]>
Commit | Line | Data |
---|---|---|
8afe83be | 1 | /* ELF linker support. |
6014cea7 | 2 | Copyright 1995, 1996 Free Software Foundation, Inc. |
8afe83be KR |
3 | |
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
943fbd5b | 18 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
452a5efb | 19 | |
ede4eed4 KR |
20 | /* ELF linker code. */ |
21 | ||
22 | static boolean elf_link_add_object_symbols | |
23 | PARAMS ((bfd *, struct bfd_link_info *)); | |
24 | static boolean elf_link_add_archive_symbols | |
25 | PARAMS ((bfd *, struct bfd_link_info *)); | |
26 | static Elf_Internal_Rela *elf_link_read_relocs | |
27 | PARAMS ((bfd *, asection *, PTR, Elf_Internal_Rela *, boolean)); | |
28 | static boolean elf_export_symbol | |
29 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
30 | static boolean elf_adjust_dynamic_symbol | |
31 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
32 | ||
33 | /* This struct is used to pass information to routines called via | |
34 | elf_link_hash_traverse which must return failure. */ | |
35 | ||
36 | struct elf_info_failed | |
37 | { | |
38 | boolean failed; | |
39 | struct bfd_link_info *info; | |
40 | }; | |
41 | ||
42 | /* Given an ELF BFD, add symbols to the global hash table as | |
43 | appropriate. */ | |
44 | ||
45 | boolean | |
46 | elf_bfd_link_add_symbols (abfd, info) | |
47 | bfd *abfd; | |
48 | struct bfd_link_info *info; | |
49 | { | |
ede4eed4 KR |
50 | switch (bfd_get_format (abfd)) |
51 | { | |
52 | case bfd_object: | |
53 | return elf_link_add_object_symbols (abfd, info); | |
54 | case bfd_archive: | |
ede4eed4 KR |
55 | return elf_link_add_archive_symbols (abfd, info); |
56 | default: | |
57 | bfd_set_error (bfd_error_wrong_format); | |
58 | return false; | |
59 | } | |
60 | } | |
3b3753b8 | 61 | \f |
ede4eed4 KR |
62 | |
63 | /* Add symbols from an ELF archive file to the linker hash table. We | |
64 | don't use _bfd_generic_link_add_archive_symbols because of a | |
65 | problem which arises on UnixWare. The UnixWare libc.so is an | |
66 | archive which includes an entry libc.so.1 which defines a bunch of | |
67 | symbols. The libc.so archive also includes a number of other | |
68 | object files, which also define symbols, some of which are the same | |
69 | as those defined in libc.so.1. Correct linking requires that we | |
70 | consider each object file in turn, and include it if it defines any | |
71 | symbols we need. _bfd_generic_link_add_archive_symbols does not do | |
72 | this; it looks through the list of undefined symbols, and includes | |
73 | any object file which defines them. When this algorithm is used on | |
74 | UnixWare, it winds up pulling in libc.so.1 early and defining a | |
75 | bunch of symbols. This means that some of the other objects in the | |
76 | archive are not included in the link, which is incorrect since they | |
77 | precede libc.so.1 in the archive. | |
78 | ||
79 | Fortunately, ELF archive handling is simpler than that done by | |
80 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
81 | oddities. In ELF, if we find a symbol in the archive map, and the | |
82 | symbol is currently undefined, we know that we must pull in that | |
83 | object file. | |
84 | ||
85 | Unfortunately, we do have to make multiple passes over the symbol | |
86 | table until nothing further is resolved. */ | |
87 | ||
88 | static boolean | |
89 | elf_link_add_archive_symbols (abfd, info) | |
90 | bfd *abfd; | |
91 | struct bfd_link_info *info; | |
92 | { | |
93 | symindex c; | |
94 | boolean *defined = NULL; | |
95 | boolean *included = NULL; | |
96 | carsym *symdefs; | |
97 | boolean loop; | |
98 | ||
99 | if (! bfd_has_map (abfd)) | |
100 | { | |
101 | /* An empty archive is a special case. */ | |
102 | if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL) | |
103 | return true; | |
104 | bfd_set_error (bfd_error_no_armap); | |
105 | return false; | |
106 | } | |
107 | ||
108 | /* Keep track of all symbols we know to be already defined, and all | |
109 | files we know to be already included. This is to speed up the | |
110 | second and subsequent passes. */ | |
111 | c = bfd_ardata (abfd)->symdef_count; | |
112 | if (c == 0) | |
113 | return true; | |
58142f10 ILT |
114 | defined = (boolean *) bfd_malloc (c * sizeof (boolean)); |
115 | included = (boolean *) bfd_malloc (c * sizeof (boolean)); | |
ede4eed4 | 116 | if (defined == (boolean *) NULL || included == (boolean *) NULL) |
58142f10 | 117 | goto error_return; |
ede4eed4 KR |
118 | memset (defined, 0, c * sizeof (boolean)); |
119 | memset (included, 0, c * sizeof (boolean)); | |
120 | ||
121 | symdefs = bfd_ardata (abfd)->symdefs; | |
122 | ||
123 | do | |
124 | { | |
125 | file_ptr last; | |
126 | symindex i; | |
127 | carsym *symdef; | |
128 | carsym *symdefend; | |
129 | ||
130 | loop = false; | |
131 | last = -1; | |
132 | ||
133 | symdef = symdefs; | |
134 | symdefend = symdef + c; | |
135 | for (i = 0; symdef < symdefend; symdef++, i++) | |
136 | { | |
137 | struct elf_link_hash_entry *h; | |
138 | bfd *element; | |
139 | struct bfd_link_hash_entry *undefs_tail; | |
140 | symindex mark; | |
141 | ||
142 | if (defined[i] || included[i]) | |
143 | continue; | |
144 | if (symdef->file_offset == last) | |
145 | { | |
146 | included[i] = true; | |
147 | continue; | |
148 | } | |
149 | ||
150 | h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, | |
151 | false, false, false); | |
152 | if (h == (struct elf_link_hash_entry *) NULL) | |
153 | continue; | |
154 | if (h->root.type != bfd_link_hash_undefined) | |
155 | { | |
68807a39 ILT |
156 | if (h->root.type != bfd_link_hash_undefweak) |
157 | defined[i] = true; | |
ede4eed4 KR |
158 | continue; |
159 | } | |
160 | ||
161 | /* We need to include this archive member. */ | |
162 | ||
163 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
164 | if (element == (bfd *) NULL) | |
165 | goto error_return; | |
166 | ||
167 | if (! bfd_check_format (element, bfd_object)) | |
168 | goto error_return; | |
169 | ||
170 | /* Doublecheck that we have not included this object | |
171 | already--it should be impossible, but there may be | |
172 | something wrong with the archive. */ | |
173 | if (element->archive_pass != 0) | |
174 | { | |
175 | bfd_set_error (bfd_error_bad_value); | |
176 | goto error_return; | |
177 | } | |
178 | element->archive_pass = 1; | |
179 | ||
180 | undefs_tail = info->hash->undefs_tail; | |
181 | ||
182 | if (! (*info->callbacks->add_archive_element) (info, element, | |
183 | symdef->name)) | |
184 | goto error_return; | |
185 | if (! elf_link_add_object_symbols (element, info)) | |
186 | goto error_return; | |
187 | ||
188 | /* If there are any new undefined symbols, we need to make | |
189 | another pass through the archive in order to see whether | |
190 | they can be defined. FIXME: This isn't perfect, because | |
191 | common symbols wind up on undefs_tail and because an | |
192 | undefined symbol which is defined later on in this pass | |
193 | does not require another pass. This isn't a bug, but it | |
194 | does make the code less efficient than it could be. */ | |
195 | if (undefs_tail != info->hash->undefs_tail) | |
196 | loop = true; | |
197 | ||
198 | /* Look backward to mark all symbols from this object file | |
199 | which we have already seen in this pass. */ | |
200 | mark = i; | |
201 | do | |
202 | { | |
203 | included[mark] = true; | |
204 | if (mark == 0) | |
205 | break; | |
206 | --mark; | |
207 | } | |
208 | while (symdefs[mark].file_offset == symdef->file_offset); | |
209 | ||
210 | /* We mark subsequent symbols from this object file as we go | |
211 | on through the loop. */ | |
212 | last = symdef->file_offset; | |
213 | } | |
214 | } | |
215 | while (loop); | |
216 | ||
217 | free (defined); | |
218 | free (included); | |
219 | ||
220 | return true; | |
221 | ||
222 | error_return: | |
223 | if (defined != (boolean *) NULL) | |
224 | free (defined); | |
225 | if (included != (boolean *) NULL) | |
226 | free (included); | |
227 | return false; | |
228 | } | |
229 | ||
230 | /* Add symbols from an ELF object file to the linker hash table. */ | |
231 | ||
232 | static boolean | |
233 | elf_link_add_object_symbols (abfd, info) | |
234 | bfd *abfd; | |
235 | struct bfd_link_info *info; | |
236 | { | |
237 | boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *, | |
238 | const Elf_Internal_Sym *, | |
239 | const char **, flagword *, | |
240 | asection **, bfd_vma *)); | |
241 | boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *, | |
242 | asection *, const Elf_Internal_Rela *)); | |
243 | boolean collect; | |
244 | Elf_Internal_Shdr *hdr; | |
245 | size_t symcount; | |
246 | size_t extsymcount; | |
247 | size_t extsymoff; | |
248 | Elf_External_Sym *buf = NULL; | |
249 | struct elf_link_hash_entry **sym_hash; | |
250 | boolean dynamic; | |
251 | Elf_External_Dyn *dynbuf = NULL; | |
252 | struct elf_link_hash_entry *weaks; | |
253 | Elf_External_Sym *esym; | |
254 | Elf_External_Sym *esymend; | |
255 | ||
256 | add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook; | |
257 | collect = get_elf_backend_data (abfd)->collect; | |
258 | ||
0cb70568 ILT |
259 | /* As a GNU extension, any input sections which are named |
260 | .gnu.warning.SYMBOL are treated as warning symbols for the given | |
261 | symbol. This differs from .gnu.warning sections, which generate | |
262 | warnings when they are included in an output file. */ | |
263 | if (! info->shared) | |
264 | { | |
265 | asection *s; | |
266 | ||
267 | for (s = abfd->sections; s != NULL; s = s->next) | |
268 | { | |
269 | const char *name; | |
270 | ||
271 | name = bfd_get_section_name (abfd, s); | |
272 | if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0) | |
273 | { | |
274 | char *msg; | |
275 | bfd_size_type sz; | |
276 | ||
277 | sz = bfd_section_size (abfd, s); | |
278 | msg = (char *) bfd_alloc (abfd, sz); | |
279 | if (msg == NULL) | |
a9713b91 | 280 | goto error_return; |
0cb70568 ILT |
281 | |
282 | if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz)) | |
283 | goto error_return; | |
284 | ||
285 | if (! (_bfd_generic_link_add_one_symbol | |
286 | (info, abfd, | |
287 | name + sizeof ".gnu.warning." - 1, | |
288 | BSF_WARNING, s, (bfd_vma) 0, msg, false, collect, | |
289 | (struct bfd_link_hash_entry **) NULL))) | |
290 | goto error_return; | |
291 | ||
292 | if (! info->relocateable) | |
293 | { | |
294 | /* Clobber the section size so that the warning does | |
295 | not get copied into the output file. */ | |
296 | s->_raw_size = 0; | |
297 | } | |
298 | } | |
299 | } | |
300 | } | |
301 | ||
ede4eed4 KR |
302 | /* A stripped shared library might only have a dynamic symbol table, |
303 | not a regular symbol table. In that case we can still go ahead | |
304 | and link using the dynamic symbol table. */ | |
305 | if (elf_onesymtab (abfd) == 0 | |
306 | && elf_dynsymtab (abfd) != 0) | |
307 | { | |
308 | elf_onesymtab (abfd) = elf_dynsymtab (abfd); | |
309 | elf_tdata (abfd)->symtab_hdr = elf_tdata (abfd)->dynsymtab_hdr; | |
310 | } | |
311 | ||
312 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
313 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); | |
314 | ||
315 | /* The sh_info field of the symtab header tells us where the | |
316 | external symbols start. We don't care about the local symbols at | |
317 | this point. */ | |
318 | if (elf_bad_symtab (abfd)) | |
319 | { | |
320 | extsymcount = symcount; | |
321 | extsymoff = 0; | |
322 | } | |
323 | else | |
324 | { | |
325 | extsymcount = symcount - hdr->sh_info; | |
326 | extsymoff = hdr->sh_info; | |
327 | } | |
328 | ||
58142f10 ILT |
329 | buf = ((Elf_External_Sym *) |
330 | bfd_malloc (extsymcount * sizeof (Elf_External_Sym))); | |
ede4eed4 | 331 | if (buf == NULL && extsymcount != 0) |
58142f10 | 332 | goto error_return; |
ede4eed4 KR |
333 | |
334 | /* We store a pointer to the hash table entry for each external | |
335 | symbol. */ | |
336 | sym_hash = ((struct elf_link_hash_entry **) | |
337 | bfd_alloc (abfd, | |
338 | extsymcount * sizeof (struct elf_link_hash_entry *))); | |
339 | if (sym_hash == NULL) | |
a9713b91 | 340 | goto error_return; |
ede4eed4 KR |
341 | elf_sym_hashes (abfd) = sym_hash; |
342 | ||
343 | if (elf_elfheader (abfd)->e_type != ET_DYN) | |
344 | { | |
345 | dynamic = false; | |
346 | ||
347 | /* If we are creating a shared library, create all the dynamic | |
348 | sections immediately. We need to attach them to something, | |
349 | so we attach them to this BFD, provided it is the right | |
350 | format. FIXME: If there are no input BFD's of the same | |
351 | format as the output, we can't make a shared library. */ | |
352 | if (info->shared | |
353 | && ! elf_hash_table (info)->dynamic_sections_created | |
354 | && abfd->xvec == info->hash->creator) | |
355 | { | |
356 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
357 | goto error_return; | |
358 | } | |
359 | } | |
360 | else | |
361 | { | |
362 | asection *s; | |
363 | boolean add_needed; | |
364 | const char *name; | |
365 | bfd_size_type oldsize; | |
366 | bfd_size_type strindex; | |
367 | ||
368 | dynamic = true; | |
369 | ||
370 | /* You can't use -r against a dynamic object. Also, there's no | |
371 | hope of using a dynamic object which does not exactly match | |
372 | the format of the output file. */ | |
373 | if (info->relocateable | |
374 | || info->hash->creator != abfd->xvec) | |
375 | { | |
376 | bfd_set_error (bfd_error_invalid_operation); | |
377 | goto error_return; | |
378 | } | |
379 | ||
380 | /* Find the name to use in a DT_NEEDED entry that refers to this | |
381 | object. If the object has a DT_SONAME entry, we use it. | |
382 | Otherwise, if the generic linker stuck something in | |
60a49e7f ILT |
383 | elf_dt_name, we use that. Otherwise, we just use the file |
384 | name. If the generic linker put a null string into | |
385 | elf_dt_name, we don't make a DT_NEEDED entry at all, even if | |
386 | there is a DT_SONAME entry. */ | |
ede4eed4 KR |
387 | add_needed = true; |
388 | name = bfd_get_filename (abfd); | |
60a49e7f | 389 | if (elf_dt_name (abfd) != NULL) |
ede4eed4 | 390 | { |
60a49e7f | 391 | name = elf_dt_name (abfd); |
ede4eed4 KR |
392 | if (*name == '\0') |
393 | add_needed = false; | |
394 | } | |
395 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
396 | if (s != NULL) | |
397 | { | |
398 | Elf_External_Dyn *extdyn; | |
399 | Elf_External_Dyn *extdynend; | |
400 | int elfsec; | |
401 | unsigned long link; | |
402 | ||
58142f10 | 403 | dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size); |
ede4eed4 | 404 | if (dynbuf == NULL) |
58142f10 | 405 | goto error_return; |
ede4eed4 KR |
406 | |
407 | if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, | |
408 | (file_ptr) 0, s->_raw_size)) | |
409 | goto error_return; | |
410 | ||
411 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
412 | if (elfsec == -1) | |
413 | goto error_return; | |
414 | link = elf_elfsections (abfd)[elfsec]->sh_link; | |
415 | ||
416 | extdyn = dynbuf; | |
417 | extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn); | |
418 | for (; extdyn < extdynend; extdyn++) | |
419 | { | |
420 | Elf_Internal_Dyn dyn; | |
421 | ||
422 | elf_swap_dyn_in (abfd, extdyn, &dyn); | |
60a49e7f | 423 | if (dyn.d_tag == DT_SONAME) |
ede4eed4 KR |
424 | { |
425 | name = bfd_elf_string_from_elf_section (abfd, link, | |
426 | dyn.d_un.d_val); | |
427 | if (name == NULL) | |
428 | goto error_return; | |
429 | } | |
430 | if (dyn.d_tag == DT_NEEDED) | |
431 | { | |
54406786 | 432 | struct bfd_link_needed_list *n, **pn; |
ede4eed4 KR |
433 | char *fnm, *anm; |
434 | ||
54406786 ILT |
435 | n = ((struct bfd_link_needed_list *) |
436 | bfd_alloc (abfd, sizeof (struct bfd_link_needed_list))); | |
ede4eed4 KR |
437 | fnm = bfd_elf_string_from_elf_section (abfd, link, |
438 | dyn.d_un.d_val); | |
439 | if (n == NULL || fnm == NULL) | |
440 | goto error_return; | |
441 | anm = bfd_alloc (abfd, strlen (fnm) + 1); | |
442 | if (anm == NULL) | |
443 | goto error_return; | |
444 | strcpy (anm, fnm); | |
445 | n->name = anm; | |
446 | n->by = abfd; | |
447 | n->next = NULL; | |
448 | for (pn = &elf_hash_table (info)->needed; | |
449 | *pn != NULL; | |
450 | pn = &(*pn)->next) | |
451 | ; | |
452 | *pn = n; | |
453 | } | |
454 | } | |
455 | ||
456 | free (dynbuf); | |
457 | dynbuf = NULL; | |
458 | } | |
459 | ||
460 | /* We do not want to include any of the sections in a dynamic | |
461 | object in the output file. We hack by simply clobbering the | |
462 | list of sections in the BFD. This could be handled more | |
463 | cleanly by, say, a new section flag; the existing | |
