]>
Commit | Line | Data |
---|---|---|
669caa9c | 1 | /* Target-dependent code for the HP PA architecture, for GDB. |
87273c71 | 2 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 |
669caa9c | 3 | Free Software Foundation, Inc. |
66a1aa07 SG |
4 | |
5 | Contributed by the Center for Software Science at the | |
6 | University of Utah ([email protected]). | |
7 | ||
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
6c9638b4 | 22 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
66a1aa07 SG |
23 | |
24 | #include "defs.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "value.h" | |
28 | ||
29 | /* For argument passing to the inferior */ | |
30 | #include "symtab.h" | |
31 | ||
32 | #ifdef USG | |
33 | #include <sys/types.h> | |
34 | #endif | |
35 | ||
36 | #include <sys/param.h> | |
66a1aa07 | 37 | #include <signal.h> |
66a1aa07 SG |
38 | |
39 | #ifdef COFF_ENCAPSULATE | |
40 | #include "a.out.encap.h" | |
41 | #else | |
66a1aa07 | 42 | #endif |
66a1aa07 SG |
43 | |
44 | /*#include <sys/user.h> After a.out.h */ | |
45 | #include <sys/file.h> | |
2b576293 | 46 | #include "gdb_stat.h" |
66a1aa07 SG |
47 | #include "wait.h" |
48 | ||
49 | #include "gdbcore.h" | |
50 | #include "gdbcmd.h" | |
51 | #include "target.h" | |
52 | #include "symfile.h" | |
53 | #include "objfiles.h" | |
54 | ||
3f550b59 FF |
55 | static int extract_5_load PARAMS ((unsigned int)); |
56 | ||
57 | static unsigned extract_5R_store PARAMS ((unsigned int)); | |
58 | ||
59 | static unsigned extract_5r_store PARAMS ((unsigned int)); | |
60 | ||
61 | static void find_dummy_frame_regs PARAMS ((struct frame_info *, | |
62 | struct frame_saved_regs *)); | |
63 | ||
64 | static int find_proc_framesize PARAMS ((CORE_ADDR)); | |
65 | ||
66 | static int find_return_regnum PARAMS ((CORE_ADDR)); | |
67 | ||
68 | struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR)); | |
69 | ||
70 | static int extract_17 PARAMS ((unsigned int)); | |
71 | ||
72 | static unsigned deposit_21 PARAMS ((unsigned int, unsigned int)); | |
73 | ||
74 | static int extract_21 PARAMS ((unsigned)); | |
75 | ||
76 | static unsigned deposit_14 PARAMS ((int, unsigned int)); | |
77 | ||
78 | static int extract_14 PARAMS ((unsigned)); | |
79 | ||
80 | static void unwind_command PARAMS ((char *, int)); | |
81 | ||
82 | static int low_sign_extend PARAMS ((unsigned int, unsigned int)); | |
83 | ||
84 | static int sign_extend PARAMS ((unsigned int, unsigned int)); | |
85 | ||
669caa9c SS |
86 | static int restore_pc_queue PARAMS ((struct frame_saved_regs *)); |
87 | ||
88 | static int hppa_alignof PARAMS ((struct type *)); | |
89 | ||
c598654a | 90 | static int prologue_inst_adjust_sp PARAMS ((unsigned long)); |
669caa9c | 91 | |
c598654a | 92 | static int is_branch PARAMS ((unsigned long)); |
669caa9c | 93 | |
c598654a | 94 | static int inst_saves_gr PARAMS ((unsigned long)); |
669caa9c | 95 | |
c598654a | 96 | static int inst_saves_fr PARAMS ((unsigned long)); |
669caa9c | 97 | |
70e43abe | 98 | static int pc_in_interrupt_handler PARAMS ((CORE_ADDR)); |
669caa9c | 99 | |
70e43abe | 100 | static int pc_in_linker_stub PARAMS ((CORE_ADDR)); |
669caa9c | 101 | |
5579919f | 102 | static int compare_unwind_entries PARAMS ((const void *, const void *)); |
669caa9c | 103 | |
c5152d42 | 104 | static void read_unwind_info PARAMS ((struct objfile *)); |
669caa9c | 105 | |
c5152d42 JL |
106 | static void internalize_unwinds PARAMS ((struct objfile *, |
107 | struct unwind_table_entry *, | |
108 | asection *, unsigned int, | |
bfaef242 | 109 | unsigned int, CORE_ADDR)); |
e43169eb JL |
110 | static void pa_print_registers PARAMS ((char *, int, int)); |
111 | static void pa_print_fp_reg PARAMS ((int)); | |
66a1aa07 SG |
112 | |
113 | \f | |
114 | /* Routines to extract various sized constants out of hppa | |
115 | instructions. */ | |
116 | ||
117 | /* This assumes that no garbage lies outside of the lower bits of | |
118 | value. */ | |
119 | ||
3f550b59 | 120 | static int |
66a1aa07 SG |
121 | sign_extend (val, bits) |
122 | unsigned val, bits; | |
123 | { | |
3f550b59 | 124 | return (int)(val >> (bits - 1) ? (-1 << bits) | val : val); |
66a1aa07 SG |
125 | } |
126 | ||
127 | /* For many immediate values the sign bit is the low bit! */ | |
128 | ||
3f550b59 | 129 | static int |
66a1aa07 SG |
130 | low_sign_extend (val, bits) |
131 | unsigned val, bits; | |
132 | { | |
133 | return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); | |
134 | } | |
3f550b59 | 135 | |
66a1aa07 SG |
136 | /* extract the immediate field from a ld{bhw}s instruction */ |
137 | ||
3f550b59 FF |
138 | #if 0 |
139 | ||
66a1aa07 SG |
140 | unsigned |
141 | get_field (val, from, to) | |
142 | unsigned val, from, to; | |
143 | { | |
144 | val = val >> 31 - to; | |
145 | return val & ((1 << 32 - from) - 1); | |
146 | } | |
147 | ||
148 | unsigned | |
149 | set_field (val, from, to, new_val) | |
150 | unsigned *val, from, to; | |
151 | { | |
152 | unsigned mask = ~((1 << (to - from + 1)) << (31 - from)); | |
153 | return *val = *val & mask | (new_val << (31 - from)); | |
154 | } | |
155 | ||
156 | /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */ | |
157 | ||
3f550b59 | 158 | int |
66a1aa07 SG |
159 | extract_3 (word) |
160 | unsigned word; | |
161 | { | |
162 | return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17); | |
163 | } | |
3f550b59 FF |
164 | |
165 | #endif | |
166 | ||
167 | static int | |
66a1aa07 SG |
168 | extract_5_load (word) |
169 | unsigned word; | |
170 | { | |
171 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
172 | } | |
173 | ||
3f550b59 FF |
174 | #if 0 |
175 | ||
66a1aa07 SG |
176 | /* extract the immediate field from a st{bhw}s instruction */ |
177 | ||
178 | int | |
179 | extract_5_store (word) | |
180 | unsigned word; | |
181 | { | |
182 | return low_sign_extend (word & MASK_5, 5); | |
183 | } | |
184 | ||
3f550b59 FF |
185 | #endif /* 0 */ |
186 | ||
68c8d698 SG |
187 | /* extract the immediate field from a break instruction */ |
188 | ||
3f550b59 | 189 | static unsigned |
68c8d698 SG |
190 | extract_5r_store (word) |
191 | unsigned word; | |
192 | { | |
193 | return (word & MASK_5); | |
194 | } | |
195 | ||
196 | /* extract the immediate field from a {sr}sm instruction */ | |
197 | ||
3f550b59 | 198 | static unsigned |
68c8d698 SG |
199 | extract_5R_store (word) |
200 | unsigned word; | |
201 | { | |
202 | return (word >> 16 & MASK_5); | |
203 | } | |
204 | ||
66a1aa07 SG |
205 | /* extract an 11 bit immediate field */ |
206 | ||
3f550b59 FF |
207 | #if 0 |
208 | ||
66a1aa07 SG |
209 | int |
210 | extract_11 (word) | |
211 | unsigned word; | |
212 | { | |
213 | return low_sign_extend (word & MASK_11, 11); | |
214 | } | |
215 | ||
3f550b59 FF |
216 | #endif |
217 | ||
66a1aa07 SG |
218 | /* extract a 14 bit immediate field */ |
219 | ||
3f550b59 | 220 | static int |
66a1aa07 SG |
221 | extract_14 (word) |
222 | unsigned word; | |
223 | { | |
224 | return low_sign_extend (word & MASK_14, 14); | |
225 | } | |
226 | ||
227 | /* deposit a 14 bit constant in a word */ | |
228 | ||
3f550b59 | 229 | static unsigned |
66a1aa07 SG |
230 | deposit_14 (opnd, word) |
231 | int opnd; | |
232 | unsigned word; | |
233 | { | |
234 | unsigned sign = (opnd < 0 ? 1 : 0); | |
235 | ||
236 | return word | ((unsigned)opnd << 1 & MASK_14) | sign; | |
237 | } | |
238 | ||
239 | /* extract a 21 bit constant */ | |
240 | ||
3f550b59 | 241 | static int |
66a1aa07 SG |
242 | extract_21 (word) |
243 | unsigned word; | |
244 | { | |
245 | int val; | |
246 | ||
247 | word &= MASK_21; | |
248 | word <<= 11; | |
249 | val = GET_FIELD (word, 20, 20); | |
250 | val <<= 11; | |
251 | val |= GET_FIELD (word, 9, 19); | |
252 | val <<= 2; | |
253 | val |= GET_FIELD (word, 5, 6); | |
254 | val <<= 5; | |
255 | val |= GET_FIELD (word, 0, 4); | |
256 | val <<= 2; | |
257 | val |= GET_FIELD (word, 7, 8); | |
258 | return sign_extend (val, 21) << 11; | |
259 | } | |
260 | ||
261 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
262 | usually the top 21 bits of a 32 bit constant, we assume that only | |
263 | the low 21 bits of opnd are relevant */ | |
264 | ||
3f550b59 | 265 | static unsigned |
66a1aa07 SG |
266 | deposit_21 (opnd, word) |
267 | unsigned opnd, word; | |
268 | { | |
269 | unsigned val = 0; | |
270 | ||
271 | val |= GET_FIELD (opnd, 11 + 14, 11 + 18); | |
272 | val <<= 2; | |
273 | val |= GET_FIELD (opnd, 11 + 12, 11 + 13); | |
274 | val <<= 2; | |
275 | val |= GET_FIELD (opnd, 11 + 19, 11 + 20); | |
276 | val <<= 11; | |
277 | val |= GET_FIELD (opnd, 11 + 1, 11 + 11); | |
278 | val <<= 1; | |
279 | val |= GET_FIELD (opnd, 11 + 0, 11 + 0); | |
280 | return word | val; | |
281 | } | |
282 | ||
283 | /* extract a 12 bit constant from branch instructions */ | |
284 | ||
3f550b59 FF |
285 | #if 0 |
286 | ||
66a1aa07 SG |
287 | int |
288 | extract_12 (word) | |
289 | unsigned word; | |
290 | { | |
291 | return sign_extend (GET_FIELD (word, 19, 28) | | |
292 | GET_FIELD (word, 29, 29) << 10 | | |
293 | (word & 0x1) << 11, 12) << 2; | |
294 | } | |
295 | ||
7486c68d SG |
296 | /* Deposit a 17 bit constant in an instruction (like bl). */ |
297 | ||
298 | unsigned int | |
299 | deposit_17 (opnd, word) | |
300 | unsigned opnd, word; | |
301 | { | |
302 | word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */ | |
303 | word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */ | |
304 | word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */ | |
305 | word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */ | |
306 | ||
307 | return word; | |
308 | } | |
309 | ||
3f550b59 FF |
310 | #endif |
311 | ||
66a1aa07 SG |
312 | /* extract a 17 bit constant from branch instructions, returning the |
313 | 19 bit signed value. */ | |
314 | ||
3f550b59 | 315 | static int |
66a1aa07 SG |
316 | extract_17 (word) |
317 | unsigned word; | |
318 | { | |
319 | return sign_extend (GET_FIELD (word, 19, 28) | | |
320 | GET_FIELD (word, 29, 29) << 10 | | |
321 | GET_FIELD (word, 11, 15) << 11 | | |
322 | (word & 0x1) << 16, 17) << 2; | |
323 | } | |
324 | \f | |
c5152d42 JL |
325 | |
326 | /* Compare the start address for two unwind entries returning 1 if | |
327 | the first address is larger than the second, -1 if the second is | |
328 | larger than the first, and zero if they are equal. */ | |
329 | ||
330 | static int | |
5579919f FF |
331 | compare_unwind_entries (arg1, arg2) |
332 | const void *arg1; | |
333 | const void *arg2; | |
c5152d42 | 334 | { |
5579919f FF |
335 | const struct unwind_table_entry *a = arg1; |
336 | const struct unwind_table_entry *b = arg2; | |
337 | ||
c5152d42 JL |
338 | if (a->region_start > b->region_start) |
339 | return 1; | |
340 | else if (a->region_start < b->region_start) | |
341 | return -1; | |
342 | else | |
343 | return 0; | |
344 | } | |
345 | ||
346 | static void | |
bfaef242 | 347 | internalize_unwinds (objfile, table, section, entries, size, text_offset) |
c5152d42 JL |
348 | struct objfile *objfile; |
349 | struct unwind_table_entry *table; | |
350 | asection *section; | |
351 | unsigned int entries, size; | |
bfaef242 | 352 | CORE_ADDR text_offset; |
c5152d42 JL |
353 | { |
354 | /* We will read the unwind entries into temporary memory, then | |
355 | fill in the actual unwind table. */ | |
356 | if (size > 0) | |
357 | { | |
358 | unsigned long tmp; | |
359 | unsigned i; | |
360 | char *buf = alloca (size); | |
361 | ||
362 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); | |
363 | ||
364 | /* Now internalize the information being careful to handle host/target | |
365 | endian issues. */ | |
366 | for (i = 0; i < entries; i++) | |
367 | { | |
368 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
369 | (bfd_byte *)buf); | |
bfaef242 | 370 | table[i].region_start += text_offset; |
c5152d42 JL |
371 | buf += 4; |
372 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
bfaef242 | 373 | table[i].region_end += text_offset; |
c5152d42 JL |
374 | buf += 4; |
375 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
376 | buf += 4; | |
e43169eb | 377 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; |
c5152d42 JL |
378 | table[i].Millicode = (tmp >> 30) & 0x1; |
379 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
380 | table[i].Region_description = (tmp >> 27) & 0x3; | |
381 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
382 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
383 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
384 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
385 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
386 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
387 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
388 | table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1; | |
389 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
390 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
391 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
392 | table[i].reserved2 = (tmp >> 5) & 0xf; | |
393 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
394 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
395 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
396 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
397 | table[i].Cleanup_defined = tmp & 0x1; | |
398 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); | |
399 | buf += 4; | |
400 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
401 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
402 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
403 | table[i].reserved4 = (tmp >> 27) & 0x3; | |
404 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
405 | } | |
406 | } | |
407 | } | |
408 | ||
409 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
410 | the object file. This info is used mainly by find_unwind_entry() to find | |
411 | out the stack frame size and frame pointer used by procedures. We put | |
