]>
Commit | Line | Data |
---|---|---|
669caa9c | 1 | /* Target-dependent code for the HP PA architecture, for GDB. |
87273c71 | 2 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 |
669caa9c | 3 | Free Software Foundation, Inc. |
66a1aa07 SG |
4 | |
5 | Contributed by the Center for Software Science at the | |
6 | University of Utah ([email protected]). | |
7 | ||
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
6c9638b4 | 22 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
66a1aa07 SG |
23 | |
24 | #include "defs.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "value.h" | |
28 | ||
29 | /* For argument passing to the inferior */ | |
30 | #include "symtab.h" | |
31 | ||
32 | #ifdef USG | |
33 | #include <sys/types.h> | |
34 | #endif | |
35 | ||
36 | #include <sys/param.h> | |
66a1aa07 | 37 | #include <signal.h> |
66a1aa07 SG |
38 | |
39 | #ifdef COFF_ENCAPSULATE | |
40 | #include "a.out.encap.h" | |
41 | #else | |
66a1aa07 SG |
42 | #endif |
43 | #ifndef N_SET_MAGIC | |
44 | #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val)) | |
45 | #endif | |
46 | ||
47 | /*#include <sys/user.h> After a.out.h */ | |
48 | #include <sys/file.h> | |
2b576293 | 49 | #include "gdb_stat.h" |
66a1aa07 SG |
50 | #include "wait.h" |
51 | ||
52 | #include "gdbcore.h" | |
53 | #include "gdbcmd.h" | |
54 | #include "target.h" | |
55 | #include "symfile.h" | |
56 | #include "objfiles.h" | |
57 | ||
669caa9c SS |
58 | static int restore_pc_queue PARAMS ((struct frame_saved_regs *)); |
59 | ||
60 | static int hppa_alignof PARAMS ((struct type *)); | |
61 | ||
62 | CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *)); | |
63 | ||
c598654a | 64 | static int prologue_inst_adjust_sp PARAMS ((unsigned long)); |
669caa9c | 65 | |
c598654a | 66 | static int is_branch PARAMS ((unsigned long)); |
669caa9c | 67 | |
c598654a | 68 | static int inst_saves_gr PARAMS ((unsigned long)); |
669caa9c | 69 | |
c598654a | 70 | static int inst_saves_fr PARAMS ((unsigned long)); |
669caa9c | 71 | |
70e43abe | 72 | static int pc_in_interrupt_handler PARAMS ((CORE_ADDR)); |
669caa9c | 73 | |
70e43abe | 74 | static int pc_in_linker_stub PARAMS ((CORE_ADDR)); |
669caa9c SS |
75 | |
76 | static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *, | |
f81eee9d | 77 | const struct unwind_table_entry *)); |
669caa9c | 78 | |
c5152d42 | 79 | static void read_unwind_info PARAMS ((struct objfile *)); |
669caa9c | 80 | |
c5152d42 JL |
81 | static void internalize_unwinds PARAMS ((struct objfile *, |
82 | struct unwind_table_entry *, | |
83 | asection *, unsigned int, | |
bfaef242 | 84 | unsigned int, CORE_ADDR)); |
e43169eb JL |
85 | static void pa_print_registers PARAMS ((char *, int, int)); |
86 | static void pa_print_fp_reg PARAMS ((int)); | |
66a1aa07 SG |
87 | |
88 | \f | |
89 | /* Routines to extract various sized constants out of hppa | |
90 | instructions. */ | |
91 | ||
92 | /* This assumes that no garbage lies outside of the lower bits of | |
93 | value. */ | |
94 | ||
95 | int | |
96 | sign_extend (val, bits) | |
97 | unsigned val, bits; | |
98 | { | |
99 | return (int)(val >> bits - 1 ? (-1 << bits) | val : val); | |
100 | } | |
101 | ||
102 | /* For many immediate values the sign bit is the low bit! */ | |
103 | ||
104 | int | |
105 | low_sign_extend (val, bits) | |
106 | unsigned val, bits; | |
107 | { | |
108 | return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); | |
109 | } | |
110 | /* extract the immediate field from a ld{bhw}s instruction */ | |
111 | ||
112 | unsigned | |
113 | get_field (val, from, to) | |
114 | unsigned val, from, to; | |
115 | { | |
116 | val = val >> 31 - to; | |
117 | return val & ((1 << 32 - from) - 1); | |
118 | } | |
119 | ||
120 | unsigned | |
121 | set_field (val, from, to, new_val) | |
122 | unsigned *val, from, to; | |
123 | { | |
124 | unsigned mask = ~((1 << (to - from + 1)) << (31 - from)); | |
125 | return *val = *val & mask | (new_val << (31 - from)); | |
126 | } | |
127 | ||
128 | /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */ | |
129 | ||
130 | extract_3 (word) | |
131 | unsigned word; | |
132 | { | |
133 | return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17); | |
134 | } | |
135 | ||
136 | extract_5_load (word) | |
137 | unsigned word; | |
138 | { | |
139 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
140 | } | |
141 | ||
142 | /* extract the immediate field from a st{bhw}s instruction */ | |
143 | ||
144 | int | |
145 | extract_5_store (word) | |
146 | unsigned word; | |
147 | { | |
148 | return low_sign_extend (word & MASK_5, 5); | |
149 | } | |
150 | ||
68c8d698 SG |
151 | /* extract the immediate field from a break instruction */ |
152 | ||
153 | unsigned | |
154 | extract_5r_store (word) | |
155 | unsigned word; | |
156 | { | |
157 | return (word & MASK_5); | |
158 | } | |
159 | ||
160 | /* extract the immediate field from a {sr}sm instruction */ | |
161 | ||
162 | unsigned | |
163 | extract_5R_store (word) | |
164 | unsigned word; | |
165 | { | |
166 | return (word >> 16 & MASK_5); | |
167 | } | |
168 | ||
66a1aa07 SG |
169 | /* extract an 11 bit immediate field */ |
170 | ||
171 | int | |
172 | extract_11 (word) | |
173 | unsigned word; | |
174 | { | |
175 | return low_sign_extend (word & MASK_11, 11); | |
176 | } | |
177 | ||
178 | /* extract a 14 bit immediate field */ | |
179 | ||
180 | int | |
181 | extract_14 (word) | |
182 | unsigned word; | |
183 | { | |
184 | return low_sign_extend (word & MASK_14, 14); | |
185 | } | |
186 | ||
187 | /* deposit a 14 bit constant in a word */ | |
188 | ||
189 | unsigned | |
190 | deposit_14 (opnd, word) | |
191 | int opnd; | |
192 | unsigned word; | |
193 | { | |
194 | unsigned sign = (opnd < 0 ? 1 : 0); | |
195 | ||
196 | return word | ((unsigned)opnd << 1 & MASK_14) | sign; | |
197 | } | |
198 | ||
199 | /* extract a 21 bit constant */ | |
200 | ||
201 | int | |
202 | extract_21 (word) | |
203 | unsigned word; | |
204 | { | |
205 | int val; | |
206 | ||
207 | word &= MASK_21; | |
208 | word <<= 11; | |
209 | val = GET_FIELD (word, 20, 20); | |
210 | val <<= 11; | |
211 | val |= GET_FIELD (word, 9, 19); | |
212 | val <<= 2; | |
213 | val |= GET_FIELD (word, 5, 6); | |
214 | val <<= 5; | |
215 | val |= GET_FIELD (word, 0, 4); | |
216 | val <<= 2; | |
217 | val |= GET_FIELD (word, 7, 8); | |
218 | return sign_extend (val, 21) << 11; | |
219 | } | |
220 | ||
221 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
222 | usually the top 21 bits of a 32 bit constant, we assume that only | |
223 | the low 21 bits of opnd are relevant */ | |
224 | ||
225 | unsigned | |
226 | deposit_21 (opnd, word) | |
227 | unsigned opnd, word; | |
228 | { | |
229 | unsigned val = 0; | |
230 | ||
231 | val |= GET_FIELD (opnd, 11 + 14, 11 + 18); | |
232 | val <<= 2; | |
233 | val |= GET_FIELD (opnd, 11 + 12, 11 + 13); | |
234 | val <<= 2; | |
235 | val |= GET_FIELD (opnd, 11 + 19, 11 + 20); | |
236 | val <<= 11; | |
237 | val |= GET_FIELD (opnd, 11 + 1, 11 + 11); | |
238 | val <<= 1; | |
239 | val |= GET_FIELD (opnd, 11 + 0, 11 + 0); | |
240 | return word | val; | |
241 | } | |
242 | ||
243 | /* extract a 12 bit constant from branch instructions */ | |
244 | ||
245 | int | |
246 | extract_12 (word) | |
247 | unsigned word; | |
248 | { | |
249 | return sign_extend (GET_FIELD (word, 19, 28) | | |
250 | GET_FIELD (word, 29, 29) << 10 | | |
251 | (word & 0x1) << 11, 12) << 2; | |
252 | } | |
253 | ||
7486c68d SG |
254 | /* Deposit a 17 bit constant in an instruction (like bl). */ |
255 | ||
256 | unsigned int | |
257 | deposit_17 (opnd, word) | |
258 | unsigned opnd, word; | |
259 | { | |
260 | word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */ | |
261 | word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */ | |
262 | word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */ | |
263 | word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */ | |
264 | ||
265 | return word; | |
266 | } | |
267 | ||
66a1aa07 SG |
268 | /* extract a 17 bit constant from branch instructions, returning the |
269 | 19 bit signed value. */ | |
270 | ||
271 | int | |
272 | extract_17 (word) | |
273 | unsigned word; | |
274 | { | |
275 | return sign_extend (GET_FIELD (word, 19, 28) | | |
276 | GET_FIELD (word, 29, 29) << 10 | | |
277 | GET_FIELD (word, 11, 15) << 11 | | |
278 | (word & 0x1) << 16, 17) << 2; | |
279 | } | |
280 | \f | |
c5152d42 JL |
281 | |
282 | /* Compare the start address for two unwind entries returning 1 if | |
283 | the first address is larger than the second, -1 if the second is | |
284 | larger than the first, and zero if they are equal. */ | |
285 | ||
286 | static int | |
287 | compare_unwind_entries (a, b) | |
f81eee9d JL |
288 | const struct unwind_table_entry *a; |
289 | const struct unwind_table_entry *b; | |
c5152d42 JL |
290 | { |
291 | if (a->region_start > b->region_start) | |
292 | return 1; | |
293 | else if (a->region_start < b->region_start) | |
294 | return -1; | |
295 | else | |
296 | return 0; | |
297 | } | |
298 | ||
299 | static void | |
bfaef242 | 300 | internalize_unwinds (objfile, table, section, entries, size, text_offset) |
c5152d42 JL |
301 | struct objfile *objfile; |
302 | struct unwind_table_entry *table; | |
303 | asection *section; | |
304 | unsigned int entries, size; | |
bfaef242 | 305 | CORE_ADDR text_offset; |
c5152d42 JL |
306 | { |
307 | /* We will read the unwind entries into temporary memory, then | |
308 | fill in the actual unwind table. */ | |
309 | if (size > 0) | |
310 | { | |
311 | unsigned long tmp; | |
312 | unsigned i; | |
313 | char *buf = alloca (size); | |
314 | ||
315 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); | |
316 | ||
317 | /* Now internalize the information being careful to handle host/target | |
318 | endian issues. */ | |
319 | for (i = 0; i < entries; i++) | |
320 | { | |
321 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
322 | (bfd_byte *)buf); | |
bfaef242 | 323 | table[i].region_start += text_offset; |
c5152d42 JL |
324 | buf += 4; |
325 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
bfaef242 | 326 | table[i].region_end += text_offset; |
c5152d42 JL |
327 | buf += 4; |
328 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
329 | buf += 4; | |
e43169eb | 330 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; |
c5152d42 JL |
331 | table[i].Millicode = (tmp >> 30) & 0x1; |
332 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
333 | table[i].Region_description = (tmp >> 27) & 0x3; | |
334 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
335 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
336 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
337 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
338 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
339 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
340 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
341 | table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1; | |
342 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
343 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
344 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
345 | table[i].reserved2 = (tmp >> 5) & 0xf; | |
346 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
347 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
348 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
349 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
350 | table[i].Cleanup_defined = tmp & 0x1; | |
351 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
352 | buf += 4; | |
353 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
354 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
355 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
356 | table[i].reserved4 = (tmp >> 27) & 0x3; | |
357 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
358 | } | |
359 | } | |
360 | } | |
361 | ||
362 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
363 | the object file. This info is used mainly by find_unwind_entry() to find | |
364 | out the stack frame size and frame pointer used by procedures. We put | |
365 | everything on the psymbol obstack in the objfile so that it automatically | |
366 | gets freed when the objfile is destroyed. */ | |
367 | ||
9c842e0c | 368 | static void |
c5152d42 JL |
369 | read_unwind_info (objfile) |
370 | struct objfile *objfile; | |
371 | { | |
372 | asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec; | |
373 | unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size; | |
374 | unsigned index, unwind_entries, elf_unwind_entries; | |
375 | unsigned stub_entries, total_entries; | |
bfaef242 | 376 | CORE_ADDR text_offset; |
c5152d42 JL |
377 | struct obj_unwind_info *ui; |
378 | ||
bfaef242 | 379 | text_offset = ANOFFSET (objfile->section_offsets, 0); |
d8afcce9 SG |
380 | ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack, |
381 | sizeof (struct obj_unwind_info)); | |
c5152d42 JL |
382 | |
383 | ui->table = NULL; | |
384 | ui->cache = NULL; | |
385 | ui->last = -1; | |
386 | ||
387 | /* Get hooks to all unwind sections. Note there is no linker-stub unwind | |
388 | section in ELF at the moment. */ | |
389 | unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$"); | |
0fc27289 | 390 | elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind"); |
c5152d42 JL |
391 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); |
392 | ||
393 | /* Get sizes and unwind counts for all sections. */ | |
394 | if (unwind_sec) | |
395 | { | |
396 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
397 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