464 | SEC_NEVER_LOAD flag is not the one we want, because that one | |
465 | still implies that the section takes up space in the output | |
466 | file. */ | |
467 | abfd->sections = NULL; | |
010d9f2d | 468 | abfd->section_count = 0; |
ede4eed4 KR |
469 | |
470 | /* If this is the first dynamic object found in the link, create | |
471 | the special sections required for dynamic linking. */ | |
472 | if (! elf_hash_table (info)->dynamic_sections_created) | |
473 | { | |
474 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
475 | goto error_return; | |
476 | } | |
477 | ||
478 | if (add_needed) | |
479 | { | |
480 | /* Add a DT_NEEDED entry for this dynamic object. */ | |
481 | oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
482 | strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name, | |
483 | true, false); | |
484 | if (strindex == (bfd_size_type) -1) | |
485 | goto error_return; | |
486 | ||
487 | if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr)) | |
488 | { | |
489 | asection *sdyn; | |
490 | Elf_External_Dyn *dyncon, *dynconend; | |
491 | ||
492 | /* The hash table size did not change, which means that | |
493 | the dynamic object name was already entered. If we | |
494 | have already included this dynamic object in the | |
495 | link, just ignore it. There is no reason to include | |
496 | a particular dynamic object more than once. */ | |
497 | sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
498 | ".dynamic"); | |
499 | BFD_ASSERT (sdyn != NULL); | |
500 | ||
501 | dyncon = (Elf_External_Dyn *) sdyn->contents; | |
502 | dynconend = (Elf_External_Dyn *) (sdyn->contents + | |
503 | sdyn->_raw_size); | |
504 | for (; dyncon < dynconend; dyncon++) | |
505 | { | |
506 | Elf_Internal_Dyn dyn; | |
507 | ||
508 | elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon, | |
509 | &dyn); | |
510 | if (dyn.d_tag == DT_NEEDED | |
511 | && dyn.d_un.d_val == strindex) | |
512 | { | |
513 | if (buf != NULL) | |
514 | free (buf); | |
515 | return true; | |
516 | } | |
517 | } | |
518 | } | |
519 | ||
520 | if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex)) | |
521 | goto error_return; | |
522 | } | |
60a49e7f ILT |
523 | |
524 | /* Save the SONAME, if there is one, because sometimes the | |
525 | linker emulation code will need to know it. */ | |
526 | if (*name == '\0') | |
527 | name = bfd_get_filename (abfd); | |
528 | elf_dt_name (abfd) = name; | |
ede4eed4 KR |
529 | } |
530 | ||
531 | if (bfd_seek (abfd, | |
532 | hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym), | |
533 | SEEK_SET) != 0 | |
534 | || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd) | |
535 | != extsymcount * sizeof (Elf_External_Sym))) | |
536 | goto error_return; | |
537 | ||
538 | weaks = NULL; | |
539 | ||
540 | esymend = buf + extsymcount; | |
541 | for (esym = buf; esym < esymend; esym++, sym_hash++) | |
542 | { | |
543 | Elf_Internal_Sym sym; | |
544 | int bind; | |
545 | bfd_vma value; | |
546 | asection *sec; | |
547 | flagword flags; | |
548 | const char *name; | |
0cb70568 | 549 | struct elf_link_hash_entry *h; |
ede4eed4 | 550 | boolean definition; |
ee9f09cd | 551 | boolean size_change_ok, type_change_ok; |
452a5efb | 552 | boolean new_weakdef; |
ede4eed4 KR |
553 | |
554 | elf_swap_symbol_in (abfd, esym, &sym); | |
555 | ||
556 | flags = BSF_NO_FLAGS; | |
557 | sec = NULL; | |
558 | value = sym.st_value; | |
559 | *sym_hash = NULL; | |
560 | ||
561 | bind = ELF_ST_BIND (sym.st_info); | |
562 | if (bind == STB_LOCAL) | |
563 | { | |
564 | /* This should be impossible, since ELF requires that all | |
565 | global symbols follow all local symbols, and that sh_info | |
566 | point to the first global symbol. Unfortunatealy, Irix 5 | |
567 | screws this up. */ | |
568 | continue; | |
569 | } | |
570 | else if (bind == STB_GLOBAL) | |
571 | { | |
572 | if (sym.st_shndx != SHN_UNDEF | |
573 | && sym.st_shndx != SHN_COMMON) | |
574 | flags = BSF_GLOBAL; | |
575 | else | |
576 | flags = 0; | |
577 | } | |
578 | else if (bind == STB_WEAK) | |
579 | flags = BSF_WEAK; | |
580 | else | |
581 | { | |
582 | /* Leave it up to the processor backend. */ | |
583 | } | |
584 | ||
585 | if (sym.st_shndx == SHN_UNDEF) | |
586 | sec = bfd_und_section_ptr; | |
587 | else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE) | |
588 | { | |
589 | sec = section_from_elf_index (abfd, sym.st_shndx); | |
590 | if (sec != NULL) | |
591 | value -= sec->vma; | |
592 | else | |
593 | sec = bfd_abs_section_ptr; | |
594 | } | |
595 | else if (sym.st_shndx == SHN_ABS) | |
596 | sec = bfd_abs_section_ptr; | |
597 | else if (sym.st_shndx == SHN_COMMON) | |
598 | { | |
599 | sec = bfd_com_section_ptr; | |
600 | /* What ELF calls the size we call the value. What ELF | |
601 | calls the value we call the alignment. */ | |
602 | value = sym.st_size; | |
603 | } | |
604 | else | |
605 | { | |
606 | /* Leave it up to the processor backend. */ | |
607 | } | |
608 | ||
609 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); | |
610 | if (name == (const char *) NULL) | |
611 | goto error_return; | |
612 | ||
613 | if (add_symbol_hook) | |
614 | { | |
615 | if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec, | |
616 | &value)) | |
617 | goto error_return; | |
618 | ||
619 | /* The hook function sets the name to NULL if this symbol | |
620 | should be skipped for some reason. */ | |
621 | if (name == (const char *) NULL) | |
622 | continue; | |
623 | } | |
624 | ||
625 | /* Sanity check that all possibilities were handled. */ | |
626 | if (sec == (asection *) NULL) | |
627 | { | |
628 | bfd_set_error (bfd_error_bad_value); | |
629 | goto error_return; | |
630 | } | |
631 | ||
632 | if (bfd_is_und_section (sec) | |
633 | || bfd_is_com_section (sec)) | |
634 | definition = false; | |
635 | else | |
636 | definition = true; | |
637 | ||
ee9f09cd | 638 | size_change_ok = false; |
5b3b9ff6 | 639 | type_change_ok = get_elf_backend_data (abfd)->type_change_ok; |
ede4eed4 KR |
640 | if (info->hash->creator->flavour == bfd_target_elf_flavour) |
641 | { | |
642 | /* We need to look up the symbol now in order to get some of | |
643 | the dynamic object handling right. We pass the hash | |
644 | table entry in to _bfd_generic_link_add_one_symbol so | |
645 | that it does not have to look it up again. */ | |
8881b321 ILT |
646 | if (! bfd_is_und_section (sec)) |
647 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
648 | true, false, false); | |
649 | else | |
650 | h = ((struct elf_link_hash_entry *) | |
651 | bfd_wrapped_link_hash_lookup (abfd, info, name, true, | |
652 | false, false)); | |
ede4eed4 KR |
653 | if (h == NULL) |
654 | goto error_return; | |
655 | *sym_hash = h; | |
656 | ||
869b7d80 ILT |
657 | if (h->root.type == bfd_link_hash_new) |
658 | h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; | |
659 | ||
0cb70568 ILT |
660 | while (h->root.type == bfd_link_hash_indirect |
661 | || h->root.type == bfd_link_hash_warning) | |
662 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
663 | ||
ee9f09cd ILT |
664 | /* It's OK to change the type if it used to be a weak |
665 | definition. */ | |
5b3b9ff6 ILT |
666 | if (h->root.type == bfd_link_hash_defweak |
667 | || h->root.type == bfd_link_hash_undefweak) | |
668 | type_change_ok = true; | |
ee9f09cd ILT |
669 | |
670 | /* It's OK to change the size if it used to be a weak | |
671 | definition, or if it used to be undefined, or if we will | |
5b3b9ff6 ILT |
672 | be overriding an old definition. */ |
673 | if (type_change_ok | |
674 | || h->root.type == bfd_link_hash_undefined) | |
675 | size_change_ok = true; | |
8235c112 | 676 | |
ede4eed4 KR |
677 | /* If we are looking at a dynamic object, and this is a |
678 | definition, we need to see if it has already been defined | |
679 | by some other object. If it has, we want to use the | |
680 | existing definition, and we do not want to report a | |
681 | multiple symbol definition error; we do this by | |
682 | clobbering sec to be bfd_und_section_ptr. */ | |
683 | if (dynamic && definition) | |
684 | { | |
685 | if (h->root.type == bfd_link_hash_defined | |
3d7c42c9 ILT |
686 | || h->root.type == bfd_link_hash_defweak |
687 | || (h->root.type == bfd_link_hash_common | |
688 | && bind == STB_WEAK)) | |
689 | { | |
690 | sec = bfd_und_section_ptr; | |
691 | definition = false; | |
ee9f09cd | 692 | size_change_ok = true; |
3d7c42c9 | 693 | } |
ede4eed4 KR |
694 | } |
695 | ||
696 | /* Similarly, if we are not looking at a dynamic object, and | |
697 | we have a definition, we want to override any definition | |
698 | we may have from a dynamic object. Symbols from regular | |
699 | files always take precedence over symbols from dynamic | |
700 | objects, even if they are defined after the dynamic | |
701 | object in the link. */ | |
702 | if (! dynamic | |
703 | && definition | |
704 | && (h->root.type == bfd_link_hash_defined | |
705 | || h->root.type == bfd_link_hash_defweak) | |
706 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
707 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
708 | == bfd_target_elf_flavour) | |
709 | && (elf_elfheader (h->root.u.def.section->owner)->e_type | |
710 | == ET_DYN)) | |
711 | { | |
712 | /* Change the hash table entry to undefined, and let | |
713 | _bfd_generic_link_add_one_symbol do the right thing | |
714 | with the new definition. */ | |
715 | h->root.type = bfd_link_hash_undefined; | |
716 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
ee9f09cd | 717 | size_change_ok = true; |
ede4eed4 KR |
718 | } |
719 | } | |
720 | ||
721 | if (! (_bfd_generic_link_add_one_symbol | |
722 | (info, abfd, name, flags, sec, value, (const char *) NULL, | |
723 | false, collect, (struct bfd_link_hash_entry **) sym_hash))) | |
724 | goto error_return; | |
725 | ||
0cb70568 ILT |
726 | h = *sym_hash; |
727 | while (h->root.type == bfd_link_hash_indirect | |
728 | || h->root.type == bfd_link_hash_warning) | |
729 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
730 | *sym_hash = h; | |
731 | ||
452a5efb | 732 | new_weakdef = false; |
ede4eed4 KR |
733 | if (dynamic |
734 | && definition | |
735 | && (flags & BSF_WEAK) != 0 | |
736 | && ELF_ST_TYPE (sym.st_info) != STT_FUNC | |
737 | && info->hash->creator->flavour == bfd_target_elf_flavour | |
0cb70568 | 738 | && h->weakdef == NULL) |
ede4eed4 KR |
739 | { |
740 | /* Keep a list of all weak defined non function symbols from | |
741 | a dynamic object, using the weakdef field. Later in this | |
742 | function we will set the weakdef field to the correct | |
743 | value. We only put non-function symbols from dynamic | |
744 | objects on this list, because that happens to be the only | |
745 | time we need to know the normal symbol corresponding to a | |
746 | weak symbol, and the information is time consuming to | |
747 | figure out. If the weakdef field is not already NULL, | |
748 | then this symbol was already defined by some previous | |
749 | dynamic object, and we will be using that previous | |
750 | definition anyhow. */ | |
751 | ||
0cb70568 ILT |
752 | h->weakdef = weaks; |
753 | weaks = h; | |
452a5efb | 754 | new_weakdef = true; |
ede4eed4 KR |
755 | } |
756 | ||
757 | /* Get the alignment of a common symbol. */ | |
758 | if (sym.st_shndx == SHN_COMMON | |
0cb70568 ILT |
759 | && h->root.type == bfd_link_hash_common) |
760 | h->root.u.c.p->alignment_power = bfd_log2 (sym.st_value); | |
ede4eed4 KR |
761 | |
762 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
763 | { | |
764 | int old_flags; | |
765 | boolean dynsym; | |
766 | int new_flag; | |
767 | ||
768 | /* Remember the symbol size and type. */ | |
3d7c42c9 ILT |
769 | if (sym.st_size != 0 |
770 | && (definition || h->size == 0)) | |
ede4eed4 | 771 | { |
ee9f09cd | 772 | if (h->size != 0 && h->size != sym.st_size && ! size_change_ok) |
3d7c42c9 ILT |
773 | (*_bfd_error_handler) |
774 | ("Warning: size of symbol `%s' changed from %lu to %lu in %s", | |
775 | name, (unsigned long) h->size, (unsigned long) sym.st_size, | |
776 | bfd_get_filename (abfd)); | |
777 | ||
ede4eed4 KR |
778 | h->size = sym.st_size; |
779 | } | |
3d7c42c9 ILT |
780 | if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE |
781 | && (definition || h->type == STT_NOTYPE)) | |
ede4eed4 | 782 | { |
3d7c42c9 | 783 | if (h->type != STT_NOTYPE |
8235c112 | 784 | && h->type != ELF_ST_TYPE (sym.st_info) |
ee9f09cd | 785 | && ! type_change_ok) |
3d7c42c9 ILT |
786 | (*_bfd_error_handler) |
787 | ("Warning: type of symbol `%s' changed from %d to %d in %s", | |
788 | name, h->type, ELF_ST_TYPE (sym.st_info), | |
789 | bfd_get_filename (abfd)); | |
790 | ||
ede4eed4 KR |
791 | h->type = ELF_ST_TYPE (sym.st_info); |
792 | } | |
793 | ||
794 | /* Set a flag in the hash table entry indicating the type of | |
795 | reference or definition we just found. Keep a count of | |
796 | the number of dynamic symbols we find. A dynamic symbol | |
797 | is one which is referenced or defined by both a regular | |
798 | object and a shared object, or one which is referenced or | |
799 | defined by more than one shared object. */ | |
800 | old_flags = h->elf_link_hash_flags; | |
801 | dynsym = false; | |
802 | if (! dynamic) | |
803 | { | |
804 | if (! definition) | |
805 | new_flag = ELF_LINK_HASH_REF_REGULAR; | |
806 | else | |
807 | new_flag = ELF_LINK_HASH_DEF_REGULAR; | |
808 | if (info->shared | |
809 | || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
810 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0) | |
811 | dynsym = true; | |
812 | } | |
813 | else | |
814 | { | |
815 | if (! definition) | |
816 | new_flag = ELF_LINK_HASH_REF_DYNAMIC; | |
817 | else | |
818 | new_flag = ELF_LINK_HASH_DEF_DYNAMIC; | |
819 | if ((old_flags & new_flag) != 0 | |
820 | || (old_flags & (ELF_LINK_HASH_DEF_REGULAR | |
452a5efb ILT |
821 | | ELF_LINK_HASH_REF_REGULAR)) != 0 |
822 | || (h->weakdef != NULL | |
823 | && (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
824 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0)) | |
ede4eed4 KR |
825 | dynsym = true; |
826 | } | |
827 | ||
828 | h->elf_link_hash_flags |= new_flag; | |
829 | if (dynsym && h->dynindx == -1) | |
830 | { | |
831 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
832 | goto error_return; | |
452a5efb ILT |
833 | if (h->weakdef != NULL |
834 | && ! new_weakdef | |
835 | && h->weakdef->dynindx == -1) | |
836 | { | |
837 | if (! _bfd_elf_link_record_dynamic_symbol (info, | |
838 | h->weakdef)) | |
839 | goto error_return; | |
840 | } | |
ede4eed4 KR |
841 | } |
842 | } | |
843 | } | |
844 | ||
845 | /* Now set the weakdefs field correctly for all the weak defined | |
846 | symbols we found. The only way to do this is to search all the | |
847 | symbols. Since we only need the information for non functions in | |
848 | dynamic objects, that's the only time we actually put anything on | |
849 | the list WEAKS. We need this information so that if a regular | |
850 | object refers to a symbol defined weakly in a dynamic object, the | |
851 | real symbol in the dynamic object is also put in the dynamic | |
852 | symbols; we also must arrange for both symbols to point to the | |
853 | same memory location. We could handle the general case of symbol | |
854 | aliasing, but a general symbol alias can only be generated in | |
855 | assembler code, handling it correctly would be very time | |
856 | consuming, and other ELF linkers don't handle general aliasing | |
857 | either. */ | |
858 | while (weaks != NULL) | |
859 | { | |
860 | struct elf_link_hash_entry *hlook; | |
861 | asection *slook; | |
862 | bfd_vma vlook; | |
863 | struct elf_link_hash_entry **hpp; | |
864 | struct elf_link_hash_entry **hppend; | |
865 | ||
866 | hlook = weaks; | |
867 | weaks = hlook->weakdef; | |
868 | hlook->weakdef = NULL; | |
869 | ||
870 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defined | |
871 | || hlook->root.type == bfd_link_hash_defweak | |
872 | || hlook->root.type == bfd_link_hash_common | |
873 | || hlook->root.type == bfd_link_hash_indirect); | |
874 | slook = hlook->root.u.def.section; | |
875 | vlook = hlook->root.u.def.value; | |
876 | ||
877 | hpp = elf_sym_hashes (abfd); | |
878 | hppend = hpp + extsymcount; | |
879 | for (; hpp < hppend; hpp++) | |
880 | { | |
881 | struct elf_link_hash_entry *h; | |
882 | ||
883 | h = *hpp; | |
884 | if (h != NULL && h != hlook | |
d2bb6c79 | 885 | && h->root.type == bfd_link_hash_defined |
ede4eed4 KR |
886 | && h->root.u.def.section == slook |
887 | && h->root.u.def.value == vlook) | |
888 | { | |
889 | hlook->weakdef = h; | |
890 | ||
891 | /* If the weak definition is in the list of dynamic | |
892 | symbols, make sure the real definition is put there | |
