]>
Commit | Line | Data |
---|---|---|
e0001a05 | 1 | /* tc-xtensa.c -- Assemble Xtensa instructions. |
aef6203b | 2 | Copyright 2003, 2004, 2005 Free Software Foundation, Inc. |
e0001a05 NC |
3 | |
4 | This file is part of GAS, the GNU Assembler. | |
5 | ||
6 | GAS is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GAS is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GAS; see the file COPYING. If not, write to | |
4b4da160 NC |
18 | the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, |
19 | MA 02110-1301, USA. */ | |
e0001a05 NC |
20 | |
21 | #include <string.h> | |
43cd72b9 | 22 | #include <limits.h> |
e0001a05 NC |
23 | #include "as.h" |
24 | #include "sb.h" | |
25 | #include "safe-ctype.h" | |
26 | #include "tc-xtensa.h" | |
27 | #include "frags.h" | |
28 | #include "subsegs.h" | |
29 | #include "xtensa-relax.h" | |
30 | #include "xtensa-istack.h" | |
cda2eb9e | 31 | #include "dwarf2dbg.h" |
e0001a05 NC |
32 | #include "struc-symbol.h" |
33 | #include "xtensa-config.h" | |
34 | ||
35 | #ifndef uint32 | |
36 | #define uint32 unsigned int | |
37 | #endif | |
38 | #ifndef int32 | |
39 | #define int32 signed int | |
40 | #endif | |
41 | ||
42 | /* Notes: | |
43 | ||
e0001a05 NC |
44 | Naming conventions (used somewhat inconsistently): |
45 | The xtensa_ functions are exported | |
46 | The xg_ functions are internal | |
47 | ||
48 | We also have a couple of different extensibility mechanisms. | |
49 | 1) The idiom replacement: | |
50 | This is used when a line is first parsed to | |
51 | replace an instruction pattern with another instruction | |
52 | It is currently limited to replacements of instructions | |
53 | with constant operands. | |
54 | 2) The xtensa-relax.c mechanism that has stronger instruction | |
55 | replacement patterns. When an instruction's immediate field | |
56 | does not fit the next instruction sequence is attempted. | |
57 | In addition, "narrow" opcodes are supported this way. */ | |
58 | ||
59 | ||
60 | /* Define characters with special meanings to GAS. */ | |
61 | const char comment_chars[] = "#"; | |
62 | const char line_comment_chars[] = "#"; | |
63 | const char line_separator_chars[] = ";"; | |
64 | const char EXP_CHARS[] = "eE"; | |
65 | const char FLT_CHARS[] = "rRsSfFdDxXpP"; | |
66 | ||
67 | ||
43cd72b9 BW |
68 | /* Flags to indicate whether the hardware supports the density and |
69 | absolute literals options. */ | |
e0001a05 | 70 | |
e0001a05 | 71 | bfd_boolean density_supported = XCHAL_HAVE_DENSITY; |
43cd72b9 BW |
72 | bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS; |
73 | ||
74 | /* Maximum width we would pad an unreachable frag to get alignment. */ | |
75 | #define UNREACHABLE_MAX_WIDTH 8 | |
e0001a05 | 76 | |
43cd72b9 BW |
77 | static vliw_insn cur_vinsn; |
78 | ||
d77b99c9 | 79 | unsigned xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH; |
43cd72b9 BW |
80 | |
81 | static enum debug_info_type xt_saved_debug_type = DEBUG_NONE; | |
82 | ||
83 | /* Some functions are only valid in the front end. This variable | |
c138bc38 | 84 | allows us to assert that we haven't crossed over into the |
43cd72b9 BW |
85 | back end. */ |
86 | static bfd_boolean past_xtensa_end = FALSE; | |
e0001a05 NC |
87 | |
88 | /* Flags for properties of the last instruction in a segment. */ | |
89 | #define FLAG_IS_A0_WRITER 0x1 | |
90 | #define FLAG_IS_BAD_LOOPEND 0x2 | |
91 | ||
92 | ||
93 | /* We define a special segment names ".literal" to place literals | |
94 | into. The .fini and .init sections are special because they | |
95 | contain code that is moved together by the linker. We give them | |
96 | their own special .fini.literal and .init.literal sections. */ | |
97 | ||
98 | #define LITERAL_SECTION_NAME xtensa_section_rename (".literal") | |
43cd72b9 | 99 | #define LIT4_SECTION_NAME xtensa_section_rename (".lit4") |
e0001a05 NC |
100 | #define FINI_SECTION_NAME xtensa_section_rename (".fini") |
101 | #define INIT_SECTION_NAME xtensa_section_rename (".init") | |
102 | #define FINI_LITERAL_SECTION_NAME xtensa_section_rename (".fini.literal") | |
103 | #define INIT_LITERAL_SECTION_NAME xtensa_section_rename (".init.literal") | |
104 | ||
105 | ||
43cd72b9 | 106 | /* This type is used for the directive_stack to keep track of the |
e0001a05 NC |
107 | state of the literal collection pools. */ |
108 | ||
109 | typedef struct lit_state_struct | |
110 | { | |
111 | const char *lit_seg_name; | |
43cd72b9 | 112 | const char *lit4_seg_name; |
e0001a05 NC |
113 | const char *init_lit_seg_name; |
114 | const char *fini_lit_seg_name; | |
115 | segT lit_seg; | |
43cd72b9 | 116 | segT lit4_seg; |
e0001a05 NC |
117 | segT init_lit_seg; |
118 | segT fini_lit_seg; | |
119 | } lit_state; | |
120 | ||
121 | static lit_state default_lit_sections; | |
122 | ||
123 | ||
124 | /* We keep lists of literal segments. The seg_list type is the node | |
125 | for such a list. The *_literal_head locals are the heads of the | |
126 | various lists. All of these lists have a dummy node at the start. */ | |
127 | ||
128 | typedef struct seg_list_struct | |
129 | { | |
130 | struct seg_list_struct *next; | |
131 | segT seg; | |
132 | } seg_list; | |
133 | ||
134 | static seg_list literal_head_h; | |
135 | static seg_list *literal_head = &literal_head_h; | |
136 | static seg_list init_literal_head_h; | |
137 | static seg_list *init_literal_head = &init_literal_head_h; | |
138 | static seg_list fini_literal_head_h; | |
139 | static seg_list *fini_literal_head = &fini_literal_head_h; | |
140 | ||
141 | ||
82e7541d BW |
142 | /* Lists of symbols. We keep a list of symbols that label the current |
143 | instruction, so that we can adjust the symbols when inserting alignment | |
144 | for various instructions. We also keep a list of all the symbols on | |
145 | literals, so that we can fix up those symbols when the literals are | |
146 | later moved into the text sections. */ | |
147 | ||
148 | typedef struct sym_list_struct | |
149 | { | |
150 | struct sym_list_struct *next; | |
151 | symbolS *sym; | |
152 | } sym_list; | |
153 | ||
154 | static sym_list *insn_labels = NULL; | |
155 | static sym_list *free_insn_labels = NULL; | |
156 | static sym_list *saved_insn_labels = NULL; | |
157 | ||
158 | static sym_list *literal_syms; | |
159 | ||
160 | ||
43cd72b9 BW |
161 | /* Flags to determine whether to prefer const16 or l32r |
162 | if both options are available. */ | |
163 | int prefer_const16 = 0; | |
164 | int prefer_l32r = 0; | |
165 | ||
e0001a05 NC |
166 | /* Global flag to indicate when we are emitting literals. */ |
167 | int generating_literals = 0; | |
168 | ||
43cd72b9 BW |
169 | /* The following PROPERTY table definitions are copied from |
170 | <elf/xtensa.h> and must be kept in sync with the code there. */ | |
171 | ||
172 | /* Flags in the property tables to specify whether blocks of memory | |
173 | are literals, instructions, data, or unreachable. For | |
174 | instructions, blocks that begin loop targets and branch targets are | |
175 | designated. Blocks that do not allow density, instruction | |
176 | reordering or transformation are also specified. Finally, for | |
177 | branch targets, branch target alignment priority is included. | |
178 | Alignment of the next block is specified in the current block | |
179 | and the size of the current block does not include any fill required | |
180 | to align to the next block. */ | |
181 | ||
182 | #define XTENSA_PROP_LITERAL 0x00000001 | |
183 | #define XTENSA_PROP_INSN 0x00000002 | |
184 | #define XTENSA_PROP_DATA 0x00000004 | |
185 | #define XTENSA_PROP_UNREACHABLE 0x00000008 | |
186 | /* Instruction only properties at beginning of code. */ | |
187 | #define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010 | |
188 | #define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020 | |
189 | /* Instruction only properties about code. */ | |
190 | #define XTENSA_PROP_INSN_NO_DENSITY 0x00000040 | |
191 | #define XTENSA_PROP_INSN_NO_REORDER 0x00000080 | |
192 | #define XTENSA_PROP_INSN_NO_TRANSFORM 0x00000100 | |
193 | ||
194 | /* Branch target alignment information. This transmits information | |
195 | to the linker optimization about the priority of aligning a | |
196 | particular block for branch target alignment: None, low priority, | |
197 | high priority, or required. These only need to be checked in | |
198 | instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET. | |
199 | Common usage is | |
200 | ||
201 | switch (GET_XTENSA_PROP_BT_ALIGN (flags)) | |
202 | case XTENSA_PROP_BT_ALIGN_NONE: | |
203 | case XTENSA_PROP_BT_ALIGN_LOW: | |
204 | case XTENSA_PROP_BT_ALIGN_HIGH: | |
205 | case XTENSA_PROP_BT_ALIGN_REQUIRE: | |
206 | */ | |
207 | #define XTENSA_PROP_BT_ALIGN_MASK 0x00000600 | |
208 | ||
209 | /* No branch target alignment. */ | |
210 | #define XTENSA_PROP_BT_ALIGN_NONE 0x0 | |
211 | /* Low priority branch target alignment. */ | |
212 | #define XTENSA_PROP_BT_ALIGN_LOW 0x1 | |
213 | /* High priority branch target alignment. */ | |
214 | #define XTENSA_PROP_BT_ALIGN_HIGH 0x2 | |
215 | /* Required branch target alignment. */ | |
216 | #define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3 | |
217 | ||
218 | #define GET_XTENSA_PROP_BT_ALIGN(flag) \ | |
219 | (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9) | |
220 | #define SET_XTENSA_PROP_BT_ALIGN(flag, align) \ | |
221 | (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \ | |
222 | (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK)) | |
223 | ||
224 | ||
225 | /* Alignment is specified in the block BEFORE the one that needs | |
226 | alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to | |
227 | get the required alignment specified as a power of 2. Use | |
228 | SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required | |
229 | alignment. Be careful of side effects since the SET will evaluate | |
230 | flags twice. Also, note that the SIZE of a block in the property | |
231 | table does not include the alignment size, so the alignment fill | |
232 | must be calculated to determine if two blocks are contiguous. | |
233 | TEXT_ALIGN is not currently implemented but is a placeholder for a | |
234 | possible future implementation. */ | |
235 | ||
236 | #define XTENSA_PROP_ALIGN 0x00000800 | |
237 | ||
238 | #define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000 | |
239 | ||
240 | #define GET_XTENSA_PROP_ALIGNMENT(flag) \ | |
241 | (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12) | |
242 | #define SET_XTENSA_PROP_ALIGNMENT(flag, align) \ | |
243 | (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \ | |
244 | (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK)) | |
245 | ||
246 | #define XTENSA_PROP_INSN_ABSLIT 0x00020000 | |
247 | ||
248 | ||
249 | /* Structure for saving instruction and alignment per-fragment data | |
250 | that will be written to the object file. This structure is | |
251 | equivalent to the actual data that will be written out to the file | |
252 | but is easier to use. We provide a conversion to file flags | |
253 | in frag_flags_to_number. */ | |
254 | ||
255 | typedef struct frag_flags_struct frag_flags; | |
256 | ||
257 | struct frag_flags_struct | |
258 | { | |
259 | /* is_literal should only be used after xtensa_move_literals. | |
260 | If you need to check if you are generating a literal fragment, | |
261 | then use the generating_literals global. */ | |
262 | ||
263 | unsigned is_literal : 1; | |
264 | unsigned is_insn : 1; | |
265 | unsigned is_data : 1; | |
266 | unsigned is_unreachable : 1; | |
267 | ||
268 | struct | |
269 | { | |
270 | unsigned is_loop_target : 1; | |
271 | unsigned is_branch_target : 1; /* Branch targets have a priority. */ | |
272 | unsigned bt_align_priority : 2; | |
273 | ||
274 | unsigned is_no_density : 1; | |
275 | /* no_longcalls flag does not need to be placed in the object file. */ | |
276 | /* is_specific_opcode implies no_transform. */ | |
277 | unsigned is_no_transform : 1; | |
278 | ||
279 | unsigned is_no_reorder : 1; | |
280 | ||
281 | /* Uses absolute literal addressing for l32r. */ | |
282 | unsigned is_abslit : 1; | |
283 | } insn; | |
284 | unsigned is_align : 1; | |
285 | unsigned alignment : 5; | |
286 | }; | |
287 | ||
288 | ||
289 | /* Structure for saving information about a block of property data | |
290 | for frags that have the same flags. */ | |
291 | struct xtensa_block_info_struct | |
292 | { | |
293 | segT sec; | |
294 | bfd_vma offset; | |
295 | size_t size; | |
296 | frag_flags flags; | |
297 | struct xtensa_block_info_struct *next; | |
298 | }; | |
299 | ||
e0001a05 NC |
300 | |
301 | /* Structure for saving the current state before emitting literals. */ | |
302 | typedef struct emit_state_struct | |
303 | { | |
304 | const char *name; | |
305 | segT now_seg; | |
306 | subsegT now_subseg; | |
307 | int generating_literals; | |
308 | } emit_state; | |
309 | ||
310 | ||
43cd72b9 BW |
311 | /* Opcode placement information */ |
312 | ||
313 | typedef unsigned long long bitfield; | |
314 | #define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit))) | |
315 | #define set_bit(bit, bf) ((bf) |= (0x01ll << (bit))) | |
316 | #define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit))) | |
317 | ||
318 | #define MAX_FORMATS 32 | |
319 | ||
320 | typedef struct op_placement_info_struct | |
321 | { | |
322 | int num_formats; | |
323 | /* A number describing how restrictive the issue is for this | |
324 | opcode. For example, an opcode that fits lots of different | |
c138bc38 | 325 | formats has a high freedom, as does an opcode that fits |
43cd72b9 | 326 | only one format but many slots in that format. The most |
c138bc38 | 327 | restrictive is the opcode that fits only one slot in one |
43cd72b9 BW |
328 | format. */ |
329 | int issuef; | |
330 | /* The single format (i.e., if the op can live in a bundle by itself), | |
c138bc38 | 331 | narrowest format, and widest format the op can be bundled in |
43cd72b9 BW |
332 | and their sizes: */ |
333 | xtensa_format single; | |
334 | xtensa_format narrowest; | |
335 | xtensa_format widest; | |
336 | char narrowest_size; | |
337 | char widest_size; | |
338 | char single_size; | |
339 | ||
340 | /* formats is a bitfield with the Nth bit set | |
341 | if the opcode fits in the Nth xtensa_format. */ | |
342 | bitfield formats; | |
343 | ||
344 | /* slots[N]'s Mth bit is set if the op fits in the | |
345 | Mth slot of the Nth xtensa_format. */ | |
346 | bitfield slots[MAX_FORMATS]; | |
347 | ||
348 | /* A count of the number of slots in a given format | |
349 | an op can fit (i.e., the bitcount of the slot field above). */ | |
350 | char slots_in_format[MAX_FORMATS]; | |
351 | ||
352 | } op_placement_info, *op_placement_info_table; | |
353 | ||
354 | op_placement_info_table op_placement_table; | |
355 | ||
356 | ||
357 | /* Extra expression types. */ | |
358 | ||
359 | #define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */ | |
360 | #define O_hi16 O_md2 /* use high 16 bits of symbolic value */ | |
361 | #define O_lo16 O_md3 /* use low 16 bits of symbolic value */ | |
362 | ||
363 | ||
e0001a05 NC |
364 | /* Directives. */ |
365 | ||
366 | typedef enum | |
367 | { | |
368 | directive_none = 0, | |
369 | directive_literal, | |
370 | directive_density, | |
43cd72b9 | 371 | directive_transform, |
e0001a05 NC |
372 | directive_freeregs, |
373 | directive_longcalls, | |
43cd72b9 BW |
374 | directive_literal_prefix, |
375 | directive_schedule, | |
376 | directive_absolute_literals, | |
377 | directive_last_directive | |
e0001a05 NC |
378 | } directiveE; |
379 | ||
380 | typedef struct | |
381 | { | |
382 | const char *name; | |
383 | bfd_boolean can_be_negated; | |
384 | } directive_infoS; | |
385 | ||
386 | const directive_infoS directive_info[] = | |
387 | { | |
43cd72b9 BW |
388 | { "none", FALSE }, |
389 | { "literal", FALSE }, | |
390 | { "density", TRUE }, | |
391 | { "transform", TRUE }, | |
392 | { "freeregs", FALSE }, | |
393 | { "longcalls", TRUE }, | |
394 | { "literal_prefix", FALSE }, | |
395 | { "schedule", TRUE }, | |
396 | { "absolute-literals", TRUE } | |
e0001a05 NC |
397 | }; |
398 | ||
399 | bfd_boolean directive_state[] = | |
400 | { | |
401 | FALSE, /* none */ | |
402 | FALSE, /* literal */ | |
43cd72b9 | 403 | #if !XCHAL_HAVE_DENSITY |
e0001a05 NC |
404 | FALSE, /* density */ |
405 | #else | |
406 | TRUE, /* density */ | |
407 | #endif | |
43cd72b9 | 408 | TRUE, /* transform */ |
e0001a05 NC |
409 | FALSE, /* freeregs */ |
410 | FALSE, /* longcalls */ | |
43cd72b9 BW |
411 | FALSE, /* literal_prefix */ |
412 | TRUE, /* schedule */ | |
413 | #if XSHAL_USE_ABSOLUTE_LITERALS | |
414 | TRUE /* absolute_literals */ | |
415 | #else | |
416 | FALSE /* absolute_literals */ | |
417 | #endif | |
e0001a05 NC |
418 | }; |
419 | ||
e0001a05 NC |
420 | |
421 | /* Directive functions. */ | |
422 | ||
7fa3d080 BW |
423 | static void xtensa_begin_directive (int); |
424 | static void xtensa_end_directive (int); | |
7fa3d080 BW |
425 | static void xtensa_literal_prefix (char const *, int); |
426 | static void xtensa_literal_position (int); | |
427 | static void xtensa_literal_pseudo (int); | |
428 | static void xtensa_frequency_pseudo (int); | |
429 | static void xtensa_elf_cons (int); | |
e0001a05 | 430 | |
7fa3d080 | 431 | /* Parsing and Idiom Translation. */ |
e0001a05 | 432 | |
7fa3d080 | 433 | static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *); |
e0001a05 | 434 | |
e0001a05 NC |
435 | /* Various Other Internal Functions. */ |
436 | ||
84b08ed9 BW |
437 | extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean); |
438 | static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *); | |
7fa3d080 BW |
439 | static void xtensa_mark_literal_pool_location (void); |
440 | static addressT get_expanded_loop_offset (xtensa_opcode); | |
441 | static fragS *get_literal_pool_location (segT); | |
442 | static void set_literal_pool_location (segT, fragS *); | |
443 | static void xtensa_set_frag_assembly_state (fragS *); | |
444 | static void finish_vinsn (vliw_insn *); | |
445 | static bfd_boolean emit_single_op (TInsn *); | |
34e41783 | 446 | static int total_frag_text_expansion (fragS *); |
e0001a05 NC |
447 | |
448 | /* Alignment Functions. */ | |
449 | ||
d77b99c9 BW |
450 | static int get_text_align_power (unsigned); |
451 | static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean); | |
664df4e4 | 452 | static int branch_align_power (segT); |
e0001a05 NC |
453 | |
454 | /* Helpers for xtensa_relax_frag(). */ | |
455 | ||
7fa3d080 | 456 | static long relax_frag_add_nop (fragS *); |
e0001a05 | 457 | |
b08b5071 | 458 | /* Accessors for additional per-subsegment information. */ |
e0001a05 | 459 | |
7fa3d080 BW |
460 | static unsigned get_last_insn_flags (segT, subsegT); |
461 | static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean); | |
b08b5071 BW |
462 | static float get_subseg_total_freq (segT, subsegT); |
463 | static float get_subseg_target_freq (segT, subsegT); | |
464 | static void set_subseg_freq (segT, subsegT, float, float); | |
e0001a05 NC |
465 | |
466 | /* Segment list functions. */ | |
467 | ||
7fa3d080 BW |
468 | static void xtensa_move_literals (void); |
469 | static void xtensa_reorder_segments (void); | |
470 | static void xtensa_switch_to_literal_fragment (emit_state *); | |
471 | static void xtensa_switch_to_non_abs_literal_fragment (emit_state *); | |
472 | static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT); | |
473 | static void xtensa_restore_emit_state (emit_state *); | |
e0001a05 | 474 | static void cache_literal_section |
7fa3d080 | 475 | (seg_list *, const char *, segT *, bfd_boolean); |
e0001a05 | 476 | |
e0001a05 | 477 | /* Import from elf32-xtensa.c in BFD library. */ |
43cd72b9 | 478 | |
7fa3d080 | 479 | extern char *xtensa_get_property_section_name (asection *, const char *); |
e0001a05 | 480 | |
43cd72b9 BW |
481 | /* op_placement_info functions. */ |
482 | ||
7fa3d080 BW |
483 | static void init_op_placement_info_table (void); |
484 | extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int); | |
485 | static int xg_get_single_size (xtensa_opcode); | |
486 | static xtensa_format xg_get_single_format (xtensa_opcode); | |
43cd72b9 | 487 | |
e0001a05 | 488 | /* TInsn and IStack functions. */ |
43cd72b9 | 489 | |
7fa3d080 BW |
490 | static bfd_boolean tinsn_has_symbolic_operands (const TInsn *); |
491 | static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *); | |
492 | static bfd_boolean tinsn_has_complex_operands (const TInsn *); | |
493 | static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf); | |
494 | static bfd_boolean tinsn_check_arguments (const TInsn *); | |
495 | static void tinsn_from_chars (TInsn *, char *, int); | |
496 | static void tinsn_immed_from_frag (TInsn *, fragS *, int); | |
497 | static int get_num_stack_text_bytes (IStack *); | |
498 | static int get_num_stack_literal_bytes (IStack *); | |
e0001a05 | 499 | |
43cd72b9 BW |
500 | /* vliw_insn functions. */ |
501 | ||
7fa3d080 BW |
502 | static void xg_init_vinsn (vliw_insn *); |
503 | static void xg_clear_vinsn (vliw_insn *); | |
504 | static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *); | |
505 | static void xg_free_vinsn (vliw_insn *); | |
43cd72b9 | 506 | static bfd_boolean vinsn_to_insnbuf |
7fa3d080 BW |
507 | (vliw_insn *, char *, fragS *, bfd_boolean); |
508 | static void vinsn_from_chars (vliw_insn *, char *); | |
43cd72b9 | 509 | |
e0001a05 | 510 | /* Expression Utilities. */ |
43cd72b9 | 511 | |
7fa3d080 BW |
512 | bfd_boolean expr_is_const (const expressionS *); |
513 | offsetT get_expr_const (const expressionS *); | |
514 | void set_expr_const (expressionS *, offsetT); | |
515 | bfd_boolean expr_is_register (const expressionS *); | |
516 | offsetT get_expr_register (const expressionS *); | |
517 | void set_expr_symbol_offset (expressionS *, symbolS *, offsetT); | |
43cd72b9 | 518 | static void set_expr_symbol_offset_diff |
7fa3d080 BW |
519 | (expressionS *, symbolS *, symbolS *, offsetT); |
520 | bfd_boolean expr_is_equal (expressionS *, expressionS *); | |
521 | static void copy_expr (expressionS *, const expressionS *); | |
e0001a05 | 522 | |
9456465c BW |
523 | /* Section renaming. */ |
524 | ||
7fa3d080 | 525 | static void build_section_rename (const char *); |
e0001a05 | 526 | |
e0001a05 NC |
527 | |
528 | /* ISA imported from bfd. */ | |
529 | extern xtensa_isa xtensa_default_isa; | |
530 | ||
531 | extern int target_big_endian; | |
532 | ||
533 | static xtensa_opcode xtensa_addi_opcode; | |
534 | static xtensa_opcode xtensa_addmi_opcode; | |
535 | static xtensa_opcode xtensa_call0_opcode; | |
536 | static xtensa_opcode xtensa_call4_opcode; | |
537 | static xtensa_opcode xtensa_call8_opcode; | |
538 | static xtensa_opcode xtensa_call12_opcode; | |
539 | static xtensa_opcode xtensa_callx0_opcode; | |
540 | static xtensa_opcode xtensa_callx4_opcode; | |
541 | static xtensa_opcode xtensa_callx8_opcode; | |
542 | static xtensa_opcode xtensa_callx12_opcode; | |
43cd72b9 | 543 | static xtensa_opcode xtensa_const16_opcode; |
e0001a05 | 544 | static xtensa_opcode xtensa_entry_opcode; |
43cd72b9 BW |
545 | static xtensa_opcode xtensa_movi_opcode; |
546 | static xtensa_opcode xtensa_movi_n_opcode; | |
e0001a05 | 547 | static xtensa_opcode xtensa_isync_opcode; |
e0001a05 | 548 | static xtensa_opcode xtensa_jx_opcode; |
43cd72b9 | 549 | static xtensa_opcode xtensa_l32r_opcode; |
e0001a05 NC |
550 | static xtensa_opcode xtensa_loop_opcode; |
551 | static xtensa_opcode xtensa_loopnez_opcode; | |
552 | static xtensa_opcode xtensa_loopgtz_opcode; | |
43cd72b9 | 553 | static xtensa_opcode xtensa_nop_opcode; |
e0001a05 NC |
554 | static xtensa_opcode xtensa_nop_n_opcode; |
555 | static xtensa_opcode xtensa_or_opcode; | |
556 | static xtensa_opcode xtensa_ret_opcode; | |
557 | static xtensa_opcode xtensa_ret_n_opcode; | |
558 | static xtensa_opcode xtensa_retw_opcode; | |
559 | static xtensa_opcode xtensa_retw_n_opcode; | |
43cd72b9 | 560 | static xtensa_opcode xtensa_rsr_lcount_opcode; |
e0001a05 NC |
561 | static xtensa_opcode xtensa_waiti_opcode; |
562 | ||
563 | \f | |
564 | /* Command-line Options. */ | |
565 | ||
566 | bfd_boolean use_literal_section = TRUE; | |
567 | static bfd_boolean align_targets = TRUE; | |
43cd72b9 | 568 | static bfd_boolean warn_unaligned_branch_targets = FALSE; |
e0001a05 | 569 | static bfd_boolean has_a0_b_retw = FALSE; |
43cd72b9 BW |
570 | static bfd_boolean workaround_a0_b_retw = FALSE; |
571 | static bfd_boolean workaround_b_j_loop_end = FALSE; | |
572 | static bfd_boolean workaround_short_loop = FALSE; | |
e0001a05 | 573 | static bfd_boolean maybe_has_short_loop = FALSE; |
43cd72b9 | 574 | static bfd_boolean workaround_close_loop_end = FALSE; |
e0001a05 NC |
575 | static bfd_boolean maybe_has_close_loop_end = FALSE; |
576 | ||
43cd72b9 BW |
577 | /* When workaround_short_loops is TRUE, all loops with early exits must |
578 | have at least 3 instructions. workaround_all_short_loops is a modifier | |
579 | to the workaround_short_loop flag. In addition to the | |
580 | workaround_short_loop actions, all straightline loopgtz and loopnez | |
581 | must have at least 3 instructions. */ | |
e0001a05 | 582 | |
43cd72b9 | 583 | static bfd_boolean workaround_all_short_loops = FALSE; |
e0001a05 | 584 | |
7fa3d080 BW |
585 | |
586 | static void | |
587 | xtensa_setup_hw_workarounds (int earliest, int latest) | |
588 | { | |
589 | if (earliest > latest) | |
590 | as_fatal (_("illegal range of target hardware versions")); | |
591 | ||
592 | /* Enable all workarounds for pre-T1050.0 hardware. */ | |
593 | if (earliest < 105000 || latest < 105000) | |
594 | { | |
595 | workaround_a0_b_retw |= TRUE; | |
596 | workaround_b_j_loop_end |= TRUE; | |
597 | workaround_short_loop |= TRUE; | |
598 | workaround_close_loop_end |= TRUE; | |
599 | workaround_all_short_loops |= TRUE; | |
600 | } | |
601 | } | |
602 | ||
603 | ||
e0001a05 NC |
604 | enum |
605 | { | |
606 | option_density = OPTION_MD_BASE, | |
607 | option_no_density, | |
608 | ||
609 | option_relax, | |
610 | option_no_relax, | |
611 | ||
43cd72b9 BW |
612 | option_link_relax, |
613 | option_no_link_relax, | |
614 | ||
e0001a05 NC |
615 | option_generics, |
616 | option_no_generics, | |
617 | ||
43cd72b9 BW |
618 | option_transform, |
619 | option_no_transform, | |
620 | ||
e0001a05 NC |
621 | option_text_section_literals, |
622 | option_no_text_section_literals, | |
623 | ||
43cd72b9 BW |
624 | option_absolute_literals, |
625 | option_no_absolute_literals, | |
626 | ||
e0001a05 NC |
627 | option_align_targets, |
628 | option_no_align_targets, | |
629 | ||
43cd72b9 | 630 | option_warn_unaligned_targets, |
e0001a05 NC |
631 | |
632 | option_longcalls, | |
633 | option_no_longcalls, | |
634 | ||
635 | option_workaround_a0_b_retw, | |
636 | option_no_workaround_a0_b_retw, | |
637 | ||
638 | option_workaround_b_j_loop_end, | |
639 | option_no_workaround_b_j_loop_end, | |
640 | ||
641 | option_workaround_short_loop, | |
642 | option_no_workaround_short_loop, | |
643 | ||
644 | option_workaround_all_short_loops, | |
645 | option_no_workaround_all_short_loops, | |
646 | ||
647 | option_workaround_close_loop_end, | |
648 | option_no_workaround_close_loop_end, | |
649 | ||
650 | option_no_workarounds, | |
651 | ||
e0001a05 | 652 | option_rename_section_name, |
e0001a05 | 653 | |
43cd72b9 BW |
654 | option_prefer_l32r, |
655 | option_prefer_const16, | |
656 | ||
657 | option_target_hardware | |
e0001a05 NC |
658 | }; |
659 | ||
660 | const char *md_shortopts = ""; | |
661 | ||
662 | struct option md_longopts[] = | |
663 | { | |
43cd72b9 BW |
664 | { "density", no_argument, NULL, option_density }, |
665 | { "no-density", no_argument, NULL, option_no_density }, | |
666 | ||
667 | /* Both "relax" and "generics" are deprecated and treated as equivalent | |
668 | to the "transform" option. */ | |
669 | { "relax", no_argument, NULL, option_relax }, | |
670 | { "no-relax", no_argument, NULL, option_no_relax }, | |
671 | { "generics", no_argument, NULL, option_generics }, | |
672 | { "no-generics", no_argument, NULL, option_no_generics }, | |
673 | ||
674 | { "transform", no_argument, NULL, option_transform }, | |
675 | { "no-transform", no_argument, NULL, option_no_transform }, | |
676 | { "text-section-literals", no_argument, NULL, option_text_section_literals }, | |
677 | { "no-text-section-literals", no_argument, NULL, | |
678 | option_no_text_section_literals }, | |
679 | { "absolute-literals", no_argument, NULL, option_absolute_literals }, | |
680 | { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals }, | |
e0001a05 NC |
681 | /* This option was changed from -align-target to -target-align |
682 | because it conflicted with the "-al" option. */ | |
43cd72b9 | 683 | { "target-align", no_argument, NULL, option_align_targets }, |
7fa3d080 BW |
684 | { "no-target-align", no_argument, NULL, option_no_align_targets }, |
685 | { "warn-unaligned-targets", no_argument, NULL, | |
686 | option_warn_unaligned_targets }, | |
43cd72b9 BW |
687 | { "longcalls", no_argument, NULL, option_longcalls }, |
688 | { "no-longcalls", no_argument, NULL, option_no_longcalls }, | |
689 | ||
690 | { "no-workaround-a0-b-retw", no_argument, NULL, | |
691 | option_no_workaround_a0_b_retw }, | |
692 | { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw }, | |
e0001a05 | 693 | |
43cd72b9 BW |
694 | { "no-workaround-b-j-loop-end", no_argument, NULL, |
695 | option_no_workaround_b_j_loop_end }, | |
696 | { "workaround-b-j-loop-end", no_argument, NULL, | |
697 | option_workaround_b_j_loop_end }, | |
e0001a05 | 698 | |
43cd72b9 BW |
699 | { "no-workaround-short-loops", no_argument, NULL, |
700 | option_no_workaround_short_loop }, | |
7fa3d080 BW |
701 | { "workaround-short-loops", no_argument, NULL, |
702 | option_workaround_short_loop }, | |
e0001a05 | 703 | |
43cd72b9 BW |
704 | { "no-workaround-all-short-loops", no_argument, NULL, |
705 | option_no_workaround_all_short_loops }, | |
706 | { "workaround-all-short-loop", no_argument, NULL, | |
707 | option_workaround_all_short_loops }, | |
708 | ||
709 | { "prefer-l32r", no_argument, NULL, option_prefer_l32r }, | |
710 | { "prefer-const16", no_argument, NULL, option_prefer_const16 }, | |
711 | ||
712 | { "no-workarounds", no_argument, NULL, option_no_workarounds }, | |
713 | ||
714 | { "no-workaround-close-loop-end", no_argument, NULL, | |
715 | option_no_workaround_close_loop_end }, | |
716 | { "workaround-close-loop-end", no_argument, NULL, | |
717 | option_workaround_close_loop_end }, | |
e0001a05 | 718 | |
7fa3d080 | 719 | { "rename-section", required_argument, NULL, option_rename_section_name }, |
e0001a05 | 720 | |
43cd72b9 BW |
721 | { "link-relax", no_argument, NULL, option_link_relax }, |
722 | { "no-link-relax", no_argument, NULL, option_no_link_relax }, | |
723 | ||
724 | { "target-hardware", required_argument, NULL, option_target_hardware }, | |
725 | ||
726 | { NULL, no_argument, NULL, 0 } | |
e0001a05 NC |
727 | }; |
728 | ||
729 | size_t md_longopts_size = sizeof md_longopts; | |
730 | ||
731 | ||
732 | int | |
7fa3d080 | 733 | md_parse_option (int c, char *arg) |
e0001a05 NC |
734 | { |
735 | switch (c) | |
736 | { | |
737 | case option_density: | |
43cd72b9 | 738 | as_warn (_("--density option is ignored")); |
e0001a05 NC |
739 | return 1; |
740 | case option_no_density: | |
43cd72b9 | 741 | as_warn (_("--no-density option is ignored")); |
e0001a05 | 742 | return 1; |
43cd72b9 BW |
743 | case option_link_relax: |
744 | linkrelax = 1; | |
e0001a05 | 745 | return 1; |
43cd72b9 BW |
746 | case option_no_link_relax: |
747 | linkrelax = 0; | |
e0001a05 | 748 | return 1; |
43cd72b9 BW |
749 | case option_generics: |
750 | as_warn (_("--generics is deprecated; use --transform instead")); | |
751 | return md_parse_option (option_transform, arg); | |
752 | case option_no_generics: | |
753 | as_warn (_("--no-generics is deprecated; use --no-transform instead")); | |
754 | return md_parse_option (option_no_transform, arg); | |
755 | case option_relax: | |
756 | as_warn (_("--relax is deprecated; use --transform instead")); | |
757 | return md_parse_option (option_transform, arg); | |
758 | case option_no_relax: | |
759 | as_warn (_("--no-relax is deprecated; use --no-transform instead")); | |
760 | return md_parse_option (option_no_transform, arg); | |
e0001a05 NC |
761 | case option_longcalls: |
762 | directive_state[directive_longcalls] = TRUE; | |
763 | return 1; | |
764 | case option_no_longcalls: | |
765 | directive_state[directive_longcalls] = FALSE; | |
766 | return 1; | |
767 | case option_text_section_literals: | |
768 | use_literal_section = FALSE; | |
769 | return 1; | |
770 | case option_no_text_section_literals: | |
771 | use_literal_section = TRUE; | |
772 | return 1; | |
43cd72b9 BW |
773 | case option_absolute_literals: |
774 | if (!absolute_literals_supported) | |
775 | { | |
776 | as_fatal (_("--absolute-literals option not supported in this Xtensa configuration")); | |
777 | return 0; | |
778 | } | |
779 | directive_state[directive_absolute_literals] = TRUE; | |
780 | return 1; | |
781 | case option_no_absolute_literals: | |
782 | directive_state[directive_absolute_literals] = FALSE; | |
783 | return 1; | |
784 | ||
e0001a05 NC |
785 | case option_workaround_a0_b_retw: |
786 | workaround_a0_b_retw = TRUE; | |
e0001a05 NC |
787 | return 1; |
788 | case option_no_workaround_a0_b_retw: | |
789 | workaround_a0_b_retw = FALSE; | |
e0001a05 NC |
790 | return 1; |
791 | case option_workaround_b_j_loop_end: | |
792 | workaround_b_j_loop_end = TRUE; | |
e0001a05 NC |
793 | return 1; |
794 | case option_no_workaround_b_j_loop_end: | |
795 | workaround_b_j_loop_end = FALSE; | |
e0001a05 NC |
796 | return 1; |
797 | ||
798 | case option_workaround_short_loop: | |
799 | workaround_short_loop = TRUE; | |
e0001a05 NC |
800 | return 1; |
801 | case option_no_workaround_short_loop: | |
802 | workaround_short_loop = FALSE; | |
e0001a05 NC |
803 | return 1; |
804 | ||
805 | case option_workaround_all_short_loops: | |
806 | workaround_all_short_loops = TRUE; | |
e0001a05 NC |
807 | return 1; |
808 | case option_no_workaround_all_short_loops: | |
809 | workaround_all_short_loops = FALSE; | |
e0001a05 NC |
810 | return 1; |
811 | ||
812 | case option_workaround_close_loop_end: | |
813 | workaround_close_loop_end = TRUE; | |
e0001a05 NC |
814 | return 1; |
815 | case option_no_workaround_close_loop_end: | |
816 | workaround_close_loop_end = FALSE; | |
e0001a05 NC |
817 | return 1; |
818 | ||
819 | case option_no_workarounds: | |
820 | workaround_a0_b_retw = FALSE; | |
e0001a05 | 821 | workaround_b_j_loop_end = FALSE; |
e0001a05 | 822 | workaround_short_loop = FALSE; |
e0001a05 | 823 | workaround_all_short_loops = FALSE; |
e0001a05 | 824 | workaround_close_loop_end = FALSE; |
e0001a05 | 825 | return 1; |
43cd72b9 | 826 | |
e0001a05 NC |
827 | case option_align_targets: |
828 | align_targets = TRUE; | |
829 | return 1; | |
830 | case option_no_align_targets: | |
831 | align_targets = FALSE; | |
832 | return 1; | |
833 | ||
43cd72b9 BW |
834 | case option_warn_unaligned_targets: |
835 | warn_unaligned_branch_targets = TRUE; | |
e0001a05 NC |
836 | return 1; |
837 | ||
e0001a05 NC |
838 | case option_rename_section_name: |
839 | build_section_rename (arg); | |
840 | return 1; | |
e0001a05 NC |
841 | |
842 | case 'Q': | |
843 | /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section | |
844 | should be emitted or not. FIXME: Not implemented. */ | |
845 | return 1; | |
c138bc38 | 846 | |
43cd72b9 BW |
847 | case option_prefer_l32r: |
848 | if (prefer_const16) | |
849 | as_fatal (_("prefer-l32r conflicts with prefer-const16")); | |
850 | prefer_l32r = 1; | |
851 | return 1; | |
852 | ||
853 | case option_prefer_const16: | |
854 | if (prefer_l32r) | |
855 | as_fatal (_("prefer-const16 conflicts with prefer-l32r")); | |
856 | prefer_const16 = 1; | |
857 | return 1; | |
858 | ||
c138bc38 | 859 | case option_target_hardware: |
43cd72b9 BW |
860 | { |
861 | int earliest, latest = 0; | |
862 | if (*arg == 0 || *arg == '-') | |
863 | as_fatal (_("invalid target hardware version")); | |
864 | ||
865 | earliest = strtol (arg, &arg, 0); | |
866 | ||
867 | if (*arg == 0) | |
868 | latest = earliest; | |
869 | else if (*arg == '-') | |
870 | { | |
871 | if (*++arg == 0) | |
872 | as_fatal (_("invalid target hardware version")); | |
873 | latest = strtol (arg, &arg, 0); | |
874 | } | |
875 | if (*arg != 0) | |
876 | as_fatal (_("invalid target hardware version")); | |
877 | ||
878 | xtensa_setup_hw_workarounds (earliest, latest); | |
879 | return 1; | |
880 | } | |
881 | ||
882 | case option_transform: | |
883 | /* This option has no affect other than to use the defaults, | |
884 | which are already set. */ | |
885 | return 1; | |
886 | ||
887 | case option_no_transform: | |
888 | /* This option turns off all transformations of any kind. | |
889 | However, because we want to preserve the state of other | |
890 | directives, we only change its own field. Thus, before | |
891 | you perform any transformation, always check if transform | |
892 | is available. If you use the functions we provide for this | |
893 | purpose, you will be ok. */ | |
894 | directive_state[directive_transform] = FALSE; | |
895 | return 1; | |
896 | ||
e0001a05 NC |
897 | default: |
898 | return 0; | |
899 | } | |
900 | } | |
901 | ||
902 | ||
903 | void | |
7fa3d080 | 904 | md_show_usage (FILE *stream) |
e0001a05 | 905 | { |
43cd72b9 BW |
906 | fputs ("\n\ |
907 | Xtensa options:\n\ | |
9456465c BW |
908 | --[no-]text-section-literals\n\ |
909 | [Do not] put literals in the text section\n\ | |
910 | --[no-]absolute-literals\n\ | |
911 | [Do not] default to use non-PC-relative literals\n\ | |
912 | --[no-]target-align [Do not] try to align branch targets\n\ | |
913 | --[no-]longcalls [Do not] emit 32-bit call sequences\n\ | |
914 | --[no-]transform [Do not] transform instructions\n\ | |
915 | --rename-section old=new Rename section 'old' to 'new'\n", stream); | |
e0001a05 NC |
916 | } |
917 | ||
7fa3d080 BW |
918 | \f |
919 | /* Functions related to the list of current label symbols. */ | |
43cd72b9 BW |
920 | |
921 | static void | |
7fa3d080 | 922 | xtensa_add_insn_label (symbolS *sym) |
43cd72b9 | 923 | { |
7fa3d080 | 924 | sym_list *l; |
43cd72b9 | 925 | |
7fa3d080 BW |
926 | if (!free_insn_labels) |
927 | l = (sym_list *) xmalloc (sizeof (sym_list)); | |
928 | else | |
43cd72b9 | 929 | { |
7fa3d080 BW |
930 | l = free_insn_labels; |
931 | free_insn_labels = l->next; | |
932 | } | |
933 | ||
934 | l->sym = sym; | |
935 | l->next = insn_labels; | |
936 | insn_labels = l; | |
937 | } | |
938 | ||
939 | ||
940 | static void | |
941 | xtensa_clear_insn_labels (void) | |
942 | { | |
943 | sym_list **pl; | |
944 | ||
945 | for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next) | |
946 | ; | |
947 | *pl = insn_labels; | |
948 | insn_labels = NULL; | |
949 | } | |
950 | ||
951 | ||
c138bc38 BW |
952 | /* The "loops_ok" argument is provided to allow ignoring labels that |
953 | define loop ends. This fixes a bug where the NOPs to align a | |
7fa3d080 BW |
954 | loop opcode were included in a previous zero-cost loop: |
955 | ||
956 | loop a0, loopend | |
957 | <loop1 body> | |
958 | loopend: | |
959 | ||
960 | loop a2, loopend2 | |
961 | <loop2 body> | |
962 | ||
963 | would become: | |
964 | ||
965 | loop a0, loopend | |
966 | <loop1 body> | |
967 | nop.n <===== bad! | |
968 | loopend: | |
969 | ||
970 | loop a2, loopend2 | |
971 | <loop2 body> | |
972 | ||
973 | This argument is used to prevent moving the NOP to before the | |
974 | loop-end label, which is what you want in this special case. */ | |
975 | ||
976 | static void | |
977 | xtensa_move_labels (fragS *new_frag, valueT new_offset, bfd_boolean loops_ok) | |
978 | { | |
979 | sym_list *lit; | |
980 | ||
981 | for (lit = insn_labels; lit; lit = lit->next) | |
982 | { | |
983 | symbolS *lit_sym = lit->sym; | |
984 | if (loops_ok || ! symbol_get_tc (lit_sym)->is_loop_target) | |
985 | { | |
986 | S_SET_VALUE (lit_sym, new_offset); | |
987 | symbol_set_frag (lit_sym, new_frag); | |
988 | } | |
43cd72b9 BW |
989 | } |
990 | } | |
991 | ||
e0001a05 NC |
992 | \f |
993 | /* Directive data and functions. */ | |
994 | ||
995 | typedef struct state_stackS_struct | |
996 | { | |
997 | directiveE directive; | |
998 | bfd_boolean negated; | |
999 | bfd_boolean old_state; | |
1000 | const char *file; | |
1001 | unsigned int line; | |
1002 | const void *datum; | |
1003 | struct state_stackS_struct *prev; | |
1004 | } state_stackS; | |
1005 | ||
1006 | state_stackS *directive_state_stack; | |
1007 | ||
1008 | const pseudo_typeS md_pseudo_table[] = | |
1009 | { | |
43cd72b9 BW |
1010 | { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */ |
1011 | { "literal_position", xtensa_literal_position, 0 }, | |
1012 | { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */ | |
1013 | { "long", xtensa_elf_cons, 4 }, | |
1014 | { "word", xtensa_elf_cons, 4 }, | |
1015 | { "short", xtensa_elf_cons, 2 }, | |
1016 | { "begin", xtensa_begin_directive, 0 }, | |
1017 | { "end", xtensa_end_directive, 0 }, | |
43cd72b9 BW |
1018 | { "literal", xtensa_literal_pseudo, 0 }, |
1019 | { "frequency", xtensa_frequency_pseudo, 0 }, | |
1020 | { NULL, 0, 0 }, | |
e0001a05 NC |
1021 | }; |
1022 | ||
1023 | ||
7fa3d080 BW |
1024 | static bfd_boolean |
1025 | use_transform (void) | |
e0001a05 | 1026 | { |
43cd72b9 BW |
1027 | /* After md_end, you should be checking frag by frag, rather |
1028 | than state directives. */ | |
1029 | assert (!past_xtensa_end); | |
1030 | return directive_state[directive_transform]; | |
e0001a05 NC |
1031 | } |
1032 | ||
1033 | ||
7fa3d080 BW |
1034 | static bfd_boolean |
1035 | do_align_targets (void) | |
e0001a05 | 1036 | { |
7b1cc377 BW |
1037 | /* Do not use this function after md_end; just look at align_targets |
1038 | instead. There is no target-align directive, so alignment is either | |
1039 | enabled for all frags or not done at all. */ | |
43cd72b9 BW |
1040 | assert (!past_xtensa_end); |
1041 | return align_targets && use_transform (); | |
e0001a05 NC |
1042 | } |
1043 | ||
1044 | ||
1045 | static void | |
7fa3d080 | 1046 | directive_push (directiveE directive, bfd_boolean negated, const void *datum) |
e0001a05 NC |
1047 | { |
1048 | char *file; | |
1049 | unsigned int line; | |
1050 | state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS)); | |
1051 | ||
1052 | as_where (&file, &line); | |
1053 | ||
1054 | stack->directive = directive; | |
1055 | stack->negated = negated; | |
1056 | stack->old_state = directive_state[directive]; | |
1057 | stack->file = file; | |
1058 | stack->line = line; | |
1059 | stack->datum = datum; | |
1060 | stack->prev = directive_state_stack; | |
1061 | directive_state_stack = stack; | |
1062 | ||
1063 | directive_state[directive] = !negated; | |
1064 | } | |
1065 | ||
7fa3d080 | 1066 | |
e0001a05 | 1067 | static void |
7fa3d080 BW |
1068 | directive_pop (directiveE *directive, |
1069 | bfd_boolean *negated, | |
1070 | const char **file, | |
1071 | unsigned int *line, | |
1072 | const void **datum) | |
e0001a05 NC |
1073 | { |
1074 | state_stackS *top = directive_state_stack; | |
1075 | ||
1076 | if (!directive_state_stack) | |
1077 | { | |
1078 | as_bad (_("unmatched end directive")); | |
1079 | *directive = directive_none; | |
1080 | return; | |
1081 | } | |
1082 | ||
1083 | directive_state[directive_state_stack->directive] = top->old_state; | |
1084 | *directive = top->directive; | |
1085 | *negated = top->negated; | |
1086 | *file = top->file; | |
1087 | *line = top->line; | |
1088 | *datum = top->datum; | |
1089 | directive_state_stack = top->prev; | |
1090 | free (top); | |
1091 | } | |
1092 | ||
1093 | ||
1094 | static void | |
7fa3d080 | 1095 | directive_balance (void) |
e0001a05 NC |
1096 | { |
1097 | while (directive_state_stack) | |
1098 | { | |
1099 | directiveE directive; | |
1100 | bfd_boolean negated; | |
1101 | const char *file; | |
1102 | unsigned int line; | |
1103 | const void *datum; | |
1104 | ||
1105 | directive_pop (&directive, &negated, &file, &line, &datum); | |
1106 | as_warn_where ((char *) file, line, | |
1107 | _(".begin directive with no matching .end directive")); | |
1108 | } | |
1109 | } | |
1110 | ||
1111 | ||
1112 | static bfd_boolean | |
7fa3d080 | 1113 | inside_directive (directiveE dir) |
e0001a05 NC |
1114 | { |
1115 | state_stackS *top = directive_state_stack; | |
1116 | ||
1117 | while (top && top->directive != dir) | |
1118 | top = top->prev; | |
1119 | ||
1120 | return (top != NULL); | |
1121 | } | |
1122 | ||
1123 | ||
1124 | static void | |
7fa3d080 | 1125 | get_directive (directiveE *directive, bfd_boolean *negated) |
e0001a05 NC |
1126 | { |
1127 | int len; | |
1128 | unsigned i; | |
43cd72b9 | 1129 | char *directive_string; |
e0001a05 NC |
1130 | |
1131 | if (strncmp (input_line_pointer, "no-", 3) != 0) | |
1132 | *negated = FALSE; | |
1133 | else | |
1134 | { | |
1135 | *negated = TRUE; | |
1136 | input_line_pointer += 3; | |
1137 | } | |
1138 | ||
1139 | len = strspn (input_line_pointer, | |
43cd72b9 BW |
1140 | "abcdefghijklmnopqrstuvwxyz_-/0123456789."); |
1141 | ||
1142 | /* This code is a hack to make .begin [no-][generics|relax] exactly | |
1143 | equivalent to .begin [no-]transform. We should remove it when | |
1144 | we stop accepting those options. */ | |
c138bc38 | 1145 | |
43cd72b9 BW |
1146 | if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0) |
1147 | { | |
1148 | as_warn (_("[no-]generics is deprecated; use [no-]transform instead")); | |
1149 | directive_string = "transform"; | |
1150 | } | |
1151 | else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0) | |
1152 | { | |
1153 | as_warn (_("[no-]relax is deprecated; use [no-]transform instead")); | |
1154 | directive_string = "transform"; | |
c138bc38 | 1155 | } |
43cd72b9 BW |
1156 | else |
1157 | directive_string = input_line_pointer; | |
e0001a05 NC |
1158 | |
1159 | for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i) | |
1160 | { | |
43cd72b9 | 1161 | if (strncmp (directive_string, directive_info[i].name, len) == 0) |
e0001a05 NC |
1162 | { |
1163 | input_line_pointer += len; | |
1164 | *directive = (directiveE) i; | |
1165 | if (*negated && !directive_info[i].can_be_negated) | |
43cd72b9 | 1166 | as_bad (_("directive %s cannot be negated"), |
e0001a05 NC |
1167 | directive_info[i].name); |
1168 | return; | |
1169 | } | |
1170 | } | |
1171 | ||
1172 | as_bad (_("unknown directive")); | |
1173 | *directive = (directiveE) XTENSA_UNDEFINED; | |
1174 | } | |
1175 | ||
1176 | ||
1177 | static void | |
7fa3d080 | 1178 | xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED) |
e0001a05 NC |
1179 | { |
1180 | directiveE directive; | |
1181 | bfd_boolean negated; | |
1182 | emit_state *state; | |
1183 | int len; | |
1184 | lit_state *ls; | |
1185 | ||
1186 | get_directive (&directive, &negated); | |
1187 | if (directive == (directiveE) XTENSA_UNDEFINED) | |
1188 | { | |
1189 | discard_rest_of_line (); | |
1190 | return; | |
1191 | } | |
1192 | ||
43cd72b9 BW |
1193 | if (cur_vinsn.inside_bundle) |
1194 | as_bad (_("directives are not valid inside bundles")); | |
1195 | ||
e0001a05 NC |
1196 | switch (directive) |
1197 | { | |
1198 | case directive_literal: | |
82e7541d BW |
1199 | if (!inside_directive (directive_literal)) |
1200 | { | |
1201 | /* Previous labels go with whatever follows this directive, not with | |
1202 | the literal, so save them now. */ | |
1203 | saved_insn_labels = insn_labels; | |
1204 | insn_labels = NULL; | |
1205 | } | |
43cd72b9 | 1206 | as_warn (_(".begin literal is deprecated; use .literal instead")); |
e0001a05 NC |
1207 | state = (emit_state *) xmalloc (sizeof (emit_state)); |
1208 | xtensa_switch_to_literal_fragment (state); | |
1209 | directive_push (directive_literal, negated, state); | |
1210 | break; | |
1211 | ||
1212 | case directive_literal_prefix: | |
c138bc38 | 1213 | /* Have to flush pending output because a movi relaxed to an l32r |
43cd72b9 BW |
1214 | might produce a literal. */ |
1215 | md_flush_pending_output (); | |
e0001a05 NC |
1216 | /* Check to see if the current fragment is a literal |
1217 | fragment. If it is, then this operation is not allowed. */ | |
43cd72b9 | 1218 | if (generating_literals) |
e0001a05 NC |
1219 | { |
1220 | as_bad (_("cannot set literal_prefix inside literal fragment")); | |
1221 | return; | |
1222 | } | |
1223 | ||
1224 | /* Allocate the literal state for this section and push | |
1225 | onto the directive stack. */ | |
1226 | ls = xmalloc (sizeof (lit_state)); | |
1227 | assert (ls); | |
1228 | ||
1229 | *ls = default_lit_sections; | |
1230 | ||
1231 | directive_push (directive_literal_prefix, negated, ls); | |
1232 | ||
1233 | /* Parse the new prefix from the input_line_pointer. */ | |
1234 | SKIP_WHITESPACE (); | |
1235 | len = strspn (input_line_pointer, | |
1236 | "ABCDEFGHIJKLMNOPQRSTUVWXYZ" | |
1237 | "abcdefghijklmnopqrstuvwxyz_/0123456789.$"); | |
1238 | ||
1239 | /* Process the new prefix. */ | |
1240 | xtensa_literal_prefix (input_line_pointer, len); | |
1241 | ||
1242 | /* Skip the name in the input line. */ | |
1243 | input_line_pointer += len; | |
1244 | break; | |
1245 | ||
1246 | case directive_freeregs: | |
1247 | /* This information is currently unused, but we'll accept the statement | |
1248 | and just discard the rest of the line. This won't check the syntax, | |
1249 | but it will accept every correct freeregs directive. */ | |
1250 | input_line_pointer += strcspn (input_line_pointer, "\n"); | |
1251 | directive_push (directive_freeregs, negated, 0); | |
1252 | break; | |
1253 | ||
43cd72b9 BW |
1254 | case directive_schedule: |
1255 | md_flush_pending_output (); | |
1256 | frag_var (rs_fill, 0, 0, frag_now->fr_subtype, | |
1257 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
1258 | directive_push (directive_schedule, negated, 0); | |
1259 | xtensa_set_frag_assembly_state (frag_now); | |
1260 | break; | |
1261 | ||
e0001a05 | 1262 | case directive_density: |
43cd72b9 BW |
1263 | as_warn (_(".begin [no-]density is ignored")); |
1264 | break; | |
1265 | ||
1266 | case directive_absolute_literals: | |
1267 | md_flush_pending_output (); | |
1268 | if (!absolute_literals_supported && !negated) | |
e0001a05 | 1269 | { |
43cd72b9 | 1270 | as_warn (_("Xtensa absolute literals option not supported; ignored")); |
e0001a05 NC |
1271 | break; |
1272 | } | |
43cd72b9 BW |
1273 | xtensa_set_frag_assembly_state (frag_now); |
1274 | directive_push (directive, negated, 0); | |
1275 | break; | |
e0001a05 NC |
1276 | |
1277 | default: | |
43cd72b9 BW |
1278 | md_flush_pending_output (); |
1279 | xtensa_set_frag_assembly_state (frag_now); | |
e0001a05 NC |
1280 | directive_push (directive, negated, 0); |
1281 | break; | |
1282 | } | |
1283 | ||
1284 | demand_empty_rest_of_line (); | |
1285 | } | |
1286 | ||
1287 | ||
1288 | static void | |
7fa3d080 | 1289 | xtensa_end_directive (int ignore ATTRIBUTE_UNUSED) |
e0001a05 NC |
1290 | { |
1291 | directiveE begin_directive, end_directive; | |
1292 | bfd_boolean begin_negated, end_negated; | |
1293 | const char *file; | |
1294 | unsigned int line; | |
1295 | emit_state *state; | |
43cd72b9 | 1296 | emit_state **state_ptr; |
e0001a05 NC |
1297 | lit_state *s; |
1298 | ||
43cd72b9 BW |
1299 | if (cur_vinsn.inside_bundle) |
1300 | as_bad (_("directives are not valid inside bundles")); | |
82e7541d | 1301 | |
e0001a05 | 1302 | get_directive (&end_directive, &end_negated); |
43cd72b9 BW |
1303 | |
1304 | md_flush_pending_output (); | |
1305 | ||
1306 | switch (end_directive) | |
e0001a05 | 1307 | { |
43cd72b9 | 1308 | case (directiveE) XTENSA_UNDEFINED: |
e0001a05 NC |
1309 | discard_rest_of_line (); |
1310 | return; | |
e0001a05 | 1311 | |
43cd72b9 BW |
1312 | case directive_density: |
1313 | as_warn (_(".end [no-]density is ignored")); | |
e0001a05 | 1314 | demand_empty_rest_of_line (); |
43cd72b9 BW |
1315 | break; |
1316 | ||
1317 | case directive_absolute_literals: | |
1318 | if (!absolute_literals_supported && !end_negated) | |
1319 | { | |
1320 | as_warn (_("Xtensa absolute literals option not supported; ignored")); | |
1321 | demand_empty_rest_of_line (); | |
1322 | return; | |
1323 | } | |
1324 | break; | |
1325 | ||
1326 | default: | |
1327 | break; | |
e0001a05 NC |
1328 | } |
1329 | ||
43cd72b9 | 1330 | state_ptr = &state; /* use state_ptr to avoid type-punning warning */ |
e0001a05 | 1331 | directive_pop (&begin_directive, &begin_negated, &file, &line, |
43cd72b9 | 1332 | (const void **) state_ptr); |
e0001a05 NC |
1333 | |
1334 | if (begin_directive != directive_none) | |
1335 | { | |
1336 | if (begin_directive != end_directive || begin_negated != end_negated) | |
1337 | { | |
1338 | as_bad (_("does not match begin %s%s at %s:%d"), | |
1339 | begin_negated ? "no-" : "", | |
1340 | directive_info[begin_directive].name, file, line); | |
1341 | } | |
1342 | else | |
1343 | { | |
1344 | switch (end_directive) | |
1345 | { | |
1346 | case directive_literal: | |
1347 | frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
1348 | xtensa_restore_emit_state (state); | |
43cd72b9 | 1349 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 | 1350 | free (state); |
82e7541d BW |
1351 | if (!inside_directive (directive_literal)) |
1352 | { | |
1353 | /* Restore the list of current labels. */ | |
1354 | xtensa_clear_insn_labels (); | |
1355 | insn_labels = saved_insn_labels; | |
1356 | } | |
e0001a05 NC |
1357 | break; |
1358 | ||
e0001a05 NC |
1359 | case directive_literal_prefix: |
1360 | /* Restore the default collection sections from saved state. */ | |
1361 | s = (lit_state *) state; | |
1362 | assert (s); | |
1363 | ||
e8247da7 | 1364 | default_lit_sections = *s; |
e0001a05 NC |
1365 | |
1366 | /* free the state storage */ | |
1367 | free (s); | |
1368 | break; | |
1369 | ||
43cd72b9 BW |
1370 | case directive_schedule: |
1371 | case directive_freeregs: | |
1372 | break; | |
1373 | ||
e0001a05 | 1374 | default: |
43cd72b9 | 1375 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
1376 | break; |
1377 | } | |
1378 | } | |
1379 | } | |
1380 | ||
1381 | demand_empty_rest_of_line (); | |
1382 | } | |
1383 | ||
1384 | ||
1385 | /* Place an aligned literal fragment at the current location. */ | |
1386 | ||
1387 | static void | |
7fa3d080 | 1388 | xtensa_literal_position (int ignore ATTRIBUTE_UNUSED) |
