]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
0b302171 JB |
3 | Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free |
4 | Software Foundation, Inc. | |
14f9c5c9 | 5 | |
a9762ec7 | 6 | This file is part of GDB. |
14f9c5c9 | 7 | |
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
14f9c5c9 | 12 | |
a9762ec7 JB |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
14f9c5c9 | 17 | |
a9762ec7 JB |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 20 | |
96d887e8 | 21 | |
4c4b4cd2 | 22 | #include "defs.h" |
14f9c5c9 | 23 | #include <stdio.h> |
0c30c098 | 24 | #include "gdb_string.h" |
14f9c5c9 AS |
25 | #include <ctype.h> |
26 | #include <stdarg.h> | |
27 | #include "demangle.h" | |
4c4b4cd2 PH |
28 | #include "gdb_regex.h" |
29 | #include "frame.h" | |
14f9c5c9 AS |
30 | #include "symtab.h" |
31 | #include "gdbtypes.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "expression.h" | |
34 | #include "parser-defs.h" | |
35 | #include "language.h" | |
36 | #include "c-lang.h" | |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 PH |
45 | #include "completer.h" |
46 | #include "gdb_stat.h" | |
47 | #ifdef UI_OUT | |
14f9c5c9 | 48 | #include "ui-out.h" |
4c4b4cd2 | 49 | #endif |
fe898f56 | 50 | #include "block.h" |
04714b91 | 51 | #include "infcall.h" |
de4f826b | 52 | #include "dictionary.h" |
60250e8b | 53 | #include "exceptions.h" |
f7f9143b JB |
54 | #include "annotate.h" |
55 | #include "valprint.h" | |
9bbc9174 | 56 | #include "source.h" |
0259addd | 57 | #include "observer.h" |
2ba95b9b | 58 | #include "vec.h" |
692465f1 | 59 | #include "stack.h" |
14f9c5c9 | 60 | |
ccefe4c4 | 61 | #include "psymtab.h" |
40bc484c | 62 | #include "value.h" |
956a9fb9 | 63 | #include "mi/mi-common.h" |
9ac4176b | 64 | #include "arch-utils.h" |
28010a5d | 65 | #include "exceptions.h" |
ccefe4c4 | 66 | |
4c4b4cd2 | 67 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 68 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
69 | Copied from valarith.c. */ |
70 | ||
71 | #ifndef TRUNCATION_TOWARDS_ZERO | |
72 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
73 | #endif | |
74 | ||
d2e4a39e | 75 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 84 | |
556bdfd4 | 85 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static struct value *desc_data (struct value *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static int desc_arity (struct type *); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 104 | |
d2e4a39e | 105 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 106 | |
40658b94 PH |
107 | static int full_match (const char *, const char *); |
108 | ||
40bc484c | 109 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 110 | |
4c4b4cd2 | 111 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 112 | struct block *, const char *, |
2570f2b7 | 113 | domain_enum, struct objfile *, int); |
14f9c5c9 | 114 | |
4c4b4cd2 | 115 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 116 | |
76a01679 | 117 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 118 | struct block *); |
14f9c5c9 | 119 | |
4c4b4cd2 PH |
120 | static int num_defns_collected (struct obstack *); |
121 | ||
122 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 123 | |
4c4b4cd2 | 124 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 125 | struct type *); |
14f9c5c9 | 126 | |
d2e4a39e | 127 | static void replace_operator_with_call (struct expression **, int, int, int, |
4c4b4cd2 | 128 | struct symbol *, struct block *); |
14f9c5c9 | 129 | |
d2e4a39e | 130 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 131 | |
4c4b4cd2 PH |
132 | static char *ada_op_name (enum exp_opcode); |
133 | ||
134 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 135 | |
d2e4a39e | 136 | static int numeric_type_p (struct type *); |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int integer_type_p (struct type *); |
14f9c5c9 | 139 | |
d2e4a39e | 140 | static int scalar_type_p (struct type *); |
14f9c5c9 | 141 | |
d2e4a39e | 142 | static int discrete_type_p (struct type *); |
14f9c5c9 | 143 | |
aeb5907d JB |
144 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
145 | const char **, | |
146 | int *, | |
147 | const char **); | |
148 | ||
149 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
150 | struct block *); | |
151 | ||
4c4b4cd2 | 152 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 153 | int, int, int *); |
4c4b4cd2 | 154 | |
d2e4a39e | 155 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 156 | |
b4ba55a1 JB |
157 | static struct type *ada_find_parallel_type_with_name (struct type *, |
158 | const char *); | |
159 | ||
d2e4a39e | 160 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 161 | |
10a2c479 | 162 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 163 | const gdb_byte *, |
4c4b4cd2 PH |
164 | CORE_ADDR, struct value *); |
165 | ||
166 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 167 | |
28c85d6c | 168 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 169 | |
d2e4a39e | 170 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 171 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 172 | |
d2e4a39e | 173 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 174 | |
ad82864c | 175 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 176 | |
ad82864c | 177 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 178 | |
ad82864c JB |
179 | static long decode_packed_array_bitsize (struct type *); |
180 | ||
181 | static struct value *decode_constrained_packed_array (struct value *); | |
182 | ||
183 | static int ada_is_packed_array_type (struct type *); | |
184 | ||
185 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 186 | |
d2e4a39e | 187 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 188 | struct value **); |
14f9c5c9 | 189 | |
50810684 | 190 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 191 | |
4c4b4cd2 PH |
192 | static struct value *coerce_unspec_val_to_type (struct value *, |
193 | struct type *); | |
14f9c5c9 | 194 | |
d2e4a39e | 195 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 198 | |
d2e4a39e | 199 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 200 | |
d2e4a39e | 201 | static int is_name_suffix (const char *); |
14f9c5c9 | 202 | |
73589123 PH |
203 | static int advance_wild_match (const char **, const char *, int); |
204 | ||
205 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 206 | |
d2e4a39e | 207 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 208 | |
4c4b4cd2 PH |
209 | static LONGEST pos_atr (struct value *); |
210 | ||
3cb382c9 | 211 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 212 | |
d2e4a39e | 213 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 214 | |
4c4b4cd2 PH |
215 | static struct symbol *standard_lookup (const char *, const struct block *, |
216 | domain_enum); | |
14f9c5c9 | 217 | |
4c4b4cd2 PH |
218 | static struct value *ada_search_struct_field (char *, struct value *, int, |
219 | struct type *); | |
220 | ||
221 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
222 | struct type *); | |
223 | ||
76a01679 | 224 | static int find_struct_field (char *, struct type *, int, |
52ce6436 | 225 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
226 | |
227 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
228 | struct value *); | |
229 | ||
4c4b4cd2 PH |
230 | static int ada_resolve_function (struct ada_symbol_info *, int, |
231 | struct value **, int, const char *, | |
232 | struct type *); | |
233 | ||
4c4b4cd2 PH |
234 | static int ada_is_direct_array_type (struct type *); |
235 | ||
72d5681a PH |
236 | static void ada_language_arch_info (struct gdbarch *, |
237 | struct language_arch_info *); | |
714e53ab PH |
238 | |
239 | static void check_size (const struct type *); | |
52ce6436 PH |
240 | |
241 | static struct value *ada_index_struct_field (int, struct value *, int, | |
242 | struct type *); | |
243 | ||
244 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
245 | struct expression *, |
246 | int *, enum noside); | |
52ce6436 PH |
247 | |
248 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
249 | struct expression *, | |
250 | int *, LONGEST *, int *, | |
251 | int, LONGEST, LONGEST); | |
252 | ||
253 | static void aggregate_assign_positional (struct value *, struct value *, | |
254 | struct expression *, | |
255 | int *, LONGEST *, int *, int, | |
256 | LONGEST, LONGEST); | |
257 | ||
258 | ||
259 | static void aggregate_assign_others (struct value *, struct value *, | |
260 | struct expression *, | |
261 | int *, LONGEST *, int, LONGEST, LONGEST); | |
262 | ||
263 | ||
264 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
265 | ||
266 | ||
267 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
268 | int *, enum noside); | |
269 | ||
270 | static void ada_forward_operator_length (struct expression *, int, int *, | |
271 | int *); | |
4c4b4cd2 PH |
272 | \f |
273 | ||
76a01679 | 274 | |
4c4b4cd2 | 275 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
276 | static unsigned int varsize_limit; |
277 | ||
4c4b4cd2 PH |
278 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
279 | returned by a function that does not return a const char *. */ | |
280 | static char *ada_completer_word_break_characters = | |
281 | #ifdef VMS | |
282 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
283 | #else | |
14f9c5c9 | 284 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 285 | #endif |
14f9c5c9 | 286 | |
4c4b4cd2 | 287 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 288 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 289 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 290 | |
4c4b4cd2 PH |
291 | /* Limit on the number of warnings to raise per expression evaluation. */ |
292 | static int warning_limit = 2; | |
293 | ||
294 | /* Number of warning messages issued; reset to 0 by cleanups after | |
295 | expression evaluation. */ | |
296 | static int warnings_issued = 0; | |
297 | ||
298 | static const char *known_runtime_file_name_patterns[] = { | |
299 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
300 | }; | |
301 | ||
302 | static const char *known_auxiliary_function_name_patterns[] = { | |
303 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
304 | }; | |
305 | ||
306 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
307 | static struct obstack symbol_list_obstack; | |
308 | ||
e802dbe0 JB |
309 | /* Inferior-specific data. */ |
310 | ||
311 | /* Per-inferior data for this module. */ | |
312 | ||
313 | struct ada_inferior_data | |
314 | { | |
315 | /* The ada__tags__type_specific_data type, which is used when decoding | |
316 | tagged types. With older versions of GNAT, this type was directly | |
317 | accessible through a component ("tsd") in the object tag. But this | |
318 | is no longer the case, so we cache it for each inferior. */ | |
319 | struct type *tsd_type; | |
3eecfa55 JB |
320 | |
321 | /* The exception_support_info data. This data is used to determine | |
322 | how to implement support for Ada exception catchpoints in a given | |
323 | inferior. */ | |
324 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
325 | }; |
326 | ||
327 | /* Our key to this module's inferior data. */ | |
328 | static const struct inferior_data *ada_inferior_data; | |
329 | ||
330 | /* A cleanup routine for our inferior data. */ | |
331 | static void | |
332 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
333 | { | |
334 | struct ada_inferior_data *data; | |
335 | ||
336 | data = inferior_data (inf, ada_inferior_data); | |
337 | if (data != NULL) | |
338 | xfree (data); | |
339 | } | |
340 | ||
341 | /* Return our inferior data for the given inferior (INF). | |
342 | ||
343 | This function always returns a valid pointer to an allocated | |
344 | ada_inferior_data structure. If INF's inferior data has not | |
345 | been previously set, this functions creates a new one with all | |
346 | fields set to zero, sets INF's inferior to it, and then returns | |
347 | a pointer to that newly allocated ada_inferior_data. */ | |
348 | ||
349 | static struct ada_inferior_data * | |
350 | get_ada_inferior_data (struct inferior *inf) | |
351 | { | |
352 | struct ada_inferior_data *data; | |
353 | ||
354 | data = inferior_data (inf, ada_inferior_data); | |
355 | if (data == NULL) | |
356 | { | |
357 | data = XZALLOC (struct ada_inferior_data); | |
358 | set_inferior_data (inf, ada_inferior_data, data); | |
359 | } | |
360 | ||
361 | return data; | |
362 | } | |
363 | ||
364 | /* Perform all necessary cleanups regarding our module's inferior data | |
365 | that is required after the inferior INF just exited. */ | |
366 | ||
367 | static void | |
368 | ada_inferior_exit (struct inferior *inf) | |
369 | { | |
370 | ada_inferior_data_cleanup (inf, NULL); | |
371 | set_inferior_data (inf, ada_inferior_data, NULL); | |
372 | } | |
373 | ||
4c4b4cd2 PH |
374 | /* Utilities */ |
375 | ||
720d1a40 | 376 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 377 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
378 | |
379 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
380 | In other words, we really expect the target type of a typedef type to be | |
381 | a non-typedef type. This is particularly true for Ada units, because | |
382 | the language does not have a typedef vs not-typedef distinction. | |
383 | In that respect, the Ada compiler has been trying to eliminate as many | |
384 | typedef definitions in the debugging information, since they generally | |
385 | do not bring any extra information (we still use typedef under certain | |
386 | circumstances related mostly to the GNAT encoding). | |
387 | ||
388 | Unfortunately, we have seen situations where the debugging information | |
389 | generated by the compiler leads to such multiple typedef layers. For | |
390 | instance, consider the following example with stabs: | |
391 | ||
392 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
393 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
394 | ||
395 | This is an error in the debugging information which causes type | |
396 | pck__float_array___XUP to be defined twice, and the second time, | |
397 | it is defined as a typedef of a typedef. | |
398 | ||
399 | This is on the fringe of legality as far as debugging information is | |
400 | concerned, and certainly unexpected. But it is easy to handle these | |
401 | situations correctly, so we can afford to be lenient in this case. */ | |
402 | ||
403 | static struct type * | |
404 | ada_typedef_target_type (struct type *type) | |
405 | { | |
406 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
407 | type = TYPE_TARGET_TYPE (type); | |
408 | return type; | |
409 | } | |
410 | ||
41d27058 JB |
411 | /* Given DECODED_NAME a string holding a symbol name in its |
412 | decoded form (ie using the Ada dotted notation), returns | |
413 | its unqualified name. */ | |
414 | ||
415 | static const char * | |
416 | ada_unqualified_name (const char *decoded_name) | |
417 | { | |
418 | const char *result = strrchr (decoded_name, '.'); | |
419 | ||
420 | if (result != NULL) | |
421 | result++; /* Skip the dot... */ | |
422 | else | |
423 | result = decoded_name; | |
424 | ||
425 | return result; | |
426 | } | |
427 | ||
428 | /* Return a string starting with '<', followed by STR, and '>'. | |
429 | The result is good until the next call. */ | |
430 | ||
431 | static char * | |
432 | add_angle_brackets (const char *str) | |
433 | { | |
434 | static char *result = NULL; | |
435 | ||
436 | xfree (result); | |
88c15c34 | 437 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
438 | return result; |
439 | } | |
96d887e8 | 440 | |
4c4b4cd2 PH |
441 | static char * |
442 | ada_get_gdb_completer_word_break_characters (void) | |
443 | { | |
444 | return ada_completer_word_break_characters; | |
445 | } | |
446 | ||
e79af960 JB |
447 | /* Print an array element index using the Ada syntax. */ |
448 | ||
449 | static void | |
450 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 451 | const struct value_print_options *options) |
e79af960 | 452 | { |
79a45b7d | 453 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
454 | fprintf_filtered (stream, " => "); |
455 | } | |
456 | ||
f27cf670 | 457 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 458 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 459 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 460 | |
f27cf670 AS |
461 | void * |
462 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 463 | { |
d2e4a39e AS |
464 | if (*size < min_size) |
465 | { | |
466 | *size *= 2; | |
467 | if (*size < min_size) | |
4c4b4cd2 | 468 | *size = min_size; |
f27cf670 | 469 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 470 | } |
f27cf670 | 471 | return vect; |
14f9c5c9 AS |
472 | } |
473 | ||
474 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 475 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
476 | |
477 | static int | |
ebf56fd3 | 478 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
479 | { |
480 | int len = strlen (target); | |
5b4ee69b | 481 | |
d2e4a39e | 482 | return |
4c4b4cd2 PH |
483 | (strncmp (field_name, target, len) == 0 |
484 | && (field_name[len] == '\0' | |
485 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
486 | && strcmp (field_name + strlen (field_name) - 6, |
487 | "___XVN") != 0))); | |
14f9c5c9 AS |
488 | } |
489 | ||
490 | ||
872c8b51 JB |
491 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
492 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
493 | and return its index. This function also handles fields whose name | |
494 | have ___ suffixes because the compiler sometimes alters their name | |
495 | by adding such a suffix to represent fields with certain constraints. | |
496 | If the field could not be found, return a negative number if | |
497 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
498 | |
499 | int | |
500 | ada_get_field_index (const struct type *type, const char *field_name, | |
501 | int maybe_missing) | |
502 | { | |
503 | int fieldno; | |
872c8b51 JB |
504 | struct type *struct_type = check_typedef ((struct type *) type); |
505 | ||
506 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
507 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
508 | return fieldno; |
509 | ||
510 | if (!maybe_missing) | |
323e0a4a | 511 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 512 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
513 | |
514 | return -1; | |
515 | } | |
516 | ||
517 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
518 | |
519 | int | |
d2e4a39e | 520 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
521 | { |
522 | if (name == NULL) | |
523 | return 0; | |
d2e4a39e | 524 | else |
14f9c5c9 | 525 | { |
d2e4a39e | 526 | const char *p = strstr (name, "___"); |
5b4ee69b | 527 | |
14f9c5c9 | 528 | if (p == NULL) |
4c4b4cd2 | 529 | return strlen (name); |
14f9c5c9 | 530 | else |
4c4b4cd2 | 531 | return p - name; |
14f9c5c9 AS |
532 | } |
533 | } | |
534 | ||
4c4b4cd2 PH |
535 | /* Return non-zero if SUFFIX is a suffix of STR. |
536 | Return zero if STR is null. */ | |
537 | ||
14f9c5c9 | 538 | static int |
d2e4a39e | 539 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
540 | { |
541 | int len1, len2; | |
5b4ee69b | 542 | |
14f9c5c9 AS |
543 | if (str == NULL) |
544 | return 0; | |
545 | len1 = strlen (str); | |
546 | len2 = strlen (suffix); | |
4c4b4cd2 | 547 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
548 | } |
549 | ||
4c4b4cd2 PH |
550 | /* The contents of value VAL, treated as a value of type TYPE. The |
551 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 552 | |
d2e4a39e | 553 | static struct value * |
4c4b4cd2 | 554 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 555 | { |
61ee279c | 556 | type = ada_check_typedef (type); |
df407dfe | 557 | if (value_type (val) == type) |
4c4b4cd2 | 558 | return val; |
d2e4a39e | 559 | else |
14f9c5c9 | 560 | { |
4c4b4cd2 PH |
561 | struct value *result; |
562 | ||
563 | /* Make sure that the object size is not unreasonable before | |
564 | trying to allocate some memory for it. */ | |
714e53ab | 565 | check_size (type); |
4c4b4cd2 | 566 | |
41e8491f JK |
567 | if (value_lazy (val) |
568 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
569 | result = allocate_value_lazy (type); | |
570 | else | |
571 | { | |
572 | result = allocate_value (type); | |
573 | memcpy (value_contents_raw (result), value_contents (val), | |
574 | TYPE_LENGTH (type)); | |
575 | } | |
74bcbdf3 | 576 | set_value_component_location (result, val); |
9bbda503 AC |
577 | set_value_bitsize (result, value_bitsize (val)); |
578 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 579 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
580 | return result; |
581 | } | |
582 | } | |
583 | ||
fc1a4b47 AC |
584 | static const gdb_byte * |
585 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
586 | { |
587 | if (valaddr == NULL) | |
588 | return NULL; | |
589 | else | |
590 | return valaddr + offset; | |
591 | } | |
592 | ||
593 | static CORE_ADDR | |
ebf56fd3 | 594 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
595 | { |
596 | if (address == 0) | |
597 | return 0; | |
d2e4a39e | 598 | else |
14f9c5c9 AS |
599 | return address + offset; |
600 | } | |
601 | ||
4c4b4cd2 PH |
602 | /* Issue a warning (as for the definition of warning in utils.c, but |
603 | with exactly one argument rather than ...), unless the limit on the | |
604 | number of warnings has passed during the evaluation of the current | |
605 | expression. */ | |
a2249542 | 606 | |
77109804 AC |
607 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
608 | provided by "complaint". */ | |
a0b31db1 | 609 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 610 | |
14f9c5c9 | 611 | static void |
a2249542 | 612 | lim_warning (const char *format, ...) |
14f9c5c9 | 613 | { |
a2249542 | 614 | va_list args; |
a2249542 | 615 | |
5b4ee69b | 616 | va_start (args, format); |
4c4b4cd2 PH |
617 | warnings_issued += 1; |
618 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
619 | vwarning (format, args); |
620 | ||
621 | va_end (args); | |
4c4b4cd2 PH |
622 | } |
623 | ||
714e53ab PH |
624 | /* Issue an error if the size of an object of type T is unreasonable, |
625 | i.e. if it would be a bad idea to allocate a value of this type in | |
626 | GDB. */ | |
627 | ||
628 | static void | |
629 | check_size (const struct type *type) | |
630 | { | |
631 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 632 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
633 | } |
634 | ||
0963b4bd | 635 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 636 | static LONGEST |
c3e5cd34 | 637 | max_of_size (int size) |
4c4b4cd2 | 638 | { |
76a01679 | 639 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 640 | |
76a01679 | 641 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
642 | } |
643 | ||
0963b4bd | 644 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 645 | static LONGEST |
c3e5cd34 | 646 | min_of_size (int size) |
4c4b4cd2 | 647 | { |
c3e5cd34 | 648 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
649 | } |
650 | ||
0963b4bd | 651 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 652 | static ULONGEST |
c3e5cd34 | 653 | umax_of_size (int size) |
4c4b4cd2 | 654 | { |
76a01679 | 655 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 656 | |
76a01679 | 657 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
658 | } |
659 | ||
0963b4bd | 660 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
661 | static LONGEST |
662 | max_of_type (struct type *t) | |
4c4b4cd2 | 663 | { |
c3e5cd34 PH |
664 | if (TYPE_UNSIGNED (t)) |
665 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
666 | else | |
667 | return max_of_size (TYPE_LENGTH (t)); | |
668 | } | |
669 | ||
0963b4bd | 670 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
671 | static LONGEST |
672 | min_of_type (struct type *t) | |
673 | { | |
674 | if (TYPE_UNSIGNED (t)) | |
675 | return 0; | |
676 | else | |
677 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
678 | } |
679 | ||
680 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
681 | LONGEST |
682 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 683 | { |
76a01679 | 684 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
685 | { |
686 | case TYPE_CODE_RANGE: | |
690cc4eb | 687 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 688 | case TYPE_CODE_ENUM: |
690cc4eb PH |
689 | return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1); |
690 | case TYPE_CODE_BOOL: | |
691 | return 1; | |
692 | case TYPE_CODE_CHAR: | |
76a01679 | 693 | case TYPE_CODE_INT: |
690cc4eb | 694 | return max_of_type (type); |
4c4b4cd2 | 695 | default: |
43bbcdc2 | 696 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
697 | } |
698 | } | |
699 | ||
700 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
701 | LONGEST |
702 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 703 | { |
76a01679 | 704 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
705 | { |
706 | case TYPE_CODE_RANGE: | |
690cc4eb | 707 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 708 | case TYPE_CODE_ENUM: |
690cc4eb PH |
709 | return TYPE_FIELD_BITPOS (type, 0); |
710 | case TYPE_CODE_BOOL: | |
711 | return 0; | |
712 | case TYPE_CODE_CHAR: | |
76a01679 | 713 | case TYPE_CODE_INT: |
690cc4eb | 714 | return min_of_type (type); |
4c4b4cd2 | 715 | default: |
43bbcdc2 | 716 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
717 | } |
718 | } | |
719 | ||
720 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 721 | non-range scalar type. */ |
4c4b4cd2 PH |
722 | |
723 | static struct type * | |
18af8284 | 724 | get_base_type (struct type *type) |
4c4b4cd2 PH |
725 | { |
726 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
727 | { | |
76a01679 JB |
728 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
729 | return type; | |
4c4b4cd2 PH |
730 | type = TYPE_TARGET_TYPE (type); |
731 | } | |
732 | return type; | |
14f9c5c9 | 733 | } |
4c4b4cd2 | 734 | \f |
76a01679 | 735 | |
4c4b4cd2 | 736 | /* Language Selection */ |
14f9c5c9 AS |
737 | |
738 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 739 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 740 | |
14f9c5c9 | 741 | enum language |
ccefe4c4 | 742 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 743 | { |
d2e4a39e | 744 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
745 | (struct objfile *) NULL) != NULL) |
746 | return language_ada; | |
14f9c5c9 AS |
747 | |
748 | return lang; | |
749 | } | |
96d887e8 PH |
750 | |
751 | /* If the main procedure is written in Ada, then return its name. | |
752 | The result is good until the next call. Return NULL if the main | |
753 | procedure doesn't appear to be in Ada. */ | |
754 | ||
755 | char * | |
756 | ada_main_name (void) | |
757 | { | |
758 | struct minimal_symbol *msym; | |
f9bc20b9 | 759 | static char *main_program_name = NULL; |
6c038f32 | 760 | |
96d887e8 PH |
761 | /* For Ada, the name of the main procedure is stored in a specific |
762 | string constant, generated by the binder. Look for that symbol, | |
763 | extract its address, and then read that string. If we didn't find | |
764 | that string, then most probably the main procedure is not written | |
765 | in Ada. */ | |
766 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
767 | ||
768 | if (msym != NULL) | |
769 | { | |
f9bc20b9 JB |
770 | CORE_ADDR main_program_name_addr; |
771 | int err_code; | |
772 | ||
96d887e8 PH |
773 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
774 | if (main_program_name_addr == 0) | |
323e0a4a | 775 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 776 | |
f9bc20b9 JB |
777 | xfree (main_program_name); |
778 | target_read_string (main_program_name_addr, &main_program_name, | |
779 | 1024, &err_code); | |
780 | ||
781 | if (err_code != 0) | |
782 | return NULL; | |
96d887e8 PH |
783 | return main_program_name; |
784 | } | |
785 | ||
786 | /* The main procedure doesn't seem to be in Ada. */ | |
787 | return NULL; | |
788 | } | |
14f9c5c9 | 789 | \f |
4c4b4cd2 | 790 | /* Symbols */ |
d2e4a39e | 791 | |
4c4b4cd2 PH |
792 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
793 | of NULLs. */ | |
14f9c5c9 | 794 | |
d2e4a39e AS |
795 | const struct ada_opname_map ada_opname_table[] = { |
796 | {"Oadd", "\"+\"", BINOP_ADD}, | |
797 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
798 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
799 | {"Odivide", "\"/\"", BINOP_DIV}, | |
800 | {"Omod", "\"mod\"", BINOP_MOD}, | |
801 | {"Orem", "\"rem\"", BINOP_REM}, | |
802 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
803 | {"Olt", "\"<\"", BINOP_LESS}, | |
804 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
805 | {"Ogt", "\">\"", BINOP_GTR}, | |
806 | {"Oge", "\">=\"", BINOP_GEQ}, | |
807 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
808 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
809 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
810 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
811 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
812 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
813 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
814 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
815 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
816 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
817 | {NULL, NULL} | |
14f9c5c9 AS |
818 | }; |
819 | ||
4c4b4cd2 PH |
820 | /* The "encoded" form of DECODED, according to GNAT conventions. |
821 | The result is valid until the next call to ada_encode. */ | |
822 | ||
14f9c5c9 | 823 | char * |
4c4b4cd2 | 824 | ada_encode (const char *decoded) |
14f9c5c9 | 825 | { |
4c4b4cd2 PH |
826 | static char *encoding_buffer = NULL; |
827 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 828 | const char *p; |
14f9c5c9 | 829 | int k; |
d2e4a39e | 830 | |
4c4b4cd2 | 831 | if (decoded == NULL) |
14f9c5c9 AS |
832 | return NULL; |
833 | ||
4c4b4cd2 PH |
834 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
835 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
836 | |
837 | k = 0; | |
4c4b4cd2 | 838 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 839 | { |
cdc7bb92 | 840 | if (*p == '.') |
4c4b4cd2 PH |
841 | { |
842 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
843 | k += 2; | |
844 | } | |
14f9c5c9 | 845 | else if (*p == '"') |
4c4b4cd2 PH |
846 | { |
847 | const struct ada_opname_map *mapping; | |
848 | ||
849 | for (mapping = ada_opname_table; | |
1265e4aa JB |
850 | mapping->encoded != NULL |
851 | && strncmp (mapping->decoded, p, | |
852 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
853 | ; |
854 | if (mapping->encoded == NULL) | |
323e0a4a | 855 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
856 | strcpy (encoding_buffer + k, mapping->encoded); |
857 | k += strlen (mapping->encoded); | |
858 | break; | |
859 | } | |
d2e4a39e | 860 | else |
4c4b4cd2 PH |
861 | { |
862 | encoding_buffer[k] = *p; | |
863 | k += 1; | |
864 | } | |
14f9c5c9 AS |
865 | } |
866 | ||
4c4b4cd2 PH |
867 | encoding_buffer[k] = '\0'; |
868 | return encoding_buffer; | |
14f9c5c9 AS |
869 | } |
870 | ||
871 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
872 | quotes, unfolded, but with the quotes stripped away. Result good |
873 | to next call. */ | |
874 | ||
d2e4a39e AS |
875 | char * |
876 | ada_fold_name (const char *name) | |
14f9c5c9 | 877 | { |
d2e4a39e | 878 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
879 | static size_t fold_buffer_size = 0; |
880 | ||
881 | int len = strlen (name); | |
d2e4a39e | 882 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
883 | |
884 | if (name[0] == '\'') | |
885 | { | |
d2e4a39e AS |
886 | strncpy (fold_buffer, name + 1, len - 2); |
887 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
888 | } |
889 | else | |
890 | { | |
891 | int i; | |
5b4ee69b | 892 | |
14f9c5c9 | 893 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 894 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
895 | } |
896 | ||
897 | return fold_buffer; | |
898 | } | |
899 | ||
529cad9c PH |
900 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
901 | ||
902 | static int | |
903 | is_lower_alphanum (const char c) | |
904 | { | |
905 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
906 | } | |
907 | ||
c90092fe JB |
908 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
909 | This function saves in LEN the length of that same symbol name but | |
910 | without either of these suffixes: | |
29480c32 JB |
911 | . .{DIGIT}+ |
912 | . ${DIGIT}+ | |
913 | . ___{DIGIT}+ | |
914 | . __{DIGIT}+. | |
c90092fe | 915 | |
29480c32 JB |
916 | These are suffixes introduced by the compiler for entities such as |
917 | nested subprogram for instance, in order to avoid name clashes. | |
918 | They do not serve any purpose for the debugger. */ | |
919 | ||
920 | static void | |
921 | ada_remove_trailing_digits (const char *encoded, int *len) | |
922 | { | |
923 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
924 | { | |
925 | int i = *len - 2; | |
5b4ee69b | 926 | |
29480c32 JB |
927 | while (i > 0 && isdigit (encoded[i])) |
928 | i--; | |
929 | if (i >= 0 && encoded[i] == '.') | |
930 | *len = i; | |
931 | else if (i >= 0 && encoded[i] == '$') | |
932 | *len = i; | |
933 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
934 | *len = i - 2; | |
935 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
936 | *len = i - 1; | |
937 | } | |
938 | } | |
939 | ||
940 | /* Remove the suffix introduced by the compiler for protected object | |
941 | subprograms. */ | |
942 | ||
943 | static void | |
944 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
945 | { | |
946 | /* Remove trailing N. */ | |
947 | ||
948 | /* Protected entry subprograms are broken into two | |
949 | separate subprograms: The first one is unprotected, and has | |
950 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 951 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
952 | the protection. Since the P subprograms are internally generated, |
953 | we leave these names undecoded, giving the user a clue that this | |
954 | entity is internal. */ | |
955 | ||
956 | if (*len > 1 | |
957 | && encoded[*len - 1] == 'N' | |
958 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
959 | *len = *len - 1; | |
960 | } | |
961 | ||
69fadcdf JB |
962 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
963 | ||
964 | static void | |
965 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
966 | { | |
967 | int i = *len - 1; | |
968 | ||
969 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
970 | i--; | |
971 | ||
972 | if (encoded[i] != 'X') | |
973 | return; | |
974 | ||
975 | if (i == 0) | |
976 | return; | |
977 | ||
978 | if (isalnum (encoded[i-1])) | |
979 | *len = i; | |
980 | } | |
981 | ||
29480c32 JB |
982 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
983 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
984 | replaced by ENCODED. | |
14f9c5c9 | 985 | |
4c4b4cd2 | 986 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 987 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
988 | is returned. */ |
989 | ||
990 | const char * | |
991 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
992 | { |
993 | int i, j; | |
994 | int len0; | |
d2e4a39e | 995 | const char *p; |
4c4b4cd2 | 996 | char *decoded; |
14f9c5c9 | 997 | int at_start_name; |
4c4b4cd2 PH |
998 | static char *decoding_buffer = NULL; |
999 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1000 | |
29480c32 JB |
1001 | /* The name of the Ada main procedure starts with "_ada_". |
1002 | This prefix is not part of the decoded name, so skip this part | |
1003 | if we see this prefix. */ | |
4c4b4cd2 PH |
1004 | if (strncmp (encoded, "_ada_", 5) == 0) |
1005 | encoded += 5; | |
14f9c5c9 | 1006 | |
29480c32 JB |
1007 | /* If the name starts with '_', then it is not a properly encoded |
1008 | name, so do not attempt to decode it. Similarly, if the name | |
1009 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1010 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1011 | goto Suppress; |
1012 | ||
4c4b4cd2 | 1013 | len0 = strlen (encoded); |
4c4b4cd2 | 1014 | |
29480c32 JB |
1015 | ada_remove_trailing_digits (encoded, &len0); |
1016 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1017 | |
4c4b4cd2 PH |
1018 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1019 | the suffix is located before the current "end" of ENCODED. We want | |
1020 | to avoid re-matching parts of ENCODED that have previously been | |
1021 | marked as discarded (by decrementing LEN0). */ | |
1022 | p = strstr (encoded, "___"); | |
1023 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1024 | { |
1025 | if (p[3] == 'X') | |
4c4b4cd2 | 1026 | len0 = p - encoded; |
14f9c5c9 | 1027 | else |
4c4b4cd2 | 1028 | goto Suppress; |
14f9c5c9 | 1029 | } |
4c4b4cd2 | 1030 | |
29480c32 JB |
1031 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1032 | is for the body of a task, but that information does not actually | |
1033 | appear in the decoded name. */ | |
1034 | ||
4c4b4cd2 | 1035 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 1036 | len0 -= 3; |
76a01679 | 1037 | |
a10967fa JB |
1038 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1039 | from the TKB suffix because it is used for non-anonymous task | |
1040 | bodies. */ | |
1041 | ||
1042 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
1043 | len0 -= 2; | |
1044 | ||
29480c32 JB |
1045 | /* Remove trailing "B" suffixes. */ |
1046 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1047 | ||
4c4b4cd2 | 1048 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
1049 | len0 -= 1; |
1050 | ||
4c4b4cd2 | 1051 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1052 | |
4c4b4cd2 PH |
1053 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1054 | decoded = decoding_buffer; | |
14f9c5c9 | 1055 | |
29480c32 JB |
1056 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1057 | ||
4c4b4cd2 | 1058 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1059 | { |
4c4b4cd2 PH |
1060 | i = len0 - 2; |
1061 | while ((i >= 0 && isdigit (encoded[i])) | |
1062 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1063 | i -= 1; | |
1064 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1065 | len0 = i - 1; | |
1066 | else if (encoded[i] == '$') | |
1067 | len0 = i; | |
d2e4a39e | 1068 | } |
14f9c5c9 | 1069 | |
29480c32 JB |
1070 | /* The first few characters that are not alphabetic are not part |
1071 | of any encoding we use, so we can copy them over verbatim. */ | |
1072 | ||
4c4b4cd2 PH |
1073 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1074 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1075 | |
1076 | at_start_name = 1; | |
1077 | while (i < len0) | |
1078 | { | |
29480c32 | 1079 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1080 | if (at_start_name && encoded[i] == 'O') |
1081 | { | |
1082 | int k; | |
5b4ee69b | 1083 | |
4c4b4cd2 PH |
1084 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1085 | { | |
1086 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1087 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1088 | op_len - 1) == 0) | |
1089 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1090 | { |
1091 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1092 | at_start_name = 0; | |
1093 | i += op_len; | |
1094 | j += strlen (ada_opname_table[k].decoded); | |
1095 | break; | |
1096 | } | |
1097 | } | |
1098 | if (ada_opname_table[k].encoded != NULL) | |
1099 | continue; | |
1100 | } | |
14f9c5c9 AS |
1101 | at_start_name = 0; |
1102 | ||
529cad9c PH |
1103 | /* Replace "TK__" with "__", which will eventually be translated |
1104 | into "." (just below). */ | |
1105 | ||
4c4b4cd2 PH |
1106 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1107 | i += 2; | |
529cad9c | 1108 | |
29480c32 JB |
1109 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1110 | be translated into "." (just below). These are internal names | |
1111 | generated for anonymous blocks inside which our symbol is nested. */ | |
1112 | ||
1113 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1114 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1115 | && isdigit (encoded [i+4])) | |
1116 | { | |
1117 | int k = i + 5; | |
1118 | ||
1119 | while (k < len0 && isdigit (encoded[k])) | |
1120 | k++; /* Skip any extra digit. */ | |
1121 | ||
1122 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1123 | is indeed followed by "__". */ | |
1124 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1125 | i = k; | |
1126 | } | |
1127 | ||
529cad9c PH |
1128 | /* Remove _E{DIGITS}+[sb] */ |
1129 | ||
1130 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1131 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1132 | one implements the actual entry code, and has a suffix following |
1133 | the convention above; the second one implements the barrier and | |
1134 | uses the same convention as above, except that the 'E' is replaced | |
1135 | by a 'B'. | |
1136 | ||
1137 | Just as above, we do not decode the name of barrier functions | |
1138 | to give the user a clue that the code he is debugging has been | |
1139 | internally generated. */ | |
1140 | ||
1141 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1142 | && isdigit (encoded[i+2])) | |
1143 | { | |
1144 | int k = i + 3; | |
1145 | ||
1146 | while (k < len0 && isdigit (encoded[k])) | |
1147 | k++; | |
1148 | ||
1149 | if (k < len0 | |
1150 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1151 | { | |
1152 | k++; | |
1153 | /* Just as an extra precaution, make sure that if this | |
1154 | suffix is followed by anything else, it is a '_'. | |
1155 | Otherwise, we matched this sequence by accident. */ | |
1156 | if (k == len0 | |
1157 | || (k < len0 && encoded[k] == '_')) | |
1158 | i = k; | |
1159 | } | |
1160 | } | |
1161 | ||
1162 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1163 | the GNAT front-end in protected object subprograms. */ | |
1164 | ||
1165 | if (i < len0 + 3 | |
1166 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1167 | { | |
1168 | /* Backtrack a bit up until we reach either the begining of | |
1169 | the encoded name, or "__". Make sure that we only find | |
1170 | digits or lowercase characters. */ | |
1171 | const char *ptr = encoded + i - 1; | |
1172 | ||
1173 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1174 | ptr--; | |
1175 | if (ptr < encoded | |
1176 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1177 | i++; | |
1178 | } | |
1179 | ||
4c4b4cd2 PH |
1180 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1181 | { | |
29480c32 JB |
1182 | /* This is a X[bn]* sequence not separated from the previous |
1183 | part of the name with a non-alpha-numeric character (in other | |
1184 | words, immediately following an alpha-numeric character), then | |
1185 | verify that it is placed at the end of the encoded name. If | |
1186 | not, then the encoding is not valid and we should abort the | |
1187 | decoding. Otherwise, just skip it, it is used in body-nested | |
1188 | package names. */ | |
4c4b4cd2 PH |
1189 | do |
1190 | i += 1; | |
1191 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1192 | if (i < len0) | |
1193 | goto Suppress; | |
1194 | } | |
cdc7bb92 | 1195 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1196 | { |
29480c32 | 1197 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1198 | decoded[j] = '.'; |
1199 | at_start_name = 1; | |
1200 | i += 2; | |
1201 | j += 1; | |
1202 | } | |
14f9c5c9 | 1203 | else |
4c4b4cd2 | 1204 | { |
29480c32 JB |
1205 | /* It's a character part of the decoded name, so just copy it |
1206 | over. */ | |
4c4b4cd2 PH |
1207 | decoded[j] = encoded[i]; |
1208 | i += 1; | |
1209 | j += 1; | |
1210 | } | |
14f9c5c9 | 1211 | } |
4c4b4cd2 | 1212 | decoded[j] = '\000'; |
14f9c5c9 | 1213 | |
29480c32 JB |
1214 | /* Decoded names should never contain any uppercase character. |
1215 | Double-check this, and abort the decoding if we find one. */ | |
1216 | ||
4c4b4cd2 PH |
1217 | for (i = 0; decoded[i] != '\0'; i += 1) |
1218 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1219 | goto Suppress; |
1220 | ||
4c4b4cd2 PH |
1221 | if (strcmp (decoded, encoded) == 0) |
1222 | return encoded; | |
1223 | else | |
1224 | return decoded; | |
14f9c5c9 AS |
1225 | |
1226 | Suppress: | |
4c4b4cd2 PH |
1227 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1228 | decoded = decoding_buffer; | |
1229 | if (encoded[0] == '<') | |
1230 | strcpy (decoded, encoded); | |
14f9c5c9 | 1231 | else |
88c15c34 | 1232 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1233 | return decoded; |
1234 | ||
1235 | } | |
1236 | ||
1237 | /* Table for keeping permanent unique copies of decoded names. Once | |
1238 | allocated, names in this table are never released. While this is a | |
1239 | storage leak, it should not be significant unless there are massive | |
1240 | changes in the set of decoded names in successive versions of a | |
1241 | symbol table loaded during a single session. */ | |
1242 | static struct htab *decoded_names_store; | |
1243 | ||
1244 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1245 | in the language-specific part of GSYMBOL, if it has not been | |
1246 | previously computed. Tries to save the decoded name in the same | |
1247 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1248 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1249 | GSYMBOL). |
4c4b4cd2 PH |
1250 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1251 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1252 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1253 | |
76a01679 JB |
1254 | char * |
1255 | ada_decode_symbol (const struct general_symbol_info *gsymbol) | |
4c4b4cd2 | 1256 | { |
76a01679 | 1257 | char **resultp = |
afa16725 | 1258 | (char **) &gsymbol->language_specific.mangled_lang.demangled_name; |
5b4ee69b | 1259 | |
4c4b4cd2 PH |
1260 | if (*resultp == NULL) |
1261 | { | |
1262 | const char *decoded = ada_decode (gsymbol->name); | |
5b4ee69b | 1263 | |
714835d5 | 1264 | if (gsymbol->obj_section != NULL) |
76a01679 | 1265 | { |
714835d5 | 1266 | struct objfile *objf = gsymbol->obj_section->objfile; |
5b4ee69b | 1267 | |
714835d5 UW |
1268 | *resultp = obsavestring (decoded, strlen (decoded), |
1269 | &objf->objfile_obstack); | |
76a01679 | 1270 | } |
4c4b4cd2 | 1271 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1272 | case, we put the result on the heap. Since we only decode |
1273 | when needed, we hope this usually does not cause a | |
1274 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1275 | if (*resultp == NULL) |
76a01679 JB |
1276 | { |
1277 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1278 | decoded, INSERT); | |
5b4ee69b | 1279 | |
76a01679 JB |
1280 | if (*slot == NULL) |
1281 | *slot = xstrdup (decoded); | |
1282 | *resultp = *slot; | |
1283 | } | |
4c4b4cd2 | 1284 | } |
14f9c5c9 | 1285 | |
4c4b4cd2 PH |
1286 | return *resultp; |
1287 | } | |
76a01679 | 1288 | |
2c0b251b | 1289 | static char * |
76a01679 | 1290 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1291 | { |
1292 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1293 | } |
1294 | ||
1295 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1296 | suffixes that encode debugging information or leading _ada_ on |
1297 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1298 | information that is ignored). If WILD, then NAME need only match a | |
1299 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1300 | either argument is NULL. */ | |
14f9c5c9 | 1301 | |
2c0b251b | 1302 | static int |
40658b94 | 1303 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1304 | { |
1305 | if (sym_name == NULL || name == NULL) | |
1306 | return 0; | |
1307 | else if (wild) | |
73589123 | 1308 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1309 | else |
1310 | { | |
1311 | int len_name = strlen (name); | |
5b4ee69b | 1312 | |
4c4b4cd2 PH |
1313 | return (strncmp (sym_name, name, len_name) == 0 |
1314 | && is_name_suffix (sym_name + len_name)) | |
1315 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1316 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1317 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1318 | } |
14f9c5c9 | 1319 | } |
14f9c5c9 | 1320 | \f |
d2e4a39e | 1321 | |
4c4b4cd2 | 1322 | /* Arrays */ |
14f9c5c9 | 1323 | |
28c85d6c JB |
1324 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1325 | generated by the GNAT compiler to describe the index type used | |
1326 | for each dimension of an array, check whether it follows the latest | |
1327 | known encoding. If not, fix it up to conform to the latest encoding. | |
1328 | Otherwise, do nothing. This function also does nothing if | |
1329 | INDEX_DESC_TYPE is NULL. | |
1330 | ||
1331 | The GNAT encoding used to describle the array index type evolved a bit. | |
1332 | Initially, the information would be provided through the name of each | |
1333 | field of the structure type only, while the type of these fields was | |
1334 | described as unspecified and irrelevant. The debugger was then expected | |
1335 | to perform a global type lookup using the name of that field in order | |
1336 | to get access to the full index type description. Because these global | |
1337 | lookups can be very expensive, the encoding was later enhanced to make | |
1338 | the global lookup unnecessary by defining the field type as being | |
1339 | the full index type description. | |
1340 | ||
1341 | The purpose of this routine is to allow us to support older versions | |
1342 | of the compiler by detecting the use of the older encoding, and by | |
1343 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1344 | we essentially replace each field's meaningless type by the associated | |
1345 | index subtype). */ | |
1346 | ||
1347 | void | |
1348 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1349 | { | |
1350 | int i; | |
1351 | ||
1352 | if (index_desc_type == NULL) | |
1353 | return; | |
1354 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1355 | ||
1356 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1357 | to check one field only, no need to check them all). If not, return | |
1358 | now. | |
1359 | ||
1360 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1361 | the field type should be a meaningless integer type whose name | |