893 | as well. */ | |
894 | if (hlook->dynindx != -1 | |
895 | && h->dynindx == -1) | |
896 | { | |
897 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
898 | goto error_return; | |
899 | } | |
900 | ||
901 | break; | |
902 | } | |
903 | } | |
904 | } | |
905 | ||
906 | if (buf != NULL) | |
907 | { | |
908 | free (buf); | |
909 | buf = NULL; | |
910 | } | |
911 | ||
912 | /* If this object is the same format as the output object, and it is | |
913 | not a shared library, then let the backend look through the | |
914 | relocs. | |
915 | ||
916 | This is required to build global offset table entries and to | |
917 | arrange for dynamic relocs. It is not required for the | |
918 | particular common case of linking non PIC code, even when linking | |
919 | against shared libraries, but unfortunately there is no way of | |
920 | knowing whether an object file has been compiled PIC or not. | |
921 | Looking through the relocs is not particularly time consuming. | |
922 | The problem is that we must either (1) keep the relocs in memory, | |
923 | which causes the linker to require additional runtime memory or | |
924 | (2) read the relocs twice from the input file, which wastes time. | |
925 | This would be a good case for using mmap. | |
926 | ||
927 | I have no idea how to handle linking PIC code into a file of a | |
928 | different format. It probably can't be done. */ | |
929 | check_relocs = get_elf_backend_data (abfd)->check_relocs; | |
930 | if (! dynamic | |
931 | && abfd->xvec == info->hash->creator | |
932 | && check_relocs != NULL) | |
933 | { | |
934 | asection *o; | |
935 | ||
936 | for (o = abfd->sections; o != NULL; o = o->next) | |
937 | { | |
938 | Elf_Internal_Rela *internal_relocs; | |
939 | boolean ok; | |
940 | ||
941 | if ((o->flags & SEC_RELOC) == 0 | |
942 | || o->reloc_count == 0) | |
943 | continue; | |
944 | ||
945 | /* I believe we can ignore the relocs for any section which | |
946 | does not form part of the final process image, such as a | |
947 | debugging section. */ | |
948 | if ((o->flags & SEC_ALLOC) == 0) | |
949 | continue; | |
950 | ||
951 | internal_relocs = elf_link_read_relocs (abfd, o, (PTR) NULL, | |
952 | (Elf_Internal_Rela *) NULL, | |
953 | info->keep_memory); | |
954 | if (internal_relocs == NULL) | |
955 | goto error_return; | |
956 | ||
957 | ok = (*check_relocs) (abfd, info, o, internal_relocs); | |
958 | ||
959 | if (! info->keep_memory) | |
960 | free (internal_relocs); | |
961 | ||
962 | if (! ok) | |
963 | goto error_return; | |
964 | } | |
965 | } | |
966 | ||
1726b8f0 ILT |
967 | /* If this is a non-traditional, non-relocateable link, try to |
968 | optimize the handling of the .stab/.stabstr sections. */ | |
969 | if (! dynamic | |
970 | && ! info->relocateable | |
971 | && ! info->traditional_format | |
972 | && info->hash->creator->flavour == bfd_target_elf_flavour | |
973 | && (info->strip != strip_all && info->strip != strip_debugger)) | |
974 | { | |
975 | asection *stab, *stabstr; | |
976 | ||
977 | stab = bfd_get_section_by_name (abfd, ".stab"); | |
978 | if (stab != NULL) | |
979 | { | |
980 | stabstr = bfd_get_section_by_name (abfd, ".stabstr"); | |
981 | ||
982 | if (stabstr != NULL) | |
983 | { | |
984 | struct bfd_elf_section_data *secdata; | |
985 | ||
986 | secdata = elf_section_data (stab); | |
987 | if (! _bfd_link_section_stabs (abfd, | |
988 | &elf_hash_table (info)->stab_info, | |
989 | stab, stabstr, | |
990 | &secdata->stab_info)) | |
991 | goto error_return; | |
992 | } | |
993 | } | |
994 | } | |
995 | ||
ede4eed4 KR |
996 | return true; |
997 | ||
998 | error_return: | |
999 | if (buf != NULL) | |
1000 | free (buf); | |
1001 | if (dynbuf != NULL) | |
1002 | free (dynbuf); | |
1003 | return false; | |
1004 | } | |
1005 | ||
1006 | /* Create some sections which will be filled in with dynamic linking | |
1007 | information. ABFD is an input file which requires dynamic sections | |
1008 | to be created. The dynamic sections take up virtual memory space | |
1009 | when the final executable is run, so we need to create them before | |
1010 | addresses are assigned to the output sections. We work out the | |
1011 | actual contents and size of these sections later. */ | |
1012 | ||
1013 | boolean | |
1014 | elf_link_create_dynamic_sections (abfd, info) | |
1015 | bfd *abfd; | |
1016 | struct bfd_link_info *info; | |
1017 | { | |
1018 | flagword flags; | |
1019 | register asection *s; | |
1020 | struct elf_link_hash_entry *h; | |
1021 | struct elf_backend_data *bed; | |
1022 | ||
1023 | if (elf_hash_table (info)->dynamic_sections_created) | |
1024 | return true; | |
1025 | ||
1026 | /* Make sure that all dynamic sections use the same input BFD. */ | |
1027 | if (elf_hash_table (info)->dynobj == NULL) | |
1028 | elf_hash_table (info)->dynobj = abfd; | |
1029 | else | |
1030 | abfd = elf_hash_table (info)->dynobj; | |
1031 | ||
1032 | /* Note that we set the SEC_IN_MEMORY flag for all of these | |
1033 | sections. */ | |
1034 | flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY; | |
1035 | ||
1036 | /* A dynamically linked executable has a .interp section, but a | |
1037 | shared library does not. */ | |
1038 | if (! info->shared) | |
1039 | { | |
1040 | s = bfd_make_section (abfd, ".interp"); | |
1041 | if (s == NULL | |
1042 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
1043 | return false; | |
1044 | } | |
1045 | ||
1046 | s = bfd_make_section (abfd, ".dynsym"); | |
1047 | if (s == NULL | |
1048 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
1049 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1050 | return false; | |
1051 | ||
1052 | s = bfd_make_section (abfd, ".dynstr"); | |
1053 | if (s == NULL | |
1054 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
1055 | return false; | |
1056 | ||
1057 | /* Create a strtab to hold the dynamic symbol names. */ | |
1058 | if (elf_hash_table (info)->dynstr == NULL) | |
1059 | { | |
1060 | elf_hash_table (info)->dynstr = elf_stringtab_init (); | |
1061 | if (elf_hash_table (info)->dynstr == NULL) | |
1062 | return false; | |
1063 | } | |
1064 | ||
1065 | s = bfd_make_section (abfd, ".dynamic"); | |
1066 | if (s == NULL | |
1067 | || ! bfd_set_section_flags (abfd, s, flags) | |
1068 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1069 | return false; | |
1070 | ||
1071 | /* The special symbol _DYNAMIC is always set to the start of the | |
1072 | .dynamic section. This call occurs before we have processed the | |
1073 | symbols for any dynamic object, so we don't have to worry about | |
1074 | overriding a dynamic definition. We could set _DYNAMIC in a | |
1075 | linker script, but we only want to define it if we are, in fact, | |
1076 | creating a .dynamic section. We don't want to define it if there | |
1077 | is no .dynamic section, since on some ELF platforms the start up | |
1078 | code examines it to decide how to initialize the process. */ | |
1079 | h = NULL; | |
1080 | if (! (_bfd_generic_link_add_one_symbol | |
1081 | (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0, | |
1082 | (const char *) NULL, false, get_elf_backend_data (abfd)->collect, | |
1083 | (struct bfd_link_hash_entry **) &h))) | |
1084 | return false; | |
1085 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
1086 | h->type = STT_OBJECT; | |
1087 | ||
1088 | if (info->shared | |
1089 | && ! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
1090 | return false; | |
1091 | ||
1092 | s = bfd_make_section (abfd, ".hash"); | |
1093 | if (s == NULL | |
1094 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
1095 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
1096 | return false; | |
1097 | ||
1098 | /* Let the backend create the rest of the sections. This lets the | |
1099 | backend set the right flags. The backend will normally create | |
1100 | the .got and .plt sections. */ | |
1101 | bed = get_elf_backend_data (abfd); | |
1102 | if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) | |
1103 | return false; | |
1104 | ||
1105 | elf_hash_table (info)->dynamic_sections_created = true; | |
1106 | ||
1107 | return true; | |
1108 | } | |
1109 | ||
1110 | /* Add an entry to the .dynamic table. */ | |
1111 | ||
1112 | boolean | |
1113 | elf_add_dynamic_entry (info, tag, val) | |
1114 | struct bfd_link_info *info; | |
1115 | bfd_vma tag; | |
1116 | bfd_vma val; | |
1117 | { | |
1118 | Elf_Internal_Dyn dyn; | |
1119 | bfd *dynobj; | |
1120 | asection *s; | |
1121 | size_t newsize; | |
1122 | bfd_byte *newcontents; | |
1123 | ||
1124 | dynobj = elf_hash_table (info)->dynobj; | |
1125 | ||
1126 | s = bfd_get_section_by_name (dynobj, ".dynamic"); | |
1127 | BFD_ASSERT (s != NULL); | |
1128 | ||
1129 | newsize = s->_raw_size + sizeof (Elf_External_Dyn); | |
58142f10 | 1130 | newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); |
ede4eed4 | 1131 | if (newcontents == NULL) |
58142f10 | 1132 | return false; |
ede4eed4 KR |
1133 | |
1134 | dyn.d_tag = tag; | |
1135 | dyn.d_un.d_val = val; | |
1136 | elf_swap_dyn_out (dynobj, &dyn, | |
1137 | (Elf_External_Dyn *) (newcontents + s->_raw_size)); | |
1138 | ||
1139 | s->_raw_size = newsize; | |
1140 | s->contents = newcontents; | |
1141 | ||
1142 | return true; | |
1143 | } | |
3b3753b8 | 1144 | \f |
ede4eed4 KR |
1145 | |
1146 | /* Read and swap the relocs for a section. They may have been cached. | |
1147 | If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL, | |
1148 | they are used as buffers to read into. They are known to be large | |
1149 | enough. If the INTERNAL_RELOCS relocs argument is NULL, the return | |
1150 | value is allocated using either malloc or bfd_alloc, according to | |
1151 | the KEEP_MEMORY argument. */ | |
1152 | ||
1153 | static Elf_Internal_Rela * | |
1154 | elf_link_read_relocs (abfd, o, external_relocs, internal_relocs, keep_memory) | |
1155 | bfd *abfd; | |
1156 | asection *o; | |
1157 | PTR external_relocs; | |
1158 | Elf_Internal_Rela *internal_relocs; | |
1159 | boolean keep_memory; | |
1160 | { | |
1161 | Elf_Internal_Shdr *rel_hdr; | |
1162 | PTR alloc1 = NULL; | |
1163 | Elf_Internal_Rela *alloc2 = NULL; | |
1164 | ||
1165 | if (elf_section_data (o)->relocs != NULL) | |
1166 | return elf_section_data (o)->relocs; | |
1167 | ||
1168 | if (o->reloc_count == 0) | |
1169 | return NULL; | |
1170 | ||
1171 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
1172 | ||
1173 | if (internal_relocs == NULL) | |
1174 | { | |
1175 | size_t size; | |
1176 | ||
1177 | size = o->reloc_count * sizeof (Elf_Internal_Rela); | |
1178 | if (keep_memory) | |
1179 | internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size); | |
1180 | else | |
58142f10 | 1181 | internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); |
ede4eed4 | 1182 | if (internal_relocs == NULL) |
58142f10 | 1183 | goto error_return; |
ede4eed4 KR |
1184 | } |
1185 | ||
1186 | if (external_relocs == NULL) | |
1187 | { | |
58142f10 | 1188 | alloc1 = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size); |
ede4eed4 | 1189 | if (alloc1 == NULL) |
58142f10 | 1190 | goto error_return; |
ede4eed4 KR |
1191 | external_relocs = alloc1; |
1192 | } | |
1193 | ||
1194 | if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0) | |
1195 | || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd) | |
1196 | != rel_hdr->sh_size)) | |
1197 | goto error_return; | |
1198 | ||
1199 | /* Swap in the relocs. For convenience, we always produce an | |
1200 | Elf_Internal_Rela array; if the relocs are Rel, we set the addend | |
1201 | to 0. */ | |
1202 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
1203 | { | |
1204 | Elf_External_Rel *erel; | |
1205 | Elf_External_Rel *erelend; | |
1206 | Elf_Internal_Rela *irela; | |
1207 | ||
1208 | erel = (Elf_External_Rel *) external_relocs; | |
1209 | erelend = erel + o->reloc_count; | |
1210 | irela = internal_relocs; | |
1211 | for (; erel < erelend; erel++, irela++) | |
1212 | { | |
1213 | Elf_Internal_Rel irel; | |
1214 | ||
1215 | elf_swap_reloc_in (abfd, erel, &irel); | |
1216 | irela->r_offset = irel.r_offset; | |
1217 | irela->r_info = irel.r_info; | |
1218 | irela->r_addend = 0; | |
1219 | } | |
1220 | } | |
1221 | else | |
1222 | { | |
1223 | Elf_External_Rela *erela; | |
1224 | Elf_External_Rela *erelaend; | |
1225 | Elf_Internal_Rela *irela; | |
1226 | ||
1227 | BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela)); | |
1228 | ||
1229 | erela = (Elf_External_Rela *) external_relocs; | |
1230 | erelaend = erela + o->reloc_count; | |
1231 | irela = internal_relocs; | |
1232 | for (; erela < erelaend; erela++, irela++) | |
1233 | elf_swap_reloca_in (abfd, erela, irela); | |
1234 | } | |
1235 | ||
1236 | /* Cache the results for next time, if we can. */ | |
1237 | if (keep_memory) | |
1238 | elf_section_data (o)->relocs = internal_relocs; | |
1239 | ||
1240 | if (alloc1 != NULL) | |
1241 | free (alloc1); | |
1242 | ||
1243 | /* Don't free alloc2, since if it was allocated we are passing it | |
1244 | back (under the name of internal_relocs). */ | |
1245 | ||
1246 | return internal_relocs; | |
1247 | ||
1248 | error_return: | |
1249 | if (alloc1 != NULL) | |
1250 | free (alloc1); | |
1251 | if (alloc2 != NULL) | |
1252 | free (alloc2); | |
1253 | return NULL; | |
1254 | } | |
3b3753b8 | 1255 | \f |
ede4eed4 KR |
1256 | |
1257 | /* Record an assignment to a symbol made by a linker script. We need | |
1258 | this in case some dynamic object refers to this symbol. */ | |
1259 | ||
1260 | /*ARGSUSED*/ | |
1261 | boolean | |
1262 | NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide) | |
1263 | bfd *output_bfd; | |
1264 | struct bfd_link_info *info; | |
1265 | const char *name; | |
1266 | boolean provide; | |
1267 | { | |
1268 | struct elf_link_hash_entry *h; | |
1269 | ||
1270 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
1271 | return true; | |
1272 | ||
1273 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false); | |
1274 | if (h == NULL) | |
1275 | return false; | |
1276 | ||
869b7d80 ILT |
1277 | if (h->root.type == bfd_link_hash_new) |
1278 | h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; | |
1279 | ||
ede4eed4 KR |
1280 | /* If this symbol is being provided by the linker script, and it is |
1281 | currently defined by a dynamic object, but not by a regular | |
1282 | object, then mark it as undefined so that the generic linker will | |
1283 | force the correct value. */ | |
1284 | if (provide | |
1285 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
1286 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
1287 | h->root.type = bfd_link_hash_undefined; | |
1288 | ||
1289 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
1290 | h->type = STT_OBJECT; | |
1291 | ||
1292 | if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
1293 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0 | |
1294 | || info->shared) | |
1295 | && h->dynindx == -1) | |
1296 | { | |
1297 | if (! _bfd_elf_link_record_dynamic_symbol (info, h)) | |
1298 | return false; | |
1299 | ||
1300 | /* If this is a weak defined symbol, and we know a corresponding | |
1301 | real symbol from the same dynamic object, make sure the real | |
1302 | symbol is also made into a dynamic symbol. */ | |
1303 | if (h->weakdef != NULL | |
1304 | && h->weakdef->dynindx == -1) | |
1305 | { | |
1306 | if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) | |
1307 | return false; | |
1308 | } | |
1309 | } | |
1310 | ||
1311 | return true; | |
1312 | } | |
3b3753b8 | 1313 | \f |
ede4eed4 KR |
1314 | |
1315 | /* Array used to determine the number of hash table buckets to use | |
1316 | based on the number of symbols there are. If there are fewer than | |
1317 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |
1318 | fewer than 37 we use 17 buckets, and so forth. We never use more | |
1319 | than 521 buckets. */ | |
1320 | ||
1321 | static const size_t elf_buckets[] = | |
1322 | { | |
1323 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 0 | |
1324 | }; | |
1325 | ||
1326 | /* Set up the sizes and contents of the ELF dynamic sections. This is | |
1327 | called by the ELF linker emulation before_allocation routine. We | |
1328 | must set the sizes of the sections before the linker sets the | |
1329 | addresses of the various sections. */ | |
1330 | ||
1331 | boolean | |
1332 | NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath, | |
1333 | export_dynamic, info, sinterpptr) | |
1334 | bfd *output_bfd; | |
1335 | const char *soname; | |
1336 | const char *rpath; | |
1337 | boolean export_dynamic; | |
1338 | struct bfd_link_info *info; | |
1339 | asection **sinterpptr; | |
1340 | { | |
1341 | bfd *dynobj; | |
1342 | struct elf_backend_data *bed; | |
1343 | ||
