]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
0b302171 JB |
3 | Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free |
4 | Software Foundation, Inc. | |
14f9c5c9 | 5 | |
a9762ec7 | 6 | This file is part of GDB. |
14f9c5c9 | 7 | |
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
14f9c5c9 | 12 | |
a9762ec7 JB |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
14f9c5c9 | 17 | |
a9762ec7 JB |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 20 | |
96d887e8 | 21 | |
4c4b4cd2 | 22 | #include "defs.h" |
14f9c5c9 | 23 | #include <stdio.h> |
0c30c098 | 24 | #include "gdb_string.h" |
14f9c5c9 AS |
25 | #include <ctype.h> |
26 | #include <stdarg.h> | |
27 | #include "demangle.h" | |
4c4b4cd2 PH |
28 | #include "gdb_regex.h" |
29 | #include "frame.h" | |
14f9c5c9 AS |
30 | #include "symtab.h" |
31 | #include "gdbtypes.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "expression.h" | |
34 | #include "parser-defs.h" | |
35 | #include "language.h" | |
36 | #include "c-lang.h" | |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 PH |
45 | #include "completer.h" |
46 | #include "gdb_stat.h" | |
47 | #ifdef UI_OUT | |
14f9c5c9 | 48 | #include "ui-out.h" |
4c4b4cd2 | 49 | #endif |
fe898f56 | 50 | #include "block.h" |
04714b91 | 51 | #include "infcall.h" |
de4f826b | 52 | #include "dictionary.h" |
60250e8b | 53 | #include "exceptions.h" |
f7f9143b JB |
54 | #include "annotate.h" |
55 | #include "valprint.h" | |
9bbc9174 | 56 | #include "source.h" |
0259addd | 57 | #include "observer.h" |
2ba95b9b | 58 | #include "vec.h" |
692465f1 | 59 | #include "stack.h" |
fa864999 | 60 | #include "gdb_vecs.h" |
14f9c5c9 | 61 | |
ccefe4c4 | 62 | #include "psymtab.h" |
40bc484c | 63 | #include "value.h" |
956a9fb9 | 64 | #include "mi/mi-common.h" |
9ac4176b | 65 | #include "arch-utils.h" |
28010a5d | 66 | #include "exceptions.h" |
0fcd72ba | 67 | #include "cli/cli-utils.h" |
ccefe4c4 | 68 | |
4c4b4cd2 | 69 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 70 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
71 | Copied from valarith.c. */ |
72 | ||
73 | #ifndef TRUNCATION_TOWARDS_ZERO | |
74 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
75 | #endif | |
76 | ||
d2e4a39e | 77 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 84 | |
d2e4a39e | 85 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 86 | |
556bdfd4 | 87 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static struct value *desc_data (struct value *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int desc_arity (struct type *); |
14f9c5c9 | 104 | |
d2e4a39e | 105 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 106 | |
d2e4a39e | 107 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 108 | |
40658b94 PH |
109 | static int full_match (const char *, const char *); |
110 | ||
40bc484c | 111 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 112 | |
4c4b4cd2 | 113 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 114 | struct block *, const char *, |
2570f2b7 | 115 | domain_enum, struct objfile *, int); |
14f9c5c9 | 116 | |
4c4b4cd2 | 117 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 118 | |
76a01679 | 119 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 120 | struct block *); |
14f9c5c9 | 121 | |
4c4b4cd2 PH |
122 | static int num_defns_collected (struct obstack *); |
123 | ||
124 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 125 | |
4c4b4cd2 | 126 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 127 | struct type *); |
14f9c5c9 | 128 | |
d2e4a39e | 129 | static void replace_operator_with_call (struct expression **, int, int, int, |
4c4b4cd2 | 130 | struct symbol *, struct block *); |
14f9c5c9 | 131 | |
d2e4a39e | 132 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 133 | |
4c4b4cd2 PH |
134 | static char *ada_op_name (enum exp_opcode); |
135 | ||
136 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int numeric_type_p (struct type *); |
14f9c5c9 | 139 | |
d2e4a39e | 140 | static int integer_type_p (struct type *); |
14f9c5c9 | 141 | |
d2e4a39e | 142 | static int scalar_type_p (struct type *); |
14f9c5c9 | 143 | |
d2e4a39e | 144 | static int discrete_type_p (struct type *); |
14f9c5c9 | 145 | |
aeb5907d JB |
146 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
147 | const char **, | |
148 | int *, | |
149 | const char **); | |
150 | ||
151 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
152 | struct block *); | |
153 | ||
4c4b4cd2 | 154 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 155 | int, int, int *); |
4c4b4cd2 | 156 | |
d2e4a39e | 157 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 158 | |
b4ba55a1 JB |
159 | static struct type *ada_find_parallel_type_with_name (struct type *, |
160 | const char *); | |
161 | ||
d2e4a39e | 162 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 163 | |
10a2c479 | 164 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 165 | const gdb_byte *, |
4c4b4cd2 PH |
166 | CORE_ADDR, struct value *); |
167 | ||
168 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 169 | |
28c85d6c | 170 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 171 | |
d2e4a39e | 172 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 173 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 174 | |
d2e4a39e | 175 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 176 | |
ad82864c | 177 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 178 | |
ad82864c | 179 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 180 | |
ad82864c JB |
181 | static long decode_packed_array_bitsize (struct type *); |
182 | ||
183 | static struct value *decode_constrained_packed_array (struct value *); | |
184 | ||
185 | static int ada_is_packed_array_type (struct type *); | |
186 | ||
187 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 188 | |
d2e4a39e | 189 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 190 | struct value **); |
14f9c5c9 | 191 | |
50810684 | 192 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 193 | |
4c4b4cd2 PH |
194 | static struct value *coerce_unspec_val_to_type (struct value *, |
195 | struct type *); | |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 198 | |
d2e4a39e | 199 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 200 | |
d2e4a39e | 201 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 202 | |
d2e4a39e | 203 | static int is_name_suffix (const char *); |
14f9c5c9 | 204 | |
73589123 PH |
205 | static int advance_wild_match (const char **, const char *, int); |
206 | ||
207 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 208 | |
d2e4a39e | 209 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 210 | |
4c4b4cd2 PH |
211 | static LONGEST pos_atr (struct value *); |
212 | ||
3cb382c9 | 213 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 214 | |
d2e4a39e | 215 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 216 | |
4c4b4cd2 PH |
217 | static struct symbol *standard_lookup (const char *, const struct block *, |
218 | domain_enum); | |
14f9c5c9 | 219 | |
4c4b4cd2 PH |
220 | static struct value *ada_search_struct_field (char *, struct value *, int, |
221 | struct type *); | |
222 | ||
223 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
224 | struct type *); | |
225 | ||
0d5cff50 | 226 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 227 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
228 | |
229 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
230 | struct value *); | |
231 | ||
4c4b4cd2 PH |
232 | static int ada_resolve_function (struct ada_symbol_info *, int, |
233 | struct value **, int, const char *, | |
234 | struct type *); | |
235 | ||
4c4b4cd2 PH |
236 | static int ada_is_direct_array_type (struct type *); |
237 | ||
72d5681a PH |
238 | static void ada_language_arch_info (struct gdbarch *, |
239 | struct language_arch_info *); | |
714e53ab PH |
240 | |
241 | static void check_size (const struct type *); | |
52ce6436 PH |
242 | |
243 | static struct value *ada_index_struct_field (int, struct value *, int, | |
244 | struct type *); | |
245 | ||
246 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
247 | struct expression *, |
248 | int *, enum noside); | |
52ce6436 PH |
249 | |
250 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
251 | struct expression *, | |
252 | int *, LONGEST *, int *, | |
253 | int, LONGEST, LONGEST); | |
254 | ||
255 | static void aggregate_assign_positional (struct value *, struct value *, | |
256 | struct expression *, | |
257 | int *, LONGEST *, int *, int, | |
258 | LONGEST, LONGEST); | |
259 | ||
260 | ||
261 | static void aggregate_assign_others (struct value *, struct value *, | |
262 | struct expression *, | |
263 | int *, LONGEST *, int, LONGEST, LONGEST); | |
264 | ||
265 | ||
266 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
267 | ||
268 | ||
269 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
270 | int *, enum noside); | |
271 | ||
272 | static void ada_forward_operator_length (struct expression *, int, int *, | |
273 | int *); | |
852dff6c JB |
274 | |
275 | static struct type *ada_find_any_type (const char *name); | |
4c4b4cd2 PH |
276 | \f |
277 | ||
76a01679 | 278 | |
4c4b4cd2 | 279 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
280 | static unsigned int varsize_limit; |
281 | ||
4c4b4cd2 PH |
282 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
283 | returned by a function that does not return a const char *. */ | |
284 | static char *ada_completer_word_break_characters = | |
285 | #ifdef VMS | |
286 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
287 | #else | |
14f9c5c9 | 288 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 289 | #endif |
14f9c5c9 | 290 | |
4c4b4cd2 | 291 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 292 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 293 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 294 | |
4c4b4cd2 PH |
295 | /* Limit on the number of warnings to raise per expression evaluation. */ |
296 | static int warning_limit = 2; | |
297 | ||
298 | /* Number of warning messages issued; reset to 0 by cleanups after | |
299 | expression evaluation. */ | |
300 | static int warnings_issued = 0; | |
301 | ||
302 | static const char *known_runtime_file_name_patterns[] = { | |
303 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
304 | }; | |
305 | ||
306 | static const char *known_auxiliary_function_name_patterns[] = { | |
307 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
308 | }; | |
309 | ||
310 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
311 | static struct obstack symbol_list_obstack; | |
312 | ||
e802dbe0 JB |
313 | /* Inferior-specific data. */ |
314 | ||
315 | /* Per-inferior data for this module. */ | |
316 | ||
317 | struct ada_inferior_data | |
318 | { | |
319 | /* The ada__tags__type_specific_data type, which is used when decoding | |
320 | tagged types. With older versions of GNAT, this type was directly | |
321 | accessible through a component ("tsd") in the object tag. But this | |
322 | is no longer the case, so we cache it for each inferior. */ | |
323 | struct type *tsd_type; | |
3eecfa55 JB |
324 | |
325 | /* The exception_support_info data. This data is used to determine | |
326 | how to implement support for Ada exception catchpoints in a given | |
327 | inferior. */ | |
328 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
329 | }; |
330 | ||
331 | /* Our key to this module's inferior data. */ | |
332 | static const struct inferior_data *ada_inferior_data; | |
333 | ||
334 | /* A cleanup routine for our inferior data. */ | |
335 | static void | |
336 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
337 | { | |
338 | struct ada_inferior_data *data; | |
339 | ||
340 | data = inferior_data (inf, ada_inferior_data); | |
341 | if (data != NULL) | |
342 | xfree (data); | |
343 | } | |
344 | ||
345 | /* Return our inferior data for the given inferior (INF). | |
346 | ||
347 | This function always returns a valid pointer to an allocated | |
348 | ada_inferior_data structure. If INF's inferior data has not | |
349 | been previously set, this functions creates a new one with all | |
350 | fields set to zero, sets INF's inferior to it, and then returns | |
351 | a pointer to that newly allocated ada_inferior_data. */ | |
352 | ||
353 | static struct ada_inferior_data * | |
354 | get_ada_inferior_data (struct inferior *inf) | |
355 | { | |
356 | struct ada_inferior_data *data; | |
357 | ||
358 | data = inferior_data (inf, ada_inferior_data); | |
359 | if (data == NULL) | |
360 | { | |
361 | data = XZALLOC (struct ada_inferior_data); | |
362 | set_inferior_data (inf, ada_inferior_data, data); | |
363 | } | |
364 | ||
365 | return data; | |
366 | } | |
367 | ||
368 | /* Perform all necessary cleanups regarding our module's inferior data | |
369 | that is required after the inferior INF just exited. */ | |
370 | ||
371 | static void | |
372 | ada_inferior_exit (struct inferior *inf) | |
373 | { | |
374 | ada_inferior_data_cleanup (inf, NULL); | |
375 | set_inferior_data (inf, ada_inferior_data, NULL); | |
376 | } | |
377 | ||
4c4b4cd2 PH |
378 | /* Utilities */ |
379 | ||
720d1a40 | 380 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 381 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
382 | |
383 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
384 | In other words, we really expect the target type of a typedef type to be | |
385 | a non-typedef type. This is particularly true for Ada units, because | |
386 | the language does not have a typedef vs not-typedef distinction. | |
387 | In that respect, the Ada compiler has been trying to eliminate as many | |
388 | typedef definitions in the debugging information, since they generally | |
389 | do not bring any extra information (we still use typedef under certain | |
390 | circumstances related mostly to the GNAT encoding). | |
391 | ||
392 | Unfortunately, we have seen situations where the debugging information | |
393 | generated by the compiler leads to such multiple typedef layers. For | |
394 | instance, consider the following example with stabs: | |
395 | ||
396 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
397 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
398 | ||
399 | This is an error in the debugging information which causes type | |
400 | pck__float_array___XUP to be defined twice, and the second time, | |
401 | it is defined as a typedef of a typedef. | |
402 | ||
403 | This is on the fringe of legality as far as debugging information is | |
404 | concerned, and certainly unexpected. But it is easy to handle these | |
405 | situations correctly, so we can afford to be lenient in this case. */ | |
406 | ||
407 | static struct type * | |
408 | ada_typedef_target_type (struct type *type) | |
409 | { | |
410 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
411 | type = TYPE_TARGET_TYPE (type); | |
412 | return type; | |
413 | } | |
414 | ||
41d27058 JB |
415 | /* Given DECODED_NAME a string holding a symbol name in its |
416 | decoded form (ie using the Ada dotted notation), returns | |
417 | its unqualified name. */ | |
418 | ||
419 | static const char * | |
420 | ada_unqualified_name (const char *decoded_name) | |
421 | { | |
422 | const char *result = strrchr (decoded_name, '.'); | |
423 | ||
424 | if (result != NULL) | |
425 | result++; /* Skip the dot... */ | |
426 | else | |
427 | result = decoded_name; | |
428 | ||
429 | return result; | |
430 | } | |
431 | ||
432 | /* Return a string starting with '<', followed by STR, and '>'. | |
433 | The result is good until the next call. */ | |
434 | ||
435 | static char * | |
436 | add_angle_brackets (const char *str) | |
437 | { | |
438 | static char *result = NULL; | |
439 | ||
440 | xfree (result); | |
88c15c34 | 441 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
442 | return result; |
443 | } | |
96d887e8 | 444 | |
4c4b4cd2 PH |
445 | static char * |
446 | ada_get_gdb_completer_word_break_characters (void) | |
447 | { | |
448 | return ada_completer_word_break_characters; | |
449 | } | |
450 | ||
e79af960 JB |
451 | /* Print an array element index using the Ada syntax. */ |
452 | ||
453 | static void | |
454 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 455 | const struct value_print_options *options) |
e79af960 | 456 | { |
79a45b7d | 457 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
458 | fprintf_filtered (stream, " => "); |
459 | } | |
460 | ||
f27cf670 | 461 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 462 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 463 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 464 | |
f27cf670 AS |
465 | void * |
466 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 467 | { |
d2e4a39e AS |
468 | if (*size < min_size) |
469 | { | |
470 | *size *= 2; | |
471 | if (*size < min_size) | |
4c4b4cd2 | 472 | *size = min_size; |
f27cf670 | 473 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 474 | } |
f27cf670 | 475 | return vect; |
14f9c5c9 AS |
476 | } |
477 | ||
478 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 479 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
480 | |
481 | static int | |
ebf56fd3 | 482 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
483 | { |
484 | int len = strlen (target); | |
5b4ee69b | 485 | |
d2e4a39e | 486 | return |
4c4b4cd2 PH |
487 | (strncmp (field_name, target, len) == 0 |
488 | && (field_name[len] == '\0' | |
489 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
490 | && strcmp (field_name + strlen (field_name) - 6, |
491 | "___XVN") != 0))); | |
14f9c5c9 AS |
492 | } |
493 | ||
494 | ||
872c8b51 JB |
495 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
496 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
497 | and return its index. This function also handles fields whose name | |
498 | have ___ suffixes because the compiler sometimes alters their name | |
499 | by adding such a suffix to represent fields with certain constraints. | |
500 | If the field could not be found, return a negative number if | |
501 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
502 | |
503 | int | |
504 | ada_get_field_index (const struct type *type, const char *field_name, | |
505 | int maybe_missing) | |
506 | { | |
507 | int fieldno; | |
872c8b51 JB |
508 | struct type *struct_type = check_typedef ((struct type *) type); |
509 | ||
510 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
511 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
512 | return fieldno; |
513 | ||
514 | if (!maybe_missing) | |
323e0a4a | 515 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 516 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
517 | |
518 | return -1; | |
519 | } | |
520 | ||
521 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
522 | |
523 | int | |
d2e4a39e | 524 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
525 | { |
526 | if (name == NULL) | |
527 | return 0; | |
d2e4a39e | 528 | else |
14f9c5c9 | 529 | { |
d2e4a39e | 530 | const char *p = strstr (name, "___"); |
5b4ee69b | 531 | |
14f9c5c9 | 532 | if (p == NULL) |
4c4b4cd2 | 533 | return strlen (name); |
14f9c5c9 | 534 | else |
4c4b4cd2 | 535 | return p - name; |
14f9c5c9 AS |
536 | } |
537 | } | |
538 | ||
4c4b4cd2 PH |
539 | /* Return non-zero if SUFFIX is a suffix of STR. |
540 | Return zero if STR is null. */ | |
541 | ||
14f9c5c9 | 542 | static int |
d2e4a39e | 543 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
544 | { |
545 | int len1, len2; | |
5b4ee69b | 546 | |
14f9c5c9 AS |
547 | if (str == NULL) |
548 | return 0; | |
549 | len1 = strlen (str); | |
550 | len2 = strlen (suffix); | |
4c4b4cd2 | 551 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
552 | } |
553 | ||
4c4b4cd2 PH |
554 | /* The contents of value VAL, treated as a value of type TYPE. The |
555 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 556 | |
d2e4a39e | 557 | static struct value * |
4c4b4cd2 | 558 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 559 | { |
61ee279c | 560 | type = ada_check_typedef (type); |
df407dfe | 561 | if (value_type (val) == type) |
4c4b4cd2 | 562 | return val; |
d2e4a39e | 563 | else |
14f9c5c9 | 564 | { |
4c4b4cd2 PH |
565 | struct value *result; |
566 | ||
567 | /* Make sure that the object size is not unreasonable before | |
568 | trying to allocate some memory for it. */ | |
714e53ab | 569 | check_size (type); |
4c4b4cd2 | 570 | |
41e8491f JK |
571 | if (value_lazy (val) |
572 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
573 | result = allocate_value_lazy (type); | |
574 | else | |
575 | { | |
576 | result = allocate_value (type); | |
577 | memcpy (value_contents_raw (result), value_contents (val), | |
578 | TYPE_LENGTH (type)); | |
579 | } | |
74bcbdf3 | 580 | set_value_component_location (result, val); |
9bbda503 AC |
581 | set_value_bitsize (result, value_bitsize (val)); |
582 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 583 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
584 | return result; |
585 | } | |
586 | } | |
587 | ||
fc1a4b47 AC |
588 | static const gdb_byte * |
589 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
590 | { |
591 | if (valaddr == NULL) | |
592 | return NULL; | |
593 | else | |
594 | return valaddr + offset; | |
595 | } | |
596 | ||
597 | static CORE_ADDR | |
ebf56fd3 | 598 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
599 | { |
600 | if (address == 0) | |
601 | return 0; | |
d2e4a39e | 602 | else |
14f9c5c9 AS |
603 | return address + offset; |
604 | } | |
605 | ||
4c4b4cd2 PH |
606 | /* Issue a warning (as for the definition of warning in utils.c, but |
607 | with exactly one argument rather than ...), unless the limit on the | |
608 | number of warnings has passed during the evaluation of the current | |
609 | expression. */ | |
a2249542 | 610 | |
77109804 AC |
611 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
612 | provided by "complaint". */ | |
a0b31db1 | 613 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 614 | |
14f9c5c9 | 615 | static void |
a2249542 | 616 | lim_warning (const char *format, ...) |
14f9c5c9 | 617 | { |
a2249542 | 618 | va_list args; |
a2249542 | 619 | |
5b4ee69b | 620 | va_start (args, format); |
4c4b4cd2 PH |
621 | warnings_issued += 1; |
622 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
623 | vwarning (format, args); |
624 | ||
625 | va_end (args); | |
4c4b4cd2 PH |
626 | } |
627 | ||
714e53ab PH |
628 | /* Issue an error if the size of an object of type T is unreasonable, |
629 | i.e. if it would be a bad idea to allocate a value of this type in | |
630 | GDB. */ | |
631 | ||
632 | static void | |
633 | check_size (const struct type *type) | |
634 | { | |
635 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 636 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
637 | } |
638 | ||
0963b4bd | 639 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 640 | static LONGEST |
c3e5cd34 | 641 | max_of_size (int size) |
4c4b4cd2 | 642 | { |
76a01679 | 643 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 644 | |
76a01679 | 645 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
646 | } |
647 | ||
0963b4bd | 648 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 649 | static LONGEST |
c3e5cd34 | 650 | min_of_size (int size) |
4c4b4cd2 | 651 | { |
c3e5cd34 | 652 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
653 | } |
654 | ||
0963b4bd | 655 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 656 | static ULONGEST |
c3e5cd34 | 657 | umax_of_size (int size) |
4c4b4cd2 | 658 | { |
76a01679 | 659 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 660 | |
76a01679 | 661 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
662 | } |
663 | ||
0963b4bd | 664 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
665 | static LONGEST |
666 | max_of_type (struct type *t) | |
4c4b4cd2 | 667 | { |
c3e5cd34 PH |
668 | if (TYPE_UNSIGNED (t)) |
669 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
670 | else | |
671 | return max_of_size (TYPE_LENGTH (t)); | |
672 | } | |
673 | ||
0963b4bd | 674 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
675 | static LONGEST |
676 | min_of_type (struct type *t) | |
677 | { | |
678 | if (TYPE_UNSIGNED (t)) | |
679 | return 0; | |
680 | else | |
681 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
682 | } |
683 | ||
684 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
685 | LONGEST |
686 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 687 | { |
76a01679 | 688 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
689 | { |
690 | case TYPE_CODE_RANGE: | |
690cc4eb | 691 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 692 | case TYPE_CODE_ENUM: |
14e75d8e | 693 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
694 | case TYPE_CODE_BOOL: |
695 | return 1; | |
696 | case TYPE_CODE_CHAR: | |
76a01679 | 697 | case TYPE_CODE_INT: |
690cc4eb | 698 | return max_of_type (type); |
4c4b4cd2 | 699 | default: |
43bbcdc2 | 700 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
701 | } |
702 | } | |
703 | ||
14e75d8e | 704 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
705 | LONGEST |
706 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 707 | { |
76a01679 | 708 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
709 | { |
710 | case TYPE_CODE_RANGE: | |
690cc4eb | 711 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 712 | case TYPE_CODE_ENUM: |
14e75d8e | 713 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
714 | case TYPE_CODE_BOOL: |
715 | return 0; | |
716 | case TYPE_CODE_CHAR: | |
76a01679 | 717 | case TYPE_CODE_INT: |
690cc4eb | 718 | return min_of_type (type); |
4c4b4cd2 | 719 | default: |
43bbcdc2 | 720 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
721 | } |
722 | } | |
723 | ||
724 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 725 | non-range scalar type. */ |
4c4b4cd2 PH |
726 | |
727 | static struct type * | |
18af8284 | 728 | get_base_type (struct type *type) |
4c4b4cd2 PH |
729 | { |
730 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
731 | { | |
76a01679 JB |
732 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
733 | return type; | |
4c4b4cd2 PH |
734 | type = TYPE_TARGET_TYPE (type); |
735 | } | |
736 | return type; | |
14f9c5c9 | 737 | } |
41246937 JB |
738 | |
739 | /* Return a decoded version of the given VALUE. This means returning | |
740 | a value whose type is obtained by applying all the GNAT-specific | |
741 | encondings, making the resulting type a static but standard description | |
742 | of the initial type. */ | |
743 | ||
744 | struct value * | |
745 | ada_get_decoded_value (struct value *value) | |
746 | { | |
747 | struct type *type = ada_check_typedef (value_type (value)); | |
748 | ||
749 | if (ada_is_array_descriptor_type (type) | |
750 | || (ada_is_constrained_packed_array_type (type) | |
751 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
752 | { | |
753 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
754 | value = ada_coerce_to_simple_array_ptr (value); | |
755 | else | |
756 | value = ada_coerce_to_simple_array (value); | |
757 | } | |
758 | else | |
759 | value = ada_to_fixed_value (value); | |
760 | ||
761 | return value; | |
762 | } | |
763 | ||
764 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
765 | Because there is no associated actual value for this type, | |
766 | the resulting type might be a best-effort approximation in | |
767 | the case of dynamic types. */ | |
768 | ||
769 | struct type * | |
770 | ada_get_decoded_type (struct type *type) | |
771 | { | |
772 | type = to_static_fixed_type (type); | |
773 | if (ada_is_constrained_packed_array_type (type)) | |
774 | type = ada_coerce_to_simple_array_type (type); | |
775 | return type; | |
776 | } | |
777 | ||
4c4b4cd2 | 778 | \f |
76a01679 | 779 | |
4c4b4cd2 | 780 | /* Language Selection */ |
14f9c5c9 AS |
781 | |
782 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 783 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 784 | |
14f9c5c9 | 785 | enum language |
ccefe4c4 | 786 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 787 | { |
d2e4a39e | 788 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
789 | (struct objfile *) NULL) != NULL) |
790 | return language_ada; | |
14f9c5c9 AS |
791 | |
792 | return lang; | |
793 | } | |
96d887e8 PH |
794 | |
795 | /* If the main procedure is written in Ada, then return its name. | |
796 | The result is good until the next call. Return NULL if the main | |
797 | procedure doesn't appear to be in Ada. */ | |
798 | ||
799 | char * | |
800 | ada_main_name (void) | |
801 | { | |
802 | struct minimal_symbol *msym; | |
f9bc20b9 | 803 | static char *main_program_name = NULL; |
6c038f32 | 804 | |
96d887e8 PH |
805 | /* For Ada, the name of the main procedure is stored in a specific |
806 | string constant, generated by the binder. Look for that symbol, | |
807 | extract its address, and then read that string. If we didn't find | |
808 | that string, then most probably the main procedure is not written | |
809 | in Ada. */ | |
810 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
811 | ||
812 | if (msym != NULL) | |
813 | { | |
f9bc20b9 JB |
814 | CORE_ADDR main_program_name_addr; |
815 | int err_code; | |
816 | ||
96d887e8 PH |
817 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
818 | if (main_program_name_addr == 0) | |
323e0a4a | 819 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 820 | |
f9bc20b9 JB |
821 | xfree (main_program_name); |
822 | target_read_string (main_program_name_addr, &main_program_name, | |
823 | 1024, &err_code); | |
824 | ||
825 | if (err_code != 0) | |
826 | return NULL; | |
96d887e8 PH |
827 | return main_program_name; |
828 | } | |
829 | ||
830 | /* The main procedure doesn't seem to be in Ada. */ | |
831 | return NULL; | |
832 | } | |
14f9c5c9 | 833 | \f |
4c4b4cd2 | 834 | /* Symbols */ |
d2e4a39e | 835 | |
4c4b4cd2 PH |
836 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
837 | of NULLs. */ | |
14f9c5c9 | 838 | |
d2e4a39e AS |
839 | const struct ada_opname_map ada_opname_table[] = { |
840 | {"Oadd", "\"+\"", BINOP_ADD}, | |
841 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
842 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
843 | {"Odivide", "\"/\"", BINOP_DIV}, | |
844 | {"Omod", "\"mod\"", BINOP_MOD}, | |
845 | {"Orem", "\"rem\"", BINOP_REM}, | |
846 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
847 | {"Olt", "\"<\"", BINOP_LESS}, | |
848 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
849 | {"Ogt", "\">\"", BINOP_GTR}, | |
850 | {"Oge", "\">=\"", BINOP_GEQ}, | |
851 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
852 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
853 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
854 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
855 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
856 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
857 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
858 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
859 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
860 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
861 | {NULL, NULL} | |
14f9c5c9 AS |
862 | }; |
863 | ||
4c4b4cd2 PH |
864 | /* The "encoded" form of DECODED, according to GNAT conventions. |
865 | The result is valid until the next call to ada_encode. */ | |
866 | ||
14f9c5c9 | 867 | char * |
4c4b4cd2 | 868 | ada_encode (const char *decoded) |
14f9c5c9 | 869 | { |
4c4b4cd2 PH |
870 | static char *encoding_buffer = NULL; |
871 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 872 | const char *p; |
14f9c5c9 | 873 | int k; |
d2e4a39e | 874 | |
4c4b4cd2 | 875 | if (decoded == NULL) |
14f9c5c9 AS |
876 | return NULL; |
877 | ||
4c4b4cd2 PH |
878 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
879 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
880 | |
881 | k = 0; | |
4c4b4cd2 | 882 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 883 | { |
cdc7bb92 | 884 | if (*p == '.') |
4c4b4cd2 PH |
885 | { |
886 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
887 | k += 2; | |
888 | } | |
14f9c5c9 | 889 | else if (*p == '"') |
4c4b4cd2 PH |
890 | { |
891 | const struct ada_opname_map *mapping; | |
892 | ||
893 | for (mapping = ada_opname_table; | |
1265e4aa JB |
894 | mapping->encoded != NULL |
895 | && strncmp (mapping->decoded, p, | |
896 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
897 | ; |
898 | if (mapping->encoded == NULL) | |
323e0a4a | 899 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
900 | strcpy (encoding_buffer + k, mapping->encoded); |
901 | k += strlen (mapping->encoded); | |
902 | break; | |
903 | } | |
d2e4a39e | 904 | else |
4c4b4cd2 PH |
905 | { |
906 | encoding_buffer[k] = *p; | |
907 | k += 1; | |
908 | } | |
14f9c5c9 AS |
909 | } |
910 | ||
4c4b4cd2 PH |
911 | encoding_buffer[k] = '\0'; |
912 | return encoding_buffer; | |
14f9c5c9 AS |
913 | } |
914 | ||
915 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
916 | quotes, unfolded, but with the quotes stripped away. Result good |
917 | to next call. */ | |
918 | ||
d2e4a39e AS |
919 | char * |
920 | ada_fold_name (const char *name) | |
14f9c5c9 | 921 | { |
d2e4a39e | 922 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
923 | static size_t fold_buffer_size = 0; |
924 | ||
925 | int len = strlen (name); | |
d2e4a39e | 926 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
927 | |
928 | if (name[0] == '\'') | |
929 | { | |
d2e4a39e AS |
930 | strncpy (fold_buffer, name + 1, len - 2); |
931 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
932 | } |
933 | else | |
934 | { | |
935 | int i; | |
5b4ee69b | 936 | |
14f9c5c9 | 937 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 938 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
939 | } |
940 | ||
941 | return fold_buffer; | |
942 | } | |
943 | ||
529cad9c PH |
944 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
945 | ||
946 | static int | |
947 | is_lower_alphanum (const char c) | |
948 | { | |
949 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
950 | } | |
951 | ||
c90092fe JB |
952 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
953 | This function saves in LEN the length of that same symbol name but | |
954 | without either of these suffixes: | |
29480c32 JB |
955 | . .{DIGIT}+ |
956 | . ${DIGIT}+ | |
957 | . ___{DIGIT}+ | |
958 | . __{DIGIT}+. | |
c90092fe | 959 | |
29480c32 JB |
960 | These are suffixes introduced by the compiler for entities such as |
961 | nested subprogram for instance, in order to avoid name clashes. | |
962 | They do not serve any purpose for the debugger. */ | |
963 | ||
964 | static void | |
965 | ada_remove_trailing_digits (const char *encoded, int *len) | |
966 | { | |
967 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
968 | { | |
969 | int i = *len - 2; | |
5b4ee69b | 970 | |
29480c32 JB |
971 | while (i > 0 && isdigit (encoded[i])) |
972 | i--; | |
973 | if (i >= 0 && encoded[i] == '.') | |
974 | *len = i; | |
975 | else if (i >= 0 && encoded[i] == '$') | |
976 | *len = i; | |
977 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
978 | *len = i - 2; | |
979 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
980 | *len = i - 1; | |
981 | } | |
982 | } | |
983 | ||
984 | /* Remove the suffix introduced by the compiler for protected object | |
985 | subprograms. */ | |
986 | ||
987 | static void | |
988 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
989 | { | |
990 | /* Remove trailing N. */ | |
991 | ||
992 | /* Protected entry subprograms are broken into two | |
993 | separate subprograms: The first one is unprotected, and has | |
994 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 995 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
996 | the protection. Since the P subprograms are internally generated, |
997 | we leave these names undecoded, giving the user a clue that this | |
998 | entity is internal. */ | |
999 | ||
1000 | if (*len > 1 | |
1001 | && encoded[*len - 1] == 'N' | |
1002 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1003 | *len = *len - 1; | |
1004 | } | |
1005 | ||
69fadcdf JB |
1006 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
1007 | ||
1008 | static void | |
1009 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
1010 | { | |
1011 | int i = *len - 1; | |
1012 | ||
1013 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
1014 | i--; | |
1015 | ||
1016 | if (encoded[i] != 'X') | |
1017 | return; | |
1018 | ||
1019 | if (i == 0) | |
1020 | return; | |
1021 | ||
1022 | if (isalnum (encoded[i-1])) | |
1023 | *len = i; | |
1024 | } | |
1025 | ||
29480c32 JB |
1026 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
1027 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
1028 | replaced by ENCODED. | |
14f9c5c9 | 1029 | |
4c4b4cd2 | 1030 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 1031 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
1032 | is returned. */ |
1033 | ||
1034 | const char * | |
1035 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
1036 | { |
1037 | int i, j; | |
1038 | int len0; | |
d2e4a39e | 1039 | const char *p; |
4c4b4cd2 | 1040 | char *decoded; |
14f9c5c9 | 1041 | int at_start_name; |
4c4b4cd2 PH |
1042 | static char *decoding_buffer = NULL; |
1043 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1044 | |
29480c32 JB |
1045 | /* The name of the Ada main procedure starts with "_ada_". |
1046 | This prefix is not part of the decoded name, so skip this part | |
1047 | if we see this prefix. */ | |
4c4b4cd2 PH |
1048 | if (strncmp (encoded, "_ada_", 5) == 0) |
1049 | encoded += 5; | |
14f9c5c9 | 1050 | |
29480c32 JB |
1051 | /* If the name starts with '_', then it is not a properly encoded |
1052 | name, so do not attempt to decode it. Similarly, if the name | |
1053 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1054 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1055 | goto Suppress; |
1056 | ||
4c4b4cd2 | 1057 | len0 = strlen (encoded); |
4c4b4cd2 | 1058 | |
29480c32 JB |
1059 | ada_remove_trailing_digits (encoded, &len0); |
1060 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1061 | |
4c4b4cd2 PH |
1062 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1063 | the suffix is located before the current "end" of ENCODED. We want | |
1064 | to avoid re-matching parts of ENCODED that have previously been | |
1065 | marked as discarded (by decrementing LEN0). */ | |
1066 | p = strstr (encoded, "___"); | |
1067 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1068 | { |
1069 | if (p[3] == 'X') | |
4c4b4cd2 | 1070 | len0 = p - encoded; |
14f9c5c9 | 1071 | else |
4c4b4cd2 | 1072 | goto Suppress; |
14f9c5c9 | 1073 | } |
4c4b4cd2 | 1074 | |
29480c32 JB |
1075 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1076 | is for the body of a task, but that information does not actually | |
1077 | appear in the decoded name. */ | |
1078 | ||
4c4b4cd2 | 1079 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 1080 | len0 -= 3; |
76a01679 | 1081 | |
a10967fa JB |
1082 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1083 | from the TKB suffix because it is used for non-anonymous task | |
1084 | bodies. */ | |
1085 | ||
1086 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
1087 | len0 -= 2; | |
1088 | ||
29480c32 JB |
1089 | /* Remove trailing "B" suffixes. */ |
1090 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1091 | ||
4c4b4cd2 | 1092 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
1093 | len0 -= 1; |
1094 | ||
4c4b4cd2 | 1095 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1096 | |
4c4b4cd2 PH |
1097 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1098 | decoded = decoding_buffer; | |
14f9c5c9 | 1099 | |
29480c32 JB |
1100 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1101 | ||
4c4b4cd2 | 1102 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1103 | { |
4c4b4cd2 PH |
1104 | i = len0 - 2; |
1105 | while ((i >= 0 && isdigit (encoded[i])) | |
1106 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1107 | i -= 1; | |
1108 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1109 | len0 = i - 1; | |
1110 | else if (encoded[i] == '$') | |
1111 | len0 = i; | |
d2e4a39e | 1112 | } |
14f9c5c9 | 1113 | |
29480c32 JB |
1114 | /* The first few characters that are not alphabetic are not part |
1115 | of any encoding we use, so we can copy them over verbatim. */ | |
1116 | ||
4c4b4cd2 PH |
1117 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1118 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1119 | |
1120 | at_start_name = 1; | |
1121 | while (i < len0) | |
1122 | { | |
29480c32 | 1123 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1124 | if (at_start_name && encoded[i] == 'O') |
1125 | { | |
1126 | int k; | |
5b4ee69b | 1127 | |
4c4b4cd2 PH |
1128 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1129 | { | |
1130 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1131 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1132 | op_len - 1) == 0) | |
1133 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1134 | { |
1135 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1136 | at_start_name = 0; | |
1137 | i += op_len; | |
1138 | j += strlen (ada_opname_table[k].decoded); | |
1139 | break; | |
1140 | } | |
1141 | } | |
1142 | if (ada_opname_table[k].encoded != NULL) | |
1143 | continue; | |
1144 | } | |
14f9c5c9 AS |
1145 | at_start_name = 0; |
1146 | ||
529cad9c PH |
1147 | /* Replace "TK__" with "__", which will eventually be translated |
1148 | into "." (just below). */ | |
1149 | ||
4c4b4cd2 PH |
1150 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1151 | i += 2; | |
529cad9c | 1152 | |
29480c32 JB |
1153 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1154 | be translated into "." (just below). These are internal names | |
1155 | generated for anonymous blocks inside which our symbol is nested. */ | |
1156 | ||
1157 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1158 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1159 | && isdigit (encoded [i+4])) | |
1160 | { | |
1161 | int k = i + 5; | |
1162 | ||
1163 | while (k < len0 && isdigit (encoded[k])) | |
1164 | k++; /* Skip any extra digit. */ | |
1165 | ||
1166 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1167 | is indeed followed by "__". */ | |
1168 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1169 | i = k; | |
1170 | } | |
1171 | ||
529cad9c PH |
1172 | /* Remove _E{DIGITS}+[sb] */ |
1173 | ||
1174 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1175 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1176 | one implements the actual entry code, and has a suffix following |
1177 | the convention above; the second one implements the barrier and | |
1178 | uses the same convention as above, except that the 'E' is replaced | |
1179 | by a 'B'. | |
1180 | ||
1181 | Just as above, we do not decode the name of barrier functions | |
1182 | to give the user a clue that the code he is debugging has been | |
1183 | internally generated. */ | |
1184 | ||
1185 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1186 | && isdigit (encoded[i+2])) | |
1187 | { | |
1188 | int k = i + 3; | |
1189 | ||
1190 | while (k < len0 && isdigit (encoded[k])) | |
1191 | k++; | |
1192 | ||
1193 | if (k < len0 | |
1194 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1195 | { | |
1196 | k++; | |
1197 | /* Just as an extra precaution, make sure that if this | |
1198 | suffix is followed by anything else, it is a '_'. | |
1199 | Otherwise, we matched this sequence by accident. */ | |
1200 | if (k == len0 | |
1201 | || (k < len0 && encoded[k] == '_')) | |
1202 | i = k; | |
1203 | } | |
1204 | } | |
1205 | ||
1206 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1207 | the GNAT front-end in protected object subprograms. */ | |
1208 | ||
1209 | if (i < len0 + 3 | |
1210 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1211 | { | |
1212 | /* Backtrack a bit up until we reach either the begining of | |
1213 | the encoded name, or "__". Make sure that we only find | |
1214 | digits or lowercase characters. */ | |
1215 | const char *ptr = encoded + i - 1; | |
1216 | ||
1217 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1218 | ptr--; | |
1219 | if (ptr < encoded | |
1220 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1221 | i++; | |
1222 | } | |
1223 | ||
4c4b4cd2 PH |
1224 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1225 | { | |
29480c32 JB |
1226 | /* This is a X[bn]* sequence not separated from the previous |
1227 | part of the name with a non-alpha-numeric character (in other | |
1228 | words, immediately following an alpha-numeric character), then | |
1229 | verify that it is placed at the end of the encoded name. If | |
1230 | not, then the encoding is not valid and we should abort the | |
1231 | decoding. Otherwise, just skip it, it is used in body-nested | |
1232 | package names. */ | |
4c4b4cd2 PH |
1233 | do |
1234 | i += 1; | |
1235 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1236 | if (i < len0) | |
1237 | goto Suppress; | |
1238 | } | |
cdc7bb92 | 1239 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1240 | { |
29480c32 | 1241 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1242 | decoded[j] = '.'; |
1243 | at_start_name = 1; | |
1244 | i += 2; | |
1245 | j += 1; | |
1246 | } | |
14f9c5c9 | 1247 | else |
4c4b4cd2 | 1248 | { |
29480c32 JB |
1249 | /* It's a character part of the decoded name, so just copy it |
1250 | over. */ | |
4c4b4cd2 PH |
1251 | decoded[j] = encoded[i]; |
1252 | i += 1; | |
1253 | j += 1; | |
1254 | } | |
14f9c5c9 | 1255 | } |
4c4b4cd2 | 1256 | decoded[j] = '\000'; |
14f9c5c9 | 1257 | |
29480c32 JB |
1258 | /* Decoded names should never contain any uppercase character. |
1259 | Double-check this, and abort the decoding if we find one. */ | |
1260 | ||
4c4b4cd2 PH |
1261 | for (i = 0; decoded[i] != '\0'; i += 1) |
1262 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1263 | goto Suppress; |
1264 | ||
4c4b4cd2 PH |
1265 | if (strcmp (decoded, encoded) == 0) |
1266 | return encoded; | |
1267 | else | |
1268 | return decoded; | |
14f9c5c9 AS |
1269 | |
1270 | Suppress: | |
4c4b4cd2 PH |
1271 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1272 | decoded = decoding_buffer; | |
1273 | if (encoded[0] == '<') | |
1274 | strcpy (decoded, encoded); | |
14f9c5c9 | 1275 | else |
88c15c34 | 1276 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1277 | return decoded; |
1278 | ||
1279 | } | |
1280 | ||
1281 | /* Table for keeping permanent unique copies of decoded names. Once | |
1282 | allocated, names in this table are never released. While this is a | |
1283 | storage leak, it should not be significant unless there are massive | |
1284 | changes in the set of decoded names in successive versions of a | |
1285 | symbol table loaded during a single session. */ | |
1286 | static struct htab *decoded_names_store; | |
1287 | ||
1288 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1289 | in the language-specific part of GSYMBOL, if it has not been | |
1290 | previously computed. Tries to save the decoded name in the same | |
1291 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1292 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1293 | GSYMBOL). |
4c4b4cd2 PH |
1294 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1295 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1296 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1297 | |
76a01679 JB |
1298 | char * |
1299 | ada_decode_symbol (const struct general_symbol_info *gsymbol) | |
4c4b4cd2 | 1300 | { |
76a01679 | 1301 | char **resultp = |
afa16725 | 1302 | (char **) &gsymbol->language_specific.mangled_lang.demangled_name; |
5b4ee69b | 1303 | |
4c4b4cd2 PH |
1304 | if (*resultp == NULL) |
1305 | { | |
1306 | const char *decoded = ada_decode (gsymbol->name); | |
5b4ee69b | 1307 | |
714835d5 | 1308 | if (gsymbol->obj_section != NULL) |
76a01679 | 1309 | { |
714835d5 | 1310 | struct objfile *objf = gsymbol->obj_section->objfile; |
5b4ee69b | 1311 | |
714835d5 UW |
1312 | *resultp = obsavestring (decoded, strlen (decoded), |
1313 | &objf->objfile_obstack); | |
76a01679 | 1314 | } |
4c4b4cd2 | 1315 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1316 | case, we put the result on the heap. Since we only decode |
1317 | when needed, we hope this usually does not cause a | |
1318 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1319 | if (*resultp == NULL) |
76a01679 JB |
1320 | { |
1321 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1322 | decoded, INSERT); | |
5b4ee69b | 1323 | |
76a01679 JB |
1324 | if (*slot == NULL) |
1325 | *slot = xstrdup (decoded); | |
1326 | *resultp = *slot; | |
1327 | } | |
4c4b4cd2 | 1328 | } |
14f9c5c9 | 1329 | |
4c4b4cd2 PH |
1330 | return *resultp; |
1331 | } | |
76a01679 | 1332 | |
2c0b251b | 1333 | static char * |
76a01679 | 1334 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1335 | { |
1336 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1337 | } |
1338 | ||
1339 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1340 | suffixes that encode debugging information or leading _ada_ on |
1341 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1342 | information that is ignored). If WILD, then NAME need only match a | |
1343 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1344 | either argument is NULL. */ | |
14f9c5c9 | 1345 | |
2c0b251b | 1346 | static int |
40658b94 | 1347 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1348 | { |
1349 | if (sym_name == NULL || name == NULL) | |
1350 | return 0; | |
1351 | else if (wild) | |
73589123 | 1352 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1353 | else |
1354 | { | |
1355 | int len_name = strlen (name); | |
5b4ee69b | 1356 | |
4c4b4cd2 PH |
1357 | return (strncmp (sym_name, name, len_name) == 0 |
1358 | && is_name_suffix (sym_name + len_name)) | |
1359 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1360 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1361 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1362 | } |
14f9c5c9 | 1363 | } |
14f9c5c9 | 1364 | \f |
d2e4a39e | 1365 | |
4c4b4cd2 | 1366 | /* Arrays */ |
14f9c5c9 | 1367 | |
28c85d6c JB |
1368 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1369 | generated by the GNAT compiler to describe the index type used | |
1370 | for each dimension of an array, check whether it follows the latest | |
1371 | known encoding. If not, fix it up to conform to the latest encoding. | |
1372 | Otherwise, do nothing. This function also does nothing if | |
1373 | INDEX_DESC_TYPE is NULL. | |
1374 | ||
1375 | The GNAT encoding used to describle the array index type evolved a bit. | |
1376 | Initially, the information would be provided through the name of each | |
1377 | field of the structure type only, while the type of these fields was | |
1378 | described as unspecified and irrelevant. The debugger was then expected | |
1379 | to perform a global type lookup using the name of that field in order | |
1380 | to get access to the full index type description. Because these global | |
1381 | lookups can be very expensive, the encoding was later enhanced to make | |
1382 | the global lookup unnecessary by defining the field type as being | |
1383 | the full index type description. | |
1384 | ||
1385 | The purpose of this routine is to allow us to support older versions | |
1386 | of the compiler by detecting the use of the older encoding, and by | |
1387 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1388 | we essentially replace each field's meaningless type by the associated | |
1389 | index subtype). */ | |
1390 | ||
1391 | void | |
1392 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1393 | { | |
1394 | int i; | |
1395 | ||
1396 | if (index_desc_type == NULL) | |
1397 | return; | |
1398 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1399 | ||
1400 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1401 | to check one field only, no need to check them all). If not, return | |
1402 | now. | |
1403 | ||
1404 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1405 | the field type should be a meaningless integer type whose name | |
1406 | is not equal to the field name. */ | |
1407 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1408 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1409 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1410 | return; | |
1411 | ||
1412 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1413 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1414 | { | |
0d5cff50 | 1415 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1416 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1417 | ||
1418 | if (raw_type) | |
1419 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1420 | } | |
1421 | } | |
1422 | ||
4c4b4cd2 | 1423 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1424 | |
d2e4a39e AS |
1425 | static char *bound_name[] = { |
1426 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1427 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1428 | }; | |
1429 | ||
1430 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1431 | ||
4c4b4cd2 | 1432 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1433 | |
14f9c5c9 | 1434 | |
4c4b4cd2 PH |
1435 | /* The desc_* routines return primitive portions of array descriptors |
1436 | (fat pointers). */ | |
14f9c5c9 AS |
1437 | |
1438 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1439 | level of indirection, if needed. */ |
1440 | ||
d2e4a39e AS |
1441 | static struct type * |
1442 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1443 | { |
1444 | if (type == NULL) | |
1445 | return NULL; | |
61ee279c | 1446 | type = ada_check_typedef (type); |
720d1a40 JB |
1447 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1448 | type = ada_typedef_target_type (type); | |
1449 | ||
1265e4aa JB |
1450 | if (type != NULL |
1451 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1452 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1453 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1454 | else |
1455 | return type; | |
1456 | } | |
1457 | ||
4c4b4cd2 PH |
1458 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1459 | ||
14f9c5c9 | 1460 | static int |
d2e4a39e | 1461 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1462 | { |
d2e4a39e | 1463 | return |
14f9c5c9 AS |
1464 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1465 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1466 | } | |
1467 | ||
4c4b4cd2 PH |
1468 | /* The descriptor type for thin pointer type TYPE. */ |
1469 | ||
d2e4a39e AS |
1470 | static struct type * |
1471 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1472 | { |
d2e4a39e | 1473 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1474 | |
14f9c5c9 AS |
1475 | if (base_type == NULL) |
1476 | return NULL; | |
1477 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1478 | return base_type; | |
d2e4a39e | 1479 | else |
14f9c5c9 | 1480 | { |
d2e4a39e | 1481 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1482 | |
14f9c5c9 | 1483 | if (alt_type == NULL) |
4c4b4cd2 | 1484 | return base_type; |
14f9c5c9 | 1485 | else |
4c4b4cd2 | 1486 | return alt_type; |
14f9c5c9 AS |
1487 | } |
1488 | } | |
1489 | ||
4c4b4cd2 PH |
1490 | /* A pointer to the array data for thin-pointer value VAL. */ |
1491 | ||
d2e4a39e AS |
1492 | static struct value * |
1493 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1494 | { |
828292f2 | 1495 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1496 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1497 | |
556bdfd4 UW |
1498 | data_type = lookup_pointer_type (data_type); |
1499 | ||
14f9c5c9 | 1500 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1501 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1502 | else |
42ae5230 | 1503 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1504 | } |
1505 | ||
4c4b4cd2 PH |
1506 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1507 | ||
14f9c5c9 | 1508 | static int |
d2e4a39e | 1509 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1510 | { |
1511 | type = desc_base_type (type); | |
1512 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1513 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1514 | } |
1515 | ||
4c4b4cd2 PH |
1516 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1517 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1518 | |
d2e4a39e AS |
1519 | static struct type * |
1520 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1521 | { |
d2e4a39e | 1522 | struct type *r; |
14f9c5c9 AS |
1523 | |
1524 | type = desc_base_type (type); | |
1525 | ||
1526 | if (type == NULL) | |
1527 | return NULL; | |
1528 | else if (is_thin_pntr (type)) | |
1529 | { | |
1530 | type = thin_descriptor_type (type); | |
1531 | if (type == NULL) | |
4c4b4cd2 | 1532 | return NULL; |
14f9c5c9 AS |
1533 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1534 | if (r != NULL) | |
61ee279c | 1535 | return ada_check_typedef (r); |
14f9c5c9 AS |
1536 | } |
1537 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1538 | { | |
1539 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1540 | if (r != NULL) | |
61ee279c | 1541 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1542 | } |
1543 | return NULL; | |
1544 | } | |
1545 | ||
1546 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1547 | one, a pointer to its bounds data. Otherwise NULL. */ |
1548 | ||
d2e4a39e AS |
1549 | static struct value * |
1550 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1551 | { |
df407dfe | 1552 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1553 | |
d2e4a39e | 1554 | if (is_thin_pntr (type)) |
14f9c5c9 | 1555 | { |
d2e4a39e | 1556 | struct type *bounds_type = |
4c4b4cd2 | 1557 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1558 | LONGEST addr; |
1559 | ||
4cdfadb1 | 1560 | if (bounds_type == NULL) |
323e0a4a | 1561 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1562 | |
1563 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1564 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1565 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1566 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1567 | addr = value_as_long (arr); |
d2e4a39e | 1568 | else |
42ae5230 | 1569 | addr = value_address (arr); |
14f9c5c9 | 1570 | |
d2e4a39e | 1571 | return |
4c4b4cd2 PH |
1572 | value_from_longest (lookup_pointer_type (bounds_type), |
1573 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1574 | } |
1575 | ||
1576 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1577 | { |
1578 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1579 | _("Bad GNAT array descriptor")); | |
1580 | struct type *p_bounds_type = value_type (p_bounds); | |
1581 | ||
1582 | if (p_bounds_type | |
1583 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1584 | { | |
1585 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1586 | ||
1587 | if (TYPE_STUB (target_type)) | |
1588 | p_bounds = value_cast (lookup_pointer_type | |
1589 | (ada_check_typedef (target_type)), | |
1590 | p_bounds); | |
1591 | } | |
1592 | else | |
1593 | error (_("Bad GNAT array descriptor")); | |
1594 | ||
1595 | return p_bounds; | |
1596 | } | |
14f9c5c9 AS |
1597 | else |
1598 | return NULL; | |
1599 | } | |
1600 | ||
4c4b4cd2 PH |
1601 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1602 | position of the field containing the address of the bounds data. */ | |
1603 | ||
14f9c5c9 | 1604 | static int |
d2e4a39e | 1605 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1606 | { |
1607 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1608 | } | |
1609 | ||
1610 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1611 | size of the field containing the address of the bounds data. */ |
1612 | ||
14f9c5c9 | 1613 | static int |
d2e4a39e | 1614 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1615 | { |
1616 | type = desc_base_type (type); | |
1617 | ||
d2e4a39e | 1618 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1619 | return TYPE_FIELD_BITSIZE (type, 1); |
1620 | else | |
61ee279c | 1621 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1622 | } |
1623 | ||
4c4b4cd2 | 1624 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1625 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1626 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1627 | data. */ | |
4c4b4cd2 | 1628 | |
d2e4a39e | 1629 | static struct type * |
556bdfd4 | 1630 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1631 | { |
1632 | type = desc_base_type (type); | |
1633 | ||
4c4b4cd2 | 1634 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1635 | if (is_thin_pntr (type)) |
556bdfd4 | 1636 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1637 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1638 | { |
1639 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1640 | ||
1641 | if (data_type | |
1642 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1643 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1644 | } |
1645 | ||
1646 | return NULL; | |
14f9c5c9 AS |
1647 | } |
1648 | ||
1649 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1650 | its array data. */ | |
4c4b4cd2 | 1651 | |
d2e4a39e AS |
1652 | static struct value * |
1653 | desc_data (struct value *arr) | |
14f9c5c9 | 1654 | { |
df407dfe | 1655 | struct type *type = value_type (arr); |
5b4ee69b | 1656 | |
14f9c5c9 AS |
1657 | if (is_thin_pntr (type)) |
1658 | return thin_data_pntr (arr); | |
1659 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1660 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1661 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1662 | else |
1663 | return NULL; | |
1664 | } | |
1665 | ||
1666 | ||
1667 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1668 | position of the field containing the address of the data. */ |
1669 | ||
14f9c5c9 | 1670 | static int |