1362 | is not equal to the field name. */ | |
1363 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1364 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1365 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1366 | return; | |
1367 | ||
1368 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1369 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1370 | { | |
1371 | char *name = TYPE_FIELD_NAME (index_desc_type, i); | |
1372 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); | |
1373 | ||
1374 | if (raw_type) | |
1375 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1376 | } | |
1377 | } | |
1378 | ||
4c4b4cd2 | 1379 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1380 | |
d2e4a39e AS |
1381 | static char *bound_name[] = { |
1382 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1383 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1384 | }; | |
1385 | ||
1386 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1387 | ||
4c4b4cd2 | 1388 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1389 | |
14f9c5c9 | 1390 | |
4c4b4cd2 PH |
1391 | /* The desc_* routines return primitive portions of array descriptors |
1392 | (fat pointers). */ | |
14f9c5c9 AS |
1393 | |
1394 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1395 | level of indirection, if needed. */ |
1396 | ||
d2e4a39e AS |
1397 | static struct type * |
1398 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1399 | { |
1400 | if (type == NULL) | |
1401 | return NULL; | |
61ee279c | 1402 | type = ada_check_typedef (type); |
720d1a40 JB |
1403 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1404 | type = ada_typedef_target_type (type); | |
1405 | ||
1265e4aa JB |
1406 | if (type != NULL |
1407 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1408 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1409 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1410 | else |
1411 | return type; | |
1412 | } | |
1413 | ||
4c4b4cd2 PH |
1414 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1415 | ||
14f9c5c9 | 1416 | static int |
d2e4a39e | 1417 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1418 | { |
d2e4a39e | 1419 | return |
14f9c5c9 AS |
1420 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1421 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1422 | } | |
1423 | ||
4c4b4cd2 PH |
1424 | /* The descriptor type for thin pointer type TYPE. */ |
1425 | ||
d2e4a39e AS |
1426 | static struct type * |
1427 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1428 | { |
d2e4a39e | 1429 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1430 | |
14f9c5c9 AS |
1431 | if (base_type == NULL) |
1432 | return NULL; | |
1433 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1434 | return base_type; | |
d2e4a39e | 1435 | else |
14f9c5c9 | 1436 | { |
d2e4a39e | 1437 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1438 | |
14f9c5c9 | 1439 | if (alt_type == NULL) |
4c4b4cd2 | 1440 | return base_type; |
14f9c5c9 | 1441 | else |
4c4b4cd2 | 1442 | return alt_type; |
14f9c5c9 AS |
1443 | } |
1444 | } | |
1445 | ||
4c4b4cd2 PH |
1446 | /* A pointer to the array data for thin-pointer value VAL. */ |
1447 | ||
d2e4a39e AS |
1448 | static struct value * |
1449 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1450 | { |
828292f2 | 1451 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1452 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1453 | |
556bdfd4 UW |
1454 | data_type = lookup_pointer_type (data_type); |
1455 | ||
14f9c5c9 | 1456 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1457 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1458 | else |
42ae5230 | 1459 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1460 | } |
1461 | ||
4c4b4cd2 PH |
1462 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1463 | ||
14f9c5c9 | 1464 | static int |
d2e4a39e | 1465 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1466 | { |
1467 | type = desc_base_type (type); | |
1468 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1469 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1470 | } |
1471 | ||
4c4b4cd2 PH |
1472 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1473 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1474 | |
d2e4a39e AS |
1475 | static struct type * |
1476 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1477 | { |
d2e4a39e | 1478 | struct type *r; |
14f9c5c9 AS |
1479 | |
1480 | type = desc_base_type (type); | |
1481 | ||
1482 | if (type == NULL) | |
1483 | return NULL; | |
1484 | else if (is_thin_pntr (type)) | |
1485 | { | |
1486 | type = thin_descriptor_type (type); | |
1487 | if (type == NULL) | |
4c4b4cd2 | 1488 | return NULL; |
14f9c5c9 AS |
1489 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1490 | if (r != NULL) | |
61ee279c | 1491 | return ada_check_typedef (r); |
14f9c5c9 AS |
1492 | } |
1493 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1494 | { | |
1495 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1496 | if (r != NULL) | |
61ee279c | 1497 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1498 | } |
1499 | return NULL; | |
1500 | } | |
1501 | ||
1502 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1503 | one, a pointer to its bounds data. Otherwise NULL. */ |
1504 | ||
d2e4a39e AS |
1505 | static struct value * |
1506 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1507 | { |
df407dfe | 1508 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1509 | |
d2e4a39e | 1510 | if (is_thin_pntr (type)) |
14f9c5c9 | 1511 | { |
d2e4a39e | 1512 | struct type *bounds_type = |
4c4b4cd2 | 1513 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1514 | LONGEST addr; |
1515 | ||
4cdfadb1 | 1516 | if (bounds_type == NULL) |
323e0a4a | 1517 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1518 | |
1519 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1520 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1521 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1522 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1523 | addr = value_as_long (arr); |
d2e4a39e | 1524 | else |
42ae5230 | 1525 | addr = value_address (arr); |
14f9c5c9 | 1526 | |
d2e4a39e | 1527 | return |
4c4b4cd2 PH |
1528 | value_from_longest (lookup_pointer_type (bounds_type), |
1529 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1530 | } |
1531 | ||
1532 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1533 | { |
1534 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1535 | _("Bad GNAT array descriptor")); | |
1536 | struct type *p_bounds_type = value_type (p_bounds); | |
1537 | ||
1538 | if (p_bounds_type | |
1539 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1540 | { | |
1541 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1542 | ||
1543 | if (TYPE_STUB (target_type)) | |
1544 | p_bounds = value_cast (lookup_pointer_type | |
1545 | (ada_check_typedef (target_type)), | |
1546 | p_bounds); | |
1547 | } | |
1548 | else | |
1549 | error (_("Bad GNAT array descriptor")); | |
1550 | ||
1551 | return p_bounds; | |
1552 | } | |
14f9c5c9 AS |
1553 | else |
1554 | return NULL; | |
1555 | } | |
1556 | ||
4c4b4cd2 PH |
1557 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1558 | position of the field containing the address of the bounds data. */ | |
1559 | ||
14f9c5c9 | 1560 | static int |
d2e4a39e | 1561 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1562 | { |
1563 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1564 | } | |
1565 | ||
1566 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1567 | size of the field containing the address of the bounds data. */ |
1568 | ||
14f9c5c9 | 1569 | static int |
d2e4a39e | 1570 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1571 | { |
1572 | type = desc_base_type (type); | |
1573 | ||
d2e4a39e | 1574 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1575 | return TYPE_FIELD_BITSIZE (type, 1); |
1576 | else | |
61ee279c | 1577 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1578 | } |
1579 | ||
4c4b4cd2 | 1580 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1581 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1582 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1583 | data. */ | |
4c4b4cd2 | 1584 | |
d2e4a39e | 1585 | static struct type * |
556bdfd4 | 1586 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1587 | { |
1588 | type = desc_base_type (type); | |
1589 | ||
4c4b4cd2 | 1590 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1591 | if (is_thin_pntr (type)) |
556bdfd4 | 1592 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1593 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1594 | { |
1595 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1596 | ||
1597 | if (data_type | |
1598 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1599 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1600 | } |
1601 | ||
1602 | return NULL; | |
14f9c5c9 AS |
1603 | } |
1604 | ||
1605 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1606 | its array data. */ | |
4c4b4cd2 | 1607 | |
d2e4a39e AS |
1608 | static struct value * |
1609 | desc_data (struct value *arr) | |
14f9c5c9 | 1610 | { |
df407dfe | 1611 | struct type *type = value_type (arr); |
5b4ee69b | 1612 | |
14f9c5c9 AS |
1613 | if (is_thin_pntr (type)) |
1614 | return thin_data_pntr (arr); | |
1615 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1616 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1617 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1618 | else |
1619 | return NULL; | |
1620 | } | |
1621 | ||
1622 | ||
1623 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1624 | position of the field containing the address of the data. */ |
1625 | ||
14f9c5c9 | 1626 | static int |
d2e4a39e | 1627 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1628 | { |
1629 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1630 | } | |
1631 | ||
1632 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1633 | size of the field containing the address of the data. */ |
1634 | ||
14f9c5c9 | 1635 | static int |
d2e4a39e | 1636 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1637 | { |
1638 | type = desc_base_type (type); | |
1639 | ||
1640 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1641 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1642 | else |
14f9c5c9 AS |
1643 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1644 | } | |
1645 | ||
4c4b4cd2 | 1646 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1647 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1648 | bound, if WHICH is 1. The first bound is I=1. */ |
1649 | ||
d2e4a39e AS |
1650 | static struct value * |
1651 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1652 | { |
d2e4a39e | 1653 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1654 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1655 | } |
1656 | ||
1657 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1658 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1659 | bound, if WHICH is 1. The first bound is I=1. */ |
1660 | ||
14f9c5c9 | 1661 | static int |
d2e4a39e | 1662 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1663 | { |
d2e4a39e | 1664 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1665 | } |
1666 | ||
1667 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1668 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1669 | bound, if WHICH is 1. The first bound is I=1. */ |
1670 | ||
76a01679 | 1671 | static int |
d2e4a39e | 1672 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1673 | { |
1674 | type = desc_base_type (type); | |
1675 | ||
d2e4a39e AS |
1676 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1677 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1678 | else | |
1679 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1680 | } |
1681 | ||
1682 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1683 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1684 | ||
d2e4a39e AS |
1685 | static struct type * |
1686 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1687 | { |
1688 | type = desc_base_type (type); | |
1689 | ||
1690 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1691 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1692 | else | |
14f9c5c9 AS |
1693 | return NULL; |
1694 | } | |
1695 | ||
4c4b4cd2 PH |
1696 | /* The number of index positions in the array-bounds type TYPE. |
1697 | Return 0 if TYPE is NULL. */ | |
1698 | ||
14f9c5c9 | 1699 | static int |
d2e4a39e | 1700 | desc_arity (struct type *type) |
14f9c5c9 AS |
1701 | { |
1702 | type = desc_base_type (type); | |
1703 | ||
1704 | if (type != NULL) | |
1705 | return TYPE_NFIELDS (type) / 2; | |
1706 | return 0; | |
1707 | } | |
1708 | ||
4c4b4cd2 PH |
1709 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1710 | an array descriptor type (representing an unconstrained array | |
1711 | type). */ | |
1712 | ||
76a01679 JB |
1713 | static int |
1714 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1715 | { |
1716 | if (type == NULL) | |
1717 | return 0; | |
61ee279c | 1718 | type = ada_check_typedef (type); |
4c4b4cd2 | 1719 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1720 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1721 | } |
1722 | ||
52ce6436 | 1723 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1724 | * to one. */ |
52ce6436 | 1725 | |
2c0b251b | 1726 | static int |
52ce6436 PH |
1727 | ada_is_array_type (struct type *type) |
1728 | { | |
1729 | while (type != NULL | |
1730 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1731 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1732 | type = TYPE_TARGET_TYPE (type); | |
1733 | return ada_is_direct_array_type (type); | |
1734 | } | |
1735 | ||
4c4b4cd2 | 1736 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1737 | |
14f9c5c9 | 1738 | int |
4c4b4cd2 | 1739 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1740 | { |
1741 | if (type == NULL) | |
1742 | return 0; | |
61ee279c | 1743 | type = ada_check_typedef (type); |
14f9c5c9 | 1744 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1745 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1746 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1747 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1748 | } |
1749 | ||
4c4b4cd2 PH |
1750 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1751 | ||
14f9c5c9 | 1752 | int |
4c4b4cd2 | 1753 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1754 | { |
556bdfd4 | 1755 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1756 | |
1757 | if (type == NULL) | |
1758 | return 0; | |
61ee279c | 1759 | type = ada_check_typedef (type); |
556bdfd4 UW |
1760 | return (data_type != NULL |
1761 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1762 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1763 | } |
1764 | ||
1765 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1766 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1767 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1768 | is still needed. */ |
1769 | ||
14f9c5c9 | 1770 | int |
ebf56fd3 | 1771 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1772 | { |
d2e4a39e | 1773 | return |
14f9c5c9 AS |
1774 | type != NULL |
1775 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1776 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1777 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1778 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1779 | } |
1780 | ||
1781 | ||
4c4b4cd2 | 1782 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1783 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1784 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1785 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1786 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1787 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1788 | a descriptor. */ |
d2e4a39e AS |
1789 | struct type * |
1790 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1791 | { |
ad82864c JB |
1792 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1793 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1794 | |
df407dfe AC |
1795 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1796 | return value_type (arr); | |
d2e4a39e AS |
1797 | |
1798 | if (!bounds) | |
ad82864c JB |
1799 | { |
1800 | struct type *array_type = | |
1801 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1802 | ||
1803 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1804 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1805 | decode_packed_array_bitsize (value_type (arr)); | |
1806 | ||
1807 | return array_type; | |
1808 | } | |
14f9c5c9 AS |
1809 | else |
1810 | { | |
d2e4a39e | 1811 | struct type *elt_type; |
14f9c5c9 | 1812 | int arity; |
d2e4a39e | 1813 | struct value *descriptor; |
14f9c5c9 | 1814 | |
df407dfe AC |
1815 | elt_type = ada_array_element_type (value_type (arr), -1); |
1816 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1817 | |
d2e4a39e | 1818 | if (elt_type == NULL || arity == 0) |
df407dfe | 1819 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1820 | |
1821 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1822 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1823 | return NULL; |
d2e4a39e | 1824 | while (arity > 0) |
4c4b4cd2 | 1825 | { |
e9bb382b UW |
1826 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1827 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1828 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1829 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1830 | |
5b4ee69b | 1831 | arity -= 1; |
df407dfe | 1832 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1833 | longest_to_int (value_as_long (low)), |
1834 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1835 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1836 | |
1837 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1838 | { |
1839 | /* We need to store the element packed bitsize, as well as | |
1840 | recompute the array size, because it was previously | |
1841 | computed based on the unpacked element size. */ | |
1842 | LONGEST lo = value_as_long (low); | |
1843 | LONGEST hi = value_as_long (high); | |
1844 | ||
1845 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1846 | decode_packed_array_bitsize (value_type (arr)); | |
1847 | /* If the array has no element, then the size is already | |
1848 | zero, and does not need to be recomputed. */ | |
1849 | if (lo < hi) | |
1850 | { | |
1851 | int array_bitsize = | |
1852 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
1853 | ||
1854 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
1855 | } | |
1856 | } | |
4c4b4cd2 | 1857 | } |
14f9c5c9 AS |
1858 | |
1859 | return lookup_pointer_type (elt_type); | |
1860 | } | |
1861 | } | |
1862 | ||
1863 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1864 | Otherwise, returns either a standard GDB array with bounds set |
1865 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1866 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1867 | ||
d2e4a39e AS |
1868 | struct value * |
1869 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1870 | { |
df407dfe | 1871 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1872 | { |
d2e4a39e | 1873 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 1874 | |
14f9c5c9 | 1875 | if (arrType == NULL) |
4c4b4cd2 | 1876 | return NULL; |
14f9c5c9 AS |
1877 | return value_cast (arrType, value_copy (desc_data (arr))); |
1878 | } | |
ad82864c JB |
1879 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1880 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
1881 | else |
1882 | return arr; | |
1883 | } | |
1884 | ||
1885 | /* If ARR does not represent an array, returns ARR unchanged. | |
1886 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1887 | be ARR itself if it already is in the proper form). */ |
1888 | ||
720d1a40 | 1889 | struct value * |
d2e4a39e | 1890 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1891 | { |
df407dfe | 1892 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1893 | { |
d2e4a39e | 1894 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 1895 | |
14f9c5c9 | 1896 | if (arrVal == NULL) |
323e0a4a | 1897 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1898 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1899 | return value_ind (arrVal); |
1900 | } | |
ad82864c JB |
1901 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1902 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 1903 | else |
14f9c5c9 AS |
1904 | return arr; |
1905 | } | |
1906 | ||
1907 | /* If TYPE represents a GNAT array type, return it translated to an | |
1908 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1909 | packing). For other types, is the identity. */ |
1910 | ||
d2e4a39e AS |
1911 | struct type * |
1912 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1913 | { |
ad82864c JB |
1914 | if (ada_is_constrained_packed_array_type (type)) |
1915 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
1916 | |
1917 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1918 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1919 | |
1920 | return type; | |
14f9c5c9 AS |
1921 | } |
1922 | ||
4c4b4cd2 PH |
1923 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1924 | ||
ad82864c JB |
1925 | static int |
1926 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
1927 | { |
1928 | if (type == NULL) | |
1929 | return 0; | |
4c4b4cd2 | 1930 | type = desc_base_type (type); |
61ee279c | 1931 | type = ada_check_typedef (type); |
d2e4a39e | 1932 | return |
14f9c5c9 AS |
1933 | ada_type_name (type) != NULL |
1934 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1935 | } | |
1936 | ||
ad82864c JB |
1937 | /* Non-zero iff TYPE represents a standard GNAT constrained |
1938 | packed-array type. */ | |
1939 | ||
1940 | int | |
1941 | ada_is_constrained_packed_array_type (struct type *type) | |
1942 | { | |
1943 | return ada_is_packed_array_type (type) | |
1944 | && !ada_is_array_descriptor_type (type); | |
1945 | } | |
1946 | ||
1947 | /* Non-zero iff TYPE represents an array descriptor for a | |
1948 | unconstrained packed-array type. */ | |
1949 | ||
1950 | static int | |
1951 | ada_is_unconstrained_packed_array_type (struct type *type) | |
1952 | { | |
1953 | return ada_is_packed_array_type (type) | |
1954 | && ada_is_array_descriptor_type (type); | |
1955 | } | |
1956 | ||
1957 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
1958 | return the size of its elements in bits. */ | |
1959 | ||
1960 | static long | |
1961 | decode_packed_array_bitsize (struct type *type) | |
1962 | { | |
720d1a40 | 1963 | char *raw_name; |
ad82864c JB |
1964 | char *tail; |
1965 | long bits; | |
1966 | ||
720d1a40 JB |
1967 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
1968 | of the fat pointer type. We need the name of the fat pointer type | |
1969 | to do the decoding, so strip the typedef layer. */ | |
1970 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
1971 | type = ada_typedef_target_type (type); | |
1972 | ||
1973 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
1974 | if (!raw_name) |
1975 | raw_name = ada_type_name (desc_base_type (type)); | |
1976 | ||
1977 | if (!raw_name) | |
1978 | return 0; | |
1979 | ||
1980 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 1981 | gdb_assert (tail != NULL); |
ad82864c JB |
1982 | |
1983 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
1984 | { | |
1985 | lim_warning | |
1986 | (_("could not understand bit size information on packed array")); | |
1987 | return 0; | |
1988 | } | |
1989 | ||
1990 | return bits; | |
1991 | } | |
1992 | ||
14f9c5c9 AS |
1993 | /* Given that TYPE is a standard GDB array type with all bounds filled |
1994 | in, and that the element size of its ultimate scalar constituents | |
1995 | (that is, either its elements, or, if it is an array of arrays, its | |
1996 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1997 | but with the bit sizes of its elements (and those of any | |
1998 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
1999 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
2000 | in bits. */ | |
2001 | ||
d2e4a39e | 2002 | static struct type * |
ad82864c | 2003 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2004 | { |
d2e4a39e AS |
2005 | struct type *new_elt_type; |
2006 | struct type *new_type; | |
14f9c5c9 AS |
2007 | LONGEST low_bound, high_bound; |
2008 | ||
61ee279c | 2009 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2010 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2011 | return type; | |
2012 | ||
e9bb382b | 2013 | new_type = alloc_type_copy (type); |
ad82864c JB |
2014 | new_elt_type = |
2015 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2016 | elt_bits); | |
262452ec | 2017 | create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type)); |
14f9c5c9 AS |
2018 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2019 | TYPE_NAME (new_type) = ada_type_name (type); | |
2020 | ||
262452ec | 2021 | if (get_discrete_bounds (TYPE_INDEX_TYPE (type), |
4c4b4cd2 | 2022 | &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
2023 | low_bound = high_bound = 0; |
2024 | if (high_bound < low_bound) | |
2025 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2026 | else |
14f9c5c9 AS |
2027 | { |
2028 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2029 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2030 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2031 | } |
2032 | ||
876cecd0 | 2033 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2034 | return new_type; |
2035 | } | |
2036 | ||
ad82864c JB |
2037 | /* The array type encoded by TYPE, where |
2038 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2039 | |
d2e4a39e | 2040 | static struct type * |
ad82864c | 2041 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2042 | { |
727e3d2e JB |
2043 | char *raw_name = ada_type_name (ada_check_typedef (type)); |
2044 | char *name; | |
2045 | char *tail; | |
d2e4a39e | 2046 | struct type *shadow_type; |
14f9c5c9 | 2047 | long bits; |
14f9c5c9 | 2048 | |
727e3d2e JB |
2049 | if (!raw_name) |
2050 | raw_name = ada_type_name (desc_base_type (type)); | |
2051 | ||
2052 | if (!raw_name) | |
2053 | return NULL; | |
2054 | ||
2055 | name = (char *) alloca (strlen (raw_name) + 1); | |
2056 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2057 | type = desc_base_type (type); |
2058 | ||
14f9c5c9 AS |
2059 | memcpy (name, raw_name, tail - raw_name); |
2060 | name[tail - raw_name] = '\000'; | |
2061 | ||
b4ba55a1 JB |
2062 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2063 | ||
2064 | if (shadow_type == NULL) | |
14f9c5c9 | 2065 | { |
323e0a4a | 2066 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2067 | return NULL; |
2068 | } | |
cb249c71 | 2069 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
2070 | |
2071 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2072 | { | |
0963b4bd MS |
2073 | lim_warning (_("could not understand bounds " |
2074 | "information on packed array")); | |
14f9c5c9 AS |
2075 | return NULL; |
2076 | } | |
d2e4a39e | 2077 | |
ad82864c JB |
2078 | bits = decode_packed_array_bitsize (type); |
2079 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2080 | } |
2081 | ||
ad82864c JB |
2082 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2083 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2084 | standard GDB array type except that the BITSIZEs of the array |
2085 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2086 | type length is set appropriately. */ |
14f9c5c9 | 2087 | |
d2e4a39e | 2088 | static struct value * |
ad82864c | 2089 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2090 | { |
4c4b4cd2 | 2091 | struct type *type; |
14f9c5c9 | 2092 | |
4c4b4cd2 | 2093 | arr = ada_coerce_ref (arr); |
284614f0 JB |
2094 | |
2095 | /* If our value is a pointer, then dererence it. Make sure that | |
2096 | this operation does not cause the target type to be fixed, as | |
2097 | this would indirectly cause this array to be decoded. The rest | |
2098 | of the routine assumes that the array hasn't been decoded yet, | |
2099 | so we use the basic "value_ind" routine to perform the dereferencing, | |
2100 | as opposed to using "ada_value_ind". */ | |
828292f2 | 2101 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2102 | arr = value_ind (arr); |
4c4b4cd2 | 2103 | |
ad82864c | 2104 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2105 | if (type == NULL) |
2106 | { | |
323e0a4a | 2107 | error (_("can't unpack array")); |
14f9c5c9 AS |
2108 | return NULL; |
2109 | } | |
61ee279c | 2110 | |
50810684 | 2111 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2112 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2113 | { |
2114 | /* This is a (right-justified) modular type representing a packed | |
2115 | array with no wrapper. In order to interpret the value through | |
2116 | the (left-justified) packed array type we just built, we must | |
2117 | first left-justify it. */ | |
2118 | int bit_size, bit_pos; | |
2119 | ULONGEST mod; | |
2120 | ||
df407dfe | 2121 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2122 | bit_size = 0; |
2123 | while (mod > 0) | |
2124 | { | |
2125 | bit_size += 1; | |
2126 | mod >>= 1; | |
2127 | } | |
df407dfe | 2128 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2129 | arr = ada_value_primitive_packed_val (arr, NULL, |
2130 | bit_pos / HOST_CHAR_BIT, | |
2131 | bit_pos % HOST_CHAR_BIT, | |
2132 | bit_size, | |
2133 | type); | |
2134 | } | |
2135 | ||
4c4b4cd2 | 2136 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2137 | } |
2138 | ||
2139 | ||
2140 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2141 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2142 | |
d2e4a39e AS |
2143 | static struct value * |
2144 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2145 | { |
2146 | int i; | |
2147 | int bits, elt_off, bit_off; | |
2148 | long elt_total_bit_offset; | |
d2e4a39e AS |
2149 | struct type *elt_type; |
2150 | struct value *v; | |
14f9c5c9 AS |
2151 | |
2152 | bits = 0; | |
2153 | elt_total_bit_offset = 0; | |
df407dfe | 2154 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2155 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2156 | { |
d2e4a39e | 2157 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2158 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2159 | error | |
0963b4bd MS |
2160 | (_("attempt to do packed indexing of " |
2161 | "something other than a packed array")); | |
14f9c5c9 | 2162 | else |
4c4b4cd2 PH |
2163 | { |
2164 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2165 | LONGEST lowerbound, upperbound; | |
2166 | LONGEST idx; | |
2167 | ||
2168 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2169 | { | |
323e0a4a | 2170 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2171 | lowerbound = upperbound = 0; |
2172 | } | |
2173 | ||
3cb382c9 | 2174 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2175 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2176 | lim_warning (_("packed array index %ld out of bounds"), |
2177 | (long) idx); | |
4c4b4cd2 PH |
2178 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2179 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2180 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2181 | } |
14f9c5c9 AS |
2182 | } |
2183 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2184 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2185 | |
2186 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2187 | bits, elt_type); |
14f9c5c9 AS |
2188 | return v; |
2189 | } | |
2190 | ||
4c4b4cd2 | 2191 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2192 | |
2193 | static int | |
d2e4a39e | 2194 | has_negatives (struct type *type) |
14f9c5c9 | 2195 | { |
d2e4a39e AS |
2196 | switch (TYPE_CODE (type)) |
2197 | { | |
2198 | default: | |
2199 | return 0; | |
2200 | case TYPE_CODE_INT: | |
2201 | return !TYPE_UNSIGNED (type); | |
2202 | case TYPE_CODE_RANGE: | |
2203 | return TYPE_LOW_BOUND (type) < 0; | |
2204 | } | |
14f9c5c9 | 2205 | } |
d2e4a39e | 2206 | |
14f9c5c9 AS |
2207 | |
2208 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2209 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2210 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
0963b4bd | 2211 | assigning through the result will set the field fetched from. |
4c4b4cd2 PH |
2212 | VALADDR is ignored unless OBJ is NULL, in which case, |
2213 | VALADDR+OFFSET must address the start of storage containing the | |
2214 | packed value. The value returned in this case is never an lval. | |
2215 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2216 | |
d2e4a39e | 2217 | struct value * |
fc1a4b47 | 2218 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2219 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2220 | struct type *type) |
14f9c5c9 | 2221 | { |
d2e4a39e | 2222 | struct value *v; |
4c4b4cd2 PH |
2223 | int src, /* Index into the source area */ |
2224 | targ, /* Index into the target area */ | |
2225 | srcBitsLeft, /* Number of source bits left to move */ | |
2226 | nsrc, ntarg, /* Number of source and target bytes */ | |
2227 | unusedLS, /* Number of bits in next significant | |
2228 | byte of source that are unused */ | |
2229 | accumSize; /* Number of meaningful bits in accum */ | |
2230 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2231 | unsigned char *unpacked; |
4c4b4cd2 | 2232 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2233 | unsigned char sign; |
2234 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2235 | /* Transmit bytes from least to most significant; delta is the direction |
2236 | the indices move. */ | |
50810684 | 2237 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2238 | |
61ee279c | 2239 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2240 | |
2241 | if (obj == NULL) | |
2242 | { | |
2243 | v = allocate_value (type); | |
d2e4a39e | 2244 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2245 | } |
9214ee5f | 2246 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 AS |
2247 | { |
2248 | v = value_at (type, | |
42ae5230 | 2249 | value_address (obj) + offset); |
d2e4a39e | 2250 | bytes = (unsigned char *) alloca (len); |
42ae5230 | 2251 | read_memory (value_address (v), bytes, len); |
14f9c5c9 | 2252 | } |
d2e4a39e | 2253 | else |
14f9c5c9 AS |
2254 | { |
2255 | v = allocate_value (type); | |
0fd88904 | 2256 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2257 | } |
d2e4a39e AS |
2258 | |
2259 | if (obj != NULL) | |
14f9c5c9 | 2260 | { |
42ae5230 | 2261 | CORE_ADDR new_addr; |
5b4ee69b | 2262 | |
74bcbdf3 | 2263 | set_value_component_location (v, obj); |
42ae5230 | 2264 | new_addr = value_address (obj) + offset; |
9bbda503 AC |
2265 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2266 | set_value_bitsize (v, bit_size); | |
df407dfe | 2267 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2268 | { |
42ae5230 | 2269 | ++new_addr; |
9bbda503 | 2270 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2271 | } |
42ae5230 | 2272 | set_value_address (v, new_addr); |
14f9c5c9 AS |
2273 | } |
2274 | else | |
9bbda503 | 2275 | set_value_bitsize (v, bit_size); |
0fd88904 | 2276 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2277 | |
2278 | srcBitsLeft = bit_size; | |
2279 | nsrc = len; | |
2280 | ntarg = TYPE_LENGTH (type); | |
2281 | sign = 0; | |
2282 | if (bit_size == 0) | |
2283 | { | |
2284 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2285 | return v; | |
2286 | } | |
50810684 | 2287 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2288 | { |
d2e4a39e | 2289 | src = len - 1; |
1265e4aa JB |
2290 | if (has_negatives (type) |
2291 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2292 | sign = ~0; |
d2e4a39e AS |
2293 | |
2294 | unusedLS = | |
4c4b4cd2 PH |
2295 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2296 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2297 | |
2298 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2299 | { |
2300 | case TYPE_CODE_ARRAY: | |
2301 | case TYPE_CODE_UNION: | |
2302 | case TYPE_CODE_STRUCT: | |
2303 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2304 | accumSize = | |
2305 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2306 | /* ... And are placed at the beginning (most-significant) bytes | |
2307 | of the target. */ | |
529cad9c | 2308 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2309 | ntarg = targ + 1; |
4c4b4cd2 PH |
2310 | break; |
2311 | default: | |
2312 | accumSize = 0; | |
2313 | targ = TYPE_LENGTH (type) - 1; | |
2314 | break; | |
2315 | } | |
14f9c5c9 | 2316 | } |
d2e4a39e | 2317 | else |
14f9c5c9 AS |
2318 | { |
2319 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2320 | ||
2321 | src = targ = 0; | |
2322 | unusedLS = bit_offset; | |
2323 | accumSize = 0; | |
2324 | ||
d2e4a39e | 2325 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2326 | sign = ~0; |
14f9c5c9 | 2327 | } |
d2e4a39e | 2328 | |
14f9c5c9 AS |
2329 | accum = 0; |
2330 | while (nsrc > 0) | |
2331 | { | |
2332 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2333 | part of the value. */ |
d2e4a39e | 2334 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2335 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2336 | 1; | |
2337 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2338 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2339 | |
d2e4a39e | 2340 | accum |= |
4c4b4cd2 | 2341 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2342 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2343 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2344 | { |
2345 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2346 | accumSize -= HOST_CHAR_BIT; | |
2347 | accum >>= HOST_CHAR_BIT; | |
2348 | ntarg -= 1; | |
2349 | targ += delta; | |
2350 | } | |
14f9c5c9 AS |
2351 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2352 | unusedLS = 0; | |
2353 | nsrc -= 1; | |
2354 | src += delta; | |
2355 | } | |
2356 | while (ntarg > 0) | |
2357 | { | |
2358 | accum |= sign << accumSize; | |
2359 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2360 | accumSize -= HOST_CHAR_BIT; | |
2361 | accum >>= HOST_CHAR_BIT; | |
2362 | ntarg -= 1; | |
2363 | targ += delta; | |
2364 | } | |
2365 | ||
2366 | return v; | |
2367 | } | |
d2e4a39e | 2368 | |
14f9c5c9 AS |
2369 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2370 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2371 | not overlap. */ |
14f9c5c9 | 2372 | static void |
fc1a4b47 | 2373 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2374 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2375 | { |
2376 | unsigned int accum, mask; | |
2377 | int accum_bits, chunk_size; | |
2378 | ||
2379 | target += targ_offset / HOST_CHAR_BIT; | |
2380 | targ_offset %= HOST_CHAR_BIT; | |
2381 | source += src_offset / HOST_CHAR_BIT; | |
2382 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2383 | if (bits_big_endian_p) |
14f9c5c9 AS |
2384 | { |
2385 | accum = (unsigned char) *source; | |
2386 | source += 1; | |
2387 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2388 | ||
d2e4a39e | 2389 | while (n > 0) |
4c4b4cd2 PH |
2390 | { |
2391 | int unused_right; | |
5b4ee69b | 2392 | |
4c4b4cd2 PH |
2393 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2394 | accum_bits += HOST_CHAR_BIT; | |
2395 | source += 1; | |
2396 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2397 | if (chunk_size > n) | |
2398 | chunk_size = n; | |
2399 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2400 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2401 | *target = | |
2402 | (*target & ~mask) | |
2403 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2404 | n -= chunk_size; | |
2405 | accum_bits -= chunk_size; | |
2406 | target += 1; | |
2407 | targ_offset = 0; | |
2408 | } | |
14f9c5c9 AS |
2409 | } |
2410 | else | |
2411 | { | |
2412 | accum = (unsigned char) *source >> src_offset; | |
2413 | source += 1; | |
2414 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2415 | ||
d2e4a39e | 2416 | while (n > 0) |
4c4b4cd2 PH |
2417 | { |
2418 | accum = accum + ((unsigned char) *source << accum_bits); | |
2419 | accum_bits += HOST_CHAR_BIT; | |
2420 | source += 1; | |
2421 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2422 | if (chunk_size > n) | |
2423 | chunk_size = n; | |
2424 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2425 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2426 | n -= chunk_size; | |
2427 | accum_bits -= chunk_size; | |
2428 | accum >>= chunk_size; | |
2429 | target += 1; | |
2430 | targ_offset = 0; | |
2431 | } | |
14f9c5c9 AS |
2432 | } |
2433 | } | |
2434 | ||
14f9c5c9 AS |
2435 | /* Store the contents of FROMVAL into the location of TOVAL. |
2436 | Return a new value with the location of TOVAL and contents of | |
2437 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2438 | floating-point or non-scalar types. */ |
14f9c5c9 | 2439 | |
d2e4a39e AS |
2440 | static struct value * |
2441 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2442 | { |
df407dfe AC |
2443 | struct type *type = value_type (toval); |
2444 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2445 | |
52ce6436 PH |
2446 | toval = ada_coerce_ref (toval); |
2447 | fromval = ada_coerce_ref (fromval); | |
2448 | ||
2449 | if (ada_is_direct_array_type (value_type (toval))) | |
2450 | toval = ada_coerce_to_simple_array (toval); | |
2451 | if (ada_is_direct_array_type (value_type (fromval))) | |
2452 | fromval = ada_coerce_to_simple_array (fromval); | |
2453 | ||
88e3b34b | 2454 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2455 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2456 | |
d2e4a39e | 2457 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2458 | && bits > 0 |
d2e4a39e | 2459 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2460 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2461 | { |
df407dfe AC |
2462 | int len = (value_bitpos (toval) |
2463 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2464 | int from_size; |
d2e4a39e AS |
2465 | char *buffer = (char *) alloca (len); |
2466 | struct value *val; | |
42ae5230 | 2467 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2468 | |
2469 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2470 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2471 | |
52ce6436 | 2472 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2473 | from_size = value_bitsize (fromval); |
2474 | if (from_size == 0) | |
2475 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2476 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2477 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2478 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2479 | else |
50810684 UW |
2480 | move_bits (buffer, value_bitpos (toval), |
2481 | value_contents (fromval), 0, bits, 0); | |
52ce6436 | 2482 | write_memory (to_addr, buffer, len); |
8cebebb9 PP |
2483 | observer_notify_memory_changed (to_addr, len, buffer); |
2484 | ||
14f9c5c9 | 2485 | val = value_copy (toval); |
0fd88904 | 2486 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2487 | TYPE_LENGTH (type)); |
04624583 | 2488 | deprecated_set_value_type (val, type); |
d2e4a39e | 2489 | |
14f9c5c9 AS |
2490 | return val; |
2491 | } | |
2492 | ||
2493 | return value_assign (toval, fromval); | |
2494 | } | |
2495 | ||
2496 | ||
52ce6436 PH |
2497 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2498 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2499 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2500 | * COMPONENT, and not the inferior's memory. The current contents | |
2501 | * of COMPONENT are ignored. */ | |
2502 | static void | |
2503 | value_assign_to_component (struct value *container, struct value *component, | |
2504 | struct value *val) | |
2505 | { | |
2506 | LONGEST offset_in_container = | |
42ae5230 | 2507 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2508 | int bit_offset_in_container = |
2509 | value_bitpos (component) - value_bitpos (container); | |
2510 | int bits; | |
2511 | ||
2512 | val = value_cast (value_type (component), val); | |
2513 | ||
2514 | if (value_bitsize (component) == 0) | |
2515 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2516 | else | |
2517 | bits = value_bitsize (component); | |
2518 | ||
50810684 | 2519 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2520 | move_bits (value_contents_writeable (container) + offset_in_container, |
2521 | value_bitpos (container) + bit_offset_in_container, | |
2522 | value_contents (val), | |
2523 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2524 | bits, 1); |
52ce6436 PH |
2525 | else |
2526 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2527 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2528 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2529 | } |
2530 | ||
4c4b4cd2 PH |
2531 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2532 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2533 | thereto. */ |
2534 | ||
d2e4a39e AS |
2535 | struct value * |
2536 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2537 | { |
2538 | int k; | |
d2e4a39e AS |
2539 | struct value *elt; |
2540 | struct type *elt_type; | |
14f9c5c9 AS |
2541 | |
2542 | elt = ada_coerce_to_simple_array (arr); | |
2543 | ||
df407dfe | 2544 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2545 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2546 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2547 | return value_subscript_packed (elt, arity, ind); | |
2548 | ||
2549 | for (k = 0; k < arity; k += 1) | |
2550 | { | |
2551 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2552 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2553 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2554 | } |
2555 | return elt; | |
2556 | } | |
2557 | ||
2558 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2559 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2560 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2561 | |
2c0b251b | 2562 | static struct value * |
d2e4a39e | 2563 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2564 | struct value **ind) |
14f9c5c9 AS |
2565 | { |
2566 | int k; | |
2567 | ||
2568 | for (k = 0; k < arity; k += 1) | |
2569 | { | |
2570 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2571 | |
2572 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2573 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2574 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2575 | value_copy (arr)); |
14f9c5c9 | 2576 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2577 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2578 | type = TYPE_TARGET_TYPE (type); |
2579 | } | |
2580 | ||
2581 | return value_ind (arr); | |
2582 | } | |
2583 | ||
0b5d8877 | 2584 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2585 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2586 | elements starting at index LOW. The lower bound of this array is LOW, as | |
0963b4bd | 2587 | per Ada rules. */ |
0b5d8877 | 2588 | static struct value * |
f5938064 JG |
2589 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2590 | int low, int high) | |
0b5d8877 | 2591 | { |
b0dd7688 | 2592 | struct type *type0 = ada_check_typedef (type); |
6c038f32 | 2593 | CORE_ADDR base = value_as_address (array_ptr) |
b0dd7688 JB |
2594 | + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0))) |
2595 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
6c038f32 | 2596 | struct type *index_type = |
b0dd7688 | 2597 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)), |
0b5d8877 | 2598 | low, high); |
6c038f32 | 2599 | struct type *slice_type = |
b0dd7688 | 2600 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
5b4ee69b | 2601 | |
f5938064 | 2602 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2603 | } |
2604 | ||
2605 | ||
2606 | static struct value * | |
2607 | ada_value_slice (struct value *array, int low, int high) | |
2608 | { | |
b0dd7688 | 2609 | struct type *type = ada_check_typedef (value_type (array)); |
6c038f32 | 2610 | struct type *index_type = |
0b5d8877 | 2611 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2612 | struct type *slice_type = |
0b5d8877 | 2613 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2614 | |
6c038f32 | 2615 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2616 | } |
2617 | ||
14f9c5c9 AS |
2618 | /* If type is a record type in the form of a standard GNAT array |
2619 | descriptor, returns the number of dimensions for type. If arr is a | |
2620 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2621 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2622 | |
2623 | int | |
d2e4a39e | 2624 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2625 | { |
2626 | int arity; | |
2627 | ||
2628 | if (type == NULL) | |
2629 | return 0; | |
2630 | ||
2631 | type = desc_base_type (type); | |
2632 | ||
2633 | arity = 0; | |
d2e4a39e | 2634 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2635 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2636 | else |
2637 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2638 | { |
4c4b4cd2 | 2639 | arity += 1; |
61ee279c | 2640 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2641 | } |
d2e4a39e | 2642 | |
14f9c5c9 AS |
2643 | return arity; |
2644 | } | |
2645 | ||
2646 | /* If TYPE is a record type in the form of a standard GNAT array | |
2647 | descriptor or a simple array type, returns the element type for | |
2648 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2649 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2650 | |
d2e4a39e AS |
2651 | struct type * |
2652 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2653 | { |
2654 | type = desc_base_type (type); | |
2655 | ||
d2e4a39e | 2656 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2657 | { |
2658 | int k; | |
d2e4a39e | 2659 | struct type *p_array_type; |
14f9c5c9 | 2660 | |
556bdfd4 | 2661 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2662 | |
2663 | k = ada_array_arity (type); | |
2664 | if (k == 0) | |
4c4b4cd2 | 2665 | return NULL; |
d2e4a39e | 2666 | |
4c4b4cd2 | 2667 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2668 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2669 | k = nindices; |
d2e4a39e | 2670 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2671 | { |
61ee279c | 2672 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2673 | k -= 1; |
2674 | } | |
14f9c5c9 AS |
2675 | return p_array_type; |
2676 | } | |
