]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Symbol table lookup for the GNU debugger, GDB. |
8926118c | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
4c38e0a4 JB |
4 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009, |
5 | 2010 Free Software Foundation, Inc. | |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "gdbcore.h" | |
26 | #include "frame.h" | |
27 | #include "target.h" | |
28 | #include "value.h" | |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "gdbcmd.h" | |
32 | #include "call-cmds.h" | |
88987551 | 33 | #include "gdb_regex.h" |
c906108c SS |
34 | #include "expression.h" |
35 | #include "language.h" | |
36 | #include "demangle.h" | |
37 | #include "inferior.h" | |
c5f0f3d0 | 38 | #include "linespec.h" |
0378c332 | 39 | #include "source.h" |
a7fdf62f | 40 | #include "filenames.h" /* for FILENAME_CMP */ |
1bae87b9 | 41 | #include "objc-lang.h" |
1f8173e6 | 42 | #include "ada-lang.h" |
cd6c7346 | 43 | #include "p-lang.h" |
ff013f42 | 44 | #include "addrmap.h" |
c906108c | 45 | |
2de7ced7 DJ |
46 | #include "hashtab.h" |
47 | ||
04ea0df1 | 48 | #include "gdb_obstack.h" |
fe898f56 | 49 | #include "block.h" |
de4f826b | 50 | #include "dictionary.h" |
c906108c SS |
51 | |
52 | #include <sys/types.h> | |
53 | #include <fcntl.h> | |
54 | #include "gdb_string.h" | |
55 | #include "gdb_stat.h" | |
56 | #include <ctype.h> | |
015a42b4 | 57 | #include "cp-abi.h" |
71c25dea | 58 | #include "cp-support.h" |
ea53e89f | 59 | #include "observer.h" |
94277a38 | 60 | #include "gdb_assert.h" |
3a40aaa0 | 61 | #include "solist.h" |
9a044a89 TT |
62 | #include "macrotab.h" |
63 | #include "macroscope.h" | |
c906108c | 64 | |
c906108c SS |
65 | /* Prototypes for local functions */ |
66 | ||
a14ed312 | 67 | static void completion_list_add_name (char *, char *, int, char *, char *); |
c906108c | 68 | |
a14ed312 | 69 | static void rbreak_command (char *, int); |
c906108c | 70 | |
a14ed312 | 71 | static void types_info (char *, int); |
c906108c | 72 | |
a14ed312 | 73 | static void functions_info (char *, int); |
c906108c | 74 | |
a14ed312 | 75 | static void variables_info (char *, int); |
c906108c | 76 | |
a14ed312 | 77 | static void sources_info (char *, int); |
c906108c | 78 | |
d092d1a2 | 79 | static void output_source_filename (const char *, int *); |
c906108c | 80 | |
a14ed312 | 81 | static int find_line_common (struct linetable *, int, int *); |
c906108c | 82 | |
50641945 FN |
83 | /* This one is used by linespec.c */ |
84 | ||
85 | char *operator_chars (char *p, char **end); | |
86 | ||
3121eff0 | 87 | static struct symbol *lookup_symbol_aux (const char *name, |
5ad1c190 | 88 | const char *linkage_name, |
3121eff0 | 89 | const struct block *block, |
176620f1 | 90 | const domain_enum domain, |
53c5240f | 91 | enum language language, |
21b556f4 | 92 | int *is_a_field_of_this); |
fba7f19c | 93 | |
e4051eeb DC |
94 | static |
95 | struct symbol *lookup_symbol_aux_local (const char *name, | |
5ad1c190 | 96 | const char *linkage_name, |
e4051eeb | 97 | const struct block *block, |
21b556f4 | 98 | const domain_enum domain); |
8155455b DC |
99 | |
100 | static | |
101 | struct symbol *lookup_symbol_aux_symtabs (int block_index, | |
102 | const char *name, | |
5ad1c190 | 103 | const char *linkage_name, |
21b556f4 | 104 | const domain_enum domain); |
8155455b DC |
105 | |
106 | static | |
107 | struct symbol *lookup_symbol_aux_psymtabs (int block_index, | |
108 | const char *name, | |
5ad1c190 | 109 | const char *linkage_name, |
21b556f4 | 110 | const domain_enum domain); |
fba7f19c | 111 | |
a14ed312 | 112 | static int file_matches (char *, char **, int); |
c906108c | 113 | |
176620f1 | 114 | static void print_symbol_info (domain_enum, |
a14ed312 | 115 | struct symtab *, struct symbol *, int, char *); |
c906108c | 116 | |
a14ed312 | 117 | static void print_msymbol_info (struct minimal_symbol *); |
c906108c | 118 | |
176620f1 | 119 | static void symtab_symbol_info (char *, domain_enum, int); |
c906108c | 120 | |
a14ed312 | 121 | void _initialize_symtab (void); |
c906108c SS |
122 | |
123 | /* */ | |
124 | ||
717d2f5a JB |
125 | /* Allow the user to configure the debugger behavior with respect |
126 | to multiple-choice menus when more than one symbol matches during | |
127 | a symbol lookup. */ | |
128 | ||
7fc830e2 MK |
129 | const char multiple_symbols_ask[] = "ask"; |
130 | const char multiple_symbols_all[] = "all"; | |
131 | const char multiple_symbols_cancel[] = "cancel"; | |
717d2f5a JB |
132 | static const char *multiple_symbols_modes[] = |
133 | { | |
134 | multiple_symbols_ask, | |
135 | multiple_symbols_all, | |
136 | multiple_symbols_cancel, | |
137 | NULL | |
138 | }; | |
139 | static const char *multiple_symbols_mode = multiple_symbols_all; | |
140 | ||
141 | /* Read-only accessor to AUTO_SELECT_MODE. */ | |
142 | ||
143 | const char * | |
144 | multiple_symbols_select_mode (void) | |
145 | { | |
146 | return multiple_symbols_mode; | |
147 | } | |
148 | ||
c906108c | 149 | /* Block in which the most recently searched-for symbol was found. |
9af17804 | 150 | Might be better to make this a parameter to lookup_symbol and |
c906108c SS |
151 | value_of_this. */ |
152 | ||
153 | const struct block *block_found; | |
154 | ||
c906108c SS |
155 | /* Check for a symtab of a specific name; first in symtabs, then in |
156 | psymtabs. *If* there is no '/' in the name, a match after a '/' | |
157 | in the symtab filename will also work. */ | |
158 | ||
1b15f1fa TT |
159 | struct symtab * |
160 | lookup_symtab (const char *name) | |
c906108c | 161 | { |
52f0bd74 AC |
162 | struct symtab *s; |
163 | struct partial_symtab *ps; | |
164 | struct objfile *objfile; | |
58d370e0 | 165 | char *real_path = NULL; |
f079a2e5 | 166 | char *full_path = NULL; |
58d370e0 TT |
167 | |
168 | /* Here we are interested in canonicalizing an absolute path, not | |
169 | absolutizing a relative path. */ | |
170 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
171 | { |
172 | full_path = xfullpath (name); | |
173 | make_cleanup (xfree, full_path); | |
174 | real_path = gdb_realpath (name); | |
175 | make_cleanup (xfree, real_path); | |
176 | } | |
c906108c | 177 | |
c5aa993b | 178 | got_symtab: |
c906108c SS |
179 | |
180 | /* First, search for an exact match */ | |
181 | ||
182 | ALL_SYMTABS (objfile, s) | |
58d370e0 | 183 | { |
a7fdf62f | 184 | if (FILENAME_CMP (name, s->filename) == 0) |
58d370e0 | 185 | { |
58d370e0 TT |
186 | return s; |
187 | } | |
9af17804 | 188 | |
58d370e0 TT |
189 | /* If the user gave us an absolute path, try to find the file in |
190 | this symtab and use its absolute path. */ | |
9af17804 | 191 | |
f079a2e5 JB |
192 | if (full_path != NULL) |
193 | { | |
09bcec80 BR |
194 | const char *fp = symtab_to_fullname (s); |
195 | if (fp != NULL && FILENAME_CMP (full_path, fp) == 0) | |
196 | { | |
197 | return s; | |
198 | } | |
f079a2e5 JB |
199 | } |
200 | ||
58d370e0 TT |
201 | if (real_path != NULL) |
202 | { | |
09bcec80 BR |
203 | char *fullname = symtab_to_fullname (s); |
204 | if (fullname != NULL) | |
205 | { | |
206 | char *rp = gdb_realpath (fullname); | |
207 | make_cleanup (xfree, rp); | |
208 | if (FILENAME_CMP (real_path, rp) == 0) | |
209 | { | |
210 | return s; | |
211 | } | |
212 | } | |
58d370e0 TT |
213 | } |
214 | } | |
215 | ||
c906108c SS |
216 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
217 | ||
caadab2c | 218 | if (lbasename (name) == name) |
c906108c | 219 | ALL_SYMTABS (objfile, s) |
c5aa993b | 220 | { |
31889e00 | 221 | if (FILENAME_CMP (lbasename (s->filename), name) == 0) |
c5aa993b JM |
222 | return s; |
223 | } | |
c906108c SS |
224 | |
225 | /* Same search rules as above apply here, but now we look thru the | |
226 | psymtabs. */ | |
227 | ||
228 | ps = lookup_partial_symtab (name); | |
229 | if (!ps) | |
230 | return (NULL); | |
231 | ||
c5aa993b | 232 | if (ps->readin) |
8a3fe4f8 | 233 | error (_("Internal: readin %s pst for `%s' found when no symtab found."), |
c5aa993b | 234 | ps->filename, name); |
c906108c SS |
235 | |
236 | s = PSYMTAB_TO_SYMTAB (ps); | |
237 | ||
238 | if (s) | |
239 | return s; | |
240 | ||
241 | /* At this point, we have located the psymtab for this file, but | |
242 | the conversion to a symtab has failed. This usually happens | |
243 | when we are looking up an include file. In this case, | |
244 | PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has | |
245 | been created. So, we need to run through the symtabs again in | |
246 | order to find the file. | |
247 | XXX - This is a crock, and should be fixed inside of the the | |
248 | symbol parsing routines. */ | |
249 | goto got_symtab; | |
250 | } | |
251 | ||
c906108c SS |
252 | /* Lookup the partial symbol table of a source file named NAME. |
253 | *If* there is no '/' in the name, a match after a '/' | |
254 | in the psymtab filename will also work. */ | |
255 | ||
256 | struct partial_symtab * | |
1f8cc6db | 257 | lookup_partial_symtab (const char *name) |
c906108c | 258 | { |
52f0bd74 AC |
259 | struct partial_symtab *pst; |
260 | struct objfile *objfile; | |
f079a2e5 | 261 | char *full_path = NULL; |
58d370e0 TT |
262 | char *real_path = NULL; |
263 | ||
264 | /* Here we are interested in canonicalizing an absolute path, not | |
265 | absolutizing a relative path. */ | |
266 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
267 | { |
268 | full_path = xfullpath (name); | |
269 | make_cleanup (xfree, full_path); | |
270 | real_path = gdb_realpath (name); | |
271 | make_cleanup (xfree, real_path); | |
272 | } | |
c5aa993b | 273 | |
c906108c | 274 | ALL_PSYMTABS (objfile, pst) |
c5aa993b | 275 | { |
a7fdf62f | 276 | if (FILENAME_CMP (name, pst->filename) == 0) |
c5aa993b JM |
277 | { |
278 | return (pst); | |
279 | } | |
f079a2e5 | 280 | |
58d370e0 TT |
281 | /* If the user gave us an absolute path, try to find the file in |
282 | this symtab and use its absolute path. */ | |
f079a2e5 | 283 | if (full_path != NULL) |
58d370e0 | 284 | { |
d9c8471e | 285 | psymtab_to_fullname (pst); |
58d370e0 | 286 | if (pst->fullname != NULL |
f079a2e5 | 287 | && FILENAME_CMP (full_path, pst->fullname) == 0) |
58d370e0 | 288 | { |
58d370e0 TT |
289 | return pst; |
290 | } | |
291 | } | |
c906108c | 292 | |
f079a2e5 JB |
293 | if (real_path != NULL) |
294 | { | |
295 | char *rp = NULL; | |
d9c8471e | 296 | psymtab_to_fullname (pst); |
f079a2e5 JB |
297 | if (pst->fullname != NULL) |
298 | { | |
299 | rp = gdb_realpath (pst->fullname); | |
300 | make_cleanup (xfree, rp); | |
301 | } | |
302 | if (rp != NULL && FILENAME_CMP (real_path, rp) == 0) | |
303 | { | |
304 | return pst; | |
305 | } | |
306 | } | |
307 | } | |
58d370e0 | 308 | |
c906108c SS |
309 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
310 | ||
caadab2c | 311 | if (lbasename (name) == name) |
c906108c | 312 | ALL_PSYMTABS (objfile, pst) |
c5aa993b | 313 | { |
31889e00 | 314 | if (FILENAME_CMP (lbasename (pst->filename), name) == 0) |
c5aa993b JM |
315 | return (pst); |
316 | } | |
c906108c SS |
317 | |
318 | return (NULL); | |
319 | } | |
320 | \f | |
321 | /* Mangle a GDB method stub type. This actually reassembles the pieces of the | |
322 | full method name, which consist of the class name (from T), the unadorned | |
323 | method name from METHOD_ID, and the signature for the specific overload, | |
324 | specified by SIGNATURE_ID. Note that this function is g++ specific. */ | |
325 | ||
326 | char * | |
fba45db2 | 327 | gdb_mangle_name (struct type *type, int method_id, int signature_id) |
c906108c SS |
328 | { |
329 | int mangled_name_len; | |
330 | char *mangled_name; | |
331 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
332 | struct fn_field *method = &f[signature_id]; | |
333 | char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); | |
334 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); | |
335 | char *newname = type_name_no_tag (type); | |
336 | ||
337 | /* Does the form of physname indicate that it is the full mangled name | |
338 | of a constructor (not just the args)? */ | |
339 | int is_full_physname_constructor; | |
340 | ||
341 | int is_constructor; | |
015a42b4 | 342 | int is_destructor = is_destructor_name (physname); |
c906108c SS |
343 | /* Need a new type prefix. */ |
344 | char *const_prefix = method->is_const ? "C" : ""; | |
345 | char *volatile_prefix = method->is_volatile ? "V" : ""; | |
346 | char buf[20]; | |
347 | int len = (newname == NULL ? 0 : strlen (newname)); | |
348 | ||
43630227 PS |
349 | /* Nothing to do if physname already contains a fully mangled v3 abi name |
350 | or an operator name. */ | |
351 | if ((physname[0] == '_' && physname[1] == 'Z') | |
352 | || is_operator_name (field_name)) | |
235d1e03 EZ |
353 | return xstrdup (physname); |
354 | ||
015a42b4 | 355 | is_full_physname_constructor = is_constructor_name (physname); |
c906108c SS |
356 | |
357 | is_constructor = | |
6314a349 | 358 | is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0); |
c906108c SS |
359 | |
360 | if (!is_destructor) | |
c5aa993b | 361 | is_destructor = (strncmp (physname, "__dt", 4) == 0); |
c906108c SS |
362 | |
363 | if (is_destructor || is_full_physname_constructor) | |
364 | { | |
c5aa993b JM |
365 | mangled_name = (char *) xmalloc (strlen (physname) + 1); |
366 | strcpy (mangled_name, physname); | |
c906108c SS |
367 | return mangled_name; |
368 | } | |
369 | ||
370 | if (len == 0) | |
371 | { | |
372 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); | |
373 | } | |
374 | else if (physname[0] == 't' || physname[0] == 'Q') | |
375 | { | |
376 | /* The physname for template and qualified methods already includes | |
c5aa993b | 377 | the class name. */ |
c906108c SS |
378 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); |
379 | newname = NULL; | |
380 | len = 0; | |
381 | } | |
382 | else | |
383 | { | |
384 | sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len); | |
385 | } | |
386 | mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) | |
235d1e03 | 387 | + strlen (buf) + len + strlen (physname) + 1); |
c906108c | 388 | |
c906108c | 389 | { |
c5aa993b | 390 | mangled_name = (char *) xmalloc (mangled_name_len); |
c906108c SS |
391 | if (is_constructor) |
392 | mangled_name[0] = '\0'; | |
393 | else | |
394 | strcpy (mangled_name, field_name); | |
395 | } | |
396 | strcat (mangled_name, buf); | |
397 | /* If the class doesn't have a name, i.e. newname NULL, then we just | |
398 | mangle it using 0 for the length of the class. Thus it gets mangled | |
c5aa993b | 399 | as something starting with `::' rather than `classname::'. */ |
c906108c SS |
400 | if (newname != NULL) |
401 | strcat (mangled_name, newname); | |
402 | ||
403 | strcat (mangled_name, physname); | |
404 | return (mangled_name); | |
405 | } | |
12af6855 JB |
406 | |
407 | \f | |
89aad1f9 EZ |
408 | /* Initialize the language dependent portion of a symbol |
409 | depending upon the language for the symbol. */ | |
410 | void | |
411 | symbol_init_language_specific (struct general_symbol_info *gsymbol, | |
412 | enum language language) | |
413 | { | |
414 | gsymbol->language = language; | |
415 | if (gsymbol->language == language_cplus | |
5784d15e AF |
416 | || gsymbol->language == language_java |
417 | || gsymbol->language == language_objc) | |
89aad1f9 EZ |
418 | { |
419 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
420 | } | |
89aad1f9 EZ |
421 | else |
422 | { | |
423 | memset (&gsymbol->language_specific, 0, | |
424 | sizeof (gsymbol->language_specific)); | |
425 | } | |
426 | } | |
427 | ||
2de7ced7 DJ |
428 | /* Functions to initialize a symbol's mangled name. */ |
429 | ||
04a679b8 TT |
430 | /* Objects of this type are stored in the demangled name hash table. */ |
431 | struct demangled_name_entry | |
432 | { | |
433 | char *mangled; | |
434 | char demangled[1]; | |
435 | }; | |
436 | ||
437 | /* Hash function for the demangled name hash. */ | |
438 | static hashval_t | |
439 | hash_demangled_name_entry (const void *data) | |
440 | { | |
441 | const struct demangled_name_entry *e = data; | |
442 | return htab_hash_string (e->mangled); | |
443 | } | |
444 | ||
445 | /* Equality function for the demangled name hash. */ | |
446 | static int | |
447 | eq_demangled_name_entry (const void *a, const void *b) | |
448 | { | |
449 | const struct demangled_name_entry *da = a; | |
450 | const struct demangled_name_entry *db = b; | |
451 | return strcmp (da->mangled, db->mangled) == 0; | |
452 | } | |
453 | ||
2de7ced7 DJ |
454 | /* Create the hash table used for demangled names. Each hash entry is |
455 | a pair of strings; one for the mangled name and one for the demangled | |
456 | name. The entry is hashed via just the mangled name. */ | |
457 | ||
458 | static void | |
459 | create_demangled_names_hash (struct objfile *objfile) | |
460 | { | |
461 | /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. | |
9af17804 | 462 | The hash table code will round this up to the next prime number. |
2de7ced7 DJ |
463 | Choosing a much larger table size wastes memory, and saves only about |
464 | 1% in symbol reading. */ | |
465 | ||
aa2ee5f6 | 466 | objfile->demangled_names_hash = htab_create_alloc |
04a679b8 | 467 | (256, hash_demangled_name_entry, eq_demangled_name_entry, |
aa2ee5f6 | 468 | NULL, xcalloc, xfree); |
2de7ced7 | 469 | } |
12af6855 | 470 | |
2de7ced7 | 471 | /* Try to determine the demangled name for a symbol, based on the |
12af6855 JB |
472 | language of that symbol. If the language is set to language_auto, |
473 | it will attempt to find any demangling algorithm that works and | |
2de7ced7 DJ |
474 | then set the language appropriately. The returned name is allocated |
475 | by the demangler and should be xfree'd. */ | |
12af6855 | 476 | |
2de7ced7 DJ |
477 | static char * |
478 | symbol_find_demangled_name (struct general_symbol_info *gsymbol, | |
479 | const char *mangled) | |
12af6855 | 480 | { |
12af6855 JB |
481 | char *demangled = NULL; |
482 | ||
483 | if (gsymbol->language == language_unknown) | |
484 | gsymbol->language = language_auto; | |
1bae87b9 AF |
485 | |
486 | if (gsymbol->language == language_objc | |
487 | || gsymbol->language == language_auto) | |
488 | { | |
489 | demangled = | |
490 | objc_demangle (mangled, 0); | |
491 | if (demangled != NULL) | |
492 | { | |
493 | gsymbol->language = language_objc; | |
494 | return demangled; | |
495 | } | |
496 | } | |
12af6855 JB |
497 | if (gsymbol->language == language_cplus |
498 | || gsymbol->language == language_auto) | |
499 | { | |
500 | demangled = | |
2de7ced7 | 501 | cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI); |
12af6855 | 502 | if (demangled != NULL) |
2de7ced7 DJ |
503 | { |
504 | gsymbol->language = language_cplus; | |
505 | return demangled; | |
506 | } | |
12af6855 JB |
507 | } |
508 | if (gsymbol->language == language_java) | |
509 | { | |
510 | demangled = | |
2de7ced7 | 511 | cplus_demangle (mangled, |
12af6855 JB |
512 | DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA); |
513 | if (demangled != NULL) | |
2de7ced7 DJ |
514 | { |
515 | gsymbol->language = language_java; | |
516 | return demangled; | |
517 | } | |
518 | } | |
519 | return NULL; | |
520 | } | |
521 | ||
980cae7a | 522 | /* Set both the mangled and demangled (if any) names for GSYMBOL based |
04a679b8 TT |
523 | on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the |
524 | objfile's obstack; but if COPY_NAME is 0 and if NAME is | |
525 | NUL-terminated, then this function assumes that NAME is already | |
526 | correctly saved (either permanently or with a lifetime tied to the | |
527 | objfile), and it will not be copied. | |
528 | ||
529 | The hash table corresponding to OBJFILE is used, and the memory | |
530 | comes from that objfile's objfile_obstack. LINKAGE_NAME is copied, | |
531 | so the pointer can be discarded after calling this function. */ | |
2de7ced7 | 532 | |
d2a52b27 DC |
533 | /* We have to be careful when dealing with Java names: when we run |
534 | into a Java minimal symbol, we don't know it's a Java symbol, so it | |
535 | gets demangled as a C++ name. This is unfortunate, but there's not | |
536 | much we can do about it: but when demangling partial symbols and | |
537 | regular symbols, we'd better not reuse the wrong demangled name. | |
538 | (See PR gdb/1039.) We solve this by putting a distinctive prefix | |
539 | on Java names when storing them in the hash table. */ | |
540 | ||
541 | /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I | |
542 | don't mind the Java prefix so much: different languages have | |
543 | different demangling requirements, so it's only natural that we | |
544 | need to keep language data around in our demangling cache. But | |
545 | it's not good that the minimal symbol has the wrong demangled name. | |
546 | Unfortunately, I can't think of any easy solution to that | |
547 | problem. */ | |
548 | ||
549 | #define JAVA_PREFIX "##JAVA$$" | |
550 | #define JAVA_PREFIX_LEN 8 | |
551 | ||
2de7ced7 DJ |
552 | void |
553 | symbol_set_names (struct general_symbol_info *gsymbol, | |
04a679b8 TT |
554 | const char *linkage_name, int len, int copy_name, |
555 | struct objfile *objfile) | |
2de7ced7 | 556 | { |
04a679b8 | 557 | struct demangled_name_entry **slot; |
980cae7a DC |
558 | /* A 0-terminated copy of the linkage name. */ |
559 | const char *linkage_name_copy; | |
d2a52b27 DC |
560 | /* A copy of the linkage name that might have a special Java prefix |
561 | added to it, for use when looking names up in the hash table. */ | |
562 | const char *lookup_name; | |
563 | /* The length of lookup_name. */ | |
564 | int lookup_len; | |
04a679b8 | 565 | struct demangled_name_entry entry; |
2de7ced7 | 566 | |
b06ead72 JB |
567 | if (gsymbol->language == language_ada) |
568 | { | |
569 | /* In Ada, we do the symbol lookups using the mangled name, so | |
570 | we can save some space by not storing the demangled name. | |
571 | ||
572 | As a side note, we have also observed some overlap between | |
573 | the C++ mangling and Ada mangling, similarly to what has | |
574 | been observed with Java. Because we don't store the demangled | |
575 | name with the symbol, we don't need to use the same trick | |
576 | as Java. */ | |
04a679b8 TT |
577 | if (!copy_name) |
578 | gsymbol->name = (char *) linkage_name; | |
579 | else | |
580 | { | |
581 | gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1); | |
582 | memcpy (gsymbol->name, linkage_name, len); | |
583 | gsymbol->name[len] = '\0'; | |
584 | } | |
b06ead72 JB |
585 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; |
586 | ||
587 | return; | |
588 | } | |
589 | ||
04a679b8 TT |
590 | if (objfile->demangled_names_hash == NULL) |
591 | create_demangled_names_hash (objfile); | |
592 | ||
980cae7a DC |
593 | /* The stabs reader generally provides names that are not |
594 | NUL-terminated; most of the other readers don't do this, so we | |
d2a52b27 DC |
595 | can just use the given copy, unless we're in the Java case. */ |
596 | if (gsymbol->language == language_java) | |
597 | { | |
598 | char *alloc_name; | |
599 | lookup_len = len + JAVA_PREFIX_LEN; | |
600 | ||
601 | alloc_name = alloca (lookup_len + 1); | |
602 | memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN); | |
603 | memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len); | |
604 | alloc_name[lookup_len] = '\0'; | |
605 | ||
606 | lookup_name = alloc_name; | |
607 | linkage_name_copy = alloc_name + JAVA_PREFIX_LEN; | |
608 | } | |
609 | else if (linkage_name[len] != '\0') | |
2de7ced7 | 610 | { |
980cae7a | 611 | char *alloc_name; |
d2a52b27 | 612 | lookup_len = len; |
980cae7a | 613 | |
d2a52b27 | 614 | alloc_name = alloca (lookup_len + 1); |
980cae7a | 615 | memcpy (alloc_name, linkage_name, len); |
d2a52b27 | 616 | alloc_name[lookup_len] = '\0'; |
980cae7a | 617 | |
d2a52b27 | 618 | lookup_name = alloc_name; |
980cae7a | 619 | linkage_name_copy = alloc_name; |
2de7ced7 DJ |
620 | } |
621 | else | |
980cae7a | 622 | { |
d2a52b27 DC |
623 | lookup_len = len; |
624 | lookup_name = linkage_name; | |
980cae7a DC |
625 | linkage_name_copy = linkage_name; |
626 | } | |
2de7ced7 | 627 | |
04a679b8 TT |
628 | entry.mangled = (char *) lookup_name; |
629 | slot = ((struct demangled_name_entry **) | |
630 | htab_find_slot (objfile->demangled_names_hash, | |
631 | &entry, INSERT)); | |
2de7ced7 DJ |
632 | |
633 | /* If this name is not in the hash table, add it. */ | |
634 | if (*slot == NULL) | |
635 | { | |
980cae7a DC |
636 | char *demangled_name = symbol_find_demangled_name (gsymbol, |