d2e4a39e | 1671 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1672 | { |
1673 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1674 | } | |
1675 | ||
1676 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1677 | size of the field containing the address of the data. */ |
1678 | ||
14f9c5c9 | 1679 | static int |
d2e4a39e | 1680 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1681 | { |
1682 | type = desc_base_type (type); | |
1683 | ||
1684 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1685 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1686 | else |
14f9c5c9 AS |
1687 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1688 | } | |
1689 | ||
4c4b4cd2 | 1690 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1691 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1692 | bound, if WHICH is 1. The first bound is I=1. */ |
1693 | ||
d2e4a39e AS |
1694 | static struct value * |
1695 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1696 | { |
d2e4a39e | 1697 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1698 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1699 | } |
1700 | ||
1701 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1702 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1703 | bound, if WHICH is 1. The first bound is I=1. */ |
1704 | ||
14f9c5c9 | 1705 | static int |
d2e4a39e | 1706 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1707 | { |
d2e4a39e | 1708 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1709 | } |
1710 | ||
1711 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1712 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1713 | bound, if WHICH is 1. The first bound is I=1. */ |
1714 | ||
76a01679 | 1715 | static int |
d2e4a39e | 1716 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1717 | { |
1718 | type = desc_base_type (type); | |
1719 | ||
d2e4a39e AS |
1720 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1721 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1722 | else | |
1723 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1724 | } |
1725 | ||
1726 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1727 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1728 | ||
d2e4a39e AS |
1729 | static struct type * |
1730 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1731 | { |
1732 | type = desc_base_type (type); | |
1733 | ||
1734 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1735 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1736 | else | |
14f9c5c9 AS |
1737 | return NULL; |
1738 | } | |
1739 | ||
4c4b4cd2 PH |
1740 | /* The number of index positions in the array-bounds type TYPE. |
1741 | Return 0 if TYPE is NULL. */ | |
1742 | ||
14f9c5c9 | 1743 | static int |
d2e4a39e | 1744 | desc_arity (struct type *type) |
14f9c5c9 AS |
1745 | { |
1746 | type = desc_base_type (type); | |
1747 | ||
1748 | if (type != NULL) | |
1749 | return TYPE_NFIELDS (type) / 2; | |
1750 | return 0; | |
1751 | } | |
1752 | ||
4c4b4cd2 PH |
1753 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1754 | an array descriptor type (representing an unconstrained array | |
1755 | type). */ | |
1756 | ||
76a01679 JB |
1757 | static int |
1758 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1759 | { |
1760 | if (type == NULL) | |
1761 | return 0; | |
61ee279c | 1762 | type = ada_check_typedef (type); |
4c4b4cd2 | 1763 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1764 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1765 | } |
1766 | ||
52ce6436 | 1767 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1768 | * to one. */ |
52ce6436 | 1769 | |
2c0b251b | 1770 | static int |
52ce6436 PH |
1771 | ada_is_array_type (struct type *type) |
1772 | { | |
1773 | while (type != NULL | |
1774 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1775 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1776 | type = TYPE_TARGET_TYPE (type); | |
1777 | return ada_is_direct_array_type (type); | |
1778 | } | |
1779 | ||
4c4b4cd2 | 1780 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1781 | |
14f9c5c9 | 1782 | int |
4c4b4cd2 | 1783 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1784 | { |
1785 | if (type == NULL) | |
1786 | return 0; | |
61ee279c | 1787 | type = ada_check_typedef (type); |
14f9c5c9 | 1788 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1789 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1790 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1791 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1792 | } |
1793 | ||
4c4b4cd2 PH |
1794 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1795 | ||
14f9c5c9 | 1796 | int |
4c4b4cd2 | 1797 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1798 | { |
556bdfd4 | 1799 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1800 | |
1801 | if (type == NULL) | |
1802 | return 0; | |
61ee279c | 1803 | type = ada_check_typedef (type); |
556bdfd4 UW |
1804 | return (data_type != NULL |
1805 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1806 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1807 | } |
1808 | ||
1809 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1810 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1811 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1812 | is still needed. */ |
1813 | ||
14f9c5c9 | 1814 | int |
ebf56fd3 | 1815 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1816 | { |
d2e4a39e | 1817 | return |
14f9c5c9 AS |
1818 | type != NULL |
1819 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1820 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1821 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1822 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1823 | } |
1824 | ||
1825 | ||
4c4b4cd2 | 1826 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1827 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1828 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1829 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1830 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1831 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1832 | a descriptor. */ |
d2e4a39e AS |
1833 | struct type * |
1834 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1835 | { |
ad82864c JB |
1836 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1837 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1838 | |
df407dfe AC |
1839 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1840 | return value_type (arr); | |
d2e4a39e AS |
1841 | |
1842 | if (!bounds) | |
ad82864c JB |
1843 | { |
1844 | struct type *array_type = | |
1845 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1846 | ||
1847 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1848 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1849 | decode_packed_array_bitsize (value_type (arr)); | |
1850 | ||
1851 | return array_type; | |
1852 | } | |
14f9c5c9 AS |
1853 | else |
1854 | { | |
d2e4a39e | 1855 | struct type *elt_type; |
14f9c5c9 | 1856 | int arity; |
d2e4a39e | 1857 | struct value *descriptor; |
14f9c5c9 | 1858 | |
df407dfe AC |
1859 | elt_type = ada_array_element_type (value_type (arr), -1); |
1860 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1861 | |
d2e4a39e | 1862 | if (elt_type == NULL || arity == 0) |
df407dfe | 1863 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1864 | |
1865 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1866 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1867 | return NULL; |
d2e4a39e | 1868 | while (arity > 0) |
4c4b4cd2 | 1869 | { |
e9bb382b UW |
1870 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1871 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1872 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1873 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1874 | |
5b4ee69b | 1875 | arity -= 1; |
df407dfe | 1876 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1877 | longest_to_int (value_as_long (low)), |
1878 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1879 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1880 | |
1881 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1882 | { |
1883 | /* We need to store the element packed bitsize, as well as | |
1884 | recompute the array size, because it was previously | |
1885 | computed based on the unpacked element size. */ | |
1886 | LONGEST lo = value_as_long (low); | |
1887 | LONGEST hi = value_as_long (high); | |
1888 | ||
1889 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1890 | decode_packed_array_bitsize (value_type (arr)); | |
1891 | /* If the array has no element, then the size is already | |
1892 | zero, and does not need to be recomputed. */ | |
1893 | if (lo < hi) | |
1894 | { | |
1895 | int array_bitsize = | |
1896 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
1897 | ||
1898 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
1899 | } | |
1900 | } | |
4c4b4cd2 | 1901 | } |
14f9c5c9 AS |
1902 | |
1903 | return lookup_pointer_type (elt_type); | |
1904 | } | |
1905 | } | |
1906 | ||
1907 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1908 | Otherwise, returns either a standard GDB array with bounds set |
1909 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1910 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1911 | ||
d2e4a39e AS |
1912 | struct value * |
1913 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1914 | { |
df407dfe | 1915 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1916 | { |
d2e4a39e | 1917 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 1918 | |
14f9c5c9 | 1919 | if (arrType == NULL) |
4c4b4cd2 | 1920 | return NULL; |
14f9c5c9 AS |
1921 | return value_cast (arrType, value_copy (desc_data (arr))); |
1922 | } | |
ad82864c JB |
1923 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1924 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
1925 | else |
1926 | return arr; | |
1927 | } | |
1928 | ||
1929 | /* If ARR does not represent an array, returns ARR unchanged. | |
1930 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1931 | be ARR itself if it already is in the proper form). */ |
1932 | ||
720d1a40 | 1933 | struct value * |
d2e4a39e | 1934 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1935 | { |
df407dfe | 1936 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1937 | { |
d2e4a39e | 1938 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 1939 | |
14f9c5c9 | 1940 | if (arrVal == NULL) |
323e0a4a | 1941 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1942 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1943 | return value_ind (arrVal); |
1944 | } | |
ad82864c JB |
1945 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1946 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 1947 | else |
14f9c5c9 AS |
1948 | return arr; |
1949 | } | |
1950 | ||
1951 | /* If TYPE represents a GNAT array type, return it translated to an | |
1952 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1953 | packing). For other types, is the identity. */ |
1954 | ||
d2e4a39e AS |
1955 | struct type * |
1956 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1957 | { |
ad82864c JB |
1958 | if (ada_is_constrained_packed_array_type (type)) |
1959 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
1960 | |
1961 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1962 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1963 | |
1964 | return type; | |
14f9c5c9 AS |
1965 | } |
1966 | ||
4c4b4cd2 PH |
1967 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1968 | ||
ad82864c JB |
1969 | static int |
1970 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
1971 | { |
1972 | if (type == NULL) | |
1973 | return 0; | |
4c4b4cd2 | 1974 | type = desc_base_type (type); |
61ee279c | 1975 | type = ada_check_typedef (type); |
d2e4a39e | 1976 | return |
14f9c5c9 AS |
1977 | ada_type_name (type) != NULL |
1978 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1979 | } | |
1980 | ||
ad82864c JB |
1981 | /* Non-zero iff TYPE represents a standard GNAT constrained |
1982 | packed-array type. */ | |
1983 | ||
1984 | int | |
1985 | ada_is_constrained_packed_array_type (struct type *type) | |
1986 | { | |
1987 | return ada_is_packed_array_type (type) | |
1988 | && !ada_is_array_descriptor_type (type); | |
1989 | } | |
1990 | ||
1991 | /* Non-zero iff TYPE represents an array descriptor for a | |
1992 | unconstrained packed-array type. */ | |
1993 | ||
1994 | static int | |
1995 | ada_is_unconstrained_packed_array_type (struct type *type) | |
1996 | { | |
1997 | return ada_is_packed_array_type (type) | |
1998 | && ada_is_array_descriptor_type (type); | |
1999 | } | |
2000 | ||
2001 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2002 | return the size of its elements in bits. */ | |
2003 | ||
2004 | static long | |
2005 | decode_packed_array_bitsize (struct type *type) | |
2006 | { | |
0d5cff50 DE |
2007 | const char *raw_name; |
2008 | const char *tail; | |
ad82864c JB |
2009 | long bits; |
2010 | ||
720d1a40 JB |
2011 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2012 | of the fat pointer type. We need the name of the fat pointer type | |
2013 | to do the decoding, so strip the typedef layer. */ | |
2014 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2015 | type = ada_typedef_target_type (type); | |
2016 | ||
2017 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2018 | if (!raw_name) |
2019 | raw_name = ada_type_name (desc_base_type (type)); | |
2020 | ||
2021 | if (!raw_name) | |
2022 | return 0; | |
2023 | ||
2024 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2025 | gdb_assert (tail != NULL); |
ad82864c JB |
2026 | |
2027 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2028 | { | |
2029 | lim_warning | |
2030 | (_("could not understand bit size information on packed array")); | |
2031 | return 0; | |
2032 | } | |
2033 | ||
2034 | return bits; | |
2035 | } | |
2036 | ||
14f9c5c9 AS |
2037 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2038 | in, and that the element size of its ultimate scalar constituents | |
2039 | (that is, either its elements, or, if it is an array of arrays, its | |
2040 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2041 | but with the bit sizes of its elements (and those of any | |
2042 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
2043 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
2044 | in bits. */ | |
2045 | ||
d2e4a39e | 2046 | static struct type * |
ad82864c | 2047 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2048 | { |
d2e4a39e AS |
2049 | struct type *new_elt_type; |
2050 | struct type *new_type; | |
99b1c762 JB |
2051 | struct type *index_type_desc; |
2052 | struct type *index_type; | |
14f9c5c9 AS |
2053 | LONGEST low_bound, high_bound; |
2054 | ||
61ee279c | 2055 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2056 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2057 | return type; | |
2058 | ||
99b1c762 JB |
2059 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2060 | if (index_type_desc) | |
2061 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2062 | NULL); | |
2063 | else | |
2064 | index_type = TYPE_INDEX_TYPE (type); | |
2065 | ||
e9bb382b | 2066 | new_type = alloc_type_copy (type); |
ad82864c JB |
2067 | new_elt_type = |
2068 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2069 | elt_bits); | |
99b1c762 | 2070 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2071 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2072 | TYPE_NAME (new_type) = ada_type_name (type); | |
2073 | ||
99b1c762 | 2074 | if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
2075 | low_bound = high_bound = 0; |
2076 | if (high_bound < low_bound) | |
2077 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2078 | else |
14f9c5c9 AS |
2079 | { |
2080 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2081 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2082 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2083 | } |
2084 | ||
876cecd0 | 2085 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2086 | return new_type; |
2087 | } | |
2088 | ||
ad82864c JB |
2089 | /* The array type encoded by TYPE, where |
2090 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2091 | |
d2e4a39e | 2092 | static struct type * |
ad82864c | 2093 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2094 | { |
0d5cff50 | 2095 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2096 | char *name; |
0d5cff50 | 2097 | const char *tail; |
d2e4a39e | 2098 | struct type *shadow_type; |
14f9c5c9 | 2099 | long bits; |
14f9c5c9 | 2100 | |
727e3d2e JB |
2101 | if (!raw_name) |
2102 | raw_name = ada_type_name (desc_base_type (type)); | |
2103 | ||
2104 | if (!raw_name) | |
2105 | return NULL; | |
2106 | ||
2107 | name = (char *) alloca (strlen (raw_name) + 1); | |
2108 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2109 | type = desc_base_type (type); |
2110 | ||
14f9c5c9 AS |
2111 | memcpy (name, raw_name, tail - raw_name); |
2112 | name[tail - raw_name] = '\000'; | |
2113 | ||
b4ba55a1 JB |
2114 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2115 | ||
2116 | if (shadow_type == NULL) | |
14f9c5c9 | 2117 | { |
323e0a4a | 2118 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2119 | return NULL; |
2120 | } | |
cb249c71 | 2121 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
2122 | |
2123 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2124 | { | |
0963b4bd MS |
2125 | lim_warning (_("could not understand bounds " |
2126 | "information on packed array")); | |
14f9c5c9 AS |
2127 | return NULL; |
2128 | } | |
d2e4a39e | 2129 | |
ad82864c JB |
2130 | bits = decode_packed_array_bitsize (type); |
2131 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2132 | } |
2133 | ||
ad82864c JB |
2134 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2135 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2136 | standard GDB array type except that the BITSIZEs of the array |
2137 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2138 | type length is set appropriately. */ |
14f9c5c9 | 2139 | |
d2e4a39e | 2140 | static struct value * |
ad82864c | 2141 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2142 | { |
4c4b4cd2 | 2143 | struct type *type; |
14f9c5c9 | 2144 | |
4c4b4cd2 | 2145 | arr = ada_coerce_ref (arr); |
284614f0 JB |
2146 | |
2147 | /* If our value is a pointer, then dererence it. Make sure that | |
2148 | this operation does not cause the target type to be fixed, as | |
2149 | this would indirectly cause this array to be decoded. The rest | |
2150 | of the routine assumes that the array hasn't been decoded yet, | |
2151 | so we use the basic "value_ind" routine to perform the dereferencing, | |
2152 | as opposed to using "ada_value_ind". */ | |
828292f2 | 2153 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2154 | arr = value_ind (arr); |
4c4b4cd2 | 2155 | |
ad82864c | 2156 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2157 | if (type == NULL) |
2158 | { | |
323e0a4a | 2159 | error (_("can't unpack array")); |
14f9c5c9 AS |
2160 | return NULL; |
2161 | } | |
61ee279c | 2162 | |
50810684 | 2163 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2164 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2165 | { |
2166 | /* This is a (right-justified) modular type representing a packed | |
2167 | array with no wrapper. In order to interpret the value through | |
2168 | the (left-justified) packed array type we just built, we must | |
2169 | first left-justify it. */ | |
2170 | int bit_size, bit_pos; | |
2171 | ULONGEST mod; | |
2172 | ||
df407dfe | 2173 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2174 | bit_size = 0; |
2175 | while (mod > 0) | |
2176 | { | |
2177 | bit_size += 1; | |
2178 | mod >>= 1; | |
2179 | } | |
df407dfe | 2180 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2181 | arr = ada_value_primitive_packed_val (arr, NULL, |
2182 | bit_pos / HOST_CHAR_BIT, | |
2183 | bit_pos % HOST_CHAR_BIT, | |
2184 | bit_size, | |
2185 | type); | |
2186 | } | |
2187 | ||
4c4b4cd2 | 2188 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2189 | } |
2190 | ||
2191 | ||
2192 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2193 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2194 | |
d2e4a39e AS |
2195 | static struct value * |
2196 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2197 | { |
2198 | int i; | |
2199 | int bits, elt_off, bit_off; | |
2200 | long elt_total_bit_offset; | |
d2e4a39e AS |
2201 | struct type *elt_type; |
2202 | struct value *v; | |
14f9c5c9 AS |
2203 | |
2204 | bits = 0; | |
2205 | elt_total_bit_offset = 0; | |
df407dfe | 2206 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2207 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2208 | { |
d2e4a39e | 2209 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2210 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2211 | error | |
0963b4bd MS |
2212 | (_("attempt to do packed indexing of " |
2213 | "something other than a packed array")); | |
14f9c5c9 | 2214 | else |
4c4b4cd2 PH |
2215 | { |
2216 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2217 | LONGEST lowerbound, upperbound; | |
2218 | LONGEST idx; | |
2219 | ||
2220 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2221 | { | |
323e0a4a | 2222 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2223 | lowerbound = upperbound = 0; |
2224 | } | |
2225 | ||
3cb382c9 | 2226 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2227 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2228 | lim_warning (_("packed array index %ld out of bounds"), |
2229 | (long) idx); | |
4c4b4cd2 PH |
2230 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2231 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2232 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2233 | } |
14f9c5c9 AS |
2234 | } |
2235 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2236 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2237 | |
2238 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2239 | bits, elt_type); |
14f9c5c9 AS |
2240 | return v; |
2241 | } | |
2242 | ||
4c4b4cd2 | 2243 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2244 | |
2245 | static int | |
d2e4a39e | 2246 | has_negatives (struct type *type) |
14f9c5c9 | 2247 | { |
d2e4a39e AS |
2248 | switch (TYPE_CODE (type)) |
2249 | { | |
2250 | default: | |
2251 | return 0; | |
2252 | case TYPE_CODE_INT: | |
2253 | return !TYPE_UNSIGNED (type); | |
2254 | case TYPE_CODE_RANGE: | |
2255 | return TYPE_LOW_BOUND (type) < 0; | |
2256 | } | |
14f9c5c9 | 2257 | } |
d2e4a39e | 2258 | |
14f9c5c9 AS |
2259 | |
2260 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2261 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2262 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
0963b4bd | 2263 | assigning through the result will set the field fetched from. |
4c4b4cd2 PH |
2264 | VALADDR is ignored unless OBJ is NULL, in which case, |
2265 | VALADDR+OFFSET must address the start of storage containing the | |
2266 | packed value. The value returned in this case is never an lval. | |
2267 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2268 | |
d2e4a39e | 2269 | struct value * |
fc1a4b47 | 2270 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2271 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2272 | struct type *type) |
14f9c5c9 | 2273 | { |
d2e4a39e | 2274 | struct value *v; |
4c4b4cd2 PH |
2275 | int src, /* Index into the source area */ |
2276 | targ, /* Index into the target area */ | |
2277 | srcBitsLeft, /* Number of source bits left to move */ | |
2278 | nsrc, ntarg, /* Number of source and target bytes */ | |
2279 | unusedLS, /* Number of bits in next significant | |
2280 | byte of source that are unused */ | |
2281 | accumSize; /* Number of meaningful bits in accum */ | |
2282 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2283 | unsigned char *unpacked; |
4c4b4cd2 | 2284 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2285 | unsigned char sign; |
2286 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2287 | /* Transmit bytes from least to most significant; delta is the direction |
2288 | the indices move. */ | |
50810684 | 2289 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2290 | |
61ee279c | 2291 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2292 | |
2293 | if (obj == NULL) | |
2294 | { | |
2295 | v = allocate_value (type); | |
d2e4a39e | 2296 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2297 | } |
9214ee5f | 2298 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 | 2299 | { |
53ba8333 | 2300 | v = value_at (type, value_address (obj)); |
d2e4a39e | 2301 | bytes = (unsigned char *) alloca (len); |
53ba8333 | 2302 | read_memory (value_address (v) + offset, bytes, len); |
14f9c5c9 | 2303 | } |
d2e4a39e | 2304 | else |
14f9c5c9 AS |
2305 | { |
2306 | v = allocate_value (type); | |
0fd88904 | 2307 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2308 | } |
d2e4a39e AS |
2309 | |
2310 | if (obj != NULL) | |
14f9c5c9 | 2311 | { |
53ba8333 | 2312 | long new_offset = offset; |
5b4ee69b | 2313 | |
74bcbdf3 | 2314 | set_value_component_location (v, obj); |
9bbda503 AC |
2315 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2316 | set_value_bitsize (v, bit_size); | |
df407dfe | 2317 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2318 | { |
53ba8333 | 2319 | ++new_offset; |
9bbda503 | 2320 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2321 | } |
53ba8333 JB |
2322 | set_value_offset (v, new_offset); |
2323 | ||
2324 | /* Also set the parent value. This is needed when trying to | |
2325 | assign a new value (in inferior memory). */ | |
2326 | set_value_parent (v, obj); | |
2327 | value_incref (obj); | |
14f9c5c9 AS |
2328 | } |
2329 | else | |
9bbda503 | 2330 | set_value_bitsize (v, bit_size); |
0fd88904 | 2331 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2332 | |
2333 | srcBitsLeft = bit_size; | |
2334 | nsrc = len; | |
2335 | ntarg = TYPE_LENGTH (type); | |
2336 | sign = 0; | |
2337 | if (bit_size == 0) | |
2338 | { | |
2339 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2340 | return v; | |
2341 | } | |
50810684 | 2342 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2343 | { |
d2e4a39e | 2344 | src = len - 1; |
1265e4aa JB |
2345 | if (has_negatives (type) |
2346 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2347 | sign = ~0; |
d2e4a39e AS |
2348 | |
2349 | unusedLS = | |
4c4b4cd2 PH |
2350 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2351 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2352 | |
2353 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2354 | { |
2355 | case TYPE_CODE_ARRAY: | |
2356 | case TYPE_CODE_UNION: | |
2357 | case TYPE_CODE_STRUCT: | |
2358 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2359 | accumSize = | |
2360 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2361 | /* ... And are placed at the beginning (most-significant) bytes | |
2362 | of the target. */ | |
529cad9c | 2363 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2364 | ntarg = targ + 1; |
4c4b4cd2 PH |
2365 | break; |
2366 | default: | |
2367 | accumSize = 0; | |
2368 | targ = TYPE_LENGTH (type) - 1; | |
2369 | break; | |
2370 | } | |
14f9c5c9 | 2371 | } |
d2e4a39e | 2372 | else |
14f9c5c9 AS |
2373 | { |
2374 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2375 | ||
2376 | src = targ = 0; | |
2377 | unusedLS = bit_offset; | |
2378 | accumSize = 0; | |
2379 | ||
d2e4a39e | 2380 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2381 | sign = ~0; |
14f9c5c9 | 2382 | } |
d2e4a39e | 2383 | |
14f9c5c9 AS |
2384 | accum = 0; |
2385 | while (nsrc > 0) | |
2386 | { | |
2387 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2388 | part of the value. */ |
d2e4a39e | 2389 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2390 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2391 | 1; | |
2392 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2393 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2394 | |
d2e4a39e | 2395 | accum |= |
4c4b4cd2 | 2396 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2397 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2398 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2399 | { |
2400 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2401 | accumSize -= HOST_CHAR_BIT; | |
2402 | accum >>= HOST_CHAR_BIT; | |
2403 | ntarg -= 1; | |
2404 | targ += delta; | |
2405 | } | |
14f9c5c9 AS |
2406 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2407 | unusedLS = 0; | |
2408 | nsrc -= 1; | |
2409 | src += delta; | |
2410 | } | |
2411 | while (ntarg > 0) | |
2412 | { | |
2413 | accum |= sign << accumSize; | |
2414 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2415 | accumSize -= HOST_CHAR_BIT; | |
2416 | accum >>= HOST_CHAR_BIT; | |
2417 | ntarg -= 1; | |
2418 | targ += delta; | |
2419 | } | |
2420 | ||
2421 | return v; | |
2422 | } | |
d2e4a39e | 2423 | |
14f9c5c9 AS |
2424 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2425 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2426 | not overlap. */ |
14f9c5c9 | 2427 | static void |
fc1a4b47 | 2428 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2429 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2430 | { |
2431 | unsigned int accum, mask; | |
2432 | int accum_bits, chunk_size; | |
2433 | ||
2434 | target += targ_offset / HOST_CHAR_BIT; | |
2435 | targ_offset %= HOST_CHAR_BIT; | |
2436 | source += src_offset / HOST_CHAR_BIT; | |
2437 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2438 | if (bits_big_endian_p) |
14f9c5c9 AS |
2439 | { |
2440 | accum = (unsigned char) *source; | |
2441 | source += 1; | |
2442 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2443 | ||
d2e4a39e | 2444 | while (n > 0) |
4c4b4cd2 PH |
2445 | { |
2446 | int unused_right; | |
5b4ee69b | 2447 | |
4c4b4cd2 PH |
2448 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2449 | accum_bits += HOST_CHAR_BIT; | |
2450 | source += 1; | |
2451 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2452 | if (chunk_size > n) | |
2453 | chunk_size = n; | |
2454 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2455 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2456 | *target = | |
2457 | (*target & ~mask) | |
2458 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2459 | n -= chunk_size; | |
2460 | accum_bits -= chunk_size; | |
2461 | target += 1; | |
2462 | targ_offset = 0; | |
2463 | } | |
14f9c5c9 AS |
2464 | } |
2465 | else | |
2466 | { | |
2467 | accum = (unsigned char) *source >> src_offset; | |
2468 | source += 1; | |
2469 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2470 | ||
d2e4a39e | 2471 | while (n > 0) |
4c4b4cd2 PH |
2472 | { |
2473 | accum = accum + ((unsigned char) *source << accum_bits); | |
2474 | accum_bits += HOST_CHAR_BIT; | |
2475 | source += 1; | |
2476 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2477 | if (chunk_size > n) | |
2478 | chunk_size = n; | |
2479 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2480 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2481 | n -= chunk_size; | |
2482 | accum_bits -= chunk_size; | |
2483 | accum >>= chunk_size; | |
2484 | target += 1; | |
2485 | targ_offset = 0; | |
2486 | } | |
14f9c5c9 AS |
2487 | } |
2488 | } | |
2489 | ||
14f9c5c9 AS |
2490 | /* Store the contents of FROMVAL into the location of TOVAL. |
2491 | Return a new value with the location of TOVAL and contents of | |
2492 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2493 | floating-point or non-scalar types. */ |
14f9c5c9 | 2494 | |
d2e4a39e AS |
2495 | static struct value * |
2496 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2497 | { |
df407dfe AC |
2498 | struct type *type = value_type (toval); |
2499 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2500 | |
52ce6436 PH |
2501 | toval = ada_coerce_ref (toval); |
2502 | fromval = ada_coerce_ref (fromval); | |
2503 | ||
2504 | if (ada_is_direct_array_type (value_type (toval))) | |
2505 | toval = ada_coerce_to_simple_array (toval); | |
2506 | if (ada_is_direct_array_type (value_type (fromval))) | |
2507 | fromval = ada_coerce_to_simple_array (fromval); | |
2508 | ||
88e3b34b | 2509 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2510 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2511 | |
d2e4a39e | 2512 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2513 | && bits > 0 |
d2e4a39e | 2514 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2515 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2516 | { |
df407dfe AC |
2517 | int len = (value_bitpos (toval) |
2518 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2519 | int from_size; |
d2e4a39e AS |
2520 | char *buffer = (char *) alloca (len); |
2521 | struct value *val; | |
42ae5230 | 2522 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2523 | |
2524 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2525 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2526 | |
52ce6436 | 2527 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2528 | from_size = value_bitsize (fromval); |
2529 | if (from_size == 0) | |
2530 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2531 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2532 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2533 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2534 | else |
50810684 UW |
2535 | move_bits (buffer, value_bitpos (toval), |
2536 | value_contents (fromval), 0, bits, 0); | |
972daa01 | 2537 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2538 | |
14f9c5c9 | 2539 | val = value_copy (toval); |
0fd88904 | 2540 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2541 | TYPE_LENGTH (type)); |
04624583 | 2542 | deprecated_set_value_type (val, type); |
d2e4a39e | 2543 | |
14f9c5c9 AS |
2544 | return val; |
2545 | } | |
2546 | ||
2547 | return value_assign (toval, fromval); | |
2548 | } | |
2549 | ||
2550 | ||
52ce6436 PH |
2551 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2552 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2553 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2554 | * COMPONENT, and not the inferior's memory. The current contents | |
2555 | * of COMPONENT are ignored. */ | |
2556 | static void | |
2557 | value_assign_to_component (struct value *container, struct value *component, | |
2558 | struct value *val) | |
2559 | { | |
2560 | LONGEST offset_in_container = | |
42ae5230 | 2561 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2562 | int bit_offset_in_container = |
2563 | value_bitpos (component) - value_bitpos (container); | |
2564 | int bits; | |
2565 | ||
2566 | val = value_cast (value_type (component), val); | |
2567 | ||
2568 | if (value_bitsize (component) == 0) | |
2569 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2570 | else | |
2571 | bits = value_bitsize (component); | |
2572 | ||
50810684 | 2573 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2574 | move_bits (value_contents_writeable (container) + offset_in_container, |
2575 | value_bitpos (container) + bit_offset_in_container, | |
2576 | value_contents (val), | |
2577 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2578 | bits, 1); |
52ce6436 PH |
2579 | else |
2580 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2581 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2582 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2583 | } |
2584 | ||
4c4b4cd2 PH |
2585 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2586 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2587 | thereto. */ |
2588 | ||
d2e4a39e AS |
2589 | struct value * |
2590 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2591 | { |
2592 | int k; | |
d2e4a39e AS |
2593 | struct value *elt; |
2594 | struct type *elt_type; | |
14f9c5c9 AS |
2595 | |
2596 | elt = ada_coerce_to_simple_array (arr); | |
2597 | ||
df407dfe | 2598 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2599 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2600 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2601 | return value_subscript_packed (elt, arity, ind); | |
2602 | ||
2603 | for (k = 0; k < arity; k += 1) | |
2604 | { | |
2605 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2606 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2607 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2608 | } |
2609 | return elt; | |
2610 | } | |
2611 | ||
2612 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2613 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2614 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2615 | |
2c0b251b | 2616 | static struct value * |
d2e4a39e | 2617 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2618 | struct value **ind) |
14f9c5c9 AS |
2619 | { |
2620 | int k; | |
2621 | ||
2622 | for (k = 0; k < arity; k += 1) | |
2623 | { | |
2624 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2625 | |
2626 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2627 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2628 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2629 | value_copy (arr)); |
14f9c5c9 | 2630 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2631 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2632 | type = TYPE_TARGET_TYPE (type); |
2633 | } | |
2634 | ||
2635 | return value_ind (arr); | |
2636 | } | |
2637 | ||
0b5d8877 | 2638 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2639 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2640 | elements starting at index LOW. The lower bound of this array is LOW, as | |
0963b4bd | 2641 | per Ada rules. */ |
0b5d8877 | 2642 | static struct value * |
f5938064 JG |
2643 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2644 | int low, int high) | |
0b5d8877 | 2645 | { |
b0dd7688 | 2646 | struct type *type0 = ada_check_typedef (type); |
6c038f32 | 2647 | CORE_ADDR base = value_as_address (array_ptr) |
b0dd7688 JB |
2648 | + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0))) |
2649 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
6c038f32 | 2650 | struct type *index_type = |
b0dd7688 | 2651 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)), |
0b5d8877 | 2652 | low, high); |
6c038f32 | 2653 | struct type *slice_type = |
b0dd7688 | 2654 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
5b4ee69b | 2655 | |
f5938064 | 2656 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2657 | } |
2658 | ||
2659 | ||
2660 | static struct value * | |
2661 | ada_value_slice (struct value *array, int low, int high) | |
2662 | { | |
b0dd7688 | 2663 | struct type *type = ada_check_typedef (value_type (array)); |
6c038f32 | 2664 | struct type *index_type = |
0b5d8877 | 2665 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2666 | struct type *slice_type = |
0b5d8877 | 2667 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2668 | |
6c038f32 | 2669 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2670 | } |
2671 | ||
14f9c5c9 AS |
2672 | /* If type is a record type in the form of a standard GNAT array |
2673 | descriptor, returns the number of dimensions for type. If arr is a | |
2674 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2675 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2676 | |
2677 | int | |
d2e4a39e | 2678 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2679 | { |
2680 | int arity; | |
2681 | ||
2682 | if (type == NULL) | |
2683 | return 0; | |
2684 | ||
2685 | type = desc_base_type (type); | |
2686 | ||
2687 | arity = 0; | |
d2e4a39e | 2688 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2689 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2690 | else |
2691 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2692 | { |
4c4b4cd2 | 2693 | arity += 1; |
61ee279c | 2694 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2695 | } |
d2e4a39e | 2696 | |
14f9c5c9 AS |
2697 | return arity; |
2698 | } | |
2699 | ||
2700 | /* If TYPE is a record type in the form of a standard GNAT array | |
2701 | descriptor or a simple array type, returns the element type for | |
2702 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2703 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2704 | |
d2e4a39e AS |
2705 | struct type * |
2706 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2707 | { |
2708 | type = desc_base_type (type); | |
2709 | ||
d2e4a39e | 2710 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2711 | { |
2712 | int k; | |
d2e4a39e | 2713 | struct type *p_array_type; |
14f9c5c9 | 2714 | |
556bdfd4 | 2715 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2716 | |
2717 | k = ada_array_arity (type); | |
2718 | if (k == 0) | |
4c4b4cd2 | 2719 | return NULL; |
d2e4a39e | 2720 | |
4c4b4cd2 | 2721 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2722 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2723 | k = nindices; |
d2e4a39e | 2724 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2725 | { |
61ee279c | 2726 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2727 | k -= 1; |
2728 | } | |
14f9c5c9 AS |
2729 | return p_array_type; |
2730 | } | |
2731 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2732 | { | |
2733 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2734 | { |
2735 | type = TYPE_TARGET_TYPE (type); | |
2736 | nindices -= 1; | |
2737 | } | |
14f9c5c9 AS |
2738 | return type; |
2739 | } | |
2740 | ||
2741 | return NULL; | |
2742 | } | |
2743 | ||
4c4b4cd2 | 2744 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2745 | Does not examine memory. Throws an error if N is invalid or TYPE |
2746 | is not an array type. NAME is the name of the Ada attribute being | |
2747 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2748 | the error message. */ | |
14f9c5c9 | 2749 | |
1eea4ebd UW |
2750 | static struct type * |
2751 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2752 | { |
4c4b4cd2 PH |
2753 | struct type *result_type; |
2754 | ||
14f9c5c9 AS |
2755 | type = desc_base_type (type); |
2756 | ||
1eea4ebd UW |
2757 | if (n < 0 || n > ada_array_arity (type)) |
2758 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2759 | |
4c4b4cd2 | 2760 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2761 | { |
2762 | int i; | |
2763 | ||
2764 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2765 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2766 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2767 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2768 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2769 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2770 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2771 | result_type = NULL; | |
14f9c5c9 | 2772 | } |
d2e4a39e | 2773 | else |
1eea4ebd UW |
2774 | { |
2775 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2776 | if (result_type == NULL) | |
2777 | error (_("attempt to take bound of something that is not an array")); | |
2778 | } | |
2779 | ||
2780 | return result_type; | |
14f9c5c9 AS |
2781 | } |
2782 | ||
2783 | /* Given that arr is an array type, returns the lower bound of the | |
2784 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2785 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2786 | array-descriptor type. It works for other arrays with bounds supplied |
2787 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2788 | |
abb68b3e | 2789 | static LONGEST |
1eea4ebd | 2790 | ada_array_bound_from_type (struct type * arr_type, int n, int which) |
14f9c5c9 | 2791 | { |
1ce677a4 | 2792 | struct type *type, *elt_type, *index_type_desc, *index_type; |
1ce677a4 | 2793 | int i; |
262452ec JK |
2794 | |
2795 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2796 | |
ad82864c JB |
2797 | if (ada_is_constrained_packed_array_type (arr_type)) |
2798 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2799 | |
4c4b4cd2 | 2800 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2801 | return (LONGEST) - which; |
14f9c5c9 AS |
2802 | |
2803 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2804 | type = TYPE_TARGET_TYPE (arr_type); | |
2805 | else | |
2806 | type = arr_type; | |
2807 | ||
1ce677a4 UW |
2808 | elt_type = type; |
2809 | for (i = n; i > 1; i--) | |
2810 | elt_type = TYPE_TARGET_TYPE (type); | |
2811 | ||
14f9c5c9 | 2812 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
28c85d6c | 2813 | ada_fixup_array_indexes_type (index_type_desc); |
262452ec | 2814 | if (index_type_desc != NULL) |
28c85d6c JB |
2815 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
2816 | NULL); | |
262452ec | 2817 | else |
1ce677a4 | 2818 | index_type = TYPE_INDEX_TYPE (elt_type); |
262452ec | 2819 | |
43bbcdc2 PH |
2820 | return |
2821 | (LONGEST) (which == 0 | |
2822 | ? ada_discrete_type_low_bound (index_type) | |
2823 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2824 | } |
2825 | ||
2826 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2827 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2828 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2829 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2830 | |
1eea4ebd | 2831 | static LONGEST |
4dc81987 | 2832 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2833 | { |
df407dfe | 2834 | struct type *arr_type = value_type (arr); |
14f9c5c9 | 2835 | |
ad82864c JB |
2836 | if (ada_is_constrained_packed_array_type (arr_type)) |
2837 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2838 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2839 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2840 | else |
1eea4ebd | 2841 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2842 | } |
2843 | ||
2844 | /* Given that arr is an array value, returns the length of the | |
2845 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2846 | supplied by run-time quantities other than discriminants. |
2847 | Does not work for arrays indexed by enumeration types with representation | |
2848 | clauses at the moment. */ | |
14f9c5c9 | 2849 | |
1eea4ebd | 2850 | static LONGEST |
d2e4a39e | 2851 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2852 | { |
df407dfe | 2853 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 | 2854 | |
ad82864c JB |
2855 | if (ada_is_constrained_packed_array_type (arr_type)) |
2856 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2857 | |
4c4b4cd2 | 2858 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2859 | return (ada_array_bound_from_type (arr_type, n, 1) |
2860 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2861 | else |
1eea4ebd UW |
2862 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2863 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2864 | } |
2865 | ||
2866 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2867 | with bounds LOW to LOW-1. */ | |
2868 | ||
2869 | static struct value * | |
2870 | empty_array (struct type *arr_type, int low) | |
2871 | { | |
b0dd7688 | 2872 | struct type *arr_type0 = ada_check_typedef (arr_type); |
6c038f32 | 2873 | struct type *index_type = |
b0dd7688 | 2874 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), |
0b5d8877 | 2875 | low, low - 1); |
b0dd7688 | 2876 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 2877 | |
0b5d8877 | 2878 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 2879 | } |
14f9c5c9 | 2880 | \f |
d2e4a39e | 2881 | |
4c4b4cd2 | 2882 | /* Name resolution */ |
14f9c5c9 | 2883 | |
4c4b4cd2 PH |
2884 | /* The "decoded" name for the user-definable Ada operator corresponding |
2885 | to OP. */ | |
14f9c5c9 | 2886 | |
d2e4a39e | 2887 | static const char * |
4c4b4cd2 | 2888 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2889 | { |
2890 | int i; | |
2891 | ||
4c4b4cd2 | 2892 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2893 | { |
2894 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2895 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2896 | } |
323e0a4a | 2897 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2898 | } |
2899 | ||
2900 | ||
4c4b4cd2 PH |
2901 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2902 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2903 | undefined namespace) and converts operators that are | |
2904 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2905 | non-null, it provides a preferred result type [at the moment, only |
2906 | type void has any effect---causing procedures to be preferred over | |
2907 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2908 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2909 | |
4c4b4cd2 PH |
2910 | static void |
2911 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 2912 | { |
30b15541 UW |
2913 | struct type *context_type = NULL; |
2914 | int pc = 0; | |
2915 | ||
2916 | if (void_context_p) | |
2917 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
2918 | ||
2919 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
2920 | } |
2921 | ||
4c4b4cd2 PH |
2922 | /* Resolve the operator of the subexpression beginning at |
2923 | position *POS of *EXPP. "Resolving" consists of replacing | |
2924 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2925 | with their resolutions, replacing built-in operators with | |
2926 | function calls to user-defined operators, where appropriate, and, | |
2927 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2928 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2929 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2930 | |
d2e4a39e | 2931 | static struct value * |
4c4b4cd2 | 2932 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2933 | struct type *context_type) |
14f9c5c9 AS |
2934 | { |
2935 | int pc = *pos; | |
2936 | int i; | |
4c4b4cd2 | 2937 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2938 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2939 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2940 | int nargs; /* Number of operands. */ | |
52ce6436 | 2941 | int oplen; |
14f9c5c9 AS |
2942 | |
2943 | argvec = NULL; | |
2944 | nargs = 0; | |
2945 | exp = *expp; | |
2946 | ||
52ce6436 PH |
2947 | /* Pass one: resolve operands, saving their types and updating *pos, |
2948 | if needed. */ | |
14f9c5c9 AS |
2949 | switch (op) |
2950 | { | |
4c4b4cd2 PH |
2951 | case OP_FUNCALL: |
2952 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2953 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2954 | *pos += 7; | |
4c4b4cd2 PH |
2955 | else |
2956 | { | |
2957 | *pos += 3; | |
2958 | resolve_subexp (expp, pos, 0, NULL); | |
2959 | } | |
2960 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2961 | break; |
2962 | ||
14f9c5c9 | 2963 | case UNOP_ADDR: |
4c4b4cd2 PH |
2964 | *pos += 1; |
2965 | resolve_subexp (expp, pos, 0, NULL); | |
2966 | break; | |
2967 | ||
52ce6436 PH |
2968 | case UNOP_QUAL: |
2969 | *pos += 3; | |
17466c1a | 2970 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2971 | break; |
2972 | ||
52ce6436 | 2973 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2974 | case OP_ATR_SIZE: |
2975 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2976 | case OP_ATR_FIRST: |
2977 | case OP_ATR_LAST: | |
2978 | case OP_ATR_LENGTH: | |
2979 | case OP_ATR_POS: | |
2980 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2981 | case OP_ATR_MIN: |
2982 | case OP_ATR_MAX: | |
52ce6436 PH |
2983 | case TERNOP_IN_RANGE: |
2984 | case BINOP_IN_BOUNDS: | |
2985 | case UNOP_IN_RANGE: | |
2986 | case OP_AGGREGATE: | |
2987 | case OP_OTHERS: | |
2988 | case OP_CHOICES: | |
2989 | case OP_POSITIONAL: | |
2990 | case OP_DISCRETE_RANGE: | |
2991 | case OP_NAME: | |
2992 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2993 | *pos += oplen; | |
14f9c5c9 AS |
2994 | break; |
2995 | ||
2996 | case BINOP_ASSIGN: | |
2997 | { | |
4c4b4cd2 PH |
2998 | struct value *arg1; |
2999 | ||
3000 | *pos += 1; | |
3001 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
3002 | if (arg1 == NULL) | |
3003 | resolve_subexp (expp, pos, 1, NULL); | |
3004 | else | |
df407dfe | 3005 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 3006 | break; |
14f9c5c9 AS |
3007 | } |
3008 | ||
4c4b4cd2 | 3009 | case UNOP_CAST: |
4c4b4cd2 PH |
3010 | *pos += 3; |
3011 | nargs = 1; | |
3012 | break; | |
14f9c5c9 | 3013 | |
4c4b4cd2 PH |
3014 | case BINOP_ADD: |
3015 | case BINOP_SUB: | |
3016 | case BINOP_MUL: | |
3017 | case BINOP_DIV: | |
3018 | case BINOP_REM: | |
3019 | case BINOP_MOD: | |
3020 | case BINOP_EXP: | |
3021 | case BINOP_CONCAT: | |
3022 | case BINOP_LOGICAL_AND: | |
3023 | case BINOP_LOGICAL_OR: | |
3024 | case BINOP_BITWISE_AND: | |
3025 | case BINOP_BITWISE_IOR: | |
3026 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 3027 | |
4c4b4cd2 PH |
3028 | case BINOP_EQUAL: |
3029 | case BINOP_NOTEQUAL: | |
3030 | case BINOP_LESS: | |
3031 | case BINOP_GTR: | |
3032 | case BINOP_LEQ: | |
3033 | case BINOP_GEQ: | |
14f9c5c9 | 3034 | |
4c4b4cd2 PH |
3035 | case BINOP_REPEAT: |
3036 | case BINOP_SUBSCRIPT: | |
3037 | case BINOP_COMMA: | |
40c8aaa9 JB |
3038 | *pos += 1; |
3039 | nargs = 2; | |
3040 | break; | |
14f9c5c9 | 3041 | |
4c4b4cd2 PH |
3042 | case UNOP_NEG: |
3043 | case UNOP_PLUS: | |
3044 | case UNOP_LOGICAL_NOT: | |
3045 | case UNOP_ABS: | |
3046 | case UNOP_IND: | |
3047 | *pos += 1; | |
3048 | nargs = 1; | |
3049 | break; | |
14f9c5c9 | 3050 | |
4c4b4cd2 PH |
3051 | case OP_LONG: |
3052 | case OP_DOUBLE: | |
3053 | case OP_VAR_VALUE: | |
3054 | *pos += 4; | |
3055 | break; | |
14f9c5c9 | 3056 | |
4c4b4cd2 PH |
3057 | case OP_TYPE: |
3058 | case OP_BOOL: | |
3059 | case OP_LAST: | |
4c4b4cd2 PH |
3060 | case OP_INTERNALVAR: |
3061 | *pos += 3; | |
3062 | break; | |
14f9c5c9 | 3063 | |
4c4b4cd2 PH |
3064 | case UNOP_MEMVAL: |
3065 | *pos += 3; | |
3066 | nargs = 1; | |
3067 | break; | |
3068 | ||
67f3407f DJ |
3069 | case OP_REGISTER: |
3070 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3071 | break; | |
3072 | ||
4c4b4cd2 PH |
3073 | case STRUCTOP_STRUCT: |
3074 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3075 | nargs = 1; | |
3076 | break; | |
3077 | ||
4c4b4cd2 | 3078 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3079 | *pos += 1; |
3080 | nargs = 3; | |
3081 | break; | |
3082 | ||
52ce6436 | 3083 | case OP_STRING: |
14f9c5c9 | 3084 | break; |
4c4b4cd2 PH |
3085 | |
3086 | default: | |
323e0a4a | 3087 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3088 | } |
3089 | ||
76a01679 | 3090 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
3091 | for (i = 0; i < nargs; i += 1) |
3092 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3093 | argvec[i] = NULL; | |
3094 | exp = *expp; | |
3095 | ||
3096 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3097 | switch (op) |
3098 | { | |
3099 | default: | |
3100 | break; | |
3101 | ||
14f9c5c9 | 3102 | case OP_VAR_VALUE: |
4c4b4cd2 | 3103 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
3104 | { |
3105 | struct ada_symbol_info *candidates; | |
3106 | int n_candidates; | |
3107 | ||
3108 | n_candidates = | |
3109 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3110 | (exp->elts[pc + 2].symbol), | |
3111 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
d9680e73 | 3112 | &candidates, 1); |
76a01679 JB |
3113 | |
3114 | if (n_candidates > 1) | |
3115 | { | |
3116 | /* Types tend to get re-introduced locally, so if there | |
3117 | are any local symbols that are not types, first filter | |
3118 | out all types. */ | |
3119 | int j; | |
3120 | for (j = 0; j < n_candidates; j += 1) | |
3121 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
3122 | { | |
3123 | case LOC_REGISTER: | |
3124 | case LOC_ARG: | |
3125 | case LOC_REF_ARG: | |
76a01679 JB |
3126 | case LOC_REGPARM_ADDR: |
3127 | case LOC_LOCAL: | |
76a01679 | 3128 | case LOC_COMPUTED: |
76a01679 JB |
3129 | goto FoundNonType; |
3130 | default: | |
3131 | break; | |
3132 | } | |
3133 | FoundNonType: | |
3134 | if (j < n_candidates) | |
3135 | { | |
3136 | j = 0; | |
3137 | while (j < n_candidates) | |
3138 | { | |
3139 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
3140 | { | |
3141 | candidates[j] = candidates[n_candidates - 1]; | |
3142 | n_candidates -= 1; | |
3143 | } | |
3144 | else | |
3145 | j += 1; | |
3146 | } | |
3147 | } | |
3148 | } | |
3149 | ||
3150 | if (n_candidates == 0) | |
323e0a4a | 3151 | error (_("No definition found for %s"), |
76a01679 JB |
3152 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3153 | else if (n_candidates == 1) | |
3154 | i = 0; | |
3155 | else if (deprocedure_p | |
3156 | && !is_nonfunction (candidates, n_candidates)) | |
3157 | { | |
06d5cf63 JB |
3158 | i = ada_resolve_function |
3159 | (candidates, n_candidates, NULL, 0, | |
3160 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3161 | context_type); | |
76a01679 | 3162 | if (i < 0) |
323e0a4a | 3163 | error (_("Could not find a match for %s"), |
76a01679 JB |
3164 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3165 | } | |
3166 | else | |
3167 | { | |
323e0a4a | 3168 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3169 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3170 | user_select_syms (candidates, n_candidates, 1); | |
3171 | i = 0; | |
3172 | } | |
3173 | ||
3174 | exp->elts[pc + 1].block = candidates[i].block; | |
3175 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
3176 | if (innermost_block == NULL |
3177 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3178 | innermost_block = candidates[i].block; |
3179 | } | |
3180 | ||
3181 | if (deprocedure_p | |
3182 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3183 | == TYPE_CODE_FUNC)) | |
3184 | { | |
3185 | replace_operator_with_call (expp, pc, 0, 0, | |
3186 | exp->elts[pc + 2].symbol, | |
3187 | exp->elts[pc + 1].block); | |
3188 | exp = *expp; | |
3189 | } | |
14f9c5c9 AS |
3190 | break; |
3191 | ||
3192 | case OP_FUNCALL: | |
3193 | { | |
4c4b4cd2 | 3194 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3195 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
3196 | { |
3197 | struct ada_symbol_info *candidates; | |
3198 | int n_candidates; | |
3199 | ||
3200 | n_candidates = | |
76a01679 JB |
3201 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3202 | (exp->elts[pc + 5].symbol), | |
3203 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
d9680e73 | 3204 | &candidates, 1); |
4c4b4cd2 PH |
3205 | if (n_candidates == 1) |
3206 | i = 0; | |
3207 | else | |
3208 | { | |
06d5cf63 JB |
3209 | i = ada_resolve_function |
3210 | (candidates, n_candidates, | |
3211 | argvec, nargs, | |
3212 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3213 | context_type); | |
4c4b4cd2 | 3214 | if (i < 0) |
323e0a4a | 3215 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3216 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3217 | } | |
3218 | ||
3219 | exp->elts[pc + 4].block = candidates[i].block; | |
3220 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
3221 | if (innermost_block == NULL |
3222 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3223 | innermost_block = candidates[i].block; |
3224 | } | |
14f9c5c9 AS |
3225 | } |
3226 | break; | |
3227 | case BINOP_ADD: | |
3228 | case BINOP_SUB: | |
3229 | case BINOP_MUL: | |
3230 | case BINOP_DIV: | |
3231 | case BINOP_REM: | |
3232 | case BINOP_MOD: | |
3233 | case BINOP_CONCAT: | |
3234 | case BINOP_BITWISE_AND: | |
3235 | case BINOP_BITWISE_IOR: | |
3236 | case BINOP_BITWISE_XOR: | |
3237 | case BINOP_EQUAL: | |
3238 | case BINOP_NOTEQUAL: | |
3239 | case BINOP_LESS: | |
3240 | case BINOP_GTR: | |
3241 | case BINOP_LEQ: | |
3242 | case BINOP_GEQ: | |
3243 | case BINOP_EXP: | |
3244 | case UNOP_NEG: | |
3245 | case UNOP_PLUS: | |
3246 | case UNOP_LOGICAL_NOT: | |
3247 | case UNOP_ABS: | |
3248 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3249 | { |
3250 | struct ada_symbol_info *candidates; | |
3251 | int n_candidates; | |
3252 | ||
3253 | n_candidates = | |
3254 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3255 | (struct block *) NULL, VAR_DOMAIN, | |
d9680e73 | 3256 | &candidates, 1); |
4c4b4cd2 | 3257 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, |
76a01679 | 3258 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3259 | if (i < 0) |
3260 | break; | |
3261 | ||
76a01679 JB |
3262 | replace_operator_with_call (expp, pc, nargs, 1, |
3263 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3264 | exp = *expp; |
3265 | } | |
14f9c5c9 | 3266 | break; |
4c4b4cd2 PH |
3267 | |
3268 | case OP_TYPE: | |
b3dbf008 | 3269 | case OP_REGISTER: |
4c4b4cd2 | 3270 | return NULL; |
14f9c5c9 AS |
3271 | } |
3272 | ||
3273 | *pos = pc; | |
3274 | return evaluate_subexp_type (exp, pos); | |
3275 | } | |
3276 | ||
3277 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3278 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3279 | a non-pointer. */ |
14f9c5c9 | 3280 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3281 | liberal. */ |
14f9c5c9 AS |
3282 | |
3283 | static int | |
4dc81987 | 3284 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3285 | { |
61ee279c PH |
3286 | ftype = ada_check_typedef (ftype); |
3287 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3288 | |
3289 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3290 | ftype = TYPE_TARGET_TYPE (ftype); | |
3291 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3292 | atype = TYPE_TARGET_TYPE (atype); | |
3293 | ||
d2e4a39e | 3294 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3295 | { |
3296 | default: | |
5b3d5b7d | 3297 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3298 | case TYPE_CODE_PTR: |
3299 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3300 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3301 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3302 | else |
1265e4aa JB |
3303 | return (may_deref |
3304 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3305 | case TYPE_CODE_INT: |
3306 | case TYPE_CODE_ENUM: | |
3307 | case TYPE_CODE_RANGE: | |
3308 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3309 | { |
3310 | case TYPE_CODE_INT: | |
3311 | case TYPE_CODE_ENUM: | |
3312 | case TYPE_CODE_RANGE: | |
3313 | return 1; | |
3314 | default: | |
3315 | return 0; | |
3316 | } | |
