]>
Commit | Line | Data |
---|---|---|
8afe83be | 1 | /* ELF linker support. |
56f3b62c | 2 | Copyright 1995, 1996, 1997 Free Software Foundation, Inc. |
8afe83be KR |
3 | |
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
943fbd5b | 18 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
452a5efb | 19 | |
ede4eed4 KR |
20 | /* ELF linker code. */ |
21 | ||
22 | static boolean elf_link_add_object_symbols | |
23 | PARAMS ((bfd *, struct bfd_link_info *)); | |
24 | static boolean elf_link_add_archive_symbols | |
25 | PARAMS ((bfd *, struct bfd_link_info *)); | |
ede4eed4 KR |
26 | static boolean elf_export_symbol |
27 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
28 | static boolean elf_adjust_dynamic_symbol | |
29 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
30 | ||
31 | /* This struct is used to pass information to routines called via | |
32 | elf_link_hash_traverse which must return failure. */ | |
33 | ||
34 | struct elf_info_failed | |
35 | { | |
36 | boolean failed; | |
37 | struct bfd_link_info *info; | |
ff12f303 | 38 | }; |
ede4eed4 KR |
39 | |
40 | /* Given an ELF BFD, add symbols to the global hash table as | |
41 | appropriate. */ | |
42 | ||
43 | boolean | |
44 | elf_bfd_link_add_symbols (abfd, info) | |
45 | bfd *abfd; | |
46 | struct bfd_link_info *info; | |
47 | { | |
ede4eed4 KR |
48 | switch (bfd_get_format (abfd)) |
49 | { | |
50 | case bfd_object: | |
51 | return elf_link_add_object_symbols (abfd, info); | |
52 | case bfd_archive: | |
ede4eed4 KR |
53 | return elf_link_add_archive_symbols (abfd, info); |
54 | default: | |
55 | bfd_set_error (bfd_error_wrong_format); | |
56 | return false; | |
57 | } | |
58 | } | |
3b3753b8 | 59 | \f |
ede4eed4 KR |
60 | |
61 | /* Add symbols from an ELF archive file to the linker hash table. We | |
62 | don't use _bfd_generic_link_add_archive_symbols because of a | |
63 | problem which arises on UnixWare. The UnixWare libc.so is an | |
64 | archive which includes an entry libc.so.1 which defines a bunch of | |
65 | symbols. The libc.so archive also includes a number of other | |
66 | object files, which also define symbols, some of which are the same | |
67 | as those defined in libc.so.1. Correct linking requires that we | |
68 | consider each object file in turn, and include it if it defines any | |
69 | symbols we need. _bfd_generic_link_add_archive_symbols does not do | |
70 | this; it looks through the list of undefined symbols, and includes | |
71 | any object file which defines them. When this algorithm is used on | |
72 | UnixWare, it winds up pulling in libc.so.1 early and defining a | |
73 | bunch of symbols. This means that some of the other objects in the | |
74 | archive are not included in the link, which is incorrect since they | |
75 | precede libc.so.1 in the archive. | |
76 | ||
77 | Fortunately, ELF archive handling is simpler than that done by | |
78 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
79 | oddities. In ELF, if we find a symbol in the archive map, and the | |
80 | symbol is currently undefined, we know that we must pull in that | |
81 | object file. | |
82 | ||
83 | Unfortunately, we do have to make multiple passes over the symbol | |
84 | table until nothing further is resolved. */ | |
85 | ||
86 | static boolean | |
87 | elf_link_add_archive_symbols (abfd, info) | |
88 | bfd *abfd; | |
89 | struct bfd_link_info *info; | |
90 | { | |
91 | symindex c; | |
92 | boolean *defined = NULL; | |
93 | boolean *included = NULL; | |
94 | carsym *symdefs; | |
95 | boolean loop; | |
96 | ||
97 | if (! bfd_has_map (abfd)) | |
98 | { | |
99 | /* An empty archive is a special case. */ | |
100 | if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL) | |
101 | return true; | |
102 | bfd_set_error (bfd_error_no_armap); | |
103 | return false; | |
104 | } | |
105 | ||
106 | /* Keep track of all symbols we know to be already defined, and all | |
107 | files we know to be already included. This is to speed up the | |
108 | second and subsequent passes. */ | |
109 | c = bfd_ardata (abfd)->symdef_count; | |
110 | if (c == 0) | |
111 | return true; | |
58142f10 ILT |
112 | defined = (boolean *) bfd_malloc (c * sizeof (boolean)); |
113 | included = (boolean *) bfd_malloc (c * sizeof (boolean)); | |
ede4eed4 | 114 | if (defined == (boolean *) NULL || included == (boolean *) NULL) |
58142f10 | 115 | goto error_return; |
ede4eed4 KR |
116 | memset (defined, 0, c * sizeof (boolean)); |
117 | memset (included, 0, c * sizeof (boolean)); | |
118 | ||
119 | symdefs = bfd_ardata (abfd)->symdefs; | |
120 | ||
121 | do | |
122 | { | |
123 | file_ptr last; | |
124 | symindex i; | |
125 | carsym *symdef; | |
126 | carsym *symdefend; | |
127 | ||
128 | loop = false; | |
129 | last = -1; | |
130 | ||
131 | symdef = symdefs; | |
132 | symdefend = symdef + c; | |
133 | for (i = 0; symdef < symdefend; symdef++, i++) | |
134 | { | |
135 | struct elf_link_hash_entry *h; | |
136 | bfd *element; | |
137 | struct bfd_link_hash_entry *undefs_tail; | |
138 | symindex mark; | |
139 | ||
140 | if (defined[i] || included[i]) | |
141 | continue; | |
142 | if (symdef->file_offset == last) | |
143 | { | |
144 | included[i] = true; | |
145 | continue; | |
146 | } | |
147 | ||
148 | h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, | |
149 | false, false, false); | |
150 | if (h == (struct elf_link_hash_entry *) NULL) | |
151 | continue; | |
152 | if (h->root.type != bfd_link_hash_undefined) | |
153 | { | |
68807a39 ILT |
154 | if (h->root.type != bfd_link_hash_undefweak) |
155 | defined[i] = true; | |
ede4eed4 KR |
156 | continue; |
157 | } | |
158 | ||
159 | /* We need to include this archive member. */ | |
160 | ||
161 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
162 | if (element == (bfd *) NULL) | |
163 | goto error_return; | |
164 | ||
165 | if (! bfd_check_format (element, bfd_object)) | |
166 | goto error_return; | |
167 | ||
168 | /* Doublecheck that we have not included this object | |
169 | already--it should be impossible, but there may be | |
170 | something wrong with the archive. */ | |
171 | if (element->archive_pass != 0) | |
172 | { | |
173 | bfd_set_error (bfd_error_bad_value); | |
174 | goto error_return; | |
175 | } | |
176 | element->archive_pass = 1; | |
177 | ||
178 | undefs_tail = info->hash->undefs_tail; | |
179 | ||
180 | if (! (*info->callbacks->add_archive_element) (info, element, | |
181 | symdef->name)) | |
182 | goto error_return; | |
183 | if (! elf_link_add_object_symbols (element, info)) | |
184 | goto error_return; | |
185 | ||
186 | /* If there are any new undefined symbols, we need to make | |
187 | another pass through the archive in order to see whether | |
188 | they can be defined. FIXME: This isn't perfect, because | |
189 | common symbols wind up on undefs_tail and because an | |
190 | undefined symbol which is defined later on in this pass | |
191 | does not require another pass. This isn't a bug, but it | |
192 | does make the code less efficient than it could be. */ | |
193 | if (undefs_tail != info->hash->undefs_tail) | |
194 | loop = true; | |
195 | ||
196 | /* Look backward to mark all symbols from this object file | |
197 | which we have already seen in this pass. */ | |
198 | mark = i; | |
199 | do | |
200 | { | |
201 | included[mark] = true; | |
202 | if (mark == 0) | |
203 | break; | |
204 | --mark; | |
205 | } | |
206 | while (symdefs[mark].file_offset == symdef->file_offset); | |
207 | ||
208 | /* We mark subsequent symbols from this object file as we go | |
209 | on through the loop. */ | |
210 | last = symdef->file_offset; | |
211 | } | |
212 | } | |
213 | while (loop); | |
214 | ||
215 | free (defined); | |
216 | free (included); | |
217 | ||
218 | return true; | |
219 | ||
220 | error_return: | |
221 | if (defined != (boolean *) NULL) | |
222 | free (defined); | |
223 | if (included != (boolean *) NULL) | |
224 | free (included); | |
225 | return false; | |
226 | } | |
227 | ||
228 | /* Add symbols from an ELF object file to the linker hash table. */ | |
229 | ||
230 | static boolean | |
231 | elf_link_add_object_symbols (abfd, info) | |
232 | bfd *abfd; | |
233 | struct bfd_link_info *info; | |
234 | { | |
235 | boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *, | |
236 | const Elf_Internal_Sym *, | |
237 | const char **, flagword *, | |
238 | asection **, bfd_vma *)); | |
239 | boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *, | |
240 | asection *, const Elf_Internal_Rela *)); | |
241 | boolean collect; | |
242 | Elf_Internal_Shdr *hdr; | |
243 | size_t symcount; | |
244 | size_t extsymcount; | |
245 | size_t extsymoff; | |
246 | Elf_External_Sym *buf = NULL; | |
247 | struct elf_link_hash_entry **sym_hash; | |
248 | boolean dynamic; | |
249 | Elf_External_Dyn *dynbuf = NULL; | |
250 | struct elf_link_hash_entry *weaks; | |
251 | Elf_External_Sym *esym; | |
252 | Elf_External_Sym *esymend; | |
253 | ||
254 | add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook; | |
255 | collect = get_elf_backend_data (abfd)->collect; | |
256 | ||
0cb70568 ILT |
257 | /* As a GNU extension, any input sections which are named |
258 | .gnu.warning.SYMBOL are treated as warning symbols for the given | |
259 | symbol. This differs from .gnu.warning sections, which generate | |
260 | warnings when they are included in an output file. */ | |
261 | if (! info->shared) | |
262 | { | |
263 | asection *s; | |
264 | ||
265 | for (s = abfd->sections; s != NULL; s = s->next) | |
266 | { | |
267 | const char *name; | |
268 | ||
269 | name = bfd_get_section_name (abfd, s); | |
270 | if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0) | |
271 | { | |
272 | char *msg; | |
273 | bfd_size_type sz; | |
274 | ||
275 | sz = bfd_section_size (abfd, s); | |
276 | msg = (char *) bfd_alloc (abfd, sz); | |
277 | if (msg == NULL) | |
a9713b91 | 278 | goto error_return; |
0cb70568 ILT |
279 | |
280 | if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz)) | |
281 | goto error_return; | |
282 | ||
283 | if (! (_bfd_generic_link_add_one_symbol | |
ff12f303 | 284 | (info, abfd, |
0cb70568 ILT |
285 | name + sizeof ".gnu.warning." - 1, |
286 | BSF_WARNING, s, (bfd_vma) 0, msg, false, collect, | |
287 | (struct bfd_link_hash_entry **) NULL))) | |
288 | goto error_return; | |
289 | ||
290 | if (! info->relocateable) | |
291 | { | |
292 | /* Clobber the section size so that the warning does | |
293 | not get copied into the output file. */ | |
294 | s->_raw_size = 0; | |
295 | } | |
296 | } | |
297 | } | |
298 | } | |
299 | ||
ede4eed4 KR |
300 | /* A stripped shared library might only have a dynamic symbol table, |
301 | not a regular symbol table. In that case we can still go ahead | |
302 | and link using the dynamic symbol table. */ | |
303 | if (elf_onesymtab (abfd) == 0 | |
304 | && elf_dynsymtab (abfd) != 0) | |
305 | { | |
306 | elf_onesymtab (abfd) = elf_dynsymtab (abfd); | |
307 | elf_tdata (abfd)->symtab_hdr = elf_tdata (abfd)->dynsymtab_hdr; | |
308 | } | |
309 | ||
310 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
311 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); | |
312 | ||
313 | /* The sh_info field of the symtab header tells us where the | |
314 | external symbols start. We don't care about the local symbols at | |
315 | this point. */ | |
316 | if (elf_bad_symtab (abfd)) | |
317 | { | |
318 | extsymcount = symcount; | |
319 | extsymoff = 0; | |
320 | } | |
321 | else | |
322 | { | |
323 | extsymcount = symcount - hdr->sh_info; | |
324 | extsymoff = hdr->sh_info; | |
325 | } | |
326 | ||
58142f10 ILT |
327 | buf = ((Elf_External_Sym *) |
328 | bfd_malloc (extsymcount * sizeof (Elf_External_Sym))); | |
ede4eed4 | 329 | if (buf == NULL && extsymcount != 0) |
58142f10 | 330 | goto error_return; |
ede4eed4 KR |
331 | |
332 | /* We store a pointer to the hash table entry for each external | |
333 | symbol. */ | |
334 | sym_hash = ((struct elf_link_hash_entry **) | |
335 | bfd_alloc (abfd, | |
336 | extsymcount * sizeof (struct elf_link_hash_entry *))); | |
337 | if (sym_hash == NULL) | |
a9713b91 | 338 | goto error_return; |
ede4eed4 KR |
339 | elf_sym_hashes (abfd) = sym_hash; |
340 | ||
341 | if (elf_elfheader (abfd)->e_type != ET_DYN) | |
342 | { | |
343 | dynamic = false; | |
344 | ||
345 | /* If we are creating a shared library, create all the dynamic | |
346 | sections immediately. We need to attach them to something, | |
347 | so we attach them to this BFD, provided it is the right | |
348 | format. FIXME: If there are no input BFD's of the same | |
349 | format as the output, we can't make a shared library. */ | |
350 | if (info->shared | |
351 | && ! elf_hash_table (info)->dynamic_sections_created | |
352 | && abfd->xvec == info->hash->creator) | |
353 | { | |
354 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
355 | goto error_return; | |
356 | } | |
357 | } | |
358 | else | |
359 | { | |
360 | asection *s; | |
361 | boolean add_needed; | |
362 | const char *name; | |
363 | bfd_size_type oldsize; | |
364 | bfd_size_type strindex; | |
365 | ||
366 | dynamic = true; | |
367 | ||
368 | /* You can't use -r against a dynamic object. Also, there's no | |
369 | hope of using a dynamic object which does not exactly match | |
370 | the format of the output file. */ | |
371 | if (info->relocateable | |
372 | || info->hash->creator != abfd->xvec) | |
373 | { | |
374 | bfd_set_error (bfd_error_invalid_operation); | |
375 | goto error_return; | |
376 | } | |
377 | ||
378 | /* Find the name to use in a DT_NEEDED entry that refers to this | |
379 | object. If the object has a DT_SONAME entry, we use it. | |
380 | Otherwise, if the generic linker stuck something in | |
60a49e7f ILT |
381 | elf_dt_name, we use that. Otherwise, we just use the file |
382 | name. If the generic linker put a null string into | |
383 | elf_dt_name, we don't make a DT_NEEDED entry at all, even if | |
384 | there is a DT_SONAME entry. */ | |
ede4eed4 KR |
385 | add_needed = true; |
386 | name = bfd_get_filename (abfd); | |
60a49e7f | 387 | if (elf_dt_name (abfd) != NULL) |
ede4eed4 | 388 | { |
60a49e7f | 389 | name = elf_dt_name (abfd); |
ede4eed4 KR |
390 | if (*name == '\0') |
391 | add_needed = false; | |
392 | } | |
393 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
394 | if (s != NULL) | |
395 | { | |
396 | Elf_External_Dyn *extdyn; | |
397 | Elf_External_Dyn *extdynend; | |
398 | int elfsec; | |
399 | unsigned long link; | |
400 | ||
58142f10 | 401 | dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size); |
ede4eed4 | 402 | if (dynbuf == NULL) |
58142f10 | 403 | goto error_return; |
ede4eed4 KR |
404 | |
405 | if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, | |
406 | (file_ptr) 0, s->_raw_size)) | |
407 | goto error_return; | |
408 | ||
409 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
410 | if (elfsec == -1) | |
411 | goto error_return; | |
412 | link = elf_elfsections (abfd)[elfsec]->sh_link; | |
413 | ||
414 | extdyn = dynbuf; | |
415 | extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn); | |
416 | for (; extdyn < extdynend; extdyn++) | |
417 | { | |
418 | Elf_Internal_Dyn dyn; | |
419 | ||
420 | elf_swap_dyn_in (abfd, extdyn, &dyn); | |
60a49e7f | 421 | if (dyn.d_tag == DT_SONAME) |
ede4eed4 KR |
422 | { |
423 | name = bfd_elf_string_from_elf_section (abfd, link, | |
424 | dyn.d_un.d_val); | |
425 | if (name == NULL) | |
426 | goto error_return; | |
427 | } | |
428 | if (dyn.d_tag == DT_NEEDED) | |
429 | { | |
54406786 | 430 | struct bfd_link_needed_list *n, **pn; |
ede4eed4 KR |
431 | char *fnm, *anm; |
432 | ||
54406786 ILT |
433 | n = ((struct bfd_link_needed_list *) |
434 | bfd_alloc (abfd, sizeof (struct bfd_link_needed_list))); | |
ede4eed4 KR |
435 | fnm = bfd_elf_string_from_elf_section (abfd, link, |
436 | dyn.d_un.d_val); | |
437 | if (n == NULL || fnm == NULL) | |
438 | goto error_return; | |
439 | anm = bfd_alloc (abfd, strlen (fnm) + 1); | |
440 | if (anm == NULL) | |
441 | goto error_return; | |
442 | strcpy (anm, fnm); | |
443 | n->name = anm; | |
444 | n->by = abfd; | |
445 | n->next = NULL; | |
446 | for (pn = &elf_hash_table (info)->needed; | |
447 | *pn != NULL; | |
448 | pn = &(*pn)->next) | |
449 | ; | |
450 | *pn = n; | |
451 | } | |
452 | } | |
453 | ||
454 | free (dynbuf); | |
455 | dynbuf = NULL; | |
456 | } | |
457 | ||
458 | /* We do not want to include any of the sections in a dynamic | |
459 | object in the output file. We hack by simply clobbering the | |
460 | list of sections in the BFD. This could be handled more | |
461 | cleanly by, say, a new section flag; the existing | |
462 | SEC_NEVER_LOAD flag is not the one we want, because that one | |
463 | still implies that the section takes up space in the output | |
464 | file. */ | |
465 | abfd->sections = NULL; | |
010d9f2d | 466 | abfd->section_count = 0; |
ede4eed4 KR |
467 | |
468 | /* If this is the first dynamic object found in the link, create | |
469 | the special sections required for dynamic linking. */ | |
470 | if (! elf_hash_table (info)->dynamic_sections_created) | |
471 | { | |
472 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