e0001a05 | 1389 | { |
43cd72b9 BW |
1390 | md_flush_pending_output (); |
1391 | ||
e0001a05 NC |
1392 | if (inside_directive (directive_literal)) |
1393 | as_warn (_(".literal_position inside literal directive; ignoring")); | |
43cd72b9 | 1394 | xtensa_mark_literal_pool_location (); |
e0001a05 NC |
1395 | |
1396 | demand_empty_rest_of_line (); | |
82e7541d | 1397 | xtensa_clear_insn_labels (); |
e0001a05 NC |
1398 | } |
1399 | ||
1400 | ||
43cd72b9 | 1401 | /* Support .literal label, expr, ... */ |
e0001a05 NC |
1402 | |
1403 | static void | |
7fa3d080 | 1404 | xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED) |
e0001a05 NC |
1405 | { |
1406 | emit_state state; | |
1745fcba | 1407 | char *p, *base_name; |
e0001a05 | 1408 | char c; |
e0001a05 NC |
1409 | segT dest_seg; |
1410 | ||
82e7541d BW |
1411 | if (inside_directive (directive_literal)) |
1412 | { | |
1413 | as_bad (_(".literal not allowed inside .begin literal region")); | |
1414 | ignore_rest_of_line (); | |
1415 | return; | |
1416 | } | |
1417 | ||
43cd72b9 BW |
1418 | md_flush_pending_output (); |
1419 | ||
82e7541d BW |
1420 | /* Previous labels go with whatever follows this directive, not with |
1421 | the literal, so save them now. */ | |
1422 | saved_insn_labels = insn_labels; | |
1423 | insn_labels = NULL; | |
1424 | ||
e0001a05 NC |
1425 | /* If we are using text-section literals, then this is the right value... */ |
1426 | dest_seg = now_seg; | |
1427 | ||
1428 | base_name = input_line_pointer; | |
1429 | ||
1430 | xtensa_switch_to_literal_fragment (&state); | |
1431 | ||
43cd72b9 | 1432 | /* ...but if we aren't using text-section-literals, then we |
e0001a05 | 1433 | need to put them in the section we just switched to. */ |
43cd72b9 | 1434 | if (use_literal_section || directive_state[directive_absolute_literals]) |
e0001a05 NC |
1435 | dest_seg = now_seg; |
1436 | ||
43cd72b9 BW |
1437 | /* All literals are aligned to four-byte boundaries. */ |
1438 | frag_align (2, 0, 0); | |
1439 | record_alignment (now_seg, 2); | |
e0001a05 NC |
1440 | |
1441 | c = get_symbol_end (); | |
1442 | /* Just after name is now '\0'. */ | |
1443 | p = input_line_pointer; | |
1444 | *p = c; | |
1445 | SKIP_WHITESPACE (); | |
1446 | ||
1447 | if (*input_line_pointer != ',' && *input_line_pointer != ':') | |
1448 | { | |
1449 | as_bad (_("expected comma or colon after symbol name; " | |
1450 | "rest of line ignored")); | |
1451 | ignore_rest_of_line (); | |
1452 | xtensa_restore_emit_state (&state); | |
1453 | return; | |
1454 | } | |
1455 | *p = 0; | |
1456 | ||
e0001a05 | 1457 | colon (base_name); |
e0001a05 | 1458 | |
e0001a05 | 1459 | *p = c; |
43cd72b9 | 1460 | input_line_pointer++; /* skip ',' or ':' */ |
e0001a05 | 1461 | |
43cd72b9 | 1462 | xtensa_elf_cons (4); |
e0001a05 NC |
1463 | |
1464 | xtensa_restore_emit_state (&state); | |
82e7541d BW |
1465 | |
1466 | /* Restore the list of current labels. */ | |
1467 | xtensa_clear_insn_labels (); | |
1468 | insn_labels = saved_insn_labels; | |
e0001a05 NC |
1469 | } |
1470 | ||
1471 | ||
1472 | static void | |
7fa3d080 | 1473 | xtensa_literal_prefix (char const *start, int len) |
e0001a05 | 1474 | { |
43cd72b9 BW |
1475 | char *name, *linkonce_suffix; |
1476 | char *newname, *newname4; | |
1477 | size_t linkonce_len; | |
e0001a05 NC |
1478 | |
1479 | /* Get a null-terminated copy of the name. */ | |
1480 | name = xmalloc (len + 1); | |
1481 | assert (name); | |
1482 | ||
1483 | strncpy (name, start, len); | |
1484 | name[len] = 0; | |
1485 | ||
1486 | /* Allocate the sections (interesting note: the memory pointing to | |
1487 | the name is actually used for the name by the new section). */ | |
43cd72b9 | 1488 | |
e0001a05 | 1489 | newname = xmalloc (len + strlen (".literal") + 1); |
43cd72b9 | 1490 | newname4 = xmalloc (len + strlen (".lit4") + 1); |
e0001a05 | 1491 | |
43cd72b9 BW |
1492 | linkonce_len = sizeof (".gnu.linkonce.") - 1; |
1493 | if (strncmp (name, ".gnu.linkonce.", linkonce_len) == 0 | |
1494 | && (linkonce_suffix = strchr (name + linkonce_len, '.')) != 0) | |
1495 | { | |
1496 | strcpy (newname, ".gnu.linkonce.literal"); | |
1497 | strcpy (newname4, ".gnu.linkonce.lit4"); | |
e0001a05 | 1498 | |
43cd72b9 BW |
1499 | strcat (newname, linkonce_suffix); |
1500 | strcat (newname4, linkonce_suffix); | |
1501 | } | |
1502 | else | |
1503 | { | |
1504 | int suffix_pos = len; | |
1505 | ||
1506 | /* If the section name ends with ".text", then replace that suffix | |
1507 | instead of appending an additional suffix. */ | |
1508 | if (len >= 5 && strcmp (name + len - 5, ".text") == 0) | |
1509 | suffix_pos -= 5; | |
1510 | ||
1511 | strcpy (newname, name); | |
1512 | strcpy (newname4, name); | |
1513 | ||
1514 | strcpy (newname + suffix_pos, ".literal"); | |
1515 | strcpy (newname4 + suffix_pos, ".lit4"); | |
1516 | } | |
1517 | ||
b08b5071 | 1518 | /* Note that cache_literal_section does not create a segment if |
43cd72b9 BW |
1519 | it already exists. */ |
1520 | default_lit_sections.lit_seg = NULL; | |
1521 | default_lit_sections.lit4_seg = NULL; | |
1522 | ||
1523 | /* Canonicalizing section names allows renaming literal | |
e0001a05 | 1524 | sections to occur correctly. */ |
43cd72b9 BW |
1525 | default_lit_sections.lit_seg_name = tc_canonicalize_symbol_name (newname); |
1526 | default_lit_sections.lit4_seg_name = tc_canonicalize_symbol_name (newname4); | |
e0001a05 NC |
1527 | |
1528 | free (name); | |
43cd72b9 BW |
1529 | } |
1530 | ||
1531 | ||
1532 | /* Support ".frequency branch_target_frequency fall_through_frequency". */ | |
1533 | ||
1534 | static void | |
7fa3d080 | 1535 | xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED) |
43cd72b9 BW |
1536 | { |
1537 | float fall_through_f, target_f; | |
43cd72b9 BW |
1538 | |
1539 | fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer); | |
1540 | if (fall_through_f < 0) | |
1541 | { | |
1542 | as_bad (_("fall through frequency must be greater than 0")); | |
1543 | ignore_rest_of_line (); | |
1544 | return; | |
1545 | } | |
1546 | ||
1547 | target_f = (float) strtod (input_line_pointer, &input_line_pointer); | |
1548 | if (target_f < 0) | |
1549 | { | |
1550 | as_bad (_("branch target frequency must be greater than 0")); | |
1551 | ignore_rest_of_line (); | |
1552 | return; | |
1553 | } | |
1554 | ||
b08b5071 | 1555 | set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f); |
43cd72b9 BW |
1556 | |
1557 | demand_empty_rest_of_line (); | |
1558 | } | |
1559 | ||
1560 | ||
1561 | /* Like normal .long/.short/.word, except support @plt, etc. | |
1562 | Clobbers input_line_pointer, checks end-of-line. */ | |
1563 | ||
1564 | static void | |
7fa3d080 | 1565 | xtensa_elf_cons (int nbytes) |
43cd72b9 BW |
1566 | { |
1567 | expressionS exp; | |
1568 | bfd_reloc_code_real_type reloc; | |
1569 | ||
1570 | md_flush_pending_output (); | |
1571 | ||
1572 | if (cur_vinsn.inside_bundle) | |
1573 | as_bad (_("directives are not valid inside bundles")); | |
1574 | ||
1575 | if (is_it_end_of_statement ()) | |
1576 | { | |
1577 | demand_empty_rest_of_line (); | |
1578 | return; | |
1579 | } | |
1580 | ||
1581 | do | |
1582 | { | |
1583 | expression (&exp); | |
1584 | if (exp.X_op == O_symbol | |
1585 | && *input_line_pointer == '@' | |
1586 | && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp)) | |
1587 | != BFD_RELOC_NONE)) | |
1588 | { | |
1589 | reloc_howto_type *reloc_howto = | |
1590 | bfd_reloc_type_lookup (stdoutput, reloc); | |
1591 | ||
1592 | if (reloc == BFD_RELOC_UNUSED || !reloc_howto) | |
1593 | as_bad (_("unsupported relocation")); | |
1594 | else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP | |
1595 | && reloc <= BFD_RELOC_XTENSA_SLOT14_OP) | |
1596 | || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT | |
1597 | && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)) | |
1598 | as_bad (_("opcode-specific %s relocation used outside " | |
1599 | "an instruction"), reloc_howto->name); | |
1600 | else if (nbytes != (int) bfd_get_reloc_size (reloc_howto)) | |
1601 | as_bad (_("%s relocations do not fit in %d bytes"), | |
1602 | reloc_howto->name, nbytes); | |
1603 | else | |
1604 | { | |
1605 | char *p = frag_more ((int) nbytes); | |
1606 | xtensa_set_frag_assembly_state (frag_now); | |
1607 | fix_new_exp (frag_now, p - frag_now->fr_literal, | |
1608 | nbytes, &exp, 0, reloc); | |
1609 | } | |
1610 | } | |
1611 | else | |
1612 | emit_expr (&exp, (unsigned int) nbytes); | |
1613 | } | |
1614 | while (*input_line_pointer++ == ','); | |
1615 | ||
1616 | input_line_pointer--; /* Put terminator back into stream. */ | |
1617 | demand_empty_rest_of_line (); | |
1618 | } | |
1619 | ||
7fa3d080 BW |
1620 | \f |
1621 | /* Parsing and Idiom Translation. */ | |
43cd72b9 BW |
1622 | |
1623 | /* Parse @plt, etc. and return the desired relocation. */ | |
1624 | static bfd_reloc_code_real_type | |
7fa3d080 | 1625 | xtensa_elf_suffix (char **str_p, expressionS *exp_p) |
43cd72b9 BW |
1626 | { |
1627 | struct map_bfd | |
1628 | { | |
1629 | char *string; | |
1630 | int length; | |
1631 | bfd_reloc_code_real_type reloc; | |
1632 | }; | |
1633 | ||
1634 | char ident[20]; | |
1635 | char *str = *str_p; | |
1636 | char *str2; | |
1637 | int ch; | |
1638 | int len; | |
1639 | struct map_bfd *ptr; | |
1640 | ||
1641 | #define MAP(str,reloc) { str, sizeof (str) - 1, reloc } | |
e0001a05 | 1642 | |
43cd72b9 BW |
1643 | static struct map_bfd mapping[] = |
1644 | { | |
1645 | MAP ("l", BFD_RELOC_LO16), | |
1646 | MAP ("h", BFD_RELOC_HI16), | |
1647 | MAP ("plt", BFD_RELOC_XTENSA_PLT), | |
1648 | { (char *) 0, 0, BFD_RELOC_UNUSED } | |
1649 | }; | |
1650 | ||
1651 | if (*str++ != '@') | |
1652 | return BFD_RELOC_NONE; | |
1653 | ||
1654 | for (ch = *str, str2 = ident; | |
1655 | (str2 < ident + sizeof (ident) - 1 | |
1656 | && (ISALNUM (ch) || ch == '@')); | |
1657 | ch = *++str) | |
1658 | { | |
1659 | *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch); | |
1660 | } | |
1661 | ||
1662 | *str2 = '\0'; | |
1663 | len = str2 - ident; | |
1664 | ||
1665 | ch = ident[0]; | |
1666 | for (ptr = &mapping[0]; ptr->length > 0; ptr++) | |
1667 | if (ch == ptr->string[0] | |
1668 | && len == ptr->length | |
1669 | && memcmp (ident, ptr->string, ptr->length) == 0) | |
1670 | { | |
1671 | /* Now check for "identifier@suffix+constant". */ | |
1672 | if (*str == '-' || *str == '+') | |
1673 | { | |
1674 | char *orig_line = input_line_pointer; | |
1675 | expressionS new_exp; | |
1676 | ||
1677 | input_line_pointer = str; | |
1678 | expression (&new_exp); | |
1679 | if (new_exp.X_op == O_constant) | |
1680 | { | |
1681 | exp_p->X_add_number += new_exp.X_add_number; | |
1682 | str = input_line_pointer; | |
1683 | } | |
1684 | ||
1685 | if (&input_line_pointer != str_p) | |
1686 | input_line_pointer = orig_line; | |
1687 | } | |
1688 | ||
1689 | *str_p = str; | |
1690 | return ptr->reloc; | |
1691 | } | |
1692 | ||
1693 | return BFD_RELOC_UNUSED; | |
e0001a05 NC |
1694 | } |
1695 | ||
e0001a05 NC |
1696 | |
1697 | static const char * | |
7fa3d080 | 1698 | expression_end (const char *name) |
e0001a05 NC |
1699 | { |
1700 | while (1) | |
1701 | { | |
1702 | switch (*name) | |
1703 | { | |
43cd72b9 | 1704 | case '}': |
e0001a05 NC |
1705 | case ';': |
1706 | case '\0': | |
1707 | case ',': | |
43cd72b9 | 1708 | case ':': |
e0001a05 NC |
1709 | return name; |
1710 | case ' ': | |
1711 | case '\t': | |
1712 | ++name; | |
1713 | continue; | |
1714 | default: | |
1715 | return 0; | |
1716 | } | |
1717 | } | |
1718 | } | |
1719 | ||
1720 | ||
1721 | #define ERROR_REG_NUM ((unsigned) -1) | |
1722 | ||
1723 | static unsigned | |
7fa3d080 | 1724 | tc_get_register (const char *prefix) |
e0001a05 NC |
1725 | { |
1726 | unsigned reg; | |
1727 | const char *next_expr; | |
1728 | const char *old_line_pointer; | |
1729 | ||
1730 | SKIP_WHITESPACE (); | |
1731 | old_line_pointer = input_line_pointer; | |
1732 | ||
1733 | if (*input_line_pointer == '$') | |
1734 | ++input_line_pointer; | |
1735 | ||
1736 | /* Accept "sp" as a synonym for "a1". */ | |
1737 | if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p' | |
1738 | && expression_end (input_line_pointer + 2)) | |
1739 | { | |
1740 | input_line_pointer += 2; | |
1741 | return 1; /* AR[1] */ | |
1742 | } | |
1743 | ||
1744 | while (*input_line_pointer++ == *prefix++) | |
1745 | ; | |
1746 | --input_line_pointer; | |
1747 | --prefix; | |
1748 | ||
1749 | if (*prefix) | |
1750 | { | |
1751 | as_bad (_("bad register name: %s"), old_line_pointer); | |
1752 | return ERROR_REG_NUM; | |
1753 | } | |
1754 | ||
1755 | if (!ISDIGIT ((unsigned char) *input_line_pointer)) | |
1756 | { | |
1757 | as_bad (_("bad register number: %s"), input_line_pointer); | |
1758 | return ERROR_REG_NUM; | |
1759 | } | |
1760 | ||
1761 | reg = 0; | |
1762 | ||
1763 | while (ISDIGIT ((int) *input_line_pointer)) | |
1764 | reg = reg * 10 + *input_line_pointer++ - '0'; | |
1765 | ||
1766 | if (!(next_expr = expression_end (input_line_pointer))) | |
1767 | { | |
1768 | as_bad (_("bad register name: %s"), old_line_pointer); | |
1769 | return ERROR_REG_NUM; | |
1770 | } | |
1771 | ||
1772 | input_line_pointer = (char *) next_expr; | |
1773 | ||
1774 | return reg; | |
1775 | } | |
1776 | ||
1777 | ||
e0001a05 | 1778 | static void |
7fa3d080 | 1779 | expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok) |
e0001a05 | 1780 | { |
43cd72b9 | 1781 | xtensa_isa isa = xtensa_default_isa; |
e0001a05 | 1782 | |
43cd72b9 BW |
1783 | /* Check if this is an immediate operand. */ |
1784 | if (xtensa_operand_is_register (isa, opc, opnd) == 0) | |
e0001a05 | 1785 | { |
43cd72b9 | 1786 | bfd_reloc_code_real_type reloc; |
e0001a05 | 1787 | segT t = expression (tok); |
43cd72b9 BW |
1788 | if (t == absolute_section |
1789 | && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1) | |
e0001a05 NC |
1790 | { |
1791 | assert (tok->X_op == O_constant); | |
1792 | tok->X_op = O_symbol; | |
1793 | tok->X_add_symbol = &abs_symbol; | |
1794 | } | |
43cd72b9 BW |
1795 | |
1796 | if ((tok->X_op == O_constant || tok->X_op == O_symbol) | |
1797 | && (reloc = xtensa_elf_suffix (&input_line_pointer, tok)) | |
1798 | && (reloc != BFD_RELOC_NONE)) | |
e0001a05 | 1799 | { |
43cd72b9 BW |
1800 | switch (reloc) |
1801 | { | |
1802 | default: | |
1803 | case BFD_RELOC_UNUSED: | |
1804 | as_bad (_("unsupported relocation")); | |
1805 | break; | |
1806 | ||
1807 | case BFD_RELOC_XTENSA_PLT: | |
1808 | tok->X_op = O_pltrel; | |
1809 | break; | |
1810 | ||
1811 | case BFD_RELOC_LO16: | |
1812 | if (tok->X_op == O_constant) | |
1813 | tok->X_add_number &= 0xffff; | |
1814 | else | |
1815 | tok->X_op = O_lo16; | |
1816 | break; | |
1817 | ||
1818 | case BFD_RELOC_HI16: | |
1819 | if (tok->X_op == O_constant) | |
1820 | tok->X_add_number = ((unsigned) tok->X_add_number) >> 16; | |
1821 | else | |
1822 | tok->X_op = O_hi16; | |
1823 | break; | |
1824 | } | |
e0001a05 | 1825 | } |
e0001a05 NC |
1826 | } |
1827 | else | |
1828 | { | |
43cd72b9 BW |
1829 | xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd); |
1830 | unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)); | |
e0001a05 NC |
1831 | |
1832 | if (reg != ERROR_REG_NUM) /* Already errored */ | |
1833 | { | |
1834 | uint32 buf = reg; | |
43cd72b9 | 1835 | if (xtensa_operand_encode (isa, opc, opnd, &buf)) |
e0001a05 NC |
1836 | as_bad (_("register number out of range")); |
1837 | } | |
1838 | ||
1839 | tok->X_op = O_register; | |
1840 | tok->X_add_symbol = 0; | |
1841 | tok->X_add_number = reg; | |
1842 | } | |
1843 | } | |
1844 | ||
1845 | ||
1846 | /* Split up the arguments for an opcode or pseudo-op. */ | |
1847 | ||
1848 | static int | |
7fa3d080 | 1849 | tokenize_arguments (char **args, char *str) |
e0001a05 NC |
1850 | { |
1851 | char *old_input_line_pointer; | |
1852 | bfd_boolean saw_comma = FALSE; | |
1853 | bfd_boolean saw_arg = FALSE; | |
43cd72b9 | 1854 | bfd_boolean saw_colon = FALSE; |
e0001a05 NC |
1855 | int num_args = 0; |
1856 | char *arg_end, *arg; | |
1857 | int arg_len; | |
43cd72b9 BW |
1858 | |
1859 | /* Save and restore input_line_pointer around this function. */ | |
e0001a05 NC |
1860 | old_input_line_pointer = input_line_pointer; |
1861 | input_line_pointer = str; | |
1862 | ||
1863 | while (*input_line_pointer) | |
1864 | { | |
1865 | SKIP_WHITESPACE (); | |
1866 | switch (*input_line_pointer) | |
1867 | { | |
1868 | case '\0': | |
43cd72b9 | 1869 | case '}': |
e0001a05 NC |
1870 | goto fini; |
1871 | ||
43cd72b9 BW |
1872 | case ':': |
1873 | input_line_pointer++; | |
1874 | if (saw_comma || saw_colon || !saw_arg) | |
1875 | goto err; | |
1876 | saw_colon = TRUE; | |
1877 | break; | |
1878 | ||
e0001a05 NC |
1879 | case ',': |
1880 | input_line_pointer++; | |
43cd72b9 | 1881 | if (saw_comma || saw_colon || !saw_arg) |
e0001a05 NC |
1882 | goto err; |
1883 | saw_comma = TRUE; | |
1884 | break; | |
1885 | ||
1886 | default: | |
43cd72b9 | 1887 | if (!saw_comma && !saw_colon && saw_arg) |
e0001a05 NC |
1888 | goto err; |
1889 | ||
1890 | arg_end = input_line_pointer + 1; | |
1891 | while (!expression_end (arg_end)) | |
1892 | arg_end += 1; | |
43cd72b9 | 1893 | |
e0001a05 | 1894 | arg_len = arg_end - input_line_pointer; |
43cd72b9 | 1895 | arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1); |
e0001a05 NC |
1896 | args[num_args] = arg; |
1897 | ||
43cd72b9 BW |
1898 | if (saw_colon) |
1899 | *arg++ = ':'; | |
e0001a05 NC |
1900 | strncpy (arg, input_line_pointer, arg_len); |
1901 | arg[arg_len] = '\0'; | |
43cd72b9 | 1902 | |
e0001a05 NC |
1903 | input_line_pointer = arg_end; |
1904 | num_args += 1; | |
c138bc38 | 1905 | saw_comma = FALSE; |
43cd72b9 | 1906 | saw_colon = FALSE; |
c138bc38 | 1907 | saw_arg = TRUE; |
e0001a05 NC |
1908 | break; |
1909 | } | |
1910 | } | |
1911 | ||
1912 | fini: | |
43cd72b9 | 1913 | if (saw_comma || saw_colon) |
e0001a05 NC |
1914 | goto err; |
1915 | input_line_pointer = old_input_line_pointer; | |
1916 | return num_args; | |
1917 | ||
1918 | err: | |
43cd72b9 BW |
1919 | if (saw_comma) |
1920 | as_bad (_("extra comma")); | |
1921 | else if (saw_colon) | |
1922 | as_bad (_("extra colon")); | |
1923 | else if (!saw_arg) | |
c138bc38 | 1924 | as_bad (_("missing argument")); |
43cd72b9 BW |
1925 | else |
1926 | as_bad (_("missing comma or colon")); | |
e0001a05 NC |
1927 | input_line_pointer = old_input_line_pointer; |
1928 | return -1; | |
1929 | } | |
1930 | ||
1931 | ||
43cd72b9 | 1932 | /* Parse the arguments to an opcode. Return TRUE on error. */ |
e0001a05 NC |
1933 | |
1934 | static bfd_boolean | |
7fa3d080 | 1935 | parse_arguments (TInsn *insn, int num_args, char **arg_strings) |
e0001a05 | 1936 | { |
43cd72b9 | 1937 | expressionS *tok, *last_tok; |
e0001a05 NC |
1938 | xtensa_opcode opcode = insn->opcode; |
1939 | bfd_boolean had_error = TRUE; | |
43cd72b9 BW |
1940 | xtensa_isa isa = xtensa_default_isa; |
1941 | int n, num_regs = 0; | |
e0001a05 | 1942 | int opcode_operand_count; |
43cd72b9 BW |
1943 | int opnd_cnt, last_opnd_cnt; |
1944 | unsigned int next_reg = 0; | |
e0001a05 NC |
1945 | char *old_input_line_pointer; |
1946 | ||
1947 | if (insn->insn_type == ITYPE_LITERAL) | |
1948 | opcode_operand_count = 1; | |
1949 | else | |
43cd72b9 | 1950 | opcode_operand_count = xtensa_opcode_num_operands (isa, opcode); |
e0001a05 | 1951 | |
43cd72b9 | 1952 | tok = insn->tok; |
e0001a05 NC |
1953 | memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS); |
1954 | ||
1955 | /* Save and restore input_line_pointer around this function. */ | |
43cd72b9 BW |
1956 | old_input_line_pointer = input_line_pointer; |
1957 | ||
1958 | last_tok = 0; | |
1959 | last_opnd_cnt = -1; | |
1960 | opnd_cnt = 0; | |
1961 | ||
1962 | /* Skip invisible operands. */ | |
1963 | while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0) | |
1964 | { | |
1965 | opnd_cnt += 1; | |
1966 | tok++; | |
1967 | } | |
e0001a05 NC |
1968 | |
1969 | for (n = 0; n < num_args; n++) | |
43cd72b9 | 1970 | { |
e0001a05 | 1971 | input_line_pointer = arg_strings[n]; |
43cd72b9 BW |
1972 | if (*input_line_pointer == ':') |
1973 | { | |
1974 | xtensa_regfile opnd_rf; | |
1975 | input_line_pointer++; | |
1976 | if (num_regs == 0) | |
1977 | goto err; | |
1978 | assert (opnd_cnt > 0); | |
1979 | num_regs--; | |
1980 | opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt); | |
1981 | if (next_reg | |
1982 | != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf))) | |
1983 | as_warn (_("incorrect register number, ignoring")); | |
1984 | next_reg++; | |
1985 | } | |
1986 | else | |
1987 | { | |
1988 | if (opnd_cnt >= opcode_operand_count) | |
1989 | { | |
1990 | as_warn (_("too many arguments")); | |
1991 | goto err; | |
1992 | } | |
1993 | assert (opnd_cnt < MAX_INSN_ARGS); | |
1994 | ||
1995 | expression_maybe_register (opcode, opnd_cnt, tok); | |
1996 | next_reg = tok->X_add_number + 1; | |
1997 | ||
1998 | if (tok->X_op == O_illegal || tok->X_op == O_absent) | |
1999 | goto err; | |
2000 | if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1) | |
2001 | { | |
2002 | num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1; | |
2003 | /* minus 1 because we are seeing one right now */ | |
2004 | } | |
2005 | else | |
2006 | num_regs = 0; | |
e0001a05 | 2007 | |
43cd72b9 BW |
2008 | last_tok = tok; |
2009 | last_opnd_cnt = opnd_cnt; | |
e0001a05 | 2010 | |
43cd72b9 BW |
2011 | do |
2012 | { | |
2013 | opnd_cnt += 1; | |
2014 | tok++; | |
2015 | } | |
2016 | while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0); | |
2017 | } | |
2018 | } | |
e0001a05 | 2019 | |
43cd72b9 BW |
2020 | if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1)) |
2021 | goto err; | |
e0001a05 NC |
2022 | |
2023 | insn->ntok = tok - insn->tok; | |
c138bc38 | 2024 | had_error = FALSE; |
e0001a05 NC |
2025 | |
2026 | err: | |
43cd72b9 | 2027 | input_line_pointer = old_input_line_pointer; |
e0001a05 NC |
2028 | return had_error; |
2029 | } | |
2030 | ||
2031 | ||
43cd72b9 | 2032 | static int |
7fa3d080 | 2033 | get_invisible_operands (TInsn *insn) |
43cd72b9 BW |
2034 | { |
2035 | xtensa_isa isa = xtensa_default_isa; | |
2036 | static xtensa_insnbuf slotbuf = NULL; | |
2037 | xtensa_format fmt; | |
2038 | xtensa_opcode opc = insn->opcode; | |
2039 | int slot, opnd, fmt_found; | |
2040 | unsigned val; | |
2041 | ||
2042 | if (!slotbuf) | |
2043 | slotbuf = xtensa_insnbuf_alloc (isa); | |
2044 | ||
2045 | /* Find format/slot where this can be encoded. */ | |
2046 | fmt_found = 0; | |
2047 | slot = 0; | |
2048 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) | |
2049 | { | |
2050 | for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++) | |
2051 | { | |
2052 | if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0) | |
2053 | { | |
2054 | fmt_found = 1; | |
2055 | break; | |
2056 | } | |
2057 | } | |
2058 | if (fmt_found) break; | |
2059 | } | |
2060 | ||
2061 | if (!fmt_found) | |
2062 | { | |
2063 | as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc)); | |
2064 | return -1; | |
2065 | } | |
2066 | ||
2067 | /* First encode all the visible operands | |
2068 | (to deal with shared field operands). */ | |
2069 | for (opnd = 0; opnd < insn->ntok; opnd++) | |
2070 | { | |
2071 | if (xtensa_operand_is_visible (isa, opc, opnd) == 1 | |
2072 | && (insn->tok[opnd].X_op == O_register | |
2073 | || insn->tok[opnd].X_op == O_constant)) | |
2074 | { | |
2075 | val = insn->tok[opnd].X_add_number; | |
2076 | xtensa_operand_encode (isa, opc, opnd, &val); | |
2077 | xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val); | |
2078 | } | |
2079 | } | |
2080 | ||
2081 | /* Then pull out the values for the invisible ones. */ | |
2082 | for (opnd = 0; opnd < insn->ntok; opnd++) | |
2083 | { | |
2084 | if (xtensa_operand_is_visible (isa, opc, opnd) == 0) | |
2085 | { | |
2086 | xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val); | |
2087 | xtensa_operand_decode (isa, opc, opnd, &val); | |
2088 | insn->tok[opnd].X_add_number = val; | |
2089 | if (xtensa_operand_is_register (isa, opc, opnd) == 1) | |
2090 | insn->tok[opnd].X_op = O_register; | |
2091 | else | |
2092 | insn->tok[opnd].X_op = O_constant; | |
2093 | } | |
2094 | } | |
2095 | ||
2096 | return 0; | |
2097 | } | |
2098 | ||
2099 | ||
e0001a05 | 2100 | static void |
7fa3d080 | 2101 | xg_reverse_shift_count (char **cnt_argp) |
e0001a05 NC |
2102 | { |
2103 | char *cnt_arg, *new_arg; | |
2104 | cnt_arg = *cnt_argp; | |
2105 | ||
2106 | /* replace the argument with "31-(argument)" */ | |
2107 | new_arg = (char *) xmalloc (strlen (cnt_arg) + 6); | |
2108 | sprintf (new_arg, "31-(%s)", cnt_arg); | |
2109 | ||
2110 | free (cnt_arg); | |
2111 | *cnt_argp = new_arg; | |
2112 | } | |
2113 | ||
2114 | ||
2115 | /* If "arg" is a constant expression, return non-zero with the value | |
2116 | in *valp. */ | |
2117 | ||
2118 | static int | |
7fa3d080 | 2119 | xg_arg_is_constant (char *arg, offsetT *valp) |
e0001a05 NC |
2120 | { |
2121 | expressionS exp; | |
2122 | char *save_ptr = input_line_pointer; | |
2123 | ||
2124 | input_line_pointer = arg; | |
2125 | expression (&exp); | |
2126 | input_line_pointer = save_ptr; | |
2127 | ||
2128 | if (exp.X_op == O_constant) | |
2129 | { | |
2130 | *valp = exp.X_add_number; | |
2131 | return 1; | |
2132 | } | |
2133 | ||
2134 | return 0; | |
2135 | } | |
2136 | ||
2137 | ||
2138 | static void | |
7fa3d080 | 2139 | xg_replace_opname (char **popname, char *newop) |
e0001a05 NC |
2140 | { |
2141 | free (*popname); | |
2142 | *popname = (char *) xmalloc (strlen (newop) + 1); | |
2143 | strcpy (*popname, newop); | |
2144 | } | |
2145 | ||
2146 | ||
2147 | static int | |
7fa3d080 BW |
2148 | xg_check_num_args (int *pnum_args, |
2149 | int expected_num, | |
2150 | char *opname, | |
2151 | char **arg_strings) | |
e0001a05 NC |
2152 | { |
2153 | int num_args = *pnum_args; | |
2154 | ||
43cd72b9 | 2155 | if (num_args < expected_num) |
e0001a05 NC |
2156 | { |
2157 | as_bad (_("not enough operands (%d) for '%s'; expected %d"), | |
2158 | num_args, opname, expected_num); | |
2159 | return -1; | |
2160 | } | |
2161 | ||
2162 | if (num_args > expected_num) | |
2163 | { | |
2164 | as_warn (_("too many operands (%d) for '%s'; expected %d"), | |
2165 | num_args, opname, expected_num); | |
2166 | while (num_args-- > expected_num) | |
2167 | { | |
2168 | free (arg_strings[num_args]); | |
2169 | arg_strings[num_args] = 0; | |
2170 | } | |
2171 | *pnum_args = expected_num; | |
2172 | return -1; | |
2173 | } | |
2174 | ||
2175 | return 0; | |
2176 | } | |
2177 | ||
2178 | ||
43cd72b9 BW |
2179 | /* If the register is not specified as part of the opcode, |
2180 | then get it from the operand and move it to the opcode. */ | |
2181 | ||
e0001a05 | 2182 | static int |
7fa3d080 | 2183 | xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings) |
e0001a05 | 2184 | { |
43cd72b9 BW |
2185 | xtensa_isa isa = xtensa_default_isa; |
2186 | xtensa_sysreg sr; | |
e0001a05 | 2187 | char *opname, *new_opname; |
43cd72b9 BW |
2188 | const char *sr_name; |
2189 | int is_user, is_write; | |
e0001a05 NC |
2190 | bfd_boolean has_underbar = FALSE; |
2191 | ||
2192 | opname = *popname; | |
2193 | if (*opname == '_') | |
2194 | { | |
2195 | has_underbar = TRUE; | |
2196 | opname += 1; | |
2197 | } | |
43cd72b9 BW |
2198 | is_user = (opname[1] == 'u'); |
2199 | is_write = (opname[0] == 'w'); | |
e0001a05 | 2200 | |
43cd72b9 | 2201 | /* Opname == [rw]ur or [rwx]sr... */ |
e0001a05 | 2202 | |
43cd72b9 BW |
2203 | if (xg_check_num_args (pnum_args, 2, opname, arg_strings)) |
2204 | return -1; | |
e0001a05 | 2205 | |
43cd72b9 BW |
2206 | /* Check if the argument is a symbolic register name. */ |
2207 | sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]); | |
2208 | /* Handle WSR to "INTSET" as a special case. */ | |
2209 | if (sr == XTENSA_UNDEFINED && is_write && !is_user | |
2210 | && !strcasecmp (arg_strings[1], "intset")) | |
2211 | sr = xtensa_sysreg_lookup_name (isa, "interrupt"); | |
2212 | if (sr == XTENSA_UNDEFINED | |
2213 | || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user) | |
2214 | { | |
2215 | /* Maybe it's a register number.... */ | |
2216 | offsetT val; | |
e0001a05 NC |
2217 | if (!xg_arg_is_constant (arg_strings[1], &val)) |
2218 | { | |
43cd72b9 BW |
2219 | as_bad (_("invalid register '%s' for '%s' instruction"), |
2220 | arg_strings[1], opname); | |
e0001a05 NC |
2221 | return -1; |
2222 | } | |
43cd72b9 BW |
2223 | sr = xtensa_sysreg_lookup (isa, val, is_user); |
2224 | if (sr == XTENSA_UNDEFINED) | |
e0001a05 | 2225 | { |
43cd72b9 | 2226 | as_bad (_("invalid register number (%ld) for '%s' instruction"), |
dd49a749 | 2227 | (long) val, opname); |
e0001a05 NC |
2228 | return -1; |
2229 | } | |
43cd72b9 | 2230 | } |
e0001a05 | 2231 | |
43cd72b9 BW |
2232 | /* Remove the last argument, which is now part of the opcode. */ |
2233 | free (arg_strings[1]); | |
2234 | arg_strings[1] = 0; | |
2235 | *pnum_args = 1; | |
2236 | ||
2237 | /* Translate the opcode. */ | |
2238 | sr_name = xtensa_sysreg_name (isa, sr); | |
2239 | /* Another special case for "WSR.INTSET".... */ | |
2240 | if (is_write && !is_user && !strcasecmp ("interrupt", sr_name)) | |
2241 | sr_name = "intset"; | |
2242 | new_opname = (char *) xmalloc (strlen (sr_name) + 6); | |
2243 | sprintf (new_opname, "%s%s.%s", (has_underbar ? "_" : ""), | |
2244 | *popname, sr_name); | |
2245 | free (*popname); | |
2246 | *popname = new_opname; | |
2247 | ||
2248 | return 0; | |
2249 | } | |
2250 | ||
2251 | ||
2252 | static int | |
7fa3d080 | 2253 | xtensa_translate_old_userreg_ops (char **popname) |
43cd72b9 BW |
2254 | { |
2255 | xtensa_isa isa = xtensa_default_isa; | |
2256 | xtensa_sysreg sr; | |
2257 | char *opname, *new_opname; | |
2258 | const char *sr_name; | |
2259 | bfd_boolean has_underbar = FALSE; | |
2260 | ||
2261 | opname = *popname; | |
2262 | if (opname[0] == '_') | |
2263 | { | |
2264 | has_underbar = TRUE; | |
2265 | opname += 1; | |
2266 | } | |
2267 | ||
2268 | sr = xtensa_sysreg_lookup_name (isa, opname + 1); | |
2269 | if (sr != XTENSA_UNDEFINED) | |
2270 | { | |
2271 | /* The new default name ("nnn") is different from the old default | |
2272 | name ("URnnn"). The old default is handled below, and we don't | |
2273 | want to recognize [RW]nnn, so do nothing if the name is the (new) | |
2274 | default. */ | |
2275 | static char namebuf[10]; | |
2276 | sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr)); | |
2277 | if (strcmp (namebuf, opname + 1) == 0) | |
2278 | return 0; | |
2279 | } | |
2280 | else | |
2281 | { | |
2282 | offsetT val; | |
2283 | char *end; | |
2284 | ||
2285 | /* Only continue if the reg name is "URnnn". */ | |
2286 | if (opname[1] != 'u' || opname[2] != 'r') | |
2287 | return 0; | |
2288 | val = strtoul (opname + 3, &end, 10); | |
2289 | if (*end != '\0') | |
2290 | return 0; | |
2291 | ||
2292 | sr = xtensa_sysreg_lookup (isa, val, 1); | |
2293 | if (sr == XTENSA_UNDEFINED) | |
2294 | { | |
2295 | as_bad (_("invalid register number (%ld) for '%s'"), | |
dd49a749 | 2296 | (long) val, opname); |
43cd72b9 BW |
2297 | return -1; |
2298 | } | |
2299 | } | |
2300 | ||
2301 | /* Translate the opcode. */ | |
2302 | sr_name = xtensa_sysreg_name (isa, sr); | |
2303 | new_opname = (char *) xmalloc (strlen (sr_name) + 6); | |
2304 | sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""), | |
2305 | opname[0], sr_name); | |
2306 | free (*popname); | |
2307 | *popname = new_opname; | |
2308 | ||
2309 | return 0; | |
2310 | } | |
2311 | ||
2312 | ||
2313 | static int | |
7fa3d080 BW |
2314 | xtensa_translate_zero_immed (char *old_op, |
2315 | char *new_op, | |
2316 | char **popname, | |
2317 | int *pnum_args, | |
2318 | char **arg_strings) | |
43cd72b9 BW |
2319 | { |
2320 | char *opname; | |
2321 | offsetT val; | |
2322 | ||
2323 | opname = *popname; | |
2324 | assert (opname[0] != '_'); | |
2325 | ||
2326 | if (strcmp (opname, old_op) != 0) | |
2327 | return 0; | |
e0001a05 | 2328 | |
43cd72b9 BW |
2329 | if (xg_check_num_args (pnum_args, 3, opname, arg_strings)) |
2330 | return -1; | |
2331 | if (xg_arg_is_constant (arg_strings[1], &val) && val == 0) | |
2332 | { | |
2333 | xg_replace_opname (popname, new_op); | |
2334 | free (arg_strings[1]); | |
2335 | arg_strings[1] = arg_strings[2]; | |
2336 | arg_strings[2] = 0; | |
2337 | *pnum_args = 2; | |
e0001a05 NC |
2338 | } |
2339 | ||
2340 | return 0; | |
2341 | } | |
2342 | ||
2343 | ||
2344 | /* If the instruction is an idiom (i.e., a built-in macro), translate it. | |
2345 | Returns non-zero if an error was found. */ | |
2346 | ||
2347 | static int | |
7fa3d080 | 2348 | xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings) |
e0001a05 NC |
2349 | { |
2350 | char *opname = *popname; | |
2351 | bfd_boolean has_underbar = FALSE; | |
2352 | ||
43cd72b9 BW |
2353 | if (cur_vinsn.inside_bundle) |
2354 | return 0; | |
2355 | ||
e0001a05 NC |
2356 | if (*opname == '_') |
2357 | { | |
2358 | has_underbar = TRUE; | |
2359 | opname += 1; | |
2360 | } | |
2361 | ||
2362 | if (strcmp (opname, "mov") == 0) | |
2363 | { | |
43cd72b9 | 2364 | if (use_transform () && !has_underbar && density_supported) |
e0001a05 NC |
2365 | xg_replace_opname (popname, "mov.n"); |
2366 | else | |
2367 | { | |
2368 | if (xg_check_num_args (pnum_args, 2, opname, arg_strings)) | |
2369 | return -1; | |
2370 | xg_replace_opname (popname, (has_underbar ? "_or" : "or")); | |
2371 | arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1); | |
2372 | strcpy (arg_strings[2], arg_strings[1]); | |
2373 | *pnum_args = 3; | |
2374 | } | |
2375 | return 0; | |
2376 | } | |
2377 | ||
2378 | if (strcmp (opname, "bbsi.l") == 0) | |
2379 | { | |
2380 | if (xg_check_num_args (pnum_args, 3, opname, arg_strings)) | |
2381 | return -1; | |
2382 | xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi")); | |
2383 | if (target_big_endian) | |
2384 | xg_reverse_shift_count (&arg_strings[1]); | |
2385 | return 0; | |
2386 | } | |
2387 | ||
2388 | if (strcmp (opname, "bbci.l") == 0) | |
2389 | { | |
2390 | if (xg_check_num_args (pnum_args, 3, opname, arg_strings)) | |
2391 | return -1; | |
2392 | xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci")); | |
2393 | if (target_big_endian) | |
2394 | xg_reverse_shift_count (&arg_strings[1]); | |
2395 | return 0; | |
2396 | } | |
2397 | ||
43cd72b9 BW |
2398 | if (xtensa_nop_opcode == XTENSA_UNDEFINED |
2399 | && strcmp (opname, "nop") == 0) | |
e0001a05 | 2400 | { |
43cd72b9 | 2401 | if (use_transform () && !has_underbar && density_supported) |
e0001a05 NC |
2402 | xg_replace_opname (popname, "nop.n"); |
2403 | else | |
2404 | { | |
2405 | if (xg_check_num_args (pnum_args, 0, opname, arg_strings)) | |
2406 | return -1; | |
2407 | xg_replace_opname (popname, (has_underbar ? "_or" : "or")); | |
2408 | arg_strings[0] = (char *) xmalloc (3); | |
2409 | arg_strings[1] = (char *) xmalloc (3); | |
2410 | arg_strings[2] = (char *) xmalloc (3); | |
2411 | strcpy (arg_strings[0], "a1"); | |
2412 | strcpy (arg_strings[1], "a1"); | |
2413 | strcpy (arg_strings[2], "a1"); | |
2414 | *pnum_args = 3; | |
2415 | } | |
2416 | return 0; | |
2417 | } | |
2418 | ||
43cd72b9 BW |
2419 | /* Recognize [RW]UR and [RWX]SR. */ |
2420 | if ((((opname[0] == 'r' || opname[0] == 'w') | |
2421 | && (opname[1] == 'u' || opname[1] == 's')) | |
2422 | || (opname[0] == 'x' && opname[1] == 's')) | |
2423 | && opname[2] == 'r' | |
2424 | && opname[3] == '\0') | |
e0001a05 NC |
2425 | return xg_translate_sysreg_op (popname, pnum_args, arg_strings); |
2426 | ||
43cd72b9 BW |
2427 | /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and |
2428 | [RW]<name> if <name> is the non-default name of a user register. */ | |
2429 | if ((opname[0] == 'r' || opname[0] == 'w') | |
2430 | && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED) | |
2431 | return xtensa_translate_old_userreg_ops (popname); | |
e0001a05 | 2432 | |
43cd72b9 BW |
2433 | /* Relax branches that don't allow comparisons against an immediate value |
2434 | of zero to the corresponding branches with implicit zero immediates. */ | |
2435 | if (!has_underbar && use_transform ()) | |
2436 | { | |
2437 | if (xtensa_translate_zero_immed ("bnei", "bnez", popname, | |
2438 | pnum_args, arg_strings)) | |
2439 | return -1; | |
e0001a05 | 2440 | |
43cd72b9 BW |
2441 | if (xtensa_translate_zero_immed ("beqi", "beqz", popname, |
2442 | pnum_args, arg_strings)) | |
2443 | return -1; | |
e0001a05 | 2444 | |
43cd72b9 BW |
2445 | if (xtensa_translate_zero_immed ("bgei", "bgez", popname, |
2446 | pnum_args, arg_strings)) | |
2447 | return -1; | |
e0001a05 | 2448 | |
43cd72b9 BW |
2449 | if (xtensa_translate_zero_immed ("blti", "bltz", popname, |
2450 | pnum_args, arg_strings)) | |
2451 | return -1; | |
2452 | } | |
e0001a05 | 2453 | |
43cd72b9 BW |
2454 | return 0; |
2455 | } | |
e0001a05 | 2456 | |
43cd72b9 BW |
2457 | \f |
2458 | /* Functions for dealing with the Xtensa ISA. */ | |
e0001a05 | 2459 | |
43cd72b9 BW |
2460 | /* Currently the assembler only allows us to use a single target per |
2461 | fragment. Because of this, only one operand for a given | |
2462 | instruction may be symbolic. If there is a PC-relative operand, | |
2463 | the last one is chosen. Otherwise, the result is the number of the | |
2464 | last immediate operand, and if there are none of those, we fail and | |
2465 | return -1. */ | |
e0001a05 | 2466 | |
7fa3d080 BW |
2467 | static int |
2468 | get_relaxable_immed (xtensa_opcode opcode) | |
43cd72b9 BW |
2469 | { |
2470 | int last_immed = -1; | |
2471 | int noperands, opi; | |
e0001a05 | 2472 | |
43cd72b9 BW |
2473 | if (opcode == XTENSA_UNDEFINED) |
2474 | return -1; | |
e0001a05 | 2475 | |
43cd72b9 BW |
2476 | noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode); |
2477 | for (opi = noperands - 1; opi >= 0; opi--) | |
2478 | { | |
2479 | if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0) | |
2480 | continue; | |
2481 | if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1) | |
2482 | return opi; | |
2483 | if (last_immed == -1 | |
2484 | && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0) | |
2485 | last_immed = opi; | |
e0001a05 | 2486 | } |
43cd72b9 | 2487 | return last_immed; |
e0001a05 NC |
2488 | } |
2489 | ||
e0001a05 | 2490 | |
43cd72b9 | 2491 | static xtensa_opcode |
7fa3d080 | 2492 | get_opcode_from_buf (const char *buf, int slot) |
e0001a05 | 2493 | { |
43cd72b9 BW |
2494 | static xtensa_insnbuf insnbuf = NULL; |
2495 | static xtensa_insnbuf slotbuf = NULL; | |
2496 | xtensa_isa isa = xtensa_default_isa; | |
2497 | xtensa_format fmt; | |
2498 | ||
2499 | if (!insnbuf) | |
e0001a05 | 2500 | { |
43cd72b9 BW |
2501 | insnbuf = xtensa_insnbuf_alloc (isa); |
2502 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 2503 | } |
e0001a05 | 2504 | |
d77b99c9 | 2505 | xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0); |
43cd72b9 BW |
2506 | fmt = xtensa_format_decode (isa, insnbuf); |
2507 | if (fmt == XTENSA_UNDEFINED) | |
2508 | return XTENSA_UNDEFINED; | |
e0001a05 | 2509 | |
43cd72b9 BW |
2510 | if (slot >= xtensa_format_num_slots (isa, fmt)) |
2511 | return XTENSA_UNDEFINED; | |
e0001a05 | 2512 | |
43cd72b9 BW |
2513 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); |
2514 | return xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
e0001a05 NC |
2515 | } |
2516 | ||
2517 | ||
43cd72b9 | 2518 | #ifdef TENSILICA_DEBUG |
e0001a05 | 2519 | |
43cd72b9 | 2520 | /* For debugging, print out the mapping of opcode numbers to opcodes. */ |
e0001a05 | 2521 | |
7fa3d080 BW |
2522 | static void |
2523 | xtensa_print_insn_table (void) | |
43cd72b9 BW |
2524 | { |
2525 | int num_opcodes, num_operands; | |
2526 | xtensa_opcode opcode; | |
2527 | xtensa_isa isa = xtensa_default_isa; | |
e0001a05 | 2528 | |
43cd72b9 BW |
2529 | num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa); |
2530 | for (opcode = 0; opcode < num_opcodes; opcode++) | |
e0001a05 | 2531 | { |
43cd72b9 BW |
2532 | int opn; |
2533 | fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode)); | |
2534 | num_operands = xtensa_opcode_num_operands (isa, opcode); | |
2535 | for (opn = 0; opn < num_operands; opn++) | |
2536 | { | |
2537 | if (xtensa_operand_is_visible (isa, opcode, opn) == 0) | |
2538 | continue; | |
2539 | if (xtensa_operand_is_register (isa, opcode, opn) == 1) | |
2540 | { | |
2541 | xtensa_regfile opnd_rf = | |
2542 | xtensa_operand_regfile (isa, opcode, opn); | |
2543 | fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf)); | |
2544 | } | |
2545 | else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1) | |
2546 | fputs ("[lLr] ", stderr); | |
2547 | else | |
2548 | fputs ("i ", stderr); | |
2549 | } | |
2550 | fprintf (stderr, "\n"); | |
e0001a05 | 2551 | } |
e0001a05 NC |
2552 | } |
2553 | ||
2554 | ||
43cd72b9 | 2555 | static void |
7fa3d080 | 2556 | print_vliw_insn (xtensa_insnbuf vbuf) |
e0001a05 | 2557 | { |
e0001a05 | 2558 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
2559 | xtensa_format f = xtensa_format_decode (isa, vbuf); |
2560 | xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa); | |
2561 | int op; | |
e0001a05 | 2562 | |
43cd72b9 | 2563 | fprintf (stderr, "format = %d\n", f); |
e0001a05 | 2564 | |
43cd72b9 BW |
2565 | for (op = 0; op < xtensa_format_num_slots (isa, f); op++) |
2566 | { | |
2567 | xtensa_opcode opcode; | |
2568 | const char *opname; | |
2569 | int operands; | |
2570 | ||
2571 | xtensa_format_get_slot (isa, f, op, vbuf, sbuf); | |
2572 | opcode = xtensa_opcode_decode (isa, f, op, sbuf); | |
2573 | opname = xtensa_opcode_name (isa, opcode); | |
2574 | ||
2575 | fprintf (stderr, "op in slot %i is %s;\n", op, opname); | |
2576 | fprintf (stderr, " operands = "); | |
2577 | for (operands = 0; | |
2578 | operands < xtensa_opcode_num_operands (isa, opcode); | |
2579 | operands++) | |
2580 | { | |
2581 | unsigned int val; | |
2582 | if (xtensa_operand_is_visible (isa, opcode, operands) == 0) | |
2583 | continue; | |
2584 | xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val); | |
2585 | xtensa_operand_decode (isa, opcode, operands, &val); | |
2586 | fprintf (stderr, "%d ", val); | |
2587 | } | |
2588 | fprintf (stderr, "\n"); | |
2589 | } | |
2590 | xtensa_insnbuf_free (isa, sbuf); | |
e0001a05 NC |
2591 | } |
2592 | ||
43cd72b9 BW |
2593 | #endif /* TENSILICA_DEBUG */ |
2594 | ||
e0001a05 NC |
2595 | |
2596 | static bfd_boolean | |
7fa3d080 | 2597 | is_direct_call_opcode (xtensa_opcode opcode) |
e0001a05 | 2598 | { |
43cd72b9 BW |
2599 | xtensa_isa isa = xtensa_default_isa; |
2600 | int n, num_operands; | |
e0001a05 | 2601 | |
43cd72b9 | 2602 | if (xtensa_opcode_is_call (isa, opcode) == 0) |
e0001a05 NC |
2603 | return FALSE; |
2604 | ||
43cd72b9 BW |
2605 | num_operands = xtensa_opcode_num_operands (isa, opcode); |
2606 | for (n = 0; n < num_operands; n++) | |
2607 | { | |
2608 | if (xtensa_operand_is_register (isa, opcode, n) == 0 | |
2609 | && xtensa_operand_is_PCrelative (isa, opcode, n) == 1) | |
2610 | return TRUE; | |
2611 | } | |
2612 | return FALSE; | |
e0001a05 NC |
2613 | } |
2614 | ||
2615 | ||
43cd72b9 BW |
2616 | /* Convert from BFD relocation type code to slot and operand number. |
2617 | Returns non-zero on failure. */ | |
e0001a05 | 2618 | |
43cd72b9 | 2619 | static int |
7fa3d080 | 2620 | decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt) |
e0001a05 | 2621 | { |
43cd72b9 BW |
2622 | if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP |
2623 | && reloc <= BFD_RELOC_XTENSA_SLOT14_OP) | |
e0001a05 | 2624 | { |
43cd72b9 BW |
2625 | *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP; |
2626 | *is_alt = FALSE; | |
e0001a05 | 2627 | } |
43cd72b9 BW |
2628 | else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT |
2629 | && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT) | |
e0001a05 | 2630 | { |
43cd72b9 BW |
2631 | *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT; |
2632 | *is_alt = TRUE; | |
e0001a05 | 2633 | } |
43cd72b9 BW |
2634 | else |
2635 | return -1; | |
2636 | ||
2637 | return 0; | |
e0001a05 NC |
2638 | } |
2639 | ||
2640 | ||
43cd72b9 BW |
2641 | /* Convert from slot number to BFD relocation type code for the |
2642 | standard PC-relative relocations. Return BFD_RELOC_NONE on | |
2643 | failure. */ | |
e0001a05 | 2644 | |
43cd72b9 | 2645 | static bfd_reloc_code_real_type |
7fa3d080 | 2646 | encode_reloc (int slot) |
e0001a05 | 2647 | { |
43cd72b9 BW |
2648 | if (slot < 0 || slot > 14) |
2649 | return BFD_RELOC_NONE; | |
2650 | ||
2651 | return BFD_RELOC_XTENSA_SLOT0_OP + slot; | |
e0001a05 NC |
2652 | } |
2653 | ||
2654 | ||
43cd72b9 BW |
2655 | /* Convert from slot numbers to BFD relocation type code for the |
2656 | "alternate" relocations. Return BFD_RELOC_NONE on failure. */ | |
e0001a05 | 2657 | |
43cd72b9 | 2658 | static bfd_reloc_code_real_type |
7fa3d080 | 2659 | encode_alt_reloc (int slot) |
e0001a05 | 2660 | { |
43cd72b9 BW |
2661 | if (slot < 0 || slot > 14) |
2662 | return BFD_RELOC_NONE; | |
2663 | ||
2664 | return BFD_RELOC_XTENSA_SLOT0_ALT + slot; | |
e0001a05 NC |
2665 | } |
2666 | ||
2667 | ||
2668 | static void | |
7fa3d080 BW |
2669 | xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf, |
2670 | xtensa_format fmt, | |
2671 | int slot, | |
2672 | xtensa_opcode opcode, | |
2673 | int operand, | |
2674 | uint32 value, | |
2675 | const char *file, | |
2676 | unsigned int line) | |
e0001a05 | 2677 | { |
e0001a05 NC |
2678 | uint32 valbuf = value; |
2679 | ||
43cd72b9 | 2680 | if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf)) |
e0001a05 | 2681 | { |
43cd72b9 BW |
2682 | if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand) |
2683 | == 1) | |
2684 | as_bad_where ((char *) file, line, | |
d7c531cd BW |
2685 | _("operand %d of '%s' has out of range value '%u'"), |
2686 | operand + 1, | |
2687 | xtensa_opcode_name (xtensa_default_isa, opcode), | |
2688 | value); | |
43cd72b9 BW |
2689 | else |
2690 | as_bad_where ((char *) file, line, | |
d7c531cd BW |
2691 | _("operand %d of '%s' has invalid value '%u'"), |
2692 | operand + 1, | |
2693 | xtensa_opcode_name (xtensa_default_isa, opcode), | |
2694 | value); | |
43cd72b9 | 2695 | return; |
e0001a05 NC |
2696 | } |
2697 | ||
43cd72b9 BW |
2698 | xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot, |
2699 | slotbuf, valbuf); | |
e0001a05 NC |
2700 | } |
2701 | ||
2702 | ||
2703 | static uint32 | |
7fa3d080 BW |
2704 | xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf, |
2705 | xtensa_format fmt, | |
2706 | int slot, | |
2707 | xtensa_opcode opcode, | |
2708 | int opnum) | |
e0001a05 | 2709 | { |
43cd72b9 BW |
2710 | uint32 val = 0; |
2711 | (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum, | |
2712 | fmt, slot, slotbuf, &val); | |
2713 | (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val); | |
2714 | return val; | |
e0001a05 NC |
2715 | } |
2716 | ||
e0001a05 | 2717 | \f |
7fa3d080 | 2718 | /* Checks for rules from xtensa-relax tables. */ |
e0001a05 | 2719 | |
7fa3d080 BW |
2720 | /* The routine xg_instruction_matches_option_term must return TRUE |
2721 | when a given option term is true. The meaning of all of the option | |
2722 | terms is given interpretation by this function. This is needed when | |
2723 | an option depends on the state of a directive, but there are no such | |
2724 | options in use right now. */ | |
e0001a05 | 2725 | |
7fa3d080 BW |
2726 | static bfd_boolean |
2727 | xg_instruction_matches_option_term (TInsn *insn ATTRIBUTE_UNUSED, | |
2728 | const ReqOrOption *option) | |
e0001a05 | 2729 | { |
7fa3d080 BW |
2730 | if (strcmp (option->option_name, "realnop") == 0 |
2731 | || strncmp (option->option_name, "IsaUse", 6) == 0) | |
2732 | { | |
2733 | /* These conditions were evaluated statically when building the | |
2734 | relaxation table. There's no need to reevaluate them now. */ | |
2735 | return TRUE; | |
2736 | } | |
2737 | else | |
2738 | { | |
2739 | as_fatal (_("internal error: unknown option name '%s'"), | |
2740 | option->option_name); | |
2741 | } | |
e0001a05 NC |
2742 | } |
2743 | ||
2744 | ||
7fa3d080 BW |
2745 | static bfd_boolean |
2746 | xg_instruction_matches_or_options (TInsn *insn, | |
2747 | const ReqOrOptionList *or_option) | |
e0001a05 | 2748 | { |
7fa3d080 BW |
2749 | const ReqOrOption *option; |
2750 | /* Must match each of the AND terms. */ | |
2751 | for (option = or_option; option != NULL; option = option->next) | |
e0001a05 | 2752 | { |
7fa3d080 BW |
2753 | if (xg_instruction_matches_option_term (insn, option)) |
2754 | return TRUE; | |
e0001a05 | 2755 | } |
7fa3d080 | 2756 | return FALSE; |
e0001a05 NC |
2757 | } |
2758 | ||
2759 | ||
7fa3d080 BW |
2760 | static bfd_boolean |
2761 | xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options) | |
e0001a05 | 2762 | { |
7fa3d080 BW |
2763 | const ReqOption *req_options; |
2764 | /* Must match each of the AND terms. */ | |
2765 | for (req_options = options; | |
2766 | req_options != NULL; | |
2767 | req_options = req_options->next) | |
e0001a05 | 2768 | { |
7fa3d080 BW |
2769 | /* Must match one of the OR clauses. */ |
2770 | if (!xg_instruction_matches_or_options (insn, | |
2771 | req_options->or_option_terms)) | |
2772 | return FALSE; | |
e0001a05 | 2773 | } |
7fa3d080 | 2774 | return TRUE; |
e0001a05 NC |
2775 | } |
2776 | ||
2777 | ||
7fa3d080 | 2778 | /* Return the transition rule that matches or NULL if none matches. */ |
e0001a05 | 2779 | |
7fa3d080 BW |
2780 | static bfd_boolean |
2781 | xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule) | |
e0001a05 | 2782 | { |
7fa3d080 | 2783 | PreconditionList *condition_l; |
e0001a05 | 2784 | |
7fa3d080 BW |
2785 | if (rule->opcode != insn->opcode) |
2786 | return FALSE; | |
e0001a05 | 2787 | |
7fa3d080 BW |
2788 | for (condition_l = rule->conditions; |
2789 | condition_l != NULL; | |
2790 | condition_l = condition_l->next) | |
e0001a05 | 2791 | { |
7fa3d080 BW |
2792 | expressionS *exp1; |
2793 | expressionS *exp2; | |
2794 | Precondition *cond = condition_l->precond; | |
e0001a05 | 2795 | |
7fa3d080 | 2796 | switch (cond->typ) |
e0001a05 | 2797 | { |
7fa3d080 BW |
2798 | case OP_CONSTANT: |
2799 | /* The expression must be the constant. */ | |
2800 | assert (cond->op_num < insn->ntok); | |
2801 | exp1 = &insn->tok[cond->op_num]; | |
2802 | if (expr_is_const (exp1)) | |
2803 | { | |
2804 | switch (cond->cmp) | |
2805 | { | |
2806 | case OP_EQUAL: | |
2807 | if (get_expr_const (exp1) != cond->op_data) | |
2808 | return FALSE; | |
2809 | break; | |
2810 | case OP_NOTEQUAL: | |
2811 | if (get_expr_const (exp1) == cond->op_data) | |
2812 | return FALSE; | |
2813 | break; | |
2814 | default: | |
2815 | return FALSE; | |
2816 | } | |
2817 | } | |
2818 | else if (expr_is_register (exp1)) | |
2819 | { | |
2820 | switch (cond->cmp) | |
2821 | { | |
2822 | case OP_EQUAL: | |
2823 | if (get_expr_register (exp1) != cond->op_data) | |
2824 | return FALSE; | |
2825 | break; | |
2826 | case OP_NOTEQUAL: | |
2827 | if (get_expr_register (exp1) == cond->op_data) | |
2828 | return FALSE; | |
2829 | break; | |
2830 | default: | |
2831 | return FALSE; | |
2832 | } | |
2833 | } | |
2834 | else | |
2835 | return FALSE; | |
2836 | break; | |
2837 | ||
2838 | case OP_OPERAND: | |
2839 | assert (cond->op_num < insn->ntok); | |
2840 | assert (cond->op_data < insn->ntok); | |
2841 | exp1 = &insn->tok[cond->op_num]; | |
2842 | exp2 = &insn->tok[cond->op_data]; | |
2843 | ||
2844 | switch (cond->cmp) | |
2845 | { | |
2846 | case OP_EQUAL: | |
2847 | if (!expr_is_equal (exp1, exp2)) | |
2848 | return FALSE; | |
2849 | break; | |
2850 | case OP_NOTEQUAL: | |
2851 | if (expr_is_equal (exp1, exp2)) | |
2852 | return FALSE; | |
2853 | break; | |
2854 | } | |
2855 | break; | |
2856 | ||
2857 | case OP_LITERAL: | |
2858 | case OP_LABEL: | |
2859 | default: | |
2860 | return FALSE; | |
2861 | } | |
2862 | } | |
2863 | if (!xg_instruction_matches_options (insn, rule->options)) | |
2864 | return FALSE; | |
2865 | ||
2866 | return TRUE; | |
2867 | } | |
2868 | ||
2869 | ||
2870 | static int | |
2871 | transition_rule_cmp (const TransitionRule *a, const TransitionRule *b) | |
2872 | { | |
2873 | bfd_boolean a_greater = FALSE; | |
2874 | bfd_boolean b_greater = FALSE; | |
2875 | ||
2876 | ReqOptionList *l_a = a->options; | |
2877 | ReqOptionList *l_b = b->options; | |
2878 | ||
2879 | /* We only care if they both are the same except for | |
2880 | a const16 vs. an l32r. */ | |
2881 | ||
2882 | while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL))) | |
2883 | { | |
2884 | ReqOrOptionList *l_or_a = l_a->or_option_terms; | |
2885 | ReqOrOptionList *l_or_b = l_b->or_option_terms; | |
2886 | while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL))) | |
2887 | { | |
2888 | if (l_or_a->is_true != l_or_b->is_true) | |
2889 | return 0; | |
2890 | if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0) | |
2891 | { | |
2892 | /* This is the case we care about. */ | |
2893 | if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0 | |
2894 | && strcmp (l_or_b->option_name, "IsaUseL32R") == 0) | |
2895 | { | |
2896 | if (prefer_const16) | |
2897 | a_greater = TRUE; | |
2898 | else | |
2899 | b_greater = TRUE; | |
2900 | } | |
2901 | else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0 | |
2902 | && strcmp (l_or_b->option_name, "IsaUseConst16") == 0) | |
2903 | { | |
2904 | if (prefer_const16) | |
2905 | b_greater = TRUE; | |
2906 | else | |
2907 | a_greater = TRUE; | |
2908 | } | |
2909 | else | |
2910 | return 0; | |
2911 | } | |
2912 | l_or_a = l_or_a->next; | |
2913 | l_or_b = l_or_b->next; | |
2914 | } | |
2915 | if (l_or_a || l_or_b) | |
2916 | return 0; | |
2917 | ||
2918 | l_a = l_a->next; | |
2919 | l_b = l_b->next; | |
2920 | } | |
2921 | if (l_a || l_b) | |
2922 | return 0; | |
2923 | ||
2924 | /* Incomparable if the substitution was used differently in two cases. */ | |
2925 | if (a_greater && b_greater) | |
2926 | return 0; | |
2927 | ||
2928 | if (b_greater) | |
2929 | return 1; | |
2930 | if (a_greater) | |
2931 | return -1; | |
2932 | ||
2933 | return 0; | |
2934 | } | |
2935 | ||
2936 | ||
2937 | static TransitionRule * | |
2938 | xg_instruction_match (TInsn *insn) | |
2939 | { | |
2940 | TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp); | |
2941 | TransitionList *l; | |
2942 | assert (insn->opcode < table->num_opcodes); | |
2943 | ||
2944 | /* Walk through all of the possible transitions. */ | |
2945 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
2946 | { | |
2947 | TransitionRule *rule = l->rule; | |
2948 | if (xg_instruction_matches_rule (insn, rule)) | |
