]>
Commit | Line | Data |
---|---|---|
8afe83be KR |
1 | /* ELF linker support. |
2 | Copyright 1995 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
943fbd5b | 18 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
452a5efb | 19 | |
ede4eed4 KR |
20 | /* ELF linker code. */ |
21 | ||
22 | static boolean elf_link_add_object_symbols | |
23 | PARAMS ((bfd *, struct bfd_link_info *)); | |
24 | static boolean elf_link_add_archive_symbols | |
25 | PARAMS ((bfd *, struct bfd_link_info *)); | |
26 | static Elf_Internal_Rela *elf_link_read_relocs | |
27 | PARAMS ((bfd *, asection *, PTR, Elf_Internal_Rela *, boolean)); | |
28 | static boolean elf_export_symbol | |
29 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
30 | static boolean elf_adjust_dynamic_symbol | |
31 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
32 | ||
33 | /* This struct is used to pass information to routines called via | |
34 | elf_link_hash_traverse which must return failure. */ | |
35 | ||
36 | struct elf_info_failed | |
37 | { | |
38 | boolean failed; | |
39 | struct bfd_link_info *info; | |
40 | }; | |
41 | ||
42 | /* Given an ELF BFD, add symbols to the global hash table as | |
43 | appropriate. */ | |
44 | ||
45 | boolean | |
46 | elf_bfd_link_add_symbols (abfd, info) | |
47 | bfd *abfd; | |
48 | struct bfd_link_info *info; | |
49 | { | |
ede4eed4 KR |
50 | switch (bfd_get_format (abfd)) |
51 | { | |
52 | case bfd_object: | |
53 | return elf_link_add_object_symbols (abfd, info); | |
54 | case bfd_archive: | |
ede4eed4 KR |
55 | return elf_link_add_archive_symbols (abfd, info); |
56 | default: | |
57 | bfd_set_error (bfd_error_wrong_format); | |
58 | return false; | |
59 | } | |
60 | } | |
61 | ||
62 | /* Add symbols from an ELF archive file to the linker hash table. We | |
63 | don't use _bfd_generic_link_add_archive_symbols because of a | |
64 | problem which arises on UnixWare. The UnixWare libc.so is an | |
65 | archive which includes an entry libc.so.1 which defines a bunch of | |
66 | symbols. The libc.so archive also includes a number of other | |
67 | object files, which also define symbols, some of which are the same | |
68 | as those defined in libc.so.1. Correct linking requires that we | |
69 | consider each object file in turn, and include it if it defines any | |
70 | symbols we need. _bfd_generic_link_add_archive_symbols does not do | |
71 | this; it looks through the list of undefined symbols, and includes | |
72 | any object file which defines them. When this algorithm is used on | |
73 | UnixWare, it winds up pulling in libc.so.1 early and defining a | |
74 | bunch of symbols. This means that some of the other objects in the | |
75 | archive are not included in the link, which is incorrect since they | |
76 | precede libc.so.1 in the archive. | |
77 | ||
78 | Fortunately, ELF archive handling is simpler than that done by | |
79 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
80 | oddities. In ELF, if we find a symbol in the archive map, and the | |
81 | symbol is currently undefined, we know that we must pull in that | |
82 | object file. | |
83 | ||
84 | Unfortunately, we do have to make multiple passes over the symbol | |
85 | table until nothing further is resolved. */ | |
86 | ||
87 | static boolean | |
88 | elf_link_add_archive_symbols (abfd, info) | |
89 | bfd *abfd; | |
90 | struct bfd_link_info *info; | |
91 | { | |
92 | symindex c; | |
93 | boolean *defined = NULL; | |
94 | boolean *included = NULL; | |
95 | carsym *symdefs; | |
96 | boolean loop; | |
97 | ||
98 | if (! bfd_has_map (abfd)) | |
99 | { | |
100 | /* An empty archive is a special case. */ | |
101 | if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL) | |
102 | return true; | |
103 | bfd_set_error (bfd_error_no_armap); | |
104 | return false; | |
105 | } | |
106 | ||
107 | /* Keep track of all symbols we know to be already defined, and all | |
108 | files we know to be already included. This is to speed up the | |
109 | second and subsequent passes. */ | |
110 | c = bfd_ardata (abfd)->symdef_count; | |
111 | if (c == 0) | |
112 | return true; | |
113 | defined = (boolean *) malloc (c * sizeof (boolean)); | |
114 | included = (boolean *) malloc (c * sizeof (boolean)); | |
115 | if (defined == (boolean *) NULL || included == (boolean *) NULL) | |
116 | { | |
117 | bfd_set_error (bfd_error_no_memory); | |
118 | goto error_return; | |
119 | } | |
120 | memset (defined, 0, c * sizeof (boolean)); | |
121 | memset (included, 0, c * sizeof (boolean)); | |
122 | ||
123 | symdefs = bfd_ardata (abfd)->symdefs; | |
124 | ||
125 | do | |
126 | { | |
127 | file_ptr last; | |
128 | symindex i; | |
129 | carsym *symdef; | |
130 | carsym *symdefend; | |
131 | ||
132 | loop = false; | |
133 | last = -1; | |
134 | ||
135 | symdef = symdefs; | |
136 | symdefend = symdef + c; | |
137 | for (i = 0; symdef < symdefend; symdef++, i++) | |
138 | { | |
139 | struct elf_link_hash_entry *h; | |
140 | bfd *element; | |
141 | struct bfd_link_hash_entry *undefs_tail; | |
142 | symindex mark; | |
143 | ||
144 | if (defined[i] || included[i]) | |
145 | continue; | |
146 | if (symdef->file_offset == last) | |
147 | { | |
148 | included[i] = true; | |
149 | continue; | |
150 | } | |
151 | ||
152 | h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, | |
153 | false, false, false); | |
154 | if (h == (struct elf_link_hash_entry *) NULL) | |
155 | continue; | |
156 | if (h->root.type != bfd_link_hash_undefined) | |
157 | { | |
68807a39 ILT |
158 | if (h->root.type != bfd_link_hash_undefweak) |
159 | defined[i] = true; | |
ede4eed4 KR |
160 | continue; |
161 | } | |
162 | ||
163 | /* We need to include this archive member. */ | |
164 | ||
165 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
166 | if (element == (bfd *) NULL) | |
167 | goto error_return; | |
168 | ||
169 | if (! bfd_check_format (element, bfd_object)) | |
170 | goto error_return; | |
171 | ||
172 | /* Doublecheck that we have not included this object | |
173 | already--it should be impossible, but there may be | |
174 | something wrong with the archive. */ | |
175 | if (element->archive_pass != 0) | |
176 | { | |
177 | bfd_set_error (bfd_error_bad_value); | |
178 | goto error_return; | |
179 | } | |
180 | element->archive_pass = 1; | |
181 | ||
182 | undefs_tail = info->hash->undefs_tail; | |
183 | ||
184 | if (! (*info->callbacks->add_archive_element) (info, element, | |
185 | symdef->name)) | |
186 | goto error_return; | |
187 | if (! elf_link_add_object_symbols (element, info)) | |
188 | goto error_return; | |
189 | ||
190 | /* If there are any new undefined symbols, we need to make | |
191 | another pass through the archive in order to see whether | |
192 | they can be defined. FIXME: This isn't perfect, because | |
193 | common symbols wind up on undefs_tail and because an | |
194 | undefined symbol which is defined later on in this pass | |
195 | does not require another pass. This isn't a bug, but it | |
196 | does make the code less efficient than it could be. */ | |
197 | if (undefs_tail != info->hash->undefs_tail) | |
198 | loop = true; | |
199 | ||
200 | /* Look backward to mark all symbols from this object file | |
201 | which we have already seen in this pass. */ | |
202 | mark = i; | |
203 | do | |
204 | { | |
205 | included[mark] = true; | |
206 | if (mark == 0) | |
207 | break; | |
208 | --mark; | |
209 | } | |
210 | while (symdefs[mark].file_offset == symdef->file_offset); | |
211 | ||
212 | /* We mark subsequent symbols from this object file as we go | |
213 | on through the loop. */ | |
214 | last = symdef->file_offset; | |
215 | } | |
216 | } | |
217 | while (loop); | |
218 | ||
219 | free (defined); | |
220 | free (included); | |
221 | ||
222 | return true; | |
223 | ||
224 | error_return: | |
225 | if (defined != (boolean *) NULL) | |
226 | free (defined); | |
227 | if (included != (boolean *) NULL) | |
228 | free (included); | |
229 | return false; | |
230 | } | |
231 | ||
232 | /* Add symbols from an ELF object file to the linker hash table. */ | |
233 | ||
234 | static boolean | |
235 | elf_link_add_object_symbols (abfd, info) | |
236 | bfd *abfd; | |
237 | struct bfd_link_info *info; | |
238 | { | |
239 | boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *, | |
240 | const Elf_Internal_Sym *, | |
241 | const char **, flagword *, | |
242 | asection **, bfd_vma *)); | |
243 | boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *, | |
244 | asection *, const Elf_Internal_Rela *)); | |
245 | boolean collect; | |
246 | Elf_Internal_Shdr *hdr; | |
247 | size_t symcount; | |
248 | size_t extsymcount; | |
249 | size_t extsymoff; | |
250 | Elf_External_Sym *buf = NULL; | |
251 | struct elf_link_hash_entry **sym_hash; | |
252 | boolean dynamic; | |
253 | Elf_External_Dyn *dynbuf = NULL; | |
254 | struct elf_link_hash_entry *weaks; | |
255 | Elf_External_Sym *esym; | |
256 | Elf_External_Sym *esymend; | |
257 | ||
258 | add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook; | |
259 | collect = get_elf_backend_data (abfd)->collect; | |
260 | ||
0cb70568 ILT |
261 | /* As a GNU extension, any input sections which are named |
262 | .gnu.warning.SYMBOL are treated as warning symbols for the given | |
263 | symbol. This differs from .gnu.warning sections, which generate | |
264 | warnings when they are included in an output file. */ | |
265 | if (! info->shared) | |
266 | { | |
267 | asection *s; | |
268 | ||
269 | for (s = abfd->sections; s != NULL; s = s->next) | |
270 | { | |
271 | const char *name; | |
272 | ||
273 | name = bfd_get_section_name (abfd, s); | |
274 | if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0) | |
275 | { | |
276 | char *msg; | |
277 | bfd_size_type sz; | |
278 | ||
279 | sz = bfd_section_size (abfd, s); | |
280 | msg = (char *) bfd_alloc (abfd, sz); | |
281 | if (msg == NULL) | |
282 | { | |
283 | bfd_set_error (bfd_error_no_memory); | |
284 | goto error_return; | |
285 | } | |
286 | ||
287 | if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz)) | |
288 | goto error_return; | |
289 | ||
290 | if (! (_bfd_generic_link_add_one_symbol | |
291 | (info, abfd, | |
292 | name + sizeof ".gnu.warning." - 1, | |
293 | BSF_WARNING, s, (bfd_vma) 0, msg, false, collect, | |
294 | (struct bfd_link_hash_entry **) NULL))) | |
295 | goto error_return; | |
296 | ||
297 | if (! info->relocateable) | |
298 | { | |
299 | /* Clobber the section size so that the warning does | |
300 | not get copied into the output file. */ | |
301 | s->_raw_size = 0; | |
302 | } | |
303 | } | |
304 | } | |
305 | } | |
306 | ||
ede4eed4 KR |
307 | /* A stripped shared library might only have a dynamic symbol table, |
308 | not a regular symbol table. In that case we can still go ahead | |
309 | and link using the dynamic symbol table. */ | |
310 | if (elf_onesymtab (abfd) == 0 | |
311 | && elf_dynsymtab (abfd) != 0) | |
312 | { | |
313 | elf_onesymtab (abfd) = elf_dynsymtab (abfd); | |
314 | elf_tdata (abfd)->symtab_hdr = elf_tdata (abfd)->dynsymtab_hdr; | |
315 | } | |
316 | ||
317 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
318 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); | |
319 | ||
320 | /* The sh_info field of the symtab header tells us where the | |
321 | external symbols start. We don't care about the local symbols at | |
322 | this point. */ | |
323 | if (elf_bad_symtab (abfd)) | |
324 | { | |
325 | extsymcount = symcount; | |
326 | extsymoff = 0; | |
327 | } | |
328 | else | |
329 | { | |
330 | extsymcount = symcount - hdr->sh_info; | |
331 | extsymoff = hdr->sh_info; | |
332 | } | |
333 | ||
334 | buf = (Elf_External_Sym *) malloc (extsymcount * sizeof (Elf_External_Sym)); | |
335 | if (buf == NULL && extsymcount != 0) | |
336 | { | |
337 | bfd_set_error (bfd_error_no_memory); | |
338 | goto error_return; | |
339 | } | |
340 | ||
341 | /* We store a pointer to the hash table entry for each external | |
342 | symbol. */ | |
343 | sym_hash = ((struct elf_link_hash_entry **) | |
344 | bfd_alloc (abfd, | |
345 | extsymcount * sizeof (struct elf_link_hash_entry *))); | |
346 | if (sym_hash == NULL) | |
347 | { | |
348 | bfd_set_error (bfd_error_no_memory); | |
349 | goto error_return; | |
350 | } | |
351 | elf_sym_hashes (abfd) = sym_hash; | |
352 | ||
353 | if (elf_elfheader (abfd)->e_type != ET_DYN) | |
354 | { | |
355 | dynamic = false; | |
356 | ||
357 | /* If we are creating a shared library, create all the dynamic | |
358 | sections immediately. We need to attach them to something, | |
359 | so we attach them to this BFD, provided it is the right | |
360 | format. FIXME: If there are no input BFD's of the same | |
361 | format as the output, we can't make a shared library. */ | |
362 | if (info->shared | |
363 | && ! elf_hash_table (info)->dynamic_sections_created | |
364 | && abfd->xvec == info->hash->creator) | |
365 | { | |
366 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
367 | goto error_return; | |
368 | } | |
369 | } | |
370 | else | |
371 | { | |
372 | asection *s; | |
373 | boolean add_needed; | |
374 | const char *name; | |
375 | bfd_size_type oldsize; | |
376 | bfd_size_type strindex; | |
377 | ||
378 | dynamic = true; | |
379 | ||
380 | /* You can't use -r against a dynamic object. Also, there's no | |
381 | hope of using a dynamic object which does not exactly match | |
382 | the format of the output file. */ | |
383 | if (info->relocateable | |
384 | || info->hash->creator != abfd->xvec) | |
385 | { | |
386 | bfd_set_error (bfd_error_invalid_operation); | |
387 | goto error_return; | |
388 | } | |
389 | ||
390 | /* Find the name to use in a DT_NEEDED entry that refers to this | |
391 | object. If the object has a DT_SONAME entry, we use it. | |
392 | Otherwise, if the generic linker stuck something in | |
393 | elf_dt_needed_name, we use that. Otherwise, we just use the | |
394 | file name. If the generic linker put a null string into | |
395 | elf_dt_needed_name, we don't make a DT_NEEDED entry at all, | |
396 | even if there is a DT_SONAME entry. */ | |
397 | add_needed = true; | |
398 | name = bfd_get_filename (abfd); | |
399 | if (elf_dt_needed_name (abfd) != NULL) | |
400 | { | |
401 | name = elf_dt_needed_name (abfd); | |
402 | if (*name == '\0') | |
403 | add_needed = false; | |
404 | } | |
405 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
406 | if (s != NULL) | |
407 | { | |
408 | Elf_External_Dyn *extdyn; | |
409 | Elf_External_Dyn *extdynend; | |
410 | int elfsec; | |
411 | unsigned long link; | |
