]>
Commit | Line | Data |
---|---|---|
e0001a05 | 1 | /* tc-xtensa.c -- Assemble Xtensa instructions. |
fb227da0 | 2 | Copyright 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. |
e0001a05 NC |
3 | |
4 | This file is part of GAS, the GNU Assembler. | |
5 | ||
6 | GAS is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
ec2655a6 | 8 | the Free Software Foundation; either version 3, or (at your option) |
e0001a05 NC |
9 | any later version. |
10 | ||
11 | GAS is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GAS; see the file COPYING. If not, write to | |
4b4da160 NC |
18 | the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, |
19 | MA 02110-1301, USA. */ | |
e0001a05 | 20 | |
43cd72b9 | 21 | #include <limits.h> |
e0001a05 NC |
22 | #include "as.h" |
23 | #include "sb.h" | |
24 | #include "safe-ctype.h" | |
25 | #include "tc-xtensa.h" | |
e0001a05 NC |
26 | #include "subsegs.h" |
27 | #include "xtensa-relax.h" | |
cda2eb9e | 28 | #include "dwarf2dbg.h" |
b224e962 | 29 | #include "xtensa-istack.h" |
e0001a05 NC |
30 | #include "struc-symbol.h" |
31 | #include "xtensa-config.h" | |
32 | ||
2caa7ca0 BW |
33 | /* Provide default values for new configuration settings. */ |
34 | #ifndef XSHAL_ABI | |
35 | #define XSHAL_ABI 0 | |
36 | #endif | |
37 | ||
e0001a05 NC |
38 | #ifndef uint32 |
39 | #define uint32 unsigned int | |
40 | #endif | |
41 | #ifndef int32 | |
42 | #define int32 signed int | |
43 | #endif | |
44 | ||
45 | /* Notes: | |
46 | ||
e0001a05 NC |
47 | Naming conventions (used somewhat inconsistently): |
48 | The xtensa_ functions are exported | |
49 | The xg_ functions are internal | |
50 | ||
51 | We also have a couple of different extensibility mechanisms. | |
52 | 1) The idiom replacement: | |
53 | This is used when a line is first parsed to | |
54 | replace an instruction pattern with another instruction | |
55 | It is currently limited to replacements of instructions | |
56 | with constant operands. | |
57 | 2) The xtensa-relax.c mechanism that has stronger instruction | |
58 | replacement patterns. When an instruction's immediate field | |
59 | does not fit the next instruction sequence is attempted. | |
60 | In addition, "narrow" opcodes are supported this way. */ | |
61 | ||
62 | ||
63 | /* Define characters with special meanings to GAS. */ | |
64 | const char comment_chars[] = "#"; | |
65 | const char line_comment_chars[] = "#"; | |
66 | const char line_separator_chars[] = ";"; | |
67 | const char EXP_CHARS[] = "eE"; | |
68 | const char FLT_CHARS[] = "rRsSfFdDxXpP"; | |
69 | ||
70 | ||
43cd72b9 BW |
71 | /* Flags to indicate whether the hardware supports the density and |
72 | absolute literals options. */ | |
e0001a05 | 73 | |
e0001a05 | 74 | bfd_boolean density_supported = XCHAL_HAVE_DENSITY; |
43cd72b9 BW |
75 | bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS; |
76 | ||
77 | /* Maximum width we would pad an unreachable frag to get alignment. */ | |
78 | #define UNREACHABLE_MAX_WIDTH 8 | |
e0001a05 | 79 | |
43cd72b9 BW |
80 | static vliw_insn cur_vinsn; |
81 | ||
d77b99c9 | 82 | unsigned xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH; |
43cd72b9 BW |
83 | |
84 | static enum debug_info_type xt_saved_debug_type = DEBUG_NONE; | |
85 | ||
86 | /* Some functions are only valid in the front end. This variable | |
c138bc38 | 87 | allows us to assert that we haven't crossed over into the |
43cd72b9 BW |
88 | back end. */ |
89 | static bfd_boolean past_xtensa_end = FALSE; | |
e0001a05 NC |
90 | |
91 | /* Flags for properties of the last instruction in a segment. */ | |
92 | #define FLAG_IS_A0_WRITER 0x1 | |
93 | #define FLAG_IS_BAD_LOOPEND 0x2 | |
94 | ||
95 | ||
96 | /* We define a special segment names ".literal" to place literals | |
97 | into. The .fini and .init sections are special because they | |
98 | contain code that is moved together by the linker. We give them | |
99 | their own special .fini.literal and .init.literal sections. */ | |
100 | ||
101 | #define LITERAL_SECTION_NAME xtensa_section_rename (".literal") | |
43cd72b9 | 102 | #define LIT4_SECTION_NAME xtensa_section_rename (".lit4") |
e0001a05 | 103 | #define INIT_SECTION_NAME xtensa_section_rename (".init") |
74869ac7 | 104 | #define FINI_SECTION_NAME xtensa_section_rename (".fini") |
e0001a05 NC |
105 | |
106 | ||
43cd72b9 | 107 | /* This type is used for the directive_stack to keep track of the |
74869ac7 BW |
108 | state of the literal collection pools. If lit_prefix is set, it is |
109 | used to determine the literal section names; otherwise, the literal | |
110 | sections are determined based on the current text section. The | |
111 | lit_seg and lit4_seg fields cache these literal sections, with the | |
112 | current_text_seg field used a tag to indicate whether the cached | |
113 | values are valid. */ | |
e0001a05 NC |
114 | |
115 | typedef struct lit_state_struct | |
116 | { | |
74869ac7 BW |
117 | char *lit_prefix; |
118 | segT current_text_seg; | |
e0001a05 | 119 | segT lit_seg; |
43cd72b9 | 120 | segT lit4_seg; |
e0001a05 NC |
121 | } lit_state; |
122 | ||
123 | static lit_state default_lit_sections; | |
124 | ||
125 | ||
74869ac7 BW |
126 | /* We keep a list of literal segments. The seg_list type is the node |
127 | for this list. The literal_head pointer is the head of the list, | |
128 | with the literal_head_h dummy node at the start. */ | |
e0001a05 NC |
129 | |
130 | typedef struct seg_list_struct | |
131 | { | |
132 | struct seg_list_struct *next; | |
133 | segT seg; | |
134 | } seg_list; | |
135 | ||
136 | static seg_list literal_head_h; | |
137 | static seg_list *literal_head = &literal_head_h; | |
e0001a05 NC |
138 | |
139 | ||
82e7541d BW |
140 | /* Lists of symbols. We keep a list of symbols that label the current |
141 | instruction, so that we can adjust the symbols when inserting alignment | |
142 | for various instructions. We also keep a list of all the symbols on | |
143 | literals, so that we can fix up those symbols when the literals are | |
144 | later moved into the text sections. */ | |
145 | ||
146 | typedef struct sym_list_struct | |
147 | { | |
148 | struct sym_list_struct *next; | |
149 | symbolS *sym; | |
150 | } sym_list; | |
151 | ||
152 | static sym_list *insn_labels = NULL; | |
153 | static sym_list *free_insn_labels = NULL; | |
154 | static sym_list *saved_insn_labels = NULL; | |
155 | ||
156 | static sym_list *literal_syms; | |
157 | ||
158 | ||
43cd72b9 BW |
159 | /* Flags to determine whether to prefer const16 or l32r |
160 | if both options are available. */ | |
161 | int prefer_const16 = 0; | |
162 | int prefer_l32r = 0; | |
163 | ||
e0001a05 NC |
164 | /* Global flag to indicate when we are emitting literals. */ |
165 | int generating_literals = 0; | |
166 | ||
43cd72b9 BW |
167 | /* The following PROPERTY table definitions are copied from |
168 | <elf/xtensa.h> and must be kept in sync with the code there. */ | |
169 | ||
170 | /* Flags in the property tables to specify whether blocks of memory | |
171 | are literals, instructions, data, or unreachable. For | |
172 | instructions, blocks that begin loop targets and branch targets are | |
173 | designated. Blocks that do not allow density, instruction | |
174 | reordering or transformation are also specified. Finally, for | |
175 | branch targets, branch target alignment priority is included. | |
176 | Alignment of the next block is specified in the current block | |
177 | and the size of the current block does not include any fill required | |
178 | to align to the next block. */ | |
179 | ||
180 | #define XTENSA_PROP_LITERAL 0x00000001 | |
181 | #define XTENSA_PROP_INSN 0x00000002 | |
182 | #define XTENSA_PROP_DATA 0x00000004 | |
183 | #define XTENSA_PROP_UNREACHABLE 0x00000008 | |
184 | /* Instruction only properties at beginning of code. */ | |
185 | #define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010 | |
186 | #define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020 | |
187 | /* Instruction only properties about code. */ | |
188 | #define XTENSA_PROP_INSN_NO_DENSITY 0x00000040 | |
189 | #define XTENSA_PROP_INSN_NO_REORDER 0x00000080 | |
99ded152 BW |
190 | /* Historically, NO_TRANSFORM was a property of instructions, |
191 | but it should apply to literals under certain circumstances. */ | |
192 | #define XTENSA_PROP_NO_TRANSFORM 0x00000100 | |
43cd72b9 BW |
193 | |
194 | /* Branch target alignment information. This transmits information | |
195 | to the linker optimization about the priority of aligning a | |
196 | particular block for branch target alignment: None, low priority, | |
197 | high priority, or required. These only need to be checked in | |
198 | instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET. | |
199 | Common usage is | |
200 | ||
201 | switch (GET_XTENSA_PROP_BT_ALIGN (flags)) | |
202 | case XTENSA_PROP_BT_ALIGN_NONE: | |
203 | case XTENSA_PROP_BT_ALIGN_LOW: | |
204 | case XTENSA_PROP_BT_ALIGN_HIGH: | |
205 | case XTENSA_PROP_BT_ALIGN_REQUIRE: | |
206 | */ | |
207 | #define XTENSA_PROP_BT_ALIGN_MASK 0x00000600 | |
208 | ||
209 | /* No branch target alignment. */ | |
210 | #define XTENSA_PROP_BT_ALIGN_NONE 0x0 | |
211 | /* Low priority branch target alignment. */ | |
212 | #define XTENSA_PROP_BT_ALIGN_LOW 0x1 | |
213 | /* High priority branch target alignment. */ | |
214 | #define XTENSA_PROP_BT_ALIGN_HIGH 0x2 | |
215 | /* Required branch target alignment. */ | |
216 | #define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3 | |
217 | ||
218 | #define GET_XTENSA_PROP_BT_ALIGN(flag) \ | |
219 | (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9) | |
220 | #define SET_XTENSA_PROP_BT_ALIGN(flag, align) \ | |
221 | (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \ | |
222 | (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK)) | |
223 | ||
224 | ||
225 | /* Alignment is specified in the block BEFORE the one that needs | |
226 | alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to | |
227 | get the required alignment specified as a power of 2. Use | |
228 | SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required | |
229 | alignment. Be careful of side effects since the SET will evaluate | |
230 | flags twice. Also, note that the SIZE of a block in the property | |
231 | table does not include the alignment size, so the alignment fill | |
232 | must be calculated to determine if two blocks are contiguous. | |
233 | TEXT_ALIGN is not currently implemented but is a placeholder for a | |
234 | possible future implementation. */ | |
235 | ||
236 | #define XTENSA_PROP_ALIGN 0x00000800 | |
237 | ||
238 | #define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000 | |
239 | ||
240 | #define GET_XTENSA_PROP_ALIGNMENT(flag) \ | |
241 | (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12) | |
242 | #define SET_XTENSA_PROP_ALIGNMENT(flag, align) \ | |
243 | (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \ | |
244 | (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK)) | |
245 | ||
246 | #define XTENSA_PROP_INSN_ABSLIT 0x00020000 | |
247 | ||
248 | ||
249 | /* Structure for saving instruction and alignment per-fragment data | |
250 | that will be written to the object file. This structure is | |
251 | equivalent to the actual data that will be written out to the file | |
252 | but is easier to use. We provide a conversion to file flags | |
253 | in frag_flags_to_number. */ | |
254 | ||
255 | typedef struct frag_flags_struct frag_flags; | |
256 | ||
257 | struct frag_flags_struct | |
258 | { | |
259 | /* is_literal should only be used after xtensa_move_literals. | |
260 | If you need to check if you are generating a literal fragment, | |
261 | then use the generating_literals global. */ | |
262 | ||
263 | unsigned is_literal : 1; | |
264 | unsigned is_insn : 1; | |
265 | unsigned is_data : 1; | |
266 | unsigned is_unreachable : 1; | |
267 | ||
99ded152 BW |
268 | /* is_specific_opcode implies no_transform. */ |
269 | unsigned is_no_transform : 1; | |
270 | ||
43cd72b9 BW |
271 | struct |
272 | { | |
273 | unsigned is_loop_target : 1; | |
274 | unsigned is_branch_target : 1; /* Branch targets have a priority. */ | |
275 | unsigned bt_align_priority : 2; | |
276 | ||
277 | unsigned is_no_density : 1; | |
278 | /* no_longcalls flag does not need to be placed in the object file. */ | |
43cd72b9 BW |
279 | |
280 | unsigned is_no_reorder : 1; | |
281 | ||
282 | /* Uses absolute literal addressing for l32r. */ | |
283 | unsigned is_abslit : 1; | |
284 | } insn; | |
285 | unsigned is_align : 1; | |
286 | unsigned alignment : 5; | |
287 | }; | |
288 | ||
289 | ||
290 | /* Structure for saving information about a block of property data | |
291 | for frags that have the same flags. */ | |
292 | struct xtensa_block_info_struct | |
293 | { | |
294 | segT sec; | |
295 | bfd_vma offset; | |
296 | size_t size; | |
297 | frag_flags flags; | |
298 | struct xtensa_block_info_struct *next; | |
299 | }; | |
300 | ||
e0001a05 NC |
301 | |
302 | /* Structure for saving the current state before emitting literals. */ | |
303 | typedef struct emit_state_struct | |
304 | { | |
305 | const char *name; | |
306 | segT now_seg; | |
307 | subsegT now_subseg; | |
308 | int generating_literals; | |
309 | } emit_state; | |
310 | ||
311 | ||
43cd72b9 BW |
312 | /* Opcode placement information */ |
313 | ||
314 | typedef unsigned long long bitfield; | |
315 | #define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit))) | |
316 | #define set_bit(bit, bf) ((bf) |= (0x01ll << (bit))) | |
317 | #define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit))) | |
318 | ||
319 | #define MAX_FORMATS 32 | |
320 | ||
321 | typedef struct op_placement_info_struct | |
322 | { | |
323 | int num_formats; | |
324 | /* A number describing how restrictive the issue is for this | |
325 | opcode. For example, an opcode that fits lots of different | |
c138bc38 | 326 | formats has a high freedom, as does an opcode that fits |
43cd72b9 | 327 | only one format but many slots in that format. The most |
c138bc38 | 328 | restrictive is the opcode that fits only one slot in one |
43cd72b9 BW |
329 | format. */ |
330 | int issuef; | |
43cd72b9 | 331 | xtensa_format narrowest; |
43cd72b9 | 332 | char narrowest_size; |
b2d179be | 333 | char narrowest_slot; |
43cd72b9 BW |
334 | |
335 | /* formats is a bitfield with the Nth bit set | |
336 | if the opcode fits in the Nth xtensa_format. */ | |
337 | bitfield formats; | |
338 | ||
339 | /* slots[N]'s Mth bit is set if the op fits in the | |
340 | Mth slot of the Nth xtensa_format. */ | |
341 | bitfield slots[MAX_FORMATS]; | |
342 | ||
343 | /* A count of the number of slots in a given format | |
344 | an op can fit (i.e., the bitcount of the slot field above). */ | |
345 | char slots_in_format[MAX_FORMATS]; | |
346 | ||
347 | } op_placement_info, *op_placement_info_table; | |
348 | ||
349 | op_placement_info_table op_placement_table; | |
350 | ||
351 | ||
352 | /* Extra expression types. */ | |
353 | ||
354 | #define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */ | |
355 | #define O_hi16 O_md2 /* use high 16 bits of symbolic value */ | |
356 | #define O_lo16 O_md3 /* use low 16 bits of symbolic value */ | |
1bbb5f21 | 357 | #define O_pcrel O_md4 /* value is a PC-relative offset */ |
43cd72b9 | 358 | |
bbdd25a8 BW |
359 | struct suffix_reloc_map |
360 | { | |
361 | char *suffix; | |
362 | int length; | |
363 | bfd_reloc_code_real_type reloc; | |
364 | unsigned char operator; | |
365 | }; | |
366 | ||
367 | #define SUFFIX_MAP(str, reloc, op) { str, sizeof (str) - 1, reloc, op } | |
368 | ||
369 | static struct suffix_reloc_map suffix_relocs[] = | |
370 | { | |
371 | SUFFIX_MAP ("l", BFD_RELOC_LO16, O_lo16), | |
372 | SUFFIX_MAP ("h", BFD_RELOC_HI16, O_hi16), | |
373 | SUFFIX_MAP ("plt", BFD_RELOC_XTENSA_PLT, O_pltrel), | |
1bbb5f21 | 374 | SUFFIX_MAP ("pcrel", BFD_RELOC_32_PCREL, O_pcrel), |
bbdd25a8 BW |
375 | { (char *) 0, 0, BFD_RELOC_UNUSED, 0 } |
376 | }; | |
377 | ||
43cd72b9 | 378 | |
e0001a05 NC |
379 | /* Directives. */ |
380 | ||
381 | typedef enum | |
382 | { | |
383 | directive_none = 0, | |
384 | directive_literal, | |
385 | directive_density, | |
43cd72b9 | 386 | directive_transform, |
e0001a05 NC |
387 | directive_freeregs, |
388 | directive_longcalls, | |
43cd72b9 BW |
389 | directive_literal_prefix, |
390 | directive_schedule, | |
391 | directive_absolute_literals, | |
392 | directive_last_directive | |
e0001a05 NC |
393 | } directiveE; |
394 | ||
395 | typedef struct | |
396 | { | |
397 | const char *name; | |
398 | bfd_boolean can_be_negated; | |
399 | } directive_infoS; | |
400 | ||
401 | const directive_infoS directive_info[] = | |
402 | { | |
43cd72b9 BW |
403 | { "none", FALSE }, |
404 | { "literal", FALSE }, | |
405 | { "density", TRUE }, | |
406 | { "transform", TRUE }, | |
407 | { "freeregs", FALSE }, | |
408 | { "longcalls", TRUE }, | |
409 | { "literal_prefix", FALSE }, | |
410 | { "schedule", TRUE }, | |
411 | { "absolute-literals", TRUE } | |
e0001a05 NC |
412 | }; |
413 | ||
414 | bfd_boolean directive_state[] = | |
415 | { | |
416 | FALSE, /* none */ | |
417 | FALSE, /* literal */ | |
43cd72b9 | 418 | #if !XCHAL_HAVE_DENSITY |
e0001a05 NC |
419 | FALSE, /* density */ |
420 | #else | |
421 | TRUE, /* density */ | |
422 | #endif | |
43cd72b9 | 423 | TRUE, /* transform */ |
e0001a05 NC |
424 | FALSE, /* freeregs */ |
425 | FALSE, /* longcalls */ | |
43cd72b9 | 426 | FALSE, /* literal_prefix */ |
2caa7ca0 | 427 | FALSE, /* schedule */ |
43cd72b9 BW |
428 | #if XSHAL_USE_ABSOLUTE_LITERALS |
429 | TRUE /* absolute_literals */ | |
430 | #else | |
431 | FALSE /* absolute_literals */ | |
432 | #endif | |
e0001a05 NC |
433 | }; |
434 | ||
e0001a05 NC |
435 | |
436 | /* Directive functions. */ | |
437 | ||
7fa3d080 BW |
438 | static void xtensa_begin_directive (int); |
439 | static void xtensa_end_directive (int); | |
74869ac7 | 440 | static void xtensa_literal_prefix (void); |
7fa3d080 BW |
441 | static void xtensa_literal_position (int); |
442 | static void xtensa_literal_pseudo (int); | |
443 | static void xtensa_frequency_pseudo (int); | |
444 | static void xtensa_elf_cons (int); | |
fb227da0 | 445 | static void xtensa_leb128 (int); |
e0001a05 | 446 | |
7fa3d080 | 447 | /* Parsing and Idiom Translation. */ |
e0001a05 | 448 | |
7fa3d080 | 449 | static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *); |
e0001a05 | 450 | |
e0001a05 NC |
451 | /* Various Other Internal Functions. */ |
452 | ||
84b08ed9 BW |
453 | extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean); |
454 | static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *); | |
7fa3d080 BW |
455 | static void xtensa_mark_literal_pool_location (void); |
456 | static addressT get_expanded_loop_offset (xtensa_opcode); | |
457 | static fragS *get_literal_pool_location (segT); | |
458 | static void set_literal_pool_location (segT, fragS *); | |
459 | static void xtensa_set_frag_assembly_state (fragS *); | |
460 | static void finish_vinsn (vliw_insn *); | |
461 | static bfd_boolean emit_single_op (TInsn *); | |
34e41783 | 462 | static int total_frag_text_expansion (fragS *); |
e0001a05 NC |
463 | |
464 | /* Alignment Functions. */ | |
465 | ||
d77b99c9 BW |
466 | static int get_text_align_power (unsigned); |
467 | static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean); | |
664df4e4 | 468 | static int branch_align_power (segT); |
e0001a05 NC |
469 | |
470 | /* Helpers for xtensa_relax_frag(). */ | |
471 | ||
7fa3d080 | 472 | static long relax_frag_add_nop (fragS *); |
e0001a05 | 473 | |
b08b5071 | 474 | /* Accessors for additional per-subsegment information. */ |
e0001a05 | 475 | |
7fa3d080 BW |
476 | static unsigned get_last_insn_flags (segT, subsegT); |
477 | static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean); | |
b08b5071 BW |
478 | static float get_subseg_total_freq (segT, subsegT); |
479 | static float get_subseg_target_freq (segT, subsegT); | |
480 | static void set_subseg_freq (segT, subsegT, float, float); | |
e0001a05 NC |
481 | |
482 | /* Segment list functions. */ | |
483 | ||
7fa3d080 BW |
484 | static void xtensa_move_literals (void); |
485 | static void xtensa_reorder_segments (void); | |
486 | static void xtensa_switch_to_literal_fragment (emit_state *); | |
487 | static void xtensa_switch_to_non_abs_literal_fragment (emit_state *); | |
488 | static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT); | |
489 | static void xtensa_restore_emit_state (emit_state *); | |
74869ac7 | 490 | static segT cache_literal_section (bfd_boolean); |
e0001a05 | 491 | |
e0001a05 | 492 | /* Import from elf32-xtensa.c in BFD library. */ |
43cd72b9 | 493 | |
74869ac7 | 494 | extern asection *xtensa_get_property_section (asection *, const char *); |
e0001a05 | 495 | |
43cd72b9 BW |
496 | /* op_placement_info functions. */ |
497 | ||
7fa3d080 BW |
498 | static void init_op_placement_info_table (void); |
499 | extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int); | |
500 | static int xg_get_single_size (xtensa_opcode); | |
501 | static xtensa_format xg_get_single_format (xtensa_opcode); | |
b2d179be | 502 | static int xg_get_single_slot (xtensa_opcode); |
43cd72b9 | 503 | |
e0001a05 | 504 | /* TInsn and IStack functions. */ |
43cd72b9 | 505 | |
7fa3d080 BW |
506 | static bfd_boolean tinsn_has_symbolic_operands (const TInsn *); |
507 | static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *); | |
508 | static bfd_boolean tinsn_has_complex_operands (const TInsn *); | |
509 | static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf); | |
510 | static bfd_boolean tinsn_check_arguments (const TInsn *); | |
511 | static void tinsn_from_chars (TInsn *, char *, int); | |
512 | static void tinsn_immed_from_frag (TInsn *, fragS *, int); | |
513 | static int get_num_stack_text_bytes (IStack *); | |
514 | static int get_num_stack_literal_bytes (IStack *); | |
e0001a05 | 515 | |
43cd72b9 BW |
516 | /* vliw_insn functions. */ |
517 | ||
7fa3d080 BW |
518 | static void xg_init_vinsn (vliw_insn *); |
519 | static void xg_clear_vinsn (vliw_insn *); | |
520 | static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *); | |
521 | static void xg_free_vinsn (vliw_insn *); | |
43cd72b9 | 522 | static bfd_boolean vinsn_to_insnbuf |
7fa3d080 BW |
523 | (vliw_insn *, char *, fragS *, bfd_boolean); |
524 | static void vinsn_from_chars (vliw_insn *, char *); | |
43cd72b9 | 525 | |
e0001a05 | 526 | /* Expression Utilities. */ |
43cd72b9 | 527 | |
7fa3d080 BW |
528 | bfd_boolean expr_is_const (const expressionS *); |
529 | offsetT get_expr_const (const expressionS *); | |
530 | void set_expr_const (expressionS *, offsetT); | |
531 | bfd_boolean expr_is_register (const expressionS *); | |
532 | offsetT get_expr_register (const expressionS *); | |
533 | void set_expr_symbol_offset (expressionS *, symbolS *, offsetT); | |
7fa3d080 BW |
534 | bfd_boolean expr_is_equal (expressionS *, expressionS *); |
535 | static void copy_expr (expressionS *, const expressionS *); | |
e0001a05 | 536 | |
9456465c BW |
537 | /* Section renaming. */ |
538 | ||
7fa3d080 | 539 | static void build_section_rename (const char *); |
e0001a05 | 540 | |
e0001a05 NC |
541 | |
542 | /* ISA imported from bfd. */ | |
543 | extern xtensa_isa xtensa_default_isa; | |
544 | ||
545 | extern int target_big_endian; | |
546 | ||
547 | static xtensa_opcode xtensa_addi_opcode; | |
548 | static xtensa_opcode xtensa_addmi_opcode; | |
549 | static xtensa_opcode xtensa_call0_opcode; | |
550 | static xtensa_opcode xtensa_call4_opcode; | |
551 | static xtensa_opcode xtensa_call8_opcode; | |
552 | static xtensa_opcode xtensa_call12_opcode; | |
553 | static xtensa_opcode xtensa_callx0_opcode; | |
554 | static xtensa_opcode xtensa_callx4_opcode; | |
555 | static xtensa_opcode xtensa_callx8_opcode; | |
556 | static xtensa_opcode xtensa_callx12_opcode; | |
43cd72b9 | 557 | static xtensa_opcode xtensa_const16_opcode; |
e0001a05 | 558 | static xtensa_opcode xtensa_entry_opcode; |
d12f9798 | 559 | static xtensa_opcode xtensa_extui_opcode; |
43cd72b9 BW |
560 | static xtensa_opcode xtensa_movi_opcode; |
561 | static xtensa_opcode xtensa_movi_n_opcode; | |
e0001a05 | 562 | static xtensa_opcode xtensa_isync_opcode; |
e0001a05 | 563 | static xtensa_opcode xtensa_jx_opcode; |
43cd72b9 | 564 | static xtensa_opcode xtensa_l32r_opcode; |
e0001a05 NC |
565 | static xtensa_opcode xtensa_loop_opcode; |
566 | static xtensa_opcode xtensa_loopnez_opcode; | |
567 | static xtensa_opcode xtensa_loopgtz_opcode; | |
43cd72b9 | 568 | static xtensa_opcode xtensa_nop_opcode; |
e0001a05 NC |
569 | static xtensa_opcode xtensa_nop_n_opcode; |
570 | static xtensa_opcode xtensa_or_opcode; | |
571 | static xtensa_opcode xtensa_ret_opcode; | |
572 | static xtensa_opcode xtensa_ret_n_opcode; | |
573 | static xtensa_opcode xtensa_retw_opcode; | |
574 | static xtensa_opcode xtensa_retw_n_opcode; | |
43cd72b9 | 575 | static xtensa_opcode xtensa_rsr_lcount_opcode; |
e0001a05 NC |
576 | static xtensa_opcode xtensa_waiti_opcode; |
577 | ||
578 | \f | |
579 | /* Command-line Options. */ | |
580 | ||
581 | bfd_boolean use_literal_section = TRUE; | |
582 | static bfd_boolean align_targets = TRUE; | |
43cd72b9 | 583 | static bfd_boolean warn_unaligned_branch_targets = FALSE; |
e0001a05 | 584 | static bfd_boolean has_a0_b_retw = FALSE; |
43cd72b9 BW |
585 | static bfd_boolean workaround_a0_b_retw = FALSE; |
586 | static bfd_boolean workaround_b_j_loop_end = FALSE; | |
587 | static bfd_boolean workaround_short_loop = FALSE; | |
e0001a05 | 588 | static bfd_boolean maybe_has_short_loop = FALSE; |
43cd72b9 | 589 | static bfd_boolean workaround_close_loop_end = FALSE; |
e0001a05 | 590 | static bfd_boolean maybe_has_close_loop_end = FALSE; |
03aaa593 | 591 | static bfd_boolean enforce_three_byte_loop_align = FALSE; |
e0001a05 | 592 | |
43cd72b9 BW |
593 | /* When workaround_short_loops is TRUE, all loops with early exits must |
594 | have at least 3 instructions. workaround_all_short_loops is a modifier | |
595 | to the workaround_short_loop flag. In addition to the | |
596 | workaround_short_loop actions, all straightline loopgtz and loopnez | |
597 | must have at least 3 instructions. */ | |
e0001a05 | 598 | |
43cd72b9 | 599 | static bfd_boolean workaround_all_short_loops = FALSE; |
e0001a05 | 600 | |
7fa3d080 BW |
601 | |
602 | static void | |
603 | xtensa_setup_hw_workarounds (int earliest, int latest) | |
604 | { | |
605 | if (earliest > latest) | |
606 | as_fatal (_("illegal range of target hardware versions")); | |
607 | ||
608 | /* Enable all workarounds for pre-T1050.0 hardware. */ | |
609 | if (earliest < 105000 || latest < 105000) | |
610 | { | |
611 | workaround_a0_b_retw |= TRUE; | |
612 | workaround_b_j_loop_end |= TRUE; | |
613 | workaround_short_loop |= TRUE; | |
614 | workaround_close_loop_end |= TRUE; | |
615 | workaround_all_short_loops |= TRUE; | |
03aaa593 | 616 | enforce_three_byte_loop_align = TRUE; |
7fa3d080 BW |
617 | } |
618 | } | |
619 | ||
620 | ||
e0001a05 NC |
621 | enum |
622 | { | |
623 | option_density = OPTION_MD_BASE, | |
624 | option_no_density, | |
625 | ||
626 | option_relax, | |
627 | option_no_relax, | |
628 | ||
43cd72b9 BW |
629 | option_link_relax, |
630 | option_no_link_relax, | |
631 | ||
e0001a05 NC |
632 | option_generics, |
633 | option_no_generics, | |
634 | ||
43cd72b9 BW |
635 | option_transform, |
636 | option_no_transform, | |
637 | ||
e0001a05 NC |
638 | option_text_section_literals, |
639 | option_no_text_section_literals, | |
640 | ||
43cd72b9 BW |
641 | option_absolute_literals, |
642 | option_no_absolute_literals, | |
643 | ||
e0001a05 NC |
644 | option_align_targets, |
645 | option_no_align_targets, | |
646 | ||
43cd72b9 | 647 | option_warn_unaligned_targets, |
e0001a05 NC |
648 | |
649 | option_longcalls, | |
650 | option_no_longcalls, | |
651 | ||
652 | option_workaround_a0_b_retw, | |
653 | option_no_workaround_a0_b_retw, | |
654 | ||
655 | option_workaround_b_j_loop_end, | |
656 | option_no_workaround_b_j_loop_end, | |
657 | ||
658 | option_workaround_short_loop, | |
659 | option_no_workaround_short_loop, | |
660 | ||
661 | option_workaround_all_short_loops, | |
662 | option_no_workaround_all_short_loops, | |
663 | ||
664 | option_workaround_close_loop_end, | |
665 | option_no_workaround_close_loop_end, | |
666 | ||
667 | option_no_workarounds, | |
668 | ||
e0001a05 | 669 | option_rename_section_name, |
e0001a05 | 670 | |
43cd72b9 BW |
671 | option_prefer_l32r, |
672 | option_prefer_const16, | |
673 | ||
674 | option_target_hardware | |
e0001a05 NC |
675 | }; |
676 | ||
677 | const char *md_shortopts = ""; | |
678 | ||
679 | struct option md_longopts[] = | |
680 | { | |
43cd72b9 BW |
681 | { "density", no_argument, NULL, option_density }, |
682 | { "no-density", no_argument, NULL, option_no_density }, | |
683 | ||
684 | /* Both "relax" and "generics" are deprecated and treated as equivalent | |
685 | to the "transform" option. */ | |
686 | { "relax", no_argument, NULL, option_relax }, | |
687 | { "no-relax", no_argument, NULL, option_no_relax }, | |
688 | { "generics", no_argument, NULL, option_generics }, | |
689 | { "no-generics", no_argument, NULL, option_no_generics }, | |
690 | ||
691 | { "transform", no_argument, NULL, option_transform }, | |
692 | { "no-transform", no_argument, NULL, option_no_transform }, | |
693 | { "text-section-literals", no_argument, NULL, option_text_section_literals }, | |
694 | { "no-text-section-literals", no_argument, NULL, | |
695 | option_no_text_section_literals }, | |
696 | { "absolute-literals", no_argument, NULL, option_absolute_literals }, | |
697 | { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals }, | |
e0001a05 NC |
698 | /* This option was changed from -align-target to -target-align |
699 | because it conflicted with the "-al" option. */ | |
43cd72b9 | 700 | { "target-align", no_argument, NULL, option_align_targets }, |
7fa3d080 BW |
701 | { "no-target-align", no_argument, NULL, option_no_align_targets }, |
702 | { "warn-unaligned-targets", no_argument, NULL, | |
703 | option_warn_unaligned_targets }, | |
43cd72b9 BW |
704 | { "longcalls", no_argument, NULL, option_longcalls }, |
705 | { "no-longcalls", no_argument, NULL, option_no_longcalls }, | |
706 | ||
707 | { "no-workaround-a0-b-retw", no_argument, NULL, | |
708 | option_no_workaround_a0_b_retw }, | |
709 | { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw }, | |
e0001a05 | 710 | |
43cd72b9 BW |
711 | { "no-workaround-b-j-loop-end", no_argument, NULL, |
712 | option_no_workaround_b_j_loop_end }, | |
713 | { "workaround-b-j-loop-end", no_argument, NULL, | |
714 | option_workaround_b_j_loop_end }, | |
e0001a05 | 715 | |
43cd72b9 BW |
716 | { "no-workaround-short-loops", no_argument, NULL, |
717 | option_no_workaround_short_loop }, | |
7fa3d080 BW |
718 | { "workaround-short-loops", no_argument, NULL, |
719 | option_workaround_short_loop }, | |
e0001a05 | 720 | |
43cd72b9 BW |
721 | { "no-workaround-all-short-loops", no_argument, NULL, |
722 | option_no_workaround_all_short_loops }, | |
723 | { "workaround-all-short-loop", no_argument, NULL, | |
724 | option_workaround_all_short_loops }, | |
725 | ||
726 | { "prefer-l32r", no_argument, NULL, option_prefer_l32r }, | |
727 | { "prefer-const16", no_argument, NULL, option_prefer_const16 }, | |
728 | ||
729 | { "no-workarounds", no_argument, NULL, option_no_workarounds }, | |
730 | ||
731 | { "no-workaround-close-loop-end", no_argument, NULL, | |
732 | option_no_workaround_close_loop_end }, | |
733 | { "workaround-close-loop-end", no_argument, NULL, | |
734 | option_workaround_close_loop_end }, | |
e0001a05 | 735 | |
7fa3d080 | 736 | { "rename-section", required_argument, NULL, option_rename_section_name }, |
e0001a05 | 737 | |
43cd72b9 BW |
738 | { "link-relax", no_argument, NULL, option_link_relax }, |
739 | { "no-link-relax", no_argument, NULL, option_no_link_relax }, | |
740 | ||
741 | { "target-hardware", required_argument, NULL, option_target_hardware }, | |
742 | ||
743 | { NULL, no_argument, NULL, 0 } | |
e0001a05 NC |
744 | }; |
745 | ||
746 | size_t md_longopts_size = sizeof md_longopts; | |
747 | ||
748 | ||
749 | int | |
7fa3d080 | 750 | md_parse_option (int c, char *arg) |
e0001a05 NC |
751 | { |
752 | switch (c) | |
753 | { | |
754 | case option_density: | |
43cd72b9 | 755 | as_warn (_("--density option is ignored")); |
e0001a05 NC |
756 | return 1; |
757 | case option_no_density: | |
43cd72b9 | 758 | as_warn (_("--no-density option is ignored")); |
e0001a05 | 759 | return 1; |
43cd72b9 BW |
760 | case option_link_relax: |
761 | linkrelax = 1; | |
e0001a05 | 762 | return 1; |
43cd72b9 BW |
763 | case option_no_link_relax: |
764 | linkrelax = 0; | |
e0001a05 | 765 | return 1; |
43cd72b9 BW |
766 | case option_generics: |
767 | as_warn (_("--generics is deprecated; use --transform instead")); | |
768 | return md_parse_option (option_transform, arg); | |
769 | case option_no_generics: | |
770 | as_warn (_("--no-generics is deprecated; use --no-transform instead")); | |
771 | return md_parse_option (option_no_transform, arg); | |
772 | case option_relax: | |
773 | as_warn (_("--relax is deprecated; use --transform instead")); | |
774 | return md_parse_option (option_transform, arg); | |
775 | case option_no_relax: | |
776 | as_warn (_("--no-relax is deprecated; use --no-transform instead")); | |
777 | return md_parse_option (option_no_transform, arg); | |
e0001a05 NC |
778 | case option_longcalls: |
779 | directive_state[directive_longcalls] = TRUE; | |
780 | return 1; | |
781 | case option_no_longcalls: | |
782 | directive_state[directive_longcalls] = FALSE; | |
783 | return 1; | |
784 | case option_text_section_literals: | |
785 | use_literal_section = FALSE; | |
786 | return 1; | |
787 | case option_no_text_section_literals: | |
788 | use_literal_section = TRUE; | |
789 | return 1; | |
43cd72b9 BW |
790 | case option_absolute_literals: |
791 | if (!absolute_literals_supported) | |
792 | { | |
793 | as_fatal (_("--absolute-literals option not supported in this Xtensa configuration")); | |
794 | return 0; | |
795 | } | |
796 | directive_state[directive_absolute_literals] = TRUE; | |
797 | return 1; | |
798 | case option_no_absolute_literals: | |
799 | directive_state[directive_absolute_literals] = FALSE; | |
800 | return 1; | |
801 | ||
e0001a05 NC |
802 | case option_workaround_a0_b_retw: |
803 | workaround_a0_b_retw = TRUE; | |
e0001a05 NC |
804 | return 1; |
805 | case option_no_workaround_a0_b_retw: | |
806 | workaround_a0_b_retw = FALSE; | |
e0001a05 NC |
807 | return 1; |
808 | case option_workaround_b_j_loop_end: | |
809 | workaround_b_j_loop_end = TRUE; | |
e0001a05 NC |
810 | return 1; |
811 | case option_no_workaround_b_j_loop_end: | |
812 | workaround_b_j_loop_end = FALSE; | |
e0001a05 NC |
813 | return 1; |
814 | ||
815 | case option_workaround_short_loop: | |
816 | workaround_short_loop = TRUE; | |
e0001a05 NC |
817 | return 1; |
818 | case option_no_workaround_short_loop: | |
819 | workaround_short_loop = FALSE; | |
e0001a05 NC |
820 | return 1; |
821 | ||
822 | case option_workaround_all_short_loops: | |
823 | workaround_all_short_loops = TRUE; | |
e0001a05 NC |
824 | return 1; |
825 | case option_no_workaround_all_short_loops: | |
826 | workaround_all_short_loops = FALSE; | |
e0001a05 NC |
827 | return 1; |
828 | ||
829 | case option_workaround_close_loop_end: | |
830 | workaround_close_loop_end = TRUE; | |
e0001a05 NC |
831 | return 1; |
832 | case option_no_workaround_close_loop_end: | |
833 | workaround_close_loop_end = FALSE; | |
e0001a05 NC |
834 | return 1; |
835 | ||
836 | case option_no_workarounds: | |
837 | workaround_a0_b_retw = FALSE; | |
e0001a05 | 838 | workaround_b_j_loop_end = FALSE; |
e0001a05 | 839 | workaround_short_loop = FALSE; |
e0001a05 | 840 | workaround_all_short_loops = FALSE; |
e0001a05 | 841 | workaround_close_loop_end = FALSE; |
e0001a05 | 842 | return 1; |
43cd72b9 | 843 | |
e0001a05 NC |
844 | case option_align_targets: |
845 | align_targets = TRUE; | |
846 | return 1; | |
847 | case option_no_align_targets: | |
848 | align_targets = FALSE; | |
849 | return 1; | |
850 | ||
43cd72b9 BW |
851 | case option_warn_unaligned_targets: |
852 | warn_unaligned_branch_targets = TRUE; | |
e0001a05 NC |
853 | return 1; |
854 | ||
e0001a05 NC |
855 | case option_rename_section_name: |
856 | build_section_rename (arg); | |
857 | return 1; | |
e0001a05 NC |
858 | |
859 | case 'Q': | |
860 | /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section | |
861 | should be emitted or not. FIXME: Not implemented. */ | |
862 | return 1; | |
c138bc38 | 863 | |
43cd72b9 BW |
864 | case option_prefer_l32r: |
865 | if (prefer_const16) | |
866 | as_fatal (_("prefer-l32r conflicts with prefer-const16")); | |
867 | prefer_l32r = 1; | |
868 | return 1; | |
869 | ||
870 | case option_prefer_const16: | |
871 | if (prefer_l32r) | |
872 | as_fatal (_("prefer-const16 conflicts with prefer-l32r")); | |
873 | prefer_const16 = 1; | |
874 | return 1; | |
875 | ||
c138bc38 | 876 | case option_target_hardware: |
43cd72b9 BW |
877 | { |
878 | int earliest, latest = 0; | |
879 | if (*arg == 0 || *arg == '-') | |
880 | as_fatal (_("invalid target hardware version")); | |
881 | ||
882 | earliest = strtol (arg, &arg, 0); | |
883 | ||
884 | if (*arg == 0) | |
885 | latest = earliest; | |
886 | else if (*arg == '-') | |
887 | { | |
888 | if (*++arg == 0) | |
889 | as_fatal (_("invalid target hardware version")); | |
890 | latest = strtol (arg, &arg, 0); | |
891 | } | |
892 | if (*arg != 0) | |
893 | as_fatal (_("invalid target hardware version")); | |
894 | ||
895 | xtensa_setup_hw_workarounds (earliest, latest); | |
896 | return 1; | |
897 | } | |
898 | ||
899 | case option_transform: | |
900 | /* This option has no affect other than to use the defaults, | |
901 | which are already set. */ | |
902 | return 1; | |
903 | ||
904 | case option_no_transform: | |
905 | /* This option turns off all transformations of any kind. | |
906 | However, because we want to preserve the state of other | |
907 | directives, we only change its own field. Thus, before | |
908 | you perform any transformation, always check if transform | |
909 | is available. If you use the functions we provide for this | |
910 | purpose, you will be ok. */ | |
911 | directive_state[directive_transform] = FALSE; | |
912 | return 1; | |
913 | ||
e0001a05 NC |
914 | default: |
915 | return 0; | |
916 | } | |
917 | } | |
918 | ||
919 | ||
920 | void | |
7fa3d080 | 921 | md_show_usage (FILE *stream) |
e0001a05 | 922 | { |
43cd72b9 BW |
923 | fputs ("\n\ |
924 | Xtensa options:\n\ | |
9456465c BW |
925 | --[no-]text-section-literals\n\ |
926 | [Do not] put literals in the text section\n\ | |
927 | --[no-]absolute-literals\n\ | |
928 | [Do not] default to use non-PC-relative literals\n\ | |
929 | --[no-]target-align [Do not] try to align branch targets\n\ | |
930 | --[no-]longcalls [Do not] emit 32-bit call sequences\n\ | |
931 | --[no-]transform [Do not] transform instructions\n\ | |
932 | --rename-section old=new Rename section 'old' to 'new'\n", stream); | |
e0001a05 NC |
933 | } |
934 | ||
7fa3d080 BW |
935 | \f |
936 | /* Functions related to the list of current label symbols. */ | |
43cd72b9 BW |
937 | |
938 | static void | |
7fa3d080 | 939 | xtensa_add_insn_label (symbolS *sym) |
43cd72b9 | 940 | { |
7fa3d080 | 941 | sym_list *l; |
43cd72b9 | 942 | |
7fa3d080 BW |
943 | if (!free_insn_labels) |
944 | l = (sym_list *) xmalloc (sizeof (sym_list)); | |
945 | else | |
43cd72b9 | 946 | { |
7fa3d080 BW |
947 | l = free_insn_labels; |
948 | free_insn_labels = l->next; | |
949 | } | |
950 | ||
951 | l->sym = sym; | |
952 | l->next = insn_labels; | |
953 | insn_labels = l; | |
954 | } | |
955 | ||
956 | ||
957 | static void | |
958 | xtensa_clear_insn_labels (void) | |
959 | { | |
960 | sym_list **pl; | |
961 | ||
962 | for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next) | |
963 | ; | |
964 | *pl = insn_labels; | |
965 | insn_labels = NULL; | |
966 | } | |
967 | ||
968 | ||
7fa3d080 | 969 | static void |
c3ea6048 | 970 | xtensa_move_labels (fragS *new_frag, valueT new_offset) |
7fa3d080 BW |
971 | { |
972 | sym_list *lit; | |
973 | ||
974 | for (lit = insn_labels; lit; lit = lit->next) | |
975 | { | |
976 | symbolS *lit_sym = lit->sym; | |
c3ea6048 BW |
977 | S_SET_VALUE (lit_sym, new_offset); |
978 | symbol_set_frag (lit_sym, new_frag); | |
43cd72b9 BW |
979 | } |
980 | } | |
981 | ||
e0001a05 NC |
982 | \f |
983 | /* Directive data and functions. */ | |
984 | ||
985 | typedef struct state_stackS_struct | |
986 | { | |
987 | directiveE directive; | |
988 | bfd_boolean negated; | |
989 | bfd_boolean old_state; | |
990 | const char *file; | |
991 | unsigned int line; | |
992 | const void *datum; | |
993 | struct state_stackS_struct *prev; | |
994 | } state_stackS; | |
995 | ||
996 | state_stackS *directive_state_stack; | |
997 | ||
998 | const pseudo_typeS md_pseudo_table[] = | |
999 | { | |
43cd72b9 BW |
1000 | { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */ |
1001 | { "literal_position", xtensa_literal_position, 0 }, | |
1002 | { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */ | |
1003 | { "long", xtensa_elf_cons, 4 }, | |
1004 | { "word", xtensa_elf_cons, 4 }, | |
1bbb5f21 | 1005 | { "4byte", xtensa_elf_cons, 4 }, |
43cd72b9 | 1006 | { "short", xtensa_elf_cons, 2 }, |
1bbb5f21 | 1007 | { "2byte", xtensa_elf_cons, 2 }, |
fb227da0 BW |
1008 | { "sleb128", xtensa_leb128, 1}, |
1009 | { "uleb128", xtensa_leb128, 0}, | |
43cd72b9 BW |
1010 | { "begin", xtensa_begin_directive, 0 }, |
1011 | { "end", xtensa_end_directive, 0 }, | |
43cd72b9 BW |
1012 | { "literal", xtensa_literal_pseudo, 0 }, |
1013 | { "frequency", xtensa_frequency_pseudo, 0 }, | |
1014 | { NULL, 0, 0 }, | |
e0001a05 NC |
1015 | }; |
1016 | ||
1017 | ||
7fa3d080 BW |
1018 | static bfd_boolean |
1019 | use_transform (void) | |
e0001a05 | 1020 | { |
43cd72b9 BW |
1021 | /* After md_end, you should be checking frag by frag, rather |
1022 | than state directives. */ | |
1023 | assert (!past_xtensa_end); | |
1024 | return directive_state[directive_transform]; | |
e0001a05 NC |
1025 | } |
1026 | ||
1027 | ||
7fa3d080 BW |
1028 | static bfd_boolean |
1029 | do_align_targets (void) | |
e0001a05 | 1030 | { |
7b1cc377 BW |
1031 | /* Do not use this function after md_end; just look at align_targets |
1032 | instead. There is no target-align directive, so alignment is either | |
1033 | enabled for all frags or not done at all. */ | |
43cd72b9 BW |
1034 | assert (!past_xtensa_end); |
1035 | return align_targets && use_transform (); | |
e0001a05 NC |
1036 | } |
1037 | ||
1038 | ||
1039 | static void | |
7fa3d080 | 1040 | directive_push (directiveE directive, bfd_boolean negated, const void *datum) |
e0001a05 NC |
1041 | { |
1042 | char *file; | |
1043 | unsigned int line; | |
1044 | state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS)); | |
1045 | ||
1046 | as_where (&file, &line); | |
1047 | ||
1048 | stack->directive = directive; | |
1049 | stack->negated = negated; | |
1050 | stack->old_state = directive_state[directive]; | |
1051 | stack->file = file; | |
1052 | stack->line = line; | |
1053 | stack->datum = datum; | |
1054 | stack->prev = directive_state_stack; | |
1055 | directive_state_stack = stack; | |
1056 | ||
1057 | directive_state[directive] = !negated; | |
1058 | } | |
1059 | ||
7fa3d080 | 1060 | |
e0001a05 | 1061 | static void |
7fa3d080 BW |
1062 | directive_pop (directiveE *directive, |
1063 | bfd_boolean *negated, | |
1064 | const char **file, | |
1065 | unsigned int *line, | |
1066 | const void **datum) | |
e0001a05 NC |
1067 | { |
1068 | state_stackS *top = directive_state_stack; | |
1069 | ||
1070 | if (!directive_state_stack) | |
1071 | { | |
1072 | as_bad (_("unmatched end directive")); | |
1073 | *directive = directive_none; | |
1074 | return; | |
1075 | } | |
1076 | ||
1077 | directive_state[directive_state_stack->directive] = top->old_state; | |
1078 | *directive = top->directive; | |
1079 | *negated = top->negated; | |
1080 | *file = top->file; | |
1081 | *line = top->line; | |
1082 | *datum = top->datum; | |
1083 | directive_state_stack = top->prev; | |
1084 | free (top); | |
1085 | } | |
1086 | ||
1087 | ||
1088 | static void | |
7fa3d080 | 1089 | directive_balance (void) |
e0001a05 NC |
1090 | { |
1091 | while (directive_state_stack) | |
1092 | { | |
1093 | directiveE directive; | |
1094 | bfd_boolean negated; | |
1095 | const char *file; | |
1096 | unsigned int line; | |
1097 | const void *datum; | |
1098 | ||
1099 | directive_pop (&directive, &negated, &file, &line, &datum); | |
1100 | as_warn_where ((char *) file, line, | |
1101 | _(".begin directive with no matching .end directive")); | |
1102 | } | |
1103 | } | |
1104 | ||
1105 | ||
1106 | static bfd_boolean | |
7fa3d080 | 1107 | inside_directive (directiveE dir) |
e0001a05 NC |
1108 | { |
1109 | state_stackS *top = directive_state_stack; | |
1110 | ||
1111 | while (top && top->directive != dir) | |
1112 | top = top->prev; | |
1113 | ||
1114 | return (top != NULL); | |
1115 | } | |
1116 | ||
1117 | ||
1118 | static void | |
7fa3d080 | 1119 | get_directive (directiveE *directive, bfd_boolean *negated) |
e0001a05 NC |
1120 | { |
1121 | int len; | |
1122 | unsigned i; | |
43cd72b9 | 1123 | char *directive_string; |
e0001a05 NC |
1124 | |
1125 | if (strncmp (input_line_pointer, "no-", 3) != 0) | |
1126 | *negated = FALSE; | |
1127 | else | |
1128 | { | |
1129 | *negated = TRUE; | |
1130 | input_line_pointer += 3; | |
1131 | } | |
1132 | ||
1133 | len = strspn (input_line_pointer, | |
43cd72b9 BW |
1134 | "abcdefghijklmnopqrstuvwxyz_-/0123456789."); |
1135 | ||
1136 | /* This code is a hack to make .begin [no-][generics|relax] exactly | |
1137 | equivalent to .begin [no-]transform. We should remove it when | |
1138 | we stop accepting those options. */ | |
c138bc38 | 1139 | |
43cd72b9 BW |
1140 | if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0) |
1141 | { | |
1142 | as_warn (_("[no-]generics is deprecated; use [no-]transform instead")); | |
1143 | directive_string = "transform"; | |
1144 | } | |
1145 | else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0) | |
1146 | { | |
1147 | as_warn (_("[no-]relax is deprecated; use [no-]transform instead")); | |
1148 | directive_string = "transform"; | |
c138bc38 | 1149 | } |
43cd72b9 BW |
1150 | else |
1151 | directive_string = input_line_pointer; | |
e0001a05 NC |
1152 | |
1153 | for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i) | |
1154 | { | |
43cd72b9 | 1155 | if (strncmp (directive_string, directive_info[i].name, len) == 0) |
e0001a05 NC |
1156 | { |
1157 | input_line_pointer += len; | |
1158 | *directive = (directiveE) i; | |
1159 | if (*negated && !directive_info[i].can_be_negated) | |
43cd72b9 | 1160 | as_bad (_("directive %s cannot be negated"), |
e0001a05 NC |
1161 | directive_info[i].name); |
1162 | return; | |
1163 | } | |
1164 | } | |
1165 | ||
1166 | as_bad (_("unknown directive")); | |
1167 | *directive = (directiveE) XTENSA_UNDEFINED; | |
1168 | } | |
1169 | ||
1170 | ||
1171 | static void | |
7fa3d080 | 1172 | xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED) |
e0001a05 NC |
1173 | { |
1174 | directiveE directive; | |
1175 | bfd_boolean negated; | |
1176 | emit_state *state; | |
e0001a05 NC |
1177 | lit_state *ls; |
1178 | ||
1179 | get_directive (&directive, &negated); | |
1180 | if (directive == (directiveE) XTENSA_UNDEFINED) | |
1181 | { | |
1182 | discard_rest_of_line (); | |
1183 | return; | |
1184 | } | |
1185 | ||
43cd72b9 BW |
1186 | if (cur_vinsn.inside_bundle) |
1187 | as_bad (_("directives are not valid inside bundles")); | |
1188 | ||
e0001a05 NC |
1189 | switch (directive) |
1190 | { | |
1191 | case directive_literal: | |
82e7541d BW |
1192 | if (!inside_directive (directive_literal)) |
1193 | { | |
1194 | /* Previous labels go with whatever follows this directive, not with | |
1195 | the literal, so save them now. */ | |
1196 | saved_insn_labels = insn_labels; | |
1197 | insn_labels = NULL; | |
1198 | } | |
43cd72b9 | 1199 | as_warn (_(".begin literal is deprecated; use .literal instead")); |
e0001a05 NC |
1200 | state = (emit_state *) xmalloc (sizeof (emit_state)); |
1201 | xtensa_switch_to_literal_fragment (state); | |
1202 | directive_push (directive_literal, negated, state); | |
1203 | break; | |
1204 | ||
1205 | case directive_literal_prefix: | |
c138bc38 | 1206 | /* Have to flush pending output because a movi relaxed to an l32r |
43cd72b9 BW |
1207 | might produce a literal. */ |
1208 | md_flush_pending_output (); | |
e0001a05 NC |
1209 | /* Check to see if the current fragment is a literal |
1210 | fragment. If it is, then this operation is not allowed. */ | |
43cd72b9 | 1211 | if (generating_literals) |
e0001a05 NC |
1212 | { |
1213 | as_bad (_("cannot set literal_prefix inside literal fragment")); | |
1214 | return; | |
1215 | } | |
1216 | ||
1217 | /* Allocate the literal state for this section and push | |
1218 | onto the directive stack. */ | |
1219 | ls = xmalloc (sizeof (lit_state)); | |
1220 | assert (ls); | |
1221 | ||
1222 | *ls = default_lit_sections; | |
e0001a05 NC |
1223 | directive_push (directive_literal_prefix, negated, ls); |
1224 | ||
e0001a05 | 1225 | /* Process the new prefix. */ |
74869ac7 | 1226 | xtensa_literal_prefix (); |
e0001a05 NC |
1227 | break; |
1228 | ||
1229 | case directive_freeregs: | |
1230 | /* This information is currently unused, but we'll accept the statement | |
1231 | and just discard the rest of the line. This won't check the syntax, | |
1232 | but it will accept every correct freeregs directive. */ | |
1233 | input_line_pointer += strcspn (input_line_pointer, "\n"); | |
1234 | directive_push (directive_freeregs, negated, 0); | |
1235 | break; | |
1236 | ||
43cd72b9 BW |
1237 | case directive_schedule: |
1238 | md_flush_pending_output (); | |
1239 | frag_var (rs_fill, 0, 0, frag_now->fr_subtype, | |
1240 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
1241 | directive_push (directive_schedule, negated, 0); | |
1242 | xtensa_set_frag_assembly_state (frag_now); | |
1243 | break; | |
1244 | ||
e0001a05 | 1245 | case directive_density: |
43cd72b9 BW |
1246 | as_warn (_(".begin [no-]density is ignored")); |
1247 | break; | |
1248 | ||
1249 | case directive_absolute_literals: | |
1250 | md_flush_pending_output (); | |
1251 | if (!absolute_literals_supported && !negated) | |
e0001a05 | 1252 | { |
43cd72b9 | 1253 | as_warn (_("Xtensa absolute literals option not supported; ignored")); |
e0001a05 NC |
1254 | break; |
1255 | } | |
43cd72b9 BW |
1256 | xtensa_set_frag_assembly_state (frag_now); |
1257 | directive_push (directive, negated, 0); | |
1258 | break; | |
e0001a05 NC |
1259 | |
1260 | default: | |
43cd72b9 BW |
1261 | md_flush_pending_output (); |
1262 | xtensa_set_frag_assembly_state (frag_now); | |
e0001a05 NC |
1263 | directive_push (directive, negated, 0); |
1264 | break; | |
1265 | } | |
1266 | ||
1267 | demand_empty_rest_of_line (); | |
1268 | } | |
1269 | ||
1270 | ||
1271 | static void | |
7fa3d080 | 1272 | xtensa_end_directive (int ignore ATTRIBUTE_UNUSED) |
e0001a05 NC |
1273 | { |
1274 | directiveE begin_directive, end_directive; | |
1275 | bfd_boolean begin_negated, end_negated; | |
1276 | const char *file; | |
1277 | unsigned int line; | |
1278 | emit_state *state; | |
43cd72b9 | 1279 | emit_state **state_ptr; |
e0001a05 NC |
1280 | lit_state *s; |
1281 | ||
43cd72b9 BW |
1282 | if (cur_vinsn.inside_bundle) |
1283 | as_bad (_("directives are not valid inside bundles")); | |
82e7541d | 1284 | |
e0001a05 | 1285 | get_directive (&end_directive, &end_negated); |
43cd72b9 BW |
1286 | |
1287 | md_flush_pending_output (); | |
1288 | ||
1289 | switch (end_directive) | |
e0001a05 | 1290 | { |
43cd72b9 | 1291 | case (directiveE) XTENSA_UNDEFINED: |
e0001a05 NC |
1292 | discard_rest_of_line (); |
1293 | return; | |
e0001a05 | 1294 | |
43cd72b9 BW |
1295 | case directive_density: |
1296 | as_warn (_(".end [no-]density is ignored")); | |
e0001a05 | 1297 | demand_empty_rest_of_line (); |
43cd72b9 BW |
1298 | break; |
1299 | ||
1300 | case directive_absolute_literals: | |
1301 | if (!absolute_literals_supported && !end_negated) | |
1302 | { | |
1303 | as_warn (_("Xtensa absolute literals option not supported; ignored")); | |
1304 | demand_empty_rest_of_line (); | |
1305 | return; | |
1306 | } | |
1307 | break; | |
1308 | ||
1309 | default: | |
1310 | break; | |
e0001a05 NC |
1311 | } |
1312 | ||
43cd72b9 | 1313 | state_ptr = &state; /* use state_ptr to avoid type-punning warning */ |
e0001a05 | 1314 | directive_pop (&begin_directive, &begin_negated, &file, &line, |
43cd72b9 | 1315 | (const void **) state_ptr); |
e0001a05 NC |
1316 | |
1317 | if (begin_directive != directive_none) | |
1318 | { | |
1319 | if (begin_directive != end_directive || begin_negated != end_negated) | |
1320 | { | |
1321 | as_bad (_("does not match begin %s%s at %s:%d"), | |
1322 | begin_negated ? "no-" : "", | |
1323 | directive_info[begin_directive].name, file, line); | |
1324 | } | |
1325 | else | |
1326 | { | |
1327 | switch (end_directive) | |
1328 | { | |
1329 | case directive_literal: | |
1330 | frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
1331 | xtensa_restore_emit_state (state); | |
43cd72b9 | 1332 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 | 1333 | free (state); |
82e7541d BW |
1334 | if (!inside_directive (directive_literal)) |
1335 | { | |
1336 | /* Restore the list of current labels. */ | |
1337 | xtensa_clear_insn_labels (); | |
1338 | insn_labels = saved_insn_labels; | |
1339 | } | |
e0001a05 NC |
1340 | break; |
1341 | ||
e0001a05 NC |
1342 | case directive_literal_prefix: |
1343 | /* Restore the default collection sections from saved state. */ | |
1344 | s = (lit_state *) state; | |
1345 | assert (s); | |
e8247da7 | 1346 | default_lit_sections = *s; |
e0001a05 | 1347 | |
74869ac7 BW |
1348 | /* Free the state storage. */ |
1349 | free (s->lit_prefix); | |
e0001a05 NC |
1350 | free (s); |
1351 | break; | |
1352 | ||
43cd72b9 BW |
1353 | case directive_schedule: |
1354 | case directive_freeregs: | |
1355 | break; | |
1356 | ||
e0001a05 | 1357 | default: |
43cd72b9 | 1358 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
1359 | break; |
1360 | } | |
1361 | } | |
1362 | } | |
1363 | ||
1364 | demand_empty_rest_of_line (); | |
1365 | } | |
1366 | ||
1367 | ||
1368 | /* Place an aligned literal fragment at the current location. */ | |
1369 | ||
1370 | static void | |
7fa3d080 | 1371 | xtensa_literal_position (int ignore ATTRIBUTE_UNUSED) |
e0001a05 | 1372 | { |
43cd72b9 BW |
1373 | md_flush_pending_output (); |
1374 | ||
e0001a05 NC |
1375 | if (inside_directive (directive_literal)) |
1376 | as_warn (_(".literal_position inside literal directive; ignoring")); | |
43cd72b9 | 1377 | xtensa_mark_literal_pool_location (); |
e0001a05 NC |
1378 | |
1379 | demand_empty_rest_of_line (); | |
82e7541d | 1380 | xtensa_clear_insn_labels (); |
e0001a05 NC |
1381 | } |
1382 | ||
1383 | ||