2949 | return rule; | |
2950 | } | |
2951 | return NULL; | |
2952 | } | |
2953 | ||
2954 | \f | |
2955 | /* Various Other Internal Functions. */ | |
2956 | ||
2957 | static bfd_boolean | |
2958 | is_unique_insn_expansion (TransitionRule *r) | |
2959 | { | |
2960 | if (!r->to_instr || r->to_instr->next != NULL) | |
2961 | return FALSE; | |
2962 | if (r->to_instr->typ != INSTR_INSTR) | |
2963 | return FALSE; | |
2964 | return TRUE; | |
2965 | } | |
2966 | ||
2967 | ||
84b08ed9 BW |
2968 | /* Check if there is exactly one relaxation for INSN that converts it to |
2969 | another instruction of equal or larger size. If so, and if TARG is | |
2970 | non-null, go ahead and generate the relaxed instruction into TARG. If | |
2971 | NARROW_ONLY is true, then only consider relaxations that widen a narrow | |
2972 | instruction, i.e., ignore relaxations that convert to an instruction of | |
2973 | equal size. In some contexts where this function is used, only | |
c138bc38 | 2974 | a single widening is allowed and the NARROW_ONLY argument is used to |
84b08ed9 BW |
2975 | exclude cases like ADDI being "widened" to an ADDMI, which may |
2976 | later be relaxed to an ADDMI/ADDI pair. */ | |
7fa3d080 | 2977 | |
84b08ed9 BW |
2978 | bfd_boolean |
2979 | xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only) | |
7fa3d080 BW |
2980 | { |
2981 | TransitionTable *table = xg_build_widen_table (&transition_rule_cmp); | |
2982 | TransitionList *l; | |
84b08ed9 | 2983 | TransitionRule *match = 0; |
7fa3d080 | 2984 | |
7fa3d080 BW |
2985 | assert (insn->insn_type == ITYPE_INSN); |
2986 | assert (insn->opcode < table->num_opcodes); | |
2987 | ||
2988 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
2989 | { | |
2990 | TransitionRule *rule = l->rule; | |
2991 | ||
2992 | if (xg_instruction_matches_rule (insn, rule) | |
84b08ed9 BW |
2993 | && is_unique_insn_expansion (rule) |
2994 | && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0) | |
2995 | <= xg_get_single_size (rule->to_instr->opcode))) | |
7fa3d080 | 2996 | { |
84b08ed9 BW |
2997 | if (match) |
2998 | return FALSE; | |
2999 | match = rule; | |
7fa3d080 BW |
3000 | } |
3001 | } | |
84b08ed9 BW |
3002 | if (!match) |
3003 | return FALSE; | |
3004 | ||
3005 | if (targ) | |
3006 | xg_build_to_insn (targ, insn, match->to_instr); | |
3007 | return TRUE; | |
7fa3d080 BW |
3008 | } |
3009 | ||
3010 | ||
3011 | /* Return the maximum number of bytes this opcode can expand to. */ | |
3012 | ||
3013 | static int | |
3014 | xg_get_max_insn_widen_size (xtensa_opcode opcode) | |
3015 | { | |
3016 | TransitionTable *table = xg_build_widen_table (&transition_rule_cmp); | |
3017 | TransitionList *l; | |
3018 | int max_size = xg_get_single_size (opcode); | |
3019 | ||
3020 | assert (opcode < table->num_opcodes); | |
3021 | ||
3022 | for (l = table->table[opcode]; l != NULL; l = l->next) | |
3023 | { | |
3024 | TransitionRule *rule = l->rule; | |
3025 | BuildInstr *build_list; | |
3026 | int this_size = 0; | |
3027 | ||
3028 | if (!rule) | |
3029 | continue; | |
3030 | build_list = rule->to_instr; | |
3031 | if (is_unique_insn_expansion (rule)) | |
3032 | { | |
3033 | assert (build_list->typ == INSTR_INSTR); | |
3034 | this_size = xg_get_max_insn_widen_size (build_list->opcode); | |
3035 | } | |
3036 | else | |
3037 | for (; build_list != NULL; build_list = build_list->next) | |
3038 | { | |
3039 | switch (build_list->typ) | |
3040 | { | |
3041 | case INSTR_INSTR: | |
3042 | this_size += xg_get_single_size (build_list->opcode); | |
3043 | break; | |
3044 | case INSTR_LITERAL_DEF: | |
3045 | case INSTR_LABEL_DEF: | |
e0001a05 NC |
3046 | default: |
3047 | break; | |
3048 | } | |
3049 | } | |
3050 | if (this_size > max_size) | |
3051 | max_size = this_size; | |
3052 | } | |
3053 | return max_size; | |
3054 | } | |
3055 | ||
3056 | ||
3057 | /* Return the maximum number of literal bytes this opcode can generate. */ | |
3058 | ||
7fa3d080 BW |
3059 | static int |
3060 | xg_get_max_insn_widen_literal_size (xtensa_opcode opcode) | |
e0001a05 | 3061 | { |
43cd72b9 | 3062 | TransitionTable *table = xg_build_widen_table (&transition_rule_cmp); |
e0001a05 NC |
3063 | TransitionList *l; |
3064 | int max_size = 0; | |
3065 | ||
3066 | assert (opcode < table->num_opcodes); | |
3067 | ||
3068 | for (l = table->table[opcode]; l != NULL; l = l->next) | |
3069 | { | |
3070 | TransitionRule *rule = l->rule; | |
3071 | BuildInstr *build_list; | |
3072 | int this_size = 0; | |
3073 | ||
3074 | if (!rule) | |
3075 | continue; | |
3076 | build_list = rule->to_instr; | |
3077 | if (is_unique_insn_expansion (rule)) | |
3078 | { | |
3079 | assert (build_list->typ == INSTR_INSTR); | |
3080 | this_size = xg_get_max_insn_widen_literal_size (build_list->opcode); | |
3081 | } | |
3082 | else | |
3083 | for (; build_list != NULL; build_list = build_list->next) | |
3084 | { | |
3085 | switch (build_list->typ) | |
3086 | { | |
3087 | case INSTR_LITERAL_DEF: | |
43cd72b9 | 3088 | /* Hard-coded 4-byte literal. */ |
e0001a05 NC |
3089 | this_size += 4; |
3090 | break; | |
3091 | case INSTR_INSTR: | |
3092 | case INSTR_LABEL_DEF: | |
3093 | default: | |
3094 | break; | |
3095 | } | |
3096 | } | |
3097 | if (this_size > max_size) | |
3098 | max_size = this_size; | |
3099 | } | |
3100 | return max_size; | |
3101 | } | |
3102 | ||
3103 | ||
7fa3d080 BW |
3104 | static bfd_boolean |
3105 | xg_is_relaxable_insn (TInsn *insn, int lateral_steps) | |
3106 | { | |
3107 | int steps_taken = 0; | |
3108 | TransitionTable *table = xg_build_widen_table (&transition_rule_cmp); | |
3109 | TransitionList *l; | |
3110 | ||
3111 | assert (insn->insn_type == ITYPE_INSN); | |
3112 | assert (insn->opcode < table->num_opcodes); | |
3113 | ||
3114 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
3115 | { | |
3116 | TransitionRule *rule = l->rule; | |
3117 | ||
3118 | if (xg_instruction_matches_rule (insn, rule)) | |
3119 | { | |
3120 | if (steps_taken == lateral_steps) | |
3121 | return TRUE; | |
3122 | steps_taken++; | |
3123 | } | |
3124 | } | |
3125 | return FALSE; | |
3126 | } | |
3127 | ||
3128 | ||
3129 | static symbolS * | |
3130 | get_special_literal_symbol (void) | |
3131 | { | |
3132 | static symbolS *sym = NULL; | |
3133 | ||
3134 | if (sym == NULL) | |
3135 | sym = symbol_find_or_make ("SPECIAL_LITERAL0\001"); | |
3136 | return sym; | |
3137 | } | |
3138 | ||
3139 | ||
3140 | static symbolS * | |
3141 | get_special_label_symbol (void) | |
3142 | { | |
3143 | static symbolS *sym = NULL; | |
3144 | ||
3145 | if (sym == NULL) | |
3146 | sym = symbol_find_or_make ("SPECIAL_LABEL0\001"); | |
3147 | return sym; | |
3148 | } | |
3149 | ||
3150 | ||
3151 | static bfd_boolean | |
3152 | xg_valid_literal_expression (const expressionS *exp) | |
3153 | { | |
3154 | switch (exp->X_op) | |
3155 | { | |
3156 | case O_constant: | |
3157 | case O_symbol: | |
3158 | case O_big: | |
3159 | case O_uminus: | |
3160 | case O_subtract: | |
3161 | case O_pltrel: | |
3162 | return TRUE; | |
3163 | default: | |
3164 | return FALSE; | |
3165 | } | |
3166 | } | |
3167 | ||
3168 | ||
3169 | /* This will check to see if the value can be converted into the | |
3170 | operand type. It will return TRUE if it does not fit. */ | |
3171 | ||
3172 | static bfd_boolean | |
3173 | xg_check_operand (int32 value, xtensa_opcode opcode, int operand) | |
3174 | { | |
3175 | uint32 valbuf = value; | |
3176 | if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf)) | |
3177 | return TRUE; | |
3178 | return FALSE; | |
3179 | } | |
3180 | ||
3181 | ||
3182 | /* Assumes: All immeds are constants. Check that all constants fit | |
3183 | into their immeds; return FALSE if not. */ | |
3184 | ||
3185 | static bfd_boolean | |
3186 | xg_immeds_fit (const TInsn *insn) | |
3187 | { | |
3188 | xtensa_isa isa = xtensa_default_isa; | |
3189 | int i; | |
3190 | ||
3191 | int n = insn->ntok; | |
3192 | assert (insn->insn_type == ITYPE_INSN); | |
3193 | for (i = 0; i < n; ++i) | |
3194 | { | |
3195 | const expressionS *expr = &insn->tok[i]; | |
3196 | if (xtensa_operand_is_register (isa, insn->opcode, i) == 1) | |
3197 | continue; | |
3198 | ||
3199 | switch (expr->X_op) | |
3200 | { | |
3201 | case O_register: | |
3202 | case O_constant: | |
3203 | if (xg_check_operand (expr->X_add_number, insn->opcode, i)) | |
3204 | return FALSE; | |
3205 | break; | |
3206 | ||
3207 | default: | |
3208 | /* The symbol should have a fixup associated with it. */ | |
3209 | assert (FALSE); | |
3210 | break; | |
3211 | } | |
3212 | } | |
3213 | return TRUE; | |
3214 | } | |
3215 | ||
3216 | ||
3217 | /* This should only be called after we have an initial | |
3218 | estimate of the addresses. */ | |
3219 | ||
3220 | static bfd_boolean | |
3221 | xg_symbolic_immeds_fit (const TInsn *insn, | |
3222 | segT pc_seg, | |
3223 | fragS *pc_frag, | |
3224 | offsetT pc_offset, | |
3225 | long stretch) | |
e0001a05 | 3226 | { |
7fa3d080 BW |
3227 | xtensa_isa isa = xtensa_default_isa; |
3228 | symbolS *symbolP; | |
3229 | fragS *sym_frag; | |
3230 | offsetT target, pc; | |
3231 | uint32 new_offset; | |
3232 | int i; | |
3233 | int n = insn->ntok; | |
e0001a05 NC |
3234 | |
3235 | assert (insn->insn_type == ITYPE_INSN); | |
e0001a05 | 3236 | |
7fa3d080 | 3237 | for (i = 0; i < n; ++i) |
e0001a05 | 3238 | { |
7fa3d080 BW |
3239 | const expressionS *expr = &insn->tok[i]; |
3240 | if (xtensa_operand_is_register (isa, insn->opcode, i) == 1) | |
3241 | continue; | |
e0001a05 | 3242 | |
7fa3d080 | 3243 | switch (expr->X_op) |
e0001a05 | 3244 | { |
7fa3d080 BW |
3245 | case O_register: |
3246 | case O_constant: | |
3247 | if (xg_check_operand (expr->X_add_number, insn->opcode, i)) | |
3248 | return FALSE; | |
3249 | break; | |
e0001a05 | 3250 | |
7fa3d080 BW |
3251 | case O_lo16: |
3252 | case O_hi16: | |
3253 | /* Check for the worst case. */ | |
3254 | if (xg_check_operand (0xffff, insn->opcode, i)) | |
3255 | return FALSE; | |
3256 | break; | |
e0001a05 | 3257 | |
7fa3d080 | 3258 | case O_symbol: |
7c834684 | 3259 | /* We only allow symbols for PC-relative references. |
7fa3d080 | 3260 | If pc_frag == 0, then we don't have frag locations yet. */ |
7c834684 BW |
3261 | if (pc_frag == 0 |
3262 | || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0) | |
7fa3d080 | 3263 | return FALSE; |
e0001a05 | 3264 | |
7c834684 BW |
3265 | /* If it is a weak symbol, then assume it won't reach. */ |
3266 | if (S_IS_WEAK (expr->X_add_symbol)) | |
7fa3d080 | 3267 | return FALSE; |
e0001a05 | 3268 | |
7c834684 BW |
3269 | if (is_direct_call_opcode (insn->opcode) |
3270 | && ! pc_frag->tc_frag_data.use_longcalls) | |
3271 | { | |
3272 | /* If callee is undefined or in a different segment, be | |
3273 | optimistic and assume it will be in range. */ | |
3274 | if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg) | |
3275 | return TRUE; | |
3276 | } | |
3277 | ||
3278 | /* Only references within a segment can be known to fit in the | |
3279 | operands at assembly time. */ | |
3280 | if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg) | |
7fa3d080 | 3281 | return FALSE; |
e0001a05 | 3282 | |
7fa3d080 BW |
3283 | symbolP = expr->X_add_symbol; |
3284 | sym_frag = symbol_get_frag (symbolP); | |
3285 | target = S_GET_VALUE (symbolP) + expr->X_add_number; | |
3286 | pc = pc_frag->fr_address + pc_offset; | |
e0001a05 | 3287 | |
7fa3d080 BW |
3288 | /* If frag has yet to be reached on this pass, assume it |
3289 | will move by STRETCH just as we did. If this is not so, | |
3290 | it will be because some frag between grows, and that will | |
3291 | force another pass. Beware zero-length frags. There | |
3292 | should be a faster way to do this. */ | |
3293 | ||
3294 | if (stretch != 0 | |
3295 | && sym_frag->relax_marker != pc_frag->relax_marker | |
3296 | && S_GET_SEGMENT (symbolP) == pc_seg) | |
3297 | { | |
3298 | target += stretch; | |
3299 | } | |
c138bc38 | 3300 | |
7fa3d080 BW |
3301 | new_offset = target; |
3302 | xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc); | |
3303 | if (xg_check_operand (new_offset, insn->opcode, i)) | |
3304 | return FALSE; | |
3305 | break; | |
3306 | ||
3307 | default: | |
3308 | /* The symbol should have a fixup associated with it. */ | |
3309 | return FALSE; | |
3310 | } | |
3311 | } | |
3312 | ||
3313 | return TRUE; | |
e0001a05 NC |
3314 | } |
3315 | ||
3316 | ||
43cd72b9 | 3317 | /* Return TRUE on success. */ |
e0001a05 | 3318 | |
7fa3d080 BW |
3319 | static bfd_boolean |
3320 | xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi) | |
e0001a05 NC |
3321 | { |
3322 | BuildOp *op; | |
3323 | symbolS *sym; | |
3324 | ||
3325 | memset (targ, 0, sizeof (TInsn)); | |
7c430684 | 3326 | targ->linenum = insn->linenum; |
e0001a05 NC |
3327 | switch (bi->typ) |
3328 | { | |
3329 | case INSTR_INSTR: | |
3330 | op = bi->ops; | |
3331 | targ->opcode = bi->opcode; | |
3332 | targ->insn_type = ITYPE_INSN; | |
3333 | targ->is_specific_opcode = FALSE; | |
3334 | ||
3335 | for (; op != NULL; op = op->next) | |
3336 | { | |
3337 | int op_num = op->op_num; | |
3338 | int op_data = op->op_data; | |
3339 | ||
3340 | assert (op->op_num < MAX_INSN_ARGS); | |
3341 | ||
3342 | if (targ->ntok <= op_num) | |
3343 | targ->ntok = op_num + 1; | |
3344 | ||
3345 | switch (op->typ) | |
3346 | { | |
3347 | case OP_CONSTANT: | |
3348 | set_expr_const (&targ->tok[op_num], op_data); | |
3349 | break; | |
3350 | case OP_OPERAND: | |
3351 | assert (op_data < insn->ntok); | |
3352 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); | |
3353 | break; | |
3354 | case OP_LITERAL: | |
3355 | sym = get_special_literal_symbol (); | |
3356 | set_expr_symbol_offset (&targ->tok[op_num], sym, 0); | |
3357 | break; | |
3358 | case OP_LABEL: | |
3359 | sym = get_special_label_symbol (); | |
3360 | set_expr_symbol_offset (&targ->tok[op_num], sym, 0); | |
3361 | break; | |
43cd72b9 BW |
3362 | case OP_OPERAND_HI16U: |
3363 | case OP_OPERAND_LOW16U: | |
3364 | assert (op_data < insn->ntok); | |
3365 | if (expr_is_const (&insn->tok[op_data])) | |
3366 | { | |
3367 | long val; | |
3368 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); | |
3369 | val = xg_apply_userdef_op_fn (op->typ, | |
3370 | targ->tok[op_num]. | |
3371 | X_add_number); | |
3372 | targ->tok[op_num].X_add_number = val; | |
3373 | } | |
3374 | else | |
3375 | { | |
3376 | /* For const16 we can create relocations for these. */ | |
3377 | if (targ->opcode == XTENSA_UNDEFINED | |
3378 | || (targ->opcode != xtensa_const16_opcode)) | |
3379 | return FALSE; | |
3380 | assert (op_data < insn->ntok); | |
3381 | /* Need to build a O_lo16 or O_hi16. */ | |
3382 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); | |
3383 | if (targ->tok[op_num].X_op == O_symbol) | |
3384 | { | |
3385 | if (op->typ == OP_OPERAND_HI16U) | |
3386 | targ->tok[op_num].X_op = O_hi16; | |
3387 | else if (op->typ == OP_OPERAND_LOW16U) | |
3388 | targ->tok[op_num].X_op = O_lo16; | |
3389 | else | |
3390 | return FALSE; | |
3391 | } | |
3392 | } | |
3393 | break; | |
e0001a05 NC |
3394 | default: |
3395 | /* currently handles: | |
3396 | OP_OPERAND_LOW8 | |
3397 | OP_OPERAND_HI24S | |
3398 | OP_OPERAND_F32MINUS */ | |
3399 | if (xg_has_userdef_op_fn (op->typ)) | |
3400 | { | |
3401 | assert (op_data < insn->ntok); | |
3402 | if (expr_is_const (&insn->tok[op_data])) | |
3403 | { | |
3404 | long val; | |
3405 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); | |
3406 | val = xg_apply_userdef_op_fn (op->typ, | |
3407 | targ->tok[op_num]. | |
3408 | X_add_number); | |
3409 | targ->tok[op_num].X_add_number = val; | |
3410 | } | |
3411 | else | |
3412 | return FALSE; /* We cannot use a relocation for this. */ | |
3413 | break; | |
3414 | } | |
3415 | assert (0); | |
3416 | break; | |
3417 | } | |
3418 | } | |
3419 | break; | |
3420 | ||
3421 | case INSTR_LITERAL_DEF: | |
3422 | op = bi->ops; | |
3423 | targ->opcode = XTENSA_UNDEFINED; | |
3424 | targ->insn_type = ITYPE_LITERAL; | |
3425 | targ->is_specific_opcode = FALSE; | |
3426 | for (; op != NULL; op = op->next) | |
3427 | { | |
3428 | int op_num = op->op_num; | |
3429 | int op_data = op->op_data; | |
3430 | assert (op->op_num < MAX_INSN_ARGS); | |
3431 | ||
3432 | if (targ->ntok <= op_num) | |
3433 | targ->ntok = op_num + 1; | |
3434 | ||
3435 | switch (op->typ) | |
3436 | { | |
3437 | case OP_OPERAND: | |
3438 | assert (op_data < insn->ntok); | |
43cd72b9 BW |
3439 | /* We can only pass resolvable literals through. */ |
3440 | if (!xg_valid_literal_expression (&insn->tok[op_data])) | |
3441 | return FALSE; | |
e0001a05 NC |
3442 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); |
3443 | break; | |
3444 | case OP_LITERAL: | |
3445 | case OP_CONSTANT: | |
3446 | case OP_LABEL: | |
3447 | default: | |
3448 | assert (0); | |
3449 | break; | |
3450 | } | |
3451 | } | |
3452 | break; | |
3453 | ||
3454 | case INSTR_LABEL_DEF: | |
3455 | op = bi->ops; | |
3456 | targ->opcode = XTENSA_UNDEFINED; | |
3457 | targ->insn_type = ITYPE_LABEL; | |
3458 | targ->is_specific_opcode = FALSE; | |
43cd72b9 | 3459 | /* Literal with no ops is a label? */ |
e0001a05 NC |
3460 | assert (op == NULL); |
3461 | break; | |
3462 | ||
3463 | default: | |
3464 | assert (0); | |
3465 | } | |
3466 | ||
3467 | return TRUE; | |
3468 | } | |
3469 | ||
3470 | ||
43cd72b9 | 3471 | /* Return TRUE on success. */ |
e0001a05 | 3472 | |
7fa3d080 BW |
3473 | static bfd_boolean |
3474 | xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi) | |
e0001a05 NC |
3475 | { |
3476 | for (; bi != NULL; bi = bi->next) | |
3477 | { | |
3478 | TInsn *next_insn = istack_push_space (istack); | |
3479 | ||
3480 | if (!xg_build_to_insn (next_insn, insn, bi)) | |
3481 | return FALSE; | |
3482 | } | |
3483 | return TRUE; | |
3484 | } | |
3485 | ||
3486 | ||
43cd72b9 | 3487 | /* Return TRUE on valid expansion. */ |
e0001a05 | 3488 | |
7fa3d080 BW |
3489 | static bfd_boolean |
3490 | xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps) | |
e0001a05 NC |
3491 | { |
3492 | int stack_size = istack->ninsn; | |
3493 | int steps_taken = 0; | |
43cd72b9 | 3494 | TransitionTable *table = xg_build_widen_table (&transition_rule_cmp); |
e0001a05 NC |
3495 | TransitionList *l; |
3496 | ||
3497 | assert (insn->insn_type == ITYPE_INSN); | |
3498 | assert (insn->opcode < table->num_opcodes); | |
3499 | ||
3500 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
3501 | { | |
3502 | TransitionRule *rule = l->rule; | |
3503 | ||
3504 | if (xg_instruction_matches_rule (insn, rule)) | |
3505 | { | |
3506 | if (lateral_steps == steps_taken) | |
3507 | { | |
3508 | int i; | |
3509 | ||
3510 | /* This is it. Expand the rule to the stack. */ | |
3511 | if (!xg_build_to_stack (istack, insn, rule->to_instr)) | |
3512 | return FALSE; | |
3513 | ||
3514 | /* Check to see if it fits. */ | |
3515 | for (i = stack_size; i < istack->ninsn; i++) | |
3516 | { | |
3517 | TInsn *insn = &istack->insn[i]; | |
3518 | ||
3519 | if (insn->insn_type == ITYPE_INSN | |
3520 | && !tinsn_has_symbolic_operands (insn) | |
3521 | && !xg_immeds_fit (insn)) | |
3522 | { | |
3523 | istack->ninsn = stack_size; | |
3524 | return FALSE; | |
3525 | } | |
3526 | } | |
3527 | return TRUE; | |
3528 | } | |
3529 | steps_taken++; | |
3530 | } | |
3531 | } | |
3532 | return FALSE; | |
3533 | } | |
3534 | ||
43cd72b9 | 3535 | \f |
43cd72b9 BW |
3536 | /* Relax the assembly instruction at least "min_steps". |
3537 | Return the number of steps taken. */ | |
e0001a05 | 3538 | |
7fa3d080 BW |
3539 | static int |
3540 | xg_assembly_relax (IStack *istack, | |
3541 | TInsn *insn, | |
3542 | segT pc_seg, | |
3543 | fragS *pc_frag, /* if pc_frag == 0, not pc-relative */ | |
3544 | offsetT pc_offset, /* offset in fragment */ | |
3545 | int min_steps, /* minimum conversion steps */ | |
3546 | long stretch) /* number of bytes stretched so far */ | |
e0001a05 NC |
3547 | { |
3548 | int steps_taken = 0; | |
3549 | ||
3550 | /* assert (has no symbolic operands) | |
3551 | Some of its immeds don't fit. | |
3552 | Try to build a relaxed version. | |
3553 | This may go through a couple of stages | |
3554 | of single instruction transformations before | |
3555 | we get there. */ | |
3556 | ||
3557 | TInsn single_target; | |
3558 | TInsn current_insn; | |
3559 | int lateral_steps = 0; | |
3560 | int istack_size = istack->ninsn; | |
3561 | ||
3562 | if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch) | |
3563 | && steps_taken >= min_steps) | |
3564 | { | |
3565 | istack_push (istack, insn); | |
3566 | return steps_taken; | |
3567 | } | |
43cd72b9 | 3568 | current_insn = *insn; |
e0001a05 | 3569 | |
7c834684 | 3570 | /* Walk through all of the single instruction expansions. */ |
84b08ed9 | 3571 | while (xg_is_single_relaxable_insn (¤t_insn, &single_target, FALSE)) |
e0001a05 | 3572 | { |
e0001a05 NC |
3573 | if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset, |
3574 | stretch)) | |
3575 | { | |
3576 | steps_taken++; | |
3577 | if (steps_taken >= min_steps) | |
3578 | { | |
3579 | istack_push (istack, &single_target); | |
3580 | return steps_taken; | |
3581 | } | |
3582 | } | |
43cd72b9 | 3583 | current_insn = single_target; |
e0001a05 NC |
3584 | } |
3585 | ||
3586 | /* Now check for a multi-instruction expansion. */ | |
3587 | while (xg_is_relaxable_insn (¤t_insn, lateral_steps)) | |
3588 | { | |
3589 | if (xg_symbolic_immeds_fit (¤t_insn, pc_seg, pc_frag, pc_offset, | |
3590 | stretch)) | |
3591 | { | |
3592 | if (steps_taken >= min_steps) | |
3593 | { | |
3594 | istack_push (istack, ¤t_insn); | |
3595 | return steps_taken; | |
3596 | } | |
3597 | } | |
3598 | steps_taken++; | |
3599 | if (xg_expand_to_stack (istack, ¤t_insn, lateral_steps)) | |
3600 | { | |
3601 | if (steps_taken >= min_steps) | |
3602 | return steps_taken; | |
3603 | } | |
3604 | lateral_steps++; | |
3605 | istack->ninsn = istack_size; | |
3606 | } | |
3607 | ||
3608 | /* It's not going to work -- use the original. */ | |
3609 | istack_push (istack, insn); | |
3610 | return steps_taken; | |
3611 | } | |
3612 | ||
3613 | ||
3614 | static void | |
7fa3d080 | 3615 | xg_force_frag_space (int size) |
e0001a05 NC |
3616 | { |
3617 | /* This may have the side effect of creating a new fragment for the | |
3618 | space to go into. I just do not like the name of the "frag" | |
3619 | functions. */ | |
3620 | frag_grow (size); | |
3621 | } | |
3622 | ||
3623 | ||
7fa3d080 BW |
3624 | static void |
3625 | xg_finish_frag (char *last_insn, | |
3626 | enum xtensa_relax_statesE frag_state, | |
3627 | enum xtensa_relax_statesE slot0_state, | |
3628 | int max_growth, | |
3629 | bfd_boolean is_insn) | |
e0001a05 NC |
3630 | { |
3631 | /* Finish off this fragment so that it has at LEAST the desired | |
3632 | max_growth. If it doesn't fit in this fragment, close this one | |
3633 | and start a new one. In either case, return a pointer to the | |
3634 | beginning of the growth area. */ | |
3635 | ||
3636 | fragS *old_frag; | |
43cd72b9 | 3637 | |
e0001a05 NC |
3638 | xg_force_frag_space (max_growth); |
3639 | ||
3640 | old_frag = frag_now; | |
3641 | ||
3642 | frag_now->fr_opcode = last_insn; | |
3643 | if (is_insn) | |
3644 | frag_now->tc_frag_data.is_insn = TRUE; | |
3645 | ||
3646 | frag_var (rs_machine_dependent, max_growth, max_growth, | |
43cd72b9 BW |
3647 | frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn); |
3648 | ||
3649 | old_frag->tc_frag_data.slot_subtypes[0] = slot0_state; | |
3650 | xtensa_set_frag_assembly_state (frag_now); | |
e0001a05 NC |
3651 | |
3652 | /* Just to make sure that we did not split it up. */ | |
3653 | assert (old_frag->fr_next == frag_now); | |
3654 | } | |
3655 | ||
3656 | ||
7fa3d080 BW |
3657 | /* Return TRUE if the target frag is one of the next non-empty frags. */ |
3658 | ||
3659 | static bfd_boolean | |
3660 | is_next_frag_target (const fragS *fragP, const fragS *target) | |
3661 | { | |
3662 | if (fragP == NULL) | |
3663 | return FALSE; | |
3664 | ||
3665 | for (; fragP; fragP = fragP->fr_next) | |
3666 | { | |
3667 | if (fragP == target) | |
3668 | return TRUE; | |
3669 | if (fragP->fr_fix != 0) | |
3670 | return FALSE; | |
3671 | if (fragP->fr_type == rs_fill && fragP->fr_offset != 0) | |
3672 | return FALSE; | |
3673 | if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code) | |
3674 | && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0)) | |
3675 | return FALSE; | |
3676 | if (fragP->fr_type == rs_space) | |
3677 | return FALSE; | |
3678 | } | |
3679 | return FALSE; | |
3680 | } | |
3681 | ||
3682 | ||
e0001a05 | 3683 | static bfd_boolean |
7fa3d080 | 3684 | is_branch_jmp_to_next (TInsn *insn, fragS *fragP) |
e0001a05 NC |
3685 | { |
3686 | xtensa_isa isa = xtensa_default_isa; | |
3687 | int i; | |
43cd72b9 | 3688 | int num_ops = xtensa_opcode_num_operands (isa, insn->opcode); |
e0001a05 NC |
3689 | int target_op = -1; |
3690 | symbolS *sym; | |
3691 | fragS *target_frag; | |
3692 | ||
43cd72b9 BW |
3693 | if (xtensa_opcode_is_branch (isa, insn->opcode) == 0 |
3694 | && xtensa_opcode_is_jump (isa, insn->opcode) == 0) | |
e0001a05 NC |
3695 | return FALSE; |
3696 | ||
3697 | for (i = 0; i < num_ops; i++) | |
3698 | { | |
43cd72b9 | 3699 | if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1) |
e0001a05 NC |
3700 | { |
3701 | target_op = i; | |
3702 | break; | |
3703 | } | |
3704 | } | |
3705 | if (target_op == -1) | |
3706 | return FALSE; | |
3707 | ||
3708 | if (insn->ntok <= target_op) | |
3709 | return FALSE; | |
3710 | ||
3711 | if (insn->tok[target_op].X_op != O_symbol) | |
3712 | return FALSE; | |
3713 | ||
3714 | sym = insn->tok[target_op].X_add_symbol; | |
3715 | if (sym == NULL) | |
3716 | return FALSE; | |
3717 | ||
3718 | if (insn->tok[target_op].X_add_number != 0) | |
3719 | return FALSE; | |
3720 | ||
3721 | target_frag = symbol_get_frag (sym); | |
3722 | if (target_frag == NULL) | |
3723 | return FALSE; | |
3724 | ||
c138bc38 | 3725 | if (is_next_frag_target (fragP->fr_next, target_frag) |
e0001a05 NC |
3726 | && S_GET_VALUE (sym) == target_frag->fr_address) |
3727 | return TRUE; | |
3728 | ||
3729 | return FALSE; | |
3730 | } | |
3731 | ||
3732 | ||
3733 | static void | |
7fa3d080 | 3734 | xg_add_branch_and_loop_targets (TInsn *insn) |
e0001a05 NC |
3735 | { |
3736 | xtensa_isa isa = xtensa_default_isa; | |
7fa3d080 | 3737 | int num_ops = xtensa_opcode_num_operands (isa, insn->opcode); |
43cd72b9 | 3738 | |
7fa3d080 BW |
3739 | if (xtensa_opcode_is_loop (isa, insn->opcode) == 1) |
3740 | { | |
3741 | int i = 1; | |
3742 | if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1 | |
3743 | && insn->tok[i].X_op == O_symbol) | |
3744 | symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE; | |
3745 | return; | |
3746 | } | |
e0001a05 | 3747 | |
7fa3d080 BW |
3748 | if (xtensa_opcode_is_branch (isa, insn->opcode) == 1 |
3749 | || xtensa_opcode_is_loop (isa, insn->opcode) == 1) | |
e0001a05 | 3750 | { |
7fa3d080 BW |
3751 | int i; |
3752 | ||
3753 | for (i = 0; i < insn->ntok && i < num_ops; i++) | |
3754 | { | |
3755 | if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1 | |
3756 | && insn->tok[i].X_op == O_symbol) | |
3757 | { | |
3758 | symbolS *sym = insn->tok[i].X_add_symbol; | |
3759 | symbol_get_tc (sym)->is_branch_target = TRUE; | |
3760 | if (S_IS_DEFINED (sym)) | |
3761 | symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE; | |
3762 | } | |
3763 | } | |
e0001a05 | 3764 | } |
e0001a05 NC |
3765 | } |
3766 | ||
3767 | ||
43cd72b9 | 3768 | /* Return FALSE if no error. */ |
e0001a05 | 3769 | |
7fa3d080 BW |
3770 | static bfd_boolean |
3771 | xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn) | |
e0001a05 NC |
3772 | { |
3773 | int num_ops = 0; | |
3774 | BuildOp *b_op; | |
3775 | ||
3776 | switch (instr_spec->typ) | |
3777 | { | |
3778 | case INSTR_INSTR: | |
3779 | new_insn->insn_type = ITYPE_INSN; | |
3780 | new_insn->opcode = instr_spec->opcode; | |
3781 | new_insn->is_specific_opcode = FALSE; | |
7c430684 | 3782 | new_insn->linenum = old_insn->linenum; |
e0001a05 NC |
3783 | break; |
3784 | case INSTR_LITERAL_DEF: | |
3785 | new_insn->insn_type = ITYPE_LITERAL; | |
3786 | new_insn->opcode = XTENSA_UNDEFINED; | |
3787 | new_insn->is_specific_opcode = FALSE; | |
7c430684 | 3788 | new_insn->linenum = old_insn->linenum; |
e0001a05 NC |
3789 | break; |
3790 | case INSTR_LABEL_DEF: | |
3791 | as_bad (_("INSTR_LABEL_DEF not supported yet")); | |
3792 | break; | |
3793 | } | |
3794 | ||
3795 | for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next) | |
3796 | { | |
3797 | expressionS *exp; | |
3798 | const expressionS *src_exp; | |
3799 | ||
3800 | num_ops++; | |
3801 | switch (b_op->typ) | |
3802 | { | |
3803 | case OP_CONSTANT: | |
3804 | /* The expression must be the constant. */ | |
3805 | assert (b_op->op_num < MAX_INSN_ARGS); | |
3806 | exp = &new_insn->tok[b_op->op_num]; | |
3807 | set_expr_const (exp, b_op->op_data); | |
3808 | break; | |
3809 | ||
3810 | case OP_OPERAND: | |
3811 | assert (b_op->op_num < MAX_INSN_ARGS); | |
3812 | assert (b_op->op_data < (unsigned) old_insn->ntok); | |
3813 | src_exp = &old_insn->tok[b_op->op_data]; | |
3814 | exp = &new_insn->tok[b_op->op_num]; | |
3815 | copy_expr (exp, src_exp); | |
3816 | break; | |
3817 | ||
3818 | case OP_LITERAL: | |
3819 | case OP_LABEL: | |
3820 | as_bad (_("can't handle generation of literal/labels yet")); | |
3821 | assert (0); | |
3822 | ||
3823 | default: | |
3824 | as_bad (_("can't handle undefined OP TYPE")); | |
3825 | assert (0); | |
3826 | } | |
3827 | } | |
3828 | ||
3829 | new_insn->ntok = num_ops; | |
3830 | return FALSE; | |
3831 | } | |
3832 | ||
3833 | ||
43cd72b9 | 3834 | /* Return TRUE if it was simplified. */ |
e0001a05 | 3835 | |
7fa3d080 BW |
3836 | static bfd_boolean |
3837 | xg_simplify_insn (TInsn *old_insn, TInsn *new_insn) | |
e0001a05 | 3838 | { |
43cd72b9 | 3839 | TransitionRule *rule; |
e0001a05 | 3840 | BuildInstr *insn_spec; |
43cd72b9 BW |
3841 | |
3842 | if (old_insn->is_specific_opcode || !density_supported) | |
3843 | return FALSE; | |
3844 | ||
3845 | rule = xg_instruction_match (old_insn); | |
e0001a05 NC |
3846 | if (rule == NULL) |
3847 | return FALSE; | |
3848 | ||
3849 | insn_spec = rule->to_instr; | |
3850 | /* There should only be one. */ | |
3851 | assert (insn_spec != NULL); | |
3852 | assert (insn_spec->next == NULL); | |
3853 | if (insn_spec->next != NULL) | |
3854 | return FALSE; | |
3855 | ||
3856 | xg_build_token_insn (insn_spec, old_insn, new_insn); | |
3857 | ||
3858 | return TRUE; | |
3859 | } | |
3860 | ||
3861 | ||
3862 | /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i -> | |
3863 | l32i.n. (2) Check the number of operands. (3) Place the instruction | |
7c834684 BW |
3864 | tokens into the stack or relax it and place multiple |
3865 | instructions/literals onto the stack. Return FALSE if no error. */ | |
e0001a05 NC |
3866 | |
3867 | static bfd_boolean | |
7fa3d080 | 3868 | xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn) |
e0001a05 NC |
3869 | { |
3870 | int noperands; | |
3871 | TInsn new_insn; | |
7c834684 BW |
3872 | bfd_boolean do_expand; |
3873 | ||
e0001a05 NC |
3874 | memset (&new_insn, 0, sizeof (TInsn)); |
3875 | ||
43cd72b9 BW |
3876 | /* Narrow it if we can. xg_simplify_insn now does all the |
3877 | appropriate checking (e.g., for the density option). */ | |
3878 | if (xg_simplify_insn (orig_insn, &new_insn)) | |
3879 | orig_insn = &new_insn; | |
e0001a05 | 3880 | |
43cd72b9 BW |
3881 | noperands = xtensa_opcode_num_operands (xtensa_default_isa, |
3882 | orig_insn->opcode); | |
e0001a05 NC |
3883 | if (orig_insn->ntok < noperands) |
3884 | { | |
3885 | as_bad (_("found %d operands for '%s': Expected %d"), | |
3886 | orig_insn->ntok, | |
3887 | xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode), | |
3888 | noperands); | |
3889 | return TRUE; | |
3890 | } | |
3891 | if (orig_insn->ntok > noperands) | |
3892 | as_warn (_("found too many (%d) operands for '%s': Expected %d"), | |
3893 | orig_insn->ntok, | |
3894 | xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode), | |
3895 | noperands); | |
3896 | ||
43cd72b9 | 3897 | /* If there are not enough operands, we will assert above. If there |
e0001a05 | 3898 | are too many, just cut out the extras here. */ |
e0001a05 NC |
3899 | orig_insn->ntok = noperands; |
3900 | ||
e0001a05 NC |
3901 | if (tinsn_has_invalid_symbolic_operands (orig_insn)) |
3902 | return TRUE; | |
3903 | ||
7c834684 BW |
3904 | /* If the instruction will definitely need to be relaxed, it is better |
3905 | to expand it now for better scheduling. Decide whether to expand | |
3906 | now.... */ | |
3907 | do_expand = (!orig_insn->is_specific_opcode && use_transform ()); | |
3908 | ||
3909 | /* Calls should be expanded to longcalls only in the backend relaxation | |
3910 | so that the assembly scheduler will keep the L32R/CALLX instructions | |
3911 | adjacent. */ | |
3912 | if (is_direct_call_opcode (orig_insn->opcode)) | |
3913 | do_expand = FALSE; | |
e0001a05 NC |
3914 | |
3915 | if (tinsn_has_symbolic_operands (orig_insn)) | |
3916 | { | |
7c834684 BW |
3917 | /* The values of symbolic operands are not known yet, so only expand |
3918 | now if an operand is "complex" (e.g., difference of symbols) and | |
3919 | will have to be stored as a literal regardless of the value. */ | |
3920 | if (!tinsn_has_complex_operands (orig_insn)) | |
3921 | do_expand = FALSE; | |
e0001a05 | 3922 | } |
7c834684 BW |
3923 | else if (xg_immeds_fit (orig_insn)) |
3924 | do_expand = FALSE; | |
3925 | ||
3926 | if (do_expand) | |
3927 | xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0); | |
e0001a05 | 3928 | else |
7c834684 | 3929 | istack_push (istack, orig_insn); |
e0001a05 | 3930 | |
e0001a05 NC |
3931 | return FALSE; |
3932 | } | |
3933 | ||
3934 | ||
7fa3d080 BW |
3935 | /* Return TRUE if the section flags are marked linkonce |
3936 | or the name is .gnu.linkonce*. */ | |
3937 | ||
3938 | static bfd_boolean | |
3939 | get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec) | |
3940 | { | |
3941 | flagword flags, link_once_flags; | |
3942 | ||
3943 | flags = bfd_get_section_flags (abfd, sec); | |
3944 | link_once_flags = (flags & SEC_LINK_ONCE); | |
3945 | ||
3946 | /* Flags might not be set yet. */ | |
3947 | if (!link_once_flags) | |
3948 | { | |
3949 | static size_t len = sizeof ".gnu.linkonce.t."; | |
3950 | ||
3951 | if (strncmp (segment_name (sec), ".gnu.linkonce.t.", len - 1) == 0) | |
3952 | link_once_flags = SEC_LINK_ONCE; | |
3953 | } | |
3954 | return (link_once_flags != 0); | |
3955 | } | |
3956 | ||
3957 | ||
3958 | static void | |
3959 | xtensa_add_literal_sym (symbolS *sym) | |
3960 | { | |
3961 | sym_list *l; | |
3962 | ||
3963 | l = (sym_list *) xmalloc (sizeof (sym_list)); | |
3964 | l->sym = sym; | |
3965 | l->next = literal_syms; | |
3966 | literal_syms = l; | |
3967 | } | |
3968 | ||
3969 | ||
3970 | static symbolS * | |
3971 | xtensa_create_literal_symbol (segT sec, fragS *frag) | |
3972 | { | |
3973 | static int lit_num = 0; | |
3974 | static char name[256]; | |
3975 | symbolS *symbolP; | |
3976 | ||
3977 | sprintf (name, ".L_lit_sym%d", lit_num); | |
3978 | ||
3979 | /* Create a local symbol. If it is in a linkonce section, we have to | |
3980 | be careful to make sure that if it is used in a relocation that the | |
3981 | symbol will be in the output file. */ | |
3982 | if (get_is_linkonce_section (stdoutput, sec)) | |
3983 | { | |
3984 | symbolP = symbol_new (name, sec, 0, frag); | |
3985 | S_CLEAR_EXTERNAL (symbolP); | |
3986 | /* symbolP->local = 1; */ | |
3987 | } | |
3988 | else | |
3989 | symbolP = symbol_new (name, sec, 0, frag); | |
3990 | ||
3991 | xtensa_add_literal_sym (symbolP); | |
3992 | ||
3993 | frag->tc_frag_data.is_literal = TRUE; | |
3994 | lit_num++; | |
3995 | return symbolP; | |
3996 | } | |
3997 | ||
3998 | ||
e0001a05 NC |
3999 | /* Currently all literals that are generated here are 32-bit L32R targets. */ |
4000 | ||
7fa3d080 BW |
4001 | static symbolS * |
4002 | xg_assemble_literal (/* const */ TInsn *insn) | |
e0001a05 NC |
4003 | { |
4004 | emit_state state; | |
4005 | symbolS *lit_sym = NULL; | |
4006 | ||
4007 | /* size = 4 for L32R. It could easily be larger when we move to | |
4008 | larger constants. Add a parameter later. */ | |
4009 | offsetT litsize = 4; | |
4010 | offsetT litalign = 2; /* 2^2 = 4 */ | |
4011 | expressionS saved_loc; | |
43cd72b9 BW |
4012 | expressionS * emit_val; |
4013 | ||
e0001a05 NC |
4014 | set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ()); |
4015 | ||
4016 | assert (insn->insn_type == ITYPE_LITERAL); | |
77cd6497 | 4017 | assert (insn->ntok == 1); /* must be only one token here */ |
e0001a05 NC |
4018 | |
4019 | xtensa_switch_to_literal_fragment (&state); | |
4020 | ||
43cd72b9 BW |
4021 | emit_val = &insn->tok[0]; |
4022 | if (emit_val->X_op == O_big) | |
4023 | { | |
4024 | int size = emit_val->X_add_number * CHARS_PER_LITTLENUM; | |
4025 | if (size > litsize) | |
4026 | { | |
4027 | /* This happens when someone writes a "movi a2, big_number". */ | |
c138bc38 | 4028 | as_bad_where (frag_now->fr_file, frag_now->fr_line, |
43cd72b9 BW |
4029 | _("invalid immediate")); |
4030 | xtensa_restore_emit_state (&state); | |
4031 | return NULL; | |
4032 | } | |
4033 | } | |
4034 | ||
e0001a05 NC |
4035 | /* Force a 4-byte align here. Note that this opens a new frag, so all |
4036 | literals done with this function have a frag to themselves. That's | |
4037 | important for the way text section literals work. */ | |
4038 | frag_align (litalign, 0, 0); | |
43cd72b9 | 4039 | record_alignment (now_seg, litalign); |
e0001a05 | 4040 | |
43cd72b9 BW |
4041 | if (emit_val->X_op == O_pltrel) |
4042 | { | |
4043 | char *p = frag_more (litsize); | |
4044 | xtensa_set_frag_assembly_state (frag_now); | |
4045 | if (emit_val->X_add_symbol) | |
4046 | emit_val->X_op = O_symbol; | |
4047 | else | |
4048 | emit_val->X_op = O_constant; | |
4049 | fix_new_exp (frag_now, p - frag_now->fr_literal, | |
4050 | litsize, emit_val, 0, BFD_RELOC_XTENSA_PLT); | |
4051 | } | |
4052 | else | |
4053 | emit_expr (emit_val, litsize); | |
e0001a05 NC |
4054 | |
4055 | assert (frag_now->tc_frag_data.literal_frag == NULL); | |
4056 | frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg); | |
4057 | frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now); | |
4058 | lit_sym = frag_now->fr_symbol; | |
4059 | frag_now->tc_frag_data.is_literal = TRUE; | |
4060 | ||
4061 | /* Go back. */ | |
4062 | xtensa_restore_emit_state (&state); | |
4063 | return lit_sym; | |
4064 | } | |
4065 | ||
4066 | ||
4067 | static void | |
7fa3d080 | 4068 | xg_assemble_literal_space (/* const */ int size, int slot) |
e0001a05 NC |
4069 | { |
4070 | emit_state state; | |
43cd72b9 | 4071 | /* We might have to do something about this alignment. It only |
e0001a05 NC |
4072 | takes effect if something is placed here. */ |
4073 | offsetT litalign = 2; /* 2^2 = 4 */ | |
4074 | fragS *lit_saved_frag; | |
4075 | ||
e0001a05 | 4076 | assert (size % 4 == 0); |
e0001a05 NC |
4077 | |
4078 | xtensa_switch_to_literal_fragment (&state); | |
4079 | ||
4080 | /* Force a 4-byte align here. */ | |
4081 | frag_align (litalign, 0, 0); | |
43cd72b9 | 4082 | record_alignment (now_seg, litalign); |
e0001a05 NC |
4083 | |
4084 | xg_force_frag_space (size); | |
4085 | ||
4086 | lit_saved_frag = frag_now; | |
4087 | frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg); | |
4088 | frag_now->tc_frag_data.is_literal = TRUE; | |
4089 | frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now); | |
43cd72b9 | 4090 | xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE); |
e0001a05 NC |
4091 | |
4092 | /* Go back. */ | |
4093 | xtensa_restore_emit_state (&state); | |
43cd72b9 | 4094 | frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag; |
e0001a05 NC |
4095 | } |
4096 | ||
4097 | ||
e0001a05 | 4098 | /* Put in a fixup record based on the opcode. |
43cd72b9 | 4099 | Return TRUE on success. */ |
e0001a05 | 4100 | |
7fa3d080 BW |
4101 | static bfd_boolean |
4102 | xg_add_opcode_fix (TInsn *tinsn, | |
4103 | int opnum, | |
4104 | xtensa_format fmt, | |
4105 | int slot, | |
4106 | expressionS *expr, | |
4107 | fragS *fragP, | |
4108 | offsetT offset) | |
43cd72b9 BW |
4109 | { |
4110 | xtensa_opcode opcode = tinsn->opcode; | |
4111 | bfd_reloc_code_real_type reloc; | |
4112 | reloc_howto_type *howto; | |
4113 | int fmt_length; | |
e0001a05 NC |
4114 | fixS *the_fix; |
4115 | ||
43cd72b9 BW |
4116 | reloc = BFD_RELOC_NONE; |
4117 | ||
4118 | /* First try the special cases for "alternate" relocs. */ | |
4119 | if (opcode == xtensa_l32r_opcode) | |
4120 | { | |
4121 | if (fragP->tc_frag_data.use_absolute_literals) | |
4122 | reloc = encode_alt_reloc (slot); | |
4123 | } | |
4124 | else if (opcode == xtensa_const16_opcode) | |
4125 | { | |
4126 | if (expr->X_op == O_lo16) | |
4127 | { | |
4128 | reloc = encode_reloc (slot); | |
4129 | expr->X_op = O_symbol; | |
4130 | } | |
4131 | else if (expr->X_op == O_hi16) | |
4132 | { | |
4133 | reloc = encode_alt_reloc (slot); | |
4134 | expr->X_op = O_symbol; | |
4135 | } | |
4136 | } | |
4137 | ||
4138 | if (opnum != get_relaxable_immed (opcode)) | |
e0001a05 | 4139 | { |
43cd72b9 | 4140 | as_bad (_("invalid relocation for operand %i of '%s'"), |
e0001a05 NC |
4141 | opnum, xtensa_opcode_name (xtensa_default_isa, opcode)); |
4142 | return FALSE; | |
4143 | } | |
4144 | ||
43cd72b9 BW |
4145 | /* Handle erroneous "@h" and "@l" expressions here before they propagate |
4146 | into the symbol table where the generic portions of the assembler | |
4147 | won't know what to do with them. */ | |
4148 | if (expr->X_op == O_lo16 || expr->X_op == O_hi16) | |
4149 | { | |
4150 | as_bad (_("invalid expression for operand %i of '%s'"), | |
4151 | opnum, xtensa_opcode_name (xtensa_default_isa, opcode)); | |
4152 | return FALSE; | |
4153 | } | |
4154 | ||
4155 | /* Next try the generic relocs. */ | |
4156 | if (reloc == BFD_RELOC_NONE) | |
4157 | reloc = encode_reloc (slot); | |
4158 | if (reloc == BFD_RELOC_NONE) | |
4159 | { | |
4160 | as_bad (_("invalid relocation in instruction slot %i"), slot); | |
4161 | return FALSE; | |
4162 | } | |
e0001a05 | 4163 | |
43cd72b9 | 4164 | howto = bfd_reloc_type_lookup (stdoutput, reloc); |
e0001a05 NC |
4165 | if (!howto) |
4166 | { | |
43cd72b9 | 4167 | as_bad (_("undefined symbol for opcode \"%s\""), |
e0001a05 NC |
4168 | xtensa_opcode_name (xtensa_default_isa, opcode)); |
4169 | return FALSE; | |
4170 | } | |
4171 | ||
43cd72b9 BW |
4172 | fmt_length = xtensa_format_length (xtensa_default_isa, fmt); |
4173 | the_fix = fix_new_exp (fragP, offset, fmt_length, expr, | |
e0001a05 | 4174 | howto->pc_relative, reloc); |
d9740523 | 4175 | the_fix->fx_no_overflow = 1; |
e0001a05 | 4176 | |
7fa3d080 BW |
4177 | if (expr->X_add_symbol |
4178 | && (S_IS_EXTERNAL (expr->X_add_symbol) | |
4179 | || S_IS_WEAK (expr->X_add_symbol))) | |
4180 | the_fix->fx_plt = TRUE; | |
4181 | ||
4182 | the_fix->tc_fix_data.X_add_symbol = expr->X_add_symbol; | |
4183 | the_fix->tc_fix_data.X_add_number = expr->X_add_number; | |
4184 | the_fix->tc_fix_data.slot = slot; | |
c138bc38 | 4185 | |
7fa3d080 BW |
4186 | return TRUE; |
4187 | } | |
4188 | ||
4189 | ||
4190 | static bfd_boolean | |
4191 | xg_emit_insn_to_buf (TInsn *tinsn, | |
4192 | xtensa_format fmt, | |
4193 | char *buf, | |
4194 | fragS *fragP, | |
4195 | offsetT offset, | |
4196 | bfd_boolean build_fix) | |
4197 | { | |
4198 | static xtensa_insnbuf insnbuf = NULL; | |
4199 | bfd_boolean has_symbolic_immed = FALSE; | |
4200 | bfd_boolean ok = TRUE; | |
4201 | if (!insnbuf) | |
4202 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
4203 | ||
4204 | has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf); | |
4205 | if (has_symbolic_immed && build_fix) | |
4206 | { | |
4207 | /* Add a fixup. */ | |
4208 | int opnum = get_relaxable_immed (tinsn->opcode); | |
4209 | expressionS *exp = &tinsn->tok[opnum]; | |
43cd72b9 | 4210 | |
7fa3d080 BW |
4211 | if (!xg_add_opcode_fix (tinsn, opnum, fmt, 0, exp, fragP, offset)) |
4212 | ok = FALSE; | |
4213 | } | |
4214 | fragP->tc_frag_data.is_insn = TRUE; | |
d77b99c9 BW |
4215 | xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, |
4216 | (unsigned char *) buf, 0); | |
7fa3d080 | 4217 | return ok; |
e0001a05 NC |
4218 | } |
4219 | ||
4220 | ||
7fa3d080 BW |
4221 | static void |
4222 | xg_resolve_literals (TInsn *insn, symbolS *lit_sym) | |
e0001a05 NC |
4223 | { |
4224 | symbolS *sym = get_special_literal_symbol (); | |
4225 | int i; | |
4226 | if (lit_sym == 0) | |
4227 | return; | |
4228 | assert (insn->insn_type == ITYPE_INSN); | |
4229 | for (i = 0; i < insn->ntok; i++) | |
4230 | if (insn->tok[i].X_add_symbol == sym) | |
4231 | insn->tok[i].X_add_symbol = lit_sym; | |
4232 | ||
4233 | } | |
4234 | ||
4235 | ||
7fa3d080 BW |
4236 | static void |
4237 | xg_resolve_labels (TInsn *insn, symbolS *label_sym) | |
e0001a05 NC |
4238 | { |
4239 | symbolS *sym = get_special_label_symbol (); | |
4240 | int i; | |
43cd72b9 | 4241 | /* assert (!insn->is_literal); */ |
e0001a05 NC |
4242 | for (i = 0; i < insn->ntok; i++) |
4243 | if (insn->tok[i].X_add_symbol == sym) | |
4244 | insn->tok[i].X_add_symbol = label_sym; | |
4245 | ||
4246 | } | |
4247 | ||
4248 | ||
43cd72b9 | 4249 | /* Return TRUE if the instruction can write to the specified |
e0001a05 NC |
4250 | integer register. */ |
4251 | ||
4252 | static bfd_boolean | |
7fa3d080 | 4253 | is_register_writer (const TInsn *insn, const char *regset, int regnum) |
e0001a05 NC |
4254 | { |
4255 | int i; | |
4256 | int num_ops; | |
4257 | xtensa_isa isa = xtensa_default_isa; | |
4258 | ||
43cd72b9 | 4259 | num_ops = xtensa_opcode_num_operands (isa, insn->opcode); |
e0001a05 NC |
4260 | |
4261 | for (i = 0; i < num_ops; i++) | |
4262 | { | |
43cd72b9 BW |
4263 | char inout; |
4264 | inout = xtensa_operand_inout (isa, insn->opcode, i); | |
4265 | if ((inout == 'o' || inout == 'm') | |
4266 | && xtensa_operand_is_register (isa, insn->opcode, i) == 1) | |
e0001a05 | 4267 | { |
43cd72b9 BW |
4268 | xtensa_regfile opnd_rf = |
4269 | xtensa_operand_regfile (isa, insn->opcode, i); | |
4270 | if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset)) | |
e0001a05 NC |
4271 | { |
4272 | if ((insn->tok[i].X_op == O_register) | |
4273 | && (insn->tok[i].X_add_number == regnum)) | |
4274 | return TRUE; | |
4275 | } | |
4276 | } | |
4277 | } | |
4278 | return FALSE; | |
4279 | } | |
4280 | ||
4281 | ||
4282 | static bfd_boolean | |
7fa3d080 | 4283 | is_bad_loopend_opcode (const TInsn *tinsn) |
e0001a05 NC |
4284 | { |
4285 | xtensa_opcode opcode = tinsn->opcode; | |
4286 | ||
4287 | if (opcode == XTENSA_UNDEFINED) | |
4288 | return FALSE; | |
4289 | ||
4290 | if (opcode == xtensa_call0_opcode | |
4291 | || opcode == xtensa_callx0_opcode | |
4292 | || opcode == xtensa_call4_opcode | |
4293 | || opcode == xtensa_callx4_opcode | |
4294 | || opcode == xtensa_call8_opcode | |
4295 | || opcode == xtensa_callx8_opcode | |
4296 | || opcode == xtensa_call12_opcode | |
4297 | || opcode == xtensa_callx12_opcode | |
4298 | || opcode == xtensa_isync_opcode | |
4299 | || opcode == xtensa_ret_opcode | |
4300 | || opcode == xtensa_ret_n_opcode | |
4301 | || opcode == xtensa_retw_opcode | |
4302 | || opcode == xtensa_retw_n_opcode | |
43cd72b9 BW |
4303 | || opcode == xtensa_waiti_opcode |
4304 | || opcode == xtensa_rsr_lcount_opcode) | |
e0001a05 | 4305 | return TRUE; |
c138bc38 | 4306 | |
e0001a05 NC |
4307 | return FALSE; |
4308 | } | |
4309 | ||
4310 | ||
4311 | /* Labels that begin with ".Ln" or ".LM" are unaligned. | |
4312 | This allows the debugger to add unaligned labels. | |
4313 | Also, the assembler generates stabs labels that need | |
4314 | not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */ | |
4315 | ||
7fa3d080 BW |
4316 | static bfd_boolean |
4317 | is_unaligned_label (symbolS *sym) | |
e0001a05 NC |
4318 | { |
4319 | const char *name = S_GET_NAME (sym); | |
4320 | static size_t fake_size = 0; | |
4321 | ||
4322 | if (name | |
4323 | && name[0] == '.' | |
4324 | && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M')) | |
4325 | return TRUE; | |
4326 | ||
4327 | /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */ | |
4328 | if (fake_size == 0) | |
4329 | fake_size = strlen (FAKE_LABEL_NAME); | |
4330 | ||
43cd72b9 | 4331 | if (name |
e0001a05 NC |
4332 | && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0 |
4333 | && (name[fake_size] == 'F' | |
4334 | || name[fake_size] == 'L' | |
4335 | || (name[fake_size] == 'e' | |
4336 | && strncmp ("endfunc", name+fake_size, 7) == 0))) | |
4337 | return TRUE; | |
4338 | ||
4339 | return FALSE; | |
4340 | } | |
4341 | ||
4342 | ||
7fa3d080 BW |
4343 | static fragS * |
4344 | next_non_empty_frag (const fragS *fragP) | |
e0001a05 NC |
4345 | { |
4346 | fragS *next_fragP = fragP->fr_next; | |
4347 | ||
c138bc38 | 4348 | /* Sometimes an empty will end up here due storage allocation issues. |
e0001a05 NC |
4349 | So we have to skip until we find something legit. */ |
4350 | while (next_fragP && next_fragP->fr_fix == 0) | |
4351 | next_fragP = next_fragP->fr_next; | |
4352 | ||
4353 | if (next_fragP == NULL || next_fragP->fr_fix == 0) | |
4354 | return NULL; | |
4355 | ||
4356 | return next_fragP; | |
4357 | } | |
4358 | ||
4359 | ||
43cd72b9 | 4360 | static bfd_boolean |
7fa3d080 | 4361 | next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode) |
43cd72b9 BW |
4362 | { |
4363 | xtensa_opcode out_opcode; | |
4364 | const fragS *next_fragP = next_non_empty_frag (fragP); | |
4365 | ||
4366 | if (next_fragP == NULL) | |
4367 | return FALSE; | |
4368 | ||
4369 | out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0); | |
4370 | if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1) | |
4371 | { | |
4372 | *opcode = out_opcode; | |
4373 | return TRUE; | |
4374 | } | |
4375 | return FALSE; | |
4376 | } | |
4377 | ||
4378 | ||
4379 | static int | |
7fa3d080 | 4380 | frag_format_size (const fragS *fragP) |
43cd72b9 | 4381 | { |
e0001a05 NC |
4382 | static xtensa_insnbuf insnbuf = NULL; |
4383 | xtensa_isa isa = xtensa_default_isa; | |
43cd72b9 | 4384 | xtensa_format fmt; |
c138bc38 | 4385 | int fmt_size; |
e0001a05 NC |
4386 | |
4387 | if (!insnbuf) | |
4388 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4389 | ||
43cd72b9 BW |
4390 | if (fragP == NULL) |
4391 | return XTENSA_UNDEFINED; | |
4392 | ||
d77b99c9 BW |
4393 | xtensa_insnbuf_from_chars (isa, insnbuf, |
4394 | (unsigned char *) fragP->fr_literal, 0); | |
43cd72b9 BW |
4395 | |
4396 | fmt = xtensa_format_decode (isa, insnbuf); | |
4397 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 4398 | return XTENSA_UNDEFINED; |
43cd72b9 BW |
4399 | fmt_size = xtensa_format_length (isa, fmt); |
4400 | ||
4401 | /* If the next format won't be changing due to relaxation, just | |
4402 | return the length of the first format. */ | |
4403 | if (fragP->fr_opcode != fragP->fr_literal) | |
4404 | return fmt_size; | |
4405 | ||
c138bc38 | 4406 | /* If during relaxation we have to pull an instruction out of a |
43cd72b9 BW |
4407 | multi-slot instruction, we will return the more conservative |
4408 | number. This works because alignment on bigger instructions | |
4409 | is more restrictive than alignment on smaller instructions. | |
4410 | This is more conservative than we would like, but it happens | |
4411 | infrequently. */ | |
4412 | ||
4413 | if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1) | |
4414 | return fmt_size; | |
4415 | ||
4416 | /* If we aren't doing one of our own relaxations or it isn't | |
4417 | slot-based, then the insn size won't change. */ | |
4418 | if (fragP->fr_type != rs_machine_dependent) | |
4419 | return fmt_size; | |
4420 | if (fragP->fr_subtype != RELAX_SLOTS) | |
4421 | return fmt_size; | |
4422 | ||
4423 | /* If an instruction is about to grow, return the longer size. */ | |
4424 | if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1 | |
4425 | || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2) | |
4426 | return 3; | |
c138bc38 | 4427 | |
43cd72b9 BW |
4428 | if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW) |
4429 | return 2 + fragP->tc_frag_data.text_expansion[0]; | |
e0001a05 | 4430 | |
43cd72b9 | 4431 | return fmt_size; |
e0001a05 NC |
4432 | } |
4433 | ||
4434 | ||
7fa3d080 BW |
4435 | static int |
4436 | next_frag_format_size (const fragS *fragP) | |
e0001a05 | 4437 | { |
7fa3d080 BW |
4438 | const fragS *next_fragP = next_non_empty_frag (fragP); |
4439 | return frag_format_size (next_fragP); | |
e0001a05 NC |
4440 | } |
4441 | ||
4442 | ||
4443 | /* If the next legit fragment is an end-of-loop marker, | |
4444 | switch its state so it will instantiate a NOP. */ | |
4445 | ||
4446 | static void | |
1d19a770 | 4447 | update_next_frag_state (fragS *fragP) |
e0001a05 NC |
4448 | { |
4449 | fragS *next_fragP = fragP->fr_next; | |
43cd72b9 | 4450 | fragS *new_target = NULL; |
e0001a05 | 4451 | |
7b1cc377 | 4452 | if (align_targets) |
43cd72b9 BW |
4453 | { |
4454 | /* We are guaranteed there will be one of these... */ | |
4455 | while (!(next_fragP->fr_type == rs_machine_dependent | |
4456 | && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE | |
4457 | || next_fragP->fr_subtype == RELAX_UNREACHABLE))) | |
4458 | next_fragP = next_fragP->fr_next; | |
4459 | ||
4460 | assert (next_fragP->fr_type == rs_machine_dependent | |
4461 | && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE | |
4462 | || next_fragP->fr_subtype == RELAX_UNREACHABLE)); | |
4463 | ||
4464 | /* ...and one of these. */ | |
4465 | new_target = next_fragP->fr_next; | |
4466 | while (!(new_target->fr_type == rs_machine_dependent | |
4467 | && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN | |
4468 | || new_target->fr_subtype == RELAX_DESIRE_ALIGN))) | |
4469 | new_target = new_target->fr_next; | |
4470 | ||
4471 | assert (new_target->fr_type == rs_machine_dependent | |
4472 | && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN | |
4473 | || new_target->fr_subtype == RELAX_DESIRE_ALIGN)); | |
4474 | } | |
43cd72b9 | 4475 | |
1d19a770 | 4476 | while (next_fragP && next_fragP->fr_fix == 0) |
43cd72b9 | 4477 | { |
1d19a770 BW |
4478 | if (next_fragP->fr_type == rs_machine_dependent |
4479 | && next_fragP->fr_subtype == RELAX_LOOP_END) | |
43cd72b9 | 4480 | { |
1d19a770 BW |
4481 | next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP; |
4482 | return; | |
e0001a05 | 4483 | } |
1d19a770 BW |
4484 | |
4485 | next_fragP = next_fragP->fr_next; | |
e0001a05 NC |
4486 | } |
4487 | } | |