412 | everything on the psymbol obstack in the objfile so that it automatically | |
413 | gets freed when the objfile is destroyed. */ | |
414 | ||
9c842e0c | 415 | static void |
c5152d42 JL |
416 | read_unwind_info (objfile) |
417 | struct objfile *objfile; | |
418 | { | |
419 | asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec; | |
420 | unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size; | |
421 | unsigned index, unwind_entries, elf_unwind_entries; | |
422 | unsigned stub_entries, total_entries; | |
bfaef242 | 423 | CORE_ADDR text_offset; |
c5152d42 JL |
424 | struct obj_unwind_info *ui; |
425 | ||
bfaef242 | 426 | text_offset = ANOFFSET (objfile->section_offsets, 0); |
d8afcce9 SG |
427 | ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack, |
428 | sizeof (struct obj_unwind_info)); | |
c5152d42 JL |
429 | |
430 | ui->table = NULL; | |
431 | ui->cache = NULL; | |
432 | ui->last = -1; | |
433 | ||
434 | /* Get hooks to all unwind sections. Note there is no linker-stub unwind | |
435 | section in ELF at the moment. */ | |
436 | unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$"); | |
0fc27289 | 437 | elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind"); |
c5152d42 JL |
438 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); |
439 | ||
440 | /* Get sizes and unwind counts for all sections. */ | |
441 | if (unwind_sec) | |
442 | { | |
443 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
444 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
445 | } | |
446 | else | |
447 | { | |
448 | unwind_size = 0; | |
449 | unwind_entries = 0; | |
450 | } | |
451 | ||
452 | if (elf_unwind_sec) | |
453 | { | |
454 | elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec); | |
455 | elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE; | |
456 | } | |
f55179cb JL |
457 | else |
458 | { | |
459 | elf_unwind_size = 0; | |
460 | elf_unwind_entries = 0; | |
461 | } | |
c5152d42 JL |
462 | |
463 | if (stub_unwind_sec) | |
464 | { | |
465 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
466 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
467 | } | |
468 | else | |
469 | { | |
470 | stub_unwind_size = 0; | |
471 | stub_entries = 0; | |
472 | } | |
473 | ||
474 | /* Compute total number of unwind entries and their total size. */ | |
475 | total_entries = unwind_entries + elf_unwind_entries + stub_entries; | |
476 | total_size = total_entries * sizeof (struct unwind_table_entry); | |
477 | ||
478 | /* Allocate memory for the unwind table. */ | |
479 | ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size); | |
480 | ui->last = total_entries - 1; | |
481 | ||
482 | /* Internalize the standard unwind entries. */ | |
483 | index = 0; | |
484 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
bfaef242 | 485 | unwind_entries, unwind_size, text_offset); |
c5152d42 JL |
486 | index += unwind_entries; |
487 | internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec, | |
bfaef242 | 488 | elf_unwind_entries, elf_unwind_size, text_offset); |
c5152d42 JL |
489 | index += elf_unwind_entries; |
490 | ||
491 | /* Now internalize the stub unwind entries. */ | |
492 | if (stub_unwind_size > 0) | |
493 | { | |
494 | unsigned int i; | |
495 | char *buf = alloca (stub_unwind_size); | |
496 | ||
497 | /* Read in the stub unwind entries. */ | |
498 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
499 | 0, stub_unwind_size); | |
500 | ||
501 | /* Now convert them into regular unwind entries. */ | |
502 | for (i = 0; i < stub_entries; i++, index++) | |
503 | { | |
504 | /* Clear out the next unwind entry. */ | |
505 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
506 | ||
507 | /* Convert offset & size into region_start and region_end. | |
508 | Stuff away the stub type into "reserved" fields. */ | |
509 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
510 | (bfd_byte *) buf); | |
73a25072 | 511 | ui->table[index].region_start += text_offset; |
c5152d42 JL |
512 | buf += 4; |
513 | ui->table[index].stub_type = bfd_get_8 (objfile->obfd, | |
514 | (bfd_byte *) buf); | |
515 | buf += 2; | |
516 | ui->table[index].region_end | |
517 | = ui->table[index].region_start + 4 * | |
518 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
519 | buf += 2; | |
520 | } | |
521 | ||
522 | } | |
523 | ||
524 | /* Unwind table needs to be kept sorted. */ | |
525 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
526 | compare_unwind_entries); | |
527 | ||
528 | /* Keep a pointer to the unwind information. */ | |
529 | objfile->obj_private = (PTR) ui; | |
530 | } | |
531 | ||
66a1aa07 SG |
532 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all |
533 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
534 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
535 | search of the unwind tables, we depend upon them to be sorted. */ | |
536 | ||
87273c71 | 537 | struct unwind_table_entry * |
66a1aa07 SG |
538 | find_unwind_entry(pc) |
539 | CORE_ADDR pc; | |
540 | { | |
541 | int first, middle, last; | |
542 | struct objfile *objfile; | |
543 | ||
544 | ALL_OBJFILES (objfile) | |
545 | { | |
546 | struct obj_unwind_info *ui; | |
547 | ||
548 | ui = OBJ_UNWIND_INFO (objfile); | |
549 | ||
550 | if (!ui) | |
c5152d42 JL |
551 | { |
552 | read_unwind_info (objfile); | |
553 | ui = OBJ_UNWIND_INFO (objfile); | |
554 | } | |
66a1aa07 SG |
555 | |
556 | /* First, check the cache */ | |
557 | ||
558 | if (ui->cache | |
559 | && pc >= ui->cache->region_start | |
560 | && pc <= ui->cache->region_end) | |
561 | return ui->cache; | |
562 | ||
563 | /* Not in the cache, do a binary search */ | |
564 | ||
565 | first = 0; | |
566 | last = ui->last; | |
567 | ||
568 | while (first <= last) | |
569 | { | |
570 | middle = (first + last) / 2; | |
571 | if (pc >= ui->table[middle].region_start | |
572 | && pc <= ui->table[middle].region_end) | |
573 | { | |
574 | ui->cache = &ui->table[middle]; | |
575 | return &ui->table[middle]; | |
576 | } | |
577 | ||
578 | if (pc < ui->table[middle].region_start) | |
579 | last = middle - 1; | |
580 | else | |
581 | first = middle + 1; | |
582 | } | |
583 | } /* ALL_OBJFILES() */ | |
584 | return NULL; | |
585 | } | |
586 | ||
98c0e047 JL |
587 | /* Return the adjustment necessary to make for addresses on the stack |
588 | as presented by hpread.c. | |
589 | ||
590 | This is necessary because of the stack direction on the PA and the | |
591 | bizarre way in which someone (?) decided they wanted to handle | |
592 | frame pointerless code in GDB. */ | |
593 | int | |
594 | hpread_adjust_stack_address (func_addr) | |
595 | CORE_ADDR func_addr; | |
596 | { | |
597 | struct unwind_table_entry *u; | |
598 | ||
599 | u = find_unwind_entry (func_addr); | |
600 | if (!u) | |
601 | return 0; | |
602 | else | |
603 | return u->Total_frame_size << 3; | |
604 | } | |
98c0e047 | 605 | |
70e43abe JL |
606 | /* Called to determine if PC is in an interrupt handler of some |
607 | kind. */ | |
608 | ||
609 | static int | |
610 | pc_in_interrupt_handler (pc) | |
611 | CORE_ADDR pc; | |
612 | { | |
613 | struct unwind_table_entry *u; | |
614 | struct minimal_symbol *msym_us; | |
615 | ||
616 | u = find_unwind_entry (pc); | |
617 | if (!u) | |
618 | return 0; | |
619 | ||
620 | /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though | |
621 | its frame isn't a pure interrupt frame. Deal with this. */ | |
622 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
623 | ||
624 | return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)); | |
625 | } | |
626 | ||
5ac7f56e JK |
627 | /* Called when no unwind descriptor was found for PC. Returns 1 if it |
628 | appears that PC is in a linker stub. */ | |
5ac7f56e JK |
629 | |
630 | static int | |
631 | pc_in_linker_stub (pc) | |
632 | CORE_ADDR pc; | |
633 | { | |
5ac7f56e JK |
634 | int found_magic_instruction = 0; |
635 | int i; | |
08ecd8f3 JK |
636 | char buf[4]; |
637 | ||
638 | /* If unable to read memory, assume pc is not in a linker stub. */ | |
639 | if (target_read_memory (pc, buf, 4) != 0) | |
640 | return 0; | |
5ac7f56e | 641 | |
d08c6f4c JK |
642 | /* We are looking for something like |
643 | ||
644 | ; $$dyncall jams RP into this special spot in the frame (RP') | |
645 | ; before calling the "call stub" | |
646 | ldw -18(sp),rp | |
647 | ||
648 | ldsid (rp),r1 ; Get space associated with RP into r1 | |
649 | mtsp r1,sp ; Move it into space register 0 | |
650 | be,n 0(sr0),rp) ; back to your regularly scheduled program | |
651 | */ | |
652 | ||
5ac7f56e JK |
653 | /* Maximum known linker stub size is 4 instructions. Search forward |
654 | from the given PC, then backward. */ | |
655 | for (i = 0; i < 4; i++) | |
656 | { | |
6e35b037 | 657 | /* If we hit something with an unwind, stop searching this direction. */ |
5ac7f56e JK |
658 | |
659 | if (find_unwind_entry (pc + i * 4) != 0) | |
660 | break; | |
661 | ||
662 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
663 | return from a cross-space function call. */ | |
664 | if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) | |
665 | { | |
666 | found_magic_instruction = 1; | |
667 | break; | |
668 | } | |
669 | /* Add code to handle long call/branch and argument relocation stubs | |
670 | here. */ | |
671 | } | |
672 | ||
673 | if (found_magic_instruction != 0) | |
674 | return 1; | |
675 | ||
676 | /* Now look backward. */ | |
677 | for (i = 0; i < 4; i++) | |
678 | { | |
6e35b037 | 679 | /* If we hit something with an unwind, stop searching this direction. */ |
5ac7f56e JK |
680 | |
681 | if (find_unwind_entry (pc - i * 4) != 0) | |
682 | break; | |
683 | ||
684 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
685 | return from a cross-space function call. */ | |
686 | if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) | |
687 | { | |
688 | found_magic_instruction = 1; | |
689 | break; | |
690 | } | |
691 | /* Add code to handle long call/branch and argument relocation stubs | |
692 | here. */ | |
693 | } | |
694 | return found_magic_instruction; | |
695 | } | |
696 | ||
66a1aa07 SG |
697 | static int |
698 | find_return_regnum(pc) | |
699 | CORE_ADDR pc; | |
700 | { | |
701 | struct unwind_table_entry *u; | |
702 | ||
703 | u = find_unwind_entry (pc); | |
704 | ||
705 | if (!u) | |
706 | return RP_REGNUM; | |
707 | ||
708 | if (u->Millicode) | |
709 | return 31; | |
710 | ||
711 | return RP_REGNUM; | |
712 | } | |
713 | ||
5ac7f56e | 714 | /* Return size of frame, or -1 if we should use a frame pointer. */ |
3f550b59 | 715 | static int |
70e43abe | 716 | find_proc_framesize (pc) |
66a1aa07 SG |
717 | CORE_ADDR pc; |
718 | { | |
719 | struct unwind_table_entry *u; | |
70e43abe | 720 | struct minimal_symbol *msym_us; |
66a1aa07 | 721 | |
66a1aa07 SG |
722 | u = find_unwind_entry (pc); |
723 | ||
724 | if (!u) | |
5ac7f56e JK |
725 | { |
726 | if (pc_in_linker_stub (pc)) | |
727 | /* Linker stubs have a zero size frame. */ | |
728 | return 0; | |
729 | else | |
730 | return -1; | |
731 | } | |
66a1aa07 | 732 | |
70e43abe JL |
733 | msym_us = lookup_minimal_symbol_by_pc (pc); |
734 | ||
735 | /* If Save_SP is set, and we're not in an interrupt or signal caller, | |
736 | then we have a frame pointer. Use it. */ | |
737 | if (u->Save_SP && !pc_in_interrupt_handler (pc) | |
738 | && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us))) | |
eabbe766 JK |
739 | return -1; |
740 | ||
66a1aa07 SG |
741 | return u->Total_frame_size << 3; |
742 | } | |
743 | ||
5ac7f56e JK |
744 | /* Return offset from sp at which rp is saved, or 0 if not saved. */ |
745 | static int rp_saved PARAMS ((CORE_ADDR)); | |
746 | ||
747 | static int | |
748 | rp_saved (pc) | |
749 | CORE_ADDR pc; | |
66a1aa07 SG |
750 | { |
751 | struct unwind_table_entry *u; | |
752 | ||
753 | u = find_unwind_entry (pc); | |
754 | ||
755 | if (!u) | |
5ac7f56e JK |
756 | { |
757 | if (pc_in_linker_stub (pc)) | |
758 | /* This is the so-called RP'. */ | |
759 | return -24; | |
760 | else | |
761 | return 0; | |
762 | } | |
66a1aa07 SG |
763 | |
764 | if (u->Save_RP) | |
5ac7f56e | 765 | return -20; |
c7f3b703 JL |
766 | else if (u->stub_type != 0) |
767 | { | |
768 | switch (u->stub_type) | |
769 | { | |
770 | case EXPORT: | |
c2e00af6 | 771 | case IMPORT: |
c7f3b703 JL |
772 | return -24; |
773 | case PARAMETER_RELOCATION: | |
774 | return -8; | |
775 | default: | |
776 | return 0; | |
777 | } | |
778 | } | |
66a1aa07 SG |
779 | else |
780 | return 0; | |
781 | } | |
782 | \f | |
8fa74880 SG |
783 | int |
784 | frameless_function_invocation (frame) | |
669caa9c | 785 | struct frame_info *frame; |
8fa74880 | 786 | { |
b8ec9a79 | 787 | struct unwind_table_entry *u; |
8fa74880 | 788 | |
b8ec9a79 | 789 | u = find_unwind_entry (frame->pc); |
8fa74880 | 790 | |
b8ec9a79 | 791 | if (u == 0) |
7f43b9b7 | 792 | return 0; |
b8ec9a79 | 793 | |
c7f3b703 | 794 | return (u->Total_frame_size == 0 && u->stub_type == 0); |
8fa74880 SG |
795 | } |
796 | ||
66a1aa07 SG |
797 | CORE_ADDR |
798 | saved_pc_after_call (frame) | |
669caa9c | 799 | struct frame_info *frame; |
66a1aa07 SG |
800 | { |
801 | int ret_regnum; | |
edd86fb0 JL |
802 | CORE_ADDR pc; |
803 | struct unwind_table_entry *u; | |
66a1aa07 SG |
804 | |
805 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
edd86fb0 JL |
806 | pc = read_register (ret_regnum) & ~0x3; |
807 | ||
808 | /* If PC is in a linker stub, then we need to dig the address | |
809 | the stub will return to out of the stack. */ | |
810 | u = find_unwind_entry (pc); | |
811 | if (u && u->stub_type != 0) | |
5d394f70 | 812 | return FRAME_SAVED_PC (frame); |
edd86fb0 JL |
813 | else |
814 | return pc; | |
66a1aa07 SG |
815 | } |
816 | \f | |
817 | CORE_ADDR | |
5d394f70 | 818 | hppa_frame_saved_pc (frame) |
669caa9c | 819 | struct frame_info *frame; |
66a1aa07 SG |
820 | { |
821 | CORE_ADDR pc = get_frame_pc (frame); | |
7f43b9b7 | 822 | struct unwind_table_entry *u; |