1344 | *sinterpptr = NULL; | |
1345 | ||
1346 | if (info->hash->creator->flavour != bfd_target_elf_flavour) | |
1347 | return true; | |
1348 | ||
1349 | dynobj = elf_hash_table (info)->dynobj; | |
1350 | ||
1351 | /* If there were no dynamic objects in the link, there is nothing to | |
1352 | do here. */ | |
1353 | if (dynobj == NULL) | |
1354 | return true; | |
1355 | ||
1356 | /* If we are supposed to export all symbols into the dynamic symbol | |
1357 | table (this is not the normal case), then do so. */ | |
1358 | if (export_dynamic) | |
1359 | { | |
1360 | struct elf_info_failed eif; | |
1361 | ||
1362 | eif.failed = false; | |
1363 | eif.info = info; | |
1364 | elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol, | |
1365 | (PTR) &eif); | |
1366 | if (eif.failed) | |
1367 | return false; | |
1368 | } | |
1369 | ||
1370 | if (elf_hash_table (info)->dynamic_sections_created) | |
1371 | { | |
1372 | struct elf_info_failed eif; | |
73a68447 | 1373 | struct elf_link_hash_entry *h; |
ede4eed4 KR |
1374 | bfd_size_type strsize; |
1375 | ||
1376 | *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); | |
1377 | BFD_ASSERT (*sinterpptr != NULL || info->shared); | |
1378 | ||
1379 | if (soname != NULL) | |
1380 | { | |
1381 | bfd_size_type indx; | |
1382 | ||
1383 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, soname, | |
1384 | true, true); | |
1385 | if (indx == (bfd_size_type) -1 | |
1386 | || ! elf_add_dynamic_entry (info, DT_SONAME, indx)) | |
1387 | return false; | |
1388 | } | |
1389 | ||
951fe66d ILT |
1390 | if (info->symbolic) |
1391 | { | |
1392 | if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) | |
1393 | return false; | |
1394 | } | |
1395 | ||
ede4eed4 KR |
1396 | if (rpath != NULL) |
1397 | { | |
1398 | bfd_size_type indx; | |
1399 | ||
1400 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath, | |
1401 | true, true); | |
1402 | if (indx == (bfd_size_type) -1 | |
1403 | || ! elf_add_dynamic_entry (info, DT_RPATH, indx)) | |
1404 | return false; | |
1405 | } | |
1406 | ||
1407 | /* Find all symbols which were defined in a dynamic object and make | |
1408 | the backend pick a reasonable value for them. */ | |
1409 | eif.failed = false; | |
1410 | eif.info = info; | |
1411 | elf_link_hash_traverse (elf_hash_table (info), | |
1412 | elf_adjust_dynamic_symbol, | |
1413 | (PTR) &eif); | |
1414 | if (eif.failed) | |
1415 | return false; | |
1416 | ||
1417 | /* Add some entries to the .dynamic section. We fill in some of the | |
1418 | values later, in elf_bfd_final_link, but we must add the entries | |
1419 | now so that we know the final size of the .dynamic section. */ | |
73a68447 ILT |
1420 | h = elf_link_hash_lookup (elf_hash_table (info), "_init", false, |
1421 | false, false); | |
1422 | if (h != NULL | |
1423 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
1424 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
ede4eed4 KR |
1425 | { |
1426 | if (! elf_add_dynamic_entry (info, DT_INIT, 0)) | |
1427 | return false; | |
1428 | } | |
73a68447 ILT |
1429 | h = elf_link_hash_lookup (elf_hash_table (info), "_fini", false, |
1430 | false, false); | |
1431 | if (h != NULL | |
1432 | && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR | |
1433 | | ELF_LINK_HASH_DEF_REGULAR)) != 0) | |
ede4eed4 KR |
1434 | { |
1435 | if (! elf_add_dynamic_entry (info, DT_FINI, 0)) | |
1436 | return false; | |
1437 | } | |
1438 | strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
1439 | if (! elf_add_dynamic_entry (info, DT_HASH, 0) | |
1440 | || ! elf_add_dynamic_entry (info, DT_STRTAB, 0) | |
1441 | || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0) | |
1442 | || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize) | |
1443 | || ! elf_add_dynamic_entry (info, DT_SYMENT, | |
1444 | sizeof (Elf_External_Sym))) | |
1445 | return false; | |
1446 | } | |
1447 | ||
1448 | /* The backend must work out the sizes of all the other dynamic | |
1449 | sections. */ | |
1450 | bed = get_elf_backend_data (output_bfd); | |
1451 | if (! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) | |
1452 | return false; | |
1453 | ||
1454 | if (elf_hash_table (info)->dynamic_sections_created) | |
1455 | { | |
1456 | size_t dynsymcount; | |
1457 | asection *s; | |
1458 | size_t i; | |
1459 | size_t bucketcount = 0; | |
1460 | Elf_Internal_Sym isym; | |
1461 | ||
1462 | /* Set the size of the .dynsym and .hash sections. We counted | |
1463 | the number of dynamic symbols in elf_link_add_object_symbols. | |
1464 | We will build the contents of .dynsym and .hash when we build | |
1465 | the final symbol table, because until then we do not know the | |
1466 | correct value to give the symbols. We built the .dynstr | |
1467 | section as we went along in elf_link_add_object_symbols. */ | |
1468 | dynsymcount = elf_hash_table (info)->dynsymcount; | |
1469 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
1470 | BFD_ASSERT (s != NULL); | |
1471 | s->_raw_size = dynsymcount * sizeof (Elf_External_Sym); | |
1472 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
1473 | if (s->contents == NULL && s->_raw_size != 0) | |
a9713b91 | 1474 | return false; |
ede4eed4 KR |
1475 | |
1476 | /* The first entry in .dynsym is a dummy symbol. */ | |
1477 | isym.st_value = 0; | |
1478 | isym.st_size = 0; | |
1479 | isym.st_name = 0; | |
1480 | isym.st_info = 0; | |
1481 | isym.st_other = 0; | |
1482 | isym.st_shndx = 0; | |
1483 | elf_swap_symbol_out (output_bfd, &isym, | |
cf9fb9f2 | 1484 | (PTR) (Elf_External_Sym *) s->contents); |
ede4eed4 KR |
1485 | |
1486 | for (i = 0; elf_buckets[i] != 0; i++) | |
1487 | { | |
1488 | bucketcount = elf_buckets[i]; | |
1489 | if (dynsymcount < elf_buckets[i + 1]) | |
1490 | break; | |
1491 | } | |
1492 | ||
1493 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
1494 | BFD_ASSERT (s != NULL); | |
1495 | s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8); | |
1496 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
1497 | if (s->contents == NULL) | |
a9713b91 | 1498 | return false; |
3fe22b98 | 1499 | memset (s->contents, 0, (size_t) s->_raw_size); |
ede4eed4 KR |
1500 | |
1501 | put_word (output_bfd, bucketcount, s->contents); | |
1502 | put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8)); | |
1503 | ||
1504 | elf_hash_table (info)->bucketcount = bucketcount; | |
1505 | ||
1506 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
1507 | BFD_ASSERT (s != NULL); | |
1508 | s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
1509 | ||
1510 | if (! elf_add_dynamic_entry (info, DT_NULL, 0)) | |
1511 | return false; | |
1512 | } | |
1513 | ||
1514 | return true; | |
1515 | } | |
3b3753b8 | 1516 | \f |
ede4eed4 KR |
1517 | |
1518 | /* This routine is used to export all defined symbols into the dynamic | |
1519 | symbol table. It is called via elf_link_hash_traverse. */ | |
1520 | ||
1521 | static boolean | |
1522 | elf_export_symbol (h, data) | |
1523 | struct elf_link_hash_entry *h; | |
1524 | PTR data; | |
1525 | { | |
1526 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
1527 | ||
1528 | if (h->dynindx == -1 | |
1529 | && (h->elf_link_hash_flags | |
1530 | & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0) | |
1531 | { | |
1532 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
1533 | { | |
1534 | eif->failed = true; | |
1535 | return false; | |
1536 | } | |
1537 | } | |
1538 | ||
1539 | return true; | |
1540 | } | |
3b3753b8 | 1541 | \f |
ede4eed4 KR |
1542 | |
1543 | /* Make the backend pick a good value for a dynamic symbol. This is | |
1544 | called via elf_link_hash_traverse, and also calls itself | |
1545 | recursively. */ | |
1546 | ||
1547 | static boolean | |
1548 | elf_adjust_dynamic_symbol (h, data) | |
1549 | struct elf_link_hash_entry *h; | |
1550 | PTR data; | |
1551 | { | |
1552 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
1553 | bfd *dynobj; | |
1554 | struct elf_backend_data *bed; | |
1555 | ||
869b7d80 ILT |
1556 | /* If this symbol was mentioned in a non-ELF file, try to set |
1557 | DEF_REGULAR and REF_REGULAR correctly. This is the only way to | |
1558 | permit a non-ELF file to correctly refer to a symbol defined in | |
1559 | an ELF dynamic object. */ | |
1560 | if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0) | |
1561 | { | |
1562 | if (h->root.type != bfd_link_hash_defined | |
1563 | && h->root.type != bfd_link_hash_defweak) | |
1564 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
1565 | else | |
1566 | { | |
e303e2e3 ILT |
1567 | if (h->root.u.def.section->owner != NULL |
1568 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
1569 | == bfd_target_elf_flavour)) | |
869b7d80 ILT |
1570 | h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; |
1571 | else | |
1572 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
1573 | } | |
1574 | ||
1575 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
1576 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
1577 | { | |
1578 | if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
1579 | { | |
1580 | eif->failed = true; | |
1581 | return false; | |
1582 | } | |
1583 | } | |
1584 | } | |
1585 | ||
ce6a7731 ILT |
1586 | /* If this is a final link, and the symbol was defined as a common |
1587 | symbol in a regular object file, and there was no definition in | |
1588 | any dynamic object, then the linker will have allocated space for | |
1589 | the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR | |
1590 | flag will not have been set. */ | |
1591 | if (h->root.type == bfd_link_hash_defined | |
1592 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
1593 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 | |
1594 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
1595 | && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) | |
1596 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
1597 | ||
951fe66d ILT |
1598 | /* If -Bsymbolic was used (which means to bind references to global |
1599 | symbols to the definition within the shared object), and this | |
1600 | symbol was defined in a regular object, then it actually doesn't | |
1601 | need a PLT entry. */ | |
1602 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 | |
1603 | && eif->info->shared | |
1604 | && eif->info->symbolic | |
1605 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
1606 | h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT; | |
1607 | ||
ede4eed4 KR |
1608 | /* If this symbol does not require a PLT entry, and it is not |
1609 | defined by a dynamic object, or is not referenced by a regular | |
452a5efb ILT |
1610 | object, ignore it. We do have to handle a weak defined symbol, |
1611 | even if no regular object refers to it, if we decided to add it | |
1612 | to the dynamic symbol table. FIXME: Do we normally need to worry | |
1613 | about symbols which are defined by one dynamic object and | |
1614 | referenced by another one? */ | |
ede4eed4 KR |
1615 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0 |
1616 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
1617 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
452a5efb ILT |
1618 | || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0 |
1619 | && (h->weakdef == NULL || h->weakdef->dynindx == -1)))) | |
ede4eed4 KR |
1620 | return true; |
1621 | ||
1622 | /* If we've already adjusted this symbol, don't do it again. This | |
1623 | can happen via a recursive call. */ | |
1624 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) | |
1625 | return true; | |
1626 | ||
1627 | /* Don't look at this symbol again. Note that we must set this | |
1628 | after checking the above conditions, because we may look at a | |
1629 | symbol once, decide not to do anything, and then get called | |
1630 | recursively later after REF_REGULAR is set below. */ | |
1631 | h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; | |
1632 | ||
1633 | /* If this is a weak definition, and we know a real definition, and | |
1634 | the real symbol is not itself defined by a regular object file, | |
1635 | then get a good value for the real definition. We handle the | |
1636 | real symbol first, for the convenience of the backend routine. | |
1637 | ||
1638 | Note that there is a confusing case here. If the real definition | |
1639 | is defined by a regular object file, we don't get the real symbol | |
1640 | from the dynamic object, but we do get the weak symbol. If the | |
1641 | processor backend uses a COPY reloc, then if some routine in the | |
1642 | dynamic object changes the real symbol, we will not see that | |
1643 | change in the corresponding weak symbol. This is the way other | |
1644 | ELF linkers work as well, and seems to be a result of the shared | |
1645 | library model. | |
1646 | ||
1647 | I will clarify this issue. Most SVR4 shared libraries define the | |
1648 | variable _timezone and define timezone as a weak synonym. The | |
1649 | tzset call changes _timezone. If you write | |
1650 | extern int timezone; | |
1651 | int _timezone = 5; | |
1652 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
1653 | you might expect that, since timezone is a synonym for _timezone, | |
1654 | the same number will print both times. However, if the processor | |
1655 | backend uses a COPY reloc, then actually timezone will be copied | |
1656 | into your process image, and, since you define _timezone | |
1657 | yourself, _timezone will not. Thus timezone and _timezone will | |
1658 | wind up at different memory locations. The tzset call will set | |
1659 | _timezone, leaving timezone unchanged. */ | |
1660 | ||
1661 | if (h->weakdef != NULL) | |
1662 | { | |
1663 | struct elf_link_hash_entry *weakdef; | |
1664 | ||
1665 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
1666 | || h->root.type == bfd_link_hash_defweak); | |
1667 | weakdef = h->weakdef; | |
1668 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined | |
1669 | || weakdef->root.type == bfd_link_hash_defweak); | |
1670 | BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); | |
1671 | if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) | |
1672 | { | |
1673 | /* This symbol is defined by a regular object file, so we | |
1674 | will not do anything special. Clear weakdef for the | |
1675 | convenience of the processor backend. */ | |
1676 | h->weakdef = NULL; | |
1677 | } | |
1678 | else | |
1679 | { | |
1680 | /* There is an implicit reference by a regular object file | |
1681 | via the weak symbol. */ | |
1682 | weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
1683 | if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif)) | |
1684 | return false; | |
1685 | } | |
1686 | } | |
1687 | ||
1688 | dynobj = elf_hash_table (eif->info)->dynobj; | |
1689 | bed = get_elf_backend_data (dynobj); | |
1690 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) | |
1691 | { | |
1692 | eif->failed = true; | |
1693 | return false; | |
1694 | } | |
1695 | ||
1696 | return true; | |
1697 | } | |
1698 | \f | |
1699 | /* Final phase of ELF linker. */ | |
1700 | ||
1701 | /* A structure we use to avoid passing large numbers of arguments. */ | |
1702 | ||
1703 | struct elf_final_link_info | |
1704 | { | |
1705 | /* General link information. */ | |
1706 | struct bfd_link_info *info; | |
1707 | /* Output BFD. */ | |
1708 | bfd *output_bfd; | |
1709 | /* Symbol string table. */ | |
1710 | struct bfd_strtab_hash *symstrtab; | |
1711 | /* .dynsym section. */ | |
1712 | asection *dynsym_sec; | |
1713 | /* .hash section. */ | |
1714 | asection *hash_sec; | |
1715 | /* Buffer large enough to hold contents of any section. */ | |
1716 | bfd_byte *contents; | |
1717 | /* Buffer large enough to hold external relocs of any section. */ | |
1718 | PTR external_relocs; | |
1719 | /* Buffer large enough to hold internal relocs of any section. */ | |
1720 | Elf_Internal_Rela *internal_relocs; | |
1721 | /* Buffer large enough to hold external local symbols of any input | |
1722 | BFD. */ | |
1723 | Elf_External_Sym *external_syms; | |
1724 | /* Buffer large enough to hold internal local symbols of any input | |
1725 | BFD. */ | |
1726 | Elf_Internal_Sym *internal_syms; | |
1727 | /* Array large enough to hold a symbol index for each local symbol | |
1728 | of any input BFD. */ | |
1729 | long *indices; | |
1730 | /* Array large enough to hold a section pointer for each local | |
1731 | symbol of any input BFD. */ | |
1732 | asection **sections; | |
1733 | /* Buffer to hold swapped out symbols. */ | |
1734 | Elf_External_Sym *symbuf; | |
1735 | /* Number of swapped out symbols in buffer. */ | |
1736 | size_t symbuf_count; | |
1737 | /* Number of symbols which fit in symbuf. */ | |
1738 | size_t symbuf_size; | |