43cd72b9 | 1384 | /* Support .literal label, expr, ... */ |
e0001a05 NC |
1385 | |
1386 | static void | |
7fa3d080 | 1387 | xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED) |
e0001a05 NC |
1388 | { |
1389 | emit_state state; | |
1745fcba | 1390 | char *p, *base_name; |
e0001a05 | 1391 | char c; |
e0001a05 NC |
1392 | segT dest_seg; |
1393 | ||
82e7541d BW |
1394 | if (inside_directive (directive_literal)) |
1395 | { | |
1396 | as_bad (_(".literal not allowed inside .begin literal region")); | |
1397 | ignore_rest_of_line (); | |
1398 | return; | |
1399 | } | |
1400 | ||
43cd72b9 BW |
1401 | md_flush_pending_output (); |
1402 | ||
82e7541d BW |
1403 | /* Previous labels go with whatever follows this directive, not with |
1404 | the literal, so save them now. */ | |
1405 | saved_insn_labels = insn_labels; | |
1406 | insn_labels = NULL; | |
1407 | ||
e0001a05 NC |
1408 | /* If we are using text-section literals, then this is the right value... */ |
1409 | dest_seg = now_seg; | |
1410 | ||
1411 | base_name = input_line_pointer; | |
1412 | ||
1413 | xtensa_switch_to_literal_fragment (&state); | |
1414 | ||
43cd72b9 | 1415 | /* ...but if we aren't using text-section-literals, then we |
e0001a05 | 1416 | need to put them in the section we just switched to. */ |
43cd72b9 | 1417 | if (use_literal_section || directive_state[directive_absolute_literals]) |
e0001a05 NC |
1418 | dest_seg = now_seg; |
1419 | ||
43cd72b9 BW |
1420 | /* All literals are aligned to four-byte boundaries. */ |
1421 | frag_align (2, 0, 0); | |
1422 | record_alignment (now_seg, 2); | |
e0001a05 NC |
1423 | |
1424 | c = get_symbol_end (); | |
1425 | /* Just after name is now '\0'. */ | |
1426 | p = input_line_pointer; | |
1427 | *p = c; | |
1428 | SKIP_WHITESPACE (); | |
1429 | ||
1430 | if (*input_line_pointer != ',' && *input_line_pointer != ':') | |
1431 | { | |
1432 | as_bad (_("expected comma or colon after symbol name; " | |
1433 | "rest of line ignored")); | |
1434 | ignore_rest_of_line (); | |
1435 | xtensa_restore_emit_state (&state); | |
1436 | return; | |
1437 | } | |
1438 | *p = 0; | |
1439 | ||
e0001a05 | 1440 | colon (base_name); |
e0001a05 | 1441 | |
e0001a05 | 1442 | *p = c; |
43cd72b9 | 1443 | input_line_pointer++; /* skip ',' or ':' */ |
e0001a05 | 1444 | |
43cd72b9 | 1445 | xtensa_elf_cons (4); |
e0001a05 NC |
1446 | |
1447 | xtensa_restore_emit_state (&state); | |
82e7541d BW |
1448 | |
1449 | /* Restore the list of current labels. */ | |
1450 | xtensa_clear_insn_labels (); | |
1451 | insn_labels = saved_insn_labels; | |
e0001a05 NC |
1452 | } |
1453 | ||
1454 | ||
1455 | static void | |
74869ac7 | 1456 | xtensa_literal_prefix (void) |
e0001a05 | 1457 | { |
74869ac7 BW |
1458 | char *name; |
1459 | int len; | |
1460 | ||
1461 | /* Parse the new prefix from the input_line_pointer. */ | |
1462 | SKIP_WHITESPACE (); | |
1463 | len = strspn (input_line_pointer, | |
1464 | "ABCDEFGHIJKLMNOPQRSTUVWXYZ" | |
1465 | "abcdefghijklmnopqrstuvwxyz_/0123456789.$"); | |
e0001a05 NC |
1466 | |
1467 | /* Get a null-terminated copy of the name. */ | |
1468 | name = xmalloc (len + 1); | |
1469 | assert (name); | |
74869ac7 | 1470 | strncpy (name, input_line_pointer, len); |
e0001a05 NC |
1471 | name[len] = 0; |
1472 | ||
74869ac7 BW |
1473 | /* Skip the name in the input line. */ |
1474 | input_line_pointer += len; | |
43cd72b9 | 1475 | |
74869ac7 | 1476 | default_lit_sections.lit_prefix = name; |
43cd72b9 | 1477 | |
74869ac7 | 1478 | /* Clear cached literal sections, since the prefix has changed. */ |
43cd72b9 BW |
1479 | default_lit_sections.lit_seg = NULL; |
1480 | default_lit_sections.lit4_seg = NULL; | |
43cd72b9 BW |
1481 | } |
1482 | ||
1483 | ||
1484 | /* Support ".frequency branch_target_frequency fall_through_frequency". */ | |
1485 | ||
1486 | static void | |
7fa3d080 | 1487 | xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED) |
43cd72b9 BW |
1488 | { |
1489 | float fall_through_f, target_f; | |
43cd72b9 BW |
1490 | |
1491 | fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer); | |
1492 | if (fall_through_f < 0) | |
1493 | { | |
1494 | as_bad (_("fall through frequency must be greater than 0")); | |
1495 | ignore_rest_of_line (); | |
1496 | return; | |
1497 | } | |
1498 | ||
1499 | target_f = (float) strtod (input_line_pointer, &input_line_pointer); | |
1500 | if (target_f < 0) | |
1501 | { | |
1502 | as_bad (_("branch target frequency must be greater than 0")); | |
1503 | ignore_rest_of_line (); | |
1504 | return; | |
1505 | } | |
1506 | ||
b08b5071 | 1507 | set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f); |
43cd72b9 BW |
1508 | |
1509 | demand_empty_rest_of_line (); | |
1510 | } | |
1511 | ||
1512 | ||
1513 | /* Like normal .long/.short/.word, except support @plt, etc. | |
1514 | Clobbers input_line_pointer, checks end-of-line. */ | |
1515 | ||
1516 | static void | |
7fa3d080 | 1517 | xtensa_elf_cons (int nbytes) |
43cd72b9 BW |
1518 | { |
1519 | expressionS exp; | |
1520 | bfd_reloc_code_real_type reloc; | |
1521 | ||
1522 | md_flush_pending_output (); | |
1523 | ||
1524 | if (cur_vinsn.inside_bundle) | |
1525 | as_bad (_("directives are not valid inside bundles")); | |
1526 | ||
1527 | if (is_it_end_of_statement ()) | |
1528 | { | |
1529 | demand_empty_rest_of_line (); | |
1530 | return; | |
1531 | } | |
1532 | ||
1533 | do | |
1534 | { | |
1535 | expression (&exp); | |
1536 | if (exp.X_op == O_symbol | |
1537 | && *input_line_pointer == '@' | |
1538 | && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp)) | |
1539 | != BFD_RELOC_NONE)) | |
1540 | { | |
1541 | reloc_howto_type *reloc_howto = | |
1542 | bfd_reloc_type_lookup (stdoutput, reloc); | |
1543 | ||
1544 | if (reloc == BFD_RELOC_UNUSED || !reloc_howto) | |
1545 | as_bad (_("unsupported relocation")); | |
1546 | else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP | |
1547 | && reloc <= BFD_RELOC_XTENSA_SLOT14_OP) | |
1548 | || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT | |
1549 | && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)) | |
1550 | as_bad (_("opcode-specific %s relocation used outside " | |
1551 | "an instruction"), reloc_howto->name); | |
1552 | else if (nbytes != (int) bfd_get_reloc_size (reloc_howto)) | |
1553 | as_bad (_("%s relocations do not fit in %d bytes"), | |
1554 | reloc_howto->name, nbytes); | |
1555 | else | |
1556 | { | |
1557 | char *p = frag_more ((int) nbytes); | |
1558 | xtensa_set_frag_assembly_state (frag_now); | |
1559 | fix_new_exp (frag_now, p - frag_now->fr_literal, | |
1bbb5f21 | 1560 | nbytes, &exp, reloc_howto->pc_relative, reloc); |
43cd72b9 BW |
1561 | } |
1562 | } | |
1563 | else | |
1f7efbae BW |
1564 | { |
1565 | xtensa_set_frag_assembly_state (frag_now); | |
1566 | emit_expr (&exp, (unsigned int) nbytes); | |
1567 | } | |
43cd72b9 BW |
1568 | } |
1569 | while (*input_line_pointer++ == ','); | |
1570 | ||
1571 | input_line_pointer--; /* Put terminator back into stream. */ | |
1572 | demand_empty_rest_of_line (); | |
1573 | } | |
1574 | ||
fb227da0 BW |
1575 | static bfd_boolean is_leb128_expr; |
1576 | ||
1577 | static void | |
1578 | xtensa_leb128 (int sign) | |
1579 | { | |
1580 | is_leb128_expr = TRUE; | |
1581 | s_leb128 (sign); | |
1582 | is_leb128_expr = FALSE; | |
1583 | } | |
1584 | ||
7fa3d080 BW |
1585 | \f |
1586 | /* Parsing and Idiom Translation. */ | |
43cd72b9 BW |
1587 | |
1588 | /* Parse @plt, etc. and return the desired relocation. */ | |
1589 | static bfd_reloc_code_real_type | |
7fa3d080 | 1590 | xtensa_elf_suffix (char **str_p, expressionS *exp_p) |
43cd72b9 | 1591 | { |
43cd72b9 BW |
1592 | char ident[20]; |
1593 | char *str = *str_p; | |
1594 | char *str2; | |
1595 | int ch; | |
1596 | int len; | |
bbdd25a8 | 1597 | struct suffix_reloc_map *ptr; |
43cd72b9 BW |
1598 | |
1599 | if (*str++ != '@') | |
1600 | return BFD_RELOC_NONE; | |
1601 | ||
1602 | for (ch = *str, str2 = ident; | |
1603 | (str2 < ident + sizeof (ident) - 1 | |
1604 | && (ISALNUM (ch) || ch == '@')); | |
1605 | ch = *++str) | |
1606 | { | |
1607 | *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch); | |
1608 | } | |
1609 | ||
1610 | *str2 = '\0'; | |
1611 | len = str2 - ident; | |
1612 | ||
1613 | ch = ident[0]; | |
bbdd25a8 BW |
1614 | for (ptr = &suffix_relocs[0]; ptr->length > 0; ptr++) |
1615 | if (ch == ptr->suffix[0] | |
43cd72b9 | 1616 | && len == ptr->length |
bbdd25a8 | 1617 | && memcmp (ident, ptr->suffix, ptr->length) == 0) |
43cd72b9 BW |
1618 | { |
1619 | /* Now check for "identifier@suffix+constant". */ | |
1620 | if (*str == '-' || *str == '+') | |
1621 | { | |
1622 | char *orig_line = input_line_pointer; | |
1623 | expressionS new_exp; | |
1624 | ||
1625 | input_line_pointer = str; | |
1626 | expression (&new_exp); | |
1627 | if (new_exp.X_op == O_constant) | |
1628 | { | |
1629 | exp_p->X_add_number += new_exp.X_add_number; | |
1630 | str = input_line_pointer; | |
1631 | } | |
1632 | ||
1633 | if (&input_line_pointer != str_p) | |
1634 | input_line_pointer = orig_line; | |
1635 | } | |
1636 | ||
1637 | *str_p = str; | |
1638 | return ptr->reloc; | |
1639 | } | |
1640 | ||
1641 | return BFD_RELOC_UNUSED; | |
e0001a05 NC |
1642 | } |
1643 | ||
e0001a05 | 1644 | |
bbdd25a8 BW |
1645 | /* Find the matching operator type. */ |
1646 | static unsigned char | |
1647 | map_suffix_reloc_to_operator (bfd_reloc_code_real_type reloc) | |
1648 | { | |
1649 | struct suffix_reloc_map *sfx; | |
1650 | unsigned char operator = (unsigned char) -1; | |
1651 | ||
1652 | for (sfx = &suffix_relocs[0]; sfx->suffix; sfx++) | |
1653 | { | |
1654 | if (sfx->reloc == reloc) | |
1655 | { | |
1656 | operator = sfx->operator; | |
1657 | break; | |
1658 | } | |
1659 | } | |
1660 | assert (operator != (unsigned char) -1); | |
1661 | return operator; | |
1662 | } | |
1663 | ||
1664 | ||
1665 | /* Find the matching reloc type. */ | |
1666 | static bfd_reloc_code_real_type | |
1667 | map_operator_to_reloc (unsigned char operator) | |
1668 | { | |
1669 | struct suffix_reloc_map *sfx; | |
1670 | bfd_reloc_code_real_type reloc = BFD_RELOC_UNUSED; | |
1671 | ||
1672 | for (sfx = &suffix_relocs[0]; sfx->suffix; sfx++) | |
1673 | { | |
1674 | if (sfx->operator == operator) | |
1675 | { | |
1676 | reloc = sfx->reloc; | |
1677 | break; | |
1678 | } | |
1679 | } | |
1680 | ||
1681 | if (reloc == BFD_RELOC_UNUSED) | |
1682 | return BFD_RELOC_32; | |
1683 | ||
1684 | return reloc; | |
1685 | } | |
1686 | ||
1687 | ||
e0001a05 | 1688 | static const char * |
7fa3d080 | 1689 | expression_end (const char *name) |
e0001a05 NC |
1690 | { |
1691 | while (1) | |
1692 | { | |
1693 | switch (*name) | |
1694 | { | |
43cd72b9 | 1695 | case '}': |
e0001a05 NC |
1696 | case ';': |
1697 | case '\0': | |
1698 | case ',': | |
43cd72b9 | 1699 | case ':': |
e0001a05 NC |
1700 | return name; |
1701 | case ' ': | |
1702 | case '\t': | |
1703 | ++name; | |
1704 | continue; | |
1705 | default: | |
1706 | return 0; | |
1707 | } | |
1708 | } | |
1709 | } | |
1710 | ||
1711 | ||
1712 | #define ERROR_REG_NUM ((unsigned) -1) | |
1713 | ||
1714 | static unsigned | |
7fa3d080 | 1715 | tc_get_register (const char *prefix) |
e0001a05 NC |
1716 | { |
1717 | unsigned reg; | |
1718 | const char *next_expr; | |
1719 | const char *old_line_pointer; | |
1720 | ||
1721 | SKIP_WHITESPACE (); | |
1722 | old_line_pointer = input_line_pointer; | |
1723 | ||
1724 | if (*input_line_pointer == '$') | |
1725 | ++input_line_pointer; | |
1726 | ||
1727 | /* Accept "sp" as a synonym for "a1". */ | |
1728 | if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p' | |
1729 | && expression_end (input_line_pointer + 2)) | |
1730 | { | |
1731 | input_line_pointer += 2; | |
1732 | return 1; /* AR[1] */ | |
1733 | } | |
1734 | ||
1735 | while (*input_line_pointer++ == *prefix++) | |
1736 | ; | |
1737 | --input_line_pointer; | |
1738 | --prefix; | |
1739 | ||
1740 | if (*prefix) | |
1741 | { | |
1742 | as_bad (_("bad register name: %s"), old_line_pointer); | |
1743 | return ERROR_REG_NUM; | |
1744 | } | |
1745 | ||
1746 | if (!ISDIGIT ((unsigned char) *input_line_pointer)) | |
1747 | { | |
1748 | as_bad (_("bad register number: %s"), input_line_pointer); | |
1749 | return ERROR_REG_NUM; | |
1750 | } | |
1751 | ||
1752 | reg = 0; | |
1753 | ||
1754 | while (ISDIGIT ((int) *input_line_pointer)) | |
1755 | reg = reg * 10 + *input_line_pointer++ - '0'; | |
1756 | ||
1757 | if (!(next_expr = expression_end (input_line_pointer))) | |
1758 | { | |
1759 | as_bad (_("bad register name: %s"), old_line_pointer); | |
1760 | return ERROR_REG_NUM; | |
1761 | } | |
1762 | ||
1763 | input_line_pointer = (char *) next_expr; | |
1764 | ||
1765 | return reg; | |
1766 | } | |
1767 | ||
1768 | ||
e0001a05 | 1769 | static void |
7fa3d080 | 1770 | expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok) |
e0001a05 | 1771 | { |
43cd72b9 | 1772 | xtensa_isa isa = xtensa_default_isa; |
e0001a05 | 1773 | |
43cd72b9 BW |
1774 | /* Check if this is an immediate operand. */ |
1775 | if (xtensa_operand_is_register (isa, opc, opnd) == 0) | |
e0001a05 | 1776 | { |
43cd72b9 | 1777 | bfd_reloc_code_real_type reloc; |
e0001a05 | 1778 | segT t = expression (tok); |
43cd72b9 BW |
1779 | if (t == absolute_section |
1780 | && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1) | |
e0001a05 NC |
1781 | { |
1782 | assert (tok->X_op == O_constant); | |
1783 | tok->X_op = O_symbol; | |
1784 | tok->X_add_symbol = &abs_symbol; | |
1785 | } | |
43cd72b9 BW |
1786 | |
1787 | if ((tok->X_op == O_constant || tok->X_op == O_symbol) | |
bbdd25a8 BW |
1788 | && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok)) |
1789 | != BFD_RELOC_NONE)) | |
e0001a05 | 1790 | { |
1bbb5f21 | 1791 | switch (reloc) |
43cd72b9 | 1792 | { |
1bbb5f21 BW |
1793 | case BFD_RELOC_LO16: |
1794 | if (tok->X_op == O_constant) | |
bbdd25a8 | 1795 | { |
43cd72b9 | 1796 | tok->X_add_number &= 0xffff; |
bbdd25a8 | 1797 | return; |
1bbb5f21 BW |
1798 | } |
1799 | break; | |
1800 | case BFD_RELOC_HI16: | |
1801 | if (tok->X_op == O_constant) | |
1802 | { | |
43cd72b9 | 1803 | tok->X_add_number = ((unsigned) tok->X_add_number) >> 16; |
bbdd25a8 | 1804 | return; |
bbdd25a8 | 1805 | } |
1bbb5f21 BW |
1806 | break; |
1807 | case BFD_RELOC_UNUSED: | |
1808 | as_bad (_("unsupported relocation")); | |
1809 | return; | |
1810 | case BFD_RELOC_32_PCREL: | |
1811 | as_bad (_("pcrel relocation not allowed in an instruction")); | |
1812 | return; | |
1813 | default: | |
1814 | break; | |
43cd72b9 | 1815 | } |
bbdd25a8 | 1816 | tok->X_op = map_suffix_reloc_to_operator (reloc); |
e0001a05 | 1817 | } |
e0001a05 NC |
1818 | } |
1819 | else | |
1820 | { | |
43cd72b9 BW |
1821 | xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd); |
1822 | unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)); | |
e0001a05 NC |
1823 | |
1824 | if (reg != ERROR_REG_NUM) /* Already errored */ | |
1825 | { | |
1826 | uint32 buf = reg; | |
43cd72b9 | 1827 | if (xtensa_operand_encode (isa, opc, opnd, &buf)) |
e0001a05 NC |
1828 | as_bad (_("register number out of range")); |
1829 | } | |
1830 | ||
1831 | tok->X_op = O_register; | |
1832 | tok->X_add_symbol = 0; | |
1833 | tok->X_add_number = reg; | |
1834 | } | |
1835 | } | |
1836 | ||
1837 | ||
1838 | /* Split up the arguments for an opcode or pseudo-op. */ | |
1839 | ||
1840 | static int | |
7fa3d080 | 1841 | tokenize_arguments (char **args, char *str) |
e0001a05 NC |
1842 | { |
1843 | char *old_input_line_pointer; | |
1844 | bfd_boolean saw_comma = FALSE; | |
1845 | bfd_boolean saw_arg = FALSE; | |
43cd72b9 | 1846 | bfd_boolean saw_colon = FALSE; |
e0001a05 NC |
1847 | int num_args = 0; |
1848 | char *arg_end, *arg; | |
1849 | int arg_len; | |
43cd72b9 BW |
1850 | |
1851 | /* Save and restore input_line_pointer around this function. */ | |
e0001a05 NC |
1852 | old_input_line_pointer = input_line_pointer; |
1853 | input_line_pointer = str; | |
1854 | ||
1855 | while (*input_line_pointer) | |
1856 | { | |
1857 | SKIP_WHITESPACE (); | |
1858 | switch (*input_line_pointer) | |
1859 | { | |
1860 | case '\0': | |
43cd72b9 | 1861 | case '}': |
e0001a05 NC |
1862 | goto fini; |
1863 | ||
43cd72b9 BW |
1864 | case ':': |
1865 | input_line_pointer++; | |
1866 | if (saw_comma || saw_colon || !saw_arg) | |
1867 | goto err; | |
1868 | saw_colon = TRUE; | |
1869 | break; | |
1870 | ||
e0001a05 NC |
1871 | case ',': |
1872 | input_line_pointer++; | |
43cd72b9 | 1873 | if (saw_comma || saw_colon || !saw_arg) |
e0001a05 NC |
1874 | goto err; |
1875 | saw_comma = TRUE; | |
1876 | break; | |
1877 | ||
1878 | default: | |
43cd72b9 | 1879 | if (!saw_comma && !saw_colon && saw_arg) |
e0001a05 NC |
1880 | goto err; |
1881 | ||
1882 | arg_end = input_line_pointer + 1; | |
1883 | while (!expression_end (arg_end)) | |
1884 | arg_end += 1; | |
43cd72b9 | 1885 | |
e0001a05 | 1886 | arg_len = arg_end - input_line_pointer; |
43cd72b9 | 1887 | arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1); |
e0001a05 NC |
1888 | args[num_args] = arg; |
1889 | ||
43cd72b9 BW |
1890 | if (saw_colon) |
1891 | *arg++ = ':'; | |
e0001a05 NC |
1892 | strncpy (arg, input_line_pointer, arg_len); |
1893 | arg[arg_len] = '\0'; | |
43cd72b9 | 1894 | |
e0001a05 NC |
1895 | input_line_pointer = arg_end; |
1896 | num_args += 1; | |
c138bc38 | 1897 | saw_comma = FALSE; |
43cd72b9 | 1898 | saw_colon = FALSE; |
c138bc38 | 1899 | saw_arg = TRUE; |
e0001a05 NC |
1900 | break; |
1901 | } | |
1902 | } | |
1903 | ||
1904 | fini: | |
43cd72b9 | 1905 | if (saw_comma || saw_colon) |
e0001a05 NC |
1906 | goto err; |
1907 | input_line_pointer = old_input_line_pointer; | |
1908 | return num_args; | |
1909 | ||
1910 | err: | |
43cd72b9 BW |
1911 | if (saw_comma) |
1912 | as_bad (_("extra comma")); | |
1913 | else if (saw_colon) | |
1914 | as_bad (_("extra colon")); | |
1915 | else if (!saw_arg) | |
c138bc38 | 1916 | as_bad (_("missing argument")); |
43cd72b9 BW |
1917 | else |
1918 | as_bad (_("missing comma or colon")); | |
e0001a05 NC |
1919 | input_line_pointer = old_input_line_pointer; |
1920 | return -1; | |
1921 | } | |
1922 | ||
1923 | ||
43cd72b9 | 1924 | /* Parse the arguments to an opcode. Return TRUE on error. */ |
e0001a05 NC |
1925 | |
1926 | static bfd_boolean | |
7fa3d080 | 1927 | parse_arguments (TInsn *insn, int num_args, char **arg_strings) |
e0001a05 | 1928 | { |
43cd72b9 | 1929 | expressionS *tok, *last_tok; |
e0001a05 NC |
1930 | xtensa_opcode opcode = insn->opcode; |
1931 | bfd_boolean had_error = TRUE; | |
43cd72b9 BW |
1932 | xtensa_isa isa = xtensa_default_isa; |
1933 | int n, num_regs = 0; | |
e0001a05 | 1934 | int opcode_operand_count; |
43cd72b9 BW |
1935 | int opnd_cnt, last_opnd_cnt; |
1936 | unsigned int next_reg = 0; | |
e0001a05 NC |
1937 | char *old_input_line_pointer; |
1938 | ||
1939 | if (insn->insn_type == ITYPE_LITERAL) | |
1940 | opcode_operand_count = 1; | |
1941 | else | |
43cd72b9 | 1942 | opcode_operand_count = xtensa_opcode_num_operands (isa, opcode); |
e0001a05 | 1943 | |
43cd72b9 | 1944 | tok = insn->tok; |
e0001a05 NC |
1945 | memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS); |
1946 | ||
1947 | /* Save and restore input_line_pointer around this function. */ | |
43cd72b9 BW |
1948 | old_input_line_pointer = input_line_pointer; |
1949 | ||
1950 | last_tok = 0; | |
1951 | last_opnd_cnt = -1; | |
1952 | opnd_cnt = 0; | |
1953 | ||
1954 | /* Skip invisible operands. */ | |
1955 | while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0) | |
1956 | { | |
1957 | opnd_cnt += 1; | |
1958 | tok++; | |
1959 | } | |
e0001a05 NC |
1960 | |
1961 | for (n = 0; n < num_args; n++) | |
43cd72b9 | 1962 | { |
e0001a05 | 1963 | input_line_pointer = arg_strings[n]; |
43cd72b9 BW |
1964 | if (*input_line_pointer == ':') |
1965 | { | |
1966 | xtensa_regfile opnd_rf; | |
1967 | input_line_pointer++; | |
1968 | if (num_regs == 0) | |
1969 | goto err; | |
1970 | assert (opnd_cnt > 0); | |
1971 | num_regs--; | |
1972 | opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt); | |
1973 | if (next_reg | |
1974 | != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf))) | |
1975 | as_warn (_("incorrect register number, ignoring")); | |
1976 | next_reg++; | |
1977 | } | |
1978 | else | |
1979 | { | |
1980 | if (opnd_cnt >= opcode_operand_count) | |
1981 | { | |
1982 | as_warn (_("too many arguments")); | |
1983 | goto err; | |
1984 | } | |
1985 | assert (opnd_cnt < MAX_INSN_ARGS); | |
1986 | ||
1987 | expression_maybe_register (opcode, opnd_cnt, tok); | |
1988 | next_reg = tok->X_add_number + 1; | |
1989 | ||
1990 | if (tok->X_op == O_illegal || tok->X_op == O_absent) | |
1991 | goto err; | |
1992 | if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1) | |
1993 | { | |
1994 | num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1; | |
1995 | /* minus 1 because we are seeing one right now */ | |
1996 | } | |
1997 | else | |
1998 | num_regs = 0; | |
e0001a05 | 1999 | |
43cd72b9 BW |
2000 | last_tok = tok; |
2001 | last_opnd_cnt = opnd_cnt; | |
e0001a05 | 2002 | |
43cd72b9 BW |
2003 | do |
2004 | { | |
2005 | opnd_cnt += 1; | |
2006 | tok++; | |
2007 | } | |
2008 | while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0); | |
2009 | } | |
2010 | } | |
e0001a05 | 2011 | |
43cd72b9 BW |
2012 | if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1)) |
2013 | goto err; | |
e0001a05 NC |
2014 | |
2015 | insn->ntok = tok - insn->tok; | |
c138bc38 | 2016 | had_error = FALSE; |
e0001a05 NC |
2017 | |
2018 | err: | |
43cd72b9 | 2019 | input_line_pointer = old_input_line_pointer; |
e0001a05 NC |
2020 | return had_error; |
2021 | } | |
2022 | ||
2023 | ||
43cd72b9 | 2024 | static int |
7fa3d080 | 2025 | get_invisible_operands (TInsn *insn) |
43cd72b9 BW |
2026 | { |
2027 | xtensa_isa isa = xtensa_default_isa; | |
2028 | static xtensa_insnbuf slotbuf = NULL; | |
2029 | xtensa_format fmt; | |
2030 | xtensa_opcode opc = insn->opcode; | |
2031 | int slot, opnd, fmt_found; | |
2032 | unsigned val; | |
2033 | ||
2034 | if (!slotbuf) | |
2035 | slotbuf = xtensa_insnbuf_alloc (isa); | |
2036 | ||
2037 | /* Find format/slot where this can be encoded. */ | |
2038 | fmt_found = 0; | |
2039 | slot = 0; | |
2040 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) | |
2041 | { | |
2042 | for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++) | |
2043 | { | |
2044 | if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0) | |
2045 | { | |
2046 | fmt_found = 1; | |
2047 | break; | |
2048 | } | |
2049 | } | |
2050 | if (fmt_found) break; | |
2051 | } | |
2052 | ||
2053 | if (!fmt_found) | |
2054 | { | |
2055 | as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc)); | |
2056 | return -1; | |
2057 | } | |
2058 | ||
2059 | /* First encode all the visible operands | |
2060 | (to deal with shared field operands). */ | |
2061 | for (opnd = 0; opnd < insn->ntok; opnd++) | |
2062 | { | |
2063 | if (xtensa_operand_is_visible (isa, opc, opnd) == 1 | |
2064 | && (insn->tok[opnd].X_op == O_register | |
2065 | || insn->tok[opnd].X_op == O_constant)) | |
2066 | { | |
2067 | val = insn->tok[opnd].X_add_number; | |
2068 | xtensa_operand_encode (isa, opc, opnd, &val); | |
2069 | xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val); | |
2070 | } | |
2071 | } | |
2072 | ||
2073 | /* Then pull out the values for the invisible ones. */ | |
2074 | for (opnd = 0; opnd < insn->ntok; opnd++) | |
2075 | { | |
2076 | if (xtensa_operand_is_visible (isa, opc, opnd) == 0) | |
2077 | { | |
2078 | xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val); | |
2079 | xtensa_operand_decode (isa, opc, opnd, &val); | |
2080 | insn->tok[opnd].X_add_number = val; | |
2081 | if (xtensa_operand_is_register (isa, opc, opnd) == 1) | |
2082 | insn->tok[opnd].X_op = O_register; | |
2083 | else | |
2084 | insn->tok[opnd].X_op = O_constant; | |
2085 | } | |
2086 | } | |
2087 | ||
2088 | return 0; | |
2089 | } | |
2090 | ||
2091 | ||
e0001a05 | 2092 | static void |
7fa3d080 | 2093 | xg_reverse_shift_count (char **cnt_argp) |
e0001a05 NC |
2094 | { |
2095 | char *cnt_arg, *new_arg; | |
2096 | cnt_arg = *cnt_argp; | |
2097 | ||
2098 | /* replace the argument with "31-(argument)" */ | |
2099 | new_arg = (char *) xmalloc (strlen (cnt_arg) + 6); | |
2100 | sprintf (new_arg, "31-(%s)", cnt_arg); | |
2101 | ||
2102 | free (cnt_arg); | |
2103 | *cnt_argp = new_arg; | |
2104 | } | |
2105 | ||
2106 | ||
2107 | /* If "arg" is a constant expression, return non-zero with the value | |
2108 | in *valp. */ | |
2109 | ||
2110 | static int | |
7fa3d080 | 2111 | xg_arg_is_constant (char *arg, offsetT *valp) |
e0001a05 NC |
2112 | { |
2113 | expressionS exp; | |
2114 | char *save_ptr = input_line_pointer; | |
2115 | ||
2116 | input_line_pointer = arg; | |
2117 | expression (&exp); | |
2118 | input_line_pointer = save_ptr; | |
2119 | ||
2120 | if (exp.X_op == O_constant) | |
2121 | { | |
2122 | *valp = exp.X_add_number; | |
2123 | return 1; | |
2124 | } | |
2125 | ||
2126 | return 0; | |
2127 | } | |
2128 | ||
2129 | ||
2130 | static void | |
7fa3d080 | 2131 | xg_replace_opname (char **popname, char *newop) |
e0001a05 NC |
2132 | { |
2133 | free (*popname); | |
2134 | *popname = (char *) xmalloc (strlen (newop) + 1); | |
2135 | strcpy (*popname, newop); | |
2136 | } | |
2137 | ||
2138 | ||
2139 | static int | |
7fa3d080 BW |
2140 | xg_check_num_args (int *pnum_args, |
2141 | int expected_num, | |
2142 | char *opname, | |
2143 | char **arg_strings) | |
e0001a05 NC |
2144 | { |
2145 | int num_args = *pnum_args; | |
2146 | ||
43cd72b9 | 2147 | if (num_args < expected_num) |
e0001a05 NC |
2148 | { |
2149 | as_bad (_("not enough operands (%d) for '%s'; expected %d"), | |
2150 | num_args, opname, expected_num); | |
2151 | return -1; | |
2152 | } | |
2153 | ||
2154 | if (num_args > expected_num) | |
2155 | { | |
2156 | as_warn (_("too many operands (%d) for '%s'; expected %d"), | |
2157 | num_args, opname, expected_num); | |
2158 | while (num_args-- > expected_num) | |
2159 | { | |
2160 | free (arg_strings[num_args]); | |
2161 | arg_strings[num_args] = 0; | |
2162 | } | |
2163 | *pnum_args = expected_num; | |
2164 | return -1; | |
2165 | } | |
2166 | ||
2167 | return 0; | |
2168 | } | |
2169 | ||
2170 | ||
43cd72b9 BW |
2171 | /* If the register is not specified as part of the opcode, |
2172 | then get it from the operand and move it to the opcode. */ | |
2173 | ||
e0001a05 | 2174 | static int |
7fa3d080 | 2175 | xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings) |
e0001a05 | 2176 | { |
43cd72b9 BW |
2177 | xtensa_isa isa = xtensa_default_isa; |
2178 | xtensa_sysreg sr; | |
e0001a05 | 2179 | char *opname, *new_opname; |
43cd72b9 BW |
2180 | const char *sr_name; |
2181 | int is_user, is_write; | |
e0001a05 NC |
2182 | |
2183 | opname = *popname; | |
2184 | if (*opname == '_') | |
80ca4e2c | 2185 | opname += 1; |
43cd72b9 BW |
2186 | is_user = (opname[1] == 'u'); |
2187 | is_write = (opname[0] == 'w'); | |
e0001a05 | 2188 | |
43cd72b9 | 2189 | /* Opname == [rw]ur or [rwx]sr... */ |
e0001a05 | 2190 | |
43cd72b9 BW |
2191 | if (xg_check_num_args (pnum_args, 2, opname, arg_strings)) |
2192 | return -1; | |
e0001a05 | 2193 | |
43cd72b9 BW |
2194 | /* Check if the argument is a symbolic register name. */ |
2195 | sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]); | |
2196 | /* Handle WSR to "INTSET" as a special case. */ | |
2197 | if (sr == XTENSA_UNDEFINED && is_write && !is_user | |
2198 | && !strcasecmp (arg_strings[1], "intset")) | |
2199 | sr = xtensa_sysreg_lookup_name (isa, "interrupt"); | |
2200 | if (sr == XTENSA_UNDEFINED | |
2201 | || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user) | |
2202 | { | |
2203 | /* Maybe it's a register number.... */ | |
2204 | offsetT val; | |
e0001a05 NC |
2205 | if (!xg_arg_is_constant (arg_strings[1], &val)) |
2206 | { | |
43cd72b9 BW |
2207 | as_bad (_("invalid register '%s' for '%s' instruction"), |
2208 | arg_strings[1], opname); | |
e0001a05 NC |
2209 | return -1; |
2210 | } | |
43cd72b9 BW |
2211 | sr = xtensa_sysreg_lookup (isa, val, is_user); |
2212 | if (sr == XTENSA_UNDEFINED) | |
e0001a05 | 2213 | { |
43cd72b9 | 2214 | as_bad (_("invalid register number (%ld) for '%s' instruction"), |
dd49a749 | 2215 | (long) val, opname); |
e0001a05 NC |
2216 | return -1; |
2217 | } | |
43cd72b9 | 2218 | } |
e0001a05 | 2219 | |
43cd72b9 BW |
2220 | /* Remove the last argument, which is now part of the opcode. */ |
2221 | free (arg_strings[1]); | |
2222 | arg_strings[1] = 0; | |
2223 | *pnum_args = 1; | |
2224 | ||
2225 | /* Translate the opcode. */ | |
2226 | sr_name = xtensa_sysreg_name (isa, sr); | |
2227 | /* Another special case for "WSR.INTSET".... */ | |
2228 | if (is_write && !is_user && !strcasecmp ("interrupt", sr_name)) | |
2229 | sr_name = "intset"; | |
2230 | new_opname = (char *) xmalloc (strlen (sr_name) + 6); | |
80ca4e2c | 2231 | sprintf (new_opname, "%s.%s", *popname, sr_name); |
43cd72b9 BW |
2232 | free (*popname); |
2233 | *popname = new_opname; | |
2234 | ||
2235 | return 0; | |
2236 | } | |
2237 | ||
2238 | ||
2239 | static int | |
7fa3d080 | 2240 | xtensa_translate_old_userreg_ops (char **popname) |
43cd72b9 BW |
2241 | { |
2242 | xtensa_isa isa = xtensa_default_isa; | |
2243 | xtensa_sysreg sr; | |
2244 | char *opname, *new_opname; | |
2245 | const char *sr_name; | |
2246 | bfd_boolean has_underbar = FALSE; | |
2247 | ||
2248 | opname = *popname; | |
2249 | if (opname[0] == '_') | |
2250 | { | |
2251 | has_underbar = TRUE; | |
2252 | opname += 1; | |
2253 | } | |
2254 | ||
2255 | sr = xtensa_sysreg_lookup_name (isa, opname + 1); | |
2256 | if (sr != XTENSA_UNDEFINED) | |
2257 | { | |
2258 | /* The new default name ("nnn") is different from the old default | |
2259 | name ("URnnn"). The old default is handled below, and we don't | |
2260 | want to recognize [RW]nnn, so do nothing if the name is the (new) | |
2261 | default. */ | |
2262 | static char namebuf[10]; | |
2263 | sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr)); | |
2264 | if (strcmp (namebuf, opname + 1) == 0) | |
2265 | return 0; | |
2266 | } | |
2267 | else | |
2268 | { | |
2269 | offsetT val; | |
2270 | char *end; | |
2271 | ||
2272 | /* Only continue if the reg name is "URnnn". */ | |
2273 | if (opname[1] != 'u' || opname[2] != 'r') | |
2274 | return 0; | |
2275 | val = strtoul (opname + 3, &end, 10); | |
2276 | if (*end != '\0') | |
2277 | return 0; | |
2278 | ||
2279 | sr = xtensa_sysreg_lookup (isa, val, 1); | |
2280 | if (sr == XTENSA_UNDEFINED) | |
2281 | { | |
2282 | as_bad (_("invalid register number (%ld) for '%s'"), | |
dd49a749 | 2283 | (long) val, opname); |
43cd72b9 BW |
2284 | return -1; |
2285 | } | |
2286 | } | |
2287 | ||
2288 | /* Translate the opcode. */ | |
2289 | sr_name = xtensa_sysreg_name (isa, sr); | |
2290 | new_opname = (char *) xmalloc (strlen (sr_name) + 6); | |
2291 | sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""), | |
2292 | opname[0], sr_name); | |
2293 | free (*popname); | |
2294 | *popname = new_opname; | |
2295 | ||
2296 | return 0; | |
2297 | } | |
2298 | ||
2299 | ||
2300 | static int | |
7fa3d080 BW |
2301 | xtensa_translate_zero_immed (char *old_op, |
2302 | char *new_op, | |
2303 | char **popname, | |
2304 | int *pnum_args, | |
2305 | char **arg_strings) | |
43cd72b9 BW |
2306 | { |
2307 | char *opname; | |
2308 | offsetT val; | |
2309 | ||
2310 | opname = *popname; | |
2311 | assert (opname[0] != '_'); | |
2312 | ||
2313 | if (strcmp (opname, old_op) != 0) | |
2314 | return 0; | |
e0001a05 | 2315 | |
43cd72b9 BW |
2316 | if (xg_check_num_args (pnum_args, 3, opname, arg_strings)) |
2317 | return -1; | |
2318 | if (xg_arg_is_constant (arg_strings[1], &val) && val == 0) | |
2319 | { | |
2320 | xg_replace_opname (popname, new_op); | |
2321 | free (arg_strings[1]); | |
2322 | arg_strings[1] = arg_strings[2]; | |
2323 | arg_strings[2] = 0; | |
2324 | *pnum_args = 2; | |
e0001a05 NC |
2325 | } |
2326 | ||
2327 | return 0; | |
2328 | } | |
2329 | ||
2330 | ||
2331 | /* If the instruction is an idiom (i.e., a built-in macro), translate it. | |
2332 | Returns non-zero if an error was found. */ | |
2333 | ||
2334 | static int | |
7fa3d080 | 2335 | xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings) |
e0001a05 NC |
2336 | { |
2337 | char *opname = *popname; | |
2338 | bfd_boolean has_underbar = FALSE; | |
2339 | ||
2340 | if (*opname == '_') | |
2341 | { | |
2342 | has_underbar = TRUE; | |
2343 | opname += 1; | |
2344 | } | |
2345 | ||
2346 | if (strcmp (opname, "mov") == 0) | |
2347 | { | |
43cd72b9 | 2348 | if (use_transform () && !has_underbar && density_supported) |
e0001a05 NC |
2349 | xg_replace_opname (popname, "mov.n"); |
2350 | else | |
2351 | { | |
2352 | if (xg_check_num_args (pnum_args, 2, opname, arg_strings)) | |
2353 | return -1; | |
2354 | xg_replace_opname (popname, (has_underbar ? "_or" : "or")); | |
2355 | arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1); | |
2356 | strcpy (arg_strings[2], arg_strings[1]); | |
2357 | *pnum_args = 3; | |
2358 | } | |
2359 | return 0; | |
2360 | } | |
2361 | ||
2362 | if (strcmp (opname, "bbsi.l") == 0) | |
2363 | { | |
2364 | if (xg_check_num_args (pnum_args, 3, opname, arg_strings)) | |
2365 | return -1; | |
2366 | xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi")); | |
2367 | if (target_big_endian) | |
2368 | xg_reverse_shift_count (&arg_strings[1]); | |
2369 | return 0; | |
2370 | } | |
2371 | ||
2372 | if (strcmp (opname, "bbci.l") == 0) | |
2373 | { | |
2374 | if (xg_check_num_args (pnum_args, 3, opname, arg_strings)) | |
2375 | return -1; | |
2376 | xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci")); | |
2377 | if (target_big_endian) | |
2378 | xg_reverse_shift_count (&arg_strings[1]); | |
2379 | return 0; | |
2380 | } | |
2381 | ||
eb6d9dce BW |
2382 | /* Don't do anything special with NOPs inside FLIX instructions. They |
2383 | are handled elsewhere. Real NOP instructions are always available | |
2384 | in configurations with FLIX, so this should never be an issue but | |
2385 | check for it anyway. */ | |
2386 | if (!cur_vinsn.inside_bundle && xtensa_nop_opcode == XTENSA_UNDEFINED | |
43cd72b9 | 2387 | && strcmp (opname, "nop") == 0) |
e0001a05 | 2388 | { |
43cd72b9 | 2389 | if (use_transform () && !has_underbar && density_supported) |
e0001a05 NC |
2390 | xg_replace_opname (popname, "nop.n"); |
2391 | else | |
2392 | { | |
2393 | if (xg_check_num_args (pnum_args, 0, opname, arg_strings)) | |
2394 | return -1; | |
2395 | xg_replace_opname (popname, (has_underbar ? "_or" : "or")); | |
2396 | arg_strings[0] = (char *) xmalloc (3); | |
2397 | arg_strings[1] = (char *) xmalloc (3); | |
2398 | arg_strings[2] = (char *) xmalloc (3); | |
2399 | strcpy (arg_strings[0], "a1"); | |
2400 | strcpy (arg_strings[1], "a1"); | |
2401 | strcpy (arg_strings[2], "a1"); | |
2402 | *pnum_args = 3; | |
2403 | } | |
2404 | return 0; | |
2405 | } | |
2406 | ||
43cd72b9 BW |
2407 | /* Recognize [RW]UR and [RWX]SR. */ |
2408 | if ((((opname[0] == 'r' || opname[0] == 'w') | |
2409 | && (opname[1] == 'u' || opname[1] == 's')) | |
2410 | || (opname[0] == 'x' && opname[1] == 's')) | |
2411 | && opname[2] == 'r' | |
2412 | && opname[3] == '\0') | |
e0001a05 NC |
2413 | return xg_translate_sysreg_op (popname, pnum_args, arg_strings); |
2414 | ||
43cd72b9 BW |
2415 | /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and |
2416 | [RW]<name> if <name> is the non-default name of a user register. */ | |
2417 | if ((opname[0] == 'r' || opname[0] == 'w') | |
2418 | && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED) | |
2419 | return xtensa_translate_old_userreg_ops (popname); | |
e0001a05 | 2420 | |
43cd72b9 BW |
2421 | /* Relax branches that don't allow comparisons against an immediate value |
2422 | of zero to the corresponding branches with implicit zero immediates. */ | |
2423 | if (!has_underbar && use_transform ()) | |
2424 | { | |
2425 | if (xtensa_translate_zero_immed ("bnei", "bnez", popname, | |
2426 | pnum_args, arg_strings)) | |
2427 | return -1; | |
e0001a05 | 2428 | |
43cd72b9 BW |
2429 | if (xtensa_translate_zero_immed ("beqi", "beqz", popname, |
2430 | pnum_args, arg_strings)) | |
2431 | return -1; | |
e0001a05 | 2432 | |
43cd72b9 BW |
2433 | if (xtensa_translate_zero_immed ("bgei", "bgez", popname, |
2434 | pnum_args, arg_strings)) | |
2435 | return -1; | |
e0001a05 | 2436 | |
43cd72b9 BW |
2437 | if (xtensa_translate_zero_immed ("blti", "bltz", popname, |
2438 | pnum_args, arg_strings)) | |
2439 | return -1; | |
2440 | } | |
e0001a05 | 2441 | |
43cd72b9 BW |
2442 | return 0; |
2443 | } | |
e0001a05 | 2444 | |
43cd72b9 BW |
2445 | \f |
2446 | /* Functions for dealing with the Xtensa ISA. */ | |
e0001a05 | 2447 | |
43cd72b9 BW |
2448 | /* Currently the assembler only allows us to use a single target per |
2449 | fragment. Because of this, only one operand for a given | |
2450 | instruction may be symbolic. If there is a PC-relative operand, | |
2451 | the last one is chosen. Otherwise, the result is the number of the | |
2452 | last immediate operand, and if there are none of those, we fail and | |
2453 | return -1. */ | |
e0001a05 | 2454 | |
7fa3d080 BW |
2455 | static int |
2456 | get_relaxable_immed (xtensa_opcode opcode) | |
43cd72b9 BW |
2457 | { |
2458 | int last_immed = -1; | |
2459 | int noperands, opi; | |
e0001a05 | 2460 | |
43cd72b9 BW |
2461 | if (opcode == XTENSA_UNDEFINED) |
2462 | return -1; | |
e0001a05 | 2463 | |
43cd72b9 BW |
2464 | noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode); |
2465 | for (opi = noperands - 1; opi >= 0; opi--) | |
2466 | { | |
2467 | if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0) | |
2468 | continue; | |
2469 | if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1) | |
2470 | return opi; | |
2471 | if (last_immed == -1 | |
2472 | && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0) | |
2473 | last_immed = opi; | |
e0001a05 | 2474 | } |
43cd72b9 | 2475 | return last_immed; |
e0001a05 NC |
2476 | } |
2477 | ||
e0001a05 | 2478 | |
43cd72b9 | 2479 | static xtensa_opcode |
7fa3d080 | 2480 | get_opcode_from_buf (const char *buf, int slot) |
e0001a05 | 2481 | { |
43cd72b9 BW |
2482 | static xtensa_insnbuf insnbuf = NULL; |
2483 | static xtensa_insnbuf slotbuf = NULL; | |
2484 | xtensa_isa isa = xtensa_default_isa; | |
2485 | xtensa_format fmt; | |
2486 | ||
2487 | if (!insnbuf) | |
e0001a05 | 2488 | { |
43cd72b9 BW |
2489 | insnbuf = xtensa_insnbuf_alloc (isa); |
2490 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 2491 | } |
e0001a05 | 2492 | |
d77b99c9 | 2493 | xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0); |
43cd72b9 BW |
2494 | fmt = xtensa_format_decode (isa, insnbuf); |
2495 | if (fmt == XTENSA_UNDEFINED) | |
2496 | return XTENSA_UNDEFINED; | |
e0001a05 | 2497 | |
43cd72b9 BW |
2498 | if (slot >= xtensa_format_num_slots (isa, fmt)) |
2499 | return XTENSA_UNDEFINED; | |
e0001a05 | 2500 | |
43cd72b9 BW |
2501 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); |
2502 | return xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
e0001a05 NC |
2503 | } |
2504 | ||
2505 | ||
43cd72b9 | 2506 | #ifdef TENSILICA_DEBUG |
e0001a05 | 2507 | |
43cd72b9 | 2508 | /* For debugging, print out the mapping of opcode numbers to opcodes. */ |
e0001a05 | 2509 | |
7fa3d080 BW |
2510 | static void |
2511 | xtensa_print_insn_table (void) | |
43cd72b9 BW |
2512 | { |
2513 | int num_opcodes, num_operands; | |
2514 | xtensa_opcode opcode; | |
2515 | xtensa_isa isa = xtensa_default_isa; | |
e0001a05 | 2516 | |
43cd72b9 BW |
2517 | num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa); |
2518 | for (opcode = 0; opcode < num_opcodes; opcode++) | |
e0001a05 | 2519 | { |
43cd72b9 BW |
2520 | int opn; |
2521 | fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode)); | |
2522 | num_operands = xtensa_opcode_num_operands (isa, opcode); | |
2523 | for (opn = 0; opn < num_operands; opn++) | |
2524 | { | |
2525 | if (xtensa_operand_is_visible (isa, opcode, opn) == 0) | |
2526 | continue; | |
2527 | if (xtensa_operand_is_register (isa, opcode, opn) == 1) | |
2528 | { | |
2529 | xtensa_regfile opnd_rf = | |
2530 | xtensa_operand_regfile (isa, opcode, opn); | |
2531 | fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf)); | |
2532 | } | |
2533 | else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1) | |
2534 | fputs ("[lLr] ", stderr); | |
2535 | else | |
2536 | fputs ("i ", stderr); | |
2537 | } | |
2538 | fprintf (stderr, "\n"); | |
e0001a05 | 2539 | } |
e0001a05 NC |
2540 | } |
2541 | ||
2542 | ||
43cd72b9 | 2543 | static void |
7fa3d080 | 2544 | print_vliw_insn (xtensa_insnbuf vbuf) |
e0001a05 | 2545 | { |
e0001a05 | 2546 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
2547 | xtensa_format f = xtensa_format_decode (isa, vbuf); |
2548 | xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa); | |
2549 | int op; | |
e0001a05 | 2550 | |
43cd72b9 | 2551 | fprintf (stderr, "format = %d\n", f); |
e0001a05 | 2552 | |
43cd72b9 BW |
2553 | for (op = 0; op < xtensa_format_num_slots (isa, f); op++) |
2554 | { | |
2555 | xtensa_opcode opcode; | |
2556 | const char *opname; | |
2557 | int operands; | |
2558 | ||
2559 | xtensa_format_get_slot (isa, f, op, vbuf, sbuf); | |
2560 | opcode = xtensa_opcode_decode (isa, f, op, sbuf); | |
2561 | opname = xtensa_opcode_name (isa, opcode); | |
2562 | ||
2563 | fprintf (stderr, "op in slot %i is %s;\n", op, opname); | |
2564 | fprintf (stderr, " operands = "); | |
2565 | for (operands = 0; | |
2566 | operands < xtensa_opcode_num_operands (isa, opcode); | |
2567 | operands++) | |
2568 | { | |
2569 | unsigned int val; | |
2570 | if (xtensa_operand_is_visible (isa, opcode, operands) == 0) | |
2571 | continue; | |
2572 | xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val); | |
2573 | xtensa_operand_decode (isa, opcode, operands, &val); | |
2574 | fprintf (stderr, "%d ", val); | |
2575 | } | |
2576 | fprintf (stderr, "\n"); | |
2577 | } | |
2578 | xtensa_insnbuf_free (isa, sbuf); | |
e0001a05 NC |
2579 | } |
2580 | ||
43cd72b9 BW |
2581 | #endif /* TENSILICA_DEBUG */ |
2582 | ||
e0001a05 NC |
2583 | |
2584 | static bfd_boolean | |
7fa3d080 | 2585 | is_direct_call_opcode (xtensa_opcode opcode) |
e0001a05 | 2586 | { |
43cd72b9 BW |
2587 | xtensa_isa isa = xtensa_default_isa; |
2588 | int n, num_operands; | |
e0001a05 | 2589 | |
64b607e6 | 2590 | if (xtensa_opcode_is_call (isa, opcode) != 1) |
e0001a05 NC |
2591 | return FALSE; |
2592 | ||
43cd72b9 BW |
2593 | num_operands = xtensa_opcode_num_operands (isa, opcode); |
2594 | for (n = 0; n < num_operands; n++) | |
2595 | { | |
2596 | if (xtensa_operand_is_register (isa, opcode, n) == 0 | |
2597 | && xtensa_operand_is_PCrelative (isa, opcode, n) == 1) | |
2598 | return TRUE; | |
2599 | } | |
2600 | return FALSE; | |
e0001a05 NC |
2601 | } |
2602 | ||
2603 | ||
43cd72b9 BW |
2604 | /* Convert from BFD relocation type code to slot and operand number. |
2605 | Returns non-zero on failure. */ | |
e0001a05 | 2606 | |
43cd72b9 | 2607 | static int |
7fa3d080 | 2608 | decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt) |
e0001a05 | 2609 | { |
43cd72b9 BW |
2610 | if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP |
2611 | && reloc <= BFD_RELOC_XTENSA_SLOT14_OP) | |
e0001a05 | 2612 | { |
43cd72b9 BW |
2613 | *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP; |
2614 | *is_alt = FALSE; | |
e0001a05 | 2615 | } |
43cd72b9 BW |
2616 | else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT |
2617 | && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT) | |
e0001a05 | 2618 | { |
43cd72b9 BW |
2619 | *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT; |
2620 | *is_alt = TRUE; | |
e0001a05 | 2621 | } |
43cd72b9 BW |
2622 | else |
2623 | return -1; | |
2624 | ||
2625 | return 0; | |
e0001a05 NC |
2626 | } |
2627 | ||
2628 | ||
43cd72b9 BW |
2629 | /* Convert from slot number to BFD relocation type code for the |
2630 | standard PC-relative relocations. Return BFD_RELOC_NONE on | |
2631 | failure. */ | |
e0001a05 | 2632 | |
43cd72b9 | 2633 | static bfd_reloc_code_real_type |
7fa3d080 | 2634 | encode_reloc (int slot) |
e0001a05 | 2635 | { |
43cd72b9 BW |
2636 | if (slot < 0 || slot > 14) |
2637 | return BFD_RELOC_NONE; | |
2638 | ||
2639 | return BFD_RELOC_XTENSA_SLOT0_OP + slot; | |
e0001a05 NC |
2640 | } |
2641 | ||
2642 | ||
43cd72b9 BW |
2643 | /* Convert from slot numbers to BFD relocation type code for the |
2644 | "alternate" relocations. Return BFD_RELOC_NONE on failure. */ | |
e0001a05 | 2645 | |
43cd72b9 | 2646 | static bfd_reloc_code_real_type |
7fa3d080 | 2647 | encode_alt_reloc (int slot) |
e0001a05 | 2648 | { |
43cd72b9 BW |
2649 | if (slot < 0 || slot > 14) |
2650 | return BFD_RELOC_NONE; | |
2651 | ||
2652 | return BFD_RELOC_XTENSA_SLOT0_ALT + slot; | |
e0001a05 NC |
2653 | } |
2654 | ||
2655 | ||
2656 | static void | |
7fa3d080 BW |
2657 | xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf, |
2658 | xtensa_format fmt, | |
2659 | int slot, | |
2660 | xtensa_opcode opcode, | |
2661 | int operand, | |
2662 | uint32 value, | |
2663 | const char *file, | |
2664 | unsigned int line) | |
e0001a05 | 2665 | { |
e0001a05 NC |
2666 | uint32 valbuf = value; |
2667 | ||
43cd72b9 | 2668 | if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf)) |
e0001a05 | 2669 | { |
43cd72b9 BW |
2670 | if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand) |
2671 | == 1) | |
2672 | as_bad_where ((char *) file, line, | |
d7c531cd BW |
2673 | _("operand %d of '%s' has out of range value '%u'"), |
2674 | operand + 1, | |
2675 | xtensa_opcode_name (xtensa_default_isa, opcode), | |
2676 | value); | |
43cd72b9 BW |
2677 | else |
2678 | as_bad_where ((char *) file, line, | |
d7c531cd BW |
2679 | _("operand %d of '%s' has invalid value '%u'"), |
2680 | operand + 1, | |
2681 | xtensa_opcode_name (xtensa_default_isa, opcode), | |
2682 | value); | |
43cd72b9 | 2683 | return; |
e0001a05 NC |
2684 | } |
2685 | ||
43cd72b9 BW |
2686 | xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot, |
2687 | slotbuf, valbuf); | |
e0001a05 NC |
2688 | } |
2689 | ||
2690 | ||
2691 | static uint32 | |
7fa3d080 BW |
2692 | xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf, |
2693 | xtensa_format fmt, | |
2694 | int slot, | |
2695 | xtensa_opcode opcode, | |
2696 | int opnum) | |
e0001a05 | 2697 | { |
43cd72b9 BW |
2698 | uint32 val = 0; |
2699 | (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum, | |
2700 | fmt, slot, slotbuf, &val); | |
2701 | (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val); | |
2702 | return val; | |
e0001a05 NC |
2703 | } |
2704 | ||
e0001a05 | 2705 | \f |
7fa3d080 | 2706 | /* Checks for rules from xtensa-relax tables. */ |
e0001a05 | 2707 | |
7fa3d080 BW |
2708 | /* The routine xg_instruction_matches_option_term must return TRUE |
2709 | when a given option term is true. The meaning of all of the option | |
2710 | terms is given interpretation by this function. This is needed when | |
2711 | an option depends on the state of a directive, but there are no such | |
2712 | options in use right now. */ | |
e0001a05 | 2713 | |
7fa3d080 BW |
2714 | static bfd_boolean |
2715 | xg_instruction_matches_option_term (TInsn *insn ATTRIBUTE_UNUSED, | |
2716 | const ReqOrOption *option) | |
e0001a05 | 2717 | { |
7fa3d080 BW |
2718 | if (strcmp (option->option_name, "realnop") == 0 |
2719 | || strncmp (option->option_name, "IsaUse", 6) == 0) | |
2720 | { | |
2721 | /* These conditions were evaluated statically when building the | |
2722 | relaxation table. There's no need to reevaluate them now. */ | |
2723 | return TRUE; | |
2724 | } | |
2725 | else | |
2726 | { | |
2727 | as_fatal (_("internal error: unknown option name '%s'"), | |
2728 | option->option_name); | |
2729 | } | |
e0001a05 NC |
2730 | } |
2731 | ||
2732 | ||
7fa3d080 BW |
2733 | static bfd_boolean |
2734 | xg_instruction_matches_or_options (TInsn *insn, | |
2735 | const ReqOrOptionList *or_option) | |
e0001a05 | 2736 | { |
7fa3d080 BW |
2737 | const ReqOrOption *option; |
2738 | /* Must match each of the AND terms. */ | |
2739 | for (option = or_option; option != NULL; option = option->next) | |
e0001a05 | 2740 | { |
7fa3d080 BW |
2741 | if (xg_instruction_matches_option_term (insn, option)) |
2742 | return TRUE; | |
e0001a05 | 2743 | } |
7fa3d080 | 2744 | return FALSE; |
e0001a05 NC |
2745 | } |
2746 | ||
2747 | ||
7fa3d080 BW |
2748 | static bfd_boolean |
2749 | xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options) | |
e0001a05 | 2750 | { |
7fa3d080 BW |
2751 | const ReqOption *req_options; |
2752 | /* Must match each of the AND terms. */ | |
2753 | for (req_options = options; | |
2754 | req_options != NULL; | |
2755 | req_options = req_options->next) | |
e0001a05 | 2756 | { |
7fa3d080 BW |
2757 | /* Must match one of the OR clauses. */ |
2758 | if (!xg_instruction_matches_or_options (insn, | |
2759 | req_options->or_option_terms)) | |
2760 | return FALSE; | |
e0001a05 | 2761 | } |
7fa3d080 | 2762 | return TRUE; |
e0001a05 NC |
2763 | } |
2764 | ||
2765 | ||
7fa3d080 | 2766 | /* Return the transition rule that matches or NULL if none matches. */ |
e0001a05 | 2767 | |
7fa3d080 BW |
2768 | static bfd_boolean |
2769 | xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule) | |
e0001a05 | 2770 | { |
7fa3d080 | 2771 | PreconditionList *condition_l; |
e0001a05 | 2772 | |
7fa3d080 BW |
2773 | if (rule->opcode != insn->opcode) |
2774 | return FALSE; | |
e0001a05 | 2775 | |
7fa3d080 BW |
2776 | for (condition_l = rule->conditions; |
2777 | condition_l != NULL; | |
2778 | condition_l = condition_l->next) | |
e0001a05 | 2779 | { |
7fa3d080 BW |
2780 | expressionS *exp1; |
2781 | expressionS *exp2; | |
2782 | Precondition *cond = condition_l->precond; | |
e0001a05 | 2783 | |
7fa3d080 | 2784 | switch (cond->typ) |
e0001a05 | 2785 | { |
7fa3d080 BW |
2786 | case OP_CONSTANT: |
2787 | /* The expression must be the constant. */ | |
2788 | assert (cond->op_num < insn->ntok); | |
2789 | exp1 = &insn->tok[cond->op_num]; | |
2790 | if (expr_is_const (exp1)) | |
2791 | { | |
2792 | switch (cond->cmp) | |
2793 | { | |
2794 | case OP_EQUAL: | |
2795 | if (get_expr_const (exp1) != cond->op_data) | |
2796 | return FALSE; | |
2797 | break; | |
2798 | case OP_NOTEQUAL: | |
2799 | if (get_expr_const (exp1) == cond->op_data) | |
2800 | return FALSE; | |
2801 | break; | |
2802 | default: | |
2803 | return FALSE; | |
2804 | } | |
2805 | } | |
2806 | else if (expr_is_register (exp1)) | |
2807 | { | |
2808 | switch (cond->cmp) | |
2809 | { | |
2810 | case OP_EQUAL: | |
2811 | if (get_expr_register (exp1) != cond->op_data) | |
2812 | return FALSE; | |
2813 | break; | |
2814 | case OP_NOTEQUAL: | |
2815 | if (get_expr_register (exp1) == cond->op_data) | |
2816 | return FALSE; | |
2817 | break; | |
2818 | default: | |
2819 | return FALSE; | |
2820 | } | |
2821 | } | |
2822 | else | |
2823 | return FALSE; | |
2824 | break; | |
2825 | ||
2826 | case OP_OPERAND: | |
2827 | assert (cond->op_num < insn->ntok); | |
2828 | assert (cond->op_data < insn->ntok); | |
2829 | exp1 = &insn->tok[cond->op_num]; | |
2830 | exp2 = &insn->tok[cond->op_data]; | |
2831 | ||
2832 | switch (cond->cmp) | |
2833 | { | |
2834 | case OP_EQUAL: | |
2835 | if (!expr_is_equal (exp1, exp2)) | |
2836 | return FALSE; | |
2837 | break; | |
2838 | case OP_NOTEQUAL: | |
2839 | if (expr_is_equal (exp1, exp2)) | |
2840 | return FALSE; | |
2841 | break; | |
2842 | } | |
2843 | break; | |
2844 | ||
2845 | case OP_LITERAL: | |
2846 | case OP_LABEL: | |
2847 | default: | |
2848 | return FALSE; | |
2849 | } | |
2850 | } | |
2851 | if (!xg_instruction_matches_options (insn, rule->options)) | |
2852 | return FALSE; | |
2853 | ||
2854 | return TRUE; | |
2855 | } | |
2856 | ||
2857 | ||
2858 | static int | |
2859 | transition_rule_cmp (const TransitionRule *a, const TransitionRule *b) | |
2860 | { | |
2861 | bfd_boolean a_greater = FALSE; | |
2862 | bfd_boolean b_greater = FALSE; | |
2863 | ||
2864 | ReqOptionList *l_a = a->options; | |
2865 | ReqOptionList *l_b = b->options; | |
2866 | ||
2867 | /* We only care if they both are the same except for | |
2868 | a const16 vs. an l32r. */ | |
2869 | ||
2870 | while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL))) | |
2871 | { | |
2872 | ReqOrOptionList *l_or_a = l_a->or_option_terms; | |
2873 | ReqOrOptionList *l_or_b = l_b->or_option_terms; | |
2874 | while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL))) | |
2875 | { | |
2876 | if (l_or_a->is_true != l_or_b->is_true) | |
2877 | return 0; | |
2878 | if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0) | |
2879 | { | |
2880 | /* This is the case we care about. */ | |
2881 | if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0 | |
2882 | && strcmp (l_or_b->option_name, "IsaUseL32R") == 0) | |
2883 | { | |
2884 | if (prefer_const16) | |
2885 | a_greater = TRUE; | |
2886 | else | |
2887 | b_greater = TRUE; | |
2888 | } | |
2889 | else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0 | |
2890 | && strcmp (l_or_b->option_name, "IsaUseConst16") == 0) | |
2891 | { | |
2892 | if (prefer_const16) | |
2893 | b_greater = TRUE; | |
2894 | else | |
2895 | a_greater = TRUE; | |
2896 | } | |
2897 | else | |
2898 | return 0; | |
2899 | } | |
2900 | l_or_a = l_or_a->next; | |
2901 | l_or_b = l_or_b->next; | |
2902 | } | |
2903 | if (l_or_a || l_or_b) | |
2904 | return 0; | |
2905 | ||
2906 | l_a = l_a->next; | |
2907 | l_b = l_b->next; | |
2908 | } | |
2909 | if (l_a || l_b) | |
2910 | return 0; | |
2911 | ||
2912 | /* Incomparable if the substitution was used differently in two cases. */ | |
2913 | if (a_greater && b_greater) | |
2914 | return 0; | |
2915 | ||
2916 | if (b_greater) | |
2917 | return 1; | |
2918 | if (a_greater) | |
2919 | return -1; | |
2920 | ||
2921 | return 0; | |
2922 | } | |
2923 | ||
2924 | ||
2925 | static TransitionRule * | |
2926 | xg_instruction_match (TInsn *insn) | |
2927 | { | |
2928 | TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp); | |
2929 | TransitionList *l; | |
2930 | assert (insn->opcode < table->num_opcodes); | |
2931 | ||
2932 | /* Walk through all of the possible transitions. */ | |
2933 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
2934 | { | |
2935 | TransitionRule *rule = l->rule; | |
2936 | if (xg_instruction_matches_rule (insn, rule)) | |
2937 | return rule; | |
2938 | } | |
2939 | return NULL; | |
2940 | } | |
2941 | ||
2942 | \f | |
2943 | /* Various Other Internal Functions. */ | |
2944 | ||
2945 | static bfd_boolean | |
2946 | is_unique_insn_expansion (TransitionRule *r) | |
2947 | { | |
2948 | if (!r->to_instr || r->to_instr->next != NULL) | |
2949 | return FALSE; | |
2950 | if (r->to_instr->typ != INSTR_INSTR) | |
2951 | return FALSE; | |
2952 | return TRUE; | |
2953 | } | |
2954 | ||
2955 | ||
84b08ed9 BW |
2956 | /* Check if there is exactly one relaxation for INSN that converts it to |
2957 | another instruction of equal or larger size. If so, and if TARG is | |
2958 | non-null, go ahead and generate the relaxed instruction into TARG. If | |
2959 | NARROW_ONLY is true, then only consider relaxations that widen a narrow | |
