]>
Commit | Line | Data |
---|---|---|
e0001a05 | 1 | /* tc-xtensa.c -- Assemble Xtensa instructions. |
63a7429b | 2 | Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. |
e0001a05 NC |
3 | |
4 | This file is part of GAS, the GNU Assembler. | |
5 | ||
6 | GAS is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
ec2655a6 | 8 | the Free Software Foundation; either version 3, or (at your option) |
e0001a05 NC |
9 | any later version. |
10 | ||
11 | GAS is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GAS; see the file COPYING. If not, write to | |
4b4da160 NC |
18 | the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, |
19 | MA 02110-1301, USA. */ | |
e0001a05 | 20 | |
43cd72b9 | 21 | #include <limits.h> |
e0001a05 NC |
22 | #include "as.h" |
23 | #include "sb.h" | |
24 | #include "safe-ctype.h" | |
25 | #include "tc-xtensa.h" | |
e0001a05 NC |
26 | #include "subsegs.h" |
27 | #include "xtensa-relax.h" | |
cda2eb9e | 28 | #include "dwarf2dbg.h" |
b224e962 | 29 | #include "xtensa-istack.h" |
e0001a05 NC |
30 | #include "struc-symbol.h" |
31 | #include "xtensa-config.h" | |
32 | ||
2caa7ca0 BW |
33 | /* Provide default values for new configuration settings. */ |
34 | #ifndef XSHAL_ABI | |
35 | #define XSHAL_ABI 0 | |
36 | #endif | |
37 | ||
e0001a05 NC |
38 | #ifndef uint32 |
39 | #define uint32 unsigned int | |
40 | #endif | |
41 | #ifndef int32 | |
42 | #define int32 signed int | |
43 | #endif | |
44 | ||
45 | /* Notes: | |
46 | ||
e0001a05 NC |
47 | Naming conventions (used somewhat inconsistently): |
48 | The xtensa_ functions are exported | |
49 | The xg_ functions are internal | |
50 | ||
51 | We also have a couple of different extensibility mechanisms. | |
52 | 1) The idiom replacement: | |
53 | This is used when a line is first parsed to | |
54 | replace an instruction pattern with another instruction | |
55 | It is currently limited to replacements of instructions | |
56 | with constant operands. | |
57 | 2) The xtensa-relax.c mechanism that has stronger instruction | |
58 | replacement patterns. When an instruction's immediate field | |
59 | does not fit the next instruction sequence is attempted. | |
60 | In addition, "narrow" opcodes are supported this way. */ | |
61 | ||
62 | ||
63 | /* Define characters with special meanings to GAS. */ | |
64 | const char comment_chars[] = "#"; | |
65 | const char line_comment_chars[] = "#"; | |
66 | const char line_separator_chars[] = ";"; | |
67 | const char EXP_CHARS[] = "eE"; | |
68 | const char FLT_CHARS[] = "rRsSfFdDxXpP"; | |
69 | ||
70 | ||
43cd72b9 BW |
71 | /* Flags to indicate whether the hardware supports the density and |
72 | absolute literals options. */ | |
e0001a05 | 73 | |
e0001a05 | 74 | bfd_boolean density_supported = XCHAL_HAVE_DENSITY; |
43cd72b9 BW |
75 | bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS; |
76 | ||
77 | /* Maximum width we would pad an unreachable frag to get alignment. */ | |
78 | #define UNREACHABLE_MAX_WIDTH 8 | |
e0001a05 | 79 | |
43cd72b9 BW |
80 | static vliw_insn cur_vinsn; |
81 | ||
d77b99c9 | 82 | unsigned xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH; |
43cd72b9 BW |
83 | |
84 | static enum debug_info_type xt_saved_debug_type = DEBUG_NONE; | |
85 | ||
86 | /* Some functions are only valid in the front end. This variable | |
c138bc38 | 87 | allows us to assert that we haven't crossed over into the |
43cd72b9 BW |
88 | back end. */ |
89 | static bfd_boolean past_xtensa_end = FALSE; | |
e0001a05 NC |
90 | |
91 | /* Flags for properties of the last instruction in a segment. */ | |
92 | #define FLAG_IS_A0_WRITER 0x1 | |
93 | #define FLAG_IS_BAD_LOOPEND 0x2 | |
94 | ||
95 | ||
96 | /* We define a special segment names ".literal" to place literals | |
97 | into. The .fini and .init sections are special because they | |
98 | contain code that is moved together by the linker. We give them | |
99 | their own special .fini.literal and .init.literal sections. */ | |
100 | ||
101 | #define LITERAL_SECTION_NAME xtensa_section_rename (".literal") | |
43cd72b9 | 102 | #define LIT4_SECTION_NAME xtensa_section_rename (".lit4") |
e0001a05 | 103 | #define INIT_SECTION_NAME xtensa_section_rename (".init") |
74869ac7 | 104 | #define FINI_SECTION_NAME xtensa_section_rename (".fini") |
e0001a05 NC |
105 | |
106 | ||
43cd72b9 | 107 | /* This type is used for the directive_stack to keep track of the |
74869ac7 BW |
108 | state of the literal collection pools. If lit_prefix is set, it is |
109 | used to determine the literal section names; otherwise, the literal | |
110 | sections are determined based on the current text section. The | |
111 | lit_seg and lit4_seg fields cache these literal sections, with the | |
112 | current_text_seg field used a tag to indicate whether the cached | |
113 | values are valid. */ | |
e0001a05 NC |
114 | |
115 | typedef struct lit_state_struct | |
116 | { | |
74869ac7 BW |
117 | char *lit_prefix; |
118 | segT current_text_seg; | |
e0001a05 | 119 | segT lit_seg; |
43cd72b9 | 120 | segT lit4_seg; |
e0001a05 NC |
121 | } lit_state; |
122 | ||
123 | static lit_state default_lit_sections; | |
124 | ||
125 | ||
74869ac7 BW |
126 | /* We keep a list of literal segments. The seg_list type is the node |
127 | for this list. The literal_head pointer is the head of the list, | |
128 | with the literal_head_h dummy node at the start. */ | |
e0001a05 NC |
129 | |
130 | typedef struct seg_list_struct | |
131 | { | |
132 | struct seg_list_struct *next; | |
133 | segT seg; | |
134 | } seg_list; | |
135 | ||
136 | static seg_list literal_head_h; | |
137 | static seg_list *literal_head = &literal_head_h; | |
e0001a05 NC |
138 | |
139 | ||
82e7541d BW |
140 | /* Lists of symbols. We keep a list of symbols that label the current |
141 | instruction, so that we can adjust the symbols when inserting alignment | |
142 | for various instructions. We also keep a list of all the symbols on | |
143 | literals, so that we can fix up those symbols when the literals are | |
144 | later moved into the text sections. */ | |
145 | ||
146 | typedef struct sym_list_struct | |
147 | { | |
148 | struct sym_list_struct *next; | |
149 | symbolS *sym; | |
150 | } sym_list; | |
151 | ||
152 | static sym_list *insn_labels = NULL; | |
153 | static sym_list *free_insn_labels = NULL; | |
154 | static sym_list *saved_insn_labels = NULL; | |
155 | ||
156 | static sym_list *literal_syms; | |
157 | ||
158 | ||
43cd72b9 BW |
159 | /* Flags to determine whether to prefer const16 or l32r |
160 | if both options are available. */ | |
161 | int prefer_const16 = 0; | |
162 | int prefer_l32r = 0; | |
163 | ||
e0001a05 NC |
164 | /* Global flag to indicate when we are emitting literals. */ |
165 | int generating_literals = 0; | |
166 | ||
43cd72b9 BW |
167 | /* The following PROPERTY table definitions are copied from |
168 | <elf/xtensa.h> and must be kept in sync with the code there. */ | |
169 | ||
170 | /* Flags in the property tables to specify whether blocks of memory | |
171 | are literals, instructions, data, or unreachable. For | |
172 | instructions, blocks that begin loop targets and branch targets are | |
173 | designated. Blocks that do not allow density, instruction | |
174 | reordering or transformation are also specified. Finally, for | |
175 | branch targets, branch target alignment priority is included. | |
176 | Alignment of the next block is specified in the current block | |
177 | and the size of the current block does not include any fill required | |
178 | to align to the next block. */ | |
179 | ||
180 | #define XTENSA_PROP_LITERAL 0x00000001 | |
181 | #define XTENSA_PROP_INSN 0x00000002 | |
182 | #define XTENSA_PROP_DATA 0x00000004 | |
183 | #define XTENSA_PROP_UNREACHABLE 0x00000008 | |
184 | /* Instruction only properties at beginning of code. */ | |
185 | #define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010 | |
186 | #define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020 | |
187 | /* Instruction only properties about code. */ | |
188 | #define XTENSA_PROP_INSN_NO_DENSITY 0x00000040 | |
189 | #define XTENSA_PROP_INSN_NO_REORDER 0x00000080 | |
99ded152 BW |
190 | /* Historically, NO_TRANSFORM was a property of instructions, |
191 | but it should apply to literals under certain circumstances. */ | |
192 | #define XTENSA_PROP_NO_TRANSFORM 0x00000100 | |
43cd72b9 BW |
193 | |
194 | /* Branch target alignment information. This transmits information | |
195 | to the linker optimization about the priority of aligning a | |
196 | particular block for branch target alignment: None, low priority, | |
197 | high priority, or required. These only need to be checked in | |
198 | instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET. | |
199 | Common usage is | |
200 | ||
201 | switch (GET_XTENSA_PROP_BT_ALIGN (flags)) | |
202 | case XTENSA_PROP_BT_ALIGN_NONE: | |
203 | case XTENSA_PROP_BT_ALIGN_LOW: | |
204 | case XTENSA_PROP_BT_ALIGN_HIGH: | |
205 | case XTENSA_PROP_BT_ALIGN_REQUIRE: | |
206 | */ | |
207 | #define XTENSA_PROP_BT_ALIGN_MASK 0x00000600 | |
208 | ||
209 | /* No branch target alignment. */ | |
210 | #define XTENSA_PROP_BT_ALIGN_NONE 0x0 | |
211 | /* Low priority branch target alignment. */ | |
212 | #define XTENSA_PROP_BT_ALIGN_LOW 0x1 | |
213 | /* High priority branch target alignment. */ | |
214 | #define XTENSA_PROP_BT_ALIGN_HIGH 0x2 | |
215 | /* Required branch target alignment. */ | |
216 | #define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3 | |
217 | ||
218 | #define GET_XTENSA_PROP_BT_ALIGN(flag) \ | |
219 | (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9) | |
220 | #define SET_XTENSA_PROP_BT_ALIGN(flag, align) \ | |
221 | (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \ | |
222 | (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK)) | |
223 | ||
224 | ||
225 | /* Alignment is specified in the block BEFORE the one that needs | |
226 | alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to | |
227 | get the required alignment specified as a power of 2. Use | |
228 | SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required | |
229 | alignment. Be careful of side effects since the SET will evaluate | |
230 | flags twice. Also, note that the SIZE of a block in the property | |
231 | table does not include the alignment size, so the alignment fill | |
232 | must be calculated to determine if two blocks are contiguous. | |
233 | TEXT_ALIGN is not currently implemented but is a placeholder for a | |
234 | possible future implementation. */ | |
235 | ||
236 | #define XTENSA_PROP_ALIGN 0x00000800 | |
237 | ||
238 | #define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000 | |
239 | ||
240 | #define GET_XTENSA_PROP_ALIGNMENT(flag) \ | |
241 | (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12) | |
242 | #define SET_XTENSA_PROP_ALIGNMENT(flag, align) \ | |
243 | (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \ | |
244 | (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK)) | |
245 | ||
246 | #define XTENSA_PROP_INSN_ABSLIT 0x00020000 | |
247 | ||
248 | ||
249 | /* Structure for saving instruction and alignment per-fragment data | |
250 | that will be written to the object file. This structure is | |
251 | equivalent to the actual data that will be written out to the file | |
252 | but is easier to use. We provide a conversion to file flags | |
253 | in frag_flags_to_number. */ | |
254 | ||
255 | typedef struct frag_flags_struct frag_flags; | |
256 | ||
257 | struct frag_flags_struct | |
258 | { | |
259 | /* is_literal should only be used after xtensa_move_literals. | |
260 | If you need to check if you are generating a literal fragment, | |
261 | then use the generating_literals global. */ | |
262 | ||
263 | unsigned is_literal : 1; | |
264 | unsigned is_insn : 1; | |
265 | unsigned is_data : 1; | |
266 | unsigned is_unreachable : 1; | |
267 | ||
99ded152 BW |
268 | /* is_specific_opcode implies no_transform. */ |
269 | unsigned is_no_transform : 1; | |
270 | ||
43cd72b9 BW |
271 | struct |
272 | { | |
273 | unsigned is_loop_target : 1; | |
274 | unsigned is_branch_target : 1; /* Branch targets have a priority. */ | |
275 | unsigned bt_align_priority : 2; | |
276 | ||
277 | unsigned is_no_density : 1; | |
278 | /* no_longcalls flag does not need to be placed in the object file. */ | |
43cd72b9 BW |
279 | |
280 | unsigned is_no_reorder : 1; | |
281 | ||
282 | /* Uses absolute literal addressing for l32r. */ | |
283 | unsigned is_abslit : 1; | |
284 | } insn; | |
285 | unsigned is_align : 1; | |
286 | unsigned alignment : 5; | |
287 | }; | |
288 | ||
289 | ||
290 | /* Structure for saving information about a block of property data | |
291 | for frags that have the same flags. */ | |
292 | struct xtensa_block_info_struct | |
293 | { | |
294 | segT sec; | |
295 | bfd_vma offset; | |
296 | size_t size; | |
297 | frag_flags flags; | |
298 | struct xtensa_block_info_struct *next; | |
299 | }; | |
300 | ||
e0001a05 NC |
301 | |
302 | /* Structure for saving the current state before emitting literals. */ | |
303 | typedef struct emit_state_struct | |
304 | { | |
305 | const char *name; | |
306 | segT now_seg; | |
307 | subsegT now_subseg; | |
308 | int generating_literals; | |
309 | } emit_state; | |
310 | ||
311 | ||
43cd72b9 BW |
312 | /* Opcode placement information */ |
313 | ||
314 | typedef unsigned long long bitfield; | |
315 | #define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit))) | |
316 | #define set_bit(bit, bf) ((bf) |= (0x01ll << (bit))) | |
317 | #define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit))) | |
318 | ||
319 | #define MAX_FORMATS 32 | |
320 | ||
321 | typedef struct op_placement_info_struct | |
322 | { | |
323 | int num_formats; | |
324 | /* A number describing how restrictive the issue is for this | |
325 | opcode. For example, an opcode that fits lots of different | |
c138bc38 | 326 | formats has a high freedom, as does an opcode that fits |
43cd72b9 | 327 | only one format but many slots in that format. The most |
c138bc38 | 328 | restrictive is the opcode that fits only one slot in one |
43cd72b9 BW |
329 | format. */ |
330 | int issuef; | |
43cd72b9 | 331 | xtensa_format narrowest; |
43cd72b9 | 332 | char narrowest_size; |
b2d179be | 333 | char narrowest_slot; |
43cd72b9 BW |
334 | |
335 | /* formats is a bitfield with the Nth bit set | |
336 | if the opcode fits in the Nth xtensa_format. */ | |
337 | bitfield formats; | |
338 | ||
339 | /* slots[N]'s Mth bit is set if the op fits in the | |
340 | Mth slot of the Nth xtensa_format. */ | |
341 | bitfield slots[MAX_FORMATS]; | |
342 | ||
343 | /* A count of the number of slots in a given format | |
344 | an op can fit (i.e., the bitcount of the slot field above). */ | |
345 | char slots_in_format[MAX_FORMATS]; | |
346 | ||
347 | } op_placement_info, *op_placement_info_table; | |
348 | ||
349 | op_placement_info_table op_placement_table; | |
350 | ||
351 | ||
352 | /* Extra expression types. */ | |
353 | ||
354 | #define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */ | |
355 | #define O_hi16 O_md2 /* use high 16 bits of symbolic value */ | |
356 | #define O_lo16 O_md3 /* use low 16 bits of symbolic value */ | |
1bbb5f21 | 357 | #define O_pcrel O_md4 /* value is a PC-relative offset */ |
43cd72b9 | 358 | |
bbdd25a8 BW |
359 | struct suffix_reloc_map |
360 | { | |
361 | char *suffix; | |
362 | int length; | |
363 | bfd_reloc_code_real_type reloc; | |
364 | unsigned char operator; | |
365 | }; | |
366 | ||
367 | #define SUFFIX_MAP(str, reloc, op) { str, sizeof (str) - 1, reloc, op } | |
368 | ||
369 | static struct suffix_reloc_map suffix_relocs[] = | |
370 | { | |
371 | SUFFIX_MAP ("l", BFD_RELOC_LO16, O_lo16), | |
372 | SUFFIX_MAP ("h", BFD_RELOC_HI16, O_hi16), | |
373 | SUFFIX_MAP ("plt", BFD_RELOC_XTENSA_PLT, O_pltrel), | |
1bbb5f21 | 374 | SUFFIX_MAP ("pcrel", BFD_RELOC_32_PCREL, O_pcrel), |
bbdd25a8 BW |
375 | { (char *) 0, 0, BFD_RELOC_UNUSED, 0 } |
376 | }; | |
377 | ||
43cd72b9 | 378 | |
e0001a05 NC |
379 | /* Directives. */ |
380 | ||
381 | typedef enum | |
382 | { | |
383 | directive_none = 0, | |
384 | directive_literal, | |
385 | directive_density, | |
43cd72b9 | 386 | directive_transform, |
e0001a05 NC |
387 | directive_freeregs, |
388 | directive_longcalls, | |
43cd72b9 BW |
389 | directive_literal_prefix, |
390 | directive_schedule, | |
391 | directive_absolute_literals, | |
392 | directive_last_directive | |
e0001a05 NC |
393 | } directiveE; |
394 | ||
395 | typedef struct | |
396 | { | |
397 | const char *name; | |
398 | bfd_boolean can_be_negated; | |
399 | } directive_infoS; | |
400 | ||
401 | const directive_infoS directive_info[] = | |
402 | { | |
43cd72b9 BW |
403 | { "none", FALSE }, |
404 | { "literal", FALSE }, | |
405 | { "density", TRUE }, | |
406 | { "transform", TRUE }, | |
407 | { "freeregs", FALSE }, | |
408 | { "longcalls", TRUE }, | |
409 | { "literal_prefix", FALSE }, | |
410 | { "schedule", TRUE }, | |
411 | { "absolute-literals", TRUE } | |
e0001a05 NC |
412 | }; |
413 | ||
414 | bfd_boolean directive_state[] = | |
415 | { | |
416 | FALSE, /* none */ | |
417 | FALSE, /* literal */ | |
43cd72b9 | 418 | #if !XCHAL_HAVE_DENSITY |
e0001a05 NC |
419 | FALSE, /* density */ |
420 | #else | |
421 | TRUE, /* density */ | |
422 | #endif | |
43cd72b9 | 423 | TRUE, /* transform */ |
e0001a05 NC |
424 | FALSE, /* freeregs */ |
425 | FALSE, /* longcalls */ | |
43cd72b9 | 426 | FALSE, /* literal_prefix */ |
2caa7ca0 | 427 | FALSE, /* schedule */ |
43cd72b9 BW |
428 | #if XSHAL_USE_ABSOLUTE_LITERALS |
429 | TRUE /* absolute_literals */ | |
430 | #else | |
431 | FALSE /* absolute_literals */ | |
432 | #endif | |
e0001a05 NC |
433 | }; |
434 | ||
e0001a05 NC |
435 | |
436 | /* Directive functions. */ | |
437 | ||
7fa3d080 BW |
438 | static void xtensa_begin_directive (int); |
439 | static void xtensa_end_directive (int); | |
74869ac7 | 440 | static void xtensa_literal_prefix (void); |
7fa3d080 BW |
441 | static void xtensa_literal_position (int); |
442 | static void xtensa_literal_pseudo (int); | |
443 | static void xtensa_frequency_pseudo (int); | |
444 | static void xtensa_elf_cons (int); | |
e0001a05 | 445 | |
7fa3d080 | 446 | /* Parsing and Idiom Translation. */ |
e0001a05 | 447 | |
7fa3d080 | 448 | static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *); |
e0001a05 | 449 | |
e0001a05 NC |
450 | /* Various Other Internal Functions. */ |
451 | ||
84b08ed9 BW |
452 | extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean); |
453 | static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *); | |
7fa3d080 BW |
454 | static void xtensa_mark_literal_pool_location (void); |
455 | static addressT get_expanded_loop_offset (xtensa_opcode); | |
456 | static fragS *get_literal_pool_location (segT); | |
457 | static void set_literal_pool_location (segT, fragS *); | |
458 | static void xtensa_set_frag_assembly_state (fragS *); | |
459 | static void finish_vinsn (vliw_insn *); | |
460 | static bfd_boolean emit_single_op (TInsn *); | |
34e41783 | 461 | static int total_frag_text_expansion (fragS *); |
e0001a05 NC |
462 | |
463 | /* Alignment Functions. */ | |
464 | ||
d77b99c9 BW |
465 | static int get_text_align_power (unsigned); |
466 | static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean); | |
664df4e4 | 467 | static int branch_align_power (segT); |
e0001a05 NC |
468 | |
469 | /* Helpers for xtensa_relax_frag(). */ | |
470 | ||
7fa3d080 | 471 | static long relax_frag_add_nop (fragS *); |
e0001a05 | 472 | |
b08b5071 | 473 | /* Accessors for additional per-subsegment information. */ |
e0001a05 | 474 | |
7fa3d080 BW |
475 | static unsigned get_last_insn_flags (segT, subsegT); |
476 | static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean); | |
b08b5071 BW |
477 | static float get_subseg_total_freq (segT, subsegT); |
478 | static float get_subseg_target_freq (segT, subsegT); | |
479 | static void set_subseg_freq (segT, subsegT, float, float); | |
e0001a05 NC |
480 | |
481 | /* Segment list functions. */ | |
482 | ||
7fa3d080 BW |
483 | static void xtensa_move_literals (void); |
484 | static void xtensa_reorder_segments (void); | |
485 | static void xtensa_switch_to_literal_fragment (emit_state *); | |
486 | static void xtensa_switch_to_non_abs_literal_fragment (emit_state *); | |
487 | static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT); | |
488 | static void xtensa_restore_emit_state (emit_state *); | |
74869ac7 | 489 | static segT cache_literal_section (bfd_boolean); |
e0001a05 | 490 | |
e0001a05 | 491 | /* Import from elf32-xtensa.c in BFD library. */ |
43cd72b9 | 492 | |
74869ac7 | 493 | extern asection *xtensa_get_property_section (asection *, const char *); |
e0001a05 | 494 | |
43cd72b9 BW |
495 | /* op_placement_info functions. */ |
496 | ||
7fa3d080 BW |
497 | static void init_op_placement_info_table (void); |
498 | extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int); | |
499 | static int xg_get_single_size (xtensa_opcode); | |
500 | static xtensa_format xg_get_single_format (xtensa_opcode); | |
b2d179be | 501 | static int xg_get_single_slot (xtensa_opcode); |
43cd72b9 | 502 | |
e0001a05 | 503 | /* TInsn and IStack functions. */ |
43cd72b9 | 504 | |
7fa3d080 BW |
505 | static bfd_boolean tinsn_has_symbolic_operands (const TInsn *); |
506 | static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *); | |
507 | static bfd_boolean tinsn_has_complex_operands (const TInsn *); | |
508 | static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf); | |
509 | static bfd_boolean tinsn_check_arguments (const TInsn *); | |
510 | static void tinsn_from_chars (TInsn *, char *, int); | |
511 | static void tinsn_immed_from_frag (TInsn *, fragS *, int); | |
512 | static int get_num_stack_text_bytes (IStack *); | |
513 | static int get_num_stack_literal_bytes (IStack *); | |
e0001a05 | 514 | |
43cd72b9 BW |
515 | /* vliw_insn functions. */ |
516 | ||
7fa3d080 BW |
517 | static void xg_init_vinsn (vliw_insn *); |
518 | static void xg_clear_vinsn (vliw_insn *); | |
519 | static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *); | |
520 | static void xg_free_vinsn (vliw_insn *); | |
43cd72b9 | 521 | static bfd_boolean vinsn_to_insnbuf |
7fa3d080 BW |
522 | (vliw_insn *, char *, fragS *, bfd_boolean); |
523 | static void vinsn_from_chars (vliw_insn *, char *); | |
43cd72b9 | 524 | |
e0001a05 | 525 | /* Expression Utilities. */ |
43cd72b9 | 526 | |
7fa3d080 BW |
527 | bfd_boolean expr_is_const (const expressionS *); |
528 | offsetT get_expr_const (const expressionS *); | |
529 | void set_expr_const (expressionS *, offsetT); | |
530 | bfd_boolean expr_is_register (const expressionS *); | |
531 | offsetT get_expr_register (const expressionS *); | |
532 | void set_expr_symbol_offset (expressionS *, symbolS *, offsetT); | |
7fa3d080 BW |
533 | bfd_boolean expr_is_equal (expressionS *, expressionS *); |
534 | static void copy_expr (expressionS *, const expressionS *); | |
e0001a05 | 535 | |
9456465c BW |
536 | /* Section renaming. */ |
537 | ||
7fa3d080 | 538 | static void build_section_rename (const char *); |
e0001a05 | 539 | |
e0001a05 NC |
540 | |
541 | /* ISA imported from bfd. */ | |
542 | extern xtensa_isa xtensa_default_isa; | |
543 | ||
544 | extern int target_big_endian; | |
545 | ||
546 | static xtensa_opcode xtensa_addi_opcode; | |
547 | static xtensa_opcode xtensa_addmi_opcode; | |
548 | static xtensa_opcode xtensa_call0_opcode; | |
549 | static xtensa_opcode xtensa_call4_opcode; | |
550 | static xtensa_opcode xtensa_call8_opcode; | |
551 | static xtensa_opcode xtensa_call12_opcode; | |
552 | static xtensa_opcode xtensa_callx0_opcode; | |
553 | static xtensa_opcode xtensa_callx4_opcode; | |
554 | static xtensa_opcode xtensa_callx8_opcode; | |
555 | static xtensa_opcode xtensa_callx12_opcode; | |
43cd72b9 | 556 | static xtensa_opcode xtensa_const16_opcode; |
e0001a05 | 557 | static xtensa_opcode xtensa_entry_opcode; |
d12f9798 | 558 | static xtensa_opcode xtensa_extui_opcode; |
43cd72b9 BW |
559 | static xtensa_opcode xtensa_movi_opcode; |
560 | static xtensa_opcode xtensa_movi_n_opcode; | |
e0001a05 | 561 | static xtensa_opcode xtensa_isync_opcode; |
e0001a05 | 562 | static xtensa_opcode xtensa_jx_opcode; |
43cd72b9 | 563 | static xtensa_opcode xtensa_l32r_opcode; |
e0001a05 NC |
564 | static xtensa_opcode xtensa_loop_opcode; |
565 | static xtensa_opcode xtensa_loopnez_opcode; | |
566 | static xtensa_opcode xtensa_loopgtz_opcode; | |
43cd72b9 | 567 | static xtensa_opcode xtensa_nop_opcode; |
e0001a05 NC |
568 | static xtensa_opcode xtensa_nop_n_opcode; |
569 | static xtensa_opcode xtensa_or_opcode; | |
570 | static xtensa_opcode xtensa_ret_opcode; | |
571 | static xtensa_opcode xtensa_ret_n_opcode; | |
572 | static xtensa_opcode xtensa_retw_opcode; | |
573 | static xtensa_opcode xtensa_retw_n_opcode; | |
43cd72b9 | 574 | static xtensa_opcode xtensa_rsr_lcount_opcode; |
e0001a05 NC |
575 | static xtensa_opcode xtensa_waiti_opcode; |
576 | ||
577 | \f | |
578 | /* Command-line Options. */ | |
579 | ||
580 | bfd_boolean use_literal_section = TRUE; | |
581 | static bfd_boolean align_targets = TRUE; | |
43cd72b9 | 582 | static bfd_boolean warn_unaligned_branch_targets = FALSE; |
e0001a05 | 583 | static bfd_boolean has_a0_b_retw = FALSE; |
43cd72b9 BW |
584 | static bfd_boolean workaround_a0_b_retw = FALSE; |
585 | static bfd_boolean workaround_b_j_loop_end = FALSE; | |
586 | static bfd_boolean workaround_short_loop = FALSE; | |
e0001a05 | 587 | static bfd_boolean maybe_has_short_loop = FALSE; |
43cd72b9 | 588 | static bfd_boolean workaround_close_loop_end = FALSE; |
e0001a05 | 589 | static bfd_boolean maybe_has_close_loop_end = FALSE; |
03aaa593 | 590 | static bfd_boolean enforce_three_byte_loop_align = FALSE; |
e0001a05 | 591 | |
43cd72b9 BW |
592 | /* When workaround_short_loops is TRUE, all loops with early exits must |
593 | have at least 3 instructions. workaround_all_short_loops is a modifier | |
594 | to the workaround_short_loop flag. In addition to the | |
595 | workaround_short_loop actions, all straightline loopgtz and loopnez | |
596 | must have at least 3 instructions. */ | |
e0001a05 | 597 | |
43cd72b9 | 598 | static bfd_boolean workaround_all_short_loops = FALSE; |
e0001a05 | 599 | |
7fa3d080 BW |
600 | |
601 | static void | |
602 | xtensa_setup_hw_workarounds (int earliest, int latest) | |
603 | { | |
604 | if (earliest > latest) | |
605 | as_fatal (_("illegal range of target hardware versions")); | |
606 | ||
607 | /* Enable all workarounds for pre-T1050.0 hardware. */ | |
608 | if (earliest < 105000 || latest < 105000) | |
609 | { | |
610 | workaround_a0_b_retw |= TRUE; | |
611 | workaround_b_j_loop_end |= TRUE; | |
612 | workaround_short_loop |= TRUE; | |
613 | workaround_close_loop_end |= TRUE; | |
614 | workaround_all_short_loops |= TRUE; | |
03aaa593 | 615 | enforce_three_byte_loop_align = TRUE; |
7fa3d080 BW |
616 | } |
617 | } | |
618 | ||
619 | ||
e0001a05 NC |
620 | enum |
621 | { | |
622 | option_density = OPTION_MD_BASE, | |
623 | option_no_density, | |
624 | ||
625 | option_relax, | |
626 | option_no_relax, | |
627 | ||
43cd72b9 BW |
628 | option_link_relax, |
629 | option_no_link_relax, | |
630 | ||
e0001a05 NC |
631 | option_generics, |
632 | option_no_generics, | |
633 | ||
43cd72b9 BW |
634 | option_transform, |
635 | option_no_transform, | |
636 | ||
e0001a05 NC |
637 | option_text_section_literals, |
638 | option_no_text_section_literals, | |
639 | ||
43cd72b9 BW |
640 | option_absolute_literals, |
641 | option_no_absolute_literals, | |
642 | ||
e0001a05 NC |
643 | option_align_targets, |
644 | option_no_align_targets, | |
645 | ||
43cd72b9 | 646 | option_warn_unaligned_targets, |
e0001a05 NC |
647 | |
648 | option_longcalls, | |
649 | option_no_longcalls, | |
650 | ||
651 | option_workaround_a0_b_retw, | |
652 | option_no_workaround_a0_b_retw, | |
653 | ||
654 | option_workaround_b_j_loop_end, | |
655 | option_no_workaround_b_j_loop_end, | |
656 | ||
657 | option_workaround_short_loop, | |
658 | option_no_workaround_short_loop, | |
659 | ||
660 | option_workaround_all_short_loops, | |
661 | option_no_workaround_all_short_loops, | |
662 | ||
663 | option_workaround_close_loop_end, | |
664 | option_no_workaround_close_loop_end, | |
665 | ||
666 | option_no_workarounds, | |
667 | ||
e0001a05 | 668 | option_rename_section_name, |
e0001a05 | 669 | |
43cd72b9 BW |
670 | option_prefer_l32r, |
671 | option_prefer_const16, | |
672 | ||
673 | option_target_hardware | |
e0001a05 NC |
674 | }; |
675 | ||
676 | const char *md_shortopts = ""; | |
677 | ||
678 | struct option md_longopts[] = | |
679 | { | |
43cd72b9 BW |
680 | { "density", no_argument, NULL, option_density }, |
681 | { "no-density", no_argument, NULL, option_no_density }, | |
682 | ||
683 | /* Both "relax" and "generics" are deprecated and treated as equivalent | |
684 | to the "transform" option. */ | |
685 | { "relax", no_argument, NULL, option_relax }, | |
686 | { "no-relax", no_argument, NULL, option_no_relax }, | |
687 | { "generics", no_argument, NULL, option_generics }, | |
688 | { "no-generics", no_argument, NULL, option_no_generics }, | |
689 | ||
690 | { "transform", no_argument, NULL, option_transform }, | |
691 | { "no-transform", no_argument, NULL, option_no_transform }, | |
692 | { "text-section-literals", no_argument, NULL, option_text_section_literals }, | |
693 | { "no-text-section-literals", no_argument, NULL, | |
694 | option_no_text_section_literals }, | |
695 | { "absolute-literals", no_argument, NULL, option_absolute_literals }, | |
696 | { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals }, | |
e0001a05 NC |
697 | /* This option was changed from -align-target to -target-align |
698 | because it conflicted with the "-al" option. */ | |
43cd72b9 | 699 | { "target-align", no_argument, NULL, option_align_targets }, |
7fa3d080 BW |
700 | { "no-target-align", no_argument, NULL, option_no_align_targets }, |
701 | { "warn-unaligned-targets", no_argument, NULL, | |
702 | option_warn_unaligned_targets }, | |
43cd72b9 BW |
703 | { "longcalls", no_argument, NULL, option_longcalls }, |
704 | { "no-longcalls", no_argument, NULL, option_no_longcalls }, | |
705 | ||
706 | { "no-workaround-a0-b-retw", no_argument, NULL, | |
707 | option_no_workaround_a0_b_retw }, | |
708 | { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw }, | |
e0001a05 | 709 | |
43cd72b9 BW |
710 | { "no-workaround-b-j-loop-end", no_argument, NULL, |
711 | option_no_workaround_b_j_loop_end }, | |
712 | { "workaround-b-j-loop-end", no_argument, NULL, | |
713 | option_workaround_b_j_loop_end }, | |
e0001a05 | 714 | |
43cd72b9 BW |
715 | { "no-workaround-short-loops", no_argument, NULL, |
716 | option_no_workaround_short_loop }, | |
7fa3d080 BW |
717 | { "workaround-short-loops", no_argument, NULL, |
718 | option_workaround_short_loop }, | |
e0001a05 | 719 | |
43cd72b9 BW |
720 | { "no-workaround-all-short-loops", no_argument, NULL, |
721 | option_no_workaround_all_short_loops }, | |
722 | { "workaround-all-short-loop", no_argument, NULL, | |
723 | option_workaround_all_short_loops }, | |
724 | ||
725 | { "prefer-l32r", no_argument, NULL, option_prefer_l32r }, | |
726 | { "prefer-const16", no_argument, NULL, option_prefer_const16 }, | |
727 | ||
728 | { "no-workarounds", no_argument, NULL, option_no_workarounds }, | |
729 | ||
730 | { "no-workaround-close-loop-end", no_argument, NULL, | |
731 | option_no_workaround_close_loop_end }, | |
732 | { "workaround-close-loop-end", no_argument, NULL, | |
733 | option_workaround_close_loop_end }, | |
e0001a05 | 734 | |
7fa3d080 | 735 | { "rename-section", required_argument, NULL, option_rename_section_name }, |
e0001a05 | 736 | |
43cd72b9 BW |
737 | { "link-relax", no_argument, NULL, option_link_relax }, |
738 | { "no-link-relax", no_argument, NULL, option_no_link_relax }, | |
739 | ||
740 | { "target-hardware", required_argument, NULL, option_target_hardware }, | |
741 | ||
742 | { NULL, no_argument, NULL, 0 } | |
e0001a05 NC |
743 | }; |
744 | ||
745 | size_t md_longopts_size = sizeof md_longopts; | |
746 | ||
747 | ||
748 | int | |
7fa3d080 | 749 | md_parse_option (int c, char *arg) |
e0001a05 NC |
750 | { |
751 | switch (c) | |
752 | { | |
753 | case option_density: | |
43cd72b9 | 754 | as_warn (_("--density option is ignored")); |
e0001a05 NC |
755 | return 1; |
756 | case option_no_density: | |
43cd72b9 | 757 | as_warn (_("--no-density option is ignored")); |
e0001a05 | 758 | return 1; |
43cd72b9 BW |
759 | case option_link_relax: |
760 | linkrelax = 1; | |
e0001a05 | 761 | return 1; |
43cd72b9 BW |
762 | case option_no_link_relax: |
763 | linkrelax = 0; | |
e0001a05 | 764 | return 1; |
43cd72b9 BW |
765 | case option_generics: |
766 | as_warn (_("--generics is deprecated; use --transform instead")); | |
767 | return md_parse_option (option_transform, arg); | |
768 | case option_no_generics: | |
769 | as_warn (_("--no-generics is deprecated; use --no-transform instead")); | |
770 | return md_parse_option (option_no_transform, arg); | |
771 | case option_relax: | |
772 | as_warn (_("--relax is deprecated; use --transform instead")); | |
773 | return md_parse_option (option_transform, arg); | |
774 | case option_no_relax: | |
775 | as_warn (_("--no-relax is deprecated; use --no-transform instead")); | |
776 | return md_parse_option (option_no_transform, arg); | |
e0001a05 NC |
777 | case option_longcalls: |
778 | directive_state[directive_longcalls] = TRUE; | |
779 | return 1; | |
780 | case option_no_longcalls: | |
781 | directive_state[directive_longcalls] = FALSE; | |
782 | return 1; | |
783 | case option_text_section_literals: | |
784 | use_literal_section = FALSE; | |
785 | return 1; | |
786 | case option_no_text_section_literals: | |
787 | use_literal_section = TRUE; | |
788 | return 1; | |
43cd72b9 BW |
789 | case option_absolute_literals: |
790 | if (!absolute_literals_supported) | |
791 | { | |
792 | as_fatal (_("--absolute-literals option not supported in this Xtensa configuration")); | |
793 | return 0; | |
794 | } | |
795 | directive_state[directive_absolute_literals] = TRUE; | |
796 | return 1; | |
797 | case option_no_absolute_literals: | |
798 | directive_state[directive_absolute_literals] = FALSE; | |
799 | return 1; | |
800 | ||
e0001a05 NC |
801 | case option_workaround_a0_b_retw: |
802 | workaround_a0_b_retw = TRUE; | |
e0001a05 NC |
803 | return 1; |
804 | case option_no_workaround_a0_b_retw: | |
805 | workaround_a0_b_retw = FALSE; | |
e0001a05 NC |
806 | return 1; |
807 | case option_workaround_b_j_loop_end: | |
808 | workaround_b_j_loop_end = TRUE; | |
e0001a05 NC |
809 | return 1; |
810 | case option_no_workaround_b_j_loop_end: | |
811 | workaround_b_j_loop_end = FALSE; | |
e0001a05 NC |
812 | return 1; |
813 | ||
814 | case option_workaround_short_loop: | |
815 | workaround_short_loop = TRUE; | |
e0001a05 NC |
816 | return 1; |
817 | case option_no_workaround_short_loop: | |
818 | workaround_short_loop = FALSE; | |
e0001a05 NC |
819 | return 1; |
820 | ||
821 | case option_workaround_all_short_loops: | |
822 | workaround_all_short_loops = TRUE; | |
e0001a05 NC |
823 | return 1; |
824 | case option_no_workaround_all_short_loops: | |
825 | workaround_all_short_loops = FALSE; | |
e0001a05 NC |
826 | return 1; |
827 | ||
828 | case option_workaround_close_loop_end: | |
829 | workaround_close_loop_end = TRUE; | |
e0001a05 NC |
830 | return 1; |
831 | case option_no_workaround_close_loop_end: | |
832 | workaround_close_loop_end = FALSE; | |
e0001a05 NC |
833 | return 1; |
834 | ||
835 | case option_no_workarounds: | |
836 | workaround_a0_b_retw = FALSE; | |
e0001a05 | 837 | workaround_b_j_loop_end = FALSE; |
e0001a05 | 838 | workaround_short_loop = FALSE; |
e0001a05 | 839 | workaround_all_short_loops = FALSE; |
e0001a05 | 840 | workaround_close_loop_end = FALSE; |
e0001a05 | 841 | return 1; |
43cd72b9 | 842 | |
e0001a05 NC |
843 | case option_align_targets: |
844 | align_targets = TRUE; | |
845 | return 1; | |
846 | case option_no_align_targets: | |
847 | align_targets = FALSE; | |
848 | return 1; | |
849 | ||
43cd72b9 BW |
850 | case option_warn_unaligned_targets: |
851 | warn_unaligned_branch_targets = TRUE; | |
e0001a05 NC |
852 | return 1; |
853 | ||
e0001a05 NC |
854 | case option_rename_section_name: |
855 | build_section_rename (arg); | |
856 | return 1; | |
e0001a05 NC |
857 | |
858 | case 'Q': | |
859 | /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section | |
860 | should be emitted or not. FIXME: Not implemented. */ | |
861 | return 1; | |
c138bc38 | 862 | |
43cd72b9 BW |
863 | case option_prefer_l32r: |
864 | if (prefer_const16) | |
865 | as_fatal (_("prefer-l32r conflicts with prefer-const16")); | |
866 | prefer_l32r = 1; | |
867 | return 1; | |
868 | ||
869 | case option_prefer_const16: | |
870 | if (prefer_l32r) | |
871 | as_fatal (_("prefer-const16 conflicts with prefer-l32r")); | |
872 | prefer_const16 = 1; | |
873 | return 1; | |
874 | ||
c138bc38 | 875 | case option_target_hardware: |
43cd72b9 BW |
876 | { |
877 | int earliest, latest = 0; | |
878 | if (*arg == 0 || *arg == '-') | |
879 | as_fatal (_("invalid target hardware version")); | |
880 | ||
881 | earliest = strtol (arg, &arg, 0); | |
882 | ||
883 | if (*arg == 0) | |
884 | latest = earliest; | |
885 | else if (*arg == '-') | |
886 | { | |
887 | if (*++arg == 0) | |
888 | as_fatal (_("invalid target hardware version")); | |
889 | latest = strtol (arg, &arg, 0); | |
890 | } | |
891 | if (*arg != 0) | |
892 | as_fatal (_("invalid target hardware version")); | |
893 | ||
894 | xtensa_setup_hw_workarounds (earliest, latest); | |
895 | return 1; | |
896 | } | |
897 | ||
898 | case option_transform: | |
899 | /* This option has no affect other than to use the defaults, | |
900 | which are already set. */ | |
901 | return 1; | |
902 | ||
903 | case option_no_transform: | |
904 | /* This option turns off all transformations of any kind. | |
905 | However, because we want to preserve the state of other | |
906 | directives, we only change its own field. Thus, before | |
907 | you perform any transformation, always check if transform | |
908 | is available. If you use the functions we provide for this | |
909 | purpose, you will be ok. */ | |
910 | directive_state[directive_transform] = FALSE; | |
911 | return 1; | |
912 | ||
e0001a05 NC |
913 | default: |
914 | return 0; | |
915 | } | |
916 | } | |
917 | ||
918 | ||
919 | void | |
7fa3d080 | 920 | md_show_usage (FILE *stream) |
e0001a05 | 921 | { |
43cd72b9 BW |
922 | fputs ("\n\ |
923 | Xtensa options:\n\ | |
9456465c BW |
924 | --[no-]text-section-literals\n\ |
925 | [Do not] put literals in the text section\n\ | |
926 | --[no-]absolute-literals\n\ | |
927 | [Do not] default to use non-PC-relative literals\n\ | |
928 | --[no-]target-align [Do not] try to align branch targets\n\ | |
929 | --[no-]longcalls [Do not] emit 32-bit call sequences\n\ | |
930 | --[no-]transform [Do not] transform instructions\n\ | |
931 | --rename-section old=new Rename section 'old' to 'new'\n", stream); | |
e0001a05 NC |
932 | } |
933 | ||
7fa3d080 BW |
934 | \f |
935 | /* Functions related to the list of current label symbols. */ | |
43cd72b9 BW |
936 | |
937 | static void | |
7fa3d080 | 938 | xtensa_add_insn_label (symbolS *sym) |
43cd72b9 | 939 | { |
7fa3d080 | 940 | sym_list *l; |
43cd72b9 | 941 | |
7fa3d080 BW |
942 | if (!free_insn_labels) |
943 | l = (sym_list *) xmalloc (sizeof (sym_list)); | |
944 | else | |
43cd72b9 | 945 | { |
7fa3d080 BW |
946 | l = free_insn_labels; |
947 | free_insn_labels = l->next; | |
948 | } | |
949 | ||
950 | l->sym = sym; | |
951 | l->next = insn_labels; | |
952 | insn_labels = l; | |
953 | } | |
954 | ||
955 | ||
956 | static void | |
957 | xtensa_clear_insn_labels (void) | |
958 | { | |
959 | sym_list **pl; | |
960 | ||
961 | for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next) | |
962 | ; | |
963 | *pl = insn_labels; | |
964 | insn_labels = NULL; | |
965 | } | |
966 | ||
967 | ||
7fa3d080 | 968 | static void |
c3ea6048 | 969 | xtensa_move_labels (fragS *new_frag, valueT new_offset) |
7fa3d080 BW |
970 | { |
971 | sym_list *lit; | |
972 | ||
973 | for (lit = insn_labels; lit; lit = lit->next) | |
974 | { | |
975 | symbolS *lit_sym = lit->sym; | |
c3ea6048 BW |
976 | S_SET_VALUE (lit_sym, new_offset); |
977 | symbol_set_frag (lit_sym, new_frag); | |
43cd72b9 BW |
978 | } |
979 | } | |
980 | ||
e0001a05 NC |
981 | \f |
982 | /* Directive data and functions. */ | |
983 | ||
984 | typedef struct state_stackS_struct | |
985 | { | |
986 | directiveE directive; | |
987 | bfd_boolean negated; | |
988 | bfd_boolean old_state; | |
989 | const char *file; | |
990 | unsigned int line; | |
991 | const void *datum; | |
992 | struct state_stackS_struct *prev; | |
993 | } state_stackS; | |
994 | ||
995 | state_stackS *directive_state_stack; | |
996 | ||
997 | const pseudo_typeS md_pseudo_table[] = | |
998 | { | |
43cd72b9 BW |
999 | { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */ |
1000 | { "literal_position", xtensa_literal_position, 0 }, | |
1001 | { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */ | |
1002 | { "long", xtensa_elf_cons, 4 }, | |
1003 | { "word", xtensa_elf_cons, 4 }, | |
1bbb5f21 | 1004 | { "4byte", xtensa_elf_cons, 4 }, |
43cd72b9 | 1005 | { "short", xtensa_elf_cons, 2 }, |
1bbb5f21 | 1006 | { "2byte", xtensa_elf_cons, 2 }, |
43cd72b9 BW |
1007 | { "begin", xtensa_begin_directive, 0 }, |
1008 | { "end", xtensa_end_directive, 0 }, | |
43cd72b9 BW |
1009 | { "literal", xtensa_literal_pseudo, 0 }, |
1010 | { "frequency", xtensa_frequency_pseudo, 0 }, | |
1011 | { NULL, 0, 0 }, | |
e0001a05 NC |
1012 | }; |
1013 | ||
1014 | ||
7fa3d080 BW |
1015 | static bfd_boolean |
1016 | use_transform (void) | |
e0001a05 | 1017 | { |
43cd72b9 BW |
1018 | /* After md_end, you should be checking frag by frag, rather |
1019 | than state directives. */ | |
1020 | assert (!past_xtensa_end); | |
1021 | return directive_state[directive_transform]; | |
e0001a05 NC |
1022 | } |
1023 | ||
1024 | ||
7fa3d080 BW |
1025 | static bfd_boolean |
1026 | do_align_targets (void) | |
e0001a05 | 1027 | { |
7b1cc377 BW |
1028 | /* Do not use this function after md_end; just look at align_targets |
1029 | instead. There is no target-align directive, so alignment is either | |
1030 | enabled for all frags or not done at all. */ | |
43cd72b9 BW |
1031 | assert (!past_xtensa_end); |
1032 | return align_targets && use_transform (); | |
e0001a05 NC |
1033 | } |
1034 | ||
1035 | ||
1036 | static void | |
7fa3d080 | 1037 | directive_push (directiveE directive, bfd_boolean negated, const void *datum) |
e0001a05 NC |
1038 | { |
1039 | char *file; | |
1040 | unsigned int line; | |
1041 | state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS)); | |
1042 | ||
1043 | as_where (&file, &line); | |
1044 | ||
1045 | stack->directive = directive; | |
1046 | stack->negated = negated; | |
1047 | stack->old_state = directive_state[directive]; | |
1048 | stack->file = file; | |
1049 | stack->line = line; | |
1050 | stack->datum = datum; | |
1051 | stack->prev = directive_state_stack; | |
1052 | directive_state_stack = stack; | |
1053 | ||
1054 | directive_state[directive] = !negated; | |
1055 | } | |
1056 | ||
7fa3d080 | 1057 | |
e0001a05 | 1058 | static void |
7fa3d080 BW |
1059 | directive_pop (directiveE *directive, |
1060 | bfd_boolean *negated, | |
1061 | const char **file, | |
1062 | unsigned int *line, | |
1063 | const void **datum) | |
e0001a05 NC |
1064 | { |
1065 | state_stackS *top = directive_state_stack; | |
1066 | ||
1067 | if (!directive_state_stack) | |
1068 | { | |
1069 | as_bad (_("unmatched end directive")); | |
1070 | *directive = directive_none; | |
1071 | return; | |
1072 | } | |
1073 | ||
1074 | directive_state[directive_state_stack->directive] = top->old_state; | |
1075 | *directive = top->directive; | |
1076 | *negated = top->negated; | |
1077 | *file = top->file; | |
1078 | *line = top->line; | |
1079 | *datum = top->datum; | |
1080 | directive_state_stack = top->prev; | |
1081 | free (top); | |
1082 | } | |
1083 | ||
1084 | ||
1085 | static void | |
7fa3d080 | 1086 | directive_balance (void) |
e0001a05 NC |
1087 | { |
1088 | while (directive_state_stack) | |
1089 | { | |
1090 | directiveE directive; | |
1091 | bfd_boolean negated; | |
1092 | const char *file; | |
1093 | unsigned int line; | |
1094 | const void *datum; | |
1095 | ||
1096 | directive_pop (&directive, &negated, &file, &line, &datum); | |
1097 | as_warn_where ((char *) file, line, | |
1098 | _(".begin directive with no matching .end directive")); | |
1099 | } | |
1100 | } | |
1101 | ||
1102 | ||
1103 | static bfd_boolean | |
7fa3d080 | 1104 | inside_directive (directiveE dir) |
e0001a05 NC |
1105 | { |
1106 | state_stackS *top = directive_state_stack; | |
1107 | ||
1108 | while (top && top->directive != dir) | |
1109 | top = top->prev; | |
1110 | ||
1111 | return (top != NULL); | |
1112 | } | |
1113 | ||
1114 | ||
1115 | static void | |
7fa3d080 | 1116 | get_directive (directiveE *directive, bfd_boolean *negated) |
e0001a05 NC |
1117 | { |
1118 | int len; | |
1119 | unsigned i; | |
43cd72b9 | 1120 | char *directive_string; |
e0001a05 NC |
1121 | |
1122 | if (strncmp (input_line_pointer, "no-", 3) != 0) | |
1123 | *negated = FALSE; | |
1124 | else | |
1125 | { | |
1126 | *negated = TRUE; | |
1127 | input_line_pointer += 3; | |
1128 | } | |
1129 | ||
1130 | len = strspn (input_line_pointer, | |
43cd72b9 BW |
1131 | "abcdefghijklmnopqrstuvwxyz_-/0123456789."); |
1132 | ||
1133 | /* This code is a hack to make .begin [no-][generics|relax] exactly | |
1134 | equivalent to .begin [no-]transform. We should remove it when | |
1135 | we stop accepting those options. */ | |
c138bc38 | 1136 | |
43cd72b9 BW |
1137 | if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0) |
1138 | { | |
1139 | as_warn (_("[no-]generics is deprecated; use [no-]transform instead")); | |
1140 | directive_string = "transform"; | |
1141 | } | |
1142 | else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0) | |
1143 | { | |
1144 | as_warn (_("[no-]relax is deprecated; use [no-]transform instead")); | |
1145 | directive_string = "transform"; | |
c138bc38 | 1146 | } |
43cd72b9 BW |
1147 | else |
1148 | directive_string = input_line_pointer; | |
e0001a05 NC |
1149 | |
1150 | for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i) | |
1151 | { | |
43cd72b9 | 1152 | if (strncmp (directive_string, directive_info[i].name, len) == 0) |
e0001a05 NC |
1153 | { |
1154 | input_line_pointer += len; | |
1155 | *directive = (directiveE) i; | |
1156 | if (*negated && !directive_info[i].can_be_negated) | |
43cd72b9 | 1157 | as_bad (_("directive %s cannot be negated"), |
e0001a05 NC |
1158 | directive_info[i].name); |
1159 | return; | |
1160 | } | |
1161 | } | |
1162 | ||
1163 | as_bad (_("unknown directive")); | |
1164 | *directive = (directiveE) XTENSA_UNDEFINED; | |
1165 | } | |
1166 | ||
1167 | ||
1168 | static void | |
7fa3d080 | 1169 | xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED) |
e0001a05 NC |
1170 | { |
1171 | directiveE directive; | |
1172 | bfd_boolean negated; | |
1173 | emit_state *state; | |
e0001a05 NC |
1174 | lit_state *ls; |
1175 | ||
1176 | get_directive (&directive, &negated); | |
1177 | if (directive == (directiveE) XTENSA_UNDEFINED) | |
1178 | { | |
1179 | discard_rest_of_line (); | |
1180 | return; | |
1181 | } | |
1182 | ||
43cd72b9 BW |
1183 | if (cur_vinsn.inside_bundle) |
1184 | as_bad (_("directives are not valid inside bundles")); | |
1185 | ||
e0001a05 NC |
1186 | switch (directive) |
1187 | { | |
1188 | case directive_literal: | |
82e7541d BW |
1189 | if (!inside_directive (directive_literal)) |
1190 | { | |
1191 | /* Previous labels go with whatever follows this directive, not with | |
1192 | the literal, so save them now. */ | |
1193 | saved_insn_labels = insn_labels; | |
1194 | insn_labels = NULL; | |
1195 | } | |
43cd72b9 | 1196 | as_warn (_(".begin literal is deprecated; use .literal instead")); |
e0001a05 NC |
1197 | state = (emit_state *) xmalloc (sizeof (emit_state)); |
1198 | xtensa_switch_to_literal_fragment (state); | |
1199 | directive_push (directive_literal, negated, state); | |
1200 | break; | |
1201 | ||
1202 | case directive_literal_prefix: | |
c138bc38 | 1203 | /* Have to flush pending output because a movi relaxed to an l32r |
43cd72b9 BW |
1204 | might produce a literal. */ |
1205 | md_flush_pending_output (); | |
e0001a05 NC |
1206 | /* Check to see if the current fragment is a literal |
1207 | fragment. If it is, then this operation is not allowed. */ | |
43cd72b9 | 1208 | if (generating_literals) |
e0001a05 NC |
1209 | { |
1210 | as_bad (_("cannot set literal_prefix inside literal fragment")); | |
1211 | return; | |
1212 | } | |
1213 | ||
1214 | /* Allocate the literal state for this section and push | |
1215 | onto the directive stack. */ | |
1216 | ls = xmalloc (sizeof (lit_state)); | |
1217 | assert (ls); | |
1218 | ||
1219 | *ls = default_lit_sections; | |
e0001a05 NC |
1220 | directive_push (directive_literal_prefix, negated, ls); |
1221 | ||
e0001a05 | 1222 | /* Process the new prefix. */ |
74869ac7 | 1223 | xtensa_literal_prefix (); |
e0001a05 NC |
1224 | break; |
1225 | ||
1226 | case directive_freeregs: | |
1227 | /* This information is currently unused, but we'll accept the statement | |
1228 | and just discard the rest of the line. This won't check the syntax, | |
1229 | but it will accept every correct freeregs directive. */ | |
1230 | input_line_pointer += strcspn (input_line_pointer, "\n"); | |
1231 | directive_push (directive_freeregs, negated, 0); | |
1232 | break; | |
1233 | ||
43cd72b9 BW |
1234 | case directive_schedule: |
1235 | md_flush_pending_output (); | |
1236 | frag_var (rs_fill, 0, 0, frag_now->fr_subtype, | |
1237 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
1238 | directive_push (directive_schedule, negated, 0); | |
1239 | xtensa_set_frag_assembly_state (frag_now); | |
1240 | break; | |
1241 | ||
e0001a05 | 1242 | case directive_density: |
43cd72b9 BW |
1243 | as_warn (_(".begin [no-]density is ignored")); |
1244 | break; | |
1245 | ||
1246 | case directive_absolute_literals: | |
1247 | md_flush_pending_output (); | |
1248 | if (!absolute_literals_supported && !negated) | |
e0001a05 | 1249 | { |
43cd72b9 | 1250 | as_warn (_("Xtensa absolute literals option not supported; ignored")); |
e0001a05 NC |
1251 | break; |
1252 | } | |
43cd72b9 BW |
1253 | xtensa_set_frag_assembly_state (frag_now); |
1254 | directive_push (directive, negated, 0); | |
1255 | break; | |
e0001a05 NC |
1256 | |
1257 | default: | |
43cd72b9 BW |
1258 | md_flush_pending_output (); |
1259 | xtensa_set_frag_assembly_state (frag_now); | |
e0001a05 NC |
1260 | directive_push (directive, negated, 0); |
1261 | break; | |
1262 | } | |
1263 | ||
1264 | demand_empty_rest_of_line (); | |
1265 | } | |
1266 | ||
1267 | ||
1268 | static void | |
7fa3d080 | 1269 | xtensa_end_directive (int ignore ATTRIBUTE_UNUSED) |
e0001a05 NC |
1270 | { |
1271 | directiveE begin_directive, end_directive; | |
1272 | bfd_boolean begin_negated, end_negated; | |
1273 | const char *file; | |
1274 | unsigned int line; | |
1275 | emit_state *state; | |
43cd72b9 | 1276 | emit_state **state_ptr; |
e0001a05 NC |
1277 | lit_state *s; |
1278 | ||
43cd72b9 BW |
1279 | if (cur_vinsn.inside_bundle) |
1280 | as_bad (_("directives are not valid inside bundles")); | |
82e7541d | 1281 | |
e0001a05 | 1282 | get_directive (&end_directive, &end_negated); |
43cd72b9 BW |
1283 | |
1284 | md_flush_pending_output (); | |
1285 | ||
1286 | switch (end_directive) | |
e0001a05 | 1287 | { |
43cd72b9 | 1288 | case (directiveE) XTENSA_UNDEFINED: |
e0001a05 NC |
1289 | discard_rest_of_line (); |
1290 | return; | |
e0001a05 | 1291 | |
43cd72b9 BW |
1292 | case directive_density: |
1293 | as_warn (_(".end [no-]density is ignored")); | |
e0001a05 | 1294 | demand_empty_rest_of_line (); |
43cd72b9 BW |
1295 | break; |
1296 | ||
1297 | case directive_absolute_literals: | |
1298 | if (!absolute_literals_supported && !end_negated) | |
1299 | { | |
1300 | as_warn (_("Xtensa absolute literals option not supported; ignored")); | |
1301 | demand_empty_rest_of_line (); | |
1302 | return; | |
1303 | } | |
1304 | break; | |
1305 | ||
1306 | default: | |
1307 | break; | |
e0001a05 NC |
1308 | } |
1309 | ||
43cd72b9 | 1310 | state_ptr = &state; /* use state_ptr to avoid type-punning warning */ |
e0001a05 | 1311 | directive_pop (&begin_directive, &begin_negated, &file, &line, |
43cd72b9 | 1312 | (const void **) state_ptr); |
e0001a05 NC |
1313 | |
1314 | if (begin_directive != directive_none) | |
1315 | { | |
1316 | if (begin_directive != end_directive || begin_negated != end_negated) | |
1317 | { | |
1318 | as_bad (_("does not match begin %s%s at %s:%d"), | |
1319 | begin_negated ? "no-" : "", | |
1320 | directive_info[begin_directive].name, file, line); | |
1321 | } | |
1322 | else | |
1323 | { | |
1324 | switch (end_directive) | |
1325 | { | |
1326 | case directive_literal: | |
1327 | frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
1328 | xtensa_restore_emit_state (state); | |
43cd72b9 | 1329 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 | 1330 | free (state); |
82e7541d BW |
1331 | if (!inside_directive (directive_literal)) |
1332 | { | |
1333 | /* Restore the list of current labels. */ | |
1334 | xtensa_clear_insn_labels (); | |
1335 | insn_labels = saved_insn_labels; | |
1336 | } | |
e0001a05 NC |
1337 | break; |
1338 | ||
e0001a05 NC |
1339 | case directive_literal_prefix: |
1340 | /* Restore the default collection sections from saved state. */ | |
1341 | s = (lit_state *) state; | |
1342 | assert (s); | |
e8247da7 | 1343 | default_lit_sections = *s; |
e0001a05 | 1344 | |
74869ac7 BW |
1345 | /* Free the state storage. */ |
1346 | free (s->lit_prefix); | |
e0001a05 NC |
1347 | free (s); |
1348 | break; | |
1349 | ||
43cd72b9 BW |
1350 | case directive_schedule: |
1351 | case directive_freeregs: | |
1352 | break; | |
1353 | ||
e0001a05 | 1354 | default: |
43cd72b9 | 1355 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
1356 | break; |
1357 | } | |
1358 | } | |
1359 | } | |
1360 | ||
1361 | demand_empty_rest_of_line (); | |
1362 | } | |
1363 | ||
1364 | ||
1365 | /* Place an aligned literal fragment at the current location. */ | |
1366 | ||
1367 | static void | |
7fa3d080 | 1368 | xtensa_literal_position (int ignore ATTRIBUTE_UNUSED) |
e0001a05 | 1369 | { |
43cd72b9 BW |
1370 | md_flush_pending_output (); |
1371 | ||
e0001a05 NC |
1372 | if (inside_directive (directive_literal)) |
1373 | as_warn (_(".literal_position inside literal directive; ignoring")); | |
43cd72b9 | 1374 | xtensa_mark_literal_pool_location (); |
e0001a05 NC |
1375 | |
1376 | demand_empty_rest_of_line (); | |
82e7541d | 1377 | xtensa_clear_insn_labels (); |
e0001a05 NC |
1378 | } |