66a1aa07 | 823 | |
70e43abe JL |
824 | /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner |
825 | at the base of the frame in an interrupt handler. Registers within | |
826 | are saved in the exact same order as GDB numbers registers. How | |
827 | convienent. */ | |
828 | if (pc_in_interrupt_handler (pc)) | |
829 | return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3; | |
830 | ||
7486c68d | 831 | #ifdef FRAME_SAVED_PC_IN_SIGTRAMP |
70e43abe JL |
832 | /* Deal with signal handler caller frames too. */ |
833 | if (frame->signal_handler_caller) | |
834 | { | |
835 | CORE_ADDR rp; | |
836 | FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); | |
54b2555b | 837 | return rp & ~0x3; |
70e43abe | 838 | } |
7486c68d | 839 | #endif |
70e43abe | 840 | |
8fa74880 | 841 | if (frameless_function_invocation (frame)) |
66a1aa07 SG |
842 | { |
843 | int ret_regnum; | |
844 | ||
845 | ret_regnum = find_return_regnum (pc); | |
846 | ||
70e43abe JL |
847 | /* If the next frame is an interrupt frame or a signal |
848 | handler caller, then we need to look in the saved | |
849 | register area to get the return pointer (the values | |
850 | in the registers may not correspond to anything useful). */ | |
851 | if (frame->next | |
852 | && (frame->next->signal_handler_caller | |
853 | || pc_in_interrupt_handler (frame->next->pc))) | |
854 | { | |
70e43abe JL |
855 | struct frame_saved_regs saved_regs; |
856 | ||
54b2555b | 857 | get_frame_saved_regs (frame->next, &saved_regs); |
471fb8d8 | 858 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) |
54b2555b JL |
859 | { |
860 | pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; | |
861 | ||
862 | /* Syscalls are really two frames. The syscall stub itself | |
863 | with a return pointer in %rp and the kernel call with | |
864 | a return pointer in %r31. We return the %rp variant | |
865 | if %r31 is the same as frame->pc. */ | |
866 | if (pc == frame->pc) | |
867 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; | |
868 | } | |
70e43abe | 869 | else |
7f43b9b7 | 870 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; |
70e43abe JL |
871 | } |
872 | else | |
7f43b9b7 | 873 | pc = read_register (ret_regnum) & ~0x3; |
66a1aa07 | 874 | } |
66a1aa07 | 875 | else |
5ac7f56e | 876 | { |
edd86fb0 | 877 | int rp_offset; |
5ac7f56e | 878 | |
edd86fb0 JL |
879 | restart: |
880 | rp_offset = rp_saved (pc); | |
70e43abe JL |
881 | /* Similar to code in frameless function case. If the next |
882 | frame is a signal or interrupt handler, then dig the right | |
883 | information out of the saved register info. */ | |
884 | if (rp_offset == 0 | |
885 | && frame->next | |
886 | && (frame->next->signal_handler_caller | |
887 | || pc_in_interrupt_handler (frame->next->pc))) | |
888 | { | |
70e43abe JL |
889 | struct frame_saved_regs saved_regs; |
890 | ||
669caa9c | 891 | get_frame_saved_regs (frame->next, &saved_regs); |
471fb8d8 | 892 | if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) |
54b2555b JL |
893 | { |
894 | pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; | |
895 | ||
896 | /* Syscalls are really two frames. The syscall stub itself | |
897 | with a return pointer in %rp and the kernel call with | |
898 | a return pointer in %r31. We return the %rp variant | |
899 | if %r31 is the same as frame->pc. */ | |
900 | if (pc == frame->pc) | |
901 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; | |
902 | } | |
70e43abe | 903 | else |
7f43b9b7 | 904 | pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; |
70e43abe JL |
905 | } |
906 | else if (rp_offset == 0) | |
7f43b9b7 | 907 | pc = read_register (RP_REGNUM) & ~0x3; |
5ac7f56e | 908 | else |
7f43b9b7 | 909 | pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3; |
5ac7f56e | 910 | } |
7f43b9b7 JL |
911 | |
912 | /* If PC is inside a linker stub, then dig out the address the stub | |
f4eec25c JL |
913 | will return to. |
914 | ||
915 | Don't do this for long branch stubs. Why? For some unknown reason | |
916 | _start is marked as a long branch stub in hpux10. */ | |
7f43b9b7 | 917 | u = find_unwind_entry (pc); |
f4eec25c JL |
918 | if (u && u->stub_type != 0 |
919 | && u->stub_type != LONG_BRANCH) | |
c38e0b58 JL |
920 | { |
921 | unsigned int insn; | |
922 | ||
923 | /* If this is a dynamic executable, and we're in a signal handler, | |
924 | then the call chain will eventually point us into the stub for | |
925 | _sigreturn. Unlike most cases, we'll be pointed to the branch | |
926 | to the real sigreturn rather than the code after the real branch!. | |
927 | ||
928 | Else, try to dig the address the stub will return to in the normal | |
929 | fashion. */ | |
930 | insn = read_memory_integer (pc, 4); | |
931 | if ((insn & 0xfc00e000) == 0xe8000000) | |
932 | return (pc + extract_17 (insn) + 8) & ~0x3; | |
933 | else | |
934 | goto restart; | |
935 | } | |
7f43b9b7 JL |
936 | |
937 | return pc; | |
66a1aa07 SG |
938 | } |
939 | \f | |
940 | /* We need to correct the PC and the FP for the outermost frame when we are | |
941 | in a system call. */ | |
942 | ||
943 | void | |
944 | init_extra_frame_info (fromleaf, frame) | |
945 | int fromleaf; | |
946 | struct frame_info *frame; | |
947 | { | |
948 | int flags; | |
949 | int framesize; | |
950 | ||
192c3eeb | 951 | if (frame->next && !fromleaf) |
66a1aa07 SG |
952 | return; |
953 | ||
192c3eeb JL |
954 | /* If the next frame represents a frameless function invocation |
955 | then we have to do some adjustments that are normally done by | |
956 | FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */ | |
957 | if (fromleaf) | |
958 | { | |
959 | /* Find the framesize of *this* frame without peeking at the PC | |
960 | in the current frame structure (it isn't set yet). */ | |
961 | framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame))); | |
962 | ||
963 | /* Now adjust our base frame accordingly. If we have a frame pointer | |
964 | use it, else subtract the size of this frame from the current | |
965 | frame. (we always want frame->frame to point at the lowest address | |
966 | in the frame). */ | |
967 | if (framesize == -1) | |
968 | frame->frame = read_register (FP_REGNUM); | |
969 | else | |
970 | frame->frame -= framesize; | |
971 | return; | |
972 | } | |
973 | ||
66a1aa07 SG |
974 | flags = read_register (FLAGS_REGNUM); |
975 | if (flags & 2) /* In system call? */ | |
976 | frame->pc = read_register (31) & ~0x3; | |
977 | ||
192c3eeb JL |
978 | /* The outermost frame is always derived from PC-framesize |
979 | ||
980 | One might think frameless innermost frames should have | |
981 | a frame->frame that is the same as the parent's frame->frame. | |
982 | That is wrong; frame->frame in that case should be the *high* | |
983 | address of the parent's frame. It's complicated as hell to | |
984 | explain, but the parent *always* creates some stack space for | |
985 | the child. So the child actually does have a frame of some | |
986 | sorts, and its base is the high address in its parent's frame. */ | |
66a1aa07 SG |
987 | framesize = find_proc_framesize(frame->pc); |
988 | if (framesize == -1) | |
989 | frame->frame = read_register (FP_REGNUM); | |
990 | else | |
991 | frame->frame = read_register (SP_REGNUM) - framesize; | |
66a1aa07 SG |
992 | } |
993 | \f | |
8966221d JK |
994 | /* Given a GDB frame, determine the address of the calling function's frame. |
995 | This will be used to create a new GDB frame struct, and then | |
996 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
997 | ||
998 | This may involve searching through prologues for several functions | |
999 | at boundaries where GCC calls HP C code, or where code which has | |
1000 | a frame pointer calls code without a frame pointer. */ | |
8966221d | 1001 | |
669caa9c | 1002 | CORE_ADDR |
66a1aa07 SG |
1003 | frame_chain (frame) |
1004 | struct frame_info *frame; | |
1005 | { | |
8966221d JK |
1006 | int my_framesize, caller_framesize; |
1007 | struct unwind_table_entry *u; | |
70e43abe | 1008 | CORE_ADDR frame_base; |
b7202faa | 1009 | struct frame_info *tmp_frame; |
70e43abe JL |
1010 | |
1011 | /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These | |
1012 | are easy; at *sp we have a full save state strucutre which we can | |
1013 | pull the old stack pointer from. Also see frame_saved_pc for | |
1014 | code to dig a saved PC out of the save state structure. */ | |
1015 | if (pc_in_interrupt_handler (frame->pc)) | |
1016 | frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4); | |
7486c68d | 1017 | #ifdef FRAME_BASE_BEFORE_SIGTRAMP |
70e43abe JL |
1018 | else if (frame->signal_handler_caller) |
1019 | { | |
1020 | FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); | |
1021 | } | |
7486c68d | 1022 | #endif |
70e43abe JL |
1023 | else |
1024 | frame_base = frame->frame; | |
66a1aa07 | 1025 | |
8966221d JK |
1026 | /* Get frame sizes for the current frame and the frame of the |
1027 | caller. */ | |
1028 | my_framesize = find_proc_framesize (frame->pc); | |
1029 | caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame)); | |
66a1aa07 | 1030 | |
8966221d JK |
1031 | /* If caller does not have a frame pointer, then its frame |
1032 | can be found at current_frame - caller_framesize. */ | |
1033 | if (caller_framesize != -1) | |
70e43abe | 1034 | return frame_base - caller_framesize; |
8966221d JK |
1035 | |
1036 | /* Both caller and callee have frame pointers and are GCC compiled | |
1037 | (SAVE_SP bit in unwind descriptor is on for both functions. | |
1038 | The previous frame pointer is found at the top of the current frame. */ | |
1039 | if (caller_framesize == -1 && my_framesize == -1) | |
70e43abe | 1040 | return read_memory_integer (frame_base, 4); |
8966221d JK |
1041 | |
1042 | /* Caller has a frame pointer, but callee does not. This is a little | |
1043 | more difficult as GCC and HP C lay out locals and callee register save | |
1044 | areas very differently. | |
1045 | ||
1046 | The previous frame pointer could be in a register, or in one of | |
1047 | several areas on the stack. | |
1048 | ||
1049 | Walk from the current frame to the innermost frame examining | |
2f8c3639 | 1050 | unwind descriptors to determine if %r3 ever gets saved into the |
8966221d | 1051 | stack. If so return whatever value got saved into the stack. |
2f8c3639 | 1052 | If it was never saved in the stack, then the value in %r3 is still |
8966221d JK |
1053 | valid, so use it. |
1054 | ||
2f8c3639 | 1055 | We use information from unwind descriptors to determine if %r3 |
8966221d JK |
1056 | is saved into the stack (Entry_GR field has this information). */ |
1057 | ||
b7202faa JL |
1058 | tmp_frame = frame; |
1059 | while (tmp_frame) | |
8966221d | 1060 | { |
b7202faa | 1061 | u = find_unwind_entry (tmp_frame->pc); |
8966221d JK |
1062 | |
1063 | if (!u) | |
1064 | { | |
01a03545 JK |
1065 | /* We could find this information by examining prologues. I don't |
1066 | think anyone has actually written any tools (not even "strip") | |
1067 | which leave them out of an executable, so maybe this is a moot | |
1068 | point. */ | |
b7202faa | 1069 | warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc); |
8966221d JK |
1070 | return 0; |
1071 | } | |
1072 | ||
1073 | /* Entry_GR specifies the number of callee-saved general registers | |
2f8c3639 | 1074 | saved in the stack. It starts at %r3, so %r3 would be 1. */ |
70e43abe | 1075 | if (u->Entry_GR >= 1 || u->Save_SP |
b7202faa JL |
1076 | || tmp_frame->signal_handler_caller |
1077 | || pc_in_interrupt_handler (tmp_frame->pc)) | |
8966221d JK |
1078 | break; |
1079 | else | |
b7202faa | 1080 | tmp_frame = tmp_frame->next; |
8966221d JK |
1081 | } |
1082 | ||
b7202faa | 1083 | if (tmp_frame) |
8966221d JK |
1084 | { |
1085 | /* We may have walked down the chain into a function with a frame | |
1086 | pointer. */ | |
70e43abe | 1087 | if (u->Save_SP |
b7202faa JL |
1088 | && !tmp_frame->signal_handler_caller |
1089 | && !pc_in_interrupt_handler (tmp_frame->pc)) | |
1090 | return read_memory_integer (tmp_frame->frame, 4); | |
2f8c3639 | 1091 | /* %r3 was saved somewhere in the stack. Dig it out. */ |
8966221d | 1092 | else |
c598654a | 1093 | { |
c598654a JL |
1094 | struct frame_saved_regs saved_regs; |
1095 | ||
b7202faa JL |
1096 | /* Sick. |
1097 | ||
1098 | For optimization purposes many kernels don't have the | |
1099 | callee saved registers into the save_state structure upon | |
1100 | entry into the kernel for a syscall; the optimization | |
1101 | is usually turned off if the process is being traced so | |
1102 | that the debugger can get full register state for the | |
1103 | process. | |
1104 | ||
1105 | This scheme works well except for two cases: | |
1106 | ||
1107 | * Attaching to a process when the process is in the | |
1108 | kernel performing a system call (debugger can't get | |
1109 | full register state for the inferior process since | |
1110 | the process wasn't being traced when it entered the | |
1111 | system call). | |
1112 | ||
1113 | * Register state is not complete if the system call | |
1114 | causes the process to core dump. | |
1115 | ||
1116 | ||
1117 | The following heinous code is an attempt to deal with | |
1118 | the lack of register state in a core dump. It will | |
1119 | fail miserably if the function which performs the | |
1120 | system call has a variable sized stack frame. */ | |
1121 | ||
1122 | get_frame_saved_regs (tmp_frame, &saved_regs); | |
1123 | ||
1124 | /* Abominable hack. */ | |
1125 | if (current_target.to_has_execution == 0 | |
5812b9a1 JL |
1126 | && ((saved_regs.regs[FLAGS_REGNUM] |
1127 | && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) | |
1128 | & 0x2)) | |
1129 | || (saved_regs.regs[FLAGS_REGNUM] == 0 | |
1130 | && read_register (FLAGS_REGNUM) & 0x2))) | |
b7202faa JL |
1131 | { |
1132 | u = find_unwind_entry (FRAME_SAVED_PC (frame)); | |
1133 | if (!u) | |