2677 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2678 | { | |
2679 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2680 | { |
2681 | type = TYPE_TARGET_TYPE (type); | |
2682 | nindices -= 1; | |
2683 | } | |
14f9c5c9 AS |
2684 | return type; |
2685 | } | |
2686 | ||
2687 | return NULL; | |
2688 | } | |
2689 | ||
4c4b4cd2 | 2690 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2691 | Does not examine memory. Throws an error if N is invalid or TYPE |
2692 | is not an array type. NAME is the name of the Ada attribute being | |
2693 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2694 | the error message. */ | |
14f9c5c9 | 2695 | |
1eea4ebd UW |
2696 | static struct type * |
2697 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2698 | { |
4c4b4cd2 PH |
2699 | struct type *result_type; |
2700 | ||
14f9c5c9 AS |
2701 | type = desc_base_type (type); |
2702 | ||
1eea4ebd UW |
2703 | if (n < 0 || n > ada_array_arity (type)) |
2704 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2705 | |
4c4b4cd2 | 2706 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2707 | { |
2708 | int i; | |
2709 | ||
2710 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2711 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2712 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2713 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2714 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2715 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2716 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2717 | result_type = NULL; | |
14f9c5c9 | 2718 | } |
d2e4a39e | 2719 | else |
1eea4ebd UW |
2720 | { |
2721 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2722 | if (result_type == NULL) | |
2723 | error (_("attempt to take bound of something that is not an array")); | |
2724 | } | |
2725 | ||
2726 | return result_type; | |
14f9c5c9 AS |
2727 | } |
2728 | ||
2729 | /* Given that arr is an array type, returns the lower bound of the | |
2730 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2731 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2732 | array-descriptor type. It works for other arrays with bounds supplied |
2733 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2734 | |
abb68b3e | 2735 | static LONGEST |
1eea4ebd | 2736 | ada_array_bound_from_type (struct type * arr_type, int n, int which) |
14f9c5c9 | 2737 | { |
1ce677a4 | 2738 | struct type *type, *elt_type, *index_type_desc, *index_type; |
1ce677a4 | 2739 | int i; |
262452ec JK |
2740 | |
2741 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2742 | |
ad82864c JB |
2743 | if (ada_is_constrained_packed_array_type (arr_type)) |
2744 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2745 | |
4c4b4cd2 | 2746 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2747 | return (LONGEST) - which; |
14f9c5c9 AS |
2748 | |
2749 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2750 | type = TYPE_TARGET_TYPE (arr_type); | |
2751 | else | |
2752 | type = arr_type; | |
2753 | ||
1ce677a4 UW |
2754 | elt_type = type; |
2755 | for (i = n; i > 1; i--) | |
2756 | elt_type = TYPE_TARGET_TYPE (type); | |
2757 | ||
14f9c5c9 | 2758 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
28c85d6c | 2759 | ada_fixup_array_indexes_type (index_type_desc); |
262452ec | 2760 | if (index_type_desc != NULL) |
28c85d6c JB |
2761 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
2762 | NULL); | |
262452ec | 2763 | else |
1ce677a4 | 2764 | index_type = TYPE_INDEX_TYPE (elt_type); |
262452ec | 2765 | |
43bbcdc2 PH |
2766 | return |
2767 | (LONGEST) (which == 0 | |
2768 | ? ada_discrete_type_low_bound (index_type) | |
2769 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2770 | } |
2771 | ||
2772 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2773 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2774 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2775 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2776 | |
1eea4ebd | 2777 | static LONGEST |
4dc81987 | 2778 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2779 | { |
df407dfe | 2780 | struct type *arr_type = value_type (arr); |
14f9c5c9 | 2781 | |
ad82864c JB |
2782 | if (ada_is_constrained_packed_array_type (arr_type)) |
2783 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2784 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2785 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2786 | else |
1eea4ebd | 2787 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2788 | } |
2789 | ||
2790 | /* Given that arr is an array value, returns the length of the | |
2791 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2792 | supplied by run-time quantities other than discriminants. |
2793 | Does not work for arrays indexed by enumeration types with representation | |
2794 | clauses at the moment. */ | |
14f9c5c9 | 2795 | |
1eea4ebd | 2796 | static LONGEST |
d2e4a39e | 2797 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2798 | { |
df407dfe | 2799 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 | 2800 | |
ad82864c JB |
2801 | if (ada_is_constrained_packed_array_type (arr_type)) |
2802 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2803 | |
4c4b4cd2 | 2804 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2805 | return (ada_array_bound_from_type (arr_type, n, 1) |
2806 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2807 | else |
1eea4ebd UW |
2808 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2809 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2810 | } |
2811 | ||
2812 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2813 | with bounds LOW to LOW-1. */ | |
2814 | ||
2815 | static struct value * | |
2816 | empty_array (struct type *arr_type, int low) | |
2817 | { | |
b0dd7688 | 2818 | struct type *arr_type0 = ada_check_typedef (arr_type); |
6c038f32 | 2819 | struct type *index_type = |
b0dd7688 | 2820 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), |
0b5d8877 | 2821 | low, low - 1); |
b0dd7688 | 2822 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 2823 | |
0b5d8877 | 2824 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 2825 | } |
14f9c5c9 | 2826 | \f |
d2e4a39e | 2827 | |
4c4b4cd2 | 2828 | /* Name resolution */ |
14f9c5c9 | 2829 | |
4c4b4cd2 PH |
2830 | /* The "decoded" name for the user-definable Ada operator corresponding |
2831 | to OP. */ | |
14f9c5c9 | 2832 | |
d2e4a39e | 2833 | static const char * |
4c4b4cd2 | 2834 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2835 | { |
2836 | int i; | |
2837 | ||
4c4b4cd2 | 2838 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2839 | { |
2840 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2841 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2842 | } |
323e0a4a | 2843 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2844 | } |
2845 | ||
2846 | ||
4c4b4cd2 PH |
2847 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2848 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2849 | undefined namespace) and converts operators that are | |
2850 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2851 | non-null, it provides a preferred result type [at the moment, only |
2852 | type void has any effect---causing procedures to be preferred over | |
2853 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2854 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2855 | |
4c4b4cd2 PH |
2856 | static void |
2857 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 2858 | { |
30b15541 UW |
2859 | struct type *context_type = NULL; |
2860 | int pc = 0; | |
2861 | ||
2862 | if (void_context_p) | |
2863 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
2864 | ||
2865 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
2866 | } |
2867 | ||
4c4b4cd2 PH |
2868 | /* Resolve the operator of the subexpression beginning at |
2869 | position *POS of *EXPP. "Resolving" consists of replacing | |
2870 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2871 | with their resolutions, replacing built-in operators with | |
2872 | function calls to user-defined operators, where appropriate, and, | |
2873 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2874 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2875 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2876 | |
d2e4a39e | 2877 | static struct value * |
4c4b4cd2 | 2878 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2879 | struct type *context_type) |
14f9c5c9 AS |
2880 | { |
2881 | int pc = *pos; | |
2882 | int i; | |
4c4b4cd2 | 2883 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2884 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2885 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2886 | int nargs; /* Number of operands. */ | |
52ce6436 | 2887 | int oplen; |
14f9c5c9 AS |
2888 | |
2889 | argvec = NULL; | |
2890 | nargs = 0; | |
2891 | exp = *expp; | |
2892 | ||
52ce6436 PH |
2893 | /* Pass one: resolve operands, saving their types and updating *pos, |
2894 | if needed. */ | |
14f9c5c9 AS |
2895 | switch (op) |
2896 | { | |
4c4b4cd2 PH |
2897 | case OP_FUNCALL: |
2898 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2899 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2900 | *pos += 7; | |
4c4b4cd2 PH |
2901 | else |
2902 | { | |
2903 | *pos += 3; | |
2904 | resolve_subexp (expp, pos, 0, NULL); | |
2905 | } | |
2906 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2907 | break; |
2908 | ||
14f9c5c9 | 2909 | case UNOP_ADDR: |
4c4b4cd2 PH |
2910 | *pos += 1; |
2911 | resolve_subexp (expp, pos, 0, NULL); | |
2912 | break; | |
2913 | ||
52ce6436 PH |
2914 | case UNOP_QUAL: |
2915 | *pos += 3; | |
17466c1a | 2916 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2917 | break; |
2918 | ||
52ce6436 | 2919 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2920 | case OP_ATR_SIZE: |
2921 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2922 | case OP_ATR_FIRST: |
2923 | case OP_ATR_LAST: | |
2924 | case OP_ATR_LENGTH: | |
2925 | case OP_ATR_POS: | |
2926 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2927 | case OP_ATR_MIN: |
2928 | case OP_ATR_MAX: | |
52ce6436 PH |
2929 | case TERNOP_IN_RANGE: |
2930 | case BINOP_IN_BOUNDS: | |
2931 | case UNOP_IN_RANGE: | |
2932 | case OP_AGGREGATE: | |
2933 | case OP_OTHERS: | |
2934 | case OP_CHOICES: | |
2935 | case OP_POSITIONAL: | |
2936 | case OP_DISCRETE_RANGE: | |
2937 | case OP_NAME: | |
2938 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2939 | *pos += oplen; | |
14f9c5c9 AS |
2940 | break; |
2941 | ||
2942 | case BINOP_ASSIGN: | |
2943 | { | |
4c4b4cd2 PH |
2944 | struct value *arg1; |
2945 | ||
2946 | *pos += 1; | |
2947 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
2948 | if (arg1 == NULL) | |
2949 | resolve_subexp (expp, pos, 1, NULL); | |
2950 | else | |
df407dfe | 2951 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 2952 | break; |
14f9c5c9 AS |
2953 | } |
2954 | ||
4c4b4cd2 | 2955 | case UNOP_CAST: |
4c4b4cd2 PH |
2956 | *pos += 3; |
2957 | nargs = 1; | |
2958 | break; | |
14f9c5c9 | 2959 | |
4c4b4cd2 PH |
2960 | case BINOP_ADD: |
2961 | case BINOP_SUB: | |
2962 | case BINOP_MUL: | |
2963 | case BINOP_DIV: | |
2964 | case BINOP_REM: | |
2965 | case BINOP_MOD: | |
2966 | case BINOP_EXP: | |
2967 | case BINOP_CONCAT: | |
2968 | case BINOP_LOGICAL_AND: | |
2969 | case BINOP_LOGICAL_OR: | |
2970 | case BINOP_BITWISE_AND: | |
2971 | case BINOP_BITWISE_IOR: | |
2972 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 2973 | |
4c4b4cd2 PH |
2974 | case BINOP_EQUAL: |
2975 | case BINOP_NOTEQUAL: | |
2976 | case BINOP_LESS: | |
2977 | case BINOP_GTR: | |
2978 | case BINOP_LEQ: | |
2979 | case BINOP_GEQ: | |
14f9c5c9 | 2980 | |
4c4b4cd2 PH |
2981 | case BINOP_REPEAT: |
2982 | case BINOP_SUBSCRIPT: | |
2983 | case BINOP_COMMA: | |
40c8aaa9 JB |
2984 | *pos += 1; |
2985 | nargs = 2; | |
2986 | break; | |
14f9c5c9 | 2987 | |
4c4b4cd2 PH |
2988 | case UNOP_NEG: |
2989 | case UNOP_PLUS: | |
2990 | case UNOP_LOGICAL_NOT: | |
2991 | case UNOP_ABS: | |
2992 | case UNOP_IND: | |
2993 | *pos += 1; | |
2994 | nargs = 1; | |
2995 | break; | |
14f9c5c9 | 2996 | |
4c4b4cd2 PH |
2997 | case OP_LONG: |
2998 | case OP_DOUBLE: | |
2999 | case OP_VAR_VALUE: | |
3000 | *pos += 4; | |
3001 | break; | |
14f9c5c9 | 3002 | |
4c4b4cd2 PH |
3003 | case OP_TYPE: |
3004 | case OP_BOOL: | |
3005 | case OP_LAST: | |
4c4b4cd2 PH |
3006 | case OP_INTERNALVAR: |
3007 | *pos += 3; | |
3008 | break; | |
14f9c5c9 | 3009 | |
4c4b4cd2 PH |
3010 | case UNOP_MEMVAL: |
3011 | *pos += 3; | |
3012 | nargs = 1; | |
3013 | break; | |
3014 | ||
67f3407f DJ |
3015 | case OP_REGISTER: |
3016 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3017 | break; | |
3018 | ||
4c4b4cd2 PH |
3019 | case STRUCTOP_STRUCT: |
3020 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3021 | nargs = 1; | |
3022 | break; | |
3023 | ||
4c4b4cd2 | 3024 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3025 | *pos += 1; |
3026 | nargs = 3; | |
3027 | break; | |
3028 | ||
52ce6436 | 3029 | case OP_STRING: |
14f9c5c9 | 3030 | break; |
4c4b4cd2 PH |
3031 | |
3032 | default: | |
323e0a4a | 3033 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3034 | } |
3035 | ||
76a01679 | 3036 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
3037 | for (i = 0; i < nargs; i += 1) |
3038 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3039 | argvec[i] = NULL; | |
3040 | exp = *expp; | |
3041 | ||
3042 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3043 | switch (op) |
3044 | { | |
3045 | default: | |
3046 | break; | |
3047 | ||
14f9c5c9 | 3048 | case OP_VAR_VALUE: |
4c4b4cd2 | 3049 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
3050 | { |
3051 | struct ada_symbol_info *candidates; | |
3052 | int n_candidates; | |
3053 | ||
3054 | n_candidates = | |
3055 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3056 | (exp->elts[pc + 2].symbol), | |
3057 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
3058 | &candidates); | |
3059 | ||
3060 | if (n_candidates > 1) | |
3061 | { | |
3062 | /* Types tend to get re-introduced locally, so if there | |
3063 | are any local symbols that are not types, first filter | |
3064 | out all types. */ | |
3065 | int j; | |
3066 | for (j = 0; j < n_candidates; j += 1) | |
3067 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
3068 | { | |
3069 | case LOC_REGISTER: | |
3070 | case LOC_ARG: | |
3071 | case LOC_REF_ARG: | |
76a01679 JB |
3072 | case LOC_REGPARM_ADDR: |
3073 | case LOC_LOCAL: | |
76a01679 | 3074 | case LOC_COMPUTED: |
76a01679 JB |
3075 | goto FoundNonType; |
3076 | default: | |
3077 | break; | |
3078 | } | |
3079 | FoundNonType: | |
3080 | if (j < n_candidates) | |
3081 | { | |
3082 | j = 0; | |
3083 | while (j < n_candidates) | |
3084 | { | |
3085 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
3086 | { | |
3087 | candidates[j] = candidates[n_candidates - 1]; | |
3088 | n_candidates -= 1; | |
3089 | } | |
3090 | else | |
3091 | j += 1; | |
3092 | } | |
3093 | } | |
3094 | } | |
3095 | ||
3096 | if (n_candidates == 0) | |
323e0a4a | 3097 | error (_("No definition found for %s"), |
76a01679 JB |
3098 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3099 | else if (n_candidates == 1) | |
3100 | i = 0; | |
3101 | else if (deprocedure_p | |
3102 | && !is_nonfunction (candidates, n_candidates)) | |
3103 | { | |
06d5cf63 JB |
3104 | i = ada_resolve_function |
3105 | (candidates, n_candidates, NULL, 0, | |
3106 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3107 | context_type); | |
76a01679 | 3108 | if (i < 0) |
323e0a4a | 3109 | error (_("Could not find a match for %s"), |
76a01679 JB |
3110 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3111 | } | |
3112 | else | |
3113 | { | |
323e0a4a | 3114 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3115 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3116 | user_select_syms (candidates, n_candidates, 1); | |
3117 | i = 0; | |
3118 | } | |
3119 | ||
3120 | exp->elts[pc + 1].block = candidates[i].block; | |
3121 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
3122 | if (innermost_block == NULL |
3123 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3124 | innermost_block = candidates[i].block; |
3125 | } | |
3126 | ||
3127 | if (deprocedure_p | |
3128 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3129 | == TYPE_CODE_FUNC)) | |
3130 | { | |
3131 | replace_operator_with_call (expp, pc, 0, 0, | |
3132 | exp->elts[pc + 2].symbol, | |
3133 | exp->elts[pc + 1].block); | |
3134 | exp = *expp; | |
3135 | } | |
14f9c5c9 AS |
3136 | break; |
3137 | ||
3138 | case OP_FUNCALL: | |
3139 | { | |
4c4b4cd2 | 3140 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3141 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
3142 | { |
3143 | struct ada_symbol_info *candidates; | |
3144 | int n_candidates; | |
3145 | ||
3146 | n_candidates = | |
76a01679 JB |
3147 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3148 | (exp->elts[pc + 5].symbol), | |
3149 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
3150 | &candidates); | |
4c4b4cd2 PH |
3151 | if (n_candidates == 1) |
3152 | i = 0; | |
3153 | else | |
3154 | { | |
06d5cf63 JB |
3155 | i = ada_resolve_function |
3156 | (candidates, n_candidates, | |
3157 | argvec, nargs, | |
3158 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3159 | context_type); | |
4c4b4cd2 | 3160 | if (i < 0) |
323e0a4a | 3161 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3162 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3163 | } | |
3164 | ||
3165 | exp->elts[pc + 4].block = candidates[i].block; | |
3166 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
3167 | if (innermost_block == NULL |
3168 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3169 | innermost_block = candidates[i].block; |
3170 | } | |
14f9c5c9 AS |
3171 | } |
3172 | break; | |
3173 | case BINOP_ADD: | |
3174 | case BINOP_SUB: | |
3175 | case BINOP_MUL: | |
3176 | case BINOP_DIV: | |
3177 | case BINOP_REM: | |
3178 | case BINOP_MOD: | |
3179 | case BINOP_CONCAT: | |
3180 | case BINOP_BITWISE_AND: | |
3181 | case BINOP_BITWISE_IOR: | |
3182 | case BINOP_BITWISE_XOR: | |
3183 | case BINOP_EQUAL: | |
3184 | case BINOP_NOTEQUAL: | |
3185 | case BINOP_LESS: | |
3186 | case BINOP_GTR: | |
3187 | case BINOP_LEQ: | |
3188 | case BINOP_GEQ: | |
3189 | case BINOP_EXP: | |
3190 | case UNOP_NEG: | |
3191 | case UNOP_PLUS: | |
3192 | case UNOP_LOGICAL_NOT: | |
3193 | case UNOP_ABS: | |
3194 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3195 | { |
3196 | struct ada_symbol_info *candidates; | |
3197 | int n_candidates; | |
3198 | ||
3199 | n_candidates = | |
3200 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3201 | (struct block *) NULL, VAR_DOMAIN, | |
3202 | &candidates); | |
3203 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, | |
76a01679 | 3204 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3205 | if (i < 0) |
3206 | break; | |
3207 | ||
76a01679 JB |
3208 | replace_operator_with_call (expp, pc, nargs, 1, |
3209 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3210 | exp = *expp; |
3211 | } | |
14f9c5c9 | 3212 | break; |
4c4b4cd2 PH |
3213 | |
3214 | case OP_TYPE: | |
b3dbf008 | 3215 | case OP_REGISTER: |
4c4b4cd2 | 3216 | return NULL; |
14f9c5c9 AS |
3217 | } |
3218 | ||
3219 | *pos = pc; | |
3220 | return evaluate_subexp_type (exp, pos); | |
3221 | } | |
3222 | ||
3223 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3224 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3225 | a non-pointer. */ |
14f9c5c9 | 3226 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3227 | liberal. */ |
14f9c5c9 AS |
3228 | |
3229 | static int | |
4dc81987 | 3230 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3231 | { |
61ee279c PH |
3232 | ftype = ada_check_typedef (ftype); |
3233 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3234 | |
3235 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3236 | ftype = TYPE_TARGET_TYPE (ftype); | |
3237 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3238 | atype = TYPE_TARGET_TYPE (atype); | |
3239 | ||
d2e4a39e | 3240 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3241 | { |
3242 | default: | |
5b3d5b7d | 3243 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3244 | case TYPE_CODE_PTR: |
3245 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3246 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3247 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3248 | else |
1265e4aa JB |
3249 | return (may_deref |
3250 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3251 | case TYPE_CODE_INT: |
3252 | case TYPE_CODE_ENUM: | |
3253 | case TYPE_CODE_RANGE: | |
3254 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3255 | { |
3256 | case TYPE_CODE_INT: | |
3257 | case TYPE_CODE_ENUM: | |
3258 | case TYPE_CODE_RANGE: | |
3259 | return 1; | |
3260 | default: | |
3261 | return 0; | |
3262 | } | |
14f9c5c9 AS |
3263 | |
3264 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3265 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3266 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3267 | |
3268 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3269 | if (ada_is_array_descriptor_type (ftype)) |
3270 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3271 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3272 | else |
4c4b4cd2 PH |
3273 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3274 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3275 | |
3276 | case TYPE_CODE_UNION: | |
3277 | case TYPE_CODE_FLT: | |
3278 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3279 | } | |
3280 | } | |
3281 | ||
3282 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3283 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3284 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3285 | argument function. */ |
14f9c5c9 AS |
3286 | |
3287 | static int | |
d2e4a39e | 3288 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3289 | { |
3290 | int i; | |
d2e4a39e | 3291 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3292 | |
1265e4aa JB |
3293 | if (SYMBOL_CLASS (func) == LOC_CONST |
3294 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3295 | return (n_actuals == 0); |
3296 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3297 | return 0; | |
3298 | ||
3299 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3300 | return 0; | |
3301 | ||
3302 | for (i = 0; i < n_actuals; i += 1) | |
3303 | { | |
4c4b4cd2 | 3304 | if (actuals[i] == NULL) |
76a01679 JB |
3305 | return 0; |
3306 | else | |
3307 | { | |
5b4ee69b MS |
3308 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3309 | i)); | |
df407dfe | 3310 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3311 | |
76a01679 JB |
3312 | if (!ada_type_match (ftype, atype, 1)) |
3313 | return 0; | |
3314 | } | |
14f9c5c9 AS |
3315 | } |
3316 | return 1; | |
3317 | } | |
3318 | ||
3319 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3320 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3321 | FUNC_TYPE is not a valid function type with a non-null return type | |
3322 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3323 | ||
3324 | static int | |
d2e4a39e | 3325 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3326 | { |
d2e4a39e | 3327 | struct type *return_type; |
14f9c5c9 AS |
3328 | |
3329 | if (func_type == NULL) | |
3330 | return 1; | |
3331 | ||
4c4b4cd2 | 3332 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3333 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3334 | else |
18af8284 | 3335 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3336 | if (return_type == NULL) |
3337 | return 1; | |
3338 | ||
18af8284 | 3339 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3340 | |
3341 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3342 | return context_type == NULL || return_type == context_type; | |
3343 | else if (context_type == NULL) | |
3344 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3345 | else | |
3346 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3347 | } | |
3348 | ||
3349 | ||
4c4b4cd2 | 3350 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3351 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3352 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3353 | that returns that type, then eliminate matches that don't. If | |
3354 | CONTEXT_TYPE is void and there is at least one match that does not | |
3355 | return void, eliminate all matches that do. | |
3356 | ||
14f9c5c9 AS |
3357 | Asks the user if there is more than one match remaining. Returns -1 |
3358 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3359 | solely for messages. May re-arrange and modify SYMS in |
3360 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3361 | |
4c4b4cd2 PH |
3362 | static int |
3363 | ada_resolve_function (struct ada_symbol_info syms[], | |
3364 | int nsyms, struct value **args, int nargs, | |
3365 | const char *name, struct type *context_type) | |
14f9c5c9 | 3366 | { |
30b15541 | 3367 | int fallback; |
14f9c5c9 | 3368 | int k; |
4c4b4cd2 | 3369 | int m; /* Number of hits */ |
14f9c5c9 | 3370 | |
d2e4a39e | 3371 | m = 0; |
30b15541 UW |
3372 | /* In the first pass of the loop, we only accept functions matching |
3373 | context_type. If none are found, we add a second pass of the loop | |
3374 | where every function is accepted. */ | |
3375 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3376 | { |
3377 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3378 | { |
61ee279c | 3379 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3380 | |
3381 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3382 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3383 | { |
3384 | syms[m] = syms[k]; | |
3385 | m += 1; | |
3386 | } | |
3387 | } | |
14f9c5c9 AS |
3388 | } |
3389 | ||
3390 | if (m == 0) | |
3391 | return -1; | |
3392 | else if (m > 1) | |
3393 | { | |
323e0a4a | 3394 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3395 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3396 | return 0; |
3397 | } | |
3398 | return 0; | |
3399 | } | |
3400 | ||
4c4b4cd2 PH |
3401 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3402 | in a listing of choices during disambiguation (see sort_choices, below). | |
3403 | The idea is that overloadings of a subprogram name from the | |
3404 | same package should sort in their source order. We settle for ordering | |
3405 | such symbols by their trailing number (__N or $N). */ | |
3406 | ||
14f9c5c9 | 3407 | static int |
4c4b4cd2 | 3408 | encoded_ordered_before (char *N0, char *N1) |
14f9c5c9 AS |
3409 | { |
3410 | if (N1 == NULL) | |
3411 | return 0; | |
3412 | else if (N0 == NULL) | |
3413 | return 1; | |
3414 | else | |
3415 | { | |
3416 | int k0, k1; | |
5b4ee69b | 3417 | |
d2e4a39e | 3418 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3419 | ; |
d2e4a39e | 3420 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3421 | ; |
d2e4a39e | 3422 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3423 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3424 | { | |
3425 | int n0, n1; | |
5b4ee69b | 3426 | |
4c4b4cd2 PH |
3427 | n0 = k0; |
3428 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3429 | n0 -= 1; | |
3430 | n1 = k1; | |
3431 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3432 | n1 -= 1; | |
3433 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3434 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3435 | } | |
14f9c5c9 AS |
3436 | return (strcmp (N0, N1) < 0); |
3437 | } | |
3438 | } | |
d2e4a39e | 3439 | |
4c4b4cd2 PH |
3440 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3441 | encoded names. */ | |
3442 | ||
d2e4a39e | 3443 | static void |
4c4b4cd2 | 3444 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3445 | { |
4c4b4cd2 | 3446 | int i; |
5b4ee69b | 3447 | |
d2e4a39e | 3448 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3449 | { |
4c4b4cd2 | 3450 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3451 | int j; |
3452 | ||
d2e4a39e | 3453 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3454 | { |
3455 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3456 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3457 | break; | |
3458 | syms[j + 1] = syms[j]; | |
3459 | } | |
d2e4a39e | 3460 | syms[j + 1] = sym; |
14f9c5c9 AS |
3461 | } |
3462 | } | |
3463 | ||
4c4b4cd2 PH |
3464 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3465 | by asking the user (if necessary), returning the number selected, | |
3466 | and setting the first elements of SYMS items. Error if no symbols | |
3467 | selected. */ | |
14f9c5c9 AS |
3468 | |
3469 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3470 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3471 | |
3472 | int | |
4c4b4cd2 | 3473 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3474 | { |
3475 | int i; | |
d2e4a39e | 3476 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3477 | int n_chosen; |
3478 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3479 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3480 | |
3481 | if (max_results < 1) | |
323e0a4a | 3482 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3483 | if (nsyms <= 1) |
3484 | return nsyms; | |
3485 | ||
717d2f5a JB |
3486 | if (select_mode == multiple_symbols_cancel) |
3487 | error (_("\ | |
3488 | canceled because the command is ambiguous\n\ | |
3489 | See set/show multiple-symbol.")); | |
3490 | ||
3491 | /* If select_mode is "all", then return all possible symbols. | |
3492 | Only do that if more than one symbol can be selected, of course. | |
3493 | Otherwise, display the menu as usual. */ | |
3494 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3495 | return nsyms; | |
3496 | ||
323e0a4a | 3497 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3498 | if (max_results > 1) |
323e0a4a | 3499 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3500 | |
4c4b4cd2 | 3501 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3502 | |
3503 | for (i = 0; i < nsyms; i += 1) | |
3504 | { | |
4c4b4cd2 PH |
3505 | if (syms[i].sym == NULL) |
3506 | continue; | |
3507 | ||
3508 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3509 | { | |
76a01679 JB |
3510 | struct symtab_and_line sal = |
3511 | find_function_start_sal (syms[i].sym, 1); | |
5b4ee69b | 3512 | |
323e0a4a AC |
3513 | if (sal.symtab == NULL) |
3514 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3515 | i + first_choice, | |
3516 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3517 | sal.line); | |
3518 | else | |
3519 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3520 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3521 | sal.symtab->filename, sal.line); | |
4c4b4cd2 PH |
3522 | continue; |
3523 | } | |
d2e4a39e | 3524 | else |
4c4b4cd2 PH |
3525 | { |
3526 | int is_enumeral = | |
3527 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3528 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3529 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
6f38eac8 | 3530 | struct symtab *symtab = syms[i].sym->symtab; |
4c4b4cd2 PH |
3531 | |
3532 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3533 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3534 | i + first_choice, |
3535 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3536 | symtab->filename, SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3537 | else if (is_enumeral |
3538 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3539 | { |
a3f17187 | 3540 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 JB |
3541 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
3542 | gdb_stdout, -1, 0); | |
323e0a4a | 3543 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3544 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3545 | } | |
3546 | else if (symtab != NULL) | |
3547 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3548 | ? _("[%d] %s in %s (enumeral)\n") |
3549 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3550 | i + first_choice, |
3551 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3552 | symtab->filename); | |
3553 | else | |
3554 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3555 | ? _("[%d] %s (enumeral)\n") |
3556 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3557 | i + first_choice, |
3558 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3559 | } | |
14f9c5c9 | 3560 | } |
d2e4a39e | 3561 | |
14f9c5c9 | 3562 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3563 | "overload-choice"); |
14f9c5c9 AS |
3564 | |
3565 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3566 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3567 | |
3568 | return n_chosen; | |
3569 | } | |
3570 | ||
3571 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3572 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3573 | order in CHOICES[0 .. N-1], and return N. |
3574 | ||
3575 | The user types choices as a sequence of numbers on one line | |
3576 | separated by blanks, encoding them as follows: | |
3577 | ||
4c4b4cd2 | 3578 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3579 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3580 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3581 | ||
4c4b4cd2 | 3582 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3583 | |
3584 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3585 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3586 | |
3587 | int | |
d2e4a39e | 3588 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3589 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3590 | { |
d2e4a39e | 3591 | char *args; |
0bcd0149 | 3592 | char *prompt; |
14f9c5c9 AS |
3593 | int n_chosen; |
3594 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3595 | |
14f9c5c9 AS |
3596 | prompt = getenv ("PS2"); |
3597 | if (prompt == NULL) | |
0bcd0149 | 3598 | prompt = "> "; |
14f9c5c9 | 3599 | |
0bcd0149 | 3600 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3601 | |
14f9c5c9 | 3602 | if (args == NULL) |
323e0a4a | 3603 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3604 | |
3605 | n_chosen = 0; | |
76a01679 | 3606 | |
4c4b4cd2 PH |
3607 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3608 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3609 | while (1) |
3610 | { | |
d2e4a39e | 3611 | char *args2; |
14f9c5c9 AS |
3612 | int choice, j; |
3613 | ||
3614 | while (isspace (*args)) | |
4c4b4cd2 | 3615 | args += 1; |
14f9c5c9 | 3616 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3617 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3618 | else if (*args == '\0') |
4c4b4cd2 | 3619 | break; |
14f9c5c9 AS |
3620 | |
3621 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3622 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3623 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3624 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3625 | args = args2; |
3626 | ||
d2e4a39e | 3627 | if (choice == 0) |
323e0a4a | 3628 | error (_("cancelled")); |
14f9c5c9 AS |
3629 | |
3630 | if (choice < first_choice) | |
4c4b4cd2 PH |
3631 | { |
3632 | n_chosen = n_choices; | |
3633 | for (j = 0; j < n_choices; j += 1) | |
3634 | choices[j] = j; | |
3635 | break; | |
3636 | } | |
14f9c5c9 AS |
3637 | choice -= first_choice; |
3638 | ||
d2e4a39e | 3639 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3640 | { |
3641 | } | |
14f9c5c9 AS |
3642 | |
3643 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3644 | { |
3645 | int k; | |
5b4ee69b | 3646 | |
4c4b4cd2 PH |
3647 | for (k = n_chosen - 1; k > j; k -= 1) |
3648 | choices[k + 1] = choices[k]; | |
3649 | choices[j + 1] = choice; | |
3650 | n_chosen += 1; | |
3651 | } | |
14f9c5c9 AS |
3652 | } |
3653 | ||
3654 | if (n_chosen > max_results) | |
323e0a4a | 3655 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3656 | |
14f9c5c9 AS |
3657 | return n_chosen; |
3658 | } | |
3659 | ||
4c4b4cd2 PH |
3660 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3661 | on the function identified by SYM and BLOCK, and taking NARGS | |
3662 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3663 | |
3664 | static void | |
d2e4a39e | 3665 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 PH |
3666 | int oplen, struct symbol *sym, |
3667 | struct block *block) | |
14f9c5c9 AS |
3668 | { |
3669 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3670 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3671 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 3672 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 3673 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3674 | struct expression *exp = *expp; |
14f9c5c9 AS |
3675 | |
3676 | newexp->nelts = exp->nelts + 7 - oplen; | |
3677 | newexp->language_defn = exp->language_defn; | |
3489610d | 3678 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 3679 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 3680 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3681 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3682 | |
3683 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3684 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3685 | ||
3686 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3687 | newexp->elts[pc + 4].block = block; | |
3688 | newexp->elts[pc + 5].symbol = sym; | |
3689 | ||
3690 | *expp = newexp; | |
aacb1f0a | 3691 | xfree (exp); |
d2e4a39e | 3692 | } |
14f9c5c9 AS |
3693 | |
3694 | /* Type-class predicates */ | |
3695 | ||
4c4b4cd2 PH |
3696 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3697 | or FLOAT). */ | |
14f9c5c9 AS |
3698 | |
3699 | static int | |
d2e4a39e | 3700 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3701 | { |
3702 | if (type == NULL) | |
3703 | return 0; | |
d2e4a39e AS |
3704 | else |
3705 | { | |
3706 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3707 | { |
3708 | case TYPE_CODE_INT: | |
3709 | case TYPE_CODE_FLT: | |
3710 | return 1; | |
3711 | case TYPE_CODE_RANGE: | |
3712 | return (type == TYPE_TARGET_TYPE (type) | |
3713 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3714 | default: | |
3715 | return 0; | |
3716 | } | |
d2e4a39e | 3717 | } |
14f9c5c9 AS |
3718 | } |
3719 | ||
4c4b4cd2 | 3720 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3721 | |
3722 | static int | |
d2e4a39e | 3723 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3724 | { |
3725 | if (type == NULL) | |
3726 | return 0; | |
d2e4a39e AS |
3727 | else |
3728 | { | |
3729 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3730 | { |
3731 | case TYPE_CODE_INT: | |
3732 | return 1; | |
3733 | case TYPE_CODE_RANGE: | |
3734 | return (type == TYPE_TARGET_TYPE (type) | |
3735 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3736 | default: | |
3737 | return 0; | |
3738 | } | |
d2e4a39e | 3739 | } |
14f9c5c9 AS |
3740 | } |
3741 | ||
4c4b4cd2 | 3742 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3743 | |
3744 | static int | |
d2e4a39e | 3745 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3746 | { |
3747 | if (type == NULL) | |
3748 | return 0; | |
d2e4a39e AS |
3749 | else |
3750 | { | |
3751 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3752 | { |
3753 | case TYPE_CODE_INT: | |
3754 | case TYPE_CODE_RANGE: | |
3755 | case TYPE_CODE_ENUM: | |
3756 | case TYPE_CODE_FLT: | |
3757 | return 1; | |
3758 | default: | |
3759 | return 0; | |
3760 | } | |
d2e4a39e | 3761 | } |
14f9c5c9 AS |
3762 | } |
3763 | ||
4c4b4cd2 | 3764 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3765 | |
3766 | static int | |
d2e4a39e | 3767 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3768 | { |
3769 | if (type == NULL) | |
3770 | return 0; | |
d2e4a39e AS |
3771 | else |
3772 | { | |
3773 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3774 | { |
3775 | case TYPE_CODE_INT: | |
3776 | case TYPE_CODE_RANGE: | |
3777 | case TYPE_CODE_ENUM: | |
872f0337 | 3778 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
3779 | return 1; |
3780 | default: | |
3781 | return 0; | |
3782 | } | |
d2e4a39e | 3783 | } |
14f9c5c9 AS |
3784 | } |
3785 | ||
4c4b4cd2 PH |
3786 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3787 | a user-defined function. Errs on the side of pre-defined operators | |
3788 | (i.e., result 0). */ | |
14f9c5c9 AS |
3789 | |
3790 | static int | |
d2e4a39e | 3791 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3792 | { |
76a01679 | 3793 | struct type *type0 = |
df407dfe | 3794 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3795 | struct type *type1 = |
df407dfe | 3796 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3797 | |
4c4b4cd2 PH |
3798 | if (type0 == NULL) |
3799 | return 0; | |
3800 | ||
14f9c5c9 AS |
3801 | switch (op) |
3802 | { | |
3803 | default: | |
3804 | return 0; | |
3805 | ||
3806 | case BINOP_ADD: | |
3807 | case BINOP_SUB: | |
3808 | case BINOP_MUL: | |
3809 | case BINOP_DIV: | |
d2e4a39e | 3810 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3811 | |
3812 | case BINOP_REM: | |
3813 | case BINOP_MOD: | |
3814 | case BINOP_BITWISE_AND: | |
3815 | case BINOP_BITWISE_IOR: | |
3816 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3817 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3818 | |
3819 | case BINOP_EQUAL: | |
3820 | case BINOP_NOTEQUAL: | |
3821 | case BINOP_LESS: | |
3822 | case BINOP_GTR: | |
3823 | case BINOP_LEQ: | |
3824 | case BINOP_GEQ: | |
d2e4a39e | 3825 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3826 | |
3827 | case BINOP_CONCAT: | |
ee90b9ab | 3828 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3829 | |
3830 | case BINOP_EXP: | |
d2e4a39e | 3831 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3832 | |
3833 | case UNOP_NEG: | |
3834 | case UNOP_PLUS: | |
3835 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3836 | case UNOP_ABS: |
3837 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3838 | |
3839 | } | |
3840 | } | |
3841 | \f | |
4c4b4cd2 | 3842 | /* Renaming */ |
14f9c5c9 | 3843 | |
aeb5907d JB |
3844 | /* NOTES: |
3845 | ||
3846 | 1. In the following, we assume that a renaming type's name may | |
3847 | have an ___XD suffix. It would be nice if this went away at some | |
3848 | point. | |
3849 | 2. We handle both the (old) purely type-based representation of | |
3850 | renamings and the (new) variable-based encoding. At some point, | |
3851 | it is devoutly to be hoped that the former goes away | |
3852 | (FIXME: hilfinger-2007-07-09). | |
3853 | 3. Subprogram renamings are not implemented, although the XRS | |
3854 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3855 | ||
3856 | /* If SYM encodes a renaming, | |
3857 | ||
3858 | <renaming> renames <renamed entity>, | |
3859 | ||
3860 | sets *LEN to the length of the renamed entity's name, | |
3861 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3862 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 3863 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
3864 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
3865 | are undefined). Otherwise, returns a value indicating the category | |
3866 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3867 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3868 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3869 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3870 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3871 | may be NULL, in which case they are not assigned. | |
3872 | ||
3873 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3874 | ||
3875 | enum ada_renaming_category | |
3876 | ada_parse_renaming (struct symbol *sym, | |
3877 | const char **renamed_entity, int *len, | |
3878 | const char **renaming_expr) | |
3879 | { | |
3880 | enum ada_renaming_category kind; | |
3881 | const char *info; | |
3882 | const char *suffix; | |
3883 | ||
3884 | if (sym == NULL) | |
3885 | return ADA_NOT_RENAMING; | |
3886 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3887 | { |
aeb5907d JB |
3888 | default: |
3889 | return ADA_NOT_RENAMING; | |
3890 | case LOC_TYPEDEF: | |
3891 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3892 | renamed_entity, len, renaming_expr); | |
3893 | case LOC_LOCAL: | |
3894 | case LOC_STATIC: | |
3895 | case LOC_COMPUTED: | |
3896 | case LOC_OPTIMIZED_OUT: | |
3897 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3898 | if (info == NULL) | |
3899 | return ADA_NOT_RENAMING; | |
3900 | switch (info[5]) | |
3901 | { | |
3902 | case '_': | |
3903 | kind = ADA_OBJECT_RENAMING; | |
3904 | info += 6; | |
3905 | break; | |
3906 | case 'E': | |
3907 | kind = ADA_EXCEPTION_RENAMING; | |
3908 | info += 7; | |
3909 | break; | |
3910 | case 'P': | |
3911 | kind = ADA_PACKAGE_RENAMING; | |
3912 | info += 7; | |
3913 | break; | |
3914 | case 'S': | |
3915 | kind = ADA_SUBPROGRAM_RENAMING; | |
3916 | info += 7; | |
3917 | break; | |
3918 | default: | |
3919 | return ADA_NOT_RENAMING; | |
3920 | } | |
14f9c5c9 | 3921 | } |
4c4b4cd2 | 3922 | |
aeb5907d JB |
3923 | if (renamed_entity != NULL) |
3924 | *renamed_entity = info; | |
3925 | suffix = strstr (info, "___XE"); | |
3926 | if (suffix == NULL || suffix == info) | |
3927 | return ADA_NOT_RENAMING; | |
3928 | if (len != NULL) | |
3929 | *len = strlen (info) - strlen (suffix); | |
3930 | suffix += 5; | |
3931 | if (renaming_expr != NULL) | |
3932 | *renaming_expr = suffix; | |
3933 | return kind; | |
3934 | } | |
3935 | ||
3936 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3937 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3938 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3939 | ADA_NOT_RENAMING otherwise. */ | |
3940 | static enum ada_renaming_category | |
3941 | parse_old_style_renaming (struct type *type, | |
3942 | const char **renamed_entity, int *len, | |
3943 | const char **renaming_expr) | |
3944 | { | |
3945 | enum ada_renaming_category kind; | |
3946 | const char *name; | |
3947 | const char *info; | |
3948 | const char *suffix; | |
14f9c5c9 | 3949 | |
aeb5907d JB |
3950 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
3951 | || TYPE_NFIELDS (type) != 1) | |
3952 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 3953 | |
aeb5907d JB |
3954 | name = type_name_no_tag (type); |
3955 | if (name == NULL) | |
3956 | return ADA_NOT_RENAMING; | |
3957 | ||
3958 | name = strstr (name, "___XR"); | |
3959 | if (name == NULL) | |
3960 | return ADA_NOT_RENAMING; | |
3961 | switch (name[5]) | |
3962 | { | |
3963 | case '\0': | |
3964 | case '_': | |
3965 | kind = ADA_OBJECT_RENAMING; | |
3966 | break; | |
3967 | case 'E': | |
3968 | kind = ADA_EXCEPTION_RENAMING; | |
3969 | break; | |
3970 | case 'P': | |
3971 | kind = ADA_PACKAGE_RENAMING; | |
3972 | break; | |
3973 | case 'S': | |
3974 | kind = ADA_SUBPROGRAM_RENAMING; | |
3975 | break; | |
3976 | default: | |
3977 | return ADA_NOT_RENAMING; | |
3978 | } | |
14f9c5c9 | 3979 | |
aeb5907d JB |
3980 | info = TYPE_FIELD_NAME (type, 0); |
3981 | if (info == NULL) | |
3982 | return ADA_NOT_RENAMING; | |
3983 | if (renamed_entity != NULL) | |
3984 | *renamed_entity = info; | |
3985 | suffix = strstr (info, "___XE"); | |
3986 | if (renaming_expr != NULL) | |
3987 | *renaming_expr = suffix + 5; | |
3988 | if (suffix == NULL || suffix == info) | |
3989 | return ADA_NOT_RENAMING; | |
3990 | if (len != NULL) | |
3991 | *len = suffix - info; | |
3992 | return kind; | |
3993 | } | |
52ce6436 | 3994 | |
14f9c5c9 | 3995 | \f |
d2e4a39e | 3996 | |
4c4b4cd2 | 3997 | /* Evaluation: Function Calls */ |
14f9c5c9 | 3998 | |
4c4b4cd2 | 3999 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4000 | lvalues, and otherwise has the side-effect of allocating memory |
4001 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4002 | |
d2e4a39e | 4003 | static struct value * |
40bc484c | 4004 | ensure_lval (struct value *val) |
14f9c5c9 | 4005 | { |
40bc484c JB |
4006 | if (VALUE_LVAL (val) == not_lval |
4007 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4008 | { |
df407dfe | 4009 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4010 | const CORE_ADDR addr = |
4011 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4012 | |
40bc484c | 4013 | set_value_address (val, addr); |
a84a8a0d | 4014 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 4015 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4016 | } |
14f9c5c9 AS |
4017 | |
4018 | return val; | |
4019 | } | |
4020 | ||
4021 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4022 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4023 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4024 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4025 | |
a93c0eb6 | 4026 | struct value * |
40bc484c | 4027 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4028 | { |
df407dfe | 4029 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4030 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4031 | struct type *formal_target = |
4032 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4033 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4034 | struct type *actual_target = |
4035 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4036 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4037 | |
4c4b4cd2 | 4038 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4039 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4040 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4041 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4042 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4043 | { |
a84a8a0d | 4044 | struct value *result; |
5b4ee69b | 4045 | |
14f9c5c9 | 4046 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4047 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4048 | result = desc_data (actual); |
14f9c5c9 | 4049 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4050 | { |
4051 | if (VALUE_LVAL (actual) != lval_memory) | |
4052 | { | |
4053 | struct value *val; | |
5b4ee69b | 4054 | |
df407dfe | 4055 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4056 | val = allocate_value (actual_type); |
990a07ab | 4057 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4058 | (char *) value_contents (actual), |
4c4b4cd2 | 4059 | TYPE_LENGTH (actual_type)); |
40bc484c | 4060 | actual = ensure_lval (val); |
4c4b4cd2 | 4061 | } |
a84a8a0d | 4062 | result = value_addr (actual); |
4c4b4cd2 | 4063 | } |
a84a8a0d JB |
4064 | else |
4065 | return actual; | |
4066 | return value_cast_pointers (formal_type, result); | |
14f9c5c9 AS |
4067 | } |
4068 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4069 | return ada_value_ind (actual); | |
4070 | ||