1379 | ||
1380 | ||
43cd72b9 | 1381 | /* Support .literal label, expr, ... */ |
e0001a05 NC |
1382 | |
1383 | static void | |
7fa3d080 | 1384 | xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED) |
e0001a05 NC |
1385 | { |
1386 | emit_state state; | |
1745fcba | 1387 | char *p, *base_name; |
e0001a05 | 1388 | char c; |
e0001a05 NC |
1389 | segT dest_seg; |
1390 | ||
82e7541d BW |
1391 | if (inside_directive (directive_literal)) |
1392 | { | |
1393 | as_bad (_(".literal not allowed inside .begin literal region")); | |
1394 | ignore_rest_of_line (); | |
1395 | return; | |
1396 | } | |
1397 | ||
43cd72b9 BW |
1398 | md_flush_pending_output (); |
1399 | ||
82e7541d BW |
1400 | /* Previous labels go with whatever follows this directive, not with |
1401 | the literal, so save them now. */ | |
1402 | saved_insn_labels = insn_labels; | |
1403 | insn_labels = NULL; | |
1404 | ||
e0001a05 NC |
1405 | /* If we are using text-section literals, then this is the right value... */ |
1406 | dest_seg = now_seg; | |
1407 | ||
1408 | base_name = input_line_pointer; | |
1409 | ||
1410 | xtensa_switch_to_literal_fragment (&state); | |
1411 | ||
43cd72b9 | 1412 | /* ...but if we aren't using text-section-literals, then we |
e0001a05 | 1413 | need to put them in the section we just switched to. */ |
43cd72b9 | 1414 | if (use_literal_section || directive_state[directive_absolute_literals]) |
e0001a05 NC |
1415 | dest_seg = now_seg; |
1416 | ||
43cd72b9 BW |
1417 | /* All literals are aligned to four-byte boundaries. */ |
1418 | frag_align (2, 0, 0); | |
1419 | record_alignment (now_seg, 2); | |
e0001a05 NC |
1420 | |
1421 | c = get_symbol_end (); | |
1422 | /* Just after name is now '\0'. */ | |
1423 | p = input_line_pointer; | |
1424 | *p = c; | |
1425 | SKIP_WHITESPACE (); | |
1426 | ||
1427 | if (*input_line_pointer != ',' && *input_line_pointer != ':') | |
1428 | { | |
1429 | as_bad (_("expected comma or colon after symbol name; " | |
1430 | "rest of line ignored")); | |
1431 | ignore_rest_of_line (); | |
1432 | xtensa_restore_emit_state (&state); | |
1433 | return; | |
1434 | } | |
1435 | *p = 0; | |
1436 | ||
e0001a05 | 1437 | colon (base_name); |
e0001a05 | 1438 | |
e0001a05 | 1439 | *p = c; |
43cd72b9 | 1440 | input_line_pointer++; /* skip ',' or ':' */ |
e0001a05 | 1441 | |
43cd72b9 | 1442 | xtensa_elf_cons (4); |
e0001a05 NC |
1443 | |
1444 | xtensa_restore_emit_state (&state); | |
82e7541d BW |
1445 | |
1446 | /* Restore the list of current labels. */ | |
1447 | xtensa_clear_insn_labels (); | |
1448 | insn_labels = saved_insn_labels; | |
e0001a05 NC |
1449 | } |
1450 | ||
1451 | ||
1452 | static void | |
74869ac7 | 1453 | xtensa_literal_prefix (void) |
e0001a05 | 1454 | { |
74869ac7 BW |
1455 | char *name; |
1456 | int len; | |
1457 | ||
1458 | /* Parse the new prefix from the input_line_pointer. */ | |
1459 | SKIP_WHITESPACE (); | |
1460 | len = strspn (input_line_pointer, | |
1461 | "ABCDEFGHIJKLMNOPQRSTUVWXYZ" | |
1462 | "abcdefghijklmnopqrstuvwxyz_/0123456789.$"); | |
e0001a05 NC |
1463 | |
1464 | /* Get a null-terminated copy of the name. */ | |
1465 | name = xmalloc (len + 1); | |
1466 | assert (name); | |
74869ac7 | 1467 | strncpy (name, input_line_pointer, len); |
e0001a05 NC |
1468 | name[len] = 0; |
1469 | ||
74869ac7 BW |
1470 | /* Skip the name in the input line. */ |
1471 | input_line_pointer += len; | |
43cd72b9 | 1472 | |
74869ac7 | 1473 | default_lit_sections.lit_prefix = name; |
43cd72b9 | 1474 | |
74869ac7 | 1475 | /* Clear cached literal sections, since the prefix has changed. */ |
43cd72b9 BW |
1476 | default_lit_sections.lit_seg = NULL; |
1477 | default_lit_sections.lit4_seg = NULL; | |
43cd72b9 BW |
1478 | } |
1479 | ||
1480 | ||
1481 | /* Support ".frequency branch_target_frequency fall_through_frequency". */ | |
1482 | ||
1483 | static void | |
7fa3d080 | 1484 | xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED) |
43cd72b9 BW |
1485 | { |
1486 | float fall_through_f, target_f; | |
43cd72b9 BW |
1487 | |
1488 | fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer); | |
1489 | if (fall_through_f < 0) | |
1490 | { | |
1491 | as_bad (_("fall through frequency must be greater than 0")); | |
1492 | ignore_rest_of_line (); | |
1493 | return; | |
1494 | } | |
1495 | ||
1496 | target_f = (float) strtod (input_line_pointer, &input_line_pointer); | |
1497 | if (target_f < 0) | |
1498 | { | |
1499 | as_bad (_("branch target frequency must be greater than 0")); | |
1500 | ignore_rest_of_line (); | |
1501 | return; | |
1502 | } | |
1503 | ||
b08b5071 | 1504 | set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f); |
43cd72b9 BW |
1505 | |
1506 | demand_empty_rest_of_line (); | |
1507 | } | |
1508 | ||
1509 | ||
1510 | /* Like normal .long/.short/.word, except support @plt, etc. | |
1511 | Clobbers input_line_pointer, checks end-of-line. */ | |
1512 | ||
1513 | static void | |
7fa3d080 | 1514 | xtensa_elf_cons (int nbytes) |
43cd72b9 BW |
1515 | { |
1516 | expressionS exp; | |
1517 | bfd_reloc_code_real_type reloc; | |
1518 | ||
1519 | md_flush_pending_output (); | |
1520 | ||
1521 | if (cur_vinsn.inside_bundle) | |
1522 | as_bad (_("directives are not valid inside bundles")); | |
1523 | ||
1524 | if (is_it_end_of_statement ()) | |
1525 | { | |
1526 | demand_empty_rest_of_line (); | |
1527 | return; | |
1528 | } | |
1529 | ||
1530 | do | |
1531 | { | |
1532 | expression (&exp); | |
1533 | if (exp.X_op == O_symbol | |
1534 | && *input_line_pointer == '@' | |
1535 | && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp)) | |
1536 | != BFD_RELOC_NONE)) | |
1537 | { | |
1538 | reloc_howto_type *reloc_howto = | |
1539 | bfd_reloc_type_lookup (stdoutput, reloc); | |
1540 | ||
1541 | if (reloc == BFD_RELOC_UNUSED || !reloc_howto) | |
1542 | as_bad (_("unsupported relocation")); | |
1543 | else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP | |
1544 | && reloc <= BFD_RELOC_XTENSA_SLOT14_OP) | |
1545 | || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT | |
1546 | && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)) | |
1547 | as_bad (_("opcode-specific %s relocation used outside " | |
1548 | "an instruction"), reloc_howto->name); | |
1549 | else if (nbytes != (int) bfd_get_reloc_size (reloc_howto)) | |
1550 | as_bad (_("%s relocations do not fit in %d bytes"), | |
1551 | reloc_howto->name, nbytes); | |
1552 | else | |
1553 | { | |
1554 | char *p = frag_more ((int) nbytes); | |
1555 | xtensa_set_frag_assembly_state (frag_now); | |
1556 | fix_new_exp (frag_now, p - frag_now->fr_literal, | |
1bbb5f21 | 1557 | nbytes, &exp, reloc_howto->pc_relative, reloc); |
43cd72b9 BW |
1558 | } |
1559 | } | |
1560 | else | |
1561 | emit_expr (&exp, (unsigned int) nbytes); | |
1562 | } | |
1563 | while (*input_line_pointer++ == ','); | |
1564 | ||
1565 | input_line_pointer--; /* Put terminator back into stream. */ | |
1566 | demand_empty_rest_of_line (); | |
1567 | } | |
1568 | ||
7fa3d080 BW |
1569 | \f |
1570 | /* Parsing and Idiom Translation. */ | |
43cd72b9 BW |
1571 | |
1572 | /* Parse @plt, etc. and return the desired relocation. */ | |
1573 | static bfd_reloc_code_real_type | |
7fa3d080 | 1574 | xtensa_elf_suffix (char **str_p, expressionS *exp_p) |
43cd72b9 | 1575 | { |
43cd72b9 BW |
1576 | char ident[20]; |
1577 | char *str = *str_p; | |
1578 | char *str2; | |
1579 | int ch; | |
1580 | int len; | |
bbdd25a8 | 1581 | struct suffix_reloc_map *ptr; |
43cd72b9 BW |
1582 | |
1583 | if (*str++ != '@') | |
1584 | return BFD_RELOC_NONE; | |
1585 | ||
1586 | for (ch = *str, str2 = ident; | |
1587 | (str2 < ident + sizeof (ident) - 1 | |
1588 | && (ISALNUM (ch) || ch == '@')); | |
1589 | ch = *++str) | |
1590 | { | |
1591 | *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch); | |
1592 | } | |
1593 | ||
1594 | *str2 = '\0'; | |
1595 | len = str2 - ident; | |
1596 | ||
1597 | ch = ident[0]; | |
bbdd25a8 BW |
1598 | for (ptr = &suffix_relocs[0]; ptr->length > 0; ptr++) |
1599 | if (ch == ptr->suffix[0] | |
43cd72b9 | 1600 | && len == ptr->length |
bbdd25a8 | 1601 | && memcmp (ident, ptr->suffix, ptr->length) == 0) |
43cd72b9 BW |
1602 | { |
1603 | /* Now check for "identifier@suffix+constant". */ | |
1604 | if (*str == '-' || *str == '+') | |
1605 | { | |
1606 | char *orig_line = input_line_pointer; | |
1607 | expressionS new_exp; | |
1608 | ||
1609 | input_line_pointer = str; | |
1610 | expression (&new_exp); | |
1611 | if (new_exp.X_op == O_constant) | |
1612 | { | |
1613 | exp_p->X_add_number += new_exp.X_add_number; | |
1614 | str = input_line_pointer; | |
1615 | } | |
1616 | ||
1617 | if (&input_line_pointer != str_p) | |
1618 | input_line_pointer = orig_line; | |
1619 | } | |
1620 | ||
1621 | *str_p = str; | |
1622 | return ptr->reloc; | |
1623 | } | |
1624 | ||
1625 | return BFD_RELOC_UNUSED; | |
e0001a05 NC |
1626 | } |
1627 | ||
e0001a05 | 1628 | |
bbdd25a8 BW |
1629 | /* Find the matching operator type. */ |
1630 | static unsigned char | |
1631 | map_suffix_reloc_to_operator (bfd_reloc_code_real_type reloc) | |
1632 | { | |
1633 | struct suffix_reloc_map *sfx; | |
1634 | unsigned char operator = (unsigned char) -1; | |
1635 | ||
1636 | for (sfx = &suffix_relocs[0]; sfx->suffix; sfx++) | |
1637 | { | |
1638 | if (sfx->reloc == reloc) | |
1639 | { | |
1640 | operator = sfx->operator; | |
1641 | break; | |
1642 | } | |
1643 | } | |
1644 | assert (operator != (unsigned char) -1); | |
1645 | return operator; | |
1646 | } | |
1647 | ||
1648 | ||
1649 | /* Find the matching reloc type. */ | |
1650 | static bfd_reloc_code_real_type | |
1651 | map_operator_to_reloc (unsigned char operator) | |
1652 | { | |
1653 | struct suffix_reloc_map *sfx; | |
1654 | bfd_reloc_code_real_type reloc = BFD_RELOC_UNUSED; | |
1655 | ||
1656 | for (sfx = &suffix_relocs[0]; sfx->suffix; sfx++) | |
1657 | { | |
1658 | if (sfx->operator == operator) | |
1659 | { | |
1660 | reloc = sfx->reloc; | |
1661 | break; | |
1662 | } | |
1663 | } | |
1664 | ||
1665 | if (reloc == BFD_RELOC_UNUSED) | |
1666 | return BFD_RELOC_32; | |
1667 | ||
1668 | return reloc; | |
1669 | } | |
1670 | ||
1671 | ||
e0001a05 | 1672 | static const char * |
7fa3d080 | 1673 | expression_end (const char *name) |
e0001a05 NC |
1674 | { |
1675 | while (1) | |
1676 | { | |
1677 | switch (*name) | |
1678 | { | |
43cd72b9 | 1679 | case '}': |
e0001a05 NC |
1680 | case ';': |
1681 | case '\0': | |
1682 | case ',': | |
43cd72b9 | 1683 | case ':': |
e0001a05 NC |
1684 | return name; |
1685 | case ' ': | |
1686 | case '\t': | |
1687 | ++name; | |
1688 | continue; | |
1689 | default: | |
1690 | return 0; | |
1691 | } | |
1692 | } | |
1693 | } | |
1694 | ||
1695 | ||
1696 | #define ERROR_REG_NUM ((unsigned) -1) | |
1697 | ||
1698 | static unsigned | |
7fa3d080 | 1699 | tc_get_register (const char *prefix) |
e0001a05 NC |
1700 | { |
1701 | unsigned reg; | |
1702 | const char *next_expr; | |
1703 | const char *old_line_pointer; | |
1704 | ||
1705 | SKIP_WHITESPACE (); | |
1706 | old_line_pointer = input_line_pointer; | |
1707 | ||
1708 | if (*input_line_pointer == '$') | |
1709 | ++input_line_pointer; | |
1710 | ||
1711 | /* Accept "sp" as a synonym for "a1". */ | |
1712 | if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p' | |
1713 | && expression_end (input_line_pointer + 2)) | |
1714 | { | |
1715 | input_line_pointer += 2; | |
1716 | return 1; /* AR[1] */ | |
1717 | } | |
1718 | ||
1719 | while (*input_line_pointer++ == *prefix++) | |
1720 | ; | |
1721 | --input_line_pointer; | |
1722 | --prefix; | |
1723 | ||
1724 | if (*prefix) | |
1725 | { | |
1726 | as_bad (_("bad register name: %s"), old_line_pointer); | |
1727 | return ERROR_REG_NUM; | |
1728 | } | |
1729 | ||
1730 | if (!ISDIGIT ((unsigned char) *input_line_pointer)) | |
1731 | { | |
1732 | as_bad (_("bad register number: %s"), input_line_pointer); | |
1733 | return ERROR_REG_NUM; | |
1734 | } | |
1735 | ||
1736 | reg = 0; | |
1737 | ||
1738 | while (ISDIGIT ((int) *input_line_pointer)) | |
1739 | reg = reg * 10 + *input_line_pointer++ - '0'; | |
1740 | ||
1741 | if (!(next_expr = expression_end (input_line_pointer))) | |
1742 | { | |
1743 | as_bad (_("bad register name: %s"), old_line_pointer); | |
1744 | return ERROR_REG_NUM; | |
1745 | } | |
1746 | ||
1747 | input_line_pointer = (char *) next_expr; | |
1748 | ||
1749 | return reg; | |
1750 | } | |
1751 | ||
1752 | ||
e0001a05 | 1753 | static void |
7fa3d080 | 1754 | expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok) |
e0001a05 | 1755 | { |
43cd72b9 | 1756 | xtensa_isa isa = xtensa_default_isa; |
e0001a05 | 1757 | |
43cd72b9 BW |
1758 | /* Check if this is an immediate operand. */ |
1759 | if (xtensa_operand_is_register (isa, opc, opnd) == 0) | |
e0001a05 | 1760 | { |
43cd72b9 | 1761 | bfd_reloc_code_real_type reloc; |
e0001a05 | 1762 | segT t = expression (tok); |
43cd72b9 BW |
1763 | if (t == absolute_section |
1764 | && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1) | |
e0001a05 NC |
1765 | { |
1766 | assert (tok->X_op == O_constant); | |
1767 | tok->X_op = O_symbol; | |
1768 | tok->X_add_symbol = &abs_symbol; | |
1769 | } | |
43cd72b9 BW |
1770 | |
1771 | if ((tok->X_op == O_constant || tok->X_op == O_symbol) | |
bbdd25a8 BW |
1772 | && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok)) |
1773 | != BFD_RELOC_NONE)) | |
e0001a05 | 1774 | { |
1bbb5f21 | 1775 | switch (reloc) |
43cd72b9 | 1776 | { |
1bbb5f21 BW |
1777 | case BFD_RELOC_LO16: |
1778 | if (tok->X_op == O_constant) | |
bbdd25a8 | 1779 | { |
43cd72b9 | 1780 | tok->X_add_number &= 0xffff; |
bbdd25a8 | 1781 | return; |
1bbb5f21 BW |
1782 | } |
1783 | break; | |
1784 | case BFD_RELOC_HI16: | |
1785 | if (tok->X_op == O_constant) | |
1786 | { | |
43cd72b9 | 1787 | tok->X_add_number = ((unsigned) tok->X_add_number) >> 16; |
bbdd25a8 | 1788 | return; |
bbdd25a8 | 1789 | } |
1bbb5f21 BW |
1790 | break; |
1791 | case BFD_RELOC_UNUSED: | |
1792 | as_bad (_("unsupported relocation")); | |
1793 | return; | |
1794 | case BFD_RELOC_32_PCREL: | |
1795 | as_bad (_("pcrel relocation not allowed in an instruction")); | |
1796 | return; | |
1797 | default: | |
1798 | break; | |
43cd72b9 | 1799 | } |
bbdd25a8 | 1800 | tok->X_op = map_suffix_reloc_to_operator (reloc); |
e0001a05 | 1801 | } |
e0001a05 NC |
1802 | } |
1803 | else | |
1804 | { | |
43cd72b9 BW |
1805 | xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd); |
1806 | unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)); | |
e0001a05 NC |
1807 | |
1808 | if (reg != ERROR_REG_NUM) /* Already errored */ | |
1809 | { | |
1810 | uint32 buf = reg; | |
43cd72b9 | 1811 | if (xtensa_operand_encode (isa, opc, opnd, &buf)) |
e0001a05 NC |
1812 | as_bad (_("register number out of range")); |
1813 | } | |
1814 | ||
1815 | tok->X_op = O_register; | |
1816 | tok->X_add_symbol = 0; | |
1817 | tok->X_add_number = reg; | |
1818 | } | |
1819 | } | |
1820 | ||
1821 | ||
1822 | /* Split up the arguments for an opcode or pseudo-op. */ | |
1823 | ||
1824 | static int | |
7fa3d080 | 1825 | tokenize_arguments (char **args, char *str) |
e0001a05 NC |
1826 | { |
1827 | char *old_input_line_pointer; | |
1828 | bfd_boolean saw_comma = FALSE; | |
1829 | bfd_boolean saw_arg = FALSE; | |
43cd72b9 | 1830 | bfd_boolean saw_colon = FALSE; |
e0001a05 NC |
1831 | int num_args = 0; |
1832 | char *arg_end, *arg; | |
1833 | int arg_len; | |
43cd72b9 BW |
1834 | |
1835 | /* Save and restore input_line_pointer around this function. */ | |
e0001a05 NC |
1836 | old_input_line_pointer = input_line_pointer; |
1837 | input_line_pointer = str; | |
1838 | ||
1839 | while (*input_line_pointer) | |
1840 | { | |
1841 | SKIP_WHITESPACE (); | |
1842 | switch (*input_line_pointer) | |
1843 | { | |
1844 | case '\0': | |
43cd72b9 | 1845 | case '}': |
e0001a05 NC |
1846 | goto fini; |
1847 | ||
43cd72b9 BW |
1848 | case ':': |
1849 | input_line_pointer++; | |
1850 | if (saw_comma || saw_colon || !saw_arg) | |
1851 | goto err; | |
1852 | saw_colon = TRUE; | |
1853 | break; | |
1854 | ||
e0001a05 NC |
1855 | case ',': |
1856 | input_line_pointer++; | |
43cd72b9 | 1857 | if (saw_comma || saw_colon || !saw_arg) |
e0001a05 NC |
1858 | goto err; |
1859 | saw_comma = TRUE; | |
1860 | break; | |
1861 | ||
1862 | default: | |
43cd72b9 | 1863 | if (!saw_comma && !saw_colon && saw_arg) |
e0001a05 NC |
1864 | goto err; |
1865 | ||
1866 | arg_end = input_line_pointer + 1; | |
1867 | while (!expression_end (arg_end)) | |
1868 | arg_end += 1; | |
43cd72b9 | 1869 | |
e0001a05 | 1870 | arg_len = arg_end - input_line_pointer; |
43cd72b9 | 1871 | arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1); |
e0001a05 NC |
1872 | args[num_args] = arg; |
1873 | ||
43cd72b9 BW |
1874 | if (saw_colon) |
1875 | *arg++ = ':'; | |
e0001a05 NC |
1876 | strncpy (arg, input_line_pointer, arg_len); |
1877 | arg[arg_len] = '\0'; | |
43cd72b9 | 1878 | |
e0001a05 NC |
1879 | input_line_pointer = arg_end; |
1880 | num_args += 1; | |
c138bc38 | 1881 | saw_comma = FALSE; |
43cd72b9 | 1882 | saw_colon = FALSE; |
c138bc38 | 1883 | saw_arg = TRUE; |
e0001a05 NC |
1884 | break; |
1885 | } | |
1886 | } | |
1887 | ||
1888 | fini: | |
43cd72b9 | 1889 | if (saw_comma || saw_colon) |
e0001a05 NC |
1890 | goto err; |
1891 | input_line_pointer = old_input_line_pointer; | |
1892 | return num_args; | |
1893 | ||
1894 | err: | |
43cd72b9 BW |
1895 | if (saw_comma) |
1896 | as_bad (_("extra comma")); | |
1897 | else if (saw_colon) | |
1898 | as_bad (_("extra colon")); | |
1899 | else if (!saw_arg) | |
c138bc38 | 1900 | as_bad (_("missing argument")); |
43cd72b9 BW |
1901 | else |
1902 | as_bad (_("missing comma or colon")); | |
e0001a05 NC |
1903 | input_line_pointer = old_input_line_pointer; |
1904 | return -1; | |
1905 | } | |
1906 | ||
1907 | ||
43cd72b9 | 1908 | /* Parse the arguments to an opcode. Return TRUE on error. */ |
e0001a05 NC |
1909 | |
1910 | static bfd_boolean | |
7fa3d080 | 1911 | parse_arguments (TInsn *insn, int num_args, char **arg_strings) |
e0001a05 | 1912 | { |
43cd72b9 | 1913 | expressionS *tok, *last_tok; |
e0001a05 NC |
1914 | xtensa_opcode opcode = insn->opcode; |
1915 | bfd_boolean had_error = TRUE; | |
43cd72b9 BW |
1916 | xtensa_isa isa = xtensa_default_isa; |
1917 | int n, num_regs = 0; | |
e0001a05 | 1918 | int opcode_operand_count; |
43cd72b9 BW |
1919 | int opnd_cnt, last_opnd_cnt; |
1920 | unsigned int next_reg = 0; | |
e0001a05 NC |
1921 | char *old_input_line_pointer; |
1922 | ||
1923 | if (insn->insn_type == ITYPE_LITERAL) | |
1924 | opcode_operand_count = 1; | |
1925 | else | |
43cd72b9 | 1926 | opcode_operand_count = xtensa_opcode_num_operands (isa, opcode); |
e0001a05 | 1927 | |
43cd72b9 | 1928 | tok = insn->tok; |
e0001a05 NC |
1929 | memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS); |
1930 | ||
1931 | /* Save and restore input_line_pointer around this function. */ | |
43cd72b9 BW |
1932 | old_input_line_pointer = input_line_pointer; |
1933 | ||
1934 | last_tok = 0; | |
1935 | last_opnd_cnt = -1; | |
1936 | opnd_cnt = 0; | |
1937 | ||
1938 | /* Skip invisible operands. */ | |
1939 | while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0) | |
1940 | { | |
1941 | opnd_cnt += 1; | |
1942 | tok++; | |
1943 | } | |
e0001a05 NC |
1944 | |
1945 | for (n = 0; n < num_args; n++) | |
43cd72b9 | 1946 | { |
e0001a05 | 1947 | input_line_pointer = arg_strings[n]; |
43cd72b9 BW |
1948 | if (*input_line_pointer == ':') |
1949 | { | |
1950 | xtensa_regfile opnd_rf; | |
1951 | input_line_pointer++; | |
1952 | if (num_regs == 0) | |
1953 | goto err; | |
1954 | assert (opnd_cnt > 0); | |
1955 | num_regs--; | |
1956 | opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt); | |
1957 | if (next_reg | |
1958 | != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf))) | |
1959 | as_warn (_("incorrect register number, ignoring")); | |
1960 | next_reg++; | |
1961 | } | |
1962 | else | |
1963 | { | |
1964 | if (opnd_cnt >= opcode_operand_count) | |
1965 | { | |
1966 | as_warn (_("too many arguments")); | |
1967 | goto err; | |
1968 | } | |
1969 | assert (opnd_cnt < MAX_INSN_ARGS); | |
1970 | ||
1971 | expression_maybe_register (opcode, opnd_cnt, tok); | |
1972 | next_reg = tok->X_add_number + 1; | |
1973 | ||
1974 | if (tok->X_op == O_illegal || tok->X_op == O_absent) | |
1975 | goto err; | |
1976 | if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1) | |
1977 | { | |
1978 | num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1; | |
1979 | /* minus 1 because we are seeing one right now */ | |
1980 | } | |
1981 | else | |
1982 | num_regs = 0; | |
e0001a05 | 1983 | |
43cd72b9 BW |
1984 | last_tok = tok; |
1985 | last_opnd_cnt = opnd_cnt; | |
e0001a05 | 1986 | |
43cd72b9 BW |
1987 | do |
1988 | { | |
1989 | opnd_cnt += 1; | |
1990 | tok++; | |
1991 | } | |
1992 | while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0); | |
1993 | } | |
1994 | } | |
e0001a05 | 1995 | |
43cd72b9 BW |
1996 | if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1)) |
1997 | goto err; | |
e0001a05 NC |
1998 | |
1999 | insn->ntok = tok - insn->tok; | |
c138bc38 | 2000 | had_error = FALSE; |
e0001a05 NC |
2001 | |
2002 | err: | |
43cd72b9 | 2003 | input_line_pointer = old_input_line_pointer; |
e0001a05 NC |
2004 | return had_error; |
2005 | } | |
2006 | ||
2007 | ||
43cd72b9 | 2008 | static int |
7fa3d080 | 2009 | get_invisible_operands (TInsn *insn) |
43cd72b9 BW |
2010 | { |
2011 | xtensa_isa isa = xtensa_default_isa; | |
2012 | static xtensa_insnbuf slotbuf = NULL; | |
2013 | xtensa_format fmt; | |
2014 | xtensa_opcode opc = insn->opcode; | |
2015 | int slot, opnd, fmt_found; | |
2016 | unsigned val; | |
2017 | ||
2018 | if (!slotbuf) | |
2019 | slotbuf = xtensa_insnbuf_alloc (isa); | |
2020 | ||
2021 | /* Find format/slot where this can be encoded. */ | |
2022 | fmt_found = 0; | |
2023 | slot = 0; | |
2024 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) | |
2025 | { | |
2026 | for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++) | |
2027 | { | |
2028 | if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0) | |
2029 | { | |
2030 | fmt_found = 1; | |
2031 | break; | |
2032 | } | |
2033 | } | |
2034 | if (fmt_found) break; | |
2035 | } | |
2036 | ||
2037 | if (!fmt_found) | |
2038 | { | |
2039 | as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc)); | |
2040 | return -1; | |
2041 | } | |
2042 | ||
2043 | /* First encode all the visible operands | |
2044 | (to deal with shared field operands). */ | |
2045 | for (opnd = 0; opnd < insn->ntok; opnd++) | |
2046 | { | |
2047 | if (xtensa_operand_is_visible (isa, opc, opnd) == 1 | |
2048 | && (insn->tok[opnd].X_op == O_register | |
2049 | || insn->tok[opnd].X_op == O_constant)) | |
2050 | { | |
2051 | val = insn->tok[opnd].X_add_number; | |
2052 | xtensa_operand_encode (isa, opc, opnd, &val); | |
2053 | xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val); | |
2054 | } | |
2055 | } | |
2056 | ||
2057 | /* Then pull out the values for the invisible ones. */ | |
2058 | for (opnd = 0; opnd < insn->ntok; opnd++) | |
2059 | { | |
2060 | if (xtensa_operand_is_visible (isa, opc, opnd) == 0) | |
2061 | { | |
2062 | xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val); | |
2063 | xtensa_operand_decode (isa, opc, opnd, &val); | |
2064 | insn->tok[opnd].X_add_number = val; | |
2065 | if (xtensa_operand_is_register (isa, opc, opnd) == 1) | |
2066 | insn->tok[opnd].X_op = O_register; | |
2067 | else | |
2068 | insn->tok[opnd].X_op = O_constant; | |
2069 | } | |
2070 | } | |
2071 | ||
2072 | return 0; | |
2073 | } | |
2074 | ||
2075 | ||
e0001a05 | 2076 | static void |
7fa3d080 | 2077 | xg_reverse_shift_count (char **cnt_argp) |
e0001a05 NC |
2078 | { |
2079 | char *cnt_arg, *new_arg; | |
2080 | cnt_arg = *cnt_argp; | |
2081 | ||
2082 | /* replace the argument with "31-(argument)" */ | |
2083 | new_arg = (char *) xmalloc (strlen (cnt_arg) + 6); | |
2084 | sprintf (new_arg, "31-(%s)", cnt_arg); | |
2085 | ||
2086 | free (cnt_arg); | |
2087 | *cnt_argp = new_arg; | |
2088 | } | |
2089 | ||
2090 | ||
2091 | /* If "arg" is a constant expression, return non-zero with the value | |
2092 | in *valp. */ | |
2093 | ||
2094 | static int | |
7fa3d080 | 2095 | xg_arg_is_constant (char *arg, offsetT *valp) |
e0001a05 NC |
2096 | { |
2097 | expressionS exp; | |
2098 | char *save_ptr = input_line_pointer; | |
2099 | ||
2100 | input_line_pointer = arg; | |
2101 | expression (&exp); | |
2102 | input_line_pointer = save_ptr; | |
2103 | ||
2104 | if (exp.X_op == O_constant) | |
2105 | { | |
2106 | *valp = exp.X_add_number; | |
2107 | return 1; | |
2108 | } | |
2109 | ||
2110 | return 0; | |
2111 | } | |
2112 | ||
2113 | ||
2114 | static void | |
7fa3d080 | 2115 | xg_replace_opname (char **popname, char *newop) |
e0001a05 NC |
2116 | { |
2117 | free (*popname); | |
2118 | *popname = (char *) xmalloc (strlen (newop) + 1); | |
2119 | strcpy (*popname, newop); | |
2120 | } | |
2121 | ||
2122 | ||
2123 | static int | |
7fa3d080 BW |
2124 | xg_check_num_args (int *pnum_args, |
2125 | int expected_num, | |
2126 | char *opname, | |
2127 | char **arg_strings) | |
e0001a05 NC |
2128 | { |
2129 | int num_args = *pnum_args; | |
2130 | ||
43cd72b9 | 2131 | if (num_args < expected_num) |
e0001a05 NC |
2132 | { |
2133 | as_bad (_("not enough operands (%d) for '%s'; expected %d"), | |
2134 | num_args, opname, expected_num); | |
2135 | return -1; | |
2136 | } | |
2137 | ||
2138 | if (num_args > expected_num) | |
2139 | { | |
2140 | as_warn (_("too many operands (%d) for '%s'; expected %d"), | |
2141 | num_args, opname, expected_num); | |
2142 | while (num_args-- > expected_num) | |
2143 | { | |
2144 | free (arg_strings[num_args]); | |
2145 | arg_strings[num_args] = 0; | |
2146 | } | |
2147 | *pnum_args = expected_num; | |
2148 | return -1; | |
2149 | } | |
2150 | ||
2151 | return 0; | |
2152 | } | |
2153 | ||
2154 | ||
43cd72b9 BW |
2155 | /* If the register is not specified as part of the opcode, |
2156 | then get it from the operand and move it to the opcode. */ | |
2157 | ||
e0001a05 | 2158 | static int |
7fa3d080 | 2159 | xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings) |
e0001a05 | 2160 | { |
43cd72b9 BW |
2161 | xtensa_isa isa = xtensa_default_isa; |
2162 | xtensa_sysreg sr; | |
e0001a05 | 2163 | char *opname, *new_opname; |
43cd72b9 BW |
2164 | const char *sr_name; |
2165 | int is_user, is_write; | |
e0001a05 NC |
2166 | |
2167 | opname = *popname; | |
2168 | if (*opname == '_') | |
80ca4e2c | 2169 | opname += 1; |
43cd72b9 BW |
2170 | is_user = (opname[1] == 'u'); |
2171 | is_write = (opname[0] == 'w'); | |
e0001a05 | 2172 | |
43cd72b9 | 2173 | /* Opname == [rw]ur or [rwx]sr... */ |
e0001a05 | 2174 | |
43cd72b9 BW |
2175 | if (xg_check_num_args (pnum_args, 2, opname, arg_strings)) |
2176 | return -1; | |
e0001a05 | 2177 | |
43cd72b9 BW |
2178 | /* Check if the argument is a symbolic register name. */ |
2179 | sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]); | |
2180 | /* Handle WSR to "INTSET" as a special case. */ | |
2181 | if (sr == XTENSA_UNDEFINED && is_write && !is_user | |
2182 | && !strcasecmp (arg_strings[1], "intset")) | |
2183 | sr = xtensa_sysreg_lookup_name (isa, "interrupt"); | |
2184 | if (sr == XTENSA_UNDEFINED | |
2185 | || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user) | |
2186 | { | |
2187 | /* Maybe it's a register number.... */ | |
2188 | offsetT val; | |
e0001a05 NC |
2189 | if (!xg_arg_is_constant (arg_strings[1], &val)) |
2190 | { | |
43cd72b9 BW |
2191 | as_bad (_("invalid register '%s' for '%s' instruction"), |
2192 | arg_strings[1], opname); | |
e0001a05 NC |
2193 | return -1; |
2194 | } | |
43cd72b9 BW |
2195 | sr = xtensa_sysreg_lookup (isa, val, is_user); |
2196 | if (sr == XTENSA_UNDEFINED) | |
e0001a05 | 2197 | { |
43cd72b9 | 2198 | as_bad (_("invalid register number (%ld) for '%s' instruction"), |
dd49a749 | 2199 | (long) val, opname); |
e0001a05 NC |
2200 | return -1; |
2201 | } | |
43cd72b9 | 2202 | } |
e0001a05 | 2203 | |
43cd72b9 BW |
2204 | /* Remove the last argument, which is now part of the opcode. */ |
2205 | free (arg_strings[1]); | |
2206 | arg_strings[1] = 0; | |
2207 | *pnum_args = 1; | |
2208 | ||
2209 | /* Translate the opcode. */ | |
2210 | sr_name = xtensa_sysreg_name (isa, sr); | |
2211 | /* Another special case for "WSR.INTSET".... */ | |
2212 | if (is_write && !is_user && !strcasecmp ("interrupt", sr_name)) | |
2213 | sr_name = "intset"; | |
2214 | new_opname = (char *) xmalloc (strlen (sr_name) + 6); | |
80ca4e2c | 2215 | sprintf (new_opname, "%s.%s", *popname, sr_name); |
43cd72b9 BW |
2216 | free (*popname); |
2217 | *popname = new_opname; | |
2218 | ||
2219 | return 0; | |
2220 | } | |
2221 | ||
2222 | ||
2223 | static int | |
7fa3d080 | 2224 | xtensa_translate_old_userreg_ops (char **popname) |
43cd72b9 BW |
2225 | { |
2226 | xtensa_isa isa = xtensa_default_isa; | |
2227 | xtensa_sysreg sr; | |
2228 | char *opname, *new_opname; | |
2229 | const char *sr_name; | |
2230 | bfd_boolean has_underbar = FALSE; | |
2231 | ||
2232 | opname = *popname; | |
2233 | if (opname[0] == '_') | |
2234 | { | |
2235 | has_underbar = TRUE; | |
2236 | opname += 1; | |
2237 | } | |
2238 | ||
2239 | sr = xtensa_sysreg_lookup_name (isa, opname + 1); | |
2240 | if (sr != XTENSA_UNDEFINED) | |
2241 | { | |
2242 | /* The new default name ("nnn") is different from the old default | |
2243 | name ("URnnn"). The old default is handled below, and we don't | |
2244 | want to recognize [RW]nnn, so do nothing if the name is the (new) | |
2245 | default. */ | |
2246 | static char namebuf[10]; | |
2247 | sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr)); | |
2248 | if (strcmp (namebuf, opname + 1) == 0) | |
2249 | return 0; | |
2250 | } | |
2251 | else | |
2252 | { | |
2253 | offsetT val; | |
2254 | char *end; | |
2255 | ||
2256 | /* Only continue if the reg name is "URnnn". */ | |
2257 | if (opname[1] != 'u' || opname[2] != 'r') | |
2258 | return 0; | |
2259 | val = strtoul (opname + 3, &end, 10); | |
2260 | if (*end != '\0') | |
2261 | return 0; | |
2262 | ||
2263 | sr = xtensa_sysreg_lookup (isa, val, 1); | |
2264 | if (sr == XTENSA_UNDEFINED) | |
2265 | { | |
2266 | as_bad (_("invalid register number (%ld) for '%s'"), | |
dd49a749 | 2267 | (long) val, opname); |
43cd72b9 BW |
2268 | return -1; |
2269 | } | |
2270 | } | |
2271 | ||
2272 | /* Translate the opcode. */ | |
2273 | sr_name = xtensa_sysreg_name (isa, sr); | |
2274 | new_opname = (char *) xmalloc (strlen (sr_name) + 6); | |
2275 | sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""), | |
2276 | opname[0], sr_name); | |
2277 | free (*popname); | |
2278 | *popname = new_opname; | |
2279 | ||
2280 | return 0; | |
2281 | } | |
2282 | ||
2283 | ||
2284 | static int | |
7fa3d080 BW |
2285 | xtensa_translate_zero_immed (char *old_op, |
2286 | char *new_op, | |
2287 | char **popname, | |
2288 | int *pnum_args, | |
2289 | char **arg_strings) | |
43cd72b9 BW |
2290 | { |
2291 | char *opname; | |
2292 | offsetT val; | |
2293 | ||
2294 | opname = *popname; | |
2295 | assert (opname[0] != '_'); | |
2296 | ||
2297 | if (strcmp (opname, old_op) != 0) | |
2298 | return 0; | |
e0001a05 | 2299 | |
43cd72b9 BW |
2300 | if (xg_check_num_args (pnum_args, 3, opname, arg_strings)) |
2301 | return -1; | |
2302 | if (xg_arg_is_constant (arg_strings[1], &val) && val == 0) | |
2303 | { | |
2304 | xg_replace_opname (popname, new_op); | |
2305 | free (arg_strings[1]); | |
2306 | arg_strings[1] = arg_strings[2]; | |
2307 | arg_strings[2] = 0; | |
2308 | *pnum_args = 2; | |
e0001a05 NC |
2309 | } |
2310 | ||
2311 | return 0; | |
2312 | } | |
2313 | ||
2314 | ||
2315 | /* If the instruction is an idiom (i.e., a built-in macro), translate it. | |
2316 | Returns non-zero if an error was found. */ | |
2317 | ||
2318 | static int | |
7fa3d080 | 2319 | xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings) |
e0001a05 NC |
2320 | { |
2321 | char *opname = *popname; | |
2322 | bfd_boolean has_underbar = FALSE; | |
2323 | ||
2324 | if (*opname == '_') | |
2325 | { | |
2326 | has_underbar = TRUE; | |
2327 | opname += 1; | |
2328 | } | |
2329 | ||
2330 | if (strcmp (opname, "mov") == 0) | |
2331 | { | |
43cd72b9 | 2332 | if (use_transform () && !has_underbar && density_supported) |
e0001a05 NC |
2333 | xg_replace_opname (popname, "mov.n"); |
2334 | else | |
2335 | { | |
2336 | if (xg_check_num_args (pnum_args, 2, opname, arg_strings)) | |
2337 | return -1; | |
2338 | xg_replace_opname (popname, (has_underbar ? "_or" : "or")); | |
2339 | arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1); | |
2340 | strcpy (arg_strings[2], arg_strings[1]); | |
2341 | *pnum_args = 3; | |
2342 | } | |
2343 | return 0; | |
2344 | } | |
2345 | ||
2346 | if (strcmp (opname, "bbsi.l") == 0) | |
2347 | { | |
2348 | if (xg_check_num_args (pnum_args, 3, opname, arg_strings)) | |
2349 | return -1; | |
2350 | xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi")); | |
2351 | if (target_big_endian) | |
2352 | xg_reverse_shift_count (&arg_strings[1]); | |
2353 | return 0; | |
2354 | } | |
2355 | ||
2356 | if (strcmp (opname, "bbci.l") == 0) | |
2357 | { | |
2358 | if (xg_check_num_args (pnum_args, 3, opname, arg_strings)) | |
2359 | return -1; | |
2360 | xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci")); | |
2361 | if (target_big_endian) | |
2362 | xg_reverse_shift_count (&arg_strings[1]); | |
2363 | return 0; | |
2364 | } | |
2365 | ||
eb6d9dce BW |
2366 | /* Don't do anything special with NOPs inside FLIX instructions. They |
2367 | are handled elsewhere. Real NOP instructions are always available | |
2368 | in configurations with FLIX, so this should never be an issue but | |
2369 | check for it anyway. */ | |
2370 | if (!cur_vinsn.inside_bundle && xtensa_nop_opcode == XTENSA_UNDEFINED | |
43cd72b9 | 2371 | && strcmp (opname, "nop") == 0) |
e0001a05 | 2372 | { |
43cd72b9 | 2373 | if (use_transform () && !has_underbar && density_supported) |
e0001a05 NC |
2374 | xg_replace_opname (popname, "nop.n"); |
2375 | else | |
2376 | { | |
2377 | if (xg_check_num_args (pnum_args, 0, opname, arg_strings)) | |
2378 | return -1; | |
2379 | xg_replace_opname (popname, (has_underbar ? "_or" : "or")); | |
2380 | arg_strings[0] = (char *) xmalloc (3); | |
2381 | arg_strings[1] = (char *) xmalloc (3); | |
2382 | arg_strings[2] = (char *) xmalloc (3); | |
2383 | strcpy (arg_strings[0], "a1"); | |
2384 | strcpy (arg_strings[1], "a1"); | |
2385 | strcpy (arg_strings[2], "a1"); | |
2386 | *pnum_args = 3; | |
2387 | } | |
2388 | return 0; | |
2389 | } | |
2390 | ||
43cd72b9 BW |
2391 | /* Recognize [RW]UR and [RWX]SR. */ |
2392 | if ((((opname[0] == 'r' || opname[0] == 'w') | |
2393 | && (opname[1] == 'u' || opname[1] == 's')) | |
2394 | || (opname[0] == 'x' && opname[1] == 's')) | |
2395 | && opname[2] == 'r' | |
2396 | && opname[3] == '\0') | |
e0001a05 NC |
2397 | return xg_translate_sysreg_op (popname, pnum_args, arg_strings); |
2398 | ||
43cd72b9 BW |
2399 | /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and |
2400 | [RW]<name> if <name> is the non-default name of a user register. */ | |
2401 | if ((opname[0] == 'r' || opname[0] == 'w') | |
2402 | && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED) | |
2403 | return xtensa_translate_old_userreg_ops (popname); | |
e0001a05 | 2404 | |
43cd72b9 BW |
2405 | /* Relax branches that don't allow comparisons against an immediate value |
2406 | of zero to the corresponding branches with implicit zero immediates. */ | |
2407 | if (!has_underbar && use_transform ()) | |
2408 | { | |
2409 | if (xtensa_translate_zero_immed ("bnei", "bnez", popname, | |
2410 | pnum_args, arg_strings)) | |
2411 | return -1; | |
e0001a05 | 2412 | |
43cd72b9 BW |
2413 | if (xtensa_translate_zero_immed ("beqi", "beqz", popname, |
2414 | pnum_args, arg_strings)) | |
2415 | return -1; | |
e0001a05 | 2416 | |
43cd72b9 BW |
2417 | if (xtensa_translate_zero_immed ("bgei", "bgez", popname, |
2418 | pnum_args, arg_strings)) | |
2419 | return -1; | |
e0001a05 | 2420 | |
43cd72b9 BW |
2421 | if (xtensa_translate_zero_immed ("blti", "bltz", popname, |
2422 | pnum_args, arg_strings)) | |
2423 | return -1; | |
2424 | } | |
e0001a05 | 2425 | |
43cd72b9 BW |
2426 | return 0; |
2427 | } | |
e0001a05 | 2428 | |
43cd72b9 BW |
2429 | \f |
2430 | /* Functions for dealing with the Xtensa ISA. */ | |
e0001a05 | 2431 | |
43cd72b9 BW |
2432 | /* Currently the assembler only allows us to use a single target per |
2433 | fragment. Because of this, only one operand for a given | |
2434 | instruction may be symbolic. If there is a PC-relative operand, | |
2435 | the last one is chosen. Otherwise, the result is the number of the | |
2436 | last immediate operand, and if there are none of those, we fail and | |
2437 | return -1. */ | |
e0001a05 | 2438 | |
7fa3d080 BW |
2439 | static int |
2440 | get_relaxable_immed (xtensa_opcode opcode) | |
43cd72b9 BW |
2441 | { |
2442 | int last_immed = -1; | |
2443 | int noperands, opi; | |
e0001a05 | 2444 | |
43cd72b9 BW |
2445 | if (opcode == XTENSA_UNDEFINED) |
2446 | return -1; | |
e0001a05 | 2447 | |
43cd72b9 BW |
2448 | noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode); |
2449 | for (opi = noperands - 1; opi >= 0; opi--) | |
2450 | { | |
2451 | if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0) | |
2452 | continue; | |
2453 | if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1) | |
2454 | return opi; | |
2455 | if (last_immed == -1 | |
2456 | && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0) | |
2457 | last_immed = opi; | |
e0001a05 | 2458 | } |
43cd72b9 | 2459 | return last_immed; |
e0001a05 NC |
2460 | } |
2461 | ||
e0001a05 | 2462 | |
43cd72b9 | 2463 | static xtensa_opcode |
7fa3d080 | 2464 | get_opcode_from_buf (const char *buf, int slot) |
e0001a05 | 2465 | { |
43cd72b9 BW |
2466 | static xtensa_insnbuf insnbuf = NULL; |
2467 | static xtensa_insnbuf slotbuf = NULL; | |
2468 | xtensa_isa isa = xtensa_default_isa; | |
2469 | xtensa_format fmt; | |
2470 | ||
2471 | if (!insnbuf) | |
e0001a05 | 2472 | { |
43cd72b9 BW |
2473 | insnbuf = xtensa_insnbuf_alloc (isa); |
2474 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 2475 | } |
e0001a05 | 2476 | |
d77b99c9 | 2477 | xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0); |
43cd72b9 BW |
2478 | fmt = xtensa_format_decode (isa, insnbuf); |
2479 | if (fmt == XTENSA_UNDEFINED) | |
2480 | return XTENSA_UNDEFINED; | |
e0001a05 | 2481 | |
43cd72b9 BW |
2482 | if (slot >= xtensa_format_num_slots (isa, fmt)) |
2483 | return XTENSA_UNDEFINED; | |
e0001a05 | 2484 | |
43cd72b9 BW |
2485 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); |
2486 | return xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
e0001a05 NC |
2487 | } |
2488 | ||
2489 | ||
43cd72b9 | 2490 | #ifdef TENSILICA_DEBUG |
e0001a05 | 2491 | |
43cd72b9 | 2492 | /* For debugging, print out the mapping of opcode numbers to opcodes. */ |
e0001a05 | 2493 | |
7fa3d080 BW |
2494 | static void |
2495 | xtensa_print_insn_table (void) | |
43cd72b9 BW |
2496 | { |
2497 | int num_opcodes, num_operands; | |
2498 | xtensa_opcode opcode; | |
2499 | xtensa_isa isa = xtensa_default_isa; | |
e0001a05 | 2500 | |
43cd72b9 BW |
2501 | num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa); |
2502 | for (opcode = 0; opcode < num_opcodes; opcode++) | |
e0001a05 | 2503 | { |
43cd72b9 BW |
2504 | int opn; |
2505 | fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode)); | |
2506 | num_operands = xtensa_opcode_num_operands (isa, opcode); | |
2507 | for (opn = 0; opn < num_operands; opn++) | |
2508 | { | |
2509 | if (xtensa_operand_is_visible (isa, opcode, opn) == 0) | |
2510 | continue; | |
2511 | if (xtensa_operand_is_register (isa, opcode, opn) == 1) | |
2512 | { | |
2513 | xtensa_regfile opnd_rf = | |
2514 | xtensa_operand_regfile (isa, opcode, opn); | |
2515 | fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf)); | |
2516 | } | |
2517 | else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1) | |
2518 | fputs ("[lLr] ", stderr); | |
2519 | else | |
2520 | fputs ("i ", stderr); | |
2521 | } | |
2522 | fprintf (stderr, "\n"); | |
e0001a05 | 2523 | } |
e0001a05 NC |
2524 | } |
2525 | ||
2526 | ||
43cd72b9 | 2527 | static void |
7fa3d080 | 2528 | print_vliw_insn (xtensa_insnbuf vbuf) |
e0001a05 | 2529 | { |
e0001a05 | 2530 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
2531 | xtensa_format f = xtensa_format_decode (isa, vbuf); |
2532 | xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa); | |
2533 | int op; | |
e0001a05 | 2534 | |
43cd72b9 | 2535 | fprintf (stderr, "format = %d\n", f); |
e0001a05 | 2536 | |
43cd72b9 BW |
2537 | for (op = 0; op < xtensa_format_num_slots (isa, f); op++) |
2538 | { | |
2539 | xtensa_opcode opcode; | |
2540 | const char *opname; | |
2541 | int operands; | |
2542 | ||
2543 | xtensa_format_get_slot (isa, f, op, vbuf, sbuf); | |
2544 | opcode = xtensa_opcode_decode (isa, f, op, sbuf); | |
2545 | opname = xtensa_opcode_name (isa, opcode); | |
2546 | ||
2547 | fprintf (stderr, "op in slot %i is %s;\n", op, opname); | |
2548 | fprintf (stderr, " operands = "); | |
2549 | for (operands = 0; | |
2550 | operands < xtensa_opcode_num_operands (isa, opcode); | |
2551 | operands++) | |
2552 | { | |
2553 | unsigned int val; | |
2554 | if (xtensa_operand_is_visible (isa, opcode, operands) == 0) | |
2555 | continue; | |
2556 | xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val); | |
2557 | xtensa_operand_decode (isa, opcode, operands, &val); | |
2558 | fprintf (stderr, "%d ", val); | |
2559 | } | |
2560 | fprintf (stderr, "\n"); | |
2561 | } | |
2562 | xtensa_insnbuf_free (isa, sbuf); | |
e0001a05 NC |
2563 | } |
2564 | ||
43cd72b9 BW |
2565 | #endif /* TENSILICA_DEBUG */ |
2566 | ||
e0001a05 NC |
2567 | |
2568 | static bfd_boolean | |
7fa3d080 | 2569 | is_direct_call_opcode (xtensa_opcode opcode) |
e0001a05 | 2570 | { |
43cd72b9 BW |
2571 | xtensa_isa isa = xtensa_default_isa; |
2572 | int n, num_operands; | |
e0001a05 | 2573 | |
64b607e6 | 2574 | if (xtensa_opcode_is_call (isa, opcode) != 1) |
e0001a05 NC |
2575 | return FALSE; |
2576 | ||
43cd72b9 BW |
2577 | num_operands = xtensa_opcode_num_operands (isa, opcode); |
2578 | for (n = 0; n < num_operands; n++) | |
2579 | { | |
2580 | if (xtensa_operand_is_register (isa, opcode, n) == 0 | |
2581 | && xtensa_operand_is_PCrelative (isa, opcode, n) == 1) | |
2582 | return TRUE; | |
2583 | } | |
2584 | return FALSE; | |
e0001a05 NC |
2585 | } |
2586 | ||
2587 | ||
43cd72b9 BW |
2588 | /* Convert from BFD relocation type code to slot and operand number. |
2589 | Returns non-zero on failure. */ | |
e0001a05 | 2590 | |
43cd72b9 | 2591 | static int |
7fa3d080 | 2592 | decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt) |
e0001a05 | 2593 | { |
43cd72b9 BW |
2594 | if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP |
2595 | && reloc <= BFD_RELOC_XTENSA_SLOT14_OP) | |
e0001a05 | 2596 | { |
43cd72b9 BW |
2597 | *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP; |
2598 | *is_alt = FALSE; | |
e0001a05 | 2599 | } |
43cd72b9 BW |
2600 | else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT |
2601 | && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT) | |
e0001a05 | 2602 | { |
43cd72b9 BW |
2603 | *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT; |
2604 | *is_alt = TRUE; | |
e0001a05 | 2605 | } |
43cd72b9 BW |
2606 | else |
2607 | return -1; | |
2608 | ||
2609 | return 0; | |
e0001a05 NC |
2610 | } |
2611 | ||
2612 | ||
43cd72b9 BW |
2613 | /* Convert from slot number to BFD relocation type code for the |
2614 | standard PC-relative relocations. Return BFD_RELOC_NONE on | |
2615 | failure. */ | |
e0001a05 | 2616 | |
43cd72b9 | 2617 | static bfd_reloc_code_real_type |
7fa3d080 | 2618 | encode_reloc (int slot) |
e0001a05 | 2619 | { |
43cd72b9 BW |
2620 | if (slot < 0 || slot > 14) |
2621 | return BFD_RELOC_NONE; | |
2622 | ||
2623 | return BFD_RELOC_XTENSA_SLOT0_OP + slot; | |
e0001a05 NC |
2624 | } |
2625 | ||
2626 | ||
43cd72b9 BW |
2627 | /* Convert from slot numbers to BFD relocation type code for the |
2628 | "alternate" relocations. Return BFD_RELOC_NONE on failure. */ | |
e0001a05 | 2629 | |
43cd72b9 | 2630 | static bfd_reloc_code_real_type |
7fa3d080 | 2631 | encode_alt_reloc (int slot) |
e0001a05 | 2632 | { |
43cd72b9 BW |
2633 | if (slot < 0 || slot > 14) |
2634 | return BFD_RELOC_NONE; | |
2635 | ||
2636 | return BFD_RELOC_XTENSA_SLOT0_ALT + slot; | |
e0001a05 NC |
2637 | } |
2638 | ||
2639 | ||
2640 | static void | |
7fa3d080 BW |
2641 | xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf, |
2642 | xtensa_format fmt, | |
2643 | int slot, | |
2644 | xtensa_opcode opcode, | |
2645 | int operand, | |
2646 | uint32 value, | |
2647 | const char *file, | |
2648 | unsigned int line) | |
e0001a05 | 2649 | { |
e0001a05 NC |
2650 | uint32 valbuf = value; |
2651 | ||
43cd72b9 | 2652 | if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf)) |
e0001a05 | 2653 | { |
43cd72b9 BW |
2654 | if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand) |
2655 | == 1) | |
2656 | as_bad_where ((char *) file, line, | |
d7c531cd BW |
2657 | _("operand %d of '%s' has out of range value '%u'"), |
2658 | operand + 1, | |
2659 | xtensa_opcode_name (xtensa_default_isa, opcode), | |
2660 | value); | |
43cd72b9 BW |
2661 | else |
2662 | as_bad_where ((char *) file, line, | |
d7c531cd BW |
2663 | _("operand %d of '%s' has invalid value '%u'"), |
2664 | operand + 1, | |
2665 | xtensa_opcode_name (xtensa_default_isa, opcode), | |
2666 | value); | |
43cd72b9 | 2667 | return; |
e0001a05 NC |
2668 | } |
2669 | ||
43cd72b9 BW |
2670 | xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot, |
2671 | slotbuf, valbuf); | |
e0001a05 NC |
2672 | } |
2673 | ||
2674 | ||
2675 | static uint32 | |
7fa3d080 BW |
2676 | xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf, |
2677 | xtensa_format fmt, | |
2678 | int slot, | |
2679 | xtensa_opcode opcode, | |
2680 | int opnum) | |
e0001a05 | 2681 | { |
43cd72b9 BW |
2682 | uint32 val = 0; |
2683 | (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum, | |
2684 | fmt, slot, slotbuf, &val); | |
2685 | (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val); | |
2686 | return val; | |
e0001a05 NC |
2687 | } |
2688 | ||
e0001a05 | 2689 | \f |
7fa3d080 | 2690 | /* Checks for rules from xtensa-relax tables. */ |
e0001a05 | 2691 | |
7fa3d080 BW |
2692 | /* The routine xg_instruction_matches_option_term must return TRUE |
2693 | when a given option term is true. The meaning of all of the option | |
2694 | terms is given interpretation by this function. This is needed when | |
2695 | an option depends on the state of a directive, but there are no such | |
2696 | options in use right now. */ | |
e0001a05 | 2697 | |
7fa3d080 BW |
2698 | static bfd_boolean |
2699 | xg_instruction_matches_option_term (TInsn *insn ATTRIBUTE_UNUSED, | |
2700 | const ReqOrOption *option) | |
e0001a05 | 2701 | { |
7fa3d080 BW |
2702 | if (strcmp (option->option_name, "realnop") == 0 |
2703 | || strncmp (option->option_name, "IsaUse", 6) == 0) | |
2704 | { | |
2705 | /* These conditions were evaluated statically when building the | |
2706 | relaxation table. There's no need to reevaluate them now. */ | |
2707 | return TRUE; | |
2708 | } | |
2709 | else | |
2710 | { | |
2711 | as_fatal (_("internal error: unknown option name '%s'"), | |
2712 | option->option_name); | |
2713 | } | |
e0001a05 NC |
2714 | } |
2715 | ||
2716 | ||
7fa3d080 BW |
2717 | static bfd_boolean |
2718 | xg_instruction_matches_or_options (TInsn *insn, | |
2719 | const ReqOrOptionList *or_option) | |
e0001a05 | 2720 | { |
7fa3d080 BW |
2721 | const ReqOrOption *option; |
2722 | /* Must match each of the AND terms. */ | |
2723 | for (option = or_option; option != NULL; option = option->next) | |
e0001a05 | 2724 | { |
7fa3d080 BW |
2725 | if (xg_instruction_matches_option_term (insn, option)) |
2726 | return TRUE; | |
e0001a05 | 2727 | } |
7fa3d080 | 2728 | return FALSE; |
e0001a05 NC |
2729 | } |
2730 | ||
2731 | ||
7fa3d080 BW |
2732 | static bfd_boolean |
2733 | xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options) | |
e0001a05 | 2734 | { |
7fa3d080 BW |
2735 | const ReqOption *req_options; |
2736 | /* Must match each of the AND terms. */ | |
2737 | for (req_options = options; | |
2738 | req_options != NULL; | |
2739 | req_options = req_options->next) | |
e0001a05 | 2740 | { |
7fa3d080 BW |
2741 | /* Must match one of the OR clauses. */ |
2742 | if (!xg_instruction_matches_or_options (insn, | |
2743 | req_options->or_option_terms)) | |
2744 | return FALSE; | |
e0001a05 | 2745 | } |
7fa3d080 | 2746 | return TRUE; |
e0001a05 NC |
2747 | } |
2748 | ||
2749 | ||
7fa3d080 | 2750 | /* Return the transition rule that matches or NULL if none matches. */ |
e0001a05 | 2751 | |
7fa3d080 BW |
2752 | static bfd_boolean |
2753 | xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule) | |
e0001a05 | 2754 | { |
7fa3d080 | 2755 | PreconditionList *condition_l; |
e0001a05 | 2756 | |
7fa3d080 BW |
2757 | if (rule->opcode != insn->opcode) |
2758 | return FALSE; | |
e0001a05 | 2759 | |
7fa3d080 BW |
2760 | for (condition_l = rule->conditions; |
2761 | condition_l != NULL; | |
2762 | condition_l = condition_l->next) | |
e0001a05 | 2763 | { |
7fa3d080 BW |
2764 | expressionS *exp1; |
2765 | expressionS *exp2; | |
2766 | Precondition *cond = condition_l->precond; | |
e0001a05 | 2767 | |
7fa3d080 | 2768 | switch (cond->typ) |
e0001a05 | 2769 | { |
7fa3d080 BW |
2770 | case OP_CONSTANT: |
2771 | /* The expression must be the constant. */ | |
2772 | assert (cond->op_num < insn->ntok); | |
2773 | exp1 = &insn->tok[cond->op_num]; | |
2774 | if (expr_is_const (exp1)) | |
2775 | { | |
2776 | switch (cond->cmp) | |
2777 | { | |
2778 | case OP_EQUAL: | |
2779 | if (get_expr_const (exp1) != cond->op_data) | |
2780 | return FALSE; | |
2781 | break; | |
2782 | case OP_NOTEQUAL: | |
2783 | if (get_expr_const (exp1) == cond->op_data) | |
2784 | return FALSE; | |
2785 | break; | |
2786 | default: | |
2787 | return FALSE; | |
2788 | } | |
2789 | } | |
2790 | else if (expr_is_register (exp1)) | |
2791 | { | |
2792 | switch (cond->cmp) | |
2793 | { | |
2794 | case OP_EQUAL: | |
2795 | if (get_expr_register (exp1) != cond->op_data) | |
2796 | return FALSE; | |
2797 | break; | |
2798 | case OP_NOTEQUAL: | |
2799 | if (get_expr_register (exp1) == cond->op_data) | |
2800 | return FALSE; | |
2801 | break; | |
2802 | default: | |
2803 | return FALSE; | |
2804 | } | |
2805 | } | |
2806 | else | |
2807 | return FALSE; | |
2808 | break; | |
2809 | ||
2810 | case OP_OPERAND: | |
2811 | assert (cond->op_num < insn->ntok); | |
2812 | assert (cond->op_data < insn->ntok); | |
2813 | exp1 = &insn->tok[cond->op_num]; | |
2814 | exp2 = &insn->tok[cond->op_data]; | |
2815 | ||
2816 | switch (cond->cmp) | |
2817 | { | |
2818 | case OP_EQUAL: | |
2819 | if (!expr_is_equal (exp1, exp2)) | |
2820 | return FALSE; | |
2821 | break; | |
2822 | case OP_NOTEQUAL: | |
2823 | if (expr_is_equal (exp1, exp2)) | |
2824 | return FALSE; | |
2825 | break; | |
2826 | } | |
2827 | break; | |
2828 | ||
2829 | case OP_LITERAL: | |
2830 | case OP_LABEL: | |
2831 | default: | |
2832 | return FALSE; | |
2833 | } | |
2834 | } | |
2835 | if (!xg_instruction_matches_options (insn, rule->options)) | |
2836 | return FALSE; | |
2837 | ||
2838 | return TRUE; | |
2839 | } | |
2840 | ||
2841 | ||
2842 | static int | |
2843 | transition_rule_cmp (const TransitionRule *a, const TransitionRule *b) | |
2844 | { | |
2845 | bfd_boolean a_greater = FALSE; | |
2846 | bfd_boolean b_greater = FALSE; | |
2847 | ||
2848 | ReqOptionList *l_a = a->options; | |
2849 | ReqOptionList *l_b = b->options; | |
2850 | ||
2851 | /* We only care if they both are the same except for | |
2852 | a const16 vs. an l32r. */ | |
2853 | ||
2854 | while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL))) | |
2855 | { | |
2856 | ReqOrOptionList *l_or_a = l_a->or_option_terms; | |
2857 | ReqOrOptionList *l_or_b = l_b->or_option_terms; | |
2858 | while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL))) | |
2859 | { | |
2860 | if (l_or_a->is_true != l_or_b->is_true) | |
2861 | return 0; | |
2862 | if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0) | |
2863 | { | |
2864 | /* This is the case we care about. */ | |
2865 | if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0 | |
2866 | && strcmp (l_or_b->option_name, "IsaUseL32R") == 0) | |
2867 | { | |
2868 | if (prefer_const16) | |
2869 | a_greater = TRUE; | |
2870 | else | |
2871 | b_greater = TRUE; | |
2872 | } | |
2873 | else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0 | |
2874 | && strcmp (l_or_b->option_name, "IsaUseConst16") == 0) | |
2875 | { | |
2876 | if (prefer_const16) | |
2877 | b_greater = TRUE; | |
2878 | else | |
2879 | a_greater = TRUE; | |
2880 | } | |
2881 | else | |
2882 | return 0; | |
2883 | } | |
2884 | l_or_a = l_or_a->next; | |
2885 | l_or_b = l_or_b->next; | |
2886 | } | |
2887 | if (l_or_a || l_or_b) | |
2888 | return 0; | |
2889 | ||
2890 | l_a = l_a->next; | |
2891 | l_b = l_b->next; | |
2892 | } | |
2893 | if (l_a || l_b) | |
2894 | return 0; | |
2895 | ||
2896 | /* Incomparable if the substitution was used differently in two cases. */ | |
2897 | if (a_greater && b_greater) | |
2898 | return 0; | |
2899 | ||
2900 | if (b_greater) | |
2901 | return 1; | |
2902 | if (a_greater) | |
2903 | return -1; | |
2904 | ||
2905 | return 0; | |
2906 | } | |
2907 | ||
2908 | ||
2909 | static TransitionRule * | |
2910 | xg_instruction_match (TInsn *insn) | |
2911 | { | |
2912 | TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp); | |
2913 | TransitionList *l; | |
2914 | assert (insn->opcode < table->num_opcodes); | |
2915 | ||
2916 | /* Walk through all of the possible transitions. */ | |
2917 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
2918 | { | |
2919 | TransitionRule *rule = l->rule; | |
2920 | if (xg_instruction_matches_rule (insn, rule)) | |
2921 | return rule; | |
2922 | } | |
2923 | return NULL; | |
2924 | } | |
2925 | ||
2926 | \f | |
2927 | /* Various Other Internal Functions. */ | |
2928 | ||
2929 | static bfd_boolean | |
2930 | is_unique_insn_expansion (TransitionRule *r) | |
2931 | { | |
2932 | if (!r->to_instr || r->to_instr->next != NULL) | |
2933 | return FALSE; | |
2934 | if (r->to_instr->typ != INSTR_INSTR) | |
2935 | return FALSE; | |
2936 | return TRUE; | |
2937 | } | |
2938 | ||
2939 | ||
84b08ed9 BW |
2940 | /* Check if there is exactly one relaxation for INSN that converts it to |
2941 | another instruction of equal or larger size. If so, and if TARG is | |
2942 | non-null, go ahead and generate the relaxed instruction into TARG. If | |
2943 | NARROW_ONLY is true, then only consider relaxations that widen a narrow | |
2944 | instruction, i.e., ignore relaxations that convert to an instruction of | |
2945 | equal size. In some contexts where this function is used, only | |
c138bc38 | 2946 | a single widening is allowed and the NARROW_ONLY argument is used to |