1134 | return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); | |
1135 | else | |
1136 | return frame_base - (u->Total_frame_size << 3); | |
1137 | } | |
1138 | ||
c598654a JL |
1139 | return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); |
1140 | } | |
8966221d JK |
1141 | } |
1142 | else | |
1143 | { | |
5812b9a1 JL |
1144 | struct frame_saved_regs saved_regs; |
1145 | ||
1146 | /* Get the innermost frame. */ | |
1147 | tmp_frame = frame; | |
1148 | while (tmp_frame->next != NULL) | |
1149 | tmp_frame = tmp_frame->next; | |
1150 | ||
1151 | get_frame_saved_regs (tmp_frame, &saved_regs); | |
1152 | /* Abominable hack. See above. */ | |
1153 | if (current_target.to_has_execution == 0 | |
1154 | && ((saved_regs.regs[FLAGS_REGNUM] | |
1155 | && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) | |
1156 | & 0x2)) | |
1157 | || (saved_regs.regs[FLAGS_REGNUM] == 0 | |
1158 | && read_register (FLAGS_REGNUM) & 0x2))) | |
1159 | { | |
1160 | u = find_unwind_entry (FRAME_SAVED_PC (frame)); | |
1161 | if (!u) | |
1162 | return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); | |
1163 | else | |
1164 | return frame_base - (u->Total_frame_size << 3); | |
1165 | } | |
1166 | ||
2f8c3639 | 1167 | /* The value in %r3 was never saved into the stack (thus %r3 still |
8966221d | 1168 | holds the value of the previous frame pointer). */ |
2f8c3639 | 1169 | return read_register (FP_REGNUM); |
8966221d JK |
1170 | } |
1171 | } | |
66a1aa07 | 1172 | |
66a1aa07 SG |
1173 | \f |
1174 | /* To see if a frame chain is valid, see if the caller looks like it | |
1175 | was compiled with gcc. */ | |
1176 | ||
1177 | int | |
1178 | frame_chain_valid (chain, thisframe) | |
669caa9c SS |
1179 | CORE_ADDR chain; |
1180 | struct frame_info *thisframe; | |
66a1aa07 | 1181 | { |
247145e6 JK |
1182 | struct minimal_symbol *msym_us; |
1183 | struct minimal_symbol *msym_start; | |
70e43abe | 1184 | struct unwind_table_entry *u, *next_u = NULL; |
669caa9c | 1185 | struct frame_info *next; |
66a1aa07 SG |
1186 | |
1187 | if (!chain) | |
1188 | return 0; | |
1189 | ||
b8ec9a79 | 1190 | u = find_unwind_entry (thisframe->pc); |
4b01383b | 1191 | |
70e43abe JL |
1192 | if (u == NULL) |
1193 | return 1; | |
1194 | ||
247145e6 JK |
1195 | /* We can't just check that the same of msym_us is "_start", because |
1196 | someone idiotically decided that they were going to make a Ltext_end | |
1197 | symbol with the same address. This Ltext_end symbol is totally | |
1198 | indistinguishable (as nearly as I can tell) from the symbol for a function | |
1199 | which is (legitimately, since it is in the user's namespace) | |
1200 | named Ltext_end, so we can't just ignore it. */ | |
1201 | msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe)); | |
2d336b1b | 1202 | msym_start = lookup_minimal_symbol ("_start", NULL, NULL); |
247145e6 JK |
1203 | if (msym_us |
1204 | && msym_start | |
1205 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
b8ec9a79 | 1206 | return 0; |
5ac7f56e | 1207 | |
c85ff3a3 JL |
1208 | /* Grrrr. Some new idiot decided that they don't want _start for the |
1209 | PRO configurations; $START$ calls main directly.... Deal with it. */ | |
1210 | msym_start = lookup_minimal_symbol ("$START$", NULL, NULL); | |
1211 | if (msym_us | |
1212 | && msym_start | |
1213 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1214 | return 0; | |
1215 | ||
70e43abe JL |
1216 | next = get_next_frame (thisframe); |
1217 | if (next) | |
1218 | next_u = find_unwind_entry (next->pc); | |
5ac7f56e | 1219 | |
70e43abe JL |
1220 | /* If this frame does not save SP, has no stack, isn't a stub, |
1221 | and doesn't "call" an interrupt routine or signal handler caller, | |
1222 | then its not valid. */ | |
1223 | if (u->Save_SP || u->Total_frame_size || u->stub_type != 0 | |
1224 | || (thisframe->next && thisframe->next->signal_handler_caller) | |
1225 | || (next_u && next_u->HP_UX_interrupt_marker)) | |
b8ec9a79 | 1226 | return 1; |
5ac7f56e | 1227 | |
b8ec9a79 JK |
1228 | if (pc_in_linker_stub (thisframe->pc)) |
1229 | return 1; | |
4b01383b | 1230 | |
b8ec9a79 | 1231 | return 0; |
66a1aa07 SG |
1232 | } |
1233 | ||
66a1aa07 SG |
1234 | /* |
1235 | * These functions deal with saving and restoring register state | |
1236 | * around a function call in the inferior. They keep the stack | |
1237 | * double-word aligned; eventually, on an hp700, the stack will have | |
1238 | * to be aligned to a 64-byte boundary. | |
1239 | */ | |
1240 | ||
e43169eb JL |
1241 | void |
1242 | push_dummy_frame (inf_status) | |
1243 | struct inferior_status *inf_status; | |
66a1aa07 | 1244 | { |
e43169eb | 1245 | CORE_ADDR sp, pc, pcspace; |
66a1aa07 SG |
1246 | register int regnum; |
1247 | int int_buffer; | |
1248 | double freg_buffer; | |
1249 | ||
e43169eb JL |
1250 | /* Oh, what a hack. If we're trying to perform an inferior call |
1251 | while the inferior is asleep, we have to make sure to clear | |
1252 | the "in system call" bit in the flag register (the call will | |
1253 | start after the syscall returns, so we're no longer in the system | |
1254 | call!) This state is kept in "inf_status", change it there. | |
1255 | ||
1256 | We also need a number of horrid hacks to deal with lossage in the | |
1257 | PC queue registers (apparently they're not valid when the in syscall | |
1258 | bit is set). */ | |
1259 | pc = target_read_pc (inferior_pid); | |
1260 | int_buffer = read_register (FLAGS_REGNUM); | |
1261 | if (int_buffer & 0x2) | |
1262 | { | |
244f7460 | 1263 | unsigned int sid; |
e43169eb JL |
1264 | int_buffer &= ~0x2; |
1265 | memcpy (inf_status->registers, &int_buffer, 4); | |
1266 | memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4); | |
1267 | pc += 4; | |
1268 | memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4); | |
1269 | pc -= 4; | |
244f7460 JL |
1270 | sid = (pc >> 30) & 0x3; |
1271 | if (sid == 0) | |
1272 | pcspace = read_register (SR4_REGNUM); | |
1273 | else | |
1274 | pcspace = read_register (SR4_REGNUM + 4 + sid); | |
e43169eb JL |
1275 | memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM), |
1276 | &pcspace, 4); | |
1277 | memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM), | |
1278 | &pcspace, 4); | |
1279 | } | |
1280 | else | |
1281 | pcspace = read_register (PCSQ_HEAD_REGNUM); | |
1282 | ||
66a1aa07 SG |
1283 | /* Space for "arguments"; the RP goes in here. */ |
1284 | sp = read_register (SP_REGNUM) + 48; | |
1285 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
1286 | write_memory (sp - 20, (char *)&int_buffer, 4); | |
1287 | ||
1288 | int_buffer = read_register (FP_REGNUM); | |
1289 | write_memory (sp, (char *)&int_buffer, 4); | |
1290 | ||
1291 | write_register (FP_REGNUM, sp); | |
1292 | ||
1293 | sp += 8; | |
1294 | ||
1295 | for (regnum = 1; regnum < 32; regnum++) | |
1296 | if (regnum != RP_REGNUM && regnum != FP_REGNUM) | |
1297 | sp = push_word (sp, read_register (regnum)); | |
1298 | ||
1299 | sp += 4; | |
1300 | ||
1301 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
1302 | { | |
1303 | read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
1304 | sp = push_bytes (sp, (char *)&freg_buffer, 8); | |
1305 | } | |
1306 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
1307 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
e43169eb JL |
1308 | sp = push_word (sp, pc); |
1309 | sp = push_word (sp, pcspace); | |
1310 | sp = push_word (sp, pc + 4); | |
1311 | sp = push_word (sp, pcspace); | |
66a1aa07 SG |
1312 | write_register (SP_REGNUM, sp); |
1313 | } | |
1314 | ||
3f550b59 | 1315 | static void |
66a1aa07 SG |
1316 | find_dummy_frame_regs (frame, frame_saved_regs) |
1317 | struct frame_info *frame; | |
1318 | struct frame_saved_regs *frame_saved_regs; | |
1319 | { | |
1320 | CORE_ADDR fp = frame->frame; | |
1321 | int i; | |
1322 | ||
3f550b59 | 1323 | frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3; |
66a1aa07 SG |
1324 | frame_saved_regs->regs[FP_REGNUM] = fp; |
1325 | frame_saved_regs->regs[1] = fp + 8; | |
66a1aa07 | 1326 | |
b227992a SG |
1327 | for (fp += 12, i = 3; i < 32; i++) |
1328 | { | |
1329 | if (i != FP_REGNUM) | |
1330 | { | |
1331 | frame_saved_regs->regs[i] = fp; | |
1332 | fp += 4; | |
1333 | } | |
1334 | } | |
66a1aa07 SG |
1335 | |
1336 | fp += 4; | |
1337 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) | |
1338 | frame_saved_regs->regs[i] = fp; | |
1339 | ||
1340 | frame_saved_regs->regs[IPSW_REGNUM] = fp; | |
b227992a SG |
1341 | frame_saved_regs->regs[SAR_REGNUM] = fp + 4; |
1342 | frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8; | |
1343 | frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12; | |
1344 | frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16; | |
1345 | frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20; | |
66a1aa07 SG |
1346 | } |
1347 | ||
e43169eb | 1348 | void |
66a1aa07 SG |
1349 | hppa_pop_frame () |
1350 | { | |
669caa9c | 1351 | register struct frame_info *frame = get_current_frame (); |
54576db3 | 1352 | register CORE_ADDR fp, npc, target_pc; |
66a1aa07 SG |
1353 | register int regnum; |
1354 | struct frame_saved_regs fsr; | |
66a1aa07 SG |
1355 | double freg_buffer; |
1356 | ||
669caa9c SS |
1357 | fp = FRAME_FP (frame); |
1358 | get_frame_saved_regs (frame, &fsr); | |
66a1aa07 | 1359 | |
0a64709e | 1360 | #ifndef NO_PC_SPACE_QUEUE_RESTORE |
66a1aa07 SG |
1361 | if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ |
1362 | restore_pc_queue (&fsr); | |
0a64709e | 1363 | #endif |
66a1aa07 SG |
1364 | |
1365 | for (regnum = 31; regnum > 0; regnum--) | |
1366 | if (fsr.regs[regnum]) | |
1367 | write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); | |
1368 | ||
1369 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--) | |
1370 | if (fsr.regs[regnum]) | |
1371 | { | |
1372 | read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8); | |
1373 | write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); | |
1374 | } | |
1375 | ||
1376 | if (fsr.regs[IPSW_REGNUM]) | |
1377 | write_register (IPSW_REGNUM, | |
1378 | read_memory_integer (fsr.regs[IPSW_REGNUM], 4)); | |
1379 | ||
1380 | if (fsr.regs[SAR_REGNUM]) | |
1381 | write_register (SAR_REGNUM, | |
1382 | read_memory_integer (fsr.regs[SAR_REGNUM], 4)); | |
1383 | ||
ed1a07ad | 1384 | /* If the PC was explicitly saved, then just restore it. */ |
66a1aa07 | 1385 | if (fsr.regs[PCOQ_TAIL_REGNUM]) |
54576db3 JL |
1386 | { |
1387 | npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4); | |
1388 | write_register (PCOQ_TAIL_REGNUM, npc); | |
1389 | } | |
ed1a07ad JK |
1390 | /* Else use the value in %rp to set the new PC. */ |
1391 | else | |
54576db3 JL |
1392 | { |
1393 | npc = read_register (RP_REGNUM); | |
5d394f70 | 1394 | write_pc (npc); |
54576db3 | 1395 | } |
ed1a07ad | 1396 | |
66a1aa07 SG |
1397 | write_register (FP_REGNUM, read_memory_integer (fp, 4)); |
1398 | ||
1399 | if (fsr.regs[IPSW_REGNUM]) /* call dummy */ | |
1400 | write_register (SP_REGNUM, fp - 48); | |
1401 | else | |
1402 | write_register (SP_REGNUM, fp); | |
1403 | ||
54576db3 JL |
1404 | /* The PC we just restored may be inside a return trampoline. If so |
1405 | we want to restart the inferior and run it through the trampoline. | |
1406 | ||
1407 | Do this by setting a momentary breakpoint at the location the | |
244f7460 JL |
1408 | trampoline returns to. |
1409 | ||
1410 | Don't skip through the trampoline if we're popping a dummy frame. */ | |
54576db3 | 1411 | target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3; |
244f7460 | 1412 | if (target_pc && !fsr.regs[IPSW_REGNUM]) |
54576db3 JL |
1413 | { |
1414 | struct symtab_and_line sal; | |
1415 | struct breakpoint *breakpoint; | |
1416 | struct cleanup *old_chain; | |
1417 | ||
1418 | /* Set up our breakpoint. Set it to be silent as the MI code | |
1419 | for "return_command" will print the frame we returned to. */ | |
1420 | sal = find_pc_line (target_pc, 0); | |
1421 | sal.pc = target_pc; | |
1422 | breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish); | |
1423 | breakpoint->silent = 1; | |
1424 | ||
1425 | /* So we can clean things up. */ | |
1426 | old_chain = make_cleanup (delete_breakpoint, breakpoint); | |
1427 | ||
1428 | /* Start up the inferior. */ | |
251b8ab9 | 1429 | clear_proceed_status (); |
54576db3 JL |
1430 | proceed_to_finish = 1; |
1431 | proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0); | |
1432 | ||
1433 | /* Perform our cleanups. */ | |
1434 | do_cleanups (old_chain); | |
1435 | } | |
66a1aa07 | 1436 | flush_cached_frames (); |
66a1aa07 SG |
1437 | } |
1438 | ||
1439 | /* | |
1440 | * After returning to a dummy on the stack, restore the instruction | |
1441 | * queue space registers. */ | |
1442 | ||
1443 | static int | |
1444 | restore_pc_queue (fsr) | |
1445 | struct frame_saved_regs *fsr; | |
1446 | { | |
1447 | CORE_ADDR pc = read_pc (); | |
1448 | CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4); | |
67ac9759 | 1449 | struct target_waitstatus w; |
66a1aa07 SG |
1450 | int insn_count; |
1451 | ||
1452 | /* Advance past break instruction in the call dummy. */ | |
1453 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
1454 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
1455 | ||
1456 | /* | |
1457 | * HPUX doesn't let us set the space registers or the space | |
1458 | * registers of the PC queue through ptrace. Boo, hiss. | |
1459 | * Conveniently, the call dummy has this sequence of instructions | |
1460 | * after the break: | |
1461 | * mtsp r21, sr0 | |
1462 | * ble,n 0(sr0, r22) | |
1463 | * | |
1464 | * So, load up the registers and single step until we are in the | |
1465 | * right place. | |
1466 | */ | |
1467 | ||
1468 | write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4)); | |
1469 | write_register (22, new_pc); | |
1470 | ||
1471 | for (insn_count = 0; insn_count < 3; insn_count++) | |
1472 | { | |
8c5e0021 JK |