4071 | return actual; | |
4072 | } | |
4073 | ||
438c98a1 JB |
4074 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4075 | type TYPE. This is usually an inefficient no-op except on some targets | |
4076 | (such as AVR) where the representation of a pointer and an address | |
4077 | differs. */ | |
4078 | ||
4079 | static CORE_ADDR | |
4080 | value_pointer (struct value *value, struct type *type) | |
4081 | { | |
4082 | struct gdbarch *gdbarch = get_type_arch (type); | |
4083 | unsigned len = TYPE_LENGTH (type); | |
4084 | gdb_byte *buf = alloca (len); | |
4085 | CORE_ADDR addr; | |
4086 | ||
4087 | addr = value_address (value); | |
4088 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4089 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4090 | return addr; | |
4091 | } | |
4092 | ||
14f9c5c9 | 4093 | |
4c4b4cd2 PH |
4094 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4095 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4096 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4097 | to-descriptor type rather than a descriptor type), a struct value * |
4098 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4099 | |
d2e4a39e | 4100 | static struct value * |
40bc484c | 4101 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4102 | { |
d2e4a39e AS |
4103 | struct type *bounds_type = desc_bounds_type (type); |
4104 | struct type *desc_type = desc_base_type (type); | |
4105 | struct value *descriptor = allocate_value (desc_type); | |
4106 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4107 | int i; |
d2e4a39e | 4108 | |
0963b4bd MS |
4109 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4110 | i > 0; i -= 1) | |
14f9c5c9 | 4111 | { |
19f220c3 JK |
4112 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4113 | ada_array_bound (arr, i, 0), | |
4114 | desc_bound_bitpos (bounds_type, i, 0), | |
4115 | desc_bound_bitsize (bounds_type, i, 0)); | |
4116 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4117 | ada_array_bound (arr, i, 1), | |
4118 | desc_bound_bitpos (bounds_type, i, 1), | |
4119 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4120 | } |
d2e4a39e | 4121 | |
40bc484c | 4122 | bounds = ensure_lval (bounds); |
d2e4a39e | 4123 | |
19f220c3 JK |
4124 | modify_field (value_type (descriptor), |
4125 | value_contents_writeable (descriptor), | |
4126 | value_pointer (ensure_lval (arr), | |
4127 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4128 | fat_pntr_data_bitpos (desc_type), | |
4129 | fat_pntr_data_bitsize (desc_type)); | |
4130 | ||
4131 | modify_field (value_type (descriptor), | |
4132 | value_contents_writeable (descriptor), | |
4133 | value_pointer (bounds, | |
4134 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4135 | fat_pntr_bounds_bitpos (desc_type), | |
4136 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4137 | |
40bc484c | 4138 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4139 | |
4140 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4141 | return value_addr (descriptor); | |
4142 | else | |
4143 | return descriptor; | |
4144 | } | |
14f9c5c9 | 4145 | \f |
963a6417 | 4146 | /* Dummy definitions for an experimental caching module that is not |
0963b4bd | 4147 | * used in the public sources. */ |
96d887e8 | 4148 | |
96d887e8 PH |
4149 | static int |
4150 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 4151 | struct symbol **sym, struct block **block) |
96d887e8 PH |
4152 | { |
4153 | return 0; | |
4154 | } | |
4155 | ||
4156 | static void | |
4157 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
2570f2b7 | 4158 | struct block *block) |
96d887e8 PH |
4159 | { |
4160 | } | |
4c4b4cd2 PH |
4161 | \f |
4162 | /* Symbol Lookup */ | |
4163 | ||
c0431670 JB |
4164 | /* Return nonzero if wild matching should be used when searching for |
4165 | all symbols matching LOOKUP_NAME. | |
4166 | ||
4167 | LOOKUP_NAME is expected to be a symbol name after transformation | |
4168 | for Ada lookups (see ada_name_for_lookup). */ | |
4169 | ||
4170 | static int | |
4171 | should_use_wild_match (const char *lookup_name) | |
4172 | { | |
4173 | return (strstr (lookup_name, "__") == NULL); | |
4174 | } | |
4175 | ||
4c4b4cd2 PH |
4176 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4177 | given DOMAIN, visible from lexical block BLOCK. */ | |
4178 | ||
4179 | static struct symbol * | |
4180 | standard_lookup (const char *name, const struct block *block, | |
4181 | domain_enum domain) | |
4182 | { | |
4183 | struct symbol *sym; | |
4c4b4cd2 | 4184 | |
2570f2b7 | 4185 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 4186 | return sym; |
2570f2b7 UW |
4187 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
4188 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
4189 | return sym; |
4190 | } | |
4191 | ||
4192 | ||
4193 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4194 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4195 | since they contend in overloading in the same way. */ | |
4196 | static int | |
4197 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4198 | { | |
4199 | int i; | |
4200 | ||
4201 | for (i = 0; i < n; i += 1) | |
4202 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4203 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4204 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4205 | return 1; |
4206 | ||
4207 | return 0; | |
4208 | } | |
4209 | ||
4210 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4211 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4212 | |
4213 | static int | |
d2e4a39e | 4214 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4215 | { |
d2e4a39e | 4216 | if (type0 == type1) |
14f9c5c9 | 4217 | return 1; |
d2e4a39e | 4218 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4219 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4220 | return 0; | |
d2e4a39e | 4221 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4222 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4223 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4224 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4225 | return 1; |
d2e4a39e | 4226 | |
14f9c5c9 AS |
4227 | return 0; |
4228 | } | |
4229 | ||
4230 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4231 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4232 | |
4233 | static int | |
d2e4a39e | 4234 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4235 | { |
4236 | if (sym0 == sym1) | |
4237 | return 1; | |
176620f1 | 4238 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4239 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4240 | return 0; | |
4241 | ||
d2e4a39e | 4242 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4243 | { |
4244 | case LOC_UNDEF: | |
4245 | return 1; | |
4246 | case LOC_TYPEDEF: | |
4247 | { | |
4c4b4cd2 PH |
4248 | struct type *type0 = SYMBOL_TYPE (sym0); |
4249 | struct type *type1 = SYMBOL_TYPE (sym1); | |
4250 | char *name0 = SYMBOL_LINKAGE_NAME (sym0); | |
4251 | char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4252 | int len0 = strlen (name0); | |
5b4ee69b | 4253 | |
4c4b4cd2 PH |
4254 | return |
4255 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4256 | && (equiv_types (type0, type1) | |
4257 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4258 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4259 | } |
4260 | case LOC_CONST: | |
4261 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4262 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4263 | default: |
4264 | return 0; | |
14f9c5c9 AS |
4265 | } |
4266 | } | |
4267 | ||
4c4b4cd2 PH |
4268 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4269 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4270 | |
4271 | static void | |
76a01679 JB |
4272 | add_defn_to_vec (struct obstack *obstackp, |
4273 | struct symbol *sym, | |
2570f2b7 | 4274 | struct block *block) |
14f9c5c9 AS |
4275 | { |
4276 | int i; | |
4c4b4cd2 | 4277 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4278 | |
529cad9c PH |
4279 | /* Do not try to complete stub types, as the debugger is probably |
4280 | already scanning all symbols matching a certain name at the | |
4281 | time when this function is called. Trying to replace the stub | |
4282 | type by its associated full type will cause us to restart a scan | |
4283 | which may lead to an infinite recursion. Instead, the client | |
4284 | collecting the matching symbols will end up collecting several | |
4285 | matches, with at least one of them complete. It can then filter | |
4286 | out the stub ones if needed. */ | |
4287 | ||
4c4b4cd2 PH |
4288 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4289 | { | |
4290 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4291 | return; | |
4292 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4293 | { | |
4294 | prevDefns[i].sym = sym; | |
4295 | prevDefns[i].block = block; | |
4c4b4cd2 | 4296 | return; |
76a01679 | 4297 | } |
4c4b4cd2 PH |
4298 | } |
4299 | ||
4300 | { | |
4301 | struct ada_symbol_info info; | |
4302 | ||
4303 | info.sym = sym; | |
4304 | info.block = block; | |
4c4b4cd2 PH |
4305 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4306 | } | |
4307 | } | |
4308 | ||
4309 | /* Number of ada_symbol_info structures currently collected in | |
4310 | current vector in *OBSTACKP. */ | |
4311 | ||
76a01679 JB |
4312 | static int |
4313 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4314 | { |
4315 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4316 | } | |
4317 | ||
4318 | /* Vector of ada_symbol_info structures currently collected in current | |
4319 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4320 | its final address. */ | |
4321 | ||
76a01679 | 4322 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4323 | defns_collected (struct obstack *obstackp, int finish) |
4324 | { | |
4325 | if (finish) | |
4326 | return obstack_finish (obstackp); | |
4327 | else | |
4328 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4329 | } | |
4330 | ||
96d887e8 PH |
4331 | /* Return a minimal symbol matching NAME according to Ada decoding |
4332 | rules. Returns NULL if there is no such minimal symbol. Names | |
4333 | prefixed with "standard__" are handled specially: "standard__" is | |
4334 | first stripped off, and only static and global symbols are searched. */ | |
4c4b4cd2 | 4335 | |
96d887e8 PH |
4336 | struct minimal_symbol * |
4337 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4338 | { |
4c4b4cd2 | 4339 | struct objfile *objfile; |
96d887e8 | 4340 | struct minimal_symbol *msymbol; |
c0431670 | 4341 | const int wild_match = should_use_wild_match (name); |
4c4b4cd2 | 4342 | |
c0431670 JB |
4343 | /* Special case: If the user specifies a symbol name inside package |
4344 | Standard, do a non-wild matching of the symbol name without | |
4345 | the "standard__" prefix. This was primarily introduced in order | |
4346 | to allow the user to specifically access the standard exceptions | |
4347 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4348 | is ambiguous (due to the user defining its own Constraint_Error | |
4349 | entity inside its program). */ | |
96d887e8 | 4350 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
c0431670 | 4351 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4352 | |
96d887e8 PH |
4353 | ALL_MSYMBOLS (objfile, msymbol) |
4354 | { | |
40658b94 | 4355 | if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match) |
96d887e8 PH |
4356 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
4357 | return msymbol; | |
4358 | } | |
4c4b4cd2 | 4359 | |
96d887e8 PH |
4360 | return NULL; |
4361 | } | |
4c4b4cd2 | 4362 | |
96d887e8 PH |
4363 | /* For all subprograms that statically enclose the subprogram of the |
4364 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4365 | and their blocks to the list of data in OBSTACKP, as for | |
4366 | ada_add_block_symbols (q.v.). If WILD, treat as NAME with a | |
4367 | wildcard prefix. */ | |
4c4b4cd2 | 4368 | |
96d887e8 PH |
4369 | static void |
4370 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4371 | const char *name, domain_enum namespace, |
96d887e8 PH |
4372 | int wild_match) |
4373 | { | |
96d887e8 | 4374 | } |
14f9c5c9 | 4375 | |
96d887e8 PH |
4376 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4377 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4378 | |
96d887e8 PH |
4379 | static int |
4380 | is_nondebugging_type (struct type *type) | |
4381 | { | |
4382 | char *name = ada_type_name (type); | |
5b4ee69b | 4383 | |
96d887e8 PH |
4384 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4385 | } | |
4c4b4cd2 | 4386 | |
8f17729f JB |
4387 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4388 | that are deemed "identical" for practical purposes. | |
4389 | ||
4390 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4391 | types and that their number of enumerals is identical (in other | |
4392 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4393 | ||
4394 | static int | |
4395 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4396 | { | |
4397 | int i; | |
4398 | ||
4399 | /* The heuristic we use here is fairly conservative. We consider | |
4400 | that 2 enumerate types are identical if they have the same | |
4401 | number of enumerals and that all enumerals have the same | |
4402 | underlying value and name. */ | |
4403 | ||
4404 | /* All enums in the type should have an identical underlying value. */ | |
4405 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4406 | if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i)) | |
4407 | return 0; | |
4408 | ||
4409 | /* All enumerals should also have the same name (modulo any numerical | |
4410 | suffix). */ | |
4411 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4412 | { | |
4413 | char *name_1 = TYPE_FIELD_NAME (type1, i); | |
4414 | char *name_2 = TYPE_FIELD_NAME (type2, i); | |
4415 | int len_1 = strlen (name_1); | |
4416 | int len_2 = strlen (name_2); | |
4417 | ||
4418 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
4419 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
4420 | if (len_1 != len_2 | |
4421 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
4422 | TYPE_FIELD_NAME (type2, i), | |
4423 | len_1) != 0) | |
4424 | return 0; | |
4425 | } | |
4426 | ||
4427 | return 1; | |
4428 | } | |
4429 | ||
4430 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
4431 | that are deemed "identical" for practical purposes. Sometimes, | |
4432 | enumerals are not strictly identical, but their types are so similar | |
4433 | that they can be considered identical. | |
4434 | ||
4435 | For instance, consider the following code: | |
4436 | ||
4437 | type Color is (Black, Red, Green, Blue, White); | |
4438 | type RGB_Color is new Color range Red .. Blue; | |
4439 | ||
4440 | Type RGB_Color is a subrange of an implicit type which is a copy | |
4441 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
4442 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
4443 | As a result, when an expression references any of the enumeral | |
4444 | by name (Eg. "print green"), the expression is technically | |
4445 | ambiguous and the user should be asked to disambiguate. But | |
4446 | doing so would only hinder the user, since it wouldn't matter | |
4447 | what choice he makes, the outcome would always be the same. | |
4448 | So, for practical purposes, we consider them as the same. */ | |
4449 | ||
4450 | static int | |
4451 | symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms) | |
4452 | { | |
4453 | int i; | |
4454 | ||
4455 | /* Before performing a thorough comparison check of each type, | |
4456 | we perform a series of inexpensive checks. We expect that these | |
4457 | checks will quickly fail in the vast majority of cases, and thus | |
4458 | help prevent the unnecessary use of a more expensive comparison. | |
4459 | Said comparison also expects us to make some of these checks | |
4460 | (see ada_identical_enum_types_p). */ | |
4461 | ||
4462 | /* Quick check: All symbols should have an enum type. */ | |
4463 | for (i = 0; i < nsyms; i++) | |
4464 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM) | |
4465 | return 0; | |
4466 | ||
4467 | /* Quick check: They should all have the same value. */ | |
4468 | for (i = 1; i < nsyms; i++) | |
4469 | if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym)) | |
4470 | return 0; | |
4471 | ||
4472 | /* Quick check: They should all have the same number of enumerals. */ | |
4473 | for (i = 1; i < nsyms; i++) | |
4474 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym)) | |
4475 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym))) | |
4476 | return 0; | |
4477 | ||
4478 | /* All the sanity checks passed, so we might have a set of | |
4479 | identical enumeration types. Perform a more complete | |
4480 | comparison of the type of each symbol. */ | |
4481 | for (i = 1; i < nsyms; i++) | |
4482 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym), | |
4483 | SYMBOL_TYPE (syms[0].sym))) | |
4484 | return 0; | |
4485 | ||
4486 | return 1; | |
4487 | } | |
4488 | ||
96d887e8 PH |
4489 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4490 | duplicate other symbols in the list (The only case I know of where | |
4491 | this happens is when object files containing stabs-in-ecoff are | |
4492 | linked with files containing ordinary ecoff debugging symbols (or no | |
4493 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4494 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4495 | |
96d887e8 PH |
4496 | static int |
4497 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4498 | { | |
4499 | int i, j; | |
4c4b4cd2 | 4500 | |
8f17729f JB |
4501 | /* We should never be called with less than 2 symbols, as there |
4502 | cannot be any extra symbol in that case. But it's easy to | |
4503 | handle, since we have nothing to do in that case. */ | |
4504 | if (nsyms < 2) | |
4505 | return nsyms; | |
4506 | ||
96d887e8 PH |
4507 | i = 0; |
4508 | while (i < nsyms) | |
4509 | { | |
a35ddb44 | 4510 | int remove_p = 0; |
339c13b6 JB |
4511 | |
4512 | /* If two symbols have the same name and one of them is a stub type, | |
4513 | the get rid of the stub. */ | |
4514 | ||
4515 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4516 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4517 | { | |
4518 | for (j = 0; j < nsyms; j++) | |
4519 | { | |
4520 | if (j != i | |
4521 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4522 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4523 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4524 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
a35ddb44 | 4525 | remove_p = 1; |
339c13b6 JB |
4526 | } |
4527 | } | |
4528 | ||
4529 | /* Two symbols with the same name, same class and same address | |
4530 | should be identical. */ | |
4531 | ||
4532 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4533 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4534 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4535 | { | |
4536 | for (j = 0; j < nsyms; j += 1) | |
4537 | { | |
4538 | if (i != j | |
4539 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4540 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4541 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4542 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4543 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4544 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
a35ddb44 | 4545 | remove_p = 1; |
4c4b4cd2 | 4546 | } |
4c4b4cd2 | 4547 | } |
339c13b6 | 4548 | |
a35ddb44 | 4549 | if (remove_p) |
339c13b6 JB |
4550 | { |
4551 | for (j = i + 1; j < nsyms; j += 1) | |
4552 | syms[j - 1] = syms[j]; | |
4553 | nsyms -= 1; | |
4554 | } | |
4555 | ||
96d887e8 | 4556 | i += 1; |
14f9c5c9 | 4557 | } |
8f17729f JB |
4558 | |
4559 | /* If all the remaining symbols are identical enumerals, then | |
4560 | just keep the first one and discard the rest. | |
4561 | ||
4562 | Unlike what we did previously, we do not discard any entry | |
4563 | unless they are ALL identical. This is because the symbol | |
4564 | comparison is not a strict comparison, but rather a practical | |
4565 | comparison. If all symbols are considered identical, then | |
4566 | we can just go ahead and use the first one and discard the rest. | |
4567 | But if we cannot reduce the list to a single element, we have | |
4568 | to ask the user to disambiguate anyways. And if we have to | |
4569 | present a multiple-choice menu, it's less confusing if the list | |
4570 | isn't missing some choices that were identical and yet distinct. */ | |
4571 | if (symbols_are_identical_enums (syms, nsyms)) | |
4572 | nsyms = 1; | |
4573 | ||
96d887e8 | 4574 | return nsyms; |
14f9c5c9 AS |
4575 | } |
4576 | ||
96d887e8 PH |
4577 | /* Given a type that corresponds to a renaming entity, use the type name |
4578 | to extract the scope (package name or function name, fully qualified, | |
4579 | and following the GNAT encoding convention) where this renaming has been | |
4580 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4581 | |
96d887e8 PH |
4582 | static char * |
4583 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4584 | { |
96d887e8 | 4585 | /* The renaming types adhere to the following convention: |
0963b4bd | 4586 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
4587 | So, to extract the scope, we search for the "___XR" extension, |
4588 | and then backtrack until we find the first "__". */ | |
76a01679 | 4589 | |
96d887e8 PH |
4590 | const char *name = type_name_no_tag (renaming_type); |
4591 | char *suffix = strstr (name, "___XR"); | |
4592 | char *last; | |
4593 | int scope_len; | |
4594 | char *scope; | |
14f9c5c9 | 4595 | |
96d887e8 PH |
4596 | /* Now, backtrack a bit until we find the first "__". Start looking |
4597 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4598 | |
96d887e8 PH |
4599 | for (last = suffix - 3; last > name; last--) |
4600 | if (last[0] == '_' && last[1] == '_') | |
4601 | break; | |
76a01679 | 4602 | |
96d887e8 | 4603 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4604 | |
96d887e8 PH |
4605 | scope_len = last - name; |
4606 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4607 | |
96d887e8 PH |
4608 | strncpy (scope, name, scope_len); |
4609 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4610 | |
96d887e8 | 4611 | return scope; |
4c4b4cd2 PH |
4612 | } |
4613 | ||
96d887e8 | 4614 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4615 | |
96d887e8 PH |
4616 | static int |
4617 | is_package_name (const char *name) | |
4c4b4cd2 | 4618 | { |
96d887e8 PH |
4619 | /* Here, We take advantage of the fact that no symbols are generated |
4620 | for packages, while symbols are generated for each function. | |
4621 | So the condition for NAME represent a package becomes equivalent | |
4622 | to NAME not existing in our list of symbols. There is only one | |
4623 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4624 | |
96d887e8 | 4625 | char *fun_name; |
76a01679 | 4626 | |
96d887e8 PH |
4627 | /* If it is a function that has not been defined at library level, |
4628 | then we should be able to look it up in the symbols. */ | |
4629 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4630 | return 0; | |
14f9c5c9 | 4631 | |
96d887e8 PH |
4632 | /* Library-level function names start with "_ada_". See if function |
4633 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4634 | |
96d887e8 | 4635 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4636 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4637 | if (strstr (name, "__") != NULL) |
4638 | return 0; | |
4c4b4cd2 | 4639 | |
b435e160 | 4640 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4641 | |
96d887e8 PH |
4642 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4643 | } | |
14f9c5c9 | 4644 | |
96d887e8 | 4645 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4646 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4647 | |
96d887e8 | 4648 | static int |
aeb5907d | 4649 | old_renaming_is_invisible (const struct symbol *sym, char *function_name) |
96d887e8 | 4650 | { |
aeb5907d JB |
4651 | char *scope; |
4652 | ||
4653 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4654 | return 0; | |
4655 | ||
4656 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4657 | |
96d887e8 | 4658 | make_cleanup (xfree, scope); |
14f9c5c9 | 4659 | |
96d887e8 PH |
4660 | /* If the rename has been defined in a package, then it is visible. */ |
4661 | if (is_package_name (scope)) | |
aeb5907d | 4662 | return 0; |
14f9c5c9 | 4663 | |
96d887e8 PH |
4664 | /* Check that the rename is in the current function scope by checking |
4665 | that its name starts with SCOPE. */ | |
76a01679 | 4666 | |
96d887e8 PH |
4667 | /* If the function name starts with "_ada_", it means that it is |
4668 | a library-level function. Strip this prefix before doing the | |
4669 | comparison, as the encoding for the renaming does not contain | |
4670 | this prefix. */ | |
4671 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4672 | function_name += 5; | |
f26caa11 | 4673 | |
aeb5907d | 4674 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4675 | } |
4676 | ||
aeb5907d JB |
4677 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4678 | is not visible from the function associated with CURRENT_BLOCK or | |
4679 | that is superfluous due to the presence of more specific renaming | |
4680 | information. Places surviving symbols in the initial entries of | |
4681 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4682 | |
4683 | Rationale: | |
aeb5907d JB |
4684 | First, in cases where an object renaming is implemented as a |
4685 | reference variable, GNAT may produce both the actual reference | |
4686 | variable and the renaming encoding. In this case, we discard the | |
4687 | latter. | |
4688 | ||
4689 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4690 | entity. Unfortunately, STABS currently does not support the definition |
4691 | of types that are local to a given lexical block, so all renamings types | |
4692 | are emitted at library level. As a consequence, if an application | |
4693 | contains two renaming entities using the same name, and a user tries to | |
4694 | print the value of one of these entities, the result of the ada symbol | |
4695 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4696 | |
96d887e8 PH |
4697 | This function partially covers for this limitation by attempting to |
4698 | remove from the SYMS list renaming symbols that should be visible | |
4699 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4700 | method with the current information available. The implementation | |
4701 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4702 | ||
4703 | - When the user tries to print a rename in a function while there | |
4704 | is another rename entity defined in a package: Normally, the | |
4705 | rename in the function has precedence over the rename in the | |
4706 | package, so the latter should be removed from the list. This is | |
4707 | currently not the case. | |
4708 | ||
4709 | - This function will incorrectly remove valid renames if | |
4710 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4711 | has been changed by an "Export" pragma. As a consequence, | |
4712 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4713 | |
14f9c5c9 | 4714 | static int |
aeb5907d JB |
4715 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4716 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4717 | { |
4718 | struct symbol *current_function; | |
4719 | char *current_function_name; | |
4720 | int i; | |
aeb5907d JB |
4721 | int is_new_style_renaming; |
4722 | ||
4723 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4724 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 4725 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
4726 | is_new_style_renaming = 0; |
4727 | for (i = 0; i < nsyms; i += 1) | |
4728 | { | |
4729 | struct symbol *sym = syms[i].sym; | |
4730 | struct block *block = syms[i].block; | |
4731 | const char *name; | |
4732 | const char *suffix; | |
4733 | ||
4734 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4735 | continue; | |
4736 | name = SYMBOL_LINKAGE_NAME (sym); | |
4737 | suffix = strstr (name, "___XR"); | |
4738 | ||
4739 | if (suffix != NULL) | |
4740 | { | |
4741 | int name_len = suffix - name; | |
4742 | int j; | |
5b4ee69b | 4743 | |
aeb5907d JB |
4744 | is_new_style_renaming = 1; |
4745 | for (j = 0; j < nsyms; j += 1) | |
4746 | if (i != j && syms[j].sym != NULL | |
4747 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4748 | name_len) == 0 | |
4749 | && block == syms[j].block) | |
4750 | syms[j].sym = NULL; | |
4751 | } | |
4752 | } | |
4753 | if (is_new_style_renaming) | |
4754 | { | |
4755 | int j, k; | |
4756 | ||
4757 | for (j = k = 0; j < nsyms; j += 1) | |
4758 | if (syms[j].sym != NULL) | |
4759 | { | |
4760 | syms[k] = syms[j]; | |
4761 | k += 1; | |
4762 | } | |
4763 | return k; | |
4764 | } | |
4c4b4cd2 PH |
4765 | |
4766 | /* Extract the function name associated to CURRENT_BLOCK. | |
4767 | Abort if unable to do so. */ | |
76a01679 | 4768 | |
4c4b4cd2 PH |
4769 | if (current_block == NULL) |
4770 | return nsyms; | |
76a01679 | 4771 | |
7f0df278 | 4772 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4773 | if (current_function == NULL) |
4774 | return nsyms; | |
4775 | ||
4776 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4777 | if (current_function_name == NULL) | |
4778 | return nsyms; | |
4779 | ||
4780 | /* Check each of the symbols, and remove it from the list if it is | |
4781 | a type corresponding to a renaming that is out of the scope of | |
4782 | the current block. */ | |
4783 | ||
4784 | i = 0; | |
4785 | while (i < nsyms) | |
4786 | { | |
aeb5907d JB |
4787 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4788 | == ADA_OBJECT_RENAMING | |
4789 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4790 | { |
4791 | int j; | |
5b4ee69b | 4792 | |
aeb5907d | 4793 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4794 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4795 | nsyms -= 1; |
4796 | } | |
4797 | else | |
4798 | i += 1; | |
4799 | } | |
4800 | ||
4801 | return nsyms; | |
4802 | } | |
4803 | ||
339c13b6 JB |
4804 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4805 | whose name and domain match NAME and DOMAIN respectively. | |
4806 | If no match was found, then extend the search to "enclosing" | |
4807 | routines (in other words, if we're inside a nested function, | |
4808 | search the symbols defined inside the enclosing functions). | |
4809 | ||
4810 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4811 | ||
4812 | static void | |
4813 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4814 | struct block *block, domain_enum domain, | |
4815 | int wild_match) | |
4816 | { | |
4817 | int block_depth = 0; | |
4818 | ||
4819 | while (block != NULL) | |
4820 | { | |
4821 | block_depth += 1; | |
4822 | ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match); | |
4823 | ||
4824 | /* If we found a non-function match, assume that's the one. */ | |
4825 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4826 | num_defns_collected (obstackp))) | |
4827 | return; | |
4828 | ||
4829 | block = BLOCK_SUPERBLOCK (block); | |
4830 | } | |
4831 | ||
4832 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4833 | enclosing subprogram. */ | |
4834 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
4835 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match); | |
4836 | } | |
4837 | ||
ccefe4c4 | 4838 | /* An object of this type is used as the user_data argument when |
40658b94 | 4839 | calling the map_matching_symbols method. */ |
ccefe4c4 | 4840 | |
40658b94 | 4841 | struct match_data |
ccefe4c4 | 4842 | { |
40658b94 | 4843 | struct objfile *objfile; |
ccefe4c4 | 4844 | struct obstack *obstackp; |
40658b94 PH |
4845 | struct symbol *arg_sym; |
4846 | int found_sym; | |
ccefe4c4 TT |
4847 | }; |
4848 | ||
40658b94 PH |
4849 | /* A callback for add_matching_symbols that adds SYM, found in BLOCK, |
4850 | to a list of symbols. DATA0 is a pointer to a struct match_data * | |
4851 | containing the obstack that collects the symbol list, the file that SYM | |
4852 | must come from, a flag indicating whether a non-argument symbol has | |
4853 | been found in the current block, and the last argument symbol | |
4854 | passed in SYM within the current block (if any). When SYM is null, | |
4855 | marking the end of a block, the argument symbol is added if no | |
4856 | other has been found. */ | |
ccefe4c4 | 4857 | |
40658b94 PH |
4858 | static int |
4859 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 4860 | { |
40658b94 PH |
4861 | struct match_data *data = (struct match_data *) data0; |
4862 | ||
4863 | if (sym == NULL) | |
4864 | { | |
4865 | if (!data->found_sym && data->arg_sym != NULL) | |
4866 | add_defn_to_vec (data->obstackp, | |
4867 | fixup_symbol_section (data->arg_sym, data->objfile), | |
4868 | block); | |
4869 | data->found_sym = 0; | |
4870 | data->arg_sym = NULL; | |
4871 | } | |
4872 | else | |
4873 | { | |
4874 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
4875 | return 0; | |
4876 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
4877 | data->arg_sym = sym; | |
4878 | else | |
4879 | { | |
4880 | data->found_sym = 1; | |
4881 | add_defn_to_vec (data->obstackp, | |
4882 | fixup_symbol_section (sym, data->objfile), | |
4883 | block); | |
4884 | } | |
4885 | } | |
4886 | return 0; | |
4887 | } | |
4888 | ||
4889 | /* Compare STRING1 to STRING2, with results as for strcmp. | |
4890 | Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0 | |
4891 | implies compare_names (STRING1, STRING2) (they may differ as to | |
4892 | what symbols compare equal). */ | |
5b4ee69b | 4893 | |
40658b94 PH |
4894 | static int |
4895 | compare_names (const char *string1, const char *string2) | |
4896 | { | |
4897 | while (*string1 != '\0' && *string2 != '\0') | |
4898 | { | |
4899 | if (isspace (*string1) || isspace (*string2)) | |
4900 | return strcmp_iw_ordered (string1, string2); | |
4901 | if (*string1 != *string2) | |
4902 | break; | |
4903 | string1 += 1; | |
4904 | string2 += 1; | |
4905 | } | |
4906 | switch (*string1) | |
4907 | { | |
4908 | case '(': | |
4909 | return strcmp_iw_ordered (string1, string2); | |
4910 | case '_': | |
4911 | if (*string2 == '\0') | |
4912 | { | |
052874e8 | 4913 | if (is_name_suffix (string1)) |
40658b94 PH |
4914 | return 0; |
4915 | else | |
1a1d5513 | 4916 | return 1; |
40658b94 | 4917 | } |
dbb8534f | 4918 | /* FALLTHROUGH */ |
40658b94 PH |
4919 | default: |
4920 | if (*string2 == '(') | |
4921 | return strcmp_iw_ordered (string1, string2); | |
4922 | else | |
4923 | return *string1 - *string2; | |
4924 | } | |
ccefe4c4 TT |
4925 | } |
4926 | ||
339c13b6 JB |
4927 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
4928 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
4929 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
4930 | ||
4931 | static void | |
40658b94 PH |
4932 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
4933 | domain_enum domain, int global, | |
4934 | int is_wild_match) | |
339c13b6 JB |
4935 | { |
4936 | struct objfile *objfile; | |
40658b94 | 4937 | struct match_data data; |
339c13b6 | 4938 | |
6475f2fe | 4939 | memset (&data, 0, sizeof data); |
ccefe4c4 | 4940 | data.obstackp = obstackp; |
339c13b6 | 4941 | |
ccefe4c4 | 4942 | ALL_OBJFILES (objfile) |
40658b94 PH |
4943 | { |
4944 | data.objfile = objfile; | |
4945 | ||
4946 | if (is_wild_match) | |
4947 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
4948 | aux_add_nonlocal_symbols, &data, | |
4949 | wild_match, NULL); | |
4950 | else | |
4951 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
4952 | aux_add_nonlocal_symbols, &data, | |
4953 | full_match, compare_names); | |
4954 | } | |
4955 | ||
4956 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
4957 | { | |
4958 | ALL_OBJFILES (objfile) | |
4959 | { | |
4960 | char *name1 = alloca (strlen (name) + sizeof ("_ada_")); | |
4961 | strcpy (name1, "_ada_"); | |
4962 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
4963 | data.objfile = objfile; | |
0963b4bd MS |
4964 | objfile->sf->qf->map_matching_symbols (name1, domain, |
4965 | objfile, global, | |
4966 | aux_add_nonlocal_symbols, | |
4967 | &data, | |
40658b94 PH |
4968 | full_match, compare_names); |
4969 | } | |
4970 | } | |
339c13b6 JB |
4971 | } |
4972 | ||
4c4b4cd2 PH |
4973 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing |
4974 | scope and in global scopes, returning the number of matches. Sets | |
6c9353d3 | 4975 | *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 PH |
4976 | indicating the symbols found and the blocks and symbol tables (if |
4977 | any) in which they were found. This vector are transient---good only to | |
4978 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4979 | symbol match within the nest of blocks whose innermost member is BLOCK0, | |
4980 | is the one match returned (no other matches in that or | |
4981 | enclosing blocks is returned). If there are any matches in or | |
4982 | surrounding BLOCK0, then these alone are returned. Otherwise, the | |
4983 | search extends to global and file-scope (static) symbol tables. | |
4984 | Names prefixed with "standard__" are handled specially: "standard__" | |
4985 | is first stripped off, and only static and global symbols are searched. */ | |
14f9c5c9 AS |
4986 | |
4987 | int | |
4c4b4cd2 | 4988 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
76a01679 JB |
4989 | domain_enum namespace, |
4990 | struct ada_symbol_info **results) | |
14f9c5c9 AS |
4991 | { |
4992 | struct symbol *sym; | |
14f9c5c9 | 4993 | struct block *block; |
4c4b4cd2 | 4994 | const char *name; |
c0431670 | 4995 | const int wild_match = should_use_wild_match (name0); |
14f9c5c9 | 4996 | int cacheIfUnique; |
4c4b4cd2 | 4997 | int ndefns; |
14f9c5c9 | 4998 | |
4c4b4cd2 PH |
4999 | obstack_free (&symbol_list_obstack, NULL); |
5000 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 5001 | |
14f9c5c9 AS |
5002 | cacheIfUnique = 0; |
5003 | ||
5004 | /* Search specified block and its superiors. */ | |
5005 | ||
4c4b4cd2 | 5006 | name = name0; |
76a01679 JB |
5007 | block = (struct block *) block0; /* FIXME: No cast ought to be |
5008 | needed, but adding const will | |
5009 | have a cascade effect. */ | |
339c13b6 JB |
5010 | |
5011 | /* Special case: If the user specifies a symbol name inside package | |
5012 | Standard, do a non-wild matching of the symbol name without | |
5013 | the "standard__" prefix. This was primarily introduced in order | |
5014 | to allow the user to specifically access the standard exceptions | |
5015 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5016 | is ambiguous (due to the user defining its own Constraint_Error | |
5017 | entity inside its program). */ | |
4c4b4cd2 PH |
5018 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
5019 | { | |
4c4b4cd2 PH |
5020 | block = NULL; |
5021 | name = name0 + sizeof ("standard__") - 1; | |
5022 | } | |
5023 | ||
339c13b6 | 5024 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5025 | |
339c13b6 JB |
5026 | ada_add_local_symbols (&symbol_list_obstack, name, block, namespace, |
5027 | wild_match); | |
4c4b4cd2 | 5028 | if (num_defns_collected (&symbol_list_obstack) > 0) |
14f9c5c9 | 5029 | goto done; |
d2e4a39e | 5030 | |
339c13b6 JB |
5031 | /* No non-global symbols found. Check our cache to see if we have |
5032 | already performed this search before. If we have, then return | |
5033 | the same result. */ | |
5034 | ||
14f9c5c9 | 5035 | cacheIfUnique = 1; |
2570f2b7 | 5036 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
5037 | { |
5038 | if (sym != NULL) | |
2570f2b7 | 5039 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
5040 | goto done; |
5041 | } | |
14f9c5c9 | 5042 | |
339c13b6 JB |
5043 | /* Search symbols from all global blocks. */ |
5044 | ||
40658b94 PH |
5045 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1, |
5046 | wild_match); | |
d2e4a39e | 5047 | |
4c4b4cd2 | 5048 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5049 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5050 | |
4c4b4cd2 | 5051 | if (num_defns_collected (&symbol_list_obstack) == 0) |
40658b94 PH |
5052 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0, |
5053 | wild_match); | |
14f9c5c9 | 5054 | |
4c4b4cd2 PH |
5055 | done: |
5056 | ndefns = num_defns_collected (&symbol_list_obstack); | |
5057 | *results = defns_collected (&symbol_list_obstack, 1); | |
5058 | ||
5059 | ndefns = remove_extra_symbols (*results, ndefns); | |
5060 | ||
d2e4a39e | 5061 | if (ndefns == 0) |
2570f2b7 | 5062 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 5063 | |
4c4b4cd2 | 5064 | if (ndefns == 1 && cacheIfUnique) |
2570f2b7 | 5065 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 5066 | |
aeb5907d | 5067 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 5068 | |
14f9c5c9 AS |
5069 | return ndefns; |
5070 | } | |
5071 | ||
f8eba3c6 TT |
5072 | /* If NAME is the name of an entity, return a string that should |
5073 | be used to look that entity up in Ada units. This string should | |
5074 | be deallocated after use using xfree. | |
5075 | ||
5076 | NAME can have any form that the "break" or "print" commands might | |
5077 | recognize. In other words, it does not have to be the "natural" | |
5078 | name, or the "encoded" name. */ | |
5079 | ||
5080 | char * | |
5081 | ada_name_for_lookup (const char *name) | |
5082 | { | |
5083 | char *canon; | |
5084 | int nlen = strlen (name); | |
5085 | ||
5086 | if (name[0] == '<' && name[nlen - 1] == '>') | |
5087 | { | |
5088 | canon = xmalloc (nlen - 1); | |
5089 | memcpy (canon, name + 1, nlen - 2); | |
5090 | canon[nlen - 2] = '\0'; | |
5091 | } | |
5092 | else | |
5093 | canon = xstrdup (ada_encode (ada_fold_name (name))); | |
5094 | return canon; | |
5095 | } | |
5096 | ||
5097 | /* Implementation of the la_iterate_over_symbols method. */ | |
5098 | ||
5099 | static void | |
5100 | ada_iterate_over_symbols (const struct block *block, | |
5101 | const char *name, domain_enum domain, | |
5102 | int (*callback) (struct symbol *, void *), | |
5103 | void *data) | |
5104 | { | |
5105 | int ndefs, i; | |
5106 | struct ada_symbol_info *results; | |
5107 | ||
5108 | ndefs = ada_lookup_symbol_list (name, block, domain, &results); | |
5109 | for (i = 0; i < ndefs; ++i) | |
5110 | { | |
5111 | if (! (*callback) (results[i].sym, data)) | |
5112 | break; | |
5113 | } | |
5114 | } | |
5115 | ||
d2e4a39e | 5116 | struct symbol * |
aeb5907d | 5117 | ada_lookup_encoded_symbol (const char *name, const struct block *block0, |
21b556f4 | 5118 | domain_enum namespace, struct block **block_found) |
14f9c5c9 | 5119 | { |
4c4b4cd2 | 5120 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
5121 | int n_candidates; |
5122 | ||
aeb5907d | 5123 | n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates); |
14f9c5c9 AS |
5124 | |
5125 | if (n_candidates == 0) | |
5126 | return NULL; | |
4c4b4cd2 | 5127 | |
aeb5907d JB |
5128 | if (block_found != NULL) |
5129 | *block_found = candidates[0].block; | |
4c4b4cd2 | 5130 | |
21b556f4 | 5131 | return fixup_symbol_section (candidates[0].sym, NULL); |
aeb5907d JB |
5132 | } |
5133 | ||
5134 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5135 | scope and in global scopes, or NULL if none. NAME is folded and | |
5136 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5137 | choosing the first symbol if there are multiple choices. |
aeb5907d JB |
5138 | *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol |
5139 | table in which the symbol was found (in both cases, these | |
5140 | assignments occur only if the pointers are non-null). */ | |
5141 | struct symbol * | |
5142 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 5143 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d JB |
5144 | { |
5145 | if (is_a_field_of_this != NULL) | |
5146 | *is_a_field_of_this = 0; | |
5147 | ||
5148 | return | |
5149 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), | |
21b556f4 | 5150 | block0, namespace, NULL); |
4c4b4cd2 | 5151 | } |
14f9c5c9 | 5152 | |
4c4b4cd2 PH |
5153 | static struct symbol * |
5154 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 | 5155 | const struct block *block, |
21b556f4 | 5156 | const domain_enum domain) |
4c4b4cd2 | 5157 | { |
94af9270 | 5158 | return ada_lookup_symbol (name, block_static_block (block), domain, NULL); |
14f9c5c9 AS |
5159 | } |
5160 | ||
5161 | ||
4c4b4cd2 PH |
5162 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5163 | that is to be ignored for matching purposes. Suffixes of parallel | |
5164 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5165 | are given by any of the regular expressions: |
4c4b4cd2 | 5166 | |
babe1480 JB |
5167 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5168 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5169 | TKB [subprogram suffix for task bodies] |
babe1480 | 5170 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5171 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5172 | |
5173 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5174 | match is performed. This sequence is used to differentiate homonyms, | |
5175 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5176 | |
14f9c5c9 | 5177 | static int |
d2e4a39e | 5178 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5179 | { |
5180 | int k; | |
4c4b4cd2 PH |
5181 | const char *matching; |
5182 | const int len = strlen (str); | |
5183 | ||
babe1480 JB |
5184 | /* Skip optional leading __[0-9]+. */ |
5185 | ||
4c4b4cd2 PH |
5186 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5187 | { | |
babe1480 JB |
5188 | str += 3; |
5189 | while (isdigit (str[0])) | |
5190 | str += 1; | |
4c4b4cd2 | 5191 | } |
babe1480 JB |
5192 | |
5193 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5194 | |
babe1480 | 5195 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5196 | { |
babe1480 | 5197 | matching = str + 1; |
4c4b4cd2 PH |
5198 | while (isdigit (matching[0])) |
5199 | matching += 1; | |
5200 | if (matching[0] == '\0') | |
5201 | return 1; | |
5202 | } | |
5203 | ||
5204 | /* ___[0-9]+ */ | |
babe1480 | 5205 | |
4c4b4cd2 PH |
5206 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5207 | { | |
5208 | matching = str + 3; | |
5209 | while (isdigit (matching[0])) | |
5210 | matching += 1; | |
5211 | if (matching[0] == '\0') | |
5212 | return 1; | |
5213 | } | |
5214 | ||
9ac7f98e JB |
5215 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5216 | ||
5217 | if (strcmp (str, "TKB") == 0) | |
5218 | return 1; | |
5219 | ||
529cad9c PH |
5220 | #if 0 |
5221 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5222 | with a N at the end. Unfortunately, the compiler uses the same |
5223 | convention for other internal types it creates. So treating | |
529cad9c | 5224 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5225 | some regressions. For instance, consider the case of an enumerated |
5226 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5227 | name ends with N. |
5228 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5229 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5230 | to be something like "_N" instead. In the meantime, do not do |
5231 | the following check. */ | |
5232 | /* Protected Object Subprograms */ | |
5233 | if (len == 1 && str [0] == 'N') | |
5234 | return 1; | |
5235 | #endif | |
5236 | ||
5237 | /* _E[0-9]+[bs]$ */ | |
5238 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5239 | { | |
5240 | matching = str + 3; | |
5241 | while (isdigit (matching[0])) | |
5242 | matching += 1; | |
5243 | if ((matching[0] == 'b' || matching[0] == 's') | |
5244 | && matching [1] == '\0') | |
5245 | return 1; | |
5246 | } | |
5247 | ||
4c4b4cd2 PH |
5248 | /* ??? We should not modify STR directly, as we are doing below. This |
5249 | is fine in this case, but may become problematic later if we find | |
5250 | that this alternative did not work, and want to try matching | |
5251 | another one from the begining of STR. Since we modified it, we | |
5252 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5253 | if (str[0] == 'X') |
5254 | { | |
5255 | str += 1; | |
d2e4a39e | 5256 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5257 | { |
5258 | if (str[0] != 'n' && str[0] != 'b') | |
5259 | return 0; | |
5260 | str += 1; | |
5261 | } | |
14f9c5c9 | 5262 | } |
babe1480 | 5263 | |
14f9c5c9 AS |
5264 | if (str[0] == '\000') |
5265 | return 1; | |
babe1480 | 5266 | |
d2e4a39e | 5267 | if (str[0] == '_') |
14f9c5c9 AS |
5268 | { |
5269 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5270 | return 0; |
d2e4a39e | 5271 | if (str[2] == '_') |
4c4b4cd2 | 5272 | { |
61ee279c PH |
5273 | if (strcmp (str + 3, "JM") == 0) |
5274 | return 1; | |
5275 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5276 | the LJM suffix in favor of the JM one. But we will | |
5277 | still accept LJM as a valid suffix for a reasonable | |
5278 | amount of time, just to allow ourselves to debug programs | |
5279 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5280 | if (strcmp (str + 3, "LJM") == 0) |
5281 | return 1; | |
5282 | if (str[3] != 'X') | |
5283 | return 0; | |
1265e4aa JB |
5284 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5285 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5286 | return 1; |
5287 | if (str[4] == 'R' && str[5] != 'T') | |
5288 | return 1; | |
5289 | return 0; | |
5290 | } | |
5291 | if (!isdigit (str[2])) | |
5292 | return 0; | |
5293 | for (k = 3; str[k] != '\0'; k += 1) | |
5294 | if (!isdigit (str[k]) && str[k] != '_') | |
5295 | return 0; | |
14f9c5c9 AS |
5296 | return 1; |
5297 | } | |
4c4b4cd2 | 5298 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5299 | { |
4c4b4cd2 PH |
5300 | for (k = 2; str[k] != '\0'; k += 1) |
5301 | if (!isdigit (str[k]) && str[k] != '_') | |
5302 | return 0; | |
14f9c5c9 AS |
5303 | return 1; |
5304 | } | |
5305 | return 0; | |
5306 | } | |
d2e4a39e | 5307 | |
aeb5907d JB |
5308 | /* Return non-zero if the string starting at NAME and ending before |
5309 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5310 | |
5311 | static int | |
5312 | is_valid_name_for_wild_match (const char *name0) | |
5313 | { | |
5314 | const char *decoded_name = ada_decode (name0); | |
5315 | int i; | |
5316 | ||
5823c3ef JB |