4488 | ||
4489 | ||
4490 | static bfd_boolean | |
7fa3d080 | 4491 | next_frag_is_branch_target (const fragS *fragP) |
e0001a05 | 4492 | { |
43cd72b9 | 4493 | /* Sometimes an empty will end up here due to storage allocation issues, |
e0001a05 NC |
4494 | so we have to skip until we find something legit. */ |
4495 | for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next) | |
4496 | { | |
4497 | if (fragP->tc_frag_data.is_branch_target) | |
4498 | return TRUE; | |
4499 | if (fragP->fr_fix != 0) | |
4500 | break; | |
4501 | } | |
4502 | return FALSE; | |
4503 | } | |
4504 | ||
4505 | ||
4506 | static bfd_boolean | |
7fa3d080 | 4507 | next_frag_is_loop_target (const fragS *fragP) |
e0001a05 | 4508 | { |
c138bc38 | 4509 | /* Sometimes an empty will end up here due storage allocation issues. |
e0001a05 NC |
4510 | So we have to skip until we find something legit. */ |
4511 | for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next) | |
4512 | { | |
4513 | if (fragP->tc_frag_data.is_loop_target) | |
4514 | return TRUE; | |
4515 | if (fragP->fr_fix != 0) | |
4516 | break; | |
4517 | } | |
4518 | return FALSE; | |
4519 | } | |
4520 | ||
4521 | ||
4522 | static addressT | |
7fa3d080 | 4523 | next_frag_pre_opcode_bytes (const fragS *fragp) |
e0001a05 NC |
4524 | { |
4525 | const fragS *next_fragp = fragp->fr_next; | |
43cd72b9 | 4526 | xtensa_opcode next_opcode; |
e0001a05 | 4527 | |
43cd72b9 | 4528 | if (!next_frag_opcode_is_loop (fragp, &next_opcode)) |
e0001a05 NC |
4529 | return 0; |
4530 | ||
43cd72b9 BW |
4531 | /* Sometimes an empty will end up here due to storage allocation issues, |
4532 | so we have to skip until we find something legit. */ | |
e0001a05 NC |
4533 | while (next_fragp->fr_fix == 0) |
4534 | next_fragp = next_fragp->fr_next; | |
4535 | ||
4536 | if (next_fragp->fr_type != rs_machine_dependent) | |
4537 | return 0; | |
4538 | ||
4539 | /* There is some implicit knowledge encoded in here. | |
4540 | The LOOP instructions that are NOT RELAX_IMMED have | |
43cd72b9 BW |
4541 | been relaxed. Note that we can assume that the LOOP |
4542 | instruction is in slot 0 because loops aren't bundleable. */ | |
4543 | if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED) | |
e0001a05 NC |
4544 | return get_expanded_loop_offset (next_opcode); |
4545 | ||
4546 | return 0; | |
4547 | } | |
4548 | ||
4549 | ||
4550 | /* Mark a location where we can later insert literal frags. Update | |
4551 | the section's literal_pool_loc, so subsequent literals can be | |
4552 | placed nearest to their use. */ | |
4553 | ||
4554 | static void | |
7fa3d080 | 4555 | xtensa_mark_literal_pool_location (void) |
e0001a05 NC |
4556 | { |
4557 | /* Any labels pointing to the current location need | |
4558 | to be adjusted to after the literal pool. */ | |
4559 | emit_state s; | |
e0001a05 | 4560 | fragS *pool_location; |
e0001a05 | 4561 | |
43cd72b9 BW |
4562 | if (use_literal_section && !directive_state[directive_absolute_literals]) |
4563 | return; | |
4564 | ||
e0001a05 | 4565 | frag_align (2, 0, 0); |
43cd72b9 | 4566 | record_alignment (now_seg, 2); |
e0001a05 | 4567 | |
dd49a749 BW |
4568 | /* We stash info in these frags so we can later move the literal's |
4569 | fixes into this frchain's fix list. */ | |
e0001a05 | 4570 | pool_location = frag_now; |
dd49a749 BW |
4571 | frag_now->tc_frag_data.lit_frchain = frchain_now; |
4572 | frag_variant (rs_machine_dependent, 0, 0, | |
e0001a05 | 4573 | RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL); |
43cd72b9 | 4574 | xtensa_set_frag_assembly_state (frag_now); |
dd49a749 BW |
4575 | frag_now->tc_frag_data.lit_seg = now_seg; |
4576 | frag_variant (rs_machine_dependent, 0, 0, | |
e0001a05 | 4577 | RELAX_LITERAL_POOL_END, NULL, 0, NULL); |
43cd72b9 | 4578 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
4579 | |
4580 | /* Now put a frag into the literal pool that points to this location. */ | |
4581 | set_literal_pool_location (now_seg, pool_location); | |
43cd72b9 BW |
4582 | xtensa_switch_to_non_abs_literal_fragment (&s); |
4583 | frag_align (2, 0, 0); | |
4584 | record_alignment (now_seg, 2); | |
e0001a05 NC |
4585 | |
4586 | /* Close whatever frag is there. */ | |
4587 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
43cd72b9 | 4588 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
4589 | frag_now->tc_frag_data.literal_frag = pool_location; |
4590 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
4591 | xtensa_restore_emit_state (&s); | |
43cd72b9 | 4592 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
4593 | } |
4594 | ||
4595 | ||
43cd72b9 BW |
4596 | /* Build a nop of the correct size into tinsn. */ |
4597 | ||
4598 | static void | |
7fa3d080 | 4599 | build_nop (TInsn *tinsn, int size) |
43cd72b9 BW |
4600 | { |
4601 | tinsn_init (tinsn); | |
4602 | switch (size) | |
4603 | { | |
4604 | case 2: | |
4605 | tinsn->opcode = xtensa_nop_n_opcode; | |
4606 | tinsn->ntok = 0; | |
4607 | if (tinsn->opcode == XTENSA_UNDEFINED) | |
4608 | as_fatal (_("opcode 'NOP.N' unavailable in this configuration")); | |
4609 | break; | |
4610 | ||
4611 | case 3: | |
4612 | if (xtensa_nop_opcode == XTENSA_UNDEFINED) | |
4613 | { | |
4614 | tinsn->opcode = xtensa_or_opcode; | |
4615 | set_expr_const (&tinsn->tok[0], 1); | |
4616 | set_expr_const (&tinsn->tok[1], 1); | |
4617 | set_expr_const (&tinsn->tok[2], 1); | |
4618 | tinsn->ntok = 3; | |
4619 | } | |
4620 | else | |
4621 | tinsn->opcode = xtensa_nop_opcode; | |
4622 | ||
4623 | assert (tinsn->opcode != XTENSA_UNDEFINED); | |
4624 | } | |
4625 | } | |
4626 | ||
4627 | ||
e0001a05 NC |
4628 | /* Assemble a NOP of the requested size in the buffer. User must have |
4629 | allocated "buf" with at least "size" bytes. */ | |
4630 | ||
7fa3d080 | 4631 | static void |
d77b99c9 | 4632 | assemble_nop (int size, char *buf) |
e0001a05 NC |
4633 | { |
4634 | static xtensa_insnbuf insnbuf = NULL; | |
43cd72b9 | 4635 | TInsn tinsn; |
e0001a05 | 4636 | |
43cd72b9 | 4637 | build_nop (&tinsn, size); |
e0001a05 | 4638 | |
43cd72b9 BW |
4639 | if (!insnbuf) |
4640 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
e0001a05 | 4641 | |
43cd72b9 | 4642 | tinsn_to_insnbuf (&tinsn, insnbuf); |
d77b99c9 BW |
4643 | xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, |
4644 | (unsigned char *) buf, 0); | |
e0001a05 NC |
4645 | } |
4646 | ||
4647 | ||
4648 | /* Return the number of bytes for the offset of the expanded loop | |
4649 | instruction. This should be incorporated into the relaxation | |
4650 | specification but is hard-coded here. This is used to auto-align | |
4651 | the loop instruction. It is invalid to call this function if the | |
4652 | configuration does not have loops or if the opcode is not a loop | |
4653 | opcode. */ | |
4654 | ||
4655 | static addressT | |
7fa3d080 | 4656 | get_expanded_loop_offset (xtensa_opcode opcode) |
e0001a05 NC |
4657 | { |
4658 | /* This is the OFFSET of the loop instruction in the expanded loop. | |
4659 | This MUST correspond directly to the specification of the loop | |
4660 | expansion. It will be validated on fragment conversion. */ | |
43cd72b9 | 4661 | assert (opcode != XTENSA_UNDEFINED); |
e0001a05 NC |
4662 | if (opcode == xtensa_loop_opcode) |
4663 | return 0; | |
4664 | if (opcode == xtensa_loopnez_opcode) | |
4665 | return 3; | |
4666 | if (opcode == xtensa_loopgtz_opcode) | |
4667 | return 6; | |
4668 | as_fatal (_("get_expanded_loop_offset: invalid opcode")); | |
4669 | return 0; | |
4670 | } | |
4671 | ||
4672 | ||
7fa3d080 BW |
4673 | static fragS * |
4674 | get_literal_pool_location (segT seg) | |
e0001a05 NC |
4675 | { |
4676 | return seg_info (seg)->tc_segment_info_data.literal_pool_loc; | |
4677 | } | |
4678 | ||
4679 | ||
4680 | static void | |
7fa3d080 | 4681 | set_literal_pool_location (segT seg, fragS *literal_pool_loc) |
e0001a05 NC |
4682 | { |
4683 | seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc; | |
4684 | } | |
4685 | ||
43cd72b9 BW |
4686 | |
4687 | /* Set frag assembly state should be called when a new frag is | |
4688 | opened and after a frag has been closed. */ | |
4689 | ||
7fa3d080 BW |
4690 | static void |
4691 | xtensa_set_frag_assembly_state (fragS *fragP) | |
43cd72b9 BW |
4692 | { |
4693 | if (!density_supported) | |
4694 | fragP->tc_frag_data.is_no_density = TRUE; | |
4695 | ||
4696 | /* This function is called from subsegs_finish, which is called | |
c138bc38 | 4697 | after xtensa_end, so we can't use "use_transform" or |
43cd72b9 BW |
4698 | "use_schedule" here. */ |
4699 | if (!directive_state[directive_transform]) | |
4700 | fragP->tc_frag_data.is_no_transform = TRUE; | |
7c834684 BW |
4701 | if (directive_state[directive_longcalls]) |
4702 | fragP->tc_frag_data.use_longcalls = TRUE; | |
43cd72b9 BW |
4703 | fragP->tc_frag_data.use_absolute_literals = |
4704 | directive_state[directive_absolute_literals]; | |
4705 | fragP->tc_frag_data.is_assembly_state_set = TRUE; | |
4706 | } | |
4707 | ||
4708 | ||
7fa3d080 BW |
4709 | static bfd_boolean |
4710 | relaxable_section (asection *sec) | |
43cd72b9 BW |
4711 | { |
4712 | return (sec->flags & SEC_DEBUGGING) == 0; | |
4713 | } | |
4714 | ||
4715 | ||
4716 | static void | |
7fa3d080 | 4717 | xtensa_find_unmarked_state_frags (void) |
43cd72b9 BW |
4718 | { |
4719 | segT *seclist; | |
4720 | ||
4721 | /* Walk over each fragment of all of the current segments. For each | |
4722 | unmarked fragment, mark it with the same info as the previous | |
4723 | fragment. */ | |
4724 | for (seclist = &stdoutput->sections; | |
4725 | seclist && *seclist; | |
4726 | seclist = &(*seclist)->next) | |
4727 | { | |
4728 | segT sec = *seclist; | |
4729 | segment_info_type *seginfo; | |
4730 | fragS *fragP; | |
4731 | flagword flags; | |
4732 | flags = bfd_get_section_flags (stdoutput, sec); | |
4733 | if (flags & SEC_DEBUGGING) | |
4734 | continue; | |
4735 | if (!(flags & SEC_ALLOC)) | |
4736 | continue; | |
4737 | ||
4738 | seginfo = seg_info (sec); | |
4739 | if (seginfo && seginfo->frchainP) | |
4740 | { | |
4741 | fragS *last_fragP = 0; | |
4742 | for (fragP = seginfo->frchainP->frch_root; fragP; | |
4743 | fragP = fragP->fr_next) | |
4744 | { | |
4745 | if (fragP->fr_fix != 0 | |
4746 | && !fragP->tc_frag_data.is_assembly_state_set) | |
4747 | { | |
4748 | if (last_fragP == 0) | |
4749 | { | |
4750 | as_warn_where (fragP->fr_file, fragP->fr_line, | |
4751 | _("assembly state not set for first frag in section %s"), | |
4752 | sec->name); | |
4753 | } | |
4754 | else | |
4755 | { | |
4756 | fragP->tc_frag_data.is_assembly_state_set = TRUE; | |
4757 | fragP->tc_frag_data.is_no_density = | |
4758 | last_fragP->tc_frag_data.is_no_density; | |
4759 | fragP->tc_frag_data.is_no_transform = | |
4760 | last_fragP->tc_frag_data.is_no_transform; | |
7c834684 BW |
4761 | fragP->tc_frag_data.use_longcalls = |
4762 | last_fragP->tc_frag_data.use_longcalls; | |
43cd72b9 BW |
4763 | fragP->tc_frag_data.use_absolute_literals = |
4764 | last_fragP->tc_frag_data.use_absolute_literals; | |
4765 | } | |
4766 | } | |
4767 | if (fragP->tc_frag_data.is_assembly_state_set) | |
4768 | last_fragP = fragP; | |
4769 | } | |
4770 | } | |
4771 | } | |
4772 | } | |
4773 | ||
4774 | ||
4775 | static void | |
7fa3d080 BW |
4776 | xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED, |
4777 | asection *sec, | |
4778 | void *unused ATTRIBUTE_UNUSED) | |
43cd72b9 BW |
4779 | { |
4780 | flagword flags = bfd_get_section_flags (abfd, sec); | |
4781 | segment_info_type *seginfo = seg_info (sec); | |
4782 | fragS *frag = seginfo->frchainP->frch_root; | |
c138bc38 | 4783 | |
43cd72b9 | 4784 | if (flags & SEC_CODE) |
c138bc38 | 4785 | { |
43cd72b9 BW |
4786 | xtensa_isa isa = xtensa_default_isa; |
4787 | xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa); | |
4788 | while (frag != NULL) | |
4789 | { | |
4790 | if (frag->tc_frag_data.is_branch_target) | |
4791 | { | |
4792 | int op_size; | |
664df4e4 | 4793 | addressT branch_align, frag_addr; |
43cd72b9 BW |
4794 | xtensa_format fmt; |
4795 | ||
d77b99c9 BW |
4796 | xtensa_insnbuf_from_chars |
4797 | (isa, insnbuf, (unsigned char *) frag->fr_literal, 0); | |
43cd72b9 BW |
4798 | fmt = xtensa_format_decode (isa, insnbuf); |
4799 | op_size = xtensa_format_length (isa, fmt); | |
664df4e4 BW |
4800 | branch_align = 1 << branch_align_power (sec); |
4801 | frag_addr = frag->fr_address % branch_align; | |
4802 | if (frag_addr + op_size > branch_align) | |
43cd72b9 BW |
4803 | as_warn_where (frag->fr_file, frag->fr_line, |
4804 | _("unaligned branch target: %d bytes at 0x%lx"), | |
dd49a749 | 4805 | op_size, (long) frag->fr_address); |
43cd72b9 BW |
4806 | } |
4807 | frag = frag->fr_next; | |
4808 | } | |
4809 | xtensa_insnbuf_free (isa, insnbuf); | |
4810 | } | |
4811 | } | |
4812 | ||
4813 | ||
4814 | static void | |
7fa3d080 BW |
4815 | xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED, |
4816 | asection *sec, | |
4817 | void *unused ATTRIBUTE_UNUSED) | |
43cd72b9 BW |
4818 | { |
4819 | flagword flags = bfd_get_section_flags (abfd, sec); | |
4820 | segment_info_type *seginfo = seg_info (sec); | |
4821 | fragS *frag = seginfo->frchainP->frch_root; | |
4822 | xtensa_isa isa = xtensa_default_isa; | |
c138bc38 | 4823 | |
43cd72b9 | 4824 | if (flags & SEC_CODE) |
c138bc38 | 4825 | { |
43cd72b9 BW |
4826 | xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa); |
4827 | while (frag != NULL) | |
4828 | { | |
4829 | if (frag->tc_frag_data.is_first_loop_insn) | |
4830 | { | |
4831 | int op_size; | |
d77b99c9 | 4832 | addressT frag_addr; |
43cd72b9 BW |
4833 | xtensa_format fmt; |
4834 | ||
d77b99c9 BW |
4835 | xtensa_insnbuf_from_chars |
4836 | (isa, insnbuf, (unsigned char *) frag->fr_literal, 0); | |
43cd72b9 BW |
4837 | fmt = xtensa_format_decode (isa, insnbuf); |
4838 | op_size = xtensa_format_length (isa, fmt); | |
4839 | frag_addr = frag->fr_address % xtensa_fetch_width; | |
4840 | ||
d77b99c9 | 4841 | if (frag_addr + op_size > xtensa_fetch_width) |
43cd72b9 BW |
4842 | as_warn_where (frag->fr_file, frag->fr_line, |
4843 | _("unaligned loop: %d bytes at 0x%lx"), | |
dd49a749 | 4844 | op_size, (long) frag->fr_address); |
43cd72b9 BW |
4845 | } |
4846 | frag = frag->fr_next; | |
4847 | } | |
4848 | xtensa_insnbuf_free (isa, insnbuf); | |
4849 | } | |
4850 | } | |
4851 | ||
4852 | ||
30f725a1 BW |
4853 | static int |
4854 | xg_apply_fix_value (fixS *fixP, valueT val) | |
43cd72b9 BW |
4855 | { |
4856 | xtensa_isa isa = xtensa_default_isa; | |
4857 | static xtensa_insnbuf insnbuf = NULL; | |
4858 | static xtensa_insnbuf slotbuf = NULL; | |
4859 | xtensa_format fmt; | |
4860 | int slot; | |
4861 | bfd_boolean alt_reloc; | |
4862 | xtensa_opcode opcode; | |
4863 | char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where; | |
4864 | ||
4865 | (void) decode_reloc (fixP->fx_r_type, &slot, &alt_reloc); | |
4866 | if (alt_reloc) | |
4867 | as_fatal (_("unexpected fix")); | |
4868 | ||
4869 | if (!insnbuf) | |
4870 | { | |
4871 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4872 | slotbuf = xtensa_insnbuf_alloc (isa); | |
4873 | } | |
4874 | ||
d77b99c9 | 4875 | xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0); |
43cd72b9 BW |
4876 | fmt = xtensa_format_decode (isa, insnbuf); |
4877 | if (fmt == XTENSA_UNDEFINED) | |
4878 | as_fatal (_("undecodable fix")); | |
4879 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); | |
4880 | opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
4881 | if (opcode == XTENSA_UNDEFINED) | |
4882 | as_fatal (_("undecodable fix")); | |
4883 | ||
4884 | /* CONST16 immediates are not PC-relative, despite the fact that we | |
4885 | reuse the normal PC-relative operand relocations for the low part | |
30f725a1 | 4886 | of a CONST16 operand. */ |
43cd72b9 | 4887 | if (opcode == xtensa_const16_opcode) |
30f725a1 | 4888 | return 0; |
43cd72b9 BW |
4889 | |
4890 | xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, | |
4891 | get_relaxable_immed (opcode), val, | |
4892 | fixP->fx_file, fixP->fx_line); | |
4893 | ||
4894 | xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf); | |
d77b99c9 | 4895 | xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0); |
30f725a1 BW |
4896 | |
4897 | return 1; | |
43cd72b9 BW |
4898 | } |
4899 | ||
e0001a05 NC |
4900 | \f |
4901 | /* External Functions and Other GAS Hooks. */ | |
4902 | ||
4903 | const char * | |
7fa3d080 | 4904 | xtensa_target_format (void) |
e0001a05 NC |
4905 | { |
4906 | return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le"); | |
4907 | } | |
4908 | ||
4909 | ||
4910 | void | |
7fa3d080 | 4911 | xtensa_file_arch_init (bfd *abfd) |
e0001a05 NC |
4912 | { |
4913 | bfd_set_private_flags (abfd, 0x100 | 0x200); | |
4914 | } | |
4915 | ||
4916 | ||
4917 | void | |
7fa3d080 | 4918 | md_number_to_chars (char *buf, valueT val, int n) |
e0001a05 NC |
4919 | { |
4920 | if (target_big_endian) | |
4921 | number_to_chars_bigendian (buf, val, n); | |
4922 | else | |
4923 | number_to_chars_littleendian (buf, val, n); | |
4924 | } | |
4925 | ||
4926 | ||
4927 | /* This function is called once, at assembler startup time. It should | |
4928 | set up all the tables, etc. that the MD part of the assembler will | |
4929 | need. */ | |
4930 | ||
4931 | void | |
7fa3d080 | 4932 | md_begin (void) |
e0001a05 NC |
4933 | { |
4934 | segT current_section = now_seg; | |
4935 | int current_subsec = now_subseg; | |
4936 | xtensa_isa isa; | |
4937 | ||
43cd72b9 | 4938 | xtensa_default_isa = xtensa_isa_init (0, 0); |
e0001a05 | 4939 | isa = xtensa_default_isa; |
e0001a05 | 4940 | |
43cd72b9 BW |
4941 | linkrelax = 1; |
4942 | ||
4943 | /* Set up the .literal, .fini.literal and .init.literal sections. */ | |
e0001a05 NC |
4944 | memset (&default_lit_sections, 0, sizeof (default_lit_sections)); |
4945 | default_lit_sections.init_lit_seg_name = INIT_LITERAL_SECTION_NAME; | |
4946 | default_lit_sections.fini_lit_seg_name = FINI_LITERAL_SECTION_NAME; | |
4947 | default_lit_sections.lit_seg_name = LITERAL_SECTION_NAME; | |
43cd72b9 | 4948 | default_lit_sections.lit4_seg_name = LIT4_SECTION_NAME; |
e0001a05 NC |
4949 | |
4950 | subseg_set (current_section, current_subsec); | |
4951 | ||
43cd72b9 BW |
4952 | xg_init_vinsn (&cur_vinsn); |
4953 | ||
e0001a05 NC |
4954 | xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi"); |
4955 | xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi"); | |
4956 | xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0"); | |
4957 | xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4"); | |
4958 | xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8"); | |
4959 | xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12"); | |
4960 | xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0"); | |
4961 | xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4"); | |
4962 | xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8"); | |
4963 | xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12"); | |
43cd72b9 | 4964 | xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16"); |
e0001a05 | 4965 | xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry"); |
43cd72b9 BW |
4966 | xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi"); |
4967 | xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n"); | |
e0001a05 | 4968 | xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync"); |
e0001a05 | 4969 | xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx"); |
43cd72b9 | 4970 | xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r"); |
e0001a05 NC |
4971 | xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop"); |
4972 | xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez"); | |
4973 | xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz"); | |
43cd72b9 | 4974 | xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop"); |
e0001a05 NC |
4975 | xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n"); |
4976 | xtensa_or_opcode = xtensa_opcode_lookup (isa, "or"); | |
4977 | xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret"); | |
4978 | xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n"); | |
4979 | xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw"); | |
4980 | xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n"); | |
43cd72b9 | 4981 | xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount"); |
e0001a05 | 4982 | xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti"); |
43cd72b9 BW |
4983 | |
4984 | init_op_placement_info_table (); | |
4985 | ||
4986 | /* Set up the assembly state. */ | |
4987 | if (!frag_now->tc_frag_data.is_assembly_state_set) | |
4988 | xtensa_set_frag_assembly_state (frag_now); | |
4989 | } | |
4990 | ||
4991 | ||
4992 | /* TC_INIT_FIX_DATA hook */ | |
4993 | ||
4994 | void | |
7fa3d080 | 4995 | xtensa_init_fix_data (fixS *x) |
43cd72b9 BW |
4996 | { |
4997 | x->tc_fix_data.slot = 0; | |
4998 | x->tc_fix_data.X_add_symbol = NULL; | |
4999 | x->tc_fix_data.X_add_number = 0; | |
e0001a05 NC |
5000 | } |
5001 | ||
5002 | ||
5003 | /* tc_frob_label hook */ | |
5004 | ||
5005 | void | |
7fa3d080 | 5006 | xtensa_frob_label (symbolS *sym) |
e0001a05 | 5007 | { |
3ea38ac2 BW |
5008 | float freq; |
5009 | ||
5010 | if (cur_vinsn.inside_bundle) | |
5011 | { | |
5012 | as_bad (_("labels are not valid inside bundles")); | |
5013 | return; | |
5014 | } | |
5015 | ||
5016 | freq = get_subseg_target_freq (now_seg, now_subseg); | |
7b1cc377 | 5017 | |
43cd72b9 BW |
5018 | /* Since the label was already attached to a frag associated with the |
5019 | previous basic block, it now needs to be reset to the current frag. */ | |
5020 | symbol_set_frag (sym, frag_now); | |
5021 | S_SET_VALUE (sym, (valueT) frag_now_fix ()); | |
5022 | ||
82e7541d BW |
5023 | if (generating_literals) |
5024 | xtensa_add_literal_sym (sym); | |
5025 | else | |
5026 | xtensa_add_insn_label (sym); | |
5027 | ||
7b1cc377 BW |
5028 | if (symbol_get_tc (sym)->is_loop_target) |
5029 | { | |
5030 | if ((get_last_insn_flags (now_seg, now_subseg) | |
e0001a05 | 5031 | & FLAG_IS_BAD_LOOPEND) != 0) |
7b1cc377 BW |
5032 | as_bad (_("invalid last instruction for a zero-overhead loop")); |
5033 | ||
5034 | xtensa_set_frag_assembly_state (frag_now); | |
5035 | frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END, | |
5036 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
5037 | ||
5038 | xtensa_set_frag_assembly_state (frag_now); | |
5039 | xtensa_move_labels (frag_now, 0, TRUE); | |
07a53e5c | 5040 | } |
e0001a05 NC |
5041 | |
5042 | /* No target aligning in the absolute section. */ | |
61846f28 | 5043 | if (now_seg != absolute_section |
43cd72b9 | 5044 | && do_align_targets () |
61846f28 | 5045 | && !is_unaligned_label (sym) |
43cd72b9 BW |
5046 | && !generating_literals) |
5047 | { | |
43cd72b9 BW |
5048 | xtensa_set_frag_assembly_state (frag_now); |
5049 | ||
43cd72b9 | 5050 | frag_var (rs_machine_dependent, |
7b1cc377 | 5051 | 0, (int) freq, |
e0001a05 NC |
5052 | RELAX_DESIRE_ALIGN_IF_TARGET, |
5053 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
43cd72b9 | 5054 | xtensa_set_frag_assembly_state (frag_now); |
82e7541d | 5055 | xtensa_move_labels (frag_now, 0, TRUE); |
43cd72b9 BW |
5056 | } |
5057 | ||
5058 | /* We need to mark the following properties even if we aren't aligning. */ | |
5059 | ||
5060 | /* If the label is already known to be a branch target, i.e., a | |
5061 | forward branch, mark the frag accordingly. Backward branches | |
5062 | are handled by xg_add_branch_and_loop_targets. */ | |
5063 | if (symbol_get_tc (sym)->is_branch_target) | |
5064 | symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE; | |
5065 | ||
5066 | /* Loops only go forward, so they can be identified here. */ | |
5067 | if (symbol_get_tc (sym)->is_loop_target) | |
5068 | symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE; | |
07a53e5c RH |
5069 | |
5070 | dwarf2_emit_label (sym); | |
43cd72b9 BW |
5071 | } |
5072 | ||
5073 | ||
5074 | /* tc_unrecognized_line hook */ | |
5075 | ||
5076 | int | |
7fa3d080 | 5077 | xtensa_unrecognized_line (int ch) |
43cd72b9 BW |
5078 | { |
5079 | switch (ch) | |
5080 | { | |
5081 | case '{' : | |
5082 | if (cur_vinsn.inside_bundle == 0) | |
5083 | { | |
5084 | /* PR8110: Cannot emit line number info inside a FLIX bundle | |
5085 | when using --gstabs. Temporarily disable debug info. */ | |
5086 | generate_lineno_debug (); | |
5087 | if (debug_type == DEBUG_STABS) | |
5088 | { | |
5089 | xt_saved_debug_type = debug_type; | |
5090 | debug_type = DEBUG_NONE; | |
5091 | } | |
82e7541d | 5092 | |
43cd72b9 BW |
5093 | cur_vinsn.inside_bundle = 1; |
5094 | } | |
5095 | else | |
5096 | { | |
5097 | as_bad (_("extra opening brace")); | |
5098 | return 0; | |
5099 | } | |
5100 | break; | |
82e7541d | 5101 | |
43cd72b9 BW |
5102 | case '}' : |
5103 | if (cur_vinsn.inside_bundle) | |
5104 | finish_vinsn (&cur_vinsn); | |
5105 | else | |
5106 | { | |
5107 | as_bad (_("extra closing brace")); | |
5108 | return 0; | |
5109 | } | |
5110 | break; | |
5111 | default: | |
5112 | as_bad (_("syntax error")); | |
5113 | return 0; | |
e0001a05 | 5114 | } |
43cd72b9 | 5115 | return 1; |
e0001a05 NC |
5116 | } |
5117 | ||
5118 | ||
5119 | /* md_flush_pending_output hook */ | |
5120 | ||
5121 | void | |
7fa3d080 | 5122 | xtensa_flush_pending_output (void) |
e0001a05 | 5123 | { |
43cd72b9 BW |
5124 | if (cur_vinsn.inside_bundle) |
5125 | as_bad (_("missing closing brace")); | |
5126 | ||
e0001a05 NC |
5127 | /* If there is a non-zero instruction fragment, close it. */ |
5128 | if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn) | |
5129 | { | |
5130 | frag_wane (frag_now); | |
5131 | frag_new (0); | |
43cd72b9 | 5132 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
5133 | } |
5134 | frag_now->tc_frag_data.is_insn = FALSE; | |
82e7541d BW |
5135 | |
5136 | xtensa_clear_insn_labels (); | |
e0001a05 NC |
5137 | } |
5138 | ||
5139 | ||
43cd72b9 BW |
5140 | /* We had an error while parsing an instruction. The string might look |
5141 | like this: "insn arg1, arg2 }". If so, we need to see the closing | |
5142 | brace and reset some fields. Otherwise, the vinsn never gets closed | |
5143 | and the num_slots field will grow past the end of the array of slots, | |
5144 | and bad things happen. */ | |
5145 | ||
5146 | static void | |
7fa3d080 | 5147 | error_reset_cur_vinsn (void) |
43cd72b9 BW |
5148 | { |
5149 | if (cur_vinsn.inside_bundle) | |
5150 | { | |
5151 | if (*input_line_pointer == '}' | |
5152 | || *(input_line_pointer - 1) == '}' | |
5153 | || *(input_line_pointer - 2) == '}') | |
5154 | xg_clear_vinsn (&cur_vinsn); | |
5155 | } | |
5156 | } | |
5157 | ||
5158 | ||
e0001a05 | 5159 | void |
7fa3d080 | 5160 | md_assemble (char *str) |
e0001a05 NC |
5161 | { |
5162 | xtensa_isa isa = xtensa_default_isa; | |
7c430684 | 5163 | char *opname, *file_name; |
e0001a05 NC |
5164 | unsigned opnamelen; |
5165 | bfd_boolean has_underbar = FALSE; | |
43cd72b9 | 5166 | char *arg_strings[MAX_INSN_ARGS]; |
e0001a05 | 5167 | int num_args; |
e0001a05 | 5168 | TInsn orig_insn; /* Original instruction from the input. */ |
e0001a05 | 5169 | |
e0001a05 NC |
5170 | tinsn_init (&orig_insn); |
5171 | ||
5172 | /* Split off the opcode. */ | |
5173 | opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789."); | |
5174 | opname = xmalloc (opnamelen + 1); | |
5175 | memcpy (opname, str, opnamelen); | |
5176 | opname[opnamelen] = '\0'; | |
5177 | ||
5178 | num_args = tokenize_arguments (arg_strings, str + opnamelen); | |
5179 | if (num_args == -1) | |
5180 | { | |
5181 | as_bad (_("syntax error")); | |
5182 | return; | |
5183 | } | |
5184 | ||
5185 | if (xg_translate_idioms (&opname, &num_args, arg_strings)) | |
5186 | return; | |
5187 | ||
5188 | /* Check for an underbar prefix. */ | |
5189 | if (*opname == '_') | |
5190 | { | |
5191 | has_underbar = TRUE; | |
5192 | opname += 1; | |
5193 | } | |
5194 | ||
5195 | orig_insn.insn_type = ITYPE_INSN; | |
5196 | orig_insn.ntok = 0; | |
43cd72b9 | 5197 | orig_insn.is_specific_opcode = (has_underbar || !use_transform ()); |
e0001a05 NC |
5198 | |
5199 | orig_insn.opcode = xtensa_opcode_lookup (isa, opname); | |
5200 | if (orig_insn.opcode == XTENSA_UNDEFINED) | |
5201 | { | |
43cd72b9 BW |
5202 | xtensa_format fmt = xtensa_format_lookup (isa, opname); |
5203 | if (fmt == XTENSA_UNDEFINED) | |
5204 | { | |
5205 | as_bad (_("unknown opcode or format name '%s'"), opname); | |
5206 | error_reset_cur_vinsn (); | |
5207 | return; | |
5208 | } | |
5209 | if (!cur_vinsn.inside_bundle) | |
5210 | { | |
5211 | as_bad (_("format names only valid inside bundles")); | |
5212 | error_reset_cur_vinsn (); | |
5213 | return; | |
5214 | } | |
5215 | if (cur_vinsn.format != XTENSA_UNDEFINED) | |
5216 | as_warn (_("multiple formats specified for one bundle; using '%s'"), | |
5217 | opname); | |
5218 | cur_vinsn.format = fmt; | |
5219 | free (has_underbar ? opname - 1 : opname); | |
5220 | error_reset_cur_vinsn (); | |
e0001a05 NC |
5221 | return; |
5222 | } | |
5223 | ||
e0001a05 NC |
5224 | /* Parse the arguments. */ |
5225 | if (parse_arguments (&orig_insn, num_args, arg_strings)) | |
5226 | { | |
5227 | as_bad (_("syntax error")); | |
43cd72b9 | 5228 | error_reset_cur_vinsn (); |
e0001a05 NC |
5229 | return; |
5230 | } | |
5231 | ||
5232 | /* Free the opcode and argument strings, now that they've been parsed. */ | |
5233 | free (has_underbar ? opname - 1 : opname); | |
5234 | opname = 0; | |
5235 | while (num_args-- > 0) | |
5236 | free (arg_strings[num_args]); | |
5237 | ||
43cd72b9 BW |
5238 | /* Get expressions for invisible operands. */ |
5239 | if (get_invisible_operands (&orig_insn)) | |
5240 | { | |
5241 | error_reset_cur_vinsn (); | |
5242 | return; | |
5243 | } | |
5244 | ||
e0001a05 NC |
5245 | /* Check for the right number and type of arguments. */ |
5246 | if (tinsn_check_arguments (&orig_insn)) | |
e0001a05 | 5247 | { |
43cd72b9 BW |
5248 | error_reset_cur_vinsn (); |
5249 | return; | |
e0001a05 NC |
5250 | } |
5251 | ||
7c430684 BW |
5252 | /* A FLIX bundle may be spread across multiple input lines. We want to |
5253 | report the first such line in the debug information. Record the line | |
5254 | number for each TInsn (assume the file name doesn't change), so the | |
5255 | first line can be found later. */ | |
5256 | as_where (&file_name, &orig_insn.linenum); | |
c138bc38 | 5257 | |
43cd72b9 BW |
5258 | xg_add_branch_and_loop_targets (&orig_insn); |
5259 | ||
61846f28 | 5260 | /* Special-case for "entry" instruction. */ |
b08b5071 | 5261 | if (orig_insn.opcode == xtensa_entry_opcode) |
e0001a05 | 5262 | { |
43cd72b9 BW |
5263 | /* Check that the third opcode (#2) is >= 16. */ |
5264 | if (orig_insn.ntok >= 3) | |
e0001a05 | 5265 | { |
43cd72b9 | 5266 | expressionS *exp = &orig_insn.tok[2]; |
e0001a05 NC |
5267 | switch (exp->X_op) |
5268 | { | |
5269 | case O_constant: | |
5270 | if (exp->X_add_number < 16) | |
5271 | as_warn (_("entry instruction with stack decrement < 16")); | |
5272 | break; | |
5273 | ||
5274 | default: | |
5275 | as_warn (_("entry instruction with non-constant decrement")); | |
5276 | } | |
5277 | } | |
e0001a05 NC |
5278 | } |
5279 | ||
e0001a05 | 5280 | /* Finish it off: |
43cd72b9 BW |
5281 | assemble_tokens (opcode, tok, ntok); |
5282 | expand the tokens from the orig_insn into the | |
5283 | stack of instructions that will not expand | |
e0001a05 | 5284 | unless required at relaxation time. */ |
e0001a05 | 5285 | |
43cd72b9 BW |
5286 | if (!cur_vinsn.inside_bundle) |
5287 | emit_single_op (&orig_insn); | |
5288 | else /* We are inside a bundle. */ | |
e0001a05 | 5289 | { |
43cd72b9 BW |
5290 | cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn; |
5291 | cur_vinsn.num_slots++; | |
5292 | if (*input_line_pointer == '}' | |
5293 | || *(input_line_pointer - 1) == '}' | |
5294 | || *(input_line_pointer - 2) == '}') | |
5295 | finish_vinsn (&cur_vinsn); | |
e0001a05 NC |
5296 | } |
5297 | ||
43cd72b9 BW |
5298 | /* We've just emitted a new instruction so clear the list of labels. */ |
5299 | xtensa_clear_insn_labels (); | |
e0001a05 NC |
5300 | } |
5301 | ||
5302 | ||
43cd72b9 | 5303 | /* HANDLE_ALIGN hook */ |
e0001a05 | 5304 | |
43cd72b9 BW |
5305 | /* For a .align directive, we mark the previous block with the alignment |
5306 | information. This will be placed in the object file in the | |
5307 | property section corresponding to this section. */ | |
e0001a05 | 5308 | |
43cd72b9 | 5309 | void |
7fa3d080 | 5310 | xtensa_handle_align (fragS *fragP) |
43cd72b9 BW |
5311 | { |
5312 | if (linkrelax | |
b08b5071 | 5313 | && ! fragP->tc_frag_data.is_literal |
43cd72b9 BW |
5314 | && (fragP->fr_type == rs_align |
5315 | || fragP->fr_type == rs_align_code) | |
5316 | && fragP->fr_address + fragP->fr_fix > 0 | |
5317 | && fragP->fr_offset > 0 | |
5318 | && now_seg != bss_section) | |
e0001a05 | 5319 | { |
43cd72b9 BW |
5320 | fragP->tc_frag_data.is_align = TRUE; |
5321 | fragP->tc_frag_data.alignment = fragP->fr_offset; | |
e0001a05 NC |
5322 | } |
5323 | ||
43cd72b9 | 5324 | if (fragP->fr_type == rs_align_test) |
e0001a05 | 5325 | { |
43cd72b9 BW |
5326 | int count; |
5327 | count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix; | |
5328 | if (count != 0) | |
c138bc38 | 5329 | as_bad_where (fragP->fr_file, fragP->fr_line, |
43cd72b9 | 5330 | _("unaligned entry instruction")); |
e0001a05 | 5331 | } |
e0001a05 | 5332 | } |
43cd72b9 | 5333 | |
e0001a05 NC |
5334 | |
5335 | /* TC_FRAG_INIT hook */ | |
5336 | ||
5337 | void | |
7fa3d080 | 5338 | xtensa_frag_init (fragS *frag) |
e0001a05 | 5339 | { |
43cd72b9 | 5340 | xtensa_set_frag_assembly_state (frag); |
e0001a05 NC |
5341 | } |
5342 | ||
5343 | ||
5344 | symbolS * | |
7fa3d080 | 5345 | md_undefined_symbol (char *name ATTRIBUTE_UNUSED) |
e0001a05 NC |
5346 | { |
5347 | return NULL; | |
5348 | } | |
5349 | ||
5350 | ||
5351 | /* Round up a section size to the appropriate boundary. */ | |
5352 | ||
5353 | valueT | |
7fa3d080 | 5354 | md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size) |
e0001a05 NC |
5355 | { |
5356 | return size; /* Byte alignment is fine. */ | |
5357 | } | |
5358 | ||
5359 | ||
5360 | long | |
7fa3d080 | 5361 | md_pcrel_from (fixS *fixP) |
e0001a05 NC |
5362 | { |
5363 | char *insn_p; | |
5364 | static xtensa_insnbuf insnbuf = NULL; | |
43cd72b9 | 5365 | static xtensa_insnbuf slotbuf = NULL; |
e0001a05 | 5366 | int opnum; |
43cd72b9 | 5367 | uint32 opnd_value; |
e0001a05 | 5368 | xtensa_opcode opcode; |
43cd72b9 BW |
5369 | xtensa_format fmt; |
5370 | int slot; | |
e0001a05 NC |
5371 | xtensa_isa isa = xtensa_default_isa; |
5372 | valueT addr = fixP->fx_where + fixP->fx_frag->fr_address; | |
43cd72b9 | 5373 | bfd_boolean alt_reloc; |
e0001a05 | 5374 | |
e0001a05 | 5375 | if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND) |
30f725a1 | 5376 | return 0; |
e0001a05 NC |
5377 | |
5378 | if (!insnbuf) | |
43cd72b9 BW |
5379 | { |
5380 | insnbuf = xtensa_insnbuf_alloc (isa); | |
5381 | slotbuf = xtensa_insnbuf_alloc (isa); | |
5382 | } | |
e0001a05 NC |
5383 | |
5384 | insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where]; | |
d77b99c9 | 5385 | xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0); |
43cd72b9 BW |
5386 | fmt = xtensa_format_decode (isa, insnbuf); |
5387 | ||
5388 | if (fmt == XTENSA_UNDEFINED) | |
5389 | as_fatal (_("bad instruction format")); | |
5390 | ||
5391 | if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0) | |
5392 | as_fatal (_("invalid relocation")); | |
5393 | ||
5394 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); | |
5395 | opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
5396 | ||
30f725a1 BW |
5397 | /* Check for "alternate" relocations (operand not specified). None |
5398 | of the current uses for these are really PC-relative. */ | |
43cd72b9 BW |
5399 | if (alt_reloc || opcode == xtensa_const16_opcode) |
5400 | { | |
5401 | if (opcode != xtensa_l32r_opcode | |
5402 | && opcode != xtensa_const16_opcode) | |
5403 | as_fatal (_("invalid relocation for '%s' instruction"), | |
5404 | xtensa_opcode_name (isa, opcode)); | |
30f725a1 | 5405 | return 0; |
e0001a05 NC |
5406 | } |
5407 | ||
43cd72b9 BW |
5408 | opnum = get_relaxable_immed (opcode); |
5409 | opnd_value = 0; | |
5410 | if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1 | |
5411 | || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr)) | |
e0001a05 NC |
5412 | { |
5413 | as_bad_where (fixP->fx_file, | |
5414 | fixP->fx_line, | |
5415 | _("invalid relocation for operand %d of '%s'"), | |
5416 | opnum, xtensa_opcode_name (isa, opcode)); | |
30f725a1 | 5417 | return 0; |
e0001a05 | 5418 | } |
43cd72b9 BW |
5419 | return 0 - opnd_value; |
5420 | } | |
5421 | ||
5422 | ||
5423 | /* TC_FORCE_RELOCATION hook */ | |
5424 | ||
5425 | int | |
7fa3d080 | 5426 | xtensa_force_relocation (fixS *fix) |
43cd72b9 BW |
5427 | { |
5428 | switch (fix->fx_r_type) | |
30f725a1 BW |
5429 | { |
5430 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
43cd72b9 BW |
5431 | case BFD_RELOC_XTENSA_SLOT0_ALT: |
5432 | case BFD_RELOC_XTENSA_SLOT1_ALT: | |
5433 | case BFD_RELOC_XTENSA_SLOT2_ALT: | |
5434 | case BFD_RELOC_XTENSA_SLOT3_ALT: | |
5435 | case BFD_RELOC_XTENSA_SLOT4_ALT: | |
5436 | case BFD_RELOC_XTENSA_SLOT5_ALT: | |
5437 | case BFD_RELOC_XTENSA_SLOT6_ALT: | |
5438 | case BFD_RELOC_XTENSA_SLOT7_ALT: | |
5439 | case BFD_RELOC_XTENSA_SLOT8_ALT: | |
5440 | case BFD_RELOC_XTENSA_SLOT9_ALT: | |
5441 | case BFD_RELOC_XTENSA_SLOT10_ALT: | |
5442 | case BFD_RELOC_XTENSA_SLOT11_ALT: | |
5443 | case BFD_RELOC_XTENSA_SLOT12_ALT: | |
5444 | case BFD_RELOC_XTENSA_SLOT13_ALT: | |
5445 | case BFD_RELOC_XTENSA_SLOT14_ALT: | |
43cd72b9 BW |
5446 | return 1; |
5447 | default: | |
5448 | break; | |
e0001a05 NC |
5449 | } |
5450 | ||
43cd72b9 BW |
5451 | if (linkrelax && fix->fx_addsy |
5452 | && relaxable_section (S_GET_SEGMENT (fix->fx_addsy))) | |
5453 | return 1; | |
5454 | ||
5455 | return generic_force_reloc (fix); | |
5456 | } | |
5457 | ||
5458 | ||
30f725a1 BW |
5459 | /* TC_VALIDATE_FIX_SUB hook */ |
5460 | ||
5461 | int | |
5462 | xtensa_validate_fix_sub (fixS *fix) | |
5463 | { | |
5464 | segT add_symbol_segment, sub_symbol_segment; | |
5465 | ||
5466 | /* The difference of two symbols should be resolved by the assembler when | |
5467 | linkrelax is not set. If the linker may relax the section containing | |
5468 | the symbols, then an Xtensa DIFF relocation must be generated so that | |
5469 | the linker knows to adjust the difference value. */ | |
5470 | if (!linkrelax || fix->fx_addsy == NULL) | |
5471 | return 0; | |
5472 | ||
5473 | /* Make sure both symbols are in the same segment, and that segment is | |
5474 | "normal" and relaxable. If the segment is not "normal", then the | |
5475 | fix is not valid. If the segment is not "relaxable", then the fix | |
5476 | should have been handled earlier. */ | |
5477 | add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy); | |
5478 | if (! SEG_NORMAL (add_symbol_segment) || | |
5479 | ! relaxable_section (add_symbol_segment)) | |
5480 | return 0; | |
5481 | sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy); | |
5482 | return (sub_symbol_segment == add_symbol_segment); | |
5483 | } | |
5484 | ||
5485 | ||
43cd72b9 BW |
5486 | /* NO_PSEUDO_DOT hook */ |
5487 | ||
5488 | /* This function has nothing to do with pseudo dots, but this is the | |
5489 | nearest macro to where the check needs to take place. FIXME: This | |
5490 | seems wrong. */ | |
5491 | ||
5492 | bfd_boolean | |
7fa3d080 | 5493 | xtensa_check_inside_bundle (void) |
43cd72b9 BW |
5494 | { |
5495 | if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.') | |
5496 | as_bad (_("directives are not valid inside bundles")); | |
5497 | ||
5498 | /* This function must always return FALSE because it is called via a | |
5499 | macro that has nothing to do with bundling. */ | |
5500 | return FALSE; | |
e0001a05 NC |
5501 | } |
5502 | ||
5503 | ||
43cd72b9 | 5504 | /* md_elf_section_change_hook */ |
e0001a05 NC |
5505 | |
5506 | void | |
7fa3d080 | 5507 | xtensa_elf_section_change_hook (void) |
e0001a05 | 5508 | { |
43cd72b9 BW |
5509 | /* Set up the assembly state. */ |
5510 | if (!frag_now->tc_frag_data.is_assembly_state_set) | |
5511 | xtensa_set_frag_assembly_state (frag_now); | |
e0001a05 NC |
5512 | } |
5513 | ||
5514 | ||
5515 | /* tc_fix_adjustable hook */ | |
5516 | ||
5517 | bfd_boolean | |
7fa3d080 | 5518 | xtensa_fix_adjustable (fixS *fixP) |
e0001a05 | 5519 | { |
43cd72b9 BW |
5520 | /* An offset is not allowed in combination with the difference of two |
5521 | symbols, but that cannot be easily detected after a local symbol | |
5522 | has been adjusted to a (section+offset) form. Return 0 so that such | |
5523 | an fix will not be adjusted. */ | |
5524 | if (fixP->fx_subsy && fixP->fx_addsy && fixP->fx_offset | |
5525 | && relaxable_section (S_GET_SEGMENT (fixP->fx_subsy))) | |
5526 | return 0; | |
5527 | ||
e0001a05 NC |
5528 | /* We need the symbol name for the VTABLE entries. */ |
5529 | if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT | |
5530 | || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY) | |
5531 | return 0; | |
5532 | ||
5533 | return 1; | |
5534 | } | |
5535 | ||
5536 | ||
5537 | void | |
55cf6793 | 5538 | md_apply_fix (fixS *fixP, valueT *valP, segT seg) |
e0001a05 | 5539 | { |
30f725a1 BW |
5540 | char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where; |
5541 | valueT val; | |
5542 | ||
5543 | switch (fixP->fx_r_type) | |
e0001a05 | 5544 | { |
30f725a1 BW |
5545 | case BFD_RELOC_32: |
5546 | case BFD_RELOC_16: | |
5547 | case BFD_RELOC_8: | |
5548 | if (linkrelax && fixP->fx_subsy) | |
5549 | { | |
5550 | switch (fixP->fx_r_type) | |
5551 | { | |
5552 | case BFD_RELOC_8: | |
5553 | fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8; | |
5554 | break; | |
5555 | case BFD_RELOC_16: | |
5556 | fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16; | |
5557 | break; | |
5558 | case BFD_RELOC_32: | |
5559 | fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32; | |
5560 | break; | |
5561 | default: | |
5562 | break; | |
5563 | } | |
e0001a05 | 5564 | |
30f725a1 BW |
5565 | /* An offset is only allowed when it results from adjusting a |
5566 | local symbol into a section-relative offset. If the offset | |
5567 | came from the original expression, tc_fix_adjustable will have | |
5568 | prevented the fix from being converted to a section-relative | |
5569 | form so that we can flag the error here. */ | |
5570 | if (fixP->fx_offset != 0 && !symbol_section_p (fixP->fx_addsy)) | |
5571 | as_bad_where (fixP->fx_file, fixP->fx_line, | |
5572 | _("cannot represent subtraction with an offset")); | |
5573 | ||
5574 | val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset | |
5575 | - S_GET_VALUE (fixP->fx_subsy)); | |
5576 | ||
5577 | /* The difference value gets written out, and the DIFF reloc | |
5578 | identifies the address of the subtracted symbol (i.e., the one | |
5579 | with the lowest address). */ | |
5580 | *valP = val; | |
5581 | fixP->fx_offset -= val; | |
5582 | fixP->fx_subsy = NULL; | |
5583 | } | |
5584 | else if (! fixP->fx_addsy) | |
e0001a05 | 5585 | { |
30f725a1 | 5586 | val = *valP; |
e0001a05 | 5587 | fixP->fx_done = 1; |
30f725a1 BW |
5588 | } |
5589 | else | |
5590 | break; | |
5591 | md_number_to_chars (fixpos, val, fixP->fx_size); | |
5592 | fixP->fx_no_overflow = 0; /* Use the standard overflow check. */ | |
5593 | break; | |
e0001a05 | 5594 | |
30f725a1 BW |
5595 | case BFD_RELOC_XTENSA_SLOT0_OP: |
5596 | case BFD_RELOC_XTENSA_SLOT1_OP: | |
5597 | case BFD_RELOC_XTENSA_SLOT2_OP: | |
5598 | case BFD_RELOC_XTENSA_SLOT3_OP: | |
5599 | case BFD_RELOC_XTENSA_SLOT4_OP: | |
5600 | case BFD_RELOC_XTENSA_SLOT5_OP: | |
5601 | case BFD_RELOC_XTENSA_SLOT6_OP: | |
5602 | case BFD_RELOC_XTENSA_SLOT7_OP: | |
5603 | case BFD_RELOC_XTENSA_SLOT8_OP: | |
5604 | case BFD_RELOC_XTENSA_SLOT9_OP: | |
5605 | case BFD_RELOC_XTENSA_SLOT10_OP: | |
5606 | case BFD_RELOC_XTENSA_SLOT11_OP: | |
5607 | case BFD_RELOC_XTENSA_SLOT12_OP: | |
5608 | case BFD_RELOC_XTENSA_SLOT13_OP: | |
5609 | case BFD_RELOC_XTENSA_SLOT14_OP: | |
5610 | if (linkrelax) | |
5611 | { | |
5612 | /* Write the tentative value of a PC-relative relocation to a | |
5613 | local symbol into the instruction. The value will be ignored | |
5614 | by the linker, and it makes the object file disassembly | |
5615 | readable when all branch targets are encoded in relocations. */ | |
5616 | ||
5617 | assert (fixP->fx_addsy); | |
5618 | if (S_GET_SEGMENT (fixP->fx_addsy) == seg && !fixP->fx_plt | |
5619 | && !S_FORCE_RELOC (fixP->fx_addsy, 1)) | |
5620 | { | |
5621 | val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset | |
5622 | - md_pcrel_from (fixP)); | |
5623 | (void) xg_apply_fix_value (fixP, val); | |
5624 | } | |
5625 | } | |
5626 | else if (! fixP->fx_addsy) | |
5627 | { | |
5628 | val = *valP; | |
5629 | if (xg_apply_fix_value (fixP, val)) | |
5630 | fixP->fx_done = 1; | |
5631 | } | |
5632 | break; | |
e0001a05 | 5633 | |
6e2a91a3 | 5634 | case BFD_RELOC_XTENSA_PLT: |
30f725a1 BW |
5635 | case BFD_RELOC_XTENSA_ASM_EXPAND: |
5636 | case BFD_RELOC_XTENSA_SLOT0_ALT: | |
5637 | case BFD_RELOC_XTENSA_SLOT1_ALT: | |
5638 | case BFD_RELOC_XTENSA_SLOT2_ALT: | |
5639 | case BFD_RELOC_XTENSA_SLOT3_ALT: | |
5640 | case BFD_RELOC_XTENSA_SLOT4_ALT: | |
5641 | case BFD_RELOC_XTENSA_SLOT5_ALT: | |
5642 | case BFD_RELOC_XTENSA_SLOT6_ALT: | |
5643 | case BFD_RELOC_XTENSA_SLOT7_ALT: | |
5644 | case BFD_RELOC_XTENSA_SLOT8_ALT: | |
5645 | case BFD_RELOC_XTENSA_SLOT9_ALT: | |
5646 | case BFD_RELOC_XTENSA_SLOT10_ALT: | |
5647 | case BFD_RELOC_XTENSA_SLOT11_ALT: | |
5648 | case BFD_RELOC_XTENSA_SLOT12_ALT: | |
5649 | case BFD_RELOC_XTENSA_SLOT13_ALT: | |
5650 | case BFD_RELOC_XTENSA_SLOT14_ALT: | |
5651 | /* These all need to be resolved at link-time. Do nothing now. */ | |
5652 | break; | |
e0001a05 | 5653 | |
30f725a1 BW |
5654 | case BFD_RELOC_VTABLE_INHERIT: |
5655 | case BFD_RELOC_VTABLE_ENTRY: | |
5656 | fixP->fx_done = 0; | |
5657 | break; | |
e0001a05 | 5658 | |
30f725a1 BW |
5659 | default: |
5660 | as_bad (_("unhandled local relocation fix %s"), | |
5661 | bfd_get_reloc_code_name (fixP->fx_r_type)); | |
e0001a05 NC |
5662 | } |
5663 | } | |
5664 | ||
5665 | ||
5666 | char * | |
7fa3d080 | 5667 | md_atof (int type, char *litP, int *sizeP) |
e0001a05 NC |
5668 | { |
5669 | int prec; | |
5670 | LITTLENUM_TYPE words[4]; | |
5671 | char *t; | |
5672 | int i; | |
5673 | ||
5674 | switch (type) | |
5675 | { | |
5676 | case 'f': | |
5677 | prec = 2; | |
5678 | break; | |
5679 | ||
5680 | case 'd': | |
5681 | prec = 4; | |
5682 | break; | |
5683 | ||
5684 | default: | |
5685 | *sizeP = 0; | |
5686 | return "bad call to md_atof"; | |
5687 | } | |
5688 | ||
5689 | t = atof_ieee (input_line_pointer, type, words); | |
5690 | if (t) | |
5691 | input_line_pointer = t; | |
5692 | ||
5693 | *sizeP = prec * 2; | |
5694 | ||
5695 | for (i = prec - 1; i >= 0; i--) | |
5696 | { | |
5697 | int idx = i; | |
5698 | if (target_big_endian) | |
5699 | idx = (prec - 1 - i); | |
5700 | ||
5701 | md_number_to_chars (litP, (valueT) words[idx], 2); | |
5702 | litP += 2; | |
5703 | } | |
5704 | ||
5705 | return NULL; | |
5706 | } | |
5707 | ||
5708 | ||
5709 | int | |
7fa3d080 | 5710 | md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED) |
e0001a05 | 5711 | { |
34e41783 | 5712 | return total_frag_text_expansion (fragP); |
e0001a05 NC |
5713 | } |
5714 | ||
5715 | ||
5716 | /* Translate internal representation of relocation info to BFD target | |
5717 | format. */ | |
5718 | ||
5719 | arelent * | |
30f725a1 | 5720 | tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp) |
e0001a05 NC |
5721 | { |
5722 | arelent *reloc; | |
5723 | ||
5724 | reloc = (arelent *) xmalloc (sizeof (arelent)); | |
5725 | reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); | |
5726 | *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); | |
5727 | reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; | |
5728 | ||
5729 | /* Make sure none of our internal relocations make it this far. | |
5730 | They'd better have been fully resolved by this point. */ | |
5731 | assert ((int) fixp->fx_r_type > 0); | |
5732 | ||
30f725a1 | 5733 | reloc->addend = fixp->fx_offset; |
43cd72b9 | 5734 | |
e0001a05 NC |
5735 | reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); |
5736 | if (reloc->howto == NULL) | |
5737 | { | |
5738 | as_bad_where (fixp->fx_file, fixp->fx_line, | |
5739 | _("cannot represent `%s' relocation in object file"), | |
5740 | bfd_get_reloc_code_name (fixp->fx_r_type)); | |
43cd72b9 BW |
5741 | free (reloc->sym_ptr_ptr); |
5742 | free (reloc); | |
e0001a05 NC |
5743 | return NULL; |
5744 | } | |
5745 | ||
5746 | if (!fixp->fx_pcrel != !reloc->howto->pc_relative) | |
43cd72b9 BW |
5747 | as_fatal (_("internal error? cannot generate `%s' relocation"), |
5748 | bfd_get_reloc_code_name (fixp->fx_r_type)); | |
e0001a05 | 5749 | |
e0001a05 NC |
5750 | return reloc; |
5751 | } | |
5752 | ||
7fa3d080 BW |
5753 | \f |
5754 | /* Checks for resource conflicts between instructions. */ | |
5755 | ||
c138bc38 BW |
5756 | /* The func unit stuff could be implemented as bit-vectors rather |
5757 | than the iterative approach here. If it ends up being too | |
7fa3d080 BW |
5758 | slow, we will switch it. */ |
5759 | ||
c138bc38 | 5760 | resource_table * |
7fa3d080 BW |
5761 | new_resource_table (void *data, |
5762 | int cycles, | |
5763 | int nu, | |
5764 | unit_num_copies_func uncf, | |
5765 | opcode_num_units_func onuf, | |
5766 | opcode_funcUnit_use_unit_func ouuf, | |
5767 | opcode_funcUnit_use_stage_func ousf) | |
5768 | { | |
5769 | int i; | |
5770 | resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table)); | |
5771 | rt->data = data; | |
5772 | rt->cycles = cycles; | |
5773 | rt->allocated_cycles = cycles; | |
5774 | rt->num_units = nu; | |
5775 | rt->unit_num_copies = uncf; | |
5776 | rt->opcode_num_units = onuf; | |
5777 | rt->opcode_unit_use = ouuf; | |
5778 | rt->opcode_unit_stage = ousf; | |
5779 | ||
0bf60745 | 5780 | rt->units = (unsigned char **) xcalloc (cycles, sizeof (unsigned char *)); |
7fa3d080 | 5781 | for (i = 0; i < cycles; i++) |
0bf60745 | 5782 | rt->units[i] = (unsigned char *) xcalloc (nu, sizeof (unsigned char)); |
7fa3d080 BW |
5783 | |
5784 | return rt; | |
5785 | } | |
5786 | ||
5787 | ||
c138bc38 | 5788 | void |
7fa3d080 BW |
5789 | clear_resource_table (resource_table *rt) |
5790 | { | |
5791 | int i, j; | |
5792 | for (i = 0; i < rt->allocated_cycles; i++) | |
5793 | for (j = 0; j < rt->num_units; j++) | |
5794 | rt->units[i][j] = 0; | |
5795 | } | |
5796 | ||
5797 | ||
5798 | /* We never shrink it, just fake it into thinking so. */ | |
5799 | ||
c138bc38 | 5800 | void |
7fa3d080 BW |
5801 | resize_resource_table (resource_table *rt, int cycles) |
5802 | { | |
5803 | int i, old_cycles; | |
5804 | ||
5805 | rt->cycles = cycles; | |
5806 | if (cycles <= rt->allocated_cycles) | |
5807 | return; | |
5808 | ||
5809 | old_cycles = rt->allocated_cycles; | |
5810 | rt->allocated_cycles = cycles; | |
5811 | ||
0bf60745 BW |
5812 | rt->units = xrealloc (rt->units, |
5813 | rt->allocated_cycles * sizeof (unsigned char *)); | |
7fa3d080 | 5814 | for (i = 0; i < old_cycles; i++) |
0bf60745 BW |
5815 | rt->units[i] = xrealloc (rt->units[i], |
5816 | rt->num_units * sizeof (unsigned char)); | |
7fa3d080 | 5817 | for (i = old_cycles; i < cycles; i++) |
0bf60745 | 5818 | rt->units[i] = xcalloc (rt->num_units, sizeof (unsigned char)); |
7fa3d080 BW |
5819 | } |
5820 | ||
5821 | ||
c138bc38 | 5822 | bfd_boolean |
7fa3d080 BW |
5823 | resources_available (resource_table *rt, xtensa_opcode opcode, int cycle) |
5824 | { | |
5825 | int i; | |
5826 | int uses = (rt->opcode_num_units) (rt->data, opcode); | |
5827 | ||
c138bc38 | 5828 | for (i = 0; i < uses; i++) |
7fa3d080 BW |
5829 | { |
5830 | xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i); | |
5831 | int stage = (rt->opcode_unit_stage) (rt->data, opcode, i); | |
5832 | int copies_in_use = rt->units[stage + cycle][unit]; | |
5833 | int copies = (rt->unit_num_copies) (rt->data, unit); | |
5834 | if (copies_in_use >= copies) | |
5835 | return FALSE; | |
5836 | } | |
5837 | return TRUE; | |
5838 | } | |
7fa3d080 | 5839 | |
c138bc38 BW |
5840 | |
5841 | void | |
7fa3d080 BW |
5842 | reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle) |
5843 | { | |
5844 | int i; | |
5845 | int uses = (rt->opcode_num_units) (rt->data, opcode); | |
5846 | ||
c138bc38 | 5847 | for (i = 0; i < uses; i++) |
7fa3d080 BW |
5848 | { |
5849 | xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i); | |
5850 | int stage = (rt->opcode_unit_stage) (rt->data, opcode, i); | |
c138bc38 BW |
5851 | /* Note that this allows resources to be oversubscribed. That's |
5852 | essential to the way the optional scheduler works. | |
7fa3d080 BW |
5853 | resources_available reports when a resource is over-subscribed, |
5854 | so it's easy to tell. */ | |
5855 | rt->units[stage + cycle][unit]++; | |
5856 | } | |
5857 | } | |
5858 | ||
5859 | ||
c138bc38 | 5860 | void |
7fa3d080 BW |
5861 | release_resources (resource_table *rt, xtensa_opcode opcode, int cycle) |
5862 | { | |
5863 | int i; | |
5864 | int uses = (rt->opcode_num_units) (rt->data, opcode); | |
5865 | ||
c138bc38 | 5866 | for (i = 0; i < uses; i++) |
7fa3d080 BW |
5867 | { |
5868 | xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i); | |
5869 | int stage = (rt->opcode_unit_stage) (rt->data, opcode, i); | |
0bf60745 | 5870 | assert (rt->units[stage + cycle][unit] > 0); |
7fa3d080 | 5871 | rt->units[stage + cycle][unit]--; |
7fa3d080 BW |
5872 | } |
5873 | } | |
c138bc38 | 5874 | |
7fa3d080 BW |
5875 | |
5876 | /* Wrapper functions make parameterized resource reservation | |
5877 | more convenient. */ | |
5878 | ||
c138bc38 | 5879 | int |
7fa3d080 BW |
5880 | opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx) |
5881 | { | |
5882 | xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx); | |
c138bc38 | 5883 | return use->unit; |
7fa3d080 BW |
5884 | } |
5885 | ||
5886 | ||
c138bc38 | 5887 | int |
7fa3d080 BW |
5888 | opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx) |
5889 | { | |
5890 | xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx); | |
5891 | return use->stage; | |
5892 | } | |
5893 | ||
5894 | ||
5895 | /* Note that this function does not check issue constraints, but | |
5896 | solely whether the hardware is available to execute the given | |