14f9c5c9 AS |
3317 | |
3318 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3319 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3320 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3321 | |
3322 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3323 | if (ada_is_array_descriptor_type (ftype)) |
3324 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3325 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3326 | else |
4c4b4cd2 PH |
3327 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3328 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3329 | |
3330 | case TYPE_CODE_UNION: | |
3331 | case TYPE_CODE_FLT: | |
3332 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3333 | } | |
3334 | } | |
3335 | ||
3336 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3337 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3338 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3339 | argument function. */ |
14f9c5c9 AS |
3340 | |
3341 | static int | |
d2e4a39e | 3342 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3343 | { |
3344 | int i; | |
d2e4a39e | 3345 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3346 | |
1265e4aa JB |
3347 | if (SYMBOL_CLASS (func) == LOC_CONST |
3348 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3349 | return (n_actuals == 0); |
3350 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3351 | return 0; | |
3352 | ||
3353 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3354 | return 0; | |
3355 | ||
3356 | for (i = 0; i < n_actuals; i += 1) | |
3357 | { | |
4c4b4cd2 | 3358 | if (actuals[i] == NULL) |
76a01679 JB |
3359 | return 0; |
3360 | else | |
3361 | { | |
5b4ee69b MS |
3362 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3363 | i)); | |
df407dfe | 3364 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3365 | |
76a01679 JB |
3366 | if (!ada_type_match (ftype, atype, 1)) |
3367 | return 0; | |
3368 | } | |
14f9c5c9 AS |
3369 | } |
3370 | return 1; | |
3371 | } | |
3372 | ||
3373 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3374 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3375 | FUNC_TYPE is not a valid function type with a non-null return type | |
3376 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3377 | ||
3378 | static int | |
d2e4a39e | 3379 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3380 | { |
d2e4a39e | 3381 | struct type *return_type; |
14f9c5c9 AS |
3382 | |
3383 | if (func_type == NULL) | |
3384 | return 1; | |
3385 | ||
4c4b4cd2 | 3386 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3387 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3388 | else |
18af8284 | 3389 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3390 | if (return_type == NULL) |
3391 | return 1; | |
3392 | ||
18af8284 | 3393 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3394 | |
3395 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3396 | return context_type == NULL || return_type == context_type; | |
3397 | else if (context_type == NULL) | |
3398 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3399 | else | |
3400 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3401 | } | |
3402 | ||
3403 | ||
4c4b4cd2 | 3404 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3405 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3406 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3407 | that returns that type, then eliminate matches that don't. If | |
3408 | CONTEXT_TYPE is void and there is at least one match that does not | |
3409 | return void, eliminate all matches that do. | |
3410 | ||
14f9c5c9 AS |
3411 | Asks the user if there is more than one match remaining. Returns -1 |
3412 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3413 | solely for messages. May re-arrange and modify SYMS in |
3414 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3415 | |
4c4b4cd2 PH |
3416 | static int |
3417 | ada_resolve_function (struct ada_symbol_info syms[], | |
3418 | int nsyms, struct value **args, int nargs, | |
3419 | const char *name, struct type *context_type) | |
14f9c5c9 | 3420 | { |
30b15541 | 3421 | int fallback; |
14f9c5c9 | 3422 | int k; |
4c4b4cd2 | 3423 | int m; /* Number of hits */ |
14f9c5c9 | 3424 | |
d2e4a39e | 3425 | m = 0; |
30b15541 UW |
3426 | /* In the first pass of the loop, we only accept functions matching |
3427 | context_type. If none are found, we add a second pass of the loop | |
3428 | where every function is accepted. */ | |
3429 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3430 | { |
3431 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3432 | { |
61ee279c | 3433 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3434 | |
3435 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3436 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3437 | { |
3438 | syms[m] = syms[k]; | |
3439 | m += 1; | |
3440 | } | |
3441 | } | |
14f9c5c9 AS |
3442 | } |
3443 | ||
3444 | if (m == 0) | |
3445 | return -1; | |
3446 | else if (m > 1) | |
3447 | { | |
323e0a4a | 3448 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3449 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3450 | return 0; |
3451 | } | |
3452 | return 0; | |
3453 | } | |
3454 | ||
4c4b4cd2 PH |
3455 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3456 | in a listing of choices during disambiguation (see sort_choices, below). | |
3457 | The idea is that overloadings of a subprogram name from the | |
3458 | same package should sort in their source order. We settle for ordering | |
3459 | such symbols by their trailing number (__N or $N). */ | |
3460 | ||
14f9c5c9 | 3461 | static int |
0d5cff50 | 3462 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3463 | { |
3464 | if (N1 == NULL) | |
3465 | return 0; | |
3466 | else if (N0 == NULL) | |
3467 | return 1; | |
3468 | else | |
3469 | { | |
3470 | int k0, k1; | |
5b4ee69b | 3471 | |
d2e4a39e | 3472 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3473 | ; |
d2e4a39e | 3474 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3475 | ; |
d2e4a39e | 3476 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3477 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3478 | { | |
3479 | int n0, n1; | |
5b4ee69b | 3480 | |
4c4b4cd2 PH |
3481 | n0 = k0; |
3482 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3483 | n0 -= 1; | |
3484 | n1 = k1; | |
3485 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3486 | n1 -= 1; | |
3487 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3488 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3489 | } | |
14f9c5c9 AS |
3490 | return (strcmp (N0, N1) < 0); |
3491 | } | |
3492 | } | |
d2e4a39e | 3493 | |
4c4b4cd2 PH |
3494 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3495 | encoded names. */ | |
3496 | ||
d2e4a39e | 3497 | static void |
4c4b4cd2 | 3498 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3499 | { |
4c4b4cd2 | 3500 | int i; |
5b4ee69b | 3501 | |
d2e4a39e | 3502 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3503 | { |
4c4b4cd2 | 3504 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3505 | int j; |
3506 | ||
d2e4a39e | 3507 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3508 | { |
3509 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3510 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3511 | break; | |
3512 | syms[j + 1] = syms[j]; | |
3513 | } | |
d2e4a39e | 3514 | syms[j + 1] = sym; |
14f9c5c9 AS |
3515 | } |
3516 | } | |
3517 | ||
4c4b4cd2 PH |
3518 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3519 | by asking the user (if necessary), returning the number selected, | |
3520 | and setting the first elements of SYMS items. Error if no symbols | |
3521 | selected. */ | |
14f9c5c9 AS |
3522 | |
3523 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3524 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3525 | |
3526 | int | |
4c4b4cd2 | 3527 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3528 | { |
3529 | int i; | |
d2e4a39e | 3530 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3531 | int n_chosen; |
3532 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3533 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3534 | |
3535 | if (max_results < 1) | |
323e0a4a | 3536 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3537 | if (nsyms <= 1) |
3538 | return nsyms; | |
3539 | ||
717d2f5a JB |
3540 | if (select_mode == multiple_symbols_cancel) |
3541 | error (_("\ | |
3542 | canceled because the command is ambiguous\n\ | |
3543 | See set/show multiple-symbol.")); | |
3544 | ||
3545 | /* If select_mode is "all", then return all possible symbols. | |
3546 | Only do that if more than one symbol can be selected, of course. | |
3547 | Otherwise, display the menu as usual. */ | |
3548 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3549 | return nsyms; | |
3550 | ||
323e0a4a | 3551 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3552 | if (max_results > 1) |
323e0a4a | 3553 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3554 | |
4c4b4cd2 | 3555 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3556 | |
3557 | for (i = 0; i < nsyms; i += 1) | |
3558 | { | |
4c4b4cd2 PH |
3559 | if (syms[i].sym == NULL) |
3560 | continue; | |
3561 | ||
3562 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3563 | { | |
76a01679 JB |
3564 | struct symtab_and_line sal = |
3565 | find_function_start_sal (syms[i].sym, 1); | |
5b4ee69b | 3566 | |
323e0a4a AC |
3567 | if (sal.symtab == NULL) |
3568 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3569 | i + first_choice, | |
3570 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3571 | sal.line); | |
3572 | else | |
3573 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3574 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3575 | sal.symtab->filename, sal.line); | |
4c4b4cd2 PH |
3576 | continue; |
3577 | } | |
d2e4a39e | 3578 | else |
4c4b4cd2 PH |
3579 | { |
3580 | int is_enumeral = | |
3581 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3582 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3583 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
6f38eac8 | 3584 | struct symtab *symtab = syms[i].sym->symtab; |
4c4b4cd2 PH |
3585 | |
3586 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3587 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3588 | i + first_choice, |
3589 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3590 | symtab->filename, SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3591 | else if (is_enumeral |
3592 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3593 | { |
a3f17187 | 3594 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 JB |
3595 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
3596 | gdb_stdout, -1, 0); | |
323e0a4a | 3597 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3598 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3599 | } | |
3600 | else if (symtab != NULL) | |
3601 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3602 | ? _("[%d] %s in %s (enumeral)\n") |
3603 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3604 | i + first_choice, |
3605 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3606 | symtab->filename); | |
3607 | else | |
3608 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3609 | ? _("[%d] %s (enumeral)\n") |
3610 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3611 | i + first_choice, |
3612 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3613 | } | |
14f9c5c9 | 3614 | } |
d2e4a39e | 3615 | |
14f9c5c9 | 3616 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3617 | "overload-choice"); |
14f9c5c9 AS |
3618 | |
3619 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3620 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3621 | |
3622 | return n_chosen; | |
3623 | } | |
3624 | ||
3625 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3626 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3627 | order in CHOICES[0 .. N-1], and return N. |
3628 | ||
3629 | The user types choices as a sequence of numbers on one line | |
3630 | separated by blanks, encoding them as follows: | |
3631 | ||
4c4b4cd2 | 3632 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3633 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3634 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3635 | ||
4c4b4cd2 | 3636 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3637 | |
3638 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3639 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3640 | |
3641 | int | |
d2e4a39e | 3642 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3643 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3644 | { |
d2e4a39e | 3645 | char *args; |
0bcd0149 | 3646 | char *prompt; |
14f9c5c9 AS |
3647 | int n_chosen; |
3648 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3649 | |
14f9c5c9 AS |
3650 | prompt = getenv ("PS2"); |
3651 | if (prompt == NULL) | |
0bcd0149 | 3652 | prompt = "> "; |
14f9c5c9 | 3653 | |
0bcd0149 | 3654 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3655 | |
14f9c5c9 | 3656 | if (args == NULL) |
323e0a4a | 3657 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3658 | |
3659 | n_chosen = 0; | |
76a01679 | 3660 | |
4c4b4cd2 PH |
3661 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3662 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3663 | while (1) |
3664 | { | |
d2e4a39e | 3665 | char *args2; |
14f9c5c9 AS |
3666 | int choice, j; |
3667 | ||
0fcd72ba | 3668 | args = skip_spaces (args); |
14f9c5c9 | 3669 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3670 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3671 | else if (*args == '\0') |
4c4b4cd2 | 3672 | break; |
14f9c5c9 AS |
3673 | |
3674 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3675 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3676 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3677 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3678 | args = args2; |
3679 | ||
d2e4a39e | 3680 | if (choice == 0) |
323e0a4a | 3681 | error (_("cancelled")); |
14f9c5c9 AS |
3682 | |
3683 | if (choice < first_choice) | |
4c4b4cd2 PH |
3684 | { |
3685 | n_chosen = n_choices; | |
3686 | for (j = 0; j < n_choices; j += 1) | |
3687 | choices[j] = j; | |
3688 | break; | |
3689 | } | |
14f9c5c9 AS |
3690 | choice -= first_choice; |
3691 | ||
d2e4a39e | 3692 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3693 | { |
3694 | } | |
14f9c5c9 AS |
3695 | |
3696 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3697 | { |
3698 | int k; | |
5b4ee69b | 3699 | |
4c4b4cd2 PH |
3700 | for (k = n_chosen - 1; k > j; k -= 1) |
3701 | choices[k + 1] = choices[k]; | |
3702 | choices[j + 1] = choice; | |
3703 | n_chosen += 1; | |
3704 | } | |
14f9c5c9 AS |
3705 | } |
3706 | ||
3707 | if (n_chosen > max_results) | |
323e0a4a | 3708 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3709 | |
14f9c5c9 AS |
3710 | return n_chosen; |
3711 | } | |
3712 | ||
4c4b4cd2 PH |
3713 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3714 | on the function identified by SYM and BLOCK, and taking NARGS | |
3715 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3716 | |
3717 | static void | |
d2e4a39e | 3718 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 PH |
3719 | int oplen, struct symbol *sym, |
3720 | struct block *block) | |
14f9c5c9 AS |
3721 | { |
3722 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3723 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3724 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 3725 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 3726 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3727 | struct expression *exp = *expp; |
14f9c5c9 AS |
3728 | |
3729 | newexp->nelts = exp->nelts + 7 - oplen; | |
3730 | newexp->language_defn = exp->language_defn; | |
3489610d | 3731 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 3732 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 3733 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3734 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3735 | |
3736 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3737 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3738 | ||
3739 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3740 | newexp->elts[pc + 4].block = block; | |
3741 | newexp->elts[pc + 5].symbol = sym; | |
3742 | ||
3743 | *expp = newexp; | |
aacb1f0a | 3744 | xfree (exp); |
d2e4a39e | 3745 | } |
14f9c5c9 AS |
3746 | |
3747 | /* Type-class predicates */ | |
3748 | ||
4c4b4cd2 PH |
3749 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3750 | or FLOAT). */ | |
14f9c5c9 AS |
3751 | |
3752 | static int | |
d2e4a39e | 3753 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3754 | { |
3755 | if (type == NULL) | |
3756 | return 0; | |
d2e4a39e AS |
3757 | else |
3758 | { | |
3759 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3760 | { |
3761 | case TYPE_CODE_INT: | |
3762 | case TYPE_CODE_FLT: | |
3763 | return 1; | |
3764 | case TYPE_CODE_RANGE: | |
3765 | return (type == TYPE_TARGET_TYPE (type) | |
3766 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3767 | default: | |
3768 | return 0; | |
3769 | } | |
d2e4a39e | 3770 | } |
14f9c5c9 AS |
3771 | } |
3772 | ||
4c4b4cd2 | 3773 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3774 | |
3775 | static int | |
d2e4a39e | 3776 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3777 | { |
3778 | if (type == NULL) | |
3779 | return 0; | |
d2e4a39e AS |
3780 | else |
3781 | { | |
3782 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3783 | { |
3784 | case TYPE_CODE_INT: | |
3785 | return 1; | |
3786 | case TYPE_CODE_RANGE: | |
3787 | return (type == TYPE_TARGET_TYPE (type) | |
3788 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3789 | default: | |
3790 | return 0; | |
3791 | } | |
d2e4a39e | 3792 | } |
14f9c5c9 AS |
3793 | } |
3794 | ||
4c4b4cd2 | 3795 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3796 | |
3797 | static int | |
d2e4a39e | 3798 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3799 | { |
3800 | if (type == NULL) | |
3801 | return 0; | |
d2e4a39e AS |
3802 | else |
3803 | { | |
3804 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3805 | { |
3806 | case TYPE_CODE_INT: | |
3807 | case TYPE_CODE_RANGE: | |
3808 | case TYPE_CODE_ENUM: | |
3809 | case TYPE_CODE_FLT: | |
3810 | return 1; | |
3811 | default: | |
3812 | return 0; | |
3813 | } | |
d2e4a39e | 3814 | } |
14f9c5c9 AS |
3815 | } |
3816 | ||
4c4b4cd2 | 3817 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3818 | |
3819 | static int | |
d2e4a39e | 3820 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3821 | { |
3822 | if (type == NULL) | |
3823 | return 0; | |
d2e4a39e AS |
3824 | else |
3825 | { | |
3826 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3827 | { |
3828 | case TYPE_CODE_INT: | |
3829 | case TYPE_CODE_RANGE: | |
3830 | case TYPE_CODE_ENUM: | |
872f0337 | 3831 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
3832 | return 1; |
3833 | default: | |
3834 | return 0; | |
3835 | } | |
d2e4a39e | 3836 | } |
14f9c5c9 AS |
3837 | } |
3838 | ||
4c4b4cd2 PH |
3839 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3840 | a user-defined function. Errs on the side of pre-defined operators | |
3841 | (i.e., result 0). */ | |
14f9c5c9 AS |
3842 | |
3843 | static int | |
d2e4a39e | 3844 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3845 | { |
76a01679 | 3846 | struct type *type0 = |
df407dfe | 3847 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3848 | struct type *type1 = |
df407dfe | 3849 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3850 | |
4c4b4cd2 PH |
3851 | if (type0 == NULL) |
3852 | return 0; | |
3853 | ||
14f9c5c9 AS |
3854 | switch (op) |
3855 | { | |
3856 | default: | |
3857 | return 0; | |
3858 | ||
3859 | case BINOP_ADD: | |
3860 | case BINOP_SUB: | |
3861 | case BINOP_MUL: | |
3862 | case BINOP_DIV: | |
d2e4a39e | 3863 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3864 | |
3865 | case BINOP_REM: | |
3866 | case BINOP_MOD: | |
3867 | case BINOP_BITWISE_AND: | |
3868 | case BINOP_BITWISE_IOR: | |
3869 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3870 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3871 | |
3872 | case BINOP_EQUAL: | |
3873 | case BINOP_NOTEQUAL: | |
3874 | case BINOP_LESS: | |
3875 | case BINOP_GTR: | |
3876 | case BINOP_LEQ: | |
3877 | case BINOP_GEQ: | |
d2e4a39e | 3878 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3879 | |
3880 | case BINOP_CONCAT: | |
ee90b9ab | 3881 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3882 | |
3883 | case BINOP_EXP: | |
d2e4a39e | 3884 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3885 | |
3886 | case UNOP_NEG: | |
3887 | case UNOP_PLUS: | |
3888 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3889 | case UNOP_ABS: |
3890 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3891 | |
3892 | } | |
3893 | } | |
3894 | \f | |
4c4b4cd2 | 3895 | /* Renaming */ |
14f9c5c9 | 3896 | |
aeb5907d JB |
3897 | /* NOTES: |
3898 | ||
3899 | 1. In the following, we assume that a renaming type's name may | |
3900 | have an ___XD suffix. It would be nice if this went away at some | |
3901 | point. | |
3902 | 2. We handle both the (old) purely type-based representation of | |
3903 | renamings and the (new) variable-based encoding. At some point, | |
3904 | it is devoutly to be hoped that the former goes away | |
3905 | (FIXME: hilfinger-2007-07-09). | |
3906 | 3. Subprogram renamings are not implemented, although the XRS | |
3907 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3908 | ||
3909 | /* If SYM encodes a renaming, | |
3910 | ||
3911 | <renaming> renames <renamed entity>, | |
3912 | ||
3913 | sets *LEN to the length of the renamed entity's name, | |
3914 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3915 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 3916 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
3917 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
3918 | are undefined). Otherwise, returns a value indicating the category | |
3919 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3920 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3921 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3922 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3923 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3924 | may be NULL, in which case they are not assigned. | |
3925 | ||
3926 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3927 | ||
3928 | enum ada_renaming_category | |
3929 | ada_parse_renaming (struct symbol *sym, | |
3930 | const char **renamed_entity, int *len, | |
3931 | const char **renaming_expr) | |
3932 | { | |
3933 | enum ada_renaming_category kind; | |
3934 | const char *info; | |
3935 | const char *suffix; | |
3936 | ||
3937 | if (sym == NULL) | |
3938 | return ADA_NOT_RENAMING; | |
3939 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3940 | { |
aeb5907d JB |
3941 | default: |
3942 | return ADA_NOT_RENAMING; | |
3943 | case LOC_TYPEDEF: | |
3944 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3945 | renamed_entity, len, renaming_expr); | |
3946 | case LOC_LOCAL: | |
3947 | case LOC_STATIC: | |
3948 | case LOC_COMPUTED: | |
3949 | case LOC_OPTIMIZED_OUT: | |
3950 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3951 | if (info == NULL) | |
3952 | return ADA_NOT_RENAMING; | |
3953 | switch (info[5]) | |
3954 | { | |
3955 | case '_': | |
3956 | kind = ADA_OBJECT_RENAMING; | |
3957 | info += 6; | |
3958 | break; | |
3959 | case 'E': | |
3960 | kind = ADA_EXCEPTION_RENAMING; | |
3961 | info += 7; | |
3962 | break; | |
3963 | case 'P': | |
3964 | kind = ADA_PACKAGE_RENAMING; | |
3965 | info += 7; | |
3966 | break; | |
3967 | case 'S': | |
3968 | kind = ADA_SUBPROGRAM_RENAMING; | |
3969 | info += 7; | |
3970 | break; | |
3971 | default: | |
3972 | return ADA_NOT_RENAMING; | |
3973 | } | |
14f9c5c9 | 3974 | } |
4c4b4cd2 | 3975 | |
aeb5907d JB |
3976 | if (renamed_entity != NULL) |
3977 | *renamed_entity = info; | |
3978 | suffix = strstr (info, "___XE"); | |
3979 | if (suffix == NULL || suffix == info) | |
3980 | return ADA_NOT_RENAMING; | |
3981 | if (len != NULL) | |
3982 | *len = strlen (info) - strlen (suffix); | |
3983 | suffix += 5; | |
3984 | if (renaming_expr != NULL) | |
3985 | *renaming_expr = suffix; | |
3986 | return kind; | |
3987 | } | |
3988 | ||
3989 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3990 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3991 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3992 | ADA_NOT_RENAMING otherwise. */ | |
3993 | static enum ada_renaming_category | |
3994 | parse_old_style_renaming (struct type *type, | |
3995 | const char **renamed_entity, int *len, | |
3996 | const char **renaming_expr) | |
3997 | { | |
3998 | enum ada_renaming_category kind; | |
3999 | const char *name; | |
4000 | const char *info; | |
4001 | const char *suffix; | |
14f9c5c9 | 4002 | |
aeb5907d JB |
4003 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
4004 | || TYPE_NFIELDS (type) != 1) | |
4005 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 4006 | |
aeb5907d JB |
4007 | name = type_name_no_tag (type); |
4008 | if (name == NULL) | |
4009 | return ADA_NOT_RENAMING; | |
4010 | ||
4011 | name = strstr (name, "___XR"); | |
4012 | if (name == NULL) | |
4013 | return ADA_NOT_RENAMING; | |
4014 | switch (name[5]) | |
4015 | { | |
4016 | case '\0': | |
4017 | case '_': | |
4018 | kind = ADA_OBJECT_RENAMING; | |
4019 | break; | |
4020 | case 'E': | |
4021 | kind = ADA_EXCEPTION_RENAMING; | |
4022 | break; | |
4023 | case 'P': | |
4024 | kind = ADA_PACKAGE_RENAMING; | |
4025 | break; | |
4026 | case 'S': | |
4027 | kind = ADA_SUBPROGRAM_RENAMING; | |
4028 | break; | |
4029 | default: | |
4030 | return ADA_NOT_RENAMING; | |
4031 | } | |
14f9c5c9 | 4032 | |
aeb5907d JB |
4033 | info = TYPE_FIELD_NAME (type, 0); |
4034 | if (info == NULL) | |
4035 | return ADA_NOT_RENAMING; | |
4036 | if (renamed_entity != NULL) | |
4037 | *renamed_entity = info; | |
4038 | suffix = strstr (info, "___XE"); | |
4039 | if (renaming_expr != NULL) | |
4040 | *renaming_expr = suffix + 5; | |
4041 | if (suffix == NULL || suffix == info) | |
4042 | return ADA_NOT_RENAMING; | |
4043 | if (len != NULL) | |
4044 | *len = suffix - info; | |
4045 | return kind; | |
a5ee536b JB |
4046 | } |
4047 | ||
4048 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4049 | be a symbol encoding a renaming expression. BLOCK is the block | |
4050 | used to evaluate the renaming. */ | |
52ce6436 | 4051 | |
a5ee536b JB |
4052 | static struct value * |
4053 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
4054 | struct block *block) | |
4055 | { | |
4056 | char *sym_name; | |
4057 | struct expression *expr; | |
4058 | struct value *value; | |
4059 | struct cleanup *old_chain = NULL; | |
4060 | ||
4061 | sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym)); | |
4062 | old_chain = make_cleanup (xfree, sym_name); | |
1bb9788d | 4063 | expr = parse_exp_1 (&sym_name, 0, block, 0); |
a5ee536b JB |
4064 | make_cleanup (free_current_contents, &expr); |
4065 | value = evaluate_expression (expr); | |
4066 | ||
4067 | do_cleanups (old_chain); | |
4068 | return value; | |
4069 | } | |
14f9c5c9 | 4070 | \f |
d2e4a39e | 4071 | |
4c4b4cd2 | 4072 | /* Evaluation: Function Calls */ |
14f9c5c9 | 4073 | |
4c4b4cd2 | 4074 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4075 | lvalues, and otherwise has the side-effect of allocating memory |
4076 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4077 | |
d2e4a39e | 4078 | static struct value * |
40bc484c | 4079 | ensure_lval (struct value *val) |
14f9c5c9 | 4080 | { |
40bc484c JB |
4081 | if (VALUE_LVAL (val) == not_lval |
4082 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4083 | { |
df407dfe | 4084 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4085 | const CORE_ADDR addr = |
4086 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4087 | |
40bc484c | 4088 | set_value_address (val, addr); |
a84a8a0d | 4089 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 4090 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4091 | } |
14f9c5c9 AS |
4092 | |
4093 | return val; | |
4094 | } | |
4095 | ||
4096 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4097 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4098 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4099 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4100 | |
a93c0eb6 | 4101 | struct value * |
40bc484c | 4102 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4103 | { |
df407dfe | 4104 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4105 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4106 | struct type *formal_target = |
4107 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4108 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4109 | struct type *actual_target = |
4110 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4111 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4112 | |
4c4b4cd2 | 4113 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4114 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4115 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4116 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4117 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4118 | { |
a84a8a0d | 4119 | struct value *result; |
5b4ee69b | 4120 | |
14f9c5c9 | 4121 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4122 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4123 | result = desc_data (actual); |
14f9c5c9 | 4124 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4125 | { |
4126 | if (VALUE_LVAL (actual) != lval_memory) | |
4127 | { | |
4128 | struct value *val; | |
5b4ee69b | 4129 | |
df407dfe | 4130 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4131 | val = allocate_value (actual_type); |
990a07ab | 4132 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4133 | (char *) value_contents (actual), |
4c4b4cd2 | 4134 | TYPE_LENGTH (actual_type)); |
40bc484c | 4135 | actual = ensure_lval (val); |
4c4b4cd2 | 4136 | } |
a84a8a0d | 4137 | result = value_addr (actual); |
4c4b4cd2 | 4138 | } |
a84a8a0d JB |
4139 | else |
4140 | return actual; | |
b1af9e97 | 4141 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4142 | } |
4143 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4144 | return ada_value_ind (actual); | |
4145 | ||
4146 | return actual; | |
4147 | } | |
4148 | ||
438c98a1 JB |
4149 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4150 | type TYPE. This is usually an inefficient no-op except on some targets | |
4151 | (such as AVR) where the representation of a pointer and an address | |
4152 | differs. */ | |
4153 | ||
4154 | static CORE_ADDR | |
4155 | value_pointer (struct value *value, struct type *type) | |
4156 | { | |
4157 | struct gdbarch *gdbarch = get_type_arch (type); | |
4158 | unsigned len = TYPE_LENGTH (type); | |
4159 | gdb_byte *buf = alloca (len); | |
4160 | CORE_ADDR addr; | |
4161 | ||
4162 | addr = value_address (value); | |
4163 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4164 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4165 | return addr; | |
4166 | } | |
4167 | ||
14f9c5c9 | 4168 | |
4c4b4cd2 PH |
4169 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4170 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4171 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4172 | to-descriptor type rather than a descriptor type), a struct value * |
4173 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4174 | |
d2e4a39e | 4175 | static struct value * |
40bc484c | 4176 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4177 | { |
d2e4a39e AS |
4178 | struct type *bounds_type = desc_bounds_type (type); |
4179 | struct type *desc_type = desc_base_type (type); | |
4180 | struct value *descriptor = allocate_value (desc_type); | |
4181 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4182 | int i; |
d2e4a39e | 4183 | |
0963b4bd MS |
4184 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4185 | i > 0; i -= 1) | |
14f9c5c9 | 4186 | { |
19f220c3 JK |
4187 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4188 | ada_array_bound (arr, i, 0), | |
4189 | desc_bound_bitpos (bounds_type, i, 0), | |
4190 | desc_bound_bitsize (bounds_type, i, 0)); | |
4191 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4192 | ada_array_bound (arr, i, 1), | |
4193 | desc_bound_bitpos (bounds_type, i, 1), | |
4194 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4195 | } |
d2e4a39e | 4196 | |
40bc484c | 4197 | bounds = ensure_lval (bounds); |
d2e4a39e | 4198 | |
19f220c3 JK |
4199 | modify_field (value_type (descriptor), |
4200 | value_contents_writeable (descriptor), | |
4201 | value_pointer (ensure_lval (arr), | |
4202 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4203 | fat_pntr_data_bitpos (desc_type), | |
4204 | fat_pntr_data_bitsize (desc_type)); | |
4205 | ||
4206 | modify_field (value_type (descriptor), | |
4207 | value_contents_writeable (descriptor), | |
4208 | value_pointer (bounds, | |
4209 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4210 | fat_pntr_bounds_bitpos (desc_type), | |
4211 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4212 | |
40bc484c | 4213 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4214 | |
4215 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4216 | return value_addr (descriptor); | |
4217 | else | |
4218 | return descriptor; | |
4219 | } | |
14f9c5c9 | 4220 | \f |
963a6417 | 4221 | /* Dummy definitions for an experimental caching module that is not |
0963b4bd | 4222 | * used in the public sources. */ |
96d887e8 | 4223 | |
96d887e8 PH |
4224 | static int |
4225 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 4226 | struct symbol **sym, struct block **block) |
96d887e8 PH |
4227 | { |
4228 | return 0; | |
4229 | } | |
4230 | ||
4231 | static void | |
4232 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
2570f2b7 | 4233 | struct block *block) |
96d887e8 PH |
4234 | { |
4235 | } | |
4c4b4cd2 PH |
4236 | \f |
4237 | /* Symbol Lookup */ | |
4238 | ||
c0431670 JB |
4239 | /* Return nonzero if wild matching should be used when searching for |
4240 | all symbols matching LOOKUP_NAME. | |
4241 | ||
4242 | LOOKUP_NAME is expected to be a symbol name after transformation | |
4243 | for Ada lookups (see ada_name_for_lookup). */ | |
4244 | ||
4245 | static int | |
4246 | should_use_wild_match (const char *lookup_name) | |
4247 | { | |
4248 | return (strstr (lookup_name, "__") == NULL); | |
4249 | } | |
4250 | ||
4c4b4cd2 PH |
4251 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4252 | given DOMAIN, visible from lexical block BLOCK. */ | |
4253 | ||
4254 | static struct symbol * | |
4255 | standard_lookup (const char *name, const struct block *block, | |
4256 | domain_enum domain) | |
4257 | { | |
acbd605d MGD |
4258 | /* Initialize it just to avoid a GCC false warning. */ |
4259 | struct symbol *sym = NULL; | |
4c4b4cd2 | 4260 | |
2570f2b7 | 4261 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 4262 | return sym; |
2570f2b7 UW |
4263 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
4264 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
4265 | return sym; |
4266 | } | |
4267 | ||
4268 | ||
4269 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4270 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4271 | since they contend in overloading in the same way. */ | |
4272 | static int | |
4273 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4274 | { | |
4275 | int i; | |
4276 | ||
4277 | for (i = 0; i < n; i += 1) | |
4278 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4279 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4280 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4281 | return 1; |
4282 | ||
4283 | return 0; | |
4284 | } | |
4285 | ||
4286 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4287 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4288 | |
4289 | static int | |
d2e4a39e | 4290 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4291 | { |
d2e4a39e | 4292 | if (type0 == type1) |
14f9c5c9 | 4293 | return 1; |
d2e4a39e | 4294 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4295 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4296 | return 0; | |
d2e4a39e | 4297 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4298 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4299 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4300 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4301 | return 1; |
d2e4a39e | 4302 | |
14f9c5c9 AS |
4303 | return 0; |
4304 | } | |
4305 | ||
4306 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4307 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4308 | |
4309 | static int | |
d2e4a39e | 4310 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4311 | { |
4312 | if (sym0 == sym1) | |
4313 | return 1; | |
176620f1 | 4314 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4315 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4316 | return 0; | |
4317 | ||
d2e4a39e | 4318 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4319 | { |
4320 | case LOC_UNDEF: | |
4321 | return 1; | |
4322 | case LOC_TYPEDEF: | |
4323 | { | |
4c4b4cd2 PH |
4324 | struct type *type0 = SYMBOL_TYPE (sym0); |
4325 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4326 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4327 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4328 | int len0 = strlen (name0); |
5b4ee69b | 4329 | |
4c4b4cd2 PH |
4330 | return |
4331 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4332 | && (equiv_types (type0, type1) | |
4333 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4334 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4335 | } |
4336 | case LOC_CONST: | |
4337 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4338 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4339 | default: |
4340 | return 0; | |
14f9c5c9 AS |
4341 | } |
4342 | } | |
4343 | ||
4c4b4cd2 PH |
4344 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4345 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4346 | |
4347 | static void | |
76a01679 JB |
4348 | add_defn_to_vec (struct obstack *obstackp, |
4349 | struct symbol *sym, | |
2570f2b7 | 4350 | struct block *block) |
14f9c5c9 AS |
4351 | { |
4352 | int i; | |
4c4b4cd2 | 4353 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4354 | |
529cad9c PH |
4355 | /* Do not try to complete stub types, as the debugger is probably |
4356 | already scanning all symbols matching a certain name at the | |
4357 | time when this function is called. Trying to replace the stub | |
4358 | type by its associated full type will cause us to restart a scan | |
4359 | which may lead to an infinite recursion. Instead, the client | |
4360 | collecting the matching symbols will end up collecting several | |
4361 | matches, with at least one of them complete. It can then filter | |
4362 | out the stub ones if needed. */ | |
4363 | ||
4c4b4cd2 PH |
4364 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4365 | { | |
4366 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4367 | return; | |
4368 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4369 | { | |
4370 | prevDefns[i].sym = sym; | |
4371 | prevDefns[i].block = block; | |
4c4b4cd2 | 4372 | return; |
76a01679 | 4373 | } |
4c4b4cd2 PH |
4374 | } |
4375 | ||
4376 | { | |
4377 | struct ada_symbol_info info; | |
4378 | ||
4379 | info.sym = sym; | |
4380 | info.block = block; | |
4c4b4cd2 PH |
4381 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4382 | } | |
4383 | } | |
4384 | ||
4385 | /* Number of ada_symbol_info structures currently collected in | |
4386 | current vector in *OBSTACKP. */ | |
4387 | ||
76a01679 JB |
4388 | static int |
4389 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4390 | { |
4391 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4392 | } | |
4393 | ||
4394 | /* Vector of ada_symbol_info structures currently collected in current | |
4395 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4396 | its final address. */ | |
4397 | ||
76a01679 | 4398 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4399 | defns_collected (struct obstack *obstackp, int finish) |
4400 | { | |
4401 | if (finish) | |
4402 | return obstack_finish (obstackp); | |
4403 | else | |
4404 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4405 | } | |
4406 | ||
96d887e8 | 4407 | /* Return a minimal symbol matching NAME according to Ada decoding |
2e6e0353 JB |
4408 | rules. Returns NULL if there is no such minimal symbol. Names |
4409 | prefixed with "standard__" are handled specially: "standard__" is | |
96d887e8 | 4410 | first stripped off, and only static and global symbols are searched. */ |
4c4b4cd2 | 4411 | |
96d887e8 PH |
4412 | struct minimal_symbol * |
4413 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4414 | { |
4c4b4cd2 | 4415 | struct objfile *objfile; |
96d887e8 | 4416 | struct minimal_symbol *msymbol; |
dc4024cd | 4417 | const int wild_match_p = should_use_wild_match (name); |
4c4b4cd2 | 4418 | |
c0431670 JB |
4419 | /* Special case: If the user specifies a symbol name inside package |
4420 | Standard, do a non-wild matching of the symbol name without | |
4421 | the "standard__" prefix. This was primarily introduced in order | |
4422 | to allow the user to specifically access the standard exceptions | |
4423 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4424 | is ambiguous (due to the user defining its own Constraint_Error | |
4425 | entity inside its program). */ | |
96d887e8 | 4426 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
c0431670 | 4427 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4428 | |
96d887e8 PH |
4429 | ALL_MSYMBOLS (objfile, msymbol) |
4430 | { | |
dc4024cd | 4431 | if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p) |
96d887e8 PH |
4432 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
4433 | return msymbol; | |
4434 | } | |
4c4b4cd2 | 4435 | |
96d887e8 PH |
4436 | return NULL; |
4437 | } | |
4c4b4cd2 | 4438 | |
96d887e8 PH |
4439 | /* For all subprograms that statically enclose the subprogram of the |
4440 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4441 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4442 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4443 | with a wildcard prefix. */ | |
4c4b4cd2 | 4444 | |
96d887e8 PH |
4445 | static void |
4446 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4447 | const char *name, domain_enum namespace, |
48b78332 | 4448 | int wild_match_p) |
96d887e8 | 4449 | { |
96d887e8 | 4450 | } |
14f9c5c9 | 4451 | |
96d887e8 PH |
4452 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4453 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4454 | |
96d887e8 PH |
4455 | static int |
4456 | is_nondebugging_type (struct type *type) | |
4457 | { | |
0d5cff50 | 4458 | const char *name = ada_type_name (type); |
5b4ee69b | 4459 | |
96d887e8 PH |
4460 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4461 | } | |
4c4b4cd2 | 4462 | |
8f17729f JB |
4463 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4464 | that are deemed "identical" for practical purposes. | |
4465 | ||
4466 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4467 | types and that their number of enumerals is identical (in other | |
4468 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4469 | ||
4470 | static int | |
4471 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4472 | { | |
4473 | int i; | |
4474 | ||
4475 | /* The heuristic we use here is fairly conservative. We consider | |
4476 | that 2 enumerate types are identical if they have the same | |
4477 | number of enumerals and that all enumerals have the same | |
4478 | underlying value and name. */ | |
4479 | ||
4480 | /* All enums in the type should have an identical underlying value. */ | |
4481 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 4482 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
4483 | return 0; |
4484 | ||
4485 | /* All enumerals should also have the same name (modulo any numerical | |
4486 | suffix). */ | |
4487 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4488 | { | |
0d5cff50 DE |
4489 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
4490 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
4491 | int len_1 = strlen (name_1); |
4492 | int len_2 = strlen (name_2); | |
4493 | ||
4494 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
4495 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
4496 | if (len_1 != len_2 | |
4497 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
4498 | TYPE_FIELD_NAME (type2, i), | |
4499 | len_1) != 0) | |
4500 | return 0; | |
4501 | } | |
4502 | ||
4503 | return 1; | |
4504 | } | |
4505 | ||
4506 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
4507 | that are deemed "identical" for practical purposes. Sometimes, | |
4508 | enumerals are not strictly identical, but their types are so similar | |
4509 | that they can be considered identical. | |
4510 | ||
4511 | For instance, consider the following code: | |
4512 | ||
4513 | type Color is (Black, Red, Green, Blue, White); | |
4514 | type RGB_Color is new Color range Red .. Blue; | |
4515 | ||
4516 | Type RGB_Color is a subrange of an implicit type which is a copy | |
4517 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
4518 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
4519 | As a result, when an expression references any of the enumeral | |
4520 | by name (Eg. "print green"), the expression is technically | |
4521 | ambiguous and the user should be asked to disambiguate. But | |
4522 | doing so would only hinder the user, since it wouldn't matter | |
4523 | what choice he makes, the outcome would always be the same. | |
4524 | So, for practical purposes, we consider them as the same. */ | |
4525 | ||
4526 | static int | |
4527 | symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms) | |
4528 | { | |
4529 | int i; | |
4530 | ||
4531 | /* Before performing a thorough comparison check of each type, | |
4532 | we perform a series of inexpensive checks. We expect that these | |
4533 | checks will quickly fail in the vast majority of cases, and thus | |
4534 | help prevent the unnecessary use of a more expensive comparison. | |
4535 | Said comparison also expects us to make some of these checks | |
4536 | (see ada_identical_enum_types_p). */ | |
4537 | ||
4538 | /* Quick check: All symbols should have an enum type. */ | |
4539 | for (i = 0; i < nsyms; i++) | |
4540 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM) | |
4541 | return 0; | |
4542 | ||
4543 | /* Quick check: They should all have the same value. */ | |
4544 | for (i = 1; i < nsyms; i++) | |
4545 | if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym)) | |
4546 | return 0; | |
4547 | ||
4548 | /* Quick check: They should all have the same number of enumerals. */ | |
4549 | for (i = 1; i < nsyms; i++) | |
4550 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym)) | |
4551 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym))) | |
4552 | return 0; | |
4553 | ||
4554 | /* All the sanity checks passed, so we might have a set of | |
4555 | identical enumeration types. Perform a more complete | |
4556 | comparison of the type of each symbol. */ | |
4557 | for (i = 1; i < nsyms; i++) | |
4558 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym), | |
4559 | SYMBOL_TYPE (syms[0].sym))) | |
4560 | return 0; | |
4561 | ||
4562 | return 1; | |
4563 | } | |
4564 | ||
96d887e8 PH |
4565 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4566 | duplicate other symbols in the list (The only case I know of where | |
4567 | this happens is when object files containing stabs-in-ecoff are | |
4568 | linked with files containing ordinary ecoff debugging symbols (or no | |
4569 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4570 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4571 | |
96d887e8 PH |
4572 | static int |
4573 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4574 | { | |
4575 | int i, j; | |
4c4b4cd2 | 4576 | |
8f17729f JB |
4577 | /* We should never be called with less than 2 symbols, as there |
4578 | cannot be any extra symbol in that case. But it's easy to | |
4579 | handle, since we have nothing to do in that case. */ | |
4580 | if (nsyms < 2) | |
4581 | return nsyms; | |
4582 | ||
96d887e8 PH |
4583 | i = 0; |
4584 | while (i < nsyms) | |
4585 | { | |
a35ddb44 | 4586 | int remove_p = 0; |
339c13b6 JB |
4587 | |
4588 | /* If two symbols have the same name and one of them is a stub type, | |
4589 | the get rid of the stub. */ | |
4590 | ||
4591 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4592 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4593 | { | |
4594 | for (j = 0; j < nsyms; j++) | |
4595 | { | |
4596 | if (j != i | |
4597 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4598 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4599 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4600 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
a35ddb44 | 4601 | remove_p = 1; |
339c13b6 JB |
4602 | } |
4603 | } | |
4604 | ||
4605 | /* Two symbols with the same name, same class and same address | |
4606 | should be identical. */ | |
4607 | ||
4608 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4609 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4610 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4611 | { | |
4612 | for (j = 0; j < nsyms; j += 1) | |
4613 | { | |
4614 | if (i != j | |
4615 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4616 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4617 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4618 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4619 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4620 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
a35ddb44 | 4621 | remove_p = 1; |
4c4b4cd2 | 4622 | } |
4c4b4cd2 | 4623 | } |
339c13b6 | 4624 | |
a35ddb44 | 4625 | if (remove_p) |
339c13b6 JB |
4626 | { |
4627 | for (j = i + 1; j < nsyms; j += 1) | |
4628 | syms[j - 1] = syms[j]; | |
4629 | nsyms -= 1; | |
4630 | } | |
4631 | ||
96d887e8 | 4632 | i += 1; |
14f9c5c9 | 4633 | } |
8f17729f JB |
4634 | |
4635 | /* If all the remaining symbols are identical enumerals, then | |
4636 | just keep the first one and discard the rest. | |
4637 | ||
4638 | Unlike what we did previously, we do not discard any entry | |
4639 | unless they are ALL identical. This is because the symbol | |
4640 | comparison is not a strict comparison, but rather a practical | |
4641 | comparison. If all symbols are considered identical, then | |
4642 | we can just go ahead and use the first one and discard the rest. | |
4643 | But if we cannot reduce the list to a single element, we have | |
4644 | to ask the user to disambiguate anyways. And if we have to | |
4645 | present a multiple-choice menu, it's less confusing if the list | |
4646 | isn't missing some choices that were identical and yet distinct. */ | |
4647 | if (symbols_are_identical_enums (syms, nsyms)) | |
4648 | nsyms = 1; | |
4649 | ||
96d887e8 | 4650 | return nsyms; |
14f9c5c9 AS |
4651 | } |
4652 | ||
96d887e8 PH |
4653 | /* Given a type that corresponds to a renaming entity, use the type name |
4654 | to extract the scope (package name or function name, fully qualified, | |
4655 | and following the GNAT encoding convention) where this renaming has been | |
4656 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4657 | |
96d887e8 PH |
4658 | static char * |
4659 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4660 | { |
96d887e8 | 4661 | /* The renaming types adhere to the following convention: |
0963b4bd | 4662 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
4663 | So, to extract the scope, we search for the "___XR" extension, |
4664 | and then backtrack until we find the first "__". */ | |
76a01679 | 4665 | |
96d887e8 PH |
4666 | const char *name = type_name_no_tag (renaming_type); |
4667 | char *suffix = strstr (name, "___XR"); | |
4668 | char *last; | |
4669 | int scope_len; | |
4670 | char *scope; | |
14f9c5c9 | 4671 | |
96d887e8 PH |
4672 | /* Now, backtrack a bit until we find the first "__". Start looking |
4673 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4674 | |
96d887e8 PH |
4675 | for (last = suffix - 3; last > name; last--) |
4676 | if (last[0] == '_' && last[1] == '_') | |
4677 | break; | |
76a01679 | 4678 | |
96d887e8 | 4679 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4680 | |
96d887e8 PH |
4681 | scope_len = last - name; |
4682 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4683 | |
96d887e8 PH |
4684 | strncpy (scope, name, scope_len); |
4685 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4686 | |
96d887e8 | 4687 | return scope; |
4c4b4cd2 PH |
4688 | } |
4689 | ||
96d887e8 | 4690 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4691 | |
96d887e8 PH |
4692 | static int |
4693 | is_package_name (const char *name) | |
4c4b4cd2 | 4694 | { |
96d887e8 PH |
4695 | /* Here, We take advantage of the fact that no symbols are generated |
4696 | for packages, while symbols are generated for each function. | |
4697 | So the condition for NAME represent a package becomes equivalent | |
4698 | to NAME not existing in our list of symbols. There is only one | |
4699 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4700 | |
96d887e8 | 4701 | char *fun_name; |
76a01679 | 4702 | |
96d887e8 PH |
4703 | /* If it is a function that has not been defined at library level, |
4704 | then we should be able to look it up in the symbols. */ | |
4705 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4706 | return 0; | |
14f9c5c9 | 4707 | |
96d887e8 PH |
4708 | /* Library-level function names start with "_ada_". See if function |
4709 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4710 | |
96d887e8 | 4711 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4712 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4713 | if (strstr (name, "__") != NULL) |
4714 | return 0; | |
4c4b4cd2 | 4715 | |
b435e160 | 4716 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4717 | |
96d887e8 PH |
4718 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4719 | } | |
14f9c5c9 | 4720 | |
96d887e8 | 4721 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4722 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4723 | |
96d887e8 | 4724 | static int |
0d5cff50 | 4725 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 4726 | { |
aeb5907d JB |
4727 | char *scope; |
4728 | ||
4729 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4730 | return 0; | |
4731 | ||
4732 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4733 | |
96d887e8 | 4734 | make_cleanup (xfree, scope); |
14f9c5c9 | 4735 | |
96d887e8 PH |
4736 | /* If the rename has been defined in a package, then it is visible. */ |
4737 | if (is_package_name (scope)) | |
aeb5907d | 4738 | return 0; |
14f9c5c9 | 4739 | |
96d887e8 PH |
4740 | /* Check that the rename is in the current function scope by checking |
4741 | that its name starts with SCOPE. */ | |
76a01679 | 4742 | |
96d887e8 PH |
4743 | /* If the function name starts with "_ada_", it means that it is |
4744 | a library-level function. Strip this prefix before doing the | |
4745 | comparison, as the encoding for the renaming does not contain | |
4746 | this prefix. */ | |
4747 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4748 | function_name += 5; | |
f26caa11 | 4749 | |
aeb5907d | 4750 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4751 | } |
4752 | ||
aeb5907d JB |
4753 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4754 | is not visible from the function associated with CURRENT_BLOCK or | |
4755 | that is superfluous due to the presence of more specific renaming | |
4756 | information. Places surviving symbols in the initial entries of | |
4757 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4758 | |
4759 | Rationale: | |
aeb5907d JB |
4760 | First, in cases where an object renaming is implemented as a |
4761 | reference variable, GNAT may produce both the actual reference | |
4762 | variable and the renaming encoding. In this case, we discard the | |
4763 | latter. | |
4764 | ||
4765 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4766 | entity. Unfortunately, STABS currently does not support the definition |
4767 | of types that are local to a given lexical block, so all renamings types | |
4768 | are emitted at library level. As a consequence, if an application | |
4769 | contains two renaming entities using the same name, and a user tries to | |
4770 | print the value of one of these entities, the result of the ada symbol | |
4771 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4772 | |
96d887e8 PH |
4773 | This function partially covers for this limitation by attempting to |
4774 | remove from the SYMS list renaming symbols that should be visible | |
4775 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4776 | method with the current information available. The implementation | |
4777 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4778 | ||
4779 | - When the user tries to print a rename in a function while there | |
4780 | is another rename entity defined in a package: Normally, the | |
4781 | rename in the function has precedence over the rename in the | |
4782 | package, so the latter should be removed from the list. This is | |
4783 | currently not the case. | |
4784 | ||
4785 | - This function will incorrectly remove valid renames if | |
4786 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4787 | has been changed by an "Export" pragma. As a consequence, | |
4788 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4789 | |
14f9c5c9 | 4790 | static int |
aeb5907d JB |
4791 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4792 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4793 | { |
4794 | struct symbol *current_function; | |
0d5cff50 | 4795 | const char *current_function_name; |
4c4b4cd2 | 4796 | int i; |
aeb5907d JB |
4797 | int is_new_style_renaming; |
4798 | ||
4799 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4800 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 4801 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
4802 | is_new_style_renaming = 0; |
4803 | for (i = 0; i < nsyms; i += 1) | |
4804 | { | |
4805 | struct symbol *sym = syms[i].sym; | |
4806 | struct block *block = syms[i].block; | |
4807 | const char *name; | |
4808 | const char *suffix; | |
4809 | ||
4810 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4811 | continue; | |
4812 | name = SYMBOL_LINKAGE_NAME (sym); | |
4813 | suffix = strstr (name, "___XR"); | |
4814 | ||
4815 | if (suffix != NULL) | |
4816 | { | |
4817 | int name_len = suffix - name; | |
4818 | int j; | |
5b4ee69b | 4819 | |
aeb5907d JB |
4820 | is_new_style_renaming = 1; |
4821 | for (j = 0; j < nsyms; j += 1) | |
4822 | if (i != j && syms[j].sym != NULL | |
4823 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4824 | name_len) == 0 | |
4825 | && block == syms[j].block) | |
4826 | syms[j].sym = NULL; | |
4827 | } | |
4828 | } | |
4829 | if (is_new_style_renaming) | |
4830 | { | |
4831 | int j, k; | |
4832 | ||
4833 | for (j = k = 0; j < nsyms; j += 1) | |
4834 | if (syms[j].sym != NULL) | |
4835 | { | |
4836 | syms[k] = syms[j]; | |
4837 | k += 1; | |
4838 | } | |
4839 | return k; | |
4840 | } | |
4c4b4cd2 PH |
4841 | |
4842 | /* Extract the function name associated to CURRENT_BLOCK. | |
4843 | Abort if unable to do so. */ | |
76a01679 | 4844 | |
4c4b4cd2 PH |
4845 | if (current_block == NULL) |
4846 | return nsyms; | |
76a01679 | 4847 | |
7f0df278 | 4848 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4849 | if (current_function == NULL) |
4850 | return nsyms; | |
4851 | ||
4852 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4853 | if (current_function_name == NULL) | |
4854 | return nsyms; | |
4855 | ||
4856 | /* Check each of the symbols, and remove it from the list if it is | |
4857 | a type corresponding to a renaming that is out of the scope of | |
4858 | the current block. */ | |
4859 | ||
4860 | i = 0; | |
4861 | while (i < nsyms) | |
4862 | { | |
aeb5907d JB |
4863 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4864 | == ADA_OBJECT_RENAMING | |
4865 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4866 | { |
4867 | int j; | |
5b4ee69b | 4868 | |
aeb5907d | 4869 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4870 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4871 | nsyms -= 1; |
4872 | } | |
4873 | else | |
4874 | i += 1; | |
4875 | } | |
4876 | ||
4877 | return nsyms; | |
4878 | } | |
4879 | ||
339c13b6 JB |
4880 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4881 | whose name and domain match NAME and DOMAIN respectively. | |
4882 | If no match was found, then extend the search to "enclosing" | |
4883 | routines (in other words, if we're inside a nested function, | |
4884 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
4885 | If WILD_MATCH_P is nonzero, perform the naming matching in |
4886 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
4887 | |
4888 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4889 | ||
4890 | static void | |
4891 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4892 | struct block *block, domain_enum domain, | |
d0a8ab18 | 4893 | int wild_match_p) |
339c13b6 JB |
4894 | { |
4895 | int block_depth = 0; | |
4896 | ||
4897 | while (block != NULL) | |
4898 | { | |
4899 | block_depth += 1; | |
d0a8ab18 JB |
4900 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
4901 | wild_match_p); | |
339c13b6 JB |
4902 | |
4903 | /* If we found a non-function match, assume that's the one. */ | |
4904 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4905 | num_defns_collected (obstackp))) | |
4906 | return; | |
4907 | ||