5317 | /* If the decoded name starts with an angle bracket, it means that |
5318 | NAME0 does not follow the GNAT encoding format. It should then | |
5319 | not be allowed as a possible wild match. */ | |
5320 | if (decoded_name[0] == '<') | |
5321 | return 0; | |
5322 | ||
529cad9c PH |
5323 | for (i=0; decoded_name[i] != '\0'; i++) |
5324 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5325 | return 0; | |
5326 | ||
5327 | return 1; | |
5328 | } | |
5329 | ||
73589123 PH |
5330 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
5331 | that could start a simple name. Assumes that *NAMEP points into | |
5332 | the string beginning at NAME0. */ | |
4c4b4cd2 | 5333 | |
14f9c5c9 | 5334 | static int |
73589123 | 5335 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 5336 | { |
73589123 | 5337 | const char *name = *namep; |
5b4ee69b | 5338 | |
5823c3ef | 5339 | while (1) |
14f9c5c9 | 5340 | { |
aa27d0b3 | 5341 | int t0, t1; |
73589123 PH |
5342 | |
5343 | t0 = *name; | |
5344 | if (t0 == '_') | |
5345 | { | |
5346 | t1 = name[1]; | |
5347 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5348 | { | |
5349 | name += 1; | |
5350 | if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0) | |
5351 | break; | |
5352 | else | |
5353 | name += 1; | |
5354 | } | |
aa27d0b3 JB |
5355 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5356 | || name[2] == target0)) | |
73589123 PH |
5357 | { |
5358 | name += 2; | |
5359 | break; | |
5360 | } | |
5361 | else | |
5362 | return 0; | |
5363 | } | |
5364 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5365 | name += 1; | |
5366 | else | |
5823c3ef | 5367 | return 0; |
73589123 PH |
5368 | } |
5369 | ||
5370 | *namep = name; | |
5371 | return 1; | |
5372 | } | |
5373 | ||
5374 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
5375 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5376 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
5377 | ||
5378 | static int | |
5379 | wild_match (const char *name, const char *patn) | |
5380 | { | |
5381 | const char *p, *n; | |
5382 | const char *name0 = name; | |
5383 | ||
5384 | while (1) | |
5385 | { | |
5386 | const char *match = name; | |
5387 | ||
5388 | if (*name == *patn) | |
5389 | { | |
5390 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5391 | if (*p != *name) | |
5392 | break; | |
5393 | if (*p == '\0' && is_name_suffix (name)) | |
5394 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
5395 | ||
5396 | if (name[-1] == '_') | |
5397 | name -= 1; | |
5398 | } | |
5399 | if (!advance_wild_match (&name, name0, *patn)) | |
5400 | return 1; | |
96d887e8 | 5401 | } |
96d887e8 PH |
5402 | } |
5403 | ||
40658b94 PH |
5404 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
5405 | informational suffix. */ | |
5406 | ||
c4d840bd PH |
5407 | static int |
5408 | full_match (const char *sym_name, const char *search_name) | |
5409 | { | |
40658b94 | 5410 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
5411 | } |
5412 | ||
5413 | ||
96d887e8 PH |
5414 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5415 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 5416 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
96d887e8 PH |
5417 | OBJFILE is the section containing BLOCK. |
5418 | SYMTAB is recorded with each symbol added. */ | |
5419 | ||
5420 | static void | |
5421 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 5422 | struct block *block, const char *name, |
96d887e8 | 5423 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5424 | int wild) |
96d887e8 PH |
5425 | { |
5426 | struct dict_iterator iter; | |
5427 | int name_len = strlen (name); | |
5428 | /* A matching argument symbol, if any. */ | |
5429 | struct symbol *arg_sym; | |
5430 | /* Set true when we find a matching non-argument symbol. */ | |
5431 | int found_sym; | |
5432 | struct symbol *sym; | |
5433 | ||
5434 | arg_sym = NULL; | |
5435 | found_sym = 0; | |
5436 | if (wild) | |
5437 | { | |
c4d840bd PH |
5438 | for (sym = dict_iter_match_first (BLOCK_DICT (block), name, |
5439 | wild_match, &iter); | |
5440 | sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 5441 | { |
5eeb2539 AR |
5442 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5443 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 5444 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 5445 | { |
2a2d4dc3 AS |
5446 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5447 | continue; | |
5448 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5449 | arg_sym = sym; | |
5450 | else | |
5451 | { | |
76a01679 JB |
5452 | found_sym = 1; |
5453 | add_defn_to_vec (obstackp, | |
5454 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5455 | block); |
76a01679 JB |
5456 | } |
5457 | } | |
5458 | } | |
96d887e8 PH |
5459 | } |
5460 | else | |
5461 | { | |
c4d840bd | 5462 | for (sym = dict_iter_match_first (BLOCK_DICT (block), name, |
40658b94 | 5463 | full_match, &iter); |
c4d840bd | 5464 | sym != NULL; sym = dict_iter_match_next (name, full_match, &iter)) |
76a01679 | 5465 | { |
5eeb2539 AR |
5466 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5467 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 5468 | { |
c4d840bd PH |
5469 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5470 | { | |
5471 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5472 | arg_sym = sym; | |
5473 | else | |
2a2d4dc3 | 5474 | { |
c4d840bd PH |
5475 | found_sym = 1; |
5476 | add_defn_to_vec (obstackp, | |
5477 | fixup_symbol_section (sym, objfile), | |
5478 | block); | |
2a2d4dc3 | 5479 | } |
c4d840bd | 5480 | } |
76a01679 JB |
5481 | } |
5482 | } | |
96d887e8 PH |
5483 | } |
5484 | ||
5485 | if (!found_sym && arg_sym != NULL) | |
5486 | { | |
76a01679 JB |
5487 | add_defn_to_vec (obstackp, |
5488 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5489 | block); |
96d887e8 PH |
5490 | } |
5491 | ||
5492 | if (!wild) | |
5493 | { | |
5494 | arg_sym = NULL; | |
5495 | found_sym = 0; | |
5496 | ||
5497 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5498 | { |
5eeb2539 AR |
5499 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5500 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5501 | { |
5502 | int cmp; | |
5503 | ||
5504 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5505 | if (cmp == 0) | |
5506 | { | |
5507 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5508 | if (cmp == 0) | |
5509 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5510 | name_len); | |
5511 | } | |
5512 | ||
5513 | if (cmp == 0 | |
5514 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5515 | { | |
2a2d4dc3 AS |
5516 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5517 | { | |
5518 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5519 | arg_sym = sym; | |
5520 | else | |
5521 | { | |
5522 | found_sym = 1; | |
5523 | add_defn_to_vec (obstackp, | |
5524 | fixup_symbol_section (sym, objfile), | |
5525 | block); | |
5526 | } | |
5527 | } | |
76a01679 JB |
5528 | } |
5529 | } | |
76a01679 | 5530 | } |
96d887e8 PH |
5531 | |
5532 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5533 | They aren't parameters, right? */ | |
5534 | if (!found_sym && arg_sym != NULL) | |
5535 | { | |
5536 | add_defn_to_vec (obstackp, | |
76a01679 | 5537 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5538 | block); |
96d887e8 PH |
5539 | } |
5540 | } | |
5541 | } | |
5542 | \f | |
41d27058 JB |
5543 | |
5544 | /* Symbol Completion */ | |
5545 | ||
5546 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5547 | name in a form that's appropriate for the completion. The result | |
5548 | does not need to be deallocated, but is only good until the next call. | |
5549 | ||
5550 | TEXT_LEN is equal to the length of TEXT. | |
5551 | Perform a wild match if WILD_MATCH is set. | |
5552 | ENCODED should be set if TEXT represents the start of a symbol name | |
5553 | in its encoded form. */ | |
5554 | ||
5555 | static const char * | |
5556 | symbol_completion_match (const char *sym_name, | |
5557 | const char *text, int text_len, | |
5558 | int wild_match, int encoded) | |
5559 | { | |
41d27058 JB |
5560 | const int verbatim_match = (text[0] == '<'); |
5561 | int match = 0; | |
5562 | ||
5563 | if (verbatim_match) | |
5564 | { | |
5565 | /* Strip the leading angle bracket. */ | |
5566 | text = text + 1; | |
5567 | text_len--; | |
5568 | } | |
5569 | ||
5570 | /* First, test against the fully qualified name of the symbol. */ | |
5571 | ||
5572 | if (strncmp (sym_name, text, text_len) == 0) | |
5573 | match = 1; | |
5574 | ||
5575 | if (match && !encoded) | |
5576 | { | |
5577 | /* One needed check before declaring a positive match is to verify | |
5578 | that iff we are doing a verbatim match, the decoded version | |
5579 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5580 | is not a suitable completion. */ | |
5581 | const char *sym_name_copy = sym_name; | |
5582 | int has_angle_bracket; | |
5583 | ||
5584 | sym_name = ada_decode (sym_name); | |
5585 | has_angle_bracket = (sym_name[0] == '<'); | |
5586 | match = (has_angle_bracket == verbatim_match); | |
5587 | sym_name = sym_name_copy; | |
5588 | } | |
5589 | ||
5590 | if (match && !verbatim_match) | |
5591 | { | |
5592 | /* When doing non-verbatim match, another check that needs to | |
5593 | be done is to verify that the potentially matching symbol name | |
5594 | does not include capital letters, because the ada-mode would | |
5595 | not be able to understand these symbol names without the | |
5596 | angle bracket notation. */ | |
5597 | const char *tmp; | |
5598 | ||
5599 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5600 | if (*tmp != '\0') | |
5601 | match = 0; | |
5602 | } | |
5603 | ||
5604 | /* Second: Try wild matching... */ | |
5605 | ||
5606 | if (!match && wild_match) | |
5607 | { | |
5608 | /* Since we are doing wild matching, this means that TEXT | |
5609 | may represent an unqualified symbol name. We therefore must | |
5610 | also compare TEXT against the unqualified name of the symbol. */ | |
5611 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5612 | ||
5613 | if (strncmp (sym_name, text, text_len) == 0) | |
5614 | match = 1; | |
5615 | } | |
5616 | ||
5617 | /* Finally: If we found a mach, prepare the result to return. */ | |
5618 | ||
5619 | if (!match) | |
5620 | return NULL; | |
5621 | ||
5622 | if (verbatim_match) | |
5623 | sym_name = add_angle_brackets (sym_name); | |
5624 | ||
5625 | if (!encoded) | |
5626 | sym_name = ada_decode (sym_name); | |
5627 | ||
5628 | return sym_name; | |
5629 | } | |
5630 | ||
2ba95b9b JB |
5631 | DEF_VEC_P (char_ptr); |
5632 | ||
41d27058 JB |
5633 | /* A companion function to ada_make_symbol_completion_list(). |
5634 | Check if SYM_NAME represents a symbol which name would be suitable | |
5635 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5636 | it is appended at the end of the given string vector SV. | |
5637 | ||
5638 | ORIG_TEXT is the string original string from the user command | |
5639 | that needs to be completed. WORD is the entire command on which | |
5640 | completion should be performed. These two parameters are used to | |
5641 | determine which part of the symbol name should be added to the | |
5642 | completion vector. | |
5643 | if WILD_MATCH is set, then wild matching is performed. | |
5644 | ENCODED should be set if TEXT represents a symbol name in its | |
5645 | encoded formed (in which case the completion should also be | |
5646 | encoded). */ | |
5647 | ||
5648 | static void | |
d6565258 | 5649 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5650 | const char *sym_name, |
5651 | const char *text, int text_len, | |
5652 | const char *orig_text, const char *word, | |
5653 | int wild_match, int encoded) | |
5654 | { | |
5655 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
5656 | wild_match, encoded); | |
5657 | char *completion; | |
5658 | ||
5659 | if (match == NULL) | |
5660 | return; | |
5661 | ||
5662 | /* We found a match, so add the appropriate completion to the given | |
5663 | string vector. */ | |
5664 | ||
5665 | if (word == orig_text) | |
5666 | { | |
5667 | completion = xmalloc (strlen (match) + 5); | |
5668 | strcpy (completion, match); | |
5669 | } | |
5670 | else if (word > orig_text) | |
5671 | { | |
5672 | /* Return some portion of sym_name. */ | |
5673 | completion = xmalloc (strlen (match) + 5); | |
5674 | strcpy (completion, match + (word - orig_text)); | |
5675 | } | |
5676 | else | |
5677 | { | |
5678 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5679 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5680 | strncpy (completion, word, orig_text - word); | |
5681 | completion[orig_text - word] = '\0'; | |
5682 | strcat (completion, match); | |
5683 | } | |
5684 | ||
d6565258 | 5685 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5686 | } |
5687 | ||
ccefe4c4 | 5688 | /* An object of this type is passed as the user_data argument to the |
7b08b9eb | 5689 | expand_partial_symbol_names method. */ |
ccefe4c4 TT |
5690 | struct add_partial_datum |
5691 | { | |
5692 | VEC(char_ptr) **completions; | |
5693 | char *text; | |
5694 | int text_len; | |
5695 | char *text0; | |
5696 | char *word; | |
5697 | int wild_match; | |
5698 | int encoded; | |
5699 | }; | |
5700 | ||
7b08b9eb JK |
5701 | /* A callback for expand_partial_symbol_names. */ |
5702 | static int | |
f8eba3c6 TT |
5703 | ada_expand_partial_symbol_name (const struct language_defn *language, |
5704 | const char *name, void *user_data) | |
ccefe4c4 TT |
5705 | { |
5706 | struct add_partial_datum *data = user_data; | |
7b08b9eb JK |
5707 | |
5708 | return symbol_completion_match (name, data->text, data->text_len, | |
5709 | data->wild_match, data->encoded) != NULL; | |
ccefe4c4 TT |
5710 | } |
5711 | ||
41d27058 JB |
5712 | /* Return a list of possible symbol names completing TEXT0. The list |
5713 | is NULL terminated. WORD is the entire command on which completion | |
5714 | is made. */ | |
5715 | ||
5716 | static char ** | |
5717 | ada_make_symbol_completion_list (char *text0, char *word) | |
5718 | { | |
5719 | char *text; | |
5720 | int text_len; | |
5721 | int wild_match; | |
5722 | int encoded; | |
2ba95b9b | 5723 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5724 | struct symbol *sym; |
5725 | struct symtab *s; | |
41d27058 JB |
5726 | struct minimal_symbol *msymbol; |
5727 | struct objfile *objfile; | |
5728 | struct block *b, *surrounding_static_block = 0; | |
5729 | int i; | |
5730 | struct dict_iterator iter; | |
5731 | ||
5732 | if (text0[0] == '<') | |
5733 | { | |
5734 | text = xstrdup (text0); | |
5735 | make_cleanup (xfree, text); | |
5736 | text_len = strlen (text); | |
5737 | wild_match = 0; | |
5738 | encoded = 1; | |
5739 | } | |
5740 | else | |
5741 | { | |
5742 | text = xstrdup (ada_encode (text0)); | |
5743 | make_cleanup (xfree, text); | |
5744 | text_len = strlen (text); | |
5745 | for (i = 0; i < text_len; i++) | |
5746 | text[i] = tolower (text[i]); | |
5747 | ||
5748 | encoded = (strstr (text0, "__") != NULL); | |
5749 | /* If the name contains a ".", then the user is entering a fully | |
5750 | qualified entity name, and the match must not be done in wild | |
5751 | mode. Similarly, if the user wants to complete what looks like | |
5752 | an encoded name, the match must not be done in wild mode. */ | |
5753 | wild_match = (strchr (text0, '.') == NULL && !encoded); | |
5754 | } | |
5755 | ||
5756 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 5757 | { |
ccefe4c4 TT |
5758 | struct add_partial_datum data; |
5759 | ||
5760 | data.completions = &completions; | |
5761 | data.text = text; | |
5762 | data.text_len = text_len; | |
5763 | data.text0 = text0; | |
5764 | data.word = word; | |
5765 | data.wild_match = wild_match; | |
5766 | data.encoded = encoded; | |
7b08b9eb | 5767 | expand_partial_symbol_names (ada_expand_partial_symbol_name, &data); |
41d27058 JB |
5768 | } |
5769 | ||
5770 | /* At this point scan through the misc symbol vectors and add each | |
5771 | symbol you find to the list. Eventually we want to ignore | |
5772 | anything that isn't a text symbol (everything else will be | |
5773 | handled by the psymtab code above). */ | |
5774 | ||
5775 | ALL_MSYMBOLS (objfile, msymbol) | |
5776 | { | |
5777 | QUIT; | |
d6565258 | 5778 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
41d27058 JB |
5779 | text, text_len, text0, word, wild_match, encoded); |
5780 | } | |
5781 | ||
5782 | /* Search upwards from currently selected frame (so that we can | |
5783 | complete on local vars. */ | |
5784 | ||
5785 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5786 | { | |
5787 | if (!BLOCK_SUPERBLOCK (b)) | |
5788 | surrounding_static_block = b; /* For elmin of dups */ | |
5789 | ||
5790 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5791 | { | |
d6565258 | 5792 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5793 | text, text_len, text0, word, |
5794 | wild_match, encoded); | |
5795 | } | |
5796 | } | |
5797 | ||
5798 | /* Go through the symtabs and check the externs and statics for | |
5799 | symbols which match. */ | |
5800 | ||
5801 | ALL_SYMTABS (objfile, s) | |
5802 | { | |
5803 | QUIT; | |
5804 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5805 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5806 | { | |
d6565258 | 5807 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5808 | text, text_len, text0, word, |
5809 | wild_match, encoded); | |
5810 | } | |
5811 | } | |
5812 | ||
5813 | ALL_SYMTABS (objfile, s) | |
5814 | { | |
5815 | QUIT; | |
5816 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5817 | /* Don't do this block twice. */ | |
5818 | if (b == surrounding_static_block) | |
5819 | continue; | |
5820 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5821 | { | |
d6565258 | 5822 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5823 | text, text_len, text0, word, |
5824 | wild_match, encoded); | |
5825 | } | |
5826 | } | |
5827 | ||
5828 | /* Append the closing NULL entry. */ | |
2ba95b9b | 5829 | VEC_safe_push (char_ptr, completions, NULL); |
41d27058 | 5830 | |
2ba95b9b JB |
5831 | /* Make a copy of the COMPLETIONS VEC before we free it, and then |
5832 | return the copy. It's unfortunate that we have to make a copy | |
5833 | of an array that we're about to destroy, but there is nothing much | |
5834 | we can do about it. Fortunately, it's typically not a very large | |
5835 | array. */ | |
5836 | { | |
5837 | const size_t completions_size = | |
5838 | VEC_length (char_ptr, completions) * sizeof (char *); | |
dc19db01 | 5839 | char **result = xmalloc (completions_size); |
2ba95b9b JB |
5840 | |
5841 | memcpy (result, VEC_address (char_ptr, completions), completions_size); | |
5842 | ||
5843 | VEC_free (char_ptr, completions); | |
5844 | return result; | |
5845 | } | |
41d27058 JB |
5846 | } |
5847 | ||
963a6417 | 5848 | /* Field Access */ |
96d887e8 | 5849 | |
73fb9985 JB |
5850 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5851 | for tagged types. */ | |
5852 | ||
5853 | static int | |
5854 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5855 | { | |
5856 | char *name; | |
5857 | ||
5858 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5859 | return 0; | |
5860 | ||
5861 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5862 | if (name == NULL) | |
5863 | return 0; | |
5864 | ||
5865 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5866 | } | |
5867 | ||
963a6417 PH |
5868 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5869 | to be invisible to users. */ | |
96d887e8 | 5870 | |
963a6417 PH |
5871 | int |
5872 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5873 | { |
963a6417 PH |
5874 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5875 | return 1; | |
73fb9985 JB |
5876 | |
5877 | /* Check the name of that field. */ | |
5878 | { | |
5879 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5880 | ||
5881 | /* Anonymous field names should not be printed. | |
5882 | brobecker/2007-02-20: I don't think this can actually happen | |
5883 | but we don't want to print the value of annonymous fields anyway. */ | |
5884 | if (name == NULL) | |
5885 | return 1; | |
5886 | ||
5887 | /* A field named "_parent" is internally generated by GNAT for | |
5888 | tagged types, and should not be printed either. */ | |
5889 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) | |
5890 | return 1; | |
5891 | } | |
5892 | ||
5893 | /* If this is the dispatch table of a tagged type, then ignore. */ | |
5894 | if (ada_is_tagged_type (type, 1) | |
5895 | && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) | |
5896 | return 1; | |
5897 | ||
5898 | /* Not a special field, so it should not be ignored. */ | |
5899 | return 0; | |
963a6417 | 5900 | } |
96d887e8 | 5901 | |
963a6417 | 5902 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 5903 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 5904 | |
963a6417 PH |
5905 | int |
5906 | ada_is_tagged_type (struct type *type, int refok) | |
5907 | { | |
5908 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
5909 | } | |
96d887e8 | 5910 | |
963a6417 | 5911 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5912 | |
963a6417 PH |
5913 | int |
5914 | ada_is_tag_type (struct type *type) | |
5915 | { | |
5916 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
5917 | return 0; | |
5918 | else | |
96d887e8 | 5919 | { |
963a6417 | 5920 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 5921 | |
963a6417 PH |
5922 | return (name != NULL |
5923 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 5924 | } |
96d887e8 PH |
5925 | } |
5926 | ||
963a6417 | 5927 | /* The type of the tag on VAL. */ |
76a01679 | 5928 | |
963a6417 PH |
5929 | struct type * |
5930 | ada_tag_type (struct value *val) | |
96d887e8 | 5931 | { |
df407dfe | 5932 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 5933 | } |
96d887e8 | 5934 | |
963a6417 | 5935 | /* The value of the tag on VAL. */ |
96d887e8 | 5936 | |
963a6417 PH |
5937 | struct value * |
5938 | ada_value_tag (struct value *val) | |
5939 | { | |
03ee6b2e | 5940 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
5941 | } |
5942 | ||
963a6417 PH |
5943 | /* The value of the tag on the object of type TYPE whose contents are |
5944 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 5945 | ADDRESS. */ |
96d887e8 | 5946 | |
963a6417 | 5947 | static struct value * |
10a2c479 | 5948 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 5949 | const gdb_byte *valaddr, |
963a6417 | 5950 | CORE_ADDR address) |
96d887e8 | 5951 | { |
b5385fc0 | 5952 | int tag_byte_offset; |
963a6417 | 5953 | struct type *tag_type; |
5b4ee69b | 5954 | |
963a6417 | 5955 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 5956 | NULL, NULL, NULL)) |
96d887e8 | 5957 | { |
fc1a4b47 | 5958 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
5959 | ? NULL |
5960 | : valaddr + tag_byte_offset); | |
963a6417 | 5961 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 5962 | |
963a6417 | 5963 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 5964 | } |
963a6417 PH |
5965 | return NULL; |
5966 | } | |
96d887e8 | 5967 | |
963a6417 PH |
5968 | static struct type * |
5969 | type_from_tag (struct value *tag) | |
5970 | { | |
5971 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 5972 | |
963a6417 PH |
5973 | if (type_name != NULL) |
5974 | return ada_find_any_type (ada_encode (type_name)); | |
5975 | return NULL; | |
5976 | } | |
96d887e8 | 5977 | |
963a6417 PH |
5978 | struct tag_args |
5979 | { | |
5980 | struct value *tag; | |
5981 | char *name; | |
5982 | }; | |
4c4b4cd2 | 5983 | |
529cad9c PH |
5984 | |
5985 | static int ada_tag_name_1 (void *); | |
5986 | static int ada_tag_name_2 (struct tag_args *); | |
5987 | ||
4c4b4cd2 | 5988 | /* Wrapper function used by ada_tag_name. Given a struct tag_args* |
0963b4bd | 5989 | value ARGS, sets ARGS->name to the tag name of ARGS->tag. |
4c4b4cd2 PH |
5990 | The value stored in ARGS->name is valid until the next call to |
5991 | ada_tag_name_1. */ | |
5992 | ||
5993 | static int | |
5994 | ada_tag_name_1 (void *args0) | |
5995 | { | |
5996 | struct tag_args *args = (struct tag_args *) args0; | |
5997 | static char name[1024]; | |
76a01679 | 5998 | char *p; |
4c4b4cd2 | 5999 | struct value *val; |
5b4ee69b | 6000 | |
4c4b4cd2 | 6001 | args->name = NULL; |
03ee6b2e | 6002 | val = ada_value_struct_elt (args->tag, "tsd", 1); |
529cad9c PH |
6003 | if (val == NULL) |
6004 | return ada_tag_name_2 (args); | |
03ee6b2e | 6005 | val = ada_value_struct_elt (val, "expanded_name", 1); |
529cad9c PH |
6006 | if (val == NULL) |
6007 | return 0; | |
6008 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
6009 | for (p = name; *p != '\0'; p += 1) | |
6010 | if (isalpha (*p)) | |
6011 | *p = tolower (*p); | |
6012 | args->name = name; | |
6013 | return 0; | |
6014 | } | |
6015 | ||
e802dbe0 JB |
6016 | /* Return the "ada__tags__type_specific_data" type. */ |
6017 | ||
6018 | static struct type * | |
6019 | ada_get_tsd_type (struct inferior *inf) | |
6020 | { | |
6021 | struct ada_inferior_data *data = get_ada_inferior_data (inf); | |
6022 | ||
6023 | if (data->tsd_type == 0) | |
6024 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6025 | return data->tsd_type; | |
6026 | } | |
6027 | ||
529cad9c PH |
6028 | /* Utility function for ada_tag_name_1 that tries the second |
6029 | representation for the dispatch table (in which there is no | |
6030 | explicit 'tsd' field in the referent of the tag pointer, and instead | |
0963b4bd | 6031 | the tsd pointer is stored just before the dispatch table. */ |
529cad9c PH |
6032 | |
6033 | static int | |
6034 | ada_tag_name_2 (struct tag_args *args) | |
6035 | { | |
6036 | struct type *info_type; | |
6037 | static char name[1024]; | |
6038 | char *p; | |
6039 | struct value *val, *valp; | |
6040 | ||
6041 | args->name = NULL; | |
e802dbe0 | 6042 | info_type = ada_get_tsd_type (current_inferior()); |
529cad9c PH |
6043 | if (info_type == NULL) |
6044 | return 0; | |
6045 | info_type = lookup_pointer_type (lookup_pointer_type (info_type)); | |
6046 | valp = value_cast (info_type, args->tag); | |
6047 | if (valp == NULL) | |
6048 | return 0; | |
2497b498 | 6049 | val = value_ind (value_ptradd (valp, -1)); |
4c4b4cd2 PH |
6050 | if (val == NULL) |
6051 | return 0; | |
03ee6b2e | 6052 | val = ada_value_struct_elt (val, "expanded_name", 1); |
4c4b4cd2 PH |
6053 | if (val == NULL) |
6054 | return 0; | |
6055 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
6056 | for (p = name; *p != '\0'; p += 1) | |
6057 | if (isalpha (*p)) | |
6058 | *p = tolower (*p); | |
6059 | args->name = name; | |
6060 | return 0; | |
6061 | } | |
6062 | ||
6063 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
e802dbe0 | 6064 | a C string. */ |
4c4b4cd2 PH |
6065 | |
6066 | const char * | |
6067 | ada_tag_name (struct value *tag) | |
6068 | { | |
6069 | struct tag_args args; | |
5b4ee69b | 6070 | |
df407dfe | 6071 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6072 | return NULL; |
76a01679 | 6073 | args.tag = tag; |
4c4b4cd2 PH |
6074 | args.name = NULL; |
6075 | catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL); | |
6076 | return args.name; | |
6077 | } | |
6078 | ||
6079 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6080 | |
d2e4a39e | 6081 | struct type * |
ebf56fd3 | 6082 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6083 | { |
6084 | int i; | |
6085 | ||
61ee279c | 6086 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6087 | |
6088 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6089 | return NULL; | |
6090 | ||
6091 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6092 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6093 | { |
6094 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6095 | ||
6096 | /* If the _parent field is a pointer, then dereference it. */ | |
6097 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6098 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6099 | /* If there is a parallel XVS type, get the actual base type. */ | |
6100 | parent_type = ada_get_base_type (parent_type); | |
6101 | ||
6102 | return ada_check_typedef (parent_type); | |
6103 | } | |
14f9c5c9 AS |
6104 | |
6105 | return NULL; | |
6106 | } | |
6107 | ||
4c4b4cd2 PH |
6108 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6109 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6110 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6111 | |
6112 | int | |
ebf56fd3 | 6113 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6114 | { |
61ee279c | 6115 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6116 | |
4c4b4cd2 PH |
6117 | return (name != NULL |
6118 | && (strncmp (name, "PARENT", 6) == 0 | |
6119 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
6120 | } |
6121 | ||
4c4b4cd2 | 6122 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6123 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6124 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6125 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6126 | structures. */ |
14f9c5c9 AS |
6127 | |
6128 | int | |
ebf56fd3 | 6129 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6130 | { |
d2e4a39e | 6131 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6132 | |
d2e4a39e | 6133 | return (name != NULL |
4c4b4cd2 PH |
6134 | && (strncmp (name, "PARENT", 6) == 0 |
6135 | || strcmp (name, "REP") == 0 | |
6136 | || strncmp (name, "_parent", 7) == 0 | |
6137 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
6138 | } |
6139 | ||
4c4b4cd2 PH |
6140 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6141 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6142 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6143 | |
6144 | int | |
ebf56fd3 | 6145 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6146 | { |
d2e4a39e | 6147 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6148 | |
14f9c5c9 | 6149 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6150 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6151 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6152 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6153 | } |
6154 | ||
6155 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6156 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6157 | returns the type of the controlling discriminant for the variant. |
6158 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6159 | |
d2e4a39e | 6160 | struct type * |
ebf56fd3 | 6161 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6162 | { |
d2e4a39e | 6163 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6164 | |
7c964f07 | 6165 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
6166 | } |
6167 | ||
4c4b4cd2 | 6168 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6169 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6170 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
6171 | |
6172 | int | |
ebf56fd3 | 6173 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6174 | { |
d2e4a39e | 6175 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6176 | |
14f9c5c9 AS |
6177 | return (name != NULL && name[0] == 'O'); |
6178 | } | |
6179 | ||
6180 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
6181 | returns the name of the discriminant controlling the variant. |
6182 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 6183 | |
d2e4a39e | 6184 | char * |
ebf56fd3 | 6185 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 6186 | { |
d2e4a39e | 6187 | static char *result = NULL; |
14f9c5c9 | 6188 | static size_t result_len = 0; |
d2e4a39e AS |
6189 | struct type *type; |
6190 | const char *name; | |
6191 | const char *discrim_end; | |
6192 | const char *discrim_start; | |
14f9c5c9 AS |
6193 | |
6194 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
6195 | type = TYPE_TARGET_TYPE (type0); | |
6196 | else | |
6197 | type = type0; | |
6198 | ||
6199 | name = ada_type_name (type); | |
6200 | ||
6201 | if (name == NULL || name[0] == '\000') | |
6202 | return ""; | |
6203 | ||
6204 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6205 | discrim_end -= 1) | |
6206 | { | |
4c4b4cd2 PH |
6207 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
6208 | break; | |
14f9c5c9 AS |
6209 | } |
6210 | if (discrim_end == name) | |
6211 | return ""; | |
6212 | ||
d2e4a39e | 6213 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6214 | discrim_start -= 1) |
6215 | { | |
d2e4a39e | 6216 | if (discrim_start == name + 1) |
4c4b4cd2 | 6217 | return ""; |
76a01679 | 6218 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
6219 | && strncmp (discrim_start - 3, "___", 3) == 0) |
6220 | || discrim_start[-1] == '.') | |
6221 | break; | |
14f9c5c9 AS |
6222 | } |
6223 | ||
6224 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
6225 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 6226 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
6227 | return result; |
6228 | } | |
6229 | ||
4c4b4cd2 PH |
6230 | /* Scan STR for a subtype-encoded number, beginning at position K. |
6231 | Put the position of the character just past the number scanned in | |
6232 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
6233 | Return 1 if there was a valid number at the given position, and 0 | |
6234 | otherwise. A "subtype-encoded" number consists of the absolute value | |
6235 | in decimal, followed by the letter 'm' to indicate a negative number. | |
6236 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
6237 | |
6238 | int | |
d2e4a39e | 6239 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
6240 | { |
6241 | ULONGEST RU; | |
6242 | ||
d2e4a39e | 6243 | if (!isdigit (str[k])) |
14f9c5c9 AS |
6244 | return 0; |
6245 | ||
4c4b4cd2 | 6246 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 6247 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 6248 | LONGEST. */ |
14f9c5c9 AS |
6249 | RU = 0; |
6250 | while (isdigit (str[k])) | |
6251 | { | |
d2e4a39e | 6252 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
6253 | k += 1; |
6254 | } | |
6255 | ||
d2e4a39e | 6256 | if (str[k] == 'm') |
14f9c5c9 AS |
6257 | { |
6258 | if (R != NULL) | |
4c4b4cd2 | 6259 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
6260 | k += 1; |
6261 | } | |
6262 | else if (R != NULL) | |
6263 | *R = (LONGEST) RU; | |
6264 | ||
4c4b4cd2 | 6265 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6266 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6267 | number representable as a LONGEST (although either would probably work | |
6268 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6269 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6270 | |
6271 | if (new_k != NULL) | |
6272 | *new_k = k; | |
6273 | return 1; | |
6274 | } | |
6275 | ||
4c4b4cd2 PH |
6276 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6277 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6278 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6279 | |
d2e4a39e | 6280 | int |
ebf56fd3 | 6281 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6282 | { |
d2e4a39e | 6283 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6284 | int p; |
6285 | ||
6286 | p = 0; | |
6287 | while (1) | |
6288 | { | |
d2e4a39e | 6289 | switch (name[p]) |
4c4b4cd2 PH |
6290 | { |
6291 | case '\0': | |
6292 | return 0; | |
6293 | case 'S': | |
6294 | { | |
6295 | LONGEST W; | |
5b4ee69b | 6296 | |
4c4b4cd2 PH |
6297 | if (!ada_scan_number (name, p + 1, &W, &p)) |
6298 | return 0; | |
6299 | if (val == W) | |
6300 | return 1; | |
6301 | break; | |
6302 | } | |
6303 | case 'R': | |
6304 | { | |
6305 | LONGEST L, U; | |
5b4ee69b | 6306 | |
4c4b4cd2 PH |
6307 | if (!ada_scan_number (name, p + 1, &L, &p) |
6308 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6309 | return 0; | |
6310 | if (val >= L && val <= U) | |
6311 | return 1; | |
6312 | break; | |
6313 | } | |
6314 | case 'O': | |
6315 | return 1; | |
6316 | default: | |
6317 | return 0; | |
6318 | } | |
6319 | } | |
6320 | } | |
6321 | ||
0963b4bd | 6322 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
6323 | |
6324 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6325 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6326 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6327 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6328 | |
4c4b4cd2 | 6329 | static struct value * |
d2e4a39e | 6330 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6331 | struct type *arg_type) |
14f9c5c9 | 6332 | { |
14f9c5c9 AS |
6333 | struct type *type; |
6334 | ||
61ee279c | 6335 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
6336 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
6337 | ||
4c4b4cd2 | 6338 | /* Handle packed fields. */ |
14f9c5c9 AS |
6339 | |
6340 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
6341 | { | |
6342 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6343 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6344 | |
0fd88904 | 6345 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6346 | offset + bit_pos / 8, |
6347 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6348 | } |
6349 | else | |
6350 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6351 | } | |
6352 | ||
52ce6436 PH |
6353 | /* Find field with name NAME in object of type TYPE. If found, |
6354 | set the following for each argument that is non-null: | |
6355 | - *FIELD_TYPE_P to the field's type; | |
6356 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6357 | an object of that type; | |
6358 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6359 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6360 | 0 otherwise; | |
6361 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6362 | fields up to but not including the desired field, or by the total | |
6363 | number of fields if not found. A NULL value of NAME never | |
6364 | matches; the function just counts visible fields in this case. | |
6365 | ||
0963b4bd | 6366 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 6367 | |
4c4b4cd2 | 6368 | static int |
76a01679 JB |
6369 | find_struct_field (char *name, struct type *type, int offset, |
6370 | struct type **field_type_p, | |
52ce6436 PH |
6371 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6372 | int *index_p) | |
4c4b4cd2 PH |
6373 | { |
6374 | int i; | |
6375 | ||
61ee279c | 6376 | type = ada_check_typedef (type); |
76a01679 | 6377 | |
52ce6436 PH |
6378 | if (field_type_p != NULL) |
6379 | *field_type_p = NULL; | |
6380 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6381 | *byte_offset_p = 0; |
52ce6436 PH |
6382 | if (bit_offset_p != NULL) |
6383 | *bit_offset_p = 0; | |
6384 | if (bit_size_p != NULL) | |
6385 | *bit_size_p = 0; | |
6386 | ||
6387 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6388 | { |
6389 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6390 | int fld_offset = offset + bit_pos / 8; | |
6391 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
76a01679 | 6392 | |
4c4b4cd2 PH |
6393 | if (t_field_name == NULL) |
6394 | continue; | |
6395 | ||
52ce6436 | 6396 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6397 | { |
6398 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 6399 | |
52ce6436 PH |
6400 | if (field_type_p != NULL) |
6401 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6402 | if (byte_offset_p != NULL) | |
6403 | *byte_offset_p = fld_offset; | |
6404 | if (bit_offset_p != NULL) | |
6405 | *bit_offset_p = bit_pos % 8; | |
6406 | if (bit_size_p != NULL) | |
6407 | *bit_size_p = bit_size; | |
76a01679 JB |
6408 | return 1; |
6409 | } | |
4c4b4cd2 PH |
6410 | else if (ada_is_wrapper_field (type, i)) |
6411 | { | |
52ce6436 PH |
6412 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6413 | field_type_p, byte_offset_p, bit_offset_p, | |
6414 | bit_size_p, index_p)) | |
76a01679 JB |
6415 | return 1; |
6416 | } | |
4c4b4cd2 PH |
6417 | else if (ada_is_variant_part (type, i)) |
6418 | { | |
52ce6436 PH |
6419 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6420 | fixed type?? */ | |
4c4b4cd2 | 6421 | int j; |
52ce6436 PH |
6422 | struct type *field_type |
6423 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6424 | |
52ce6436 | 6425 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6426 | { |
76a01679 JB |
6427 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6428 | fld_offset | |
6429 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6430 | field_type_p, byte_offset_p, | |
52ce6436 | 6431 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6432 | return 1; |
4c4b4cd2 PH |
6433 | } |
6434 | } | |
52ce6436 PH |
6435 | else if (index_p != NULL) |
6436 | *index_p += 1; | |
4c4b4cd2 PH |
6437 | } |
6438 | return 0; | |
6439 | } | |
6440 | ||
0963b4bd | 6441 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6442 | |
52ce6436 PH |
6443 | static int |
6444 | num_visible_fields (struct type *type) | |
6445 | { | |
6446 | int n; | |
5b4ee69b | 6447 | |
52ce6436 PH |
6448 | n = 0; |
6449 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6450 | return n; | |
6451 | } | |
14f9c5c9 | 6452 | |
4c4b4cd2 | 6453 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6454 | and search in it assuming it has (class) type TYPE. |
6455 | If found, return value, else return NULL. | |
6456 | ||
4c4b4cd2 | 6457 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 6458 | |
4c4b4cd2 | 6459 | static struct value * |
d2e4a39e | 6460 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 6461 | struct type *type) |
14f9c5c9 AS |
6462 | { |
6463 | int i; | |
14f9c5c9 | 6464 | |
5b4ee69b | 6465 | type = ada_check_typedef (type); |
52ce6436 | 6466 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 AS |
6467 | { |
6468 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6469 | ||
6470 | if (t_field_name == NULL) | |
4c4b4cd2 | 6471 | continue; |
14f9c5c9 AS |
6472 | |
6473 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 6474 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
6475 | |
6476 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 6477 | { |
0963b4bd | 6478 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
6479 | ada_search_struct_field (name, arg, |
6480 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6481 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6482 | |
4c4b4cd2 PH |
6483 | if (v != NULL) |
6484 | return v; | |
6485 | } | |
14f9c5c9 AS |
6486 | |
6487 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 6488 | { |
0963b4bd | 6489 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 6490 | int j; |
5b4ee69b MS |
6491 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6492 | i)); | |
4c4b4cd2 PH |
6493 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6494 | ||
52ce6436 | 6495 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6496 | { |
0963b4bd MS |
6497 | struct value *v = ada_search_struct_field /* Force line |
6498 | break. */ | |
06d5cf63 JB |
6499 | (name, arg, |
6500 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6501 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 6502 | |
4c4b4cd2 PH |
6503 | if (v != NULL) |
6504 | return v; | |
6505 | } | |
6506 | } | |
14f9c5c9 AS |
6507 | } |
6508 | return NULL; | |
6509 | } | |
d2e4a39e | 6510 | |
52ce6436 PH |
6511 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6512 | int, struct type *); | |
6513 | ||
6514 | ||
6515 | /* Return field #INDEX in ARG, where the index is that returned by | |
6516 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6517 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 6518 | * If found, return value, else return NULL. */ |
52ce6436 PH |
6519 | |
6520 | static struct value * | |
6521 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6522 | struct type *type) | |
6523 | { | |
6524 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6525 | } | |
6526 | ||
6527 | ||
6528 | /* Auxiliary function for ada_index_struct_field. Like | |
6529 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 6530 | * *INDEX_P. */ |
52ce6436 PH |
6531 | |
6532 | static struct value * | |
6533 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6534 | struct type *type) | |
6535 | { | |
6536 | int i; | |
6537 | type = ada_check_typedef (type); | |
6538 | ||
6539 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6540 | { | |
6541 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6542 | continue; | |
6543 | else if (ada_is_wrapper_field (type, i)) | |
6544 | { | |
0963b4bd | 6545 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
6546 | ada_index_struct_field_1 (index_p, arg, |
6547 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6548 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6549 | |
52ce6436 PH |
6550 | if (v != NULL) |
6551 | return v; | |
6552 | } | |
6553 | ||
6554 | else if (ada_is_variant_part (type, i)) | |
6555 | { | |
6556 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 6557 | find_struct_field. */ |
52ce6436 PH |
6558 | error (_("Cannot assign this kind of variant record")); |
6559 | } | |
6560 | else if (*index_p == 0) | |
6561 | return ada_value_primitive_field (arg, offset, i, type); | |
6562 | else | |
6563 | *index_p -= 1; | |
6564 | } | |
6565 | return NULL; | |
6566 | } | |
6567 | ||
4c4b4cd2 PH |
6568 | /* Given ARG, a value of type (pointer or reference to a)* |
6569 | structure/union, extract the component named NAME from the ultimate | |
6570 | target structure/union and return it as a value with its | |
f5938064 | 6571 | appropriate type. |
14f9c5c9 | 6572 | |
4c4b4cd2 PH |
6573 | The routine searches for NAME among all members of the structure itself |
6574 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6575 | (e.g., '_parent'). |
6576 | ||
03ee6b2e PH |
6577 | If NO_ERR, then simply return NULL in case of error, rather than |
6578 | calling error. */ | |
14f9c5c9 | 6579 | |
d2e4a39e | 6580 | struct value * |
03ee6b2e | 6581 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6582 | { |
4c4b4cd2 | 6583 | struct type *t, *t1; |
d2e4a39e | 6584 | struct value *v; |
14f9c5c9 | 6585 | |
4c4b4cd2 | 6586 | v = NULL; |
df407dfe | 6587 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6588 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6589 | { | |
6590 | t1 = TYPE_TARGET_TYPE (t); | |
6591 | if (t1 == NULL) | |
03ee6b2e | 6592 | goto BadValue; |
61ee279c | 6593 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6594 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6595 | { |
994b9211 | 6596 | arg = coerce_ref (arg); |
76a01679 JB |
6597 | t = t1; |
6598 | } | |
4c4b4cd2 | 6599 | } |
14f9c5c9 | 6600 | |
4c4b4cd2 PH |
6601 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6602 | { | |
6603 | t1 = TYPE_TARGET_TYPE (t); | |
6604 | if (t1 == NULL) | |
03ee6b2e | 6605 | goto BadValue; |
61ee279c | 6606 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6607 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6608 | { |
6609 | arg = value_ind (arg); | |
6610 | t = t1; | |
6611 | } | |
4c4b4cd2 | 6612 | else |
76a01679 | 6613 | break; |
4c4b4cd2 | 6614 | } |
14f9c5c9 | 6615 | |
4c4b4cd2 | 6616 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6617 | goto BadValue; |
14f9c5c9 | 6618 | |
4c4b4cd2 PH |
6619 | if (t1 == t) |
6620 | v = ada_search_struct_field (name, arg, 0, t); | |
6621 | else | |
6622 | { | |
6623 | int bit_offset, bit_size, byte_offset; | |
6624 | struct type *field_type; | |
6625 | CORE_ADDR address; | |
6626 | ||
76a01679 JB |
6627 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
6628 | address = value_as_address (arg); | |
4c4b4cd2 | 6629 | else |
0fd88904 | 6630 | address = unpack_pointer (t, value_contents (arg)); |
14f9c5c9 | 6631 | |
1ed6ede0 | 6632 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6633 | if (find_struct_field (name, t1, 0, |
6634 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6635 | &bit_size, NULL)) |
76a01679 JB |
6636 | { |
6637 | if (bit_size != 0) | |
6638 | { | |
714e53ab PH |
6639 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6640 | arg = ada_coerce_ref (arg); | |
6641 | else | |
6642 | arg = ada_value_ind (arg); | |
76a01679 JB |
6643 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6644 | bit_offset, bit_size, | |
6645 | field_type); | |
6646 | } | |
6647 | else | |
f5938064 | 6648 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6649 | } |
6650 | } | |
6651 | ||
03ee6b2e PH |
6652 | if (v != NULL || no_err) |
6653 | return v; | |
6654 | else | |
323e0a4a | 6655 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6656 | |
03ee6b2e PH |
6657 | BadValue: |
6658 | if (no_err) | |
6659 | return NULL; | |
6660 | else | |
0963b4bd MS |
6661 | error (_("Attempt to extract a component of " |
6662 | "a value that is not a record.")); | |
14f9c5c9 AS |
6663 | } |
6664 | ||
6665 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6666 | If DISPP is non-null, add its byte displacement from the beginning of a |
6667 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6668 | work for packed fields). |
6669 | ||
6670 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6671 | followed by "___". |
14f9c5c9 | 6672 | |
0963b4bd | 6673 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
6674 | be a (pointer or reference)+ to a struct or union, and the |
6675 | ultimate target type will be searched. | |
14f9c5c9 AS |
6676 | |
6677 | Looks recursively into variant clauses and parent types. | |
6678 | ||
4c4b4cd2 PH |
6679 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6680 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6681 | |
4c4b4cd2 | 6682 | static struct type * |
76a01679 JB |
6683 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6684 | int noerr, int *dispp) | |
14f9c5c9 AS |
6685 | { |
6686 | int i; | |
6687 | ||
6688 | if (name == NULL) | |
6689 | goto BadName; | |
6690 | ||
76a01679 | 6691 | if (refok && type != NULL) |
4c4b4cd2 PH |
6692 | while (1) |
6693 | { | |
61ee279c | 6694 | type = ada_check_typedef (type); |
76a01679 JB |
6695 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6696 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6697 | break; | |
6698 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6699 | } |
14f9c5c9 | 6700 | |
76a01679 | 6701 | if (type == NULL |
1265e4aa JB |
6702 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6703 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6704 | { |
4c4b4cd2 | 6705 | if (noerr) |
76a01679 | 6706 | return NULL; |
4c4b4cd2 | 6707 | else |
76a01679 JB |
6708 | { |
6709 | target_terminal_ours (); | |
6710 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6711 | if (type == NULL) |
