]>
Commit | Line | Data |
---|---|---|
7d9884b9 JG |
1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
2 | Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc. | |
dd3b648e RP |
3 | |
4 | This file is part of GDB. | |
5 | ||
99a7de40 | 6 | This program is free software; you can redistribute it and/or modify |
dd3b648e | 7 | it under the terms of the GNU General Public License as published by |
99a7de40 JG |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
dd3b648e | 10 | |
99a7de40 | 11 | This program is distributed in the hope that it will be useful, |
dd3b648e RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
99a7de40 JG |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
dd3b648e | 19 | |
dd3b648e | 20 | #include "defs.h" |
d747e0af | 21 | #include <string.h> |
dd3b648e | 22 | #include "symtab.h" |
1ab3bf1b | 23 | #include "gdbtypes.h" |
dd3b648e RP |
24 | #include "value.h" |
25 | #include "gdbcore.h" | |
26 | #include "frame.h" | |
27 | #include "command.h" | |
f266e564 | 28 | #include "gdbcmd.h" |
ac88ca20 | 29 | #include "target.h" |
8050a57b | 30 | #include "demangle.h" |
dd3b648e | 31 | |
1ab3bf1b JG |
32 | /* Local function prototypes. */ |
33 | ||
34 | static value | |
35 | value_headof PARAMS ((value, struct type *, struct type *)); | |
36 | ||
37 | static void | |
38 | show_values PARAMS ((char *, int)); | |
39 | ||
40 | static void | |
ac88ca20 | 41 | show_convenience PARAMS ((char *, int)); |
71b16efa | 42 | |
dd3b648e RP |
43 | /* The value-history records all the values printed |
44 | by print commands during this session. Each chunk | |
45 | records 60 consecutive values. The first chunk on | |
46 | the chain records the most recent values. | |
47 | The total number of values is in value_history_count. */ | |
48 | ||
49 | #define VALUE_HISTORY_CHUNK 60 | |
50 | ||
51 | struct value_history_chunk | |
52 | { | |
53 | struct value_history_chunk *next; | |
54 | value values[VALUE_HISTORY_CHUNK]; | |
55 | }; | |
56 | ||
57 | /* Chain of chunks now in use. */ | |
58 | ||
59 | static struct value_history_chunk *value_history_chain; | |
60 | ||
61 | static int value_history_count; /* Abs number of last entry stored */ | |
dd3b648e RP |
62 | \f |
63 | /* List of all value objects currently allocated | |
64 | (except for those released by calls to release_value) | |
65 | This is so they can be freed after each command. */ | |
66 | ||
67 | static value all_values; | |
68 | ||
69 | /* Allocate a value that has the correct length for type TYPE. */ | |
70 | ||
71 | value | |
72 | allocate_value (type) | |
73 | struct type *type; | |
74 | { | |
75 | register value val; | |
76 | ||
77 | check_stub_type (type); | |
78 | ||
79 | val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type)); | |
80 | VALUE_NEXT (val) = all_values; | |
81 | all_values = val; | |
82 | VALUE_TYPE (val) = type; | |
83 | VALUE_LVAL (val) = not_lval; | |
84 | VALUE_ADDRESS (val) = 0; | |
85 | VALUE_FRAME (val) = 0; | |
86 | VALUE_OFFSET (val) = 0; | |
87 | VALUE_BITPOS (val) = 0; | |
88 | VALUE_BITSIZE (val) = 0; | |
89 | VALUE_REPEATED (val) = 0; | |
90 | VALUE_REPETITIONS (val) = 0; | |
91 | VALUE_REGNO (val) = -1; | |
92 | VALUE_LAZY (val) = 0; | |
93 | VALUE_OPTIMIZED_OUT (val) = 0; | |
94 | return val; | |
95 | } | |
96 | ||
97 | /* Allocate a value that has the correct length | |
98 | for COUNT repetitions type TYPE. */ | |
99 | ||
100 | value | |
101 | allocate_repeat_value (type, count) | |
102 | struct type *type; | |
103 | int count; | |
104 | { | |
105 | register value val; | |
106 | ||
107 | val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count); | |
108 | VALUE_NEXT (val) = all_values; | |
109 | all_values = val; | |
110 | VALUE_TYPE (val) = type; | |
111 | VALUE_LVAL (val) = not_lval; | |
112 | VALUE_ADDRESS (val) = 0; | |
113 | VALUE_FRAME (val) = 0; | |
114 | VALUE_OFFSET (val) = 0; | |
115 | VALUE_BITPOS (val) = 0; | |
116 | VALUE_BITSIZE (val) = 0; | |
117 | VALUE_REPEATED (val) = 1; | |
118 | VALUE_REPETITIONS (val) = count; | |
119 | VALUE_REGNO (val) = -1; | |
120 | VALUE_LAZY (val) = 0; | |
121 | VALUE_OPTIMIZED_OUT (val) = 0; | |
122 | return val; | |
123 | } | |
124 | ||
fcb887ff JK |
125 | /* Return a mark in the value chain. All values allocated after the |
126 | mark is obtained (except for those released) are subject to being freed | |
127 | if a subsequent value_free_to_mark is passed the mark. */ | |
128 | value | |
129 | value_mark () | |
130 | { | |
131 | return all_values; | |
132 | } | |
133 | ||
134 | /* Free all values allocated since MARK was obtained by value_mark | |
135 | (except for those released). */ | |
136 | void | |
137 | value_free_to_mark (mark) | |
138 | value mark; | |
139 | { | |
140 | value val, next; | |
141 | ||
142 | for (val = all_values; val && val != mark; val = next) | |
143 | { | |
144 | next = VALUE_NEXT (val); | |
145 | value_free (val); | |
146 | } | |
147 | all_values = val; | |
148 | } | |
149 | ||
dd3b648e RP |
150 | /* Free all the values that have been allocated (except for those released). |
151 | Called after each command, successful or not. */ | |
152 | ||
153 | void | |
154 | free_all_values () | |
155 | { | |
156 | register value val, next; | |
157 | ||
158 | for (val = all_values; val; val = next) | |
159 | { | |
160 | next = VALUE_NEXT (val); | |
161 | value_free (val); | |
162 | } | |
163 | ||
164 | all_values = 0; | |
165 | } | |
166 | ||
167 | /* Remove VAL from the chain all_values | |
168 | so it will not be freed automatically. */ | |
169 | ||
170 | void | |
171 | release_value (val) | |
172 | register value val; | |
173 | { | |
174 | register value v; | |
175 | ||
176 | if (all_values == val) | |
177 | { | |
178 | all_values = val->next; | |
179 | return; | |
180 | } | |
181 | ||
182 | for (v = all_values; v; v = v->next) | |
183 | { | |
184 | if (v->next == val) | |
185 | { | |
186 | v->next = val->next; | |
187 | break; | |
188 | } | |
189 | } | |
190 | } | |
191 | ||
192 | /* Return a copy of the value ARG. | |
193 | It contains the same contents, for same memory address, | |
194 | but it's a different block of storage. */ | |
195 | ||
8e9a3f3b | 196 | value |
dd3b648e RP |
197 | value_copy (arg) |
198 | value arg; | |
199 | { | |
200 | register value val; | |
201 | register struct type *type = VALUE_TYPE (arg); | |
202 | if (VALUE_REPEATED (arg)) | |
203 | val = allocate_repeat_value (type, VALUE_REPETITIONS (arg)); | |
204 | else | |
205 | val = allocate_value (type); | |
206 | VALUE_LVAL (val) = VALUE_LVAL (arg); | |
207 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg); | |
208 | VALUE_OFFSET (val) = VALUE_OFFSET (arg); | |
209 | VALUE_BITPOS (val) = VALUE_BITPOS (arg); | |
210 | VALUE_BITSIZE (val) = VALUE_BITSIZE (arg); | |
211 | VALUE_REGNO (val) = VALUE_REGNO (arg); | |
212 | VALUE_LAZY (val) = VALUE_LAZY (arg); | |
213 | if (!VALUE_LAZY (val)) | |
214 | { | |
51b57ded FF |
215 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg), |
216 | TYPE_LENGTH (VALUE_TYPE (arg)) | |
217 | * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1)); | |
dd3b648e RP |
218 | } |
219 | return val; | |
220 | } | |
221 | \f | |