398 | } | |
399 | else | |
400 | { | |
401 | unwind_size = 0; | |
402 | unwind_entries = 0; | |
403 | } | |
404 | ||
405 | if (elf_unwind_sec) | |
406 | { | |
407 | elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec); | |
408 | elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE; | |
409 | } | |
f55179cb JL |
410 | else |
411 | { | |
412 | elf_unwind_size = 0; | |
413 | elf_unwind_entries = 0; | |
414 | } | |
c5152d42 JL |
415 | |
416 | if (stub_unwind_sec) | |
417 | { | |
418 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
419 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
420 | } | |
421 | else | |
422 | { | |
423 | stub_unwind_size = 0; | |
424 | stub_entries = 0; | |
425 | } | |
426 | ||
427 | /* Compute total number of unwind entries and their total size. */ | |
428 | total_entries = unwind_entries + elf_unwind_entries + stub_entries; | |
429 | total_size = total_entries * sizeof (struct unwind_table_entry); | |
430 | ||
431 | /* Allocate memory for the unwind table. */ | |
432 | ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size); | |
433 | ui->last = total_entries - 1; | |
434 | ||
435 | /* Internalize the standard unwind entries. */ | |
436 | index = 0; | |
437 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
bfaef242 | 438 | unwind_entries, unwind_size, text_offset); |
c5152d42 JL |
439 | index += unwind_entries; |
440 | internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec, | |
bfaef242 | 441 | elf_unwind_entries, elf_unwind_size, text_offset); |
c5152d42 JL |
442 | index += elf_unwind_entries; |
443 | ||
444 | /* Now internalize the stub unwind entries. */ | |
445 | if (stub_unwind_size > 0) | |
446 | { | |
447 | unsigned int i; | |
448 | char *buf = alloca (stub_unwind_size); | |
449 | ||
450 | /* Read in the stub unwind entries. */ | |
451 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
452 | 0, stub_unwind_size); | |
453 | ||
454 | /* Now convert them into regular unwind entries. */ | |
455 | for (i = 0; i < stub_entries; i++, index++) | |
456 | { | |
457 | /* Clear out the next unwind entry. */ | |
458 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
459 | ||
460 | /* Convert offset & size into region_start and region_end. | |
461 | Stuff away the stub type into "reserved" fields. */ | |
462 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
463 | (bfd_byte *) buf); | |
73a25072 | 464 | ui->table[index].region_start += text_offset; |
c5152d42 JL |
465 | buf += 4; |
466 | ui->table[index].stub_type = bfd_get_8 (objfile->obfd, | |
467 | (bfd_byte *) buf); | |
468 | buf += 2; | |
469 | ui->table[index].region_end | |
470 | = ui->table[index].region_start + 4 * | |
471 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
472 | buf += 2; | |
473 | } | |
474 | ||
475 | } | |
476 | ||
477 | /* Unwind table needs to be kept sorted. */ | |
478 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
479 | compare_unwind_entries); | |
480 | ||
481 | /* Keep a pointer to the unwind information. */ | |
482 | objfile->obj_private = (PTR) ui; | |
483 | } | |
484 | ||
66a1aa07 SG |
485 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all |
486 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
487 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
488 | search of the unwind tables, we depend upon them to be sorted. */ | |
489 | ||
87273c71 | 490 | struct unwind_table_entry * |
66a1aa07 SG |
491 | find_unwind_entry(pc) |
492 | CORE_ADDR pc; | |
493 | { | |
494 | int first, middle, last; | |
495 | struct objfile *objfile; | |
496 | ||
497 | ALL_OBJFILES (objfile) | |
498 | { | |
499 | struct obj_unwind_info *ui; | |
500 | ||
501 | ui = OBJ_UNWIND_INFO (objfile); | |
502 | ||
503 | if (!ui) | |
c5152d42 JL |
504 | { |
505 | read_unwind_info (objfile); | |
506 | ui = OBJ_UNWIND_INFO (objfile); | |
507 | } | |
66a1aa07 SG |
508 | |
509 | /* First, check the cache */ | |
510 | ||
511 | if (ui->cache | |
512 | && pc >= ui->cache->region_start | |
513 | && pc <= ui->cache->region_end) | |
514 | return ui->cache; | |
515 | ||
516 | /* Not in the cache, do a binary search */ | |
517 | ||
518 | first = 0; | |
519 | last = ui->last; | |
520 | ||
521 | while (first <= last) | |
522 | { | |
523 | middle = (first + last) / 2; | |
524 | if (pc >= ui->table[middle].region_start | |
525 | && pc <= ui->table[middle].region_end) | |
526 | { | |
527 | ui->cache = &ui->table[middle]; | |
528 | return &ui->table[middle]; | |
529 | } | |
530 | ||
531 | if (pc < ui->table[middle].region_start) | |
532 | last = middle - 1; | |
533 | else | |
534 | first = middle + 1; | |
535 | } | |
536 | } /* ALL_OBJFILES() */ | |
537 | return NULL; | |
538 | } | |
539 | ||
98c0e047 JL |
540 | /* Return the adjustment necessary to make for addresses on the stack |
541 | as presented by hpread.c. | |
542 | ||
543 | This is necessary because of the stack direction on the PA and the | |
544 | bizarre way in which someone (?) decided they wanted to handle | |
545 | frame pointerless code in GDB. */ | |
546 | int | |
547 | hpread_adjust_stack_address (func_addr) | |
548 | CORE_ADDR func_addr; | |
549 | { | |
550 | struct unwind_table_entry *u; | |
551 | ||
552 | u = find_unwind_entry (func_addr); | |
553 | if (!u) | |
554 | return 0; | |
555 | else | |
556 | return u->Total_frame_size << 3; | |
557 | } | |
98c0e047 | 558 | |
70e43abe JL |
559 | /* Called to determine if PC is in an interrupt handler of some |
560 | kind. */ | |
561 | ||
562 | static int | |
563 | pc_in_interrupt_handler (pc) | |
564 | CORE_ADDR pc; | |
565 | { | |
566 | struct unwind_table_entry *u; | |
567 | struct minimal_symbol *msym_us; | |
568 | ||
569 | u = find_unwind_entry (pc); | |
570 | if (!u) | |
571 | return 0; | |
572 | ||
573 | /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though | |
574 | its frame isn't a pure interrupt frame. Deal with this. */ | |
575 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
576 | ||
577 | return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)); | |
578 | } | |
579 | ||
5ac7f56e JK |
580 | /* Called when no unwind descriptor was found for PC. Returns 1 if it |
581 | appears that PC is in a linker stub. */ | |
5ac7f56e JK |
582 | |
583 | static int | |
584 | pc_in_linker_stub (pc) | |
585 | CORE_ADDR pc; | |
586 | { | |
5ac7f56e JK |
587 | int found_magic_instruction = 0; |
588 | int i; | |
08ecd8f3 JK |
589 | char buf[4]; |
590 | ||
591 | /* If unable to read memory, assume pc is not in a linker stub. */ | |
592 | if (target_read_memory (pc, buf, 4) != 0) | |
593 | return 0; | |
5ac7f56e | 594 | |
d08c6f4c JK |
595 | /* We are looking for something like |
596 | ||
597 | ; $$dyncall jams RP into this special spot in the frame (RP') | |
598 | ; before calling the "call stub" | |
599 | ldw -18(sp),rp | |
600 | ||
601 | ldsid (rp),r1 ; Get space associated with RP into r1 | |
602 | mtsp r1,sp ; Move it into space register 0 | |
603 | be,n 0(sr0),rp) ; back to your regularly scheduled program | |
604 | */ | |
605 | ||
5ac7f56e JK |
606 | /* Maximum known linker stub size is 4 instructions. Search forward |
607 | from the given PC, then backward. */ | |
608 | for (i = 0; i < 4; i++) | |
609 | { | |
6e35b037 | 610 | /* If we hit something with an unwind, stop searching this direction. */ |
5ac7f56e JK |
611 | |
612 | if (find_unwind_entry (pc + i * 4) != 0) | |
613 | break; | |
614 | ||
615 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
616 | return from a cross-space function call. */ | |
617 | if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) | |
618 | { | |
619 | found_magic_instruction = 1; | |
620 | break; | |
621 | } | |
622 | /* Add code to handle long call/branch and argument relocation stubs | |
623 | here. */ | |
624 | } | |
625 | ||
626 | if (found_magic_instruction != 0) | |
627 | return 1; | |
628 | ||
629 | /* Now look backward. */ | |
630 | for (i = 0; i < 4; i++) | |
631 | { | |
6e35b037 | 632 | /* If we hit something with an unwind, stop searching this direction. */ |
5ac7f56e JK |
633 | |
634 | if (find_unwind_entry (pc - i * 4) != 0) | |
635 | break; | |
636 | ||
637 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
638 | return from a cross-space function call. */ | |
639 | if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) | |
640 | { | |
641 | found_magic_instruction = 1; | |
642 | break; | |
643 | } | |
644 | /* Add code to handle long call/branch and argument relocation stubs | |
645 | here. */ | |
646 | } | |
647 | return found_magic_instruction; | |
648 | } | |
649 | ||
66a1aa07 SG |
650 | static int |
651 | find_return_regnum(pc) | |
652 | CORE_ADDR pc; | |
653 | { | |
654 | struct unwind_table_entry *u; | |
655 | ||
656 | u = find_unwind_entry (pc); | |
657 | ||
658 | if (!u) | |
659 | return RP_REGNUM; | |
660 | ||
661 | if (u->Millicode) | |
662 | return 31; | |
663 | ||
664 | return RP_REGNUM; | |
665 | } | |
666 | ||
5ac7f56e | 667 | /* Return size of frame, or -1 if we should use a frame pointer. */ |
66a1aa07 | 668 | int |
70e43abe | 669 | find_proc_framesize (pc) |
66a1aa07 SG |
670 | CORE_ADDR pc; |
671 | { | |
672 | struct unwind_table_entry *u; | |
70e43abe | 673 | struct minimal_symbol *msym_us; |
66a1aa07 | 674 | |
66a1aa07 SG |
675 | u = find_unwind_entry (pc); |
676 | ||
677 | if (!u) | |
5ac7f56e JK |
678 | { |
679 | if (pc_in_linker_stub (pc)) | |
680 | /* Linker stubs have a zero size frame. */ | |
681 | return 0; | |
682 | else | |
683 | return -1; | |
684 | } | |
66a1aa07 | 685 | |
70e43abe JL |
686 | msym_us = lookup_minimal_symbol_by_pc (pc); |
687 | ||
688 | /* If Save_SP is set, and we're not in an interrupt or signal caller, | |
689 | then we have a frame pointer. Use it. */ | |
690 | if (u->Save_SP && !pc_in_interrupt_handler (pc) | |
691 | && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us))) | |
eabbe766 JK |
692 | return -1; |
693 | ||
66a1aa07 SG |
694 | return u->Total_frame_size << 3; |
695 | } | |
696 | ||
5ac7f56e JK |
697 | /* Return offset from sp at which rp is saved, or 0 if not saved. */ |
698 | static int rp_saved PARAMS ((CORE_ADDR)); | |
699 | ||
700 | static int | |
701 | rp_saved (pc) | |
702 | CORE_ADDR pc; | |
66a1aa07 SG |
703 | { |
704 | struct unwind_table_entry *u; | |
705 | ||
706 | u = find_unwind_entry (pc); | |
707 | ||
708 | if (!u) | |
5ac7f56e JK |
709 | { |
710 | if (pc_in_linker_stub (pc)) | |
711 | /* This is the so-called RP'. */ | |
712 | return -24; | |
713 | else | |
714 | return 0; | |
715 | } | |
66a1aa07 SG |
716 | |
717 | if (u->Save_RP) | |
5ac7f56e | 718 | return -20; |
c7f3b703 JL |
719 | else if (u->stub_type != 0) |
720 | { | |
721 | switch (u->stub_type) | |
722 | { | |
723 | case EXPORT: | |
c2e00af6 | 724 | case IMPORT: |
c7f3b703 JL |
725 | return -24; |
726 | case PARAMETER_RELOCATION: | |
727 | return -8; | |
728 | default: | |
729 | return 0; | |
730 | } | |
731 | } | |
66a1aa07 SG |
732 | else |
733 | return 0; | |
734 | } | |
735 | \f | |
8fa74880 SG |
736 | int |
737 | frameless_function_invocation (frame) | |
669caa9c | 738 | struct frame_info *frame; |
8fa74880 | 739 | { |
b8ec9a79 | 740 | struct unwind_table_entry *u; |
8fa74880 | 741 | |
b8ec9a79 | 742 | u = find_unwind_entry (frame->pc); |
8fa74880 | 743 | |
b8ec9a79 | 744 | if (u == 0) |
7f43b9b7 | 745 | return 0; |
b8ec9a79 | 746 | |
c7f3b703 | 747 | return (u->Total_frame_size == 0 && u->stub_type == 0); |
8fa74880 SG |
748 | } |
749 | ||
66a1aa07 SG |
750 | CORE_ADDR |
751 | saved_pc_after_call (frame) | |
669caa9c | 752 | struct frame_info *frame; |
66a1aa07 SG |
753 | { |
754 | int ret_regnum; | |
edd86fb0 JL |
755 | CORE_ADDR pc; |
756 | struct unwind_table_entry *u; | |
66a1aa07 SG |
757 | |
758 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
edd86fb0 JL |
759 | pc = read_register (ret_regnum) & ~0x3; |
760 | ||
761 | /* If PC is in a linker stub, then we need to dig the address | |
762 | the stub will return to out of the stack. */ | |
763 | u = find_unwind_entry (pc); | |
764 | if (u && u->stub_type != 0) | |
765 | return frame_saved_pc (frame); | |
766 | else | |
767 | return pc; | |
66a1aa07 SG |
768 | } |
769 | \f | |
770 | CORE_ADDR | |
771 | frame_saved_pc (frame) | |
669caa9c | 772 | struct frame_info *frame; |
66a1aa07 SG |
773 | { |
774 | CORE_ADDR pc = get_frame_pc (frame); | |
7f43b9b7 | 775 | struct unwind_table_entry *u; |
66a1aa07 | 776 | |
70e43abe JL |
777 | /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner |
778 | at the base of the frame in an interrupt handler. Registers within | |
779 | are saved in the exact same order as GDB numbers registers. How | |
780 | convienent. */ | |
781 | if (pc_in_interrupt_handler (pc)) | |
782 | return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3; | |
783 | ||
7486c68d | 784 | #ifdef FRAME_SAVED_PC_IN_SIGTRAMP |
70e43abe JL |
785 | /* Deal with signal handler caller frames too. */ |
786 | if (frame->signal_handler_caller) | |
787 | { | |
788 | CORE_ADDR rp; | |
789 | FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); | |
54b2555b | 790 | return rp & ~0x3; |
70e43abe | 791 | } |
7486c68d | 792 | #endif |
70e43abe | 793 | |
8fa74880 | 794 | if (frameless_function_invocation (frame)) |
66a1aa07 SG |
795 | { |
796 | int ret_regnum; | |
797 | ||
798 | ret_regnum = find_return_regnum (pc); | |
799 | ||
70e43abe JL |
800 | /* If the next frame is an interrupt frame or a signal |
801 | handler caller, then we need to look in the saved | |
802 | register area to get the return pointer (the values | |
803 | in the registers may not correspond to anything useful). */ | |