1739 | }; | |
1740 | ||
1741 | static boolean elf_link_output_sym | |
1742 | PARAMS ((struct elf_final_link_info *, const char *, | |
1743 | Elf_Internal_Sym *, asection *)); | |
1744 | static boolean elf_link_flush_output_syms | |
1745 | PARAMS ((struct elf_final_link_info *)); | |
1746 | static boolean elf_link_output_extsym | |
1747 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
1748 | static boolean elf_link_input_bfd | |
1749 | PARAMS ((struct elf_final_link_info *, bfd *)); | |
1750 | static boolean elf_reloc_link_order | |
1751 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
1752 | struct bfd_link_order *)); | |
1753 | ||
1754 | /* This struct is used to pass information to routines called via | |
1755 | elf_link_hash_traverse which must return failure. */ | |
1756 | ||
1757 | struct elf_finfo_failed | |
1758 | { | |
1759 | boolean failed; | |
1760 | struct elf_final_link_info *finfo; | |
1761 | }; | |
1762 | ||
1763 | /* Do the final step of an ELF link. */ | |
1764 | ||
1765 | boolean | |
1766 | elf_bfd_final_link (abfd, info) | |
1767 | bfd *abfd; | |
1768 | struct bfd_link_info *info; | |
1769 | { | |
1770 | boolean dynamic; | |
1771 | bfd *dynobj; | |
1772 | struct elf_final_link_info finfo; | |
1773 | register asection *o; | |
1774 | register struct bfd_link_order *p; | |
1775 | register bfd *sub; | |
1776 | size_t max_contents_size; | |
1777 | size_t max_external_reloc_size; | |
1778 | size_t max_internal_reloc_count; | |
1779 | size_t max_sym_count; | |
1780 | file_ptr off; | |
1781 | Elf_Internal_Sym elfsym; | |
1782 | unsigned int i; | |
1783 | Elf_Internal_Shdr *symtab_hdr; | |
1784 | Elf_Internal_Shdr *symstrtab_hdr; | |
1785 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
1786 | struct elf_finfo_failed eif; | |
1787 | ||
1788 | if (info->shared) | |
1789 | abfd->flags |= DYNAMIC; | |
1790 | ||
1791 | dynamic = elf_hash_table (info)->dynamic_sections_created; | |
1792 | dynobj = elf_hash_table (info)->dynobj; | |
1793 | ||
1794 | finfo.info = info; | |
1795 | finfo.output_bfd = abfd; | |
1796 | finfo.symstrtab = elf_stringtab_init (); | |
1797 | if (finfo.symstrtab == NULL) | |
1798 | return false; | |
1799 | if (! dynamic) | |
1800 | { | |
1801 | finfo.dynsym_sec = NULL; | |
1802 | finfo.hash_sec = NULL; | |
1803 | } | |
1804 | else | |
1805 | { | |
1806 | finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); | |
1807 | finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); | |
1808 | BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL); | |
1809 | } | |
1810 | finfo.contents = NULL; | |
1811 | finfo.external_relocs = NULL; | |
1812 | finfo.internal_relocs = NULL; | |
1813 | finfo.external_syms = NULL; | |
1814 | finfo.internal_syms = NULL; | |
1815 | finfo.indices = NULL; | |
1816 | finfo.sections = NULL; | |
1817 | finfo.symbuf = NULL; | |
1818 | finfo.symbuf_count = 0; | |
1819 | ||
1820 | /* Count up the number of relocations we will output for each output | |
1821 | section, so that we know the sizes of the reloc sections. We | |
1822 | also figure out some maximum sizes. */ | |
1823 | max_contents_size = 0; | |
1824 | max_external_reloc_size = 0; | |
1825 | max_internal_reloc_count = 0; | |
1826 | max_sym_count = 0; | |
1827 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) | |
1828 | { | |
1829 | o->reloc_count = 0; | |
1830 | ||
1831 | for (p = o->link_order_head; p != NULL; p = p->next) | |
1832 | { | |
1833 | if (p->type == bfd_section_reloc_link_order | |
1834 | || p->type == bfd_symbol_reloc_link_order) | |
1835 | ++o->reloc_count; | |
1836 | else if (p->type == bfd_indirect_link_order) | |
1837 | { | |
1838 | asection *sec; | |
1839 | ||
1840 | sec = p->u.indirect.section; | |
1841 | ||
7ec49f91 ILT |
1842 | /* Mark all sections which are to be included in the |
1843 | link. This will normally be every section. We need | |
1844 | to do this so that we can identify any sections which | |
1845 | the linker has decided to not include. */ | |
ff0e4a93 | 1846 | sec->linker_mark = true; |
7ec49f91 | 1847 | |
ede4eed4 KR |
1848 | if (info->relocateable) |
1849 | o->reloc_count += sec->reloc_count; | |
1850 | ||
1851 | if (sec->_raw_size > max_contents_size) | |
1852 | max_contents_size = sec->_raw_size; | |
1853 | if (sec->_cooked_size > max_contents_size) | |
1854 | max_contents_size = sec->_cooked_size; | |
1855 | ||
1856 | /* We are interested in just local symbols, not all | |
1857 | symbols. */ | |
1858 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour) | |
1859 | { | |
1860 | size_t sym_count; | |
1861 | ||
1862 | if (elf_bad_symtab (sec->owner)) | |
1863 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size | |
1864 | / sizeof (Elf_External_Sym)); | |
1865 | else | |
1866 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; | |
1867 | ||
1868 | if (sym_count > max_sym_count) | |
1869 | max_sym_count = sym_count; | |
1870 | ||
1871 | if ((sec->flags & SEC_RELOC) != 0) | |
1872 | { | |
1873 | size_t ext_size; | |
1874 | ||
1875 | ext_size = elf_section_data (sec)->rel_hdr.sh_size; | |
1876 | if (ext_size > max_external_reloc_size) | |
1877 | max_external_reloc_size = ext_size; | |
1878 | if (sec->reloc_count > max_internal_reloc_count) | |
1879 | max_internal_reloc_count = sec->reloc_count; | |
1880 | } | |
1881 | } | |
1882 | } | |
1883 | } | |
1884 | ||
1885 | if (o->reloc_count > 0) | |
1886 | o->flags |= SEC_RELOC; | |
1887 | else | |
1888 | { | |
1889 | /* Explicitly clear the SEC_RELOC flag. The linker tends to | |
1890 | set it (this is probably a bug) and if it is set | |
1891 | assign_section_numbers will create a reloc section. */ | |
1892 | o->flags &=~ SEC_RELOC; | |
1893 | } | |
1894 | ||
1895 | /* If the SEC_ALLOC flag is not set, force the section VMA to | |
1896 | zero. This is done in elf_fake_sections as well, but forcing | |
1897 | the VMA to 0 here will ensure that relocs against these | |
1898 | sections are handled correctly. */ | |
2e0567eb ILT |
1899 | if ((o->flags & SEC_ALLOC) == 0 |
1900 | && ! o->user_set_vma) | |
ede4eed4 KR |
1901 | o->vma = 0; |
1902 | } | |
1903 | ||
1904 | /* Figure out the file positions for everything but the symbol table | |
1905 | and the relocs. We set symcount to force assign_section_numbers | |
1906 | to create a symbol table. */ | |
1907 | abfd->symcount = info->strip == strip_all ? 0 : 1; | |
1908 | BFD_ASSERT (! abfd->output_has_begun); | |
1909 | if (! _bfd_elf_compute_section_file_positions (abfd, info)) | |
1910 | goto error_return; | |
1911 | ||
1912 | /* That created the reloc sections. Set their sizes, and assign | |
1913 | them file positions, and allocate some buffers. */ | |
1914 | for (o = abfd->sections; o != NULL; o = o->next) | |
1915 | { | |
1916 | if ((o->flags & SEC_RELOC) != 0) | |
1917 | { | |
1918 | Elf_Internal_Shdr *rel_hdr; | |
1919 | register struct elf_link_hash_entry **p, **pend; | |
1920 | ||
1921 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
1922 | ||
1923 | rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count; | |
1924 | ||
1925 | /* The contents field must last into write_object_contents, | |
1926 | so we allocate it with bfd_alloc rather than malloc. */ | |
1927 | rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size); | |
1928 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) | |
a9713b91 | 1929 | goto error_return; |
ede4eed4 KR |
1930 | |
1931 | p = ((struct elf_link_hash_entry **) | |
58142f10 ILT |
1932 | bfd_malloc (o->reloc_count |
1933 | * sizeof (struct elf_link_hash_entry *))); | |
ede4eed4 | 1934 | if (p == NULL && o->reloc_count != 0) |
58142f10 | 1935 | goto error_return; |
ede4eed4 KR |
1936 | elf_section_data (o)->rel_hashes = p; |
1937 | pend = p + o->reloc_count; | |
1938 | for (; p < pend; p++) | |
1939 | *p = NULL; | |
1940 | ||
1941 | /* Use the reloc_count field as an index when outputting the | |
1942 | relocs. */ | |
1943 | o->reloc_count = 0; | |
1944 | } | |
1945 | } | |
1946 | ||
1947 | _bfd_elf_assign_file_positions_for_relocs (abfd); | |
1948 | ||
1949 | /* We have now assigned file positions for all the sections except | |
1950 | .symtab and .strtab. We start the .symtab section at the current | |
1951 | file position, and write directly to it. We build the .strtab | |
ab276dfa | 1952 | section in memory. */ |
ede4eed4 KR |
1953 | abfd->symcount = 0; |
1954 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
1955 | /* sh_name is set in prep_headers. */ | |
1956 | symtab_hdr->sh_type = SHT_SYMTAB; | |
1957 | symtab_hdr->sh_flags = 0; | |
1958 | symtab_hdr->sh_addr = 0; | |
1959 | symtab_hdr->sh_size = 0; | |
1960 | symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
1961 | /* sh_link is set in assign_section_numbers. */ | |
1962 | /* sh_info is set below. */ | |
1963 | /* sh_offset is set just below. */ | |
1964 | symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */ | |
1965 | ||
1966 | off = elf_tdata (abfd)->next_file_pos; | |
1967 | off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true); | |
1968 | ||
1969 | /* Note that at this point elf_tdata (abfd)->next_file_pos is | |
1970 | incorrect. We do not yet know the size of the .symtab section. | |
1971 | We correct next_file_pos below, after we do know the size. */ | |
1972 | ||
1973 | /* Allocate a buffer to hold swapped out symbols. This is to avoid | |
1974 | continuously seeking to the right position in the file. */ | |
1975 | if (! info->keep_memory || max_sym_count < 20) | |
1976 | finfo.symbuf_size = 20; | |
1977 | else | |
1978 | finfo.symbuf_size = max_sym_count; | |
1979 | finfo.symbuf = ((Elf_External_Sym *) | |
58142f10 | 1980 | bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym))); |
ede4eed4 | 1981 | if (finfo.symbuf == NULL) |
58142f10 | 1982 | goto error_return; |
ede4eed4 KR |
1983 | |
1984 | /* Start writing out the symbol table. The first symbol is always a | |
1985 | dummy symbol. */ | |
28c16b55 ILT |
1986 | if (info->strip != strip_all || info->relocateable) |
1987 | { | |
1988 | elfsym.st_value = 0; | |
1989 | elfsym.st_size = 0; | |
1990 | elfsym.st_info = 0; | |
1991 | elfsym.st_other = 0; | |
1992 | elfsym.st_shndx = SHN_UNDEF; | |
1993 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
1994 | &elfsym, bfd_und_section_ptr)) | |
1995 | goto error_return; | |
1996 | } | |
ede4eed4 KR |
1997 | |
1998 | #if 0 | |
1999 | /* Some standard ELF linkers do this, but we don't because it causes | |
2000 | bootstrap comparison failures. */ | |
2001 | /* Output a file symbol for the output file as the second symbol. | |
2002 | We output this even if we are discarding local symbols, although | |
2003 | I'm not sure if this is correct. */ | |
2004 | elfsym.st_value = 0; | |
2005 | elfsym.st_size = 0; | |
2006 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
2007 | elfsym.st_other = 0; | |
2008 | elfsym.st_shndx = SHN_ABS; | |
2009 | if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd), | |
2010 | &elfsym, bfd_abs_section_ptr)) | |
2011 | goto error_return; | |
2012 | #endif | |
2013 | ||
2014 | /* Output a symbol for each section. We output these even if we are | |
2015 | discarding local symbols, since they are used for relocs. These | |
2016 | symbols have no names. We store the index of each one in the | |
2017 | index field of the section, so that we can find it again when | |
2018 | outputting relocs. */ | |
28c16b55 | 2019 | if (info->strip != strip_all || info->relocateable) |
ede4eed4 | 2020 | { |
28c16b55 ILT |
2021 | elfsym.st_value = 0; |
2022 | elfsym.st_size = 0; | |
2023 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
2024 | elfsym.st_other = 0; | |
2025 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
2026 | { | |
2027 | o = section_from_elf_index (abfd, i); | |
2028 | if (o != NULL) | |
2029 | o->target_index = abfd->symcount; | |
2030 | elfsym.st_shndx = i; | |
2031 | if (! elf_link_output_sym (&finfo, (const char *) NULL, | |
2032 | &elfsym, o)) | |
2033 | goto error_return; | |
2034 | } | |
ede4eed4 KR |
2035 | } |
2036 | ||
2037 | /* Allocate some memory to hold information read in from the input | |
2038 | files. */ | |
58142f10 ILT |
2039 | finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); |
2040 | finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size); | |
ede4eed4 | 2041 | finfo.internal_relocs = ((Elf_Internal_Rela *) |
58142f10 ILT |
2042 | bfd_malloc (max_internal_reloc_count |
2043 | * sizeof (Elf_Internal_Rela))); | |
ede4eed4 | 2044 | finfo.external_syms = ((Elf_External_Sym *) |
58142f10 ILT |
2045 | bfd_malloc (max_sym_count |
2046 | * sizeof (Elf_External_Sym))); | |
ede4eed4 | 2047 | finfo.internal_syms = ((Elf_Internal_Sym *) |
58142f10 ILT |
2048 | bfd_malloc (max_sym_count |
2049 | * sizeof (Elf_Internal_Sym))); | |
2050 | finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long)); | |
2051 | finfo.sections = ((asection **) | |
2052 | bfd_malloc (max_sym_count * sizeof (asection *))); | |
ede4eed4 KR |
2053 | if ((finfo.contents == NULL && max_contents_size != 0) |
2054 | || (finfo.external_relocs == NULL && max_external_reloc_size != 0) | |
2055 | || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0) | |
2056 | || (finfo.external_syms == NULL && max_sym_count != 0) | |
2057 | || (finfo.internal_syms == NULL && max_sym_count != 0) | |
2058 | || (finfo.indices == NULL && max_sym_count != 0) | |
2059 | || (finfo.sections == NULL && max_sym_count != 0)) | |
58142f10 | 2060 | goto error_return; |
ede4eed4 KR |
2061 | |
2062 | /* Since ELF permits relocations to be against local symbols, we | |
2063 | must have the local symbols available when we do the relocations. | |
2064 | Since we would rather only read the local symbols once, and we | |
2065 | would rather not keep them in memory, we handle all the | |
2066 | relocations for a single input file at the same time. | |
2067 | ||
2068 | Unfortunately, there is no way to know the total number of local | |
2069 | symbols until we have seen all of them, and the local symbol | |
2070 | indices precede the global symbol indices. This means that when | |
2071 | we are generating relocateable output, and we see a reloc against | |
2072 | a global symbol, we can not know the symbol index until we have | |
2073 | finished examining all the local symbols to see which ones we are | |
2074 | going to output. To deal with this, we keep the relocations in | |
2075 | memory, and don't output them until the end of the link. This is | |
2076 | an unfortunate waste of memory, but I don't see a good way around | |
2077 | it. Fortunately, it only happens when performing a relocateable | |
2078 | link, which is not the common case. FIXME: If keep_memory is set | |
2079 | we could write the relocs out and then read them again; I don't | |
2080 | know how bad the memory loss will be. */ | |
2081 | ||
2082 | for (sub = info->input_bfds; sub != NULL; sub = sub->next) | |
2083 | sub->output_has_begun = false; | |
2084 | for (o = abfd->sections; o != NULL; o = o->next) | |
2085 | { | |
2086 | for (p = o->link_order_head; p != NULL; p = p->next) | |
2087 | { | |
2088 | if (p->type == bfd_indirect_link_order | |
2089 | && (bfd_get_flavour (p->u.indirect.section->owner) | |
2090 | == bfd_target_elf_flavour)) | |
2091 | { | |
2092 | sub = p->u.indirect.section->owner; | |
2093 | if (! sub->output_has_begun) | |
2094 | { | |
2095 | if (! elf_link_input_bfd (&finfo, sub)) | |
2096 | goto error_return; | |
2097 | sub->output_has_begun = true; | |
2098 | } | |
2099 | } | |
2100 | else if (p->type == bfd_section_reloc_link_order | |
2101 | || p->type == bfd_symbol_reloc_link_order) | |
2102 | { | |
2103 | if (! elf_reloc_link_order (abfd, info, o, p)) | |
2104 | goto error_return; | |
2105 | } | |
2106 | else | |
2107 | { | |
2108 | if (! _bfd_default_link_order (abfd, info, o, p)) | |
2109 | goto error_return; | |
2110 | } | |
2111 | } | |
2112 | } | |
2113 | ||
2114 | /* That wrote out all the local symbols. Finish up the symbol table | |
2115 | with the global symbols. */ | |
2116 | ||
2117 | /* The sh_info field records the index of the first non local | |
2118 | symbol. */ | |
2119 | symtab_hdr->sh_info = abfd->symcount; | |
2120 | if (dynamic) | |
2121 | elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1; | |
2122 | ||
2123 | /* We get the global symbols from the hash table. */ | |
2124 | eif.failed = false; | |
2125 | eif.finfo = &finfo; | |
2126 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, | |
2127 | (PTR) &eif); | |
2128 | if (eif.failed) | |
2129 | return false; | |
2130 | ||
2131 | /* Flush all symbols to the file. */ | |
2132 | if (! elf_link_flush_output_syms (&finfo)) | |
2133 | return false; | |
2134 | ||