222 | /* Access to the value history. */ | |
223 | ||
224 | /* Record a new value in the value history. | |
225 | Returns the absolute history index of the entry. | |
226 | Result of -1 indicates the value was not saved; otherwise it is the | |
227 | value history index of this new item. */ | |
228 | ||
229 | int | |
230 | record_latest_value (val) | |
231 | value val; | |
232 | { | |
233 | int i; | |
234 | ||
235 | /* Check error now if about to store an invalid float. We return -1 | |
236 | to the caller, but allow them to continue, e.g. to print it as "Nan". */ | |
4ed3a9ea FF |
237 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT) |
238 | { | |
239 | unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i); | |
240 | if (i) return -1; /* Indicate value not saved in history */ | |
241 | } | |
dd3b648e RP |
242 | |
243 | /* Here we treat value_history_count as origin-zero | |
244 | and applying to the value being stored now. */ | |
245 | ||
246 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
247 | if (i == 0) | |
248 | { | |
249 | register struct value_history_chunk *new | |
250 | = (struct value_history_chunk *) | |
251 | xmalloc (sizeof (struct value_history_chunk)); | |
4ed3a9ea | 252 | memset (new->values, 0, sizeof new->values); |
dd3b648e RP |
253 | new->next = value_history_chain; |
254 | value_history_chain = new; | |
255 | } | |
256 | ||
257 | value_history_chain->values[i] = val; | |
4abc83b9 JK |
258 | |
259 | /* We don't want this value to have anything to do with the inferior anymore. | |
260 | In particular, "set $1 = 50" should not affect the variable from which | |
261 | the value was taken, and fast watchpoints should be able to assume that | |
262 | a value on the value history never changes. */ | |
263 | if (VALUE_LAZY (val)) | |
264 | value_fetch_lazy (val); | |
265 | VALUE_LVAL (val) = not_lval; | |
dd3b648e RP |
266 | release_value (val); |
267 | ||
268 | /* Now we regard value_history_count as origin-one | |
269 | and applying to the value just stored. */ | |
270 | ||
271 | return ++value_history_count; | |
272 | } | |
273 | ||
274 | /* Return a copy of the value in the history with sequence number NUM. */ | |
275 | ||
276 | value | |
277 | access_value_history (num) | |
278 | int num; | |
279 | { | |
280 | register struct value_history_chunk *chunk; | |
281 | register int i; | |
282 | register int absnum = num; | |
283 | ||
284 | if (absnum <= 0) | |
285 | absnum += value_history_count; | |
286 | ||
287 | if (absnum <= 0) | |
288 | { | |
289 | if (num == 0) | |
290 | error ("The history is empty."); | |
291 | else if (num == 1) | |
292 | error ("There is only one value in the history."); | |
293 | else | |
294 | error ("History does not go back to $$%d.", -num); | |
295 | } | |
296 | if (absnum > value_history_count) | |
297 | error ("History has not yet reached $%d.", absnum); | |
298 | ||
299 | absnum--; | |
300 | ||
301 | /* Now absnum is always absolute and origin zero. */ | |
302 | ||
303 | chunk = value_history_chain; | |
304 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
305 | i > 0; i--) | |
306 | chunk = chunk->next; | |
307 | ||
308 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
309 | } | |
310 | ||
311 | /* Clear the value history entirely. | |
312 | Must be done when new symbol tables are loaded, | |
313 | because the type pointers become invalid. */ | |
314 | ||
315 | void | |
316 | clear_value_history () | |
317 | { | |
318 | register struct value_history_chunk *next; | |
319 | register int i; | |
320 | register value val; | |
321 | ||
322 | while (value_history_chain) | |
323 | { | |
324 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
a8a69e63 | 325 | if ((val = value_history_chain->values[i]) != NULL) |
be772100 | 326 | free ((PTR)val); |
dd3b648e | 327 | next = value_history_chain->next; |
be772100 | 328 | free ((PTR)value_history_chain); |
dd3b648e RP |
329 | value_history_chain = next; |
330 | } | |
331 | value_history_count = 0; | |
332 | } | |
333 | ||
334 | static void | |
f266e564 | 335 | show_values (num_exp, from_tty) |
dd3b648e RP |
336 | char *num_exp; |
337 | int from_tty; | |
338 | { | |
339 | register int i; | |
340 | register value val; | |
341 | static int num = 1; | |
342 | ||
343 | if (num_exp) | |
344 | { | |
46c28185 RP |
345 | /* "info history +" should print from the stored position. |
346 | "info history <exp>" should print around value number <exp>. */ | |
347 | if (num_exp[0] != '+' || num_exp[1] != '\0') | |
dd3b648e RP |
348 | num = parse_and_eval_address (num_exp) - 5; |
349 | } | |
350 | else | |
351 | { | |
352 | /* "info history" means print the last 10 values. */ | |
353 | num = value_history_count - 9; | |
354 | } | |
355 | ||
356 | if (num <= 0) | |
357 | num = 1; | |
358 | ||
359 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
360 | { | |
361 | val = access_value_history (i); | |
362 | printf_filtered ("$%d = ", i); | |
363 | value_print (val, stdout, 0, Val_pretty_default); | |
364 | printf_filtered ("\n"); | |
365 | } | |
366 | ||
367 | /* The next "info history +" should start after what we just printed. */ | |
368 | num += 10; | |
369 | ||
370 | /* Hitting just return after this command should do the same thing as | |
371 | "info history +". If num_exp is null, this is unnecessary, since | |
372 | "info history +" is not useful after "info history". */ | |
373 | if (from_tty && num_exp) | |
374 | { | |
375 | num_exp[0] = '+'; | |
376 | num_exp[1] = '\0'; | |
377 | } | |
378 | } | |
379 | \f | |
380 | /* Internal variables. These are variables within the debugger | |
381 | that hold values assigned by debugger commands. | |
382 | The user refers to them with a '$' prefix | |
383 | that does not appear in the variable names stored internally. */ | |
384 | ||
385 | static struct internalvar *internalvars; | |
386 | ||
387 | /* Look up an internal variable with name NAME. NAME should not | |
388 | normally include a dollar sign. | |
389 | ||
390 | If the specified internal variable does not exist, | |
391 | one is created, with a void value. */ | |
392 | ||
393 | struct internalvar * | |
394 | lookup_internalvar (name) | |
395 | char *name; | |
396 | { | |
397 | register struct internalvar *var; | |
398 | ||
399 | for (var = internalvars; var; var = var->next) | |
2e4964ad | 400 | if (STREQ (var->name, name)) |
dd3b648e RP |
401 | return var; |
402 | ||
403 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); | |
58ae87f6 | 404 | var->name = concat (name, NULL); |
dd3b648e RP |
405 | var->value = allocate_value (builtin_type_void); |
406 | release_value (var->value); | |
407 | var->next = internalvars; | |
408 | internalvars = var; | |
409 | return var; | |
410 | } | |
411 | ||
412 | value | |
413 | value_of_internalvar (var) | |
414 | struct internalvar *var; | |
415 | { | |
416 | register value val; | |
417 | ||
418 | #ifdef IS_TRAPPED_INTERNALVAR | |
419 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
420 | return VALUE_OF_TRAPPED_INTERNALVAR (var); | |
421 | #endif | |
422 | ||
423 | val = value_copy (var->value); | |
424 | if (VALUE_LAZY (val)) | |
425 | value_fetch_lazy (val); | |