84b08ed9 BW |
2947 | exclude cases like ADDI being "widened" to an ADDMI, which may |
2948 | later be relaxed to an ADDMI/ADDI pair. */ | |
7fa3d080 | 2949 | |
84b08ed9 BW |
2950 | bfd_boolean |
2951 | xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only) | |
7fa3d080 BW |
2952 | { |
2953 | TransitionTable *table = xg_build_widen_table (&transition_rule_cmp); | |
2954 | TransitionList *l; | |
84b08ed9 | 2955 | TransitionRule *match = 0; |
7fa3d080 | 2956 | |
7fa3d080 BW |
2957 | assert (insn->insn_type == ITYPE_INSN); |
2958 | assert (insn->opcode < table->num_opcodes); | |
2959 | ||
2960 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
2961 | { | |
2962 | TransitionRule *rule = l->rule; | |
2963 | ||
2964 | if (xg_instruction_matches_rule (insn, rule) | |
84b08ed9 BW |
2965 | && is_unique_insn_expansion (rule) |
2966 | && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0) | |
2967 | <= xg_get_single_size (rule->to_instr->opcode))) | |
7fa3d080 | 2968 | { |
84b08ed9 BW |
2969 | if (match) |
2970 | return FALSE; | |
2971 | match = rule; | |
7fa3d080 BW |
2972 | } |
2973 | } | |
84b08ed9 BW |
2974 | if (!match) |
2975 | return FALSE; | |
2976 | ||
2977 | if (targ) | |
2978 | xg_build_to_insn (targ, insn, match->to_instr); | |
2979 | return TRUE; | |
7fa3d080 BW |
2980 | } |
2981 | ||
2982 | ||
2983 | /* Return the maximum number of bytes this opcode can expand to. */ | |
2984 | ||
2985 | static int | |
2986 | xg_get_max_insn_widen_size (xtensa_opcode opcode) | |
2987 | { | |
2988 | TransitionTable *table = xg_build_widen_table (&transition_rule_cmp); | |
2989 | TransitionList *l; | |
2990 | int max_size = xg_get_single_size (opcode); | |
2991 | ||
2992 | assert (opcode < table->num_opcodes); | |
2993 | ||
2994 | for (l = table->table[opcode]; l != NULL; l = l->next) | |
2995 | { | |
2996 | TransitionRule *rule = l->rule; | |
2997 | BuildInstr *build_list; | |
2998 | int this_size = 0; | |
2999 | ||
3000 | if (!rule) | |
3001 | continue; | |
3002 | build_list = rule->to_instr; | |
3003 | if (is_unique_insn_expansion (rule)) | |
3004 | { | |
3005 | assert (build_list->typ == INSTR_INSTR); | |
3006 | this_size = xg_get_max_insn_widen_size (build_list->opcode); | |
3007 | } | |
3008 | else | |
3009 | for (; build_list != NULL; build_list = build_list->next) | |
3010 | { | |
3011 | switch (build_list->typ) | |
3012 | { | |
3013 | case INSTR_INSTR: | |
3014 | this_size += xg_get_single_size (build_list->opcode); | |
3015 | break; | |
3016 | case INSTR_LITERAL_DEF: | |
3017 | case INSTR_LABEL_DEF: | |
e0001a05 NC |
3018 | default: |
3019 | break; | |
3020 | } | |
3021 | } | |
3022 | if (this_size > max_size) | |
3023 | max_size = this_size; | |
3024 | } | |
3025 | return max_size; | |
3026 | } | |
3027 | ||
3028 | ||
3029 | /* Return the maximum number of literal bytes this opcode can generate. */ | |
3030 | ||
7fa3d080 BW |
3031 | static int |
3032 | xg_get_max_insn_widen_literal_size (xtensa_opcode opcode) | |
e0001a05 | 3033 | { |
43cd72b9 | 3034 | TransitionTable *table = xg_build_widen_table (&transition_rule_cmp); |
e0001a05 NC |
3035 | TransitionList *l; |
3036 | int max_size = 0; | |
3037 | ||
3038 | assert (opcode < table->num_opcodes); | |
3039 | ||
3040 | for (l = table->table[opcode]; l != NULL; l = l->next) | |
3041 | { | |
3042 | TransitionRule *rule = l->rule; | |
3043 | BuildInstr *build_list; | |
3044 | int this_size = 0; | |
3045 | ||
3046 | if (!rule) | |
3047 | continue; | |
3048 | build_list = rule->to_instr; | |
3049 | if (is_unique_insn_expansion (rule)) | |
3050 | { | |
3051 | assert (build_list->typ == INSTR_INSTR); | |
3052 | this_size = xg_get_max_insn_widen_literal_size (build_list->opcode); | |
3053 | } | |
3054 | else | |
3055 | for (; build_list != NULL; build_list = build_list->next) | |
3056 | { | |
3057 | switch (build_list->typ) | |
3058 | { | |
3059 | case INSTR_LITERAL_DEF: | |
43cd72b9 | 3060 | /* Hard-coded 4-byte literal. */ |
e0001a05 NC |
3061 | this_size += 4; |
3062 | break; | |
3063 | case INSTR_INSTR: | |
3064 | case INSTR_LABEL_DEF: | |
3065 | default: | |
3066 | break; | |
3067 | } | |
3068 | } | |
3069 | if (this_size > max_size) | |
3070 | max_size = this_size; | |
3071 | } | |
3072 | return max_size; | |
3073 | } | |
3074 | ||
3075 | ||
7fa3d080 BW |
3076 | static bfd_boolean |
3077 | xg_is_relaxable_insn (TInsn *insn, int lateral_steps) | |
3078 | { | |
3079 | int steps_taken = 0; | |
3080 | TransitionTable *table = xg_build_widen_table (&transition_rule_cmp); | |
3081 | TransitionList *l; | |
3082 | ||
3083 | assert (insn->insn_type == ITYPE_INSN); | |
3084 | assert (insn->opcode < table->num_opcodes); | |
3085 | ||
3086 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
3087 | { | |
3088 | TransitionRule *rule = l->rule; | |
3089 | ||
3090 | if (xg_instruction_matches_rule (insn, rule)) | |
3091 | { | |
3092 | if (steps_taken == lateral_steps) | |
3093 | return TRUE; | |
3094 | steps_taken++; | |
3095 | } | |
3096 | } | |
3097 | return FALSE; | |
3098 | } | |
3099 | ||
3100 | ||
3101 | static symbolS * | |
3102 | get_special_literal_symbol (void) | |
3103 | { | |
3104 | static symbolS *sym = NULL; | |
3105 | ||
3106 | if (sym == NULL) | |
3107 | sym = symbol_find_or_make ("SPECIAL_LITERAL0\001"); | |
3108 | return sym; | |
3109 | } | |
3110 | ||
3111 | ||
3112 | static symbolS * | |
3113 | get_special_label_symbol (void) | |
3114 | { | |
3115 | static symbolS *sym = NULL; | |
3116 | ||
3117 | if (sym == NULL) | |
3118 | sym = symbol_find_or_make ("SPECIAL_LABEL0\001"); | |
3119 | return sym; | |
3120 | } | |
3121 | ||
3122 | ||
3123 | static bfd_boolean | |
3124 | xg_valid_literal_expression (const expressionS *exp) | |
3125 | { | |
3126 | switch (exp->X_op) | |
3127 | { | |
3128 | case O_constant: | |
3129 | case O_symbol: | |
3130 | case O_big: | |
3131 | case O_uminus: | |
3132 | case O_subtract: | |
3133 | case O_pltrel: | |
1bbb5f21 | 3134 | case O_pcrel: |
7fa3d080 BW |
3135 | return TRUE; |
3136 | default: | |
3137 | return FALSE; | |
3138 | } | |
3139 | } | |
3140 | ||
3141 | ||
3142 | /* This will check to see if the value can be converted into the | |
3143 | operand type. It will return TRUE if it does not fit. */ | |
3144 | ||
3145 | static bfd_boolean | |
3146 | xg_check_operand (int32 value, xtensa_opcode opcode, int operand) | |
3147 | { | |
3148 | uint32 valbuf = value; | |
3149 | if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf)) | |
3150 | return TRUE; | |
3151 | return FALSE; | |
3152 | } | |
3153 | ||
3154 | ||
3155 | /* Assumes: All immeds are constants. Check that all constants fit | |
3156 | into their immeds; return FALSE if not. */ | |
3157 | ||
3158 | static bfd_boolean | |
3159 | xg_immeds_fit (const TInsn *insn) | |
3160 | { | |
3161 | xtensa_isa isa = xtensa_default_isa; | |
3162 | int i; | |
3163 | ||
3164 | int n = insn->ntok; | |
3165 | assert (insn->insn_type == ITYPE_INSN); | |
3166 | for (i = 0; i < n; ++i) | |
3167 | { | |
3168 | const expressionS *expr = &insn->tok[i]; | |
3169 | if (xtensa_operand_is_register (isa, insn->opcode, i) == 1) | |
3170 | continue; | |
3171 | ||
3172 | switch (expr->X_op) | |
3173 | { | |
3174 | case O_register: | |
3175 | case O_constant: | |
3176 | if (xg_check_operand (expr->X_add_number, insn->opcode, i)) | |
3177 | return FALSE; | |
3178 | break; | |
3179 | ||
3180 | default: | |
3181 | /* The symbol should have a fixup associated with it. */ | |
3182 | assert (FALSE); | |
3183 | break; | |
3184 | } | |
3185 | } | |
3186 | return TRUE; | |
3187 | } | |
3188 | ||
3189 | ||
3190 | /* This should only be called after we have an initial | |
3191 | estimate of the addresses. */ | |
3192 | ||
3193 | static bfd_boolean | |
3194 | xg_symbolic_immeds_fit (const TInsn *insn, | |
3195 | segT pc_seg, | |
3196 | fragS *pc_frag, | |
3197 | offsetT pc_offset, | |
3198 | long stretch) | |
e0001a05 | 3199 | { |
7fa3d080 BW |
3200 | xtensa_isa isa = xtensa_default_isa; |
3201 | symbolS *symbolP; | |
3202 | fragS *sym_frag; | |
3203 | offsetT target, pc; | |
3204 | uint32 new_offset; | |
3205 | int i; | |
3206 | int n = insn->ntok; | |
e0001a05 NC |
3207 | |
3208 | assert (insn->insn_type == ITYPE_INSN); | |
e0001a05 | 3209 | |
7fa3d080 | 3210 | for (i = 0; i < n; ++i) |
e0001a05 | 3211 | { |
7fa3d080 BW |
3212 | const expressionS *expr = &insn->tok[i]; |
3213 | if (xtensa_operand_is_register (isa, insn->opcode, i) == 1) | |
3214 | continue; | |
e0001a05 | 3215 | |
7fa3d080 | 3216 | switch (expr->X_op) |
e0001a05 | 3217 | { |
7fa3d080 BW |
3218 | case O_register: |
3219 | case O_constant: | |
3220 | if (xg_check_operand (expr->X_add_number, insn->opcode, i)) | |
3221 | return FALSE; | |
3222 | break; | |
e0001a05 | 3223 | |
7fa3d080 BW |
3224 | case O_lo16: |
3225 | case O_hi16: | |
3226 | /* Check for the worst case. */ | |
3227 | if (xg_check_operand (0xffff, insn->opcode, i)) | |
3228 | return FALSE; | |
3229 | break; | |
e0001a05 | 3230 | |
7fa3d080 | 3231 | case O_symbol: |
7c834684 | 3232 | /* We only allow symbols for PC-relative references. |
7fa3d080 | 3233 | If pc_frag == 0, then we don't have frag locations yet. */ |
7c834684 BW |
3234 | if (pc_frag == 0 |
3235 | || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0) | |
7fa3d080 | 3236 | return FALSE; |
e0001a05 | 3237 | |
8e6bc631 BW |
3238 | /* If it is a weak symbol or a symbol in a different section, |
3239 | it cannot be known to fit at assembly time. */ | |
3240 | if (S_IS_WEAK (expr->X_add_symbol) | |
3241 | || S_GET_SEGMENT (expr->X_add_symbol) != pc_seg) | |
7c834684 | 3242 | { |
8e6bc631 | 3243 | /* For a direct call with --no-longcalls, be optimistic and |
38f9cb7f BW |
3244 | assume it will be in range. If the symbol is weak and |
3245 | undefined, it may remain undefined at link-time, in which | |
3246 | case it will have a zero value and almost certainly be out | |
3247 | of range for a direct call; thus, relax for undefined weak | |
3248 | symbols even if longcalls is not enabled. */ | |
8e6bc631 | 3249 | if (is_direct_call_opcode (insn->opcode) |
38f9cb7f BW |
3250 | && ! pc_frag->tc_frag_data.use_longcalls |
3251 | && (! S_IS_WEAK (expr->X_add_symbol) | |
3252 | || S_IS_DEFINED (expr->X_add_symbol))) | |
7c834684 | 3253 | return TRUE; |
7c834684 | 3254 | |
8e6bc631 BW |
3255 | return FALSE; |
3256 | } | |
e0001a05 | 3257 | |
7fa3d080 BW |
3258 | symbolP = expr->X_add_symbol; |
3259 | sym_frag = symbol_get_frag (symbolP); | |
3260 | target = S_GET_VALUE (symbolP) + expr->X_add_number; | |
3261 | pc = pc_frag->fr_address + pc_offset; | |
e0001a05 | 3262 | |
7fa3d080 BW |
3263 | /* If frag has yet to be reached on this pass, assume it |
3264 | will move by STRETCH just as we did. If this is not so, | |
3265 | it will be because some frag between grows, and that will | |
3266 | force another pass. Beware zero-length frags. There | |
3267 | should be a faster way to do this. */ | |
3268 | ||
3269 | if (stretch != 0 | |
3270 | && sym_frag->relax_marker != pc_frag->relax_marker | |
3271 | && S_GET_SEGMENT (symbolP) == pc_seg) | |
3272 | { | |
3273 | target += stretch; | |
3274 | } | |
c138bc38 | 3275 | |
7fa3d080 BW |
3276 | new_offset = target; |
3277 | xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc); | |
3278 | if (xg_check_operand (new_offset, insn->opcode, i)) | |
3279 | return FALSE; | |
3280 | break; | |
3281 | ||
3282 | default: | |
3283 | /* The symbol should have a fixup associated with it. */ | |
3284 | return FALSE; | |
3285 | } | |
3286 | } | |
3287 | ||
3288 | return TRUE; | |
e0001a05 NC |
3289 | } |
3290 | ||
3291 | ||
43cd72b9 | 3292 | /* Return TRUE on success. */ |
e0001a05 | 3293 | |
7fa3d080 BW |
3294 | static bfd_boolean |
3295 | xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi) | |
e0001a05 NC |
3296 | { |
3297 | BuildOp *op; | |
3298 | symbolS *sym; | |
3299 | ||
60242db2 | 3300 | tinsn_init (targ); |
b224e962 BW |
3301 | targ->debug_line = insn->debug_line; |
3302 | targ->loc_directive_seen = insn->loc_directive_seen; | |
e0001a05 NC |
3303 | switch (bi->typ) |
3304 | { | |
3305 | case INSTR_INSTR: | |
3306 | op = bi->ops; | |
3307 | targ->opcode = bi->opcode; | |
3308 | targ->insn_type = ITYPE_INSN; | |
3309 | targ->is_specific_opcode = FALSE; | |
3310 | ||
3311 | for (; op != NULL; op = op->next) | |
3312 | { | |
3313 | int op_num = op->op_num; | |
3314 | int op_data = op->op_data; | |
3315 | ||
3316 | assert (op->op_num < MAX_INSN_ARGS); | |
3317 | ||
3318 | if (targ->ntok <= op_num) | |
3319 | targ->ntok = op_num + 1; | |
3320 | ||
3321 | switch (op->typ) | |
3322 | { | |
3323 | case OP_CONSTANT: | |
3324 | set_expr_const (&targ->tok[op_num], op_data); | |
3325 | break; | |
3326 | case OP_OPERAND: | |
3327 | assert (op_data < insn->ntok); | |
3328 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); | |
3329 | break; | |
3330 | case OP_LITERAL: | |
3331 | sym = get_special_literal_symbol (); | |
3332 | set_expr_symbol_offset (&targ->tok[op_num], sym, 0); | |
3333 | break; | |
3334 | case OP_LABEL: | |
3335 | sym = get_special_label_symbol (); | |
3336 | set_expr_symbol_offset (&targ->tok[op_num], sym, 0); | |
3337 | break; | |
43cd72b9 BW |
3338 | case OP_OPERAND_HI16U: |
3339 | case OP_OPERAND_LOW16U: | |
3340 | assert (op_data < insn->ntok); | |
3341 | if (expr_is_const (&insn->tok[op_data])) | |
3342 | { | |
3343 | long val; | |
3344 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); | |
3345 | val = xg_apply_userdef_op_fn (op->typ, | |
3346 | targ->tok[op_num]. | |
3347 | X_add_number); | |
3348 | targ->tok[op_num].X_add_number = val; | |
3349 | } | |
3350 | else | |
3351 | { | |
3352 | /* For const16 we can create relocations for these. */ | |
3353 | if (targ->opcode == XTENSA_UNDEFINED | |
3354 | || (targ->opcode != xtensa_const16_opcode)) | |
3355 | return FALSE; | |
3356 | assert (op_data < insn->ntok); | |
3357 | /* Need to build a O_lo16 or O_hi16. */ | |
3358 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); | |
3359 | if (targ->tok[op_num].X_op == O_symbol) | |
3360 | { | |
3361 | if (op->typ == OP_OPERAND_HI16U) | |
3362 | targ->tok[op_num].X_op = O_hi16; | |
3363 | else if (op->typ == OP_OPERAND_LOW16U) | |
3364 | targ->tok[op_num].X_op = O_lo16; | |
3365 | else | |
3366 | return FALSE; | |
3367 | } | |
3368 | } | |
3369 | break; | |
e0001a05 NC |
3370 | default: |
3371 | /* currently handles: | |
3372 | OP_OPERAND_LOW8 | |
3373 | OP_OPERAND_HI24S | |
3374 | OP_OPERAND_F32MINUS */ | |
3375 | if (xg_has_userdef_op_fn (op->typ)) | |
3376 | { | |
3377 | assert (op_data < insn->ntok); | |
3378 | if (expr_is_const (&insn->tok[op_data])) | |
3379 | { | |
3380 | long val; | |
3381 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); | |
3382 | val = xg_apply_userdef_op_fn (op->typ, | |
3383 | targ->tok[op_num]. | |
3384 | X_add_number); | |
3385 | targ->tok[op_num].X_add_number = val; | |
3386 | } | |
3387 | else | |
3388 | return FALSE; /* We cannot use a relocation for this. */ | |
3389 | break; | |
3390 | } | |
3391 | assert (0); | |
3392 | break; | |
3393 | } | |
3394 | } | |
3395 | break; | |
3396 | ||
3397 | case INSTR_LITERAL_DEF: | |
3398 | op = bi->ops; | |
3399 | targ->opcode = XTENSA_UNDEFINED; | |
3400 | targ->insn_type = ITYPE_LITERAL; | |
3401 | targ->is_specific_opcode = FALSE; | |
3402 | for (; op != NULL; op = op->next) | |
3403 | { | |
3404 | int op_num = op->op_num; | |
3405 | int op_data = op->op_data; | |
3406 | assert (op->op_num < MAX_INSN_ARGS); | |
3407 | ||
3408 | if (targ->ntok <= op_num) | |
3409 | targ->ntok = op_num + 1; | |
3410 | ||
3411 | switch (op->typ) | |
3412 | { | |
3413 | case OP_OPERAND: | |
3414 | assert (op_data < insn->ntok); | |
43cd72b9 BW |
3415 | /* We can only pass resolvable literals through. */ |
3416 | if (!xg_valid_literal_expression (&insn->tok[op_data])) | |
3417 | return FALSE; | |
e0001a05 NC |
3418 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); |
3419 | break; | |
3420 | case OP_LITERAL: | |
3421 | case OP_CONSTANT: | |
3422 | case OP_LABEL: | |
3423 | default: | |
3424 | assert (0); | |
3425 | break; | |
3426 | } | |
3427 | } | |
3428 | break; | |
3429 | ||
3430 | case INSTR_LABEL_DEF: | |
3431 | op = bi->ops; | |
3432 | targ->opcode = XTENSA_UNDEFINED; | |
3433 | targ->insn_type = ITYPE_LABEL; | |
3434 | targ->is_specific_opcode = FALSE; | |
43cd72b9 | 3435 | /* Literal with no ops is a label? */ |
e0001a05 NC |
3436 | assert (op == NULL); |
3437 | break; | |
3438 | ||
3439 | default: | |
3440 | assert (0); | |
3441 | } | |
3442 | ||
3443 | return TRUE; | |
3444 | } | |
3445 | ||
3446 | ||
43cd72b9 | 3447 | /* Return TRUE on success. */ |
e0001a05 | 3448 | |
7fa3d080 BW |
3449 | static bfd_boolean |
3450 | xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi) | |
e0001a05 NC |
3451 | { |
3452 | for (; bi != NULL; bi = bi->next) | |
3453 | { | |
3454 | TInsn *next_insn = istack_push_space (istack); | |
3455 | ||
3456 | if (!xg_build_to_insn (next_insn, insn, bi)) | |
3457 | return FALSE; | |
3458 | } | |
3459 | return TRUE; | |
3460 | } | |
3461 | ||
3462 | ||
43cd72b9 | 3463 | /* Return TRUE on valid expansion. */ |
e0001a05 | 3464 | |
7fa3d080 BW |
3465 | static bfd_boolean |
3466 | xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps) | |
e0001a05 NC |
3467 | { |
3468 | int stack_size = istack->ninsn; | |
3469 | int steps_taken = 0; | |
43cd72b9 | 3470 | TransitionTable *table = xg_build_widen_table (&transition_rule_cmp); |
e0001a05 NC |
3471 | TransitionList *l; |
3472 | ||
3473 | assert (insn->insn_type == ITYPE_INSN); | |
3474 | assert (insn->opcode < table->num_opcodes); | |
3475 | ||
3476 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
3477 | { | |
3478 | TransitionRule *rule = l->rule; | |
3479 | ||
3480 | if (xg_instruction_matches_rule (insn, rule)) | |
3481 | { | |
3482 | if (lateral_steps == steps_taken) | |
3483 | { | |
3484 | int i; | |
3485 | ||
3486 | /* This is it. Expand the rule to the stack. */ | |
3487 | if (!xg_build_to_stack (istack, insn, rule->to_instr)) | |
3488 | return FALSE; | |
3489 | ||
3490 | /* Check to see if it fits. */ | |
3491 | for (i = stack_size; i < istack->ninsn; i++) | |
3492 | { | |
3493 | TInsn *insn = &istack->insn[i]; | |
3494 | ||
3495 | if (insn->insn_type == ITYPE_INSN | |
3496 | && !tinsn_has_symbolic_operands (insn) | |
3497 | && !xg_immeds_fit (insn)) | |
3498 | { | |
3499 | istack->ninsn = stack_size; | |
3500 | return FALSE; | |
3501 | } | |
3502 | } | |
3503 | return TRUE; | |
3504 | } | |
3505 | steps_taken++; | |
3506 | } | |
3507 | } | |
3508 | return FALSE; | |
3509 | } | |
3510 | ||
43cd72b9 | 3511 | \f |
43cd72b9 | 3512 | /* Relax the assembly instruction at least "min_steps". |
b81bf389 BW |
3513 | Return the number of steps taken. |
3514 | ||
3515 | For relaxation to correctly terminate, every relaxation chain must | |
3516 | terminate in one of two ways: | |
3517 | ||
3518 | 1. If the chain from one instruction to the next consists entirely of | |
3519 | single instructions, then the chain *must* handle all possible | |
3520 | immediates without failing. It must not ever fail because an | |
3521 | immediate is out of range. The MOVI.N -> MOVI -> L32R relaxation | |
3522 | chain is one example. L32R loads 32 bits, and there cannot be an | |
3523 | immediate larger than 32 bits, so it satisfies this condition. | |
3524 | Single instruction relaxation chains are as defined by | |
3525 | xg_is_single_relaxable_instruction. | |
3526 | ||
3527 | 2. Otherwise, the chain must end in a multi-instruction expansion: e.g., | |
3528 | BNEZ.N -> BNEZ -> BNEZ.W15 -> BENZ.N/J | |
3529 | ||
3530 | Strictly speaking, in most cases you can violate condition 1 and be OK | |
3531 | -- in particular when the last two instructions have the same single | |
3532 | size. But nevertheless, you should guarantee the above two conditions. | |
3533 | ||
3534 | We could fix this so that single-instruction expansions correctly | |
3535 | terminate when they can't handle the range, but the error messages are | |
3536 | worse, and it actually turns out that in every case but one (18-bit wide | |
3537 | branches), you need a multi-instruction expansion to get the full range | |
3538 | anyway. And because 18-bit branches are handled identically to 15-bit | |
3539 | branches, there isn't any point in changing it. */ | |
e0001a05 | 3540 | |
7fa3d080 BW |
3541 | static int |
3542 | xg_assembly_relax (IStack *istack, | |
3543 | TInsn *insn, | |
3544 | segT pc_seg, | |
3545 | fragS *pc_frag, /* if pc_frag == 0, not pc-relative */ | |
3546 | offsetT pc_offset, /* offset in fragment */ | |
3547 | int min_steps, /* minimum conversion steps */ | |
3548 | long stretch) /* number of bytes stretched so far */ | |
e0001a05 NC |
3549 | { |
3550 | int steps_taken = 0; | |
3551 | ||
b81bf389 BW |
3552 | /* Some of its immeds don't fit. Try to build a relaxed version. |
3553 | This may go through a couple of stages of single instruction | |
3554 | transformations before we get there. */ | |
e0001a05 NC |
3555 | |
3556 | TInsn single_target; | |
3557 | TInsn current_insn; | |
3558 | int lateral_steps = 0; | |
3559 | int istack_size = istack->ninsn; | |
3560 | ||
3561 | if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch) | |
3562 | && steps_taken >= min_steps) | |
3563 | { | |
3564 | istack_push (istack, insn); | |
3565 | return steps_taken; | |
3566 | } | |
43cd72b9 | 3567 | current_insn = *insn; |
e0001a05 | 3568 | |
7c834684 | 3569 | /* Walk through all of the single instruction expansions. */ |
84b08ed9 | 3570 | while (xg_is_single_relaxable_insn (¤t_insn, &single_target, FALSE)) |
e0001a05 | 3571 | { |
21af2bbd | 3572 | steps_taken++; |
e0001a05 NC |
3573 | if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset, |
3574 | stretch)) | |
3575 | { | |
e0001a05 NC |
3576 | if (steps_taken >= min_steps) |
3577 | { | |
3578 | istack_push (istack, &single_target); | |
3579 | return steps_taken; | |
3580 | } | |
3581 | } | |
43cd72b9 | 3582 | current_insn = single_target; |
e0001a05 NC |
3583 | } |
3584 | ||
3585 | /* Now check for a multi-instruction expansion. */ | |
3586 | while (xg_is_relaxable_insn (¤t_insn, lateral_steps)) | |
3587 | { | |
3588 | if (xg_symbolic_immeds_fit (¤t_insn, pc_seg, pc_frag, pc_offset, | |
3589 | stretch)) | |
3590 | { | |
3591 | if (steps_taken >= min_steps) | |
3592 | { | |
3593 | istack_push (istack, ¤t_insn); | |
3594 | return steps_taken; | |
3595 | } | |
3596 | } | |
3597 | steps_taken++; | |
3598 | if (xg_expand_to_stack (istack, ¤t_insn, lateral_steps)) | |
3599 | { | |
3600 | if (steps_taken >= min_steps) | |
3601 | return steps_taken; | |
3602 | } | |
3603 | lateral_steps++; | |
3604 | istack->ninsn = istack_size; | |
3605 | } | |
3606 | ||
3607 | /* It's not going to work -- use the original. */ | |
3608 | istack_push (istack, insn); | |
3609 | return steps_taken; | |
3610 | } | |
3611 | ||
3612 | ||
7fa3d080 BW |
3613 | static void |
3614 | xg_finish_frag (char *last_insn, | |
3615 | enum xtensa_relax_statesE frag_state, | |
3616 | enum xtensa_relax_statesE slot0_state, | |
3617 | int max_growth, | |
3618 | bfd_boolean is_insn) | |
e0001a05 NC |
3619 | { |
3620 | /* Finish off this fragment so that it has at LEAST the desired | |
3621 | max_growth. If it doesn't fit in this fragment, close this one | |
3622 | and start a new one. In either case, return a pointer to the | |
3623 | beginning of the growth area. */ | |
3624 | ||
3625 | fragS *old_frag; | |
43cd72b9 | 3626 | |
542f8b94 | 3627 | frag_grow (max_growth); |
e0001a05 NC |
3628 | old_frag = frag_now; |
3629 | ||
3630 | frag_now->fr_opcode = last_insn; | |
3631 | if (is_insn) | |
3632 | frag_now->tc_frag_data.is_insn = TRUE; | |
3633 | ||
3634 | frag_var (rs_machine_dependent, max_growth, max_growth, | |
43cd72b9 BW |
3635 | frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn); |
3636 | ||
3637 | old_frag->tc_frag_data.slot_subtypes[0] = slot0_state; | |
3638 | xtensa_set_frag_assembly_state (frag_now); | |
e0001a05 NC |
3639 | |
3640 | /* Just to make sure that we did not split it up. */ | |
3641 | assert (old_frag->fr_next == frag_now); | |
3642 | } | |
3643 | ||
3644 | ||
7fa3d080 BW |
3645 | /* Return TRUE if the target frag is one of the next non-empty frags. */ |
3646 | ||
3647 | static bfd_boolean | |
3648 | is_next_frag_target (const fragS *fragP, const fragS *target) | |
3649 | { | |
3650 | if (fragP == NULL) | |
3651 | return FALSE; | |
3652 | ||
3653 | for (; fragP; fragP = fragP->fr_next) | |
3654 | { | |
3655 | if (fragP == target) | |
3656 | return TRUE; | |
3657 | if (fragP->fr_fix != 0) | |
3658 | return FALSE; | |
3659 | if (fragP->fr_type == rs_fill && fragP->fr_offset != 0) | |
3660 | return FALSE; | |
3661 | if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code) | |
3662 | && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0)) | |
3663 | return FALSE; | |
3664 | if (fragP->fr_type == rs_space) | |
3665 | return FALSE; | |
3666 | } | |
3667 | return FALSE; | |
3668 | } | |
3669 | ||
3670 | ||
e0001a05 | 3671 | static bfd_boolean |
7fa3d080 | 3672 | is_branch_jmp_to_next (TInsn *insn, fragS *fragP) |
e0001a05 NC |
3673 | { |
3674 | xtensa_isa isa = xtensa_default_isa; | |
3675 | int i; | |
43cd72b9 | 3676 | int num_ops = xtensa_opcode_num_operands (isa, insn->opcode); |
e0001a05 NC |
3677 | int target_op = -1; |
3678 | symbolS *sym; | |
3679 | fragS *target_frag; | |
3680 | ||
64b607e6 BW |
3681 | if (xtensa_opcode_is_branch (isa, insn->opcode) != 1 |
3682 | && xtensa_opcode_is_jump (isa, insn->opcode) != 1) | |
e0001a05 NC |
3683 | return FALSE; |
3684 | ||
3685 | for (i = 0; i < num_ops; i++) | |
3686 | { | |
43cd72b9 | 3687 | if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1) |
e0001a05 NC |
3688 | { |
3689 | target_op = i; | |
3690 | break; | |
3691 | } | |
3692 | } | |
3693 | if (target_op == -1) | |
3694 | return FALSE; | |
3695 | ||
3696 | if (insn->ntok <= target_op) | |
3697 | return FALSE; | |
3698 | ||
3699 | if (insn->tok[target_op].X_op != O_symbol) | |
3700 | return FALSE; | |
3701 | ||
3702 | sym = insn->tok[target_op].X_add_symbol; | |
3703 | if (sym == NULL) | |
3704 | return FALSE; | |
3705 | ||
3706 | if (insn->tok[target_op].X_add_number != 0) | |
3707 | return FALSE; | |
3708 | ||
3709 | target_frag = symbol_get_frag (sym); | |
3710 | if (target_frag == NULL) | |
3711 | return FALSE; | |
3712 | ||
c138bc38 | 3713 | if (is_next_frag_target (fragP->fr_next, target_frag) |
e0001a05 NC |
3714 | && S_GET_VALUE (sym) == target_frag->fr_address) |
3715 | return TRUE; | |
3716 | ||
3717 | return FALSE; | |
3718 | } | |
3719 | ||
3720 | ||
3721 | static void | |
7fa3d080 | 3722 | xg_add_branch_and_loop_targets (TInsn *insn) |
e0001a05 NC |
3723 | { |
3724 | xtensa_isa isa = xtensa_default_isa; | |
7fa3d080 | 3725 | int num_ops = xtensa_opcode_num_operands (isa, insn->opcode); |
43cd72b9 | 3726 | |
7fa3d080 BW |
3727 | if (xtensa_opcode_is_loop (isa, insn->opcode) == 1) |
3728 | { | |
3729 | int i = 1; | |
3730 | if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1 | |
3731 | && insn->tok[i].X_op == O_symbol) | |
3732 | symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE; | |
3733 | return; | |
3734 | } | |
e0001a05 | 3735 | |
7fa3d080 BW |
3736 | if (xtensa_opcode_is_branch (isa, insn->opcode) == 1 |
3737 | || xtensa_opcode_is_loop (isa, insn->opcode) == 1) | |
e0001a05 | 3738 | { |
7fa3d080 BW |
3739 | int i; |
3740 | ||
3741 | for (i = 0; i < insn->ntok && i < num_ops; i++) | |
3742 | { | |
3743 | if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1 | |
3744 | && insn->tok[i].X_op == O_symbol) | |
3745 | { | |
3746 | symbolS *sym = insn->tok[i].X_add_symbol; | |
3747 | symbol_get_tc (sym)->is_branch_target = TRUE; | |
3748 | if (S_IS_DEFINED (sym)) | |
3749 | symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE; | |
3750 | } | |
3751 | } | |
e0001a05 | 3752 | } |
e0001a05 NC |
3753 | } |
3754 | ||
3755 | ||
43cd72b9 | 3756 | /* Return FALSE if no error. */ |
e0001a05 | 3757 | |
7fa3d080 BW |
3758 | static bfd_boolean |
3759 | xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn) | |
e0001a05 NC |
3760 | { |
3761 | int num_ops = 0; | |
3762 | BuildOp *b_op; | |
3763 | ||
3764 | switch (instr_spec->typ) | |
3765 | { | |
3766 | case INSTR_INSTR: | |
3767 | new_insn->insn_type = ITYPE_INSN; | |
3768 | new_insn->opcode = instr_spec->opcode; | |
e0001a05 NC |
3769 | break; |
3770 | case INSTR_LITERAL_DEF: | |
3771 | new_insn->insn_type = ITYPE_LITERAL; | |
3772 | new_insn->opcode = XTENSA_UNDEFINED; | |
e0001a05 NC |
3773 | break; |
3774 | case INSTR_LABEL_DEF: | |
b224e962 | 3775 | abort (); |
e0001a05 | 3776 | } |
b224e962 BW |
3777 | new_insn->is_specific_opcode = FALSE; |
3778 | new_insn->debug_line = old_insn->debug_line; | |
3779 | new_insn->loc_directive_seen = old_insn->loc_directive_seen; | |
e0001a05 NC |
3780 | |
3781 | for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next) | |
3782 | { | |
3783 | expressionS *exp; | |
3784 | const expressionS *src_exp; | |
3785 | ||
3786 | num_ops++; | |
3787 | switch (b_op->typ) | |
3788 | { | |
3789 | case OP_CONSTANT: | |
3790 | /* The expression must be the constant. */ | |
3791 | assert (b_op->op_num < MAX_INSN_ARGS); | |
3792 | exp = &new_insn->tok[b_op->op_num]; | |
3793 | set_expr_const (exp, b_op->op_data); | |
3794 | break; | |
3795 | ||
3796 | case OP_OPERAND: | |
3797 | assert (b_op->op_num < MAX_INSN_ARGS); | |
3798 | assert (b_op->op_data < (unsigned) old_insn->ntok); | |
3799 | src_exp = &old_insn->tok[b_op->op_data]; | |
3800 | exp = &new_insn->tok[b_op->op_num]; | |
3801 | copy_expr (exp, src_exp); | |
3802 | break; | |
3803 | ||
3804 | case OP_LITERAL: | |
3805 | case OP_LABEL: | |
3806 | as_bad (_("can't handle generation of literal/labels yet")); | |
3807 | assert (0); | |
3808 | ||
3809 | default: | |
3810 | as_bad (_("can't handle undefined OP TYPE")); | |
3811 | assert (0); | |
3812 | } | |
3813 | } | |
3814 | ||
3815 | new_insn->ntok = num_ops; | |
3816 | return FALSE; | |
3817 | } | |
3818 | ||
3819 | ||
43cd72b9 | 3820 | /* Return TRUE if it was simplified. */ |
e0001a05 | 3821 | |
7fa3d080 BW |
3822 | static bfd_boolean |
3823 | xg_simplify_insn (TInsn *old_insn, TInsn *new_insn) | |
e0001a05 | 3824 | { |
43cd72b9 | 3825 | TransitionRule *rule; |
e0001a05 | 3826 | BuildInstr *insn_spec; |
43cd72b9 BW |
3827 | |
3828 | if (old_insn->is_specific_opcode || !density_supported) | |
3829 | return FALSE; | |
3830 | ||
3831 | rule = xg_instruction_match (old_insn); | |
e0001a05 NC |
3832 | if (rule == NULL) |
3833 | return FALSE; | |
3834 | ||
3835 | insn_spec = rule->to_instr; | |
3836 | /* There should only be one. */ | |
3837 | assert (insn_spec != NULL); | |
3838 | assert (insn_spec->next == NULL); | |
3839 | if (insn_spec->next != NULL) | |
3840 | return FALSE; | |
3841 | ||
3842 | xg_build_token_insn (insn_spec, old_insn, new_insn); | |
3843 | ||
3844 | return TRUE; | |
3845 | } | |
3846 | ||
3847 | ||
3848 | /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i -> | |
3849 | l32i.n. (2) Check the number of operands. (3) Place the instruction | |
7c834684 BW |
3850 | tokens into the stack or relax it and place multiple |
3851 | instructions/literals onto the stack. Return FALSE if no error. */ | |
e0001a05 NC |
3852 | |
3853 | static bfd_boolean | |
7fa3d080 | 3854 | xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn) |
e0001a05 NC |
3855 | { |
3856 | int noperands; | |
3857 | TInsn new_insn; | |
7c834684 BW |
3858 | bfd_boolean do_expand; |
3859 | ||
60242db2 | 3860 | tinsn_init (&new_insn); |
e0001a05 | 3861 | |
43cd72b9 BW |
3862 | /* Narrow it if we can. xg_simplify_insn now does all the |
3863 | appropriate checking (e.g., for the density option). */ | |
3864 | if (xg_simplify_insn (orig_insn, &new_insn)) | |
3865 | orig_insn = &new_insn; | |
e0001a05 | 3866 | |
43cd72b9 BW |
3867 | noperands = xtensa_opcode_num_operands (xtensa_default_isa, |
3868 | orig_insn->opcode); | |
e0001a05 NC |
3869 | if (orig_insn->ntok < noperands) |
3870 | { | |
3871 | as_bad (_("found %d operands for '%s': Expected %d"), | |
3872 | orig_insn->ntok, | |
3873 | xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode), | |
3874 | noperands); | |
3875 | return TRUE; | |
3876 | } | |
3877 | if (orig_insn->ntok > noperands) | |
3878 | as_warn (_("found too many (%d) operands for '%s': Expected %d"), | |
3879 | orig_insn->ntok, | |
3880 | xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode), | |
3881 | noperands); | |
3882 | ||
43cd72b9 | 3883 | /* If there are not enough operands, we will assert above. If there |
e0001a05 | 3884 | are too many, just cut out the extras here. */ |
e0001a05 NC |
3885 | orig_insn->ntok = noperands; |
3886 | ||
e0001a05 NC |
3887 | if (tinsn_has_invalid_symbolic_operands (orig_insn)) |
3888 | return TRUE; | |
3889 | ||
d12f9798 BW |
3890 | /* Special case for extui opcode which has constraints not handled |
3891 | by the ordinary operand encoding checks. The number of operands | |
3892 | and related syntax issues have already been checked. */ | |
3893 | if (orig_insn->opcode == xtensa_extui_opcode) | |
3894 | { | |
3895 | int shiftimm = orig_insn->tok[2].X_add_number; | |
3896 | int maskimm = orig_insn->tok[3].X_add_number; | |
3897 | if (shiftimm + maskimm > 32) | |
3898 | { | |
3899 | as_bad (_("immediate operands sum to greater than 32")); | |
3900 | return TRUE; | |
3901 | } | |
3902 | } | |
3903 | ||
7c834684 BW |
3904 | /* If the instruction will definitely need to be relaxed, it is better |
3905 | to expand it now for better scheduling. Decide whether to expand | |
3906 | now.... */ | |
3907 | do_expand = (!orig_insn->is_specific_opcode && use_transform ()); | |
3908 | ||
3909 | /* Calls should be expanded to longcalls only in the backend relaxation | |
3910 | so that the assembly scheduler will keep the L32R/CALLX instructions | |
3911 | adjacent. */ | |
3912 | if (is_direct_call_opcode (orig_insn->opcode)) | |
3913 | do_expand = FALSE; | |
e0001a05 NC |
3914 | |
3915 | if (tinsn_has_symbolic_operands (orig_insn)) | |
3916 | { | |
7c834684 BW |
3917 | /* The values of symbolic operands are not known yet, so only expand |
3918 | now if an operand is "complex" (e.g., difference of symbols) and | |
3919 | will have to be stored as a literal regardless of the value. */ | |
3920 | if (!tinsn_has_complex_operands (orig_insn)) | |
3921 | do_expand = FALSE; | |
e0001a05 | 3922 | } |
7c834684 BW |
3923 | else if (xg_immeds_fit (orig_insn)) |
3924 | do_expand = FALSE; | |
3925 | ||
3926 | if (do_expand) | |
3927 | xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0); | |
e0001a05 | 3928 | else |
7c834684 | 3929 | istack_push (istack, orig_insn); |
e0001a05 | 3930 | |
e0001a05 NC |
3931 | return FALSE; |
3932 | } | |
3933 | ||
3934 | ||
7fa3d080 | 3935 | /* Return TRUE if the section flags are marked linkonce |
74869ac7 BW |
3936 | or the name is .gnu.linkonce.*. */ |
3937 | ||
3938 | static int linkonce_len = sizeof (".gnu.linkonce.") - 1; | |
7fa3d080 BW |
3939 | |
3940 | static bfd_boolean | |
3941 | get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec) | |
3942 | { | |
3943 | flagword flags, link_once_flags; | |
3944 | ||
3945 | flags = bfd_get_section_flags (abfd, sec); | |
3946 | link_once_flags = (flags & SEC_LINK_ONCE); | |
3947 | ||
3948 | /* Flags might not be set yet. */ | |
74869ac7 BW |
3949 | if (!link_once_flags |
3950 | && strncmp (segment_name (sec), ".gnu.linkonce.", linkonce_len) == 0) | |
3951 | link_once_flags = SEC_LINK_ONCE; | |
7fa3d080 | 3952 | |
7fa3d080 BW |
3953 | return (link_once_flags != 0); |
3954 | } | |
3955 | ||
3956 | ||
3957 | static void | |
3958 | xtensa_add_literal_sym (symbolS *sym) | |
3959 | { | |
3960 | sym_list *l; | |
3961 | ||
3962 | l = (sym_list *) xmalloc (sizeof (sym_list)); | |
3963 | l->sym = sym; | |
3964 | l->next = literal_syms; | |
3965 | literal_syms = l; | |
3966 | } | |
3967 | ||
3968 | ||
3969 | static symbolS * | |
3970 | xtensa_create_literal_symbol (segT sec, fragS *frag) | |
3971 | { | |
3972 | static int lit_num = 0; | |
3973 | static char name[256]; | |
3974 | symbolS *symbolP; | |
3975 | ||
3976 | sprintf (name, ".L_lit_sym%d", lit_num); | |
3977 | ||
3978 | /* Create a local symbol. If it is in a linkonce section, we have to | |
3979 | be careful to make sure that if it is used in a relocation that the | |
3980 | symbol will be in the output file. */ | |
3981 | if (get_is_linkonce_section (stdoutput, sec)) | |
3982 | { | |
3983 | symbolP = symbol_new (name, sec, 0, frag); | |
3984 | S_CLEAR_EXTERNAL (symbolP); | |
3985 | /* symbolP->local = 1; */ | |
3986 | } | |
3987 | else | |
3988 | symbolP = symbol_new (name, sec, 0, frag); | |
3989 | ||
3990 | xtensa_add_literal_sym (symbolP); | |
3991 | ||
7fa3d080 BW |
3992 | lit_num++; |
3993 | return symbolP; | |
3994 | } | |
3995 | ||
3996 | ||
e0001a05 NC |
3997 | /* Currently all literals that are generated here are 32-bit L32R targets. */ |
3998 | ||
7fa3d080 BW |
3999 | static symbolS * |
4000 | xg_assemble_literal (/* const */ TInsn *insn) | |
e0001a05 NC |
4001 | { |
4002 | emit_state state; | |
4003 | symbolS *lit_sym = NULL; | |
bbdd25a8 | 4004 | bfd_reloc_code_real_type reloc; |
1bbb5f21 | 4005 | bfd_boolean pcrel = FALSE; |
bbdd25a8 | 4006 | char *p; |
e0001a05 NC |
4007 | |
4008 | /* size = 4 for L32R. It could easily be larger when we move to | |
4009 | larger constants. Add a parameter later. */ | |
4010 | offsetT litsize = 4; | |
4011 | offsetT litalign = 2; /* 2^2 = 4 */ | |
4012 | expressionS saved_loc; | |
43cd72b9 BW |
4013 | expressionS * emit_val; |
4014 | ||
e0001a05 NC |
4015 | set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ()); |
4016 | ||
4017 | assert (insn->insn_type == ITYPE_LITERAL); | |
77cd6497 | 4018 | assert (insn->ntok == 1); /* must be only one token here */ |
e0001a05 NC |
4019 | |
4020 | xtensa_switch_to_literal_fragment (&state); | |
4021 | ||
43cd72b9 BW |
4022 | emit_val = &insn->tok[0]; |
4023 | if (emit_val->X_op == O_big) | |
4024 | { | |
4025 | int size = emit_val->X_add_number * CHARS_PER_LITTLENUM; | |
4026 | if (size > litsize) | |
4027 | { | |
4028 | /* This happens when someone writes a "movi a2, big_number". */ | |
c138bc38 | 4029 | as_bad_where (frag_now->fr_file, frag_now->fr_line, |
43cd72b9 BW |
4030 | _("invalid immediate")); |
4031 | xtensa_restore_emit_state (&state); | |
4032 | return NULL; | |
4033 | } | |
4034 | } | |
4035 | ||
e0001a05 NC |
4036 | /* Force a 4-byte align here. Note that this opens a new frag, so all |
4037 | literals done with this function have a frag to themselves. That's | |
4038 | important for the way text section literals work. */ | |
4039 | frag_align (litalign, 0, 0); | |
43cd72b9 | 4040 | record_alignment (now_seg, litalign); |
e0001a05 | 4041 | |
bbdd25a8 | 4042 | switch (emit_val->X_op) |
43cd72b9 | 4043 | { |
1bbb5f21 BW |
4044 | case O_pcrel: |
4045 | pcrel = TRUE; | |
4046 | /* fall through */ | |
bbdd25a8 BW |
4047 | case O_pltrel: |
4048 | p = frag_more (litsize); | |
43cd72b9 | 4049 | xtensa_set_frag_assembly_state (frag_now); |
bbdd25a8 | 4050 | reloc = map_operator_to_reloc (emit_val->X_op); |
43cd72b9 BW |
4051 | if (emit_val->X_add_symbol) |
4052 | emit_val->X_op = O_symbol; | |
4053 | else | |
4054 | emit_val->X_op = O_constant; | |
4055 | fix_new_exp (frag_now, p - frag_now->fr_literal, | |
1bbb5f21 | 4056 | litsize, emit_val, pcrel, reloc); |
bbdd25a8 BW |
4057 | break; |
4058 | ||
4059 | default: | |
4060 | emit_expr (emit_val, litsize); | |
4061 | break; | |
43cd72b9 | 4062 | } |
e0001a05 NC |
4063 | |
4064 | assert (frag_now->tc_frag_data.literal_frag == NULL); | |
4065 | frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg); | |
4066 | frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now); | |
4067 | lit_sym = frag_now->fr_symbol; | |
e0001a05 NC |
4068 | |
4069 | /* Go back. */ | |
4070 | xtensa_restore_emit_state (&state); | |
4071 | return lit_sym; | |
4072 | } | |
4073 | ||
4074 | ||
4075 | static void | |
7fa3d080 | 4076 | xg_assemble_literal_space (/* const */ int size, int slot) |
e0001a05 NC |
4077 | { |
4078 | emit_state state; | |
43cd72b9 | 4079 | /* We might have to do something about this alignment. It only |
e0001a05 NC |
4080 | takes effect if something is placed here. */ |
4081 | offsetT litalign = 2; /* 2^2 = 4 */ | |
4082 | fragS *lit_saved_frag; | |
4083 | ||
e0001a05 | 4084 | assert (size % 4 == 0); |
e0001a05 NC |
4085 | |
4086 | xtensa_switch_to_literal_fragment (&state); | |
4087 | ||
4088 | /* Force a 4-byte align here. */ | |
4089 | frag_align (litalign, 0, 0); | |
43cd72b9 | 4090 | record_alignment (now_seg, litalign); |
e0001a05 | 4091 | |
542f8b94 | 4092 | frag_grow (size); |
e0001a05 NC |
4093 | |
4094 | lit_saved_frag = frag_now; | |
4095 | frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg); | |
e0001a05 | 4096 | frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now); |
43cd72b9 | 4097 | xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE); |
e0001a05 NC |
4098 | |
4099 | /* Go back. */ | |
4100 | xtensa_restore_emit_state (&state); | |
43cd72b9 | 4101 | frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag; |
e0001a05 NC |
4102 | } |
4103 | ||
4104 | ||
e0001a05 | 4105 | /* Put in a fixup record based on the opcode. |
43cd72b9 | 4106 | Return TRUE on success. */ |
e0001a05 | 4107 | |
7fa3d080 BW |
4108 | static bfd_boolean |
4109 | xg_add_opcode_fix (TInsn *tinsn, | |
4110 | int opnum, | |
4111 | xtensa_format fmt, | |
4112 | int slot, | |
4113 | expressionS *expr, | |
4114 | fragS *fragP, | |
4115 | offsetT offset) | |
43cd72b9 BW |
4116 | { |
4117 | xtensa_opcode opcode = tinsn->opcode; | |
4118 | bfd_reloc_code_real_type reloc; | |
4119 | reloc_howto_type *howto; | |
4120 | int fmt_length; | |
e0001a05 NC |
4121 | fixS *the_fix; |
4122 | ||
43cd72b9 BW |
4123 | reloc = BFD_RELOC_NONE; |
4124 | ||
4125 | /* First try the special cases for "alternate" relocs. */ | |
4126 | if (opcode == xtensa_l32r_opcode) | |
4127 | { | |
4128 | if (fragP->tc_frag_data.use_absolute_literals) | |
4129 | reloc = encode_alt_reloc (slot); | |
4130 | } | |
4131 | else if (opcode == xtensa_const16_opcode) | |
4132 | { | |
4133 | if (expr->X_op == O_lo16) | |
4134 | { | |
4135 | reloc = encode_reloc (slot); | |
4136 | expr->X_op = O_symbol; | |
4137 | } | |
4138 | else if (expr->X_op == O_hi16) | |
4139 | { | |
4140 | reloc = encode_alt_reloc (slot); | |
4141 | expr->X_op = O_symbol; | |
4142 | } | |
4143 | } | |
4144 | ||
4145 | if (opnum != get_relaxable_immed (opcode)) | |
e0001a05 | 4146 | { |
43cd72b9 | 4147 | as_bad (_("invalid relocation for operand %i of '%s'"), |
431ad2d0 | 4148 | opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode)); |
e0001a05 NC |
4149 | return FALSE; |
4150 | } | |
4151 | ||
43cd72b9 BW |
4152 | /* Handle erroneous "@h" and "@l" expressions here before they propagate |
4153 | into the symbol table where the generic portions of the assembler | |
4154 | won't know what to do with them. */ | |
4155 | if (expr->X_op == O_lo16 || expr->X_op == O_hi16) | |
4156 | { | |
4157 | as_bad (_("invalid expression for operand %i of '%s'"), | |
431ad2d0 | 4158 | opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode)); |
43cd72b9 BW |
4159 | return FALSE; |
4160 | } | |
4161 | ||
4162 | /* Next try the generic relocs. */ | |
4163 | if (reloc == BFD_RELOC_NONE) | |
4164 | reloc = encode_reloc (slot); | |
4165 | if (reloc == BFD_RELOC_NONE) | |
4166 | { | |
4167 | as_bad (_("invalid relocation in instruction slot %i"), slot); | |
4168 | return FALSE; | |
4169 | } | |
e0001a05 | 4170 | |
43cd72b9 | 4171 | howto = bfd_reloc_type_lookup (stdoutput, reloc); |
e0001a05 NC |
4172 | if (!howto) |
4173 | { | |
43cd72b9 | 4174 | as_bad (_("undefined symbol for opcode \"%s\""), |
e0001a05 NC |
4175 | xtensa_opcode_name (xtensa_default_isa, opcode)); |
4176 | return FALSE; | |
4177 | } | |
4178 | ||
43cd72b9 BW |
4179 | fmt_length = xtensa_format_length (xtensa_default_isa, fmt); |
4180 | the_fix = fix_new_exp (fragP, offset, fmt_length, expr, | |
e0001a05 | 4181 | howto->pc_relative, reloc); |
d9740523 | 4182 | the_fix->fx_no_overflow = 1; |
7fa3d080 BW |
4183 | the_fix->tc_fix_data.X_add_symbol = expr->X_add_symbol; |
4184 | the_fix->tc_fix_data.X_add_number = expr->X_add_number; | |
4185 | the_fix->tc_fix_data.slot = slot; | |
c138bc38 | 4186 | |
7fa3d080 BW |
4187 | return TRUE; |
4188 | } | |
4189 | ||
4190 | ||
4191 | static bfd_boolean | |
4192 | xg_emit_insn_to_buf (TInsn *tinsn, | |
7fa3d080 BW |
4193 | char *buf, |
4194 | fragS *fragP, | |
4195 | offsetT offset, | |
4196 | bfd_boolean build_fix) | |
4197 | { | |
4198 | static xtensa_insnbuf insnbuf = NULL; | |
4199 | bfd_boolean has_symbolic_immed = FALSE; | |
4200 | bfd_boolean ok = TRUE; | |
b2d179be | 4201 | |
7fa3d080 BW |
4202 | if (!insnbuf) |
4203 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
4204 | ||
4205 | has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf); | |
4206 | if (has_symbolic_immed && build_fix) | |
4207 | { | |
4208 | /* Add a fixup. */ | |
b2d179be BW |
4209 | xtensa_format fmt = xg_get_single_format (tinsn->opcode); |
4210 | int slot = xg_get_single_slot (tinsn->opcode); | |
7fa3d080 BW |
4211 | int opnum = get_relaxable_immed (tinsn->opcode); |
4212 | expressionS *exp = &tinsn->tok[opnum]; | |
43cd72b9 | 4213 | |
b2d179be | 4214 | if (!xg_add_opcode_fix (tinsn, opnum, fmt, slot, exp, fragP, offset)) |
7fa3d080 BW |
4215 | ok = FALSE; |
4216 | } | |
4217 | fragP->tc_frag_data.is_insn = TRUE; | |
d77b99c9 BW |
4218 | xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, |
4219 | (unsigned char *) buf, 0); | |
7fa3d080 | 4220 | return ok; |
e0001a05 NC |
4221 | } |
4222 | ||
4223 | ||
7fa3d080 BW |
4224 | static void |
4225 | xg_resolve_literals (TInsn *insn, symbolS *lit_sym) | |
e0001a05 NC |
4226 | { |
4227 | symbolS *sym = get_special_literal_symbol (); | |
4228 | int i; | |
4229 | if (lit_sym == 0) | |
4230 | return; | |
4231 | assert (insn->insn_type == ITYPE_INSN); | |
4232 | for (i = 0; i < insn->ntok; i++) | |
4233 | if (insn->tok[i].X_add_symbol == sym) | |
4234 | insn->tok[i].X_add_symbol = lit_sym; | |
4235 | ||
4236 | } | |
4237 | ||
4238 | ||
7fa3d080 BW |
4239 | static void |
4240 | xg_resolve_labels (TInsn *insn, symbolS *label_sym) | |
e0001a05 NC |
4241 | { |
4242 | symbolS *sym = get_special_label_symbol (); | |
4243 | int i; | |
e0001a05 NC |
4244 | for (i = 0; i < insn->ntok; i++) |
4245 | if (insn->tok[i].X_add_symbol == sym) | |
4246 | insn->tok[i].X_add_symbol = label_sym; | |
4247 | ||
4248 | } | |
4249 | ||
4250 | ||
43cd72b9 | 4251 | /* Return TRUE if the instruction can write to the specified |
e0001a05 NC |
4252 | integer register. */ |
4253 | ||
4254 | static bfd_boolean | |
7fa3d080 | 4255 | is_register_writer (const TInsn *insn, const char *regset, int regnum) |
e0001a05 NC |
4256 | { |
4257 | int i; | |
4258 | int num_ops; | |
4259 | xtensa_isa isa = xtensa_default_isa; | |
4260 | ||
43cd72b9 | 4261 | num_ops = xtensa_opcode_num_operands (isa, insn->opcode); |
e0001a05 NC |
4262 | |
4263 | for (i = 0; i < num_ops; i++) | |
4264 | { | |
43cd72b9 BW |
4265 | char inout; |
4266 | inout = xtensa_operand_inout (isa, insn->opcode, i); | |
4267 | if ((inout == 'o' || inout == 'm') | |
4268 | && xtensa_operand_is_register (isa, insn->opcode, i) == 1) | |
e0001a05 | 4269 | { |
43cd72b9 BW |
4270 | xtensa_regfile opnd_rf = |
4271 | xtensa_operand_regfile (isa, insn->opcode, i); | |
4272 | if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset)) | |
e0001a05 NC |
4273 | { |
4274 | if ((insn->tok[i].X_op == O_register) | |
4275 | && (insn->tok[i].X_add_number == regnum)) | |
4276 | return TRUE; | |
4277 | } | |
4278 | } | |
4279 | } | |
4280 | return FALSE; | |
4281 | } | |
4282 | ||
4283 | ||
4284 | static bfd_boolean | |
7fa3d080 | 4285 | is_bad_loopend_opcode (const TInsn *tinsn) |
e0001a05 NC |
4286 | { |
4287 | xtensa_opcode opcode = tinsn->opcode; | |
4288 | ||
4289 | if (opcode == XTENSA_UNDEFINED) | |
4290 | return FALSE; | |
4291 | ||
4292 | if (opcode == xtensa_call0_opcode | |
4293 | || opcode == xtensa_callx0_opcode | |
4294 | || opcode == xtensa_call4_opcode | |
4295 | || opcode == xtensa_callx4_opcode | |
4296 | || opcode == xtensa_call8_opcode | |
4297 | || opcode == xtensa_callx8_opcode | |
4298 | || opcode == xtensa_call12_opcode | |
4299 | || opcode == xtensa_callx12_opcode | |
4300 | || opcode == xtensa_isync_opcode | |
4301 | || opcode == xtensa_ret_opcode | |
4302 | || opcode == xtensa_ret_n_opcode | |
4303 | || opcode == xtensa_retw_opcode | |
4304 | || opcode == xtensa_retw_n_opcode | |
43cd72b9 BW |
4305 | || opcode == xtensa_waiti_opcode |
4306 | || opcode == xtensa_rsr_lcount_opcode) | |
e0001a05 | 4307 | return TRUE; |
c138bc38 | 4308 | |
e0001a05 NC |
4309 | return FALSE; |
4310 | } | |
4311 | ||
4312 | ||
4313 | /* Labels that begin with ".Ln" or ".LM" are unaligned. | |
4314 | This allows the debugger to add unaligned labels. | |
4315 | Also, the assembler generates stabs labels that need | |
4316 | not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */ | |
4317 | ||
7fa3d080 BW |
4318 | static bfd_boolean |
4319 | is_unaligned_label (symbolS *sym) | |
e0001a05 NC |
4320 | { |
4321 | const char *name = S_GET_NAME (sym); | |
4322 | static size_t fake_size = 0; | |
4323 | ||
4324 | if (name | |
4325 | && name[0] == '.' | |
4326 | && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M')) | |
4327 | return TRUE; | |
4328 | ||
4329 | /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */ | |
4330 | if (fake_size == 0) | |
4331 | fake_size = strlen (FAKE_LABEL_NAME); | |
4332 | ||
43cd72b9 | 4333 | if (name |
e0001a05 NC |
4334 | && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0 |
4335 | && (name[fake_size] == 'F' | |
4336 | || name[fake_size] == 'L' | |
4337 | || (name[fake_size] == 'e' | |
4338 | && strncmp ("endfunc", name+fake_size, 7) == 0))) | |
4339 | return TRUE; | |
4340 | ||
4341 | return FALSE; | |
4342 | } | |
4343 | ||
4344 | ||
7fa3d080 BW |
4345 | static fragS * |
4346 | next_non_empty_frag (const fragS *fragP) | |
e0001a05 NC |
4347 | { |
4348 | fragS *next_fragP = fragP->fr_next; | |
4349 | ||
c138bc38 | 4350 | /* Sometimes an empty will end up here due storage allocation issues. |
e0001a05 NC |
4351 | So we have to skip until we find something legit. */ |
4352 | while (next_fragP && next_fragP->fr_fix == 0) | |
4353 | next_fragP = next_fragP->fr_next; | |
4354 | ||
4355 | if (next_fragP == NULL || next_fragP->fr_fix == 0) | |
4356 | return NULL; | |
4357 | ||
4358 | return next_fragP; | |
4359 | } | |
4360 | ||
4361 | ||
43cd72b9 | 4362 | static bfd_boolean |
7fa3d080 | 4363 | next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode) |
43cd72b9 BW |
4364 | { |
4365 | xtensa_opcode out_opcode; | |
4366 | const fragS *next_fragP = next_non_empty_frag (fragP); | |
4367 | ||
4368 | if (next_fragP == NULL) | |
4369 | return FALSE; | |
4370 | ||
4371 | out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0); | |
4372 | if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1) | |
4373 | { | |
4374 | *opcode = out_opcode; | |
4375 | return TRUE; | |
4376 | } | |
4377 | return FALSE; | |
4378 | } | |
4379 | ||
4380 | ||
4381 | static int | |
7fa3d080 | 4382 | frag_format_size (const fragS *fragP) |
43cd72b9 | 4383 | { |
e0001a05 NC |
4384 | static xtensa_insnbuf insnbuf = NULL; |
4385 | xtensa_isa isa = xtensa_default_isa; | |
43cd72b9 | 4386 | xtensa_format fmt; |
c138bc38 | 4387 | int fmt_size; |
e0001a05 NC |
4388 | |
4389 | if (!insnbuf) | |
4390 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4391 | ||
43cd72b9 BW |
4392 | if (fragP == NULL) |
4393 | return XTENSA_UNDEFINED; | |
4394 | ||
d77b99c9 BW |
4395 | xtensa_insnbuf_from_chars (isa, insnbuf, |
4396 | (unsigned char *) fragP->fr_literal, 0); | |
43cd72b9 BW |
4397 | |
4398 | fmt = xtensa_format_decode (isa, insnbuf); | |
4399 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 4400 | return XTENSA_UNDEFINED; |
43cd72b9 BW |
4401 | fmt_size = xtensa_format_length (isa, fmt); |
4402 | ||
4403 | /* If the next format won't be changing due to relaxation, just | |
4404 | return the length of the first format. */ | |
4405 | if (fragP->fr_opcode != fragP->fr_literal) | |
4406 | return fmt_size; | |
4407 | ||
c138bc38 | 4408 | /* If during relaxation we have to pull an instruction out of a |
43cd72b9 BW |
4409 | multi-slot instruction, we will return the more conservative |
4410 | number. This works because alignment on bigger instructions | |
4411 | is more restrictive than alignment on smaller instructions. | |
4412 | This is more conservative than we would like, but it happens | |
4413 | infrequently. */ | |
4414 | ||
4415 | if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1) | |
4416 | return fmt_size; | |
4417 | ||
4418 | /* If we aren't doing one of our own relaxations or it isn't | |
4419 | slot-based, then the insn size won't change. */ | |
4420 | if (fragP->fr_type != rs_machine_dependent) | |
4421 | return fmt_size; | |
4422 | if (fragP->fr_subtype != RELAX_SLOTS) | |
4423 | return fmt_size; | |
4424 | ||
4425 | /* If an instruction is about to grow, return the longer size. */ | |
4426 | if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1 | |
b81bf389 BW |
4427 | || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2 |
4428 | || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP3) | |
def13efb BW |
4429 | { |
4430 | /* For most frags at RELAX_IMMED_STEPX, with X > 0, the first | |
4431 | instruction in the relaxed version is of length 3. (The case | |
4432 | where we have to pull the instruction out of a FLIX bundle | |
4433 | is handled conservatively above.) However, frags with opcodes | |
4434 | that are expanding to wide branches end up having formats that | |
4435 | are not determinable by the RELAX_IMMED_STEPX enumeration, and | |
4436 | we can't tell directly what format the relaxer picked. This | |
4437 | is a wart in the design of the relaxer that should someday be | |
4438 | fixed, but would require major changes, or at least should | |
4439 | be accompanied by major changes to make use of that data. | |
4440 | ||
4441 | In any event, we can tell that we are expanding from a single-slot | |
4442 | three-byte format to a wider one with the logic below. */ | |
4443 | ||
4444 | if (fmt_size <= 3 && fragP->tc_frag_data.text_expansion[0] != 3) | |
4445 | return 3 + fragP->tc_frag_data.text_expansion[0]; | |
4446 | else | |
4447 | return 3; | |
4448 | } | |
c138bc38 | 4449 | |
43cd72b9 BW |
4450 | if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW) |
4451 | return 2 + fragP->tc_frag_data.text_expansion[0]; | |
e0001a05 | 4452 | |
43cd72b9 | 4453 | return fmt_size; |
e0001a05 NC |
4454 | } |
4455 | ||
4456 | ||
7fa3d080 BW |
4457 | static int |
4458 | next_frag_format_size (const fragS *fragP) | |
