, word) | |
204 | unsigned opnd, word; | |
205 | { | |
206 | unsigned val = 0; | |
207 | ||
208 | val |= GET_FIELD (opnd, 11 + 14, 11 + 18); | |
209 | val <<= 2; | |
210 | val |= GET_FIELD (opnd, 11 + 12, 11 + 13); | |
211 | val <<= 2; | |
212 | val |= GET_FIELD (opnd, 11 + 19, 11 + 20); | |
213 | val <<= 11; | |
214 | val |= GET_FIELD (opnd, 11 + 1, 11 + 11); | |
215 | val <<= 1; | |
216 | val |= GET_FIELD (opnd, 11 + 0, 11 + 0); | |
217 | return word | val; | |
218 | } | |
219 | ||
220 | /* extract a 12 bit constant from branch instructions */ | |
221 | ||
222 | int | |
223 | extract_12 (word) | |
224 | unsigned word; | |
225 | { | |
226 | return sign_extend (GET_FIELD (word, 19, 28) | | |
227 | GET_FIELD (word, 29, 29) << 10 | | |
228 | (word & 0x1) << 11, 12) << 2; | |
229 | } | |
230 | ||
231 | /* extract a 17 bit constant from branch instructions, returning the | |
232 | 19 bit signed value. */ | |
233 | ||
234 | int | |
235 | extract_17 (word) | |
236 | unsigned word; | |
237 | { | |
238 | return sign_extend (GET_FIELD (word, 19, 28) | | |
239 | GET_FIELD (word, 29, 29) << 10 | | |
240 | GET_FIELD (word, 11, 15) << 11 | | |
241 | (word & 0x1) << 16, 17) << 2; | |
242 | } | |
243 | \f | |
244 | static int use_unwind = 0; | |
245 | ||
246 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
247 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
248 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
249 | search of the unwind tables, we depend upon them to be sorted. */ | |
250 | ||
251 | static struct unwind_table_entry * | |
252 | find_unwind_entry(pc) | |
253 | CORE_ADDR pc; | |
254 | { | |
255 | int first, middle, last; | |
256 | struct objfile *objfile; | |
257 | ||
258 | ALL_OBJFILES (objfile) | |
259 | { | |
260 | struct obj_unwind_info *ui; | |
261 | ||
262 | ui = OBJ_UNWIND_INFO (objfile); | |
263 | ||
264 | if (!ui) | |
265 | continue; | |
266 | ||
267 | /* First, check the cache */ | |
268 | ||
269 | if (ui->cache | |
270 | && pc >= ui->cache->region_start | |
271 | && pc <= ui->cache->region_end) | |
272 | return ui->cache; | |
273 | ||
274 | /* Not in the cache, do a binary search */ | |
275 | ||
276 | first = 0; | |
277 | last = ui->last; | |
278 | ||
279 | while (first <= last) | |
280 | { | |
281 | middle = (first + last) / 2; | |
282 | if (pc >= ui->table[middle].region_start | |
283 | && pc <= ui->table[middle].region_end) | |
284 | { | |
285 | ui->cache = &ui->table[middle]; | |
286 | return &ui->table[middle]; | |
287 | } | |
288 | ||
289 | if (pc < ui->table[middle].region_start) | |
290 | last = middle - 1; | |
291 | else | |
292 | first = middle + 1; | |
293 | } | |
294 | } /* ALL_OBJFILES() */ | |
295 | return NULL; | |
296 | } | |
297 | ||
298 | static int | |
299 | find_return_regnum(pc) | |
300 | CORE_ADDR pc; | |
301 | { | |
302 | struct unwind_table_entry *u; | |
303 | ||
304 | u = find_unwind_entry (pc); | |
305 | ||
306 | if (!u) | |
307 | return RP_REGNUM; | |
308 | ||
309 | if (u->Millicode) | |
310 | return 31; | |
311 | ||
312 | return RP_REGNUM; | |
313 | } | |
314 | ||
315 | int | |
316 | find_proc_framesize(pc) | |
317 | CORE_ADDR pc; | |
318 | { | |
319 | struct unwind_table_entry *u; | |
320 | ||
321 | if (!use_unwind) | |
322 | return -1; | |
323 | ||
324 | u = find_unwind_entry (pc); | |
325 | ||
326 | if (!u) | |
327 | return -1; | |