426 | VALUE_LVAL (val) = lval_internalvar; | |
427 | VALUE_INTERNALVAR (val) = var; | |
428 | return val; | |
429 | } | |
430 | ||
431 | void | |
432 | set_internalvar_component (var, offset, bitpos, bitsize, newval) | |
433 | struct internalvar *var; | |
434 | int offset, bitpos, bitsize; | |
435 | value newval; | |
436 | { | |
437 | register char *addr = VALUE_CONTENTS (var->value) + offset; | |
438 | ||
439 | #ifdef IS_TRAPPED_INTERNALVAR | |
440 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
441 | SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset); | |
442 | #endif | |
443 | ||
444 | if (bitsize) | |
58e49e21 | 445 | modify_field (addr, value_as_long (newval), |
dd3b648e RP |
446 | bitpos, bitsize); |
447 | else | |
4ed3a9ea | 448 | memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval))); |
dd3b648e RP |
449 | } |
450 | ||
451 | void | |
452 | set_internalvar (var, val) | |
453 | struct internalvar *var; | |
454 | value val; | |
455 | { | |
456 | #ifdef IS_TRAPPED_INTERNALVAR | |
457 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
458 | SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0); | |
459 | #endif | |
460 | ||
be772100 | 461 | free ((PTR)var->value); |
dd3b648e | 462 | var->value = value_copy (val); |
6fab5bef JG |
463 | /* Force the value to be fetched from the target now, to avoid problems |
464 | later when this internalvar is referenced and the target is gone or | |
465 | has changed. */ | |
466 | if (VALUE_LAZY (var->value)) | |
467 | value_fetch_lazy (var->value); | |
dd3b648e RP |
468 | release_value (var->value); |
469 | } | |
470 | ||
471 | char * | |
472 | internalvar_name (var) | |
473 | struct internalvar *var; | |
474 | { | |
475 | return var->name; | |
476 | } | |
477 | ||
478 | /* Free all internalvars. Done when new symtabs are loaded, | |
479 | because that makes the values invalid. */ | |
480 | ||
481 | void | |
482 | clear_internalvars () | |
483 | { | |
484 | register struct internalvar *var; | |
485 | ||
486 | while (internalvars) | |
487 | { | |
488 | var = internalvars; | |
489 | internalvars = var->next; | |
be772100 JG |
490 | free ((PTR)var->name); |
491 | free ((PTR)var->value); | |
492 | free ((PTR)var); | |
dd3b648e RP |
493 | } |
494 | } | |
495 | ||
496 | static void | |
ac88ca20 JG |
497 | show_convenience (ignore, from_tty) |
498 | char *ignore; | |
499 | int from_tty; | |
dd3b648e RP |
500 | { |
501 | register struct internalvar *var; | |
502 | int varseen = 0; | |
503 | ||
504 | for (var = internalvars; var; var = var->next) | |
505 | { | |
506 | #ifdef IS_TRAPPED_INTERNALVAR | |
507 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
508 | continue; | |
509 | #endif | |
510 | if (!varseen) | |
511 | { | |
dd3b648e RP |
512 | varseen = 1; |
513 | } | |
afe4ca15 | 514 | printf_filtered ("$%s = ", var->name); |
dd3b648e | 515 | value_print (var->value, stdout, 0, Val_pretty_default); |
afe4ca15 | 516 | printf_filtered ("\n"); |
dd3b648e RP |
517 | } |
518 | if (!varseen) | |
519 | printf ("No debugger convenience variables now defined.\n\ | |
520 | Convenience variables have names starting with \"$\";\n\ | |
521 | use \"set\" as in \"set $foo = 5\" to define them.\n"); | |
522 | } | |
523 | \f | |
524 | /* Extract a value as a C number (either long or double). | |
525 | Knows how to convert fixed values to double, or | |
526 | floating values to long. | |
527 | Does not deallocate the value. */ | |
528 | ||
529 | LONGEST | |
530 | value_as_long (val) | |
531 | register value val; | |
532 | { | |
533 | /* This coerces arrays and functions, which is necessary (e.g. | |
534 | in disassemble_command). It also dereferences references, which | |
535 | I suspect is the most logical thing to do. */ | |
536 | if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM) | |
537 | COERCE_ARRAY (val); | |
538 | return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val)); | |
539 | } | |
540 | ||
541 | double | |
542 | value_as_double (val) | |
543 | register value val; | |
544 | { | |
545 | double foo; | |
546 | int inv; | |
547 | ||
548 | foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv); | |
549 | if (inv) | |
550 | error ("Invalid floating value found in program."); | |
551 | return foo; | |
552 | } | |
e1ce8aa5 JK |
553 | /* Extract a value as a C pointer. |
554 | Does not deallocate the value. */ | |
555 | CORE_ADDR | |
556 | value_as_pointer (val) | |
557 | value val; | |
558 | { | |
2bff8e38 JK |
559 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
560 | whether we want this to be true eventually. */ | |
b2ccb6a4 JK |
561 | #if 0 |
562 | /* ADDR_BITS_REMOVE is wrong if we are being called for a | |
563 | non-address (e.g. argument to "signal", "info break", etc.), or | |
564 | for pointers to char, in which the low bits *are* significant. */ | |
ae0ea72e | 565 | return ADDR_BITS_REMOVE(value_as_long (val)); |
b2ccb6a4 JK |
566 | #else |
567 | return value_as_long (val); | |
568 | #endif | |
e1ce8aa5 | 569 | } |
dd3b648e RP |
570 | \f |
571 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
572 | as a long, or as a double, assuming the raw data is described | |
573 | by type TYPE. Knows how to convert different sizes of values | |
574 | and can convert between fixed and floating point. We don't assume | |
575 | any alignment for the raw data. Return value is in host byte order. | |
576 | ||
577 | If you want functions and arrays to be coerced to pointers, and | |
578 | references to be dereferenced, call value_as_long() instead. | |
579 | ||
580 | C++: It is assumed that the front-end has taken care of | |
581 | all matters concerning pointers to members. A pointer | |
582 | to member which reaches here is considered to be equivalent | |
583 | to an INT (or some size). After all, it is only an offset. */ | |
584 | ||
35505d07 JG |
585 | /* FIXME: This should be rewritten as a switch statement for speed and |
586 | ease of comprehension. */ | |
587 | ||
dd3b648e RP |
588 | LONGEST |
589 | unpack_long (type, valaddr) | |
590 | struct type *type; | |
591 | char *valaddr; | |
592 | { | |
593 | register enum type_code code = TYPE_CODE (type); | |
594 | register int len = TYPE_LENGTH (type); | |
595 | register int nosign = TYPE_UNSIGNED (type); | |
596 | ||
35505d07 | 597 | if (code == TYPE_CODE_ENUM || code == TYPE_CODE_BOOL) |
dd3b648e RP |
598 | code = TYPE_CODE_INT; |
599 | if (code == TYPE_CODE_FLT) | |
600 | { | |
601 | if (len == sizeof (float)) | |
602 | { | |
603 | float retval; | |
4ed3a9ea | 604 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
605 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
606 | return retval; | |
607 | } | |
608 | ||
609 | if (len == sizeof (double)) | |
610 | { | |
611 | double retval; | |
4ed3a9ea | 612 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
613 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
614 | return retval; | |
615 | } | |
616 | else | |
617 | { | |
618 | error ("Unexpected type of floating point number."); | |
619 | } | |
620 | } | |
34df79fc | 621 | else if ((code == TYPE_CODE_INT || code == TYPE_CODE_CHAR) && nosign) |
dd3b648e | 622 | { |
34df79fc | 623 | return extract_unsigned_integer (valaddr, len); |