e0001a05 | 4459 | { |
7fa3d080 BW |
4460 | const fragS *next_fragP = next_non_empty_frag (fragP); |
4461 | return frag_format_size (next_fragP); | |
e0001a05 NC |
4462 | } |
4463 | ||
4464 | ||
03aaa593 BW |
4465 | /* In early Xtensa Processors, for reasons that are unclear, the ISA |
4466 | required two-byte instructions to be treated as three-byte instructions | |
4467 | for loop instruction alignment. This restriction was removed beginning | |
4468 | with Xtensa LX. Now the only requirement on loop instruction alignment | |
4469 | is that the first instruction of the loop must appear at an address that | |
4470 | does not cross a fetch boundary. */ | |
4471 | ||
4472 | static int | |
4473 | get_loop_align_size (int insn_size) | |
4474 | { | |
4475 | if (insn_size == XTENSA_UNDEFINED) | |
4476 | return xtensa_fetch_width; | |
4477 | ||
4478 | if (enforce_three_byte_loop_align && insn_size == 2) | |
4479 | return 3; | |
4480 | ||
4481 | return insn_size; | |
4482 | } | |
4483 | ||
4484 | ||
e0001a05 NC |
4485 | /* If the next legit fragment is an end-of-loop marker, |
4486 | switch its state so it will instantiate a NOP. */ | |
4487 | ||
4488 | static void | |
1d19a770 | 4489 | update_next_frag_state (fragS *fragP) |
e0001a05 NC |
4490 | { |
4491 | fragS *next_fragP = fragP->fr_next; | |
43cd72b9 | 4492 | fragS *new_target = NULL; |
e0001a05 | 4493 | |
7b1cc377 | 4494 | if (align_targets) |
43cd72b9 BW |
4495 | { |
4496 | /* We are guaranteed there will be one of these... */ | |
4497 | while (!(next_fragP->fr_type == rs_machine_dependent | |
4498 | && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE | |
4499 | || next_fragP->fr_subtype == RELAX_UNREACHABLE))) | |
4500 | next_fragP = next_fragP->fr_next; | |
4501 | ||
4502 | assert (next_fragP->fr_type == rs_machine_dependent | |
4503 | && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE | |
4504 | || next_fragP->fr_subtype == RELAX_UNREACHABLE)); | |
4505 | ||
4506 | /* ...and one of these. */ | |
4507 | new_target = next_fragP->fr_next; | |
4508 | while (!(new_target->fr_type == rs_machine_dependent | |
4509 | && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN | |
4510 | || new_target->fr_subtype == RELAX_DESIRE_ALIGN))) | |
4511 | new_target = new_target->fr_next; | |
4512 | ||
4513 | assert (new_target->fr_type == rs_machine_dependent | |
4514 | && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN | |
4515 | || new_target->fr_subtype == RELAX_DESIRE_ALIGN)); | |
4516 | } | |
43cd72b9 | 4517 | |
1d19a770 | 4518 | while (next_fragP && next_fragP->fr_fix == 0) |
43cd72b9 | 4519 | { |
1d19a770 BW |
4520 | if (next_fragP->fr_type == rs_machine_dependent |
4521 | && next_fragP->fr_subtype == RELAX_LOOP_END) | |
43cd72b9 | 4522 | { |
1d19a770 BW |
4523 | next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP; |
4524 | return; | |
e0001a05 | 4525 | } |
1d19a770 BW |
4526 | |
4527 | next_fragP = next_fragP->fr_next; | |
e0001a05 NC |
4528 | } |
4529 | } | |
4530 | ||
4531 | ||
4532 | static bfd_boolean | |
7fa3d080 | 4533 | next_frag_is_branch_target (const fragS *fragP) |
e0001a05 | 4534 | { |
43cd72b9 | 4535 | /* Sometimes an empty will end up here due to storage allocation issues, |
e0001a05 NC |
4536 | so we have to skip until we find something legit. */ |
4537 | for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next) | |
4538 | { | |
4539 | if (fragP->tc_frag_data.is_branch_target) | |
4540 | return TRUE; | |
4541 | if (fragP->fr_fix != 0) | |
4542 | break; | |
4543 | } | |
4544 | return FALSE; | |
4545 | } | |
4546 | ||
4547 | ||
4548 | static bfd_boolean | |
7fa3d080 | 4549 | next_frag_is_loop_target (const fragS *fragP) |
e0001a05 | 4550 | { |
c138bc38 | 4551 | /* Sometimes an empty will end up here due storage allocation issues. |
e0001a05 NC |
4552 | So we have to skip until we find something legit. */ |
4553 | for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next) | |
4554 | { | |
4555 | if (fragP->tc_frag_data.is_loop_target) | |
4556 | return TRUE; | |
4557 | if (fragP->fr_fix != 0) | |
4558 | break; | |
4559 | } | |
4560 | return FALSE; | |
4561 | } | |
4562 | ||
4563 | ||
4564 | static addressT | |
7fa3d080 | 4565 | next_frag_pre_opcode_bytes (const fragS *fragp) |
e0001a05 NC |
4566 | { |
4567 | const fragS *next_fragp = fragp->fr_next; | |
43cd72b9 | 4568 | xtensa_opcode next_opcode; |
e0001a05 | 4569 | |
43cd72b9 | 4570 | if (!next_frag_opcode_is_loop (fragp, &next_opcode)) |
e0001a05 NC |
4571 | return 0; |
4572 | ||
43cd72b9 BW |
4573 | /* Sometimes an empty will end up here due to storage allocation issues, |
4574 | so we have to skip until we find something legit. */ | |
e0001a05 NC |
4575 | while (next_fragp->fr_fix == 0) |
4576 | next_fragp = next_fragp->fr_next; | |
4577 | ||
4578 | if (next_fragp->fr_type != rs_machine_dependent) | |
4579 | return 0; | |
4580 | ||
4581 | /* There is some implicit knowledge encoded in here. | |
4582 | The LOOP instructions that are NOT RELAX_IMMED have | |
43cd72b9 BW |
4583 | been relaxed. Note that we can assume that the LOOP |
4584 | instruction is in slot 0 because loops aren't bundleable. */ | |
4585 | if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED) | |
e0001a05 NC |
4586 | return get_expanded_loop_offset (next_opcode); |
4587 | ||
4588 | return 0; | |
4589 | } | |
4590 | ||
4591 | ||
4592 | /* Mark a location where we can later insert literal frags. Update | |
4593 | the section's literal_pool_loc, so subsequent literals can be | |
4594 | placed nearest to their use. */ | |
4595 | ||
4596 | static void | |
7fa3d080 | 4597 | xtensa_mark_literal_pool_location (void) |
e0001a05 NC |
4598 | { |
4599 | /* Any labels pointing to the current location need | |
4600 | to be adjusted to after the literal pool. */ | |
4601 | emit_state s; | |
e0001a05 | 4602 | fragS *pool_location; |
e0001a05 | 4603 | |
1f2a7e38 | 4604 | if (use_literal_section) |
43cd72b9 BW |
4605 | return; |
4606 | ||
dd49a749 BW |
4607 | /* We stash info in these frags so we can later move the literal's |
4608 | fixes into this frchain's fix list. */ | |
e0001a05 | 4609 | pool_location = frag_now; |
dd49a749 | 4610 | frag_now->tc_frag_data.lit_frchain = frchain_now; |
c48aaca0 | 4611 | frag_now->tc_frag_data.literal_frag = frag_now; |
dd49a749 | 4612 | frag_variant (rs_machine_dependent, 0, 0, |
e0001a05 | 4613 | RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL); |
43cd72b9 | 4614 | xtensa_set_frag_assembly_state (frag_now); |
dd49a749 BW |
4615 | frag_now->tc_frag_data.lit_seg = now_seg; |
4616 | frag_variant (rs_machine_dependent, 0, 0, | |
e0001a05 | 4617 | RELAX_LITERAL_POOL_END, NULL, 0, NULL); |
43cd72b9 | 4618 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
4619 | |
4620 | /* Now put a frag into the literal pool that points to this location. */ | |
4621 | set_literal_pool_location (now_seg, pool_location); | |
43cd72b9 BW |
4622 | xtensa_switch_to_non_abs_literal_fragment (&s); |
4623 | frag_align (2, 0, 0); | |
4624 | record_alignment (now_seg, 2); | |
e0001a05 NC |
4625 | |
4626 | /* Close whatever frag is there. */ | |
4627 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
43cd72b9 | 4628 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
4629 | frag_now->tc_frag_data.literal_frag = pool_location; |
4630 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
4631 | xtensa_restore_emit_state (&s); | |
43cd72b9 | 4632 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
4633 | } |
4634 | ||
4635 | ||
43cd72b9 BW |
4636 | /* Build a nop of the correct size into tinsn. */ |
4637 | ||
4638 | static void | |
7fa3d080 | 4639 | build_nop (TInsn *tinsn, int size) |
43cd72b9 BW |
4640 | { |
4641 | tinsn_init (tinsn); | |
4642 | switch (size) | |
4643 | { | |
4644 | case 2: | |
4645 | tinsn->opcode = xtensa_nop_n_opcode; | |
4646 | tinsn->ntok = 0; | |
4647 | if (tinsn->opcode == XTENSA_UNDEFINED) | |
4648 | as_fatal (_("opcode 'NOP.N' unavailable in this configuration")); | |
4649 | break; | |
4650 | ||
4651 | case 3: | |
4652 | if (xtensa_nop_opcode == XTENSA_UNDEFINED) | |
4653 | { | |
4654 | tinsn->opcode = xtensa_or_opcode; | |
4655 | set_expr_const (&tinsn->tok[0], 1); | |
4656 | set_expr_const (&tinsn->tok[1], 1); | |
4657 | set_expr_const (&tinsn->tok[2], 1); | |
4658 | tinsn->ntok = 3; | |
4659 | } | |
4660 | else | |
4661 | tinsn->opcode = xtensa_nop_opcode; | |
4662 | ||
4663 | assert (tinsn->opcode != XTENSA_UNDEFINED); | |
4664 | } | |
4665 | } | |
4666 | ||
4667 | ||
e0001a05 NC |
4668 | /* Assemble a NOP of the requested size in the buffer. User must have |
4669 | allocated "buf" with at least "size" bytes. */ | |
4670 | ||
7fa3d080 | 4671 | static void |
d77b99c9 | 4672 | assemble_nop (int size, char *buf) |
e0001a05 NC |
4673 | { |
4674 | static xtensa_insnbuf insnbuf = NULL; | |
43cd72b9 | 4675 | TInsn tinsn; |
e0001a05 | 4676 | |
43cd72b9 | 4677 | build_nop (&tinsn, size); |
e0001a05 | 4678 | |
43cd72b9 BW |
4679 | if (!insnbuf) |
4680 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
e0001a05 | 4681 | |
43cd72b9 | 4682 | tinsn_to_insnbuf (&tinsn, insnbuf); |
d77b99c9 BW |
4683 | xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, |
4684 | (unsigned char *) buf, 0); | |
e0001a05 NC |
4685 | } |
4686 | ||
4687 | ||
4688 | /* Return the number of bytes for the offset of the expanded loop | |
4689 | instruction. This should be incorporated into the relaxation | |
4690 | specification but is hard-coded here. This is used to auto-align | |
4691 | the loop instruction. It is invalid to call this function if the | |
4692 | configuration does not have loops or if the opcode is not a loop | |
4693 | opcode. */ | |
4694 | ||
4695 | static addressT | |
7fa3d080 | 4696 | get_expanded_loop_offset (xtensa_opcode opcode) |
e0001a05 NC |
4697 | { |
4698 | /* This is the OFFSET of the loop instruction in the expanded loop. | |
4699 | This MUST correspond directly to the specification of the loop | |
4700 | expansion. It will be validated on fragment conversion. */ | |
43cd72b9 | 4701 | assert (opcode != XTENSA_UNDEFINED); |
e0001a05 NC |
4702 | if (opcode == xtensa_loop_opcode) |
4703 | return 0; | |
4704 | if (opcode == xtensa_loopnez_opcode) | |
4705 | return 3; | |
4706 | if (opcode == xtensa_loopgtz_opcode) | |
4707 | return 6; | |
4708 | as_fatal (_("get_expanded_loop_offset: invalid opcode")); | |
4709 | return 0; | |
4710 | } | |
4711 | ||
4712 | ||
7fa3d080 BW |
4713 | static fragS * |
4714 | get_literal_pool_location (segT seg) | |
e0001a05 NC |
4715 | { |
4716 | return seg_info (seg)->tc_segment_info_data.literal_pool_loc; | |
4717 | } | |
4718 | ||
4719 | ||
4720 | static void | |
7fa3d080 | 4721 | set_literal_pool_location (segT seg, fragS *literal_pool_loc) |
e0001a05 NC |
4722 | { |
4723 | seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc; | |
4724 | } | |
4725 | ||
43cd72b9 BW |
4726 | |
4727 | /* Set frag assembly state should be called when a new frag is | |
4728 | opened and after a frag has been closed. */ | |
4729 | ||
7fa3d080 BW |
4730 | static void |
4731 | xtensa_set_frag_assembly_state (fragS *fragP) | |
43cd72b9 BW |
4732 | { |
4733 | if (!density_supported) | |
4734 | fragP->tc_frag_data.is_no_density = TRUE; | |
4735 | ||
4736 | /* This function is called from subsegs_finish, which is called | |
c138bc38 | 4737 | after xtensa_end, so we can't use "use_transform" or |
43cd72b9 BW |
4738 | "use_schedule" here. */ |
4739 | if (!directive_state[directive_transform]) | |
4740 | fragP->tc_frag_data.is_no_transform = TRUE; | |
7c834684 BW |
4741 | if (directive_state[directive_longcalls]) |
4742 | fragP->tc_frag_data.use_longcalls = TRUE; | |
43cd72b9 BW |
4743 | fragP->tc_frag_data.use_absolute_literals = |
4744 | directive_state[directive_absolute_literals]; | |
4745 | fragP->tc_frag_data.is_assembly_state_set = TRUE; | |
4746 | } | |
4747 | ||
4748 | ||
7fa3d080 BW |
4749 | static bfd_boolean |
4750 | relaxable_section (asection *sec) | |
43cd72b9 | 4751 | { |
11ac2671 BW |
4752 | return ((sec->flags & SEC_DEBUGGING) == 0 |
4753 | && strcmp (sec->name, ".eh_frame") != 0); | |
43cd72b9 BW |
4754 | } |
4755 | ||
4756 | ||
99ded152 BW |
4757 | static void |
4758 | xtensa_mark_frags_for_org (void) | |
4759 | { | |
4760 | segT *seclist; | |
4761 | ||
4762 | /* Walk over each fragment of all of the current segments. If we find | |
4763 | a .org frag in any of the segments, mark all frags prior to it as | |
4764 | "no transform", which will prevent linker optimizations from messing | |
4765 | up the .org distance. This should be done after | |
4766 | xtensa_find_unmarked_state_frags, because we don't want to worry here | |
4767 | about that function trashing the data we save here. */ | |
4768 | ||
4769 | for (seclist = &stdoutput->sections; | |
4770 | seclist && *seclist; | |
4771 | seclist = &(*seclist)->next) | |
4772 | { | |
4773 | segT sec = *seclist; | |
4774 | segment_info_type *seginfo; | |
4775 | fragS *fragP; | |
4776 | flagword flags; | |
4777 | flags = bfd_get_section_flags (stdoutput, sec); | |
4778 | if (flags & SEC_DEBUGGING) | |
4779 | continue; | |
4780 | if (!(flags & SEC_ALLOC)) | |
4781 | continue; | |
4782 | ||
4783 | seginfo = seg_info (sec); | |
4784 | if (seginfo && seginfo->frchainP) | |
4785 | { | |
4786 | fragS *last_fragP = seginfo->frchainP->frch_root; | |
4787 | for (fragP = seginfo->frchainP->frch_root; fragP; | |
4788 | fragP = fragP->fr_next) | |
4789 | { | |
4790 | /* cvt_frag_to_fill has changed the fr_type of org frags to | |
4791 | rs_fill, so use the value as cached in rs_subtype here. */ | |
4792 | if (fragP->fr_subtype == RELAX_ORG) | |
4793 | { | |
4794 | while (last_fragP != fragP->fr_next) | |
4795 | { | |
4796 | last_fragP->tc_frag_data.is_no_transform = TRUE; | |
4797 | last_fragP = last_fragP->fr_next; | |
4798 | } | |
4799 | } | |
4800 | } | |
4801 | } | |
4802 | } | |
4803 | } | |
4804 | ||
4805 | ||
43cd72b9 | 4806 | static void |
7fa3d080 | 4807 | xtensa_find_unmarked_state_frags (void) |
43cd72b9 BW |
4808 | { |
4809 | segT *seclist; | |
4810 | ||
4811 | /* Walk over each fragment of all of the current segments. For each | |
4812 | unmarked fragment, mark it with the same info as the previous | |
4813 | fragment. */ | |
4814 | for (seclist = &stdoutput->sections; | |
4815 | seclist && *seclist; | |
4816 | seclist = &(*seclist)->next) | |
4817 | { | |
4818 | segT sec = *seclist; | |
4819 | segment_info_type *seginfo; | |
4820 | fragS *fragP; | |
4821 | flagword flags; | |
4822 | flags = bfd_get_section_flags (stdoutput, sec); | |
4823 | if (flags & SEC_DEBUGGING) | |
4824 | continue; | |
4825 | if (!(flags & SEC_ALLOC)) | |
4826 | continue; | |
4827 | ||
4828 | seginfo = seg_info (sec); | |
4829 | if (seginfo && seginfo->frchainP) | |
4830 | { | |
4831 | fragS *last_fragP = 0; | |
4832 | for (fragP = seginfo->frchainP->frch_root; fragP; | |
4833 | fragP = fragP->fr_next) | |
4834 | { | |
4835 | if (fragP->fr_fix != 0 | |
4836 | && !fragP->tc_frag_data.is_assembly_state_set) | |
4837 | { | |
4838 | if (last_fragP == 0) | |
4839 | { | |
4840 | as_warn_where (fragP->fr_file, fragP->fr_line, | |
4841 | _("assembly state not set for first frag in section %s"), | |
4842 | sec->name); | |
4843 | } | |
4844 | else | |
4845 | { | |
4846 | fragP->tc_frag_data.is_assembly_state_set = TRUE; | |
4847 | fragP->tc_frag_data.is_no_density = | |
4848 | last_fragP->tc_frag_data.is_no_density; | |
4849 | fragP->tc_frag_data.is_no_transform = | |
4850 | last_fragP->tc_frag_data.is_no_transform; | |
7c834684 BW |
4851 | fragP->tc_frag_data.use_longcalls = |
4852 | last_fragP->tc_frag_data.use_longcalls; | |
43cd72b9 BW |
4853 | fragP->tc_frag_data.use_absolute_literals = |
4854 | last_fragP->tc_frag_data.use_absolute_literals; | |
4855 | } | |
4856 | } | |
4857 | if (fragP->tc_frag_data.is_assembly_state_set) | |
4858 | last_fragP = fragP; | |
4859 | } | |
4860 | } | |
4861 | } | |
4862 | } | |
4863 | ||
4864 | ||
4865 | static void | |
7fa3d080 BW |
4866 | xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED, |
4867 | asection *sec, | |
4868 | void *unused ATTRIBUTE_UNUSED) | |
43cd72b9 BW |
4869 | { |
4870 | flagword flags = bfd_get_section_flags (abfd, sec); | |
4871 | segment_info_type *seginfo = seg_info (sec); | |
4872 | fragS *frag = seginfo->frchainP->frch_root; | |
c138bc38 | 4873 | |
43cd72b9 | 4874 | if (flags & SEC_CODE) |
c138bc38 | 4875 | { |
43cd72b9 BW |
4876 | xtensa_isa isa = xtensa_default_isa; |
4877 | xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa); | |
4878 | while (frag != NULL) | |
4879 | { | |
4880 | if (frag->tc_frag_data.is_branch_target) | |
4881 | { | |
4882 | int op_size; | |
664df4e4 | 4883 | addressT branch_align, frag_addr; |
43cd72b9 BW |
4884 | xtensa_format fmt; |
4885 | ||
d77b99c9 BW |
4886 | xtensa_insnbuf_from_chars |
4887 | (isa, insnbuf, (unsigned char *) frag->fr_literal, 0); | |
43cd72b9 BW |
4888 | fmt = xtensa_format_decode (isa, insnbuf); |
4889 | op_size = xtensa_format_length (isa, fmt); | |
664df4e4 BW |
4890 | branch_align = 1 << branch_align_power (sec); |
4891 | frag_addr = frag->fr_address % branch_align; | |
4892 | if (frag_addr + op_size > branch_align) | |
43cd72b9 BW |
4893 | as_warn_where (frag->fr_file, frag->fr_line, |
4894 | _("unaligned branch target: %d bytes at 0x%lx"), | |
dd49a749 | 4895 | op_size, (long) frag->fr_address); |
43cd72b9 BW |
4896 | } |
4897 | frag = frag->fr_next; | |
4898 | } | |
4899 | xtensa_insnbuf_free (isa, insnbuf); | |
4900 | } | |
4901 | } | |
4902 | ||
4903 | ||
4904 | static void | |
7fa3d080 BW |
4905 | xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED, |
4906 | asection *sec, | |
4907 | void *unused ATTRIBUTE_UNUSED) | |
43cd72b9 BW |
4908 | { |
4909 | flagword flags = bfd_get_section_flags (abfd, sec); | |
4910 | segment_info_type *seginfo = seg_info (sec); | |
4911 | fragS *frag = seginfo->frchainP->frch_root; | |
4912 | xtensa_isa isa = xtensa_default_isa; | |
c138bc38 | 4913 | |
43cd72b9 | 4914 | if (flags & SEC_CODE) |
c138bc38 | 4915 | { |
43cd72b9 BW |
4916 | xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa); |
4917 | while (frag != NULL) | |
4918 | { | |
4919 | if (frag->tc_frag_data.is_first_loop_insn) | |
4920 | { | |
4921 | int op_size; | |
d77b99c9 | 4922 | addressT frag_addr; |
43cd72b9 BW |
4923 | xtensa_format fmt; |
4924 | ||
d77b99c9 BW |
4925 | xtensa_insnbuf_from_chars |
4926 | (isa, insnbuf, (unsigned char *) frag->fr_literal, 0); | |
43cd72b9 BW |
4927 | fmt = xtensa_format_decode (isa, insnbuf); |
4928 | op_size = xtensa_format_length (isa, fmt); | |
4929 | frag_addr = frag->fr_address % xtensa_fetch_width; | |
4930 | ||
d77b99c9 | 4931 | if (frag_addr + op_size > xtensa_fetch_width) |
43cd72b9 BW |
4932 | as_warn_where (frag->fr_file, frag->fr_line, |
4933 | _("unaligned loop: %d bytes at 0x%lx"), | |
dd49a749 | 4934 | op_size, (long) frag->fr_address); |
43cd72b9 BW |
4935 | } |
4936 | frag = frag->fr_next; | |
4937 | } | |
4938 | xtensa_insnbuf_free (isa, insnbuf); | |
4939 | } | |
4940 | } | |
4941 | ||
4942 | ||
30f725a1 BW |
4943 | static int |
4944 | xg_apply_fix_value (fixS *fixP, valueT val) | |
43cd72b9 BW |
4945 | { |
4946 | xtensa_isa isa = xtensa_default_isa; | |
4947 | static xtensa_insnbuf insnbuf = NULL; | |
4948 | static xtensa_insnbuf slotbuf = NULL; | |
4949 | xtensa_format fmt; | |
4950 | int slot; | |
4951 | bfd_boolean alt_reloc; | |
4952 | xtensa_opcode opcode; | |
4953 | char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where; | |
4954 | ||
4955 | (void) decode_reloc (fixP->fx_r_type, &slot, &alt_reloc); | |
4956 | if (alt_reloc) | |
4957 | as_fatal (_("unexpected fix")); | |
4958 | ||
4959 | if (!insnbuf) | |
4960 | { | |
4961 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4962 | slotbuf = xtensa_insnbuf_alloc (isa); | |
4963 | } | |
4964 | ||
d77b99c9 | 4965 | xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0); |
43cd72b9 BW |
4966 | fmt = xtensa_format_decode (isa, insnbuf); |
4967 | if (fmt == XTENSA_UNDEFINED) | |
4968 | as_fatal (_("undecodable fix")); | |
4969 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); | |
4970 | opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
4971 | if (opcode == XTENSA_UNDEFINED) | |
4972 | as_fatal (_("undecodable fix")); | |
4973 | ||
4974 | /* CONST16 immediates are not PC-relative, despite the fact that we | |
4975 | reuse the normal PC-relative operand relocations for the low part | |
30f725a1 | 4976 | of a CONST16 operand. */ |
43cd72b9 | 4977 | if (opcode == xtensa_const16_opcode) |
30f725a1 | 4978 | return 0; |
43cd72b9 BW |
4979 | |
4980 | xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, | |
4981 | get_relaxable_immed (opcode), val, | |
4982 | fixP->fx_file, fixP->fx_line); | |
4983 | ||
4984 | xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf); | |
d77b99c9 | 4985 | xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0); |
30f725a1 BW |
4986 | |
4987 | return 1; | |
43cd72b9 BW |
4988 | } |
4989 | ||
e0001a05 NC |
4990 | \f |
4991 | /* External Functions and Other GAS Hooks. */ | |
4992 | ||
4993 | const char * | |
7fa3d080 | 4994 | xtensa_target_format (void) |
e0001a05 NC |
4995 | { |
4996 | return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le"); | |
4997 | } | |
4998 | ||
4999 | ||
5000 | void | |
7fa3d080 | 5001 | xtensa_file_arch_init (bfd *abfd) |
e0001a05 NC |
5002 | { |
5003 | bfd_set_private_flags (abfd, 0x100 | 0x200); | |
5004 | } | |
5005 | ||
5006 | ||
5007 | void | |
7fa3d080 | 5008 | md_number_to_chars (char *buf, valueT val, int n) |
e0001a05 NC |
5009 | { |
5010 | if (target_big_endian) | |
5011 | number_to_chars_bigendian (buf, val, n); | |
5012 | else | |
5013 | number_to_chars_littleendian (buf, val, n); | |
5014 | } | |
5015 | ||
5016 | ||
5017 | /* This function is called once, at assembler startup time. It should | |
5018 | set up all the tables, etc. that the MD part of the assembler will | |
5019 | need. */ | |
5020 | ||
5021 | void | |
7fa3d080 | 5022 | md_begin (void) |
e0001a05 NC |
5023 | { |
5024 | segT current_section = now_seg; | |
5025 | int current_subsec = now_subseg; | |
5026 | xtensa_isa isa; | |
5027 | ||
43cd72b9 | 5028 | xtensa_default_isa = xtensa_isa_init (0, 0); |
e0001a05 | 5029 | isa = xtensa_default_isa; |
e0001a05 | 5030 | |
43cd72b9 BW |
5031 | linkrelax = 1; |
5032 | ||
74869ac7 | 5033 | /* Set up the literal sections. */ |
e0001a05 | 5034 | memset (&default_lit_sections, 0, sizeof (default_lit_sections)); |
e0001a05 NC |
5035 | |
5036 | subseg_set (current_section, current_subsec); | |
5037 | ||
43cd72b9 BW |
5038 | xg_init_vinsn (&cur_vinsn); |
5039 | ||
e0001a05 NC |
5040 | xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi"); |
5041 | xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi"); | |
5042 | xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0"); | |
5043 | xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4"); | |
5044 | xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8"); | |
5045 | xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12"); | |
5046 | xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0"); | |
5047 | xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4"); | |
5048 | xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8"); | |
5049 | xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12"); | |
43cd72b9 | 5050 | xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16"); |
e0001a05 | 5051 | xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry"); |
d12f9798 | 5052 | xtensa_extui_opcode = xtensa_opcode_lookup (isa, "extui"); |
43cd72b9 BW |
5053 | xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi"); |
5054 | xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n"); | |
e0001a05 | 5055 | xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync"); |
e0001a05 | 5056 | xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx"); |
43cd72b9 | 5057 | xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r"); |
e0001a05 NC |
5058 | xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop"); |
5059 | xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez"); | |
5060 | xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz"); | |
43cd72b9 | 5061 | xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop"); |
e0001a05 NC |
5062 | xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n"); |
5063 | xtensa_or_opcode = xtensa_opcode_lookup (isa, "or"); | |
5064 | xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret"); | |
5065 | xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n"); | |
5066 | xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw"); | |
5067 | xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n"); | |
43cd72b9 | 5068 | xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount"); |
e0001a05 | 5069 | xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti"); |
43cd72b9 BW |
5070 | |
5071 | init_op_placement_info_table (); | |
5072 | ||
5073 | /* Set up the assembly state. */ | |
5074 | if (!frag_now->tc_frag_data.is_assembly_state_set) | |
5075 | xtensa_set_frag_assembly_state (frag_now); | |
5076 | } | |
5077 | ||
5078 | ||
5079 | /* TC_INIT_FIX_DATA hook */ | |
5080 | ||
5081 | void | |
7fa3d080 | 5082 | xtensa_init_fix_data (fixS *x) |
43cd72b9 BW |
5083 | { |
5084 | x->tc_fix_data.slot = 0; | |
5085 | x->tc_fix_data.X_add_symbol = NULL; | |
5086 | x->tc_fix_data.X_add_number = 0; | |
e0001a05 NC |
5087 | } |
5088 | ||
5089 | ||
5090 | /* tc_frob_label hook */ | |
5091 | ||
5092 | void | |
7fa3d080 | 5093 | xtensa_frob_label (symbolS *sym) |
e0001a05 | 5094 | { |
3ea38ac2 BW |
5095 | float freq; |
5096 | ||
5097 | if (cur_vinsn.inside_bundle) | |
5098 | { | |
5099 | as_bad (_("labels are not valid inside bundles")); | |
5100 | return; | |
5101 | } | |
5102 | ||
5103 | freq = get_subseg_target_freq (now_seg, now_subseg); | |
7b1cc377 | 5104 | |
43cd72b9 BW |
5105 | /* Since the label was already attached to a frag associated with the |
5106 | previous basic block, it now needs to be reset to the current frag. */ | |
5107 | symbol_set_frag (sym, frag_now); | |
5108 | S_SET_VALUE (sym, (valueT) frag_now_fix ()); | |
5109 | ||
82e7541d BW |
5110 | if (generating_literals) |
5111 | xtensa_add_literal_sym (sym); | |
5112 | else | |
5113 | xtensa_add_insn_label (sym); | |
5114 | ||
7b1cc377 BW |
5115 | if (symbol_get_tc (sym)->is_loop_target) |
5116 | { | |
5117 | if ((get_last_insn_flags (now_seg, now_subseg) | |
e0001a05 | 5118 | & FLAG_IS_BAD_LOOPEND) != 0) |
7b1cc377 BW |
5119 | as_bad (_("invalid last instruction for a zero-overhead loop")); |
5120 | ||
5121 | xtensa_set_frag_assembly_state (frag_now); | |
5122 | frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END, | |
5123 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
5124 | ||
5125 | xtensa_set_frag_assembly_state (frag_now); | |
c3ea6048 | 5126 | xtensa_move_labels (frag_now, 0); |
07a53e5c | 5127 | } |
e0001a05 NC |
5128 | |
5129 | /* No target aligning in the absolute section. */ | |
61846f28 | 5130 | if (now_seg != absolute_section |
43cd72b9 | 5131 | && do_align_targets () |
61846f28 | 5132 | && !is_unaligned_label (sym) |
43cd72b9 BW |
5133 | && !generating_literals) |
5134 | { | |
43cd72b9 BW |
5135 | xtensa_set_frag_assembly_state (frag_now); |
5136 | ||
43cd72b9 | 5137 | frag_var (rs_machine_dependent, |
7b1cc377 | 5138 | 0, (int) freq, |
e0001a05 NC |
5139 | RELAX_DESIRE_ALIGN_IF_TARGET, |
5140 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
43cd72b9 | 5141 | xtensa_set_frag_assembly_state (frag_now); |
c3ea6048 | 5142 | xtensa_move_labels (frag_now, 0); |
43cd72b9 BW |
5143 | } |
5144 | ||
5145 | /* We need to mark the following properties even if we aren't aligning. */ | |
5146 | ||
5147 | /* If the label is already known to be a branch target, i.e., a | |
5148 | forward branch, mark the frag accordingly. Backward branches | |
5149 | are handled by xg_add_branch_and_loop_targets. */ | |
5150 | if (symbol_get_tc (sym)->is_branch_target) | |
5151 | symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE; | |
5152 | ||
5153 | /* Loops only go forward, so they can be identified here. */ | |
5154 | if (symbol_get_tc (sym)->is_loop_target) | |
5155 | symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE; | |
07a53e5c RH |
5156 | |
5157 | dwarf2_emit_label (sym); | |
43cd72b9 BW |
5158 | } |
5159 | ||
5160 | ||
5161 | /* tc_unrecognized_line hook */ | |
5162 | ||
5163 | int | |
7fa3d080 | 5164 | xtensa_unrecognized_line (int ch) |
43cd72b9 BW |
5165 | { |
5166 | switch (ch) | |
5167 | { | |
5168 | case '{' : | |
5169 | if (cur_vinsn.inside_bundle == 0) | |
5170 | { | |
5171 | /* PR8110: Cannot emit line number info inside a FLIX bundle | |
5172 | when using --gstabs. Temporarily disable debug info. */ | |
5173 | generate_lineno_debug (); | |
5174 | if (debug_type == DEBUG_STABS) | |
5175 | { | |
5176 | xt_saved_debug_type = debug_type; | |
5177 | debug_type = DEBUG_NONE; | |
5178 | } | |
82e7541d | 5179 | |
43cd72b9 BW |
5180 | cur_vinsn.inside_bundle = 1; |
5181 | } | |
5182 | else | |
5183 | { | |
5184 | as_bad (_("extra opening brace")); | |
5185 | return 0; | |
5186 | } | |
5187 | break; | |
82e7541d | 5188 | |
43cd72b9 BW |
5189 | case '}' : |
5190 | if (cur_vinsn.inside_bundle) | |
5191 | finish_vinsn (&cur_vinsn); | |
5192 | else | |
5193 | { | |
5194 | as_bad (_("extra closing brace")); | |
5195 | return 0; | |
5196 | } | |
5197 | break; | |
5198 | default: | |
5199 | as_bad (_("syntax error")); | |
5200 | return 0; | |
e0001a05 | 5201 | } |
43cd72b9 | 5202 | return 1; |
e0001a05 NC |
5203 | } |
5204 | ||
5205 | ||
5206 | /* md_flush_pending_output hook */ | |
5207 | ||
5208 | void | |
7fa3d080 | 5209 | xtensa_flush_pending_output (void) |
e0001a05 | 5210 | { |
a3582eee BW |
5211 | /* This line fixes a bug where automatically generated gstabs info |
5212 | separates a function label from its entry instruction, ending up | |
5213 | with the literal position between the function label and the entry | |
5214 | instruction and crashing code. It only happens with --gstabs and | |
5215 | --text-section-literals, and when several other obscure relaxation | |
5216 | conditions are met. */ | |
5217 | if (outputting_stabs_line_debug) | |
5218 | return; | |
5219 | ||
43cd72b9 BW |
5220 | if (cur_vinsn.inside_bundle) |
5221 | as_bad (_("missing closing brace")); | |
5222 | ||
e0001a05 NC |
5223 | /* If there is a non-zero instruction fragment, close it. */ |
5224 | if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn) | |
5225 | { | |
5226 | frag_wane (frag_now); | |
5227 | frag_new (0); | |
43cd72b9 | 5228 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
5229 | } |
5230 | frag_now->tc_frag_data.is_insn = FALSE; | |
82e7541d BW |
5231 | |
5232 | xtensa_clear_insn_labels (); | |
e0001a05 NC |
5233 | } |
5234 | ||
5235 | ||
43cd72b9 BW |
5236 | /* We had an error while parsing an instruction. The string might look |
5237 | like this: "insn arg1, arg2 }". If so, we need to see the closing | |
5238 | brace and reset some fields. Otherwise, the vinsn never gets closed | |
5239 | and the num_slots field will grow past the end of the array of slots, | |
5240 | and bad things happen. */ | |
5241 | ||
5242 | static void | |
7fa3d080 | 5243 | error_reset_cur_vinsn (void) |
43cd72b9 BW |
5244 | { |
5245 | if (cur_vinsn.inside_bundle) | |
5246 | { | |
5247 | if (*input_line_pointer == '}' | |
5248 | || *(input_line_pointer - 1) == '}' | |
5249 | || *(input_line_pointer - 2) == '}') | |
5250 | xg_clear_vinsn (&cur_vinsn); | |
5251 | } | |
5252 | } | |
5253 | ||
5254 | ||
e0001a05 | 5255 | void |
7fa3d080 | 5256 | md_assemble (char *str) |
e0001a05 NC |
5257 | { |
5258 | xtensa_isa isa = xtensa_default_isa; | |
b224e962 | 5259 | char *opname; |
e0001a05 NC |
5260 | unsigned opnamelen; |
5261 | bfd_boolean has_underbar = FALSE; | |
43cd72b9 | 5262 | char *arg_strings[MAX_INSN_ARGS]; |
e0001a05 | 5263 | int num_args; |
e0001a05 | 5264 | TInsn orig_insn; /* Original instruction from the input. */ |
e0001a05 | 5265 | |
e0001a05 NC |
5266 | tinsn_init (&orig_insn); |
5267 | ||
5268 | /* Split off the opcode. */ | |
5269 | opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789."); | |
5270 | opname = xmalloc (opnamelen + 1); | |
5271 | memcpy (opname, str, opnamelen); | |
5272 | opname[opnamelen] = '\0'; | |
5273 | ||
5274 | num_args = tokenize_arguments (arg_strings, str + opnamelen); | |
5275 | if (num_args == -1) | |
5276 | { | |
5277 | as_bad (_("syntax error")); | |
5278 | return; | |
5279 | } | |
5280 | ||
5281 | if (xg_translate_idioms (&opname, &num_args, arg_strings)) | |
5282 | return; | |
5283 | ||
5284 | /* Check for an underbar prefix. */ | |
5285 | if (*opname == '_') | |
5286 | { | |
5287 | has_underbar = TRUE; | |
5288 | opname += 1; | |
5289 | } | |
5290 | ||
5291 | orig_insn.insn_type = ITYPE_INSN; | |
5292 | orig_insn.ntok = 0; | |
43cd72b9 | 5293 | orig_insn.is_specific_opcode = (has_underbar || !use_transform ()); |
e0001a05 NC |
5294 | |
5295 | orig_insn.opcode = xtensa_opcode_lookup (isa, opname); | |
5296 | if (orig_insn.opcode == XTENSA_UNDEFINED) | |
5297 | { | |
43cd72b9 BW |
5298 | xtensa_format fmt = xtensa_format_lookup (isa, opname); |
5299 | if (fmt == XTENSA_UNDEFINED) | |
5300 | { | |
5301 | as_bad (_("unknown opcode or format name '%s'"), opname); | |
5302 | error_reset_cur_vinsn (); | |
5303 | return; | |
5304 | } | |
5305 | if (!cur_vinsn.inside_bundle) | |
5306 | { | |
5307 | as_bad (_("format names only valid inside bundles")); | |
5308 | error_reset_cur_vinsn (); | |
5309 | return; | |
5310 | } | |
5311 | if (cur_vinsn.format != XTENSA_UNDEFINED) | |
5312 | as_warn (_("multiple formats specified for one bundle; using '%s'"), | |
5313 | opname); | |
5314 | cur_vinsn.format = fmt; | |
5315 | free (has_underbar ? opname - 1 : opname); | |
5316 | error_reset_cur_vinsn (); | |
e0001a05 NC |
5317 | return; |
5318 | } | |
5319 | ||
e0001a05 NC |
5320 | /* Parse the arguments. */ |
5321 | if (parse_arguments (&orig_insn, num_args, arg_strings)) | |
5322 | { | |
5323 | as_bad (_("syntax error")); | |
43cd72b9 | 5324 | error_reset_cur_vinsn (); |
e0001a05 NC |
5325 | return; |
5326 | } | |
5327 | ||
5328 | /* Free the opcode and argument strings, now that they've been parsed. */ | |
5329 | free (has_underbar ? opname - 1 : opname); | |
5330 | opname = 0; | |
5331 | while (num_args-- > 0) | |
5332 | free (arg_strings[num_args]); | |
5333 | ||
43cd72b9 BW |
5334 | /* Get expressions for invisible operands. */ |
5335 | if (get_invisible_operands (&orig_insn)) | |
5336 | { | |
5337 | error_reset_cur_vinsn (); | |
5338 | return; | |
5339 | } | |
5340 | ||
e0001a05 NC |
5341 | /* Check for the right number and type of arguments. */ |
5342 | if (tinsn_check_arguments (&orig_insn)) | |
e0001a05 | 5343 | { |
43cd72b9 BW |
5344 | error_reset_cur_vinsn (); |
5345 | return; | |
e0001a05 NC |
5346 | } |
5347 | ||
b224e962 BW |
5348 | /* Record the line number for each TInsn, because a FLIX bundle may be |
5349 | spread across multiple input lines and individual instructions may be | |
5350 | moved around in some cases. */ | |
5351 | orig_insn.loc_directive_seen = dwarf2_loc_directive_seen; | |
5352 | dwarf2_where (&orig_insn.debug_line); | |
5353 | dwarf2_consume_line_info (); | |
c138bc38 | 5354 | |
43cd72b9 BW |
5355 | xg_add_branch_and_loop_targets (&orig_insn); |
5356 | ||
431ad2d0 BW |
5357 | /* Check that immediate value for ENTRY is >= 16. */ |
5358 | if (orig_insn.opcode == xtensa_entry_opcode && orig_insn.ntok >= 3) | |
e0001a05 | 5359 | { |
431ad2d0 BW |
5360 | expressionS *exp = &orig_insn.tok[2]; |
5361 | if (exp->X_op == O_constant && exp->X_add_number < 16) | |
5362 | as_warn (_("entry instruction with stack decrement < 16")); | |
e0001a05 NC |
5363 | } |
5364 | ||
e0001a05 | 5365 | /* Finish it off: |
43cd72b9 BW |
5366 | assemble_tokens (opcode, tok, ntok); |
5367 | expand the tokens from the orig_insn into the | |
5368 | stack of instructions that will not expand | |
e0001a05 | 5369 | unless required at relaxation time. */ |
e0001a05 | 5370 | |
43cd72b9 BW |
5371 | if (!cur_vinsn.inside_bundle) |
5372 | emit_single_op (&orig_insn); | |
5373 | else /* We are inside a bundle. */ | |
e0001a05 | 5374 | { |
43cd72b9 BW |
5375 | cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn; |
5376 | cur_vinsn.num_slots++; | |
5377 | if (*input_line_pointer == '}' | |
5378 | || *(input_line_pointer - 1) == '}' | |
5379 | || *(input_line_pointer - 2) == '}') | |
5380 | finish_vinsn (&cur_vinsn); | |
e0001a05 NC |
5381 | } |
5382 | ||
43cd72b9 BW |
5383 | /* We've just emitted a new instruction so clear the list of labels. */ |
5384 | xtensa_clear_insn_labels (); | |
e0001a05 NC |
5385 | } |
5386 | ||
5387 | ||
43cd72b9 | 5388 | /* HANDLE_ALIGN hook */ |
e0001a05 | 5389 | |
43cd72b9 BW |
5390 | /* For a .align directive, we mark the previous block with the alignment |
5391 | information. This will be placed in the object file in the | |
5392 | property section corresponding to this section. */ | |
e0001a05 | 5393 | |
43cd72b9 | 5394 | void |
7fa3d080 | 5395 | xtensa_handle_align (fragS *fragP) |
43cd72b9 BW |
5396 | { |
5397 | if (linkrelax | |
b08b5071 | 5398 | && ! fragP->tc_frag_data.is_literal |
43cd72b9 BW |
5399 | && (fragP->fr_type == rs_align |
5400 | || fragP->fr_type == rs_align_code) | |
5401 | && fragP->fr_address + fragP->fr_fix > 0 | |
5402 | && fragP->fr_offset > 0 | |
5403 | && now_seg != bss_section) | |
e0001a05 | 5404 | { |
43cd72b9 BW |
5405 | fragP->tc_frag_data.is_align = TRUE; |
5406 | fragP->tc_frag_data.alignment = fragP->fr_offset; | |
e0001a05 NC |
5407 | } |
5408 | ||
43cd72b9 | 5409 | if (fragP->fr_type == rs_align_test) |
e0001a05 | 5410 | { |
43cd72b9 BW |
5411 | int count; |
5412 | count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix; | |
5413 | if (count != 0) | |
c138bc38 | 5414 | as_bad_where (fragP->fr_file, fragP->fr_line, |
43cd72b9 | 5415 | _("unaligned entry instruction")); |
e0001a05 | 5416 | } |
99ded152 BW |
5417 | |
5418 | if (linkrelax && fragP->fr_type == rs_org) | |
5419 | fragP->fr_subtype = RELAX_ORG; | |
e0001a05 | 5420 | } |
43cd72b9 | 5421 | |
e0001a05 NC |
5422 | |
5423 | /* TC_FRAG_INIT hook */ | |
5424 | ||
5425 | void | |
7fa3d080 | 5426 | xtensa_frag_init (fragS *frag) |
e0001a05 | 5427 | { |
43cd72b9 | 5428 | xtensa_set_frag_assembly_state (frag); |
e0001a05 NC |
5429 | } |
5430 | ||
5431 | ||
5432 | symbolS * | |
7fa3d080 | 5433 | md_undefined_symbol (char *name ATTRIBUTE_UNUSED) |
e0001a05 NC |
5434 | { |
5435 | return NULL; | |
5436 | } | |
5437 | ||
5438 | ||
5439 | /* Round up a section size to the appropriate boundary. */ | |
5440 | ||
5441 | valueT | |
7fa3d080 | 5442 | md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size) |
e0001a05 NC |
5443 | { |
5444 | return size; /* Byte alignment is fine. */ | |
5445 | } | |
5446 | ||
5447 | ||
5448 | long | |
7fa3d080 | 5449 | md_pcrel_from (fixS *fixP) |
e0001a05 NC |
5450 | { |
5451 | char *insn_p; | |
5452 | static xtensa_insnbuf insnbuf = NULL; | |
43cd72b9 | 5453 | static xtensa_insnbuf slotbuf = NULL; |
e0001a05 | 5454 | int opnum; |
43cd72b9 | 5455 | uint32 opnd_value; |
e0001a05 | 5456 | xtensa_opcode opcode; |
43cd72b9 BW |
5457 | xtensa_format fmt; |
5458 | int slot; | |
e0001a05 NC |
5459 | xtensa_isa isa = xtensa_default_isa; |
5460 | valueT addr = fixP->fx_where + fixP->fx_frag->fr_address; | |
43cd72b9 | 5461 | bfd_boolean alt_reloc; |
e0001a05 | 5462 | |
e0001a05 | 5463 | if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND) |
30f725a1 | 5464 | return 0; |
e0001a05 | 5465 | |
1bbb5f21 BW |
5466 | if (fixP->fx_r_type == BFD_RELOC_32_PCREL) |
5467 | return addr; | |
5468 | ||
e0001a05 | 5469 | if (!insnbuf) |
43cd72b9 BW |
5470 | { |
5471 | insnbuf = xtensa_insnbuf_alloc (isa); | |
5472 | slotbuf = xtensa_insnbuf_alloc (isa); | |
5473 | } | |
e0001a05 NC |
5474 | |
5475 | insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where]; | |
d77b99c9 | 5476 | xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0); |
43cd72b9 BW |
5477 | fmt = xtensa_format_decode (isa, insnbuf); |
5478 | ||
5479 | if (fmt == XTENSA_UNDEFINED) | |
5480 | as_fatal (_("bad instruction format")); | |
5481 | ||
5482 | if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0) | |
5483 | as_fatal (_("invalid relocation")); | |
5484 | ||
5485 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); | |
5486 | opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
5487 | ||
30f725a1 BW |
5488 | /* Check for "alternate" relocations (operand not specified). None |
5489 | of the current uses for these are really PC-relative. */ | |
43cd72b9 BW |
5490 | if (alt_reloc || opcode == xtensa_const16_opcode) |
5491 | { | |
5492 | if (opcode != xtensa_l32r_opcode | |
5493 | && opcode != xtensa_const16_opcode) | |
5494 | as_fatal (_("invalid relocation for '%s' instruction"), | |
5495 | xtensa_opcode_name (isa, opcode)); | |
30f725a1 | 5496 | return 0; |
e0001a05 NC |
5497 | } |
5498 | ||
43cd72b9 BW |
5499 | opnum = get_relaxable_immed (opcode); |
5500 | opnd_value = 0; | |
5501 | if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1 | |
5502 | || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr)) | |
e0001a05 NC |
5503 | { |
5504 | as_bad_where (fixP->fx_file, | |
5505 | fixP->fx_line, | |
5506 | _("invalid relocation for operand %d of '%s'"), | |
5507 | opnum, xtensa_opcode_name (isa, opcode)); | |
30f725a1 | 5508 | return 0; |
e0001a05 | 5509 | } |
43cd72b9 BW |
5510 | return 0 - opnd_value; |
5511 | } | |
5512 | ||
5513 | ||
5514 | /* TC_FORCE_RELOCATION hook */ | |
5515 | ||
5516 | int | |
7fa3d080 | 5517 | xtensa_force_relocation (fixS *fix) |
43cd72b9 BW |
5518 | { |
5519 | switch (fix->fx_r_type) | |
30f725a1 BW |
5520 | { |
5521 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
43cd72b9 BW |
5522 | case BFD_RELOC_XTENSA_SLOT0_ALT: |
5523 | case BFD_RELOC_XTENSA_SLOT1_ALT: | |
5524 | case BFD_RELOC_XTENSA_SLOT2_ALT: | |
5525 | case BFD_RELOC_XTENSA_SLOT3_ALT: | |
5526 | case BFD_RELOC_XTENSA_SLOT4_ALT: | |
5527 | case BFD_RELOC_XTENSA_SLOT5_ALT: | |
5528 | case BFD_RELOC_XTENSA_SLOT6_ALT: | |
5529 | case BFD_RELOC_XTENSA_SLOT7_ALT: | |
5530 | case BFD_RELOC_XTENSA_SLOT8_ALT: | |
5531 | case BFD_RELOC_XTENSA_SLOT9_ALT: | |
5532 | case BFD_RELOC_XTENSA_SLOT10_ALT: | |
5533 | case BFD_RELOC_XTENSA_SLOT11_ALT: | |
5534 | case BFD_RELOC_XTENSA_SLOT12_ALT: | |
5535 | case BFD_RELOC_XTENSA_SLOT13_ALT: | |
5536 | case BFD_RELOC_XTENSA_SLOT14_ALT: | |
43cd72b9 BW |
5537 | return 1; |
5538 | default: | |
5539 | break; | |
e0001a05 NC |
5540 | } |
5541 | ||
43cd72b9 BW |
5542 | if (linkrelax && fix->fx_addsy |
5543 | && relaxable_section (S_GET_SEGMENT (fix->fx_addsy))) | |
5544 | return 1; | |
5545 | ||
5546 | return generic_force_reloc (fix); | |
5547 | } | |
5548 | ||
5549 | ||
30f725a1 BW |
5550 | /* TC_VALIDATE_FIX_SUB hook */ |
5551 | ||
5552 | int | |
5553 | xtensa_validate_fix_sub (fixS *fix) | |
5554 | { | |
5555 | segT add_symbol_segment, sub_symbol_segment; | |
5556 | ||
5557 | /* The difference of two symbols should be resolved by the assembler when | |
5558 | linkrelax is not set. If the linker may relax the section containing | |
5559 | the symbols, then an Xtensa DIFF relocation must be generated so that | |
5560 | the linker knows to adjust the difference value. */ | |
5561 | if (!linkrelax || fix->fx_addsy == NULL) | |
5562 | return 0; | |
5563 | ||
5564 | /* Make sure both symbols are in the same segment, and that segment is | |
5565 | "normal" and relaxable. If the segment is not "normal", then the | |
5566 | fix is not valid. If the segment is not "relaxable", then the fix | |
5567 | should have been handled earlier. */ | |
5568 | add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy); | |
5569 | if (! SEG_NORMAL (add_symbol_segment) || | |
5570 | ! relaxable_section (add_symbol_segment)) | |
5571 | return 0; | |
5572 | sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy); | |
5573 | return (sub_symbol_segment == add_symbol_segment); | |
5574 | } | |
5575 | ||
5576 | ||
43cd72b9 BW |
5577 | /* NO_PSEUDO_DOT hook */ |
5578 | ||
5579 | /* This function has nothing to do with pseudo dots, but this is the | |
5580 | nearest macro to where the check needs to take place. FIXME: This | |
5581 | seems wrong. */ | |
5582 | ||
5583 | bfd_boolean | |
7fa3d080 | 5584 | xtensa_check_inside_bundle (void) |
43cd72b9 BW |
5585 | { |
5586 | if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.') | |
5587 | as_bad (_("directives are not valid inside bundles")); | |
5588 | ||
5589 | /* This function must always return FALSE because it is called via a | |
5590 | macro that has nothing to do with bundling. */ | |
5591 | return FALSE; | |
e0001a05 NC |
5592 | } |
5593 | ||
5594 | ||
43cd72b9 | 5595 | /* md_elf_section_change_hook */ |
e0001a05 NC |
5596 | |
5597 | void | |
7fa3d080 | 5598 | xtensa_elf_section_change_hook (void) |
e0001a05 | 5599 | { |
43cd72b9 BW |
5600 | /* Set up the assembly state. */ |
5601 | if (!frag_now->tc_frag_data.is_assembly_state_set) | |
5602 | xtensa_set_frag_assembly_state (frag_now); | |
e0001a05 NC |
5603 | } |
5604 | ||
5605 | ||
5606 | /* tc_fix_adjustable hook */ | |
5607 | ||
5608 | bfd_boolean | |
7fa3d080 | 5609 | xtensa_fix_adjustable (fixS *fixP) |
e0001a05 | 5610 | { |
43cd72b9 BW |
5611 | /* An offset is not allowed in combination with the difference of two |
5612 | symbols, but that cannot be easily detected after a local symbol | |
5613 | has been adjusted to a (section+offset) form. Return 0 so that such | |
5614 | an fix will not be adjusted. */ | |
5615 | if (fixP->fx_subsy && fixP->fx_addsy && fixP->fx_offset | |
5616 | && relaxable_section (S_GET_SEGMENT (fixP->fx_subsy))) | |
5617 | return 0; | |
5618 | ||
e0001a05 NC |
5619 | /* We need the symbol name for the VTABLE entries. */ |
5620 | if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT | |
5621 | || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY) | |
5622 | return 0; | |
5623 | ||
5624 | return 1; | |
5625 | } | |
5626 | ||
5627 | ||
6a7eedfe BW |
5628 | /* tc_symbol_new_hook */ |
5629 | ||
5630 | symbolS *expr_symbols = NULL; | |
5631 | ||
5632 | void | |
5633 | xtensa_symbol_new_hook (symbolS *sym) | |
5634 | { | |
5635 | if (S_GET_SEGMENT (sym) == expr_section) | |
5636 | { | |
5637 | symbol_get_tc (sym)->next_expr_symbol = expr_symbols; | |
5638 | expr_symbols = sym; | |
5639 | } | |
5640 | } | |
5641 | ||
5642 | ||
e0001a05 | 5643 | void |
55cf6793 | 5644 | md_apply_fix (fixS *fixP, valueT *valP, segT seg) |
e0001a05 | 5645 | { |
30f725a1 | 5646 | char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where; |
d47d412e | 5647 | valueT val = 0; |
30f725a1 | 5648 | |
e7da6241 BW |
5649 | /* Subtracted symbols are only allowed for a few relocation types, and |
5650 | unless linkrelax is enabled, they should not make it to this point. */ | |
5651 | if (fixP->fx_subsy && !(linkrelax && (fixP->fx_r_type == BFD_RELOC_32 | |
5652 | || fixP->fx_r_type == BFD_RELOC_16 | |
5653 | || fixP->fx_r_type == BFD_RELOC_8))) | |
5654 | as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex")); | |
5655 | ||
30f725a1 | 5656 | switch (fixP->fx_r_type) |
e0001a05 | 5657 | { |
1bbb5f21 | 5658 | case BFD_RELOC_32_PCREL: |
30f725a1 BW |
5659 | case BFD_RELOC_32: |
5660 | case BFD_RELOC_16: | |
5661 | case BFD_RELOC_8: | |
e7da6241 | 5662 | if (fixP->fx_subsy) |
30f725a1 BW |
5663 | { |
5664 | switch (fixP->fx_r_type) | |
5665 | { | |
5666 | case BFD_RELOC_8: | |
5667 | fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8; | |
5668 | break; | |
5669 | case BFD_RELOC_16: | |
5670 | fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16; | |
5671 | break; | |
5672 | case BFD_RELOC_32: | |
5673 | fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32; | |
5674 | break; | |
5675 | default: | |
5676 | break; | |
5677 | } | |
e0001a05 | 5678 | |
30f725a1 BW |
5679 | /* An offset is only allowed when it results from adjusting a |
5680 | local symbol into a section-relative offset. If the offset | |
5681 | came from the original expression, tc_fix_adjustable will have | |
5682 | prevented the fix from being converted to a section-relative | |
5683 | form so that we can flag the error here. */ | |
5684 | if (fixP->fx_offset != 0 && !symbol_section_p (fixP->fx_addsy)) | |
5685 | as_bad_where (fixP->fx_file, fixP->fx_line, | |
5686 | _("cannot represent subtraction with an offset")); | |
5687 | ||
5688 | val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset | |
5689 | - S_GET_VALUE (fixP->fx_subsy)); | |
5690 | ||
5691 | /* The difference value gets written out, and the DIFF reloc | |
5692 | identifies the address of the subtracted symbol (i.e., the one | |
5693 | with the lowest address). */ | |
5694 | *valP = val; | |
5695 | fixP->fx_offset -= val; | |
5696 | fixP->fx_subsy = NULL; | |
5697 | } | |
5698 | else if (! fixP->fx_addsy) | |
e0001a05 | 5699 | { |
30f725a1 | 5700 | val = *valP; |
e0001a05 | 5701 | fixP->fx_done = 1; |
30f725a1 | 5702 | } |
d47d412e BW |
5703 | /* fall through */ |
5704 | ||
5705 | case BFD_RELOC_XTENSA_PLT: | |
30f725a1 BW |
5706 | md_number_to_chars (fixpos, val, fixP->fx_size); |
5707 | fixP->fx_no_overflow = 0; /* Use the standard overflow check. */ | |
5708 | break; | |
e0001a05 | 5709 | |
30f725a1 BW |
5710 | case BFD_RELOC_XTENSA_SLOT0_OP: |
5711 | case BFD_RELOC_XTENSA_SLOT1_OP: | |
5712 | case BFD_RELOC_XTENSA_SLOT2_OP: | |
5713 | case BFD_RELOC_XTENSA_SLOT3_OP: | |
5714 | case BFD_RELOC_XTENSA_SLOT4_OP: | |
5715 | case BFD_RELOC_XTENSA_SLOT5_OP: | |
5716 | case BFD_RELOC_XTENSA_SLOT6_OP: | |
5717 | case BFD_RELOC_XTENSA_SLOT7_OP: | |
5718 | case BFD_RELOC_XTENSA_SLOT8_OP: | |
5719 | case BFD_RELOC_XTENSA_SLOT9_OP: | |
5720 | case BFD_RELOC_XTENSA_SLOT10_OP: | |
5721 | case BFD_RELOC_XTENSA_SLOT11_OP: | |
5722 | case BFD_RELOC_XTENSA_SLOT12_OP: | |
5723 | case BFD_RELOC_XTENSA_SLOT13_OP: | |
5724 | case BFD_RELOC_XTENSA_SLOT14_OP: | |
5725 | if (linkrelax) | |
5726 | { | |
5727 | /* Write the tentative value of a PC-relative relocation to a | |
5728 | local symbol into the instruction. The value will be ignored | |
5729 | by the linker, and it makes the object file disassembly | |
5730 | readable when all branch targets are encoded in relocations. */ | |
5731 | ||
5732 | assert (fixP->fx_addsy); | |
20ee54e8 | 5733 | if (S_GET_SEGMENT (fixP->fx_addsy) == seg |
30f725a1 BW |
5734 | && !S_FORCE_RELOC (fixP->fx_addsy, 1)) |
5735 | { | |
5736 | val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset | |
5737 | - md_pcrel_from (fixP)); | |
5738 | (void) xg_apply_fix_value (fixP, val); | |
5739 | } | |
5740 | } | |
5741 | else if (! fixP->fx_addsy) | |
5742 | { | |
5743 | val = *valP; | |
5744 | if (xg_apply_fix_value (fixP, val)) | |
5745 | fixP->fx_done = 1; | |
5746 | } | |
5747 | break; | |
e0001a05 | 5748 | |
30f725a1 BW |
5749 | case BFD_RELOC_XTENSA_ASM_EXPAND: |
5750 | case BFD_RELOC_XTENSA_SLOT0_ALT: | |
5751 | case BFD_RELOC_XTENSA_SLOT1_ALT: | |
5752 | case BFD_RELOC_XTENSA_SLOT2_ALT: | |
5753 | case BFD_RELOC_XTENSA_SLOT3_ALT: | |
5754 | case BFD_RELOC_XTENSA_SLOT4_ALT: | |
5755 | case BFD_RELOC_XTENSA_SLOT5_ALT: | |
5756 | case BFD_RELOC_XTENSA_SLOT6_ALT: | |
5757 | case BFD_RELOC_XTENSA_SLOT7_ALT: | |
5758 | case BFD_RELOC_XTENSA_SLOT8_ALT: | |
5759 | case BFD_RELOC_XTENSA_SLOT9_ALT: | |
5760 | case BFD_RELOC_XTENSA_SLOT10_ALT: | |
5761 | case BFD_RELOC_XTENSA_SLOT11_ALT: | |
5762 | case BFD_RELOC_XTENSA_SLOT12_ALT: | |
5763 | case BFD_RELOC_XTENSA_SLOT13_ALT: | |
5764 | case BFD_RELOC_XTENSA_SLOT14_ALT: | |
5765 | /* These all need to be resolved at link-time. Do nothing now. */ | |
5766 | break; | |
e0001a05 | 5767 | |
30f725a1 BW |
5768 | case BFD_RELOC_VTABLE_INHERIT: |
5769 | case BFD_RELOC_VTABLE_ENTRY: | |
5770 | fixP->fx_done = 0; | |
5771 | break; | |
e0001a05 | 5772 | |
30f725a1 BW |
5773 | default: |
5774 | as_bad (_("unhandled local relocation fix %s"), | |
5775 | bfd_get_reloc_code_name (fixP->fx_r_type)); | |
e0001a05 NC |
5776 | } |
5777 | } | |
5778 | ||
5779 | ||
5780 | char * | |
7fa3d080 | 5781 | md_atof (int type, char *litP, int *sizeP) |
e0001a05 | 5782 | { |
499ac353 | 5783 | return ieee_md_atof (type, litP, sizeP, target_big_endian); |
e0001a05 NC |
5784 | } |
5785 | ||
5786 | ||
5787 | int | |
7fa3d080 | 5788 | md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED) |
e0001a05 | 5789 | { |
34e41783 | 5790 | return total_frag_text_expansion (fragP); |
e0001a05 NC |
5791 | } |
5792 | ||
5793 | ||
5794 | /* Translate internal representation of relocation info to BFD target | |
5795 | format. */ | |
5796 | ||
5797 | arelent * | |
30f725a1 | 5798 | tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp) |
e0001a05 NC |
5799 | { |
5800 | arelent *reloc; | |
5801 | ||
5802 | reloc = (arelent *) xmalloc (sizeof (arelent)); | |
5803 | reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); | |
5804 | *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); | |
5805 | reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; | |
5806 | ||
5807 | /* Make sure none of our internal relocations make it this far. | |
5808 | They'd better have been fully resolved by this point. */ | |
5809 | assert ((int) fixp->fx_r_type > 0); | |
5810 | ||
30f725a1 | 5811 | reloc->addend = fixp->fx_offset; |
43cd72b9 | 5812 | |
e0001a05 NC |
5813 | reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); |
5814 | if (reloc->howto == NULL) | |
5815 | { | |
5816 | as_bad_where (fixp->fx_file, fixp->fx_line, | |
5817 | _("cannot represent `%s' relocation in object file"), | |
5818 | bfd_get_reloc_code_name (fixp->fx_r_type)); | |
43cd72b9 BW |
5819 | free (reloc->sym_ptr_ptr); |
5820 | free (reloc); | |
e0001a05 NC |
5821 | return NULL; |
5822 | } | |
5823 | ||
5824 | if (!fixp->fx_pcrel != !reloc->howto->pc_relative) | |
1bbb5f21 | 5825 | as_fatal (_("internal error; cannot generate `%s' relocation"), |
43cd72b9 | 5826 | bfd_get_reloc_code_name (fixp->fx_r_type)); |
e0001a05 | 5827 | |
e0001a05 NC |
5828 | return reloc; |
5829 | } | |
5830 | ||
7fa3d080 BW |
5831 | \f |
5832 | /* Checks for resource conflicts between instructions. */ | |
5833 | ||
c138bc38 BW |
5834 | /* The func unit stuff could be implemented as bit-vectors rather |
5835 | than the iterative approach here. If it ends up being too | |
7fa3d080 BW |
5836 | slow, we will switch it. */ |
5837 | ||
c138bc38 | 5838 | resource_table * |
7fa3d080 BW |
5839 | new_resource_table (void *data, |
5840 | int cycles, | |
5841 | int nu, | |
5842 | unit_num_copies_func uncf, | |
5843 | opcode_num_units_func onuf, | |
5844 | opcode_funcUnit_use_unit_func ouuf, | |
5845 | opcode_funcUnit_use_stage_func ousf) | |
5846 | { | |
5847 | int i; | |
5848 | resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table)); | |
5849 | rt->data = data; | |
5850 | rt->cycles = cycles; | |