2960 | instruction, i.e., ignore relaxations that convert to an instruction of | |
2961 | equal size. In some contexts where this function is used, only | |
c138bc38 | 2962 | a single widening is allowed and the NARROW_ONLY argument is used to |
84b08ed9 BW |
2963 | exclude cases like ADDI being "widened" to an ADDMI, which may |
2964 | later be relaxed to an ADDMI/ADDI pair. */ | |
7fa3d080 | 2965 | |
84b08ed9 BW |
2966 | bfd_boolean |
2967 | xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only) | |
7fa3d080 BW |
2968 | { |
2969 | TransitionTable *table = xg_build_widen_table (&transition_rule_cmp); | |
2970 | TransitionList *l; | |
84b08ed9 | 2971 | TransitionRule *match = 0; |
7fa3d080 | 2972 | |
7fa3d080 BW |
2973 | assert (insn->insn_type == ITYPE_INSN); |
2974 | assert (insn->opcode < table->num_opcodes); | |
2975 | ||
2976 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
2977 | { | |
2978 | TransitionRule *rule = l->rule; | |
2979 | ||
2980 | if (xg_instruction_matches_rule (insn, rule) | |
84b08ed9 BW |
2981 | && is_unique_insn_expansion (rule) |
2982 | && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0) | |
2983 | <= xg_get_single_size (rule->to_instr->opcode))) | |
7fa3d080 | 2984 | { |
84b08ed9 BW |
2985 | if (match) |
2986 | return FALSE; | |
2987 | match = rule; | |
7fa3d080 BW |
2988 | } |
2989 | } | |
84b08ed9 BW |
2990 | if (!match) |
2991 | return FALSE; | |
2992 | ||
2993 | if (targ) | |
2994 | xg_build_to_insn (targ, insn, match->to_instr); | |
2995 | return TRUE; | |
7fa3d080 BW |
2996 | } |
2997 | ||
2998 | ||
2999 | /* Return the maximum number of bytes this opcode can expand to. */ | |
3000 | ||
3001 | static int | |
3002 | xg_get_max_insn_widen_size (xtensa_opcode opcode) | |
3003 | { | |
3004 | TransitionTable *table = xg_build_widen_table (&transition_rule_cmp); | |
3005 | TransitionList *l; | |
3006 | int max_size = xg_get_single_size (opcode); | |
3007 | ||
3008 | assert (opcode < table->num_opcodes); | |
3009 | ||
3010 | for (l = table->table[opcode]; l != NULL; l = l->next) | |
3011 | { | |
3012 | TransitionRule *rule = l->rule; | |
3013 | BuildInstr *build_list; | |
3014 | int this_size = 0; | |
3015 | ||
3016 | if (!rule) | |
3017 | continue; | |
3018 | build_list = rule->to_instr; | |
3019 | if (is_unique_insn_expansion (rule)) | |
3020 | { | |
3021 | assert (build_list->typ == INSTR_INSTR); | |
3022 | this_size = xg_get_max_insn_widen_size (build_list->opcode); | |
3023 | } | |
3024 | else | |
3025 | for (; build_list != NULL; build_list = build_list->next) | |
3026 | { | |
3027 | switch (build_list->typ) | |
3028 | { | |
3029 | case INSTR_INSTR: | |
3030 | this_size += xg_get_single_size (build_list->opcode); | |
3031 | break; | |
3032 | case INSTR_LITERAL_DEF: | |
3033 | case INSTR_LABEL_DEF: | |
e0001a05 NC |
3034 | default: |
3035 | break; | |
3036 | } | |
3037 | } | |
3038 | if (this_size > max_size) | |
3039 | max_size = this_size; | |
3040 | } | |
3041 | return max_size; | |
3042 | } | |
3043 | ||
3044 | ||
3045 | /* Return the maximum number of literal bytes this opcode can generate. */ | |
3046 | ||
7fa3d080 BW |
3047 | static int |
3048 | xg_get_max_insn_widen_literal_size (xtensa_opcode opcode) | |
e0001a05 | 3049 | { |
43cd72b9 | 3050 | TransitionTable *table = xg_build_widen_table (&transition_rule_cmp); |
e0001a05 NC |
3051 | TransitionList *l; |
3052 | int max_size = 0; | |
3053 | ||
3054 | assert (opcode < table->num_opcodes); | |
3055 | ||
3056 | for (l = table->table[opcode]; l != NULL; l = l->next) | |
3057 | { | |
3058 | TransitionRule *rule = l->rule; | |
3059 | BuildInstr *build_list; | |
3060 | int this_size = 0; | |
3061 | ||
3062 | if (!rule) | |
3063 | continue; | |
3064 | build_list = rule->to_instr; | |
3065 | if (is_unique_insn_expansion (rule)) | |
3066 | { | |
3067 | assert (build_list->typ == INSTR_INSTR); | |
3068 | this_size = xg_get_max_insn_widen_literal_size (build_list->opcode); | |
3069 | } | |
3070 | else | |
3071 | for (; build_list != NULL; build_list = build_list->next) | |
3072 | { | |
3073 | switch (build_list->typ) | |
3074 | { | |
3075 | case INSTR_LITERAL_DEF: | |
43cd72b9 | 3076 | /* Hard-coded 4-byte literal. */ |
e0001a05 NC |
3077 | this_size += 4; |
3078 | break; | |
3079 | case INSTR_INSTR: | |
3080 | case INSTR_LABEL_DEF: | |
3081 | default: | |
3082 | break; | |
3083 | } | |
3084 | } | |
3085 | if (this_size > max_size) | |
3086 | max_size = this_size; | |
3087 | } | |
3088 | return max_size; | |
3089 | } | |
3090 | ||
3091 | ||
7fa3d080 BW |
3092 | static bfd_boolean |
3093 | xg_is_relaxable_insn (TInsn *insn, int lateral_steps) | |
3094 | { | |
3095 | int steps_taken = 0; | |
3096 | TransitionTable *table = xg_build_widen_table (&transition_rule_cmp); | |
3097 | TransitionList *l; | |
3098 | ||
3099 | assert (insn->insn_type == ITYPE_INSN); | |
3100 | assert (insn->opcode < table->num_opcodes); | |
3101 | ||
3102 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
3103 | { | |
3104 | TransitionRule *rule = l->rule; | |
3105 | ||
3106 | if (xg_instruction_matches_rule (insn, rule)) | |
3107 | { | |
3108 | if (steps_taken == lateral_steps) | |
3109 | return TRUE; | |
3110 | steps_taken++; | |
3111 | } | |
3112 | } | |
3113 | return FALSE; | |
3114 | } | |
3115 | ||
3116 | ||
3117 | static symbolS * | |
3118 | get_special_literal_symbol (void) | |
3119 | { | |
3120 | static symbolS *sym = NULL; | |
3121 | ||
3122 | if (sym == NULL) | |
3123 | sym = symbol_find_or_make ("SPECIAL_LITERAL0\001"); | |
3124 | return sym; | |
3125 | } | |
3126 | ||
3127 | ||
3128 | static symbolS * | |
3129 | get_special_label_symbol (void) | |
3130 | { | |
3131 | static symbolS *sym = NULL; | |
3132 | ||
3133 | if (sym == NULL) | |
3134 | sym = symbol_find_or_make ("SPECIAL_LABEL0\001"); | |
3135 | return sym; | |
3136 | } | |
3137 | ||
3138 | ||
3139 | static bfd_boolean | |
3140 | xg_valid_literal_expression (const expressionS *exp) | |
3141 | { | |
3142 | switch (exp->X_op) | |
3143 | { | |
3144 | case O_constant: | |
3145 | case O_symbol: | |
3146 | case O_big: | |
3147 | case O_uminus: | |
3148 | case O_subtract: | |
3149 | case O_pltrel: | |
1bbb5f21 | 3150 | case O_pcrel: |
7fa3d080 BW |
3151 | return TRUE; |
3152 | default: | |
3153 | return FALSE; | |
3154 | } | |
3155 | } | |
3156 | ||
3157 | ||
3158 | /* This will check to see if the value can be converted into the | |
3159 | operand type. It will return TRUE if it does not fit. */ | |
3160 | ||
3161 | static bfd_boolean | |
3162 | xg_check_operand (int32 value, xtensa_opcode opcode, int operand) | |
3163 | { | |
3164 | uint32 valbuf = value; | |
3165 | if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf)) | |
3166 | return TRUE; | |
3167 | return FALSE; | |
3168 | } | |
3169 | ||
3170 | ||
3171 | /* Assumes: All immeds are constants. Check that all constants fit | |
3172 | into their immeds; return FALSE if not. */ | |
3173 | ||
3174 | static bfd_boolean | |
3175 | xg_immeds_fit (const TInsn *insn) | |
3176 | { | |
3177 | xtensa_isa isa = xtensa_default_isa; | |
3178 | int i; | |
3179 | ||
3180 | int n = insn->ntok; | |
3181 | assert (insn->insn_type == ITYPE_INSN); | |
3182 | for (i = 0; i < n; ++i) | |
3183 | { | |
3184 | const expressionS *expr = &insn->tok[i]; | |
3185 | if (xtensa_operand_is_register (isa, insn->opcode, i) == 1) | |
3186 | continue; | |
3187 | ||
3188 | switch (expr->X_op) | |
3189 | { | |
3190 | case O_register: | |
3191 | case O_constant: | |
3192 | if (xg_check_operand (expr->X_add_number, insn->opcode, i)) | |
3193 | return FALSE; | |
3194 | break; | |
3195 | ||
3196 | default: | |
3197 | /* The symbol should have a fixup associated with it. */ | |
3198 | assert (FALSE); | |
3199 | break; | |
3200 | } | |
3201 | } | |
3202 | return TRUE; | |
3203 | } | |
3204 | ||
3205 | ||
3206 | /* This should only be called after we have an initial | |
3207 | estimate of the addresses. */ | |
3208 | ||
3209 | static bfd_boolean | |
3210 | xg_symbolic_immeds_fit (const TInsn *insn, | |
3211 | segT pc_seg, | |
3212 | fragS *pc_frag, | |
3213 | offsetT pc_offset, | |
3214 | long stretch) | |
e0001a05 | 3215 | { |
7fa3d080 BW |
3216 | xtensa_isa isa = xtensa_default_isa; |
3217 | symbolS *symbolP; | |
3218 | fragS *sym_frag; | |
3219 | offsetT target, pc; | |
3220 | uint32 new_offset; | |
3221 | int i; | |
3222 | int n = insn->ntok; | |
e0001a05 NC |
3223 | |
3224 | assert (insn->insn_type == ITYPE_INSN); | |
e0001a05 | 3225 | |
7fa3d080 | 3226 | for (i = 0; i < n; ++i) |
e0001a05 | 3227 | { |
7fa3d080 BW |
3228 | const expressionS *expr = &insn->tok[i]; |
3229 | if (xtensa_operand_is_register (isa, insn->opcode, i) == 1) | |
3230 | continue; | |
e0001a05 | 3231 | |
7fa3d080 | 3232 | switch (expr->X_op) |
e0001a05 | 3233 | { |
7fa3d080 BW |
3234 | case O_register: |
3235 | case O_constant: | |
3236 | if (xg_check_operand (expr->X_add_number, insn->opcode, i)) | |
3237 | return FALSE; | |
3238 | break; | |
e0001a05 | 3239 | |
7fa3d080 BW |
3240 | case O_lo16: |
3241 | case O_hi16: | |
3242 | /* Check for the worst case. */ | |
3243 | if (xg_check_operand (0xffff, insn->opcode, i)) | |
3244 | return FALSE; | |
3245 | break; | |
e0001a05 | 3246 | |
7fa3d080 | 3247 | case O_symbol: |
7c834684 | 3248 | /* We only allow symbols for PC-relative references. |
7fa3d080 | 3249 | If pc_frag == 0, then we don't have frag locations yet. */ |
7c834684 BW |
3250 | if (pc_frag == 0 |
3251 | || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0) | |
7fa3d080 | 3252 | return FALSE; |
e0001a05 | 3253 | |
8e6bc631 BW |
3254 | /* If it is a weak symbol or a symbol in a different section, |
3255 | it cannot be known to fit at assembly time. */ | |
3256 | if (S_IS_WEAK (expr->X_add_symbol) | |
3257 | || S_GET_SEGMENT (expr->X_add_symbol) != pc_seg) | |
7c834684 | 3258 | { |
8e6bc631 | 3259 | /* For a direct call with --no-longcalls, be optimistic and |
38f9cb7f BW |
3260 | assume it will be in range. If the symbol is weak and |
3261 | undefined, it may remain undefined at link-time, in which | |
3262 | case it will have a zero value and almost certainly be out | |
3263 | of range for a direct call; thus, relax for undefined weak | |
3264 | symbols even if longcalls is not enabled. */ | |
8e6bc631 | 3265 | if (is_direct_call_opcode (insn->opcode) |
38f9cb7f BW |
3266 | && ! pc_frag->tc_frag_data.use_longcalls |
3267 | && (! S_IS_WEAK (expr->X_add_symbol) | |
3268 | || S_IS_DEFINED (expr->X_add_symbol))) | |
7c834684 | 3269 | return TRUE; |
7c834684 | 3270 | |
8e6bc631 BW |
3271 | return FALSE; |
3272 | } | |
e0001a05 | 3273 | |
7fa3d080 BW |
3274 | symbolP = expr->X_add_symbol; |
3275 | sym_frag = symbol_get_frag (symbolP); | |
3276 | target = S_GET_VALUE (symbolP) + expr->X_add_number; | |
3277 | pc = pc_frag->fr_address + pc_offset; | |
e0001a05 | 3278 | |
7fa3d080 BW |
3279 | /* If frag has yet to be reached on this pass, assume it |
3280 | will move by STRETCH just as we did. If this is not so, | |
3281 | it will be because some frag between grows, and that will | |
3282 | force another pass. Beware zero-length frags. There | |
3283 | should be a faster way to do this. */ | |
3284 | ||
3285 | if (stretch != 0 | |
3286 | && sym_frag->relax_marker != pc_frag->relax_marker | |
3287 | && S_GET_SEGMENT (symbolP) == pc_seg) | |
3288 | { | |
3289 | target += stretch; | |
3290 | } | |
c138bc38 | 3291 | |
7fa3d080 BW |
3292 | new_offset = target; |
3293 | xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc); | |
3294 | if (xg_check_operand (new_offset, insn->opcode, i)) | |
3295 | return FALSE; | |
3296 | break; | |
3297 | ||
3298 | default: | |
3299 | /* The symbol should have a fixup associated with it. */ | |
3300 | return FALSE; | |
3301 | } | |
3302 | } | |
3303 | ||
3304 | return TRUE; | |
e0001a05 NC |
3305 | } |
3306 | ||
3307 | ||
43cd72b9 | 3308 | /* Return TRUE on success. */ |
e0001a05 | 3309 | |
7fa3d080 BW |
3310 | static bfd_boolean |
3311 | xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi) | |
e0001a05 NC |
3312 | { |
3313 | BuildOp *op; | |
3314 | symbolS *sym; | |
3315 | ||
60242db2 | 3316 | tinsn_init (targ); |
b224e962 BW |
3317 | targ->debug_line = insn->debug_line; |
3318 | targ->loc_directive_seen = insn->loc_directive_seen; | |
e0001a05 NC |
3319 | switch (bi->typ) |
3320 | { | |
3321 | case INSTR_INSTR: | |
3322 | op = bi->ops; | |
3323 | targ->opcode = bi->opcode; | |
3324 | targ->insn_type = ITYPE_INSN; | |
3325 | targ->is_specific_opcode = FALSE; | |
3326 | ||
3327 | for (; op != NULL; op = op->next) | |
3328 | { | |
3329 | int op_num = op->op_num; | |
3330 | int op_data = op->op_data; | |
3331 | ||
3332 | assert (op->op_num < MAX_INSN_ARGS); | |
3333 | ||
3334 | if (targ->ntok <= op_num) | |
3335 | targ->ntok = op_num + 1; | |
3336 | ||
3337 | switch (op->typ) | |
3338 | { | |
3339 | case OP_CONSTANT: | |
3340 | set_expr_const (&targ->tok[op_num], op_data); | |
3341 | break; | |
3342 | case OP_OPERAND: | |
3343 | assert (op_data < insn->ntok); | |
3344 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); | |
3345 | break; | |
3346 | case OP_LITERAL: | |
3347 | sym = get_special_literal_symbol (); | |
3348 | set_expr_symbol_offset (&targ->tok[op_num], sym, 0); | |
3349 | break; | |
3350 | case OP_LABEL: | |
3351 | sym = get_special_label_symbol (); | |
3352 | set_expr_symbol_offset (&targ->tok[op_num], sym, 0); | |
3353 | break; | |
43cd72b9 BW |
3354 | case OP_OPERAND_HI16U: |
3355 | case OP_OPERAND_LOW16U: | |
3356 | assert (op_data < insn->ntok); | |
3357 | if (expr_is_const (&insn->tok[op_data])) | |
3358 | { | |
3359 | long val; | |
3360 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); | |
3361 | val = xg_apply_userdef_op_fn (op->typ, | |
3362 | targ->tok[op_num]. | |
3363 | X_add_number); | |
3364 | targ->tok[op_num].X_add_number = val; | |
3365 | } | |
3366 | else | |
3367 | { | |
3368 | /* For const16 we can create relocations for these. */ | |
3369 | if (targ->opcode == XTENSA_UNDEFINED | |
3370 | || (targ->opcode != xtensa_const16_opcode)) | |
3371 | return FALSE; | |
3372 | assert (op_data < insn->ntok); | |
3373 | /* Need to build a O_lo16 or O_hi16. */ | |
3374 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); | |
3375 | if (targ->tok[op_num].X_op == O_symbol) | |
3376 | { | |
3377 | if (op->typ == OP_OPERAND_HI16U) | |
3378 | targ->tok[op_num].X_op = O_hi16; | |
3379 | else if (op->typ == OP_OPERAND_LOW16U) | |
3380 | targ->tok[op_num].X_op = O_lo16; | |
3381 | else | |
3382 | return FALSE; | |
3383 | } | |
3384 | } | |
3385 | break; | |
e0001a05 NC |
3386 | default: |
3387 | /* currently handles: | |
3388 | OP_OPERAND_LOW8 | |
3389 | OP_OPERAND_HI24S | |
3390 | OP_OPERAND_F32MINUS */ | |
3391 | if (xg_has_userdef_op_fn (op->typ)) | |
3392 | { | |
3393 | assert (op_data < insn->ntok); | |
3394 | if (expr_is_const (&insn->tok[op_data])) | |
3395 | { | |
3396 | long val; | |
3397 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); | |
3398 | val = xg_apply_userdef_op_fn (op->typ, | |
3399 | targ->tok[op_num]. | |
3400 | X_add_number); | |
3401 | targ->tok[op_num].X_add_number = val; | |
3402 | } | |
3403 | else | |
3404 | return FALSE; /* We cannot use a relocation for this. */ | |
3405 | break; | |
3406 | } | |
3407 | assert (0); | |
3408 | break; | |
3409 | } | |
3410 | } | |
3411 | break; | |
3412 | ||
3413 | case INSTR_LITERAL_DEF: | |
3414 | op = bi->ops; | |
3415 | targ->opcode = XTENSA_UNDEFINED; | |
3416 | targ->insn_type = ITYPE_LITERAL; | |
3417 | targ->is_specific_opcode = FALSE; | |
3418 | for (; op != NULL; op = op->next) | |
3419 | { | |
3420 | int op_num = op->op_num; | |
3421 | int op_data = op->op_data; | |
3422 | assert (op->op_num < MAX_INSN_ARGS); | |
3423 | ||
3424 | if (targ->ntok <= op_num) | |
3425 | targ->ntok = op_num + 1; | |
3426 | ||
3427 | switch (op->typ) | |
3428 | { | |
3429 | case OP_OPERAND: | |
3430 | assert (op_data < insn->ntok); | |
43cd72b9 BW |
3431 | /* We can only pass resolvable literals through. */ |
3432 | if (!xg_valid_literal_expression (&insn->tok[op_data])) | |
3433 | return FALSE; | |
e0001a05 NC |
3434 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); |
3435 | break; | |
3436 | case OP_LITERAL: | |
3437 | case OP_CONSTANT: | |
3438 | case OP_LABEL: | |
3439 | default: | |
3440 | assert (0); | |
3441 | break; | |
3442 | } | |
3443 | } | |
3444 | break; | |
3445 | ||
3446 | case INSTR_LABEL_DEF: | |
3447 | op = bi->ops; | |
3448 | targ->opcode = XTENSA_UNDEFINED; | |
3449 | targ->insn_type = ITYPE_LABEL; | |
3450 | targ->is_specific_opcode = FALSE; | |
43cd72b9 | 3451 | /* Literal with no ops is a label? */ |
e0001a05 NC |
3452 | assert (op == NULL); |
3453 | break; | |
3454 | ||
3455 | default: | |
3456 | assert (0); | |
3457 | } | |
3458 | ||
3459 | return TRUE; | |
3460 | } | |
3461 | ||
3462 | ||
43cd72b9 | 3463 | /* Return TRUE on success. */ |
e0001a05 | 3464 | |
7fa3d080 BW |
3465 | static bfd_boolean |
3466 | xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi) | |
e0001a05 NC |
3467 | { |
3468 | for (; bi != NULL; bi = bi->next) | |
3469 | { | |
3470 | TInsn *next_insn = istack_push_space (istack); | |
3471 | ||
3472 | if (!xg_build_to_insn (next_insn, insn, bi)) | |
3473 | return FALSE; | |
3474 | } | |
3475 | return TRUE; | |
3476 | } | |
3477 | ||
3478 | ||
43cd72b9 | 3479 | /* Return TRUE on valid expansion. */ |
e0001a05 | 3480 | |
7fa3d080 BW |
3481 | static bfd_boolean |
3482 | xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps) | |
e0001a05 NC |
3483 | { |
3484 | int stack_size = istack->ninsn; | |
3485 | int steps_taken = 0; | |
43cd72b9 | 3486 | TransitionTable *table = xg_build_widen_table (&transition_rule_cmp); |
e0001a05 NC |
3487 | TransitionList *l; |
3488 | ||
3489 | assert (insn->insn_type == ITYPE_INSN); | |
3490 | assert (insn->opcode < table->num_opcodes); | |
3491 | ||
3492 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
3493 | { | |
3494 | TransitionRule *rule = l->rule; | |
3495 | ||
3496 | if (xg_instruction_matches_rule (insn, rule)) | |
3497 | { | |
3498 | if (lateral_steps == steps_taken) | |
3499 | { | |
3500 | int i; | |
3501 | ||
3502 | /* This is it. Expand the rule to the stack. */ | |
3503 | if (!xg_build_to_stack (istack, insn, rule->to_instr)) | |
3504 | return FALSE; | |
3505 | ||
3506 | /* Check to see if it fits. */ | |
3507 | for (i = stack_size; i < istack->ninsn; i++) | |
3508 | { | |
3509 | TInsn *insn = &istack->insn[i]; | |
3510 | ||
3511 | if (insn->insn_type == ITYPE_INSN | |
3512 | && !tinsn_has_symbolic_operands (insn) | |
3513 | && !xg_immeds_fit (insn)) | |
3514 | { | |
3515 | istack->ninsn = stack_size; | |
3516 | return FALSE; | |
3517 | } | |
3518 | } | |
3519 | return TRUE; | |
3520 | } | |
3521 | steps_taken++; | |
3522 | } | |
3523 | } | |
3524 | return FALSE; | |
3525 | } | |
3526 | ||
43cd72b9 | 3527 | \f |
43cd72b9 | 3528 | /* Relax the assembly instruction at least "min_steps". |
b81bf389 BW |
3529 | Return the number of steps taken. |
3530 | ||
3531 | For relaxation to correctly terminate, every relaxation chain must | |
3532 | terminate in one of two ways: | |
3533 | ||
3534 | 1. If the chain from one instruction to the next consists entirely of | |
3535 | single instructions, then the chain *must* handle all possible | |
3536 | immediates without failing. It must not ever fail because an | |
3537 | immediate is out of range. The MOVI.N -> MOVI -> L32R relaxation | |
3538 | chain is one example. L32R loads 32 bits, and there cannot be an | |
3539 | immediate larger than 32 bits, so it satisfies this condition. | |
3540 | Single instruction relaxation chains are as defined by | |
3541 | xg_is_single_relaxable_instruction. | |
3542 | ||
3543 | 2. Otherwise, the chain must end in a multi-instruction expansion: e.g., | |
3544 | BNEZ.N -> BNEZ -> BNEZ.W15 -> BENZ.N/J | |
3545 | ||
3546 | Strictly speaking, in most cases you can violate condition 1 and be OK | |
3547 | -- in particular when the last two instructions have the same single | |
3548 | size. But nevertheless, you should guarantee the above two conditions. | |
3549 | ||
3550 | We could fix this so that single-instruction expansions correctly | |
3551 | terminate when they can't handle the range, but the error messages are | |
3552 | worse, and it actually turns out that in every case but one (18-bit wide | |
3553 | branches), you need a multi-instruction expansion to get the full range | |
3554 | anyway. And because 18-bit branches are handled identically to 15-bit | |
3555 | branches, there isn't any point in changing it. */ | |
e0001a05 | 3556 | |
7fa3d080 BW |
3557 | static int |
3558 | xg_assembly_relax (IStack *istack, | |
3559 | TInsn *insn, | |
3560 | segT pc_seg, | |
3561 | fragS *pc_frag, /* if pc_frag == 0, not pc-relative */ | |
3562 | offsetT pc_offset, /* offset in fragment */ | |
3563 | int min_steps, /* minimum conversion steps */ | |
3564 | long stretch) /* number of bytes stretched so far */ | |
e0001a05 NC |
3565 | { |
3566 | int steps_taken = 0; | |
3567 | ||
b81bf389 BW |
3568 | /* Some of its immeds don't fit. Try to build a relaxed version. |
3569 | This may go through a couple of stages of single instruction | |
3570 | transformations before we get there. */ | |
e0001a05 NC |
3571 | |
3572 | TInsn single_target; | |
3573 | TInsn current_insn; | |
3574 | int lateral_steps = 0; | |
3575 | int istack_size = istack->ninsn; | |
3576 | ||
3577 | if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch) | |
3578 | && steps_taken >= min_steps) | |
3579 | { | |
3580 | istack_push (istack, insn); | |
3581 | return steps_taken; | |
3582 | } | |
43cd72b9 | 3583 | current_insn = *insn; |
e0001a05 | 3584 | |
7c834684 | 3585 | /* Walk through all of the single instruction expansions. */ |
84b08ed9 | 3586 | while (xg_is_single_relaxable_insn (¤t_insn, &single_target, FALSE)) |
e0001a05 | 3587 | { |
21af2bbd | 3588 | steps_taken++; |
e0001a05 NC |
3589 | if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset, |
3590 | stretch)) | |
3591 | { | |
e0001a05 NC |
3592 | if (steps_taken >= min_steps) |
3593 | { | |
3594 | istack_push (istack, &single_target); | |
3595 | return steps_taken; | |
3596 | } | |
3597 | } | |
43cd72b9 | 3598 | current_insn = single_target; |
e0001a05 NC |
3599 | } |
3600 | ||
3601 | /* Now check for a multi-instruction expansion. */ | |
3602 | while (xg_is_relaxable_insn (¤t_insn, lateral_steps)) | |
3603 | { | |
3604 | if (xg_symbolic_immeds_fit (¤t_insn, pc_seg, pc_frag, pc_offset, | |
3605 | stretch)) | |
3606 | { | |
3607 | if (steps_taken >= min_steps) | |
3608 | { | |
3609 | istack_push (istack, ¤t_insn); | |
3610 | return steps_taken; | |
3611 | } | |
3612 | } | |
3613 | steps_taken++; | |
3614 | if (xg_expand_to_stack (istack, ¤t_insn, lateral_steps)) | |
3615 | { | |
3616 | if (steps_taken >= min_steps) | |
3617 | return steps_taken; | |
3618 | } | |
3619 | lateral_steps++; | |
3620 | istack->ninsn = istack_size; | |
3621 | } | |
3622 | ||
3623 | /* It's not going to work -- use the original. */ | |
3624 | istack_push (istack, insn); | |
3625 | return steps_taken; | |
3626 | } | |
3627 | ||
3628 | ||
7fa3d080 BW |
3629 | static void |
3630 | xg_finish_frag (char *last_insn, | |
3631 | enum xtensa_relax_statesE frag_state, | |
3632 | enum xtensa_relax_statesE slot0_state, | |
3633 | int max_growth, | |
3634 | bfd_boolean is_insn) | |
e0001a05 NC |
3635 | { |
3636 | /* Finish off this fragment so that it has at LEAST the desired | |
3637 | max_growth. If it doesn't fit in this fragment, close this one | |
3638 | and start a new one. In either case, return a pointer to the | |
3639 | beginning of the growth area. */ | |
3640 | ||
3641 | fragS *old_frag; | |
43cd72b9 | 3642 | |
542f8b94 | 3643 | frag_grow (max_growth); |
e0001a05 NC |
3644 | old_frag = frag_now; |
3645 | ||
3646 | frag_now->fr_opcode = last_insn; | |
3647 | if (is_insn) | |
3648 | frag_now->tc_frag_data.is_insn = TRUE; | |
3649 | ||
3650 | frag_var (rs_machine_dependent, max_growth, max_growth, | |
43cd72b9 BW |
3651 | frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn); |
3652 | ||
3653 | old_frag->tc_frag_data.slot_subtypes[0] = slot0_state; | |
3654 | xtensa_set_frag_assembly_state (frag_now); | |
e0001a05 NC |
3655 | |
3656 | /* Just to make sure that we did not split it up. */ | |
3657 | assert (old_frag->fr_next == frag_now); | |
3658 | } | |
3659 | ||
3660 | ||
7fa3d080 BW |
3661 | /* Return TRUE if the target frag is one of the next non-empty frags. */ |
3662 | ||
3663 | static bfd_boolean | |
3664 | is_next_frag_target (const fragS *fragP, const fragS *target) | |
3665 | { | |
3666 | if (fragP == NULL) | |
3667 | return FALSE; | |
3668 | ||
3669 | for (; fragP; fragP = fragP->fr_next) | |
3670 | { | |
3671 | if (fragP == target) | |
3672 | return TRUE; | |
3673 | if (fragP->fr_fix != 0) | |
3674 | return FALSE; | |
3675 | if (fragP->fr_type == rs_fill && fragP->fr_offset != 0) | |
3676 | return FALSE; | |
3677 | if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code) | |
3678 | && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0)) | |
3679 | return FALSE; | |
3680 | if (fragP->fr_type == rs_space) | |
3681 | return FALSE; | |
3682 | } | |
3683 | return FALSE; | |
3684 | } | |
3685 | ||
3686 | ||
e0001a05 | 3687 | static bfd_boolean |
7fa3d080 | 3688 | is_branch_jmp_to_next (TInsn *insn, fragS *fragP) |
e0001a05 NC |
3689 | { |
3690 | xtensa_isa isa = xtensa_default_isa; | |
3691 | int i; | |
43cd72b9 | 3692 | int num_ops = xtensa_opcode_num_operands (isa, insn->opcode); |
e0001a05 NC |
3693 | int target_op = -1; |
3694 | symbolS *sym; | |
3695 | fragS *target_frag; | |
3696 | ||
64b607e6 BW |
3697 | if (xtensa_opcode_is_branch (isa, insn->opcode) != 1 |
3698 | && xtensa_opcode_is_jump (isa, insn->opcode) != 1) | |
e0001a05 NC |
3699 | return FALSE; |
3700 | ||
3701 | for (i = 0; i < num_ops; i++) | |
3702 | { | |
43cd72b9 | 3703 | if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1) |
e0001a05 NC |
3704 | { |
3705 | target_op = i; | |
3706 | break; | |
3707 | } | |
3708 | } | |
3709 | if (target_op == -1) | |
3710 | return FALSE; | |
3711 | ||
3712 | if (insn->ntok <= target_op) | |
3713 | return FALSE; | |
3714 | ||
3715 | if (insn->tok[target_op].X_op != O_symbol) | |
3716 | return FALSE; | |
3717 | ||
3718 | sym = insn->tok[target_op].X_add_symbol; | |
3719 | if (sym == NULL) | |
3720 | return FALSE; | |
3721 | ||
3722 | if (insn->tok[target_op].X_add_number != 0) | |
3723 | return FALSE; | |
3724 | ||
3725 | target_frag = symbol_get_frag (sym); | |
3726 | if (target_frag == NULL) | |
3727 | return FALSE; | |
3728 | ||
c138bc38 | 3729 | if (is_next_frag_target (fragP->fr_next, target_frag) |
e0001a05 NC |
3730 | && S_GET_VALUE (sym) == target_frag->fr_address) |
3731 | return TRUE; | |
3732 | ||
3733 | return FALSE; | |
3734 | } | |
3735 | ||
3736 | ||
3737 | static void | |
7fa3d080 | 3738 | xg_add_branch_and_loop_targets (TInsn *insn) |
e0001a05 NC |
3739 | { |
3740 | xtensa_isa isa = xtensa_default_isa; | |
7fa3d080 | 3741 | int num_ops = xtensa_opcode_num_operands (isa, insn->opcode); |
43cd72b9 | 3742 | |
7fa3d080 BW |
3743 | if (xtensa_opcode_is_loop (isa, insn->opcode) == 1) |
3744 | { | |
3745 | int i = 1; | |
3746 | if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1 | |
3747 | && insn->tok[i].X_op == O_symbol) | |
3748 | symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE; | |
3749 | return; | |
3750 | } | |
e0001a05 | 3751 | |
7fa3d080 BW |
3752 | if (xtensa_opcode_is_branch (isa, insn->opcode) == 1 |
3753 | || xtensa_opcode_is_loop (isa, insn->opcode) == 1) | |
e0001a05 | 3754 | { |
7fa3d080 BW |
3755 | int i; |
3756 | ||
3757 | for (i = 0; i < insn->ntok && i < num_ops; i++) | |
3758 | { | |
3759 | if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1 | |
3760 | && insn->tok[i].X_op == O_symbol) | |
3761 | { | |
3762 | symbolS *sym = insn->tok[i].X_add_symbol; | |
3763 | symbol_get_tc (sym)->is_branch_target = TRUE; | |
3764 | if (S_IS_DEFINED (sym)) | |
3765 | symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE; | |
3766 | } | |
3767 | } | |
e0001a05 | 3768 | } |
e0001a05 NC |
3769 | } |
3770 | ||
3771 | ||
43cd72b9 | 3772 | /* Return FALSE if no error. */ |
e0001a05 | 3773 | |
7fa3d080 BW |
3774 | static bfd_boolean |
3775 | xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn) | |
e0001a05 NC |
3776 | { |
3777 | int num_ops = 0; | |
3778 | BuildOp *b_op; | |
3779 | ||
3780 | switch (instr_spec->typ) | |
3781 | { | |
3782 | case INSTR_INSTR: | |
3783 | new_insn->insn_type = ITYPE_INSN; | |
3784 | new_insn->opcode = instr_spec->opcode; | |
e0001a05 NC |
3785 | break; |
3786 | case INSTR_LITERAL_DEF: | |
3787 | new_insn->insn_type = ITYPE_LITERAL; | |
3788 | new_insn->opcode = XTENSA_UNDEFINED; | |
e0001a05 NC |
3789 | break; |
3790 | case INSTR_LABEL_DEF: | |
b224e962 | 3791 | abort (); |
e0001a05 | 3792 | } |
b224e962 BW |
3793 | new_insn->is_specific_opcode = FALSE; |
3794 | new_insn->debug_line = old_insn->debug_line; | |
3795 | new_insn->loc_directive_seen = old_insn->loc_directive_seen; | |
e0001a05 NC |
3796 | |
3797 | for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next) | |
3798 | { | |
3799 | expressionS *exp; | |
3800 | const expressionS *src_exp; | |
3801 | ||
3802 | num_ops++; | |
3803 | switch (b_op->typ) | |
3804 | { | |
3805 | case OP_CONSTANT: | |
3806 | /* The expression must be the constant. */ | |
3807 | assert (b_op->op_num < MAX_INSN_ARGS); | |
3808 | exp = &new_insn->tok[b_op->op_num]; | |
3809 | set_expr_const (exp, b_op->op_data); | |
3810 | break; | |
3811 | ||
3812 | case OP_OPERAND: | |
3813 | assert (b_op->op_num < MAX_INSN_ARGS); | |
3814 | assert (b_op->op_data < (unsigned) old_insn->ntok); | |
3815 | src_exp = &old_insn->tok[b_op->op_data]; | |
3816 | exp = &new_insn->tok[b_op->op_num]; | |
3817 | copy_expr (exp, src_exp); | |
3818 | break; | |
3819 | ||
3820 | case OP_LITERAL: | |
3821 | case OP_LABEL: | |
3822 | as_bad (_("can't handle generation of literal/labels yet")); | |
3823 | assert (0); | |
3824 | ||
3825 | default: | |
3826 | as_bad (_("can't handle undefined OP TYPE")); | |
3827 | assert (0); | |
3828 | } | |
3829 | } | |
3830 | ||
3831 | new_insn->ntok = num_ops; | |
3832 | return FALSE; | |
3833 | } | |
3834 | ||
3835 | ||
43cd72b9 | 3836 | /* Return TRUE if it was simplified. */ |
e0001a05 | 3837 | |
7fa3d080 BW |
3838 | static bfd_boolean |
3839 | xg_simplify_insn (TInsn *old_insn, TInsn *new_insn) | |
e0001a05 | 3840 | { |
43cd72b9 | 3841 | TransitionRule *rule; |
e0001a05 | 3842 | BuildInstr *insn_spec; |
43cd72b9 BW |
3843 | |
3844 | if (old_insn->is_specific_opcode || !density_supported) | |
3845 | return FALSE; | |
3846 | ||
3847 | rule = xg_instruction_match (old_insn); | |
e0001a05 NC |
3848 | if (rule == NULL) |
3849 | return FALSE; | |
3850 | ||
3851 | insn_spec = rule->to_instr; | |
3852 | /* There should only be one. */ | |
3853 | assert (insn_spec != NULL); | |
3854 | assert (insn_spec->next == NULL); | |
3855 | if (insn_spec->next != NULL) | |
3856 | return FALSE; | |
3857 | ||
3858 | xg_build_token_insn (insn_spec, old_insn, new_insn); | |
3859 | ||
3860 | return TRUE; | |
3861 | } | |
3862 | ||
3863 | ||
3864 | /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i -> | |
3865 | l32i.n. (2) Check the number of operands. (3) Place the instruction | |
7c834684 BW |
3866 | tokens into the stack or relax it and place multiple |
3867 | instructions/literals onto the stack. Return FALSE if no error. */ | |
e0001a05 NC |
3868 | |
3869 | static bfd_boolean | |
7fa3d080 | 3870 | xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn) |
e0001a05 NC |
3871 | { |
3872 | int noperands; | |
3873 | TInsn new_insn; | |
7c834684 BW |
3874 | bfd_boolean do_expand; |
3875 | ||
60242db2 | 3876 | tinsn_init (&new_insn); |
e0001a05 | 3877 | |
43cd72b9 BW |
3878 | /* Narrow it if we can. xg_simplify_insn now does all the |
3879 | appropriate checking (e.g., for the density option). */ | |
3880 | if (xg_simplify_insn (orig_insn, &new_insn)) | |
3881 | orig_insn = &new_insn; | |
e0001a05 | 3882 | |
43cd72b9 BW |
3883 | noperands = xtensa_opcode_num_operands (xtensa_default_isa, |
3884 | orig_insn->opcode); | |
e0001a05 NC |
3885 | if (orig_insn->ntok < noperands) |
3886 | { | |
3887 | as_bad (_("found %d operands for '%s': Expected %d"), | |
3888 | orig_insn->ntok, | |
3889 | xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode), | |
3890 | noperands); | |
3891 | return TRUE; | |
3892 | } | |
3893 | if (orig_insn->ntok > noperands) | |
3894 | as_warn (_("found too many (%d) operands for '%s': Expected %d"), | |
3895 | orig_insn->ntok, | |
3896 | xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode), | |
3897 | noperands); | |
3898 | ||
43cd72b9 | 3899 | /* If there are not enough operands, we will assert above. If there |
e0001a05 | 3900 | are too many, just cut out the extras here. */ |
e0001a05 NC |
3901 | orig_insn->ntok = noperands; |
3902 | ||
e0001a05 NC |
3903 | if (tinsn_has_invalid_symbolic_operands (orig_insn)) |
3904 | return TRUE; | |
3905 | ||
d12f9798 BW |
3906 | /* Special case for extui opcode which has constraints not handled |
3907 | by the ordinary operand encoding checks. The number of operands | |
3908 | and related syntax issues have already been checked. */ | |
3909 | if (orig_insn->opcode == xtensa_extui_opcode) | |
3910 | { | |
3911 | int shiftimm = orig_insn->tok[2].X_add_number; | |
3912 | int maskimm = orig_insn->tok[3].X_add_number; | |
3913 | if (shiftimm + maskimm > 32) | |
3914 | { | |
3915 | as_bad (_("immediate operands sum to greater than 32")); | |
3916 | return TRUE; | |
3917 | } | |
3918 | } | |
3919 | ||
7c834684 BW |
3920 | /* If the instruction will definitely need to be relaxed, it is better |
3921 | to expand it now for better scheduling. Decide whether to expand | |
3922 | now.... */ | |
3923 | do_expand = (!orig_insn->is_specific_opcode && use_transform ()); | |
3924 | ||
3925 | /* Calls should be expanded to longcalls only in the backend relaxation | |
3926 | so that the assembly scheduler will keep the L32R/CALLX instructions | |
3927 | adjacent. */ | |
3928 | if (is_direct_call_opcode (orig_insn->opcode)) | |
3929 | do_expand = FALSE; | |
e0001a05 NC |
3930 | |
3931 | if (tinsn_has_symbolic_operands (orig_insn)) | |
3932 | { | |
7c834684 BW |
3933 | /* The values of symbolic operands are not known yet, so only expand |
3934 | now if an operand is "complex" (e.g., difference of symbols) and | |
3935 | will have to be stored as a literal regardless of the value. */ | |
3936 | if (!tinsn_has_complex_operands (orig_insn)) | |
3937 | do_expand = FALSE; | |
e0001a05 | 3938 | } |
7c834684 BW |
3939 | else if (xg_immeds_fit (orig_insn)) |
3940 | do_expand = FALSE; | |
3941 | ||
3942 | if (do_expand) | |
3943 | xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0); | |
e0001a05 | 3944 | else |
7c834684 | 3945 | istack_push (istack, orig_insn); |
e0001a05 | 3946 | |
e0001a05 NC |
3947 | return FALSE; |
3948 | } | |
3949 | ||
3950 | ||
7fa3d080 | 3951 | /* Return TRUE if the section flags are marked linkonce |
74869ac7 BW |
3952 | or the name is .gnu.linkonce.*. */ |
3953 | ||
3954 | static int linkonce_len = sizeof (".gnu.linkonce.") - 1; | |
7fa3d080 BW |
3955 | |
3956 | static bfd_boolean | |
3957 | get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec) | |
3958 | { | |
3959 | flagword flags, link_once_flags; | |
3960 | ||
3961 | flags = bfd_get_section_flags (abfd, sec); | |
3962 | link_once_flags = (flags & SEC_LINK_ONCE); | |
3963 | ||
3964 | /* Flags might not be set yet. */ | |
74869ac7 BW |
3965 | if (!link_once_flags |
3966 | && strncmp (segment_name (sec), ".gnu.linkonce.", linkonce_len) == 0) | |
3967 | link_once_flags = SEC_LINK_ONCE; | |
7fa3d080 | 3968 | |
7fa3d080 BW |
3969 | return (link_once_flags != 0); |
3970 | } | |
3971 | ||
3972 | ||
3973 | static void | |
3974 | xtensa_add_literal_sym (symbolS *sym) | |
3975 | { | |
3976 | sym_list *l; | |
3977 | ||
3978 | l = (sym_list *) xmalloc (sizeof (sym_list)); | |
3979 | l->sym = sym; | |
3980 | l->next = literal_syms; | |
3981 | literal_syms = l; | |
3982 | } | |
3983 | ||
3984 | ||
3985 | static symbolS * | |
3986 | xtensa_create_literal_symbol (segT sec, fragS *frag) | |
3987 | { | |
3988 | static int lit_num = 0; | |
3989 | static char name[256]; | |
3990 | symbolS *symbolP; | |
3991 | ||
3992 | sprintf (name, ".L_lit_sym%d", lit_num); | |
3993 | ||
3994 | /* Create a local symbol. If it is in a linkonce section, we have to | |
3995 | be careful to make sure that if it is used in a relocation that the | |
3996 | symbol will be in the output file. */ | |
3997 | if (get_is_linkonce_section (stdoutput, sec)) | |
3998 | { | |
3999 | symbolP = symbol_new (name, sec, 0, frag); | |
4000 | S_CLEAR_EXTERNAL (symbolP); | |
4001 | /* symbolP->local = 1; */ | |
4002 | } | |
4003 | else | |
4004 | symbolP = symbol_new (name, sec, 0, frag); | |
4005 | ||
4006 | xtensa_add_literal_sym (symbolP); | |
4007 | ||
7fa3d080 BW |
4008 | lit_num++; |
4009 | return symbolP; | |
4010 | } | |
4011 | ||
4012 | ||
e0001a05 NC |
4013 | /* Currently all literals that are generated here are 32-bit L32R targets. */ |
4014 | ||
7fa3d080 BW |
4015 | static symbolS * |
4016 | xg_assemble_literal (/* const */ TInsn *insn) | |
e0001a05 NC |
4017 | { |
4018 | emit_state state; | |
4019 | symbolS *lit_sym = NULL; | |
bbdd25a8 | 4020 | bfd_reloc_code_real_type reloc; |
1bbb5f21 | 4021 | bfd_boolean pcrel = FALSE; |
bbdd25a8 | 4022 | char *p; |
e0001a05 NC |
4023 | |
4024 | /* size = 4 for L32R. It could easily be larger when we move to | |
4025 | larger constants. Add a parameter later. */ | |
4026 | offsetT litsize = 4; | |
4027 | offsetT litalign = 2; /* 2^2 = 4 */ | |
4028 | expressionS saved_loc; | |
43cd72b9 BW |
4029 | expressionS * emit_val; |
4030 | ||
e0001a05 NC |
4031 | set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ()); |
4032 | ||
4033 | assert (insn->insn_type == ITYPE_LITERAL); | |
77cd6497 | 4034 | assert (insn->ntok == 1); /* must be only one token here */ |
e0001a05 NC |
4035 | |
4036 | xtensa_switch_to_literal_fragment (&state); | |
4037 | ||
43cd72b9 BW |
4038 | emit_val = &insn->tok[0]; |
4039 | if (emit_val->X_op == O_big) | |
4040 | { | |
4041 | int size = emit_val->X_add_number * CHARS_PER_LITTLENUM; | |
4042 | if (size > litsize) | |
4043 | { | |
4044 | /* This happens when someone writes a "movi a2, big_number". */ | |
c138bc38 | 4045 | as_bad_where (frag_now->fr_file, frag_now->fr_line, |
43cd72b9 BW |
4046 | _("invalid immediate")); |
4047 | xtensa_restore_emit_state (&state); | |
4048 | return NULL; | |
4049 | } | |
4050 | } | |
4051 | ||
e0001a05 NC |
4052 | /* Force a 4-byte align here. Note that this opens a new frag, so all |
4053 | literals done with this function have a frag to themselves. That's | |
4054 | important for the way text section literals work. */ | |
4055 | frag_align (litalign, 0, 0); | |
43cd72b9 | 4056 | record_alignment (now_seg, litalign); |
e0001a05 | 4057 | |
bbdd25a8 | 4058 | switch (emit_val->X_op) |
43cd72b9 | 4059 | { |
1bbb5f21 BW |
4060 | case O_pcrel: |
4061 | pcrel = TRUE; | |
4062 | /* fall through */ | |
bbdd25a8 BW |
4063 | case O_pltrel: |
4064 | p = frag_more (litsize); | |
43cd72b9 | 4065 | xtensa_set_frag_assembly_state (frag_now); |
bbdd25a8 | 4066 | reloc = map_operator_to_reloc (emit_val->X_op); |
43cd72b9 BW |
4067 | if (emit_val->X_add_symbol) |
4068 | emit_val->X_op = O_symbol; | |
4069 | else | |
4070 | emit_val->X_op = O_constant; | |
4071 | fix_new_exp (frag_now, p - frag_now->fr_literal, | |
1bbb5f21 | 4072 | litsize, emit_val, pcrel, reloc); |
bbdd25a8 BW |
4073 | break; |
4074 | ||
4075 | default: | |
4076 | emit_expr (emit_val, litsize); | |
4077 | break; | |
43cd72b9 | 4078 | } |
e0001a05 NC |
4079 | |
4080 | assert (frag_now->tc_frag_data.literal_frag == NULL); | |
4081 | frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg); | |
4082 | frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now); | |
4083 | lit_sym = frag_now->fr_symbol; | |
e0001a05 NC |
4084 | |
4085 | /* Go back. */ | |
4086 | xtensa_restore_emit_state (&state); | |
4087 | return lit_sym; | |
4088 | } | |
4089 | ||
4090 | ||
4091 | static void | |
7fa3d080 | 4092 | xg_assemble_literal_space (/* const */ int size, int slot) |
e0001a05 NC |
4093 | { |
4094 | emit_state state; | |
43cd72b9 | 4095 | /* We might have to do something about this alignment. It only |
e0001a05 NC |
4096 | takes effect if something is placed here. */ |
4097 | offsetT litalign = 2; /* 2^2 = 4 */ | |
4098 | fragS *lit_saved_frag; | |
4099 | ||
e0001a05 | 4100 | assert (size % 4 == 0); |
e0001a05 NC |
4101 | |
4102 | xtensa_switch_to_literal_fragment (&state); | |
4103 | ||
4104 | /* Force a 4-byte align here. */ | |
4105 | frag_align (litalign, 0, 0); | |
43cd72b9 | 4106 | record_alignment (now_seg, litalign); |
e0001a05 | 4107 | |
542f8b94 | 4108 | frag_grow (size); |
e0001a05 NC |
4109 | |
4110 | lit_saved_frag = frag_now; | |
4111 | frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg); | |
e0001a05 | 4112 | frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now); |
43cd72b9 | 4113 | xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE); |
e0001a05 NC |
4114 | |
4115 | /* Go back. */ | |
4116 | xtensa_restore_emit_state (&state); | |
43cd72b9 | 4117 | frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag; |
e0001a05 NC |
4118 | } |
4119 | ||
4120 | ||
e0001a05 | 4121 | /* Put in a fixup record based on the opcode. |
43cd72b9 | 4122 | Return TRUE on success. */ |
e0001a05 | 4123 | |
7fa3d080 BW |
4124 | static bfd_boolean |
4125 | xg_add_opcode_fix (TInsn *tinsn, | |
4126 | int opnum, | |
4127 | xtensa_format fmt, | |
4128 | int slot, | |
4129 | expressionS *expr, | |
4130 | fragS *fragP, | |
4131 | offsetT offset) | |
43cd72b9 BW |
4132 | { |
4133 | xtensa_opcode opcode = tinsn->opcode; | |
4134 | bfd_reloc_code_real_type reloc; | |
4135 | reloc_howto_type *howto; | |
4136 | int fmt_length; | |
e0001a05 NC |
4137 | fixS *the_fix; |
4138 | ||
43cd72b9 BW |
4139 | reloc = BFD_RELOC_NONE; |
4140 | ||
4141 | /* First try the special cases for "alternate" relocs. */ | |
4142 | if (opcode == xtensa_l32r_opcode) | |
4143 | { | |
4144 | if (fragP->tc_frag_data.use_absolute_literals) | |
4145 | reloc = encode_alt_reloc (slot); | |
4146 | } | |
4147 | else if (opcode == xtensa_const16_opcode) | |
4148 | { | |
4149 | if (expr->X_op == O_lo16) | |
4150 | { | |
4151 | reloc = encode_reloc (slot); | |
4152 | expr->X_op = O_symbol; | |
4153 | } | |
4154 | else if (expr->X_op == O_hi16) | |
4155 | { | |
4156 | reloc = encode_alt_reloc (slot); | |
4157 | expr->X_op = O_symbol; | |
4158 | } | |
4159 | } | |
4160 | ||
4161 | if (opnum != get_relaxable_immed (opcode)) | |
e0001a05 | 4162 | { |
43cd72b9 | 4163 | as_bad (_("invalid relocation for operand %i of '%s'"), |
431ad2d0 | 4164 | opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode)); |
e0001a05 NC |
4165 | return FALSE; |
4166 | } | |
4167 | ||
43cd72b9 BW |
4168 | /* Handle erroneous "@h" and "@l" expressions here before they propagate |
4169 | into the symbol table where the generic portions of the assembler | |
4170 | won't know what to do with them. */ | |
4171 | if (expr->X_op == O_lo16 || expr->X_op == O_hi16) | |
4172 | { | |
4173 | as_bad (_("invalid expression for operand %i of '%s'"), | |
431ad2d0 | 4174 | opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode)); |
43cd72b9 BW |
4175 | return FALSE; |
4176 | } | |
4177 | ||
4178 | /* Next try the generic relocs. */ | |
4179 | if (reloc == BFD_RELOC_NONE) | |
4180 | reloc = encode_reloc (slot); | |
4181 | if (reloc == BFD_RELOC_NONE) | |
4182 | { | |
4183 | as_bad (_("invalid relocation in instruction slot %i"), slot); | |
4184 | return FALSE; | |
4185 | } | |
e0001a05 | 4186 | |
43cd72b9 | 4187 | howto = bfd_reloc_type_lookup (stdoutput, reloc); |
e0001a05 NC |
4188 | if (!howto) |
4189 | { | |
43cd72b9 | 4190 | as_bad (_("undefined symbol for opcode \"%s\""), |
e0001a05 NC |
4191 | xtensa_opcode_name (xtensa_default_isa, opcode)); |
4192 | return FALSE; | |
4193 | } | |
4194 | ||
43cd72b9 BW |
4195 | fmt_length = xtensa_format_length (xtensa_default_isa, fmt); |
4196 | the_fix = fix_new_exp (fragP, offset, fmt_length, expr, | |
e0001a05 | 4197 | howto->pc_relative, reloc); |
d9740523 | 4198 | the_fix->fx_no_overflow = 1; |
7fa3d080 BW |
4199 | the_fix->tc_fix_data.X_add_symbol = expr->X_add_symbol; |
4200 | the_fix->tc_fix_data.X_add_number = expr->X_add_number; | |
4201 | the_fix->tc_fix_data.slot = slot; | |
c138bc38 | 4202 | |
7fa3d080 BW |
4203 | return TRUE; |
4204 | } | |
4205 | ||
4206 | ||
4207 | static bfd_boolean | |
4208 | xg_emit_insn_to_buf (TInsn *tinsn, | |
7fa3d080 BW |
4209 | char *buf, |
4210 | fragS *fragP, | |
4211 | offsetT offset, | |
4212 | bfd_boolean build_fix) | |
4213 | { | |
4214 | static xtensa_insnbuf insnbuf = NULL; | |
4215 | bfd_boolean has_symbolic_immed = FALSE; | |
4216 | bfd_boolean ok = TRUE; | |
b2d179be | 4217 | |
7fa3d080 BW |
4218 | if (!insnbuf) |
4219 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
4220 | ||
4221 | has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf); | |
4222 | if (has_symbolic_immed && build_fix) | |
4223 | { | |
4224 | /* Add a fixup. */ | |
b2d179be BW |
4225 | xtensa_format fmt = xg_get_single_format (tinsn->opcode); |
4226 | int slot = xg_get_single_slot (tinsn->opcode); | |
7fa3d080 BW |
4227 | int opnum = get_relaxable_immed (tinsn->opcode); |
4228 | expressionS *exp = &tinsn->tok[opnum]; | |
43cd72b9 | 4229 | |
b2d179be | 4230 | if (!xg_add_opcode_fix (tinsn, opnum, fmt, slot, exp, fragP, offset)) |
7fa3d080 BW |
4231 | ok = FALSE; |
4232 | } | |
4233 | fragP->tc_frag_data.is_insn = TRUE; | |
d77b99c9 BW |
4234 | xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, |
4235 | (unsigned char *) buf, 0); | |
7fa3d080 | 4236 | return ok; |
e0001a05 NC |
4237 | } |
4238 | ||
4239 | ||
7fa3d080 BW |
4240 | static void |
4241 | xg_resolve_literals (TInsn *insn, symbolS *lit_sym) | |
e0001a05 NC |
4242 | { |
4243 | symbolS *sym = get_special_literal_symbol (); | |
4244 | int i; | |
4245 | if (lit_sym == 0) | |
4246 | return; | |
4247 | assert (insn->insn_type == ITYPE_INSN); | |
4248 | for (i = 0; i < insn->ntok; i++) | |
4249 | if (insn->tok[i].X_add_symbol == sym) | |
4250 | insn->tok[i].X_add_symbol = lit_sym; | |
4251 | ||
4252 | } | |
4253 | ||
4254 | ||
7fa3d080 BW |
4255 | static void |
4256 | xg_resolve_labels (TInsn *insn, symbolS *label_sym) | |
e0001a05 NC |
4257 | { |
4258 | symbolS *sym = get_special_label_symbol (); | |
4259 | int i; | |
e0001a05 NC |
4260 | for (i = 0; i < insn->ntok; i++) |
4261 | if (insn->tok[i].X_add_symbol == sym) | |
4262 | insn->tok[i].X_add_symbol = label_sym; | |
4263 | ||
4264 | } | |
4265 | ||
4266 | ||
43cd72b9 | 4267 | /* Return TRUE if the instruction can write to the specified |
e0001a05 NC |
4268 | integer register. */ |
4269 | ||
4270 | static bfd_boolean | |
7fa3d080 | 4271 | is_register_writer (const TInsn *insn, const char *regset, int regnum) |
e0001a05 NC |
4272 | { |
4273 | int i; | |
4274 | int num_ops; | |
4275 | xtensa_isa isa = xtensa_default_isa; | |
4276 | ||
43cd72b9 | 4277 | num_ops = xtensa_opcode_num_operands (isa, insn->opcode); |
e0001a05 NC |
4278 | |
4279 | for (i = 0; i < num_ops; i++) | |
4280 | { | |
43cd72b9 BW |
4281 | char inout; |
4282 | inout = xtensa_operand_inout (isa, insn->opcode, i); | |
4283 | if ((inout == 'o' || inout == 'm') | |
4284 | && xtensa_operand_is_register (isa, insn->opcode, i) == 1) | |
e0001a05 | 4285 | { |
43cd72b9 BW |
4286 | xtensa_regfile opnd_rf = |
4287 | xtensa_operand_regfile (isa, insn->opcode, i); | |
4288 | if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset)) | |
e0001a05 NC |
4289 | { |
4290 | if ((insn->tok[i].X_op == O_register) | |
4291 | && (insn->tok[i].X_add_number == regnum)) | |
4292 | return TRUE; | |
4293 | } | |
4294 | } | |
4295 | } | |
4296 | return FALSE; | |
4297 | } | |
4298 | ||
4299 | ||
4300 | static bfd_boolean | |
7fa3d080 | 4301 | is_bad_loopend_opcode (const TInsn *tinsn) |
e0001a05 NC |
4302 | { |
4303 | xtensa_opcode opcode = tinsn->opcode; | |
4304 | ||
4305 | if (opcode == XTENSA_UNDEFINED) | |
4306 | return FALSE; | |
4307 | ||
4308 | if (opcode == xtensa_call0_opcode | |
4309 | || opcode == xtensa_callx0_opcode | |
4310 | || opcode == xtensa_call4_opcode | |
4311 | || opcode == xtensa_callx4_opcode | |
4312 | || opcode == xtensa_call8_opcode | |
4313 | || opcode == xtensa_callx8_opcode | |
4314 | || opcode == xtensa_call12_opcode | |
4315 | || opcode == xtensa_callx12_opcode | |
4316 | || opcode == xtensa_isync_opcode | |
4317 | || opcode == xtensa_ret_opcode | |
4318 | || opcode == xtensa_ret_n_opcode | |
4319 | || opcode == xtensa_retw_opcode | |
4320 | || opcode == xtensa_retw_n_opcode | |
43cd72b9 BW |
4321 | || opcode == xtensa_waiti_opcode |
4322 | || opcode == xtensa_rsr_lcount_opcode) | |
e0001a05 | 4323 | return TRUE; |
c138bc38 | 4324 | |
e0001a05 NC |
4325 | return FALSE; |
4326 | } | |
4327 | ||
4328 | ||
4329 | /* Labels that begin with ".Ln" or ".LM" are unaligned. | |
4330 | This allows the debugger to add unaligned labels. | |
4331 | Also, the assembler generates stabs labels that need | |
4332 | not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */ | |
4333 | ||
7fa3d080 BW |
4334 | static bfd_boolean |
4335 | is_unaligned_label (symbolS *sym) | |
e0001a05 NC |
4336 | { |
4337 | const char *name = S_GET_NAME (sym); | |
4338 | static size_t fake_size = 0; | |
4339 | ||
4340 | if (name | |
4341 | && name[0] == '.' | |
4342 | && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M')) | |
4343 | return TRUE; | |
4344 | ||
4345 | /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */ | |
4346 | if (fake_size == 0) | |
4347 | fake_size = strlen (FAKE_LABEL_NAME); | |
4348 | ||
43cd72b9 | 4349 | if (name |
e0001a05 NC |
4350 | && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0 |
4351 | && (name[fake_size] == 'F' | |
4352 | || name[fake_size] == 'L' | |
4353 | || (name[fake_size] == 'e' | |
4354 | && strncmp ("endfunc", name+fake_size, 7) == 0))) | |
4355 | return TRUE; | |
4356 | ||
4357 | return FALSE; | |
4358 | } | |
4359 | ||
4360 | ||
7fa3d080 BW |
4361 | static fragS * |
4362 | next_non_empty_frag (const fragS *fragP) | |
e0001a05 NC |
4363 | { |
4364 | fragS *next_fragP = fragP->fr_next; | |
4365 | ||
c138bc38 | 4366 | /* Sometimes an empty will end up here due storage allocation issues. |
e0001a05 NC |
4367 | So we have to skip until we find something legit. */ |
4368 | while (next_fragP && next_fragP->fr_fix == 0) | |
4369 | next_fragP = next_fragP->fr_next; | |
4370 | ||
4371 | if (next_fragP == NULL || next_fragP->fr_fix == 0) | |
4372 | return NULL; | |
4373 | ||
4374 | return next_fragP; | |
4375 | } | |
4376 | ||
4377 | ||
43cd72b9 | 4378 | static bfd_boolean |
7fa3d080 | 4379 | next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode) |
43cd72b9 BW |
4380 | { |
4381 | xtensa_opcode out_opcode; | |
4382 | const fragS *next_fragP = next_non_empty_frag (fragP); | |
4383 | ||
4384 | if (next_fragP == NULL) | |
4385 | return FALSE; | |
4386 | ||
4387 | out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0); | |
4388 | if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1) | |
4389 | { | |
4390 | *opcode = out_opcode; | |
4391 | return TRUE; | |
4392 | } | |
4393 | return FALSE; | |
4394 | } | |
4395 | ||
4396 | ||
4397 | static int | |
7fa3d080 | 4398 | frag_format_size (const fragS *fragP) |
43cd72b9 | 4399 | { |
e0001a05 NC |
4400 | static xtensa_insnbuf insnbuf = NULL; |
4401 | xtensa_isa isa = xtensa_default_isa; | |
43cd72b9 | 4402 | xtensa_format fmt; |
c138bc38 | 4403 | int fmt_size; |
e0001a05 NC |
4404 | |
4405 | if (!insnbuf) | |
4406 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4407 | ||
43cd72b9 BW |
4408 | if (fragP == NULL) |
4409 | return XTENSA_UNDEFINED; | |
4410 | ||
d77b99c9 BW |
4411 | xtensa_insnbuf_from_chars (isa, insnbuf, |
4412 | (unsigned char *) fragP->fr_literal, 0); | |
43cd72b9 BW |
4413 | |
4414 | fmt = xtensa_format_decode (isa, insnbuf); | |
4415 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 4416 | return XTENSA_UNDEFINED; |
43cd72b9 BW |
4417 | fmt_size = xtensa_format_length (isa, fmt); |
4418 | ||
4419 | /* If the next format won't be changing due to relaxation, just | |
4420 | return the length of the first format. */ | |
4421 | if (fragP->fr_opcode != fragP->fr_literal) | |
4422 | return fmt_size; | |
4423 | ||
c138bc38 | 4424 | /* If during relaxation we have to pull an instruction out of a |
43cd72b9 BW |
4425 | multi-slot instruction, we will return the more conservative |
4426 | number. This works because alignment on bigger instructions | |
4427 | is more restrictive than alignment on smaller instructions. | |
4428 | This is more conservative than we would like, but it happens | |
4429 | infrequently. */ | |
4430 | ||
4431 | if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1) | |
4432 | return fmt_size; | |
4433 | ||
4434 | /* If we aren't doing one of our own relaxations or it isn't | |
4435 | slot-based, then the insn size won't change. */ | |
4436 | if (fragP->fr_type != rs_machine_dependent) | |
4437 | return fmt_size; | |
4438 | if (fragP->fr_subtype != RELAX_SLOTS) | |
4439 | return fmt_size; | |
4440 | ||
4441 | /* If an instruction is about to grow, return the longer size. */ | |
4442 | if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1 | |
b81bf389 BW |
4443 | || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2 |
4444 | || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP3) | |
def13efb BW |
4445 | { |
4446 | /* For most frags at RELAX_IMMED_STEPX, with X > 0, the first | |
4447 | instruction in the relaxed version is of length 3. (The case | |
4448 | where we have to pull the instruction out of a FLIX bundle | |
4449 | is handled conservatively above.) However, frags with opcodes | |
4450 | that are expanding to wide branches end up having formats that | |
4451 | are not determinable by the RELAX_IMMED_STEPX enumeration, and | |
4452 | we can't tell directly what format the relaxer picked. This | |
4453 | is a wart in the design of the relaxer that should someday be | |
4454 | fixed, but would require major changes, or at least should | |
4455 | be accompanied by major changes to make use of that data. | |
4456 | ||
4457 | In any event, we can tell that we are expanding from a single-slot | |
4458 | three-byte format to a wider one with the logic below. */ | |
4459 | ||
4460 | if (fmt_size <= 3 && fragP->tc_frag_data.text_expansion[0] != 3) | |
4461 | return 3 + fragP->tc_frag_data.text_expansion[0]; | |
4462 | else | |
4463 | return 3; | |
4464 | } | |
c138bc38 | 4465 | |
43cd72b9 BW |
4466 | if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW) |
4467 | return 2 + fragP->tc_frag_data.text_expansion[0]; | |
e0001a05 | 4468 | |
43cd72b9 | 4469 | return fmt_size; |
e0001a05 NC |
4470 | } |
4471 | ||
4472 | ||
7fa3d080 BW |
4473 | static int |
4474 | next_frag_format_size (const fragS *fragP) | |