c138bc38 | 5897 | instructions together. It also doesn't check if the tinsns |
7fa3d080 | 5898 | write the same state, or access the same tieports. That is |
a1ace8d8 | 5899 | checked by check_t1_t2_reads_and_writes. */ |
7fa3d080 BW |
5900 | |
5901 | static bfd_boolean | |
5902 | resources_conflict (vliw_insn *vinsn) | |
5903 | { | |
5904 | int i; | |
5905 | static resource_table *rt = NULL; | |
5906 | ||
5907 | /* This is the most common case by far. Optimize it. */ | |
5908 | if (vinsn->num_slots == 1) | |
5909 | return FALSE; | |
43cd72b9 | 5910 | |
c138bc38 | 5911 | if (rt == NULL) |
7fa3d080 BW |
5912 | { |
5913 | xtensa_isa isa = xtensa_default_isa; | |
5914 | rt = new_resource_table | |
5915 | (isa, xtensa_isa_num_pipe_stages (isa), | |
5916 | xtensa_isa_num_funcUnits (isa), | |
5917 | (unit_num_copies_func) xtensa_funcUnit_num_copies, | |
5918 | (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses, | |
5919 | opcode_funcUnit_use_unit, | |
5920 | opcode_funcUnit_use_stage); | |
5921 | } | |
43cd72b9 | 5922 | |
7fa3d080 | 5923 | clear_resource_table (rt); |
43cd72b9 | 5924 | |
7fa3d080 BW |
5925 | for (i = 0; i < vinsn->num_slots; i++) |
5926 | { | |
5927 | if (!resources_available (rt, vinsn->slots[i].opcode, 0)) | |
5928 | return TRUE; | |
5929 | reserve_resources (rt, vinsn->slots[i].opcode, 0); | |
5930 | } | |
e0001a05 | 5931 | |
7fa3d080 BW |
5932 | return FALSE; |
5933 | } | |
e0001a05 | 5934 | |
7fa3d080 BW |
5935 | \f |
5936 | /* finish_vinsn, emit_single_op and helper functions. */ | |
e0001a05 | 5937 | |
7fa3d080 BW |
5938 | static bfd_boolean find_vinsn_conflicts (vliw_insn *); |
5939 | static xtensa_format xg_find_narrowest_format (vliw_insn *); | |
5940 | static void bundle_single_op (TInsn *); | |
5941 | static void xg_assemble_vliw_tokens (vliw_insn *); | |
e0001a05 NC |
5942 | |
5943 | ||
43cd72b9 BW |
5944 | /* We have reached the end of a bundle; emit into the frag. */ |
5945 | ||
e0001a05 | 5946 | static void |
7fa3d080 | 5947 | finish_vinsn (vliw_insn *vinsn) |
e0001a05 | 5948 | { |
43cd72b9 BW |
5949 | IStack slotstack; |
5950 | int i; | |
5951 | char *file_name; | |
d77b99c9 | 5952 | unsigned line; |
e0001a05 | 5953 | |
43cd72b9 | 5954 | if (find_vinsn_conflicts (vinsn)) |
a1ace8d8 BW |
5955 | { |
5956 | xg_clear_vinsn (vinsn); | |
5957 | return; | |
5958 | } | |
43cd72b9 BW |
5959 | |
5960 | /* First, find a format that works. */ | |
5961 | if (vinsn->format == XTENSA_UNDEFINED) | |
5962 | vinsn->format = xg_find_narrowest_format (vinsn); | |
5963 | ||
5964 | if (vinsn->format == XTENSA_UNDEFINED) | |
5965 | { | |
5966 | as_where (&file_name, &line); | |
5967 | as_bad_where (file_name, line, | |
5968 | _("couldn't find a valid instruction format")); | |
5969 | fprintf (stderr, _(" ops were: ")); | |
5970 | for (i = 0; i < vinsn->num_slots; i++) | |
5971 | fprintf (stderr, _(" %s;"), | |
5972 | xtensa_opcode_name (xtensa_default_isa, | |
5973 | vinsn->slots[i].opcode)); | |
5974 | fprintf (stderr, _("\n")); | |
5975 | xg_clear_vinsn (vinsn); | |
5976 | return; | |
5977 | } | |
5978 | ||
5979 | if (vinsn->num_slots | |
5980 | != xtensa_format_num_slots (xtensa_default_isa, vinsn->format)) | |
e0001a05 | 5981 | { |
43cd72b9 BW |
5982 | as_bad (_("format '%s' allows %d slots, but there are %d opcodes"), |
5983 | xtensa_format_name (xtensa_default_isa, vinsn->format), | |
5984 | xtensa_format_num_slots (xtensa_default_isa, vinsn->format), | |
5985 | vinsn->num_slots); | |
5986 | xg_clear_vinsn (vinsn); | |
5987 | return; | |
5988 | } | |
e0001a05 | 5989 | |
c138bc38 | 5990 | if (resources_conflict (vinsn)) |
43cd72b9 BW |
5991 | { |
5992 | as_where (&file_name, &line); | |
5993 | as_bad_where (file_name, line, _("illegal resource usage in bundle")); | |
5994 | fprintf (stderr, " ops were: "); | |
5995 | for (i = 0; i < vinsn->num_slots; i++) | |
5996 | fprintf (stderr, " %s;", | |
5997 | xtensa_opcode_name (xtensa_default_isa, | |
5998 | vinsn->slots[i].opcode)); | |
5999 | fprintf (stderr, "\n"); | |
6000 | xg_clear_vinsn (vinsn); | |
6001 | return; | |
6002 | } | |
6003 | ||
6004 | for (i = 0; i < vinsn->num_slots; i++) | |
6005 | { | |
6006 | if (vinsn->slots[i].opcode != XTENSA_UNDEFINED) | |
e0001a05 | 6007 | { |
43cd72b9 BW |
6008 | symbolS *lit_sym = NULL; |
6009 | int j; | |
6010 | bfd_boolean e = FALSE; | |
6011 | bfd_boolean saved_density = density_supported; | |
6012 | ||
6013 | /* We don't want to narrow ops inside multi-slot bundles. */ | |
6014 | if (vinsn->num_slots > 1) | |
6015 | density_supported = FALSE; | |
6016 | ||
6017 | istack_init (&slotstack); | |
6018 | if (vinsn->slots[i].opcode == xtensa_nop_opcode) | |
e0001a05 | 6019 | { |
43cd72b9 BW |
6020 | vinsn->slots[i].opcode = |
6021 | xtensa_format_slot_nop_opcode (xtensa_default_isa, | |
6022 | vinsn->format, i); | |
6023 | vinsn->slots[i].ntok = 0; | |
6024 | } | |
e0001a05 | 6025 | |
43cd72b9 BW |
6026 | if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i])) |
6027 | { | |
6028 | e = TRUE; | |
6029 | continue; | |
e0001a05 | 6030 | } |
e0001a05 | 6031 | |
43cd72b9 | 6032 | density_supported = saved_density; |
e0001a05 | 6033 | |
43cd72b9 BW |
6034 | if (e) |
6035 | { | |
6036 | xg_clear_vinsn (vinsn); | |
6037 | return; | |
6038 | } | |
e0001a05 | 6039 | |
0fa77c95 | 6040 | for (j = 0; j < slotstack.ninsn; j++) |
43cd72b9 BW |
6041 | { |
6042 | TInsn *insn = &slotstack.insn[j]; | |
6043 | if (insn->insn_type == ITYPE_LITERAL) | |
6044 | { | |
6045 | assert (lit_sym == NULL); | |
6046 | lit_sym = xg_assemble_literal (insn); | |
6047 | } | |
6048 | else | |
6049 | { | |
0fa77c95 | 6050 | assert (insn->insn_type == ITYPE_INSN); |
43cd72b9 BW |
6051 | if (lit_sym) |
6052 | xg_resolve_literals (insn, lit_sym); | |
0fa77c95 BW |
6053 | if (j != slotstack.ninsn - 1) |
6054 | emit_single_op (insn); | |
43cd72b9 BW |
6055 | } |
6056 | } | |
6057 | ||
6058 | if (vinsn->num_slots > 1) | |
6059 | { | |
6060 | if (opcode_fits_format_slot | |
6061 | (slotstack.insn[slotstack.ninsn - 1].opcode, | |
6062 | vinsn->format, i)) | |
6063 | { | |
6064 | vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1]; | |
6065 | } | |
6066 | else | |
6067 | { | |
6068 | bundle_single_op (&slotstack.insn[slotstack.ninsn - 1]); | |
6069 | if (vinsn->format == XTENSA_UNDEFINED) | |
6070 | vinsn->slots[i].opcode = xtensa_nop_opcode; | |
6071 | else | |
c138bc38 | 6072 | vinsn->slots[i].opcode |
43cd72b9 BW |
6073 | = xtensa_format_slot_nop_opcode (xtensa_default_isa, |
6074 | vinsn->format, i); | |
6075 | ||
6076 | vinsn->slots[i].ntok = 0; | |
6077 | } | |
6078 | } | |
6079 | else | |
6080 | { | |
6081 | vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1]; | |
6082 | vinsn->format = XTENSA_UNDEFINED; | |
6083 | } | |
6084 | } | |
6085 | } | |
6086 | ||
6087 | /* Now check resource conflicts on the modified bundle. */ | |
c138bc38 | 6088 | if (resources_conflict (vinsn)) |
43cd72b9 BW |
6089 | { |
6090 | as_where (&file_name, &line); | |
6091 | as_bad_where (file_name, line, _("illegal resource usage in bundle")); | |
6092 | fprintf (stderr, " ops were: "); | |
6093 | for (i = 0; i < vinsn->num_slots; i++) | |
6094 | fprintf (stderr, " %s;", | |
6095 | xtensa_opcode_name (xtensa_default_isa, | |
6096 | vinsn->slots[i].opcode)); | |
6097 | fprintf (stderr, "\n"); | |
6098 | xg_clear_vinsn (vinsn); | |
6099 | return; | |
6100 | } | |
6101 | ||
6102 | /* First, find a format that works. */ | |
6103 | if (vinsn->format == XTENSA_UNDEFINED) | |
6104 | vinsn->format = xg_find_narrowest_format (vinsn); | |
6105 | ||
6106 | xg_assemble_vliw_tokens (vinsn); | |
6107 | ||
6108 | xg_clear_vinsn (vinsn); | |
6109 | } | |
6110 | ||
6111 | ||
6112 | /* Given an vliw instruction, what conflicts are there in register | |
6113 | usage and in writes to states and queues? | |
6114 | ||
6115 | This function does two things: | |
6116 | 1. Reports an error when a vinsn contains illegal combinations | |
6117 | of writes to registers states or queues. | |
6118 | 2. Marks individual tinsns as not relaxable if the combination | |
6119 | contains antidependencies. | |
6120 | ||
6121 | Job 2 handles things like swap semantics in instructions that need | |
6122 | to be relaxed. For example, | |
6123 | ||
6124 | addi a0, a1, 100000 | |
6125 | ||
6126 | normally would be relaxed to | |
6127 | ||
6128 | l32r a0, some_label | |
6129 | add a0, a1, a0 | |
6130 | ||
6131 | _but_, if the above instruction is bundled with an a0 reader, e.g., | |
6132 | ||
6133 | { addi a0, a1, 10000 ; add a2, a0, a4 ; } | |
6134 | ||
6135 | then we can't relax it into | |
6136 | ||
6137 | l32r a0, some_label | |
6138 | { add a0, a1, a0 ; add a2, a0, a4 ; } | |
6139 | ||
6140 | because the value of a0 is trashed before the second add can read it. */ | |
6141 | ||
7fa3d080 BW |
6142 | static char check_t1_t2_reads_and_writes (TInsn *, TInsn *); |
6143 | ||
43cd72b9 | 6144 | static bfd_boolean |
7fa3d080 | 6145 | find_vinsn_conflicts (vliw_insn *vinsn) |
43cd72b9 BW |
6146 | { |
6147 | int i, j; | |
6148 | int branches = 0; | |
6149 | xtensa_isa isa = xtensa_default_isa; | |
6150 | ||
6151 | assert (!past_xtensa_end); | |
6152 | ||
6153 | for (i = 0 ; i < vinsn->num_slots; i++) | |
6154 | { | |
6155 | TInsn *op1 = &vinsn->slots[i]; | |
6156 | if (op1->is_specific_opcode) | |
6157 | op1->keep_wide = TRUE; | |
6158 | else | |
6159 | op1->keep_wide = FALSE; | |
6160 | } | |
6161 | ||
6162 | for (i = 0 ; i < vinsn->num_slots; i++) | |
6163 | { | |
6164 | TInsn *op1 = &vinsn->slots[i]; | |
6165 | ||
6166 | if (xtensa_opcode_is_branch (isa, op1->opcode) == 1) | |
6167 | branches++; | |
6168 | ||
6169 | for (j = 0; j < vinsn->num_slots; j++) | |
6170 | { | |
6171 | if (i != j) | |
6172 | { | |
6173 | TInsn *op2 = &vinsn->slots[j]; | |
6174 | char conflict_type = check_t1_t2_reads_and_writes (op1, op2); | |
6175 | switch (conflict_type) | |
6176 | { | |
6177 | case 'c': | |
6178 | as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"), | |
6179 | xtensa_opcode_name (isa, op1->opcode), i, | |
6180 | xtensa_opcode_name (isa, op2->opcode), j); | |
6181 | return TRUE; | |
6182 | case 'd': | |
6183 | as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"), | |
6184 | xtensa_opcode_name (isa, op1->opcode), i, | |
6185 | xtensa_opcode_name (isa, op2->opcode), j); | |
6186 | return TRUE; | |
6187 | case 'e': | |
53dfbcc7 | 6188 | as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"), |
43cd72b9 BW |
6189 | xtensa_opcode_name (isa, op1->opcode), i, |
6190 | xtensa_opcode_name (isa, op2->opcode), j); | |
6191 | return TRUE; | |
6192 | case 'f': | |
53dfbcc7 | 6193 | as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"), |
43cd72b9 BW |
6194 | xtensa_opcode_name (isa, op1->opcode), i, |
6195 | xtensa_opcode_name (isa, op2->opcode), j); | |
6196 | return TRUE; | |
6197 | default: | |
6198 | /* Everything is OK. */ | |
6199 | break; | |
6200 | } | |
6201 | op2->is_specific_opcode = (op2->is_specific_opcode | |
6202 | || conflict_type == 'a'); | |
6203 | } | |
6204 | } | |
6205 | } | |
6206 | ||
6207 | if (branches > 1) | |
6208 | { | |
6209 | as_bad (_("multiple branches or jumps in the same bundle")); | |
6210 | return TRUE; | |
6211 | } | |
6212 | ||
6213 | return FALSE; | |
6214 | } | |
6215 | ||
6216 | ||
a1ace8d8 | 6217 | /* Check how the state used by t1 and t2 relate. |
43cd72b9 BW |
6218 | Cases found are: |
6219 | ||
6220 | case A: t1 reads a register t2 writes (an antidependency within a bundle) | |
6221 | case B: no relationship between what is read and written (both could | |
6222 | read the same reg though) | |
c138bc38 | 6223 | case C: t1 writes a register t2 writes (a register conflict within a |
43cd72b9 BW |
6224 | bundle) |
6225 | case D: t1 writes a state that t2 also writes | |
6226 | case E: t1 writes a tie queue that t2 also writes | |
a1ace8d8 | 6227 | case F: two volatile queue accesses |
43cd72b9 BW |
6228 | */ |
6229 | ||
6230 | static char | |
7fa3d080 | 6231 | check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2) |
43cd72b9 BW |
6232 | { |
6233 | xtensa_isa isa = xtensa_default_isa; | |
6234 | xtensa_regfile t1_regfile, t2_regfile; | |
6235 | int t1_reg, t2_reg; | |
6236 | int t1_base_reg, t1_last_reg; | |
6237 | int t2_base_reg, t2_last_reg; | |
6238 | char t1_inout, t2_inout; | |
6239 | int i, j; | |
6240 | char conflict = 'b'; | |
6241 | int t1_states; | |
6242 | int t2_states; | |
6243 | int t1_interfaces; | |
6244 | int t2_interfaces; | |
6245 | bfd_boolean t1_volatile = FALSE; | |
6246 | bfd_boolean t2_volatile = FALSE; | |
6247 | ||
6248 | /* Check registers. */ | |
6249 | for (j = 0; j < t2->ntok; j++) | |
6250 | { | |
6251 | if (xtensa_operand_is_register (isa, t2->opcode, j) != 1) | |
6252 | continue; | |
6253 | ||
6254 | t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j); | |
6255 | t2_base_reg = t2->tok[j].X_add_number; | |
6256 | t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j); | |
6257 | ||
6258 | for (i = 0; i < t1->ntok; i++) | |
6259 | { | |
6260 | if (xtensa_operand_is_register (isa, t1->opcode, i) != 1) | |
6261 | continue; | |
6262 | ||
6263 | t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i); | |
6264 | ||
6265 | if (t1_regfile != t2_regfile) | |
6266 | continue; | |
6267 | ||
6268 | t1_inout = xtensa_operand_inout (isa, t1->opcode, i); | |
6269 | t2_inout = xtensa_operand_inout (isa, t2->opcode, j); | |
6270 | ||
6271 | if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0 | |
6272 | || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0) | |
6273 | { | |
6274 | if (t1_inout == 'm' || t1_inout == 'o' | |
6275 | || t2_inout == 'm' || t2_inout == 'o') | |
6276 | { | |
6277 | conflict = 'a'; | |
6278 | continue; | |
6279 | } | |
6280 | } | |
6281 | ||
6282 | t1_base_reg = t1->tok[i].X_add_number; | |
6283 | t1_last_reg = (t1_base_reg | |
6284 | + xtensa_operand_num_regs (isa, t1->opcode, i)); | |
6285 | ||
6286 | for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++) | |
6287 | { | |
6288 | for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++) | |
6289 | { | |
6290 | if (t1_reg != t2_reg) | |
6291 | continue; | |
6292 | ||
6293 | if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o')) | |
7fa3d080 BW |
6294 | { |
6295 | conflict = 'a'; | |
6296 | continue; | |
6297 | } | |
43cd72b9 | 6298 | |
7fa3d080 BW |
6299 | if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o')) |
6300 | { | |
6301 | conflict = 'a'; | |
6302 | continue; | |
6303 | } | |
43cd72b9 | 6304 | |
7fa3d080 BW |
6305 | if (t1_inout != 'i' && t2_inout != 'i') |
6306 | return 'c'; | |
6307 | } | |
6308 | } | |
6309 | } | |
6310 | } | |
43cd72b9 | 6311 | |
7fa3d080 BW |
6312 | /* Check states. */ |
6313 | t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode); | |
6314 | t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode); | |
6315 | for (j = 0; j < t2_states; j++) | |
43cd72b9 | 6316 | { |
7fa3d080 BW |
6317 | xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j); |
6318 | t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j); | |
6319 | for (i = 0; i < t1_states; i++) | |
6320 | { | |
6321 | xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i); | |
6322 | t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i); | |
c138bc38 | 6323 | if (t1_so != t2_so) |
7fa3d080 | 6324 | continue; |
43cd72b9 | 6325 | |
7fa3d080 BW |
6326 | if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o')) |
6327 | { | |
6328 | conflict = 'a'; | |
6329 | continue; | |
6330 | } | |
c138bc38 | 6331 | |
7fa3d080 BW |
6332 | if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o')) |
6333 | { | |
6334 | conflict = 'a'; | |
6335 | continue; | |
6336 | } | |
c138bc38 | 6337 | |
7fa3d080 BW |
6338 | if (t1_inout != 'i' && t2_inout != 'i') |
6339 | return 'd'; | |
c138bc38 | 6340 | } |
7fa3d080 | 6341 | } |
43cd72b9 | 6342 | |
7fa3d080 BW |
6343 | /* Check tieports. */ |
6344 | t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode); | |
6345 | t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode); | |
c138bc38 | 6346 | for (j = 0; j < t2_interfaces; j++) |
43cd72b9 | 6347 | { |
7fa3d080 BW |
6348 | xtensa_interface t2_int |
6349 | = xtensa_interfaceOperand_interface (isa, t2->opcode, j); | |
a1ace8d8 BW |
6350 | int t2_class = xtensa_interface_class_id (isa, t2_int); |
6351 | ||
53dfbcc7 | 6352 | t2_inout = xtensa_interface_inout (isa, t2_int); |
a1ace8d8 | 6353 | if (xtensa_interface_has_side_effect (isa, t2_int) == 1) |
7fa3d080 | 6354 | t2_volatile = TRUE; |
a1ace8d8 | 6355 | |
7fa3d080 BW |
6356 | for (i = 0; i < t1_interfaces; i++) |
6357 | { | |
6358 | xtensa_interface t1_int | |
6359 | = xtensa_interfaceOperand_interface (isa, t1->opcode, j); | |
2eccd1b4 | 6360 | int t1_class = xtensa_interface_class_id (isa, t1_int); |
a1ace8d8 | 6361 | |
53dfbcc7 | 6362 | t1_inout = xtensa_interface_inout (isa, t1_int); |
a1ace8d8 | 6363 | if (xtensa_interface_has_side_effect (isa, t1_int) == 1) |
7fa3d080 | 6364 | t1_volatile = TRUE; |
a1ace8d8 BW |
6365 | |
6366 | if (t1_volatile && t2_volatile && (t1_class == t2_class)) | |
6367 | return 'f'; | |
c138bc38 | 6368 | |
7fa3d080 BW |
6369 | if (t1_int != t2_int) |
6370 | continue; | |
c138bc38 | 6371 | |
7fa3d080 BW |
6372 | if (t2_inout == 'i' && t1_inout == 'o') |
6373 | { | |
6374 | conflict = 'a'; | |
6375 | continue; | |
6376 | } | |
c138bc38 | 6377 | |
7fa3d080 BW |
6378 | if (t1_inout == 'i' && t2_inout == 'o') |
6379 | { | |
6380 | conflict = 'a'; | |
6381 | continue; | |
6382 | } | |
c138bc38 | 6383 | |
7fa3d080 BW |
6384 | if (t1_inout != 'i' && t2_inout != 'i') |
6385 | return 'e'; | |
6386 | } | |
43cd72b9 | 6387 | } |
c138bc38 | 6388 | |
7fa3d080 | 6389 | return conflict; |
43cd72b9 BW |
6390 | } |
6391 | ||
6392 | ||
6393 | static xtensa_format | |
7fa3d080 | 6394 | xg_find_narrowest_format (vliw_insn *vinsn) |
43cd72b9 BW |
6395 | { |
6396 | /* Right now we assume that the ops within the vinsn are properly | |
6397 | ordered for the slots that the programmer wanted them in. In | |
6398 | other words, we don't rearrange the ops in hopes of finding a | |
6399 | better format. The scheduler handles that. */ | |
6400 | ||
6401 | xtensa_isa isa = xtensa_default_isa; | |
6402 | xtensa_format format; | |
6403 | vliw_insn v_copy = *vinsn; | |
6404 | xtensa_opcode nop_opcode = xtensa_nop_opcode; | |
6405 | ||
65738a7d BW |
6406 | if (vinsn->num_slots == 1) |
6407 | return xg_get_single_format (vinsn->slots[0].opcode); | |
6408 | ||
43cd72b9 BW |
6409 | for (format = 0; format < xtensa_isa_num_formats (isa); format++) |
6410 | { | |
6411 | v_copy = *vinsn; | |
6412 | if (xtensa_format_num_slots (isa, format) == v_copy.num_slots) | |
6413 | { | |
6414 | int slot; | |
6415 | int fit = 0; | |
6416 | for (slot = 0; slot < v_copy.num_slots; slot++) | |
6417 | { | |
6418 | if (v_copy.slots[slot].opcode == nop_opcode) | |
6419 | { | |
6420 | v_copy.slots[slot].opcode = | |
6421 | xtensa_format_slot_nop_opcode (isa, format, slot); | |
6422 | v_copy.slots[slot].ntok = 0; | |
6423 | } | |
6424 | ||
6425 | if (opcode_fits_format_slot (v_copy.slots[slot].opcode, | |
6426 | format, slot)) | |
6427 | fit++; | |
7fa3d080 | 6428 | else if (v_copy.num_slots > 1) |
43cd72b9 | 6429 | { |
7fa3d080 BW |
6430 | TInsn widened; |
6431 | /* Try the widened version. */ | |
6432 | if (!v_copy.slots[slot].keep_wide | |
6433 | && !v_copy.slots[slot].is_specific_opcode | |
84b08ed9 BW |
6434 | && xg_is_single_relaxable_insn (&v_copy.slots[slot], |
6435 | &widened, TRUE) | |
7fa3d080 BW |
6436 | && opcode_fits_format_slot (widened.opcode, |
6437 | format, slot)) | |
43cd72b9 | 6438 | { |
7fa3d080 BW |
6439 | v_copy.slots[slot] = widened; |
6440 | fit++; | |
43cd72b9 BW |
6441 | } |
6442 | } | |
6443 | } | |
6444 | if (fit == v_copy.num_slots) | |
6445 | { | |
6446 | *vinsn = v_copy; | |
6447 | xtensa_format_encode (isa, format, vinsn->insnbuf); | |
6448 | vinsn->format = format; | |
6449 | break; | |
6450 | } | |
6451 | } | |
6452 | } | |
6453 | ||
6454 | if (format == xtensa_isa_num_formats (isa)) | |
6455 | return XTENSA_UNDEFINED; | |
6456 | ||
6457 | return format; | |
6458 | } | |
6459 | ||
6460 | ||
6461 | /* Return the additional space needed in a frag | |
6462 | for possible relaxations of any ops in a VLIW insn. | |
6463 | Also fill out the relaxations that might be required of | |
6464 | each tinsn in the vinsn. */ | |
6465 | ||
6466 | static int | |
7fa3d080 | 6467 | relaxation_requirements (vliw_insn *vinsn) |
43cd72b9 BW |
6468 | { |
6469 | int extra_space = 0; | |
6470 | int slot; | |
6471 | ||
6472 | for (slot = 0; slot < vinsn->num_slots; slot++) | |
6473 | { | |
6474 | TInsn *tinsn = &vinsn->slots[slot]; | |
6475 | if (!tinsn_has_symbolic_operands (tinsn)) | |
6476 | { | |
6477 | /* A narrow instruction could be widened later to help | |
6478 | alignment issues. */ | |
84b08ed9 | 6479 | if (xg_is_single_relaxable_insn (tinsn, 0, TRUE) |
43cd72b9 BW |
6480 | && !tinsn->is_specific_opcode |
6481 | && vinsn->num_slots == 1) | |
6482 | { | |
6483 | /* Difference in bytes between narrow and wide insns... */ | |
6484 | extra_space += 1; | |
6485 | tinsn->subtype = RELAX_NARROW; | |
6486 | tinsn->record_fix = TRUE; | |
6487 | break; | |
6488 | } | |
6489 | else | |
6490 | { | |
6491 | tinsn->record_fix = FALSE; | |
6492 | /* No extra_space needed. */ | |
6493 | } | |
6494 | } | |
6495 | else | |
6496 | { | |
b08b5071 BW |
6497 | if (workaround_b_j_loop_end |
6498 | && tinsn->opcode == xtensa_jx_opcode | |
43cd72b9 BW |
6499 | && use_transform ()) |
6500 | { | |
6501 | /* Add 2 of these. */ | |
6502 | extra_space += 3; /* for the nop size */ | |
6503 | tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END; | |
6504 | } | |
c138bc38 | 6505 | |
43cd72b9 BW |
6506 | /* Need to assemble it with space for the relocation. */ |
6507 | if (xg_is_relaxable_insn (tinsn, 0) | |
6508 | && !tinsn->is_specific_opcode) | |
6509 | { | |
6510 | int max_size = xg_get_max_insn_widen_size (tinsn->opcode); | |
6511 | int max_literal_size = | |
6512 | xg_get_max_insn_widen_literal_size (tinsn->opcode); | |
c138bc38 | 6513 | |
43cd72b9 | 6514 | tinsn->literal_space = max_literal_size; |
c138bc38 | 6515 | |
43cd72b9 BW |
6516 | tinsn->subtype = RELAX_IMMED; |
6517 | tinsn->record_fix = FALSE; | |
6518 | extra_space += max_size; | |
6519 | } | |
6520 | else | |
6521 | { | |
6522 | tinsn->record_fix = TRUE; | |
6523 | /* No extra space needed. */ | |
6524 | } | |
6525 | } | |
6526 | } | |
6527 | return extra_space; | |
6528 | } | |
6529 | ||
6530 | ||
6531 | static void | |
7fa3d080 | 6532 | bundle_single_op (TInsn *orig_insn) |
43cd72b9 BW |
6533 | { |
6534 | xtensa_isa isa = xtensa_default_isa; | |
6535 | vliw_insn v; | |
6536 | int slot; | |
6537 | ||
6538 | xg_init_vinsn (&v); | |
6539 | v.format = op_placement_table[orig_insn->opcode].narrowest; | |
6540 | assert (v.format != XTENSA_UNDEFINED); | |
6541 | v.num_slots = xtensa_format_num_slots (isa, v.format); | |
6542 | ||
6543 | for (slot = 0; | |
6544 | !opcode_fits_format_slot (orig_insn->opcode, v.format, slot); | |
6545 | slot++) | |
6546 | { | |
6547 | v.slots[slot].opcode = | |
6548 | xtensa_format_slot_nop_opcode (isa, v.format, slot); | |
6549 | v.slots[slot].ntok = 0; | |
6550 | v.slots[slot].insn_type = ITYPE_INSN; | |
6551 | } | |
6552 | ||
6553 | v.slots[slot] = *orig_insn; | |
6554 | slot++; | |
6555 | ||
6556 | for ( ; slot < v.num_slots; slot++) | |
6557 | { | |
6558 | v.slots[slot].opcode = | |
6559 | xtensa_format_slot_nop_opcode (isa, v.format, slot); | |
6560 | v.slots[slot].ntok = 0; | |
6561 | v.slots[slot].insn_type = ITYPE_INSN; | |
6562 | } | |
6563 | ||
6564 | finish_vinsn (&v); | |
6565 | xg_free_vinsn (&v); | |
6566 | } | |
6567 | ||
6568 | ||
6569 | static bfd_boolean | |
7fa3d080 | 6570 | emit_single_op (TInsn *orig_insn) |
43cd72b9 BW |
6571 | { |
6572 | int i; | |
6573 | IStack istack; /* put instructions into here */ | |
6574 | symbolS *lit_sym = NULL; | |
6575 | symbolS *label_sym = NULL; | |
6576 | ||
6577 | istack_init (&istack); | |
6578 | ||
6579 | /* Special-case for "movi aX, foo" which is guaranteed to need relaxing. | |
c138bc38 BW |
6580 | Because the scheduling and bundling characteristics of movi and |
6581 | l32r or const16 are so different, we can do much better if we relax | |
43cd72b9 | 6582 | it prior to scheduling and bundling, rather than after. */ |
c138bc38 | 6583 | if ((orig_insn->opcode == xtensa_movi_opcode |
b08b5071 BW |
6584 | || orig_insn->opcode == xtensa_movi_n_opcode) |
6585 | && !cur_vinsn.inside_bundle | |
43cd72b9 BW |
6586 | && (orig_insn->tok[1].X_op == O_symbol |
6587 | || orig_insn->tok[1].X_op == O_pltrel)) | |
6588 | xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0); | |
6589 | else | |
6590 | if (xg_expand_assembly_insn (&istack, orig_insn)) | |
6591 | return TRUE; | |
6592 | ||
6593 | for (i = 0; i < istack.ninsn; i++) | |
6594 | { | |
6595 | TInsn *insn = &istack.insn[i]; | |
c138bc38 | 6596 | switch (insn->insn_type) |
43cd72b9 BW |
6597 | { |
6598 | case ITYPE_LITERAL: | |
6599 | assert (lit_sym == NULL); | |
6600 | lit_sym = xg_assemble_literal (insn); | |
6601 | break; | |
6602 | case ITYPE_LABEL: | |
6603 | { | |
6604 | static int relaxed_sym_idx = 0; | |
6605 | char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12); | |
6606 | sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++); | |
6607 | colon (label); | |
6608 | assert (label_sym == NULL); | |
6609 | label_sym = symbol_find_or_make (label); | |
6610 | assert (label_sym); | |
6611 | free (label); | |
6612 | } | |
6613 | break; | |
6614 | case ITYPE_INSN: | |
6615 | if (lit_sym) | |
6616 | xg_resolve_literals (insn, lit_sym); | |
6617 | if (label_sym) | |
6618 | xg_resolve_labels (insn, label_sym); | |
6619 | bundle_single_op (insn); | |
6620 | break; | |
6621 | default: | |
6622 | assert (0); | |
6623 | break; | |
6624 | } | |
6625 | } | |
6626 | return FALSE; | |
6627 | } | |
6628 | ||
6629 | ||
34e41783 BW |
6630 | static int |
6631 | total_frag_text_expansion (fragS *fragP) | |
6632 | { | |
6633 | int slot; | |
6634 | int total_expansion = 0; | |
6635 | ||
6636 | for (slot = 0; slot < MAX_SLOTS; slot++) | |
6637 | total_expansion += fragP->tc_frag_data.text_expansion[slot]; | |
6638 | ||
6639 | return total_expansion; | |
6640 | } | |
6641 | ||
6642 | ||
43cd72b9 BW |
6643 | /* Emit a vliw instruction to the current fragment. */ |
6644 | ||
7fa3d080 BW |
6645 | static void |
6646 | xg_assemble_vliw_tokens (vliw_insn *vinsn) | |
43cd72b9 BW |
6647 | { |
6648 | bfd_boolean finish_frag = FALSE; | |
6649 | bfd_boolean is_jump = FALSE; | |
6650 | bfd_boolean is_branch = FALSE; | |
6651 | xtensa_isa isa = xtensa_default_isa; | |
6652 | int i; | |
6653 | int insn_size; | |
6654 | int extra_space; | |
6655 | char *f = NULL; | |
6656 | int slot; | |
7c430684 BW |
6657 | unsigned current_line, best_linenum; |
6658 | char *current_file; | |
43cd72b9 | 6659 | |
7c430684 | 6660 | best_linenum = UINT_MAX; |
43cd72b9 BW |
6661 | |
6662 | if (generating_literals) | |
6663 | { | |
6664 | static int reported = 0; | |
6665 | if (reported < 4) | |
6666 | as_bad_where (frag_now->fr_file, frag_now->fr_line, | |
6667 | _("cannot assemble into a literal fragment")); | |
6668 | if (reported == 3) | |
6669 | as_bad (_("...")); | |
6670 | reported++; | |
6671 | return; | |
6672 | } | |
6673 | ||
6674 | if (frag_now_fix () != 0 | |
b08b5071 | 6675 | && (! frag_now->tc_frag_data.is_insn |
43cd72b9 | 6676 | || (vinsn_has_specific_opcodes (vinsn) && use_transform ()) |
b08b5071 | 6677 | || !use_transform () != frag_now->tc_frag_data.is_no_transform |
7c834684 BW |
6678 | || (directive_state[directive_longcalls] |
6679 | != frag_now->tc_frag_data.use_longcalls) | |
43cd72b9 BW |
6680 | || (directive_state[directive_absolute_literals] |
6681 | != frag_now->tc_frag_data.use_absolute_literals))) | |
6682 | { | |
6683 | frag_wane (frag_now); | |
6684 | frag_new (0); | |
6685 | xtensa_set_frag_assembly_state (frag_now); | |
6686 | } | |
6687 | ||
6688 | if (workaround_a0_b_retw | |
6689 | && vinsn->num_slots == 1 | |
6690 | && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0 | |
6691 | && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1 | |
6692 | && use_transform ()) | |
6693 | { | |
6694 | has_a0_b_retw = TRUE; | |
6695 | ||
6696 | /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW. | |
6697 | After the first assembly pass we will check all of them and | |
6698 | add a nop if needed. */ | |
6699 | frag_now->tc_frag_data.is_insn = TRUE; | |
6700 | frag_var (rs_machine_dependent, 4, 4, | |
6701 | RELAX_ADD_NOP_IF_A0_B_RETW, | |
6702 | frag_now->fr_symbol, | |
6703 | frag_now->fr_offset, | |
6704 | NULL); | |
6705 | xtensa_set_frag_assembly_state (frag_now); | |
6706 | frag_now->tc_frag_data.is_insn = TRUE; | |
6707 | frag_var (rs_machine_dependent, 4, 4, | |
6708 | RELAX_ADD_NOP_IF_A0_B_RETW, | |
6709 | frag_now->fr_symbol, | |
6710 | frag_now->fr_offset, | |
6711 | NULL); | |
6712 | xtensa_set_frag_assembly_state (frag_now); | |
6713 | } | |
6714 | ||
6715 | for (i = 0; i < vinsn->num_slots; i++) | |
6716 | { | |
6717 | /* See if the instruction implies an aligned section. */ | |
6718 | if (xtensa_opcode_is_loop (isa, vinsn->slots[i].opcode) == 1) | |
6719 | record_alignment (now_seg, 2); | |
c138bc38 | 6720 | |
43cd72b9 | 6721 | /* Also determine the best line number for debug info. */ |
7c430684 BW |
6722 | best_linenum = vinsn->slots[i].linenum < best_linenum |
6723 | ? vinsn->slots[i].linenum : best_linenum; | |
43cd72b9 BW |
6724 | } |
6725 | ||
6726 | /* Special cases for instructions that force an alignment... */ | |
6727 | /* None of these opcodes are bundle-able. */ | |
6728 | if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1) | |
6729 | { | |
d77b99c9 | 6730 | int max_fill; |
c138bc38 | 6731 | |
43cd72b9 BW |
6732 | xtensa_set_frag_assembly_state (frag_now); |
6733 | frag_now->tc_frag_data.is_insn = TRUE; | |
c138bc38 | 6734 | |
43cd72b9 BW |
6735 | max_fill = get_text_align_max_fill_size |
6736 | (get_text_align_power (xtensa_fetch_width), | |
6737 | TRUE, frag_now->tc_frag_data.is_no_density); | |
6738 | ||
6739 | if (use_transform ()) | |
6740 | frag_var (rs_machine_dependent, max_fill, max_fill, | |
6741 | RELAX_ALIGN_NEXT_OPCODE, | |
6742 | frag_now->fr_symbol, | |
6743 | frag_now->fr_offset, | |
6744 | NULL); | |
6745 | else | |
c138bc38 | 6746 | frag_var (rs_machine_dependent, 0, 0, |
43cd72b9 BW |
6747 | RELAX_CHECK_ALIGN_NEXT_OPCODE, 0, 0, NULL); |
6748 | xtensa_set_frag_assembly_state (frag_now); | |
c138bc38 | 6749 | |
43cd72b9 BW |
6750 | xtensa_move_labels (frag_now, 0, FALSE); |
6751 | } | |
6752 | ||
b08b5071 | 6753 | if (vinsn->slots[0].opcode == xtensa_entry_opcode |
43cd72b9 BW |
6754 | && !vinsn->slots[0].is_specific_opcode) |
6755 | { | |
6756 | xtensa_mark_literal_pool_location (); | |
6757 | xtensa_move_labels (frag_now, 0, TRUE); | |
6758 | frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL); | |
6759 | } | |
6760 | ||
6761 | if (vinsn->num_slots == 1) | |
6762 | { | |
6763 | if (workaround_a0_b_retw && use_transform ()) | |
6764 | set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER, | |
6765 | is_register_writer (&vinsn->slots[0], "a", 0)); | |
6766 | ||
6767 | set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, | |
6768 | is_bad_loopend_opcode (&vinsn->slots[0])); | |
6769 | } | |
6770 | else | |
6771 | set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE); | |
6772 | ||
6773 | insn_size = xtensa_format_length (isa, vinsn->format); | |
6774 | ||
6775 | extra_space = relaxation_requirements (vinsn); | |
6776 | ||
6777 | /* vinsn_to_insnbuf will produce the error. */ | |
6778 | if (vinsn->format != XTENSA_UNDEFINED) | |
6779 | { | |
d77b99c9 | 6780 | f = frag_more (insn_size + extra_space); |
43cd72b9 BW |
6781 | xtensa_set_frag_assembly_state (frag_now); |
6782 | frag_now->tc_frag_data.is_insn = TRUE; | |
6783 | } | |
6784 | ||
6785 | vinsn_to_insnbuf (vinsn, f, frag_now, TRUE); | |
6786 | if (vinsn->format == XTENSA_UNDEFINED) | |
6787 | return; | |
6788 | ||
d77b99c9 | 6789 | xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0); |
c138bc38 | 6790 | |
7c430684 BW |
6791 | /* Temporarily set the logical line number to the one we want to appear |
6792 | in the debug information. */ | |
6793 | as_where (¤t_file, ¤t_line); | |
6794 | new_logical_line (current_file, best_linenum); | |
6795 | dwarf2_emit_insn (insn_size + extra_space); | |
6796 | new_logical_line (current_file, current_line); | |
43cd72b9 BW |
6797 | |
6798 | for (slot = 0; slot < vinsn->num_slots; slot++) | |
6799 | { | |
6800 | TInsn *tinsn = &vinsn->slots[slot]; | |
6801 | frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype; | |
7c834684 BW |
6802 | frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol; |
6803 | frag_now->tc_frag_data.slot_sub_symbols[slot] = tinsn->sub_symbol; | |
6804 | frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset; | |
43cd72b9 BW |
6805 | frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag; |
6806 | if (tinsn->literal_space != 0) | |
6807 | xg_assemble_literal_space (tinsn->literal_space, slot); | |
6808 | ||
6809 | if (tinsn->subtype == RELAX_NARROW) | |
6810 | assert (vinsn->num_slots == 1); | |
6811 | if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1) | |
6812 | is_jump = TRUE; | |
6813 | if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1) | |
6814 | is_branch = TRUE; | |
6815 | ||
c138bc38 | 6816 | if (tinsn->subtype || tinsn->symbol || tinsn->record_fix |
43cd72b9 BW |
6817 | || tinsn->offset || tinsn->literal_frag || is_jump || is_branch) |
6818 | finish_frag = TRUE; | |
6819 | } | |
6820 | ||
6821 | if (vinsn_has_specific_opcodes (vinsn) && use_transform ()) | |
b08b5071 | 6822 | frag_now->tc_frag_data.is_specific_opcode = TRUE; |
43cd72b9 BW |
6823 | |
6824 | if (finish_frag) | |
6825 | { | |
6826 | frag_variant (rs_machine_dependent, | |
6827 | extra_space, extra_space, RELAX_SLOTS, | |
6828 | frag_now->fr_symbol, frag_now->fr_offset, f); | |
6829 | xtensa_set_frag_assembly_state (frag_now); | |
6830 | } | |
6831 | ||
6832 | /* Special cases for loops: | |
6833 | close_loop_end should be inserted AFTER short_loop. | |
6834 | Make sure that CLOSE loops are processed BEFORE short_loops | |
6835 | when converting them. */ | |
6836 | ||
6837 | /* "short_loop": Add a NOP if the loop is < 4 bytes. */ | |
6838 | if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) | |
6839 | && !vinsn->slots[0].is_specific_opcode) | |
6840 | { | |
6841 | if (workaround_short_loop && use_transform ()) | |
6842 | { | |
6843 | maybe_has_short_loop = TRUE; | |
6844 | frag_now->tc_frag_data.is_insn = TRUE; | |
6845 | frag_var (rs_machine_dependent, 4, 4, | |
6846 | RELAX_ADD_NOP_IF_SHORT_LOOP, | |
6847 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6848 | frag_now->tc_frag_data.is_insn = TRUE; | |
6849 | frag_var (rs_machine_dependent, 4, 4, | |
6850 | RELAX_ADD_NOP_IF_SHORT_LOOP, | |
6851 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6852 | } | |
6853 | ||
6854 | /* "close_loop_end": Add up to 12 bytes of NOPs to keep a | |
6855 | loop at least 12 bytes away from another loop's end. */ | |
6856 | if (workaround_close_loop_end && use_transform ()) | |
6857 | { | |
6858 | maybe_has_close_loop_end = TRUE; | |
6859 | frag_now->tc_frag_data.is_insn = TRUE; | |
6860 | frag_var (rs_machine_dependent, 12, 12, | |
6861 | RELAX_ADD_NOP_IF_CLOSE_LOOP_END, | |
6862 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6863 | } | |
6864 | } | |
6865 | ||
6866 | if (use_transform ()) | |
6867 | { | |
6868 | if (is_jump) | |
6869 | { | |
6870 | assert (finish_frag); | |
6871 | frag_var (rs_machine_dependent, | |
6872 | UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH, | |
6873 | RELAX_UNREACHABLE, | |
6874 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6875 | xtensa_set_frag_assembly_state (frag_now); | |
6876 | } | |
7b1cc377 | 6877 | else if (is_branch && do_align_targets ()) |
43cd72b9 BW |
6878 | { |
6879 | assert (finish_frag); | |
6880 | frag_var (rs_machine_dependent, | |
6881 | UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH, | |
6882 | RELAX_MAYBE_UNREACHABLE, | |
6883 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6884 | xtensa_set_frag_assembly_state (frag_now); | |
6885 | frag_var (rs_machine_dependent, | |
6886 | 0, 0, | |
6887 | RELAX_MAYBE_DESIRE_ALIGN, | |
6888 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6889 | xtensa_set_frag_assembly_state (frag_now); | |
6890 | } | |
6891 | } | |
6892 | ||
6893 | /* Now, if the original opcode was a call... */ | |
6894 | if (do_align_targets () | |
6895 | && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1) | |
6896 | { | |
b08b5071 | 6897 | float freq = get_subseg_total_freq (now_seg, now_subseg); |
43cd72b9 BW |
6898 | frag_now->tc_frag_data.is_insn = TRUE; |
6899 | frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN, | |
6900 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
6901 | xtensa_set_frag_assembly_state (frag_now); | |
6902 | } | |
6903 | ||
6904 | if (vinsn_has_specific_opcodes (vinsn) && use_transform ()) | |
6905 | { | |
6906 | frag_wane (frag_now); | |
6907 | frag_new (0); | |
6908 | xtensa_set_frag_assembly_state (frag_now); | |
6909 | } | |
6910 | } | |
6911 | ||
6912 | \f | |
7fa3d080 BW |
6913 | /* xtensa_end and helper functions. */ |
6914 | ||
6915 | static void xtensa_cleanup_align_frags (void); | |
6916 | static void xtensa_fix_target_frags (void); | |
6917 | static void xtensa_mark_narrow_branches (void); | |
6918 | static void xtensa_mark_zcl_first_insns (void); | |
6919 | static void xtensa_fix_a0_b_retw_frags (void); | |
6920 | static void xtensa_fix_b_j_loop_end_frags (void); | |
6921 | static void xtensa_fix_close_loop_end_frags (void); | |
6922 | static void xtensa_fix_short_loop_frags (void); | |
6923 | static void xtensa_sanity_check (void); | |
6924 | ||
43cd72b9 | 6925 | void |
7fa3d080 | 6926 | xtensa_end (void) |
43cd72b9 BW |
6927 | { |
6928 | directive_balance (); | |
6929 | xtensa_flush_pending_output (); | |
6930 | ||
6931 | past_xtensa_end = TRUE; | |
6932 | ||
6933 | xtensa_move_literals (); | |
6934 | ||
6935 | xtensa_reorder_segments (); | |
6936 | xtensa_cleanup_align_frags (); | |
6937 | xtensa_fix_target_frags (); | |
6938 | if (workaround_a0_b_retw && has_a0_b_retw) | |
6939 | xtensa_fix_a0_b_retw_frags (); | |
6940 | if (workaround_b_j_loop_end) | |
6941 | xtensa_fix_b_j_loop_end_frags (); | |
6942 | ||
6943 | /* "close_loop_end" should be processed BEFORE "short_loop". */ | |
6944 | if (workaround_close_loop_end && maybe_has_close_loop_end) | |
6945 | xtensa_fix_close_loop_end_frags (); | |
6946 | ||
6947 | if (workaround_short_loop && maybe_has_short_loop) | |
6948 | xtensa_fix_short_loop_frags (); | |
6949 | xtensa_mark_narrow_branches (); | |
6950 | xtensa_mark_zcl_first_insns (); | |
6951 | ||
6952 | xtensa_sanity_check (); | |
6953 | } | |
6954 | ||
6955 | ||
6956 | static void | |
7fa3d080 | 6957 | xtensa_cleanup_align_frags (void) |
43cd72b9 BW |
6958 | { |
6959 | frchainS *frchP; | |
6960 | ||
6961 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
6962 | { | |
6963 | fragS *fragP; | |
6964 | /* Walk over all of the fragments in a subsection. */ | |
6965 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
6966 | { | |
6967 | if ((fragP->fr_type == rs_align | |
6968 | || fragP->fr_type == rs_align_code | |
6969 | || (fragP->fr_type == rs_machine_dependent | |
6970 | && (fragP->fr_subtype == RELAX_DESIRE_ALIGN | |
6971 | || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET))) | |
6972 | && fragP->fr_fix == 0) | |
6973 | { | |
6974 | fragS *next = fragP->fr_next; | |
6975 | ||
6976 | while (next | |
6977 | && next->fr_fix == 0 | |
6978 | && next->fr_type == rs_machine_dependent | |
6979 | && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET) | |
6980 | { | |
6981 | frag_wane (next); | |
6982 | next = next->fr_next; | |
6983 | } | |
6984 | } | |
6985 | /* If we don't widen branch targets, then they | |
6986 | will be easier to align. */ | |
6987 | if (fragP->tc_frag_data.is_branch_target | |
6988 | && fragP->fr_opcode == fragP->fr_literal | |
6989 | && fragP->fr_type == rs_machine_dependent | |
6990 | && fragP->fr_subtype == RELAX_SLOTS | |
6991 | && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW) | |
6992 | frag_wane (fragP); | |
c138bc38 | 6993 | if (fragP->fr_type == rs_machine_dependent |
43cd72b9 BW |
6994 | && fragP->fr_subtype == RELAX_UNREACHABLE) |
6995 | fragP->tc_frag_data.is_unreachable = TRUE; | |
6996 | } | |
6997 | } | |
6998 | } | |
6999 | ||
7000 | ||
7001 | /* Re-process all of the fragments looking to convert all of the | |
7002 | RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch | |
7003 | target in the next fragment, convert this to RELAX_DESIRE_ALIGN. | |
7b1cc377 | 7004 | Otherwise, convert to a .fill 0. */ |
7fa3d080 | 7005 | |
43cd72b9 | 7006 | static void |
7fa3d080 | 7007 | xtensa_fix_target_frags (void) |
e0001a05 NC |
7008 | { |
7009 | frchainS *frchP; | |
7010 | ||
7011 | /* When this routine is called, all of the subsections are still intact | |
7012 | so we walk over subsections instead of sections. */ | |
7013 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
7014 | { | |
e0001a05 NC |
7015 | fragS *fragP; |
7016 | ||
7017 | /* Walk over all of the fragments in a subsection. */ | |
7018 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7019 | { | |
7020 | if (fragP->fr_type == rs_machine_dependent | |
7021 | && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET) | |
7022 | { | |
7b1cc377 | 7023 | if (next_frag_is_branch_target (fragP)) |
e0001a05 NC |
7024 | fragP->fr_subtype = RELAX_DESIRE_ALIGN; |
7025 | else | |
7026 | frag_wane (fragP); | |
7027 | } | |
e0001a05 NC |
7028 | } |
7029 | } | |
7030 | } | |
7031 | ||
7032 | ||
7fa3d080 BW |
7033 | static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *); |
7034 | ||
43cd72b9 | 7035 | static void |
7fa3d080 | 7036 | xtensa_mark_narrow_branches (void) |
43cd72b9 BW |
7037 | { |
7038 | frchainS *frchP; | |
7039 | ||
7040 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
7041 | { | |
7042 | fragS *fragP; | |
7043 | /* Walk over all of the fragments in a subsection. */ | |
7044 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7045 | { | |
7046 | if (fragP->fr_type == rs_machine_dependent | |
7047 | && fragP->fr_subtype == RELAX_SLOTS | |
7048 | && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED) | |
7049 | { | |
7050 | vliw_insn vinsn; | |
7051 | const expressionS *expr; | |
7052 | symbolS *symbolP; | |
7053 | ||
7054 | vinsn_from_chars (&vinsn, fragP->fr_opcode); | |
7055 | tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0); | |
7056 | ||
7057 | expr = &vinsn.slots[0].tok[1]; | |
7058 | symbolP = expr->X_add_symbol; | |
7059 | ||
7060 | if (vinsn.num_slots == 1 | |
7061 | && xtensa_opcode_is_branch (xtensa_default_isa, | |
7062 | vinsn.slots[0].opcode) | |
7063 | && xg_get_single_size (vinsn.slots[0].opcode) == 2 | |
7064 | && is_narrow_branch_guaranteed_in_range (fragP, | |
7065 | &vinsn.slots[0])) | |
7066 | { | |
7067 | fragP->fr_subtype = RELAX_SLOTS; | |
7068 | fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW; | |
7069 | } | |
7070 | } | |
7071 | } | |
7072 | } | |
7073 | } | |
7074 | ||
7075 | ||
7076 | /* A branch is typically widened only when its target is out of | |
7077 | range. However, we would like to widen them to align a subsequent | |
7078 | branch target when possible. | |
7079 | ||
7080 | Because the branch relaxation code is so convoluted, the optimal solution | |
7081 | (combining the two cases) is difficult to get right in all circumstances. | |
7082 | We therefore go with an "almost as good" solution, where we only | |
7083 | use for alignment narrow branches that definitely will not expand to a | |
7084 | jump and a branch. These functions find and mark these cases. */ | |
7085 | ||
a67517f4 BW |
7086 | /* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded |
7087 | as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63. | |
7088 | We start counting beginning with the frag after the 2-byte branch, so the | |
7089 | maximum offset is (4 - 2) + 63 = 65. */ | |
7090 | #define MAX_IMMED6 65 | |
43cd72b9 | 7091 | |
d77b99c9 | 7092 | static offsetT unrelaxed_frag_max_size (fragS *); |
7fa3d080 | 7093 | |
43cd72b9 | 7094 | static bfd_boolean |
7fa3d080 | 7095 | is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn) |
43cd72b9 BW |
7096 | { |
7097 | const expressionS *expr = &tinsn->tok[1]; | |
7098 | symbolS *symbolP = expr->X_add_symbol; | |
7099 | fragS *target_frag = symbol_get_frag (symbolP); | |
d77b99c9 | 7100 | offsetT max_distance = expr->X_add_number; |
43cd72b9 BW |
7101 | max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address); |
7102 | if (is_branch_jmp_to_next (tinsn, fragP)) | |
7103 | return FALSE; | |
7104 | ||
7105 | /* The branch doesn't branch over it's own frag, | |
7106 | but over the subsequent ones. */ | |
7107 | fragP = fragP->fr_next; | |
7108 | while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6) | |
7109 | { | |
7110 | max_distance += unrelaxed_frag_max_size (fragP); | |
7111 | fragP = fragP->fr_next; | |
7112 | } | |
7113 | if (max_distance <= MAX_IMMED6 && fragP == target_frag) | |
7114 | return TRUE; | |
e0001a05 NC |
7115 | return FALSE; |
7116 | } | |
7117 | ||
7118 | ||
43cd72b9 | 7119 | static void |
7fa3d080 | 7120 | xtensa_mark_zcl_first_insns (void) |
43cd72b9 BW |
7121 | { |
7122 | frchainS *frchP; | |
7123 | ||
7124 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
7125 | { | |
7126 | fragS *fragP; | |
7127 | /* Walk over all of the fragments in a subsection. */ | |
7128 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7129 | { | |
7130 | if (fragP->fr_type == rs_machine_dependent | |
7131 | && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE | |
7132 | || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)) | |
7133 | { | |
7134 | /* Find the loop frag. */ | |
7135 | fragS *targ_frag = next_non_empty_frag (fragP); | |
7136 | /* Find the first insn frag. */ | |
7137 | targ_frag = next_non_empty_frag (targ_frag); | |
7138 | ||
7139 | /* Of course, sometimes (mostly for toy test cases) a | |
7140 | zero-cost loop instruction is the last in a section. */ | |
c138bc38 | 7141 | if (targ_frag) |
d7c531cd BW |
7142 | targ_frag->tc_frag_data.is_first_loop_insn = TRUE; |
7143 | if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE) | |
7144 | frag_wane (fragP); | |
43cd72b9 BW |
7145 | } |
7146 | } | |
7147 | } | |
7148 | } | |
7149 | ||
7150 | ||
e0001a05 NC |
7151 | /* Re-process all of the fragments looking to convert all of the |
7152 | RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a | |
7153 | conditional branch or a retw/retw.n, convert this frag to one that | |
7154 | will generate a NOP. In any case close it off with a .fill 0. */ | |
7155 | ||
7fa3d080 BW |
7156 | static bfd_boolean next_instrs_are_b_retw (fragS *); |
7157 | ||
e0001a05 | 7158 | static void |
7fa3d080 | 7159 | xtensa_fix_a0_b_retw_frags (void) |
e0001a05 NC |
7160 | { |
7161 | frchainS *frchP; | |
7162 | ||
7163 | /* When this routine is called, all of the subsections are still intact | |
7164 | so we walk over subsections instead of sections. */ | |
7165 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
7166 | { | |
7167 | fragS *fragP; | |
7168 | ||
7169 | /* Walk over all of the fragments in a subsection. */ | |
7170 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7171 | { | |
7172 | if (fragP->fr_type == rs_machine_dependent | |
7173 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW) | |
7174 | { | |
7175 | if (next_instrs_are_b_retw (fragP)) | |
43cd72b9 | 7176 | { |
b08b5071 | 7177 | if (fragP->tc_frag_data.is_no_transform) |
43cd72b9 BW |
7178 | as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata")); |
7179 | else | |
7180 | relax_frag_add_nop (fragP); | |
7181 | } | |
7182 | frag_wane (fragP); | |
e0001a05 NC |
7183 | } |
7184 | } | |
7185 | } | |
7186 | } | |
7187 | ||
7188 | ||
7fa3d080 BW |
7189 | static bfd_boolean |
7190 | next_instrs_are_b_retw (fragS *fragP) | |
e0001a05 NC |
7191 | { |
7192 | xtensa_opcode opcode; | |
43cd72b9 | 7193 | xtensa_format fmt; |
e0001a05 NC |
7194 | const fragS *next_fragP = next_non_empty_frag (fragP); |
7195 | static xtensa_insnbuf insnbuf = NULL; | |
43cd72b9 | 7196 | static xtensa_insnbuf slotbuf = NULL; |
e0001a05 NC |
7197 | xtensa_isa isa = xtensa_default_isa; |
7198 | int offset = 0; | |
43cd72b9 BW |
7199 | int slot; |
7200 | bfd_boolean branch_seen = FALSE; | |
e0001a05 NC |
7201 | |
7202 | if (!insnbuf) | |
43cd72b9 BW |
7203 | { |
7204 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7205 | slotbuf = xtensa_insnbuf_alloc (isa); | |
7206 | } | |
e0001a05 NC |
7207 | |
7208 | if (next_fragP == NULL) | |
7209 | return FALSE; | |
7210 | ||
7211 | /* Check for the conditional branch. */ | |
d77b99c9 BW |
7212 | xtensa_insnbuf_from_chars |
7213 | (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0); | |
43cd72b9 BW |
7214 | fmt = xtensa_format_decode (isa, insnbuf); |
7215 | if (fmt == XTENSA_UNDEFINED) | |
7216 | return FALSE; | |
7217 | ||
7218 | for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++) | |
7219 | { | |
7220 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); | |
7221 | opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
7222 | ||
7223 | branch_seen = (branch_seen | |
7224 | || xtensa_opcode_is_branch (isa, opcode) == 1); | |
7225 | } | |
e0001a05 | 7226 | |
43cd72b9 | 7227 | if (!branch_seen) |
e0001a05 NC |
7228 | return FALSE; |
7229 | ||
43cd72b9 | 7230 | offset += xtensa_format_length (isa, fmt); |
e0001a05 NC |
7231 | if (offset == next_fragP->fr_fix) |
7232 | { | |
7233 | next_fragP = next_non_empty_frag (next_fragP); | |
7234 | offset = 0; | |
7235 | } | |
43cd72b9 | 7236 | |
e0001a05 NC |
7237 | if (next_fragP == NULL) |
7238 | return FALSE; | |
7239 | ||
7240 | /* Check for the retw/retw.n. */ | |
d77b99c9 BW |
7241 | xtensa_insnbuf_from_chars |
7242 | (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0); | |
43cd72b9 BW |
7243 | fmt = xtensa_format_decode (isa, insnbuf); |
7244 | ||
7245 | /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we | |
7246 | have no problems. */ | |
7247 | if (fmt == XTENSA_UNDEFINED | |
7248 | || xtensa_format_num_slots (isa, fmt) != 1) | |
7249 | return FALSE; | |
7250 | ||
7251 | xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf); | |
7252 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
e0001a05 | 7253 | |
b08b5071 | 7254 | if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode) |
e0001a05 | 7255 | return TRUE; |
43cd72b9 | 7256 | |
e0001a05 NC |
7257 | return FALSE; |
7258 | } | |
7259 | ||
7260 | ||
7261 | /* Re-process all of the fragments looking to convert all of the | |
7262 | RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a | |
7263 | loop end label, convert this frag to one that will generate a NOP. | |
7264 | In any case close it off with a .fill 0. */ | |
7265 | ||
7fa3d080 BW |
7266 | static bfd_boolean next_instr_is_loop_end (fragS *); |
7267 | ||
e0001a05 | 7268 | static void |
7fa3d080 | 7269 | xtensa_fix_b_j_loop_end_frags (void) |
e0001a05 NC |
7270 | { |
7271 | frchainS *frchP; | |
7272 | ||
7273 | /* When this routine is called, all of the subsections are still intact | |
7274 | so we walk over subsections instead of sections. */ | |
7275 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
7276 | { | |
7277 | fragS *fragP; | |
7278 | ||
7279 | /* Walk over all of the fragments in a subsection. */ | |
7280 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7281 | { | |
7282 | if (fragP->fr_type == rs_machine_dependent | |
7283 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END) | |
7284 | { | |
7285 | if (next_instr_is_loop_end (fragP)) | |
43cd72b9 | 7286 | { |
b08b5071 | 7287 | if (fragP->tc_frag_data.is_no_transform) |
43cd72b9 BW |
7288 | as_bad (_("branching or jumping to a loop end may trigger hardware errata")); |
7289 | else | |
7290 | relax_frag_add_nop (fragP); | |
7291 | } | |
7292 | frag_wane (fragP); | |
e0001a05 NC |
7293 | } |
7294 | } | |
7295 | } | |
7296 | } | |
7297 | ||
7298 | ||
7fa3d080 BW |
7299 | static bfd_boolean |
7300 | next_instr_is_loop_end (fragS *fragP) | |
e0001a05 NC |
7301 | { |
7302 | const fragS *next_fragP; | |
7303 | ||
7304 | if (next_frag_is_loop_target (fragP)) | |
7305 | return FALSE; | |
7306 | ||
7307 | next_fragP = next_non_empty_frag (fragP); | |
7308 | if (next_fragP == NULL) | |
7309 | return FALSE; | |
7310 | ||
7311 | if (!next_frag_is_loop_target (next_fragP)) | |
7312 | return FALSE; | |
7313 | ||
7314 | /* If the size is >= 3 then there is more than one instruction here. | |
7315 | The hardware bug will not fire. */ | |
7316 | if (next_fragP->fr_fix > 3) | |
7317 | return FALSE; | |
7318 | ||
7319 | return TRUE; | |
7320 | } | |
7321 | ||
7322 | ||
7323 | /* Re-process all of the fragments looking to convert all of the | |
7324 | RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is | |
7325 | not MY loop's loop end within 12 bytes, add enough nops here to | |
7326 | make it at least 12 bytes away. In any case close it off with a | |
7327 | .fill 0. */ | |
7328 | ||
d77b99c9 BW |
7329 | static offsetT min_bytes_to_other_loop_end |
7330 | (fragS *, fragS *, offsetT, offsetT); | |
7fa3d080 | 7331 | |
e0001a05 | 7332 | static void |
7fa3d080 | 7333 | xtensa_fix_close_loop_end_frags (void) |
e0001a05 NC |
7334 | { |
7335 | frchainS *frchP; | |
7336 | ||
7337 | /* When this routine is called, all of the subsections are still intact | |
7338 | so we walk over subsections instead of sections. */ | |
7339 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
7340 | { | |
7341 | fragS *fragP; | |
7342 | ||
7343 | fragS *current_target = NULL; | |
7344 | offsetT current_offset = 0; | |
7345 | ||
7346 | /* Walk over all of the fragments in a subsection. */ | |
7347 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7348 | { | |
7349 | if (fragP->fr_type == rs_machine_dependent | |
43cd72b9 BW |
7350 | && ((fragP->fr_subtype == RELAX_IMMED) |
7351 | || ((fragP->fr_subtype == RELAX_SLOTS) | |
7352 | && (fragP->tc_frag_data.slot_subtypes[0] | |
7353 | == RELAX_IMMED)))) | |
e0001a05 NC |
7354 | { |
7355 | /* Read it. If the instruction is a loop, get the target. */ | |
43cd72b9 BW |
7356 | TInsn t_insn; |