637 | linkage_name_copy); | |
2de7ced7 DJ |
638 | int demangled_len = demangled_name ? strlen (demangled_name) : 0; |
639 | ||
04a679b8 TT |
640 | /* Suppose we have demangled_name==NULL, copy_name==0, and |
641 | lookup_name==linkage_name. In this case, we already have the | |
642 | mangled name saved, and we don't have a demangled name. So, | |
643 | you might think we could save a little space by not recording | |
644 | this in the hash table at all. | |
645 | ||
646 | It turns out that it is actually important to still save such | |
647 | an entry in the hash table, because storing this name gives | |
648 | us better backache hit rates for partial symbols. */ | |
649 | if (!copy_name && lookup_name == linkage_name) | |
650 | { | |
651 | *slot = obstack_alloc (&objfile->objfile_obstack, | |
652 | offsetof (struct demangled_name_entry, | |
653 | demangled) | |
654 | + demangled_len + 1); | |
655 | (*slot)->mangled = (char *) lookup_name; | |
656 | } | |
657 | else | |
658 | { | |
659 | /* If we must copy the mangled name, put it directly after | |
660 | the demangled name so we can have a single | |
661 | allocation. */ | |
662 | *slot = obstack_alloc (&objfile->objfile_obstack, | |
663 | offsetof (struct demangled_name_entry, | |
664 | demangled) | |
665 | + lookup_len + demangled_len + 2); | |
666 | (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]); | |
667 | strcpy ((*slot)->mangled, lookup_name); | |
668 | } | |
669 | ||
980cae7a | 670 | if (demangled_name != NULL) |
2de7ced7 | 671 | { |
04a679b8 | 672 | strcpy ((*slot)->demangled, demangled_name); |
2de7ced7 DJ |
673 | xfree (demangled_name); |
674 | } | |
675 | else | |
04a679b8 | 676 | (*slot)->demangled[0] = '\0'; |
2de7ced7 DJ |
677 | } |
678 | ||
72dcaf82 | 679 | gsymbol->name = (*slot)->mangled + lookup_len - len; |
04a679b8 | 680 | if ((*slot)->demangled[0] != '\0') |
2de7ced7 | 681 | gsymbol->language_specific.cplus_specific.demangled_name |
04a679b8 | 682 | = (*slot)->demangled; |
2de7ced7 DJ |
683 | else |
684 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
685 | } | |
686 | ||
22abf04a DC |
687 | /* Return the source code name of a symbol. In languages where |
688 | demangling is necessary, this is the demangled name. */ | |
689 | ||
690 | char * | |
691 | symbol_natural_name (const struct general_symbol_info *gsymbol) | |
692 | { | |
9af17804 | 693 | switch (gsymbol->language) |
22abf04a | 694 | { |
1f8173e6 PH |
695 | case language_cplus: |
696 | case language_java: | |
697 | case language_objc: | |
698 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
699 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
700 | break; | |
701 | case language_ada: | |
702 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
703 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
704 | else | |
705 | return ada_decode_symbol (gsymbol); | |
706 | break; | |
707 | default: | |
708 | break; | |
22abf04a | 709 | } |
1f8173e6 | 710 | return gsymbol->name; |
22abf04a DC |
711 | } |
712 | ||
9cc0d196 EZ |
713 | /* Return the demangled name for a symbol based on the language for |
714 | that symbol. If no demangled name exists, return NULL. */ | |
715 | char * | |
df8a16a1 | 716 | symbol_demangled_name (const struct general_symbol_info *gsymbol) |
9cc0d196 | 717 | { |
9af17804 | 718 | switch (gsymbol->language) |
1f8173e6 PH |
719 | { |
720 | case language_cplus: | |
721 | case language_java: | |
722 | case language_objc: | |
723 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
724 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
725 | break; | |
726 | case language_ada: | |
727 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
728 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
729 | else | |
730 | return ada_decode_symbol (gsymbol); | |
731 | break; | |
732 | default: | |
733 | break; | |
734 | } | |
735 | return NULL; | |
9cc0d196 | 736 | } |
fe39c653 | 737 | |
4725b721 PH |
738 | /* Return the search name of a symbol---generally the demangled or |
739 | linkage name of the symbol, depending on how it will be searched for. | |
9af17804 | 740 | If there is no distinct demangled name, then returns the same value |
4725b721 | 741 | (same pointer) as SYMBOL_LINKAGE_NAME. */ |
fc062ac6 JB |
742 | char * |
743 | symbol_search_name (const struct general_symbol_info *gsymbol) | |
744 | { | |
1f8173e6 PH |
745 | if (gsymbol->language == language_ada) |
746 | return gsymbol->name; | |
747 | else | |
748 | return symbol_natural_name (gsymbol); | |
4725b721 PH |
749 | } |
750 | ||
fe39c653 EZ |
751 | /* Initialize the structure fields to zero values. */ |
752 | void | |
753 | init_sal (struct symtab_and_line *sal) | |
754 | { | |
6c95b8df | 755 | sal->pspace = NULL; |
fe39c653 EZ |
756 | sal->symtab = 0; |
757 | sal->section = 0; | |
758 | sal->line = 0; | |
759 | sal->pc = 0; | |
760 | sal->end = 0; | |
ed0616c6 VP |
761 | sal->explicit_pc = 0; |
762 | sal->explicit_line = 0; | |
fe39c653 | 763 | } |
c906108c SS |
764 | \f |
765 | ||
94277a38 DJ |
766 | /* Return 1 if the two sections are the same, or if they could |
767 | plausibly be copies of each other, one in an original object | |
768 | file and another in a separated debug file. */ | |
769 | ||
770 | int | |
714835d5 UW |
771 | matching_obj_sections (struct obj_section *obj_first, |
772 | struct obj_section *obj_second) | |
94277a38 | 773 | { |
714835d5 UW |
774 | asection *first = obj_first? obj_first->the_bfd_section : NULL; |
775 | asection *second = obj_second? obj_second->the_bfd_section : NULL; | |
94277a38 DJ |
776 | struct objfile *obj; |
777 | ||
778 | /* If they're the same section, then they match. */ | |
779 | if (first == second) | |
780 | return 1; | |
781 | ||
782 | /* If either is NULL, give up. */ | |
783 | if (first == NULL || second == NULL) | |
784 | return 0; | |
785 | ||
786 | /* This doesn't apply to absolute symbols. */ | |
787 | if (first->owner == NULL || second->owner == NULL) | |
788 | return 0; | |
789 | ||
790 | /* If they're in the same object file, they must be different sections. */ | |
791 | if (first->owner == second->owner) | |
792 | return 0; | |
793 | ||
794 | /* Check whether the two sections are potentially corresponding. They must | |
795 | have the same size, address, and name. We can't compare section indexes, | |
796 | which would be more reliable, because some sections may have been | |
797 | stripped. */ | |
798 | if (bfd_get_section_size (first) != bfd_get_section_size (second)) | |
799 | return 0; | |
800 | ||
818f79f6 | 801 | /* In-memory addresses may start at a different offset, relativize them. */ |
94277a38 | 802 | if (bfd_get_section_vma (first->owner, first) |
818f79f6 DJ |
803 | - bfd_get_start_address (first->owner) |
804 | != bfd_get_section_vma (second->owner, second) | |
805 | - bfd_get_start_address (second->owner)) | |
94277a38 DJ |
806 | return 0; |
807 | ||
808 | if (bfd_get_section_name (first->owner, first) == NULL | |
809 | || bfd_get_section_name (second->owner, second) == NULL | |
810 | || strcmp (bfd_get_section_name (first->owner, first), | |
811 | bfd_get_section_name (second->owner, second)) != 0) | |
812 | return 0; | |
813 | ||
814 | /* Otherwise check that they are in corresponding objfiles. */ | |
815 | ||
816 | ALL_OBJFILES (obj) | |
817 | if (obj->obfd == first->owner) | |
818 | break; | |
819 | gdb_assert (obj != NULL); | |
820 | ||
821 | if (obj->separate_debug_objfile != NULL | |
822 | && obj->separate_debug_objfile->obfd == second->owner) | |
823 | return 1; | |
824 | if (obj->separate_debug_objfile_backlink != NULL | |
825 | && obj->separate_debug_objfile_backlink->obfd == second->owner) | |
826 | return 1; | |
827 | ||
828 | return 0; | |
829 | } | |
c5aa993b | 830 | |
ff013f42 JK |
831 | /* Find which partial symtab contains PC and SECTION starting at psymtab PST. |
832 | We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */ | |
833 | ||
2c0b251b | 834 | static struct partial_symtab * |
714835d5 | 835 | find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section, |
ff013f42 JK |
836 | struct partial_symtab *pst, |
837 | struct minimal_symbol *msymbol) | |
838 | { | |
839 | struct objfile *objfile = pst->objfile; | |
840 | struct partial_symtab *tpst; | |
841 | struct partial_symtab *best_pst = pst; | |
842 | CORE_ADDR best_addr = pst->textlow; | |
843 | ||
844 | /* An objfile that has its functions reordered might have | |
845 | many partial symbol tables containing the PC, but | |
846 | we want the partial symbol table that contains the | |
847 | function containing the PC. */ | |
848 | if (!(objfile->flags & OBJF_REORDERED) && | |
849 | section == 0) /* can't validate section this way */ | |
850 | return pst; | |
851 | ||
852 | if (msymbol == NULL) | |
853 | return (pst); | |
854 | ||
855 | /* The code range of partial symtabs sometimes overlap, so, in | |
856 | the loop below, we need to check all partial symtabs and | |
857 | find the one that fits better for the given PC address. We | |
858 | select the partial symtab that contains a symbol whose | |
859 | address is closest to the PC address. By closest we mean | |
860 | that find_pc_sect_symbol returns the symbol with address | |
861 | that is closest and still less than the given PC. */ | |
862 | for (tpst = pst; tpst != NULL; tpst = tpst->next) | |
863 | { | |
864 | if (pc >= tpst->textlow && pc < tpst->texthigh) | |
865 | { | |
866 | struct partial_symbol *p; | |
867 | CORE_ADDR this_addr; | |
868 | ||
869 | /* NOTE: This assumes that every psymbol has a | |
870 | corresponding msymbol, which is not necessarily | |
871 | true; the debug info might be much richer than the | |
872 | object's symbol table. */ | |
873 | p = find_pc_sect_psymbol (tpst, pc, section); | |
874 | if (p != NULL | |
875 | && SYMBOL_VALUE_ADDRESS (p) | |
876 | == SYMBOL_VALUE_ADDRESS (msymbol)) | |
877 | return tpst; | |
878 | ||
879 | /* Also accept the textlow value of a psymtab as a | |
880 | "symbol", to provide some support for partial | |
881 | symbol tables with line information but no debug | |
882 | symbols (e.g. those produced by an assembler). */ | |
883 | if (p != NULL) | |
884 | this_addr = SYMBOL_VALUE_ADDRESS (p); | |
885 | else | |
886 | this_addr = tpst->textlow; | |
887 | ||
888 | /* Check whether it is closer than our current | |
889 | BEST_ADDR. Since this symbol address is | |
890 | necessarily lower or equal to PC, the symbol closer | |
891 | to PC is the symbol which address is the highest. | |
892 | This way we return the psymtab which contains such | |
893 | best match symbol. This can help in cases where the | |
894 | symbol information/debuginfo is not complete, like | |
895 | for instance on IRIX6 with gcc, where no debug info | |
896 | is emitted for statics. (See also the nodebug.exp | |
897 | testcase.) */ | |
898 | if (this_addr > best_addr) | |
899 | { | |
900 | best_addr = this_addr; | |
901 | best_pst = tpst; | |
902 | } | |
903 | } | |
904 | } | |
905 | return best_pst; | |
906 | } | |
907 | ||
ccefbec3 EZ |
908 | /* Find which partial symtab contains PC and SECTION. Return 0 if |
909 | none. We return the psymtab that contains a symbol whose address | |
910 | exactly matches PC, or, if we cannot find an exact match, the | |
911 | psymtab that contains a symbol whose address is closest to PC. */ | |
c906108c | 912 | struct partial_symtab * |
714835d5 | 913 | find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section) |
c906108c | 914 | { |
52f0bd74 | 915 | struct objfile *objfile; |
8a48e967 DJ |
916 | struct minimal_symbol *msymbol; |
917 | ||
918 | /* If we know that this is not a text address, return failure. This is | |
919 | necessary because we loop based on texthigh and textlow, which do | |
920 | not include the data ranges. */ | |
921 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
922 | if (msymbol | |
712f90be TT |
923 | && (MSYMBOL_TYPE (msymbol) == mst_data |
924 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
925 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
926 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
927 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 928 | return NULL; |
c906108c | 929 | |
ff013f42 JK |
930 | /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity |
931 | than the later used TEXTLOW/TEXTHIGH one. */ | |
932 | ||
933 | ALL_OBJFILES (objfile) | |
934 | if (objfile->psymtabs_addrmap != NULL) | |
c5aa993b | 935 | { |
ff013f42 JK |
936 | struct partial_symtab *pst; |
937 | ||
938 | pst = addrmap_find (objfile->psymtabs_addrmap, pc); | |
939 | if (pst != NULL) | |
c5aa993b | 940 | { |
907fc202 | 941 | /* FIXME: addrmaps currently do not handle overlayed sections, |
9af17804 | 942 | so fall back to the non-addrmap case if we're debugging |
907fc202 UW |
943 | overlays and the addrmap returned the wrong section. */ |
944 | if (overlay_debugging && msymbol && section) | |
945 | { | |
946 | struct partial_symbol *p; | |
947 | /* NOTE: This assumes that every psymbol has a | |
948 | corresponding msymbol, which is not necessarily | |
949 | true; the debug info might be much richer than the | |
950 | object's symbol table. */ | |
951 | p = find_pc_sect_psymbol (pst, pc, section); | |
952 | if (!p | |
953 | || SYMBOL_VALUE_ADDRESS (p) | |
954 | != SYMBOL_VALUE_ADDRESS (msymbol)) | |
955 | continue; | |
956 | } | |
957 | ||
ff013f42 JK |
958 | /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as |
959 | PSYMTABS_ADDRMAP we used has already the best 1-byte | |
960 | granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into | |
961 | a worse chosen section due to the TEXTLOW/TEXTHIGH ranges | |
962 | overlap. */ | |
963 | ||
964 | return pst; | |
c5aa993b | 965 | } |
c5aa993b | 966 | } |
ff013f42 JK |
967 | |
968 | /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs | |
969 | which still have no corresponding full SYMTABs read. But it is not | |
970 | present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB | |
971 | so far. */ | |
972 | ||
973 | ALL_OBJFILES (objfile) | |
974 | { | |
975 | struct partial_symtab *pst; | |
976 | ||
977 | /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of | |
978 | its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying | |
979 | debug info type in single OBJFILE. */ | |
980 | ||
981 | ALL_OBJFILE_PSYMTABS (objfile, pst) | |
982 | if (pc >= pst->textlow && pc < pst->texthigh) | |
983 | { | |
984 | struct partial_symtab *best_pst; | |
985 | ||
986 | best_pst = find_pc_sect_psymtab_closer (pc, section, pst, | |
987 | msymbol); | |
988 | if (best_pst != NULL) | |
989 | return best_pst; | |
990 | } | |
991 | } | |
992 | ||
993 | return NULL; | |
c906108c SS |
994 | } |
995 | ||
9af17804 | 996 | /* Find which partial symtab contains PC. Return 0 if none. |
c906108c SS |
997 | Backward compatibility, no section */ |
998 | ||
999 | struct partial_symtab * | |
fba45db2 | 1000 | find_pc_psymtab (CORE_ADDR pc) |
c906108c SS |
1001 | { |
1002 | return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc)); | |
1003 | } | |
1004 | ||
9af17804 | 1005 | /* Find which partial symbol within a psymtab matches PC and SECTION. |
c906108c SS |
1006 | Return 0 if none. Check all psymtabs if PSYMTAB is 0. */ |
1007 | ||
1008 | struct partial_symbol * | |
fba45db2 | 1009 | find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc, |
714835d5 | 1010 | struct obj_section *section) |
c906108c SS |
1011 | { |
1012 | struct partial_symbol *best = NULL, *p, **pp; | |
1013 | CORE_ADDR best_pc; | |
c5aa993b | 1014 | |
c906108c SS |
1015 | if (!psymtab) |
1016 | psymtab = find_pc_sect_psymtab (pc, section); | |
1017 | if (!psymtab) | |
1018 | return 0; | |
1019 | ||
1020 | /* Cope with programs that start at address 0 */ | |
1021 | best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0; | |
1022 | ||
1023 | /* Search the global symbols as well as the static symbols, so that | |
1024 | find_pc_partial_function doesn't use a minimal symbol and thus | |
1025 | cache a bad endaddr. */ | |
1026 | for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset; | |
c5aa993b JM |
1027 | (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset) |
1028 | < psymtab->n_global_syms); | |
c906108c SS |
1029 | pp++) |
1030 | { | |
1031 | p = *pp; | |
176620f1 | 1032 | if (SYMBOL_DOMAIN (p) == VAR_DOMAIN |
c906108c SS |
1033 | && SYMBOL_CLASS (p) == LOC_BLOCK |
1034 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
1035 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
1036 | || (psymtab->textlow == 0 | |
1037 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) | |
1038 | { | |
c5aa993b | 1039 | if (section) /* match on a specific section */ |
c906108c SS |
1040 | { |
1041 | fixup_psymbol_section (p, psymtab->objfile); | |
714835d5 | 1042 | if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section)) |
c906108c SS |
1043 | continue; |
1044 | } | |
1045 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
1046 | best = p; | |
1047 | } | |
1048 | } | |
1049 | ||
1050 | for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset; | |
c5aa993b JM |
1051 | (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset) |
1052 | < psymtab->n_static_syms); | |
c906108c SS |
1053 | pp++) |
1054 | { | |
1055 | p = *pp; | |
176620f1 | 1056 | if (SYMBOL_DOMAIN (p) == VAR_DOMAIN |
c906108c SS |
1057 | && SYMBOL_CLASS (p) == LOC_BLOCK |
1058 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
1059 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
c5aa993b | 1060 | || (psymtab->textlow == 0 |
c906108c SS |
1061 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) |
1062 | { | |
c5aa993b | 1063 | if (section) /* match on a specific section */ |
c906108c SS |
1064 | { |
1065 | fixup_psymbol_section (p, psymtab->objfile); | |
714835d5 | 1066 | if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section)) |
c906108c SS |
1067 | continue; |
1068 | } | |
1069 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
1070 | best = p; | |
1071 | } | |
1072 | } | |
1073 | ||
1074 | return best; | |
1075 | } | |
1076 | ||
9af17804 | 1077 | /* Find which partial symbol within a psymtab matches PC. Return 0 if none. |
c906108c SS |
1078 | Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */ |
1079 | ||
1080 | struct partial_symbol * | |
fba45db2 | 1081 | find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc) |
c906108c SS |
1082 | { |
1083 | return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc)); | |
1084 | } | |
1085 | \f | |
1086 | /* Debug symbols usually don't have section information. We need to dig that | |
1087 | out of the minimal symbols and stash that in the debug symbol. */ | |
1088 | ||
1089 | static void | |
907fc202 UW |
1090 | fixup_section (struct general_symbol_info *ginfo, |
1091 | CORE_ADDR addr, struct objfile *objfile) | |
c906108c SS |
1092 | { |
1093 | struct minimal_symbol *msym; | |
c906108c | 1094 | |
bccdca4a UW |
1095 | /* First, check whether a minimal symbol with the same name exists |
1096 | and points to the same address. The address check is required | |
1097 | e.g. on PowerPC64, where the minimal symbol for a function will | |
1098 | point to the function descriptor, while the debug symbol will | |
1099 | point to the actual function code. */ | |
907fc202 UW |
1100 | msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile); |
1101 | if (msym) | |
7a78d0ee | 1102 | { |
714835d5 | 1103 | ginfo->obj_section = SYMBOL_OBJ_SECTION (msym); |
7a78d0ee KB |
1104 | ginfo->section = SYMBOL_SECTION (msym); |
1105 | } | |
907fc202 | 1106 | else |
19e2d14b KB |
1107 | { |
1108 | /* Static, function-local variables do appear in the linker | |
1109 | (minimal) symbols, but are frequently given names that won't | |
1110 | be found via lookup_minimal_symbol(). E.g., it has been | |
1111 | observed in frv-uclinux (ELF) executables that a static, | |
1112 | function-local variable named "foo" might appear in the | |
1113 | linker symbols as "foo.6" or "foo.3". Thus, there is no | |
1114 | point in attempting to extend the lookup-by-name mechanism to | |
1115 | handle this case due to the fact that there can be multiple | |
1116 | names. | |
9af17804 | 1117 | |
19e2d14b KB |
1118 | So, instead, search the section table when lookup by name has |
1119 | failed. The ``addr'' and ``endaddr'' fields may have already | |
1120 | been relocated. If so, the relocation offset (i.e. the | |
1121 | ANOFFSET value) needs to be subtracted from these values when | |
1122 | performing the comparison. We unconditionally subtract it, | |
1123 | because, when no relocation has been performed, the ANOFFSET | |
1124 | value will simply be zero. | |
9af17804 | 1125 | |
19e2d14b KB |
1126 | The address of the symbol whose section we're fixing up HAS |
1127 | NOT BEEN adjusted (relocated) yet. It can't have been since | |
1128 | the section isn't yet known and knowing the section is | |
1129 | necessary in order to add the correct relocation value. In | |
1130 | other words, we wouldn't even be in this function (attempting | |
1131 | to compute the section) if it were already known. | |
1132 | ||
1133 | Note that it is possible to search the minimal symbols | |
1134 | (subtracting the relocation value if necessary) to find the | |
1135 | matching minimal symbol, but this is overkill and much less | |
1136 | efficient. It is not necessary to find the matching minimal | |
9af17804 DE |
1137 | symbol, only its section. |
1138 | ||
19e2d14b KB |
1139 | Note that this technique (of doing a section table search) |
1140 | can fail when unrelocated section addresses overlap. For | |
1141 | this reason, we still attempt a lookup by name prior to doing | |
1142 | a search of the section table. */ | |
9af17804 | 1143 | |
19e2d14b | 1144 | struct obj_section *s; |
19e2d14b KB |
1145 | ALL_OBJFILE_OSECTIONS (objfile, s) |
1146 | { | |
1147 | int idx = s->the_bfd_section->index; | |
1148 | CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx); | |
1149 | ||
f1f6aadf PA |
1150 | if (obj_section_addr (s) - offset <= addr |
1151 | && addr < obj_section_endaddr (s) - offset) | |
19e2d14b | 1152 | { |
714835d5 | 1153 | ginfo->obj_section = s; |
19e2d14b KB |
1154 | ginfo->section = idx; |
1155 | return; | |
1156 | } | |
1157 | } | |
1158 | } | |
c906108c SS |
1159 | } |
1160 | ||
1161 | struct symbol * | |
fba45db2 | 1162 | fixup_symbol_section (struct symbol *sym, struct objfile *objfile) |
c906108c | 1163 | { |
907fc202 UW |
1164 | CORE_ADDR addr; |
1165 | ||
c906108c SS |
1166 | if (!sym) |
1167 | return NULL; | |
1168 | ||
714835d5 | 1169 | if (SYMBOL_OBJ_SECTION (sym)) |
c906108c SS |
1170 | return sym; |
1171 | ||
907fc202 UW |
1172 | /* We either have an OBJFILE, or we can get at it from the sym's |
1173 | symtab. Anything else is a bug. */ | |
1174 | gdb_assert (objfile || SYMBOL_SYMTAB (sym)); | |
1175 | ||
1176 | if (objfile == NULL) | |
1177 | objfile = SYMBOL_SYMTAB (sym)->objfile; | |
1178 | ||
1179 | /* We should have an objfile by now. */ | |
1180 | gdb_assert (objfile); | |
1181 | ||
1182 | switch (SYMBOL_CLASS (sym)) | |
1183 | { | |
1184 | case LOC_STATIC: | |
1185 | case LOC_LABEL: | |
907fc202 UW |
1186 | addr = SYMBOL_VALUE_ADDRESS (sym); |
1187 | break; | |
1188 | case LOC_BLOCK: | |
1189 | addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
1190 | break; | |
1191 | ||
1192 | default: | |
1193 | /* Nothing else will be listed in the minsyms -- no use looking | |
1194 | it up. */ | |
1195 | return sym; | |
1196 | } | |
1197 | ||
1198 | fixup_section (&sym->ginfo, addr, objfile); | |
c906108c SS |
1199 | |
1200 | return sym; | |
1201 | } | |
1202 | ||
7a78d0ee | 1203 | struct partial_symbol * |
fba45db2 | 1204 | fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile) |
c906108c | 1205 | { |
907fc202 UW |
1206 | CORE_ADDR addr; |
1207 | ||
c906108c SS |
1208 | if (!psym) |
1209 | return NULL; | |
1210 | ||
714835d5 | 1211 | if (SYMBOL_OBJ_SECTION (psym)) |
c906108c SS |
1212 | return psym; |
1213 | ||
907fc202 UW |
1214 | gdb_assert (objfile); |
1215 | ||
1216 | switch (SYMBOL_CLASS (psym)) | |
1217 | { | |
1218 | case LOC_STATIC: | |
1219 | case LOC_LABEL: | |
907fc202 UW |
1220 | case LOC_BLOCK: |
1221 | addr = SYMBOL_VALUE_ADDRESS (psym); | |
1222 | break; | |
1223 | default: | |
1224 | /* Nothing else will be listed in the minsyms -- no use looking | |
1225 | it up. */ | |
1226 | return psym; | |
1227 | } | |
1228 | ||
1229 | fixup_section (&psym->ginfo, addr, objfile); | |
c906108c SS |
1230 | |
1231 | return psym; | |