e0001a05 | 4475 | { |
7fa3d080 BW |
4476 | const fragS *next_fragP = next_non_empty_frag (fragP); |
4477 | return frag_format_size (next_fragP); | |
e0001a05 NC |
4478 | } |
4479 | ||
4480 | ||
03aaa593 BW |
4481 | /* In early Xtensa Processors, for reasons that are unclear, the ISA |
4482 | required two-byte instructions to be treated as three-byte instructions | |
4483 | for loop instruction alignment. This restriction was removed beginning | |
4484 | with Xtensa LX. Now the only requirement on loop instruction alignment | |
4485 | is that the first instruction of the loop must appear at an address that | |
4486 | does not cross a fetch boundary. */ | |
4487 | ||
4488 | static int | |
4489 | get_loop_align_size (int insn_size) | |
4490 | { | |
4491 | if (insn_size == XTENSA_UNDEFINED) | |
4492 | return xtensa_fetch_width; | |
4493 | ||
4494 | if (enforce_three_byte_loop_align && insn_size == 2) | |
4495 | return 3; | |
4496 | ||
4497 | return insn_size; | |
4498 | } | |
4499 | ||
4500 | ||
e0001a05 NC |
4501 | /* If the next legit fragment is an end-of-loop marker, |
4502 | switch its state so it will instantiate a NOP. */ | |
4503 | ||
4504 | static void | |
1d19a770 | 4505 | update_next_frag_state (fragS *fragP) |
e0001a05 NC |
4506 | { |
4507 | fragS *next_fragP = fragP->fr_next; | |
43cd72b9 | 4508 | fragS *new_target = NULL; |
e0001a05 | 4509 | |
7b1cc377 | 4510 | if (align_targets) |
43cd72b9 BW |
4511 | { |
4512 | /* We are guaranteed there will be one of these... */ | |
4513 | while (!(next_fragP->fr_type == rs_machine_dependent | |
4514 | && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE | |
4515 | || next_fragP->fr_subtype == RELAX_UNREACHABLE))) | |
4516 | next_fragP = next_fragP->fr_next; | |
4517 | ||
4518 | assert (next_fragP->fr_type == rs_machine_dependent | |
4519 | && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE | |
4520 | || next_fragP->fr_subtype == RELAX_UNREACHABLE)); | |
4521 | ||
4522 | /* ...and one of these. */ | |
4523 | new_target = next_fragP->fr_next; | |
4524 | while (!(new_target->fr_type == rs_machine_dependent | |
4525 | && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN | |
4526 | || new_target->fr_subtype == RELAX_DESIRE_ALIGN))) | |
4527 | new_target = new_target->fr_next; | |
4528 | ||
4529 | assert (new_target->fr_type == rs_machine_dependent | |
4530 | && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN | |
4531 | || new_target->fr_subtype == RELAX_DESIRE_ALIGN)); | |
4532 | } | |
43cd72b9 | 4533 | |
1d19a770 | 4534 | while (next_fragP && next_fragP->fr_fix == 0) |
43cd72b9 | 4535 | { |
1d19a770 BW |
4536 | if (next_fragP->fr_type == rs_machine_dependent |
4537 | && next_fragP->fr_subtype == RELAX_LOOP_END) | |
43cd72b9 | 4538 | { |
1d19a770 BW |
4539 | next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP; |
4540 | return; | |
e0001a05 | 4541 | } |
1d19a770 BW |
4542 | |
4543 | next_fragP = next_fragP->fr_next; | |
e0001a05 NC |
4544 | } |
4545 | } | |
4546 | ||
4547 | ||
4548 | static bfd_boolean | |
7fa3d080 | 4549 | next_frag_is_branch_target (const fragS *fragP) |
e0001a05 | 4550 | { |
43cd72b9 | 4551 | /* Sometimes an empty will end up here due to storage allocation issues, |
e0001a05 NC |
4552 | so we have to skip until we find something legit. */ |
4553 | for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next) | |
4554 | { | |
4555 | if (fragP->tc_frag_data.is_branch_target) | |
4556 | return TRUE; | |
4557 | if (fragP->fr_fix != 0) | |
4558 | break; | |
4559 | } | |
4560 | return FALSE; | |
4561 | } | |
4562 | ||
4563 | ||
4564 | static bfd_boolean | |
7fa3d080 | 4565 | next_frag_is_loop_target (const fragS *fragP) |
e0001a05 | 4566 | { |
c138bc38 | 4567 | /* Sometimes an empty will end up here due storage allocation issues. |
e0001a05 NC |
4568 | So we have to skip until we find something legit. */ |
4569 | for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next) | |
4570 | { | |
4571 | if (fragP->tc_frag_data.is_loop_target) | |
4572 | return TRUE; | |
4573 | if (fragP->fr_fix != 0) | |
4574 | break; | |
4575 | } | |
4576 | return FALSE; | |
4577 | } | |
4578 | ||
4579 | ||
4580 | static addressT | |
7fa3d080 | 4581 | next_frag_pre_opcode_bytes (const fragS *fragp) |
e0001a05 NC |
4582 | { |
4583 | const fragS *next_fragp = fragp->fr_next; | |
43cd72b9 | 4584 | xtensa_opcode next_opcode; |
e0001a05 | 4585 | |
43cd72b9 | 4586 | if (!next_frag_opcode_is_loop (fragp, &next_opcode)) |
e0001a05 NC |
4587 | return 0; |
4588 | ||
43cd72b9 BW |
4589 | /* Sometimes an empty will end up here due to storage allocation issues, |
4590 | so we have to skip until we find something legit. */ | |
e0001a05 NC |
4591 | while (next_fragp->fr_fix == 0) |
4592 | next_fragp = next_fragp->fr_next; | |
4593 | ||
4594 | if (next_fragp->fr_type != rs_machine_dependent) | |
4595 | return 0; | |
4596 | ||
4597 | /* There is some implicit knowledge encoded in here. | |
4598 | The LOOP instructions that are NOT RELAX_IMMED have | |
43cd72b9 BW |
4599 | been relaxed. Note that we can assume that the LOOP |
4600 | instruction is in slot 0 because loops aren't bundleable. */ | |
4601 | if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED) | |
e0001a05 NC |
4602 | return get_expanded_loop_offset (next_opcode); |
4603 | ||
4604 | return 0; | |
4605 | } | |
4606 | ||
4607 | ||
4608 | /* Mark a location where we can later insert literal frags. Update | |
4609 | the section's literal_pool_loc, so subsequent literals can be | |
4610 | placed nearest to their use. */ | |
4611 | ||
4612 | static void | |
7fa3d080 | 4613 | xtensa_mark_literal_pool_location (void) |
e0001a05 NC |
4614 | { |
4615 | /* Any labels pointing to the current location need | |
4616 | to be adjusted to after the literal pool. */ | |
4617 | emit_state s; | |
e0001a05 | 4618 | fragS *pool_location; |
e0001a05 | 4619 | |
1f2a7e38 | 4620 | if (use_literal_section) |
43cd72b9 BW |
4621 | return; |
4622 | ||
dd49a749 BW |
4623 | /* We stash info in these frags so we can later move the literal's |
4624 | fixes into this frchain's fix list. */ | |
e0001a05 | 4625 | pool_location = frag_now; |
dd49a749 | 4626 | frag_now->tc_frag_data.lit_frchain = frchain_now; |
c48aaca0 | 4627 | frag_now->tc_frag_data.literal_frag = frag_now; |
dd49a749 | 4628 | frag_variant (rs_machine_dependent, 0, 0, |
e0001a05 | 4629 | RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL); |
43cd72b9 | 4630 | xtensa_set_frag_assembly_state (frag_now); |
dd49a749 BW |
4631 | frag_now->tc_frag_data.lit_seg = now_seg; |
4632 | frag_variant (rs_machine_dependent, 0, 0, | |
e0001a05 | 4633 | RELAX_LITERAL_POOL_END, NULL, 0, NULL); |
43cd72b9 | 4634 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
4635 | |
4636 | /* Now put a frag into the literal pool that points to this location. */ | |
4637 | set_literal_pool_location (now_seg, pool_location); | |
43cd72b9 BW |
4638 | xtensa_switch_to_non_abs_literal_fragment (&s); |
4639 | frag_align (2, 0, 0); | |
4640 | record_alignment (now_seg, 2); | |
e0001a05 NC |
4641 | |
4642 | /* Close whatever frag is there. */ | |
4643 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
43cd72b9 | 4644 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
4645 | frag_now->tc_frag_data.literal_frag = pool_location; |
4646 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
4647 | xtensa_restore_emit_state (&s); | |
43cd72b9 | 4648 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
4649 | } |
4650 | ||
4651 | ||
43cd72b9 BW |
4652 | /* Build a nop of the correct size into tinsn. */ |
4653 | ||
4654 | static void | |
7fa3d080 | 4655 | build_nop (TInsn *tinsn, int size) |
43cd72b9 BW |
4656 | { |
4657 | tinsn_init (tinsn); | |
4658 | switch (size) | |
4659 | { | |
4660 | case 2: | |
4661 | tinsn->opcode = xtensa_nop_n_opcode; | |
4662 | tinsn->ntok = 0; | |
4663 | if (tinsn->opcode == XTENSA_UNDEFINED) | |
4664 | as_fatal (_("opcode 'NOP.N' unavailable in this configuration")); | |
4665 | break; | |
4666 | ||
4667 | case 3: | |
4668 | if (xtensa_nop_opcode == XTENSA_UNDEFINED) | |
4669 | { | |
4670 | tinsn->opcode = xtensa_or_opcode; | |
4671 | set_expr_const (&tinsn->tok[0], 1); | |
4672 | set_expr_const (&tinsn->tok[1], 1); | |
4673 | set_expr_const (&tinsn->tok[2], 1); | |
4674 | tinsn->ntok = 3; | |
4675 | } | |
4676 | else | |
4677 | tinsn->opcode = xtensa_nop_opcode; | |
4678 | ||
4679 | assert (tinsn->opcode != XTENSA_UNDEFINED); | |
4680 | } | |
4681 | } | |
4682 | ||
4683 | ||
e0001a05 NC |
4684 | /* Assemble a NOP of the requested size in the buffer. User must have |
4685 | allocated "buf" with at least "size" bytes. */ | |
4686 | ||
7fa3d080 | 4687 | static void |
d77b99c9 | 4688 | assemble_nop (int size, char *buf) |
e0001a05 NC |
4689 | { |
4690 | static xtensa_insnbuf insnbuf = NULL; | |
43cd72b9 | 4691 | TInsn tinsn; |
e0001a05 | 4692 | |
43cd72b9 | 4693 | build_nop (&tinsn, size); |
e0001a05 | 4694 | |
43cd72b9 BW |
4695 | if (!insnbuf) |
4696 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
e0001a05 | 4697 | |
43cd72b9 | 4698 | tinsn_to_insnbuf (&tinsn, insnbuf); |
d77b99c9 BW |
4699 | xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, |
4700 | (unsigned char *) buf, 0); | |
e0001a05 NC |
4701 | } |
4702 | ||
4703 | ||
4704 | /* Return the number of bytes for the offset of the expanded loop | |
4705 | instruction. This should be incorporated into the relaxation | |
4706 | specification but is hard-coded here. This is used to auto-align | |
4707 | the loop instruction. It is invalid to call this function if the | |
4708 | configuration does not have loops or if the opcode is not a loop | |
4709 | opcode. */ | |
4710 | ||
4711 | static addressT | |
7fa3d080 | 4712 | get_expanded_loop_offset (xtensa_opcode opcode) |
e0001a05 NC |
4713 | { |
4714 | /* This is the OFFSET of the loop instruction in the expanded loop. | |
4715 | This MUST correspond directly to the specification of the loop | |
4716 | expansion. It will be validated on fragment conversion. */ | |
43cd72b9 | 4717 | assert (opcode != XTENSA_UNDEFINED); |
e0001a05 NC |
4718 | if (opcode == xtensa_loop_opcode) |
4719 | return 0; | |
4720 | if (opcode == xtensa_loopnez_opcode) | |
4721 | return 3; | |
4722 | if (opcode == xtensa_loopgtz_opcode) | |
4723 | return 6; | |
4724 | as_fatal (_("get_expanded_loop_offset: invalid opcode")); | |
4725 | return 0; | |
4726 | } | |
4727 | ||
4728 | ||
7fa3d080 BW |
4729 | static fragS * |
4730 | get_literal_pool_location (segT seg) | |
e0001a05 NC |
4731 | { |
4732 | return seg_info (seg)->tc_segment_info_data.literal_pool_loc; | |
4733 | } | |
4734 | ||
4735 | ||
4736 | static void | |
7fa3d080 | 4737 | set_literal_pool_location (segT seg, fragS *literal_pool_loc) |
e0001a05 NC |
4738 | { |
4739 | seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc; | |
4740 | } | |
4741 | ||
43cd72b9 BW |
4742 | |
4743 | /* Set frag assembly state should be called when a new frag is | |
4744 | opened and after a frag has been closed. */ | |
4745 | ||
7fa3d080 BW |
4746 | static void |
4747 | xtensa_set_frag_assembly_state (fragS *fragP) | |
43cd72b9 BW |
4748 | { |
4749 | if (!density_supported) | |
4750 | fragP->tc_frag_data.is_no_density = TRUE; | |
4751 | ||
4752 | /* This function is called from subsegs_finish, which is called | |
c138bc38 | 4753 | after xtensa_end, so we can't use "use_transform" or |
43cd72b9 BW |
4754 | "use_schedule" here. */ |
4755 | if (!directive_state[directive_transform]) | |
4756 | fragP->tc_frag_data.is_no_transform = TRUE; | |
7c834684 BW |
4757 | if (directive_state[directive_longcalls]) |
4758 | fragP->tc_frag_data.use_longcalls = TRUE; | |
43cd72b9 BW |
4759 | fragP->tc_frag_data.use_absolute_literals = |
4760 | directive_state[directive_absolute_literals]; | |
4761 | fragP->tc_frag_data.is_assembly_state_set = TRUE; | |
4762 | } | |
4763 | ||
4764 | ||
7fa3d080 BW |
4765 | static bfd_boolean |
4766 | relaxable_section (asection *sec) | |
43cd72b9 | 4767 | { |
11ac2671 BW |
4768 | return ((sec->flags & SEC_DEBUGGING) == 0 |
4769 | && strcmp (sec->name, ".eh_frame") != 0); | |
43cd72b9 BW |
4770 | } |
4771 | ||
4772 | ||
99ded152 BW |
4773 | static void |
4774 | xtensa_mark_frags_for_org (void) | |
4775 | { | |
4776 | segT *seclist; | |
4777 | ||
4778 | /* Walk over each fragment of all of the current segments. If we find | |
4779 | a .org frag in any of the segments, mark all frags prior to it as | |
4780 | "no transform", which will prevent linker optimizations from messing | |
4781 | up the .org distance. This should be done after | |
4782 | xtensa_find_unmarked_state_frags, because we don't want to worry here | |
4783 | about that function trashing the data we save here. */ | |
4784 | ||
4785 | for (seclist = &stdoutput->sections; | |
4786 | seclist && *seclist; | |
4787 | seclist = &(*seclist)->next) | |
4788 | { | |
4789 | segT sec = *seclist; | |
4790 | segment_info_type *seginfo; | |
4791 | fragS *fragP; | |
4792 | flagword flags; | |
4793 | flags = bfd_get_section_flags (stdoutput, sec); | |
4794 | if (flags & SEC_DEBUGGING) | |
4795 | continue; | |
4796 | if (!(flags & SEC_ALLOC)) | |
4797 | continue; | |
4798 | ||
4799 | seginfo = seg_info (sec); | |
4800 | if (seginfo && seginfo->frchainP) | |
4801 | { | |
4802 | fragS *last_fragP = seginfo->frchainP->frch_root; | |
4803 | for (fragP = seginfo->frchainP->frch_root; fragP; | |
4804 | fragP = fragP->fr_next) | |
4805 | { | |
4806 | /* cvt_frag_to_fill has changed the fr_type of org frags to | |
4807 | rs_fill, so use the value as cached in rs_subtype here. */ | |
4808 | if (fragP->fr_subtype == RELAX_ORG) | |
4809 | { | |
4810 | while (last_fragP != fragP->fr_next) | |
4811 | { | |
4812 | last_fragP->tc_frag_data.is_no_transform = TRUE; | |
4813 | last_fragP = last_fragP->fr_next; | |
4814 | } | |
4815 | } | |
4816 | } | |
4817 | } | |
4818 | } | |
4819 | } | |
4820 | ||
4821 | ||
43cd72b9 | 4822 | static void |
7fa3d080 | 4823 | xtensa_find_unmarked_state_frags (void) |
43cd72b9 BW |
4824 | { |
4825 | segT *seclist; | |
4826 | ||
4827 | /* Walk over each fragment of all of the current segments. For each | |
4828 | unmarked fragment, mark it with the same info as the previous | |
4829 | fragment. */ | |
4830 | for (seclist = &stdoutput->sections; | |
4831 | seclist && *seclist; | |
4832 | seclist = &(*seclist)->next) | |
4833 | { | |
4834 | segT sec = *seclist; | |
4835 | segment_info_type *seginfo; | |
4836 | fragS *fragP; | |
4837 | flagword flags; | |
4838 | flags = bfd_get_section_flags (stdoutput, sec); | |
4839 | if (flags & SEC_DEBUGGING) | |
4840 | continue; | |
4841 | if (!(flags & SEC_ALLOC)) | |
4842 | continue; | |
4843 | ||
4844 | seginfo = seg_info (sec); | |
4845 | if (seginfo && seginfo->frchainP) | |
4846 | { | |
4847 | fragS *last_fragP = 0; | |
4848 | for (fragP = seginfo->frchainP->frch_root; fragP; | |
4849 | fragP = fragP->fr_next) | |
4850 | { | |
4851 | if (fragP->fr_fix != 0 | |
4852 | && !fragP->tc_frag_data.is_assembly_state_set) | |
4853 | { | |
4854 | if (last_fragP == 0) | |
4855 | { | |
4856 | as_warn_where (fragP->fr_file, fragP->fr_line, | |
4857 | _("assembly state not set for first frag in section %s"), | |
4858 | sec->name); | |
4859 | } | |
4860 | else | |
4861 | { | |
4862 | fragP->tc_frag_data.is_assembly_state_set = TRUE; | |
4863 | fragP->tc_frag_data.is_no_density = | |
4864 | last_fragP->tc_frag_data.is_no_density; | |
4865 | fragP->tc_frag_data.is_no_transform = | |
4866 | last_fragP->tc_frag_data.is_no_transform; | |
7c834684 BW |
4867 | fragP->tc_frag_data.use_longcalls = |
4868 | last_fragP->tc_frag_data.use_longcalls; | |
43cd72b9 BW |
4869 | fragP->tc_frag_data.use_absolute_literals = |
4870 | last_fragP->tc_frag_data.use_absolute_literals; | |
4871 | } | |
4872 | } | |
4873 | if (fragP->tc_frag_data.is_assembly_state_set) | |
4874 | last_fragP = fragP; | |
4875 | } | |
4876 | } | |
4877 | } | |
4878 | } | |
4879 | ||
4880 | ||
4881 | static void | |
7fa3d080 BW |
4882 | xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED, |
4883 | asection *sec, | |
4884 | void *unused ATTRIBUTE_UNUSED) | |
43cd72b9 BW |
4885 | { |
4886 | flagword flags = bfd_get_section_flags (abfd, sec); | |
4887 | segment_info_type *seginfo = seg_info (sec); | |
4888 | fragS *frag = seginfo->frchainP->frch_root; | |
c138bc38 | 4889 | |
43cd72b9 | 4890 | if (flags & SEC_CODE) |
c138bc38 | 4891 | { |
43cd72b9 BW |
4892 | xtensa_isa isa = xtensa_default_isa; |
4893 | xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa); | |
4894 | while (frag != NULL) | |
4895 | { | |
4896 | if (frag->tc_frag_data.is_branch_target) | |
4897 | { | |
4898 | int op_size; | |
664df4e4 | 4899 | addressT branch_align, frag_addr; |
43cd72b9 BW |
4900 | xtensa_format fmt; |
4901 | ||
d77b99c9 BW |
4902 | xtensa_insnbuf_from_chars |
4903 | (isa, insnbuf, (unsigned char *) frag->fr_literal, 0); | |
43cd72b9 BW |
4904 | fmt = xtensa_format_decode (isa, insnbuf); |
4905 | op_size = xtensa_format_length (isa, fmt); | |
664df4e4 BW |
4906 | branch_align = 1 << branch_align_power (sec); |
4907 | frag_addr = frag->fr_address % branch_align; | |
4908 | if (frag_addr + op_size > branch_align) | |
43cd72b9 BW |
4909 | as_warn_where (frag->fr_file, frag->fr_line, |
4910 | _("unaligned branch target: %d bytes at 0x%lx"), | |
dd49a749 | 4911 | op_size, (long) frag->fr_address); |
43cd72b9 BW |
4912 | } |
4913 | frag = frag->fr_next; | |
4914 | } | |
4915 | xtensa_insnbuf_free (isa, insnbuf); | |
4916 | } | |
4917 | } | |
4918 | ||
4919 | ||
4920 | static void | |
7fa3d080 BW |
4921 | xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED, |
4922 | asection *sec, | |
4923 | void *unused ATTRIBUTE_UNUSED) | |
43cd72b9 BW |
4924 | { |
4925 | flagword flags = bfd_get_section_flags (abfd, sec); | |
4926 | segment_info_type *seginfo = seg_info (sec); | |
4927 | fragS *frag = seginfo->frchainP->frch_root; | |
4928 | xtensa_isa isa = xtensa_default_isa; | |
c138bc38 | 4929 | |
43cd72b9 | 4930 | if (flags & SEC_CODE) |
c138bc38 | 4931 | { |
43cd72b9 BW |
4932 | xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa); |
4933 | while (frag != NULL) | |
4934 | { | |
4935 | if (frag->tc_frag_data.is_first_loop_insn) | |
4936 | { | |
4937 | int op_size; | |
d77b99c9 | 4938 | addressT frag_addr; |
43cd72b9 BW |
4939 | xtensa_format fmt; |
4940 | ||
d77b99c9 BW |
4941 | xtensa_insnbuf_from_chars |
4942 | (isa, insnbuf, (unsigned char *) frag->fr_literal, 0); | |
43cd72b9 BW |
4943 | fmt = xtensa_format_decode (isa, insnbuf); |
4944 | op_size = xtensa_format_length (isa, fmt); | |
4945 | frag_addr = frag->fr_address % xtensa_fetch_width; | |
4946 | ||
d77b99c9 | 4947 | if (frag_addr + op_size > xtensa_fetch_width) |
43cd72b9 BW |
4948 | as_warn_where (frag->fr_file, frag->fr_line, |
4949 | _("unaligned loop: %d bytes at 0x%lx"), | |
dd49a749 | 4950 | op_size, (long) frag->fr_address); |
43cd72b9 BW |
4951 | } |
4952 | frag = frag->fr_next; | |
4953 | } | |
4954 | xtensa_insnbuf_free (isa, insnbuf); | |
4955 | } | |
4956 | } | |
4957 | ||
4958 | ||
30f725a1 BW |
4959 | static int |
4960 | xg_apply_fix_value (fixS *fixP, valueT val) | |
43cd72b9 BW |
4961 | { |
4962 | xtensa_isa isa = xtensa_default_isa; | |
4963 | static xtensa_insnbuf insnbuf = NULL; | |
4964 | static xtensa_insnbuf slotbuf = NULL; | |
4965 | xtensa_format fmt; | |
4966 | int slot; | |
4967 | bfd_boolean alt_reloc; | |
4968 | xtensa_opcode opcode; | |
4969 | char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where; | |
4970 | ||
4971 | (void) decode_reloc (fixP->fx_r_type, &slot, &alt_reloc); | |
4972 | if (alt_reloc) | |
4973 | as_fatal (_("unexpected fix")); | |
4974 | ||
4975 | if (!insnbuf) | |
4976 | { | |
4977 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4978 | slotbuf = xtensa_insnbuf_alloc (isa); | |
4979 | } | |
4980 | ||
d77b99c9 | 4981 | xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0); |
43cd72b9 BW |
4982 | fmt = xtensa_format_decode (isa, insnbuf); |
4983 | if (fmt == XTENSA_UNDEFINED) | |
4984 | as_fatal (_("undecodable fix")); | |
4985 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); | |
4986 | opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
4987 | if (opcode == XTENSA_UNDEFINED) | |
4988 | as_fatal (_("undecodable fix")); | |
4989 | ||
4990 | /* CONST16 immediates are not PC-relative, despite the fact that we | |
4991 | reuse the normal PC-relative operand relocations for the low part | |
30f725a1 | 4992 | of a CONST16 operand. */ |
43cd72b9 | 4993 | if (opcode == xtensa_const16_opcode) |
30f725a1 | 4994 | return 0; |
43cd72b9 BW |
4995 | |
4996 | xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, | |
4997 | get_relaxable_immed (opcode), val, | |
4998 | fixP->fx_file, fixP->fx_line); | |
4999 | ||
5000 | xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf); | |
d77b99c9 | 5001 | xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0); |
30f725a1 BW |
5002 | |
5003 | return 1; | |
43cd72b9 BW |
5004 | } |
5005 | ||
e0001a05 NC |
5006 | \f |
5007 | /* External Functions and Other GAS Hooks. */ | |
5008 | ||
5009 | const char * | |
7fa3d080 | 5010 | xtensa_target_format (void) |
e0001a05 NC |
5011 | { |
5012 | return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le"); | |
5013 | } | |
5014 | ||
5015 | ||
5016 | void | |
7fa3d080 | 5017 | xtensa_file_arch_init (bfd *abfd) |
e0001a05 NC |
5018 | { |
5019 | bfd_set_private_flags (abfd, 0x100 | 0x200); | |
5020 | } | |
5021 | ||
5022 | ||
5023 | void | |
7fa3d080 | 5024 | md_number_to_chars (char *buf, valueT val, int n) |
e0001a05 NC |
5025 | { |
5026 | if (target_big_endian) | |
5027 | number_to_chars_bigendian (buf, val, n); | |
5028 | else | |
5029 | number_to_chars_littleendian (buf, val, n); | |
5030 | } | |
5031 | ||
5032 | ||
5033 | /* This function is called once, at assembler startup time. It should | |
5034 | set up all the tables, etc. that the MD part of the assembler will | |
5035 | need. */ | |
5036 | ||
5037 | void | |
7fa3d080 | 5038 | md_begin (void) |
e0001a05 NC |
5039 | { |
5040 | segT current_section = now_seg; | |
5041 | int current_subsec = now_subseg; | |
5042 | xtensa_isa isa; | |
5043 | ||
43cd72b9 | 5044 | xtensa_default_isa = xtensa_isa_init (0, 0); |
e0001a05 | 5045 | isa = xtensa_default_isa; |
e0001a05 | 5046 | |
43cd72b9 BW |
5047 | linkrelax = 1; |
5048 | ||
74869ac7 | 5049 | /* Set up the literal sections. */ |
e0001a05 | 5050 | memset (&default_lit_sections, 0, sizeof (default_lit_sections)); |
e0001a05 NC |
5051 | |
5052 | subseg_set (current_section, current_subsec); | |
5053 | ||
43cd72b9 BW |
5054 | xg_init_vinsn (&cur_vinsn); |
5055 | ||
e0001a05 NC |
5056 | xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi"); |
5057 | xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi"); | |
5058 | xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0"); | |
5059 | xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4"); | |
5060 | xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8"); | |
5061 | xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12"); | |
5062 | xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0"); | |
5063 | xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4"); | |
5064 | xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8"); | |
5065 | xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12"); | |
43cd72b9 | 5066 | xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16"); |
e0001a05 | 5067 | xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry"); |
d12f9798 | 5068 | xtensa_extui_opcode = xtensa_opcode_lookup (isa, "extui"); |
43cd72b9 BW |
5069 | xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi"); |
5070 | xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n"); | |
e0001a05 | 5071 | xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync"); |
e0001a05 | 5072 | xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx"); |
43cd72b9 | 5073 | xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r"); |
e0001a05 NC |
5074 | xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop"); |
5075 | xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez"); | |
5076 | xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz"); | |
43cd72b9 | 5077 | xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop"); |
e0001a05 NC |
5078 | xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n"); |
5079 | xtensa_or_opcode = xtensa_opcode_lookup (isa, "or"); | |
5080 | xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret"); | |
5081 | xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n"); | |
5082 | xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw"); | |
5083 | xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n"); | |
43cd72b9 | 5084 | xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount"); |
e0001a05 | 5085 | xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti"); |
43cd72b9 BW |
5086 | |
5087 | init_op_placement_info_table (); | |
5088 | ||
5089 | /* Set up the assembly state. */ | |
5090 | if (!frag_now->tc_frag_data.is_assembly_state_set) | |
5091 | xtensa_set_frag_assembly_state (frag_now); | |
5092 | } | |
5093 | ||
5094 | ||
5095 | /* TC_INIT_FIX_DATA hook */ | |
5096 | ||
5097 | void | |
7fa3d080 | 5098 | xtensa_init_fix_data (fixS *x) |
43cd72b9 BW |
5099 | { |
5100 | x->tc_fix_data.slot = 0; | |
5101 | x->tc_fix_data.X_add_symbol = NULL; | |
5102 | x->tc_fix_data.X_add_number = 0; | |
e0001a05 NC |
5103 | } |
5104 | ||
5105 | ||
5106 | /* tc_frob_label hook */ | |
5107 | ||
5108 | void | |
7fa3d080 | 5109 | xtensa_frob_label (symbolS *sym) |
e0001a05 | 5110 | { |
3ea38ac2 BW |
5111 | float freq; |
5112 | ||
5113 | if (cur_vinsn.inside_bundle) | |
5114 | { | |
5115 | as_bad (_("labels are not valid inside bundles")); | |
5116 | return; | |
5117 | } | |
5118 | ||
5119 | freq = get_subseg_target_freq (now_seg, now_subseg); | |
7b1cc377 | 5120 | |
43cd72b9 BW |
5121 | /* Since the label was already attached to a frag associated with the |
5122 | previous basic block, it now needs to be reset to the current frag. */ | |
5123 | symbol_set_frag (sym, frag_now); | |
5124 | S_SET_VALUE (sym, (valueT) frag_now_fix ()); | |
5125 | ||
82e7541d BW |
5126 | if (generating_literals) |
5127 | xtensa_add_literal_sym (sym); | |
5128 | else | |
5129 | xtensa_add_insn_label (sym); | |
5130 | ||
7b1cc377 BW |
5131 | if (symbol_get_tc (sym)->is_loop_target) |
5132 | { | |
5133 | if ((get_last_insn_flags (now_seg, now_subseg) | |
e0001a05 | 5134 | & FLAG_IS_BAD_LOOPEND) != 0) |
7b1cc377 BW |
5135 | as_bad (_("invalid last instruction for a zero-overhead loop")); |
5136 | ||
5137 | xtensa_set_frag_assembly_state (frag_now); | |
5138 | frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END, | |
5139 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
5140 | ||
5141 | xtensa_set_frag_assembly_state (frag_now); | |
c3ea6048 | 5142 | xtensa_move_labels (frag_now, 0); |
07a53e5c | 5143 | } |
e0001a05 NC |
5144 | |
5145 | /* No target aligning in the absolute section. */ | |
61846f28 | 5146 | if (now_seg != absolute_section |
43cd72b9 | 5147 | && do_align_targets () |
61846f28 | 5148 | && !is_unaligned_label (sym) |
43cd72b9 BW |
5149 | && !generating_literals) |
5150 | { | |
43cd72b9 BW |
5151 | xtensa_set_frag_assembly_state (frag_now); |
5152 | ||
43cd72b9 | 5153 | frag_var (rs_machine_dependent, |
7b1cc377 | 5154 | 0, (int) freq, |
e0001a05 NC |
5155 | RELAX_DESIRE_ALIGN_IF_TARGET, |
5156 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
43cd72b9 | 5157 | xtensa_set_frag_assembly_state (frag_now); |
c3ea6048 | 5158 | xtensa_move_labels (frag_now, 0); |
43cd72b9 BW |
5159 | } |
5160 | ||
5161 | /* We need to mark the following properties even if we aren't aligning. */ | |
5162 | ||
5163 | /* If the label is already known to be a branch target, i.e., a | |
5164 | forward branch, mark the frag accordingly. Backward branches | |
5165 | are handled by xg_add_branch_and_loop_targets. */ | |
5166 | if (symbol_get_tc (sym)->is_branch_target) | |
5167 | symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE; | |
5168 | ||
5169 | /* Loops only go forward, so they can be identified here. */ | |
5170 | if (symbol_get_tc (sym)->is_loop_target) | |
5171 | symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE; | |
07a53e5c RH |
5172 | |
5173 | dwarf2_emit_label (sym); | |
43cd72b9 BW |
5174 | } |
5175 | ||
5176 | ||
5177 | /* tc_unrecognized_line hook */ | |
5178 | ||
5179 | int | |
7fa3d080 | 5180 | xtensa_unrecognized_line (int ch) |
43cd72b9 BW |
5181 | { |
5182 | switch (ch) | |
5183 | { | |
5184 | case '{' : | |
5185 | if (cur_vinsn.inside_bundle == 0) | |
5186 | { | |
5187 | /* PR8110: Cannot emit line number info inside a FLIX bundle | |
5188 | when using --gstabs. Temporarily disable debug info. */ | |
5189 | generate_lineno_debug (); | |
5190 | if (debug_type == DEBUG_STABS) | |
5191 | { | |
5192 | xt_saved_debug_type = debug_type; | |
5193 | debug_type = DEBUG_NONE; | |
5194 | } | |
82e7541d | 5195 | |
43cd72b9 BW |
5196 | cur_vinsn.inside_bundle = 1; |
5197 | } | |
5198 | else | |
5199 | { | |
5200 | as_bad (_("extra opening brace")); | |
5201 | return 0; | |
5202 | } | |
5203 | break; | |
82e7541d | 5204 | |
43cd72b9 BW |
5205 | case '}' : |
5206 | if (cur_vinsn.inside_bundle) | |
5207 | finish_vinsn (&cur_vinsn); | |
5208 | else | |
5209 | { | |
5210 | as_bad (_("extra closing brace")); | |
5211 | return 0; | |
5212 | } | |
5213 | break; | |
5214 | default: | |
5215 | as_bad (_("syntax error")); | |
5216 | return 0; | |
e0001a05 | 5217 | } |
43cd72b9 | 5218 | return 1; |
e0001a05 NC |
5219 | } |
5220 | ||
5221 | ||
5222 | /* md_flush_pending_output hook */ | |
5223 | ||
5224 | void | |
7fa3d080 | 5225 | xtensa_flush_pending_output (void) |
e0001a05 | 5226 | { |
a3582eee BW |
5227 | /* This line fixes a bug where automatically generated gstabs info |
5228 | separates a function label from its entry instruction, ending up | |
5229 | with the literal position between the function label and the entry | |
5230 | instruction and crashing code. It only happens with --gstabs and | |
5231 | --text-section-literals, and when several other obscure relaxation | |
5232 | conditions are met. */ | |
5233 | if (outputting_stabs_line_debug) | |
5234 | return; | |
5235 | ||
43cd72b9 BW |
5236 | if (cur_vinsn.inside_bundle) |
5237 | as_bad (_("missing closing brace")); | |
5238 | ||
e0001a05 NC |
5239 | /* If there is a non-zero instruction fragment, close it. */ |
5240 | if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn) | |
5241 | { | |
5242 | frag_wane (frag_now); | |
5243 | frag_new (0); | |
43cd72b9 | 5244 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
5245 | } |
5246 | frag_now->tc_frag_data.is_insn = FALSE; | |
82e7541d BW |
5247 | |
5248 | xtensa_clear_insn_labels (); | |
e0001a05 NC |
5249 | } |
5250 | ||
5251 | ||
43cd72b9 BW |
5252 | /* We had an error while parsing an instruction. The string might look |
5253 | like this: "insn arg1, arg2 }". If so, we need to see the closing | |
5254 | brace and reset some fields. Otherwise, the vinsn never gets closed | |
5255 | and the num_slots field will grow past the end of the array of slots, | |
5256 | and bad things happen. */ | |
5257 | ||
5258 | static void | |
7fa3d080 | 5259 | error_reset_cur_vinsn (void) |
43cd72b9 BW |
5260 | { |
5261 | if (cur_vinsn.inside_bundle) | |
5262 | { | |
5263 | if (*input_line_pointer == '}' | |
5264 | || *(input_line_pointer - 1) == '}' | |
5265 | || *(input_line_pointer - 2) == '}') | |
5266 | xg_clear_vinsn (&cur_vinsn); | |
5267 | } | |
5268 | } | |
5269 | ||
5270 | ||
e0001a05 | 5271 | void |
7fa3d080 | 5272 | md_assemble (char *str) |
e0001a05 NC |
5273 | { |
5274 | xtensa_isa isa = xtensa_default_isa; | |
b224e962 | 5275 | char *opname; |
e0001a05 NC |
5276 | unsigned opnamelen; |
5277 | bfd_boolean has_underbar = FALSE; | |
43cd72b9 | 5278 | char *arg_strings[MAX_INSN_ARGS]; |
e0001a05 | 5279 | int num_args; |
e0001a05 | 5280 | TInsn orig_insn; /* Original instruction from the input. */ |
e0001a05 | 5281 | |
e0001a05 NC |
5282 | tinsn_init (&orig_insn); |
5283 | ||
5284 | /* Split off the opcode. */ | |
5285 | opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789."); | |
5286 | opname = xmalloc (opnamelen + 1); | |
5287 | memcpy (opname, str, opnamelen); | |
5288 | opname[opnamelen] = '\0'; | |
5289 | ||
5290 | num_args = tokenize_arguments (arg_strings, str + opnamelen); | |
5291 | if (num_args == -1) | |
5292 | { | |
5293 | as_bad (_("syntax error")); | |
5294 | return; | |
5295 | } | |
5296 | ||
5297 | if (xg_translate_idioms (&opname, &num_args, arg_strings)) | |
5298 | return; | |
5299 | ||
5300 | /* Check for an underbar prefix. */ | |
5301 | if (*opname == '_') | |
5302 | { | |
5303 | has_underbar = TRUE; | |
5304 | opname += 1; | |
5305 | } | |
5306 | ||
5307 | orig_insn.insn_type = ITYPE_INSN; | |
5308 | orig_insn.ntok = 0; | |
43cd72b9 | 5309 | orig_insn.is_specific_opcode = (has_underbar || !use_transform ()); |
e0001a05 NC |
5310 | |
5311 | orig_insn.opcode = xtensa_opcode_lookup (isa, opname); | |
5312 | if (orig_insn.opcode == XTENSA_UNDEFINED) | |
5313 | { | |
43cd72b9 BW |
5314 | xtensa_format fmt = xtensa_format_lookup (isa, opname); |
5315 | if (fmt == XTENSA_UNDEFINED) | |
5316 | { | |
5317 | as_bad (_("unknown opcode or format name '%s'"), opname); | |
5318 | error_reset_cur_vinsn (); | |
5319 | return; | |
5320 | } | |
5321 | if (!cur_vinsn.inside_bundle) | |
5322 | { | |
5323 | as_bad (_("format names only valid inside bundles")); | |
5324 | error_reset_cur_vinsn (); | |
5325 | return; | |
5326 | } | |
5327 | if (cur_vinsn.format != XTENSA_UNDEFINED) | |
5328 | as_warn (_("multiple formats specified for one bundle; using '%s'"), | |
5329 | opname); | |
5330 | cur_vinsn.format = fmt; | |
5331 | free (has_underbar ? opname - 1 : opname); | |
5332 | error_reset_cur_vinsn (); | |
e0001a05 NC |
5333 | return; |
5334 | } | |
5335 | ||
e0001a05 NC |
5336 | /* Parse the arguments. */ |
5337 | if (parse_arguments (&orig_insn, num_args, arg_strings)) | |
5338 | { | |
5339 | as_bad (_("syntax error")); | |
43cd72b9 | 5340 | error_reset_cur_vinsn (); |
e0001a05 NC |
5341 | return; |
5342 | } | |
5343 | ||
5344 | /* Free the opcode and argument strings, now that they've been parsed. */ | |
5345 | free (has_underbar ? opname - 1 : opname); | |
5346 | opname = 0; | |
5347 | while (num_args-- > 0) | |
5348 | free (arg_strings[num_args]); | |
5349 | ||
43cd72b9 BW |
5350 | /* Get expressions for invisible operands. */ |
5351 | if (get_invisible_operands (&orig_insn)) | |
5352 | { | |
5353 | error_reset_cur_vinsn (); | |
5354 | return; | |
5355 | } | |
5356 | ||
e0001a05 NC |
5357 | /* Check for the right number and type of arguments. */ |
5358 | if (tinsn_check_arguments (&orig_insn)) | |
e0001a05 | 5359 | { |
43cd72b9 BW |
5360 | error_reset_cur_vinsn (); |
5361 | return; | |
e0001a05 NC |
5362 | } |
5363 | ||
b224e962 BW |
5364 | /* Record the line number for each TInsn, because a FLIX bundle may be |
5365 | spread across multiple input lines and individual instructions may be | |
5366 | moved around in some cases. */ | |
5367 | orig_insn.loc_directive_seen = dwarf2_loc_directive_seen; | |
5368 | dwarf2_where (&orig_insn.debug_line); | |
5369 | dwarf2_consume_line_info (); | |
c138bc38 | 5370 | |
43cd72b9 BW |
5371 | xg_add_branch_and_loop_targets (&orig_insn); |
5372 | ||
431ad2d0 BW |
5373 | /* Check that immediate value for ENTRY is >= 16. */ |
5374 | if (orig_insn.opcode == xtensa_entry_opcode && orig_insn.ntok >= 3) | |
e0001a05 | 5375 | { |
431ad2d0 BW |
5376 | expressionS *exp = &orig_insn.tok[2]; |
5377 | if (exp->X_op == O_constant && exp->X_add_number < 16) | |
5378 | as_warn (_("entry instruction with stack decrement < 16")); | |
e0001a05 NC |
5379 | } |
5380 | ||
e0001a05 | 5381 | /* Finish it off: |
43cd72b9 BW |
5382 | assemble_tokens (opcode, tok, ntok); |
5383 | expand the tokens from the orig_insn into the | |
5384 | stack of instructions that will not expand | |
e0001a05 | 5385 | unless required at relaxation time. */ |
e0001a05 | 5386 | |
43cd72b9 BW |
5387 | if (!cur_vinsn.inside_bundle) |
5388 | emit_single_op (&orig_insn); | |
5389 | else /* We are inside a bundle. */ | |
e0001a05 | 5390 | { |
43cd72b9 BW |
5391 | cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn; |
5392 | cur_vinsn.num_slots++; | |
5393 | if (*input_line_pointer == '}' | |
5394 | || *(input_line_pointer - 1) == '}' | |
5395 | || *(input_line_pointer - 2) == '}') | |
5396 | finish_vinsn (&cur_vinsn); | |
e0001a05 NC |
5397 | } |
5398 | ||
43cd72b9 BW |
5399 | /* We've just emitted a new instruction so clear the list of labels. */ |
5400 | xtensa_clear_insn_labels (); | |
e0001a05 NC |
5401 | } |
5402 | ||
5403 | ||
43cd72b9 | 5404 | /* HANDLE_ALIGN hook */ |
e0001a05 | 5405 | |
43cd72b9 BW |
5406 | /* For a .align directive, we mark the previous block with the alignment |
5407 | information. This will be placed in the object file in the | |
5408 | property section corresponding to this section. */ | |
e0001a05 | 5409 | |
43cd72b9 | 5410 | void |
7fa3d080 | 5411 | xtensa_handle_align (fragS *fragP) |
43cd72b9 BW |
5412 | { |
5413 | if (linkrelax | |
b08b5071 | 5414 | && ! fragP->tc_frag_data.is_literal |
43cd72b9 BW |
5415 | && (fragP->fr_type == rs_align |
5416 | || fragP->fr_type == rs_align_code) | |
5417 | && fragP->fr_address + fragP->fr_fix > 0 | |
5418 | && fragP->fr_offset > 0 | |
5419 | && now_seg != bss_section) | |
e0001a05 | 5420 | { |
43cd72b9 BW |
5421 | fragP->tc_frag_data.is_align = TRUE; |
5422 | fragP->tc_frag_data.alignment = fragP->fr_offset; | |
e0001a05 NC |
5423 | } |
5424 | ||
43cd72b9 | 5425 | if (fragP->fr_type == rs_align_test) |
e0001a05 | 5426 | { |
43cd72b9 BW |
5427 | int count; |
5428 | count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix; | |
5429 | if (count != 0) | |
c138bc38 | 5430 | as_bad_where (fragP->fr_file, fragP->fr_line, |
43cd72b9 | 5431 | _("unaligned entry instruction")); |
e0001a05 | 5432 | } |
99ded152 BW |
5433 | |
5434 | if (linkrelax && fragP->fr_type == rs_org) | |
5435 | fragP->fr_subtype = RELAX_ORG; | |
e0001a05 | 5436 | } |
43cd72b9 | 5437 | |
e0001a05 NC |
5438 | |
5439 | /* TC_FRAG_INIT hook */ | |
5440 | ||
5441 | void | |
7fa3d080 | 5442 | xtensa_frag_init (fragS *frag) |
e0001a05 | 5443 | { |
43cd72b9 | 5444 | xtensa_set_frag_assembly_state (frag); |
e0001a05 NC |
5445 | } |
5446 | ||
5447 | ||
5448 | symbolS * | |
7fa3d080 | 5449 | md_undefined_symbol (char *name ATTRIBUTE_UNUSED) |
e0001a05 NC |
5450 | { |
5451 | return NULL; | |
5452 | } | |
5453 | ||
5454 | ||
5455 | /* Round up a section size to the appropriate boundary. */ | |
5456 | ||
5457 | valueT | |
7fa3d080 | 5458 | md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size) |
e0001a05 NC |
5459 | { |
5460 | return size; /* Byte alignment is fine. */ | |
5461 | } | |
5462 | ||
5463 | ||
5464 | long | |
7fa3d080 | 5465 | md_pcrel_from (fixS *fixP) |
e0001a05 NC |
5466 | { |
5467 | char *insn_p; | |
5468 | static xtensa_insnbuf insnbuf = NULL; | |
43cd72b9 | 5469 | static xtensa_insnbuf slotbuf = NULL; |
e0001a05 | 5470 | int opnum; |
43cd72b9 | 5471 | uint32 opnd_value; |
e0001a05 | 5472 | xtensa_opcode opcode; |
43cd72b9 BW |
5473 | xtensa_format fmt; |
5474 | int slot; | |
e0001a05 NC |
5475 | xtensa_isa isa = xtensa_default_isa; |
5476 | valueT addr = fixP->fx_where + fixP->fx_frag->fr_address; | |
43cd72b9 | 5477 | bfd_boolean alt_reloc; |
e0001a05 | 5478 | |
e0001a05 | 5479 | if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND) |
30f725a1 | 5480 | return 0; |
e0001a05 | 5481 | |
1bbb5f21 BW |
5482 | if (fixP->fx_r_type == BFD_RELOC_32_PCREL) |
5483 | return addr; | |
5484 | ||
e0001a05 | 5485 | if (!insnbuf) |
43cd72b9 BW |
5486 | { |
5487 | insnbuf = xtensa_insnbuf_alloc (isa); | |
5488 | slotbuf = xtensa_insnbuf_alloc (isa); | |
5489 | } | |
e0001a05 NC |
5490 | |
5491 | insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where]; | |
d77b99c9 | 5492 | xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0); |
43cd72b9 BW |
5493 | fmt = xtensa_format_decode (isa, insnbuf); |
5494 | ||
5495 | if (fmt == XTENSA_UNDEFINED) | |
5496 | as_fatal (_("bad instruction format")); | |
5497 | ||
5498 | if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0) | |
5499 | as_fatal (_("invalid relocation")); | |
5500 | ||
5501 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); | |
5502 | opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
5503 | ||
30f725a1 BW |
5504 | /* Check for "alternate" relocations (operand not specified). None |
5505 | of the current uses for these are really PC-relative. */ | |
43cd72b9 BW |
5506 | if (alt_reloc || opcode == xtensa_const16_opcode) |
5507 | { | |
5508 | if (opcode != xtensa_l32r_opcode | |
5509 | && opcode != xtensa_const16_opcode) | |
5510 | as_fatal (_("invalid relocation for '%s' instruction"), | |
5511 | xtensa_opcode_name (isa, opcode)); | |
30f725a1 | 5512 | return 0; |
e0001a05 NC |
5513 | } |
5514 | ||
43cd72b9 BW |
5515 | opnum = get_relaxable_immed (opcode); |
5516 | opnd_value = 0; | |
5517 | if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1 | |
5518 | || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr)) | |
e0001a05 NC |
5519 | { |
5520 | as_bad_where (fixP->fx_file, | |
5521 | fixP->fx_line, | |
5522 | _("invalid relocation for operand %d of '%s'"), | |
5523 | opnum, xtensa_opcode_name (isa, opcode)); | |
30f725a1 | 5524 | return 0; |
e0001a05 | 5525 | } |
43cd72b9 BW |
5526 | return 0 - opnd_value; |
5527 | } | |
5528 | ||
5529 | ||
5530 | /* TC_FORCE_RELOCATION hook */ | |
5531 | ||
5532 | int | |
7fa3d080 | 5533 | xtensa_force_relocation (fixS *fix) |
43cd72b9 BW |
5534 | { |
5535 | switch (fix->fx_r_type) | |
30f725a1 BW |
5536 | { |
5537 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
43cd72b9 BW |
5538 | case BFD_RELOC_XTENSA_SLOT0_ALT: |
5539 | case BFD_RELOC_XTENSA_SLOT1_ALT: | |
5540 | case BFD_RELOC_XTENSA_SLOT2_ALT: | |
5541 | case BFD_RELOC_XTENSA_SLOT3_ALT: | |
5542 | case BFD_RELOC_XTENSA_SLOT4_ALT: | |
5543 | case BFD_RELOC_XTENSA_SLOT5_ALT: | |
5544 | case BFD_RELOC_XTENSA_SLOT6_ALT: | |
5545 | case BFD_RELOC_XTENSA_SLOT7_ALT: | |
5546 | case BFD_RELOC_XTENSA_SLOT8_ALT: | |
5547 | case BFD_RELOC_XTENSA_SLOT9_ALT: | |
5548 | case BFD_RELOC_XTENSA_SLOT10_ALT: | |
5549 | case BFD_RELOC_XTENSA_SLOT11_ALT: | |
5550 | case BFD_RELOC_XTENSA_SLOT12_ALT: | |
5551 | case BFD_RELOC_XTENSA_SLOT13_ALT: | |
5552 | case BFD_RELOC_XTENSA_SLOT14_ALT: | |
43cd72b9 BW |
5553 | return 1; |
5554 | default: | |
5555 | break; | |
e0001a05 NC |
5556 | } |
5557 | ||
43cd72b9 BW |
5558 | if (linkrelax && fix->fx_addsy |
5559 | && relaxable_section (S_GET_SEGMENT (fix->fx_addsy))) | |
5560 | return 1; | |
5561 | ||
5562 | return generic_force_reloc (fix); | |
5563 | } | |
5564 | ||
5565 | ||
30f725a1 BW |
5566 | /* TC_VALIDATE_FIX_SUB hook */ |
5567 | ||
5568 | int | |
5569 | xtensa_validate_fix_sub (fixS *fix) | |
5570 | { | |
5571 | segT add_symbol_segment, sub_symbol_segment; | |
5572 | ||
5573 | /* The difference of two symbols should be resolved by the assembler when | |
5574 | linkrelax is not set. If the linker may relax the section containing | |
5575 | the symbols, then an Xtensa DIFF relocation must be generated so that | |
5576 | the linker knows to adjust the difference value. */ | |
5577 | if (!linkrelax || fix->fx_addsy == NULL) | |
5578 | return 0; | |
5579 | ||
5580 | /* Make sure both symbols are in the same segment, and that segment is | |
5581 | "normal" and relaxable. If the segment is not "normal", then the | |
5582 | fix is not valid. If the segment is not "relaxable", then the fix | |
5583 | should have been handled earlier. */ | |
5584 | add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy); | |
5585 | if (! SEG_NORMAL (add_symbol_segment) || | |
5586 | ! relaxable_section (add_symbol_segment)) | |
5587 | return 0; | |
5588 | sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy); | |
5589 | return (sub_symbol_segment == add_symbol_segment); | |
5590 | } | |
5591 | ||
5592 | ||
43cd72b9 BW |
5593 | /* NO_PSEUDO_DOT hook */ |
5594 | ||
5595 | /* This function has nothing to do with pseudo dots, but this is the | |
5596 | nearest macro to where the check needs to take place. FIXME: This | |
5597 | seems wrong. */ | |
5598 | ||
5599 | bfd_boolean | |
7fa3d080 | 5600 | xtensa_check_inside_bundle (void) |
43cd72b9 BW |
5601 | { |
5602 | if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.') | |
5603 | as_bad (_("directives are not valid inside bundles")); | |
5604 | ||
5605 | /* This function must always return FALSE because it is called via a | |
5606 | macro that has nothing to do with bundling. */ | |
5607 | return FALSE; | |
e0001a05 NC |
5608 | } |
5609 | ||
5610 | ||
43cd72b9 | 5611 | /* md_elf_section_change_hook */ |
e0001a05 NC |
5612 | |
5613 | void | |
7fa3d080 | 5614 | xtensa_elf_section_change_hook (void) |
e0001a05 | 5615 | { |
43cd72b9 BW |
5616 | /* Set up the assembly state. */ |
5617 | if (!frag_now->tc_frag_data.is_assembly_state_set) | |
5618 | xtensa_set_frag_assembly_state (frag_now); | |
e0001a05 NC |
5619 | } |
5620 | ||
5621 | ||
5622 | /* tc_fix_adjustable hook */ | |
5623 | ||
5624 | bfd_boolean | |
7fa3d080 | 5625 | xtensa_fix_adjustable (fixS *fixP) |
e0001a05 | 5626 | { |
43cd72b9 BW |
5627 | /* An offset is not allowed in combination with the difference of two |
5628 | symbols, but that cannot be easily detected after a local symbol | |
5629 | has been adjusted to a (section+offset) form. Return 0 so that such | |
5630 | an fix will not be adjusted. */ | |
5631 | if (fixP->fx_subsy && fixP->fx_addsy && fixP->fx_offset | |
5632 | && relaxable_section (S_GET_SEGMENT (fixP->fx_subsy))) | |
5633 | return 0; | |
5634 | ||
e0001a05 NC |
5635 | /* We need the symbol name for the VTABLE entries. */ |
5636 | if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT | |
5637 | || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY) | |
5638 | return 0; | |
5639 | ||
5640 | return 1; | |
5641 | } | |
5642 | ||
5643 | ||
6a7eedfe BW |
5644 | /* tc_symbol_new_hook */ |
5645 | ||
5646 | symbolS *expr_symbols = NULL; | |
5647 | ||
5648 | void | |
5649 | xtensa_symbol_new_hook (symbolS *sym) | |
5650 | { | |
fb227da0 | 5651 | if (is_leb128_expr && S_GET_SEGMENT (sym) == expr_section) |
6a7eedfe BW |
5652 | { |
5653 | symbol_get_tc (sym)->next_expr_symbol = expr_symbols; | |
5654 | expr_symbols = sym; | |
5655 | } | |
5656 | } | |
5657 | ||
5658 | ||
e0001a05 | 5659 | void |
55cf6793 | 5660 | md_apply_fix (fixS *fixP, valueT *valP, segT seg) |
e0001a05 | 5661 | { |
30f725a1 | 5662 | char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where; |
d47d412e | 5663 | valueT val = 0; |
30f725a1 | 5664 | |
e7da6241 BW |
5665 | /* Subtracted symbols are only allowed for a few relocation types, and |
5666 | unless linkrelax is enabled, they should not make it to this point. */ | |
5667 | if (fixP->fx_subsy && !(linkrelax && (fixP->fx_r_type == BFD_RELOC_32 | |
5668 | || fixP->fx_r_type == BFD_RELOC_16 | |
5669 | || fixP->fx_r_type == BFD_RELOC_8))) | |
5670 | as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex")); | |
5671 | ||
30f725a1 | 5672 | switch (fixP->fx_r_type) |
e0001a05 | 5673 | { |
1bbb5f21 | 5674 | case BFD_RELOC_32_PCREL: |
30f725a1 BW |
5675 | case BFD_RELOC_32: |
5676 | case BFD_RELOC_16: | |
5677 | case BFD_RELOC_8: | |
e7da6241 | 5678 | if (fixP->fx_subsy) |
30f725a1 BW |
5679 | { |
5680 | switch (fixP->fx_r_type) | |
5681 | { | |
5682 | case BFD_RELOC_8: | |
5683 | fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8; | |
5684 | break; | |
5685 | case BFD_RELOC_16: | |
5686 | fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16; | |
5687 | break; | |
5688 | case BFD_RELOC_32: | |
5689 | fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32; | |
5690 | break; | |
5691 | default: | |
5692 | break; | |
5693 | } | |
e0001a05 | 5694 | |
30f725a1 BW |
5695 | /* An offset is only allowed when it results from adjusting a |
5696 | local symbol into a section-relative offset. If the offset | |
5697 | came from the original expression, tc_fix_adjustable will have | |
5698 | prevented the fix from being converted to a section-relative | |
5699 | form so that we can flag the error here. */ | |
5700 | if (fixP->fx_offset != 0 && !symbol_section_p (fixP->fx_addsy)) | |
5701 | as_bad_where (fixP->fx_file, fixP->fx_line, | |
5702 | _("cannot represent subtraction with an offset")); | |
5703 | ||
5704 | val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset | |
5705 | - S_GET_VALUE (fixP->fx_subsy)); | |
5706 | ||
5707 | /* The difference value gets written out, and the DIFF reloc | |
5708 | identifies the address of the subtracted symbol (i.e., the one | |
5709 | with the lowest address). */ | |
5710 | *valP = val; | |
5711 | fixP->fx_offset -= val; | |
5712 | fixP->fx_subsy = NULL; | |
5713 | } | |
5714 | else if (! fixP->fx_addsy) | |
e0001a05 | 5715 | { |
30f725a1 | 5716 | val = *valP; |
e0001a05 | 5717 | fixP->fx_done = 1; |
30f725a1 | 5718 | } |
d47d412e BW |
5719 | /* fall through */ |
5720 | ||
5721 | case BFD_RELOC_XTENSA_PLT: | |
30f725a1 BW |
5722 | md_number_to_chars (fixpos, val, fixP->fx_size); |
5723 | fixP->fx_no_overflow = 0; /* Use the standard overflow check. */ | |
5724 | break; | |
e0001a05 | 5725 | |
30f725a1 BW |
5726 | case BFD_RELOC_XTENSA_SLOT0_OP: |
5727 | case BFD_RELOC_XTENSA_SLOT1_OP: | |
5728 | case BFD_RELOC_XTENSA_SLOT2_OP: | |
5729 | case BFD_RELOC_XTENSA_SLOT3_OP: | |
5730 | case BFD_RELOC_XTENSA_SLOT4_OP: | |
5731 | case BFD_RELOC_XTENSA_SLOT5_OP: | |
5732 | case BFD_RELOC_XTENSA_SLOT6_OP: | |
5733 | case BFD_RELOC_XTENSA_SLOT7_OP: | |
5734 | case BFD_RELOC_XTENSA_SLOT8_OP: | |
5735 | case BFD_RELOC_XTENSA_SLOT9_OP: | |
5736 | case BFD_RELOC_XTENSA_SLOT10_OP: | |
5737 | case BFD_RELOC_XTENSA_SLOT11_OP: | |
5738 | case BFD_RELOC_XTENSA_SLOT12_OP: | |
5739 | case BFD_RELOC_XTENSA_SLOT13_OP: | |
5740 | case BFD_RELOC_XTENSA_SLOT14_OP: | |
5741 | if (linkrelax) | |
5742 | { | |
5743 | /* Write the tentative value of a PC-relative relocation to a | |
5744 | local symbol into the instruction. The value will be ignored | |
5745 | by the linker, and it makes the object file disassembly | |
5746 | readable when all branch targets are encoded in relocations. */ | |
5747 | ||
5748 | assert (fixP->fx_addsy); | |
20ee54e8 | 5749 | if (S_GET_SEGMENT (fixP->fx_addsy) == seg |
30f725a1 BW |
5750 | && !S_FORCE_RELOC (fixP->fx_addsy, 1)) |
5751 | { | |
5752 | val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset | |
5753 | - md_pcrel_from (fixP)); | |
5754 | (void) xg_apply_fix_value (fixP, val); | |
5755 | } | |
5756 | } | |
5757 | else if (! fixP->fx_addsy) | |
5758 | { | |
5759 | val = *valP; | |
5760 | if (xg_apply_fix_value (fixP, val)) | |
5761 | fixP->fx_done = 1; | |
5762 | } | |
5763 | break; | |
e0001a05 | 5764 | |
30f725a1 BW |
5765 | case BFD_RELOC_XTENSA_ASM_EXPAND: |
5766 | case BFD_RELOC_XTENSA_SLOT0_ALT: | |
5767 | case BFD_RELOC_XTENSA_SLOT1_ALT: | |
5768 | case BFD_RELOC_XTENSA_SLOT2_ALT: | |
5769 | case BFD_RELOC_XTENSA_SLOT3_ALT: | |
5770 | case BFD_RELOC_XTENSA_SLOT4_ALT: | |
5771 | case BFD_RELOC_XTENSA_SLOT5_ALT: | |
5772 | case BFD_RELOC_XTENSA_SLOT6_ALT: | |
5773 | case BFD_RELOC_XTENSA_SLOT7_ALT: | |
5774 | case BFD_RELOC_XTENSA_SLOT8_ALT: | |
5775 | case BFD_RELOC_XTENSA_SLOT9_ALT: | |
5776 | case BFD_RELOC_XTENSA_SLOT10_ALT: | |
5777 | case BFD_RELOC_XTENSA_SLOT11_ALT: | |
5778 | case BFD_RELOC_XTENSA_SLOT12_ALT: | |
5779 | case BFD_RELOC_XTENSA_SLOT13_ALT: | |
5780 | case BFD_RELOC_XTENSA_SLOT14_ALT: | |
5781 | /* These all need to be resolved at link-time. Do nothing now. */ | |
5782 | break; | |
e0001a05 | 5783 | |
30f725a1 BW |
5784 | case BFD_RELOC_VTABLE_INHERIT: |
5785 | case BFD_RELOC_VTABLE_ENTRY: | |
5786 | fixP->fx_done = 0; | |
5787 | break; | |
e0001a05 | 5788 | |
30f725a1 BW |
5789 | default: |
5790 | as_bad (_("unhandled local relocation fix %s"), | |
5791 | bfd_get_reloc_code_name (fixP->fx_r_type)); | |
e0001a05 NC |
5792 | } |
5793 | } | |
5794 | ||
5795 | ||
5796 | char * | |
7fa3d080 | 5797 | md_atof (int type, char *litP, int *sizeP) |
e0001a05 | 5798 | { |
499ac353 | 5799 | return ieee_md_atof (type, litP, sizeP, target_big_endian); |
e0001a05 NC |
5800 | } |
5801 | ||
5802 | ||
5803 | int | |
7fa3d080 | 5804 | md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED) |
e0001a05 | 5805 | { |
34e41783 | 5806 | return total_frag_text_expansion (fragP); |
e0001a05 NC |
5807 | } |
5808 | ||
5809 | ||
5810 | /* Translate internal representation of relocation info to BFD target | |
5811 | format. */ | |
5812 | ||
5813 | arelent * | |
30f725a1 | 5814 | tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp) |
e0001a05 NC |
5815 | { |
5816 | arelent *reloc; | |
5817 | ||
5818 | reloc = (arelent *) xmalloc (sizeof (arelent)); | |
5819 | reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); | |
5820 | *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); | |
5821 | reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; | |
5822 | ||
5823 | /* Make sure none of our internal relocations make it this far. | |
5824 | They'd better have been fully resolved by this point. */ | |
5825 | assert ((int) fixp->fx_r_type > 0); | |
5826 | ||
30f725a1 | 5827 | reloc->addend = fixp->fx_offset; |
43cd72b9 | 5828 | |
e0001a05 NC |
5829 | reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); |
5830 | if (reloc->howto == NULL) | |
5831 | { | |
5832 | as_bad_where (fixp->fx_file, fixp->fx_line, | |
5833 | _("cannot represent `%s' relocation in object file"), | |
5834 | bfd_get_reloc_code_name (fixp->fx_r_type)); | |
43cd72b9 BW |
5835 | free (reloc->sym_ptr_ptr); |
5836 | free (reloc); | |
e0001a05 NC |
5837 | return NULL; |
5838 | } | |
5839 | ||
5840 | if (!fixp->fx_pcrel != !reloc->howto->pc_relative) | |
1bbb5f21 | 5841 | as_fatal (_("internal error; cannot generate `%s' relocation"), |
43cd72b9 | 5842 | bfd_get_reloc_code_name (fixp->fx_r_type)); |
e0001a05 | 5843 | |
e0001a05 NC |
5844 | return reloc; |
5845 | } | |
5846 | ||
7fa3d080 BW |
5847 | \f |
5848 | /* Checks for resource conflicts between instructions. */ | |
5849 | ||
c138bc38 BW |
5850 | /* The func unit stuff could be implemented as bit-vectors rather |
5851 | than the iterative approach here. If it ends up being too | |
7fa3d080 BW |
5852 | slow, we will switch it. */ |
5853 | ||
c138bc38 | 5854 | resource_table * |
7fa3d080 BW |
5855 | new_resource_table (void *data, |
5856 | int cycles, | |
5857 | int nu, | |
5858 | unit_num_copies_func uncf, | |
5859 | opcode_num_units_func onuf, | |
5860 | opcode_funcUnit_use_unit_func ouuf, | |
5861 | opcode_funcUnit_use_stage_func ousf) | |
5862 | { | |
5863 | int i; | |
5864 | resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table)); | |
5865 | rt->data = data; | |
5866 | rt->cycles = cycles; | |
5867 | rt->allocated_cycles = cycles; | |
5868 | rt->num_units = nu; | |
5869 | rt->unit_num_copies = uncf; | |