412 | ||
3fe22b98 | 413 | dynbuf = (Elf_External_Dyn *) malloc ((size_t) s->_raw_size); |
ede4eed4 KR |
414 | if (dynbuf == NULL) |
415 | { | |
416 | bfd_set_error (bfd_error_no_memory); | |
417 | goto error_return; | |
418 | } | |
419 | ||
420 | if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, | |
421 | (file_ptr) 0, s->_raw_size)) | |
422 | goto error_return; | |
423 | ||
424 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
425 | if (elfsec == -1) | |
426 | goto error_return; | |
427 | link = elf_elfsections (abfd)[elfsec]->sh_link; | |
428 | ||
429 | extdyn = dynbuf; | |
430 | extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn); | |
431 | for (; extdyn < extdynend; extdyn++) | |
432 | { | |
433 | Elf_Internal_Dyn dyn; | |
434 | ||
435 | elf_swap_dyn_in (abfd, extdyn, &dyn); | |
436 | if (add_needed && dyn.d_tag == DT_SONAME) | |
437 | { | |
438 | name = bfd_elf_string_from_elf_section (abfd, link, | |
439 | dyn.d_un.d_val); | |
440 | if (name == NULL) | |
441 | goto error_return; | |
442 | } | |
443 | if (dyn.d_tag == DT_NEEDED) | |
444 | { | |
445 | struct bfd_elf_link_needed_list *n, **pn; | |
446 | char *fnm, *anm; | |
447 | ||
b818a325 KR |
448 | n = (struct bfd_elf_link_needed_list *) |
449 | bfd_alloc (abfd, | |
450 | sizeof (struct bfd_elf_link_needed_list)); | |
ede4eed4 KR |
451 | fnm = bfd_elf_string_from_elf_section (abfd, link, |
452 | dyn.d_un.d_val); | |
453 | if (n == NULL || fnm == NULL) | |
454 | goto error_return; | |
455 | anm = bfd_alloc (abfd, strlen (fnm) + 1); | |
456 | if (anm == NULL) | |
457 | goto error_return; | |
458 | strcpy (anm, fnm); | |
459 | n->name = anm; | |
460 | n->by = abfd; | |
461 | n->next = NULL; | |
462 | for (pn = &elf_hash_table (info)->needed; | |
463 | *pn != NULL; | |
464 | pn = &(*pn)->next) | |
465 | ; | |
466 | *pn = n; | |
467 | } | |
468 | } | |
469 | ||
470 | free (dynbuf); | |
471 | dynbuf = NULL; | |
472 | } | |
473 | ||
474 | /* We do not want to include any of the sections in a dynamic | |
475 | object in the output file. We hack by simply clobbering the | |
476 | list of sections in the BFD. This could be handled more | |
477 | cleanly by, say, a new section flag; the existing | |
478 | SEC_NEVER_LOAD flag is not the one we want, because that one | |
479 | still implies that the section takes up space in the output | |
480 | file. */ | |
481 | abfd->sections = NULL; | |
482 | ||
483 | /* If this is the first dynamic object found in the link, create | |
484 | the special sections required for dynamic linking. */ | |
485 | if (! elf_hash_table (info)->dynamic_sections_created) | |
486 | { | |
487 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
488 | goto error_return; | |
489 | } | |
490 | ||
491 | if (add_needed) | |
492 | { | |
493 | /* Add a DT_NEEDED entry for this dynamic object. */ | |
494 | oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
495 | strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name, | |
496 | true, false); | |
497 | if (strindex == (bfd_size_type) -1) | |
498 | goto error_return; | |
499 | ||
500 | if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr)) | |
501 | { | |
502 | asection *sdyn; | |
503 | Elf_External_Dyn *dyncon, *dynconend; | |
504 | ||
505 | /* The hash table size did not change, which means that | |
506 | the dynamic object name was already entered. If we | |
507 | have already included this dynamic object in the | |
508 | link, just ignore it. There is no reason to include | |
509 | a particular dynamic object more than once. */ | |
510 | sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
511 | ".dynamic"); | |
512 | BFD_ASSERT (sdyn != NULL); | |
513 | ||
514 | dyncon = (Elf_External_Dyn *) sdyn->contents; | |
515 | dynconend = (Elf_External_Dyn *) (sdyn->contents + | |
516 | sdyn->_raw_size); | |
517 | for (; dyncon < dynconend; dyncon++) | |
518 | { | |
519 | Elf_Internal_Dyn dyn; | |
520 | ||
521 | elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon, | |
522 | &dyn); | |
523 | if (dyn.d_tag == DT_NEEDED | |
524 | && dyn.d_un.d_val == strindex) | |
525 | { | |
526 | if (buf != NULL) | |
527 | free (buf); | |
528 | return true; | |
529 | } | |
530 | } | |
531 | } | |
532 | ||
533 | if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex)) | |
534 | goto error_return; | |
535 | } | |
536 | } | |
537 | ||
538 | if (bfd_seek (abfd, | |
539 | hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym), | |
540 | SEEK_SET) != 0 | |
541 | || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd) | |
542 | != extsymcount * sizeof (Elf_External_Sym))) | |
543 | goto error_return; | |
544 | ||
545 | weaks = NULL; | |
546 | ||
547 | esymend = buf + extsymcount; | |
548 | for (esym = buf; esym < esymend; esym++, sym_hash++) | |
549 | { | |
550 | Elf_Internal_Sym sym; | |
551 | int bind; | |
552 | bfd_vma value; | |
553 | asection *sec; | |
554 | flagword flags; | |
555 | const char *name; | |
0cb70568 | 556 | struct elf_link_hash_entry *h; |
ede4eed4 | 557 | boolean definition; |
452a5efb | 558 | boolean new_weakdef; |
ede4eed4 KR |
559 | |
560 | elf_swap_symbol_in (abfd, esym, &sym); | |
561 | ||
562 | flags = BSF_NO_FLAGS; | |
563 | sec = NULL; | |
564 | value = sym.st_value; | |
565 | *sym_hash = NULL; | |
566 | ||
567 | bind = ELF_ST_BIND (sym.st_info); | |
568 | if (bind == STB_LOCAL) | |
569 | { | |
570 | /* This should be impossible, since ELF requires that all | |
571 | global symbols follow all local symbols, and that sh_info | |
572 | point to the first global symbol. Unfortunatealy, Irix 5 | |
573 | screws this up. */ | |
574 | continue; | |
575 | } | |
576 | else if (bind == STB_GLOBAL) | |
577 | { | |
578 | if (sym.st_shndx != SHN_UNDEF | |
579 | && sym.st_shndx != SHN_COMMON) | |
580 | flags = BSF_GLOBAL; | |
581 | else | |
582 | flags = 0; | |
583 | } | |
584 | else if (bind == STB_WEAK) | |
585 | flags = BSF_WEAK; | |
586 | else | |
587 | { | |
588 | /* Leave it up to the processor backend. */ | |
589 | } | |
590 | ||
591 | if (sym.st_shndx == SHN_UNDEF) | |
592 | sec = bfd_und_section_ptr; | |
593 | else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE) | |
594 | { | |
595 | sec = section_from_elf_index (abfd, sym.st_shndx); | |
596 | if (sec != NULL) | |
597 | value -= sec->vma; | |
598 | else | |
599 | sec = bfd_abs_section_ptr; | |
600 | } | |
601 | else if (sym.st_shndx == SHN_ABS) | |
602 | sec = bfd_abs_section_ptr; | |
603 | else if (sym.st_shndx == SHN_COMMON) | |
604 | { | |
605 | sec = bfd_com_section_ptr; | |
606 | /* What ELF calls the size we call the value. What ELF | |
607 | calls the value we call the alignment. */ | |
608 | value = sym.st_size; | |
609 | } | |
610 | else | |
611 | { | |
612 | /* Leave it up to the processor backend. */ | |
613 | } | |
614 | ||
615 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); | |
616 | if (name == (const char *) NULL) | |
617 | goto error_return; | |
618 | ||
619 | if (add_symbol_hook) | |
620 | { | |
621 | if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec, | |
622 | &value)) | |
623 | goto error_return; | |
624 | ||
625 | /* The hook function sets the name to NULL if this symbol | |
626 | should be skipped for some reason. */ | |
627 | if (name == (const char *) NULL) | |
628 | continue; | |
629 | } | |
630 | ||
631 | /* Sanity check that all possibilities were handled. */ | |
632 | if (sec == (asection *) NULL) | |
633 | { | |
634 | bfd_set_error (bfd_error_bad_value); | |
635 | goto error_return; | |
636 | } | |
637 | ||
638 | if (bfd_is_und_section (sec) | |
639 | || bfd_is_com_section (sec)) | |
640 | definition = false; | |
641 | else | |
642 | definition = true; | |
643 | ||
644 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
645 | { | |
646 | /* We need to look up the symbol now in order to get some of | |
647 | the dynamic object handling right. We pass the hash | |
648 | table entry in to _bfd_generic_link_add_one_symbol so | |
649 | that it does not have to look it up again. */ | |
650 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
651 | true, false, false); | |
652 | if (h == NULL) | |
653 | goto error_return; | |
654 | *sym_hash = h; | |
655 | ||
0cb70568 ILT |
656 | while (h->root.type == bfd_link_hash_indirect |
657 | || h->root.type == bfd_link_hash_warning) | |
658 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
659 | ||
ede4eed4 KR |
660 | /* If we are looking at a dynamic object, and this is a |
661 | definition, we need to see if it has already been defined | |
662 | by some other object. If it has, we want to use the | |
663 | existing definition, and we do not want to report a | |
664 | multiple symbol definition error; we do this by | |
665 | clobbering sec to be bfd_und_section_ptr. */ | |
666 | if (dynamic && definition) | |
667 | { | |
668 | if (h->root.type == bfd_link_hash_defined | |
669 | || h->root.type == bfd_link_hash_defweak) | |
670 | sec = bfd_und_section_ptr; | |
671 | } | |
672 | ||
673 | /* Similarly, if we are not looking at a dynamic object, and | |
674 | we have a definition, we want to override any definition | |
675 | we may have from a dynamic object. Symbols from regular | |
676 | files always take precedence over symbols from dynamic | |
677 | objects, even if they are defined after the dynamic | |
678 | object in the link. */ | |
679 | if (! dynamic | |
680 | && definition | |
681 | && (h->root.type == bfd_link_hash_defined | |
682 | || h->root.type == bfd_link_hash_defweak) | |
683 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
684 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
685 | == bfd_target_elf_flavour) | |
686 | && (elf_elfheader (h->root.u.def.section->owner)->e_type | |
687 | == ET_DYN)) | |
688 | { | |
689 | /* Change the hash table entry to undefined, and let | |
690 | _bfd_generic_link_add_one_symbol do the right thing | |
691 | with the new definition. */ | |
692 | h->root.type = bfd_link_hash_undefined; | |
693 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
694 | } | |
695 | } | |
696 | ||
697 | if (! (_bfd_generic_link_add_one_symbol | |
698 | (info, abfd, name, flags, sec, value, (const char *) NULL, | |
699 | false, collect, (struct bfd_link_hash_entry **) sym_hash))) | |
700 | goto error_return; | |
701 | ||
0cb70568 ILT |
702 | h = *sym_hash; |
703 | while (h->root.type == bfd_link_hash_indirect | |
704 | || h->root.type == bfd_link_hash_warning) | |
705 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
706 | *sym_hash = h; | |
707 | ||
452a5efb | 708 | new_weakdef = false; |
ede4eed4 KR |
709 | if (dynamic |
710 | && definition | |
711 | && (flags & BSF_WEAK) != 0 | |
712 | && ELF_ST_TYPE (sym.st_info) != STT_FUNC | |
713 | && info->hash->creator->flavour == bfd_target_elf_flavour | |
0cb70568 | 714 | && h->weakdef == NULL) |
ede4eed4 KR |
715 | { |
716 | /* Keep a list of all weak defined non function symbols from | |
717 | a dynamic object, using the weakdef field. Later in this | |
718 | function we will set the weakdef field to the correct | |
719 | value. We only put non-function symbols from dynamic | |
720 | objects on this list, because that happens to be the only | |
721 | time we need to know the normal symbol corresponding to a | |
722 | weak symbol, and the information is time consuming to | |
723 | figure out. If the weakdef field is not already NULL, | |
724 | then this symbol was already defined by some previous | |
725 | dynamic object, and we will be using that previous | |
726 | definition anyhow. */ | |
727 | ||
0cb70568 ILT |
728 | h->weakdef = weaks; |
729 | weaks = h; | |
452a5efb | 730 | new_weakdef = true; |
ede4eed4 KR |
731 | } |
732 | ||
733 | /* Get the alignment of a common symbol. */ | |
734 | if (sym.st_shndx == SHN_COMMON | |
0cb70568 ILT |
735 | && h->root.type == bfd_link_hash_common) |
736 | h->root.u.c.p->alignment_power = bfd_log2 (sym.st_value); | |
ede4eed4 KR |
737 | |
738 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
739 | { | |
740 | int old_flags; | |
741 | boolean dynsym; | |
742 | int new_flag; | |
743 | ||
744 | /* Remember the symbol size and type. */ | |
745 | if (sym.st_size != 0) | |
746 | { | |
747 | /* FIXME: We should probably somehow give a warning if | |
748 | the symbol size changes. */ | |
749 | h->size = sym.st_size; | |
750 | } | |
751 | if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE) | |
752 | { | |
753 | /* FIXME: We should probably somehow give a warning if | |
754 | the symbol type changes. */ | |
755 | h->type = ELF_ST_TYPE (sym.st_info); | |
756 | } | |
757 | ||
758 | /* Set a flag in the hash table entry indicating the type of | |
759 | reference or definition we just found. Keep a count of | |
760 | the number of dynamic symbols we find. A dynamic symbol | |
761 | is one which is referenced or defined by both a regular | |
762 | object and a shared object, or one which is referenced or | |
763 | defined by more than one shared object. */ | |
764 | old_flags = h->elf_link_hash_flags; | |
765 | dynsym = false; | |
766 | if (! dynamic) | |
767 | { | |
768 | if (! definition) | |
769 | new_flag = ELF_LINK_HASH_REF_REGULAR; | |
770 | else | |
771 | new_flag = ELF_LINK_HASH_DEF_REGULAR; | |
772 | if (info->shared | |
773 | || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
774 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0) | |
775 | dynsym = true; | |
776 | } | |
777 | else | |
778 | { | |
779 | if (! definition) | |
780 | new_flag = ELF_LINK_HASH_REF_DYNAMIC; | |
781 | else | |
782 | new_flag = ELF_LINK_HASH_DEF_DYNAMIC; | |
783 | if ((old_flags & new_flag) != 0 | |
784 | || (old_flags & (ELF_LINK_HASH_DEF_REGULAR | |
452a5efb ILT |
785 | | ELF_LINK_HASH_REF_REGULAR)) != 0 |
786 | || (h->weakdef != NULL | |
787 | && (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
788 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0)) | |
ede4eed4 KR |
789 | dynsym = true; |
790 | } | |
791 | ||
792 | h->elf_link_hash_flags |= new_flag; | |
793 | if (dynsym && h->dynindx == -1) | |
794 | { | |
795 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
796 | goto error_return; | |
452a5efb ILT |
797 | if (h->weakdef != NULL |
798 | && ! new_weakdef | |
799 | && h->weakdef->dynindx == -1) | |
800 | { | |
801 | if (! _bfd_elf_link_record_dynamic_symbol (info, | |
802 | h->weakdef)) | |
803 | goto error_return; | |
804 | } | |
ede4eed4 KR |
805 | } |
806 | } | |
807 | } | |
808 | ||
809 | /* Now set the weakdefs field correctly for all the weak defined | |