4908 | block = BLOCK_SUPERBLOCK (block); | |
4909 | } | |
4910 | ||
4911 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4912 | enclosing subprogram. */ | |
4913 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
d0a8ab18 | 4914 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p); |
339c13b6 JB |
4915 | } |
4916 | ||
ccefe4c4 | 4917 | /* An object of this type is used as the user_data argument when |
40658b94 | 4918 | calling the map_matching_symbols method. */ |
ccefe4c4 | 4919 | |
40658b94 | 4920 | struct match_data |
ccefe4c4 | 4921 | { |
40658b94 | 4922 | struct objfile *objfile; |
ccefe4c4 | 4923 | struct obstack *obstackp; |
40658b94 PH |
4924 | struct symbol *arg_sym; |
4925 | int found_sym; | |
ccefe4c4 TT |
4926 | }; |
4927 | ||
40658b94 PH |
4928 | /* A callback for add_matching_symbols that adds SYM, found in BLOCK, |
4929 | to a list of symbols. DATA0 is a pointer to a struct match_data * | |
4930 | containing the obstack that collects the symbol list, the file that SYM | |
4931 | must come from, a flag indicating whether a non-argument symbol has | |
4932 | been found in the current block, and the last argument symbol | |
4933 | passed in SYM within the current block (if any). When SYM is null, | |
4934 | marking the end of a block, the argument symbol is added if no | |
4935 | other has been found. */ | |
ccefe4c4 | 4936 | |
40658b94 PH |
4937 | static int |
4938 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 4939 | { |
40658b94 PH |
4940 | struct match_data *data = (struct match_data *) data0; |
4941 | ||
4942 | if (sym == NULL) | |
4943 | { | |
4944 | if (!data->found_sym && data->arg_sym != NULL) | |
4945 | add_defn_to_vec (data->obstackp, | |
4946 | fixup_symbol_section (data->arg_sym, data->objfile), | |
4947 | block); | |
4948 | data->found_sym = 0; | |
4949 | data->arg_sym = NULL; | |
4950 | } | |
4951 | else | |
4952 | { | |
4953 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
4954 | return 0; | |
4955 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
4956 | data->arg_sym = sym; | |
4957 | else | |
4958 | { | |
4959 | data->found_sym = 1; | |
4960 | add_defn_to_vec (data->obstackp, | |
4961 | fixup_symbol_section (sym, data->objfile), | |
4962 | block); | |
4963 | } | |
4964 | } | |
4965 | return 0; | |
4966 | } | |
4967 | ||
4968 | /* Compare STRING1 to STRING2, with results as for strcmp. | |
4969 | Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0 | |
4970 | implies compare_names (STRING1, STRING2) (they may differ as to | |
4971 | what symbols compare equal). */ | |
5b4ee69b | 4972 | |
40658b94 PH |
4973 | static int |
4974 | compare_names (const char *string1, const char *string2) | |
4975 | { | |
4976 | while (*string1 != '\0' && *string2 != '\0') | |
4977 | { | |
4978 | if (isspace (*string1) || isspace (*string2)) | |
4979 | return strcmp_iw_ordered (string1, string2); | |
4980 | if (*string1 != *string2) | |
4981 | break; | |
4982 | string1 += 1; | |
4983 | string2 += 1; | |
4984 | } | |
4985 | switch (*string1) | |
4986 | { | |
4987 | case '(': | |
4988 | return strcmp_iw_ordered (string1, string2); | |
4989 | case '_': | |
4990 | if (*string2 == '\0') | |
4991 | { | |
052874e8 | 4992 | if (is_name_suffix (string1)) |
40658b94 PH |
4993 | return 0; |
4994 | else | |
1a1d5513 | 4995 | return 1; |
40658b94 | 4996 | } |
dbb8534f | 4997 | /* FALLTHROUGH */ |
40658b94 PH |
4998 | default: |
4999 | if (*string2 == '(') | |
5000 | return strcmp_iw_ordered (string1, string2); | |
5001 | else | |
5002 | return *string1 - *string2; | |
5003 | } | |
ccefe4c4 TT |
5004 | } |
5005 | ||
339c13b6 JB |
5006 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
5007 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
5008 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
5009 | ||
5010 | static void | |
40658b94 PH |
5011 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
5012 | domain_enum domain, int global, | |
5013 | int is_wild_match) | |
339c13b6 JB |
5014 | { |
5015 | struct objfile *objfile; | |
40658b94 | 5016 | struct match_data data; |
339c13b6 | 5017 | |
6475f2fe | 5018 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5019 | data.obstackp = obstackp; |
339c13b6 | 5020 | |
ccefe4c4 | 5021 | ALL_OBJFILES (objfile) |
40658b94 PH |
5022 | { |
5023 | data.objfile = objfile; | |
5024 | ||
5025 | if (is_wild_match) | |
5026 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
5027 | aux_add_nonlocal_symbols, &data, | |
5028 | wild_match, NULL); | |
5029 | else | |
5030 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
5031 | aux_add_nonlocal_symbols, &data, | |
5032 | full_match, compare_names); | |
5033 | } | |
5034 | ||
5035 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5036 | { | |
5037 | ALL_OBJFILES (objfile) | |
5038 | { | |
5039 | char *name1 = alloca (strlen (name) + sizeof ("_ada_")); | |
5040 | strcpy (name1, "_ada_"); | |
5041 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
5042 | data.objfile = objfile; | |
0963b4bd MS |
5043 | objfile->sf->qf->map_matching_symbols (name1, domain, |
5044 | objfile, global, | |
5045 | aux_add_nonlocal_symbols, | |
5046 | &data, | |
40658b94 PH |
5047 | full_match, compare_names); |
5048 | } | |
5049 | } | |
339c13b6 JB |
5050 | } |
5051 | ||
4c4b4cd2 | 5052 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing |
9f88c959 JB |
5053 | scope and in global scopes, returning the number of matches. |
5054 | Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples, | |
4c4b4cd2 | 5055 | indicating the symbols found and the blocks and symbol tables (if |
9f88c959 JB |
5056 | any) in which they were found. This vector are transient---good only to |
5057 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4c4b4cd2 PH |
5058 | symbol match within the nest of blocks whose innermost member is BLOCK0, |
5059 | is the one match returned (no other matches in that or | |
d9680e73 TT |
5060 | enclosing blocks is returned). If there are any matches in or |
5061 | surrounding BLOCK0, then these alone are returned. Otherwise, if | |
5062 | FULL_SEARCH is non-zero, then the search extends to global and | |
5063 | file-scope (static) symbol tables. | |
9f88c959 | 5064 | Names prefixed with "standard__" are handled specially: "standard__" |
4c4b4cd2 | 5065 | is first stripped off, and only static and global symbols are searched. */ |
14f9c5c9 AS |
5066 | |
5067 | int | |
4c4b4cd2 | 5068 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
d9680e73 TT |
5069 | domain_enum namespace, |
5070 | struct ada_symbol_info **results, | |
5071 | int full_search) | |
14f9c5c9 AS |
5072 | { |
5073 | struct symbol *sym; | |
14f9c5c9 | 5074 | struct block *block; |
4c4b4cd2 | 5075 | const char *name; |
82ccd55e | 5076 | const int wild_match_p = should_use_wild_match (name0); |
14f9c5c9 | 5077 | int cacheIfUnique; |
4c4b4cd2 | 5078 | int ndefns; |
14f9c5c9 | 5079 | |
4c4b4cd2 PH |
5080 | obstack_free (&symbol_list_obstack, NULL); |
5081 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 5082 | |
14f9c5c9 AS |
5083 | cacheIfUnique = 0; |
5084 | ||
5085 | /* Search specified block and its superiors. */ | |
5086 | ||
4c4b4cd2 | 5087 | name = name0; |
76a01679 JB |
5088 | block = (struct block *) block0; /* FIXME: No cast ought to be |
5089 | needed, but adding const will | |
5090 | have a cascade effect. */ | |
339c13b6 JB |
5091 | |
5092 | /* Special case: If the user specifies a symbol name inside package | |
5093 | Standard, do a non-wild matching of the symbol name without | |
5094 | the "standard__" prefix. This was primarily introduced in order | |
5095 | to allow the user to specifically access the standard exceptions | |
5096 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5097 | is ambiguous (due to the user defining its own Constraint_Error | |
5098 | entity inside its program). */ | |
4c4b4cd2 PH |
5099 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
5100 | { | |
4c4b4cd2 PH |
5101 | block = NULL; |
5102 | name = name0 + sizeof ("standard__") - 1; | |
5103 | } | |
5104 | ||
339c13b6 | 5105 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5106 | |
339c13b6 | 5107 | ada_add_local_symbols (&symbol_list_obstack, name, block, namespace, |
82ccd55e | 5108 | wild_match_p); |
d9680e73 | 5109 | if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search) |
14f9c5c9 | 5110 | goto done; |
d2e4a39e | 5111 | |
339c13b6 JB |
5112 | /* No non-global symbols found. Check our cache to see if we have |
5113 | already performed this search before. If we have, then return | |
5114 | the same result. */ | |
5115 | ||
14f9c5c9 | 5116 | cacheIfUnique = 1; |
2570f2b7 | 5117 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
5118 | { |
5119 | if (sym != NULL) | |
2570f2b7 | 5120 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
5121 | goto done; |
5122 | } | |
14f9c5c9 | 5123 | |
339c13b6 JB |
5124 | /* Search symbols from all global blocks. */ |
5125 | ||
40658b94 | 5126 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1, |
82ccd55e | 5127 | wild_match_p); |
d2e4a39e | 5128 | |
4c4b4cd2 | 5129 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5130 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5131 | |
4c4b4cd2 | 5132 | if (num_defns_collected (&symbol_list_obstack) == 0) |
40658b94 | 5133 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0, |
82ccd55e | 5134 | wild_match_p); |
14f9c5c9 | 5135 | |
4c4b4cd2 PH |
5136 | done: |
5137 | ndefns = num_defns_collected (&symbol_list_obstack); | |
5138 | *results = defns_collected (&symbol_list_obstack, 1); | |
5139 | ||
5140 | ndefns = remove_extra_symbols (*results, ndefns); | |
5141 | ||
2ad01556 | 5142 | if (ndefns == 0 && full_search) |
2570f2b7 | 5143 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 5144 | |
2ad01556 | 5145 | if (ndefns == 1 && full_search && cacheIfUnique) |
2570f2b7 | 5146 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 5147 | |
aeb5907d | 5148 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 5149 | |
14f9c5c9 AS |
5150 | return ndefns; |
5151 | } | |
5152 | ||
f8eba3c6 TT |
5153 | /* If NAME is the name of an entity, return a string that should |
5154 | be used to look that entity up in Ada units. This string should | |
5155 | be deallocated after use using xfree. | |
5156 | ||
5157 | NAME can have any form that the "break" or "print" commands might | |
5158 | recognize. In other words, it does not have to be the "natural" | |
5159 | name, or the "encoded" name. */ | |
5160 | ||
5161 | char * | |
5162 | ada_name_for_lookup (const char *name) | |
5163 | { | |
5164 | char *canon; | |
5165 | int nlen = strlen (name); | |
5166 | ||
5167 | if (name[0] == '<' && name[nlen - 1] == '>') | |
5168 | { | |
5169 | canon = xmalloc (nlen - 1); | |
5170 | memcpy (canon, name + 1, nlen - 2); | |
5171 | canon[nlen - 2] = '\0'; | |
5172 | } | |
5173 | else | |
5174 | canon = xstrdup (ada_encode (ada_fold_name (name))); | |
5175 | return canon; | |
5176 | } | |
5177 | ||
5178 | /* Implementation of the la_iterate_over_symbols method. */ | |
5179 | ||
5180 | static void | |
5181 | ada_iterate_over_symbols (const struct block *block, | |
5182 | const char *name, domain_enum domain, | |
8e704927 | 5183 | symbol_found_callback_ftype *callback, |
f8eba3c6 TT |
5184 | void *data) |
5185 | { | |
5186 | int ndefs, i; | |
5187 | struct ada_symbol_info *results; | |
5188 | ||
d9680e73 | 5189 | ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0); |
f8eba3c6 TT |
5190 | for (i = 0; i < ndefs; ++i) |
5191 | { | |
5192 | if (! (*callback) (results[i].sym, data)) | |
5193 | break; | |
5194 | } | |
5195 | } | |
5196 | ||
4e5c77fe JB |
5197 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5198 | to 1, but choosing the first symbol found if there are multiple | |
5199 | choices. | |
5200 | ||
5e2336be JB |
5201 | The result is stored in *INFO, which must be non-NULL. |
5202 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5203 | |
5204 | void | |
5205 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
5206 | domain_enum namespace, | |
5e2336be | 5207 | struct ada_symbol_info *info) |
14f9c5c9 | 5208 | { |
4c4b4cd2 | 5209 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
5210 | int n_candidates; |
5211 | ||
5e2336be JB |
5212 | gdb_assert (info != NULL); |
5213 | memset (info, 0, sizeof (struct ada_symbol_info)); | |
4e5c77fe JB |
5214 | |
5215 | n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates, | |
d9680e73 | 5216 | 1); |
14f9c5c9 AS |
5217 | |
5218 | if (n_candidates == 0) | |
4e5c77fe | 5219 | return; |
4c4b4cd2 | 5220 | |
5e2336be JB |
5221 | *info = candidates[0]; |
5222 | info->sym = fixup_symbol_section (info->sym, NULL); | |
4e5c77fe | 5223 | } |
aeb5907d JB |
5224 | |
5225 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5226 | scope and in global scopes, or NULL if none. NAME is folded and | |
5227 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5228 | choosing the first symbol if there are multiple choices. |
4e5c77fe JB |
5229 | If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ |
5230 | ||
aeb5907d JB |
5231 | struct symbol * |
5232 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 5233 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d | 5234 | { |
5e2336be | 5235 | struct ada_symbol_info info; |
4e5c77fe | 5236 | |
aeb5907d JB |
5237 | if (is_a_field_of_this != NULL) |
5238 | *is_a_field_of_this = 0; | |
5239 | ||
4e5c77fe | 5240 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), |
5e2336be JB |
5241 | block0, namespace, &info); |
5242 | return info.sym; | |
4c4b4cd2 | 5243 | } |
14f9c5c9 | 5244 | |
4c4b4cd2 PH |
5245 | static struct symbol * |
5246 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 | 5247 | const struct block *block, |
21b556f4 | 5248 | const domain_enum domain) |
4c4b4cd2 | 5249 | { |
94af9270 | 5250 | return ada_lookup_symbol (name, block_static_block (block), domain, NULL); |
14f9c5c9 AS |
5251 | } |
5252 | ||
5253 | ||
4c4b4cd2 PH |
5254 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5255 | that is to be ignored for matching purposes. Suffixes of parallel | |
5256 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5257 | are given by any of the regular expressions: |
4c4b4cd2 | 5258 | |
babe1480 JB |
5259 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5260 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5261 | TKB [subprogram suffix for task bodies] |
babe1480 | 5262 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5263 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5264 | |
5265 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5266 | match is performed. This sequence is used to differentiate homonyms, | |
5267 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5268 | |
14f9c5c9 | 5269 | static int |
d2e4a39e | 5270 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5271 | { |
5272 | int k; | |
4c4b4cd2 PH |
5273 | const char *matching; |
5274 | const int len = strlen (str); | |
5275 | ||
babe1480 JB |
5276 | /* Skip optional leading __[0-9]+. */ |
5277 | ||
4c4b4cd2 PH |
5278 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5279 | { | |
babe1480 JB |
5280 | str += 3; |
5281 | while (isdigit (str[0])) | |
5282 | str += 1; | |
4c4b4cd2 | 5283 | } |
babe1480 JB |
5284 | |
5285 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5286 | |
babe1480 | 5287 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5288 | { |
babe1480 | 5289 | matching = str + 1; |
4c4b4cd2 PH |
5290 | while (isdigit (matching[0])) |
5291 | matching += 1; | |
5292 | if (matching[0] == '\0') | |
5293 | return 1; | |
5294 | } | |
5295 | ||
5296 | /* ___[0-9]+ */ | |
babe1480 | 5297 | |
4c4b4cd2 PH |
5298 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5299 | { | |
5300 | matching = str + 3; | |
5301 | while (isdigit (matching[0])) | |
5302 | matching += 1; | |
5303 | if (matching[0] == '\0') | |
5304 | return 1; | |
5305 | } | |
5306 | ||
9ac7f98e JB |
5307 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5308 | ||
5309 | if (strcmp (str, "TKB") == 0) | |
5310 | return 1; | |
5311 | ||
529cad9c PH |
5312 | #if 0 |
5313 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5314 | with a N at the end. Unfortunately, the compiler uses the same |
5315 | convention for other internal types it creates. So treating | |
529cad9c | 5316 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5317 | some regressions. For instance, consider the case of an enumerated |
5318 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5319 | name ends with N. |
5320 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5321 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5322 | to be something like "_N" instead. In the meantime, do not do |
5323 | the following check. */ | |
5324 | /* Protected Object Subprograms */ | |
5325 | if (len == 1 && str [0] == 'N') | |
5326 | return 1; | |
5327 | #endif | |
5328 | ||
5329 | /* _E[0-9]+[bs]$ */ | |
5330 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5331 | { | |
5332 | matching = str + 3; | |
5333 | while (isdigit (matching[0])) | |
5334 | matching += 1; | |
5335 | if ((matching[0] == 'b' || matching[0] == 's') | |
5336 | && matching [1] == '\0') | |
5337 | return 1; | |
5338 | } | |
5339 | ||
4c4b4cd2 PH |
5340 | /* ??? We should not modify STR directly, as we are doing below. This |
5341 | is fine in this case, but may become problematic later if we find | |
5342 | that this alternative did not work, and want to try matching | |
5343 | another one from the begining of STR. Since we modified it, we | |
5344 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5345 | if (str[0] == 'X') |
5346 | { | |
5347 | str += 1; | |
d2e4a39e | 5348 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5349 | { |
5350 | if (str[0] != 'n' && str[0] != 'b') | |
5351 | return 0; | |
5352 | str += 1; | |
5353 | } | |
14f9c5c9 | 5354 | } |
babe1480 | 5355 | |
14f9c5c9 AS |
5356 | if (str[0] == '\000') |
5357 | return 1; | |
babe1480 | 5358 | |
d2e4a39e | 5359 | if (str[0] == '_') |
14f9c5c9 AS |
5360 | { |
5361 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5362 | return 0; |
d2e4a39e | 5363 | if (str[2] == '_') |
4c4b4cd2 | 5364 | { |
61ee279c PH |
5365 | if (strcmp (str + 3, "JM") == 0) |
5366 | return 1; | |
5367 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5368 | the LJM suffix in favor of the JM one. But we will | |
5369 | still accept LJM as a valid suffix for a reasonable | |
5370 | amount of time, just to allow ourselves to debug programs | |
5371 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5372 | if (strcmp (str + 3, "LJM") == 0) |
5373 | return 1; | |
5374 | if (str[3] != 'X') | |
5375 | return 0; | |
1265e4aa JB |
5376 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5377 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5378 | return 1; |
5379 | if (str[4] == 'R' && str[5] != 'T') | |
5380 | return 1; | |
5381 | return 0; | |
5382 | } | |
5383 | if (!isdigit (str[2])) | |
5384 | return 0; | |
5385 | for (k = 3; str[k] != '\0'; k += 1) | |
5386 | if (!isdigit (str[k]) && str[k] != '_') | |
5387 | return 0; | |
14f9c5c9 AS |
5388 | return 1; |
5389 | } | |
4c4b4cd2 | 5390 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5391 | { |
4c4b4cd2 PH |
5392 | for (k = 2; str[k] != '\0'; k += 1) |
5393 | if (!isdigit (str[k]) && str[k] != '_') | |
5394 | return 0; | |
14f9c5c9 AS |
5395 | return 1; |
5396 | } | |
5397 | return 0; | |
5398 | } | |
d2e4a39e | 5399 | |
aeb5907d JB |
5400 | /* Return non-zero if the string starting at NAME and ending before |
5401 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5402 | |
5403 | static int | |
5404 | is_valid_name_for_wild_match (const char *name0) | |
5405 | { | |
5406 | const char *decoded_name = ada_decode (name0); | |
5407 | int i; | |
5408 | ||
5823c3ef JB |
5409 | /* If the decoded name starts with an angle bracket, it means that |
5410 | NAME0 does not follow the GNAT encoding format. It should then | |
5411 | not be allowed as a possible wild match. */ | |
5412 | if (decoded_name[0] == '<') | |
5413 | return 0; | |
5414 | ||
529cad9c PH |
5415 | for (i=0; decoded_name[i] != '\0'; i++) |
5416 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5417 | return 0; | |
5418 | ||
5419 | return 1; | |
5420 | } | |
5421 | ||
73589123 PH |
5422 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
5423 | that could start a simple name. Assumes that *NAMEP points into | |
5424 | the string beginning at NAME0. */ | |
4c4b4cd2 | 5425 | |
14f9c5c9 | 5426 | static int |
73589123 | 5427 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 5428 | { |
73589123 | 5429 | const char *name = *namep; |
5b4ee69b | 5430 | |
5823c3ef | 5431 | while (1) |
14f9c5c9 | 5432 | { |
aa27d0b3 | 5433 | int t0, t1; |
73589123 PH |
5434 | |
5435 | t0 = *name; | |
5436 | if (t0 == '_') | |
5437 | { | |
5438 | t1 = name[1]; | |
5439 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5440 | { | |
5441 | name += 1; | |
5442 | if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0) | |
5443 | break; | |
5444 | else | |
5445 | name += 1; | |
5446 | } | |
aa27d0b3 JB |
5447 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5448 | || name[2] == target0)) | |
73589123 PH |
5449 | { |
5450 | name += 2; | |
5451 | break; | |
5452 | } | |
5453 | else | |
5454 | return 0; | |
5455 | } | |
5456 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5457 | name += 1; | |
5458 | else | |
5823c3ef | 5459 | return 0; |
73589123 PH |
5460 | } |
5461 | ||
5462 | *namep = name; | |
5463 | return 1; | |
5464 | } | |
5465 | ||
5466 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
5467 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5468 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
5469 | ||
5470 | static int | |
5471 | wild_match (const char *name, const char *patn) | |
5472 | { | |
22e048c9 | 5473 | const char *p; |
73589123 PH |
5474 | const char *name0 = name; |
5475 | ||
5476 | while (1) | |
5477 | { | |
5478 | const char *match = name; | |
5479 | ||
5480 | if (*name == *patn) | |
5481 | { | |
5482 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5483 | if (*p != *name) | |
5484 | break; | |
5485 | if (*p == '\0' && is_name_suffix (name)) | |
5486 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
5487 | ||
5488 | if (name[-1] == '_') | |
5489 | name -= 1; | |
5490 | } | |
5491 | if (!advance_wild_match (&name, name0, *patn)) | |
5492 | return 1; | |
96d887e8 | 5493 | } |
96d887e8 PH |
5494 | } |
5495 | ||
40658b94 PH |
5496 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
5497 | informational suffix. */ | |
5498 | ||
c4d840bd PH |
5499 | static int |
5500 | full_match (const char *sym_name, const char *search_name) | |
5501 | { | |
40658b94 | 5502 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
5503 | } |
5504 | ||
5505 | ||
96d887e8 PH |
5506 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5507 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 5508 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
96d887e8 PH |
5509 | OBJFILE is the section containing BLOCK. |
5510 | SYMTAB is recorded with each symbol added. */ | |
5511 | ||
5512 | static void | |
5513 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 5514 | struct block *block, const char *name, |
96d887e8 | 5515 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5516 | int wild) |
96d887e8 | 5517 | { |
8157b174 | 5518 | struct block_iterator iter; |
96d887e8 PH |
5519 | int name_len = strlen (name); |
5520 | /* A matching argument symbol, if any. */ | |
5521 | struct symbol *arg_sym; | |
5522 | /* Set true when we find a matching non-argument symbol. */ | |
5523 | int found_sym; | |
5524 | struct symbol *sym; | |
5525 | ||
5526 | arg_sym = NULL; | |
5527 | found_sym = 0; | |
5528 | if (wild) | |
5529 | { | |
8157b174 TT |
5530 | for (sym = block_iter_match_first (block, name, wild_match, &iter); |
5531 | sym != NULL; sym = block_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 5532 | { |
5eeb2539 AR |
5533 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5534 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 5535 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 5536 | { |
2a2d4dc3 AS |
5537 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5538 | continue; | |
5539 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5540 | arg_sym = sym; | |
5541 | else | |
5542 | { | |
76a01679 JB |
5543 | found_sym = 1; |
5544 | add_defn_to_vec (obstackp, | |
5545 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5546 | block); |
76a01679 JB |
5547 | } |
5548 | } | |
5549 | } | |
96d887e8 PH |
5550 | } |
5551 | else | |
5552 | { | |
8157b174 TT |
5553 | for (sym = block_iter_match_first (block, name, full_match, &iter); |
5554 | sym != NULL; sym = block_iter_match_next (name, full_match, &iter)) | |
76a01679 | 5555 | { |
5eeb2539 AR |
5556 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5557 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 5558 | { |
c4d840bd PH |
5559 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5560 | { | |
5561 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5562 | arg_sym = sym; | |
5563 | else | |
2a2d4dc3 | 5564 | { |
c4d840bd PH |
5565 | found_sym = 1; |
5566 | add_defn_to_vec (obstackp, | |
5567 | fixup_symbol_section (sym, objfile), | |
5568 | block); | |
2a2d4dc3 | 5569 | } |
c4d840bd | 5570 | } |
76a01679 JB |
5571 | } |
5572 | } | |
96d887e8 PH |
5573 | } |
5574 | ||
5575 | if (!found_sym && arg_sym != NULL) | |
5576 | { | |
76a01679 JB |
5577 | add_defn_to_vec (obstackp, |
5578 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5579 | block); |
96d887e8 PH |
5580 | } |
5581 | ||
5582 | if (!wild) | |
5583 | { | |
5584 | arg_sym = NULL; | |
5585 | found_sym = 0; | |
5586 | ||
5587 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5588 | { |
5eeb2539 AR |
5589 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5590 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5591 | { |
5592 | int cmp; | |
5593 | ||
5594 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5595 | if (cmp == 0) | |
5596 | { | |
5597 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5598 | if (cmp == 0) | |
5599 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5600 | name_len); | |
5601 | } | |
5602 | ||
5603 | if (cmp == 0 | |
5604 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5605 | { | |
2a2d4dc3 AS |
5606 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5607 | { | |
5608 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5609 | arg_sym = sym; | |
5610 | else | |
5611 | { | |
5612 | found_sym = 1; | |
5613 | add_defn_to_vec (obstackp, | |
5614 | fixup_symbol_section (sym, objfile), | |
5615 | block); | |
5616 | } | |
5617 | } | |
76a01679 JB |
5618 | } |
5619 | } | |
76a01679 | 5620 | } |
96d887e8 PH |
5621 | |
5622 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5623 | They aren't parameters, right? */ | |
5624 | if (!found_sym && arg_sym != NULL) | |
5625 | { | |
5626 | add_defn_to_vec (obstackp, | |
76a01679 | 5627 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5628 | block); |
96d887e8 PH |
5629 | } |
5630 | } | |
5631 | } | |
5632 | \f | |
41d27058 JB |
5633 | |
5634 | /* Symbol Completion */ | |
5635 | ||
5636 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5637 | name in a form that's appropriate for the completion. The result | |
5638 | does not need to be deallocated, but is only good until the next call. | |
5639 | ||
5640 | TEXT_LEN is equal to the length of TEXT. | |
e701b3c0 | 5641 | Perform a wild match if WILD_MATCH_P is set. |
6ea35997 | 5642 | ENCODED_P should be set if TEXT represents the start of a symbol name |
41d27058 JB |
5643 | in its encoded form. */ |
5644 | ||
5645 | static const char * | |
5646 | symbol_completion_match (const char *sym_name, | |
5647 | const char *text, int text_len, | |
6ea35997 | 5648 | int wild_match_p, int encoded_p) |
41d27058 | 5649 | { |
41d27058 JB |
5650 | const int verbatim_match = (text[0] == '<'); |
5651 | int match = 0; | |
5652 | ||
5653 | if (verbatim_match) | |
5654 | { | |
5655 | /* Strip the leading angle bracket. */ | |
5656 | text = text + 1; | |
5657 | text_len--; | |
5658 | } | |
5659 | ||
5660 | /* First, test against the fully qualified name of the symbol. */ | |
5661 | ||
5662 | if (strncmp (sym_name, text, text_len) == 0) | |
5663 | match = 1; | |
5664 | ||
6ea35997 | 5665 | if (match && !encoded_p) |
41d27058 JB |
5666 | { |
5667 | /* One needed check before declaring a positive match is to verify | |
5668 | that iff we are doing a verbatim match, the decoded version | |
5669 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5670 | is not a suitable completion. */ | |
5671 | const char *sym_name_copy = sym_name; | |
5672 | int has_angle_bracket; | |
5673 | ||
5674 | sym_name = ada_decode (sym_name); | |
5675 | has_angle_bracket = (sym_name[0] == '<'); | |
5676 | match = (has_angle_bracket == verbatim_match); | |
5677 | sym_name = sym_name_copy; | |
5678 | } | |
5679 | ||
5680 | if (match && !verbatim_match) | |
5681 | { | |
5682 | /* When doing non-verbatim match, another check that needs to | |
5683 | be done is to verify that the potentially matching symbol name | |
5684 | does not include capital letters, because the ada-mode would | |
5685 | not be able to understand these symbol names without the | |
5686 | angle bracket notation. */ | |
5687 | const char *tmp; | |
5688 | ||
5689 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5690 | if (*tmp != '\0') | |
5691 | match = 0; | |
5692 | } | |
5693 | ||
5694 | /* Second: Try wild matching... */ | |
5695 | ||
e701b3c0 | 5696 | if (!match && wild_match_p) |
41d27058 JB |
5697 | { |
5698 | /* Since we are doing wild matching, this means that TEXT | |
5699 | may represent an unqualified symbol name. We therefore must | |
5700 | also compare TEXT against the unqualified name of the symbol. */ | |
5701 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5702 | ||
5703 | if (strncmp (sym_name, text, text_len) == 0) | |
5704 | match = 1; | |
5705 | } | |
5706 | ||
5707 | /* Finally: If we found a mach, prepare the result to return. */ | |
5708 | ||
5709 | if (!match) | |
5710 | return NULL; | |
5711 | ||
5712 | if (verbatim_match) | |
5713 | sym_name = add_angle_brackets (sym_name); | |
5714 | ||
6ea35997 | 5715 | if (!encoded_p) |
41d27058 JB |
5716 | sym_name = ada_decode (sym_name); |
5717 | ||
5718 | return sym_name; | |
5719 | } | |
5720 | ||
5721 | /* A companion function to ada_make_symbol_completion_list(). | |
5722 | Check if SYM_NAME represents a symbol which name would be suitable | |
5723 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5724 | it is appended at the end of the given string vector SV. | |
5725 | ||
5726 | ORIG_TEXT is the string original string from the user command | |
5727 | that needs to be completed. WORD is the entire command on which | |
5728 | completion should be performed. These two parameters are used to | |
5729 | determine which part of the symbol name should be added to the | |
5730 | completion vector. | |
c0af1706 | 5731 | if WILD_MATCH_P is set, then wild matching is performed. |
cb8e9b97 | 5732 | ENCODED_P should be set if TEXT represents a symbol name in its |
41d27058 JB |
5733 | encoded formed (in which case the completion should also be |
5734 | encoded). */ | |
5735 | ||
5736 | static void | |
d6565258 | 5737 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5738 | const char *sym_name, |
5739 | const char *text, int text_len, | |
5740 | const char *orig_text, const char *word, | |
cb8e9b97 | 5741 | int wild_match_p, int encoded_p) |
41d27058 JB |
5742 | { |
5743 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
cb8e9b97 | 5744 | wild_match_p, encoded_p); |
41d27058 JB |
5745 | char *completion; |
5746 | ||
5747 | if (match == NULL) | |
5748 | return; | |
5749 | ||
5750 | /* We found a match, so add the appropriate completion to the given | |
5751 | string vector. */ | |
5752 | ||
5753 | if (word == orig_text) | |
5754 | { | |
5755 | completion = xmalloc (strlen (match) + 5); | |
5756 | strcpy (completion, match); | |
5757 | } | |
5758 | else if (word > orig_text) | |
5759 | { | |
5760 | /* Return some portion of sym_name. */ | |
5761 | completion = xmalloc (strlen (match) + 5); | |
5762 | strcpy (completion, match + (word - orig_text)); | |
5763 | } | |
5764 | else | |
5765 | { | |
5766 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5767 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5768 | strncpy (completion, word, orig_text - word); | |
5769 | completion[orig_text - word] = '\0'; | |
5770 | strcat (completion, match); | |
5771 | } | |
5772 | ||
d6565258 | 5773 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5774 | } |
5775 | ||
ccefe4c4 | 5776 | /* An object of this type is passed as the user_data argument to the |
7b08b9eb | 5777 | expand_partial_symbol_names method. */ |
ccefe4c4 TT |
5778 | struct add_partial_datum |
5779 | { | |
5780 | VEC(char_ptr) **completions; | |
5781 | char *text; | |
5782 | int text_len; | |
5783 | char *text0; | |
5784 | char *word; | |
5785 | int wild_match; | |
5786 | int encoded; | |
5787 | }; | |
5788 | ||
7b08b9eb JK |
5789 | /* A callback for expand_partial_symbol_names. */ |
5790 | static int | |
e078317b | 5791 | ada_expand_partial_symbol_name (const char *name, void *user_data) |
ccefe4c4 TT |
5792 | { |
5793 | struct add_partial_datum *data = user_data; | |
7b08b9eb JK |
5794 | |
5795 | return symbol_completion_match (name, data->text, data->text_len, | |
5796 | data->wild_match, data->encoded) != NULL; | |
ccefe4c4 TT |
5797 | } |
5798 | ||
49c4e619 TT |
5799 | /* Return a list of possible symbol names completing TEXT0. WORD is |
5800 | the entire command on which completion is made. */ | |
41d27058 | 5801 | |
49c4e619 | 5802 | static VEC (char_ptr) * |
41d27058 JB |
5803 | ada_make_symbol_completion_list (char *text0, char *word) |
5804 | { | |
5805 | char *text; | |
5806 | int text_len; | |
b1ed564a JB |
5807 | int wild_match_p; |
5808 | int encoded_p; | |
2ba95b9b | 5809 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5810 | struct symbol *sym; |
5811 | struct symtab *s; | |
41d27058 JB |
5812 | struct minimal_symbol *msymbol; |
5813 | struct objfile *objfile; | |
5814 | struct block *b, *surrounding_static_block = 0; | |
5815 | int i; | |
8157b174 | 5816 | struct block_iterator iter; |
41d27058 JB |
5817 | |
5818 | if (text0[0] == '<') | |
5819 | { | |
5820 | text = xstrdup (text0); | |
5821 | make_cleanup (xfree, text); | |
5822 | text_len = strlen (text); | |
b1ed564a JB |
5823 | wild_match_p = 0; |
5824 | encoded_p = 1; | |
41d27058 JB |
5825 | } |
5826 | else | |
5827 | { | |
5828 | text = xstrdup (ada_encode (text0)); | |
5829 | make_cleanup (xfree, text); | |
5830 | text_len = strlen (text); | |
5831 | for (i = 0; i < text_len; i++) | |
5832 | text[i] = tolower (text[i]); | |
5833 | ||
b1ed564a | 5834 | encoded_p = (strstr (text0, "__") != NULL); |
41d27058 JB |
5835 | /* If the name contains a ".", then the user is entering a fully |
5836 | qualified entity name, and the match must not be done in wild | |
5837 | mode. Similarly, if the user wants to complete what looks like | |
5838 | an encoded name, the match must not be done in wild mode. */ | |
b1ed564a | 5839 | wild_match_p = (strchr (text0, '.') == NULL && !encoded_p); |
41d27058 JB |
5840 | } |
5841 | ||
5842 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 5843 | { |
ccefe4c4 TT |
5844 | struct add_partial_datum data; |
5845 | ||
5846 | data.completions = &completions; | |
5847 | data.text = text; | |
5848 | data.text_len = text_len; | |
5849 | data.text0 = text0; | |
5850 | data.word = word; | |
b1ed564a JB |
5851 | data.wild_match = wild_match_p; |
5852 | data.encoded = encoded_p; | |
7b08b9eb | 5853 | expand_partial_symbol_names (ada_expand_partial_symbol_name, &data); |
41d27058 JB |
5854 | } |
5855 | ||
5856 | /* At this point scan through the misc symbol vectors and add each | |
5857 | symbol you find to the list. Eventually we want to ignore | |
5858 | anything that isn't a text symbol (everything else will be | |
5859 | handled by the psymtab code above). */ | |
5860 | ||
5861 | ALL_MSYMBOLS (objfile, msymbol) | |
5862 | { | |
5863 | QUIT; | |
d6565258 | 5864 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
b1ed564a JB |
5865 | text, text_len, text0, word, wild_match_p, |
5866 | encoded_p); | |
41d27058 JB |
5867 | } |
5868 | ||
5869 | /* Search upwards from currently selected frame (so that we can | |
5870 | complete on local vars. */ | |
5871 | ||
5872 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5873 | { | |
5874 | if (!BLOCK_SUPERBLOCK (b)) | |
5875 | surrounding_static_block = b; /* For elmin of dups */ | |
5876 | ||
5877 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5878 | { | |
d6565258 | 5879 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 5880 | text, text_len, text0, word, |
b1ed564a | 5881 | wild_match_p, encoded_p); |
41d27058 JB |
5882 | } |
5883 | } | |
5884 | ||
5885 | /* Go through the symtabs and check the externs and statics for | |
5886 | symbols which match. */ | |
5887 | ||
5888 | ALL_SYMTABS (objfile, s) | |
5889 | { | |
5890 | QUIT; | |
5891 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5892 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5893 | { | |
d6565258 | 5894 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 5895 | text, text_len, text0, word, |
b1ed564a | 5896 | wild_match_p, encoded_p); |
41d27058 JB |
5897 | } |
5898 | } | |
5899 | ||
5900 | ALL_SYMTABS (objfile, s) | |
5901 | { | |
5902 | QUIT; | |
5903 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5904 | /* Don't do this block twice. */ | |
5905 | if (b == surrounding_static_block) | |
5906 | continue; | |
5907 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5908 | { | |
d6565258 | 5909 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 5910 | text, text_len, text0, word, |
b1ed564a | 5911 | wild_match_p, encoded_p); |
41d27058 JB |
5912 | } |
5913 | } | |
5914 | ||
49c4e619 | 5915 | return completions; |
41d27058 JB |
5916 | } |
5917 | ||
963a6417 | 5918 | /* Field Access */ |
96d887e8 | 5919 | |
73fb9985 JB |
5920 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5921 | for tagged types. */ | |
5922 | ||
5923 | static int | |
5924 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5925 | { | |
0d5cff50 | 5926 | const char *name; |
73fb9985 JB |
5927 | |
5928 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5929 | return 0; | |
5930 | ||
5931 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5932 | if (name == NULL) | |
5933 | return 0; | |
5934 | ||
5935 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5936 | } | |
5937 | ||
963a6417 PH |
5938 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5939 | to be invisible to users. */ | |
96d887e8 | 5940 | |
963a6417 PH |
5941 | int |
5942 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5943 | { |
963a6417 PH |
5944 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5945 | return 1; | |
ffde82bf | 5946 | |
73fb9985 JB |
5947 | /* Check the name of that field. */ |
5948 | { | |
5949 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5950 | ||
5951 | /* Anonymous field names should not be printed. | |
5952 | brobecker/2007-02-20: I don't think this can actually happen | |
5953 | but we don't want to print the value of annonymous fields anyway. */ | |
5954 | if (name == NULL) | |
5955 | return 1; | |
5956 | ||
ffde82bf JB |
5957 | /* Normally, fields whose name start with an underscore ("_") |
5958 | are fields that have been internally generated by the compiler, | |
5959 | and thus should not be printed. The "_parent" field is special, | |
5960 | however: This is a field internally generated by the compiler | |
5961 | for tagged types, and it contains the components inherited from | |
5962 | the parent type. This field should not be printed as is, but | |
5963 | should not be ignored either. */ | |
73fb9985 JB |
5964 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) |
5965 | return 1; | |
5966 | } | |
5967 | ||
5968 | /* If this is the dispatch table of a tagged type, then ignore. */ | |
5969 | if (ada_is_tagged_type (type, 1) | |
5970 | && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) | |
5971 | return 1; | |
5972 | ||
5973 | /* Not a special field, so it should not be ignored. */ | |
5974 | return 0; | |
963a6417 | 5975 | } |
96d887e8 | 5976 | |
963a6417 | 5977 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 5978 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 5979 | |
963a6417 PH |
5980 | int |
5981 | ada_is_tagged_type (struct type *type, int refok) | |
5982 | { | |
5983 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
5984 | } | |
96d887e8 | 5985 | |
963a6417 | 5986 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5987 | |
963a6417 PH |
5988 | int |
5989 | ada_is_tag_type (struct type *type) | |
5990 | { | |
5991 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
5992 | return 0; | |
5993 | else | |
96d887e8 | 5994 | { |
963a6417 | 5995 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 5996 | |
963a6417 PH |
5997 | return (name != NULL |
5998 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 5999 | } |
96d887e8 PH |
6000 | } |
6001 | ||
963a6417 | 6002 | /* The type of the tag on VAL. */ |
76a01679 | 6003 | |
963a6417 PH |
6004 | struct type * |
6005 | ada_tag_type (struct value *val) | |
96d887e8 | 6006 | { |
df407dfe | 6007 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 6008 | } |
96d887e8 | 6009 | |
963a6417 | 6010 | /* The value of the tag on VAL. */ |
96d887e8 | 6011 | |
963a6417 PH |
6012 | struct value * |
6013 | ada_value_tag (struct value *val) | |
6014 | { | |
03ee6b2e | 6015 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6016 | } |
6017 | ||
963a6417 PH |
6018 | /* The value of the tag on the object of type TYPE whose contents are |
6019 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6020 | ADDRESS. */ |
96d887e8 | 6021 | |
963a6417 | 6022 | static struct value * |
10a2c479 | 6023 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6024 | const gdb_byte *valaddr, |
963a6417 | 6025 | CORE_ADDR address) |
96d887e8 | 6026 | { |
b5385fc0 | 6027 | int tag_byte_offset; |
963a6417 | 6028 | struct type *tag_type; |
5b4ee69b | 6029 | |
963a6417 | 6030 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6031 | NULL, NULL, NULL)) |
96d887e8 | 6032 | { |
fc1a4b47 | 6033 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6034 | ? NULL |
6035 | : valaddr + tag_byte_offset); | |
963a6417 | 6036 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6037 | |
963a6417 | 6038 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6039 | } |
963a6417 PH |
6040 | return NULL; |
6041 | } | |
96d887e8 | 6042 | |
963a6417 PH |
6043 | static struct type * |
6044 | type_from_tag (struct value *tag) | |
6045 | { | |
6046 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6047 | |
963a6417 PH |
6048 | if (type_name != NULL) |
6049 | return ada_find_any_type (ada_encode (type_name)); | |
6050 | return NULL; | |
6051 | } | |
96d887e8 | 6052 | |
1b611343 JB |
6053 | /* Return the "ada__tags__type_specific_data" type. */ |
6054 | ||
6055 | static struct type * | |
6056 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6057 | { |
1b611343 | 6058 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6059 | |
1b611343 JB |
6060 | if (data->tsd_type == 0) |
6061 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6062 | return data->tsd_type; | |
6063 | } | |
529cad9c | 6064 | |
1b611343 JB |
6065 | /* Return the TSD (type-specific data) associated to the given TAG. |
6066 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6067 | |
1b611343 | 6068 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6069 | |
1b611343 JB |
6070 | static struct value * |
6071 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6072 | { |
4c4b4cd2 | 6073 | struct value *val; |
1b611343 | 6074 | struct type *type; |
5b4ee69b | 6075 | |
1b611343 JB |
6076 | /* First option: The TSD is simply stored as a field of our TAG. |
6077 | Only older versions of GNAT would use this format, but we have | |
6078 | to test it first, because there are no visible markers for | |
6079 | the current approach except the absence of that field. */ | |
529cad9c | 6080 | |
1b611343 JB |
6081 | val = ada_value_struct_elt (tag, "tsd", 1); |
6082 | if (val) | |
6083 | return val; | |
e802dbe0 | 6084 | |
1b611343 JB |
6085 | /* Try the second representation for the dispatch table (in which |
6086 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6087 | and instead the tsd pointer is stored just before the dispatch | |
6088 | table. */ | |
e802dbe0 | 6089 | |
1b611343 JB |
6090 | type = ada_get_tsd_type (current_inferior()); |
6091 | if (type == NULL) | |
6092 | return NULL; | |
6093 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6094 | val = value_cast (type, tag); | |
6095 | if (val == NULL) | |
6096 | return NULL; | |
6097 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6098 | } |
6099 | ||
1b611343 JB |
6100 | /* Given the TSD of a tag (type-specific data), return a string |
6101 | containing the name of the associated type. | |
6102 | ||
6103 | The returned value is good until the next call. May return NULL | |
6104 | if we are unable to determine the tag name. */ | |
6105 | ||
6106 | static char * | |
6107 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6108 | { |
529cad9c PH |
6109 | static char name[1024]; |
6110 | char *p; | |
1b611343 | 6111 | struct value *val; |
529cad9c | 6112 | |
1b611343 | 6113 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6114 | if (val == NULL) |
1b611343 | 6115 | return NULL; |
4c4b4cd2 PH |
6116 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6117 | for (p = name; *p != '\0'; p += 1) | |
6118 | if (isalpha (*p)) | |
6119 | *p = tolower (*p); | |
1b611343 | 6120 | return name; |
4c4b4cd2 PH |
6121 | } |
6122 | ||
6123 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6124 | a C string. |
6125 | ||
6126 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6127 | determine the name of that tag. The result is good until the next | |
6128 | call. */ | |
4c4b4cd2 PH |
6129 | |
6130 | const char * | |
6131 | ada_tag_name (struct value *tag) | |
6132 | { | |
1b611343 JB |
6133 | volatile struct gdb_exception e; |
6134 | char *name = NULL; | |
5b4ee69b | 6135 | |
df407dfe | 6136 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6137 | return NULL; |
1b611343 JB |
6138 | |
6139 | /* It is perfectly possible that an exception be raised while trying | |
6140 | to determine the TAG's name, even under normal circumstances: | |
6141 | The associated variable may be uninitialized or corrupted, for | |
6142 | instance. We do not let any exception propagate past this point. | |
6143 | instead we return NULL. | |
6144 | ||
6145 | We also do not print the error message either (which often is very | |
6146 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6147 | the caller print a more meaningful message if necessary. */ | |
6148 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
6149 | { | |
6150 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6151 | ||
6152 | if (tsd != NULL) | |
6153 | name = ada_tag_name_from_tsd (tsd); | |
6154 | } | |
6155 | ||
6156 | return name; | |
4c4b4cd2 PH |
6157 | } |
6158 | ||
6159 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6160 | |
d2e4a39e | 6161 | struct type * |
ebf56fd3 | 6162 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6163 | { |
6164 | int i; | |
6165 | ||
61ee279c | 6166 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6167 | |
6168 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6169 | return NULL; | |
6170 | ||
6171 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6172 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6173 | { |
6174 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6175 | ||
6176 | /* If the _parent field is a pointer, then dereference it. */ | |
6177 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6178 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6179 | /* If there is a parallel XVS type, get the actual base type. */ | |
6180 | parent_type = ada_get_base_type (parent_type); | |
6181 | ||
6182 | return ada_check_typedef (parent_type); | |
6183 | } | |
14f9c5c9 AS |
6184 | |
6185 | return NULL; | |
6186 | } | |
6187 | ||
4c4b4cd2 PH |
6188 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6189 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6190 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6191 | |
6192 | int | |
ebf56fd3 | 6193 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6194 | { |
61ee279c | 6195 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6196 | |
4c4b4cd2 PH |
6197 | return (name != NULL |
6198 | && (strncmp (name, "PARENT", 6) == 0 | |
6199 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
6200 | } |
6201 | ||
4c4b4cd2 | 6202 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6203 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6204 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6205 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6206 | structures. */ |
14f9c5c9 AS |
6207 | |
6208 | int | |
ebf56fd3 | 6209 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6210 | { |
d2e4a39e | 6211 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6212 | |
d2e4a39e | 6213 | return (name != NULL |
4c4b4cd2 PH |
6214 | && (strncmp (name, "PARENT", 6) == 0 |
6215 | || strcmp (name, "REP") == 0 | |
6216 | || strncmp (name, "_parent", 7) == 0 | |
6217 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
6218 | } |
6219 | ||
4c4b4cd2 PH |
6220 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6221 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6222 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6223 | |
6224 | int | |
ebf56fd3 | 6225 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6226 | { |
d2e4a39e | 6227 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6228 | |
14f9c5c9 | 6229 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6230 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6231 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6232 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6233 | } |
6234 | ||
6235 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6236 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6237 | returns the type of the controlling discriminant for the variant. |
6238 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6239 | |
d2e4a39e | 6240 | struct type * |
ebf56fd3 | 6241 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6242 | { |
d2e4a39e | 6243 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6244 | |
7c964f07 | 6245 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
6246 | } |
6247 | ||
4c4b4cd2 | 6248 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6249 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6250 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
6251 | |
6252 | int | |
ebf56fd3 | 6253 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6254 | { |
d2e4a39e | 6255 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6256 | |
14f9c5c9 AS |
6257 | return (name != NULL && name[0] == 'O'); |
6258 | } | |
6259 | ||
6260 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
6261 | returns the name of the discriminant controlling the variant. |
6262 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 6263 | |
d2e4a39e | 6264 | char * |
ebf56fd3 | 6265 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 6266 | { |
d2e4a39e | 6267 | static char *result = NULL; |
14f9c5c9 | 6268 | static size_t result_len = 0; |
d2e4a39e AS |
6269 | struct type *type; |
6270 | const char *name; | |
6271 | const char *discrim_end; | |
6272 | const char *discrim_start; | |
14f9c5c9 AS |
6273 | |
6274 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
6275 | type = TYPE_TARGET_TYPE (type0); | |
6276 | else | |
6277 | type = type0; | |
6278 | ||
6279 | name = ada_type_name (type); | |
6280 | ||
6281 | if (name == NULL || name[0] == '\000') | |
6282 | return ""; | |
6283 | ||
6284 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6285 | discrim_end -= 1) | |
6286 | { | |
4c4b4cd2 PH |
6287 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
6288 | break; | |
14f9c5c9 AS |
6289 | } |
6290 | if (discrim_end == name) | |
6291 | return ""; | |
6292 | ||
d2e4a39e | 6293 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6294 | discrim_start -= 1) |
6295 | { | |
d2e4a39e | 6296 | if (discrim_start == name + 1) |
4c4b4cd2 | 6297 | return ""; |
76a01679 | 6298 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
6299 | && strncmp (discrim_start - 3, "___", 3) == 0) |
6300 | || discrim_start[-1] == '.') | |
6301 | break; | |
14f9c5c9 AS |
6302 | } |
6303 | ||
6304 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
6305 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 6306 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
6307 | return result; |
6308 | } | |
6309 | ||
4c4b4cd2 PH |
6310 | /* Scan STR for a subtype-encoded number, beginning at position K. |
6311 | Put the position of the character just past the number scanned in | |
6312 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
6313 | Return 1 if there was a valid number at the given position, and 0 | |
6314 | otherwise. A "subtype-encoded" number consists of the absolute value | |
6315 | in decimal, followed by the letter 'm' to indicate a negative number. | |
6316 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
6317 | |
6318 | int | |
d2e4a39e | 6319 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
6320 | { |
6321 | ULONGEST RU; | |
6322 | ||
d2e4a39e | 6323 | if (!isdigit (str[k])) |
14f9c5c9 AS |
6324 | return 0; |
6325 | ||
4c4b4cd2 | 6326 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 6327 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 6328 | LONGEST. */ |
14f9c5c9 AS |
6329 | RU = 0; |
6330 | while (isdigit (str[k])) | |
6331 | { | |
d2e4a39e | 6332 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
6333 | k += 1; |
6334 | } | |
6335 | ||
d2e4a39e | 6336 | if (str[k] == 'm') |
14f9c5c9 AS |
6337 | { |
6338 | if (R != NULL) | |
4c4b4cd2 | 6339 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
6340 | k += 1; |
6341 | } | |
6342 | else if (R != NULL) | |
6343 | *R = (LONGEST) RU; | |
6344 | ||
4c4b4cd2 | 6345 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6346 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6347 | number representable as a LONGEST (although either would probably work | |
6348 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6349 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6350 | |
6351 | if (new_k != NULL) | |
6352 | *new_k = k; | |
6353 | return 1; | |
6354 | } | |
6355 | ||
4c4b4cd2 PH |
6356 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6357 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6358 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6359 | |
d2e4a39e | 6360 | int |
ebf56fd3 | 6361 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6362 | { |
d2e4a39e | 6363 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6364 | int p; |
6365 | ||
6366 | p = 0; | |
6367 | while (1) | |
6368 | { | |
d2e4a39e | 6369 | switch (name[p]) |
4c4b4cd2 PH |
6370 | { |
6371 | case '\0': | |
6372 | return 0; | |
6373 | case 'S': | |
6374 | { | |
6375 | LONGEST W; | |
5b4ee69b | 6376 | |
4c4b4cd2 PH |
6377 | if (!ada_scan_number (name, p + 1, &W, &p)) |
6378 | return 0; | |
6379 | if (val == W) | |
6380 | return 1; | |
6381 | break; | |
6382 | } | |
6383 | case 'R': | |
6384 | { | |
6385 | LONGEST L, U; | |
5b4ee69b | 6386 | |
4c4b4cd2 PH |
6387 | if (!ada_scan_number (name, p + 1, &L, &p) |
6388 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6389 | return 0; | |
6390 | if (val >= L && val <= U) | |
6391 | return 1; | |
6392 | break; | |
6393 | } | |
6394 | case 'O': | |
6395 | return 1; | |
6396 | default: | |
6397 | return 0; | |
6398 | } | |
6399 | } | |
6400 | } | |
6401 | ||
0963b4bd | 6402 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
6403 | |
6404 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6405 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6406 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6407 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6408 | |
4c4b4cd2 | 6409 | static struct value * |
d2e4a39e | 6410 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6411 | struct type *arg_type) |
14f9c5c9 | 6412 | { |
14f9c5c9 AS |
6413 | struct type *type; |
6414 | ||
61ee279c | 6415 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
6416 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
6417 | ||
4c4b4cd2 | 6418 | /* Handle packed fields. */ |
14f9c5c9 AS |
6419 | |
6420 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
6421 | { | |
6422 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6423 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6424 | |
0fd88904 | 6425 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6426 | offset + bit_pos / 8, |
6427 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6428 | } |
6429 | else | |
6430 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6431 | } | |
6432 | ||
52ce6436 PH |
6433 | /* Find field with name NAME in object of type TYPE. If found, |
6434 | set the following for each argument that is non-null: | |
6435 | - *FIELD_TYPE_P to the field's type; | |
6436 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6437 | an object of that type; | |
6438 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6439 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6440 | 0 otherwise; | |
6441 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6442 | fields up to but not including the desired field, or by the total | |
6443 | number of fields if not found. A NULL value of NAME never | |
6444 | matches; the function just counts visible fields in this case. | |
6445 | ||
0963b4bd | 6446 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 6447 | |
4c4b4cd2 | 6448 | static int |
0d5cff50 | 6449 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 6450 | struct type **field_type_p, |
52ce6436 PH |
6451 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6452 | int *index_p) | |
4c4b4cd2 PH |
6453 | { |
6454 | int i; | |
6455 | ||
61ee279c | 6456 | type = ada_check_typedef (type); |
76a01679 | 6457 | |
52ce6436 PH |
6458 | if (field_type_p != NULL) |
6459 | *field_type_p = NULL; | |
6460 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6461 | *byte_offset_p = 0; |
52ce6436 PH |
6462 | if (bit_offset_p != NULL) |
6463 | *bit_offset_p = 0; | |
6464 | if (bit_size_p != NULL) | |
6465 | *bit_size_p = 0; | |
6466 | ||
6467 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6468 | { |
6469 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6470 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 6471 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 6472 | |
4c4b4cd2 PH |
6473 | if (t_field_name == NULL) |
6474 | continue; | |
6475 | ||
52ce6436 | 6476 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6477 | { |
6478 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 6479 | |
52ce6436 PH |
6480 | if (field_type_p != NULL) |
6481 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6482 | if (byte_offset_p != NULL) | |
6483 | *byte_offset_p = fld_offset; | |
6484 | if (bit_offset_p != NULL) | |
6485 | *bit_offset_p = bit_pos % 8; | |
6486 | if (bit_size_p != NULL) | |
6487 | *bit_size_p = bit_size; | |
76a01679 JB |
6488 | return 1; |
6489 | } | |
4c4b4cd2 PH |
6490 | else if (ada_is_wrapper_field (type, i)) |
6491 | { | |
52ce6436 PH |
6492 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6493 | field_type_p, byte_offset_p, bit_offset_p, | |
6494 | bit_size_p, index_p)) | |
76a01679 JB |
6495 | return 1; |
6496 | } | |
4c4b4cd2 PH |
6497 | else if (ada_is_variant_part (type, i)) |
6498 | { | |
52ce6436 PH |
6499 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6500 | fixed type?? */ | |
4c4b4cd2 | 6501 | int j; |
52ce6436 PH |
6502 | struct type *field_type |
6503 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6504 | |
52ce6436 | 6505 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6506 | { |
76a01679 JB |
6507 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6508 | fld_offset | |
6509 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6510 | field_type_p, byte_offset_p, | |
52ce6436 | 6511 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6512 | return 1; |
4c4b4cd2 PH |
6513 | } |
6514 | } | |
52ce6436 PH |
6515 | else if (index_p != NULL) |
6516 | *index_p += 1; | |
4c4b4cd2 PH |
6517 | } |
6518 | return 0; | |
6519 | } | |
6520 | ||
0963b4bd | 6521 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6522 | |
52ce6436 PH |
6523 | static int |
6524 | num_visible_fields (struct type *type) | |
6525 | { | |
6526 | int n; | |
5b4ee69b | 6527 | |
52ce6436 PH |
6528 | n = 0; |
6529 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6530 | return n; | |
6531 | } | |
14f9c5c9 | 6532 | |
4c4b4cd2 | 6533 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6534 | and search in it assuming it has (class) type TYPE. |
6535 | If found, return value, else return NULL. | |
6536 | ||
4c4b4cd2 | 6537 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 6538 | |
4c4b4cd2 | 6539 | static struct value * |
d2e4a39e | 6540 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 6541 | struct type *type) |
14f9c5c9 AS |
6542 | { |
6543 | int i; | |
14f9c5c9 | 6544 | |
5b4ee69b | 6545 | type = ada_check_typedef (type); |
52ce6436 | 6546 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 6547 | { |
0d5cff50 | 6548 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
6549 | |
6550 | if (t_field_name == NULL) | |
4c4b4cd2 | 6551 | continue; |
14f9c5c9 AS |
6552 | |