328 | ||
329 | return u->Total_frame_size << 3; | |
330 | } | |
331 | ||
332 | int | |
333 | rp_saved(pc) | |
334 | { | |
335 | struct unwind_table_entry *u; | |
336 | ||
337 | u = find_unwind_entry (pc); | |
338 | ||
339 | if (!u) | |
340 | return 0; | |
341 | ||
342 | if (u->Save_RP) | |
343 | return 1; | |
344 | else | |
345 | return 0; | |
346 | } | |
347 | \f | |
348 | CORE_ADDR | |
349 | saved_pc_after_call (frame) | |
350 | FRAME frame; | |
351 | { | |
352 | int ret_regnum; | |
353 | ||
354 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
355 | ||
356 | return read_register (ret_regnum) & ~0x3; | |
357 | } | |
358 | \f | |
359 | CORE_ADDR | |
360 | frame_saved_pc (frame) | |
361 | FRAME frame; | |
362 | { | |
363 | CORE_ADDR pc = get_frame_pc (frame); | |
364 | ||
365 | if (frameless_look_for_prologue (frame)) | |
366 | { | |
367 | int ret_regnum; | |
368 | ||
369 | ret_regnum = find_return_regnum (pc); | |
370 | ||
371 | return read_register (ret_regnum) & ~0x3; | |
372 | } | |
373 | else if (rp_saved (pc)) | |
374 | return read_memory_integer (frame->frame - 20, 4) & ~0x3; | |
375 | else | |
376 | return read_register (RP_REGNUM) & ~0x3; | |
377 | } | |
378 | \f | |
379 | /* We need to correct the PC and the FP for the outermost frame when we are | |
380 | in a system call. */ | |
381 | ||
382 | void | |
383 | init_extra_frame_info (fromleaf, frame) | |
384 | int fromleaf; | |
385 | struct frame_info *frame; | |
386 | { | |
387 | int flags; | |
388 | int framesize; | |
389 | ||
390 | if (frame->next) /* Only do this for outermost frame */ | |
391 | return; | |
392 | ||
393 | flags = read_register (FLAGS_REGNUM); | |
394 | if (flags & 2) /* In system call? */ | |
395 | frame->pc = read_register (31) & ~0x3; | |
396 | ||
397 | /* The outermost frame is always derived from PC-framesize */ | |
398 | framesize = find_proc_framesize(frame->pc); | |
399 | if (framesize == -1) | |
400 | frame->frame = read_register (FP_REGNUM); | |
401 | else | |
402 | frame->frame = read_register (SP_REGNUM) - framesize; | |
403 | ||
404 | if (!frameless_look_for_prologue (frame)) /* Frameless? */ | |
405 | return; /* No, quit now */ | |
406 | ||
407 | /* For frameless functions, we need to look at the caller's frame */ | |
408 | framesize = find_proc_framesize(FRAME_SAVED_PC(frame)); | |
409 | if (framesize != -1) | |
410 | frame->frame -= framesize; | |
411 | } | |
412 | \f | |
413 | FRAME_ADDR | |
414 | frame_chain (frame) | |
415 | struct frame_info *frame; | |
416 | { | |
417 | int framesize; | |
418 | ||
419 | framesize = find_proc_framesize(FRAME_SAVED_PC(frame)); | |
420 | ||
421 | if (framesize != -1) | |
422 | return frame->frame - framesize; | |
423 | ||
424 | return read_memory_integer (frame->frame, 4); | |
425 | } | |
426 | \f | |
427 | /* To see if a frame chain is valid, see if the caller looks like it | |
428 | was compiled with gcc. */ | |
429 | ||
430 | int | |
431 | frame_chain_valid (chain, thisframe) | |
432 | FRAME_ADDR chain; | |
433 | FRAME thisframe; | |
434 | { | |
435 | struct minimal_symbol *msym; | |
436 | ||
437 | if (!chain) | |
438 | return 0; | |
439 | ||
4b01383b SG |
440 | if (use_unwind) |
441 | { | |
66a1aa07 | 442 | |
4b01383b SG |
443 | struct unwind_table_entry *u; |
444 | ||
445 | u = find_unwind_entry (thisframe->pc); | |
446 | ||