810 | symbols we found. The only way to do this is to search all the | |
811 | symbols. Since we only need the information for non functions in | |
812 | dynamic objects, that's the only time we actually put anything on | |
813 | the list WEAKS. We need this information so that if a regular | |
814 | object refers to a symbol defined weakly in a dynamic object, the | |
815 | real symbol in the dynamic object is also put in the dynamic | |
816 | symbols; we also must arrange for both symbols to point to the | |
817 | same memory location. We could handle the general case of symbol | |
818 | aliasing, but a general symbol alias can only be generated in | |
819 | assembler code, handling it correctly would be very time | |
820 | consuming, and other ELF linkers don't handle general aliasing | |
821 | either. */ | |
822 | while (weaks != NULL) | |
823 | { | |
824 | struct elf_link_hash_entry *hlook; | |
825 | asection *slook; | |
826 | bfd_vma vlook; | |
827 | struct elf_link_hash_entry **hpp; | |
828 | struct elf_link_hash_entry **hppend; | |
829 | ||
830 | hlook = weaks; | |
831 | weaks = hlook->weakdef; | |
832 | hlook->weakdef = NULL; | |
833 | ||
834 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defined | |
835 | || hlook->root.type == bfd_link_hash_defweak | |
836 | || hlook->root.type == bfd_link_hash_common | |
837 | || hlook->root.type == bfd_link_hash_indirect); | |
838 | slook = hlook->root.u.def.section; | |
839 | vlook = hlook->root.u.def.value; | |
840 | ||
841 | hpp = elf_sym_hashes (abfd); | |
842 | hppend = hpp + extsymcount; | |
843 | for (; hpp < hppend; hpp++) | |
844 | { | |
845 | struct elf_link_hash_entry *h; | |
846 | ||
847 | h = *hpp; | |
848 | if (h != NULL && h != hlook | |
849 | && (h->root.type == bfd_link_hash_defined | |
850 | || h->root.type == bfd_link_hash_defweak) | |
851 | && h->root.u.def.section == slook | |
852 | && h->root.u.def.value == vlook) | |
853 | { | |
854 | hlook->weakdef = h; | |
855 | ||
856 | /* If the weak definition is in the list of dynamic | |
857 | symbols, make sure the real definition is put there | |
858 | as well. */ | |
859 | if (hlook->dynindx != -1 | |
860 | && h->dynindx == -1) | |
861 | { | |
862 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
863 | goto error_return; | |
864 | } | |
865 | ||
866 | break; | |
867 | } | |
868 | } | |
869 | } | |
870 | ||
871 | if (buf != NULL) | |
872 | { | |
873 | free (buf); | |
874 | buf = NULL; | |
875 | } | |
876 | ||
877 | /* If this object is the same format as the output object, and it is | |
878 | not a shared library, then let the backend look through the | |
879 | relocs. | |
880 | ||
881 | This is required to build global offset table entries and to | |
882 | arrange for dynamic relocs. It is not required for the | |
883 | particular common case of linking non PIC code, even when linking | |
884 | against shared libraries, but unfortunately there is no way of | |
885 | knowing whether an object file has been compiled PIC or not. | |
886 | Looking through the relocs is not particularly time consuming. | |
887 | The problem is that we must either (1) keep the relocs in memory, | |
888 | which causes the linker to require additional runtime memory or | |
889 | (2) read the relocs twice from the input file, which wastes time. | |
890 | This would be a good case for using mmap. | |
891 | ||
892 | I have no idea how to handle linking PIC code into a file of a | |
893 | different format. It probably can't be done. */ | |
894 | check_relocs = get_elf_backend_data (abfd)->check_relocs; | |
895 | if (! dynamic | |
896 | && abfd->xvec == info->hash->creator | |
897 | && check_relocs != NULL) | |
898 | { | |
899 | asection *o; | |
900 | ||
901 | for (o = abfd->sections; o != NULL; o = o->next) | |
902 | { | |
903 | Elf_Internal_Rela *internal_relocs; | |
904 | boolean ok; | |
905 | ||
906 | if ((o->flags & SEC_RELOC) == 0 | |
907 | || o->reloc_count == 0) | |
908 | continue; | |
909 | ||
910 | /* I believe we can ignore the relocs for any section which | |
911 | does not form part of the final process image, such as a | |
912 | debugging section. */ | |
913 | if ((o->flags & SEC_ALLOC) == 0) | |
914 | continue; | |
915 | ||
916 | internal_relocs = elf_link_read_relocs (abfd, o, (PTR) NULL, | |
917 | (Elf_Internal_Rela *) NULL, | |
918 | info->keep_memory); | |
919 | if (internal_relocs == NULL) | |
920 | goto error_return; | |
921 | ||
922 | ok = (*check_relocs) (abfd, info, o, internal_relocs); | |
923 | ||
924 | if (! info->keep_memory) | |
925 | free (internal_relocs); | |
926 | ||
927 | if (! ok) | |
928 | goto error_return; | |
929 | } | |
930 | } | |
931 | ||
932 | return true; | |
933 | ||
934 | error_return: | |
935 | if (buf != NULL) | |
936 | free (buf); | |
937 | if (dynbuf != NULL) | |
938 | free (dynbuf); | |
939 | return false; | |
940 | } | |
941 | ||
942 | /* Create some sections which will be filled in with dynamic linking | |
943 | information. ABFD is an input file which requires dynamic sections | |
944 | to be created. The dynamic sections take up virtual memory space | |
945 | when the final executable is run, so we need to create them before | |
946 | addresses are assigned to the output sections. We work out the | |
947 | actual contents and size of these sections later. */ | |
948 | ||
949 | boolean | |
950 | elf_link_create_dynamic_sections (abfd, info) | |
951 | bfd *abfd; | |
952 | struct bfd_link_info *info; | |
953 | { | |
954 | flagword flags; | |
955 | register asection *s; | |
956 | struct elf_link_hash_entry *h; | |
957 | struct elf_backend_data *bed; | |
958 | ||
959 | if (elf_hash_table (info)->dynamic_sections_created) | |
960 | return true; | |
961 | ||
962 | /* Make sure that all dynamic sections use the same input BFD. */ | |
963 | if (elf_hash_table (info)->dynobj == NULL) | |
964 | elf_hash_table (info)->dynobj = abfd; | |
965 | else | |
966 | abfd = elf_hash_table (info)->dynobj; | |
967 | ||
968 | /* Note that we set the SEC_IN_MEMORY flag for all of these | |
969 | sections. */ | |
970 | flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY; | |
971 | ||
972 | /* A dynamically linked executable has a .interp section, but a | |
973 | shared library does not. */ | |
974 | if (! info->shared) | |
975 | { | |
976 | s = bfd_make_section (abfd, ".interp"); | |
977 | if (s == NULL | |
978 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
979 | return false; | |
980 | } | |
981 | ||
982 | s = bfd_make_section (abfd, ".dynsym"); | |
983 | if (s == NULL | |
984 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
985 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
986 | return false; | |
987 | ||
988 | s = bfd_make_section (abfd, ".dynstr"); | |
989 | if (s == NULL | |
990 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
991 | return false; | |
992 | ||
993 | /* Create a strtab to hold the dynamic symbol names. */ | |
994 | if (elf_hash_table (info)->dynstr == NULL) | |
995 | { | |
996 | elf_hash_table (info)->dynstr = elf_stringtab_init (); | |
997 | if (elf_hash_table (info)->dynstr == NULL) | |
998 | return false; | |
999 | } | |
1000 | ||
1001 | s = bfd_make_section (abfd, ".dynamic"); | |
1002 | if (s == NULL | |
1003 | || ! bfd_set_section_flags (abfd, s, flags) | |
1004 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1005 | return false; | |
1006 | ||
1007 | /* The special symbol _DYNAMIC is always set to the start of the | |
1008 | .dynamic section. This call occurs before we have processed the | |
1009 | symbols for any dynamic object, so we don't have to worry about | |
1010 | overriding a dynamic definition. We could set _DYNAMIC in a | |
1011 | linker script, but we only want to define it if we are, in fact, | |
1012 | creating a .dynamic section. We don't want to define it if there | |
1013 | is no .dynamic section, since on some ELF platforms the start up | |
1014 | code examines it to decide how to initialize the process. */ | |
1015 | h = NULL; | |
1016 | if (! (_bfd_generic_link_add_one_symbol | |
1017 | (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0, | |
1018 | (const char *) NULL, false, get_elf_backend_data (abfd)->collect, | |
1019 | (struct bfd_link_hash_entry **) &h))) | |
1020 | return false; | |
1021 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
1022 | h->type = STT_OBJECT; | |
1023 | ||
1024 | if (info->shared | |
1025 | && ! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
1026 | return false; | |
1027 | ||
1028 | s = bfd_make_section (abfd, ".hash"); | |
1029 | if (s == NULL | |
1030 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
1031 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1032 | return false; | |
1033 | ||
1034 | /* Let the backend create the rest of the sections. This lets the | |
1035 | backend set the right flags. The backend will normally create | |
1036 | the .got and .plt sections. */ | |
1037 | bed = get_elf_backend_data (abfd); | |
1038 | if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) | |
1039 | return false; | |
1040 | ||
1041 | elf_hash_table (info)->dynamic_sections_created = true; | |
1042 | ||
1043 | return true; | |
1044 | } | |
1045 | ||
1046 | /* Add an entry to the .dynamic table. */ | |
1047 | ||
1048 | boolean | |
1049 | elf_add_dynamic_entry (info, tag, val) | |
1050 | struct bfd_link_info *info; | |
1051 | bfd_vma tag; | |
1052 | bfd_vma val; | |
1053 | { | |
1054 | Elf_Internal_Dyn dyn; | |
1055 | bfd *dynobj; | |
1056 | asection *s; | |
1057 | size_t newsize; | |
1058 | bfd_byte *newcontents; | |
1059 | ||
1060 | dynobj = elf_hash_table (info)->dynobj; | |
1061 | ||
1062 | s = bfd_get_section_by_name (dynobj, ".dynamic"); | |
1063 | BFD_ASSERT (s != NULL); | |
1064 | ||
1065 | newsize = s->_raw_size + sizeof (Elf_External_Dyn); | |
1066 | if (s->contents == NULL) | |
1067 | newcontents = (bfd_byte *) malloc (newsize); | |
1068 | else | |
1069 | newcontents = (bfd_byte *) realloc (s->contents, newsize); | |
1070 | if (newcontents == NULL) | |
1071 | { | |
1072 | bfd_set_error (bfd_error_no_memory); | |
1073 | return false; | |
1074 | } | |
1075 | ||
1076 | dyn.d_tag = tag; | |
1077 | dyn.d_un.d_val = val; | |
1078 | elf_swap_dyn_out (dynobj, &dyn, | |
1079 | (Elf_External_Dyn *) (newcontents + s->_raw_size)); | |
1080 | ||
1081 | s->_raw_size = newsize; | |
1082 | s->contents = newcontents; | |
1083 | ||
1084 | return true; | |
1085 | } | |
1086 | ||
1087 | /* Read and swap the relocs for a section. They may have been cached. | |
1088 | If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL, | |
1089 | they are used as buffers to read into. They are known to be large | |
1090 | enough. If the INTERNAL_RELOCS relocs argument is NULL, the return | |
1091 | value is allocated using either malloc or bfd_alloc, according to | |
1092 | the KEEP_MEMORY argument. */ | |
1093 | ||
1094 | static Elf_Internal_Rela * | |
1095 | elf_link_read_relocs (abfd, o, external_relocs, internal_relocs, keep_memory) | |
1096 | bfd *abfd; | |
1097 | asection *o; | |
1098 | PTR external_relocs; | |
1099 | Elf_Internal_Rela *internal_relocs; | |
1100 | boolean keep_memory; | |
1101 | { | |
1102 | Elf_Internal_Shdr *rel_hdr; | |
1103 | PTR alloc1 = NULL; | |
1104 | Elf_Internal_Rela *alloc2 = NULL; | |
1105 | ||
1106 | if (elf_section_data (o)->relocs != NULL) | |
1107 | return elf_section_data (o)->relocs; | |
1108 | ||
1109 | if (o->reloc_count == 0) | |
1110 | return NULL; | |
1111 | ||
1112 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
1113 | ||
1114 | if (internal_relocs == NULL) | |
1115 | { | |
1116 | size_t size; | |
1117 | ||
1118 | size = o->reloc_count * sizeof (Elf_Internal_Rela); | |
1119 | if (keep_memory) | |
1120 | internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size); | |
1121 | else | |
1122 | internal_relocs = alloc2 = (Elf_Internal_Rela *) malloc (size); | |
1123 | if (internal_relocs == NULL) | |
1124 | { | |
1125 | bfd_set_error (bfd_error_no_memory); | |
1126 | goto error_return; | |
1127 | } | |
1128 | } | |
1129 | ||
1130 | if (external_relocs == NULL) | |
1131 | { | |
3fe22b98 | 1132 | alloc1 = (PTR) malloc ((size_t) rel_hdr->sh_size); |
ede4eed4 KR |
1133 | if (alloc1 == NULL) |
1134 | { | |
1135 | bfd_set_error (bfd_error_no_memory); | |
1136 | goto error_return; | |
1137 | } | |
1138 | external_relocs = alloc1; | |
1139 | } | |
1140 | ||
1141 | if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0) | |
1142 | || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd) | |
1143 | != rel_hdr->sh_size)) | |
1144 | goto error_return; | |
1145 | ||
1146 | /* Swap in the relocs. For convenience, we always produce an | |
1147 | Elf_Internal_Rela array; if the relocs are Rel, we set the addend | |
1148 | to 0. */ | |
1149 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
1150 | { | |
1151 | Elf_External_Rel *erel; | |
1152 | Elf_External_Rel *erelend; | |
1153 | Elf_Internal_Rela *irela; | |
1154 | ||
1155 | erel = (Elf_External_Rel *) external_relocs; | |
1156 | erelend = erel + o->reloc_count; | |
1157 | irela = internal_relocs; | |
1158 | for (; erel < erelend; erel++, irela++) | |
1159 | { | |
1160 | Elf_Internal_Rel irel; | |
1161 | ||
1162 | elf_swap_reloc_in (abfd, erel, &irel); | |
1163 | irela->r_offset = irel.r_offset; | |
1164 | irela->r_info = irel.r_info; | |
1165 | irela->r_addend = 0; | |
1166 | } | |
1167 | } | |
1168 | else | |
1169 | { | |
1170 | Elf_External_Rela *erela; | |
1171 | Elf_External_Rela *erelaend; | |
1172 | Elf_Internal_Rela *irela; | |
1173 | ||
1174 | BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela)); | |
1175 | ||
1176 | erela = (Elf_External_Rela *) external_relocs; | |
1177 | erelaend = erela + o->reloc_count; | |
1178 | irela = internal_relocs; | |
1179 | for (; erela < erelaend; erela++, irela++) | |
1180 | elf_swap_reloca_in (abfd, erela, irela); | |
1181 | } | |
1182 | ||
1183 | /* Cache the results for next time, if we can. */ | |
1184 | if (keep_memory) | |
1185 | elf_section_data (o)->relocs = internal_relocs; | |
1186 | ||
1187 | if (alloc1 != NULL) | |
1188 | free (alloc1); | |
1189 | ||
1190 | /* Don't free alloc2, since if it was allocated we are passing it | |
1191 | back (under the name of internal_relocs). */ | |
1192 | ||
1193 | return internal_relocs; | |
1194 | ||
1195 | error_return: | |
1196 | if (alloc1 != NULL) | |
1197 | free (alloc1); | |
1198 | if (alloc2 != NULL) | |
1199 | free (alloc2); | |
1200 | return NULL; | |
1201 | } | |
1202 | ||
1203 | /* Record an assignment to a symbol made by a linker script. We need | |