6553 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 6554 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
6555 | |
6556 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 6557 | { |
0963b4bd | 6558 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
6559 | ada_search_struct_field (name, arg, |
6560 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6561 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6562 | |
4c4b4cd2 PH |
6563 | if (v != NULL) |
6564 | return v; | |
6565 | } | |
14f9c5c9 AS |
6566 | |
6567 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 6568 | { |
0963b4bd | 6569 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 6570 | int j; |
5b4ee69b MS |
6571 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6572 | i)); | |
4c4b4cd2 PH |
6573 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6574 | ||
52ce6436 | 6575 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6576 | { |
0963b4bd MS |
6577 | struct value *v = ada_search_struct_field /* Force line |
6578 | break. */ | |
06d5cf63 JB |
6579 | (name, arg, |
6580 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6581 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 6582 | |
4c4b4cd2 PH |
6583 | if (v != NULL) |
6584 | return v; | |
6585 | } | |
6586 | } | |
14f9c5c9 AS |
6587 | } |
6588 | return NULL; | |
6589 | } | |
d2e4a39e | 6590 | |
52ce6436 PH |
6591 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6592 | int, struct type *); | |
6593 | ||
6594 | ||
6595 | /* Return field #INDEX in ARG, where the index is that returned by | |
6596 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6597 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 6598 | * If found, return value, else return NULL. */ |
52ce6436 PH |
6599 | |
6600 | static struct value * | |
6601 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6602 | struct type *type) | |
6603 | { | |
6604 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6605 | } | |
6606 | ||
6607 | ||
6608 | /* Auxiliary function for ada_index_struct_field. Like | |
6609 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 6610 | * *INDEX_P. */ |
52ce6436 PH |
6611 | |
6612 | static struct value * | |
6613 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6614 | struct type *type) | |
6615 | { | |
6616 | int i; | |
6617 | type = ada_check_typedef (type); | |
6618 | ||
6619 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6620 | { | |
6621 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6622 | continue; | |
6623 | else if (ada_is_wrapper_field (type, i)) | |
6624 | { | |
0963b4bd | 6625 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
6626 | ada_index_struct_field_1 (index_p, arg, |
6627 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6628 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6629 | |
52ce6436 PH |
6630 | if (v != NULL) |
6631 | return v; | |
6632 | } | |
6633 | ||
6634 | else if (ada_is_variant_part (type, i)) | |
6635 | { | |
6636 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 6637 | find_struct_field. */ |
52ce6436 PH |
6638 | error (_("Cannot assign this kind of variant record")); |
6639 | } | |
6640 | else if (*index_p == 0) | |
6641 | return ada_value_primitive_field (arg, offset, i, type); | |
6642 | else | |
6643 | *index_p -= 1; | |
6644 | } | |
6645 | return NULL; | |
6646 | } | |
6647 | ||
4c4b4cd2 PH |
6648 | /* Given ARG, a value of type (pointer or reference to a)* |
6649 | structure/union, extract the component named NAME from the ultimate | |
6650 | target structure/union and return it as a value with its | |
f5938064 | 6651 | appropriate type. |
14f9c5c9 | 6652 | |
4c4b4cd2 PH |
6653 | The routine searches for NAME among all members of the structure itself |
6654 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6655 | (e.g., '_parent'). |
6656 | ||
03ee6b2e PH |
6657 | If NO_ERR, then simply return NULL in case of error, rather than |
6658 | calling error. */ | |
14f9c5c9 | 6659 | |
d2e4a39e | 6660 | struct value * |
03ee6b2e | 6661 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6662 | { |
4c4b4cd2 | 6663 | struct type *t, *t1; |
d2e4a39e | 6664 | struct value *v; |
14f9c5c9 | 6665 | |
4c4b4cd2 | 6666 | v = NULL; |
df407dfe | 6667 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6668 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6669 | { | |
6670 | t1 = TYPE_TARGET_TYPE (t); | |
6671 | if (t1 == NULL) | |
03ee6b2e | 6672 | goto BadValue; |
61ee279c | 6673 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6674 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6675 | { |
994b9211 | 6676 | arg = coerce_ref (arg); |
76a01679 JB |
6677 | t = t1; |
6678 | } | |
4c4b4cd2 | 6679 | } |
14f9c5c9 | 6680 | |
4c4b4cd2 PH |
6681 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6682 | { | |
6683 | t1 = TYPE_TARGET_TYPE (t); | |
6684 | if (t1 == NULL) | |
03ee6b2e | 6685 | goto BadValue; |
61ee279c | 6686 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6687 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6688 | { |
6689 | arg = value_ind (arg); | |
6690 | t = t1; | |
6691 | } | |
4c4b4cd2 | 6692 | else |
76a01679 | 6693 | break; |
4c4b4cd2 | 6694 | } |
14f9c5c9 | 6695 | |
4c4b4cd2 | 6696 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6697 | goto BadValue; |
14f9c5c9 | 6698 | |
4c4b4cd2 PH |
6699 | if (t1 == t) |
6700 | v = ada_search_struct_field (name, arg, 0, t); | |
6701 | else | |
6702 | { | |
6703 | int bit_offset, bit_size, byte_offset; | |
6704 | struct type *field_type; | |
6705 | CORE_ADDR address; | |
6706 | ||
76a01679 JB |
6707 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
6708 | address = value_as_address (arg); | |
4c4b4cd2 | 6709 | else |
0fd88904 | 6710 | address = unpack_pointer (t, value_contents (arg)); |
14f9c5c9 | 6711 | |
1ed6ede0 | 6712 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6713 | if (find_struct_field (name, t1, 0, |
6714 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6715 | &bit_size, NULL)) |
76a01679 JB |
6716 | { |
6717 | if (bit_size != 0) | |
6718 | { | |
714e53ab PH |
6719 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6720 | arg = ada_coerce_ref (arg); | |
6721 | else | |
6722 | arg = ada_value_ind (arg); | |
76a01679 JB |
6723 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6724 | bit_offset, bit_size, | |
6725 | field_type); | |
6726 | } | |
6727 | else | |
f5938064 | 6728 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6729 | } |
6730 | } | |
6731 | ||
03ee6b2e PH |
6732 | if (v != NULL || no_err) |
6733 | return v; | |
6734 | else | |
323e0a4a | 6735 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6736 | |
03ee6b2e PH |
6737 | BadValue: |
6738 | if (no_err) | |
6739 | return NULL; | |
6740 | else | |
0963b4bd MS |
6741 | error (_("Attempt to extract a component of " |
6742 | "a value that is not a record.")); | |
14f9c5c9 AS |
6743 | } |
6744 | ||
6745 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6746 | If DISPP is non-null, add its byte displacement from the beginning of a |
6747 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6748 | work for packed fields). |
6749 | ||
6750 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6751 | followed by "___". |
14f9c5c9 | 6752 | |
0963b4bd | 6753 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
6754 | be a (pointer or reference)+ to a struct or union, and the |
6755 | ultimate target type will be searched. | |
14f9c5c9 AS |
6756 | |
6757 | Looks recursively into variant clauses and parent types. | |
6758 | ||
4c4b4cd2 PH |
6759 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6760 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6761 | |
4c4b4cd2 | 6762 | static struct type * |
76a01679 JB |
6763 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6764 | int noerr, int *dispp) | |
14f9c5c9 AS |
6765 | { |
6766 | int i; | |
6767 | ||
6768 | if (name == NULL) | |
6769 | goto BadName; | |
6770 | ||
76a01679 | 6771 | if (refok && type != NULL) |
4c4b4cd2 PH |
6772 | while (1) |
6773 | { | |
61ee279c | 6774 | type = ada_check_typedef (type); |
76a01679 JB |
6775 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6776 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6777 | break; | |
6778 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6779 | } |
14f9c5c9 | 6780 | |
76a01679 | 6781 | if (type == NULL |
1265e4aa JB |
6782 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6783 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6784 | { |
4c4b4cd2 | 6785 | if (noerr) |
76a01679 | 6786 | return NULL; |
4c4b4cd2 | 6787 | else |
76a01679 JB |
6788 | { |
6789 | target_terminal_ours (); | |
6790 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6791 | if (type == NULL) |
6792 | error (_("Type (null) is not a structure or union type")); | |
6793 | else | |
6794 | { | |
6795 | /* XXX: type_sprint */ | |
6796 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6797 | type_print (type, "", gdb_stderr, -1); | |
6798 | error (_(" is not a structure or union type")); | |
6799 | } | |
76a01679 | 6800 | } |
14f9c5c9 AS |
6801 | } |
6802 | ||
6803 | type = to_static_fixed_type (type); | |
6804 | ||
6805 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6806 | { | |
0d5cff50 | 6807 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
6808 | struct type *t; |
6809 | int disp; | |
d2e4a39e | 6810 | |
14f9c5c9 | 6811 | if (t_field_name == NULL) |
4c4b4cd2 | 6812 | continue; |
14f9c5c9 AS |
6813 | |
6814 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6815 | { |
6816 | if (dispp != NULL) | |
6817 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6818 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6819 | } |
14f9c5c9 AS |
6820 | |
6821 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6822 | { |
6823 | disp = 0; | |
6824 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6825 | 0, 1, &disp); | |
6826 | if (t != NULL) | |
6827 | { | |
6828 | if (dispp != NULL) | |
6829 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6830 | return t; | |
6831 | } | |
6832 | } | |
14f9c5c9 AS |
6833 | |
6834 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6835 | { |
6836 | int j; | |
5b4ee69b MS |
6837 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6838 | i)); | |
4c4b4cd2 PH |
6839 | |
6840 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6841 | { | |
b1f33ddd JB |
6842 | /* FIXME pnh 2008/01/26: We check for a field that is |
6843 | NOT wrapped in a struct, since the compiler sometimes | |
6844 | generates these for unchecked variant types. Revisit | |
0963b4bd | 6845 | if the compiler changes this practice. */ |
0d5cff50 | 6846 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 6847 | disp = 0; |
b1f33ddd JB |
6848 | if (v_field_name != NULL |
6849 | && field_name_match (v_field_name, name)) | |
6850 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
6851 | else | |
0963b4bd MS |
6852 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
6853 | j), | |
b1f33ddd JB |
6854 | name, 0, 1, &disp); |
6855 | ||
4c4b4cd2 PH |
6856 | if (t != NULL) |
6857 | { | |
6858 | if (dispp != NULL) | |
6859 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6860 | return t; | |
6861 | } | |
6862 | } | |
6863 | } | |
14f9c5c9 AS |
6864 | |
6865 | } | |
6866 | ||
6867 | BadName: | |
d2e4a39e | 6868 | if (!noerr) |
14f9c5c9 AS |
6869 | { |
6870 | target_terminal_ours (); | |
6871 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6872 | if (name == NULL) |
6873 | { | |
6874 | /* XXX: type_sprint */ | |
6875 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6876 | type_print (type, "", gdb_stderr, -1); | |
6877 | error (_(" has no component named <null>")); | |
6878 | } | |
6879 | else | |
6880 | { | |
6881 | /* XXX: type_sprint */ | |
6882 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6883 | type_print (type, "", gdb_stderr, -1); | |
6884 | error (_(" has no component named %s"), name); | |
6885 | } | |
14f9c5c9 AS |
6886 | } |
6887 | ||
6888 | return NULL; | |
6889 | } | |
6890 | ||
b1f33ddd JB |
6891 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6892 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
6893 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 6894 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
6895 | |
6896 | static int | |
6897 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
6898 | { | |
6899 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 6900 | |
b1f33ddd JB |
6901 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
6902 | == NULL); | |
6903 | } | |
6904 | ||
6905 | ||
14f9c5c9 AS |
6906 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6907 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
6908 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
6909 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 6910 | |
d2e4a39e | 6911 | int |
ebf56fd3 | 6912 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 6913 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
6914 | { |
6915 | int others_clause; | |
6916 | int i; | |
d2e4a39e | 6917 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
6918 | struct value *outer; |
6919 | struct value *discrim; | |
14f9c5c9 AS |
6920 | LONGEST discrim_val; |
6921 | ||
0c281816 JB |
6922 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
6923 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
6924 | if (discrim == NULL) | |
14f9c5c9 | 6925 | return -1; |
0c281816 | 6926 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
6927 | |
6928 | others_clause = -1; | |
6929 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
6930 | { | |
6931 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 6932 | others_clause = i; |
14f9c5c9 | 6933 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 6934 | return i; |
14f9c5c9 AS |
6935 | } |
6936 | ||
6937 | return others_clause; | |
6938 | } | |
d2e4a39e | 6939 | \f |
14f9c5c9 AS |
6940 | |
6941 | ||
4c4b4cd2 | 6942 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
6943 | |
6944 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
6945 | (i.e., a size that is not statically recorded in the debugging | |
6946 | data) does not accurately reflect the size or layout of the value. | |
6947 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 6948 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
6949 | |
6950 | /* There is a subtle and tricky problem here. In general, we cannot | |
6951 | determine the size of dynamic records without its data. However, | |
6952 | the 'struct value' data structure, which GDB uses to represent | |
6953 | quantities in the inferior process (the target), requires the size | |
6954 | of the type at the time of its allocation in order to reserve space | |
6955 | for GDB's internal copy of the data. That's why the | |
6956 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 6957 | rather than struct value*s. |
14f9c5c9 AS |
6958 | |
6959 | However, GDB's internal history variables ($1, $2, etc.) are | |
6960 | struct value*s containing internal copies of the data that are not, in | |
6961 | general, the same as the data at their corresponding addresses in | |
6962 | the target. Fortunately, the types we give to these values are all | |
6963 | conventional, fixed-size types (as per the strategy described | |
6964 | above), so that we don't usually have to perform the | |
6965 | 'to_fixed_xxx_type' conversions to look at their values. | |
6966 | Unfortunately, there is one exception: if one of the internal | |
6967 | history variables is an array whose elements are unconstrained | |
6968 | records, then we will need to create distinct fixed types for each | |
6969 | element selected. */ | |
6970 | ||
6971 | /* The upshot of all of this is that many routines take a (type, host | |
6972 | address, target address) triple as arguments to represent a value. | |
6973 | The host address, if non-null, is supposed to contain an internal | |
6974 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 6975 | target at the target address. */ |
14f9c5c9 AS |
6976 | |
6977 | /* Assuming that VAL0 represents a pointer value, the result of | |
6978 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 6979 | dynamic-sized types. */ |
14f9c5c9 | 6980 | |
d2e4a39e AS |
6981 | struct value * |
6982 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 6983 | { |
c48db5ca | 6984 | struct value *val = value_ind (val0); |
5b4ee69b | 6985 | |
4c4b4cd2 | 6986 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
6987 | } |
6988 | ||
6989 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
6990 | qualifiers on VAL0. */ |
6991 | ||
d2e4a39e AS |
6992 | static struct value * |
6993 | ada_coerce_ref (struct value *val0) | |
6994 | { | |
df407dfe | 6995 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
6996 | { |
6997 | struct value *val = val0; | |
5b4ee69b | 6998 | |
994b9211 | 6999 | val = coerce_ref (val); |
4c4b4cd2 | 7000 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7001 | } |
7002 | else | |
14f9c5c9 AS |
7003 | return val0; |
7004 | } | |
7005 | ||
7006 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7007 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7008 | |
7009 | static unsigned int | |
ebf56fd3 | 7010 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7011 | { |
7012 | return (off + alignment - 1) & ~(alignment - 1); | |
7013 | } | |
7014 | ||
4c4b4cd2 | 7015 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7016 | |
7017 | static unsigned int | |
ebf56fd3 | 7018 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7019 | { |
d2e4a39e | 7020 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7021 | int len; |
14f9c5c9 AS |
7022 | int align_offset; |
7023 | ||
64a1bf19 JB |
7024 | /* The field name should never be null, unless the debugging information |
7025 | is somehow malformed. In this case, we assume the field does not | |
7026 | require any alignment. */ | |
7027 | if (name == NULL) | |
7028 | return 1; | |
7029 | ||
7030 | len = strlen (name); | |
7031 | ||
4c4b4cd2 PH |
7032 | if (!isdigit (name[len - 1])) |
7033 | return 1; | |
14f9c5c9 | 7034 | |
d2e4a39e | 7035 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7036 | align_offset = len - 2; |
7037 | else | |
7038 | align_offset = len - 1; | |
7039 | ||
4c4b4cd2 | 7040 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
7041 | return TARGET_CHAR_BIT; |
7042 | ||
4c4b4cd2 PH |
7043 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7044 | } | |
7045 | ||
852dff6c | 7046 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7047 | |
852dff6c JB |
7048 | static struct symbol * |
7049 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7050 | { |
7051 | struct symbol *sym; | |
7052 | ||
7053 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
7054 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
7055 | return sym; | |
7056 | ||
7057 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
7058 | return sym; | |
14f9c5c9 AS |
7059 | } |
7060 | ||
dddfab26 UW |
7061 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7062 | solely for types defined by debug info, it will not search the GDB | |
7063 | primitive types. */ | |
4c4b4cd2 | 7064 | |
852dff6c | 7065 | static struct type * |
ebf56fd3 | 7066 | ada_find_any_type (const char *name) |
14f9c5c9 | 7067 | { |
852dff6c | 7068 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7069 | |
14f9c5c9 | 7070 | if (sym != NULL) |
dddfab26 | 7071 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7072 | |
dddfab26 | 7073 | return NULL; |
14f9c5c9 AS |
7074 | } |
7075 | ||
739593e0 JB |
7076 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7077 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7078 | symbol, in which case it is returned. Otherwise, this looks for | |
7079 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7080 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 PH |
7081 | |
7082 | struct symbol * | |
739593e0 | 7083 | ada_find_renaming_symbol (struct symbol *name_sym, struct block *block) |
aeb5907d | 7084 | { |
739593e0 | 7085 | const char *name = SYMBOL_LINKAGE_NAME (name_sym); |
aeb5907d JB |
7086 | struct symbol *sym; |
7087 | ||
739593e0 JB |
7088 | if (strstr (name, "___XR") != NULL) |
7089 | return name_sym; | |
7090 | ||
aeb5907d JB |
7091 | sym = find_old_style_renaming_symbol (name, block); |
7092 | ||
7093 | if (sym != NULL) | |
7094 | return sym; | |
7095 | ||
0963b4bd | 7096 | /* Not right yet. FIXME pnh 7/20/2007. */ |
852dff6c | 7097 | sym = ada_find_any_type_symbol (name); |
aeb5907d JB |
7098 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) |
7099 | return sym; | |
7100 | else | |
7101 | return NULL; | |
7102 | } | |
7103 | ||
7104 | static struct symbol * | |
7105 | find_old_style_renaming_symbol (const char *name, struct block *block) | |
4c4b4cd2 | 7106 | { |
7f0df278 | 7107 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7108 | char *rename; |
7109 | ||
7110 | if (function_sym != NULL) | |
7111 | { | |
7112 | /* If the symbol is defined inside a function, NAME is not fully | |
7113 | qualified. This means we need to prepend the function name | |
7114 | as well as adding the ``___XR'' suffix to build the name of | |
7115 | the associated renaming symbol. */ | |
0d5cff50 | 7116 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
7117 | /* Function names sometimes contain suffixes used |
7118 | for instance to qualify nested subprograms. When building | |
7119 | the XR type name, we need to make sure that this suffix is | |
7120 | not included. So do not include any suffix in the function | |
7121 | name length below. */ | |
69fadcdf | 7122 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
7123 | const int rename_len = function_name_len + 2 /* "__" */ |
7124 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 7125 | |
529cad9c | 7126 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
7127 | ada_remove_trailing_digits (function_name, &function_name_len); |
7128 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
7129 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 7130 | |
4c4b4cd2 PH |
7131 | /* Library-level functions are a special case, as GNAT adds |
7132 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 7133 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
7134 | have this prefix, so we need to skip this prefix if present. */ |
7135 | if (function_name_len > 5 /* "_ada_" */ | |
7136 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
7137 | { |
7138 | function_name += 5; | |
7139 | function_name_len -= 5; | |
7140 | } | |
4c4b4cd2 PH |
7141 | |
7142 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
7143 | strncpy (rename, function_name, function_name_len); |
7144 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
7145 | "__%s___XR", name); | |
4c4b4cd2 PH |
7146 | } |
7147 | else | |
7148 | { | |
7149 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 7150 | |
4c4b4cd2 | 7151 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7152 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7153 | } |
7154 | ||
852dff6c | 7155 | return ada_find_any_type_symbol (rename); |
4c4b4cd2 PH |
7156 | } |
7157 | ||
14f9c5c9 | 7158 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7159 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7160 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7161 | otherwise return 0. */ |
7162 | ||
14f9c5c9 | 7163 | int |
d2e4a39e | 7164 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7165 | { |
7166 | if (type1 == NULL) | |
7167 | return 1; | |
7168 | else if (type0 == NULL) | |
7169 | return 0; | |
7170 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7171 | return 1; | |
7172 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7173 | return 0; | |
4c4b4cd2 PH |
7174 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7175 | return 1; | |
ad82864c | 7176 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7177 | return 1; |
4c4b4cd2 PH |
7178 | else if (ada_is_array_descriptor_type (type0) |
7179 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7180 | return 1; |
aeb5907d JB |
7181 | else |
7182 | { | |
7183 | const char *type0_name = type_name_no_tag (type0); | |
7184 | const char *type1_name = type_name_no_tag (type1); | |
7185 | ||
7186 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7187 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7188 | return 1; | |
7189 | } | |
14f9c5c9 AS |
7190 | return 0; |
7191 | } | |
7192 | ||
7193 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
7194 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
7195 | ||
0d5cff50 | 7196 | const char * |
d2e4a39e | 7197 | ada_type_name (struct type *type) |
14f9c5c9 | 7198 | { |
d2e4a39e | 7199 | if (type == NULL) |
14f9c5c9 AS |
7200 | return NULL; |
7201 | else if (TYPE_NAME (type) != NULL) | |
7202 | return TYPE_NAME (type); | |
7203 | else | |
7204 | return TYPE_TAG_NAME (type); | |
7205 | } | |
7206 | ||
b4ba55a1 JB |
7207 | /* Search the list of "descriptive" types associated to TYPE for a type |
7208 | whose name is NAME. */ | |
7209 | ||
7210 | static struct type * | |
7211 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
7212 | { | |
7213 | struct type *result; | |
7214 | ||
7215 | /* If there no descriptive-type info, then there is no parallel type | |
7216 | to be found. */ | |
7217 | if (!HAVE_GNAT_AUX_INFO (type)) | |
7218 | return NULL; | |
7219 | ||
7220 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
7221 | while (result != NULL) | |
7222 | { | |
0d5cff50 | 7223 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
7224 | |
7225 | if (result_name == NULL) | |
7226 | { | |
7227 | warning (_("unexpected null name on descriptive type")); | |
7228 | return NULL; | |
7229 | } | |
7230 | ||
7231 | /* If the names match, stop. */ | |
7232 | if (strcmp (result_name, name) == 0) | |
7233 | break; | |
7234 | ||
7235 | /* Otherwise, look at the next item on the list, if any. */ | |
7236 | if (HAVE_GNAT_AUX_INFO (result)) | |
7237 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
7238 | else | |
7239 | result = NULL; | |
7240 | } | |
7241 | ||
7242 | /* If we didn't find a match, see whether this is a packed array. With | |
7243 | older compilers, the descriptive type information is either absent or | |
7244 | irrelevant when it comes to packed arrays so the above lookup fails. | |
7245 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 7246 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
7247 | return ada_find_any_type (name); |
7248 | ||
7249 | return result; | |
7250 | } | |
7251 | ||
7252 | /* Find a parallel type to TYPE with the specified NAME, using the | |
7253 | descriptive type taken from the debugging information, if available, | |
7254 | and otherwise using the (slower) name-based method. */ | |
7255 | ||
7256 | static struct type * | |
7257 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
7258 | { | |
7259 | struct type *result = NULL; | |
7260 | ||
7261 | if (HAVE_GNAT_AUX_INFO (type)) | |
7262 | result = find_parallel_type_by_descriptive_type (type, name); | |
7263 | else | |
7264 | result = ada_find_any_type (name); | |
7265 | ||
7266 | return result; | |
7267 | } | |
7268 | ||
7269 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 7270 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 7271 | |
d2e4a39e | 7272 | struct type * |
ebf56fd3 | 7273 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 7274 | { |
0d5cff50 DE |
7275 | char *name; |
7276 | const char *typename = ada_type_name (type); | |
14f9c5c9 | 7277 | int len; |
d2e4a39e | 7278 | |
14f9c5c9 AS |
7279 | if (typename == NULL) |
7280 | return NULL; | |
7281 | ||
7282 | len = strlen (typename); | |
7283 | ||
b4ba55a1 | 7284 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 AS |
7285 | |
7286 | strcpy (name, typename); | |
7287 | strcpy (name + len, suffix); | |
7288 | ||
b4ba55a1 | 7289 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
7290 | } |
7291 | ||
14f9c5c9 | 7292 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 7293 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 7294 | |
d2e4a39e AS |
7295 | static struct type * |
7296 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 7297 | { |
61ee279c | 7298 | type = ada_check_typedef (type); |
14f9c5c9 AS |
7299 | |
7300 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 7301 | || ada_type_name (type) == NULL) |
14f9c5c9 | 7302 | return NULL; |
d2e4a39e | 7303 | else |
14f9c5c9 AS |
7304 | { |
7305 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 7306 | |
4c4b4cd2 PH |
7307 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
7308 | return type; | |
14f9c5c9 | 7309 | else |
4c4b4cd2 | 7310 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
7311 | } |
7312 | } | |
7313 | ||
7314 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 7315 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 7316 | |
d2e4a39e AS |
7317 | static int |
7318 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
7319 | { |
7320 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 7321 | |
d2e4a39e | 7322 | return name != NULL |
14f9c5c9 AS |
7323 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
7324 | && strstr (name, "___XVL") != NULL; | |
7325 | } | |
7326 | ||
4c4b4cd2 PH |
7327 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
7328 | represent a variant record type. */ | |
14f9c5c9 | 7329 | |
d2e4a39e | 7330 | static int |
4c4b4cd2 | 7331 | variant_field_index (struct type *type) |
14f9c5c9 AS |
7332 | { |
7333 | int f; | |
7334 | ||
4c4b4cd2 PH |
7335 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
7336 | return -1; | |
7337 | ||
7338 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
7339 | { | |
7340 | if (ada_is_variant_part (type, f)) | |
7341 | return f; | |
7342 | } | |
7343 | return -1; | |
14f9c5c9 AS |
7344 | } |
7345 | ||
4c4b4cd2 PH |
7346 | /* A record type with no fields. */ |
7347 | ||
d2e4a39e | 7348 | static struct type * |
e9bb382b | 7349 | empty_record (struct type *template) |
14f9c5c9 | 7350 | { |
e9bb382b | 7351 | struct type *type = alloc_type_copy (template); |
5b4ee69b | 7352 | |
14f9c5c9 AS |
7353 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
7354 | TYPE_NFIELDS (type) = 0; | |
7355 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 7356 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
7357 | TYPE_NAME (type) = "<empty>"; |
7358 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
7359 | TYPE_LENGTH (type) = 0; |
7360 | return type; | |
7361 | } | |
7362 | ||
7363 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
7364 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
7365 | the beginning of this section) VAL according to GNAT conventions. | |
7366 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 7367 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
7368 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
7369 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 7370 | of the variant. |
14f9c5c9 | 7371 | |
4c4b4cd2 PH |
7372 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
7373 | length are not statically known are discarded. As a consequence, | |
7374 | VALADDR, ADDRESS and DVAL0 are ignored. | |
7375 | ||
7376 | NOTE: Limitations: For now, we assume that dynamic fields and | |
7377 | variants occupy whole numbers of bytes. However, they need not be | |
7378 | byte-aligned. */ | |
7379 | ||
7380 | struct type * | |
10a2c479 | 7381 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 7382 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
7383 | CORE_ADDR address, struct value *dval0, |
7384 | int keep_dynamic_fields) | |
14f9c5c9 | 7385 | { |
d2e4a39e AS |
7386 | struct value *mark = value_mark (); |
7387 | struct value *dval; | |
7388 | struct type *rtype; | |
14f9c5c9 | 7389 | int nfields, bit_len; |
4c4b4cd2 | 7390 | int variant_field; |
14f9c5c9 | 7391 | long off; |
d94e4f4f | 7392 | int fld_bit_len; |
14f9c5c9 AS |
7393 | int f; |
7394 | ||
4c4b4cd2 PH |
7395 | /* Compute the number of fields in this record type that are going |
7396 | to be processed: unless keep_dynamic_fields, this includes only | |
7397 | fields whose position and length are static will be processed. */ | |
7398 | if (keep_dynamic_fields) | |
7399 | nfields = TYPE_NFIELDS (type); | |
7400 | else | |
7401 | { | |
7402 | nfields = 0; | |
76a01679 | 7403 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
7404 | && !ada_is_variant_part (type, nfields) |
7405 | && !is_dynamic_field (type, nfields)) | |
7406 | nfields++; | |
7407 | } | |
7408 | ||
e9bb382b | 7409 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
7410 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
7411 | INIT_CPLUS_SPECIFIC (rtype); | |
7412 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 7413 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
7414 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
7415 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
7416 | TYPE_NAME (rtype) = ada_type_name (type); | |
7417 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7418 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 7419 | |
d2e4a39e AS |
7420 | off = 0; |
7421 | bit_len = 0; | |
4c4b4cd2 PH |
7422 | variant_field = -1; |
7423 | ||
14f9c5c9 AS |
7424 | for (f = 0; f < nfields; f += 1) |
7425 | { | |
6c038f32 PH |
7426 | off = align_value (off, field_alignment (type, f)) |
7427 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 7428 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 7429 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 7430 | |
d2e4a39e | 7431 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
7432 | { |
7433 | variant_field = f; | |
d94e4f4f | 7434 | fld_bit_len = 0; |
4c4b4cd2 | 7435 | } |
14f9c5c9 | 7436 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 7437 | { |
284614f0 JB |
7438 | const gdb_byte *field_valaddr = valaddr; |
7439 | CORE_ADDR field_address = address; | |
7440 | struct type *field_type = | |
7441 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
7442 | ||
4c4b4cd2 | 7443 | if (dval0 == NULL) |
b5304971 JG |
7444 | { |
7445 | /* rtype's length is computed based on the run-time | |
7446 | value of discriminants. If the discriminants are not | |
7447 | initialized, the type size may be completely bogus and | |
0963b4bd | 7448 | GDB may fail to allocate a value for it. So check the |
b5304971 JG |
7449 | size first before creating the value. */ |
7450 | check_size (rtype); | |
7451 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7452 | } | |
4c4b4cd2 PH |
7453 | else |
7454 | dval = dval0; | |
7455 | ||
284614f0 JB |
7456 | /* If the type referenced by this field is an aligner type, we need |
7457 | to unwrap that aligner type, because its size might not be set. | |
7458 | Keeping the aligner type would cause us to compute the wrong | |
7459 | size for this field, impacting the offset of the all the fields | |
7460 | that follow this one. */ | |
7461 | if (ada_is_aligner_type (field_type)) | |
7462 | { | |
7463 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
7464 | ||
7465 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
7466 | field_address = cond_offset_target (field_address, field_offset); | |
7467 | field_type = ada_aligned_type (field_type); | |
7468 | } | |
7469 | ||
7470 | field_valaddr = cond_offset_host (field_valaddr, | |
7471 | off / TARGET_CHAR_BIT); | |
7472 | field_address = cond_offset_target (field_address, | |
7473 | off / TARGET_CHAR_BIT); | |
7474 | ||
7475 | /* Get the fixed type of the field. Note that, in this case, | |
7476 | we do not want to get the real type out of the tag: if | |
7477 | the current field is the parent part of a tagged record, | |
7478 | we will get the tag of the object. Clearly wrong: the real | |
7479 | type of the parent is not the real type of the child. We | |
7480 | would end up in an infinite loop. */ | |
7481 | field_type = ada_get_base_type (field_type); | |
7482 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
7483 | field_address, dval, 0); | |
27f2a97b JB |
7484 | /* If the field size is already larger than the maximum |
7485 | object size, then the record itself will necessarily | |
7486 | be larger than the maximum object size. We need to make | |
7487 | this check now, because the size might be so ridiculously | |
7488 | large (due to an uninitialized variable in the inferior) | |
7489 | that it would cause an overflow when adding it to the | |
7490 | record size. */ | |
7491 | check_size (field_type); | |
284614f0 JB |
7492 | |
7493 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 7494 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
7495 | /* The multiplication can potentially overflow. But because |
7496 | the field length has been size-checked just above, and | |
7497 | assuming that the maximum size is a reasonable value, | |
7498 | an overflow should not happen in practice. So rather than | |
7499 | adding overflow recovery code to this already complex code, | |
7500 | we just assume that it's not going to happen. */ | |
d94e4f4f | 7501 | fld_bit_len = |
4c4b4cd2 PH |
7502 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
7503 | } | |
14f9c5c9 | 7504 | else |
4c4b4cd2 | 7505 | { |
9f0dec2d JB |
7506 | struct type *field_type = TYPE_FIELD_TYPE (type, f); |
7507 | ||
720d1a40 JB |
7508 | /* If our field is a typedef type (most likely a typedef of |
7509 | a fat pointer, encoding an array access), then we need to | |
7510 | look at its target type to determine its characteristics. | |
7511 | In particular, we would miscompute the field size if we took | |
7512 | the size of the typedef (zero), instead of the size of | |
7513 | the target type. */ | |
7514 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
7515 | field_type = ada_typedef_target_type (field_type); | |
7516 | ||
9f0dec2d | 7517 | TYPE_FIELD_TYPE (rtype, f) = field_type; |
4c4b4cd2 PH |
7518 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
7519 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 7520 | fld_bit_len = |
4c4b4cd2 PH |
7521 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
7522 | else | |
d94e4f4f | 7523 | fld_bit_len = |
9f0dec2d | 7524 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; |
4c4b4cd2 | 7525 | } |
14f9c5c9 | 7526 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 7527 | bit_len = off + fld_bit_len; |
d94e4f4f | 7528 | off += fld_bit_len; |
4c4b4cd2 PH |
7529 | TYPE_LENGTH (rtype) = |
7530 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 7531 | } |
4c4b4cd2 PH |
7532 | |
7533 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 7534 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
7535 | the record. This can happen in the presence of representation |
7536 | clauses. */ | |
7537 | if (variant_field >= 0) | |
7538 | { | |
7539 | struct type *branch_type; | |
7540 | ||
7541 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
7542 | ||
7543 | if (dval0 == NULL) | |
7544 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7545 | else | |
7546 | dval = dval0; | |
7547 | ||
7548 | branch_type = | |
7549 | to_fixed_variant_branch_type | |
7550 | (TYPE_FIELD_TYPE (type, variant_field), | |
7551 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
7552 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
7553 | if (branch_type == NULL) | |
7554 | { | |
7555 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
7556 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
7557 | TYPE_NFIELDS (rtype) -= 1; | |
7558 | } | |
7559 | else | |
7560 | { | |
7561 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
7562 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7563 | fld_bit_len = | |
7564 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
7565 | TARGET_CHAR_BIT; | |
7566 | if (off + fld_bit_len > bit_len) | |
7567 | bit_len = off + fld_bit_len; | |
7568 | TYPE_LENGTH (rtype) = | |
7569 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
7570 | } | |
7571 | } | |
7572 | ||
714e53ab PH |
7573 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
7574 | should contain the alignment of that record, which should be a strictly | |
7575 | positive value. If null or negative, then something is wrong, most | |
7576 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 7577 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
7578 | the current RTYPE length might be good enough for our purposes. */ |
7579 | if (TYPE_LENGTH (type) <= 0) | |
7580 | { | |
323e0a4a AC |
7581 | if (TYPE_NAME (rtype)) |
7582 | warning (_("Invalid type size for `%s' detected: %d."), | |
7583 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
7584 | else | |
7585 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
7586 | TYPE_LENGTH (type)); | |
714e53ab PH |
7587 | } |
7588 | else | |
7589 | { | |
7590 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
7591 | TYPE_LENGTH (type)); | |
7592 | } | |
14f9c5c9 AS |
7593 | |
7594 | value_free_to_mark (mark); | |
d2e4a39e | 7595 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 7596 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7597 | return rtype; |
7598 | } | |
7599 | ||
4c4b4cd2 PH |
7600 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
7601 | of 1. */ | |
14f9c5c9 | 7602 | |
d2e4a39e | 7603 | static struct type * |
fc1a4b47 | 7604 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
7605 | CORE_ADDR address, struct value *dval0) |
7606 | { | |
7607 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
7608 | address, dval0, 1); | |
7609 | } | |
7610 | ||
7611 | /* An ordinary record type in which ___XVL-convention fields and | |
7612 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
7613 | static approximations, containing all possible fields. Uses | |
7614 | no runtime values. Useless for use in values, but that's OK, | |
7615 | since the results are used only for type determinations. Works on both | |
7616 | structs and unions. Representation note: to save space, we memorize | |
7617 | the result of this function in the TYPE_TARGET_TYPE of the | |
7618 | template type. */ | |
7619 | ||
7620 | static struct type * | |
7621 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
7622 | { |
7623 | struct type *type; | |
7624 | int nfields; | |
7625 | int f; | |
7626 | ||
4c4b4cd2 PH |
7627 | if (TYPE_TARGET_TYPE (type0) != NULL) |
7628 | return TYPE_TARGET_TYPE (type0); | |
7629 | ||
7630 | nfields = TYPE_NFIELDS (type0); | |
7631 | type = type0; | |
14f9c5c9 AS |
7632 | |
7633 | for (f = 0; f < nfields; f += 1) | |
7634 | { | |
61ee279c | 7635 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 7636 | struct type *new_type; |
14f9c5c9 | 7637 | |
4c4b4cd2 PH |
7638 | if (is_dynamic_field (type0, f)) |
7639 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 7640 | else |
f192137b | 7641 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
7642 | if (type == type0 && new_type != field_type) |
7643 | { | |
e9bb382b | 7644 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
7645 | TYPE_CODE (type) = TYPE_CODE (type0); |
7646 | INIT_CPLUS_SPECIFIC (type); | |
7647 | TYPE_NFIELDS (type) = nfields; | |
7648 | TYPE_FIELDS (type) = (struct field *) | |
7649 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
7650 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
7651 | sizeof (struct field) * nfields); | |
7652 | TYPE_NAME (type) = ada_type_name (type0); | |
7653 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 7654 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
7655 | TYPE_LENGTH (type) = 0; |
7656 | } | |
7657 | TYPE_FIELD_TYPE (type, f) = new_type; | |
7658 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 7659 | } |
14f9c5c9 AS |
7660 | return type; |
7661 | } | |
7662 | ||
4c4b4cd2 | 7663 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
7664 | whose address in memory is ADDRESS, returns a revision of TYPE, |
7665 | which should be a non-dynamic-sized record, in which the variant | |
7666 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
7667 | for discriminant values in DVAL0, which can be NULL if the record |
7668 | contains the necessary discriminant values. */ | |
7669 | ||
d2e4a39e | 7670 | static struct type * |
fc1a4b47 | 7671 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 7672 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7673 | { |
d2e4a39e | 7674 | struct value *mark = value_mark (); |
4c4b4cd2 | 7675 | struct value *dval; |
d2e4a39e | 7676 | struct type *rtype; |
14f9c5c9 AS |
7677 | struct type *branch_type; |
7678 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 7679 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7680 | |
4c4b4cd2 | 7681 | if (variant_field == -1) |
14f9c5c9 AS |
7682 | return type; |
7683 | ||
4c4b4cd2 PH |
7684 | if (dval0 == NULL) |
7685 | dval = value_from_contents_and_address (type, valaddr, address); | |
7686 | else | |
7687 | dval = dval0; | |
7688 | ||
e9bb382b | 7689 | rtype = alloc_type_copy (type); |
14f9c5c9 | 7690 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
7691 | INIT_CPLUS_SPECIFIC (rtype); |
7692 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7693 | TYPE_FIELDS (rtype) = |
7694 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7695 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7696 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7697 | TYPE_NAME (rtype) = ada_type_name (type); |
7698 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7699 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7700 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7701 | ||
4c4b4cd2 PH |
7702 | branch_type = to_fixed_variant_branch_type |
7703 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7704 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7705 | TYPE_FIELD_BITPOS (type, variant_field) |
7706 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7707 | cond_offset_target (address, |
4c4b4cd2 PH |
7708 | TYPE_FIELD_BITPOS (type, variant_field) |
7709 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7710 | if (branch_type == NULL) |
14f9c5c9 | 7711 | { |
4c4b4cd2 | 7712 | int f; |
5b4ee69b | 7713 | |
4c4b4cd2 PH |
7714 | for (f = variant_field + 1; f < nfields; f += 1) |
7715 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7716 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7717 | } |
7718 | else | |
7719 | { | |
4c4b4cd2 PH |
7720 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7721 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7722 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7723 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7724 | } |
4c4b4cd2 | 7725 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7726 | |
4c4b4cd2 | 7727 | value_free_to_mark (mark); |
14f9c5c9 AS |
7728 | return rtype; |
7729 | } | |
7730 | ||
7731 | /* An ordinary record type (with fixed-length fields) that describes | |
7732 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7733 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7734 | should be in DVAL, a record value; it may be NULL if the object |
7735 | at ADDR itself contains any necessary discriminant values. | |
7736 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7737 | values from the record are needed. Except in the case that DVAL, | |
7738 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7739 | unchecked) is replaced by a particular branch of the variant. | |
7740 | ||
7741 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7742 | is questionable and may be removed. It can arise during the | |
7743 | processing of an unconstrained-array-of-record type where all the | |
7744 | variant branches have exactly the same size. This is because in | |
7745 | such cases, the compiler does not bother to use the XVS convention | |
7746 | when encoding the record. I am currently dubious of this | |
7747 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7748 | |
d2e4a39e | 7749 | static struct type * |
fc1a4b47 | 7750 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7751 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7752 | { |
d2e4a39e | 7753 | struct type *templ_type; |
14f9c5c9 | 7754 | |
876cecd0 | 7755 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7756 | return type0; |
7757 | ||
d2e4a39e | 7758 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7759 | |
7760 | if (templ_type != NULL) | |
7761 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7762 | else if (variant_field_index (type0) >= 0) |
7763 | { | |
7764 | if (dval == NULL && valaddr == NULL && address == 0) | |
7765 | return type0; | |
7766 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7767 | dval); | |
7768 | } | |
14f9c5c9 AS |
7769 | else |
7770 | { | |
876cecd0 | 7771 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7772 | return type0; |
7773 | } | |
7774 | ||
7775 | } | |
7776 | ||
7777 | /* An ordinary record type (with fixed-length fields) that describes | |
7778 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7779 | union type. Any necessary discriminants' values should be in DVAL, | |
7780 | a record value. That is, this routine selects the appropriate | |
7781 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 7782 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 7783 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 7784 | |
d2e4a39e | 7785 | static struct type * |
fc1a4b47 | 7786 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7787 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7788 | { |
7789 | int which; | |
d2e4a39e AS |
7790 | struct type *templ_type; |
7791 | struct type *var_type; | |
14f9c5c9 AS |
7792 | |
7793 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7794 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7795 | else |
14f9c5c9 AS |
7796 | var_type = var_type0; |
7797 | ||
7798 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7799 | ||
7800 | if (templ_type != NULL) | |
7801 | var_type = templ_type; | |
7802 | ||
b1f33ddd JB |
7803 | if (is_unchecked_variant (var_type, value_type (dval))) |
7804 | return var_type0; | |
d2e4a39e AS |
7805 | which = |
7806 | ada_which_variant_applies (var_type, | |
0fd88904 | 7807 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7808 | |
7809 | if (which < 0) | |
e9bb382b | 7810 | return empty_record (var_type); |
14f9c5c9 | 7811 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 7812 | return to_fixed_record_type |
d2e4a39e AS |
7813 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7814 | valaddr, address, dval); | |
4c4b4cd2 | 7815 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7816 | return |
7817 | to_fixed_record_type | |
7818 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7819 | else |
7820 | return TYPE_FIELD_TYPE (var_type, which); | |
7821 | } | |
7822 | ||
7823 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7824 | at ADDR, and that DVAL describes a record containing any | |
7825 | discriminants used in TYPE0, returns a type for the value that | |
7826 | contains no dynamic components (that is, no components whose sizes | |
7827 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7828 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7829 | varsize_limit. */ |
14f9c5c9 | 7830 | |
d2e4a39e AS |
7831 | static struct type * |
7832 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7833 | int ignore_too_big) |
14f9c5c9 | 7834 | { |
d2e4a39e AS |
7835 | struct type *index_type_desc; |
7836 | struct type *result; | |
ad82864c | 7837 | int constrained_packed_array_p; |
14f9c5c9 | 7838 | |
b0dd7688 | 7839 | type0 = ada_check_typedef (type0); |
284614f0 | 7840 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7841 | return type0; |
14f9c5c9 | 7842 | |
ad82864c JB |
7843 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
7844 | if (constrained_packed_array_p) | |
7845 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 7846 | |
14f9c5c9 | 7847 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
28c85d6c | 7848 | ada_fixup_array_indexes_type (index_type_desc); |
14f9c5c9 AS |
7849 | if (index_type_desc == NULL) |
7850 | { | |
61ee279c | 7851 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 7852 | |
14f9c5c9 | 7853 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7854 | depend on the contents of the array in properly constructed |
7855 | debugging data. */ | |
529cad9c PH |
7856 | /* Create a fixed version of the array element type. |
7857 | We're not providing the address of an element here, | |
e1d5a0d2 | 7858 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7859 | the conversion. This should not be a problem, since arrays of |
7860 | unconstrained objects are not allowed. In particular, all | |
7861 | the elements of an array of a tagged type should all be of | |
7862 | the same type specified in the debugging info. No need to | |
7863 | consult the object tag. */ | |
1ed6ede0 | 7864 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 7865 | |
284614f0 JB |
7866 | /* Make sure we always create a new array type when dealing with |
7867 | packed array types, since we're going to fix-up the array | |
7868 | type length and element bitsize a little further down. */ | |
ad82864c | 7869 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 7870 | result = type0; |
14f9c5c9 | 7871 | else |
e9bb382b | 7872 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 7873 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
7874 | } |
7875 | else | |
7876 | { | |
7877 | int i; | |
7878 | struct type *elt_type0; | |
7879 | ||
7880 | elt_type0 = type0; | |
7881 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 7882 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
7883 | |
7884 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
7885 | depend on the contents of the array in properly constructed |
7886 | debugging data. */ | |
529cad9c PH |
7887 | /* Create a fixed version of the array element type. |
7888 | We're not providing the address of an element here, | |
e1d5a0d2 | 7889 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7890 | the conversion. This should not be a problem, since arrays of |
7891 | unconstrained objects are not allowed. In particular, all | |
7892 | the elements of an array of a tagged type should all be of | |
7893 | the same type specified in the debugging info. No need to | |
7894 | consult the object tag. */ | |
1ed6ede0 JB |
7895 | result = |
7896 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
7897 | |
7898 | elt_type0 = type0; | |
14f9c5c9 | 7899 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
7900 | { |
7901 | struct type *range_type = | |
28c85d6c | 7902 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 7903 | |
e9bb382b | 7904 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 7905 | result, range_type); |
1ce677a4 | 7906 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 7907 | } |
d2e4a39e | 7908 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 7909 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7910 | } |
7911 | ||
2e6fda7d JB |
7912 | /* We want to preserve the type name. This can be useful when |
7913 | trying to get the type name of a value that has already been | |
7914 | printed (for instance, if the user did "print VAR; whatis $". */ | |
7915 | TYPE_NAME (result) = TYPE_NAME (type0); | |
7916 | ||
ad82864c | 7917 | if (constrained_packed_array_p) |
284614f0 JB |
7918 | { |
7919 | /* So far, the resulting type has been created as if the original | |
7920 | type was a regular (non-packed) array type. As a result, the | |
7921 | bitsize of the array elements needs to be set again, and the array | |
7922 | length needs to be recomputed based on that bitsize. */ | |
7923 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
7924 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
7925 | ||
7926 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
7927 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
7928 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
7929 | TYPE_LENGTH (result)++; | |
7930 | } | |
7931 | ||
876cecd0 | 7932 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 7933 | return result; |
d2e4a39e | 7934 | } |
14f9c5c9 AS |
7935 | |
7936 | ||
7937 | /* A standard type (containing no dynamically sized components) | |
7938 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
7939 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 7940 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
7941 | ADDRESS or in VALADDR contains these discriminants. |
7942 | ||
1ed6ede0 JB |
7943 | If CHECK_TAG is not null, in the case of tagged types, this function |
7944 | attempts to locate the object's tag and use it to compute the actual | |
7945 | type. However, when ADDRESS is null, we cannot use it to determine the | |
7946 | location of the tag, and therefore compute the tagged type's actual type. | |
7947 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 7948 | |
f192137b JB |
7949 | static struct type * |
7950 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 7951 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 7952 | { |
61ee279c | 7953 | type = ada_check_typedef (type); |
d2e4a39e AS |
7954 | switch (TYPE_CODE (type)) |
7955 | { | |
7956 | default: | |
14f9c5c9 | 7957 | return type; |
d2e4a39e | 7958 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 7959 | { |
76a01679 | 7960 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
7961 | struct type *fixed_record_type = |
7962 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 7963 | |
529cad9c PH |
7964 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
7965 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 7966 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
7967 | type (the parent part of the record may have dynamic fields |
7968 | and the way the location of _tag is expressed may depend on | |
7969 | them). */ | |
529cad9c | 7970 | |
1ed6ede0 | 7971 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 JB |
7972 | { |
7973 | struct type *real_type = | |
1ed6ede0 JB |
7974 | type_from_tag (value_tag_from_contents_and_address |
7975 | (fixed_record_type, | |
7976 | valaddr, | |
7977 | address)); | |
5b4ee69b | 7978 | |
76a01679 | 7979 | if (real_type != NULL) |
1ed6ede0 | 7980 | return to_fixed_record_type (real_type, valaddr, address, NULL); |
76a01679 | 7981 | } |
4af88198 JB |
7982 | |
7983 | /* Check to see if there is a parallel ___XVZ variable. | |
7984 | If there is, then it provides the actual size of our type. */ | |
7985 | else if (ada_type_name (fixed_record_type) != NULL) | |
7986 | { | |
0d5cff50 | 7987 | const char *name = ada_type_name (fixed_record_type); |
4af88198 JB |
7988 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); |
7989 | int xvz_found = 0; | |
7990 | LONGEST size; | |
7991 | ||
88c15c34 | 7992 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
7993 | size = get_int_var_value (xvz_name, &xvz_found); |
7994 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
7995 | { | |
7996 | fixed_record_type = copy_type (fixed_record_type); | |
7997 | TYPE_LENGTH (fixed_record_type) = size; | |
7998 | ||
7999 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
8000 | observed this when the debugging info is STABS, and | |
8001 | apparently it is something that is hard to fix. | |
8002 | ||
8003 | In practice, we don't need the actual type definition | |
8004 | at all, because the presence of the XVZ variable allows us | |
8005 | to assume that there must be a XVS type as well, which we | |
8006 | should be able to use later, when we need the actual type | |
8007 | definition. | |
8008 | ||
8009 | In the meantime, pretend that the "fixed" type we are | |
8010 | returning is NOT a stub, because this can cause trouble | |
8011 | when using this type to create new types targeting it. | |
8012 | Indeed, the associated creation routines often check | |
8013 | whether the target type is a stub and will try to replace | |
0963b4bd | 8014 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
8015 | might cause the new type to have the wrong size too. |
8016 | Consider the case of an array, for instance, where the size | |
8017 | of the array is computed from the number of elements in | |
8018 | our array multiplied by the size of its element. */ | |
8019 | TYPE_STUB (fixed_record_type) = 0; | |
8020 | } | |
8021 | } | |
1ed6ede0 | 8022 | return fixed_record_type; |
4c4b4cd2 | 8023 | } |
d2e4a39e | 8024 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 8025 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
8026 | case TYPE_CODE_UNION: |
8027 | if (dval == NULL) | |
4c4b4cd2 | 8028 | return type; |
d2e4a39e | 8029 | else |
4c4b4cd2 | 8030 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 8031 | } |
14f9c5c9 AS |
8032 | } |
8033 | ||
f192137b JB |
8034 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
8035 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
8036 | |
8037 | The typedef layer needs be preserved in order to differentiate between | |
8038 | arrays and array pointers when both types are implemented using the same | |
8039 | fat pointer. In the array pointer case, the pointer is encoded as | |
8040 | a typedef of the pointer type. For instance, considering: | |
8041 | ||
8042 | type String_Access is access String; | |
8043 | S1 : String_Access := null; | |
8044 | ||
8045 | To the debugger, S1 is defined as a typedef of type String. But | |
8046 | to the user, it is a pointer. So if the user tries to print S1, | |
8047 | we should not dereference the array, but print the array address | |
8048 | instead. | |
8049 | ||
8050 | If we didn't preserve the typedef layer, we would lose the fact that | |
8051 | the type is to be presented as a pointer (needs de-reference before | |
8052 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
8053 | |
8054 | struct type * | |
8055 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
8056 | CORE_ADDR address, struct value *dval, int check_tag) | |
8057 | ||
8058 | { | |
8059 | struct type *fixed_type = | |
8060 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