2135 | /* Now we know the size of the symtab section. */ | |
2136 | off += symtab_hdr->sh_size; | |
2137 | ||
2138 | /* Finish up and write out the symbol string table (.strtab) | |
2139 | section. */ | |
2140 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; | |
2141 | /* sh_name was set in prep_headers. */ | |
2142 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
2143 | symstrtab_hdr->sh_flags = 0; | |
2144 | symstrtab_hdr->sh_addr = 0; | |
2145 | symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab); | |
2146 | symstrtab_hdr->sh_entsize = 0; | |
2147 | symstrtab_hdr->sh_link = 0; | |
2148 | symstrtab_hdr->sh_info = 0; | |
2149 | /* sh_offset is set just below. */ | |
2150 | symstrtab_hdr->sh_addralign = 1; | |
2151 | ||
2152 | off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true); | |
2153 | elf_tdata (abfd)->next_file_pos = off; | |
2154 | ||
28c16b55 ILT |
2155 | if (abfd->symcount > 0) |
2156 | { | |
2157 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 | |
2158 | || ! _bfd_stringtab_emit (abfd, finfo.symstrtab)) | |
2159 | return false; | |
2160 | } | |
ede4eed4 KR |
2161 | |
2162 | /* Adjust the relocs to have the correct symbol indices. */ | |
2163 | for (o = abfd->sections; o != NULL; o = o->next) | |
2164 | { | |
2165 | struct elf_link_hash_entry **rel_hash; | |
2166 | Elf_Internal_Shdr *rel_hdr; | |
2167 | ||
2168 | if ((o->flags & SEC_RELOC) == 0) | |
2169 | continue; | |
2170 | ||
2171 | rel_hash = elf_section_data (o)->rel_hashes; | |
2172 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
2173 | for (i = 0; i < o->reloc_count; i++, rel_hash++) | |
2174 | { | |
2175 | if (*rel_hash == NULL) | |
2176 | continue; | |
2177 | ||
2178 | BFD_ASSERT ((*rel_hash)->indx >= 0); | |
2179 | ||
2180 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
2181 | { | |
2182 | Elf_External_Rel *erel; | |
2183 | Elf_Internal_Rel irel; | |
2184 | ||
2185 | erel = (Elf_External_Rel *) rel_hdr->contents + i; | |
2186 | elf_swap_reloc_in (abfd, erel, &irel); | |
2187 | irel.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
2188 | ELF_R_TYPE (irel.r_info)); | |
2189 | elf_swap_reloc_out (abfd, &irel, erel); | |
2190 | } | |
2191 | else | |
2192 | { | |
2193 | Elf_External_Rela *erela; | |
2194 | Elf_Internal_Rela irela; | |
2195 | ||
2196 | BFD_ASSERT (rel_hdr->sh_entsize | |
2197 | == sizeof (Elf_External_Rela)); | |
2198 | ||
2199 | erela = (Elf_External_Rela *) rel_hdr->contents + i; | |
2200 | elf_swap_reloca_in (abfd, erela, &irela); | |
2201 | irela.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
2202 | ELF_R_TYPE (irela.r_info)); | |
2203 | elf_swap_reloca_out (abfd, &irela, erela); | |
2204 | } | |
2205 | } | |
2206 | ||
2207 | /* Set the reloc_count field to 0 to prevent write_relocs from | |
2208 | trying to swap the relocs out itself. */ | |
2209 | o->reloc_count = 0; | |
2210 | } | |
2211 | ||
2212 | /* If we are linking against a dynamic object, or generating a | |
2213 | shared library, finish up the dynamic linking information. */ | |
2214 | if (dynamic) | |
2215 | { | |
2216 | Elf_External_Dyn *dyncon, *dynconend; | |
2217 | ||
2218 | /* Fix up .dynamic entries. */ | |
2219 | o = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2220 | BFD_ASSERT (o != NULL); | |
2221 | ||
2222 | dyncon = (Elf_External_Dyn *) o->contents; | |
2223 | dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size); | |
2224 | for (; dyncon < dynconend; dyncon++) | |
2225 | { | |
2226 | Elf_Internal_Dyn dyn; | |
2227 | const char *name; | |
2228 | unsigned int type; | |
2229 | ||
2230 | elf_swap_dyn_in (dynobj, dyncon, &dyn); | |
2231 | ||
2232 | switch (dyn.d_tag) | |
2233 | { | |
2234 | default: | |
2235 | break; | |
2236 | ||
2237 | /* SVR4 linkers seem to set DT_INIT and DT_FINI based on | |
2238 | magic _init and _fini symbols. This is pretty ugly, | |
2239 | but we are compatible. */ | |
2240 | case DT_INIT: | |
2241 | name = "_init"; | |
2242 | goto get_sym; | |
2243 | case DT_FINI: | |
2244 | name = "_fini"; | |
2245 | get_sym: | |
2246 | { | |
2247 | struct elf_link_hash_entry *h; | |
2248 | ||
2249 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
2250 | false, false, true); | |
d6f672b8 ILT |
2251 | if (h != NULL |
2252 | && (h->root.type == bfd_link_hash_defined | |
2253 | || h->root.type == bfd_link_hash_defweak)) | |
ede4eed4 KR |
2254 | { |
2255 | dyn.d_un.d_val = h->root.u.def.value; | |
2256 | o = h->root.u.def.section; | |
2257 | if (o->output_section != NULL) | |
2258 | dyn.d_un.d_val += (o->output_section->vma | |
2259 | + o->output_offset); | |
2260 | else | |
d6f672b8 ILT |
2261 | { |
2262 | /* The symbol is imported from another shared | |
2263 | library and does not apply to this one. */ | |
2264 | dyn.d_un.d_val = 0; | |
2265 | } | |
2266 | ||
2267 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
ede4eed4 | 2268 | } |
ede4eed4 KR |
2269 | } |
2270 | break; | |
2271 | ||
2272 | case DT_HASH: | |
2273 | name = ".hash"; | |
2274 | goto get_vma; | |
2275 | case DT_STRTAB: | |
2276 | name = ".dynstr"; | |
2277 | goto get_vma; | |
2278 | case DT_SYMTAB: | |
2279 | name = ".dynsym"; | |
2280 | get_vma: | |
2281 | o = bfd_get_section_by_name (abfd, name); | |
2282 | BFD_ASSERT (o != NULL); | |
2283 | dyn.d_un.d_ptr = o->vma; | |
2284 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
2285 | break; | |
2286 | ||
2287 | case DT_REL: | |
2288 | case DT_RELA: | |
2289 | case DT_RELSZ: | |
2290 | case DT_RELASZ: | |
2291 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) | |
2292 | type = SHT_REL; | |
2293 | else | |
2294 | type = SHT_RELA; | |
2295 | dyn.d_un.d_val = 0; | |
2296 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
2297 | { | |
2298 | Elf_Internal_Shdr *hdr; | |
2299 | ||
2300 | hdr = elf_elfsections (abfd)[i]; | |
2301 | if (hdr->sh_type == type | |
2302 | && (hdr->sh_flags & SHF_ALLOC) != 0) | |
2303 | { | |
2304 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) | |
2305 | dyn.d_un.d_val += hdr->sh_size; | |
2306 | else | |
2307 | { | |
2308 | if (dyn.d_un.d_val == 0 | |
2309 | || hdr->sh_addr < dyn.d_un.d_val) | |
2310 | dyn.d_un.d_val = hdr->sh_addr; | |
2311 | } | |
2312 | } | |
2313 | } | |
2314 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
2315 | break; | |
2316 | } | |
2317 | } | |
2318 | } | |
2319 | ||
2320 | /* If we have created any dynamic sections, then output them. */ | |
2321 | if (dynobj != NULL) | |
2322 | { | |
2323 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) | |
2324 | goto error_return; | |
2325 | ||
2326 | for (o = dynobj->sections; o != NULL; o = o->next) | |
2327 | { | |
2328 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
2329 | || o->_raw_size == 0) | |
2330 | continue; | |
2331 | if ((o->flags & SEC_IN_MEMORY) == 0) | |
2332 | { | |
2333 | /* At this point, we are only interested in sections | |
2334 | created by elf_link_create_dynamic_sections. FIXME: | |
2335 | This test is fragile. */ | |
2336 | continue; | |
2337 | } | |
2338 | if ((elf_section_data (o->output_section)->this_hdr.sh_type | |
2339 | != SHT_STRTAB) | |
2340 | || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0) | |
2341 | { | |
2342 | if (! bfd_set_section_contents (abfd, o->output_section, | |
2343 | o->contents, o->output_offset, | |
2344 | o->_raw_size)) | |
2345 | goto error_return; | |
2346 | } | |
2347 | else | |
2348 | { | |
2349 | file_ptr off; | |
2350 | ||
2351 | /* The contents of the .dynstr section are actually in a | |
2352 | stringtab. */ | |
2353 | off = elf_section_data (o->output_section)->this_hdr.sh_offset; | |
2354 | if (bfd_seek (abfd, off, SEEK_SET) != 0 | |
2355 | || ! _bfd_stringtab_emit (abfd, | |
2356 | elf_hash_table (info)->dynstr)) | |
2357 | goto error_return; | |
2358 | } | |
2359 | } | |
2360 | } | |
2361 | ||
1726b8f0 ILT |
2362 | /* If we have optimized stabs strings, output them. */ |
2363 | if (elf_hash_table (info)->stab_info != NULL) | |
2364 | { | |
2365 | if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info)) | |
2366 | goto error_return; | |
2367 | } | |
2368 | ||
ede4eed4 KR |
2369 | if (finfo.symstrtab != NULL) |
2370 | _bfd_stringtab_free (finfo.symstrtab); | |
2371 | if (finfo.contents != NULL) | |
2372 | free (finfo.contents); | |
2373 | if (finfo.external_relocs != NULL) | |
2374 | free (finfo.external_relocs); | |
2375 | if (finfo.internal_relocs != NULL) | |
2376 | free (finfo.internal_relocs); | |
2377 | if (finfo.external_syms != NULL) | |
2378 | free (finfo.external_syms); | |
2379 | if (finfo.internal_syms != NULL) | |
2380 | free (finfo.internal_syms); | |
2381 | if (finfo.indices != NULL) | |
2382 | free (finfo.indices); | |
2383 | if (finfo.sections != NULL) | |
2384 | free (finfo.sections); | |
2385 | if (finfo.symbuf != NULL) | |
2386 | free (finfo.symbuf); | |
2387 | for (o = abfd->sections; o != NULL; o = o->next) | |
2388 | { | |
2389 | if ((o->flags & SEC_RELOC) != 0 | |
2390 | && elf_section_data (o)->rel_hashes != NULL) | |
2391 | free (elf_section_data (o)->rel_hashes); | |
2392 | } | |
2393 | ||
2394 | elf_tdata (abfd)->linker = true; | |
2395 | ||
2396 | return true; | |
2397 | ||
2398 | error_return: | |
2399 | if (finfo.symstrtab != NULL) | |
2400 | _bfd_stringtab_free (finfo.symstrtab); | |
2401 | if (finfo.contents != NULL) | |
2402 | free (finfo.contents); | |
2403 | if (finfo.external_relocs != NULL) | |
2404 | free (finfo.external_relocs); | |
2405 | if (finfo.internal_relocs != NULL) | |
2406 | free (finfo.internal_relocs); | |
2407 | if (finfo.external_syms != NULL) | |
2408 | free (finfo.external_syms); | |
2409 | if (finfo.internal_syms != NULL) | |
2410 | free (finfo.internal_syms); | |
2411 | if (finfo.indices != NULL) | |
2412 | free (finfo.indices); | |
2413 | if (finfo.sections != NULL) | |
2414 | free (finfo.sections); | |
2415 | if (finfo.symbuf != NULL) | |
2416 | free (finfo.symbuf); | |
2417 | for (o = abfd->sections; o != NULL; o = o->next) | |
2418 | { | |
2419 | if ((o->flags & SEC_RELOC) != 0 | |
2420 | && elf_section_data (o)->rel_hashes != NULL) | |
2421 | free (elf_section_data (o)->rel_hashes); | |
2422 | } | |
2423 | ||
2424 | return false; | |
2425 | } | |
2426 | ||
2427 | /* Add a symbol to the output symbol table. */ | |
2428 | ||
2429 | static boolean | |
2430 | elf_link_output_sym (finfo, name, elfsym, input_sec) | |
2431 | struct elf_final_link_info *finfo; | |
2432 | const char *name; | |
2433 | Elf_Internal_Sym *elfsym; | |
2434 | asection *input_sec; | |
2435 | { | |
2436 | boolean (*output_symbol_hook) PARAMS ((bfd *, | |
2437 | struct bfd_link_info *info, | |
2438 | const char *, | |
2439 | Elf_Internal_Sym *, | |
2440 | asection *)); | |
2441 | ||
2442 | output_symbol_hook = get_elf_backend_data (finfo->output_bfd)-> | |
2443 | elf_backend_link_output_symbol_hook; | |
2444 | if (output_symbol_hook != NULL) | |
2445 | { | |
2446 | if (! ((*output_symbol_hook) | |
2447 | (finfo->output_bfd, finfo->info, name, elfsym, input_sec))) | |
2448 | return false; | |
2449 | } | |
2450 | ||
2451 | if (name == (const char *) NULL || *name == '\0') | |
2452 | elfsym->st_name = 0; | |
2453 | else | |
2454 | { | |
2455 | elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab, | |
2456 | name, true, | |
2457 | false); | |
2458 | if (elfsym->st_name == (unsigned long) -1) | |
2459 | return false; | |
2460 | } | |
2461 | ||
2462 | if (finfo->symbuf_count >= finfo->symbuf_size) | |
2463 | { | |
2464 | if (! elf_link_flush_output_syms (finfo)) | |
2465 | return false; | |
2466 | } | |
2467 | ||
2468 | elf_swap_symbol_out (finfo->output_bfd, elfsym, | |
cf9fb9f2 | 2469 | (PTR) (finfo->symbuf + finfo->symbuf_count)); |
ede4eed4 KR |
2470 | ++finfo->symbuf_count; |
2471 | ||
2472 | ++finfo->output_bfd->symcount; | |
2473 | ||
2474 | return true; | |
2475 | } | |
2476 | ||
2477 | /* Flush the output symbols to the file. */ | |
2478 | ||
2479 | static boolean | |
2480 | elf_link_flush_output_syms (finfo) | |
2481 | struct elf_final_link_info *finfo; | |
2482 | { | |
28c16b55 ILT |
2483 | if (finfo->symbuf_count > 0) |
2484 | { | |
2485 | Elf_Internal_Shdr *symtab; | |
ede4eed4 | 2486 | |
28c16b55 | 2487 | symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr; |
ede4eed4 | 2488 | |
28c16b55 ILT |
2489 | if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size, |
2490 | SEEK_SET) != 0 | |
2491 | || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count, | |
2492 | sizeof (Elf_External_Sym), finfo->output_bfd) | |
2493 | != finfo->symbuf_count * sizeof (Elf_External_Sym))) | |
2494 | return false; | |
ede4eed4 | 2495 | |
28c16b55 | 2496 | symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym); |
ede4eed4 | 2497 | |
28c16b55 ILT |
2498 | finfo->symbuf_count = 0; |
2499 | } | |
ede4eed4 KR |
2500 | |
2501 | return true; | |
2502 | } | |
2503 | ||
2504 | /* Add an external symbol to the symbol table. This is called from | |
2505 | the hash table traversal routine. */ | |
2506 | ||
2507 | static boolean | |
2508 | elf_link_output_extsym (h, data) | |
2509 | struct elf_link_hash_entry *h; | |
2510 | PTR data; | |
2511 | { | |
2512 | struct elf_finfo_failed *eif = (struct elf_finfo_failed *) data; | |
2513 | struct elf_final_link_info *finfo = eif->finfo; | |
2514 | boolean strip; | |
2515 | Elf_Internal_Sym sym; | |
2516 | asection *input_sec; | |
2517 | ||
2518 | /* If we are not creating a shared library, and this symbol is | |
2519 | referenced by a shared library but is not defined anywhere, then | |
2520 | warn that it is undefined. If we do not do this, the runtime | |
2521 | linker will complain that the symbol is undefined when the | |
2522 | program is run. We don't have to worry about symbols that are | |
2523 | referenced by regular files, because we will already have issued | |
252239f8 | 2524 | warnings for them. */ |
ede4eed4 KR |
2525 | if (! finfo->info->relocateable |
2526 | && ! finfo->info->shared | |
2527 | && h->root.type == bfd_link_hash_undefined | |
2528 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0 | |
252239f8 | 2529 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) |
ede4eed4 KR |
2530 | { |
2531 | if (! ((*finfo->info->callbacks->undefined_symbol) | |
2532 | (finfo->info, h->root.root.string, h->root.u.undef.abfd, | |
2533 | (asection *) NULL, 0))) | |
2534 | { | |
2535 | eif->failed = true; | |
2536 | return false; | |
2537 | } | |
2538 | } | |
2539 | ||
2540 | /* We don't want to output symbols that have never been mentioned by | |
2541 | a regular file, or that we have been told to strip. However, if | |
2542 | h->indx is set to -2, the symbol is used by a reloc and we must | |
2543 | output it. */ | |
2544 | if (h->indx == -2) | |
2545 | strip = false; | |
2546 | else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
2547 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
2548 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
2549 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
2550 | strip = true; | |
2551 | else if (finfo->info->strip == strip_all | |
2552 | || (finfo->info->strip == strip_some | |
2553 | && bfd_hash_lookup (finfo->info->keep_hash, | |
2554 | h->root.root.string, | |
2555 | false, false) == NULL)) | |
2556 | strip = true; | |
2557 | else | |
2558 | strip = false; | |
2559 | ||
2560 | /* If we're stripping it, and it's not a dynamic symbol, there's | |
2561 | nothing else to do. */ | |
2562 | if (strip && h->dynindx == -1) | |
2563 | return true; | |
2564 | ||
2565 | sym.st_value = 0; | |
2566 | sym.st_size = h->size; | |
2567 | sym.st_other = 0; | |
2568 | if (h->root.type == bfd_link_hash_undefweak | |
2569 | || h->root.type == bfd_link_hash_defweak) | |
2570 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); | |
2571 | else | |
2572 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); | |
2573 | ||
2574 | switch (h->root.type) | |
2575 | { | |
2576 | default: | |
2577 | case bfd_link_hash_new: | |
2578 | abort (); | |
2579 | return false; | |
2580 | ||
2581 | case bfd_link_hash_undefined: | |
2582 | input_sec = bfd_und_section_ptr; | |
2583 | sym.st_shndx = SHN_UNDEF; | |
2584 | break; | |
2585 | ||
2586 | case bfd_link_hash_undefweak: | |
2587 | input_sec = bfd_und_section_ptr; | |
2588 | sym.st_shndx = SHN_UNDEF; | |
2589 | break; | |
2590 | ||
2591 | case bfd_link_hash_defined: | |
2592 | case bfd_link_hash_defweak: | |
2593 | { | |
2594 | input_sec = h->root.u.def.section; | |
2595 | if (input_sec->output_section != NULL) | |
2596 | { | |
2597 | sym.st_shndx = | |
2598 | _bfd_elf_section_from_bfd_section (finfo->output_bfd, | |
2599 | input_sec->output_section); | |
2600 | if (sym.st_shndx == (unsigned short) -1) | |
2601 | { | |
2602 | eif->failed = true; | |
2603 | return false; | |
2604 | } | |
2605 | ||