1204 | this in case some dynamic object refers to this symbol. */ | |
1205 | ||
1206 | /*ARGSUSED*/ | |
1207 | boolean | |
1208 | NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide) | |
1209 | bfd *output_bfd; | |
1210 | struct bfd_link_info *info; | |
1211 | const char *name; | |
1212 | boolean provide; | |
1213 | { | |
1214 | struct elf_link_hash_entry *h; | |
1215 | ||
1216 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
1217 | return true; | |
1218 | ||
1219 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false); | |
1220 | if (h == NULL) | |
1221 | return false; | |
1222 | ||
1223 | /* If this symbol is being provided by the linker script, and it is | |
1224 | currently defined by a dynamic object, but not by a regular | |
1225 | object, then mark it as undefined so that the generic linker will | |
1226 | force the correct value. */ | |
1227 | if (provide | |
1228 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
1229 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
1230 | h->root.type = bfd_link_hash_undefined; | |
1231 | ||
1232 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
1233 | h->type = STT_OBJECT; | |
1234 | ||
1235 | if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
1236 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0 | |
1237 | || info->shared) | |
1238 | && h->dynindx == -1) | |
1239 | { | |
1240 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
1241 | return false; | |
1242 | ||
1243 | /* If this is a weak defined symbol, and we know a corresponding | |
1244 | real symbol from the same dynamic object, make sure the real | |
1245 | symbol is also made into a dynamic symbol. */ | |
1246 | if (h->weakdef != NULL | |
1247 | && h->weakdef->dynindx == -1) | |
1248 | { | |
1249 | if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) | |
1250 | return false; | |
1251 | } | |
1252 | } | |
1253 | ||
1254 | return true; | |
1255 | } | |
1256 | ||
1257 | /* Array used to determine the number of hash table buckets to use | |
1258 | based on the number of symbols there are. If there are fewer than | |
1259 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |
1260 | fewer than 37 we use 17 buckets, and so forth. We never use more | |
1261 | than 521 buckets. */ | |
1262 | ||
1263 | static const size_t elf_buckets[] = | |
1264 | { | |
1265 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 0 | |
1266 | }; | |
1267 | ||
1268 | /* Set up the sizes and contents of the ELF dynamic sections. This is | |
1269 | called by the ELF linker emulation before_allocation routine. We | |
1270 | must set the sizes of the sections before the linker sets the | |
1271 | addresses of the various sections. */ | |
1272 | ||
1273 | boolean | |
1274 | NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath, | |
1275 | export_dynamic, info, sinterpptr) | |
1276 | bfd *output_bfd; | |
1277 | const char *soname; | |
1278 | const char *rpath; | |
1279 | boolean export_dynamic; | |
1280 | struct bfd_link_info *info; | |
1281 | asection **sinterpptr; | |
1282 | { | |
1283 | bfd *dynobj; | |
1284 | struct elf_backend_data *bed; | |
1285 | ||
1286 | *sinterpptr = NULL; | |
1287 | ||
1288 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
1289 | return true; | |
1290 | ||
1291 | dynobj = elf_hash_table (info)->dynobj; | |
1292 | ||
1293 | /* If there were no dynamic objects in the link, there is nothing to | |
1294 | do here. */ | |
1295 | if (dynobj == NULL) | |
1296 | return true; | |
1297 | ||
1298 | /* If we are supposed to export all symbols into the dynamic symbol | |
1299 | table (this is not the normal case), then do so. */ | |
1300 | if (export_dynamic) | |
1301 | { | |
1302 | struct elf_info_failed eif; | |
1303 | ||
1304 | eif.failed = false; | |
1305 | eif.info = info; | |
1306 | elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol, | |
1307 | (PTR) &eif); | |
1308 | if (eif.failed) | |
1309 | return false; | |
1310 | } | |
1311 | ||
1312 | if (elf_hash_table (info)->dynamic_sections_created) | |
1313 | { | |
1314 | struct elf_info_failed eif; | |
1315 | bfd_size_type strsize; | |
1316 | ||
1317 | *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); | |
1318 | BFD_ASSERT (*sinterpptr != NULL || info->shared); | |
1319 | ||
1320 | if (soname != NULL) | |
1321 | { | |
1322 | bfd_size_type indx; | |
1323 | ||
1324 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, soname, | |
1325 | true, true); | |
1326 | if (indx == (bfd_size_type) -1 | |
1327 | || ! elf_add_dynamic_entry (info, DT_SONAME, indx)) | |
1328 | return false; | |
1329 | } | |
1330 | ||
951fe66d ILT |
1331 | if (info->symbolic) |
1332 | { | |
1333 | if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) | |
1334 | return false; | |
1335 | } | |
1336 | ||
ede4eed4 KR |
1337 | if (rpath != NULL) |
1338 | { | |
1339 | bfd_size_type indx; | |
1340 | ||
1341 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath, | |
1342 | true, true); | |
1343 | if (indx == (bfd_size_type) -1 | |
1344 | || ! elf_add_dynamic_entry (info, DT_RPATH, indx)) | |
1345 | return false; | |
1346 | } | |
1347 | ||
1348 | /* Find all symbols which were defined in a dynamic object and make | |
1349 | the backend pick a reasonable value for them. */ | |
1350 | eif.failed = false; | |
1351 | eif.info = info; | |
1352 | elf_link_hash_traverse (elf_hash_table (info), | |
1353 | elf_adjust_dynamic_symbol, | |
1354 | (PTR) &eif); | |
1355 | if (eif.failed) | |
1356 | return false; | |
1357 | ||
1358 | /* Add some entries to the .dynamic section. We fill in some of the | |
1359 | values later, in elf_bfd_final_link, but we must add the entries | |
1360 | now so that we know the final size of the .dynamic section. */ | |
1361 | if (elf_link_hash_lookup (elf_hash_table (info), "_init", false, | |
1362 | false, false) != NULL) | |
1363 | { | |
1364 | if (! elf_add_dynamic_entry (info, DT_INIT, 0)) | |
1365 | return false; | |
1366 | } | |
1367 | if (elf_link_hash_lookup (elf_hash_table (info), "_fini", false, | |
1368 | false, false) != NULL) | |
1369 | { | |
1370 | if (! elf_add_dynamic_entry (info, DT_FINI, 0)) | |
1371 | return false; | |
1372 | } | |
1373 | strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
1374 | if (! elf_add_dynamic_entry (info, DT_HASH, 0) | |
1375 | || ! elf_add_dynamic_entry (info, DT_STRTAB, 0) | |
1376 | || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0) | |
1377 | || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize) | |
1378 | || ! elf_add_dynamic_entry (info, DT_SYMENT, | |
1379 | sizeof (Elf_External_Sym))) | |
1380 | return false; | |
1381 | } | |
1382 | ||
1383 | /* The backend must work out the sizes of all the other dynamic | |
1384 | sections. */ | |
1385 | bed = get_elf_backend_data (output_bfd); | |
1386 | if (! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) | |
1387 | return false; | |
1388 | ||
1389 | if (elf_hash_table (info)->dynamic_sections_created) | |
1390 | { | |
1391 | size_t dynsymcount; | |
1392 | asection *s; | |
1393 | size_t i; | |
1394 | size_t bucketcount = 0; | |
1395 | Elf_Internal_Sym isym; | |
1396 | ||
1397 | /* Set the size of the .dynsym and .hash sections. We counted | |
1398 | the number of dynamic symbols in elf_link_add_object_symbols. | |
1399 | We will build the contents of .dynsym and .hash when we build | |
1400 | the final symbol table, because until then we do not know the | |
1401 | correct value to give the symbols. We built the .dynstr | |
1402 | section as we went along in elf_link_add_object_symbols. */ | |
1403 | dynsymcount = elf_hash_table (info)->dynsymcount; | |
1404 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
1405 | BFD_ASSERT (s != NULL); | |
1406 | s->_raw_size = dynsymcount * sizeof (Elf_External_Sym); | |
1407 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
1408 | if (s->contents == NULL && s->_raw_size != 0) | |
1409 | { | |
1410 | bfd_set_error (bfd_error_no_memory); | |
1411 | return false; | |
1412 | } | |
1413 | ||
1414 | /* The first entry in .dynsym is a dummy symbol. */ | |
1415 | isym.st_value = 0; | |
1416 | isym.st_size = 0; | |
1417 | isym.st_name = 0; | |
1418 | isym.st_info = 0; | |
1419 | isym.st_other = 0; | |
1420 | isym.st_shndx = 0; | |
1421 | elf_swap_symbol_out (output_bfd, &isym, | |
cf9fb9f2 | 1422 | (PTR) (Elf_External_Sym *) s->contents); |
ede4eed4 KR |
1423 | |
1424 | for (i = 0; elf_buckets[i] != 0; i++) | |
1425 | { | |
1426 | bucketcount = elf_buckets[i]; | |
1427 | if (dynsymcount < elf_buckets[i + 1]) | |
1428 | break; | |
1429 | } | |
1430 | ||
1431 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
1432 | BFD_ASSERT (s != NULL); | |
1433 | s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8); | |
1434 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
1435 | if (s->contents == NULL) | |
1436 | { | |
1437 | bfd_set_error (bfd_error_no_memory); | |
1438 | return false; | |
1439 | } | |
3fe22b98 | 1440 | memset (s->contents, 0, (size_t) s->_raw_size); |
ede4eed4 KR |
1441 | |
1442 | put_word (output_bfd, bucketcount, s->contents); | |
1443 | put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8)); | |
1444 | ||
1445 | elf_hash_table (info)->bucketcount = bucketcount; | |
1446 | ||
1447 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
1448 | BFD_ASSERT (s != NULL); | |
1449 | s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
1450 | ||
1451 | if (! elf_add_dynamic_entry (info, DT_NULL, 0)) | |
1452 | return false; | |
1453 | } | |
1454 | ||
1455 | return true; | |
1456 | } | |
1457 | ||
1458 | /* This routine is used to export all defined symbols into the dynamic | |
1459 | symbol table. It is called via elf_link_hash_traverse. */ | |
1460 | ||
1461 | static boolean | |
1462 | elf_export_symbol (h, data) | |
1463 | struct elf_link_hash_entry *h; | |
1464 | PTR data; | |
1465 | { | |
1466 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
1467 | ||
1468 | if (h->dynindx == -1 | |
1469 | && (h->elf_link_hash_flags | |
1470 | & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0) | |
1471 | { | |
1472 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
1473 | { | |
1474 | eif->failed = true; | |
1475 | return false; | |
1476 | } | |
1477 | } | |
1478 | ||
1479 | return true; | |
1480 | } | |
1481 | ||
1482 | /* Make the backend pick a good value for a dynamic symbol. This is | |
1483 | called via elf_link_hash_traverse, and also calls itself | |
1484 | recursively. */ | |
1485 | ||
1486 | static boolean | |
1487 | elf_adjust_dynamic_symbol (h, data) | |
1488 | struct elf_link_hash_entry *h; | |
1489 | PTR data; | |
1490 | { | |
1491 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
1492 | bfd *dynobj; | |
1493 | struct elf_backend_data *bed; | |
1494 | ||
951fe66d ILT |
1495 | /* If -Bsymbolic was used (which means to bind references to global |
1496 | symbols to the definition within the shared object), and this | |
1497 | symbol was defined in a regular object, then it actually doesn't | |
1498 | need a PLT entry. */ | |
1499 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 | |
1500 | && eif->info->shared | |
1501 | && eif->info->symbolic | |
1502 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
1503 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT; | |
1504 | ||
ede4eed4 KR |
1505 | /* If this symbol does not require a PLT entry, and it is not |
1506 | defined by a dynamic object, or is not referenced by a regular | |
452a5efb ILT |
1507 | object, ignore it. We do have to handle a weak defined symbol, |
1508 | even if no regular object refers to it, if we decided to add it | |
1509 | to the dynamic symbol table. FIXME: Do we normally need to worry | |
1510 | about symbols which are defined by one dynamic object and | |
1511 | referenced by another one? */ | |
ede4eed4 KR |
1512 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0 |
1513 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
1514 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
452a5efb ILT |
1515 | || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0 |
1516 | && (h->weakdef == NULL || h->weakdef->dynindx == -1)))) | |
ede4eed4 KR |
1517 | return true; |
1518 | ||
1519 | /* If we've already adjusted this symbol, don't do it again. This | |
1520 | can happen via a recursive call. */ | |
1521 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) | |
1522 | return true; | |
1523 | ||
1524 | /* Don't look at this symbol again. Note that we must set this | |
1525 | after checking the above conditions, because we may look at a | |
1526 | symbol once, decide not to do anything, and then get called | |
1527 | recursively later after REF_REGULAR is set below. */ | |
1528 | h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; | |
1529 | ||
1530 | /* If this is a weak definition, and we know a real definition, and | |
1531 | the real symbol is not itself defined by a regular object file, | |
1532 | then get a good value for the real definition. We handle the | |
1533 | real symbol first, for the convenience of the backend routine. | |
1534 | ||
1535 | Note that there is a confusing case here. If the real definition | |
1536 | is defined by a regular object file, we don't get the real symbol | |
1537 | from the dynamic object, but we do get the weak symbol. If the | |
1538 | processor backend uses a COPY reloc, then if some routine in the | |
1539 | dynamic object changes the real symbol, we will not see that | |
1540 | change in the corresponding weak symbol. This is the way other | |
1541 | ELF linkers work as well, and seems to be a result of the shared | |
1542 | library model. | |
1543 | ||
1544 | I will clarify this issue. Most SVR4 shared libraries define the | |
1545 | variable _timezone and define timezone as a weak synonym. The | |
1546 | tzset call changes _timezone. If you write | |
1547 | extern int timezone; | |
1548 | int _timezone = 5; | |
1549 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
1550 | you might expect that, since timezone is a synonym for _timezone, | |
1551 | the same number will print both times. However, if the processor | |
1552 | backend uses a COPY reloc, then actually timezone will be copied | |
1553 | into your process image, and, since you define _timezone | |
1554 | yourself, _timezone will not. Thus timezone and _timezone will | |
1555 | wind up at different memory locations. The tzset call will set | |
1556 | _timezone, leaving timezone unchanged. */ | |
1557 | ||