1232 | } | |
1233 | ||
1234 | /* Find the definition for a specified symbol name NAME | |
176620f1 | 1235 | in domain DOMAIN, visible from lexical block BLOCK. |
c906108c | 1236 | Returns the struct symbol pointer, or zero if no symbol is found. |
c906108c SS |
1237 | C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if |
1238 | NAME is a field of the current implied argument `this'. If so set | |
9af17804 | 1239 | *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero. |
c906108c SS |
1240 | BLOCK_FOUND is set to the block in which NAME is found (in the case of |
1241 | a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */ | |
1242 | ||
1243 | /* This function has a bunch of loops in it and it would seem to be | |
1244 | attractive to put in some QUIT's (though I'm not really sure | |
1245 | whether it can run long enough to be really important). But there | |
1246 | are a few calls for which it would appear to be bad news to quit | |
7ca9f392 AC |
1247 | out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note |
1248 | that there is C++ code below which can error(), but that probably | |
1249 | doesn't affect these calls since they are looking for a known | |
1250 | variable and thus can probably assume it will never hit the C++ | |
1251 | code). */ | |
c906108c SS |
1252 | |
1253 | struct symbol * | |
53c5240f PA |
1254 | lookup_symbol_in_language (const char *name, const struct block *block, |
1255 | const domain_enum domain, enum language lang, | |
2570f2b7 | 1256 | int *is_a_field_of_this) |
c906108c | 1257 | { |
729051e6 DJ |
1258 | char *demangled_name = NULL; |
1259 | const char *modified_name = NULL; | |
3121eff0 | 1260 | const char *mangled_name = NULL; |
fba7f19c | 1261 | struct symbol *returnval; |
9ee6bb93 | 1262 | struct cleanup *cleanup = make_cleanup (null_cleanup, 0); |
c906108c | 1263 | |
729051e6 DJ |
1264 | modified_name = name; |
1265 | ||
987504bb | 1266 | /* If we are using C++ or Java, demangle the name before doing a lookup, so |
729051e6 | 1267 | we can always binary search. */ |
53c5240f | 1268 | if (lang == language_cplus) |
729051e6 DJ |
1269 | { |
1270 | demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS); | |
1271 | if (demangled_name) | |
1272 | { | |
1273 | mangled_name = name; | |
1274 | modified_name = demangled_name; | |
9ee6bb93 | 1275 | make_cleanup (xfree, demangled_name); |
729051e6 | 1276 | } |
71c25dea TT |
1277 | else |
1278 | { | |
1279 | /* If we were given a non-mangled name, canonicalize it | |
1280 | according to the language (so far only for C++). */ | |
1281 | demangled_name = cp_canonicalize_string (name); | |
1282 | if (demangled_name) | |
1283 | { | |
1284 | modified_name = demangled_name; | |
1285 | make_cleanup (xfree, demangled_name); | |
1286 | } | |
1287 | } | |
729051e6 | 1288 | } |
53c5240f | 1289 | else if (lang == language_java) |
987504bb | 1290 | { |
9af17804 | 1291 | demangled_name = cplus_demangle (name, |
987504bb JJ |
1292 | DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA); |
1293 | if (demangled_name) | |
1294 | { | |
1295 | mangled_name = name; | |
1296 | modified_name = demangled_name; | |
9ee6bb93 | 1297 | make_cleanup (xfree, demangled_name); |
987504bb JJ |
1298 | } |
1299 | } | |
729051e6 | 1300 | |
63872f9d JG |
1301 | if (case_sensitivity == case_sensitive_off) |
1302 | { | |
1303 | char *copy; | |
1304 | int len, i; | |
1305 | ||
1306 | len = strlen (name); | |
1307 | copy = (char *) alloca (len + 1); | |
1308 | for (i= 0; i < len; i++) | |
1309 | copy[i] = tolower (name[i]); | |
1310 | copy[len] = 0; | |
fba7f19c | 1311 | modified_name = copy; |
63872f9d | 1312 | } |
fba7f19c | 1313 | |
3121eff0 | 1314 | returnval = lookup_symbol_aux (modified_name, mangled_name, block, |
21b556f4 | 1315 | domain, lang, is_a_field_of_this); |
9ee6bb93 | 1316 | do_cleanups (cleanup); |
fba7f19c | 1317 | |
9af17804 | 1318 | return returnval; |
fba7f19c EZ |
1319 | } |
1320 | ||
53c5240f PA |
1321 | /* Behave like lookup_symbol_in_language, but performed with the |
1322 | current language. */ | |
1323 | ||
1324 | struct symbol * | |
1325 | lookup_symbol (const char *name, const struct block *block, | |
2570f2b7 | 1326 | domain_enum domain, int *is_a_field_of_this) |
53c5240f PA |
1327 | { |
1328 | return lookup_symbol_in_language (name, block, domain, | |
1329 | current_language->la_language, | |
2570f2b7 | 1330 | is_a_field_of_this); |
53c5240f PA |
1331 | } |
1332 | ||
1333 | /* Behave like lookup_symbol except that NAME is the natural name | |
5ad1c190 DC |
1334 | of the symbol that we're looking for and, if LINKAGE_NAME is |
1335 | non-NULL, ensure that the symbol's linkage name matches as | |
1336 | well. */ | |
1337 | ||
fba7f19c | 1338 | static struct symbol * |
5ad1c190 | 1339 | lookup_symbol_aux (const char *name, const char *linkage_name, |
176620f1 | 1340 | const struct block *block, const domain_enum domain, |
21b556f4 | 1341 | enum language language, int *is_a_field_of_this) |
fba7f19c | 1342 | { |
8155455b | 1343 | struct symbol *sym; |
53c5240f | 1344 | const struct language_defn *langdef; |
406bc4de | 1345 | |
9a146a11 EZ |
1346 | /* Make sure we do something sensible with is_a_field_of_this, since |
1347 | the callers that set this parameter to some non-null value will | |
1348 | certainly use it later and expect it to be either 0 or 1. | |
1349 | If we don't set it, the contents of is_a_field_of_this are | |
1350 | undefined. */ | |
1351 | if (is_a_field_of_this != NULL) | |
1352 | *is_a_field_of_this = 0; | |
1353 | ||
e4051eeb DC |
1354 | /* Search specified block and its superiors. Don't search |
1355 | STATIC_BLOCK or GLOBAL_BLOCK. */ | |
c906108c | 1356 | |
21b556f4 | 1357 | sym = lookup_symbol_aux_local (name, linkage_name, block, domain); |
8155455b DC |
1358 | if (sym != NULL) |
1359 | return sym; | |
c906108c | 1360 | |
53c5240f PA |
1361 | /* If requested to do so by the caller and if appropriate for LANGUAGE, |
1362 | check to see if NAME is a field of `this'. */ | |
1363 | ||
1364 | langdef = language_def (language); | |
5f9a71c3 | 1365 | |
2b2d9e11 VP |
1366 | if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL |
1367 | && block != NULL) | |
c906108c | 1368 | { |
2b2d9e11 VP |
1369 | struct symbol *sym = NULL; |
1370 | /* 'this' is only defined in the function's block, so find the | |
1371 | enclosing function block. */ | |
9af17804 | 1372 | for (; block && !BLOCK_FUNCTION (block); |
2b2d9e11 VP |
1373 | block = BLOCK_SUPERBLOCK (block)); |
1374 | ||
1375 | if (block && !dict_empty (BLOCK_DICT (block))) | |
1376 | sym = lookup_block_symbol (block, langdef->la_name_of_this, | |
1377 | NULL, VAR_DOMAIN); | |
1378 | if (sym) | |
c906108c | 1379 | { |
2b2d9e11 | 1380 | struct type *t = sym->type; |
9af17804 | 1381 | |
2b2d9e11 VP |
1382 | /* I'm not really sure that type of this can ever |
1383 | be typedefed; just be safe. */ | |
1384 | CHECK_TYPEDEF (t); | |
1385 | if (TYPE_CODE (t) == TYPE_CODE_PTR | |
1386 | || TYPE_CODE (t) == TYPE_CODE_REF) | |
1387 | t = TYPE_TARGET_TYPE (t); | |
9af17804 | 1388 | |
2b2d9e11 VP |
1389 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
1390 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
9af17804 | 1391 | error (_("Internal error: `%s' is not an aggregate"), |
2b2d9e11 | 1392 | langdef->la_name_of_this); |
9af17804 | 1393 | |
2b2d9e11 VP |
1394 | if (check_field (t, name)) |
1395 | { | |
1396 | *is_a_field_of_this = 1; | |
2b2d9e11 VP |
1397 | return NULL; |
1398 | } | |
c906108c SS |
1399 | } |
1400 | } | |
1401 | ||
53c5240f | 1402 | /* Now do whatever is appropriate for LANGUAGE to look |
5f9a71c3 | 1403 | up static and global variables. */ |
c906108c | 1404 | |
21b556f4 | 1405 | sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain); |
8155455b DC |
1406 | if (sym != NULL) |
1407 | return sym; | |
c906108c | 1408 | |
8155455b DC |
1409 | /* Now search all static file-level symbols. Not strictly correct, |
1410 | but more useful than an error. Do the symtabs first, then check | |
1411 | the psymtabs. If a psymtab indicates the existence of the | |
1412 | desired name as a file-level static, then do psymtab-to-symtab | |
c906108c SS |
1413 | conversion on the fly and return the found symbol. */ |
1414 | ||
21b556f4 | 1415 | sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain); |
8155455b DC |
1416 | if (sym != NULL) |
1417 | return sym; | |
9af17804 | 1418 | |
21b556f4 | 1419 | sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain); |
8155455b DC |
1420 | if (sym != NULL) |
1421 | return sym; | |
c906108c | 1422 | |
8155455b | 1423 | return NULL; |
c906108c | 1424 | } |
8155455b | 1425 | |
e4051eeb | 1426 | /* Check to see if the symbol is defined in BLOCK or its superiors. |
89a9d1b1 | 1427 | Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ |
8155455b DC |
1428 | |
1429 | static struct symbol * | |
5ad1c190 | 1430 | lookup_symbol_aux_local (const char *name, const char *linkage_name, |
8155455b | 1431 | const struct block *block, |
21b556f4 | 1432 | const domain_enum domain) |
8155455b DC |
1433 | { |
1434 | struct symbol *sym; | |
89a9d1b1 DC |
1435 | const struct block *static_block = block_static_block (block); |
1436 | ||
e4051eeb DC |
1437 | /* Check if either no block is specified or it's a global block. */ |
1438 | ||
89a9d1b1 DC |
1439 | if (static_block == NULL) |
1440 | return NULL; | |
e4051eeb | 1441 | |
89a9d1b1 | 1442 | while (block != static_block) |
f61e8913 | 1443 | { |
21b556f4 | 1444 | sym = lookup_symbol_aux_block (name, linkage_name, block, domain); |
f61e8913 DC |
1445 | if (sym != NULL) |
1446 | return sym; | |
edb3359d DJ |
1447 | |
1448 | if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block)) | |
1449 | break; | |
f61e8913 DC |
1450 | block = BLOCK_SUPERBLOCK (block); |
1451 | } | |
1452 | ||
edb3359d | 1453 | /* We've reached the edge of the function without finding a result. */ |
e4051eeb | 1454 | |
f61e8913 DC |
1455 | return NULL; |
1456 | } | |
1457 | ||
3a40aaa0 UW |
1458 | /* Look up OBJFILE to BLOCK. */ |
1459 | ||
1460 | static struct objfile * | |
1461 | lookup_objfile_from_block (const struct block *block) | |
1462 | { | |
1463 | struct objfile *obj; | |
1464 | struct symtab *s; | |
1465 | ||
1466 | if (block == NULL) | |
1467 | return NULL; | |
1468 | ||
1469 | block = block_global_block (block); | |
1470 | /* Go through SYMTABS. */ | |
1471 | ALL_SYMTABS (obj, s) | |
1472 | if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK)) | |
1473 | return obj; | |
1474 | ||
1475 | return NULL; | |
1476 | } | |
1477 | ||
6c9353d3 PA |
1478 | /* Look up a symbol in a block; if found, fixup the symbol, and set |
1479 | block_found appropriately. */ | |
f61e8913 | 1480 | |
5f9a71c3 | 1481 | struct symbol * |
5ad1c190 | 1482 | lookup_symbol_aux_block (const char *name, const char *linkage_name, |
f61e8913 | 1483 | const struct block *block, |
21b556f4 | 1484 | const domain_enum domain) |
f61e8913 DC |
1485 | { |
1486 | struct symbol *sym; | |
f61e8913 | 1487 | |
5ad1c190 | 1488 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
f61e8913 | 1489 | if (sym) |
8155455b | 1490 | { |
f61e8913 | 1491 | block_found = block; |
21b556f4 | 1492 | return fixup_symbol_section (sym, NULL); |
8155455b DC |
1493 | } |
1494 | ||
1495 | return NULL; | |
1496 | } | |
1497 | ||
3a40aaa0 UW |
1498 | /* Check all global symbols in OBJFILE in symtabs and |
1499 | psymtabs. */ | |
1500 | ||
1501 | struct symbol * | |
1502 | lookup_global_symbol_from_objfile (const struct objfile *objfile, | |
1503 | const char *name, | |
1504 | const char *linkage_name, | |
21b556f4 | 1505 | const domain_enum domain) |
3a40aaa0 UW |
1506 | { |
1507 | struct symbol *sym; | |
1508 | struct blockvector *bv; | |
1509 | const struct block *block; | |
1510 | struct symtab *s; | |
1511 | struct partial_symtab *ps; | |
1512 | ||
1513 | /* Go through symtabs. */ | |
1514 | ALL_OBJFILE_SYMTABS (objfile, s) | |
1515 | { | |
1516 | bv = BLOCKVECTOR (s); | |
1517 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1518 | sym = lookup_block_symbol (block, name, linkage_name, domain); | |
1519 | if (sym) | |
1520 | { | |
1521 | block_found = block; | |
3a40aaa0 UW |
1522 | return fixup_symbol_section (sym, (struct objfile *)objfile); |
1523 | } | |
1524 | } | |
1525 | ||
1526 | /* Now go through psymtabs. */ | |
1527 | ALL_OBJFILE_PSYMTABS (objfile, ps) | |
1528 | { | |
1529 | if (!ps->readin | |
1530 | && lookup_partial_symbol (ps, name, linkage_name, | |
1531 | 1, domain)) | |
1532 | { | |
1533 | s = PSYMTAB_TO_SYMTAB (ps); | |
1534 | bv = BLOCKVECTOR (s); | |
1535 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1536 | sym = lookup_block_symbol (block, name, linkage_name, domain); | |
3a40aaa0 UW |
1537 | return fixup_symbol_section (sym, (struct objfile *)objfile); |
1538 | } | |
1539 | } | |
1540 | ||
56e3f43c DJ |
1541 | if (objfile->separate_debug_objfile) |
1542 | return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile, | |
21b556f4 | 1543 | name, linkage_name, domain); |
56e3f43c | 1544 | |
3a40aaa0 UW |
1545 | return NULL; |
1546 | } | |
1547 | ||
8155455b DC |
1548 | /* Check to see if the symbol is defined in one of the symtabs. |
1549 | BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, | |
1550 | depending on whether or not we want to search global symbols or | |
1551 | static symbols. */ | |
1552 | ||
1553 | static struct symbol * | |
1554 | lookup_symbol_aux_symtabs (int block_index, | |
5ad1c190 | 1555 | const char *name, const char *linkage_name, |
21b556f4 | 1556 | const domain_enum domain) |
8155455b DC |
1557 | { |
1558 | struct symbol *sym; | |
1559 | struct objfile *objfile; | |
1560 | struct blockvector *bv; | |
1561 | const struct block *block; | |
1562 | struct symtab *s; | |
1563 | ||
11309657 | 1564 | ALL_PRIMARY_SYMTABS (objfile, s) |
8155455b DC |
1565 | { |
1566 | bv = BLOCKVECTOR (s); | |
1567 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
5ad1c190 | 1568 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1569 | if (sym) |
1570 | { | |
1571 | block_found = block; | |
8155455b DC |
1572 | return fixup_symbol_section (sym, objfile); |
1573 | } | |
1574 | } | |
1575 | ||
1576 | return NULL; | |
1577 | } | |
1578 | ||
1579 | /* Check to see if the symbol is defined in one of the partial | |
1580 | symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or | |
1581 | STATIC_BLOCK, depending on whether or not we want to search global | |
1582 | symbols or static symbols. */ | |
1583 | ||
1584 | static struct symbol * | |
1585 | lookup_symbol_aux_psymtabs (int block_index, const char *name, | |
5ad1c190 | 1586 | const char *linkage_name, |
21b556f4 | 1587 | const domain_enum domain) |
8155455b DC |
1588 | { |
1589 | struct symbol *sym; | |
1590 | struct objfile *objfile; | |
1591 | struct blockvector *bv; | |
1592 | const struct block *block; | |
1593 | struct partial_symtab *ps; | |
1594 | struct symtab *s; | |
1595 | const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0); | |
1596 | ||
1597 | ALL_PSYMTABS (objfile, ps) | |
1598 | { | |
1599 | if (!ps->readin | |
5ad1c190 | 1600 | && lookup_partial_symbol (ps, name, linkage_name, |
176620f1 | 1601 | psymtab_index, domain)) |
8155455b DC |
1602 | { |
1603 | s = PSYMTAB_TO_SYMTAB (ps); | |
1604 | bv = BLOCKVECTOR (s); | |
1605 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
5ad1c190 | 1606 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1607 | if (!sym) |
1608 | { | |
1609 | /* This shouldn't be necessary, but as a last resort try | |
1610 | looking in the statics even though the psymtab claimed | |
1611 | the symbol was global, or vice-versa. It's possible | |
1612 | that the psymtab gets it wrong in some cases. */ | |
1613 | ||
1614 | /* FIXME: carlton/2002-09-30: Should we really do that? | |
1615 | If that happens, isn't it likely to be a GDB error, in | |
1616 | which case we should fix the GDB error rather than | |
1617 | silently dealing with it here? So I'd vote for | |
1618 | removing the check for the symbol in the other | |
1619 | block. */ | |
1620 | block = BLOCKVECTOR_BLOCK (bv, | |
1621 | block_index == GLOBAL_BLOCK ? | |
1622 | STATIC_BLOCK : GLOBAL_BLOCK); | |
5ad1c190 | 1623 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b | 1624 | if (!sym) |
8a3fe4f8 | 1625 | error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."), |
8155455b DC |
1626 | block_index == GLOBAL_BLOCK ? "global" : "static", |
1627 | name, ps->filename, name, name); | |
1628 | } | |
8155455b DC |
1629 | return fixup_symbol_section (sym, objfile); |
1630 | } | |
1631 | } | |
1632 | ||
1633 | return NULL; | |
1634 | } | |
1635 | ||
5f9a71c3 DC |
1636 | /* A default version of lookup_symbol_nonlocal for use by languages |
1637 | that can't think of anything better to do. This implements the C | |
1638 | lookup rules. */ | |
1639 | ||
1640 | struct symbol * | |
1641 | basic_lookup_symbol_nonlocal (const char *name, | |
1642 | const char *linkage_name, | |
1643 | const struct block *block, | |
21b556f4 | 1644 | const domain_enum domain) |
5f9a71c3 DC |
1645 | { |
1646 | struct symbol *sym; | |
1647 | ||
1648 | /* NOTE: carlton/2003-05-19: The comments below were written when | |
1649 | this (or what turned into this) was part of lookup_symbol_aux; | |
1650 | I'm much less worried about these questions now, since these | |
1651 | decisions have turned out well, but I leave these comments here | |
1652 | for posterity. */ | |
1653 | ||
1654 | /* NOTE: carlton/2002-12-05: There is a question as to whether or | |
1655 | not it would be appropriate to search the current global block | |
1656 | here as well. (That's what this code used to do before the | |
1657 | is_a_field_of_this check was moved up.) On the one hand, it's | |
1658 | redundant with the lookup_symbol_aux_symtabs search that happens | |
1659 | next. On the other hand, if decode_line_1 is passed an argument | |
1660 | like filename:var, then the user presumably wants 'var' to be | |
1661 | searched for in filename. On the third hand, there shouldn't be | |
1662 | multiple global variables all of which are named 'var', and it's | |
1663 | not like decode_line_1 has ever restricted its search to only | |
1664 | global variables in a single filename. All in all, only | |
1665 | searching the static block here seems best: it's correct and it's | |
1666 | cleanest. */ | |
1667 | ||
1668 | /* NOTE: carlton/2002-12-05: There's also a possible performance | |
1669 | issue here: if you usually search for global symbols in the | |
1670 | current file, then it would be slightly better to search the | |
1671 | current global block before searching all the symtabs. But there | |
1672 | are other factors that have a much greater effect on performance | |
1673 | than that one, so I don't think we should worry about that for | |
1674 | now. */ | |
1675 | ||
21b556f4 | 1676 | sym = lookup_symbol_static (name, linkage_name, block, domain); |
5f9a71c3 DC |
1677 | if (sym != NULL) |
1678 | return sym; | |
1679 | ||
21b556f4 | 1680 | return lookup_symbol_global (name, linkage_name, block, domain); |
5f9a71c3 DC |
1681 | } |
1682 | ||
1683 | /* Lookup a symbol in the static block associated to BLOCK, if there | |
1684 | is one; do nothing if BLOCK is NULL or a global block. */ | |
1685 | ||
1686 | struct symbol * | |
1687 | lookup_symbol_static (const char *name, | |
1688 | const char *linkage_name, | |
1689 | const struct block *block, | |
21b556f4 | 1690 | const domain_enum domain) |
5f9a71c3 DC |
1691 | { |
1692 | const struct block *static_block = block_static_block (block); | |
1693 | ||
1694 | if (static_block != NULL) | |
21b556f4 | 1695 | return lookup_symbol_aux_block (name, linkage_name, static_block, domain); |
5f9a71c3 DC |
1696 | else |
1697 | return NULL; | |
1698 | } | |
1699 | ||
1700 | /* Lookup a symbol in all files' global blocks (searching psymtabs if | |
1701 | necessary). */ | |
1702 | ||
1703 | struct symbol * | |
1704 | lookup_symbol_global (const char *name, | |
1705 | const char *linkage_name, | |
3a40aaa0 | 1706 | const struct block *block, |
21b556f4 | 1707 | const domain_enum domain) |
5f9a71c3 | 1708 | { |
3a40aaa0 UW |
1709 | struct symbol *sym = NULL; |
1710 | struct objfile *objfile = NULL; | |
1711 | ||
1712 | /* Call library-specific lookup procedure. */ | |
1713 | objfile = lookup_objfile_from_block (block); | |
1714 | if (objfile != NULL) | |
21b556f4 | 1715 | sym = solib_global_lookup (objfile, name, linkage_name, domain); |
3a40aaa0 UW |
1716 | if (sym != NULL) |
1717 | return sym; | |
5f9a71c3 | 1718 | |
21b556f4 | 1719 | sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain); |
5f9a71c3 DC |
1720 | if (sym != NULL) |
1721 | return sym; | |
1722 | ||
21b556f4 | 1723 | return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain); |
5f9a71c3 DC |
1724 | } |
1725 | ||
5eeb2539 | 1726 | int |
9af17804 | 1727 | symbol_matches_domain (enum language symbol_language, |
5eeb2539 AR |
1728 | domain_enum symbol_domain, |
1729 | domain_enum domain) | |
1730 | { | |
9af17804 | 1731 | /* For C++ "struct foo { ... }" also defines a typedef for "foo". |
5eeb2539 AR |
1732 | A Java class declaration also defines a typedef for the class. |
1733 | Similarly, any Ada type declaration implicitly defines a typedef. */ | |
1734 | if (symbol_language == language_cplus | |
1735 | || symbol_language == language_java | |
1736 | || symbol_language == language_ada) | |
1737 | { | |
1738 | if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN) | |
1739 | && symbol_domain == STRUCT_DOMAIN) | |
1740 | return 1; | |
1741 | } | |
1742 | /* For all other languages, strict match is required. */ | |
1743 | return (symbol_domain == domain); | |
1744 | } | |
1745 | ||
3d4e8fd2 DC |
1746 | /* Look, in partial_symtab PST, for symbol whose natural name is NAME. |
1747 | If LINKAGE_NAME is non-NULL, check in addition that the symbol's | |
1748 | linkage name matches it. Check the global symbols if GLOBAL, the | |
1749 | static symbols if not */ | |
c906108c | 1750 | |
b6429628 | 1751 | struct partial_symbol * |
3d4e8fd2 DC |
1752 | lookup_partial_symbol (struct partial_symtab *pst, const char *name, |
1753 | const char *linkage_name, int global, | |
176620f1 | 1754 | domain_enum domain) |
c906108c | 1755 | { |
357e46e7 | 1756 | struct partial_symbol *temp; |
c906108c | 1757 | struct partial_symbol **start, **psym; |
38d49aff | 1758 | struct partial_symbol **top, **real_top, **bottom, **center; |
c906108c SS |
1759 | int length = (global ? pst->n_global_syms : pst->n_static_syms); |
1760 | int do_linear_search = 1; | |
9af17804 | 1761 | |
c906108c SS |
1762 | if (length == 0) |
1763 | { | |
1764 | return (NULL); | |
1765 | } | |
c906108c SS |
1766 | start = (global ? |
1767 | pst->objfile->global_psymbols.list + pst->globals_offset : | |
c5aa993b | 1768 | pst->objfile->static_psymbols.list + pst->statics_offset); |
9af17804 | 1769 | |
c5aa993b | 1770 | if (global) /* This means we can use a binary search. */ |
c906108c SS |
1771 | { |
1772 | do_linear_search = 0; | |
1773 | ||
1774 | /* Binary search. This search is guaranteed to end with center | |
0fe19209 DC |
1775 | pointing at the earliest partial symbol whose name might be |
1776 | correct. At that point *all* partial symbols with an | |
1777 | appropriate name will be checked against the correct | |
176620f1 | 1778 | domain. */ |
c906108c SS |
1779 | |
1780 | bottom = start; | |
1781 | top = start + length - 1; | |
38d49aff | 1782 | real_top = top; |
c906108c SS |
1783 | while (top > bottom) |
1784 | { | |
1785 | center = bottom + (top - bottom) / 2; | |
1786 | if (!(center < top)) | |
e2e0b3e5 | 1787 | internal_error (__FILE__, __LINE__, _("failed internal consistency check")); |
c906108c | 1788 | if (!do_linear_search |
357e46e7 | 1789 | && (SYMBOL_LANGUAGE (*center) == language_java)) |
c906108c SS |
1790 | { |
1791 | do_linear_search = 1; | |
1792 | } | |
4725b721 | 1793 | if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0) |
c906108c SS |
1794 | { |
1795 | top = center; | |
1796 | } | |
1797 | else | |
1798 | { | |
1799 | bottom = center + 1; | |
1800 | } | |
1801 | } | |
1802 | if (!(top == bottom)) | |
e2e0b3e5 | 1803 | internal_error (__FILE__, __LINE__, _("failed internal consistency check")); |
357e46e7 | 1804 | |
3d4e8fd2 DC |
1805 | while (top <= real_top |
1806 | && (linkage_name != NULL | |
1807 | ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0 | |
4725b721 | 1808 | : SYMBOL_MATCHES_SEARCH_NAME (*top,name))) |
c906108c | 1809 | { |