2606 | /* ELF symbols in relocateable files are section relative, | |
2607 | but in nonrelocateable files they are virtual | |
2608 | addresses. */ | |
2609 | sym.st_value = h->root.u.def.value + input_sec->output_offset; | |
2610 | if (! finfo->info->relocateable) | |
2611 | sym.st_value += input_sec->output_section->vma; | |
2612 | } | |
2613 | else | |
2614 | { | |
2615 | BFD_ASSERT ((bfd_get_flavour (input_sec->owner) | |
2616 | == bfd_target_elf_flavour) | |
2617 | && elf_elfheader (input_sec->owner)->e_type == ET_DYN); | |
2618 | sym.st_shndx = SHN_UNDEF; | |
2619 | input_sec = bfd_und_section_ptr; | |
2620 | } | |
2621 | } | |
2622 | break; | |
2623 | ||
2624 | case bfd_link_hash_common: | |
2625 | input_sec = bfd_com_section_ptr; | |
2626 | sym.st_shndx = SHN_COMMON; | |
2627 | sym.st_value = 1 << h->root.u.c.p->alignment_power; | |
2628 | break; | |
2629 | ||
2630 | case bfd_link_hash_indirect: | |
2631 | case bfd_link_hash_warning: | |
1f4ae0d6 ILT |
2632 | /* We can't represent these symbols in ELF. A warning symbol |
2633 | may have come from a .gnu.warning.SYMBOL section anyhow. We | |
2634 | just put the target symbol in the hash table. If the target | |
2635 | symbol does not really exist, don't do anything. */ | |
2636 | if (h->root.u.i.link->type == bfd_link_hash_new) | |
2637 | return true; | |
0cb70568 ILT |
2638 | return (elf_link_output_extsym |
2639 | ((struct elf_link_hash_entry *) h->root.u.i.link, data)); | |
ede4eed4 KR |
2640 | } |
2641 | ||
2642 | /* If this symbol should be put in the .dynsym section, then put it | |
2643 | there now. We have already know the symbol index. We also fill | |
2644 | in the entry in the .hash section. */ | |
2645 | if (h->dynindx != -1 | |
2646 | && elf_hash_table (finfo->info)->dynamic_sections_created) | |
2647 | { | |
2648 | struct elf_backend_data *bed; | |
2649 | size_t bucketcount; | |
2650 | size_t bucket; | |
2651 | bfd_byte *bucketpos; | |
2652 | bfd_vma chain; | |
2653 | ||
2654 | sym.st_name = h->dynstr_index; | |
2655 | ||
2656 | /* Give the processor backend a chance to tweak the symbol | |
2657 | value, and also to finish up anything that needs to be done | |
2658 | for this symbol. */ | |
2659 | bed = get_elf_backend_data (finfo->output_bfd); | |
2660 | if (! ((*bed->elf_backend_finish_dynamic_symbol) | |
2661 | (finfo->output_bfd, finfo->info, h, &sym))) | |
2662 | { | |
2663 | eif->failed = true; | |
2664 | return false; | |
2665 | } | |
2666 | ||
2667 | elf_swap_symbol_out (finfo->output_bfd, &sym, | |
cf9fb9f2 ILT |
2668 | (PTR) (((Elf_External_Sym *) |
2669 | finfo->dynsym_sec->contents) | |
2670 | + h->dynindx)); | |
ede4eed4 KR |
2671 | |
2672 | bucketcount = elf_hash_table (finfo->info)->bucketcount; | |
2673 | bucket = (bfd_elf_hash ((const unsigned char *) h->root.root.string) | |
2674 | % bucketcount); | |
2675 | bucketpos = ((bfd_byte *) finfo->hash_sec->contents | |
2676 | + (bucket + 2) * (ARCH_SIZE / 8)); | |
2677 | chain = get_word (finfo->output_bfd, bucketpos); | |
2678 | put_word (finfo->output_bfd, h->dynindx, bucketpos); | |
2679 | put_word (finfo->output_bfd, chain, | |
2680 | ((bfd_byte *) finfo->hash_sec->contents | |
2681 | + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8))); | |
2682 | } | |
2683 | ||
2684 | /* If we're stripping it, then it was just a dynamic symbol, and | |
2685 | there's nothing else to do. */ | |
2686 | if (strip) | |
2687 | return true; | |
2688 | ||
2689 | h->indx = finfo->output_bfd->symcount; | |
2690 | ||
2691 | if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec)) | |
2692 | { | |
2693 | eif->failed = true; | |
2694 | return false; | |
2695 | } | |
2696 | ||
2697 | return true; | |
2698 | } | |
2699 | ||
2700 | /* Link an input file into the linker output file. This function | |
2701 | handles all the sections and relocations of the input file at once. | |
2702 | This is so that we only have to read the local symbols once, and | |
2703 | don't have to keep them in memory. */ | |
2704 | ||
2705 | static boolean | |
2706 | elf_link_input_bfd (finfo, input_bfd) | |
2707 | struct elf_final_link_info *finfo; | |
2708 | bfd *input_bfd; | |
2709 | { | |
2710 | boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *, | |
2711 | bfd *, asection *, bfd_byte *, | |
2712 | Elf_Internal_Rela *, | |
2713 | Elf_Internal_Sym *, asection **)); | |
2714 | bfd *output_bfd; | |
2715 | Elf_Internal_Shdr *symtab_hdr; | |
2716 | size_t locsymcount; | |
2717 | size_t extsymoff; | |
2718 | Elf_External_Sym *esym; | |
2719 | Elf_External_Sym *esymend; | |
2720 | Elf_Internal_Sym *isym; | |
2721 | long *pindex; | |
2722 | asection **ppsection; | |
2723 | asection *o; | |
2724 | ||
2725 | output_bfd = finfo->output_bfd; | |
2726 | relocate_section = | |
2727 | get_elf_backend_data (output_bfd)->elf_backend_relocate_section; | |
2728 | ||
2729 | /* If this is a dynamic object, we don't want to do anything here: | |
2730 | we don't want the local symbols, and we don't want the section | |
2731 | contents. */ | |
2732 | if (elf_elfheader (input_bfd)->e_type == ET_DYN) | |
2733 | return true; | |
2734 | ||
2735 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
2736 | if (elf_bad_symtab (input_bfd)) | |
2737 | { | |
2738 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
2739 | extsymoff = 0; | |
2740 | } | |
2741 | else | |
2742 | { | |
2743 | locsymcount = symtab_hdr->sh_info; | |
2744 | extsymoff = symtab_hdr->sh_info; | |
2745 | } | |
2746 | ||
2747 | /* Read the local symbols. */ | |
2748 | if (locsymcount > 0 | |
2749 | && (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
2750 | || (bfd_read (finfo->external_syms, sizeof (Elf_External_Sym), | |
2751 | locsymcount, input_bfd) | |
2752 | != locsymcount * sizeof (Elf_External_Sym)))) | |
2753 | return false; | |
2754 | ||
2755 | /* Swap in the local symbols and write out the ones which we know | |
2756 | are going into the output file. */ | |
2757 | esym = finfo->external_syms; | |
2758 | esymend = esym + locsymcount; | |
2759 | isym = finfo->internal_syms; | |
2760 | pindex = finfo->indices; | |
2761 | ppsection = finfo->sections; | |
2762 | for (; esym < esymend; esym++, isym++, pindex++, ppsection++) | |
2763 | { | |
2764 | asection *isec; | |
2765 | const char *name; | |
2766 | Elf_Internal_Sym osym; | |
2767 | ||
2768 | elf_swap_symbol_in (input_bfd, esym, isym); | |
2769 | *pindex = -1; | |
2770 | ||
2771 | if (elf_bad_symtab (input_bfd)) | |
2772 | { | |
2773 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) | |
2774 | { | |
2775 | *ppsection = NULL; | |
2776 | continue; | |
2777 | } | |
2778 | } | |
2779 | ||
2780 | if (isym->st_shndx == SHN_UNDEF) | |
2781 | isec = bfd_und_section_ptr; | |
2782 | else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE) | |
2783 | isec = section_from_elf_index (input_bfd, isym->st_shndx); | |
2784 | else if (isym->st_shndx == SHN_ABS) | |
2785 | isec = bfd_abs_section_ptr; | |
2786 | else if (isym->st_shndx == SHN_COMMON) | |
2787 | isec = bfd_com_section_ptr; | |
2788 | else | |
2789 | { | |
2790 | /* Who knows? */ | |
2791 | isec = NULL; | |
2792 | } | |
2793 | ||
2794 | *ppsection = isec; | |
2795 | ||
2796 | /* Don't output the first, undefined, symbol. */ | |
2797 | if (esym == finfo->external_syms) | |
2798 | continue; | |
2799 | ||
2800 | /* If we are stripping all symbols, we don't want to output this | |
2801 | one. */ | |
2802 | if (finfo->info->strip == strip_all) | |
2803 | continue; | |
2804 | ||
2805 | /* We never output section symbols. Instead, we use the section | |
2806 | symbol of the corresponding section in the output file. */ | |
2807 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
2808 | continue; | |
2809 | ||
2810 | /* If we are discarding all local symbols, we don't want to | |
2811 | output this one. If we are generating a relocateable output | |
2812 | file, then some of the local symbols may be required by | |
2813 | relocs; we output them below as we discover that they are | |
2814 | needed. */ | |
2815 | if (finfo->info->discard == discard_all) | |
2816 | continue; | |
2817 | ||
2818 | /* Get the name of the symbol. */ | |
2819 | name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | |
2820 | isym->st_name); | |
2821 | if (name == NULL) | |
2822 | return false; | |
2823 | ||
2824 | /* See if we are discarding symbols with this name. */ | |
2825 | if ((finfo->info->strip == strip_some | |
2826 | && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false) | |
2827 | == NULL)) | |
2828 | || (finfo->info->discard == discard_l | |
2829 | && strncmp (name, finfo->info->lprefix, | |
2830 | finfo->info->lprefix_len) == 0)) | |
2831 | continue; | |
2832 | ||
2833 | /* If we get here, we are going to output this symbol. */ | |
2834 | ||
2835 | osym = *isym; | |
2836 | ||
2837 | /* Adjust the section index for the output file. */ | |
2838 | osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
2839 | isec->output_section); | |
2840 | if (osym.st_shndx == (unsigned short) -1) | |
2841 | return false; | |
2842 | ||
2843 | *pindex = output_bfd->symcount; | |
2844 | ||
2845 | /* ELF symbols in relocateable files are section relative, but | |
2846 | in executable files they are virtual addresses. Note that | |
2847 | this code assumes that all ELF sections have an associated | |
2848 | BFD section with a reasonable value for output_offset; below | |
2849 | we assume that they also have a reasonable value for | |
2850 | output_section. Any special sections must be set up to meet | |
2851 | these requirements. */ | |
2852 | osym.st_value += isec->output_offset; | |
2853 | if (! finfo->info->relocateable) | |
2854 | osym.st_value += isec->output_section->vma; | |
2855 | ||
2856 | if (! elf_link_output_sym (finfo, name, &osym, isec)) | |
2857 | return false; | |
2858 | } | |
2859 | ||
2860 | /* Relocate the contents of each section. */ | |
2861 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
2862 | { | |
ff0e4a93 | 2863 | if (! o->linker_mark) |
7ec49f91 ILT |
2864 | { |
2865 | /* This section was omitted from the link. */ | |
2866 | continue; | |
2867 | } | |
2868 | ||
1726b8f0 ILT |
2869 | if ((o->flags & SEC_HAS_CONTENTS) == 0 |
2870 | || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0)) | |
ede4eed4 KR |
2871 | continue; |
2872 | ||
2873 | if ((o->flags & SEC_IN_MEMORY) != 0 | |
2874 | && input_bfd == elf_hash_table (finfo->info)->dynobj) | |
2875 | { | |
2876 | /* Section was created by elf_link_create_dynamic_sections. | |
2877 | FIXME: This test is fragile. */ | |
2878 | continue; | |
2879 | } | |
2880 | ||
2881 | /* Read the contents of the section. */ | |
2882 | if (! bfd_get_section_contents (input_bfd, o, finfo->contents, | |
2883 | (file_ptr) 0, o->_raw_size)) | |
2884 | return false; | |
2885 | ||
2886 | if ((o->flags & SEC_RELOC) != 0) | |
2887 | { | |
2888 | Elf_Internal_Rela *internal_relocs; | |
2889 | ||
2890 | /* Get the swapped relocs. */ | |
2891 | internal_relocs = elf_link_read_relocs (input_bfd, o, | |
2892 | finfo->external_relocs, | |
2893 | finfo->internal_relocs, | |
2894 | false); | |
2895 | if (internal_relocs == NULL | |
2896 | && o->reloc_count > 0) | |
2897 | return false; | |
2898 | ||
2899 | /* Relocate the section by invoking a back end routine. | |
2900 | ||
2901 | The back end routine is responsible for adjusting the | |
2902 | section contents as necessary, and (if using Rela relocs | |
2903 | and generating a relocateable output file) adjusting the | |
2904 | reloc addend as necessary. | |
2905 | ||
2906 | The back end routine does not have to worry about setting | |
2907 | the reloc address or the reloc symbol index. | |
2908 | ||
2909 | The back end routine is given a pointer to the swapped in | |
2910 | internal symbols, and can access the hash table entries | |
2911 | for the external symbols via elf_sym_hashes (input_bfd). | |
2912 | ||
2913 | When generating relocateable output, the back end routine | |
2914 | must handle STB_LOCAL/STT_SECTION symbols specially. The | |
2915 | output symbol is going to be a section symbol | |
2916 | corresponding to the output section, which will require | |
2917 | the addend to be adjusted. */ | |
2918 | ||
2919 | if (! (*relocate_section) (output_bfd, finfo->info, | |
2920 | input_bfd, o, | |
2921 | finfo->contents, | |
2922 | internal_relocs, | |
2923 | finfo->internal_syms, | |
2924 | finfo->sections)) | |
2925 | return false; | |
2926 | ||
2927 | if (finfo->info->relocateable) | |
2928 | { | |
2929 | Elf_Internal_Rela *irela; | |
2930 | Elf_Internal_Rela *irelaend; | |
2931 | struct elf_link_hash_entry **rel_hash; | |
2932 | Elf_Internal_Shdr *input_rel_hdr; | |
2933 | Elf_Internal_Shdr *output_rel_hdr; | |
2934 | ||
2935 | /* Adjust the reloc addresses and symbol indices. */ | |
2936 | ||
2937 | irela = internal_relocs; | |
2938 | irelaend = irela + o->reloc_count; | |
2939 | rel_hash = (elf_section_data (o->output_section)->rel_hashes | |
2940 | + o->output_section->reloc_count); | |
2941 | for (; irela < irelaend; irela++, rel_hash++) | |
2942 | { | |
ae115e51 | 2943 | unsigned long r_symndx; |
ede4eed4 KR |
2944 | Elf_Internal_Sym *isym; |
2945 | asection *sec; | |
2946 | ||
2947 | irela->r_offset += o->output_offset; | |
2948 | ||
2949 | r_symndx = ELF_R_SYM (irela->r_info); | |
2950 | ||
2951 | if (r_symndx == 0) | |
2952 | continue; | |
2953 | ||
2954 | if (r_symndx >= locsymcount | |
2955 | || (elf_bad_symtab (input_bfd) | |
2956 | && finfo->sections[r_symndx] == NULL)) | |
2957 | { | |
2958 | long indx; | |
2959 | ||
2960 | /* This is a reloc against a global symbol. We | |
2961 | have not yet output all the local symbols, so | |
2962 | we do not know the symbol index of any global | |
2963 | symbol. We set the rel_hash entry for this | |
2964 | reloc to point to the global hash table entry | |
2965 | for this symbol. The symbol index is then | |
2966 | set at the end of elf_bfd_final_link. */ | |
2967 | indx = r_symndx - extsymoff; | |
2968 | *rel_hash = elf_sym_hashes (input_bfd)[indx]; | |
2969 | ||
2970 | /* Setting the index to -2 tells | |
2971 | elf_link_output_extsym that this symbol is | |
2972 | used by a reloc. */ | |
2973 | BFD_ASSERT ((*rel_hash)->indx < 0); | |
2974 | (*rel_hash)->indx = -2; | |
2975 | ||
2976 | continue; | |
2977 | } | |
2978 | ||
2979 | /* This is a reloc against a local symbol. */ | |
2980 | ||
2981 | *rel_hash = NULL; | |
2982 | isym = finfo->internal_syms + r_symndx; | |
2983 | sec = finfo->sections[r_symndx]; | |
2984 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
2985 | { | |
2986 | /* I suppose the backend ought to fill in the | |
2987 | section of any STT_SECTION symbol against a | |
2988 | processor specific section. */ | |
2989 | if (sec != NULL && bfd_is_abs_section (sec)) | |
2990 | r_symndx = 0; | |
2991 | else if (sec == NULL || sec->owner == NULL) | |
2992 | { | |
2993 | bfd_set_error (bfd_error_bad_value); | |
2994 | return false; | |
2995 | } | |
2996 | else | |
2997 | { | |
2998 | r_symndx = sec->output_section->target_index; | |
2999 | BFD_ASSERT (r_symndx != 0); | |
3000 | } | |
3001 | } | |
3002 | else | |
3003 | { | |
3004 | if (finfo->indices[r_symndx] == -1) | |
3005 | { | |
3006 | unsigned long link; | |
3007 | const char *name; | |
3008 | asection *osec; | |
3009 | ||
3010 | if (finfo->info->strip == strip_all) | |
3011 | { | |
3012 | /* You can't do ld -r -s. */ | |
3013 | bfd_set_error (bfd_error_invalid_operation); | |
3014 | return false; | |
3015 | } | |
3016 | ||
3017 | /* This symbol was skipped earlier, but | |
3018 | since it is needed by a reloc, we | |
3019 | must output it now. */ | |
3020 | link = symtab_hdr->sh_link; | |
3021 | name = bfd_elf_string_from_elf_section (input_bfd, | |
3022 | link, | |
3023 | isym->st_name); | |
3024 | if (name == NULL) | |
3025 | return false; | |
3026 | ||
3027 | osec = sec->output_section; | |
3028 | isym->st_shndx = | |
3029 | _bfd_elf_section_from_bfd_section (output_bfd, | |
3030 | osec); | |
3031 | if (isym->st_shndx == (unsigned short) -1) | |
3032 | return false; | |
3033 | ||
3034 | isym->st_value += sec->output_offset; | |
3035 | if (! finfo->info->relocateable) | |
3036 | isym->st_value += osec->vma; | |
3037 | ||
3038 | finfo->indices[r_symndx] = output_bfd->symcount; | |
3039 | ||
3040 | if (! elf_link_output_sym (finfo, name, isym, sec)) | |
3041 | return false; | |
3042 | } | |
3043 | ||
3044 | r_symndx = finfo->indices[r_symndx]; | |
3045 | } | |
3046 | ||
3047 | irela->r_info = ELF_R_INFO (r_symndx, | |
3048 | ELF_R_TYPE (irela->r_info)); | |
3049 | } | |
3050 | ||
3051 | /* Swap out the relocs. */ | |
3052 | input_rel_hdr = &elf_section_data (o)->rel_hdr; | |