1473 | /* FIXME: What if the inferior gets a signal right now? Want to |
1474 | merge this into wait_for_inferior (as a special kind of | |
1475 | watchpoint? By setting a breakpoint at the end? Is there | |
1476 | any other choice? Is there *any* way to do this stuff with | |
1477 | ptrace() or some equivalent?). */ | |
66a1aa07 | 1478 | resume (1, 0); |
67ac9759 | 1479 | target_wait (inferior_pid, &w); |
66a1aa07 | 1480 | |
67ac9759 | 1481 | if (w.kind == TARGET_WAITKIND_SIGNALLED) |
66a1aa07 | 1482 | { |
67ac9759 | 1483 | stop_signal = w.value.sig; |
66a1aa07 | 1484 | terminal_ours_for_output (); |
67ac9759 JK |
1485 | printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", |
1486 | target_signal_to_name (stop_signal), | |
1487 | target_signal_to_string (stop_signal)); | |
199b2450 | 1488 | gdb_flush (gdb_stdout); |
66a1aa07 SG |
1489 | return 0; |
1490 | } | |
1491 | } | |
8c5e0021 | 1492 | target_terminal_ours (); |
cad1498f | 1493 | target_fetch_registers (-1); |
66a1aa07 SG |
1494 | return 1; |
1495 | } | |
1496 | ||
1497 | CORE_ADDR | |
1498 | hppa_push_arguments (nargs, args, sp, struct_return, struct_addr) | |
1499 | int nargs; | |
4fd5eed4 | 1500 | value_ptr *args; |
66a1aa07 SG |
1501 | CORE_ADDR sp; |
1502 | int struct_return; | |
1503 | CORE_ADDR struct_addr; | |
1504 | { | |
1505 | /* array of arguments' offsets */ | |
1edc5cd2 | 1506 | int *offset = (int *)alloca(nargs * sizeof (int)); |
66a1aa07 SG |
1507 | int cum = 0; |
1508 | int i, alignment; | |
1509 | ||
1510 | for (i = 0; i < nargs; i++) | |
1511 | { | |
66a1aa07 SG |
1512 | cum += TYPE_LENGTH (VALUE_TYPE (args[i])); |
1513 | ||
1514 | /* value must go at proper alignment. Assume alignment is a | |
1515 | power of two.*/ | |
1516 | alignment = hppa_alignof (VALUE_TYPE (args[i])); | |
1517 | if (cum % alignment) | |
1518 | cum = (cum + alignment) & -alignment; | |
1519 | offset[i] = -cum; | |
1520 | } | |
558f4183 | 1521 | sp += max ((cum + 7) & -8, 16); |
66a1aa07 SG |
1522 | |
1523 | for (i = 0; i < nargs; i++) | |
1524 | write_memory (sp + offset[i], VALUE_CONTENTS (args[i]), | |
1525 | TYPE_LENGTH (VALUE_TYPE (args[i]))); | |
1526 | ||
1527 | if (struct_return) | |
1528 | write_register (28, struct_addr); | |
1529 | return sp + 32; | |
1530 | } | |
1531 | ||
1532 | /* | |
1533 | * Insert the specified number of args and function address | |
1534 | * into a call sequence of the above form stored at DUMMYNAME. | |
1535 | * | |
1536 | * On the hppa we need to call the stack dummy through $$dyncall. | |
1537 | * Therefore our version of FIX_CALL_DUMMY takes an extra argument, | |
1538 | * real_pc, which is the location where gdb should start up the | |
1539 | * inferior to do the function call. | |
1540 | */ | |
1541 | ||
1542 | CORE_ADDR | |
1543 | hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) | |
f4f0d174 | 1544 | char *dummy; |
66a1aa07 SG |
1545 | CORE_ADDR pc; |
1546 | CORE_ADDR fun; | |
1547 | int nargs; | |
4fd5eed4 | 1548 | value_ptr *args; |
66a1aa07 SG |
1549 | struct type *type; |
1550 | int gcc_p; | |
1551 | { | |
7486c68d | 1552 | CORE_ADDR dyncall_addr; |
66a1aa07 | 1553 | struct minimal_symbol *msymbol; |
46f569b4 | 1554 | struct minimal_symbol *trampoline; |
6cfec929 | 1555 | int flags = read_register (FLAGS_REGNUM); |
19cd0c1f | 1556 | struct unwind_table_entry *u; |
66a1aa07 | 1557 | |
46f569b4 | 1558 | trampoline = NULL; |
2d336b1b | 1559 | msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL); |
66a1aa07 SG |
1560 | if (msymbol == NULL) |
1561 | error ("Can't find an address for $$dyncall trampoline"); | |
1562 | ||
1563 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
1564 | ||
4f915914 JL |
1565 | /* FUN could be a procedure label, in which case we have to get |
1566 | its real address and the value of its GOT/DP. */ | |
1567 | if (fun & 0x2) | |
1568 | { | |
1569 | /* Get the GOT/DP value for the target function. It's | |
1570 | at *(fun+4). Note the call dummy is *NOT* allowed to | |
1571 | trash %r19 before calling the target function. */ | |
1572 | write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4)); | |
1573 | ||
1574 | /* Now get the real address for the function we are calling, it's | |
1575 | at *fun. */ | |
1576 | fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4); | |
1577 | } | |
b1bbe38b JL |
1578 | else |
1579 | { | |
1580 | ||
3200aa59 | 1581 | #ifndef GDB_TARGET_IS_PA_ELF |
b1bbe38b | 1582 | /* FUN could be either an export stub, or the real address of a |
3200aa59 JL |
1583 | function in a shared library. We must call an import stub |
1584 | rather than the export stub or real function for lazy binding | |
1585 | to work correctly. */ | |
1586 | if (som_solib_get_got_by_pc (fun)) | |
1587 | { | |
1588 | struct objfile *objfile; | |
1589 | struct minimal_symbol *funsymbol, *stub_symbol; | |
1590 | CORE_ADDR newfun = 0; | |
b1bbe38b | 1591 | |
3200aa59 JL |
1592 | funsymbol = lookup_minimal_symbol_by_pc (fun); |
1593 | if (!funsymbol) | |
1594 | error ("Unable to find minimal symbol for target fucntion.\n"); | |
b1bbe38b | 1595 | |
3200aa59 JL |
1596 | /* Search all the object files for an import symbol with the |
1597 | right name. */ | |
1598 | ALL_OBJFILES (objfile) | |
1599 | { | |
1600 | stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol), | |
2d336b1b | 1601 | NULL, objfile); |
3200aa59 JL |
1602 | /* Found a symbol with the right name. */ |
1603 | if (stub_symbol) | |
1604 | { | |
1605 | struct unwind_table_entry *u; | |
1606 | /* It must be a shared library trampoline. */ | |
e5718bee | 1607 | if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline) |
3200aa59 JL |
1608 | continue; |
1609 | ||
1610 | /* It must also be an import stub. */ | |
1611 | u = find_unwind_entry (SYMBOL_VALUE (stub_symbol)); | |
1612 | if (!u || u->stub_type != IMPORT) | |
1613 | continue; | |
1614 | ||
1615 | /* OK. Looks like the correct import stub. */ | |
1616 | newfun = SYMBOL_VALUE (stub_symbol); | |
1617 | fun = newfun; | |
1618 | } | |
1619 | } | |
1620 | if (newfun == 0) | |
1621 | write_register (19, som_solib_get_got_by_pc (fun)); | |
1622 | } | |
bd2b724a | 1623 | #endif |
b1bbe38b | 1624 | } |
4f915914 | 1625 | |
19cd0c1f JL |
1626 | /* If we are calling an import stub (eg calling into a dynamic library) |
1627 | then have sr4export call the magic __d_plt_call routine which is linked | |
1628 | in from end.o. (You can't use _sr4export to call the import stub as | |
1629 | the value in sp-24 will get fried and you end up returning to the | |
1630 | wrong location. You can't call the import stub directly as the code | |
1631 | to bind the PLT entry to a function can't return to a stack address.) */ | |
1632 | u = find_unwind_entry (fun); | |
1633 | if (u && u->stub_type == IMPORT) | |
1634 | { | |
1635 | CORE_ADDR new_fun; | |
3200aa59 | 1636 | |
46f569b4 JL |
1637 | /* Prefer __gcc_plt_call over the HP supplied routine because |
1638 | __gcc_plt_call works for any number of arguments. */ | |
1639 | trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL); | |
1640 | if (trampoline == NULL) | |
1641 | trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL); | |
1642 | ||
1643 | if (trampoline == NULL) | |
3200aa59 | 1644 | error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline"); |
19cd0c1f JL |
1645 | |
1646 | /* This is where sr4export will jump to. */ | |
46f569b4 | 1647 | new_fun = SYMBOL_VALUE_ADDRESS (trampoline); |
19cd0c1f | 1648 | |
46f569b4 | 1649 | if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0) |
3200aa59 JL |
1650 | { |
1651 | /* We have to store the address of the stub in __shlib_funcptr. */ | |
2d336b1b | 1652 | msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL, |
3200aa59 JL |
1653 | (struct objfile *)NULL); |
1654 | if (msymbol == NULL) | |
1655 | error ("Can't find an address for __shlib_funcptr"); | |
19cd0c1f | 1656 | |
3200aa59 | 1657 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4); |
46f569b4 JL |
1658 | |
1659 | /* We want sr4export to call __d_plt_call, so we claim it is | |
1660 | the final target. Clear trampoline. */ | |
1661 | fun = new_fun; | |
1662 | trampoline = NULL; | |
3200aa59 | 1663 | } |
19cd0c1f JL |
1664 | } |
1665 | ||
46f569b4 JL |
1666 | /* Store upper 21 bits of function address into ldil. fun will either be |
1667 | the final target (most cases) or __d_plt_call when calling into a shared | |
1668 | library and __gcc_plt_call is not available. */ | |
f4f0d174 | 1669 | store_unsigned_integer |
7486c68d SG |
1670 | (&dummy[FUNC_LDIL_OFFSET], |
1671 | INSTRUCTION_SIZE, | |
f4f0d174 | 1672 | deposit_21 (fun >> 11, |
7486c68d SG |
1673 | extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET], |
1674 | INSTRUCTION_SIZE))); | |
1675 | ||
46f569b4 | 1676 | /* Store lower 11 bits of function address into ldo */ |
f4f0d174 | 1677 | store_unsigned_integer |
7486c68d SG |
1678 | (&dummy[FUNC_LDO_OFFSET], |
1679 | INSTRUCTION_SIZE, | |
f4f0d174 | 1680 | deposit_14 (fun & MASK_11, |
7486c68d SG |
1681 | extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET], |
1682 | INSTRUCTION_SIZE))); | |
1683 | #ifdef SR4EXPORT_LDIL_OFFSET | |
1684 | ||
1685 | { | |
46f569b4 | 1686 | CORE_ADDR trampoline_addr; |
7486c68d | 1687 | |
46f569b4 | 1688 | /* We may still need sr4export's address too. */ |
7486c68d | 1689 | |
46f569b4 JL |
1690 | if (trampoline == NULL) |
1691 | { | |
1692 | msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
1693 | if (msymbol == NULL) | |
1694 | error ("Can't find an address for _sr4export trampoline"); | |
7486c68d | 1695 | |
46f569b4 JL |
1696 | trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol); |
1697 | } | |
1698 | else | |
1699 | trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline); | |
7486c68d | 1700 | |
7486c68d | 1701 | |
46f569b4 | 1702 | /* Store upper 21 bits of trampoline's address into ldil */ |
7486c68d SG |
1703 | store_unsigned_integer |
1704 | (&dummy[SR4EXPORT_LDIL_OFFSET], | |
1705 | INSTRUCTION_SIZE, | |
46f569b4 | 1706 | deposit_21 (trampoline_addr >> 11, |
7486c68d SG |
1707 | extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET], |
1708 | INSTRUCTION_SIZE))); | |
7486c68d | 1709 | |
46f569b4 | 1710 | /* Store lower 11 bits of trampoline's address into ldo */ |
7486c68d SG |
1711 | store_unsigned_integer |
1712 | (&dummy[SR4EXPORT_LDO_OFFSET], | |
1713 | INSTRUCTION_SIZE, | |
46f569b4 | 1714 | deposit_14 (trampoline_addr & MASK_11, |
7486c68d SG |
1715 | extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET], |
1716 | INSTRUCTION_SIZE))); | |
1717 | } | |
1718 | #endif | |
66a1aa07 SG |
1719 | |
1720 | write_register (22, pc); | |
1721 | ||
6cfec929 JK |
1722 | /* If we are in a syscall, then we should call the stack dummy |
1723 | directly. $$dyncall is not needed as the kernel sets up the | |
1724 | space id registers properly based on the value in %r31. In | |
1725 | fact calling $$dyncall will not work because the value in %r22 | |
244f7460 JL |
1726 | will be clobbered on the syscall exit path. |
1727 | ||
1728 | Similarly if the current PC is in a shared library. Note however, | |
1729 | this scheme won't work if the shared library isn't mapped into | |
1730 | the same space as the stack. */ | |
6cfec929 JK |
1731 | if (flags & 2) |
1732 | return pc; | |
244f7460 JL |
1733 | #ifndef GDB_TARGET_IS_PA_ELF |
1734 | else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid))) | |
1735 | return pc; | |
1736 | #endif | |
6cfec929 JK |
1737 | else |
1738 | return dyncall_addr; | |
1739 | ||
66a1aa07 SG |
1740 | } |
1741 | ||
d3862cae JK |
1742 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege |
1743 | bits. */ | |
669caa9c | 1744 | |
d3862cae | 1745 | CORE_ADDR |
e9a3cde8 JL |
1746 | target_read_pc (pid) |
1747 | int pid; | |
d3862cae | 1748 | { |
5d394f70 | 1749 | int flags = read_register_pid (FLAGS_REGNUM, pid); |
d3862cae | 1750 | |
5d394f70 SG |
1751 | /* The following test does not belong here. It is OS-specific, and belongs |
1752 | in native code. */ | |
1753 | /* Test SS_INSYSCALL */ | |
1754 | if (flags & 2) | |
1755 | return read_register_pid (31, pid) & ~0x3; | |
1756 | ||
1757 | return read_register_pid (PC_REGNUM, pid) & ~0x3; | |
d3862cae JK |
1758 | } |
1759 | ||
6cfec929 JK |
1760 | /* Write out the PC. If currently in a syscall, then also write the new |
1761 | PC value into %r31. */ | |
669caa9c | 1762 | |
6cfec929 | 1763 | void |
e9a3cde8 | 1764 | target_write_pc (v, pid) |
6cfec929 | 1765 | CORE_ADDR v; |
e9a3cde8 | 1766 | int pid; |
6cfec929 | 1767 | { |
5d394f70 | 1768 | int flags = read_register_pid (FLAGS_REGNUM, pid); |
6cfec929 | 1769 | |
5d394f70 SG |
1770 | /* The following test does not belong here. It is OS-specific, and belongs |
1771 | in native code. */ | |
6cfec929 JK |
1772 | /* If in a syscall, then set %r31. Also make sure to get the |
1773 | privilege bits set correctly. */ | |
5d394f70 | 1774 | /* Test SS_INSYSCALL */ |
6cfec929 | 1775 | if (flags & 2) |
5d394f70 | 1776 | write_register_pid (31, v | 0x3, pid); |
6cfec929 | 1777 | |
5d394f70 SG |
1778 | write_register_pid (PC_REGNUM, v, pid); |
1779 | write_register_pid (NPC_REGNUM, v + 4, pid); | |
6cfec929 JK |
1780 | } |
1781 | ||
66a1aa07 SG |
1782 | /* return the alignment of a type in bytes. Structures have the maximum |
1783 | alignment required by their fields. */ | |
1784 | ||
1785 | static int | |
940d5967 PB |
1786 | hppa_alignof (type) |
1787 | struct type *type; | |
66a1aa07 SG |
1788 | { |
1789 | int max_align, align, i; | |
f9384420 | 1790 | CHECK_TYPEDEF (type); |
940d5967 | 1791 | switch (TYPE_CODE (type)) |
66a1aa07 SG |
1792 | { |
1793 | case TYPE_CODE_PTR: | |
1794 | case TYPE_CODE_INT: | |
1795 | case TYPE_CODE_FLT: | |
940d5967 | 1796 | return TYPE_LENGTH (type); |
66a1aa07 | 1797 | case TYPE_CODE_ARRAY: |
940d5967 | 1798 | return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); |
66a1aa07 SG |
1799 | case TYPE_CODE_STRUCT: |