447 | if (u && (u->Save_SP || u->Total_frame_size)) | |
448 | return 1; | |
449 | else | |
450 | return 0; | |
451 | } | |
66a1aa07 | 452 | else |
4b01383b SG |
453 | { |
454 | msym = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe)); | |
455 | ||
456 | if (msym | |
457 | && (strcmp (SYMBOL_NAME (msym), "_start") == 0)) | |
458 | return 0; | |
459 | else | |
460 | return 1; | |
461 | } | |
66a1aa07 SG |
462 | } |
463 | ||
66a1aa07 SG |
464 | /* |
465 | * These functions deal with saving and restoring register state | |
466 | * around a function call in the inferior. They keep the stack | |
467 | * double-word aligned; eventually, on an hp700, the stack will have | |
468 | * to be aligned to a 64-byte boundary. | |
469 | */ | |
470 | ||
471 | int | |
472 | push_dummy_frame () | |
473 | { | |
474 | register CORE_ADDR sp; | |
475 | register int regnum; | |
476 | int int_buffer; | |
477 | double freg_buffer; | |
478 | ||
479 | /* Space for "arguments"; the RP goes in here. */ | |
480 | sp = read_register (SP_REGNUM) + 48; | |
481 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
482 | write_memory (sp - 20, (char *)&int_buffer, 4); | |
483 | ||
484 | int_buffer = read_register (FP_REGNUM); | |
485 | write_memory (sp, (char *)&int_buffer, 4); | |
486 | ||
487 | write_register (FP_REGNUM, sp); | |
488 | ||
489 | sp += 8; | |
490 | ||
491 | for (regnum = 1; regnum < 32; regnum++) | |
492 | if (regnum != RP_REGNUM && regnum != FP_REGNUM) | |
493 | sp = push_word (sp, read_register (regnum)); | |
494 | ||
495 | sp += 4; | |
496 | ||
497 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
498 | { | |
499 | read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
500 | sp = push_bytes (sp, (char *)&freg_buffer, 8); | |
501 | } | |
502 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
503 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
504 | sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM)); | |
505 | sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM)); | |
506 | sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM)); | |
507 | sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM)); | |
508 | write_register (SP_REGNUM, sp); | |
509 | } | |
510 | ||
511 | find_dummy_frame_regs (frame, frame_saved_regs) | |
512 | struct frame_info *frame; | |
513 | struct frame_saved_regs *frame_saved_regs; | |
514 | { | |
515 | CORE_ADDR fp = frame->frame; | |
516 | int i; | |
517 | ||
518 | frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3; | |
519 | frame_saved_regs->regs[FP_REGNUM] = fp; | |
520 | frame_saved_regs->regs[1] = fp + 8; | |
66a1aa07 | 521 | |
b227992a SG |
522 | for (fp += 12, i = 3; i < 32; i++) |
523 | { | |
524 | if (i != FP_REGNUM) | |
525 | { | |
526 | frame_saved_regs->regs[i] = fp; | |
527 | fp += 4; | |
528 | } | |
529 | } | |
66a1aa07 SG |
530 | |
531 | fp += 4; | |
532 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) | |
533 | frame_saved_regs->regs[i] = fp; | |
534 | ||
535 | frame_saved_regs->regs[IPSW_REGNUM] = fp; | |
b227992a SG |
536 | frame_saved_regs->regs[SAR_REGNUM] = fp + 4; |
537 | frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8; | |
538 | frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12; | |
539 | frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16; | |
540 | frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20; | |