5851 | rt->allocated_cycles = cycles; | |
5852 | rt->num_units = nu; | |
5853 | rt->unit_num_copies = uncf; | |
5854 | rt->opcode_num_units = onuf; | |
5855 | rt->opcode_unit_use = ouuf; | |
5856 | rt->opcode_unit_stage = ousf; | |
5857 | ||
0bf60745 | 5858 | rt->units = (unsigned char **) xcalloc (cycles, sizeof (unsigned char *)); |
7fa3d080 | 5859 | for (i = 0; i < cycles; i++) |
0bf60745 | 5860 | rt->units[i] = (unsigned char *) xcalloc (nu, sizeof (unsigned char)); |
7fa3d080 BW |
5861 | |
5862 | return rt; | |
5863 | } | |
5864 | ||
5865 | ||
c138bc38 | 5866 | void |
7fa3d080 BW |
5867 | clear_resource_table (resource_table *rt) |
5868 | { | |
5869 | int i, j; | |
5870 | for (i = 0; i < rt->allocated_cycles; i++) | |
5871 | for (j = 0; j < rt->num_units; j++) | |
5872 | rt->units[i][j] = 0; | |
5873 | } | |
5874 | ||
5875 | ||
5876 | /* We never shrink it, just fake it into thinking so. */ | |
5877 | ||
c138bc38 | 5878 | void |
7fa3d080 BW |
5879 | resize_resource_table (resource_table *rt, int cycles) |
5880 | { | |
5881 | int i, old_cycles; | |
5882 | ||
5883 | rt->cycles = cycles; | |
5884 | if (cycles <= rt->allocated_cycles) | |
5885 | return; | |
5886 | ||
5887 | old_cycles = rt->allocated_cycles; | |
5888 | rt->allocated_cycles = cycles; | |
5889 | ||
0bf60745 BW |
5890 | rt->units = xrealloc (rt->units, |
5891 | rt->allocated_cycles * sizeof (unsigned char *)); | |
7fa3d080 | 5892 | for (i = 0; i < old_cycles; i++) |
0bf60745 BW |
5893 | rt->units[i] = xrealloc (rt->units[i], |
5894 | rt->num_units * sizeof (unsigned char)); | |
7fa3d080 | 5895 | for (i = old_cycles; i < cycles; i++) |
0bf60745 | 5896 | rt->units[i] = xcalloc (rt->num_units, sizeof (unsigned char)); |
7fa3d080 BW |
5897 | } |
5898 | ||
5899 | ||
c138bc38 | 5900 | bfd_boolean |
7fa3d080 BW |
5901 | resources_available (resource_table *rt, xtensa_opcode opcode, int cycle) |
5902 | { | |
5903 | int i; | |
5904 | int uses = (rt->opcode_num_units) (rt->data, opcode); | |
5905 | ||
c138bc38 | 5906 | for (i = 0; i < uses; i++) |
7fa3d080 BW |
5907 | { |
5908 | xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i); | |
5909 | int stage = (rt->opcode_unit_stage) (rt->data, opcode, i); | |
5910 | int copies_in_use = rt->units[stage + cycle][unit]; | |
5911 | int copies = (rt->unit_num_copies) (rt->data, unit); | |
5912 | if (copies_in_use >= copies) | |
5913 | return FALSE; | |
5914 | } | |
5915 | return TRUE; | |
5916 | } | |
7fa3d080 | 5917 | |
c138bc38 BW |
5918 | |
5919 | void | |
7fa3d080 BW |
5920 | reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle) |
5921 | { | |
5922 | int i; | |
5923 | int uses = (rt->opcode_num_units) (rt->data, opcode); | |
5924 | ||
c138bc38 | 5925 | for (i = 0; i < uses; i++) |
7fa3d080 BW |
5926 | { |
5927 | xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i); | |
5928 | int stage = (rt->opcode_unit_stage) (rt->data, opcode, i); | |
c138bc38 BW |
5929 | /* Note that this allows resources to be oversubscribed. That's |
5930 | essential to the way the optional scheduler works. | |
7fa3d080 BW |
5931 | resources_available reports when a resource is over-subscribed, |
5932 | so it's easy to tell. */ | |
5933 | rt->units[stage + cycle][unit]++; | |
5934 | } | |
5935 | } | |
5936 | ||
5937 | ||
c138bc38 | 5938 | void |
7fa3d080 BW |
5939 | release_resources (resource_table *rt, xtensa_opcode opcode, int cycle) |
5940 | { | |
5941 | int i; | |
5942 | int uses = (rt->opcode_num_units) (rt->data, opcode); | |
5943 | ||
c138bc38 | 5944 | for (i = 0; i < uses; i++) |
7fa3d080 BW |
5945 | { |
5946 | xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i); | |
5947 | int stage = (rt->opcode_unit_stage) (rt->data, opcode, i); | |
0bf60745 | 5948 | assert (rt->units[stage + cycle][unit] > 0); |
7fa3d080 | 5949 | rt->units[stage + cycle][unit]--; |
7fa3d080 BW |
5950 | } |
5951 | } | |
c138bc38 | 5952 | |
7fa3d080 BW |
5953 | |
5954 | /* Wrapper functions make parameterized resource reservation | |
5955 | more convenient. */ | |
5956 | ||
c138bc38 | 5957 | int |
7fa3d080 BW |
5958 | opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx) |
5959 | { | |
5960 | xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx); | |
c138bc38 | 5961 | return use->unit; |
7fa3d080 BW |
5962 | } |
5963 | ||
5964 | ||
c138bc38 | 5965 | int |
7fa3d080 BW |
5966 | opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx) |
5967 | { | |
5968 | xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx); | |
5969 | return use->stage; | |
5970 | } | |
5971 | ||
5972 | ||
5973 | /* Note that this function does not check issue constraints, but | |
5974 | solely whether the hardware is available to execute the given | |
c138bc38 | 5975 | instructions together. It also doesn't check if the tinsns |
7fa3d080 | 5976 | write the same state, or access the same tieports. That is |
a1ace8d8 | 5977 | checked by check_t1_t2_reads_and_writes. */ |
7fa3d080 BW |
5978 | |
5979 | static bfd_boolean | |
5980 | resources_conflict (vliw_insn *vinsn) | |
5981 | { | |
5982 | int i; | |
5983 | static resource_table *rt = NULL; | |
5984 | ||
5985 | /* This is the most common case by far. Optimize it. */ | |
5986 | if (vinsn->num_slots == 1) | |
5987 | return FALSE; | |
43cd72b9 | 5988 | |
c138bc38 | 5989 | if (rt == NULL) |
7fa3d080 BW |
5990 | { |
5991 | xtensa_isa isa = xtensa_default_isa; | |
5992 | rt = new_resource_table | |
5993 | (isa, xtensa_isa_num_pipe_stages (isa), | |
5994 | xtensa_isa_num_funcUnits (isa), | |
5995 | (unit_num_copies_func) xtensa_funcUnit_num_copies, | |
5996 | (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses, | |
5997 | opcode_funcUnit_use_unit, | |
5998 | opcode_funcUnit_use_stage); | |
5999 | } | |
43cd72b9 | 6000 | |
7fa3d080 | 6001 | clear_resource_table (rt); |
43cd72b9 | 6002 | |
7fa3d080 BW |
6003 | for (i = 0; i < vinsn->num_slots; i++) |
6004 | { | |
6005 | if (!resources_available (rt, vinsn->slots[i].opcode, 0)) | |
6006 | return TRUE; | |
6007 | reserve_resources (rt, vinsn->slots[i].opcode, 0); | |
6008 | } | |
e0001a05 | 6009 | |
7fa3d080 BW |
6010 | return FALSE; |
6011 | } | |
e0001a05 | 6012 | |
7fa3d080 BW |
6013 | \f |
6014 | /* finish_vinsn, emit_single_op and helper functions. */ | |
e0001a05 | 6015 | |
7fa3d080 BW |
6016 | static bfd_boolean find_vinsn_conflicts (vliw_insn *); |
6017 | static xtensa_format xg_find_narrowest_format (vliw_insn *); | |
7fa3d080 | 6018 | static void xg_assemble_vliw_tokens (vliw_insn *); |
e0001a05 NC |
6019 | |
6020 | ||
43cd72b9 BW |
6021 | /* We have reached the end of a bundle; emit into the frag. */ |
6022 | ||
e0001a05 | 6023 | static void |
7fa3d080 | 6024 | finish_vinsn (vliw_insn *vinsn) |
e0001a05 | 6025 | { |
43cd72b9 BW |
6026 | IStack slotstack; |
6027 | int i; | |
6028 | char *file_name; | |
d77b99c9 | 6029 | unsigned line; |
e0001a05 | 6030 | |
43cd72b9 | 6031 | if (find_vinsn_conflicts (vinsn)) |
a1ace8d8 BW |
6032 | { |
6033 | xg_clear_vinsn (vinsn); | |
6034 | return; | |
6035 | } | |
43cd72b9 BW |
6036 | |
6037 | /* First, find a format that works. */ | |
6038 | if (vinsn->format == XTENSA_UNDEFINED) | |
6039 | vinsn->format = xg_find_narrowest_format (vinsn); | |
6040 | ||
6041 | if (vinsn->format == XTENSA_UNDEFINED) | |
6042 | { | |
6043 | as_where (&file_name, &line); | |
6044 | as_bad_where (file_name, line, | |
6045 | _("couldn't find a valid instruction format")); | |
6046 | fprintf (stderr, _(" ops were: ")); | |
6047 | for (i = 0; i < vinsn->num_slots; i++) | |
6048 | fprintf (stderr, _(" %s;"), | |
6049 | xtensa_opcode_name (xtensa_default_isa, | |
6050 | vinsn->slots[i].opcode)); | |
6051 | fprintf (stderr, _("\n")); | |
6052 | xg_clear_vinsn (vinsn); | |
6053 | return; | |
6054 | } | |
6055 | ||
6056 | if (vinsn->num_slots | |
6057 | != xtensa_format_num_slots (xtensa_default_isa, vinsn->format)) | |
e0001a05 | 6058 | { |
43cd72b9 BW |
6059 | as_bad (_("format '%s' allows %d slots, but there are %d opcodes"), |
6060 | xtensa_format_name (xtensa_default_isa, vinsn->format), | |
6061 | xtensa_format_num_slots (xtensa_default_isa, vinsn->format), | |
6062 | vinsn->num_slots); | |
6063 | xg_clear_vinsn (vinsn); | |
6064 | return; | |
6065 | } | |
e0001a05 | 6066 | |
c138bc38 | 6067 | if (resources_conflict (vinsn)) |
43cd72b9 BW |
6068 | { |
6069 | as_where (&file_name, &line); | |
6070 | as_bad_where (file_name, line, _("illegal resource usage in bundle")); | |
6071 | fprintf (stderr, " ops were: "); | |
6072 | for (i = 0; i < vinsn->num_slots; i++) | |
6073 | fprintf (stderr, " %s;", | |
6074 | xtensa_opcode_name (xtensa_default_isa, | |
6075 | vinsn->slots[i].opcode)); | |
6076 | fprintf (stderr, "\n"); | |
6077 | xg_clear_vinsn (vinsn); | |
6078 | return; | |
6079 | } | |
6080 | ||
6081 | for (i = 0; i < vinsn->num_slots; i++) | |
6082 | { | |
6083 | if (vinsn->slots[i].opcode != XTENSA_UNDEFINED) | |
e0001a05 | 6084 | { |
43cd72b9 BW |
6085 | symbolS *lit_sym = NULL; |
6086 | int j; | |
6087 | bfd_boolean e = FALSE; | |
6088 | bfd_boolean saved_density = density_supported; | |
6089 | ||
6090 | /* We don't want to narrow ops inside multi-slot bundles. */ | |
6091 | if (vinsn->num_slots > 1) | |
6092 | density_supported = FALSE; | |
6093 | ||
6094 | istack_init (&slotstack); | |
6095 | if (vinsn->slots[i].opcode == xtensa_nop_opcode) | |
e0001a05 | 6096 | { |
43cd72b9 BW |
6097 | vinsn->slots[i].opcode = |
6098 | xtensa_format_slot_nop_opcode (xtensa_default_isa, | |
6099 | vinsn->format, i); | |
6100 | vinsn->slots[i].ntok = 0; | |
6101 | } | |
e0001a05 | 6102 | |
43cd72b9 BW |
6103 | if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i])) |
6104 | { | |
6105 | e = TRUE; | |
6106 | continue; | |
e0001a05 | 6107 | } |
e0001a05 | 6108 | |
43cd72b9 | 6109 | density_supported = saved_density; |
e0001a05 | 6110 | |
43cd72b9 BW |
6111 | if (e) |
6112 | { | |
6113 | xg_clear_vinsn (vinsn); | |
6114 | return; | |
6115 | } | |
e0001a05 | 6116 | |
0fa77c95 | 6117 | for (j = 0; j < slotstack.ninsn; j++) |
43cd72b9 BW |
6118 | { |
6119 | TInsn *insn = &slotstack.insn[j]; | |
6120 | if (insn->insn_type == ITYPE_LITERAL) | |
6121 | { | |
6122 | assert (lit_sym == NULL); | |
6123 | lit_sym = xg_assemble_literal (insn); | |
6124 | } | |
6125 | else | |
6126 | { | |
0fa77c95 | 6127 | assert (insn->insn_type == ITYPE_INSN); |
43cd72b9 BW |
6128 | if (lit_sym) |
6129 | xg_resolve_literals (insn, lit_sym); | |
0fa77c95 BW |
6130 | if (j != slotstack.ninsn - 1) |
6131 | emit_single_op (insn); | |
43cd72b9 BW |
6132 | } |
6133 | } | |
6134 | ||
6135 | if (vinsn->num_slots > 1) | |
6136 | { | |
6137 | if (opcode_fits_format_slot | |
6138 | (slotstack.insn[slotstack.ninsn - 1].opcode, | |
6139 | vinsn->format, i)) | |
6140 | { | |
6141 | vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1]; | |
6142 | } | |
6143 | else | |
6144 | { | |
b2d179be | 6145 | emit_single_op (&slotstack.insn[slotstack.ninsn - 1]); |
43cd72b9 BW |
6146 | if (vinsn->format == XTENSA_UNDEFINED) |
6147 | vinsn->slots[i].opcode = xtensa_nop_opcode; | |
6148 | else | |
c138bc38 | 6149 | vinsn->slots[i].opcode |
43cd72b9 BW |
6150 | = xtensa_format_slot_nop_opcode (xtensa_default_isa, |
6151 | vinsn->format, i); | |
6152 | ||
6153 | vinsn->slots[i].ntok = 0; | |
6154 | } | |
6155 | } | |
6156 | else | |
6157 | { | |
6158 | vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1]; | |
6159 | vinsn->format = XTENSA_UNDEFINED; | |
6160 | } | |
6161 | } | |
6162 | } | |
6163 | ||
6164 | /* Now check resource conflicts on the modified bundle. */ | |
c138bc38 | 6165 | if (resources_conflict (vinsn)) |
43cd72b9 BW |
6166 | { |
6167 | as_where (&file_name, &line); | |
6168 | as_bad_where (file_name, line, _("illegal resource usage in bundle")); | |
6169 | fprintf (stderr, " ops were: "); | |
6170 | for (i = 0; i < vinsn->num_slots; i++) | |
6171 | fprintf (stderr, " %s;", | |
6172 | xtensa_opcode_name (xtensa_default_isa, | |
6173 | vinsn->slots[i].opcode)); | |
6174 | fprintf (stderr, "\n"); | |
6175 | xg_clear_vinsn (vinsn); | |
6176 | return; | |
6177 | } | |
6178 | ||
6179 | /* First, find a format that works. */ | |
6180 | if (vinsn->format == XTENSA_UNDEFINED) | |
6181 | vinsn->format = xg_find_narrowest_format (vinsn); | |
6182 | ||
6183 | xg_assemble_vliw_tokens (vinsn); | |
6184 | ||
6185 | xg_clear_vinsn (vinsn); | |
6186 | } | |
6187 | ||
6188 | ||
6189 | /* Given an vliw instruction, what conflicts are there in register | |
6190 | usage and in writes to states and queues? | |
6191 | ||
6192 | This function does two things: | |
6193 | 1. Reports an error when a vinsn contains illegal combinations | |
6194 | of writes to registers states or queues. | |
6195 | 2. Marks individual tinsns as not relaxable if the combination | |
6196 | contains antidependencies. | |
6197 | ||
6198 | Job 2 handles things like swap semantics in instructions that need | |
6199 | to be relaxed. For example, | |
6200 | ||
6201 | addi a0, a1, 100000 | |
6202 | ||
6203 | normally would be relaxed to | |
6204 | ||
6205 | l32r a0, some_label | |
6206 | add a0, a1, a0 | |
6207 | ||
6208 | _but_, if the above instruction is bundled with an a0 reader, e.g., | |
6209 | ||
6210 | { addi a0, a1, 10000 ; add a2, a0, a4 ; } | |
6211 | ||
6212 | then we can't relax it into | |
6213 | ||
6214 | l32r a0, some_label | |
6215 | { add a0, a1, a0 ; add a2, a0, a4 ; } | |
6216 | ||
6217 | because the value of a0 is trashed before the second add can read it. */ | |
6218 | ||
7fa3d080 BW |
6219 | static char check_t1_t2_reads_and_writes (TInsn *, TInsn *); |
6220 | ||
43cd72b9 | 6221 | static bfd_boolean |
7fa3d080 | 6222 | find_vinsn_conflicts (vliw_insn *vinsn) |
43cd72b9 BW |
6223 | { |
6224 | int i, j; | |
6225 | int branches = 0; | |
6226 | xtensa_isa isa = xtensa_default_isa; | |
6227 | ||
6228 | assert (!past_xtensa_end); | |
6229 | ||
6230 | for (i = 0 ; i < vinsn->num_slots; i++) | |
6231 | { | |
6232 | TInsn *op1 = &vinsn->slots[i]; | |
6233 | if (op1->is_specific_opcode) | |
6234 | op1->keep_wide = TRUE; | |
6235 | else | |
6236 | op1->keep_wide = FALSE; | |
6237 | } | |
6238 | ||
6239 | for (i = 0 ; i < vinsn->num_slots; i++) | |
6240 | { | |
6241 | TInsn *op1 = &vinsn->slots[i]; | |
6242 | ||
6243 | if (xtensa_opcode_is_branch (isa, op1->opcode) == 1) | |
6244 | branches++; | |
6245 | ||
6246 | for (j = 0; j < vinsn->num_slots; j++) | |
6247 | { | |
6248 | if (i != j) | |
6249 | { | |
6250 | TInsn *op2 = &vinsn->slots[j]; | |
6251 | char conflict_type = check_t1_t2_reads_and_writes (op1, op2); | |
6252 | switch (conflict_type) | |
6253 | { | |
6254 | case 'c': | |
6255 | as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"), | |
6256 | xtensa_opcode_name (isa, op1->opcode), i, | |
6257 | xtensa_opcode_name (isa, op2->opcode), j); | |
6258 | return TRUE; | |
6259 | case 'd': | |
6260 | as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"), | |
6261 | xtensa_opcode_name (isa, op1->opcode), i, | |
6262 | xtensa_opcode_name (isa, op2->opcode), j); | |
6263 | return TRUE; | |
6264 | case 'e': | |
53dfbcc7 | 6265 | as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"), |
43cd72b9 BW |
6266 | xtensa_opcode_name (isa, op1->opcode), i, |
6267 | xtensa_opcode_name (isa, op2->opcode), j); | |
6268 | return TRUE; | |
6269 | case 'f': | |
53dfbcc7 | 6270 | as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"), |
43cd72b9 BW |
6271 | xtensa_opcode_name (isa, op1->opcode), i, |
6272 | xtensa_opcode_name (isa, op2->opcode), j); | |
6273 | return TRUE; | |
6274 | default: | |
6275 | /* Everything is OK. */ | |
6276 | break; | |
6277 | } | |
6278 | op2->is_specific_opcode = (op2->is_specific_opcode | |
6279 | || conflict_type == 'a'); | |
6280 | } | |
6281 | } | |
6282 | } | |
6283 | ||
6284 | if (branches > 1) | |
6285 | { | |
6286 | as_bad (_("multiple branches or jumps in the same bundle")); | |
6287 | return TRUE; | |
6288 | } | |
6289 | ||
6290 | return FALSE; | |
6291 | } | |
6292 | ||
6293 | ||
a1ace8d8 | 6294 | /* Check how the state used by t1 and t2 relate. |
43cd72b9 BW |
6295 | Cases found are: |
6296 | ||
6297 | case A: t1 reads a register t2 writes (an antidependency within a bundle) | |
6298 | case B: no relationship between what is read and written (both could | |
6299 | read the same reg though) | |
c138bc38 | 6300 | case C: t1 writes a register t2 writes (a register conflict within a |
43cd72b9 BW |
6301 | bundle) |
6302 | case D: t1 writes a state that t2 also writes | |
6303 | case E: t1 writes a tie queue that t2 also writes | |
a1ace8d8 | 6304 | case F: two volatile queue accesses |
43cd72b9 BW |
6305 | */ |
6306 | ||
6307 | static char | |
7fa3d080 | 6308 | check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2) |
43cd72b9 BW |
6309 | { |
6310 | xtensa_isa isa = xtensa_default_isa; | |
6311 | xtensa_regfile t1_regfile, t2_regfile; | |
6312 | int t1_reg, t2_reg; | |
6313 | int t1_base_reg, t1_last_reg; | |
6314 | int t2_base_reg, t2_last_reg; | |
6315 | char t1_inout, t2_inout; | |
6316 | int i, j; | |
6317 | char conflict = 'b'; | |
6318 | int t1_states; | |
6319 | int t2_states; | |
6320 | int t1_interfaces; | |
6321 | int t2_interfaces; | |
6322 | bfd_boolean t1_volatile = FALSE; | |
6323 | bfd_boolean t2_volatile = FALSE; | |
6324 | ||
6325 | /* Check registers. */ | |
6326 | for (j = 0; j < t2->ntok; j++) | |
6327 | { | |
6328 | if (xtensa_operand_is_register (isa, t2->opcode, j) != 1) | |
6329 | continue; | |
6330 | ||
6331 | t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j); | |
6332 | t2_base_reg = t2->tok[j].X_add_number; | |
6333 | t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j); | |
6334 | ||
6335 | for (i = 0; i < t1->ntok; i++) | |
6336 | { | |
6337 | if (xtensa_operand_is_register (isa, t1->opcode, i) != 1) | |
6338 | continue; | |
6339 | ||
6340 | t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i); | |
6341 | ||
6342 | if (t1_regfile != t2_regfile) | |
6343 | continue; | |
6344 | ||
6345 | t1_inout = xtensa_operand_inout (isa, t1->opcode, i); | |
6346 | t2_inout = xtensa_operand_inout (isa, t2->opcode, j); | |
6347 | ||
6348 | if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0 | |
6349 | || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0) | |
6350 | { | |
6351 | if (t1_inout == 'm' || t1_inout == 'o' | |
6352 | || t2_inout == 'm' || t2_inout == 'o') | |
6353 | { | |
6354 | conflict = 'a'; | |
6355 | continue; | |
6356 | } | |
6357 | } | |
6358 | ||
6359 | t1_base_reg = t1->tok[i].X_add_number; | |
6360 | t1_last_reg = (t1_base_reg | |
6361 | + xtensa_operand_num_regs (isa, t1->opcode, i)); | |
6362 | ||
6363 | for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++) | |
6364 | { | |
6365 | for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++) | |
6366 | { | |
6367 | if (t1_reg != t2_reg) | |
6368 | continue; | |
6369 | ||
6370 | if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o')) | |
7fa3d080 BW |
6371 | { |
6372 | conflict = 'a'; | |
6373 | continue; | |
6374 | } | |
43cd72b9 | 6375 | |
7fa3d080 BW |
6376 | if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o')) |
6377 | { | |
6378 | conflict = 'a'; | |
6379 | continue; | |
6380 | } | |
43cd72b9 | 6381 | |
7fa3d080 BW |
6382 | if (t1_inout != 'i' && t2_inout != 'i') |
6383 | return 'c'; | |
6384 | } | |
6385 | } | |
6386 | } | |
6387 | } | |
43cd72b9 | 6388 | |
7fa3d080 BW |
6389 | /* Check states. */ |
6390 | t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode); | |
6391 | t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode); | |
6392 | for (j = 0; j < t2_states; j++) | |
43cd72b9 | 6393 | { |
7fa3d080 BW |
6394 | xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j); |
6395 | t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j); | |
6396 | for (i = 0; i < t1_states; i++) | |
6397 | { | |
6398 | xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i); | |
6399 | t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i); | |
c138bc38 | 6400 | if (t1_so != t2_so) |
7fa3d080 | 6401 | continue; |
43cd72b9 | 6402 | |
7fa3d080 BW |
6403 | if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o')) |
6404 | { | |
6405 | conflict = 'a'; | |
6406 | continue; | |
6407 | } | |
c138bc38 | 6408 | |
7fa3d080 BW |
6409 | if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o')) |
6410 | { | |
6411 | conflict = 'a'; | |
6412 | continue; | |
6413 | } | |
c138bc38 | 6414 | |
7fa3d080 BW |
6415 | if (t1_inout != 'i' && t2_inout != 'i') |
6416 | return 'd'; | |
c138bc38 | 6417 | } |
7fa3d080 | 6418 | } |
43cd72b9 | 6419 | |
7fa3d080 BW |
6420 | /* Check tieports. */ |
6421 | t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode); | |
6422 | t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode); | |
c138bc38 | 6423 | for (j = 0; j < t2_interfaces; j++) |
43cd72b9 | 6424 | { |
7fa3d080 BW |
6425 | xtensa_interface t2_int |
6426 | = xtensa_interfaceOperand_interface (isa, t2->opcode, j); | |
a1ace8d8 BW |
6427 | int t2_class = xtensa_interface_class_id (isa, t2_int); |
6428 | ||
53dfbcc7 | 6429 | t2_inout = xtensa_interface_inout (isa, t2_int); |
a1ace8d8 | 6430 | if (xtensa_interface_has_side_effect (isa, t2_int) == 1) |
7fa3d080 | 6431 | t2_volatile = TRUE; |
a1ace8d8 | 6432 | |
7fa3d080 BW |
6433 | for (i = 0; i < t1_interfaces; i++) |
6434 | { | |
6435 | xtensa_interface t1_int | |
6436 | = xtensa_interfaceOperand_interface (isa, t1->opcode, j); | |
2eccd1b4 | 6437 | int t1_class = xtensa_interface_class_id (isa, t1_int); |
a1ace8d8 | 6438 | |
53dfbcc7 | 6439 | t1_inout = xtensa_interface_inout (isa, t1_int); |
a1ace8d8 | 6440 | if (xtensa_interface_has_side_effect (isa, t1_int) == 1) |
7fa3d080 | 6441 | t1_volatile = TRUE; |
a1ace8d8 BW |
6442 | |
6443 | if (t1_volatile && t2_volatile && (t1_class == t2_class)) | |
6444 | return 'f'; | |
c138bc38 | 6445 | |
7fa3d080 BW |
6446 | if (t1_int != t2_int) |
6447 | continue; | |
c138bc38 | 6448 | |
7fa3d080 BW |
6449 | if (t2_inout == 'i' && t1_inout == 'o') |
6450 | { | |
6451 | conflict = 'a'; | |
6452 | continue; | |
6453 | } | |
c138bc38 | 6454 | |
7fa3d080 BW |
6455 | if (t1_inout == 'i' && t2_inout == 'o') |
6456 | { | |
6457 | conflict = 'a'; | |
6458 | continue; | |
6459 | } | |
c138bc38 | 6460 | |
7fa3d080 BW |
6461 | if (t1_inout != 'i' && t2_inout != 'i') |
6462 | return 'e'; | |
6463 | } | |
43cd72b9 | 6464 | } |
c138bc38 | 6465 | |
7fa3d080 | 6466 | return conflict; |
43cd72b9 BW |
6467 | } |
6468 | ||
6469 | ||
6470 | static xtensa_format | |
7fa3d080 | 6471 | xg_find_narrowest_format (vliw_insn *vinsn) |
43cd72b9 BW |
6472 | { |
6473 | /* Right now we assume that the ops within the vinsn are properly | |
6474 | ordered for the slots that the programmer wanted them in. In | |
6475 | other words, we don't rearrange the ops in hopes of finding a | |
6476 | better format. The scheduler handles that. */ | |
6477 | ||
6478 | xtensa_isa isa = xtensa_default_isa; | |
6479 | xtensa_format format; | |
6480 | vliw_insn v_copy = *vinsn; | |
6481 | xtensa_opcode nop_opcode = xtensa_nop_opcode; | |
6482 | ||
65738a7d BW |
6483 | if (vinsn->num_slots == 1) |
6484 | return xg_get_single_format (vinsn->slots[0].opcode); | |
6485 | ||
43cd72b9 BW |
6486 | for (format = 0; format < xtensa_isa_num_formats (isa); format++) |
6487 | { | |
6488 | v_copy = *vinsn; | |
6489 | if (xtensa_format_num_slots (isa, format) == v_copy.num_slots) | |
6490 | { | |
6491 | int slot; | |
6492 | int fit = 0; | |
6493 | for (slot = 0; slot < v_copy.num_slots; slot++) | |
6494 | { | |
6495 | if (v_copy.slots[slot].opcode == nop_opcode) | |
6496 | { | |
6497 | v_copy.slots[slot].opcode = | |
6498 | xtensa_format_slot_nop_opcode (isa, format, slot); | |
6499 | v_copy.slots[slot].ntok = 0; | |
6500 | } | |
6501 | ||
6502 | if (opcode_fits_format_slot (v_copy.slots[slot].opcode, | |
6503 | format, slot)) | |
6504 | fit++; | |
7fa3d080 | 6505 | else if (v_copy.num_slots > 1) |
43cd72b9 | 6506 | { |
7fa3d080 BW |
6507 | TInsn widened; |
6508 | /* Try the widened version. */ | |
6509 | if (!v_copy.slots[slot].keep_wide | |
6510 | && !v_copy.slots[slot].is_specific_opcode | |
84b08ed9 BW |
6511 | && xg_is_single_relaxable_insn (&v_copy.slots[slot], |
6512 | &widened, TRUE) | |
7fa3d080 BW |
6513 | && opcode_fits_format_slot (widened.opcode, |
6514 | format, slot)) | |
43cd72b9 | 6515 | { |
7fa3d080 BW |
6516 | v_copy.slots[slot] = widened; |
6517 | fit++; | |
43cd72b9 BW |
6518 | } |
6519 | } | |
6520 | } | |
6521 | if (fit == v_copy.num_slots) | |
6522 | { | |
6523 | *vinsn = v_copy; | |
6524 | xtensa_format_encode (isa, format, vinsn->insnbuf); | |
6525 | vinsn->format = format; | |
6526 | break; | |
6527 | } | |
6528 | } | |
6529 | } | |
6530 | ||
6531 | if (format == xtensa_isa_num_formats (isa)) | |
6532 | return XTENSA_UNDEFINED; | |
6533 | ||
6534 | return format; | |
6535 | } | |
6536 | ||
6537 | ||
6538 | /* Return the additional space needed in a frag | |
6539 | for possible relaxations of any ops in a VLIW insn. | |
6540 | Also fill out the relaxations that might be required of | |
6541 | each tinsn in the vinsn. */ | |
6542 | ||
6543 | static int | |
e7da6241 | 6544 | relaxation_requirements (vliw_insn *vinsn, bfd_boolean *pfinish_frag) |
43cd72b9 | 6545 | { |
e7da6241 | 6546 | bfd_boolean finish_frag = FALSE; |
43cd72b9 BW |
6547 | int extra_space = 0; |
6548 | int slot; | |
6549 | ||
6550 | for (slot = 0; slot < vinsn->num_slots; slot++) | |
6551 | { | |
6552 | TInsn *tinsn = &vinsn->slots[slot]; | |
6553 | if (!tinsn_has_symbolic_operands (tinsn)) | |
6554 | { | |
6555 | /* A narrow instruction could be widened later to help | |
6556 | alignment issues. */ | |
84b08ed9 | 6557 | if (xg_is_single_relaxable_insn (tinsn, 0, TRUE) |
43cd72b9 BW |
6558 | && !tinsn->is_specific_opcode |
6559 | && vinsn->num_slots == 1) | |
6560 | { | |
6561 | /* Difference in bytes between narrow and wide insns... */ | |
6562 | extra_space += 1; | |
6563 | tinsn->subtype = RELAX_NARROW; | |
43cd72b9 BW |
6564 | } |
6565 | } | |
6566 | else | |
6567 | { | |
b08b5071 BW |
6568 | if (workaround_b_j_loop_end |
6569 | && tinsn->opcode == xtensa_jx_opcode | |
43cd72b9 BW |
6570 | && use_transform ()) |
6571 | { | |
6572 | /* Add 2 of these. */ | |
6573 | extra_space += 3; /* for the nop size */ | |
6574 | tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END; | |
6575 | } | |
c138bc38 | 6576 | |
43cd72b9 BW |
6577 | /* Need to assemble it with space for the relocation. */ |
6578 | if (xg_is_relaxable_insn (tinsn, 0) | |
6579 | && !tinsn->is_specific_opcode) | |
6580 | { | |
6581 | int max_size = xg_get_max_insn_widen_size (tinsn->opcode); | |
6582 | int max_literal_size = | |
6583 | xg_get_max_insn_widen_literal_size (tinsn->opcode); | |
c138bc38 | 6584 | |
43cd72b9 | 6585 | tinsn->literal_space = max_literal_size; |
c138bc38 | 6586 | |
43cd72b9 | 6587 | tinsn->subtype = RELAX_IMMED; |
43cd72b9 BW |
6588 | extra_space += max_size; |
6589 | } | |
6590 | else | |
6591 | { | |
e7da6241 BW |
6592 | /* A fix record will be added for this instruction prior |
6593 | to relaxation, so make it end the frag. */ | |
6594 | finish_frag = TRUE; | |
43cd72b9 BW |
6595 | } |
6596 | } | |
6597 | } | |
e7da6241 | 6598 | *pfinish_frag = finish_frag; |
43cd72b9 BW |
6599 | return extra_space; |
6600 | } | |
6601 | ||
6602 | ||
6603 | static void | |
b2d179be | 6604 | bundle_tinsn (TInsn *tinsn, vliw_insn *vinsn) |
43cd72b9 BW |
6605 | { |
6606 | xtensa_isa isa = xtensa_default_isa; | |
b2d179be | 6607 | int slot, chosen_slot; |
43cd72b9 | 6608 | |
b2d179be BW |
6609 | vinsn->format = xg_get_single_format (tinsn->opcode); |
6610 | assert (vinsn->format != XTENSA_UNDEFINED); | |
6611 | vinsn->num_slots = xtensa_format_num_slots (isa, vinsn->format); | |
43cd72b9 | 6612 | |
b2d179be BW |
6613 | chosen_slot = xg_get_single_slot (tinsn->opcode); |
6614 | for (slot = 0; slot < vinsn->num_slots; slot++) | |
43cd72b9 | 6615 | { |
b2d179be BW |
6616 | if (slot == chosen_slot) |
6617 | vinsn->slots[slot] = *tinsn; | |
6618 | else | |
6619 | { | |
6620 | vinsn->slots[slot].opcode = | |
6621 | xtensa_format_slot_nop_opcode (isa, vinsn->format, slot); | |
6622 | vinsn->slots[slot].ntok = 0; | |
6623 | vinsn->slots[slot].insn_type = ITYPE_INSN; | |
6624 | } | |
43cd72b9 | 6625 | } |
43cd72b9 BW |
6626 | } |
6627 | ||
6628 | ||
6629 | static bfd_boolean | |
7fa3d080 | 6630 | emit_single_op (TInsn *orig_insn) |
43cd72b9 BW |
6631 | { |
6632 | int i; | |
6633 | IStack istack; /* put instructions into here */ | |
6634 | symbolS *lit_sym = NULL; | |
6635 | symbolS *label_sym = NULL; | |
6636 | ||
6637 | istack_init (&istack); | |
6638 | ||
6639 | /* Special-case for "movi aX, foo" which is guaranteed to need relaxing. | |
c138bc38 BW |
6640 | Because the scheduling and bundling characteristics of movi and |
6641 | l32r or const16 are so different, we can do much better if we relax | |
43cd72b9 | 6642 | it prior to scheduling and bundling, rather than after. */ |
c138bc38 | 6643 | if ((orig_insn->opcode == xtensa_movi_opcode |
b08b5071 BW |
6644 | || orig_insn->opcode == xtensa_movi_n_opcode) |
6645 | && !cur_vinsn.inside_bundle | |
43cd72b9 | 6646 | && (orig_insn->tok[1].X_op == O_symbol |
482fd9f9 BW |
6647 | || orig_insn->tok[1].X_op == O_pltrel) |
6648 | && !orig_insn->is_specific_opcode && use_transform ()) | |
43cd72b9 BW |
6649 | xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0); |
6650 | else | |
6651 | if (xg_expand_assembly_insn (&istack, orig_insn)) | |
6652 | return TRUE; | |
6653 | ||
6654 | for (i = 0; i < istack.ninsn; i++) | |
6655 | { | |
6656 | TInsn *insn = &istack.insn[i]; | |
c138bc38 | 6657 | switch (insn->insn_type) |
43cd72b9 BW |
6658 | { |
6659 | case ITYPE_LITERAL: | |
6660 | assert (lit_sym == NULL); | |
6661 | lit_sym = xg_assemble_literal (insn); | |
6662 | break; | |
6663 | case ITYPE_LABEL: | |
6664 | { | |
6665 | static int relaxed_sym_idx = 0; | |
6666 | char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12); | |
6667 | sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++); | |
6668 | colon (label); | |
6669 | assert (label_sym == NULL); | |
6670 | label_sym = symbol_find_or_make (label); | |
6671 | assert (label_sym); | |
6672 | free (label); | |
6673 | } | |
6674 | break; | |
6675 | case ITYPE_INSN: | |
b2d179be BW |
6676 | { |
6677 | vliw_insn v; | |
6678 | if (lit_sym) | |
6679 | xg_resolve_literals (insn, lit_sym); | |
6680 | if (label_sym) | |
6681 | xg_resolve_labels (insn, label_sym); | |
6682 | xg_init_vinsn (&v); | |
6683 | bundle_tinsn (insn, &v); | |
6684 | finish_vinsn (&v); | |
6685 | xg_free_vinsn (&v); | |
6686 | } | |
43cd72b9 BW |
6687 | break; |
6688 | default: | |
6689 | assert (0); | |
6690 | break; | |
6691 | } | |
6692 | } | |
6693 | return FALSE; | |
6694 | } | |
6695 | ||
6696 | ||
34e41783 BW |
6697 | static int |
6698 | total_frag_text_expansion (fragS *fragP) | |
6699 | { | |
6700 | int slot; | |
6701 | int total_expansion = 0; | |
6702 | ||
6703 | for (slot = 0; slot < MAX_SLOTS; slot++) | |
6704 | total_expansion += fragP->tc_frag_data.text_expansion[slot]; | |
6705 | ||
6706 | return total_expansion; | |
6707 | } | |
6708 | ||
6709 | ||
43cd72b9 BW |
6710 | /* Emit a vliw instruction to the current fragment. */ |
6711 | ||
7fa3d080 BW |
6712 | static void |
6713 | xg_assemble_vliw_tokens (vliw_insn *vinsn) | |
43cd72b9 | 6714 | { |
e7da6241 | 6715 | bfd_boolean finish_frag; |
43cd72b9 BW |
6716 | bfd_boolean is_jump = FALSE; |
6717 | bfd_boolean is_branch = FALSE; | |
6718 | xtensa_isa isa = xtensa_default_isa; | |
43cd72b9 BW |
6719 | int insn_size; |
6720 | int extra_space; | |
6721 | char *f = NULL; | |
6722 | int slot; | |
b224e962 BW |
6723 | struct dwarf2_line_info debug_line; |
6724 | bfd_boolean loc_directive_seen = FALSE; | |
6725 | TInsn *tinsn; | |
43cd72b9 | 6726 | |
b224e962 | 6727 | memset (&debug_line, 0, sizeof (struct dwarf2_line_info)); |
43cd72b9 BW |
6728 | |
6729 | if (generating_literals) | |
6730 | { | |
6731 | static int reported = 0; | |
6732 | if (reported < 4) | |
6733 | as_bad_where (frag_now->fr_file, frag_now->fr_line, | |
6734 | _("cannot assemble into a literal fragment")); | |
6735 | if (reported == 3) | |
6736 | as_bad (_("...")); | |
6737 | reported++; | |
6738 | return; | |
6739 | } | |
6740 | ||
6741 | if (frag_now_fix () != 0 | |
b08b5071 | 6742 | && (! frag_now->tc_frag_data.is_insn |
43cd72b9 | 6743 | || (vinsn_has_specific_opcodes (vinsn) && use_transform ()) |
b08b5071 | 6744 | || !use_transform () != frag_now->tc_frag_data.is_no_transform |
7c834684 BW |
6745 | || (directive_state[directive_longcalls] |
6746 | != frag_now->tc_frag_data.use_longcalls) | |
43cd72b9 BW |
6747 | || (directive_state[directive_absolute_literals] |
6748 | != frag_now->tc_frag_data.use_absolute_literals))) | |
6749 | { | |
6750 | frag_wane (frag_now); | |
6751 | frag_new (0); | |
6752 | xtensa_set_frag_assembly_state (frag_now); | |
6753 | } | |
6754 | ||
6755 | if (workaround_a0_b_retw | |
6756 | && vinsn->num_slots == 1 | |
6757 | && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0 | |
6758 | && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1 | |
6759 | && use_transform ()) | |
6760 | { | |
6761 | has_a0_b_retw = TRUE; | |
6762 | ||
6763 | /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW. | |
6764 | After the first assembly pass we will check all of them and | |
6765 | add a nop if needed. */ | |
6766 | frag_now->tc_frag_data.is_insn = TRUE; | |
6767 | frag_var (rs_machine_dependent, 4, 4, | |
6768 | RELAX_ADD_NOP_IF_A0_B_RETW, | |
6769 | frag_now->fr_symbol, | |
6770 | frag_now->fr_offset, | |
6771 | NULL); | |
6772 | xtensa_set_frag_assembly_state (frag_now); | |
6773 | frag_now->tc_frag_data.is_insn = TRUE; | |
6774 | frag_var (rs_machine_dependent, 4, 4, | |
6775 | RELAX_ADD_NOP_IF_A0_B_RETW, | |
6776 | frag_now->fr_symbol, | |
6777 | frag_now->fr_offset, | |
6778 | NULL); | |
6779 | xtensa_set_frag_assembly_state (frag_now); | |
6780 | } | |
6781 | ||
b224e962 | 6782 | for (slot = 0; slot < vinsn->num_slots; slot++) |
43cd72b9 | 6783 | { |
b224e962 BW |
6784 | tinsn = &vinsn->slots[slot]; |
6785 | ||
43cd72b9 | 6786 | /* See if the instruction implies an aligned section. */ |
b224e962 | 6787 | if (xtensa_opcode_is_loop (isa, tinsn->opcode) == 1) |
43cd72b9 | 6788 | record_alignment (now_seg, 2); |
c138bc38 | 6789 | |
b224e962 BW |
6790 | /* Determine the best line number for debug info. */ |
6791 | if ((tinsn->loc_directive_seen || !loc_directive_seen) | |
6792 | && (tinsn->debug_line.filenum != debug_line.filenum | |
6793 | || tinsn->debug_line.line < debug_line.line | |
6794 | || tinsn->debug_line.column < debug_line.column)) | |
6795 | debug_line = tinsn->debug_line; | |
6796 | if (tinsn->loc_directive_seen) | |
6797 | loc_directive_seen = TRUE; | |
43cd72b9 BW |
6798 | } |
6799 | ||
6800 | /* Special cases for instructions that force an alignment... */ | |
6801 | /* None of these opcodes are bundle-able. */ | |
6802 | if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1) | |
6803 | { | |
d77b99c9 | 6804 | int max_fill; |
c138bc38 | 6805 | |
05d58145 BW |
6806 | /* Remember the symbol that marks the end of the loop in the frag |
6807 | that marks the start of the loop. This way we can easily find | |
6808 | the end of the loop at the beginning, without adding special code | |
6809 | to mark the loop instructions themselves. */ | |
6810 | symbolS *target_sym = NULL; | |
6811 | if (vinsn->slots[0].tok[1].X_op == O_symbol) | |
6812 | target_sym = vinsn->slots[0].tok[1].X_add_symbol; | |
6813 | ||
43cd72b9 BW |
6814 | xtensa_set_frag_assembly_state (frag_now); |
6815 | frag_now->tc_frag_data.is_insn = TRUE; | |
c138bc38 | 6816 | |
43cd72b9 BW |
6817 | max_fill = get_text_align_max_fill_size |
6818 | (get_text_align_power (xtensa_fetch_width), | |
6819 | TRUE, frag_now->tc_frag_data.is_no_density); | |
6820 | ||
6821 | if (use_transform ()) | |
6822 | frag_var (rs_machine_dependent, max_fill, max_fill, | |
05d58145 | 6823 | RELAX_ALIGN_NEXT_OPCODE, target_sym, 0, NULL); |
43cd72b9 | 6824 | else |
c138bc38 | 6825 | frag_var (rs_machine_dependent, 0, 0, |
05d58145 | 6826 | RELAX_CHECK_ALIGN_NEXT_OPCODE, target_sym, 0, NULL); |
43cd72b9 | 6827 | xtensa_set_frag_assembly_state (frag_now); |
43cd72b9 BW |
6828 | } |
6829 | ||
b08b5071 | 6830 | if (vinsn->slots[0].opcode == xtensa_entry_opcode |
43cd72b9 BW |
6831 | && !vinsn->slots[0].is_specific_opcode) |
6832 | { | |
6833 | xtensa_mark_literal_pool_location (); | |
c3ea6048 | 6834 | xtensa_move_labels (frag_now, 0); |
43cd72b9 BW |
6835 | frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL); |
6836 | } | |
6837 | ||
6838 | if (vinsn->num_slots == 1) | |
6839 | { | |
6840 | if (workaround_a0_b_retw && use_transform ()) | |
6841 | set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER, | |
6842 | is_register_writer (&vinsn->slots[0], "a", 0)); | |
6843 | ||
6844 | set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, | |
6845 | is_bad_loopend_opcode (&vinsn->slots[0])); | |
6846 | } | |
6847 | else | |
6848 | set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE); | |
6849 | ||
6850 | insn_size = xtensa_format_length (isa, vinsn->format); | |
6851 | ||
e7da6241 | 6852 | extra_space = relaxation_requirements (vinsn, &finish_frag); |
43cd72b9 BW |
6853 | |
6854 | /* vinsn_to_insnbuf will produce the error. */ | |
6855 | if (vinsn->format != XTENSA_UNDEFINED) | |
6856 | { | |
d77b99c9 | 6857 | f = frag_more (insn_size + extra_space); |
43cd72b9 BW |
6858 | xtensa_set_frag_assembly_state (frag_now); |
6859 | frag_now->tc_frag_data.is_insn = TRUE; | |
6860 | } | |
6861 | ||
e7da6241 | 6862 | vinsn_to_insnbuf (vinsn, f, frag_now, FALSE); |
43cd72b9 BW |
6863 | if (vinsn->format == XTENSA_UNDEFINED) |
6864 | return; | |
6865 | ||
d77b99c9 | 6866 | xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0); |
c138bc38 | 6867 | |
b224e962 BW |
6868 | if (debug_type == DEBUG_DWARF2 || loc_directive_seen) |
6869 | dwarf2_gen_line_info (frag_now_fix () - (insn_size + extra_space), | |
6870 | &debug_line); | |
43cd72b9 BW |
6871 | |
6872 | for (slot = 0; slot < vinsn->num_slots; slot++) | |
6873 | { | |
b224e962 | 6874 | tinsn = &vinsn->slots[slot]; |
43cd72b9 | 6875 | frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype; |
7c834684 | 6876 | frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol; |
7c834684 | 6877 | frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset; |
43cd72b9 BW |
6878 | frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag; |
6879 | if (tinsn->literal_space != 0) | |
6880 | xg_assemble_literal_space (tinsn->literal_space, slot); | |
6881 | ||
6882 | if (tinsn->subtype == RELAX_NARROW) | |
6883 | assert (vinsn->num_slots == 1); | |
6884 | if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1) | |
6885 | is_jump = TRUE; | |
6886 | if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1) | |
6887 | is_branch = TRUE; | |
6888 | ||
e7da6241 BW |
6889 | if (tinsn->subtype || tinsn->symbol || tinsn->offset |
6890 | || tinsn->literal_frag || is_jump || is_branch) | |
43cd72b9 BW |
6891 | finish_frag = TRUE; |
6892 | } | |
6893 | ||
6894 | if (vinsn_has_specific_opcodes (vinsn) && use_transform ()) | |
b08b5071 | 6895 | frag_now->tc_frag_data.is_specific_opcode = TRUE; |
43cd72b9 BW |
6896 | |
6897 | if (finish_frag) | |
6898 | { | |
6899 | frag_variant (rs_machine_dependent, | |
6900 | extra_space, extra_space, RELAX_SLOTS, | |
6901 | frag_now->fr_symbol, frag_now->fr_offset, f); | |
6902 | xtensa_set_frag_assembly_state (frag_now); | |
6903 | } | |
6904 | ||
6905 | /* Special cases for loops: | |
6906 | close_loop_end should be inserted AFTER short_loop. | |
6907 | Make sure that CLOSE loops are processed BEFORE short_loops | |
6908 | when converting them. */ | |
6909 | ||
6910 | /* "short_loop": Add a NOP if the loop is < 4 bytes. */ | |
64b607e6 | 6911 | if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1 |
43cd72b9 BW |
6912 | && !vinsn->slots[0].is_specific_opcode) |
6913 | { | |
6914 | if (workaround_short_loop && use_transform ()) | |
6915 | { | |
6916 | maybe_has_short_loop = TRUE; | |
6917 | frag_now->tc_frag_data.is_insn = TRUE; | |
6918 | frag_var (rs_machine_dependent, 4, 4, | |
6919 | RELAX_ADD_NOP_IF_SHORT_LOOP, | |
6920 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6921 | frag_now->tc_frag_data.is_insn = TRUE; | |
6922 | frag_var (rs_machine_dependent, 4, 4, | |
6923 | RELAX_ADD_NOP_IF_SHORT_LOOP, | |
6924 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6925 | } | |
6926 | ||
6927 | /* "close_loop_end": Add up to 12 bytes of NOPs to keep a | |
6928 | loop at least 12 bytes away from another loop's end. */ | |
6929 | if (workaround_close_loop_end && use_transform ()) | |
6930 | { | |
6931 | maybe_has_close_loop_end = TRUE; | |
6932 | frag_now->tc_frag_data.is_insn = TRUE; | |
6933 | frag_var (rs_machine_dependent, 12, 12, | |
6934 | RELAX_ADD_NOP_IF_CLOSE_LOOP_END, | |
6935 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6936 | } | |
6937 | } | |
6938 | ||
6939 | if (use_transform ()) | |
6940 | { | |
6941 | if (is_jump) | |
6942 | { | |
6943 | assert (finish_frag); | |
6944 | frag_var (rs_machine_dependent, | |
6945 | UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH, | |
6946 | RELAX_UNREACHABLE, | |
6947 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6948 | xtensa_set_frag_assembly_state (frag_now); | |
6949 | } | |
7b1cc377 | 6950 | else if (is_branch && do_align_targets ()) |
43cd72b9 BW |
6951 | { |
6952 | assert (finish_frag); | |
6953 | frag_var (rs_machine_dependent, | |
6954 | UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH, | |
6955 | RELAX_MAYBE_UNREACHABLE, | |
6956 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6957 | xtensa_set_frag_assembly_state (frag_now); | |
6958 | frag_var (rs_machine_dependent, | |
6959 | 0, 0, | |
6960 | RELAX_MAYBE_DESIRE_ALIGN, | |
6961 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6962 | xtensa_set_frag_assembly_state (frag_now); | |
6963 | } | |
6964 | } | |
6965 | ||
6966 | /* Now, if the original opcode was a call... */ | |
6967 | if (do_align_targets () | |
6968 | && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1) | |
6969 | { | |
b08b5071 | 6970 | float freq = get_subseg_total_freq (now_seg, now_subseg); |
43cd72b9 BW |
6971 | frag_now->tc_frag_data.is_insn = TRUE; |
6972 | frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN, | |
6973 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6974 | xtensa_set_frag_assembly_state (frag_now); | |
6975 | } | |
6976 | ||
6977 | if (vinsn_has_specific_opcodes (vinsn) && use_transform ()) | |
6978 | { | |
6979 | frag_wane (frag_now); | |
6980 | frag_new (0); | |
6981 | xtensa_set_frag_assembly_state (frag_now); | |
6982 | } | |
6983 | } | |
6984 | ||
6985 | \f | |
7fa3d080 BW |
6986 | /* xtensa_end and helper functions. */ |
6987 | ||
6988 | static void xtensa_cleanup_align_frags (void); | |
6989 | static void xtensa_fix_target_frags (void); | |
6990 | static void xtensa_mark_narrow_branches (void); | |
6991 | static void xtensa_mark_zcl_first_insns (void); | |
6a7eedfe | 6992 | static void xtensa_mark_difference_of_two_symbols (void); |
7fa3d080 BW |
6993 | static void xtensa_fix_a0_b_retw_frags (void); |
6994 | static void xtensa_fix_b_j_loop_end_frags (void); | |
6995 | static void xtensa_fix_close_loop_end_frags (void); | |
6996 | static void xtensa_fix_short_loop_frags (void); | |
6997 | static void xtensa_sanity_check (void); | |
2caa7ca0 | 6998 | static void xtensa_add_config_info (void); |
7fa3d080 | 6999 | |
43cd72b9 | 7000 | void |
7fa3d080 | 7001 | xtensa_end (void) |
43cd72b9 BW |
7002 | { |
7003 | directive_balance (); | |
7004 | xtensa_flush_pending_output (); | |
7005 | ||
7006 | past_xtensa_end = TRUE; | |
7007 | ||
7008 | xtensa_move_literals (); | |
7009 | ||
7010 | xtensa_reorder_segments (); | |
7011 | xtensa_cleanup_align_frags (); | |
7012 | xtensa_fix_target_frags (); | |
7013 | if (workaround_a0_b_retw && has_a0_b_retw) | |
7014 | xtensa_fix_a0_b_retw_frags (); | |
7015 | if (workaround_b_j_loop_end) | |
7016 | xtensa_fix_b_j_loop_end_frags (); | |
7017 | ||
7018 | /* "close_loop_end" should be processed BEFORE "short_loop". */ | |
7019 | if (workaround_close_loop_end && maybe_has_close_loop_end) | |
7020 | xtensa_fix_close_loop_end_frags (); | |
7021 | ||
7022 | if (workaround_short_loop && maybe_has_short_loop) | |
7023 | xtensa_fix_short_loop_frags (); | |
03aaa593 BW |
7024 | if (align_targets) |
7025 | xtensa_mark_narrow_branches (); | |
43cd72b9 BW |
7026 | xtensa_mark_zcl_first_insns (); |
7027 | ||
7028 | xtensa_sanity_check (); | |
2caa7ca0 BW |
7029 | |
7030 | xtensa_add_config_info (); | |
43cd72b9 BW |
7031 | } |
7032 | ||
7033 | ||
7034 | static void | |
7fa3d080 | 7035 | xtensa_cleanup_align_frags (void) |
43cd72b9 BW |
7036 | { |
7037 | frchainS *frchP; | |
c9049d30 | 7038 | asection *s; |
43cd72b9 | 7039 | |
c9049d30 AM |
7040 | for (s = stdoutput->sections; s; s = s->next) |
7041 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7042 | { | |
7043 | fragS *fragP; | |
7044 | /* Walk over all of the fragments in a subsection. */ | |
7045 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7046 | { | |
7047 | if ((fragP->fr_type == rs_align | |
7048 | || fragP->fr_type == rs_align_code | |
7049 | || (fragP->fr_type == rs_machine_dependent | |
7050 | && (fragP->fr_subtype == RELAX_DESIRE_ALIGN | |
7051 | || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET))) | |
7052 | && fragP->fr_fix == 0) | |
7053 | { | |
7054 | fragS *next = fragP->fr_next; | |
7055 | ||
7056 | while (next | |
7057 | && next->fr_fix == 0 | |
7058 | && next->fr_type == rs_machine_dependent | |
7059 | && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET) | |
7060 | { | |
7061 | frag_wane (next); | |
7062 | next = next->fr_next; | |
7063 | } | |
7064 | } | |
7065 | /* If we don't widen branch targets, then they | |
7066 | will be easier to align. */ | |
7067 | if (fragP->tc_frag_data.is_branch_target | |
7068 | && fragP->fr_opcode == fragP->fr_literal | |
7069 | && fragP->fr_type == rs_machine_dependent | |
7070 | && fragP->fr_subtype == RELAX_SLOTS | |
7071 | && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW) | |
7072 | frag_wane (fragP); | |
7073 | if (fragP->fr_type == rs_machine_dependent | |
7074 | && fragP->fr_subtype == RELAX_UNREACHABLE) | |
7075 | fragP->tc_frag_data.is_unreachable = TRUE; | |
7076 | } | |
7077 | } | |
43cd72b9 BW |
7078 | } |
7079 | ||
7080 | ||
7081 | /* Re-process all of the fragments looking to convert all of the | |
7082 | RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch | |
7083 | target in the next fragment, convert this to RELAX_DESIRE_ALIGN. | |
7b1cc377 | 7084 | Otherwise, convert to a .fill 0. */ |
7fa3d080 | 7085 | |
43cd72b9 | 7086 | static void |
7fa3d080 | 7087 | xtensa_fix_target_frags (void) |
e0001a05 NC |
7088 | { |
7089 | frchainS *frchP; | |
c9049d30 | 7090 | asection *s; |
e0001a05 NC |
7091 | |
7092 | /* When this routine is called, all of the subsections are still intact | |
7093 | so we walk over subsections instead of sections. */ | |
c9049d30 AM |
7094 | for (s = stdoutput->sections; s; s = s->next) |
7095 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7096 | { | |
7097 | fragS *fragP; | |
e0001a05 | 7098 | |
c9049d30 AM |
7099 | /* Walk over all of the fragments in a subsection. */ |
7100 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7101 | { | |
7102 | if (fragP->fr_type == rs_machine_dependent | |
7103 | && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET) | |
7104 | { | |
7105 | if (next_frag_is_branch_target (fragP)) | |
7106 | fragP->fr_subtype = RELAX_DESIRE_ALIGN; | |
7107 | else | |
7108 | frag_wane (fragP); | |
7109 | } | |
7110 | } | |
7111 | } | |
e0001a05 NC |
7112 | } |
7113 | ||
7114 | ||
7fa3d080 BW |
7115 | static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *); |
7116 | ||
43cd72b9 | 7117 | static void |
7fa3d080 | 7118 | xtensa_mark_narrow_branches (void) |
43cd72b9 BW |
7119 | { |
7120 | frchainS *frchP; | |
c9049d30 | 7121 | asection *s; |
43cd72b9 | 7122 | |
c9049d30 AM |
7123 | for (s = stdoutput->sections; s; s = s->next) |
7124 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7125 | { | |
7126 | fragS *fragP; | |
7127 | /* Walk over all of the fragments in a subsection. */ | |
7128 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7129 | { | |
7130 | if (fragP->fr_type == rs_machine_dependent | |
7131 | && fragP->fr_subtype == RELAX_SLOTS | |
7132 | && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED) | |
7133 | { | |
7134 | vliw_insn vinsn; | |
7135 | ||
7136 | vinsn_from_chars (&vinsn, fragP->fr_opcode); | |
7137 | tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0); | |
7138 | ||
7139 | if (vinsn.num_slots == 1 | |
7140 | && xtensa_opcode_is_branch (xtensa_default_isa, | |
64b607e6 | 7141 | vinsn.slots[0].opcode) == 1 |
c9049d30 AM |
7142 | && xg_get_single_size (vinsn.slots[0].opcode) == 2 |
7143 | && is_narrow_branch_guaranteed_in_range (fragP, | |
7144 | &vinsn.slots[0])) | |
7145 | { | |
7146 | fragP->fr_subtype = RELAX_SLOTS; | |
7147 | fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW; | |
7148 | fragP->tc_frag_data.is_aligning_branch = 1; | |
7149 | } | |
7150 | } | |
7151 | } | |
7152 | } | |
43cd72b9 BW |
7153 | } |
7154 | ||
7155 | ||
7156 | /* A branch is typically widened only when its target is out of | |
7157 | range. However, we would like to widen them to align a subsequent | |
7158 | branch target when possible. | |
7159 | ||
7160 | Because the branch relaxation code is so convoluted, the optimal solution | |
7161 | (combining the two cases) is difficult to get right in all circumstances. | |
7162 | We therefore go with an "almost as good" solution, where we only | |
7163 | use for alignment narrow branches that definitely will not expand to a | |
7164 | jump and a branch. These functions find and mark these cases. */ | |
7165 | ||
a67517f4 BW |
7166 | /* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded |
7167 | as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63. | |
7168 | We start counting beginning with the frag after the 2-byte branch, so the | |
7169 | maximum offset is (4 - 2) + 63 = 65. */ | |
7170 | #define MAX_IMMED6 65 | |
43cd72b9 | 7171 | |
d77b99c9 | 7172 | static offsetT unrelaxed_frag_max_size (fragS *); |
7fa3d080 | 7173 | |
43cd72b9 | 7174 | static bfd_boolean |
7fa3d080 | 7175 | is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn) |
43cd72b9 BW |
7176 | { |
7177 | const expressionS *expr = &tinsn->tok[1]; | |
7178 | symbolS *symbolP = expr->X_add_symbol; | |
d77b99c9 | 7179 | offsetT max_distance = expr->X_add_number; |
e7da6241 BW |
7180 | fragS *target_frag; |
7181 | ||
7182 | if (expr->X_op != O_symbol) | |
7183 | return FALSE; | |
7184 | ||
7185 | target_frag = symbol_get_frag (symbolP); | |
7186 | ||
43cd72b9 BW |
7187 | max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address); |
7188 | if (is_branch_jmp_to_next (tinsn, fragP)) | |
7189 | return FALSE; | |
7190 | ||
7191 | /* The branch doesn't branch over it's own frag, | |
7192 | but over the subsequent ones. */ | |
7193 | fragP = fragP->fr_next; | |
7194 | while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6) | |
7195 | { | |
7196 | max_distance += unrelaxed_frag_max_size (fragP); | |
7197 | fragP = fragP->fr_next; | |
7198 | } | |
7199 | if (max_distance <= MAX_IMMED6 && fragP == target_frag) | |
7200 | return TRUE; | |
e0001a05 NC |
7201 | return FALSE; |
7202 | } | |
7203 | ||
7204 | ||
43cd72b9 | 7205 | static void |
7fa3d080 | 7206 | xtensa_mark_zcl_first_insns (void) |
43cd72b9 BW |
7207 | { |
7208 | frchainS *frchP; | |
c9049d30 | 7209 | asection *s; |
43cd72b9 | 7210 | |
c9049d30 AM |
7211 | for (s = stdoutput->sections; s; s = s->next) |
7212 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7213 | { | |
7214 | fragS *fragP; | |
7215 | /* Walk over all of the fragments in a subsection. */ | |
7216 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7217 | { | |
7218 | if (fragP->fr_type == rs_machine_dependent | |
7219 | && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE | |
7220 | || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)) | |
7221 | { | |
7222 | /* Find the loop frag. */ | |
7223 | fragS *targ_frag = next_non_empty_frag (fragP); | |
7224 | /* Find the first insn frag. */ | |
7225 | targ_frag = next_non_empty_frag (targ_frag); | |
7226 | ||
7227 | /* Of course, sometimes (mostly for toy test cases) a | |
7228 | zero-cost loop instruction is the last in a section. */ | |
7229 | if (targ_frag) | |
7230 | { | |
7231 | targ_frag->tc_frag_data.is_first_loop_insn = TRUE; | |
7232 | /* Do not widen a frag that is the first instruction of a | |
7233 | zero-cost loop. It makes that loop harder to align. */ | |
7234 | if (targ_frag->fr_type == rs_machine_dependent | |
7235 | && targ_frag->fr_subtype == RELAX_SLOTS | |
7236 | && (targ_frag->tc_frag_data.slot_subtypes[0] | |
7237 | == RELAX_NARROW)) | |
7238 | { | |
7239 | if (targ_frag->tc_frag_data.is_aligning_branch) | |
7240 | targ_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED; | |
7241 | else | |
7242 | { | |
7243 | frag_wane (targ_frag); | |
7244 | targ_frag->tc_frag_data.slot_subtypes[0] = 0; | |
7245 | } | |
7246 | } | |
7247 | } | |
7248 | if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE) | |
7249 | frag_wane (fragP); | |
7250 | } | |
7251 | } | |
7252 | } | |
43cd72b9 BW |
7253 | } |
7254 | ||
7255 | ||
6a7eedfe BW |
7256 | /* Some difference-of-symbols expressions make it out to the linker. Some |
7257 | don't. If one does, then the linker can optimize between the two labels. | |
7258 | If it doesn't, then the linker shouldn't. */ | |
7259 | ||
7260 | static void | |
7261 | xtensa_mark_difference_of_two_symbols (void) | |
7262 | { | |
7263 | symbolS *expr_sym; | |
7264 | ||
7265 | for (expr_sym = expr_symbols; expr_sym; | |
7266 | expr_sym = symbol_get_tc (expr_sym)->next_expr_symbol) | |
7267 | { | |
7268 | expressionS *expr = symbol_get_value_expression (expr_sym); | |
7269 | ||
7270 | if (expr->X_op == O_subtract) | |
7271 | { | |
7272 | symbolS *left = expr->X_add_symbol; | |
7273 | symbolS *right = expr->X_op_symbol; | |
7274 | ||
7275 | /* Difference of two symbols not in the same section | |
7276 | are handled with relocations in the linker. */ | |
7277 | if (S_GET_SEGMENT (left) == S_GET_SEGMENT (right)) | |
7278 | { | |
7279 | fragS *start; | |
7280 | fragS *end; | |
7281 | ||
7282 | if (symbol_get_frag (left)->fr_address | |
7283 | <= symbol_get_frag (right)->fr_address) | |
7284 | { | |
7285 | start = symbol_get_frag (left); | |
7286 | end = symbol_get_frag (right); | |
7287 | } | |
7288 | else | |
7289 | { | |
7290 | start = symbol_get_frag (right); | |
7291 | end = symbol_get_frag (left); | |
7292 | } | |
7293 | do | |
7294 | { | |
7295 | start->tc_frag_data.is_no_transform = 1; | |