6712 | error (_("Type (null) is not a structure or union type")); | |
6713 | else | |
6714 | { | |
6715 | /* XXX: type_sprint */ | |
6716 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6717 | type_print (type, "", gdb_stderr, -1); | |
6718 | error (_(" is not a structure or union type")); | |
6719 | } | |
76a01679 | 6720 | } |
14f9c5c9 AS |
6721 | } |
6722 | ||
6723 | type = to_static_fixed_type (type); | |
6724 | ||
6725 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6726 | { | |
6727 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6728 | struct type *t; | |
6729 | int disp; | |
d2e4a39e | 6730 | |
14f9c5c9 | 6731 | if (t_field_name == NULL) |
4c4b4cd2 | 6732 | continue; |
14f9c5c9 AS |
6733 | |
6734 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6735 | { |
6736 | if (dispp != NULL) | |
6737 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6738 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6739 | } |
14f9c5c9 AS |
6740 | |
6741 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6742 | { |
6743 | disp = 0; | |
6744 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6745 | 0, 1, &disp); | |
6746 | if (t != NULL) | |
6747 | { | |
6748 | if (dispp != NULL) | |
6749 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6750 | return t; | |
6751 | } | |
6752 | } | |
14f9c5c9 AS |
6753 | |
6754 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6755 | { |
6756 | int j; | |
5b4ee69b MS |
6757 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6758 | i)); | |
4c4b4cd2 PH |
6759 | |
6760 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6761 | { | |
b1f33ddd JB |
6762 | /* FIXME pnh 2008/01/26: We check for a field that is |
6763 | NOT wrapped in a struct, since the compiler sometimes | |
6764 | generates these for unchecked variant types. Revisit | |
0963b4bd | 6765 | if the compiler changes this practice. */ |
b1f33ddd | 6766 | char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 6767 | disp = 0; |
b1f33ddd JB |
6768 | if (v_field_name != NULL |
6769 | && field_name_match (v_field_name, name)) | |
6770 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
6771 | else | |
0963b4bd MS |
6772 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
6773 | j), | |
b1f33ddd JB |
6774 | name, 0, 1, &disp); |
6775 | ||
4c4b4cd2 PH |
6776 | if (t != NULL) |
6777 | { | |
6778 | if (dispp != NULL) | |
6779 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6780 | return t; | |
6781 | } | |
6782 | } | |
6783 | } | |
14f9c5c9 AS |
6784 | |
6785 | } | |
6786 | ||
6787 | BadName: | |
d2e4a39e | 6788 | if (!noerr) |
14f9c5c9 AS |
6789 | { |
6790 | target_terminal_ours (); | |
6791 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6792 | if (name == NULL) |
6793 | { | |
6794 | /* XXX: type_sprint */ | |
6795 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6796 | type_print (type, "", gdb_stderr, -1); | |
6797 | error (_(" has no component named <null>")); | |
6798 | } | |
6799 | else | |
6800 | { | |
6801 | /* XXX: type_sprint */ | |
6802 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6803 | type_print (type, "", gdb_stderr, -1); | |
6804 | error (_(" has no component named %s"), name); | |
6805 | } | |
14f9c5c9 AS |
6806 | } |
6807 | ||
6808 | return NULL; | |
6809 | } | |
6810 | ||
b1f33ddd JB |
6811 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6812 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
6813 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 6814 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
6815 | |
6816 | static int | |
6817 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
6818 | { | |
6819 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 6820 | |
b1f33ddd JB |
6821 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
6822 | == NULL); | |
6823 | } | |
6824 | ||
6825 | ||
14f9c5c9 AS |
6826 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6827 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
6828 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
6829 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 6830 | |
d2e4a39e | 6831 | int |
ebf56fd3 | 6832 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 6833 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
6834 | { |
6835 | int others_clause; | |
6836 | int i; | |
d2e4a39e | 6837 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
6838 | struct value *outer; |
6839 | struct value *discrim; | |
14f9c5c9 AS |
6840 | LONGEST discrim_val; |
6841 | ||
0c281816 JB |
6842 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
6843 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
6844 | if (discrim == NULL) | |
14f9c5c9 | 6845 | return -1; |
0c281816 | 6846 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
6847 | |
6848 | others_clause = -1; | |
6849 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
6850 | { | |
6851 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 6852 | others_clause = i; |
14f9c5c9 | 6853 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 6854 | return i; |
14f9c5c9 AS |
6855 | } |
6856 | ||
6857 | return others_clause; | |
6858 | } | |
d2e4a39e | 6859 | \f |
14f9c5c9 AS |
6860 | |
6861 | ||
4c4b4cd2 | 6862 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
6863 | |
6864 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
6865 | (i.e., a size that is not statically recorded in the debugging | |
6866 | data) does not accurately reflect the size or layout of the value. | |
6867 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 6868 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
6869 | |
6870 | /* There is a subtle and tricky problem here. In general, we cannot | |
6871 | determine the size of dynamic records without its data. However, | |
6872 | the 'struct value' data structure, which GDB uses to represent | |
6873 | quantities in the inferior process (the target), requires the size | |
6874 | of the type at the time of its allocation in order to reserve space | |
6875 | for GDB's internal copy of the data. That's why the | |
6876 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 6877 | rather than struct value*s. |
14f9c5c9 AS |
6878 | |
6879 | However, GDB's internal history variables ($1, $2, etc.) are | |
6880 | struct value*s containing internal copies of the data that are not, in | |
6881 | general, the same as the data at their corresponding addresses in | |
6882 | the target. Fortunately, the types we give to these values are all | |
6883 | conventional, fixed-size types (as per the strategy described | |
6884 | above), so that we don't usually have to perform the | |
6885 | 'to_fixed_xxx_type' conversions to look at their values. | |
6886 | Unfortunately, there is one exception: if one of the internal | |
6887 | history variables is an array whose elements are unconstrained | |
6888 | records, then we will need to create distinct fixed types for each | |
6889 | element selected. */ | |
6890 | ||
6891 | /* The upshot of all of this is that many routines take a (type, host | |
6892 | address, target address) triple as arguments to represent a value. | |
6893 | The host address, if non-null, is supposed to contain an internal | |
6894 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 6895 | target at the target address. */ |
14f9c5c9 AS |
6896 | |
6897 | /* Assuming that VAL0 represents a pointer value, the result of | |
6898 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 6899 | dynamic-sized types. */ |
14f9c5c9 | 6900 | |
d2e4a39e AS |
6901 | struct value * |
6902 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 6903 | { |
d2e4a39e | 6904 | struct value *val = unwrap_value (value_ind (val0)); |
5b4ee69b | 6905 | |
4c4b4cd2 | 6906 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
6907 | } |
6908 | ||
6909 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
6910 | qualifiers on VAL0. */ |
6911 | ||
d2e4a39e AS |
6912 | static struct value * |
6913 | ada_coerce_ref (struct value *val0) | |
6914 | { | |
df407dfe | 6915 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
6916 | { |
6917 | struct value *val = val0; | |
5b4ee69b | 6918 | |
994b9211 | 6919 | val = coerce_ref (val); |
d2e4a39e | 6920 | val = unwrap_value (val); |
4c4b4cd2 | 6921 | return ada_to_fixed_value (val); |
d2e4a39e AS |
6922 | } |
6923 | else | |
14f9c5c9 AS |
6924 | return val0; |
6925 | } | |
6926 | ||
6927 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 6928 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
6929 | |
6930 | static unsigned int | |
ebf56fd3 | 6931 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
6932 | { |
6933 | return (off + alignment - 1) & ~(alignment - 1); | |
6934 | } | |
6935 | ||
4c4b4cd2 | 6936 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
6937 | |
6938 | static unsigned int | |
ebf56fd3 | 6939 | field_alignment (struct type *type, int f) |
14f9c5c9 | 6940 | { |
d2e4a39e | 6941 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 6942 | int len; |
14f9c5c9 AS |
6943 | int align_offset; |
6944 | ||
64a1bf19 JB |
6945 | /* The field name should never be null, unless the debugging information |
6946 | is somehow malformed. In this case, we assume the field does not | |
6947 | require any alignment. */ | |
6948 | if (name == NULL) | |
6949 | return 1; | |
6950 | ||
6951 | len = strlen (name); | |
6952 | ||
4c4b4cd2 PH |
6953 | if (!isdigit (name[len - 1])) |
6954 | return 1; | |
14f9c5c9 | 6955 | |
d2e4a39e | 6956 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
6957 | align_offset = len - 2; |
6958 | else | |
6959 | align_offset = len - 1; | |
6960 | ||
4c4b4cd2 | 6961 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
6962 | return TARGET_CHAR_BIT; |
6963 | ||
4c4b4cd2 PH |
6964 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
6965 | } | |
6966 | ||
6967 | /* Find a symbol named NAME. Ignores ambiguity. */ | |
6968 | ||
6969 | struct symbol * | |
6970 | ada_find_any_symbol (const char *name) | |
6971 | { | |
6972 | struct symbol *sym; | |
6973 | ||
6974 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
6975 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
6976 | return sym; | |
6977 | ||
6978 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
6979 | return sym; | |
14f9c5c9 AS |
6980 | } |
6981 | ||
dddfab26 UW |
6982 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
6983 | solely for types defined by debug info, it will not search the GDB | |
6984 | primitive types. */ | |
4c4b4cd2 | 6985 | |
d2e4a39e | 6986 | struct type * |
ebf56fd3 | 6987 | ada_find_any_type (const char *name) |
14f9c5c9 | 6988 | { |
4c4b4cd2 | 6989 | struct symbol *sym = ada_find_any_symbol (name); |
14f9c5c9 | 6990 | |
14f9c5c9 | 6991 | if (sym != NULL) |
dddfab26 | 6992 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 6993 | |
dddfab26 | 6994 | return NULL; |
14f9c5c9 AS |
6995 | } |
6996 | ||
aeb5907d JB |
6997 | /* Given NAME and an associated BLOCK, search all symbols for |
6998 | NAME suffixed with "___XR", which is the ``renaming'' symbol | |
4c4b4cd2 PH |
6999 | associated to NAME. Return this symbol if found, return |
7000 | NULL otherwise. */ | |
7001 | ||
7002 | struct symbol * | |
7003 | ada_find_renaming_symbol (const char *name, struct block *block) | |
aeb5907d JB |
7004 | { |
7005 | struct symbol *sym; | |
7006 | ||
7007 | sym = find_old_style_renaming_symbol (name, block); | |
7008 | ||
7009 | if (sym != NULL) | |
7010 | return sym; | |
7011 | ||
0963b4bd | 7012 | /* Not right yet. FIXME pnh 7/20/2007. */ |
aeb5907d JB |
7013 | sym = ada_find_any_symbol (name); |
7014 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) | |
7015 | return sym; | |
7016 | else | |
7017 | return NULL; | |
7018 | } | |
7019 | ||
7020 | static struct symbol * | |
7021 | find_old_style_renaming_symbol (const char *name, struct block *block) | |
4c4b4cd2 | 7022 | { |
7f0df278 | 7023 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7024 | char *rename; |
7025 | ||
7026 | if (function_sym != NULL) | |
7027 | { | |
7028 | /* If the symbol is defined inside a function, NAME is not fully | |
7029 | qualified. This means we need to prepend the function name | |
7030 | as well as adding the ``___XR'' suffix to build the name of | |
7031 | the associated renaming symbol. */ | |
7032 | char *function_name = SYMBOL_LINKAGE_NAME (function_sym); | |
529cad9c PH |
7033 | /* Function names sometimes contain suffixes used |
7034 | for instance to qualify nested subprograms. When building | |
7035 | the XR type name, we need to make sure that this suffix is | |
7036 | not included. So do not include any suffix in the function | |
7037 | name length below. */ | |
69fadcdf | 7038 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
7039 | const int rename_len = function_name_len + 2 /* "__" */ |
7040 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 7041 | |
529cad9c | 7042 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
7043 | ada_remove_trailing_digits (function_name, &function_name_len); |
7044 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
7045 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 7046 | |
4c4b4cd2 PH |
7047 | /* Library-level functions are a special case, as GNAT adds |
7048 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 7049 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
7050 | have this prefix, so we need to skip this prefix if present. */ |
7051 | if (function_name_len > 5 /* "_ada_" */ | |
7052 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
7053 | { |
7054 | function_name += 5; | |
7055 | function_name_len -= 5; | |
7056 | } | |
4c4b4cd2 PH |
7057 | |
7058 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
7059 | strncpy (rename, function_name, function_name_len); |
7060 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
7061 | "__%s___XR", name); | |
4c4b4cd2 PH |
7062 | } |
7063 | else | |
7064 | { | |
7065 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 7066 | |
4c4b4cd2 | 7067 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7068 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7069 | } |
7070 | ||
7071 | return ada_find_any_symbol (rename); | |
7072 | } | |
7073 | ||
14f9c5c9 | 7074 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7075 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7076 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7077 | otherwise return 0. */ |
7078 | ||
14f9c5c9 | 7079 | int |
d2e4a39e | 7080 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7081 | { |
7082 | if (type1 == NULL) | |
7083 | return 1; | |
7084 | else if (type0 == NULL) | |
7085 | return 0; | |
7086 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7087 | return 1; | |
7088 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7089 | return 0; | |
4c4b4cd2 PH |
7090 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7091 | return 1; | |
ad82864c | 7092 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7093 | return 1; |
4c4b4cd2 PH |
7094 | else if (ada_is_array_descriptor_type (type0) |
7095 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7096 | return 1; |
aeb5907d JB |
7097 | else |
7098 | { | |
7099 | const char *type0_name = type_name_no_tag (type0); | |
7100 | const char *type1_name = type_name_no_tag (type1); | |
7101 | ||
7102 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7103 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7104 | return 1; | |
7105 | } | |
14f9c5c9 AS |
7106 | return 0; |
7107 | } | |
7108 | ||
7109 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
7110 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
7111 | ||
d2e4a39e AS |
7112 | char * |
7113 | ada_type_name (struct type *type) | |
14f9c5c9 | 7114 | { |
d2e4a39e | 7115 | if (type == NULL) |
14f9c5c9 AS |
7116 | return NULL; |
7117 | else if (TYPE_NAME (type) != NULL) | |
7118 | return TYPE_NAME (type); | |
7119 | else | |
7120 | return TYPE_TAG_NAME (type); | |
7121 | } | |
7122 | ||
b4ba55a1 JB |
7123 | /* Search the list of "descriptive" types associated to TYPE for a type |
7124 | whose name is NAME. */ | |
7125 | ||
7126 | static struct type * | |
7127 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
7128 | { | |
7129 | struct type *result; | |
7130 | ||
7131 | /* If there no descriptive-type info, then there is no parallel type | |
7132 | to be found. */ | |
7133 | if (!HAVE_GNAT_AUX_INFO (type)) | |
7134 | return NULL; | |
7135 | ||
7136 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
7137 | while (result != NULL) | |
7138 | { | |
7139 | char *result_name = ada_type_name (result); | |
7140 | ||
7141 | if (result_name == NULL) | |
7142 | { | |
7143 | warning (_("unexpected null name on descriptive type")); | |
7144 | return NULL; | |
7145 | } | |
7146 | ||
7147 | /* If the names match, stop. */ | |
7148 | if (strcmp (result_name, name) == 0) | |
7149 | break; | |
7150 | ||
7151 | /* Otherwise, look at the next item on the list, if any. */ | |
7152 | if (HAVE_GNAT_AUX_INFO (result)) | |
7153 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
7154 | else | |
7155 | result = NULL; | |
7156 | } | |
7157 | ||
7158 | /* If we didn't find a match, see whether this is a packed array. With | |
7159 | older compilers, the descriptive type information is either absent or | |
7160 | irrelevant when it comes to packed arrays so the above lookup fails. | |
7161 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 7162 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
7163 | return ada_find_any_type (name); |
7164 | ||
7165 | return result; | |
7166 | } | |
7167 | ||
7168 | /* Find a parallel type to TYPE with the specified NAME, using the | |
7169 | descriptive type taken from the debugging information, if available, | |
7170 | and otherwise using the (slower) name-based method. */ | |
7171 | ||
7172 | static struct type * | |
7173 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
7174 | { | |
7175 | struct type *result = NULL; | |
7176 | ||
7177 | if (HAVE_GNAT_AUX_INFO (type)) | |
7178 | result = find_parallel_type_by_descriptive_type (type, name); | |
7179 | else | |
7180 | result = ada_find_any_type (name); | |
7181 | ||
7182 | return result; | |
7183 | } | |
7184 | ||
7185 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 7186 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 7187 | |
d2e4a39e | 7188 | struct type * |
ebf56fd3 | 7189 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 7190 | { |
b4ba55a1 | 7191 | char *name, *typename = ada_type_name (type); |
14f9c5c9 | 7192 | int len; |
d2e4a39e | 7193 | |
14f9c5c9 AS |
7194 | if (typename == NULL) |
7195 | return NULL; | |
7196 | ||
7197 | len = strlen (typename); | |
7198 | ||
b4ba55a1 | 7199 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 AS |
7200 | |
7201 | strcpy (name, typename); | |
7202 | strcpy (name + len, suffix); | |
7203 | ||
b4ba55a1 | 7204 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
7205 | } |
7206 | ||
14f9c5c9 | 7207 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 7208 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 7209 | |
d2e4a39e AS |
7210 | static struct type * |
7211 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 7212 | { |
61ee279c | 7213 | type = ada_check_typedef (type); |
14f9c5c9 AS |
7214 | |
7215 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 7216 | || ada_type_name (type) == NULL) |
14f9c5c9 | 7217 | return NULL; |
d2e4a39e | 7218 | else |
14f9c5c9 AS |
7219 | { |
7220 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 7221 | |
4c4b4cd2 PH |
7222 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
7223 | return type; | |
14f9c5c9 | 7224 | else |
4c4b4cd2 | 7225 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
7226 | } |
7227 | } | |
7228 | ||
7229 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 7230 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 7231 | |
d2e4a39e AS |
7232 | static int |
7233 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
7234 | { |
7235 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 7236 | |
d2e4a39e | 7237 | return name != NULL |
14f9c5c9 AS |
7238 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
7239 | && strstr (name, "___XVL") != NULL; | |
7240 | } | |
7241 | ||
4c4b4cd2 PH |
7242 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
7243 | represent a variant record type. */ | |
14f9c5c9 | 7244 | |
d2e4a39e | 7245 | static int |
4c4b4cd2 | 7246 | variant_field_index (struct type *type) |
14f9c5c9 AS |
7247 | { |
7248 | int f; | |
7249 | ||
4c4b4cd2 PH |
7250 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
7251 | return -1; | |
7252 | ||
7253 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
7254 | { | |
7255 | if (ada_is_variant_part (type, f)) | |
7256 | return f; | |
7257 | } | |
7258 | return -1; | |
14f9c5c9 AS |
7259 | } |
7260 | ||
4c4b4cd2 PH |
7261 | /* A record type with no fields. */ |
7262 | ||
d2e4a39e | 7263 | static struct type * |
e9bb382b | 7264 | empty_record (struct type *template) |
14f9c5c9 | 7265 | { |
e9bb382b | 7266 | struct type *type = alloc_type_copy (template); |
5b4ee69b | 7267 | |
14f9c5c9 AS |
7268 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
7269 | TYPE_NFIELDS (type) = 0; | |
7270 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 7271 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
7272 | TYPE_NAME (type) = "<empty>"; |
7273 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
7274 | TYPE_LENGTH (type) = 0; |
7275 | return type; | |
7276 | } | |
7277 | ||
7278 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
7279 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
7280 | the beginning of this section) VAL according to GNAT conventions. | |
7281 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 7282 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
7283 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
7284 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 7285 | of the variant. |
14f9c5c9 | 7286 | |
4c4b4cd2 PH |
7287 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
7288 | length are not statically known are discarded. As a consequence, | |
7289 | VALADDR, ADDRESS and DVAL0 are ignored. | |
7290 | ||
7291 | NOTE: Limitations: For now, we assume that dynamic fields and | |
7292 | variants occupy whole numbers of bytes. However, they need not be | |
7293 | byte-aligned. */ | |
7294 | ||
7295 | struct type * | |
10a2c479 | 7296 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 7297 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
7298 | CORE_ADDR address, struct value *dval0, |
7299 | int keep_dynamic_fields) | |
14f9c5c9 | 7300 | { |
d2e4a39e AS |
7301 | struct value *mark = value_mark (); |
7302 | struct value *dval; | |
7303 | struct type *rtype; | |
14f9c5c9 | 7304 | int nfields, bit_len; |
4c4b4cd2 | 7305 | int variant_field; |
14f9c5c9 | 7306 | long off; |
d94e4f4f | 7307 | int fld_bit_len; |
14f9c5c9 AS |
7308 | int f; |
7309 | ||
4c4b4cd2 PH |
7310 | /* Compute the number of fields in this record type that are going |
7311 | to be processed: unless keep_dynamic_fields, this includes only | |
7312 | fields whose position and length are static will be processed. */ | |
7313 | if (keep_dynamic_fields) | |
7314 | nfields = TYPE_NFIELDS (type); | |
7315 | else | |
7316 | { | |
7317 | nfields = 0; | |
76a01679 | 7318 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
7319 | && !ada_is_variant_part (type, nfields) |
7320 | && !is_dynamic_field (type, nfields)) | |
7321 | nfields++; | |
7322 | } | |
7323 | ||
e9bb382b | 7324 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
7325 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
7326 | INIT_CPLUS_SPECIFIC (rtype); | |
7327 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 7328 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
7329 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
7330 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
7331 | TYPE_NAME (rtype) = ada_type_name (type); | |
7332 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7333 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 7334 | |
d2e4a39e AS |
7335 | off = 0; |
7336 | bit_len = 0; | |
4c4b4cd2 PH |
7337 | variant_field = -1; |
7338 | ||
14f9c5c9 AS |
7339 | for (f = 0; f < nfields; f += 1) |
7340 | { | |
6c038f32 PH |
7341 | off = align_value (off, field_alignment (type, f)) |
7342 | + TYPE_FIELD_BITPOS (type, f); | |
14f9c5c9 | 7343 | TYPE_FIELD_BITPOS (rtype, f) = off; |
d2e4a39e | 7344 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 7345 | |
d2e4a39e | 7346 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
7347 | { |
7348 | variant_field = f; | |
d94e4f4f | 7349 | fld_bit_len = 0; |
4c4b4cd2 | 7350 | } |
14f9c5c9 | 7351 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 7352 | { |
284614f0 JB |
7353 | const gdb_byte *field_valaddr = valaddr; |
7354 | CORE_ADDR field_address = address; | |
7355 | struct type *field_type = | |
7356 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
7357 | ||
4c4b4cd2 | 7358 | if (dval0 == NULL) |
b5304971 JG |
7359 | { |
7360 | /* rtype's length is computed based on the run-time | |
7361 | value of discriminants. If the discriminants are not | |
7362 | initialized, the type size may be completely bogus and | |
0963b4bd | 7363 | GDB may fail to allocate a value for it. So check the |
b5304971 JG |
7364 | size first before creating the value. */ |
7365 | check_size (rtype); | |
7366 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7367 | } | |
4c4b4cd2 PH |
7368 | else |
7369 | dval = dval0; | |
7370 | ||
284614f0 JB |
7371 | /* If the type referenced by this field is an aligner type, we need |
7372 | to unwrap that aligner type, because its size might not be set. | |
7373 | Keeping the aligner type would cause us to compute the wrong | |
7374 | size for this field, impacting the offset of the all the fields | |
7375 | that follow this one. */ | |
7376 | if (ada_is_aligner_type (field_type)) | |
7377 | { | |
7378 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
7379 | ||
7380 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
7381 | field_address = cond_offset_target (field_address, field_offset); | |
7382 | field_type = ada_aligned_type (field_type); | |
7383 | } | |
7384 | ||
7385 | field_valaddr = cond_offset_host (field_valaddr, | |
7386 | off / TARGET_CHAR_BIT); | |
7387 | field_address = cond_offset_target (field_address, | |
7388 | off / TARGET_CHAR_BIT); | |
7389 | ||
7390 | /* Get the fixed type of the field. Note that, in this case, | |
7391 | we do not want to get the real type out of the tag: if | |
7392 | the current field is the parent part of a tagged record, | |
7393 | we will get the tag of the object. Clearly wrong: the real | |
7394 | type of the parent is not the real type of the child. We | |
7395 | would end up in an infinite loop. */ | |
7396 | field_type = ada_get_base_type (field_type); | |
7397 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
7398 | field_address, dval, 0); | |
27f2a97b JB |
7399 | /* If the field size is already larger than the maximum |
7400 | object size, then the record itself will necessarily | |
7401 | be larger than the maximum object size. We need to make | |
7402 | this check now, because the size might be so ridiculously | |
7403 | large (due to an uninitialized variable in the inferior) | |
7404 | that it would cause an overflow when adding it to the | |
7405 | record size. */ | |
7406 | check_size (field_type); | |
284614f0 JB |
7407 | |
7408 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 7409 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
7410 | /* The multiplication can potentially overflow. But because |
7411 | the field length has been size-checked just above, and | |
7412 | assuming that the maximum size is a reasonable value, | |
7413 | an overflow should not happen in practice. So rather than | |
7414 | adding overflow recovery code to this already complex code, | |
7415 | we just assume that it's not going to happen. */ | |
d94e4f4f | 7416 | fld_bit_len = |
4c4b4cd2 PH |
7417 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
7418 | } | |
14f9c5c9 | 7419 | else |
4c4b4cd2 | 7420 | { |
9f0dec2d JB |
7421 | struct type *field_type = TYPE_FIELD_TYPE (type, f); |
7422 | ||
720d1a40 JB |
7423 | /* If our field is a typedef type (most likely a typedef of |
7424 | a fat pointer, encoding an array access), then we need to | |
7425 | look at its target type to determine its characteristics. | |
7426 | In particular, we would miscompute the field size if we took | |
7427 | the size of the typedef (zero), instead of the size of | |
7428 | the target type. */ | |
7429 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
7430 | field_type = ada_typedef_target_type (field_type); | |
7431 | ||
9f0dec2d | 7432 | TYPE_FIELD_TYPE (rtype, f) = field_type; |
4c4b4cd2 PH |
7433 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
7434 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 7435 | fld_bit_len = |
4c4b4cd2 PH |
7436 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
7437 | else | |
d94e4f4f | 7438 | fld_bit_len = |
9f0dec2d | 7439 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; |
4c4b4cd2 | 7440 | } |
14f9c5c9 | 7441 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 7442 | bit_len = off + fld_bit_len; |
d94e4f4f | 7443 | off += fld_bit_len; |
4c4b4cd2 PH |
7444 | TYPE_LENGTH (rtype) = |
7445 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 7446 | } |
4c4b4cd2 PH |
7447 | |
7448 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 7449 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
7450 | the record. This can happen in the presence of representation |
7451 | clauses. */ | |
7452 | if (variant_field >= 0) | |
7453 | { | |
7454 | struct type *branch_type; | |
7455 | ||
7456 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
7457 | ||
7458 | if (dval0 == NULL) | |
7459 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7460 | else | |
7461 | dval = dval0; | |
7462 | ||
7463 | branch_type = | |
7464 | to_fixed_variant_branch_type | |
7465 | (TYPE_FIELD_TYPE (type, variant_field), | |
7466 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
7467 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
7468 | if (branch_type == NULL) | |
7469 | { | |
7470 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
7471 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
7472 | TYPE_NFIELDS (rtype) -= 1; | |
7473 | } | |
7474 | else | |
7475 | { | |
7476 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
7477 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7478 | fld_bit_len = | |
7479 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
7480 | TARGET_CHAR_BIT; | |
7481 | if (off + fld_bit_len > bit_len) | |
7482 | bit_len = off + fld_bit_len; | |
7483 | TYPE_LENGTH (rtype) = | |
7484 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
7485 | } | |
7486 | } | |
7487 | ||
714e53ab PH |
7488 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
7489 | should contain the alignment of that record, which should be a strictly | |
7490 | positive value. If null or negative, then something is wrong, most | |
7491 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 7492 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
7493 | the current RTYPE length might be good enough for our purposes. */ |
7494 | if (TYPE_LENGTH (type) <= 0) | |
7495 | { | |
323e0a4a AC |
7496 | if (TYPE_NAME (rtype)) |
7497 | warning (_("Invalid type size for `%s' detected: %d."), | |
7498 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
7499 | else | |
7500 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
7501 | TYPE_LENGTH (type)); | |
714e53ab PH |
7502 | } |
7503 | else | |
7504 | { | |
7505 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
7506 | TYPE_LENGTH (type)); | |
7507 | } | |
14f9c5c9 AS |
7508 | |
7509 | value_free_to_mark (mark); | |
d2e4a39e | 7510 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 7511 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7512 | return rtype; |
7513 | } | |
7514 | ||
4c4b4cd2 PH |
7515 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
7516 | of 1. */ | |
14f9c5c9 | 7517 | |
d2e4a39e | 7518 | static struct type * |
fc1a4b47 | 7519 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
7520 | CORE_ADDR address, struct value *dval0) |
7521 | { | |
7522 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
7523 | address, dval0, 1); | |
7524 | } | |
7525 | ||
7526 | /* An ordinary record type in which ___XVL-convention fields and | |
7527 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
7528 | static approximations, containing all possible fields. Uses | |
7529 | no runtime values. Useless for use in values, but that's OK, | |
7530 | since the results are used only for type determinations. Works on both | |
7531 | structs and unions. Representation note: to save space, we memorize | |
7532 | the result of this function in the TYPE_TARGET_TYPE of the | |
7533 | template type. */ | |
7534 | ||
7535 | static struct type * | |
7536 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
7537 | { |
7538 | struct type *type; | |
7539 | int nfields; | |
7540 | int f; | |
7541 | ||
4c4b4cd2 PH |
7542 | if (TYPE_TARGET_TYPE (type0) != NULL) |
7543 | return TYPE_TARGET_TYPE (type0); | |
7544 | ||
7545 | nfields = TYPE_NFIELDS (type0); | |
7546 | type = type0; | |
14f9c5c9 AS |
7547 | |
7548 | for (f = 0; f < nfields; f += 1) | |
7549 | { | |
61ee279c | 7550 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 7551 | struct type *new_type; |
14f9c5c9 | 7552 | |
4c4b4cd2 PH |
7553 | if (is_dynamic_field (type0, f)) |
7554 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 7555 | else |
f192137b | 7556 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
7557 | if (type == type0 && new_type != field_type) |
7558 | { | |
e9bb382b | 7559 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
7560 | TYPE_CODE (type) = TYPE_CODE (type0); |
7561 | INIT_CPLUS_SPECIFIC (type); | |
7562 | TYPE_NFIELDS (type) = nfields; | |
7563 | TYPE_FIELDS (type) = (struct field *) | |
7564 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
7565 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
7566 | sizeof (struct field) * nfields); | |
7567 | TYPE_NAME (type) = ada_type_name (type0); | |
7568 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 7569 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
7570 | TYPE_LENGTH (type) = 0; |
7571 | } | |
7572 | TYPE_FIELD_TYPE (type, f) = new_type; | |
7573 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 7574 | } |
14f9c5c9 AS |
7575 | return type; |
7576 | } | |
7577 | ||
4c4b4cd2 | 7578 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
7579 | whose address in memory is ADDRESS, returns a revision of TYPE, |
7580 | which should be a non-dynamic-sized record, in which the variant | |
7581 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
7582 | for discriminant values in DVAL0, which can be NULL if the record |
7583 | contains the necessary discriminant values. */ | |
7584 | ||
d2e4a39e | 7585 | static struct type * |
fc1a4b47 | 7586 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 7587 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7588 | { |
d2e4a39e | 7589 | struct value *mark = value_mark (); |
4c4b4cd2 | 7590 | struct value *dval; |
d2e4a39e | 7591 | struct type *rtype; |
14f9c5c9 AS |
7592 | struct type *branch_type; |
7593 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 7594 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7595 | |
4c4b4cd2 | 7596 | if (variant_field == -1) |
14f9c5c9 AS |
7597 | return type; |
7598 | ||
4c4b4cd2 PH |
7599 | if (dval0 == NULL) |
7600 | dval = value_from_contents_and_address (type, valaddr, address); | |
7601 | else | |
7602 | dval = dval0; | |
7603 | ||
e9bb382b | 7604 | rtype = alloc_type_copy (type); |
14f9c5c9 | 7605 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
7606 | INIT_CPLUS_SPECIFIC (rtype); |
7607 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7608 | TYPE_FIELDS (rtype) = |
7609 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7610 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7611 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7612 | TYPE_NAME (rtype) = ada_type_name (type); |
7613 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7614 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7615 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7616 | ||
4c4b4cd2 PH |
7617 | branch_type = to_fixed_variant_branch_type |
7618 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7619 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7620 | TYPE_FIELD_BITPOS (type, variant_field) |
7621 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7622 | cond_offset_target (address, |
4c4b4cd2 PH |
7623 | TYPE_FIELD_BITPOS (type, variant_field) |
7624 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7625 | if (branch_type == NULL) |
14f9c5c9 | 7626 | { |
4c4b4cd2 | 7627 | int f; |
5b4ee69b | 7628 | |
4c4b4cd2 PH |
7629 | for (f = variant_field + 1; f < nfields; f += 1) |
7630 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7631 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7632 | } |
7633 | else | |
7634 | { | |
4c4b4cd2 PH |
7635 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7636 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7637 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7638 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7639 | } |
4c4b4cd2 | 7640 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7641 | |
4c4b4cd2 | 7642 | value_free_to_mark (mark); |
14f9c5c9 AS |
7643 | return rtype; |
7644 | } | |
7645 | ||
7646 | /* An ordinary record type (with fixed-length fields) that describes | |
7647 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7648 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7649 | should be in DVAL, a record value; it may be NULL if the object |
7650 | at ADDR itself contains any necessary discriminant values. | |
7651 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7652 | values from the record are needed. Except in the case that DVAL, | |
7653 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7654 | unchecked) is replaced by a particular branch of the variant. | |
7655 | ||
7656 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7657 | is questionable and may be removed. It can arise during the | |
7658 | processing of an unconstrained-array-of-record type where all the | |
7659 | variant branches have exactly the same size. This is because in | |
7660 | such cases, the compiler does not bother to use the XVS convention | |
7661 | when encoding the record. I am currently dubious of this | |
7662 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7663 | |
d2e4a39e | 7664 | static struct type * |
fc1a4b47 | 7665 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7666 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7667 | { |
d2e4a39e | 7668 | struct type *templ_type; |
14f9c5c9 | 7669 | |
876cecd0 | 7670 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7671 | return type0; |
7672 | ||
d2e4a39e | 7673 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7674 | |
7675 | if (templ_type != NULL) | |
7676 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7677 | else if (variant_field_index (type0) >= 0) |
7678 | { | |
7679 | if (dval == NULL && valaddr == NULL && address == 0) | |
7680 | return type0; | |
7681 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7682 | dval); | |
7683 | } | |
14f9c5c9 AS |
7684 | else |
7685 | { | |
876cecd0 | 7686 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7687 | return type0; |
7688 | } | |
7689 | ||
7690 | } | |
7691 | ||
7692 | /* An ordinary record type (with fixed-length fields) that describes | |
7693 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7694 | union type. Any necessary discriminants' values should be in DVAL, | |
7695 | a record value. That is, this routine selects the appropriate | |
7696 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 7697 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 7698 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 7699 | |
d2e4a39e | 7700 | static struct type * |
fc1a4b47 | 7701 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7702 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7703 | { |
7704 | int which; | |
d2e4a39e AS |
7705 | struct type *templ_type; |
7706 | struct type *var_type; | |
14f9c5c9 AS |
7707 | |
7708 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7709 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7710 | else |
14f9c5c9 AS |
7711 | var_type = var_type0; |
7712 | ||
7713 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7714 | ||
7715 | if (templ_type != NULL) | |
7716 | var_type = templ_type; | |
7717 | ||
b1f33ddd JB |
7718 | if (is_unchecked_variant (var_type, value_type (dval))) |
7719 | return var_type0; | |
d2e4a39e AS |
7720 | which = |
7721 | ada_which_variant_applies (var_type, | |
0fd88904 | 7722 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7723 | |
7724 | if (which < 0) | |
e9bb382b | 7725 | return empty_record (var_type); |
14f9c5c9 | 7726 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 7727 | return to_fixed_record_type |
d2e4a39e AS |
7728 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7729 | valaddr, address, dval); | |
4c4b4cd2 | 7730 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7731 | return |
7732 | to_fixed_record_type | |
7733 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7734 | else |
7735 | return TYPE_FIELD_TYPE (var_type, which); | |
7736 | } | |
7737 | ||
7738 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7739 | at ADDR, and that DVAL describes a record containing any | |
7740 | discriminants used in TYPE0, returns a type for the value that | |
7741 | contains no dynamic components (that is, no components whose sizes | |
7742 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7743 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7744 | varsize_limit. */ |
14f9c5c9 | 7745 | |
d2e4a39e AS |
7746 | static struct type * |
7747 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7748 | int ignore_too_big) |
14f9c5c9 | 7749 | { |
d2e4a39e AS |
7750 | struct type *index_type_desc; |
7751 | struct type *result; | |
ad82864c | 7752 | int constrained_packed_array_p; |
14f9c5c9 | 7753 | |
b0dd7688 | 7754 | type0 = ada_check_typedef (type0); |
284614f0 | 7755 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7756 | return type0; |
14f9c5c9 | 7757 | |
ad82864c JB |
7758 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
7759 | if (constrained_packed_array_p) | |
7760 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 7761 | |
14f9c5c9 | 7762 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
28c85d6c | 7763 | ada_fixup_array_indexes_type (index_type_desc); |
14f9c5c9 AS |
7764 | if (index_type_desc == NULL) |
7765 | { | |
61ee279c | 7766 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 7767 | |
14f9c5c9 | 7768 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7769 | depend on the contents of the array in properly constructed |
7770 | debugging data. */ | |
529cad9c PH |
7771 | /* Create a fixed version of the array element type. |
7772 | We're not providing the address of an element here, | |
e1d5a0d2 | 7773 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7774 | the conversion. This should not be a problem, since arrays of |
7775 | unconstrained objects are not allowed. In particular, all | |
7776 | the elements of an array of a tagged type should all be of | |
7777 | the same type specified in the debugging info. No need to | |
7778 | consult the object tag. */ | |
1ed6ede0 | 7779 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 7780 | |
284614f0 JB |
7781 | /* Make sure we always create a new array type when dealing with |
7782 | packed array types, since we're going to fix-up the array | |
7783 | type length and element bitsize a little further down. */ | |
ad82864c | 7784 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 7785 | result = type0; |
14f9c5c9 | 7786 | else |
e9bb382b | 7787 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 7788 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
7789 | } |
7790 | else | |
7791 | { | |
7792 | int i; | |
7793 | struct type *elt_type0; | |
7794 | ||
7795 | elt_type0 = type0; | |
7796 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 7797 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
7798 | |
7799 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
7800 | depend on the contents of the array in properly constructed |
7801 | debugging data. */ | |
529cad9c PH |
7802 | /* Create a fixed version of the array element type. |
7803 | We're not providing the address of an element here, | |
e1d5a0d2 | 7804 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7805 | the conversion. This should not be a problem, since arrays of |
7806 | unconstrained objects are not allowed. In particular, all | |
7807 | the elements of an array of a tagged type should all be of | |
7808 | the same type specified in the debugging info. No need to | |
7809 | consult the object tag. */ | |
1ed6ede0 JB |
7810 | result = |
7811 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
7812 | |
7813 | elt_type0 = type0; | |
14f9c5c9 | 7814 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
7815 | { |
7816 | struct type *range_type = | |
28c85d6c | 7817 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 7818 | |
e9bb382b | 7819 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 7820 | result, range_type); |
1ce677a4 | 7821 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 7822 | } |
d2e4a39e | 7823 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 7824 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7825 | } |
7826 | ||
ad82864c | 7827 | if (constrained_packed_array_p) |
284614f0 JB |
7828 | { |
7829 | /* So far, the resulting type has been created as if the original | |
7830 | type was a regular (non-packed) array type. As a result, the | |
7831 | bitsize of the array elements needs to be set again, and the array | |
7832 | length needs to be recomputed based on that bitsize. */ | |
7833 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
7834 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
7835 | ||
7836 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
7837 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
7838 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
7839 | TYPE_LENGTH (result)++; | |
7840 | } | |
7841 | ||
876cecd0 | 7842 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 7843 | return result; |
d2e4a39e | 7844 | } |
14f9c5c9 AS |
7845 | |
7846 | ||
7847 | /* A standard type (containing no dynamically sized components) | |
7848 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
7849 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 7850 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
7851 | ADDRESS or in VALADDR contains these discriminants. |
7852 | ||
1ed6ede0 JB |
7853 | If CHECK_TAG is not null, in the case of tagged types, this function |
7854 | attempts to locate the object's tag and use it to compute the actual | |
7855 | type. However, when ADDRESS is null, we cannot use it to determine the | |
7856 | location of the tag, and therefore compute the tagged type's actual type. | |
7857 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 7858 | |
f192137b JB |
7859 | static struct type * |
7860 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 7861 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 7862 | { |
61ee279c | 7863 | type = ada_check_typedef (type); |
d2e4a39e AS |
7864 | switch (TYPE_CODE (type)) |
7865 | { | |
7866 | default: | |
14f9c5c9 | 7867 | return type; |
d2e4a39e | 7868 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 7869 | { |
76a01679 | 7870 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
7871 | struct type *fixed_record_type = |
7872 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 7873 | |
529cad9c PH |
7874 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
7875 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 7876 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
7877 | type (the parent part of the record may have dynamic fields |
7878 | and the way the location of _tag is expressed may depend on | |
7879 | them). */ | |
529cad9c | 7880 | |
1ed6ede0 | 7881 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 JB |
7882 | { |
7883 | struct type *real_type = | |
1ed6ede0 JB |
7884 | type_from_tag (value_tag_from_contents_and_address |
7885 | (fixed_record_type, | |
7886 | valaddr, | |
7887 | address)); | |
5b4ee69b | 7888 | |
76a01679 | 7889 | if (real_type != NULL) |
1ed6ede0 | 7890 | return to_fixed_record_type (real_type, valaddr, address, NULL); |
76a01679 | 7891 | } |
4af88198 JB |
7892 | |
7893 | /* Check to see if there is a parallel ___XVZ variable. | |
7894 | If there is, then it provides the actual size of our type. */ | |
7895 | else if (ada_type_name (fixed_record_type) != NULL) | |
7896 | { | |
7897 | char *name = ada_type_name (fixed_record_type); | |
7898 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
7899 | int xvz_found = 0; | |
7900 | LONGEST size; | |
7901 | ||
88c15c34 | 7902 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
7903 | size = get_int_var_value (xvz_name, &xvz_found); |
7904 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
7905 | { | |
7906 | fixed_record_type = copy_type (fixed_record_type); | |
7907 | TYPE_LENGTH (fixed_record_type) = size; | |
7908 | ||
7909 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
7910 | observed this when the debugging info is STABS, and | |
7911 | apparently it is something that is hard to fix. | |
7912 | ||
7913 | In practice, we don't need the actual type definition | |
7914 | at all, because the presence of the XVZ variable allows us | |
7915 | to assume that there must be a XVS type as well, which we | |
7916 | should be able to use later, when we need the actual type | |
7917 | definition. | |
7918 | ||
7919 | In the meantime, pretend that the "fixed" type we are | |
7920 | returning is NOT a stub, because this can cause trouble | |
7921 | when using this type to create new types targeting it. | |
7922 | Indeed, the associated creation routines often check | |