1800 | case TYPE_CODE_UNION: | |
0d43c8e7 | 1801 | max_align = 1; |
940d5967 | 1802 | for (i = 0; i < TYPE_NFIELDS (type); i++) |
66a1aa07 SG |
1803 | { |
1804 | /* Bit fields have no real alignment. */ | |
940d5967 | 1805 | if (!TYPE_FIELD_BITPOS (type, i)) |
66a1aa07 | 1806 | { |
940d5967 | 1807 | align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); |
66a1aa07 SG |
1808 | max_align = max (max_align, align); |
1809 | } | |
1810 | } | |
1811 | return max_align; | |
1812 | default: | |
1813 | return 4; | |
1814 | } | |
1815 | } | |
1816 | ||
1817 | /* Print the register regnum, or all registers if regnum is -1 */ | |
1818 | ||
e43169eb | 1819 | void |
66a1aa07 SG |
1820 | pa_do_registers_info (regnum, fpregs) |
1821 | int regnum; | |
1822 | int fpregs; | |
1823 | { | |
1824 | char raw_regs [REGISTER_BYTES]; | |
1825 | int i; | |
1826 | ||
1827 | for (i = 0; i < NUM_REGS; i++) | |
1828 | read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i)); | |
1829 | if (regnum == -1) | |
1830 | pa_print_registers (raw_regs, regnum, fpregs); | |
1831 | else if (regnum < FP0_REGNUM) | |
199b2450 | 1832 | printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs + |
66a1aa07 SG |
1833 | REGISTER_BYTE (regnum))); |
1834 | else | |
1835 | pa_print_fp_reg (regnum); | |
1836 | } | |
1837 | ||
e43169eb | 1838 | static void |
66a1aa07 SG |
1839 | pa_print_registers (raw_regs, regnum, fpregs) |
1840 | char *raw_regs; | |
1841 | int regnum; | |
1842 | int fpregs; | |
1843 | { | |
15edf525 RS |
1844 | int i,j; |
1845 | long val; | |
66a1aa07 SG |
1846 | |
1847 | for (i = 0; i < 18; i++) | |
15edf525 RS |
1848 | { |
1849 | for (j = 0; j < 4; j++) | |
1850 | { | |
bc28e68d JK |
1851 | val = |
1852 | extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4); | |
15edf525 RS |
1853 | printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val); |
1854 | } | |
1855 | printf_unfiltered ("\n"); | |
1856 | } | |
1857 | ||
66a1aa07 SG |
1858 | if (fpregs) |
1859 | for (i = 72; i < NUM_REGS; i++) | |
1860 | pa_print_fp_reg (i); | |
1861 | } | |
1862 | ||
e43169eb | 1863 | static void |
66a1aa07 SG |
1864 | pa_print_fp_reg (i) |
1865 | int i; | |
1866 | { | |
1867 | unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
1868 | unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; | |
66a1aa07 | 1869 | |
eb1167c6 | 1870 | /* Get 32bits of data. */ |
66a1aa07 | 1871 | read_relative_register_raw_bytes (i, raw_buffer); |
ad09cb2b | 1872 | |
eb1167c6 JL |
1873 | /* Put it in the buffer. No conversions are ever necessary. */ |
1874 | memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); | |
66a1aa07 | 1875 | |
199b2450 | 1876 | fputs_filtered (reg_names[i], gdb_stdout); |
eb1167c6 JL |
1877 | print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); |
1878 | fputs_filtered ("(single precision) ", gdb_stdout); | |
66a1aa07 | 1879 | |
199b2450 | 1880 | val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0, |
66a1aa07 SG |
1881 | 1, 0, Val_pretty_default); |
1882 | printf_filtered ("\n"); | |
eb1167c6 JL |
1883 | |
1884 | /* If "i" is even, then this register can also be a double-precision | |
1885 | FP register. Dump it out as such. */ | |
1886 | if ((i % 2) == 0) | |
1887 | { | |
1888 | /* Get the data in raw format for the 2nd half. */ | |
1889 | read_relative_register_raw_bytes (i + 1, raw_buffer); | |
1890 | ||
1891 | /* Copy it into the appropriate part of the virtual buffer. */ | |
1892 | memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer, | |
1893 | REGISTER_RAW_SIZE (i)); | |
1894 | ||
1895 | /* Dump it as a double. */ | |
1896 | fputs_filtered (reg_names[i], gdb_stdout); | |
1897 | print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); | |
1898 | fputs_filtered ("(double precision) ", gdb_stdout); | |
1899 | ||
1900 | val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0, | |
1901 | 1, 0, Val_pretty_default); | |
1902 | printf_filtered ("\n"); | |
1903 | } | |
66a1aa07 SG |
1904 | } |
1905 | ||
a76c2240 JL |
1906 | /* Return one if PC is in the call path of a trampoline, else return zero. |
1907 | ||
1908 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
1909 | just shared library trampolines (import, export). */ | |
481faa25 | 1910 | |
e43169eb | 1911 | int |
481faa25 JL |
1912 | in_solib_call_trampoline (pc, name) |
1913 | CORE_ADDR pc; | |
1914 | char *name; | |
1915 | { | |
1916 | struct minimal_symbol *minsym; | |
1917 | struct unwind_table_entry *u; | |
a76c2240 JL |
1918 | static CORE_ADDR dyncall = 0; |
1919 | static CORE_ADDR sr4export = 0; | |
1920 | ||
1921 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a | |
1922 | new exec file */ | |
1923 | ||
1924 | /* First see if PC is in one of the two C-library trampolines. */ | |
1925 | if (!dyncall) | |
1926 | { | |
2d336b1b | 1927 | minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); |
a76c2240 JL |
1928 | if (minsym) |
1929 | dyncall = SYMBOL_VALUE_ADDRESS (minsym); | |
1930 | else | |
1931 | dyncall = -1; | |
1932 | } | |
1933 | ||
1934 | if (!sr4export) | |
1935 | { | |
2d336b1b | 1936 | minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL); |
a76c2240 JL |
1937 | if (minsym) |
1938 | sr4export = SYMBOL_VALUE_ADDRESS (minsym); | |
1939 | else | |
1940 | sr4export = -1; | |
1941 | } | |
1942 | ||
1943 | if (pc == dyncall || pc == sr4export) | |
1944 | return 1; | |
481faa25 JL |
1945 | |
1946 | /* Get the unwind descriptor corresponding to PC, return zero | |
1947 | if no unwind was found. */ | |
1948 | u = find_unwind_entry (pc); | |
1949 | if (!u) | |
1950 | return 0; | |
1951 | ||
1952 | /* If this isn't a linker stub, then return now. */ | |
a76c2240 | 1953 | if (u->stub_type == 0) |
481faa25 JL |
1954 | return 0; |
1955 | ||
a76c2240 JL |
1956 | /* By definition a long-branch stub is a call stub. */ |
1957 | if (u->stub_type == LONG_BRANCH) | |
1958 | return 1; | |
1959 | ||
481faa25 JL |
1960 | /* The call and return path execute the same instructions within |
1961 | an IMPORT stub! So an IMPORT stub is both a call and return | |
1962 | trampoline. */ | |
1963 | if (u->stub_type == IMPORT) | |
1964 | return 1; | |
1965 | ||
a76c2240 | 1966 | /* Parameter relocation stubs always have a call path and may have a |
481faa25 | 1967 | return path. */ |
54576db3 JL |
1968 | if (u->stub_type == PARAMETER_RELOCATION |
1969 | || u->stub_type == EXPORT) | |
a76c2240 JL |
1970 | { |
1971 | CORE_ADDR addr; | |
1972 | ||
1973 | /* Search forward from the current PC until we hit a branch | |
1974 | or the end of the stub. */ | |
1975 | for (addr = pc; addr <= u->region_end; addr += 4) | |
1976 | { | |
1977 | unsigned long insn; | |
1978 | ||
1979 | insn = read_memory_integer (addr, 4); | |
1980 | ||
1981 | /* Does it look like a bl? If so then it's the call path, if | |
54576db3 | 1982 | we find a bv or be first, then we're on the return path. */ |
a76c2240 JL |
1983 | if ((insn & 0xfc00e000) == 0xe8000000) |
1984 | return 1; | |
54576db3 JL |
1985 | else if ((insn & 0xfc00e001) == 0xe800c000 |
1986 | || (insn & 0xfc000000) == 0xe0000000) | |
a76c2240 JL |
1987 | return 0; |
1988 | } | |
1989 | ||
1990 | /* Should never happen. */ | |
1991 | warning ("Unable to find branch in parameter relocation stub.\n"); | |
1992 | return 0; | |
1993 | } | |
1994 | ||
1995 | /* Unknown stub type. For now, just return zero. */ | |
1996 | return 0; | |
481faa25 JL |
1997 | } |
1998 | ||
a76c2240 JL |
1999 | /* Return one if PC is in the return path of a trampoline, else return zero. |
2000 | ||
2001 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
2002 | just shared library trampolines (import, export). */ | |
481faa25 | 2003 | |
e43169eb | 2004 | int |
481faa25 JL |
2005 | in_solib_return_trampoline (pc, name) |
2006 | CORE_ADDR pc; | |
2007 | char *name; | |
2008 | { | |
481faa25 JL |
2009 | struct unwind_table_entry *u; |
2010 | ||
2011 | /* Get the unwind descriptor corresponding to PC, return zero | |
2012 | if no unwind was found. */ | |
2013 | u = find_unwind_entry (pc); | |
2014 | if (!u) | |
2015 | return 0; | |
2016 | ||
a76c2240 JL |
2017 | /* If this isn't a linker stub or it's just a long branch stub, then |
2018 | return zero. */ | |
2019 | if (u->stub_type == 0 || u->stub_type == LONG_BRANCH) | |
481faa25 JL |
2020 | return 0; |
2021 | ||
2022 | /* The call and return path execute the same instructions within | |
2023 | an IMPORT stub! So an IMPORT stub is both a call and return | |
2024 | trampoline. */ | |
2025 | if (u->stub_type == IMPORT) | |
2026 | return 1; | |
2027 | ||
a76c2240 | 2028 | /* Parameter relocation stubs always have a call path and may have a |
481faa25 | 2029 | return path. */ |
54576db3 JL |
2030 | if (u->stub_type == PARAMETER_RELOCATION |
2031 | || u->stub_type == EXPORT) | |
a76c2240 JL |
2032 | { |
2033 | CORE_ADDR addr; | |
2034 | ||
2035 | /* Search forward from the current PC until we hit a branch | |
2036 | or the end of the stub. */ | |
2037 | for (addr = pc; addr <= u->region_end; addr += 4) | |
2038 | { | |
2039 | unsigned long insn; | |
2040 | ||
2041 | insn = read_memory_integer (addr, 4); | |
2042 | ||
2043 | /* Does it look like a bl? If so then it's the call path, if | |
54576db3 | 2044 | we find a bv or be first, then we're on the return path. */ |
a76c2240 JL |
2045 | if ((insn & 0xfc00e000) == 0xe8000000) |
2046 | return 0; | |
54576db3 JL |
2047 | else if ((insn & 0xfc00e001) == 0xe800c000 |
2048 | || (insn & 0xfc000000) == 0xe0000000) | |
a76c2240 JL |
2049 | return 1; |
2050 | } | |
2051 | ||
2052 | /* Should never happen. */ | |
2053 | warning ("Unable to find branch in parameter relocation stub.\n"); | |
2054 | return 0; | |
2055 | } | |
2056 | ||
2057 | /* Unknown stub type. For now, just return zero. */ | |
2058 | return 0; | |
2059 | ||
481faa25 JL |
2060 | } |
2061 | ||
de482138 JL |
2062 | /* Figure out if PC is in a trampoline, and if so find out where |
2063 | the trampoline will jump to. If not in a trampoline, return zero. | |
66a1aa07 | 2064 | |
de482138 JL |
2065 | Simple code examination probably is not a good idea since the code |
2066 | sequences in trampolines can also appear in user code. | |
2067 | ||
2068 | We use unwinds and information from the minimal symbol table to | |
2069 | determine when we're in a trampoline. This won't work for ELF | |
2070 | (yet) since it doesn't create stub unwind entries. Whether or | |
2071 | not ELF will create stub unwinds or normal unwinds for linker | |
2072 | stubs is still being debated. | |
2073 | ||
2074 | This should handle simple calls through dyncall or sr4export, | |
2075 | long calls, argument relocation stubs, and dyncall/sr4export | |
2076 | calling an argument relocation stub. It even handles some stubs | |
2077 | used in dynamic executables. */ | |
66a1aa07 SG |
2078 | |
2079 | CORE_ADDR | |
2080 | skip_trampoline_code (pc, name) | |
2081 | CORE_ADDR pc; | |
2082 | char *name; | |
2083 | { | |
de482138 JL |
2084 | long orig_pc = pc; |
2085 | long prev_inst, curr_inst, loc; | |
66a1aa07 | 2086 | static CORE_ADDR dyncall = 0; |
de482138 | 2087 | static CORE_ADDR sr4export = 0; |
66a1aa07 | 2088 | struct minimal_symbol *msym; |
de482138 | 2089 | struct unwind_table_entry *u; |
66a1aa07 | 2090 | |
de482138 JL |
2091 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a |
2092 | new exec file */ | |
66a1aa07 SG |
2093 | |
2094 | if (!dyncall) | |
2095 | { | |
2d336b1b | 2096 | msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); |
66a1aa07 SG |
2097 | if (msym) |
2098 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
2099 | else | |
2100 | dyncall = -1; | |
2101 | } | |
2102 | ||
de482138 JL |
2103 | if (!sr4export) |
2104 | { | |
2d336b1b | 2105 | msym = lookup_minimal_symbol ("_sr4export", NULL, NULL); |
de482138 JL |
2106 | if (msym) |
2107 | sr4export = SYMBOL_VALUE_ADDRESS (msym); | |
2108 | else | |
2109 | sr4export = -1; | |
2110 | } | |
2111 | ||
2112 | /* Addresses passed to dyncall may *NOT* be the actual address | |
669caa9c | 2113 | of the function. So we may have to do something special. */ |
66a1aa07 | 2114 | if (pc == dyncall) |
de482138 JL |
2115 | { |
2116 | pc = (CORE_ADDR) read_register (22); | |
66a1aa07 | 2117 | |
de482138 JL |
2118 | /* If bit 30 (counting from the left) is on, then pc is the address of |
2119 | the PLT entry for this function, not the address of the function | |
2120 | itself. Bit 31 has meaning too, but only for MPE. */ | |
2121 | if (pc & 0x2) | |
2122 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4); | |
2123 | } | |
2124 | else if (pc == sr4export) | |
2125 | pc = (CORE_ADDR) (read_register (22)); | |
66a1aa07 | 2126 | |
de482138 JL |
2127 | /* Get the unwind descriptor corresponding to PC, return zero |
2128 | if no unwind was found. */ | |
2129 | u = find_unwind_entry (pc); | |
2130 | if (!u) | |
2131 | return 0; | |
2132 | ||
2133 | /* If this isn't a linker stub, then return now. */ | |
2134 | if (u->stub_type == 0) | |
2135 | return orig_pc == pc ? 0 : pc & ~0x3; | |
2136 | ||
2137 | /* It's a stub. Search for a branch and figure out where it goes. | |
2138 | Note we have to handle multi insn branch sequences like ldil;ble. | |
2139 | Most (all?) other branches can be determined by examining the contents | |
2140 | of certain registers and the stack. */ | |
2141 | loc = pc; | |
2142 | curr_inst = 0; | |
2143 | prev_inst = 0; | |
2144 | while (1) | |
2145 | { | |
2146 | /* Make sure we haven't walked outside the range of this stub. */ | |
2147 | if (u != find_unwind_entry (loc)) | |
2148 | { | |
2149 | warning ("Unable to find branch in linker stub"); | |
2150 | return orig_pc == pc ? 0 : pc & ~0x3; | |
2151 | } | |
2152 | ||
2153 | prev_inst = curr_inst; | |
2154 | curr_inst = read_memory_integer (loc, 4); | |
66a1aa07 | 2155 | |
de482138 JL |
2156 | /* Does it look like a branch external using %r1? Then it's the |
2157 | branch from the stub to the actual function. */ | |