473 | goto error_return; | |
474 | } | |
475 | ||
476 | if (add_needed) | |
477 | { | |
478 | /* Add a DT_NEEDED entry for this dynamic object. */ | |
479 | oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
480 | strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name, | |
481 | true, false); | |
482 | if (strindex == (bfd_size_type) -1) | |
483 | goto error_return; | |
484 | ||
485 | if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr)) | |
486 | { | |
487 | asection *sdyn; | |
488 | Elf_External_Dyn *dyncon, *dynconend; | |
489 | ||
490 | /* The hash table size did not change, which means that | |
491 | the dynamic object name was already entered. If we | |
492 | have already included this dynamic object in the | |
493 | link, just ignore it. There is no reason to include | |
494 | a particular dynamic object more than once. */ | |
495 | sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
496 | ".dynamic"); | |
497 | BFD_ASSERT (sdyn != NULL); | |
498 | ||
499 | dyncon = (Elf_External_Dyn *) sdyn->contents; | |
500 | dynconend = (Elf_External_Dyn *) (sdyn->contents + | |
501 | sdyn->_raw_size); | |
502 | for (; dyncon < dynconend; dyncon++) | |
503 | { | |
504 | Elf_Internal_Dyn dyn; | |
505 | ||
506 | elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon, | |
507 | &dyn); | |
508 | if (dyn.d_tag == DT_NEEDED | |
509 | && dyn.d_un.d_val == strindex) | |
510 | { | |
511 | if (buf != NULL) | |
512 | free (buf); | |
513 | return true; | |
514 | } | |
515 | } | |
516 | } | |
517 | ||
518 | if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex)) | |
519 | goto error_return; | |
520 | } | |
60a49e7f ILT |
521 | |
522 | /* Save the SONAME, if there is one, because sometimes the | |
523 | linker emulation code will need to know it. */ | |
524 | if (*name == '\0') | |
525 | name = bfd_get_filename (abfd); | |
526 | elf_dt_name (abfd) = name; | |
ede4eed4 KR |
527 | } |
528 | ||
529 | if (bfd_seek (abfd, | |
530 | hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym), | |
531 | SEEK_SET) != 0 | |
532 | || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd) | |
533 | != extsymcount * sizeof (Elf_External_Sym))) | |
534 | goto error_return; | |
535 | ||
536 | weaks = NULL; | |
537 | ||
538 | esymend = buf + extsymcount; | |
539 | for (esym = buf; esym < esymend; esym++, sym_hash++) | |
540 | { | |
541 | Elf_Internal_Sym sym; | |
542 | int bind; | |
543 | bfd_vma value; | |
544 | asection *sec; | |
545 | flagword flags; | |
546 | const char *name; | |
0cb70568 | 547 | struct elf_link_hash_entry *h; |
ede4eed4 | 548 | boolean definition; |
ee9f09cd | 549 | boolean size_change_ok, type_change_ok; |
452a5efb | 550 | boolean new_weakdef; |
ede4eed4 KR |
551 | |
552 | elf_swap_symbol_in (abfd, esym, &sym); | |
553 | ||
554 | flags = BSF_NO_FLAGS; | |
555 | sec = NULL; | |
556 | value = sym.st_value; | |
557 | *sym_hash = NULL; | |
558 | ||
559 | bind = ELF_ST_BIND (sym.st_info); | |
560 | if (bind == STB_LOCAL) | |
561 | { | |
562 | /* This should be impossible, since ELF requires that all | |
563 | global symbols follow all local symbols, and that sh_info | |
564 | point to the first global symbol. Unfortunatealy, Irix 5 | |
565 | screws this up. */ | |
566 | continue; | |
567 | } | |
568 | else if (bind == STB_GLOBAL) | |
569 | { | |
570 | if (sym.st_shndx != SHN_UNDEF | |
571 | && sym.st_shndx != SHN_COMMON) | |
572 | flags = BSF_GLOBAL; | |
573 | else | |
574 | flags = 0; | |
575 | } | |
576 | else if (bind == STB_WEAK) | |
577 | flags = BSF_WEAK; | |
578 | else | |
579 | { | |
580 | /* Leave it up to the processor backend. */ | |
581 | } | |
582 | ||
583 | if (sym.st_shndx == SHN_UNDEF) | |
584 | sec = bfd_und_section_ptr; | |
585 | else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE) | |
586 | { | |
587 | sec = section_from_elf_index (abfd, sym.st_shndx); | |
588 | if (sec != NULL) | |
589 | value -= sec->vma; | |
590 | else | |
591 | sec = bfd_abs_section_ptr; | |
592 | } | |
593 | else if (sym.st_shndx == SHN_ABS) | |
594 | sec = bfd_abs_section_ptr; | |
595 | else if (sym.st_shndx == SHN_COMMON) | |
596 | { | |
597 | sec = bfd_com_section_ptr; | |
598 | /* What ELF calls the size we call the value. What ELF | |
599 | calls the value we call the alignment. */ | |
600 | value = sym.st_size; | |
601 | } | |
602 | else | |
603 | { | |
604 | /* Leave it up to the processor backend. */ | |
605 | } | |
606 | ||
607 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); | |
608 | if (name == (const char *) NULL) | |
609 | goto error_return; | |
610 | ||
611 | if (add_symbol_hook) | |
612 | { | |
613 | if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec, | |
614 | &value)) | |
615 | goto error_return; | |
616 | ||
617 | /* The hook function sets the name to NULL if this symbol | |
618 | should be skipped for some reason. */ | |
619 | if (name == (const char *) NULL) | |
620 | continue; | |
621 | } | |
622 | ||
623 | /* Sanity check that all possibilities were handled. */ | |
624 | if (sec == (asection *) NULL) | |
625 | { | |
626 | bfd_set_error (bfd_error_bad_value); | |
627 | goto error_return; | |
628 | } | |
629 | ||
630 | if (bfd_is_und_section (sec) | |
631 | || bfd_is_com_section (sec)) | |
632 | definition = false; | |
633 | else | |
634 | definition = true; | |
635 | ||
ee9f09cd | 636 | size_change_ok = false; |
5b3b9ff6 | 637 | type_change_ok = get_elf_backend_data (abfd)->type_change_ok; |
ede4eed4 KR |
638 | if (info->hash->creator->flavour == bfd_target_elf_flavour) |
639 | { | |
640 | /* We need to look up the symbol now in order to get some of | |
641 | the dynamic object handling right. We pass the hash | |
642 | table entry in to _bfd_generic_link_add_one_symbol so | |
643 | that it does not have to look it up again. */ | |
8881b321 ILT |
644 | if (! bfd_is_und_section (sec)) |
645 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
646 | true, false, false); | |
647 | else | |
648 | h = ((struct elf_link_hash_entry *) | |
649 | bfd_wrapped_link_hash_lookup (abfd, info, name, true, | |
650 | false, false)); | |
ede4eed4 KR |
651 | if (h == NULL) |
652 | goto error_return; | |
653 | *sym_hash = h; | |
654 | ||
869b7d80 ILT |
655 | if (h->root.type == bfd_link_hash_new) |
656 | h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; | |
657 | ||
0cb70568 ILT |
658 | while (h->root.type == bfd_link_hash_indirect |
659 | || h->root.type == bfd_link_hash_warning) | |
660 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
661 | ||
ee9f09cd ILT |
662 | /* It's OK to change the type if it used to be a weak |
663 | definition. */ | |
5b3b9ff6 ILT |
664 | if (h->root.type == bfd_link_hash_defweak |
665 | || h->root.type == bfd_link_hash_undefweak) | |
666 | type_change_ok = true; | |
ee9f09cd ILT |
667 | |
668 | /* It's OK to change the size if it used to be a weak | |
669 | definition, or if it used to be undefined, or if we will | |
5b3b9ff6 ILT |
670 | be overriding an old definition. */ |
671 | if (type_change_ok | |
672 | || h->root.type == bfd_link_hash_undefined) | |
673 | size_change_ok = true; | |
8235c112 | 674 | |
ede4eed4 KR |
675 | /* If we are looking at a dynamic object, and this is a |
676 | definition, we need to see if it has already been defined | |
677 | by some other object. If it has, we want to use the | |
678 | existing definition, and we do not want to report a | |
679 | multiple symbol definition error; we do this by | |
4596421b ILT |
680 | clobbering sec to be bfd_und_section_ptr. We treat a |
681 | common symbol as a definition if the symbol in the shared | |
682 | library is a function, since common symbols always | |
683 | represent variables; this can cause confusion in | |
684 | principle, but any such confusion would seem to indicate | |
685 | an erroneous program or shared library. */ | |
ede4eed4 KR |
686 | if (dynamic && definition) |
687 | { | |
688 | if (h->root.type == bfd_link_hash_defined | |
3d7c42c9 ILT |
689 | || h->root.type == bfd_link_hash_defweak |
690 | || (h->root.type == bfd_link_hash_common | |
4596421b ILT |
691 | && (bind == STB_WEAK |
692 | || ELF_ST_TYPE (sym.st_info) == STT_FUNC))) | |
3d7c42c9 ILT |
693 | { |
694 | sec = bfd_und_section_ptr; | |
695 | definition = false; | |
ee9f09cd | 696 | size_change_ok = true; |
4596421b ILT |
697 | if (h->root.type == bfd_link_hash_common) |
698 | type_change_ok = true; | |
3d7c42c9 | 699 | } |
ede4eed4 KR |
700 | } |
701 | ||
702 | /* Similarly, if we are not looking at a dynamic object, and | |
703 | we have a definition, we want to override any definition | |
704 | we may have from a dynamic object. Symbols from regular | |
705 | files always take precedence over symbols from dynamic | |
706 | objects, even if they are defined after the dynamic | |
707 | object in the link. */ | |
708 | if (! dynamic | |
4596421b ILT |
709 | && (definition |
710 | || (bfd_is_com_section (sec) | |
711 | && (h->root.type == bfd_link_hash_defweak | |
712 | || h->type == STT_FUNC))) | |
ede4eed4 KR |
713 | && (h->root.type == bfd_link_hash_defined |
714 | || h->root.type == bfd_link_hash_defweak) | |
715 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
716 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
717 | == bfd_target_elf_flavour) | |
718 | && (elf_elfheader (h->root.u.def.section->owner)->e_type | |
719 | == ET_DYN)) | |
720 | { | |
721 | /* Change the hash table entry to undefined, and let | |
722 | _bfd_generic_link_add_one_symbol do the right thing | |
723 | with the new definition. */ | |
724 | h->root.type = bfd_link_hash_undefined; | |
725 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
ee9f09cd | 726 | size_change_ok = true; |
4596421b ILT |
727 | if (bfd_is_com_section (sec)) |
728 | type_change_ok = true; | |
ede4eed4 KR |
729 | } |
730 | } | |
731 | ||
732 | if (! (_bfd_generic_link_add_one_symbol | |
733 | (info, abfd, name, flags, sec, value, (const char *) NULL, | |
734 | false, collect, (struct bfd_link_hash_entry **) sym_hash))) | |
735 | goto error_return; | |
736 | ||
0cb70568 ILT |
737 | h = *sym_hash; |
738 | while (h->root.type == bfd_link_hash_indirect | |
739 | || h->root.type == bfd_link_hash_warning) | |
740 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
741 | *sym_hash = h; | |
742 | ||
452a5efb | 743 | new_weakdef = false; |
ede4eed4 KR |
744 | if (dynamic |
745 | && definition | |
746 | && (flags & BSF_WEAK) != 0 | |
747 | && ELF_ST_TYPE (sym.st_info) != STT_FUNC | |
748 | && info->hash->creator->flavour == bfd_target_elf_flavour | |
0cb70568 | 749 | && h->weakdef == NULL) |
ede4eed4 KR |
750 | { |
751 | /* Keep a list of all weak defined non function symbols from | |
752 | a dynamic object, using the weakdef field. Later in this | |
753 | function we will set the weakdef field to the correct | |
754 | value. We only put non-function symbols from dynamic | |
755 | objects on this list, because that happens to be the only | |
756 | time we need to know the normal symbol corresponding to a | |
757 | weak symbol, and the information is time consuming to | |
758 | figure out. If the weakdef field is not already NULL, | |
759 | then this symbol was already defined by some previous | |
760 | dynamic object, and we will be using that previous | |
761 | definition anyhow. */ | |
762 | ||
0cb70568 ILT |
763 | h->weakdef = weaks; |
764 | weaks = h; | |
452a5efb | 765 | new_weakdef = true; |
ede4eed4 KR |
766 | } |
767 | ||
768 | /* Get the alignment of a common symbol. */ | |
769 | if (sym.st_shndx == SHN_COMMON | |
0cb70568 ILT |
770 | && h->root.type == bfd_link_hash_common) |
771 | h->root.u.c.p->alignment_power = bfd_log2 (sym.st_value); | |
ede4eed4 KR |
772 | |
773 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
774 | { | |
775 | int old_flags; | |
776 | boolean dynsym; | |
777 | int new_flag; | |
778 | ||
779 | /* Remember the symbol size and type. */ | |
3d7c42c9 ILT |
780 | if (sym.st_size != 0 |
781 | && (definition || h->size == 0)) | |
ede4eed4 | 782 | { |
ee9f09cd | 783 | if (h->size != 0 && h->size != sym.st_size && ! size_change_ok) |
3d7c42c9 ILT |
784 | (*_bfd_error_handler) |
785 | ("Warning: size of symbol `%s' changed from %lu to %lu in %s", | |
786 | name, (unsigned long) h->size, (unsigned long) sym.st_size, | |
787 | bfd_get_filename (abfd)); | |
788 | ||
ede4eed4 KR |
789 | h->size = sym.st_size; |
790 | } | |
3d7c42c9 ILT |
791 | if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE |
792 | && (definition || h->type == STT_NOTYPE)) | |
ede4eed4 | 793 | { |
3d7c42c9 | 794 | if (h->type != STT_NOTYPE |
8235c112 | 795 | && h->type != ELF_ST_TYPE (sym.st_info) |
ee9f09cd | 796 | && ! type_change_ok) |
3d7c42c9 ILT |
797 | (*_bfd_error_handler) |
798 | ("Warning: type of symbol `%s' changed from %d to %d in %s", | |
799 | name, h->type, ELF_ST_TYPE (sym.st_info), | |
800 | bfd_get_filename (abfd)); | |
801 | ||
ede4eed4 KR |
802 | h->type = ELF_ST_TYPE (sym.st_info); |
803 | } | |
804 | ||
6c02f1a0 ILT |
805 | if (sym.st_other != 0 |
806 | && (definition || h->other == 0)) | |
807 | h->other = sym.st_other; | |
808 | ||
ede4eed4 KR |
809 | /* Set a flag in the hash table entry indicating the type of |
810 | reference or definition we just found. Keep a count of | |
811 | the number of dynamic symbols we find. A dynamic symbol | |
812 | is one which is referenced or defined by both a regular | |
440f3914 | 813 | object and a shared object. */ |
ede4eed4 KR |
814 | old_flags = h->elf_link_hash_flags; |
815 | dynsym = false; | |
816 | if (! dynamic) | |
817 | { | |
818 | if (! definition) | |
819 | new_flag = ELF_LINK_HASH_REF_REGULAR; | |
820 | else | |
821 | new_flag = ELF_LINK_HASH_DEF_REGULAR; | |
822 | if (info->shared | |
823 | || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
824 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0) | |
825 | dynsym = true; | |
826 | } | |
827 | else | |
828 | { | |
829 | if (! definition) | |
830 | new_flag = ELF_LINK_HASH_REF_DYNAMIC; | |
831 | else | |
832 | new_flag = ELF_LINK_HASH_DEF_DYNAMIC; | |
0db6249c | 833 | if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR |
1c4794f5 ILT |
834 | | ELF_LINK_HASH_REF_REGULAR)) != 0 |
835 | || (h->weakdef != NULL | |
440f3914 ILT |
836 | && ! new_weakdef |
837 | && h->weakdef->dynindx != -1)) | |
ede4eed4 KR |
838 | dynsym = true; |
839 | } | |
840 | ||
841 | h->elf_link_hash_flags |= new_flag; | |
842 | if (dynsym && h->dynindx == -1) | |
843 | { | |
844 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
845 | goto error_return; | |
452a5efb ILT |
846 | if (h->weakdef != NULL |
847 | && ! new_weakdef | |
848 | && h->weakdef->dynindx == -1) | |
849 | { | |
850 | if (! _bfd_elf_link_record_dynamic_symbol (info, | |
851 | h->weakdef)) | |
852 | goto error_return; | |
853 | } | |
ede4eed4 KR |
854 | } |
855 | } | |
856 | } | |
857 | ||
858 | /* Now set the weakdefs field correctly for all the weak defined | |
859 | symbols we found. The only way to do this is to search all the | |
860 | symbols. Since we only need the information for non functions in | |
861 | dynamic objects, that's the only time we actually put anything on | |
862 | the list WEAKS. We need this information so that if a regular | |
863 | object refers to a symbol defined weakly in a dynamic object, the | |
864 | real symbol in the dynamic object is also put in the dynamic | |
865 | symbols; we also must arrange for both symbols to point to the | |
866 | same memory location. We could handle the general case of symbol | |
867 | aliasing, but a general symbol alias can only be generated in | |
868 | assembler code, handling it correctly would be very time | |
869 | consuming, and other ELF linkers don't handle general aliasing | |
870 | either. */ | |
871 | while (weaks != NULL) | |
872 | { | |
873 | struct elf_link_hash_entry *hlook; | |
874 | asection *slook; | |
875 | bfd_vma vlook; | |
876 | struct elf_link_hash_entry **hpp; | |
877 | struct elf_link_hash_entry **hppend; | |
878 | ||
879 | hlook = weaks; | |
880 | weaks = hlook->weakdef; | |
881 | hlook->weakdef = NULL; | |
882 | ||
883 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defined | |
884 | || hlook->root.type == bfd_link_hash_defweak | |
885 | || hlook->root.type == bfd_link_hash_common | |
886 | || hlook->root.type == bfd_link_hash_indirect); | |
887 | slook = hlook->root.u.def.section; | |
888 | vlook = hlook->root.u.def.value; | |
889 | ||
890 | hpp = elf_sym_hashes (abfd); | |
891 | hppend = hpp + extsymcount; | |
892 | for (; hpp < hppend; hpp++) | |
893 | { | |
894 | struct elf_link_hash_entry *h; | |
895 | ||
896 | h = *hpp; | |
897 | if (h != NULL && h != hlook | |
d2bb6c79 | 898 | && h->root.type == bfd_link_hash_defined |
ede4eed4 KR |
899 | && h->root.u.def.section == slook |
900 | && h->root.u.def.value == vlook) | |
901 | { | |
902 | hlook->weakdef = h; | |
903 | ||
904 | /* If the weak definition is in the list of dynamic | |
905 | symbols, make sure the real definition is put there | |
906 | as well. */ | |
907 | if (hlook->dynindx != -1 | |
908 | && h->dynindx == -1) | |
909 | { | |
910 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