dd3b648e | 624 | } |
34df79fc | 625 | else if (code == TYPE_CODE_INT || code == TYPE_CODE_CHAR) |
dd3b648e | 626 | { |
34df79fc | 627 | return extract_signed_integer (valaddr, len); |
dd3b648e | 628 | } |
2bff8e38 JK |
629 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
630 | whether we want this to be true eventually. */ | |
c4413e2c | 631 | else if (code == TYPE_CODE_PTR || code == TYPE_CODE_REF) |
dd3b648e | 632 | { |
34df79fc | 633 | return extract_address (valaddr, len); |
dd3b648e RP |
634 | } |
635 | else if (code == TYPE_CODE_MEMBER) | |
636 | error ("not implemented: member types in unpack_long"); | |
637 | ||
638 | error ("Value not integer or pointer."); | |
639 | return 0; /* For lint -- never reached */ | |
640 | } | |
641 | ||
642 | /* Return a double value from the specified type and address. | |
643 | INVP points to an int which is set to 0 for valid value, | |
644 | 1 for invalid value (bad float format). In either case, | |
645 | the returned double is OK to use. Argument is in target | |
646 | format, result is in host format. */ | |
647 | ||
648 | double | |
649 | unpack_double (type, valaddr, invp) | |
650 | struct type *type; | |
651 | char *valaddr; | |
652 | int *invp; | |
653 | { | |
654 | register enum type_code code = TYPE_CODE (type); | |
655 | register int len = TYPE_LENGTH (type); | |
656 | register int nosign = TYPE_UNSIGNED (type); | |
657 | ||
658 | *invp = 0; /* Assume valid. */ | |
659 | if (code == TYPE_CODE_FLT) | |
660 | { | |
661 | if (INVALID_FLOAT (valaddr, len)) | |
662 | { | |
663 | *invp = 1; | |
664 | return 1.234567891011121314; | |
665 | } | |
666 | ||
667 | if (len == sizeof (float)) | |
668 | { | |
669 | float retval; | |
4ed3a9ea | 670 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
671 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
672 | return retval; | |
673 | } | |
674 | ||
675 | if (len == sizeof (double)) | |
676 | { | |
677 | double retval; | |
4ed3a9ea | 678 | memcpy (&retval, valaddr, sizeof (retval)); |
dd3b648e RP |
679 | SWAP_TARGET_AND_HOST (&retval, sizeof (retval)); |
680 | return retval; | |
681 | } | |
682 | else | |
683 | { | |
684 | error ("Unexpected type of floating point number."); | |
e1ce8aa5 | 685 | return 0; /* Placate lint. */ |
dd3b648e RP |
686 | } |
687 | } | |
688 | else if (nosign) { | |
689 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
7efb57c3 | 690 | return (unsigned LONGEST) unpack_long (type, valaddr); |
dd3b648e RP |
691 | } else { |
692 | /* Signed -- we are OK with unpack_long. */ | |
693 | return unpack_long (type, valaddr); | |
694 | } | |
695 | } | |
e1ce8aa5 JK |
696 | |
697 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
698 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
699 | We don't assume any alignment for the raw data. Return value is in | |
700 | host byte order. | |
701 | ||
702 | If you want functions and arrays to be coerced to pointers, and | |
703 | references to be dereferenced, call value_as_pointer() instead. | |
704 | ||
705 | C++: It is assumed that the front-end has taken care of | |
706 | all matters concerning pointers to members. A pointer | |
707 | to member which reaches here is considered to be equivalent | |
708 | to an INT (or some size). After all, it is only an offset. */ | |
709 | ||
710 | CORE_ADDR | |
711 | unpack_pointer (type, valaddr) | |
712 | struct type *type; | |
713 | char *valaddr; | |
714 | { | |
2bff8e38 JK |
715 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
716 | whether we want this to be true eventually. */ | |
717 | return unpack_long (type, valaddr); | |
e1ce8aa5 | 718 | } |
dd3b648e RP |
719 | \f |
720 | /* Given a value ARG1 (offset by OFFSET bytes) | |
721 | of a struct or union type ARG_TYPE, | |
722 | extract and return the value of one of its fields. | |
723 | FIELDNO says which field. | |
724 | ||
725 | For C++, must also be able to return values from static fields */ | |
726 | ||
727 | value | |
728 | value_primitive_field (arg1, offset, fieldno, arg_type) | |
729 | register value arg1; | |
730 | int offset; | |
731 | register int fieldno; | |
732 | register struct type *arg_type; | |
733 | { | |
734 | register value v; | |
735 | register struct type *type; | |
736 | ||
737 | check_stub_type (arg_type); | |
738 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
739 | ||
740 | /* Handle packed fields */ | |
741 | ||
742 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
743 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
744 | { | |
96b2f51c | 745 | v = value_from_longest (type, |
dd3b648e RP |
746 | unpack_field_as_long (arg_type, |
747 | VALUE_CONTENTS (arg1), | |
748 | fieldno)); | |
749 | VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; | |
750 | VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
751 | } | |
752 | else | |
753 | { | |
754 | v = allocate_value (type); | |
755 | if (VALUE_LAZY (arg1)) | |
756 | VALUE_LAZY (v) = 1; | |
757 | else | |
4ed3a9ea FF |
758 | memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset, |
759 | TYPE_LENGTH (type)); | |
dd3b648e RP |
760 | } |
761 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
762 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
763 | VALUE_LVAL (v) = lval_internalvar_component; | |
764 | VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1); | |
765 | VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1); | |
766 | return v; | |
767 | } | |
768 | ||
769 | /* Given a value ARG1 of a struct or union type, | |
770 | extract and return the value of one of its fields. | |
771 | FIELDNO says which field. | |
772 | ||
773 | For C++, must also be able to return values from static fields */ | |
774 | ||
775 | value | |
776 | value_field (arg1, fieldno) | |
777 | register value arg1; | |
778 | register int fieldno; | |
779 | { | |
780 | return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1)); | |
781 | } | |
782 | ||
545af6ce PB |
783 | /* Return a non-virtual function as a value. |
784 | F is the list of member functions which contains the desired method. | |
785 | J is an index into F which provides the desired method. */ | |
786 | ||
dd3b648e | 787 | value |
94603999 JG |
788 | value_fn_field (arg1p, f, j, type, offset) |
789 | value *arg1p; | |
545af6ce PB |
790 | struct fn_field *f; |
791 | int j; | |
94603999 JG |
792 | struct type *type; |
793 | int offset; | |
dd3b648e RP |
794 | { |
795 | register value v; | |
94603999 | 796 | register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
dd3b648e RP |
797 | struct symbol *sym; |
798 | ||
545af6ce | 799 | sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), |
dd3b648e RP |
800 | 0, VAR_NAMESPACE, 0, NULL); |
801 | if (! sym) error ("Internal error: could not find physical method named %s", | |
545af6ce | 802 | TYPE_FN_FIELD_PHYSNAME (f, j)); |
dd3b648e | 803 | |
94603999 | 804 | v = allocate_value (ftype); |
dd3b648e | 805 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); |
94603999 JG |
806 | VALUE_TYPE (v) = ftype; |
807 | ||
808 | if (arg1p) | |
809 | { | |
810 | if (type != VALUE_TYPE (*arg1p)) | |