7923 | whether the target type is a stub and will try to replace | |
0963b4bd | 7924 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
7925 | might cause the new type to have the wrong size too. |
7926 | Consider the case of an array, for instance, where the size | |
7927 | of the array is computed from the number of elements in | |
7928 | our array multiplied by the size of its element. */ | |
7929 | TYPE_STUB (fixed_record_type) = 0; | |
7930 | } | |
7931 | } | |
1ed6ede0 | 7932 | return fixed_record_type; |
4c4b4cd2 | 7933 | } |
d2e4a39e | 7934 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 7935 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
7936 | case TYPE_CODE_UNION: |
7937 | if (dval == NULL) | |
4c4b4cd2 | 7938 | return type; |
d2e4a39e | 7939 | else |
4c4b4cd2 | 7940 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 7941 | } |
14f9c5c9 AS |
7942 | } |
7943 | ||
f192137b JB |
7944 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
7945 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
7946 | |
7947 | The typedef layer needs be preserved in order to differentiate between | |
7948 | arrays and array pointers when both types are implemented using the same | |
7949 | fat pointer. In the array pointer case, the pointer is encoded as | |
7950 | a typedef of the pointer type. For instance, considering: | |
7951 | ||
7952 | type String_Access is access String; | |
7953 | S1 : String_Access := null; | |
7954 | ||
7955 | To the debugger, S1 is defined as a typedef of type String. But | |
7956 | to the user, it is a pointer. So if the user tries to print S1, | |
7957 | we should not dereference the array, but print the array address | |
7958 | instead. | |
7959 | ||
7960 | If we didn't preserve the typedef layer, we would lose the fact that | |
7961 | the type is to be presented as a pointer (needs de-reference before | |
7962 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
7963 | |
7964 | struct type * | |
7965 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
7966 | CORE_ADDR address, struct value *dval, int check_tag) | |
7967 | ||
7968 | { | |
7969 | struct type *fixed_type = | |
7970 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
7971 | ||
96dbd2c1 JB |
7972 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
7973 | then preserve the typedef layer. | |
7974 | ||
7975 | Implementation note: We can only check the main-type portion of | |
7976 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
7977 | from TYPE now returns a type that has the same instance flags | |
7978 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
7979 | target type is a "struct", then the typedef elimination will return | |
7980 | a "const" version of the target type. See check_typedef for more | |
7981 | details about how the typedef layer elimination is done. | |
7982 | ||
7983 | brobecker/2010-11-19: It seems to me that the only case where it is | |
7984 | useful to preserve the typedef layer is when dealing with fat pointers. | |
7985 | Perhaps, we could add a check for that and preserve the typedef layer | |
7986 | only in that situation. But this seems unecessary so far, probably | |
7987 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
7988 | */ | |
f192137b | 7989 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 7990 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 7991 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
7992 | return type; |
7993 | ||
7994 | return fixed_type; | |
7995 | } | |
7996 | ||
14f9c5c9 | 7997 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 7998 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 7999 | |
d2e4a39e AS |
8000 | static struct type * |
8001 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 8002 | { |
d2e4a39e | 8003 | struct type *type; |
14f9c5c9 AS |
8004 | |
8005 | if (type0 == NULL) | |
8006 | return NULL; | |
8007 | ||
876cecd0 | 8008 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8009 | return type0; |
8010 | ||
61ee279c | 8011 | type0 = ada_check_typedef (type0); |
d2e4a39e | 8012 | |
14f9c5c9 AS |
8013 | switch (TYPE_CODE (type0)) |
8014 | { | |
8015 | default: | |
8016 | return type0; | |
8017 | case TYPE_CODE_STRUCT: | |
8018 | type = dynamic_template_type (type0); | |
d2e4a39e | 8019 | if (type != NULL) |
4c4b4cd2 PH |
8020 | return template_to_static_fixed_type (type); |
8021 | else | |
8022 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8023 | case TYPE_CODE_UNION: |
8024 | type = ada_find_parallel_type (type0, "___XVU"); | |
8025 | if (type != NULL) | |
4c4b4cd2 PH |
8026 | return template_to_static_fixed_type (type); |
8027 | else | |
8028 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8029 | } |
8030 | } | |
8031 | ||
4c4b4cd2 PH |
8032 | /* A static approximation of TYPE with all type wrappers removed. */ |
8033 | ||
d2e4a39e AS |
8034 | static struct type * |
8035 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
8036 | { |
8037 | if (ada_is_aligner_type (type)) | |
8038 | { | |
61ee279c | 8039 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 8040 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 8041 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
8042 | |
8043 | return static_unwrap_type (type1); | |
8044 | } | |
d2e4a39e | 8045 | else |
14f9c5c9 | 8046 | { |
d2e4a39e | 8047 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 8048 | |
d2e4a39e | 8049 | if (raw_real_type == type) |
4c4b4cd2 | 8050 | return type; |
14f9c5c9 | 8051 | else |
4c4b4cd2 | 8052 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
8053 | } |
8054 | } | |
8055 | ||
8056 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 8057 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
8058 | type Foo; |
8059 | type FooP is access Foo; | |
8060 | V: FooP; | |
8061 | type Foo is array ...; | |
4c4b4cd2 | 8062 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
8063 | cross-references to such types, we instead substitute for FooP a |
8064 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 8065 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
8066 | |
8067 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
8068 | exists, otherwise TYPE. */ |
8069 | ||
d2e4a39e | 8070 | struct type * |
61ee279c | 8071 | ada_check_typedef (struct type *type) |
14f9c5c9 | 8072 | { |
727e3d2e JB |
8073 | if (type == NULL) |
8074 | return NULL; | |
8075 | ||
720d1a40 JB |
8076 | /* If our type is a typedef type of a fat pointer, then we're done. |
8077 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
8078 | what allows us to distinguish between fat pointers that represent | |
8079 | array types, and fat pointers that represent array access types | |
8080 | (in both cases, the compiler implements them as fat pointers). */ | |
8081 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
8082 | && is_thick_pntr (ada_typedef_target_type (type))) | |
8083 | return type; | |
8084 | ||
14f9c5c9 AS |
8085 | CHECK_TYPEDEF (type); |
8086 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 8087 | || !TYPE_STUB (type) |
14f9c5c9 AS |
8088 | || TYPE_TAG_NAME (type) == NULL) |
8089 | return type; | |
d2e4a39e | 8090 | else |
14f9c5c9 | 8091 | { |
d2e4a39e AS |
8092 | char *name = TYPE_TAG_NAME (type); |
8093 | struct type *type1 = ada_find_any_type (name); | |
5b4ee69b | 8094 | |
05e522ef JB |
8095 | if (type1 == NULL) |
8096 | return type; | |
8097 | ||
8098 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
8099 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
8100 | types, only for the typedef-to-array types). If that's the case, |
8101 | strip the typedef layer. */ | |
8102 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
8103 | type1 = ada_check_typedef (type1); | |
8104 | ||
8105 | return type1; | |
14f9c5c9 AS |
8106 | } |
8107 | } | |
8108 | ||
8109 | /* A value representing the data at VALADDR/ADDRESS as described by | |
8110 | type TYPE0, but with a standard (static-sized) type that correctly | |
8111 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
8112 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 8113 | creation of struct values]. */ |
14f9c5c9 | 8114 | |
4c4b4cd2 PH |
8115 | static struct value * |
8116 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
8117 | struct value *val0) | |
14f9c5c9 | 8118 | { |
1ed6ede0 | 8119 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 8120 | |
14f9c5c9 AS |
8121 | if (type == type0 && val0 != NULL) |
8122 | return val0; | |
d2e4a39e | 8123 | else |
4c4b4cd2 PH |
8124 | return value_from_contents_and_address (type, 0, address); |
8125 | } | |
8126 | ||
8127 | /* A value representing VAL, but with a standard (static-sized) type | |
8128 | that correctly describes it. Does not necessarily create a new | |
8129 | value. */ | |
8130 | ||
0c3acc09 | 8131 | struct value * |
4c4b4cd2 PH |
8132 | ada_to_fixed_value (struct value *val) |
8133 | { | |
df407dfe | 8134 | return ada_to_fixed_value_create (value_type (val), |
42ae5230 | 8135 | value_address (val), |
4c4b4cd2 | 8136 | val); |
14f9c5c9 | 8137 | } |
d2e4a39e | 8138 | \f |
14f9c5c9 | 8139 | |
14f9c5c9 AS |
8140 | /* Attributes */ |
8141 | ||
4c4b4cd2 PH |
8142 | /* Table mapping attribute numbers to names. |
8143 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 8144 | |
d2e4a39e | 8145 | static const char *attribute_names[] = { |
14f9c5c9 AS |
8146 | "<?>", |
8147 | ||
d2e4a39e | 8148 | "first", |
14f9c5c9 AS |
8149 | "last", |
8150 | "length", | |
8151 | "image", | |
14f9c5c9 AS |
8152 | "max", |
8153 | "min", | |
4c4b4cd2 PH |
8154 | "modulus", |
8155 | "pos", | |
8156 | "size", | |
8157 | "tag", | |
14f9c5c9 | 8158 | "val", |
14f9c5c9 AS |
8159 | 0 |
8160 | }; | |
8161 | ||
d2e4a39e | 8162 | const char * |
4c4b4cd2 | 8163 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 8164 | { |
4c4b4cd2 PH |
8165 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
8166 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
8167 | else |
8168 | return attribute_names[0]; | |
8169 | } | |
8170 | ||
4c4b4cd2 | 8171 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 8172 | |
4c4b4cd2 PH |
8173 | static LONGEST |
8174 | pos_atr (struct value *arg) | |
14f9c5c9 | 8175 | { |
24209737 PH |
8176 | struct value *val = coerce_ref (arg); |
8177 | struct type *type = value_type (val); | |
14f9c5c9 | 8178 | |
d2e4a39e | 8179 | if (!discrete_type_p (type)) |
323e0a4a | 8180 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
8181 | |
8182 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8183 | { | |
8184 | int i; | |
24209737 | 8185 | LONGEST v = value_as_long (val); |
14f9c5c9 | 8186 | |
d2e4a39e | 8187 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 PH |
8188 | { |
8189 | if (v == TYPE_FIELD_BITPOS (type, i)) | |
8190 | return i; | |
8191 | } | |
323e0a4a | 8192 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
8193 | } |
8194 | else | |
24209737 | 8195 | return value_as_long (val); |
4c4b4cd2 PH |
8196 | } |
8197 | ||
8198 | static struct value * | |
3cb382c9 | 8199 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 8200 | { |
3cb382c9 | 8201 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
8202 | } |
8203 | ||
4c4b4cd2 | 8204 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 8205 | |
d2e4a39e AS |
8206 | static struct value * |
8207 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 8208 | { |
d2e4a39e | 8209 | if (!discrete_type_p (type)) |
323e0a4a | 8210 | error (_("'VAL only defined on discrete types")); |
df407dfe | 8211 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 8212 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
8213 | |
8214 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8215 | { | |
8216 | long pos = value_as_long (arg); | |
5b4ee69b | 8217 | |
14f9c5c9 | 8218 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 8219 | error (_("argument to 'VAL out of range")); |
d2e4a39e | 8220 | return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); |
14f9c5c9 AS |
8221 | } |
8222 | else | |
8223 | return value_from_longest (type, value_as_long (arg)); | |
8224 | } | |
14f9c5c9 | 8225 | \f |
d2e4a39e | 8226 | |
4c4b4cd2 | 8227 | /* Evaluation */ |
14f9c5c9 | 8228 | |
4c4b4cd2 PH |
8229 | /* True if TYPE appears to be an Ada character type. |
8230 | [At the moment, this is true only for Character and Wide_Character; | |
8231 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 8232 | |
d2e4a39e AS |
8233 | int |
8234 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 8235 | { |
7b9f71f2 JB |
8236 | const char *name; |
8237 | ||
8238 | /* If the type code says it's a character, then assume it really is, | |
8239 | and don't check any further. */ | |
8240 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
8241 | return 1; | |
8242 | ||
8243 | /* Otherwise, assume it's a character type iff it is a discrete type | |
8244 | with a known character type name. */ | |
8245 | name = ada_type_name (type); | |
8246 | return (name != NULL | |
8247 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
8248 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
8249 | && (strcmp (name, "character") == 0 | |
8250 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 8251 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 8252 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
8253 | } |
8254 | ||
4c4b4cd2 | 8255 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
8256 | |
8257 | int | |
ebf56fd3 | 8258 | ada_is_string_type (struct type *type) |
14f9c5c9 | 8259 | { |
61ee279c | 8260 | type = ada_check_typedef (type); |
d2e4a39e | 8261 | if (type != NULL |
14f9c5c9 | 8262 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
8263 | && (ada_is_simple_array_type (type) |
8264 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
8265 | && ada_array_arity (type) == 1) |
8266 | { | |
8267 | struct type *elttype = ada_array_element_type (type, 1); | |
8268 | ||
8269 | return ada_is_character_type (elttype); | |
8270 | } | |
d2e4a39e | 8271 | else |
14f9c5c9 AS |
8272 | return 0; |
8273 | } | |
8274 | ||
5bf03f13 JB |
8275 | /* The compiler sometimes provides a parallel XVS type for a given |
8276 | PAD type. Normally, it is safe to follow the PAD type directly, | |
8277 | but older versions of the compiler have a bug that causes the offset | |
8278 | of its "F" field to be wrong. Following that field in that case | |
8279 | would lead to incorrect results, but this can be worked around | |
8280 | by ignoring the PAD type and using the associated XVS type instead. | |
8281 | ||
8282 | Set to True if the debugger should trust the contents of PAD types. | |
8283 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
8284 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
8285 | |
8286 | /* True if TYPE is a struct type introduced by the compiler to force the | |
8287 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 8288 | distinctive name. */ |
14f9c5c9 AS |
8289 | |
8290 | int | |
ebf56fd3 | 8291 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 8292 | { |
61ee279c | 8293 | type = ada_check_typedef (type); |
714e53ab | 8294 | |
5bf03f13 | 8295 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
8296 | return 0; |
8297 | ||
14f9c5c9 | 8298 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
8299 | && TYPE_NFIELDS (type) == 1 |
8300 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
8301 | } |
8302 | ||
8303 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 8304 | the parallel type. */ |
14f9c5c9 | 8305 | |
d2e4a39e AS |
8306 | struct type * |
8307 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 8308 | { |
d2e4a39e AS |
8309 | struct type *real_type_namer; |
8310 | struct type *raw_real_type; | |
14f9c5c9 AS |
8311 | |
8312 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
8313 | return raw_type; | |
8314 | ||
284614f0 JB |
8315 | if (ada_is_aligner_type (raw_type)) |
8316 | /* The encoding specifies that we should always use the aligner type. | |
8317 | So, even if this aligner type has an associated XVS type, we should | |
8318 | simply ignore it. | |
8319 | ||
8320 | According to the compiler gurus, an XVS type parallel to an aligner | |
8321 | type may exist because of a stabs limitation. In stabs, aligner | |
8322 | types are empty because the field has a variable-sized type, and | |
8323 | thus cannot actually be used as an aligner type. As a result, | |
8324 | we need the associated parallel XVS type to decode the type. | |
8325 | Since the policy in the compiler is to not change the internal | |
8326 | representation based on the debugging info format, we sometimes | |
8327 | end up having a redundant XVS type parallel to the aligner type. */ | |
8328 | return raw_type; | |
8329 | ||
14f9c5c9 | 8330 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 8331 | if (real_type_namer == NULL |
14f9c5c9 AS |
8332 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
8333 | || TYPE_NFIELDS (real_type_namer) != 1) | |
8334 | return raw_type; | |
8335 | ||
f80d3ff2 JB |
8336 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
8337 | { | |
8338 | /* This is an older encoding form where the base type needs to be | |
8339 | looked up by name. We prefer the newer enconding because it is | |
8340 | more efficient. */ | |
8341 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
8342 | if (raw_real_type == NULL) | |
8343 | return raw_type; | |
8344 | else | |
8345 | return raw_real_type; | |
8346 | } | |
8347 | ||
8348 | /* The field in our XVS type is a reference to the base type. */ | |
8349 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 8350 | } |
14f9c5c9 | 8351 | |
4c4b4cd2 | 8352 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 8353 | |
d2e4a39e AS |
8354 | struct type * |
8355 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
8356 | { |
8357 | if (ada_is_aligner_type (type)) | |
8358 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
8359 | else | |
8360 | return ada_get_base_type (type); | |
8361 | } | |
8362 | ||
8363 | ||
8364 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 8365 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 8366 | |
fc1a4b47 AC |
8367 | const gdb_byte * |
8368 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 8369 | { |
d2e4a39e | 8370 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 8371 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
8372 | valaddr + |
8373 | TYPE_FIELD_BITPOS (type, | |
8374 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
8375 | else |
8376 | return valaddr; | |
8377 | } | |
8378 | ||
4c4b4cd2 PH |
8379 | |
8380 | ||
14f9c5c9 | 8381 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 8382 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
8383 | const char * |
8384 | ada_enum_name (const char *name) | |
14f9c5c9 | 8385 | { |
4c4b4cd2 PH |
8386 | static char *result; |
8387 | static size_t result_len = 0; | |
d2e4a39e | 8388 | char *tmp; |
14f9c5c9 | 8389 | |
4c4b4cd2 PH |
8390 | /* First, unqualify the enumeration name: |
8391 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 8392 | all the preceding characters, the unqualified name starts |
76a01679 | 8393 | right after that dot. |
4c4b4cd2 | 8394 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
8395 | translates dots into "__". Search forward for double underscores, |
8396 | but stop searching when we hit an overloading suffix, which is | |
8397 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 8398 | |
c3e5cd34 PH |
8399 | tmp = strrchr (name, '.'); |
8400 | if (tmp != NULL) | |
4c4b4cd2 PH |
8401 | name = tmp + 1; |
8402 | else | |
14f9c5c9 | 8403 | { |
4c4b4cd2 PH |
8404 | while ((tmp = strstr (name, "__")) != NULL) |
8405 | { | |
8406 | if (isdigit (tmp[2])) | |
8407 | break; | |
8408 | else | |
8409 | name = tmp + 2; | |
8410 | } | |
14f9c5c9 AS |
8411 | } |
8412 | ||
8413 | if (name[0] == 'Q') | |
8414 | { | |
14f9c5c9 | 8415 | int v; |
5b4ee69b | 8416 | |
14f9c5c9 | 8417 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
8418 | { |
8419 | if (sscanf (name + 2, "%x", &v) != 1) | |
8420 | return name; | |
8421 | } | |
14f9c5c9 | 8422 | else |
4c4b4cd2 | 8423 | return name; |
14f9c5c9 | 8424 | |
4c4b4cd2 | 8425 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 8426 | if (isascii (v) && isprint (v)) |
88c15c34 | 8427 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 8428 | else if (name[1] == 'U') |
88c15c34 | 8429 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 8430 | else |
88c15c34 | 8431 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
8432 | |
8433 | return result; | |
8434 | } | |
d2e4a39e | 8435 | else |
4c4b4cd2 | 8436 | { |
c3e5cd34 PH |
8437 | tmp = strstr (name, "__"); |
8438 | if (tmp == NULL) | |
8439 | tmp = strstr (name, "$"); | |
8440 | if (tmp != NULL) | |
4c4b4cd2 PH |
8441 | { |
8442 | GROW_VECT (result, result_len, tmp - name + 1); | |
8443 | strncpy (result, name, tmp - name); | |
8444 | result[tmp - name] = '\0'; | |
8445 | return result; | |
8446 | } | |
8447 | ||
8448 | return name; | |
8449 | } | |
14f9c5c9 AS |
8450 | } |
8451 | ||
14f9c5c9 AS |
8452 | /* Evaluate the subexpression of EXP starting at *POS as for |
8453 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 8454 | expression. */ |
14f9c5c9 | 8455 | |
d2e4a39e AS |
8456 | static struct value * |
8457 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 8458 | { |
4b27a620 | 8459 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
8460 | } |
8461 | ||
8462 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 8463 | value it wraps. */ |
14f9c5c9 | 8464 | |
d2e4a39e AS |
8465 | static struct value * |
8466 | unwrap_value (struct value *val) | |
14f9c5c9 | 8467 | { |
df407dfe | 8468 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 8469 | |
14f9c5c9 AS |
8470 | if (ada_is_aligner_type (type)) |
8471 | { | |
de4d072f | 8472 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 8473 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 8474 | |
14f9c5c9 | 8475 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 8476 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
8477 | |
8478 | return unwrap_value (v); | |
8479 | } | |
d2e4a39e | 8480 | else |
14f9c5c9 | 8481 | { |
d2e4a39e | 8482 | struct type *raw_real_type = |
61ee279c | 8483 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 8484 | |
5bf03f13 JB |
8485 | /* If there is no parallel XVS or XVE type, then the value is |
8486 | already unwrapped. Return it without further modification. */ | |
8487 | if ((type == raw_real_type) | |
8488 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
8489 | return val; | |
14f9c5c9 | 8490 | |
d2e4a39e | 8491 | return |
4c4b4cd2 PH |
8492 | coerce_unspec_val_to_type |
8493 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 8494 | value_address (val), |
1ed6ede0 | 8495 | NULL, 1)); |
14f9c5c9 AS |
8496 | } |
8497 | } | |
d2e4a39e AS |
8498 | |
8499 | static struct value * | |
8500 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
8501 | { |
8502 | LONGEST val; | |
8503 | ||
df407dfe | 8504 | if (type == value_type (arg)) |
14f9c5c9 | 8505 | return arg; |
df407dfe | 8506 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 8507 | val = ada_float_to_fixed (type, |
df407dfe | 8508 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8509 | value_as_long (arg))); |
d2e4a39e | 8510 | else |
14f9c5c9 | 8511 | { |
a53b7a21 | 8512 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 8513 | |
14f9c5c9 AS |
8514 | val = ada_float_to_fixed (type, argd); |
8515 | } | |
8516 | ||
8517 | return value_from_longest (type, val); | |
8518 | } | |
8519 | ||
d2e4a39e | 8520 | static struct value * |
a53b7a21 | 8521 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 8522 | { |
df407dfe | 8523 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8524 | value_as_long (arg)); |
5b4ee69b | 8525 | |
a53b7a21 | 8526 | return value_from_double (type, val); |
14f9c5c9 AS |
8527 | } |
8528 | ||
4c4b4cd2 PH |
8529 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
8530 | return the converted value. */ | |
8531 | ||
d2e4a39e AS |
8532 | static struct value * |
8533 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 8534 | { |
df407dfe | 8535 | struct type *type2 = value_type (val); |
5b4ee69b | 8536 | |
14f9c5c9 AS |
8537 | if (type == type2) |
8538 | return val; | |
8539 | ||
61ee279c PH |
8540 | type2 = ada_check_typedef (type2); |
8541 | type = ada_check_typedef (type); | |
14f9c5c9 | 8542 | |
d2e4a39e AS |
8543 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
8544 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
8545 | { |
8546 | val = ada_value_ind (val); | |
df407dfe | 8547 | type2 = value_type (val); |
14f9c5c9 AS |
8548 | } |
8549 | ||
d2e4a39e | 8550 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
8551 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
8552 | { | |
8553 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
4c4b4cd2 PH |
8554 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
8555 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
323e0a4a | 8556 | error (_("Incompatible types in assignment")); |
04624583 | 8557 | deprecated_set_value_type (val, type); |
14f9c5c9 | 8558 | } |
d2e4a39e | 8559 | return val; |
14f9c5c9 AS |
8560 | } |
8561 | ||
4c4b4cd2 PH |
8562 | static struct value * |
8563 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
8564 | { | |
8565 | struct value *val; | |
8566 | struct type *type1, *type2; | |
8567 | LONGEST v, v1, v2; | |
8568 | ||
994b9211 AC |
8569 | arg1 = coerce_ref (arg1); |
8570 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
8571 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
8572 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 8573 | |
76a01679 JB |
8574 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
8575 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
8576 | return value_binop (arg1, arg2, op); |
8577 | ||
76a01679 | 8578 | switch (op) |
4c4b4cd2 PH |
8579 | { |
8580 | case BINOP_MOD: | |
8581 | case BINOP_DIV: | |
8582 | case BINOP_REM: | |
8583 | break; | |
8584 | default: | |
8585 | return value_binop (arg1, arg2, op); | |
8586 | } | |
8587 | ||
8588 | v2 = value_as_long (arg2); | |
8589 | if (v2 == 0) | |
323e0a4a | 8590 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
8591 | |
8592 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
8593 | return value_binop (arg1, arg2, op); | |
8594 | ||
8595 | v1 = value_as_long (arg1); | |
8596 | switch (op) | |
8597 | { | |
8598 | case BINOP_DIV: | |
8599 | v = v1 / v2; | |
76a01679 JB |
8600 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
8601 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
8602 | break; |
8603 | case BINOP_REM: | |
8604 | v = v1 % v2; | |
76a01679 JB |
8605 | if (v * v1 < 0) |
8606 | v -= v2; | |
4c4b4cd2 PH |
8607 | break; |
8608 | default: | |
8609 | /* Should not reach this point. */ | |
8610 | v = 0; | |
8611 | } | |
8612 | ||
8613 | val = allocate_value (type1); | |
990a07ab | 8614 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
8615 | TYPE_LENGTH (value_type (val)), |
8616 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
8617 | return val; |
8618 | } | |
8619 | ||
8620 | static int | |
8621 | ada_value_equal (struct value *arg1, struct value *arg2) | |
8622 | { | |
df407dfe AC |
8623 | if (ada_is_direct_array_type (value_type (arg1)) |
8624 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 8625 | { |
f58b38bf JB |
8626 | /* Automatically dereference any array reference before |
8627 | we attempt to perform the comparison. */ | |
8628 | arg1 = ada_coerce_ref (arg1); | |
8629 | arg2 = ada_coerce_ref (arg2); | |
8630 | ||
4c4b4cd2 PH |
8631 | arg1 = ada_coerce_to_simple_array (arg1); |
8632 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
8633 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
8634 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 8635 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 8636 | /* FIXME: The following works only for types whose |
76a01679 JB |
8637 | representations use all bits (no padding or undefined bits) |
8638 | and do not have user-defined equality. */ | |
8639 | return | |
df407dfe | 8640 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 8641 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 8642 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
8643 | } |
8644 | return value_equal (arg1, arg2); | |
8645 | } | |
8646 | ||
52ce6436 PH |
8647 | /* Total number of component associations in the aggregate starting at |
8648 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 8649 | OP_AGGREGATE. */ |
52ce6436 PH |
8650 | |
8651 | static int | |
8652 | num_component_specs (struct expression *exp, int pc) | |
8653 | { | |
8654 | int n, m, i; | |
5b4ee69b | 8655 | |
52ce6436 PH |
8656 | m = exp->elts[pc + 1].longconst; |
8657 | pc += 3; | |
8658 | n = 0; | |
8659 | for (i = 0; i < m; i += 1) | |
8660 | { | |
8661 | switch (exp->elts[pc].opcode) | |
8662 | { | |
8663 | default: | |
8664 | n += 1; | |
8665 | break; | |
8666 | case OP_CHOICES: | |
8667 | n += exp->elts[pc + 1].longconst; | |
8668 | break; | |
8669 | } | |
8670 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
8671 | } | |
8672 | return n; | |
8673 | } | |
8674 | ||
8675 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
8676 | component of LHS (a simple array or a record), updating *POS past | |
8677 | the expression, assuming that LHS is contained in CONTAINER. Does | |
8678 | not modify the inferior's memory, nor does it modify LHS (unless | |
8679 | LHS == CONTAINER). */ | |
8680 | ||
8681 | static void | |
8682 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
8683 | struct expression *exp, int *pos) | |
8684 | { | |
8685 | struct value *mark = value_mark (); | |
8686 | struct value *elt; | |
5b4ee69b | 8687 | |
52ce6436 PH |
8688 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
8689 | { | |
22601c15 UW |
8690 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
8691 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 8692 | |
52ce6436 PH |
8693 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
8694 | } | |
8695 | else | |
8696 | { | |
8697 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
8698 | elt = ada_to_fixed_value (unwrap_value (elt)); | |
8699 | } | |
8700 | ||
8701 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
8702 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
8703 | else | |
8704 | value_assign_to_component (container, elt, | |
8705 | ada_evaluate_subexp (NULL, exp, pos, | |
8706 | EVAL_NORMAL)); | |
8707 | ||
8708 | value_free_to_mark (mark); | |
8709 | } | |
8710 | ||
8711 | /* Assuming that LHS represents an lvalue having a record or array | |
8712 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
8713 | of that aggregate's value to LHS, advancing *POS past the | |
8714 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
8715 | lvalue containing LHS (possibly LHS itself). Does not modify | |
8716 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 8717 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
8718 | |
8719 | static struct value * | |
8720 | assign_aggregate (struct value *container, | |
8721 | struct value *lhs, struct expression *exp, | |
8722 | int *pos, enum noside noside) | |
8723 | { | |
8724 | struct type *lhs_type; | |
8725 | int n = exp->elts[*pos+1].longconst; | |
8726 | LONGEST low_index, high_index; | |
8727 | int num_specs; | |
8728 | LONGEST *indices; | |
8729 | int max_indices, num_indices; | |
8730 | int is_array_aggregate; | |
8731 | int i; | |
52ce6436 PH |
8732 | |
8733 | *pos += 3; | |
8734 | if (noside != EVAL_NORMAL) | |
8735 | { | |
52ce6436 PH |
8736 | for (i = 0; i < n; i += 1) |
8737 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
8738 | return container; | |
8739 | } | |
8740 | ||
8741 | container = ada_coerce_ref (container); | |
8742 | if (ada_is_direct_array_type (value_type (container))) | |
8743 | container = ada_coerce_to_simple_array (container); | |
8744 | lhs = ada_coerce_ref (lhs); | |
8745 | if (!deprecated_value_modifiable (lhs)) | |
8746 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
8747 | ||
8748 | lhs_type = value_type (lhs); | |
8749 | if (ada_is_direct_array_type (lhs_type)) | |
8750 | { | |
8751 | lhs = ada_coerce_to_simple_array (lhs); | |
8752 | lhs_type = value_type (lhs); | |
8753 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
8754 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
8755 | is_array_aggregate = 1; | |
8756 | } | |
8757 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
8758 | { | |
8759 | low_index = 0; | |
8760 | high_index = num_visible_fields (lhs_type) - 1; | |
8761 | is_array_aggregate = 0; | |
8762 | } | |
8763 | else | |
8764 | error (_("Left-hand side must be array or record.")); | |
8765 | ||
8766 | num_specs = num_component_specs (exp, *pos - 3); | |
8767 | max_indices = 4 * num_specs + 4; | |
8768 | indices = alloca (max_indices * sizeof (indices[0])); | |
8769 | indices[0] = indices[1] = low_index - 1; | |
8770 | indices[2] = indices[3] = high_index + 1; | |
8771 | num_indices = 4; | |
8772 | ||
8773 | for (i = 0; i < n; i += 1) | |
8774 | { | |
8775 | switch (exp->elts[*pos].opcode) | |
8776 | { | |
1fbf5ada JB |
8777 | case OP_CHOICES: |
8778 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
8779 | &num_indices, max_indices, | |
8780 | low_index, high_index); | |
8781 | break; | |
8782 | case OP_POSITIONAL: | |
8783 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
8784 | &num_indices, max_indices, |
8785 | low_index, high_index); | |
1fbf5ada JB |
8786 | break; |
8787 | case OP_OTHERS: | |
8788 | if (i != n-1) | |
8789 | error (_("Misplaced 'others' clause")); | |
8790 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
8791 | num_indices, low_index, high_index); | |
8792 | break; | |
8793 | default: | |
8794 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
8795 | } |
8796 | } | |
8797 | ||
8798 | return container; | |
8799 | } | |
8800 | ||
8801 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
8802 | construct at *POS, updating *POS past the construct, given that | |
8803 | the positions are relative to lower bound LOW, where HIGH is the | |
8804 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
8805 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 8806 | assign_aggregate. */ |
52ce6436 PH |
8807 | static void |
8808 | aggregate_assign_positional (struct value *container, | |
8809 | struct value *lhs, struct expression *exp, | |
8810 | int *pos, LONGEST *indices, int *num_indices, | |
8811 | int max_indices, LONGEST low, LONGEST high) | |
8812 | { | |
8813 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
8814 | ||
8815 | if (ind - 1 == high) | |
e1d5a0d2 | 8816 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
8817 | if (ind <= high) |
8818 | { | |
8819 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
8820 | *pos += 3; | |
8821 | assign_component (container, lhs, ind, exp, pos); | |
8822 | } | |
8823 | else | |
8824 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8825 | } | |
8826 | ||
8827 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
8828 | construct at *POS, updating *POS past the construct, given that | |
8829 | the allowable indices are LOW..HIGH. Record the indices assigned | |
8830 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 8831 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
8832 | static void |
8833 | aggregate_assign_from_choices (struct value *container, | |
8834 | struct value *lhs, struct expression *exp, | |
8835 | int *pos, LONGEST *indices, int *num_indices, | |
8836 | int max_indices, LONGEST low, LONGEST high) | |
8837 | { | |
8838 | int j; | |
8839 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
8840 | int choice_pos, expr_pc; | |
8841 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
8842 | ||
8843 | choice_pos = *pos += 3; | |
8844 | ||
8845 | for (j = 0; j < n_choices; j += 1) | |
8846 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8847 | expr_pc = *pos; | |
8848 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8849 | ||
8850 | for (j = 0; j < n_choices; j += 1) | |
8851 | { | |
8852 | LONGEST lower, upper; | |
8853 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 8854 | |
52ce6436 PH |
8855 | if (op == OP_DISCRETE_RANGE) |
8856 | { | |
8857 | choice_pos += 1; | |
8858 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8859 | EVAL_NORMAL)); | |
8860 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8861 | EVAL_NORMAL)); | |
8862 | } | |
8863 | else if (is_array) | |
8864 | { | |
8865 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
8866 | EVAL_NORMAL)); | |
8867 | upper = lower; | |
8868 | } | |
8869 | else | |
8870 | { | |
8871 | int ind; | |
8872 | char *name; | |
5b4ee69b | 8873 | |
52ce6436 PH |
8874 | switch (op) |
8875 | { | |
8876 | case OP_NAME: | |
8877 | name = &exp->elts[choice_pos + 2].string; | |
8878 | break; | |
8879 | case OP_VAR_VALUE: | |
8880 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
8881 | break; | |
8882 | default: | |
8883 | error (_("Invalid record component association.")); | |
8884 | } | |
8885 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
8886 | ind = 0; | |
8887 | if (! find_struct_field (name, value_type (lhs), 0, | |
8888 | NULL, NULL, NULL, NULL, &ind)) | |
8889 | error (_("Unknown component name: %s."), name); | |
8890 | lower = upper = ind; | |
8891 | } | |
8892 | ||
8893 | if (lower <= upper && (lower < low || upper > high)) | |
8894 | error (_("Index in component association out of bounds.")); | |
8895 | ||
8896 | add_component_interval (lower, upper, indices, num_indices, | |
8897 | max_indices); | |
8898 | while (lower <= upper) | |
8899 | { | |
8900 | int pos1; | |
5b4ee69b | 8901 | |
52ce6436 PH |
8902 | pos1 = expr_pc; |
8903 | assign_component (container, lhs, lower, exp, &pos1); | |
8904 | lower += 1; | |
8905 | } | |
8906 | } | |
8907 | } | |
8908 | ||
8909 | /* Assign the value of the expression in the OP_OTHERS construct in | |
8910 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
8911 | have not been previously assigned. The index intervals already assigned | |
8912 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 8913 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
8914 | static void |
8915 | aggregate_assign_others (struct value *container, | |
8916 | struct value *lhs, struct expression *exp, | |
8917 | int *pos, LONGEST *indices, int num_indices, | |
8918 | LONGEST low, LONGEST high) | |
8919 | { | |
8920 | int i; | |
5ce64950 | 8921 | int expr_pc = *pos + 1; |
52ce6436 PH |
8922 | |
8923 | for (i = 0; i < num_indices - 2; i += 2) | |
8924 | { | |
8925 | LONGEST ind; | |
5b4ee69b | 8926 | |
52ce6436 PH |
8927 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
8928 | { | |
5ce64950 | 8929 | int localpos; |
5b4ee69b | 8930 | |
5ce64950 MS |
8931 | localpos = expr_pc; |
8932 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
8933 | } |
8934 | } | |
8935 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8936 | } | |
8937 | ||
8938 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
8939 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
8940 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
8941 | MAX_SIZE. The resulting intervals do not overlap. */ | |
8942 | static void | |
8943 | add_component_interval (LONGEST low, LONGEST high, | |
8944 | LONGEST* indices, int *size, int max_size) | |
8945 | { | |
8946 | int i, j; | |
5b4ee69b | 8947 | |
52ce6436 PH |
8948 | for (i = 0; i < *size; i += 2) { |
8949 | if (high >= indices[i] && low <= indices[i + 1]) | |
8950 | { | |
8951 | int kh; | |
5b4ee69b | 8952 | |
52ce6436 PH |
8953 | for (kh = i + 2; kh < *size; kh += 2) |
8954 | if (high < indices[kh]) | |
8955 | break; | |
8956 | if (low < indices[i]) | |
8957 | indices[i] = low; | |
8958 | indices[i + 1] = indices[kh - 1]; | |
8959 | if (high > indices[i + 1]) | |
8960 | indices[i + 1] = high; | |
8961 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
8962 | *size -= kh - i - 2; | |
8963 | return; | |
8964 | } | |
8965 | else if (high < indices[i]) | |
8966 | break; | |
8967 | } | |
8968 | ||
8969 | if (*size == max_size) | |
8970 | error (_("Internal error: miscounted aggregate components.")); | |
8971 | *size += 2; | |
8972 | for (j = *size-1; j >= i+2; j -= 1) | |
8973 | indices[j] = indices[j - 2]; | |
8974 | indices[i] = low; | |
8975 | indices[i + 1] = high; | |
8976 | } | |
8977 | ||
6e48bd2c JB |
8978 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
8979 | is different. */ | |
8980 | ||
8981 | static struct value * | |
8982 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
8983 | { | |
8984 | if (type == ada_check_typedef (value_type (arg2))) | |
8985 | return arg2; | |
8986 | ||
8987 | if (ada_is_fixed_point_type (type)) | |
8988 | return (cast_to_fixed (type, arg2)); | |
8989 | ||
8990 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 8991 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
8992 | |
8993 | return value_cast (type, arg2); | |
8994 | } | |
8995 | ||
284614f0 JB |
8996 | /* Evaluating Ada expressions, and printing their result. |
8997 | ------------------------------------------------------ | |
8998 | ||
21649b50 JB |
8999 | 1. Introduction: |
9000 | ---------------- | |
9001 | ||
284614f0 JB |
9002 | We usually evaluate an Ada expression in order to print its value. |
9003 | We also evaluate an expression in order to print its type, which | |
9004 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
9005 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
9006 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
9007 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
9008 | similar. | |
9009 | ||
9010 | Evaluating expressions is a little more complicated for Ada entities | |
9011 | than it is for entities in languages such as C. The main reason for | |
9012 | this is that Ada provides types whose definition might be dynamic. | |
9013 | One example of such types is variant records. Or another example | |
9014 | would be an array whose bounds can only be known at run time. | |
9015 | ||
9016 | The following description is a general guide as to what should be | |
9017 | done (and what should NOT be done) in order to evaluate an expression | |
9018 | involving such types, and when. This does not cover how the semantic | |
9019 | information is encoded by GNAT as this is covered separatly. For the | |
9020 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
9021 | in the GNAT sources. | |
9022 | ||
9023 | Ideally, we should embed each part of this description next to its | |
9024 | associated code. Unfortunately, the amount of code is so vast right | |
9025 | now that it's hard to see whether the code handling a particular | |
9026 | situation might be duplicated or not. One day, when the code is | |
9027 | cleaned up, this guide might become redundant with the comments | |
9028 | inserted in the code, and we might want to remove it. | |
9029 | ||
21649b50 JB |
9030 | 2. ``Fixing'' an Entity, the Simple Case: |
9031 | ----------------------------------------- | |
9032 | ||
284614f0 JB |
9033 | When evaluating Ada expressions, the tricky issue is that they may |
9034 | reference entities whose type contents and size are not statically | |
9035 | known. Consider for instance a variant record: | |
9036 | ||
9037 | type Rec (Empty : Boolean := True) is record | |
9038 | case Empty is | |
9039 | when True => null; | |
9040 | when False => Value : Integer; | |
9041 | end case; | |
9042 | end record; | |
9043 | Yes : Rec := (Empty => False, Value => 1); | |
9044 | No : Rec := (empty => True); | |
9045 | ||
9046 | The size and contents of that record depends on the value of the | |
9047 | descriminant (Rec.Empty). At this point, neither the debugging | |
9048 | information nor the associated type structure in GDB are able to | |
9049 | express such dynamic types. So what the debugger does is to create | |
9050 | "fixed" versions of the type that applies to the specific object. | |
9051 | We also informally refer to this opperation as "fixing" an object, | |
9052 | which means creating its associated fixed type. | |
9053 | ||
9054 | Example: when printing the value of variable "Yes" above, its fixed | |
9055 | type would look like this: | |
9056 | ||
9057 | type Rec is record | |
9058 | Empty : Boolean; | |
9059 | Value : Integer; | |
9060 | end record; | |
9061 | ||
9062 | On the other hand, if we printed the value of "No", its fixed type | |
9063 | would become: | |
9064 | ||
9065 | type Rec is record | |
9066 | Empty : Boolean; | |
9067 | end record; | |
9068 | ||
9069 | Things become a little more complicated when trying to fix an entity | |
9070 | with a dynamic type that directly contains another dynamic type, | |
9071 | such as an array of variant records, for instance. There are | |
9072 | two possible cases: Arrays, and records. | |
9073 | ||
21649b50 JB |
9074 | 3. ``Fixing'' Arrays: |
9075 | --------------------- | |
9076 | ||
9077 | The type structure in GDB describes an array in terms of its bounds, | |
9078 | and the type of its elements. By design, all elements in the array | |
9079 | have the same type and we cannot represent an array of variant elements | |
9080 | using the current type structure in GDB. When fixing an array, | |
9081 | we cannot fix the array element, as we would potentially need one | |
9082 | fixed type per element of the array. As a result, the best we can do | |
9083 | when fixing an array is to produce an array whose bounds and size | |
9084 | are correct (allowing us to read it from memory), but without having | |
9085 | touched its element type. Fixing each element will be done later, | |
9086 | when (if) necessary. | |
9087 | ||
9088 | Arrays are a little simpler to handle than records, because the same | |
9089 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 9090 | the amount of space actually used by each element differs from element |
21649b50 | 9091 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
9092 | |
9093 | type Rec_Array is array (1 .. 2) of Rec; | |
9094 | ||
1b536f04 JB |
9095 | The actual amount of memory occupied by each element might be different |
9096 | from element to element, depending on the value of their discriminant. | |
21649b50 | 9097 | But the amount of space reserved for each element in the array remains |
1b536f04 | 9098 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
9099 | the debugging information available, from which we can then determine |
9100 | the array size (we multiply the number of elements of the array by | |
9101 | the size of each element). | |
9102 | ||
9103 | The simplest case is when we have an array of a constrained element | |
9104 | type. For instance, consider the following type declarations: | |
9105 | ||
9106 | type Bounded_String (Max_Size : Integer) is | |
9107 | Length : Integer; | |
9108 | Buffer : String (1 .. Max_Size); | |
9109 | end record; | |
9110 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
9111 | ||
9112 | In this case, the compiler describes the array as an array of | |
9113 | variable-size elements (identified by its XVS suffix) for which | |
9114 | the size can be read in the parallel XVZ variable. | |
9115 | ||
9116 | In the case of an array of an unconstrained element type, the compiler | |
9117 | wraps the array element inside a private PAD type. This type should not | |
9118 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
9119 | that we also use the adjective "aligner" in our code to designate |
9120 | these wrapper types. | |
9121 | ||
1b536f04 | 9122 | In some cases, the size allocated for each element is statically |
21649b50 JB |
9123 | known. In that case, the PAD type already has the correct size, |
9124 | and the array element should remain unfixed. | |
9125 | ||
9126 | But there are cases when this size is not statically known. | |
9127 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
9128 | |
9129 | type Dynamic is array (1 .. Five) of Integer; | |
9130 | type Wrapper (Has_Length : Boolean := False) is record | |
9131 | Data : Dynamic; | |
9132 | case Has_Length is | |
9133 | when True => Length : Integer; | |
9134 | when False => null; | |
9135 | end case; | |
9136 | end record; | |
9137 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
9138 | ||
9139 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
9140 | Data => (others => 17), | |
9141 | Length => 1)); | |
9142 | ||
9143 | ||
9144 | The debugging info would describe variable Hello as being an | |
9145 | array of a PAD type. The size of that PAD type is not statically | |
9146 | known, but can be determined using a parallel XVZ variable. | |
9147 | In that case, a copy of the PAD type with the correct size should | |
9148 | be used for the fixed array. | |
9149 | ||
21649b50 JB |
9150 | 3. ``Fixing'' record type objects: |
9151 | ---------------------------------- | |
9152 | ||
9153 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
9154 | record types. In this case, in order to compute the associated |
9155 | fixed type, we need to determine the size and offset of each of | |
9156 | its components. This, in turn, requires us to compute the fixed | |
9157 | type of each of these components. | |
9158 | ||
9159 | Consider for instance the example: | |
9160 | ||
9161 | type Bounded_String (Max_Size : Natural) is record | |
9162 | Str : String (1 .. Max_Size); | |
9163 | Length : Natural; | |
9164 | end record; | |
9165 | My_String : Bounded_String (Max_Size => 10); | |
9166 | ||
9167 | In that case, the position of field "Length" depends on the size | |
9168 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 9169 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
9170 | we need to fix the type of field Str. Therefore, fixing a variant |
9171 | record requires us to fix each of its components. | |
9172 | ||
9173 | However, if a component does not have a dynamic size, the component | |
9174 | should not be fixed. In particular, fields that use a PAD type | |
9175 | should not fixed. Here is an example where this might happen | |
9176 | (assuming type Rec above): | |
9177 | ||
9178 | type Container (Big : Boolean) is record | |
9179 | First : Rec; | |
9180 | After : Integer; | |
9181 | case Big is | |
9182 | when True => Another : Integer; | |
9183 | when False => null; | |
9184 | end case; | |
9185 | end record; | |