1558 | if (h->weakdef != NULL) | |
1559 | { | |
1560 | struct elf_link_hash_entry *weakdef; | |
1561 | ||
1562 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
1563 | || h->root.type == bfd_link_hash_defweak); | |
1564 | weakdef = h->weakdef; | |
1565 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined | |
1566 | || weakdef->root.type == bfd_link_hash_defweak); | |
1567 | BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); | |
1568 | if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
1569 | { | |
1570 | /* This symbol is defined by a regular object file, so we | |
1571 | will not do anything special. Clear weakdef for the | |
1572 | convenience of the processor backend. */ | |
1573 | h->weakdef = NULL; | |
1574 | } | |
1575 | else | |
1576 | { | |
1577 | /* There is an implicit reference by a regular object file | |
1578 | via the weak symbol. */ | |
1579 | weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
1580 | if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif)) | |
1581 | return false; | |
1582 | } | |
1583 | } | |
1584 | ||
1585 | dynobj = elf_hash_table (eif->info)->dynobj; | |
1586 | bed = get_elf_backend_data (dynobj); | |
1587 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) | |
1588 | { | |
1589 | eif->failed = true; | |
1590 | return false; | |
1591 | } | |
1592 | ||
1593 | return true; | |
1594 | } | |
1595 | \f | |
1596 | /* Final phase of ELF linker. */ | |
1597 | ||
1598 | /* A structure we use to avoid passing large numbers of arguments. */ | |
1599 | ||
1600 | struct elf_final_link_info | |
1601 | { | |
1602 | /* General link information. */ | |
1603 | struct bfd_link_info *info; | |
1604 | /* Output BFD. */ | |
1605 | bfd *output_bfd; | |
1606 | /* Symbol string table. */ | |
1607 | struct bfd_strtab_hash *symstrtab; | |
1608 | /* .dynsym section. */ | |
1609 | asection *dynsym_sec; | |
1610 | /* .hash section. */ | |
1611 | asection *hash_sec; | |
1612 | /* Buffer large enough to hold contents of any section. */ | |
1613 | bfd_byte *contents; | |
1614 | /* Buffer large enough to hold external relocs of any section. */ | |
1615 | PTR external_relocs; | |
1616 | /* Buffer large enough to hold internal relocs of any section. */ | |
1617 | Elf_Internal_Rela *internal_relocs; | |
1618 | /* Buffer large enough to hold external local symbols of any input | |
1619 | BFD. */ | |
1620 | Elf_External_Sym *external_syms; | |
1621 | /* Buffer large enough to hold internal local symbols of any input | |
1622 | BFD. */ | |
1623 | Elf_Internal_Sym *internal_syms; | |
1624 | /* Array large enough to hold a symbol index for each local symbol | |
1625 | of any input BFD. */ | |
1626 | long *indices; | |
1627 | /* Array large enough to hold a section pointer for each local | |
1628 | symbol of any input BFD. */ | |
1629 | asection **sections; | |
1630 | /* Buffer to hold swapped out symbols. */ | |
1631 | Elf_External_Sym *symbuf; | |
1632 | /* Number of swapped out symbols in buffer. */ | |
1633 | size_t symbuf_count; | |
1634 | /* Number of symbols which fit in symbuf. */ | |
1635 | size_t symbuf_size; | |
1636 | }; | |
1637 | ||
1638 | static boolean elf_link_output_sym | |
1639 | PARAMS ((struct elf_final_link_info *, const char *, | |
1640 | Elf_Internal_Sym *, asection *)); | |
1641 | static boolean elf_link_flush_output_syms | |
1642 | PARAMS ((struct elf_final_link_info *)); | |
1643 | static boolean elf_link_output_extsym | |
1644 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
1645 | static boolean elf_link_input_bfd | |
1646 | PARAMS ((struct elf_final_link_info *, bfd *)); | |
1647 | static boolean elf_reloc_link_order | |
1648 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
1649 | struct bfd_link_order *)); | |
1650 | ||
1651 | /* This struct is used to pass information to routines called via | |
1652 | elf_link_hash_traverse which must return failure. */ | |
1653 | ||
1654 | struct elf_finfo_failed | |
1655 | { | |
1656 | boolean failed; | |
1657 | struct elf_final_link_info *finfo; | |
1658 | }; | |
1659 | ||
1660 | /* Do the final step of an ELF link. */ | |
1661 | ||
1662 | boolean | |
1663 | elf_bfd_final_link (abfd, info) | |
1664 | bfd *abfd; | |
1665 | struct bfd_link_info *info; | |
1666 | { | |
1667 | boolean dynamic; | |
1668 | bfd *dynobj; | |
1669 | struct elf_final_link_info finfo; | |
1670 | register asection *o; | |
1671 | register struct bfd_link_order *p; | |
1672 | register bfd *sub; | |
1673 | size_t max_contents_size; | |
1674 | size_t max_external_reloc_size; | |
1675 | size_t max_internal_reloc_count; | |
1676 | size_t max_sym_count; | |
1677 | file_ptr off; | |
1678 | Elf_Internal_Sym elfsym; | |
1679 | unsigned int i; | |
1680 | Elf_Internal_Shdr *symtab_hdr; | |
1681 | Elf_Internal_Shdr *symstrtab_hdr; | |
1682 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
1683 | struct elf_finfo_failed eif; | |
1684 | ||
1685 | if (info->shared) | |
1686 | abfd->flags |= DYNAMIC; | |
1687 | ||
1688 | dynamic = elf_hash_table (info)->dynamic_sections_created; | |
1689 | dynobj = elf_hash_table (info)->dynobj; | |
1690 | ||
1691 | finfo.info = info; | |
1692 | finfo.output_bfd = abfd; | |
1693 | finfo.symstrtab = elf_stringtab_init (); | |
1694 | if (finfo.symstrtab == NULL) | |
1695 | return false; | |
1696 | if (! dynamic) | |
1697 | { | |
1698 | finfo.dynsym_sec = NULL; | |
1699 | finfo.hash_sec = NULL; | |
1700 | } | |
1701 | else | |
1702 | { | |
1703 | finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); | |
1704 | finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); | |
1705 | BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL); | |
1706 | } | |
1707 | finfo.contents = NULL; | |
1708 | finfo.external_relocs = NULL; | |
1709 | finfo.internal_relocs = NULL; | |
1710 | finfo.external_syms = NULL; | |
1711 | finfo.internal_syms = NULL; | |
1712 | finfo.indices = NULL; | |
1713 | finfo.sections = NULL; | |
1714 | finfo.symbuf = NULL; | |
1715 | finfo.symbuf_count = 0; | |
1716 | ||
1717 | /* Count up the number of relocations we will output for each output | |
1718 | section, so that we know the sizes of the reloc sections. We | |
1719 | also figure out some maximum sizes. */ | |
1720 | max_contents_size = 0; | |
1721 | max_external_reloc_size = 0; | |
1722 | max_internal_reloc_count = 0; | |
1723 | max_sym_count = 0; | |
1724 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) | |
1725 | { | |
1726 | o->reloc_count = 0; | |
1727 | ||
1728 | for (p = o->link_order_head; p != NULL; p = p->next) | |
1729 | { | |
1730 | if (p->type == bfd_section_reloc_link_order | |
1731 | || p->type == bfd_symbol_reloc_link_order) | |
1732 | ++o->reloc_count; | |
1733 | else if (p->type == bfd_indirect_link_order) | |
1734 | { | |
1735 | asection *sec; | |
1736 | ||
1737 | sec = p->u.indirect.section; | |
1738 | ||
1739 | if (info->relocateable) | |
1740 | o->reloc_count += sec->reloc_count; | |
1741 | ||
1742 | if (sec->_raw_size > max_contents_size) | |
1743 | max_contents_size = sec->_raw_size; | |
1744 | if (sec->_cooked_size > max_contents_size) | |
1745 | max_contents_size = sec->_cooked_size; | |
1746 | ||
1747 | /* We are interested in just local symbols, not all | |
1748 | symbols. */ | |
1749 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour) | |
1750 | { | |
1751 | size_t sym_count; | |
1752 | ||
1753 | if (elf_bad_symtab (sec->owner)) | |
1754 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size | |
1755 | / sizeof (Elf_External_Sym)); | |
1756 | else | |
1757 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; | |
1758 | ||
1759 | if (sym_count > max_sym_count) | |
1760 | max_sym_count = sym_count; | |
1761 | ||
1762 | if ((sec->flags & SEC_RELOC) != 0) | |
1763 | { | |
1764 | size_t ext_size; | |
1765 | ||
1766 | ext_size = elf_section_data (sec)->rel_hdr.sh_size; | |
1767 | if (ext_size > max_external_reloc_size) | |
1768 | max_external_reloc_size = ext_size; | |
1769 | if (sec->reloc_count > max_internal_reloc_count) | |
1770 | max_internal_reloc_count = sec->reloc_count; | |
1771 | } | |
1772 | } | |
1773 | } | |
1774 | } | |
1775 | ||
1776 | if (o->reloc_count > 0) | |
1777 | o->flags |= SEC_RELOC; | |
1778 | else | |
1779 | { | |
1780 | /* Explicitly clear the SEC_RELOC flag. The linker tends to | |
1781 | set it (this is probably a bug) and if it is set | |
1782 | assign_section_numbers will create a reloc section. */ | |
1783 | o->flags &=~ SEC_RELOC; | |
1784 | } | |
1785 | ||
1786 | /* If the SEC_ALLOC flag is not set, force the section VMA to | |
1787 | zero. This is done in elf_fake_sections as well, but forcing | |
1788 | the VMA to 0 here will ensure that relocs against these | |
1789 | sections are handled correctly. */ | |
1790 | if ((o->flags & SEC_ALLOC) == 0) | |
1791 | o->vma = 0; | |
1792 | } | |
1793 | ||
1794 | /* Figure out the file positions for everything but the symbol table | |
1795 | and the relocs. We set symcount to force assign_section_numbers | |
1796 | to create a symbol table. */ | |
1797 | abfd->symcount = info->strip == strip_all ? 0 : 1; | |
1798 | BFD_ASSERT (! abfd->output_has_begun); | |
1799 | if (! _bfd_elf_compute_section_file_positions (abfd, info)) | |
1800 | goto error_return; | |
1801 | ||
1802 | /* That created the reloc sections. Set their sizes, and assign | |
1803 | them file positions, and allocate some buffers. */ | |
1804 | for (o = abfd->sections; o != NULL; o = o->next) | |
1805 | { | |
1806 | if ((o->flags & SEC_RELOC) != 0) | |
1807 | { | |
1808 | Elf_Internal_Shdr *rel_hdr; | |
1809 | register struct elf_link_hash_entry **p, **pend; | |
1810 | ||
1811 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
1812 | ||
1813 | rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count; | |
1814 | ||
1815 | /* The contents field must last into write_object_contents, | |
1816 | so we allocate it with bfd_alloc rather than malloc. */ | |
1817 | rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size); | |
1818 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) | |
1819 | { | |
1820 | bfd_set_error (bfd_error_no_memory); | |
1821 | goto error_return; | |
1822 | } | |
1823 | ||
1824 | p = ((struct elf_link_hash_entry **) | |
1825 | malloc (o->reloc_count | |
1826 | * sizeof (struct elf_link_hash_entry *))); | |
1827 | if (p == NULL && o->reloc_count != 0) | |
1828 | { | |
1829 | bfd_set_error (bfd_error_no_memory); | |
1830 | goto error_return; | |
1831 | } | |
1832 | elf_section_data (o)->rel_hashes = p; | |
1833 | pend = p + o->reloc_count; | |
1834 | for (; p < pend; p++) | |
1835 | *p = NULL; | |
1836 | ||
1837 | /* Use the reloc_count field as an index when outputting the | |
1838 | relocs. */ | |
1839 | o->reloc_count = 0; | |
1840 | } | |
1841 | } | |
1842 | ||
1843 | _bfd_elf_assign_file_positions_for_relocs (abfd); | |
1844 | ||
1845 | /* We have now assigned file positions for all the sections except | |
1846 | .symtab and .strtab. We start the .symtab section at the current | |
1847 | file position, and write directly to it. We build the .strtab | |
1848 | section in memory. When we add .dynsym support, we will build | |
1849 | that in memory as well (.dynsym is smaller than .symtab). */ | |
1850 | abfd->symcount = 0; | |
1851 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
1852 | /* sh_name is set in prep_headers. */ | |
1853 | symtab_hdr->sh_type = SHT_SYMTAB; | |
1854 | symtab_hdr->sh_flags = 0; | |
1855 | symtab_hdr->sh_addr = 0; | |
1856 | symtab_hdr->sh_size = 0; | |
1857 | symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
1858 | /* sh_link is set in assign_section_numbers. */ | |
1859 | /* sh_info is set below. */ | |
1860 | /* sh_offset is set just below. */ | |
1861 | symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */ | |
1862 | ||
1863 | off = elf_tdata (abfd)->next_file_pos; | |
1864 | off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true); | |
1865 | ||
1866 | /* Note that at this point elf_tdata (abfd)->next_file_pos is | |
1867 | incorrect. We do not yet know the size of the .symtab section. | |
1868 | We correct next_file_pos below, after we do know the size. */ | |
1869 | ||
1870 | /* Allocate a buffer to hold swapped out symbols. This is to avoid | |
1871 | continuously seeking to the right position in the file. */ | |
1872 | if (! info->keep_memory || max_sym_count < 20) | |
1873 | finfo.symbuf_size = 20; | |
1874 | else | |
1875 | finfo.symbuf_size = max_sym_count; | |
1876 | finfo.symbuf = ((Elf_External_Sym *) | |
1877 | malloc (finfo.symbuf_size * sizeof (Elf_External_Sym))); | |
1878 | if (finfo.symbuf == NULL) | |
1879 | { | |
1880 | bfd_set_error (bfd_error_no_memory); | |
1881 | goto error_return; | |
1882 | } | |
1883 | ||
1884 | /* Start writing out the symbol table. The first symbol is always a | |
1885 | dummy symbol. */ | |
1886 | elfsym.st_value = 0; | |
1887 | elfsym.st_size = 0; | |
1888 | elfsym.st_info = 0; | |
1889 | elfsym.st_other = 0; | |
1890 | elfsym.st_shndx = SHN_UNDEF; | |
1891 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
1892 | &elfsym, bfd_und_section_ptr)) | |
1893 | goto error_return; | |
1894 | ||
1895 | #if 0 | |
1896 | /* Some standard ELF linkers do this, but we don't because it causes | |
1897 | bootstrap comparison failures. */ | |
1898 | /* Output a file symbol for the output file as the second symbol. | |
1899 | We output this even if we are discarding local symbols, although | |
1900 | I'm not sure if this is correct. */ | |
1901 | elfsym.st_value = 0; | |
1902 | elfsym.st_size = 0; | |
1903 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
1904 | elfsym.st_other = 0; | |
1905 | elfsym.st_shndx = SHN_ABS; | |
1906 | if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd), | |
1907 | &elfsym, bfd_abs_section_ptr)) | |
1908 | goto error_return; | |
1909 | #endif | |
1910 | ||
1911 | /* Output a symbol for each section. We output these even if we are | |
1912 | discarding local symbols, since they are used for relocs. These | |
1913 | symbols have no names. We store the index of each one in the | |
1914 | index field of the section, so that we can find it again when | |
1915 | outputting relocs. */ | |
1916 | elfsym.st_value = 0; | |
1917 | elfsym.st_size = 0; | |
1918 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
1919 | elfsym.st_other = 0; | |
1920 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
1921 | { | |
1922 | o = section_from_elf_index (abfd, i); | |
1923 | if (o != NULL) | |
1924 | o->target_index = abfd->symcount; | |