66a1aa07 SG |
541 | } |
542 | ||
543 | int | |
544 | hppa_pop_frame () | |
545 | { | |
546 | register FRAME frame = get_current_frame (); | |
547 | register CORE_ADDR fp; | |
548 | register int regnum; | |
549 | struct frame_saved_regs fsr; | |
550 | struct frame_info *fi; | |
551 | double freg_buffer; | |
552 | ||
553 | fi = get_frame_info (frame); | |
554 | fp = fi->frame; | |
555 | get_frame_saved_regs (fi, &fsr); | |
556 | ||
557 | if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ | |
558 | restore_pc_queue (&fsr); | |
559 | ||
560 | for (regnum = 31; regnum > 0; regnum--) | |
561 | if (fsr.regs[regnum]) | |
562 | write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); | |
563 | ||
564 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--) | |
565 | if (fsr.regs[regnum]) | |
566 | { | |
567 | read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8); | |
568 | write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
569 | } | |
570 | ||
571 | if (fsr.regs[IPSW_REGNUM]) | |
572 | write_register (IPSW_REGNUM, | |
573 | read_memory_integer (fsr.regs[IPSW_REGNUM], 4)); | |
574 | ||
575 | if (fsr.regs[SAR_REGNUM]) | |
576 | write_register (SAR_REGNUM, | |
577 | read_memory_integer (fsr.regs[SAR_REGNUM], 4)); | |
578 | ||
579 | if (fsr.regs[PCOQ_TAIL_REGNUM]) | |
580 | write_register (PCOQ_TAIL_REGNUM, | |
581 | read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4)); | |
582 | ||
583 | write_register (FP_REGNUM, read_memory_integer (fp, 4)); | |
584 | ||
585 | if (fsr.regs[IPSW_REGNUM]) /* call dummy */ | |
586 | write_register (SP_REGNUM, fp - 48); | |
587 | else | |
588 | write_register (SP_REGNUM, fp); | |
589 | ||
590 | flush_cached_frames (); | |
591 | set_current_frame (create_new_frame (read_register (FP_REGNUM), | |
592 | read_pc ())); | |
593 | } | |
594 | ||
595 | /* | |
596 | * After returning to a dummy on the stack, restore the instruction | |
597 | * queue space registers. */ | |
598 | ||
599 | static int | |
600 | restore_pc_queue (fsr) | |
601 | struct frame_saved_regs *fsr; | |
602 | { | |
603 | CORE_ADDR pc = read_pc (); | |
604 | CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4); | |
605 | int pid; | |
606 | WAITTYPE w; | |
607 | int insn_count; | |
608 | ||
609 | /* Advance past break instruction in the call dummy. */ | |
610 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
611 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
612 | ||
613 | /* | |
614 | * HPUX doesn't let us set the space registers or the space | |
615 | * registers of the PC queue through ptrace. Boo, hiss. | |
616 | * Conveniently, the call dummy has this sequence of instructions | |
617 | * after the break: | |
618 | * mtsp r21, sr0 | |
619 | * ble,n 0(sr0, r22) | |
620 | * | |
621 | * So, load up the registers and single step until we are in the | |
622 | * right place. | |
623 | */ | |
624 | ||
625 | write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4)); | |
626 | write_register (22, new_pc); | |
627 | ||
628 | for (insn_count = 0; insn_count < 3; insn_count++) | |
629 | { | |
630 | resume (1, 0); | |
631 | target_wait(&w); | |
632 | ||
633 | if (!WIFSTOPPED (w)) | |
634 | { | |
635 | stop_signal = WTERMSIG (w); | |
636 | terminal_ours_for_output (); | |
637 | printf ("\nProgram terminated with signal %d, %s\n", | |