5870 | rt->opcode_num_units = onuf; | |
5871 | rt->opcode_unit_use = ouuf; | |
5872 | rt->opcode_unit_stage = ousf; | |
5873 | ||
0bf60745 | 5874 | rt->units = (unsigned char **) xcalloc (cycles, sizeof (unsigned char *)); |
7fa3d080 | 5875 | for (i = 0; i < cycles; i++) |
0bf60745 | 5876 | rt->units[i] = (unsigned char *) xcalloc (nu, sizeof (unsigned char)); |
7fa3d080 BW |
5877 | |
5878 | return rt; | |
5879 | } | |
5880 | ||
5881 | ||
c138bc38 | 5882 | void |
7fa3d080 BW |
5883 | clear_resource_table (resource_table *rt) |
5884 | { | |
5885 | int i, j; | |
5886 | for (i = 0; i < rt->allocated_cycles; i++) | |
5887 | for (j = 0; j < rt->num_units; j++) | |
5888 | rt->units[i][j] = 0; | |
5889 | } | |
5890 | ||
5891 | ||
5892 | /* We never shrink it, just fake it into thinking so. */ | |
5893 | ||
c138bc38 | 5894 | void |
7fa3d080 BW |
5895 | resize_resource_table (resource_table *rt, int cycles) |
5896 | { | |
5897 | int i, old_cycles; | |
5898 | ||
5899 | rt->cycles = cycles; | |
5900 | if (cycles <= rt->allocated_cycles) | |
5901 | return; | |
5902 | ||
5903 | old_cycles = rt->allocated_cycles; | |
5904 | rt->allocated_cycles = cycles; | |
5905 | ||
0bf60745 BW |
5906 | rt->units = xrealloc (rt->units, |
5907 | rt->allocated_cycles * sizeof (unsigned char *)); | |
7fa3d080 | 5908 | for (i = 0; i < old_cycles; i++) |
0bf60745 BW |
5909 | rt->units[i] = xrealloc (rt->units[i], |
5910 | rt->num_units * sizeof (unsigned char)); | |
7fa3d080 | 5911 | for (i = old_cycles; i < cycles; i++) |
0bf60745 | 5912 | rt->units[i] = xcalloc (rt->num_units, sizeof (unsigned char)); |
7fa3d080 BW |
5913 | } |
5914 | ||
5915 | ||
c138bc38 | 5916 | bfd_boolean |
7fa3d080 BW |
5917 | resources_available (resource_table *rt, xtensa_opcode opcode, int cycle) |
5918 | { | |
5919 | int i; | |
5920 | int uses = (rt->opcode_num_units) (rt->data, opcode); | |
5921 | ||
c138bc38 | 5922 | for (i = 0; i < uses; i++) |
7fa3d080 BW |
5923 | { |
5924 | xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i); | |
5925 | int stage = (rt->opcode_unit_stage) (rt->data, opcode, i); | |
5926 | int copies_in_use = rt->units[stage + cycle][unit]; | |
5927 | int copies = (rt->unit_num_copies) (rt->data, unit); | |
5928 | if (copies_in_use >= copies) | |
5929 | return FALSE; | |
5930 | } | |
5931 | return TRUE; | |
5932 | } | |
7fa3d080 | 5933 | |
c138bc38 BW |
5934 | |
5935 | void | |
7fa3d080 BW |
5936 | reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle) |
5937 | { | |
5938 | int i; | |
5939 | int uses = (rt->opcode_num_units) (rt->data, opcode); | |
5940 | ||
c138bc38 | 5941 | for (i = 0; i < uses; i++) |
7fa3d080 BW |
5942 | { |
5943 | xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i); | |
5944 | int stage = (rt->opcode_unit_stage) (rt->data, opcode, i); | |
c138bc38 BW |
5945 | /* Note that this allows resources to be oversubscribed. That's |
5946 | essential to the way the optional scheduler works. | |
7fa3d080 BW |
5947 | resources_available reports when a resource is over-subscribed, |
5948 | so it's easy to tell. */ | |
5949 | rt->units[stage + cycle][unit]++; | |
5950 | } | |
5951 | } | |
5952 | ||
5953 | ||
c138bc38 | 5954 | void |
7fa3d080 BW |
5955 | release_resources (resource_table *rt, xtensa_opcode opcode, int cycle) |
5956 | { | |
5957 | int i; | |
5958 | int uses = (rt->opcode_num_units) (rt->data, opcode); | |
5959 | ||
c138bc38 | 5960 | for (i = 0; i < uses; i++) |
7fa3d080 BW |
5961 | { |
5962 | xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i); | |
5963 | int stage = (rt->opcode_unit_stage) (rt->data, opcode, i); | |
0bf60745 | 5964 | assert (rt->units[stage + cycle][unit] > 0); |
7fa3d080 | 5965 | rt->units[stage + cycle][unit]--; |
7fa3d080 BW |
5966 | } |
5967 | } | |
c138bc38 | 5968 | |
7fa3d080 BW |
5969 | |
5970 | /* Wrapper functions make parameterized resource reservation | |
5971 | more convenient. */ | |
5972 | ||
c138bc38 | 5973 | int |
7fa3d080 BW |
5974 | opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx) |
5975 | { | |
5976 | xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx); | |
c138bc38 | 5977 | return use->unit; |
7fa3d080 BW |
5978 | } |
5979 | ||
5980 | ||
c138bc38 | 5981 | int |
7fa3d080 BW |
5982 | opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx) |
5983 | { | |
5984 | xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx); | |
5985 | return use->stage; | |
5986 | } | |
5987 | ||
5988 | ||
5989 | /* Note that this function does not check issue constraints, but | |
5990 | solely whether the hardware is available to execute the given | |
c138bc38 | 5991 | instructions together. It also doesn't check if the tinsns |
7fa3d080 | 5992 | write the same state, or access the same tieports. That is |
a1ace8d8 | 5993 | checked by check_t1_t2_reads_and_writes. */ |
7fa3d080 BW |
5994 | |
5995 | static bfd_boolean | |
5996 | resources_conflict (vliw_insn *vinsn) | |
5997 | { | |
5998 | int i; | |
5999 | static resource_table *rt = NULL; | |
6000 | ||
6001 | /* This is the most common case by far. Optimize it. */ | |
6002 | if (vinsn->num_slots == 1) | |
6003 | return FALSE; | |
43cd72b9 | 6004 | |
c138bc38 | 6005 | if (rt == NULL) |
7fa3d080 BW |
6006 | { |
6007 | xtensa_isa isa = xtensa_default_isa; | |
6008 | rt = new_resource_table | |
6009 | (isa, xtensa_isa_num_pipe_stages (isa), | |
6010 | xtensa_isa_num_funcUnits (isa), | |
6011 | (unit_num_copies_func) xtensa_funcUnit_num_copies, | |
6012 | (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses, | |
6013 | opcode_funcUnit_use_unit, | |
6014 | opcode_funcUnit_use_stage); | |
6015 | } | |
43cd72b9 | 6016 | |
7fa3d080 | 6017 | clear_resource_table (rt); |
43cd72b9 | 6018 | |
7fa3d080 BW |
6019 | for (i = 0; i < vinsn->num_slots; i++) |
6020 | { | |
6021 | if (!resources_available (rt, vinsn->slots[i].opcode, 0)) | |
6022 | return TRUE; | |
6023 | reserve_resources (rt, vinsn->slots[i].opcode, 0); | |
6024 | } | |
e0001a05 | 6025 | |
7fa3d080 BW |
6026 | return FALSE; |
6027 | } | |
e0001a05 | 6028 | |
7fa3d080 BW |
6029 | \f |
6030 | /* finish_vinsn, emit_single_op and helper functions. */ | |
e0001a05 | 6031 | |
7fa3d080 BW |
6032 | static bfd_boolean find_vinsn_conflicts (vliw_insn *); |
6033 | static xtensa_format xg_find_narrowest_format (vliw_insn *); | |
7fa3d080 | 6034 | static void xg_assemble_vliw_tokens (vliw_insn *); |
e0001a05 NC |
6035 | |
6036 | ||
43cd72b9 BW |
6037 | /* We have reached the end of a bundle; emit into the frag. */ |
6038 | ||
e0001a05 | 6039 | static void |
7fa3d080 | 6040 | finish_vinsn (vliw_insn *vinsn) |
e0001a05 | 6041 | { |
43cd72b9 BW |
6042 | IStack slotstack; |
6043 | int i; | |
6044 | char *file_name; | |
d77b99c9 | 6045 | unsigned line; |
e0001a05 | 6046 | |
43cd72b9 | 6047 | if (find_vinsn_conflicts (vinsn)) |
a1ace8d8 BW |
6048 | { |
6049 | xg_clear_vinsn (vinsn); | |
6050 | return; | |
6051 | } | |
43cd72b9 BW |
6052 | |
6053 | /* First, find a format that works. */ | |
6054 | if (vinsn->format == XTENSA_UNDEFINED) | |
6055 | vinsn->format = xg_find_narrowest_format (vinsn); | |
6056 | ||
6057 | if (vinsn->format == XTENSA_UNDEFINED) | |
6058 | { | |
6059 | as_where (&file_name, &line); | |
6060 | as_bad_where (file_name, line, | |
6061 | _("couldn't find a valid instruction format")); | |
6062 | fprintf (stderr, _(" ops were: ")); | |
6063 | for (i = 0; i < vinsn->num_slots; i++) | |
6064 | fprintf (stderr, _(" %s;"), | |
6065 | xtensa_opcode_name (xtensa_default_isa, | |
6066 | vinsn->slots[i].opcode)); | |
6067 | fprintf (stderr, _("\n")); | |
6068 | xg_clear_vinsn (vinsn); | |
6069 | return; | |
6070 | } | |
6071 | ||
6072 | if (vinsn->num_slots | |
6073 | != xtensa_format_num_slots (xtensa_default_isa, vinsn->format)) | |
e0001a05 | 6074 | { |
43cd72b9 BW |
6075 | as_bad (_("format '%s' allows %d slots, but there are %d opcodes"), |
6076 | xtensa_format_name (xtensa_default_isa, vinsn->format), | |
6077 | xtensa_format_num_slots (xtensa_default_isa, vinsn->format), | |
6078 | vinsn->num_slots); | |
6079 | xg_clear_vinsn (vinsn); | |
6080 | return; | |
6081 | } | |
e0001a05 | 6082 | |
c138bc38 | 6083 | if (resources_conflict (vinsn)) |
43cd72b9 BW |
6084 | { |
6085 | as_where (&file_name, &line); | |
6086 | as_bad_where (file_name, line, _("illegal resource usage in bundle")); | |
6087 | fprintf (stderr, " ops were: "); | |
6088 | for (i = 0; i < vinsn->num_slots; i++) | |
6089 | fprintf (stderr, " %s;", | |
6090 | xtensa_opcode_name (xtensa_default_isa, | |
6091 | vinsn->slots[i].opcode)); | |
6092 | fprintf (stderr, "\n"); | |
6093 | xg_clear_vinsn (vinsn); | |
6094 | return; | |
6095 | } | |
6096 | ||
6097 | for (i = 0; i < vinsn->num_slots; i++) | |
6098 | { | |
6099 | if (vinsn->slots[i].opcode != XTENSA_UNDEFINED) | |
e0001a05 | 6100 | { |
43cd72b9 BW |
6101 | symbolS *lit_sym = NULL; |
6102 | int j; | |
6103 | bfd_boolean e = FALSE; | |
6104 | bfd_boolean saved_density = density_supported; | |
6105 | ||
6106 | /* We don't want to narrow ops inside multi-slot bundles. */ | |
6107 | if (vinsn->num_slots > 1) | |
6108 | density_supported = FALSE; | |
6109 | ||
6110 | istack_init (&slotstack); | |
6111 | if (vinsn->slots[i].opcode == xtensa_nop_opcode) | |
e0001a05 | 6112 | { |
43cd72b9 BW |
6113 | vinsn->slots[i].opcode = |
6114 | xtensa_format_slot_nop_opcode (xtensa_default_isa, | |
6115 | vinsn->format, i); | |
6116 | vinsn->slots[i].ntok = 0; | |
6117 | } | |
e0001a05 | 6118 | |
43cd72b9 BW |
6119 | if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i])) |
6120 | { | |
6121 | e = TRUE; | |
6122 | continue; | |
e0001a05 | 6123 | } |
e0001a05 | 6124 | |
43cd72b9 | 6125 | density_supported = saved_density; |
e0001a05 | 6126 | |
43cd72b9 BW |
6127 | if (e) |
6128 | { | |
6129 | xg_clear_vinsn (vinsn); | |
6130 | return; | |
6131 | } | |
e0001a05 | 6132 | |
0fa77c95 | 6133 | for (j = 0; j < slotstack.ninsn; j++) |
43cd72b9 BW |
6134 | { |
6135 | TInsn *insn = &slotstack.insn[j]; | |
6136 | if (insn->insn_type == ITYPE_LITERAL) | |
6137 | { | |
6138 | assert (lit_sym == NULL); | |
6139 | lit_sym = xg_assemble_literal (insn); | |
6140 | } | |
6141 | else | |
6142 | { | |
0fa77c95 | 6143 | assert (insn->insn_type == ITYPE_INSN); |
43cd72b9 BW |
6144 | if (lit_sym) |
6145 | xg_resolve_literals (insn, lit_sym); | |
0fa77c95 BW |
6146 | if (j != slotstack.ninsn - 1) |
6147 | emit_single_op (insn); | |
43cd72b9 BW |
6148 | } |
6149 | } | |
6150 | ||
6151 | if (vinsn->num_slots > 1) | |
6152 | { | |
6153 | if (opcode_fits_format_slot | |
6154 | (slotstack.insn[slotstack.ninsn - 1].opcode, | |
6155 | vinsn->format, i)) | |
6156 | { | |
6157 | vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1]; | |
6158 | } | |
6159 | else | |
6160 | { | |
b2d179be | 6161 | emit_single_op (&slotstack.insn[slotstack.ninsn - 1]); |
43cd72b9 BW |
6162 | if (vinsn->format == XTENSA_UNDEFINED) |
6163 | vinsn->slots[i].opcode = xtensa_nop_opcode; | |
6164 | else | |
c138bc38 | 6165 | vinsn->slots[i].opcode |
43cd72b9 BW |
6166 | = xtensa_format_slot_nop_opcode (xtensa_default_isa, |
6167 | vinsn->format, i); | |
6168 | ||
6169 | vinsn->slots[i].ntok = 0; | |
6170 | } | |
6171 | } | |
6172 | else | |
6173 | { | |
6174 | vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1]; | |
6175 | vinsn->format = XTENSA_UNDEFINED; | |
6176 | } | |
6177 | } | |
6178 | } | |
6179 | ||
6180 | /* Now check resource conflicts on the modified bundle. */ | |
c138bc38 | 6181 | if (resources_conflict (vinsn)) |
43cd72b9 BW |
6182 | { |
6183 | as_where (&file_name, &line); | |
6184 | as_bad_where (file_name, line, _("illegal resource usage in bundle")); | |
6185 | fprintf (stderr, " ops were: "); | |
6186 | for (i = 0; i < vinsn->num_slots; i++) | |
6187 | fprintf (stderr, " %s;", | |
6188 | xtensa_opcode_name (xtensa_default_isa, | |
6189 | vinsn->slots[i].opcode)); | |
6190 | fprintf (stderr, "\n"); | |
6191 | xg_clear_vinsn (vinsn); | |
6192 | return; | |
6193 | } | |
6194 | ||
6195 | /* First, find a format that works. */ | |
6196 | if (vinsn->format == XTENSA_UNDEFINED) | |
6197 | vinsn->format = xg_find_narrowest_format (vinsn); | |
6198 | ||
6199 | xg_assemble_vliw_tokens (vinsn); | |
6200 | ||
6201 | xg_clear_vinsn (vinsn); | |
6202 | } | |
6203 | ||
6204 | ||
6205 | /* Given an vliw instruction, what conflicts are there in register | |
6206 | usage and in writes to states and queues? | |
6207 | ||
6208 | This function does two things: | |
6209 | 1. Reports an error when a vinsn contains illegal combinations | |
6210 | of writes to registers states or queues. | |
6211 | 2. Marks individual tinsns as not relaxable if the combination | |
6212 | contains antidependencies. | |
6213 | ||
6214 | Job 2 handles things like swap semantics in instructions that need | |
6215 | to be relaxed. For example, | |
6216 | ||
6217 | addi a0, a1, 100000 | |
6218 | ||
6219 | normally would be relaxed to | |
6220 | ||
6221 | l32r a0, some_label | |
6222 | add a0, a1, a0 | |
6223 | ||
6224 | _but_, if the above instruction is bundled with an a0 reader, e.g., | |
6225 | ||
6226 | { addi a0, a1, 10000 ; add a2, a0, a4 ; } | |
6227 | ||
6228 | then we can't relax it into | |
6229 | ||
6230 | l32r a0, some_label | |
6231 | { add a0, a1, a0 ; add a2, a0, a4 ; } | |
6232 | ||
6233 | because the value of a0 is trashed before the second add can read it. */ | |
6234 | ||
7fa3d080 BW |
6235 | static char check_t1_t2_reads_and_writes (TInsn *, TInsn *); |
6236 | ||
43cd72b9 | 6237 | static bfd_boolean |
7fa3d080 | 6238 | find_vinsn_conflicts (vliw_insn *vinsn) |
43cd72b9 BW |
6239 | { |
6240 | int i, j; | |
6241 | int branches = 0; | |
6242 | xtensa_isa isa = xtensa_default_isa; | |
6243 | ||
6244 | assert (!past_xtensa_end); | |
6245 | ||
6246 | for (i = 0 ; i < vinsn->num_slots; i++) | |
6247 | { | |
6248 | TInsn *op1 = &vinsn->slots[i]; | |
6249 | if (op1->is_specific_opcode) | |
6250 | op1->keep_wide = TRUE; | |
6251 | else | |
6252 | op1->keep_wide = FALSE; | |
6253 | } | |
6254 | ||
6255 | for (i = 0 ; i < vinsn->num_slots; i++) | |
6256 | { | |
6257 | TInsn *op1 = &vinsn->slots[i]; | |
6258 | ||
6259 | if (xtensa_opcode_is_branch (isa, op1->opcode) == 1) | |
6260 | branches++; | |
6261 | ||
6262 | for (j = 0; j < vinsn->num_slots; j++) | |
6263 | { | |
6264 | if (i != j) | |
6265 | { | |
6266 | TInsn *op2 = &vinsn->slots[j]; | |
6267 | char conflict_type = check_t1_t2_reads_and_writes (op1, op2); | |
6268 | switch (conflict_type) | |
6269 | { | |
6270 | case 'c': | |
6271 | as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"), | |
6272 | xtensa_opcode_name (isa, op1->opcode), i, | |
6273 | xtensa_opcode_name (isa, op2->opcode), j); | |
6274 | return TRUE; | |
6275 | case 'd': | |
6276 | as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"), | |
6277 | xtensa_opcode_name (isa, op1->opcode), i, | |
6278 | xtensa_opcode_name (isa, op2->opcode), j); | |
6279 | return TRUE; | |
6280 | case 'e': | |
53dfbcc7 | 6281 | as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"), |
43cd72b9 BW |
6282 | xtensa_opcode_name (isa, op1->opcode), i, |
6283 | xtensa_opcode_name (isa, op2->opcode), j); | |
6284 | return TRUE; | |
6285 | case 'f': | |
53dfbcc7 | 6286 | as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"), |
43cd72b9 BW |
6287 | xtensa_opcode_name (isa, op1->opcode), i, |
6288 | xtensa_opcode_name (isa, op2->opcode), j); | |
6289 | return TRUE; | |
6290 | default: | |
6291 | /* Everything is OK. */ | |
6292 | break; | |
6293 | } | |
6294 | op2->is_specific_opcode = (op2->is_specific_opcode | |
6295 | || conflict_type == 'a'); | |
6296 | } | |
6297 | } | |
6298 | } | |
6299 | ||
6300 | if (branches > 1) | |
6301 | { | |
6302 | as_bad (_("multiple branches or jumps in the same bundle")); | |
6303 | return TRUE; | |
6304 | } | |
6305 | ||
6306 | return FALSE; | |
6307 | } | |
6308 | ||
6309 | ||
a1ace8d8 | 6310 | /* Check how the state used by t1 and t2 relate. |
43cd72b9 BW |
6311 | Cases found are: |
6312 | ||
6313 | case A: t1 reads a register t2 writes (an antidependency within a bundle) | |
6314 | case B: no relationship between what is read and written (both could | |
6315 | read the same reg though) | |
c138bc38 | 6316 | case C: t1 writes a register t2 writes (a register conflict within a |
43cd72b9 BW |
6317 | bundle) |
6318 | case D: t1 writes a state that t2 also writes | |
6319 | case E: t1 writes a tie queue that t2 also writes | |
a1ace8d8 | 6320 | case F: two volatile queue accesses |
43cd72b9 BW |
6321 | */ |
6322 | ||
6323 | static char | |
7fa3d080 | 6324 | check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2) |
43cd72b9 BW |
6325 | { |
6326 | xtensa_isa isa = xtensa_default_isa; | |
6327 | xtensa_regfile t1_regfile, t2_regfile; | |
6328 | int t1_reg, t2_reg; | |
6329 | int t1_base_reg, t1_last_reg; | |
6330 | int t2_base_reg, t2_last_reg; | |
6331 | char t1_inout, t2_inout; | |
6332 | int i, j; | |
6333 | char conflict = 'b'; | |
6334 | int t1_states; | |
6335 | int t2_states; | |
6336 | int t1_interfaces; | |
6337 | int t2_interfaces; | |
6338 | bfd_boolean t1_volatile = FALSE; | |
6339 | bfd_boolean t2_volatile = FALSE; | |
6340 | ||
6341 | /* Check registers. */ | |
6342 | for (j = 0; j < t2->ntok; j++) | |
6343 | { | |
6344 | if (xtensa_operand_is_register (isa, t2->opcode, j) != 1) | |
6345 | continue; | |
6346 | ||
6347 | t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j); | |
6348 | t2_base_reg = t2->tok[j].X_add_number; | |
6349 | t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j); | |
6350 | ||
6351 | for (i = 0; i < t1->ntok; i++) | |
6352 | { | |
6353 | if (xtensa_operand_is_register (isa, t1->opcode, i) != 1) | |
6354 | continue; | |
6355 | ||
6356 | t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i); | |
6357 | ||
6358 | if (t1_regfile != t2_regfile) | |
6359 | continue; | |
6360 | ||
6361 | t1_inout = xtensa_operand_inout (isa, t1->opcode, i); | |
6362 | t2_inout = xtensa_operand_inout (isa, t2->opcode, j); | |
6363 | ||
6364 | if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0 | |
6365 | || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0) | |
6366 | { | |
6367 | if (t1_inout == 'm' || t1_inout == 'o' | |
6368 | || t2_inout == 'm' || t2_inout == 'o') | |
6369 | { | |
6370 | conflict = 'a'; | |
6371 | continue; | |
6372 | } | |
6373 | } | |
6374 | ||
6375 | t1_base_reg = t1->tok[i].X_add_number; | |
6376 | t1_last_reg = (t1_base_reg | |
6377 | + xtensa_operand_num_regs (isa, t1->opcode, i)); | |
6378 | ||
6379 | for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++) | |
6380 | { | |
6381 | for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++) | |
6382 | { | |
6383 | if (t1_reg != t2_reg) | |
6384 | continue; | |
6385 | ||
6386 | if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o')) | |
7fa3d080 BW |
6387 | { |
6388 | conflict = 'a'; | |
6389 | continue; | |
6390 | } | |
43cd72b9 | 6391 | |
7fa3d080 BW |
6392 | if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o')) |
6393 | { | |
6394 | conflict = 'a'; | |
6395 | continue; | |
6396 | } | |
43cd72b9 | 6397 | |
7fa3d080 BW |
6398 | if (t1_inout != 'i' && t2_inout != 'i') |
6399 | return 'c'; | |
6400 | } | |
6401 | } | |
6402 | } | |
6403 | } | |
43cd72b9 | 6404 | |
7fa3d080 BW |
6405 | /* Check states. */ |
6406 | t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode); | |
6407 | t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode); | |
6408 | for (j = 0; j < t2_states; j++) | |
43cd72b9 | 6409 | { |
7fa3d080 BW |
6410 | xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j); |
6411 | t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j); | |
6412 | for (i = 0; i < t1_states; i++) | |
6413 | { | |
6414 | xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i); | |
6415 | t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i); | |
c138bc38 | 6416 | if (t1_so != t2_so) |
7fa3d080 | 6417 | continue; |
43cd72b9 | 6418 | |
7fa3d080 BW |
6419 | if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o')) |
6420 | { | |
6421 | conflict = 'a'; | |
6422 | continue; | |
6423 | } | |
c138bc38 | 6424 | |
7fa3d080 BW |
6425 | if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o')) |
6426 | { | |
6427 | conflict = 'a'; | |
6428 | continue; | |
6429 | } | |
c138bc38 | 6430 | |
7fa3d080 BW |
6431 | if (t1_inout != 'i' && t2_inout != 'i') |
6432 | return 'd'; | |
c138bc38 | 6433 | } |
7fa3d080 | 6434 | } |
43cd72b9 | 6435 | |
7fa3d080 BW |
6436 | /* Check tieports. */ |
6437 | t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode); | |
6438 | t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode); | |
c138bc38 | 6439 | for (j = 0; j < t2_interfaces; j++) |
43cd72b9 | 6440 | { |
7fa3d080 BW |
6441 | xtensa_interface t2_int |
6442 | = xtensa_interfaceOperand_interface (isa, t2->opcode, j); | |
a1ace8d8 BW |
6443 | int t2_class = xtensa_interface_class_id (isa, t2_int); |
6444 | ||
53dfbcc7 | 6445 | t2_inout = xtensa_interface_inout (isa, t2_int); |
a1ace8d8 | 6446 | if (xtensa_interface_has_side_effect (isa, t2_int) == 1) |
7fa3d080 | 6447 | t2_volatile = TRUE; |
a1ace8d8 | 6448 | |
7fa3d080 BW |
6449 | for (i = 0; i < t1_interfaces; i++) |
6450 | { | |
6451 | xtensa_interface t1_int | |
6452 | = xtensa_interfaceOperand_interface (isa, t1->opcode, j); | |
2eccd1b4 | 6453 | int t1_class = xtensa_interface_class_id (isa, t1_int); |
a1ace8d8 | 6454 | |
53dfbcc7 | 6455 | t1_inout = xtensa_interface_inout (isa, t1_int); |
a1ace8d8 | 6456 | if (xtensa_interface_has_side_effect (isa, t1_int) == 1) |
7fa3d080 | 6457 | t1_volatile = TRUE; |
a1ace8d8 BW |
6458 | |
6459 | if (t1_volatile && t2_volatile && (t1_class == t2_class)) | |
6460 | return 'f'; | |
c138bc38 | 6461 | |
7fa3d080 BW |
6462 | if (t1_int != t2_int) |
6463 | continue; | |
c138bc38 | 6464 | |
7fa3d080 BW |
6465 | if (t2_inout == 'i' && t1_inout == 'o') |
6466 | { | |
6467 | conflict = 'a'; | |
6468 | continue; | |
6469 | } | |
c138bc38 | 6470 | |
7fa3d080 BW |
6471 | if (t1_inout == 'i' && t2_inout == 'o') |
6472 | { | |
6473 | conflict = 'a'; | |
6474 | continue; | |
6475 | } | |
c138bc38 | 6476 | |
7fa3d080 BW |
6477 | if (t1_inout != 'i' && t2_inout != 'i') |
6478 | return 'e'; | |
6479 | } | |
43cd72b9 | 6480 | } |
c138bc38 | 6481 | |
7fa3d080 | 6482 | return conflict; |
43cd72b9 BW |
6483 | } |
6484 | ||
6485 | ||
6486 | static xtensa_format | |
7fa3d080 | 6487 | xg_find_narrowest_format (vliw_insn *vinsn) |
43cd72b9 BW |
6488 | { |
6489 | /* Right now we assume that the ops within the vinsn are properly | |
6490 | ordered for the slots that the programmer wanted them in. In | |
6491 | other words, we don't rearrange the ops in hopes of finding a | |
6492 | better format. The scheduler handles that. */ | |
6493 | ||
6494 | xtensa_isa isa = xtensa_default_isa; | |
6495 | xtensa_format format; | |
6496 | vliw_insn v_copy = *vinsn; | |
6497 | xtensa_opcode nop_opcode = xtensa_nop_opcode; | |
6498 | ||
65738a7d BW |
6499 | if (vinsn->num_slots == 1) |
6500 | return xg_get_single_format (vinsn->slots[0].opcode); | |
6501 | ||
43cd72b9 BW |
6502 | for (format = 0; format < xtensa_isa_num_formats (isa); format++) |
6503 | { | |
6504 | v_copy = *vinsn; | |
6505 | if (xtensa_format_num_slots (isa, format) == v_copy.num_slots) | |
6506 | { | |
6507 | int slot; | |
6508 | int fit = 0; | |
6509 | for (slot = 0; slot < v_copy.num_slots; slot++) | |
6510 | { | |
6511 | if (v_copy.slots[slot].opcode == nop_opcode) | |
6512 | { | |
6513 | v_copy.slots[slot].opcode = | |
6514 | xtensa_format_slot_nop_opcode (isa, format, slot); | |
6515 | v_copy.slots[slot].ntok = 0; | |
6516 | } | |
6517 | ||
6518 | if (opcode_fits_format_slot (v_copy.slots[slot].opcode, | |
6519 | format, slot)) | |
6520 | fit++; | |
7fa3d080 | 6521 | else if (v_copy.num_slots > 1) |
43cd72b9 | 6522 | { |
7fa3d080 BW |
6523 | TInsn widened; |
6524 | /* Try the widened version. */ | |
6525 | if (!v_copy.slots[slot].keep_wide | |
6526 | && !v_copy.slots[slot].is_specific_opcode | |
84b08ed9 BW |
6527 | && xg_is_single_relaxable_insn (&v_copy.slots[slot], |
6528 | &widened, TRUE) | |
7fa3d080 BW |
6529 | && opcode_fits_format_slot (widened.opcode, |
6530 | format, slot)) | |
43cd72b9 | 6531 | { |
7fa3d080 BW |
6532 | v_copy.slots[slot] = widened; |
6533 | fit++; | |
43cd72b9 BW |
6534 | } |
6535 | } | |
6536 | } | |
6537 | if (fit == v_copy.num_slots) | |
6538 | { | |
6539 | *vinsn = v_copy; | |
6540 | xtensa_format_encode (isa, format, vinsn->insnbuf); | |
6541 | vinsn->format = format; | |
6542 | break; | |
6543 | } | |
6544 | } | |
6545 | } | |
6546 | ||
6547 | if (format == xtensa_isa_num_formats (isa)) | |
6548 | return XTENSA_UNDEFINED; | |
6549 | ||
6550 | return format; | |
6551 | } | |
6552 | ||
6553 | ||
6554 | /* Return the additional space needed in a frag | |
6555 | for possible relaxations of any ops in a VLIW insn. | |
6556 | Also fill out the relaxations that might be required of | |
6557 | each tinsn in the vinsn. */ | |
6558 | ||
6559 | static int | |
e7da6241 | 6560 | relaxation_requirements (vliw_insn *vinsn, bfd_boolean *pfinish_frag) |
43cd72b9 | 6561 | { |
e7da6241 | 6562 | bfd_boolean finish_frag = FALSE; |
43cd72b9 BW |
6563 | int extra_space = 0; |
6564 | int slot; | |
6565 | ||
6566 | for (slot = 0; slot < vinsn->num_slots; slot++) | |
6567 | { | |
6568 | TInsn *tinsn = &vinsn->slots[slot]; | |
6569 | if (!tinsn_has_symbolic_operands (tinsn)) | |
6570 | { | |
6571 | /* A narrow instruction could be widened later to help | |
6572 | alignment issues. */ | |
84b08ed9 | 6573 | if (xg_is_single_relaxable_insn (tinsn, 0, TRUE) |
43cd72b9 BW |
6574 | && !tinsn->is_specific_opcode |
6575 | && vinsn->num_slots == 1) | |
6576 | { | |
6577 | /* Difference in bytes between narrow and wide insns... */ | |
6578 | extra_space += 1; | |
6579 | tinsn->subtype = RELAX_NARROW; | |
43cd72b9 BW |
6580 | } |
6581 | } | |
6582 | else | |
6583 | { | |
b08b5071 BW |
6584 | if (workaround_b_j_loop_end |
6585 | && tinsn->opcode == xtensa_jx_opcode | |
43cd72b9 BW |
6586 | && use_transform ()) |
6587 | { | |
6588 | /* Add 2 of these. */ | |
6589 | extra_space += 3; /* for the nop size */ | |
6590 | tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END; | |
6591 | } | |
c138bc38 | 6592 | |
43cd72b9 BW |
6593 | /* Need to assemble it with space for the relocation. */ |
6594 | if (xg_is_relaxable_insn (tinsn, 0) | |
6595 | && !tinsn->is_specific_opcode) | |
6596 | { | |
6597 | int max_size = xg_get_max_insn_widen_size (tinsn->opcode); | |
6598 | int max_literal_size = | |
6599 | xg_get_max_insn_widen_literal_size (tinsn->opcode); | |
c138bc38 | 6600 | |
43cd72b9 | 6601 | tinsn->literal_space = max_literal_size; |
c138bc38 | 6602 | |
43cd72b9 | 6603 | tinsn->subtype = RELAX_IMMED; |
43cd72b9 BW |
6604 | extra_space += max_size; |
6605 | } | |
6606 | else | |
6607 | { | |
e7da6241 BW |
6608 | /* A fix record will be added for this instruction prior |
6609 | to relaxation, so make it end the frag. */ | |
6610 | finish_frag = TRUE; | |
43cd72b9 BW |
6611 | } |
6612 | } | |
6613 | } | |
e7da6241 | 6614 | *pfinish_frag = finish_frag; |
43cd72b9 BW |
6615 | return extra_space; |
6616 | } | |
6617 | ||
6618 | ||
6619 | static void | |
b2d179be | 6620 | bundle_tinsn (TInsn *tinsn, vliw_insn *vinsn) |
43cd72b9 BW |
6621 | { |
6622 | xtensa_isa isa = xtensa_default_isa; | |
b2d179be | 6623 | int slot, chosen_slot; |
43cd72b9 | 6624 | |
b2d179be BW |
6625 | vinsn->format = xg_get_single_format (tinsn->opcode); |
6626 | assert (vinsn->format != XTENSA_UNDEFINED); | |
6627 | vinsn->num_slots = xtensa_format_num_slots (isa, vinsn->format); | |
43cd72b9 | 6628 | |
b2d179be BW |
6629 | chosen_slot = xg_get_single_slot (tinsn->opcode); |
6630 | for (slot = 0; slot < vinsn->num_slots; slot++) | |
43cd72b9 | 6631 | { |
b2d179be BW |
6632 | if (slot == chosen_slot) |
6633 | vinsn->slots[slot] = *tinsn; | |
6634 | else | |
6635 | { | |
6636 | vinsn->slots[slot].opcode = | |
6637 | xtensa_format_slot_nop_opcode (isa, vinsn->format, slot); | |
6638 | vinsn->slots[slot].ntok = 0; | |
6639 | vinsn->slots[slot].insn_type = ITYPE_INSN; | |
6640 | } | |
43cd72b9 | 6641 | } |
43cd72b9 BW |
6642 | } |
6643 | ||
6644 | ||
6645 | static bfd_boolean | |
7fa3d080 | 6646 | emit_single_op (TInsn *orig_insn) |
43cd72b9 BW |
6647 | { |
6648 | int i; | |
6649 | IStack istack; /* put instructions into here */ | |
6650 | symbolS *lit_sym = NULL; | |
6651 | symbolS *label_sym = NULL; | |
6652 | ||
6653 | istack_init (&istack); | |
6654 | ||
6655 | /* Special-case for "movi aX, foo" which is guaranteed to need relaxing. | |
c138bc38 BW |
6656 | Because the scheduling and bundling characteristics of movi and |
6657 | l32r or const16 are so different, we can do much better if we relax | |
43cd72b9 | 6658 | it prior to scheduling and bundling, rather than after. */ |
c138bc38 | 6659 | if ((orig_insn->opcode == xtensa_movi_opcode |
b08b5071 BW |
6660 | || orig_insn->opcode == xtensa_movi_n_opcode) |
6661 | && !cur_vinsn.inside_bundle | |
43cd72b9 | 6662 | && (orig_insn->tok[1].X_op == O_symbol |
482fd9f9 BW |
6663 | || orig_insn->tok[1].X_op == O_pltrel) |
6664 | && !orig_insn->is_specific_opcode && use_transform ()) | |
43cd72b9 BW |
6665 | xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0); |
6666 | else | |
6667 | if (xg_expand_assembly_insn (&istack, orig_insn)) | |
6668 | return TRUE; | |
6669 | ||
6670 | for (i = 0; i < istack.ninsn; i++) | |
6671 | { | |
6672 | TInsn *insn = &istack.insn[i]; | |
c138bc38 | 6673 | switch (insn->insn_type) |
43cd72b9 BW |
6674 | { |
6675 | case ITYPE_LITERAL: | |
6676 | assert (lit_sym == NULL); | |
6677 | lit_sym = xg_assemble_literal (insn); | |
6678 | break; | |
6679 | case ITYPE_LABEL: | |
6680 | { | |
6681 | static int relaxed_sym_idx = 0; | |
6682 | char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12); | |
6683 | sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++); | |
6684 | colon (label); | |
6685 | assert (label_sym == NULL); | |
6686 | label_sym = symbol_find_or_make (label); | |
6687 | assert (label_sym); | |
6688 | free (label); | |
6689 | } | |
6690 | break; | |
6691 | case ITYPE_INSN: | |
b2d179be BW |
6692 | { |
6693 | vliw_insn v; | |
6694 | if (lit_sym) | |
6695 | xg_resolve_literals (insn, lit_sym); | |
6696 | if (label_sym) | |
6697 | xg_resolve_labels (insn, label_sym); | |
6698 | xg_init_vinsn (&v); | |
6699 | bundle_tinsn (insn, &v); | |
6700 | finish_vinsn (&v); | |
6701 | xg_free_vinsn (&v); | |
6702 | } | |
43cd72b9 BW |
6703 | break; |
6704 | default: | |
6705 | assert (0); | |
6706 | break; | |
6707 | } | |
6708 | } | |
6709 | return FALSE; | |
6710 | } | |
6711 | ||
6712 | ||
34e41783 BW |
6713 | static int |
6714 | total_frag_text_expansion (fragS *fragP) | |
6715 | { | |
6716 | int slot; | |
6717 | int total_expansion = 0; | |
6718 | ||
6719 | for (slot = 0; slot < MAX_SLOTS; slot++) | |
6720 | total_expansion += fragP->tc_frag_data.text_expansion[slot]; | |
6721 | ||
6722 | return total_expansion; | |
6723 | } | |
6724 | ||
6725 | ||
43cd72b9 BW |
6726 | /* Emit a vliw instruction to the current fragment. */ |
6727 | ||
7fa3d080 BW |
6728 | static void |
6729 | xg_assemble_vliw_tokens (vliw_insn *vinsn) | |
43cd72b9 | 6730 | { |
e7da6241 | 6731 | bfd_boolean finish_frag; |
43cd72b9 BW |
6732 | bfd_boolean is_jump = FALSE; |
6733 | bfd_boolean is_branch = FALSE; | |
6734 | xtensa_isa isa = xtensa_default_isa; | |
43cd72b9 BW |
6735 | int insn_size; |
6736 | int extra_space; | |
6737 | char *f = NULL; | |
6738 | int slot; | |
b224e962 BW |
6739 | struct dwarf2_line_info debug_line; |
6740 | bfd_boolean loc_directive_seen = FALSE; | |
6741 | TInsn *tinsn; | |
43cd72b9 | 6742 | |
b224e962 | 6743 | memset (&debug_line, 0, sizeof (struct dwarf2_line_info)); |
43cd72b9 BW |
6744 | |
6745 | if (generating_literals) | |
6746 | { | |
6747 | static int reported = 0; | |
6748 | if (reported < 4) | |
6749 | as_bad_where (frag_now->fr_file, frag_now->fr_line, | |
6750 | _("cannot assemble into a literal fragment")); | |
6751 | if (reported == 3) | |
6752 | as_bad (_("...")); | |
6753 | reported++; | |
6754 | return; | |
6755 | } | |
6756 | ||
6757 | if (frag_now_fix () != 0 | |
b08b5071 | 6758 | && (! frag_now->tc_frag_data.is_insn |
43cd72b9 | 6759 | || (vinsn_has_specific_opcodes (vinsn) && use_transform ()) |
b08b5071 | 6760 | || !use_transform () != frag_now->tc_frag_data.is_no_transform |
7c834684 BW |
6761 | || (directive_state[directive_longcalls] |
6762 | != frag_now->tc_frag_data.use_longcalls) | |
43cd72b9 BW |
6763 | || (directive_state[directive_absolute_literals] |
6764 | != frag_now->tc_frag_data.use_absolute_literals))) | |
6765 | { | |
6766 | frag_wane (frag_now); | |
6767 | frag_new (0); | |
6768 | xtensa_set_frag_assembly_state (frag_now); | |
6769 | } | |
6770 | ||
6771 | if (workaround_a0_b_retw | |
6772 | && vinsn->num_slots == 1 | |
6773 | && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0 | |
6774 | && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1 | |
6775 | && use_transform ()) | |
6776 | { | |
6777 | has_a0_b_retw = TRUE; | |
6778 | ||
6779 | /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW. | |
6780 | After the first assembly pass we will check all of them and | |
6781 | add a nop if needed. */ | |
6782 | frag_now->tc_frag_data.is_insn = TRUE; | |
6783 | frag_var (rs_machine_dependent, 4, 4, | |
6784 | RELAX_ADD_NOP_IF_A0_B_RETW, | |
6785 | frag_now->fr_symbol, | |
6786 | frag_now->fr_offset, | |
6787 | NULL); | |
6788 | xtensa_set_frag_assembly_state (frag_now); | |
6789 | frag_now->tc_frag_data.is_insn = TRUE; | |
6790 | frag_var (rs_machine_dependent, 4, 4, | |
6791 | RELAX_ADD_NOP_IF_A0_B_RETW, | |
6792 | frag_now->fr_symbol, | |
6793 | frag_now->fr_offset, | |
6794 | NULL); | |
6795 | xtensa_set_frag_assembly_state (frag_now); | |
6796 | } | |
6797 | ||
b224e962 | 6798 | for (slot = 0; slot < vinsn->num_slots; slot++) |
43cd72b9 | 6799 | { |
b224e962 BW |
6800 | tinsn = &vinsn->slots[slot]; |
6801 | ||
43cd72b9 | 6802 | /* See if the instruction implies an aligned section. */ |
b224e962 | 6803 | if (xtensa_opcode_is_loop (isa, tinsn->opcode) == 1) |
43cd72b9 | 6804 | record_alignment (now_seg, 2); |
c138bc38 | 6805 | |
b224e962 BW |
6806 | /* Determine the best line number for debug info. */ |
6807 | if ((tinsn->loc_directive_seen || !loc_directive_seen) | |
6808 | && (tinsn->debug_line.filenum != debug_line.filenum | |
6809 | || tinsn->debug_line.line < debug_line.line | |
6810 | || tinsn->debug_line.column < debug_line.column)) | |
6811 | debug_line = tinsn->debug_line; | |
6812 | if (tinsn->loc_directive_seen) | |
6813 | loc_directive_seen = TRUE; | |
43cd72b9 BW |
6814 | } |
6815 | ||
6816 | /* Special cases for instructions that force an alignment... */ | |
6817 | /* None of these opcodes are bundle-able. */ | |
6818 | if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1) | |
6819 | { | |
d77b99c9 | 6820 | int max_fill; |
c138bc38 | 6821 | |
05d58145 BW |
6822 | /* Remember the symbol that marks the end of the loop in the frag |
6823 | that marks the start of the loop. This way we can easily find | |
6824 | the end of the loop at the beginning, without adding special code | |
6825 | to mark the loop instructions themselves. */ | |
6826 | symbolS *target_sym = NULL; | |
6827 | if (vinsn->slots[0].tok[1].X_op == O_symbol) | |
6828 | target_sym = vinsn->slots[0].tok[1].X_add_symbol; | |
6829 | ||
43cd72b9 BW |
6830 | xtensa_set_frag_assembly_state (frag_now); |
6831 | frag_now->tc_frag_data.is_insn = TRUE; | |
c138bc38 | 6832 | |
43cd72b9 BW |
6833 | max_fill = get_text_align_max_fill_size |
6834 | (get_text_align_power (xtensa_fetch_width), | |
6835 | TRUE, frag_now->tc_frag_data.is_no_density); | |
6836 | ||
6837 | if (use_transform ()) | |
6838 | frag_var (rs_machine_dependent, max_fill, max_fill, | |
05d58145 | 6839 | RELAX_ALIGN_NEXT_OPCODE, target_sym, 0, NULL); |
43cd72b9 | 6840 | else |
c138bc38 | 6841 | frag_var (rs_machine_dependent, 0, 0, |
05d58145 | 6842 | RELAX_CHECK_ALIGN_NEXT_OPCODE, target_sym, 0, NULL); |
43cd72b9 | 6843 | xtensa_set_frag_assembly_state (frag_now); |
43cd72b9 BW |
6844 | } |
6845 | ||
b08b5071 | 6846 | if (vinsn->slots[0].opcode == xtensa_entry_opcode |
43cd72b9 BW |
6847 | && !vinsn->slots[0].is_specific_opcode) |
6848 | { | |
6849 | xtensa_mark_literal_pool_location (); | |
c3ea6048 | 6850 | xtensa_move_labels (frag_now, 0); |
43cd72b9 BW |
6851 | frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL); |
6852 | } | |
6853 | ||
6854 | if (vinsn->num_slots == 1) | |
6855 | { | |
6856 | if (workaround_a0_b_retw && use_transform ()) | |
6857 | set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER, | |
6858 | is_register_writer (&vinsn->slots[0], "a", 0)); | |
6859 | ||
6860 | set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, | |
6861 | is_bad_loopend_opcode (&vinsn->slots[0])); | |
6862 | } | |
6863 | else | |
6864 | set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE); | |
6865 | ||
6866 | insn_size = xtensa_format_length (isa, vinsn->format); | |
6867 | ||
e7da6241 | 6868 | extra_space = relaxation_requirements (vinsn, &finish_frag); |
43cd72b9 BW |
6869 | |
6870 | /* vinsn_to_insnbuf will produce the error. */ | |
6871 | if (vinsn->format != XTENSA_UNDEFINED) | |
6872 | { | |
d77b99c9 | 6873 | f = frag_more (insn_size + extra_space); |
43cd72b9 BW |
6874 | xtensa_set_frag_assembly_state (frag_now); |
6875 | frag_now->tc_frag_data.is_insn = TRUE; | |
6876 | } | |
6877 | ||
e7da6241 | 6878 | vinsn_to_insnbuf (vinsn, f, frag_now, FALSE); |
43cd72b9 BW |
6879 | if (vinsn->format == XTENSA_UNDEFINED) |
6880 | return; | |
6881 | ||
d77b99c9 | 6882 | xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0); |
c138bc38 | 6883 | |
b224e962 BW |
6884 | if (debug_type == DEBUG_DWARF2 || loc_directive_seen) |
6885 | dwarf2_gen_line_info (frag_now_fix () - (insn_size + extra_space), | |
6886 | &debug_line); | |
43cd72b9 BW |
6887 | |
6888 | for (slot = 0; slot < vinsn->num_slots; slot++) | |
6889 | { | |
b224e962 | 6890 | tinsn = &vinsn->slots[slot]; |
43cd72b9 | 6891 | frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype; |
7c834684 | 6892 | frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol; |
7c834684 | 6893 | frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset; |
43cd72b9 BW |
6894 | frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag; |
6895 | if (tinsn->literal_space != 0) | |
6896 | xg_assemble_literal_space (tinsn->literal_space, slot); | |
6897 | ||
6898 | if (tinsn->subtype == RELAX_NARROW) | |
6899 | assert (vinsn->num_slots == 1); | |
6900 | if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1) | |
6901 | is_jump = TRUE; | |
6902 | if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1) | |
6903 | is_branch = TRUE; | |
6904 | ||
e7da6241 BW |
6905 | if (tinsn->subtype || tinsn->symbol || tinsn->offset |
6906 | || tinsn->literal_frag || is_jump || is_branch) | |
43cd72b9 BW |
6907 | finish_frag = TRUE; |
6908 | } | |
6909 | ||
6910 | if (vinsn_has_specific_opcodes (vinsn) && use_transform ()) | |
b08b5071 | 6911 | frag_now->tc_frag_data.is_specific_opcode = TRUE; |
43cd72b9 BW |
6912 | |
6913 | if (finish_frag) | |
6914 | { | |
6915 | frag_variant (rs_machine_dependent, | |
6916 | extra_space, extra_space, RELAX_SLOTS, | |
6917 | frag_now->fr_symbol, frag_now->fr_offset, f); | |
6918 | xtensa_set_frag_assembly_state (frag_now); | |
6919 | } | |
6920 | ||
6921 | /* Special cases for loops: | |
6922 | close_loop_end should be inserted AFTER short_loop. | |
6923 | Make sure that CLOSE loops are processed BEFORE short_loops | |
6924 | when converting them. */ | |
6925 | ||
6926 | /* "short_loop": Add a NOP if the loop is < 4 bytes. */ | |
64b607e6 | 6927 | if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1 |
43cd72b9 BW |
6928 | && !vinsn->slots[0].is_specific_opcode) |
6929 | { | |
6930 | if (workaround_short_loop && use_transform ()) | |
6931 | { | |
6932 | maybe_has_short_loop = TRUE; | |
6933 | frag_now->tc_frag_data.is_insn = TRUE; | |
6934 | frag_var (rs_machine_dependent, 4, 4, | |
6935 | RELAX_ADD_NOP_IF_SHORT_LOOP, | |
6936 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6937 | frag_now->tc_frag_data.is_insn = TRUE; | |
6938 | frag_var (rs_machine_dependent, 4, 4, | |
6939 | RELAX_ADD_NOP_IF_SHORT_LOOP, | |
6940 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6941 | } | |
6942 | ||
6943 | /* "close_loop_end": Add up to 12 bytes of NOPs to keep a | |
6944 | loop at least 12 bytes away from another loop's end. */ | |
6945 | if (workaround_close_loop_end && use_transform ()) | |
6946 | { | |
6947 | maybe_has_close_loop_end = TRUE; | |
6948 | frag_now->tc_frag_data.is_insn = TRUE; | |
6949 | frag_var (rs_machine_dependent, 12, 12, | |
6950 | RELAX_ADD_NOP_IF_CLOSE_LOOP_END, | |
6951 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6952 | } | |
6953 | } | |
6954 | ||
6955 | if (use_transform ()) | |
6956 | { | |
6957 | if (is_jump) | |
6958 | { | |
6959 | assert (finish_frag); | |
6960 | frag_var (rs_machine_dependent, | |
6961 | UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH, | |
6962 | RELAX_UNREACHABLE, | |
6963 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6964 | xtensa_set_frag_assembly_state (frag_now); | |
6965 | } | |
7b1cc377 | 6966 | else if (is_branch && do_align_targets ()) |
43cd72b9 BW |
6967 | { |
6968 | assert (finish_frag); | |
6969 | frag_var (rs_machine_dependent, | |
6970 | UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH, | |
6971 | RELAX_MAYBE_UNREACHABLE, | |
6972 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6973 | xtensa_set_frag_assembly_state (frag_now); | |
6974 | frag_var (rs_machine_dependent, | |
6975 | 0, 0, | |
6976 | RELAX_MAYBE_DESIRE_ALIGN, | |
6977 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6978 | xtensa_set_frag_assembly_state (frag_now); | |
6979 | } | |
6980 | } | |
6981 | ||
6982 | /* Now, if the original opcode was a call... */ | |
6983 | if (do_align_targets () | |
6984 | && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1) | |
6985 | { | |
b08b5071 | 6986 | float freq = get_subseg_total_freq (now_seg, now_subseg); |
43cd72b9 BW |
6987 | frag_now->tc_frag_data.is_insn = TRUE; |
6988 | frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN, | |
6989 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6990 | xtensa_set_frag_assembly_state (frag_now); | |
6991 | } | |
6992 | ||
6993 | if (vinsn_has_specific_opcodes (vinsn) && use_transform ()) | |
6994 | { | |
6995 | frag_wane (frag_now); | |
6996 | frag_new (0); | |
6997 | xtensa_set_frag_assembly_state (frag_now); | |
6998 | } | |
6999 | } | |
7000 | ||
7001 | \f | |
7fa3d080 BW |
7002 | /* xtensa_end and helper functions. */ |
7003 | ||
7004 | static void xtensa_cleanup_align_frags (void); | |
7005 | static void xtensa_fix_target_frags (void); | |
7006 | static void xtensa_mark_narrow_branches (void); | |
7007 | static void xtensa_mark_zcl_first_insns (void); | |
6a7eedfe | 7008 | static void xtensa_mark_difference_of_two_symbols (void); |
7fa3d080 BW |
7009 | static void xtensa_fix_a0_b_retw_frags (void); |
7010 | static void xtensa_fix_b_j_loop_end_frags (void); | |
7011 | static void xtensa_fix_close_loop_end_frags (void); | |
7012 | static void xtensa_fix_short_loop_frags (void); | |
7013 | static void xtensa_sanity_check (void); | |
2caa7ca0 | 7014 | static void xtensa_add_config_info (void); |
7fa3d080 | 7015 | |
43cd72b9 | 7016 | void |
7fa3d080 | 7017 | xtensa_end (void) |
43cd72b9 BW |
7018 | { |
7019 | directive_balance (); | |
7020 | xtensa_flush_pending_output (); | |
7021 | ||
7022 | past_xtensa_end = TRUE; | |
7023 | ||
7024 | xtensa_move_literals (); | |
7025 | ||
7026 | xtensa_reorder_segments (); | |
7027 | xtensa_cleanup_align_frags (); | |
7028 | xtensa_fix_target_frags (); | |
7029 | if (workaround_a0_b_retw && has_a0_b_retw) | |
7030 | xtensa_fix_a0_b_retw_frags (); | |
7031 | if (workaround_b_j_loop_end) | |
7032 | xtensa_fix_b_j_loop_end_frags (); | |
7033 | ||
7034 | /* "close_loop_end" should be processed BEFORE "short_loop". */ | |
7035 | if (workaround_close_loop_end && maybe_has_close_loop_end) | |
7036 | xtensa_fix_close_loop_end_frags (); | |
7037 | ||
7038 | if (workaround_short_loop && maybe_has_short_loop) | |
7039 | xtensa_fix_short_loop_frags (); | |
03aaa593 BW |
7040 | if (align_targets) |
7041 | xtensa_mark_narrow_branches (); | |
43cd72b9 BW |
7042 | xtensa_mark_zcl_first_insns (); |
7043 | ||
7044 | xtensa_sanity_check (); | |
2caa7ca0 BW |
7045 | |
7046 | xtensa_add_config_info (); | |
43cd72b9 BW |
7047 | } |
7048 | ||
7049 | ||
7050 | static void | |
7fa3d080 | 7051 | xtensa_cleanup_align_frags (void) |
43cd72b9 BW |
7052 | { |
7053 | frchainS *frchP; | |
c9049d30 | 7054 | asection *s; |
43cd72b9 | 7055 | |
c9049d30 AM |
7056 | for (s = stdoutput->sections; s; s = s->next) |
7057 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7058 | { | |
7059 | fragS *fragP; | |
7060 | /* Walk over all of the fragments in a subsection. */ | |
7061 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7062 | { | |
7063 | if ((fragP->fr_type == rs_align | |
7064 | || fragP->fr_type == rs_align_code | |
7065 | || (fragP->fr_type == rs_machine_dependent | |
7066 | && (fragP->fr_subtype == RELAX_DESIRE_ALIGN | |
7067 | || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET))) | |
7068 | && fragP->fr_fix == 0) | |
7069 | { | |
7070 | fragS *next = fragP->fr_next; | |
7071 | ||
7072 | while (next | |
7073 | && next->fr_fix == 0 | |
7074 | && next->fr_type == rs_machine_dependent | |
7075 | && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET) | |
7076 | { | |
7077 | frag_wane (next); | |
7078 | next = next->fr_next; | |
7079 | } | |
7080 | } | |
7081 | /* If we don't widen branch targets, then they | |
7082 | will be easier to align. */ | |
7083 | if (fragP->tc_frag_data.is_branch_target | |
7084 | && fragP->fr_opcode == fragP->fr_literal | |
7085 | && fragP->fr_type == rs_machine_dependent | |
7086 | && fragP->fr_subtype == RELAX_SLOTS | |
7087 | && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW) | |
7088 | frag_wane (fragP); | |
7089 | if (fragP->fr_type == rs_machine_dependent | |
7090 | && fragP->fr_subtype == RELAX_UNREACHABLE) | |
7091 | fragP->tc_frag_data.is_unreachable = TRUE; | |
7092 | } | |
7093 | } | |
43cd72b9 BW |
7094 | } |
7095 | ||
7096 | ||
7097 | /* Re-process all of the fragments looking to convert all of the | |
7098 | RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch | |
7099 | target in the next fragment, convert this to RELAX_DESIRE_ALIGN. | |
7b1cc377 | 7100 | Otherwise, convert to a .fill 0. */ |
7fa3d080 | 7101 | |
43cd72b9 | 7102 | static void |
7fa3d080 | 7103 | xtensa_fix_target_frags (void) |
e0001a05 NC |
7104 | { |
7105 | frchainS *frchP; | |
c9049d30 | 7106 | asection *s; |
e0001a05 NC |
7107 | |
7108 | /* When this routine is called, all of the subsections are still intact | |
7109 | so we walk over subsections instead of sections. */ | |
c9049d30 AM |
7110 | for (s = stdoutput->sections; s; s = s->next) |
7111 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7112 | { | |
7113 | fragS *fragP; | |
e0001a05 | 7114 | |
c9049d30 AM |
7115 | /* Walk over all of the fragments in a subsection. */ |
7116 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7117 | { | |
7118 | if (fragP->fr_type == rs_machine_dependent | |
7119 | && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET) | |
7120 | { | |
7121 | if (next_frag_is_branch_target (fragP)) | |
7122 | fragP->fr_subtype = RELAX_DESIRE_ALIGN; | |
7123 | else | |
7124 | frag_wane (fragP); | |
7125 | } | |
7126 | } | |
7127 | } | |
e0001a05 NC |
7128 | } |
7129 | ||
7130 | ||
7fa3d080 BW |
7131 | static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *); |
7132 | ||
43cd72b9 | 7133 | static void |
7fa3d080 | 7134 | xtensa_mark_narrow_branches (void) |
43cd72b9 BW |
7135 | { |
7136 | frchainS *frchP; | |
c9049d30 | 7137 | asection *s; |
43cd72b9 | 7138 | |
c9049d30 AM |
7139 | for (s = stdoutput->sections; s; s = s->next) |
7140 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7141 | { | |
7142 | fragS *fragP; | |
7143 | /* Walk over all of the fragments in a subsection. */ | |
7144 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7145 | { | |
7146 | if (fragP->fr_type == rs_machine_dependent | |
7147 | && fragP->fr_subtype == RELAX_SLOTS | |
7148 | && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED) | |
7149 | { | |
7150 | vliw_insn vinsn; | |
7151 | ||
7152 | vinsn_from_chars (&vinsn, fragP->fr_opcode); | |
7153 | tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0); | |
7154 | ||
7155 | if (vinsn.num_slots == 1 | |
7156 | && xtensa_opcode_is_branch (xtensa_default_isa, | |
64b607e6 | 7157 | vinsn.slots[0].opcode) == 1 |
c9049d30 AM |
7158 | && xg_get_single_size (vinsn.slots[0].opcode) == 2 |
7159 | && is_narrow_branch_guaranteed_in_range (fragP, | |
7160 | &vinsn.slots[0])) | |
7161 | { | |
7162 | fragP->fr_subtype = RELAX_SLOTS; | |
7163 | fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW; | |
7164 | fragP->tc_frag_data.is_aligning_branch = 1; | |
7165 | } | |
7166 | } | |
7167 | } | |
7168 | } | |
43cd72b9 BW |
7169 | } |
7170 | ||
7171 | ||
7172 | /* A branch is typically widened only when its target is out of | |
7173 | range. However, we would like to widen them to align a subsequent | |
7174 | branch target when possible. | |
7175 | ||
7176 | Because the branch relaxation code is so convoluted, the optimal solution | |
7177 | (combining the two cases) is difficult to get right in all circumstances. | |
7178 | We therefore go with an "almost as good" solution, where we only | |
7179 | use for alignment narrow branches that definitely will not expand to a | |
7180 | jump and a branch. These functions find and mark these cases. */ | |
7181 | ||
a67517f4 BW |
7182 | /* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded |
7183 | as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63. | |
7184 | We start counting beginning with the frag after the 2-byte branch, so the | |
7185 | maximum offset is (4 - 2) + 63 = 65. */ | |
7186 | #define MAX_IMMED6 65 | |
43cd72b9 | 7187 | |
d77b99c9 | 7188 | static offsetT unrelaxed_frag_max_size (fragS *); |
7fa3d080 | 7189 | |
43cd72b9 | 7190 | static bfd_boolean |
7fa3d080 | 7191 | is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn) |
43cd72b9 BW |
7192 | { |
7193 | const expressionS *expr = &tinsn->tok[1]; | |
7194 | symbolS *symbolP = expr->X_add_symbol; | |
d77b99c9 | 7195 | offsetT max_distance = expr->X_add_number; |
e7da6241 BW |
7196 | fragS *target_frag; |
7197 | ||
7198 | if (expr->X_op != O_symbol) | |
7199 | return FALSE; | |
7200 | ||
7201 | target_frag = symbol_get_frag (symbolP); | |
7202 | ||
43cd72b9 BW |
7203 | max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address); |
7204 | if (is_branch_jmp_to_next (tinsn, fragP)) | |
7205 | return FALSE; | |
7206 | ||
7207 | /* The branch doesn't branch over it's own frag, | |
7208 | but over the subsequent ones. */ | |
7209 | fragP = fragP->fr_next; | |
7210 | while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6) | |
7211 | { | |
7212 | max_distance += unrelaxed_frag_max_size (fragP); | |
7213 | fragP = fragP->fr_next; | |
7214 | } | |
7215 | if (max_distance <= MAX_IMMED6 && fragP == target_frag) | |
7216 | return TRUE; | |
e0001a05 NC |
7217 | return FALSE; |
7218 | } | |
7219 | ||
7220 | ||
43cd72b9 | 7221 | static void |
7fa3d080 | 7222 | xtensa_mark_zcl_first_insns (void) |
43cd72b9 BW |
7223 | { |
7224 | frchainS *frchP; | |
c9049d30 | 7225 | asection *s; |
43cd72b9 | 7226 | |
c9049d30 AM |
7227 | for (s = stdoutput->sections; s; s = s->next) |
7228 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7229 | { | |
7230 | fragS *fragP; | |
7231 | /* Walk over all of the fragments in a subsection. */ | |
7232 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7233 | { | |
7234 | if (fragP->fr_type == rs_machine_dependent | |
7235 | && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE | |
7236 | || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)) | |
7237 | { | |
7238 | /* Find the loop frag. */ | |
7239 | fragS *targ_frag = next_non_empty_frag (fragP); | |
7240 | /* Find the first insn frag. */ | |
7241 | targ_frag = next_non_empty_frag (targ_frag); | |
7242 | ||
7243 | /* Of course, sometimes (mostly for toy test cases) a | |
7244 | zero-cost loop instruction is the last in a section. */ | |
7245 | if (targ_frag) | |
7246 | { | |
7247 | targ_frag->tc_frag_data.is_first_loop_insn = TRUE; | |
7248 | /* Do not widen a frag that is the first instruction of a | |
7249 | zero-cost loop. It makes that loop harder to align. */ | |
7250 | if (targ_frag->fr_type == rs_machine_dependent | |
7251 | && targ_frag->fr_subtype == RELAX_SLOTS | |
7252 | && (targ_frag->tc_frag_data.slot_subtypes[0] | |
7253 | == RELAX_NARROW)) | |
7254 | { | |
7255 | if (targ_frag->tc_frag_data.is_aligning_branch) | |
7256 | targ_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED; | |
7257 | else | |
7258 | { | |
7259 | frag_wane (targ_frag); | |
7260 | targ_frag->tc_frag_data.slot_subtypes[0] = 0; | |
7261 | } | |
7262 | } | |
7263 | } | |
7264 | if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE) | |
7265 | frag_wane (fragP); | |
7266 | } | |
7267 | } | |
7268 | } | |
43cd72b9 BW |
7269 | } |
7270 | ||
7271 | ||
fb227da0 BW |
7272 | /* When a difference-of-symbols expression is encoded as a uleb128 or |
7273 | sleb128 value, the linker is unable to adjust that value to account for | |
7274 | link-time relaxation. Mark all the code between such symbols so that | |
7275 | its size cannot be changed by linker relaxation. */ | |
7276 | ||
6a7eedfe BW |
7277 | static void |
7278 | xtensa_mark_difference_of_two_symbols (void) | |
7279 | { | |
7280 | symbolS *expr_sym; | |
7281 | ||
7282 | for (expr_sym = expr_symbols; expr_sym; | |
7283 | expr_sym = symbol_get_tc (expr_sym)->next_expr_symbol) | |
7284 | { | |
7285 | expressionS *expr = symbol_get_value_expression (expr_sym); | |
7286 | ||
7287 | if (expr->X_op == O_subtract) | |
7288 | { | |
7289 | symbolS *left = expr->X_add_symbol; | |
7290 | symbolS *right = expr->X_op_symbol; | |
7291 | ||
7292 | /* Difference of two symbols not in the same section | |
7293 | are handled with relocations in the linker. */ | |
7294 | if (S_GET_SEGMENT (left) == S_GET_SEGMENT (right)) | |
7295 | { | |
7296 | fragS *start; | |
7297 | fragS *end; | |
7298 | ||
7299 | if (symbol_get_frag (left)->fr_address | |
7300 | <= symbol_get_frag (right)->fr_address) | |
7301 | { | |
7302 | start = symbol_get_frag (left); | |
7303 | end = symbol_get_frag (right); | |
7304 | } | |
7305 | else | |
7306 | { | |
7307 | start = symbol_get_frag (right); | |
7308 | end = symbol_get_frag (left); | |
7309 | } | |
7310 | do | |
7311 | { | |
7312 | start->tc_frag_data.is_no_transform = 1; | |
7313 | start = start->fr_next; | |
7314 | } | |
7315 | while (start && start->fr_address < end->fr_address); | |
7316 | } | |
7317 | } | |
7318 | } | |
7319 | } | |
7320 | ||
7321 | ||
e0001a05 NC |