2158 | if ((curr_inst & 0xffe0e000) == 0xe0202000) | |
2159 | { | |
2160 | /* Yup. See if the previous instruction loaded | |
2161 | a value into %r1. If so compute and return the jump address. */ | |
4cbc4bf1 | 2162 | if ((prev_inst & 0xffe00000) == 0x20200000) |
de482138 JL |
2163 | return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; |
2164 | else | |
2165 | { | |
2166 | warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); | |
2167 | return orig_pc == pc ? 0 : pc & ~0x3; | |
2168 | } | |
2169 | } | |
2170 | ||
f32fc5f9 JL |
2171 | /* Does it look like a be 0(sr0,%r21)? That's the branch from an |
2172 | import stub to an export stub. | |
2173 | ||
2174 | It is impossible to determine the target of the branch via | |
2175 | simple examination of instructions and/or data (consider | |
2176 | that the address in the plabel may be the address of the | |
2177 | bind-on-reference routine in the dynamic loader). | |
2178 | ||
2179 | So we have try an alternative approach. | |
2180 | ||
2181 | Get the name of the symbol at our current location; it should | |
2182 | be a stub symbol with the same name as the symbol in the | |
2183 | shared library. | |
2184 | ||
2185 | Then lookup a minimal symbol with the same name; we should | |
2186 | get the minimal symbol for the target routine in the shared | |
2187 | library as those take precedence of import/export stubs. */ | |
2188 | if (curr_inst == 0xe2a00000) | |
2189 | { | |
2190 | struct minimal_symbol *stubsym, *libsym; | |
2191 | ||
2192 | stubsym = lookup_minimal_symbol_by_pc (loc); | |
2193 | if (stubsym == NULL) | |
2194 | { | |
2195 | warning ("Unable to find symbol for 0x%x", loc); | |
2196 | return orig_pc == pc ? 0 : pc & ~0x3; | |
2197 | } | |
2198 | ||
2d336b1b | 2199 | libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL); |
f32fc5f9 JL |
2200 | if (libsym == NULL) |
2201 | { | |
2202 | warning ("Unable to find library symbol for %s\n", | |
2203 | SYMBOL_NAME (stubsym)); | |
2204 | return orig_pc == pc ? 0 : pc & ~0x3; | |
2205 | } | |
2206 | ||
2207 | return SYMBOL_VALUE (libsym); | |
2208 | } | |
2209 | ||
88b91d4a JL |
2210 | /* Does it look like bl X,%rp or bl X,%r0? Another way to do a |
2211 | branch from the stub to the actual function. */ | |
2212 | else if ((curr_inst & 0xffe0e000) == 0xe8400000 | |
2213 | || (curr_inst & 0xffe0e000) == 0xe8000000) | |
de482138 JL |
2214 | return (loc + extract_17 (curr_inst) + 8) & ~0x3; |
2215 | ||
2216 | /* Does it look like bv (rp)? Note this depends on the | |
2217 | current stack pointer being the same as the stack | |
2218 | pointer in the stub itself! This is a branch on from the | |
2219 | stub back to the original caller. */ | |
2220 | else if ((curr_inst & 0xffe0e000) == 0xe840c000) | |
2221 | { | |
2222 | /* Yup. See if the previous instruction loaded | |
2223 | rp from sp - 8. */ | |
2224 | if (prev_inst == 0x4bc23ff1) | |
2225 | return (read_memory_integer | |
2226 | (read_register (SP_REGNUM) - 8, 4)) & ~0x3; | |
2227 | else | |
2228 | { | |
2229 | warning ("Unable to find restore of %%rp before bv (%%rp)."); | |
2230 | return orig_pc == pc ? 0 : pc & ~0x3; | |
2231 | } | |
2232 | } | |
2233 | ||
2234 | /* What about be,n 0(sr0,%rp)? It's just another way we return to | |
2235 | the original caller from the stub. Used in dynamic executables. */ | |
2236 | else if (curr_inst == 0xe0400002) | |
2237 | { | |
2238 | /* The value we jump to is sitting in sp - 24. But that's | |
2239 | loaded several instructions before the be instruction. | |
2240 | I guess we could check for the previous instruction being | |
2241 | mtsp %r1,%sr0 if we want to do sanity checking. */ | |
2242 | return (read_memory_integer | |
2243 | (read_register (SP_REGNUM) - 24, 4)) & ~0x3; | |
2244 | } | |
2245 | ||
2246 | /* Haven't found the branch yet, but we're still in the stub. | |
2247 | Keep looking. */ | |
2248 | loc += 4; | |
2249 | } | |
66a1aa07 SG |
2250 | } |
2251 | ||
c598654a JL |
2252 | /* For the given instruction (INST), return any adjustment it makes |
2253 | to the stack pointer or zero for no adjustment. | |
2254 | ||
2255 | This only handles instructions commonly found in prologues. */ | |
2256 | ||
2257 | static int | |
2258 | prologue_inst_adjust_sp (inst) | |
2259 | unsigned long inst; | |
2260 | { | |
2261 | /* This must persist across calls. */ | |
2262 | static int save_high21; | |
2263 | ||
2264 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
2265 | if ((inst & 0xffffc000) == 0x37de0000) | |
2266 | return extract_14 (inst); | |
2267 | ||
2268 | /* stwm X,D(sp) */ | |
2269 | if ((inst & 0xffe00000) == 0x6fc00000) | |
2270 | return extract_14 (inst); | |
2271 | ||
2272 | /* addil high21,%r1; ldo low11,(%r1),%r30) | |
2273 | save high bits in save_high21 for later use. */ | |
2274 | if ((inst & 0xffe00000) == 0x28200000) | |
2275 | { | |
2276 | save_high21 = extract_21 (inst); | |
2277 | return 0; | |
2278 | } | |
2279 | ||
2280 | if ((inst & 0xffff0000) == 0x343e0000) | |
2281 | return save_high21 + extract_14 (inst); | |
2282 | ||
2283 | /* fstws as used by the HP compilers. */ | |
2284 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
2285 | return extract_5_load (inst); | |
2286 | ||
2287 | /* No adjustment. */ | |
2288 | return 0; | |
2289 | } | |
2290 | ||
2291 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
2292 | ||
2293 | static int | |
2294 | is_branch (inst) | |
2295 | unsigned long inst; | |
2296 | { | |
2297 | switch (inst >> 26) | |
2298 | { | |
2299 | case 0x20: | |
2300 | case 0x21: | |
2301 | case 0x22: | |
2302 | case 0x23: | |
2303 | case 0x28: | |
2304 | case 0x29: | |
2305 | case 0x2a: | |
2306 | case 0x2b: | |
2307 | case 0x30: | |
2308 | case 0x31: | |
2309 | case 0x32: | |
2310 | case 0x33: | |
2311 | case 0x38: | |
2312 | case 0x39: | |
2313 | case 0x3a: | |
2314 | return 1; | |
2315 | ||
2316 | default: | |
2317 | return 0; | |
2318 | } | |
2319 | } | |
2320 | ||
2321 | /* Return the register number for a GR which is saved by INST or | |
edd86fb0 | 2322 | zero it INST does not save a GR. */ |
c598654a JL |
2323 | |
2324 | static int | |
2325 | inst_saves_gr (inst) | |
2326 | unsigned long inst; | |
2327 | { | |
2328 | /* Does it look like a stw? */ | |
2329 | if ((inst >> 26) == 0x1a) | |
2330 | return extract_5R_store (inst); | |
2331 | ||
edd86fb0 | 2332 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ |
c598654a JL |
2333 | if ((inst >> 26) == 0x1b) |
2334 | return extract_5R_store (inst); | |
2335 | ||
edd86fb0 JL |
2336 | /* Does it look like sth or stb? HPC versions 9.0 and later use these |
2337 | too. */ | |
2338 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18) | |
2339 | return extract_5R_store (inst); | |
2340 | ||
c598654a JL |
2341 | return 0; |
2342 | } | |
2343 | ||
2344 | /* Return the register number for a FR which is saved by INST or | |
2345 | zero it INST does not save a FR. | |
2346 | ||
2347 | Note we only care about full 64bit register stores (that's the only | |
edd86fb0 JL |
2348 | kind of stores the prologue will use). |
2349 | ||
2350 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
c598654a JL |
2351 | |
2352 | static int | |
2353 | inst_saves_fr (inst) | |
2354 | unsigned long inst; | |
2355 | { | |
edd86fb0 | 2356 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
c598654a JL |
2357 | return extract_5r_store (inst); |
2358 | return 0; | |
2359 | } | |
2360 | ||
66a1aa07 | 2361 | /* Advance PC across any function entry prologue instructions |
c598654a | 2362 | to reach some "real" code. |
66a1aa07 | 2363 | |
c598654a JL |
2364 | Use information in the unwind table to determine what exactly should |
2365 | be in the prologue. */ | |
66a1aa07 SG |
2366 | |
2367 | CORE_ADDR | |
de482138 | 2368 | skip_prologue (pc) |
66a1aa07 SG |
2369 | CORE_ADDR pc; |
2370 | { | |
34df79fc | 2371 | char buf[4]; |
7e72b115 | 2372 | CORE_ADDR orig_pc = pc; |
c598654a | 2373 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; |
7e72b115 | 2374 | unsigned long args_stored, status, i, restart_gr, restart_fr; |
c598654a | 2375 | struct unwind_table_entry *u; |
66a1aa07 | 2376 | |
7e72b115 JL |
2377 | restart_gr = 0; |
2378 | restart_fr = 0; | |
2379 | ||
2380 | restart: | |
c598654a JL |
2381 | u = find_unwind_entry (pc); |
2382 | if (!u) | |
fdafbfad | 2383 | return pc; |
c598654a | 2384 | |
de482138 JL |
2385 | /* If we are not at the beginning of a function, then return now. */ |
2386 | if ((pc & ~0x3) != u->region_start) | |
2387 | return pc; | |
2388 | ||
c598654a JL |
2389 | /* This is how much of a frame adjustment we need to account for. */ |
2390 | stack_remaining = u->Total_frame_size << 3; | |
66a1aa07 | 2391 | |
c598654a JL |
2392 | /* Magic register saves we want to know about. */ |
2393 | save_rp = u->Save_RP; | |
2394 | save_sp = u->Save_SP; | |
2395 | ||
edd86fb0 JL |
2396 | /* An indication that args may be stored into the stack. Unfortunately |
2397 | the HPUX compilers tend to set this in cases where no args were | |
2398 | stored too!. */ | |
c85ff3a3 | 2399 | args_stored = 1; |
edd86fb0 | 2400 | |
c598654a JL |
2401 | /* Turn the Entry_GR field into a bitmask. */ |
2402 | save_gr = 0; | |
2403 | for (i = 3; i < u->Entry_GR + 3; i++) | |
66a1aa07 | 2404 | { |
c598654a JL |
2405 | /* Frame pointer gets saved into a special location. */ |
2406 | if (u->Save_SP && i == FP_REGNUM) | |
2407 | continue; | |
2408 | ||
2409 | save_gr |= (1 << i); | |
2410 | } | |
7e72b115 | 2411 | save_gr &= ~restart_gr; |
c598654a JL |
2412 | |
2413 | /* Turn the Entry_FR field into a bitmask too. */ | |
2414 | save_fr = 0; | |
2415 | for (i = 12; i < u->Entry_FR + 12; i++) | |
2416 | save_fr |= (1 << i); | |
7e72b115 | 2417 | save_fr &= ~restart_fr; |
c598654a JL |
2418 | |
2419 | /* Loop until we find everything of interest or hit a branch. | |
2420 | ||
2421 | For unoptimized GCC code and for any HP CC code this will never ever | |
2422 | examine any user instructions. | |
2423 | ||
2424 | For optimzied GCC code we're faced with problems. GCC will schedule | |
2425 | its prologue and make prologue instructions available for delay slot | |
2426 | filling. The end result is user code gets mixed in with the prologue | |
2427 | and a prologue instruction may be in the delay slot of the first branch | |
2428 | or call. | |
2429 | ||
2430 | Some unexpected things are expected with debugging optimized code, so | |
2431 | we allow this routine to walk past user instructions in optimized | |
2432 | GCC code. */ | |
edd86fb0 JL |
2433 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 |
2434 | || args_stored) | |
c598654a | 2435 | { |
edd86fb0 JL |
2436 | unsigned int reg_num; |
2437 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
e43169eb | 2438 | unsigned long old_save_rp, old_save_sp, next_inst; |
edd86fb0 JL |
2439 | |
2440 | /* Save copies of all the triggers so we can compare them later | |
2441 | (only for HPC). */ | |
2442 | old_save_gr = save_gr; | |
2443 | old_save_fr = save_fr; | |
2444 | old_save_rp = save_rp; | |
2445 | old_save_sp = save_sp; | |
2446 | old_stack_remaining = stack_remaining; | |
2447 | ||
c598654a JL |
2448 | status = target_read_memory (pc, buf, 4); |
2449 | inst = extract_unsigned_integer (buf, 4); | |
edd86fb0 | 2450 | |
c598654a JL |
2451 | /* Yow! */ |
2452 | if (status != 0) | |
2453 | return pc; | |
2454 | ||
2455 | /* Note the interesting effects of this instruction. */ | |
2456 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
2457 | ||
2458 | /* There is only one instruction used for saving RP into the stack. */ | |
2459 | if (inst == 0x6bc23fd9) | |
2460 | save_rp = 0; | |
2461 | ||
2462 | /* This is the only way we save SP into the stack. At this time | |
2463 | the HP compilers never bother to save SP into the stack. */ | |
2464 | if ((inst & 0xffffc000) == 0x6fc10000) | |
2465 | save_sp = 0; | |
2466 | ||
2467 | /* Account for general and floating-point register saves. */ | |
edd86fb0 JL |
2468 | reg_num = inst_saves_gr (inst); |
2469 | save_gr &= ~(1 << reg_num); | |
2470 | ||
2471 | /* Ugh. Also account for argument stores into the stack. | |
2472 | Unfortunately args_stored only tells us that some arguments | |
2473 | where stored into the stack. Not how many or what kind! | |
2474 | ||
2475 | This is a kludge as on the HP compiler sets this bit and it | |
2476 | never does prologue scheduling. So once we see one, skip past | |
2477 | all of them. We have similar code for the fp arg stores below. | |
2478 | ||
2479 | FIXME. Can still die if we have a mix of GR and FR argument | |
2480 | stores! */ | |
2481 | if (reg_num >= 23 && reg_num <= 26) | |
2482 | { | |
2483 | while (reg_num >= 23 && reg_num <= 26) | |
2484 | { | |
2485 | pc += 4; | |
2486 | status = target_read_memory (pc, buf, 4); | |
2487 | inst = extract_unsigned_integer (buf, 4); | |
2488 | if (status != 0) | |
2489 | return pc; | |
2490 | reg_num = inst_saves_gr (inst); | |
2491 | } | |
2492 | args_stored = 0; | |
2493 | continue; | |
2494 | } | |
2495 | ||
2496 | reg_num = inst_saves_fr (inst); | |
2497 | save_fr &= ~(1 << reg_num); | |
2498 | ||
2499 | status = target_read_memory (pc + 4, buf, 4); | |
2500 | next_inst = extract_unsigned_integer (buf, 4); | |
2501 | ||
2502 | /* Yow! */ | |
2503 | if (status != 0) | |
2504 | return pc; | |
2505 | ||
2506 | /* We've got to be read to handle the ldo before the fp register | |
2507 | save. */ | |
2508 | if ((inst & 0xfc000000) == 0x34000000 | |
2509 | && inst_saves_fr (next_inst) >= 4 | |
2510 | && inst_saves_fr (next_inst) <= 7) | |
2511 | { | |
2512 | /* So we drop into the code below in a reasonable state. */ | |
2513 | reg_num = inst_saves_fr (next_inst); | |
2514 | pc -= 4; | |
2515 | } | |
2516 | ||
2517 | /* Ugh. Also account for argument stores into the stack. | |
2518 | This is a kludge as on the HP compiler sets this bit and it | |