911 | goto error_return; | |
912 | } | |
913 | ||
440f3914 ILT |
914 | /* If the real definition is in the list of dynamic |
915 | symbols, make sure the weak definition is put there | |
916 | as well. If we don't do this, then the dynamic | |
917 | loader might not merge the entries for the real | |
918 | definition and the weak definition. */ | |
919 | if (h->dynindx != -1 | |
920 | && hlook->dynindx == -1) | |
921 | { | |
922 | if (! _bfd_elf_link_record_dynamic_symbol (info, hlook)) | |
923 | goto error_return; | |
924 | } | |
925 | ||
ede4eed4 KR |
926 | break; |
927 | } | |
928 | } | |
929 | } | |
930 | ||
931 | if (buf != NULL) | |
932 | { | |
933 | free (buf); | |
934 | buf = NULL; | |
935 | } | |
936 | ||
937 | /* If this object is the same format as the output object, and it is | |
938 | not a shared library, then let the backend look through the | |
939 | relocs. | |
940 | ||
941 | This is required to build global offset table entries and to | |
942 | arrange for dynamic relocs. It is not required for the | |
943 | particular common case of linking non PIC code, even when linking | |
944 | against shared libraries, but unfortunately there is no way of | |
945 | knowing whether an object file has been compiled PIC or not. | |
946 | Looking through the relocs is not particularly time consuming. | |
947 | The problem is that we must either (1) keep the relocs in memory, | |
948 | which causes the linker to require additional runtime memory or | |
949 | (2) read the relocs twice from the input file, which wastes time. | |
950 | This would be a good case for using mmap. | |
951 | ||
952 | I have no idea how to handle linking PIC code into a file of a | |
953 | different format. It probably can't be done. */ | |
954 | check_relocs = get_elf_backend_data (abfd)->check_relocs; | |
955 | if (! dynamic | |
956 | && abfd->xvec == info->hash->creator | |
957 | && check_relocs != NULL) | |
958 | { | |
959 | asection *o; | |
960 | ||
961 | for (o = abfd->sections; o != NULL; o = o->next) | |
962 | { | |
963 | Elf_Internal_Rela *internal_relocs; | |
964 | boolean ok; | |
965 | ||
966 | if ((o->flags & SEC_RELOC) == 0 | |
967 | || o->reloc_count == 0) | |
ede4eed4 KR |
968 | continue; |
969 | ||
c86158e5 ILT |
970 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) |
971 | (abfd, o, (PTR) NULL, | |
972 | (Elf_Internal_Rela *) NULL, | |
973 | info->keep_memory)); | |
ede4eed4 KR |
974 | if (internal_relocs == NULL) |
975 | goto error_return; | |
976 | ||
977 | ok = (*check_relocs) (abfd, info, o, internal_relocs); | |
978 | ||
979 | if (! info->keep_memory) | |
980 | free (internal_relocs); | |
981 | ||
982 | if (! ok) | |
983 | goto error_return; | |
984 | } | |
985 | } | |
986 | ||
1726b8f0 ILT |
987 | /* If this is a non-traditional, non-relocateable link, try to |
988 | optimize the handling of the .stab/.stabstr sections. */ | |
989 | if (! dynamic | |
990 | && ! info->relocateable | |
991 | && ! info->traditional_format | |
992 | && info->hash->creator->flavour == bfd_target_elf_flavour | |
993 | && (info->strip != strip_all && info->strip != strip_debugger)) | |
994 | { | |
995 | asection *stab, *stabstr; | |
996 | ||
997 | stab = bfd_get_section_by_name (abfd, ".stab"); | |
998 | if (stab != NULL) | |
999 | { | |
1000 | stabstr = bfd_get_section_by_name (abfd, ".stabstr"); | |
1001 | ||
1002 | if (stabstr != NULL) | |
1003 | { | |
1004 | struct bfd_elf_section_data *secdata; | |
1005 | ||
1006 | secdata = elf_section_data (stab); | |
1007 | if (! _bfd_link_section_stabs (abfd, | |
1008 | &elf_hash_table (info)->stab_info, | |
1009 | stab, stabstr, | |
1010 | &secdata->stab_info)) | |
1011 | goto error_return; | |
1012 | } | |
1013 | } | |
1014 | } | |
1015 | ||
ede4eed4 KR |
1016 | return true; |
1017 | ||
1018 | error_return: | |
1019 | if (buf != NULL) | |
1020 | free (buf); | |
1021 | if (dynbuf != NULL) | |
1022 | free (dynbuf); | |
1023 | return false; | |
1024 | } | |
1025 | ||
1026 | /* Create some sections which will be filled in with dynamic linking | |
1027 | information. ABFD is an input file which requires dynamic sections | |
1028 | to be created. The dynamic sections take up virtual memory space | |
1029 | when the final executable is run, so we need to create them before | |
1030 | addresses are assigned to the output sections. We work out the | |
1031 | actual contents and size of these sections later. */ | |
1032 | ||
1033 | boolean | |
1034 | elf_link_create_dynamic_sections (abfd, info) | |
1035 | bfd *abfd; | |
1036 | struct bfd_link_info *info; | |
1037 | { | |
1038 | flagword flags; | |
1039 | register asection *s; | |
1040 | struct elf_link_hash_entry *h; | |
1041 | struct elf_backend_data *bed; | |
1042 | ||
1043 | if (elf_hash_table (info)->dynamic_sections_created) | |
1044 | return true; | |
1045 | ||
1046 | /* Make sure that all dynamic sections use the same input BFD. */ | |
1047 | if (elf_hash_table (info)->dynobj == NULL) | |
1048 | elf_hash_table (info)->dynobj = abfd; | |
1049 | else | |
1050 | abfd = elf_hash_table (info)->dynobj; | |
1051 | ||
1052 | /* Note that we set the SEC_IN_MEMORY flag for all of these | |
1053 | sections. */ | |
ff12f303 ILT |
1054 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS |
1055 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
ede4eed4 KR |
1056 | |
1057 | /* A dynamically linked executable has a .interp section, but a | |
1058 | shared library does not. */ | |
1059 | if (! info->shared) | |
1060 | { | |
1061 | s = bfd_make_section (abfd, ".interp"); | |
1062 | if (s == NULL | |
1063 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
1064 | return false; | |
1065 | } | |
1066 | ||
1067 | s = bfd_make_section (abfd, ".dynsym"); | |
1068 | if (s == NULL | |
1069 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
1070 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1071 | return false; | |
1072 | ||
1073 | s = bfd_make_section (abfd, ".dynstr"); | |
1074 | if (s == NULL | |
1075 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
1076 | return false; | |
1077 | ||
1078 | /* Create a strtab to hold the dynamic symbol names. */ | |
1079 | if (elf_hash_table (info)->dynstr == NULL) | |
1080 | { | |
1081 | elf_hash_table (info)->dynstr = elf_stringtab_init (); | |
1082 | if (elf_hash_table (info)->dynstr == NULL) | |
1083 | return false; | |
1084 | } | |
1085 | ||
1086 | s = bfd_make_section (abfd, ".dynamic"); | |
1087 | if (s == NULL | |
1088 | || ! bfd_set_section_flags (abfd, s, flags) | |
1089 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1090 | return false; | |
1091 | ||
1092 | /* The special symbol _DYNAMIC is always set to the start of the | |
1093 | .dynamic section. This call occurs before we have processed the | |
1094 | symbols for any dynamic object, so we don't have to worry about | |
1095 | overriding a dynamic definition. We could set _DYNAMIC in a | |
1096 | linker script, but we only want to define it if we are, in fact, | |
1097 | creating a .dynamic section. We don't want to define it if there | |
1098 | is no .dynamic section, since on some ELF platforms the start up | |
1099 | code examines it to decide how to initialize the process. */ | |
1100 | h = NULL; | |
1101 | if (! (_bfd_generic_link_add_one_symbol | |
1102 | (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0, | |
1103 | (const char *) NULL, false, get_elf_backend_data (abfd)->collect, | |
1104 | (struct bfd_link_hash_entry **) &h))) | |
1105 | return false; | |
1106 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
1107 | h->type = STT_OBJECT; | |
1108 | ||
1109 | if (info->shared | |
1110 | && ! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
1111 | return false; | |
1112 | ||
1113 | s = bfd_make_section (abfd, ".hash"); | |
1114 | if (s == NULL | |
1115 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
1116 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1117 | return false; | |
1118 | ||
1119 | /* Let the backend create the rest of the sections. This lets the | |
1120 | backend set the right flags. The backend will normally create | |
1121 | the .got and .plt sections. */ | |
1122 | bed = get_elf_backend_data (abfd); | |
1123 | if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) | |
1124 | return false; | |
1125 | ||
1126 | elf_hash_table (info)->dynamic_sections_created = true; | |
1127 | ||
1128 | return true; | |
1129 | } | |
1130 | ||
1131 | /* Add an entry to the .dynamic table. */ | |
1132 | ||
1133 | boolean | |
1134 | elf_add_dynamic_entry (info, tag, val) | |
1135 | struct bfd_link_info *info; | |
1136 | bfd_vma tag; | |
1137 | bfd_vma val; | |
1138 | { | |
1139 | Elf_Internal_Dyn dyn; | |
1140 | bfd *dynobj; | |
1141 | asection *s; | |
1142 | size_t newsize; | |
1143 | bfd_byte *newcontents; | |
1144 | ||
1145 | dynobj = elf_hash_table (info)->dynobj; | |
1146 | ||
1147 | s = bfd_get_section_by_name (dynobj, ".dynamic"); | |
1148 | BFD_ASSERT (s != NULL); | |
1149 | ||
1150 | newsize = s->_raw_size + sizeof (Elf_External_Dyn); | |
58142f10 | 1151 | newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); |
ede4eed4 | 1152 | if (newcontents == NULL) |
58142f10 | 1153 | return false; |
ede4eed4 KR |
1154 | |
1155 | dyn.d_tag = tag; | |
1156 | dyn.d_un.d_val = val; | |
1157 | elf_swap_dyn_out (dynobj, &dyn, | |
1158 | (Elf_External_Dyn *) (newcontents + s->_raw_size)); | |
1159 | ||
1160 | s->_raw_size = newsize; | |
1161 | s->contents = newcontents; | |
1162 | ||
1163 | return true; | |
1164 | } | |
3b3753b8 | 1165 | \f |
ede4eed4 KR |
1166 | |
1167 | /* Read and swap the relocs for a section. They may have been cached. | |
1168 | If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL, | |
1169 | they are used as buffers to read into. They are known to be large | |
1170 | enough. If the INTERNAL_RELOCS relocs argument is NULL, the return | |
1171 | value is allocated using either malloc or bfd_alloc, according to | |
1172 | the KEEP_MEMORY argument. */ | |
1173 | ||
c86158e5 ILT |
1174 | Elf_Internal_Rela * |
1175 | NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs, | |
1176 | keep_memory) | |
ede4eed4 KR |
1177 | bfd *abfd; |
1178 | asection *o; | |
1179 | PTR external_relocs; | |
1180 | Elf_Internal_Rela *internal_relocs; | |
1181 | boolean keep_memory; | |
1182 | { | |
1183 | Elf_Internal_Shdr *rel_hdr; | |
1184 | PTR alloc1 = NULL; | |
1185 | Elf_Internal_Rela *alloc2 = NULL; | |
1186 | ||
1187 | if (elf_section_data (o)->relocs != NULL) | |
1188 | return elf_section_data (o)->relocs; | |
1189 | ||
1190 | if (o->reloc_count == 0) | |
1191 | return NULL; | |
1192 | ||
1193 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
1194 | ||
1195 | if (internal_relocs == NULL) | |
1196 | { | |
1197 | size_t size; | |
1198 | ||
1199 | size = o->reloc_count * sizeof (Elf_Internal_Rela); | |
1200 | if (keep_memory) | |
1201 | internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size); | |
1202 | else | |
58142f10 | 1203 | internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); |
ede4eed4 | 1204 | if (internal_relocs == NULL) |
58142f10 | 1205 | goto error_return; |
ede4eed4 KR |
1206 | } |
1207 | ||
1208 | if (external_relocs == NULL) | |
1209 | { | |
58142f10 | 1210 | alloc1 = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size); |
ede4eed4 | 1211 | if (alloc1 == NULL) |
58142f10 | 1212 | goto error_return; |
ede4eed4 KR |
1213 | external_relocs = alloc1; |
1214 | } | |
1215 | ||
1216 | if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0) | |
1217 | || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd) | |
1218 | != rel_hdr->sh_size)) | |
1219 | goto error_return; | |
1220 | ||
1221 | /* Swap in the relocs. For convenience, we always produce an | |
1222 | Elf_Internal_Rela array; if the relocs are Rel, we set the addend | |
1223 | to 0. */ | |
1224 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
1225 | { | |
1226 | Elf_External_Rel *erel; | |
1227 | Elf_External_Rel *erelend; | |
1228 | Elf_Internal_Rela *irela; | |
1229 | ||
1230 | erel = (Elf_External_Rel *) external_relocs; | |
1231 | erelend = erel + o->reloc_count; | |
1232 | irela = internal_relocs; | |
1233 | for (; erel < erelend; erel++, irela++) | |
1234 | { | |
1235 | Elf_Internal_Rel irel; | |
1236 | ||
1237 | elf_swap_reloc_in (abfd, erel, &irel); | |
1238 | irela->r_offset = irel.r_offset; | |
1239 | irela->r_info = irel.r_info; | |
1240 | irela->r_addend = 0; | |
1241 | } | |
1242 | } | |
1243 | else | |
1244 | { | |
1245 | Elf_External_Rela *erela; | |
1246 | Elf_External_Rela *erelaend; | |
1247 | Elf_Internal_Rela *irela; | |
1248 | ||
1249 | BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela)); | |
1250 | ||
1251 | erela = (Elf_External_Rela *) external_relocs; | |
1252 | erelaend = erela + o->reloc_count; | |
1253 | irela = internal_relocs; | |
1254 | for (; erela < erelaend; erela++, irela++) | |
1255 | elf_swap_reloca_in (abfd, erela, irela); | |
1256 | } | |
1257 | ||
1258 | /* Cache the results for next time, if we can. */ | |
1259 | if (keep_memory) | |
1260 | elf_section_data (o)->relocs = internal_relocs; | |
ff12f303 | 1261 | |
ede4eed4 KR |
1262 | if (alloc1 != NULL) |
1263 | free (alloc1); | |
1264 | ||
1265 | /* Don't free alloc2, since if it was allocated we are passing it | |
1266 | back (under the name of internal_relocs). */ | |
1267 | ||
1268 | return internal_relocs; | |
1269 | ||
1270 | error_return: | |
1271 | if (alloc1 != NULL) | |
1272 | free (alloc1); | |
1273 | if (alloc2 != NULL) | |
1274 | free (alloc2); | |
1275 | return NULL; | |
1276 | } | |
3b3753b8 | 1277 | \f |
ede4eed4 KR |
1278 | |
1279 | /* Record an assignment to a symbol made by a linker script. We need | |
1280 | this in case some dynamic object refers to this symbol. */ | |
1281 | ||
1282 | /*ARGSUSED*/ | |
1283 | boolean | |
1284 | NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide) | |
1285 | bfd *output_bfd; | |
1286 | struct bfd_link_info *info; | |
1287 | const char *name; | |
1288 | boolean provide; | |
1289 | { | |
1290 | struct elf_link_hash_entry *h; | |
1291 | ||
1292 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
1293 | return true; | |
1294 | ||
1295 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false); | |
1296 | if (h == NULL) | |
1297 | return false; | |
1298 | ||
869b7d80 ILT |
1299 | if (h->root.type == bfd_link_hash_new) |
1300 | h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; | |
1301 | ||
ede4eed4 KR |
1302 | /* If this symbol is being provided by the linker script, and it is |
1303 | currently defined by a dynamic object, but not by a regular | |
1304 | object, then mark it as undefined so that the generic linker will | |
1305 | force the correct value. */ | |
1306 | if (provide | |
1307 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
1308 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
1309 | h->root.type = bfd_link_hash_undefined; | |
1310 | ||
1311 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
1312 | h->type = STT_OBJECT; | |
1313 | ||
1314 | if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
1315 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0 | |
1316 | || info->shared) | |
1317 | && h->dynindx == -1) | |
1318 | { | |
1319 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
1320 | return false; | |
1321 | ||
1322 | /* If this is a weak defined symbol, and we know a corresponding | |
1323 | real symbol from the same dynamic object, make sure the real | |
1324 | symbol is also made into a dynamic symbol. */ | |
1325 | if (h->weakdef != NULL | |
1326 | && h->weakdef->dynindx == -1) | |
1327 | { | |
1328 | if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) | |
1329 | return false; | |
1330 | } | |
1331 | } | |
1332 | ||
1333 | return true; | |
1334 | } | |
3b3753b8 | 1335 | \f |
ede4eed4 KR |
1336 | |
1337 | /* Array used to determine the number of hash table buckets to use | |
1338 | based on the number of symbols there are. If there are fewer than | |
1339 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |
1340 | fewer than 37 we use 17 buckets, and so forth. We never use more | |
6b8ec6f3 | 1341 | than 32771 buckets. */ |
ede4eed4 KR |
1342 | |
1343 | static const size_t elf_buckets[] = | |
1344 | { | |
6b8ec6f3 ILT |
1345 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, |
1346 | 16411, 32771, 0 | |
ede4eed4 KR |
1347 | }; |
1348 | ||
1349 | /* Set up the sizes and contents of the ELF dynamic sections. This is | |
1350 | called by the ELF linker emulation before_allocation routine. We | |
1351 | must set the sizes of the sections before the linker sets the | |
1352 | addresses of the various sections. */ | |
1353 | ||
1354 | boolean | |
1355 | NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath, | |
148437ec ILT |
1356 | export_dynamic, filter_shlib, |
1357 | auxiliary_filter_shlib, info, sinterpptr) | |
ede4eed4 KR |
1358 | bfd *output_bfd; |
1359 | const char *soname; | |
1360 | const char *rpath; | |
1361 | boolean export_dynamic; | |
148437ec ILT |
1362 | const char *filter_shlib; |
1363 | const char *auxiliary_filter_shlib; | |
ede4eed4 KR |
1364 | struct bfd_link_info *info; |