638 | stop_signal, safe_strsignal (stop_signal)); | |
639 | fflush (stdout); | |
640 | return 0; | |
641 | } | |
642 | } | |
643 | fetch_inferior_registers (-1); | |
644 | return 1; | |
645 | } | |
646 | ||
647 | CORE_ADDR | |
648 | hppa_push_arguments (nargs, args, sp, struct_return, struct_addr) | |
649 | int nargs; | |
650 | value *args; | |
651 | CORE_ADDR sp; | |
652 | int struct_return; | |
653 | CORE_ADDR struct_addr; | |
654 | { | |
655 | /* array of arguments' offsets */ | |
656 | int *offset = (int *)alloca(nargs); | |
657 | int cum = 0; | |
658 | int i, alignment; | |
659 | ||
660 | for (i = 0; i < nargs; i++) | |
661 | { | |
662 | /* Coerce chars to int & float to double if necessary */ | |
663 | args[i] = value_arg_coerce (args[i]); | |
664 | ||
665 | cum += TYPE_LENGTH (VALUE_TYPE (args[i])); | |
666 | ||
667 | /* value must go at proper alignment. Assume alignment is a | |
668 | power of two.*/ | |
669 | alignment = hppa_alignof (VALUE_TYPE (args[i])); | |
670 | if (cum % alignment) | |
671 | cum = (cum + alignment) & -alignment; | |
672 | offset[i] = -cum; | |
673 | } | |
674 | sp += min ((cum + 7) & -8, 16); | |
675 | ||
676 | for (i = 0; i < nargs; i++) | |
677 | write_memory (sp + offset[i], VALUE_CONTENTS (args[i]), | |
678 | TYPE_LENGTH (VALUE_TYPE (args[i]))); | |
679 | ||
680 | if (struct_return) | |
681 | write_register (28, struct_addr); | |
682 | return sp + 32; | |
683 | } | |
684 | ||
685 | /* | |
686 | * Insert the specified number of args and function address | |
687 | * into a call sequence of the above form stored at DUMMYNAME. | |
688 | * | |
689 | * On the hppa we need to call the stack dummy through $$dyncall. | |
690 | * Therefore our version of FIX_CALL_DUMMY takes an extra argument, | |
691 | * real_pc, which is the location where gdb should start up the | |
692 | * inferior to do the function call. | |
693 | */ | |
694 | ||
695 | CORE_ADDR | |
696 | hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) | |
697 | REGISTER_TYPE *dummy; | |
698 | CORE_ADDR pc; | |
699 | CORE_ADDR fun; | |
700 | int nargs; | |
701 | value *args; | |
702 | struct type *type; | |
703 | int gcc_p; | |
704 | { | |
705 | CORE_ADDR dyncall_addr, sr4export_addr; | |
706 | struct minimal_symbol *msymbol; | |
707 | ||
708 | msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL); | |
709 | if (msymbol == NULL) | |
710 | error ("Can't find an address for $$dyncall trampoline"); | |
711 | ||
712 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
713 | ||
714 | msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL); | |
715 | if (msymbol == NULL) | |
716 | error ("Can't find an address for _sr4export trampoline"); | |
717 | ||
718 | sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
719 | ||
720 | dummy[9] = deposit_21 (fun >> 11, dummy[9]); | |
721 | dummy[10] = deposit_14 (fun & MASK_11, dummy[10]); | |
722 | dummy[12] = deposit_21 (sr4export_addr >> 11, dummy[12]); | |
723 | dummy[13] = deposit_14 (sr4export_addr & MASK_11, dummy[13]); | |
724 | ||
725 | write_register (22, pc); | |
726 | ||
727 | return dyncall_addr; | |
728 | } | |
729 | ||
730 | /* return the alignment of a type in bytes. Structures have the maximum | |
731 | alignment required by their fields. */ | |
732 | ||
733 | static int | |
734 | hppa_alignof (arg) | |
735 | struct type *arg; | |