5eeb2539 AR |
1810 | if (symbol_matches_domain (SYMBOL_LANGUAGE (*top), |
1811 | SYMBOL_DOMAIN (*top), domain)) | |
1812 | return (*top); | |
c5aa993b | 1813 | top++; |
c906108c SS |
1814 | } |
1815 | } | |
1816 | ||
1817 | /* Can't use a binary search or else we found during the binary search that | |
1818 | we should also do a linear search. */ | |
1819 | ||
1820 | if (do_linear_search) | |
9af17804 | 1821 | { |
c906108c SS |
1822 | for (psym = start; psym < start + length; psym++) |
1823 | { | |
9af17804 | 1824 | if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym), |
5eeb2539 | 1825 | SYMBOL_DOMAIN (*psym), domain)) |
c906108c | 1826 | { |
3d4e8fd2 DC |
1827 | if (linkage_name != NULL |
1828 | ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0 | |
4725b721 | 1829 | : SYMBOL_MATCHES_SEARCH_NAME (*psym, name)) |
c906108c SS |
1830 | { |
1831 | return (*psym); | |
1832 | } | |
1833 | } | |
1834 | } | |
1835 | } | |
1836 | ||
1837 | return (NULL); | |
1838 | } | |
1839 | ||
176620f1 | 1840 | /* Look up a type named NAME in the struct_domain. The type returned |
b368761e DC |
1841 | must not be opaque -- i.e., must have at least one field |
1842 | defined. */ | |
c906108c | 1843 | |
b368761e DC |
1844 | struct type * |
1845 | lookup_transparent_type (const char *name) | |
1846 | { | |
1847 | return current_language->la_lookup_transparent_type (name); | |
1848 | } | |
c906108c | 1849 | |
b368761e DC |
1850 | /* The standard implementation of lookup_transparent_type. This code |
1851 | was modeled on lookup_symbol -- the parts not relevant to looking | |
1852 | up types were just left out. In particular it's assumed here that | |
1853 | types are available in struct_domain and only at file-static or | |
1854 | global blocks. */ | |
c906108c SS |
1855 | |
1856 | struct type * | |
b368761e | 1857 | basic_lookup_transparent_type (const char *name) |
c906108c | 1858 | { |
52f0bd74 AC |
1859 | struct symbol *sym; |
1860 | struct symtab *s = NULL; | |
1861 | struct partial_symtab *ps; | |
c906108c | 1862 | struct blockvector *bv; |
52f0bd74 AC |
1863 | struct objfile *objfile; |
1864 | struct block *block; | |
c906108c SS |
1865 | |
1866 | /* Now search all the global symbols. Do the symtab's first, then | |
1867 | check the psymtab's. If a psymtab indicates the existence | |
1868 | of the desired name as a global, then do psymtab-to-symtab | |
1869 | conversion on the fly and return the found symbol. */ | |
c5aa993b | 1870 | |
11309657 | 1871 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
1872 | { |
1873 | bv = BLOCKVECTOR (s); | |
1874 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1875 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1876 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1877 | { | |
1878 | return SYMBOL_TYPE (sym); | |
1879 | } | |
1880 | } | |
c906108c SS |
1881 | |
1882 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b | 1883 | { |
3d4e8fd2 | 1884 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL, |
176620f1 | 1885 | 1, STRUCT_DOMAIN)) |
c5aa993b JM |
1886 | { |
1887 | s = PSYMTAB_TO_SYMTAB (ps); | |
1888 | bv = BLOCKVECTOR (s); | |
1889 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1890 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1891 | if (!sym) |
1892 | { | |
1893 | /* This shouldn't be necessary, but as a last resort | |
1894 | * try looking in the statics even though the psymtab | |
1895 | * claimed the symbol was global. It's possible that | |
1896 | * the psymtab gets it wrong in some cases. | |
1897 | */ | |
1898 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1899 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b | 1900 | if (!sym) |
8a3fe4f8 | 1901 | error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\ |
c906108c | 1902 | %s may be an inlined function, or may be a template function\n\ |
8a3fe4f8 | 1903 | (if a template, try specifying an instantiation: %s<type>)."), |
c5aa993b JM |
1904 | name, ps->filename, name, name); |
1905 | } | |
1906 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1907 | return SYMBOL_TYPE (sym); | |
1908 | } | |
1909 | } | |
c906108c SS |
1910 | |
1911 | /* Now search the static file-level symbols. | |
1912 | Not strictly correct, but more useful than an error. | |
1913 | Do the symtab's first, then | |
1914 | check the psymtab's. If a psymtab indicates the existence | |
1915 | of the desired name as a file-level static, then do psymtab-to-symtab | |
1916 | conversion on the fly and return the found symbol. | |
1917 | */ | |
1918 | ||
11309657 | 1919 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
1920 | { |
1921 | bv = BLOCKVECTOR (s); | |
1922 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1923 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1924 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1925 | { | |
1926 | return SYMBOL_TYPE (sym); | |
1927 | } | |
1928 | } | |
c906108c SS |
1929 | |
1930 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b | 1931 | { |
176620f1 | 1932 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN)) |
c5aa993b JM |
1933 | { |
1934 | s = PSYMTAB_TO_SYMTAB (ps); | |
1935 | bv = BLOCKVECTOR (s); | |
1936 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1937 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1938 | if (!sym) |
1939 | { | |
1940 | /* This shouldn't be necessary, but as a last resort | |
1941 | * try looking in the globals even though the psymtab | |
1942 | * claimed the symbol was static. It's possible that | |
1943 | * the psymtab gets it wrong in some cases. | |
1944 | */ | |
1945 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1946 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b | 1947 | if (!sym) |
8a3fe4f8 | 1948 | error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\ |
c906108c | 1949 | %s may be an inlined function, or may be a template function\n\ |
8a3fe4f8 | 1950 | (if a template, try specifying an instantiation: %s<type>)."), |
c5aa993b JM |
1951 | name, ps->filename, name, name); |
1952 | } | |
1953 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1954 | return SYMBOL_TYPE (sym); | |
1955 | } | |
1956 | } | |
c906108c SS |
1957 | return (struct type *) 0; |
1958 | } | |
1959 | ||
1960 | ||
1961 | /* Find the psymtab containing main(). */ | |
1962 | /* FIXME: What about languages without main() or specially linked | |
1963 | executables that have no main() ? */ | |
1964 | ||
1965 | struct partial_symtab * | |
fba45db2 | 1966 | find_main_psymtab (void) |
c906108c | 1967 | { |
52f0bd74 AC |
1968 | struct partial_symtab *pst; |
1969 | struct objfile *objfile; | |
c906108c SS |
1970 | |
1971 | ALL_PSYMTABS (objfile, pst) | |
c5aa993b | 1972 | { |
176620f1 | 1973 | if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN)) |
c5aa993b JM |
1974 | { |
1975 | return (pst); | |
1976 | } | |
1977 | } | |
c906108c SS |
1978 | return (NULL); |
1979 | } | |
1980 | ||
176620f1 | 1981 | /* Search BLOCK for symbol NAME in DOMAIN. |
c906108c SS |
1982 | |
1983 | Note that if NAME is the demangled form of a C++ symbol, we will fail | |
1984 | to find a match during the binary search of the non-encoded names, but | |
1985 | for now we don't worry about the slight inefficiency of looking for | |
1986 | a match we'll never find, since it will go pretty quick. Once the | |
1987 | binary search terminates, we drop through and do a straight linear | |
1bae87b9 | 1988 | search on the symbols. Each symbol which is marked as being a ObjC/C++ |
9af17804 | 1989 | symbol (language_cplus or language_objc set) has both the encoded and |
1bae87b9 | 1990 | non-encoded names tested for a match. |
3121eff0 | 1991 | |
5ad1c190 | 1992 | If LINKAGE_NAME is non-NULL, verify that any symbol we find has this |
3121eff0 DJ |
1993 | particular mangled name. |
1994 | */ | |
c906108c SS |
1995 | |
1996 | struct symbol * | |
aa1ee363 | 1997 | lookup_block_symbol (const struct block *block, const char *name, |
5ad1c190 | 1998 | const char *linkage_name, |
176620f1 | 1999 | const domain_enum domain) |
c906108c | 2000 | { |
de4f826b DC |
2001 | struct dict_iterator iter; |
2002 | struct symbol *sym; | |
c906108c | 2003 | |
de4f826b | 2004 | if (!BLOCK_FUNCTION (block)) |
261397f8 | 2005 | { |
de4f826b DC |
2006 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); |
2007 | sym != NULL; | |
2008 | sym = dict_iter_name_next (name, &iter)) | |
261397f8 | 2009 | { |
5eeb2539 AR |
2010 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
2011 | SYMBOL_DOMAIN (sym), domain) | |
de4f826b DC |
2012 | && (linkage_name != NULL |
2013 | ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1)) | |
261397f8 DJ |
2014 | return sym; |
2015 | } | |
2016 | return NULL; | |
2017 | } | |
526e70c0 | 2018 | else |
c906108c | 2019 | { |
526e70c0 DC |
2020 | /* Note that parameter symbols do not always show up last in the |
2021 | list; this loop makes sure to take anything else other than | |
2022 | parameter symbols first; it only uses parameter symbols as a | |
2023 | last resort. Note that this only takes up extra computation | |
2024 | time on a match. */ | |
de4f826b DC |
2025 | |
2026 | struct symbol *sym_found = NULL; | |
2027 | ||
2028 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); | |
2029 | sym != NULL; | |
2030 | sym = dict_iter_name_next (name, &iter)) | |
c906108c | 2031 | { |
5eeb2539 AR |
2032 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
2033 | SYMBOL_DOMAIN (sym), domain) | |
de4f826b DC |
2034 | && (linkage_name != NULL |
2035 | ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1)) | |
c906108c | 2036 | { |
c906108c | 2037 | sym_found = sym; |
2a2d4dc3 | 2038 | if (!SYMBOL_IS_ARGUMENT (sym)) |
c906108c SS |
2039 | { |
2040 | break; | |
2041 | } | |
2042 | } | |
c906108c | 2043 | } |
de4f826b | 2044 | return (sym_found); /* Will be NULL if not found. */ |
c906108c | 2045 | } |
c906108c SS |
2046 | } |
2047 | ||
c906108c SS |
2048 | /* Find the symtab associated with PC and SECTION. Look through the |
2049 | psymtabs and read in another symtab if necessary. */ | |
2050 | ||
2051 | struct symtab * | |
714835d5 | 2052 | find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section) |
c906108c | 2053 | { |
52f0bd74 | 2054 | struct block *b; |
c906108c | 2055 | struct blockvector *bv; |
52f0bd74 AC |
2056 | struct symtab *s = NULL; |
2057 | struct symtab *best_s = NULL; | |
2058 | struct partial_symtab *ps; | |
2059 | struct objfile *objfile; | |
6c95b8df | 2060 | struct program_space *pspace; |
c906108c | 2061 | CORE_ADDR distance = 0; |
8a48e967 DJ |
2062 | struct minimal_symbol *msymbol; |
2063 | ||
6c95b8df PA |
2064 | pspace = current_program_space; |
2065 | ||
8a48e967 DJ |
2066 | /* If we know that this is not a text address, return failure. This is |
2067 | necessary because we loop based on the block's high and low code | |
2068 | addresses, which do not include the data ranges, and because | |
2069 | we call find_pc_sect_psymtab which has a similar restriction based | |
2070 | on the partial_symtab's texthigh and textlow. */ | |
2071 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
2072 | if (msymbol | |
712f90be TT |
2073 | && (MSYMBOL_TYPE (msymbol) == mst_data |
2074 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
2075 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
2076 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
2077 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 2078 | return NULL; |
c906108c SS |
2079 | |
2080 | /* Search all symtabs for the one whose file contains our address, and which | |
2081 | is the smallest of all the ones containing the address. This is designed | |
2082 | to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 | |
2083 | and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from | |
2084 | 0x1000-0x4000, but for address 0x2345 we want to return symtab b. | |
2085 | ||
2086 | This happens for native ecoff format, where code from included files | |
2087 | gets its own symtab. The symtab for the included file should have | |
2088 | been read in already via the dependency mechanism. | |
2089 | It might be swifter to create several symtabs with the same name | |
2090 | like xcoff does (I'm not sure). | |
2091 | ||
2092 | It also happens for objfiles that have their functions reordered. | |
2093 | For these, the symtab we are looking for is not necessarily read in. */ | |
2094 | ||
11309657 | 2095 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
2096 | { |
2097 | bv = BLOCKVECTOR (s); | |
2098 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
c906108c | 2099 | |
c5aa993b | 2100 | if (BLOCK_START (b) <= pc |
c5aa993b | 2101 | && BLOCK_END (b) > pc |
c5aa993b JM |
2102 | && (distance == 0 |
2103 | || BLOCK_END (b) - BLOCK_START (b) < distance)) | |
2104 | { | |
2105 | /* For an objfile that has its functions reordered, | |
2106 | find_pc_psymtab will find the proper partial symbol table | |
2107 | and we simply return its corresponding symtab. */ | |
2108 | /* In order to better support objfiles that contain both | |
2109 | stabs and coff debugging info, we continue on if a psymtab | |
2110 | can't be found. */ | |
2111 | if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs) | |
2112 | { | |
2113 | ps = find_pc_sect_psymtab (pc, section); | |
2114 | if (ps) | |
2115 | return PSYMTAB_TO_SYMTAB (ps); | |
2116 | } | |
2117 | if (section != 0) | |
2118 | { | |
de4f826b | 2119 | struct dict_iterator iter; |
261397f8 | 2120 | struct symbol *sym = NULL; |
c906108c | 2121 | |
de4f826b | 2122 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 2123 | { |
261397f8 | 2124 | fixup_symbol_section (sym, objfile); |
714835d5 | 2125 | if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section)) |
c5aa993b JM |
2126 | break; |
2127 | } | |
de4f826b | 2128 | if (sym == NULL) |
c5aa993b JM |
2129 | continue; /* no symbol in this symtab matches section */ |
2130 | } | |
2131 | distance = BLOCK_END (b) - BLOCK_START (b); | |
2132 | best_s = s; | |
2133 | } | |
2134 | } | |
c906108c SS |
2135 | |
2136 | if (best_s != NULL) | |
c5aa993b | 2137 | return (best_s); |
c906108c SS |
2138 | |
2139 | s = NULL; | |
2140 | ps = find_pc_sect_psymtab (pc, section); | |
2141 | if (ps) | |
2142 | { | |
2143 | if (ps->readin) | |
2144 | /* Might want to error() here (in case symtab is corrupt and | |
2145 | will cause a core dump), but maybe we can successfully | |
2146 | continue, so let's not. */ | |
8a3fe4f8 | 2147 | warning (_("\ |
5af949e3 UW |
2148 | (Internal error: pc %s in read in psymtab, but not in symtab.)\n"), |
2149 | paddress (get_objfile_arch (ps->objfile), pc)); | |
c906108c SS |
2150 | s = PSYMTAB_TO_SYMTAB (ps); |
2151 | } | |
2152 | return (s); | |
2153 | } | |
2154 | ||
2155 | /* Find the symtab associated with PC. Look through the psymtabs and | |
2156 | read in another symtab if necessary. Backward compatibility, no section */ | |
2157 | ||
2158 | struct symtab * | |
fba45db2 | 2159 | find_pc_symtab (CORE_ADDR pc) |
c906108c SS |
2160 | { |
2161 | return find_pc_sect_symtab (pc, find_pc_mapped_section (pc)); | |
2162 | } | |
c906108c | 2163 | \f |
c5aa993b | 2164 | |
7e73cedf | 2165 | /* Find the source file and line number for a given PC value and SECTION. |
c906108c SS |
2166 | Return a structure containing a symtab pointer, a line number, |
2167 | and a pc range for the entire source line. | |
2168 | The value's .pc field is NOT the specified pc. | |
2169 | NOTCURRENT nonzero means, if specified pc is on a line boundary, | |
2170 | use the line that ends there. Otherwise, in that case, the line | |
2171 | that begins there is used. */ | |
2172 | ||
2173 | /* The big complication here is that a line may start in one file, and end just | |
2174 | before the start of another file. This usually occurs when you #include | |
2175 | code in the middle of a subroutine. To properly find the end of a line's PC | |
2176 | range, we must search all symtabs associated with this compilation unit, and | |
2177 | find the one whose first PC is closer than that of the next line in this | |
2178 | symtab. */ | |
2179 | ||
2180 | /* If it's worth the effort, we could be using a binary search. */ | |
2181 | ||
2182 | struct symtab_and_line | |
714835d5 | 2183 | find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent) |
c906108c SS |
2184 | { |
2185 | struct symtab *s; | |
52f0bd74 AC |
2186 | struct linetable *l; |
2187 | int len; | |
2188 | int i; | |
2189 | struct linetable_entry *item; | |
c906108c SS |
2190 | struct symtab_and_line val; |
2191 | struct blockvector *bv; | |
2192 | struct minimal_symbol *msymbol; | |
2193 | struct minimal_symbol *mfunsym; | |
2194 | ||
2195 | /* Info on best line seen so far, and where it starts, and its file. */ | |
2196 | ||
2197 | struct linetable_entry *best = NULL; | |
2198 | CORE_ADDR best_end = 0; | |
2199 | struct symtab *best_symtab = 0; | |
2200 | ||
2201 | /* Store here the first line number | |
2202 | of a file which contains the line at the smallest pc after PC. | |
2203 | If we don't find a line whose range contains PC, | |
2204 | we will use a line one less than this, | |
2205 | with a range from the start of that file to the first line's pc. */ | |
2206 | struct linetable_entry *alt = NULL; | |
2207 | struct symtab *alt_symtab = 0; | |
2208 | ||
2209 | /* Info on best line seen in this file. */ | |
2210 | ||
2211 | struct linetable_entry *prev; | |
2212 | ||
2213 | /* If this pc is not from the current frame, | |
2214 | it is the address of the end of a call instruction. | |
2215 | Quite likely that is the start of the following statement. | |
2216 | But what we want is the statement containing the instruction. | |
2217 | Fudge the pc to make sure we get that. */ | |
2218 | ||
fe39c653 | 2219 | init_sal (&val); /* initialize to zeroes */ |
c906108c | 2220 | |
6c95b8df PA |
2221 | val.pspace = current_program_space; |
2222 | ||
b77b1eb7 JB |
2223 | /* It's tempting to assume that, if we can't find debugging info for |
2224 | any function enclosing PC, that we shouldn't search for line | |
2225 | number info, either. However, GAS can emit line number info for | |
2226 | assembly files --- very helpful when debugging hand-written | |
2227 | assembly code. In such a case, we'd have no debug info for the | |
2228 | function, but we would have line info. */ | |
648f4f79 | 2229 | |
c906108c SS |
2230 | if (notcurrent) |
2231 | pc -= 1; | |
2232 | ||
c5aa993b | 2233 | /* elz: added this because this function returned the wrong |
c906108c SS |
2234 | information if the pc belongs to a stub (import/export) |
2235 | to call a shlib function. This stub would be anywhere between | |
9af17804 DE |
2236 | two functions in the target, and the line info was erroneously |
2237 | taken to be the one of the line before the pc. | |
c5aa993b | 2238 | */ |
c906108c | 2239 | /* RT: Further explanation: |
c5aa993b | 2240 | |
c906108c SS |
2241 | * We have stubs (trampolines) inserted between procedures. |
2242 | * | |
2243 | * Example: "shr1" exists in a shared library, and a "shr1" stub also | |
2244 | * exists in the main image. | |
2245 | * | |
2246 | * In the minimal symbol table, we have a bunch of symbols | |
2247 | * sorted by start address. The stubs are marked as "trampoline", | |
2248 | * the others appear as text. E.g.: | |
2249 | * | |
9af17804 | 2250 | * Minimal symbol table for main image |
c906108c SS |
2251 | * main: code for main (text symbol) |
2252 | * shr1: stub (trampoline symbol) | |
2253 | * foo: code for foo (text symbol) | |
2254 | * ... | |
2255 | * Minimal symbol table for "shr1" image: | |
2256 | * ... | |
2257 | * shr1: code for shr1 (text symbol) | |
2258 | * ... | |
2259 | * | |
2260 | * So the code below is trying to detect if we are in the stub | |
2261 | * ("shr1" stub), and if so, find the real code ("shr1" trampoline), | |
2262 | * and if found, do the symbolization from the real-code address | |
2263 | * rather than the stub address. | |
2264 | * | |
2265 | * Assumptions being made about the minimal symbol table: | |
2266 | * 1. lookup_minimal_symbol_by_pc() will return a trampoline only | |
2267 | * if we're really in the trampoline. If we're beyond it (say | |
9af17804 | 2268 | * we're in "foo" in the above example), it'll have a closer |
c906108c SS |
2269 | * symbol (the "foo" text symbol for example) and will not |
2270 | * return the trampoline. | |
2271 | * 2. lookup_minimal_symbol_text() will find a real text symbol | |
2272 | * corresponding to the trampoline, and whose address will | |
2273 | * be different than the trampoline address. I put in a sanity | |
2274 | * check for the address being the same, to avoid an | |
2275 | * infinite recursion. | |
2276 | */ | |
c5aa993b JM |
2277 | msymbol = lookup_minimal_symbol_by_pc (pc); |
2278 | if (msymbol != NULL) | |
c906108c | 2279 | if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
c5aa993b | 2280 | { |
2335f48e | 2281 | mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol), |
5520a790 | 2282 | NULL); |
c5aa993b JM |
2283 | if (mfunsym == NULL) |
2284 | /* I eliminated this warning since it is coming out | |
2285 | * in the following situation: | |
2286 | * gdb shmain // test program with shared libraries | |
2287 | * (gdb) break shr1 // function in shared lib | |
2288 | * Warning: In stub for ... | |
9af17804 | 2289 | * In the above situation, the shared lib is not loaded yet, |
c5aa993b JM |
2290 | * so of course we can't find the real func/line info, |
2291 | * but the "break" still works, and the warning is annoying. | |
2292 | * So I commented out the warning. RT */ | |
2335f48e | 2293 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b | 2294 | /* fall through */ |
82cf6c60 | 2295 | else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol)) |
c5aa993b JM |
2296 | /* Avoid infinite recursion */ |
2297 | /* See above comment about why warning is commented out */ | |
2335f48e | 2298 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b JM |
2299 | /* fall through */ |
2300 | else | |
82cf6c60 | 2301 | return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0); |
c5aa993b | 2302 | } |
c906108c SS |
2303 | |
2304 | ||
2305 | s = find_pc_sect_symtab (pc, section); | |
2306 | if (!s) | |
2307 | { | |
2308 | /* if no symbol information, return previous pc */ | |
2309 | if (notcurrent) | |
2310 | pc++; | |
2311 | val.pc = pc; | |
2312 | return val; | |
2313 | } | |
2314 | ||
2315 | bv = BLOCKVECTOR (s); | |
2316 | ||
2317 | /* Look at all the symtabs that share this blockvector. | |
2318 | They all have the same apriori range, that we found was right; | |
2319 | but they have different line tables. */ | |
2320 | ||
2321 | for (; s && BLOCKVECTOR (s) == bv; s = s->next) | |
2322 | { | |
2323 | /* Find the best line in this symtab. */ | |
2324 | l = LINETABLE (s); | |
2325 | if (!l) | |
c5aa993b | 2326 | continue; |
c906108c SS |
2327 | len = l->nitems; |
2328 | if (len <= 0) | |
2329 | { | |
2330 | /* I think len can be zero if the symtab lacks line numbers | |
2331 | (e.g. gcc -g1). (Either that or the LINETABLE is NULL; | |
2332 | I'm not sure which, and maybe it depends on the symbol | |
2333 | reader). */ | |
2334 | continue; | |
2335 | } | |
2336 | ||
2337 | prev = NULL; | |
2338 | item = l->item; /* Get first line info */ | |
2339 | ||
2340 | /* Is this file's first line closer than the first lines of other files? | |
c5aa993b | 2341 | If so, record this file, and its first line, as best alternate. */ |
c906108c SS |
2342 | if (item->pc > pc && (!alt || item->pc < alt->pc)) |
2343 | { | |
2344 | alt = item; | |
2345 | alt_symtab = s; | |
2346 | } | |
2347 | ||
2348 | for (i = 0; i < len; i++, item++) | |
2349 | { | |
2350 | /* Leave prev pointing to the linetable entry for the last line | |
2351 | that started at or before PC. */ | |
2352 | if (item->pc > pc) | |
2353 | break; | |
2354 | ||
2355 | prev = item; | |
2356 | } | |
2357 | ||
2358 | /* At this point, prev points at the line whose start addr is <= pc, and | |
c5aa993b JM |
2359 | item points at the next line. If we ran off the end of the linetable |
2360 | (pc >= start of the last line), then prev == item. If pc < start of | |
2361 | the first line, prev will not be set. */ | |
c906108c SS |
2362 | |
2363 | /* Is this file's best line closer than the best in the other files? | |
083ae935 DJ |
2364 | If so, record this file, and its best line, as best so far. Don't |
2365 | save prev if it represents the end of a function (i.e. line number | |