811 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), | |
812 | value_addr (*arg1p))); | |
813 | ||
dcd8fd8c | 814 | /* Move the `this' pointer according to the offset. |
94603999 | 815 | VALUE_OFFSET (*arg1p) += offset; |
dcd8fd8c | 816 | */ |
94603999 JG |
817 | } |
818 | ||
dd3b648e RP |
819 | return v; |
820 | } | |
821 | ||
822 | /* Return a virtual function as a value. | |
823 | ARG1 is the object which provides the virtual function | |
94603999 | 824 | table pointer. *ARG1P is side-effected in calling this function. |
dd3b648e RP |
825 | F is the list of member functions which contains the desired virtual |
826 | function. | |
e532974c JK |
827 | J is an index into F which provides the desired virtual function. |
828 | ||
829 | TYPE is the type in which F is located. */ | |
dd3b648e | 830 | value |
94603999 JG |
831 | value_virtual_fn_field (arg1p, f, j, type, offset) |
832 | value *arg1p; | |
dd3b648e RP |
833 | struct fn_field *f; |
834 | int j; | |
e532974c | 835 | struct type *type; |
94603999 | 836 | int offset; |
dd3b648e | 837 | { |
94603999 | 838 | value arg1 = *arg1p; |
dd3b648e RP |
839 | /* First, get the virtual function table pointer. That comes |
840 | with a strange type, so cast it to type `pointer to long' (which | |
841 | should serve just fine as a function type). Then, index into | |
842 | the table, and convert final value to appropriate function type. */ | |
843 | value entry, vfn, vtbl; | |
96b2f51c | 844 | value vi = value_from_longest (builtin_type_int, |
dd3b648e | 845 | (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j)); |
e532974c JK |
846 | struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j); |
847 | struct type *context; | |
848 | if (fcontext == NULL) | |
849 | /* We don't have an fcontext (e.g. the program was compiled with | |
850 | g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE. | |
851 | This won't work right for multiple inheritance, but at least we | |
852 | should do as well as GDB 3.x did. */ | |
853 | fcontext = TYPE_VPTR_BASETYPE (type); | |
854 | context = lookup_pointer_type (fcontext); | |
855 | /* Now context is a pointer to the basetype containing the vtbl. */ | |
dd3b648e RP |
856 | if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1)) |
857 | arg1 = value_ind (value_cast (context, value_addr (arg1))); | |
858 | ||
859 | context = VALUE_TYPE (arg1); | |
e532974c | 860 | /* Now context is the basetype containing the vtbl. */ |
dd3b648e RP |
861 | |
862 | /* This type may have been defined before its virtual function table | |
863 | was. If so, fill in the virtual function table entry for the | |
864 | type now. */ | |
865 | if (TYPE_VPTR_FIELDNO (context) < 0) | |
71b16efa | 866 | fill_in_vptr_fieldno (context); |
dd3b648e RP |
867 | |
868 | /* The virtual function table is now an array of structures | |
869 | which have the form { int16 offset, delta; void *pfn; }. */ | |
94603999 JG |
870 | vtbl = value_ind (value_primitive_field (arg1, 0, |
871 | TYPE_VPTR_FIELDNO (context), | |
872 | TYPE_VPTR_BASETYPE (context))); | |
dd3b648e RP |
873 | |
874 | /* Index into the virtual function table. This is hard-coded because | |
875 | looking up a field is not cheap, and it may be important to save | |
876 | time, e.g. if the user has set a conditional breakpoint calling | |
877 | a virtual function. */ | |
878 | entry = value_subscript (vtbl, vi); | |
879 | ||
dcd8fd8c KH |
880 | /* Move the `this' pointer according to the virtual function table. */ |
881 | VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0))/* + offset*/; | |
882 | ||
dd3b648e RP |
883 | if (! VALUE_LAZY (arg1)) |
884 | { | |
885 | VALUE_LAZY (arg1) = 1; | |
886 | value_fetch_lazy (arg1); | |
887 | } | |
888 | ||
889 | vfn = value_field (entry, 2); | |
890 | /* Reinstantiate the function pointer with the correct type. */ | |
891 | VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j)); | |
892 | ||
94603999 | 893 | *arg1p = arg1; |
dd3b648e RP |
894 | return vfn; |
895 | } | |
896 | ||
71b16efa JK |
897 | /* ARG is a pointer to an object we know to be at least |
898 | a DTYPE. BTYPE is the most derived basetype that has | |
899 | already been searched (and need not be searched again). | |
900 | After looking at the vtables between BTYPE and DTYPE, | |
901 | return the most derived type we find. The caller must | |
902 | be satisfied when the return value == DTYPE. | |
903 | ||
904 | FIXME-tiemann: should work with dossier entries as well. */ | |
905 | ||
906 | static value | |
7cb0f870 MT |
907 | value_headof (in_arg, btype, dtype) |
908 | value in_arg; | |
71b16efa JK |
909 | struct type *btype, *dtype; |
910 | { | |
911 | /* First collect the vtables we must look at for this object. */ | |
912 | /* FIXME-tiemann: right now, just look at top-most vtable. */ | |
7cb0f870 | 913 | value arg, vtbl, entry, best_entry = 0; |
71b16efa JK |
914 | int i, nelems; |
915 | int offset, best_offset = 0; | |
916 | struct symbol *sym; | |
917 | CORE_ADDR pc_for_sym; | |
918 | char *demangled_name; | |
1ab3bf1b JG |
919 | struct minimal_symbol *msymbol; |
920 | ||
aec4cb91 MT |
921 | btype = TYPE_VPTR_BASETYPE (dtype); |
922 | check_stub_type (btype); | |
7cb0f870 | 923 | arg = in_arg; |
aec4cb91 | 924 | if (btype != dtype) |
7cb0f870 MT |
925 | arg = value_cast (lookup_pointer_type (btype), arg); |
926 | vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype))); | |
71b16efa JK |
927 | |
928 | /* Check that VTBL looks like it points to a virtual function table. */ | |
1ab3bf1b JG |
929 | msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl)); |
930 | if (msymbol == NULL | |
2e4964ad | 931 | || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol))) |
71b16efa JK |
932 | { |
933 | /* If we expected to find a vtable, but did not, let the user | |
934 | know that we aren't happy, but don't throw an error. | |
935 | FIXME: there has to be a better way to do this. */ | |
936 | struct type *error_type = (struct type *)xmalloc (sizeof (struct type)); | |
7cb0f870 | 937 | memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type)); |
71b16efa | 938 | TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *")); |
7cb0f870 MT |
939 | VALUE_TYPE (in_arg) = error_type; |
940 | return in_arg; | |
71b16efa JK |
941 | } |
942 | ||
943 | /* Now search through the virtual function table. */ | |
944 | entry = value_ind (vtbl); | |
e1ce8aa5 | 945 | nelems = longest_to_int (value_as_long (value_field (entry, 2))); |
71b16efa JK |
946 | for (i = 1; i <= nelems; i++) |
947 | { | |
96b2f51c JG |
948 | entry = value_subscript (vtbl, value_from_longest (builtin_type_int, |
949 | (LONGEST) i)); | |
e1ce8aa5 | 950 | offset = longest_to_int (value_as_long (value_field (entry, 0))); |
bcccec8c PB |
951 | /* If we use '<=' we can handle single inheritance |
952 | * where all offsets are zero - just use the first entry found. */ | |
953 | if (offset <= best_offset) | |
71b16efa JK |
954 | { |
955 | best_offset = offset; | |
956 | best_entry = entry; | |
957 | } | |
958 | } | |
71b16efa JK |
959 | /* Move the pointer according to BEST_ENTRY's offset, and figure |
960 | out what type we should return as the new pointer. */ | |