8061 | ||
96dbd2c1 JB |
8062 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
8063 | then preserve the typedef layer. | |
8064 | ||
8065 | Implementation note: We can only check the main-type portion of | |
8066 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
8067 | from TYPE now returns a type that has the same instance flags | |
8068 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
8069 | target type is a "struct", then the typedef elimination will return | |
8070 | a "const" version of the target type. See check_typedef for more | |
8071 | details about how the typedef layer elimination is done. | |
8072 | ||
8073 | brobecker/2010-11-19: It seems to me that the only case where it is | |
8074 | useful to preserve the typedef layer is when dealing with fat pointers. | |
8075 | Perhaps, we could add a check for that and preserve the typedef layer | |
8076 | only in that situation. But this seems unecessary so far, probably | |
8077 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
8078 | */ | |
f192137b | 8079 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 8080 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 8081 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
8082 | return type; |
8083 | ||
8084 | return fixed_type; | |
8085 | } | |
8086 | ||
14f9c5c9 | 8087 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 8088 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 8089 | |
d2e4a39e AS |
8090 | static struct type * |
8091 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 8092 | { |
d2e4a39e | 8093 | struct type *type; |
14f9c5c9 AS |
8094 | |
8095 | if (type0 == NULL) | |
8096 | return NULL; | |
8097 | ||
876cecd0 | 8098 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8099 | return type0; |
8100 | ||
61ee279c | 8101 | type0 = ada_check_typedef (type0); |
d2e4a39e | 8102 | |
14f9c5c9 AS |
8103 | switch (TYPE_CODE (type0)) |
8104 | { | |
8105 | default: | |
8106 | return type0; | |
8107 | case TYPE_CODE_STRUCT: | |
8108 | type = dynamic_template_type (type0); | |
d2e4a39e | 8109 | if (type != NULL) |
4c4b4cd2 PH |
8110 | return template_to_static_fixed_type (type); |
8111 | else | |
8112 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8113 | case TYPE_CODE_UNION: |
8114 | type = ada_find_parallel_type (type0, "___XVU"); | |
8115 | if (type != NULL) | |
4c4b4cd2 PH |
8116 | return template_to_static_fixed_type (type); |
8117 | else | |
8118 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8119 | } |
8120 | } | |
8121 | ||
4c4b4cd2 PH |
8122 | /* A static approximation of TYPE with all type wrappers removed. */ |
8123 | ||
d2e4a39e AS |
8124 | static struct type * |
8125 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
8126 | { |
8127 | if (ada_is_aligner_type (type)) | |
8128 | { | |
61ee279c | 8129 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 8130 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 8131 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
8132 | |
8133 | return static_unwrap_type (type1); | |
8134 | } | |
d2e4a39e | 8135 | else |
14f9c5c9 | 8136 | { |
d2e4a39e | 8137 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 8138 | |
d2e4a39e | 8139 | if (raw_real_type == type) |
4c4b4cd2 | 8140 | return type; |
14f9c5c9 | 8141 | else |
4c4b4cd2 | 8142 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
8143 | } |
8144 | } | |
8145 | ||
8146 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 8147 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
8148 | type Foo; |
8149 | type FooP is access Foo; | |
8150 | V: FooP; | |
8151 | type Foo is array ...; | |
4c4b4cd2 | 8152 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
8153 | cross-references to such types, we instead substitute for FooP a |
8154 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 8155 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
8156 | |
8157 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
8158 | exists, otherwise TYPE. */ |
8159 | ||
d2e4a39e | 8160 | struct type * |
61ee279c | 8161 | ada_check_typedef (struct type *type) |
14f9c5c9 | 8162 | { |
727e3d2e JB |
8163 | if (type == NULL) |
8164 | return NULL; | |
8165 | ||
720d1a40 JB |
8166 | /* If our type is a typedef type of a fat pointer, then we're done. |
8167 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
8168 | what allows us to distinguish between fat pointers that represent | |
8169 | array types, and fat pointers that represent array access types | |
8170 | (in both cases, the compiler implements them as fat pointers). */ | |
8171 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
8172 | && is_thick_pntr (ada_typedef_target_type (type))) | |
8173 | return type; | |
8174 | ||
14f9c5c9 AS |
8175 | CHECK_TYPEDEF (type); |
8176 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 8177 | || !TYPE_STUB (type) |
14f9c5c9 AS |
8178 | || TYPE_TAG_NAME (type) == NULL) |
8179 | return type; | |
d2e4a39e | 8180 | else |
14f9c5c9 | 8181 | { |
0d5cff50 | 8182 | const char *name = TYPE_TAG_NAME (type); |
d2e4a39e | 8183 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 8184 | |
05e522ef JB |
8185 | if (type1 == NULL) |
8186 | return type; | |
8187 | ||
8188 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
8189 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
8190 | types, only for the typedef-to-array types). If that's the case, |
8191 | strip the typedef layer. */ | |
8192 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
8193 | type1 = ada_check_typedef (type1); | |
8194 | ||
8195 | return type1; | |
14f9c5c9 AS |
8196 | } |
8197 | } | |
8198 | ||
8199 | /* A value representing the data at VALADDR/ADDRESS as described by | |
8200 | type TYPE0, but with a standard (static-sized) type that correctly | |
8201 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
8202 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 8203 | creation of struct values]. */ |
14f9c5c9 | 8204 | |
4c4b4cd2 PH |
8205 | static struct value * |
8206 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
8207 | struct value *val0) | |
14f9c5c9 | 8208 | { |
1ed6ede0 | 8209 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 8210 | |
14f9c5c9 AS |
8211 | if (type == type0 && val0 != NULL) |
8212 | return val0; | |
d2e4a39e | 8213 | else |
4c4b4cd2 PH |
8214 | return value_from_contents_and_address (type, 0, address); |
8215 | } | |
8216 | ||
8217 | /* A value representing VAL, but with a standard (static-sized) type | |
8218 | that correctly describes it. Does not necessarily create a new | |
8219 | value. */ | |
8220 | ||
0c3acc09 | 8221 | struct value * |
4c4b4cd2 PH |
8222 | ada_to_fixed_value (struct value *val) |
8223 | { | |
c48db5ca JB |
8224 | val = unwrap_value (val); |
8225 | val = ada_to_fixed_value_create (value_type (val), | |
8226 | value_address (val), | |
8227 | val); | |
8228 | return val; | |
14f9c5c9 | 8229 | } |
d2e4a39e | 8230 | \f |
14f9c5c9 | 8231 | |
14f9c5c9 AS |
8232 | /* Attributes */ |
8233 | ||
4c4b4cd2 PH |
8234 | /* Table mapping attribute numbers to names. |
8235 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 8236 | |
d2e4a39e | 8237 | static const char *attribute_names[] = { |
14f9c5c9 AS |
8238 | "<?>", |
8239 | ||
d2e4a39e | 8240 | "first", |
14f9c5c9 AS |
8241 | "last", |
8242 | "length", | |
8243 | "image", | |
14f9c5c9 AS |
8244 | "max", |
8245 | "min", | |
4c4b4cd2 PH |
8246 | "modulus", |
8247 | "pos", | |
8248 | "size", | |
8249 | "tag", | |
14f9c5c9 | 8250 | "val", |
14f9c5c9 AS |
8251 | 0 |
8252 | }; | |
8253 | ||
d2e4a39e | 8254 | const char * |
4c4b4cd2 | 8255 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 8256 | { |
4c4b4cd2 PH |
8257 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
8258 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
8259 | else |
8260 | return attribute_names[0]; | |
8261 | } | |
8262 | ||
4c4b4cd2 | 8263 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 8264 | |
4c4b4cd2 PH |
8265 | static LONGEST |
8266 | pos_atr (struct value *arg) | |
14f9c5c9 | 8267 | { |
24209737 PH |
8268 | struct value *val = coerce_ref (arg); |
8269 | struct type *type = value_type (val); | |
14f9c5c9 | 8270 | |
d2e4a39e | 8271 | if (!discrete_type_p (type)) |
323e0a4a | 8272 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
8273 | |
8274 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8275 | { | |
8276 | int i; | |
24209737 | 8277 | LONGEST v = value_as_long (val); |
14f9c5c9 | 8278 | |
d2e4a39e | 8279 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 | 8280 | { |
14e75d8e | 8281 | if (v == TYPE_FIELD_ENUMVAL (type, i)) |
4c4b4cd2 PH |
8282 | return i; |
8283 | } | |
323e0a4a | 8284 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
8285 | } |
8286 | else | |
24209737 | 8287 | return value_as_long (val); |
4c4b4cd2 PH |
8288 | } |
8289 | ||
8290 | static struct value * | |
3cb382c9 | 8291 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 8292 | { |
3cb382c9 | 8293 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
8294 | } |
8295 | ||
4c4b4cd2 | 8296 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 8297 | |
d2e4a39e AS |
8298 | static struct value * |
8299 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 8300 | { |
d2e4a39e | 8301 | if (!discrete_type_p (type)) |
323e0a4a | 8302 | error (_("'VAL only defined on discrete types")); |
df407dfe | 8303 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 8304 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
8305 | |
8306 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8307 | { | |
8308 | long pos = value_as_long (arg); | |
5b4ee69b | 8309 | |
14f9c5c9 | 8310 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 8311 | error (_("argument to 'VAL out of range")); |
14e75d8e | 8312 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
8313 | } |
8314 | else | |
8315 | return value_from_longest (type, value_as_long (arg)); | |
8316 | } | |
14f9c5c9 | 8317 | \f |
d2e4a39e | 8318 | |
4c4b4cd2 | 8319 | /* Evaluation */ |
14f9c5c9 | 8320 | |
4c4b4cd2 PH |
8321 | /* True if TYPE appears to be an Ada character type. |
8322 | [At the moment, this is true only for Character and Wide_Character; | |
8323 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 8324 | |
d2e4a39e AS |
8325 | int |
8326 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 8327 | { |
7b9f71f2 JB |
8328 | const char *name; |
8329 | ||
8330 | /* If the type code says it's a character, then assume it really is, | |
8331 | and don't check any further. */ | |
8332 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
8333 | return 1; | |
8334 | ||
8335 | /* Otherwise, assume it's a character type iff it is a discrete type | |
8336 | with a known character type name. */ | |
8337 | name = ada_type_name (type); | |
8338 | return (name != NULL | |
8339 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
8340 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
8341 | && (strcmp (name, "character") == 0 | |
8342 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 8343 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 8344 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
8345 | } |
8346 | ||
4c4b4cd2 | 8347 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
8348 | |
8349 | int | |
ebf56fd3 | 8350 | ada_is_string_type (struct type *type) |
14f9c5c9 | 8351 | { |
61ee279c | 8352 | type = ada_check_typedef (type); |
d2e4a39e | 8353 | if (type != NULL |
14f9c5c9 | 8354 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
8355 | && (ada_is_simple_array_type (type) |
8356 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
8357 | && ada_array_arity (type) == 1) |
8358 | { | |
8359 | struct type *elttype = ada_array_element_type (type, 1); | |
8360 | ||
8361 | return ada_is_character_type (elttype); | |
8362 | } | |
d2e4a39e | 8363 | else |
14f9c5c9 AS |
8364 | return 0; |
8365 | } | |
8366 | ||
5bf03f13 JB |
8367 | /* The compiler sometimes provides a parallel XVS type for a given |
8368 | PAD type. Normally, it is safe to follow the PAD type directly, | |
8369 | but older versions of the compiler have a bug that causes the offset | |
8370 | of its "F" field to be wrong. Following that field in that case | |
8371 | would lead to incorrect results, but this can be worked around | |
8372 | by ignoring the PAD type and using the associated XVS type instead. | |
8373 | ||
8374 | Set to True if the debugger should trust the contents of PAD types. | |
8375 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
8376 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
8377 | |
8378 | /* True if TYPE is a struct type introduced by the compiler to force the | |
8379 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 8380 | distinctive name. */ |
14f9c5c9 AS |
8381 | |
8382 | int | |
ebf56fd3 | 8383 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 8384 | { |
61ee279c | 8385 | type = ada_check_typedef (type); |
714e53ab | 8386 | |
5bf03f13 | 8387 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
8388 | return 0; |
8389 | ||
14f9c5c9 | 8390 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
8391 | && TYPE_NFIELDS (type) == 1 |
8392 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
8393 | } |
8394 | ||
8395 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 8396 | the parallel type. */ |
14f9c5c9 | 8397 | |
d2e4a39e AS |
8398 | struct type * |
8399 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 8400 | { |
d2e4a39e AS |
8401 | struct type *real_type_namer; |
8402 | struct type *raw_real_type; | |
14f9c5c9 AS |
8403 | |
8404 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
8405 | return raw_type; | |
8406 | ||
284614f0 JB |
8407 | if (ada_is_aligner_type (raw_type)) |
8408 | /* The encoding specifies that we should always use the aligner type. | |
8409 | So, even if this aligner type has an associated XVS type, we should | |
8410 | simply ignore it. | |
8411 | ||
8412 | According to the compiler gurus, an XVS type parallel to an aligner | |
8413 | type may exist because of a stabs limitation. In stabs, aligner | |
8414 | types are empty because the field has a variable-sized type, and | |
8415 | thus cannot actually be used as an aligner type. As a result, | |
8416 | we need the associated parallel XVS type to decode the type. | |
8417 | Since the policy in the compiler is to not change the internal | |
8418 | representation based on the debugging info format, we sometimes | |
8419 | end up having a redundant XVS type parallel to the aligner type. */ | |
8420 | return raw_type; | |
8421 | ||
14f9c5c9 | 8422 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 8423 | if (real_type_namer == NULL |
14f9c5c9 AS |
8424 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
8425 | || TYPE_NFIELDS (real_type_namer) != 1) | |
8426 | return raw_type; | |
8427 | ||
f80d3ff2 JB |
8428 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
8429 | { | |
8430 | /* This is an older encoding form where the base type needs to be | |
8431 | looked up by name. We prefer the newer enconding because it is | |
8432 | more efficient. */ | |
8433 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
8434 | if (raw_real_type == NULL) | |
8435 | return raw_type; | |
8436 | else | |
8437 | return raw_real_type; | |
8438 | } | |
8439 | ||
8440 | /* The field in our XVS type is a reference to the base type. */ | |
8441 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 8442 | } |
14f9c5c9 | 8443 | |
4c4b4cd2 | 8444 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 8445 | |
d2e4a39e AS |
8446 | struct type * |
8447 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
8448 | { |
8449 | if (ada_is_aligner_type (type)) | |
8450 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
8451 | else | |
8452 | return ada_get_base_type (type); | |
8453 | } | |
8454 | ||
8455 | ||
8456 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 8457 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 8458 | |
fc1a4b47 AC |
8459 | const gdb_byte * |
8460 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 8461 | { |
d2e4a39e | 8462 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 8463 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
8464 | valaddr + |
8465 | TYPE_FIELD_BITPOS (type, | |
8466 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
8467 | else |
8468 | return valaddr; | |
8469 | } | |
8470 | ||
4c4b4cd2 PH |
8471 | |
8472 | ||
14f9c5c9 | 8473 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 8474 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
8475 | const char * |
8476 | ada_enum_name (const char *name) | |
14f9c5c9 | 8477 | { |
4c4b4cd2 PH |
8478 | static char *result; |
8479 | static size_t result_len = 0; | |
d2e4a39e | 8480 | char *tmp; |
14f9c5c9 | 8481 | |
4c4b4cd2 PH |
8482 | /* First, unqualify the enumeration name: |
8483 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 8484 | all the preceding characters, the unqualified name starts |
76a01679 | 8485 | right after that dot. |
4c4b4cd2 | 8486 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
8487 | translates dots into "__". Search forward for double underscores, |
8488 | but stop searching when we hit an overloading suffix, which is | |
8489 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 8490 | |
c3e5cd34 PH |
8491 | tmp = strrchr (name, '.'); |
8492 | if (tmp != NULL) | |
4c4b4cd2 PH |
8493 | name = tmp + 1; |
8494 | else | |
14f9c5c9 | 8495 | { |
4c4b4cd2 PH |
8496 | while ((tmp = strstr (name, "__")) != NULL) |
8497 | { | |
8498 | if (isdigit (tmp[2])) | |
8499 | break; | |
8500 | else | |
8501 | name = tmp + 2; | |
8502 | } | |
14f9c5c9 AS |
8503 | } |
8504 | ||
8505 | if (name[0] == 'Q') | |
8506 | { | |
14f9c5c9 | 8507 | int v; |
5b4ee69b | 8508 | |
14f9c5c9 | 8509 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
8510 | { |
8511 | if (sscanf (name + 2, "%x", &v) != 1) | |
8512 | return name; | |
8513 | } | |
14f9c5c9 | 8514 | else |
4c4b4cd2 | 8515 | return name; |
14f9c5c9 | 8516 | |
4c4b4cd2 | 8517 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 8518 | if (isascii (v) && isprint (v)) |
88c15c34 | 8519 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 8520 | else if (name[1] == 'U') |
88c15c34 | 8521 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 8522 | else |
88c15c34 | 8523 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
8524 | |
8525 | return result; | |
8526 | } | |
d2e4a39e | 8527 | else |
4c4b4cd2 | 8528 | { |
c3e5cd34 PH |
8529 | tmp = strstr (name, "__"); |
8530 | if (tmp == NULL) | |
8531 | tmp = strstr (name, "$"); | |
8532 | if (tmp != NULL) | |
4c4b4cd2 PH |
8533 | { |
8534 | GROW_VECT (result, result_len, tmp - name + 1); | |
8535 | strncpy (result, name, tmp - name); | |
8536 | result[tmp - name] = '\0'; | |
8537 | return result; | |
8538 | } | |
8539 | ||
8540 | return name; | |
8541 | } | |
14f9c5c9 AS |
8542 | } |
8543 | ||
14f9c5c9 AS |
8544 | /* Evaluate the subexpression of EXP starting at *POS as for |
8545 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 8546 | expression. */ |
14f9c5c9 | 8547 | |
d2e4a39e AS |
8548 | static struct value * |
8549 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 8550 | { |
4b27a620 | 8551 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
8552 | } |
8553 | ||
8554 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 8555 | value it wraps. */ |
14f9c5c9 | 8556 | |
d2e4a39e AS |
8557 | static struct value * |
8558 | unwrap_value (struct value *val) | |
14f9c5c9 | 8559 | { |
df407dfe | 8560 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 8561 | |
14f9c5c9 AS |
8562 | if (ada_is_aligner_type (type)) |
8563 | { | |
de4d072f | 8564 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 8565 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 8566 | |
14f9c5c9 | 8567 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 8568 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
8569 | |
8570 | return unwrap_value (v); | |
8571 | } | |
d2e4a39e | 8572 | else |
14f9c5c9 | 8573 | { |
d2e4a39e | 8574 | struct type *raw_real_type = |
61ee279c | 8575 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 8576 | |
5bf03f13 JB |
8577 | /* If there is no parallel XVS or XVE type, then the value is |
8578 | already unwrapped. Return it without further modification. */ | |
8579 | if ((type == raw_real_type) | |
8580 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
8581 | return val; | |
14f9c5c9 | 8582 | |
d2e4a39e | 8583 | return |
4c4b4cd2 PH |
8584 | coerce_unspec_val_to_type |
8585 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 8586 | value_address (val), |
1ed6ede0 | 8587 | NULL, 1)); |
14f9c5c9 AS |
8588 | } |
8589 | } | |
d2e4a39e AS |
8590 | |
8591 | static struct value * | |
8592 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
8593 | { |
8594 | LONGEST val; | |
8595 | ||
df407dfe | 8596 | if (type == value_type (arg)) |
14f9c5c9 | 8597 | return arg; |
df407dfe | 8598 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 8599 | val = ada_float_to_fixed (type, |
df407dfe | 8600 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8601 | value_as_long (arg))); |
d2e4a39e | 8602 | else |
14f9c5c9 | 8603 | { |
a53b7a21 | 8604 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 8605 | |
14f9c5c9 AS |
8606 | val = ada_float_to_fixed (type, argd); |
8607 | } | |
8608 | ||
8609 | return value_from_longest (type, val); | |
8610 | } | |
8611 | ||
d2e4a39e | 8612 | static struct value * |
a53b7a21 | 8613 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 8614 | { |
df407dfe | 8615 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8616 | value_as_long (arg)); |
5b4ee69b | 8617 | |
a53b7a21 | 8618 | return value_from_double (type, val); |
14f9c5c9 AS |
8619 | } |
8620 | ||
4c4b4cd2 PH |
8621 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
8622 | return the converted value. */ | |
8623 | ||
d2e4a39e AS |
8624 | static struct value * |
8625 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 8626 | { |
df407dfe | 8627 | struct type *type2 = value_type (val); |
5b4ee69b | 8628 | |
14f9c5c9 AS |
8629 | if (type == type2) |
8630 | return val; | |
8631 | ||
61ee279c PH |
8632 | type2 = ada_check_typedef (type2); |
8633 | type = ada_check_typedef (type); | |
14f9c5c9 | 8634 | |
d2e4a39e AS |
8635 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
8636 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
8637 | { |
8638 | val = ada_value_ind (val); | |
df407dfe | 8639 | type2 = value_type (val); |
14f9c5c9 AS |
8640 | } |
8641 | ||
d2e4a39e | 8642 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
8643 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
8644 | { | |
8645 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
4c4b4cd2 PH |
8646 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
8647 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
323e0a4a | 8648 | error (_("Incompatible types in assignment")); |
04624583 | 8649 | deprecated_set_value_type (val, type); |
14f9c5c9 | 8650 | } |
d2e4a39e | 8651 | return val; |
14f9c5c9 AS |
8652 | } |
8653 | ||
4c4b4cd2 PH |
8654 | static struct value * |
8655 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
8656 | { | |
8657 | struct value *val; | |
8658 | struct type *type1, *type2; | |
8659 | LONGEST v, v1, v2; | |
8660 | ||
994b9211 AC |
8661 | arg1 = coerce_ref (arg1); |
8662 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
8663 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
8664 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 8665 | |
76a01679 JB |
8666 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
8667 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
8668 | return value_binop (arg1, arg2, op); |
8669 | ||
76a01679 | 8670 | switch (op) |
4c4b4cd2 PH |
8671 | { |
8672 | case BINOP_MOD: | |
8673 | case BINOP_DIV: | |
8674 | case BINOP_REM: | |
8675 | break; | |
8676 | default: | |
8677 | return value_binop (arg1, arg2, op); | |
8678 | } | |
8679 | ||
8680 | v2 = value_as_long (arg2); | |
8681 | if (v2 == 0) | |
323e0a4a | 8682 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
8683 | |
8684 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
8685 | return value_binop (arg1, arg2, op); | |
8686 | ||
8687 | v1 = value_as_long (arg1); | |
8688 | switch (op) | |
8689 | { | |
8690 | case BINOP_DIV: | |
8691 | v = v1 / v2; | |
76a01679 JB |
8692 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
8693 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
8694 | break; |
8695 | case BINOP_REM: | |
8696 | v = v1 % v2; | |
76a01679 JB |
8697 | if (v * v1 < 0) |
8698 | v -= v2; | |
4c4b4cd2 PH |
8699 | break; |
8700 | default: | |
8701 | /* Should not reach this point. */ | |
8702 | v = 0; | |
8703 | } | |
8704 | ||
8705 | val = allocate_value (type1); | |
990a07ab | 8706 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
8707 | TYPE_LENGTH (value_type (val)), |
8708 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
8709 | return val; |
8710 | } | |
8711 | ||
8712 | static int | |
8713 | ada_value_equal (struct value *arg1, struct value *arg2) | |
8714 | { | |
df407dfe AC |
8715 | if (ada_is_direct_array_type (value_type (arg1)) |
8716 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 8717 | { |
f58b38bf JB |
8718 | /* Automatically dereference any array reference before |
8719 | we attempt to perform the comparison. */ | |
8720 | arg1 = ada_coerce_ref (arg1); | |
8721 | arg2 = ada_coerce_ref (arg2); | |
8722 | ||
4c4b4cd2 PH |
8723 | arg1 = ada_coerce_to_simple_array (arg1); |
8724 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
8725 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
8726 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 8727 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 8728 | /* FIXME: The following works only for types whose |
76a01679 JB |
8729 | representations use all bits (no padding or undefined bits) |
8730 | and do not have user-defined equality. */ | |
8731 | return | |
df407dfe | 8732 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 8733 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 8734 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
8735 | } |
8736 | return value_equal (arg1, arg2); | |
8737 | } | |
8738 | ||
52ce6436 PH |
8739 | /* Total number of component associations in the aggregate starting at |
8740 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 8741 | OP_AGGREGATE. */ |
52ce6436 PH |
8742 | |
8743 | static int | |
8744 | num_component_specs (struct expression *exp, int pc) | |
8745 | { | |
8746 | int n, m, i; | |
5b4ee69b | 8747 | |
52ce6436 PH |
8748 | m = exp->elts[pc + 1].longconst; |
8749 | pc += 3; | |
8750 | n = 0; | |
8751 | for (i = 0; i < m; i += 1) | |
8752 | { | |
8753 | switch (exp->elts[pc].opcode) | |
8754 | { | |
8755 | default: | |
8756 | n += 1; | |
8757 | break; | |
8758 | case OP_CHOICES: | |
8759 | n += exp->elts[pc + 1].longconst; | |
8760 | break; | |
8761 | } | |
8762 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
8763 | } | |
8764 | return n; | |
8765 | } | |
8766 | ||
8767 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
8768 | component of LHS (a simple array or a record), updating *POS past | |
8769 | the expression, assuming that LHS is contained in CONTAINER. Does | |
8770 | not modify the inferior's memory, nor does it modify LHS (unless | |
8771 | LHS == CONTAINER). */ | |
8772 | ||
8773 | static void | |
8774 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
8775 | struct expression *exp, int *pos) | |
8776 | { | |
8777 | struct value *mark = value_mark (); | |
8778 | struct value *elt; | |
5b4ee69b | 8779 | |
52ce6436 PH |
8780 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
8781 | { | |
22601c15 UW |
8782 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
8783 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 8784 | |
52ce6436 PH |
8785 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
8786 | } | |
8787 | else | |
8788 | { | |
8789 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 8790 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
8791 | } |
8792 | ||
8793 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
8794 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
8795 | else | |
8796 | value_assign_to_component (container, elt, | |
8797 | ada_evaluate_subexp (NULL, exp, pos, | |
8798 | EVAL_NORMAL)); | |
8799 | ||
8800 | value_free_to_mark (mark); | |
8801 | } | |
8802 | ||
8803 | /* Assuming that LHS represents an lvalue having a record or array | |
8804 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
8805 | of that aggregate's value to LHS, advancing *POS past the | |
8806 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
8807 | lvalue containing LHS (possibly LHS itself). Does not modify | |
8808 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 8809 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
8810 | |
8811 | static struct value * | |
8812 | assign_aggregate (struct value *container, | |
8813 | struct value *lhs, struct expression *exp, | |
8814 | int *pos, enum noside noside) | |
8815 | { | |
8816 | struct type *lhs_type; | |
8817 | int n = exp->elts[*pos+1].longconst; | |
8818 | LONGEST low_index, high_index; | |
8819 | int num_specs; | |
8820 | LONGEST *indices; | |
8821 | int max_indices, num_indices; | |
8822 | int is_array_aggregate; | |
8823 | int i; | |
52ce6436 PH |
8824 | |
8825 | *pos += 3; | |
8826 | if (noside != EVAL_NORMAL) | |
8827 | { | |
52ce6436 PH |
8828 | for (i = 0; i < n; i += 1) |
8829 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
8830 | return container; | |
8831 | } | |
8832 | ||
8833 | container = ada_coerce_ref (container); | |
8834 | if (ada_is_direct_array_type (value_type (container))) | |
8835 | container = ada_coerce_to_simple_array (container); | |
8836 | lhs = ada_coerce_ref (lhs); | |
8837 | if (!deprecated_value_modifiable (lhs)) | |
8838 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
8839 | ||
8840 | lhs_type = value_type (lhs); | |
8841 | if (ada_is_direct_array_type (lhs_type)) | |
8842 | { | |
8843 | lhs = ada_coerce_to_simple_array (lhs); | |
8844 | lhs_type = value_type (lhs); | |
8845 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
8846 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
8847 | is_array_aggregate = 1; | |
8848 | } | |
8849 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
8850 | { | |
8851 | low_index = 0; | |
8852 | high_index = num_visible_fields (lhs_type) - 1; | |
8853 | is_array_aggregate = 0; | |
8854 | } | |
8855 | else | |
8856 | error (_("Left-hand side must be array or record.")); | |
8857 | ||
8858 | num_specs = num_component_specs (exp, *pos - 3); | |
8859 | max_indices = 4 * num_specs + 4; | |
8860 | indices = alloca (max_indices * sizeof (indices[0])); | |
8861 | indices[0] = indices[1] = low_index - 1; | |
8862 | indices[2] = indices[3] = high_index + 1; | |
8863 | num_indices = 4; | |
8864 | ||
8865 | for (i = 0; i < n; i += 1) | |
8866 | { | |
8867 | switch (exp->elts[*pos].opcode) | |
8868 | { | |
1fbf5ada JB |
8869 | case OP_CHOICES: |
8870 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
8871 | &num_indices, max_indices, | |
8872 | low_index, high_index); | |
8873 | break; | |
8874 | case OP_POSITIONAL: | |
8875 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
8876 | &num_indices, max_indices, |
8877 | low_index, high_index); | |
1fbf5ada JB |
8878 | break; |
8879 | case OP_OTHERS: | |
8880 | if (i != n-1) | |
8881 | error (_("Misplaced 'others' clause")); | |
8882 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
8883 | num_indices, low_index, high_index); | |
8884 | break; | |
8885 | default: | |
8886 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
8887 | } |
8888 | } | |
8889 | ||
8890 | return container; | |
8891 | } | |
8892 | ||
8893 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
8894 | construct at *POS, updating *POS past the construct, given that | |
8895 | the positions are relative to lower bound LOW, where HIGH is the | |
8896 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
8897 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 8898 | assign_aggregate. */ |
52ce6436 PH |
8899 | static void |
8900 | aggregate_assign_positional (struct value *container, | |
8901 | struct value *lhs, struct expression *exp, | |
8902 | int *pos, LONGEST *indices, int *num_indices, | |
8903 | int max_indices, LONGEST low, LONGEST high) | |
8904 | { | |
8905 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
8906 | ||
8907 | if (ind - 1 == high) | |
e1d5a0d2 | 8908 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
8909 | if (ind <= high) |
8910 | { | |
8911 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
8912 | *pos += 3; | |
8913 | assign_component (container, lhs, ind, exp, pos); | |
8914 | } | |
8915 | else | |
8916 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8917 | } | |
8918 | ||
8919 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
8920 | construct at *POS, updating *POS past the construct, given that | |
8921 | the allowable indices are LOW..HIGH. Record the indices assigned | |
8922 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 8923 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
8924 | static void |
8925 | aggregate_assign_from_choices (struct value *container, | |
8926 | struct value *lhs, struct expression *exp, | |
8927 | int *pos, LONGEST *indices, int *num_indices, | |
8928 | int max_indices, LONGEST low, LONGEST high) | |
8929 | { | |
8930 | int j; | |
8931 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
8932 | int choice_pos, expr_pc; | |
8933 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
8934 | ||
8935 | choice_pos = *pos += 3; | |
8936 | ||
8937 | for (j = 0; j < n_choices; j += 1) | |
8938 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8939 | expr_pc = *pos; | |
8940 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8941 | ||
8942 | for (j = 0; j < n_choices; j += 1) | |
8943 | { | |
8944 | LONGEST lower, upper; | |
8945 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 8946 | |
52ce6436 PH |
8947 | if (op == OP_DISCRETE_RANGE) |
8948 | { | |
8949 | choice_pos += 1; | |
8950 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8951 | EVAL_NORMAL)); | |
8952 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8953 | EVAL_NORMAL)); | |
8954 | } | |
8955 | else if (is_array) | |
8956 | { | |
8957 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
8958 | EVAL_NORMAL)); | |
8959 | upper = lower; | |
8960 | } | |
8961 | else | |
8962 | { | |
8963 | int ind; | |
0d5cff50 | 8964 | const char *name; |
5b4ee69b | 8965 | |
52ce6436 PH |
8966 | switch (op) |
8967 | { | |
8968 | case OP_NAME: | |
8969 | name = &exp->elts[choice_pos + 2].string; | |
8970 | break; | |
8971 | case OP_VAR_VALUE: | |
8972 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
8973 | break; | |
8974 | default: | |
8975 | error (_("Invalid record component association.")); | |
8976 | } | |
8977 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
8978 | ind = 0; | |
8979 | if (! find_struct_field (name, value_type (lhs), 0, | |
8980 | NULL, NULL, NULL, NULL, &ind)) | |
8981 | error (_("Unknown component name: %s."), name); | |
8982 | lower = upper = ind; | |
8983 | } | |
8984 | ||
8985 | if (lower <= upper && (lower < low || upper > high)) | |
8986 | error (_("Index in component association out of bounds.")); | |
8987 | ||
8988 | add_component_interval (lower, upper, indices, num_indices, | |
8989 | max_indices); | |
8990 | while (lower <= upper) | |
8991 | { | |
8992 | int pos1; | |
5b4ee69b | 8993 | |
52ce6436 PH |
8994 | pos1 = expr_pc; |
8995 | assign_component (container, lhs, lower, exp, &pos1); | |
8996 | lower += 1; | |
8997 | } | |
8998 | } | |
8999 | } | |
9000 | ||
9001 | /* Assign the value of the expression in the OP_OTHERS construct in | |
9002 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
9003 | have not been previously assigned. The index intervals already assigned | |
9004 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 9005 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9006 | static void |
9007 | aggregate_assign_others (struct value *container, | |
9008 | struct value *lhs, struct expression *exp, | |
9009 | int *pos, LONGEST *indices, int num_indices, | |
9010 | LONGEST low, LONGEST high) | |
9011 | { | |
9012 | int i; | |
5ce64950 | 9013 | int expr_pc = *pos + 1; |
52ce6436 PH |
9014 | |
9015 | for (i = 0; i < num_indices - 2; i += 2) | |
9016 | { | |
9017 | LONGEST ind; | |
5b4ee69b | 9018 | |
52ce6436 PH |
9019 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
9020 | { | |
5ce64950 | 9021 | int localpos; |
5b4ee69b | 9022 | |
5ce64950 MS |
9023 | localpos = expr_pc; |
9024 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
9025 | } |
9026 | } | |
9027 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9028 | } | |
9029 | ||
9030 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
9031 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
9032 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
9033 | MAX_SIZE. The resulting intervals do not overlap. */ | |
9034 | static void | |
9035 | add_component_interval (LONGEST low, LONGEST high, | |
9036 | LONGEST* indices, int *size, int max_size) | |
9037 | { | |
9038 | int i, j; | |
5b4ee69b | 9039 | |
52ce6436 PH |
9040 | for (i = 0; i < *size; i += 2) { |
9041 | if (high >= indices[i] && low <= indices[i + 1]) | |
9042 | { | |
9043 | int kh; | |
5b4ee69b | 9044 | |
52ce6436 PH |
9045 | for (kh = i + 2; kh < *size; kh += 2) |
9046 | if (high < indices[kh]) | |
9047 | break; | |
9048 | if (low < indices[i]) | |
9049 | indices[i] = low; | |
9050 | indices[i + 1] = indices[kh - 1]; | |
9051 | if (high > indices[i + 1]) | |
9052 | indices[i + 1] = high; | |
9053 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
9054 | *size -= kh - i - 2; | |
9055 | return; | |
9056 | } | |
9057 | else if (high < indices[i]) | |
9058 | break; | |
9059 | } | |
9060 | ||
9061 | if (*size == max_size) | |
9062 | error (_("Internal error: miscounted aggregate components.")); | |
9063 | *size += 2; | |
9064 | for (j = *size-1; j >= i+2; j -= 1) | |
9065 | indices[j] = indices[j - 2]; | |
9066 | indices[i] = low; | |
9067 | indices[i + 1] = high; | |
9068 | } | |
9069 | ||
6e48bd2c JB |
9070 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
9071 | is different. */ | |
9072 | ||
9073 | static struct value * | |
9074 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
9075 | { | |
9076 | if (type == ada_check_typedef (value_type (arg2))) | |
9077 | return arg2; | |
9078 | ||
9079 | if (ada_is_fixed_point_type (type)) | |
9080 | return (cast_to_fixed (type, arg2)); | |
9081 | ||
9082 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 9083 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
9084 | |
9085 | return value_cast (type, arg2); | |
9086 | } | |
9087 | ||
284614f0 JB |
9088 | /* Evaluating Ada expressions, and printing their result. |
9089 | ------------------------------------------------------ | |
9090 | ||
21649b50 JB |
9091 | 1. Introduction: |
9092 | ---------------- | |
9093 | ||
284614f0 JB |
9094 | We usually evaluate an Ada expression in order to print its value. |
9095 | We also evaluate an expression in order to print its type, which | |
9096 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
9097 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
9098 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
9099 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
9100 | similar. | |
9101 | ||
9102 | Evaluating expressions is a little more complicated for Ada entities | |
9103 | than it is for entities in languages such as C. The main reason for | |
9104 | this is that Ada provides types whose definition might be dynamic. | |
9105 | One example of such types is variant records. Or another example | |
9106 | would be an array whose bounds can only be known at run time. | |
9107 | ||
9108 | The following description is a general guide as to what should be | |
9109 | done (and what should NOT be done) in order to evaluate an expression | |
9110 | involving such types, and when. This does not cover how the semantic | |
9111 | information is encoded by GNAT as this is covered separatly. For the | |
9112 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
9113 | in the GNAT sources. | |
9114 | ||
9115 | Ideally, we should embed each part of this description next to its | |
9116 | associated code. Unfortunately, the amount of code is so vast right | |
9117 | now that it's hard to see whether the code handling a particular | |
9118 | situation might be duplicated or not. One day, when the code is | |
9119 | cleaned up, this guide might become redundant with the comments | |
9120 | inserted in the code, and we might want to remove it. | |
9121 | ||
21649b50 JB |
9122 | 2. ``Fixing'' an Entity, the Simple Case: |
9123 | ----------------------------------------- | |
9124 | ||
284614f0 JB |
9125 | When evaluating Ada expressions, the tricky issue is that they may |
9126 | reference entities whose type contents and size are not statically | |
9127 | known. Consider for instance a variant record: | |
9128 | ||
9129 | type Rec (Empty : Boolean := True) is record | |
9130 | case Empty is | |
9131 | when True => null; | |
9132 | when False => Value : Integer; | |
9133 | end case; | |
9134 | end record; | |
9135 | Yes : Rec := (Empty => False, Value => 1); | |
9136 | No : Rec := (empty => True); | |
9137 | ||
9138 | The size and contents of that record depends on the value of the | |
9139 | descriminant (Rec.Empty). At this point, neither the debugging | |
9140 | information nor the associated type structure in GDB are able to | |
9141 | express such dynamic types. So what the debugger does is to create | |
9142 | "fixed" versions of the type that applies to the specific object. | |
9143 | We also informally refer to this opperation as "fixing" an object, | |
9144 | which means creating its associated fixed type. | |
9145 | ||
9146 | Example: when printing the value of variable "Yes" above, its fixed | |
9147 | type would look like this: | |
9148 | ||
9149 | type Rec is record | |
9150 | Empty : Boolean; | |
9151 | Value : Integer; | |
9152 | end record; | |
9153 | ||
9154 | On the other hand, if we printed the value of "No", its fixed type | |
9155 | would become: | |
9156 | ||
9157 | type Rec is record | |
9158 | Empty : Boolean; | |
9159 | end record; | |
9160 | ||
9161 | Things become a little more complicated when trying to fix an entity | |
9162 | with a dynamic type that directly contains another dynamic type, | |
9163 | such as an array of variant records, for instance. There are | |
9164 | two possible cases: Arrays, and records. | |
9165 | ||
21649b50 JB |
9166 | 3. ``Fixing'' Arrays: |
9167 | --------------------- | |
9168 | ||
9169 | The type structure in GDB describes an array in terms of its bounds, | |
9170 | and the type of its elements. By design, all elements in the array | |
9171 | have the same type and we cannot represent an array of variant elements | |
9172 | using the current type structure in GDB. When fixing an array, | |
9173 | we cannot fix the array element, as we would potentially need one | |
9174 | fixed type per element of the array. As a result, the best we can do | |
9175 | when fixing an array is to produce an array whose bounds and size | |
9176 | are correct (allowing us to read it from memory), but without having | |
9177 | touched its element type. Fixing each element will be done later, | |
9178 | when (if) necessary. | |
9179 | ||
9180 | Arrays are a little simpler to handle than records, because the same | |
9181 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 9182 | the amount of space actually used by each element differs from element |
21649b50 | 9183 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
9184 | |
9185 | type Rec_Array is array (1 .. 2) of Rec; | |
9186 | ||
1b536f04 JB |
9187 | The actual amount of memory occupied by each element might be different |
9188 | from element to element, depending on the value of their discriminant. | |
21649b50 | 9189 | But the amount of space reserved for each element in the array remains |
1b536f04 | 9190 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
9191 | the debugging information available, from which we can then determine |
9192 | the array size (we multiply the number of elements of the array by | |
9193 | the size of each element). | |
9194 | ||
9195 | The simplest case is when we have an array of a constrained element | |
9196 | type. For instance, consider the following type declarations: | |
9197 | ||
9198 | type Bounded_String (Max_Size : Integer) is | |
9199 | Length : Integer; | |
9200 | Buffer : String (1 .. Max_Size); | |
9201 | end record; | |
9202 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
9203 | ||
9204 | In this case, the compiler describes the array as an array of | |
9205 | variable-size elements (identified by its XVS suffix) for which | |
9206 | the size can be read in the parallel XVZ variable. | |
9207 | ||
9208 | In the case of an array of an unconstrained element type, the compiler | |
9209 | wraps the array element inside a private PAD type. This type should not | |
9210 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
9211 | that we also use the adjective "aligner" in our code to designate |
9212 | these wrapper types. | |
9213 | ||
1b536f04 | 9214 | In some cases, the size allocated for each element is statically |
21649b50 JB |
9215 | known. In that case, the PAD type already has the correct size, |
9216 | and the array element should remain unfixed. | |
9217 | ||
9218 | But there are cases when this size is not statically known. | |
9219 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
9220 | |
9221 | type Dynamic is array (1 .. Five) of Integer; | |
9222 | type Wrapper (Has_Length : Boolean := False) is record | |
9223 | Data : Dynamic; | |
9224 | case Has_Length is | |
9225 | when True => Length : Integer; | |
9226 | when False => null; | |
9227 | end case; | |
9228 | end record; | |
9229 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
9230 | ||
9231 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
9232 | Data => (others => 17), | |
9233 | Length => 1)); | |
9234 | ||
9235 | ||
9236 | The debugging info would describe variable Hello as being an | |
9237 | array of a PAD type. The size of that PAD type is not statically | |
9238 | known, but can be determined using a parallel XVZ variable. | |
9239 | In that case, a copy of the PAD type with the correct size should | |
9240 | be used for the fixed array. | |
9241 | ||
21649b50 JB |
9242 | 3. ``Fixing'' record type objects: |
9243 | ---------------------------------- | |
9244 | ||
9245 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
9246 | record types. In this case, in order to compute the associated |
9247 | fixed type, we need to determine the size and offset of each of | |
9248 | its components. This, in turn, requires us to compute the fixed | |
9249 | type of each of these components. | |
9250 | ||
9251 | Consider for instance the example: | |
9252 | ||
9253 | type Bounded_String (Max_Size : Natural) is record | |
9254 | Str : String (1 .. Max_Size); | |
9255 | Length : Natural; | |
9256 | end record; | |
9257 | My_String : Bounded_String (Max_Size => 10); | |
9258 | ||
9259 | In that case, the position of field "Length" depends on the size | |
9260 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 9261 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
9262 | we need to fix the type of field Str. Therefore, fixing a variant |
9263 | record requires us to fix each of its components. | |
9264 | ||
9265 | However, if a component does not have a dynamic size, the component | |
9266 | should not be fixed. In particular, fields that use a PAD type | |
9267 | should not fixed. Here is an example where this might happen | |
9268 | (assuming type Rec above): | |
9269 | ||
9270 | type Container (Big : Boolean) is record | |
9271 | First : Rec; | |
9272 | After : Integer; | |
9273 | case Big is | |
9274 | when True => Another : Integer; | |
9275 | when False => null; | |
9276 | end case; | |
9277 | end record; | |
9278 | My_Container : Container := (Big => False, | |
9279 | First => (Empty => True), | |
9280 | After => 42); | |
9281 | ||
9282 | In that example, the compiler creates a PAD type for component First, | |
9283 | whose size is constant, and then positions the component After just | |
9284 | right after it. The offset of component After is therefore constant | |
9285 | in this case. | |
9286 | ||
9287 | The debugger computes the position of each field based on an algorithm | |
9288 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
9289 | preceding it. Let's now imagine that the user is trying to print |
9290 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
9291 | end up computing the offset of field After based on the size of the |
9292 | fixed version of field First. And since in our example First has | |
9293 | only one actual field, the size of the fixed type is actually smaller | |
9294 | than the amount of space allocated to that field, and thus we would | |
9295 | compute the wrong offset of field After. | |
9296 | ||
21649b50 JB |
9297 | To make things more complicated, we need to watch out for dynamic |
9298 | components of variant records (identified by the ___XVL suffix in | |
9299 | the component name). Even if the target type is a PAD type, the size | |
9300 | of that type might not be statically known. So the PAD type needs | |
9301 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
9302 | we might end up with the wrong size for our component. This can be | |
9303 | observed with the following type declarations: | |
284614f0 JB |
9304 | |
9305 | type Octal is new Integer range 0 .. 7; | |
9306 | type Octal_Array is array (Positive range <>) of Octal; | |
9307 | pragma Pack (Octal_Array); | |
9308 | ||
9309 | type Octal_Buffer (Size : Positive) is record | |
9310 | Buffer : Octal_Array (1 .. Size); | |
9311 | Length : Integer; | |
9312 | end record; | |
9313 | ||
9314 | In that case, Buffer is a PAD type whose size is unset and needs | |
9315 | to be computed by fixing the unwrapped type. | |
9316 | ||
21649b50 JB |
9317 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
9318 | ---------------------------------------------------------- | |
9319 | ||
9320 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
9321 | thus far, be actually fixed? |
9322 | ||
9323 | The answer is: Only when referencing that element. For instance | |
9324 | when selecting one component of a record, this specific component | |
9325 | should be fixed at that point in time. Or when printing the value | |
9326 | of a record, each component should be fixed before its value gets | |
9327 | printed. Similarly for arrays, the element of the array should be | |
9328 | fixed when printing each element of the array, or when extracting | |
9329 | one element out of that array. On the other hand, fixing should | |
9330 | not be performed on the elements when taking a slice of an array! | |
9331 | ||
9332 | Note that one of the side-effects of miscomputing the offset and | |
9333 | size of each field is that we end up also miscomputing the size | |
9334 | of the containing type. This can have adverse results when computing | |
9335 | the value of an entity. GDB fetches the value of an entity based | |
9336 | on the size of its type, and thus a wrong size causes GDB to fetch | |
9337 | the wrong amount of memory. In the case where the computed size is | |
9338 | too small, GDB fetches too little data to print the value of our | |
9339 | entiry. Results in this case as unpredicatble, as we usually read | |
9340 | past the buffer containing the data =:-o. */ | |
9341 | ||
9342 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
9343 | for the Ada language. */ | |
9344 | ||
52ce6436 | 9345 | static struct value * |
ebf56fd3 | 9346 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 9347 | int *pos, enum noside noside) |
14f9c5c9 AS |
9348 | { |
9349 | enum exp_opcode op; | |
b5385fc0 | 9350 | int tem; |
14f9c5c9 AS |
9351 | int pc; |
9352 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
9353 | struct type *type; | |
52ce6436 | 9354 | int nargs, oplen; |
d2e4a39e | 9355 | struct value **argvec; |
14f9c5c9 | 9356 | |
d2e4a39e AS |
9357 | pc = *pos; |
9358 | *pos += 1; | |
14f9c5c9 AS |
9359 | op = exp->elts[pc].opcode; |
9360 | ||
d2e4a39e | 9361 | switch (op) |
14f9c5c9 AS |
9362 | { |
9363 | default: | |
9364 | *pos -= 1; | |
6e48bd2c JB |
9365 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
9366 | arg1 = unwrap_value (arg1); | |
9367 | ||
9368 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
9369 | then we need to perform the conversion manually, because | |
9370 | evaluate_subexp_standard doesn't do it. This conversion is | |
9371 | necessary in Ada because the different kinds of float/fixed | |
9372 | types in Ada have different representations. | |
9373 | ||
9374 | Similarly, we need to perform the conversion from OP_LONG | |
9375 | ourselves. */ | |
9376 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
9377 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
9378 | ||
9379 | return arg1; | |
4c4b4cd2 PH |
9380 | |
9381 | case OP_STRING: | |
9382 | { | |
76a01679 | 9383 | struct value *result; |
5b4ee69b | 9384 | |
76a01679 JB |
9385 | *pos -= 1; |
9386 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9387 | /* The result type will have code OP_STRING, bashed there from | |
9388 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
9389 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
9390 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 9391 | return result; |
4c4b4cd2 | 9392 | } |
14f9c5c9 AS |
9393 | |
9394 | case UNOP_CAST: | |
9395 | (*pos) += 2; | |
9396 | type = exp->elts[pc + 1].type; | |
9397 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
9398 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9399 | goto nosideret; |
6e48bd2c | 9400 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
9401 | return arg1; |
9402 | ||
4c4b4cd2 PH |
9403 | case UNOP_QUAL: |
9404 | (*pos) += 2; | |
9405 | type = exp->elts[pc + 1].type; | |
9406 | return ada_evaluate_subexp (type, exp, pos, noside); | |
9407 | ||
14f9c5c9 AS |
9408 | case BINOP_ASSIGN: |
9409 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
9410 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
9411 | { | |
9412 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
9413 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
9414 | return arg1; | |
9415 | return ada_value_assign (arg1, arg1); | |
9416 | } | |
003f3813 JB |
9417 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
9418 | except if the lhs of our assignment is a convenience variable. | |
9419 | In the case of assigning to a convenience variable, the lhs | |
9420 | should be exactly the result of the evaluation of the rhs. */ | |
9421 | type = value_type (arg1); | |
9422 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
9423 | type = NULL; | |
9424 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 9425 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9426 | return arg1; |
df407dfe AC |
9427 | if (ada_is_fixed_point_type (value_type (arg1))) |
9428 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
9429 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 9430 | error |
323e0a4a | 9431 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 9432 | else |
df407dfe | 9433 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 9434 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
9435 | |
9436 | case BINOP_ADD: | |
9437 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9438 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9439 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9440 | goto nosideret; |
2ac8a782 JB |
9441 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9442 | return (value_from_longest | |
9443 | (value_type (arg1), | |
9444 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
9445 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9446 | || ada_is_fixed_point_type (value_type (arg2))) | |
9447 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 9448 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
9449 | /* Do the addition, and cast the result to the type of the first |
9450 | argument. We cannot cast the result to a reference type, so if | |
9451 | ARG1 is a reference type, find its underlying type. */ | |
9452 | type = value_type (arg1); | |
9453 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9454 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9455 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9456 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
9457 | |
9458 | case BINOP_SUB: | |
9459 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9460 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9461 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9462 | goto nosideret; |
2ac8a782 JB |
9463 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9464 | return (value_from_longest | |
9465 | (value_type (arg1), | |
9466 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
9467 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9468 | || ada_is_fixed_point_type (value_type (arg2))) | |
9469 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
9470 | error (_("Operands of fixed-point subtraction " |
9471 | "must have the same type")); | |
b7789565 JB |
9472 | /* Do the substraction, and cast the result to the type of the first |
9473 | argument. We cannot cast the result to a reference type, so if | |
9474 | ARG1 is a reference type, find its underlying type. */ | |
9475 | type = value_type (arg1); | |
9476 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9477 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9478 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9479 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
9480 | |
9481 | case BINOP_MUL: | |
9482 | case BINOP_DIV: | |
e1578042 JB |
9483 | case BINOP_REM: |
9484 | case BINOP_MOD: | |
14f9c5c9 AS |
9485 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9486 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9487 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9488 | goto nosideret; |
e1578042 | 9489 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
9490 | { |
9491 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9492 | return value_zero (value_type (arg1), not_lval); | |
9493 | } | |
14f9c5c9 | 9494 | else |
4c4b4cd2 | 9495 | { |
a53b7a21 | 9496 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 9497 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 9498 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 9499 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 9500 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 9501 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
9502 | return ada_value_binop (arg1, arg2, op); |
9503 | } | |
9504 | ||
4c4b4cd2 PH |
9505 | case BINOP_EQUAL: |
9506 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 9507 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 9508 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 9509 | if (noside == EVAL_SKIP) |
76a01679 | 9510 | goto nosideret; |
4c4b4cd2 | 9511 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9512 | tem = 0; |
4c4b4cd2 | 9513 | else |
f44316fa UW |
9514 | { |
9515 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9516 | tem = ada_value_equal (arg1, arg2); | |
9517 | } | |
4c4b4cd2 | 9518 | if (op == BINOP_NOTEQUAL) |
76a01679 | 9519 | tem = !tem; |
fbb06eb1 UW |
9520 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9521 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
9522 | |
9523 | case UNOP_NEG: | |
9524 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9525 | if (noside == EVAL_SKIP) | |
9526 | goto nosideret; | |
df407dfe AC |
9527 | else if (ada_is_fixed_point_type (value_type (arg1))) |
9528 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 9529 | else |
f44316fa UW |
9530 | { |
9531 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9532 | return value_neg (arg1); | |
9533 | } | |
4c4b4cd2 | 9534 | |
2330c6c6 JB |
9535 | case BINOP_LOGICAL_AND: |
9536 | case BINOP_LOGICAL_OR: | |
9537 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
9538 | { |
9539 | struct value *val; | |
9540 | ||
9541 | *pos -= 1; | |
9542 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
9543 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9544 | return value_cast (type, val); | |
000d5124 | 9545 | } |
2330c6c6 JB |
9546 | |
9547 | case BINOP_BITWISE_AND: | |
9548 | case BINOP_BITWISE_IOR: | |
9549 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
9550 | { |
9551 | struct value *val; | |
9552 | ||
9553 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
9554 | *pos = pc; | |
9555 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9556 | ||
9557 | return value_cast (value_type (arg1), val); | |
9558 | } | |
2330c6c6 | 9559 | |
14f9c5c9 AS |
9560 | case OP_VAR_VALUE: |
9561 | *pos -= 1; | |
6799def4 | 9562 | |
14f9c5c9 | 9563 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
9564 | { |
9565 | *pos += 4; | |
9566 | goto nosideret; | |
9567 | } | |
9568 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
9569 | /* Only encountered when an unresolved symbol occurs in a |
9570 | context other than a function call, in which case, it is | |
52ce6436 | 9571 | invalid. */ |
323e0a4a | 9572 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 9573 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 9574 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9575 | { |
0c1f74cf | 9576 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