2366 | 0) instead of a real line. */ | |
c906108c | 2367 | |
083ae935 | 2368 | if (prev && prev->line && (!best || prev->pc > best->pc)) |
c906108c SS |
2369 | { |
2370 | best = prev; | |
2371 | best_symtab = s; | |
25d53da1 KB |
2372 | |
2373 | /* Discard BEST_END if it's before the PC of the current BEST. */ | |
2374 | if (best_end <= best->pc) | |
2375 | best_end = 0; | |
c906108c | 2376 | } |
25d53da1 KB |
2377 | |
2378 | /* If another line (denoted by ITEM) is in the linetable and its | |
2379 | PC is after BEST's PC, but before the current BEST_END, then | |
2380 | use ITEM's PC as the new best_end. */ | |
2381 | if (best && i < len && item->pc > best->pc | |
2382 | && (best_end == 0 || best_end > item->pc)) | |
2383 | best_end = item->pc; | |
c906108c SS |
2384 | } |
2385 | ||
2386 | if (!best_symtab) | |
2387 | { | |
e86e87f7 DJ |
2388 | /* If we didn't find any line number info, just return zeros. |
2389 | We used to return alt->line - 1 here, but that could be | |
2390 | anywhere; if we don't have line number info for this PC, | |
2391 | don't make some up. */ | |
2392 | val.pc = pc; | |
c906108c | 2393 | } |
e8717518 FF |
2394 | else if (best->line == 0) |
2395 | { | |
2396 | /* If our best fit is in a range of PC's for which no line | |
2397 | number info is available (line number is zero) then we didn't | |
2398 | find any valid line information. */ | |
2399 | val.pc = pc; | |
2400 | } | |
c906108c SS |
2401 | else |
2402 | { | |
2403 | val.symtab = best_symtab; | |
2404 | val.line = best->line; | |
2405 | val.pc = best->pc; | |
2406 | if (best_end && (!alt || best_end < alt->pc)) | |
2407 | val.end = best_end; | |
2408 | else if (alt) | |
2409 | val.end = alt->pc; | |
2410 | else | |
2411 | val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
2412 | } | |
2413 | val.section = section; | |
2414 | return val; | |
2415 | } | |
2416 | ||
2417 | /* Backward compatibility (no section) */ | |
2418 | ||
2419 | struct symtab_and_line | |
fba45db2 | 2420 | find_pc_line (CORE_ADDR pc, int notcurrent) |
c906108c | 2421 | { |
714835d5 | 2422 | struct obj_section *section; |
c906108c SS |
2423 | |
2424 | section = find_pc_overlay (pc); | |
2425 | if (pc_in_unmapped_range (pc, section)) | |
2426 | pc = overlay_mapped_address (pc, section); | |
2427 | return find_pc_sect_line (pc, section, notcurrent); | |
2428 | } | |
c906108c | 2429 | \f |
c906108c SS |
2430 | /* Find line number LINE in any symtab whose name is the same as |
2431 | SYMTAB. | |
2432 | ||
2433 | If found, return the symtab that contains the linetable in which it was | |
2434 | found, set *INDEX to the index in the linetable of the best entry | |
2435 | found, and set *EXACT_MATCH nonzero if the value returned is an | |
2436 | exact match. | |
2437 | ||
2438 | If not found, return NULL. */ | |
2439 | ||
50641945 | 2440 | struct symtab * |
fba45db2 | 2441 | find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match) |
c906108c | 2442 | { |
6f43c46f | 2443 | int exact = 0; /* Initialized here to avoid a compiler warning. */ |
c906108c SS |
2444 | |
2445 | /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE | |
2446 | so far seen. */ | |
2447 | ||
2448 | int best_index; | |
2449 | struct linetable *best_linetable; | |
2450 | struct symtab *best_symtab; | |
2451 | ||
2452 | /* First try looking it up in the given symtab. */ | |
2453 | best_linetable = LINETABLE (symtab); | |
2454 | best_symtab = symtab; | |
2455 | best_index = find_line_common (best_linetable, line, &exact); | |
2456 | if (best_index < 0 || !exact) | |
2457 | { | |
2458 | /* Didn't find an exact match. So we better keep looking for | |
c5aa993b JM |
2459 | another symtab with the same name. In the case of xcoff, |
2460 | multiple csects for one source file (produced by IBM's FORTRAN | |
2461 | compiler) produce multiple symtabs (this is unavoidable | |
2462 | assuming csects can be at arbitrary places in memory and that | |
2463 | the GLOBAL_BLOCK of a symtab has a begin and end address). */ | |
c906108c SS |
2464 | |
2465 | /* BEST is the smallest linenumber > LINE so far seen, | |
c5aa993b JM |
2466 | or 0 if none has been seen so far. |
2467 | BEST_INDEX and BEST_LINETABLE identify the item for it. */ | |
c906108c SS |
2468 | int best; |
2469 | ||
2470 | struct objfile *objfile; | |
2471 | struct symtab *s; | |
51432cca | 2472 | struct partial_symtab *p; |
c906108c SS |
2473 | |
2474 | if (best_index >= 0) | |
2475 | best = best_linetable->item[best_index].line; | |
2476 | else | |
2477 | best = 0; | |
2478 | ||
51432cca CES |
2479 | ALL_PSYMTABS (objfile, p) |
2480 | { | |
3ffc00b8 | 2481 | if (FILENAME_CMP (symtab->filename, p->filename) != 0) |
51432cca CES |
2482 | continue; |
2483 | PSYMTAB_TO_SYMTAB (p); | |
2484 | } | |
2485 | ||
3ffc00b8 JB |
2486 | /* Get symbol full file name if possible. */ |
2487 | symtab_to_fullname (symtab); | |
2488 | ||
c906108c | 2489 | ALL_SYMTABS (objfile, s) |
c5aa993b JM |
2490 | { |
2491 | struct linetable *l; | |
2492 | int ind; | |
c906108c | 2493 | |
3ffc00b8 | 2494 | if (FILENAME_CMP (symtab->filename, s->filename) != 0) |
c5aa993b | 2495 | continue; |
3ffc00b8 JB |
2496 | if (symtab->fullname != NULL |
2497 | && symtab_to_fullname (s) != NULL | |
2498 | && FILENAME_CMP (symtab->fullname, s->fullname) != 0) | |
2499 | continue; | |
c5aa993b JM |
2500 | l = LINETABLE (s); |
2501 | ind = find_line_common (l, line, &exact); | |
2502 | if (ind >= 0) | |
2503 | { | |
2504 | if (exact) | |
2505 | { | |
2506 | best_index = ind; | |
2507 | best_linetable = l; | |
2508 | best_symtab = s; | |
2509 | goto done; | |
2510 | } | |
2511 | if (best == 0 || l->item[ind].line < best) | |
2512 | { | |
2513 | best = l->item[ind].line; | |
2514 | best_index = ind; | |
2515 | best_linetable = l; | |
2516 | best_symtab = s; | |
2517 | } | |
2518 | } | |
2519 | } | |
c906108c | 2520 | } |
c5aa993b | 2521 | done: |
c906108c SS |
2522 | if (best_index < 0) |
2523 | return NULL; | |
2524 | ||
2525 | if (index) | |
2526 | *index = best_index; | |
2527 | if (exact_match) | |
2528 | *exact_match = exact; | |
2529 | ||
2530 | return best_symtab; | |
2531 | } | |
2532 | \f | |
2533 | /* Set the PC value for a given source file and line number and return true. | |
2534 | Returns zero for invalid line number (and sets the PC to 0). | |
2535 | The source file is specified with a struct symtab. */ | |
2536 | ||
2537 | int | |
fba45db2 | 2538 | find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) |
c906108c SS |
2539 | { |
2540 | struct linetable *l; | |
2541 | int ind; | |
2542 | ||
2543 | *pc = 0; | |
2544 | if (symtab == 0) | |
2545 | return 0; | |
2546 | ||
2547 | symtab = find_line_symtab (symtab, line, &ind, NULL); | |
2548 | if (symtab != NULL) | |
2549 | { | |
2550 | l = LINETABLE (symtab); | |
2551 | *pc = l->item[ind].pc; | |
2552 | return 1; | |
2553 | } | |
2554 | else | |
2555 | return 0; | |
2556 | } | |
2557 | ||
2558 | /* Find the range of pc values in a line. | |
2559 | Store the starting pc of the line into *STARTPTR | |
2560 | and the ending pc (start of next line) into *ENDPTR. | |
2561 | Returns 1 to indicate success. | |
2562 | Returns 0 if could not find the specified line. */ | |
2563 | ||
2564 | int | |
fba45db2 KB |
2565 | find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, |
2566 | CORE_ADDR *endptr) | |
c906108c SS |
2567 | { |
2568 | CORE_ADDR startaddr; | |
2569 | struct symtab_and_line found_sal; | |
2570 | ||
2571 | startaddr = sal.pc; | |
c5aa993b | 2572 | if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) |
c906108c SS |
2573 | return 0; |
2574 | ||
2575 | /* This whole function is based on address. For example, if line 10 has | |
2576 | two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then | |
2577 | "info line *0x123" should say the line goes from 0x100 to 0x200 | |
2578 | and "info line *0x355" should say the line goes from 0x300 to 0x400. | |
2579 | This also insures that we never give a range like "starts at 0x134 | |
2580 | and ends at 0x12c". */ | |
2581 | ||
2582 | found_sal = find_pc_sect_line (startaddr, sal.section, 0); | |
2583 | if (found_sal.line != sal.line) | |
2584 | { | |
2585 | /* The specified line (sal) has zero bytes. */ | |
2586 | *startptr = found_sal.pc; | |
2587 | *endptr = found_sal.pc; | |
2588 | } | |
2589 | else | |
2590 | { | |
2591 | *startptr = found_sal.pc; | |
2592 | *endptr = found_sal.end; | |
2593 | } | |
2594 | return 1; | |
2595 | } | |
2596 | ||
2597 | /* Given a line table and a line number, return the index into the line | |
2598 | table for the pc of the nearest line whose number is >= the specified one. | |
2599 | Return -1 if none is found. The value is >= 0 if it is an index. | |
2600 | ||
2601 | Set *EXACT_MATCH nonzero if the value returned is an exact match. */ | |
2602 | ||
2603 | static int | |
aa1ee363 | 2604 | find_line_common (struct linetable *l, int lineno, |
fba45db2 | 2605 | int *exact_match) |
c906108c | 2606 | { |
52f0bd74 AC |
2607 | int i; |
2608 | int len; | |
c906108c SS |
2609 | |
2610 | /* BEST is the smallest linenumber > LINENO so far seen, | |
2611 | or 0 if none has been seen so far. | |
2612 | BEST_INDEX identifies the item for it. */ | |
2613 | ||
2614 | int best_index = -1; | |
2615 | int best = 0; | |
2616 | ||
b7589f7d DJ |
2617 | *exact_match = 0; |
2618 | ||
c906108c SS |
2619 | if (lineno <= 0) |
2620 | return -1; | |
2621 | if (l == 0) | |
2622 | return -1; | |
2623 | ||
2624 | len = l->nitems; | |
2625 | for (i = 0; i < len; i++) | |
2626 | { | |
aa1ee363 | 2627 | struct linetable_entry *item = &(l->item[i]); |
c906108c SS |
2628 | |
2629 | if (item->line == lineno) | |
2630 | { | |
2631 | /* Return the first (lowest address) entry which matches. */ | |
2632 | *exact_match = 1; | |
2633 | return i; | |
2634 | } | |
2635 | ||
2636 | if (item->line > lineno && (best == 0 || item->line < best)) | |
2637 | { | |
2638 | best = item->line; | |
2639 | best_index = i; | |
2640 | } | |
2641 | } | |
2642 | ||
2643 | /* If we got here, we didn't get an exact match. */ | |
c906108c SS |
2644 | return best_index; |
2645 | } | |
2646 | ||
2647 | int | |
fba45db2 | 2648 | find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) |
c906108c SS |
2649 | { |
2650 | struct symtab_and_line sal; | |
2651 | sal = find_pc_line (pc, 0); | |
2652 | *startptr = sal.pc; | |
2653 | *endptr = sal.end; | |
2654 | return sal.symtab != 0; | |
2655 | } | |
2656 | ||
bccdca4a UW |
2657 | /* Given a function start address PC and SECTION, find the first |
2658 | address after the function prologue. */ | |
2659 | CORE_ADDR | |
2660 | find_function_start_pc (struct gdbarch *gdbarch, | |
714835d5 | 2661 | CORE_ADDR pc, struct obj_section *section) |
bccdca4a UW |
2662 | { |
2663 | /* If the function is in an unmapped overlay, use its unmapped LMA address, | |
2664 | so that gdbarch_skip_prologue has something unique to work on. */ | |
2665 | if (section_is_overlay (section) && !section_is_mapped (section)) | |
2666 | pc = overlay_unmapped_address (pc, section); | |
2667 | ||
2668 | pc += gdbarch_deprecated_function_start_offset (gdbarch); | |
2669 | pc = gdbarch_skip_prologue (gdbarch, pc); | |
2670 | ||
2671 | /* For overlays, map pc back into its mapped VMA range. */ | |
2672 | pc = overlay_mapped_address (pc, section); | |
2673 | ||
2674 | return pc; | |
2675 | } | |
2676 | ||
8c7a1ee8 EZ |
2677 | /* Given a function start address FUNC_ADDR and SYMTAB, find the first |
2678 | address for that function that has an entry in SYMTAB's line info | |
2679 | table. If such an entry cannot be found, return FUNC_ADDR | |
2680 | unaltered. */ | |
2681 | CORE_ADDR | |
2682 | skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab) | |
2683 | { | |
2684 | CORE_ADDR func_start, func_end; | |
2685 | struct linetable *l; | |
2686 | int ind, i, len; | |
2687 | int best_lineno = 0; | |
2688 | CORE_ADDR best_pc = func_addr; | |
2689 | ||
2690 | /* Give up if this symbol has no lineinfo table. */ | |
2691 | l = LINETABLE (symtab); | |
2692 | if (l == NULL) | |
2693 | return func_addr; | |
2694 | ||
2695 | /* Get the range for the function's PC values, or give up if we | |
2696 | cannot, for some reason. */ | |
2697 | if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end)) | |
2698 | return func_addr; | |
2699 | ||
2700 | /* Linetable entries are ordered by PC values, see the commentary in | |
2701 | symtab.h where `struct linetable' is defined. Thus, the first | |
2702 | entry whose PC is in the range [FUNC_START..FUNC_END[ is the | |
2703 | address we are looking for. */ | |
2704 | for (i = 0; i < l->nitems; i++) | |
2705 | { | |
2706 | struct linetable_entry *item = &(l->item[i]); | |
2707 | ||
2708 | /* Don't use line numbers of zero, they mark special entries in | |
2709 | the table. See the commentary on symtab.h before the | |
2710 | definition of struct linetable. */ | |
2711 | if (item->line > 0 && func_start <= item->pc && item->pc < func_end) | |
2712 | return item->pc; | |
2713 | } | |
2714 | ||
2715 | return func_addr; | |
2716 | } | |
2717 | ||
c906108c SS |
2718 | /* Given a function symbol SYM, find the symtab and line for the start |
2719 | of the function. | |
2720 | If the argument FUNFIRSTLINE is nonzero, we want the first line | |
2721 | of real code inside the function. */ | |
2722 | ||
50641945 | 2723 | struct symtab_and_line |
fba45db2 | 2724 | find_function_start_sal (struct symbol *sym, int funfirstline) |
c906108c | 2725 | { |
bccdca4a UW |
2726 | struct block *block = SYMBOL_BLOCK_VALUE (sym); |
2727 | struct objfile *objfile = lookup_objfile_from_block (block); | |
2728 | struct gdbarch *gdbarch = get_objfile_arch (objfile); | |
2729 | ||
c906108c SS |
2730 | CORE_ADDR pc; |
2731 | struct symtab_and_line sal; | |
edb3359d | 2732 | struct block *b, *function_block; |
c906108c | 2733 | |
6c95b8df PA |
2734 | struct cleanup *old_chain; |
2735 | ||
2736 | old_chain = save_current_space_and_thread (); | |
2737 | switch_to_program_space_and_thread (objfile->pspace); | |
2738 | ||
bccdca4a UW |
2739 | pc = BLOCK_START (block); |
2740 | fixup_symbol_section (sym, objfile); | |
c906108c | 2741 | if (funfirstline) |
bccdca4a UW |
2742 | { |
2743 | /* Skip "first line" of function (which is actually its prologue). */ | |
714835d5 | 2744 | pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym)); |
c906108c | 2745 | } |
714835d5 | 2746 | sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0); |
c906108c | 2747 | |
a433963d | 2748 | /* Check if gdbarch_skip_prologue left us in mid-line, and the next |
c906108c SS |
2749 | line is still part of the same function. */ |
2750 | if (sal.pc != pc | |
bccdca4a UW |
2751 | && BLOCK_START (block) <= sal.end |
2752 | && sal.end < BLOCK_END (block)) | |
c906108c SS |
2753 | { |
2754 | /* First pc of next line */ | |
2755 | pc = sal.end; | |
2756 | /* Recalculate the line number (might not be N+1). */ | |
714835d5 | 2757 | sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0); |
c906108c | 2758 | } |
4309257c PM |
2759 | |
2760 | /* On targets with executable formats that don't have a concept of | |
2761 | constructors (ELF with .init has, PE doesn't), gcc emits a call | |
2762 | to `__main' in `main' between the prologue and before user | |
2763 | code. */ | |
2764 | if (funfirstline | |
d80b854b | 2765 | && gdbarch_skip_main_prologue_p (gdbarch) |
4309257c PM |
2766 | && SYMBOL_LINKAGE_NAME (sym) |
2767 | && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0) | |
2768 | { | |
d80b854b | 2769 | pc = gdbarch_skip_main_prologue (gdbarch, pc); |
4309257c | 2770 | /* Recalculate the line number (might not be N+1). */ |
714835d5 | 2771 | sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0); |
4309257c PM |
2772 | } |
2773 | ||
8c7a1ee8 EZ |
2774 | /* If we still don't have a valid source line, try to find the first |
2775 | PC in the lineinfo table that belongs to the same function. This | |
2776 | happens with COFF debug info, which does not seem to have an | |
2777 | entry in lineinfo table for the code after the prologue which has | |
2778 | no direct relation to source. For example, this was found to be | |
2779 | the case with the DJGPP target using "gcc -gcoff" when the | |
2780 | compiler inserted code after the prologue to make sure the stack | |
2781 | is aligned. */ | |
2782 | if (funfirstline && sal.symtab == NULL) | |
2783 | { | |
2784 | pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym)); | |
2785 | /* Recalculate the line number. */ | |
2786 | sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0); | |
2787 | } | |
2788 | ||
c906108c | 2789 | sal.pc = pc; |
6c95b8df | 2790 | sal.pspace = objfile->pspace; |
c906108c | 2791 | |
edb3359d DJ |
2792 | /* Check if we are now inside an inlined function. If we can, |
2793 | use the call site of the function instead. */ | |
2794 | b = block_for_pc_sect (sal.pc, SYMBOL_OBJ_SECTION (sym)); | |
2795 | function_block = NULL; | |
2796 | while (b != NULL) | |
2797 | { | |
2798 | if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) | |
2799 | function_block = b; | |
2800 | else if (BLOCK_FUNCTION (b) != NULL) | |
2801 | break; | |
2802 | b = BLOCK_SUPERBLOCK (b); | |
2803 | } | |
2804 | if (function_block != NULL | |
2805 | && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0) | |
2806 | { | |
2807 | sal.line = SYMBOL_LINE (BLOCK_FUNCTION (function_block)); | |
2808 | sal.symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block)); | |
2809 | } | |
2810 | ||
6c95b8df | 2811 | do_cleanups (old_chain); |
c906108c SS |
2812 | return sal; |
2813 | } | |
50641945 | 2814 | |
c906108c SS |
2815 | /* If P is of the form "operator[ \t]+..." where `...' is |
2816 | some legitimate operator text, return a pointer to the | |
2817 | beginning of the substring of the operator text. | |
2818 | Otherwise, return "". */ | |
2819 | char * | |
fba45db2 | 2820 | operator_chars (char *p, char **end) |
c906108c SS |
2821 | { |
2822 | *end = ""; | |
2823 | if (strncmp (p, "operator", 8)) | |
2824 | return *end; | |
2825 | p += 8; | |
2826 | ||
2827 | /* Don't get faked out by `operator' being part of a longer | |
2828 | identifier. */ | |
c5aa993b | 2829 | if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') |
c906108c SS |
2830 | return *end; |
2831 | ||
2832 | /* Allow some whitespace between `operator' and the operator symbol. */ | |
2833 | while (*p == ' ' || *p == '\t') | |
2834 | p++; | |
2835 | ||
2836 | /* Recognize 'operator TYPENAME'. */ | |
2837 | ||
c5aa993b | 2838 | if (isalpha (*p) || *p == '_' || *p == '$') |
c906108c | 2839 | { |
aa1ee363 | 2840 | char *q = p + 1; |
c5aa993b | 2841 | while (isalnum (*q) || *q == '_' || *q == '$') |
c906108c SS |
2842 | q++; |
2843 | *end = q; | |
2844 | return p; | |
2845 | } | |
2846 | ||
53e8ad3d MS |
2847 | while (*p) |
2848 | switch (*p) | |
2849 | { | |
2850 | case '\\': /* regexp quoting */ | |
2851 | if (p[1] == '*') | |
2852 | { | |
2853 | if (p[2] == '=') /* 'operator\*=' */ | |
2854 | *end = p + 3; | |
2855 | else /* 'operator\*' */ | |
2856 | *end = p + 2; | |
2857 | return p; | |
2858 | } | |
2859 | else if (p[1] == '[') | |
2860 | { | |
2861 | if (p[2] == ']') | |
8a3fe4f8 | 2862 | error (_("mismatched quoting on brackets, try 'operator\\[\\]'")); |
53e8ad3d MS |
2863 | else if (p[2] == '\\' && p[3] == ']') |
2864 | { | |
2865 | *end = p + 4; /* 'operator\[\]' */ | |
2866 | return p; | |
2867 | } | |
2868 | else | |
8a3fe4f8 | 2869 | error (_("nothing is allowed between '[' and ']'")); |
53e8ad3d | 2870 | } |
9af17804 | 2871 | else |
53e8ad3d MS |
2872 | { |
2873 | /* Gratuitous qoute: skip it and move on. */ | |
2874 | p++; | |
2875 | continue; | |
2876 | } | |
2877 | break; | |
2878 | case '!': | |
2879 | case '=': | |
2880 | case '*': | |
2881 | case '/': | |
2882 | case '%': | |
2883 | case '^': | |
2884 | if (p[1] == '=') | |
2885 | *end = p + 2; | |
2886 | else | |
2887 | *end = p + 1; | |
2888 | return p; | |
2889 | case '<': | |
2890 | case '>': | |
2891 | case '+': | |
2892 | case '-': | |
2893 | case '&': | |
2894 | case '|': | |
2895 | if (p[0] == '-' && p[1] == '>') | |
2896 | { | |
2897 | /* Struct pointer member operator 'operator->'. */ | |
2898 | if (p[2] == '*') | |
2899 | { | |
2900 | *end = p + 3; /* 'operator->*' */ | |
2901 | return p; | |
2902 | } | |
2903 | else if (p[2] == '\\') | |
2904 | { | |
2905 | *end = p + 4; /* Hopefully 'operator->\*' */ | |
2906 | return p; | |
2907 | } | |
2908 | else | |
2909 | { | |
2910 | *end = p + 2; /* 'operator->' */ | |
2911 | return p; | |
2912 | } | |
2913 | } | |
2914 | if (p[1] == '=' || p[1] == p[0]) | |
2915 | *end = p + 2; | |
2916 | else | |
2917 | *end = p + 1; | |
2918 | return p; | |
2919 | case '~': | |
2920 | case ',': | |
c5aa993b | 2921 | *end = p + 1; |
53e8ad3d MS |
2922 | return p; |
2923 | case '(': | |
2924 | if (p[1] != ')') | |
8a3fe4f8 | 2925 | error (_("`operator ()' must be specified without whitespace in `()'")); |
c5aa993b | 2926 | *end = p + 2; |
53e8ad3d MS |
2927 | return p; |
2928 | case '?': | |
2929 | if (p[1] != ':') | |
8a3fe4f8 | 2930 | error (_("`operator ?:' must be specified without whitespace in `?:'")); |
53e8ad3d MS |
2931 | *end = p + 2; |
2932 | return p; | |
2933 | case '[': | |
2934 | if (p[1] != ']') | |
8a3fe4f8 | 2935 | error (_("`operator []' must be specified without whitespace in `[]'")); |
53e8ad3d MS |
2936 | *end = p + 2; |
2937 | return p; | |
2938 | default: | |
8a3fe4f8 | 2939 | error (_("`operator %s' not supported"), p); |
53e8ad3d MS |
2940 | break; |
2941 | } | |
2942 | ||
c906108c SS |
2943 | *end = ""; |
2944 | return *end; | |
2945 | } | |
c906108c | 2946 | \f |
c5aa993b | 2947 | |
c94fdfd0 EZ |
2948 | /* If FILE is not already in the table of files, return zero; |
2949 | otherwise return non-zero. Optionally add FILE to the table if ADD | |
2950 | is non-zero. If *FIRST is non-zero, forget the old table | |
2951 | contents. */ | |
2952 | static int | |
2953 | filename_seen (const char *file, int add, int *first) | |
c906108c | 2954 | { |
c94fdfd0 EZ |
2955 | /* Table of files seen so far. */ |
2956 | static const char **tab = NULL; | |
c906108c SS |
2957 | /* Allocated size of tab in elements. |
2958 | Start with one 256-byte block (when using GNU malloc.c). | |
2959 | 24 is the malloc overhead when range checking is in effect. */ | |
2960 | static int tab_alloc_size = (256 - 24) / sizeof (char *); | |
2961 | /* Current size of tab in elements. */ | |
2962 | static int tab_cur_size; | |
c94fdfd0 | 2963 | const char **p; |
c906108c SS |
2964 | |
2965 | if (*first) | |
2966 | { | |
2967 | if (tab == NULL) | |
c94fdfd0 | 2968 | tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab)); |
c906108c SS |
2969 | tab_cur_size = 0; |
2970 | } | |
2971 | ||
c94fdfd0 | 2972 | /* Is FILE in tab? */ |
c906108c | 2973 | for (p = tab; p < tab + tab_cur_size; p++) |
c94fdfd0 EZ |
2974 | if (strcmp (*p, file) == 0) |
2975 | return 1; | |
2976 | ||
2977 | /* No; maybe add it to tab. */ | |
2978 | if (add) | |
c906108c | 2979 | { |
c94fdfd0 EZ |
2980 | if (tab_cur_size == tab_alloc_size) |
2981 | { | |
2982 | tab_alloc_size *= 2; | |
2983 | tab = (const char **) xrealloc ((char *) tab, | |
2984 | tab_alloc_size * sizeof (*tab)); | |
2985 | } | |
2986 | tab[tab_cur_size++] = file; | |
c906108c | 2987 | } |
c906108c | 2988 | |
c94fdfd0 EZ |
2989 | return 0; |
2990 | } | |
2991 | ||
2992 | /* Slave routine for sources_info. Force line breaks at ,'s. | |
2993 | NAME is the name to print and *FIRST is nonzero if this is the first | |
2994 | name printed. Set *FIRST to zero. */ | |
2995 | static void | |
d092d1a2 | 2996 | output_source_filename (const char *name, int *first) |
c94fdfd0 EZ |
2997 | { |
2998 | /* Since a single source file can result in several partial symbol | |
2999 | tables, we need to avoid printing it more than once. Note: if | |
3000 | some of the psymtabs are read in and some are not, it gets | |
3001 | printed both under "Source files for which symbols have been | |
3002 | read" and "Source files for which symbols will be read in on | |
3003 | demand". I consider this a reasonable way to deal with the | |
3004 | situation. I'm not sure whether this can also happen for | |
3005 | symtabs; it doesn't hurt to check. */ | |
3006 | ||
3007 | /* Was NAME already seen? */ | |
3008 | if (filename_seen (name, 1, first)) | |
3009 | { | |
3010 | /* Yes; don't print it again. */ | |
3011 | return; | |
3012 | } | |
3013 | /* No; print it and reset *FIRST. */ | |
c906108c SS |
3014 | if (*first) |
3015 | { | |
3016 | *first = 0; | |