1925 | elfsym.st_shndx = i; | |
1926 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
1927 | &elfsym, o)) | |
1928 | goto error_return; | |
1929 | } | |
1930 | ||
1931 | /* Allocate some memory to hold information read in from the input | |
1932 | files. */ | |
1933 | finfo.contents = (bfd_byte *) malloc (max_contents_size); | |
1934 | finfo.external_relocs = (PTR) malloc (max_external_reloc_size); | |
1935 | finfo.internal_relocs = ((Elf_Internal_Rela *) | |
1936 | malloc (max_internal_reloc_count | |
1937 | * sizeof (Elf_Internal_Rela))); | |
1938 | finfo.external_syms = ((Elf_External_Sym *) | |
1939 | malloc (max_sym_count * sizeof (Elf_External_Sym))); | |
1940 | finfo.internal_syms = ((Elf_Internal_Sym *) | |
1941 | malloc (max_sym_count * sizeof (Elf_Internal_Sym))); | |
1942 | finfo.indices = (long *) malloc (max_sym_count * sizeof (long)); | |
1943 | finfo.sections = (asection **) malloc (max_sym_count * sizeof (asection *)); | |
1944 | if ((finfo.contents == NULL && max_contents_size != 0) | |
1945 | || (finfo.external_relocs == NULL && max_external_reloc_size != 0) | |
1946 | || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0) | |
1947 | || (finfo.external_syms == NULL && max_sym_count != 0) | |
1948 | || (finfo.internal_syms == NULL && max_sym_count != 0) | |
1949 | || (finfo.indices == NULL && max_sym_count != 0) | |
1950 | || (finfo.sections == NULL && max_sym_count != 0)) | |
1951 | { | |
1952 | bfd_set_error (bfd_error_no_memory); | |
1953 | goto error_return; | |
1954 | } | |
1955 | ||
1956 | /* Since ELF permits relocations to be against local symbols, we | |
1957 | must have the local symbols available when we do the relocations. | |
1958 | Since we would rather only read the local symbols once, and we | |
1959 | would rather not keep them in memory, we handle all the | |
1960 | relocations for a single input file at the same time. | |
1961 | ||
1962 | Unfortunately, there is no way to know the total number of local | |
1963 | symbols until we have seen all of them, and the local symbol | |
1964 | indices precede the global symbol indices. This means that when | |
1965 | we are generating relocateable output, and we see a reloc against | |
1966 | a global symbol, we can not know the symbol index until we have | |
1967 | finished examining all the local symbols to see which ones we are | |
1968 | going to output. To deal with this, we keep the relocations in | |
1969 | memory, and don't output them until the end of the link. This is | |
1970 | an unfortunate waste of memory, but I don't see a good way around | |
1971 | it. Fortunately, it only happens when performing a relocateable | |
1972 | link, which is not the common case. FIXME: If keep_memory is set | |
1973 | we could write the relocs out and then read them again; I don't | |
1974 | know how bad the memory loss will be. */ | |
1975 | ||
1976 | for (sub = info->input_bfds; sub != NULL; sub = sub->next) | |
1977 | sub->output_has_begun = false; | |
1978 | for (o = abfd->sections; o != NULL; o = o->next) | |
1979 | { | |
1980 | for (p = o->link_order_head; p != NULL; p = p->next) | |
1981 | { | |
1982 | if (p->type == bfd_indirect_link_order | |
1983 | && (bfd_get_flavour (p->u.indirect.section->owner) | |
1984 | == bfd_target_elf_flavour)) | |
1985 | { | |
1986 | sub = p->u.indirect.section->owner; | |
1987 | if (! sub->output_has_begun) | |
1988 | { | |
1989 | if (! elf_link_input_bfd (&finfo, sub)) | |
1990 | goto error_return; | |
1991 | sub->output_has_begun = true; | |
1992 | } | |
1993 | } | |
1994 | else if (p->type == bfd_section_reloc_link_order | |
1995 | || p->type == bfd_symbol_reloc_link_order) | |
1996 | { | |
1997 | if (! elf_reloc_link_order (abfd, info, o, p)) | |
1998 | goto error_return; | |
1999 | } | |
2000 | else | |
2001 | { | |
2002 | if (! _bfd_default_link_order (abfd, info, o, p)) | |
2003 | goto error_return; | |
2004 | } | |
2005 | } | |
2006 | } | |
2007 | ||
2008 | /* That wrote out all the local symbols. Finish up the symbol table | |
2009 | with the global symbols. */ | |
2010 | ||
2011 | /* The sh_info field records the index of the first non local | |
2012 | symbol. */ | |
2013 | symtab_hdr->sh_info = abfd->symcount; | |
2014 | if (dynamic) | |
2015 | elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1; | |
2016 | ||
2017 | /* We get the global symbols from the hash table. */ | |
2018 | eif.failed = false; | |
2019 | eif.finfo = &finfo; | |
2020 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, | |
2021 | (PTR) &eif); | |
2022 | if (eif.failed) | |
2023 | return false; | |
2024 | ||
2025 | /* Flush all symbols to the file. */ | |
2026 | if (! elf_link_flush_output_syms (&finfo)) | |
2027 | return false; | |
2028 | ||
2029 | /* Now we know the size of the symtab section. */ | |
2030 | off += symtab_hdr->sh_size; | |
2031 | ||
2032 | /* Finish up and write out the symbol string table (.strtab) | |
2033 | section. */ | |
2034 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; | |
2035 | /* sh_name was set in prep_headers. */ | |
2036 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
2037 | symstrtab_hdr->sh_flags = 0; | |
2038 | symstrtab_hdr->sh_addr = 0; | |
2039 | symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab); | |
2040 | symstrtab_hdr->sh_entsize = 0; | |
2041 | symstrtab_hdr->sh_link = 0; | |
2042 | symstrtab_hdr->sh_info = 0; | |
2043 | /* sh_offset is set just below. */ | |
2044 | symstrtab_hdr->sh_addralign = 1; | |
2045 | ||
2046 | off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true); | |
2047 | elf_tdata (abfd)->next_file_pos = off; | |
2048 | ||
2049 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 | |
2050 | || ! _bfd_stringtab_emit (abfd, finfo.symstrtab)) | |
2051 | return false; | |
2052 | ||
2053 | /* Adjust the relocs to have the correct symbol indices. */ | |
2054 | for (o = abfd->sections; o != NULL; o = o->next) | |
2055 | { | |
2056 | struct elf_link_hash_entry **rel_hash; | |
2057 | Elf_Internal_Shdr *rel_hdr; | |
2058 | ||
2059 | if ((o->flags & SEC_RELOC) == 0) | |
2060 | continue; | |
2061 | ||
2062 | rel_hash = elf_section_data (o)->rel_hashes; | |
2063 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
2064 | for (i = 0; i < o->reloc_count; i++, rel_hash++) | |
2065 | { | |
2066 | if (*rel_hash == NULL) | |
2067 | continue; | |
2068 | ||
2069 | BFD_ASSERT ((*rel_hash)->indx >= 0); | |
2070 | ||
2071 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
2072 | { | |
2073 | Elf_External_Rel *erel; | |
2074 | Elf_Internal_Rel irel; | |
2075 | ||
2076 | erel = (Elf_External_Rel *) rel_hdr->contents + i; | |
2077 | elf_swap_reloc_in (abfd, erel, &irel); | |
2078 | irel.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
2079 | ELF_R_TYPE (irel.r_info)); | |
2080 | elf_swap_reloc_out (abfd, &irel, erel); | |
2081 | } | |
2082 | else | |
2083 | { | |
2084 | Elf_External_Rela *erela; | |
2085 | Elf_Internal_Rela irela; | |
2086 | ||
2087 | BFD_ASSERT (rel_hdr->sh_entsize | |
2088 | == sizeof (Elf_External_Rela)); | |
2089 | ||
2090 | erela = (Elf_External_Rela *) rel_hdr->contents + i; | |
2091 | elf_swap_reloca_in (abfd, erela, &irela); | |
2092 | irela.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
2093 | ELF_R_TYPE (irela.r_info)); | |
2094 | elf_swap_reloca_out (abfd, &irela, erela); | |
2095 | } | |
2096 | } | |
2097 | ||
2098 | /* Set the reloc_count field to 0 to prevent write_relocs from | |
2099 | trying to swap the relocs out itself. */ | |
2100 | o->reloc_count = 0; | |
2101 | } | |
2102 | ||
2103 | /* If we are linking against a dynamic object, or generating a | |
2104 | shared library, finish up the dynamic linking information. */ | |
2105 | if (dynamic) | |
2106 | { | |
2107 | Elf_External_Dyn *dyncon, *dynconend; | |
2108 | ||
2109 | /* Fix up .dynamic entries. */ | |
2110 | o = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2111 | BFD_ASSERT (o != NULL); | |
2112 | ||
2113 | dyncon = (Elf_External_Dyn *) o->contents; | |
2114 | dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size); | |
2115 | for (; dyncon < dynconend; dyncon++) | |
2116 | { | |
2117 | Elf_Internal_Dyn dyn; | |
2118 | const char *name; | |
2119 | unsigned int type; | |
2120 | ||
2121 | elf_swap_dyn_in (dynobj, dyncon, &dyn); | |
2122 | ||
2123 | switch (dyn.d_tag) | |
2124 | { | |
2125 | default: | |
2126 | break; | |
2127 | ||
2128 | /* SVR4 linkers seem to set DT_INIT and DT_FINI based on | |
2129 | magic _init and _fini symbols. This is pretty ugly, | |
2130 | but we are compatible. */ | |
2131 | case DT_INIT: | |
2132 | name = "_init"; | |
2133 | goto get_sym; | |
2134 | case DT_FINI: | |
2135 | name = "_fini"; | |
2136 | get_sym: | |
2137 | { | |
2138 | struct elf_link_hash_entry *h; | |
2139 | ||
2140 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
2141 | false, false, true); | |
d6f672b8 ILT |
2142 | if (h != NULL |
2143 | && (h->root.type == bfd_link_hash_defined | |
2144 | || h->root.type == bfd_link_hash_defweak)) | |
ede4eed4 KR |
2145 | { |
2146 | dyn.d_un.d_val = h->root.u.def.value; | |
2147 | o = h->root.u.def.section; | |
2148 | if (o->output_section != NULL) | |
2149 | dyn.d_un.d_val += (o->output_section->vma | |
2150 | + o->output_offset); | |
2151 | else | |
d6f672b8 ILT |
2152 | { |
2153 | /* The symbol is imported from another shared | |
2154 | library and does not apply to this one. */ | |
2155 | dyn.d_un.d_val = 0; | |
2156 | } | |
2157 | ||
2158 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
ede4eed4 | 2159 | } |
ede4eed4 KR |
2160 | } |
2161 | break; | |
2162 | ||
2163 | case DT_HASH: | |
2164 | name = ".hash"; | |
2165 | goto get_vma; | |
2166 | case DT_STRTAB: | |
2167 | name = ".dynstr"; | |
2168 | goto get_vma; | |
2169 | case DT_SYMTAB: | |
2170 | name = ".dynsym"; | |
2171 | get_vma: | |
2172 | o = bfd_get_section_by_name (abfd, name); | |
2173 | BFD_ASSERT (o != NULL); | |
2174 | dyn.d_un.d_ptr = o->vma; | |
2175 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
2176 | break; | |
2177 | ||
2178 | case DT_REL: | |
2179 | case DT_RELA: | |
2180 | case DT_RELSZ: | |
2181 | case DT_RELASZ: | |
2182 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) | |
2183 | type = SHT_REL; | |
2184 | else | |
2185 | type = SHT_RELA; | |
2186 | dyn.d_un.d_val = 0; | |
2187 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
2188 | { | |
2189 | Elf_Internal_Shdr *hdr; | |
2190 | ||
2191 | hdr = elf_elfsections (abfd)[i]; | |
2192 | if (hdr->sh_type == type | |
2193 | && (hdr->sh_flags & SHF_ALLOC) != 0) | |
2194 | { | |
2195 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) | |
2196 | dyn.d_un.d_val += hdr->sh_size; | |
2197 | else | |
2198 | { | |
2199 | if (dyn.d_un.d_val == 0 | |
2200 | || hdr->sh_addr < dyn.d_un.d_val) | |
2201 | dyn.d_un.d_val = hdr->sh_addr; | |
2202 | } | |
2203 | } | |
2204 | } | |
2205 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
2206 | break; | |
2207 | } | |
2208 | } | |
2209 | } | |
2210 | ||
2211 | /* If we have created any dynamic sections, then output them. */ | |
2212 | if (dynobj != NULL) | |
2213 | { | |
2214 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) | |
2215 | goto error_return; | |
2216 | ||
2217 | for (o = dynobj->sections; o != NULL; o = o->next) | |
2218 | { | |
2219 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
2220 | || o->_raw_size == 0) | |
2221 | continue; | |
2222 | if ((o->flags & SEC_IN_MEMORY) == 0) | |
2223 | { | |
2224 | /* At this point, we are only interested in sections | |
2225 | created by elf_link_create_dynamic_sections. FIXME: | |
2226 | This test is fragile. */ | |
2227 | continue; | |
2228 | } | |
2229 | if ((elf_section_data (o->output_section)->this_hdr.sh_type | |
2230 | != SHT_STRTAB) | |
2231 | || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0) | |
2232 | { | |
2233 | if (! bfd_set_section_contents (abfd, o->output_section, | |
2234 | o->contents, o->output_offset, | |
2235 | o->_raw_size)) | |
2236 | goto error_return; | |
2237 | } | |
2238 | else | |
2239 | { | |
2240 | file_ptr off; | |
2241 | ||
2242 | /* The contents of the .dynstr section are actually in a | |
2243 | stringtab. */ | |
2244 | off = elf_section_data (o->output_section)->this_hdr.sh_offset; | |
2245 | if (bfd_seek (abfd, off, SEEK_SET) != 0 | |
2246 | || ! _bfd_stringtab_emit (abfd, | |
2247 | elf_hash_table (info)->dynstr)) | |
2248 | goto error_return; | |
2249 | } | |
2250 | } | |
2251 | } | |
2252 | ||
2253 | if (finfo.symstrtab != NULL) | |
2254 | _bfd_stringtab_free (finfo.symstrtab); | |
2255 | if (finfo.contents != NULL) | |
2256 | free (finfo.contents); | |
2257 | if (finfo.external_relocs != NULL) | |
2258 | free (finfo.external_relocs); | |
2259 | if (finfo.internal_relocs != NULL) | |
2260 | free (finfo.internal_relocs); | |
2261 | if (finfo.external_syms != NULL) | |
2262 | free (finfo.external_syms); | |
2263 | if (finfo.internal_syms != NULL) | |
2264 | free (finfo.internal_syms); | |
2265 | if (finfo.indices != NULL) | |
2266 | free (finfo.indices); | |
2267 | if (finfo.sections != NULL) | |
2268 | free (finfo.sections); | |
2269 | if (finfo.symbuf != NULL) | |
2270 | free (finfo.symbuf); | |
2271 | for (o = abfd->sections; o != NULL; o = o->next) | |
2272 | { | |
2273 | if ((o->flags & SEC_RELOC) != 0 | |
2274 | && elf_section_data (o)->rel_hashes != NULL) | |
2275 | free (elf_section_data (o)->rel_hashes); | |
2276 | } | |
2277 | ||
2278 | elf_tdata (abfd)->linker = true; | |
2279 | ||
2280 | return true; | |
2281 | ||
2282 | error_return: | |
2283 | if (finfo.symstrtab != NULL) | |
2284 | _bfd_stringtab_free (finfo.symstrtab); | |
2285 | if (finfo.contents != NULL) | |
2286 | free (finfo.contents); | |
2287 | if (finfo.external_relocs != NULL) | |
2288 | free (finfo.external_relocs); | |
2289 | if (finfo.internal_relocs != NULL) | |
2290 | free (finfo.internal_relocs); | |
2291 | if (finfo.external_syms != NULL) | |
2292 | free (finfo.external_syms); | |
2293 | if (finfo.internal_syms != NULL) | |
2294 | free (finfo.internal_syms); | |
2295 | if (finfo.indices != NULL) | |
2296 | free (finfo.indices); | |
2297 | if (finfo.sections != NULL) | |
2298 | free (finfo.sections); | |
2299 | if (finfo.symbuf != NULL) | |
2300 | free (finfo.symbuf); | |
2301 | for (o = abfd->sections; o != NULL; o = o->next) | |
2302 | { | |
2303 | if ((o->flags & SEC_RELOC) != 0 | |
2304 | && elf_section_data (o)->rel_hashes != NULL) | |
2305 | free (elf_section_data (o)->rel_hashes); | |
2306 | } | |
2307 | ||
2308 | return false; | |