804 | if (frame->next | |
805 | && (frame->next->signal_handler_caller | |
806 | || pc_in_interrupt_handler (frame->next->pc))) | |
807 | { | |
70e43abe JL |
808 | struct frame_saved_regs saved_regs; |
809 | ||
54b2555b | 810 | get_frame_saved_regs (frame->next, &saved_regs); |
471fb8d8 | 811 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) |
54b2555b JL |
812 | { |
813 | pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; | |
814 | ||
815 | /* Syscalls are really two frames. The syscall stub itself | |
816 | with a return pointer in %rp and the kernel call with | |
817 | a return pointer in %r31. We return the %rp variant | |
818 | if %r31 is the same as frame->pc. */ | |
819 | if (pc == frame->pc) | |
820 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; | |
821 | } | |
70e43abe | 822 | else |
7f43b9b7 | 823 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; |
70e43abe JL |
824 | } |
825 | else | |
7f43b9b7 | 826 | pc = read_register (ret_regnum) & ~0x3; |
66a1aa07 | 827 | } |
66a1aa07 | 828 | else |
5ac7f56e | 829 | { |
edd86fb0 | 830 | int rp_offset; |
5ac7f56e | 831 | |
edd86fb0 JL |
832 | restart: |
833 | rp_offset = rp_saved (pc); | |
70e43abe JL |
834 | /* Similar to code in frameless function case. If the next |
835 | frame is a signal or interrupt handler, then dig the right | |
836 | information out of the saved register info. */ | |
837 | if (rp_offset == 0 | |
838 | && frame->next | |
839 | && (frame->next->signal_handler_caller | |
840 | || pc_in_interrupt_handler (frame->next->pc))) | |
841 | { | |
70e43abe JL |
842 | struct frame_saved_regs saved_regs; |
843 | ||
669caa9c | 844 | get_frame_saved_regs (frame->next, &saved_regs); |
471fb8d8 | 845 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) |
54b2555b JL |
846 | { |
847 | pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; | |
848 | ||
849 | /* Syscalls are really two frames. The syscall stub itself | |
850 | with a return pointer in %rp and the kernel call with | |
851 | a return pointer in %r31. We return the %rp variant | |
852 | if %r31 is the same as frame->pc. */ | |
853 | if (pc == frame->pc) | |
854 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; | |
855 | } | |
70e43abe | 856 | else |
7f43b9b7 | 857 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; |
70e43abe JL |
858 | } |
859 | else if (rp_offset == 0) | |
7f43b9b7 | 860 | pc = read_register (RP_REGNUM) & ~0x3; |
5ac7f56e | 861 | else |
7f43b9b7 | 862 | pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3; |
5ac7f56e | 863 | } |
7f43b9b7 JL |
864 | |
865 | /* If PC is inside a linker stub, then dig out the address the stub | |
f4eec25c JL |
866 | will return to. |
867 | ||
868 | Don't do this for long branch stubs. Why? For some unknown reason | |
869 | _start is marked as a long branch stub in hpux10. */ | |
7f43b9b7 | 870 | u = find_unwind_entry (pc); |
f4eec25c JL |
871 | if (u && u->stub_type != 0 |
872 | && u->stub_type != LONG_BRANCH) | |
c38e0b58 JL |
873 | { |
874 | unsigned int insn; | |
875 | ||
876 | /* If this is a dynamic executable, and we're in a signal handler, | |
877 | then the call chain will eventually point us into the stub for | |
878 | _sigreturn. Unlike most cases, we'll be pointed to the branch | |
879 | to the real sigreturn rather than the code after the real branch!. | |
880 | ||
881 | Else, try to dig the address the stub will return to in the normal | |
882 | fashion. */ | |
883 | insn = read_memory_integer (pc, 4); | |
884 | if ((insn & 0xfc00e000) == 0xe8000000) | |
885 | return (pc + extract_17 (insn) + 8) & ~0x3; | |
886 | else | |
887 | goto restart; | |
888 | } | |
7f43b9b7 JL |
889 | |
890 | return pc; | |
66a1aa07 SG |
891 | } |
892 | \f | |
893 | /* We need to correct the PC and the FP for the outermost frame when we are | |
894 | in a system call. */ | |
895 | ||
896 | void | |
897 | init_extra_frame_info (fromleaf, frame) | |
898 | int fromleaf; | |
899 | struct frame_info *frame; | |
900 | { | |
901 | int flags; | |
902 | int framesize; | |
903 | ||
192c3eeb | 904 | if (frame->next && !fromleaf) |
66a1aa07 SG |
905 | return; |
906 | ||
192c3eeb JL |
907 | /* If the next frame represents a frameless function invocation |
908 | then we have to do some adjustments that are normally done by | |
909 | FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */ | |
910 | if (fromleaf) | |
911 | { | |
912 | /* Find the framesize of *this* frame without peeking at the PC | |
913 | in the current frame structure (it isn't set yet). */ | |
914 | framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame))); | |
915 | ||
916 | /* Now adjust our base frame accordingly. If we have a frame pointer | |
917 | use it, else subtract the size of this frame from the current | |
918 | frame. (we always want frame->frame to point at the lowest address | |
919 | in the frame). */ | |
920 | if (framesize == -1) | |
921 | frame->frame = read_register (FP_REGNUM); | |
922 | else | |
923 | frame->frame -= framesize; | |
924 | return; | |
925 | } | |
926 | ||
66a1aa07 SG |
927 | flags = read_register (FLAGS_REGNUM); |
928 | if (flags & 2) /* In system call? */ | |
929 | frame->pc = read_register (31) & ~0x3; | |
930 | ||
192c3eeb JL |
931 | /* The outermost frame is always derived from PC-framesize |
932 | ||
933 | One might think frameless innermost frames should have | |
934 | a frame->frame that is the same as the parent's frame->frame. | |
935 | That is wrong; frame->frame in that case should be the *high* | |
936 | address of the parent's frame. It's complicated as hell to | |
937 | explain, but the parent *always* creates some stack space for | |
938 | the child. So the child actually does have a frame of some | |
939 | sorts, and its base is the high address in its parent's frame. */ | |
66a1aa07 SG |
940 | framesize = find_proc_framesize(frame->pc); |
941 | if (framesize == -1) | |
942 | frame->frame = read_register (FP_REGNUM); | |
943 | else | |
944 | frame->frame = read_register (SP_REGNUM) - framesize; | |
66a1aa07 SG |
945 | } |
946 | \f | |
8966221d JK |
947 | /* Given a GDB frame, determine the address of the calling function's frame. |
948 | This will be used to create a new GDB frame struct, and then | |
949 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
950 | ||
951 | This may involve searching through prologues for several functions | |
952 | at boundaries where GCC calls HP C code, or where code which has | |
953 | a frame pointer calls code without a frame pointer. */ | |
8966221d | 954 | |
669caa9c | 955 | CORE_ADDR |
66a1aa07 SG |
956 | frame_chain (frame) |
957 | struct frame_info *frame; | |
958 | { | |
8966221d JK |
959 | int my_framesize, caller_framesize; |
960 | struct unwind_table_entry *u; | |
70e43abe | 961 | CORE_ADDR frame_base; |
b7202faa | 962 | struct frame_info *tmp_frame; |
70e43abe JL |
963 | |
964 | /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These | |
965 | are easy; at *sp we have a full save state strucutre which we can | |
966 | pull the old stack pointer from. Also see frame_saved_pc for | |
967 | code to dig a saved PC out of the save state structure. */ | |
968 | if (pc_in_interrupt_handler (frame->pc)) | |
969 | frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4); | |
7486c68d | 970 | #ifdef FRAME_BASE_BEFORE_SIGTRAMP |
70e43abe JL |
971 | else if (frame->signal_handler_caller) |
972 | { | |
973 | FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); | |
974 | } | |
7486c68d | 975 | #endif |
70e43abe JL |
976 | else |
977 | frame_base = frame->frame; | |
66a1aa07 | 978 | |
8966221d JK |
979 | /* Get frame sizes for the current frame and the frame of the |
980 | caller. */ | |
981 | my_framesize = find_proc_framesize (frame->pc); | |
982 | caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame)); | |
66a1aa07 | 983 | |
8966221d JK |
984 | /* If caller does not have a frame pointer, then its frame |
985 | can be found at current_frame - caller_framesize. */ | |
986 | if (caller_framesize != -1) | |
70e43abe | 987 | return frame_base - caller_framesize; |
8966221d JK |
988 | |
989 | /* Both caller and callee have frame pointers and are GCC compiled | |
990 | (SAVE_SP bit in unwind descriptor is on for both functions. | |
991 | The previous frame pointer is found at the top of the current frame. */ | |
992 | if (caller_framesize == -1 && my_framesize == -1) | |
70e43abe | 993 | return read_memory_integer (frame_base, 4); |
8966221d JK |
994 | |
995 | /* Caller has a frame pointer, but callee does not. This is a little | |
996 | more difficult as GCC and HP C lay out locals and callee register save | |
997 | areas very differently. | |
998 | ||
999 | The previous frame pointer could be in a register, or in one of | |
1000 | several areas on the stack. | |
1001 | ||
1002 | Walk from the current frame to the innermost frame examining | |
2f8c3639 | 1003 | unwind descriptors to determine if %r3 ever gets saved into the |
8966221d | 1004 | stack. If so return whatever value got saved into the stack. |
2f8c3639 | 1005 | If it was never saved in the stack, then the value in %r3 is still |
8966221d JK |
1006 | valid, so use it. |
1007 | ||
2f8c3639 | 1008 | We use information from unwind descriptors to determine if %r3 |
8966221d JK |
1009 | is saved into the stack (Entry_GR field has this information). */ |
1010 | ||
b7202faa JL |
1011 | tmp_frame = frame; |
1012 | while (tmp_frame) | |
8966221d | 1013 | { |
b7202faa | 1014 | u = find_unwind_entry (tmp_frame->pc); |
8966221d JK |
1015 | |
1016 | if (!u) | |
1017 | { | |
01a03545 JK |
1018 | /* We could find this information by examining prologues. I don't |
1019 | think anyone has actually written any tools (not even "strip") | |
1020 | which leave them out of an executable, so maybe this is a moot | |
1021 | point. */ | |
b7202faa | 1022 | warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc); |
8966221d JK |
1023 | return 0; |
1024 | } | |
1025 | ||
1026 | /* Entry_GR specifies the number of callee-saved general registers | |
2f8c3639 | 1027 | saved in the stack. It starts at %r3, so %r3 would be 1. */ |
70e43abe | 1028 | if (u->Entry_GR >= 1 || u->Save_SP |
b7202faa JL |
1029 | || tmp_frame->signal_handler_caller |
1030 | || pc_in_interrupt_handler (tmp_frame->pc)) | |
8966221d JK |
1031 | break; |
1032 | else | |
b7202faa | 1033 | tmp_frame = tmp_frame->next; |
8966221d JK |
1034 | } |
1035 | ||
b7202faa | 1036 | if (tmp_frame) |
8966221d JK |
1037 | { |
1038 | /* We may have walked down the chain into a function with a frame | |
1039 | pointer. */ | |
70e43abe | 1040 | if (u->Save_SP |
b7202faa JL |
1041 | && !tmp_frame->signal_handler_caller |
1042 | && !pc_in_interrupt_handler (tmp_frame->pc)) | |
1043 | return read_memory_integer (tmp_frame->frame, 4); | |
2f8c3639 | 1044 | /* %r3 was saved somewhere in the stack. Dig it out. */ |
8966221d | 1045 | else |
c598654a | 1046 | { |
c598654a JL |
1047 | struct frame_saved_regs saved_regs; |
1048 | ||
b7202faa JL |
1049 | /* Sick. |
1050 | ||
1051 | For optimization purposes many kernels don't have the | |
1052 | callee saved registers into the save_state structure upon | |
1053 | entry into the kernel for a syscall; the optimization | |
1054 | is usually turned off if the process is being traced so | |
1055 | that the debugger can get full register state for the | |
1056 | process. | |
1057 | ||
1058 | This scheme works well except for two cases: | |
1059 | ||
1060 | * Attaching to a process when the process is in the | |
1061 | kernel performing a system call (debugger can't get | |
1062 | full register state for the inferior process since | |
1063 | the process wasn't being traced when it entered the | |
1064 | system call). | |
1065 | ||
1066 | * Register state is not complete if the system call | |
1067 | causes the process to core dump. | |
1068 | ||
1069 | ||
1070 | The following heinous code is an attempt to deal with | |
1071 | the lack of register state in a core dump. It will | |
1072 | fail miserably if the function which performs the | |
1073 | system call has a variable sized stack frame. */ | |
1074 | ||
1075 | get_frame_saved_regs (tmp_frame, &saved_regs); | |
1076 | ||
1077 | /* Abominable hack. */ | |
1078 | if (current_target.to_has_execution == 0 | |
5812b9a1 JL |
1079 | && ((saved_regs.regs[FLAGS_REGNUM] |
1080 | && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) | |
1081 | & 0x2)) | |
1082 | || (saved_regs.regs[FLAGS_REGNUM] == 0 | |
1083 | && read_register (FLAGS_REGNUM) & 0x2))) | |
b7202faa JL |
1084 | { |
1085 | u = find_unwind_entry (FRAME_SAVED_PC (frame)); | |
1086 | if (!u) | |
1087 | return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); | |
1088 | else | |
1089 | return frame_base - (u->Total_frame_size << 3); | |
1090 | } | |
1091 | ||
c598654a JL |
1092 | return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); |
1093 | } | |
8966221d JK |
1094 | } |
1095 | else | |
1096 | { | |
5812b9a1 JL |
1097 | struct frame_saved_regs saved_regs; |
1098 | ||
1099 | /* Get the innermost frame. */ | |
1100 | tmp_frame = frame; | |
1101 | while (tmp_frame->next != NULL) | |
1102 | tmp_frame = tmp_frame->next; | |
1103 | ||
1104 | get_frame_saved_regs (tmp_frame, &saved_regs); | |
1105 | /* Abominable hack. See above. */ | |
1106 | if (current_target.to_has_execution == 0 | |
1107 | && ((saved_regs.regs[FLAGS_REGNUM] | |
1108 | && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) | |
1109 | & 0x2)) | |
1110 | || (saved_regs.regs[FLAGS_REGNUM] == 0 | |
1111 | && read_register (FLAGS_REGNUM) & 0x2))) | |
1112 | { | |