bcccec8c PB |
961 | if (best_entry == 0) |
962 | { | |
963 | /* An alternative method (which should no longer be necessary). | |
964 | * But we leave it in for future use, when we will hopefully | |
965 | * have optimizes the vtable to use thunks instead of offsets. */ | |
966 | /* Use the name of vtable itself to extract a base type. */ | |
dcd8fd8c | 967 | demangled_name += 4; /* Skip \7fvt$ prefix. */ |
bcccec8c PB |
968 | } |
969 | else | |
970 | { | |
971 | pc_for_sym = value_as_pointer (value_field (best_entry, 2)); | |
972 | sym = find_pc_function (pc_for_sym); | |
8050a57b | 973 | demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI); |
bcccec8c PB |
974 | *(strchr (demangled_name, ':')) = '\0'; |
975 | } | |
71b16efa | 976 | sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0); |
2e4964ad FF |
977 | if (sym == NULL) |
978 | error ("could not find type declaration for `%s'", demangled_name); | |
bcccec8c PB |
979 | if (best_entry) |
980 | { | |
981 | free (demangled_name); | |
982 | arg = value_add (value_cast (builtin_type_int, arg), | |
983 | value_field (best_entry, 0)); | |
984 | } | |
7cb0f870 | 985 | else arg = in_arg; |
71b16efa JK |
986 | VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym)); |
987 | return arg; | |
988 | } | |
989 | ||
990 | /* ARG is a pointer object of type TYPE. If TYPE has virtual | |
991 | function tables, probe ARG's tables (including the vtables | |
992 | of its baseclasses) to figure out the most derived type that ARG | |
993 | could actually be a pointer to. */ | |
994 | ||
995 | value | |
996 | value_from_vtable_info (arg, type) | |
997 | value arg; | |
998 | struct type *type; | |
999 | { | |
1000 | /* Take care of preliminaries. */ | |
1001 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
1002 | fill_in_vptr_fieldno (type); | |
1003 | if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg)) | |
1004 | return 0; | |
1005 | ||
1006 | return value_headof (arg, 0, type); | |
1007 | } | |
1008 | ||
1410f5f1 JK |
1009 | /* Return true if the INDEXth field of TYPE is a virtual baseclass |
1010 | pointer which is for the base class whose type is BASECLASS. */ | |
1011 | ||
1012 | static int | |
1013 | vb_match (type, index, basetype) | |
1014 | struct type *type; | |
1015 | int index; | |
1016 | struct type *basetype; | |
1017 | { | |
1018 | struct type *fieldtype; | |
1410f5f1 JK |
1019 | char *name = TYPE_FIELD_NAME (type, index); |
1020 | char *field_class_name = NULL; | |
1021 | ||
1022 | if (*name != '_') | |
1023 | return 0; | |
dcd8fd8c | 1024 | /* gcc 2.4 uses \7fvb$. */ |
1410f5f1 JK |
1025 | if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER) |
1026 | field_class_name = name + 4; | |
dcd8fd8c | 1027 | /* gcc 2.5 will use \7f_vb_. */ |
1410f5f1 JK |
1028 | if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_') |
1029 | field_class_name = name + 5; | |
1030 | ||
1031 | if (field_class_name == NULL) | |
1032 | /* This field is not a virtual base class pointer. */ | |
1033 | return 0; | |
1034 | ||
1035 | /* It's a virtual baseclass pointer, now we just need to find out whether | |
1036 | it is for this baseclass. */ | |
1037 | fieldtype = TYPE_FIELD_TYPE (type, index); | |
1038 | if (fieldtype == NULL | |
1039 | || TYPE_CODE (fieldtype) != TYPE_CODE_PTR) | |
1040 | /* "Can't happen". */ | |
1041 | return 0; | |
1042 | ||
1043 | /* What we check for is that either the types are equal (needed for | |
1044 | nameless types) or have the same name. This is ugly, and a more | |
1045 | elegant solution should be devised (which would probably just push | |
1046 | the ugliness into symbol reading unless we change the stabs format). */ | |
1047 | if (TYPE_TARGET_TYPE (fieldtype) == basetype) | |
1048 | return 1; | |
1049 | ||
1050 | if (TYPE_NAME (basetype) != NULL | |
1051 | && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL | |
1052 | && STREQ (TYPE_NAME (basetype), | |
1053 | TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)))) | |
1054 | return 1; | |
1055 | return 0; | |
1056 | } | |
1057 | ||
94603999 JG |
1058 | /* Compute the offset of the baseclass which is |
1059 | the INDEXth baseclass of class TYPE, for a value ARG, | |
1060 | wih extra offset of OFFSET. | |
1061 | The result is the offste of the baseclass value relative | |
1062 | to (the address of)(ARG) + OFFSET. | |
1063 | ||
1064 | -1 is returned on error. */ | |
1065 | ||
1066 | int | |
1067 | baseclass_offset (type, index, arg, offset) | |
1068 | struct type *type; | |
1069 | int index; | |
1070 | value arg; | |
1071 | int offset; | |
1072 | { | |
1073 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1074 | ||
1075 | if (BASETYPE_VIA_VIRTUAL (type, index)) | |
1076 | { | |
1077 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1078 | register int i, len = TYPE_NFIELDS (type); | |
1079 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
94603999 | 1080 | |
94603999 JG |
1081 | /* First look for the virtual baseclass pointer |
1082 | in the fields. */ | |
1083 | for (i = n_baseclasses; i < len; i++) | |
1084 | { | |
1410f5f1 | 1085 | if (vb_match (type, i, basetype)) |
94603999 JG |
1086 | { |
1087 | CORE_ADDR addr | |
1088 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
1089 | VALUE_CONTENTS (arg) + VALUE_OFFSET (arg) | |
1090 | + offset | |
1091 | + (TYPE_FIELD_BITPOS (type, i) / 8)); | |
1092 | ||
1093 | if (VALUE_LVAL (arg) != lval_memory) | |
1094 | return -1; | |
1095 | ||
1096 | return addr - | |
1097 | (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset); | |
1098 | } | |
1099 | } | |
1100 | /* Not in the fields, so try looking through the baseclasses. */ | |
1101 | for (i = index+1; i < n_baseclasses; i++) | |
1102 | { | |
1103 | int boffset = | |
1104 | baseclass_offset (type, i, arg, offset); | |
1105 | if (boffset) | |
1106 | return boffset; | |
1107 | } | |
1108 | /* Not found. */ | |
1109 | return -1; | |
1110 | } | |
1111 | ||
1112 | /* Baseclass is easily computed. */ | |
1113 | return TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1114 | } | |
1115 | ||
dd3b648e | 1116 | /* Compute the address of the baseclass which is |
f1d77e90 | 1117 | the INDEXth baseclass of class TYPE. The TYPE base |
71b16efa JK |
1118 | of the object is at VALADDR. |
1119 | ||
1120 | If ERRP is non-NULL, set *ERRP to be the errno code of any error, | |
1121 | or 0 if no error. In that case the return value is not the address | |
1122 | of the baseclasss, but the address which could not be read | |
1123 | successfully. */ | |
dd3b648e | 1124 | |
94603999 JG |
1125 | /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */ |
1126 | ||
dd3b648e | 1127 | char * |
71b16efa | 1128 | baseclass_addr (type, index, valaddr, valuep, errp) |
dd3b648e RP |
1129 | struct type *type; |
1130 | int index; | |
1131 | char *valaddr; | |
1132 | value *valuep; | |
71b16efa | 1133 | int *errp; |
dd3b648e RP |
1134 | { |
1135 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1136 | ||
71b16efa JK |
1137 | if (errp) |
1138 | *errp = 0; | |
aec4cb91 | 1139 | |
dd3b648e RP |
1140 | if (BASETYPE_VIA_VIRTUAL (type, index)) |
1141 | { | |