3017 | } | |
3018 | else | |
3019 | { | |
3020 | printf_filtered (", "); | |
3021 | } | |
3022 | ||
3023 | wrap_here (""); | |
3024 | fputs_filtered (name, gdb_stdout); | |
c5aa993b | 3025 | } |
c906108c SS |
3026 | |
3027 | static void | |
fba45db2 | 3028 | sources_info (char *ignore, int from_tty) |
c906108c | 3029 | { |
52f0bd74 AC |
3030 | struct symtab *s; |
3031 | struct partial_symtab *ps; | |
3032 | struct objfile *objfile; | |
c906108c | 3033 | int first; |
c5aa993b | 3034 | |
c906108c SS |
3035 | if (!have_full_symbols () && !have_partial_symbols ()) |
3036 | { | |
8a3fe4f8 | 3037 | error (_("No symbol table is loaded. Use the \"file\" command.")); |
c906108c | 3038 | } |
c5aa993b | 3039 | |
c906108c SS |
3040 | printf_filtered ("Source files for which symbols have been read in:\n\n"); |
3041 | ||
3042 | first = 1; | |
3043 | ALL_SYMTABS (objfile, s) | |
c5aa993b | 3044 | { |
d092d1a2 DJ |
3045 | const char *fullname = symtab_to_fullname (s); |
3046 | output_source_filename (fullname ? fullname : s->filename, &first); | |
c5aa993b | 3047 | } |
c906108c | 3048 | printf_filtered ("\n\n"); |
c5aa993b | 3049 | |
c906108c SS |
3050 | printf_filtered ("Source files for which symbols will be read in on demand:\n\n"); |
3051 | ||
3052 | first = 1; | |
3053 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
3054 | { |
3055 | if (!ps->readin) | |
3056 | { | |
d092d1a2 DJ |
3057 | const char *fullname = psymtab_to_fullname (ps); |
3058 | output_source_filename (fullname ? fullname : ps->filename, &first); | |
c5aa993b JM |
3059 | } |
3060 | } | |
c906108c SS |
3061 | printf_filtered ("\n"); |
3062 | } | |
3063 | ||
3064 | static int | |
fd118b61 | 3065 | file_matches (char *file, char *files[], int nfiles) |
c906108c SS |
3066 | { |
3067 | int i; | |
3068 | ||
3069 | if (file != NULL && nfiles != 0) | |
3070 | { | |
3071 | for (i = 0; i < nfiles; i++) | |
c5aa993b | 3072 | { |
31889e00 | 3073 | if (strcmp (files[i], lbasename (file)) == 0) |
c5aa993b JM |
3074 | return 1; |
3075 | } | |
c906108c SS |
3076 | } |
3077 | else if (nfiles == 0) | |
3078 | return 1; | |
3079 | return 0; | |
3080 | } | |
3081 | ||
3082 | /* Free any memory associated with a search. */ | |
3083 | void | |
fba45db2 | 3084 | free_search_symbols (struct symbol_search *symbols) |
c906108c SS |
3085 | { |
3086 | struct symbol_search *p; | |
3087 | struct symbol_search *next; | |
3088 | ||
3089 | for (p = symbols; p != NULL; p = next) | |
3090 | { | |
3091 | next = p->next; | |
b8c9b27d | 3092 | xfree (p); |
c906108c SS |
3093 | } |
3094 | } | |
3095 | ||
5bd98722 AC |
3096 | static void |
3097 | do_free_search_symbols_cleanup (void *symbols) | |
3098 | { | |
3099 | free_search_symbols (symbols); | |
3100 | } | |
3101 | ||
3102 | struct cleanup * | |
3103 | make_cleanup_free_search_symbols (struct symbol_search *symbols) | |
3104 | { | |
3105 | return make_cleanup (do_free_search_symbols_cleanup, symbols); | |
3106 | } | |
3107 | ||
434d2d4f DJ |
3108 | /* Helper function for sort_search_symbols and qsort. Can only |
3109 | sort symbols, not minimal symbols. */ | |
3110 | static int | |
3111 | compare_search_syms (const void *sa, const void *sb) | |
3112 | { | |
3113 | struct symbol_search **sym_a = (struct symbol_search **) sa; | |
3114 | struct symbol_search **sym_b = (struct symbol_search **) sb; | |
3115 | ||
de5ad195 DC |
3116 | return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol), |
3117 | SYMBOL_PRINT_NAME ((*sym_b)->symbol)); | |
434d2d4f DJ |
3118 | } |
3119 | ||
3120 | /* Sort the ``nfound'' symbols in the list after prevtail. Leave | |
3121 | prevtail where it is, but update its next pointer to point to | |
3122 | the first of the sorted symbols. */ | |
3123 | static struct symbol_search * | |
3124 | sort_search_symbols (struct symbol_search *prevtail, int nfound) | |
3125 | { | |
3126 | struct symbol_search **symbols, *symp, *old_next; | |
3127 | int i; | |
3128 | ||
3129 | symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *) | |
3130 | * nfound); | |
3131 | symp = prevtail->next; | |
3132 | for (i = 0; i < nfound; i++) | |
3133 | { | |
3134 | symbols[i] = symp; | |
3135 | symp = symp->next; | |
3136 | } | |
3137 | /* Generally NULL. */ | |
3138 | old_next = symp; | |
3139 | ||
3140 | qsort (symbols, nfound, sizeof (struct symbol_search *), | |
3141 | compare_search_syms); | |
3142 | ||
3143 | symp = prevtail; | |
3144 | for (i = 0; i < nfound; i++) | |
3145 | { | |
3146 | symp->next = symbols[i]; | |
3147 | symp = symp->next; | |
3148 | } | |
3149 | symp->next = old_next; | |
3150 | ||
8ed32cc0 | 3151 | xfree (symbols); |
434d2d4f DJ |
3152 | return symp; |
3153 | } | |
5bd98722 | 3154 | |
c906108c SS |
3155 | /* Search the symbol table for matches to the regular expression REGEXP, |
3156 | returning the results in *MATCHES. | |
3157 | ||
3158 | Only symbols of KIND are searched: | |
176620f1 EZ |
3159 | FUNCTIONS_DOMAIN - search all functions |
3160 | TYPES_DOMAIN - search all type names | |
176620f1 | 3161 | VARIABLES_DOMAIN - search all symbols, excluding functions, type names, |
c5aa993b | 3162 | and constants (enums) |
c906108c SS |
3163 | |
3164 | free_search_symbols should be called when *MATCHES is no longer needed. | |
434d2d4f DJ |
3165 | |
3166 | The results are sorted locally; each symtab's global and static blocks are | |
3167 | separately alphabetized. | |
c5aa993b | 3168 | */ |
c906108c | 3169 | void |
176620f1 | 3170 | search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[], |
fd118b61 | 3171 | struct symbol_search **matches) |
c906108c | 3172 | { |
52f0bd74 AC |
3173 | struct symtab *s; |
3174 | struct partial_symtab *ps; | |
3175 | struct blockvector *bv; | |
52f0bd74 AC |
3176 | struct block *b; |
3177 | int i = 0; | |
de4f826b | 3178 | struct dict_iterator iter; |
52f0bd74 | 3179 | struct symbol *sym; |
c906108c SS |
3180 | struct partial_symbol **psym; |
3181 | struct objfile *objfile; | |
3182 | struct minimal_symbol *msymbol; | |
3183 | char *val; | |
3184 | int found_misc = 0; | |
3185 | static enum minimal_symbol_type types[] | |
c5aa993b JM |
3186 | = |
3187 | {mst_data, mst_text, mst_abs, mst_unknown}; | |
c906108c | 3188 | static enum minimal_symbol_type types2[] |
c5aa993b JM |
3189 | = |
3190 | {mst_bss, mst_file_text, mst_abs, mst_unknown}; | |
c906108c | 3191 | static enum minimal_symbol_type types3[] |
c5aa993b JM |
3192 | = |
3193 | {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown}; | |
c906108c | 3194 | static enum minimal_symbol_type types4[] |
c5aa993b JM |
3195 | = |
3196 | {mst_file_bss, mst_text, mst_abs, mst_unknown}; | |
c906108c SS |
3197 | enum minimal_symbol_type ourtype; |
3198 | enum minimal_symbol_type ourtype2; | |
3199 | enum minimal_symbol_type ourtype3; | |
3200 | enum minimal_symbol_type ourtype4; | |
3201 | struct symbol_search *sr; | |
3202 | struct symbol_search *psr; | |
3203 | struct symbol_search *tail; | |
3204 | struct cleanup *old_chain = NULL; | |
3205 | ||
176620f1 | 3206 | if (kind < VARIABLES_DOMAIN) |
8a3fe4f8 | 3207 | error (_("must search on specific domain")); |
c906108c | 3208 | |
176620f1 EZ |
3209 | ourtype = types[(int) (kind - VARIABLES_DOMAIN)]; |
3210 | ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)]; | |
3211 | ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)]; | |
3212 | ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)]; | |
c906108c SS |
3213 | |
3214 | sr = *matches = NULL; | |
3215 | tail = NULL; | |
3216 | ||
3217 | if (regexp != NULL) | |
3218 | { | |
3219 | /* Make sure spacing is right for C++ operators. | |
3220 | This is just a courtesy to make the matching less sensitive | |
3221 | to how many spaces the user leaves between 'operator' | |
3222 | and <TYPENAME> or <OPERATOR>. */ | |
3223 | char *opend; | |
3224 | char *opname = operator_chars (regexp, &opend); | |
3225 | if (*opname) | |
c5aa993b JM |
3226 | { |
3227 | int fix = -1; /* -1 means ok; otherwise number of spaces needed. */ | |
3228 | if (isalpha (*opname) || *opname == '_' || *opname == '$') | |
3229 | { | |
3230 | /* There should 1 space between 'operator' and 'TYPENAME'. */ | |
3231 | if (opname[-1] != ' ' || opname[-2] == ' ') | |
3232 | fix = 1; | |
3233 | } | |
3234 | else | |
3235 | { | |
3236 | /* There should 0 spaces between 'operator' and 'OPERATOR'. */ | |
3237 | if (opname[-1] == ' ') | |
3238 | fix = 0; | |
3239 | } | |
3240 | /* If wrong number of spaces, fix it. */ | |
3241 | if (fix >= 0) | |
3242 | { | |
045f55a6 | 3243 | char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); |
c5aa993b JM |
3244 | sprintf (tmp, "operator%.*s%s", fix, " ", opname); |
3245 | regexp = tmp; | |
3246 | } | |
3247 | } | |
3248 | ||
c906108c | 3249 | if (0 != (val = re_comp (regexp))) |
8a3fe4f8 | 3250 | error (_("Invalid regexp (%s): %s"), val, regexp); |
c906108c SS |
3251 | } |
3252 | ||
3253 | /* Search through the partial symtabs *first* for all symbols | |
3254 | matching the regexp. That way we don't have to reproduce all of | |
3255 | the machinery below. */ | |
3256 | ||
3257 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
3258 | { |
3259 | struct partial_symbol **bound, **gbound, **sbound; | |
3260 | int keep_going = 1; | |
3261 | ||
3262 | if (ps->readin) | |
3263 | continue; | |
3264 | ||
3265 | gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms; | |
3266 | sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms; | |
3267 | bound = gbound; | |
3268 | ||
3269 | /* Go through all of the symbols stored in a partial | |
3270 | symtab in one loop. */ | |
3271 | psym = objfile->global_psymbols.list + ps->globals_offset; | |
3272 | while (keep_going) | |
3273 | { | |
3274 | if (psym >= bound) | |
3275 | { | |
3276 | if (bound == gbound && ps->n_static_syms != 0) | |
3277 | { | |
3278 | psym = objfile->static_psymbols.list + ps->statics_offset; | |
3279 | bound = sbound; | |
3280 | } | |
3281 | else | |
3282 | keep_going = 0; | |
3283 | continue; | |
3284 | } | |
3285 | else | |
3286 | { | |
3287 | QUIT; | |
3288 | ||
3289 | /* If it would match (logic taken from loop below) | |
cb1df416 DJ |
3290 | load the file and go on to the next one. We check the |
3291 | filename here, but that's a bit bogus: we don't know | |
3292 | what file it really comes from until we have full | |
3293 | symtabs. The symbol might be in a header file included by | |
3294 | this psymtab. This only affects Insight. */ | |
c5aa993b | 3295 | if (file_matches (ps->filename, files, nfiles) |
25120b0d DC |
3296 | && ((regexp == NULL |
3297 | || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0) | |
176620f1 | 3298 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF |
0fe7935b DJ |
3299 | && SYMBOL_CLASS (*psym) != LOC_UNRESOLVED |
3300 | && SYMBOL_CLASS (*psym) != LOC_BLOCK | |
3301 | && SYMBOL_CLASS (*psym) != LOC_CONST) | |
176620f1 | 3302 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK) |
bd2e94ce | 3303 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)))) |
c5aa993b JM |
3304 | { |
3305 | PSYMTAB_TO_SYMTAB (ps); | |
3306 | keep_going = 0; | |
3307 | } | |
3308 | } | |
3309 | psym++; | |
3310 | } | |
3311 | } | |
c906108c SS |
3312 | |
3313 | /* Here, we search through the minimal symbol tables for functions | |
3314 | and variables that match, and force their symbols to be read. | |
3315 | This is in particular necessary for demangled variable names, | |
3316 | which are no longer put into the partial symbol tables. | |
3317 | The symbol will then be found during the scan of symtabs below. | |
3318 | ||
3319 | For functions, find_pc_symtab should succeed if we have debug info | |
3320 | for the function, for variables we have to call lookup_symbol | |
3321 | to determine if the variable has debug info. | |
3322 | If the lookup fails, set found_misc so that we will rescan to print | |
3323 | any matching symbols without debug info. | |
c5aa993b | 3324 | */ |
c906108c | 3325 | |
176620f1 | 3326 | if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) |
c906108c SS |
3327 | { |
3328 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b | 3329 | { |
89295b4d PP |
3330 | QUIT; |
3331 | ||
c5aa993b JM |
3332 | if (MSYMBOL_TYPE (msymbol) == ourtype || |
3333 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3334 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3335 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3336 | { | |
25120b0d DC |
3337 | if (regexp == NULL |
3338 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
3339 | { |
3340 | if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))) | |
3341 | { | |
b1262a02 DC |
3342 | /* FIXME: carlton/2003-02-04: Given that the |
3343 | semantics of lookup_symbol keeps on changing | |
3344 | slightly, it would be a nice idea if we had a | |
3345 | function lookup_symbol_minsym that found the | |
3346 | symbol associated to a given minimal symbol (if | |
3347 | any). */ | |
176620f1 | 3348 | if (kind == FUNCTIONS_DOMAIN |
2335f48e | 3349 | || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
b1262a02 | 3350 | (struct block *) NULL, |
2570f2b7 | 3351 | VAR_DOMAIN, 0) |
53c5240f | 3352 | == NULL) |
b1262a02 | 3353 | found_misc = 1; |
c5aa993b JM |
3354 | } |
3355 | } | |
3356 | } | |
3357 | } | |
c906108c SS |
3358 | } |
3359 | ||
11309657 | 3360 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3361 | { |
3362 | bv = BLOCKVECTOR (s); | |
c5aa993b JM |
3363 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) |
3364 | { | |
434d2d4f DJ |
3365 | struct symbol_search *prevtail = tail; |
3366 | int nfound = 0; | |
c5aa993b | 3367 | b = BLOCKVECTOR_BLOCK (bv, i); |
de4f826b | 3368 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3369 | { |
cb1df416 | 3370 | struct symtab *real_symtab = SYMBOL_SYMTAB (sym); |
c5aa993b | 3371 | QUIT; |
cb1df416 DJ |
3372 | |
3373 | if (file_matches (real_symtab->filename, files, nfiles) | |
25120b0d DC |
3374 | && ((regexp == NULL |
3375 | || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0) | |
176620f1 | 3376 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF |
0fe7935b | 3377 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED |
c5aa993b JM |
3378 | && SYMBOL_CLASS (sym) != LOC_BLOCK |
3379 | && SYMBOL_CLASS (sym) != LOC_CONST) | |
176620f1 | 3380 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK) |
bd2e94ce | 3381 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)))) |
c5aa993b JM |
3382 | { |
3383 | /* match */ | |
3384 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3385 | psr->block = i; | |
cb1df416 | 3386 | psr->symtab = real_symtab; |
c5aa993b JM |
3387 | psr->symbol = sym; |
3388 | psr->msymbol = NULL; | |
3389 | psr->next = NULL; | |
3390 | if (tail == NULL) | |
434d2d4f | 3391 | sr = psr; |
c5aa993b JM |
3392 | else |
3393 | tail->next = psr; | |
3394 | tail = psr; | |
434d2d4f DJ |
3395 | nfound ++; |
3396 | } | |
3397 | } | |
3398 | if (nfound > 0) | |
3399 | { | |
3400 | if (prevtail == NULL) | |
3401 | { | |
3402 | struct symbol_search dummy; | |
3403 | ||
3404 | dummy.next = sr; | |
3405 | tail = sort_search_symbols (&dummy, nfound); | |
3406 | sr = dummy.next; | |
3407 | ||
3408 | old_chain = make_cleanup_free_search_symbols (sr); | |
c5aa993b | 3409 | } |
434d2d4f DJ |
3410 | else |
3411 | tail = sort_search_symbols (prevtail, nfound); | |
c5aa993b JM |
3412 | } |
3413 | } | |
c5aa993b | 3414 | } |
c906108c SS |
3415 | |
3416 | /* If there are no eyes, avoid all contact. I mean, if there are | |
3417 | no debug symbols, then print directly from the msymbol_vector. */ | |
3418 | ||
176620f1 | 3419 | if (found_misc || kind != FUNCTIONS_DOMAIN) |
c906108c SS |
3420 | { |
3421 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b | 3422 | { |
89295b4d PP |
3423 | QUIT; |
3424 | ||
c5aa993b JM |
3425 | if (MSYMBOL_TYPE (msymbol) == ourtype || |
3426 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3427 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3428 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3429 | { | |
25120b0d DC |
3430 | if (regexp == NULL |
3431 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
3432 | { |
3433 | /* Functions: Look up by address. */ | |
176620f1 | 3434 | if (kind != FUNCTIONS_DOMAIN || |
c5aa993b JM |
3435 | (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))) |
3436 | { | |
3437 | /* Variables/Absolutes: Look up by name */ | |
2335f48e | 3438 | if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
2570f2b7 UW |
3439 | (struct block *) NULL, VAR_DOMAIN, 0) |
3440 | == NULL) | |
c5aa993b JM |
3441 | { |
3442 | /* match */ | |
3443 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3444 | psr->block = i; | |
3445 | psr->msymbol = msymbol; | |
3446 | psr->symtab = NULL; | |
3447 | psr->symbol = NULL; | |
3448 | psr->next = NULL; | |
3449 | if (tail == NULL) | |
3450 | { | |
3451 | sr = psr; | |
5bd98722 | 3452 | old_chain = make_cleanup_free_search_symbols (sr); |
c5aa993b JM |
3453 | } |
3454 | else | |
3455 | tail->next = psr; | |
3456 | tail = psr; | |
3457 | } | |
3458 | } | |
3459 | } | |
3460 | } | |
3461 | } | |
c906108c SS |
3462 | } |
3463 | ||
3464 | *matches = sr; | |
3465 | if (sr != NULL) | |
3466 | discard_cleanups (old_chain); | |
3467 | } | |
3468 | ||
3469 | /* Helper function for symtab_symbol_info, this function uses | |
3470 | the data returned from search_symbols() to print information | |
3471 | regarding the match to gdb_stdout. | |
c5aa993b | 3472 | */ |
c906108c | 3473 | static void |
176620f1 | 3474 | print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym, |
fba45db2 | 3475 | int block, char *last) |
c906108c SS |
3476 | { |
3477 | if (last == NULL || strcmp (last, s->filename) != 0) | |
3478 | { | |
3479 | fputs_filtered ("\nFile ", gdb_stdout); | |
3480 | fputs_filtered (s->filename, gdb_stdout); | |
3481 | fputs_filtered (":\n", gdb_stdout); | |
3482 | } | |
3483 | ||
176620f1 | 3484 | if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) |
c906108c | 3485 | printf_filtered ("static "); |
c5aa993b | 3486 | |
c906108c | 3487 | /* Typedef that is not a C++ class */ |
176620f1 EZ |
3488 | if (kind == TYPES_DOMAIN |
3489 | && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) | |
a5238fbc | 3490 | typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout); |
c906108c | 3491 | /* variable, func, or typedef-that-is-c++-class */ |
176620f1 EZ |
3492 | else if (kind < TYPES_DOMAIN || |
3493 | (kind == TYPES_DOMAIN && | |
3494 | SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) | |
c906108c SS |
3495 | { |
3496 | type_print (SYMBOL_TYPE (sym), | |
c5aa993b | 3497 | (SYMBOL_CLASS (sym) == LOC_TYPEDEF |
de5ad195 | 3498 | ? "" : SYMBOL_PRINT_NAME (sym)), |
c5aa993b | 3499 | gdb_stdout, 0); |
c906108c SS |
3500 | |
3501 | printf_filtered (";\n"); | |
3502 | } | |
c906108c SS |
3503 | } |
3504 | ||
3505 | /* This help function for symtab_symbol_info() prints information | |
3506 | for non-debugging symbols to gdb_stdout. | |
c5aa993b | 3507 | */ |
c906108c | 3508 | static void |
fba45db2 | 3509 | print_msymbol_info (struct minimal_symbol *msymbol) |
c906108c | 3510 | { |
d80b854b | 3511 | struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol)); |
3ac4495a MS |
3512 | char *tmp; |
3513 | ||
d80b854b | 3514 | if (gdbarch_addr_bit (gdbarch) <= 32) |
bb599908 PH |
3515 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol) |
3516 | & (CORE_ADDR) 0xffffffff, | |
3517 | 8); | |
3ac4495a | 3518 | else |
bb599908 PH |
3519 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol), |
3520 | 16); | |
3ac4495a | 3521 | printf_filtered ("%s %s\n", |
de5ad195 | 3522 | tmp, SYMBOL_PRINT_NAME (msymbol)); |
c906108c SS |
3523 | } |
3524 | ||
3525 | /* This is the guts of the commands "info functions", "info types", and | |
3526 | "info variables". It calls search_symbols to find all matches and then | |
3527 | print_[m]symbol_info to print out some useful information about the | |
3528 | matches. | |
c5aa993b | 3529 | */ |
c906108c | 3530 | static void |
176620f1 | 3531 | symtab_symbol_info (char *regexp, domain_enum kind, int from_tty) |
c906108c SS |
3532 | { |
3533 | static char *classnames[] | |
c5aa993b JM |
3534 | = |
3535 | {"variable", "function", "type", "method"}; | |
c906108c SS |
3536 | struct symbol_search *symbols; |
3537 | struct symbol_search *p; | |
3538 | struct cleanup *old_chain; | |
3539 | char *last_filename = NULL; | |
3540 | int first = 1; | |
3541 | ||
3542 | /* must make sure that if we're interrupted, symbols gets freed */ | |
3543 | search_symbols (regexp, kind, 0, (char **) NULL, &symbols); | |
5bd98722 | 3544 | old_chain = make_cleanup_free_search_symbols (symbols); |
c906108c SS |
3545 | |
3546 | printf_filtered (regexp | |
c5aa993b JM |
3547 | ? "All %ss matching regular expression \"%s\":\n" |
3548 | : "All defined %ss:\n", | |
176620f1 | 3549 | classnames[(int) (kind - VARIABLES_DOMAIN)], regexp); |
c906108c SS |
3550 | |
3551 | for (p = symbols; p != NULL; p = p->next) | |
3552 | { | |
3553 | QUIT; | |
3554 | ||
3555 | if (p->msymbol != NULL) | |
c5aa993b JM |
3556 | { |
3557 | if (first) | |
3558 | { | |
3559 | printf_filtered ("\nNon-debugging symbols:\n"); | |
3560 | first = 0; | |
3561 | } | |
3562 | print_msymbol_info (p->msymbol); | |
3563 | } | |
c906108c | 3564 | else |
c5aa993b JM |
3565 | { |
3566 | print_symbol_info (kind, | |
3567 | p->symtab, | |
3568 | p->symbol, | |
3569 | p->block, | |
3570 | last_filename); | |
3571 | last_filename = p->symtab->filename; | |
3572 | } | |
c906108c SS |
3573 | } |
3574 | ||
3575 | do_cleanups (old_chain); | |
3576 | } | |
3577 | ||
3578 | static void | |
fba45db2 | 3579 | variables_info (char *regexp, int from_tty) |
c906108c | 3580 | { |
176620f1 | 3581 | symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty); |
c906108c SS |
3582 | } |
3583 | ||
3584 | static void | |
fba45db2 | 3585 | functions_info (char *regexp, int from_tty) |
c906108c | 3586 | { |
176620f1 | 3587 | symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty); |
c906108c SS |
3588 | } |
3589 | ||
357e46e7 | 3590 | |
c906108c | 3591 | static void |
fba45db2 | 3592 | types_info (char *regexp, int from_tty) |
c906108c | 3593 | { |
176620f1 | 3594 | symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty); |
c906108c SS |
3595 | } |
3596 | ||
c906108c | 3597 | /* Breakpoint all functions matching regular expression. */ |
8926118c | 3598 | |
8b93c638 | 3599 | void |
fba45db2 | 3600 | rbreak_command_wrapper (char *regexp, int from_tty) |
8b93c638 JM |
3601 | { |
3602 | rbreak_command (regexp, from_tty); | |
3603 | } | |
8926118c | 3604 | |
c906108c | 3605 | static void |
fba45db2 | 3606 | rbreak_command (char *regexp, int from_tty) |
c906108c SS |
3607 | { |
3608 | struct symbol_search *ss; | |
3609 | struct symbol_search *p; | |
3610 | struct cleanup *old_chain; | |
3611 | ||
176620f1 | 3612 | search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss); |
5bd98722 | 3613 | old_chain = make_cleanup_free_search_symbols (ss); |
c906108c SS |
3614 | |
3615 | for (p = ss; p != NULL; p = p->next) | |
3616 | { | |
3617 | if (p->msymbol == NULL) | |
c5aa993b | 3618 | { |
2335f48e DC |
3619 | char *string = alloca (strlen (p->symtab->filename) |
3620 | + strlen (SYMBOL_LINKAGE_NAME (p->symbol)) | |
3621 | + 4); | |
c5aa993b JM |
3622 | strcpy (string, p->symtab->filename); |
3623 | strcat (string, ":'"); | |
2335f48e | 3624 | strcat (string, SYMBOL_LINKAGE_NAME (p->symbol)); |
c5aa993b JM |
3625 | strcat (string, "'"); |
3626 | break_command (string, from_tty); | |
176620f1 | 3627 | print_symbol_info (FUNCTIONS_DOMAIN, |
c5aa993b JM |
3628 | p->symtab, |
3629 | p->symbol, | |
3630 | p->block, | |
3631 | p->symtab->filename); | |
3632 | } | |
c906108c | 3633 | else |
c5aa993b | 3634 | { |
6214f497 DJ |
3635 | char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) |
3636 | + 3); | |
3637 | strcpy (string, "'"); | |
3638 | strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol)); | |
3639 | strcat (string, "'"); | |
3640 | ||
3641 | break_command (string, from_tty); | |
c5aa993b | 3642 | printf_filtered ("<function, no debug info> %s;\n", |
de5ad195 | 3643 | SYMBOL_PRINT_NAME (p->msymbol)); |
c5aa993b | 3644 | } |
c906108c SS |
3645 | } |
3646 | ||
3647 | do_cleanups (old_chain); | |
3648 | } | |
c906108c | 3649 | \f |
c5aa993b | 3650 | |
c906108c SS |
3651 | /* Helper routine for make_symbol_completion_list. */ |
3652 | ||
3653 | static int return_val_size; | |
3654 | static int return_val_index; | |
3655 | static char **return_val; | |
3656 | ||