7357 | tinsn_from_chars (&t_insn, fragP->fr_opcode, 0); | |
7358 | if (xtensa_opcode_is_loop (xtensa_default_isa, | |
7359 | t_insn.opcode) == 1) | |
e0001a05 | 7360 | { |
e0001a05 | 7361 | /* Get the current fragment target. */ |
43cd72b9 | 7362 | if (fragP->tc_frag_data.slot_symbols[0]) |
e0001a05 | 7363 | { |
43cd72b9 BW |
7364 | symbolS *sym = fragP->tc_frag_data.slot_symbols[0]; |
7365 | current_target = symbol_get_frag (sym); | |
e0001a05 NC |
7366 | current_offset = fragP->fr_offset; |
7367 | } | |
7368 | } | |
7369 | } | |
7370 | ||
7371 | if (current_target | |
7372 | && fragP->fr_type == rs_machine_dependent | |
7373 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END) | |
7374 | { | |
d77b99c9 BW |
7375 | offsetT min_bytes; |
7376 | int bytes_added = 0; | |
e0001a05 NC |
7377 | |
7378 | #define REQUIRED_LOOP_DIVIDING_BYTES 12 | |
7379 | /* Max out at 12. */ | |
7380 | min_bytes = min_bytes_to_other_loop_end | |
7381 | (fragP->fr_next, current_target, current_offset, | |
7382 | REQUIRED_LOOP_DIVIDING_BYTES); | |
7383 | ||
7384 | if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES) | |
7385 | { | |
b08b5071 | 7386 | if (fragP->tc_frag_data.is_no_transform) |
43cd72b9 BW |
7387 | as_bad (_("loop end too close to another loop end may trigger hardware errata")); |
7388 | else | |
e0001a05 | 7389 | { |
43cd72b9 BW |
7390 | while (min_bytes + bytes_added |
7391 | < REQUIRED_LOOP_DIVIDING_BYTES) | |
e0001a05 | 7392 | { |
43cd72b9 | 7393 | int length = 3; |
c138bc38 | 7394 | |
43cd72b9 BW |
7395 | if (fragP->fr_var < length) |
7396 | as_fatal (_("fr_var %lu < length %d"), | |
dd49a749 | 7397 | (long) fragP->fr_var, length); |
43cd72b9 BW |
7398 | else |
7399 | { | |
7400 | assemble_nop (length, | |
7401 | fragP->fr_literal + fragP->fr_fix); | |
7402 | fragP->fr_fix += length; | |
7403 | fragP->fr_var -= length; | |
7404 | } | |
7405 | bytes_added += length; | |
e0001a05 | 7406 | } |
e0001a05 NC |
7407 | } |
7408 | } | |
7409 | frag_wane (fragP); | |
7410 | } | |
43cd72b9 BW |
7411 | assert (fragP->fr_type != rs_machine_dependent |
7412 | || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END); | |
e0001a05 NC |
7413 | } |
7414 | } | |
7415 | } | |
7416 | ||
7417 | ||
d77b99c9 | 7418 | static offsetT unrelaxed_frag_min_size (fragS *); |
7fa3d080 | 7419 | |
d77b99c9 | 7420 | static offsetT |
7fa3d080 BW |
7421 | min_bytes_to_other_loop_end (fragS *fragP, |
7422 | fragS *current_target, | |
7423 | offsetT current_offset, | |
d77b99c9 | 7424 | offsetT max_size) |
e0001a05 | 7425 | { |
d77b99c9 | 7426 | offsetT offset = 0; |
e0001a05 NC |
7427 | fragS *current_fragP; |
7428 | ||
7429 | for (current_fragP = fragP; | |
7430 | current_fragP; | |
7431 | current_fragP = current_fragP->fr_next) | |
7432 | { | |
7433 | if (current_fragP->tc_frag_data.is_loop_target | |
7434 | && current_fragP != current_target) | |
7435 | return offset + current_offset; | |
7436 | ||
7437 | offset += unrelaxed_frag_min_size (current_fragP); | |
7438 | ||
7439 | if (offset + current_offset >= max_size) | |
7440 | return max_size; | |
7441 | } | |
7442 | return max_size; | |
7443 | } | |
7444 | ||
7445 | ||
d77b99c9 | 7446 | static offsetT |
7fa3d080 | 7447 | unrelaxed_frag_min_size (fragS *fragP) |
e0001a05 | 7448 | { |
d77b99c9 | 7449 | offsetT size = fragP->fr_fix; |
e0001a05 | 7450 | |
d77b99c9 | 7451 | /* Add fill size. */ |
e0001a05 NC |
7452 | if (fragP->fr_type == rs_fill) |
7453 | size += fragP->fr_offset; | |
7454 | ||
7455 | return size; | |
7456 | } | |
7457 | ||
7458 | ||
d77b99c9 | 7459 | static offsetT |
7fa3d080 | 7460 | unrelaxed_frag_max_size (fragS *fragP) |
43cd72b9 | 7461 | { |
d77b99c9 | 7462 | offsetT size = fragP->fr_fix; |
43cd72b9 BW |
7463 | switch (fragP->fr_type) |
7464 | { | |
7465 | case 0: | |
c138bc38 | 7466 | /* Empty frags created by the obstack allocation scheme |
43cd72b9 BW |
7467 | end up with type 0. */ |
7468 | break; | |
7469 | case rs_fill: | |
7470 | case rs_org: | |
7471 | case rs_space: | |
7472 | size += fragP->fr_offset; | |
7473 | break; | |
7474 | case rs_align: | |
7475 | case rs_align_code: | |
7476 | case rs_align_test: | |
7477 | case rs_leb128: | |
7478 | case rs_cfa: | |
7479 | case rs_dwarf2dbg: | |
7480 | /* No further adjustments needed. */ | |
7481 | break; | |
7482 | case rs_machine_dependent: | |
7483 | if (fragP->fr_subtype != RELAX_DESIRE_ALIGN) | |
7484 | size += fragP->fr_var; | |
7485 | break; | |
7486 | default: | |
7487 | /* We had darn well better know how big it is. */ | |
7488 | assert (0); | |
7489 | break; | |
7490 | } | |
7491 | ||
7492 | return size; | |
7493 | } | |
7494 | ||
7495 | ||
e0001a05 NC |
7496 | /* Re-process all of the fragments looking to convert all |
7497 | of the RELAX_ADD_NOP_IF_SHORT_LOOP. If: | |
7498 | ||
7499 | A) | |
7500 | 1) the instruction size count to the loop end label | |
7501 | is too short (<= 2 instructions), | |
7502 | 2) loop has a jump or branch in it | |
7503 | ||
7504 | or B) | |
43cd72b9 | 7505 | 1) workaround_all_short_loops is TRUE |
e0001a05 NC |
7506 | 2) The generating loop was a 'loopgtz' or 'loopnez' |
7507 | 3) the instruction size count to the loop end label is too short | |
7508 | (<= 2 instructions) | |
7509 | then convert this frag (and maybe the next one) to generate a NOP. | |
7510 | In any case close it off with a .fill 0. */ | |
7511 | ||
d77b99c9 | 7512 | static int count_insns_to_loop_end (fragS *, bfd_boolean, int); |
7fa3d080 BW |
7513 | static bfd_boolean branch_before_loop_end (fragS *); |
7514 | ||
e0001a05 | 7515 | static void |
7fa3d080 | 7516 | xtensa_fix_short_loop_frags (void) |
e0001a05 NC |
7517 | { |
7518 | frchainS *frchP; | |
7519 | ||
7520 | /* When this routine is called, all of the subsections are still intact | |
7521 | so we walk over subsections instead of sections. */ | |
7522 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
7523 | { | |
7524 | fragS *fragP; | |
7525 | fragS *current_target = NULL; | |
7526 | offsetT current_offset = 0; | |
7527 | xtensa_opcode current_opcode = XTENSA_UNDEFINED; | |
7528 | ||
7529 | /* Walk over all of the fragments in a subsection. */ | |
7530 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7531 | { | |
43cd72b9 | 7532 | /* Check on the current loop. */ |
e0001a05 | 7533 | if (fragP->fr_type == rs_machine_dependent |
43cd72b9 BW |
7534 | && ((fragP->fr_subtype == RELAX_IMMED) |
7535 | || ((fragP->fr_subtype == RELAX_SLOTS) | |
7536 | && (fragP->tc_frag_data.slot_subtypes[0] | |
7537 | == RELAX_IMMED)))) | |
e0001a05 | 7538 | { |
43cd72b9 BW |
7539 | TInsn t_insn; |
7540 | ||
e0001a05 | 7541 | /* Read it. If the instruction is a loop, get the target. */ |
43cd72b9 BW |
7542 | tinsn_from_chars (&t_insn, fragP->fr_opcode, 0); |
7543 | if (xtensa_opcode_is_loop (xtensa_default_isa, | |
7544 | t_insn.opcode) == 1) | |
e0001a05 | 7545 | { |
e0001a05 | 7546 | /* Get the current fragment target. */ |
43cd72b9 | 7547 | if (fragP->tc_frag_data.slot_symbols[0]) |
e0001a05 | 7548 | { |
43cd72b9 BW |
7549 | symbolS *sym = fragP->tc_frag_data.slot_symbols[0]; |
7550 | current_target = symbol_get_frag (sym); | |
e0001a05 | 7551 | current_offset = fragP->fr_offset; |
43cd72b9 | 7552 | current_opcode = t_insn.opcode; |
e0001a05 NC |
7553 | } |
7554 | } | |
7555 | } | |
7556 | ||
7557 | if (fragP->fr_type == rs_machine_dependent | |
7558 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP) | |
7559 | { | |
d77b99c9 | 7560 | if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3 |
e0001a05 | 7561 | && (branch_before_loop_end (fragP->fr_next) |
43cd72b9 | 7562 | || (workaround_all_short_loops |
e0001a05 | 7563 | && current_opcode != XTENSA_UNDEFINED |
b08b5071 | 7564 | && current_opcode != xtensa_loop_opcode))) |
43cd72b9 | 7565 | { |
b08b5071 | 7566 | if (fragP->tc_frag_data.is_no_transform) |
43cd72b9 BW |
7567 | as_bad (_("loop containing less than three instructions may trigger hardware errata")); |
7568 | else | |
7569 | relax_frag_add_nop (fragP); | |
7570 | } | |
7571 | frag_wane (fragP); | |
e0001a05 NC |
7572 | } |
7573 | } | |
7574 | } | |
7575 | } | |
7576 | ||
7577 | ||
d77b99c9 | 7578 | static int unrelaxed_frag_min_insn_count (fragS *); |
7fa3d080 | 7579 | |
d77b99c9 | 7580 | static int |
7fa3d080 BW |
7581 | count_insns_to_loop_end (fragS *base_fragP, |
7582 | bfd_boolean count_relax_add, | |
d77b99c9 | 7583 | int max_count) |
e0001a05 NC |
7584 | { |
7585 | fragS *fragP = NULL; | |
d77b99c9 | 7586 | int insn_count = 0; |
e0001a05 NC |
7587 | |
7588 | fragP = base_fragP; | |
7589 | ||
7590 | for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next) | |
7591 | { | |
7592 | insn_count += unrelaxed_frag_min_insn_count (fragP); | |
7593 | if (insn_count >= max_count) | |
7594 | return max_count; | |
7595 | ||
7596 | if (count_relax_add) | |
7597 | { | |
7598 | if (fragP->fr_type == rs_machine_dependent | |
7599 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP) | |
7600 | { | |
7601 | /* In order to add the appropriate number of | |
7602 | NOPs, we count an instruction for downstream | |
7603 | occurrences. */ | |
7604 | insn_count++; | |
7605 | if (insn_count >= max_count) | |
7606 | return max_count; | |
7607 | } | |
7608 | } | |
7609 | } | |
7610 | return insn_count; | |
7611 | } | |
7612 | ||
7613 | ||
d77b99c9 | 7614 | static int |
7fa3d080 | 7615 | unrelaxed_frag_min_insn_count (fragS *fragP) |
e0001a05 | 7616 | { |
43cd72b9 BW |
7617 | xtensa_isa isa = xtensa_default_isa; |
7618 | static xtensa_insnbuf insnbuf = NULL; | |
d77b99c9 | 7619 | int insn_count = 0; |
e0001a05 NC |
7620 | int offset = 0; |
7621 | ||
7622 | if (!fragP->tc_frag_data.is_insn) | |
7623 | return insn_count; | |
7624 | ||
43cd72b9 BW |
7625 | if (!insnbuf) |
7626 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7627 | ||
e0001a05 NC |
7628 | /* Decode the fixed instructions. */ |
7629 | while (offset < fragP->fr_fix) | |
7630 | { | |
43cd72b9 BW |
7631 | xtensa_format fmt; |
7632 | ||
d77b99c9 BW |
7633 | xtensa_insnbuf_from_chars |
7634 | (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0); | |
43cd72b9 BW |
7635 | fmt = xtensa_format_decode (isa, insnbuf); |
7636 | ||
7637 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 NC |
7638 | { |
7639 | as_fatal (_("undecodable instruction in instruction frag")); | |
7640 | return insn_count; | |
7641 | } | |
43cd72b9 | 7642 | offset += xtensa_format_length (isa, fmt); |
e0001a05 NC |
7643 | insn_count++; |
7644 | } | |
7645 | ||
7646 | return insn_count; | |
7647 | } | |
7648 | ||
7649 | ||
7fa3d080 BW |
7650 | static bfd_boolean unrelaxed_frag_has_b_j (fragS *); |
7651 | ||
43cd72b9 | 7652 | static bfd_boolean |
7fa3d080 | 7653 | branch_before_loop_end (fragS *base_fragP) |
e0001a05 NC |
7654 | { |
7655 | fragS *fragP; | |
7656 | ||
7657 | for (fragP = base_fragP; | |
7658 | fragP && !fragP->tc_frag_data.is_loop_target; | |
7659 | fragP = fragP->fr_next) | |
7660 | { | |
7661 | if (unrelaxed_frag_has_b_j (fragP)) | |
7662 | return TRUE; | |
7663 | } | |
7664 | return FALSE; | |
7665 | } | |
7666 | ||
7667 | ||
43cd72b9 | 7668 | static bfd_boolean |
7fa3d080 | 7669 | unrelaxed_frag_has_b_j (fragS *fragP) |
e0001a05 | 7670 | { |
43cd72b9 BW |
7671 | static xtensa_insnbuf insnbuf = NULL; |
7672 | xtensa_isa isa = xtensa_default_isa; | |
e0001a05 NC |
7673 | int offset = 0; |
7674 | ||
7675 | if (!fragP->tc_frag_data.is_insn) | |
7676 | return FALSE; | |
7677 | ||
43cd72b9 BW |
7678 | if (!insnbuf) |
7679 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7680 | ||
e0001a05 NC |
7681 | /* Decode the fixed instructions. */ |
7682 | while (offset < fragP->fr_fix) | |
7683 | { | |
43cd72b9 BW |
7684 | xtensa_format fmt; |
7685 | int slot; | |
7686 | ||
d77b99c9 BW |
7687 | xtensa_insnbuf_from_chars |
7688 | (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0); | |
43cd72b9 BW |
7689 | fmt = xtensa_format_decode (isa, insnbuf); |
7690 | if (fmt == XTENSA_UNDEFINED) | |
7691 | return FALSE; | |
7692 | ||
7693 | for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++) | |
e0001a05 | 7694 | { |
43cd72b9 BW |
7695 | xtensa_opcode opcode = |
7696 | get_opcode_from_buf (fragP->fr_literal + offset, slot); | |
7697 | if (xtensa_opcode_is_branch (isa, opcode) == 1 | |
7698 | || xtensa_opcode_is_jump (isa, opcode) == 1) | |
7699 | return TRUE; | |
e0001a05 | 7700 | } |
43cd72b9 | 7701 | offset += xtensa_format_length (isa, fmt); |
e0001a05 NC |
7702 | } |
7703 | return FALSE; | |
7704 | } | |
7705 | ||
7706 | ||
7707 | /* Checks to be made after initial assembly but before relaxation. */ | |
7708 | ||
7fa3d080 BW |
7709 | static bfd_boolean is_empty_loop (const TInsn *, fragS *); |
7710 | static bfd_boolean is_local_forward_loop (const TInsn *, fragS *); | |
7711 | ||
e0001a05 | 7712 | static void |
7fa3d080 | 7713 | xtensa_sanity_check (void) |
e0001a05 NC |
7714 | { |
7715 | char *file_name; | |
d77b99c9 | 7716 | unsigned line; |
e0001a05 NC |
7717 | |
7718 | frchainS *frchP; | |
7719 | ||
7720 | as_where (&file_name, &line); | |
7721 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
7722 | { | |
7723 | fragS *fragP; | |
7724 | ||
7725 | /* Walk over all of the fragments in a subsection. */ | |
7726 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
7727 | { | |
7728 | /* Currently we only check for empty loops here. */ | |
7729 | if (fragP->fr_type == rs_machine_dependent | |
7730 | && fragP->fr_subtype == RELAX_IMMED) | |
7731 | { | |
7732 | static xtensa_insnbuf insnbuf = NULL; | |
7733 | TInsn t_insn; | |
7734 | ||
7735 | if (fragP->fr_opcode != NULL) | |
7736 | { | |
7737 | if (!insnbuf) | |
7738 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
43cd72b9 BW |
7739 | tinsn_from_chars (&t_insn, fragP->fr_opcode, 0); |
7740 | tinsn_immed_from_frag (&t_insn, fragP, 0); | |
e0001a05 | 7741 | |
43cd72b9 BW |
7742 | if (xtensa_opcode_is_loop (xtensa_default_isa, |
7743 | t_insn.opcode) == 1) | |
e0001a05 NC |
7744 | { |
7745 | if (is_empty_loop (&t_insn, fragP)) | |
7746 | { | |
7747 | new_logical_line (fragP->fr_file, fragP->fr_line); | |
7748 | as_bad (_("invalid empty loop")); | |
7749 | } | |
7750 | if (!is_local_forward_loop (&t_insn, fragP)) | |
7751 | { | |
7752 | new_logical_line (fragP->fr_file, fragP->fr_line); | |
7753 | as_bad (_("loop target does not follow " | |
7754 | "loop instruction in section")); | |
7755 | } | |
7756 | } | |
7757 | } | |
7758 | } | |
7759 | } | |
7760 | } | |
7761 | new_logical_line (file_name, line); | |
7762 | } | |
7763 | ||
7764 | ||
7765 | #define LOOP_IMMED_OPN 1 | |
7766 | ||
43cd72b9 | 7767 | /* Return TRUE if the loop target is the next non-zero fragment. */ |
e0001a05 | 7768 | |
7fa3d080 BW |
7769 | static bfd_boolean |
7770 | is_empty_loop (const TInsn *insn, fragS *fragP) | |
e0001a05 NC |
7771 | { |
7772 | const expressionS *expr; | |
7773 | symbolS *symbolP; | |
7774 | fragS *next_fragP; | |
7775 | ||
7776 | if (insn->insn_type != ITYPE_INSN) | |
7777 | return FALSE; | |
7778 | ||
43cd72b9 | 7779 | if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1) |
e0001a05 NC |
7780 | return FALSE; |
7781 | ||
7782 | if (insn->ntok <= LOOP_IMMED_OPN) | |
7783 | return FALSE; | |
7784 | ||
7785 | expr = &insn->tok[LOOP_IMMED_OPN]; | |
7786 | ||
7787 | if (expr->X_op != O_symbol) | |
7788 | return FALSE; | |
7789 | ||
7790 | symbolP = expr->X_add_symbol; | |
7791 | if (!symbolP) | |
7792 | return FALSE; | |
7793 | ||
7794 | if (symbol_get_frag (symbolP) == NULL) | |
7795 | return FALSE; | |
7796 | ||
7797 | if (S_GET_VALUE (symbolP) != 0) | |
7798 | return FALSE; | |
7799 | ||
7800 | /* Walk through the zero-size fragments from this one. If we find | |
7801 | the target fragment, then this is a zero-size loop. */ | |
43cd72b9 | 7802 | |
e0001a05 NC |
7803 | for (next_fragP = fragP->fr_next; |
7804 | next_fragP != NULL; | |
7805 | next_fragP = next_fragP->fr_next) | |
7806 | { | |
7807 | if (next_fragP == symbol_get_frag (symbolP)) | |
7808 | return TRUE; | |
7809 | if (next_fragP->fr_fix != 0) | |
7810 | return FALSE; | |
7811 | } | |
7812 | return FALSE; | |
7813 | } | |
7814 | ||
7815 | ||
7fa3d080 BW |
7816 | static bfd_boolean |
7817 | is_local_forward_loop (const TInsn *insn, fragS *fragP) | |
e0001a05 NC |
7818 | { |
7819 | const expressionS *expr; | |
7820 | symbolS *symbolP; | |
7821 | fragS *next_fragP; | |
7822 | ||
7823 | if (insn->insn_type != ITYPE_INSN) | |
7824 | return FALSE; | |
7825 | ||
43cd72b9 | 7826 | if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) == 0) |
e0001a05 NC |
7827 | return FALSE; |
7828 | ||
7829 | if (insn->ntok <= LOOP_IMMED_OPN) | |
7830 | return FALSE; | |
7831 | ||
7832 | expr = &insn->tok[LOOP_IMMED_OPN]; | |
7833 | ||
7834 | if (expr->X_op != O_symbol) | |
7835 | return FALSE; | |
7836 | ||
7837 | symbolP = expr->X_add_symbol; | |
7838 | if (!symbolP) | |
7839 | return FALSE; | |
7840 | ||
7841 | if (symbol_get_frag (symbolP) == NULL) | |
7842 | return FALSE; | |
7843 | ||
7844 | /* Walk through fragments until we find the target. | |
7845 | If we do not find the target, then this is an invalid loop. */ | |
43cd72b9 | 7846 | |
e0001a05 NC |
7847 | for (next_fragP = fragP->fr_next; |
7848 | next_fragP != NULL; | |
7849 | next_fragP = next_fragP->fr_next) | |
43cd72b9 BW |
7850 | { |
7851 | if (next_fragP == symbol_get_frag (symbolP)) | |
7852 | return TRUE; | |
7853 | } | |
e0001a05 NC |
7854 | |
7855 | return FALSE; | |
7856 | } | |
7857 | ||
7858 | \f | |
7859 | /* Alignment Functions. */ | |
7860 | ||
d77b99c9 BW |
7861 | static int |
7862 | get_text_align_power (unsigned target_size) | |
e0001a05 | 7863 | { |
d77b99c9 BW |
7864 | int i = 0; |
7865 | unsigned power = 1; | |
7866 | ||
7867 | assert (target_size <= INT_MAX); | |
7868 | while (target_size > power) | |
e0001a05 | 7869 | { |
d77b99c9 BW |
7870 | power <<= 1; |
7871 | i += 1; | |
e0001a05 | 7872 | } |
d77b99c9 | 7873 | return i; |
e0001a05 NC |
7874 | } |
7875 | ||
7876 | ||
d77b99c9 | 7877 | static int |
7fa3d080 BW |
7878 | get_text_align_max_fill_size (int align_pow, |
7879 | bfd_boolean use_nops, | |
7880 | bfd_boolean use_no_density) | |
e0001a05 NC |
7881 | { |
7882 | if (!use_nops) | |
7883 | return (1 << align_pow); | |
7884 | if (use_no_density) | |
7885 | return 3 * (1 << align_pow); | |
7886 | ||
7887 | return 1 + (1 << align_pow); | |
7888 | } | |
7889 | ||
7890 | ||
d77b99c9 BW |
7891 | /* Calculate the minimum bytes of fill needed at "address" to align a |
7892 | target instruction of size "target_size" so that it does not cross a | |
7893 | power-of-two boundary specified by "align_pow". If "use_nops" is FALSE, | |
7894 | the fill can be an arbitrary number of bytes. Otherwise, the space must | |
7895 | be filled by NOP instructions. */ | |
e0001a05 | 7896 | |
d77b99c9 | 7897 | static int |
7fa3d080 BW |
7898 | get_text_align_fill_size (addressT address, |
7899 | int align_pow, | |
7900 | int target_size, | |
7901 | bfd_boolean use_nops, | |
7902 | bfd_boolean use_no_density) | |
e0001a05 | 7903 | { |
d77b99c9 BW |
7904 | addressT alignment, fill, fill_limit, fill_step; |
7905 | bfd_boolean skip_one = FALSE; | |
e0001a05 | 7906 | |
d77b99c9 BW |
7907 | alignment = (1 << align_pow); |
7908 | assert (target_size > 0 && alignment >= (addressT) target_size); | |
c138bc38 | 7909 | |
e0001a05 NC |
7910 | if (!use_nops) |
7911 | { | |
d77b99c9 BW |
7912 | fill_limit = alignment; |
7913 | fill_step = 1; | |
e0001a05 | 7914 | } |
d77b99c9 | 7915 | else if (!use_no_density) |
e0001a05 | 7916 | { |
d77b99c9 BW |
7917 | /* Combine 2- and 3-byte NOPs to fill anything larger than one. */ |
7918 | fill_limit = alignment * 2; | |
7919 | fill_step = 1; | |
7920 | skip_one = TRUE; | |
e0001a05 NC |
7921 | } |
7922 | else | |
7923 | { | |
d77b99c9 BW |
7924 | /* Fill with 3-byte NOPs -- can only fill multiples of 3. */ |
7925 | fill_limit = alignment * 3; | |
7926 | fill_step = 3; | |
7927 | } | |
e0001a05 | 7928 | |
d77b99c9 BW |
7929 | /* Try all fill sizes until finding one that works. */ |
7930 | for (fill = 0; fill < fill_limit; fill += fill_step) | |
7931 | { | |
7932 | if (skip_one && fill == 1) | |
7933 | continue; | |
7934 | if ((address + fill) >> align_pow | |
7935 | == (address + fill + target_size - 1) >> align_pow) | |
7936 | return fill; | |
e0001a05 NC |
7937 | } |
7938 | assert (0); | |
7939 | return 0; | |
7940 | } | |
7941 | ||
7942 | ||
664df4e4 BW |
7943 | static int |
7944 | branch_align_power (segT sec) | |
7945 | { | |
7946 | /* If the Xtensa processor has a fetch width of 8 bytes, and the section | |
7947 | is aligned to at least an 8-byte boundary, then a branch target need | |
7948 | only fit within an 8-byte aligned block of memory to avoid a stall. | |
7949 | Otherwise, try to fit branch targets within 4-byte aligned blocks | |
7950 | (which may be insufficient, e.g., if the section has no alignment, but | |
7951 | it's good enough). */ | |
7952 | if (xtensa_fetch_width == 8) | |
7953 | { | |
7954 | if (get_recorded_alignment (sec) >= 3) | |
7955 | return 3; | |
7956 | } | |
7957 | else | |
7958 | assert (xtensa_fetch_width == 4); | |
7959 | ||
7960 | return 2; | |
7961 | } | |
7962 | ||
7963 | ||
e0001a05 NC |
7964 | /* This will assert if it is not possible. */ |
7965 | ||
d77b99c9 BW |
7966 | static int |
7967 | get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density) | |
e0001a05 | 7968 | { |
d77b99c9 BW |
7969 | int count = 0; |
7970 | ||
e0001a05 NC |
7971 | if (use_no_density) |
7972 | { | |
7973 | assert (fill_size % 3 == 0); | |
7974 | return (fill_size / 3); | |
7975 | } | |
7976 | ||
7977 | assert (fill_size != 1); /* Bad argument. */ | |
7978 | ||
7979 | while (fill_size > 1) | |
7980 | { | |
d77b99c9 | 7981 | int insn_size = 3; |
e0001a05 NC |
7982 | if (fill_size == 2 || fill_size == 4) |
7983 | insn_size = 2; | |
7984 | fill_size -= insn_size; | |
7985 | count++; | |
7986 | } | |
7987 | assert (fill_size != 1); /* Bad algorithm. */ | |
7988 | return count; | |
7989 | } | |
7990 | ||
7991 | ||
d77b99c9 BW |
7992 | static int |
7993 | get_text_align_nth_nop_size (offsetT fill_size, | |
7994 | int n, | |
7fa3d080 | 7995 | bfd_boolean use_no_density) |
e0001a05 | 7996 | { |
d77b99c9 | 7997 | int count = 0; |
e0001a05 NC |
7998 | |
7999 | if (use_no_density) | |
8000 | return 3; | |
8001 | ||
d77b99c9 BW |
8002 | assert (fill_size != 1); /* Bad argument. */ |
8003 | ||
e0001a05 NC |
8004 | while (fill_size > 1) |
8005 | { | |
d77b99c9 | 8006 | int insn_size = 3; |
e0001a05 NC |
8007 | if (fill_size == 2 || fill_size == 4) |
8008 | insn_size = 2; | |
8009 | fill_size -= insn_size; | |
8010 | count++; | |
8011 | if (n + 1 == count) | |
8012 | return insn_size; | |
8013 | } | |
8014 | assert (0); | |
8015 | return 0; | |
8016 | } | |
8017 | ||
8018 | ||
8019 | /* For the given fragment, find the appropriate address | |
8020 | for it to begin at if we are using NOPs to align it. */ | |
8021 | ||
8022 | static addressT | |
7fa3d080 | 8023 | get_noop_aligned_address (fragS *fragP, addressT address) |
e0001a05 | 8024 | { |
43cd72b9 BW |
8025 | /* The rule is: get next fragment's FIRST instruction. Find |
8026 | the smallest number of bytes that need to be added to | |
8027 | ensure that the next fragment's FIRST instruction will fit | |
8028 | in a single word. | |
c138bc38 | 8029 | |
43cd72b9 BW |
8030 | E.G., 2 bytes : 0, 1, 2 mod 4 |
8031 | 3 bytes: 0, 1 mod 4 | |
c138bc38 | 8032 | |
43cd72b9 BW |
8033 | If the FIRST instruction MIGHT be relaxed, |
8034 | assume that it will become a 3-byte instruction. | |
c138bc38 | 8035 | |
43cd72b9 BW |
8036 | Note again here that LOOP instructions are not bundleable, |
8037 | and this relaxation only applies to LOOP opcodes. */ | |
c138bc38 | 8038 | |
d77b99c9 | 8039 | int fill_size = 0; |
43cd72b9 BW |
8040 | int first_insn_size; |
8041 | int loop_insn_size; | |
8042 | addressT pre_opcode_bytes; | |
d77b99c9 | 8043 | int align_power; |
43cd72b9 BW |
8044 | fragS *first_insn; |
8045 | xtensa_opcode opcode; | |
8046 | bfd_boolean is_loop; | |
e0001a05 | 8047 | |
43cd72b9 BW |
8048 | assert (fragP->fr_type == rs_machine_dependent); |
8049 | assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE); | |
e0001a05 | 8050 | |
43cd72b9 BW |
8051 | /* Find the loop frag. */ |
8052 | first_insn = next_non_empty_frag (fragP); | |
8053 | /* Now find the first insn frag. */ | |
8054 | first_insn = next_non_empty_frag (first_insn); | |
e0001a05 | 8055 | |
43cd72b9 BW |
8056 | is_loop = next_frag_opcode_is_loop (fragP, &opcode); |
8057 | assert (is_loop); | |
8058 | loop_insn_size = xg_get_single_size (opcode); | |
e0001a05 | 8059 | |
43cd72b9 BW |
8060 | pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP); |
8061 | pre_opcode_bytes += loop_insn_size; | |
e0001a05 | 8062 | |
43cd72b9 BW |
8063 | /* For loops, the alignment depends on the size of the |
8064 | instruction following the loop, not the LOOP instruction. */ | |
e0001a05 | 8065 | |
43cd72b9 BW |
8066 | if (first_insn == NULL) |
8067 | return address; | |
e0001a05 | 8068 | |
43cd72b9 | 8069 | assert (first_insn->tc_frag_data.is_first_loop_insn); |
e0001a05 | 8070 | |
43cd72b9 | 8071 | first_insn_size = frag_format_size (first_insn); |
e0001a05 | 8072 | |
43cd72b9 BW |
8073 | if (first_insn_size == 2 || first_insn_size == XTENSA_UNDEFINED) |
8074 | first_insn_size = 3; /* ISA specifies this */ | |
e0001a05 | 8075 | |
43cd72b9 | 8076 | /* If it was 8, then we'll need a larger alignment for the section. */ |
d77b99c9 BW |
8077 | align_power = get_text_align_power (first_insn_size); |
8078 | record_alignment (now_seg, align_power); | |
c138bc38 | 8079 | |
43cd72b9 | 8080 | fill_size = get_text_align_fill_size |
d77b99c9 BW |
8081 | (address + pre_opcode_bytes, align_power, first_insn_size, TRUE, |
8082 | fragP->tc_frag_data.is_no_density); | |
e0001a05 NC |
8083 | |
8084 | return address + fill_size; | |
8085 | } | |
8086 | ||
8087 | ||
43cd72b9 BW |
8088 | /* 3 mechanisms for relaxing an alignment: |
8089 | ||
8090 | Align to a power of 2. | |
8091 | Align so the next fragment's instruction does not cross a word boundary. | |
8092 | Align the current instruction so that if the next instruction | |
8093 | were 3 bytes, it would not cross a word boundary. | |
8094 | ||
e0001a05 NC |
8095 | We can align with: |
8096 | ||
43cd72b9 BW |
8097 | zeros - This is easy; always insert zeros. |
8098 | nops - 3-byte and 2-byte instructions | |
8099 | 2 - 2-byte nop | |
8100 | 3 - 3-byte nop | |
8101 | 4 - 2 2-byte nops | |
8102 | >=5 : 3-byte instruction + fn (n-3) | |
e0001a05 NC |
8103 | widening - widen previous instructions. */ |
8104 | ||
d77b99c9 BW |
8105 | static offsetT |
8106 | get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff) | |
e0001a05 | 8107 | { |
43cd72b9 BW |
8108 | addressT target_address, loop_insn_offset; |
8109 | int target_size; | |
8110 | xtensa_opcode loop_opcode; | |
8111 | bfd_boolean is_loop; | |
d77b99c9 BW |
8112 | int align_power; |
8113 | offsetT opt_diff; | |
5f9084e9 | 8114 | offsetT branch_align; |
e0001a05 | 8115 | |
43cd72b9 BW |
8116 | assert (fragP->fr_type == rs_machine_dependent); |
8117 | switch (fragP->fr_subtype) | |
e0001a05 | 8118 | { |
43cd72b9 BW |
8119 | case RELAX_DESIRE_ALIGN: |
8120 | target_size = next_frag_format_size (fragP); | |
8121 | if (target_size == XTENSA_UNDEFINED) | |
8122 | target_size = 3; | |
664df4e4 BW |
8123 | align_power = branch_align_power (now_seg); |
8124 | branch_align = 1 << align_power; | |
0e5cd789 BW |
8125 | /* Don't count on the section alignment being as large as the target. */ |
8126 | if (target_size > branch_align) | |
8127 | target_size = branch_align; | |
d77b99c9 | 8128 | opt_diff = get_text_align_fill_size (address, align_power, |
43cd72b9 BW |
8129 | target_size, FALSE, FALSE); |
8130 | ||
664df4e4 BW |
8131 | *max_diff = (opt_diff + branch_align |
8132 | - (target_size + ((address + opt_diff) % branch_align))); | |
43cd72b9 BW |
8133 | assert (*max_diff >= opt_diff); |
8134 | return opt_diff; | |
e0001a05 | 8135 | |
43cd72b9 BW |
8136 | case RELAX_ALIGN_NEXT_OPCODE: |
8137 | target_size = next_frag_format_size (fragP); | |
8138 | loop_insn_offset = 0; | |
8139 | is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode); | |
8140 | assert (is_loop); | |
8141 | ||
8142 | /* If the loop has been expanded then the LOOP instruction | |
8143 | could be at an offset from this fragment. */ | |
8144 | if (next_non_empty_frag(fragP)->tc_frag_data.slot_subtypes[0] | |
8145 | != RELAX_IMMED) | |
8146 | loop_insn_offset = get_expanded_loop_offset (loop_opcode); | |
8147 | ||
8148 | if (target_size == 2) | |
8149 | target_size = 3; /* ISA specifies this */ | |
8150 | ||
8151 | /* In an ideal world, which is what we are shooting for here, | |
8152 | we wouldn't need to use any NOPs immediately prior to the | |
8153 | LOOP instruction. If this approach fails, relax_frag_loop_align | |
8154 | will call get_noop_aligned_address. */ | |
8155 | target_address = | |
8156 | address + loop_insn_offset + xg_get_single_size (loop_opcode); | |
d77b99c9 BW |
8157 | align_power = get_text_align_power (target_size), |
8158 | opt_diff = get_text_align_fill_size (target_address, align_power, | |
43cd72b9 BW |
8159 | target_size, FALSE, FALSE); |
8160 | ||
8161 | *max_diff = xtensa_fetch_width | |
8162 | - ((target_address + opt_diff) % xtensa_fetch_width) | |
8163 | - target_size + opt_diff; | |
8164 | assert (*max_diff >= opt_diff); | |
8165 | return opt_diff; | |
e0001a05 | 8166 | |
43cd72b9 BW |
8167 | default: |
8168 | break; | |
e0001a05 | 8169 | } |
43cd72b9 BW |
8170 | assert (0); |
8171 | return 0; | |
e0001a05 NC |
8172 | } |
8173 | ||
8174 | \f | |
8175 | /* md_relax_frag Hook and Helper Functions. */ | |
8176 | ||
7fa3d080 BW |
8177 | static long relax_frag_loop_align (fragS *, long); |
8178 | static long relax_frag_for_align (fragS *, long); | |
8179 | static long relax_frag_immed | |
8180 | (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean); | |
8181 | ||
8182 | ||
e0001a05 NC |
8183 | /* Return the number of bytes added to this fragment, given that the |
8184 | input has been stretched already by "stretch". */ | |
8185 | ||
8186 | long | |
7fa3d080 | 8187 | xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p) |
e0001a05 | 8188 | { |
43cd72b9 | 8189 | xtensa_isa isa = xtensa_default_isa; |
e0001a05 NC |
8190 | int unreported = fragP->tc_frag_data.unreported_expansion; |
8191 | long new_stretch = 0; | |
8192 | char *file_name; | |
d77b99c9 BW |
8193 | unsigned line; |
8194 | int lit_size; | |
43cd72b9 BW |
8195 | static xtensa_insnbuf vbuf = NULL; |
8196 | int slot, num_slots; | |
8197 | xtensa_format fmt; | |
e0001a05 NC |
8198 | |
8199 | as_where (&file_name, &line); | |
8200 | new_logical_line (fragP->fr_file, fragP->fr_line); | |
8201 | ||
8202 | fragP->tc_frag_data.unreported_expansion = 0; | |
8203 | ||
8204 | switch (fragP->fr_subtype) | |
8205 | { | |
8206 | case RELAX_ALIGN_NEXT_OPCODE: | |
8207 | /* Always convert. */ | |
43cd72b9 BW |
8208 | if (fragP->tc_frag_data.relax_seen) |
8209 | new_stretch = relax_frag_loop_align (fragP, stretch); | |
e0001a05 NC |
8210 | break; |
8211 | ||
8212 | case RELAX_LOOP_END: | |
8213 | /* Do nothing. */ | |
8214 | break; | |
8215 | ||
8216 | case RELAX_LOOP_END_ADD_NOP: | |
8217 | /* Add a NOP and switch to .fill 0. */ | |
8218 | new_stretch = relax_frag_add_nop (fragP); | |
43cd72b9 | 8219 | frag_wane (fragP); |
e0001a05 NC |
8220 | break; |
8221 | ||
8222 | case RELAX_DESIRE_ALIGN: | |
43cd72b9 | 8223 | /* Do nothing. The narrowing before this frag will either align |
e0001a05 NC |
8224 | it or not. */ |
8225 | break; | |
8226 | ||
8227 | case RELAX_LITERAL: | |
8228 | case RELAX_LITERAL_FINAL: | |
8229 | return 0; | |
8230 | ||
8231 | case RELAX_LITERAL_NR: | |
8232 | lit_size = 4; | |
8233 | fragP->fr_subtype = RELAX_LITERAL_FINAL; | |
8234 | assert (unreported == lit_size); | |
8235 | memset (&fragP->fr_literal[fragP->fr_fix], 0, 4); | |
8236 | fragP->fr_var -= lit_size; | |
8237 | fragP->fr_fix += lit_size; | |
8238 | new_stretch = 4; | |
8239 | break; | |
8240 | ||
43cd72b9 BW |
8241 | case RELAX_SLOTS: |
8242 | if (vbuf == NULL) | |
8243 | vbuf = xtensa_insnbuf_alloc (isa); | |
8244 | ||
d77b99c9 BW |
8245 | xtensa_insnbuf_from_chars |
8246 | (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0); | |
43cd72b9 BW |
8247 | fmt = xtensa_format_decode (isa, vbuf); |
8248 | num_slots = xtensa_format_num_slots (isa, fmt); | |
e0001a05 | 8249 | |
43cd72b9 BW |
8250 | for (slot = 0; slot < num_slots; slot++) |
8251 | { | |
8252 | switch (fragP->tc_frag_data.slot_subtypes[slot]) | |
8253 | { | |
8254 | case RELAX_NARROW: | |
8255 | if (fragP->tc_frag_data.relax_seen) | |
8256 | new_stretch += relax_frag_for_align (fragP, stretch); | |
8257 | break; | |
8258 | ||
8259 | case RELAX_IMMED: | |
8260 | case RELAX_IMMED_STEP1: | |
8261 | case RELAX_IMMED_STEP2: | |
8262 | /* Place the immediate. */ | |
8263 | new_stretch += relax_frag_immed | |
8264 | (now_seg, fragP, stretch, | |
8265 | fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED, | |
8266 | fmt, slot, stretched_p, FALSE); | |
8267 | break; | |
8268 | ||
8269 | default: | |
8270 | /* This is OK; see the note in xg_assemble_vliw_tokens. */ | |
8271 | break; | |
8272 | } | |
8273 | } | |
e0001a05 NC |
8274 | break; |
8275 | ||
8276 | case RELAX_LITERAL_POOL_BEGIN: | |
8277 | case RELAX_LITERAL_POOL_END: | |
43cd72b9 BW |
8278 | case RELAX_MAYBE_UNREACHABLE: |
8279 | case RELAX_MAYBE_DESIRE_ALIGN: | |
e0001a05 NC |
8280 | /* No relaxation required. */ |
8281 | break; | |
8282 | ||
43cd72b9 BW |
8283 | case RELAX_FILL_NOP: |
8284 | case RELAX_UNREACHABLE: | |
8285 | if (fragP->tc_frag_data.relax_seen) | |
8286 | new_stretch += relax_frag_for_align (fragP, stretch); | |
8287 | break; | |
8288 | ||
e0001a05 NC |
8289 | default: |
8290 | as_bad (_("bad relaxation state")); | |
8291 | } | |
8292 | ||
43cd72b9 | 8293 | /* Tell gas we need another relaxation pass. */ |
c138bc38 | 8294 | if (! fragP->tc_frag_data.relax_seen) |
43cd72b9 BW |
8295 | { |
8296 | fragP->tc_frag_data.relax_seen = TRUE; | |
8297 | *stretched_p = 1; | |
8298 | } | |
8299 | ||
e0001a05 NC |
8300 | new_logical_line (file_name, line); |
8301 | return new_stretch; | |
8302 | } | |
8303 | ||
8304 | ||
8305 | static long | |
7fa3d080 | 8306 | relax_frag_loop_align (fragS *fragP, long stretch) |
e0001a05 NC |
8307 | { |
8308 | addressT old_address, old_next_address, old_size; | |
8309 | addressT new_address, new_next_address, new_size; | |
8310 | addressT growth; | |
8311 | ||
43cd72b9 BW |
8312 | /* All the frags with relax_frag_for_alignment prior to this one in the |
8313 | section have been done, hopefully eliminating the need for a NOP here. | |
8314 | But, this will put it in if necessary. */ | |
e0001a05 NC |
8315 | |
8316 | /* Calculate the old address of this fragment and the next fragment. */ | |
8317 | old_address = fragP->fr_address - stretch; | |
8318 | old_next_address = (fragP->fr_address - stretch + fragP->fr_fix + | |
43cd72b9 | 8319 | fragP->tc_frag_data.text_expansion[0]); |
e0001a05 NC |
8320 | old_size = old_next_address - old_address; |
8321 | ||
8322 | /* Calculate the new address of this fragment and the next fragment. */ | |
8323 | new_address = fragP->fr_address; | |
8324 | new_next_address = | |
8325 | get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix); | |
8326 | new_size = new_next_address - new_address; | |
8327 | ||
8328 | growth = new_size - old_size; | |
8329 | ||
8330 | /* Fix up the text_expansion field and return the new growth. */ | |
43cd72b9 | 8331 | fragP->tc_frag_data.text_expansion[0] += growth; |
e0001a05 NC |
8332 | return growth; |
8333 | } | |
8334 | ||
8335 | ||
43cd72b9 | 8336 | /* Add a NOP instruction. */ |
e0001a05 NC |
8337 | |
8338 | static long | |
7fa3d080 | 8339 | relax_frag_add_nop (fragS *fragP) |
e0001a05 | 8340 | { |
e0001a05 | 8341 | char *nop_buf = fragP->fr_literal + fragP->fr_fix; |
43cd72b9 BW |
8342 | int length = fragP->tc_frag_data.is_no_density ? 3 : 2; |
8343 | assemble_nop (length, nop_buf); | |
e0001a05 | 8344 | fragP->tc_frag_data.is_insn = TRUE; |
e0001a05 | 8345 | |
e0001a05 NC |
8346 | if (fragP->fr_var < length) |
8347 | { | |
dd49a749 | 8348 | as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length); |
e0001a05 NC |
8349 | return 0; |
8350 | } | |
8351 | ||
8352 | fragP->fr_fix += length; | |
8353 | fragP->fr_var -= length; | |
e0001a05 NC |
8354 | return length; |
8355 | } | |
8356 | ||
8357 | ||
7fa3d080 BW |
8358 | static long future_alignment_required (fragS *, long); |
8359 | ||
e0001a05 | 8360 | static long |
7fa3d080 | 8361 | relax_frag_for_align (fragS *fragP, long stretch) |
e0001a05 | 8362 | { |
43cd72b9 BW |
8363 | /* Overview of the relaxation procedure for alignment: |
8364 | We can widen with NOPs or by widening instructions or by filling | |
8365 | bytes after jump instructions. Find the opportune places and widen | |
8366 | them if necessary. */ | |
8367 | ||
8368 | long stretch_me; | |
8369 | long diff; | |
e0001a05 | 8370 | |
43cd72b9 BW |
8371 | assert (fragP->fr_subtype == RELAX_FILL_NOP |
8372 | || fragP->fr_subtype == RELAX_UNREACHABLE | |
8373 | || (fragP->fr_subtype == RELAX_SLOTS | |
8374 | && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)); | |
8375 | ||
8376 | stretch_me = future_alignment_required (fragP, stretch); | |
8377 | diff = stretch_me - fragP->tc_frag_data.text_expansion[0]; | |
8378 | if (diff == 0) | |
8379 | return 0; | |
e0001a05 | 8380 | |
43cd72b9 | 8381 | if (diff < 0) |
e0001a05 | 8382 | { |
43cd72b9 BW |
8383 | /* We expanded on a previous pass. Can we shrink now? */ |
8384 | long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me; | |
8385 | if (shrink <= stretch && stretch > 0) | |
e0001a05 | 8386 | { |
43cd72b9 BW |
8387 | fragP->tc_frag_data.text_expansion[0] = stretch_me; |
8388 | return -shrink; | |
e0001a05 NC |
8389 | } |
8390 | return 0; | |
8391 | } | |
8392 | ||
43cd72b9 BW |
8393 | /* Below here, diff > 0. */ |
8394 | fragP->tc_frag_data.text_expansion[0] = stretch_me; | |
e0001a05 | 8395 | |
43cd72b9 | 8396 | return diff; |
e0001a05 NC |
8397 | } |
8398 | ||
8399 | ||
43cd72b9 BW |
8400 | /* Return the address of the next frag that should be aligned. |
8401 | ||
8402 | By "address" we mean the address it _would_ be at if there | |
8403 | is no action taken to align it between here and the target frag. | |
8404 | In other words, if no narrows and no fill nops are used between | |
8405 | here and the frag to align, _even_if_ some of the frags we use | |
8406 | to align targets have already expanded on a previous relaxation | |
8407 | pass. | |
8408 | ||
8409 | Also, count each frag that may be used to help align the target. | |
8410 | ||
8411 | Return 0 if there are no frags left in the chain that need to be | |
8412 | aligned. */ | |
8413 | ||
8414 | static addressT | |
7fa3d080 BW |
8415 | find_address_of_next_align_frag (fragS **fragPP, |
8416 | int *wide_nops, | |
8417 | int *narrow_nops, | |
8418 | int *widens, | |
8419 | bfd_boolean *paddable) | |
e0001a05 | 8420 | { |
43cd72b9 BW |
8421 | fragS *fragP = *fragPP; |
8422 | addressT address = fragP->fr_address; | |
8423 | ||
8424 | /* Do not reset the counts to 0. */ | |
e0001a05 NC |
8425 | |
8426 | while (fragP) | |
8427 | { | |
8428 | /* Limit this to a small search. */ | |
43cd72b9 BW |
8429 | if (*widens > 8) |
8430 | { | |
8431 | *fragPP = fragP; | |
8432 | return 0; | |
8433 | } | |
e0001a05 NC |
8434 | address += fragP->fr_fix; |
8435 | ||
43cd72b9 BW |
8436 | if (fragP->fr_type == rs_fill) |
8437 | address += fragP->fr_offset * fragP->fr_var; | |
8438 | else if (fragP->fr_type == rs_machine_dependent) | |
e0001a05 | 8439 | { |
e0001a05 NC |
8440 | switch (fragP->fr_subtype) |
8441 | { | |
43cd72b9 BW |
8442 | case RELAX_UNREACHABLE: |
8443 | *paddable = TRUE; | |
8444 | break; | |
8445 | ||
8446 | case RELAX_FILL_NOP: | |
8447 | (*wide_nops)++; | |
8448 | if (!fragP->tc_frag_data.is_no_density) | |
8449 | (*narrow_nops)++; | |
8450 | break; | |
8451 | ||
8452 | case RELAX_SLOTS: | |
8453 | if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW) | |
8454 | { | |
8455 | (*widens)++; | |
8456 | break; | |
8457 | } | |
34e41783 | 8458 | address += total_frag_text_expansion (fragP);; |
e0001a05 NC |
8459 | break; |
8460 | ||
8461 | case RELAX_IMMED: | |
43cd72b9 | 8462 | address += fragP->tc_frag_data.text_expansion[0]; |
e0001a05 NC |
8463 | break; |
8464 | ||
8465 | case RELAX_ALIGN_NEXT_OPCODE: | |
8466 | case RELAX_DESIRE_ALIGN: | |
43cd72b9 BW |
8467 | *fragPP = fragP; |
8468 | return address; | |
8469 | ||
8470 | case RELAX_MAYBE_UNREACHABLE: | |
8471 | case RELAX_MAYBE_DESIRE_ALIGN: | |
8472 | /* Do nothing. */ | |
e0001a05 NC |
8473 | break; |
8474 | ||
8475 | default: | |
43cd72b9 BW |
8476 | /* Just punt if we don't know the type. */ |
8477 | *fragPP = fragP; | |
8478 | return 0; | |
e0001a05 | 8479 | } |
43cd72b9 | 8480 | } |
c138bc38 | 8481 | else |
43cd72b9 BW |
8482 | { |
8483 | /* Just punt if we don't know the type. */ | |
8484 | *fragPP = fragP; | |
8485 | return 0; | |
8486 | } | |
8487 | fragP = fragP->fr_next; | |
8488 | } | |
8489 | ||
8490 | *fragPP = fragP; | |
8491 | return 0; | |
8492 | } | |
8493 | ||
8494 | ||
7fa3d080 BW |
8495 | static long bytes_to_stretch (fragS *, int, int, int, int); |
8496 | ||
43cd72b9 | 8497 | static long |
7fa3d080 | 8498 | future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED) |
43cd72b9 BW |
8499 | { |
8500 | fragS *this_frag = fragP; | |
8501 | long address; | |
8502 | int num_widens = 0; | |
8503 | int wide_nops = 0; | |
8504 | int narrow_nops = 0; | |
8505 | bfd_boolean paddable = FALSE; | |
8506 | offsetT local_opt_diff; | |
8507 | offsetT opt_diff; | |
8508 | offsetT max_diff; | |
8509 | int stretch_amount = 0; | |
8510 | int local_stretch_amount; | |
8511 | int global_stretch_amount; | |
8512 | ||
7fa3d080 BW |
8513 | address = find_address_of_next_align_frag |
8514 | (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable); | |
43cd72b9 BW |
8515 | |
8516 | if (address) | |
8517 | { | |
8518 | local_opt_diff = get_aligned_diff (fragP, address, &max_diff); | |
8519 | opt_diff = local_opt_diff; | |
8520 | assert (opt_diff >= 0); | |
8521 | assert (max_diff >= opt_diff); | |
c138bc38 | 8522 | if (max_diff == 0) |
43cd72b9 | 8523 | return 0; |
d2a033cd | 8524 | |
43cd72b9 BW |
8525 | if (fragP) |
8526 | fragP = fragP->fr_next; | |
8527 | ||
8528 | while (fragP && opt_diff < max_diff && address) | |
8529 | { | |
8530 | /* We only use these to determine if we can exit early | |
c138bc38 | 8531 | because there will be plenty of ways to align future |
43cd72b9 | 8532 | align frags. */ |
d77b99c9 | 8533 | int glob_widens = 0; |
43cd72b9 BW |
8534 | int dnn = 0; |
8535 | int dw = 0; | |
8536 | bfd_boolean glob_pad = 0; | |
7fa3d080 BW |
8537 | address = find_address_of_next_align_frag |
8538 | (&fragP, &glob_widens, &dnn, &dw, &glob_pad); | |
43cd72b9 | 8539 | /* If there is a padable portion, then skip. */ |
664df4e4 | 8540 | if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg))) |
43cd72b9 BW |
8541 | break; |
8542 | ||
c138bc38 | 8543 | if (address) |
43cd72b9 BW |
8544 | { |
8545 | offsetT next_m_diff; | |
8546 | offsetT next_o_diff; | |
8547 | ||
8548 | /* Downrange frags haven't had stretch added to them yet. */ | |
8549 | address += stretch; | |
8550 | ||
8551 | /* The address also includes any text expansion from this | |
8552 | frag in a previous pass, but we don't want that. */ | |
8553 | address -= this_frag->tc_frag_data.text_expansion[0]; | |
8554 | ||
8555 | /* Assume we are going to move at least opt_diff. In | |
8556 | reality, we might not be able to, but assuming that | |
8557 | we will helps catch cases where moving opt_diff pushes | |
8558 | the next target from aligned to unaligned. */ | |
8559 | address += opt_diff; | |
8560 | ||
8561 | next_o_diff = get_aligned_diff (fragP, address, &next_m_diff); | |
8562 | ||
8563 | /* Now cleanup for the adjustments to address. */ | |
8564 | next_o_diff += opt_diff; | |
8565 | next_m_diff += opt_diff; | |
8566 | if (next_o_diff <= max_diff && next_o_diff > opt_diff) | |
8567 | opt_diff = next_o_diff; | |
8568 | if (next_m_diff < max_diff) | |
8569 | max_diff = next_m_diff; | |
8570 | fragP = fragP->fr_next; | |
8571 | } | |
8572 | } | |
d2a033cd | 8573 | |
43cd72b9 BW |
8574 | /* If there are enough wideners in between, do it. */ |
8575 | if (paddable) | |
8576 | { | |
8577 | if (this_frag->fr_subtype == RELAX_UNREACHABLE) | |
8578 | { | |
8579 | assert (opt_diff <= UNREACHABLE_MAX_WIDTH); | |
8580 | return opt_diff; | |
8581 | } | |
8582 | return 0; | |
8583 | } | |
c138bc38 | 8584 | local_stretch_amount |
43cd72b9 BW |
8585 | = bytes_to_stretch (this_frag, wide_nops, narrow_nops, |
8586 | num_widens, local_opt_diff); | |
c138bc38 BW |
8587 | global_stretch_amount |
8588 | = bytes_to_stretch (this_frag, wide_nops, narrow_nops, | |
43cd72b9 | 8589 | num_widens, opt_diff); |
c138bc38 BW |
8590 | /* If the condition below is true, then the frag couldn't |
8591 | stretch the correct amount for the global case, so we just | |
8592 | optimize locally. We'll rely on the subsequent frags to get | |
43cd72b9 BW |
8593 | the correct alignment in the global case. */ |
8594 | if (global_stretch_amount < local_stretch_amount) | |
8595 | stretch_amount = local_stretch_amount; | |
8596 | else | |
8597 | stretch_amount = global_stretch_amount; | |
d2a033cd | 8598 | |
43cd72b9 BW |
8599 | if (this_frag->fr_subtype == RELAX_SLOTS |
8600 | && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW) | |
8601 | assert (stretch_amount <= 1); | |
8602 | else if (this_frag->fr_subtype == RELAX_FILL_NOP) | |
8603 | { | |
8604 | if (this_frag->tc_frag_data.is_no_density) | |
8605 | assert (stretch_amount == 3 || stretch_amount == 0); | |
8606 | else | |
8607 | assert (stretch_amount <= 3); | |
8608 | } | |
8609 | } | |
8610 | return stretch_amount; | |
8611 | } | |
8612 | ||
8613 | ||
8614 | /* The idea: widen everything you can to get a target or loop aligned, | |
8615 | then start using NOPs. | |
8616 | ||
8617 | When we must have a NOP, here is a table of how we decide | |
8618 | (so you don't have to fight through the control flow below): | |
8619 | ||
8620 | wide_nops = the number of wide NOPs available for aligning | |
8621 | narrow_nops = the number of narrow NOPs available for aligning | |
8622 | (a subset of wide_nops) | |
8623 | widens = the number of narrow instructions that should be widened | |
8624 | ||
8625 | Desired wide narrow | |
8626 | Diff nop nop widens | |
8627 | 1 0 0 1 | |
8628 | 2 0 1 0 | |
8629 | 3a 1 0 0 | |
8630 | b 0 1 1 (case 3a makes this case unnecessary) | |
8631 | 4a 1 0 1 | |
8632 | b 0 2 0 | |
8633 | c 0 1 2 (case 4a makes this case unnecessary) | |
8634 | 5a 1 0 2 | |
8635 | b 1 1 0 | |
8636 | c 0 2 1 (case 5b makes this case unnecessary) | |
8637 | 6a 2 0 0 | |
8638 | b 1 0 3 | |
8639 | c 0 1 4 (case 6b makes this case unneccesary) | |
8640 | d 1 1 1 (case 6a makes this case unnecessary) | |
8641 | e 0 2 2 (case 6a makes this case unnecessary) | |
8642 | f 0 3 0 (case 6a makes this case unnecessary) | |
8643 | 7a 1 0 4 | |
8644 | b 2 0 1 | |
8645 | c 1 1 2 (case 7b makes this case unnecessary) | |
8646 | d 0 1 5 (case 7a makes this case unnecessary) | |
8647 | e 0 2 3 (case 7b makes this case unnecessary) | |
8648 | f 0 3 1 (case 7b makes this case unnecessary) | |
8649 | g 1 2 1 (case 7b makes this case unnecessary) | |
8650 | */ | |
8651 | ||
8652 | static long | |
7fa3d080 BW |
8653 | bytes_to_stretch (fragS *this_frag, |
8654 | int wide_nops, | |
8655 | int narrow_nops, | |
8656 | int num_widens, | |
8657 | int desired_diff) | |
43cd72b9 BW |
8658 | { |
8659 | int bytes_short = desired_diff - num_widens; | |
8660 | ||
8661 | assert (desired_diff >= 0 && desired_diff < 8); | |
8662 | if (desired_diff == 0) | |
8663 | return 0; | |
c138bc38 | 8664 | |
43cd72b9 | 8665 | assert (wide_nops > 0 || num_widens > 0); |
e0001a05 | 8666 | |
43cd72b9 BW |
8667 | /* Always prefer widening to NOP-filling. */ |
8668 | if (bytes_short < 0) | |
8669 | { | |
8670 | /* There are enough RELAX_NARROW frags after this one | |
8671 | to align the target without widening this frag in any way. */ | |
8672 | return 0; | |
8673 | } | |
c138bc38 | 8674 | |
43cd72b9 BW |
8675 | if (bytes_short == 0) |
8676 | { | |
8677 | /* Widen every narrow between here and the align target | |
8678 | and the align target will be properly aligned. */ | |
8679 | if (this_frag->fr_subtype == RELAX_FILL_NOP) | |
8680 | return 0; | |
8681 | else | |
8682 | return 1; | |
8683 | } | |
c138bc38 | 8684 | |
43cd72b9 BW |
8685 | /* From here we will need at least one NOP to get an alignment. |
8686 | However, we may not be able to align at all, in which case, | |
8687 | don't widen. */ | |
8688 | if (this_frag->fr_subtype == RELAX_FILL_NOP) | |
8689 | { | |
8690 | switch (desired_diff) | |
8691 | { | |
8692 | case 1: | |
8693 | return 0; | |
8694 | case 2: | |
8695 | if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 1) | |
8696 | return 2; /* case 2 */ | |
8697 | return 0; | |
c138bc38 | 8698 | case 3: |
43cd72b9 BW |
8699 | if (wide_nops > 1) |
8700 | return 0; | |
8701 | else | |
8702 | return 3; /* case 3a */ | |
8703 | case 4: | |
8704 | if (num_widens >= 1 && wide_nops == 1) | |
8705 | return 3; /* case 4a */ | |
8706 | if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 2) | |
8707 | return 2; /* case 4b */ | |
8708 | return 0; | |
8709 | case 5: | |
8710 | if (num_widens >= 2 && wide_nops == 1) | |
8711 | return 3; /* case 5a */ | |
c138bc38 | 8712 | /* We will need two nops. Are there enough nops |
43cd72b9 BW |
8713 | between here and the align target? */ |
8714 | if (wide_nops < 2 || narrow_nops == 0) | |
8715 | return 0; | |
8716 | /* Are there other nops closer that can serve instead? */ | |
8717 | if (wide_nops > 2 && narrow_nops > 1) | |
8718 | return 0; | |
8719 | /* Take the density one first, because there might not be | |
8720 | another density one available. */ | |
8721 | if (!this_frag->tc_frag_data.is_no_density) | |
8722 | return 2; /* case 5b narrow */ | |
8723 | else | |
8724 | return 3; /* case 5b wide */ | |
8725 | return 0; | |
8726 | case 6: | |
8727 | if (wide_nops == 2) | |
8728 | return 3; /* case 6a */ | |
8729 | else if (num_widens >= 3 && wide_nops == 1) | |
8730 | return 3; /* case 6b */ | |
8731 | return 0; | |
8732 | case 7: | |
8733 | if (wide_nops == 1 && num_widens >= 4) | |
8734 | return 3; /* case 7a */ | |
8735 | else if (wide_nops == 2 && num_widens >= 1) | |
8736 | return 3; /* case 7b */ | |
8737 | return 0; | |
e0001a05 | 8738 | default: |
43cd72b9 | 8739 | assert (0); |
e0001a05 | 8740 | } |
e0001a05 | 8741 | } |
43cd72b9 BW |
8742 | else |
8743 | { | |
c138bc38 | 8744 | /* We will need a NOP no matter what, but should we widen |
43cd72b9 | 8745 | this instruction to help? |
e0001a05 | 8746 | |
43cd72b9 BW |
8747 | This is a RELAX_FRAG_NARROW frag. */ |
8748 | switch (desired_diff) | |
8749 | { | |
8750 | case 1: | |
8751 | assert (0); | |
8752 | return 0; | |
8753 | case 2: | |
8754 | case 3: | |
8755 | return 0; | |
8756 | case 4: | |
8757 | if (wide_nops >= 1 && num_widens == 1) | |
8758 | return 1; /* case 4a */ | |
8759 | return 0; | |
8760 | case 5: | |
8761 | if (wide_nops >= 1 && num_widens == 2) | |
8762 | return 1; /* case 5a */ | |
8763 | return 0; | |
8764 | case 6: | |
8765 | if (wide_nops >= 2) | |
8766 | return 0; /* case 6a */ | |
8767 | else if (wide_nops >= 1 && num_widens == 3) | |
8768 | return 1; /* case 6b */ | |
8769 | return 0; | |
8770 | case 7: | |
8771 | if (wide_nops >= 1 && num_widens == 4) | |
8772 | return 1; /* case 7a */ | |
8773 | else if (wide_nops >= 2 && num_widens == 1) | |
8774 | return 1; /* case 7b */ | |
8775 | return 0; | |
8776 | default: | |
8777 | assert (0); | |
8778 | return 0; | |
8779 | } | |
8780 | } | |
8781 | assert (0); | |
8782 | return 0; | |
e0001a05 NC |
8783 | } |
8784 | ||
8785 | ||
8786 | static long | |
7fa3d080 BW |
8787 | relax_frag_immed (segT segP, |
8788 | fragS *fragP, | |
8789 | long stretch, | |
8790 | int min_steps, | |
8791 | xtensa_format fmt, | |
8792 | int slot, | |
8793 | int *stretched_p, | |
8794 | bfd_boolean estimate_only) | |
e0001a05 | 8795 | { |
43cd72b9 BW |
8796 | TInsn tinsn; |
8797 | vliw_insn orig_vinsn; | |
e0001a05 NC |
8798 | int old_size; |
8799 | bfd_boolean negatable_branch = FALSE; | |
8800 | bfd_boolean branch_jmp_to_next = FALSE; | |
43cd72b9 BW |
8801 | bfd_boolean wide_insn = FALSE; |
8802 | xtensa_isa isa = xtensa_default_isa; | |
e0001a05 NC |
8803 | IStack istack; |
8804 | offsetT frag_offset; | |
8805 | int num_steps; | |
8806 | fragS *lit_fragP; | |
8807 | int num_text_bytes, num_literal_bytes; | |
43cd72b9 | 8808 | int literal_diff, total_text_diff, this_text_diff, first; |
e0001a05 NC |
8809 | |
8810 | assert (fragP->fr_opcode != NULL); | |
8811 | ||
43cd72b9 BW |
8812 | xg_init_vinsn (&orig_vinsn); |
8813 | vinsn_from_chars (&orig_vinsn, fragP->fr_opcode); | |
8814 | if (xtensa_format_num_slots (isa, fmt) > 1) | |
8815 | wide_insn = TRUE; | |
8816 | ||
8817 | tinsn = orig_vinsn.slots[slot]; | |
8818 | tinsn_immed_from_frag (&tinsn, fragP, slot); | |
e0001a05 | 8819 | |
43cd72b9 BW |
8820 | if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode)) |
8821 | return 0; | |
e0001a05 | 8822 | |
b08b5071 | 8823 | if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform) |
43cd72b9 | 8824 | branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP); |
e0001a05 | 8825 | |
43cd72b9 | 8826 | negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1); |
e0001a05 | 8827 | |
43cd72b9 | 8828 | old_size = xtensa_format_length (isa, fmt); |
e0001a05 NC |
8829 | |
8830 | /* Special case: replace a branch to the next instruction with a NOP. | |
8831 | This is required to work around a hardware bug in T1040.0 and also | |
8832 | serves as an optimization. */ | |
8833 | ||
8834 | if (branch_jmp_to_next | |
8835 | && ((old_size == 2) || (old_size == 3)) | |
8836 | && !next_frag_is_loop_target (fragP)) | |
8837 | return 0; | |
8838 | ||
8839 | /* Here is the fun stuff: Get the immediate field from this | |
8840 | instruction. If it fits, we are done. If not, find the next | |
8841 | instruction sequence that fits. */ | |
8842 | ||
8843 | frag_offset = fragP->fr_opcode - fragP->fr_literal; | |
8844 | istack_init (&istack); | |
43cd72b9 | 8845 | num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset, |