2519 | never does prologue scheduling. So once we see one, skip past | |
2520 | all of them. */ | |
2521 | if (reg_num >= 4 && reg_num <= 7) | |
2522 | { | |
2523 | while (reg_num >= 4 && reg_num <= 7) | |
2524 | { | |
2525 | pc += 8; | |
2526 | status = target_read_memory (pc, buf, 4); | |
2527 | inst = extract_unsigned_integer (buf, 4); | |
2528 | if (status != 0) | |
2529 | return pc; | |
2530 | if ((inst & 0xfc000000) != 0x34000000) | |
2531 | break; | |
2532 | status = target_read_memory (pc + 4, buf, 4); | |
2533 | next_inst = extract_unsigned_integer (buf, 4); | |
2534 | if (status != 0) | |
2535 | return pc; | |
2536 | reg_num = inst_saves_fr (next_inst); | |
2537 | } | |
2538 | args_stored = 0; | |
2539 | continue; | |
2540 | } | |
c598654a JL |
2541 | |
2542 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
2543 | instruction is in the delay slot of the first call/branch. */ | |
2544 | if (is_branch (inst)) | |
2545 | break; | |
2546 | ||
edd86fb0 JL |
2547 | /* What a crock. The HP compilers set args_stored even if no |
2548 | arguments were stored into the stack (boo hiss). This could | |
2549 | cause this code to then skip a bunch of user insns (up to the | |
2550 | first branch). | |
2551 | ||
2552 | To combat this we try to identify when args_stored was bogusly | |
2553 | set and clear it. We only do this when args_stored is nonzero, | |
2554 | all other resources are accounted for, and nothing changed on | |
2555 | this pass. */ | |
2556 | if (args_stored | |
2557 | && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
2558 | && old_save_gr == save_gr && old_save_fr == save_fr | |
2559 | && old_save_rp == save_rp && old_save_sp == save_sp | |
2560 | && old_stack_remaining == stack_remaining) | |
2561 | break; | |
2562 | ||
c598654a JL |
2563 | /* Bump the PC. */ |
2564 | pc += 4; | |
66a1aa07 | 2565 | } |
66a1aa07 | 2566 | |
7e72b115 JL |
2567 | /* We've got a tenative location for the end of the prologue. However |
2568 | because of limitations in the unwind descriptor mechanism we may | |
2569 | have went too far into user code looking for the save of a register | |
2570 | that does not exist. So, if there registers we expected to be saved | |
2571 | but never were, mask them out and restart. | |
2572 | ||
2573 | This should only happen in optimized code, and should be very rare. */ | |
3f550b59 | 2574 | if (save_gr || (save_fr && ! (restart_fr || restart_gr))) |
7e72b115 JL |
2575 | { |
2576 | pc = orig_pc; | |
2577 | restart_gr = save_gr; | |
2578 | restart_fr = save_fr; | |
2579 | goto restart; | |
2580 | } | |
2581 | ||
66a1aa07 SG |
2582 | return pc; |
2583 | } | |
2584 | ||
c598654a JL |
2585 | /* Put here the code to store, into a struct frame_saved_regs, |
2586 | the addresses of the saved registers of frame described by FRAME_INFO. | |
2587 | This includes special registers such as pc and fp saved in special | |
2588 | ways in the stack frame. sp is even more special: | |
2589 | the address we return for it IS the sp for the next frame. */ | |
2590 | ||
2591 | void | |
2592 | hppa_frame_find_saved_regs (frame_info, frame_saved_regs) | |
cb5f7128 | 2593 | struct frame_info *frame_info; |
c598654a JL |
2594 | struct frame_saved_regs *frame_saved_regs; |
2595 | { | |
2596 | CORE_ADDR pc; | |
2597 | struct unwind_table_entry *u; | |
2598 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
2599 | int status, i, reg; | |
2600 | char buf[4]; | |
2601 | int fp_loc = -1; | |
2602 | ||
2603 | /* Zero out everything. */ | |
2604 | memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs)); | |
2605 | ||
2606 | /* Call dummy frames always look the same, so there's no need to | |
2607 | examine the dummy code to determine locations of saved registers; | |
2608 | instead, let find_dummy_frame_regs fill in the correct offsets | |
2609 | for the saved registers. */ | |
cb5f7128 JL |
2610 | if ((frame_info->pc >= frame_info->frame |
2611 | && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH | |
2612 | + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8 | |
2613 | + 6 * 4))) | |
2614 | find_dummy_frame_regs (frame_info, frame_saved_regs); | |
c598654a | 2615 | |
70e43abe JL |
2616 | /* Interrupt handlers are special too. They lay out the register |
2617 | state in the exact same order as the register numbers in GDB. */ | |
cb5f7128 | 2618 | if (pc_in_interrupt_handler (frame_info->pc)) |
70e43abe JL |
2619 | { |
2620 | for (i = 0; i < NUM_REGS; i++) | |
2621 | { | |
2622 | /* SP is a little special. */ | |
2623 | if (i == SP_REGNUM) | |
2624 | frame_saved_regs->regs[SP_REGNUM] | |
cb5f7128 | 2625 | = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4); |
70e43abe | 2626 | else |
cb5f7128 | 2627 | frame_saved_regs->regs[i] = frame_info->frame + i * 4; |
70e43abe JL |
2628 | } |
2629 | return; | |
2630 | } | |
2631 | ||
7486c68d | 2632 | #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP |
70e43abe | 2633 | /* Handle signal handler callers. */ |
cb5f7128 | 2634 | if (frame_info->signal_handler_caller) |
70e43abe | 2635 | { |
cb5f7128 | 2636 | FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); |
70e43abe JL |
2637 | return; |
2638 | } | |
7486c68d | 2639 | #endif |
70e43abe | 2640 | |
c598654a | 2641 | /* Get the starting address of the function referred to by the PC |
669caa9c | 2642 | saved in frame. */ |
cb5f7128 | 2643 | pc = get_pc_function_start (frame_info->pc); |
c598654a JL |
2644 | |
2645 | /* Yow! */ | |
2646 | u = find_unwind_entry (pc); | |
2647 | if (!u) | |
2648 | return; | |
2649 | ||
2650 | /* This is how much of a frame adjustment we need to account for. */ | |
2651 | stack_remaining = u->Total_frame_size << 3; | |
2652 | ||
2653 | /* Magic register saves we want to know about. */ | |
2654 | save_rp = u->Save_RP; | |
2655 | save_sp = u->Save_SP; | |
2656 | ||
2657 | /* Turn the Entry_GR field into a bitmask. */ | |
2658 | save_gr = 0; | |
2659 | for (i = 3; i < u->Entry_GR + 3; i++) | |
2660 | { | |
2661 | /* Frame pointer gets saved into a special location. */ | |
2662 | if (u->Save_SP && i == FP_REGNUM) | |
2663 | continue; | |
2664 | ||
2665 | save_gr |= (1 << i); | |
2666 | } | |
2667 | ||
2668 | /* Turn the Entry_FR field into a bitmask too. */ | |
2669 | save_fr = 0; | |
2670 | for (i = 12; i < u->Entry_FR + 12; i++) | |
2671 | save_fr |= (1 << i); | |
2672 | ||
70e43abe JL |
2673 | /* The frame always represents the value of %sp at entry to the |
2674 | current function (and is thus equivalent to the "saved" stack | |
2675 | pointer. */ | |
cb5f7128 | 2676 | frame_saved_regs->regs[SP_REGNUM] = frame_info->frame; |
70e43abe | 2677 | |
c598654a JL |
2678 | /* Loop until we find everything of interest or hit a branch. |
2679 | ||
2680 | For unoptimized GCC code and for any HP CC code this will never ever | |
2681 | examine any user instructions. | |
2682 | ||
2683 | For optimzied GCC code we're faced with problems. GCC will schedule | |
2684 | its prologue and make prologue instructions available for delay slot | |
2685 | filling. The end result is user code gets mixed in with the prologue | |
2686 | and a prologue instruction may be in the delay slot of the first branch | |
2687 | or call. | |
2688 | ||
2689 | Some unexpected things are expected with debugging optimized code, so | |
2690 | we allow this routine to walk past user instructions in optimized | |
2691 | GCC code. */ | |
2692 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
2693 | { | |
2694 | status = target_read_memory (pc, buf, 4); | |
2695 | inst = extract_unsigned_integer (buf, 4); | |
2696 | ||
2697 | /* Yow! */ | |
2698 | if (status != 0) | |
2699 | return; | |
2700 | ||
2701 | /* Note the interesting effects of this instruction. */ | |
2702 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
2703 | ||
2704 | /* There is only one instruction used for saving RP into the stack. */ | |
2705 | if (inst == 0x6bc23fd9) | |
2706 | { | |
2707 | save_rp = 0; | |
cb5f7128 | 2708 | frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20; |
c598654a JL |
2709 | } |
2710 | ||
70e43abe JL |
2711 | /* Just note that we found the save of SP into the stack. The |
2712 | value for frame_saved_regs was computed above. */ | |
c598654a | 2713 | if ((inst & 0xffffc000) == 0x6fc10000) |
70e43abe | 2714 | save_sp = 0; |
c598654a JL |
2715 | |
2716 | /* Account for general and floating-point register saves. */ | |
2717 | reg = inst_saves_gr (inst); | |
2718 | if (reg >= 3 && reg <= 18 | |
2719 | && (!u->Save_SP || reg != FP_REGNUM)) | |
2720 | { | |
2721 | save_gr &= ~(1 << reg); | |
2722 | ||
2723 | /* stwm with a positive displacement is a *post modify*. */ | |
2724 | if ((inst >> 26) == 0x1b | |
2725 | && extract_14 (inst) >= 0) | |
cb5f7128 | 2726 | frame_saved_regs->regs[reg] = frame_info->frame; |
c598654a JL |
2727 | else |
2728 | { | |
2729 | /* Handle code with and without frame pointers. */ | |
2730 | if (u->Save_SP) | |
2731 | frame_saved_regs->regs[reg] | |
cb5f7128 | 2732 | = frame_info->frame + extract_14 (inst); |
c598654a JL |
2733 | else |
2734 | frame_saved_regs->regs[reg] | |
cb5f7128 | 2735 | = frame_info->frame + (u->Total_frame_size << 3) |
c598654a JL |
2736 | + extract_14 (inst); |
2737 | } | |
2738 | } | |
2739 | ||
2740 | ||
2741 | /* GCC handles callee saved FP regs a little differently. | |
2742 | ||
2743 | It emits an instruction to put the value of the start of | |
2744 | the FP store area into %r1. It then uses fstds,ma with | |
2745 | a basereg of %r1 for the stores. | |
2746 | ||
2747 | HP CC emits them at the current stack pointer modifying | |
2748 | the stack pointer as it stores each register. */ | |
2749 | ||
2750 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
2751 | if ((inst & 0xffffc000) == 0x34610000 | |
2752 | || (inst & 0xffffc000) == 0x37c10000) | |
2753 | fp_loc = extract_14 (inst); | |
2754 | ||
2755 | reg = inst_saves_fr (inst); | |
2756 | if (reg >= 12 && reg <= 21) | |
2757 | { | |
2758 | /* Note +4 braindamage below is necessary because the FP status | |
2759 | registers are internally 8 registers rather than the expected | |
2760 | 4 registers. */ | |
2761 | save_fr &= ~(1 << reg); | |
2762 | if (fp_loc == -1) | |
2763 | { | |
2764 | /* 1st HP CC FP register store. After this instruction | |
2765 | we've set enough state that the GCC and HPCC code are | |
2766 | both handled in the same manner. */ | |
cb5f7128 | 2767 | frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame; |
c598654a JL |
2768 | fp_loc = 8; |
2769 | } | |
2770 | else | |
2771 | { | |
2772 | frame_saved_regs->regs[reg + FP0_REGNUM + 4] | |
cb5f7128 | 2773 | = frame_info->frame + fp_loc; |
c598654a JL |
2774 | fp_loc += 8; |
2775 | } | |
2776 | } | |
2777 | ||
2778 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
2779 | instruction is in the delay slot of the first call/branch. */ | |
2780 | if (is_branch (inst)) | |
2781 | break; | |
2782 | ||
2783 | /* Bump the PC. */ | |
2784 | pc += 4; | |
2785 | } | |
2786 | } | |
2787 | ||
63757ecd JK |
2788 | #ifdef MAINTENANCE_CMDS |
2789 | ||
66a1aa07 SG |
2790 | static void |
2791 | unwind_command (exp, from_tty) | |
2792 | char *exp; | |
2793 | int from_tty; | |
2794 | { | |
2795 | CORE_ADDR address; | |
d8afcce9 | 2796 | struct unwind_table_entry *u; |
66a1aa07 SG |
2797 | |
2798 | /* If we have an expression, evaluate it and use it as the address. */ | |
2799 | ||
2800 | if (exp != 0 && *exp != 0) | |
2801 | address = parse_and_eval_address (exp); | |
2802 | else | |
2803 | return; | |
2804 | ||
d8afcce9 | 2805 | u = find_unwind_entry (address); |
66a1aa07 | 2806 | |
d8afcce9 | 2807 | if (!u) |
66a1aa07 | 2808 | { |
d8afcce9 | 2809 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); |
66a1aa07 SG |
2810 | return; |
2811 | } | |
2812 | ||
d8afcce9 SG |
2813 | printf_unfiltered ("unwind_table_entry (0x%x):\n", u); |
2814 | ||
2815 | printf_unfiltered ("\tregion_start = "); | |
2816 | print_address (u->region_start, gdb_stdout); | |
2817 | ||
2818 | printf_unfiltered ("\n\tregion_end = "); | |
2819 | print_address (u->region_end, gdb_stdout); | |
2820 | ||
2821 | #ifdef __STDC__ | |
2822 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); | |
2823 | #else | |
2824 | #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD"); | |
2825 | #endif | |
2826 | ||
2827 | printf_unfiltered ("\n\tflags ="); | |
2828 | pif (Cannot_unwind); | |
2829 | pif (Millicode); | |
2830 | pif (Millicode_save_sr0); | |
2831 | pif (Entry_SR); | |
2832 | pif (Args_stored); | |
2833 | pif (Variable_Frame); | |
2834 | pif (Separate_Package_Body); | |
2835 | pif (Frame_Extension_Millicode); | |
2836 | pif (Stack_Overflow_Check); | |
2837 | pif (Two_Instruction_SP_Increment); | |
2838 | pif (Ada_Region); | |
2839 | pif (Save_SP); | |
2840 | pif (Save_RP); | |
2841 | pif (Save_MRP_in_frame); | |
2842 | pif (extn_ptr_defined); | |
2843 | pif (Cleanup_defined); | |
2844 | pif (MPE_XL_interrupt_marker); | |
2845 | pif (HP_UX_interrupt_marker); | |
2846 | pif (Large_frame); | |
2847 | ||
2848 | putchar_unfiltered ('\n'); | |
2849 | ||
2850 | #ifdef __STDC__ | |
2851 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); | |
2852 | #else | |
2853 | #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD); | |
2854 | #endif | |
2855 | ||
2856 | pin (Region_description); | |
2857 | pin (Entry_FR); | |
2858 | pin (Entry_GR); | |
2859 | pin (Total_frame_size); | |
66a1aa07 | 2860 | } |
976bb0be | 2861 | #endif /* MAINTENANCE_CMDS */ |
63757ecd JK |
2862 | |
2863 | void | |
2864 | _initialize_hppa_tdep () | |
2865 | { | |
18b46e7c SS |
2866 | tm_print_insn = print_insn_hppa; |
2867 | ||
976bb0be | 2868 | #ifdef MAINTENANCE_CMDS |
63757ecd JK |
2869 | add_cmd ("unwind", class_maintenance, unwind_command, |
2870 | "Print unwind table entry at given address.", | |
2871 | &maintenanceprintlist); | |
63757ecd | 2872 | #endif /* MAINTENANCE_CMDS */ |
976bb0be | 2873 | } |