1142 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1143 | register int i, len = TYPE_NFIELDS (type); | |
1144 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
dd3b648e | 1145 | |
dd3b648e RP |
1146 | /* First look for the virtual baseclass pointer |
1147 | in the fields. */ | |
1148 | for (i = n_baseclasses; i < len; i++) | |
1149 | { | |
1410f5f1 | 1150 | if (vb_match (type, i, basetype)) |
dd3b648e | 1151 | { |
71b16efa JK |
1152 | value val = allocate_value (basetype); |
1153 | CORE_ADDR addr; | |
1154 | int status; | |
1155 | ||
e1ce8aa5 JK |
1156 | addr |
1157 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
71b16efa JK |
1158 | valaddr + (TYPE_FIELD_BITPOS (type, i) / 8)); |
1159 | ||
1160 | status = target_read_memory (addr, | |
1161 | VALUE_CONTENTS_RAW (val), | |
4f6f12f9 | 1162 | TYPE_LENGTH (basetype)); |
71b16efa JK |
1163 | VALUE_LVAL (val) = lval_memory; |
1164 | VALUE_ADDRESS (val) = addr; | |
1165 | ||
1166 | if (status != 0) | |
1167 | { | |
1168 | if (valuep) | |
1169 | *valuep = NULL; | |
1170 | release_value (val); | |
1171 | value_free (val); | |
1172 | if (errp) | |
1173 | *errp = status; | |
1174 | return (char *)addr; | |
1175 | } | |
1176 | else | |
1177 | { | |
1178 | if (valuep) | |
1179 | *valuep = val; | |
1180 | return (char *) VALUE_CONTENTS (val); | |
1181 | } | |
dd3b648e RP |
1182 | } |
1183 | } | |
1184 | /* Not in the fields, so try looking through the baseclasses. */ | |
1185 | for (i = index+1; i < n_baseclasses; i++) | |
1186 | { | |
1187 | char *baddr; | |
1188 | ||
e1ce8aa5 | 1189 | baddr = baseclass_addr (type, i, valaddr, valuep, errp); |
dd3b648e RP |
1190 | if (baddr) |
1191 | return baddr; | |
1192 | } | |
1193 | /* Not found. */ | |
1194 | if (valuep) | |
1195 | *valuep = 0; | |
1196 | return 0; | |
1197 | } | |
1198 | ||
1199 | /* Baseclass is easily computed. */ | |
1200 | if (valuep) | |
1201 | *valuep = 0; | |
1202 | return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1203 | } | |
dd3b648e | 1204 | \f |
4db8e515 FF |
1205 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at |
1206 | VALADDR. | |
1207 | ||
1208 | Extracting bits depends on endianness of the machine. Compute the | |
1209 | number of least significant bits to discard. For big endian machines, | |
1210 | we compute the total number of bits in the anonymous object, subtract | |
1211 | off the bit count from the MSB of the object to the MSB of the | |
1212 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1213 | count. For little endian machines, the discard count is simply the | |
1214 | number of bits from the LSB of the anonymous object to the LSB of the | |
1215 | bitfield. | |
1216 | ||
1217 | If the field is signed, we also do sign extension. */ | |
1218 | ||
1219 | LONGEST | |
dd3b648e RP |
1220 | unpack_field_as_long (type, valaddr, fieldno) |
1221 | struct type *type; | |
1222 | char *valaddr; | |
1223 | int fieldno; | |
1224 | { | |
4db8e515 FF |
1225 | unsigned LONGEST val; |
1226 | unsigned LONGEST valmask; | |
dd3b648e RP |
1227 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); |
1228 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
4db8e515 | 1229 | int lsbcount; |
dd3b648e | 1230 | |
34df79fc | 1231 | val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); |
4db8e515 FF |
1232 | |
1233 | /* Extract bits. See comment above. */ | |
dd3b648e | 1234 | |
122ad9ab | 1235 | #if BITS_BIG_ENDIAN |
4db8e515 | 1236 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); |
dd3b648e | 1237 | #else |
4db8e515 | 1238 | lsbcount = (bitpos % 8); |
dd3b648e | 1239 | #endif |
4db8e515 | 1240 | val >>= lsbcount; |
dd3b648e | 1241 | |
4db8e515 FF |
1242 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. |
1243 | If the field is signed, and is negative, then sign extend. */ | |
1244 | ||
1245 | if ((bitsize > 0) && (bitsize < 8 * sizeof (val))) | |
1246 | { | |
1247 | valmask = (((unsigned LONGEST) 1) << bitsize) - 1; | |
1248 | val &= valmask; | |
1249 | if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno))) | |
1250 | { | |
1251 | if (val & (valmask ^ (valmask >> 1))) | |
1252 | { | |
1253 | val |= ~valmask; | |
1254 | } | |
1255 | } | |
1256 | } | |
1257 | return (val); | |
dd3b648e RP |
1258 | } |
1259 | ||
3f2e006b JG |
1260 | /* Modify the value of a bitfield. ADDR points to a block of memory in |
1261 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1262 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
1263 | indicate which bits (in target bit order) comprise the bitfield. */ | |
1264 | ||
dd3b648e RP |
1265 | void |
1266 | modify_field (addr, fieldval, bitpos, bitsize) | |
1267 | char *addr; | |
58e49e21 | 1268 | LONGEST fieldval; |
dd3b648e RP |
1269 | int bitpos, bitsize; |
1270 | { | |
58e49e21 | 1271 | LONGEST oword; |
dd3b648e | 1272 | |
c3a21801 JG |
1273 | /* Reject values too big to fit in the field in question, |
1274 | otherwise adjoining fields may be corrupted. */ | |
61a7292f SG |
1275 | if (bitsize < (8 * sizeof (fieldval)) |
1276 | && 0 != (fieldval & ~((1<<bitsize)-1))) | |
58e49e21 JK |
1277 | { |
1278 | /* FIXME: would like to include fieldval in the message, but | |
1279 | we don't have a sprintf_longest. */ | |
1280 | error ("Value does not fit in %d bits.", bitsize); | |
1281 | } | |
34df79fc JK |
1282 | |
1283 | oword = extract_signed_integer (addr, sizeof oword); | |
dd3b648e | 1284 | |
3f2e006b | 1285 | /* Shifting for bit field depends on endianness of the target machine. */ |
122ad9ab | 1286 | #if BITS_BIG_ENDIAN |
dd3b648e RP |
1287 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; |
1288 | #endif | |
1289 | ||
58e49e21 | 1290 | /* Mask out old value, while avoiding shifts >= size of oword */ |
c3a21801 | 1291 | if (bitsize < 8 * sizeof (oword)) |
58e49e21 | 1292 | oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos); |
c3a21801 | 1293 | else |
58e49e21 | 1294 | oword &= ~((~(unsigned LONGEST)0) << bitpos); |
dd3b648e | 1295 | oword |= fieldval << bitpos; |
3f2e006b | 1296 | |
34df79fc | 1297 | store_signed_integer (addr, sizeof oword, oword); |
dd3b648e RP |
1298 | } |
1299 | \f | |
1300 | /* Convert C numbers into newly allocated values */ | |
1301 | ||
1302 | value | |
96b2f51c | 1303 | value_from_longest (type, num) |
dd3b648e RP |
1304 | struct type *type; |
1305 | register LONGEST num; | |
1306 | { | |
1307 | register value val = allocate_value (type); | |
1308 | register enum type_code code = TYPE_CODE (type); | |
1309 | register int len = TYPE_LENGTH (type); | |
1310 | ||
34df79fc | 1311 | switch (code) |
dd3b648e | 1312 | { |
34df79fc JK |
1313 | case TYPE_CODE_INT: |
1314 | case TYPE_CODE_CHAR: | |
1315 | case TYPE_CODE_ENUM: | |
1316 | case TYPE_CODE_BOOL: | |
1317 | store_signed_integer (VALUE_CONTENTS_RAW (val), len, num); | |
1318 | break; | |
1319 | ||
1320 | case TYPE_CODE_REF: | |
1321 | case TYPE_CODE_PTR: | |
1322 | /* This assumes that all pointers of a given length | |
1323 | have the same form. */ | |
1324 | store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num); | |
1325 | break; | |
1326 | ||
1327 | default: | |
1328 | error ("Unexpected type encountered for integer constant."); | |
dd3b648e | 1329 | } |
dd3b648e RP |