1365 | asection **sinterpptr; | |
1366 | { | |
1367 | bfd *dynobj; | |
1368 | struct elf_backend_data *bed; | |
1369 | ||
1370 | *sinterpptr = NULL; | |
1371 | ||
1372 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
1373 | return true; | |
1374 | ||
ff12f303 ILT |
1375 | /* The backend may have to create some sections regardless of whether |
1376 | we're dynamic or not. */ | |
1377 | bed = get_elf_backend_data (output_bfd); | |
1378 | if (bed->elf_backend_always_size_sections | |
1379 | && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) | |
1380 | return false; | |
1381 | ||
ede4eed4 KR |
1382 | dynobj = elf_hash_table (info)->dynobj; |
1383 | ||
1384 | /* If there were no dynamic objects in the link, there is nothing to | |
1385 | do here. */ | |
1386 | if (dynobj == NULL) | |
1387 | return true; | |
1388 | ||
1389 | /* If we are supposed to export all symbols into the dynamic symbol | |
1390 | table (this is not the normal case), then do so. */ | |
1391 | if (export_dynamic) | |
1392 | { | |
1393 | struct elf_info_failed eif; | |
1394 | ||
1395 | eif.failed = false; | |
1396 | eif.info = info; | |
1397 | elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol, | |
1398 | (PTR) &eif); | |
1399 | if (eif.failed) | |
1400 | return false; | |
1401 | } | |
1402 | ||
1403 | if (elf_hash_table (info)->dynamic_sections_created) | |
1404 | { | |
1405 | struct elf_info_failed eif; | |
73a68447 | 1406 | struct elf_link_hash_entry *h; |
ede4eed4 KR |
1407 | bfd_size_type strsize; |
1408 | ||
1409 | *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); | |
1410 | BFD_ASSERT (*sinterpptr != NULL || info->shared); | |
1411 | ||
1412 | if (soname != NULL) | |
1413 | { | |
1414 | bfd_size_type indx; | |
1415 | ||
1416 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, soname, | |
1417 | true, true); | |
1418 | if (indx == (bfd_size_type) -1 | |
1419 | || ! elf_add_dynamic_entry (info, DT_SONAME, indx)) | |
1420 | return false; | |
ff12f303 | 1421 | } |
ede4eed4 | 1422 | |
951fe66d ILT |
1423 | if (info->symbolic) |
1424 | { | |
1425 | if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) | |
1426 | return false; | |
1427 | } | |
1428 | ||
ede4eed4 KR |
1429 | if (rpath != NULL) |
1430 | { | |
1431 | bfd_size_type indx; | |
1432 | ||
1433 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath, | |
1434 | true, true); | |
1435 | if (indx == (bfd_size_type) -1 | |
1436 | || ! elf_add_dynamic_entry (info, DT_RPATH, indx)) | |
1437 | return false; | |
1438 | } | |
1439 | ||
148437ec ILT |
1440 | if (filter_shlib != NULL) |
1441 | { | |
1442 | bfd_size_type indx; | |
1443 | ||
1444 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
1445 | filter_shlib, true, true); | |
1446 | if (indx == (bfd_size_type) -1 | |
1447 | || ! elf_add_dynamic_entry (info, DT_FILTER, indx)) | |
1448 | return false; | |
1449 | } | |
1450 | ||
1451 | if (auxiliary_filter_shlib != NULL) | |
1452 | { | |
1453 | bfd_size_type indx; | |
1454 | ||
1455 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, | |
1456 | auxiliary_filter_shlib, true, true); | |
1457 | if (indx == (bfd_size_type) -1 | |
1458 | || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) | |
1459 | return false; | |
1460 | } | |
1461 | ||
ede4eed4 KR |
1462 | /* Find all symbols which were defined in a dynamic object and make |
1463 | the backend pick a reasonable value for them. */ | |
1464 | eif.failed = false; | |
1465 | eif.info = info; | |
1466 | elf_link_hash_traverse (elf_hash_table (info), | |
1467 | elf_adjust_dynamic_symbol, | |
1468 | (PTR) &eif); | |
1469 | if (eif.failed) | |
1470 | return false; | |
1471 | ||
1472 | /* Add some entries to the .dynamic section. We fill in some of the | |
1473 | values later, in elf_bfd_final_link, but we must add the entries | |
1474 | now so that we know the final size of the .dynamic section. */ | |
73a68447 ILT |
1475 | h = elf_link_hash_lookup (elf_hash_table (info), "_init", false, |
1476 | false, false); | |
1477 | if (h != NULL | |
1478 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
1479 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
ede4eed4 KR |
1480 | { |
1481 | if (! elf_add_dynamic_entry (info, DT_INIT, 0)) | |
1482 | return false; | |
1483 | } | |
73a68447 ILT |
1484 | h = elf_link_hash_lookup (elf_hash_table (info), "_fini", false, |
1485 | false, false); | |
1486 | if (h != NULL | |
1487 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
1488 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
ede4eed4 KR |
1489 | { |
1490 | if (! elf_add_dynamic_entry (info, DT_FINI, 0)) | |
1491 | return false; | |
1492 | } | |
1493 | strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
1494 | if (! elf_add_dynamic_entry (info, DT_HASH, 0) | |
1495 | || ! elf_add_dynamic_entry (info, DT_STRTAB, 0) | |
1496 | || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0) | |
1497 | || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize) | |
1498 | || ! elf_add_dynamic_entry (info, DT_SYMENT, | |
1499 | sizeof (Elf_External_Sym))) | |
1500 | return false; | |
1501 | } | |
1502 | ||
1503 | /* The backend must work out the sizes of all the other dynamic | |
1504 | sections. */ | |
ede4eed4 KR |
1505 | if (! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) |
1506 | return false; | |
1507 | ||
1508 | if (elf_hash_table (info)->dynamic_sections_created) | |
1509 | { | |
1510 | size_t dynsymcount; | |
1511 | asection *s; | |
1512 | size_t i; | |
1513 | size_t bucketcount = 0; | |
1514 | Elf_Internal_Sym isym; | |
1515 | ||
1516 | /* Set the size of the .dynsym and .hash sections. We counted | |
1517 | the number of dynamic symbols in elf_link_add_object_symbols. | |
1518 | We will build the contents of .dynsym and .hash when we build | |
1519 | the final symbol table, because until then we do not know the | |
1520 | correct value to give the symbols. We built the .dynstr | |
1521 | section as we went along in elf_link_add_object_symbols. */ | |
1522 | dynsymcount = elf_hash_table (info)->dynsymcount; | |
1523 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
1524 | BFD_ASSERT (s != NULL); | |
1525 | s->_raw_size = dynsymcount * sizeof (Elf_External_Sym); | |
1526 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
1527 | if (s->contents == NULL && s->_raw_size != 0) | |
a9713b91 | 1528 | return false; |
ede4eed4 KR |
1529 | |
1530 | /* The first entry in .dynsym is a dummy symbol. */ | |
1531 | isym.st_value = 0; | |
1532 | isym.st_size = 0; | |
1533 | isym.st_name = 0; | |
1534 | isym.st_info = 0; | |
1535 | isym.st_other = 0; | |
1536 | isym.st_shndx = 0; | |
1537 | elf_swap_symbol_out (output_bfd, &isym, | |
cf9fb9f2 | 1538 | (PTR) (Elf_External_Sym *) s->contents); |
ede4eed4 KR |
1539 | |
1540 | for (i = 0; elf_buckets[i] != 0; i++) | |
1541 | { | |
1542 | bucketcount = elf_buckets[i]; | |
1543 | if (dynsymcount < elf_buckets[i + 1]) | |
1544 | break; | |
1545 | } | |
1546 | ||
1547 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
1548 | BFD_ASSERT (s != NULL); | |
1549 | s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8); | |
1550 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
1551 | if (s->contents == NULL) | |
a9713b91 | 1552 | return false; |
3fe22b98 | 1553 | memset (s->contents, 0, (size_t) s->_raw_size); |
ede4eed4 KR |
1554 | |
1555 | put_word (output_bfd, bucketcount, s->contents); | |
1556 | put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8)); | |
1557 | ||
1558 | elf_hash_table (info)->bucketcount = bucketcount; | |
1559 | ||
1560 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
1561 | BFD_ASSERT (s != NULL); | |
1562 | s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
1563 | ||
1564 | if (! elf_add_dynamic_entry (info, DT_NULL, 0)) | |
1565 | return false; | |
1566 | } | |
1567 | ||
1568 | return true; | |
1569 | } | |
3b3753b8 | 1570 | \f |
ede4eed4 KR |
1571 | |
1572 | /* This routine is used to export all defined symbols into the dynamic | |
1573 | symbol table. It is called via elf_link_hash_traverse. */ | |
1574 | ||
1575 | static boolean | |
1576 | elf_export_symbol (h, data) | |
1577 | struct elf_link_hash_entry *h; | |
1578 | PTR data; | |
1579 | { | |
1580 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
1581 | ||
1582 | if (h->dynindx == -1 | |
1583 | && (h->elf_link_hash_flags | |
1584 | & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0) | |
1585 | { | |
1586 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
1587 | { | |
1588 | eif->failed = true; | |
1589 | return false; | |
1590 | } | |
1591 | } | |
1592 | ||
1593 | return true; | |
1594 | } | |
3b3753b8 | 1595 | \f |
ede4eed4 KR |
1596 | |
1597 | /* Make the backend pick a good value for a dynamic symbol. This is | |
1598 | called via elf_link_hash_traverse, and also calls itself | |
1599 | recursively. */ | |
1600 | ||
1601 | static boolean | |
1602 | elf_adjust_dynamic_symbol (h, data) | |
1603 | struct elf_link_hash_entry *h; | |
1604 | PTR data; | |
1605 | { | |
1606 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
1607 | bfd *dynobj; | |
1608 | struct elf_backend_data *bed; | |
1609 | ||
869b7d80 ILT |
1610 | /* If this symbol was mentioned in a non-ELF file, try to set |
1611 | DEF_REGULAR and REF_REGULAR correctly. This is the only way to | |
1612 | permit a non-ELF file to correctly refer to a symbol defined in | |
1613 | an ELF dynamic object. */ | |
1614 | if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0) | |
1615 | { | |
1616 | if (h->root.type != bfd_link_hash_defined | |
1617 | && h->root.type != bfd_link_hash_defweak) | |
1618 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
1619 | else | |
1620 | { | |
e303e2e3 ILT |
1621 | if (h->root.u.def.section->owner != NULL |
1622 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
1623 | == bfd_target_elf_flavour)) | |
869b7d80 ILT |
1624 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; |
1625 | else | |
1626 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
1627 | } | |
1628 | ||
1629 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
1630 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
1631 | { | |
1632 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
1633 | { | |
1634 | eif->failed = true; | |
1635 | return false; | |
1636 | } | |
1637 | } | |
1638 | } | |
1639 | ||
ce6a7731 ILT |
1640 | /* If this is a final link, and the symbol was defined as a common |
1641 | symbol in a regular object file, and there was no definition in | |
1642 | any dynamic object, then the linker will have allocated space for | |
1643 | the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR | |
1644 | flag will not have been set. */ | |
1645 | if (h->root.type == bfd_link_hash_defined | |
1646 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
1647 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 | |
1648 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
1649 | && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) | |
1650 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
1651 | ||
951fe66d ILT |
1652 | /* If -Bsymbolic was used (which means to bind references to global |
1653 | symbols to the definition within the shared object), and this | |
1654 | symbol was defined in a regular object, then it actually doesn't | |
1655 | need a PLT entry. */ | |
1656 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 | |
1657 | && eif->info->shared | |
1658 | && eif->info->symbolic | |
1659 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
1660 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT; | |
1661 | ||
ede4eed4 KR |
1662 | /* If this symbol does not require a PLT entry, and it is not |
1663 | defined by a dynamic object, or is not referenced by a regular | |
452a5efb ILT |
1664 | object, ignore it. We do have to handle a weak defined symbol, |
1665 | even if no regular object refers to it, if we decided to add it | |
1666 | to the dynamic symbol table. FIXME: Do we normally need to worry | |
1667 | about symbols which are defined by one dynamic object and | |
1668 | referenced by another one? */ | |
ede4eed4 KR |
1669 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0 |
1670 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
1671 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
452a5efb ILT |
1672 | || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0 |
1673 | && (h->weakdef == NULL || h->weakdef->dynindx == -1)))) | |
ede4eed4 KR |
1674 | return true; |
1675 | ||
1676 | /* If we've already adjusted this symbol, don't do it again. This | |
1677 | can happen via a recursive call. */ | |
1678 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) | |
1679 | return true; | |
1680 | ||
1681 | /* Don't look at this symbol again. Note that we must set this | |
1682 | after checking the above conditions, because we may look at a | |
1683 | symbol once, decide not to do anything, and then get called | |
1684 | recursively later after REF_REGULAR is set below. */ | |
1685 | h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; | |
1686 | ||
1687 | /* If this is a weak definition, and we know a real definition, and | |
1688 | the real symbol is not itself defined by a regular object file, | |
1689 | then get a good value for the real definition. We handle the | |
1690 | real symbol first, for the convenience of the backend routine. | |
1691 | ||
1692 | Note that there is a confusing case here. If the real definition | |
1693 | is defined by a regular object file, we don't get the real symbol | |
1694 | from the dynamic object, but we do get the weak symbol. If the | |
1695 | processor backend uses a COPY reloc, then if some routine in the | |
1696 | dynamic object changes the real symbol, we will not see that | |
1697 | change in the corresponding weak symbol. This is the way other | |
1698 | ELF linkers work as well, and seems to be a result of the shared | |
1699 | library model. | |
1700 | ||
1701 | I will clarify this issue. Most SVR4 shared libraries define the | |
1702 | variable _timezone and define timezone as a weak synonym. The | |
1703 | tzset call changes _timezone. If you write | |
1704 | extern int timezone; | |
1705 | int _timezone = 5; | |
1706 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
1707 | you might expect that, since timezone is a synonym for _timezone, | |
1708 | the same number will print both times. However, if the processor | |
1709 | backend uses a COPY reloc, then actually timezone will be copied | |
1710 | into your process image, and, since you define _timezone | |
1711 | yourself, _timezone will not. Thus timezone and _timezone will | |
1712 | wind up at different memory locations. The tzset call will set | |
1713 | _timezone, leaving timezone unchanged. */ | |
1714 | ||
1715 | if (h->weakdef != NULL) | |
1716 | { | |
1717 | struct elf_link_hash_entry *weakdef; | |
1718 | ||
1719 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
1720 | || h->root.type == bfd_link_hash_defweak); | |
1721 | weakdef = h->weakdef; | |
1722 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined | |
1723 | || weakdef->root.type == bfd_link_hash_defweak); | |
1724 | BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); | |
1725 | if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
1726 | { | |
1727 | /* This symbol is defined by a regular object file, so we | |
1728 | will not do anything special. Clear weakdef for the | |
1729 | convenience of the processor backend. */ | |
1730 | h->weakdef = NULL; | |
1731 | } | |
1732 | else | |
1733 | { | |
1734 | /* There is an implicit reference by a regular object file | |
1735 | via the weak symbol. */ | |
1736 | weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
1737 | if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif)) | |
1738 | return false; | |
1739 | } | |
1740 | } | |
1741 | ||
1742 | dynobj = elf_hash_table (eif->info)->dynobj; | |
1743 | bed = get_elf_backend_data (dynobj); | |
1744 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) | |
1745 | { | |
1746 | eif->failed = true; | |
1747 | return false; | |
1748 | } | |
1749 | ||
1750 | return true; | |
1751 | } | |
1752 | \f | |
1753 | /* Final phase of ELF linker. */ | |
1754 | ||
1755 | /* A structure we use to avoid passing large numbers of arguments. */ | |
1756 | ||
1757 | struct elf_final_link_info | |
1758 | { | |
1759 | /* General link information. */ | |
1760 | struct bfd_link_info *info; | |
1761 | /* Output BFD. */ | |
1762 | bfd *output_bfd; | |
1763 | /* Symbol string table. */ | |
1764 | struct bfd_strtab_hash *symstrtab; | |
1765 | /* .dynsym section. */ | |
1766 | asection *dynsym_sec; | |
1767 | /* .hash section. */ | |
1768 | asection *hash_sec; | |
1769 | /* Buffer large enough to hold contents of any section. */ | |
1770 | bfd_byte *contents; | |
1771 | /* Buffer large enough to hold external relocs of any section. */ | |
1772 | PTR external_relocs; | |
1773 | /* Buffer large enough to hold internal relocs of any section. */ | |
1774 | Elf_Internal_Rela *internal_relocs; | |
1775 | /* Buffer large enough to hold external local symbols of any input | |