736 | { | |
737 | int max_align, align, i; | |
738 | switch (TYPE_CODE (arg)) | |
739 | { | |
740 | case TYPE_CODE_PTR: | |
741 | case TYPE_CODE_INT: | |
742 | case TYPE_CODE_FLT: | |
743 | return TYPE_LENGTH (arg); | |
744 | case TYPE_CODE_ARRAY: | |
745 | return hppa_alignof (TYPE_FIELD_TYPE (arg, 0)); | |
746 | case TYPE_CODE_STRUCT: | |
747 | case TYPE_CODE_UNION: | |
748 | max_align = 2; | |
749 | for (i = 0; i < TYPE_NFIELDS (arg); i++) | |
750 | { | |
751 | /* Bit fields have no real alignment. */ | |
752 | if (!TYPE_FIELD_BITPOS (arg, i)) | |
753 | { | |
754 | align = hppa_alignof (TYPE_FIELD_TYPE (arg, i)); | |
755 | max_align = max (max_align, align); | |
756 | } | |
757 | } | |
758 | return max_align; | |
759 | default: | |
760 | return 4; | |
761 | } | |
762 | } | |
763 | ||
764 | /* Print the register regnum, or all registers if regnum is -1 */ | |
765 | ||
766 | pa_do_registers_info (regnum, fpregs) | |
767 | int regnum; | |
768 | int fpregs; | |
769 | { | |
770 | char raw_regs [REGISTER_BYTES]; | |
771 | int i; | |
772 | ||
773 | for (i = 0; i < NUM_REGS; i++) | |
774 | read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i)); | |
775 | if (regnum == -1) | |
776 | pa_print_registers (raw_regs, regnum, fpregs); | |
777 | else if (regnum < FP0_REGNUM) | |
778 | printf ("%s %x\n", reg_names[regnum], *(long *)(raw_regs + | |
779 | REGISTER_BYTE (regnum))); | |
780 | else | |
781 | pa_print_fp_reg (regnum); | |
782 | } | |
783 | ||
784 | pa_print_registers (raw_regs, regnum, fpregs) | |
785 | char *raw_regs; | |
786 | int regnum; | |
787 | int fpregs; | |
788 | { | |
789 | int i; | |
790 | ||
791 | for (i = 0; i < 18; i++) | |
792 | printf ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n", | |
793 | reg_names[i], | |
794 | *(int *)(raw_regs + REGISTER_BYTE (i)), | |
795 | reg_names[i + 18], | |
796 | *(int *)(raw_regs + REGISTER_BYTE (i + 18)), | |
797 | reg_names[i + 36], | |
798 | *(int *)(raw_regs + REGISTER_BYTE (i + 36)), | |
799 | reg_names[i + 54], | |
800 | *(int *)(raw_regs + REGISTER_BYTE (i + 54))); | |
801 | ||
802 | if (fpregs) | |
803 | for (i = 72; i < NUM_REGS; i++) | |
804 | pa_print_fp_reg (i); | |
805 | } | |
806 | ||
807 | pa_print_fp_reg (i) | |
808 | int i; | |
809 | { | |
810 | unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
811 | unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
812 | REGISTER_TYPE val; | |
813 | ||
814 | /* Get the data in raw format, then convert also to virtual format. */ | |
815 | read_relative_register_raw_bytes (i, raw_buffer); | |
816 | REGISTER_CONVERT_TO_VIRTUAL (i, raw_buffer, virtual_buffer); | |
817 | ||
818 | fputs_filtered (reg_names[i], stdout); | |
819 | print_spaces_filtered (15 - strlen (reg_names[i]), stdout); | |
820 | ||
821 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, stdout, 0, | |
822 | 1, 0, Val_pretty_default); | |
823 | printf_filtered ("\n"); | |
824 | } | |
825 | ||
826 | /* Function calls that pass into a new compilation unit must pass through a | |
827 | small piece of code that does long format (`external' in HPPA parlance) | |
828 | jumps. We figure out where the trampoline is going to end up, and return | |
829 | the PC of the final destination. If we aren't in a trampoline, we just | |
830 | return NULL. | |
831 | ||
832 | For computed calls, we just extract the new PC from r22. */ | |