7296 | start = start->fr_next; | |
7297 | } | |
7298 | while (start && start->fr_address < end->fr_address); | |
7299 | } | |
7300 | } | |
7301 | } | |
7302 | } | |
7303 | ||
7304 | ||
e0001a05 NC |
7305 | /* Re-process all of the fragments looking to convert all of the |
7306 | RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a | |
7307 | conditional branch or a retw/retw.n, convert this frag to one that | |
7308 | will generate a NOP. In any case close it off with a .fill 0. */ | |
7309 | ||
7fa3d080 BW |
7310 | static bfd_boolean next_instrs_are_b_retw (fragS *); |
7311 | ||
e0001a05 | 7312 | static void |
7fa3d080 | 7313 | xtensa_fix_a0_b_retw_frags (void) |
e0001a05 NC |
7314 | { |
7315 | frchainS *frchP; | |
c9049d30 | 7316 | asection *s; |
e0001a05 NC |
7317 | |
7318 | /* When this routine is called, all of the subsections are still intact | |
7319 | so we walk over subsections instead of sections. */ | |
c9049d30 AM |
7320 | for (s = stdoutput->sections; s; s = s->next) |
7321 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7322 | { | |
7323 | fragS *fragP; | |
e0001a05 | 7324 | |
c9049d30 AM |
7325 | /* Walk over all of the fragments in a subsection. */ |
7326 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7327 | { | |
7328 | if (fragP->fr_type == rs_machine_dependent | |
7329 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW) | |
7330 | { | |
7331 | if (next_instrs_are_b_retw (fragP)) | |
7332 | { | |
7333 | if (fragP->tc_frag_data.is_no_transform) | |
7334 | as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata")); | |
7335 | else | |
7336 | relax_frag_add_nop (fragP); | |
7337 | } | |
7338 | frag_wane (fragP); | |
7339 | } | |
7340 | } | |
7341 | } | |
e0001a05 NC |
7342 | } |
7343 | ||
7344 | ||
7fa3d080 BW |
7345 | static bfd_boolean |
7346 | next_instrs_are_b_retw (fragS *fragP) | |
e0001a05 NC |
7347 | { |
7348 | xtensa_opcode opcode; | |
43cd72b9 | 7349 | xtensa_format fmt; |
e0001a05 NC |
7350 | const fragS *next_fragP = next_non_empty_frag (fragP); |
7351 | static xtensa_insnbuf insnbuf = NULL; | |
43cd72b9 | 7352 | static xtensa_insnbuf slotbuf = NULL; |
e0001a05 NC |
7353 | xtensa_isa isa = xtensa_default_isa; |
7354 | int offset = 0; | |
43cd72b9 BW |
7355 | int slot; |
7356 | bfd_boolean branch_seen = FALSE; | |
e0001a05 NC |
7357 | |
7358 | if (!insnbuf) | |
43cd72b9 BW |
7359 | { |
7360 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7361 | slotbuf = xtensa_insnbuf_alloc (isa); | |
7362 | } | |
e0001a05 NC |
7363 | |
7364 | if (next_fragP == NULL) | |
7365 | return FALSE; | |
7366 | ||
7367 | /* Check for the conditional branch. */ | |
d77b99c9 BW |
7368 | xtensa_insnbuf_from_chars |
7369 | (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0); | |
43cd72b9 BW |
7370 | fmt = xtensa_format_decode (isa, insnbuf); |
7371 | if (fmt == XTENSA_UNDEFINED) | |
7372 | return FALSE; | |
7373 | ||
7374 | for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++) | |
7375 | { | |
7376 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); | |
7377 | opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
7378 | ||
7379 | branch_seen = (branch_seen | |
7380 | || xtensa_opcode_is_branch (isa, opcode) == 1); | |
7381 | } | |
e0001a05 | 7382 | |
43cd72b9 | 7383 | if (!branch_seen) |
e0001a05 NC |
7384 | return FALSE; |
7385 | ||
43cd72b9 | 7386 | offset += xtensa_format_length (isa, fmt); |
e0001a05 NC |
7387 | if (offset == next_fragP->fr_fix) |
7388 | { | |
7389 | next_fragP = next_non_empty_frag (next_fragP); | |
7390 | offset = 0; | |
7391 | } | |
43cd72b9 | 7392 | |
e0001a05 NC |
7393 | if (next_fragP == NULL) |
7394 | return FALSE; | |
7395 | ||
7396 | /* Check for the retw/retw.n. */ | |
d77b99c9 BW |
7397 | xtensa_insnbuf_from_chars |
7398 | (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0); | |
43cd72b9 BW |
7399 | fmt = xtensa_format_decode (isa, insnbuf); |
7400 | ||
7401 | /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we | |
7402 | have no problems. */ | |
7403 | if (fmt == XTENSA_UNDEFINED | |
7404 | || xtensa_format_num_slots (isa, fmt) != 1) | |
7405 | return FALSE; | |
7406 | ||
7407 | xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf); | |
7408 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
e0001a05 | 7409 | |
b08b5071 | 7410 | if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode) |
e0001a05 | 7411 | return TRUE; |
43cd72b9 | 7412 | |
e0001a05 NC |
7413 | return FALSE; |
7414 | } | |
7415 | ||
7416 | ||
7417 | /* Re-process all of the fragments looking to convert all of the | |
7418 | RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a | |
7419 | loop end label, convert this frag to one that will generate a NOP. | |
7420 | In any case close it off with a .fill 0. */ | |
7421 | ||
7fa3d080 BW |
7422 | static bfd_boolean next_instr_is_loop_end (fragS *); |
7423 | ||
e0001a05 | 7424 | static void |
7fa3d080 | 7425 | xtensa_fix_b_j_loop_end_frags (void) |
e0001a05 NC |
7426 | { |
7427 | frchainS *frchP; | |
c9049d30 | 7428 | asection *s; |
e0001a05 NC |
7429 | |
7430 | /* When this routine is called, all of the subsections are still intact | |
7431 | so we walk over subsections instead of sections. */ | |
c9049d30 AM |
7432 | for (s = stdoutput->sections; s; s = s->next) |
7433 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7434 | { | |
7435 | fragS *fragP; | |
e0001a05 | 7436 | |
c9049d30 AM |
7437 | /* Walk over all of the fragments in a subsection. */ |
7438 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7439 | { | |
7440 | if (fragP->fr_type == rs_machine_dependent | |
7441 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END) | |
7442 | { | |
7443 | if (next_instr_is_loop_end (fragP)) | |
7444 | { | |
7445 | if (fragP->tc_frag_data.is_no_transform) | |
7446 | as_bad (_("branching or jumping to a loop end may trigger hardware errata")); | |
7447 | else | |
7448 | relax_frag_add_nop (fragP); | |
7449 | } | |
7450 | frag_wane (fragP); | |
7451 | } | |
7452 | } | |
7453 | } | |
e0001a05 NC |
7454 | } |
7455 | ||
7456 | ||
7fa3d080 BW |
7457 | static bfd_boolean |
7458 | next_instr_is_loop_end (fragS *fragP) | |
e0001a05 NC |
7459 | { |
7460 | const fragS *next_fragP; | |
7461 | ||
7462 | if (next_frag_is_loop_target (fragP)) | |
7463 | return FALSE; | |
7464 | ||
7465 | next_fragP = next_non_empty_frag (fragP); | |
7466 | if (next_fragP == NULL) | |
7467 | return FALSE; | |
7468 | ||
7469 | if (!next_frag_is_loop_target (next_fragP)) | |
7470 | return FALSE; | |
7471 | ||
7472 | /* If the size is >= 3 then there is more than one instruction here. | |
7473 | The hardware bug will not fire. */ | |
7474 | if (next_fragP->fr_fix > 3) | |
7475 | return FALSE; | |
7476 | ||
7477 | return TRUE; | |
7478 | } | |
7479 | ||
7480 | ||
7481 | /* Re-process all of the fragments looking to convert all of the | |
7482 | RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is | |
7483 | not MY loop's loop end within 12 bytes, add enough nops here to | |
7484 | make it at least 12 bytes away. In any case close it off with a | |
7485 | .fill 0. */ | |
7486 | ||
d77b99c9 | 7487 | static offsetT min_bytes_to_other_loop_end |
05d58145 | 7488 | (fragS *, fragS *, offsetT); |
7fa3d080 | 7489 | |
e0001a05 | 7490 | static void |
7fa3d080 | 7491 | xtensa_fix_close_loop_end_frags (void) |
e0001a05 NC |
7492 | { |
7493 | frchainS *frchP; | |
c9049d30 | 7494 | asection *s; |
e0001a05 NC |
7495 | |
7496 | /* When this routine is called, all of the subsections are still intact | |
7497 | so we walk over subsections instead of sections. */ | |
c9049d30 AM |
7498 | for (s = stdoutput->sections; s; s = s->next) |
7499 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7500 | { | |
7501 | fragS *fragP; | |
e0001a05 | 7502 | |
c9049d30 | 7503 | fragS *current_target = NULL; |
e0001a05 | 7504 | |
c9049d30 AM |
7505 | /* Walk over all of the fragments in a subsection. */ |
7506 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7507 | { | |
7508 | if (fragP->fr_type == rs_machine_dependent | |
7509 | && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE) | |
7510 | || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))) | |
05d58145 | 7511 | current_target = symbol_get_frag (fragP->fr_symbol); |
e0001a05 | 7512 | |
c9049d30 AM |
7513 | if (current_target |
7514 | && fragP->fr_type == rs_machine_dependent | |
7515 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END) | |
7516 | { | |
7517 | offsetT min_bytes; | |
7518 | int bytes_added = 0; | |
e0001a05 NC |
7519 | |
7520 | #define REQUIRED_LOOP_DIVIDING_BYTES 12 | |
c9049d30 AM |
7521 | /* Max out at 12. */ |
7522 | min_bytes = min_bytes_to_other_loop_end | |
7523 | (fragP->fr_next, current_target, REQUIRED_LOOP_DIVIDING_BYTES); | |
7524 | ||
7525 | if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES) | |
7526 | { | |
7527 | if (fragP->tc_frag_data.is_no_transform) | |
7528 | as_bad (_("loop end too close to another loop end may trigger hardware errata")); | |
7529 | else | |
7530 | { | |
7531 | while (min_bytes + bytes_added | |
7532 | < REQUIRED_LOOP_DIVIDING_BYTES) | |
7533 | { | |
7534 | int length = 3; | |
7535 | ||
7536 | if (fragP->fr_var < length) | |
7537 | as_fatal (_("fr_var %lu < length %d"), | |
7538 | (long) fragP->fr_var, length); | |
7539 | else | |
7540 | { | |
7541 | assemble_nop (length, | |
7542 | fragP->fr_literal + fragP->fr_fix); | |
7543 | fragP->fr_fix += length; | |
7544 | fragP->fr_var -= length; | |
7545 | } | |
7546 | bytes_added += length; | |
7547 | } | |
7548 | } | |
7549 | } | |
7550 | frag_wane (fragP); | |
7551 | } | |
7552 | assert (fragP->fr_type != rs_machine_dependent | |
7553 | || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END); | |
7554 | } | |
7555 | } | |
e0001a05 NC |
7556 | } |
7557 | ||
7558 | ||
d77b99c9 | 7559 | static offsetT unrelaxed_frag_min_size (fragS *); |
7fa3d080 | 7560 | |
d77b99c9 | 7561 | static offsetT |
7fa3d080 BW |
7562 | min_bytes_to_other_loop_end (fragS *fragP, |
7563 | fragS *current_target, | |
d77b99c9 | 7564 | offsetT max_size) |
e0001a05 | 7565 | { |
d77b99c9 | 7566 | offsetT offset = 0; |
e0001a05 NC |
7567 | fragS *current_fragP; |
7568 | ||
7569 | for (current_fragP = fragP; | |
7570 | current_fragP; | |
7571 | current_fragP = current_fragP->fr_next) | |
7572 | { | |
7573 | if (current_fragP->tc_frag_data.is_loop_target | |
7574 | && current_fragP != current_target) | |
05d58145 | 7575 | return offset; |
e0001a05 NC |
7576 | |
7577 | offset += unrelaxed_frag_min_size (current_fragP); | |
7578 | ||
05d58145 | 7579 | if (offset >= max_size) |
e0001a05 NC |
7580 | return max_size; |
7581 | } | |
7582 | return max_size; | |
7583 | } | |
7584 | ||
7585 | ||
d77b99c9 | 7586 | static offsetT |
7fa3d080 | 7587 | unrelaxed_frag_min_size (fragS *fragP) |
e0001a05 | 7588 | { |
d77b99c9 | 7589 | offsetT size = fragP->fr_fix; |
e0001a05 | 7590 | |
d77b99c9 | 7591 | /* Add fill size. */ |
e0001a05 NC |
7592 | if (fragP->fr_type == rs_fill) |
7593 | size += fragP->fr_offset; | |
7594 | ||
7595 | return size; | |
7596 | } | |
7597 | ||
7598 | ||
d77b99c9 | 7599 | static offsetT |
7fa3d080 | 7600 | unrelaxed_frag_max_size (fragS *fragP) |
43cd72b9 | 7601 | { |
d77b99c9 | 7602 | offsetT size = fragP->fr_fix; |
43cd72b9 BW |
7603 | switch (fragP->fr_type) |
7604 | { | |
7605 | case 0: | |
c138bc38 | 7606 | /* Empty frags created by the obstack allocation scheme |
43cd72b9 BW |
7607 | end up with type 0. */ |
7608 | break; | |
7609 | case rs_fill: | |
7610 | case rs_org: | |
7611 | case rs_space: | |
7612 | size += fragP->fr_offset; | |
7613 | break; | |
7614 | case rs_align: | |
7615 | case rs_align_code: | |
7616 | case rs_align_test: | |
7617 | case rs_leb128: | |
7618 | case rs_cfa: | |
7619 | case rs_dwarf2dbg: | |
7620 | /* No further adjustments needed. */ | |
7621 | break; | |
7622 | case rs_machine_dependent: | |
7623 | if (fragP->fr_subtype != RELAX_DESIRE_ALIGN) | |
7624 | size += fragP->fr_var; | |
7625 | break; | |
7626 | default: | |
7627 | /* We had darn well better know how big it is. */ | |
7628 | assert (0); | |
7629 | break; | |
7630 | } | |
7631 | ||
7632 | return size; | |
7633 | } | |
7634 | ||
7635 | ||
e0001a05 NC |
7636 | /* Re-process all of the fragments looking to convert all |
7637 | of the RELAX_ADD_NOP_IF_SHORT_LOOP. If: | |
7638 | ||
7639 | A) | |
7640 | 1) the instruction size count to the loop end label | |
7641 | is too short (<= 2 instructions), | |
7642 | 2) loop has a jump or branch in it | |
7643 | ||
7644 | or B) | |
43cd72b9 | 7645 | 1) workaround_all_short_loops is TRUE |
e0001a05 NC |
7646 | 2) The generating loop was a 'loopgtz' or 'loopnez' |
7647 | 3) the instruction size count to the loop end label is too short | |
7648 | (<= 2 instructions) | |
7649 | then convert this frag (and maybe the next one) to generate a NOP. | |
7650 | In any case close it off with a .fill 0. */ | |
7651 | ||
d77b99c9 | 7652 | static int count_insns_to_loop_end (fragS *, bfd_boolean, int); |
7fa3d080 BW |
7653 | static bfd_boolean branch_before_loop_end (fragS *); |
7654 | ||
e0001a05 | 7655 | static void |
7fa3d080 | 7656 | xtensa_fix_short_loop_frags (void) |
e0001a05 NC |
7657 | { |
7658 | frchainS *frchP; | |
c9049d30 | 7659 | asection *s; |
e0001a05 NC |
7660 | |
7661 | /* When this routine is called, all of the subsections are still intact | |
7662 | so we walk over subsections instead of sections. */ | |
c9049d30 AM |
7663 | for (s = stdoutput->sections; s; s = s->next) |
7664 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7665 | { | |
7666 | fragS *fragP; | |
7667 | fragS *current_target = NULL; | |
7668 | xtensa_opcode current_opcode = XTENSA_UNDEFINED; | |
e0001a05 | 7669 | |
c9049d30 AM |
7670 | /* Walk over all of the fragments in a subsection. */ |
7671 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7672 | { | |
7673 | if (fragP->fr_type == rs_machine_dependent | |
7674 | && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE) | |
7675 | || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))) | |
7676 | { | |
7677 | TInsn t_insn; | |
7678 | fragS *loop_frag = next_non_empty_frag (fragP); | |
7679 | tinsn_from_chars (&t_insn, loop_frag->fr_opcode, 0); | |
7680 | current_target = symbol_get_frag (fragP->fr_symbol); | |
7681 | current_opcode = t_insn.opcode; | |
7682 | assert (xtensa_opcode_is_loop (xtensa_default_isa, | |
64b607e6 | 7683 | current_opcode) == 1); |
c9049d30 | 7684 | } |
e0001a05 | 7685 | |
c9049d30 AM |
7686 | if (fragP->fr_type == rs_machine_dependent |
7687 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP) | |
7688 | { | |
7689 | if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3 | |
7690 | && (branch_before_loop_end (fragP->fr_next) | |
7691 | || (workaround_all_short_loops | |
7692 | && current_opcode != XTENSA_UNDEFINED | |
7693 | && current_opcode != xtensa_loop_opcode))) | |
7694 | { | |
7695 | if (fragP->tc_frag_data.is_no_transform) | |
7696 | as_bad (_("loop containing less than three instructions may trigger hardware errata")); | |
7697 | else | |
7698 | relax_frag_add_nop (fragP); | |
7699 | } | |
7700 | frag_wane (fragP); | |
7701 | } | |
7702 | } | |
7703 | } | |
e0001a05 NC |
7704 | } |
7705 | ||
7706 | ||
d77b99c9 | 7707 | static int unrelaxed_frag_min_insn_count (fragS *); |
7fa3d080 | 7708 | |
d77b99c9 | 7709 | static int |
7fa3d080 BW |
7710 | count_insns_to_loop_end (fragS *base_fragP, |
7711 | bfd_boolean count_relax_add, | |
d77b99c9 | 7712 | int max_count) |
e0001a05 NC |
7713 | { |
7714 | fragS *fragP = NULL; | |
d77b99c9 | 7715 | int insn_count = 0; |
e0001a05 NC |
7716 | |
7717 | fragP = base_fragP; | |
7718 | ||
7719 | for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next) | |
7720 | { | |
7721 | insn_count += unrelaxed_frag_min_insn_count (fragP); | |
7722 | if (insn_count >= max_count) | |
7723 | return max_count; | |
7724 | ||
7725 | if (count_relax_add) | |
7726 | { | |
7727 | if (fragP->fr_type == rs_machine_dependent | |
7728 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP) | |
7729 | { | |
7730 | /* In order to add the appropriate number of | |
7731 | NOPs, we count an instruction for downstream | |
7732 | occurrences. */ | |
7733 | insn_count++; | |
7734 | if (insn_count >= max_count) | |
7735 | return max_count; | |
7736 | } | |
7737 | } | |
7738 | } | |
7739 | return insn_count; | |
7740 | } | |
7741 | ||
7742 | ||
d77b99c9 | 7743 | static int |
7fa3d080 | 7744 | unrelaxed_frag_min_insn_count (fragS *fragP) |
e0001a05 | 7745 | { |
43cd72b9 BW |
7746 | xtensa_isa isa = xtensa_default_isa; |
7747 | static xtensa_insnbuf insnbuf = NULL; | |
d77b99c9 | 7748 | int insn_count = 0; |
e0001a05 NC |
7749 | int offset = 0; |
7750 | ||
7751 | if (!fragP->tc_frag_data.is_insn) | |
7752 | return insn_count; | |
7753 | ||
43cd72b9 BW |
7754 | if (!insnbuf) |
7755 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7756 | ||
e0001a05 NC |
7757 | /* Decode the fixed instructions. */ |
7758 | while (offset < fragP->fr_fix) | |
7759 | { | |
43cd72b9 BW |
7760 | xtensa_format fmt; |
7761 | ||
d77b99c9 BW |
7762 | xtensa_insnbuf_from_chars |
7763 | (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0); | |
43cd72b9 BW |
7764 | fmt = xtensa_format_decode (isa, insnbuf); |
7765 | ||
7766 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 NC |
7767 | { |
7768 | as_fatal (_("undecodable instruction in instruction frag")); | |
7769 | return insn_count; | |
7770 | } | |
43cd72b9 | 7771 | offset += xtensa_format_length (isa, fmt); |
e0001a05 NC |
7772 | insn_count++; |
7773 | } | |
7774 | ||
7775 | return insn_count; | |
7776 | } | |
7777 | ||
7778 | ||
7fa3d080 BW |
7779 | static bfd_boolean unrelaxed_frag_has_b_j (fragS *); |
7780 | ||
43cd72b9 | 7781 | static bfd_boolean |
7fa3d080 | 7782 | branch_before_loop_end (fragS *base_fragP) |
e0001a05 NC |
7783 | { |
7784 | fragS *fragP; | |
7785 | ||
7786 | for (fragP = base_fragP; | |
7787 | fragP && !fragP->tc_frag_data.is_loop_target; | |
7788 | fragP = fragP->fr_next) | |
7789 | { | |
7790 | if (unrelaxed_frag_has_b_j (fragP)) | |
7791 | return TRUE; | |
7792 | } | |
7793 | return FALSE; | |
7794 | } | |
7795 | ||
7796 | ||
43cd72b9 | 7797 | static bfd_boolean |
7fa3d080 | 7798 | unrelaxed_frag_has_b_j (fragS *fragP) |
e0001a05 | 7799 | { |
43cd72b9 BW |
7800 | static xtensa_insnbuf insnbuf = NULL; |
7801 | xtensa_isa isa = xtensa_default_isa; | |
e0001a05 NC |
7802 | int offset = 0; |
7803 | ||
7804 | if (!fragP->tc_frag_data.is_insn) | |
7805 | return FALSE; | |
7806 | ||
43cd72b9 BW |
7807 | if (!insnbuf) |
7808 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7809 | ||
e0001a05 NC |
7810 | /* Decode the fixed instructions. */ |
7811 | while (offset < fragP->fr_fix) | |
7812 | { | |
43cd72b9 BW |
7813 | xtensa_format fmt; |
7814 | int slot; | |
7815 | ||
d77b99c9 BW |
7816 | xtensa_insnbuf_from_chars |
7817 | (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0); | |
43cd72b9 BW |
7818 | fmt = xtensa_format_decode (isa, insnbuf); |
7819 | if (fmt == XTENSA_UNDEFINED) | |
7820 | return FALSE; | |
7821 | ||
7822 | for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++) | |
e0001a05 | 7823 | { |
43cd72b9 BW |
7824 | xtensa_opcode opcode = |
7825 | get_opcode_from_buf (fragP->fr_literal + offset, slot); | |
7826 | if (xtensa_opcode_is_branch (isa, opcode) == 1 | |
7827 | || xtensa_opcode_is_jump (isa, opcode) == 1) | |
7828 | return TRUE; | |
e0001a05 | 7829 | } |
43cd72b9 | 7830 | offset += xtensa_format_length (isa, fmt); |
e0001a05 NC |
7831 | } |
7832 | return FALSE; | |
7833 | } | |
7834 | ||
7835 | ||
7836 | /* Checks to be made after initial assembly but before relaxation. */ | |
7837 | ||
7fa3d080 BW |
7838 | static bfd_boolean is_empty_loop (const TInsn *, fragS *); |
7839 | static bfd_boolean is_local_forward_loop (const TInsn *, fragS *); | |
7840 | ||
e0001a05 | 7841 | static void |
7fa3d080 | 7842 | xtensa_sanity_check (void) |
e0001a05 NC |
7843 | { |
7844 | char *file_name; | |
d77b99c9 | 7845 | unsigned line; |
e0001a05 | 7846 | frchainS *frchP; |
c9049d30 | 7847 | asection *s; |
e0001a05 NC |
7848 | |
7849 | as_where (&file_name, &line); | |
c9049d30 AM |
7850 | for (s = stdoutput->sections; s; s = s->next) |
7851 | for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next) | |
7852 | { | |
7853 | fragS *fragP; | |
e0001a05 | 7854 | |
c9049d30 AM |
7855 | /* Walk over all of the fragments in a subsection. */ |
7856 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7857 | { | |
c9049d30 | 7858 | if (fragP->fr_type == rs_machine_dependent |
a7284bf1 BW |
7859 | && fragP->fr_subtype == RELAX_SLOTS |
7860 | && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED) | |
c9049d30 AM |
7861 | { |
7862 | static xtensa_insnbuf insnbuf = NULL; | |
7863 | TInsn t_insn; | |
7864 | ||
7865 | if (fragP->fr_opcode != NULL) | |
7866 | { | |
7867 | if (!insnbuf) | |
7868 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
7869 | tinsn_from_chars (&t_insn, fragP->fr_opcode, 0); | |
7870 | tinsn_immed_from_frag (&t_insn, fragP, 0); | |
7871 | ||
7872 | if (xtensa_opcode_is_loop (xtensa_default_isa, | |
7873 | t_insn.opcode) == 1) | |
7874 | { | |
7875 | if (is_empty_loop (&t_insn, fragP)) | |
7876 | { | |
7877 | new_logical_line (fragP->fr_file, fragP->fr_line); | |
7878 | as_bad (_("invalid empty loop")); | |
7879 | } | |
7880 | if (!is_local_forward_loop (&t_insn, fragP)) | |
7881 | { | |
7882 | new_logical_line (fragP->fr_file, fragP->fr_line); | |
7883 | as_bad (_("loop target does not follow " | |
7884 | "loop instruction in section")); | |
7885 | } | |
7886 | } | |
7887 | } | |
7888 | } | |
7889 | } | |
7890 | } | |
e0001a05 NC |
7891 | new_logical_line (file_name, line); |
7892 | } | |
7893 | ||
7894 | ||
7895 | #define LOOP_IMMED_OPN 1 | |
7896 | ||
43cd72b9 | 7897 | /* Return TRUE if the loop target is the next non-zero fragment. */ |
e0001a05 | 7898 | |
7fa3d080 BW |
7899 | static bfd_boolean |
7900 | is_empty_loop (const TInsn *insn, fragS *fragP) | |
e0001a05 NC |
7901 | { |
7902 | const expressionS *expr; | |
7903 | symbolS *symbolP; | |
7904 | fragS *next_fragP; | |
7905 | ||
7906 | if (insn->insn_type != ITYPE_INSN) | |
7907 | return FALSE; | |
7908 | ||
43cd72b9 | 7909 | if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1) |
e0001a05 NC |
7910 | return FALSE; |
7911 | ||
7912 | if (insn->ntok <= LOOP_IMMED_OPN) | |
7913 | return FALSE; | |
7914 | ||
7915 | expr = &insn->tok[LOOP_IMMED_OPN]; | |
7916 | ||
7917 | if (expr->X_op != O_symbol) | |
7918 | return FALSE; | |
7919 | ||
7920 | symbolP = expr->X_add_symbol; | |
7921 | if (!symbolP) | |
7922 | return FALSE; | |
7923 | ||
7924 | if (symbol_get_frag (symbolP) == NULL) | |
7925 | return FALSE; | |
7926 | ||
7927 | if (S_GET_VALUE (symbolP) != 0) | |
7928 | return FALSE; | |
7929 | ||
7930 | /* Walk through the zero-size fragments from this one. If we find | |
7931 | the target fragment, then this is a zero-size loop. */ | |
43cd72b9 | 7932 | |
e0001a05 NC |
7933 | for (next_fragP = fragP->fr_next; |
7934 | next_fragP != NULL; | |
7935 | next_fragP = next_fragP->fr_next) | |
7936 | { | |
7937 | if (next_fragP == symbol_get_frag (symbolP)) | |
7938 | return TRUE; | |
7939 | if (next_fragP->fr_fix != 0) | |
7940 | return FALSE; | |
7941 | } | |
7942 | return FALSE; | |
7943 | } | |
7944 | ||
7945 | ||
7fa3d080 BW |
7946 | static bfd_boolean |
7947 | is_local_forward_loop (const TInsn *insn, fragS *fragP) | |
e0001a05 NC |
7948 | { |
7949 | const expressionS *expr; | |
7950 | symbolS *symbolP; | |
7951 | fragS *next_fragP; | |
7952 | ||
7953 | if (insn->insn_type != ITYPE_INSN) | |
7954 | return FALSE; | |
7955 | ||
64b607e6 | 7956 | if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1) |
e0001a05 NC |
7957 | return FALSE; |
7958 | ||
7959 | if (insn->ntok <= LOOP_IMMED_OPN) | |
7960 | return FALSE; | |
7961 | ||
7962 | expr = &insn->tok[LOOP_IMMED_OPN]; | |
7963 | ||
7964 | if (expr->X_op != O_symbol) | |
7965 | return FALSE; | |
7966 | ||
7967 | symbolP = expr->X_add_symbol; | |
7968 | if (!symbolP) | |
7969 | return FALSE; | |
7970 | ||
7971 | if (symbol_get_frag (symbolP) == NULL) | |
7972 | return FALSE; | |
7973 | ||
7974 | /* Walk through fragments until we find the target. | |
7975 | If we do not find the target, then this is an invalid loop. */ | |
43cd72b9 | 7976 | |
e0001a05 NC |
7977 | for (next_fragP = fragP->fr_next; |
7978 | next_fragP != NULL; | |
7979 | next_fragP = next_fragP->fr_next) | |
43cd72b9 BW |
7980 | { |
7981 | if (next_fragP == symbol_get_frag (symbolP)) | |
7982 | return TRUE; | |
7983 | } | |
e0001a05 NC |
7984 | |
7985 | return FALSE; | |
7986 | } | |
7987 | ||
2caa7ca0 BW |
7988 | |
7989 | #define XTINFO_NAME "Xtensa_Info" | |
7990 | #define XTINFO_NAMESZ 12 | |
7991 | #define XTINFO_TYPE 1 | |
7992 | ||
7993 | static void | |
7994 | xtensa_add_config_info (void) | |
7995 | { | |
7996 | asection *info_sec; | |
7997 | char *data, *p; | |
7998 | int sz; | |
7999 | ||
8000 | info_sec = subseg_new (".xtensa.info", 0); | |
8001 | bfd_set_section_flags (stdoutput, info_sec, SEC_HAS_CONTENTS | SEC_READONLY); | |
8002 | ||
8003 | data = xmalloc (100); | |
8004 | sprintf (data, "USE_ABSOLUTE_LITERALS=%d\nABI=%d\n", | |
8005 | XSHAL_USE_ABSOLUTE_LITERALS, XSHAL_ABI); | |
8006 | sz = strlen (data) + 1; | |
8007 | ||
8008 | /* Add enough null terminators to pad to a word boundary. */ | |
8009 | do | |
8010 | data[sz++] = 0; | |
8011 | while ((sz & 3) != 0); | |
8012 | ||
8013 | /* Follow the standard note section layout: | |
8014 | First write the length of the name string. */ | |
8015 | p = frag_more (4); | |
8016 | md_number_to_chars (p, (valueT) XTINFO_NAMESZ, 4); | |
8017 | ||
8018 | /* Next comes the length of the "descriptor", i.e., the actual data. */ | |
8019 | p = frag_more (4); | |
8020 | md_number_to_chars (p, (valueT) sz, 4); | |
8021 | ||
8022 | /* Write the note type. */ | |
8023 | p = frag_more (4); | |
8024 | md_number_to_chars (p, (valueT) XTINFO_TYPE, 4); | |
8025 | ||
8026 | /* Write the name field. */ | |
8027 | p = frag_more (XTINFO_NAMESZ); | |
8028 | memcpy (p, XTINFO_NAME, XTINFO_NAMESZ); | |
8029 | ||
8030 | /* Finally, write the descriptor. */ | |
8031 | p = frag_more (sz); | |
8032 | memcpy (p, data, sz); | |
8033 | ||
8034 | free (data); | |
8035 | } | |
8036 | ||
e0001a05 NC |
8037 | \f |
8038 | /* Alignment Functions. */ | |
8039 | ||
d77b99c9 BW |
8040 | static int |
8041 | get_text_align_power (unsigned target_size) | |
e0001a05 | 8042 | { |
03aaa593 BW |
8043 | if (target_size <= 4) |
8044 | return 2; | |
8045 | assert (target_size == 8); | |
8046 | return 3; | |
e0001a05 NC |
8047 | } |
8048 | ||
8049 | ||
d77b99c9 | 8050 | static int |
7fa3d080 BW |
8051 | get_text_align_max_fill_size (int align_pow, |
8052 | bfd_boolean use_nops, | |
8053 | bfd_boolean use_no_density) | |
e0001a05 NC |
8054 | { |
8055 | if (!use_nops) | |
8056 | return (1 << align_pow); | |
8057 | if (use_no_density) | |
8058 | return 3 * (1 << align_pow); | |
8059 | ||
8060 | return 1 + (1 << align_pow); | |
8061 | } | |
8062 | ||
8063 | ||
d77b99c9 BW |
8064 | /* Calculate the minimum bytes of fill needed at "address" to align a |
8065 | target instruction of size "target_size" so that it does not cross a | |
8066 | power-of-two boundary specified by "align_pow". If "use_nops" is FALSE, | |
8067 | the fill can be an arbitrary number of bytes. Otherwise, the space must | |
8068 | be filled by NOP instructions. */ | |
e0001a05 | 8069 | |
d77b99c9 | 8070 | static int |
7fa3d080 BW |
8071 | get_text_align_fill_size (addressT address, |
8072 | int align_pow, | |
8073 | int target_size, | |
8074 | bfd_boolean use_nops, | |
8075 | bfd_boolean use_no_density) | |
e0001a05 | 8076 | { |
d77b99c9 BW |
8077 | addressT alignment, fill, fill_limit, fill_step; |
8078 | bfd_boolean skip_one = FALSE; | |
e0001a05 | 8079 | |
d77b99c9 BW |
8080 | alignment = (1 << align_pow); |
8081 | assert (target_size > 0 && alignment >= (addressT) target_size); | |
c138bc38 | 8082 | |
e0001a05 NC |
8083 | if (!use_nops) |
8084 | { | |
d77b99c9 BW |
8085 | fill_limit = alignment; |
8086 | fill_step = 1; | |
e0001a05 | 8087 | } |
d77b99c9 | 8088 | else if (!use_no_density) |
e0001a05 | 8089 | { |
d77b99c9 BW |
8090 | /* Combine 2- and 3-byte NOPs to fill anything larger than one. */ |
8091 | fill_limit = alignment * 2; | |
8092 | fill_step = 1; | |
8093 | skip_one = TRUE; | |
e0001a05 NC |
8094 | } |
8095 | else | |
8096 | { | |
d77b99c9 BW |
8097 | /* Fill with 3-byte NOPs -- can only fill multiples of 3. */ |
8098 | fill_limit = alignment * 3; | |
8099 | fill_step = 3; | |
8100 | } | |
e0001a05 | 8101 | |
d77b99c9 BW |
8102 | /* Try all fill sizes until finding one that works. */ |
8103 | for (fill = 0; fill < fill_limit; fill += fill_step) | |
8104 | { | |
8105 | if (skip_one && fill == 1) | |
8106 | continue; | |
8107 | if ((address + fill) >> align_pow | |
8108 | == (address + fill + target_size - 1) >> align_pow) | |
8109 | return fill; | |
e0001a05 NC |
8110 | } |
8111 | assert (0); | |
8112 | return 0; | |
8113 | } | |
8114 | ||
8115 | ||
664df4e4 BW |
8116 | static int |
8117 | branch_align_power (segT sec) | |
8118 | { | |
8119 | /* If the Xtensa processor has a fetch width of 8 bytes, and the section | |
8120 | is aligned to at least an 8-byte boundary, then a branch target need | |
8121 | only fit within an 8-byte aligned block of memory to avoid a stall. | |
8122 | Otherwise, try to fit branch targets within 4-byte aligned blocks | |
8123 | (which may be insufficient, e.g., if the section has no alignment, but | |
8124 | it's good enough). */ | |
8125 | if (xtensa_fetch_width == 8) | |
8126 | { | |
8127 | if (get_recorded_alignment (sec) >= 3) | |
8128 | return 3; | |
8129 | } | |
8130 | else | |
8131 | assert (xtensa_fetch_width == 4); | |
8132 | ||
8133 | return 2; | |
8134 | } | |
8135 | ||
8136 | ||
e0001a05 NC |
8137 | /* This will assert if it is not possible. */ |
8138 | ||
d77b99c9 BW |
8139 | static int |
8140 | get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density) | |
e0001a05 | 8141 | { |
d77b99c9 BW |
8142 | int count = 0; |
8143 | ||
e0001a05 NC |
8144 | if (use_no_density) |
8145 | { | |
8146 | assert (fill_size % 3 == 0); | |
8147 | return (fill_size / 3); | |
8148 | } | |
8149 | ||
8150 | assert (fill_size != 1); /* Bad argument. */ | |
8151 | ||
8152 | while (fill_size > 1) | |
8153 | { | |
d77b99c9 | 8154 | int insn_size = 3; |
e0001a05 NC |
8155 | if (fill_size == 2 || fill_size == 4) |
8156 | insn_size = 2; | |
8157 | fill_size -= insn_size; | |
8158 | count++; | |
8159 | } | |
8160 | assert (fill_size != 1); /* Bad algorithm. */ | |
8161 | return count; | |
8162 | } | |
8163 | ||
8164 | ||
d77b99c9 BW |
8165 | static int |
8166 | get_text_align_nth_nop_size (offsetT fill_size, | |
8167 | int n, | |
7fa3d080 | 8168 | bfd_boolean use_no_density) |
e0001a05 | 8169 | { |
d77b99c9 | 8170 | int count = 0; |
e0001a05 NC |
8171 | |
8172 | if (use_no_density) | |
8173 | return 3; | |
8174 | ||
d77b99c9 BW |
8175 | assert (fill_size != 1); /* Bad argument. */ |
8176 | ||
e0001a05 NC |
8177 | while (fill_size > 1) |
8178 | { | |
d77b99c9 | 8179 | int insn_size = 3; |
e0001a05 NC |
8180 | if (fill_size == 2 || fill_size == 4) |
8181 | insn_size = 2; | |
8182 | fill_size -= insn_size; | |
8183 | count++; | |
8184 | if (n + 1 == count) | |
8185 | return insn_size; | |
8186 | } | |
8187 | assert (0); | |
8188 | return 0; | |
8189 | } | |
8190 | ||
8191 | ||
8192 | /* For the given fragment, find the appropriate address | |
8193 | for it to begin at if we are using NOPs to align it. */ | |
8194 | ||
8195 | static addressT | |
7fa3d080 | 8196 | get_noop_aligned_address (fragS *fragP, addressT address) |
e0001a05 | 8197 | { |
43cd72b9 BW |
8198 | /* The rule is: get next fragment's FIRST instruction. Find |
8199 | the smallest number of bytes that need to be added to | |
8200 | ensure that the next fragment's FIRST instruction will fit | |
8201 | in a single word. | |
c138bc38 | 8202 | |
43cd72b9 BW |
8203 | E.G., 2 bytes : 0, 1, 2 mod 4 |
8204 | 3 bytes: 0, 1 mod 4 | |
c138bc38 | 8205 | |
43cd72b9 BW |
8206 | If the FIRST instruction MIGHT be relaxed, |
8207 | assume that it will become a 3-byte instruction. | |
c138bc38 | 8208 | |
43cd72b9 BW |
8209 | Note again here that LOOP instructions are not bundleable, |
8210 | and this relaxation only applies to LOOP opcodes. */ | |
c138bc38 | 8211 | |
d77b99c9 | 8212 | int fill_size = 0; |
43cd72b9 BW |
8213 | int first_insn_size; |
8214 | int loop_insn_size; | |
8215 | addressT pre_opcode_bytes; | |
d77b99c9 | 8216 | int align_power; |
43cd72b9 BW |
8217 | fragS *first_insn; |
8218 | xtensa_opcode opcode; | |
8219 | bfd_boolean is_loop; | |
e0001a05 | 8220 | |
43cd72b9 BW |
8221 | assert (fragP->fr_type == rs_machine_dependent); |
8222 | assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE); | |
e0001a05 | 8223 | |
43cd72b9 BW |
8224 | /* Find the loop frag. */ |
8225 | first_insn = next_non_empty_frag (fragP); | |
8226 | /* Now find the first insn frag. */ | |
8227 | first_insn = next_non_empty_frag (first_insn); | |
e0001a05 | 8228 | |
43cd72b9 BW |
8229 | is_loop = next_frag_opcode_is_loop (fragP, &opcode); |
8230 | assert (is_loop); | |
8231 | loop_insn_size = xg_get_single_size (opcode); | |
e0001a05 | 8232 | |
43cd72b9 BW |
8233 | pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP); |
8234 | pre_opcode_bytes += loop_insn_size; | |
e0001a05 | 8235 | |
43cd72b9 BW |
8236 | /* For loops, the alignment depends on the size of the |
8237 | instruction following the loop, not the LOOP instruction. */ | |
e0001a05 | 8238 | |
43cd72b9 | 8239 | if (first_insn == NULL) |
03aaa593 BW |
8240 | first_insn_size = xtensa_fetch_width; |
8241 | else | |
8242 | first_insn_size = get_loop_align_size (frag_format_size (first_insn)); | |
e0001a05 | 8243 | |
43cd72b9 | 8244 | /* If it was 8, then we'll need a larger alignment for the section. */ |
d77b99c9 BW |
8245 | align_power = get_text_align_power (first_insn_size); |
8246 | record_alignment (now_seg, align_power); | |
c138bc38 | 8247 | |
43cd72b9 | 8248 | fill_size = get_text_align_fill_size |
d77b99c9 BW |
8249 | (address + pre_opcode_bytes, align_power, first_insn_size, TRUE, |
8250 | fragP->tc_frag_data.is_no_density); | |
e0001a05 NC |
8251 | |
8252 | return address + fill_size; | |
8253 | } | |
8254 | ||
8255 | ||
43cd72b9 BW |
8256 | /* 3 mechanisms for relaxing an alignment: |
8257 | ||
8258 | Align to a power of 2. | |
8259 | Align so the next fragment's instruction does not cross a word boundary. | |
8260 | Align the current instruction so that if the next instruction | |
8261 | were 3 bytes, it would not cross a word boundary. | |
8262 | ||
e0001a05 NC |
8263 | We can align with: |
8264 | ||
43cd72b9 BW |
8265 | zeros - This is easy; always insert zeros. |
8266 | nops - 3-byte and 2-byte instructions | |
8267 | 2 - 2-byte nop | |
8268 | 3 - 3-byte nop | |
8269 | 4 - 2 2-byte nops | |
8270 | >=5 : 3-byte instruction + fn (n-3) | |
e0001a05 NC |
8271 | widening - widen previous instructions. */ |
8272 | ||
d77b99c9 BW |
8273 | static offsetT |
8274 | get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff) | |
e0001a05 | 8275 | { |
43cd72b9 BW |
8276 | addressT target_address, loop_insn_offset; |
8277 | int target_size; | |
8278 | xtensa_opcode loop_opcode; | |
8279 | bfd_boolean is_loop; | |
d77b99c9 BW |
8280 | int align_power; |
8281 | offsetT opt_diff; | |
5f9084e9 | 8282 | offsetT branch_align; |
def13efb | 8283 | fragS *loop_frag; |
e0001a05 | 8284 | |
43cd72b9 BW |
8285 | assert (fragP->fr_type == rs_machine_dependent); |
8286 | switch (fragP->fr_subtype) | |
e0001a05 | 8287 | { |
43cd72b9 BW |
8288 | case RELAX_DESIRE_ALIGN: |
8289 | target_size = next_frag_format_size (fragP); | |
8290 | if (target_size == XTENSA_UNDEFINED) | |
8291 | target_size = 3; | |
664df4e4 BW |
8292 | align_power = branch_align_power (now_seg); |
8293 | branch_align = 1 << align_power; | |
0e5cd789 BW |
8294 | /* Don't count on the section alignment being as large as the target. */ |
8295 | if (target_size > branch_align) | |
8296 | target_size = branch_align; | |
d77b99c9 | 8297 | opt_diff = get_text_align_fill_size (address, align_power, |
43cd72b9 BW |
8298 | target_size, FALSE, FALSE); |
8299 | ||
664df4e4 BW |
8300 | *max_diff = (opt_diff + branch_align |
8301 | - (target_size + ((address + opt_diff) % branch_align))); | |
43cd72b9 BW |
8302 | assert (*max_diff >= opt_diff); |
8303 | return opt_diff; | |
e0001a05 | 8304 | |
43cd72b9 | 8305 | case RELAX_ALIGN_NEXT_OPCODE: |
def13efb BW |
8306 | /* The next non-empty frag after this one holds the LOOP instruction |
8307 | that needs to be aligned. The required alignment depends on the | |
8308 | size of the next non-empty frag after the loop frag, i.e., the | |
8309 | first instruction in the loop. */ | |
8310 | loop_frag = next_non_empty_frag (fragP); | |
8311 | target_size = get_loop_align_size (next_frag_format_size (loop_frag)); | |
43cd72b9 BW |
8312 | loop_insn_offset = 0; |
8313 | is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode); | |
8314 | assert (is_loop); | |
8315 | ||
8316 | /* If the loop has been expanded then the LOOP instruction | |
8317 | could be at an offset from this fragment. */ | |
def13efb | 8318 | if (loop_frag->tc_frag_data.slot_subtypes[0] != RELAX_IMMED) |
43cd72b9 BW |
8319 | loop_insn_offset = get_expanded_loop_offset (loop_opcode); |
8320 | ||
43cd72b9 BW |
8321 | /* In an ideal world, which is what we are shooting for here, |
8322 | we wouldn't need to use any NOPs immediately prior to the | |
8323 | LOOP instruction. If this approach fails, relax_frag_loop_align | |
8324 | will call get_noop_aligned_address. */ | |
8325 | target_address = | |
8326 | address + loop_insn_offset + xg_get_single_size (loop_opcode); | |
def13efb | 8327 | align_power = get_text_align_power (target_size); |
d77b99c9 | 8328 | opt_diff = get_text_align_fill_size (target_address, align_power, |
43cd72b9 BW |
8329 | target_size, FALSE, FALSE); |
8330 | ||
8331 | *max_diff = xtensa_fetch_width | |
8332 | - ((target_address + opt_diff) % xtensa_fetch_width) | |
8333 | - target_size + opt_diff; | |
8334 | assert (*max_diff >= opt_diff); | |
8335 | return opt_diff; | |
e0001a05 | 8336 | |
43cd72b9 BW |
8337 | default: |
8338 | break; | |
e0001a05 | 8339 | } |
43cd72b9 BW |
8340 | assert (0); |
8341 | return 0; | |
e0001a05 NC |
8342 | } |
8343 | ||
8344 | \f | |
8345 | /* md_relax_frag Hook and Helper Functions. */ | |
8346 | ||
7fa3d080 BW |
8347 | static long relax_frag_loop_align (fragS *, long); |
8348 | static long relax_frag_for_align (fragS *, long); | |
8349 | static long relax_frag_immed | |
8350 | (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean); | |
8351 | ||
8352 | ||
e0001a05 NC |
8353 | /* Return the number of bytes added to this fragment, given that the |
8354 | input has been stretched already by "stretch". */ | |
8355 | ||
8356 | long | |
7fa3d080 | 8357 | xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p) |
e0001a05 | 8358 | { |
43cd72b9 | 8359 | xtensa_isa isa = xtensa_default_isa; |
e0001a05 NC |
8360 | int unreported = fragP->tc_frag_data.unreported_expansion; |
8361 | long new_stretch = 0; | |
8362 | char *file_name; | |
d77b99c9 BW |
8363 | unsigned line; |
8364 | int lit_size; | |
43cd72b9 BW |
8365 | static xtensa_insnbuf vbuf = NULL; |
8366 | int slot, num_slots; | |
8367 | xtensa_format fmt; | |
e0001a05 NC |
8368 | |
8369 | as_where (&file_name, &line); | |
8370 | new_logical_line (fragP->fr_file, fragP->fr_line); | |
8371 | ||
8372 | fragP->tc_frag_data.unreported_expansion = 0; | |
8373 | ||
8374 | switch (fragP->fr_subtype) | |
8375 | { | |
8376 | case RELAX_ALIGN_NEXT_OPCODE: | |
8377 | /* Always convert. */ | |
43cd72b9 BW |
8378 | if (fragP->tc_frag_data.relax_seen) |
8379 | new_stretch = relax_frag_loop_align (fragP, stretch); | |
e0001a05 NC |
8380 | break; |
8381 | ||
8382 | case RELAX_LOOP_END: | |
8383 | /* Do nothing. */ | |
8384 | break; | |
8385 | ||
8386 | case RELAX_LOOP_END_ADD_NOP: | |
8387 | /* Add a NOP and switch to .fill 0. */ | |
8388 | new_stretch = relax_frag_add_nop (fragP); | |
43cd72b9 | 8389 | frag_wane (fragP); |
e0001a05 NC |
8390 | break; |
8391 | ||
8392 | case RELAX_DESIRE_ALIGN: | |
43cd72b9 | 8393 | /* Do nothing. The narrowing before this frag will either align |
e0001a05 NC |
8394 | it or not. */ |
8395 | break; | |
8396 | ||
8397 | case RELAX_LITERAL: | |
8398 | case RELAX_LITERAL_FINAL: | |
8399 | return 0; | |
8400 | ||
8401 | case RELAX_LITERAL_NR: | |
8402 | lit_size = 4; | |
8403 | fragP->fr_subtype = RELAX_LITERAL_FINAL; | |
8404 | assert (unreported == lit_size); | |
8405 | memset (&fragP->fr_literal[fragP->fr_fix], 0, 4); | |
8406 | fragP->fr_var -= lit_size; | |
8407 | fragP->fr_fix += lit_size; | |
8408 | new_stretch = 4; | |
8409 | break; | |
8410 | ||
43cd72b9 BW |
8411 | case RELAX_SLOTS: |
8412 | if (vbuf == NULL) | |
8413 | vbuf = xtensa_insnbuf_alloc (isa); | |
8414 | ||
d77b99c9 BW |
8415 | xtensa_insnbuf_from_chars |
8416 | (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0); | |
43cd72b9 BW |
8417 | fmt = xtensa_format_decode (isa, vbuf); |
8418 | num_slots = xtensa_format_num_slots (isa, fmt); | |
e0001a05 | 8419 | |
43cd72b9 BW |
8420 | for (slot = 0; slot < num_slots; slot++) |
8421 | { | |
8422 | switch (fragP->tc_frag_data.slot_subtypes[slot]) | |
8423 | { | |
8424 | case RELAX_NARROW: | |
8425 | if (fragP->tc_frag_data.relax_seen) | |
8426 | new_stretch += relax_frag_for_align (fragP, stretch); | |
8427 | break; | |
8428 | ||
8429 | case RELAX_IMMED: | |
8430 | case RELAX_IMMED_STEP1: | |
8431 | case RELAX_IMMED_STEP2: | |
b81bf389 | 8432 | case RELAX_IMMED_STEP3: |
43cd72b9 BW |
8433 | /* Place the immediate. */ |
8434 | new_stretch += relax_frag_immed | |
8435 | (now_seg, fragP, stretch, | |
8436 | fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED, | |
8437 | fmt, slot, stretched_p, FALSE); | |
8438 | break; | |
8439 | ||
8440 | default: | |
8441 | /* This is OK; see the note in xg_assemble_vliw_tokens. */ | |
8442 | break; | |
8443 | } | |
8444 | } | |
e0001a05 NC |
8445 | break; |
8446 | ||
8447 | case RELAX_LITERAL_POOL_BEGIN: | |
8448 | case RELAX_LITERAL_POOL_END: | |
43cd72b9 BW |
8449 | case RELAX_MAYBE_UNREACHABLE: |
8450 | case RELAX_MAYBE_DESIRE_ALIGN: | |
e0001a05 NC |
8451 | /* No relaxation required. */ |
8452 | break; | |
8453 | ||
43cd72b9 BW |
8454 | case RELAX_FILL_NOP: |
8455 | case RELAX_UNREACHABLE: | |
8456 | if (fragP->tc_frag_data.relax_seen) | |
8457 | new_stretch += relax_frag_for_align (fragP, stretch); | |
8458 | break; | |
8459 | ||
e0001a05 NC |
8460 | default: |
8461 | as_bad (_("bad relaxation state")); | |
8462 | } | |
8463 | ||
43cd72b9 | 8464 | /* Tell gas we need another relaxation pass. */ |
c138bc38 | 8465 | if (! fragP->tc_frag_data.relax_seen) |
43cd72b9 BW |
8466 | { |
8467 | fragP->tc_frag_data.relax_seen = TRUE; | |
8468 | *stretched_p = 1; | |
8469 | } | |
8470 | ||
e0001a05 NC |
8471 | new_logical_line (file_name, line); |
8472 | return new_stretch; | |
8473 | } | |
8474 | ||
8475 | ||
8476 | static long | |
7fa3d080 | 8477 | relax_frag_loop_align (fragS *fragP, long stretch) |
e0001a05 NC |
8478 | { |
8479 | addressT old_address, old_next_address, old_size; | |
8480 | addressT new_address, new_next_address, new_size; | |
8481 | addressT growth; | |
8482 | ||
43cd72b9 BW |
8483 | /* All the frags with relax_frag_for_alignment prior to this one in the |
8484 | section have been done, hopefully eliminating the need for a NOP here. | |
8485 | But, this will put it in if necessary. */ | |
e0001a05 NC |
8486 | |
8487 | /* Calculate the old address of this fragment and the next fragment. */ | |
8488 | old_address = fragP->fr_address - stretch; | |
8489 | old_next_address = (fragP->fr_address - stretch + fragP->fr_fix + | |
43cd72b9 | 8490 | fragP->tc_frag_data.text_expansion[0]); |
e0001a05 NC |
8491 | old_size = old_next_address - old_address; |
8492 | ||
8493 | /* Calculate the new address of this fragment and the next fragment. */ | |
8494 | new_address = fragP->fr_address; | |
8495 | new_next_address = | |
8496 | get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix); | |
8497 | new_size = new_next_address - new_address; | |
8498 | ||
8499 | growth = new_size - old_size; | |
8500 | ||
8501 | /* Fix up the text_expansion field and return the new growth. */ | |
43cd72b9 | 8502 | fragP->tc_frag_data.text_expansion[0] += growth; |
e0001a05 NC |
8503 | return growth; |
8504 | } | |
8505 | ||
8506 | ||
43cd72b9 | 8507 | /* Add a NOP instruction. */ |
e0001a05 NC |
8508 | |
8509 | static long | |
7fa3d080 | 8510 | relax_frag_add_nop (fragS *fragP) |
e0001a05 | 8511 | { |
e0001a05 | 8512 | char *nop_buf = fragP->fr_literal + fragP->fr_fix; |
43cd72b9 BW |
8513 | int length = fragP->tc_frag_data.is_no_density ? 3 : 2; |
8514 | assemble_nop (length, nop_buf); | |
e0001a05 | 8515 | fragP->tc_frag_data.is_insn = TRUE; |
e0001a05 | 8516 | |
e0001a05 NC |
8517 | if (fragP->fr_var < length) |
8518 | { | |
dd49a749 | 8519 | as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length); |
e0001a05 NC |
8520 | return 0; |
8521 | } | |
8522 | ||
8523 | fragP->fr_fix += length; | |
8524 | fragP->fr_var -= length; | |
e0001a05 NC |
8525 | return length; |
8526 | } | |
8527 | ||
8528 | ||
7fa3d080 BW |
8529 | static long future_alignment_required (fragS *, long); |
8530 | ||
e0001a05 | 8531 | static long |
7fa3d080 | 8532 | relax_frag_for_align (fragS *fragP, long stretch) |
e0001a05 | 8533 | { |
43cd72b9 BW |
8534 | /* Overview of the relaxation procedure for alignment: |
8535 | We can widen with NOPs or by widening instructions or by filling | |
8536 | bytes after jump instructions. Find the opportune places and widen | |
8537 | them if necessary. */ | |
8538 | ||
8539 | long stretch_me; | |
8540 | long diff; | |
e0001a05 | 8541 | |
43cd72b9 BW |
8542 | assert (fragP->fr_subtype == RELAX_FILL_NOP |
8543 | || fragP->fr_subtype == RELAX_UNREACHABLE | |
8544 | || (fragP->fr_subtype == RELAX_SLOTS | |
8545 | && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)); | |
8546 | ||
8547 | stretch_me = future_alignment_required (fragP, stretch); | |
8548 | diff = stretch_me - fragP->tc_frag_data.text_expansion[0]; | |
8549 | if (diff == 0) | |
8550 | return 0; | |
e0001a05 | 8551 | |
43cd72b9 | 8552 | if (diff < 0) |
e0001a05 | 8553 | { |
43cd72b9 BW |
8554 | /* We expanded on a previous pass. Can we shrink now? */ |
8555 | long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me; | |
8556 | if (shrink <= stretch && stretch > 0) | |
e0001a05 | 8557 | { |
43cd72b9 BW |
8558 | fragP->tc_frag_data.text_expansion[0] = stretch_me; |
8559 | return -shrink; | |
e0001a05 NC |
8560 | } |
8561 | return 0; | |
8562 | } | |
8563 | ||
43cd72b9 BW |
8564 | /* Below here, diff > 0. */ |
8565 | fragP->tc_frag_data.text_expansion[0] = stretch_me; | |
e0001a05 | 8566 | |
43cd72b9 | 8567 | return diff; |
e0001a05 NC |
8568 | } |
8569 | ||
8570 | ||
43cd72b9 BW |
8571 | /* Return the address of the next frag that should be aligned. |
8572 | ||
8573 | By "address" we mean the address it _would_ be at if there | |
8574 | is no action taken to align it between here and the target frag. | |
8575 | In other words, if no narrows and no fill nops are used between | |
8576 | here and the frag to align, _even_if_ some of the frags we use | |
8577 | to align targets have already expanded on a previous relaxation | |
8578 | pass. | |
8579 | ||
8580 | Also, count each frag that may be used to help align the target. | |
8581 | ||
8582 | Return 0 if there are no frags left in the chain that need to be | |
8583 | aligned. */ | |
8584 | ||
8585 | static addressT | |
7fa3d080 BW |
8586 | find_address_of_next_align_frag (fragS **fragPP, |
8587 | int *wide_nops, | |
8588 | int *narrow_nops, | |
8589 | int *widens, | |
8590 | bfd_boolean *paddable) | |
e0001a05 | 8591 | { |
43cd72b9 BW |
8592 | fragS *fragP = *fragPP; |
8593 | addressT address = fragP->fr_address; | |
8594 | ||
8595 | /* Do not reset the counts to 0. */ | |
e0001a05 NC |
8596 | |
8597 | while (fragP) | |
8598 | { | |
8599 | /* Limit this to a small search. */ | |
b5e4a23d | 8600 | if (*widens >= (int) xtensa_fetch_width) |
43cd72b9 BW |
8601 | { |
8602 | *fragPP = fragP; | |
8603 | return 0; | |
8604 | } | |
e0001a05 NC |
8605 | address += fragP->fr_fix; |
8606 | ||
43cd72b9 BW |
8607 | if (fragP->fr_type == rs_fill) |
8608 | address += fragP->fr_offset * fragP->fr_var; | |
8609 | else if (fragP->fr_type == rs_machine_dependent) | |
e0001a05 | 8610 | { |
e0001a05 NC |
8611 | switch (fragP->fr_subtype) |
8612 | { | |
43cd72b9 BW |
8613 | case RELAX_UNREACHABLE: |
8614 | *paddable = TRUE; | |
8615 | break; | |
8616 | ||
8617 | case RELAX_FILL_NOP: | |
8618 | (*wide_nops)++; | |
8619 | if (!fragP->tc_frag_data.is_no_density) | |
8620 | (*narrow_nops)++; | |
8621 | break; | |
8622 | ||
8623 | case RELAX_SLOTS: | |
8624 | if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW) | |
8625 | { | |
8626 | (*widens)++; | |
8627 | break; | |
8628 | } | |
34e41783 | 8629 | address += total_frag_text_expansion (fragP);; |
e0001a05 NC |
8630 | break; |
8631 | ||
8632 | case RELAX_IMMED: | |
43cd72b9 | 8633 | address += fragP->tc_frag_data.text_expansion[0]; |
e0001a05 NC |
8634 | break; |
8635 | ||
8636 | case RELAX_ALIGN_NEXT_OPCODE: | |
8637 | case RELAX_DESIRE_ALIGN: | |
43cd72b9 BW |
8638 | *fragPP = fragP; |
8639 | return address; | |
8640 | ||
8641 | case RELAX_MAYBE_UNREACHABLE: | |
8642 | case RELAX_MAYBE_DESIRE_ALIGN: | |
8643 | /* Do nothing. */ | |
e0001a05 NC |
8644 | break; |
8645 | ||
8646 | default: | |
43cd72b9 BW |
8647 | /* Just punt if we don't know the type. */ |
8648 | *fragPP = fragP; | |
8649 | return 0; | |
e0001a05 | 8650 | } |
43cd72b9 | 8651 | } |
c138bc38 | 8652 | else |
43cd72b9 BW |
8653 | { |
8654 | /* Just punt if we don't know the type. */ | |
8655 | *fragPP = fragP; | |
8656 | return 0; | |
8657 | } | |
8658 | fragP = fragP->fr_next; | |
8659 | } | |
8660 | ||
8661 | *fragPP = fragP; | |
8662 | return 0; | |
8663 | } | |
8664 | ||
8665 | ||
7fa3d080 BW |
8666 | static long bytes_to_stretch (fragS *, int, int, int, int); |
8667 | ||
43cd72b9 | 8668 | static long |
7fa3d080 | 8669 | future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED) |
43cd72b9 BW |
8670 | { |
8671 | fragS *this_frag = fragP; | |
8672 | long address; | |
8673 | int num_widens = 0; | |
8674 | int wide_nops = 0; | |
8675 | int narrow_nops = 0; | |
8676 | bfd_boolean paddable = FALSE; | |
8677 | offsetT local_opt_diff; | |
8678 | offsetT opt_diff; | |
8679 | offsetT max_diff; | |
8680 | int stretch_amount = 0; | |
8681 | int local_stretch_amount; | |
8682 | int global_stretch_amount; | |
8683 | ||
7fa3d080 BW |
8684 | address = find_address_of_next_align_frag |
8685 | (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable); | |
43cd72b9 | 8686 | |
b5e4a23d BW |
8687 | if (!address) |
8688 | { | |
8689 | if (this_frag->tc_frag_data.is_aligning_branch) | |
8690 | this_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED; | |
8691 | else | |
8692 | frag_wane (this_frag); | |
8693 | } | |
8694 | else | |
43cd72b9 BW |
8695 | { |
8696 | local_opt_diff = get_aligned_diff (fragP, address, &max_diff); | |
8697 | opt_diff = local_opt_diff; | |
8698 | assert (opt_diff >= 0); | |
8699 | assert (max_diff >= opt_diff); | |
c138bc38 | 8700 | if (max_diff == 0) |
43cd72b9 | 8701 | return 0; |
d2a033cd | 8702 | |
43cd72b9 BW |
8703 | if (fragP) |
8704 | fragP = fragP->fr_next; | |
8705 | ||
8706 | while (fragP && opt_diff < max_diff && address) | |
8707 | { | |
8708 | /* We only use these to determine if we can exit early | |
c138bc38 | 8709 | because there will be plenty of ways to align future |
43cd72b9 | 8710 | align frags. */ |
d77b99c9 | 8711 | int glob_widens = 0; |
43cd72b9 BW |
8712 | int dnn = 0; |
8713 | int dw = 0; | |
8714 | bfd_boolean glob_pad = 0; | |
7fa3d080 BW |
8715 | address = find_address_of_next_align_frag |
8716 | (&fragP, &glob_widens, &dnn, &dw, &glob_pad); | |
43cd72b9 | 8717 | /* If there is a padable portion, then skip. */ |
664df4e4 | 8718 | if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg))) |
b5e4a23d | 8719 | address = 0; |
43cd72b9 | 8720 | |
c138bc38 | 8721 | if (address) |
43cd72b9 BW |
8722 | { |
8723 | offsetT next_m_diff; | |
8724 | offsetT next_o_diff; | |
8725 | ||
8726 | /* Downrange frags haven't had stretch added to them yet. */ | |
8727 | address += stretch; | |
8728 | ||
8729 | /* The address also includes any text expansion from this | |
8730 | frag in a previous pass, but we don't want that. */ | |
8731 | address -= this_frag->tc_frag_data.text_expansion[0]; | |
8732 | ||
8733 | /* Assume we are going to move at least opt_diff. In | |
8734 | reality, we might not be able to, but assuming that | |
8735 | we will helps catch cases where moving opt_diff pushes | |
8736 | the next target from aligned to unaligned. */ | |
8737 | address += opt_diff; | |
8738 | ||
8739 | next_o_diff = get_aligned_diff (fragP, address, &next_m_diff); | |
8740 | ||
8741 | /* Now cleanup for the adjustments to address. */ | |
8742 | next_o_diff += opt_diff; | |
8743 | next_m_diff += opt_diff; | |
8744 | if (next_o_diff <= max_diff && next_o_diff > opt_diff) | |
8745 | opt_diff = next_o_diff; | |
8746 | if (next_m_diff < max_diff) | |
8747 | max_diff = next_m_diff; | |
8748 | fragP = fragP->fr_next; | |
8749 | } | |
8750 | } | |
d2a033cd | 8751 | |
43cd72b9 BW |
8752 | /* If there are enough wideners in between, do it. */ |
8753 | if (paddable) | |
8754 | { | |
8755 | if (this_frag->fr_subtype == RELAX_UNREACHABLE) | |
8756 | { | |
8757 | assert (opt_diff <= UNREACHABLE_MAX_WIDTH); | |
8758 | return opt_diff; | |
8759 | } | |
8760 | return 0; | |
8761 | } | |
c138bc38 | 8762 | local_stretch_amount |
43cd72b9 BW |
8763 | = bytes_to_stretch (this_frag, wide_nops, narrow_nops, |
8764 | num_widens, local_opt_diff); | |
c138bc38 BW |
8765 | global_stretch_amount |
8766 | = bytes_to_stretch (this_frag, wide_nops, narrow_nops, | |
43cd72b9 | 8767 | num_widens, opt_diff); |
c138bc38 BW |
8768 | /* If the condition below is true, then the frag couldn't |
8769 | stretch the correct amount for the global case, so we just | |
8770 | optimize locally. We'll rely on the subsequent frags to get | |
43cd72b9 BW |
8771 | the correct alignment in the global case. */ |
8772 | if (global_stretch_amount < local_stretch_amount) | |
8773 | stretch_amount = local_stretch_amount; | |
8774 | else | |
8775 | stretch_amount = global_stretch_amount; | |
d2a033cd | 8776 | |
43cd72b9 BW |
8777 | if (this_frag->fr_subtype == RELAX_SLOTS |
8778 | && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW) | |
8779 | assert (stretch_amount <= 1); | |
8780 | else if (this_frag->fr_subtype == RELAX_FILL_NOP) | |
8781 | { | |