2309 | } | |
2310 | ||
2311 | /* Add a symbol to the output symbol table. */ | |
2312 | ||
2313 | static boolean | |
2314 | elf_link_output_sym (finfo, name, elfsym, input_sec) | |
2315 | struct elf_final_link_info *finfo; | |
2316 | const char *name; | |
2317 | Elf_Internal_Sym *elfsym; | |
2318 | asection *input_sec; | |
2319 | { | |
2320 | boolean (*output_symbol_hook) PARAMS ((bfd *, | |
2321 | struct bfd_link_info *info, | |
2322 | const char *, | |
2323 | Elf_Internal_Sym *, | |
2324 | asection *)); | |
2325 | ||
2326 | output_symbol_hook = get_elf_backend_data (finfo->output_bfd)-> | |
2327 | elf_backend_link_output_symbol_hook; | |
2328 | if (output_symbol_hook != NULL) | |
2329 | { | |
2330 | if (! ((*output_symbol_hook) | |
2331 | (finfo->output_bfd, finfo->info, name, elfsym, input_sec))) | |
2332 | return false; | |
2333 | } | |
2334 | ||
2335 | if (name == (const char *) NULL || *name == '\0') | |
2336 | elfsym->st_name = 0; | |
2337 | else | |
2338 | { | |
2339 | elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab, | |
2340 | name, true, | |
2341 | false); | |
2342 | if (elfsym->st_name == (unsigned long) -1) | |
2343 | return false; | |
2344 | } | |
2345 | ||
2346 | if (finfo->symbuf_count >= finfo->symbuf_size) | |
2347 | { | |
2348 | if (! elf_link_flush_output_syms (finfo)) | |
2349 | return false; | |
2350 | } | |
2351 | ||
2352 | elf_swap_symbol_out (finfo->output_bfd, elfsym, | |
cf9fb9f2 | 2353 | (PTR) (finfo->symbuf + finfo->symbuf_count)); |
ede4eed4 KR |
2354 | ++finfo->symbuf_count; |
2355 | ||
2356 | ++finfo->output_bfd->symcount; | |
2357 | ||
2358 | return true; | |
2359 | } | |
2360 | ||
2361 | /* Flush the output symbols to the file. */ | |
2362 | ||
2363 | static boolean | |
2364 | elf_link_flush_output_syms (finfo) | |
2365 | struct elf_final_link_info *finfo; | |
2366 | { | |
2367 | Elf_Internal_Shdr *symtab; | |
2368 | ||
2369 | symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr; | |
2370 | ||
2371 | if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size, | |
2372 | SEEK_SET) != 0 | |
2373 | || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count, | |
2374 | sizeof (Elf_External_Sym), finfo->output_bfd) | |
2375 | != finfo->symbuf_count * sizeof (Elf_External_Sym))) | |
2376 | return false; | |
2377 | ||
2378 | symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym); | |
2379 | ||
2380 | finfo->symbuf_count = 0; | |
2381 | ||
2382 | return true; | |
2383 | } | |
2384 | ||
2385 | /* Add an external symbol to the symbol table. This is called from | |
2386 | the hash table traversal routine. */ | |
2387 | ||
2388 | static boolean | |
2389 | elf_link_output_extsym (h, data) | |
2390 | struct elf_link_hash_entry *h; | |
2391 | PTR data; | |
2392 | { | |
2393 | struct elf_finfo_failed *eif = (struct elf_finfo_failed *) data; | |
2394 | struct elf_final_link_info *finfo = eif->finfo; | |
2395 | boolean strip; | |
2396 | Elf_Internal_Sym sym; | |
2397 | asection *input_sec; | |
2398 | ||
2399 | /* If we are not creating a shared library, and this symbol is | |
2400 | referenced by a shared library but is not defined anywhere, then | |
2401 | warn that it is undefined. If we do not do this, the runtime | |
2402 | linker will complain that the symbol is undefined when the | |
2403 | program is run. We don't have to worry about symbols that are | |
2404 | referenced by regular files, because we will already have issued | |
2405 | warnings for them. */ | |
2406 | if (! finfo->info->relocateable | |
2407 | && ! finfo->info->shared | |
2408 | && h->root.type == bfd_link_hash_undefined | |
2409 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0 | |
2410 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
2411 | { | |
2412 | if (! ((*finfo->info->callbacks->undefined_symbol) | |
2413 | (finfo->info, h->root.root.string, h->root.u.undef.abfd, | |
2414 | (asection *) NULL, 0))) | |
2415 | { | |
2416 | eif->failed = true; | |
2417 | return false; | |
2418 | } | |
2419 | } | |
2420 | ||
2421 | /* We don't want to output symbols that have never been mentioned by | |
2422 | a regular file, or that we have been told to strip. However, if | |
2423 | h->indx is set to -2, the symbol is used by a reloc and we must | |
2424 | output it. */ | |
2425 | if (h->indx == -2) | |
2426 | strip = false; | |
2427 | else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
2428 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
2429 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
2430 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
2431 | strip = true; | |
2432 | else if (finfo->info->strip == strip_all | |
2433 | || (finfo->info->strip == strip_some | |
2434 | && bfd_hash_lookup (finfo->info->keep_hash, | |
2435 | h->root.root.string, | |
2436 | false, false) == NULL)) | |
2437 | strip = true; | |
2438 | else | |
2439 | strip = false; | |
2440 | ||
2441 | /* If we're stripping it, and it's not a dynamic symbol, there's | |
2442 | nothing else to do. */ | |
2443 | if (strip && h->dynindx == -1) | |
2444 | return true; | |
2445 | ||
2446 | sym.st_value = 0; | |
2447 | sym.st_size = h->size; | |
2448 | sym.st_other = 0; | |
2449 | if (h->root.type == bfd_link_hash_undefweak | |
2450 | || h->root.type == bfd_link_hash_defweak) | |
2451 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); | |
2452 | else | |
2453 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); | |
2454 | ||
2455 | switch (h->root.type) | |
2456 | { | |
2457 | default: | |
2458 | case bfd_link_hash_new: | |
2459 | abort (); | |
2460 | return false; | |
2461 | ||
2462 | case bfd_link_hash_undefined: | |
2463 | input_sec = bfd_und_section_ptr; | |
2464 | sym.st_shndx = SHN_UNDEF; | |
2465 | break; | |
2466 | ||
2467 | case bfd_link_hash_undefweak: | |
2468 | input_sec = bfd_und_section_ptr; | |
2469 | sym.st_shndx = SHN_UNDEF; | |
2470 | break; | |
2471 | ||
2472 | case bfd_link_hash_defined: | |
2473 | case bfd_link_hash_defweak: | |
2474 | { | |
2475 | input_sec = h->root.u.def.section; | |
2476 | if (input_sec->output_section != NULL) | |
2477 | { | |
2478 | sym.st_shndx = | |
2479 | _bfd_elf_section_from_bfd_section (finfo->output_bfd, | |
2480 | input_sec->output_section); | |
2481 | if (sym.st_shndx == (unsigned short) -1) | |
2482 | { | |
2483 | eif->failed = true; | |
2484 | return false; | |
2485 | } | |
2486 | ||
2487 | /* ELF symbols in relocateable files are section relative, | |
2488 | but in nonrelocateable files they are virtual | |
2489 | addresses. */ | |
2490 | sym.st_value = h->root.u.def.value + input_sec->output_offset; | |
2491 | if (! finfo->info->relocateable) | |
2492 | sym.st_value += input_sec->output_section->vma; | |
2493 | } | |
2494 | else | |
2495 | { | |
2496 | BFD_ASSERT ((bfd_get_flavour (input_sec->owner) | |
2497 | == bfd_target_elf_flavour) | |
2498 | && elf_elfheader (input_sec->owner)->e_type == ET_DYN); | |
2499 | sym.st_shndx = SHN_UNDEF; | |
2500 | input_sec = bfd_und_section_ptr; | |
2501 | } | |
2502 | } | |
2503 | break; | |
2504 | ||
2505 | case bfd_link_hash_common: | |
2506 | input_sec = bfd_com_section_ptr; | |
2507 | sym.st_shndx = SHN_COMMON; | |
2508 | sym.st_value = 1 << h->root.u.c.p->alignment_power; | |
2509 | break; | |
2510 | ||
2511 | case bfd_link_hash_indirect: | |
2512 | case bfd_link_hash_warning: | |
0cb70568 ILT |
2513 | return (elf_link_output_extsym |
2514 | ((struct elf_link_hash_entry *) h->root.u.i.link, data)); | |
ede4eed4 KR |
2515 | } |
2516 | ||
2517 | /* If this symbol should be put in the .dynsym section, then put it | |
2518 | there now. We have already know the symbol index. We also fill | |
2519 | in the entry in the .hash section. */ | |
2520 | if (h->dynindx != -1 | |
2521 | && elf_hash_table (finfo->info)->dynamic_sections_created) | |
2522 | { | |
2523 | struct elf_backend_data *bed; | |
2524 | size_t bucketcount; | |
2525 | size_t bucket; | |
2526 | bfd_byte *bucketpos; | |
2527 | bfd_vma chain; | |
2528 | ||
2529 | sym.st_name = h->dynstr_index; | |
2530 | ||
2531 | /* Give the processor backend a chance to tweak the symbol | |
2532 | value, and also to finish up anything that needs to be done | |
2533 | for this symbol. */ | |
2534 | bed = get_elf_backend_data (finfo->output_bfd); | |
2535 | if (! ((*bed->elf_backend_finish_dynamic_symbol) | |
2536 | (finfo->output_bfd, finfo->info, h, &sym))) | |
2537 | { | |
2538 | eif->failed = true; | |
2539 | return false; | |
2540 | } | |
2541 | ||
2542 | elf_swap_symbol_out (finfo->output_bfd, &sym, | |
cf9fb9f2 ILT |
2543 | (PTR) (((Elf_External_Sym *) |
2544 | finfo->dynsym_sec->contents) | |
2545 | + h->dynindx)); | |
ede4eed4 KR |
2546 | |
2547 | bucketcount = elf_hash_table (finfo->info)->bucketcount; | |
2548 | bucket = (bfd_elf_hash ((const unsigned char *) h->root.root.string) | |
2549 | % bucketcount); | |
2550 | bucketpos = ((bfd_byte *) finfo->hash_sec->contents | |
2551 | + (bucket + 2) * (ARCH_SIZE / 8)); | |
2552 | chain = get_word (finfo->output_bfd, bucketpos); | |
2553 | put_word (finfo->output_bfd, h->dynindx, bucketpos); | |
2554 | put_word (finfo->output_bfd, chain, | |
2555 | ((bfd_byte *) finfo->hash_sec->contents | |
2556 | + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8))); | |
2557 | } | |
2558 | ||
2559 | /* If we're stripping it, then it was just a dynamic symbol, and | |
2560 | there's nothing else to do. */ | |
2561 | if (strip) | |
2562 | return true; | |
2563 | ||
2564 | h->indx = finfo->output_bfd->symcount; | |
2565 | ||
2566 | if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec)) | |
2567 | { | |
2568 | eif->failed = true; | |
2569 | return false; | |
2570 | } | |
2571 | ||
2572 | return true; | |
2573 | } | |
2574 | ||
2575 | /* Link an input file into the linker output file. This function | |
2576 | handles all the sections and relocations of the input file at once. | |
2577 | This is so that we only have to read the local symbols once, and | |
2578 | don't have to keep them in memory. */ | |
2579 | ||
2580 | static boolean | |
2581 | elf_link_input_bfd (finfo, input_bfd) | |
2582 | struct elf_final_link_info *finfo; | |
2583 | bfd *input_bfd; | |
2584 | { | |
2585 | boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *, | |
2586 | bfd *, asection *, bfd_byte *, | |
2587 | Elf_Internal_Rela *, | |
2588 | Elf_Internal_Sym *, asection **)); | |
2589 | bfd *output_bfd; | |
2590 | Elf_Internal_Shdr *symtab_hdr; | |
2591 | size_t locsymcount; | |
2592 | size_t extsymoff; | |
2593 | Elf_External_Sym *esym; | |
2594 | Elf_External_Sym *esymend; | |
2595 | Elf_Internal_Sym *isym; | |
2596 | long *pindex; | |
2597 | asection **ppsection; | |
2598 | asection *o; | |
2599 | ||
2600 | output_bfd = finfo->output_bfd; | |
2601 | relocate_section = | |
2602 | get_elf_backend_data (output_bfd)->elf_backend_relocate_section; | |
2603 | ||
2604 | /* If this is a dynamic object, we don't want to do anything here: | |
2605 | we don't want the local symbols, and we don't want the section | |
2606 | contents. */ | |
2607 | if (elf_elfheader (input_bfd)->e_type == ET_DYN) | |
2608 | return true; | |
2609 | ||
2610 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
2611 | if (elf_bad_symtab (input_bfd)) | |
2612 | { | |
2613 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
2614 | extsymoff = 0; | |
2615 | } | |
2616 | else | |
2617 | { | |
2618 | locsymcount = symtab_hdr->sh_info; | |
2619 | extsymoff = symtab_hdr->sh_info; | |
2620 | } | |
2621 | ||
2622 | /* Read the local symbols. */ | |
2623 | if (locsymcount > 0 | |
2624 | && (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
2625 | || (bfd_read (finfo->external_syms, sizeof (Elf_External_Sym), | |
2626 | locsymcount, input_bfd) | |
2627 | != locsymcount * sizeof (Elf_External_Sym)))) | |
2628 | return false; | |
2629 | ||
2630 | /* Swap in the local symbols and write out the ones which we know | |
2631 | are going into the output file. */ | |
2632 | esym = finfo->external_syms; | |
2633 | esymend = esym + locsymcount; | |
2634 | isym = finfo->internal_syms; | |
2635 | pindex = finfo->indices; | |
2636 | ppsection = finfo->sections; | |
2637 | for (; esym < esymend; esym++, isym++, pindex++, ppsection++) | |
2638 | { | |
2639 | asection *isec; | |
2640 | const char *name; | |
2641 | Elf_Internal_Sym osym; | |
2642 | ||
2643 | elf_swap_symbol_in (input_bfd, esym, isym); | |
2644 | *pindex = -1; | |
2645 | ||
2646 | if (elf_bad_symtab (input_bfd)) | |
2647 | { | |
2648 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) | |
2649 | { | |
2650 | *ppsection = NULL; | |
2651 | continue; | |
2652 | } | |
2653 | } | |
2654 | ||
2655 | if (isym->st_shndx == SHN_UNDEF) | |
2656 | isec = bfd_und_section_ptr; | |
2657 | else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE) | |
2658 | isec = section_from_elf_index (input_bfd, isym->st_shndx); | |
2659 | else if (isym->st_shndx == SHN_ABS) | |
2660 | isec = bfd_abs_section_ptr; | |
2661 | else if (isym->st_shndx == SHN_COMMON) | |
2662 | isec = bfd_com_section_ptr; | |
2663 | else | |
2664 | { | |
2665 | /* Who knows? */ | |
2666 | isec = NULL; | |
2667 | } | |
2668 | ||
2669 | *ppsection = isec; | |
2670 | ||
2671 | /* Don't output the first, undefined, symbol. */ | |
2672 | if (esym == finfo->external_syms) | |
2673 | continue; | |
2674 | ||
2675 | /* If we are stripping all symbols, we don't want to output this | |
2676 | one. */ | |
2677 | if (finfo->info->strip == strip_all) | |
2678 | continue; | |
2679 | ||
2680 | /* We never output section symbols. Instead, we use the section | |
2681 | symbol of the corresponding section in the output file. */ | |
2682 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
2683 | continue; | |
2684 | ||
2685 | /* If we are discarding all local symbols, we don't want to | |
2686 | output this one. If we are generating a relocateable output | |
2687 | file, then some of the local symbols may be required by | |
2688 | relocs; we output them below as we discover that they are | |
2689 | needed. */ | |
2690 | if (finfo->info->discard == discard_all) | |
2691 | continue; | |
2692 | ||
2693 | /* Get the name of the symbol. */ | |
2694 | name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | |
2695 | isym->st_name); | |
2696 | if (name == NULL) | |
2697 | return false; | |
2698 | ||
2699 | /* See if we are discarding symbols with this name. */ | |
2700 | if ((finfo->info->strip == strip_some | |
2701 | && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false) | |
2702 | == NULL)) | |