1113 | u = find_unwind_entry (FRAME_SAVED_PC (frame)); | |
1114 | if (!u) | |
1115 | return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); | |
1116 | else | |
1117 | return frame_base - (u->Total_frame_size << 3); | |
1118 | } | |
1119 | ||
2f8c3639 | 1120 | /* The value in %r3 was never saved into the stack (thus %r3 still |
8966221d | 1121 | holds the value of the previous frame pointer). */ |
2f8c3639 | 1122 | return read_register (FP_REGNUM); |
8966221d JK |
1123 | } |
1124 | } | |
66a1aa07 | 1125 | |
66a1aa07 SG |
1126 | \f |
1127 | /* To see if a frame chain is valid, see if the caller looks like it | |
1128 | was compiled with gcc. */ | |
1129 | ||
1130 | int | |
1131 | frame_chain_valid (chain, thisframe) | |
669caa9c SS |
1132 | CORE_ADDR chain; |
1133 | struct frame_info *thisframe; | |
66a1aa07 | 1134 | { |
247145e6 JK |
1135 | struct minimal_symbol *msym_us; |
1136 | struct minimal_symbol *msym_start; | |
70e43abe | 1137 | struct unwind_table_entry *u, *next_u = NULL; |
669caa9c | 1138 | struct frame_info *next; |
66a1aa07 SG |
1139 | |
1140 | if (!chain) | |
1141 | return 0; | |
1142 | ||
b8ec9a79 | 1143 | u = find_unwind_entry (thisframe->pc); |
4b01383b | 1144 | |
70e43abe JL |
1145 | if (u == NULL) |
1146 | return 1; | |
1147 | ||
247145e6 JK |
1148 | /* We can't just check that the same of msym_us is "_start", because |
1149 | someone idiotically decided that they were going to make a Ltext_end | |
1150 | symbol with the same address. This Ltext_end symbol is totally | |
1151 | indistinguishable (as nearly as I can tell) from the symbol for a function | |
1152 | which is (legitimately, since it is in the user's namespace) | |
1153 | named Ltext_end, so we can't just ignore it. */ | |
1154 | msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe)); | |
2d336b1b | 1155 | msym_start = lookup_minimal_symbol ("_start", NULL, NULL); |
247145e6 JK |
1156 | if (msym_us |
1157 | && msym_start | |
1158 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
b8ec9a79 | 1159 | return 0; |
5ac7f56e | 1160 | |
c85ff3a3 JL |
1161 | /* Grrrr. Some new idiot decided that they don't want _start for the |
1162 | PRO configurations; $START$ calls main directly.... Deal with it. */ | |
1163 | msym_start = lookup_minimal_symbol ("$START$", NULL, NULL); | |
1164 | if (msym_us | |
1165 | && msym_start | |
1166 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1167 | return 0; | |
1168 | ||
70e43abe JL |
1169 | next = get_next_frame (thisframe); |
1170 | if (next) | |
1171 | next_u = find_unwind_entry (next->pc); | |
5ac7f56e | 1172 | |
70e43abe JL |
1173 | /* If this frame does not save SP, has no stack, isn't a stub, |
1174 | and doesn't "call" an interrupt routine or signal handler caller, | |
1175 | then its not valid. */ | |
1176 | if (u->Save_SP || u->Total_frame_size || u->stub_type != 0 | |
1177 | || (thisframe->next && thisframe->next->signal_handler_caller) | |
1178 | || (next_u && next_u->HP_UX_interrupt_marker)) | |
b8ec9a79 | 1179 | return 1; |
5ac7f56e | 1180 | |
b8ec9a79 JK |
1181 | if (pc_in_linker_stub (thisframe->pc)) |
1182 | return 1; | |
4b01383b | 1183 | |
b8ec9a79 | 1184 | return 0; |
66a1aa07 SG |
1185 | } |
1186 | ||
66a1aa07 SG |
1187 | /* |
1188 | * These functions deal with saving and restoring register state | |
1189 | * around a function call in the inferior. They keep the stack | |
1190 | * double-word aligned; eventually, on an hp700, the stack will have | |
1191 | * to be aligned to a 64-byte boundary. | |
1192 | */ | |
1193 | ||
e43169eb JL |
1194 | void |
1195 | push_dummy_frame (inf_status) | |
1196 | struct inferior_status *inf_status; | |
66a1aa07 | 1197 | { |
e43169eb | 1198 | CORE_ADDR sp, pc, pcspace; |
66a1aa07 SG |
1199 | register int regnum; |
1200 | int int_buffer; | |
1201 | double freg_buffer; | |
1202 | ||
e43169eb JL |
1203 | /* Oh, what a hack. If we're trying to perform an inferior call |
1204 | while the inferior is asleep, we have to make sure to clear | |
1205 | the "in system call" bit in the flag register (the call will | |
1206 | start after the syscall returns, so we're no longer in the system | |
1207 | call!) This state is kept in "inf_status", change it there. | |
1208 | ||
1209 | We also need a number of horrid hacks to deal with lossage in the | |
1210 | PC queue registers (apparently they're not valid when the in syscall | |
1211 | bit is set). */ | |
1212 | pc = target_read_pc (inferior_pid); | |
1213 | int_buffer = read_register (FLAGS_REGNUM); | |
1214 | if (int_buffer & 0x2) | |
1215 | { | |
244f7460 | 1216 | unsigned int sid; |
e43169eb JL |
1217 | int_buffer &= ~0x2; |
1218 | memcpy (inf_status->registers, &int_buffer, 4); | |
1219 | memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4); | |
1220 | pc += 4; | |
1221 | memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4); | |
1222 | pc -= 4; | |
244f7460 JL |
1223 | sid = (pc >> 30) & 0x3; |
1224 | if (sid == 0) | |
1225 | pcspace = read_register (SR4_REGNUM); | |
1226 | else | |
1227 | pcspace = read_register (SR4_REGNUM + 4 + sid); | |
e43169eb JL |
1228 | memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM), |
1229 | &pcspace, 4); | |
1230 | memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM), | |
1231 | &pcspace, 4); | |
1232 | } | |
1233 | else | |
1234 | pcspace = read_register (PCSQ_HEAD_REGNUM); | |
1235 | ||
66a1aa07 SG |
1236 | /* Space for "arguments"; the RP goes in here. */ |
1237 | sp = read_register (SP_REGNUM) + 48; | |
1238 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
1239 | write_memory (sp - 20, (char *)&int_buffer, 4); | |
1240 | ||
1241 | int_buffer = read_register (FP_REGNUM); | |
1242 | write_memory (sp, (char *)&int_buffer, 4); | |
1243 | ||
1244 | write_register (FP_REGNUM, sp); | |
1245 | ||
1246 | sp += 8; | |
1247 | ||
1248 | for (regnum = 1; regnum < 32; regnum++) | |
1249 | if (regnum != RP_REGNUM && regnum != FP_REGNUM) | |
1250 | sp = push_word (sp, read_register (regnum)); | |
1251 | ||
1252 | sp += 4; | |
1253 | ||
1254 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
1255 | { | |
1256 | read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
1257 | sp = push_bytes (sp, (char *)&freg_buffer, 8); | |
1258 | } | |
1259 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
1260 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
e43169eb JL |
1261 | sp = push_word (sp, pc); |
1262 | sp = push_word (sp, pcspace); | |
1263 | sp = push_word (sp, pc + 4); | |
1264 | sp = push_word (sp, pcspace); | |
66a1aa07 SG |
1265 | write_register (SP_REGNUM, sp); |
1266 | } | |
1267 | ||
e43169eb | 1268 | void |
66a1aa07 SG |
1269 | find_dummy_frame_regs (frame, frame_saved_regs) |
1270 | struct frame_info *frame; | |
1271 | struct frame_saved_regs *frame_saved_regs; | |
1272 | { | |
1273 | CORE_ADDR fp = frame->frame; | |
1274 | int i; | |
1275 | ||
1276 | frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3; | |
1277 | frame_saved_regs->regs[FP_REGNUM] = fp; | |
1278 | frame_saved_regs->regs[1] = fp + 8; | |
66a1aa07 | 1279 | |
b227992a SG |
1280 | for (fp += 12, i = 3; i < 32; i++) |
1281 | { | |
1282 | if (i != FP_REGNUM) | |
1283 | { | |
1284 | frame_saved_regs->regs[i] = fp; | |
1285 | fp += 4; | |
1286 | } | |
1287 | } | |
66a1aa07 SG |
1288 | |
1289 | fp += 4; | |
1290 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) | |
1291 | frame_saved_regs->regs[i] = fp; | |
1292 | ||
1293 | frame_saved_regs->regs[IPSW_REGNUM] = fp; | |
b227992a SG |
1294 | frame_saved_regs->regs[SAR_REGNUM] = fp + 4; |
1295 | frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8; | |
1296 | frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12; | |
1297 | frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16; | |
1298 | frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20; | |
66a1aa07 SG |
1299 | } |
1300 | ||
e43169eb | 1301 | void |
66a1aa07 SG |
1302 | hppa_pop_frame () |
1303 | { | |
669caa9c | 1304 | register struct frame_info *frame = get_current_frame (); |
54576db3 | 1305 | register CORE_ADDR fp, npc, target_pc; |
66a1aa07 SG |
1306 | register int regnum; |
1307 | struct frame_saved_regs fsr; | |
66a1aa07 SG |
1308 | double freg_buffer; |
1309 | ||
669caa9c SS |
1310 | fp = FRAME_FP (frame); |
1311 | get_frame_saved_regs (frame, &fsr); | |
66a1aa07 | 1312 | |
0a64709e | 1313 | #ifndef NO_PC_SPACE_QUEUE_RESTORE |
66a1aa07 SG |
1314 | if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ |
1315 | restore_pc_queue (&fsr); | |
0a64709e | 1316 | #endif |
66a1aa07 SG |
1317 | |
1318 | for (regnum = 31; regnum > 0; regnum--) | |
1319 | if (fsr.regs[regnum]) | |
1320 | write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); | |
1321 | ||
1322 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--) | |
1323 | if (fsr.regs[regnum]) | |
1324 | { | |
1325 | read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8); | |
1326 | write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
1327 | } | |
1328 | ||
1329 | if (fsr.regs[IPSW_REGNUM]) | |
1330 | write_register (IPSW_REGNUM, | |
1331 | read_memory_integer (fsr.regs[IPSW_REGNUM], 4)); | |
1332 | ||
1333 | if (fsr.regs[SAR_REGNUM]) | |
1334 | write_register (SAR_REGNUM, | |
1335 | read_memory_integer (fsr.regs[SAR_REGNUM], 4)); | |
1336 | ||
ed1a07ad | 1337 | /* If the PC was explicitly saved, then just restore it. */ |
66a1aa07 | 1338 | if (fsr.regs[PCOQ_TAIL_REGNUM]) |
54576db3 JL |
1339 | { |
1340 | npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4); | |
1341 | write_register (PCOQ_TAIL_REGNUM, npc); | |
1342 | } | |
ed1a07ad JK |
1343 | /* Else use the value in %rp to set the new PC. */ |
1344 | else | |
54576db3 JL |
1345 | { |
1346 | npc = read_register (RP_REGNUM); | |
1347 | target_write_pc (npc, 0); | |
1348 | } | |
ed1a07ad | 1349 | |
66a1aa07 SG |
1350 | write_register (FP_REGNUM, read_memory_integer (fp, 4)); |
1351 | ||
1352 | if (fsr.regs[IPSW_REGNUM]) /* call dummy */ | |
1353 | write_register (SP_REGNUM, fp - 48); | |
1354 | else | |
1355 | write_register (SP_REGNUM, fp); | |
1356 | ||
54576db3 JL |
1357 | /* The PC we just restored may be inside a return trampoline. If so |
1358 | we want to restart the inferior and run it through the trampoline. | |
1359 | ||
1360 | Do this by setting a momentary breakpoint at the location the | |
244f7460 JL |
1361 | trampoline returns to. |
1362 | ||
1363 | Don't skip through the trampoline if we're popping a dummy frame. */ | |
54576db3 | 1364 | target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3; |
244f7460 | 1365 | if (target_pc && !fsr.regs[IPSW_REGNUM]) |
54576db3 JL |
1366 | { |
1367 | struct symtab_and_line sal; | |
1368 | struct breakpoint *breakpoint; | |
1369 | struct cleanup *old_chain; | |
1370 | ||
1371 | /* Set up our breakpoint. Set it to be silent as the MI code | |
1372 | for "return_command" will print the frame we returned to. */ | |
1373 | sal = find_pc_line (target_pc, 0); | |
1374 | sal.pc = target_pc; | |
1375 | breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish); | |
1376 | breakpoint->silent = 1; | |
1377 | ||
1378 | /* So we can clean things up. */ | |
1379 | old_chain = make_cleanup (delete_breakpoint, breakpoint); | |
1380 | ||
1381 | /* Start up the inferior. */ | |
1382 | proceed_to_finish = 1; | |
1383 | proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0); | |
1384 | ||
1385 | /* Perform our cleanups. */ | |
1386 | do_cleanups (old_chain); | |
1387 | } | |
66a1aa07 | 1388 | flush_cached_frames (); |
66a1aa07 SG |
1389 | } |
1390 | ||
1391 | /* | |
1392 | * After returning to a dummy on the stack, restore the instruction | |
1393 | * queue space registers. */ | |
1394 | ||
1395 | static int | |
1396 | restore_pc_queue (fsr) | |
1397 | struct frame_saved_regs *fsr; | |
1398 | { | |
1399 | CORE_ADDR pc = read_pc (); | |
1400 | CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4); | |
67ac9759 | 1401 | struct target_waitstatus w; |
66a1aa07 SG |
1402 | int insn_count; |
1403 | ||
1404 | /* Advance past break instruction in the call dummy. */ | |
1405 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
1406 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
1407 | ||
1408 | /* | |
1409 | * HPUX doesn't let us set the space registers or the space | |
1410 | * registers of the PC queue through ptrace. Boo, hiss. | |
1411 | * Conveniently, the call dummy has this sequence of instructions | |
1412 | * after the break: | |
1413 | * mtsp r21, sr0 | |
1414 | * ble,n 0(sr0, r22) | |
1415 | * | |
1416 | * So, load up the registers and single step until we are in the | |
1417 | * right place. | |
1418 | */ | |
1419 | ||
1420 | write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4)); | |
1421 | write_register (22, new_pc); | |
1422 | ||
1423 | for (insn_count = 0; insn_count < 3; insn_count++) | |
1424 | { | |
8c5e0021 JK |
1425 | /* FIXME: What if the inferior gets a signal right now? Want to |
1426 | merge this into wait_for_inferior (as a special kind of | |
1427 | watchpoint? By setting a breakpoint at the end? Is there | |
1428 | any other choice? Is there *any* way to do this stuff with | |
1429 | ptrace() or some equivalent?). */ | |
66a1aa07 | 1430 | resume (1, 0); |
67ac9759 | 1431 | target_wait (inferior_pid, &w); |
66a1aa07 | 1432 | |
67ac9759 | 1433 | if (w.kind == TARGET_WAITKIND_SIGNALLED) |
66a1aa07 | 1434 | { |
67ac9759 | 1435 | stop_signal = w.value.sig; |
66a1aa07 | 1436 | terminal_ours_for_output (); |
67ac9759 JK |
1437 | printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", |
1438 | target_signal_to_name (stop_signal), | |