9577 | /* Check to see if this is a tagged type. We also need to handle |
9578 | the case where the type is a reference to a tagged type, but | |
9579 | we have to be careful to exclude pointers to tagged types. | |
9580 | The latter should be shown as usual (as a pointer), whereas | |
9581 | a reference should mostly be transparent to the user. */ | |
9582 | if (ada_is_tagged_type (type, 0) | |
9583 | || (TYPE_CODE(type) == TYPE_CODE_REF | |
9584 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) | |
0c1f74cf JB |
9585 | { |
9586 | /* Tagged types are a little special in the fact that the real | |
9587 | type is dynamic and can only be determined by inspecting the | |
9588 | object's tag. This means that we need to get the object's | |
9589 | value first (EVAL_NORMAL) and then extract the actual object | |
9590 | type from its tag. | |
9591 | ||
9592 | Note that we cannot skip the final step where we extract | |
9593 | the object type from its tag, because the EVAL_NORMAL phase | |
9594 | results in dynamic components being resolved into fixed ones. | |
9595 | This can cause problems when trying to print the type | |
9596 | description of tagged types whose parent has a dynamic size: | |
9597 | We use the type name of the "_parent" component in order | |
9598 | to print the name of the ancestor type in the type description. | |
9599 | If that component had a dynamic size, the resolution into | |
9600 | a fixed type would result in the loss of that type name, | |
9601 | thus preventing us from printing the name of the ancestor | |
9602 | type in the type description. */ | |
b79819ba JB |
9603 | struct type *actual_type; |
9604 | ||
0c1f74cf | 9605 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); |
b79819ba JB |
9606 | actual_type = type_from_tag (ada_value_tag (arg1)); |
9607 | if (actual_type == NULL) | |
9608 | /* If, for some reason, we were unable to determine | |
9609 | the actual type from the tag, then use the static | |
9610 | approximation that we just computed as a fallback. | |
9611 | This can happen if the debugging information is | |
9612 | incomplete, for instance. */ | |
9613 | actual_type = type; | |
9614 | ||
9615 | return value_zero (actual_type, not_lval); | |
0c1f74cf JB |
9616 | } |
9617 | ||
4c4b4cd2 PH |
9618 | *pos += 4; |
9619 | return value_zero | |
9620 | (to_static_fixed_type | |
9621 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
9622 | not_lval); | |
9623 | } | |
d2e4a39e | 9624 | else |
4c4b4cd2 | 9625 | { |
284614f0 | 9626 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
4c4b4cd2 PH |
9627 | return ada_to_fixed_value (arg1); |
9628 | } | |
9629 | ||
9630 | case OP_FUNCALL: | |
9631 | (*pos) += 2; | |
9632 | ||
9633 | /* Allocate arg vector, including space for the function to be | |
9634 | called in argvec[0] and a terminating NULL. */ | |
9635 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
9636 | argvec = | |
9637 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
9638 | ||
9639 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 9640 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 9641 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
9642 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
9643 | else | |
9644 | { | |
9645 | for (tem = 0; tem <= nargs; tem += 1) | |
9646 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9647 | argvec[tem] = 0; | |
9648 | ||
9649 | if (noside == EVAL_SKIP) | |
9650 | goto nosideret; | |
9651 | } | |
9652 | ||
ad82864c JB |
9653 | if (ada_is_constrained_packed_array_type |
9654 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 9655 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
9656 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
9657 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
9658 | /* This is a packed array that has already been fixed, and | |
9659 | therefore already coerced to a simple array. Nothing further | |
9660 | to do. */ | |
9661 | ; | |
df407dfe AC |
9662 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
9663 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 9664 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
9665 | argvec[0] = value_addr (argvec[0]); |
9666 | ||
df407dfe | 9667 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
9668 | |
9669 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
9670 | them. So, if this is an array typedef (encoding use for array |
9671 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
9672 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
9673 | type = ada_typedef_target_type (type); | |
9674 | ||
4c4b4cd2 PH |
9675 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
9676 | { | |
61ee279c | 9677 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
9678 | { |
9679 | case TYPE_CODE_FUNC: | |
61ee279c | 9680 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9681 | break; |
9682 | case TYPE_CODE_ARRAY: | |
9683 | break; | |
9684 | case TYPE_CODE_STRUCT: | |
9685 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
9686 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 9687 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9688 | break; |
9689 | default: | |
323e0a4a | 9690 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 9691 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
9692 | break; |
9693 | } | |
9694 | } | |
9695 | ||
9696 | switch (TYPE_CODE (type)) | |
9697 | { | |
9698 | case TYPE_CODE_FUNC: | |
9699 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 PH |
9700 | { |
9701 | struct type *rtype = TYPE_TARGET_TYPE (type); | |
9702 | ||
9703 | if (TYPE_GNU_IFUNC (type)) | |
9704 | return allocate_value (TYPE_TARGET_TYPE (rtype)); | |
9705 | return allocate_value (rtype); | |
9706 | } | |
4c4b4cd2 | 9707 | return call_function_by_hand (argvec[0], nargs, argvec + 1); |
c8ea1972 PH |
9708 | case TYPE_CODE_INTERNAL_FUNCTION: |
9709 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9710 | /* We don't know anything about what the internal | |
9711 | function might return, but we have to return | |
9712 | something. */ | |
9713 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
9714 | not_lval); | |
9715 | else | |
9716 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
9717 | argvec[0], nargs, argvec + 1); | |
9718 | ||
4c4b4cd2 PH |
9719 | case TYPE_CODE_STRUCT: |
9720 | { | |
9721 | int arity; | |
9722 | ||
4c4b4cd2 PH |
9723 | arity = ada_array_arity (type); |
9724 | type = ada_array_element_type (type, nargs); | |
9725 | if (type == NULL) | |
323e0a4a | 9726 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 9727 | if (arity != nargs) |
323e0a4a | 9728 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 9729 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 9730 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9731 | return |
9732 | unwrap_value (ada_value_subscript | |
9733 | (argvec[0], nargs, argvec + 1)); | |
9734 | } | |
9735 | case TYPE_CODE_ARRAY: | |
9736 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9737 | { | |
9738 | type = ada_array_element_type (type, nargs); | |
9739 | if (type == NULL) | |
323e0a4a | 9740 | error (_("element type of array unknown")); |
4c4b4cd2 | 9741 | else |
0a07e705 | 9742 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9743 | } |
9744 | return | |
9745 | unwrap_value (ada_value_subscript | |
9746 | (ada_coerce_to_simple_array (argvec[0]), | |
9747 | nargs, argvec + 1)); | |
9748 | case TYPE_CODE_PTR: /* Pointer to array */ | |
9749 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
9750 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9751 | { | |
9752 | type = ada_array_element_type (type, nargs); | |
9753 | if (type == NULL) | |
323e0a4a | 9754 | error (_("element type of array unknown")); |
4c4b4cd2 | 9755 | else |
0a07e705 | 9756 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9757 | } |
9758 | return | |
9759 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
9760 | nargs, argvec + 1)); | |
9761 | ||
9762 | default: | |
e1d5a0d2 PH |
9763 | error (_("Attempt to index or call something other than an " |
9764 | "array or function")); | |
4c4b4cd2 PH |
9765 | } |
9766 | ||
9767 | case TERNOP_SLICE: | |
9768 | { | |
9769 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9770 | struct value *low_bound_val = | |
9771 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
9772 | struct value *high_bound_val = |
9773 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9774 | LONGEST low_bound; | |
9775 | LONGEST high_bound; | |
5b4ee69b | 9776 | |
994b9211 AC |
9777 | low_bound_val = coerce_ref (low_bound_val); |
9778 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
9779 | low_bound = pos_atr (low_bound_val); |
9780 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 9781 | |
4c4b4cd2 PH |
9782 | if (noside == EVAL_SKIP) |
9783 | goto nosideret; | |
9784 | ||
4c4b4cd2 PH |
9785 | /* If this is a reference to an aligner type, then remove all |
9786 | the aligners. */ | |
df407dfe AC |
9787 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9788 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
9789 | TYPE_TARGET_TYPE (value_type (array)) = | |
9790 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 9791 | |
ad82864c | 9792 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 9793 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
9794 | |
9795 | /* If this is a reference to an array or an array lvalue, | |
9796 | convert to a pointer. */ | |
df407dfe AC |
9797 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9798 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
9799 | && VALUE_LVAL (array) == lval_memory)) |
9800 | array = value_addr (array); | |
9801 | ||
1265e4aa | 9802 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 9803 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 9804 | (value_type (array)))) |
0b5d8877 | 9805 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
9806 | |
9807 | array = ada_coerce_to_simple_array_ptr (array); | |
9808 | ||
714e53ab PH |
9809 | /* If we have more than one level of pointer indirection, |
9810 | dereference the value until we get only one level. */ | |
df407dfe AC |
9811 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
9812 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
9813 | == TYPE_CODE_PTR)) |
9814 | array = value_ind (array); | |
9815 | ||
9816 | /* Make sure we really do have an array type before going further, | |
9817 | to avoid a SEGV when trying to get the index type or the target | |
9818 | type later down the road if the debug info generated by | |
9819 | the compiler is incorrect or incomplete. */ | |
df407dfe | 9820 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 9821 | error (_("cannot take slice of non-array")); |
714e53ab | 9822 | |
828292f2 JB |
9823 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
9824 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 9825 | { |
828292f2 JB |
9826 | struct type *type0 = ada_check_typedef (value_type (array)); |
9827 | ||
0b5d8877 | 9828 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 9829 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
9830 | else |
9831 | { | |
9832 | struct type *arr_type0 = | |
828292f2 | 9833 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 9834 | |
f5938064 JG |
9835 | return ada_value_slice_from_ptr (array, arr_type0, |
9836 | longest_to_int (low_bound), | |
9837 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
9838 | } |
9839 | } | |
9840 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9841 | return array; | |
9842 | else if (high_bound < low_bound) | |
df407dfe | 9843 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 9844 | else |
529cad9c PH |
9845 | return ada_value_slice (array, longest_to_int (low_bound), |
9846 | longest_to_int (high_bound)); | |
4c4b4cd2 | 9847 | } |
14f9c5c9 | 9848 | |
4c4b4cd2 PH |
9849 | case UNOP_IN_RANGE: |
9850 | (*pos) += 2; | |
9851 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 9852 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 9853 | |
14f9c5c9 | 9854 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9855 | goto nosideret; |
14f9c5c9 | 9856 | |
4c4b4cd2 PH |
9857 | switch (TYPE_CODE (type)) |
9858 | { | |
9859 | default: | |
e1d5a0d2 PH |
9860 | lim_warning (_("Membership test incompletely implemented; " |
9861 | "always returns true")); | |
fbb06eb1 UW |
9862 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9863 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
9864 | |
9865 | case TYPE_CODE_RANGE: | |
030b4912 UW |
9866 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
9867 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
9868 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9869 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
9870 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9871 | return | |
9872 | value_from_longest (type, | |
4c4b4cd2 PH |
9873 | (value_less (arg1, arg3) |
9874 | || value_equal (arg1, arg3)) | |
9875 | && (value_less (arg2, arg1) | |
9876 | || value_equal (arg2, arg1))); | |
9877 | } | |
9878 | ||
9879 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 9880 | (*pos) += 2; |
4c4b4cd2 PH |
9881 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9882 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 9883 | |
4c4b4cd2 PH |
9884 | if (noside == EVAL_SKIP) |
9885 | goto nosideret; | |
14f9c5c9 | 9886 | |
4c4b4cd2 | 9887 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
9888 | { |
9889 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9890 | return value_zero (type, not_lval); | |
9891 | } | |
14f9c5c9 | 9892 | |
4c4b4cd2 | 9893 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 9894 | |
1eea4ebd UW |
9895 | type = ada_index_type (value_type (arg2), tem, "range"); |
9896 | if (!type) | |
9897 | type = value_type (arg1); | |
14f9c5c9 | 9898 | |
1eea4ebd UW |
9899 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
9900 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 9901 | |
f44316fa UW |
9902 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9903 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9904 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9905 | return |
fbb06eb1 | 9906 | value_from_longest (type, |
4c4b4cd2 PH |
9907 | (value_less (arg1, arg3) |
9908 | || value_equal (arg1, arg3)) | |
9909 | && (value_less (arg2, arg1) | |
9910 | || value_equal (arg2, arg1))); | |
9911 | ||
9912 | case TERNOP_IN_RANGE: | |
9913 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9914 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9915 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9916 | ||
9917 | if (noside == EVAL_SKIP) | |
9918 | goto nosideret; | |
9919 | ||
f44316fa UW |
9920 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9921 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9922 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9923 | return |
fbb06eb1 | 9924 | value_from_longest (type, |
4c4b4cd2 PH |
9925 | (value_less (arg1, arg3) |
9926 | || value_equal (arg1, arg3)) | |
9927 | && (value_less (arg2, arg1) | |
9928 | || value_equal (arg2, arg1))); | |
9929 | ||
9930 | case OP_ATR_FIRST: | |
9931 | case OP_ATR_LAST: | |
9932 | case OP_ATR_LENGTH: | |
9933 | { | |
76a01679 | 9934 | struct type *type_arg; |
5b4ee69b | 9935 | |
76a01679 JB |
9936 | if (exp->elts[*pos].opcode == OP_TYPE) |
9937 | { | |
9938 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
9939 | arg1 = NULL; | |
5bc23cb3 | 9940 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
9941 | } |
9942 | else | |
9943 | { | |
9944 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9945 | type_arg = NULL; | |
9946 | } | |
9947 | ||
9948 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 9949 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
9950 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
9951 | *pos += 4; | |
9952 | ||
9953 | if (noside == EVAL_SKIP) | |
9954 | goto nosideret; | |
9955 | ||
9956 | if (type_arg == NULL) | |
9957 | { | |
9958 | arg1 = ada_coerce_ref (arg1); | |
9959 | ||
ad82864c | 9960 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
9961 | arg1 = ada_coerce_to_simple_array (arg1); |
9962 | ||
1eea4ebd UW |
9963 | type = ada_index_type (value_type (arg1), tem, |
9964 | ada_attribute_name (op)); | |
9965 | if (type == NULL) | |
9966 | type = builtin_type (exp->gdbarch)->builtin_int; | |
76a01679 JB |
9967 | |
9968 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 9969 | return allocate_value (type); |
76a01679 JB |
9970 | |
9971 | switch (op) | |
9972 | { | |
9973 | default: /* Should never happen. */ | |
323e0a4a | 9974 | error (_("unexpected attribute encountered")); |
76a01679 | 9975 | case OP_ATR_FIRST: |
1eea4ebd UW |
9976 | return value_from_longest |
9977 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 9978 | case OP_ATR_LAST: |
1eea4ebd UW |
9979 | return value_from_longest |
9980 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 9981 | case OP_ATR_LENGTH: |
1eea4ebd UW |
9982 | return value_from_longest |
9983 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
9984 | } |
9985 | } | |
9986 | else if (discrete_type_p (type_arg)) | |
9987 | { | |
9988 | struct type *range_type; | |
0d5cff50 | 9989 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 9990 | |
76a01679 JB |
9991 | range_type = NULL; |
9992 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 9993 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
9994 | if (range_type == NULL) |
9995 | range_type = type_arg; | |
9996 | switch (op) | |
9997 | { | |
9998 | default: | |
323e0a4a | 9999 | error (_("unexpected attribute encountered")); |
76a01679 | 10000 | case OP_ATR_FIRST: |
690cc4eb | 10001 | return value_from_longest |
43bbcdc2 | 10002 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 10003 | case OP_ATR_LAST: |
690cc4eb | 10004 | return value_from_longest |
43bbcdc2 | 10005 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 10006 | case OP_ATR_LENGTH: |
323e0a4a | 10007 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
10008 | } |
10009 | } | |
10010 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 10011 | error (_("unimplemented type attribute")); |
76a01679 JB |
10012 | else |
10013 | { | |
10014 | LONGEST low, high; | |
10015 | ||
ad82864c JB |
10016 | if (ada_is_constrained_packed_array_type (type_arg)) |
10017 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 10018 | |
1eea4ebd | 10019 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); |
76a01679 | 10020 | if (type == NULL) |
1eea4ebd UW |
10021 | type = builtin_type (exp->gdbarch)->builtin_int; |
10022 | ||
76a01679 JB |
10023 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10024 | return allocate_value (type); | |
10025 | ||
10026 | switch (op) | |
10027 | { | |
10028 | default: | |
323e0a4a | 10029 | error (_("unexpected attribute encountered")); |
76a01679 | 10030 | case OP_ATR_FIRST: |
1eea4ebd | 10031 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
10032 | return value_from_longest (type, low); |
10033 | case OP_ATR_LAST: | |
1eea4ebd | 10034 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
10035 | return value_from_longest (type, high); |
10036 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
10037 | low = ada_array_bound_from_type (type_arg, tem, 0); |
10038 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
10039 | return value_from_longest (type, high - low + 1); |
10040 | } | |
10041 | } | |
14f9c5c9 AS |
10042 | } |
10043 | ||
4c4b4cd2 PH |
10044 | case OP_ATR_TAG: |
10045 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10046 | if (noside == EVAL_SKIP) | |
76a01679 | 10047 | goto nosideret; |
4c4b4cd2 PH |
10048 | |
10049 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 10050 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
10051 | |
10052 | return ada_value_tag (arg1); | |
10053 | ||
10054 | case OP_ATR_MIN: | |
10055 | case OP_ATR_MAX: | |
10056 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10057 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10058 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10059 | if (noside == EVAL_SKIP) | |
76a01679 | 10060 | goto nosideret; |
d2e4a39e | 10061 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 10062 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 10063 | else |
f44316fa UW |
10064 | { |
10065 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10066 | return value_binop (arg1, arg2, | |
10067 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
10068 | } | |
14f9c5c9 | 10069 | |
4c4b4cd2 PH |
10070 | case OP_ATR_MODULUS: |
10071 | { | |
31dedfee | 10072 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 10073 | |
5b4ee69b | 10074 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
10075 | if (noside == EVAL_SKIP) |
10076 | goto nosideret; | |
4c4b4cd2 | 10077 | |
76a01679 | 10078 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 10079 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 10080 | |
76a01679 JB |
10081 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
10082 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
10083 | } |
10084 | ||
10085 | ||
10086 | case OP_ATR_POS: | |
10087 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10088 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10089 | if (noside == EVAL_SKIP) | |
76a01679 | 10090 | goto nosideret; |
3cb382c9 UW |
10091 | type = builtin_type (exp->gdbarch)->builtin_int; |
10092 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10093 | return value_zero (type, not_lval); | |
14f9c5c9 | 10094 | else |
3cb382c9 | 10095 | return value_pos_atr (type, arg1); |
14f9c5c9 | 10096 | |
4c4b4cd2 PH |
10097 | case OP_ATR_SIZE: |
10098 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
10099 | type = value_type (arg1); |
10100 | ||
10101 | /* If the argument is a reference, then dereference its type, since | |
10102 | the user is really asking for the size of the actual object, | |
10103 | not the size of the pointer. */ | |
10104 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
10105 | type = TYPE_TARGET_TYPE (type); | |
10106 | ||
4c4b4cd2 | 10107 | if (noside == EVAL_SKIP) |
76a01679 | 10108 | goto nosideret; |
4c4b4cd2 | 10109 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 10110 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 10111 | else |
22601c15 | 10112 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 10113 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
10114 | |
10115 | case OP_ATR_VAL: | |
10116 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 10117 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 10118 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 10119 | if (noside == EVAL_SKIP) |
76a01679 | 10120 | goto nosideret; |
4c4b4cd2 | 10121 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10122 | return value_zero (type, not_lval); |
4c4b4cd2 | 10123 | else |
76a01679 | 10124 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
10125 | |
10126 | case BINOP_EXP: | |
10127 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10128 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10129 | if (noside == EVAL_SKIP) | |
10130 | goto nosideret; | |
10131 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 10132 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 10133 | else |
f44316fa UW |
10134 | { |
10135 | /* For integer exponentiation operations, | |
10136 | only promote the first argument. */ | |
10137 | if (is_integral_type (value_type (arg2))) | |
10138 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10139 | else | |
10140 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10141 | ||
10142 | return value_binop (arg1, arg2, op); | |
10143 | } | |
4c4b4cd2 PH |
10144 | |
10145 | case UNOP_PLUS: | |
10146 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10147 | if (noside == EVAL_SKIP) | |
10148 | goto nosideret; | |
10149 | else | |
10150 | return arg1; | |
10151 | ||
10152 | case UNOP_ABS: | |
10153 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10154 | if (noside == EVAL_SKIP) | |
10155 | goto nosideret; | |
f44316fa | 10156 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 10157 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 10158 | return value_neg (arg1); |
14f9c5c9 | 10159 | else |
4c4b4cd2 | 10160 | return arg1; |
14f9c5c9 AS |
10161 | |
10162 | case UNOP_IND: | |
6b0d7253 | 10163 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 10164 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10165 | goto nosideret; |
df407dfe | 10166 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 10167 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
10168 | { |
10169 | if (ada_is_array_descriptor_type (type)) | |
10170 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10171 | { | |
10172 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 10173 | |
4c4b4cd2 | 10174 | if (arrType == NULL) |
323e0a4a | 10175 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 10176 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
10177 | } |
10178 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
10179 | || TYPE_CODE (type) == TYPE_CODE_REF | |
10180 | /* In C you can dereference an array to get the 1st elt. */ | |
10181 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
10182 | { |
10183 | type = to_static_fixed_type | |
10184 | (ada_aligned_type | |
10185 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
10186 | check_size (type); | |
10187 | return value_zero (type, lval_memory); | |
10188 | } | |
4c4b4cd2 | 10189 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
10190 | { |
10191 | /* GDB allows dereferencing an int. */ | |
10192 | if (expect_type == NULL) | |
10193 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10194 | lval_memory); | |
10195 | else | |
10196 | { | |
10197 | expect_type = | |
10198 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
10199 | return value_zero (expect_type, lval_memory); | |
10200 | } | |
10201 | } | |
4c4b4cd2 | 10202 | else |
323e0a4a | 10203 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 10204 | } |
0963b4bd | 10205 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 10206 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 10207 | |
96967637 JB |
10208 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
10209 | /* GDB allows dereferencing an int. If we were given | |
10210 | the expect_type, then use that as the target type. | |
10211 | Otherwise, assume that the target type is an int. */ | |
10212 | { | |
10213 | if (expect_type != NULL) | |
10214 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
10215 | arg1)); | |
10216 | else | |
10217 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
10218 | (CORE_ADDR) value_as_address (arg1)); | |
10219 | } | |
6b0d7253 | 10220 | |
4c4b4cd2 PH |
10221 | if (ada_is_array_descriptor_type (type)) |
10222 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10223 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 10224 | else |
4c4b4cd2 | 10225 | return ada_value_ind (arg1); |
14f9c5c9 AS |
10226 | |
10227 | case STRUCTOP_STRUCT: | |
10228 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
10229 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
10230 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10231 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10232 | goto nosideret; |
14f9c5c9 | 10233 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10234 | { |
df407dfe | 10235 | struct type *type1 = value_type (arg1); |
5b4ee69b | 10236 | |
76a01679 JB |
10237 | if (ada_is_tagged_type (type1, 1)) |
10238 | { | |
10239 | type = ada_lookup_struct_elt_type (type1, | |
10240 | &exp->elts[pc + 2].string, | |
10241 | 1, 1, NULL); | |
10242 | if (type == NULL) | |
10243 | /* In this case, we assume that the field COULD exist | |
10244 | in some extension of the type. Return an object of | |
10245 | "type" void, which will match any formal | |
0963b4bd | 10246 | (see ada_type_match). */ |
30b15541 UW |
10247 | return value_zero (builtin_type (exp->gdbarch)->builtin_void, |
10248 | lval_memory); | |
76a01679 JB |
10249 | } |
10250 | else | |
10251 | type = | |
10252 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
10253 | 0, NULL); | |
10254 | ||
10255 | return value_zero (ada_aligned_type (type), lval_memory); | |
10256 | } | |
14f9c5c9 | 10257 | else |
284614f0 JB |
10258 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
10259 | arg1 = unwrap_value (arg1); | |
10260 | return ada_to_fixed_value (arg1); | |
10261 | ||
14f9c5c9 | 10262 | case OP_TYPE: |
4c4b4cd2 PH |
10263 | /* The value is not supposed to be used. This is here to make it |
10264 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
10265 | (*pos) += 2; |
10266 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10267 | goto nosideret; |
14f9c5c9 | 10268 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 10269 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 10270 | else |
323e0a4a | 10271 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
10272 | |
10273 | case OP_AGGREGATE: | |
10274 | case OP_CHOICES: | |
10275 | case OP_OTHERS: | |
10276 | case OP_DISCRETE_RANGE: | |
10277 | case OP_POSITIONAL: | |
10278 | case OP_NAME: | |
10279 | if (noside == EVAL_NORMAL) | |
10280 | switch (op) | |
10281 | { | |
10282 | case OP_NAME: | |
10283 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 10284 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
10285 | case OP_AGGREGATE: |
10286 | error (_("Aggregates only allowed on the right of an assignment")); | |
10287 | default: | |
0963b4bd MS |
10288 | internal_error (__FILE__, __LINE__, |
10289 | _("aggregate apparently mangled")); | |
52ce6436 PH |
10290 | } |
10291 | ||
10292 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
10293 | *pos += oplen - 1; | |
10294 | for (tem = 0; tem < nargs; tem += 1) | |
10295 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
10296 | goto nosideret; | |
14f9c5c9 AS |
10297 | } |
10298 | ||
10299 | nosideret: | |
22601c15 | 10300 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 10301 | } |
14f9c5c9 | 10302 | \f |
d2e4a39e | 10303 | |
4c4b4cd2 | 10304 | /* Fixed point */ |
14f9c5c9 AS |
10305 | |
10306 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
10307 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 10308 | Otherwise, return NULL. */ |
14f9c5c9 | 10309 | |
d2e4a39e | 10310 | static const char * |
ebf56fd3 | 10311 | fixed_type_info (struct type *type) |
14f9c5c9 | 10312 | { |
d2e4a39e | 10313 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
10314 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
10315 | ||
d2e4a39e AS |
10316 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
10317 | { | |
14f9c5c9 | 10318 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 10319 | |
14f9c5c9 | 10320 | if (tail == NULL) |
4c4b4cd2 | 10321 | return NULL; |
d2e4a39e | 10322 | else |
4c4b4cd2 | 10323 | return tail + 5; |
14f9c5c9 AS |
10324 | } |
10325 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
10326 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
10327 | else | |
10328 | return NULL; | |
10329 | } | |
10330 | ||
4c4b4cd2 | 10331 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
10332 | |
10333 | int | |
ebf56fd3 | 10334 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
10335 | { |
10336 | return fixed_type_info (type) != NULL; | |
10337 | } | |
10338 | ||
4c4b4cd2 PH |
10339 | /* Return non-zero iff TYPE represents a System.Address type. */ |
10340 | ||
10341 | int | |
10342 | ada_is_system_address_type (struct type *type) | |
10343 | { | |
10344 | return (TYPE_NAME (type) | |
10345 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
10346 | } | |
10347 | ||
14f9c5c9 AS |
10348 | /* Assuming that TYPE is the representation of an Ada fixed-point |
10349 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 10350 | delta cannot be determined. */ |
14f9c5c9 AS |
10351 | |
10352 | DOUBLEST | |
ebf56fd3 | 10353 | ada_delta (struct type *type) |
14f9c5c9 AS |
10354 | { |
10355 | const char *encoding = fixed_type_info (type); | |
facc390f | 10356 | DOUBLEST num, den; |
14f9c5c9 | 10357 | |
facc390f JB |
10358 | /* Strictly speaking, num and den are encoded as integer. However, |
10359 | they may not fit into a long, and they will have to be converted | |
10360 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10361 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10362 | &num, &den) < 2) | |
14f9c5c9 | 10363 | return -1.0; |
d2e4a39e | 10364 | else |
facc390f | 10365 | return num / den; |
14f9c5c9 AS |
10366 | } |
10367 | ||
10368 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 10369 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
10370 | |
10371 | static DOUBLEST | |
ebf56fd3 | 10372 | scaling_factor (struct type *type) |
14f9c5c9 AS |
10373 | { |
10374 | const char *encoding = fixed_type_info (type); | |
facc390f | 10375 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 10376 | int n; |
d2e4a39e | 10377 | |
facc390f JB |
10378 | /* Strictly speaking, num's and den's are encoded as integer. However, |
10379 | they may not fit into a long, and they will have to be converted | |
10380 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10381 | n = sscanf (encoding, | |
10382 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
10383 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10384 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
10385 | |
10386 | if (n < 2) | |
10387 | return 1.0; | |
10388 | else if (n == 4) | |
facc390f | 10389 | return num1 / den1; |
d2e4a39e | 10390 | else |
facc390f | 10391 | return num0 / den0; |
14f9c5c9 AS |
10392 | } |
10393 | ||
10394 | ||
10395 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 10396 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
10397 | |
10398 | DOUBLEST | |
ebf56fd3 | 10399 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 10400 | { |
d2e4a39e | 10401 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
10402 | } |
10403 | ||
4c4b4cd2 PH |
10404 | /* The representation of a fixed-point value of type TYPE |
10405 | corresponding to the value X. */ | |
14f9c5c9 AS |
10406 | |
10407 | LONGEST | |
ebf56fd3 | 10408 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
10409 | { |
10410 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
10411 | } | |
10412 | ||
14f9c5c9 | 10413 | \f |
d2e4a39e | 10414 | |
4c4b4cd2 | 10415 | /* Range types */ |
14f9c5c9 AS |
10416 | |
10417 | /* Scan STR beginning at position K for a discriminant name, and | |
10418 | return the value of that discriminant field of DVAL in *PX. If | |
10419 | PNEW_K is not null, put the position of the character beyond the | |
10420 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 10421 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
10422 | |
10423 | static int | |
07d8f827 | 10424 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 10425 | int *pnew_k) |
14f9c5c9 AS |
10426 | { |
10427 | static char *bound_buffer = NULL; | |
10428 | static size_t bound_buffer_len = 0; | |
10429 | char *bound; | |
10430 | char *pend; | |
d2e4a39e | 10431 | struct value *bound_val; |
14f9c5c9 AS |
10432 | |
10433 | if (dval == NULL || str == NULL || str[k] == '\0') | |
10434 | return 0; | |
10435 | ||
d2e4a39e | 10436 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
10437 | if (pend == NULL) |
10438 | { | |
d2e4a39e | 10439 | bound = str + k; |
14f9c5c9 AS |
10440 | k += strlen (bound); |
10441 | } | |
d2e4a39e | 10442 | else |
14f9c5c9 | 10443 | { |
d2e4a39e | 10444 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 10445 | bound = bound_buffer; |
d2e4a39e AS |
10446 | strncpy (bound_buffer, str + k, pend - (str + k)); |
10447 | bound[pend - (str + k)] = '\0'; | |
10448 | k = pend - str; | |
14f9c5c9 | 10449 | } |
d2e4a39e | 10450 | |
df407dfe | 10451 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
10452 | if (bound_val == NULL) |
10453 | return 0; | |
10454 | ||
10455 | *px = value_as_long (bound_val); | |
10456 | if (pnew_k != NULL) | |
10457 | *pnew_k = k; | |
10458 | return 1; | |
10459 | } | |
10460 | ||
10461 | /* Value of variable named NAME in the current environment. If | |
10462 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
10463 | otherwise causes an error with message ERR_MSG. */ |
10464 | ||
d2e4a39e AS |
10465 | static struct value * |
10466 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 10467 | { |
4c4b4cd2 | 10468 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
10469 | int nsyms; |
10470 | ||
4c4b4cd2 | 10471 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
d9680e73 | 10472 | &syms, 1); |
14f9c5c9 AS |
10473 | |
10474 | if (nsyms != 1) | |
10475 | { | |
10476 | if (err_msg == NULL) | |
4c4b4cd2 | 10477 | return 0; |
14f9c5c9 | 10478 | else |
8a3fe4f8 | 10479 | error (("%s"), err_msg); |
14f9c5c9 AS |
10480 | } |
10481 | ||
4c4b4cd2 | 10482 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 10483 | } |
d2e4a39e | 10484 | |
14f9c5c9 | 10485 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
10486 | no such variable found, returns 0, and sets *FLAG to 0. If |
10487 | successful, sets *FLAG to 1. */ | |
10488 | ||
14f9c5c9 | 10489 | LONGEST |
4c4b4cd2 | 10490 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 10491 | { |
4c4b4cd2 | 10492 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 10493 | |
14f9c5c9 AS |
10494 | if (var_val == 0) |
10495 | { | |
10496 | if (flag != NULL) | |
4c4b4cd2 | 10497 | *flag = 0; |
14f9c5c9 AS |
10498 | return 0; |
10499 | } | |
10500 | else | |
10501 | { | |
10502 | if (flag != NULL) | |
4c4b4cd2 | 10503 | *flag = 1; |
14f9c5c9 AS |
10504 | return value_as_long (var_val); |
10505 | } | |
10506 | } | |
d2e4a39e | 10507 | |
14f9c5c9 AS |
10508 | |
10509 | /* Return a range type whose base type is that of the range type named | |
10510 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 10511 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
10512 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
10513 | corresponding range type from debug information; fall back to using it | |
10514 | if symbol lookup fails. If a new type must be created, allocate it | |
10515 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
10516 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 10517 | |
d2e4a39e | 10518 | static struct type * |
28c85d6c | 10519 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 10520 | { |
0d5cff50 | 10521 | const char *name; |
14f9c5c9 | 10522 | struct type *base_type; |
d2e4a39e | 10523 | char *subtype_info; |
14f9c5c9 | 10524 | |
28c85d6c JB |
10525 | gdb_assert (raw_type != NULL); |
10526 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 10527 | |
1ce677a4 | 10528 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
10529 | base_type = TYPE_TARGET_TYPE (raw_type); |
10530 | else | |
10531 | base_type = raw_type; | |
10532 | ||
28c85d6c | 10533 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
10534 | subtype_info = strstr (name, "___XD"); |
10535 | if (subtype_info == NULL) | |
690cc4eb | 10536 | { |
43bbcdc2 PH |
10537 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
10538 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 10539 | |
690cc4eb PH |
10540 | if (L < INT_MIN || U > INT_MAX) |
10541 | return raw_type; | |
10542 | else | |
28c85d6c | 10543 | return create_range_type (alloc_type_copy (raw_type), raw_type, |
43bbcdc2 PH |
10544 | ada_discrete_type_low_bound (raw_type), |
10545 | ada_discrete_type_high_bound (raw_type)); | |
690cc4eb | 10546 | } |
14f9c5c9 AS |
10547 | else |
10548 | { | |
10549 | static char *name_buf = NULL; | |
10550 | static size_t name_len = 0; | |
10551 | int prefix_len = subtype_info - name; | |
10552 | LONGEST L, U; | |
10553 | struct type *type; | |
10554 | char *bounds_str; | |
10555 | int n; | |
10556 | ||
10557 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
10558 | strncpy (name_buf, name, prefix_len); | |
10559 | name_buf[prefix_len] = '\0'; | |
10560 | ||
10561 | subtype_info += 5; | |
10562 | bounds_str = strchr (subtype_info, '_'); | |
10563 | n = 1; | |
10564 | ||
d2e4a39e | 10565 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
10566 | { |
10567 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
10568 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
10569 | return raw_type; | |
10570 | if (bounds_str[n] == '_') | |
10571 | n += 2; | |
0963b4bd | 10572 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
10573 | n += 1; |
10574 | subtype_info += 1; | |
10575 | } | |
d2e4a39e | 10576 | else |
4c4b4cd2 PH |
10577 | { |
10578 | int ok; | |
5b4ee69b | 10579 | |
4c4b4cd2 PH |
10580 | strcpy (name_buf + prefix_len, "___L"); |
10581 | L = get_int_var_value (name_buf, &ok); | |
10582 | if (!ok) | |
10583 | { | |
323e0a4a | 10584 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
10585 | L = 1; |
10586 | } | |
10587 | } | |
14f9c5c9 | 10588 | |
d2e4a39e | 10589 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
10590 | { |
10591 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
10592 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
10593 | return raw_type; | |
10594 | } | |
d2e4a39e | 10595 | else |
4c4b4cd2 PH |
10596 | { |
10597 | int ok; | |
5b4ee69b | 10598 | |
4c4b4cd2 PH |
10599 | strcpy (name_buf + prefix_len, "___U"); |
10600 | U = get_int_var_value (name_buf, &ok); | |
10601 | if (!ok) | |
10602 | { | |
323e0a4a | 10603 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
10604 | U = L; |
10605 | } | |
10606 | } | |
14f9c5c9 | 10607 | |
28c85d6c | 10608 | type = create_range_type (alloc_type_copy (raw_type), base_type, L, U); |
d2e4a39e | 10609 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
10610 | return type; |
10611 | } | |
10612 | } | |
10613 | ||
4c4b4cd2 PH |
10614 | /* True iff NAME is the name of a range type. */ |
10615 | ||
14f9c5c9 | 10616 | int |
d2e4a39e | 10617 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
10618 | { |
10619 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 10620 | } |
14f9c5c9 | 10621 | \f |
d2e4a39e | 10622 | |
4c4b4cd2 PH |
10623 | /* Modular types */ |
10624 | ||
10625 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 10626 | |
14f9c5c9 | 10627 | int |
d2e4a39e | 10628 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 10629 | { |
18af8284 | 10630 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
10631 | |
10632 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 10633 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 10634 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
10635 | } |
10636 | ||
4c4b4cd2 PH |
10637 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
10638 | ||
61ee279c | 10639 | ULONGEST |
0056e4d5 | 10640 | ada_modulus (struct type *type) |
14f9c5c9 | 10641 | { |
43bbcdc2 | 10642 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 10643 | } |
d2e4a39e | 10644 | \f |
f7f9143b JB |
10645 | |
10646 | /* Ada exception catchpoint support: | |
10647 | --------------------------------- | |
10648 | ||
10649 | We support 3 kinds of exception catchpoints: | |
10650 | . catchpoints on Ada exceptions | |
10651 | . catchpoints on unhandled Ada exceptions | |
10652 | . catchpoints on failed assertions | |
10653 | ||
10654 | Exceptions raised during failed assertions, or unhandled exceptions | |
10655 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
10656 | However, we can easily differentiate these two special cases, and having | |
10657 | the option to distinguish these two cases from the rest can be useful | |
10658 | to zero-in on certain situations. | |
10659 | ||
10660 | Exception catchpoints are a specialized form of breakpoint, | |
10661 | since they rely on inserting breakpoints inside known routines | |
10662 | of the GNAT runtime. The implementation therefore uses a standard | |
10663 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
10664 | of breakpoint_ops. | |
10665 | ||
0259addd JB |
10666 | Support in the runtime for exception catchpoints have been changed |
10667 | a few times already, and these changes affect the implementation | |
10668 | of these catchpoints. In order to be able to support several | |
10669 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 10670 | the runtime variant used by the program being debugged. */ |
f7f9143b JB |
10671 | |
10672 | /* The different types of catchpoints that we introduced for catching | |
10673 | Ada exceptions. */ | |
10674 | ||
10675 | enum exception_catchpoint_kind | |
10676 | { | |
10677 | ex_catch_exception, | |
10678 | ex_catch_exception_unhandled, | |
10679 | ex_catch_assert | |
10680 | }; | |
10681 | ||
3d0b0fa3 JB |
10682 | /* Ada's standard exceptions. */ |
10683 | ||
10684 | static char *standard_exc[] = { | |
10685 | "constraint_error", | |
10686 | "program_error", | |
10687 | "storage_error", | |
10688 | "tasking_error" | |
10689 | }; | |
10690 | ||
0259addd JB |
10691 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
10692 | ||
10693 | /* A structure that describes how to support exception catchpoints | |
10694 | for a given executable. */ | |
10695 | ||
10696 | struct exception_support_info | |
10697 | { | |
10698 | /* The name of the symbol to break on in order to insert | |
10699 | a catchpoint on exceptions. */ | |
10700 | const char *catch_exception_sym; | |
10701 | ||
10702 | /* The name of the symbol to break on in order to insert | |
10703 | a catchpoint on unhandled exceptions. */ | |
10704 | const char *catch_exception_unhandled_sym; | |
10705 | ||
10706 | /* The name of the symbol to break on in order to insert | |
10707 | a catchpoint on failed assertions. */ | |
10708 | const char *catch_assert_sym; | |
10709 | ||
10710 | /* Assuming that the inferior just triggered an unhandled exception | |
10711 | catchpoint, this function is responsible for returning the address | |
10712 | in inferior memory where the name of that exception is stored. | |
10713 | Return zero if the address could not be computed. */ | |
10714 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
10715 | }; | |
10716 | ||
10717 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
10718 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
10719 | ||
10720 | /* The following exception support info structure describes how to | |
10721 | implement exception catchpoints with the latest version of the | |
10722 | Ada runtime (as of 2007-03-06). */ | |
10723 | ||
10724 | static const struct exception_support_info default_exception_support_info = | |
10725 | { | |
10726 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
10727 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10728 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
10729 | ada_unhandled_exception_name_addr | |
10730 | }; | |
10731 | ||
10732 | /* The following exception support info structure describes how to | |
10733 | implement exception catchpoints with a slightly older version | |
10734 | of the Ada runtime. */ | |
10735 | ||
10736 | static const struct exception_support_info exception_support_info_fallback = | |
10737 | { | |
10738 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
10739 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10740 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
10741 | ada_unhandled_exception_name_addr_from_raise | |
10742 | }; | |
10743 | ||
f17011e0 JB |
10744 | /* Return nonzero if we can detect the exception support routines |
10745 | described in EINFO. | |
10746 | ||
10747 | This function errors out if an abnormal situation is detected | |
10748 | (for instance, if we find the exception support routines, but | |
10749 | that support is found to be incomplete). */ | |
10750 | ||
10751 | static int | |
10752 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
10753 | { | |
10754 | struct symbol *sym; | |
10755 | ||
10756 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
10757 | that should be compiled with debugging information. As a result, we | |
10758 | expect to find that symbol in the symtabs. */ | |
10759 | ||
10760 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
10761 | if (sym == NULL) | |
a6af7abe JB |
10762 | { |
10763 | /* Perhaps we did not find our symbol because the Ada runtime was | |
10764 | compiled without debugging info, or simply stripped of it. | |
10765 | It happens on some GNU/Linux distributions for instance, where | |
10766 | users have to install a separate debug package in order to get | |
10767 | the runtime's debugging info. In that situation, let the user | |
10768 | know why we cannot insert an Ada exception catchpoint. | |
10769 | ||
10770 | Note: Just for the purpose of inserting our Ada exception | |
10771 | catchpoint, we could rely purely on the associated minimal symbol. | |
10772 | But we would be operating in degraded mode anyway, since we are | |
10773 | still lacking the debugging info needed later on to extract | |
10774 | the name of the exception being raised (this name is printed in | |
10775 | the catchpoint message, and is also used when trying to catch | |
10776 | a specific exception). We do not handle this case for now. */ | |
10777 | if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL)) | |
10778 | error (_("Your Ada runtime appears to be missing some debugging " | |
10779 | "information.\nCannot insert Ada exception catchpoint " | |
10780 | "in this configuration.")); | |
10781 | ||
10782 | return 0; | |
10783 | } | |
f17011e0 JB |
10784 | |
10785 | /* Make sure that the symbol we found corresponds to a function. */ | |
10786 | ||
10787 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
10788 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
10789 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
10790 | ||
10791 | return 1; | |
10792 | } | |
10793 | ||
0259addd JB |
10794 | /* Inspect the Ada runtime and determine which exception info structure |
10795 | should be used to provide support for exception catchpoints. | |
10796 | ||
3eecfa55 JB |
10797 | This function will always set the per-inferior exception_info, |
10798 | or raise an error. */ | |
0259addd JB |
10799 | |
10800 | static void | |
10801 | ada_exception_support_info_sniffer (void) | |
10802 | { | |
3eecfa55 | 10803 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
10804 | |
10805 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 10806 | if (data->exception_info != NULL) |
0259addd JB |
10807 | return; |
10808 | ||
10809 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 10810 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 10811 | { |
3eecfa55 | 10812 | data->exception_info = &default_exception_support_info; |
0259addd JB |
10813 | return; |
10814 | } | |
10815 | ||
10816 | /* Try our fallback exception suport info. */ | |
f17011e0 | 10817 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 10818 | { |
3eecfa55 | 10819 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
10820 | return; |
10821 | } | |
10822 | ||
10823 | /* Sometimes, it is normal for us to not be able to find the routine | |
10824 | we are looking for. This happens when the program is linked with | |
10825 | the shared version of the GNAT runtime, and the program has not been | |
10826 | started yet. Inform the user of these two possible causes if | |
10827 | applicable. */ | |
10828 | ||
ccefe4c4 | 10829 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
10830 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
10831 | ||
10832 | /* If the symbol does not exist, then check that the program is | |
10833 | already started, to make sure that shared libraries have been | |
10834 | loaded. If it is not started, this may mean that the symbol is | |
10835 | in a shared library. */ | |
10836 | ||
10837 | if (ptid_get_pid (inferior_ptid) == 0) | |
10838 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
10839 | ||
10840 | /* At this point, we know that we are debugging an Ada program and | |
10841 | that the inferior has been started, but we still are not able to | |
0963b4bd | 10842 | find the run-time symbols. That can mean that we are in |
0259addd JB |
10843 | configurable run time mode, or that a-except as been optimized |
10844 | out by the linker... In any case, at this point it is not worth | |
10845 | supporting this feature. */ | |
10846 | ||
7dda8cff | 10847 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
10848 | } |
10849 | ||
f7f9143b JB |
10850 | /* True iff FRAME is very likely to be that of a function that is |
10851 | part of the runtime system. This is all very heuristic, but is | |
10852 | intended to be used as advice as to what frames are uninteresting | |
10853 | to most users. */ | |
10854 | ||
10855 | static int | |
10856 | is_known_support_routine (struct frame_info *frame) | |
10857 | { | |
4ed6b5be | 10858 | struct symtab_and_line sal; |
0d5cff50 | 10859 | const char *func_name; |
692465f1 | 10860 | enum language func_lang; |
f7f9143b | 10861 | int i; |
f7f9143b | 10862 | |
4ed6b5be JB |
10863 | /* If this code does not have any debugging information (no symtab), |
10864 | This cannot be any user code. */ | |
f7f9143b | 10865 | |
4ed6b5be | 10866 | find_frame_sal (frame, &sal); |
f7f9143b JB |
10867 | if (sal.symtab == NULL) |
10868 | return 1; | |
10869 | ||
4ed6b5be JB |
10870 | /* If there is a symtab, but the associated source file cannot be |
10871 | located, then assume this is not user code: Selecting a frame | |
10872 | for which we cannot display the code would not be very helpful | |
10873 | for the user. This should also take care of case such as VxWorks | |
10874 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 10875 | |
9bbc9174 | 10876 | if (symtab_to_fullname (sal.symtab) == NULL) |
f7f9143b JB |
10877 | return 1; |
10878 | ||
4ed6b5be JB |
10879 | /* Check the unit filename againt the Ada runtime file naming. |
10880 | We also check the name of the objfile against the name of some | |
10881 | known system libraries that sometimes come with debugging info | |
10882 | too. */ | |
10883 | ||
f7f9143b JB |
10884 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
10885 | { | |
10886 | re_comp (known_runtime_file_name_patterns[i]); | |
10887 | if (re_exec (sal.symtab->filename)) | |
10888 | return 1; | |
4ed6b5be JB |
10889 | if (sal.symtab->objfile != NULL |
10890 | && re_exec (sal.symtab->objfile->name)) | |
10891 | return 1; | |
f7f9143b JB |
10892 | } |
10893 | ||
4ed6b5be | 10894 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 10895 | |
e9e07ba6 | 10896 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
10897 | if (func_name == NULL) |
10898 | return 1; | |
10899 | ||
10900 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
10901 | { | |
10902 | re_comp (known_auxiliary_function_name_patterns[i]); | |
10903 | if (re_exec (func_name)) | |
10904 | return 1; | |
10905 | } | |
10906 | ||
10907 | return 0; | |
10908 | } | |
10909 | ||
10910 | /* Find the first frame that contains debugging information and that is not | |
10911 | part of the Ada run-time, starting from FI and moving upward. */ | |
10912 | ||
0ef643c8 | 10913 | void |
f7f9143b JB |
10914 | ada_find_printable_frame (struct frame_info *fi) |
10915 | { | |
10916 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
10917 | { | |
10918 | if (!is_known_support_routine (fi)) | |
10919 | { | |
10920 | select_frame (fi); | |
10921 | break; | |
10922 | } | |
10923 | } | |
10924 | ||
10925 | } | |
10926 | ||
10927 | /* Assuming that the inferior just triggered an unhandled exception | |
10928 | catchpoint, return the address in inferior memory where the name | |
10929 | of the exception is stored. | |
10930 | ||
10931 | Return zero if the address could not be computed. */ | |
10932 | ||
10933 | static CORE_ADDR | |
10934 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
10935 | { |
10936 | return parse_and_eval_address ("e.full_name"); | |
10937 | } | |
10938 | ||
10939 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
10940 | should be used when the inferior uses an older version of the runtime, | |
10941 | where the exception name needs to be extracted from a specific frame | |
10942 | several frames up in the callstack. */ | |
10943 | ||
10944 | static CORE_ADDR | |
10945 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
10946 | { |
10947 | int frame_level; | |
10948 | struct frame_info *fi; | |
3eecfa55 | 10949 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
f7f9143b JB |
10950 | |
10951 | /* To determine the name of this exception, we need to select | |
10952 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
10953 | at least 3 levels up, so we simply skip the first 3 frames | |
10954 | without checking the name of their associated function. */ | |
10955 | fi = get_current_frame (); | |
10956 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
10957 | if (fi != NULL) | |
10958 | fi = get_prev_frame (fi); | |
10959 | ||
10960 | while (fi != NULL) | |
10961 | { | |
0d5cff50 | 10962 | const char *func_name; |
692465f1 JB |
10963 | enum language func_lang; |
10964 | ||
e9e07ba6 | 10965 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
f7f9143b | 10966 | if (func_name != NULL |
3eecfa55 | 10967 | && strcmp (func_name, data->exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
10968 | break; /* We found the frame we were looking for... */ |
10969 | fi = get_prev_frame (fi); | |
10970 | } | |
10971 | ||
10972 | if (fi == NULL) | |
10973 | return 0; | |
10974 | ||
10975 | select_frame (fi); | |
10976 | return parse_and_eval_address ("id.full_name"); | |
10977 | } | |
10978 | ||
10979 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
10980 | (of any type), return the address in inferior memory where the name | |
10981 | of the exception is stored, if applicable. | |
10982 | ||
10983 | Return zero if the address could not be computed, or if not relevant. */ | |
10984 | ||
10985 | static CORE_ADDR | |
10986 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
10987 | struct breakpoint *b) | |
10988 | { | |
3eecfa55 JB |
10989 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
10990 | ||
f7f9143b JB |
10991 | switch (ex) |
10992 | { | |
10993 | case ex_catch_exception: | |
10994 | return (parse_and_eval_address ("e.full_name")); | |
10995 | break; | |
10996 | ||
10997 | case ex_catch_exception_unhandled: | |
3eecfa55 | 10998 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
10999 | break; |
11000 | ||
11001 | case ex_catch_assert: | |
11002 | return 0; /* Exception name is not relevant in this case. */ | |
11003 | break; | |
11004 | ||
11005 | default: | |
11006 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11007 | break; | |
11008 | } | |
11009 | ||
11010 | return 0; /* Should never be reached. */ | |
11011 | } | |
11012 | ||
11013 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
11014 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
11015 | When an error is intercepted, a warning with the error message is printed, | |
11016 | and zero is returned. */ | |
11017 | ||
11018 | static CORE_ADDR | |
11019 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
11020 | struct breakpoint *b) | |
11021 | { | |
bfd189b1 | 11022 | volatile struct gdb_exception e; |
f7f9143b JB |
11023 | CORE_ADDR result = 0; |
11024 | ||
11025 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11026 | { | |
11027 | result = ada_exception_name_addr_1 (ex, b); | |
11028 | } | |
11029 | ||
11030 | if (e.reason < 0) | |
11031 | { | |
11032 | warning (_("failed to get exception name: %s"), e.message); | |
11033 | return 0; | |
11034 | } | |
11035 | ||
11036 | return result; | |
11037 | } | |
11038 | ||
28010a5d PA |
11039 | static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind, |
11040 | char *, char **, | |
c0a91b2b | 11041 | const struct breakpoint_ops **); |
28010a5d PA |
11042 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
11043 | ||
11044 | /* Ada catchpoints. | |
11045 | ||
11046 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
11047 | stop the target on every exception the program throws. When a user | |
11048 | specifies the name of a specific exception, we translate this | |
11049 | request into a condition expression (in text form), and then parse | |
11050 | it into an expression stored in each of the catchpoint's locations. | |
11051 | We then use this condition to check whether the exception that was | |
11052 | raised is the one the user is interested in. If not, then the | |
11053 | target is resumed again. We store the name of the requested | |
11054 | exception, in order to be able to re-set the condition expression | |
11055 | when symbols change. */ | |
11056 | ||
11057 | /* An instance of this type is used to represent an Ada catchpoint | |
11058 | breakpoint location. It includes a "struct bp_location" as a kind | |
11059 | of base class; users downcast to "struct bp_location *" when | |
11060 | needed. */ | |
11061 | ||
11062 | struct ada_catchpoint_location | |
11063 | { | |
11064 | /* The base class. */ | |
11065 | struct bp_location base; | |
11066 | ||
11067 | /* The condition that checks whether the exception that was raised | |
11068 | is the specific exception the user specified on catchpoint | |
11069 | creation. */ | |
11070 | struct expression *excep_cond_expr; | |
11071 | }; | |
11072 | ||
11073 | /* Implement the DTOR method in the bp_location_ops structure for all | |
11074 | Ada exception catchpoint kinds. */ | |
11075 | ||
11076 | static void | |
11077 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
11078 | { | |
11079 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
11080 | ||
11081 | xfree (al->excep_cond_expr); | |
11082 | } | |
11083 | ||
11084 | /* The vtable to be used in Ada catchpoint locations. */ | |
11085 | ||
11086 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
11087 | { | |
11088 | ada_catchpoint_location_dtor | |
11089 | }; | |
11090 | ||
11091 | /* An instance of this type is used to represent an Ada catchpoint. | |
11092 | It includes a "struct breakpoint" as a kind of base class; users | |