2703 | || (finfo->info->discard == discard_l | |
2704 | && strncmp (name, finfo->info->lprefix, | |
2705 | finfo->info->lprefix_len) == 0)) | |
2706 | continue; | |
2707 | ||
2708 | /* If we get here, we are going to output this symbol. */ | |
2709 | ||
2710 | osym = *isym; | |
2711 | ||
2712 | /* Adjust the section index for the output file. */ | |
2713 | osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
2714 | isec->output_section); | |
2715 | if (osym.st_shndx == (unsigned short) -1) | |
2716 | return false; | |
2717 | ||
2718 | *pindex = output_bfd->symcount; | |
2719 | ||
2720 | /* ELF symbols in relocateable files are section relative, but | |
2721 | in executable files they are virtual addresses. Note that | |
2722 | this code assumes that all ELF sections have an associated | |
2723 | BFD section with a reasonable value for output_offset; below | |
2724 | we assume that they also have a reasonable value for | |
2725 | output_section. Any special sections must be set up to meet | |
2726 | these requirements. */ | |
2727 | osym.st_value += isec->output_offset; | |
2728 | if (! finfo->info->relocateable) | |
2729 | osym.st_value += isec->output_section->vma; | |
2730 | ||
2731 | if (! elf_link_output_sym (finfo, name, &osym, isec)) | |
2732 | return false; | |
2733 | } | |
2734 | ||
2735 | /* Relocate the contents of each section. */ | |
2736 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
2737 | { | |
2738 | if ((o->flags & SEC_HAS_CONTENTS) == 0) | |
2739 | continue; | |
2740 | ||
2741 | if ((o->flags & SEC_IN_MEMORY) != 0 | |
2742 | && input_bfd == elf_hash_table (finfo->info)->dynobj) | |
2743 | { | |
2744 | /* Section was created by elf_link_create_dynamic_sections. | |
2745 | FIXME: This test is fragile. */ | |
2746 | continue; | |
2747 | } | |
2748 | ||
2749 | /* Read the contents of the section. */ | |
2750 | if (! bfd_get_section_contents (input_bfd, o, finfo->contents, | |
2751 | (file_ptr) 0, o->_raw_size)) | |
2752 | return false; | |
2753 | ||
2754 | if ((o->flags & SEC_RELOC) != 0) | |
2755 | { | |
2756 | Elf_Internal_Rela *internal_relocs; | |
2757 | ||
2758 | /* Get the swapped relocs. */ | |
2759 | internal_relocs = elf_link_read_relocs (input_bfd, o, | |
2760 | finfo->external_relocs, | |
2761 | finfo->internal_relocs, | |
2762 | false); | |
2763 | if (internal_relocs == NULL | |
2764 | && o->reloc_count > 0) | |
2765 | return false; | |
2766 | ||
2767 | /* Relocate the section by invoking a back end routine. | |
2768 | ||
2769 | The back end routine is responsible for adjusting the | |
2770 | section contents as necessary, and (if using Rela relocs | |
2771 | and generating a relocateable output file) adjusting the | |
2772 | reloc addend as necessary. | |
2773 | ||
2774 | The back end routine does not have to worry about setting | |
2775 | the reloc address or the reloc symbol index. | |
2776 | ||
2777 | The back end routine is given a pointer to the swapped in | |
2778 | internal symbols, and can access the hash table entries | |
2779 | for the external symbols via elf_sym_hashes (input_bfd). | |
2780 | ||
2781 | When generating relocateable output, the back end routine | |
2782 | must handle STB_LOCAL/STT_SECTION symbols specially. The | |
2783 | output symbol is going to be a section symbol | |
2784 | corresponding to the output section, which will require | |
2785 | the addend to be adjusted. */ | |
2786 | ||
2787 | if (! (*relocate_section) (output_bfd, finfo->info, | |
2788 | input_bfd, o, | |
2789 | finfo->contents, | |
2790 | internal_relocs, | |
2791 | finfo->internal_syms, | |
2792 | finfo->sections)) | |
2793 | return false; | |
2794 | ||
2795 | if (finfo->info->relocateable) | |
2796 | { | |
2797 | Elf_Internal_Rela *irela; | |
2798 | Elf_Internal_Rela *irelaend; | |
2799 | struct elf_link_hash_entry **rel_hash; | |
2800 | Elf_Internal_Shdr *input_rel_hdr; | |
2801 | Elf_Internal_Shdr *output_rel_hdr; | |
2802 | ||
2803 | /* Adjust the reloc addresses and symbol indices. */ | |
2804 | ||
2805 | irela = internal_relocs; | |
2806 | irelaend = irela + o->reloc_count; | |
2807 | rel_hash = (elf_section_data (o->output_section)->rel_hashes | |
2808 | + o->output_section->reloc_count); | |
2809 | for (; irela < irelaend; irela++, rel_hash++) | |
2810 | { | |
ae115e51 | 2811 | unsigned long r_symndx; |
ede4eed4 KR |
2812 | Elf_Internal_Sym *isym; |
2813 | asection *sec; | |
2814 | ||
2815 | irela->r_offset += o->output_offset; | |
2816 | ||
2817 | r_symndx = ELF_R_SYM (irela->r_info); | |
2818 | ||
2819 | if (r_symndx == 0) | |
2820 | continue; | |
2821 | ||
2822 | if (r_symndx >= locsymcount | |
2823 | || (elf_bad_symtab (input_bfd) | |
2824 | && finfo->sections[r_symndx] == NULL)) | |
2825 | { | |
2826 | long indx; | |
2827 | ||
2828 | /* This is a reloc against a global symbol. We | |
2829 | have not yet output all the local symbols, so | |
2830 | we do not know the symbol index of any global | |
2831 | symbol. We set the rel_hash entry for this | |
2832 | reloc to point to the global hash table entry | |
2833 | for this symbol. The symbol index is then | |
2834 | set at the end of elf_bfd_final_link. */ | |
2835 | indx = r_symndx - extsymoff; | |
2836 | *rel_hash = elf_sym_hashes (input_bfd)[indx]; | |
2837 | ||
2838 | /* Setting the index to -2 tells | |
2839 | elf_link_output_extsym that this symbol is | |
2840 | used by a reloc. */ | |
2841 | BFD_ASSERT ((*rel_hash)->indx < 0); | |
2842 | (*rel_hash)->indx = -2; | |
2843 | ||
2844 | continue; | |
2845 | } | |
2846 | ||
2847 | /* This is a reloc against a local symbol. */ | |
2848 | ||
2849 | *rel_hash = NULL; | |
2850 | isym = finfo->internal_syms + r_symndx; | |
2851 | sec = finfo->sections[r_symndx]; | |
2852 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
2853 | { | |
2854 | /* I suppose the backend ought to fill in the | |
2855 | section of any STT_SECTION symbol against a | |
2856 | processor specific section. */ | |
2857 | if (sec != NULL && bfd_is_abs_section (sec)) | |
2858 | r_symndx = 0; | |
2859 | else if (sec == NULL || sec->owner == NULL) | |
2860 | { | |
2861 | bfd_set_error (bfd_error_bad_value); | |
2862 | return false; | |
2863 | } | |
2864 | else | |
2865 | { | |
2866 | r_symndx = sec->output_section->target_index; | |
2867 | BFD_ASSERT (r_symndx != 0); | |
2868 | } | |
2869 | } | |
2870 | else | |
2871 | { | |
2872 | if (finfo->indices[r_symndx] == -1) | |
2873 | { | |
2874 | unsigned long link; | |
2875 | const char *name; | |
2876 | asection *osec; | |
2877 | ||
2878 | if (finfo->info->strip == strip_all) | |
2879 | { | |
2880 | /* You can't do ld -r -s. */ | |
2881 | bfd_set_error (bfd_error_invalid_operation); | |
2882 | return false; | |
2883 | } | |
2884 | ||
2885 | /* This symbol was skipped earlier, but | |
2886 | since it is needed by a reloc, we | |
2887 | must output it now. */ | |
2888 | link = symtab_hdr->sh_link; | |
2889 | name = bfd_elf_string_from_elf_section (input_bfd, | |
2890 | link, | |
2891 | isym->st_name); | |
2892 | if (name == NULL) | |
2893 | return false; | |
2894 | ||
2895 | osec = sec->output_section; | |
2896 | isym->st_shndx = | |
2897 | _bfd_elf_section_from_bfd_section (output_bfd, | |
2898 | osec); | |
2899 | if (isym->st_shndx == (unsigned short) -1) | |
2900 | return false; | |
2901 | ||
2902 | isym->st_value += sec->output_offset; | |
2903 | if (! finfo->info->relocateable) | |
2904 | isym->st_value += osec->vma; | |
2905 | ||
2906 | finfo->indices[r_symndx] = output_bfd->symcount; | |
2907 | ||
2908 | if (! elf_link_output_sym (finfo, name, isym, sec)) | |
2909 | return false; | |
2910 | } | |
2911 | ||
2912 | r_symndx = finfo->indices[r_symndx]; | |
2913 | } | |
2914 | ||
2915 | irela->r_info = ELF_R_INFO (r_symndx, | |
2916 | ELF_R_TYPE (irela->r_info)); | |
2917 | } | |
2918 | ||
2919 | /* Swap out the relocs. */ | |
2920 | input_rel_hdr = &elf_section_data (o)->rel_hdr; | |
2921 | output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr; | |
2922 | BFD_ASSERT (output_rel_hdr->sh_entsize | |
2923 | == input_rel_hdr->sh_entsize); | |
2924 | irela = internal_relocs; | |
2925 | irelaend = irela + o->reloc_count; | |
2926 | if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
2927 | { | |
2928 | Elf_External_Rel *erel; | |
2929 | ||
2930 | erel = ((Elf_External_Rel *) output_rel_hdr->contents | |
2931 | + o->output_section->reloc_count); | |
2932 | for (; irela < irelaend; irela++, erel++) | |
2933 | { | |
2934 | Elf_Internal_Rel irel; | |
2935 | ||
2936 | irel.r_offset = irela->r_offset; | |
2937 | irel.r_info = irela->r_info; | |
2938 | BFD_ASSERT (irela->r_addend == 0); | |
2939 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
2940 | } | |
2941 | } | |
2942 | else | |
2943 | { | |
2944 | Elf_External_Rela *erela; | |
2945 | ||
2946 | BFD_ASSERT (input_rel_hdr->sh_entsize | |
2947 | == sizeof (Elf_External_Rela)); | |
2948 | erela = ((Elf_External_Rela *) output_rel_hdr->contents | |
2949 | + o->output_section->reloc_count); | |
2950 | for (; irela < irelaend; irela++, erela++) | |
2951 | elf_swap_reloca_out (output_bfd, irela, erela); | |
2952 | } | |
2953 | ||
2954 | o->output_section->reloc_count += o->reloc_count; | |
2955 | } | |
2956 | } | |
2957 | ||
2958 | /* Write out the modified section contents. */ | |
2959 | if (! bfd_set_section_contents (output_bfd, o->output_section, | |
2960 | finfo->contents, o->output_offset, | |
2961 | (o->_cooked_size != 0 | |
2962 | ? o->_cooked_size | |
2963 | : o->_raw_size))) | |
2964 | return false; | |
2965 | } | |
2966 | ||
2967 | return true; | |
2968 | } | |
2969 | ||
2970 | /* Generate a reloc when linking an ELF file. This is a reloc | |
2971 | requested by the linker, and does come from any input file. This | |
2972 | is used to build constructor and destructor tables when linking | |
2973 | with -Ur. */ | |
2974 | ||
2975 | static boolean | |
2976 | elf_reloc_link_order (output_bfd, info, output_section, link_order) | |
2977 | bfd *output_bfd; | |
2978 | struct bfd_link_info *info; | |
2979 | asection *output_section; | |
2980 | struct bfd_link_order *link_order; | |
2981 | { | |
2982 | reloc_howto_type *howto; | |
2983 | long indx; | |
2984 | bfd_vma offset; | |
2985 | struct elf_link_hash_entry **rel_hash_ptr; | |
2986 | Elf_Internal_Shdr *rel_hdr; | |
2987 | ||
2988 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | |
2989 | if (howto == NULL) | |
2990 | { | |
2991 | bfd_set_error (bfd_error_bad_value); | |
2992 | return false; | |
2993 | } | |
2994 | ||
2995 | /* If this is an inplace reloc, we must write the addend into the | |
2996 | object file. */ | |
2997 | if (howto->partial_inplace | |
2998 | && link_order->u.reloc.p->addend != 0) | |
2999 | { | |
3000 | bfd_size_type size; | |
3001 | bfd_reloc_status_type rstat; | |
3002 | bfd_byte *buf; | |
3003 | boolean ok; | |
3004 | ||
3005 | size = bfd_get_reloc_size (howto); | |
3006 | buf = (bfd_byte *) bfd_zmalloc (size); | |
3007 | if (buf == (bfd_byte *) NULL) | |
3008 | { | |
3009 | bfd_set_error (bfd_error_no_memory); | |
3010 | return false; | |
3011 | } | |
3012 | rstat = _bfd_relocate_contents (howto, output_bfd, | |
3013 | link_order->u.reloc.p->addend, buf); | |
3014 | switch (rstat) | |
3015 | { | |
3016 | case bfd_reloc_ok: | |
3017 | break; | |
3018 | default: | |
3019 | case bfd_reloc_outofrange: | |
3020 | abort (); | |
3021 | case bfd_reloc_overflow: | |
3022 | if (! ((*info->callbacks->reloc_overflow) | |
3023 | (info, | |
3024 | (link_order->type == bfd_section_reloc_link_order | |
3025 | ? bfd_section_name (output_bfd, | |
3026 | link_order->u.reloc.p->u.section) | |
3027 | : link_order->u.reloc.p->u.name), | |
3028 | howto->name, link_order->u.reloc.p->addend, | |
3029 | (bfd *) NULL, (asection *) NULL, (bfd_vma) 0))) | |
3030 | { | |
3031 | free (buf); | |
3032 | return false; | |
3033 | } | |
3034 | break; | |
3035 | } | |
3036 | ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf, | |
3037 | (file_ptr) link_order->offset, size); | |
3038 | free (buf); | |
3039 | if (! ok) | |
3040 | return false; | |
3041 | } | |
3042 | ||
3043 | /* Figure out the symbol index. */ | |
3044 | rel_hash_ptr = (elf_section_data (output_section)->rel_hashes | |
3045 | + output_section->reloc_count); | |
3046 | if (link_order->type == bfd_section_reloc_link_order) | |
3047 | { | |
3048 | indx = link_order->u.reloc.p->u.section->target_index; | |
3049 | BFD_ASSERT (indx != 0); | |
3050 | *rel_hash_ptr = NULL; | |
3051 | } | |
3052 | else | |
3053 | { | |
3054 | struct elf_link_hash_entry *h; | |
3055 | ||
3056 | h = elf_link_hash_lookup (elf_hash_table (info), | |
3057 | link_order->u.reloc.p->u.name, | |
3058 | false, false, true); | |
3059 | if (h != NULL) | |
3060 | { | |
3061 | /* Setting the index to -2 tells elf_link_output_extsym that | |
3062 | this symbol is used by a reloc. */ | |
3063 | h->indx = -2; | |
3064 | *rel_hash_ptr = h; | |
3065 | indx = 0; | |
3066 | } | |
3067 | else | |
3068 | { | |
3069 | if (! ((*info->callbacks->unattached_reloc) | |
3070 | (info, link_order->u.reloc.p->u.name, (bfd *) NULL, | |
3071 | (asection *) NULL, (bfd_vma) 0))) | |
3072 | return false; | |
3073 | indx = 0; | |
3074 | } | |
3075 | } | |
3076 | ||
3077 | /* The address of a reloc is relative to the section in a | |
3078 | relocateable file, and is a virtual address in an executable | |
3079 | file. */ | |
3080 | offset = link_order->offset; | |
3081 | if (! info->relocateable) | |
3082 | offset += output_section->vma; | |
3083 | ||
3084 | rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
3085 | ||
3086 | if (rel_hdr->sh_type == SHT_REL) | |
3087 | { | |
3088 | Elf_Internal_Rel irel; | |
3089 | Elf_External_Rel *erel; | |
3090 | ||
3091 | irel.r_offset = offset; | |
3092 | irel.r_info = ELF_R_INFO (indx, howto->type); | |
3093 | erel = ((Elf_External_Rel *) rel_hdr->contents | |
3094 | + output_section->reloc_count); | |
3095 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
3096 | } | |
3097 | else | |
3098 | { | |
3099 | Elf_Internal_Rela irela; | |
3100 | Elf_External_Rela *erela; | |
3101 | ||
3102 | irela.r_offset = offset; | |
3103 | irela.r_info = ELF_R_INFO (indx, howto->type); | |
3104 | irela.r_addend = link_order->u.reloc.p->addend; | |
3105 | erela = ((Elf_External_Rela *) rel_hdr->contents | |
3106 | + output_section->reloc_count); | |
3107 | elf_swap_reloca_out (output_bfd, &irela, erela); | |
3108 | } | |
3109 | ||
3110 | ++output_section->reloc_count; | |
3111 | ||
3112 | return true; | |
3113 | } | |
3114 |