1439 | target_signal_to_string (stop_signal)); | |
199b2450 | 1440 | gdb_flush (gdb_stdout); |
66a1aa07 SG |
1441 | return 0; |
1442 | } | |
1443 | } | |
8c5e0021 | 1444 | target_terminal_ours (); |
cad1498f | 1445 | target_fetch_registers (-1); |
66a1aa07 SG |
1446 | return 1; |
1447 | } | |
1448 | ||
1449 | CORE_ADDR | |
1450 | hppa_push_arguments (nargs, args, sp, struct_return, struct_addr) | |
1451 | int nargs; | |
4fd5eed4 | 1452 | value_ptr *args; |
66a1aa07 SG |
1453 | CORE_ADDR sp; |
1454 | int struct_return; | |
1455 | CORE_ADDR struct_addr; | |
1456 | { | |
1457 | /* array of arguments' offsets */ | |
1edc5cd2 | 1458 | int *offset = (int *)alloca(nargs * sizeof (int)); |
66a1aa07 SG |
1459 | int cum = 0; |
1460 | int i, alignment; | |
1461 | ||
1462 | for (i = 0; i < nargs; i++) | |
1463 | { | |
66a1aa07 SG |
1464 | cum += TYPE_LENGTH (VALUE_TYPE (args[i])); |
1465 | ||
1466 | /* value must go at proper alignment. Assume alignment is a | |
1467 | power of two.*/ | |
1468 | alignment = hppa_alignof (VALUE_TYPE (args[i])); | |
1469 | if (cum % alignment) | |
1470 | cum = (cum + alignment) & -alignment; | |
1471 | offset[i] = -cum; | |
1472 | } | |
558f4183 | 1473 | sp += max ((cum + 7) & -8, 16); |
66a1aa07 SG |
1474 | |
1475 | for (i = 0; i < nargs; i++) | |
1476 | write_memory (sp + offset[i], VALUE_CONTENTS (args[i]), | |
1477 | TYPE_LENGTH (VALUE_TYPE (args[i]))); | |
1478 | ||
1479 | if (struct_return) | |
1480 | write_register (28, struct_addr); | |
1481 | return sp + 32; | |
1482 | } | |
1483 | ||
1484 | /* | |
1485 | * Insert the specified number of args and function address | |
1486 | * into a call sequence of the above form stored at DUMMYNAME. | |
1487 | * | |
1488 | * On the hppa we need to call the stack dummy through $$dyncall. | |
1489 | * Therefore our version of FIX_CALL_DUMMY takes an extra argument, | |
1490 | * real_pc, which is the location where gdb should start up the | |
1491 | * inferior to do the function call. | |
1492 | */ | |
1493 | ||
1494 | CORE_ADDR | |
1495 | hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) | |
f4f0d174 | 1496 | char *dummy; |
66a1aa07 SG |
1497 | CORE_ADDR pc; |
1498 | CORE_ADDR fun; | |
1499 | int nargs; | |
4fd5eed4 | 1500 | value_ptr *args; |
66a1aa07 SG |
1501 | struct type *type; |
1502 | int gcc_p; | |
1503 | { | |
7486c68d | 1504 | CORE_ADDR dyncall_addr; |
66a1aa07 | 1505 | struct minimal_symbol *msymbol; |
46f569b4 | 1506 | struct minimal_symbol *trampoline; |
6cfec929 | 1507 | int flags = read_register (FLAGS_REGNUM); |
19cd0c1f | 1508 | struct unwind_table_entry *u; |
66a1aa07 | 1509 | |
46f569b4 | 1510 | trampoline = NULL; |
2d336b1b | 1511 | msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL); |
66a1aa07 SG |
1512 | if (msymbol == NULL) |
1513 | error ("Can't find an address for $$dyncall trampoline"); | |
1514 | ||
1515 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
1516 | ||
4f915914 JL |
1517 | /* FUN could be a procedure label, in which case we have to get |
1518 | its real address and the value of its GOT/DP. */ | |
1519 | if (fun & 0x2) | |
1520 | { | |
1521 | /* Get the GOT/DP value for the target function. It's | |
1522 | at *(fun+4). Note the call dummy is *NOT* allowed to | |
1523 | trash %r19 before calling the target function. */ | |
1524 | write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4)); | |
1525 | ||
1526 | /* Now get the real address for the function we are calling, it's | |
1527 | at *fun. */ | |
1528 | fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4); | |
1529 | } | |
b1bbe38b JL |
1530 | else |
1531 | { | |
1532 | ||
3200aa59 | 1533 | #ifndef GDB_TARGET_IS_PA_ELF |
b1bbe38b | 1534 | /* FUN could be either an export stub, or the real address of a |
3200aa59 JL |
1535 | function in a shared library. We must call an import stub |
1536 | rather than the export stub or real function for lazy binding | |
1537 | to work correctly. */ | |
1538 | if (som_solib_get_got_by_pc (fun)) | |
1539 | { | |
1540 | struct objfile *objfile; | |
1541 | struct minimal_symbol *funsymbol, *stub_symbol; | |
1542 | CORE_ADDR newfun = 0; | |
b1bbe38b | 1543 | |
3200aa59 JL |
1544 | funsymbol = lookup_minimal_symbol_by_pc (fun); |
1545 | if (!funsymbol) | |
1546 | error ("Unable to find minimal symbol for target fucntion.\n"); | |
b1bbe38b | 1547 | |
3200aa59 JL |
1548 | /* Search all the object files for an import symbol with the |
1549 | right name. */ | |
1550 | ALL_OBJFILES (objfile) | |
1551 | { | |
1552 | stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol), | |
2d336b1b | 1553 | NULL, objfile); |
3200aa59 JL |
1554 | /* Found a symbol with the right name. */ |
1555 | if (stub_symbol) | |
1556 | { | |
1557 | struct unwind_table_entry *u; | |
1558 | /* It must be a shared library trampoline. */ | |
1559 | if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline) | |
1560 | continue; | |
1561 | ||
1562 | /* It must also be an import stub. */ | |
1563 | u = find_unwind_entry (SYMBOL_VALUE (stub_symbol)); | |
1564 | if (!u || u->stub_type != IMPORT) | |
1565 | continue; | |
1566 | ||
1567 | /* OK. Looks like the correct import stub. */ | |
1568 | newfun = SYMBOL_VALUE (stub_symbol); | |
1569 | fun = newfun; | |
1570 | } | |
1571 | } | |
1572 | if (newfun == 0) | |
1573 | write_register (19, som_solib_get_got_by_pc (fun)); | |
1574 | } | |
bd2b724a | 1575 | #endif |
b1bbe38b | 1576 | } |
4f915914 | 1577 | |
19cd0c1f JL |
1578 | /* If we are calling an import stub (eg calling into a dynamic library) |
1579 | then have sr4export call the magic __d_plt_call routine which is linked | |
1580 | in from end.o. (You can't use _sr4export to call the import stub as | |
1581 | the value in sp-24 will get fried and you end up returning to the | |
1582 | wrong location. You can't call the import stub directly as the code | |
1583 | to bind the PLT entry to a function can't return to a stack address.) */ | |
1584 | u = find_unwind_entry (fun); | |
1585 | if (u && u->stub_type == IMPORT) | |
1586 | { | |
1587 | CORE_ADDR new_fun; | |
3200aa59 | 1588 | |
46f569b4 JL |
1589 | /* Prefer __gcc_plt_call over the HP supplied routine because |
1590 | __gcc_plt_call works for any number of arguments. */ | |
1591 | trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL); | |
1592 | if (trampoline == NULL) | |
1593 | trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL); | |
1594 | ||
1595 | if (trampoline == NULL) | |
3200aa59 | 1596 | error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline"); |
19cd0c1f JL |
1597 | |
1598 | /* This is where sr4export will jump to. */ | |
46f569b4 | 1599 | new_fun = SYMBOL_VALUE_ADDRESS (trampoline); |
19cd0c1f | 1600 | |
46f569b4 | 1601 | if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0) |
3200aa59 JL |
1602 | { |
1603 | /* We have to store the address of the stub in __shlib_funcptr. */ | |
2d336b1b | 1604 | msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL, |
3200aa59 JL |
1605 | (struct objfile *)NULL); |
1606 | if (msymbol == NULL) | |
1607 | error ("Can't find an address for __shlib_funcptr"); | |
19cd0c1f | 1608 | |
3200aa59 | 1609 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4); |
46f569b4 JL |
1610 | |
1611 | /* We want sr4export to call __d_plt_call, so we claim it is | |
1612 | the final target. Clear trampoline. */ | |
1613 | fun = new_fun; | |
1614 | trampoline = NULL; | |
3200aa59 | 1615 | } |
19cd0c1f JL |
1616 | } |
1617 | ||
46f569b4 JL |
1618 | /* Store upper 21 bits of function address into ldil. fun will either be |
1619 | the final target (most cases) or __d_plt_call when calling into a shared | |
1620 | library and __gcc_plt_call is not available. */ | |
f4f0d174 | 1621 | store_unsigned_integer |
7486c68d SG |
1622 | (&dummy[FUNC_LDIL_OFFSET], |
1623 | INSTRUCTION_SIZE, | |
f4f0d174 | 1624 | deposit_21 (fun >> 11, |
7486c68d SG |
1625 | extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET], |
1626 | INSTRUCTION_SIZE))); | |
1627 | ||
46f569b4 | 1628 | /* Store lower 11 bits of function address into ldo */ |
f4f0d174 | 1629 | store_unsigned_integer |
7486c68d SG |
1630 | (&dummy[FUNC_LDO_OFFSET], |
1631 | INSTRUCTION_SIZE, | |
f4f0d174 | 1632 | deposit_14 (fun & MASK_11, |
7486c68d SG |
1633 | extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET], |
1634 | INSTRUCTION_SIZE))); | |
1635 | #ifdef SR4EXPORT_LDIL_OFFSET | |
1636 | ||
1637 | { | |
46f569b4 | 1638 | CORE_ADDR trampoline_addr; |
7486c68d | 1639 | |
46f569b4 | 1640 | /* We may still need sr4export's address too. */ |
7486c68d | 1641 | |
46f569b4 JL |
1642 | if (trampoline == NULL) |
1643 | { | |
1644 | msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
1645 | if (msymbol == NULL) | |
1646 | error ("Can't find an address for _sr4export trampoline"); | |
7486c68d | 1647 | |
46f569b4 JL |
1648 | trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol); |
1649 | } | |
1650 | else | |
1651 | trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline); | |
7486c68d | 1652 | |
7486c68d | 1653 | |
46f569b4 | 1654 | /* Store upper 21 bits of trampoline's address into ldil */ |
7486c68d SG |
1655 | store_unsigned_integer |
1656 | (&dummy[SR4EXPORT_LDIL_OFFSET], | |
1657 | INSTRUCTION_SIZE, | |
46f569b4 | 1658 | deposit_21 (trampoline_addr >> 11, |
7486c68d SG |
1659 | extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET], |
1660 | INSTRUCTION_SIZE))); | |
7486c68d | 1661 | |
46f569b4 | 1662 | /* Store lower 11 bits of trampoline's address into ldo */ |
7486c68d SG |
1663 | store_unsigned_integer |
1664 | (&dummy[SR4EXPORT_LDO_OFFSET], | |
1665 | INSTRUCTION_SIZE, | |
46f569b4 | 1666 | deposit_14 (trampoline_addr & MASK_11, |
7486c68d SG |
1667 | extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET], |
1668 | INSTRUCTION_SIZE))); | |
1669 | } | |
1670 | #endif | |
66a1aa07 SG |
1671 | |
1672 | write_register (22, pc); | |
1673 | ||
6cfec929 JK |
1674 | /* If we are in a syscall, then we should call the stack dummy |
1675 | directly. $$dyncall is not needed as the kernel sets up the | |
1676 | space id registers properly based on the value in %r31. In | |
1677 | fact calling $$dyncall will not work because the value in %r22 | |
244f7460 JL |
1678 | will be clobbered on the syscall exit path. |
1679 | ||
1680 | Similarly if the current PC is in a shared library. Note however, | |
1681 | this scheme won't work if the shared library isn't mapped into | |
1682 | the same space as the stack. */ | |
6cfec929 JK |
1683 | if (flags & 2) |
1684 | return pc; | |
244f7460 JL |
1685 | #ifndef GDB_TARGET_IS_PA_ELF |
1686 | else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid))) | |
1687 | return pc; | |
1688 | #endif | |
6cfec929 JK |
1689 | else |
1690 | return dyncall_addr; | |
1691 | ||
66a1aa07 SG |
1692 | } |
1693 | ||
d3862cae JK |
1694 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege |
1695 | bits. */ | |
669caa9c | 1696 | |
d3862cae | 1697 | CORE_ADDR |
e9a3cde8 JL |
1698 | target_read_pc (pid) |
1699 | int pid; | |
d3862cae JK |
1700 | { |
1701 | int flags = read_register (FLAGS_REGNUM); | |
1702 | ||
15edf525 | 1703 | if (flags & 2) { |
d3862cae | 1704 | return read_register (31) & ~0x3; |
15edf525 | 1705 | } |
d3862cae JK |
1706 | return read_register (PC_REGNUM) & ~0x3; |
1707 | } | |
1708 | ||
6cfec929 JK |
1709 | /* Write out the PC. If currently in a syscall, then also write the new |
1710 | PC value into %r31. */ | |
669caa9c | 1711 | |
6cfec929 | 1712 | void |
e9a3cde8 | 1713 | target_write_pc (v, pid) |
6cfec929 | 1714 | CORE_ADDR v; |
e9a3cde8 | 1715 | int pid; |
6cfec929 JK |
1716 | { |
1717 | int flags = read_register (FLAGS_REGNUM); | |
1718 | ||
1719 | /* If in a syscall, then set %r31. Also make sure to get the | |
1720 | privilege bits set correctly. */ | |
1721 | if (flags & 2) | |
1722 | write_register (31, (long) (v | 0x3)); | |
1723 | ||
1724 | write_register (PC_REGNUM, (long) v); | |
1725 | write_register (NPC_REGNUM, (long) v + 4); | |
1726 | } | |
1727 | ||
66a1aa07 SG |
1728 | /* return the alignment of a type in bytes. Structures have the maximum |
1729 | alignment required by their fields. */ | |
1730 | ||
1731 | static int | |
940d5967 PB |
1732 | hppa_alignof (type) |
1733 | struct type *type; | |
66a1aa07 SG |
1734 | { |
1735 | int max_align, align, i; | |
f9384420 | 1736 | CHECK_TYPEDEF (type); |
940d5967 | 1737 | switch (TYPE_CODE (type)) |
66a1aa07 SG |
1738 | { |
1739 | case TYPE_CODE_PTR: | |
1740 | case TYPE_CODE_INT: | |
1741 | case TYPE_CODE_FLT: | |
940d5967 | 1742 | return TYPE_LENGTH (type); |
66a1aa07 | 1743 | case TYPE_CODE_ARRAY: |
940d5967 | 1744 | return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); |
66a1aa07 SG |
1745 | case TYPE_CODE_STRUCT: |
1746 | case TYPE_CODE_UNION: | |
1747 | max_align = 2; | |
940d5967 | 1748 | for (i = 0; i < TYPE_NFIELDS (type); i++) |
66a1aa07 SG |
1749 | { |
1750 | /* Bit fields have no real alignment. */ | |
940d5967 | 1751 | if (!TYPE_FIELD_BITPOS (type, i)) |
66a1aa07 | 1752 | { |
940d5967 | 1753 | align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); |
66a1aa07 SG |
1754 | max_align = max (max_align, align); |
1755 | } | |
1756 | } | |
1757 | return max_align; | |
1758 | default: | |
1759 | return 4; | |
1760 | } | |
1761 | } | |
1762 | ||
1763 | /* Print the register regnum, or all registers if regnum is -1 */ | |
1764 | ||
e43169eb | 1765 | void |
66a1aa07 SG |
1766 | pa_do_registers_info (regnum, fpregs) |
1767 | int regnum; | |
1768 | int fpregs; | |
1769 | { | |
1770 | char raw_regs [REGISTER_BYTES]; | |
1771 | int i; | |
1772 | ||
1773 | for (i = 0; i < NUM_REGS; i++) | |