7322 | /* Re-process all of the fragments looking to convert all of the |
7323 | RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a | |
7324 | conditional branch or a retw/retw.n, convert this frag to one that | |
7325 | will generate a NOP. In any case close it off with a .fill 0. */ | |
7326 | ||
7fa3d080 BW |
7327 | static bfd_boolean next_instrs_are_b_retw (fragS *); |
7328 | ||
e0001a05 | 7329 | static void |
7fa3d080 | 7330 | xtensa_fix_a0_b_retw_frags (void) |
e0001a05 NC |
7331 | { |
7332 | frchainS *frchP; | |
c9049d30 | 7333 | asection *s; |
e0001a05 NC |
7334 | |
7335 | /* When this routine is called, all of the subsections are still intact | |
7336 | so we walk over subsections instead of sections. */ | |
c9049d30 AM |
7337 | for (s = stdoutput->sections; s; s = s->next) |
7338 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7339 | { | |
7340 | fragS *fragP; | |
e0001a05 | 7341 | |
c9049d30 AM |
7342 | /* Walk over all of the fragments in a subsection. */ |
7343 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7344 | { | |
7345 | if (fragP->fr_type == rs_machine_dependent | |
7346 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW) | |
7347 | { | |
7348 | if (next_instrs_are_b_retw (fragP)) | |
7349 | { | |
7350 | if (fragP->tc_frag_data.is_no_transform) | |
7351 | as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata")); | |
7352 | else | |
7353 | relax_frag_add_nop (fragP); | |
7354 | } | |
7355 | frag_wane (fragP); | |
7356 | } | |
7357 | } | |
7358 | } | |
e0001a05 NC |
7359 | } |
7360 | ||
7361 | ||
7fa3d080 BW |
7362 | static bfd_boolean |
7363 | next_instrs_are_b_retw (fragS *fragP) | |
e0001a05 NC |
7364 | { |
7365 | xtensa_opcode opcode; | |
43cd72b9 | 7366 | xtensa_format fmt; |
e0001a05 NC |
7367 | const fragS *next_fragP = next_non_empty_frag (fragP); |
7368 | static xtensa_insnbuf insnbuf = NULL; | |
43cd72b9 | 7369 | static xtensa_insnbuf slotbuf = NULL; |
e0001a05 NC |
7370 | xtensa_isa isa = xtensa_default_isa; |
7371 | int offset = 0; | |
43cd72b9 BW |
7372 | int slot; |
7373 | bfd_boolean branch_seen = FALSE; | |
e0001a05 NC |
7374 | |
7375 | if (!insnbuf) | |
43cd72b9 BW |
7376 | { |
7377 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7378 | slotbuf = xtensa_insnbuf_alloc (isa); | |
7379 | } | |
e0001a05 NC |
7380 | |
7381 | if (next_fragP == NULL) | |
7382 | return FALSE; | |
7383 | ||
7384 | /* Check for the conditional branch. */ | |
d77b99c9 BW |
7385 | xtensa_insnbuf_from_chars |
7386 | (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0); | |
43cd72b9 BW |
7387 | fmt = xtensa_format_decode (isa, insnbuf); |
7388 | if (fmt == XTENSA_UNDEFINED) | |
7389 | return FALSE; | |
7390 | ||
7391 | for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++) | |
7392 | { | |
7393 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); | |
7394 | opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
7395 | ||
7396 | branch_seen = (branch_seen | |
7397 | || xtensa_opcode_is_branch (isa, opcode) == 1); | |
7398 | } | |
e0001a05 | 7399 | |
43cd72b9 | 7400 | if (!branch_seen) |
e0001a05 NC |
7401 | return FALSE; |
7402 | ||
43cd72b9 | 7403 | offset += xtensa_format_length (isa, fmt); |
e0001a05 NC |
7404 | if (offset == next_fragP->fr_fix) |
7405 | { | |
7406 | next_fragP = next_non_empty_frag (next_fragP); | |
7407 | offset = 0; | |
7408 | } | |
43cd72b9 | 7409 | |
e0001a05 NC |
7410 | if (next_fragP == NULL) |
7411 | return FALSE; | |
7412 | ||
7413 | /* Check for the retw/retw.n. */ | |
d77b99c9 BW |
7414 | xtensa_insnbuf_from_chars |
7415 | (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0); | |
43cd72b9 BW |
7416 | fmt = xtensa_format_decode (isa, insnbuf); |
7417 | ||
7418 | /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we | |
7419 | have no problems. */ | |
7420 | if (fmt == XTENSA_UNDEFINED | |
7421 | || xtensa_format_num_slots (isa, fmt) != 1) | |
7422 | return FALSE; | |
7423 | ||
7424 | xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf); | |
7425 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
e0001a05 | 7426 | |
b08b5071 | 7427 | if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode) |
e0001a05 | 7428 | return TRUE; |
43cd72b9 | 7429 | |
e0001a05 NC |
7430 | return FALSE; |
7431 | } | |
7432 | ||
7433 | ||
7434 | /* Re-process all of the fragments looking to convert all of the | |
7435 | RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a | |
7436 | loop end label, convert this frag to one that will generate a NOP. | |
7437 | In any case close it off with a .fill 0. */ | |
7438 | ||
7fa3d080 BW |
7439 | static bfd_boolean next_instr_is_loop_end (fragS *); |
7440 | ||
e0001a05 | 7441 | static void |
7fa3d080 | 7442 | xtensa_fix_b_j_loop_end_frags (void) |
e0001a05 NC |
7443 | { |
7444 | frchainS *frchP; | |
c9049d30 | 7445 | asection *s; |
e0001a05 NC |
7446 | |
7447 | /* When this routine is called, all of the subsections are still intact | |
7448 | so we walk over subsections instead of sections. */ | |
c9049d30 AM |
7449 | for (s = stdoutput->sections; s; s = s->next) |
7450 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7451 | { | |
7452 | fragS *fragP; | |
e0001a05 | 7453 | |
c9049d30 AM |
7454 | /* Walk over all of the fragments in a subsection. */ |
7455 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7456 | { | |
7457 | if (fragP->fr_type == rs_machine_dependent | |
7458 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END) | |
7459 | { | |
7460 | if (next_instr_is_loop_end (fragP)) | |
7461 | { | |
7462 | if (fragP->tc_frag_data.is_no_transform) | |
7463 | as_bad (_("branching or jumping to a loop end may trigger hardware errata")); | |
7464 | else | |
7465 | relax_frag_add_nop (fragP); | |
7466 | } | |
7467 | frag_wane (fragP); | |
7468 | } | |
7469 | } | |
7470 | } | |
e0001a05 NC |
7471 | } |
7472 | ||
7473 | ||
7fa3d080 BW |
7474 | static bfd_boolean |
7475 | next_instr_is_loop_end (fragS *fragP) | |
e0001a05 NC |
7476 | { |
7477 | const fragS *next_fragP; | |
7478 | ||
7479 | if (next_frag_is_loop_target (fragP)) | |
7480 | return FALSE; | |
7481 | ||
7482 | next_fragP = next_non_empty_frag (fragP); | |
7483 | if (next_fragP == NULL) | |
7484 | return FALSE; | |
7485 | ||
7486 | if (!next_frag_is_loop_target (next_fragP)) | |
7487 | return FALSE; | |
7488 | ||
7489 | /* If the size is >= 3 then there is more than one instruction here. | |
7490 | The hardware bug will not fire. */ | |
7491 | if (next_fragP->fr_fix > 3) | |
7492 | return FALSE; | |
7493 | ||
7494 | return TRUE; | |
7495 | } | |
7496 | ||
7497 | ||
7498 | /* Re-process all of the fragments looking to convert all of the | |
7499 | RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is | |
7500 | not MY loop's loop end within 12 bytes, add enough nops here to | |
7501 | make it at least 12 bytes away. In any case close it off with a | |
7502 | .fill 0. */ | |
7503 | ||
d77b99c9 | 7504 | static offsetT min_bytes_to_other_loop_end |
05d58145 | 7505 | (fragS *, fragS *, offsetT); |
7fa3d080 | 7506 | |
e0001a05 | 7507 | static void |
7fa3d080 | 7508 | xtensa_fix_close_loop_end_frags (void) |
e0001a05 NC |
7509 | { |
7510 | frchainS *frchP; | |
c9049d30 | 7511 | asection *s; |
e0001a05 NC |
7512 | |
7513 | /* When this routine is called, all of the subsections are still intact | |
7514 | so we walk over subsections instead of sections. */ | |
c9049d30 AM |
7515 | for (s = stdoutput->sections; s; s = s->next) |
7516 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7517 | { | |
7518 | fragS *fragP; | |
e0001a05 | 7519 | |
c9049d30 | 7520 | fragS *current_target = NULL; |
e0001a05 | 7521 | |
c9049d30 AM |
7522 | /* Walk over all of the fragments in a subsection. */ |
7523 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7524 | { | |
7525 | if (fragP->fr_type == rs_machine_dependent | |
7526 | && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE) | |
7527 | || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))) | |
05d58145 | 7528 | current_target = symbol_get_frag (fragP->fr_symbol); |
e0001a05 | 7529 | |
c9049d30 AM |
7530 | if (current_target |
7531 | && fragP->fr_type == rs_machine_dependent | |
7532 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END) | |
7533 | { | |
7534 | offsetT min_bytes; | |
7535 | int bytes_added = 0; | |
e0001a05 NC |
7536 | |
7537 | #define REQUIRED_LOOP_DIVIDING_BYTES 12 | |
c9049d30 AM |
7538 | /* Max out at 12. */ |
7539 | min_bytes = min_bytes_to_other_loop_end | |
7540 | (fragP->fr_next, current_target, REQUIRED_LOOP_DIVIDING_BYTES); | |
7541 | ||
7542 | if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES) | |
7543 | { | |
7544 | if (fragP->tc_frag_data.is_no_transform) | |
7545 | as_bad (_("loop end too close to another loop end may trigger hardware errata")); | |
7546 | else | |
7547 | { | |
7548 | while (min_bytes + bytes_added | |
7549 | < REQUIRED_LOOP_DIVIDING_BYTES) | |
7550 | { | |
7551 | int length = 3; | |
7552 | ||
7553 | if (fragP->fr_var < length) | |
7554 | as_fatal (_("fr_var %lu < length %d"), | |
7555 | (long) fragP->fr_var, length); | |
7556 | else | |
7557 | { | |
7558 | assemble_nop (length, | |
7559 | fragP->fr_literal + fragP->fr_fix); | |
7560 | fragP->fr_fix += length; | |
7561 | fragP->fr_var -= length; | |
7562 | } | |
7563 | bytes_added += length; | |
7564 | } | |
7565 | } | |
7566 | } | |
7567 | frag_wane (fragP); | |
7568 | } | |
7569 | assert (fragP->fr_type != rs_machine_dependent | |
7570 | || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END); | |
7571 | } | |
7572 | } | |
e0001a05 NC |
7573 | } |
7574 | ||
7575 | ||
d77b99c9 | 7576 | static offsetT unrelaxed_frag_min_size (fragS *); |
7fa3d080 | 7577 | |
d77b99c9 | 7578 | static offsetT |
7fa3d080 BW |
7579 | min_bytes_to_other_loop_end (fragS *fragP, |
7580 | fragS *current_target, | |
d77b99c9 | 7581 | offsetT max_size) |
e0001a05 | 7582 | { |
d77b99c9 | 7583 | offsetT offset = 0; |
e0001a05 NC |
7584 | fragS *current_fragP; |
7585 | ||
7586 | for (current_fragP = fragP; | |
7587 | current_fragP; | |
7588 | current_fragP = current_fragP->fr_next) | |
7589 | { | |
7590 | if (current_fragP->tc_frag_data.is_loop_target | |
7591 | && current_fragP != current_target) | |
05d58145 | 7592 | return offset; |
e0001a05 NC |
7593 | |
7594 | offset += unrelaxed_frag_min_size (current_fragP); | |
7595 | ||
05d58145 | 7596 | if (offset >= max_size) |
e0001a05 NC |
7597 | return max_size; |
7598 | } | |
7599 | return max_size; | |
7600 | } | |
7601 | ||
7602 | ||
d77b99c9 | 7603 | static offsetT |
7fa3d080 | 7604 | unrelaxed_frag_min_size (fragS *fragP) |
e0001a05 | 7605 | { |
d77b99c9 | 7606 | offsetT size = fragP->fr_fix; |
e0001a05 | 7607 | |
d77b99c9 | 7608 | /* Add fill size. */ |
e0001a05 NC |
7609 | if (fragP->fr_type == rs_fill) |
7610 | size += fragP->fr_offset; | |
7611 | ||
7612 | return size; | |
7613 | } | |
7614 | ||
7615 | ||
d77b99c9 | 7616 | static offsetT |
7fa3d080 | 7617 | unrelaxed_frag_max_size (fragS *fragP) |
43cd72b9 | 7618 | { |
d77b99c9 | 7619 | offsetT size = fragP->fr_fix; |
43cd72b9 BW |
7620 | switch (fragP->fr_type) |
7621 | { | |
7622 | case 0: | |
c138bc38 | 7623 | /* Empty frags created by the obstack allocation scheme |
43cd72b9 BW |
7624 | end up with type 0. */ |
7625 | break; | |
7626 | case rs_fill: | |
7627 | case rs_org: | |
7628 | case rs_space: | |
7629 | size += fragP->fr_offset; | |
7630 | break; | |
7631 | case rs_align: | |
7632 | case rs_align_code: | |
7633 | case rs_align_test: | |
7634 | case rs_leb128: | |
7635 | case rs_cfa: | |
7636 | case rs_dwarf2dbg: | |
7637 | /* No further adjustments needed. */ | |
7638 | break; | |
7639 | case rs_machine_dependent: | |
7640 | if (fragP->fr_subtype != RELAX_DESIRE_ALIGN) | |
7641 | size += fragP->fr_var; | |
7642 | break; | |
7643 | default: | |
7644 | /* We had darn well better know how big it is. */ | |
7645 | assert (0); | |
7646 | break; | |
7647 | } | |
7648 | ||
7649 | return size; | |
7650 | } | |
7651 | ||
7652 | ||
e0001a05 NC |
7653 | /* Re-process all of the fragments looking to convert all |
7654 | of the RELAX_ADD_NOP_IF_SHORT_LOOP. If: | |
7655 | ||
7656 | A) | |
7657 | 1) the instruction size count to the loop end label | |
7658 | is too short (<= 2 instructions), | |
7659 | 2) loop has a jump or branch in it | |
7660 | ||
7661 | or B) | |
43cd72b9 | 7662 | 1) workaround_all_short_loops is TRUE |
e0001a05 NC |
7663 | 2) The generating loop was a 'loopgtz' or 'loopnez' |
7664 | 3) the instruction size count to the loop end label is too short | |
7665 | (<= 2 instructions) | |
7666 | then convert this frag (and maybe the next one) to generate a NOP. | |
7667 | In any case close it off with a .fill 0. */ | |
7668 | ||
d77b99c9 | 7669 | static int count_insns_to_loop_end (fragS *, bfd_boolean, int); |
7fa3d080 BW |
7670 | static bfd_boolean branch_before_loop_end (fragS *); |
7671 | ||
e0001a05 | 7672 | static void |
7fa3d080 | 7673 | xtensa_fix_short_loop_frags (void) |
e0001a05 NC |
7674 | { |
7675 | frchainS *frchP; | |
c9049d30 | 7676 | asection *s; |
e0001a05 NC |
7677 | |
7678 | /* When this routine is called, all of the subsections are still intact | |
7679 | so we walk over subsections instead of sections. */ | |
c9049d30 AM |
7680 | for (s = stdoutput->sections; s; s = s->next) |
7681 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7682 | { | |
7683 | fragS *fragP; | |
7684 | fragS *current_target = NULL; | |
7685 | xtensa_opcode current_opcode = XTENSA_UNDEFINED; | |
e0001a05 | 7686 | |
c9049d30 AM |
7687 | /* Walk over all of the fragments in a subsection. */ |
7688 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7689 | { | |
7690 | if (fragP->fr_type == rs_machine_dependent | |
7691 | && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE) | |
7692 | || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))) | |
7693 | { | |
7694 | TInsn t_insn; | |
7695 | fragS *loop_frag = next_non_empty_frag (fragP); | |
7696 | tinsn_from_chars (&t_insn, loop_frag->fr_opcode, 0); | |
7697 | current_target = symbol_get_frag (fragP->fr_symbol); | |
7698 | current_opcode = t_insn.opcode; | |
7699 | assert (xtensa_opcode_is_loop (xtensa_default_isa, | |
64b607e6 | 7700 | current_opcode) == 1); |
c9049d30 | 7701 | } |
e0001a05 | 7702 | |
c9049d30 AM |
7703 | if (fragP->fr_type == rs_machine_dependent |
7704 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP) | |
7705 | { | |
7706 | if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3 | |
7707 | && (branch_before_loop_end (fragP->fr_next) | |
7708 | || (workaround_all_short_loops | |
7709 | && current_opcode != XTENSA_UNDEFINED | |
7710 | && current_opcode != xtensa_loop_opcode))) | |
7711 | { | |
7712 | if (fragP->tc_frag_data.is_no_transform) | |
7713 | as_bad (_("loop containing less than three instructions may trigger hardware errata")); | |
7714 | else | |
7715 | relax_frag_add_nop (fragP); | |
7716 | } | |
7717 | frag_wane (fragP); | |
7718 | } | |
7719 | } | |
7720 | } | |
e0001a05 NC |
7721 | } |
7722 | ||
7723 | ||
d77b99c9 | 7724 | static int unrelaxed_frag_min_insn_count (fragS *); |
7fa3d080 | 7725 | |
d77b99c9 | 7726 | static int |
7fa3d080 BW |
7727 | count_insns_to_loop_end (fragS *base_fragP, |
7728 | bfd_boolean count_relax_add, | |
d77b99c9 | 7729 | int max_count) |
e0001a05 NC |
7730 | { |
7731 | fragS *fragP = NULL; | |
d77b99c9 | 7732 | int insn_count = 0; |
e0001a05 NC |
7733 | |
7734 | fragP = base_fragP; | |
7735 | ||
7736 | for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next) | |
7737 | { | |
7738 | insn_count += unrelaxed_frag_min_insn_count (fragP); | |
7739 | if (insn_count >= max_count) | |
7740 | return max_count; | |
7741 | ||
7742 | if (count_relax_add) | |
7743 | { | |
7744 | if (fragP->fr_type == rs_machine_dependent | |
7745 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP) | |
7746 | { | |
7747 | /* In order to add the appropriate number of | |
7748 | NOPs, we count an instruction for downstream | |
7749 | occurrences. */ | |
7750 | insn_count++; | |
7751 | if (insn_count >= max_count) | |
7752 | return max_count; | |
7753 | } | |
7754 | } | |
7755 | } | |
7756 | return insn_count; | |
7757 | } | |
7758 | ||
7759 | ||
d77b99c9 | 7760 | static int |
7fa3d080 | 7761 | unrelaxed_frag_min_insn_count (fragS *fragP) |
e0001a05 | 7762 | { |
43cd72b9 BW |
7763 | xtensa_isa isa = xtensa_default_isa; |
7764 | static xtensa_insnbuf insnbuf = NULL; | |
d77b99c9 | 7765 | int insn_count = 0; |
e0001a05 NC |
7766 | int offset = 0; |
7767 | ||
7768 | if (!fragP->tc_frag_data.is_insn) | |
7769 | return insn_count; | |
7770 | ||
43cd72b9 BW |
7771 | if (!insnbuf) |
7772 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7773 | ||
e0001a05 NC |
7774 | /* Decode the fixed instructions. */ |
7775 | while (offset < fragP->fr_fix) | |
7776 | { | |
43cd72b9 BW |
7777 | xtensa_format fmt; |
7778 | ||
d77b99c9 BW |
7779 | xtensa_insnbuf_from_chars |
7780 | (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0); | |
43cd72b9 BW |
7781 | fmt = xtensa_format_decode (isa, insnbuf); |
7782 | ||
7783 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 NC |
7784 | { |
7785 | as_fatal (_("undecodable instruction in instruction frag")); | |
7786 | return insn_count; | |
7787 | } | |
43cd72b9 | 7788 | offset += xtensa_format_length (isa, fmt); |
e0001a05 NC |
7789 | insn_count++; |
7790 | } | |
7791 | ||
7792 | return insn_count; | |
7793 | } | |
7794 | ||
7795 | ||
7fa3d080 BW |
7796 | static bfd_boolean unrelaxed_frag_has_b_j (fragS *); |
7797 | ||
43cd72b9 | 7798 | static bfd_boolean |
7fa3d080 | 7799 | branch_before_loop_end (fragS *base_fragP) |
e0001a05 NC |
7800 | { |
7801 | fragS *fragP; | |
7802 | ||
7803 | for (fragP = base_fragP; | |
7804 | fragP && !fragP->tc_frag_data.is_loop_target; | |
7805 | fragP = fragP->fr_next) | |
7806 | { | |
7807 | if (unrelaxed_frag_has_b_j (fragP)) | |
7808 | return TRUE; | |
7809 | } | |
7810 | return FALSE; | |
7811 | } | |
7812 | ||
7813 | ||
43cd72b9 | 7814 | static bfd_boolean |
7fa3d080 | 7815 | unrelaxed_frag_has_b_j (fragS *fragP) |
e0001a05 | 7816 | { |
43cd72b9 BW |
7817 | static xtensa_insnbuf insnbuf = NULL; |
7818 | xtensa_isa isa = xtensa_default_isa; | |
e0001a05 NC |
7819 | int offset = 0; |
7820 | ||
7821 | if (!fragP->tc_frag_data.is_insn) | |
7822 | return FALSE; | |
7823 | ||
43cd72b9 BW |
7824 | if (!insnbuf) |
7825 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7826 | ||
e0001a05 NC |
7827 | /* Decode the fixed instructions. */ |
7828 | while (offset < fragP->fr_fix) | |
7829 | { | |
43cd72b9 BW |
7830 | xtensa_format fmt; |
7831 | int slot; | |
7832 | ||
d77b99c9 BW |
7833 | xtensa_insnbuf_from_chars |
7834 | (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0); | |
43cd72b9 BW |
7835 | fmt = xtensa_format_decode (isa, insnbuf); |
7836 | if (fmt == XTENSA_UNDEFINED) | |
7837 | return FALSE; | |
7838 | ||
7839 | for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++) | |
e0001a05 | 7840 | { |
43cd72b9 BW |
7841 | xtensa_opcode opcode = |
7842 | get_opcode_from_buf (fragP->fr_literal + offset, slot); | |
7843 | if (xtensa_opcode_is_branch (isa, opcode) == 1 | |
7844 | || xtensa_opcode_is_jump (isa, opcode) == 1) | |
7845 | return TRUE; | |
e0001a05 | 7846 | } |
43cd72b9 | 7847 | offset += xtensa_format_length (isa, fmt); |
e0001a05 NC |
7848 | } |
7849 | return FALSE; | |
7850 | } | |
7851 | ||
7852 | ||
7853 | /* Checks to be made after initial assembly but before relaxation. */ | |
7854 | ||
7fa3d080 BW |
7855 | static bfd_boolean is_empty_loop (const TInsn *, fragS *); |
7856 | static bfd_boolean is_local_forward_loop (const TInsn *, fragS *); | |
7857 | ||
e0001a05 | 7858 | static void |
7fa3d080 | 7859 | xtensa_sanity_check (void) |
e0001a05 NC |
7860 | { |
7861 | char *file_name; | |
d77b99c9 | 7862 | unsigned line; |
e0001a05 | 7863 | frchainS *frchP; |
c9049d30 | 7864 | asection *s; |
e0001a05 NC |
7865 | |
7866 | as_where (&file_name, &line); | |
c9049d30 AM |
7867 | for (s = stdoutput->sections; s; s = s->next) |
7868 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7869 | { | |
7870 | fragS *fragP; | |
e0001a05 | 7871 | |
c9049d30 AM |
7872 | /* Walk over all of the fragments in a subsection. */ |
7873 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7874 | { | |
c9049d30 | 7875 | if (fragP->fr_type == rs_machine_dependent |
a7284bf1 BW |
7876 | && fragP->fr_subtype == RELAX_SLOTS |
7877 | && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED) | |
c9049d30 AM |
7878 | { |
7879 | static xtensa_insnbuf insnbuf = NULL; | |
7880 | TInsn t_insn; | |
7881 | ||
7882 | if (fragP->fr_opcode != NULL) | |
7883 | { | |
7884 | if (!insnbuf) | |
7885 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
7886 | tinsn_from_chars (&t_insn, fragP->fr_opcode, 0); | |
7887 | tinsn_immed_from_frag (&t_insn, fragP, 0); | |
7888 | ||
7889 | if (xtensa_opcode_is_loop (xtensa_default_isa, | |
7890 | t_insn.opcode) == 1) | |
7891 | { | |
7892 | if (is_empty_loop (&t_insn, fragP)) | |
7893 | { | |
7894 | new_logical_line (fragP->fr_file, fragP->fr_line); | |
7895 | as_bad (_("invalid empty loop")); | |
7896 | } | |
7897 | if (!is_local_forward_loop (&t_insn, fragP)) | |
7898 | { | |
7899 | new_logical_line (fragP->fr_file, fragP->fr_line); | |
7900 | as_bad (_("loop target does not follow " | |
7901 | "loop instruction in section")); | |
7902 | } | |
7903 | } | |
7904 | } | |
7905 | } | |
7906 | } | |
7907 | } | |
e0001a05 NC |
7908 | new_logical_line (file_name, line); |
7909 | } | |
7910 | ||
7911 | ||
7912 | #define LOOP_IMMED_OPN 1 | |
7913 | ||
43cd72b9 | 7914 | /* Return TRUE if the loop target is the next non-zero fragment. */ |
e0001a05 | 7915 | |
7fa3d080 BW |
7916 | static bfd_boolean |
7917 | is_empty_loop (const TInsn *insn, fragS *fragP) | |
e0001a05 NC |
7918 | { |
7919 | const expressionS *expr; | |
7920 | symbolS *symbolP; | |
7921 | fragS *next_fragP; | |
7922 | ||
7923 | if (insn->insn_type != ITYPE_INSN) | |
7924 | return FALSE; | |
7925 | ||
43cd72b9 | 7926 | if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1) |
e0001a05 NC |
7927 | return FALSE; |
7928 | ||
7929 | if (insn->ntok <= LOOP_IMMED_OPN) | |
7930 | return FALSE; | |
7931 | ||
7932 | expr = &insn->tok[LOOP_IMMED_OPN]; | |
7933 | ||
7934 | if (expr->X_op != O_symbol) | |
7935 | return FALSE; | |
7936 | ||
7937 | symbolP = expr->X_add_symbol; | |
7938 | if (!symbolP) | |
7939 | return FALSE; | |
7940 | ||
7941 | if (symbol_get_frag (symbolP) == NULL) | |
7942 | return FALSE; | |
7943 | ||
7944 | if (S_GET_VALUE (symbolP) != 0) | |
7945 | return FALSE; | |
7946 | ||
7947 | /* Walk through the zero-size fragments from this one. If we find | |
7948 | the target fragment, then this is a zero-size loop. */ | |
43cd72b9 | 7949 | |
e0001a05 NC |
7950 | for (next_fragP = fragP->fr_next; |
7951 | next_fragP != NULL; | |
7952 | next_fragP = next_fragP->fr_next) | |
7953 | { | |
7954 | if (next_fragP == symbol_get_frag (symbolP)) | |
7955 | return TRUE; | |
7956 | if (next_fragP->fr_fix != 0) | |
7957 | return FALSE; | |
7958 | } | |
7959 | return FALSE; | |
7960 | } | |
7961 | ||
7962 | ||
7fa3d080 BW |
7963 | static bfd_boolean |
7964 | is_local_forward_loop (const TInsn *insn, fragS *fragP) | |
e0001a05 NC |
7965 | { |
7966 | const expressionS *expr; | |
7967 | symbolS *symbolP; | |
7968 | fragS *next_fragP; | |
7969 | ||
7970 | if (insn->insn_type != ITYPE_INSN) | |
7971 | return FALSE; | |
7972 | ||
64b607e6 | 7973 | if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1) |
e0001a05 NC |
7974 | return FALSE; |
7975 | ||
7976 | if (insn->ntok <= LOOP_IMMED_OPN) | |
7977 | return FALSE; | |
7978 | ||
7979 | expr = &insn->tok[LOOP_IMMED_OPN]; | |
7980 | ||
7981 | if (expr->X_op != O_symbol) | |
7982 | return FALSE; | |
7983 | ||
7984 | symbolP = expr->X_add_symbol; | |
7985 | if (!symbolP) | |
7986 | return FALSE; | |
7987 | ||
7988 | if (symbol_get_frag (symbolP) == NULL) | |
7989 | return FALSE; | |
7990 | ||
7991 | /* Walk through fragments until we find the target. | |
7992 | If we do not find the target, then this is an invalid loop. */ | |
43cd72b9 | 7993 | |
e0001a05 NC |
7994 | for (next_fragP = fragP->fr_next; |
7995 | next_fragP != NULL; | |
7996 | next_fragP = next_fragP->fr_next) | |
43cd72b9 BW |
7997 | { |
7998 | if (next_fragP == symbol_get_frag (symbolP)) | |
7999 | return TRUE; | |
8000 | } | |
e0001a05 NC |
8001 | |
8002 | return FALSE; | |
8003 | } | |
8004 | ||
2caa7ca0 BW |
8005 | |
8006 | #define XTINFO_NAME "Xtensa_Info" | |
8007 | #define XTINFO_NAMESZ 12 | |
8008 | #define XTINFO_TYPE 1 | |
8009 | ||
8010 | static void | |
8011 | xtensa_add_config_info (void) | |
8012 | { | |
8013 | asection *info_sec; | |
8014 | char *data, *p; | |
8015 | int sz; | |
8016 | ||
8017 | info_sec = subseg_new (".xtensa.info", 0); | |
8018 | bfd_set_section_flags (stdoutput, info_sec, SEC_HAS_CONTENTS | SEC_READONLY); | |
8019 | ||
8020 | data = xmalloc (100); | |
8021 | sprintf (data, "USE_ABSOLUTE_LITERALS=%d\nABI=%d\n", | |
8022 | XSHAL_USE_ABSOLUTE_LITERALS, XSHAL_ABI); | |
8023 | sz = strlen (data) + 1; | |
8024 | ||
8025 | /* Add enough null terminators to pad to a word boundary. */ | |
8026 | do | |
8027 | data[sz++] = 0; | |
8028 | while ((sz & 3) != 0); | |
8029 | ||
8030 | /* Follow the standard note section layout: | |
8031 | First write the length of the name string. */ | |
8032 | p = frag_more (4); | |
8033 | md_number_to_chars (p, (valueT) XTINFO_NAMESZ, 4); | |
8034 | ||
8035 | /* Next comes the length of the "descriptor", i.e., the actual data. */ | |
8036 | p = frag_more (4); | |
8037 | md_number_to_chars (p, (valueT) sz, 4); | |
8038 | ||
8039 | /* Write the note type. */ | |
8040 | p = frag_more (4); | |
8041 | md_number_to_chars (p, (valueT) XTINFO_TYPE, 4); | |
8042 | ||
8043 | /* Write the name field. */ | |
8044 | p = frag_more (XTINFO_NAMESZ); | |
8045 | memcpy (p, XTINFO_NAME, XTINFO_NAMESZ); | |
8046 | ||
8047 | /* Finally, write the descriptor. */ | |
8048 | p = frag_more (sz); | |
8049 | memcpy (p, data, sz); | |
8050 | ||
8051 | free (data); | |
8052 | } | |
8053 | ||
e0001a05 NC |
8054 | \f |
8055 | /* Alignment Functions. */ | |
8056 | ||
d77b99c9 BW |
8057 | static int |
8058 | get_text_align_power (unsigned target_size) | |
e0001a05 | 8059 | { |
03aaa593 BW |
8060 | if (target_size <= 4) |
8061 | return 2; | |
8062 | assert (target_size == 8); | |
8063 | return 3; | |
e0001a05 NC |
8064 | } |
8065 | ||
8066 | ||
d77b99c9 | 8067 | static int |
7fa3d080 BW |
8068 | get_text_align_max_fill_size (int align_pow, |
8069 | bfd_boolean use_nops, | |
8070 | bfd_boolean use_no_density) | |
e0001a05 NC |
8071 | { |
8072 | if (!use_nops) | |
8073 | return (1 << align_pow); | |
8074 | if (use_no_density) | |
8075 | return 3 * (1 << align_pow); | |
8076 | ||
8077 | return 1 + (1 << align_pow); | |
8078 | } | |
8079 | ||
8080 | ||
d77b99c9 BW |
8081 | /* Calculate the minimum bytes of fill needed at "address" to align a |
8082 | target instruction of size "target_size" so that it does not cross a | |
8083 | power-of-two boundary specified by "align_pow". If "use_nops" is FALSE, | |
8084 | the fill can be an arbitrary number of bytes. Otherwise, the space must | |
8085 | be filled by NOP instructions. */ | |
e0001a05 | 8086 | |
d77b99c9 | 8087 | static int |
7fa3d080 BW |
8088 | get_text_align_fill_size (addressT address, |
8089 | int align_pow, | |
8090 | int target_size, | |
8091 | bfd_boolean use_nops, | |
8092 | bfd_boolean use_no_density) | |
e0001a05 | 8093 | { |
d77b99c9 BW |
8094 | addressT alignment, fill, fill_limit, fill_step; |
8095 | bfd_boolean skip_one = FALSE; | |
e0001a05 | 8096 | |
d77b99c9 BW |
8097 | alignment = (1 << align_pow); |
8098 | assert (target_size > 0 && alignment >= (addressT) target_size); | |
c138bc38 | 8099 | |
e0001a05 NC |
8100 | if (!use_nops) |
8101 | { | |
d77b99c9 BW |
8102 | fill_limit = alignment; |
8103 | fill_step = 1; | |
e0001a05 | 8104 | } |
d77b99c9 | 8105 | else if (!use_no_density) |
e0001a05 | 8106 | { |
d77b99c9 BW |
8107 | /* Combine 2- and 3-byte NOPs to fill anything larger than one. */ |
8108 | fill_limit = alignment * 2; | |
8109 | fill_step = 1; | |
8110 | skip_one = TRUE; | |
e0001a05 NC |
8111 | } |
8112 | else | |
8113 | { | |
d77b99c9 BW |
8114 | /* Fill with 3-byte NOPs -- can only fill multiples of 3. */ |
8115 | fill_limit = alignment * 3; | |
8116 | fill_step = 3; | |
8117 | } | |
e0001a05 | 8118 | |
d77b99c9 BW |
8119 | /* Try all fill sizes until finding one that works. */ |
8120 | for (fill = 0; fill < fill_limit; fill += fill_step) | |
8121 | { | |
8122 | if (skip_one && fill == 1) | |
8123 | continue; | |
8124 | if ((address + fill) >> align_pow | |
8125 | == (address + fill + target_size - 1) >> align_pow) | |
8126 | return fill; | |
e0001a05 NC |
8127 | } |
8128 | assert (0); | |
8129 | return 0; | |
8130 | } | |
8131 | ||
8132 | ||
664df4e4 BW |
8133 | static int |
8134 | branch_align_power (segT sec) | |
8135 | { | |
8136 | /* If the Xtensa processor has a fetch width of 8 bytes, and the section | |
8137 | is aligned to at least an 8-byte boundary, then a branch target need | |
8138 | only fit within an 8-byte aligned block of memory to avoid a stall. | |
8139 | Otherwise, try to fit branch targets within 4-byte aligned blocks | |
8140 | (which may be insufficient, e.g., if the section has no alignment, but | |
8141 | it's good enough). */ | |
8142 | if (xtensa_fetch_width == 8) | |
8143 | { | |
8144 | if (get_recorded_alignment (sec) >= 3) | |
8145 | return 3; | |
8146 | } | |
8147 | else | |
8148 | assert (xtensa_fetch_width == 4); | |
8149 | ||
8150 | return 2; | |
8151 | } | |
8152 | ||
8153 | ||
e0001a05 NC |
8154 | /* This will assert if it is not possible. */ |
8155 | ||
d77b99c9 BW |
8156 | static int |
8157 | get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density) | |
e0001a05 | 8158 | { |
d77b99c9 BW |
8159 | int count = 0; |
8160 | ||
e0001a05 NC |
8161 | if (use_no_density) |
8162 | { | |
8163 | assert (fill_size % 3 == 0); | |
8164 | return (fill_size / 3); | |
8165 | } | |
8166 | ||
8167 | assert (fill_size != 1); /* Bad argument. */ | |
8168 | ||
8169 | while (fill_size > 1) | |
8170 | { | |
d77b99c9 | 8171 | int insn_size = 3; |
e0001a05 NC |
8172 | if (fill_size == 2 || fill_size == 4) |
8173 | insn_size = 2; | |
8174 | fill_size -= insn_size; | |
8175 | count++; | |
8176 | } | |
8177 | assert (fill_size != 1); /* Bad algorithm. */ | |
8178 | return count; | |
8179 | } | |
8180 | ||
8181 | ||
d77b99c9 BW |
8182 | static int |
8183 | get_text_align_nth_nop_size (offsetT fill_size, | |
8184 | int n, | |
7fa3d080 | 8185 | bfd_boolean use_no_density) |
e0001a05 | 8186 | { |
d77b99c9 | 8187 | int count = 0; |
e0001a05 NC |
8188 | |
8189 | if (use_no_density) | |
8190 | return 3; | |
8191 | ||
d77b99c9 BW |
8192 | assert (fill_size != 1); /* Bad argument. */ |
8193 | ||
e0001a05 NC |
8194 | while (fill_size > 1) |
8195 | { | |
d77b99c9 | 8196 | int insn_size = 3; |
e0001a05 NC |
8197 | if (fill_size == 2 || fill_size == 4) |
8198 | insn_size = 2; | |
8199 | fill_size -= insn_size; | |
8200 | count++; | |
8201 | if (n + 1 == count) | |
8202 | return insn_size; | |
8203 | } | |
8204 | assert (0); | |
8205 | return 0; | |
8206 | } | |
8207 | ||
8208 | ||
8209 | /* For the given fragment, find the appropriate address | |
8210 | for it to begin at if we are using NOPs to align it. */ | |
8211 | ||
8212 | static addressT | |
7fa3d080 | 8213 | get_noop_aligned_address (fragS *fragP, addressT address) |
e0001a05 | 8214 | { |
43cd72b9 BW |
8215 | /* The rule is: get next fragment's FIRST instruction. Find |
8216 | the smallest number of bytes that need to be added to | |
8217 | ensure that the next fragment's FIRST instruction will fit | |
8218 | in a single word. | |
c138bc38 | 8219 | |
43cd72b9 BW |
8220 | E.G., 2 bytes : 0, 1, 2 mod 4 |
8221 | 3 bytes: 0, 1 mod 4 | |
c138bc38 | 8222 | |
43cd72b9 BW |
8223 | If the FIRST instruction MIGHT be relaxed, |
8224 | assume that it will become a 3-byte instruction. | |
c138bc38 | 8225 | |
43cd72b9 BW |
8226 | Note again here that LOOP instructions are not bundleable, |
8227 | and this relaxation only applies to LOOP opcodes. */ | |
c138bc38 | 8228 | |
d77b99c9 | 8229 | int fill_size = 0; |
43cd72b9 BW |
8230 | int first_insn_size; |
8231 | int loop_insn_size; | |
8232 | addressT pre_opcode_bytes; | |
d77b99c9 | 8233 | int align_power; |
43cd72b9 BW |
8234 | fragS *first_insn; |
8235 | xtensa_opcode opcode; | |
8236 | bfd_boolean is_loop; | |
e0001a05 | 8237 | |
43cd72b9 BW |
8238 | assert (fragP->fr_type == rs_machine_dependent); |
8239 | assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE); | |
e0001a05 | 8240 | |
43cd72b9 BW |
8241 | /* Find the loop frag. */ |
8242 | first_insn = next_non_empty_frag (fragP); | |
8243 | /* Now find the first insn frag. */ | |
8244 | first_insn = next_non_empty_frag (first_insn); | |
e0001a05 | 8245 | |
43cd72b9 BW |
8246 | is_loop = next_frag_opcode_is_loop (fragP, &opcode); |
8247 | assert (is_loop); | |
8248 | loop_insn_size = xg_get_single_size (opcode); | |
e0001a05 | 8249 | |
43cd72b9 BW |
8250 | pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP); |
8251 | pre_opcode_bytes += loop_insn_size; | |
e0001a05 | 8252 | |
43cd72b9 BW |
8253 | /* For loops, the alignment depends on the size of the |
8254 | instruction following the loop, not the LOOP instruction. */ | |
e0001a05 | 8255 | |
43cd72b9 | 8256 | if (first_insn == NULL) |
03aaa593 BW |
8257 | first_insn_size = xtensa_fetch_width; |
8258 | else | |
8259 | first_insn_size = get_loop_align_size (frag_format_size (first_insn)); | |
e0001a05 | 8260 | |
43cd72b9 | 8261 | /* If it was 8, then we'll need a larger alignment for the section. */ |
d77b99c9 BW |
8262 | align_power = get_text_align_power (first_insn_size); |
8263 | record_alignment (now_seg, align_power); | |
c138bc38 | 8264 | |
43cd72b9 | 8265 | fill_size = get_text_align_fill_size |
d77b99c9 BW |
8266 | (address + pre_opcode_bytes, align_power, first_insn_size, TRUE, |
8267 | fragP->tc_frag_data.is_no_density); | |
e0001a05 NC |
8268 | |
8269 | return address + fill_size; | |
8270 | } | |
8271 | ||
8272 | ||
43cd72b9 BW |
8273 | /* 3 mechanisms for relaxing an alignment: |
8274 | ||
8275 | Align to a power of 2. | |
8276 | Align so the next fragment's instruction does not cross a word boundary. | |
8277 | Align the current instruction so that if the next instruction | |
8278 | were 3 bytes, it would not cross a word boundary. | |
8279 | ||
e0001a05 NC |
8280 | We can align with: |
8281 | ||
43cd72b9 BW |
8282 | zeros - This is easy; always insert zeros. |
8283 | nops - 3-byte and 2-byte instructions | |
8284 | 2 - 2-byte nop | |
8285 | 3 - 3-byte nop | |
8286 | 4 - 2 2-byte nops | |
8287 | >=5 : 3-byte instruction + fn (n-3) | |
e0001a05 NC |
8288 | widening - widen previous instructions. */ |
8289 | ||
d77b99c9 BW |
8290 | static offsetT |
8291 | get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff) | |
e0001a05 | 8292 | { |
43cd72b9 BW |
8293 | addressT target_address, loop_insn_offset; |
8294 | int target_size; | |
8295 | xtensa_opcode loop_opcode; | |
8296 | bfd_boolean is_loop; | |
d77b99c9 BW |
8297 | int align_power; |
8298 | offsetT opt_diff; | |
5f9084e9 | 8299 | offsetT branch_align; |
def13efb | 8300 | fragS *loop_frag; |
e0001a05 | 8301 | |
43cd72b9 BW |
8302 | assert (fragP->fr_type == rs_machine_dependent); |
8303 | switch (fragP->fr_subtype) | |
e0001a05 | 8304 | { |
43cd72b9 BW |
8305 | case RELAX_DESIRE_ALIGN: |
8306 | target_size = next_frag_format_size (fragP); | |
8307 | if (target_size == XTENSA_UNDEFINED) | |
8308 | target_size = 3; | |
664df4e4 BW |
8309 | align_power = branch_align_power (now_seg); |
8310 | branch_align = 1 << align_power; | |
0e5cd789 BW |
8311 | /* Don't count on the section alignment being as large as the target. */ |
8312 | if (target_size > branch_align) | |
8313 | target_size = branch_align; | |
d77b99c9 | 8314 | opt_diff = get_text_align_fill_size (address, align_power, |
43cd72b9 BW |
8315 | target_size, FALSE, FALSE); |
8316 | ||
664df4e4 BW |
8317 | *max_diff = (opt_diff + branch_align |
8318 | - (target_size + ((address + opt_diff) % branch_align))); | |
43cd72b9 BW |
8319 | assert (*max_diff >= opt_diff); |
8320 | return opt_diff; | |
e0001a05 | 8321 | |
43cd72b9 | 8322 | case RELAX_ALIGN_NEXT_OPCODE: |
def13efb BW |
8323 | /* The next non-empty frag after this one holds the LOOP instruction |
8324 | that needs to be aligned. The required alignment depends on the | |
8325 | size of the next non-empty frag after the loop frag, i.e., the | |
8326 | first instruction in the loop. */ | |
8327 | loop_frag = next_non_empty_frag (fragP); | |
8328 | target_size = get_loop_align_size (next_frag_format_size (loop_frag)); | |
43cd72b9 BW |
8329 | loop_insn_offset = 0; |
8330 | is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode); | |
8331 | assert (is_loop); | |
8332 | ||
8333 | /* If the loop has been expanded then the LOOP instruction | |
8334 | could be at an offset from this fragment. */ | |
def13efb | 8335 | if (loop_frag->tc_frag_data.slot_subtypes[0] != RELAX_IMMED) |
43cd72b9 BW |
8336 | loop_insn_offset = get_expanded_loop_offset (loop_opcode); |
8337 | ||
43cd72b9 BW |
8338 | /* In an ideal world, which is what we are shooting for here, |
8339 | we wouldn't need to use any NOPs immediately prior to the | |
8340 | LOOP instruction. If this approach fails, relax_frag_loop_align | |
8341 | will call get_noop_aligned_address. */ | |
8342 | target_address = | |
8343 | address + loop_insn_offset + xg_get_single_size (loop_opcode); | |
def13efb | 8344 | align_power = get_text_align_power (target_size); |
d77b99c9 | 8345 | opt_diff = get_text_align_fill_size (target_address, align_power, |
43cd72b9 BW |
8346 | target_size, FALSE, FALSE); |
8347 | ||
8348 | *max_diff = xtensa_fetch_width | |
8349 | - ((target_address + opt_diff) % xtensa_fetch_width) | |
8350 | - target_size + opt_diff; | |
8351 | assert (*max_diff >= opt_diff); | |
8352 | return opt_diff; | |
e0001a05 | 8353 | |
43cd72b9 BW |
8354 | default: |
8355 | break; | |
e0001a05 | 8356 | } |
43cd72b9 BW |
8357 | assert (0); |
8358 | return 0; | |
e0001a05 NC |
8359 | } |
8360 | ||
8361 | \f | |
8362 | /* md_relax_frag Hook and Helper Functions. */ | |
8363 | ||
7fa3d080 BW |
8364 | static long relax_frag_loop_align (fragS *, long); |
8365 | static long relax_frag_for_align (fragS *, long); | |
8366 | static long relax_frag_immed | |
8367 | (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean); | |
8368 | ||
8369 | ||
e0001a05 NC |
8370 | /* Return the number of bytes added to this fragment, given that the |
8371 | input has been stretched already by "stretch". */ | |
8372 | ||
8373 | long | |
7fa3d080 | 8374 | xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p) |
e0001a05 | 8375 | { |
43cd72b9 | 8376 | xtensa_isa isa = xtensa_default_isa; |
e0001a05 NC |
8377 | int unreported = fragP->tc_frag_data.unreported_expansion; |
8378 | long new_stretch = 0; | |
8379 | char *file_name; | |
d77b99c9 BW |
8380 | unsigned line; |
8381 | int lit_size; | |
43cd72b9 BW |
8382 | static xtensa_insnbuf vbuf = NULL; |
8383 | int slot, num_slots; | |
8384 | xtensa_format fmt; | |
e0001a05 NC |
8385 | |
8386 | as_where (&file_name, &line); | |
8387 | new_logical_line (fragP->fr_file, fragP->fr_line); | |
8388 | ||
8389 | fragP->tc_frag_data.unreported_expansion = 0; | |
8390 | ||
8391 | switch (fragP->fr_subtype) | |
8392 | { | |
8393 | case RELAX_ALIGN_NEXT_OPCODE: | |
8394 | /* Always convert. */ | |
43cd72b9 BW |
8395 | if (fragP->tc_frag_data.relax_seen) |
8396 | new_stretch = relax_frag_loop_align (fragP, stretch); | |
e0001a05 NC |
8397 | break; |
8398 | ||
8399 | case RELAX_LOOP_END: | |
8400 | /* Do nothing. */ | |
8401 | break; | |
8402 | ||
8403 | case RELAX_LOOP_END_ADD_NOP: | |
8404 | /* Add a NOP and switch to .fill 0. */ | |
8405 | new_stretch = relax_frag_add_nop (fragP); | |
43cd72b9 | 8406 | frag_wane (fragP); |
e0001a05 NC |
8407 | break; |
8408 | ||
8409 | case RELAX_DESIRE_ALIGN: | |
43cd72b9 | 8410 | /* Do nothing. The narrowing before this frag will either align |
e0001a05 NC |
8411 | it or not. */ |
8412 | break; | |
8413 | ||
8414 | case RELAX_LITERAL: | |
8415 | case RELAX_LITERAL_FINAL: | |
8416 | return 0; | |
8417 | ||
8418 | case RELAX_LITERAL_NR: | |
8419 | lit_size = 4; | |
8420 | fragP->fr_subtype = RELAX_LITERAL_FINAL; | |
8421 | assert (unreported == lit_size); | |
8422 | memset (&fragP->fr_literal[fragP->fr_fix], 0, 4); | |
8423 | fragP->fr_var -= lit_size; | |
8424 | fragP->fr_fix += lit_size; | |
8425 | new_stretch = 4; | |
8426 | break; | |
8427 | ||
43cd72b9 BW |
8428 | case RELAX_SLOTS: |
8429 | if (vbuf == NULL) | |
8430 | vbuf = xtensa_insnbuf_alloc (isa); | |
8431 | ||
d77b99c9 BW |
8432 | xtensa_insnbuf_from_chars |
8433 | (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0); | |
43cd72b9 BW |
8434 | fmt = xtensa_format_decode (isa, vbuf); |
8435 | num_slots = xtensa_format_num_slots (isa, fmt); | |
e0001a05 | 8436 | |
43cd72b9 BW |
8437 | for (slot = 0; slot < num_slots; slot++) |
8438 | { | |
8439 | switch (fragP->tc_frag_data.slot_subtypes[slot]) | |
8440 | { | |
8441 | case RELAX_NARROW: | |
8442 | if (fragP->tc_frag_data.relax_seen) | |
8443 | new_stretch += relax_frag_for_align (fragP, stretch); | |
8444 | break; | |
8445 | ||
8446 | case RELAX_IMMED: | |
8447 | case RELAX_IMMED_STEP1: | |
8448 | case RELAX_IMMED_STEP2: | |
b81bf389 | 8449 | case RELAX_IMMED_STEP3: |
43cd72b9 BW |
8450 | /* Place the immediate. */ |
8451 | new_stretch += relax_frag_immed | |
8452 | (now_seg, fragP, stretch, | |
8453 | fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED, | |
8454 | fmt, slot, stretched_p, FALSE); | |
8455 | break; | |
8456 | ||
8457 | default: | |
8458 | /* This is OK; see the note in xg_assemble_vliw_tokens. */ | |
8459 | break; | |
8460 | } | |
8461 | } | |
e0001a05 NC |
8462 | break; |
8463 | ||
8464 | case RELAX_LITERAL_POOL_BEGIN: | |
8465 | case RELAX_LITERAL_POOL_END: | |
43cd72b9 BW |
8466 | case RELAX_MAYBE_UNREACHABLE: |
8467 | case RELAX_MAYBE_DESIRE_ALIGN: | |
e0001a05 NC |
8468 | /* No relaxation required. */ |
8469 | break; | |
8470 | ||
43cd72b9 BW |
8471 | case RELAX_FILL_NOP: |
8472 | case RELAX_UNREACHABLE: | |
8473 | if (fragP->tc_frag_data.relax_seen) | |
8474 | new_stretch += relax_frag_for_align (fragP, stretch); | |
8475 | break; | |
8476 | ||
e0001a05 NC |
8477 | default: |
8478 | as_bad (_("bad relaxation state")); | |
8479 | } | |
8480 | ||
43cd72b9 | 8481 | /* Tell gas we need another relaxation pass. */ |
c138bc38 | 8482 | if (! fragP->tc_frag_data.relax_seen) |
43cd72b9 BW |
8483 | { |
8484 | fragP->tc_frag_data.relax_seen = TRUE; | |
8485 | *stretched_p = 1; | |
8486 | } | |
8487 | ||
e0001a05 NC |
8488 | new_logical_line (file_name, line); |
8489 | return new_stretch; | |
8490 | } | |
8491 | ||
8492 | ||
8493 | static long | |
7fa3d080 | 8494 | relax_frag_loop_align (fragS *fragP, long stretch) |
e0001a05 NC |
8495 | { |
8496 | addressT old_address, old_next_address, old_size; | |
8497 | addressT new_address, new_next_address, new_size; | |
8498 | addressT growth; | |
8499 | ||
43cd72b9 BW |
8500 | /* All the frags with relax_frag_for_alignment prior to this one in the |
8501 | section have been done, hopefully eliminating the need for a NOP here. | |
8502 | But, this will put it in if necessary. */ | |
e0001a05 NC |
8503 | |
8504 | /* Calculate the old address of this fragment and the next fragment. */ | |
8505 | old_address = fragP->fr_address - stretch; | |
8506 | old_next_address = (fragP->fr_address - stretch + fragP->fr_fix + | |
43cd72b9 | 8507 | fragP->tc_frag_data.text_expansion[0]); |
e0001a05 NC |
8508 | old_size = old_next_address - old_address; |
8509 | ||
8510 | /* Calculate the new address of this fragment and the next fragment. */ | |
8511 | new_address = fragP->fr_address; | |
8512 | new_next_address = | |
8513 | get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix); | |
8514 | new_size = new_next_address - new_address; | |
8515 | ||
8516 | growth = new_size - old_size; | |
8517 | ||
8518 | /* Fix up the text_expansion field and return the new growth. */ | |
43cd72b9 | 8519 | fragP->tc_frag_data.text_expansion[0] += growth; |
e0001a05 NC |
8520 | return growth; |
8521 | } | |
8522 | ||
8523 | ||
43cd72b9 | 8524 | /* Add a NOP instruction. */ |
e0001a05 NC |
8525 | |
8526 | static long | |
7fa3d080 | 8527 | relax_frag_add_nop (fragS *fragP) |
e0001a05 | 8528 | { |
e0001a05 | 8529 | char *nop_buf = fragP->fr_literal + fragP->fr_fix; |
43cd72b9 BW |
8530 | int length = fragP->tc_frag_data.is_no_density ? 3 : 2; |
8531 | assemble_nop (length, nop_buf); | |
e0001a05 | 8532 | fragP->tc_frag_data.is_insn = TRUE; |
e0001a05 | 8533 | |
e0001a05 NC |
8534 | if (fragP->fr_var < length) |
8535 | { | |
dd49a749 | 8536 | as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length); |
e0001a05 NC |
8537 | return 0; |
8538 | } | |
8539 | ||
8540 | fragP->fr_fix += length; | |
8541 | fragP->fr_var -= length; | |
e0001a05 NC |
8542 | return length; |
8543 | } | |
8544 | ||
8545 | ||
7fa3d080 BW |
8546 | static long future_alignment_required (fragS *, long); |
8547 | ||
e0001a05 | 8548 | static long |
7fa3d080 | 8549 | relax_frag_for_align (fragS *fragP, long stretch) |
e0001a05 | 8550 | { |
43cd72b9 BW |
8551 | /* Overview of the relaxation procedure for alignment: |
8552 | We can widen with NOPs or by widening instructions or by filling | |
8553 | bytes after jump instructions. Find the opportune places and widen | |
8554 | them if necessary. */ | |
8555 | ||
8556 | long stretch_me; | |
8557 | long diff; | |
e0001a05 | 8558 | |
43cd72b9 BW |
8559 | assert (fragP->fr_subtype == RELAX_FILL_NOP |
8560 | || fragP->fr_subtype == RELAX_UNREACHABLE | |
8561 | || (fragP->fr_subtype == RELAX_SLOTS | |
8562 | && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)); | |
8563 | ||
8564 | stretch_me = future_alignment_required (fragP, stretch); | |
8565 | diff = stretch_me - fragP->tc_frag_data.text_expansion[0]; | |
8566 | if (diff == 0) | |
8567 | return 0; | |
e0001a05 | 8568 | |
43cd72b9 | 8569 | if (diff < 0) |
e0001a05 | 8570 | { |
43cd72b9 BW |
8571 | /* We expanded on a previous pass. Can we shrink now? */ |
8572 | long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me; | |
8573 | if (shrink <= stretch && stretch > 0) | |
e0001a05 | 8574 | { |
43cd72b9 BW |
8575 | fragP->tc_frag_data.text_expansion[0] = stretch_me; |
8576 | return -shrink; | |
e0001a05 NC |
8577 | } |
8578 | return 0; | |
8579 | } | |
8580 | ||
43cd72b9 BW |
8581 | /* Below here, diff > 0. */ |
8582 | fragP->tc_frag_data.text_expansion[0] = stretch_me; | |
e0001a05 | 8583 | |
43cd72b9 | 8584 | return diff; |
e0001a05 NC |
8585 | } |
8586 | ||
8587 | ||
43cd72b9 BW |
8588 | /* Return the address of the next frag that should be aligned. |
8589 | ||
8590 | By "address" we mean the address it _would_ be at if there | |
8591 | is no action taken to align it between here and the target frag. | |
8592 | In other words, if no narrows and no fill nops are used between | |
8593 | here and the frag to align, _even_if_ some of the frags we use | |
8594 | to align targets have already expanded on a previous relaxation | |
8595 | pass. | |
8596 | ||
8597 | Also, count each frag that may be used to help align the target. | |
8598 | ||
8599 | Return 0 if there are no frags left in the chain that need to be | |
8600 | aligned. */ | |
8601 | ||
8602 | static addressT | |
7fa3d080 BW |
8603 | find_address_of_next_align_frag (fragS **fragPP, |
8604 | int *wide_nops, | |
8605 | int *narrow_nops, | |
8606 | int *widens, | |
8607 | bfd_boolean *paddable) | |
e0001a05 | 8608 | { |
43cd72b9 BW |
8609 | fragS *fragP = *fragPP; |
8610 | addressT address = fragP->fr_address; | |
8611 | ||
8612 | /* Do not reset the counts to 0. */ | |
e0001a05 NC |
8613 | |
8614 | while (fragP) | |
8615 | { | |
8616 | /* Limit this to a small search. */ | |
b5e4a23d | 8617 | if (*widens >= (int) xtensa_fetch_width) |
43cd72b9 BW |
8618 | { |
8619 | *fragPP = fragP; | |
8620 | return 0; | |
8621 | } | |
e0001a05 NC |
8622 | address += fragP->fr_fix; |
8623 | ||
43cd72b9 BW |
8624 | if (fragP->fr_type == rs_fill) |
8625 | address += fragP->fr_offset * fragP->fr_var; | |
8626 | else if (fragP->fr_type == rs_machine_dependent) | |
e0001a05 | 8627 | { |
e0001a05 NC |
8628 | switch (fragP->fr_subtype) |
8629 | { | |
43cd72b9 BW |
8630 | case RELAX_UNREACHABLE: |
8631 | *paddable = TRUE; | |
8632 | break; | |
8633 | ||
8634 | case RELAX_FILL_NOP: | |
8635 | (*wide_nops)++; | |
8636 | if (!fragP->tc_frag_data.is_no_density) | |
8637 | (*narrow_nops)++; | |
8638 | break; | |
8639 | ||
8640 | case RELAX_SLOTS: | |
8641 | if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW) | |
8642 | { | |
8643 | (*widens)++; | |
8644 | break; | |
8645 | } | |
34e41783 | 8646 | address += total_frag_text_expansion (fragP);; |
e0001a05 NC |
8647 | break; |
8648 | ||
8649 | case RELAX_IMMED: | |
43cd72b9 | 8650 | address += fragP->tc_frag_data.text_expansion[0]; |
e0001a05 NC |
8651 | break; |
8652 | ||
8653 | case RELAX_ALIGN_NEXT_OPCODE: | |
8654 | case RELAX_DESIRE_ALIGN: | |
43cd72b9 BW |
8655 | *fragPP = fragP; |
8656 | return address; | |
8657 | ||
8658 | case RELAX_MAYBE_UNREACHABLE: | |
8659 | case RELAX_MAYBE_DESIRE_ALIGN: | |
8660 | /* Do nothing. */ | |
e0001a05 NC |
8661 | break; |
8662 | ||
8663 | default: | |
43cd72b9 BW |
8664 | /* Just punt if we don't know the type. */ |
8665 | *fragPP = fragP; | |
8666 | return 0; | |
e0001a05 | 8667 | } |
43cd72b9 | 8668 | } |
c138bc38 | 8669 | else |
43cd72b9 BW |
8670 | { |
8671 | /* Just punt if we don't know the type. */ | |
8672 | *fragPP = fragP; | |
8673 | return 0; | |
8674 | } | |
8675 | fragP = fragP->fr_next; | |
8676 | } | |
8677 | ||
8678 | *fragPP = fragP; | |
8679 | return 0; | |
8680 | } | |
8681 | ||
8682 | ||
7fa3d080 BW |
8683 | static long bytes_to_stretch (fragS *, int, int, int, int); |
8684 | ||
43cd72b9 | 8685 | static long |
7fa3d080 | 8686 | future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED) |
43cd72b9 BW |
8687 | { |
8688 | fragS *this_frag = fragP; | |
8689 | long address; | |
8690 | int num_widens = 0; | |
8691 | int wide_nops = 0; | |
8692 | int narrow_nops = 0; | |
8693 | bfd_boolean paddable = FALSE; | |
8694 | offsetT local_opt_diff; | |
8695 | offsetT opt_diff; | |
8696 | offsetT max_diff; | |
8697 | int stretch_amount = 0; | |
8698 | int local_stretch_amount; | |
8699 | int global_stretch_amount; | |
8700 | ||
7fa3d080 BW |
8701 | address = find_address_of_next_align_frag |
8702 | (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable); | |
43cd72b9 | 8703 | |
b5e4a23d BW |
8704 | if (!address) |
8705 | { | |
8706 | if (this_frag->tc_frag_data.is_aligning_branch) | |
8707 | this_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED; | |
8708 | else | |
8709 | frag_wane (this_frag); | |
8710 | } | |
8711 | else | |
43cd72b9 BW |
8712 | { |
8713 | local_opt_diff = get_aligned_diff (fragP, address, &max_diff); | |
8714 | opt_diff = local_opt_diff; | |
8715 | assert (opt_diff >= 0); | |
8716 | assert (max_diff >= opt_diff); | |
c138bc38 | 8717 | if (max_diff == 0) |
43cd72b9 | 8718 | return 0; |
d2a033cd | 8719 | |
43cd72b9 BW |
8720 | if (fragP) |
8721 | fragP = fragP->fr_next; | |
8722 | ||
8723 | while (fragP && opt_diff < max_diff && address) | |
8724 | { | |
8725 | /* We only use these to determine if we can exit early | |
c138bc38 | 8726 | because there will be plenty of ways to align future |
43cd72b9 | 8727 | align frags. */ |
d77b99c9 | 8728 | int glob_widens = 0; |
43cd72b9 BW |
8729 | int dnn = 0; |
8730 | int dw = 0; | |
8731 | bfd_boolean glob_pad = 0; | |
7fa3d080 BW |
8732 | address = find_address_of_next_align_frag |
8733 | (&fragP, &glob_widens, &dnn, &dw, &glob_pad); | |
43cd72b9 | 8734 | /* If there is a padable portion, then skip. */ |
664df4e4 | 8735 | if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg))) |
b5e4a23d | 8736 | address = 0; |
43cd72b9 | 8737 | |
c138bc38 | 8738 | if (address) |
43cd72b9 BW |
8739 | { |
8740 | offsetT next_m_diff; | |
8741 | offsetT next_o_diff; | |
8742 | ||
8743 | /* Downrange frags haven't had stretch added to them yet. */ | |
8744 | address += stretch; | |
8745 | ||
8746 | /* The address also includes any text expansion from this | |
8747 | frag in a previous pass, but we don't want that. */ | |
8748 | address -= this_frag->tc_frag_data.text_expansion[0]; | |
8749 | ||
8750 | /* Assume we are going to move at least opt_diff. In | |
8751 | reality, we might not be able to, but assuming that | |
8752 | we will helps catch cases where moving opt_diff pushes | |
8753 | the next target from aligned to unaligned. */ | |
8754 | address += opt_diff; | |
8755 | ||
8756 | next_o_diff = get_aligned_diff (fragP, address, &next_m_diff); | |
8757 | ||
8758 | /* Now cleanup for the adjustments to address. */ | |
8759 | next_o_diff += opt_diff; | |
8760 | next_m_diff += opt_diff; | |
8761 | if (next_o_diff <= max_diff && next_o_diff > opt_diff) | |
8762 | opt_diff = next_o_diff; | |
8763 | if (next_m_diff < max_diff) | |
8764 | max_diff = next_m_diff; | |
8765 | fragP = fragP->fr_next; | |
8766 | } | |
8767 | } | |
d2a033cd | 8768 | |
43cd72b9 BW |
8769 | /* If there are enough wideners in between, do it. */ |
8770 | if (paddable) | |
8771 | { | |
8772 | if (this_frag->fr_subtype == RELAX_UNREACHABLE) | |
8773 | { | |
8774 | assert (opt_diff <= UNREACHABLE_MAX_WIDTH); | |
8775 | return opt_diff; | |
8776 | } | |
8777 | return 0; | |
8778 | } | |
c138bc38 | 8779 | local_stretch_amount |
43cd72b9 BW |
8780 | = bytes_to_stretch (this_frag, wide_nops, narrow_nops, |
8781 | num_widens, local_opt_diff); | |
c138bc38 BW |
8782 | global_stretch_amount |
8783 | = bytes_to_stretch (this_frag, wide_nops, narrow_nops, | |
43cd72b9 | 8784 | num_widens, opt_diff); |
c138bc38 BW |
8785 | /* If the condition below is true, then the frag couldn't |
8786 | stretch the correct amount for the global case, so we just | |
8787 | optimize locally. We'll rely on the subsequent frags to get | |
43cd72b9 BW |
8788 | the correct alignment in the global case. */ |
8789 | if (global_stretch_amount < local_stretch_amount) | |
8790 | stretch_amount = local_stretch_amount; | |
8791 | else | |
8792 | stretch_amount = global_stretch_amount; | |
d2a033cd | 8793 | |
43cd72b9 BW |
8794 | if (this_frag->fr_subtype == RELAX_SLOTS |
8795 | && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW) | |
8796 | assert (stretch_amount <= 1); | |
8797 | else if (this_frag->fr_subtype == RELAX_FILL_NOP) | |
8798 | { | |
8799 | if (this_frag->tc_frag_data.is_no_density) | |
8800 | assert (stretch_amount == 3 || stretch_amount == 0); | |
8801 | else | |
8802 | assert (stretch_amount <= 3); | |
8803 | } | |
8804 | } | |
8805 | return stretch_amount; | |
8806 | } | |
8807 | ||
8808 | ||
8809 | /* The idea: widen everything you can to get a target or loop aligned, | |
8810 | then start using NOPs. | |
8811 | ||