1776 | BFD. */ | |
1777 | Elf_External_Sym *external_syms; | |
1778 | /* Buffer large enough to hold internal local symbols of any input | |
1779 | BFD. */ | |
1780 | Elf_Internal_Sym *internal_syms; | |
1781 | /* Array large enough to hold a symbol index for each local symbol | |
1782 | of any input BFD. */ | |
1783 | long *indices; | |
1784 | /* Array large enough to hold a section pointer for each local | |
1785 | symbol of any input BFD. */ | |
1786 | asection **sections; | |
1787 | /* Buffer to hold swapped out symbols. */ | |
1788 | Elf_External_Sym *symbuf; | |
1789 | /* Number of swapped out symbols in buffer. */ | |
1790 | size_t symbuf_count; | |
1791 | /* Number of symbols which fit in symbuf. */ | |
1792 | size_t symbuf_size; | |
1793 | }; | |
1794 | ||
1795 | static boolean elf_link_output_sym | |
1796 | PARAMS ((struct elf_final_link_info *, const char *, | |
1797 | Elf_Internal_Sym *, asection *)); | |
1798 | static boolean elf_link_flush_output_syms | |
1799 | PARAMS ((struct elf_final_link_info *)); | |
1800 | static boolean elf_link_output_extsym | |
1801 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
1802 | static boolean elf_link_input_bfd | |
1803 | PARAMS ((struct elf_final_link_info *, bfd *)); | |
1804 | static boolean elf_reloc_link_order | |
1805 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
1806 | struct bfd_link_order *)); | |
1807 | ||
1808 | /* This struct is used to pass information to routines called via | |
1809 | elf_link_hash_traverse which must return failure. */ | |
1810 | ||
1811 | struct elf_finfo_failed | |
1812 | { | |
1813 | boolean failed; | |
1814 | struct elf_final_link_info *finfo; | |
ff12f303 | 1815 | }; |
ede4eed4 KR |
1816 | |
1817 | /* Do the final step of an ELF link. */ | |
1818 | ||
1819 | boolean | |
1820 | elf_bfd_final_link (abfd, info) | |
1821 | bfd *abfd; | |
1822 | struct bfd_link_info *info; | |
1823 | { | |
1824 | boolean dynamic; | |
1825 | bfd *dynobj; | |
1826 | struct elf_final_link_info finfo; | |
1827 | register asection *o; | |
1828 | register struct bfd_link_order *p; | |
1829 | register bfd *sub; | |
1830 | size_t max_contents_size; | |
1831 | size_t max_external_reloc_size; | |
1832 | size_t max_internal_reloc_count; | |
1833 | size_t max_sym_count; | |
1834 | file_ptr off; | |
1835 | Elf_Internal_Sym elfsym; | |
1836 | unsigned int i; | |
1837 | Elf_Internal_Shdr *symtab_hdr; | |
1838 | Elf_Internal_Shdr *symstrtab_hdr; | |
1839 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
1840 | struct elf_finfo_failed eif; | |
1841 | ||
1842 | if (info->shared) | |
1843 | abfd->flags |= DYNAMIC; | |
1844 | ||
1845 | dynamic = elf_hash_table (info)->dynamic_sections_created; | |
1846 | dynobj = elf_hash_table (info)->dynobj; | |
1847 | ||
1848 | finfo.info = info; | |
1849 | finfo.output_bfd = abfd; | |
1850 | finfo.symstrtab = elf_stringtab_init (); | |
1851 | if (finfo.symstrtab == NULL) | |
1852 | return false; | |
1853 | if (! dynamic) | |
1854 | { | |
1855 | finfo.dynsym_sec = NULL; | |
1856 | finfo.hash_sec = NULL; | |
1857 | } | |
1858 | else | |
1859 | { | |
1860 | finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); | |
1861 | finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); | |
1862 | BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL); | |
1863 | } | |
1864 | finfo.contents = NULL; | |
1865 | finfo.external_relocs = NULL; | |
1866 | finfo.internal_relocs = NULL; | |
1867 | finfo.external_syms = NULL; | |
1868 | finfo.internal_syms = NULL; | |
1869 | finfo.indices = NULL; | |
1870 | finfo.sections = NULL; | |
1871 | finfo.symbuf = NULL; | |
1872 | finfo.symbuf_count = 0; | |
1873 | ||
1874 | /* Count up the number of relocations we will output for each output | |
1875 | section, so that we know the sizes of the reloc sections. We | |
1876 | also figure out some maximum sizes. */ | |
1877 | max_contents_size = 0; | |
1878 | max_external_reloc_size = 0; | |
1879 | max_internal_reloc_count = 0; | |
1880 | max_sym_count = 0; | |
1881 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) | |
1882 | { | |
1883 | o->reloc_count = 0; | |
1884 | ||
1885 | for (p = o->link_order_head; p != NULL; p = p->next) | |
1886 | { | |
1887 | if (p->type == bfd_section_reloc_link_order | |
1888 | || p->type == bfd_symbol_reloc_link_order) | |
1889 | ++o->reloc_count; | |
1890 | else if (p->type == bfd_indirect_link_order) | |
1891 | { | |
1892 | asection *sec; | |
1893 | ||
1894 | sec = p->u.indirect.section; | |
1895 | ||
7ec49f91 ILT |
1896 | /* Mark all sections which are to be included in the |
1897 | link. This will normally be every section. We need | |
1898 | to do this so that we can identify any sections which | |
1899 | the linker has decided to not include. */ | |
ff0e4a93 | 1900 | sec->linker_mark = true; |
7ec49f91 | 1901 | |
ede4eed4 KR |
1902 | if (info->relocateable) |
1903 | o->reloc_count += sec->reloc_count; | |
1904 | ||
1905 | if (sec->_raw_size > max_contents_size) | |
1906 | max_contents_size = sec->_raw_size; | |
1907 | if (sec->_cooked_size > max_contents_size) | |
1908 | max_contents_size = sec->_cooked_size; | |
1909 | ||
1910 | /* We are interested in just local symbols, not all | |
1911 | symbols. */ | |
1912 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour) | |
1913 | { | |
1914 | size_t sym_count; | |
1915 | ||
1916 | if (elf_bad_symtab (sec->owner)) | |
1917 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size | |
1918 | / sizeof (Elf_External_Sym)); | |
1919 | else | |
1920 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; | |
1921 | ||
1922 | if (sym_count > max_sym_count) | |
1923 | max_sym_count = sym_count; | |
1924 | ||
1925 | if ((sec->flags & SEC_RELOC) != 0) | |
1926 | { | |
1927 | size_t ext_size; | |
1928 | ||
1929 | ext_size = elf_section_data (sec)->rel_hdr.sh_size; | |
1930 | if (ext_size > max_external_reloc_size) | |
1931 | max_external_reloc_size = ext_size; | |
1932 | if (sec->reloc_count > max_internal_reloc_count) | |
1933 | max_internal_reloc_count = sec->reloc_count; | |
1934 | } | |
1935 | } | |
1936 | } | |
1937 | } | |
1938 | ||
1939 | if (o->reloc_count > 0) | |
1940 | o->flags |= SEC_RELOC; | |
1941 | else | |
1942 | { | |
1943 | /* Explicitly clear the SEC_RELOC flag. The linker tends to | |
1944 | set it (this is probably a bug) and if it is set | |
1945 | assign_section_numbers will create a reloc section. */ | |
1946 | o->flags &=~ SEC_RELOC; | |
1947 | } | |
1948 | ||
1949 | /* If the SEC_ALLOC flag is not set, force the section VMA to | |
1950 | zero. This is done in elf_fake_sections as well, but forcing | |
1951 | the VMA to 0 here will ensure that relocs against these | |
1952 | sections are handled correctly. */ | |
2e0567eb ILT |
1953 | if ((o->flags & SEC_ALLOC) == 0 |
1954 | && ! o->user_set_vma) | |
ede4eed4 KR |
1955 | o->vma = 0; |
1956 | } | |
1957 | ||
1958 | /* Figure out the file positions for everything but the symbol table | |
1959 | and the relocs. We set symcount to force assign_section_numbers | |
1960 | to create a symbol table. */ | |
1961 | abfd->symcount = info->strip == strip_all ? 0 : 1; | |
1962 | BFD_ASSERT (! abfd->output_has_begun); | |
1963 | if (! _bfd_elf_compute_section_file_positions (abfd, info)) | |
1964 | goto error_return; | |
1965 | ||
1966 | /* That created the reloc sections. Set their sizes, and assign | |
1967 | them file positions, and allocate some buffers. */ | |
1968 | for (o = abfd->sections; o != NULL; o = o->next) | |
1969 | { | |
1970 | if ((o->flags & SEC_RELOC) != 0) | |
1971 | { | |
1972 | Elf_Internal_Shdr *rel_hdr; | |
1973 | register struct elf_link_hash_entry **p, **pend; | |
1974 | ||
1975 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
1976 | ||
1977 | rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count; | |
1978 | ||
1979 | /* The contents field must last into write_object_contents, | |
1980 | so we allocate it with bfd_alloc rather than malloc. */ | |
1981 | rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size); | |
1982 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) | |
a9713b91 | 1983 | goto error_return; |
ede4eed4 KR |
1984 | |
1985 | p = ((struct elf_link_hash_entry **) | |
58142f10 ILT |
1986 | bfd_malloc (o->reloc_count |
1987 | * sizeof (struct elf_link_hash_entry *))); | |
ede4eed4 | 1988 | if (p == NULL && o->reloc_count != 0) |
58142f10 | 1989 | goto error_return; |
ede4eed4 KR |
1990 | elf_section_data (o)->rel_hashes = p; |
1991 | pend = p + o->reloc_count; | |
1992 | for (; p < pend; p++) | |
1993 | *p = NULL; | |
1994 | ||
1995 | /* Use the reloc_count field as an index when outputting the | |
1996 | relocs. */ | |
1997 | o->reloc_count = 0; | |
1998 | } | |
1999 | } | |
2000 | ||
2001 | _bfd_elf_assign_file_positions_for_relocs (abfd); | |
2002 | ||
2003 | /* We have now assigned file positions for all the sections except | |
2004 | .symtab and .strtab. We start the .symtab section at the current | |
2005 | file position, and write directly to it. We build the .strtab | |
ab276dfa | 2006 | section in memory. */ |
ede4eed4 KR |
2007 | abfd->symcount = 0; |
2008 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
2009 | /* sh_name is set in prep_headers. */ | |
2010 | symtab_hdr->sh_type = SHT_SYMTAB; | |
2011 | symtab_hdr->sh_flags = 0; | |
2012 | symtab_hdr->sh_addr = 0; | |
2013 | symtab_hdr->sh_size = 0; | |
2014 | symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
2015 | /* sh_link is set in assign_section_numbers. */ | |
2016 | /* sh_info is set below. */ | |
2017 | /* sh_offset is set just below. */ | |
2018 | symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */ | |
2019 | ||
2020 | off = elf_tdata (abfd)->next_file_pos; | |
2021 | off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true); | |
2022 | ||
2023 | /* Note that at this point elf_tdata (abfd)->next_file_pos is | |
2024 | incorrect. We do not yet know the size of the .symtab section. | |
2025 | We correct next_file_pos below, after we do know the size. */ | |
2026 | ||
2027 | /* Allocate a buffer to hold swapped out symbols. This is to avoid | |
2028 | continuously seeking to the right position in the file. */ | |
2029 | if (! info->keep_memory || max_sym_count < 20) | |
2030 | finfo.symbuf_size = 20; | |
2031 | else | |
2032 | finfo.symbuf_size = max_sym_count; | |
2033 | finfo.symbuf = ((Elf_External_Sym *) | |
58142f10 | 2034 | bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym))); |
ede4eed4 | 2035 | if (finfo.symbuf == NULL) |
58142f10 | 2036 | goto error_return; |
ede4eed4 KR |
2037 | |
2038 | /* Start writing out the symbol table. The first symbol is always a | |
2039 | dummy symbol. */ | |
28c16b55 ILT |
2040 | if (info->strip != strip_all || info->relocateable) |
2041 | { | |
2042 | elfsym.st_value = 0; | |
2043 | elfsym.st_size = 0; | |
2044 | elfsym.st_info = 0; | |
2045 | elfsym.st_other = 0; | |
2046 | elfsym.st_shndx = SHN_UNDEF; | |
2047 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
2048 | &elfsym, bfd_und_section_ptr)) | |
2049 | goto error_return; | |
2050 | } | |
ede4eed4 KR |
2051 | |
2052 | #if 0 | |
2053 | /* Some standard ELF linkers do this, but we don't because it causes | |
2054 | bootstrap comparison failures. */ | |
2055 | /* Output a file symbol for the output file as the second symbol. | |
2056 | We output this even if we are discarding local symbols, although | |
2057 | I'm not sure if this is correct. */ | |
2058 | elfsym.st_value = 0; | |
2059 | elfsym.st_size = 0; | |
2060 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
2061 | elfsym.st_other = 0; | |
2062 | elfsym.st_shndx = SHN_ABS; | |
2063 | if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd), | |
2064 | &elfsym, bfd_abs_section_ptr)) | |
2065 | goto error_return; | |
2066 | #endif | |
2067 | ||
2068 | /* Output a symbol for each section. We output these even if we are | |
2069 | discarding local symbols, since they are used for relocs. These | |
2070 | symbols have no names. We store the index of each one in the | |
2071 | index field of the section, so that we can find it again when | |
2072 | outputting relocs. */ | |
28c16b55 | 2073 | if (info->strip != strip_all || info->relocateable) |
ede4eed4 | 2074 | { |
28c16b55 ILT |
2075 | elfsym.st_value = 0; |
2076 | elfsym.st_size = 0; | |
2077 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
2078 | elfsym.st_other = 0; | |
2079 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
2080 | { | |
2081 | o = section_from_elf_index (abfd, i); | |
2082 | if (o != NULL) | |
2083 | o->target_index = abfd->symcount; | |
2084 | elfsym.st_shndx = i; | |
2085 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
2086 | &elfsym, o)) | |
2087 | goto error_return; | |
2088 | } | |
ede4eed4 KR |
2089 | } |
2090 | ||
2091 | /* Allocate some memory to hold information read in from the input | |
2092 | files. */ | |
58142f10 ILT |
2093 | finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); |
2094 | finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size); | |
ede4eed4 | 2095 | finfo.internal_relocs = ((Elf_Internal_Rela *) |
58142f10 ILT |
2096 | bfd_malloc (max_internal_reloc_count |
2097 | * sizeof (Elf_Internal_Rela))); | |
ede4eed4 | 2098 | finfo.external_syms = ((Elf_External_Sym *) |
58142f10 ILT |
2099 | bfd_malloc (max_sym_count |
2100 | * sizeof (Elf_External_Sym))); | |
ede4eed4 | 2101 | finfo.internal_syms = ((Elf_Internal_Sym *) |
58142f10 ILT |
2102 | bfd_malloc (max_sym_count |
2103 | * sizeof (Elf_Internal_Sym))); | |
2104 | finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long)); | |
2105 | finfo.sections = ((asection **) | |
2106 | bfd_malloc (max_sym_count * sizeof (asection *))); | |
ede4eed4 KR |
2107 | if ((finfo.contents == NULL && max_contents_size != 0) |
2108 | || (finfo.external_relocs == NULL && max_external_reloc_size != 0) | |
2109 | || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0) | |
2110 | || (finfo.external_syms == NULL && max_sym_count != 0) | |
2111 | || (finfo.internal_syms == NULL && max_sym_count != 0) | |
2112 | || (finfo.indices == NULL && max_sym_count != 0) | |
2113 | || (finfo.sections == NULL && max_sym_count != 0)) | |
58142f10 | 2114 | goto error_return; |
ede4eed4 KR |
2115 | |
2116 | /* Since ELF permits relocations to be against local symbols, we | |
2117 | must have the local symbols available when we do the relocations. | |
2118 | Since we would rather only read the local symbols once, and we | |
2119 | would rather not keep them in memory, we handle all the | |
2120 | relocations for a single input file at the same time. | |
2121 | ||
2122 | Unfortunately, there is no way to know the total number of local | |
2123 | symbols until we have seen all of them, and the local symbol | |
2124 | indices precede the global symbol indices. This means that when | |
2125 | we are generating relocateable output, and we see a reloc against | |
2126 | a global symbol, we can not know the symbol index until we have | |
2127 | finished examining all the local symbols to see which ones we are | |
2128 | going to output. To deal with this, we keep the relocations in | |
2129 | memory, and don't output them until the end of the link. This is | |
2130 | an unfortunate waste of memory, but I don't see a good way around | |
2131 | it. Fortunately, it only happens when performing a relocateable | |
2132 | link, which is not the common case. FIXME: If keep_memory is set | |
2133 | we could write the relocs out and then read them again; I don't | |
2134 | know how bad the memory loss will be. */ | |
2135 | ||
2136 | for (sub = info->input_bfds; sub != NULL; sub = sub->next) | |
2137 | sub->output_has_begun = false; | |
2138 | for (o = abfd->sections; o != NULL; o = o->next) | |
2139 | { | |
2140 | for (p = o->link_order_head; p != NULL; p = p->next) | |
2141 | { | |
2142 | if (p->type == bfd_indirect_link_order | |
2143 | && (bfd_get_flavour (p->u.indirect.section->owner) | |
2144 | == bfd_target_elf_flavour)) | |
2145 | { | |
2146 | sub = p->u.indirect.section->owner; | |
2147 | if (! sub->output_has_begun) | |
2148 | { | |
2149 | if (! elf_link_input_bfd (&finfo, sub)) | |
2150 | goto error_return; | |
2151 | sub->output_has_begun = true; | |
2152 | } | |
2153 | } | |
2154 | else if (p->type == bfd_section_reloc_link_order | |
2155 | || p->type == bfd_symbol_reloc_link_order) | |
2156 | { | |
2157 | if (! elf_reloc_link_order (abfd, info, o, p)) | |
2158 | goto error_return; | |
2159 | } | |
2160 | else | |
2161 | { | |
2162 | if (! _bfd_default_link_order (abfd, info, o, p)) | |
2163 | goto error_return; | |
2164 | } | |
2165 | } | |
2166 | } | |
2167 | ||
2168 | /* That wrote out all the local symbols. Finish up the symbol table | |
2169 | with the global symbols. */ | |
2170 | ||
2171 | /* The sh_info field records the index of the first non local | |
2172 | symbol. */ | |
2173 | symtab_hdr->sh_info = abfd->symcount; | |
2174 | if (dynamic) | |
2175 | elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1; | |
2176 | ||
2177 | /* We get the global symbols from the hash table. */ | |
2178 | eif.failed = false; | |