3657 | #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \ | |
c906108c | 3658 | completion_list_add_name \ |
2335f48e | 3659 | (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word)) |
c906108c SS |
3660 | |
3661 | /* Test to see if the symbol specified by SYMNAME (which is already | |
c5aa993b JM |
3662 | demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN |
3663 | characters. If so, add it to the current completion list. */ | |
c906108c SS |
3664 | |
3665 | static void | |
fba45db2 KB |
3666 | completion_list_add_name (char *symname, char *sym_text, int sym_text_len, |
3667 | char *text, char *word) | |
c906108c SS |
3668 | { |
3669 | int newsize; | |
3670 | int i; | |
3671 | ||
3672 | /* clip symbols that cannot match */ | |
3673 | ||
3674 | if (strncmp (symname, sym_text, sym_text_len) != 0) | |
3675 | { | |
3676 | return; | |
3677 | } | |
3678 | ||
c906108c SS |
3679 | /* We have a match for a completion, so add SYMNAME to the current list |
3680 | of matches. Note that the name is moved to freshly malloc'd space. */ | |
3681 | ||
3682 | { | |
3683 | char *new; | |
3684 | if (word == sym_text) | |
3685 | { | |
3686 | new = xmalloc (strlen (symname) + 5); | |
3687 | strcpy (new, symname); | |
3688 | } | |
3689 | else if (word > sym_text) | |
3690 | { | |
3691 | /* Return some portion of symname. */ | |
3692 | new = xmalloc (strlen (symname) + 5); | |
3693 | strcpy (new, symname + (word - sym_text)); | |
3694 | } | |
3695 | else | |
3696 | { | |
3697 | /* Return some of SYM_TEXT plus symname. */ | |
3698 | new = xmalloc (strlen (symname) + (sym_text - word) + 5); | |
3699 | strncpy (new, word, sym_text - word); | |
3700 | new[sym_text - word] = '\0'; | |
3701 | strcat (new, symname); | |
3702 | } | |
3703 | ||
c906108c SS |
3704 | if (return_val_index + 3 > return_val_size) |
3705 | { | |
3706 | newsize = (return_val_size *= 2) * sizeof (char *); | |
3707 | return_val = (char **) xrealloc ((char *) return_val, newsize); | |
3708 | } | |
3709 | return_val[return_val_index++] = new; | |
3710 | return_val[return_val_index] = NULL; | |
3711 | } | |
3712 | } | |
3713 | ||
69636828 AF |
3714 | /* ObjC: In case we are completing on a selector, look as the msymbol |
3715 | again and feed all the selectors into the mill. */ | |
3716 | ||
3717 | static void | |
3718 | completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text, | |
3719 | int sym_text_len, char *text, char *word) | |
3720 | { | |
3721 | static char *tmp = NULL; | |
3722 | static unsigned int tmplen = 0; | |
9af17804 | 3723 | |
69636828 AF |
3724 | char *method, *category, *selector; |
3725 | char *tmp2 = NULL; | |
9af17804 | 3726 | |
69636828 AF |
3727 | method = SYMBOL_NATURAL_NAME (msymbol); |
3728 | ||
3729 | /* Is it a method? */ | |
3730 | if ((method[0] != '-') && (method[0] != '+')) | |
3731 | return; | |
3732 | ||
3733 | if (sym_text[0] == '[') | |
3734 | /* Complete on shortened method method. */ | |
3735 | completion_list_add_name (method + 1, sym_text, sym_text_len, text, word); | |
9af17804 | 3736 | |
69636828 AF |
3737 | while ((strlen (method) + 1) >= tmplen) |
3738 | { | |
3739 | if (tmplen == 0) | |
3740 | tmplen = 1024; | |
3741 | else | |
3742 | tmplen *= 2; | |
3743 | tmp = xrealloc (tmp, tmplen); | |
3744 | } | |
3745 | selector = strchr (method, ' '); | |
3746 | if (selector != NULL) | |
3747 | selector++; | |
9af17804 | 3748 | |
69636828 | 3749 | category = strchr (method, '('); |
9af17804 | 3750 | |
69636828 AF |
3751 | if ((category != NULL) && (selector != NULL)) |
3752 | { | |
3753 | memcpy (tmp, method, (category - method)); | |
3754 | tmp[category - method] = ' '; | |
3755 | memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); | |
3756 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
3757 | if (sym_text[0] == '[') | |
3758 | completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word); | |
3759 | } | |
9af17804 | 3760 | |
69636828 AF |
3761 | if (selector != NULL) |
3762 | { | |
3763 | /* Complete on selector only. */ | |
3764 | strcpy (tmp, selector); | |
3765 | tmp2 = strchr (tmp, ']'); | |
3766 | if (tmp2 != NULL) | |
3767 | *tmp2 = '\0'; | |
9af17804 | 3768 | |
69636828 AF |
3769 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); |
3770 | } | |
3771 | } | |
3772 | ||
3773 | /* Break the non-quoted text based on the characters which are in | |
3774 | symbols. FIXME: This should probably be language-specific. */ | |
3775 | ||
3776 | static char * | |
3777 | language_search_unquoted_string (char *text, char *p) | |
3778 | { | |
3779 | for (; p > text; --p) | |
3780 | { | |
3781 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
3782 | continue; | |
3783 | else | |
3784 | { | |
3785 | if ((current_language->la_language == language_objc)) | |
3786 | { | |
3787 | if (p[-1] == ':') /* might be part of a method name */ | |
3788 | continue; | |
3789 | else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) | |
3790 | p -= 2; /* beginning of a method name */ | |
3791 | else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') | |
3792 | { /* might be part of a method name */ | |
3793 | char *t = p; | |
3794 | ||
3795 | /* Seeing a ' ' or a '(' is not conclusive evidence | |
3796 | that we are in the middle of a method name. However, | |
3797 | finding "-[" or "+[" should be pretty un-ambiguous. | |
3798 | Unfortunately we have to find it now to decide. */ | |
3799 | ||
3800 | while (t > text) | |
3801 | if (isalnum (t[-1]) || t[-1] == '_' || | |
3802 | t[-1] == ' ' || t[-1] == ':' || | |
3803 | t[-1] == '(' || t[-1] == ')') | |
3804 | --t; | |
3805 | else | |
3806 | break; | |
3807 | ||
3808 | if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) | |
3809 | p = t - 2; /* method name detected */ | |
3810 | /* else we leave with p unchanged */ | |
3811 | } | |
3812 | } | |
3813 | break; | |
3814 | } | |
3815 | } | |
3816 | return p; | |
3817 | } | |
3818 | ||
edb3359d DJ |
3819 | static void |
3820 | completion_list_add_fields (struct symbol *sym, char *sym_text, | |
3821 | int sym_text_len, char *text, char *word) | |
3822 | { | |
3823 | if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
3824 | { | |
3825 | struct type *t = SYMBOL_TYPE (sym); | |
3826 | enum type_code c = TYPE_CODE (t); | |
3827 | int j; | |
3828 | ||
3829 | if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) | |
3830 | for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++) | |
3831 | if (TYPE_FIELD_NAME (t, j)) | |
3832 | completion_list_add_name (TYPE_FIELD_NAME (t, j), | |
3833 | sym_text, sym_text_len, text, word); | |
3834 | } | |
3835 | } | |
3836 | ||
9a044a89 TT |
3837 | /* Type of the user_data argument passed to add_macro_name. The |
3838 | contents are simply whatever is needed by | |
3839 | completion_list_add_name. */ | |
3840 | struct add_macro_name_data | |
3841 | { | |
3842 | char *sym_text; | |
3843 | int sym_text_len; | |
3844 | char *text; | |
3845 | char *word; | |
3846 | }; | |
3847 | ||
3848 | /* A callback used with macro_for_each and macro_for_each_in_scope. | |
3849 | This adds a macro's name to the current completion list. */ | |
3850 | static void | |
3851 | add_macro_name (const char *name, const struct macro_definition *ignore, | |
3852 | void *user_data) | |
3853 | { | |
3854 | struct add_macro_name_data *datum = (struct add_macro_name_data *) user_data; | |
3855 | completion_list_add_name ((char *) name, | |
3856 | datum->sym_text, datum->sym_text_len, | |
3857 | datum->text, datum->word); | |
3858 | } | |
3859 | ||
c906108c | 3860 | char ** |
41d27058 | 3861 | default_make_symbol_completion_list (char *text, char *word) |
c906108c | 3862 | { |
41d27058 JB |
3863 | /* Problem: All of the symbols have to be copied because readline |
3864 | frees them. I'm not going to worry about this; hopefully there | |
3865 | won't be that many. */ | |
3866 | ||
de4f826b DC |
3867 | struct symbol *sym; |
3868 | struct symtab *s; | |
3869 | struct partial_symtab *ps; | |
3870 | struct minimal_symbol *msymbol; | |
3871 | struct objfile *objfile; | |
edb3359d DJ |
3872 | struct block *b; |
3873 | const struct block *surrounding_static_block, *surrounding_global_block; | |
de4f826b | 3874 | struct dict_iterator iter; |
c906108c SS |
3875 | struct partial_symbol **psym; |
3876 | /* The symbol we are completing on. Points in same buffer as text. */ | |
3877 | char *sym_text; | |
3878 | /* Length of sym_text. */ | |
3879 | int sym_text_len; | |
3880 | ||
41d27058 | 3881 | /* Now look for the symbol we are supposed to complete on. */ |
c906108c SS |
3882 | { |
3883 | char *p; | |
3884 | char quote_found; | |
3885 | char *quote_pos = NULL; | |
3886 | ||
3887 | /* First see if this is a quoted string. */ | |
3888 | quote_found = '\0'; | |
3889 | for (p = text; *p != '\0'; ++p) | |
3890 | { | |
3891 | if (quote_found != '\0') | |
3892 | { | |
3893 | if (*p == quote_found) | |
3894 | /* Found close quote. */ | |
3895 | quote_found = '\0'; | |
3896 | else if (*p == '\\' && p[1] == quote_found) | |
3897 | /* A backslash followed by the quote character | |
c5aa993b | 3898 | doesn't end the string. */ |
c906108c SS |
3899 | ++p; |
3900 | } | |
3901 | else if (*p == '\'' || *p == '"') | |
3902 | { | |
3903 | quote_found = *p; | |
3904 | quote_pos = p; | |
3905 | } | |
3906 | } | |
3907 | if (quote_found == '\'') | |
3908 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3909 | sym_text = quote_pos + 1; | |
3910 | else if (quote_found == '"') | |
3911 | /* A double-quoted string is never a symbol, nor does it make sense | |
c5aa993b | 3912 | to complete it any other way. */ |
c94fdfd0 EZ |
3913 | { |
3914 | return_val = (char **) xmalloc (sizeof (char *)); | |
3915 | return_val[0] = NULL; | |
3916 | return return_val; | |
3917 | } | |
c906108c SS |
3918 | else |
3919 | { | |
3920 | /* It is not a quoted string. Break it based on the characters | |
3921 | which are in symbols. */ | |
3922 | while (p > text) | |
3923 | { | |
95699ff0 KS |
3924 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0' |
3925 | || p[-1] == ':') | |
c906108c SS |
3926 | --p; |
3927 | else | |
3928 | break; | |
3929 | } | |
3930 | sym_text = p; | |
3931 | } | |
3932 | } | |
3933 | ||
3934 | sym_text_len = strlen (sym_text); | |
3935 | ||
3936 | return_val_size = 100; | |
3937 | return_val_index = 0; | |
3938 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3939 | return_val[0] = NULL; | |
3940 | ||
3941 | /* Look through the partial symtabs for all symbols which begin | |
3942 | by matching SYM_TEXT. Add each one that you find to the list. */ | |
3943 | ||
3944 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
3945 | { |
3946 | /* If the psymtab's been read in we'll get it when we search | |
3947 | through the blockvector. */ | |
3948 | if (ps->readin) | |
3949 | continue; | |
3950 | ||
3951 | for (psym = objfile->global_psymbols.list + ps->globals_offset; | |
3952 | psym < (objfile->global_psymbols.list + ps->globals_offset | |
3953 | + ps->n_global_syms); | |
3954 | psym++) | |
3955 | { | |
3956 | /* If interrupted, then quit. */ | |
3957 | QUIT; | |
3958 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
3959 | } | |
3960 | ||
3961 | for (psym = objfile->static_psymbols.list + ps->statics_offset; | |
3962 | psym < (objfile->static_psymbols.list + ps->statics_offset | |
3963 | + ps->n_static_syms); | |
3964 | psym++) | |
3965 | { | |
3966 | QUIT; | |
3967 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
3968 | } | |
3969 | } | |
c906108c SS |
3970 | |
3971 | /* At this point scan through the misc symbol vectors and add each | |
3972 | symbol you find to the list. Eventually we want to ignore | |
3973 | anything that isn't a text symbol (everything else will be | |
3974 | handled by the psymtab code above). */ | |
3975 | ||
3976 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3977 | { |
3978 | QUIT; | |
3979 | COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word); | |
9af17804 | 3980 | |
69636828 | 3981 | completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word); |
c5aa993b | 3982 | } |
c906108c SS |
3983 | |
3984 | /* Search upwards from currently selected frame (so that we can | |
edb3359d DJ |
3985 | complete on local vars). Also catch fields of types defined in |
3986 | this places which match our text string. Only complete on types | |
3987 | visible from current context. */ | |
3988 | ||
3989 | b = get_selected_block (0); | |
3990 | surrounding_static_block = block_static_block (b); | |
3991 | surrounding_global_block = block_global_block (b); | |
3992 | if (surrounding_static_block != NULL) | |
3993 | while (b != surrounding_static_block) | |
3994 | { | |
3995 | QUIT; | |
c906108c | 3996 | |
edb3359d DJ |
3997 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
3998 | { | |
3999 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, | |
4000 | word); | |
4001 | completion_list_add_fields (sym, sym_text, sym_text_len, text, | |
4002 | word); | |
4003 | } | |
c5aa993b | 4004 | |
edb3359d DJ |
4005 | /* Stop when we encounter an enclosing function. Do not stop for |
4006 | non-inlined functions - the locals of the enclosing function | |
4007 | are in scope for a nested function. */ | |
4008 | if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) | |
4009 | break; | |
4010 | b = BLOCK_SUPERBLOCK (b); | |
4011 | } | |
c906108c | 4012 | |
edb3359d | 4013 | /* Add fields from the file's types; symbols will be added below. */ |
c906108c | 4014 | |
edb3359d DJ |
4015 | if (surrounding_static_block != NULL) |
4016 | ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym) | |
4017 | completion_list_add_fields (sym, sym_text, sym_text_len, text, word); | |
4018 | ||
4019 | if (surrounding_global_block != NULL) | |
4020 | ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym) | |
4021 | completion_list_add_fields (sym, sym_text, sym_text_len, text, word); | |
c906108c SS |
4022 | |
4023 | /* Go through the symtabs and check the externs and statics for | |
4024 | symbols which match. */ | |
4025 | ||
11309657 | 4026 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
4027 | { |
4028 | QUIT; | |
4029 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 4030 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 4031 | { |
c5aa993b JM |
4032 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4033 | } | |
4034 | } | |
c906108c | 4035 | |
11309657 | 4036 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
4037 | { |
4038 | QUIT; | |
4039 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 4040 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 4041 | { |
c5aa993b JM |
4042 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4043 | } | |
4044 | } | |
c906108c | 4045 | |
9a044a89 TT |
4046 | if (current_language->la_macro_expansion == macro_expansion_c) |
4047 | { | |
4048 | struct macro_scope *scope; | |
4049 | struct add_macro_name_data datum; | |
4050 | ||
4051 | datum.sym_text = sym_text; | |
4052 | datum.sym_text_len = sym_text_len; | |
4053 | datum.text = text; | |
4054 | datum.word = word; | |
4055 | ||
4056 | /* Add any macros visible in the default scope. Note that this | |
4057 | may yield the occasional wrong result, because an expression | |
4058 | might be evaluated in a scope other than the default. For | |
4059 | example, if the user types "break file:line if <TAB>", the | |
4060 | resulting expression will be evaluated at "file:line" -- but | |
4061 | at there does not seem to be a way to detect this at | |
4062 | completion time. */ | |
4063 | scope = default_macro_scope (); | |
4064 | if (scope) | |
4065 | { | |
4066 | macro_for_each_in_scope (scope->file, scope->line, | |
4067 | add_macro_name, &datum); | |
4068 | xfree (scope); | |
4069 | } | |
4070 | ||
4071 | /* User-defined macros are always visible. */ | |
4072 | macro_for_each (macro_user_macros, add_macro_name, &datum); | |
4073 | } | |
4074 | ||
c906108c SS |
4075 | return (return_val); |
4076 | } | |
4077 | ||
41d27058 JB |
4078 | /* Return a NULL terminated array of all symbols (regardless of class) |
4079 | which begin by matching TEXT. If the answer is no symbols, then | |
4080 | the return value is an array which contains only a NULL pointer. */ | |
4081 | ||
4082 | char ** | |
4083 | make_symbol_completion_list (char *text, char *word) | |
4084 | { | |
4085 | return current_language->la_make_symbol_completion_list (text, word); | |
4086 | } | |
4087 | ||
d8906c6f TJB |
4088 | /* Like make_symbol_completion_list, but suitable for use as a |
4089 | completion function. */ | |
4090 | ||
4091 | char ** | |
4092 | make_symbol_completion_list_fn (struct cmd_list_element *ignore, | |
4093 | char *text, char *word) | |
4094 | { | |
4095 | return make_symbol_completion_list (text, word); | |
4096 | } | |
4097 | ||
c94fdfd0 EZ |
4098 | /* Like make_symbol_completion_list, but returns a list of symbols |
4099 | defined in a source file FILE. */ | |
4100 | ||
4101 | char ** | |
4102 | make_file_symbol_completion_list (char *text, char *word, char *srcfile) | |
4103 | { | |
52f0bd74 AC |
4104 | struct symbol *sym; |
4105 | struct symtab *s; | |
4106 | struct block *b; | |
de4f826b | 4107 | struct dict_iterator iter; |
c94fdfd0 EZ |
4108 | /* The symbol we are completing on. Points in same buffer as text. */ |
4109 | char *sym_text; | |
4110 | /* Length of sym_text. */ | |
4111 | int sym_text_len; | |
4112 | ||
4113 | /* Now look for the symbol we are supposed to complete on. | |
4114 | FIXME: This should be language-specific. */ | |
4115 | { | |
4116 | char *p; | |
4117 | char quote_found; | |
4118 | char *quote_pos = NULL; | |
4119 | ||
4120 | /* First see if this is a quoted string. */ | |
4121 | quote_found = '\0'; | |
4122 | for (p = text; *p != '\0'; ++p) | |
4123 | { | |
4124 | if (quote_found != '\0') | |
4125 | { | |
4126 | if (*p == quote_found) | |
4127 | /* Found close quote. */ | |
4128 | quote_found = '\0'; | |
4129 | else if (*p == '\\' && p[1] == quote_found) | |
4130 | /* A backslash followed by the quote character | |
4131 | doesn't end the string. */ | |
4132 | ++p; | |
4133 | } | |
4134 | else if (*p == '\'' || *p == '"') | |
4135 | { | |
4136 | quote_found = *p; | |
4137 | quote_pos = p; | |
4138 | } | |
4139 | } | |
4140 | if (quote_found == '\'') | |
4141 | /* A string within single quotes can be a symbol, so complete on it. */ | |
4142 | sym_text = quote_pos + 1; | |
4143 | else if (quote_found == '"') | |
4144 | /* A double-quoted string is never a symbol, nor does it make sense | |
4145 | to complete it any other way. */ | |
4146 | { | |
4147 | return_val = (char **) xmalloc (sizeof (char *)); | |
4148 | return_val[0] = NULL; | |
4149 | return return_val; | |
4150 | } | |
4151 | else | |
4152 | { | |
69636828 AF |
4153 | /* Not a quoted string. */ |
4154 | sym_text = language_search_unquoted_string (text, p); | |
c94fdfd0 EZ |
4155 | } |
4156 | } | |
4157 | ||
4158 | sym_text_len = strlen (sym_text); | |
4159 | ||
4160 | return_val_size = 10; | |
4161 | return_val_index = 0; | |
4162 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
4163 | return_val[0] = NULL; | |
4164 | ||
4165 | /* Find the symtab for SRCFILE (this loads it if it was not yet read | |
4166 | in). */ | |
4167 | s = lookup_symtab (srcfile); | |
4168 | if (s == NULL) | |
4169 | { | |
4170 | /* Maybe they typed the file with leading directories, while the | |
4171 | symbol tables record only its basename. */ | |
31889e00 | 4172 | const char *tail = lbasename (srcfile); |
c94fdfd0 EZ |
4173 | |
4174 | if (tail > srcfile) | |
4175 | s = lookup_symtab (tail); | |
4176 | } | |
4177 | ||
4178 | /* If we have no symtab for that file, return an empty list. */ | |
4179 | if (s == NULL) | |
4180 | return (return_val); | |
4181 | ||
4182 | /* Go through this symtab and check the externs and statics for | |
4183 | symbols which match. */ | |
4184 | ||
4185 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 4186 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 4187 | { |
c94fdfd0 EZ |
4188 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4189 | } | |
4190 | ||
4191 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 4192 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 4193 | { |
c94fdfd0 EZ |
4194 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4195 | } | |
4196 | ||
4197 | return (return_val); | |
4198 | } | |
4199 | ||
4200 | /* A helper function for make_source_files_completion_list. It adds | |
4201 | another file name to a list of possible completions, growing the | |
4202 | list as necessary. */ | |
4203 | ||
4204 | static void | |
4205 | add_filename_to_list (const char *fname, char *text, char *word, | |
4206 | char ***list, int *list_used, int *list_alloced) | |
4207 | { | |
4208 | char *new; | |
4209 | size_t fnlen = strlen (fname); | |
4210 | ||
4211 | if (*list_used + 1 >= *list_alloced) | |
4212 | { | |
4213 | *list_alloced *= 2; | |
4214 | *list = (char **) xrealloc ((char *) *list, | |
4215 | *list_alloced * sizeof (char *)); | |
4216 | } | |
4217 | ||
4218 | if (word == text) | |
4219 | { | |
4220 | /* Return exactly fname. */ | |
4221 | new = xmalloc (fnlen + 5); | |
4222 | strcpy (new, fname); | |
4223 | } | |
4224 | else if (word > text) | |
4225 | { | |
4226 | /* Return some portion of fname. */ | |
4227 | new = xmalloc (fnlen + 5); | |
4228 | strcpy (new, fname + (word - text)); | |
4229 | } | |
4230 | else | |
4231 | { | |
4232 | /* Return some of TEXT plus fname. */ | |
4233 | new = xmalloc (fnlen + (text - word) + 5); | |
4234 | strncpy (new, word, text - word); | |
4235 | new[text - word] = '\0'; | |
4236 | strcat (new, fname); | |
4237 | } | |
4238 | (*list)[*list_used] = new; | |
4239 | (*list)[++*list_used] = NULL; | |
4240 | } | |
4241 | ||
4242 | static int | |
4243 | not_interesting_fname (const char *fname) | |
4244 | { | |
4245 | static const char *illegal_aliens[] = { | |
4246 | "_globals_", /* inserted by coff_symtab_read */ | |
4247 | NULL | |
4248 | }; | |
4249 | int i; | |
4250 | ||
4251 | for (i = 0; illegal_aliens[i]; i++) | |
4252 | { | |
4253 | if (strcmp (fname, illegal_aliens[i]) == 0) | |
4254 | return 1; | |
4255 | } | |
4256 | return 0; | |
4257 | } | |
4258 | ||
4259 | /* Return a NULL terminated array of all source files whose names | |
4260 | begin with matching TEXT. The file names are looked up in the | |
4261 | symbol tables of this program. If the answer is no matchess, then | |
4262 | the return value is an array which contains only a NULL pointer. */ | |
4263 | ||
4264 | char ** | |
4265 | make_source_files_completion_list (char *text, char *word) | |
4266 | { | |
52f0bd74 AC |
4267 | struct symtab *s; |
4268 | struct partial_symtab *ps; | |
4269 | struct objfile *objfile; | |
c94fdfd0 EZ |
4270 | int first = 1; |
4271 | int list_alloced = 1; | |
4272 | int list_used = 0; | |
4273 | size_t text_len = strlen (text); | |
4274 | char **list = (char **) xmalloc (list_alloced * sizeof (char *)); | |
31889e00 | 4275 | const char *base_name; |
c94fdfd0 EZ |
4276 | |
4277 | list[0] = NULL; | |
4278 | ||
4279 | if (!have_full_symbols () && !have_partial_symbols ()) | |
4280 | return list; | |
4281 | ||
4282 | ALL_SYMTABS (objfile, s) | |
4283 | { | |
4284 | if (not_interesting_fname (s->filename)) | |
4285 | continue; | |
4286 | if (!filename_seen (s->filename, 1, &first) | |
4287 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4288 | && strncasecmp (s->filename, text, text_len) == 0 | |
4289 | #else | |
4290 | && strncmp (s->filename, text, text_len) == 0 | |
4291 | #endif | |
4292 | ) | |
4293 | { | |
4294 | /* This file matches for a completion; add it to the current | |
4295 | list of matches. */ | |
4296 | add_filename_to_list (s->filename, text, word, | |
4297 | &list, &list_used, &list_alloced); | |
4298 | } | |
4299 | else | |
4300 | { | |
4301 | /* NOTE: We allow the user to type a base name when the | |
4302 | debug info records leading directories, but not the other | |
4303 | way around. This is what subroutines of breakpoint | |
4304 | command do when they parse file names. */ | |
31889e00 | 4305 | base_name = lbasename (s->filename); |
c94fdfd0 EZ |
4306 | if (base_name != s->filename |
4307 | && !filename_seen (base_name, 1, &first) | |
4308 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4309 | && strncasecmp (base_name, text, text_len) == 0 | |
4310 | #else | |
4311 | && strncmp (base_name, text, text_len) == 0 | |
4312 | #endif | |
4313 | ) | |
4314 | add_filename_to_list (base_name, text, word, | |
4315 | &list, &list_used, &list_alloced); | |
4316 | } | |
4317 | } | |