11093 | downcast to "struct breakpoint *" when needed. */ | |
11094 | ||
11095 | struct ada_catchpoint | |
11096 | { | |
11097 | /* The base class. */ | |
11098 | struct breakpoint base; | |
11099 | ||
11100 | /* The name of the specific exception the user specified. */ | |
11101 | char *excep_string; | |
11102 | }; | |
11103 | ||
11104 | /* Parse the exception condition string in the context of each of the | |
11105 | catchpoint's locations, and store them for later evaluation. */ | |
11106 | ||
11107 | static void | |
11108 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
11109 | { | |
11110 | struct cleanup *old_chain; | |
11111 | struct bp_location *bl; | |
11112 | char *cond_string; | |
11113 | ||
11114 | /* Nothing to do if there's no specific exception to catch. */ | |
11115 | if (c->excep_string == NULL) | |
11116 | return; | |
11117 | ||
11118 | /* Same if there are no locations... */ | |
11119 | if (c->base.loc == NULL) | |
11120 | return; | |
11121 | ||
11122 | /* Compute the condition expression in text form, from the specific | |
11123 | expection we want to catch. */ | |
11124 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
11125 | old_chain = make_cleanup (xfree, cond_string); | |
11126 | ||
11127 | /* Iterate over all the catchpoint's locations, and parse an | |
11128 | expression for each. */ | |
11129 | for (bl = c->base.loc; bl != NULL; bl = bl->next) | |
11130 | { | |
11131 | struct ada_catchpoint_location *ada_loc | |
11132 | = (struct ada_catchpoint_location *) bl; | |
11133 | struct expression *exp = NULL; | |
11134 | ||
11135 | if (!bl->shlib_disabled) | |
11136 | { | |
11137 | volatile struct gdb_exception e; | |
11138 | char *s; | |
11139 | ||
11140 | s = cond_string; | |
11141 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11142 | { | |
1bb9788d TT |
11143 | exp = parse_exp_1 (&s, bl->address, |
11144 | block_for_pc (bl->address), 0); | |
28010a5d PA |
11145 | } |
11146 | if (e.reason < 0) | |
11147 | warning (_("failed to reevaluate internal exception condition " | |
11148 | "for catchpoint %d: %s"), | |
11149 | c->base.number, e.message); | |
11150 | } | |
11151 | ||
11152 | ada_loc->excep_cond_expr = exp; | |
11153 | } | |
11154 | ||
11155 | do_cleanups (old_chain); | |
11156 | } | |
11157 | ||
11158 | /* Implement the DTOR method in the breakpoint_ops structure for all | |
11159 | exception catchpoint kinds. */ | |
11160 | ||
11161 | static void | |
11162 | dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
11163 | { | |
11164 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11165 | ||
11166 | xfree (c->excep_string); | |
348d480f | 11167 | |
2060206e | 11168 | bkpt_breakpoint_ops.dtor (b); |
28010a5d PA |
11169 | } |
11170 | ||
11171 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
11172 | structure for all exception catchpoint kinds. */ | |
11173 | ||
11174 | static struct bp_location * | |
11175 | allocate_location_exception (enum exception_catchpoint_kind ex, | |
11176 | struct breakpoint *self) | |
11177 | { | |
11178 | struct ada_catchpoint_location *loc; | |
11179 | ||
11180 | loc = XNEW (struct ada_catchpoint_location); | |
11181 | init_bp_location (&loc->base, &ada_catchpoint_location_ops, self); | |
11182 | loc->excep_cond_expr = NULL; | |
11183 | return &loc->base; | |
11184 | } | |
11185 | ||
11186 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
11187 | exception catchpoint kinds. */ | |
11188 | ||
11189 | static void | |
11190 | re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
11191 | { | |
11192 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11193 | ||
11194 | /* Call the base class's method. This updates the catchpoint's | |
11195 | locations. */ | |
2060206e | 11196 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
11197 | |
11198 | /* Reparse the exception conditional expressions. One for each | |
11199 | location. */ | |
11200 | create_excep_cond_exprs (c); | |
11201 | } | |
11202 | ||
11203 | /* Returns true if we should stop for this breakpoint hit. If the | |
11204 | user specified a specific exception, we only want to cause a stop | |
11205 | if the program thrown that exception. */ | |
11206 | ||
11207 | static int | |
11208 | should_stop_exception (const struct bp_location *bl) | |
11209 | { | |
11210 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
11211 | const struct ada_catchpoint_location *ada_loc | |
11212 | = (const struct ada_catchpoint_location *) bl; | |
11213 | volatile struct gdb_exception ex; | |
11214 | int stop; | |
11215 | ||
11216 | /* With no specific exception, should always stop. */ | |
11217 | if (c->excep_string == NULL) | |
11218 | return 1; | |
11219 | ||
11220 | if (ada_loc->excep_cond_expr == NULL) | |
11221 | { | |
11222 | /* We will have a NULL expression if back when we were creating | |
11223 | the expressions, this location's had failed to parse. */ | |
11224 | return 1; | |
11225 | } | |
11226 | ||
11227 | stop = 1; | |
11228 | TRY_CATCH (ex, RETURN_MASK_ALL) | |
11229 | { | |
11230 | struct value *mark; | |
11231 | ||
11232 | mark = value_mark (); | |
11233 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr)); | |
11234 | value_free_to_mark (mark); | |
11235 | } | |
11236 | if (ex.reason < 0) | |
11237 | exception_fprintf (gdb_stderr, ex, | |
11238 | _("Error in testing exception condition:\n")); | |
11239 | return stop; | |
11240 | } | |
11241 | ||
11242 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
11243 | for all exception catchpoint kinds. */ | |
11244 | ||
11245 | static void | |
11246 | check_status_exception (enum exception_catchpoint_kind ex, bpstat bs) | |
11247 | { | |
11248 | bs->stop = should_stop_exception (bs->bp_location_at); | |
11249 | } | |
11250 | ||
f7f9143b JB |
11251 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
11252 | for all exception catchpoint kinds. */ | |
11253 | ||
11254 | static enum print_stop_action | |
348d480f | 11255 | print_it_exception (enum exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 11256 | { |
79a45e25 | 11257 | struct ui_out *uiout = current_uiout; |
348d480f PA |
11258 | struct breakpoint *b = bs->breakpoint_at; |
11259 | ||
956a9fb9 | 11260 | annotate_catchpoint (b->number); |
f7f9143b | 11261 | |
956a9fb9 | 11262 | if (ui_out_is_mi_like_p (uiout)) |
f7f9143b | 11263 | { |
956a9fb9 JB |
11264 | ui_out_field_string (uiout, "reason", |
11265 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); | |
11266 | ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition)); | |
f7f9143b JB |
11267 | } |
11268 | ||
00eb2c4a JB |
11269 | ui_out_text (uiout, |
11270 | b->disposition == disp_del ? "\nTemporary catchpoint " | |
11271 | : "\nCatchpoint "); | |
956a9fb9 JB |
11272 | ui_out_field_int (uiout, "bkptno", b->number); |
11273 | ui_out_text (uiout, ", "); | |
f7f9143b | 11274 | |
f7f9143b JB |
11275 | switch (ex) |
11276 | { | |
11277 | case ex_catch_exception: | |
f7f9143b | 11278 | case ex_catch_exception_unhandled: |
956a9fb9 JB |
11279 | { |
11280 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
11281 | char exception_name[256]; | |
11282 | ||
11283 | if (addr != 0) | |
11284 | { | |
11285 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
11286 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
11287 | } | |
11288 | else | |
11289 | { | |
11290 | /* For some reason, we were unable to read the exception | |
11291 | name. This could happen if the Runtime was compiled | |
11292 | without debugging info, for instance. In that case, | |
11293 | just replace the exception name by the generic string | |
11294 | "exception" - it will read as "an exception" in the | |
11295 | notification we are about to print. */ | |
967cff16 | 11296 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
11297 | } |
11298 | /* In the case of unhandled exception breakpoints, we print | |
11299 | the exception name as "unhandled EXCEPTION_NAME", to make | |
11300 | it clearer to the user which kind of catchpoint just got | |
11301 | hit. We used ui_out_text to make sure that this extra | |
11302 | info does not pollute the exception name in the MI case. */ | |
11303 | if (ex == ex_catch_exception_unhandled) | |
11304 | ui_out_text (uiout, "unhandled "); | |
11305 | ui_out_field_string (uiout, "exception-name", exception_name); | |
11306 | } | |
11307 | break; | |
f7f9143b | 11308 | case ex_catch_assert: |
956a9fb9 JB |
11309 | /* In this case, the name of the exception is not really |
11310 | important. Just print "failed assertion" to make it clearer | |
11311 | that his program just hit an assertion-failure catchpoint. | |
11312 | We used ui_out_text because this info does not belong in | |
11313 | the MI output. */ | |
11314 | ui_out_text (uiout, "failed assertion"); | |
11315 | break; | |
f7f9143b | 11316 | } |
956a9fb9 JB |
11317 | ui_out_text (uiout, " at "); |
11318 | ada_find_printable_frame (get_current_frame ()); | |
f7f9143b JB |
11319 | |
11320 | return PRINT_SRC_AND_LOC; | |
11321 | } | |
11322 | ||
11323 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
11324 | for all exception catchpoint kinds. */ | |
11325 | ||
11326 | static void | |
11327 | print_one_exception (enum exception_catchpoint_kind ex, | |
a6d9a66e | 11328 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11329 | { |
79a45e25 | 11330 | struct ui_out *uiout = current_uiout; |
28010a5d | 11331 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
11332 | struct value_print_options opts; |
11333 | ||
11334 | get_user_print_options (&opts); | |
11335 | if (opts.addressprint) | |
f7f9143b JB |
11336 | { |
11337 | annotate_field (4); | |
5af949e3 | 11338 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
11339 | } |
11340 | ||
11341 | annotate_field (5); | |
a6d9a66e | 11342 | *last_loc = b->loc; |
f7f9143b JB |
11343 | switch (ex) |
11344 | { | |
11345 | case ex_catch_exception: | |
28010a5d | 11346 | if (c->excep_string != NULL) |
f7f9143b | 11347 | { |
28010a5d PA |
11348 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
11349 | ||
f7f9143b JB |
11350 | ui_out_field_string (uiout, "what", msg); |
11351 | xfree (msg); | |
11352 | } | |
11353 | else | |
11354 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
11355 | ||
11356 | break; | |
11357 | ||
11358 | case ex_catch_exception_unhandled: | |
11359 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
11360 | break; | |
11361 | ||
11362 | case ex_catch_assert: | |
11363 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
11364 | break; | |
11365 | ||
11366 | default: | |
11367 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11368 | break; | |
11369 | } | |
11370 | } | |
11371 | ||
11372 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
11373 | for all exception catchpoint kinds. */ | |
11374 | ||
11375 | static void | |
11376 | print_mention_exception (enum exception_catchpoint_kind ex, | |
11377 | struct breakpoint *b) | |
11378 | { | |
28010a5d | 11379 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 11380 | struct ui_out *uiout = current_uiout; |
28010a5d | 11381 | |
00eb2c4a JB |
11382 | ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ") |
11383 | : _("Catchpoint ")); | |
11384 | ui_out_field_int (uiout, "bkptno", b->number); | |
11385 | ui_out_text (uiout, ": "); | |
11386 | ||
f7f9143b JB |
11387 | switch (ex) |
11388 | { | |
11389 | case ex_catch_exception: | |
28010a5d | 11390 | if (c->excep_string != NULL) |
00eb2c4a JB |
11391 | { |
11392 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
11393 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
11394 | ||
11395 | ui_out_text (uiout, info); | |
11396 | do_cleanups (old_chain); | |
11397 | } | |
f7f9143b | 11398 | else |
00eb2c4a | 11399 | ui_out_text (uiout, _("all Ada exceptions")); |
f7f9143b JB |
11400 | break; |
11401 | ||
11402 | case ex_catch_exception_unhandled: | |
00eb2c4a | 11403 | ui_out_text (uiout, _("unhandled Ada exceptions")); |
f7f9143b JB |
11404 | break; |
11405 | ||
11406 | case ex_catch_assert: | |
00eb2c4a | 11407 | ui_out_text (uiout, _("failed Ada assertions")); |
f7f9143b JB |
11408 | break; |
11409 | ||
11410 | default: | |
11411 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11412 | break; | |
11413 | } | |
11414 | } | |
11415 | ||
6149aea9 PA |
11416 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
11417 | for all exception catchpoint kinds. */ | |
11418 | ||
11419 | static void | |
11420 | print_recreate_exception (enum exception_catchpoint_kind ex, | |
11421 | struct breakpoint *b, struct ui_file *fp) | |
11422 | { | |
28010a5d PA |
11423 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
11424 | ||
6149aea9 PA |
11425 | switch (ex) |
11426 | { | |
11427 | case ex_catch_exception: | |
11428 | fprintf_filtered (fp, "catch exception"); | |
28010a5d PA |
11429 | if (c->excep_string != NULL) |
11430 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
11431 | break; |
11432 | ||
11433 | case ex_catch_exception_unhandled: | |
78076abc | 11434 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
11435 | break; |
11436 | ||
11437 | case ex_catch_assert: | |
11438 | fprintf_filtered (fp, "catch assert"); | |
11439 | break; | |
11440 | ||
11441 | default: | |
11442 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11443 | } | |
d9b3f62e | 11444 | print_recreate_thread (b, fp); |
6149aea9 PA |
11445 | } |
11446 | ||
f7f9143b JB |
11447 | /* Virtual table for "catch exception" breakpoints. */ |
11448 | ||
28010a5d PA |
11449 | static void |
11450 | dtor_catch_exception (struct breakpoint *b) | |
11451 | { | |
11452 | dtor_exception (ex_catch_exception, b); | |
11453 | } | |
11454 | ||
11455 | static struct bp_location * | |
11456 | allocate_location_catch_exception (struct breakpoint *self) | |
11457 | { | |
11458 | return allocate_location_exception (ex_catch_exception, self); | |
11459 | } | |
11460 | ||
11461 | static void | |
11462 | re_set_catch_exception (struct breakpoint *b) | |
11463 | { | |
11464 | re_set_exception (ex_catch_exception, b); | |
11465 | } | |
11466 | ||
11467 | static void | |
11468 | check_status_catch_exception (bpstat bs) | |
11469 | { | |
11470 | check_status_exception (ex_catch_exception, bs); | |
11471 | } | |
11472 | ||
f7f9143b | 11473 | static enum print_stop_action |
348d480f | 11474 | print_it_catch_exception (bpstat bs) |
f7f9143b | 11475 | { |
348d480f | 11476 | return print_it_exception (ex_catch_exception, bs); |
f7f9143b JB |
11477 | } |
11478 | ||
11479 | static void | |
a6d9a66e | 11480 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11481 | { |
a6d9a66e | 11482 | print_one_exception (ex_catch_exception, b, last_loc); |
f7f9143b JB |
11483 | } |
11484 | ||
11485 | static void | |
11486 | print_mention_catch_exception (struct breakpoint *b) | |
11487 | { | |
11488 | print_mention_exception (ex_catch_exception, b); | |
11489 | } | |
11490 | ||
6149aea9 PA |
11491 | static void |
11492 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
11493 | { | |
11494 | print_recreate_exception (ex_catch_exception, b, fp); | |
11495 | } | |
11496 | ||
2060206e | 11497 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
11498 | |
11499 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
11500 | ||
28010a5d PA |
11501 | static void |
11502 | dtor_catch_exception_unhandled (struct breakpoint *b) | |
11503 | { | |
11504 | dtor_exception (ex_catch_exception_unhandled, b); | |
11505 | } | |
11506 | ||
11507 | static struct bp_location * | |
11508 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
11509 | { | |
11510 | return allocate_location_exception (ex_catch_exception_unhandled, self); | |
11511 | } | |
11512 | ||
11513 | static void | |
11514 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
11515 | { | |
11516 | re_set_exception (ex_catch_exception_unhandled, b); | |
11517 | } | |
11518 | ||
11519 | static void | |
11520 | check_status_catch_exception_unhandled (bpstat bs) | |
11521 | { | |
11522 | check_status_exception (ex_catch_exception_unhandled, bs); | |
11523 | } | |
11524 | ||
f7f9143b | 11525 | static enum print_stop_action |
348d480f | 11526 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 11527 | { |
348d480f | 11528 | return print_it_exception (ex_catch_exception_unhandled, bs); |
f7f9143b JB |
11529 | } |
11530 | ||
11531 | static void | |
a6d9a66e UW |
11532 | print_one_catch_exception_unhandled (struct breakpoint *b, |
11533 | struct bp_location **last_loc) | |
f7f9143b | 11534 | { |
a6d9a66e | 11535 | print_one_exception (ex_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
11536 | } |
11537 | ||
11538 | static void | |
11539 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
11540 | { | |
11541 | print_mention_exception (ex_catch_exception_unhandled, b); | |
11542 | } | |
11543 | ||
6149aea9 PA |
11544 | static void |
11545 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
11546 | struct ui_file *fp) | |
11547 | { | |
11548 | print_recreate_exception (ex_catch_exception_unhandled, b, fp); | |
11549 | } | |
11550 | ||
2060206e | 11551 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
11552 | |
11553 | /* Virtual table for "catch assert" breakpoints. */ | |
11554 | ||
28010a5d PA |
11555 | static void |
11556 | dtor_catch_assert (struct breakpoint *b) | |
11557 | { | |
11558 | dtor_exception (ex_catch_assert, b); | |
11559 | } | |
11560 | ||
11561 | static struct bp_location * | |
11562 | allocate_location_catch_assert (struct breakpoint *self) | |
11563 | { | |
11564 | return allocate_location_exception (ex_catch_assert, self); | |
11565 | } | |
11566 | ||
11567 | static void | |
11568 | re_set_catch_assert (struct breakpoint *b) | |
11569 | { | |
11570 | return re_set_exception (ex_catch_assert, b); | |
11571 | } | |
11572 | ||
11573 | static void | |
11574 | check_status_catch_assert (bpstat bs) | |
11575 | { | |
11576 | check_status_exception (ex_catch_assert, bs); | |
11577 | } | |
11578 | ||
f7f9143b | 11579 | static enum print_stop_action |
348d480f | 11580 | print_it_catch_assert (bpstat bs) |
f7f9143b | 11581 | { |
348d480f | 11582 | return print_it_exception (ex_catch_assert, bs); |
f7f9143b JB |
11583 | } |
11584 | ||
11585 | static void | |
a6d9a66e | 11586 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11587 | { |
a6d9a66e | 11588 | print_one_exception (ex_catch_assert, b, last_loc); |
f7f9143b JB |
11589 | } |
11590 | ||
11591 | static void | |
11592 | print_mention_catch_assert (struct breakpoint *b) | |
11593 | { | |
11594 | print_mention_exception (ex_catch_assert, b); | |
11595 | } | |
11596 | ||
6149aea9 PA |
11597 | static void |
11598 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
11599 | { | |
11600 | print_recreate_exception (ex_catch_assert, b, fp); | |
11601 | } | |
11602 | ||
2060206e | 11603 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 11604 | |
f7f9143b JB |
11605 | /* Return a newly allocated copy of the first space-separated token |
11606 | in ARGSP, and then adjust ARGSP to point immediately after that | |
11607 | token. | |
11608 | ||
11609 | Return NULL if ARGPS does not contain any more tokens. */ | |
11610 | ||
11611 | static char * | |
11612 | ada_get_next_arg (char **argsp) | |
11613 | { | |
11614 | char *args = *argsp; | |
11615 | char *end; | |
11616 | char *result; | |
11617 | ||
0fcd72ba | 11618 | args = skip_spaces (args); |
f7f9143b JB |
11619 | if (args[0] == '\0') |
11620 | return NULL; /* No more arguments. */ | |
11621 | ||
11622 | /* Find the end of the current argument. */ | |
11623 | ||
0fcd72ba | 11624 | end = skip_to_space (args); |
f7f9143b JB |
11625 | |
11626 | /* Adjust ARGSP to point to the start of the next argument. */ | |
11627 | ||
11628 | *argsp = end; | |
11629 | ||
11630 | /* Make a copy of the current argument and return it. */ | |
11631 | ||
11632 | result = xmalloc (end - args + 1); | |
11633 | strncpy (result, args, end - args); | |
11634 | result[end - args] = '\0'; | |
11635 | ||
11636 | return result; | |
11637 | } | |
11638 | ||
11639 | /* Split the arguments specified in a "catch exception" command. | |
11640 | Set EX to the appropriate catchpoint type. | |
28010a5d | 11641 | Set EXCEP_STRING to the name of the specific exception if |
5845583d JB |
11642 | specified by the user. |
11643 | If a condition is found at the end of the arguments, the condition | |
11644 | expression is stored in COND_STRING (memory must be deallocated | |
11645 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
11646 | |
11647 | static void | |
11648 | catch_ada_exception_command_split (char *args, | |
11649 | enum exception_catchpoint_kind *ex, | |
5845583d JB |
11650 | char **excep_string, |
11651 | char **cond_string) | |
f7f9143b JB |
11652 | { |
11653 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
11654 | char *exception_name; | |
5845583d | 11655 | char *cond = NULL; |
f7f9143b JB |
11656 | |
11657 | exception_name = ada_get_next_arg (&args); | |
5845583d JB |
11658 | if (exception_name != NULL && strcmp (exception_name, "if") == 0) |
11659 | { | |
11660 | /* This is not an exception name; this is the start of a condition | |
11661 | expression for a catchpoint on all exceptions. So, "un-get" | |
11662 | this token, and set exception_name to NULL. */ | |
11663 | xfree (exception_name); | |
11664 | exception_name = NULL; | |
11665 | args -= 2; | |
11666 | } | |
f7f9143b JB |
11667 | make_cleanup (xfree, exception_name); |
11668 | ||
5845583d | 11669 | /* Check to see if we have a condition. */ |
f7f9143b | 11670 | |
0fcd72ba | 11671 | args = skip_spaces (args); |
5845583d JB |
11672 | if (strncmp (args, "if", 2) == 0 |
11673 | && (isspace (args[2]) || args[2] == '\0')) | |
11674 | { | |
11675 | args += 2; | |
11676 | args = skip_spaces (args); | |
11677 | ||
11678 | if (args[0] == '\0') | |
11679 | error (_("Condition missing after `if' keyword")); | |
11680 | cond = xstrdup (args); | |
11681 | make_cleanup (xfree, cond); | |
11682 | ||
11683 | args += strlen (args); | |
11684 | } | |
11685 | ||
11686 | /* Check that we do not have any more arguments. Anything else | |
11687 | is unexpected. */ | |
f7f9143b JB |
11688 | |
11689 | if (args[0] != '\0') | |
11690 | error (_("Junk at end of expression")); | |
11691 | ||
11692 | discard_cleanups (old_chain); | |
11693 | ||
11694 | if (exception_name == NULL) | |
11695 | { | |
11696 | /* Catch all exceptions. */ | |
11697 | *ex = ex_catch_exception; | |
28010a5d | 11698 | *excep_string = NULL; |
f7f9143b JB |
11699 | } |
11700 | else if (strcmp (exception_name, "unhandled") == 0) | |
11701 | { | |
11702 | /* Catch unhandled exceptions. */ | |
11703 | *ex = ex_catch_exception_unhandled; | |
28010a5d | 11704 | *excep_string = NULL; |
f7f9143b JB |
11705 | } |
11706 | else | |
11707 | { | |
11708 | /* Catch a specific exception. */ | |
11709 | *ex = ex_catch_exception; | |
28010a5d | 11710 | *excep_string = exception_name; |
f7f9143b | 11711 | } |
5845583d | 11712 | *cond_string = cond; |
f7f9143b JB |
11713 | } |
11714 | ||
11715 | /* Return the name of the symbol on which we should break in order to | |
11716 | implement a catchpoint of the EX kind. */ | |
11717 | ||
11718 | static const char * | |
11719 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
11720 | { | |
3eecfa55 JB |
11721 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
11722 | ||
11723 | gdb_assert (data->exception_info != NULL); | |
0259addd | 11724 | |
f7f9143b JB |
11725 | switch (ex) |
11726 | { | |
11727 | case ex_catch_exception: | |
3eecfa55 | 11728 | return (data->exception_info->catch_exception_sym); |
f7f9143b JB |
11729 | break; |
11730 | case ex_catch_exception_unhandled: | |
3eecfa55 | 11731 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
11732 | break; |
11733 | case ex_catch_assert: | |
3eecfa55 | 11734 | return (data->exception_info->catch_assert_sym); |
f7f9143b JB |
11735 | break; |
11736 | default: | |
11737 | internal_error (__FILE__, __LINE__, | |
11738 | _("unexpected catchpoint kind (%d)"), ex); | |
11739 | } | |
11740 | } | |
11741 | ||
11742 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
11743 | of the EX kind. */ | |
11744 | ||
c0a91b2b | 11745 | static const struct breakpoint_ops * |
4b9eee8c | 11746 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
11747 | { |
11748 | switch (ex) | |
11749 | { | |
11750 | case ex_catch_exception: | |
11751 | return (&catch_exception_breakpoint_ops); | |
11752 | break; | |
11753 | case ex_catch_exception_unhandled: | |
11754 | return (&catch_exception_unhandled_breakpoint_ops); | |
11755 | break; | |
11756 | case ex_catch_assert: | |
11757 | return (&catch_assert_breakpoint_ops); | |
11758 | break; | |
11759 | default: | |
11760 | internal_error (__FILE__, __LINE__, | |
11761 | _("unexpected catchpoint kind (%d)"), ex); | |
11762 | } | |
11763 | } | |
11764 | ||
11765 | /* Return the condition that will be used to match the current exception | |
11766 | being raised with the exception that the user wants to catch. This | |
11767 | assumes that this condition is used when the inferior just triggered | |
11768 | an exception catchpoint. | |
11769 | ||
11770 | The string returned is a newly allocated string that needs to be | |
11771 | deallocated later. */ | |
11772 | ||
11773 | static char * | |
28010a5d | 11774 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 11775 | { |
3d0b0fa3 JB |
11776 | int i; |
11777 | ||
0963b4bd | 11778 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 11779 | runtime units that have been compiled without debugging info; if |
28010a5d | 11780 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
11781 | exception (e.g. "constraint_error") then, during the evaluation |
11782 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 11783 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
11784 | may then be set only on user-defined exceptions which have the |
11785 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
11786 | ||
11787 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 11788 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
11789 | exception constraint_error" is rewritten into "catch exception |
11790 | standard.constraint_error". | |
11791 | ||
11792 | If an exception named contraint_error is defined in another package of | |
11793 | the inferior program, then the only way to specify this exception as a | |
11794 | breakpoint condition is to use its fully-qualified named: | |
11795 | e.g. my_package.constraint_error. */ | |
11796 | ||
11797 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
11798 | { | |
28010a5d | 11799 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
11800 | { |
11801 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 11802 | excep_string); |
3d0b0fa3 JB |
11803 | } |
11804 | } | |
28010a5d | 11805 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
11806 | } |
11807 | ||
11808 | /* Return the symtab_and_line that should be used to insert an exception | |
11809 | catchpoint of the TYPE kind. | |
11810 | ||
28010a5d PA |
11811 | EXCEP_STRING should contain the name of a specific exception that |
11812 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 11813 | |
28010a5d PA |
11814 | ADDR_STRING returns the name of the function where the real |
11815 | breakpoint that implements the catchpoints is set, depending on the | |
11816 | type of catchpoint we need to create. */ | |
f7f9143b JB |
11817 | |
11818 | static struct symtab_and_line | |
28010a5d | 11819 | ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string, |
c0a91b2b | 11820 | char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
11821 | { |
11822 | const char *sym_name; | |
11823 | struct symbol *sym; | |
f7f9143b | 11824 | |
0259addd JB |
11825 | /* First, find out which exception support info to use. */ |
11826 | ada_exception_support_info_sniffer (); | |
11827 | ||
11828 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 11829 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
11830 | sym_name = ada_exception_sym_name (ex); |
11831 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
11832 | ||
f17011e0 JB |
11833 | /* We can assume that SYM is not NULL at this stage. If the symbol |
11834 | did not exist, ada_exception_support_info_sniffer would have | |
11835 | raised an exception. | |
f7f9143b | 11836 | |
f17011e0 JB |
11837 | Also, ada_exception_support_info_sniffer should have already |
11838 | verified that SYM is a function symbol. */ | |
11839 | gdb_assert (sym != NULL); | |
11840 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
11841 | |
11842 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
11843 | *addr_string = xstrdup (sym_name); |
11844 | ||
f7f9143b | 11845 | /* Set OPS. */ |
4b9eee8c | 11846 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 11847 | |
f17011e0 | 11848 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
11849 | } |
11850 | ||
11851 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
11852 | ||
f7f9143b JB |
11853 | If the user asked the catchpoint to catch only a specific |
11854 | exception, then save the exception name in ADDR_STRING. | |
11855 | ||
5845583d JB |
11856 | If the user provided a condition, then set COND_STRING to |
11857 | that condition expression (the memory must be deallocated | |
11858 | after use). Otherwise, set COND_STRING to NULL. | |
11859 | ||
f7f9143b JB |
11860 | See ada_exception_sal for a description of all the remaining |
11861 | function arguments of this function. */ | |
11862 | ||
9ac4176b | 11863 | static struct symtab_and_line |
f7f9143b | 11864 | ada_decode_exception_location (char *args, char **addr_string, |
28010a5d | 11865 | char **excep_string, |
5845583d | 11866 | char **cond_string, |
c0a91b2b | 11867 | const struct breakpoint_ops **ops) |
f7f9143b JB |
11868 | { |
11869 | enum exception_catchpoint_kind ex; | |
11870 | ||
5845583d | 11871 | catch_ada_exception_command_split (args, &ex, excep_string, cond_string); |
28010a5d PA |
11872 | return ada_exception_sal (ex, *excep_string, addr_string, ops); |
11873 | } | |
11874 | ||
11875 | /* Create an Ada exception catchpoint. */ | |
11876 | ||
11877 | static void | |
11878 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, | |
11879 | struct symtab_and_line sal, | |
11880 | char *addr_string, | |
11881 | char *excep_string, | |
5845583d | 11882 | char *cond_string, |
c0a91b2b | 11883 | const struct breakpoint_ops *ops, |
28010a5d PA |
11884 | int tempflag, |
11885 | int from_tty) | |
11886 | { | |
11887 | struct ada_catchpoint *c; | |
11888 | ||
11889 | c = XNEW (struct ada_catchpoint); | |
11890 | init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, | |
11891 | ops, tempflag, from_tty); | |
11892 | c->excep_string = excep_string; | |
11893 | create_excep_cond_exprs (c); | |
5845583d JB |
11894 | if (cond_string != NULL) |
11895 | set_breakpoint_condition (&c->base, cond_string, from_tty); | |
3ea46bff | 11896 | install_breakpoint (0, &c->base, 1); |
f7f9143b JB |
11897 | } |
11898 | ||
9ac4176b PA |
11899 | /* Implement the "catch exception" command. */ |
11900 | ||
11901 | static void | |
11902 | catch_ada_exception_command (char *arg, int from_tty, | |
11903 | struct cmd_list_element *command) | |
11904 | { | |
11905 | struct gdbarch *gdbarch = get_current_arch (); | |
11906 | int tempflag; | |
11907 | struct symtab_and_line sal; | |
11908 | char *addr_string = NULL; | |
28010a5d | 11909 | char *excep_string = NULL; |
5845583d | 11910 | char *cond_string = NULL; |
c0a91b2b | 11911 | const struct breakpoint_ops *ops = NULL; |
9ac4176b PA |
11912 | |
11913 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
11914 | ||
11915 | if (!arg) | |
11916 | arg = ""; | |
5845583d JB |
11917 | sal = ada_decode_exception_location (arg, &addr_string, &excep_string, |
11918 | &cond_string, &ops); | |
28010a5d | 11919 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, |
5845583d JB |
11920 | excep_string, cond_string, ops, |
11921 | tempflag, from_tty); | |
9ac4176b PA |
11922 | } |
11923 | ||
5845583d JB |
11924 | /* Assuming that ARGS contains the arguments of a "catch assert" |
11925 | command, parse those arguments and return a symtab_and_line object | |
11926 | for a failed assertion catchpoint. | |
11927 | ||
11928 | Set ADDR_STRING to the name of the function where the real | |
11929 | breakpoint that implements the catchpoint is set. | |
11930 | ||
11931 | If ARGS contains a condition, set COND_STRING to that condition | |
11932 | (the memory needs to be deallocated after use). Otherwise, set | |
11933 | COND_STRING to NULL. */ | |
11934 | ||
9ac4176b | 11935 | static struct symtab_and_line |
f7f9143b | 11936 | ada_decode_assert_location (char *args, char **addr_string, |
5845583d | 11937 | char **cond_string, |
c0a91b2b | 11938 | const struct breakpoint_ops **ops) |
f7f9143b | 11939 | { |
5845583d | 11940 | args = skip_spaces (args); |
f7f9143b | 11941 | |
5845583d JB |
11942 | /* Check whether a condition was provided. */ |
11943 | if (strncmp (args, "if", 2) == 0 | |
11944 | && (isspace (args[2]) || args[2] == '\0')) | |
f7f9143b | 11945 | { |
5845583d | 11946 | args += 2; |
0fcd72ba | 11947 | args = skip_spaces (args); |
5845583d JB |
11948 | if (args[0] == '\0') |
11949 | error (_("condition missing after `if' keyword")); | |
11950 | *cond_string = xstrdup (args); | |
f7f9143b JB |
11951 | } |
11952 | ||
5845583d JB |
11953 | /* Otherwise, there should be no other argument at the end of |
11954 | the command. */ | |
11955 | else if (args[0] != '\0') | |
11956 | error (_("Junk at end of arguments.")); | |
11957 | ||
28010a5d | 11958 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops); |
f7f9143b JB |
11959 | } |
11960 | ||
9ac4176b PA |
11961 | /* Implement the "catch assert" command. */ |
11962 | ||
11963 | static void | |
11964 | catch_assert_command (char *arg, int from_tty, | |
11965 | struct cmd_list_element *command) | |
11966 | { | |
11967 | struct gdbarch *gdbarch = get_current_arch (); | |
11968 | int tempflag; | |
11969 | struct symtab_and_line sal; | |
11970 | char *addr_string = NULL; | |
5845583d | 11971 | char *cond_string = NULL; |
c0a91b2b | 11972 | const struct breakpoint_ops *ops = NULL; |
9ac4176b PA |
11973 | |
11974 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
11975 | ||
11976 | if (!arg) | |
11977 | arg = ""; | |
5845583d | 11978 | sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops); |
28010a5d | 11979 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, |
5845583d JB |
11980 | NULL, cond_string, ops, tempflag, |
11981 | from_tty); | |
9ac4176b | 11982 | } |
4c4b4cd2 PH |
11983 | /* Operators */ |
11984 | /* Information about operators given special treatment in functions | |
11985 | below. */ | |
11986 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
11987 | ||
11988 | #define ADA_OPERATORS \ | |
11989 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
11990 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
11991 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
11992 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
11993 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
11994 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
11995 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
11996 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
11997 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
11998 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
11999 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
12000 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
12001 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
12002 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
12003 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
12004 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
12005 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
12006 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
12007 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
12008 | |
12009 | static void | |
554794dc SDJ |
12010 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
12011 | int *argsp) | |
4c4b4cd2 PH |
12012 | { |
12013 | switch (exp->elts[pc - 1].opcode) | |
12014 | { | |
76a01679 | 12015 | default: |
4c4b4cd2 PH |
12016 | operator_length_standard (exp, pc, oplenp, argsp); |
12017 | break; | |
12018 | ||
12019 | #define OP_DEFN(op, len, args, binop) \ | |
12020 | case op: *oplenp = len; *argsp = args; break; | |
12021 | ADA_OPERATORS; | |
12022 | #undef OP_DEFN | |
52ce6436 PH |
12023 | |
12024 | case OP_AGGREGATE: | |
12025 | *oplenp = 3; | |
12026 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
12027 | break; | |
12028 | ||
12029 | case OP_CHOICES: | |
12030 | *oplenp = 3; | |
12031 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
12032 | break; | |
4c4b4cd2 PH |
12033 | } |
12034 | } | |
12035 | ||
c0201579 JK |
12036 | /* Implementation of the exp_descriptor method operator_check. */ |
12037 | ||
12038 | static int | |
12039 | ada_operator_check (struct expression *exp, int pos, | |
12040 | int (*objfile_func) (struct objfile *objfile, void *data), | |
12041 | void *data) | |
12042 | { | |
12043 | const union exp_element *const elts = exp->elts; | |
12044 | struct type *type = NULL; | |
12045 | ||
12046 | switch (elts[pos].opcode) | |
12047 | { | |
12048 | case UNOP_IN_RANGE: | |
12049 | case UNOP_QUAL: | |
12050 | type = elts[pos + 1].type; | |
12051 | break; | |
12052 | ||
12053 | default: | |
12054 | return operator_check_standard (exp, pos, objfile_func, data); | |
12055 | } | |
12056 | ||
12057 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
12058 | ||
12059 | if (type && TYPE_OBJFILE (type) | |
12060 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
12061 | return 1; | |
12062 | ||
12063 | return 0; | |
12064 | } | |
12065 | ||
4c4b4cd2 PH |
12066 | static char * |
12067 | ada_op_name (enum exp_opcode opcode) | |
12068 | { | |
12069 | switch (opcode) | |
12070 | { | |
76a01679 | 12071 | default: |
4c4b4cd2 | 12072 | return op_name_standard (opcode); |
52ce6436 | 12073 | |
4c4b4cd2 PH |
12074 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
12075 | ADA_OPERATORS; | |
12076 | #undef OP_DEFN | |
52ce6436 PH |
12077 | |
12078 | case OP_AGGREGATE: | |
12079 | return "OP_AGGREGATE"; | |
12080 | case OP_CHOICES: | |
12081 | return "OP_CHOICES"; | |
12082 | case OP_NAME: | |
12083 | return "OP_NAME"; | |
4c4b4cd2 PH |
12084 | } |
12085 | } | |
12086 | ||
12087 | /* As for operator_length, but assumes PC is pointing at the first | |
12088 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 12089 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
12090 | |
12091 | static void | |
76a01679 JB |
12092 | ada_forward_operator_length (struct expression *exp, int pc, |
12093 | int *oplenp, int *argsp) | |
4c4b4cd2 | 12094 | { |
76a01679 | 12095 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
12096 | { |
12097 | default: | |
12098 | *oplenp = *argsp = 0; | |
12099 | break; | |
52ce6436 | 12100 | |
4c4b4cd2 PH |
12101 | #define OP_DEFN(op, len, args, binop) \ |
12102 | case op: *oplenp = len; *argsp = args; break; | |
12103 | ADA_OPERATORS; | |
12104 | #undef OP_DEFN | |
52ce6436 PH |
12105 | |
12106 | case OP_AGGREGATE: | |
12107 | *oplenp = 3; | |
12108 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
12109 | break; | |
12110 | ||
12111 | case OP_CHOICES: | |
12112 | *oplenp = 3; | |
12113 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
12114 | break; | |
12115 | ||
12116 | case OP_STRING: | |
12117 | case OP_NAME: | |
12118 | { | |
12119 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 12120 | |
52ce6436 PH |
12121 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
12122 | *argsp = 0; | |
12123 | break; | |
12124 | } | |
4c4b4cd2 PH |
12125 | } |
12126 | } | |
12127 | ||
12128 | static int | |
12129 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
12130 | { | |
12131 | enum exp_opcode op = exp->elts[elt].opcode; | |
12132 | int oplen, nargs; | |
12133 | int pc = elt; | |
12134 | int i; | |
76a01679 | 12135 | |
4c4b4cd2 PH |
12136 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
12137 | ||
76a01679 | 12138 | switch (op) |
4c4b4cd2 | 12139 | { |
76a01679 | 12140 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
12141 | case OP_ATR_FIRST: |
12142 | case OP_ATR_LAST: | |
12143 | case OP_ATR_LENGTH: | |
12144 | case OP_ATR_IMAGE: | |
12145 | case OP_ATR_MAX: | |
12146 | case OP_ATR_MIN: | |
12147 | case OP_ATR_MODULUS: | |
12148 | case OP_ATR_POS: | |
12149 | case OP_ATR_SIZE: | |
12150 | case OP_ATR_TAG: | |
12151 | case OP_ATR_VAL: | |
12152 | break; | |
12153 | ||
12154 | case UNOP_IN_RANGE: | |
12155 | case UNOP_QUAL: | |
323e0a4a AC |
12156 | /* XXX: gdb_sprint_host_address, type_sprint */ |
12157 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
12158 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
12159 | fprintf_filtered (stream, " ("); | |
12160 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
12161 | fprintf_filtered (stream, ")"); | |
12162 | break; | |
12163 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
12164 | fprintf_filtered (stream, " (%d)", |
12165 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
12166 | break; |
12167 | case TERNOP_IN_RANGE: | |
12168 | break; | |
12169 | ||
52ce6436 PH |
12170 | case OP_AGGREGATE: |
12171 | case OP_OTHERS: | |
12172 | case OP_DISCRETE_RANGE: | |
12173 | case OP_POSITIONAL: | |
12174 | case OP_CHOICES: | |
12175 | break; | |
12176 | ||
12177 | case OP_NAME: | |
12178 | case OP_STRING: | |
12179 | { | |
12180 | char *name = &exp->elts[elt + 2].string; | |
12181 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 12182 | |
52ce6436 PH |
12183 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
12184 | break; | |
12185 | } | |
12186 | ||
4c4b4cd2 PH |
12187 | default: |
12188 | return dump_subexp_body_standard (exp, stream, elt); | |
12189 | } | |
12190 | ||
12191 | elt += oplen; | |
12192 | for (i = 0; i < nargs; i += 1) | |
12193 | elt = dump_subexp (exp, stream, elt); | |
12194 | ||
12195 | return elt; | |
12196 | } | |
12197 | ||
12198 | /* The Ada extension of print_subexp (q.v.). */ | |
12199 | ||
76a01679 JB |
12200 | static void |
12201 | ada_print_subexp (struct expression *exp, int *pos, | |
12202 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 12203 | { |
52ce6436 | 12204 | int oplen, nargs, i; |
4c4b4cd2 PH |
12205 | int pc = *pos; |
12206 | enum exp_opcode op = exp->elts[pc].opcode; | |
12207 | ||
12208 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
12209 | ||
52ce6436 | 12210 | *pos += oplen; |
4c4b4cd2 PH |
12211 | switch (op) |
12212 | { | |
12213 | default: | |
52ce6436 | 12214 | *pos -= oplen; |
4c4b4cd2 PH |
12215 | print_subexp_standard (exp, pos, stream, prec); |
12216 | return; | |
12217 | ||
12218 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
12219 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
12220 | return; | |
12221 | ||
12222 | case BINOP_IN_BOUNDS: | |
323e0a4a | 12223 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12224 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12225 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 12226 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12227 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 12228 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
12229 | fprintf_filtered (stream, "(%ld)", |
12230 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
12231 | return; |
12232 | ||
12233 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 12234 | if (prec >= PREC_EQUAL) |
76a01679 | 12235 | fputs_filtered ("(", stream); |
323e0a4a | 12236 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12237 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12238 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
12239 | print_subexp (exp, pos, stream, PREC_EQUAL); |
12240 | fputs_filtered (" .. ", stream); | |
12241 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
12242 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
12243 | fputs_filtered (")", stream); |
12244 | return; | |
4c4b4cd2 PH |
12245 | |
12246 | case OP_ATR_FIRST: | |
12247 | case OP_ATR_LAST: | |
12248 | case OP_ATR_LENGTH: | |
12249 | case OP_ATR_IMAGE: | |
12250 | case OP_ATR_MAX: | |
12251 | case OP_ATR_MIN: | |
12252 | case OP_ATR_MODULUS: | |
12253 | case OP_ATR_POS: | |
12254 | case OP_ATR_SIZE: | |
12255 | case OP_ATR_TAG: | |
12256 | case OP_ATR_VAL: | |
4c4b4cd2 | 12257 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
12258 | { |
12259 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
12260 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); | |
12261 | *pos += 3; | |
12262 | } | |
4c4b4cd2 | 12263 | else |
76a01679 | 12264 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
12265 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
12266 | if (nargs > 1) | |
76a01679 JB |
12267 | { |
12268 | int tem; | |
5b4ee69b | 12269 | |
76a01679 JB |
12270 | for (tem = 1; tem < nargs; tem += 1) |
12271 | { | |
12272 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
12273 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
12274 | } | |
12275 | fputs_filtered (")", stream); | |
12276 | } | |
4c4b4cd2 | 12277 | return; |
14f9c5c9 | 12278 | |
4c4b4cd2 | 12279 | case UNOP_QUAL: |
4c4b4cd2 PH |
12280 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
12281 | fputs_filtered ("'(", stream); | |
12282 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
12283 | fputs_filtered (")", stream); | |
12284 | return; | |
14f9c5c9 | 12285 | |
4c4b4cd2 | 12286 | case UNOP_IN_RANGE: |
323e0a4a | 12287 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12288 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12289 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
12290 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); |
12291 | return; | |
52ce6436 PH |
12292 | |
12293 | case OP_DISCRETE_RANGE: | |
12294 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12295 | fputs_filtered ("..", stream); | |
12296 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12297 | return; | |
12298 | ||
12299 | case OP_OTHERS: | |
12300 | fputs_filtered ("others => ", stream); | |
12301 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12302 | return; | |
12303 | ||
12304 | case OP_CHOICES: | |
12305 | for (i = 0; i < nargs-1; i += 1) | |
12306 | { | |
12307 | if (i > 0) | |
12308 | fputs_filtered ("|", stream); | |
12309 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12310 | } | |
12311 | fputs_filtered (" => ", stream); | |
12312 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12313 | return; | |
12314 | ||
12315 | case OP_POSITIONAL: | |
12316 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12317 | return; | |
12318 | ||
12319 | case OP_AGGREGATE: | |
12320 | fputs_filtered ("(", stream); | |
12321 | for (i = 0; i < nargs; i += 1) | |
12322 | { | |
12323 | if (i > 0) | |
12324 | fputs_filtered (", ", stream); | |
12325 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12326 | } | |
12327 | fputs_filtered (")", stream); | |
12328 | return; | |
4c4b4cd2 PH |
12329 | } |
12330 | } | |
14f9c5c9 AS |
12331 | |
12332 | /* Table mapping opcodes into strings for printing operators | |
12333 | and precedences of the operators. */ | |
12334 | ||
d2e4a39e AS |
12335 | static const struct op_print ada_op_print_tab[] = { |
12336 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
12337 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
12338 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
12339 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
12340 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
12341 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
12342 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
12343 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
12344 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
12345 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
12346 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
12347 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
12348 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
12349 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
12350 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
12351 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
12352 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
12353 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
12354 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
12355 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
12356 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
12357 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
12358 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
12359 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
12360 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
12361 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
12362 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
12363 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
12364 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
12365 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
12366 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 12367 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
12368 | }; |
12369 | \f | |
72d5681a PH |
12370 | enum ada_primitive_types { |
12371 | ada_primitive_type_int, | |
12372 | ada_primitive_type_long, | |
12373 | ada_primitive_type_short, | |
12374 | ada_primitive_type_char, | |
12375 | ada_primitive_type_float, | |
12376 | ada_primitive_type_double, | |
12377 | ada_primitive_type_void, | |
12378 | ada_primitive_type_long_long, | |
12379 | ada_primitive_type_long_double, | |
12380 | ada_primitive_type_natural, | |
12381 | ada_primitive_type_positive, | |
12382 | ada_primitive_type_system_address, | |
12383 | nr_ada_primitive_types | |
12384 | }; | |
6c038f32 PH |
12385 | |
12386 | static void | |
d4a9a881 | 12387 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
12388 | struct language_arch_info *lai) |
12389 | { | |
d4a9a881 | 12390 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 12391 | |
72d5681a | 12392 | lai->primitive_type_vector |
d4a9a881 | 12393 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 12394 | struct type *); |
e9bb382b UW |
12395 | |
12396 | lai->primitive_type_vector [ada_primitive_type_int] | |
12397 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12398 | 0, "integer"); | |
12399 | lai->primitive_type_vector [ada_primitive_type_long] | |
12400 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
12401 | 0, "long_integer"); | |
12402 | lai->primitive_type_vector [ada_primitive_type_short] | |
12403 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
12404 | 0, "short_integer"); | |
12405 | lai->string_char_type | |
12406 | = lai->primitive_type_vector [ada_primitive_type_char] | |
12407 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
12408 | lai->primitive_type_vector [ada_primitive_type_float] | |
12409 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
12410 | "float", NULL); | |
12411 | lai->primitive_type_vector [ada_primitive_type_double] | |
12412 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12413 | "long_float", NULL); | |
12414 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
12415 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
12416 | 0, "long_long_integer"); | |
12417 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
12418 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12419 | "long_long_float", NULL); | |
12420 | lai->primitive_type_vector [ada_primitive_type_natural] | |
12421 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12422 | 0, "natural"); | |
12423 | lai->primitive_type_vector [ada_primitive_type_positive] | |
12424 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12425 | 0, "positive"); | |
12426 | lai->primitive_type_vector [ada_primitive_type_void] | |
12427 | = builtin->builtin_void; | |
12428 | ||
12429 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
12430 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
12431 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
12432 | = "system__address"; | |
fbb06eb1 | 12433 | |
47e729a8 | 12434 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 12435 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 12436 | } |
6c038f32 PH |
12437 | \f |
12438 | /* Language vector */ | |
12439 | ||
12440 | /* Not really used, but needed in the ada_language_defn. */ | |
12441 | ||
12442 | static void | |
6c7a06a3 | 12443 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 12444 | { |
6c7a06a3 | 12445 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
12446 | } |
12447 | ||
12448 | static int | |
12449 | parse (void) | |
12450 | { | |
12451 | warnings_issued = 0; | |
12452 | return ada_parse (); | |
12453 | } | |
12454 | ||
12455 | static const struct exp_descriptor ada_exp_descriptor = { | |
12456 | ada_print_subexp, | |
12457 | ada_operator_length, | |
c0201579 | 12458 | ada_operator_check, |
6c038f32 PH |
12459 | ada_op_name, |
12460 | ada_dump_subexp_body, | |
12461 | ada_evaluate_subexp | |
12462 | }; | |
12463 | ||
1a119f36 | 12464 | /* Implement the "la_get_symbol_name_cmp" language_defn method |
74ccd7f5 JB |
12465 | for Ada. */ |
12466 | ||
1a119f36 JB |
12467 | static symbol_name_cmp_ftype |
12468 | ada_get_symbol_name_cmp (const char *lookup_name) | |
74ccd7f5 JB |
12469 | { |
12470 | if (should_use_wild_match (lookup_name)) | |
12471 | return wild_match; | |
12472 | else | |
12473 | return compare_names; | |
12474 | } | |
12475 | ||
a5ee536b JB |
12476 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
12477 | ||
12478 | static struct value * | |
12479 | ada_read_var_value (struct symbol *var, struct frame_info *frame) | |
12480 | { | |
12481 | struct block *frame_block = NULL; | |
12482 | struct symbol *renaming_sym = NULL; | |
12483 | ||
12484 | /* The only case where default_read_var_value is not sufficient | |
12485 | is when VAR is a renaming... */ | |
12486 | if (frame) | |
12487 | frame_block = get_frame_block (frame, NULL); | |
12488 | if (frame_block) | |
12489 | renaming_sym = ada_find_renaming_symbol (var, frame_block); | |
12490 | if (renaming_sym != NULL) | |
12491 | return ada_read_renaming_var_value (renaming_sym, frame_block); | |
12492 | ||
12493 | /* This is a typical case where we expect the default_read_var_value | |
12494 | function to work. */ | |
12495 | return default_read_var_value (var, frame); | |
12496 | } | |
12497 | ||
6c038f32 PH |
12498 | const struct language_defn ada_language_defn = { |
12499 | "ada", /* Language name */ | |
12500 | language_ada, | |
6c038f32 | 12501 | range_check_off, |
6c038f32 PH |
12502 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
12503 | that's not quite what this means. */ | |
6c038f32 | 12504 | array_row_major, |
9a044a89 | 12505 | macro_expansion_no, |
6c038f32 PH |
12506 | &ada_exp_descriptor, |
12507 | parse, | |
12508 | ada_error, | |
12509 | resolve, | |
12510 | ada_printchar, /* Print a character constant */ | |
12511 | ada_printstr, /* Function to print string constant */ | |
12512 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 12513 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 12514 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
12515 | ada_val_print, /* Print a value using appropriate syntax */ |
12516 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 12517 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 12518 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 12519 | NULL, /* name_of_this */ |
6c038f32 PH |
12520 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
12521 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
12522 | ada_la_decode, /* Language specific symbol demangler */ | |
0963b4bd MS |
12523 | NULL, /* Language specific |
12524 | class_name_from_physname */ | |
6c038f32 PH |
12525 | ada_op_print_tab, /* expression operators for printing */ |
12526 | 0, /* c-style arrays */ | |
12527 | 1, /* String lower bound */ | |
6c038f32 | 12528 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 12529 | ada_make_symbol_completion_list, |
72d5681a | 12530 | ada_language_arch_info, |
e79af960 | 12531 | ada_print_array_index, |
41f1b697 | 12532 | default_pass_by_reference, |
ae6a3a4c | 12533 | c_get_string, |
1a119f36 | 12534 | ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */ |
f8eba3c6 | 12535 | ada_iterate_over_symbols, |
6c038f32 PH |
12536 | LANG_MAGIC |
12537 | }; | |
12538 | ||
2c0b251b PA |
12539 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
12540 | extern initialize_file_ftype _initialize_ada_language; | |
12541 | ||
5bf03f13 JB |
12542 | /* Command-list for the "set/show ada" prefix command. */ |
12543 | static struct cmd_list_element *set_ada_list; | |
12544 | static struct cmd_list_element *show_ada_list; | |
12545 | ||
12546 | /* Implement the "set ada" prefix command. */ | |
12547 | ||
12548 | static void | |
12549 | set_ada_command (char *arg, int from_tty) | |
12550 | { | |
12551 | printf_unfiltered (_(\ | |
12552 | "\"set ada\" must be followed by the name of a setting.\n")); | |
12553 | help_list (set_ada_list, "set ada ", -1, gdb_stdout); | |
12554 | } | |
12555 | ||
12556 | /* Implement the "show ada" prefix command. */ | |
12557 | ||
12558 | static void | |
12559 | show_ada_command (char *args, int from_tty) | |
12560 | { | |
12561 | cmd_show_list (show_ada_list, from_tty, ""); | |
12562 | } | |
12563 | ||
2060206e PA |
12564 | static void |
12565 | initialize_ada_catchpoint_ops (void) | |
12566 | { | |
12567 | struct breakpoint_ops *ops; | |
12568 | ||
12569 | initialize_breakpoint_ops (); | |
12570 | ||
12571 | ops = &catch_exception_breakpoint_ops; | |
12572 | *ops = bkpt_breakpoint_ops; | |
12573 | ops->dtor = dtor_catch_exception; | |
12574 | ops->allocate_location = allocate_location_catch_exception; | |
12575 | ops->re_set = re_set_catch_exception; | |
12576 | ops->check_status = check_status_catch_exception; | |
12577 | ops->print_it = print_it_catch_exception; | |
12578 | ops->print_one = print_one_catch_exception; | |
12579 | ops->print_mention = print_mention_catch_exception; | |
12580 | ops->print_recreate = print_recreate_catch_exception; | |
12581 | ||
12582 | ops = &catch_exception_unhandled_breakpoint_ops; | |
12583 | *ops = bkpt_breakpoint_ops; | |
12584 | ops->dtor = dtor_catch_exception_unhandled; | |
12585 | ops->allocate_location = allocate_location_catch_exception_unhandled; | |
12586 | ops->re_set = re_set_catch_exception_unhandled; | |
12587 | ops->check_status = check_status_catch_exception_unhandled; | |
12588 | ops->print_it = print_it_catch_exception_unhandled; | |
12589 | ops->print_one = print_one_catch_exception_unhandled; | |
12590 | ops->print_mention = print_mention_catch_exception_unhandled; | |
12591 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
12592 | ||
12593 | ops = &catch_assert_breakpoint_ops; | |
12594 | *ops = bkpt_breakpoint_ops; | |
12595 | ops->dtor = dtor_catch_assert; | |
12596 | ops->allocate_location = allocate_location_catch_assert; | |
12597 | ops->re_set = re_set_catch_assert; | |
12598 | ops->check_status = check_status_catch_assert; | |
12599 | ops->print_it = print_it_catch_assert; | |
12600 | ops->print_one = print_one_catch_assert; | |
12601 | ops->print_mention = print_mention_catch_assert; | |
12602 | ops->print_recreate = print_recreate_catch_assert; | |
12603 | } | |
12604 | ||
d2e4a39e | 12605 | void |
6c038f32 | 12606 | _initialize_ada_language (void) |
14f9c5c9 | 12607 | { |
6c038f32 PH |
12608 | add_language (&ada_language_defn); |
12609 | ||
2060206e PA |
12610 | initialize_ada_catchpoint_ops (); |
12611 | ||
5bf03f13 JB |
12612 | add_prefix_cmd ("ada", no_class, set_ada_command, |
12613 | _("Prefix command for changing Ada-specfic settings"), | |
12614 | &set_ada_list, "set ada ", 0, &setlist); | |
12615 | ||
12616 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
12617 | _("Generic command for showing Ada-specific settings."), | |
12618 | &show_ada_list, "show ada ", 0, &showlist); | |
12619 | ||
12620 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
12621 | &trust_pad_over_xvs, _("\ | |
12622 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
12623 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
12624 | _("\ | |
12625 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
12626 | should normally trust the contents of PAD types, but certain older versions\n\ | |
12627 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
12628 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
12629 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
12630 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
12631 | this option to \"off\" unless necessary."), | |
12632 | NULL, NULL, &set_ada_list, &show_ada_list); | |
12633 | ||
9ac4176b PA |
12634 | add_catch_command ("exception", _("\ |
12635 | Catch Ada exceptions, when raised.\n\ | |
12636 | With an argument, catch only exceptions with the given name."), | |
12637 | catch_ada_exception_command, | |
12638 | NULL, | |
12639 | CATCH_PERMANENT, | |
12640 | CATCH_TEMPORARY); | |
12641 | add_catch_command ("assert", _("\ | |
12642 | Catch failed Ada assertions, when raised.\n\ | |
12643 | With an argument, catch only exceptions with the given name."), | |
12644 | catch_assert_command, | |
12645 | NULL, | |
12646 | CATCH_PERMANENT, | |
12647 | CATCH_TEMPORARY); | |
12648 | ||
6c038f32 | 12649 | varsize_limit = 65536; |
6c038f32 PH |
12650 | |
12651 | obstack_init (&symbol_list_obstack); | |
12652 | ||
12653 | decoded_names_store = htab_create_alloc | |
12654 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
12655 | NULL, xcalloc, xfree); | |
6b69afc4 | 12656 | |
e802dbe0 JB |
12657 | /* Setup per-inferior data. */ |
12658 | observer_attach_inferior_exit (ada_inferior_exit); | |
12659 | ada_inferior_data | |
8e260fc0 | 12660 | = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); |
14f9c5c9 | 12661 | } |