1330 | return val; |
1331 | } | |
1332 | ||
1333 | value | |
1334 | value_from_double (type, num) | |
1335 | struct type *type; | |
1336 | double num; | |
1337 | { | |
1338 | register value val = allocate_value (type); | |
1339 | register enum type_code code = TYPE_CODE (type); | |
1340 | register int len = TYPE_LENGTH (type); | |
1341 | ||
1342 | if (code == TYPE_CODE_FLT) | |
1343 | { | |
1344 | if (len == sizeof (float)) | |
1345 | * (float *) VALUE_CONTENTS_RAW (val) = num; | |
1346 | else if (len == sizeof (double)) | |
1347 | * (double *) VALUE_CONTENTS_RAW (val) = num; | |
1348 | else | |
1349 | error ("Floating type encountered with unexpected data length."); | |
1350 | } | |
1351 | else | |
1352 | error ("Unexpected type encountered for floating constant."); | |
1353 | ||
1354 | /* num was in host byte order. So now put the value's contents | |
1355 | into target byte order. */ | |
1356 | SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len); | |
1357 | ||
1358 | return val; | |
1359 | } | |
1360 | \f | |
1361 | /* Deal with the value that is "about to be returned". */ | |
1362 | ||
1363 | /* Return the value that a function returning now | |
1364 | would be returning to its caller, assuming its type is VALTYPE. | |
1365 | RETBUF is where we look for what ought to be the contents | |
1366 | of the registers (in raw form). This is because it is often | |
1367 | desirable to restore old values to those registers | |
1368 | after saving the contents of interest, and then call | |
1369 | this function using the saved values. | |
1370 | struct_return is non-zero when the function in question is | |
1371 | using the structure return conventions on the machine in question; | |
1372 | 0 when it is using the value returning conventions (this often | |
1373 | means returning pointer to where structure is vs. returning value). */ | |
1374 | ||
1375 | value | |
1376 | value_being_returned (valtype, retbuf, struct_return) | |
1377 | register struct type *valtype; | |
1378 | char retbuf[REGISTER_BYTES]; | |
1379 | int struct_return; | |
1380 | /*ARGSUSED*/ | |
1381 | { | |
1382 | register value val; | |
1383 | CORE_ADDR addr; | |
1384 | ||
1385 | #if defined (EXTRACT_STRUCT_VALUE_ADDRESS) | |
1386 | /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */ | |
1387 | if (struct_return) { | |
1388 | addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf); | |
1389 | if (!addr) | |
1390 | error ("Function return value unknown"); | |
1391 | return value_at (valtype, addr); | |
1392 | } | |
1393 | #endif | |
1394 | ||
1395 | val = allocate_value (valtype); | |
1396 | EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val)); | |
1397 | ||
1398 | return val; | |
1399 | } | |
1400 | ||
1401 | /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of | |
1402 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc | |
1403 | and TYPE is the type (which is known to be struct, union or array). | |
1404 | ||
1405 | On most machines, the struct convention is used unless we are | |
1406 | using gcc and the type is of a special size. */ | |
9925b928 JK |
1407 | /* As of about 31 Mar 93, GCC was changed to be compatible with the |
1408 | native compiler. GCC 2.3.3 was the last release that did it the | |
1409 | old way. Since gcc2_compiled was not changed, we have no | |
1410 | way to correctly win in all cases, so we just do the right thing | |
1411 | for gcc1 and for gcc2 after this change. Thus it loses for gcc | |
1412 | 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled | |
1413 | would cause more chaos than dealing with some struct returns being | |
1414 | handled wrong. */ | |
dd3b648e RP |
1415 | #if !defined (USE_STRUCT_CONVENTION) |
1416 | #define USE_STRUCT_CONVENTION(gcc_p, type)\ | |
9925b928 JK |
1417 | (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \ |
1418 | || TYPE_LENGTH (value_type) == 2 \ | |
1419 | || TYPE_LENGTH (value_type) == 4 \ | |
1420 | || TYPE_LENGTH (value_type) == 8 \ | |
1421 | ) \ | |
dd3b648e RP |
1422 | )) |
1423 | #endif | |
1424 | ||
1425 | /* Return true if the function specified is using the structure returning | |
1426 | convention on this machine to return arguments, or 0 if it is using | |
1427 | the value returning convention. FUNCTION is the value representing | |
1428 | the function, FUNCADDR is the address of the function, and VALUE_TYPE | |
1429 | is the type returned by the function. GCC_P is nonzero if compiled | |
1430 | with GCC. */ | |
1431 | ||
1432 | int | |
1433 | using_struct_return (function, funcaddr, value_type, gcc_p) | |
1434 | value function; | |
1435 | CORE_ADDR funcaddr; | |
1436 | struct type *value_type; | |
1437 | int gcc_p; | |
1438 | /*ARGSUSED*/ | |
1439 | { | |
1440 | register enum type_code code = TYPE_CODE (value_type); | |
1441 | ||
1442 | if (code == TYPE_CODE_ERROR) | |
1443 | error ("Function return type unknown."); | |
1444 | ||
1445 | if (code == TYPE_CODE_STRUCT || | |
1446 | code == TYPE_CODE_UNION || | |
1447 | code == TYPE_CODE_ARRAY) | |
1448 | return USE_STRUCT_CONVENTION (gcc_p, value_type); | |
1449 | ||
1450 | return 0; | |
1451 | } | |
1452 | ||
1453 | /* Store VAL so it will be returned if a function returns now. | |
1454 | Does not verify that VAL's type matches what the current | |
1455 | function wants to return. */ | |
1456 | ||
1457 | void | |
1458 | set_return_value (val) | |
1459 | value val; | |
1460 | { | |
1461 | register enum type_code code = TYPE_CODE (VALUE_TYPE (val)); | |
1462 | double dbuf; | |
1463 | LONGEST lbuf; | |
1464 | ||
1465 | if (code == TYPE_CODE_ERROR) | |
1466 | error ("Function return type unknown."); | |
1467 | ||
f1d77e90 JG |
1468 | if ( code == TYPE_CODE_STRUCT |
1469 | || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */ | |
1470 | error ("GDB does not support specifying a struct or union return value."); | |
dd3b648e RP |
1471 | |
1472 | /* FIXME, this is bogus. We don't know what the return conventions | |
1473 | are, or how values should be promoted.... */ | |
1474 | if (code == TYPE_CODE_FLT) | |
1475 | { | |
1476 | dbuf = value_as_double (val); | |
1477 | ||
1478 | STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf); | |
1479 | } | |
1480 | else | |
1481 | { | |
1482 | lbuf = value_as_long (val); | |
1483 | STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf); | |
1484 | } | |
1485 | } | |
1486 | \f | |
1487 | void | |
1488 | _initialize_values () | |
1489 | { | |
f266e564 | 1490 | add_cmd ("convenience", no_class, show_convenience, |
dd3b648e RP |
1491 | "Debugger convenience (\"$foo\") variables.\n\ |
1492 | These variables are created when you assign them values;\n\ | |
1493 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\ | |
1494 | A few convenience variables are given values automatically:\n\ | |
1495 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
f266e564 JK |
1496 | \"$__\" holds the contents of the last address examined with \"x\".", |
1497 | &showlist); | |
dd3b648e | 1498 | |
f266e564 JK |
1499 | add_cmd ("values", no_class, show_values, |
1500 | "Elements of value history around item number IDX (or last ten).", | |
1501 | &showlist); | |
dd3b648e | 1502 | } |