8782 | if (this_frag->tc_frag_data.is_no_density) | |
8783 | assert (stretch_amount == 3 || stretch_amount == 0); | |
8784 | else | |
8785 | assert (stretch_amount <= 3); | |
8786 | } | |
8787 | } | |
8788 | return stretch_amount; | |
8789 | } | |
8790 | ||
8791 | ||
8792 | /* The idea: widen everything you can to get a target or loop aligned, | |
8793 | then start using NOPs. | |
8794 | ||
8795 | When we must have a NOP, here is a table of how we decide | |
8796 | (so you don't have to fight through the control flow below): | |
8797 | ||
8798 | wide_nops = the number of wide NOPs available for aligning | |
8799 | narrow_nops = the number of narrow NOPs available for aligning | |
8800 | (a subset of wide_nops) | |
8801 | widens = the number of narrow instructions that should be widened | |
8802 | ||
8803 | Desired wide narrow | |
8804 | Diff nop nop widens | |
8805 | 1 0 0 1 | |
8806 | 2 0 1 0 | |
8807 | 3a 1 0 0 | |
8808 | b 0 1 1 (case 3a makes this case unnecessary) | |
8809 | 4a 1 0 1 | |
8810 | b 0 2 0 | |
8811 | c 0 1 2 (case 4a makes this case unnecessary) | |
8812 | 5a 1 0 2 | |
8813 | b 1 1 0 | |
8814 | c 0 2 1 (case 5b makes this case unnecessary) | |
8815 | 6a 2 0 0 | |
8816 | b 1 0 3 | |
708587a4 | 8817 | c 0 1 4 (case 6b makes this case unnecessary) |
43cd72b9 BW |
8818 | d 1 1 1 (case 6a makes this case unnecessary) |
8819 | e 0 2 2 (case 6a makes this case unnecessary) | |
8820 | f 0 3 0 (case 6a makes this case unnecessary) | |
8821 | 7a 1 0 4 | |
8822 | b 2 0 1 | |
8823 | c 1 1 2 (case 7b makes this case unnecessary) | |
8824 | d 0 1 5 (case 7a makes this case unnecessary) | |
8825 | e 0 2 3 (case 7b makes this case unnecessary) | |
8826 | f 0 3 1 (case 7b makes this case unnecessary) | |
8827 | g 1 2 1 (case 7b makes this case unnecessary) | |
8828 | */ | |
8829 | ||
8830 | static long | |
7fa3d080 BW |
8831 | bytes_to_stretch (fragS *this_frag, |
8832 | int wide_nops, | |
8833 | int narrow_nops, | |
8834 | int num_widens, | |
8835 | int desired_diff) | |
43cd72b9 BW |
8836 | { |
8837 | int bytes_short = desired_diff - num_widens; | |
8838 | ||
8839 | assert (desired_diff >= 0 && desired_diff < 8); | |
8840 | if (desired_diff == 0) | |
8841 | return 0; | |
c138bc38 | 8842 | |
43cd72b9 | 8843 | assert (wide_nops > 0 || num_widens > 0); |
e0001a05 | 8844 | |
43cd72b9 BW |
8845 | /* Always prefer widening to NOP-filling. */ |
8846 | if (bytes_short < 0) | |
8847 | { | |
8848 | /* There are enough RELAX_NARROW frags after this one | |
8849 | to align the target without widening this frag in any way. */ | |
8850 | return 0; | |
8851 | } | |
c138bc38 | 8852 | |
43cd72b9 BW |
8853 | if (bytes_short == 0) |
8854 | { | |
8855 | /* Widen every narrow between here and the align target | |
8856 | and the align target will be properly aligned. */ | |
8857 | if (this_frag->fr_subtype == RELAX_FILL_NOP) | |
8858 | return 0; | |
8859 | else | |
8860 | return 1; | |
8861 | } | |
c138bc38 | 8862 | |
43cd72b9 BW |
8863 | /* From here we will need at least one NOP to get an alignment. |
8864 | However, we may not be able to align at all, in which case, | |
8865 | don't widen. */ | |
8866 | if (this_frag->fr_subtype == RELAX_FILL_NOP) | |
8867 | { | |
8868 | switch (desired_diff) | |
8869 | { | |
8870 | case 1: | |
8871 | return 0; | |
8872 | case 2: | |
8873 | if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 1) | |
8874 | return 2; /* case 2 */ | |
8875 | return 0; | |
c138bc38 | 8876 | case 3: |
43cd72b9 BW |
8877 | if (wide_nops > 1) |
8878 | return 0; | |
8879 | else | |
8880 | return 3; /* case 3a */ | |
8881 | case 4: | |
8882 | if (num_widens >= 1 && wide_nops == 1) | |
8883 | return 3; /* case 4a */ | |
8884 | if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 2) | |
8885 | return 2; /* case 4b */ | |
8886 | return 0; | |
8887 | case 5: | |
8888 | if (num_widens >= 2 && wide_nops == 1) | |
8889 | return 3; /* case 5a */ | |
c138bc38 | 8890 | /* We will need two nops. Are there enough nops |
43cd72b9 BW |
8891 | between here and the align target? */ |
8892 | if (wide_nops < 2 || narrow_nops == 0) | |
8893 | return 0; | |
8894 | /* Are there other nops closer that can serve instead? */ | |
8895 | if (wide_nops > 2 && narrow_nops > 1) | |
8896 | return 0; | |
8897 | /* Take the density one first, because there might not be | |
8898 | another density one available. */ | |
8899 | if (!this_frag->tc_frag_data.is_no_density) | |
8900 | return 2; /* case 5b narrow */ | |
8901 | else | |
8902 | return 3; /* case 5b wide */ | |
8903 | return 0; | |
8904 | case 6: | |
8905 | if (wide_nops == 2) | |
8906 | return 3; /* case 6a */ | |
8907 | else if (num_widens >= 3 && wide_nops == 1) | |
8908 | return 3; /* case 6b */ | |
8909 | return 0; | |
8910 | case 7: | |
8911 | if (wide_nops == 1 && num_widens >= 4) | |
8912 | return 3; /* case 7a */ | |
8913 | else if (wide_nops == 2 && num_widens >= 1) | |
8914 | return 3; /* case 7b */ | |
8915 | return 0; | |
e0001a05 | 8916 | default: |
43cd72b9 | 8917 | assert (0); |
e0001a05 | 8918 | } |
e0001a05 | 8919 | } |
43cd72b9 BW |
8920 | else |
8921 | { | |
c138bc38 | 8922 | /* We will need a NOP no matter what, but should we widen |
43cd72b9 | 8923 | this instruction to help? |
e0001a05 | 8924 | |
03aaa593 | 8925 | This is a RELAX_NARROW frag. */ |
43cd72b9 BW |
8926 | switch (desired_diff) |
8927 | { | |
8928 | case 1: | |
8929 | assert (0); | |
8930 | return 0; | |
8931 | case 2: | |
8932 | case 3: | |
8933 | return 0; | |
8934 | case 4: | |
8935 | if (wide_nops >= 1 && num_widens == 1) | |
8936 | return 1; /* case 4a */ | |
8937 | return 0; | |
8938 | case 5: | |
8939 | if (wide_nops >= 1 && num_widens == 2) | |
8940 | return 1; /* case 5a */ | |
8941 | return 0; | |
8942 | case 6: | |
8943 | if (wide_nops >= 2) | |
8944 | return 0; /* case 6a */ | |
8945 | else if (wide_nops >= 1 && num_widens == 3) | |
8946 | return 1; /* case 6b */ | |
8947 | return 0; | |
8948 | case 7: | |
8949 | if (wide_nops >= 1 && num_widens == 4) | |
8950 | return 1; /* case 7a */ | |
8951 | else if (wide_nops >= 2 && num_widens == 1) | |
8952 | return 1; /* case 7b */ | |
8953 | return 0; | |
8954 | default: | |
8955 | assert (0); | |
8956 | return 0; | |
8957 | } | |
8958 | } | |
8959 | assert (0); | |
8960 | return 0; | |
e0001a05 NC |
8961 | } |
8962 | ||
8963 | ||
8964 | static long | |
7fa3d080 BW |
8965 | relax_frag_immed (segT segP, |
8966 | fragS *fragP, | |
8967 | long stretch, | |
8968 | int min_steps, | |
8969 | xtensa_format fmt, | |
8970 | int slot, | |
8971 | int *stretched_p, | |
8972 | bfd_boolean estimate_only) | |
e0001a05 | 8973 | { |
43cd72b9 | 8974 | TInsn tinsn; |
e0001a05 NC |
8975 | int old_size; |
8976 | bfd_boolean negatable_branch = FALSE; | |
8977 | bfd_boolean branch_jmp_to_next = FALSE; | |
def13efb | 8978 | bfd_boolean from_wide_insn = FALSE; |
43cd72b9 | 8979 | xtensa_isa isa = xtensa_default_isa; |
e0001a05 NC |
8980 | IStack istack; |
8981 | offsetT frag_offset; | |
8982 | int num_steps; | |
8983 | fragS *lit_fragP; | |
8984 | int num_text_bytes, num_literal_bytes; | |
43cd72b9 | 8985 | int literal_diff, total_text_diff, this_text_diff, first; |
e0001a05 NC |
8986 | |
8987 | assert (fragP->fr_opcode != NULL); | |
8988 | ||
b5e4a23d BW |
8989 | xg_clear_vinsn (&cur_vinsn); |
8990 | vinsn_from_chars (&cur_vinsn, fragP->fr_opcode); | |
b2d179be | 8991 | if (cur_vinsn.num_slots > 1) |
def13efb | 8992 | from_wide_insn = TRUE; |
43cd72b9 | 8993 | |
b5e4a23d | 8994 | tinsn = cur_vinsn.slots[slot]; |
43cd72b9 | 8995 | tinsn_immed_from_frag (&tinsn, fragP, slot); |
e0001a05 | 8996 | |
64b607e6 | 8997 | if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode) == 1) |
43cd72b9 | 8998 | return 0; |
e0001a05 | 8999 | |
b08b5071 | 9000 | if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform) |
43cd72b9 | 9001 | branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP); |
e0001a05 | 9002 | |
43cd72b9 | 9003 | negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1); |
e0001a05 | 9004 | |
43cd72b9 | 9005 | old_size = xtensa_format_length (isa, fmt); |
e0001a05 NC |
9006 | |
9007 | /* Special case: replace a branch to the next instruction with a NOP. | |
9008 | This is required to work around a hardware bug in T1040.0 and also | |
9009 | serves as an optimization. */ | |
9010 | ||
9011 | if (branch_jmp_to_next | |
9012 | && ((old_size == 2) || (old_size == 3)) | |
9013 | && !next_frag_is_loop_target (fragP)) | |
9014 | return 0; | |
9015 | ||
9016 | /* Here is the fun stuff: Get the immediate field from this | |
9017 | instruction. If it fits, we are done. If not, find the next | |
9018 | instruction sequence that fits. */ | |
9019 | ||
9020 | frag_offset = fragP->fr_opcode - fragP->fr_literal; | |
9021 | istack_init (&istack); | |
43cd72b9 | 9022 | num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset, |
e0001a05 NC |
9023 | min_steps, stretch); |
9024 | if (num_steps < min_steps) | |
9025 | { | |
9026 | as_fatal (_("internal error: relaxation failed")); | |
9027 | return 0; | |
9028 | } | |
9029 | ||
9030 | if (num_steps > RELAX_IMMED_MAXSTEPS) | |
9031 | { | |
9032 | as_fatal (_("internal error: relaxation requires too many steps")); | |
9033 | return 0; | |
9034 | } | |
9035 | ||
43cd72b9 | 9036 | fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps; |
e0001a05 NC |
9037 | |
9038 | /* Figure out the number of bytes needed. */ | |
9039 | lit_fragP = 0; | |
e0001a05 | 9040 | num_literal_bytes = get_num_stack_literal_bytes (&istack); |
43cd72b9 BW |
9041 | literal_diff = |
9042 | num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot]; | |
9043 | first = 0; | |
9044 | while (istack.insn[first].opcode == XTENSA_UNDEFINED) | |
9045 | first++; | |
def13efb | 9046 | |
43cd72b9 | 9047 | num_text_bytes = get_num_stack_text_bytes (&istack); |
def13efb BW |
9048 | |
9049 | if (from_wide_insn) | |
43cd72b9 BW |
9050 | { |
9051 | num_text_bytes += old_size; | |
9052 | if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot)) | |
9053 | num_text_bytes -= xg_get_single_size (istack.insn[first].opcode); | |
9054 | } | |
def13efb | 9055 | |
43cd72b9 BW |
9056 | total_text_diff = num_text_bytes - old_size; |
9057 | this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot]; | |
e0001a05 NC |
9058 | |
9059 | /* It MUST get larger. If not, we could get an infinite loop. */ | |
43cd72b9 BW |
9060 | assert (num_text_bytes >= 0); |
9061 | assert (literal_diff >= 0); | |
9062 | assert (total_text_diff >= 0); | |
e0001a05 | 9063 | |
43cd72b9 BW |
9064 | fragP->tc_frag_data.text_expansion[slot] = total_text_diff; |
9065 | fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes; | |
9066 | assert (fragP->tc_frag_data.text_expansion[slot] >= 0); | |
9067 | assert (fragP->tc_frag_data.literal_expansion[slot] >= 0); | |
e0001a05 NC |
9068 | |
9069 | /* Find the associated expandable literal for this. */ | |
9070 | if (literal_diff != 0) | |
9071 | { | |
43cd72b9 | 9072 | lit_fragP = fragP->tc_frag_data.literal_frags[slot]; |
e0001a05 NC |
9073 | if (lit_fragP) |
9074 | { | |
9075 | assert (literal_diff == 4); | |
9076 | lit_fragP->tc_frag_data.unreported_expansion += literal_diff; | |
9077 | ||
9078 | /* We expect that the literal section state has NOT been | |
9079 | modified yet. */ | |
9080 | assert (lit_fragP->fr_type == rs_machine_dependent | |
9081 | && lit_fragP->fr_subtype == RELAX_LITERAL); | |
9082 | lit_fragP->fr_subtype = RELAX_LITERAL_NR; | |
9083 | ||
9084 | /* We need to mark this section for another iteration | |
9085 | of relaxation. */ | |
9086 | (*stretched_p)++; | |
9087 | } | |
9088 | } | |
9089 | ||
43cd72b9 | 9090 | if (negatable_branch && istack.ninsn > 1) |
1d19a770 | 9091 | update_next_frag_state (fragP); |
e0001a05 | 9092 | |
43cd72b9 | 9093 | return this_text_diff; |
e0001a05 NC |
9094 | } |
9095 | ||
9096 | \f | |
9097 | /* md_convert_frag Hook and Helper Functions. */ | |
9098 | ||
7fa3d080 BW |
9099 | static void convert_frag_align_next_opcode (fragS *); |
9100 | static void convert_frag_narrow (segT, fragS *, xtensa_format, int); | |
9101 | static void convert_frag_fill_nop (fragS *); | |
9102 | static void convert_frag_immed (segT, fragS *, int, xtensa_format, int); | |
9103 | ||
e0001a05 | 9104 | void |
7fa3d080 | 9105 | md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp) |
e0001a05 | 9106 | { |
43cd72b9 BW |
9107 | static xtensa_insnbuf vbuf = NULL; |
9108 | xtensa_isa isa = xtensa_default_isa; | |
9109 | int slot; | |
9110 | int num_slots; | |
9111 | xtensa_format fmt; | |
e0001a05 | 9112 | char *file_name; |
d77b99c9 | 9113 | unsigned line; |
e0001a05 NC |
9114 | |
9115 | as_where (&file_name, &line); | |
9116 | new_logical_line (fragp->fr_file, fragp->fr_line); | |
9117 | ||
9118 | switch (fragp->fr_subtype) | |
9119 | { | |
9120 | case RELAX_ALIGN_NEXT_OPCODE: | |
9121 | /* Always convert. */ | |
9122 | convert_frag_align_next_opcode (fragp); | |
9123 | break; | |
9124 | ||
9125 | case RELAX_DESIRE_ALIGN: | |
9126 | /* Do nothing. If not aligned already, too bad. */ | |
9127 | break; | |
9128 | ||
43cd72b9 BW |
9129 | case RELAX_LITERAL: |
9130 | case RELAX_LITERAL_FINAL: | |
9131 | break; | |
9132 | ||
9133 | case RELAX_SLOTS: | |
9134 | if (vbuf == NULL) | |
9135 | vbuf = xtensa_insnbuf_alloc (isa); | |
9136 | ||
d77b99c9 BW |
9137 | xtensa_insnbuf_from_chars |
9138 | (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0); | |
43cd72b9 BW |
9139 | fmt = xtensa_format_decode (isa, vbuf); |
9140 | num_slots = xtensa_format_num_slots (isa, fmt); | |
9141 | ||
9142 | for (slot = 0; slot < num_slots; slot++) | |
9143 | { | |
9144 | switch (fragp->tc_frag_data.slot_subtypes[slot]) | |
9145 | { | |
9146 | case RELAX_NARROW: | |
9147 | convert_frag_narrow (sec, fragp, fmt, slot); | |
9148 | break; | |
9149 | ||
9150 | case RELAX_IMMED: | |
9151 | case RELAX_IMMED_STEP1: | |
9152 | case RELAX_IMMED_STEP2: | |
b81bf389 | 9153 | case RELAX_IMMED_STEP3: |
43cd72b9 BW |
9154 | /* Place the immediate. */ |
9155 | convert_frag_immed | |
9156 | (sec, fragp, | |
9157 | fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED, | |
9158 | fmt, slot); | |
9159 | break; | |
9160 | ||
9161 | default: | |
9162 | /* This is OK because some slots could have | |
9163 | relaxations and others have none. */ | |
9164 | break; | |
9165 | } | |
9166 | } | |
9167 | break; | |
9168 | ||
9169 | case RELAX_UNREACHABLE: | |
9170 | memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var); | |
9171 | fragp->fr_fix += fragp->tc_frag_data.text_expansion[0]; | |
9172 | fragp->fr_var -= fragp->tc_frag_data.text_expansion[0]; | |
9173 | frag_wane (fragp); | |
e0001a05 NC |
9174 | break; |
9175 | ||
43cd72b9 BW |
9176 | case RELAX_MAYBE_UNREACHABLE: |
9177 | case RELAX_MAYBE_DESIRE_ALIGN: | |
9178 | frag_wane (fragp); | |
e0001a05 NC |
9179 | break; |
9180 | ||
43cd72b9 BW |
9181 | case RELAX_FILL_NOP: |
9182 | convert_frag_fill_nop (fragp); | |
e0001a05 NC |
9183 | break; |
9184 | ||
9185 | case RELAX_LITERAL_NR: | |
9186 | if (use_literal_section) | |
9187 | { | |
9188 | /* This should have been handled during relaxation. When | |
9189 | relaxing a code segment, literals sometimes need to be | |
9190 | added to the corresponding literal segment. If that | |
9191 | literal segment has already been relaxed, then we end up | |
9192 | in this situation. Marking the literal segments as data | |
9193 | would make this happen less often (since GAS always relaxes | |
9194 | code before data), but we could still get into trouble if | |
9195 | there are instructions in a segment that is not marked as | |
9196 | containing code. Until we can implement a better solution, | |
9197 | cheat and adjust the addresses of all the following frags. | |
9198 | This could break subsequent alignments, but the linker's | |
9199 | literal coalescing will do that anyway. */ | |
9200 | ||
9201 | fragS *f; | |
9202 | fragp->fr_subtype = RELAX_LITERAL_FINAL; | |
9203 | assert (fragp->tc_frag_data.unreported_expansion == 4); | |
9204 | memset (&fragp->fr_literal[fragp->fr_fix], 0, 4); | |
9205 | fragp->fr_var -= 4; | |
9206 | fragp->fr_fix += 4; | |
9207 | for (f = fragp->fr_next; f; f = f->fr_next) | |
9208 | f->fr_address += 4; | |
9209 | } | |
9210 | else | |
9211 | as_bad (_("invalid relaxation fragment result")); | |
9212 | break; | |
9213 | } | |
9214 | ||
9215 | fragp->fr_var = 0; | |
9216 | new_logical_line (file_name, line); | |
9217 | } | |
9218 | ||
9219 | ||
7fa3d080 BW |
9220 | static void |
9221 | convert_frag_align_next_opcode (fragS *fragp) | |
e0001a05 NC |
9222 | { |
9223 | char *nop_buf; /* Location for Writing. */ | |
e0001a05 NC |
9224 | bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density; |
9225 | addressT aligned_address; | |
d77b99c9 BW |
9226 | offsetT fill_size; |
9227 | int nop, nop_count; | |
e0001a05 NC |
9228 | |
9229 | aligned_address = get_noop_aligned_address (fragp, fragp->fr_address + | |
9230 | fragp->fr_fix); | |
9231 | fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix); | |
9232 | nop_count = get_text_align_nop_count (fill_size, use_no_density); | |
9233 | nop_buf = fragp->fr_literal + fragp->fr_fix; | |
9234 | ||
d77b99c9 | 9235 | for (nop = 0; nop < nop_count; nop++) |
e0001a05 | 9236 | { |
d77b99c9 BW |
9237 | int nop_size; |
9238 | nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density); | |
e0001a05 NC |
9239 | |
9240 | assemble_nop (nop_size, nop_buf); | |
9241 | nop_buf += nop_size; | |
9242 | } | |
9243 | ||
9244 | fragp->fr_fix += fill_size; | |
9245 | fragp->fr_var -= fill_size; | |
9246 | } | |
9247 | ||
9248 | ||
9249 | static void | |
7fa3d080 | 9250 | convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot) |
e0001a05 | 9251 | { |
43cd72b9 | 9252 | TInsn tinsn, single_target; |
84b08ed9 | 9253 | int size, old_size, diff; |
e0001a05 NC |
9254 | offsetT frag_offset; |
9255 | ||
43cd72b9 BW |
9256 | assert (slot == 0); |
9257 | tinsn_from_chars (&tinsn, fragP->fr_opcode, 0); | |
9258 | ||
b5e4a23d | 9259 | if (fragP->tc_frag_data.is_aligning_branch == 1) |
43cd72b9 BW |
9260 | { |
9261 | assert (fragP->tc_frag_data.text_expansion[0] == 1 | |
9262 | || fragP->tc_frag_data.text_expansion[0] == 0); | |
9263 | convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0], | |
9264 | fmt, slot); | |
9265 | return; | |
9266 | } | |
9267 | ||
9268 | if (fragP->tc_frag_data.text_expansion[0] == 0) | |
e0001a05 NC |
9269 | { |
9270 | /* No conversion. */ | |
9271 | fragP->fr_var = 0; | |
9272 | return; | |
9273 | } | |
9274 | ||
9275 | assert (fragP->fr_opcode != NULL); | |
9276 | ||
43cd72b9 BW |
9277 | /* Frags in this relaxation state should only contain |
9278 | single instruction bundles. */ | |
9279 | tinsn_immed_from_frag (&tinsn, fragP, 0); | |
e0001a05 NC |
9280 | |
9281 | /* Just convert it to a wide form.... */ | |
9282 | size = 0; | |
43cd72b9 | 9283 | old_size = xg_get_single_size (tinsn.opcode); |
e0001a05 NC |
9284 | |
9285 | tinsn_init (&single_target); | |
9286 | frag_offset = fragP->fr_opcode - fragP->fr_literal; | |
9287 | ||
84b08ed9 | 9288 | if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE)) |
43cd72b9 BW |
9289 | { |
9290 | as_bad (_("unable to widen instruction")); | |
9291 | return; | |
9292 | } | |
9293 | ||
9294 | size = xg_get_single_size (single_target.opcode); | |
b2d179be BW |
9295 | xg_emit_insn_to_buf (&single_target, fragP->fr_opcode, fragP, |
9296 | frag_offset, TRUE); | |
e0001a05 NC |
9297 | |
9298 | diff = size - old_size; | |
9299 | assert (diff >= 0); | |
9300 | assert (diff <= fragP->fr_var); | |
9301 | fragP->fr_var -= diff; | |
9302 | fragP->fr_fix += diff; | |
9303 | ||
9304 | /* clean it up */ | |
9305 | fragP->fr_var = 0; | |
9306 | } | |
9307 | ||
9308 | ||
9309 | static void | |
7fa3d080 | 9310 | convert_frag_fill_nop (fragS *fragP) |
43cd72b9 BW |
9311 | { |
9312 | char *loc = &fragP->fr_literal[fragP->fr_fix]; | |
9313 | int size = fragP->tc_frag_data.text_expansion[0]; | |
9314 | assert ((unsigned) size == (fragP->fr_next->fr_address | |
9315 | - fragP->fr_address - fragP->fr_fix)); | |
9316 | if (size == 0) | |
9317 | { | |
9318 | /* No conversion. */ | |
9319 | fragP->fr_var = 0; | |
9320 | return; | |
9321 | } | |
9322 | assemble_nop (size, loc); | |
9323 | fragP->tc_frag_data.is_insn = TRUE; | |
9324 | fragP->fr_var -= size; | |
9325 | fragP->fr_fix += size; | |
9326 | frag_wane (fragP); | |
9327 | } | |
9328 | ||
9329 | ||
7fa3d080 BW |
9330 | static fixS *fix_new_exp_in_seg |
9331 | (segT, subsegT, fragS *, int, int, expressionS *, int, | |
9332 | bfd_reloc_code_real_type); | |
9333 | static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *); | |
9334 | ||
43cd72b9 | 9335 | static void |
7fa3d080 BW |
9336 | convert_frag_immed (segT segP, |
9337 | fragS *fragP, | |
9338 | int min_steps, | |
9339 | xtensa_format fmt, | |
9340 | int slot) | |
e0001a05 NC |
9341 | { |
9342 | char *immed_instr = fragP->fr_opcode; | |
43cd72b9 | 9343 | TInsn orig_tinsn; |
e0001a05 | 9344 | bfd_boolean expanded = FALSE; |
e0001a05 | 9345 | bfd_boolean branch_jmp_to_next = FALSE; |
43cd72b9 | 9346 | char *fr_opcode = fragP->fr_opcode; |
43cd72b9 | 9347 | xtensa_isa isa = xtensa_default_isa; |
def13efb | 9348 | bfd_boolean from_wide_insn = FALSE; |
43cd72b9 BW |
9349 | int bytes; |
9350 | bfd_boolean is_loop; | |
e0001a05 | 9351 | |
43cd72b9 | 9352 | assert (fr_opcode != NULL); |
e0001a05 | 9353 | |
b5e4a23d | 9354 | xg_clear_vinsn (&cur_vinsn); |
e0001a05 | 9355 | |
b5e4a23d | 9356 | vinsn_from_chars (&cur_vinsn, fr_opcode); |
b2d179be | 9357 | if (cur_vinsn.num_slots > 1) |
def13efb | 9358 | from_wide_insn = TRUE; |
e0001a05 | 9359 | |
b5e4a23d | 9360 | orig_tinsn = cur_vinsn.slots[slot]; |
43cd72b9 BW |
9361 | tinsn_immed_from_frag (&orig_tinsn, fragP, slot); |
9362 | ||
9363 | is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1; | |
e0001a05 | 9364 | |
b08b5071 | 9365 | if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform) |
43cd72b9 | 9366 | branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP); |
e0001a05 NC |
9367 | |
9368 | if (branch_jmp_to_next && !next_frag_is_loop_target (fragP)) | |
9369 | { | |
9370 | /* Conversion just inserts a NOP and marks the fix as completed. */ | |
43cd72b9 BW |
9371 | bytes = xtensa_format_length (isa, fmt); |
9372 | if (bytes >= 4) | |
9373 | { | |
b5e4a23d BW |
9374 | cur_vinsn.slots[slot].opcode = |
9375 | xtensa_format_slot_nop_opcode (isa, cur_vinsn.format, slot); | |
9376 | cur_vinsn.slots[slot].ntok = 0; | |
43cd72b9 BW |
9377 | } |
9378 | else | |
9379 | { | |
9380 | bytes += fragP->tc_frag_data.text_expansion[0]; | |
9381 | assert (bytes == 2 || bytes == 3); | |
b5e4a23d | 9382 | build_nop (&cur_vinsn.slots[0], bytes); |
43cd72b9 BW |
9383 | fragP->fr_fix += fragP->tc_frag_data.text_expansion[0]; |
9384 | } | |
e7da6241 | 9385 | vinsn_to_insnbuf (&cur_vinsn, fr_opcode, frag_now, TRUE); |
d77b99c9 | 9386 | xtensa_insnbuf_to_chars |
b5e4a23d | 9387 | (isa, cur_vinsn.insnbuf, (unsigned char *) fr_opcode, 0); |
e0001a05 NC |
9388 | fragP->fr_var = 0; |
9389 | } | |
7c834684 | 9390 | else |
e0001a05 | 9391 | { |
43cd72b9 BW |
9392 | /* Here is the fun stuff: Get the immediate field from this |
9393 | instruction. If it fits, we're done. If not, find the next | |
9394 | instruction sequence that fits. */ | |
9395 | ||
e0001a05 NC |
9396 | IStack istack; |
9397 | int i; | |
9398 | symbolS *lit_sym = NULL; | |
9399 | int total_size = 0; | |
43cd72b9 | 9400 | int target_offset = 0; |
e0001a05 NC |
9401 | int old_size; |
9402 | int diff; | |
9403 | symbolS *gen_label = NULL; | |
9404 | offsetT frag_offset; | |
43cd72b9 BW |
9405 | bfd_boolean first = TRUE; |
9406 | bfd_boolean last_is_jump; | |
e0001a05 | 9407 | |
43cd72b9 | 9408 | /* It does not fit. Find something that does and |
e0001a05 | 9409 | convert immediately. */ |
43cd72b9 | 9410 | frag_offset = fr_opcode - fragP->fr_literal; |
e0001a05 | 9411 | istack_init (&istack); |
43cd72b9 | 9412 | xg_assembly_relax (&istack, &orig_tinsn, |
e0001a05 NC |
9413 | segP, fragP, frag_offset, min_steps, 0); |
9414 | ||
43cd72b9 | 9415 | old_size = xtensa_format_length (isa, fmt); |
e0001a05 NC |
9416 | |
9417 | /* Assemble this right inline. */ | |
9418 | ||
9419 | /* First, create the mapping from a label name to the REAL label. */ | |
43cd72b9 | 9420 | target_offset = 0; |
e0001a05 NC |
9421 | for (i = 0; i < istack.ninsn; i++) |
9422 | { | |
43cd72b9 | 9423 | TInsn *tinsn = &istack.insn[i]; |
e0001a05 NC |
9424 | fragS *lit_frag; |
9425 | ||
43cd72b9 | 9426 | switch (tinsn->insn_type) |
e0001a05 NC |
9427 | { |
9428 | case ITYPE_LITERAL: | |
9429 | if (lit_sym != NULL) | |
9430 | as_bad (_("multiple literals in expansion")); | |
9431 | /* First find the appropriate space in the literal pool. */ | |
43cd72b9 | 9432 | lit_frag = fragP->tc_frag_data.literal_frags[slot]; |
e0001a05 NC |
9433 | if (lit_frag == NULL) |
9434 | as_bad (_("no registered fragment for literal")); | |
43cd72b9 | 9435 | if (tinsn->ntok != 1) |
e0001a05 NC |
9436 | as_bad (_("number of literal tokens != 1")); |
9437 | ||
9438 | /* Set the literal symbol and add a fixup. */ | |
9439 | lit_sym = lit_frag->fr_symbol; | |
9440 | break; | |
9441 | ||
9442 | case ITYPE_LABEL: | |
43cd72b9 BW |
9443 | if (align_targets && !is_loop) |
9444 | { | |
9445 | fragS *unreach = fragP->fr_next; | |
9446 | while (!(unreach->fr_type == rs_machine_dependent | |
9447 | && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE | |
9448 | || unreach->fr_subtype == RELAX_UNREACHABLE))) | |
9449 | { | |
9450 | unreach = unreach->fr_next; | |
9451 | } | |
9452 | ||
9453 | assert (unreach->fr_type == rs_machine_dependent | |
9454 | && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE | |
9455 | || unreach->fr_subtype == RELAX_UNREACHABLE)); | |
9456 | ||
9457 | target_offset += unreach->tc_frag_data.text_expansion[0]; | |
9458 | } | |
e0001a05 NC |
9459 | assert (gen_label == NULL); |
9460 | gen_label = symbol_new (FAKE_LABEL_NAME, now_seg, | |
43cd72b9 BW |
9461 | fr_opcode - fragP->fr_literal |
9462 | + target_offset, fragP); | |
e0001a05 NC |
9463 | break; |
9464 | ||
9465 | case ITYPE_INSN: | |
def13efb | 9466 | if (first && from_wide_insn) |
43cd72b9 BW |
9467 | { |
9468 | target_offset += xtensa_format_length (isa, fmt); | |
9469 | first = FALSE; | |
9470 | if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot)) | |
9471 | target_offset += xg_get_single_size (tinsn->opcode); | |
9472 | } | |
9473 | else | |
9474 | target_offset += xg_get_single_size (tinsn->opcode); | |
e0001a05 NC |
9475 | break; |
9476 | } | |
9477 | } | |
9478 | ||
9479 | total_size = 0; | |
43cd72b9 BW |
9480 | first = TRUE; |
9481 | last_is_jump = FALSE; | |
e0001a05 NC |
9482 | for (i = 0; i < istack.ninsn; i++) |
9483 | { | |
43cd72b9 | 9484 | TInsn *tinsn = &istack.insn[i]; |
e0001a05 NC |
9485 | fragS *lit_frag; |
9486 | int size; | |
9487 | segT target_seg; | |
43cd72b9 | 9488 | bfd_reloc_code_real_type reloc_type; |
e0001a05 | 9489 | |
43cd72b9 | 9490 | switch (tinsn->insn_type) |
e0001a05 NC |
9491 | { |
9492 | case ITYPE_LITERAL: | |
43cd72b9 BW |
9493 | lit_frag = fragP->tc_frag_data.literal_frags[slot]; |
9494 | /* Already checked. */ | |
e0001a05 NC |
9495 | assert (lit_frag != NULL); |
9496 | assert (lit_sym != NULL); | |
43cd72b9 BW |
9497 | assert (tinsn->ntok == 1); |
9498 | /* Add a fixup. */ | |
e0001a05 NC |
9499 | target_seg = S_GET_SEGMENT (lit_sym); |
9500 | assert (target_seg); | |
bbdd25a8 | 9501 | reloc_type = map_operator_to_reloc (tinsn->tok[0].X_op); |
e0001a05 | 9502 | fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4, |
43cd72b9 | 9503 | &tinsn->tok[0], FALSE, reloc_type); |
e0001a05 NC |
9504 | break; |
9505 | ||
9506 | case ITYPE_LABEL: | |
9507 | break; | |
9508 | ||
9509 | case ITYPE_INSN: | |
43cd72b9 BW |
9510 | xg_resolve_labels (tinsn, gen_label); |
9511 | xg_resolve_literals (tinsn, lit_sym); | |
def13efb | 9512 | if (from_wide_insn && first) |
43cd72b9 BW |
9513 | { |
9514 | first = FALSE; | |
9515 | if (opcode_fits_format_slot (tinsn->opcode, fmt, slot)) | |
9516 | { | |
b5e4a23d | 9517 | cur_vinsn.slots[slot] = *tinsn; |
43cd72b9 BW |
9518 | } |
9519 | else | |
9520 | { | |
b5e4a23d | 9521 | cur_vinsn.slots[slot].opcode = |
43cd72b9 | 9522 | xtensa_format_slot_nop_opcode (isa, fmt, slot); |
b5e4a23d | 9523 | cur_vinsn.slots[slot].ntok = 0; |
43cd72b9 | 9524 | } |
b5e4a23d BW |
9525 | vinsn_to_insnbuf (&cur_vinsn, immed_instr, fragP, TRUE); |
9526 | xtensa_insnbuf_to_chars (isa, cur_vinsn.insnbuf, | |
d77b99c9 | 9527 | (unsigned char *) immed_instr, 0); |
43cd72b9 BW |
9528 | fragP->tc_frag_data.is_insn = TRUE; |
9529 | size = xtensa_format_length (isa, fmt); | |
9530 | if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot)) | |
9531 | { | |
43cd72b9 | 9532 | xg_emit_insn_to_buf |
b2d179be | 9533 | (tinsn, immed_instr + size, fragP, |
43cd72b9 BW |
9534 | immed_instr - fragP->fr_literal + size, TRUE); |
9535 | size += xg_get_single_size (tinsn->opcode); | |
9536 | } | |
9537 | } | |
9538 | else | |
9539 | { | |
43cd72b9 | 9540 | size = xg_get_single_size (tinsn->opcode); |
b2d179be | 9541 | xg_emit_insn_to_buf (tinsn, immed_instr, fragP, |
43cd72b9 | 9542 | immed_instr - fragP->fr_literal, TRUE); |
43cd72b9 | 9543 | } |
e0001a05 | 9544 | immed_instr += size; |
43cd72b9 | 9545 | total_size += size; |
e0001a05 NC |
9546 | break; |
9547 | } | |
9548 | } | |
9549 | ||
9550 | diff = total_size - old_size; | |
9551 | assert (diff >= 0); | |
9552 | if (diff != 0) | |
9553 | expanded = TRUE; | |
9554 | assert (diff <= fragP->fr_var); | |
9555 | fragP->fr_var -= diff; | |
9556 | fragP->fr_fix += diff; | |
9557 | } | |
9558 | ||
e0001a05 | 9559 | /* Check for undefined immediates in LOOP instructions. */ |
43cd72b9 | 9560 | if (is_loop) |
e0001a05 NC |
9561 | { |
9562 | symbolS *sym; | |
43cd72b9 | 9563 | sym = orig_tinsn.tok[1].X_add_symbol; |
e0001a05 NC |
9564 | if (sym != NULL && !S_IS_DEFINED (sym)) |
9565 | { | |
9566 | as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym)); | |
9567 | return; | |
9568 | } | |
43cd72b9 | 9569 | sym = orig_tinsn.tok[1].X_op_symbol; |
e0001a05 NC |
9570 | if (sym != NULL && !S_IS_DEFINED (sym)) |
9571 | { | |
9572 | as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym)); | |
9573 | return; | |
9574 | } | |
9575 | } | |
9576 | ||
43cd72b9 BW |
9577 | if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1) |
9578 | convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn); | |
e0001a05 | 9579 | |
43cd72b9 | 9580 | if (expanded && is_direct_call_opcode (orig_tinsn.opcode)) |
e0001a05 NC |
9581 | { |
9582 | /* Add an expansion note on the expanded instruction. */ | |
9583 | fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4, | |
43cd72b9 | 9584 | &orig_tinsn.tok[0], TRUE, |
e0001a05 | 9585 | BFD_RELOC_XTENSA_ASM_EXPAND); |
e0001a05 NC |
9586 | } |
9587 | } | |
9588 | ||
9589 | ||
9590 | /* Add a new fix expression into the desired segment. We have to | |
9591 | switch to that segment to do this. */ | |
9592 | ||
9593 | static fixS * | |
7fa3d080 BW |
9594 | fix_new_exp_in_seg (segT new_seg, |
9595 | subsegT new_subseg, | |
9596 | fragS *frag, | |
9597 | int where, | |
9598 | int size, | |
9599 | expressionS *exp, | |
9600 | int pcrel, | |
9601 | bfd_reloc_code_real_type r_type) | |
e0001a05 NC |
9602 | { |
9603 | fixS *new_fix; | |
9604 | segT seg = now_seg; | |
9605 | subsegT subseg = now_subseg; | |
43cd72b9 | 9606 | |
e0001a05 NC |
9607 | assert (new_seg != 0); |
9608 | subseg_set (new_seg, new_subseg); | |
9609 | ||
e0001a05 NC |
9610 | new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type); |
9611 | subseg_set (seg, subseg); | |
9612 | return new_fix; | |
9613 | } | |
9614 | ||
9615 | ||
43cd72b9 BW |
9616 | /* Relax a loop instruction so that it can span loop >256 bytes. |
9617 | ||
9618 | loop as, .L1 | |
9619 | .L0: | |
9620 | rsr as, LEND | |
9621 | wsr as, LBEG | |
9622 | addi as, as, lo8 (label-.L1) | |
9623 | addmi as, as, mid8 (label-.L1) | |
9624 | wsr as, LEND | |
9625 | isync | |
9626 | rsr as, LCOUNT | |
9627 | addi as, as, 1 | |
9628 | .L1: | |
9629 | <<body>> | |
9630 | label: | |
9631 | */ | |
e0001a05 NC |
9632 | |
9633 | static void | |
7fa3d080 | 9634 | convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn) |
e0001a05 NC |
9635 | { |
9636 | TInsn loop_insn; | |
9637 | TInsn addi_insn; | |
9638 | TInsn addmi_insn; | |
9639 | unsigned long target; | |
9640 | static xtensa_insnbuf insnbuf = NULL; | |
9641 | unsigned int loop_length, loop_length_hi, loop_length_lo; | |
9642 | xtensa_isa isa = xtensa_default_isa; | |
9643 | addressT loop_offset; | |
9644 | addressT addi_offset = 9; | |
9645 | addressT addmi_offset = 12; | |
43cd72b9 | 9646 | fragS *next_fragP; |
d77b99c9 | 9647 | int target_count; |
e0001a05 NC |
9648 | |
9649 | if (!insnbuf) | |
9650 | insnbuf = xtensa_insnbuf_alloc (isa); | |
9651 | ||
9652 | /* Get the loop offset. */ | |
43cd72b9 | 9653 | loop_offset = get_expanded_loop_offset (tinsn->opcode); |
e0001a05 | 9654 | |
43cd72b9 BW |
9655 | /* Validate that there really is a LOOP at the loop_offset. Because |
9656 | loops are not bundleable, we can assume that the instruction will be | |
9657 | in slot 0. */ | |
9658 | tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0); | |
9659 | tinsn_immed_from_frag (&loop_insn, fragP, 0); | |
9660 | ||
9661 | assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1); | |
e0001a05 NC |
9662 | addi_offset += loop_offset; |
9663 | addmi_offset += loop_offset; | |
9664 | ||
43cd72b9 | 9665 | assert (tinsn->ntok == 2); |
b08b5071 BW |
9666 | if (tinsn->tok[1].X_op == O_constant) |
9667 | target = tinsn->tok[1].X_add_number; | |
9668 | else if (tinsn->tok[1].X_op == O_symbol) | |
9669 | { | |
9670 | /* Find the fragment. */ | |
9671 | symbolS *sym = tinsn->tok[1].X_add_symbol; | |
9672 | assert (S_GET_SEGMENT (sym) == segP | |
9673 | || S_GET_SEGMENT (sym) == absolute_section); | |
9674 | target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number); | |
9675 | } | |
9676 | else | |
9677 | { | |
9678 | as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op); | |
9679 | target = 0; | |
9680 | } | |
e0001a05 | 9681 | |
e0001a05 NC |
9682 | loop_length = target - (fragP->fr_address + fragP->fr_fix); |
9683 | loop_length_hi = loop_length & ~0x0ff; | |
9684 | loop_length_lo = loop_length & 0x0ff; | |
9685 | if (loop_length_lo >= 128) | |
9686 | { | |
9687 | loop_length_lo -= 256; | |
9688 | loop_length_hi += 256; | |
9689 | } | |
9690 | ||
43cd72b9 | 9691 | /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most |
e0001a05 NC |
9692 | 32512. If the loop is larger than that, then we just fail. */ |
9693 | if (loop_length_hi > 32512) | |
9694 | as_bad_where (fragP->fr_file, fragP->fr_line, | |
9695 | _("loop too long for LOOP instruction")); | |
9696 | ||
43cd72b9 | 9697 | tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0); |
e0001a05 NC |
9698 | assert (addi_insn.opcode == xtensa_addi_opcode); |
9699 | ||
43cd72b9 | 9700 | tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0); |
e0001a05 NC |
9701 | assert (addmi_insn.opcode == xtensa_addmi_opcode); |
9702 | ||
9703 | set_expr_const (&addi_insn.tok[2], loop_length_lo); | |
9704 | tinsn_to_insnbuf (&addi_insn, insnbuf); | |
43cd72b9 | 9705 | |
e0001a05 | 9706 | fragP->tc_frag_data.is_insn = TRUE; |
d77b99c9 BW |
9707 | xtensa_insnbuf_to_chars |
9708 | (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0); | |
e0001a05 NC |
9709 | |
9710 | set_expr_const (&addmi_insn.tok[2], loop_length_hi); | |
9711 | tinsn_to_insnbuf (&addmi_insn, insnbuf); | |
d77b99c9 BW |
9712 | xtensa_insnbuf_to_chars |
9713 | (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0); | |
43cd72b9 BW |
9714 | |
9715 | /* Walk through all of the frags from here to the loop end | |
9716 | and mark them as no_transform to keep them from being modified | |
9717 | by the linker. If we ever have a relocation for the | |
9718 | addi/addmi of the difference of two symbols we can remove this. */ | |
9719 | ||
9720 | target_count = 0; | |
9721 | for (next_fragP = fragP; next_fragP != NULL; | |
9722 | next_fragP = next_fragP->fr_next) | |
9723 | { | |
b08b5071 | 9724 | next_fragP->tc_frag_data.is_no_transform = TRUE; |
43cd72b9 BW |
9725 | if (next_fragP->tc_frag_data.is_loop_target) |
9726 | target_count++; | |
9727 | if (target_count == 2) | |
9728 | break; | |
9729 | } | |
e0001a05 NC |
9730 | } |
9731 | ||
b08b5071 BW |
9732 | \f |
9733 | /* A map that keeps information on a per-subsegment basis. This is | |
9734 | maintained during initial assembly, but is invalid once the | |
9735 | subsegments are smashed together. I.E., it cannot be used during | |
9736 | the relaxation. */ | |
e0001a05 | 9737 | |
b08b5071 | 9738 | typedef struct subseg_map_struct |
e0001a05 | 9739 | { |
b08b5071 BW |
9740 | /* the key */ |
9741 | segT seg; | |
9742 | subsegT subseg; | |
e0001a05 | 9743 | |
b08b5071 BW |
9744 | /* the data */ |
9745 | unsigned flags; | |
9746 | float total_freq; /* fall-through + branch target frequency */ | |
9747 | float target_freq; /* branch target frequency alone */ | |
9748 | ||
9749 | struct subseg_map_struct *next; | |
9750 | } subseg_map; | |
e0001a05 | 9751 | |
e0001a05 | 9752 | |
e0001a05 NC |
9753 | static subseg_map *sseg_map = NULL; |
9754 | ||
43cd72b9 | 9755 | static subseg_map * |
7fa3d080 | 9756 | get_subseg_info (segT seg, subsegT subseg) |
e0001a05 NC |
9757 | { |
9758 | subseg_map *subseg_e; | |
9759 | ||
9760 | for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next) | |
e0001a05 | 9761 | { |
43cd72b9 | 9762 | if (seg == subseg_e->seg && subseg == subseg_e->subseg) |
b08b5071 | 9763 | break; |
e0001a05 | 9764 | } |
b08b5071 BW |
9765 | return subseg_e; |
9766 | } | |
9767 | ||
9768 | ||
9769 | static subseg_map * | |
9770 | add_subseg_info (segT seg, subsegT subseg) | |
9771 | { | |
9772 | subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map)); | |
43cd72b9 BW |
9773 | memset (subseg_e, 0, sizeof (subseg_map)); |
9774 | subseg_e->seg = seg; | |
9775 | subseg_e->subseg = subseg; | |
9776 | subseg_e->flags = 0; | |
9777 | /* Start off considering every branch target very important. */ | |
b08b5071 BW |
9778 | subseg_e->target_freq = 1.0; |
9779 | subseg_e->total_freq = 1.0; | |
43cd72b9 BW |
9780 | subseg_e->next = sseg_map; |
9781 | sseg_map = subseg_e; | |
43cd72b9 BW |
9782 | return subseg_e; |
9783 | } | |
e0001a05 | 9784 | |
7fa3d080 BW |
9785 | |
9786 | static unsigned | |
9787 | get_last_insn_flags (segT seg, subsegT subseg) | |
9788 | { | |
9789 | subseg_map *subseg_e = get_subseg_info (seg, subseg); | |
b08b5071 BW |
9790 | if (subseg_e) |
9791 | return subseg_e->flags; | |
9792 | return 0; | |
7fa3d080 BW |
9793 | } |
9794 | ||
9795 | ||
43cd72b9 | 9796 | static void |
7fa3d080 BW |
9797 | set_last_insn_flags (segT seg, |
9798 | subsegT subseg, | |
9799 | unsigned fl, | |
9800 | bfd_boolean val) | |
43cd72b9 BW |
9801 | { |
9802 | subseg_map *subseg_e = get_subseg_info (seg, subseg); | |
b08b5071 BW |
9803 | if (! subseg_e) |
9804 | subseg_e = add_subseg_info (seg, subseg); | |
e0001a05 NC |
9805 | if (val) |
9806 | subseg_e->flags |= fl; | |
9807 | else | |
9808 | subseg_e->flags &= ~fl; | |
9809 | } | |
9810 | ||
b08b5071 BW |
9811 | |
9812 | static float | |
9813 | get_subseg_total_freq (segT seg, subsegT subseg) | |
9814 | { | |
9815 | subseg_map *subseg_e = get_subseg_info (seg, subseg); | |
9816 | if (subseg_e) | |
9817 | return subseg_e->total_freq; | |
9818 | return 1.0; | |
9819 | } | |
9820 | ||
9821 | ||
9822 | static float | |
9823 | get_subseg_target_freq (segT seg, subsegT subseg) | |
9824 | { | |
9825 | subseg_map *subseg_e = get_subseg_info (seg, subseg); | |
9826 | if (subseg_e) | |
9827 | return subseg_e->target_freq; | |
9828 | return 1.0; | |
9829 | } | |
9830 | ||
9831 | ||
9832 | static void | |
9833 | set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f) | |
9834 | { | |
9835 | subseg_map *subseg_e = get_subseg_info (seg, subseg); | |
9836 | if (! subseg_e) | |
9837 | subseg_e = add_subseg_info (seg, subseg); | |
9838 | subseg_e->total_freq = total_f; | |
9839 | subseg_e->target_freq = target_f; | |
9840 | } | |
9841 | ||
e0001a05 NC |
9842 | \f |
9843 | /* Segment Lists and emit_state Stuff. */ | |
9844 | ||
e0001a05 | 9845 | static void |
7fa3d080 | 9846 | xtensa_move_seg_list_to_beginning (seg_list *head) |
e0001a05 NC |
9847 | { |
9848 | head = head->next; | |
9849 | while (head) | |
9850 | { | |
9851 | segT literal_section = head->seg; | |
9852 | ||
9853 | /* Move the literal section to the front of the section list. */ | |
9854 | assert (literal_section); | |
69852798 AM |
9855 | if (literal_section != stdoutput->sections) |
9856 | { | |
9857 | bfd_section_list_remove (stdoutput, literal_section); | |
9858 | bfd_section_list_prepend (stdoutput, literal_section); | |
9859 | } | |
e0001a05 NC |
9860 | head = head->next; |
9861 | } | |
9862 | } | |
9863 | ||
9864 | ||
7fa3d080 BW |
9865 | static void mark_literal_frags (seg_list *); |
9866 | ||
9867 | static void | |
9868 | xtensa_move_literals (void) | |
e0001a05 NC |
9869 | { |
9870 | seg_list *segment; | |
9871 | frchainS *frchain_from, *frchain_to; | |
9872 | fragS *search_frag, *next_frag, *last_frag, *literal_pool, *insert_after; | |
9873 | fragS **frag_splice; | |
9874 | emit_state state; | |
9875 | segT dest_seg; | |
9876 | fixS *fix, *next_fix, **fix_splice; | |
82e7541d | 9877 | sym_list *lit; |
e0001a05 | 9878 | |
a7877748 | 9879 | mark_literal_frags (literal_head->next); |
e0001a05 NC |
9880 | |
9881 | if (use_literal_section) | |
9882 | return; | |
9883 | ||
74869ac7 | 9884 | for (segment = literal_head->next; segment; segment = segment->next) |
e0001a05 | 9885 | { |
74869ac7 BW |
9886 | /* Keep the literals for .init and .fini in separate sections. */ |
9887 | if (!strcmp (segment_name (segment->seg), INIT_SECTION_NAME) | |
9888 | || !strcmp (segment_name (segment->seg), FINI_SECTION_NAME)) | |
9889 | continue; | |
9890 | ||
e0001a05 NC |
9891 | frchain_from = seg_info (segment->seg)->frchainP; |
9892 | search_frag = frchain_from->frch_root; | |
9893 | literal_pool = NULL; | |
9894 | frchain_to = NULL; | |
9895 | frag_splice = &(frchain_from->frch_root); | |
9896 | ||
9897 | while (!search_frag->tc_frag_data.literal_frag) | |
9898 | { | |
9899 | assert (search_frag->fr_fix == 0 | |
9900 | || search_frag->fr_type == rs_align); | |
9901 | search_frag = search_frag->fr_next; | |
9902 | } | |
9903 | ||
9904 | assert (search_frag->tc_frag_data.literal_frag->fr_subtype | |
9905 | == RELAX_LITERAL_POOL_BEGIN); | |
9906 | xtensa_switch_section_emit_state (&state, segment->seg, 0); | |
9907 | ||
9908 | /* Make sure that all the frags in this series are closed, and | |
9909 | that there is at least one left over of zero-size. This | |
9910 | prevents us from making a segment with an frchain without any | |
9911 | frags in it. */ | |
9912 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
43cd72b9 | 9913 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
9914 | last_frag = frag_now; |
9915 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
43cd72b9 | 9916 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 | 9917 | |
43cd72b9 | 9918 | while (search_frag != frag_now) |
e0001a05 NC |
9919 | { |
9920 | next_frag = search_frag->fr_next; | |
9921 | ||
43cd72b9 | 9922 | /* First, move the frag out of the literal section and |
e0001a05 NC |
9923 | to the appropriate place. */ |
9924 | if (search_frag->tc_frag_data.literal_frag) | |
9925 | { | |
9926 | literal_pool = search_frag->tc_frag_data.literal_frag; | |
9927 | assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN); | |
dd49a749 BW |
9928 | frchain_to = literal_pool->tc_frag_data.lit_frchain; |
9929 | assert (frchain_to); | |
e0001a05 | 9930 | } |
c48aaca0 | 9931 | insert_after = literal_pool->tc_frag_data.literal_frag; |
dd49a749 | 9932 | dest_seg = insert_after->fr_next->tc_frag_data.lit_seg; |
43cd72b9 | 9933 | |
e0001a05 NC |
9934 | *frag_splice = next_frag; |
9935 | search_frag->fr_next = insert_after->fr_next; | |
9936 | insert_after->fr_next = search_frag; | |
9937 | search_frag->tc_frag_data.lit_seg = dest_seg; | |
c48aaca0 | 9938 | literal_pool->tc_frag_data.literal_frag = search_frag; |
e0001a05 NC |
9939 | |
9940 | /* Now move any fixups associated with this frag to the | |
9941 | right section. */ | |
9942 | fix = frchain_from->fix_root; | |
9943 | fix_splice = &(frchain_from->fix_root); | |
9944 | while (fix) | |
9945 | { | |
9946 | next_fix = fix->fx_next; | |
9947 | if (fix->fx_frag == search_frag) | |
9948 | { | |
9949 | *fix_splice = next_fix; | |
9950 | fix->fx_next = frchain_to->fix_root; | |
9951 | frchain_to->fix_root = fix; | |
9952 | if (frchain_to->fix_tail == NULL) | |
9953 | frchain_to->fix_tail = fix; | |
9954 | } | |
9955 | else | |
9956 | fix_splice = &(fix->fx_next); | |
9957 | fix = next_fix; | |
9958 | } | |
9959 | search_frag = next_frag; | |
9960 | } | |
9961 | ||
9962 | if (frchain_from->fix_root != NULL) | |
9963 | { | |
9964 | frchain_from = seg_info (segment->seg)->frchainP; | |
9965 | as_warn (_("fixes not all moved from %s"), segment->seg->name); | |
9966 | ||
9967 | assert (frchain_from->fix_root == NULL); | |
9968 | } | |
9969 | frchain_from->fix_tail = NULL; | |
9970 | xtensa_restore_emit_state (&state); | |
e0001a05 NC |
9971 | } |
9972 | ||
82e7541d BW |
9973 | /* Now fix up the SEGMENT value for all the literal symbols. */ |
9974 | for (lit = literal_syms; lit; lit = lit->next) | |
9975 | { | |
9976 | symbolS *lit_sym = lit->sym; | |
9977 | segT dest_seg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg; | |
43cd72b9 BW |
9978 | if (dest_seg) |
9979 | S_SET_SEGMENT (lit_sym, dest_seg); | |
82e7541d | 9980 | } |
e0001a05 NC |
9981 | } |
9982 | ||
9983 | ||
a7877748 BW |
9984 | /* Walk over all the frags for segments in a list and mark them as |
9985 | containing literals. As clunky as this is, we can't rely on frag_var | |
9986 | and frag_variant to get called in all situations. */ | |
9987 | ||
9988 | static void | |
7fa3d080 | 9989 | mark_literal_frags (seg_list *segment) |
a7877748 BW |
9990 | { |
9991 | frchainS *frchain_from; | |
9992 | fragS *search_frag; | |
9993 | ||
9994 | while (segment) | |
9995 | { | |
9996 | frchain_from = seg_info (segment->seg)->frchainP; | |
9997 | search_frag = frchain_from->frch_root; | |
c138bc38 | 9998 | while (search_frag) |
a7877748 BW |
9999 | { |
10000 | search_frag->tc_frag_data.is_literal = TRUE; | |
10001 | search_frag = search_frag->fr_next; | |
10002 | } | |
10003 | segment = segment->next; | |
10004 | } | |
10005 | } | |
10006 | ||
10007 | ||
e0001a05 | 10008 | static void |
7fa3d080 | 10009 | xtensa_reorder_seg_list (seg_list *head, segT after) |
e0001a05 NC |
10010 | { |
10011 | /* Move all of the sections in the section list to come | |
10012 | after "after" in the gnu segment list. */ | |
10013 | ||
10014 | head = head->next; | |
10015 | while (head) | |
10016 | { | |
10017 | segT literal_section = head->seg; | |
10018 | ||
10019 | /* Move the literal section after "after". */ | |
10020 | assert (literal_section); | |
10021 | if (literal_section != after) | |
10022 | { | |
69852798 AM |
10023 | bfd_section_list_remove (stdoutput, literal_section); |
10024 | bfd_section_list_insert_after (stdoutput, after, literal_section); | |
e0001a05 NC |
10025 | } |
10026 | ||
10027 | head = head->next; | |
10028 | } | |
10029 | } | |
10030 | ||
10031 | ||
10032 | /* Push all the literal segments to the end of the gnu list. */ | |
10033 | ||
7fa3d080 BW |
10034 | static void |
10035 | xtensa_reorder_segments (void) | |
e0001a05 NC |
10036 | { |
10037 | segT sec; | |
b08b5071 | 10038 | segT last_sec = 0; |
e0001a05 NC |
10039 | int old_count = 0; |
10040 | int new_count = 0; | |
10041 | ||
10042 | for (sec = stdoutput->sections; sec != NULL; sec = sec->next) | |
b08b5071 BW |
10043 | { |
10044 | last_sec = sec; | |
10045 | old_count++; | |
10046 | } | |
e0001a05 NC |
10047 | |
10048 | /* Now that we have the last section, push all the literal | |
10049 | sections to the end. */ | |
e0001a05 | 10050 | xtensa_reorder_seg_list (literal_head, last_sec); |
e0001a05 NC |
10051 | |
10052 | /* Now perform the final error check. */ | |
10053 | for (sec = stdoutput->sections; sec != NULL; sec = sec->next) | |
10054 | new_count++; | |
10055 | assert (new_count == old_count); | |
10056 | } | |
10057 | ||
10058 | ||
e0001a05 NC |
10059 | /* Change the emit state (seg, subseg, and frag related stuff) to the |
10060 | correct location. Return a emit_state which can be passed to | |
10061 | xtensa_restore_emit_state to return to current fragment. */ | |
10062 | ||
7fa3d080 BW |
10063 | static void |
10064 | xtensa_switch_to_literal_fragment (emit_state *result) | |
43cd72b9 BW |
10065 | { |
10066 | if (directive_state[directive_absolute_literals]) | |
10067 | { | |
74869ac7 BW |
10068 | segT lit4_seg = cache_literal_section (TRUE); |
10069 | xtensa_switch_section_emit_state (result, lit4_seg, 0); | |
43cd72b9 BW |
10070 | } |
10071 | else | |
10072 | xtensa_switch_to_non_abs_literal_fragment (result); | |
10073 | ||
10074 | /* Do a 4-byte align here. */ | |
10075 | frag_align (2, 0, 0); | |
10076 | record_alignment (now_seg, 2); | |
10077 | } | |
10078 | ||
10079 | ||
7fa3d080 BW |
10080 | static void |
10081 | xtensa_switch_to_non_abs_literal_fragment (emit_state *result) | |
e0001a05 | 10082 | { |
e0001a05 NC |
10083 | static bfd_boolean recursive = FALSE; |
10084 | fragS *pool_location = get_literal_pool_location (now_seg); | |
74869ac7 | 10085 | segT lit_seg; |
c138bc38 | 10086 | bfd_boolean is_init = |
e0001a05 | 10087 | (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME)); |
c138bc38 | 10088 | bfd_boolean is_fini = |
e0001a05 | 10089 | (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME)); |
e0001a05 | 10090 | |
43cd72b9 BW |
10091 | if (pool_location == NULL |
10092 | && !use_literal_section | |
e0001a05 NC |
10093 | && !recursive |
10094 | && !is_init && ! is_fini) | |
10095 | { | |
43cd72b9 | 10096 | as_bad (_("literal pool location required for text-section-literals; specify with .literal_position")); |
74869ac7 BW |
10097 | |
10098 | /* When we mark a literal pool location, we want to put a frag in | |
10099 | the literal pool that points to it. But to do that, we want to | |
10100 | switch_to_literal_fragment. But literal sections don't have | |
10101 | literal pools, so their location is always null, so we would | |
10102 | recurse forever. This is kind of hacky, but it works. */ | |
10103 | ||
e0001a05 | 10104 | recursive = TRUE; |
61846f28 | 10105 | xtensa_mark_literal_pool_location (); |
e0001a05 NC |
10106 | recursive = FALSE; |
10107 | } | |
10108 | ||
74869ac7 BW |
10109 | lit_seg = cache_literal_section (FALSE); |
10110 | xtensa_switch_section_emit_state (result, lit_seg, 0); | |
e0001a05 | 10111 | |
43cd72b9 BW |
10112 | if (!use_literal_section |
10113 | && !is_init && !is_fini | |
10114 | && get_literal_pool_location (now_seg) != pool_location) | |
e0001a05 NC |
10115 | { |
10116 | /* Close whatever frag is there. */ | |
10117 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
43cd72b9 | 10118 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
10119 | frag_now->tc_frag_data.literal_frag = pool_location; |
10120 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
43cd72b9 | 10121 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 | 10122 | } |
e0001a05 NC |
10123 | } |
10124 | ||
10125 | ||
10126 | /* Call this function before emitting data into the literal section. | |
10127 | This is a helper function for xtensa_switch_to_literal_fragment. | |
10128 | This is similar to a .section new_now_seg subseg. */ | |
10129 | ||
7fa3d080 BW |
10130 | static void |
10131 | xtensa_switch_section_emit_state (emit_state *state, | |
10132 | segT new_now_seg, | |
10133 | subsegT new_now_subseg) | |
e0001a05 NC |
10134 | { |
10135 | state->name = now_seg->name; | |
10136 | state->now_seg = now_seg; | |
10137 | state->now_subseg = now_subseg; | |
10138 | state->generating_literals = generating_literals; | |
10139 | generating_literals++; | |
2b0210eb | 10140 | subseg_set (new_now_seg, new_now_subseg); |
e0001a05 NC |
10141 | } |
10142 | ||
10143 | ||
10144 | /* Use to restore the emitting into the normal place. */ | |
10145 | ||
7fa3d080 BW |
10146 | static void |
10147 | xtensa_restore_emit_state (emit_state *state) | |
e0001a05 NC |
10148 | { |
10149 | generating_literals = state->generating_literals; | |
2b0210eb | 10150 | subseg_set (state->now_seg, state->now_subseg); |
e0001a05 NC |
10151 | } |
10152 | ||
10153 | ||
74869ac7 | 10154 | /* Predicate function used to look up a section in a particular group. */ |
e0001a05 | 10155 | |
74869ac7 BW |
10156 | static bfd_boolean |
10157 | match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf) | |
e0001a05 | 10158 | { |
74869ac7 BW |
10159 | const char *gname = inf; |
10160 | const char *group_name = elf_group_name (sec); | |
10161 | ||
10162 | return (group_name == gname | |
10163 | || (group_name != NULL | |
10164 | && gname != NULL | |
10165 | && strcmp (group_name, gname) == 0)); | |
10166 | } | |
e0001a05 | 10167 | |
e0001a05 | 10168 | |
74869ac7 BW |
10169 | /* Get the literal section to be used for the current text section. |
10170 | The result may be cached in the default_lit_sections structure. */ | |
10171 | ||
10172 | static segT | |
10173 | cache_literal_section (bfd_boolean use_abs_literals) | |
10174 | { | |
10175 | const char *text_name, *group_name = 0; | |
10176 | char *base_name, *name, *suffix; | |
10177 | segT *pcached; | |
10178 | segT seg, current_section; | |
10179 | int current_subsec; | |
10180 | bfd_boolean linkonce = FALSE; | |
10181 | ||
10182 | /* Save the current section/subsection. */ | |
10183 | current_section = now_seg; | |
10184 | current_subsec = now_subseg; | |
10185 | ||
10186 | /* Clear the cached values if they are no longer valid. */ | |
10187 | if (now_seg != default_lit_sections.current_text_seg) | |
b08b5071 | 10188 | { |
74869ac7 BW |
10189 | default_lit_sections.current_text_seg = now_seg; |
10190 | default_lit_sections.lit_seg = NULL; | |
10191 | default_lit_sections.lit4_seg = NULL; | |
10192 | } | |
10193 | ||
10194 | /* Check if the literal section is already cached. */ | |
10195 | if (use_abs_literals) | |
10196 | pcached = &default_lit_sections.lit4_seg; | |
10197 | else | |
10198 | pcached = &default_lit_sections.lit_seg; | |
10199 | ||
10200 | if (*pcached) | |
10201 | return *pcached; | |
10202 | ||
10203 | text_name = default_lit_sections.lit_prefix; | |
10204 | if (! text_name || ! *text_name) | |
10205 | { | |
10206 | text_name = segment_name (current_section); | |
10207 | group_name = elf_group_name (current_section); | |
10208 | linkonce = (current_section->flags & SEC_LINK_ONCE) != 0; | |
10209 | } | |
10210 | ||