4318 | ||
4319 | ALL_PSYMTABS (objfile, ps) | |
4320 | { | |
4321 | if (not_interesting_fname (ps->filename)) | |
4322 | continue; | |
4323 | if (!ps->readin) | |
4324 | { | |
4325 | if (!filename_seen (ps->filename, 1, &first) | |
4326 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4327 | && strncasecmp (ps->filename, text, text_len) == 0 | |
4328 | #else | |
4329 | && strncmp (ps->filename, text, text_len) == 0 | |
4330 | #endif | |
4331 | ) | |
4332 | { | |
4333 | /* This file matches for a completion; add it to the | |
4334 | current list of matches. */ | |
4335 | add_filename_to_list (ps->filename, text, word, | |
4336 | &list, &list_used, &list_alloced); | |
4337 | ||
4338 | } | |
4339 | else | |
4340 | { | |
31889e00 | 4341 | base_name = lbasename (ps->filename); |
c94fdfd0 EZ |
4342 | if (base_name != ps->filename |
4343 | && !filename_seen (base_name, 1, &first) | |
4344 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4345 | && strncasecmp (base_name, text, text_len) == 0 | |
4346 | #else | |
4347 | && strncmp (base_name, text, text_len) == 0 | |
4348 | #endif | |
4349 | ) | |
4350 | add_filename_to_list (base_name, text, word, | |
4351 | &list, &list_used, &list_alloced); | |
4352 | } | |
4353 | } | |
4354 | } | |
4355 | ||
4356 | return list; | |
4357 | } | |
4358 | ||
c906108c SS |
4359 | /* Determine if PC is in the prologue of a function. The prologue is the area |
4360 | between the first instruction of a function, and the first executable line. | |
4361 | Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue. | |
4362 | ||
4363 | If non-zero, func_start is where we think the prologue starts, possibly | |
4364 | by previous examination of symbol table information. | |
4365 | */ | |
4366 | ||
4367 | int | |
d80b854b | 4368 | in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start) |
c906108c SS |
4369 | { |
4370 | struct symtab_and_line sal; | |
4371 | CORE_ADDR func_addr, func_end; | |
4372 | ||
54cf9c03 EZ |
4373 | /* We have several sources of information we can consult to figure |
4374 | this out. | |
4375 | - Compilers usually emit line number info that marks the prologue | |
4376 | as its own "source line". So the ending address of that "line" | |
4377 | is the end of the prologue. If available, this is the most | |
4378 | reliable method. | |
4379 | - The minimal symbols and partial symbols, which can usually tell | |
4380 | us the starting and ending addresses of a function. | |
4381 | - If we know the function's start address, we can call the | |
a433963d | 4382 | architecture-defined gdbarch_skip_prologue function to analyze the |
54cf9c03 EZ |
4383 | instruction stream and guess where the prologue ends. |
4384 | - Our `func_start' argument; if non-zero, this is the caller's | |
4385 | best guess as to the function's entry point. At the time of | |
4386 | this writing, handle_inferior_event doesn't get this right, so | |
4387 | it should be our last resort. */ | |
4388 | ||
4389 | /* Consult the partial symbol table, to find which function | |
4390 | the PC is in. */ | |
4391 | if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
4392 | { | |
4393 | CORE_ADDR prologue_end; | |
c906108c | 4394 | |
54cf9c03 EZ |
4395 | /* We don't even have minsym information, so fall back to using |
4396 | func_start, if given. */ | |
4397 | if (! func_start) | |
4398 | return 1; /* We *might* be in a prologue. */ | |
c906108c | 4399 | |
d80b854b | 4400 | prologue_end = gdbarch_skip_prologue (gdbarch, func_start); |
c906108c | 4401 | |
54cf9c03 EZ |
4402 | return func_start <= pc && pc < prologue_end; |
4403 | } | |
c906108c | 4404 | |
54cf9c03 EZ |
4405 | /* If we have line number information for the function, that's |
4406 | usually pretty reliable. */ | |
4407 | sal = find_pc_line (func_addr, 0); | |
c906108c | 4408 | |
54cf9c03 EZ |
4409 | /* Now sal describes the source line at the function's entry point, |
4410 | which (by convention) is the prologue. The end of that "line", | |
4411 | sal.end, is the end of the prologue. | |
4412 | ||
4413 | Note that, for functions whose source code is all on a single | |
4414 | line, the line number information doesn't always end up this way. | |
4415 | So we must verify that our purported end-of-prologue address is | |
4416 | *within* the function, not at its start or end. */ | |
4417 | if (sal.line == 0 | |
4418 | || sal.end <= func_addr | |
4419 | || func_end <= sal.end) | |
4420 | { | |
4421 | /* We don't have any good line number info, so use the minsym | |
4422 | information, together with the architecture-specific prologue | |
4423 | scanning code. */ | |
d80b854b | 4424 | CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr); |
c906108c | 4425 | |
54cf9c03 EZ |
4426 | return func_addr <= pc && pc < prologue_end; |
4427 | } | |
c906108c | 4428 | |
54cf9c03 EZ |
4429 | /* We have line number info, and it looks good. */ |
4430 | return func_addr <= pc && pc < sal.end; | |
c906108c SS |
4431 | } |
4432 | ||
634aa483 AC |
4433 | /* Given PC at the function's start address, attempt to find the |
4434 | prologue end using SAL information. Return zero if the skip fails. | |
4435 | ||
4436 | A non-optimized prologue traditionally has one SAL for the function | |
4437 | and a second for the function body. A single line function has | |
4438 | them both pointing at the same line. | |
4439 | ||
4440 | An optimized prologue is similar but the prologue may contain | |
4441 | instructions (SALs) from the instruction body. Need to skip those | |
4442 | while not getting into the function body. | |
4443 | ||
4444 | The functions end point and an increasing SAL line are used as | |
4445 | indicators of the prologue's endpoint. | |
4446 | ||
4447 | This code is based on the function refine_prologue_limit (versions | |
4448 | found in both ia64 and ppc). */ | |
4449 | ||
4450 | CORE_ADDR | |
d80b854b | 4451 | skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr) |
634aa483 AC |
4452 | { |
4453 | struct symtab_and_line prologue_sal; | |
4454 | CORE_ADDR start_pc; | |
4455 | CORE_ADDR end_pc; | |
d54be744 | 4456 | struct block *bl; |
634aa483 AC |
4457 | |
4458 | /* Get an initial range for the function. */ | |
4459 | find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); | |
d80b854b | 4460 | start_pc += gdbarch_deprecated_function_start_offset (gdbarch); |
634aa483 AC |
4461 | |
4462 | prologue_sal = find_pc_line (start_pc, 0); | |
4463 | if (prologue_sal.line != 0) | |
4464 | { | |
d54be744 DJ |
4465 | /* For langauges other than assembly, treat two consecutive line |
4466 | entries at the same address as a zero-instruction prologue. | |
4467 | The GNU assembler emits separate line notes for each instruction | |
4468 | in a multi-instruction macro, but compilers generally will not | |
4469 | do this. */ | |
4470 | if (prologue_sal.symtab->language != language_asm) | |
4471 | { | |
4472 | struct linetable *linetable = LINETABLE (prologue_sal.symtab); | |
4473 | int exact; | |
4474 | int idx = 0; | |
4475 | ||
4476 | /* Skip any earlier lines, and any end-of-sequence marker | |
4477 | from a previous function. */ | |
4478 | while (linetable->item[idx].pc != prologue_sal.pc | |
4479 | || linetable->item[idx].line == 0) | |
4480 | idx++; | |
4481 | ||
4482 | if (idx+1 < linetable->nitems | |
4483 | && linetable->item[idx+1].line != 0 | |
4484 | && linetable->item[idx+1].pc == start_pc) | |
4485 | return start_pc; | |
4486 | } | |
4487 | ||
576c2025 FF |
4488 | /* If there is only one sal that covers the entire function, |
4489 | then it is probably a single line function, like | |
4490 | "foo(){}". */ | |
91934273 | 4491 | if (prologue_sal.end >= end_pc) |
4e463ff5 | 4492 | return 0; |
d54be744 | 4493 | |
634aa483 AC |
4494 | while (prologue_sal.end < end_pc) |
4495 | { | |
4496 | struct symtab_and_line sal; | |
4497 | ||
4498 | sal = find_pc_line (prologue_sal.end, 0); | |
4499 | if (sal.line == 0) | |
4500 | break; | |
4501 | /* Assume that a consecutive SAL for the same (or larger) | |
4502 | line mark the prologue -> body transition. */ | |
4503 | if (sal.line >= prologue_sal.line) | |
4504 | break; | |
edb3359d DJ |
4505 | |
4506 | /* The line number is smaller. Check that it's from the | |
4507 | same function, not something inlined. If it's inlined, | |
4508 | then there is no point comparing the line numbers. */ | |
4509 | bl = block_for_pc (prologue_sal.end); | |
4510 | while (bl) | |
4511 | { | |
4512 | if (block_inlined_p (bl)) | |
4513 | break; | |
4514 | if (BLOCK_FUNCTION (bl)) | |
4515 | { | |
4516 | bl = NULL; | |
4517 | break; | |
4518 | } | |
4519 | bl = BLOCK_SUPERBLOCK (bl); | |
4520 | } | |
4521 | if (bl != NULL) | |
4522 | break; | |
4523 | ||
634aa483 AC |
4524 | /* The case in which compiler's optimizer/scheduler has |
4525 | moved instructions into the prologue. We look ahead in | |
4526 | the function looking for address ranges whose | |
4527 | corresponding line number is less the first one that we | |
4528 | found for the function. This is more conservative then | |
4529 | refine_prologue_limit which scans a large number of SALs | |
4530 | looking for any in the prologue */ | |
4531 | prologue_sal = sal; | |
4532 | } | |
4533 | } | |
d54be744 DJ |
4534 | |
4535 | if (prologue_sal.end < end_pc) | |
4536 | /* Return the end of this line, or zero if we could not find a | |
4537 | line. */ | |
4538 | return prologue_sal.end; | |
4539 | else | |
4540 | /* Don't return END_PC, which is past the end of the function. */ | |
4541 | return prologue_sal.pc; | |
634aa483 | 4542 | } |
c906108c | 4543 | \f |
50641945 FN |
4544 | struct symtabs_and_lines |
4545 | decode_line_spec (char *string, int funfirstline) | |
4546 | { | |
4547 | struct symtabs_and_lines sals; | |
0378c332 | 4548 | struct symtab_and_line cursal; |
9af17804 | 4549 | |
50641945 | 4550 | if (string == 0) |
8a3fe4f8 | 4551 | error (_("Empty line specification.")); |
9af17804 | 4552 | |
0378c332 | 4553 | /* We use whatever is set as the current source line. We do not try |
9af17804 | 4554 | and get a default or it will recursively call us! */ |
0378c332 | 4555 | cursal = get_current_source_symtab_and_line (); |
9af17804 | 4556 | |
50641945 | 4557 | sals = decode_line_1 (&string, funfirstline, |
0378c332 | 4558 | cursal.symtab, cursal.line, |
bffe1ece | 4559 | (char ***) NULL, NULL); |
0378c332 | 4560 | |
50641945 | 4561 | if (*string) |
8a3fe4f8 | 4562 | error (_("Junk at end of line specification: %s"), string); |
50641945 FN |
4563 | return sals; |
4564 | } | |
c5aa993b | 4565 | |
51cc5b07 AC |
4566 | /* Track MAIN */ |
4567 | static char *name_of_main; | |
4568 | ||
4569 | void | |
4570 | set_main_name (const char *name) | |
4571 | { | |
4572 | if (name_of_main != NULL) | |
4573 | { | |
4574 | xfree (name_of_main); | |
4575 | name_of_main = NULL; | |
4576 | } | |
4577 | if (name != NULL) | |
4578 | { | |
4579 | name_of_main = xstrdup (name); | |
4580 | } | |
4581 | } | |
4582 | ||
ea53e89f JB |
4583 | /* Deduce the name of the main procedure, and set NAME_OF_MAIN |
4584 | accordingly. */ | |
4585 | ||
4586 | static void | |
4587 | find_main_name (void) | |
4588 | { | |
cd6c7346 | 4589 | const char *new_main_name; |
ea53e89f JB |
4590 | |
4591 | /* Try to see if the main procedure is in Ada. */ | |
4592 | /* FIXME: brobecker/2005-03-07: Another way of doing this would | |
4593 | be to add a new method in the language vector, and call this | |
4594 | method for each language until one of them returns a non-empty | |
4595 | name. This would allow us to remove this hard-coded call to | |
4596 | an Ada function. It is not clear that this is a better approach | |
4597 | at this point, because all methods need to be written in a way | |
4598 | such that false positives never be returned. For instance, it is | |
4599 | important that a method does not return a wrong name for the main | |
4600 | procedure if the main procedure is actually written in a different | |
4601 | language. It is easy to guaranty this with Ada, since we use a | |
4602 | special symbol generated only when the main in Ada to find the name | |
4603 | of the main procedure. It is difficult however to see how this can | |
4604 | be guarantied for languages such as C, for instance. This suggests | |
4605 | that order of call for these methods becomes important, which means | |
4606 | a more complicated approach. */ | |
4607 | new_main_name = ada_main_name (); | |
4608 | if (new_main_name != NULL) | |
9af17804 | 4609 | { |
ea53e89f JB |
4610 | set_main_name (new_main_name); |
4611 | return; | |
4612 | } | |
4613 | ||
cd6c7346 PM |
4614 | new_main_name = pascal_main_name (); |
4615 | if (new_main_name != NULL) | |
9af17804 | 4616 | { |
cd6c7346 PM |
4617 | set_main_name (new_main_name); |
4618 | return; | |
4619 | } | |
4620 | ||
ea53e89f JB |
4621 | /* The languages above didn't identify the name of the main procedure. |
4622 | Fallback to "main". */ | |
4623 | set_main_name ("main"); | |
4624 | } | |
4625 | ||
51cc5b07 AC |
4626 | char * |
4627 | main_name (void) | |
4628 | { | |
ea53e89f JB |
4629 | if (name_of_main == NULL) |
4630 | find_main_name (); | |
4631 | ||
4632 | return name_of_main; | |
51cc5b07 AC |
4633 | } |
4634 | ||
ea53e89f JB |
4635 | /* Handle ``executable_changed'' events for the symtab module. */ |
4636 | ||
4637 | static void | |
781b42b0 | 4638 | symtab_observer_executable_changed (void) |
ea53e89f JB |
4639 | { |
4640 | /* NAME_OF_MAIN may no longer be the same, so reset it for now. */ | |
4641 | set_main_name (NULL); | |
4642 | } | |
51cc5b07 | 4643 | |
ed0616c6 VP |
4644 | /* Helper to expand_line_sal below. Appends new sal to SAL, |
4645 | initializing it from SYMTAB, LINENO and PC. */ | |
4646 | static void | |
4647 | append_expanded_sal (struct symtabs_and_lines *sal, | |
6c95b8df | 4648 | struct program_space *pspace, |
ed0616c6 VP |
4649 | struct symtab *symtab, |
4650 | int lineno, CORE_ADDR pc) | |
4651 | { | |
9af17804 DE |
4652 | sal->sals = xrealloc (sal->sals, |
4653 | sizeof (sal->sals[0]) | |
ed0616c6 VP |
4654 | * (sal->nelts + 1)); |
4655 | init_sal (sal->sals + sal->nelts); | |
6c95b8df | 4656 | sal->sals[sal->nelts].pspace = pspace; |
ed0616c6 VP |
4657 | sal->sals[sal->nelts].symtab = symtab; |
4658 | sal->sals[sal->nelts].section = NULL; | |
4659 | sal->sals[sal->nelts].end = 0; | |
9af17804 | 4660 | sal->sals[sal->nelts].line = lineno; |
ed0616c6 | 4661 | sal->sals[sal->nelts].pc = pc; |
9af17804 | 4662 | ++sal->nelts; |
ed0616c6 VP |
4663 | } |
4664 | ||
aad80b26 | 4665 | /* Helper to expand_line_sal below. Search in the symtabs for any |
3ffc00b8 JB |
4666 | linetable entry that exactly matches FULLNAME and LINENO and append |
4667 | them to RET. If FULLNAME is NULL or if a symtab has no full name, | |
4668 | use FILENAME and LINENO instead. If there is at least one match, | |
4669 | return 1; otherwise, return 0, and return the best choice in BEST_ITEM | |
4670 | and BEST_SYMTAB. */ | |
aad80b26 JG |
4671 | |
4672 | static int | |
3ffc00b8 | 4673 | append_exact_match_to_sals (char *filename, char *fullname, int lineno, |
aad80b26 JG |
4674 | struct symtabs_and_lines *ret, |
4675 | struct linetable_entry **best_item, | |
4676 | struct symtab **best_symtab) | |
4677 | { | |
6c95b8df | 4678 | struct program_space *pspace; |
aad80b26 JG |
4679 | struct objfile *objfile; |
4680 | struct symtab *symtab; | |
4681 | int exact = 0; | |
4682 | int j; | |
4683 | *best_item = 0; | |
4684 | *best_symtab = 0; | |
6c95b8df PA |
4685 | |
4686 | ALL_PSPACES (pspace) | |
4687 | ALL_PSPACE_SYMTABS (pspace, objfile, symtab) | |
aad80b26 | 4688 | { |
3ffc00b8 | 4689 | if (FILENAME_CMP (filename, symtab->filename) == 0) |
aad80b26 JG |
4690 | { |
4691 | struct linetable *l; | |
4692 | int len; | |
3ffc00b8 JB |
4693 | if (fullname != NULL |
4694 | && symtab_to_fullname (symtab) != NULL | |
4695 | && FILENAME_CMP (fullname, symtab->fullname) != 0) | |
4696 | continue; | |
aad80b26 JG |
4697 | l = LINETABLE (symtab); |
4698 | if (!l) | |
4699 | continue; | |
4700 | len = l->nitems; | |
4701 | ||
4702 | for (j = 0; j < len; j++) | |
4703 | { | |
4704 | struct linetable_entry *item = &(l->item[j]); | |
4705 | ||
4706 | if (item->line == lineno) | |
4707 | { | |
4708 | exact = 1; | |
6c95b8df PA |
4709 | append_expanded_sal (ret, objfile->pspace, |
4710 | symtab, lineno, item->pc); | |
aad80b26 JG |
4711 | } |
4712 | else if (!exact && item->line > lineno | |
4713 | && (*best_item == NULL | |
4714 | || item->line < (*best_item)->line)) | |
4715 | { | |
4716 | *best_item = item; | |
4717 | *best_symtab = symtab; | |
4718 | } | |
4719 | } | |
4720 | } | |
4721 | } | |
4722 | return exact; | |
4723 | } | |
4724 | ||
6c95b8df PA |
4725 | /* Compute a set of all sals in all program spaces that correspond to |
4726 | same file and line as SAL and return those. If there are several | |
4727 | sals that belong to the same block, only one sal for the block is | |
4728 | included in results. */ | |
9af17804 | 4729 | |
ed0616c6 VP |
4730 | struct symtabs_and_lines |
4731 | expand_line_sal (struct symtab_and_line sal) | |
4732 | { | |
4733 | struct symtabs_and_lines ret, this_line; | |
4734 | int i, j; | |
4735 | struct objfile *objfile; | |
4736 | struct partial_symtab *psymtab; | |
4737 | struct symtab *symtab; | |
4738 | int lineno; | |
4739 | int deleted = 0; | |
4740 | struct block **blocks = NULL; | |
4741 | int *filter; | |
6c95b8df | 4742 | struct cleanup *old_chain; |
ed0616c6 VP |
4743 | |
4744 | ret.nelts = 0; | |
4745 | ret.sals = NULL; | |
4746 | ||
6c95b8df | 4747 | /* Only expand sals that represent file.c:line. */ |
ed0616c6 VP |
4748 | if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0) |
4749 | { | |
4750 | ret.sals = xmalloc (sizeof (struct symtab_and_line)); | |
4751 | ret.sals[0] = sal; | |
4752 | ret.nelts = 1; | |
4753 | return ret; | |
4754 | } | |
4755 | else | |
4756 | { | |
6c95b8df | 4757 | struct program_space *pspace; |
ed0616c6 VP |
4758 | struct linetable_entry *best_item = 0; |
4759 | struct symtab *best_symtab = 0; | |
4760 | int exact = 0; | |
6c95b8df | 4761 | char *match_filename; |
ed0616c6 VP |
4762 | |
4763 | lineno = sal.line; | |
6c95b8df | 4764 | match_filename = sal.symtab->filename; |
ed0616c6 | 4765 | |
9af17804 DE |
4766 | /* We need to find all symtabs for a file which name |
4767 | is described by sal. We cannot just directly | |
ed0616c6 | 4768 | iterate over symtabs, since a symtab might not be |
9af17804 | 4769 | yet created. We also cannot iterate over psymtabs, |
ed0616c6 VP |
4770 | calling PSYMTAB_TO_SYMTAB and working on that symtab, |
4771 | since PSYMTAB_TO_SYMTAB will return NULL for psymtab | |
9af17804 | 4772 | corresponding to an included file. Therefore, we do |
ed0616c6 VP |
4773 | first pass over psymtabs, reading in those with |
4774 | the right name. Then, we iterate over symtabs, knowing | |
4775 | that all symtabs we're interested in are loaded. */ | |
4776 | ||
6c95b8df PA |
4777 | old_chain = save_current_program_space (); |
4778 | ALL_PSPACES (pspace) | |
4779 | ALL_PSPACE_PSYMTABS (pspace, objfile, psymtab) | |
ed0616c6 | 4780 | { |
3ffc00b8 | 4781 | if (FILENAME_CMP (match_filename, psymtab->filename) == 0) |
6c95b8df PA |
4782 | { |
4783 | set_current_program_space (pspace); | |
4784 | ||
4785 | PSYMTAB_TO_SYMTAB (psymtab); | |
4786 | } | |
ed0616c6 | 4787 | } |
6c95b8df | 4788 | do_cleanups (old_chain); |
ed0616c6 | 4789 | |
aad80b26 JG |
4790 | /* Now search the symtab for exact matches and append them. If |
4791 | none is found, append the best_item and all its exact | |
4792 | matches. */ | |
3ffc00b8 JB |
4793 | symtab_to_fullname (sal.symtab); |
4794 | exact = append_exact_match_to_sals (sal.symtab->filename, | |
4795 | sal.symtab->fullname, lineno, | |
aad80b26 | 4796 | &ret, &best_item, &best_symtab); |
ed0616c6 | 4797 | if (!exact && best_item) |
3ffc00b8 JB |
4798 | append_exact_match_to_sals (best_symtab->filename, |
4799 | best_symtab->fullname, best_item->line, | |
aad80b26 | 4800 | &ret, &best_item, &best_symtab); |
ed0616c6 VP |
4801 | } |
4802 | ||
4803 | /* For optimized code, compiler can scatter one source line accross | |
4804 | disjoint ranges of PC values, even when no duplicate functions | |
4805 | or inline functions are involved. For example, 'for (;;)' inside | |
4806 | non-template non-inline non-ctor-or-dtor function can result | |
4807 | in two PC ranges. In this case, we don't want to set breakpoint | |
4808 | on first PC of each range. To filter such cases, we use containing | |
4809 | blocks -- for each PC found above we see if there are other PCs | |
9af17804 | 4810 | that are in the same block. If yes, the other PCs are filtered out. */ |
ed0616c6 | 4811 | |
6c95b8df | 4812 | old_chain = save_current_program_space (); |
db009c8a JB |
4813 | filter = alloca (ret.nelts * sizeof (int)); |
4814 | blocks = alloca (ret.nelts * sizeof (struct block *)); | |
ed0616c6 VP |
4815 | for (i = 0; i < ret.nelts; ++i) |
4816 | { | |
6c95b8df PA |
4817 | struct blockvector *bl; |
4818 | struct block *b; | |
4819 | ||
4820 | set_current_program_space (ret.sals[i].pspace); | |
4821 | ||
ed0616c6 | 4822 | filter[i] = 1; |
6c95b8df PA |
4823 | blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section); |
4824 | ||
ed0616c6 | 4825 | } |
6c95b8df | 4826 | do_cleanups (old_chain); |
ed0616c6 VP |
4827 | |
4828 | for (i = 0; i < ret.nelts; ++i) | |
4829 | if (blocks[i] != NULL) | |
4830 | for (j = i+1; j < ret.nelts; ++j) | |
4831 | if (blocks[j] == blocks[i]) | |
4832 | { | |
4833 | filter[j] = 0; | |
4834 | ++deleted; | |
4835 | break; | |
4836 | } | |
9af17804 | 4837 | |
ed0616c6 | 4838 | { |
9af17804 | 4839 | struct symtab_and_line *final = |
ed0616c6 | 4840 | xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted)); |
9af17804 | 4841 | |
ed0616c6 VP |
4842 | for (i = 0, j = 0; i < ret.nelts; ++i) |
4843 | if (filter[i]) | |
4844 | final[j++] = ret.sals[i]; | |
9af17804 | 4845 | |
ed0616c6 VP |
4846 | ret.nelts -= deleted; |
4847 | xfree (ret.sals); | |
4848 | ret.sals = final; | |
4849 | } | |
4850 | ||
4851 | return ret; | |
4852 | } | |
4853 | ||
4854 | ||
c906108c | 4855 | void |
fba45db2 | 4856 | _initialize_symtab (void) |
c906108c | 4857 | { |
1bedd215 AC |
4858 | add_info ("variables", variables_info, _("\ |
4859 | All global and static variable names, or those matching REGEXP.")); | |
c906108c | 4860 | if (dbx_commands) |
1bedd215 AC |
4861 | add_com ("whereis", class_info, variables_info, _("\ |
4862 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4863 | |
4864 | add_info ("functions", functions_info, | |
1bedd215 | 4865 | _("All function names, or those matching REGEXP.")); |
c906108c SS |
4866 | |
4867 | /* FIXME: This command has at least the following problems: | |
4868 | 1. It prints builtin types (in a very strange and confusing fashion). | |
4869 | 2. It doesn't print right, e.g. with | |
c5aa993b JM |
4870 | typedef struct foo *FOO |
4871 | type_print prints "FOO" when we want to make it (in this situation) | |
4872 | print "struct foo *". | |
c906108c SS |
4873 | I also think "ptype" or "whatis" is more likely to be useful (but if |
4874 | there is much disagreement "info types" can be fixed). */ | |
4875 | add_info ("types", types_info, | |
1bedd215 | 4876 | _("All type names, or those matching REGEXP.")); |
c906108c | 4877 | |
c906108c | 4878 | add_info ("sources", sources_info, |
1bedd215 | 4879 | _("Source files in the program.")); |
c906108c SS |
4880 | |
4881 | add_com ("rbreak", class_breakpoint, rbreak_command, | |
1bedd215 | 4882 | _("Set a breakpoint for all functions matching REGEXP.")); |
c906108c SS |
4883 | |
4884 | if (xdb_commands) | |
4885 | { | |
1bedd215 AC |
4886 | add_com ("lf", class_info, sources_info, |
4887 | _("Source files in the program")); | |
4888 | add_com ("lg", class_info, variables_info, _("\ | |
4889 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4890 | } |
4891 | ||
717d2f5a JB |
4892 | add_setshow_enum_cmd ("multiple-symbols", no_class, |
4893 | multiple_symbols_modes, &multiple_symbols_mode, | |
4894 | _("\ | |
4895 | Set the debugger behavior when more than one symbol are possible matches\n\ | |
4896 | in an expression."), _("\ | |
4897 | Show how the debugger handles ambiguities in expressions."), _("\ | |
4898 | Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."), | |
4899 | NULL, NULL, &setlist, &showlist); | |
4900 | ||
ea53e89f | 4901 | observer_attach_executable_changed (symtab_observer_executable_changed); |
c906108c | 4902 | } |