2179 | eif.finfo = &finfo; | |
2180 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, | |
2181 | (PTR) &eif); | |
2182 | if (eif.failed) | |
2183 | return false; | |
2184 | ||
2185 | /* Flush all symbols to the file. */ | |
2186 | if (! elf_link_flush_output_syms (&finfo)) | |
2187 | return false; | |
2188 | ||
2189 | /* Now we know the size of the symtab section. */ | |
2190 | off += symtab_hdr->sh_size; | |
2191 | ||
2192 | /* Finish up and write out the symbol string table (.strtab) | |
2193 | section. */ | |
2194 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; | |
2195 | /* sh_name was set in prep_headers. */ | |
2196 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
2197 | symstrtab_hdr->sh_flags = 0; | |
2198 | symstrtab_hdr->sh_addr = 0; | |
2199 | symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab); | |
2200 | symstrtab_hdr->sh_entsize = 0; | |
2201 | symstrtab_hdr->sh_link = 0; | |
2202 | symstrtab_hdr->sh_info = 0; | |
2203 | /* sh_offset is set just below. */ | |
2204 | symstrtab_hdr->sh_addralign = 1; | |
2205 | ||
2206 | off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true); | |
2207 | elf_tdata (abfd)->next_file_pos = off; | |
2208 | ||
28c16b55 ILT |
2209 | if (abfd->symcount > 0) |
2210 | { | |
2211 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 | |
2212 | || ! _bfd_stringtab_emit (abfd, finfo.symstrtab)) | |
2213 | return false; | |
2214 | } | |
ede4eed4 KR |
2215 | |
2216 | /* Adjust the relocs to have the correct symbol indices. */ | |
2217 | for (o = abfd->sections; o != NULL; o = o->next) | |
2218 | { | |
2219 | struct elf_link_hash_entry **rel_hash; | |
2220 | Elf_Internal_Shdr *rel_hdr; | |
2221 | ||
2222 | if ((o->flags & SEC_RELOC) == 0) | |
2223 | continue; | |
2224 | ||
2225 | rel_hash = elf_section_data (o)->rel_hashes; | |
2226 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
2227 | for (i = 0; i < o->reloc_count; i++, rel_hash++) | |
2228 | { | |
2229 | if (*rel_hash == NULL) | |
2230 | continue; | |
ff12f303 | 2231 | |
ede4eed4 KR |
2232 | BFD_ASSERT ((*rel_hash)->indx >= 0); |
2233 | ||
2234 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
2235 | { | |
2236 | Elf_External_Rel *erel; | |
2237 | Elf_Internal_Rel irel; | |
2238 | ||
2239 | erel = (Elf_External_Rel *) rel_hdr->contents + i; | |
2240 | elf_swap_reloc_in (abfd, erel, &irel); | |
2241 | irel.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
2242 | ELF_R_TYPE (irel.r_info)); | |
2243 | elf_swap_reloc_out (abfd, &irel, erel); | |
2244 | } | |
2245 | else | |
2246 | { | |
2247 | Elf_External_Rela *erela; | |
2248 | Elf_Internal_Rela irela; | |
2249 | ||
2250 | BFD_ASSERT (rel_hdr->sh_entsize | |
2251 | == sizeof (Elf_External_Rela)); | |
2252 | ||
2253 | erela = (Elf_External_Rela *) rel_hdr->contents + i; | |
2254 | elf_swap_reloca_in (abfd, erela, &irela); | |
2255 | irela.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
2256 | ELF_R_TYPE (irela.r_info)); | |
2257 | elf_swap_reloca_out (abfd, &irela, erela); | |
2258 | } | |
2259 | } | |
2260 | ||
2261 | /* Set the reloc_count field to 0 to prevent write_relocs from | |
2262 | trying to swap the relocs out itself. */ | |
2263 | o->reloc_count = 0; | |
2264 | } | |
2265 | ||
2266 | /* If we are linking against a dynamic object, or generating a | |
2267 | shared library, finish up the dynamic linking information. */ | |
2268 | if (dynamic) | |
2269 | { | |
2270 | Elf_External_Dyn *dyncon, *dynconend; | |
2271 | ||
2272 | /* Fix up .dynamic entries. */ | |
2273 | o = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2274 | BFD_ASSERT (o != NULL); | |
2275 | ||
2276 | dyncon = (Elf_External_Dyn *) o->contents; | |
2277 | dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size); | |
2278 | for (; dyncon < dynconend; dyncon++) | |
2279 | { | |
2280 | Elf_Internal_Dyn dyn; | |
2281 | const char *name; | |
2282 | unsigned int type; | |
2283 | ||
2284 | elf_swap_dyn_in (dynobj, dyncon, &dyn); | |
2285 | ||
2286 | switch (dyn.d_tag) | |
2287 | { | |
2288 | default: | |
2289 | break; | |
2290 | ||
2291 | /* SVR4 linkers seem to set DT_INIT and DT_FINI based on | |
2292 | magic _init and _fini symbols. This is pretty ugly, | |
2293 | but we are compatible. */ | |
2294 | case DT_INIT: | |
2295 | name = "_init"; | |
2296 | goto get_sym; | |
2297 | case DT_FINI: | |
2298 | name = "_fini"; | |
2299 | get_sym: | |
2300 | { | |
2301 | struct elf_link_hash_entry *h; | |
2302 | ||
2303 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
2304 | false, false, true); | |
d6f672b8 ILT |
2305 | if (h != NULL |
2306 | && (h->root.type == bfd_link_hash_defined | |
2307 | || h->root.type == bfd_link_hash_defweak)) | |
ede4eed4 KR |
2308 | { |
2309 | dyn.d_un.d_val = h->root.u.def.value; | |
2310 | o = h->root.u.def.section; | |
2311 | if (o->output_section != NULL) | |
2312 | dyn.d_un.d_val += (o->output_section->vma | |
2313 | + o->output_offset); | |
2314 | else | |
d6f672b8 ILT |
2315 | { |
2316 | /* The symbol is imported from another shared | |
2317 | library and does not apply to this one. */ | |
2318 | dyn.d_un.d_val = 0; | |
2319 | } | |
2320 | ||
2321 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
ede4eed4 | 2322 | } |
ede4eed4 KR |
2323 | } |
2324 | break; | |
2325 | ||
2326 | case DT_HASH: | |
2327 | name = ".hash"; | |
2328 | goto get_vma; | |
2329 | case DT_STRTAB: | |
2330 | name = ".dynstr"; | |
2331 | goto get_vma; | |
2332 | case DT_SYMTAB: | |
2333 | name = ".dynsym"; | |
2334 | get_vma: | |
2335 | o = bfd_get_section_by_name (abfd, name); | |
2336 | BFD_ASSERT (o != NULL); | |
2337 | dyn.d_un.d_ptr = o->vma; | |
2338 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
2339 | break; | |
2340 | ||
2341 | case DT_REL: | |
2342 | case DT_RELA: | |
2343 | case DT_RELSZ: | |
2344 | case DT_RELASZ: | |
2345 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) | |
2346 | type = SHT_REL; | |
2347 | else | |
2348 | type = SHT_RELA; | |
2349 | dyn.d_un.d_val = 0; | |
2350 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
2351 | { | |
2352 | Elf_Internal_Shdr *hdr; | |
2353 | ||
2354 | hdr = elf_elfsections (abfd)[i]; | |
2355 | if (hdr->sh_type == type | |
2356 | && (hdr->sh_flags & SHF_ALLOC) != 0) | |
2357 | { | |
2358 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) | |
2359 | dyn.d_un.d_val += hdr->sh_size; | |
2360 | else | |
2361 | { | |
2362 | if (dyn.d_un.d_val == 0 | |
2363 | || hdr->sh_addr < dyn.d_un.d_val) | |
2364 | dyn.d_un.d_val = hdr->sh_addr; | |
2365 | } | |
2366 | } | |
2367 | } | |
2368 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
2369 | break; | |
2370 | } | |
2371 | } | |
2372 | } | |
2373 | ||
2374 | /* If we have created any dynamic sections, then output them. */ | |
2375 | if (dynobj != NULL) | |
2376 | { | |
2377 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) | |
2378 | goto error_return; | |
2379 | ||
2380 | for (o = dynobj->sections; o != NULL; o = o->next) | |
2381 | { | |
2382 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
2383 | || o->_raw_size == 0) | |
2384 | continue; | |
ff12f303 | 2385 | if ((o->flags & SEC_LINKER_CREATED) == 0) |
ede4eed4 KR |
2386 | { |
2387 | /* At this point, we are only interested in sections | |
ff12f303 | 2388 | created by elf_link_create_dynamic_sections. */ |
ede4eed4 KR |
2389 | continue; |
2390 | } | |
2391 | if ((elf_section_data (o->output_section)->this_hdr.sh_type | |
2392 | != SHT_STRTAB) | |
2393 | || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0) | |
2394 | { | |
2395 | if (! bfd_set_section_contents (abfd, o->output_section, | |
2396 | o->contents, o->output_offset, | |
2397 | o->_raw_size)) | |
2398 | goto error_return; | |
2399 | } | |
2400 | else | |
2401 | { | |
2402 | file_ptr off; | |
2403 | ||
2404 | /* The contents of the .dynstr section are actually in a | |
2405 | stringtab. */ | |
2406 | off = elf_section_data (o->output_section)->this_hdr.sh_offset; | |
2407 | if (bfd_seek (abfd, off, SEEK_SET) != 0 | |
2408 | || ! _bfd_stringtab_emit (abfd, | |
2409 | elf_hash_table (info)->dynstr)) | |
2410 | goto error_return; | |
2411 | } | |
2412 | } | |
2413 | } | |
2414 | ||
1726b8f0 ILT |
2415 | /* If we have optimized stabs strings, output them. */ |
2416 | if (elf_hash_table (info)->stab_info != NULL) | |
2417 | { | |
2418 | if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info)) | |
2419 | goto error_return; | |
2420 | } | |
2421 | ||
ede4eed4 KR |
2422 | if (finfo.symstrtab != NULL) |
2423 | _bfd_stringtab_free (finfo.symstrtab); | |
2424 | if (finfo.contents != NULL) | |
2425 | free (finfo.contents); | |
2426 | if (finfo.external_relocs != NULL) | |
2427 | free (finfo.external_relocs); | |
2428 | if (finfo.internal_relocs != NULL) | |
2429 | free (finfo.internal_relocs); | |
2430 | if (finfo.external_syms != NULL) | |
2431 | free (finfo.external_syms); | |
2432 | if (finfo.internal_syms != NULL) | |
2433 | free (finfo.internal_syms); | |
2434 | if (finfo.indices != NULL) | |
2435 | free (finfo.indices); | |
2436 | if (finfo.sections != NULL) | |
2437 | free (finfo.sections); | |
2438 | if (finfo.symbuf != NULL) | |
2439 | free (finfo.symbuf); | |
2440 | for (o = abfd->sections; o != NULL; o = o->next) | |
2441 | { | |
2442 | if ((o->flags & SEC_RELOC) != 0 | |
2443 | && elf_section_data (o)->rel_hashes != NULL) | |
2444 | free (elf_section_data (o)->rel_hashes); | |
2445 | } | |
2446 | ||
2447 | elf_tdata (abfd)->linker = true; | |
2448 | ||
2449 | return true; | |
2450 | ||
2451 | error_return: | |
2452 | if (finfo.symstrtab != NULL) | |
2453 | _bfd_stringtab_free (finfo.symstrtab); | |
2454 | if (finfo.contents != NULL) | |
2455 | free (finfo.contents); | |
2456 | if (finfo.external_relocs != NULL) | |
2457 | free (finfo.external_relocs); | |
2458 | if (finfo.internal_relocs != NULL) | |
2459 | free (finfo.internal_relocs); | |
2460 | if (finfo.external_syms != NULL) | |
2461 | free (finfo.external_syms); | |
2462 | if (finfo.internal_syms != NULL) | |
2463 | free (finfo.internal_syms); | |
2464 | if (finfo.indices != NULL) | |
2465 | free (finfo.indices); | |
2466 | if (finfo.sections != NULL) | |
2467 | free (finfo.sections); | |
2468 | if (finfo.symbuf != NULL) | |
2469 | free (finfo.symbuf); | |
2470 | for (o = abfd->sections; o != NULL; o = o->next) | |
2471 | { | |
2472 | if ((o->flags & SEC_RELOC) != 0 | |
2473 | && elf_section_data (o)->rel_hashes != NULL) | |
2474 | free (elf_section_data (o)->rel_hashes); | |
2475 | } | |
2476 | ||
2477 | return false; | |
2478 | } | |
2479 | ||
2480 | /* Add a symbol to the output symbol table. */ | |
2481 | ||
2482 | static boolean | |
2483 | elf_link_output_sym (finfo, name, elfsym, input_sec) | |
2484 | struct elf_final_link_info *finfo; | |
2485 | const char *name; | |
2486 | Elf_Internal_Sym *elfsym; | |
2487 | asection *input_sec; | |
2488 | { | |
2489 | boolean (*output_symbol_hook) PARAMS ((bfd *, | |
2490 | struct bfd_link_info *info, | |
2491 | const char *, | |
2492 | Elf_Internal_Sym *, | |
2493 | asection *)); | |
2494 | ||
2495 | output_symbol_hook = get_elf_backend_data (finfo->output_bfd)-> | |
2496 | elf_backend_link_output_symbol_hook; | |
2497 | if (output_symbol_hook != NULL) | |
2498 | { | |
2499 | if (! ((*output_symbol_hook) | |
2500 | (finfo->output_bfd, finfo->info, name, elfsym, input_sec))) | |
2501 | return false; | |
2502 | } | |
2503 | ||
2504 | if (name == (const char *) NULL || *name == '\0') | |
2505 | elfsym->st_name = 0; | |
2506 | else | |
2507 | { | |
2508 | elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab, | |
2509 | name, true, | |
2510 | false); | |
2511 | if (elfsym->st_name == (unsigned long) -1) | |
2512 | return false; | |
2513 | } | |
2514 | ||
2515 | if (finfo->symbuf_count >= finfo->symbuf_size) | |
2516 | { | |
2517 | if (! elf_link_flush_output_syms (finfo)) | |
2518 | return false; | |
2519 | } | |
2520 | ||
2521 | elf_swap_symbol_out (finfo->output_bfd, elfsym, | |
cf9fb9f2 | 2522 | (PTR) (finfo->symbuf + finfo->symbuf_count)); |
ede4eed4 KR |
2523 | ++finfo->symbuf_count; |
2524 | ||
2525 | ++finfo->output_bfd->symcount; | |
2526 | ||
2527 | return true; | |
2528 | } | |
2529 | ||
2530 | /* Flush the output symbols to the file. */ | |
2531 | ||
2532 | static boolean | |
2533 | elf_link_flush_output_syms (finfo) | |
2534 | struct elf_final_link_info *finfo; | |
2535 | { | |
28c16b55 ILT |
2536 | if (finfo->symbuf_count > 0) |
2537 | { | |
2538 | Elf_Internal_Shdr *symtab; | |
ede4eed4 | 2539 | |
28c16b55 | 2540 | symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr; |
ede4eed4 | 2541 | |
28c16b55 ILT |
2542 | if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size, |
2543 | SEEK_SET) != 0 | |
2544 | || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count, | |
2545 | sizeof (Elf_External_Sym), finfo->output_bfd) | |
2546 | != finfo->symbuf_count * sizeof (Elf_External_Sym))) | |
2547 | return false; | |
ede4eed4 | 2548 | |
28c16b55 | 2549 | symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym); |
ede4eed4 | 2550 | |
28c16b55 ILT |
2551 | finfo->symbuf_count = 0; |
2552 | } | |
ede4eed4 KR |
2553 | |
2554 | return true; | |
2555 | } | |
2556 | ||
2557 | /* Add an external symbol to the symbol table. This is called from | |
2558 | the hash table traversal routine. */ | |
2559 | ||
2560 | static boolean | |
2561 | elf_link_output_extsym (h, data) | |
2562 | struct elf_link_hash_entry *h; | |
2563 | PTR data; | |
2564 | { | |
2565 | struct elf_finfo_failed *eif = (struct elf_finfo_failed *) data; | |
2566 | struct elf_final_link_info *finfo = eif->finfo; | |
2567 | boolean strip; | |
2568 | Elf_Internal_Sym sym; | |
2569 | asection *input_sec; | |
2570 | ||
2571 | /* If we are not creating a shared library, and this symbol is | |
2572 | referenced by a shared library but is not defined anywhere, then | |
2573 | warn that it is undefined. If we do not do this, the runtime | |
2574 | linker will complain that the symbol is undefined when the | |
2575 | program is run. We don't have to worry about symbols that are | |
2576 | referenced by regular files, because we will already have issued | |
252239f8 | 2577 | warnings for them. */ |
ede4eed4 KR |
2578 | if (! finfo->info->relocateable |
2579 | && ! finfo->info->shared | |
2580 | && h->root.type == bfd_link_hash_undefined | |
2581 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0 | |
252239f8 | 2582 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) |
ede4eed4 KR |
2583 | { |
2584 | if (! ((*finfo->info->callbacks->undefined_symbol) | |
2585 | (finfo->info, h->root.root.string, h->root.u.undef.abfd, | |
2586 | (asection *) NULL, 0))) | |
2587 | { | |
2588 | eif->failed = true; | |
2589 | return false; | |
2590 | } | |
2591 | } | |
2592 | ||
2593 | /* We don't want to output symbols that have never been mentioned by | |
2594 | a regular file, or that we have been told to strip. However, if | |
2595 | h->indx is set to -2, the symbol is used by a reloc and we must | |
2596 | output it. */ | |
2597 | if (h->indx == -2) | |
2598 | strip = false; | |
2599 | else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
2600 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
2601 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
2602 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
2603 | strip = true; | |
2604 | else if (finfo->info->strip == strip_all | |
2605 | || (finfo->info->strip == strip_some | |
2606 | && bfd_hash_lookup (finfo->info->keep_hash, | |
2607 | h->root.root.string, | |
2608 | false, false) == NULL)) | |
2609 | strip = true; | |
2610 | else | |
2611 | strip = false; | |
2612 | ||
2613 | /* If we're stripping it, and it's not a dynamic symbol, there's | |
2614 | nothing else to do. */ | |
2615 | if (strip && h->dynindx == -1) | |
2616 | return true; | |
2617 | ||
2618 | sym.st_value = 0; | |
2619 | sym.st_size = h->size; | |
6c02f1a0 | 2620 | sym.st_other = h->other; |
ede4eed4 KR |
2621 | if (h->root.type == bfd_link_hash_undefweak |
2622 | || h->root.type == bfd_link_hash_defweak) | |
2623 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); | |
2624 | else | |
2625 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); | |
2626 | ||
2627 | switch (h->root.type) | |
2628 | { | |
2629 | default: | |
2630 | case bfd_link_hash_new: | |
2631 | abort (); | |
2632 | return false; | |
2633 | ||
2634 | case bfd_link_hash_undefined: | |
2635 | input_sec = bfd_und_section_ptr; | |
2636 | sym.st_shndx = SHN_UNDEF; | |
2637 | break; | |
2638 | ||
2639 | case bfd_link_hash_undefweak: | |
2640 | input_sec = bfd_und_section_ptr; | |
2641 | sym.st_shndx = SHN_UNDEF; | |
2642 | break; | |
2643 | ||
2644 | case bfd_link_hash_defined: | |
2645 | case bfd_link_hash_defweak: | |
2646 | { | |
2647 | input_sec = h->root.u.def.section; | |
2648 | if (input_sec->output_section != NULL) | |
2649 | { | |
2650 | sym.st_shndx = | |
2651 | _bfd_elf_section_from_bfd_section (finfo->output_bfd, | |
2652 | input_sec->output_section); | |
2653 | if (sym.st_shndx == (unsigned short) -1) | |
2654 | { | |
2655 | eif->failed = true; | |
2656 | return false; | |
2657 | } | |
2658 | ||