8812 | When we must have a NOP, here is a table of how we decide | |
8813 | (so you don't have to fight through the control flow below): | |
8814 | ||
8815 | wide_nops = the number of wide NOPs available for aligning | |
8816 | narrow_nops = the number of narrow NOPs available for aligning | |
8817 | (a subset of wide_nops) | |
8818 | widens = the number of narrow instructions that should be widened | |
8819 | ||
8820 | Desired wide narrow | |
8821 | Diff nop nop widens | |
8822 | 1 0 0 1 | |
8823 | 2 0 1 0 | |
8824 | 3a 1 0 0 | |
8825 | b 0 1 1 (case 3a makes this case unnecessary) | |
8826 | 4a 1 0 1 | |
8827 | b 0 2 0 | |
8828 | c 0 1 2 (case 4a makes this case unnecessary) | |
8829 | 5a 1 0 2 | |
8830 | b 1 1 0 | |
8831 | c 0 2 1 (case 5b makes this case unnecessary) | |
8832 | 6a 2 0 0 | |
8833 | b 1 0 3 | |
708587a4 | 8834 | c 0 1 4 (case 6b makes this case unnecessary) |
43cd72b9 BW |
8835 | d 1 1 1 (case 6a makes this case unnecessary) |
8836 | e 0 2 2 (case 6a makes this case unnecessary) | |
8837 | f 0 3 0 (case 6a makes this case unnecessary) | |
8838 | 7a 1 0 4 | |
8839 | b 2 0 1 | |
8840 | c 1 1 2 (case 7b makes this case unnecessary) | |
8841 | d 0 1 5 (case 7a makes this case unnecessary) | |
8842 | e 0 2 3 (case 7b makes this case unnecessary) | |
8843 | f 0 3 1 (case 7b makes this case unnecessary) | |
8844 | g 1 2 1 (case 7b makes this case unnecessary) | |
8845 | */ | |
8846 | ||
8847 | static long | |
7fa3d080 BW |
8848 | bytes_to_stretch (fragS *this_frag, |
8849 | int wide_nops, | |
8850 | int narrow_nops, | |
8851 | int num_widens, | |
8852 | int desired_diff) | |
43cd72b9 BW |
8853 | { |
8854 | int bytes_short = desired_diff - num_widens; | |
8855 | ||
8856 | assert (desired_diff >= 0 && desired_diff < 8); | |
8857 | if (desired_diff == 0) | |
8858 | return 0; | |
c138bc38 | 8859 | |
43cd72b9 | 8860 | assert (wide_nops > 0 || num_widens > 0); |
e0001a05 | 8861 | |
43cd72b9 BW |
8862 | /* Always prefer widening to NOP-filling. */ |
8863 | if (bytes_short < 0) | |
8864 | { | |
8865 | /* There are enough RELAX_NARROW frags after this one | |
8866 | to align the target without widening this frag in any way. */ | |
8867 | return 0; | |
8868 | } | |
c138bc38 | 8869 | |
43cd72b9 BW |
8870 | if (bytes_short == 0) |
8871 | { | |
8872 | /* Widen every narrow between here and the align target | |
8873 | and the align target will be properly aligned. */ | |
8874 | if (this_frag->fr_subtype == RELAX_FILL_NOP) | |
8875 | return 0; | |
8876 | else | |
8877 | return 1; | |
8878 | } | |
c138bc38 | 8879 | |
43cd72b9 BW |
8880 | /* From here we will need at least one NOP to get an alignment. |
8881 | However, we may not be able to align at all, in which case, | |
8882 | don't widen. */ | |
8883 | if (this_frag->fr_subtype == RELAX_FILL_NOP) | |
8884 | { | |
8885 | switch (desired_diff) | |
8886 | { | |
8887 | case 1: | |
8888 | return 0; | |
8889 | case 2: | |
8890 | if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 1) | |
8891 | return 2; /* case 2 */ | |
8892 | return 0; | |
c138bc38 | 8893 | case 3: |
43cd72b9 BW |
8894 | if (wide_nops > 1) |
8895 | return 0; | |
8896 | else | |
8897 | return 3; /* case 3a */ | |
8898 | case 4: | |
8899 | if (num_widens >= 1 && wide_nops == 1) | |
8900 | return 3; /* case 4a */ | |
8901 | if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 2) | |
8902 | return 2; /* case 4b */ | |
8903 | return 0; | |
8904 | case 5: | |
8905 | if (num_widens >= 2 && wide_nops == 1) | |
8906 | return 3; /* case 5a */ | |
c138bc38 | 8907 | /* We will need two nops. Are there enough nops |
43cd72b9 BW |
8908 | between here and the align target? */ |
8909 | if (wide_nops < 2 || narrow_nops == 0) | |
8910 | return 0; | |
8911 | /* Are there other nops closer that can serve instead? */ | |
8912 | if (wide_nops > 2 && narrow_nops > 1) | |
8913 | return 0; | |
8914 | /* Take the density one first, because there might not be | |
8915 | another density one available. */ | |
8916 | if (!this_frag->tc_frag_data.is_no_density) | |
8917 | return 2; /* case 5b narrow */ | |
8918 | else | |
8919 | return 3; /* case 5b wide */ | |
8920 | return 0; | |
8921 | case 6: | |
8922 | if (wide_nops == 2) | |
8923 | return 3; /* case 6a */ | |
8924 | else if (num_widens >= 3 && wide_nops == 1) | |
8925 | return 3; /* case 6b */ | |
8926 | return 0; | |
8927 | case 7: | |
8928 | if (wide_nops == 1 && num_widens >= 4) | |
8929 | return 3; /* case 7a */ | |
8930 | else if (wide_nops == 2 && num_widens >= 1) | |
8931 | return 3; /* case 7b */ | |
8932 | return 0; | |
e0001a05 | 8933 | default: |
43cd72b9 | 8934 | assert (0); |
e0001a05 | 8935 | } |
e0001a05 | 8936 | } |
43cd72b9 BW |
8937 | else |
8938 | { | |
c138bc38 | 8939 | /* We will need a NOP no matter what, but should we widen |
43cd72b9 | 8940 | this instruction to help? |
e0001a05 | 8941 | |
03aaa593 | 8942 | This is a RELAX_NARROW frag. */ |
43cd72b9 BW |
8943 | switch (desired_diff) |
8944 | { | |
8945 | case 1: | |
8946 | assert (0); | |
8947 | return 0; | |
8948 | case 2: | |
8949 | case 3: | |
8950 | return 0; | |
8951 | case 4: | |
8952 | if (wide_nops >= 1 && num_widens == 1) | |
8953 | return 1; /* case 4a */ | |
8954 | return 0; | |
8955 | case 5: | |
8956 | if (wide_nops >= 1 && num_widens == 2) | |
8957 | return 1; /* case 5a */ | |
8958 | return 0; | |
8959 | case 6: | |
8960 | if (wide_nops >= 2) | |
8961 | return 0; /* case 6a */ | |
8962 | else if (wide_nops >= 1 && num_widens == 3) | |
8963 | return 1; /* case 6b */ | |
8964 | return 0; | |
8965 | case 7: | |
8966 | if (wide_nops >= 1 && num_widens == 4) | |
8967 | return 1; /* case 7a */ | |
8968 | else if (wide_nops >= 2 && num_widens == 1) | |
8969 | return 1; /* case 7b */ | |
8970 | return 0; | |
8971 | default: | |
8972 | assert (0); | |
8973 | return 0; | |
8974 | } | |
8975 | } | |
8976 | assert (0); | |
8977 | return 0; | |
e0001a05 NC |
8978 | } |
8979 | ||
8980 | ||
8981 | static long | |
7fa3d080 BW |
8982 | relax_frag_immed (segT segP, |
8983 | fragS *fragP, | |
8984 | long stretch, | |
8985 | int min_steps, | |
8986 | xtensa_format fmt, | |
8987 | int slot, | |
8988 | int *stretched_p, | |
8989 | bfd_boolean estimate_only) | |
e0001a05 | 8990 | { |
43cd72b9 | 8991 | TInsn tinsn; |
e0001a05 NC |
8992 | int old_size; |
8993 | bfd_boolean negatable_branch = FALSE; | |
8994 | bfd_boolean branch_jmp_to_next = FALSE; | |
def13efb | 8995 | bfd_boolean from_wide_insn = FALSE; |
43cd72b9 | 8996 | xtensa_isa isa = xtensa_default_isa; |
e0001a05 NC |
8997 | IStack istack; |
8998 | offsetT frag_offset; | |
8999 | int num_steps; | |
e0001a05 | 9000 | int num_text_bytes, num_literal_bytes; |
2276bc20 | 9001 | int literal_diff, total_text_diff, this_text_diff; |
e0001a05 NC |
9002 | |
9003 | assert (fragP->fr_opcode != NULL); | |
9004 | ||
b5e4a23d BW |
9005 | xg_clear_vinsn (&cur_vinsn); |
9006 | vinsn_from_chars (&cur_vinsn, fragP->fr_opcode); | |
b2d179be | 9007 | if (cur_vinsn.num_slots > 1) |
def13efb | 9008 | from_wide_insn = TRUE; |
43cd72b9 | 9009 | |
b5e4a23d | 9010 | tinsn = cur_vinsn.slots[slot]; |
43cd72b9 | 9011 | tinsn_immed_from_frag (&tinsn, fragP, slot); |
e0001a05 | 9012 | |
64b607e6 | 9013 | if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode) == 1) |
43cd72b9 | 9014 | return 0; |
e0001a05 | 9015 | |
b08b5071 | 9016 | if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform) |
43cd72b9 | 9017 | branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP); |
e0001a05 | 9018 | |
43cd72b9 | 9019 | negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1); |
e0001a05 | 9020 | |
43cd72b9 | 9021 | old_size = xtensa_format_length (isa, fmt); |
e0001a05 NC |
9022 | |
9023 | /* Special case: replace a branch to the next instruction with a NOP. | |
9024 | This is required to work around a hardware bug in T1040.0 and also | |
9025 | serves as an optimization. */ | |
9026 | ||
9027 | if (branch_jmp_to_next | |
9028 | && ((old_size == 2) || (old_size == 3)) | |
9029 | && !next_frag_is_loop_target (fragP)) | |
9030 | return 0; | |
9031 | ||
9032 | /* Here is the fun stuff: Get the immediate field from this | |
9033 | instruction. If it fits, we are done. If not, find the next | |
9034 | instruction sequence that fits. */ | |
9035 | ||
9036 | frag_offset = fragP->fr_opcode - fragP->fr_literal; | |
9037 | istack_init (&istack); | |
43cd72b9 | 9038 | num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset, |
e0001a05 | 9039 | min_steps, stretch); |
2276bc20 | 9040 | assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS); |
e0001a05 | 9041 | |
43cd72b9 | 9042 | fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps; |
e0001a05 NC |
9043 | |
9044 | /* Figure out the number of bytes needed. */ | |
e0001a05 | 9045 | num_literal_bytes = get_num_stack_literal_bytes (&istack); |
2276bc20 BW |
9046 | literal_diff |
9047 | = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot]; | |
43cd72b9 | 9048 | num_text_bytes = get_num_stack_text_bytes (&istack); |
def13efb BW |
9049 | |
9050 | if (from_wide_insn) | |
43cd72b9 | 9051 | { |
2276bc20 BW |
9052 | int first = 0; |
9053 | while (istack.insn[first].opcode == XTENSA_UNDEFINED) | |
9054 | first++; | |
9055 | ||
43cd72b9 BW |
9056 | num_text_bytes += old_size; |
9057 | if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot)) | |
9058 | num_text_bytes -= xg_get_single_size (istack.insn[first].opcode); | |
2276bc20 BW |
9059 | else |
9060 | { | |
9061 | /* The first instruction in the relaxed sequence will go after | |
9062 | the current wide instruction, and thus its symbolic immediates | |
9063 | might not fit. */ | |
9064 | ||
9065 | istack_init (&istack); | |
9066 | num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, | |
9067 | frag_offset + old_size, | |
9068 | min_steps, stretch + old_size); | |
9069 | assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS); | |
9070 | ||
9071 | fragP->tc_frag_data.slot_subtypes[slot] | |
9072 | = (int) RELAX_IMMED + num_steps; | |
9073 | ||
9074 | num_literal_bytes = get_num_stack_literal_bytes (&istack); | |
9075 | literal_diff | |
9076 | = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot]; | |
9077 | ||
9078 | num_text_bytes = get_num_stack_text_bytes (&istack) + old_size; | |
9079 | } | |
43cd72b9 | 9080 | } |
def13efb | 9081 | |
43cd72b9 BW |
9082 | total_text_diff = num_text_bytes - old_size; |
9083 | this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot]; | |
e0001a05 NC |
9084 | |
9085 | /* It MUST get larger. If not, we could get an infinite loop. */ | |
43cd72b9 BW |
9086 | assert (num_text_bytes >= 0); |
9087 | assert (literal_diff >= 0); | |
9088 | assert (total_text_diff >= 0); | |
e0001a05 | 9089 | |
43cd72b9 BW |
9090 | fragP->tc_frag_data.text_expansion[slot] = total_text_diff; |
9091 | fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes; | |
9092 | assert (fragP->tc_frag_data.text_expansion[slot] >= 0); | |
9093 | assert (fragP->tc_frag_data.literal_expansion[slot] >= 0); | |
e0001a05 NC |
9094 | |
9095 | /* Find the associated expandable literal for this. */ | |
9096 | if (literal_diff != 0) | |
9097 | { | |
2276bc20 | 9098 | fragS *lit_fragP = fragP->tc_frag_data.literal_frags[slot]; |
e0001a05 NC |
9099 | if (lit_fragP) |
9100 | { | |
9101 | assert (literal_diff == 4); | |
9102 | lit_fragP->tc_frag_data.unreported_expansion += literal_diff; | |
9103 | ||
9104 | /* We expect that the literal section state has NOT been | |
9105 | modified yet. */ | |
9106 | assert (lit_fragP->fr_type == rs_machine_dependent | |
9107 | && lit_fragP->fr_subtype == RELAX_LITERAL); | |
9108 | lit_fragP->fr_subtype = RELAX_LITERAL_NR; | |
9109 | ||
9110 | /* We need to mark this section for another iteration | |
9111 | of relaxation. */ | |
9112 | (*stretched_p)++; | |
9113 | } | |
9114 | } | |
9115 | ||
43cd72b9 | 9116 | if (negatable_branch && istack.ninsn > 1) |
1d19a770 | 9117 | update_next_frag_state (fragP); |
e0001a05 | 9118 | |
43cd72b9 | 9119 | return this_text_diff; |
e0001a05 NC |
9120 | } |
9121 | ||
9122 | \f | |
9123 | /* md_convert_frag Hook and Helper Functions. */ | |
9124 | ||
7fa3d080 BW |
9125 | static void convert_frag_align_next_opcode (fragS *); |
9126 | static void convert_frag_narrow (segT, fragS *, xtensa_format, int); | |
9127 | static void convert_frag_fill_nop (fragS *); | |
9128 | static void convert_frag_immed (segT, fragS *, int, xtensa_format, int); | |
9129 | ||
e0001a05 | 9130 | void |
7fa3d080 | 9131 | md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp) |
e0001a05 | 9132 | { |
43cd72b9 BW |
9133 | static xtensa_insnbuf vbuf = NULL; |
9134 | xtensa_isa isa = xtensa_default_isa; | |
9135 | int slot; | |
9136 | int num_slots; | |
9137 | xtensa_format fmt; | |
e0001a05 | 9138 | char *file_name; |
d77b99c9 | 9139 | unsigned line; |
e0001a05 NC |
9140 | |
9141 | as_where (&file_name, &line); | |
9142 | new_logical_line (fragp->fr_file, fragp->fr_line); | |
9143 | ||
9144 | switch (fragp->fr_subtype) | |
9145 | { | |
9146 | case RELAX_ALIGN_NEXT_OPCODE: | |
9147 | /* Always convert. */ | |
9148 | convert_frag_align_next_opcode (fragp); | |
9149 | break; | |
9150 | ||
9151 | case RELAX_DESIRE_ALIGN: | |
9152 | /* Do nothing. If not aligned already, too bad. */ | |
9153 | break; | |
9154 | ||
43cd72b9 BW |
9155 | case RELAX_LITERAL: |
9156 | case RELAX_LITERAL_FINAL: | |
9157 | break; | |
9158 | ||
9159 | case RELAX_SLOTS: | |
9160 | if (vbuf == NULL) | |
9161 | vbuf = xtensa_insnbuf_alloc (isa); | |
9162 | ||
d77b99c9 BW |
9163 | xtensa_insnbuf_from_chars |
9164 | (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0); | |
43cd72b9 BW |
9165 | fmt = xtensa_format_decode (isa, vbuf); |
9166 | num_slots = xtensa_format_num_slots (isa, fmt); | |
9167 | ||
9168 | for (slot = 0; slot < num_slots; slot++) | |
9169 | { | |
9170 | switch (fragp->tc_frag_data.slot_subtypes[slot]) | |
9171 | { | |
9172 | case RELAX_NARROW: | |
9173 | convert_frag_narrow (sec, fragp, fmt, slot); | |
9174 | break; | |
9175 | ||
9176 | case RELAX_IMMED: | |
9177 | case RELAX_IMMED_STEP1: | |
9178 | case RELAX_IMMED_STEP2: | |
b81bf389 | 9179 | case RELAX_IMMED_STEP3: |
43cd72b9 BW |
9180 | /* Place the immediate. */ |
9181 | convert_frag_immed | |
9182 | (sec, fragp, | |
9183 | fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED, | |
9184 | fmt, slot); | |
9185 | break; | |
9186 | ||
9187 | default: | |
9188 | /* This is OK because some slots could have | |
9189 | relaxations and others have none. */ | |
9190 | break; | |
9191 | } | |
9192 | } | |
9193 | break; | |
9194 | ||
9195 | case RELAX_UNREACHABLE: | |
9196 | memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var); | |
9197 | fragp->fr_fix += fragp->tc_frag_data.text_expansion[0]; | |
9198 | fragp->fr_var -= fragp->tc_frag_data.text_expansion[0]; | |
9199 | frag_wane (fragp); | |
e0001a05 NC |
9200 | break; |
9201 | ||
43cd72b9 BW |
9202 | case RELAX_MAYBE_UNREACHABLE: |
9203 | case RELAX_MAYBE_DESIRE_ALIGN: | |
9204 | frag_wane (fragp); | |
e0001a05 NC |
9205 | break; |
9206 | ||
43cd72b9 BW |
9207 | case RELAX_FILL_NOP: |
9208 | convert_frag_fill_nop (fragp); | |
e0001a05 NC |
9209 | break; |
9210 | ||
9211 | case RELAX_LITERAL_NR: | |
9212 | if (use_literal_section) | |
9213 | { | |
9214 | /* This should have been handled during relaxation. When | |
9215 | relaxing a code segment, literals sometimes need to be | |
9216 | added to the corresponding literal segment. If that | |
9217 | literal segment has already been relaxed, then we end up | |
9218 | in this situation. Marking the literal segments as data | |
9219 | would make this happen less often (since GAS always relaxes | |
9220 | code before data), but we could still get into trouble if | |
9221 | there are instructions in a segment that is not marked as | |
9222 | containing code. Until we can implement a better solution, | |
9223 | cheat and adjust the addresses of all the following frags. | |
9224 | This could break subsequent alignments, but the linker's | |
9225 | literal coalescing will do that anyway. */ | |
9226 | ||
9227 | fragS *f; | |
9228 | fragp->fr_subtype = RELAX_LITERAL_FINAL; | |
9229 | assert (fragp->tc_frag_data.unreported_expansion == 4); | |
9230 | memset (&fragp->fr_literal[fragp->fr_fix], 0, 4); | |
9231 | fragp->fr_var -= 4; | |
9232 | fragp->fr_fix += 4; | |
9233 | for (f = fragp->fr_next; f; f = f->fr_next) | |
9234 | f->fr_address += 4; | |
9235 | } | |
9236 | else | |
9237 | as_bad (_("invalid relaxation fragment result")); | |
9238 | break; | |
9239 | } | |
9240 | ||
9241 | fragp->fr_var = 0; | |
9242 | new_logical_line (file_name, line); | |
9243 | } | |
9244 | ||
9245 | ||
7fa3d080 BW |
9246 | static void |
9247 | convert_frag_align_next_opcode (fragS *fragp) | |
e0001a05 NC |
9248 | { |
9249 | char *nop_buf; /* Location for Writing. */ | |
e0001a05 NC |
9250 | bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density; |
9251 | addressT aligned_address; | |
d77b99c9 BW |
9252 | offsetT fill_size; |
9253 | int nop, nop_count; | |
e0001a05 NC |
9254 | |
9255 | aligned_address = get_noop_aligned_address (fragp, fragp->fr_address + | |
9256 | fragp->fr_fix); | |
9257 | fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix); | |
9258 | nop_count = get_text_align_nop_count (fill_size, use_no_density); | |
9259 | nop_buf = fragp->fr_literal + fragp->fr_fix; | |
9260 | ||
d77b99c9 | 9261 | for (nop = 0; nop < nop_count; nop++) |
e0001a05 | 9262 | { |
d77b99c9 BW |
9263 | int nop_size; |
9264 | nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density); | |
e0001a05 NC |
9265 | |
9266 | assemble_nop (nop_size, nop_buf); | |
9267 | nop_buf += nop_size; | |
9268 | } | |
9269 | ||
9270 | fragp->fr_fix += fill_size; | |
9271 | fragp->fr_var -= fill_size; | |
9272 | } | |
9273 | ||
9274 | ||
9275 | static void | |
7fa3d080 | 9276 | convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot) |
e0001a05 | 9277 | { |
43cd72b9 | 9278 | TInsn tinsn, single_target; |
84b08ed9 | 9279 | int size, old_size, diff; |
e0001a05 NC |
9280 | offsetT frag_offset; |
9281 | ||
43cd72b9 BW |
9282 | assert (slot == 0); |
9283 | tinsn_from_chars (&tinsn, fragP->fr_opcode, 0); | |
9284 | ||
b5e4a23d | 9285 | if (fragP->tc_frag_data.is_aligning_branch == 1) |
43cd72b9 BW |
9286 | { |
9287 | assert (fragP->tc_frag_data.text_expansion[0] == 1 | |
9288 | || fragP->tc_frag_data.text_expansion[0] == 0); | |
9289 | convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0], | |
9290 | fmt, slot); | |
9291 | return; | |
9292 | } | |
9293 | ||
9294 | if (fragP->tc_frag_data.text_expansion[0] == 0) | |
e0001a05 NC |
9295 | { |
9296 | /* No conversion. */ | |
9297 | fragP->fr_var = 0; | |
9298 | return; | |
9299 | } | |
9300 | ||
9301 | assert (fragP->fr_opcode != NULL); | |
9302 | ||
43cd72b9 BW |
9303 | /* Frags in this relaxation state should only contain |
9304 | single instruction bundles. */ | |
9305 | tinsn_immed_from_frag (&tinsn, fragP, 0); | |
e0001a05 NC |
9306 | |
9307 | /* Just convert it to a wide form.... */ | |
9308 | size = 0; | |
43cd72b9 | 9309 | old_size = xg_get_single_size (tinsn.opcode); |
e0001a05 NC |
9310 | |
9311 | tinsn_init (&single_target); | |
9312 | frag_offset = fragP->fr_opcode - fragP->fr_literal; | |
9313 | ||
84b08ed9 | 9314 | if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE)) |
43cd72b9 BW |
9315 | { |
9316 | as_bad (_("unable to widen instruction")); | |
9317 | return; | |
9318 | } | |
9319 | ||
9320 | size = xg_get_single_size (single_target.opcode); | |
b2d179be BW |
9321 | xg_emit_insn_to_buf (&single_target, fragP->fr_opcode, fragP, |
9322 | frag_offset, TRUE); | |
e0001a05 NC |
9323 | |
9324 | diff = size - old_size; | |
9325 | assert (diff >= 0); | |
9326 | assert (diff <= fragP->fr_var); | |
9327 | fragP->fr_var -= diff; | |
9328 | fragP->fr_fix += diff; | |
9329 | ||
9330 | /* clean it up */ | |
9331 | fragP->fr_var = 0; | |
9332 | } | |
9333 | ||
9334 | ||
9335 | static void | |
7fa3d080 | 9336 | convert_frag_fill_nop (fragS *fragP) |
43cd72b9 BW |
9337 | { |
9338 | char *loc = &fragP->fr_literal[fragP->fr_fix]; | |
9339 | int size = fragP->tc_frag_data.text_expansion[0]; | |
9340 | assert ((unsigned) size == (fragP->fr_next->fr_address | |
9341 | - fragP->fr_address - fragP->fr_fix)); | |
9342 | if (size == 0) | |
9343 | { | |
9344 | /* No conversion. */ | |
9345 | fragP->fr_var = 0; | |
9346 | return; | |
9347 | } | |
9348 | assemble_nop (size, loc); | |
9349 | fragP->tc_frag_data.is_insn = TRUE; | |
9350 | fragP->fr_var -= size; | |
9351 | fragP->fr_fix += size; | |
9352 | frag_wane (fragP); | |
9353 | } | |
9354 | ||
9355 | ||
7fa3d080 BW |
9356 | static fixS *fix_new_exp_in_seg |
9357 | (segT, subsegT, fragS *, int, int, expressionS *, int, | |
9358 | bfd_reloc_code_real_type); | |
9359 | static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *); | |
9360 | ||
43cd72b9 | 9361 | static void |
7fa3d080 BW |
9362 | convert_frag_immed (segT segP, |
9363 | fragS *fragP, | |
9364 | int min_steps, | |
9365 | xtensa_format fmt, | |
9366 | int slot) | |
e0001a05 NC |
9367 | { |
9368 | char *immed_instr = fragP->fr_opcode; | |
43cd72b9 | 9369 | TInsn orig_tinsn; |
e0001a05 | 9370 | bfd_boolean expanded = FALSE; |
e0001a05 | 9371 | bfd_boolean branch_jmp_to_next = FALSE; |
43cd72b9 | 9372 | char *fr_opcode = fragP->fr_opcode; |
43cd72b9 | 9373 | xtensa_isa isa = xtensa_default_isa; |
def13efb | 9374 | bfd_boolean from_wide_insn = FALSE; |
43cd72b9 BW |
9375 | int bytes; |
9376 | bfd_boolean is_loop; | |
e0001a05 | 9377 | |
43cd72b9 | 9378 | assert (fr_opcode != NULL); |
e0001a05 | 9379 | |
b5e4a23d | 9380 | xg_clear_vinsn (&cur_vinsn); |
e0001a05 | 9381 | |
b5e4a23d | 9382 | vinsn_from_chars (&cur_vinsn, fr_opcode); |
b2d179be | 9383 | if (cur_vinsn.num_slots > 1) |
def13efb | 9384 | from_wide_insn = TRUE; |
e0001a05 | 9385 | |
b5e4a23d | 9386 | orig_tinsn = cur_vinsn.slots[slot]; |
43cd72b9 BW |
9387 | tinsn_immed_from_frag (&orig_tinsn, fragP, slot); |
9388 | ||
9389 | is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1; | |
e0001a05 | 9390 | |
b08b5071 | 9391 | if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform) |
43cd72b9 | 9392 | branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP); |
e0001a05 NC |
9393 | |
9394 | if (branch_jmp_to_next && !next_frag_is_loop_target (fragP)) | |
9395 | { | |
9396 | /* Conversion just inserts a NOP and marks the fix as completed. */ | |
43cd72b9 BW |
9397 | bytes = xtensa_format_length (isa, fmt); |
9398 | if (bytes >= 4) | |
9399 | { | |
b5e4a23d BW |
9400 | cur_vinsn.slots[slot].opcode = |
9401 | xtensa_format_slot_nop_opcode (isa, cur_vinsn.format, slot); | |
9402 | cur_vinsn.slots[slot].ntok = 0; | |
43cd72b9 BW |
9403 | } |
9404 | else | |
9405 | { | |
9406 | bytes += fragP->tc_frag_data.text_expansion[0]; | |
9407 | assert (bytes == 2 || bytes == 3); | |
b5e4a23d | 9408 | build_nop (&cur_vinsn.slots[0], bytes); |
43cd72b9 BW |
9409 | fragP->fr_fix += fragP->tc_frag_data.text_expansion[0]; |
9410 | } | |
e7da6241 | 9411 | vinsn_to_insnbuf (&cur_vinsn, fr_opcode, frag_now, TRUE); |
d77b99c9 | 9412 | xtensa_insnbuf_to_chars |
b5e4a23d | 9413 | (isa, cur_vinsn.insnbuf, (unsigned char *) fr_opcode, 0); |
e0001a05 NC |
9414 | fragP->fr_var = 0; |
9415 | } | |
7c834684 | 9416 | else |
e0001a05 | 9417 | { |
43cd72b9 BW |
9418 | /* Here is the fun stuff: Get the immediate field from this |
9419 | instruction. If it fits, we're done. If not, find the next | |
9420 | instruction sequence that fits. */ | |
9421 | ||
e0001a05 NC |
9422 | IStack istack; |
9423 | int i; | |
9424 | symbolS *lit_sym = NULL; | |
9425 | int total_size = 0; | |
43cd72b9 | 9426 | int target_offset = 0; |
e0001a05 NC |
9427 | int old_size; |
9428 | int diff; | |
9429 | symbolS *gen_label = NULL; | |
9430 | offsetT frag_offset; | |
43cd72b9 BW |
9431 | bfd_boolean first = TRUE; |
9432 | bfd_boolean last_is_jump; | |
e0001a05 | 9433 | |
43cd72b9 | 9434 | /* It does not fit. Find something that does and |
e0001a05 | 9435 | convert immediately. */ |
43cd72b9 | 9436 | frag_offset = fr_opcode - fragP->fr_literal; |
e0001a05 | 9437 | istack_init (&istack); |
43cd72b9 | 9438 | xg_assembly_relax (&istack, &orig_tinsn, |
e0001a05 NC |
9439 | segP, fragP, frag_offset, min_steps, 0); |
9440 | ||
43cd72b9 | 9441 | old_size = xtensa_format_length (isa, fmt); |
e0001a05 NC |
9442 | |
9443 | /* Assemble this right inline. */ | |
9444 | ||
9445 | /* First, create the mapping from a label name to the REAL label. */ | |
43cd72b9 | 9446 | target_offset = 0; |
e0001a05 NC |
9447 | for (i = 0; i < istack.ninsn; i++) |
9448 | { | |
43cd72b9 | 9449 | TInsn *tinsn = &istack.insn[i]; |
e0001a05 NC |
9450 | fragS *lit_frag; |
9451 | ||
43cd72b9 | 9452 | switch (tinsn->insn_type) |
e0001a05 NC |
9453 | { |
9454 | case ITYPE_LITERAL: | |
9455 | if (lit_sym != NULL) | |
9456 | as_bad (_("multiple literals in expansion")); | |
9457 | /* First find the appropriate space in the literal pool. */ | |
43cd72b9 | 9458 | lit_frag = fragP->tc_frag_data.literal_frags[slot]; |
e0001a05 NC |
9459 | if (lit_frag == NULL) |
9460 | as_bad (_("no registered fragment for literal")); | |
43cd72b9 | 9461 | if (tinsn->ntok != 1) |
e0001a05 NC |
9462 | as_bad (_("number of literal tokens != 1")); |
9463 | ||
9464 | /* Set the literal symbol and add a fixup. */ | |
9465 | lit_sym = lit_frag->fr_symbol; | |
9466 | break; | |
9467 | ||
9468 | case ITYPE_LABEL: | |
43cd72b9 BW |
9469 | if (align_targets && !is_loop) |
9470 | { | |
9471 | fragS *unreach = fragP->fr_next; | |
9472 | while (!(unreach->fr_type == rs_machine_dependent | |
9473 | && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE | |
9474 | || unreach->fr_subtype == RELAX_UNREACHABLE))) | |
9475 | { | |
9476 | unreach = unreach->fr_next; | |
9477 | } | |
9478 | ||
9479 | assert (unreach->fr_type == rs_machine_dependent | |
9480 | && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE | |
9481 | || unreach->fr_subtype == RELAX_UNREACHABLE)); | |
9482 | ||
9483 | target_offset += unreach->tc_frag_data.text_expansion[0]; | |
9484 | } | |
e0001a05 NC |
9485 | assert (gen_label == NULL); |
9486 | gen_label = symbol_new (FAKE_LABEL_NAME, now_seg, | |
43cd72b9 BW |
9487 | fr_opcode - fragP->fr_literal |
9488 | + target_offset, fragP); | |
e0001a05 NC |
9489 | break; |
9490 | ||
9491 | case ITYPE_INSN: | |
def13efb | 9492 | if (first && from_wide_insn) |
43cd72b9 BW |
9493 | { |
9494 | target_offset += xtensa_format_length (isa, fmt); | |
9495 | first = FALSE; | |
9496 | if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot)) | |
9497 | target_offset += xg_get_single_size (tinsn->opcode); | |
9498 | } | |
9499 | else | |
9500 | target_offset += xg_get_single_size (tinsn->opcode); | |
e0001a05 NC |
9501 | break; |
9502 | } | |
9503 | } | |
9504 | ||
9505 | total_size = 0; | |
43cd72b9 BW |
9506 | first = TRUE; |
9507 | last_is_jump = FALSE; | |
e0001a05 NC |
9508 | for (i = 0; i < istack.ninsn; i++) |
9509 | { | |
43cd72b9 | 9510 | TInsn *tinsn = &istack.insn[i]; |
e0001a05 NC |
9511 | fragS *lit_frag; |
9512 | int size; | |
9513 | segT target_seg; | |
43cd72b9 | 9514 | bfd_reloc_code_real_type reloc_type; |
e0001a05 | 9515 | |
43cd72b9 | 9516 | switch (tinsn->insn_type) |
e0001a05 NC |
9517 | { |
9518 | case ITYPE_LITERAL: | |
43cd72b9 BW |
9519 | lit_frag = fragP->tc_frag_data.literal_frags[slot]; |
9520 | /* Already checked. */ | |
e0001a05 NC |
9521 | assert (lit_frag != NULL); |
9522 | assert (lit_sym != NULL); | |
43cd72b9 BW |
9523 | assert (tinsn->ntok == 1); |
9524 | /* Add a fixup. */ | |
e0001a05 NC |
9525 | target_seg = S_GET_SEGMENT (lit_sym); |
9526 | assert (target_seg); | |
bbdd25a8 | 9527 | reloc_type = map_operator_to_reloc (tinsn->tok[0].X_op); |
e0001a05 | 9528 | fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4, |
43cd72b9 | 9529 | &tinsn->tok[0], FALSE, reloc_type); |
e0001a05 NC |
9530 | break; |
9531 | ||
9532 | case ITYPE_LABEL: | |
9533 | break; | |
9534 | ||
9535 | case ITYPE_INSN: | |
43cd72b9 BW |
9536 | xg_resolve_labels (tinsn, gen_label); |
9537 | xg_resolve_literals (tinsn, lit_sym); | |
def13efb | 9538 | if (from_wide_insn && first) |
43cd72b9 BW |
9539 | { |
9540 | first = FALSE; | |
9541 | if (opcode_fits_format_slot (tinsn->opcode, fmt, slot)) | |
9542 | { | |
b5e4a23d | 9543 | cur_vinsn.slots[slot] = *tinsn; |
43cd72b9 BW |
9544 | } |
9545 | else | |
9546 | { | |
b5e4a23d | 9547 | cur_vinsn.slots[slot].opcode = |
43cd72b9 | 9548 | xtensa_format_slot_nop_opcode (isa, fmt, slot); |
b5e4a23d | 9549 | cur_vinsn.slots[slot].ntok = 0; |
43cd72b9 | 9550 | } |
b5e4a23d BW |
9551 | vinsn_to_insnbuf (&cur_vinsn, immed_instr, fragP, TRUE); |
9552 | xtensa_insnbuf_to_chars (isa, cur_vinsn.insnbuf, | |
d77b99c9 | 9553 | (unsigned char *) immed_instr, 0); |
43cd72b9 BW |
9554 | fragP->tc_frag_data.is_insn = TRUE; |
9555 | size = xtensa_format_length (isa, fmt); | |
9556 | if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot)) | |
9557 | { | |
43cd72b9 | 9558 | xg_emit_insn_to_buf |
b2d179be | 9559 | (tinsn, immed_instr + size, fragP, |
43cd72b9 BW |
9560 | immed_instr - fragP->fr_literal + size, TRUE); |
9561 | size += xg_get_single_size (tinsn->opcode); | |
9562 | } | |
9563 | } | |
9564 | else | |
9565 | { | |
43cd72b9 | 9566 | size = xg_get_single_size (tinsn->opcode); |
b2d179be | 9567 | xg_emit_insn_to_buf (tinsn, immed_instr, fragP, |
43cd72b9 | 9568 | immed_instr - fragP->fr_literal, TRUE); |
43cd72b9 | 9569 | } |
e0001a05 | 9570 | immed_instr += size; |
43cd72b9 | 9571 | total_size += size; |
e0001a05 NC |
9572 | break; |
9573 | } | |
9574 | } | |
9575 | ||
9576 | diff = total_size - old_size; | |
9577 | assert (diff >= 0); | |
9578 | if (diff != 0) | |
9579 | expanded = TRUE; | |
9580 | assert (diff <= fragP->fr_var); | |
9581 | fragP->fr_var -= diff; | |
9582 | fragP->fr_fix += diff; | |
9583 | } | |
9584 | ||
e0001a05 | 9585 | /* Check for undefined immediates in LOOP instructions. */ |
43cd72b9 | 9586 | if (is_loop) |
e0001a05 NC |
9587 | { |
9588 | symbolS *sym; | |
43cd72b9 | 9589 | sym = orig_tinsn.tok[1].X_add_symbol; |
e0001a05 NC |
9590 | if (sym != NULL && !S_IS_DEFINED (sym)) |
9591 | { | |
9592 | as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym)); | |
9593 | return; | |
9594 | } | |
43cd72b9 | 9595 | sym = orig_tinsn.tok[1].X_op_symbol; |
e0001a05 NC |
9596 | if (sym != NULL && !S_IS_DEFINED (sym)) |
9597 | { | |
9598 | as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym)); | |
9599 | return; | |
9600 | } | |
9601 | } | |
9602 | ||
43cd72b9 BW |
9603 | if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1) |
9604 | convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn); | |
e0001a05 | 9605 | |
43cd72b9 | 9606 | if (expanded && is_direct_call_opcode (orig_tinsn.opcode)) |
e0001a05 NC |
9607 | { |
9608 | /* Add an expansion note on the expanded instruction. */ | |
9609 | fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4, | |
43cd72b9 | 9610 | &orig_tinsn.tok[0], TRUE, |
e0001a05 | 9611 | BFD_RELOC_XTENSA_ASM_EXPAND); |
e0001a05 NC |
9612 | } |
9613 | } | |
9614 | ||
9615 | ||
9616 | /* Add a new fix expression into the desired segment. We have to | |
9617 | switch to that segment to do this. */ | |
9618 | ||
9619 | static fixS * | |
7fa3d080 BW |
9620 | fix_new_exp_in_seg (segT new_seg, |
9621 | subsegT new_subseg, | |
9622 | fragS *frag, | |
9623 | int where, | |
9624 | int size, | |
9625 | expressionS *exp, | |
9626 | int pcrel, | |
9627 | bfd_reloc_code_real_type r_type) | |
e0001a05 NC |
9628 | { |
9629 | fixS *new_fix; | |
9630 | segT seg = now_seg; | |
9631 | subsegT subseg = now_subseg; | |
43cd72b9 | 9632 | |
e0001a05 NC |
9633 | assert (new_seg != 0); |
9634 | subseg_set (new_seg, new_subseg); | |
9635 | ||
e0001a05 NC |
9636 | new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type); |
9637 | subseg_set (seg, subseg); | |
9638 | return new_fix; | |
9639 | } | |
9640 | ||
9641 | ||
43cd72b9 BW |
9642 | /* Relax a loop instruction so that it can span loop >256 bytes. |
9643 | ||
9644 | loop as, .L1 | |
9645 | .L0: | |
9646 | rsr as, LEND | |
9647 | wsr as, LBEG | |
9648 | addi as, as, lo8 (label-.L1) | |
9649 | addmi as, as, mid8 (label-.L1) | |
9650 | wsr as, LEND | |
9651 | isync | |
9652 | rsr as, LCOUNT | |
9653 | addi as, as, 1 | |
9654 | .L1: | |
9655 | <<body>> | |
9656 | label: | |
9657 | */ | |
e0001a05 NC |
9658 | |
9659 | static void | |
7fa3d080 | 9660 | convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn) |
e0001a05 NC |
9661 | { |
9662 | TInsn loop_insn; | |
9663 | TInsn addi_insn; | |
9664 | TInsn addmi_insn; | |
9665 | unsigned long target; | |
9666 | static xtensa_insnbuf insnbuf = NULL; | |
9667 | unsigned int loop_length, loop_length_hi, loop_length_lo; | |
9668 | xtensa_isa isa = xtensa_default_isa; | |
9669 | addressT loop_offset; | |
9670 | addressT addi_offset = 9; | |
9671 | addressT addmi_offset = 12; | |
43cd72b9 | 9672 | fragS *next_fragP; |
d77b99c9 | 9673 | int target_count; |
e0001a05 NC |
9674 | |
9675 | if (!insnbuf) | |
9676 | insnbuf = xtensa_insnbuf_alloc (isa); | |
9677 | ||
9678 | /* Get the loop offset. */ | |
43cd72b9 | 9679 | loop_offset = get_expanded_loop_offset (tinsn->opcode); |
e0001a05 | 9680 | |
43cd72b9 BW |
9681 | /* Validate that there really is a LOOP at the loop_offset. Because |
9682 | loops are not bundleable, we can assume that the instruction will be | |
9683 | in slot 0. */ | |
9684 | tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0); | |
9685 | tinsn_immed_from_frag (&loop_insn, fragP, 0); | |
9686 | ||
9687 | assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1); | |
e0001a05 NC |
9688 | addi_offset += loop_offset; |
9689 | addmi_offset += loop_offset; | |
9690 | ||
43cd72b9 | 9691 | assert (tinsn->ntok == 2); |
b08b5071 BW |
9692 | if (tinsn->tok[1].X_op == O_constant) |
9693 | target = tinsn->tok[1].X_add_number; | |
9694 | else if (tinsn->tok[1].X_op == O_symbol) | |
9695 | { | |
9696 | /* Find the fragment. */ | |
9697 | symbolS *sym = tinsn->tok[1].X_add_symbol; | |
9698 | assert (S_GET_SEGMENT (sym) == segP | |
9699 | || S_GET_SEGMENT (sym) == absolute_section); | |
9700 | target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number); | |
9701 | } | |
9702 | else | |
9703 | { | |
9704 | as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op); | |
9705 | target = 0; | |
9706 | } | |
e0001a05 | 9707 | |
e0001a05 NC |
9708 | loop_length = target - (fragP->fr_address + fragP->fr_fix); |
9709 | loop_length_hi = loop_length & ~0x0ff; | |
9710 | loop_length_lo = loop_length & 0x0ff; | |
9711 | if (loop_length_lo >= 128) | |
9712 | { | |
9713 | loop_length_lo -= 256; | |
9714 | loop_length_hi += 256; | |
9715 | } | |
9716 | ||
43cd72b9 | 9717 | /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most |
e0001a05 NC |
9718 | 32512. If the loop is larger than that, then we just fail. */ |
9719 | if (loop_length_hi > 32512) | |
9720 | as_bad_where (fragP->fr_file, fragP->fr_line, | |
9721 | _("loop too long for LOOP instruction")); | |
9722 | ||
43cd72b9 | 9723 | tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0); |
e0001a05 NC |
9724 | assert (addi_insn.opcode == xtensa_addi_opcode); |
9725 | ||
43cd72b9 | 9726 | tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0); |
e0001a05 NC |
9727 | assert (addmi_insn.opcode == xtensa_addmi_opcode); |
9728 | ||
9729 | set_expr_const (&addi_insn.tok[2], loop_length_lo); | |
9730 | tinsn_to_insnbuf (&addi_insn, insnbuf); | |
43cd72b9 | 9731 | |
e0001a05 | 9732 | fragP->tc_frag_data.is_insn = TRUE; |
d77b99c9 BW |
9733 | xtensa_insnbuf_to_chars |
9734 | (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0); | |
e0001a05 NC |
9735 | |
9736 | set_expr_const (&addmi_insn.tok[2], loop_length_hi); | |
9737 | tinsn_to_insnbuf (&addmi_insn, insnbuf); | |
d77b99c9 BW |
9738 | xtensa_insnbuf_to_chars |
9739 | (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0); | |
43cd72b9 BW |
9740 | |
9741 | /* Walk through all of the frags from here to the loop end | |
9742 | and mark them as no_transform to keep them from being modified | |
9743 | by the linker. If we ever have a relocation for the | |
9744 | addi/addmi of the difference of two symbols we can remove this. */ | |
9745 | ||
9746 | target_count = 0; | |
9747 | for (next_fragP = fragP; next_fragP != NULL; | |
9748 | next_fragP = next_fragP->fr_next) | |
9749 | { | |
b08b5071 | 9750 | next_fragP->tc_frag_data.is_no_transform = TRUE; |
43cd72b9 BW |
9751 | if (next_fragP->tc_frag_data.is_loop_target) |
9752 | target_count++; | |
9753 | if (target_count == 2) | |
9754 | break; | |
9755 | } | |
e0001a05 NC |
9756 | } |
9757 | ||
b08b5071 BW |
9758 | \f |
9759 | /* A map that keeps information on a per-subsegment basis. This is | |
9760 | maintained during initial assembly, but is invalid once the | |
9761 | subsegments are smashed together. I.E., it cannot be used during | |
9762 | the relaxation. */ | |
e0001a05 | 9763 | |
b08b5071 | 9764 | typedef struct subseg_map_struct |
e0001a05 | 9765 | { |
b08b5071 BW |
9766 | /* the key */ |
9767 | segT seg; | |
9768 | subsegT subseg; | |
e0001a05 | 9769 | |
b08b5071 BW |
9770 | /* the data */ |
9771 | unsigned flags; | |
9772 | float total_freq; /* fall-through + branch target frequency */ | |
9773 | float target_freq; /* branch target frequency alone */ | |
9774 | ||
9775 | struct subseg_map_struct *next; | |
9776 | } subseg_map; | |
e0001a05 | 9777 | |
e0001a05 | 9778 | |
e0001a05 NC |
9779 | static subseg_map *sseg_map = NULL; |
9780 | ||
43cd72b9 | 9781 | static subseg_map * |
7fa3d080 | 9782 | get_subseg_info (segT seg, subsegT subseg) |
e0001a05 NC |
9783 | { |
9784 | subseg_map *subseg_e; | |
9785 | ||
9786 | for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next) | |
e0001a05 | 9787 | { |
43cd72b9 | 9788 | if (seg == subseg_e->seg && subseg == subseg_e->subseg) |
b08b5071 | 9789 | break; |
e0001a05 | 9790 | } |
b08b5071 BW |
9791 | return subseg_e; |
9792 | } | |
9793 | ||
9794 | ||
9795 | static subseg_map * | |
9796 | add_subseg_info (segT seg, subsegT subseg) | |
9797 | { | |
9798 | subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map)); | |
43cd72b9 BW |
9799 | memset (subseg_e, 0, sizeof (subseg_map)); |
9800 | subseg_e->seg = seg; | |
9801 | subseg_e->subseg = subseg; | |
9802 | subseg_e->flags = 0; | |
9803 | /* Start off considering every branch target very important. */ | |
b08b5071 BW |
9804 | subseg_e->target_freq = 1.0; |
9805 | subseg_e->total_freq = 1.0; | |
43cd72b9 BW |
9806 | subseg_e->next = sseg_map; |
9807 | sseg_map = subseg_e; | |
43cd72b9 BW |
9808 | return subseg_e; |
9809 | } | |
e0001a05 | 9810 | |
7fa3d080 BW |
9811 | |
9812 | static unsigned | |
9813 | get_last_insn_flags (segT seg, subsegT subseg) | |
9814 | { | |
9815 | subseg_map *subseg_e = get_subseg_info (seg, subseg); | |
b08b5071 BW |
9816 | if (subseg_e) |
9817 | return subseg_e->flags; | |
9818 | return 0; | |
7fa3d080 BW |
9819 | } |
9820 | ||
9821 | ||
43cd72b9 | 9822 | static void |
7fa3d080 BW |
9823 | set_last_insn_flags (segT seg, |
9824 | subsegT subseg, | |
9825 | unsigned fl, | |
9826 | bfd_boolean val) | |
43cd72b9 BW |
9827 | { |
9828 | subseg_map *subseg_e = get_subseg_info (seg, subseg); | |
b08b5071 BW |
9829 | if (! subseg_e) |
9830 | subseg_e = add_subseg_info (seg, subseg); | |
e0001a05 NC |
9831 | if (val) |
9832 | subseg_e->flags |= fl; | |
9833 | else | |
9834 | subseg_e->flags &= ~fl; | |
9835 | } | |
9836 | ||
b08b5071 BW |
9837 | |
9838 | static float | |
9839 | get_subseg_total_freq (segT seg, subsegT subseg) | |
9840 | { | |
9841 | subseg_map *subseg_e = get_subseg_info (seg, subseg); | |
9842 | if (subseg_e) | |
9843 | return subseg_e->total_freq; | |
9844 | return 1.0; | |
9845 | } | |
9846 | ||
9847 | ||
9848 | static float | |
9849 | get_subseg_target_freq (segT seg, subsegT subseg) | |
9850 | { | |
9851 | subseg_map *subseg_e = get_subseg_info (seg, subseg); | |
9852 | if (subseg_e) | |
9853 | return subseg_e->target_freq; | |
9854 | return 1.0; | |
9855 | } | |
9856 | ||
9857 | ||
9858 | static void | |
9859 | set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f) | |
9860 | { | |
9861 | subseg_map *subseg_e = get_subseg_info (seg, subseg); | |
9862 | if (! subseg_e) | |
9863 | subseg_e = add_subseg_info (seg, subseg); | |
9864 | subseg_e->total_freq = total_f; | |
9865 | subseg_e->target_freq = target_f; | |
9866 | } | |
9867 | ||
e0001a05 NC |
9868 | \f |
9869 | /* Segment Lists and emit_state Stuff. */ | |
9870 | ||
e0001a05 | 9871 | static void |
7fa3d080 | 9872 | xtensa_move_seg_list_to_beginning (seg_list *head) |
e0001a05 NC |
9873 | { |
9874 | head = head->next; | |
9875 | while (head) | |
9876 | { | |
9877 | segT literal_section = head->seg; | |
9878 | ||
9879 | /* Move the literal section to the front of the section list. */ | |
9880 | assert (literal_section); | |
69852798 AM |
9881 | if (literal_section != stdoutput->sections) |
9882 | { | |
9883 | bfd_section_list_remove (stdoutput, literal_section); | |
9884 | bfd_section_list_prepend (stdoutput, literal_section); | |
9885 | } | |
e0001a05 NC |
9886 | head = head->next; |
9887 | } | |
9888 | } | |
9889 | ||
9890 | ||
7fa3d080 BW |
9891 | static void mark_literal_frags (seg_list *); |
9892 | ||
9893 | static void | |
9894 | xtensa_move_literals (void) | |
e0001a05 NC |
9895 | { |
9896 | seg_list *segment; | |
9897 | frchainS *frchain_from, *frchain_to; | |
9898 | fragS *search_frag, *next_frag, *last_frag, *literal_pool, *insert_after; | |
9899 | fragS **frag_splice; | |
9900 | emit_state state; | |
9901 | segT dest_seg; | |
9902 | fixS *fix, *next_fix, **fix_splice; | |
82e7541d | 9903 | sym_list *lit; |
e0001a05 | 9904 | |
a7877748 | 9905 | mark_literal_frags (literal_head->next); |
e0001a05 NC |
9906 | |
9907 | if (use_literal_section) | |
9908 | return; | |
9909 | ||
74869ac7 | 9910 | for (segment = literal_head->next; segment; segment = segment->next) |
e0001a05 | 9911 | { |
74869ac7 BW |
9912 | /* Keep the literals for .init and .fini in separate sections. */ |
9913 | if (!strcmp (segment_name (segment->seg), INIT_SECTION_NAME) | |
9914 | || !strcmp (segment_name (segment->seg), FINI_SECTION_NAME)) | |
9915 | continue; | |
9916 | ||
e0001a05 NC |
9917 | frchain_from = seg_info (segment->seg)->frchainP; |
9918 | search_frag = frchain_from->frch_root; | |
9919 | literal_pool = NULL; | |
9920 | frchain_to = NULL; | |
9921 | frag_splice = &(frchain_from->frch_root); | |
9922 | ||
9923 | while (!search_frag->tc_frag_data.literal_frag) | |
9924 | { | |
9925 | assert (search_frag->fr_fix == 0 | |
9926 | || search_frag->fr_type == rs_align); | |
9927 | search_frag = search_frag->fr_next; | |
9928 | } | |
9929 | ||
9930 | assert (search_frag->tc_frag_data.literal_frag->fr_subtype | |
9931 | == RELAX_LITERAL_POOL_BEGIN); | |
9932 | xtensa_switch_section_emit_state (&state, segment->seg, 0); | |
9933 | ||
9934 | /* Make sure that all the frags in this series are closed, and | |
9935 | that there is at least one left over of zero-size. This | |
9936 | prevents us from making a segment with an frchain without any | |
9937 | frags in it. */ | |
9938 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
43cd72b9 | 9939 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
9940 | last_frag = frag_now; |
9941 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
43cd72b9 | 9942 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 | 9943 | |
43cd72b9 | 9944 | while (search_frag != frag_now) |
e0001a05 NC |
9945 | { |
9946 | next_frag = search_frag->fr_next; | |
9947 | ||
43cd72b9 | 9948 | /* First, move the frag out of the literal section and |
e0001a05 NC |
9949 | to the appropriate place. */ |
9950 | if (search_frag->tc_frag_data.literal_frag) | |
9951 | { | |
9952 | literal_pool = search_frag->tc_frag_data.literal_frag; | |
9953 | assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN); | |
dd49a749 BW |
9954 | frchain_to = literal_pool->tc_frag_data.lit_frchain; |
9955 | assert (frchain_to); | |
e0001a05 | 9956 | } |
c48aaca0 | 9957 | insert_after = literal_pool->tc_frag_data.literal_frag; |
dd49a749 | 9958 | dest_seg = insert_after->fr_next->tc_frag_data.lit_seg; |
43cd72b9 | 9959 | |
e0001a05 NC |
9960 | *frag_splice = next_frag; |
9961 | search_frag->fr_next = insert_after->fr_next; | |
9962 | insert_after->fr_next = search_frag; | |
9963 | search_frag->tc_frag_data.lit_seg = dest_seg; | |
c48aaca0 | 9964 | literal_pool->tc_frag_data.literal_frag = search_frag; |
e0001a05 NC |
9965 | |
9966 | /* Now move any fixups associated with this frag to the | |
9967 | right section. */ | |
9968 | fix = frchain_from->fix_root; | |
9969 | fix_splice = &(frchain_from->fix_root); | |
9970 | while (fix) | |
9971 | { | |
9972 | next_fix = fix->fx_next; | |
9973 | if (fix->fx_frag == search_frag) | |
9974 | { | |
9975 | *fix_splice = next_fix; | |
9976 | fix->fx_next = frchain_to->fix_root; | |
9977 | frchain_to->fix_root = fix; | |
9978 | if (frchain_to->fix_tail == NULL) | |
9979 | frchain_to->fix_tail = fix; | |
9980 | } | |
9981 | else | |
9982 | fix_splice = &(fix->fx_next); | |
9983 | fix = next_fix; | |
9984 | } | |
9985 | search_frag = next_frag; | |
9986 | } | |
9987 | ||
9988 | if (frchain_from->fix_root != NULL) | |
9989 | { | |
9990 | frchain_from = seg_info (segment->seg)->frchainP; | |
9991 | as_warn (_("fixes not all moved from %s"), segment->seg->name); | |
9992 | ||
9993 | assert (frchain_from->fix_root == NULL); | |
9994 | } | |
9995 | frchain_from->fix_tail = NULL; | |
9996 | xtensa_restore_emit_state (&state); | |
e0001a05 NC |
9997 | } |
9998 | ||
82e7541d BW |
9999 | /* Now fix up the SEGMENT value for all the literal symbols. */ |
10000 | for (lit = literal_syms; lit; lit = lit->next) | |
10001 | { | |
10002 | symbolS *lit_sym = lit->sym; | |
10003 | segT dest_seg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg; | |
43cd72b9 BW |
10004 | if (dest_seg) |
10005 | S_SET_SEGMENT (lit_sym, dest_seg); | |
82e7541d | 10006 | } |
e0001a05 NC |
10007 | } |
10008 | ||
10009 | ||
a7877748 BW |
10010 | /* Walk over all the frags for segments in a list and mark them as |
10011 | containing literals. As clunky as this is, we can't rely on frag_var | |
10012 | and frag_variant to get called in all situations. */ | |
10013 | ||
10014 | static void | |
7fa3d080 | 10015 | mark_literal_frags (seg_list *segment) |
a7877748 BW |
10016 | { |
10017 | frchainS *frchain_from; | |
10018 | fragS *search_frag; | |
10019 | ||
10020 | while (segment) | |
10021 | { | |
10022 | frchain_from = seg_info (segment->seg)->frchainP; | |
10023 | search_frag = frchain_from->frch_root; | |
c138bc38 | 10024 | while (search_frag) |
a7877748 BW |
10025 | { |
10026 | search_frag->tc_frag_data.is_literal = TRUE; | |
10027 | search_frag = search_frag->fr_next; | |
10028 | } | |
10029 | segment = segment->next; | |
10030 | } | |
10031 | } | |
10032 | ||
10033 | ||
e0001a05 | 10034 | static void |
7fa3d080 | 10035 | xtensa_reorder_seg_list (seg_list *head, segT after) |
e0001a05 NC |
10036 | { |
10037 | /* Move all of the sections in the section list to come | |
10038 | after "after" in the gnu segment list. */ | |
10039 | ||
10040 | head = head->next; | |
10041 | while (head) | |
10042 | { | |
10043 | segT literal_section = head->seg; | |
10044 | ||
10045 | /* Move the literal section after "after". */ | |
10046 | assert (literal_section); | |
10047 | if (literal_section != after) | |
10048 | { | |
69852798 AM |
10049 | bfd_section_list_remove (stdoutput, literal_section); |
10050 | bfd_section_list_insert_after (stdoutput, after, literal_section); | |
e0001a05 NC |
10051 | } |
10052 | ||
10053 | head = head->next; | |
10054 | } | |
10055 | } | |
10056 | ||
10057 | ||
10058 | /* Push all the literal segments to the end of the gnu list. */ | |
10059 | ||
7fa3d080 BW |
10060 | static void |
10061 | xtensa_reorder_segments (void) | |
e0001a05 NC |
10062 | { |
10063 | segT sec; | |
b08b5071 | 10064 | segT last_sec = 0; |
e0001a05 NC |
10065 | int old_count = 0; |
10066 | int new_count = 0; | |
10067 | ||
10068 | for (sec = stdoutput->sections; sec != NULL; sec = sec->next) | |
b08b5071 BW |
10069 | { |
10070 | last_sec = sec; | |
10071 | old_count++; | |
10072 | } | |
e0001a05 NC |
10073 | |
10074 | /* Now that we have the last section, push all the literal | |
10075 | sections to the end. */ | |
e0001a05 | 10076 | xtensa_reorder_seg_list (literal_head, last_sec); |
e0001a05 NC |
10077 | |
10078 | /* Now perform the final error check. */ | |
10079 | for (sec = stdoutput->sections; sec != NULL; sec = sec->next) | |
10080 | new_count++; | |
10081 | assert (new_count == old_count); | |
10082 | } | |
10083 | ||
10084 | ||
e0001a05 NC |
10085 | /* Change the emit state (seg, subseg, and frag related stuff) to the |
10086 | correct location. Return a emit_state which can be passed to | |
10087 | xtensa_restore_emit_state to return to current fragment. */ | |
10088 | ||
7fa3d080 BW |
10089 | static void |
10090 | xtensa_switch_to_literal_fragment (emit_state *result) | |
43cd72b9 BW |
10091 | { |
10092 | if (directive_state[directive_absolute_literals]) | |
10093 | { | |
74869ac7 BW |
10094 | segT lit4_seg = cache_literal_section (TRUE); |
10095 | xtensa_switch_section_emit_state (result, lit4_seg, 0); | |
43cd72b9 BW |
10096 | } |
10097 | else | |
10098 | xtensa_switch_to_non_abs_literal_fragment (result); | |
10099 | ||
10100 | /* Do a 4-byte align here. */ | |
10101 | frag_align (2, 0, 0); | |
10102 | record_alignment (now_seg, 2); | |
10103 | } | |
10104 | ||
10105 | ||
7fa3d080 BW |
10106 | static void |
10107 | xtensa_switch_to_non_abs_literal_fragment (emit_state *result) | |
e0001a05 | 10108 | { |
e0001a05 NC |
10109 | static bfd_boolean recursive = FALSE; |
10110 | fragS *pool_location = get_literal_pool_location (now_seg); | |
74869ac7 | 10111 | segT lit_seg; |
c138bc38 | 10112 | bfd_boolean is_init = |
e0001a05 | 10113 | (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME)); |
c138bc38 | 10114 | bfd_boolean is_fini = |
e0001a05 | 10115 | (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME)); |
e0001a05 | 10116 | |
43cd72b9 BW |
10117 | if (pool_location == NULL |
10118 | && !use_literal_section | |
e0001a05 NC |
10119 | && !recursive |
10120 | && !is_init && ! is_fini) | |
10121 | { | |
43cd72b9 | 10122 | as_bad (_("literal pool location required for text-section-literals; specify with .literal_position")); |
74869ac7 BW |
10123 | |
10124 | /* When we mark a literal pool location, we want to put a frag in | |
10125 | the literal pool that points to it. But to do that, we want to | |
10126 | switch_to_literal_fragment. But literal sections don't have | |
10127 | literal pools, so their location is always null, so we would | |
10128 | recurse forever. This is kind of hacky, but it works. */ | |
10129 | ||
e0001a05 | 10130 | recursive = TRUE; |
61846f28 | 10131 | xtensa_mark_literal_pool_location (); |
e0001a05 NC |
10132 | recursive = FALSE; |
10133 | } | |
10134 | ||
74869ac7 BW |
10135 | lit_seg = cache_literal_section (FALSE); |
10136 | xtensa_switch_section_emit_state (result, lit_seg, 0); | |
e0001a05 | 10137 | |
43cd72b9 BW |
10138 | if (!use_literal_section |
10139 | && !is_init && !is_fini | |
10140 | && get_literal_pool_location (now_seg) != pool_location) | |
e0001a05 NC |
10141 | { |
10142 | /* Close whatever frag is there. */ | |
10143 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
43cd72b9 | 10144 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
10145 | frag_now->tc_frag_data.literal_frag = pool_location; |
10146 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
43cd72b9 | 10147 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 | 10148 | } |
e0001a05 NC |
10149 | } |
10150 | ||
10151 | ||
10152 | /* Call this function before emitting data into the literal section. | |
10153 | This is a helper function for xtensa_switch_to_literal_fragment. | |
10154 | This is similar to a .section new_now_seg subseg. */ | |
10155 | ||
7fa3d080 BW |
10156 | static void |
10157 | xtensa_switch_section_emit_state (emit_state *state, | |
10158 | segT new_now_seg, | |
10159 | subsegT new_now_subseg) | |
e0001a05 NC |
10160 | { |
10161 | state->name = now_seg->name; | |
10162 | state->now_seg = now_seg; | |
10163 | state->now_subseg = now_subseg; | |
10164 | state->generating_literals = generating_literals; | |
10165 | generating_literals++; | |
2b0210eb | 10166 | subseg_set (new_now_seg, new_now_subseg); |
e0001a05 NC |
10167 | } |
10168 | ||
10169 | ||
10170 | /* Use to restore the emitting into the normal place. */ | |
10171 | ||
7fa3d080 BW |
10172 | static void |
10173 | xtensa_restore_emit_state (emit_state *state) | |
e0001a05 NC |
10174 | { |
10175 | generating_literals = state->generating_literals; | |
2b0210eb | 10176 | subseg_set (state->now_seg, state->now_subseg); |
e0001a05 NC |
10177 | } |
10178 | ||
10179 | ||
74869ac7 | 10180 | /* Predicate function used to look up a section in a particular group. */ |
e0001a05 | 10181 | |
74869ac7 BW |
10182 | static bfd_boolean |
10183 | match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf) | |
e0001a05 | 10184 | { |
74869ac7 BW |
10185 | const char *gname = inf; |
10186 | const char *group_name = elf_group_name (sec); | |
10187 | ||
10188 | return (group_name == gname | |
10189 | || (group_name != NULL | |
10190 | && gname != NULL | |
10191 | && strcmp (group_name, gname) == 0)); | |
10192 | } | |
e0001a05 | 10193 | |
e0001a05 | 10194 | |
74869ac7 BW |
10195 | /* Get the literal section to be used for the current text section. |
10196 | The result may be cached in the default_lit_sections structure. */ | |
10197 | ||
10198 | static segT | |
10199 | cache_literal_section (bfd_boolean use_abs_literals) | |
10200 | { | |
10201 | const char *text_name, *group_name = 0; | |
10202 | char *base_name, *name, *suffix; | |
10203 | segT *pcached; | |
10204 | segT seg, current_section; | |
10205 | int current_subsec; | |
10206 | bfd_boolean linkonce = FALSE; | |
10207 | ||
10208 | /* Save the current section/subsection. */ | |
10209 | current_section = now_seg; | |
10210 | current_subsec = now_subseg; | |
10211 | ||
10212 | /* Clear the cached values if they are no longer valid. */ | |
10213 | if (now_seg != default_lit_sections.current_text_seg) | |
b08b5071 | 10214 | { |
74869ac7 BW |
10215 | default_lit_sections.current_text_seg = now_seg; |
10216 | default_lit_sections.lit_seg = NULL; | |
10217 | default_lit_sections.lit4_seg = NULL; | |
10218 | } | |
10219 | ||
10220 | /* Check if the literal section is already cached. */ | |
10221 | if (use_abs_literals) | |
10222 | pcached = &default_lit_sections.lit4_seg; | |
10223 | else | |
10224 | pcached = &default_lit_sections.lit_seg; | |
10225 | ||
10226 | if (*pcached) | |
10227 | return *pcached; | |
10228 | ||
10229 | text_name = default_lit_sections.lit_prefix; | |
10230 | if (! text_name || ! *text_name) | |
10231 | { | |
10232 | text_name = segment_name (current_section); | |
10233 | group_name = elf_group_name (current_section); | |
10234 | linkonce = (current_section->flags & SEC_LINK_ONCE) != 0; | |