1774 | read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i)); | |
1775 | if (regnum == -1) | |
1776 | pa_print_registers (raw_regs, regnum, fpregs); | |
1777 | else if (regnum < FP0_REGNUM) | |
199b2450 | 1778 | printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs + |
66a1aa07 SG |
1779 | REGISTER_BYTE (regnum))); |
1780 | else | |
1781 | pa_print_fp_reg (regnum); | |
1782 | } | |
1783 | ||
e43169eb | 1784 | static void |
66a1aa07 SG |
1785 | pa_print_registers (raw_regs, regnum, fpregs) |
1786 | char *raw_regs; | |
1787 | int regnum; | |
1788 | int fpregs; | |
1789 | { | |
15edf525 RS |
1790 | int i,j; |
1791 | long val; | |
66a1aa07 SG |
1792 | |
1793 | for (i = 0; i < 18; i++) | |
15edf525 RS |
1794 | { |
1795 | for (j = 0; j < 4; j++) | |
1796 | { | |
bc28e68d JK |
1797 | val = |
1798 | extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4); | |
15edf525 RS |
1799 | printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val); |
1800 | } | |
1801 | printf_unfiltered ("\n"); | |
1802 | } | |
1803 | ||
66a1aa07 SG |
1804 | if (fpregs) |
1805 | for (i = 72; i < NUM_REGS; i++) | |
1806 | pa_print_fp_reg (i); | |
1807 | } | |
1808 | ||
e43169eb | 1809 | static void |
66a1aa07 SG |
1810 | pa_print_fp_reg (i) |
1811 | int i; | |
1812 | { | |
1813 | unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
1814 | unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
66a1aa07 | 1815 | |
eb1167c6 | 1816 | /* Get 32bits of data. */ |
66a1aa07 | 1817 | read_relative_register_raw_bytes (i, raw_buffer); |
ad09cb2b | 1818 | |
eb1167c6 JL |
1819 | /* Put it in the buffer. No conversions are ever necessary. */ |
1820 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
66a1aa07 | 1821 | |
199b2450 | 1822 | fputs_filtered (reg_names[i], gdb_stdout); |
eb1167c6 JL |
1823 | print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); |
1824 | fputs_filtered ("(single precision) ", gdb_stdout); | |
66a1aa07 | 1825 | |
199b2450 | 1826 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0, |
66a1aa07 SG |
1827 | 1, 0, Val_pretty_default); |
1828 | printf_filtered ("\n"); | |
eb1167c6 JL |
1829 | |
1830 | /* If "i" is even, then this register can also be a double-precision | |
1831 | FP register. Dump it out as such. */ | |
1832 | if ((i % 2) == 0) | |
1833 | { | |
1834 | /* Get the data in raw format for the 2nd half. */ | |
1835 | read_relative_register_raw_bytes (i + 1, raw_buffer); | |
1836 | ||
1837 | /* Copy it into the appropriate part of the virtual buffer. */ | |
1838 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer, | |
1839 | REGISTER_RAW_SIZE (i)); | |
1840 | ||
1841 | /* Dump it as a double. */ | |
1842 | fputs_filtered (reg_names[i], gdb_stdout); | |
1843 | print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); | |
1844 | fputs_filtered ("(double precision) ", gdb_stdout); | |
1845 | ||
1846 | val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0, | |
1847 | 1, 0, Val_pretty_default); | |
1848 | printf_filtered ("\n"); | |
1849 | } | |
66a1aa07 SG |
1850 | } |
1851 | ||
a76c2240 JL |
1852 | /* Return one if PC is in the call path of a trampoline, else return zero. |
1853 | ||
1854 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
1855 | just shared library trampolines (import, export). */ | |
481faa25 | 1856 | |
e43169eb | 1857 | int |
481faa25 JL |
1858 | in_solib_call_trampoline (pc, name) |
1859 | CORE_ADDR pc; | |
1860 | char *name; | |
1861 | { | |
1862 | struct minimal_symbol *minsym; | |
1863 | struct unwind_table_entry *u; | |
a76c2240 JL |
1864 | static CORE_ADDR dyncall = 0; |
1865 | static CORE_ADDR sr4export = 0; | |
1866 | ||
1867 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a | |
1868 | new exec file */ | |
1869 | ||
1870 | /* First see if PC is in one of the two C-library trampolines. */ | |
1871 | if (!dyncall) | |
1872 | { | |
2d336b1b | 1873 | minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); |
a76c2240 JL |
1874 | if (minsym) |
1875 | dyncall = SYMBOL_VALUE_ADDRESS (minsym); | |
1876 | else | |
1877 | dyncall = -1; | |
1878 | } | |
1879 | ||
1880 | if (!sr4export) | |
1881 | { | |
2d336b1b | 1882 | minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL); |
a76c2240 JL |
1883 | if (minsym) |
1884 | sr4export = SYMBOL_VALUE_ADDRESS (minsym); | |
1885 | else | |
1886 | sr4export = -1; | |
1887 | } | |
1888 | ||
1889 | if (pc == dyncall || pc == sr4export) | |
1890 | return 1; | |
481faa25 JL |
1891 | |
1892 | /* Get the unwind descriptor corresponding to PC, return zero | |
1893 | if no unwind was found. */ | |
1894 | u = find_unwind_entry (pc); | |
1895 | if (!u) | |
1896 | return 0; | |
1897 | ||
1898 | /* If this isn't a linker stub, then return now. */ | |
a76c2240 | 1899 | if (u->stub_type == 0) |
481faa25 JL |
1900 | return 0; |
1901 | ||
a76c2240 JL |
1902 | /* By definition a long-branch stub is a call stub. */ |
1903 | if (u->stub_type == LONG_BRANCH) | |
1904 | return 1; | |
1905 | ||
481faa25 JL |
1906 | /* The call and return path execute the same instructions within |
1907 | an IMPORT stub! So an IMPORT stub is both a call and return | |
1908 | trampoline. */ | |
1909 | if (u->stub_type == IMPORT) | |
1910 | return 1; | |
1911 | ||
a76c2240 | 1912 | /* Parameter relocation stubs always have a call path and may have a |
481faa25 | 1913 | return path. */ |
54576db3 JL |
1914 | if (u->stub_type == PARAMETER_RELOCATION |
1915 | || u->stub_type == EXPORT) | |
a76c2240 JL |
1916 | { |
1917 | CORE_ADDR addr; | |
1918 | ||
1919 | /* Search forward from the current PC until we hit a branch | |
1920 | or the end of the stub. */ | |
1921 | for (addr = pc; addr <= u->region_end; addr += 4) | |
1922 | { | |
1923 | unsigned long insn; | |
1924 | ||
1925 | insn = read_memory_integer (addr, 4); | |
1926 | ||
1927 | /* Does it look like a bl? If so then it's the call path, if | |
54576db3 | 1928 | we find a bv or be first, then we're on the return path. */ |
a76c2240 JL |
1929 | if ((insn & 0xfc00e000) == 0xe8000000) |
1930 | return 1; | |
54576db3 JL |
1931 | else if ((insn & 0xfc00e001) == 0xe800c000 |
1932 | || (insn & 0xfc000000) == 0xe0000000) | |
a76c2240 JL |
1933 | return 0; |
1934 | } | |
1935 | ||
1936 | /* Should never happen. */ | |
1937 | warning ("Unable to find branch in parameter relocation stub.\n"); | |
1938 | return 0; | |
1939 | } | |
1940 | ||
1941 | /* Unknown stub type. For now, just return zero. */ | |
1942 | return 0; | |
481faa25 JL |
1943 | } |
1944 | ||
a76c2240 JL |
1945 | /* Return one if PC is in the return path of a trampoline, else return zero. |
1946 | ||
1947 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
1948 | just shared library trampolines (import, export). */ | |
481faa25 | 1949 | |
e43169eb | 1950 | int |
481faa25 JL |
1951 | in_solib_return_trampoline (pc, name) |
1952 | CORE_ADDR pc; | |
1953 | char *name; | |
1954 | { | |
481faa25 JL |
1955 | struct unwind_table_entry *u; |
1956 | ||
1957 | /* Get the unwind descriptor corresponding to PC, return zero | |
1958 | if no unwind was found. */ | |
1959 | u = find_unwind_entry (pc); | |
1960 | if (!u) | |
1961 | return 0; | |
1962 | ||
a76c2240 JL |
1963 | /* If this isn't a linker stub or it's just a long branch stub, then |
1964 | return zero. */ | |
1965 | if (u->stub_type == 0 || u->stub_type == LONG_BRANCH) | |
481faa25 JL |
1966 | return 0; |
1967 | ||
1968 | /* The call and return path execute the same instructions within | |
1969 | an IMPORT stub! So an IMPORT stub is both a call and return | |
1970 | trampoline. */ | |
1971 | if (u->stub_type == IMPORT) | |
1972 | return 1; | |
1973 | ||
a76c2240 | 1974 | /* Parameter relocation stubs always have a call path and may have a |
481faa25 | 1975 | return path. */ |
54576db3 JL |
1976 | if (u->stub_type == PARAMETER_RELOCATION |
1977 | || u->stub_type == EXPORT) | |
a76c2240 JL |
1978 | { |
1979 | CORE_ADDR addr; | |
1980 | ||
1981 | /* Search forward from the current PC until we hit a branch | |
1982 | or the end of the stub. */ | |
1983 | for (addr = pc; addr <= u->region_end; addr += 4) | |
1984 | { | |
1985 | unsigned long insn; | |
1986 | ||
1987 | insn = read_memory_integer (addr, 4); | |
1988 | ||
1989 | /* Does it look like a bl? If so then it's the call path, if | |
54576db3 | 1990 | we find a bv or be first, then we're on the return path. */ |
a76c2240 JL |
1991 | if ((insn & 0xfc00e000) == 0xe8000000) |
1992 | return 0; | |
54576db3 JL |
1993 | else if ((insn & 0xfc00e001) == 0xe800c000 |
1994 | || (insn & 0xfc000000) == 0xe0000000) | |
a76c2240 JL |
1995 | return 1; |
1996 | } | |
1997 | ||
1998 | /* Should never happen. */ | |
1999 | warning ("Unable to find branch in parameter relocation stub.\n"); | |
2000 | return 0; | |
2001 | } | |
2002 | ||
2003 | /* Unknown stub type. For now, just return zero. */ | |
2004 | return 0; | |
2005 | ||
481faa25 JL |
2006 | } |
2007 | ||
de482138 JL |
2008 | /* Figure out if PC is in a trampoline, and if so find out where |
2009 | the trampoline will jump to. If not in a trampoline, return zero. | |
66a1aa07 | 2010 | |
de482138 JL |
2011 | Simple code examination probably is not a good idea since the code |
2012 | sequences in trampolines can also appear in user code. | |
2013 | ||
2014 | We use unwinds and information from the minimal symbol table to | |
2015 | determine when we're in a trampoline. This won't work for ELF | |
2016 | (yet) since it doesn't create stub unwind entries. Whether or | |
2017 | not ELF will create stub unwinds or normal unwinds for linker | |
2018 | stubs is still being debated. | |
2019 | ||
2020 | This should handle simple calls through dyncall or sr4export, | |
2021 | long calls, argument relocation stubs, and dyncall/sr4export | |
2022 | calling an argument relocation stub. It even handles some stubs | |
2023 | used in dynamic executables. */ | |
66a1aa07 SG |
2024 | |
2025 | CORE_ADDR | |
2026 | skip_trampoline_code (pc, name) | |
2027 | CORE_ADDR pc; | |
2028 | char *name; | |
2029 | { | |
de482138 JL |
2030 | long orig_pc = pc; |
2031 | long prev_inst, curr_inst, loc; | |
66a1aa07 | 2032 | static CORE_ADDR dyncall = 0; |
de482138 | 2033 | static CORE_ADDR sr4export = 0; |
66a1aa07 | 2034 | struct minimal_symbol *msym; |
de482138 | 2035 | struct unwind_table_entry *u; |
66a1aa07 | 2036 | |
de482138 JL |
2037 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a |
2038 | new exec file */ | |
66a1aa07 SG |
2039 | |
2040 | if (!dyncall) | |
2041 | { | |
2d336b1b | 2042 | msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); |
66a1aa07 SG |
2043 | if (msym) |
2044 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
2045 | else | |
2046 | dyncall = -1; | |
2047 | } | |
2048 | ||
de482138 JL |
2049 | if (!sr4export) |
2050 | { | |
2d336b1b | 2051 | msym = lookup_minimal_symbol ("_sr4export", NULL, NULL); |
de482138 JL |
2052 | if (msym) |
2053 | sr4export = SYMBOL_VALUE_ADDRESS (msym); | |
2054 | else | |
2055 | sr4export = -1; | |
2056 | } | |
2057 | ||
2058 | /* Addresses passed to dyncall may *NOT* be the actual address | |
669caa9c | 2059 | of the function. So we may have to do something special. */ |
66a1aa07 | 2060 | if (pc == dyncall) |
de482138 JL |
2061 | { |
2062 | pc = (CORE_ADDR) read_register (22); | |
66a1aa07 | 2063 | |
de482138 JL |
2064 | /* If bit 30 (counting from the left) is on, then pc is the address of |
2065 | the PLT entry for this function, not the address of the function | |
2066 | itself. Bit 31 has meaning too, but only for MPE. */ | |
2067 | if (pc & 0x2) | |
2068 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4); | |
2069 | } | |
2070 | else if (pc == sr4export) | |
2071 | pc = (CORE_ADDR) (read_register (22)); | |
66a1aa07 | 2072 | |
de482138 JL |
2073 | /* Get the unwind descriptor corresponding to PC, return zero |
2074 | if no unwind was found. */ | |
2075 | u = find_unwind_entry (pc); | |
2076 | if (!u) | |
2077 | return 0; | |
2078 | ||
2079 | /* If this isn't a linker stub, then return now. */ | |
2080 | if (u->stub_type == 0) | |
2081 | return orig_pc == pc ? 0 : pc & ~0x3; | |
2082 | ||
2083 | /* It's a stub. Search for a branch and figure out where it goes. | |
2084 | Note we have to handle multi insn branch sequences like ldil;ble. | |
2085 | Most (all?) other branches can be determined by examining the contents | |
2086 | of certain registers and the stack. */ | |
2087 | loc = pc; | |
2088 | curr_inst = 0; | |
2089 | prev_inst = 0; | |
2090 | while (1) | |
2091 | { | |
2092 | /* Make sure we haven't walked outside the range of this stub. */ | |
2093 | if (u != find_unwind_entry (loc)) | |
2094 | { | |
2095 | warning ("Unable to find branch in linker stub"); | |
2096 | return orig_pc == pc ? 0 : pc & ~0x3; | |
2097 | } | |
2098 | ||
2099 | prev_inst = curr_inst; | |
2100 | curr_inst = read_memory_integer (loc, 4); | |
66a1aa07 | 2101 | |
de482138 JL |
2102 | /* Does it look like a branch external using %r1? Then it's the |
2103 | branch from the stub to the actual function. */ | |
2104 | if ((curr_inst & 0xffe0e000) == 0xe0202000) | |
2105 | { | |
2106 | /* Yup. See if the previous instruction loaded | |
2107 | a value into %r1. If so compute and return the jump address. */ | |
4cbc4bf1 | 2108 | if ((prev_inst & 0xffe00000) == 0x20200000) |
de482138 JL |
2109 | return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; |
2110 | else | |
2111 | { | |
2112 | warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); | |
2113 | return orig_pc == pc ? 0 : pc & ~0x3; | |
2114 | } | |
2115 | } | |
2116 | ||
f32fc5f9 JL |
2117 | /* Does it look like a be 0(sr0,%r21)? That's the branch from an |