e0001a05 NC |
8846 | min_steps, stretch); |
8847 | if (num_steps < min_steps) | |
8848 | { | |
8849 | as_fatal (_("internal error: relaxation failed")); | |
8850 | return 0; | |
8851 | } | |
8852 | ||
8853 | if (num_steps > RELAX_IMMED_MAXSTEPS) | |
8854 | { | |
8855 | as_fatal (_("internal error: relaxation requires too many steps")); | |
8856 | return 0; | |
8857 | } | |
8858 | ||
43cd72b9 | 8859 | fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps; |
e0001a05 NC |
8860 | |
8861 | /* Figure out the number of bytes needed. */ | |
8862 | lit_fragP = 0; | |
e0001a05 | 8863 | num_literal_bytes = get_num_stack_literal_bytes (&istack); |
43cd72b9 BW |
8864 | literal_diff = |
8865 | num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot]; | |
8866 | first = 0; | |
8867 | while (istack.insn[first].opcode == XTENSA_UNDEFINED) | |
8868 | first++; | |
8869 | num_text_bytes = get_num_stack_text_bytes (&istack); | |
8870 | if (wide_insn) | |
8871 | { | |
8872 | num_text_bytes += old_size; | |
8873 | if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot)) | |
8874 | num_text_bytes -= xg_get_single_size (istack.insn[first].opcode); | |
8875 | } | |
8876 | total_text_diff = num_text_bytes - old_size; | |
8877 | this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot]; | |
e0001a05 NC |
8878 | |
8879 | /* It MUST get larger. If not, we could get an infinite loop. */ | |
43cd72b9 BW |
8880 | assert (num_text_bytes >= 0); |
8881 | assert (literal_diff >= 0); | |
8882 | assert (total_text_diff >= 0); | |
e0001a05 | 8883 | |
43cd72b9 BW |
8884 | fragP->tc_frag_data.text_expansion[slot] = total_text_diff; |
8885 | fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes; | |
8886 | assert (fragP->tc_frag_data.text_expansion[slot] >= 0); | |
8887 | assert (fragP->tc_frag_data.literal_expansion[slot] >= 0); | |
e0001a05 NC |
8888 | |
8889 | /* Find the associated expandable literal for this. */ | |
8890 | if (literal_diff != 0) | |
8891 | { | |
43cd72b9 | 8892 | lit_fragP = fragP->tc_frag_data.literal_frags[slot]; |
e0001a05 NC |
8893 | if (lit_fragP) |
8894 | { | |
8895 | assert (literal_diff == 4); | |
8896 | lit_fragP->tc_frag_data.unreported_expansion += literal_diff; | |
8897 | ||
8898 | /* We expect that the literal section state has NOT been | |
8899 | modified yet. */ | |
8900 | assert (lit_fragP->fr_type == rs_machine_dependent | |
8901 | && lit_fragP->fr_subtype == RELAX_LITERAL); | |
8902 | lit_fragP->fr_subtype = RELAX_LITERAL_NR; | |
8903 | ||
8904 | /* We need to mark this section for another iteration | |
8905 | of relaxation. */ | |
8906 | (*stretched_p)++; | |
8907 | } | |
8908 | } | |
8909 | ||
43cd72b9 | 8910 | if (negatable_branch && istack.ninsn > 1) |
1d19a770 | 8911 | update_next_frag_state (fragP); |
e0001a05 | 8912 | |
43cd72b9 | 8913 | return this_text_diff; |
e0001a05 NC |
8914 | } |
8915 | ||
8916 | \f | |
8917 | /* md_convert_frag Hook and Helper Functions. */ | |
8918 | ||
7fa3d080 BW |
8919 | static void convert_frag_align_next_opcode (fragS *); |
8920 | static void convert_frag_narrow (segT, fragS *, xtensa_format, int); | |
8921 | static void convert_frag_fill_nop (fragS *); | |
8922 | static void convert_frag_immed (segT, fragS *, int, xtensa_format, int); | |
8923 | ||
e0001a05 | 8924 | void |
7fa3d080 | 8925 | md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp) |
e0001a05 | 8926 | { |
43cd72b9 BW |
8927 | static xtensa_insnbuf vbuf = NULL; |
8928 | xtensa_isa isa = xtensa_default_isa; | |
8929 | int slot; | |
8930 | int num_slots; | |
8931 | xtensa_format fmt; | |
e0001a05 | 8932 | char *file_name; |
d77b99c9 | 8933 | unsigned line; |
e0001a05 NC |
8934 | |
8935 | as_where (&file_name, &line); | |
8936 | new_logical_line (fragp->fr_file, fragp->fr_line); | |
8937 | ||
8938 | switch (fragp->fr_subtype) | |
8939 | { | |
8940 | case RELAX_ALIGN_NEXT_OPCODE: | |
8941 | /* Always convert. */ | |
8942 | convert_frag_align_next_opcode (fragp); | |
8943 | break; | |
8944 | ||
8945 | case RELAX_DESIRE_ALIGN: | |
8946 | /* Do nothing. If not aligned already, too bad. */ | |
8947 | break; | |
8948 | ||
43cd72b9 BW |
8949 | case RELAX_LITERAL: |
8950 | case RELAX_LITERAL_FINAL: | |
8951 | break; | |
8952 | ||
8953 | case RELAX_SLOTS: | |
8954 | if (vbuf == NULL) | |
8955 | vbuf = xtensa_insnbuf_alloc (isa); | |
8956 | ||
d77b99c9 BW |
8957 | xtensa_insnbuf_from_chars |
8958 | (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0); | |
43cd72b9 BW |
8959 | fmt = xtensa_format_decode (isa, vbuf); |
8960 | num_slots = xtensa_format_num_slots (isa, fmt); | |
8961 | ||
8962 | for (slot = 0; slot < num_slots; slot++) | |
8963 | { | |
8964 | switch (fragp->tc_frag_data.slot_subtypes[slot]) | |
8965 | { | |
8966 | case RELAX_NARROW: | |
8967 | convert_frag_narrow (sec, fragp, fmt, slot); | |
8968 | break; | |
8969 | ||
8970 | case RELAX_IMMED: | |
8971 | case RELAX_IMMED_STEP1: | |
8972 | case RELAX_IMMED_STEP2: | |
8973 | /* Place the immediate. */ | |
8974 | convert_frag_immed | |
8975 | (sec, fragp, | |
8976 | fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED, | |
8977 | fmt, slot); | |
8978 | break; | |
8979 | ||
8980 | default: | |
8981 | /* This is OK because some slots could have | |
8982 | relaxations and others have none. */ | |
8983 | break; | |
8984 | } | |
8985 | } | |
8986 | break; | |
8987 | ||
8988 | case RELAX_UNREACHABLE: | |
8989 | memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var); | |
8990 | fragp->fr_fix += fragp->tc_frag_data.text_expansion[0]; | |
8991 | fragp->fr_var -= fragp->tc_frag_data.text_expansion[0]; | |
8992 | frag_wane (fragp); | |
e0001a05 NC |
8993 | break; |
8994 | ||
43cd72b9 BW |
8995 | case RELAX_MAYBE_UNREACHABLE: |
8996 | case RELAX_MAYBE_DESIRE_ALIGN: | |
8997 | frag_wane (fragp); | |
e0001a05 NC |
8998 | break; |
8999 | ||
43cd72b9 BW |
9000 | case RELAX_FILL_NOP: |
9001 | convert_frag_fill_nop (fragp); | |
e0001a05 NC |
9002 | break; |
9003 | ||
9004 | case RELAX_LITERAL_NR: | |
9005 | if (use_literal_section) | |
9006 | { | |
9007 | /* This should have been handled during relaxation. When | |
9008 | relaxing a code segment, literals sometimes need to be | |
9009 | added to the corresponding literal segment. If that | |
9010 | literal segment has already been relaxed, then we end up | |
9011 | in this situation. Marking the literal segments as data | |
9012 | would make this happen less often (since GAS always relaxes | |
9013 | code before data), but we could still get into trouble if | |
9014 | there are instructions in a segment that is not marked as | |
9015 | containing code. Until we can implement a better solution, | |
9016 | cheat and adjust the addresses of all the following frags. | |
9017 | This could break subsequent alignments, but the linker's | |
9018 | literal coalescing will do that anyway. */ | |
9019 | ||
9020 | fragS *f; | |
9021 | fragp->fr_subtype = RELAX_LITERAL_FINAL; | |
9022 | assert (fragp->tc_frag_data.unreported_expansion == 4); | |
9023 | memset (&fragp->fr_literal[fragp->fr_fix], 0, 4); | |
9024 | fragp->fr_var -= 4; | |
9025 | fragp->fr_fix += 4; | |
9026 | for (f = fragp->fr_next; f; f = f->fr_next) | |
9027 | f->fr_address += 4; | |
9028 | } | |
9029 | else | |
9030 | as_bad (_("invalid relaxation fragment result")); | |
9031 | break; | |
9032 | } | |
9033 | ||
9034 | fragp->fr_var = 0; | |
9035 | new_logical_line (file_name, line); | |
9036 | } | |
9037 | ||
9038 | ||
7fa3d080 BW |
9039 | static void |
9040 | convert_frag_align_next_opcode (fragS *fragp) | |
e0001a05 NC |
9041 | { |
9042 | char *nop_buf; /* Location for Writing. */ | |
e0001a05 NC |
9043 | bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density; |
9044 | addressT aligned_address; | |
d77b99c9 BW |
9045 | offsetT fill_size; |
9046 | int nop, nop_count; | |
e0001a05 NC |
9047 | |
9048 | aligned_address = get_noop_aligned_address (fragp, fragp->fr_address + | |
9049 | fragp->fr_fix); | |
9050 | fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix); | |
9051 | nop_count = get_text_align_nop_count (fill_size, use_no_density); | |
9052 | nop_buf = fragp->fr_literal + fragp->fr_fix; | |
9053 | ||
d77b99c9 | 9054 | for (nop = 0; nop < nop_count; nop++) |
e0001a05 | 9055 | { |
d77b99c9 BW |
9056 | int nop_size; |
9057 | nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density); | |
e0001a05 NC |
9058 | |
9059 | assemble_nop (nop_size, nop_buf); | |
9060 | nop_buf += nop_size; | |
9061 | } | |
9062 | ||
9063 | fragp->fr_fix += fill_size; | |
9064 | fragp->fr_var -= fill_size; | |
9065 | } | |
9066 | ||
9067 | ||
9068 | static void | |
7fa3d080 | 9069 | convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot) |
e0001a05 | 9070 | { |
43cd72b9 BW |
9071 | TInsn tinsn, single_target; |
9072 | xtensa_format single_fmt; | |
84b08ed9 | 9073 | int size, old_size, diff; |
e0001a05 NC |
9074 | offsetT frag_offset; |
9075 | ||
43cd72b9 BW |
9076 | assert (slot == 0); |
9077 | tinsn_from_chars (&tinsn, fragP->fr_opcode, 0); | |
9078 | ||
9079 | if (xtensa_opcode_is_branch (xtensa_default_isa, tinsn.opcode) == 1) | |
9080 | { | |
9081 | assert (fragP->tc_frag_data.text_expansion[0] == 1 | |
9082 | || fragP->tc_frag_data.text_expansion[0] == 0); | |
9083 | convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0], | |
9084 | fmt, slot); | |
9085 | return; | |
9086 | } | |
9087 | ||
9088 | if (fragP->tc_frag_data.text_expansion[0] == 0) | |
e0001a05 NC |
9089 | { |
9090 | /* No conversion. */ | |
9091 | fragP->fr_var = 0; | |
9092 | return; | |
9093 | } | |
9094 | ||
9095 | assert (fragP->fr_opcode != NULL); | |
9096 | ||
43cd72b9 BW |
9097 | /* Frags in this relaxation state should only contain |
9098 | single instruction bundles. */ | |
9099 | tinsn_immed_from_frag (&tinsn, fragP, 0); | |
e0001a05 NC |
9100 | |
9101 | /* Just convert it to a wide form.... */ | |
9102 | size = 0; | |
43cd72b9 | 9103 | old_size = xg_get_single_size (tinsn.opcode); |
e0001a05 NC |
9104 | |
9105 | tinsn_init (&single_target); | |
9106 | frag_offset = fragP->fr_opcode - fragP->fr_literal; | |
9107 | ||
84b08ed9 | 9108 | if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE)) |
43cd72b9 BW |
9109 | { |
9110 | as_bad (_("unable to widen instruction")); | |
9111 | return; | |
9112 | } | |
9113 | ||
9114 | size = xg_get_single_size (single_target.opcode); | |
9115 | single_fmt = xg_get_single_format (single_target.opcode); | |
e0001a05 | 9116 | |
43cd72b9 | 9117 | xg_emit_insn_to_buf (&single_target, single_fmt, fragP->fr_opcode, |
e0001a05 NC |
9118 | fragP, frag_offset, TRUE); |
9119 | ||
9120 | diff = size - old_size; | |
9121 | assert (diff >= 0); | |
9122 | assert (diff <= fragP->fr_var); | |
9123 | fragP->fr_var -= diff; | |
9124 | fragP->fr_fix += diff; | |
9125 | ||
9126 | /* clean it up */ | |
9127 | fragP->fr_var = 0; | |
9128 | } | |
9129 | ||
9130 | ||
9131 | static void | |
7fa3d080 | 9132 | convert_frag_fill_nop (fragS *fragP) |
43cd72b9 BW |
9133 | { |
9134 | char *loc = &fragP->fr_literal[fragP->fr_fix]; | |
9135 | int size = fragP->tc_frag_data.text_expansion[0]; | |
9136 | assert ((unsigned) size == (fragP->fr_next->fr_address | |
9137 | - fragP->fr_address - fragP->fr_fix)); | |
9138 | if (size == 0) | |
9139 | { | |
9140 | /* No conversion. */ | |
9141 | fragP->fr_var = 0; | |
9142 | return; | |
9143 | } | |
9144 | assemble_nop (size, loc); | |
9145 | fragP->tc_frag_data.is_insn = TRUE; | |
9146 | fragP->fr_var -= size; | |
9147 | fragP->fr_fix += size; | |
9148 | frag_wane (fragP); | |
9149 | } | |
9150 | ||
9151 | ||
7fa3d080 BW |
9152 | static fixS *fix_new_exp_in_seg |
9153 | (segT, subsegT, fragS *, int, int, expressionS *, int, | |
9154 | bfd_reloc_code_real_type); | |
9155 | static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *); | |
9156 | ||
43cd72b9 | 9157 | static void |
7fa3d080 BW |
9158 | convert_frag_immed (segT segP, |
9159 | fragS *fragP, | |
9160 | int min_steps, | |
9161 | xtensa_format fmt, | |
9162 | int slot) | |
e0001a05 NC |
9163 | { |
9164 | char *immed_instr = fragP->fr_opcode; | |
43cd72b9 | 9165 | TInsn orig_tinsn; |
e0001a05 | 9166 | bfd_boolean expanded = FALSE; |
e0001a05 | 9167 | bfd_boolean branch_jmp_to_next = FALSE; |
43cd72b9 BW |
9168 | char *fr_opcode = fragP->fr_opcode; |
9169 | vliw_insn orig_vinsn; | |
9170 | xtensa_isa isa = xtensa_default_isa; | |
9171 | bfd_boolean wide_insn = FALSE; | |
9172 | int bytes; | |
9173 | bfd_boolean is_loop; | |
e0001a05 | 9174 | |
43cd72b9 | 9175 | assert (fr_opcode != NULL); |
e0001a05 | 9176 | |
43cd72b9 | 9177 | xg_init_vinsn (&orig_vinsn); |
e0001a05 | 9178 | |
43cd72b9 BW |
9179 | vinsn_from_chars (&orig_vinsn, fr_opcode); |
9180 | if (xtensa_format_num_slots (isa, fmt) > 1) | |
9181 | wide_insn = TRUE; | |
e0001a05 | 9182 | |
43cd72b9 BW |
9183 | orig_tinsn = orig_vinsn.slots[slot]; |
9184 | tinsn_immed_from_frag (&orig_tinsn, fragP, slot); | |
9185 | ||
9186 | is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1; | |
e0001a05 | 9187 | |
b08b5071 | 9188 | if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform) |
43cd72b9 | 9189 | branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP); |
e0001a05 NC |
9190 | |
9191 | if (branch_jmp_to_next && !next_frag_is_loop_target (fragP)) | |
9192 | { | |
9193 | /* Conversion just inserts a NOP and marks the fix as completed. */ | |
43cd72b9 BW |
9194 | bytes = xtensa_format_length (isa, fmt); |
9195 | if (bytes >= 4) | |
9196 | { | |
9197 | orig_vinsn.slots[slot].opcode = | |
9198 | xtensa_format_slot_nop_opcode (isa, orig_vinsn.format, slot); | |
9199 | orig_vinsn.slots[slot].ntok = 0; | |
9200 | } | |
9201 | else | |
9202 | { | |
9203 | bytes += fragP->tc_frag_data.text_expansion[0]; | |
9204 | assert (bytes == 2 || bytes == 3); | |
9205 | build_nop (&orig_vinsn.slots[0], bytes); | |
9206 | fragP->fr_fix += fragP->tc_frag_data.text_expansion[0]; | |
9207 | } | |
9208 | vinsn_to_insnbuf (&orig_vinsn, fr_opcode, frag_now, FALSE); | |
d77b99c9 BW |
9209 | xtensa_insnbuf_to_chars |
9210 | (isa, orig_vinsn.insnbuf, (unsigned char *) fr_opcode, 0); | |
e0001a05 NC |
9211 | fragP->fr_var = 0; |
9212 | } | |
7c834684 | 9213 | else |
e0001a05 | 9214 | { |
43cd72b9 BW |
9215 | /* Here is the fun stuff: Get the immediate field from this |
9216 | instruction. If it fits, we're done. If not, find the next | |
9217 | instruction sequence that fits. */ | |
9218 | ||
e0001a05 NC |
9219 | IStack istack; |
9220 | int i; | |
9221 | symbolS *lit_sym = NULL; | |
9222 | int total_size = 0; | |
43cd72b9 | 9223 | int target_offset = 0; |
e0001a05 NC |
9224 | int old_size; |
9225 | int diff; | |
9226 | symbolS *gen_label = NULL; | |
9227 | offsetT frag_offset; | |
43cd72b9 BW |
9228 | bfd_boolean first = TRUE; |
9229 | bfd_boolean last_is_jump; | |
e0001a05 | 9230 | |
43cd72b9 | 9231 | /* It does not fit. Find something that does and |
e0001a05 | 9232 | convert immediately. */ |
43cd72b9 | 9233 | frag_offset = fr_opcode - fragP->fr_literal; |
e0001a05 | 9234 | istack_init (&istack); |
43cd72b9 | 9235 | xg_assembly_relax (&istack, &orig_tinsn, |
e0001a05 NC |
9236 | segP, fragP, frag_offset, min_steps, 0); |
9237 | ||
43cd72b9 | 9238 | old_size = xtensa_format_length (isa, fmt); |
e0001a05 NC |
9239 | |
9240 | /* Assemble this right inline. */ | |
9241 | ||
9242 | /* First, create the mapping from a label name to the REAL label. */ | |
43cd72b9 | 9243 | target_offset = 0; |
e0001a05 NC |
9244 | for (i = 0; i < istack.ninsn; i++) |
9245 | { | |
43cd72b9 | 9246 | TInsn *tinsn = &istack.insn[i]; |
e0001a05 NC |
9247 | fragS *lit_frag; |
9248 | ||
43cd72b9 | 9249 | switch (tinsn->insn_type) |
e0001a05 NC |
9250 | { |
9251 | case ITYPE_LITERAL: | |
9252 | if (lit_sym != NULL) | |
9253 | as_bad (_("multiple literals in expansion")); | |
9254 | /* First find the appropriate space in the literal pool. */ | |
43cd72b9 | 9255 | lit_frag = fragP->tc_frag_data.literal_frags[slot]; |
e0001a05 NC |
9256 | if (lit_frag == NULL) |
9257 | as_bad (_("no registered fragment for literal")); | |
43cd72b9 | 9258 | if (tinsn->ntok != 1) |
e0001a05 NC |
9259 | as_bad (_("number of literal tokens != 1")); |
9260 | ||
9261 | /* Set the literal symbol and add a fixup. */ | |
9262 | lit_sym = lit_frag->fr_symbol; | |
9263 | break; | |
9264 | ||
9265 | case ITYPE_LABEL: | |
43cd72b9 BW |
9266 | if (align_targets && !is_loop) |
9267 | { | |
9268 | fragS *unreach = fragP->fr_next; | |
9269 | while (!(unreach->fr_type == rs_machine_dependent | |
9270 | && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE | |
9271 | || unreach->fr_subtype == RELAX_UNREACHABLE))) | |
9272 | { | |
9273 | unreach = unreach->fr_next; | |
9274 | } | |
9275 | ||
9276 | assert (unreach->fr_type == rs_machine_dependent | |
9277 | && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE | |
9278 | || unreach->fr_subtype == RELAX_UNREACHABLE)); | |
9279 | ||
9280 | target_offset += unreach->tc_frag_data.text_expansion[0]; | |
9281 | } | |
e0001a05 NC |
9282 | assert (gen_label == NULL); |
9283 | gen_label = symbol_new (FAKE_LABEL_NAME, now_seg, | |
43cd72b9 BW |
9284 | fr_opcode - fragP->fr_literal |
9285 | + target_offset, fragP); | |
e0001a05 NC |
9286 | break; |
9287 | ||
9288 | case ITYPE_INSN: | |
43cd72b9 BW |
9289 | if (first && wide_insn) |
9290 | { | |
9291 | target_offset += xtensa_format_length (isa, fmt); | |
9292 | first = FALSE; | |
9293 | if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot)) | |
9294 | target_offset += xg_get_single_size (tinsn->opcode); | |
9295 | } | |
9296 | else | |
9297 | target_offset += xg_get_single_size (tinsn->opcode); | |
e0001a05 NC |
9298 | break; |
9299 | } | |
9300 | } | |
9301 | ||
9302 | total_size = 0; | |
43cd72b9 BW |
9303 | first = TRUE; |
9304 | last_is_jump = FALSE; | |
e0001a05 NC |
9305 | for (i = 0; i < istack.ninsn; i++) |
9306 | { | |
43cd72b9 | 9307 | TInsn *tinsn = &istack.insn[i]; |
e0001a05 NC |
9308 | fragS *lit_frag; |
9309 | int size; | |
9310 | segT target_seg; | |
43cd72b9 | 9311 | bfd_reloc_code_real_type reloc_type; |
e0001a05 | 9312 | |
43cd72b9 | 9313 | switch (tinsn->insn_type) |
e0001a05 NC |
9314 | { |
9315 | case ITYPE_LITERAL: | |
43cd72b9 BW |
9316 | lit_frag = fragP->tc_frag_data.literal_frags[slot]; |
9317 | /* Already checked. */ | |
e0001a05 NC |
9318 | assert (lit_frag != NULL); |
9319 | assert (lit_sym != NULL); | |
43cd72b9 BW |
9320 | assert (tinsn->ntok == 1); |
9321 | /* Add a fixup. */ | |
e0001a05 NC |
9322 | target_seg = S_GET_SEGMENT (lit_sym); |
9323 | assert (target_seg); | |
43cd72b9 BW |
9324 | if (tinsn->tok[0].X_op == O_pltrel) |
9325 | reloc_type = BFD_RELOC_XTENSA_PLT; | |
9326 | else | |
9327 | reloc_type = BFD_RELOC_32; | |
e0001a05 | 9328 | fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4, |
43cd72b9 | 9329 | &tinsn->tok[0], FALSE, reloc_type); |
e0001a05 NC |
9330 | break; |
9331 | ||
9332 | case ITYPE_LABEL: | |
9333 | break; | |
9334 | ||
9335 | case ITYPE_INSN: | |
43cd72b9 BW |
9336 | xg_resolve_labels (tinsn, gen_label); |
9337 | xg_resolve_literals (tinsn, lit_sym); | |
9338 | if (wide_insn && first) | |
9339 | { | |
9340 | first = FALSE; | |
9341 | if (opcode_fits_format_slot (tinsn->opcode, fmt, slot)) | |
9342 | { | |
9343 | tinsn->record_fix = TRUE; | |
9344 | orig_vinsn.slots[slot] = *tinsn; | |
9345 | } | |
9346 | else | |
9347 | { | |
9348 | orig_vinsn.slots[slot].opcode = | |
9349 | xtensa_format_slot_nop_opcode (isa, fmt, slot); | |
9350 | orig_vinsn.slots[slot].ntok = 0; | |
9351 | orig_vinsn.slots[slot].record_fix = FALSE; | |
9352 | } | |
9353 | vinsn_to_insnbuf (&orig_vinsn, immed_instr, fragP, TRUE); | |
9354 | xtensa_insnbuf_to_chars (isa, orig_vinsn.insnbuf, | |
d77b99c9 | 9355 | (unsigned char *) immed_instr, 0); |
43cd72b9 BW |
9356 | fragP->tc_frag_data.is_insn = TRUE; |
9357 | size = xtensa_format_length (isa, fmt); | |
9358 | if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot)) | |
9359 | { | |
9360 | xtensa_format single_fmt = | |
9361 | xg_get_single_format (tinsn->opcode); | |
9362 | ||
9363 | xg_emit_insn_to_buf | |
9364 | (tinsn, single_fmt, immed_instr + size, fragP, | |
9365 | immed_instr - fragP->fr_literal + size, TRUE); | |
9366 | size += xg_get_single_size (tinsn->opcode); | |
9367 | } | |
9368 | } | |
9369 | else | |
9370 | { | |
9371 | xtensa_format single_format; | |
9372 | size = xg_get_single_size (tinsn->opcode); | |
9373 | single_format = xg_get_single_format (tinsn->opcode); | |
9374 | xg_emit_insn_to_buf (tinsn, single_format, immed_instr, | |
9375 | fragP, | |
9376 | immed_instr - fragP->fr_literal, TRUE); | |
43cd72b9 | 9377 | } |
e0001a05 | 9378 | immed_instr += size; |
43cd72b9 | 9379 | total_size += size; |
e0001a05 NC |
9380 | break; |
9381 | } | |
9382 | } | |
9383 | ||
9384 | diff = total_size - old_size; | |
9385 | assert (diff >= 0); | |
9386 | if (diff != 0) | |
9387 | expanded = TRUE; | |
9388 | assert (diff <= fragP->fr_var); | |
9389 | fragP->fr_var -= diff; | |
9390 | fragP->fr_fix += diff; | |
9391 | } | |
9392 | ||
9393 | /* Clean it up. */ | |
43cd72b9 | 9394 | xg_free_vinsn (&orig_vinsn); |
e0001a05 NC |
9395 | |
9396 | /* Check for undefined immediates in LOOP instructions. */ | |
43cd72b9 | 9397 | if (is_loop) |
e0001a05 NC |
9398 | { |
9399 | symbolS *sym; | |
43cd72b9 | 9400 | sym = orig_tinsn.tok[1].X_add_symbol; |
e0001a05 NC |
9401 | if (sym != NULL && !S_IS_DEFINED (sym)) |
9402 | { | |
9403 | as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym)); | |
9404 | return; | |
9405 | } | |
43cd72b9 | 9406 | sym = orig_tinsn.tok[1].X_op_symbol; |
e0001a05 NC |
9407 | if (sym != NULL && !S_IS_DEFINED (sym)) |
9408 | { | |
9409 | as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym)); | |
9410 | return; | |
9411 | } | |
9412 | } | |
9413 | ||
43cd72b9 BW |
9414 | if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1) |
9415 | convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn); | |
e0001a05 | 9416 | |
43cd72b9 | 9417 | if (expanded && is_direct_call_opcode (orig_tinsn.opcode)) |
e0001a05 NC |
9418 | { |
9419 | /* Add an expansion note on the expanded instruction. */ | |
9420 | fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4, | |
43cd72b9 | 9421 | &orig_tinsn.tok[0], TRUE, |
e0001a05 | 9422 | BFD_RELOC_XTENSA_ASM_EXPAND); |
e0001a05 NC |
9423 | } |
9424 | } | |
9425 | ||
9426 | ||
9427 | /* Add a new fix expression into the desired segment. We have to | |
9428 | switch to that segment to do this. */ | |
9429 | ||
9430 | static fixS * | |
7fa3d080 BW |
9431 | fix_new_exp_in_seg (segT new_seg, |
9432 | subsegT new_subseg, | |
9433 | fragS *frag, | |
9434 | int where, | |
9435 | int size, | |
9436 | expressionS *exp, | |
9437 | int pcrel, | |
9438 | bfd_reloc_code_real_type r_type) | |
e0001a05 NC |
9439 | { |
9440 | fixS *new_fix; | |
9441 | segT seg = now_seg; | |
9442 | subsegT subseg = now_subseg; | |
43cd72b9 | 9443 | |
e0001a05 NC |
9444 | assert (new_seg != 0); |
9445 | subseg_set (new_seg, new_subseg); | |
9446 | ||
e0001a05 NC |
9447 | new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type); |
9448 | subseg_set (seg, subseg); | |
9449 | return new_fix; | |
9450 | } | |
9451 | ||
9452 | ||
43cd72b9 BW |
9453 | /* Relax a loop instruction so that it can span loop >256 bytes. |
9454 | ||
9455 | loop as, .L1 | |
9456 | .L0: | |
9457 | rsr as, LEND | |
9458 | wsr as, LBEG | |
9459 | addi as, as, lo8 (label-.L1) | |
9460 | addmi as, as, mid8 (label-.L1) | |
9461 | wsr as, LEND | |
9462 | isync | |
9463 | rsr as, LCOUNT | |
9464 | addi as, as, 1 | |
9465 | .L1: | |
9466 | <<body>> | |
9467 | label: | |
9468 | */ | |
e0001a05 NC |
9469 | |
9470 | static void | |
7fa3d080 | 9471 | convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn) |
e0001a05 NC |
9472 | { |
9473 | TInsn loop_insn; | |
9474 | TInsn addi_insn; | |
9475 | TInsn addmi_insn; | |
9476 | unsigned long target; | |
9477 | static xtensa_insnbuf insnbuf = NULL; | |
9478 | unsigned int loop_length, loop_length_hi, loop_length_lo; | |
9479 | xtensa_isa isa = xtensa_default_isa; | |
9480 | addressT loop_offset; | |
9481 | addressT addi_offset = 9; | |
9482 | addressT addmi_offset = 12; | |
43cd72b9 | 9483 | fragS *next_fragP; |
d77b99c9 | 9484 | int target_count; |
e0001a05 NC |
9485 | |
9486 | if (!insnbuf) | |
9487 | insnbuf = xtensa_insnbuf_alloc (isa); | |
9488 | ||
9489 | /* Get the loop offset. */ | |
43cd72b9 | 9490 | loop_offset = get_expanded_loop_offset (tinsn->opcode); |
e0001a05 | 9491 | |
43cd72b9 BW |
9492 | /* Validate that there really is a LOOP at the loop_offset. Because |
9493 | loops are not bundleable, we can assume that the instruction will be | |
9494 | in slot 0. */ | |
9495 | tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0); | |
9496 | tinsn_immed_from_frag (&loop_insn, fragP, 0); | |
9497 | ||
9498 | assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1); | |
e0001a05 NC |
9499 | addi_offset += loop_offset; |
9500 | addmi_offset += loop_offset; | |
9501 | ||
43cd72b9 | 9502 | assert (tinsn->ntok == 2); |
b08b5071 BW |
9503 | if (tinsn->tok[1].X_op == O_constant) |
9504 | target = tinsn->tok[1].X_add_number; | |
9505 | else if (tinsn->tok[1].X_op == O_symbol) | |
9506 | { | |
9507 | /* Find the fragment. */ | |
9508 | symbolS *sym = tinsn->tok[1].X_add_symbol; | |
9509 | assert (S_GET_SEGMENT (sym) == segP | |
9510 | || S_GET_SEGMENT (sym) == absolute_section); | |
9511 | target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number); | |
9512 | } | |
9513 | else | |
9514 | { | |
9515 | as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op); | |
9516 | target = 0; | |
9517 | } | |
e0001a05 NC |
9518 | |
9519 | know (symbolP); | |
9520 | know (symbolP->sy_frag); | |
9521 | know (!(S_GET_SEGMENT (symbolP) == absolute_section) | |
9522 | || symbol_get_frag (symbolP) == &zero_address_frag); | |
9523 | ||
9524 | loop_length = target - (fragP->fr_address + fragP->fr_fix); | |
9525 | loop_length_hi = loop_length & ~0x0ff; | |
9526 | loop_length_lo = loop_length & 0x0ff; | |
9527 | if (loop_length_lo >= 128) | |
9528 | { | |
9529 | loop_length_lo -= 256; | |
9530 | loop_length_hi += 256; | |
9531 | } | |
9532 | ||
43cd72b9 | 9533 | /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most |
e0001a05 NC |
9534 | 32512. If the loop is larger than that, then we just fail. */ |
9535 | if (loop_length_hi > 32512) | |
9536 | as_bad_where (fragP->fr_file, fragP->fr_line, | |
9537 | _("loop too long for LOOP instruction")); | |
9538 | ||
43cd72b9 | 9539 | tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0); |
e0001a05 NC |
9540 | assert (addi_insn.opcode == xtensa_addi_opcode); |
9541 | ||
43cd72b9 | 9542 | tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0); |
e0001a05 NC |
9543 | assert (addmi_insn.opcode == xtensa_addmi_opcode); |
9544 | ||
9545 | set_expr_const (&addi_insn.tok[2], loop_length_lo); | |
9546 | tinsn_to_insnbuf (&addi_insn, insnbuf); | |
43cd72b9 | 9547 | |
e0001a05 | 9548 | fragP->tc_frag_data.is_insn = TRUE; |
d77b99c9 BW |
9549 | xtensa_insnbuf_to_chars |
9550 | (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0); | |
e0001a05 NC |
9551 | |
9552 | set_expr_const (&addmi_insn.tok[2], loop_length_hi); | |
9553 | tinsn_to_insnbuf (&addmi_insn, insnbuf); | |
d77b99c9 BW |
9554 | xtensa_insnbuf_to_chars |
9555 | (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0); | |
43cd72b9 BW |
9556 | |
9557 | /* Walk through all of the frags from here to the loop end | |
9558 | and mark them as no_transform to keep them from being modified | |
9559 | by the linker. If we ever have a relocation for the | |
9560 | addi/addmi of the difference of two symbols we can remove this. */ | |
9561 | ||
9562 | target_count = 0; | |
9563 | for (next_fragP = fragP; next_fragP != NULL; | |
9564 | next_fragP = next_fragP->fr_next) | |
9565 | { | |
b08b5071 | 9566 | next_fragP->tc_frag_data.is_no_transform = TRUE; |
43cd72b9 BW |
9567 | if (next_fragP->tc_frag_data.is_loop_target) |
9568 | target_count++; | |
9569 | if (target_count == 2) | |
9570 | break; | |
9571 | } | |
e0001a05 NC |
9572 | } |
9573 | ||
b08b5071 BW |
9574 | \f |
9575 | /* A map that keeps information on a per-subsegment basis. This is | |
9576 | maintained during initial assembly, but is invalid once the | |
9577 | subsegments are smashed together. I.E., it cannot be used during | |
9578 | the relaxation. */ | |
e0001a05 | 9579 | |
b08b5071 | 9580 | typedef struct subseg_map_struct |
e0001a05 | 9581 | { |
b08b5071 BW |
9582 | /* the key */ |
9583 | segT seg; | |
9584 | subsegT subseg; | |
e0001a05 | 9585 | |
b08b5071 BW |
9586 | /* the data */ |
9587 | unsigned flags; | |
9588 | float total_freq; /* fall-through + branch target frequency */ | |
9589 | float target_freq; /* branch target frequency alone */ | |
9590 | ||
9591 | struct subseg_map_struct *next; | |
9592 | } subseg_map; | |
e0001a05 | 9593 | |
e0001a05 | 9594 | |
e0001a05 NC |
9595 | static subseg_map *sseg_map = NULL; |
9596 | ||
43cd72b9 | 9597 | static subseg_map * |
7fa3d080 | 9598 | get_subseg_info (segT seg, subsegT subseg) |
e0001a05 NC |
9599 | { |
9600 | subseg_map *subseg_e; | |
9601 | ||
9602 | for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next) | |
e0001a05 | 9603 | { |
43cd72b9 | 9604 | if (seg == subseg_e->seg && subseg == subseg_e->subseg) |
b08b5071 | 9605 | break; |
e0001a05 | 9606 | } |
b08b5071 BW |
9607 | return subseg_e; |
9608 | } | |
9609 | ||
9610 | ||
9611 | static subseg_map * | |
9612 | add_subseg_info (segT seg, subsegT subseg) | |
9613 | { | |
9614 | subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map)); | |
43cd72b9 BW |
9615 | memset (subseg_e, 0, sizeof (subseg_map)); |
9616 | subseg_e->seg = seg; | |
9617 | subseg_e->subseg = subseg; | |
9618 | subseg_e->flags = 0; | |
9619 | /* Start off considering every branch target very important. */ | |
b08b5071 BW |
9620 | subseg_e->target_freq = 1.0; |
9621 | subseg_e->total_freq = 1.0; | |
43cd72b9 BW |
9622 | subseg_e->next = sseg_map; |
9623 | sseg_map = subseg_e; | |
43cd72b9 BW |
9624 | return subseg_e; |
9625 | } | |
e0001a05 | 9626 | |
7fa3d080 BW |
9627 | |
9628 | static unsigned | |
9629 | get_last_insn_flags (segT seg, subsegT subseg) | |
9630 | { | |
9631 | subseg_map *subseg_e = get_subseg_info (seg, subseg); | |
b08b5071 BW |
9632 | if (subseg_e) |
9633 | return subseg_e->flags; | |
9634 | return 0; | |
7fa3d080 BW |
9635 | } |
9636 | ||
9637 | ||
43cd72b9 | 9638 | static void |
7fa3d080 BW |
9639 | set_last_insn_flags (segT seg, |
9640 | subsegT subseg, | |
9641 | unsigned fl, | |
9642 | bfd_boolean val) | |
43cd72b9 BW |
9643 | { |
9644 | subseg_map *subseg_e = get_subseg_info (seg, subseg); | |
b08b5071 BW |
9645 | if (! subseg_e) |
9646 | subseg_e = add_subseg_info (seg, subseg); | |
e0001a05 NC |
9647 | if (val) |
9648 | subseg_e->flags |= fl; | |
9649 | else | |
9650 | subseg_e->flags &= ~fl; | |
9651 | } | |
9652 | ||
b08b5071 BW |
9653 | |
9654 | static float | |
9655 | get_subseg_total_freq (segT seg, subsegT subseg) | |
9656 | { | |
9657 | subseg_map *subseg_e = get_subseg_info (seg, subseg); | |
9658 | if (subseg_e) | |
9659 | return subseg_e->total_freq; | |
9660 | return 1.0; | |
9661 | } | |
9662 | ||
9663 | ||
9664 | static float | |
9665 | get_subseg_target_freq (segT seg, subsegT subseg) | |
9666 | { | |
9667 | subseg_map *subseg_e = get_subseg_info (seg, subseg); | |
9668 | if (subseg_e) | |
9669 | return subseg_e->target_freq; | |
9670 | return 1.0; | |
9671 | } | |
9672 | ||
9673 | ||
9674 | static void | |
9675 | set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f) | |
9676 | { | |
9677 | subseg_map *subseg_e = get_subseg_info (seg, subseg); | |
9678 | if (! subseg_e) | |
9679 | subseg_e = add_subseg_info (seg, subseg); | |
9680 | subseg_e->total_freq = total_f; | |
9681 | subseg_e->target_freq = target_f; | |
9682 | } | |
9683 | ||
e0001a05 NC |
9684 | \f |
9685 | /* Segment Lists and emit_state Stuff. */ | |
9686 | ||
e0001a05 | 9687 | static void |
7fa3d080 | 9688 | xtensa_move_seg_list_to_beginning (seg_list *head) |
e0001a05 NC |
9689 | { |
9690 | head = head->next; | |
9691 | while (head) | |
9692 | { | |
9693 | segT literal_section = head->seg; | |
9694 | ||
9695 | /* Move the literal section to the front of the section list. */ | |
9696 | assert (literal_section); | |
69852798 AM |
9697 | if (literal_section != stdoutput->sections) |
9698 | { | |
9699 | bfd_section_list_remove (stdoutput, literal_section); | |
9700 | bfd_section_list_prepend (stdoutput, literal_section); | |
9701 | } | |
e0001a05 NC |
9702 | head = head->next; |
9703 | } | |
9704 | } | |
9705 | ||
9706 | ||
7fa3d080 BW |
9707 | static void mark_literal_frags (seg_list *); |
9708 | ||
9709 | static void | |
9710 | xtensa_move_literals (void) | |
e0001a05 NC |
9711 | { |
9712 | seg_list *segment; | |
9713 | frchainS *frchain_from, *frchain_to; | |
9714 | fragS *search_frag, *next_frag, *last_frag, *literal_pool, *insert_after; | |
9715 | fragS **frag_splice; | |
9716 | emit_state state; | |
9717 | segT dest_seg; | |
9718 | fixS *fix, *next_fix, **fix_splice; | |
82e7541d | 9719 | sym_list *lit; |
e0001a05 | 9720 | |
a7877748 BW |
9721 | mark_literal_frags (literal_head->next); |
9722 | mark_literal_frags (init_literal_head->next); | |
9723 | mark_literal_frags (fini_literal_head->next); | |
e0001a05 NC |
9724 | |
9725 | if (use_literal_section) | |
9726 | return; | |
9727 | ||
9728 | segment = literal_head->next; | |
9729 | while (segment) | |
9730 | { | |
9731 | frchain_from = seg_info (segment->seg)->frchainP; | |
9732 | search_frag = frchain_from->frch_root; | |
9733 | literal_pool = NULL; | |
9734 | frchain_to = NULL; | |
9735 | frag_splice = &(frchain_from->frch_root); | |
9736 | ||
9737 | while (!search_frag->tc_frag_data.literal_frag) | |
9738 | { | |
9739 | assert (search_frag->fr_fix == 0 | |
9740 | || search_frag->fr_type == rs_align); | |
9741 | search_frag = search_frag->fr_next; | |
9742 | } | |
9743 | ||
9744 | assert (search_frag->tc_frag_data.literal_frag->fr_subtype | |
9745 | == RELAX_LITERAL_POOL_BEGIN); | |
9746 | xtensa_switch_section_emit_state (&state, segment->seg, 0); | |
9747 | ||
9748 | /* Make sure that all the frags in this series are closed, and | |
9749 | that there is at least one left over of zero-size. This | |
9750 | prevents us from making a segment with an frchain without any | |
9751 | frags in it. */ | |
9752 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
43cd72b9 | 9753 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
9754 | last_frag = frag_now; |
9755 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
43cd72b9 | 9756 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 | 9757 | |
43cd72b9 | 9758 | while (search_frag != frag_now) |
e0001a05 NC |
9759 | { |
9760 | next_frag = search_frag->fr_next; | |
9761 | ||
43cd72b9 | 9762 | /* First, move the frag out of the literal section and |
e0001a05 NC |
9763 | to the appropriate place. */ |
9764 | if (search_frag->tc_frag_data.literal_frag) | |
9765 | { | |
9766 | literal_pool = search_frag->tc_frag_data.literal_frag; | |
9767 | assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN); | |
dd49a749 BW |
9768 | frchain_to = literal_pool->tc_frag_data.lit_frchain; |
9769 | assert (frchain_to); | |
e0001a05 NC |
9770 | } |
9771 | insert_after = literal_pool; | |
43cd72b9 | 9772 | |
e0001a05 NC |
9773 | while (insert_after->fr_next->fr_subtype != RELAX_LITERAL_POOL_END) |
9774 | insert_after = insert_after->fr_next; | |
9775 | ||
dd49a749 | 9776 | dest_seg = insert_after->fr_next->tc_frag_data.lit_seg; |
43cd72b9 | 9777 | |
e0001a05 NC |
9778 | *frag_splice = next_frag; |
9779 | search_frag->fr_next = insert_after->fr_next; | |
9780 | insert_after->fr_next = search_frag; | |
9781 | search_frag->tc_frag_data.lit_seg = dest_seg; | |
9782 | ||
9783 | /* Now move any fixups associated with this frag to the | |
9784 | right section. */ | |
9785 | fix = frchain_from->fix_root; | |
9786 | fix_splice = &(frchain_from->fix_root); | |
9787 | while (fix) | |
9788 | { | |
9789 | next_fix = fix->fx_next; | |
9790 | if (fix->fx_frag == search_frag) | |
9791 | { | |
9792 | *fix_splice = next_fix; | |
9793 | fix->fx_next = frchain_to->fix_root; | |
9794 | frchain_to->fix_root = fix; | |
9795 | if (frchain_to->fix_tail == NULL) | |
9796 | frchain_to->fix_tail = fix; | |
9797 | } | |
9798 | else | |
9799 | fix_splice = &(fix->fx_next); | |
9800 | fix = next_fix; | |
9801 | } | |
9802 | search_frag = next_frag; | |
9803 | } | |
9804 | ||
9805 | if (frchain_from->fix_root != NULL) | |
9806 | { | |
9807 | frchain_from = seg_info (segment->seg)->frchainP; | |
9808 | as_warn (_("fixes not all moved from %s"), segment->seg->name); | |
9809 | ||
9810 | assert (frchain_from->fix_root == NULL); | |
9811 | } | |
9812 | frchain_from->fix_tail = NULL; | |
9813 | xtensa_restore_emit_state (&state); | |
9814 | segment = segment->next; | |
9815 | } | |
9816 | ||
82e7541d BW |
9817 | /* Now fix up the SEGMENT value for all the literal symbols. */ |
9818 | for (lit = literal_syms; lit; lit = lit->next) | |
9819 | { | |
9820 | symbolS *lit_sym = lit->sym; | |
9821 | segT dest_seg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg; | |
43cd72b9 BW |
9822 | if (dest_seg) |
9823 | S_SET_SEGMENT (lit_sym, dest_seg); | |
82e7541d | 9824 | } |
e0001a05 NC |
9825 | } |
9826 | ||
9827 | ||
a7877748 BW |
9828 | /* Walk over all the frags for segments in a list and mark them as |
9829 | containing literals. As clunky as this is, we can't rely on frag_var | |
9830 | and frag_variant to get called in all situations. */ | |
9831 | ||
9832 | static void | |
7fa3d080 | 9833 | mark_literal_frags (seg_list *segment) |
a7877748 BW |
9834 | { |
9835 | frchainS *frchain_from; | |
9836 | fragS *search_frag; | |
9837 | ||
9838 | while (segment) | |
9839 | { | |
9840 | frchain_from = seg_info (segment->seg)->frchainP; | |
9841 | search_frag = frchain_from->frch_root; | |
c138bc38 | 9842 | while (search_frag) |
a7877748 BW |
9843 | { |
9844 | search_frag->tc_frag_data.is_literal = TRUE; | |
9845 | search_frag = search_frag->fr_next; | |
9846 | } | |
9847 | segment = segment->next; | |
9848 | } | |
9849 | } | |
9850 | ||
9851 | ||
e0001a05 | 9852 | static void |
7fa3d080 | 9853 | xtensa_reorder_seg_list (seg_list *head, segT after) |
e0001a05 NC |
9854 | { |
9855 | /* Move all of the sections in the section list to come | |
9856 | after "after" in the gnu segment list. */ | |
9857 | ||
9858 | head = head->next; | |
9859 | while (head) | |
9860 | { | |
9861 | segT literal_section = head->seg; | |
9862 | ||
9863 | /* Move the literal section after "after". */ | |
9864 | assert (literal_section); | |
9865 | if (literal_section != after) | |
9866 | { | |
69852798 AM |
9867 | bfd_section_list_remove (stdoutput, literal_section); |
9868 | bfd_section_list_insert_after (stdoutput, after, literal_section); | |
e0001a05 NC |
9869 | } |
9870 | ||
9871 | head = head->next; | |
9872 | } | |
9873 | } | |
9874 | ||
9875 | ||
9876 | /* Push all the literal segments to the end of the gnu list. */ | |
9877 | ||
7fa3d080 BW |
9878 | static void |
9879 | xtensa_reorder_segments (void) | |
e0001a05 NC |
9880 | { |
9881 | segT sec; | |
b08b5071 | 9882 | segT last_sec = 0; |
e0001a05 NC |
9883 | int old_count = 0; |
9884 | int new_count = 0; | |
9885 | ||
9886 | for (sec = stdoutput->sections; sec != NULL; sec = sec->next) | |
b08b5071 BW |
9887 | { |
9888 | last_sec = sec; | |
9889 | old_count++; | |
9890 | } | |
e0001a05 NC |
9891 | |
9892 | /* Now that we have the last section, push all the literal | |
9893 | sections to the end. */ | |
e0001a05 NC |
9894 | xtensa_reorder_seg_list (literal_head, last_sec); |
9895 | xtensa_reorder_seg_list (init_literal_head, last_sec); | |
9896 | xtensa_reorder_seg_list (fini_literal_head, last_sec); | |
9897 | ||
9898 | /* Now perform the final error check. */ | |
9899 | for (sec = stdoutput->sections; sec != NULL; sec = sec->next) | |
9900 | new_count++; | |
9901 | assert (new_count == old_count); | |
9902 | } | |
9903 | ||
9904 | ||
e0001a05 NC |
9905 | /* Change the emit state (seg, subseg, and frag related stuff) to the |
9906 | correct location. Return a emit_state which can be passed to | |
9907 | xtensa_restore_emit_state to return to current fragment. */ | |
9908 | ||
7fa3d080 BW |
9909 | static void |
9910 | xtensa_switch_to_literal_fragment (emit_state *result) | |
43cd72b9 BW |
9911 | { |
9912 | if (directive_state[directive_absolute_literals]) | |
9913 | { | |
9914 | cache_literal_section (0, default_lit_sections.lit4_seg_name, | |
9915 | &default_lit_sections.lit4_seg, FALSE); | |
9916 | xtensa_switch_section_emit_state (result, | |
9917 | default_lit_sections.lit4_seg, 0); | |
9918 | } | |
9919 | else | |
9920 | xtensa_switch_to_non_abs_literal_fragment (result); | |
9921 | ||
9922 | /* Do a 4-byte align here. */ | |
9923 | frag_align (2, 0, 0); | |
9924 | record_alignment (now_seg, 2); | |
9925 | } | |
9926 | ||
9927 | ||
7fa3d080 BW |
9928 | static void |
9929 | xtensa_switch_to_non_abs_literal_fragment (emit_state *result) | |
e0001a05 NC |
9930 | { |
9931 | /* When we mark a literal pool location, we want to put a frag in | |
9932 | the literal pool that points to it. But to do that, we want to | |
9933 | switch_to_literal_fragment. But literal sections don't have | |
9934 | literal pools, so their location is always null, so we would | |
9935 | recurse forever. This is kind of hacky, but it works. */ | |
9936 | ||
9937 | static bfd_boolean recursive = FALSE; | |
9938 | fragS *pool_location = get_literal_pool_location (now_seg); | |
c138bc38 | 9939 | bfd_boolean is_init = |
e0001a05 NC |
9940 | (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME)); |
9941 | ||
c138bc38 | 9942 | bfd_boolean is_fini = |
e0001a05 | 9943 | (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME)); |
e0001a05 | 9944 | |
43cd72b9 BW |
9945 | if (pool_location == NULL |
9946 | && !use_literal_section | |
e0001a05 NC |
9947 | && !recursive |
9948 | && !is_init && ! is_fini) | |
9949 | { | |
43cd72b9 | 9950 | as_bad (_("literal pool location required for text-section-literals; specify with .literal_position")); |
e0001a05 | 9951 | recursive = TRUE; |
61846f28 | 9952 | xtensa_mark_literal_pool_location (); |
e0001a05 NC |
9953 | recursive = FALSE; |
9954 | } | |
9955 | ||
9956 | /* Special case: If we are in the ".fini" or ".init" section, then | |
9957 | we will ALWAYS be generating to the ".fini.literal" and | |
9958 | ".init.literal" sections. */ | |
9959 | ||
9960 | if (is_init) | |
9961 | { | |
9962 | cache_literal_section (init_literal_head, | |
9963 | default_lit_sections.init_lit_seg_name, | |
43cd72b9 | 9964 | &default_lit_sections.init_lit_seg, TRUE); |
e0001a05 NC |
9965 | xtensa_switch_section_emit_state (result, |
9966 | default_lit_sections.init_lit_seg, 0); | |
9967 | } | |
9968 | else if (is_fini) | |
9969 | { | |
9970 | cache_literal_section (fini_literal_head, | |
9971 | default_lit_sections.fini_lit_seg_name, | |
43cd72b9 | 9972 | &default_lit_sections.fini_lit_seg, TRUE); |
e0001a05 NC |
9973 | xtensa_switch_section_emit_state (result, |
9974 | default_lit_sections.fini_lit_seg, 0); | |
9975 | } | |
43cd72b9 | 9976 | else |
e0001a05 NC |
9977 | { |
9978 | cache_literal_section (literal_head, | |
9979 | default_lit_sections.lit_seg_name, | |
43cd72b9 | 9980 | &default_lit_sections.lit_seg, TRUE); |
e0001a05 NC |
9981 | xtensa_switch_section_emit_state (result, |
9982 | default_lit_sections.lit_seg, 0); | |
9983 | } | |
9984 | ||
43cd72b9 BW |
9985 | if (!use_literal_section |
9986 | && !is_init && !is_fini | |
9987 | && get_literal_pool_location (now_seg) != pool_location) | |
e0001a05 NC |
9988 | { |
9989 | /* Close whatever frag is there. */ | |
9990 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
43cd72b9 | 9991 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 NC |
9992 | frag_now->tc_frag_data.literal_frag = pool_location; |
9993 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
43cd72b9 | 9994 | xtensa_set_frag_assembly_state (frag_now); |
e0001a05 | 9995 | } |
e0001a05 NC |
9996 | } |
9997 | ||
9998 | ||
9999 | /* Call this function before emitting data into the literal section. | |
10000 | This is a helper function for xtensa_switch_to_literal_fragment. | |
10001 | This is similar to a .section new_now_seg subseg. */ | |
10002 | ||
7fa3d080 BW |
10003 | static void |
10004 | xtensa_switch_section_emit_state (emit_state *state, | |
10005 | segT new_now_seg, | |
10006 | subsegT new_now_subseg) | |
e0001a05 NC |
10007 | { |
10008 | state->name = now_seg->name; | |
10009 | state->now_seg = now_seg; | |
10010 | state->now_subseg = now_subseg; | |
10011 | state->generating_literals = generating_literals; | |
10012 | generating_literals++; | |
2b0210eb | 10013 | subseg_set (new_now_seg, new_now_subseg); |
e0001a05 NC |
10014 | } |
10015 | ||
10016 | ||
10017 | /* Use to restore the emitting into the normal place. */ | |
10018 | ||
7fa3d080 BW |
10019 | static void |
10020 | xtensa_restore_emit_state (emit_state *state) | |
e0001a05 NC |
10021 | { |
10022 | generating_literals = state->generating_literals; | |
2b0210eb | 10023 | subseg_set (state->now_seg, state->now_subseg); |
e0001a05 NC |
10024 | } |
10025 | ||
10026 | ||
10027 | /* Get a segment of a given name. If the segment is already | |
10028 | present, return it; otherwise, create a new one. */ | |
10029 | ||
10030 | static void | |
7fa3d080 BW |
10031 | cache_literal_section (seg_list *head, |
10032 | const char *name, | |
b08b5071 | 10033 | segT *pseg, |
7fa3d080 | 10034 | bfd_boolean is_code) |
e0001a05 NC |
10035 | { |
10036 | segT current_section = now_seg; | |
10037 | int current_subsec = now_subseg; | |
b08b5071 | 10038 | segT seg; |
e0001a05 | 10039 | |
b08b5071 | 10040 | if (*pseg != 0) |
e0001a05 | 10041 | return; |
e0001a05 | 10042 | |
b08b5071 BW |
10043 | /* Check if the named section exists. */ |
10044 | for (seg = stdoutput->sections; seg; seg = seg->next) | |
10045 | { | |
10046 | if (!strcmp (segment_name (seg), name)) | |
10047 | break; | |
10048 | } | |
e0001a05 | 10049 | |
b08b5071 | 10050 | if (!seg) |
e0001a05 | 10051 | { |
b08b5071 BW |
10052 | /* Create a new literal section. */ |
10053 | seg = subseg_new (name, (subsegT) 0); | |
43cd72b9 | 10054 | if (head) |
b08b5071 BW |
10055 | { |
10056 | /* Add the newly created literal segment to the specified list. */ | |
10057 | seg_list *n = (seg_list *) xmalloc (sizeof (seg_list)); | |
10058 | n->seg = seg; | |
10059 | n->next = head->next; | |
10060 | head->next = n; | |
10061 | } | |
10062 | bfd_set_section_flags (stdoutput, seg, SEC_HAS_CONTENTS | | |
43cd72b9 BW |
10063 | SEC_READONLY | SEC_ALLOC | SEC_LOAD |
10064 | | (is_code ? SEC_CODE : SEC_DATA)); | |
b08b5071 | 10065 | bfd_set_section_alignment (stdoutput, seg, 2); |
e0001a05 NC |
10066 | } |
10067 | ||
b08b5071 BW |
10068 | *pseg = seg; |
10069 | subseg_set (current_section, current_subsec); | |
e0001a05 NC |
10070 | } |
10071 | ||
43cd72b9 BW |
10072 | \f |
10073 | /* Property Tables Stuff. */ | |
10074 | ||
7fa3d080 BW |
10075 | #define XTENSA_INSN_SEC_NAME ".xt.insn" |
10076 | #define XTENSA_LIT_SEC_NAME ".xt.lit" | |
10077 | #define XTENSA_PROP_SEC_NAME ".xt.prop" | |
10078 | ||
10079 | typedef bfd_boolean (*frag_predicate) (const fragS *); | |
10080 | typedef void (*frag_flags_fn) (const fragS *, frag_flags *); | |
10081 | ||
b08b5071 | 10082 | static bfd_boolean get_frag_is_literal (const fragS *); |
7fa3d080 BW |
10083 | static void xtensa_create_property_segments |
10084 | (frag_predicate, frag_predicate, const char *, xt_section_type); | |
10085 | static void xtensa_create_xproperty_segments | |
10086 | (frag_flags_fn, const char *, xt_section_type); | |
10087 | static segment_info_type *retrieve_segment_info (segT); | |
10088 | static segT retrieve_xtensa_section (char *); | |
10089 | static bfd_boolean section_has_property (segT, frag_predicate); | |
10090 | static bfd_boolean section_has_xproperty (segT, frag_flags_fn); | |
10091 | static void add_xt_block_frags | |
10092 | (segT, segT, xtensa_block_info **, frag_predicate, frag_predicate); | |
10093 | static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *); | |
10094 | static void xtensa_frag_flags_init (frag_flags *); | |
10095 | static void get_frag_property_flags (const fragS *, frag_flags *); | |
10096 | static bfd_vma frag_flags_to_number (const frag_flags *); | |
10097 | static void add_xt_prop_frags | |
10098 | (segT, segT, xtensa_block_info **, frag_flags_fn); | |
10099 | ||
10100 | /* Set up property tables after relaxation. */ | |
10101 | ||
10102 | void | |
10103 | xtensa_post_relax_hook (void) | |
10104 | { | |
10105 | xtensa_move_seg_list_to_beginning (literal_head); | |
10106 | xtensa_move_seg_list_to_beginning (init_literal_head); | |
10107 | xtensa_move_seg_list_to_beginning (fini_literal_head); | |
10108 | ||
10109 | xtensa_find_unmarked_state_frags (); | |
10110 | ||
10111 | if (use_literal_section) | |
10112 | xtensa_create_property_segments (get_frag_is_literal, | |
10113 | NULL, | |
10114 | XTENSA_LIT_SEC_NAME, | |
10115 | xt_literal_sec); | |
10116 | xtensa_create_xproperty_segments (get_frag_property_flags, | |
10117 | XTENSA_PROP_SEC_NAME, | |
10118 | xt_prop_sec); | |
10119 | ||
10120 | if (warn_unaligned_branch_targets) | |
10121 | bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0); | |
10122 | bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0); | |
10123 | } | |
10124 | ||
10125 | ||
43cd72b9 BW |
10126 | /* This function is only meaningful after xtensa_move_literals. */ |
10127 | ||
10128 | static bfd_boolean | |
7fa3d080 | 10129 | get_frag_is_literal (const fragS *fragP) |
43cd72b9 BW |
10130 | { |
10131 | assert (fragP != NULL); | |
10132 | return fragP->tc_frag_data.is_literal; | |
10133 | } | |
10134 | ||
10135 | ||
43cd72b9 | 10136 | static void |
7fa3d080 BW |
10137 | xtensa_create_property_segments (frag_predicate property_function, |
10138 | frag_predicate end_property_function, | |
10139 | const char *section_name_base, | |
10140 | xt_section_type sec_type) | |
43cd72b9 BW |
10141 | { |
10142 | segT *seclist; | |
10143 | ||
10144 | /* Walk over all of the current segments. | |
10145 | Walk over each fragment | |
10146 | For each non-empty fragment, | |
10147 | Build a property record (append where possible). */ | |
10148 | ||
10149 | for (seclist = &stdoutput->sections; | |
10150 | seclist && *seclist; | |
10151 | seclist = &(*seclist)->next) | |
10152 | { | |
10153 | segT sec = *seclist; | |
10154 | flagword flags; | |
10155 | ||
10156 | flags = bfd_get_section_flags (stdoutput, sec); | |
10157 | if (flags & SEC_DEBUGGING) | |
10158 | continue; | |
10159 | if (!(flags & SEC_ALLOC)) | |
10160 | continue; | |
10161 | ||
10162 | if (section_has_property (sec, property_function)) | |
10163 | { | |
10164 | char *property_section_name = | |
10165 | xtensa_get_property_section_name (sec, section_name_base); | |
10166 | segT insn_sec = retrieve_xtensa_section (property_section_name); | |
10167 | segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec); | |
10168 | xtensa_block_info **xt_blocks = | |
10169 | &xt_seg_info->tc_segment_info_data.blocks[sec_type]; | |
10170 | /* Walk over all of the frchains here and add new sections. */ | |
10171 | add_xt_block_frags (sec, insn_sec, xt_blocks, property_function, | |
10172 | end_property_function); | |
10173 | } | |
10174 | } | |
10175 | ||
10176 | /* Now we fill them out.... */ | |
10177 | ||
10178 | for (seclist = &stdoutput->sections; | |
10179 | seclist && *seclist; | |
10180 | seclist = &(*seclist)->next) | |
10181 | { | |
10182 | segment_info_type *seginfo; | |
10183 | xtensa_block_info *block; | |
10184 | segT sec = *seclist; | |
10185 | ||
10186 | seginfo = seg_info (sec); | |
10187 | block = seginfo->tc_segment_info_data.blocks[sec_type]; | |
10188 | ||
10189 | if (block) | |
10190 | { | |
10191 | xtensa_block_info *cur_block; | |
10192 | /* This is a section with some data. */ | |
10193 | int num_recs = 0; | |
d77b99c9 | 10194 | bfd_size_type rec_size; |
43cd72b9 BW |
10195 | |
10196 | for (cur_block = block; cur_block; cur_block = cur_block->next) | |
10197 | num_recs++; | |
10198 | ||
10199 | rec_size = num_recs * 8; | |
10200 | bfd_set_section_size (stdoutput, sec, rec_size); | |
10201 | ||
10202 | /* In order to make this work with the assembler, we have to | |
10203 | build some frags and then build the "fixups" for it. It | |
10204 | would be easier to just set the contents then set the | |
10205 | arlents. */ | |
10206 | ||
10207 | if (num_recs) | |
10208 | { | |
10209 | /* Allocate a fragment and leak it. */ | |
10210 | fragS *fragP; | |
d77b99c9 | 10211 | bfd_size_type frag_size; |
43cd72b9 BW |
10212 | fixS *fixes; |
10213 | frchainS *frchainP; | |
10214 | int i; | |
10215 | char *frag_data; | |
10216 | ||
10217 | frag_size = sizeof (fragS) + rec_size; | |
10218 | fragP = (fragS *) xmalloc (frag_size); | |
e0001a05 | 10219 | |
43cd72b9 BW |
10220 | memset (fragP, 0, frag_size); |
10221 | fragP->fr_address = 0; | |
10222 | fragP->fr_next = NULL; | |
10223 | fragP->fr_fix = rec_size; | |
10224 | fragP->fr_var = 0; | |
10225 | fragP->fr_type = rs_fill; | |
10226 | /* The rest are zeros. */ | |
e0001a05 | 10227 | |
43cd72b9 BW |
10228 | frchainP = seginfo->frchainP; |
10229 | frchainP->frch_root = fragP; | |
10230 | frchainP->frch_last = fragP; | |
e0001a05 | 10231 | |
43cd72b9 BW |
10232 | fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs); |
10233 | memset (fixes, 0, sizeof (fixS) * num_recs); | |
e0001a05 | 10234 | |
43cd72b9 BW |
10235 | seginfo->fix_root = fixes; |
10236 | seginfo->fix_tail = &fixes[num_recs - 1]; | |
10237 | cur_block = block; | |
10238 | frag_data = &fragP->fr_literal[0]; | |
10239 | for (i = 0; i < num_recs; i++) | |
10240 | { | |
10241 | fixS *fix = &fixes[i]; | |
10242 | assert (cur_block); | |
e0001a05 | 10243 | |
43cd72b9 BW |
10244 | /* Write the fixup. */ |
10245 | if (i != num_recs - 1) | |
10246 | fix->fx_next = &fixes[i + 1]; | |
10247 | else | |
10248 | fix->fx_next = NULL; | |
10249 | fix->fx_size = 4; | |
10250 | fix->fx_done = 0; | |
10251 | fix->fx_frag = fragP; | |
10252 | fix->fx_where = i * 8; | |
10253 | fix->fx_addsy = section_symbol (cur_block->sec); | |
10254 | fix->fx_offset = cur_block->offset; | |
10255 | fix->fx_r_type = BFD_RELOC_32; | |
10256 | fix->fx_file = "Internal Assembly"; | |
10257 | fix->fx_line = 0; | |
e0001a05 | 10258 | |
43cd72b9 BW |
10259 | /* Write the length. */ |