10235 | } | |
10236 | ||
10237 | base_name = use_abs_literals ? ".lit4" : ".literal"; | |
10238 | if (group_name) | |
10239 | { | |
10240 | name = xmalloc (strlen (base_name) + strlen (group_name) + 2); | |
10241 | sprintf (name, "%s.%s", base_name, group_name); | |
10242 | } | |
10243 | else if (strncmp (text_name, ".gnu.linkonce.", linkonce_len) == 0) | |
10244 | { | |
10245 | suffix = strchr (text_name + linkonce_len, '.'); | |
10246 | ||
10247 | name = xmalloc (linkonce_len + strlen (base_name) + 1 | |
10248 | + (suffix ? strlen (suffix) : 0)); | |
10249 | strcpy (name, ".gnu.linkonce"); | |
10250 | strcat (name, base_name); | |
10251 | if (suffix) | |
10252 | strcat (name, suffix); | |
10253 | linkonce = TRUE; | |
10254 | } | |
10255 | else | |
10256 | { | |
10257 | /* If the section name ends with ".text", then replace that suffix | |
10258 | instead of appending an additional suffix. */ | |
10259 | size_t len = strlen (text_name); | |
10260 | if (len >= 5 && strcmp (text_name + len - 5, ".text") == 0) | |
10261 | len -= 5; | |
10262 | ||
10263 | name = xmalloc (len + strlen (base_name) + 1); | |
10264 | strcpy (name, text_name); | |
10265 | strcpy (name + len, base_name); | |
b08b5071 | 10266 | } |
e0001a05 | 10267 | |
74869ac7 BW |
10268 | /* Canonicalize section names to allow renaming literal sections. |
10269 | The group name, if any, came from the current text section and | |
10270 | has already been canonicalized. */ | |
10271 | name = tc_canonicalize_symbol_name (name); | |
10272 | ||
10273 | seg = bfd_get_section_by_name_if (stdoutput, name, match_section_group, | |
10274 | (void *) group_name); | |
10275 | if (! seg) | |
e0001a05 | 10276 | { |
74869ac7 BW |
10277 | flagword flags; |
10278 | ||
10279 | seg = subseg_force_new (name, 0); | |
10280 | ||
10281 | if (! use_abs_literals) | |
b08b5071 | 10282 | { |
74869ac7 | 10283 | /* Add the newly created literal segment to the list. */ |
b08b5071 BW |
10284 | seg_list *n = (seg_list *) xmalloc (sizeof (seg_list)); |
10285 | n->seg = seg; | |
74869ac7 BW |
10286 | n->next = literal_head->next; |
10287 | literal_head->next = n; | |
b08b5071 | 10288 | } |
74869ac7 BW |
10289 | |
10290 | flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_ALLOC | SEC_LOAD | |
10291 | | (linkonce ? (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD) : 0) | |
10292 | | (use_abs_literals ? SEC_DATA : SEC_CODE)); | |
10293 | ||
10294 | elf_group_name (seg) = group_name; | |
10295 | ||
10296 | bfd_set_section_flags (stdoutput, seg, flags); | |
b08b5071 | 10297 | bfd_set_section_alignment (stdoutput, seg, 2); |
e0001a05 NC |
10298 | } |
10299 | ||
74869ac7 | 10300 | *pcached = seg; |
b08b5071 | 10301 | subseg_set (current_section, current_subsec); |
74869ac7 | 10302 | return seg; |
e0001a05 NC |
10303 | } |
10304 | ||
43cd72b9 BW |
10305 | \f |
10306 | /* Property Tables Stuff. */ | |
10307 | ||
7fa3d080 BW |
10308 | #define XTENSA_INSN_SEC_NAME ".xt.insn" |
10309 | #define XTENSA_LIT_SEC_NAME ".xt.lit" | |
10310 | #define XTENSA_PROP_SEC_NAME ".xt.prop" | |
10311 | ||
10312 | typedef bfd_boolean (*frag_predicate) (const fragS *); | |
10313 | typedef void (*frag_flags_fn) (const fragS *, frag_flags *); | |
10314 | ||
b08b5071 | 10315 | static bfd_boolean get_frag_is_literal (const fragS *); |
7fa3d080 BW |
10316 | static void xtensa_create_property_segments |
10317 | (frag_predicate, frag_predicate, const char *, xt_section_type); | |
10318 | static void xtensa_create_xproperty_segments | |
10319 | (frag_flags_fn, const char *, xt_section_type); | |
7fa3d080 BW |
10320 | static bfd_boolean section_has_property (segT, frag_predicate); |
10321 | static bfd_boolean section_has_xproperty (segT, frag_flags_fn); | |
10322 | static void add_xt_block_frags | |
542f8b94 | 10323 | (segT, xtensa_block_info **, frag_predicate, frag_predicate); |
7fa3d080 BW |
10324 | static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *); |
10325 | static void xtensa_frag_flags_init (frag_flags *); | |
10326 | static void get_frag_property_flags (const fragS *, frag_flags *); | |
10327 | static bfd_vma frag_flags_to_number (const frag_flags *); | |
542f8b94 | 10328 | static void add_xt_prop_frags (segT, xtensa_block_info **, frag_flags_fn); |
7fa3d080 BW |
10329 | |
10330 | /* Set up property tables after relaxation. */ | |
10331 | ||
10332 | void | |
10333 | xtensa_post_relax_hook (void) | |
10334 | { | |
10335 | xtensa_move_seg_list_to_beginning (literal_head); | |
7fa3d080 BW |
10336 | |
10337 | xtensa_find_unmarked_state_frags (); | |
99ded152 | 10338 | xtensa_mark_frags_for_org (); |
6a7eedfe | 10339 | xtensa_mark_difference_of_two_symbols (); |
7fa3d080 | 10340 | |
b29757dc BW |
10341 | xtensa_create_property_segments (get_frag_is_literal, |
10342 | NULL, | |
10343 | XTENSA_LIT_SEC_NAME, | |
10344 | xt_literal_sec); | |
7fa3d080 BW |
10345 | xtensa_create_xproperty_segments (get_frag_property_flags, |
10346 | XTENSA_PROP_SEC_NAME, | |
10347 | xt_prop_sec); | |
10348 | ||
10349 | if (warn_unaligned_branch_targets) | |
10350 | bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0); | |
10351 | bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0); | |
10352 | } | |
10353 | ||
10354 | ||
43cd72b9 BW |
10355 | /* This function is only meaningful after xtensa_move_literals. */ |
10356 | ||
10357 | static bfd_boolean | |
7fa3d080 | 10358 | get_frag_is_literal (const fragS *fragP) |
43cd72b9 BW |
10359 | { |
10360 | assert (fragP != NULL); | |
10361 | return fragP->tc_frag_data.is_literal; | |
10362 | } | |
10363 | ||
10364 | ||
43cd72b9 | 10365 | static void |
7fa3d080 BW |
10366 | xtensa_create_property_segments (frag_predicate property_function, |
10367 | frag_predicate end_property_function, | |
10368 | const char *section_name_base, | |
10369 | xt_section_type sec_type) | |
43cd72b9 BW |
10370 | { |
10371 | segT *seclist; | |
10372 | ||
10373 | /* Walk over all of the current segments. | |
10374 | Walk over each fragment | |
10375 | For each non-empty fragment, | |
10376 | Build a property record (append where possible). */ | |
10377 | ||
10378 | for (seclist = &stdoutput->sections; | |
10379 | seclist && *seclist; | |
10380 | seclist = &(*seclist)->next) | |
10381 | { | |
10382 | segT sec = *seclist; | |
10383 | flagword flags; | |
10384 | ||
10385 | flags = bfd_get_section_flags (stdoutput, sec); | |
10386 | if (flags & SEC_DEBUGGING) | |
10387 | continue; | |
10388 | if (!(flags & SEC_ALLOC)) | |
10389 | continue; | |
10390 | ||
10391 | if (section_has_property (sec, property_function)) | |
10392 | { | |
542f8b94 BW |
10393 | segment_info_type *xt_seg_info; |
10394 | xtensa_block_info **xt_blocks; | |
10395 | segT prop_sec = xtensa_get_property_section (sec, section_name_base); | |
10396 | ||
10397 | prop_sec->output_section = prop_sec; | |
10398 | subseg_set (prop_sec, 0); | |
10399 | xt_seg_info = seg_info (prop_sec); | |
10400 | xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type]; | |
10401 | ||
43cd72b9 | 10402 | /* Walk over all of the frchains here and add new sections. */ |
542f8b94 | 10403 | add_xt_block_frags (sec, xt_blocks, property_function, |
43cd72b9 BW |
10404 | end_property_function); |
10405 | } | |
10406 | } | |
10407 | ||
10408 | /* Now we fill them out.... */ | |
10409 | ||
10410 | for (seclist = &stdoutput->sections; | |
10411 | seclist && *seclist; | |
10412 | seclist = &(*seclist)->next) | |
10413 | { | |
10414 | segment_info_type *seginfo; | |
10415 | xtensa_block_info *block; | |
10416 | segT sec = *seclist; | |
10417 | ||
10418 | seginfo = seg_info (sec); | |
10419 | block = seginfo->tc_segment_info_data.blocks[sec_type]; | |
10420 | ||
10421 | if (block) | |
10422 | { | |
10423 | xtensa_block_info *cur_block; | |
43cd72b9 | 10424 | int num_recs = 0; |
d77b99c9 | 10425 | bfd_size_type rec_size; |
43cd72b9 BW |
10426 | |
10427 | for (cur_block = block; cur_block; cur_block = cur_block->next) | |
10428 | num_recs++; | |
10429 | ||
10430 | rec_size = num_recs * 8; | |
10431 | bfd_set_section_size (stdoutput, sec, rec_size); | |
10432 | ||
43cd72b9 BW |
10433 | if (num_recs) |
10434 | { | |
43cd72b9 | 10435 | char *frag_data; |
542f8b94 | 10436 | int i; |
43cd72b9 | 10437 | |
542f8b94 BW |
10438 | subseg_set (sec, 0); |
10439 | frag_data = frag_more (rec_size); | |
43cd72b9 | 10440 | cur_block = block; |
43cd72b9 BW |
10441 | for (i = 0; i < num_recs; i++) |
10442 | { | |
542f8b94 | 10443 | fixS *fix; |
e0001a05 | 10444 | |
43cd72b9 | 10445 | /* Write the fixup. */ |
542f8b94 BW |
10446 | assert (cur_block); |
10447 | fix = fix_new (frag_now, i * 8, 4, | |
10448 | section_symbol (cur_block->sec), | |
10449 | cur_block->offset, | |
10450 | FALSE, BFD_RELOC_32); | |
10451 | fix->fx_file = "<internal>"; | |
43cd72b9 | 10452 | fix->fx_line = 0; |
e0001a05 | 10453 | |
43cd72b9 | 10454 | /* Write the length. */ |
542f8b94 | 10455 | md_number_to_chars (&frag_data[4 + i * 8], |
43cd72b9 BW |
10456 | cur_block->size, 4); |
10457 | cur_block = cur_block->next; | |
10458 | } | |
542f8b94 BW |
10459 | frag_wane (frag_now); |
10460 | frag_new (0); | |
10461 | frag_wane (frag_now); | |
43cd72b9 BW |
10462 | } |
10463 | } | |
10464 | } | |
e0001a05 NC |
10465 | } |
10466 | ||
10467 | ||
7fa3d080 BW |
10468 | static void |
10469 | xtensa_create_xproperty_segments (frag_flags_fn flag_fn, | |
10470 | const char *section_name_base, | |
10471 | xt_section_type sec_type) | |
e0001a05 NC |
10472 | { |
10473 | segT *seclist; | |
10474 | ||
10475 | /* Walk over all of the current segments. | |
43cd72b9 BW |
10476 | Walk over each fragment. |
10477 | For each fragment that has instructions, | |
10478 | build an instruction record (append where possible). */ | |
e0001a05 NC |
10479 | |
10480 | for (seclist = &stdoutput->sections; | |
10481 | seclist && *seclist; | |
10482 | seclist = &(*seclist)->next) | |
10483 | { | |
10484 | segT sec = *seclist; | |
43cd72b9 BW |
10485 | flagword flags; |
10486 | ||
10487 | flags = bfd_get_section_flags (stdoutput, sec); | |
6624cbde BW |
10488 | if ((flags & SEC_DEBUGGING) |
10489 | || !(flags & SEC_ALLOC) | |
10490 | || (flags & SEC_MERGE)) | |
43cd72b9 BW |
10491 | continue; |
10492 | ||
10493 | if (section_has_xproperty (sec, flag_fn)) | |
e0001a05 | 10494 | { |
542f8b94 BW |
10495 | segment_info_type *xt_seg_info; |
10496 | xtensa_block_info **xt_blocks; | |
10497 | segT prop_sec = xtensa_get_property_section (sec, section_name_base); | |
10498 | ||
10499 | prop_sec->output_section = prop_sec; | |
10500 | subseg_set (prop_sec, 0); | |
10501 | xt_seg_info = seg_info (prop_sec); | |
10502 | xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type]; | |
10503 | ||
e0001a05 | 10504 | /* Walk over all of the frchains here and add new sections. */ |
542f8b94 | 10505 | add_xt_prop_frags (sec, xt_blocks, flag_fn); |
e0001a05 NC |
10506 | } |
10507 | } | |
10508 | ||
10509 | /* Now we fill them out.... */ | |
10510 | ||
10511 | for (seclist = &stdoutput->sections; | |
10512 | seclist && *seclist; | |
10513 | seclist = &(*seclist)->next) | |
10514 | { | |
10515 | segment_info_type *seginfo; | |
10516 | xtensa_block_info *block; | |
10517 | segT sec = *seclist; | |
43cd72b9 | 10518 | |
e0001a05 NC |
10519 | seginfo = seg_info (sec); |
10520 | block = seginfo->tc_segment_info_data.blocks[sec_type]; | |
10521 | ||
10522 | if (block) | |
10523 | { | |
10524 | xtensa_block_info *cur_block; | |
43cd72b9 | 10525 | int num_recs = 0; |
d77b99c9 | 10526 | bfd_size_type rec_size; |
e0001a05 NC |
10527 | |
10528 | for (cur_block = block; cur_block; cur_block = cur_block->next) | |
10529 | num_recs++; | |
10530 | ||
43cd72b9 | 10531 | rec_size = num_recs * (8 + 4); |
e0001a05 | 10532 | bfd_set_section_size (stdoutput, sec, rec_size); |
43cd72b9 BW |
10533 | /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */ |
10534 | ||
e0001a05 NC |
10535 | if (num_recs) |
10536 | { | |
e0001a05 | 10537 | char *frag_data; |
542f8b94 | 10538 | int i; |
e0001a05 | 10539 | |
542f8b94 BW |
10540 | subseg_set (sec, 0); |
10541 | frag_data = frag_more (rec_size); | |
e0001a05 | 10542 | cur_block = block; |
e0001a05 NC |
10543 | for (i = 0; i < num_recs; i++) |
10544 | { | |
542f8b94 | 10545 | fixS *fix; |
e0001a05 NC |
10546 | |
10547 | /* Write the fixup. */ | |
542f8b94 BW |
10548 | assert (cur_block); |
10549 | fix = fix_new (frag_now, i * 12, 4, | |
10550 | section_symbol (cur_block->sec), | |
10551 | cur_block->offset, | |
10552 | FALSE, BFD_RELOC_32); | |
10553 | fix->fx_file = "<internal>"; | |
e0001a05 NC |
10554 | fix->fx_line = 0; |
10555 | ||
10556 | /* Write the length. */ | |
542f8b94 | 10557 | md_number_to_chars (&frag_data[4 + i * 12], |
e0001a05 | 10558 | cur_block->size, 4); |
542f8b94 | 10559 | md_number_to_chars (&frag_data[8 + i * 12], |
43cd72b9 BW |
10560 | frag_flags_to_number (&cur_block->flags), |
10561 | 4); | |
e0001a05 NC |
10562 | cur_block = cur_block->next; |
10563 | } | |
542f8b94 BW |
10564 | frag_wane (frag_now); |
10565 | frag_new (0); | |
10566 | frag_wane (frag_now); | |
e0001a05 NC |
10567 | } |
10568 | } | |
10569 | } | |
10570 | } | |
10571 | ||
10572 | ||
7fa3d080 BW |
10573 | static bfd_boolean |
10574 | section_has_property (segT sec, frag_predicate property_function) | |
e0001a05 NC |
10575 | { |
10576 | segment_info_type *seginfo = seg_info (sec); | |
10577 | fragS *fragP; | |
10578 | ||
10579 | if (seginfo && seginfo->frchainP) | |
10580 | { | |
10581 | for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next) | |
10582 | { | |
10583 | if (property_function (fragP) | |
10584 | && (fragP->fr_type != rs_fill || fragP->fr_fix != 0)) | |
10585 | return TRUE; | |
10586 | } | |
10587 | } | |
10588 | return FALSE; | |
10589 | } | |
10590 | ||
10591 | ||
7fa3d080 BW |
10592 | static bfd_boolean |
10593 | section_has_xproperty (segT sec, frag_flags_fn property_function) | |
43cd72b9 BW |
10594 | { |
10595 | segment_info_type *seginfo = seg_info (sec); | |
10596 | fragS *fragP; | |
10597 | ||
10598 | if (seginfo && seginfo->frchainP) | |
10599 | { | |
10600 | for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next) | |
10601 | { | |
10602 | frag_flags prop_flags; | |
10603 | property_function (fragP, &prop_flags); | |
10604 | if (!xtensa_frag_flags_is_empty (&prop_flags)) | |
10605 | return TRUE; | |
10606 | } | |
10607 | } | |
10608 | return FALSE; | |
10609 | } | |
10610 | ||
10611 | ||
e0001a05 NC |
10612 | /* Two types of block sections exist right now: literal and insns. */ |
10613 | ||
7fa3d080 BW |
10614 | static void |
10615 | add_xt_block_frags (segT sec, | |
7fa3d080 BW |
10616 | xtensa_block_info **xt_block, |
10617 | frag_predicate property_function, | |
10618 | frag_predicate end_property_function) | |
e0001a05 | 10619 | { |
e0001a05 NC |
10620 | bfd_vma seg_offset; |
10621 | fragS *fragP; | |
10622 | ||
e0001a05 NC |
10623 | /* Build it if needed. */ |
10624 | while (*xt_block != NULL) | |
10625 | xt_block = &(*xt_block)->next; | |
10626 | /* We are either at NULL at the beginning or at the end. */ | |
10627 | ||
10628 | /* Walk through the frags. */ | |
10629 | seg_offset = 0; | |
10630 | ||
542f8b94 | 10631 | if (seg_info (sec)->frchainP) |
e0001a05 | 10632 | { |
542f8b94 | 10633 | for (fragP = seg_info (sec)->frchainP->frch_root; |
e0001a05 NC |
10634 | fragP; |
10635 | fragP = fragP->fr_next) | |
10636 | { | |
10637 | if (property_function (fragP) | |
10638 | && (fragP->fr_type != rs_fill || fragP->fr_fix != 0)) | |
10639 | { | |
10640 | if (*xt_block != NULL) | |
10641 | { | |
10642 | if ((*xt_block)->offset + (*xt_block)->size | |
10643 | == fragP->fr_address) | |
10644 | (*xt_block)->size += fragP->fr_fix; | |
10645 | else | |
10646 | xt_block = &((*xt_block)->next); | |
10647 | } | |
10648 | if (*xt_block == NULL) | |
10649 | { | |
43cd72b9 BW |
10650 | xtensa_block_info *new_block = (xtensa_block_info *) |
10651 | xmalloc (sizeof (xtensa_block_info)); | |
10652 | new_block->sec = sec; | |
10653 | new_block->offset = fragP->fr_address; | |
10654 | new_block->size = fragP->fr_fix; | |
10655 | new_block->next = NULL; | |
10656 | xtensa_frag_flags_init (&new_block->flags); | |
10657 | *xt_block = new_block; | |
10658 | } | |
10659 | if (end_property_function | |
10660 | && end_property_function (fragP)) | |
10661 | { | |
10662 | xt_block = &((*xt_block)->next); | |
10663 | } | |
10664 | } | |
10665 | } | |
10666 | } | |
10667 | } | |
10668 | ||
10669 | ||
10670 | /* Break the encapsulation of add_xt_prop_frags here. */ | |
10671 | ||
7fa3d080 BW |
10672 | static bfd_boolean |
10673 | xtensa_frag_flags_is_empty (const frag_flags *prop_flags) | |
43cd72b9 BW |
10674 | { |
10675 | if (prop_flags->is_literal | |
10676 | || prop_flags->is_insn | |
10677 | || prop_flags->is_data | |
10678 | || prop_flags->is_unreachable) | |
10679 | return FALSE; | |
10680 | return TRUE; | |
10681 | } | |
10682 | ||
10683 | ||
7fa3d080 BW |
10684 | static void |
10685 | xtensa_frag_flags_init (frag_flags *prop_flags) | |
43cd72b9 BW |
10686 | { |
10687 | memset (prop_flags, 0, sizeof (frag_flags)); | |
10688 | } | |
10689 | ||
10690 | ||
7fa3d080 BW |
10691 | static void |
10692 | get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags) | |
43cd72b9 BW |
10693 | { |
10694 | xtensa_frag_flags_init (prop_flags); | |
10695 | if (fragP->tc_frag_data.is_literal) | |
10696 | prop_flags->is_literal = TRUE; | |
99ded152 BW |
10697 | if (fragP->tc_frag_data.is_specific_opcode |
10698 | || fragP->tc_frag_data.is_no_transform) | |
1f7efbae BW |
10699 | { |
10700 | prop_flags->is_no_transform = TRUE; | |
10701 | if (xtensa_frag_flags_is_empty (prop_flags)) | |
10702 | prop_flags->is_data = TRUE; | |
10703 | } | |
43cd72b9 | 10704 | if (fragP->tc_frag_data.is_unreachable) |
7fa3d080 | 10705 | prop_flags->is_unreachable = TRUE; |
43cd72b9 BW |
10706 | else if (fragP->tc_frag_data.is_insn) |
10707 | { | |
10708 | prop_flags->is_insn = TRUE; | |
10709 | if (fragP->tc_frag_data.is_loop_target) | |
10710 | prop_flags->insn.is_loop_target = TRUE; | |
10711 | if (fragP->tc_frag_data.is_branch_target) | |
10712 | prop_flags->insn.is_branch_target = TRUE; | |
43cd72b9 BW |
10713 | if (fragP->tc_frag_data.is_no_density) |
10714 | prop_flags->insn.is_no_density = TRUE; | |
10715 | if (fragP->tc_frag_data.use_absolute_literals) | |
10716 | prop_flags->insn.is_abslit = TRUE; | |
10717 | } | |
10718 | if (fragP->tc_frag_data.is_align) | |
10719 | { | |
10720 | prop_flags->is_align = TRUE; | |
10721 | prop_flags->alignment = fragP->tc_frag_data.alignment; | |
10722 | if (xtensa_frag_flags_is_empty (prop_flags)) | |
10723 | prop_flags->is_data = TRUE; | |
10724 | } | |
10725 | } | |
10726 | ||
10727 | ||
7fa3d080 BW |
10728 | static bfd_vma |
10729 | frag_flags_to_number (const frag_flags *prop_flags) | |
43cd72b9 BW |
10730 | { |
10731 | bfd_vma num = 0; | |
10732 | if (prop_flags->is_literal) | |
10733 | num |= XTENSA_PROP_LITERAL; | |
10734 | if (prop_flags->is_insn) | |
10735 | num |= XTENSA_PROP_INSN; | |
10736 | if (prop_flags->is_data) | |
10737 | num |= XTENSA_PROP_DATA; | |
10738 | if (prop_flags->is_unreachable) | |
10739 | num |= XTENSA_PROP_UNREACHABLE; | |
10740 | if (prop_flags->insn.is_loop_target) | |
10741 | num |= XTENSA_PROP_INSN_LOOP_TARGET; | |
10742 | if (prop_flags->insn.is_branch_target) | |
10743 | { | |
10744 | num |= XTENSA_PROP_INSN_BRANCH_TARGET; | |
10745 | num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority); | |
10746 | } | |
10747 | ||
10748 | if (prop_flags->insn.is_no_density) | |
10749 | num |= XTENSA_PROP_INSN_NO_DENSITY; | |
99ded152 BW |
10750 | if (prop_flags->is_no_transform) |
10751 | num |= XTENSA_PROP_NO_TRANSFORM; | |
43cd72b9 BW |
10752 | if (prop_flags->insn.is_no_reorder) |
10753 | num |= XTENSA_PROP_INSN_NO_REORDER; | |
10754 | if (prop_flags->insn.is_abslit) | |
10755 | num |= XTENSA_PROP_INSN_ABSLIT; | |
10756 | ||
10757 | if (prop_flags->is_align) | |
10758 | { | |
10759 | num |= XTENSA_PROP_ALIGN; | |
10760 | num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment); | |
10761 | } | |
10762 | ||
10763 | return num; | |
10764 | } | |
10765 | ||
10766 | ||
10767 | static bfd_boolean | |
7fa3d080 BW |
10768 | xtensa_frag_flags_combinable (const frag_flags *prop_flags_1, |
10769 | const frag_flags *prop_flags_2) | |
43cd72b9 BW |
10770 | { |
10771 | /* Cannot combine with an end marker. */ | |
10772 | ||
10773 | if (prop_flags_1->is_literal != prop_flags_2->is_literal) | |
10774 | return FALSE; | |
10775 | if (prop_flags_1->is_insn != prop_flags_2->is_insn) | |
10776 | return FALSE; | |
10777 | if (prop_flags_1->is_data != prop_flags_2->is_data) | |
10778 | return FALSE; | |
10779 | ||
10780 | if (prop_flags_1->is_insn) | |
10781 | { | |
10782 | /* Properties of the beginning of the frag. */ | |
10783 | if (prop_flags_2->insn.is_loop_target) | |
10784 | return FALSE; | |
10785 | if (prop_flags_2->insn.is_branch_target) | |
10786 | return FALSE; | |
10787 | if (prop_flags_1->insn.is_no_density != | |
10788 | prop_flags_2->insn.is_no_density) | |
10789 | return FALSE; | |
99ded152 BW |
10790 | if (prop_flags_1->is_no_transform != |
10791 | prop_flags_2->is_no_transform) | |
43cd72b9 BW |
10792 | return FALSE; |
10793 | if (prop_flags_1->insn.is_no_reorder != | |
10794 | prop_flags_2->insn.is_no_reorder) | |
10795 | return FALSE; | |
10796 | if (prop_flags_1->insn.is_abslit != | |
10797 | prop_flags_2->insn.is_abslit) | |
10798 | return FALSE; | |
10799 | } | |
10800 | ||
10801 | if (prop_flags_1->is_align) | |
10802 | return FALSE; | |
10803 | ||
10804 | return TRUE; | |
10805 | } | |
10806 | ||
10807 | ||
7fa3d080 BW |
10808 | static bfd_vma |
10809 | xt_block_aligned_size (const xtensa_block_info *xt_block) | |
43cd72b9 BW |
10810 | { |
10811 | bfd_vma end_addr; | |
d77b99c9 | 10812 | unsigned align_bits; |
43cd72b9 BW |
10813 | |
10814 | if (!xt_block->flags.is_align) | |
10815 | return xt_block->size; | |
10816 | ||
10817 | end_addr = xt_block->offset + xt_block->size; | |
10818 | align_bits = xt_block->flags.alignment; | |
10819 | end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits; | |
10820 | return end_addr - xt_block->offset; | |
10821 | } | |
10822 | ||
10823 | ||
10824 | static bfd_boolean | |
7fa3d080 BW |
10825 | xtensa_xt_block_combine (xtensa_block_info *xt_block, |
10826 | const xtensa_block_info *xt_block_2) | |
43cd72b9 BW |
10827 | { |
10828 | if (xt_block->sec != xt_block_2->sec) | |
10829 | return FALSE; | |
10830 | if (xt_block->offset + xt_block_aligned_size (xt_block) | |
10831 | != xt_block_2->offset) | |
10832 | return FALSE; | |
10833 | ||
10834 | if (xt_block_2->size == 0 | |
10835 | && (!xt_block_2->flags.is_unreachable | |
10836 | || xt_block->flags.is_unreachable)) | |
10837 | { | |
10838 | if (xt_block_2->flags.is_align | |
10839 | && xt_block->flags.is_align) | |
10840 | { | |
10841 | /* Nothing needed. */ | |
10842 | if (xt_block->flags.alignment >= xt_block_2->flags.alignment) | |
10843 | return TRUE; | |
10844 | } | |
10845 | else | |
10846 | { | |
10847 | if (xt_block_2->flags.is_align) | |
10848 | { | |
10849 | /* Push alignment to previous entry. */ | |
10850 | xt_block->flags.is_align = xt_block_2->flags.is_align; | |
10851 | xt_block->flags.alignment = xt_block_2->flags.alignment; | |
10852 | } | |
10853 | return TRUE; | |
10854 | } | |
10855 | } | |
10856 | if (!xtensa_frag_flags_combinable (&xt_block->flags, | |
10857 | &xt_block_2->flags)) | |
10858 | return FALSE; | |
10859 | ||
10860 | xt_block->size += xt_block_2->size; | |
10861 | ||
10862 | if (xt_block_2->flags.is_align) | |
10863 | { | |
10864 | xt_block->flags.is_align = TRUE; | |
10865 | xt_block->flags.alignment = xt_block_2->flags.alignment; | |
10866 | } | |
10867 | ||
10868 | return TRUE; | |
10869 | } | |
10870 | ||
10871 | ||
7fa3d080 BW |
10872 | static void |
10873 | add_xt_prop_frags (segT sec, | |
7fa3d080 BW |
10874 | xtensa_block_info **xt_block, |
10875 | frag_flags_fn property_function) | |
43cd72b9 | 10876 | { |
43cd72b9 BW |
10877 | bfd_vma seg_offset; |
10878 | fragS *fragP; | |
10879 | ||
43cd72b9 BW |
10880 | /* Build it if needed. */ |
10881 | while (*xt_block != NULL) | |
10882 | { | |
10883 | xt_block = &(*xt_block)->next; | |
10884 | } | |
10885 | /* We are either at NULL at the beginning or at the end. */ | |
10886 | ||
10887 | /* Walk through the frags. */ | |
10888 | seg_offset = 0; | |
10889 | ||
542f8b94 | 10890 | if (seg_info (sec)->frchainP) |
43cd72b9 | 10891 | { |
542f8b94 | 10892 | for (fragP = seg_info (sec)->frchainP->frch_root; fragP; |
43cd72b9 BW |
10893 | fragP = fragP->fr_next) |
10894 | { | |
10895 | xtensa_block_info tmp_block; | |
10896 | tmp_block.sec = sec; | |
10897 | tmp_block.offset = fragP->fr_address; | |
10898 | tmp_block.size = fragP->fr_fix; | |
10899 | tmp_block.next = NULL; | |
10900 | property_function (fragP, &tmp_block.flags); | |
10901 | ||
10902 | if (!xtensa_frag_flags_is_empty (&tmp_block.flags)) | |
10903 | /* && fragP->fr_fix != 0) */ | |
10904 | { | |
10905 | if ((*xt_block) == NULL | |
10906 | || !xtensa_xt_block_combine (*xt_block, &tmp_block)) | |
10907 | { | |
10908 | xtensa_block_info *new_block; | |
10909 | if ((*xt_block) != NULL) | |
10910 | xt_block = &(*xt_block)->next; | |
10911 | new_block = (xtensa_block_info *) | |
10912 | xmalloc (sizeof (xtensa_block_info)); | |
10913 | *new_block = tmp_block; | |
10914 | *xt_block = new_block; | |
10915 | } | |
10916 | } | |
10917 | } | |
10918 | } | |
10919 | } | |
10920 | ||
10921 | \f | |
10922 | /* op_placement_info_table */ | |
10923 | ||
10924 | /* op_placement_info makes it easier to determine which | |
10925 | ops can go in which slots. */ | |
10926 | ||
10927 | static void | |
7fa3d080 | 10928 | init_op_placement_info_table (void) |
43cd72b9 BW |
10929 | { |
10930 | xtensa_isa isa = xtensa_default_isa; | |
10931 | xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa); | |
10932 | xtensa_opcode opcode; | |
10933 | xtensa_format fmt; | |
10934 | int slot; | |
10935 | int num_opcodes = xtensa_isa_num_opcodes (isa); | |
10936 | ||
10937 | op_placement_table = (op_placement_info_table) | |
10938 | xmalloc (sizeof (op_placement_info) * num_opcodes); | |
10939 | assert (xtensa_isa_num_formats (isa) < MAX_FORMATS); | |
10940 | ||
10941 | for (opcode = 0; opcode < num_opcodes; opcode++) | |
10942 | { | |
10943 | op_placement_info *opi = &op_placement_table[opcode]; | |
10944 | /* FIXME: Make tinsn allocation dynamic. */ | |
10945 | if (xtensa_opcode_num_operands (isa, opcode) >= MAX_INSN_ARGS) | |
10946 | as_fatal (_("too many operands in instruction")); | |
43cd72b9 BW |
10947 | opi->narrowest = XTENSA_UNDEFINED; |
10948 | opi->narrowest_size = 0x7F; | |
b2d179be | 10949 | opi->narrowest_slot = 0; |
43cd72b9 BW |
10950 | opi->formats = 0; |
10951 | opi->num_formats = 0; | |
10952 | opi->issuef = 0; | |
10953 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) | |
10954 | { | |
10955 | opi->slots[fmt] = 0; | |
10956 | for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++) | |
10957 | { | |
10958 | if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0) | |
10959 | { | |
10960 | int fmt_length = xtensa_format_length (isa, fmt); | |
10961 | opi->issuef++; | |
10962 | set_bit (fmt, opi->formats); | |
10963 | set_bit (slot, opi->slots[fmt]); | |
a02728c8 BW |
10964 | if (fmt_length < opi->narrowest_size |
10965 | || (fmt_length == opi->narrowest_size | |
10966 | && (xtensa_format_num_slots (isa, fmt) | |
10967 | < xtensa_format_num_slots (isa, | |
10968 | opi->narrowest)))) | |
43cd72b9 BW |
10969 | { |
10970 | opi->narrowest = fmt; | |
10971 | opi->narrowest_size = fmt_length; | |
b2d179be | 10972 | opi->narrowest_slot = slot; |
43cd72b9 | 10973 | } |
e0001a05 NC |
10974 | } |
10975 | } | |
43cd72b9 BW |
10976 | if (opi->formats) |
10977 | opi->num_formats++; | |
e0001a05 NC |
10978 | } |
10979 | } | |
43cd72b9 BW |
10980 | xtensa_insnbuf_free (isa, ibuf); |
10981 | } | |
10982 | ||
10983 | ||
10984 | bfd_boolean | |
7fa3d080 | 10985 | opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot) |
43cd72b9 BW |
10986 | { |
10987 | return bit_is_set (slot, op_placement_table[opcode].slots[fmt]); | |
10988 | } | |
10989 | ||
10990 | ||
10991 | /* If the opcode is available in a single slot format, return its size. */ | |
10992 | ||
7fa3d080 BW |
10993 | static int |
10994 | xg_get_single_size (xtensa_opcode opcode) | |
43cd72b9 | 10995 | { |
b2d179be | 10996 | return op_placement_table[opcode].narrowest_size; |
43cd72b9 BW |
10997 | } |
10998 | ||
10999 | ||
7fa3d080 BW |
11000 | static xtensa_format |
11001 | xg_get_single_format (xtensa_opcode opcode) | |
43cd72b9 | 11002 | { |
b2d179be BW |
11003 | return op_placement_table[opcode].narrowest; |
11004 | } | |
11005 | ||
11006 | ||
11007 | static int | |
11008 | xg_get_single_slot (xtensa_opcode opcode) | |
11009 | { | |
11010 | return op_placement_table[opcode].narrowest_slot; | |
e0001a05 NC |
11011 | } |
11012 | ||
11013 | \f | |
11014 | /* Instruction Stack Functions (from "xtensa-istack.h"). */ | |
11015 | ||
11016 | void | |
7fa3d080 | 11017 | istack_init (IStack *stack) |
e0001a05 NC |
11018 | { |
11019 | memset (stack, 0, sizeof (IStack)); | |
11020 | stack->ninsn = 0; | |
11021 | } | |
11022 | ||
11023 | ||
11024 | bfd_boolean | |
7fa3d080 | 11025 | istack_empty (IStack *stack) |
e0001a05 NC |
11026 | { |
11027 | return (stack->ninsn == 0); | |
11028 | } | |
11029 | ||
11030 | ||
11031 | bfd_boolean | |
7fa3d080 | 11032 | istack_full (IStack *stack) |
e0001a05 NC |
11033 | { |
11034 | return (stack->ninsn == MAX_ISTACK); | |
11035 | } | |
11036 | ||
11037 | ||
11038 | /* Return a pointer to the top IStack entry. | |
43cd72b9 | 11039 | It is an error to call this if istack_empty () is TRUE. */ |
e0001a05 NC |
11040 | |
11041 | TInsn * | |
7fa3d080 | 11042 | istack_top (IStack *stack) |
e0001a05 NC |
11043 | { |
11044 | int rec = stack->ninsn - 1; | |
11045 | assert (!istack_empty (stack)); | |
11046 | return &stack->insn[rec]; | |
11047 | } | |
11048 | ||
11049 | ||
11050 | /* Add a new TInsn to an IStack. | |
43cd72b9 | 11051 | It is an error to call this if istack_full () is TRUE. */ |
e0001a05 NC |
11052 | |
11053 | void | |
7fa3d080 | 11054 | istack_push (IStack *stack, TInsn *insn) |
e0001a05 NC |
11055 | { |
11056 | int rec = stack->ninsn; | |
11057 | assert (!istack_full (stack)); | |
43cd72b9 | 11058 | stack->insn[rec] = *insn; |
e0001a05 NC |
11059 | stack->ninsn++; |
11060 | } | |
11061 | ||
11062 | ||
11063 | /* Clear space for the next TInsn on the IStack and return a pointer | |
43cd72b9 | 11064 | to it. It is an error to call this if istack_full () is TRUE. */ |
e0001a05 NC |
11065 | |
11066 | TInsn * | |
7fa3d080 | 11067 | istack_push_space (IStack *stack) |
e0001a05 NC |
11068 | { |
11069 | int rec = stack->ninsn; | |
11070 | TInsn *insn; | |
11071 | assert (!istack_full (stack)); | |
11072 | insn = &stack->insn[rec]; | |
60242db2 | 11073 | tinsn_init (insn); |
e0001a05 NC |
11074 | stack->ninsn++; |
11075 | return insn; | |
11076 | } | |
11077 | ||
11078 | ||
11079 | /* Remove the last pushed instruction. It is an error to call this if | |
43cd72b9 | 11080 | istack_empty () returns TRUE. */ |
e0001a05 NC |
11081 | |
11082 | void | |
7fa3d080 | 11083 | istack_pop (IStack *stack) |
e0001a05 NC |
11084 | { |
11085 | int rec = stack->ninsn - 1; | |
11086 | assert (!istack_empty (stack)); | |
11087 | stack->ninsn--; | |
60242db2 | 11088 | tinsn_init (&stack->insn[rec]); |
e0001a05 NC |
11089 | } |
11090 | ||
11091 | \f | |
11092 | /* TInsn functions. */ | |
11093 | ||
11094 | void | |
7fa3d080 | 11095 | tinsn_init (TInsn *dst) |
e0001a05 NC |
11096 | { |
11097 | memset (dst, 0, sizeof (TInsn)); | |
11098 | } | |
11099 | ||
11100 | ||
43cd72b9 | 11101 | /* Return TRUE if ANY of the operands in the insn are symbolic. */ |
e0001a05 NC |
11102 | |
11103 | static bfd_boolean | |
7fa3d080 | 11104 | tinsn_has_symbolic_operands (const TInsn *insn) |
e0001a05 NC |
11105 | { |
11106 | int i; | |
11107 | int n = insn->ntok; | |
11108 | ||
11109 | assert (insn->insn_type == ITYPE_INSN); | |
11110 | ||
11111 | for (i = 0; i < n; ++i) | |
11112 | { | |
11113 | switch (insn->tok[i].X_op) | |
11114 | { | |
11115 | case O_register: | |
11116 | case O_constant: | |
11117 | break; | |
11118 | default: | |
11119 | return TRUE; | |
11120 | } | |
11121 | } | |
11122 | return FALSE; | |
11123 | } | |
11124 | ||
11125 | ||
11126 | bfd_boolean | |
7fa3d080 | 11127 | tinsn_has_invalid_symbolic_operands (const TInsn *insn) |
e0001a05 | 11128 | { |
43cd72b9 | 11129 | xtensa_isa isa = xtensa_default_isa; |
e0001a05 NC |
11130 | int i; |
11131 | int n = insn->ntok; | |
11132 | ||
11133 | assert (insn->insn_type == ITYPE_INSN); | |
11134 | ||
11135 | for (i = 0; i < n; ++i) | |
11136 | { | |
11137 | switch (insn->tok[i].X_op) | |
11138 | { | |
11139 | case O_register: | |
11140 | case O_constant: | |
11141 | break; | |
43cd72b9 BW |
11142 | case O_big: |
11143 | case O_illegal: | |
11144 | case O_absent: | |
11145 | /* Errors for these types are caught later. */ | |
11146 | break; | |
11147 | case O_hi16: | |
11148 | case O_lo16: | |
e0001a05 | 11149 | default: |
43cd72b9 BW |
11150 | /* Symbolic immediates are only allowed on the last immediate |
11151 | operand. At this time, CONST16 is the only opcode where we | |
e7da6241 | 11152 | support non-PC-relative relocations. */ |
43cd72b9 BW |
11153 | if (i != get_relaxable_immed (insn->opcode) |
11154 | || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1 | |
11155 | && insn->opcode != xtensa_const16_opcode)) | |
11156 | { | |
431ad2d0 | 11157 | as_bad (_("invalid symbolic operand")); |
43cd72b9 BW |
11158 | return TRUE; |
11159 | } | |
e0001a05 NC |
11160 | } |
11161 | } | |
11162 | return FALSE; | |
11163 | } | |
11164 | ||
11165 | ||
11166 | /* For assembly code with complex expressions (e.g. subtraction), | |
11167 | we have to build them in the literal pool so that | |
11168 | their results are calculated correctly after relaxation. | |
11169 | The relaxation only handles expressions that | |
11170 | boil down to SYMBOL + OFFSET. */ | |
11171 | ||
11172 | static bfd_boolean | |
7fa3d080 | 11173 | tinsn_has_complex_operands (const TInsn *insn) |
e0001a05 NC |
11174 | { |
11175 | int i; | |
11176 | int n = insn->ntok; | |
11177 | assert (insn->insn_type == ITYPE_INSN); | |
11178 | for (i = 0; i < n; ++i) | |
11179 | { | |
11180 | switch (insn->tok[i].X_op) | |
11181 | { | |
11182 | case O_register: | |
11183 | case O_constant: | |
11184 | case O_symbol: | |
43cd72b9 BW |
11185 | case O_lo16: |
11186 | case O_hi16: | |
e0001a05 NC |
11187 | break; |
11188 | default: | |
11189 | return TRUE; | |
11190 | } | |
11191 | } | |
11192 | return FALSE; | |
11193 | } | |
11194 | ||
11195 | ||
b2d179be BW |
11196 | /* Encode a TInsn opcode and its constant operands into slotbuf. |
11197 | Return TRUE if there is a symbol in the immediate field. This | |
11198 | function assumes that: | |
11199 | 1) The number of operands are correct. | |
11200 | 2) The insn_type is ITYPE_INSN. | |
11201 | 3) The opcode can be encoded in the specified format and slot. | |
11202 | 4) Operands are either O_constant or O_symbol, and all constants fit. */ | |
43cd72b9 BW |
11203 | |
11204 | static bfd_boolean | |
7fa3d080 BW |
11205 | tinsn_to_slotbuf (xtensa_format fmt, |
11206 | int slot, | |
11207 | TInsn *tinsn, | |
11208 | xtensa_insnbuf slotbuf) | |
43cd72b9 BW |
11209 | { |
11210 | xtensa_isa isa = xtensa_default_isa; | |
11211 | xtensa_opcode opcode = tinsn->opcode; | |
11212 | bfd_boolean has_fixup = FALSE; | |
11213 | int noperands = xtensa_opcode_num_operands (isa, opcode); | |
11214 | int i; | |
11215 | ||
43cd72b9 BW |
11216 | assert (tinsn->insn_type == ITYPE_INSN); |
11217 | if (noperands != tinsn->ntok) | |
11218 | as_fatal (_("operand number mismatch")); | |
11219 | ||
11220 | if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode)) | |
11221 | { | |
11222 | as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""), | |
11223 | xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt)); | |
11224 | return FALSE; | |
11225 | } | |
11226 | ||
11227 | for (i = 0; i < noperands; i++) | |
11228 | { | |
11229 | expressionS *expr = &tinsn->tok[i]; | |
d77b99c9 BW |
11230 | int rc; |
11231 | unsigned line; | |
43cd72b9 BW |
11232 | char *file_name; |
11233 | uint32 opnd_value; | |
11234 | ||
11235 | switch (expr->X_op) | |
11236 | { | |
11237 | case O_register: | |
11238 | if (xtensa_operand_is_visible (isa, opcode, i) == 0) | |
11239 | break; | |
11240 | /* The register number has already been checked in | |
11241 | expression_maybe_register, so we don't need to check here. */ | |
11242 | opnd_value = expr->X_add_number; | |
11243 | (void) xtensa_operand_encode (isa, opcode, i, &opnd_value); | |
11244 | rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf, | |
11245 | opnd_value); | |
11246 | if (rc != 0) | |
11247 | as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa)); | |
11248 | break; | |
11249 | ||
11250 | case O_constant: | |
11251 | if (xtensa_operand_is_visible (isa, opcode, i) == 0) | |
11252 | break; | |
11253 | as_where (&file_name, &line); | |
11254 | /* It is a constant and we called this function | |
11255 | then we have to try to fit it. */ | |
11256 | xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i, | |
e0001a05 NC |
11257 | expr->X_add_number, file_name, line); |
11258 | break; | |
11259 | ||
e0001a05 NC |
11260 | default: |
11261 | has_fixup = TRUE; | |
11262 | break; | |
11263 | } | |
11264 | } | |
43cd72b9 | 11265 | |
e0001a05 NC |
11266 | return has_fixup; |
11267 | } | |
11268 | ||
11269 | ||
b2d179be BW |
11270 | /* Encode a single TInsn into an insnbuf. If the opcode can only be encoded |
11271 | into a multi-slot instruction, fill the other slots with NOPs. | |
11272 | Return TRUE if there is a symbol in the immediate field. See also the | |
11273 | assumptions listed for tinsn_to_slotbuf. */ | |
11274 | ||
11275 | static bfd_boolean | |
11276 | tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf) | |
11277 | { | |
11278 | static xtensa_insnbuf slotbuf = 0; | |
11279 | static vliw_insn vinsn; | |
11280 | xtensa_isa isa = xtensa_default_isa; | |
11281 | bfd_boolean has_fixup = FALSE; | |
11282 | int i; | |
11283 | ||
11284 | if (!slotbuf) | |
11285 | { | |
11286 | slotbuf = xtensa_insnbuf_alloc (isa); | |
11287 | xg_init_vinsn (&vinsn); | |
11288 | } | |
11289 | ||
11290 | xg_clear_vinsn (&vinsn); | |
11291 | ||
11292 | bundle_tinsn (tinsn, &vinsn); | |
11293 | ||
11294 | xtensa_format_encode (isa, vinsn.format, insnbuf); | |
11295 | ||
11296 | for (i = 0; i < vinsn.num_slots; i++) | |
11297 | { | |
11298 | /* Only one slot may have a fix-up because the rest contains NOPs. */ | |
11299 | has_fixup |= | |
11300 | tinsn_to_slotbuf (vinsn.format, i, &vinsn.slots[i], vinsn.slotbuf[i]); | |
11301 | xtensa_format_set_slot (isa, vinsn.format, i, insnbuf, vinsn.slotbuf[i]); | |
11302 | } | |
11303 | ||
11304 | return has_fixup; | |
11305 | } | |
11306 | ||
11307 | ||
43cd72b9 | 11308 | /* Check the instruction arguments. Return TRUE on failure. */ |
e0001a05 | 11309 | |
7fa3d080 BW |
11310 | static bfd_boolean |
11311 | tinsn_check_arguments (const TInsn *insn) | |
e0001a05 NC |
11312 | { |
11313 | xtensa_isa isa = xtensa_default_isa; | |
11314 | xtensa_opcode opcode = insn->opcode; | |
11315 | ||
11316 | if (opcode == XTENSA_UNDEFINED) | |
11317 | { | |
11318 | as_bad (_("invalid opcode")); | |
11319 | return TRUE; | |
11320 | } | |
11321 | ||
43cd72b9 | 11322 | if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok) |
e0001a05 NC |
11323 | { |
11324 | as_bad (_("too few operands")); | |
11325 | return TRUE; | |
11326 | } | |
11327 | ||
43cd72b9 | 11328 | if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok) |
e0001a05 NC |
11329 | { |
11330 | as_bad (_("too many operands")); | |
11331 | return TRUE; | |
11332 | } | |
11333 | return FALSE; | |
11334 | } | |
11335 | ||
11336 | ||
11337 | /* Load an instruction from its encoded form. */ | |
11338 | ||
11339 | static void | |
7fa3d080 | 11340 | tinsn_from_chars (TInsn *tinsn, char *f, int slot) |
e0001a05 | 11341 | { |
43cd72b9 | 11342 | vliw_insn vinsn; |
e0001a05 | 11343 | |
43cd72b9 BW |
11344 | xg_init_vinsn (&vinsn); |
11345 | vinsn_from_chars (&vinsn, f); | |
11346 | ||
11347 | *tinsn = vinsn.slots[slot]; | |
11348 | xg_free_vinsn (&vinsn); | |
11349 | } | |
e0001a05 | 11350 | |
43cd72b9 BW |
11351 | |
11352 | static void | |
7fa3d080 BW |
11353 | tinsn_from_insnbuf (TInsn *tinsn, |
11354 | xtensa_insnbuf slotbuf, | |
11355 | xtensa_format fmt, | |
11356 | int slot) | |
43cd72b9 BW |
11357 | { |
11358 | int i; | |
11359 | xtensa_isa isa = xtensa_default_isa; | |
e0001a05 NC |
11360 | |
11361 | /* Find the immed. */ | |
43cd72b9 BW |
11362 | tinsn_init (tinsn); |
11363 | tinsn->insn_type = ITYPE_INSN; | |
11364 | tinsn->is_specific_opcode = FALSE; /* must not be specific */ | |
11365 | tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
11366 | tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode); | |
11367 | for (i = 0; i < tinsn->ntok; i++) | |
e0001a05 | 11368 | { |
43cd72b9 BW |
11369 | set_expr_const (&tinsn->tok[i], |
11370 | xtensa_insnbuf_get_operand (slotbuf, fmt, slot, | |
11371 | tinsn->opcode, i)); | |
e0001a05 NC |
11372 | } |
11373 | } | |
11374 | ||
11375 | ||
11376 | /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */ | |
11377 | ||
11378 | static void | |
7fa3d080 | 11379 | tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot) |
e0001a05 | 11380 | { |
43cd72b9 | 11381 | xtensa_opcode opcode = tinsn->opcode; |
e0001a05 NC |
11382 | int opnum; |
11383 | ||
43cd72b9 | 11384 | if (fragP->tc_frag_data.slot_symbols[slot]) |
e0001a05 NC |
11385 | { |
11386 | opnum = get_relaxable_immed (opcode); | |
43cd72b9 | 11387 | assert (opnum >= 0); |
e7da6241 BW |
11388 | set_expr_symbol_offset (&tinsn->tok[opnum], |
11389 | fragP->tc_frag_data.slot_symbols[slot], | |
11390 | fragP->tc_frag_data.slot_offsets[slot]); | |
e0001a05 NC |
11391 | } |
11392 | } | |
11393 | ||
11394 | ||
11395 | static int | |
7fa3d080 | 11396 | get_num_stack_text_bytes (IStack *istack) |
e0001a05 NC |
11397 | { |
11398 | int i; | |
11399 | int text_bytes = 0; | |
11400 | ||
11401 | for (i = 0; i < istack->ninsn; i++) | |
11402 | { | |
43cd72b9 BW |
11403 | TInsn *tinsn = &istack->insn[i]; |
11404 | if (tinsn->insn_type == ITYPE_INSN) | |
11405 | text_bytes += xg_get_single_size (tinsn->opcode); | |
e0001a05 NC |
11406 | } |
11407 | return text_bytes; | |
11408 | } | |
11409 | ||
11410 | ||
11411 | static int | |
7fa3d080 | 11412 | get_num_stack_literal_bytes (IStack *istack) |
e0001a05 NC |
11413 | { |
11414 | int i; | |
11415 | int lit_bytes = 0; | |
11416 | ||
11417 | for (i = 0; i < istack->ninsn; i++) | |
11418 | { | |
43cd72b9 BW |
11419 | TInsn *tinsn = &istack->insn[i]; |
11420 | if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1) | |
e0001a05 NC |
11421 | lit_bytes += 4; |
11422 | } | |
11423 | return lit_bytes; | |
11424 | } | |
11425 | ||
43cd72b9 BW |
11426 | \f |
11427 | /* vliw_insn functions. */ | |
11428 | ||
7fa3d080 BW |
11429 | static void |
11430 | xg_init_vinsn (vliw_insn *v) | |
43cd72b9 BW |
11431 | { |
11432 | int i; | |
11433 | xtensa_isa isa = xtensa_default_isa; | |
11434 | ||
11435 | xg_clear_vinsn (v); | |
11436 | ||
11437 | v->insnbuf = xtensa_insnbuf_alloc (isa); | |
11438 | if (v->insnbuf == NULL) | |
11439 | as_fatal (_("out of memory")); | |
11440 | ||
11441 | for (i = 0; i < MAX_SLOTS; i++) | |
11442 | { | |
43cd72b9 BW |
11443 | v->slotbuf[i] = xtensa_insnbuf_alloc (isa); |
11444 | if (v->slotbuf[i] == NULL) | |
11445 | as_fatal (_("out of memory")); | |
11446 | } | |
11447 | } | |
11448 | ||
11449 | ||
7fa3d080 BW |
11450 | static void |
11451 | xg_clear_vinsn (vliw_insn *v) | |
43cd72b9 BW |
11452 | { |
11453 | int i; | |
65738a7d BW |
11454 | |
11455 | memset (v, 0, offsetof (vliw_insn, insnbuf)); | |
11456 | ||
43cd72b9 BW |
11457 | v->format = XTENSA_UNDEFINED; |
11458 | v->num_slots = 0; | |
11459 | v->inside_bundle = FALSE; | |
11460 | ||
11461 | if (xt_saved_debug_type != DEBUG_NONE) | |
11462 | debug_type = xt_saved_debug_type; | |
11463 | ||
11464 | for (i = 0; i < MAX_SLOTS; i++) | |
65738a7d | 11465 | v->slots[i].opcode = XTENSA_UNDEFINED; |
43cd72b9 BW |
11466 | } |
11467 | ||
11468 | ||
7fa3d080 BW |
11469 | static bfd_boolean |
11470 | vinsn_has_specific_opcodes (vliw_insn *v) | |
43cd72b9 BW |
11471 | { |
11472 | int i; | |
c138bc38 | 11473 | |
43cd72b9 BW |
11474 | for (i = 0; i < v->num_slots; i++) |
11475 | { | |
11476 | if (v->slots[i].is_specific_opcode) | |
11477 | return TRUE; | |
11478 | } | |
11479 | return FALSE; | |
11480 | } | |
11481 | ||
11482 | ||
7fa3d080 BW |
11483 | static void |
11484 | xg_free_vinsn (vliw_insn *v) | |
43cd72b9 BW |
11485 | { |
11486 | int i; | |
11487 | xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf); | |
11488 | for (i = 0; i < MAX_SLOTS; i++) | |
11489 | xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]); | |
11490 | } | |
11491 | ||
11492 | ||
e7da6241 BW |
11493 | /* Encode a vliw_insn into an insnbuf. Return TRUE if there are any symbolic |
11494 | operands. See also the assumptions listed for tinsn_to_slotbuf. */ | |
43cd72b9 BW |
11495 | |
11496 | static bfd_boolean | |
7fa3d080 BW |
11497 | vinsn_to_insnbuf (vliw_insn *vinsn, |
11498 | char *frag_offset, | |
11499 | fragS *fragP, | |
11500 | bfd_boolean record_fixup) | |
43cd72b9 BW |
11501 | { |
11502 | xtensa_isa isa = xtensa_default_isa; | |
11503 | xtensa_format fmt = vinsn->format; | |
11504 | xtensa_insnbuf insnbuf = vinsn->insnbuf; | |
11505 | int slot; | |
11506 | bfd_boolean has_fixup = FALSE; | |
11507 | ||
11508 | xtensa_format_encode (isa, fmt, insnbuf); | |
11509 | ||
11510 | for (slot = 0; slot < vinsn->num_slots; slot++) | |
11511 | { | |
11512 | TInsn *tinsn = &vinsn->slots[slot]; | |
11513 | bfd_boolean tinsn_has_fixup = | |
11514 | tinsn_to_slotbuf (vinsn->format, slot, tinsn, | |
11515 | vinsn->slotbuf[slot]); | |
11516 | ||
11517 | xtensa_format_set_slot (isa, fmt, slot, | |
11518 | insnbuf, vinsn->slotbuf[slot]); | |
e7da6241 | 11519 | if (tinsn_has_fixup) |
43cd72b9 BW |
11520 | { |
11521 | int i; | |
11522 | xtensa_opcode opcode = tinsn->opcode; | |
11523 | int noperands = xtensa_opcode_num_operands (isa, opcode); | |
11524 | has_fixup = TRUE; | |
11525 | ||
11526 | for (i = 0; i < noperands; i++) | |
11527 | { | |
11528 | expressionS* expr = &tinsn->tok[i]; | |
11529 | switch (expr->X_op) | |
11530 | { | |
11531 | case O_symbol: | |
11532 | case O_lo16: | |
11533 | case O_hi16: | |
11534 | if (get_relaxable_immed (opcode) == i) | |
11535 | { | |
e7da6241 BW |
11536 | /* Add a fix record for the instruction, except if this |
11537 | function is being called prior to relaxation, i.e., | |
11538 | if record_fixup is false, and the instruction might | |
11539 | be relaxed later. */ | |
11540 | if (record_fixup | |
11541 | || tinsn->is_specific_opcode | |
11542 | || !xg_is_relaxable_insn (tinsn, 0)) | |
43cd72b9 | 11543 | { |
e7da6241 BW |
11544 | xg_add_opcode_fix (tinsn, i, fmt, slot, expr, fragP, |
11545 | frag_offset - fragP->fr_literal); | |
43cd72b9 BW |
11546 | } |
11547 | else | |
11548 | { | |
e7da6241 BW |
11549 | if (expr->X_op != O_symbol) |
11550 | as_bad (_("invalid operand")); | |
43cd72b9 BW |
11551 | tinsn->symbol = expr->X_add_symbol; |
11552 | tinsn->offset = expr->X_add_number; | |
11553 | } | |
11554 | } | |
11555 | else | |
e7da6241 | 11556 | as_bad (_("symbolic operand not allowed")); |
43cd72b9 BW |
11557 | break; |
11558 | ||
11559 | case O_constant: | |
11560 | case O_register: | |
11561 | break; | |
11562 | ||
43cd72b9 | 11563 | default: |
e7da6241 | 11564 | as_bad (_("expression too complex")); |
43cd72b9 BW |
11565 | break; |
11566 | } | |
11567 | } | |
11568 | } | |
11569 | } | |
11570 | ||
11571 | return has_fixup; | |
11572 | } | |
11573 | ||
11574 | ||
11575 | static void | |
7fa3d080 | 11576 | vinsn_from_chars (vliw_insn *vinsn, char *f) |
43cd72b9 BW |
11577 | { |
11578 | static xtensa_insnbuf insnbuf = NULL; | |
11579 | static xtensa_insnbuf slotbuf = NULL; | |
11580 | int i; | |
11581 | xtensa_format fmt; | |
11582 | xtensa_isa isa = xtensa_default_isa; | |
11583 | ||
11584 | if (!insnbuf) | |
11585 | { | |
11586 | insnbuf = xtensa_insnbuf_alloc (isa); | |
11587 | slotbuf = xtensa_insnbuf_alloc (isa); | |
11588 | } | |
11589 | ||
d77b99c9 | 11590 | xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0); |
43cd72b9 BW |
11591 | fmt = xtensa_format_decode (isa, insnbuf); |
11592 | if (fmt == XTENSA_UNDEFINED) | |
11593 | as_fatal (_("cannot decode instruction format")); | |
11594 | vinsn->format = fmt; | |
11595 | vinsn->num_slots = xtensa_format_num_slots (isa, fmt); | |
11596 | ||
11597 | for (i = 0; i < vinsn->num_slots; i++) | |
11598 | { | |
11599 | TInsn *tinsn = &vinsn->slots[i]; | |
11600 | xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf); | |
11601 | tinsn_from_insnbuf (tinsn, slotbuf, fmt, i); | |
11602 | } | |
11603 | } | |
11604 | ||
e0001a05 NC |
11605 | \f |
11606 | /* Expression utilities. */ | |
11607 | ||
43cd72b9 | 11608 | /* Return TRUE if the expression is an integer constant. */ |
e0001a05 NC |
11609 | |
11610 | bfd_boolean | |
7fa3d080 | 11611 | expr_is_const (const expressionS *s) |
e0001a05 NC |
11612 | { |
11613 | return (s->X_op == O_constant); | |
11614 | } | |
11615 | ||
11616 | ||
11617 | /* Get the expression constant. | |
43cd72b9 | 11618 | Calling this is illegal if expr_is_const () returns TRUE. */ |
e0001a05 NC |
11619 | |
11620 | offsetT | |
7fa3d080 | 11621 | get_expr_const (const expressionS *s) |
e0001a05 NC |
11622 | { |
11623 | assert (expr_is_const (s)); | |
11624 | return s->X_add_number; | |
11625 | } | |
11626 | ||
11627 | ||
11628 | /* Set the expression to a constant value. */ | |
11629 | ||
11630 | void | |
7fa3d080 | 11631 | set_expr_const (expressionS *s, offsetT val) |
e0001a05 NC |
11632 | { |
11633 | s->X_op = O_constant; | |
11634 | s->X_add_number = val; | |
11635 | s->X_add_symbol = NULL; | |
11636 | s->X_op_symbol = NULL; | |
11637 | } | |
11638 | ||
11639 | ||
43cd72b9 | 11640 | bfd_boolean |
7fa3d080 | 11641 | expr_is_register (const expressionS *s) |
43cd72b9 BW |
11642 | { |
11643 | return (s->X_op == O_register); | |
11644 | } | |
11645 | ||
11646 | ||
11647 | /* Get the expression constant. | |
11648 | Calling this is illegal if expr_is_const () returns TRUE. */ | |
11649 | ||
11650 | offsetT | |
7fa3d080 | 11651 | get_expr_register (const expressionS *s) |
43cd72b9 BW |
11652 | { |
11653 | assert (expr_is_register (s)); | |
11654 | return s->X_add_number; | |
11655 | } | |
11656 | ||
11657 | ||
e0001a05 NC |
11658 | /* Set the expression to a symbol + constant offset. */ |
11659 | ||
11660 | void | |
7fa3d080 | 11661 | set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset) |
e0001a05 NC |
11662 | { |
11663 | s->X_op = O_symbol; | |
11664 | s->X_add_symbol = sym; | |
11665 | s->X_op_symbol = NULL; /* unused */ | |
11666 | s->X_add_number = offset; | |
11667 | } | |
11668 | ||
11669 | ||
43cd72b9 BW |
11670 | /* Return TRUE if the two expressions are equal. */ |
11671 | ||
e0001a05 | 11672 | bfd_boolean |
7fa3d080 | 11673 | expr_is_equal (expressionS *s1, expressionS *s2) |
e0001a05 NC |
11674 | { |
11675 | if (s1->X_op != s2->X_op) | |
11676 | return FALSE; | |
11677 | if (s1->X_add_symbol != s2->X_add_symbol) | |
11678 | return FALSE; | |
11679 | if (s1->X_op_symbol != s2->X_op_symbol) | |
11680 | return FALSE; | |
11681 | if (s1->X_add_number != s2->X_add_number) | |
11682 | return FALSE; | |
11683 | return TRUE; | |
11684 | } | |
11685 | ||
11686 | ||
11687 | static void | |
7fa3d080 | 11688 | copy_expr (expressionS *dst, const expressionS *src) |
e0001a05 NC |
11689 | { |
11690 | memcpy (dst, src, sizeof (expressionS)); | |
11691 | } | |
11692 | ||
11693 | \f | |
9456465c | 11694 | /* Support for the "--rename-section" option. */ |
e0001a05 NC |
11695 | |
11696 | struct rename_section_struct | |
11697 | { | |
11698 | char *old_name; | |
11699 | char *new_name; | |
11700 | struct rename_section_struct *next; | |
11701 | }; | |
11702 | ||
11703 | static struct rename_section_struct *section_rename; | |
11704 | ||
11705 | ||
9456465c BW |
11706 | /* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add |
11707 | entries to the section_rename list. Note: Specifying multiple | |
11708 | renamings separated by colons is not documented and is retained only | |
11709 | for backward compatibility. */ | |
e0001a05 | 11710 | |
7fa3d080 BW |
11711 | static void |
11712 | build_section_rename (const char *arg) | |
e0001a05 | 11713 | { |
9456465c | 11714 | struct rename_section_struct *r; |
e0001a05 NC |
11715 | char *this_arg = NULL; |
11716 | char *next_arg = NULL; | |
11717 | ||
9456465c | 11718 | for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg) |
e0001a05 | 11719 | { |
9456465c BW |
11720 | char *old_name, *new_name; |
11721 | ||
e0001a05 NC |
11722 | if (this_arg) |
11723 | { | |
11724 | next_arg = strchr (this_arg, ':'); | |
11725 | if (next_arg) | |
11726 | { | |
11727 | *next_arg = '\0'; | |
11728 | next_arg++; | |
11729 | } | |
11730 | } | |
e0001a05 | 11731 | |
9456465c BW |
11732 | old_name = this_arg; |
11733 | new_name = strchr (this_arg, '='); | |
e0001a05 | 11734 | |
9456465c BW |
11735 | if (*old_name == '\0') |
11736 | { | |
11737 | as_warn (_("ignoring extra '-rename-section' delimiter ':'")); | |
11738 | continue; | |
11739 | } | |
11740 | if (!new_name || new_name[1] == '\0') | |
11741 | { | |
11742 | as_warn (_("ignoring invalid '-rename-section' specification: '%s'"), | |
11743 | old_name); | |
11744 | continue; | |
11745 | } | |
11746 | *new_name = '\0'; | |
11747 | new_name++; | |
e0001a05 | 11748 | |
9456465c BW |
11749 | /* Check for invalid section renaming. */ |
11750 | for (r = section_rename; r != NULL; r = r->next) | |
11751 | { | |
11752 | if (strcmp (r->old_name, old_name) == 0) | |
11753 | as_bad (_("section %s renamed multiple times"), old_name); | |
11754 | if (strcmp (r->new_name, new_name) == 0) | |
11755 | as_bad (_("multiple sections remapped to output section %s"), | |
11756 | new_name); | |
11757 | } | |
e0001a05 | 11758 | |
9456465c BW |
11759 | /* Now add it. */ |
11760 | r = (struct rename_section_struct *) | |
11761 | xmalloc (sizeof (struct rename_section_struct)); | |
11762 | r->old_name = xstrdup (old_name); | |
11763 | r->new_name = xstrdup (new_name); | |
11764 | r->next = section_rename; | |
11765 | section_rename = r; | |
e0001a05 | 11766 | } |
e0001a05 NC |
11767 | } |
11768 | ||
11769 | ||
9456465c BW |
11770 | char * |
11771 | xtensa_section_rename (char *name) | |
e0001a05 NC |
11772 | { |
11773 | struct rename_section_struct *r = section_rename; | |
11774 | ||
11775 | for (r = section_rename; r != NULL; r = r->next) | |
43cd72b9 BW |
11776 | { |
11777 | if (strcmp (r->old_name, name) == 0) | |
11778 | return r->new_name; | |
11779 | } | |
e0001a05 NC |
11780 | |
11781 | return name; | |
11782 | } |