2118 | import stub to an export stub. | |
2119 | ||
2120 | It is impossible to determine the target of the branch via | |
2121 | simple examination of instructions and/or data (consider | |
2122 | that the address in the plabel may be the address of the | |
2123 | bind-on-reference routine in the dynamic loader). | |
2124 | ||
2125 | So we have try an alternative approach. | |
2126 | ||
2127 | Get the name of the symbol at our current location; it should | |
2128 | be a stub symbol with the same name as the symbol in the | |
2129 | shared library. | |
2130 | ||
2131 | Then lookup a minimal symbol with the same name; we should | |
2132 | get the minimal symbol for the target routine in the shared | |
2133 | library as those take precedence of import/export stubs. */ | |
2134 | if (curr_inst == 0xe2a00000) | |
2135 | { | |
2136 | struct minimal_symbol *stubsym, *libsym; | |
2137 | ||
2138 | stubsym = lookup_minimal_symbol_by_pc (loc); | |
2139 | if (stubsym == NULL) | |
2140 | { | |
2141 | warning ("Unable to find symbol for 0x%x", loc); | |
2142 | return orig_pc == pc ? 0 : pc & ~0x3; | |
2143 | } | |
2144 | ||
2d336b1b | 2145 | libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL); |
f32fc5f9 JL |
2146 | if (libsym == NULL) |
2147 | { | |
2148 | warning ("Unable to find library symbol for %s\n", | |
2149 | SYMBOL_NAME (stubsym)); | |
2150 | return orig_pc == pc ? 0 : pc & ~0x3; | |
2151 | } | |
2152 | ||
2153 | return SYMBOL_VALUE (libsym); | |
2154 | } | |
2155 | ||
88b91d4a JL |
2156 | /* Does it look like bl X,%rp or bl X,%r0? Another way to do a |
2157 | branch from the stub to the actual function. */ | |
2158 | else if ((curr_inst & 0xffe0e000) == 0xe8400000 | |
2159 | || (curr_inst & 0xffe0e000) == 0xe8000000) | |
de482138 JL |
2160 | return (loc + extract_17 (curr_inst) + 8) & ~0x3; |
2161 | ||
2162 | /* Does it look like bv (rp)? Note this depends on the | |
2163 | current stack pointer being the same as the stack | |
2164 | pointer in the stub itself! This is a branch on from the | |
2165 | stub back to the original caller. */ | |
2166 | else if ((curr_inst & 0xffe0e000) == 0xe840c000) | |
2167 | { | |
2168 | /* Yup. See if the previous instruction loaded | |
2169 | rp from sp - 8. */ | |
2170 | if (prev_inst == 0x4bc23ff1) | |
2171 | return (read_memory_integer | |
2172 | (read_register (SP_REGNUM) - 8, 4)) & ~0x3; | |
2173 | else | |
2174 | { | |
2175 | warning ("Unable to find restore of %%rp before bv (%%rp)."); | |
2176 | return orig_pc == pc ? 0 : pc & ~0x3; | |
2177 | } | |
2178 | } | |
2179 | ||
2180 | /* What about be,n 0(sr0,%rp)? It's just another way we return to | |
2181 | the original caller from the stub. Used in dynamic executables. */ | |
2182 | else if (curr_inst == 0xe0400002) | |
2183 | { | |
2184 | /* The value we jump to is sitting in sp - 24. But that's | |
2185 | loaded several instructions before the be instruction. | |
2186 | I guess we could check for the previous instruction being | |
2187 | mtsp %r1,%sr0 if we want to do sanity checking. */ | |
2188 | return (read_memory_integer | |
2189 | (read_register (SP_REGNUM) - 24, 4)) & ~0x3; | |
2190 | } | |
2191 | ||
2192 | /* Haven't found the branch yet, but we're still in the stub. | |
2193 | Keep looking. */ | |
2194 | loc += 4; | |
2195 | } | |
66a1aa07 SG |
2196 | } |
2197 | ||
c598654a JL |
2198 | /* For the given instruction (INST), return any adjustment it makes |
2199 | to the stack pointer or zero for no adjustment. | |
2200 | ||
2201 | This only handles instructions commonly found in prologues. */ | |
2202 | ||
2203 | static int | |
2204 | prologue_inst_adjust_sp (inst) | |
2205 | unsigned long inst; | |
2206 | { | |
2207 | /* This must persist across calls. */ | |
2208 | static int save_high21; | |
2209 | ||
2210 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
2211 | if ((inst & 0xffffc000) == 0x37de0000) | |
2212 | return extract_14 (inst); | |
2213 | ||
2214 | /* stwm X,D(sp) */ | |
2215 | if ((inst & 0xffe00000) == 0x6fc00000) | |
2216 | return extract_14 (inst); | |
2217 | ||
2218 | /* addil high21,%r1; ldo low11,(%r1),%r30) | |
2219 | save high bits in save_high21 for later use. */ | |
2220 | if ((inst & 0xffe00000) == 0x28200000) | |
2221 | { | |
2222 | save_high21 = extract_21 (inst); | |
2223 | return 0; | |
2224 | } | |
2225 | ||
2226 | if ((inst & 0xffff0000) == 0x343e0000) | |
2227 | return save_high21 + extract_14 (inst); | |
2228 | ||
2229 | /* fstws as used by the HP compilers. */ | |
2230 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
2231 | return extract_5_load (inst); | |
2232 | ||
2233 | /* No adjustment. */ | |
2234 | return 0; | |
2235 | } | |
2236 | ||
2237 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
2238 | ||
2239 | static int | |
2240 | is_branch (inst) | |
2241 | unsigned long inst; | |
2242 | { | |
2243 | switch (inst >> 26) | |
2244 | { | |
2245 | case 0x20: | |
2246 | case 0x21: | |
2247 | case 0x22: | |
2248 | case 0x23: | |
2249 | case 0x28: | |
2250 | case 0x29: | |
2251 | case 0x2a: | |
2252 | case 0x2b: | |
2253 | case 0x30: | |
2254 | case 0x31: | |
2255 | case 0x32: | |
2256 | case 0x33: | |
2257 | case 0x38: | |
2258 | case 0x39: | |
2259 | case 0x3a: | |
2260 | return 1; | |
2261 | ||
2262 | default: | |
2263 | return 0; | |
2264 | } | |
2265 | } | |
2266 | ||
2267 | /* Return the register number for a GR which is saved by INST or | |
edd86fb0 | 2268 | zero it INST does not save a GR. */ |
c598654a JL |
2269 | |
2270 | static int | |
2271 | inst_saves_gr (inst) | |
2272 | unsigned long inst; | |
2273 | { | |
2274 | /* Does it look like a stw? */ | |
2275 | if ((inst >> 26) == 0x1a) | |
2276 | return extract_5R_store (inst); | |
2277 | ||
edd86fb0 | 2278 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ |
c598654a JL |
2279 | if ((inst >> 26) == 0x1b) |
2280 | return extract_5R_store (inst); | |
2281 | ||
edd86fb0 JL |
2282 | /* Does it look like sth or stb? HPC versions 9.0 and later use these |
2283 | too. */ | |
2284 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18) | |
2285 | return extract_5R_store (inst); | |
2286 | ||
c598654a JL |
2287 | return 0; |
2288 | } | |
2289 | ||
2290 | /* Return the register number for a FR which is saved by INST or | |
2291 | zero it INST does not save a FR. | |
2292 | ||
2293 | Note we only care about full 64bit register stores (that's the only | |
edd86fb0 JL |
2294 | kind of stores the prologue will use). |
2295 | ||
2296 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
c598654a JL |
2297 | |
2298 | static int | |
2299 | inst_saves_fr (inst) | |
2300 | unsigned long inst; | |
2301 | { | |
edd86fb0 | 2302 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
c598654a JL |
2303 | return extract_5r_store (inst); |
2304 | return 0; | |
2305 | } | |
2306 | ||
66a1aa07 | 2307 | /* Advance PC across any function entry prologue instructions |
c598654a | 2308 | to reach some "real" code. |
66a1aa07 | 2309 | |
c598654a JL |
2310 | Use information in the unwind table to determine what exactly should |
2311 | be in the prologue. */ | |
66a1aa07 SG |
2312 | |
2313 | CORE_ADDR | |
de482138 | 2314 | skip_prologue (pc) |
66a1aa07 SG |
2315 | CORE_ADDR pc; |
2316 | { | |
34df79fc | 2317 | char buf[4]; |
7e72b115 | 2318 | CORE_ADDR orig_pc = pc; |
c598654a | 2319 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; |
7e72b115 | 2320 | unsigned long args_stored, status, i, restart_gr, restart_fr; |
c598654a | 2321 | struct unwind_table_entry *u; |
66a1aa07 | 2322 | |
7e72b115 JL |
2323 | restart_gr = 0; |
2324 | restart_fr = 0; | |
2325 | ||
2326 | restart: | |
c598654a JL |
2327 | u = find_unwind_entry (pc); |
2328 | if (!u) | |
fdafbfad | 2329 | return pc; |
c598654a | 2330 | |
de482138 JL |
2331 | /* If we are not at the beginning of a function, then return now. */ |
2332 | if ((pc & ~0x3) != u->region_start) | |
2333 | return pc; | |
2334 | ||
c598654a JL |
2335 | /* This is how much of a frame adjustment we need to account for. */ |
2336 | stack_remaining = u->Total_frame_size << 3; | |
66a1aa07 | 2337 | |
c598654a JL |
2338 | /* Magic register saves we want to know about. */ |
2339 | save_rp = u->Save_RP; | |
2340 | save_sp = u->Save_SP; | |
2341 | ||
edd86fb0 JL |
2342 | /* An indication that args may be stored into the stack. Unfortunately |
2343 | the HPUX compilers tend to set this in cases where no args were | |
2344 | stored too!. */ | |
c85ff3a3 | 2345 | args_stored = 1; |
edd86fb0 | 2346 | |
c598654a JL |
2347 | /* Turn the Entry_GR field into a bitmask. */ |
2348 | save_gr = 0; | |
2349 | for (i = 3; i < u->Entry_GR + 3; i++) | |
66a1aa07 | 2350 | { |
c598654a JL |
2351 | /* Frame pointer gets saved into a special location. */ |
2352 | if (u->Save_SP && i == FP_REGNUM) | |
2353 | continue; | |
2354 | ||
2355 | save_gr |= (1 << i); | |
2356 | } | |
7e72b115 | 2357 | save_gr &= ~restart_gr; |
c598654a JL |
2358 | |
2359 | /* Turn the Entry_FR field into a bitmask too. */ | |
2360 | save_fr = 0; | |
2361 | for (i = 12; i < u->Entry_FR + 12; i++) | |
2362 | save_fr |= (1 << i); | |
7e72b115 | 2363 | save_fr &= ~restart_fr; |
c598654a JL |
2364 | |
2365 | /* Loop until we find everything of interest or hit a branch. | |
2366 | ||
2367 | For unoptimized GCC code and for any HP CC code this will never ever | |
2368 | examine any user instructions. | |
2369 | ||
2370 | For optimzied GCC code we're faced with problems. GCC will schedule | |
2371 | its prologue and make prologue instructions available for delay slot | |
2372 | filling. The end result is user code gets mixed in with the prologue | |
2373 | and a prologue instruction may be in the delay slot of the first branch | |
2374 | or call. | |
2375 | ||
2376 | Some unexpected things are expected with debugging optimized code, so | |
2377 | we allow this routine to walk past user instructions in optimized | |
2378 | GCC code. */ | |
edd86fb0 JL |
2379 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 |
2380 | || args_stored) | |
c598654a | 2381 | { |
edd86fb0 JL |
2382 | unsigned int reg_num; |
2383 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
e43169eb | 2384 | unsigned long old_save_rp, old_save_sp, next_inst; |
edd86fb0 JL |
2385 | |
2386 | /* Save copies of all the triggers so we can compare them later | |
2387 | (only for HPC). */ | |
2388 | old_save_gr = save_gr; | |
2389 | old_save_fr = save_fr; | |
2390 | old_save_rp = save_rp; | |
2391 | old_save_sp = save_sp; | |
2392 | old_stack_remaining = stack_remaining; | |
2393 | ||
c598654a JL |
2394 | status = target_read_memory (pc, buf, 4); |
2395 | inst = extract_unsigned_integer (buf, 4); | |
edd86fb0 | 2396 | |
c598654a JL |
2397 | /* Yow! */ |
2398 | if (status != 0) | |
2399 | return pc; | |
2400 | ||
2401 | /* Note the interesting effects of this instruction. */ | |
2402 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
2403 | ||
2404 | /* There is only one instruction used for saving RP into the stack. */ | |
2405 | if (inst == 0x6bc23fd9) | |
2406 | save_rp = 0; | |
2407 | ||
2408 | /* This is the only way we save SP into the stack. At this time | |
2409 | the HP compilers never bother to save SP into the stack. */ | |
2410 | if ((inst & 0xffffc000) == 0x6fc10000) | |
2411 | save_sp = 0; | |
2412 | ||
2413 | /* Account for general and floating-point register saves. */ | |
edd86fb0 JL |
2414 | reg_num = inst_saves_gr (inst); |
2415 | save_gr &= ~(1 << reg_num); | |
2416 | ||
2417 | /* Ugh. Also account for argument stores into the stack. | |
2418 | Unfortunately args_stored only tells us that some arguments | |
2419 | where stored into the stack. Not how many or what kind! | |
2420 | ||
2421 | This is a kludge as on the HP compiler sets this bit and it | |
2422 | never does prologue scheduling. So once we see one, skip past | |
2423 | all of them. We have similar code for the fp arg stores below. | |
2424 | ||
2425 | FIXME. Can still die if we have a mix of GR and FR argument | |
2426 | stores! */ | |
2427 | if (reg_num >= 23 && reg_num <= 26) | |
2428 | { | |
2429 | while (reg_num >= 23 && reg_num <= 26) | |
2430 | { | |
2431 | pc += 4; | |
2432 | status = target_read_memory (pc, buf, 4); | |
2433 | inst = extract_unsigned_integer (buf, 4); | |
2434 | if (status != 0) | |
2435 | return pc; | |
2436 | reg_num = inst_saves_gr (inst); | |
2437 | } | |
2438 | args_stored = 0; | |
2439 | continue; | |
2440 | } | |
2441 | ||
2442 | reg_num = inst_saves_fr (inst); | |
2443 | save_fr &= ~(1 << reg_num); | |
2444 | ||
2445 | status = target_read_memory (pc + 4, buf, 4); | |
2446 | next_inst = extract_unsigned_integer (buf, 4); | |
2447 | ||
2448 | /* Yow! */ | |
2449 | if (status != 0) | |
2450 | return pc; | |
2451 | ||
2452 | /* We've got to be read to handle the ldo before the fp register | |
2453 | save. */ | |
2454 | if ((inst & 0xfc000000) == 0x34000000 | |
2455 | && inst_saves_fr (next_inst) >= 4 | |
2456 | && inst_saves_fr (next_inst) <= 7) | |
2457 | { | |
2458 | /* So we drop into the code below in a reasonable state. */ | |
2459 | reg_num = inst_saves_fr (next_inst); | |
2460 | pc -= 4; | |
2461 | } | |
2462 | ||
2463 | /* Ugh. Also account for argument stores into the stack. | |
2464 | This is a kludge as on the HP compiler sets this bit and it | |
2465 | never does prologue scheduling. So once we see one, skip past | |
2466 | all of them. */ | |
2467 | if (reg_num >= 4 && reg_num <= 7) | |
2468 | { | |
2469 | while (reg_num >= 4 && reg_num <= 7) | |
2470 | { | |
2471 | pc += 8; | |
2472 | status = target_read_memory (pc, buf, 4); | |