2659 | /* ELF symbols in relocateable files are section relative, | |
2660 | but in nonrelocateable files they are virtual | |
2661 | addresses. */ | |
2662 | sym.st_value = h->root.u.def.value + input_sec->output_offset; | |
2663 | if (! finfo->info->relocateable) | |
2664 | sym.st_value += input_sec->output_section->vma; | |
2665 | } | |
2666 | else | |
2667 | { | |
2668 | BFD_ASSERT ((bfd_get_flavour (input_sec->owner) | |
2669 | == bfd_target_elf_flavour) | |
2670 | && elf_elfheader (input_sec->owner)->e_type == ET_DYN); | |
2671 | sym.st_shndx = SHN_UNDEF; | |
2672 | input_sec = bfd_und_section_ptr; | |
2673 | } | |
2674 | } | |
2675 | break; | |
2676 | ||
2677 | case bfd_link_hash_common: | |
2678 | input_sec = bfd_com_section_ptr; | |
2679 | sym.st_shndx = SHN_COMMON; | |
2680 | sym.st_value = 1 << h->root.u.c.p->alignment_power; | |
2681 | break; | |
2682 | ||
2683 | case bfd_link_hash_indirect: | |
2684 | case bfd_link_hash_warning: | |
1f4ae0d6 ILT |
2685 | /* We can't represent these symbols in ELF. A warning symbol |
2686 | may have come from a .gnu.warning.SYMBOL section anyhow. We | |
2687 | just put the target symbol in the hash table. If the target | |
2688 | symbol does not really exist, don't do anything. */ | |
2689 | if (h->root.u.i.link->type == bfd_link_hash_new) | |
2690 | return true; | |
0cb70568 ILT |
2691 | return (elf_link_output_extsym |
2692 | ((struct elf_link_hash_entry *) h->root.u.i.link, data)); | |
ede4eed4 KR |
2693 | } |
2694 | ||
2695 | /* If this symbol should be put in the .dynsym section, then put it | |
2696 | there now. We have already know the symbol index. We also fill | |
2697 | in the entry in the .hash section. */ | |
2698 | if (h->dynindx != -1 | |
2699 | && elf_hash_table (finfo->info)->dynamic_sections_created) | |
2700 | { | |
2701 | struct elf_backend_data *bed; | |
2702 | size_t bucketcount; | |
2703 | size_t bucket; | |
2704 | bfd_byte *bucketpos; | |
2705 | bfd_vma chain; | |
2706 | ||
2707 | sym.st_name = h->dynstr_index; | |
2708 | ||
2709 | /* Give the processor backend a chance to tweak the symbol | |
2710 | value, and also to finish up anything that needs to be done | |
2711 | for this symbol. */ | |
2712 | bed = get_elf_backend_data (finfo->output_bfd); | |
2713 | if (! ((*bed->elf_backend_finish_dynamic_symbol) | |
2714 | (finfo->output_bfd, finfo->info, h, &sym))) | |
2715 | { | |
2716 | eif->failed = true; | |
2717 | return false; | |
2718 | } | |
2719 | ||
2720 | elf_swap_symbol_out (finfo->output_bfd, &sym, | |
cf9fb9f2 ILT |
2721 | (PTR) (((Elf_External_Sym *) |
2722 | finfo->dynsym_sec->contents) | |
2723 | + h->dynindx)); | |
ede4eed4 KR |
2724 | |
2725 | bucketcount = elf_hash_table (finfo->info)->bucketcount; | |
2726 | bucket = (bfd_elf_hash ((const unsigned char *) h->root.root.string) | |
2727 | % bucketcount); | |
2728 | bucketpos = ((bfd_byte *) finfo->hash_sec->contents | |
2729 | + (bucket + 2) * (ARCH_SIZE / 8)); | |
2730 | chain = get_word (finfo->output_bfd, bucketpos); | |
2731 | put_word (finfo->output_bfd, h->dynindx, bucketpos); | |
2732 | put_word (finfo->output_bfd, chain, | |
2733 | ((bfd_byte *) finfo->hash_sec->contents | |
2734 | + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8))); | |
2735 | } | |
2736 | ||
2737 | /* If we're stripping it, then it was just a dynamic symbol, and | |
2738 | there's nothing else to do. */ | |
2739 | if (strip) | |
2740 | return true; | |
2741 | ||
2742 | h->indx = finfo->output_bfd->symcount; | |
2743 | ||
2744 | if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec)) | |
2745 | { | |
2746 | eif->failed = true; | |
2747 | return false; | |
2748 | } | |
2749 | ||
2750 | return true; | |
2751 | } | |
2752 | ||
2753 | /* Link an input file into the linker output file. This function | |
2754 | handles all the sections and relocations of the input file at once. | |
2755 | This is so that we only have to read the local symbols once, and | |
2756 | don't have to keep them in memory. */ | |
2757 | ||
2758 | static boolean | |
2759 | elf_link_input_bfd (finfo, input_bfd) | |
2760 | struct elf_final_link_info *finfo; | |
2761 | bfd *input_bfd; | |
2762 | { | |
2763 | boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *, | |
2764 | bfd *, asection *, bfd_byte *, | |
2765 | Elf_Internal_Rela *, | |
2766 | Elf_Internal_Sym *, asection **)); | |
2767 | bfd *output_bfd; | |
2768 | Elf_Internal_Shdr *symtab_hdr; | |
2769 | size_t locsymcount; | |
2770 | size_t extsymoff; | |
c86158e5 | 2771 | Elf_External_Sym *external_syms; |
ede4eed4 KR |
2772 | Elf_External_Sym *esym; |
2773 | Elf_External_Sym *esymend; | |
2774 | Elf_Internal_Sym *isym; | |
2775 | long *pindex; | |
2776 | asection **ppsection; | |
2777 | asection *o; | |
2778 | ||
2779 | output_bfd = finfo->output_bfd; | |
2780 | relocate_section = | |
2781 | get_elf_backend_data (output_bfd)->elf_backend_relocate_section; | |
2782 | ||
2783 | /* If this is a dynamic object, we don't want to do anything here: | |
2784 | we don't want the local symbols, and we don't want the section | |
2785 | contents. */ | |
2786 | if (elf_elfheader (input_bfd)->e_type == ET_DYN) | |
2787 | return true; | |
2788 | ||
2789 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
2790 | if (elf_bad_symtab (input_bfd)) | |
2791 | { | |
2792 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
2793 | extsymoff = 0; | |
2794 | } | |
2795 | else | |
2796 | { | |
2797 | locsymcount = symtab_hdr->sh_info; | |
2798 | extsymoff = symtab_hdr->sh_info; | |
2799 | } | |
2800 | ||
2801 | /* Read the local symbols. */ | |
c86158e5 ILT |
2802 | if (symtab_hdr->contents != NULL) |
2803 | external_syms = (Elf_External_Sym *) symtab_hdr->contents; | |
2804 | else if (locsymcount == 0) | |
2805 | external_syms = NULL; | |
2806 | else | |
2807 | { | |
2808 | external_syms = finfo->external_syms; | |
2809 | if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
2810 | || (bfd_read (external_syms, sizeof (Elf_External_Sym), | |
ede4eed4 | 2811 | locsymcount, input_bfd) |
c86158e5 ILT |
2812 | != locsymcount * sizeof (Elf_External_Sym))) |
2813 | return false; | |
2814 | } | |
ede4eed4 KR |
2815 | |
2816 | /* Swap in the local symbols and write out the ones which we know | |
2817 | are going into the output file. */ | |
c86158e5 | 2818 | esym = external_syms; |
ede4eed4 KR |
2819 | esymend = esym + locsymcount; |
2820 | isym = finfo->internal_syms; | |
2821 | pindex = finfo->indices; | |
2822 | ppsection = finfo->sections; | |
2823 | for (; esym < esymend; esym++, isym++, pindex++, ppsection++) | |
2824 | { | |
2825 | asection *isec; | |
2826 | const char *name; | |
2827 | Elf_Internal_Sym osym; | |
2828 | ||
2829 | elf_swap_symbol_in (input_bfd, esym, isym); | |
2830 | *pindex = -1; | |
2831 | ||
2832 | if (elf_bad_symtab (input_bfd)) | |
2833 | { | |
2834 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) | |
2835 | { | |
2836 | *ppsection = NULL; | |
2837 | continue; | |
2838 | } | |
2839 | } | |
2840 | ||
2841 | if (isym->st_shndx == SHN_UNDEF) | |
2842 | isec = bfd_und_section_ptr; | |
2843 | else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE) | |
2844 | isec = section_from_elf_index (input_bfd, isym->st_shndx); | |
2845 | else if (isym->st_shndx == SHN_ABS) | |
2846 | isec = bfd_abs_section_ptr; | |
2847 | else if (isym->st_shndx == SHN_COMMON) | |
2848 | isec = bfd_com_section_ptr; | |
2849 | else | |
2850 | { | |
2851 | /* Who knows? */ | |
2852 | isec = NULL; | |
2853 | } | |
2854 | ||
2855 | *ppsection = isec; | |
2856 | ||
2857 | /* Don't output the first, undefined, symbol. */ | |
c86158e5 | 2858 | if (esym == external_syms) |
ede4eed4 KR |
2859 | continue; |
2860 | ||
2861 | /* If we are stripping all symbols, we don't want to output this | |
2862 | one. */ | |
2863 | if (finfo->info->strip == strip_all) | |
2864 | continue; | |
2865 | ||
2866 | /* We never output section symbols. Instead, we use the section | |
2867 | symbol of the corresponding section in the output file. */ | |
2868 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
2869 | continue; | |
2870 | ||
2871 | /* If we are discarding all local symbols, we don't want to | |
2872 | output this one. If we are generating a relocateable output | |
2873 | file, then some of the local symbols may be required by | |
2874 | relocs; we output them below as we discover that they are | |
2875 | needed. */ | |
2876 | if (finfo->info->discard == discard_all) | |
2877 | continue; | |
2878 | ||
2879 | /* Get the name of the symbol. */ | |
2880 | name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | |
2881 | isym->st_name); | |
2882 | if (name == NULL) | |
2883 | return false; | |
2884 | ||
2885 | /* See if we are discarding symbols with this name. */ | |
2886 | if ((finfo->info->strip == strip_some | |
2887 | && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false) | |
2888 | == NULL)) | |
2889 | || (finfo->info->discard == discard_l | |
2890 | && strncmp (name, finfo->info->lprefix, | |
2891 | finfo->info->lprefix_len) == 0)) | |
2892 | continue; | |
2893 | ||
2894 | /* If we get here, we are going to output this symbol. */ | |
2895 | ||
2896 | osym = *isym; | |
2897 | ||
2898 | /* Adjust the section index for the output file. */ | |
2899 | osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
2900 | isec->output_section); | |
2901 | if (osym.st_shndx == (unsigned short) -1) | |
2902 | return false; | |
2903 | ||
2904 | *pindex = output_bfd->symcount; | |
2905 | ||
2906 | /* ELF symbols in relocateable files are section relative, but | |
2907 | in executable files they are virtual addresses. Note that | |
2908 | this code assumes that all ELF sections have an associated | |
2909 | BFD section with a reasonable value for output_offset; below | |
2910 | we assume that they also have a reasonable value for | |
2911 | output_section. Any special sections must be set up to meet | |
2912 | these requirements. */ | |
2913 | osym.st_value += isec->output_offset; | |
2914 | if (! finfo->info->relocateable) | |
2915 | osym.st_value += isec->output_section->vma; | |
2916 | ||
2917 | if (! elf_link_output_sym (finfo, name, &osym, isec)) | |
2918 | return false; | |
2919 | } | |
2920 | ||
2921 | /* Relocate the contents of each section. */ | |
2922 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
2923 | { | |
c86158e5 ILT |
2924 | bfd_byte *contents; |
2925 | ||
ff0e4a93 | 2926 | if (! o->linker_mark) |
7ec49f91 ILT |
2927 | { |
2928 | /* This section was omitted from the link. */ | |
2929 | continue; | |
2930 | } | |
2931 | ||
1726b8f0 ILT |
2932 | if ((o->flags & SEC_HAS_CONTENTS) == 0 |
2933 | || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0)) | |
ede4eed4 KR |
2934 | continue; |
2935 | ||
ff12f303 | 2936 | if ((o->flags & SEC_LINKER_CREATED) != 0) |
ede4eed4 | 2937 | { |
ff12f303 ILT |
2938 | /* Section was created by elf_link_create_dynamic_sections |
2939 | or somesuch. */ | |
ede4eed4 KR |
2940 | continue; |
2941 | } | |
2942 | ||
c86158e5 ILT |
2943 | /* Get the contents of the section. They have been cached by a |
2944 | relaxation routine. Note that o is a section in an input | |
2945 | file, so the contents field will not have been set by any of | |
2946 | the routines which work on output files. */ | |
2947 | if (elf_section_data (o)->this_hdr.contents != NULL) | |
2948 | contents = elf_section_data (o)->this_hdr.contents; | |
2949 | else | |
2950 | { | |
2951 | contents = finfo->contents; | |
2952 | if (! bfd_get_section_contents (input_bfd, o, contents, | |
2953 | (file_ptr) 0, o->_raw_size)) | |
2954 | return false; | |
2955 | } | |
ede4eed4 KR |
2956 | |
2957 | if ((o->flags & SEC_RELOC) != 0) | |
2958 | { | |
2959 | Elf_Internal_Rela *internal_relocs; | |
2960 | ||
2961 | /* Get the swapped relocs. */ | |
c86158e5 ILT |
2962 | internal_relocs = (NAME(_bfd_elf,link_read_relocs) |
2963 | (input_bfd, o, finfo->external_relocs, | |
2964 | finfo->internal_relocs, false)); | |
ede4eed4 KR |
2965 | if (internal_relocs == NULL |
2966 | && o->reloc_count > 0) | |
2967 | return false; | |
2968 | ||
2969 | /* Relocate the section by invoking a back end routine. | |
2970 | ||
2971 | The back end routine is responsible for adjusting the | |
2972 | section contents as necessary, and (if using Rela relocs | |
2973 | and generating a relocateable output file) adjusting the | |
2974 | reloc addend as necessary. | |
2975 | ||
2976 | The back end routine does not have to worry about setting | |
2977 | the reloc address or the reloc symbol index. | |
2978 | ||
2979 | The back end routine is given a pointer to the swapped in | |
2980 | internal symbols, and can access the hash table entries | |
2981 | for the external symbols via elf_sym_hashes (input_bfd). | |
2982 | ||
2983 | When generating relocateable output, the back end routine | |
2984 | must handle STB_LOCAL/STT_SECTION symbols specially. The | |
2985 | output symbol is going to be a section symbol | |
2986 | corresponding to the output section, which will require | |
2987 | the addend to be adjusted. */ | |
2988 | ||
2989 | if (! (*relocate_section) (output_bfd, finfo->info, | |
c86158e5 | 2990 | input_bfd, o, contents, |
ede4eed4 KR |
2991 | internal_relocs, |
2992 | finfo->internal_syms, | |
2993 | finfo->sections)) | |
2994 | return false; | |
2995 | ||
2996 | if (finfo->info->relocateable) | |
2997 | { | |
2998 | Elf_Internal_Rela *irela; | |
2999 | Elf_Internal_Rela *irelaend; | |
3000 | struct elf_link_hash_entry **rel_hash; | |
3001 | Elf_Internal_Shdr *input_rel_hdr; | |
3002 | Elf_Internal_Shdr *output_rel_hdr; | |
3003 | ||
3004 | /* Adjust the reloc addresses and symbol indices. */ | |
3005 | ||
3006 | irela = internal_relocs; | |
3007 | irelaend = irela + o->reloc_count; | |
3008 | rel_hash = (elf_section_data (o->output_section)->rel_hashes | |
3009 | + o->output_section->reloc_count); | |
3010 | for (; irela < irelaend; irela++, rel_hash++) | |
3011 | { | |
ae115e51 | 3012 | unsigned long r_symndx; |
ede4eed4 KR |
3013 | Elf_Internal_Sym *isym; |
3014 | asection *sec; | |
3015 | ||
3016 | irela->r_offset += o->output_offset; | |
3017 | ||
3018 | r_symndx = ELF_R_SYM (irela->r_info); | |
3019 | ||
3020 | if (r_symndx == 0) | |
3021 | continue; | |
3022 | ||
3023 | if (r_symndx >= locsymcount | |
3024 | || (elf_bad_symtab (input_bfd) | |
3025 | && finfo->sections[r_symndx] == NULL)) | |
3026 | { | |
3027 | long indx; | |
3028 | ||
3029 | /* This is a reloc against a global symbol. We | |
3030 | have not yet output all the local symbols, so | |
3031 | we do not know the symbol index of any global | |
3032 | symbol. We set the rel_hash entry for this | |
3033 | reloc to point to the global hash table entry | |
3034 | for this symbol. The symbol index is then | |
3035 | set at the end of elf_bfd_final_link. */ | |
3036 | indx = r_symndx - extsymoff; | |
3037 | *rel_hash = elf_sym_hashes (input_bfd)[indx]; | |
3038 | ||
3039 | /* Setting the index to -2 tells | |
3040 | elf_link_output_extsym that this symbol is | |
3041 | used by a reloc. */ | |
3042 | BFD_ASSERT ((*rel_hash)->indx < 0); | |
3043 | (*rel_hash)->indx = -2; | |
3044 | ||
3045 | continue; | |
3046 | } | |
3047 | ||
3048 | /* This is a reloc against a local symbol. */ | |
3049 | ||
3050 | *rel_hash = NULL; | |
3051 | isym = finfo->internal_syms + r_symndx; | |
3052 | sec = finfo->sections[r_symndx]; | |
3053 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
3054 | { | |
3055 | /* I suppose the backend ought to fill in the | |
3056 | section of any STT_SECTION symbol against a | |
3057 | processor specific section. */ | |
3058 | if (sec != NULL && bfd_is_abs_section (sec)) | |
3059 | r_symndx = 0; | |
3060 | else if (sec == NULL || sec->owner == NULL) | |
3061 | { | |
3062 | bfd_set_error (bfd_error_bad_value); | |
3063 | return false; | |
3064 | } | |
3065 | else | |
3066 | { | |
3067 | r_symndx = sec->output_section->target_index; | |
3068 | BFD_ASSERT (r_symndx != 0); | |
3069 | } | |
3070 | } | |
3071 | else | |
3072 | { | |
3073 | if (finfo->indices[r_symndx] == -1) | |
3074 | { | |
3075 | unsigned long link; | |
3076 | const char *name; | |
3077 | asection *osec; | |
3078 | ||
3079 | if (finfo->info->strip == strip_all) | |
3080 | { | |
3081 | /* You can't do ld -r -s. */ | |
3082 | bfd_set_error (bfd_error_invalid_operation); | |
3083 | return false; | |
3084 | } | |
3085 | ||
3086 | /* This symbol was skipped earlier, but | |
3087 | since it is needed by a reloc, we | |
3088 | must output it now. */ | |
3089 | link = symtab_hdr->sh_link; | |
3090 | name = bfd_elf_string_from_elf_section (input_bfd, | |
3091 | link, | |
3092 | isym->st_name); | |
3093 | if (name == NULL) | |
3094 | return false; | |
3095 | ||
3096 | osec = sec->output_section; | |
3097 | isym->st_shndx = | |
3098 | _bfd_elf_section_from_bfd_section (output_bfd, | |
3099 | osec); | |
3100 | if (isym->st_shndx == (unsigned short) -1) | |
3101 | return false; | |
3102 | ||
3103 | isym->st_value += sec->output_offset; | |
3104 | if (! finfo->info->relocateable) | |
3105 | isym->st_value += osec->vma; | |
3106 | ||
3107 | finfo->indices[r_symndx] = output_bfd->symcount; | |
3108 | ||