833 | ||
834 | CORE_ADDR | |
835 | skip_trampoline_code (pc, name) | |
836 | CORE_ADDR pc; | |
837 | char *name; | |
838 | { | |
839 | long inst0, inst1; | |
840 | static CORE_ADDR dyncall = 0; | |
841 | struct minimal_symbol *msym; | |
842 | ||
843 | /* FIXME XXX - dyncall must be initialized whenever we get a new exec file */ | |
844 | ||
845 | if (!dyncall) | |
846 | { | |
847 | msym = lookup_minimal_symbol ("$$dyncall", NULL); | |
848 | if (msym) | |
849 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
850 | else | |
851 | dyncall = -1; | |
852 | } | |
853 | ||
854 | if (pc == dyncall) | |
855 | return (CORE_ADDR)(read_register (22) & ~0x3); | |
856 | ||
857 | inst0 = read_memory_integer (pc, 4); | |
858 | inst1 = read_memory_integer (pc+4, 4); | |
859 | ||
860 | if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */ | |
861 | && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */ | |
862 | pc = extract_21 (inst0) + extract_17 (inst1); | |
863 | else | |
864 | pc = (CORE_ADDR)NULL; | |
865 | ||
866 | return pc; | |
867 | } | |
868 | ||
869 | /* Advance PC across any function entry prologue instructions | |
870 | to reach some "real" code. */ | |
871 | ||
872 | /* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp) | |
873 | for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */ | |
874 | ||
875 | CORE_ADDR | |
876 | skip_prologue(pc) | |
877 | CORE_ADDR pc; | |
878 | { | |
879 | int inst; | |
880 | int status; | |
881 | ||
882 | status = target_read_memory (pc, (char *)&inst, 4); | |
883 | SWAP_TARGET_AND_HOST (&inst, sizeof (inst)); | |
884 | if (status != 0) | |
885 | return pc; | |
886 | ||
887 | if (inst == 0x6BC23FD9) /* stw rp,-20(sp) */ | |
888 | { | |
889 | if (read_memory_integer (pc + 4, 4) == 0x8040241) /* copy r4,r1 */ | |
890 | pc += 16; | |
891 | else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */ | |
892 | pc += 8; | |
893 | } | |
894 | else if (read_memory_integer (pc, 4) == 0x8040241) /* copy r4,r1 */ | |
895 | pc += 12; | |
896 | else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */ | |
897 | pc += 4; | |
898 | ||
899 | return pc; | |
900 | } | |
901 | ||
902 | static void | |
903 | unwind_command (exp, from_tty) | |
904 | char *exp; | |
905 | int from_tty; | |
906 | { | |
907 | CORE_ADDR address; | |
908 | union | |
909 | { | |
910 | int *foo; | |
911 | struct unwind_table_entry *u; | |
912 | } xxx; | |
913 | ||
914 | /* If we have an expression, evaluate it and use it as the address. */ | |
915 | ||
916 | if (exp != 0 && *exp != 0) | |
917 | address = parse_and_eval_address (exp); | |
918 | else | |
919 | return; | |
920 | ||
921 | xxx.u = find_unwind_entry (address); | |
922 | ||
923 | if (!xxx.u) | |
924 | { | |
925 | printf ("Can't find unwind table entry for PC 0x%x\n", address); | |
926 | return; | |
927 | } | |
928 | ||
929 | printf ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2], | |
930 | xxx.foo[3]); | |
931 | } | |
932 | ||
933 | void | |
934 | _initialize_hppah_tdep () | |
935 | { | |
936 | add_com ("unwind", class_obscure, unwind_command, "Print unwind info\n"); | |
937 | add_show_from_set | |
938 | (add_set_cmd ("use_unwind", class_obscure, var_boolean, | |
939 | (char *)&use_unwind, | |
940 | "Set the usage of unwind info", &setlist), | |
941 | &showlist); | |
942 | } |