2473 | inst = extract_unsigned_integer (buf, 4); | |
2474 | if (status != 0) | |
2475 | return pc; | |
2476 | if ((inst & 0xfc000000) != 0x34000000) | |
2477 | break; | |
2478 | status = target_read_memory (pc + 4, buf, 4); | |
2479 | next_inst = extract_unsigned_integer (buf, 4); | |
2480 | if (status != 0) | |
2481 | return pc; | |
2482 | reg_num = inst_saves_fr (next_inst); | |
2483 | } | |
2484 | args_stored = 0; | |
2485 | continue; | |
2486 | } | |
c598654a JL |
2487 | |
2488 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
2489 | instruction is in the delay slot of the first call/branch. */ | |
2490 | if (is_branch (inst)) | |
2491 | break; | |
2492 | ||
edd86fb0 JL |
2493 | /* What a crock. The HP compilers set args_stored even if no |
2494 | arguments were stored into the stack (boo hiss). This could | |
2495 | cause this code to then skip a bunch of user insns (up to the | |
2496 | first branch). | |
2497 | ||
2498 | To combat this we try to identify when args_stored was bogusly | |
2499 | set and clear it. We only do this when args_stored is nonzero, | |
2500 | all other resources are accounted for, and nothing changed on | |
2501 | this pass. */ | |
2502 | if (args_stored | |
2503 | && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
2504 | && old_save_gr == save_gr && old_save_fr == save_fr | |
2505 | && old_save_rp == save_rp && old_save_sp == save_sp | |
2506 | && old_stack_remaining == stack_remaining) | |
2507 | break; | |
2508 | ||
c598654a JL |
2509 | /* Bump the PC. */ |
2510 | pc += 4; | |
66a1aa07 | 2511 | } |
66a1aa07 | 2512 | |
7e72b115 JL |
2513 | /* We've got a tenative location for the end of the prologue. However |
2514 | because of limitations in the unwind descriptor mechanism we may | |
2515 | have went too far into user code looking for the save of a register | |
2516 | that does not exist. So, if there registers we expected to be saved | |
2517 | but never were, mask them out and restart. | |
2518 | ||
2519 | This should only happen in optimized code, and should be very rare. */ | |
2520 | if (save_gr || save_fr | |
2521 | && ! (restart_fr || restart_gr)) | |
2522 | { | |
2523 | pc = orig_pc; | |
2524 | restart_gr = save_gr; | |
2525 | restart_fr = save_fr; | |
2526 | goto restart; | |
2527 | } | |
2528 | ||
66a1aa07 SG |
2529 | return pc; |
2530 | } | |
2531 | ||
c598654a JL |
2532 | /* Put here the code to store, into a struct frame_saved_regs, |
2533 | the addresses of the saved registers of frame described by FRAME_INFO. | |
2534 | This includes special registers such as pc and fp saved in special | |
2535 | ways in the stack frame. sp is even more special: | |
2536 | the address we return for it IS the sp for the next frame. */ | |
2537 | ||
2538 | void | |
2539 | hppa_frame_find_saved_regs (frame_info, frame_saved_regs) | |
cb5f7128 | 2540 | struct frame_info *frame_info; |
c598654a JL |
2541 | struct frame_saved_regs *frame_saved_regs; |
2542 | { | |
2543 | CORE_ADDR pc; | |
2544 | struct unwind_table_entry *u; | |
2545 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
2546 | int status, i, reg; | |
2547 | char buf[4]; | |
2548 | int fp_loc = -1; | |
2549 | ||
2550 | /* Zero out everything. */ | |
2551 | memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs)); | |
2552 | ||
2553 | /* Call dummy frames always look the same, so there's no need to | |
2554 | examine the dummy code to determine locations of saved registers; | |
2555 | instead, let find_dummy_frame_regs fill in the correct offsets | |
2556 | for the saved registers. */ | |
cb5f7128 JL |
2557 | if ((frame_info->pc >= frame_info->frame |
2558 | && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH | |
2559 | + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8 | |
2560 | + 6 * 4))) | |
2561 | find_dummy_frame_regs (frame_info, frame_saved_regs); | |
c598654a | 2562 | |
70e43abe JL |
2563 | /* Interrupt handlers are special too. They lay out the register |
2564 | state in the exact same order as the register numbers in GDB. */ | |
cb5f7128 | 2565 | if (pc_in_interrupt_handler (frame_info->pc)) |
70e43abe JL |
2566 | { |
2567 | for (i = 0; i < NUM_REGS; i++) | |
2568 | { | |
2569 | /* SP is a little special. */ | |
2570 | if (i == SP_REGNUM) | |
2571 | frame_saved_regs->regs[SP_REGNUM] | |
cb5f7128 | 2572 | = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4); |
70e43abe | 2573 | else |
cb5f7128 | 2574 | frame_saved_regs->regs[i] = frame_info->frame + i * 4; |
70e43abe JL |
2575 | } |
2576 | return; | |
2577 | } | |
2578 | ||
7486c68d | 2579 | #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP |
70e43abe | 2580 | /* Handle signal handler callers. */ |
cb5f7128 | 2581 | if (frame_info->signal_handler_caller) |
70e43abe | 2582 | { |
cb5f7128 | 2583 | FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); |
70e43abe JL |
2584 | return; |
2585 | } | |
7486c68d | 2586 | #endif |
70e43abe | 2587 | |
c598654a | 2588 | /* Get the starting address of the function referred to by the PC |
669caa9c | 2589 | saved in frame. */ |
cb5f7128 | 2590 | pc = get_pc_function_start (frame_info->pc); |
c598654a JL |
2591 | |
2592 | /* Yow! */ | |
2593 | u = find_unwind_entry (pc); | |
2594 | if (!u) | |
2595 | return; | |
2596 | ||
2597 | /* This is how much of a frame adjustment we need to account for. */ | |
2598 | stack_remaining = u->Total_frame_size << 3; | |
2599 | ||
2600 | /* Magic register saves we want to know about. */ | |
2601 | save_rp = u->Save_RP; | |
2602 | save_sp = u->Save_SP; | |
2603 | ||
2604 | /* Turn the Entry_GR field into a bitmask. */ | |
2605 | save_gr = 0; | |
2606 | for (i = 3; i < u->Entry_GR + 3; i++) | |
2607 | { | |
2608 | /* Frame pointer gets saved into a special location. */ | |
2609 | if (u->Save_SP && i == FP_REGNUM) | |
2610 | continue; | |
2611 | ||
2612 | save_gr |= (1 << i); | |
2613 | } | |
2614 | ||
2615 | /* Turn the Entry_FR field into a bitmask too. */ | |
2616 | save_fr = 0; | |
2617 | for (i = 12; i < u->Entry_FR + 12; i++) | |
2618 | save_fr |= (1 << i); | |
2619 | ||
70e43abe JL |
2620 | /* The frame always represents the value of %sp at entry to the |
2621 | current function (and is thus equivalent to the "saved" stack | |
2622 | pointer. */ | |
cb5f7128 | 2623 | frame_saved_regs->regs[SP_REGNUM] = frame_info->frame; |
70e43abe | 2624 | |
c598654a JL |
2625 | /* Loop until we find everything of interest or hit a branch. |
2626 | ||
2627 | For unoptimized GCC code and for any HP CC code this will never ever | |
2628 | examine any user instructions. | |
2629 | ||
2630 | For optimzied GCC code we're faced with problems. GCC will schedule | |
2631 | its prologue and make prologue instructions available for delay slot | |
2632 | filling. The end result is user code gets mixed in with the prologue | |
2633 | and a prologue instruction may be in the delay slot of the first branch | |
2634 | or call. | |
2635 | ||
2636 | Some unexpected things are expected with debugging optimized code, so | |
2637 | we allow this routine to walk past user instructions in optimized | |
2638 | GCC code. */ | |
2639 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
2640 | { | |
2641 | status = target_read_memory (pc, buf, 4); | |
2642 | inst = extract_unsigned_integer (buf, 4); | |
2643 | ||
2644 | /* Yow! */ | |
2645 | if (status != 0) | |
2646 | return; | |
2647 | ||
2648 | /* Note the interesting effects of this instruction. */ | |
2649 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
2650 | ||
2651 | /* There is only one instruction used for saving RP into the stack. */ | |
2652 | if (inst == 0x6bc23fd9) | |
2653 | { | |
2654 | save_rp = 0; | |
cb5f7128 | 2655 | frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20; |
c598654a JL |
2656 | } |
2657 | ||
70e43abe JL |
2658 | /* Just note that we found the save of SP into the stack. The |
2659 | value for frame_saved_regs was computed above. */ | |
c598654a | 2660 | if ((inst & 0xffffc000) == 0x6fc10000) |
70e43abe | 2661 | save_sp = 0; |
c598654a JL |
2662 | |
2663 | /* Account for general and floating-point register saves. */ | |
2664 | reg = inst_saves_gr (inst); | |
2665 | if (reg >= 3 && reg <= 18 | |
2666 | && (!u->Save_SP || reg != FP_REGNUM)) | |
2667 | { | |
2668 | save_gr &= ~(1 << reg); | |
2669 | ||
2670 | /* stwm with a positive displacement is a *post modify*. */ | |
2671 | if ((inst >> 26) == 0x1b | |
2672 | && extract_14 (inst) >= 0) | |
cb5f7128 | 2673 | frame_saved_regs->regs[reg] = frame_info->frame; |
c598654a JL |
2674 | else |
2675 | { | |
2676 | /* Handle code with and without frame pointers. */ | |
2677 | if (u->Save_SP) | |
2678 | frame_saved_regs->regs[reg] | |
cb5f7128 | 2679 | = frame_info->frame + extract_14 (inst); |
c598654a JL |
2680 | else |
2681 | frame_saved_regs->regs[reg] | |
cb5f7128 | 2682 | = frame_info->frame + (u->Total_frame_size << 3) |
c598654a JL |
2683 | + extract_14 (inst); |
2684 | } | |
2685 | } | |
2686 | ||
2687 | ||
2688 | /* GCC handles callee saved FP regs a little differently. | |
2689 | ||
2690 | It emits an instruction to put the value of the start of | |
2691 | the FP store area into %r1. It then uses fstds,ma with | |
2692 | a basereg of %r1 for the stores. | |
2693 | ||
2694 | HP CC emits them at the current stack pointer modifying | |
2695 | the stack pointer as it stores each register. */ | |
2696 | ||
2697 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
2698 | if ((inst & 0xffffc000) == 0x34610000 | |
2699 | || (inst & 0xffffc000) == 0x37c10000) | |
2700 | fp_loc = extract_14 (inst); | |
2701 | ||
2702 | reg = inst_saves_fr (inst); | |
2703 | if (reg >= 12 && reg <= 21) | |
2704 | { | |
2705 | /* Note +4 braindamage below is necessary because the FP status | |
2706 | registers are internally 8 registers rather than the expected | |
2707 | 4 registers. */ | |
2708 | save_fr &= ~(1 << reg); | |
2709 | if (fp_loc == -1) | |
2710 | { | |
2711 | /* 1st HP CC FP register store. After this instruction | |
2712 | we've set enough state that the GCC and HPCC code are | |
2713 | both handled in the same manner. */ | |
cb5f7128 | 2714 | frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame; |
c598654a JL |
2715 | fp_loc = 8; |
2716 | } | |
2717 | else | |
2718 | { | |
2719 | frame_saved_regs->regs[reg + FP0_REGNUM + 4] | |
cb5f7128 | 2720 | = frame_info->frame + fp_loc; |
c598654a JL |
2721 | fp_loc += 8; |
2722 | } | |
2723 | } | |
2724 | ||
2725 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
2726 | instruction is in the delay slot of the first call/branch. */ | |
2727 | if (is_branch (inst)) | |
2728 | break; | |
2729 | ||
2730 | /* Bump the PC. */ | |
2731 | pc += 4; | |
2732 | } | |
2733 | } | |
2734 | ||
63757ecd JK |
2735 | #ifdef MAINTENANCE_CMDS |
2736 | ||
66a1aa07 SG |
2737 | static void |
2738 | unwind_command (exp, from_tty) | |
2739 | char *exp; | |
2740 | int from_tty; | |
2741 | { | |
2742 | CORE_ADDR address; | |
d8afcce9 | 2743 | struct unwind_table_entry *u; |
66a1aa07 SG |
2744 | |
2745 | /* If we have an expression, evaluate it and use it as the address. */ | |
2746 | ||
2747 | if (exp != 0 && *exp != 0) | |
2748 | address = parse_and_eval_address (exp); | |
2749 | else | |
2750 | return; | |
2751 | ||
d8afcce9 | 2752 | u = find_unwind_entry (address); |
66a1aa07 | 2753 | |
d8afcce9 | 2754 | if (!u) |
66a1aa07 | 2755 | { |
d8afcce9 | 2756 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); |
66a1aa07 SG |
2757 | return; |
2758 | } | |
2759 | ||
d8afcce9 SG |
2760 | printf_unfiltered ("unwind_table_entry (0x%x):\n", u); |
2761 | ||
2762 | printf_unfiltered ("\tregion_start = "); | |
2763 | print_address (u->region_start, gdb_stdout); | |
2764 | ||
2765 | printf_unfiltered ("\n\tregion_end = "); | |
2766 | print_address (u->region_end, gdb_stdout); | |
2767 | ||
2768 | #ifdef __STDC__ | |
2769 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); | |
2770 | #else | |
2771 | #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD"); | |
2772 | #endif | |
2773 | ||
2774 | printf_unfiltered ("\n\tflags ="); | |
2775 | pif (Cannot_unwind); | |
2776 | pif (Millicode); | |
2777 | pif (Millicode_save_sr0); | |
2778 | pif (Entry_SR); | |
2779 | pif (Args_stored); | |
2780 | pif (Variable_Frame); | |
2781 | pif (Separate_Package_Body); | |
2782 | pif (Frame_Extension_Millicode); | |
2783 | pif (Stack_Overflow_Check); | |
2784 | pif (Two_Instruction_SP_Increment); | |
2785 | pif (Ada_Region); | |
2786 | pif (Save_SP); | |
2787 | pif (Save_RP); | |
2788 | pif (Save_MRP_in_frame); | |
2789 | pif (extn_ptr_defined); | |
2790 | pif (Cleanup_defined); | |
2791 | pif (MPE_XL_interrupt_marker); | |
2792 | pif (HP_UX_interrupt_marker); | |
2793 | pif (Large_frame); | |
2794 | ||
2795 | putchar_unfiltered ('\n'); | |
2796 | ||
2797 | #ifdef __STDC__ | |
2798 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); | |
2799 | #else | |
2800 | #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD); | |
2801 | #endif | |
2802 | ||
2803 | pin (Region_description); | |
2804 | pin (Entry_FR); | |
2805 | pin (Entry_GR); | |
2806 | pin (Total_frame_size); | |
66a1aa07 | 2807 | } |
976bb0be | 2808 | #endif /* MAINTENANCE_CMDS */ |
63757ecd JK |
2809 | |
2810 | void | |
2811 | _initialize_hppa_tdep () | |
2812 | { | |
18b46e7c SS |
2813 | tm_print_insn = print_insn_hppa; |
2814 | ||
976bb0be | 2815 | #ifdef MAINTENANCE_CMDS |
63757ecd JK |
2816 | add_cmd ("unwind", class_maintenance, unwind_command, |
2817 | "Print unwind table entry at given address.", | |
2818 | &maintenanceprintlist); | |
63757ecd | 2819 | #endif /* MAINTENANCE_CMDS */ |
976bb0be | 2820 | } |