3053 | output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr; | |
3054 | BFD_ASSERT (output_rel_hdr->sh_entsize | |
3055 | == input_rel_hdr->sh_entsize); | |
3056 | irela = internal_relocs; | |
3057 | irelaend = irela + o->reloc_count; | |
3058 | if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
3059 | { | |
3060 | Elf_External_Rel *erel; | |
3061 | ||
3062 | erel = ((Elf_External_Rel *) output_rel_hdr->contents | |
3063 | + o->output_section->reloc_count); | |
3064 | for (; irela < irelaend; irela++, erel++) | |
3065 | { | |
3066 | Elf_Internal_Rel irel; | |
3067 | ||
3068 | irel.r_offset = irela->r_offset; | |
3069 | irel.r_info = irela->r_info; | |
3070 | BFD_ASSERT (irela->r_addend == 0); | |
3071 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
3072 | } | |
3073 | } | |
3074 | else | |
3075 | { | |
3076 | Elf_External_Rela *erela; | |
3077 | ||
3078 | BFD_ASSERT (input_rel_hdr->sh_entsize | |
3079 | == sizeof (Elf_External_Rela)); | |
3080 | erela = ((Elf_External_Rela *) output_rel_hdr->contents | |
3081 | + o->output_section->reloc_count); | |
3082 | for (; irela < irelaend; irela++, erela++) | |
3083 | elf_swap_reloca_out (output_bfd, irela, erela); | |
3084 | } | |
3085 | ||
3086 | o->output_section->reloc_count += o->reloc_count; | |
3087 | } | |
3088 | } | |
3089 | ||
3090 | /* Write out the modified section contents. */ | |
1726b8f0 ILT |
3091 | if (elf_section_data (o)->stab_info == NULL) |
3092 | { | |
3093 | if (! bfd_set_section_contents (output_bfd, o->output_section, | |
3094 | finfo->contents, o->output_offset, | |
3095 | (o->_cooked_size != 0 | |
3096 | ? o->_cooked_size | |
3097 | : o->_raw_size))) | |
3098 | return false; | |
3099 | } | |
3100 | else | |
3101 | { | |
3102 | if (! _bfd_write_section_stabs (output_bfd, o, | |
3103 | &elf_section_data (o)->stab_info, | |
3104 | finfo->contents)) | |
3105 | return false; | |
3106 | } | |
ede4eed4 KR |
3107 | } |
3108 | ||
3109 | return true; | |
3110 | } | |
3111 | ||
3112 | /* Generate a reloc when linking an ELF file. This is a reloc | |
3113 | requested by the linker, and does come from any input file. This | |
3114 | is used to build constructor and destructor tables when linking | |
3115 | with -Ur. */ | |
3116 | ||
3117 | static boolean | |
3118 | elf_reloc_link_order (output_bfd, info, output_section, link_order) | |
3119 | bfd *output_bfd; | |
3120 | struct bfd_link_info *info; | |
3121 | asection *output_section; | |
3122 | struct bfd_link_order *link_order; | |
3123 | { | |
3124 | reloc_howto_type *howto; | |
3125 | long indx; | |
3126 | bfd_vma offset; | |
5b3b9ff6 | 3127 | bfd_vma addend; |
ede4eed4 KR |
3128 | struct elf_link_hash_entry **rel_hash_ptr; |
3129 | Elf_Internal_Shdr *rel_hdr; | |
3130 | ||
3131 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | |
3132 | if (howto == NULL) | |
3133 | { | |
3134 | bfd_set_error (bfd_error_bad_value); | |
3135 | return false; | |
3136 | } | |
3137 | ||
5b3b9ff6 ILT |
3138 | addend = link_order->u.reloc.p->addend; |
3139 | ||
3140 | /* Figure out the symbol index. */ | |
3141 | rel_hash_ptr = (elf_section_data (output_section)->rel_hashes | |
3142 | + output_section->reloc_count); | |
3143 | if (link_order->type == bfd_section_reloc_link_order) | |
3144 | { | |
3145 | indx = link_order->u.reloc.p->u.section->target_index; | |
3146 | BFD_ASSERT (indx != 0); | |
3147 | *rel_hash_ptr = NULL; | |
3148 | } | |
3149 | else | |
3150 | { | |
3151 | struct elf_link_hash_entry *h; | |
3152 | ||
3153 | /* Treat a reloc against a defined symbol as though it were | |
3154 | actually against the section. */ | |
8881b321 ILT |
3155 | h = ((struct elf_link_hash_entry *) |
3156 | bfd_wrapped_link_hash_lookup (output_bfd, info, | |
3157 | link_order->u.reloc.p->u.name, | |
3158 | false, false, true)); | |
5b3b9ff6 ILT |
3159 | if (h != NULL |
3160 | && (h->root.type == bfd_link_hash_defined | |
3161 | || h->root.type == bfd_link_hash_defweak)) | |
3162 | { | |
3163 | asection *section; | |
3164 | ||
3165 | section = h->root.u.def.section; | |
3166 | indx = section->output_section->target_index; | |
3167 | *rel_hash_ptr = NULL; | |
3168 | /* It seems that we ought to add the symbol value to the | |
3169 | addend here, but in practice it has already been added | |
3170 | because it was passed to constructor_callback. */ | |
3171 | addend += section->output_section->vma + section->output_offset; | |
3172 | } | |
3173 | else if (h != NULL) | |
3174 | { | |
3175 | /* Setting the index to -2 tells elf_link_output_extsym that | |
3176 | this symbol is used by a reloc. */ | |
3177 | h->indx = -2; | |
3178 | *rel_hash_ptr = h; | |
3179 | indx = 0; | |
3180 | } | |
3181 | else | |
3182 | { | |
3183 | if (! ((*info->callbacks->unattached_reloc) | |
3184 | (info, link_order->u.reloc.p->u.name, (bfd *) NULL, | |
3185 | (asection *) NULL, (bfd_vma) 0))) | |
3186 | return false; | |
3187 | indx = 0; | |
3188 | } | |
3189 | } | |
3190 | ||
ede4eed4 KR |
3191 | /* If this is an inplace reloc, we must write the addend into the |
3192 | object file. */ | |
5b3b9ff6 | 3193 | if (howto->partial_inplace && addend != 0) |
ede4eed4 KR |
3194 | { |
3195 | bfd_size_type size; | |
3196 | bfd_reloc_status_type rstat; | |
3197 | bfd_byte *buf; | |
3198 | boolean ok; | |
3199 | ||
3200 | size = bfd_get_reloc_size (howto); | |
3201 | buf = (bfd_byte *) bfd_zmalloc (size); | |
3202 | if (buf == (bfd_byte *) NULL) | |
a9713b91 | 3203 | return false; |
5b3b9ff6 | 3204 | rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); |
ede4eed4 KR |
3205 | switch (rstat) |
3206 | { | |
3207 | case bfd_reloc_ok: | |
3208 | break; | |
3209 | default: | |
3210 | case bfd_reloc_outofrange: | |
3211 | abort (); | |
3212 | case bfd_reloc_overflow: | |
3213 | if (! ((*info->callbacks->reloc_overflow) | |
3214 | (info, | |
3215 | (link_order->type == bfd_section_reloc_link_order | |
3216 | ? bfd_section_name (output_bfd, | |
3217 | link_order->u.reloc.p->u.section) | |
3218 | : link_order->u.reloc.p->u.name), | |
5b3b9ff6 ILT |
3219 | howto->name, addend, (bfd *) NULL, (asection *) NULL, |
3220 | (bfd_vma) 0))) | |
ede4eed4 KR |
3221 | { |
3222 | free (buf); | |
3223 | return false; | |
3224 | } | |
3225 | break; | |
3226 | } | |
3227 | ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf, | |
3228 | (file_ptr) link_order->offset, size); | |
3229 | free (buf); | |
3230 | if (! ok) | |
3231 | return false; | |
3232 | } | |
3233 | ||
ede4eed4 KR |
3234 | /* The address of a reloc is relative to the section in a |
3235 | relocateable file, and is a virtual address in an executable | |
3236 | file. */ | |
3237 | offset = link_order->offset; | |
3238 | if (! info->relocateable) | |
3239 | offset += output_section->vma; | |
3240 | ||
3241 | rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
3242 | ||
3243 | if (rel_hdr->sh_type == SHT_REL) | |
3244 | { | |
3245 | Elf_Internal_Rel irel; | |
3246 | Elf_External_Rel *erel; | |
3247 | ||
3248 | irel.r_offset = offset; | |
3249 | irel.r_info = ELF_R_INFO (indx, howto->type); | |
3250 | erel = ((Elf_External_Rel *) rel_hdr->contents | |
3251 | + output_section->reloc_count); | |
3252 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
3253 | } | |
3254 | else | |
3255 | { | |
3256 | Elf_Internal_Rela irela; | |
3257 | Elf_External_Rela *erela; | |
3258 | ||
3259 | irela.r_offset = offset; | |
3260 | irela.r_info = ELF_R_INFO (indx, howto->type); | |
5b3b9ff6 | 3261 | irela.r_addend = addend; |
ede4eed4 KR |
3262 | erela = ((Elf_External_Rela *) rel_hdr->contents |
3263 | + output_section->reloc_count); | |
3264 | elf_swap_reloca_out (output_bfd, &irela, erela); | |
3265 | } | |
3266 | ||
3267 | ++output_section->reloc_count; | |
3268 | ||
3269 | return true; | |
3270 | } | |
3271 | ||
3b3753b8 MM |
3272 | \f |
3273 | /* Allocate a pointer to live in a linker created section. */ | |
3274 | ||
3275 | boolean | |
3276 | elf_create_pointer_linker_section (abfd, info, lsect, h, rel) | |
3277 | bfd *abfd; | |
3278 | struct bfd_link_info *info; | |
3279 | elf_linker_section_t *lsect; | |
3280 | struct elf_link_hash_entry *h; | |
3281 | const Elf_Internal_Rela *rel; | |
3282 | { | |
3283 | elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL; | |
3284 | elf_linker_section_pointers_t *linker_section_ptr; | |
3285 | unsigned long r_symndx = ELF_R_SYM (rel->r_info);; | |
3286 | ||
3287 | BFD_ASSERT (lsect != NULL); | |
3288 | ||
3289 | /* Is this a global symbol? */ | |
3290 | if (h != NULL) | |
3291 | { | |
3292 | /* Has this symbol already been allocated, if so, our work is done */ | |
3293 | if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer, | |
3294 | rel->r_addend, | |
3295 | lsect->which)) | |
3296 | return true; | |
3297 | ||
3298 | ptr_linker_section_ptr = &h->linker_section_pointer; | |
3299 | /* Make sure this symbol is output as a dynamic symbol. */ | |
3300 | if (h->dynindx == -1) | |
3301 | { | |
3302 | if (! elf_link_record_dynamic_symbol (info, h)) | |
3303 | return false; | |
3304 | } | |
3305 | ||
eb82bc60 MM |
3306 | if (lsect->rel_section) |
3307 | lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); | |
3b3753b8 MM |
3308 | } |
3309 | ||
3310 | else /* Allocation of a pointer to a local symbol */ | |
3311 | { | |
3312 | elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd); | |
3313 | ||
3314 | /* Allocate a table to hold the local symbols if first time */ | |
3315 | if (!ptr) | |
3316 | { | |
3317 | int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info; | |
3318 | register unsigned int i; | |
3319 | ||
3320 | ptr = (elf_linker_section_pointers_t **) | |
3321 | bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *)); | |
3322 | ||
3323 | if (!ptr) | |
3324 | return false; | |
3325 | ||
3326 | elf_local_ptr_offsets (abfd) = ptr; | |
3327 | for (i = 0; i < num_symbols; i++) | |
3328 | ptr[i] = (elf_linker_section_pointers_t *)0; | |
3329 | } | |
3330 | ||
3331 | /* Has this symbol already been allocated, if so, our work is done */ | |
3332 | if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx], | |
3333 | rel->r_addend, | |
3334 | lsect->which)) | |
3335 | return true; | |
3336 | ||
3337 | ptr_linker_section_ptr = &ptr[r_symndx]; | |
3338 | ||
3339 | if (info->shared) | |
3340 | { | |
3341 | /* If we are generating a shared object, we need to | |
05f927dd | 3342 | output a R_<xxx>_RELATIVE reloc so that the |
3b3753b8 MM |
3343 | dynamic linker can adjust this GOT entry. */ |
3344 | BFD_ASSERT (lsect->rel_section != NULL); | |
3345 | lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); | |
3346 | } | |
3347 | } | |
3348 | ||
3349 | /* Allocate space for a pointer in the linker section, and allocate a new pointer record | |
3350 | from internal memory. */ | |
3351 | BFD_ASSERT (ptr_linker_section_ptr != NULL); | |
3352 | linker_section_ptr = (elf_linker_section_pointers_t *) | |
3353 | bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t)); | |
3354 | ||
3355 | if (!linker_section_ptr) | |
3356 | return false; | |
3357 | ||
3358 | linker_section_ptr->next = *ptr_linker_section_ptr; | |
3359 | linker_section_ptr->addend = rel->r_addend; | |
3360 | linker_section_ptr->which = lsect->which; | |
3361 | linker_section_ptr->written_address_p = false; | |
3362 | *ptr_linker_section_ptr = linker_section_ptr; | |
3363 | ||
cb73f5d7 | 3364 | #if 0 |
3b3753b8 MM |
3365 | if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset) |
3366 | { | |
cb73f5d7 | 3367 | linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8); |
3b3753b8 MM |
3368 | lsect->hole_offset += ARCH_SIZE / 8; |
3369 | lsect->sym_offset += ARCH_SIZE / 8; | |
3370 | if (lsect->sym_hash) /* Bump up symbol value if needed */ | |
4a4953f5 MM |
3371 | { |
3372 | lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8; | |
3373 | #ifdef DEBUG | |
3374 | fprintf (stderr, "Bump up %s by %ld, current value = %ld\n", | |
3375 | lsect->sym_hash->root.root.string, | |
3376 | (long)ARCH_SIZE / 8, | |
3377 | (long)lsect->sym_hash->root.u.def.value); | |
3378 | #endif | |
3379 | } | |
3b3753b8 MM |
3380 | } |
3381 | else | |
cb73f5d7 | 3382 | #endif |
3b3753b8 MM |
3383 | linker_section_ptr->offset = lsect->section->_raw_size; |
3384 | ||
3385 | lsect->section->_raw_size += ARCH_SIZE / 8; | |
3386 | ||
3387 | #ifdef DEBUG | |
3388 | fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n", | |
3389 | lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size); | |
3390 | #endif | |
3391 | ||
3392 | return true; | |
3393 | } | |
3394 | ||
3395 | \f | |
3396 | #if ARCH_SIZE==64 | |
3397 | #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR) | |
3398 | #endif | |
3399 | #if ARCH_SIZE==32 | |
3400 | #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR) | |
3401 | #endif | |
3402 | ||
3403 | /* Fill in the address for a pointer generated in alinker section. */ | |
3404 | ||
3405 | bfd_vma | |
3406 | elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc) | |
3407 | bfd *output_bfd; | |
3408 | bfd *input_bfd; | |
3409 | struct bfd_link_info *info; | |
3410 | elf_linker_section_t *lsect; | |
3411 | struct elf_link_hash_entry *h; | |
3412 | bfd_vma relocation; | |
3413 | const Elf_Internal_Rela *rel; | |
3414 | int relative_reloc; | |
3415 | { | |
3416 | elf_linker_section_pointers_t *linker_section_ptr; | |
3417 | ||
3418 | BFD_ASSERT (lsect != NULL); | |
3419 | ||
3b3753b8 MM |
3420 | if (h != NULL) /* global symbol */ |
3421 | { | |
3422 | linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer, | |
3423 | rel->r_addend, | |
3424 | lsect->which); | |
3425 | ||
3426 | BFD_ASSERT (linker_section_ptr != NULL); | |
3427 | ||
3428 | if (! elf_hash_table (info)->dynamic_sections_created | |
3429 | || (info->shared | |
3430 | && info->symbolic | |
3431 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) | |
3432 | { | |
3433 | /* This is actually a static link, or it is a | |
3434 | -Bsymbolic link and the symbol is defined | |
3435 | locally. We must initialize this entry in the | |
3436 | global section. | |
3437 | ||
3438 | When doing a dynamic link, we create a .rela.<xxx> | |
3439 | relocation entry to initialize the value. This | |
3440 | is done in the finish_dynamic_symbol routine. */ | |
3441 | if (!linker_section_ptr->written_address_p) | |
3442 | { | |
3443 | linker_section_ptr->written_address_p = true; | |
3444 | bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend, | |
3445 | lsect->section->contents + linker_section_ptr->offset); | |
3446 | } | |
3447 | } | |
3448 | } | |
3449 | else /* local symbol */ | |
3450 | { | |
3451 | unsigned long r_symndx = ELF_R_SYM (rel->r_info); | |
3452 | BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL); | |
3453 | BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL); | |
3454 | linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx], | |
3455 | rel->r_addend, | |
3456 | lsect->which); | |
3457 | ||
3458 | BFD_ASSERT (linker_section_ptr != NULL); | |
3459 | ||
3460 | /* Write out pointer if it hasn't been rewritten out before */ | |
3461 | if (!linker_section_ptr->written_address_p) | |
3462 | { | |
3463 | linker_section_ptr->written_address_p = true; | |
3464 | bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend, | |
3465 | lsect->section->contents + linker_section_ptr->offset); | |
3466 | ||
3467 | if (info->shared) | |
3468 | { | |
3469 | asection *srel = lsect->rel_section; | |
3470 | Elf_Internal_Rela outrel; | |
3471 | ||
3472 | /* We need to generate a relative reloc for the dynamic linker. */ | |
3473 | if (!srel) | |
3474 | lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj, | |
3475 | lsect->rel_name); | |
3476 | ||
3477 | BFD_ASSERT (srel != NULL); | |
3478 | ||
3479 | outrel.r_offset = (lsect->section->output_section->vma | |
3480 | + lsect->section->output_offset | |
3481 | + linker_section_ptr->offset); | |
3482 | outrel.r_info = ELF_R_INFO (0, relative_reloc); | |
3483 | outrel.r_addend = 0; | |
3484 | elf_swap_reloca_out (output_bfd, &outrel, | |
5a5bac64 | 3485 | (((Elf_External_Rela *) |
3b3753b8 MM |
3486 | lsect->section->contents) |
3487 | + lsect->section->reloc_count)); | |
3488 | ++lsect->section->reloc_count; | |
3489 | } | |
3490 | } | |
3491 | } | |
3492 | ||
3493 | relocation = (lsect->section->output_offset | |
3494 | + linker_section_ptr->offset | |
3495 | - lsect->hole_offset | |
3496 | - lsect->sym_offset); | |
3497 | ||
3498 | #ifdef DEBUG | |
3499 | fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n", | |
3500 | lsect->name, (long)relocation, (long)relocation); | |
3501 | #endif | |
3502 | ||
3503 | /* Subtract out the addend, because it will get added back in by the normal | |
3504 | processing. */ | |
3505 | return relocation - linker_section_ptr->addend; | |
3506 | } |