3109 | if (! elf_link_output_sym (finfo, name, isym, sec)) | |
3110 | return false; | |
3111 | } | |
3112 | ||
3113 | r_symndx = finfo->indices[r_symndx]; | |
3114 | } | |
3115 | ||
3116 | irela->r_info = ELF_R_INFO (r_symndx, | |
3117 | ELF_R_TYPE (irela->r_info)); | |
3118 | } | |
3119 | ||
3120 | /* Swap out the relocs. */ | |
3121 | input_rel_hdr = &elf_section_data (o)->rel_hdr; | |
3122 | output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr; | |
3123 | BFD_ASSERT (output_rel_hdr->sh_entsize | |
3124 | == input_rel_hdr->sh_entsize); | |
3125 | irela = internal_relocs; | |
3126 | irelaend = irela + o->reloc_count; | |
3127 | if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
3128 | { | |
3129 | Elf_External_Rel *erel; | |
3130 | ||
3131 | erel = ((Elf_External_Rel *) output_rel_hdr->contents | |
3132 | + o->output_section->reloc_count); | |
3133 | for (; irela < irelaend; irela++, erel++) | |
3134 | { | |
3135 | Elf_Internal_Rel irel; | |
3136 | ||
3137 | irel.r_offset = irela->r_offset; | |
3138 | irel.r_info = irela->r_info; | |
3139 | BFD_ASSERT (irela->r_addend == 0); | |
3140 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
3141 | } | |
3142 | } | |
3143 | else | |
3144 | { | |
3145 | Elf_External_Rela *erela; | |
3146 | ||
3147 | BFD_ASSERT (input_rel_hdr->sh_entsize | |
3148 | == sizeof (Elf_External_Rela)); | |
3149 | erela = ((Elf_External_Rela *) output_rel_hdr->contents | |
3150 | + o->output_section->reloc_count); | |
3151 | for (; irela < irelaend; irela++, erela++) | |
3152 | elf_swap_reloca_out (output_bfd, irela, erela); | |
3153 | } | |
3154 | ||
3155 | o->output_section->reloc_count += o->reloc_count; | |
3156 | } | |
3157 | } | |
3158 | ||
3159 | /* Write out the modified section contents. */ | |
1726b8f0 ILT |
3160 | if (elf_section_data (o)->stab_info == NULL) |
3161 | { | |
3162 | if (! bfd_set_section_contents (output_bfd, o->output_section, | |
c86158e5 | 3163 | contents, o->output_offset, |
1726b8f0 ILT |
3164 | (o->_cooked_size != 0 |
3165 | ? o->_cooked_size | |
3166 | : o->_raw_size))) | |
3167 | return false; | |
3168 | } | |
3169 | else | |
3170 | { | |
3171 | if (! _bfd_write_section_stabs (output_bfd, o, | |
3172 | &elf_section_data (o)->stab_info, | |
c86158e5 | 3173 | contents)) |
1726b8f0 ILT |
3174 | return false; |
3175 | } | |
ede4eed4 KR |
3176 | } |
3177 | ||
3178 | return true; | |
3179 | } | |
3180 | ||
3181 | /* Generate a reloc when linking an ELF file. This is a reloc | |
3182 | requested by the linker, and does come from any input file. This | |
3183 | is used to build constructor and destructor tables when linking | |
3184 | with -Ur. */ | |
3185 | ||
3186 | static boolean | |
3187 | elf_reloc_link_order (output_bfd, info, output_section, link_order) | |
3188 | bfd *output_bfd; | |
3189 | struct bfd_link_info *info; | |
3190 | asection *output_section; | |
3191 | struct bfd_link_order *link_order; | |
3192 | { | |
3193 | reloc_howto_type *howto; | |
3194 | long indx; | |
3195 | bfd_vma offset; | |
5b3b9ff6 | 3196 | bfd_vma addend; |
ede4eed4 KR |
3197 | struct elf_link_hash_entry **rel_hash_ptr; |
3198 | Elf_Internal_Shdr *rel_hdr; | |
3199 | ||
3200 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | |
3201 | if (howto == NULL) | |
3202 | { | |
3203 | bfd_set_error (bfd_error_bad_value); | |
3204 | return false; | |
3205 | } | |
3206 | ||
5b3b9ff6 ILT |
3207 | addend = link_order->u.reloc.p->addend; |
3208 | ||
3209 | /* Figure out the symbol index. */ | |
3210 | rel_hash_ptr = (elf_section_data (output_section)->rel_hashes | |
3211 | + output_section->reloc_count); | |
3212 | if (link_order->type == bfd_section_reloc_link_order) | |
3213 | { | |
3214 | indx = link_order->u.reloc.p->u.section->target_index; | |
3215 | BFD_ASSERT (indx != 0); | |
3216 | *rel_hash_ptr = NULL; | |
3217 | } | |
3218 | else | |
3219 | { | |
3220 | struct elf_link_hash_entry *h; | |
3221 | ||
3222 | /* Treat a reloc against a defined symbol as though it were | |
3223 | actually against the section. */ | |
8881b321 ILT |
3224 | h = ((struct elf_link_hash_entry *) |
3225 | bfd_wrapped_link_hash_lookup (output_bfd, info, | |
3226 | link_order->u.reloc.p->u.name, | |
3227 | false, false, true)); | |
5b3b9ff6 ILT |
3228 | if (h != NULL |
3229 | && (h->root.type == bfd_link_hash_defined | |
3230 | || h->root.type == bfd_link_hash_defweak)) | |
3231 | { | |
3232 | asection *section; | |
3233 | ||
3234 | section = h->root.u.def.section; | |
3235 | indx = section->output_section->target_index; | |
3236 | *rel_hash_ptr = NULL; | |
3237 | /* It seems that we ought to add the symbol value to the | |
3238 | addend here, but in practice it has already been added | |
3239 | because it was passed to constructor_callback. */ | |
3240 | addend += section->output_section->vma + section->output_offset; | |
3241 | } | |
3242 | else if (h != NULL) | |
3243 | { | |
3244 | /* Setting the index to -2 tells elf_link_output_extsym that | |
3245 | this symbol is used by a reloc. */ | |
3246 | h->indx = -2; | |
3247 | *rel_hash_ptr = h; | |
3248 | indx = 0; | |
3249 | } | |
3250 | else | |
3251 | { | |
3252 | if (! ((*info->callbacks->unattached_reloc) | |
3253 | (info, link_order->u.reloc.p->u.name, (bfd *) NULL, | |
3254 | (asection *) NULL, (bfd_vma) 0))) | |
3255 | return false; | |
3256 | indx = 0; | |
3257 | } | |
3258 | } | |
3259 | ||
ede4eed4 KR |
3260 | /* If this is an inplace reloc, we must write the addend into the |
3261 | object file. */ | |
5b3b9ff6 | 3262 | if (howto->partial_inplace && addend != 0) |
ede4eed4 KR |
3263 | { |
3264 | bfd_size_type size; | |
3265 | bfd_reloc_status_type rstat; | |
3266 | bfd_byte *buf; | |
3267 | boolean ok; | |
3268 | ||
3269 | size = bfd_get_reloc_size (howto); | |
3270 | buf = (bfd_byte *) bfd_zmalloc (size); | |
3271 | if (buf == (bfd_byte *) NULL) | |
a9713b91 | 3272 | return false; |
5b3b9ff6 | 3273 | rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); |
ede4eed4 KR |
3274 | switch (rstat) |
3275 | { | |
3276 | case bfd_reloc_ok: | |
3277 | break; | |
3278 | default: | |
3279 | case bfd_reloc_outofrange: | |
3280 | abort (); | |
3281 | case bfd_reloc_overflow: | |
3282 | if (! ((*info->callbacks->reloc_overflow) | |
3283 | (info, | |
3284 | (link_order->type == bfd_section_reloc_link_order | |
3285 | ? bfd_section_name (output_bfd, | |
3286 | link_order->u.reloc.p->u.section) | |
3287 | : link_order->u.reloc.p->u.name), | |
5b3b9ff6 ILT |
3288 | howto->name, addend, (bfd *) NULL, (asection *) NULL, |
3289 | (bfd_vma) 0))) | |
ede4eed4 KR |
3290 | { |
3291 | free (buf); | |
3292 | return false; | |
3293 | } | |
3294 | break; | |
3295 | } | |
3296 | ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf, | |
3297 | (file_ptr) link_order->offset, size); | |
3298 | free (buf); | |
3299 | if (! ok) | |
3300 | return false; | |
3301 | } | |
3302 | ||
ede4eed4 KR |
3303 | /* The address of a reloc is relative to the section in a |
3304 | relocateable file, and is a virtual address in an executable | |
3305 | file. */ | |
3306 | offset = link_order->offset; | |
3307 | if (! info->relocateable) | |
3308 | offset += output_section->vma; | |
3309 | ||
3310 | rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
3311 | ||
3312 | if (rel_hdr->sh_type == SHT_REL) | |
3313 | { | |
3314 | Elf_Internal_Rel irel; | |
3315 | Elf_External_Rel *erel; | |
3316 | ||
3317 | irel.r_offset = offset; | |
3318 | irel.r_info = ELF_R_INFO (indx, howto->type); | |
3319 | erel = ((Elf_External_Rel *) rel_hdr->contents | |
3320 | + output_section->reloc_count); | |
3321 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
3322 | } | |
3323 | else | |
3324 | { | |
3325 | Elf_Internal_Rela irela; | |
3326 | Elf_External_Rela *erela; | |
3327 | ||
3328 | irela.r_offset = offset; | |
3329 | irela.r_info = ELF_R_INFO (indx, howto->type); | |
5b3b9ff6 | 3330 | irela.r_addend = addend; |
ede4eed4 KR |
3331 | erela = ((Elf_External_Rela *) rel_hdr->contents |
3332 | + output_section->reloc_count); | |
3333 | elf_swap_reloca_out (output_bfd, &irela, erela); | |
3334 | } | |
3335 | ||
3336 | ++output_section->reloc_count; | |
3337 | ||
3338 | return true; | |
3339 | } | |
3340 | ||
3b3753b8 MM |
3341 | \f |
3342 | /* Allocate a pointer to live in a linker created section. */ | |
3343 | ||
3344 | boolean | |
3345 | elf_create_pointer_linker_section (abfd, info, lsect, h, rel) | |
3346 | bfd *abfd; | |
3347 | struct bfd_link_info *info; | |
3348 | elf_linker_section_t *lsect; | |
3349 | struct elf_link_hash_entry *h; | |
3350 | const Elf_Internal_Rela *rel; | |
3351 | { | |
3352 | elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL; | |
3353 | elf_linker_section_pointers_t *linker_section_ptr; | |
3354 | unsigned long r_symndx = ELF_R_SYM (rel->r_info);; | |
3355 | ||
3356 | BFD_ASSERT (lsect != NULL); | |
3357 | ||
3358 | /* Is this a global symbol? */ | |
3359 | if (h != NULL) | |
3360 | { | |
3361 | /* Has this symbol already been allocated, if so, our work is done */ | |
3362 | if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer, | |
3363 | rel->r_addend, | |
3364 | lsect->which)) | |
3365 | return true; | |
3366 | ||
3367 | ptr_linker_section_ptr = &h->linker_section_pointer; | |
3368 | /* Make sure this symbol is output as a dynamic symbol. */ | |
3369 | if (h->dynindx == -1) | |
3370 | { | |
3371 | if (! elf_link_record_dynamic_symbol (info, h)) | |
3372 | return false; | |
3373 | } | |
3374 | ||
eb82bc60 MM |
3375 | if (lsect->rel_section) |
3376 | lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); | |
3b3753b8 MM |
3377 | } |
3378 | ||
3379 | else /* Allocation of a pointer to a local symbol */ | |
3380 | { | |
3381 | elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd); | |
3382 | ||
3383 | /* Allocate a table to hold the local symbols if first time */ | |
3384 | if (!ptr) | |
3385 | { | |
3386 | int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info; | |
3387 | register unsigned int i; | |
3388 | ||
3389 | ptr = (elf_linker_section_pointers_t **) | |
3390 | bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *)); | |
3391 | ||
3392 | if (!ptr) | |
3393 | return false; | |
3394 | ||
3395 | elf_local_ptr_offsets (abfd) = ptr; | |
3396 | for (i = 0; i < num_symbols; i++) | |
3397 | ptr[i] = (elf_linker_section_pointers_t *)0; | |
3398 | } | |
3399 | ||
3400 | /* Has this symbol already been allocated, if so, our work is done */ | |
3401 | if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx], | |
3402 | rel->r_addend, | |
3403 | lsect->which)) | |
3404 | return true; | |
3405 | ||
3406 | ptr_linker_section_ptr = &ptr[r_symndx]; | |
3407 | ||
3408 | if (info->shared) | |
3409 | { | |
3410 | /* If we are generating a shared object, we need to | |
05f927dd | 3411 | output a R_<xxx>_RELATIVE reloc so that the |
3b3753b8 MM |
3412 | dynamic linker can adjust this GOT entry. */ |
3413 | BFD_ASSERT (lsect->rel_section != NULL); | |
3414 | lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); | |
3415 | } | |
3416 | } | |
3417 | ||
3418 | /* Allocate space for a pointer in the linker section, and allocate a new pointer record | |
3419 | from internal memory. */ | |
3420 | BFD_ASSERT (ptr_linker_section_ptr != NULL); | |
3421 | linker_section_ptr = (elf_linker_section_pointers_t *) | |
3422 | bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t)); | |
3423 | ||
3424 | if (!linker_section_ptr) | |
3425 | return false; | |
3426 | ||
3427 | linker_section_ptr->next = *ptr_linker_section_ptr; | |
3428 | linker_section_ptr->addend = rel->r_addend; | |
3429 | linker_section_ptr->which = lsect->which; | |
3430 | linker_section_ptr->written_address_p = false; | |
3431 | *ptr_linker_section_ptr = linker_section_ptr; | |
3432 | ||
cb73f5d7 | 3433 | #if 0 |
3b3753b8 MM |
3434 | if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset) |
3435 | { | |
cb73f5d7 | 3436 | linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8); |
3b3753b8 MM |
3437 | lsect->hole_offset += ARCH_SIZE / 8; |
3438 | lsect->sym_offset += ARCH_SIZE / 8; | |
3439 | if (lsect->sym_hash) /* Bump up symbol value if needed */ | |
4a4953f5 MM |
3440 | { |
3441 | lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8; | |
3442 | #ifdef DEBUG | |
3443 | fprintf (stderr, "Bump up %s by %ld, current value = %ld\n", | |
3444 | lsect->sym_hash->root.root.string, | |
3445 | (long)ARCH_SIZE / 8, | |
3446 | (long)lsect->sym_hash->root.u.def.value); | |
3447 | #endif | |
3448 | } | |
3b3753b8 MM |
3449 | } |
3450 | else | |
cb73f5d7 | 3451 | #endif |
3b3753b8 MM |
3452 | linker_section_ptr->offset = lsect->section->_raw_size; |
3453 | ||
3454 | lsect->section->_raw_size += ARCH_SIZE / 8; | |
3455 | ||
3456 | #ifdef DEBUG | |
3457 | fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n", | |
3458 | lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size); | |
3459 | #endif | |
3460 | ||
3461 | return true; | |
3462 | } | |
3463 | ||
3464 | \f | |
3465 | #if ARCH_SIZE==64 | |
3466 | #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR) | |
3467 | #endif | |
3468 | #if ARCH_SIZE==32 | |
3469 | #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR) | |
3470 | #endif | |
3471 | ||
3472 | /* Fill in the address for a pointer generated in alinker section. */ | |
3473 | ||
3474 | bfd_vma | |
3475 | elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc) | |
3476 | bfd *output_bfd; | |
3477 | bfd *input_bfd; | |
3478 | struct bfd_link_info *info; | |
3479 | elf_linker_section_t *lsect; | |
3480 | struct elf_link_hash_entry *h; | |
3481 | bfd_vma relocation; | |
3482 | const Elf_Internal_Rela *rel; | |
3483 | int relative_reloc; | |
3484 | { | |
3485 | elf_linker_section_pointers_t *linker_section_ptr; | |
3486 | ||
3487 | BFD_ASSERT (lsect != NULL); | |
3488 | ||
3b3753b8 MM |
3489 | if (h != NULL) /* global symbol */ |
3490 | { | |
3491 | linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer, | |
3492 | rel->r_addend, | |
3493 | lsect->which); | |
3494 | ||
3495 | BFD_ASSERT (linker_section_ptr != NULL); | |
3496 | ||
3497 | if (! elf_hash_table (info)->dynamic_sections_created | |
3498 | || (info->shared | |
3499 | && info->symbolic | |
3500 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) | |
3501 | { | |
3502 | /* This is actually a static link, or it is a | |
3503 | -Bsymbolic link and the symbol is defined | |
3504 | locally. We must initialize this entry in the | |
3505 | global section. | |
3506 | ||
3507 | When doing a dynamic link, we create a .rela.<xxx> | |
3508 | relocation entry to initialize the value. This | |
3509 | is done in the finish_dynamic_symbol routine. */ | |
3510 | if (!linker_section_ptr->written_address_p) | |
3511 | { | |
3512 | linker_section_ptr->written_address_p = true; | |
3513 | bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend, | |
3514 | lsect->section->contents + linker_section_ptr->offset); | |
3515 | } | |
3516 | } | |
3517 | } | |
3518 | else /* local symbol */ | |
3519 | { | |
3520 | unsigned long r_symndx = ELF_R_SYM (rel->r_info); | |
3521 | BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL); | |
3522 | BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL); | |
3523 | linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx], | |
3524 | rel->r_addend, | |
3525 | lsect->which); | |
3526 | ||
3527 | BFD_ASSERT (linker_section_ptr != NULL); | |
3528 | ||
3529 | /* Write out pointer if it hasn't been rewritten out before */ | |
3530 | if (!linker_section_ptr->written_address_p) | |
3531 | { | |
3532 | linker_section_ptr->written_address_p = true; | |
3533 | bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend, | |
3534 | lsect->section->contents + linker_section_ptr->offset); | |
3535 | ||
3536 | if (info->shared) | |
3537 | { | |
3538 | asection *srel = lsect->rel_section; | |
3539 | Elf_Internal_Rela outrel; | |
3540 | ||
3541 | /* We need to generate a relative reloc for the dynamic linker. */ | |
3542 | if (!srel) | |
3543 | lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
3544 | lsect->rel_name); | |
3545 | ||
3546 | BFD_ASSERT (srel != NULL); | |
3547 | ||
3548 | outrel.r_offset = (lsect->section->output_section->vma | |
3549 | + lsect->section->output_offset | |
3550 | + linker_section_ptr->offset); | |
3551 | outrel.r_info = ELF_R_INFO (0, relative_reloc); | |
3552 | outrel.r_addend = 0; | |
3553 | elf_swap_reloca_out (output_bfd, &outrel, | |
5a5bac64 | 3554 | (((Elf_External_Rela *) |
3b3753b8 MM |
3555 | lsect->section->contents) |
3556 | + lsect->section->reloc_count)); | |
3557 | ++lsect->section->reloc_count; | |
3558 | } | |
3559 | } | |
3560 | } | |
3561 | ||
3562 | relocation = (lsect->section->output_offset | |
3563 | + linker_section_ptr->offset | |
3564 | - lsect->hole_offset | |
3565 | - lsect->sym_offset); | |
3566 | ||
3567 | #ifdef DEBUG | |
3568 | fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n", | |
3569 | lsect->name, (long)relocation, (long)relocation); | |
3570 | #endif | |
3571 | ||
3572 | /* Subtract out the addend, because it will get added back in by the normal | |
3573 | processing. */ | |
3574 | return relocation - linker_section_ptr->addend; | |
3575 | } |