10211 | base_name = use_abs_literals ? ".lit4" : ".literal"; | |
10212 | if (group_name) | |
10213 | { | |
10214 | name = xmalloc (strlen (base_name) + strlen (group_name) + 2); | |
10215 | sprintf (name, "%s.%s", base_name, group_name); | |
10216 | } | |
10217 | else if (strncmp (text_name, ".gnu.linkonce.", linkonce_len) == 0) | |
10218 | { | |
10219 | suffix = strchr (text_name + linkonce_len, '.'); | |
10220 | ||
10221 | name = xmalloc (linkonce_len + strlen (base_name) + 1 | |
10222 | + (suffix ? strlen (suffix) : 0)); | |
10223 | strcpy (name, ".gnu.linkonce"); | |
10224 | strcat (name, base_name); | |
10225 | if (suffix) | |
10226 | strcat (name, suffix); | |
10227 | linkonce = TRUE; | |
10228 | } | |
10229 | else | |
10230 | { | |
10231 | /* If the section name ends with ".text", then replace that suffix | |
10232 | instead of appending an additional suffix. */ | |
10233 | size_t len = strlen (text_name); | |
10234 | if (len >= 5 && strcmp (text_name + len - 5, ".text") == 0) | |
10235 | len -= 5; | |
10236 | ||
10237 | name = xmalloc (len + strlen (base_name) + 1); | |
10238 | strcpy (name, text_name); | |
10239 | strcpy (name + len, base_name); | |
b08b5071 | 10240 | } |
e0001a05 | 10241 | |
74869ac7 BW |
10242 | /* Canonicalize section names to allow renaming literal sections. |
10243 | The group name, if any, came from the current text section and | |
10244 | has already been canonicalized. */ | |
10245 | name = tc_canonicalize_symbol_name (name); | |
10246 | ||
10247 | seg = bfd_get_section_by_name_if (stdoutput, name, match_section_group, | |
10248 | (void *) group_name); | |
10249 | if (! seg) | |
e0001a05 | 10250 | { |
74869ac7 BW |
10251 | flagword flags; |
10252 | ||
10253 | seg = subseg_force_new (name, 0); | |
10254 | ||
10255 | if (! use_abs_literals) | |
b08b5071 | 10256 | { |
74869ac7 | 10257 | /* Add the newly created literal segment to the list. */ |
b08b5071 BW |
10258 | seg_list *n = (seg_list *) xmalloc (sizeof (seg_list)); |
10259 | n->seg = seg; | |
74869ac7 BW |
10260 | n->next = literal_head->next; |
10261 | literal_head->next = n; | |
b08b5071 | 10262 | } |
74869ac7 BW |
10263 | |
10264 | flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_ALLOC | SEC_LOAD | |
10265 | | (linkonce ? (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD) : 0) | |
10266 | | (use_abs_literals ? SEC_DATA : SEC_CODE)); | |
10267 | ||
10268 | elf_group_name (seg) = group_name; | |
10269 | ||
10270 | bfd_set_section_flags (stdoutput, seg, flags); | |
b08b5071 | 10271 | bfd_set_section_alignment (stdoutput, seg, 2); |
e0001a05 NC |
10272 | } |
10273 | ||
74869ac7 | 10274 | *pcached = seg; |
b08b5071 | 10275 | subseg_set (current_section, current_subsec); |
74869ac7 | 10276 | return seg; |
e0001a05 NC |
10277 | } |
10278 | ||
43cd72b9 BW |
10279 | \f |
10280 | /* Property Tables Stuff. */ | |
10281 | ||
7fa3d080 BW |
10282 | #define XTENSA_INSN_SEC_NAME ".xt.insn" |
10283 | #define XTENSA_LIT_SEC_NAME ".xt.lit" | |
10284 | #define XTENSA_PROP_SEC_NAME ".xt.prop" | |
10285 | ||
10286 | typedef bfd_boolean (*frag_predicate) (const fragS *); | |
10287 | typedef void (*frag_flags_fn) (const fragS *, frag_flags *); | |
10288 | ||
b08b5071 | 10289 | static bfd_boolean get_frag_is_literal (const fragS *); |
7fa3d080 BW |
10290 | static void xtensa_create_property_segments |
10291 | (frag_predicate, frag_predicate, const char *, xt_section_type); | |
10292 | static void xtensa_create_xproperty_segments | |
10293 | (frag_flags_fn, const char *, xt_section_type); | |
7fa3d080 BW |
10294 | static bfd_boolean section_has_property (segT, frag_predicate); |
10295 | static bfd_boolean section_has_xproperty (segT, frag_flags_fn); | |
10296 | static void add_xt_block_frags | |
542f8b94 | 10297 | (segT, xtensa_block_info **, frag_predicate, frag_predicate); |
7fa3d080 BW |
10298 | static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *); |
10299 | static void xtensa_frag_flags_init (frag_flags *); | |
10300 | static void get_frag_property_flags (const fragS *, frag_flags *); | |
10301 | static bfd_vma frag_flags_to_number (const frag_flags *); | |
542f8b94 | 10302 | static void add_xt_prop_frags (segT, xtensa_block_info **, frag_flags_fn); |
7fa3d080 BW |
10303 | |
10304 | /* Set up property tables after relaxation. */ | |
10305 | ||
10306 | void | |
10307 | xtensa_post_relax_hook (void) | |
10308 | { | |
10309 | xtensa_move_seg_list_to_beginning (literal_head); | |
7fa3d080 BW |
10310 | |
10311 | xtensa_find_unmarked_state_frags (); | |
99ded152 | 10312 | xtensa_mark_frags_for_org (); |
6a7eedfe | 10313 | xtensa_mark_difference_of_two_symbols (); |
7fa3d080 | 10314 | |
b29757dc BW |
10315 | xtensa_create_property_segments (get_frag_is_literal, |
10316 | NULL, | |
10317 | XTENSA_LIT_SEC_NAME, | |
10318 | xt_literal_sec); | |
7fa3d080 BW |
10319 | xtensa_create_xproperty_segments (get_frag_property_flags, |
10320 | XTENSA_PROP_SEC_NAME, | |
10321 | xt_prop_sec); | |
10322 | ||
10323 | if (warn_unaligned_branch_targets) | |
10324 | bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0); | |
10325 | bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0); | |
10326 | } | |
10327 | ||
10328 | ||
43cd72b9 BW |
10329 | /* This function is only meaningful after xtensa_move_literals. */ |
10330 | ||
10331 | static bfd_boolean | |
7fa3d080 | 10332 | get_frag_is_literal (const fragS *fragP) |
43cd72b9 BW |
10333 | { |
10334 | assert (fragP != NULL); | |
10335 | return fragP->tc_frag_data.is_literal; | |
10336 | } | |
10337 | ||
10338 | ||
43cd72b9 | 10339 | static void |
7fa3d080 BW |
10340 | xtensa_create_property_segments (frag_predicate property_function, |
10341 | frag_predicate end_property_function, | |
10342 | const char *section_name_base, | |
10343 | xt_section_type sec_type) | |
43cd72b9 BW |
10344 | { |
10345 | segT *seclist; | |
10346 | ||
10347 | /* Walk over all of the current segments. | |
10348 | Walk over each fragment | |
10349 | For each non-empty fragment, | |
10350 | Build a property record (append where possible). */ | |
10351 | ||
10352 | for (seclist = &stdoutput->sections; | |
10353 | seclist && *seclist; | |
10354 | seclist = &(*seclist)->next) | |
10355 | { | |
10356 | segT sec = *seclist; | |
10357 | flagword flags; | |
10358 | ||
10359 | flags = bfd_get_section_flags (stdoutput, sec); | |
10360 | if (flags & SEC_DEBUGGING) | |
10361 | continue; | |
10362 | if (!(flags & SEC_ALLOC)) | |
10363 | continue; | |
10364 | ||
10365 | if (section_has_property (sec, property_function)) | |
10366 | { | |
542f8b94 BW |
10367 | segment_info_type *xt_seg_info; |
10368 | xtensa_block_info **xt_blocks; | |
10369 | segT prop_sec = xtensa_get_property_section (sec, section_name_base); | |
10370 | ||
10371 | prop_sec->output_section = prop_sec; | |
10372 | subseg_set (prop_sec, 0); | |
10373 | xt_seg_info = seg_info (prop_sec); | |
10374 | xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type]; | |
10375 | ||
43cd72b9 | 10376 | /* Walk over all of the frchains here and add new sections. */ |
542f8b94 | 10377 | add_xt_block_frags (sec, xt_blocks, property_function, |
43cd72b9 BW |
10378 | end_property_function); |
10379 | } | |
10380 | } | |
10381 | ||
10382 | /* Now we fill them out.... */ | |
10383 | ||
10384 | for (seclist = &stdoutput->sections; | |
10385 | seclist && *seclist; | |
10386 | seclist = &(*seclist)->next) | |
10387 | { | |
10388 | segment_info_type *seginfo; | |
10389 | xtensa_block_info *block; | |
10390 | segT sec = *seclist; | |
10391 | ||
10392 | seginfo = seg_info (sec); | |
10393 | block = seginfo->tc_segment_info_data.blocks[sec_type]; | |
10394 | ||
10395 | if (block) | |
10396 | { | |
10397 | xtensa_block_info *cur_block; | |
43cd72b9 | 10398 | int num_recs = 0; |
d77b99c9 | 10399 | bfd_size_type rec_size; |
43cd72b9 BW |
10400 | |
10401 | for (cur_block = block; cur_block; cur_block = cur_block->next) | |
10402 | num_recs++; | |
10403 | ||
10404 | rec_size = num_recs * 8; | |
10405 | bfd_set_section_size (stdoutput, sec, rec_size); | |
10406 | ||
43cd72b9 BW |
10407 | if (num_recs) |
10408 | { | |
43cd72b9 | 10409 | char *frag_data; |
542f8b94 | 10410 | int i; |
43cd72b9 | 10411 | |
542f8b94 BW |
10412 | subseg_set (sec, 0); |
10413 | frag_data = frag_more (rec_size); | |
43cd72b9 | 10414 | cur_block = block; |
43cd72b9 BW |
10415 | for (i = 0; i < num_recs; i++) |
10416 | { | |
542f8b94 | 10417 | fixS *fix; |
e0001a05 | 10418 | |
43cd72b9 | 10419 | /* Write the fixup. */ |
542f8b94 BW |
10420 | assert (cur_block); |
10421 | fix = fix_new (frag_now, i * 8, 4, | |
10422 | section_symbol (cur_block->sec), | |
10423 | cur_block->offset, | |
10424 | FALSE, BFD_RELOC_32); | |
10425 | fix->fx_file = "<internal>"; | |
43cd72b9 | 10426 | fix->fx_line = 0; |
e0001a05 | 10427 | |
43cd72b9 | 10428 | /* Write the length. */ |
542f8b94 | 10429 | md_number_to_chars (&frag_data[4 + i * 8], |
43cd72b9 BW |
10430 | cur_block->size, 4); |
10431 | cur_block = cur_block->next; | |
10432 | } | |
542f8b94 BW |
10433 | frag_wane (frag_now); |
10434 | frag_new (0); | |
10435 | frag_wane (frag_now); | |
43cd72b9 BW |
10436 | } |
10437 | } | |
10438 | } | |
e0001a05 NC |
10439 | } |
10440 | ||
10441 | ||
7fa3d080 BW |
10442 | static void |
10443 | xtensa_create_xproperty_segments (frag_flags_fn flag_fn, | |
10444 | const char *section_name_base, | |
10445 | xt_section_type sec_type) | |
e0001a05 NC |
10446 | { |
10447 | segT *seclist; | |
10448 | ||
10449 | /* Walk over all of the current segments. | |
43cd72b9 BW |
10450 | Walk over each fragment. |
10451 | For each fragment that has instructions, | |
10452 | build an instruction record (append where possible). */ | |
e0001a05 NC |
10453 | |
10454 | for (seclist = &stdoutput->sections; | |
10455 | seclist && *seclist; | |
10456 | seclist = &(*seclist)->next) | |
10457 | { | |
10458 | segT sec = *seclist; | |
43cd72b9 BW |
10459 | flagword flags; |
10460 | ||
10461 | flags = bfd_get_section_flags (stdoutput, sec); | |
6624cbde BW |
10462 | if ((flags & SEC_DEBUGGING) |
10463 | || !(flags & SEC_ALLOC) | |
10464 | || (flags & SEC_MERGE)) | |
43cd72b9 BW |
10465 | continue; |
10466 | ||
10467 | if (section_has_xproperty (sec, flag_fn)) | |
e0001a05 | 10468 | { |
542f8b94 BW |
10469 | segment_info_type *xt_seg_info; |
10470 | xtensa_block_info **xt_blocks; | |
10471 | segT prop_sec = xtensa_get_property_section (sec, section_name_base); | |
10472 | ||
10473 | prop_sec->output_section = prop_sec; | |
10474 | subseg_set (prop_sec, 0); | |
10475 | xt_seg_info = seg_info (prop_sec); | |
10476 | xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type]; | |
10477 | ||
e0001a05 | 10478 | /* Walk over all of the frchains here and add new sections. */ |
542f8b94 | 10479 | add_xt_prop_frags (sec, xt_blocks, flag_fn); |
e0001a05 NC |
10480 | } |
10481 | } | |
10482 | ||
10483 | /* Now we fill them out.... */ | |
10484 | ||
10485 | for (seclist = &stdoutput->sections; | |
10486 | seclist && *seclist; | |
10487 | seclist = &(*seclist)->next) | |
10488 | { | |
10489 | segment_info_type *seginfo; | |
10490 | xtensa_block_info *block; | |
10491 | segT sec = *seclist; | |
43cd72b9 | 10492 | |
e0001a05 NC |
10493 | seginfo = seg_info (sec); |
10494 | block = seginfo->tc_segment_info_data.blocks[sec_type]; | |
10495 | ||
10496 | if (block) | |
10497 | { | |
10498 | xtensa_block_info *cur_block; | |
43cd72b9 | 10499 | int num_recs = 0; |
d77b99c9 | 10500 | bfd_size_type rec_size; |
e0001a05 NC |
10501 | |
10502 | for (cur_block = block; cur_block; cur_block = cur_block->next) | |
10503 | num_recs++; | |
10504 | ||
43cd72b9 | 10505 | rec_size = num_recs * (8 + 4); |
e0001a05 | 10506 | bfd_set_section_size (stdoutput, sec, rec_size); |
43cd72b9 BW |
10507 | /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */ |
10508 | ||
e0001a05 NC |
10509 | if (num_recs) |
10510 | { | |
e0001a05 | 10511 | char *frag_data; |
542f8b94 | 10512 | int i; |
e0001a05 | 10513 | |
542f8b94 BW |
10514 | subseg_set (sec, 0); |
10515 | frag_data = frag_more (rec_size); | |
e0001a05 | 10516 | cur_block = block; |
e0001a05 NC |
10517 | for (i = 0; i < num_recs; i++) |
10518 | { | |
542f8b94 | 10519 | fixS *fix; |
e0001a05 NC |
10520 | |
10521 | /* Write the fixup. */ | |
542f8b94 BW |
10522 | assert (cur_block); |
10523 | fix = fix_new (frag_now, i * 12, 4, | |
10524 | section_symbol (cur_block->sec), | |
10525 | cur_block->offset, | |
10526 | FALSE, BFD_RELOC_32); | |
10527 | fix->fx_file = "<internal>"; | |
e0001a05 NC |
10528 | fix->fx_line = 0; |
10529 | ||
10530 | /* Write the length. */ | |
542f8b94 | 10531 | md_number_to_chars (&frag_data[4 + i * 12], |
e0001a05 | 10532 | cur_block->size, 4); |
542f8b94 | 10533 | md_number_to_chars (&frag_data[8 + i * 12], |
43cd72b9 BW |
10534 | frag_flags_to_number (&cur_block->flags), |
10535 | 4); | |
e0001a05 NC |
10536 | cur_block = cur_block->next; |
10537 | } | |
542f8b94 BW |
10538 | frag_wane (frag_now); |
10539 | frag_new (0); | |
10540 | frag_wane (frag_now); | |
e0001a05 NC |
10541 | } |
10542 | } | |
10543 | } | |
10544 | } | |
10545 | ||
10546 | ||
7fa3d080 BW |
10547 | static bfd_boolean |
10548 | section_has_property (segT sec, frag_predicate property_function) | |
e0001a05 NC |
10549 | { |
10550 | segment_info_type *seginfo = seg_info (sec); | |
10551 | fragS *fragP; | |
10552 | ||
10553 | if (seginfo && seginfo->frchainP) | |
10554 | { | |
10555 | for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next) | |
10556 | { | |
10557 | if (property_function (fragP) | |
10558 | && (fragP->fr_type != rs_fill || fragP->fr_fix != 0)) | |
10559 | return TRUE; | |
10560 | } | |
10561 | } | |
10562 | return FALSE; | |
10563 | } | |
10564 | ||
10565 | ||
7fa3d080 BW |
10566 | static bfd_boolean |
10567 | section_has_xproperty (segT sec, frag_flags_fn property_function) | |
43cd72b9 BW |
10568 | { |
10569 | segment_info_type *seginfo = seg_info (sec); | |
10570 | fragS *fragP; | |
10571 | ||
10572 | if (seginfo && seginfo->frchainP) | |
10573 | { | |
10574 | for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next) | |
10575 | { | |
10576 | frag_flags prop_flags; | |
10577 | property_function (fragP, &prop_flags); | |
10578 | if (!xtensa_frag_flags_is_empty (&prop_flags)) | |
10579 | return TRUE; | |
10580 | } | |
10581 | } | |
10582 | return FALSE; | |
10583 | } | |
10584 | ||
10585 | ||
e0001a05 NC |
10586 | /* Two types of block sections exist right now: literal and insns. */ |
10587 | ||
7fa3d080 BW |
10588 | static void |
10589 | add_xt_block_frags (segT sec, | |
7fa3d080 BW |
10590 | xtensa_block_info **xt_block, |
10591 | frag_predicate property_function, | |
10592 | frag_predicate end_property_function) | |
e0001a05 | 10593 | { |
e0001a05 NC |
10594 | bfd_vma seg_offset; |
10595 | fragS *fragP; | |
10596 | ||
e0001a05 NC |
10597 | /* Build it if needed. */ |
10598 | while (*xt_block != NULL) | |
10599 | xt_block = &(*xt_block)->next; | |
10600 | /* We are either at NULL at the beginning or at the end. */ | |
10601 | ||
10602 | /* Walk through the frags. */ | |
10603 | seg_offset = 0; | |
10604 | ||
542f8b94 | 10605 | if (seg_info (sec)->frchainP) |
e0001a05 | 10606 | { |
542f8b94 | 10607 | for (fragP = seg_info (sec)->frchainP->frch_root; |
e0001a05 NC |
10608 | fragP; |
10609 | fragP = fragP->fr_next) | |
10610 | { | |
10611 | if (property_function (fragP) | |
10612 | && (fragP->fr_type != rs_fill || fragP->fr_fix != 0)) | |
10613 | { | |
10614 | if (*xt_block != NULL) | |
10615 | { | |
10616 | if ((*xt_block)->offset + (*xt_block)->size | |
10617 | == fragP->fr_address) | |
10618 | (*xt_block)->size += fragP->fr_fix; | |
10619 | else | |
10620 | xt_block = &((*xt_block)->next); | |
10621 | } | |
10622 | if (*xt_block == NULL) | |
10623 | { | |
43cd72b9 BW |
10624 | xtensa_block_info *new_block = (xtensa_block_info *) |
10625 | xmalloc (sizeof (xtensa_block_info)); | |
10626 | new_block->sec = sec; | |
10627 | new_block->offset = fragP->fr_address; | |
10628 | new_block->size = fragP->fr_fix; | |
10629 | new_block->next = NULL; | |
10630 | xtensa_frag_flags_init (&new_block->flags); | |
10631 | *xt_block = new_block; | |
10632 | } | |
10633 | if (end_property_function | |
10634 | && end_property_function (fragP)) | |
10635 | { | |
10636 | xt_block = &((*xt_block)->next); | |
10637 | } | |
10638 | } | |
10639 | } | |
10640 | } | |
10641 | } | |
10642 | ||
10643 | ||
10644 | /* Break the encapsulation of add_xt_prop_frags here. */ | |
10645 | ||
7fa3d080 BW |
10646 | static bfd_boolean |
10647 | xtensa_frag_flags_is_empty (const frag_flags *prop_flags) | |
43cd72b9 BW |
10648 | { |
10649 | if (prop_flags->is_literal | |
10650 | || prop_flags->is_insn | |
10651 | || prop_flags->is_data | |
10652 | || prop_flags->is_unreachable) | |
10653 | return FALSE; | |
10654 | return TRUE; | |
10655 | } | |
10656 | ||
10657 | ||
7fa3d080 BW |
10658 | static void |
10659 | xtensa_frag_flags_init (frag_flags *prop_flags) | |
43cd72b9 BW |
10660 | { |
10661 | memset (prop_flags, 0, sizeof (frag_flags)); | |
10662 | } | |
10663 | ||
10664 | ||
7fa3d080 BW |
10665 | static void |
10666 | get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags) | |
43cd72b9 BW |
10667 | { |
10668 | xtensa_frag_flags_init (prop_flags); | |
10669 | if (fragP->tc_frag_data.is_literal) | |
10670 | prop_flags->is_literal = TRUE; | |
99ded152 BW |
10671 | if (fragP->tc_frag_data.is_specific_opcode |
10672 | || fragP->tc_frag_data.is_no_transform) | |
10673 | prop_flags->is_no_transform = TRUE; | |
43cd72b9 | 10674 | if (fragP->tc_frag_data.is_unreachable) |
7fa3d080 | 10675 | prop_flags->is_unreachable = TRUE; |
43cd72b9 BW |
10676 | else if (fragP->tc_frag_data.is_insn) |
10677 | { | |
10678 | prop_flags->is_insn = TRUE; | |
10679 | if (fragP->tc_frag_data.is_loop_target) | |
10680 | prop_flags->insn.is_loop_target = TRUE; | |
10681 | if (fragP->tc_frag_data.is_branch_target) | |
10682 | prop_flags->insn.is_branch_target = TRUE; | |
43cd72b9 BW |
10683 | if (fragP->tc_frag_data.is_no_density) |
10684 | prop_flags->insn.is_no_density = TRUE; | |
10685 | if (fragP->tc_frag_data.use_absolute_literals) | |
10686 | prop_flags->insn.is_abslit = TRUE; | |
10687 | } | |
10688 | if (fragP->tc_frag_data.is_align) | |
10689 | { | |
10690 | prop_flags->is_align = TRUE; | |
10691 | prop_flags->alignment = fragP->tc_frag_data.alignment; | |
10692 | if (xtensa_frag_flags_is_empty (prop_flags)) | |
10693 | prop_flags->is_data = TRUE; | |
10694 | } | |
10695 | } | |
10696 | ||
10697 | ||
7fa3d080 BW |
10698 | static bfd_vma |
10699 | frag_flags_to_number (const frag_flags *prop_flags) | |
43cd72b9 BW |
10700 | { |
10701 | bfd_vma num = 0; | |
10702 | if (prop_flags->is_literal) | |
10703 | num |= XTENSA_PROP_LITERAL; | |
10704 | if (prop_flags->is_insn) | |
10705 | num |= XTENSA_PROP_INSN; | |
10706 | if (prop_flags->is_data) | |
10707 | num |= XTENSA_PROP_DATA; | |
10708 | if (prop_flags->is_unreachable) | |
10709 | num |= XTENSA_PROP_UNREACHABLE; | |
10710 | if (prop_flags->insn.is_loop_target) | |
10711 | num |= XTENSA_PROP_INSN_LOOP_TARGET; | |
10712 | if (prop_flags->insn.is_branch_target) | |
10713 | { | |
10714 | num |= XTENSA_PROP_INSN_BRANCH_TARGET; | |
10715 | num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority); | |
10716 | } | |
10717 | ||
10718 | if (prop_flags->insn.is_no_density) | |
10719 | num |= XTENSA_PROP_INSN_NO_DENSITY; | |
99ded152 BW |
10720 | if (prop_flags->is_no_transform) |
10721 | num |= XTENSA_PROP_NO_TRANSFORM; | |
43cd72b9 BW |
10722 | if (prop_flags->insn.is_no_reorder) |
10723 | num |= XTENSA_PROP_INSN_NO_REORDER; | |
10724 | if (prop_flags->insn.is_abslit) | |
10725 | num |= XTENSA_PROP_INSN_ABSLIT; | |
10726 | ||
10727 | if (prop_flags->is_align) | |
10728 | { | |
10729 | num |= XTENSA_PROP_ALIGN; | |
10730 | num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment); | |
10731 | } | |
10732 | ||
10733 | return num; | |
10734 | } | |
10735 | ||
10736 | ||
10737 | static bfd_boolean | |
7fa3d080 BW |
10738 | xtensa_frag_flags_combinable (const frag_flags *prop_flags_1, |
10739 | const frag_flags *prop_flags_2) | |
43cd72b9 BW |
10740 | { |
10741 | /* Cannot combine with an end marker. */ | |
10742 | ||
10743 | if (prop_flags_1->is_literal != prop_flags_2->is_literal) | |
10744 | return FALSE; | |
10745 | if (prop_flags_1->is_insn != prop_flags_2->is_insn) | |
10746 | return FALSE; | |
10747 | if (prop_flags_1->is_data != prop_flags_2->is_data) | |
10748 | return FALSE; | |
10749 | ||
10750 | if (prop_flags_1->is_insn) | |
10751 | { | |
10752 | /* Properties of the beginning of the frag. */ | |
10753 | if (prop_flags_2->insn.is_loop_target) | |
10754 | return FALSE; | |
10755 | if (prop_flags_2->insn.is_branch_target) | |
10756 | return FALSE; | |
10757 | if (prop_flags_1->insn.is_no_density != | |
10758 | prop_flags_2->insn.is_no_density) | |
10759 | return FALSE; | |
99ded152 BW |
10760 | if (prop_flags_1->is_no_transform != |
10761 | prop_flags_2->is_no_transform) | |
43cd72b9 BW |
10762 | return FALSE; |
10763 | if (prop_flags_1->insn.is_no_reorder != | |
10764 | prop_flags_2->insn.is_no_reorder) | |
10765 | return FALSE; | |
10766 | if (prop_flags_1->insn.is_abslit != | |
10767 | prop_flags_2->insn.is_abslit) | |
10768 | return FALSE; | |
10769 | } | |
10770 | ||
10771 | if (prop_flags_1->is_align) | |
10772 | return FALSE; | |
10773 | ||
10774 | return TRUE; | |
10775 | } | |
10776 | ||
10777 | ||
7fa3d080 BW |
10778 | static bfd_vma |
10779 | xt_block_aligned_size (const xtensa_block_info *xt_block) | |
43cd72b9 BW |
10780 | { |
10781 | bfd_vma end_addr; | |
d77b99c9 | 10782 | unsigned align_bits; |
43cd72b9 BW |
10783 | |
10784 | if (!xt_block->flags.is_align) | |
10785 | return xt_block->size; | |
10786 | ||
10787 | end_addr = xt_block->offset + xt_block->size; | |
10788 | align_bits = xt_block->flags.alignment; | |
10789 | end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits; | |
10790 | return end_addr - xt_block->offset; | |
10791 | } | |
10792 | ||
10793 | ||
10794 | static bfd_boolean | |
7fa3d080 BW |
10795 | xtensa_xt_block_combine (xtensa_block_info *xt_block, |
10796 | const xtensa_block_info *xt_block_2) | |
43cd72b9 BW |
10797 | { |
10798 | if (xt_block->sec != xt_block_2->sec) | |
10799 | return FALSE; | |
10800 | if (xt_block->offset + xt_block_aligned_size (xt_block) | |
10801 | != xt_block_2->offset) | |
10802 | return FALSE; | |
10803 | ||
10804 | if (xt_block_2->size == 0 | |
10805 | && (!xt_block_2->flags.is_unreachable | |
10806 | || xt_block->flags.is_unreachable)) | |
10807 | { | |
10808 | if (xt_block_2->flags.is_align | |
10809 | && xt_block->flags.is_align) | |
10810 | { | |
10811 | /* Nothing needed. */ | |
10812 | if (xt_block->flags.alignment >= xt_block_2->flags.alignment) | |
10813 | return TRUE; | |
10814 | } | |
10815 | else | |
10816 | { | |
10817 | if (xt_block_2->flags.is_align) | |
10818 | { | |
10819 | /* Push alignment to previous entry. */ | |
10820 | xt_block->flags.is_align = xt_block_2->flags.is_align; | |
10821 | xt_block->flags.alignment = xt_block_2->flags.alignment; | |
10822 | } | |
10823 | return TRUE; | |
10824 | } | |
10825 | } | |
10826 | if (!xtensa_frag_flags_combinable (&xt_block->flags, | |
10827 | &xt_block_2->flags)) | |
10828 | return FALSE; | |
10829 | ||
10830 | xt_block->size += xt_block_2->size; | |
10831 | ||
10832 | if (xt_block_2->flags.is_align) | |
10833 | { | |
10834 | xt_block->flags.is_align = TRUE; | |
10835 | xt_block->flags.alignment = xt_block_2->flags.alignment; | |
10836 | } | |
10837 | ||
10838 | return TRUE; | |
10839 | } | |
10840 | ||
10841 | ||
7fa3d080 BW |
10842 | static void |
10843 | add_xt_prop_frags (segT sec, | |
7fa3d080 BW |
10844 | xtensa_block_info **xt_block, |
10845 | frag_flags_fn property_function) | |
43cd72b9 | 10846 | { |
43cd72b9 BW |
10847 | bfd_vma seg_offset; |
10848 | fragS *fragP; | |
10849 | ||
43cd72b9 BW |
10850 | /* Build it if needed. */ |
10851 | while (*xt_block != NULL) | |
10852 | { | |
10853 | xt_block = &(*xt_block)->next; | |
10854 | } | |
10855 | /* We are either at NULL at the beginning or at the end. */ | |
10856 | ||
10857 | /* Walk through the frags. */ | |
10858 | seg_offset = 0; | |
10859 | ||
542f8b94 | 10860 | if (seg_info (sec)->frchainP) |
43cd72b9 | 10861 | { |
542f8b94 | 10862 | for (fragP = seg_info (sec)->frchainP->frch_root; fragP; |
43cd72b9 BW |
10863 | fragP = fragP->fr_next) |
10864 | { | |
10865 | xtensa_block_info tmp_block; | |
10866 | tmp_block.sec = sec; | |
10867 | tmp_block.offset = fragP->fr_address; | |
10868 | tmp_block.size = fragP->fr_fix; | |
10869 | tmp_block.next = NULL; | |
10870 | property_function (fragP, &tmp_block.flags); | |
10871 | ||
10872 | if (!xtensa_frag_flags_is_empty (&tmp_block.flags)) | |
10873 | /* && fragP->fr_fix != 0) */ | |
10874 | { | |
10875 | if ((*xt_block) == NULL | |
10876 | || !xtensa_xt_block_combine (*xt_block, &tmp_block)) | |
10877 | { | |
10878 | xtensa_block_info *new_block; | |
10879 | if ((*xt_block) != NULL) | |
10880 | xt_block = &(*xt_block)->next; | |
10881 | new_block = (xtensa_block_info *) | |
10882 | xmalloc (sizeof (xtensa_block_info)); | |
10883 | *new_block = tmp_block; | |
10884 | *xt_block = new_block; | |
10885 | } | |
10886 | } | |
10887 | } | |
10888 | } | |
10889 | } | |
10890 | ||
10891 | \f | |
10892 | /* op_placement_info_table */ | |
10893 | ||
10894 | /* op_placement_info makes it easier to determine which | |
10895 | ops can go in which slots. */ | |
10896 | ||
10897 | static void | |
7fa3d080 | 10898 | init_op_placement_info_table (void) |
43cd72b9 BW |
10899 | { |
10900 | xtensa_isa isa = xtensa_default_isa; | |
10901 | xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa); | |
10902 | xtensa_opcode opcode; | |
10903 | xtensa_format fmt; | |
10904 | int slot; | |
10905 | int num_opcodes = xtensa_isa_num_opcodes (isa); | |
10906 | ||
10907 | op_placement_table = (op_placement_info_table) | |
10908 | xmalloc (sizeof (op_placement_info) * num_opcodes); | |
10909 | assert (xtensa_isa_num_formats (isa) < MAX_FORMATS); | |
10910 | ||
10911 | for (opcode = 0; opcode < num_opcodes; opcode++) | |
10912 | { | |
10913 | op_placement_info *opi = &op_placement_table[opcode]; | |
10914 | /* FIXME: Make tinsn allocation dynamic. */ | |
10915 | if (xtensa_opcode_num_operands (isa, opcode) >= MAX_INSN_ARGS) | |
10916 | as_fatal (_("too many operands in instruction")); | |
43cd72b9 BW |
10917 | opi->narrowest = XTENSA_UNDEFINED; |
10918 | opi->narrowest_size = 0x7F; | |
b2d179be | 10919 | opi->narrowest_slot = 0; |
43cd72b9 BW |
10920 | opi->formats = 0; |
10921 | opi->num_formats = 0; | |
10922 | opi->issuef = 0; | |
10923 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) | |
10924 | { | |
10925 | opi->slots[fmt] = 0; | |
10926 | for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++) | |
10927 | { | |
10928 | if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0) | |
10929 | { | |
10930 | int fmt_length = xtensa_format_length (isa, fmt); | |
10931 | opi->issuef++; | |
10932 | set_bit (fmt, opi->formats); | |
10933 | set_bit (slot, opi->slots[fmt]); | |
a02728c8 BW |
10934 | if (fmt_length < opi->narrowest_size |
10935 | || (fmt_length == opi->narrowest_size | |
10936 | && (xtensa_format_num_slots (isa, fmt) | |
10937 | < xtensa_format_num_slots (isa, | |
10938 | opi->narrowest)))) | |
43cd72b9 BW |
10939 | { |
10940 | opi->narrowest = fmt; | |
10941 | opi->narrowest_size = fmt_length; | |
b2d179be | 10942 | opi->narrowest_slot = slot; |
43cd72b9 | 10943 | } |
e0001a05 NC |
10944 | } |
10945 | } | |
43cd72b9 BW |
10946 | if (opi->formats) |
10947 | opi->num_formats++; | |
e0001a05 NC |
10948 | } |
10949 | } | |
43cd72b9 BW |
10950 | xtensa_insnbuf_free (isa, ibuf); |
10951 | } | |
10952 | ||
10953 | ||
10954 | bfd_boolean | |
7fa3d080 | 10955 | opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot) |
43cd72b9 BW |
10956 | { |
10957 | return bit_is_set (slot, op_placement_table[opcode].slots[fmt]); | |
10958 | } | |
10959 | ||
10960 | ||
10961 | /* If the opcode is available in a single slot format, return its size. */ | |
10962 | ||
7fa3d080 BW |
10963 | static int |
10964 | xg_get_single_size (xtensa_opcode opcode) | |
43cd72b9 | 10965 | { |
b2d179be | 10966 | return op_placement_table[opcode].narrowest_size; |
43cd72b9 BW |
10967 | } |
10968 | ||
10969 | ||
7fa3d080 BW |
10970 | static xtensa_format |
10971 | xg_get_single_format (xtensa_opcode opcode) | |
43cd72b9 | 10972 | { |
b2d179be BW |
10973 | return op_placement_table[opcode].narrowest; |
10974 | } | |
10975 | ||
10976 | ||
10977 | static int | |
10978 | xg_get_single_slot (xtensa_opcode opcode) | |
10979 | { | |
10980 | return op_placement_table[opcode].narrowest_slot; | |
e0001a05 NC |
10981 | } |
10982 | ||
10983 | \f | |
10984 | /* Instruction Stack Functions (from "xtensa-istack.h"). */ | |
10985 | ||
10986 | void | |
7fa3d080 | 10987 | istack_init (IStack *stack) |
e0001a05 NC |
10988 | { |
10989 | memset (stack, 0, sizeof (IStack)); | |
10990 | stack->ninsn = 0; | |
10991 | } | |
10992 | ||
10993 | ||
10994 | bfd_boolean | |
7fa3d080 | 10995 | istack_empty (IStack *stack) |
e0001a05 NC |
10996 | { |
10997 | return (stack->ninsn == 0); | |
10998 | } | |
10999 | ||
11000 | ||
11001 | bfd_boolean | |
7fa3d080 | 11002 | istack_full (IStack *stack) |
e0001a05 NC |
11003 | { |
11004 | return (stack->ninsn == MAX_ISTACK); | |
11005 | } | |
11006 | ||
11007 | ||
11008 | /* Return a pointer to the top IStack entry. | |
43cd72b9 | 11009 | It is an error to call this if istack_empty () is TRUE. */ |
e0001a05 NC |
11010 | |
11011 | TInsn * | |
7fa3d080 | 11012 | istack_top (IStack *stack) |
e0001a05 NC |
11013 | { |
11014 | int rec = stack->ninsn - 1; | |
11015 | assert (!istack_empty (stack)); | |
11016 | return &stack->insn[rec]; | |
11017 | } | |
11018 | ||
11019 | ||
11020 | /* Add a new TInsn to an IStack. | |
43cd72b9 | 11021 | It is an error to call this if istack_full () is TRUE. */ |
e0001a05 NC |
11022 | |
11023 | void | |
7fa3d080 | 11024 | istack_push (IStack *stack, TInsn *insn) |
e0001a05 NC |
11025 | { |
11026 | int rec = stack->ninsn; | |
11027 | assert (!istack_full (stack)); | |
43cd72b9 | 11028 | stack->insn[rec] = *insn; |
e0001a05 NC |
11029 | stack->ninsn++; |
11030 | } | |
11031 | ||
11032 | ||
11033 | /* Clear space for the next TInsn on the IStack and return a pointer | |
43cd72b9 | 11034 | to it. It is an error to call this if istack_full () is TRUE. */ |
e0001a05 NC |
11035 | |
11036 | TInsn * | |
7fa3d080 | 11037 | istack_push_space (IStack *stack) |
e0001a05 NC |
11038 | { |
11039 | int rec = stack->ninsn; | |
11040 | TInsn *insn; | |
11041 | assert (!istack_full (stack)); | |
11042 | insn = &stack->insn[rec]; | |
60242db2 | 11043 | tinsn_init (insn); |
e0001a05 NC |
11044 | stack->ninsn++; |
11045 | return insn; | |
11046 | } | |
11047 | ||
11048 | ||
11049 | /* Remove the last pushed instruction. It is an error to call this if | |
43cd72b9 | 11050 | istack_empty () returns TRUE. */ |
e0001a05 NC |
11051 | |
11052 | void | |
7fa3d080 | 11053 | istack_pop (IStack *stack) |
e0001a05 NC |
11054 | { |
11055 | int rec = stack->ninsn - 1; | |
11056 | assert (!istack_empty (stack)); | |
11057 | stack->ninsn--; | |
60242db2 | 11058 | tinsn_init (&stack->insn[rec]); |
e0001a05 NC |
11059 | } |
11060 | ||
11061 | \f | |
11062 | /* TInsn functions. */ | |
11063 | ||
11064 | void | |
7fa3d080 | 11065 | tinsn_init (TInsn *dst) |
e0001a05 NC |
11066 | { |
11067 | memset (dst, 0, sizeof (TInsn)); | |
11068 | } | |
11069 | ||
11070 | ||
43cd72b9 | 11071 | /* Return TRUE if ANY of the operands in the insn are symbolic. */ |
e0001a05 NC |
11072 | |
11073 | static bfd_boolean | |
7fa3d080 | 11074 | tinsn_has_symbolic_operands (const TInsn *insn) |
e0001a05 NC |
11075 | { |
11076 | int i; | |
11077 | int n = insn->ntok; | |
11078 | ||
11079 | assert (insn->insn_type == ITYPE_INSN); | |
11080 | ||
11081 | for (i = 0; i < n; ++i) | |
11082 | { | |
11083 | switch (insn->tok[i].X_op) | |
11084 | { | |
11085 | case O_register: | |
11086 | case O_constant: | |
11087 | break; | |
11088 | default: | |
11089 | return TRUE; | |
11090 | } | |
11091 | } | |
11092 | return FALSE; | |
11093 | } | |
11094 | ||
11095 | ||
11096 | bfd_boolean | |
7fa3d080 | 11097 | tinsn_has_invalid_symbolic_operands (const TInsn *insn) |
e0001a05 | 11098 | { |
43cd72b9 | 11099 | xtensa_isa isa = xtensa_default_isa; |
e0001a05 NC |
11100 | int i; |
11101 | int n = insn->ntok; | |
11102 | ||
11103 | assert (insn->insn_type == ITYPE_INSN); | |
11104 | ||
11105 | for (i = 0; i < n; ++i) | |
11106 | { | |
11107 | switch (insn->tok[i].X_op) | |
11108 | { | |
11109 | case O_register: | |
11110 | case O_constant: | |
11111 | break; | |
43cd72b9 BW |
11112 | case O_big: |
11113 | case O_illegal: | |
11114 | case O_absent: | |
11115 | /* Errors for these types are caught later. */ | |
11116 | break; | |
11117 | case O_hi16: | |
11118 | case O_lo16: | |
e0001a05 | 11119 | default: |
43cd72b9 BW |
11120 | /* Symbolic immediates are only allowed on the last immediate |
11121 | operand. At this time, CONST16 is the only opcode where we | |
e7da6241 | 11122 | support non-PC-relative relocations. */ |
43cd72b9 BW |
11123 | if (i != get_relaxable_immed (insn->opcode) |
11124 | || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1 | |
11125 | && insn->opcode != xtensa_const16_opcode)) | |
11126 | { | |
431ad2d0 | 11127 | as_bad (_("invalid symbolic operand")); |
43cd72b9 BW |
11128 | return TRUE; |
11129 | } | |
e0001a05 NC |
11130 | } |
11131 | } | |
11132 | return FALSE; | |
11133 | } | |
11134 | ||
11135 | ||
11136 | /* For assembly code with complex expressions (e.g. subtraction), | |
11137 | we have to build them in the literal pool so that | |
11138 | their results are calculated correctly after relaxation. | |
11139 | The relaxation only handles expressions that | |
11140 | boil down to SYMBOL + OFFSET. */ | |
11141 | ||
11142 | static bfd_boolean | |
7fa3d080 | 11143 | tinsn_has_complex_operands (const TInsn *insn) |
e0001a05 NC |
11144 | { |
11145 | int i; | |
11146 | int n = insn->ntok; | |
11147 | assert (insn->insn_type == ITYPE_INSN); | |
11148 | for (i = 0; i < n; ++i) | |
11149 | { | |
11150 | switch (insn->tok[i].X_op) | |
11151 | { | |
11152 | case O_register: | |
11153 | case O_constant: | |
11154 | case O_symbol: | |
43cd72b9 BW |
11155 | case O_lo16: |
11156 | case O_hi16: | |
e0001a05 NC |
11157 | break; |
11158 | default: | |
11159 | return TRUE; | |
11160 | } | |
11161 | } | |
11162 | return FALSE; | |
11163 | } | |
11164 | ||
11165 | ||
b2d179be BW |
11166 | /* Encode a TInsn opcode and its constant operands into slotbuf. |
11167 | Return TRUE if there is a symbol in the immediate field. This | |
11168 | function assumes that: | |
11169 | 1) The number of operands are correct. | |
11170 | 2) The insn_type is ITYPE_INSN. | |
11171 | 3) The opcode can be encoded in the specified format and slot. | |
11172 | 4) Operands are either O_constant or O_symbol, and all constants fit. */ | |
43cd72b9 BW |
11173 | |
11174 | static bfd_boolean | |
7fa3d080 BW |
11175 | tinsn_to_slotbuf (xtensa_format fmt, |
11176 | int slot, | |
11177 | TInsn *tinsn, | |
11178 | xtensa_insnbuf slotbuf) | |
43cd72b9 BW |
11179 | { |
11180 | xtensa_isa isa = xtensa_default_isa; | |
11181 | xtensa_opcode opcode = tinsn->opcode; | |
11182 | bfd_boolean has_fixup = FALSE; | |
11183 | int noperands = xtensa_opcode_num_operands (isa, opcode); | |
11184 | int i; | |
11185 | ||
43cd72b9 BW |
11186 | assert (tinsn->insn_type == ITYPE_INSN); |
11187 | if (noperands != tinsn->ntok) | |
11188 | as_fatal (_("operand number mismatch")); | |
11189 | ||
11190 | if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode)) | |
11191 | { | |
11192 | as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""), | |
11193 | xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt)); | |
11194 | return FALSE; | |
11195 | } | |
11196 | ||
11197 | for (i = 0; i < noperands; i++) | |
11198 | { | |
11199 | expressionS *expr = &tinsn->tok[i]; | |
d77b99c9 BW |
11200 | int rc; |
11201 | unsigned line; | |
43cd72b9 BW |
11202 | char *file_name; |
11203 | uint32 opnd_value; | |
11204 | ||
11205 | switch (expr->X_op) | |
11206 | { | |
11207 | case O_register: | |
11208 | if (xtensa_operand_is_visible (isa, opcode, i) == 0) | |
11209 | break; | |
11210 | /* The register number has already been checked in | |
11211 | expression_maybe_register, so we don't need to check here. */ | |
11212 | opnd_value = expr->X_add_number; | |
11213 | (void) xtensa_operand_encode (isa, opcode, i, &opnd_value); | |
11214 | rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf, | |
11215 | opnd_value); | |
11216 | if (rc != 0) | |
11217 | as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa)); | |
11218 | break; | |
11219 | ||
11220 | case O_constant: | |
11221 | if (xtensa_operand_is_visible (isa, opcode, i) == 0) | |
11222 | break; | |
11223 | as_where (&file_name, &line); | |
11224 | /* It is a constant and we called this function | |
11225 | then we have to try to fit it. */ | |
11226 | xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i, | |
e0001a05 NC |
11227 | expr->X_add_number, file_name, line); |
11228 | break; | |
11229 | ||
e0001a05 NC |
11230 | default: |
11231 | has_fixup = TRUE; | |
11232 | break; | |
11233 | } | |
11234 | } | |
43cd72b9 | 11235 | |
e0001a05 NC |
11236 | return has_fixup; |
11237 | } | |
11238 | ||
11239 | ||
b2d179be BW |
11240 | /* Encode a single TInsn into an insnbuf. If the opcode can only be encoded |
11241 | into a multi-slot instruction, fill the other slots with NOPs. | |
11242 | Return TRUE if there is a symbol in the immediate field. See also the | |
11243 | assumptions listed for tinsn_to_slotbuf. */ | |
11244 | ||
11245 | static bfd_boolean | |
11246 | tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf) | |
11247 | { | |
11248 | static xtensa_insnbuf slotbuf = 0; | |
11249 | static vliw_insn vinsn; | |
11250 | xtensa_isa isa = xtensa_default_isa; | |
11251 | bfd_boolean has_fixup = FALSE; | |
11252 | int i; | |
11253 | ||
11254 | if (!slotbuf) | |
11255 | { | |
11256 | slotbuf = xtensa_insnbuf_alloc (isa); | |
11257 | xg_init_vinsn (&vinsn); | |
11258 | } | |
11259 | ||
11260 | xg_clear_vinsn (&vinsn); | |
11261 | ||
11262 | bundle_tinsn (tinsn, &vinsn); | |
11263 | ||
11264 | xtensa_format_encode (isa, vinsn.format, insnbuf); | |
11265 | ||
11266 | for (i = 0; i < vinsn.num_slots; i++) | |
11267 | { | |
11268 | /* Only one slot may have a fix-up because the rest contains NOPs. */ | |
11269 | has_fixup |= | |
11270 | tinsn_to_slotbuf (vinsn.format, i, &vinsn.slots[i], vinsn.slotbuf[i]); | |
11271 | xtensa_format_set_slot (isa, vinsn.format, i, insnbuf, vinsn.slotbuf[i]); | |
11272 | } | |
11273 | ||
11274 | return has_fixup; | |
11275 | } | |
11276 | ||
11277 | ||
43cd72b9 | 11278 | /* Check the instruction arguments. Return TRUE on failure. */ |
e0001a05 | 11279 | |
7fa3d080 BW |
11280 | static bfd_boolean |
11281 | tinsn_check_arguments (const TInsn *insn) | |
e0001a05 NC |
11282 | { |
11283 | xtensa_isa isa = xtensa_default_isa; | |
11284 | xtensa_opcode opcode = insn->opcode; | |
11285 | ||
11286 | if (opcode == XTENSA_UNDEFINED) | |
11287 | { | |
11288 | as_bad (_("invalid opcode")); | |
11289 | return TRUE; | |
11290 | } | |
11291 | ||
43cd72b9 | 11292 | if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok) |
e0001a05 NC |
11293 | { |
11294 | as_bad (_("too few operands")); | |
11295 | return TRUE; | |
11296 | } | |
11297 | ||
43cd72b9 | 11298 | if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok) |
e0001a05 NC |
11299 | { |
11300 | as_bad (_("too many operands")); | |
11301 | return TRUE; | |
11302 | } | |
11303 | return FALSE; | |
11304 | } | |
11305 | ||
11306 | ||
11307 | /* Load an instruction from its encoded form. */ | |
11308 | ||
11309 | static void | |
7fa3d080 | 11310 | tinsn_from_chars (TInsn *tinsn, char *f, int slot) |
e0001a05 | 11311 | { |
43cd72b9 | 11312 | vliw_insn vinsn; |
e0001a05 | 11313 | |
43cd72b9 BW |
11314 | xg_init_vinsn (&vinsn); |
11315 | vinsn_from_chars (&vinsn, f); | |
11316 | ||
11317 | *tinsn = vinsn.slots[slot]; | |
11318 | xg_free_vinsn (&vinsn); | |
11319 | } | |
e0001a05 | 11320 | |
43cd72b9 BW |
11321 | |
11322 | static void | |
7fa3d080 BW |
11323 | tinsn_from_insnbuf (TInsn *tinsn, |
11324 | xtensa_insnbuf slotbuf, | |
11325 | xtensa_format fmt, | |
11326 | int slot) | |
43cd72b9 BW |
11327 | { |
11328 | int i; | |
11329 | xtensa_isa isa = xtensa_default_isa; | |
e0001a05 NC |
11330 | |
11331 | /* Find the immed. */ | |
43cd72b9 BW |
11332 | tinsn_init (tinsn); |
11333 | tinsn->insn_type = ITYPE_INSN; | |
11334 | tinsn->is_specific_opcode = FALSE; /* must not be specific */ | |
11335 | tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
11336 | tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode); | |
11337 | for (i = 0; i < tinsn->ntok; i++) | |
e0001a05 | 11338 | { |
43cd72b9 BW |
11339 | set_expr_const (&tinsn->tok[i], |
11340 | xtensa_insnbuf_get_operand (slotbuf, fmt, slot, | |
11341 | tinsn->opcode, i)); | |
e0001a05 NC |
11342 | } |
11343 | } | |
11344 | ||
11345 | ||
11346 | /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */ | |
11347 | ||
11348 | static void | |
7fa3d080 | 11349 | tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot) |
e0001a05 | 11350 | { |
43cd72b9 | 11351 | xtensa_opcode opcode = tinsn->opcode; |
e0001a05 NC |
11352 | int opnum; |
11353 | ||
43cd72b9 | 11354 | if (fragP->tc_frag_data.slot_symbols[slot]) |
e0001a05 NC |
11355 | { |
11356 | opnum = get_relaxable_immed (opcode); | |
43cd72b9 | 11357 | assert (opnum >= 0); |
e7da6241 BW |
11358 | set_expr_symbol_offset (&tinsn->tok[opnum], |
11359 | fragP->tc_frag_data.slot_symbols[slot], | |
11360 | fragP->tc_frag_data.slot_offsets[slot]); | |
e0001a05 NC |
11361 | } |
11362 | } | |
11363 | ||
11364 | ||
11365 | static int | |
7fa3d080 | 11366 | get_num_stack_text_bytes (IStack *istack) |
e0001a05 NC |
11367 | { |
11368 | int i; | |
11369 | int text_bytes = 0; | |
11370 | ||
11371 | for (i = 0; i < istack->ninsn; i++) | |
11372 | { | |
43cd72b9 BW |
11373 | TInsn *tinsn = &istack->insn[i]; |
11374 | if (tinsn->insn_type == ITYPE_INSN) | |
11375 | text_bytes += xg_get_single_size (tinsn->opcode); | |
e0001a05 NC |
11376 | } |
11377 | return text_bytes; | |
11378 | } | |
11379 | ||
11380 | ||
11381 | static int | |
7fa3d080 | 11382 | get_num_stack_literal_bytes (IStack *istack) |
e0001a05 NC |
11383 | { |
11384 | int i; | |
11385 | int lit_bytes = 0; | |
11386 | ||
11387 | for (i = 0; i < istack->ninsn; i++) | |
11388 | { | |
43cd72b9 BW |
11389 | TInsn *tinsn = &istack->insn[i]; |
11390 | if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1) | |
e0001a05 NC |
11391 | lit_bytes += 4; |
11392 | } | |
11393 | return lit_bytes; | |
11394 | } | |
11395 | ||
43cd72b9 BW |
11396 | \f |
11397 | /* vliw_insn functions. */ | |
11398 | ||
7fa3d080 BW |
11399 | static void |
11400 | xg_init_vinsn (vliw_insn *v) | |
43cd72b9 BW |
11401 | { |
11402 | int i; | |
11403 | xtensa_isa isa = xtensa_default_isa; | |
11404 | ||
11405 | xg_clear_vinsn (v); | |
11406 | ||
11407 | v->insnbuf = xtensa_insnbuf_alloc (isa); | |
11408 | if (v->insnbuf == NULL) | |
11409 | as_fatal (_("out of memory")); | |
11410 | ||
11411 | for (i = 0; i < MAX_SLOTS; i++) | |
11412 | { | |
43cd72b9 BW |
11413 | v->slotbuf[i] = xtensa_insnbuf_alloc (isa); |
11414 | if (v->slotbuf[i] == NULL) | |
11415 | as_fatal (_("out of memory")); | |
11416 | } | |
11417 | } | |
11418 | ||
11419 | ||
7fa3d080 BW |
11420 | static void |
11421 | xg_clear_vinsn (vliw_insn *v) | |
43cd72b9 BW |
11422 | { |
11423 | int i; | |
65738a7d BW |
11424 | |
11425 | memset (v, 0, offsetof (vliw_insn, insnbuf)); | |
11426 | ||
43cd72b9 BW |
11427 | v->format = XTENSA_UNDEFINED; |
11428 | v->num_slots = 0; | |
11429 | v->inside_bundle = FALSE; | |
11430 | ||
11431 | if (xt_saved_debug_type != DEBUG_NONE) | |
11432 | debug_type = xt_saved_debug_type; | |
11433 | ||
11434 | for (i = 0; i < MAX_SLOTS; i++) | |
65738a7d | 11435 | v->slots[i].opcode = XTENSA_UNDEFINED; |
43cd72b9 BW |
11436 | } |
11437 | ||
11438 | ||
7fa3d080 BW |
11439 | static bfd_boolean |
11440 | vinsn_has_specific_opcodes (vliw_insn *v) | |
43cd72b9 BW |
11441 | { |
11442 | int i; | |
c138bc38 | 11443 | |
43cd72b9 BW |
11444 | for (i = 0; i < v->num_slots; i++) |
11445 | { | |
11446 | if (v->slots[i].is_specific_opcode) | |
11447 | return TRUE; | |
11448 | } | |
11449 | return FALSE; | |
11450 | } | |
11451 | ||
11452 | ||
7fa3d080 BW |
11453 | static void |
11454 | xg_free_vinsn (vliw_insn *v) | |
43cd72b9 BW |
11455 | { |
11456 | int i; | |
11457 | xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf); | |
11458 | for (i = 0; i < MAX_SLOTS; i++) | |
11459 | xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]); | |
11460 | } | |
11461 | ||
11462 | ||
e7da6241 BW |
11463 | /* Encode a vliw_insn into an insnbuf. Return TRUE if there are any symbolic |
11464 | operands. See also the assumptions listed for tinsn_to_slotbuf. */ | |
43cd72b9 BW |
11465 | |
11466 | static bfd_boolean | |
7fa3d080 BW |
11467 | vinsn_to_insnbuf (vliw_insn *vinsn, |
11468 | char *frag_offset, | |
11469 | fragS *fragP, | |
11470 | bfd_boolean record_fixup) | |
43cd72b9 BW |
11471 | { |
11472 | xtensa_isa isa = xtensa_default_isa; | |
11473 | xtensa_format fmt = vinsn->format; | |
11474 | xtensa_insnbuf insnbuf = vinsn->insnbuf; | |
11475 | int slot; | |
11476 | bfd_boolean has_fixup = FALSE; | |
11477 | ||
11478 | xtensa_format_encode (isa, fmt, insnbuf); | |
11479 | ||
11480 | for (slot = 0; slot < vinsn->num_slots; slot++) | |
11481 | { | |
11482 | TInsn *tinsn = &vinsn->slots[slot]; | |
11483 | bfd_boolean tinsn_has_fixup = | |
11484 | tinsn_to_slotbuf (vinsn->format, slot, tinsn, | |
11485 | vinsn->slotbuf[slot]); | |
11486 | ||
11487 | xtensa_format_set_slot (isa, fmt, slot, | |
11488 | insnbuf, vinsn->slotbuf[slot]); | |
e7da6241 | 11489 | if (tinsn_has_fixup) |
43cd72b9 BW |
11490 | { |
11491 | int i; | |
11492 | xtensa_opcode opcode = tinsn->opcode; | |
11493 | int noperands = xtensa_opcode_num_operands (isa, opcode); | |
11494 | has_fixup = TRUE; | |
11495 | ||
11496 | for (i = 0; i < noperands; i++) | |
11497 | { | |
11498 | expressionS* expr = &tinsn->tok[i]; | |
11499 | switch (expr->X_op) | |
11500 | { | |
11501 | case O_symbol: | |
11502 | case O_lo16: | |
11503 | case O_hi16: | |
11504 | if (get_relaxable_immed (opcode) == i) | |
11505 | { | |
e7da6241 BW |
11506 | /* Add a fix record for the instruction, except if this |
11507 | function is being called prior to relaxation, i.e., | |
11508 | if record_fixup is false, and the instruction might | |
11509 | be relaxed later. */ | |
11510 | if (record_fixup | |
11511 | || tinsn->is_specific_opcode | |
11512 | || !xg_is_relaxable_insn (tinsn, 0)) | |
43cd72b9 | 11513 | { |
e7da6241 BW |
11514 | xg_add_opcode_fix (tinsn, i, fmt, slot, expr, fragP, |
11515 | frag_offset - fragP->fr_literal); | |
43cd72b9 BW |
11516 | } |
11517 | else | |
11518 | { | |
e7da6241 BW |
11519 | if (expr->X_op != O_symbol) |
11520 | as_bad (_("invalid operand")); | |
43cd72b9 BW |
11521 | tinsn->symbol = expr->X_add_symbol; |
11522 | tinsn->offset = expr->X_add_number; | |
11523 | } | |
11524 | } | |
11525 | else | |
e7da6241 | 11526 | as_bad (_("symbolic operand not allowed")); |
43cd72b9 BW |
11527 | break; |
11528 | ||
11529 | case O_constant: | |
11530 | case O_register: | |
11531 | break; | |
11532 | ||
43cd72b9 | 11533 | default: |
e7da6241 | 11534 | as_bad (_("expression too complex")); |
43cd72b9 BW |
11535 | break; |
11536 | } | |
11537 | } | |
11538 | } | |
11539 | } | |
11540 | ||
11541 | return has_fixup; | |
11542 | } | |
11543 | ||
11544 | ||
11545 | static void | |
7fa3d080 | 11546 | vinsn_from_chars (vliw_insn *vinsn, char *f) |
43cd72b9 BW |
11547 | { |
11548 | static xtensa_insnbuf insnbuf = NULL; | |
11549 | static xtensa_insnbuf slotbuf = NULL; | |
11550 | int i; | |
11551 | xtensa_format fmt; | |
11552 | xtensa_isa isa = xtensa_default_isa; | |
11553 | ||
11554 | if (!insnbuf) | |
11555 | { | |
11556 | insnbuf = xtensa_insnbuf_alloc (isa); | |
11557 | slotbuf = xtensa_insnbuf_alloc (isa); | |
11558 | } | |
11559 | ||
d77b99c9 | 11560 | xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0); |
43cd72b9 BW |
11561 | fmt = xtensa_format_decode (isa, insnbuf); |
11562 | if (fmt == XTENSA_UNDEFINED) | |
11563 | as_fatal (_("cannot decode instruction format")); | |
11564 | vinsn->format = fmt; | |
11565 | vinsn->num_slots = xtensa_format_num_slots (isa, fmt); | |
11566 | ||
11567 | for (i = 0; i < vinsn->num_slots; i++) | |
11568 | { | |
11569 | TInsn *tinsn = &vinsn->slots[i]; | |
11570 | xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf); | |
11571 | tinsn_from_insnbuf (tinsn, slotbuf, fmt, i); | |
11572 | } | |
11573 | } | |
11574 | ||
e0001a05 NC |
11575 | \f |
11576 | /* Expression utilities. */ | |
11577 | ||
43cd72b9 | 11578 | /* Return TRUE if the expression is an integer constant. */ |
e0001a05 NC |
11579 | |
11580 | bfd_boolean | |
7fa3d080 | 11581 | expr_is_const (const expressionS *s) |
e0001a05 NC |
11582 | { |
11583 | return (s->X_op == O_constant); | |
11584 | } | |
11585 | ||
11586 | ||
11587 | /* Get the expression constant. | |
43cd72b9 | 11588 | Calling this is illegal if expr_is_const () returns TRUE. */ |
e0001a05 NC |
11589 | |
11590 | offsetT | |
7fa3d080 | 11591 | get_expr_const (const expressionS *s) |
e0001a05 NC |
11592 | { |
11593 | assert (expr_is_const (s)); | |
11594 | return s->X_add_number; | |
11595 | } | |
11596 | ||
11597 | ||
11598 | /* Set the expression to a constant value. */ | |
11599 | ||
11600 | void | |
7fa3d080 | 11601 | set_expr_const (expressionS *s, offsetT val) |
e0001a05 NC |
11602 | { |
11603 | s->X_op = O_constant; | |
11604 | s->X_add_number = val; | |
11605 | s->X_add_symbol = NULL; | |
11606 | s->X_op_symbol = NULL; | |
11607 | } | |
11608 | ||
11609 | ||
43cd72b9 | 11610 | bfd_boolean |
7fa3d080 | 11611 | expr_is_register (const expressionS *s) |
43cd72b9 BW |
11612 | { |
11613 | return (s->X_op == O_register); | |
11614 | } | |
11615 | ||
11616 | ||
11617 | /* Get the expression constant. | |
11618 | Calling this is illegal if expr_is_const () returns TRUE. */ | |
11619 | ||
11620 | offsetT | |
7fa3d080 | 11621 | get_expr_register (const expressionS *s) |
43cd72b9 BW |
11622 | { |
11623 | assert (expr_is_register (s)); | |
11624 | return s->X_add_number; | |
11625 | } | |
11626 | ||
11627 | ||
e0001a05 NC |
11628 | /* Set the expression to a symbol + constant offset. */ |
11629 | ||
11630 | void | |
7fa3d080 | 11631 | set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset) |
e0001a05 NC |
11632 | { |
11633 | s->X_op = O_symbol; | |
11634 | s->X_add_symbol = sym; | |
11635 | s->X_op_symbol = NULL; /* unused */ | |
11636 | s->X_add_number = offset; | |
11637 | } | |
11638 | ||
11639 | ||
43cd72b9 BW |
11640 | /* Return TRUE if the two expressions are equal. */ |
11641 | ||
e0001a05 | 11642 | bfd_boolean |
7fa3d080 | 11643 | expr_is_equal (expressionS *s1, expressionS *s2) |
e0001a05 NC |
11644 | { |
11645 | if (s1->X_op != s2->X_op) | |
11646 | return FALSE; | |
11647 | if (s1->X_add_symbol != s2->X_add_symbol) | |
11648 | return FALSE; | |
11649 | if (s1->X_op_symbol != s2->X_op_symbol) | |
11650 | return FALSE; | |
11651 | if (s1->X_add_number != s2->X_add_number) | |
11652 | return FALSE; | |
11653 | return TRUE; | |
11654 | } | |
11655 | ||
11656 | ||
11657 | static void | |
7fa3d080 | 11658 | copy_expr (expressionS *dst, const expressionS *src) |
e0001a05 NC |
11659 | { |
11660 | memcpy (dst, src, sizeof (expressionS)); | |
11661 | } | |
11662 | ||
11663 | \f | |
9456465c | 11664 | /* Support for the "--rename-section" option. */ |
e0001a05 NC |
11665 | |
11666 | struct rename_section_struct | |
11667 | { | |
11668 | char *old_name; | |
11669 | char *new_name; | |
11670 | struct rename_section_struct *next; | |
11671 | }; | |
11672 | ||
11673 | static struct rename_section_struct *section_rename; | |
11674 | ||
11675 | ||
9456465c BW |
11676 | /* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add |
11677 | entries to the section_rename list. Note: Specifying multiple | |
11678 | renamings separated by colons is not documented and is retained only | |
11679 | for backward compatibility. */ | |
e0001a05 | 11680 | |
7fa3d080 BW |
11681 | static void |
11682 | build_section_rename (const char *arg) | |
e0001a05 | 11683 | { |
9456465c | 11684 | struct rename_section_struct *r; |
e0001a05 NC |
11685 | char *this_arg = NULL; |
11686 | char *next_arg = NULL; | |
11687 | ||
9456465c | 11688 | for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg) |
e0001a05 | 11689 | { |
9456465c BW |
11690 | char *old_name, *new_name; |
11691 | ||
e0001a05 NC |
11692 | if (this_arg) |
11693 | { | |
11694 | next_arg = strchr (this_arg, ':'); | |
11695 | if (next_arg) | |
11696 | { | |
11697 | *next_arg = '\0'; | |
11698 | next_arg++; | |
11699 | } | |
11700 | } | |
e0001a05 | 11701 | |
9456465c BW |
11702 | old_name = this_arg; |
11703 | new_name = strchr (this_arg, '='); | |
e0001a05 | 11704 | |
9456465c BW |
11705 | if (*old_name == '\0') |
11706 | { | |
11707 | as_warn (_("ignoring extra '-rename-section' delimiter ':'")); | |
11708 | continue; | |
11709 | } | |
11710 | if (!new_name || new_name[1] == '\0') | |
11711 | { | |
11712 | as_warn (_("ignoring invalid '-rename-section' specification: '%s'"), | |
11713 | old_name); | |
11714 | continue; | |
11715 | } | |
11716 | *new_name = '\0'; | |
11717 | new_name++; | |
e0001a05 | 11718 | |
9456465c BW |
11719 | /* Check for invalid section renaming. */ |
11720 | for (r = section_rename; r != NULL; r = r->next) | |
11721 | { | |
11722 | if (strcmp (r->old_name, old_name) == 0) | |
11723 | as_bad (_("section %s renamed multiple times"), old_name); | |
11724 | if (strcmp (r->new_name, new_name) == 0) | |
11725 | as_bad (_("multiple sections remapped to output section %s"), | |
11726 | new_name); | |
11727 | } | |
e0001a05 | 11728 | |
9456465c BW |
11729 | /* Now add it. */ |
11730 | r = (struct rename_section_struct *) | |
11731 | xmalloc (sizeof (struct rename_section_struct)); | |
11732 | r->old_name = xstrdup (old_name); | |
11733 | r->new_name = xstrdup (new_name); | |
11734 | r->next = section_rename; | |
11735 | section_rename = r; | |
e0001a05 | 11736 | } |
e0001a05 NC |
11737 | } |
11738 | ||
11739 | ||
9456465c BW |
11740 | char * |
11741 | xtensa_section_rename (char *name) | |
e0001a05 NC |
11742 | { |
11743 | struct rename_section_struct *r = section_rename; | |
11744 | ||
11745 | for (r = section_rename; r != NULL; r = r->next) | |
43cd72b9 BW |
11746 | { |
11747 | if (strcmp (r->old_name, name) == 0) | |
11748 | return r->new_name; | |
11749 | } | |
e0001a05 NC |
11750 | |
11751 | return name; | |
11752 | } |