10260 | md_number_to_chars (&frag_data[4 + 8 * i], | |
10261 | cur_block->size, 4); | |
10262 | cur_block = cur_block->next; | |
10263 | } | |
10264 | } | |
10265 | } | |
10266 | } | |
e0001a05 NC |
10267 | } |
10268 | ||
10269 | ||
7fa3d080 BW |
10270 | static void |
10271 | xtensa_create_xproperty_segments (frag_flags_fn flag_fn, | |
10272 | const char *section_name_base, | |
10273 | xt_section_type sec_type) | |
e0001a05 NC |
10274 | { |
10275 | segT *seclist; | |
10276 | ||
10277 | /* Walk over all of the current segments. | |
43cd72b9 BW |
10278 | Walk over each fragment. |
10279 | For each fragment that has instructions, | |
10280 | build an instruction record (append where possible). */ | |
e0001a05 NC |
10281 | |
10282 | for (seclist = &stdoutput->sections; | |
10283 | seclist && *seclist; | |
10284 | seclist = &(*seclist)->next) | |
10285 | { | |
10286 | segT sec = *seclist; | |
43cd72b9 BW |
10287 | flagword flags; |
10288 | ||
10289 | flags = bfd_get_section_flags (stdoutput, sec); | |
6624cbde BW |
10290 | if ((flags & SEC_DEBUGGING) |
10291 | || !(flags & SEC_ALLOC) | |
10292 | || (flags & SEC_MERGE)) | |
43cd72b9 BW |
10293 | continue; |
10294 | ||
10295 | if (section_has_xproperty (sec, flag_fn)) | |
e0001a05 | 10296 | { |
b614a702 BW |
10297 | char *property_section_name = |
10298 | xtensa_get_property_section_name (sec, section_name_base); | |
e0001a05 NC |
10299 | segT insn_sec = retrieve_xtensa_section (property_section_name); |
10300 | segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec); | |
43cd72b9 | 10301 | xtensa_block_info **xt_blocks = |
e0001a05 NC |
10302 | &xt_seg_info->tc_segment_info_data.blocks[sec_type]; |
10303 | /* Walk over all of the frchains here and add new sections. */ | |
43cd72b9 | 10304 | add_xt_prop_frags (sec, insn_sec, xt_blocks, flag_fn); |
e0001a05 NC |
10305 | } |
10306 | } | |
10307 | ||
10308 | /* Now we fill them out.... */ | |
10309 | ||
10310 | for (seclist = &stdoutput->sections; | |
10311 | seclist && *seclist; | |
10312 | seclist = &(*seclist)->next) | |
10313 | { | |
10314 | segment_info_type *seginfo; | |
10315 | xtensa_block_info *block; | |
10316 | segT sec = *seclist; | |
43cd72b9 | 10317 | |
e0001a05 NC |
10318 | seginfo = seg_info (sec); |
10319 | block = seginfo->tc_segment_info_data.blocks[sec_type]; | |
10320 | ||
10321 | if (block) | |
10322 | { | |
10323 | xtensa_block_info *cur_block; | |
10324 | /* This is a section with some data. */ | |
43cd72b9 | 10325 | int num_recs = 0; |
d77b99c9 | 10326 | bfd_size_type rec_size; |
e0001a05 NC |
10327 | |
10328 | for (cur_block = block; cur_block; cur_block = cur_block->next) | |
10329 | num_recs++; | |
10330 | ||
43cd72b9 | 10331 | rec_size = num_recs * (8 + 4); |
e0001a05 NC |
10332 | bfd_set_section_size (stdoutput, sec, rec_size); |
10333 | ||
43cd72b9 BW |
10334 | /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */ |
10335 | ||
10336 | /* In order to make this work with the assembler, we have to build | |
10337 | some frags then build the "fixups" for it. It would be easier to | |
10338 | just set the contents then set the arlents. */ | |
e0001a05 NC |
10339 | |
10340 | if (num_recs) | |
10341 | { | |
43cd72b9 | 10342 | /* Allocate a fragment and (unfortunately) leak it. */ |
e0001a05 | 10343 | fragS *fragP; |
d77b99c9 | 10344 | bfd_size_type frag_size; |
e0001a05 NC |
10345 | fixS *fixes; |
10346 | frchainS *frchainP; | |
43cd72b9 | 10347 | int i; |
e0001a05 NC |
10348 | char *frag_data; |
10349 | ||
10350 | frag_size = sizeof (fragS) + rec_size; | |
10351 | fragP = (fragS *) xmalloc (frag_size); | |
10352 | ||
10353 | memset (fragP, 0, frag_size); | |
10354 | fragP->fr_address = 0; | |
10355 | fragP->fr_next = NULL; | |
10356 | fragP->fr_fix = rec_size; | |
10357 | fragP->fr_var = 0; | |
10358 | fragP->fr_type = rs_fill; | |
43cd72b9 | 10359 | /* The rest are zeros. */ |
e0001a05 NC |
10360 | |
10361 | frchainP = seginfo->frchainP; | |
10362 | frchainP->frch_root = fragP; | |
10363 | frchainP->frch_last = fragP; | |
10364 | ||
10365 | fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs); | |
10366 | memset (fixes, 0, sizeof (fixS) * num_recs); | |
10367 | ||
10368 | seginfo->fix_root = fixes; | |
10369 | seginfo->fix_tail = &fixes[num_recs - 1]; | |
10370 | cur_block = block; | |
10371 | frag_data = &fragP->fr_literal[0]; | |
10372 | for (i = 0; i < num_recs; i++) | |
10373 | { | |
10374 | fixS *fix = &fixes[i]; | |
10375 | assert (cur_block); | |
10376 | ||
10377 | /* Write the fixup. */ | |
10378 | if (i != num_recs - 1) | |
10379 | fix->fx_next = &fixes[i + 1]; | |
10380 | else | |
10381 | fix->fx_next = NULL; | |
10382 | fix->fx_size = 4; | |
10383 | fix->fx_done = 0; | |
10384 | fix->fx_frag = fragP; | |
43cd72b9 | 10385 | fix->fx_where = i * (8 + 4); |
e0001a05 NC |
10386 | fix->fx_addsy = section_symbol (cur_block->sec); |
10387 | fix->fx_offset = cur_block->offset; | |
10388 | fix->fx_r_type = BFD_RELOC_32; | |
10389 | fix->fx_file = "Internal Assembly"; | |
10390 | fix->fx_line = 0; | |
10391 | ||
10392 | /* Write the length. */ | |
43cd72b9 | 10393 | md_number_to_chars (&frag_data[4 + (8+4) * i], |
e0001a05 | 10394 | cur_block->size, 4); |
43cd72b9 BW |
10395 | md_number_to_chars (&frag_data[8 + (8+4) * i], |
10396 | frag_flags_to_number (&cur_block->flags), | |
10397 | 4); | |
e0001a05 NC |
10398 | cur_block = cur_block->next; |
10399 | } | |
10400 | } | |
10401 | } | |
10402 | } | |
10403 | } | |
10404 | ||
10405 | ||
7fa3d080 BW |
10406 | static segment_info_type * |
10407 | retrieve_segment_info (segT seg) | |
e0001a05 NC |
10408 | { |
10409 | segment_info_type *seginfo; | |
10410 | seginfo = (segment_info_type *) bfd_get_section_userdata (stdoutput, seg); | |
10411 | if (!seginfo) | |
10412 | { | |
10413 | frchainS *frchainP; | |
10414 | ||
10415 | seginfo = (segment_info_type *) xmalloc (sizeof (*seginfo)); | |
7fa3d080 | 10416 | memset ((void *) seginfo, 0, sizeof (*seginfo)); |
e0001a05 NC |
10417 | seginfo->fix_root = NULL; |
10418 | seginfo->fix_tail = NULL; | |
10419 | seginfo->bfd_section = seg; | |
10420 | seginfo->sym = 0; | |
10421 | /* We will not be dealing with these, only our special ones. */ | |
65ec77d2 | 10422 | bfd_set_section_userdata (stdoutput, seg, (void *) seginfo); |
e0001a05 NC |
10423 | |
10424 | frchainP = (frchainS *) xmalloc (sizeof (frchainS)); | |
10425 | frchainP->frch_root = NULL; | |
10426 | frchainP->frch_last = NULL; | |
10427 | frchainP->frch_next = NULL; | |
10428 | frchainP->frch_seg = seg; | |
10429 | frchainP->frch_subseg = 0; | |
10430 | frchainP->fix_root = NULL; | |
10431 | frchainP->fix_tail = NULL; | |
10432 | /* Do not init the objstack. */ | |
10433 | /* obstack_begin (&frchainP->frch_obstack, chunksize); */ | |
10434 | /* frchainP->frch_frag_now = fragP; */ | |
10435 | frchainP->frch_frag_now = NULL; | |
10436 | ||
10437 | seginfo->frchainP = frchainP; | |
10438 | } | |
10439 | ||
10440 | return seginfo; | |
10441 | } | |
10442 | ||
10443 | ||
7fa3d080 BW |
10444 | static segT |
10445 | retrieve_xtensa_section (char *sec_name) | |
e0001a05 NC |
10446 | { |
10447 | bfd *abfd = stdoutput; | |
10448 | flagword flags, out_flags, link_once_flags; | |
10449 | segT s; | |
10450 | ||
10451 | flags = bfd_get_section_flags (abfd, now_seg); | |
10452 | link_once_flags = (flags & SEC_LINK_ONCE); | |
10453 | if (link_once_flags) | |
10454 | link_once_flags |= (flags & SEC_LINK_DUPLICATES); | |
10455 | out_flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY | link_once_flags); | |
10456 | ||
10457 | s = bfd_make_section_old_way (abfd, sec_name); | |
10458 | if (s == NULL) | |
10459 | as_bad (_("could not create section %s"), sec_name); | |
10460 | if (!bfd_set_section_flags (abfd, s, out_flags)) | |
10461 | as_bad (_("invalid flag combination on section %s"), sec_name); | |
10462 | ||
10463 | return s; | |
10464 | } | |
10465 | ||
10466 | ||
7fa3d080 BW |
10467 | static bfd_boolean |
10468 | section_has_property (segT sec, frag_predicate property_function) | |
e0001a05 NC |
10469 | { |
10470 | segment_info_type *seginfo = seg_info (sec); | |
10471 | fragS *fragP; | |
10472 | ||
10473 | if (seginfo && seginfo->frchainP) | |
10474 | { | |
10475 | for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next) | |
10476 | { | |
10477 | if (property_function (fragP) | |
10478 | && (fragP->fr_type != rs_fill || fragP->fr_fix != 0)) | |
10479 | return TRUE; | |
10480 | } | |
10481 | } | |
10482 | return FALSE; | |
10483 | } | |
10484 | ||
10485 | ||
7fa3d080 BW |
10486 | static bfd_boolean |
10487 | section_has_xproperty (segT sec, frag_flags_fn property_function) | |
43cd72b9 BW |
10488 | { |
10489 | segment_info_type *seginfo = seg_info (sec); | |
10490 | fragS *fragP; | |
10491 | ||
10492 | if (seginfo && seginfo->frchainP) | |
10493 | { | |
10494 | for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next) | |
10495 | { | |
10496 | frag_flags prop_flags; | |
10497 | property_function (fragP, &prop_flags); | |
10498 | if (!xtensa_frag_flags_is_empty (&prop_flags)) | |
10499 | return TRUE; | |
10500 | } | |
10501 | } | |
10502 | return FALSE; | |
10503 | } | |
10504 | ||
10505 | ||
e0001a05 NC |
10506 | /* Two types of block sections exist right now: literal and insns. */ |
10507 | ||
7fa3d080 BW |
10508 | static void |
10509 | add_xt_block_frags (segT sec, | |
10510 | segT xt_block_sec, | |
10511 | xtensa_block_info **xt_block, | |
10512 | frag_predicate property_function, | |
10513 | frag_predicate end_property_function) | |
e0001a05 NC |
10514 | { |
10515 | segment_info_type *seg_info; | |
10516 | segment_info_type *xt_seg_info; | |
10517 | bfd_vma seg_offset; | |
10518 | fragS *fragP; | |
10519 | ||
10520 | xt_seg_info = retrieve_segment_info (xt_block_sec); | |
10521 | seg_info = retrieve_segment_info (sec); | |
10522 | ||
10523 | /* Build it if needed. */ | |
10524 | while (*xt_block != NULL) | |
10525 | xt_block = &(*xt_block)->next; | |
10526 | /* We are either at NULL at the beginning or at the end. */ | |
10527 | ||
10528 | /* Walk through the frags. */ | |
10529 | seg_offset = 0; | |
10530 | ||
10531 | if (seg_info->frchainP) | |
10532 | { | |
10533 | for (fragP = seg_info->frchainP->frch_root; | |
10534 | fragP; | |
10535 | fragP = fragP->fr_next) | |
10536 | { | |
10537 | if (property_function (fragP) | |
10538 | && (fragP->fr_type != rs_fill || fragP->fr_fix != 0)) | |
10539 | { | |
10540 | if (*xt_block != NULL) | |
10541 | { | |
10542 | if ((*xt_block)->offset + (*xt_block)->size | |
10543 | == fragP->fr_address) | |
10544 | (*xt_block)->size += fragP->fr_fix; | |
10545 | else | |
10546 | xt_block = &((*xt_block)->next); | |
10547 | } | |
10548 | if (*xt_block == NULL) | |
10549 | { | |
43cd72b9 BW |
10550 | xtensa_block_info *new_block = (xtensa_block_info *) |
10551 | xmalloc (sizeof (xtensa_block_info)); | |
10552 | new_block->sec = sec; | |
10553 | new_block->offset = fragP->fr_address; | |
10554 | new_block->size = fragP->fr_fix; | |
10555 | new_block->next = NULL; | |
10556 | xtensa_frag_flags_init (&new_block->flags); | |
10557 | *xt_block = new_block; | |
10558 | } | |
10559 | if (end_property_function | |
10560 | && end_property_function (fragP)) | |
10561 | { | |
10562 | xt_block = &((*xt_block)->next); | |
10563 | } | |
10564 | } | |
10565 | } | |
10566 | } | |
10567 | } | |
10568 | ||
10569 | ||
10570 | /* Break the encapsulation of add_xt_prop_frags here. */ | |
10571 | ||
7fa3d080 BW |
10572 | static bfd_boolean |
10573 | xtensa_frag_flags_is_empty (const frag_flags *prop_flags) | |
43cd72b9 BW |
10574 | { |
10575 | if (prop_flags->is_literal | |
10576 | || prop_flags->is_insn | |
10577 | || prop_flags->is_data | |
10578 | || prop_flags->is_unreachable) | |
10579 | return FALSE; | |
10580 | return TRUE; | |
10581 | } | |
10582 | ||
10583 | ||
7fa3d080 BW |
10584 | static void |
10585 | xtensa_frag_flags_init (frag_flags *prop_flags) | |
43cd72b9 BW |
10586 | { |
10587 | memset (prop_flags, 0, sizeof (frag_flags)); | |
10588 | } | |
10589 | ||
10590 | ||
7fa3d080 BW |
10591 | static void |
10592 | get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags) | |
43cd72b9 BW |
10593 | { |
10594 | xtensa_frag_flags_init (prop_flags); | |
10595 | if (fragP->tc_frag_data.is_literal) | |
10596 | prop_flags->is_literal = TRUE; | |
10597 | if (fragP->tc_frag_data.is_unreachable) | |
7fa3d080 | 10598 | prop_flags->is_unreachable = TRUE; |
43cd72b9 BW |
10599 | else if (fragP->tc_frag_data.is_insn) |
10600 | { | |
10601 | prop_flags->is_insn = TRUE; | |
10602 | if (fragP->tc_frag_data.is_loop_target) | |
10603 | prop_flags->insn.is_loop_target = TRUE; | |
10604 | if (fragP->tc_frag_data.is_branch_target) | |
10605 | prop_flags->insn.is_branch_target = TRUE; | |
10606 | if (fragP->tc_frag_data.is_specific_opcode | |
10607 | || fragP->tc_frag_data.is_no_transform) | |
10608 | prop_flags->insn.is_no_transform = TRUE; | |
10609 | if (fragP->tc_frag_data.is_no_density) | |
10610 | prop_flags->insn.is_no_density = TRUE; | |
10611 | if (fragP->tc_frag_data.use_absolute_literals) | |
10612 | prop_flags->insn.is_abslit = TRUE; | |
10613 | } | |
10614 | if (fragP->tc_frag_data.is_align) | |
10615 | { | |
10616 | prop_flags->is_align = TRUE; | |
10617 | prop_flags->alignment = fragP->tc_frag_data.alignment; | |
10618 | if (xtensa_frag_flags_is_empty (prop_flags)) | |
10619 | prop_flags->is_data = TRUE; | |
10620 | } | |
10621 | } | |
10622 | ||
10623 | ||
7fa3d080 BW |
10624 | static bfd_vma |
10625 | frag_flags_to_number (const frag_flags *prop_flags) | |
43cd72b9 BW |
10626 | { |
10627 | bfd_vma num = 0; | |
10628 | if (prop_flags->is_literal) | |
10629 | num |= XTENSA_PROP_LITERAL; | |
10630 | if (prop_flags->is_insn) | |
10631 | num |= XTENSA_PROP_INSN; | |
10632 | if (prop_flags->is_data) | |
10633 | num |= XTENSA_PROP_DATA; | |
10634 | if (prop_flags->is_unreachable) | |
10635 | num |= XTENSA_PROP_UNREACHABLE; | |
10636 | if (prop_flags->insn.is_loop_target) | |
10637 | num |= XTENSA_PROP_INSN_LOOP_TARGET; | |
10638 | if (prop_flags->insn.is_branch_target) | |
10639 | { | |
10640 | num |= XTENSA_PROP_INSN_BRANCH_TARGET; | |
10641 | num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority); | |
10642 | } | |
10643 | ||
10644 | if (prop_flags->insn.is_no_density) | |
10645 | num |= XTENSA_PROP_INSN_NO_DENSITY; | |
10646 | if (prop_flags->insn.is_no_transform) | |
10647 | num |= XTENSA_PROP_INSN_NO_TRANSFORM; | |
10648 | if (prop_flags->insn.is_no_reorder) | |
10649 | num |= XTENSA_PROP_INSN_NO_REORDER; | |
10650 | if (prop_flags->insn.is_abslit) | |
10651 | num |= XTENSA_PROP_INSN_ABSLIT; | |
10652 | ||
10653 | if (prop_flags->is_align) | |
10654 | { | |
10655 | num |= XTENSA_PROP_ALIGN; | |
10656 | num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment); | |
10657 | } | |
10658 | ||
10659 | return num; | |
10660 | } | |
10661 | ||
10662 | ||
10663 | static bfd_boolean | |
7fa3d080 BW |
10664 | xtensa_frag_flags_combinable (const frag_flags *prop_flags_1, |
10665 | const frag_flags *prop_flags_2) | |
43cd72b9 BW |
10666 | { |
10667 | /* Cannot combine with an end marker. */ | |
10668 | ||
10669 | if (prop_flags_1->is_literal != prop_flags_2->is_literal) | |
10670 | return FALSE; | |
10671 | if (prop_flags_1->is_insn != prop_flags_2->is_insn) | |
10672 | return FALSE; | |
10673 | if (prop_flags_1->is_data != prop_flags_2->is_data) | |
10674 | return FALSE; | |
10675 | ||
10676 | if (prop_flags_1->is_insn) | |
10677 | { | |
10678 | /* Properties of the beginning of the frag. */ | |
10679 | if (prop_flags_2->insn.is_loop_target) | |
10680 | return FALSE; | |
10681 | if (prop_flags_2->insn.is_branch_target) | |
10682 | return FALSE; | |
10683 | if (prop_flags_1->insn.is_no_density != | |
10684 | prop_flags_2->insn.is_no_density) | |
10685 | return FALSE; | |
10686 | if (prop_flags_1->insn.is_no_transform != | |
10687 | prop_flags_2->insn.is_no_transform) | |
10688 | return FALSE; | |
10689 | if (prop_flags_1->insn.is_no_reorder != | |
10690 | prop_flags_2->insn.is_no_reorder) | |
10691 | return FALSE; | |
10692 | if (prop_flags_1->insn.is_abslit != | |
10693 | prop_flags_2->insn.is_abslit) | |
10694 | return FALSE; | |
10695 | } | |
10696 | ||
10697 | if (prop_flags_1->is_align) | |
10698 | return FALSE; | |
10699 | ||
10700 | return TRUE; | |
10701 | } | |
10702 | ||
10703 | ||
7fa3d080 BW |
10704 | static bfd_vma |
10705 | xt_block_aligned_size (const xtensa_block_info *xt_block) | |
43cd72b9 BW |
10706 | { |
10707 | bfd_vma end_addr; | |
d77b99c9 | 10708 | unsigned align_bits; |
43cd72b9 BW |
10709 | |
10710 | if (!xt_block->flags.is_align) | |
10711 | return xt_block->size; | |
10712 | ||
10713 | end_addr = xt_block->offset + xt_block->size; | |
10714 | align_bits = xt_block->flags.alignment; | |
10715 | end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits; | |
10716 | return end_addr - xt_block->offset; | |
10717 | } | |
10718 | ||
10719 | ||
10720 | static bfd_boolean | |
7fa3d080 BW |
10721 | xtensa_xt_block_combine (xtensa_block_info *xt_block, |
10722 | const xtensa_block_info *xt_block_2) | |
43cd72b9 BW |
10723 | { |
10724 | if (xt_block->sec != xt_block_2->sec) | |
10725 | return FALSE; | |
10726 | if (xt_block->offset + xt_block_aligned_size (xt_block) | |
10727 | != xt_block_2->offset) | |
10728 | return FALSE; | |
10729 | ||
10730 | if (xt_block_2->size == 0 | |
10731 | && (!xt_block_2->flags.is_unreachable | |
10732 | || xt_block->flags.is_unreachable)) | |
10733 | { | |
10734 | if (xt_block_2->flags.is_align | |
10735 | && xt_block->flags.is_align) | |
10736 | { | |
10737 | /* Nothing needed. */ | |
10738 | if (xt_block->flags.alignment >= xt_block_2->flags.alignment) | |
10739 | return TRUE; | |
10740 | } | |
10741 | else | |
10742 | { | |
10743 | if (xt_block_2->flags.is_align) | |
10744 | { | |
10745 | /* Push alignment to previous entry. */ | |
10746 | xt_block->flags.is_align = xt_block_2->flags.is_align; | |
10747 | xt_block->flags.alignment = xt_block_2->flags.alignment; | |
10748 | } | |
10749 | return TRUE; | |
10750 | } | |
10751 | } | |
10752 | if (!xtensa_frag_flags_combinable (&xt_block->flags, | |
10753 | &xt_block_2->flags)) | |
10754 | return FALSE; | |
10755 | ||
10756 | xt_block->size += xt_block_2->size; | |
10757 | ||
10758 | if (xt_block_2->flags.is_align) | |
10759 | { | |
10760 | xt_block->flags.is_align = TRUE; | |
10761 | xt_block->flags.alignment = xt_block_2->flags.alignment; | |
10762 | } | |
10763 | ||
10764 | return TRUE; | |
10765 | } | |
10766 | ||
10767 | ||
7fa3d080 BW |
10768 | static void |
10769 | add_xt_prop_frags (segT sec, | |
10770 | segT xt_block_sec, | |
10771 | xtensa_block_info **xt_block, | |
10772 | frag_flags_fn property_function) | |
43cd72b9 BW |
10773 | { |
10774 | segment_info_type *seg_info; | |
10775 | segment_info_type *xt_seg_info; | |
10776 | bfd_vma seg_offset; | |
10777 | fragS *fragP; | |
10778 | ||
10779 | xt_seg_info = retrieve_segment_info (xt_block_sec); | |
10780 | seg_info = retrieve_segment_info (sec); | |
10781 | /* Build it if needed. */ | |
10782 | while (*xt_block != NULL) | |
10783 | { | |
10784 | xt_block = &(*xt_block)->next; | |
10785 | } | |
10786 | /* We are either at NULL at the beginning or at the end. */ | |
10787 | ||
10788 | /* Walk through the frags. */ | |
10789 | seg_offset = 0; | |
10790 | ||
10791 | if (seg_info->frchainP) | |
10792 | { | |
10793 | for (fragP = seg_info->frchainP->frch_root; fragP; | |
10794 | fragP = fragP->fr_next) | |
10795 | { | |
10796 | xtensa_block_info tmp_block; | |
10797 | tmp_block.sec = sec; | |
10798 | tmp_block.offset = fragP->fr_address; | |
10799 | tmp_block.size = fragP->fr_fix; | |
10800 | tmp_block.next = NULL; | |
10801 | property_function (fragP, &tmp_block.flags); | |
10802 | ||
10803 | if (!xtensa_frag_flags_is_empty (&tmp_block.flags)) | |
10804 | /* && fragP->fr_fix != 0) */ | |
10805 | { | |
10806 | if ((*xt_block) == NULL | |
10807 | || !xtensa_xt_block_combine (*xt_block, &tmp_block)) | |
10808 | { | |
10809 | xtensa_block_info *new_block; | |
10810 | if ((*xt_block) != NULL) | |
10811 | xt_block = &(*xt_block)->next; | |
10812 | new_block = (xtensa_block_info *) | |
10813 | xmalloc (sizeof (xtensa_block_info)); | |
10814 | *new_block = tmp_block; | |
10815 | *xt_block = new_block; | |
10816 | } | |
10817 | } | |
10818 | } | |
10819 | } | |
10820 | } | |
10821 | ||
10822 | \f | |
10823 | /* op_placement_info_table */ | |
10824 | ||
10825 | /* op_placement_info makes it easier to determine which | |
10826 | ops can go in which slots. */ | |
10827 | ||
10828 | static void | |
7fa3d080 | 10829 | init_op_placement_info_table (void) |
43cd72b9 BW |
10830 | { |
10831 | xtensa_isa isa = xtensa_default_isa; | |
10832 | xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa); | |
10833 | xtensa_opcode opcode; | |
10834 | xtensa_format fmt; | |
10835 | int slot; | |
10836 | int num_opcodes = xtensa_isa_num_opcodes (isa); | |
10837 | ||
10838 | op_placement_table = (op_placement_info_table) | |
10839 | xmalloc (sizeof (op_placement_info) * num_opcodes); | |
10840 | assert (xtensa_isa_num_formats (isa) < MAX_FORMATS); | |
10841 | ||
10842 | for (opcode = 0; opcode < num_opcodes; opcode++) | |
10843 | { | |
10844 | op_placement_info *opi = &op_placement_table[opcode]; | |
10845 | /* FIXME: Make tinsn allocation dynamic. */ | |
10846 | if (xtensa_opcode_num_operands (isa, opcode) >= MAX_INSN_ARGS) | |
10847 | as_fatal (_("too many operands in instruction")); | |
10848 | opi->single = XTENSA_UNDEFINED; | |
10849 | opi->single_size = 0; | |
10850 | opi->widest = XTENSA_UNDEFINED; | |
10851 | opi->widest_size = 0; | |
10852 | opi->narrowest = XTENSA_UNDEFINED; | |
10853 | opi->narrowest_size = 0x7F; | |
10854 | opi->formats = 0; | |
10855 | opi->num_formats = 0; | |
10856 | opi->issuef = 0; | |
10857 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) | |
10858 | { | |
10859 | opi->slots[fmt] = 0; | |
10860 | for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++) | |
10861 | { | |
10862 | if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0) | |
10863 | { | |
10864 | int fmt_length = xtensa_format_length (isa, fmt); | |
10865 | opi->issuef++; | |
10866 | set_bit (fmt, opi->formats); | |
10867 | set_bit (slot, opi->slots[fmt]); | |
10868 | /* opi->slot_count[fmt]++; */ | |
10869 | if (fmt_length < opi->narrowest_size) | |
10870 | { | |
10871 | opi->narrowest = fmt; | |
10872 | opi->narrowest_size = fmt_length; | |
10873 | } | |
10874 | if (fmt_length > opi->widest_size) | |
10875 | { | |
10876 | opi->widest = fmt; | |
10877 | opi->widest_size = fmt_length; | |
10878 | } | |
10879 | if (xtensa_format_num_slots (isa, fmt) == 1) | |
10880 | { | |
10881 | if (opi->single_size == 0 | |
10882 | || fmt_length < opi->single_size) | |
10883 | { | |
10884 | opi->single = fmt; | |
10885 | opi->single_size = fmt_length; | |
10886 | } | |
10887 | } | |
e0001a05 NC |
10888 | } |
10889 | } | |
43cd72b9 BW |
10890 | if (opi->formats) |
10891 | opi->num_formats++; | |
e0001a05 NC |
10892 | } |
10893 | } | |
43cd72b9 BW |
10894 | xtensa_insnbuf_free (isa, ibuf); |
10895 | } | |
10896 | ||
10897 | ||
10898 | bfd_boolean | |
7fa3d080 | 10899 | opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot) |
43cd72b9 BW |
10900 | { |
10901 | return bit_is_set (slot, op_placement_table[opcode].slots[fmt]); | |
10902 | } | |
10903 | ||
10904 | ||
10905 | /* If the opcode is available in a single slot format, return its size. */ | |
10906 | ||
7fa3d080 BW |
10907 | static int |
10908 | xg_get_single_size (xtensa_opcode opcode) | |
43cd72b9 BW |
10909 | { |
10910 | assert (op_placement_table[opcode].single != XTENSA_UNDEFINED); | |
10911 | return op_placement_table[opcode].single_size; | |
10912 | } | |
10913 | ||
10914 | ||
7fa3d080 BW |
10915 | static xtensa_format |
10916 | xg_get_single_format (xtensa_opcode opcode) | |
43cd72b9 BW |
10917 | { |
10918 | return op_placement_table[opcode].single; | |
e0001a05 NC |
10919 | } |
10920 | ||
10921 | \f | |
10922 | /* Instruction Stack Functions (from "xtensa-istack.h"). */ | |
10923 | ||
10924 | void | |
7fa3d080 | 10925 | istack_init (IStack *stack) |
e0001a05 NC |
10926 | { |
10927 | memset (stack, 0, sizeof (IStack)); | |
10928 | stack->ninsn = 0; | |
10929 | } | |
10930 | ||
10931 | ||
10932 | bfd_boolean | |
7fa3d080 | 10933 | istack_empty (IStack *stack) |
e0001a05 NC |
10934 | { |
10935 | return (stack->ninsn == 0); | |
10936 | } | |
10937 | ||
10938 | ||
10939 | bfd_boolean | |
7fa3d080 | 10940 | istack_full (IStack *stack) |
e0001a05 NC |
10941 | { |
10942 | return (stack->ninsn == MAX_ISTACK); | |
10943 | } | |
10944 | ||
10945 | ||
10946 | /* Return a pointer to the top IStack entry. | |
43cd72b9 | 10947 | It is an error to call this if istack_empty () is TRUE. */ |
e0001a05 NC |
10948 | |
10949 | TInsn * | |
7fa3d080 | 10950 | istack_top (IStack *stack) |
e0001a05 NC |
10951 | { |
10952 | int rec = stack->ninsn - 1; | |
10953 | assert (!istack_empty (stack)); | |
10954 | return &stack->insn[rec]; | |
10955 | } | |
10956 | ||
10957 | ||
10958 | /* Add a new TInsn to an IStack. | |
43cd72b9 | 10959 | It is an error to call this if istack_full () is TRUE. */ |
e0001a05 NC |
10960 | |
10961 | void | |
7fa3d080 | 10962 | istack_push (IStack *stack, TInsn *insn) |
e0001a05 NC |
10963 | { |
10964 | int rec = stack->ninsn; | |
10965 | assert (!istack_full (stack)); | |
43cd72b9 | 10966 | stack->insn[rec] = *insn; |
e0001a05 NC |
10967 | stack->ninsn++; |
10968 | } | |
10969 | ||
10970 | ||
10971 | /* Clear space for the next TInsn on the IStack and return a pointer | |
43cd72b9 | 10972 | to it. It is an error to call this if istack_full () is TRUE. */ |
e0001a05 NC |
10973 | |
10974 | TInsn * | |
7fa3d080 | 10975 | istack_push_space (IStack *stack) |
e0001a05 NC |
10976 | { |
10977 | int rec = stack->ninsn; | |
10978 | TInsn *insn; | |
10979 | assert (!istack_full (stack)); | |
10980 | insn = &stack->insn[rec]; | |
10981 | memset (insn, 0, sizeof (TInsn)); | |
10982 | stack->ninsn++; | |
10983 | return insn; | |
10984 | } | |
10985 | ||
10986 | ||
10987 | /* Remove the last pushed instruction. It is an error to call this if | |
43cd72b9 | 10988 | istack_empty () returns TRUE. */ |
e0001a05 NC |
10989 | |
10990 | void | |
7fa3d080 | 10991 | istack_pop (IStack *stack) |
e0001a05 NC |
10992 | { |
10993 | int rec = stack->ninsn - 1; | |
10994 | assert (!istack_empty (stack)); | |
10995 | stack->ninsn--; | |
10996 | memset (&stack->insn[rec], 0, sizeof (TInsn)); | |
10997 | } | |
10998 | ||
10999 | \f | |
11000 | /* TInsn functions. */ | |
11001 | ||
11002 | void | |
7fa3d080 | 11003 | tinsn_init (TInsn *dst) |
e0001a05 NC |
11004 | { |
11005 | memset (dst, 0, sizeof (TInsn)); | |
11006 | } | |
11007 | ||
11008 | ||
e0001a05 NC |
11009 | /* Get the ``num''th token of the TInsn. |
11010 | It is illegal to call this if num > insn->ntoks. */ | |
11011 | ||
11012 | expressionS * | |
7fa3d080 | 11013 | tinsn_get_tok (TInsn *insn, int num) |
e0001a05 NC |
11014 | { |
11015 | assert (num < insn->ntok); | |
11016 | return &insn->tok[num]; | |
11017 | } | |
11018 | ||
11019 | ||
43cd72b9 | 11020 | /* Return TRUE if ANY of the operands in the insn are symbolic. */ |
e0001a05 NC |
11021 | |
11022 | static bfd_boolean | |
7fa3d080 | 11023 | tinsn_has_symbolic_operands (const TInsn *insn) |
e0001a05 NC |
11024 | { |
11025 | int i; | |
11026 | int n = insn->ntok; | |
11027 | ||
11028 | assert (insn->insn_type == ITYPE_INSN); | |
11029 | ||
11030 | for (i = 0; i < n; ++i) | |
11031 | { | |
11032 | switch (insn->tok[i].X_op) | |
11033 | { | |
11034 | case O_register: | |
11035 | case O_constant: | |
11036 | break; | |
11037 | default: | |
11038 | return TRUE; | |
11039 | } | |
11040 | } | |
11041 | return FALSE; | |
11042 | } | |
11043 | ||
11044 | ||
11045 | bfd_boolean | |
7fa3d080 | 11046 | tinsn_has_invalid_symbolic_operands (const TInsn *insn) |
e0001a05 | 11047 | { |
43cd72b9 | 11048 | xtensa_isa isa = xtensa_default_isa; |
e0001a05 NC |
11049 | int i; |
11050 | int n = insn->ntok; | |
11051 | ||
11052 | assert (insn->insn_type == ITYPE_INSN); | |
11053 | ||
11054 | for (i = 0; i < n; ++i) | |
11055 | { | |
11056 | switch (insn->tok[i].X_op) | |
11057 | { | |
11058 | case O_register: | |
11059 | case O_constant: | |
11060 | break; | |
43cd72b9 BW |
11061 | case O_big: |
11062 | case O_illegal: | |
11063 | case O_absent: | |
11064 | /* Errors for these types are caught later. */ | |
11065 | break; | |
11066 | case O_hi16: | |
11067 | case O_lo16: | |
e0001a05 | 11068 | default: |
43cd72b9 BW |
11069 | /* Symbolic immediates are only allowed on the last immediate |
11070 | operand. At this time, CONST16 is the only opcode where we | |
11071 | support non-PC-relative relocations. (It isn't necessary | |
11072 | to complain about non-PC-relative relocations here, but | |
11073 | otherwise, no error is reported until the relocations are | |
11074 | generated, and the assembler won't get that far if there | |
11075 | are any other errors. It's nice to see all the problems | |
11076 | at once.) */ | |
11077 | if (i != get_relaxable_immed (insn->opcode) | |
11078 | || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1 | |
11079 | && insn->opcode != xtensa_const16_opcode)) | |
11080 | { | |
11081 | as_bad (_("invalid symbolic operand %d on '%s'"), | |
11082 | i, xtensa_opcode_name (isa, insn->opcode)); | |
11083 | return TRUE; | |
11084 | } | |
e0001a05 NC |
11085 | } |
11086 | } | |
11087 | return FALSE; | |
11088 | } | |
11089 | ||
11090 | ||
11091 | /* For assembly code with complex expressions (e.g. subtraction), | |
11092 | we have to build them in the literal pool so that | |
11093 | their results are calculated correctly after relaxation. | |
11094 | The relaxation only handles expressions that | |
11095 | boil down to SYMBOL + OFFSET. */ | |
11096 | ||
11097 | static bfd_boolean | |
7fa3d080 | 11098 | tinsn_has_complex_operands (const TInsn *insn) |
e0001a05 NC |
11099 | { |
11100 | int i; | |
11101 | int n = insn->ntok; | |
11102 | assert (insn->insn_type == ITYPE_INSN); | |
11103 | for (i = 0; i < n; ++i) | |
11104 | { | |
11105 | switch (insn->tok[i].X_op) | |
11106 | { | |
11107 | case O_register: | |
11108 | case O_constant: | |
11109 | case O_symbol: | |
43cd72b9 BW |
11110 | case O_lo16: |
11111 | case O_hi16: | |
e0001a05 NC |
11112 | break; |
11113 | default: | |
11114 | return TRUE; | |
11115 | } | |
11116 | } | |
11117 | return FALSE; | |
11118 | } | |
11119 | ||
11120 | ||
43cd72b9 BW |
11121 | /* Convert the constant operands in the tinsn to insnbuf. |
11122 | Return TRUE if there is a symbol in the immediate field. | |
e0001a05 | 11123 | |
43cd72b9 | 11124 | Before this is called, |
e0001a05 | 11125 | 1) the number of operands are correct |
43cd72b9 | 11126 | 2) the tinsn is a ITYPE_INSN |
e0001a05 NC |
11127 | 3) ONLY the relaxable_ is built |
11128 | 4) All operands are O_constant, O_symbol. All constants fit | |
11129 | The return value tells whether there are any remaining O_symbols. */ | |
11130 | ||
11131 | static bfd_boolean | |
7fa3d080 | 11132 | tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf) |
e0001a05 | 11133 | { |
43cd72b9 | 11134 | static xtensa_insnbuf slotbuf = 0; |
e0001a05 | 11135 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
11136 | xtensa_opcode opcode = tinsn->opcode; |
11137 | xtensa_format fmt = xg_get_single_format (opcode); | |
e0001a05 | 11138 | bfd_boolean has_fixup = FALSE; |
43cd72b9 | 11139 | int noperands = xtensa_opcode_num_operands (isa, opcode); |
e0001a05 NC |
11140 | int i; |
11141 | uint32 opnd_value; | |
11142 | char *file_name; | |
d77b99c9 | 11143 | unsigned line; |
e0001a05 | 11144 | |
43cd72b9 BW |
11145 | if (!slotbuf) |
11146 | slotbuf = xtensa_insnbuf_alloc (isa); | |
11147 | ||
11148 | assert (tinsn->insn_type == ITYPE_INSN); | |
11149 | if (noperands != tinsn->ntok) | |
e0001a05 NC |
11150 | as_fatal (_("operand number mismatch")); |
11151 | ||
43cd72b9 BW |
11152 | if (xtensa_opcode_encode (isa, fmt, 0, slotbuf, opcode)) |
11153 | as_fatal (_("cannot encode opcode")); | |
e0001a05 NC |
11154 | |
11155 | for (i = 0; i < noperands; ++i) | |
11156 | { | |
43cd72b9 | 11157 | expressionS *expr = &tinsn->tok[i]; |
e0001a05 NC |
11158 | switch (expr->X_op) |
11159 | { | |
11160 | case O_register: | |
43cd72b9 BW |
11161 | if (xtensa_operand_is_visible (isa, opcode, i) == 0) |
11162 | break; | |
11163 | /* The register number has already been checked in | |
e0001a05 NC |
11164 | expression_maybe_register, so we don't need to check here. */ |
11165 | opnd_value = expr->X_add_number; | |
43cd72b9 BW |
11166 | (void) xtensa_operand_encode (isa, opcode, i, &opnd_value); |
11167 | xtensa_operand_set_field (isa, opcode, i, fmt, 0, | |
11168 | slotbuf, opnd_value); | |
e0001a05 NC |
11169 | break; |
11170 | ||
11171 | case O_constant: | |
43cd72b9 BW |
11172 | if (xtensa_operand_is_visible (isa, opcode, i) == 0) |
11173 | break; | |
e0001a05 NC |
11174 | as_where (&file_name, &line); |
11175 | /* It is a constant and we called this function, | |
11176 | then we have to try to fit it. */ | |
43cd72b9 BW |
11177 | xtensa_insnbuf_set_operand (slotbuf, fmt, 0, opcode, i, |
11178 | expr->X_add_number, file_name, line); | |
11179 | break; | |
11180 | ||
11181 | default: | |
11182 | has_fixup = TRUE; | |
11183 | break; | |
11184 | } | |
11185 | } | |
11186 | ||
11187 | xtensa_format_encode (isa, fmt, insnbuf); | |
11188 | xtensa_format_set_slot (isa, fmt, 0, insnbuf, slotbuf); | |
11189 | ||
11190 | return has_fixup; | |
11191 | } | |
11192 | ||
11193 | ||
11194 | /* Convert the constant operands in the tinsn to slotbuf. | |
11195 | Return TRUE if there is a symbol in the immediate field. | |
11196 | (Eventually this should replace tinsn_to_insnbuf.) */ | |
11197 | ||
11198 | /* Before this is called, | |
11199 | 1) the number of operands are correct | |
11200 | 2) the tinsn is a ITYPE_INSN | |
11201 | 3) ONLY the relaxable_ is built | |
11202 | 4) All operands are | |
11203 | O_constant, O_symbol | |
11204 | All constants fit | |
11205 | ||
11206 | The return value tells whether there are any remaining O_symbols. */ | |
11207 | ||
11208 | static bfd_boolean | |
7fa3d080 BW |
11209 | tinsn_to_slotbuf (xtensa_format fmt, |
11210 | int slot, | |
11211 | TInsn *tinsn, | |
11212 | xtensa_insnbuf slotbuf) | |
43cd72b9 BW |
11213 | { |
11214 | xtensa_isa isa = xtensa_default_isa; | |
11215 | xtensa_opcode opcode = tinsn->opcode; | |
11216 | bfd_boolean has_fixup = FALSE; | |
11217 | int noperands = xtensa_opcode_num_operands (isa, opcode); | |
11218 | int i; | |
11219 | ||
11220 | *((int *) &slotbuf[0]) = 0; | |
11221 | *((int *) &slotbuf[1]) = 0; | |
11222 | assert (tinsn->insn_type == ITYPE_INSN); | |
11223 | if (noperands != tinsn->ntok) | |
11224 | as_fatal (_("operand number mismatch")); | |
11225 | ||
11226 | if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode)) | |
11227 | { | |
11228 | as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""), | |
11229 | xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt)); | |
11230 | return FALSE; | |
11231 | } | |
11232 | ||
11233 | for (i = 0; i < noperands; i++) | |
11234 | { | |
11235 | expressionS *expr = &tinsn->tok[i]; | |
d77b99c9 BW |
11236 | int rc; |
11237 | unsigned line; | |
43cd72b9 BW |
11238 | char *file_name; |
11239 | uint32 opnd_value; | |
11240 | ||
11241 | switch (expr->X_op) | |
11242 | { | |
11243 | case O_register: | |
11244 | if (xtensa_operand_is_visible (isa, opcode, i) == 0) | |
11245 | break; | |
11246 | /* The register number has already been checked in | |
11247 | expression_maybe_register, so we don't need to check here. */ | |
11248 | opnd_value = expr->X_add_number; | |
11249 | (void) xtensa_operand_encode (isa, opcode, i, &opnd_value); | |
11250 | rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf, | |
11251 | opnd_value); | |
11252 | if (rc != 0) | |
11253 | as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa)); | |
11254 | break; | |
11255 | ||
11256 | case O_constant: | |
11257 | if (xtensa_operand_is_visible (isa, opcode, i) == 0) | |
11258 | break; | |
11259 | as_where (&file_name, &line); | |
11260 | /* It is a constant and we called this function | |
11261 | then we have to try to fit it. */ | |
11262 | xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i, | |
e0001a05 NC |
11263 | expr->X_add_number, file_name, line); |
11264 | break; | |
11265 | ||
e0001a05 NC |
11266 | default: |
11267 | has_fixup = TRUE; | |
11268 | break; | |
11269 | } | |
11270 | } | |
43cd72b9 | 11271 | |
e0001a05 NC |
11272 | return has_fixup; |
11273 | } | |
11274 | ||
11275 | ||
43cd72b9 | 11276 | /* Check the instruction arguments. Return TRUE on failure. */ |
e0001a05 | 11277 | |
7fa3d080 BW |
11278 | static bfd_boolean |
11279 | tinsn_check_arguments (const TInsn *insn) | |
e0001a05 NC |
11280 | { |
11281 | xtensa_isa isa = xtensa_default_isa; | |
11282 | xtensa_opcode opcode = insn->opcode; | |
11283 | ||
11284 | if (opcode == XTENSA_UNDEFINED) | |
11285 | { | |
11286 | as_bad (_("invalid opcode")); | |
11287 | return TRUE; | |
11288 | } | |
11289 | ||
43cd72b9 | 11290 | if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok) |
e0001a05 NC |
11291 | { |
11292 | as_bad (_("too few operands")); | |
11293 | return TRUE; | |
11294 | } | |
11295 | ||
43cd72b9 | 11296 | if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok) |
e0001a05 NC |
11297 | { |
11298 | as_bad (_("too many operands")); | |
11299 | return TRUE; | |
11300 | } | |
11301 | return FALSE; | |
11302 | } | |
11303 | ||
11304 | ||
11305 | /* Load an instruction from its encoded form. */ | |
11306 | ||
11307 | static void | |
7fa3d080 | 11308 | tinsn_from_chars (TInsn *tinsn, char *f, int slot) |
e0001a05 | 11309 | { |
43cd72b9 | 11310 | vliw_insn vinsn; |
e0001a05 | 11311 | |
43cd72b9 BW |
11312 | xg_init_vinsn (&vinsn); |
11313 | vinsn_from_chars (&vinsn, f); | |
11314 | ||
11315 | *tinsn = vinsn.slots[slot]; | |
11316 | xg_free_vinsn (&vinsn); | |
11317 | } | |
e0001a05 | 11318 | |
43cd72b9 BW |
11319 | |
11320 | static void | |
7fa3d080 BW |
11321 | tinsn_from_insnbuf (TInsn *tinsn, |
11322 | xtensa_insnbuf slotbuf, | |
11323 | xtensa_format fmt, | |
11324 | int slot) | |
43cd72b9 BW |
11325 | { |
11326 | int i; | |
11327 | xtensa_isa isa = xtensa_default_isa; | |
e0001a05 NC |
11328 | |
11329 | /* Find the immed. */ | |
43cd72b9 BW |
11330 | tinsn_init (tinsn); |
11331 | tinsn->insn_type = ITYPE_INSN; | |
11332 | tinsn->is_specific_opcode = FALSE; /* must not be specific */ | |
11333 | tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
11334 | tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode); | |
11335 | for (i = 0; i < tinsn->ntok; i++) | |
e0001a05 | 11336 | { |
43cd72b9 BW |
11337 | set_expr_const (&tinsn->tok[i], |
11338 | xtensa_insnbuf_get_operand (slotbuf, fmt, slot, | |
11339 | tinsn->opcode, i)); | |
e0001a05 NC |
11340 | } |
11341 | } | |
11342 | ||
11343 | ||
11344 | /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */ | |
11345 | ||
11346 | static void | |
7fa3d080 | 11347 | tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot) |
e0001a05 | 11348 | { |
43cd72b9 | 11349 | xtensa_opcode opcode = tinsn->opcode; |
e0001a05 NC |
11350 | int opnum; |
11351 | ||
43cd72b9 | 11352 | if (fragP->tc_frag_data.slot_symbols[slot]) |
e0001a05 NC |
11353 | { |
11354 | opnum = get_relaxable_immed (opcode); | |
43cd72b9 BW |
11355 | assert (opnum >= 0); |
11356 | if (fragP->tc_frag_data.slot_sub_symbols[slot]) | |
11357 | { | |
11358 | set_expr_symbol_offset_diff | |
11359 | (&tinsn->tok[opnum], | |
11360 | fragP->tc_frag_data.slot_symbols[slot], | |
11361 | fragP->tc_frag_data.slot_sub_symbols[slot], | |
11362 | fragP->tc_frag_data.slot_offsets[slot]); | |
11363 | } | |
11364 | else | |
11365 | { | |
11366 | set_expr_symbol_offset | |
11367 | (&tinsn->tok[opnum], | |
11368 | fragP->tc_frag_data.slot_symbols[slot], | |
11369 | fragP->tc_frag_data.slot_offsets[slot]); | |
11370 | } | |
e0001a05 NC |
11371 | } |
11372 | } | |
11373 | ||
11374 | ||
11375 | static int | |
7fa3d080 | 11376 | get_num_stack_text_bytes (IStack *istack) |
e0001a05 NC |
11377 | { |
11378 | int i; | |
11379 | int text_bytes = 0; | |
11380 | ||
11381 | for (i = 0; i < istack->ninsn; i++) | |
11382 | { | |
43cd72b9 BW |
11383 | TInsn *tinsn = &istack->insn[i]; |
11384 | if (tinsn->insn_type == ITYPE_INSN) | |
11385 | text_bytes += xg_get_single_size (tinsn->opcode); | |
e0001a05 NC |
11386 | } |
11387 | return text_bytes; | |
11388 | } | |
11389 | ||
11390 | ||
11391 | static int | |
7fa3d080 | 11392 | get_num_stack_literal_bytes (IStack *istack) |
e0001a05 NC |
11393 | { |
11394 | int i; | |
11395 | int lit_bytes = 0; | |
11396 | ||
11397 | for (i = 0; i < istack->ninsn; i++) | |
11398 | { | |
43cd72b9 BW |
11399 | TInsn *tinsn = &istack->insn[i]; |
11400 | if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1) | |
e0001a05 NC |
11401 | lit_bytes += 4; |
11402 | } | |
11403 | return lit_bytes; | |
11404 | } | |
11405 | ||
43cd72b9 BW |
11406 | \f |
11407 | /* vliw_insn functions. */ | |
11408 | ||
7fa3d080 BW |
11409 | static void |
11410 | xg_init_vinsn (vliw_insn *v) | |
43cd72b9 BW |
11411 | { |
11412 | int i; | |
11413 | xtensa_isa isa = xtensa_default_isa; | |
11414 | ||
11415 | xg_clear_vinsn (v); | |
11416 | ||
11417 | v->insnbuf = xtensa_insnbuf_alloc (isa); | |
11418 | if (v->insnbuf == NULL) | |
11419 | as_fatal (_("out of memory")); | |
11420 | ||
11421 | for (i = 0; i < MAX_SLOTS; i++) | |
11422 | { | |
43cd72b9 BW |
11423 | v->slotbuf[i] = xtensa_insnbuf_alloc (isa); |
11424 | if (v->slotbuf[i] == NULL) | |
11425 | as_fatal (_("out of memory")); | |
11426 | } | |
11427 | } | |
11428 | ||
11429 | ||
7fa3d080 BW |
11430 | static void |
11431 | xg_clear_vinsn (vliw_insn *v) | |
43cd72b9 BW |
11432 | { |
11433 | int i; | |
65738a7d BW |
11434 | |
11435 | memset (v, 0, offsetof (vliw_insn, insnbuf)); | |
11436 | ||
43cd72b9 BW |
11437 | v->format = XTENSA_UNDEFINED; |
11438 | v->num_slots = 0; | |
11439 | v->inside_bundle = FALSE; | |
11440 | ||
11441 | if (xt_saved_debug_type != DEBUG_NONE) | |
11442 | debug_type = xt_saved_debug_type; | |
11443 | ||
11444 | for (i = 0; i < MAX_SLOTS; i++) | |
65738a7d | 11445 | v->slots[i].opcode = XTENSA_UNDEFINED; |
43cd72b9 BW |
11446 | } |
11447 | ||
11448 | ||
7fa3d080 BW |
11449 | static bfd_boolean |
11450 | vinsn_has_specific_opcodes (vliw_insn *v) | |
43cd72b9 BW |
11451 | { |
11452 | int i; | |
c138bc38 | 11453 | |
43cd72b9 BW |
11454 | for (i = 0; i < v->num_slots; i++) |
11455 | { | |
11456 | if (v->slots[i].is_specific_opcode) | |
11457 | return TRUE; | |
11458 | } | |
11459 | return FALSE; | |
11460 | } | |
11461 | ||
11462 | ||
7fa3d080 BW |
11463 | static void |
11464 | xg_free_vinsn (vliw_insn *v) | |
43cd72b9 BW |
11465 | { |
11466 | int i; | |
11467 | xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf); | |
11468 | for (i = 0; i < MAX_SLOTS; i++) | |
11469 | xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]); | |
11470 | } | |
11471 | ||
11472 | ||
11473 | /* Before this is called, we should have | |
11474 | filled out the following fields: | |
11475 | ||
11476 | 1) the number of operands for each opcode are correct | |
11477 | 2) the tinsn in the slots are ITYPE_INSN | |
11478 | 3) ONLY the relaxable_ is built | |
11479 | 4) All operands are | |
11480 | O_constant, O_symbol | |
11481 | All constants fit | |
11482 | ||
11483 | The return value tells whether there are any remaining O_symbols. */ | |
11484 | ||
11485 | static bfd_boolean | |
7fa3d080 BW |
11486 | vinsn_to_insnbuf (vliw_insn *vinsn, |
11487 | char *frag_offset, | |
11488 | fragS *fragP, | |
11489 | bfd_boolean record_fixup) | |
43cd72b9 BW |
11490 | { |
11491 | xtensa_isa isa = xtensa_default_isa; | |
11492 | xtensa_format fmt = vinsn->format; | |
11493 | xtensa_insnbuf insnbuf = vinsn->insnbuf; | |
11494 | int slot; | |
11495 | bfd_boolean has_fixup = FALSE; | |
11496 | ||
11497 | xtensa_format_encode (isa, fmt, insnbuf); | |
11498 | ||
11499 | for (slot = 0; slot < vinsn->num_slots; slot++) | |
11500 | { | |
11501 | TInsn *tinsn = &vinsn->slots[slot]; | |
11502 | bfd_boolean tinsn_has_fixup = | |
11503 | tinsn_to_slotbuf (vinsn->format, slot, tinsn, | |
11504 | vinsn->slotbuf[slot]); | |
11505 | ||
11506 | xtensa_format_set_slot (isa, fmt, slot, | |
11507 | insnbuf, vinsn->slotbuf[slot]); | |
11508 | /* tinsn_has_fixup tracks if there is a fixup at all. | |
11509 | record_fixup controls globally. I.E., we use this | |
11510 | function from several places, some of which are after | |
11511 | fixups have already been recorded. Finally, | |
11512 | tinsn->record_fixup controls based on the individual ops, | |
11513 | which may or may not need it based on the relaxation | |
11514 | requirements. */ | |
11515 | if (tinsn_has_fixup && record_fixup) | |
11516 | { | |
11517 | int i; | |
11518 | xtensa_opcode opcode = tinsn->opcode; | |
11519 | int noperands = xtensa_opcode_num_operands (isa, opcode); | |
11520 | has_fixup = TRUE; | |
11521 | ||
11522 | for (i = 0; i < noperands; i++) | |
11523 | { | |
11524 | expressionS* expr = &tinsn->tok[i]; | |
11525 | switch (expr->X_op) | |
11526 | { | |
11527 | case O_symbol: | |
11528 | case O_lo16: | |
11529 | case O_hi16: | |
11530 | if (get_relaxable_immed (opcode) == i) | |
11531 | { | |
11532 | if (tinsn->record_fix || expr->X_op != O_symbol) | |
11533 | { | |
11534 | if (!xg_add_opcode_fix | |
11535 | (tinsn, i, fmt, slot, expr, fragP, | |
11536 | frag_offset - fragP->fr_literal)) | |
11537 | as_bad (_("instruction with constant operands does not fit")); | |
11538 | } | |
11539 | else | |
11540 | { | |
11541 | tinsn->symbol = expr->X_add_symbol; | |
11542 | tinsn->offset = expr->X_add_number; | |
11543 | } | |
11544 | } | |
11545 | else | |
11546 | as_bad (_("invalid operand %d on '%s'"), | |
11547 | i, xtensa_opcode_name (isa, opcode)); | |
11548 | break; | |
11549 | ||
11550 | case O_constant: | |
11551 | case O_register: | |
11552 | break; | |
11553 | ||
11554 | case O_subtract: | |
11555 | if (get_relaxable_immed (opcode) == i) | |
11556 | { | |
11557 | if (tinsn->record_fix) | |
11558 | as_bad (_("invalid subtract operand")); | |
11559 | else | |
11560 | { | |
11561 | tinsn->symbol = expr->X_add_symbol; | |
11562 | tinsn->sub_symbol = expr->X_op_symbol; | |
11563 | tinsn->offset = expr->X_add_number; | |
11564 | } | |
11565 | } | |
11566 | else | |
11567 | as_bad (_("invalid operand %d on '%s'"), | |
11568 | i, xtensa_opcode_name (isa, opcode)); | |
11569 | break; | |
11570 | ||
11571 | default: | |
11572 | as_bad (_("invalid expression for operand %d on '%s'"), | |
11573 | i, xtensa_opcode_name (isa, opcode)); | |
11574 | break; | |
11575 | } | |
11576 | } | |
11577 | } | |
11578 | } | |
11579 | ||
11580 | return has_fixup; | |
11581 | } | |
11582 | ||
11583 | ||
11584 | static void | |
7fa3d080 | 11585 | vinsn_from_chars (vliw_insn *vinsn, char *f) |
43cd72b9 BW |
11586 | { |
11587 | static xtensa_insnbuf insnbuf = NULL; | |
11588 | static xtensa_insnbuf slotbuf = NULL; | |
11589 | int i; | |
11590 | xtensa_format fmt; | |
11591 | xtensa_isa isa = xtensa_default_isa; | |
11592 | ||
11593 | if (!insnbuf) | |
11594 | { | |
11595 | insnbuf = xtensa_insnbuf_alloc (isa); | |
11596 | slotbuf = xtensa_insnbuf_alloc (isa); | |
11597 | } | |
11598 | ||
d77b99c9 | 11599 | xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0); |
43cd72b9 BW |
11600 | fmt = xtensa_format_decode (isa, insnbuf); |
11601 | if (fmt == XTENSA_UNDEFINED) | |
11602 | as_fatal (_("cannot decode instruction format")); | |
11603 | vinsn->format = fmt; | |
11604 | vinsn->num_slots = xtensa_format_num_slots (isa, fmt); | |
11605 | ||
11606 | for (i = 0; i < vinsn->num_slots; i++) | |
11607 | { | |
11608 | TInsn *tinsn = &vinsn->slots[i]; | |
11609 | xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf); | |
11610 | tinsn_from_insnbuf (tinsn, slotbuf, fmt, i); | |
11611 | } | |
11612 | } | |
11613 | ||
e0001a05 NC |
11614 | \f |
11615 | /* Expression utilities. */ | |
11616 | ||
43cd72b9 | 11617 | /* Return TRUE if the expression is an integer constant. */ |
e0001a05 NC |
11618 | |
11619 | bfd_boolean | |
7fa3d080 | 11620 | expr_is_const (const expressionS *s) |
e0001a05 NC |
11621 | { |
11622 | return (s->X_op == O_constant); | |
11623 | } | |
11624 | ||
11625 | ||
11626 | /* Get the expression constant. | |
43cd72b9 | 11627 | Calling this is illegal if expr_is_const () returns TRUE. */ |
e0001a05 NC |
11628 | |
11629 | offsetT | |
7fa3d080 | 11630 | get_expr_const (const expressionS *s) |
e0001a05 NC |
11631 | { |
11632 | assert (expr_is_const (s)); | |
11633 | return s->X_add_number; | |
11634 | } | |
11635 | ||
11636 | ||
11637 | /* Set the expression to a constant value. */ | |
11638 | ||
11639 | void | |
7fa3d080 | 11640 | set_expr_const (expressionS *s, offsetT val) |
e0001a05 NC |
11641 | { |
11642 | s->X_op = O_constant; | |
11643 | s->X_add_number = val; | |
11644 | s->X_add_symbol = NULL; | |
11645 | s->X_op_symbol = NULL; | |
11646 | } | |
11647 | ||
11648 | ||
43cd72b9 | 11649 | bfd_boolean |
7fa3d080 | 11650 | expr_is_register (const expressionS *s) |
43cd72b9 BW |
11651 | { |
11652 | return (s->X_op == O_register); | |
11653 | } | |
11654 | ||
11655 | ||
11656 | /* Get the expression constant. | |
11657 | Calling this is illegal if expr_is_const () returns TRUE. */ | |
11658 | ||
11659 | offsetT | |
7fa3d080 | 11660 | get_expr_register (const expressionS *s) |
43cd72b9 BW |
11661 | { |
11662 | assert (expr_is_register (s)); | |
11663 | return s->X_add_number; | |
11664 | } | |
11665 | ||
11666 | ||
e0001a05 NC |
11667 | /* Set the expression to a symbol + constant offset. */ |
11668 | ||
11669 | void | |
7fa3d080 | 11670 | set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset) |
e0001a05 NC |
11671 | { |
11672 | s->X_op = O_symbol; | |
11673 | s->X_add_symbol = sym; | |
11674 | s->X_op_symbol = NULL; /* unused */ | |
11675 | s->X_add_number = offset; | |
11676 | } | |
11677 | ||
11678 | ||
43cd72b9 BW |
11679 | /* Set the expression to symbol - minus_sym + offset. */ |
11680 | ||
7fa3d080 BW |
11681 | static void |
11682 | set_expr_symbol_offset_diff (expressionS *s, | |
11683 | symbolS *sym, | |
11684 | symbolS *minus_sym, | |
11685 | offsetT offset) | |
43cd72b9 BW |
11686 | { |
11687 | s->X_op = O_subtract; | |
11688 | s->X_add_symbol = sym; | |
11689 | s->X_op_symbol = minus_sym; /* unused */ | |
11690 | s->X_add_number = offset; | |
11691 | } | |
11692 | ||
11693 | ||
11694 | /* Return TRUE if the two expressions are equal. */ | |
11695 | ||
e0001a05 | 11696 | bfd_boolean |
7fa3d080 | 11697 | expr_is_equal (expressionS *s1, expressionS *s2) |
e0001a05 NC |
11698 | { |
11699 | if (s1->X_op != s2->X_op) | |
11700 | return FALSE; | |
11701 | if (s1->X_add_symbol != s2->X_add_symbol) | |
11702 | return FALSE; | |
11703 | if (s1->X_op_symbol != s2->X_op_symbol) | |
11704 | return FALSE; | |
11705 | if (s1->X_add_number != s2->X_add_number) | |
11706 | return FALSE; | |
11707 | return TRUE; | |
11708 | } | |
11709 | ||
11710 | ||
11711 | static void | |
7fa3d080 | 11712 | copy_expr (expressionS *dst, const expressionS *src) |
e0001a05 NC |
11713 | { |
11714 | memcpy (dst, src, sizeof (expressionS)); | |
11715 | } | |
11716 | ||
11717 | \f | |
9456465c | 11718 | /* Support for the "--rename-section" option. */ |
e0001a05 NC |
11719 | |
11720 | struct rename_section_struct | |
11721 | { | |
11722 | char *old_name; | |
11723 | char *new_name; | |
11724 | struct rename_section_struct *next; | |
11725 | }; | |
11726 | ||
11727 | static struct rename_section_struct *section_rename; | |
11728 | ||
11729 | ||
9456465c BW |
11730 | /* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add |
11731 | entries to the section_rename list. Note: Specifying multiple | |
11732 | renamings separated by colons is not documented and is retained only | |
11733 | for backward compatibility. */ | |
e0001a05 | 11734 | |
7fa3d080 BW |
11735 | static void |
11736 | build_section_rename (const char *arg) | |
e0001a05 | 11737 | { |
9456465c | 11738 | struct rename_section_struct *r; |
e0001a05 NC |
11739 | char *this_arg = NULL; |
11740 | char *next_arg = NULL; | |
11741 | ||
9456465c | 11742 | for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg) |
e0001a05 | 11743 | { |
9456465c BW |
11744 | char *old_name, *new_name; |
11745 | ||
e0001a05 NC |
11746 | if (this_arg) |
11747 | { | |
11748 | next_arg = strchr (this_arg, ':'); | |
11749 | if (next_arg) | |
11750 | { | |
11751 | *next_arg = '\0'; | |
11752 | next_arg++; | |
11753 | } | |
11754 | } | |
e0001a05 | 11755 | |
9456465c BW |
11756 | old_name = this_arg; |
11757 | new_name = strchr (this_arg, '='); | |
e0001a05 | 11758 | |
9456465c BW |
11759 | if (*old_name == '\0') |
11760 | { | |
11761 | as_warn (_("ignoring extra '-rename-section' delimiter ':'")); | |
11762 | continue; | |
11763 | } | |
11764 | if (!new_name || new_name[1] == '\0') | |
11765 | { | |
11766 | as_warn (_("ignoring invalid '-rename-section' specification: '%s'"), | |
11767 | old_name); | |
11768 | continue; | |
11769 | } | |
11770 | *new_name = '\0'; | |
11771 | new_name++; | |
e0001a05 | 11772 | |
9456465c BW |
11773 | /* Check for invalid section renaming. */ |
11774 | for (r = section_rename; r != NULL; r = r->next) | |
11775 | { | |
11776 | if (strcmp (r->old_name, old_name) == 0) | |
11777 | as_bad (_("section %s renamed multiple times"), old_name); | |
11778 | if (strcmp (r->new_name, new_name) == 0) | |
11779 | as_bad (_("multiple sections remapped to output section %s"), | |
11780 | new_name); | |
11781 | } | |
e0001a05 | 11782 | |
9456465c BW |
11783 | /* Now add it. */ |
11784 | r = (struct rename_section_struct *) | |
11785 | xmalloc (sizeof (struct rename_section_struct)); | |
11786 | r->old_name = xstrdup (old_name); | |
11787 | r->new_name = xstrdup (new_name); | |
11788 | r->next = section_rename; | |
11789 | section_rename = r; | |
e0001a05 | 11790 | } |
e0001a05 NC |
11791 | } |
11792 | ||
11793 | ||
9456465c BW |
11794 | char * |
11795 | xtensa_section_rename (char *name) | |
e0001a05 NC |
11796 | { |
11797 | struct rename_section_struct *r = section_rename; | |
11798 | ||
11799 | for (r = section_rename; r != NULL; r = r->next) | |
43cd72b9 BW |
11800 | { |
11801 | if (strcmp (r->old_name, name) == 0) | |
11802 | return r->new_name; | |
11803 | } | |
e0001a05 NC |
11804 | |
11805 | return name; | |
11806 | } |