9186 | My_Container : Container := (Big => False, | |
9187 | First => (Empty => True), | |
9188 | After => 42); | |
9189 | ||
9190 | In that example, the compiler creates a PAD type for component First, | |
9191 | whose size is constant, and then positions the component After just | |
9192 | right after it. The offset of component After is therefore constant | |
9193 | in this case. | |
9194 | ||
9195 | The debugger computes the position of each field based on an algorithm | |
9196 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
9197 | preceding it. Let's now imagine that the user is trying to print |
9198 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
9199 | end up computing the offset of field After based on the size of the |
9200 | fixed version of field First. And since in our example First has | |
9201 | only one actual field, the size of the fixed type is actually smaller | |
9202 | than the amount of space allocated to that field, and thus we would | |
9203 | compute the wrong offset of field After. | |
9204 | ||
21649b50 JB |
9205 | To make things more complicated, we need to watch out for dynamic |
9206 | components of variant records (identified by the ___XVL suffix in | |
9207 | the component name). Even if the target type is a PAD type, the size | |
9208 | of that type might not be statically known. So the PAD type needs | |
9209 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
9210 | we might end up with the wrong size for our component. This can be | |
9211 | observed with the following type declarations: | |
284614f0 JB |
9212 | |
9213 | type Octal is new Integer range 0 .. 7; | |
9214 | type Octal_Array is array (Positive range <>) of Octal; | |
9215 | pragma Pack (Octal_Array); | |
9216 | ||
9217 | type Octal_Buffer (Size : Positive) is record | |
9218 | Buffer : Octal_Array (1 .. Size); | |
9219 | Length : Integer; | |
9220 | end record; | |
9221 | ||
9222 | In that case, Buffer is a PAD type whose size is unset and needs | |
9223 | to be computed by fixing the unwrapped type. | |
9224 | ||
21649b50 JB |
9225 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
9226 | ---------------------------------------------------------- | |
9227 | ||
9228 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
9229 | thus far, be actually fixed? |
9230 | ||
9231 | The answer is: Only when referencing that element. For instance | |
9232 | when selecting one component of a record, this specific component | |
9233 | should be fixed at that point in time. Or when printing the value | |
9234 | of a record, each component should be fixed before its value gets | |
9235 | printed. Similarly for arrays, the element of the array should be | |
9236 | fixed when printing each element of the array, or when extracting | |
9237 | one element out of that array. On the other hand, fixing should | |
9238 | not be performed on the elements when taking a slice of an array! | |
9239 | ||
9240 | Note that one of the side-effects of miscomputing the offset and | |
9241 | size of each field is that we end up also miscomputing the size | |
9242 | of the containing type. This can have adverse results when computing | |
9243 | the value of an entity. GDB fetches the value of an entity based | |
9244 | on the size of its type, and thus a wrong size causes GDB to fetch | |
9245 | the wrong amount of memory. In the case where the computed size is | |
9246 | too small, GDB fetches too little data to print the value of our | |
9247 | entiry. Results in this case as unpredicatble, as we usually read | |
9248 | past the buffer containing the data =:-o. */ | |
9249 | ||
9250 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
9251 | for the Ada language. */ | |
9252 | ||
52ce6436 | 9253 | static struct value * |
ebf56fd3 | 9254 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 9255 | int *pos, enum noside noside) |
14f9c5c9 AS |
9256 | { |
9257 | enum exp_opcode op; | |
b5385fc0 | 9258 | int tem; |
14f9c5c9 AS |
9259 | int pc; |
9260 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
9261 | struct type *type; | |
52ce6436 | 9262 | int nargs, oplen; |
d2e4a39e | 9263 | struct value **argvec; |
14f9c5c9 | 9264 | |
d2e4a39e AS |
9265 | pc = *pos; |
9266 | *pos += 1; | |
14f9c5c9 AS |
9267 | op = exp->elts[pc].opcode; |
9268 | ||
d2e4a39e | 9269 | switch (op) |
14f9c5c9 AS |
9270 | { |
9271 | default: | |
9272 | *pos -= 1; | |
6e48bd2c JB |
9273 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
9274 | arg1 = unwrap_value (arg1); | |
9275 | ||
9276 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
9277 | then we need to perform the conversion manually, because | |
9278 | evaluate_subexp_standard doesn't do it. This conversion is | |
9279 | necessary in Ada because the different kinds of float/fixed | |
9280 | types in Ada have different representations. | |
9281 | ||
9282 | Similarly, we need to perform the conversion from OP_LONG | |
9283 | ourselves. */ | |
9284 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
9285 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
9286 | ||
9287 | return arg1; | |
4c4b4cd2 PH |
9288 | |
9289 | case OP_STRING: | |
9290 | { | |
76a01679 | 9291 | struct value *result; |
5b4ee69b | 9292 | |
76a01679 JB |
9293 | *pos -= 1; |
9294 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9295 | /* The result type will have code OP_STRING, bashed there from | |
9296 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
9297 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
9298 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 9299 | return result; |
4c4b4cd2 | 9300 | } |
14f9c5c9 AS |
9301 | |
9302 | case UNOP_CAST: | |
9303 | (*pos) += 2; | |
9304 | type = exp->elts[pc + 1].type; | |
9305 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
9306 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9307 | goto nosideret; |
6e48bd2c | 9308 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
9309 | return arg1; |
9310 | ||
4c4b4cd2 PH |
9311 | case UNOP_QUAL: |
9312 | (*pos) += 2; | |
9313 | type = exp->elts[pc + 1].type; | |
9314 | return ada_evaluate_subexp (type, exp, pos, noside); | |
9315 | ||
14f9c5c9 AS |
9316 | case BINOP_ASSIGN: |
9317 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
9318 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
9319 | { | |
9320 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
9321 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
9322 | return arg1; | |
9323 | return ada_value_assign (arg1, arg1); | |
9324 | } | |
003f3813 JB |
9325 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
9326 | except if the lhs of our assignment is a convenience variable. | |
9327 | In the case of assigning to a convenience variable, the lhs | |
9328 | should be exactly the result of the evaluation of the rhs. */ | |
9329 | type = value_type (arg1); | |
9330 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
9331 | type = NULL; | |
9332 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 9333 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9334 | return arg1; |
df407dfe AC |
9335 | if (ada_is_fixed_point_type (value_type (arg1))) |
9336 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
9337 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 9338 | error |
323e0a4a | 9339 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 9340 | else |
df407dfe | 9341 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 9342 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
9343 | |
9344 | case BINOP_ADD: | |
9345 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9346 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9347 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9348 | goto nosideret; |
2ac8a782 JB |
9349 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9350 | return (value_from_longest | |
9351 | (value_type (arg1), | |
9352 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
9353 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9354 | || ada_is_fixed_point_type (value_type (arg2))) | |
9355 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 9356 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
9357 | /* Do the addition, and cast the result to the type of the first |
9358 | argument. We cannot cast the result to a reference type, so if | |
9359 | ARG1 is a reference type, find its underlying type. */ | |
9360 | type = value_type (arg1); | |
9361 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9362 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9363 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9364 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
9365 | |
9366 | case BINOP_SUB: | |
9367 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9368 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9369 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9370 | goto nosideret; |
2ac8a782 JB |
9371 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9372 | return (value_from_longest | |
9373 | (value_type (arg1), | |
9374 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
9375 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9376 | || ada_is_fixed_point_type (value_type (arg2))) | |
9377 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
9378 | error (_("Operands of fixed-point subtraction " |
9379 | "must have the same type")); | |
b7789565 JB |
9380 | /* Do the substraction, and cast the result to the type of the first |
9381 | argument. We cannot cast the result to a reference type, so if | |
9382 | ARG1 is a reference type, find its underlying type. */ | |
9383 | type = value_type (arg1); | |
9384 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9385 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9386 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9387 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
9388 | |
9389 | case BINOP_MUL: | |
9390 | case BINOP_DIV: | |
e1578042 JB |
9391 | case BINOP_REM: |
9392 | case BINOP_MOD: | |
14f9c5c9 AS |
9393 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9394 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9395 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9396 | goto nosideret; |
e1578042 | 9397 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
9398 | { |
9399 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9400 | return value_zero (value_type (arg1), not_lval); | |
9401 | } | |
14f9c5c9 | 9402 | else |
4c4b4cd2 | 9403 | { |
a53b7a21 | 9404 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 9405 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 9406 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 9407 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 9408 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 9409 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
9410 | return ada_value_binop (arg1, arg2, op); |
9411 | } | |
9412 | ||
4c4b4cd2 PH |
9413 | case BINOP_EQUAL: |
9414 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 9415 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 9416 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 9417 | if (noside == EVAL_SKIP) |
76a01679 | 9418 | goto nosideret; |
4c4b4cd2 | 9419 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9420 | tem = 0; |
4c4b4cd2 | 9421 | else |
f44316fa UW |
9422 | { |
9423 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9424 | tem = ada_value_equal (arg1, arg2); | |
9425 | } | |
4c4b4cd2 | 9426 | if (op == BINOP_NOTEQUAL) |
76a01679 | 9427 | tem = !tem; |
fbb06eb1 UW |
9428 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9429 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
9430 | |
9431 | case UNOP_NEG: | |
9432 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9433 | if (noside == EVAL_SKIP) | |
9434 | goto nosideret; | |
df407dfe AC |
9435 | else if (ada_is_fixed_point_type (value_type (arg1))) |
9436 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 9437 | else |
f44316fa UW |
9438 | { |
9439 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9440 | return value_neg (arg1); | |
9441 | } | |
4c4b4cd2 | 9442 | |
2330c6c6 JB |
9443 | case BINOP_LOGICAL_AND: |
9444 | case BINOP_LOGICAL_OR: | |
9445 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
9446 | { |
9447 | struct value *val; | |
9448 | ||
9449 | *pos -= 1; | |
9450 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
9451 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9452 | return value_cast (type, val); | |
000d5124 | 9453 | } |
2330c6c6 JB |
9454 | |
9455 | case BINOP_BITWISE_AND: | |
9456 | case BINOP_BITWISE_IOR: | |
9457 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
9458 | { |
9459 | struct value *val; | |
9460 | ||
9461 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
9462 | *pos = pc; | |
9463 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9464 | ||
9465 | return value_cast (value_type (arg1), val); | |
9466 | } | |
2330c6c6 | 9467 | |
14f9c5c9 AS |
9468 | case OP_VAR_VALUE: |
9469 | *pos -= 1; | |
6799def4 | 9470 | |
14f9c5c9 | 9471 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
9472 | { |
9473 | *pos += 4; | |
9474 | goto nosideret; | |
9475 | } | |
9476 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
9477 | /* Only encountered when an unresolved symbol occurs in a |
9478 | context other than a function call, in which case, it is | |
52ce6436 | 9479 | invalid. */ |
323e0a4a | 9480 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 9481 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 9482 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9483 | { |
0c1f74cf | 9484 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
9485 | /* Check to see if this is a tagged type. We also need to handle |
9486 | the case where the type is a reference to a tagged type, but | |
9487 | we have to be careful to exclude pointers to tagged types. | |
9488 | The latter should be shown as usual (as a pointer), whereas | |
9489 | a reference should mostly be transparent to the user. */ | |
9490 | if (ada_is_tagged_type (type, 0) | |
9491 | || (TYPE_CODE(type) == TYPE_CODE_REF | |
9492 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) | |
0c1f74cf JB |
9493 | { |
9494 | /* Tagged types are a little special in the fact that the real | |
9495 | type is dynamic and can only be determined by inspecting the | |
9496 | object's tag. This means that we need to get the object's | |
9497 | value first (EVAL_NORMAL) and then extract the actual object | |
9498 | type from its tag. | |
9499 | ||
9500 | Note that we cannot skip the final step where we extract | |
9501 | the object type from its tag, because the EVAL_NORMAL phase | |
9502 | results in dynamic components being resolved into fixed ones. | |
9503 | This can cause problems when trying to print the type | |
9504 | description of tagged types whose parent has a dynamic size: | |
9505 | We use the type name of the "_parent" component in order | |
9506 | to print the name of the ancestor type in the type description. | |
9507 | If that component had a dynamic size, the resolution into | |
9508 | a fixed type would result in the loss of that type name, | |
9509 | thus preventing us from printing the name of the ancestor | |
9510 | type in the type description. */ | |
b79819ba JB |
9511 | struct type *actual_type; |
9512 | ||
0c1f74cf | 9513 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); |
b79819ba JB |
9514 | actual_type = type_from_tag (ada_value_tag (arg1)); |
9515 | if (actual_type == NULL) | |
9516 | /* If, for some reason, we were unable to determine | |
9517 | the actual type from the tag, then use the static | |
9518 | approximation that we just computed as a fallback. | |
9519 | This can happen if the debugging information is | |
9520 | incomplete, for instance. */ | |
9521 | actual_type = type; | |
9522 | ||
9523 | return value_zero (actual_type, not_lval); | |
0c1f74cf JB |
9524 | } |
9525 | ||
4c4b4cd2 PH |
9526 | *pos += 4; |
9527 | return value_zero | |
9528 | (to_static_fixed_type | |
9529 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
9530 | not_lval); | |
9531 | } | |
d2e4a39e | 9532 | else |
4c4b4cd2 | 9533 | { |
284614f0 JB |
9534 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
9535 | arg1 = unwrap_value (arg1); | |
4c4b4cd2 PH |
9536 | return ada_to_fixed_value (arg1); |
9537 | } | |
9538 | ||
9539 | case OP_FUNCALL: | |
9540 | (*pos) += 2; | |
9541 | ||
9542 | /* Allocate arg vector, including space for the function to be | |
9543 | called in argvec[0] and a terminating NULL. */ | |
9544 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
9545 | argvec = | |
9546 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
9547 | ||
9548 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 9549 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 9550 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
9551 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
9552 | else | |
9553 | { | |
9554 | for (tem = 0; tem <= nargs; tem += 1) | |
9555 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9556 | argvec[tem] = 0; | |
9557 | ||
9558 | if (noside == EVAL_SKIP) | |
9559 | goto nosideret; | |
9560 | } | |
9561 | ||
ad82864c JB |
9562 | if (ada_is_constrained_packed_array_type |
9563 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 9564 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
9565 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
9566 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
9567 | /* This is a packed array that has already been fixed, and | |
9568 | therefore already coerced to a simple array. Nothing further | |
9569 | to do. */ | |
9570 | ; | |
df407dfe AC |
9571 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
9572 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 9573 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
9574 | argvec[0] = value_addr (argvec[0]); |
9575 | ||
df407dfe | 9576 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
9577 | |
9578 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
9579 | them. So, if this is an array typedef (encoding use for array |
9580 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
9581 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
9582 | type = ada_typedef_target_type (type); | |
9583 | ||
4c4b4cd2 PH |
9584 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
9585 | { | |
61ee279c | 9586 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
9587 | { |
9588 | case TYPE_CODE_FUNC: | |
61ee279c | 9589 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9590 | break; |
9591 | case TYPE_CODE_ARRAY: | |
9592 | break; | |
9593 | case TYPE_CODE_STRUCT: | |
9594 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
9595 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 9596 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9597 | break; |
9598 | default: | |
323e0a4a | 9599 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 9600 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
9601 | break; |
9602 | } | |
9603 | } | |
9604 | ||
9605 | switch (TYPE_CODE (type)) | |
9606 | { | |
9607 | case TYPE_CODE_FUNC: | |
9608 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9609 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
9610 | return call_function_by_hand (argvec[0], nargs, argvec + 1); | |
9611 | case TYPE_CODE_STRUCT: | |
9612 | { | |
9613 | int arity; | |
9614 | ||
4c4b4cd2 PH |
9615 | arity = ada_array_arity (type); |
9616 | type = ada_array_element_type (type, nargs); | |
9617 | if (type == NULL) | |
323e0a4a | 9618 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 9619 | if (arity != nargs) |
323e0a4a | 9620 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 9621 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 9622 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9623 | return |
9624 | unwrap_value (ada_value_subscript | |
9625 | (argvec[0], nargs, argvec + 1)); | |
9626 | } | |
9627 | case TYPE_CODE_ARRAY: | |
9628 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9629 | { | |
9630 | type = ada_array_element_type (type, nargs); | |
9631 | if (type == NULL) | |
323e0a4a | 9632 | error (_("element type of array unknown")); |
4c4b4cd2 | 9633 | else |
0a07e705 | 9634 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9635 | } |
9636 | return | |
9637 | unwrap_value (ada_value_subscript | |
9638 | (ada_coerce_to_simple_array (argvec[0]), | |
9639 | nargs, argvec + 1)); | |
9640 | case TYPE_CODE_PTR: /* Pointer to array */ | |
9641 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
9642 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9643 | { | |
9644 | type = ada_array_element_type (type, nargs); | |
9645 | if (type == NULL) | |
323e0a4a | 9646 | error (_("element type of array unknown")); |
4c4b4cd2 | 9647 | else |
0a07e705 | 9648 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9649 | } |
9650 | return | |
9651 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
9652 | nargs, argvec + 1)); | |
9653 | ||
9654 | default: | |
e1d5a0d2 PH |
9655 | error (_("Attempt to index or call something other than an " |
9656 | "array or function")); | |
4c4b4cd2 PH |
9657 | } |
9658 | ||
9659 | case TERNOP_SLICE: | |
9660 | { | |
9661 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9662 | struct value *low_bound_val = | |
9663 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
9664 | struct value *high_bound_val = |
9665 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9666 | LONGEST low_bound; | |
9667 | LONGEST high_bound; | |
5b4ee69b | 9668 | |
994b9211 AC |
9669 | low_bound_val = coerce_ref (low_bound_val); |
9670 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
9671 | low_bound = pos_atr (low_bound_val); |
9672 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 9673 | |
4c4b4cd2 PH |
9674 | if (noside == EVAL_SKIP) |
9675 | goto nosideret; | |
9676 | ||
4c4b4cd2 PH |
9677 | /* If this is a reference to an aligner type, then remove all |
9678 | the aligners. */ | |
df407dfe AC |
9679 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9680 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
9681 | TYPE_TARGET_TYPE (value_type (array)) = | |
9682 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 9683 | |
ad82864c | 9684 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 9685 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
9686 | |
9687 | /* If this is a reference to an array or an array lvalue, | |
9688 | convert to a pointer. */ | |
df407dfe AC |
9689 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9690 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
9691 | && VALUE_LVAL (array) == lval_memory)) |
9692 | array = value_addr (array); | |
9693 | ||
1265e4aa | 9694 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 9695 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 9696 | (value_type (array)))) |
0b5d8877 | 9697 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
9698 | |
9699 | array = ada_coerce_to_simple_array_ptr (array); | |
9700 | ||
714e53ab PH |
9701 | /* If we have more than one level of pointer indirection, |
9702 | dereference the value until we get only one level. */ | |
df407dfe AC |
9703 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
9704 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
9705 | == TYPE_CODE_PTR)) |
9706 | array = value_ind (array); | |
9707 | ||
9708 | /* Make sure we really do have an array type before going further, | |
9709 | to avoid a SEGV when trying to get the index type or the target | |
9710 | type later down the road if the debug info generated by | |
9711 | the compiler is incorrect or incomplete. */ | |
df407dfe | 9712 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 9713 | error (_("cannot take slice of non-array")); |
714e53ab | 9714 | |
828292f2 JB |
9715 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
9716 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 9717 | { |
828292f2 JB |
9718 | struct type *type0 = ada_check_typedef (value_type (array)); |
9719 | ||
0b5d8877 | 9720 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 9721 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
9722 | else |
9723 | { | |
9724 | struct type *arr_type0 = | |
828292f2 | 9725 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 9726 | |
f5938064 JG |
9727 | return ada_value_slice_from_ptr (array, arr_type0, |
9728 | longest_to_int (low_bound), | |
9729 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
9730 | } |
9731 | } | |
9732 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9733 | return array; | |
9734 | else if (high_bound < low_bound) | |
df407dfe | 9735 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 9736 | else |
529cad9c PH |
9737 | return ada_value_slice (array, longest_to_int (low_bound), |
9738 | longest_to_int (high_bound)); | |
4c4b4cd2 | 9739 | } |
14f9c5c9 | 9740 | |
4c4b4cd2 PH |
9741 | case UNOP_IN_RANGE: |
9742 | (*pos) += 2; | |
9743 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 9744 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 9745 | |
14f9c5c9 | 9746 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9747 | goto nosideret; |
14f9c5c9 | 9748 | |
4c4b4cd2 PH |
9749 | switch (TYPE_CODE (type)) |
9750 | { | |
9751 | default: | |
e1d5a0d2 PH |
9752 | lim_warning (_("Membership test incompletely implemented; " |
9753 | "always returns true")); | |
fbb06eb1 UW |
9754 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9755 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
9756 | |
9757 | case TYPE_CODE_RANGE: | |
030b4912 UW |
9758 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
9759 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
9760 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9761 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
9762 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9763 | return | |
9764 | value_from_longest (type, | |
4c4b4cd2 PH |
9765 | (value_less (arg1, arg3) |
9766 | || value_equal (arg1, arg3)) | |
9767 | && (value_less (arg2, arg1) | |
9768 | || value_equal (arg2, arg1))); | |
9769 | } | |
9770 | ||
9771 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 9772 | (*pos) += 2; |
4c4b4cd2 PH |
9773 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9774 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 9775 | |
4c4b4cd2 PH |
9776 | if (noside == EVAL_SKIP) |
9777 | goto nosideret; | |
14f9c5c9 | 9778 | |
4c4b4cd2 | 9779 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
9780 | { |
9781 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9782 | return value_zero (type, not_lval); | |
9783 | } | |
14f9c5c9 | 9784 | |
4c4b4cd2 | 9785 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 9786 | |
1eea4ebd UW |
9787 | type = ada_index_type (value_type (arg2), tem, "range"); |
9788 | if (!type) | |
9789 | type = value_type (arg1); | |
14f9c5c9 | 9790 | |
1eea4ebd UW |
9791 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
9792 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 9793 | |
f44316fa UW |
9794 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9795 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9796 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9797 | return |
fbb06eb1 | 9798 | value_from_longest (type, |
4c4b4cd2 PH |
9799 | (value_less (arg1, arg3) |
9800 | || value_equal (arg1, arg3)) | |
9801 | && (value_less (arg2, arg1) | |
9802 | || value_equal (arg2, arg1))); | |
9803 | ||
9804 | case TERNOP_IN_RANGE: | |
9805 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9806 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9807 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9808 | ||
9809 | if (noside == EVAL_SKIP) | |
9810 | goto nosideret; | |
9811 | ||
f44316fa UW |
9812 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9813 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9814 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9815 | return |
fbb06eb1 | 9816 | value_from_longest (type, |
4c4b4cd2 PH |
9817 | (value_less (arg1, arg3) |
9818 | || value_equal (arg1, arg3)) | |
9819 | && (value_less (arg2, arg1) | |
9820 | || value_equal (arg2, arg1))); | |
9821 | ||
9822 | case OP_ATR_FIRST: | |
9823 | case OP_ATR_LAST: | |
9824 | case OP_ATR_LENGTH: | |
9825 | { | |
76a01679 | 9826 | struct type *type_arg; |
5b4ee69b | 9827 | |
76a01679 JB |
9828 | if (exp->elts[*pos].opcode == OP_TYPE) |
9829 | { | |
9830 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
9831 | arg1 = NULL; | |
5bc23cb3 | 9832 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
9833 | } |
9834 | else | |
9835 | { | |
9836 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9837 | type_arg = NULL; | |
9838 | } | |
9839 | ||
9840 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 9841 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
9842 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
9843 | *pos += 4; | |
9844 | ||
9845 | if (noside == EVAL_SKIP) | |
9846 | goto nosideret; | |
9847 | ||
9848 | if (type_arg == NULL) | |
9849 | { | |
9850 | arg1 = ada_coerce_ref (arg1); | |
9851 | ||
ad82864c | 9852 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
9853 | arg1 = ada_coerce_to_simple_array (arg1); |
9854 | ||
1eea4ebd UW |
9855 | type = ada_index_type (value_type (arg1), tem, |
9856 | ada_attribute_name (op)); | |
9857 | if (type == NULL) | |
9858 | type = builtin_type (exp->gdbarch)->builtin_int; | |
76a01679 JB |
9859 | |
9860 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 9861 | return allocate_value (type); |
76a01679 JB |
9862 | |
9863 | switch (op) | |
9864 | { | |
9865 | default: /* Should never happen. */ | |
323e0a4a | 9866 | error (_("unexpected attribute encountered")); |
76a01679 | 9867 | case OP_ATR_FIRST: |
1eea4ebd UW |
9868 | return value_from_longest |
9869 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 9870 | case OP_ATR_LAST: |
1eea4ebd UW |
9871 | return value_from_longest |
9872 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 9873 | case OP_ATR_LENGTH: |
1eea4ebd UW |
9874 | return value_from_longest |
9875 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
9876 | } |
9877 | } | |
9878 | else if (discrete_type_p (type_arg)) | |
9879 | { | |
9880 | struct type *range_type; | |
9881 | char *name = ada_type_name (type_arg); | |
5b4ee69b | 9882 | |
76a01679 JB |
9883 | range_type = NULL; |
9884 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 9885 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
9886 | if (range_type == NULL) |
9887 | range_type = type_arg; | |
9888 | switch (op) | |
9889 | { | |
9890 | default: | |
323e0a4a | 9891 | error (_("unexpected attribute encountered")); |
76a01679 | 9892 | case OP_ATR_FIRST: |
690cc4eb | 9893 | return value_from_longest |
43bbcdc2 | 9894 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 9895 | case OP_ATR_LAST: |
690cc4eb | 9896 | return value_from_longest |
43bbcdc2 | 9897 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 9898 | case OP_ATR_LENGTH: |
323e0a4a | 9899 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
9900 | } |
9901 | } | |
9902 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 9903 | error (_("unimplemented type attribute")); |
76a01679 JB |
9904 | else |
9905 | { | |
9906 | LONGEST low, high; | |
9907 | ||
ad82864c JB |
9908 | if (ada_is_constrained_packed_array_type (type_arg)) |
9909 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 9910 | |
1eea4ebd | 9911 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); |
76a01679 | 9912 | if (type == NULL) |
1eea4ebd UW |
9913 | type = builtin_type (exp->gdbarch)->builtin_int; |
9914 | ||
76a01679 JB |
9915 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9916 | return allocate_value (type); | |
9917 | ||
9918 | switch (op) | |
9919 | { | |
9920 | default: | |
323e0a4a | 9921 | error (_("unexpected attribute encountered")); |
76a01679 | 9922 | case OP_ATR_FIRST: |
1eea4ebd | 9923 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
9924 | return value_from_longest (type, low); |
9925 | case OP_ATR_LAST: | |
1eea4ebd | 9926 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
9927 | return value_from_longest (type, high); |
9928 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
9929 | low = ada_array_bound_from_type (type_arg, tem, 0); |
9930 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
9931 | return value_from_longest (type, high - low + 1); |
9932 | } | |
9933 | } | |
14f9c5c9 AS |
9934 | } |
9935 | ||
4c4b4cd2 PH |
9936 | case OP_ATR_TAG: |
9937 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9938 | if (noside == EVAL_SKIP) | |
76a01679 | 9939 | goto nosideret; |
4c4b4cd2 PH |
9940 | |
9941 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 9942 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
9943 | |
9944 | return ada_value_tag (arg1); | |
9945 | ||
9946 | case OP_ATR_MIN: | |
9947 | case OP_ATR_MAX: | |
9948 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9949 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9950 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9951 | if (noside == EVAL_SKIP) | |
76a01679 | 9952 | goto nosideret; |
d2e4a39e | 9953 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9954 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 9955 | else |
f44316fa UW |
9956 | { |
9957 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9958 | return value_binop (arg1, arg2, | |
9959 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
9960 | } | |
14f9c5c9 | 9961 | |
4c4b4cd2 PH |
9962 | case OP_ATR_MODULUS: |
9963 | { | |
31dedfee | 9964 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 9965 | |
5b4ee69b | 9966 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
9967 | if (noside == EVAL_SKIP) |
9968 | goto nosideret; | |
4c4b4cd2 | 9969 | |
76a01679 | 9970 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 9971 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 9972 | |
76a01679 JB |
9973 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
9974 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
9975 | } |
9976 | ||
9977 | ||
9978 | case OP_ATR_POS: | |
9979 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9980 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9981 | if (noside == EVAL_SKIP) | |
76a01679 | 9982 | goto nosideret; |
3cb382c9 UW |
9983 | type = builtin_type (exp->gdbarch)->builtin_int; |
9984 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9985 | return value_zero (type, not_lval); | |
14f9c5c9 | 9986 | else |
3cb382c9 | 9987 | return value_pos_atr (type, arg1); |
14f9c5c9 | 9988 | |
4c4b4cd2 PH |
9989 | case OP_ATR_SIZE: |
9990 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
9991 | type = value_type (arg1); |
9992 | ||
9993 | /* If the argument is a reference, then dereference its type, since | |
9994 | the user is really asking for the size of the actual object, | |
9995 | not the size of the pointer. */ | |
9996 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
9997 | type = TYPE_TARGET_TYPE (type); | |
9998 | ||
4c4b4cd2 | 9999 | if (noside == EVAL_SKIP) |
76a01679 | 10000 | goto nosideret; |
4c4b4cd2 | 10001 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 10002 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 10003 | else |
22601c15 | 10004 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 10005 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
10006 | |
10007 | case OP_ATR_VAL: | |
10008 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 10009 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 10010 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 10011 | if (noside == EVAL_SKIP) |
76a01679 | 10012 | goto nosideret; |
4c4b4cd2 | 10013 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10014 | return value_zero (type, not_lval); |
4c4b4cd2 | 10015 | else |
76a01679 | 10016 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
10017 | |
10018 | case BINOP_EXP: | |
10019 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10020 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10021 | if (noside == EVAL_SKIP) | |
10022 | goto nosideret; | |
10023 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 10024 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 10025 | else |
f44316fa UW |
10026 | { |
10027 | /* For integer exponentiation operations, | |
10028 | only promote the first argument. */ | |
10029 | if (is_integral_type (value_type (arg2))) | |
10030 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10031 | else | |
10032 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10033 | ||
10034 | return value_binop (arg1, arg2, op); | |
10035 | } | |
4c4b4cd2 PH |
10036 | |
10037 | case UNOP_PLUS: | |
10038 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10039 | if (noside == EVAL_SKIP) | |
10040 | goto nosideret; | |
10041 | else | |
10042 | return arg1; | |
10043 | ||
10044 | case UNOP_ABS: | |
10045 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10046 | if (noside == EVAL_SKIP) | |
10047 | goto nosideret; | |
f44316fa | 10048 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 10049 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 10050 | return value_neg (arg1); |
14f9c5c9 | 10051 | else |
4c4b4cd2 | 10052 | return arg1; |
14f9c5c9 AS |
10053 | |
10054 | case UNOP_IND: | |
6b0d7253 | 10055 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 10056 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10057 | goto nosideret; |
df407dfe | 10058 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 10059 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
10060 | { |
10061 | if (ada_is_array_descriptor_type (type)) | |
10062 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10063 | { | |
10064 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 10065 | |
4c4b4cd2 | 10066 | if (arrType == NULL) |
323e0a4a | 10067 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 10068 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
10069 | } |
10070 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
10071 | || TYPE_CODE (type) == TYPE_CODE_REF | |
10072 | /* In C you can dereference an array to get the 1st elt. */ | |
10073 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
10074 | { |
10075 | type = to_static_fixed_type | |
10076 | (ada_aligned_type | |
10077 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
10078 | check_size (type); | |
10079 | return value_zero (type, lval_memory); | |
10080 | } | |
4c4b4cd2 | 10081 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
10082 | { |
10083 | /* GDB allows dereferencing an int. */ | |
10084 | if (expect_type == NULL) | |
10085 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10086 | lval_memory); | |
10087 | else | |
10088 | { | |
10089 | expect_type = | |
10090 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
10091 | return value_zero (expect_type, lval_memory); | |
10092 | } | |
10093 | } | |
4c4b4cd2 | 10094 | else |
323e0a4a | 10095 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 10096 | } |
0963b4bd | 10097 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 10098 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 10099 | |
96967637 JB |
10100 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
10101 | /* GDB allows dereferencing an int. If we were given | |
10102 | the expect_type, then use that as the target type. | |
10103 | Otherwise, assume that the target type is an int. */ | |
10104 | { | |
10105 | if (expect_type != NULL) | |
10106 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
10107 | arg1)); | |
10108 | else | |
10109 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
10110 | (CORE_ADDR) value_as_address (arg1)); | |
10111 | } | |
6b0d7253 | 10112 | |
4c4b4cd2 PH |
10113 | if (ada_is_array_descriptor_type (type)) |
10114 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10115 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 10116 | else |
4c4b4cd2 | 10117 | return ada_value_ind (arg1); |
14f9c5c9 AS |
10118 | |
10119 | case STRUCTOP_STRUCT: | |
10120 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
10121 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
10122 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10123 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10124 | goto nosideret; |
14f9c5c9 | 10125 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10126 | { |
df407dfe | 10127 | struct type *type1 = value_type (arg1); |
5b4ee69b | 10128 | |
76a01679 JB |
10129 | if (ada_is_tagged_type (type1, 1)) |
10130 | { | |
10131 | type = ada_lookup_struct_elt_type (type1, | |
10132 | &exp->elts[pc + 2].string, | |
10133 | 1, 1, NULL); | |
10134 | if (type == NULL) | |
10135 | /* In this case, we assume that the field COULD exist | |
10136 | in some extension of the type. Return an object of | |
10137 | "type" void, which will match any formal | |
0963b4bd | 10138 | (see ada_type_match). */ |
30b15541 UW |
10139 | return value_zero (builtin_type (exp->gdbarch)->builtin_void, |
10140 | lval_memory); | |
76a01679 JB |
10141 | } |
10142 | else | |
10143 | type = | |
10144 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
10145 | 0, NULL); | |
10146 | ||
10147 | return value_zero (ada_aligned_type (type), lval_memory); | |
10148 | } | |
14f9c5c9 | 10149 | else |
284614f0 JB |
10150 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
10151 | arg1 = unwrap_value (arg1); | |
10152 | return ada_to_fixed_value (arg1); | |
10153 | ||
14f9c5c9 | 10154 | case OP_TYPE: |
4c4b4cd2 PH |
10155 | /* The value is not supposed to be used. This is here to make it |
10156 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
10157 | (*pos) += 2; |
10158 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10159 | goto nosideret; |
14f9c5c9 | 10160 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 10161 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 10162 | else |
323e0a4a | 10163 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
10164 | |
10165 | case OP_AGGREGATE: | |
10166 | case OP_CHOICES: | |
10167 | case OP_OTHERS: | |
10168 | case OP_DISCRETE_RANGE: | |
10169 | case OP_POSITIONAL: | |
10170 | case OP_NAME: | |
10171 | if (noside == EVAL_NORMAL) | |
10172 | switch (op) | |
10173 | { | |
10174 | case OP_NAME: | |
10175 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 10176 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
10177 | case OP_AGGREGATE: |
10178 | error (_("Aggregates only allowed on the right of an assignment")); | |
10179 | default: | |
0963b4bd MS |
10180 | internal_error (__FILE__, __LINE__, |
10181 | _("aggregate apparently mangled")); | |
52ce6436 PH |
10182 | } |
10183 | ||
10184 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
10185 | *pos += oplen - 1; | |
10186 | for (tem = 0; tem < nargs; tem += 1) | |
10187 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
10188 | goto nosideret; | |
14f9c5c9 AS |
10189 | } |
10190 | ||
10191 | nosideret: | |
22601c15 | 10192 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 10193 | } |
14f9c5c9 | 10194 | \f |
d2e4a39e | 10195 | |
4c4b4cd2 | 10196 | /* Fixed point */ |
14f9c5c9 AS |
10197 | |
10198 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
10199 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 10200 | Otherwise, return NULL. */ |
14f9c5c9 | 10201 | |
d2e4a39e | 10202 | static const char * |
ebf56fd3 | 10203 | fixed_type_info (struct type *type) |
14f9c5c9 | 10204 | { |
d2e4a39e | 10205 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
10206 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
10207 | ||
d2e4a39e AS |
10208 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
10209 | { | |
14f9c5c9 | 10210 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 10211 | |
14f9c5c9 | 10212 | if (tail == NULL) |
4c4b4cd2 | 10213 | return NULL; |
d2e4a39e | 10214 | else |
4c4b4cd2 | 10215 | return tail + 5; |
14f9c5c9 AS |
10216 | } |
10217 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
10218 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
10219 | else | |
10220 | return NULL; | |
10221 | } | |
10222 | ||
4c4b4cd2 | 10223 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
10224 | |
10225 | int | |
ebf56fd3 | 10226 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
10227 | { |
10228 | return fixed_type_info (type) != NULL; | |
10229 | } | |
10230 | ||
4c4b4cd2 PH |
10231 | /* Return non-zero iff TYPE represents a System.Address type. */ |
10232 | ||
10233 | int | |
10234 | ada_is_system_address_type (struct type *type) | |
10235 | { | |
10236 | return (TYPE_NAME (type) | |
10237 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
10238 | } | |
10239 | ||
14f9c5c9 AS |
10240 | /* Assuming that TYPE is the representation of an Ada fixed-point |
10241 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 10242 | delta cannot be determined. */ |
14f9c5c9 AS |
10243 | |
10244 | DOUBLEST | |
ebf56fd3 | 10245 | ada_delta (struct type *type) |
14f9c5c9 AS |
10246 | { |
10247 | const char *encoding = fixed_type_info (type); | |
facc390f | 10248 | DOUBLEST num, den; |
14f9c5c9 | 10249 | |
facc390f JB |
10250 | /* Strictly speaking, num and den are encoded as integer. However, |
10251 | they may not fit into a long, and they will have to be converted | |
10252 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10253 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10254 | &num, &den) < 2) | |
14f9c5c9 | 10255 | return -1.0; |
d2e4a39e | 10256 | else |
facc390f | 10257 | return num / den; |
14f9c5c9 AS |
10258 | } |
10259 | ||
10260 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 10261 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
10262 | |
10263 | static DOUBLEST | |
ebf56fd3 | 10264 | scaling_factor (struct type *type) |
14f9c5c9 AS |
10265 | { |
10266 | const char *encoding = fixed_type_info (type); | |
facc390f | 10267 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 10268 | int n; |
d2e4a39e | 10269 | |
facc390f JB |
10270 | /* Strictly speaking, num's and den's are encoded as integer. However, |
10271 | they may not fit into a long, and they will have to be converted | |
10272 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10273 | n = sscanf (encoding, | |
10274 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
10275 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10276 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
10277 | |
10278 | if (n < 2) | |
10279 | return 1.0; | |
10280 | else if (n == 4) | |
facc390f | 10281 | return num1 / den1; |
d2e4a39e | 10282 | else |
facc390f | 10283 | return num0 / den0; |
14f9c5c9 AS |
10284 | } |
10285 | ||
10286 | ||
10287 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 10288 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
10289 | |
10290 | DOUBLEST | |
ebf56fd3 | 10291 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 10292 | { |
d2e4a39e | 10293 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
10294 | } |
10295 | ||
4c4b4cd2 PH |
10296 | /* The representation of a fixed-point value of type TYPE |
10297 | corresponding to the value X. */ | |
14f9c5c9 AS |
10298 | |
10299 | LONGEST | |
ebf56fd3 | 10300 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
10301 | { |
10302 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
10303 | } | |
10304 | ||
14f9c5c9 | 10305 | \f |
d2e4a39e | 10306 | |
4c4b4cd2 | 10307 | /* Range types */ |
14f9c5c9 AS |
10308 | |
10309 | /* Scan STR beginning at position K for a discriminant name, and | |
10310 | return the value of that discriminant field of DVAL in *PX. If | |
10311 | PNEW_K is not null, put the position of the character beyond the | |
10312 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 10313 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
10314 | |
10315 | static int | |
07d8f827 | 10316 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 10317 | int *pnew_k) |
14f9c5c9 AS |
10318 | { |
10319 | static char *bound_buffer = NULL; | |
10320 | static size_t bound_buffer_len = 0; | |
10321 | char *bound; | |
10322 | char *pend; | |
d2e4a39e | 10323 | struct value *bound_val; |
14f9c5c9 AS |
10324 | |
10325 | if (dval == NULL || str == NULL || str[k] == '\0') | |
10326 | return 0; | |
10327 | ||
d2e4a39e | 10328 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
10329 | if (pend == NULL) |
10330 | { | |
d2e4a39e | 10331 | bound = str + k; |
14f9c5c9 AS |
10332 | k += strlen (bound); |
10333 | } | |
d2e4a39e | 10334 | else |
14f9c5c9 | 10335 | { |
d2e4a39e | 10336 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 10337 | bound = bound_buffer; |
d2e4a39e AS |
10338 | strncpy (bound_buffer, str + k, pend - (str + k)); |
10339 | bound[pend - (str + k)] = '\0'; | |
10340 | k = pend - str; | |
14f9c5c9 | 10341 | } |
d2e4a39e | 10342 | |
df407dfe | 10343 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
10344 | if (bound_val == NULL) |
10345 | return 0; | |
10346 | ||
10347 | *px = value_as_long (bound_val); | |
10348 | if (pnew_k != NULL) | |
10349 | *pnew_k = k; | |
10350 | return 1; | |
10351 | } | |
10352 | ||
10353 | /* Value of variable named NAME in the current environment. If | |
10354 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
10355 | otherwise causes an error with message ERR_MSG. */ |
10356 | ||
d2e4a39e AS |
10357 | static struct value * |
10358 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 10359 | { |
4c4b4cd2 | 10360 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
10361 | int nsyms; |
10362 | ||
4c4b4cd2 PH |
10363 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
10364 | &syms); | |
14f9c5c9 AS |
10365 | |
10366 | if (nsyms != 1) | |
10367 | { | |
10368 | if (err_msg == NULL) | |
4c4b4cd2 | 10369 | return 0; |
14f9c5c9 | 10370 | else |
8a3fe4f8 | 10371 | error (("%s"), err_msg); |
14f9c5c9 AS |
10372 | } |
10373 | ||
4c4b4cd2 | 10374 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 10375 | } |
d2e4a39e | 10376 | |
14f9c5c9 | 10377 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
10378 | no such variable found, returns 0, and sets *FLAG to 0. If |
10379 | successful, sets *FLAG to 1. */ | |
10380 | ||
14f9c5c9 | 10381 | LONGEST |
4c4b4cd2 | 10382 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 10383 | { |
4c4b4cd2 | 10384 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 10385 | |
14f9c5c9 AS |
10386 | if (var_val == 0) |
10387 | { | |
10388 | if (flag != NULL) | |
4c4b4cd2 | 10389 | *flag = 0; |
14f9c5c9 AS |
10390 | return 0; |
10391 | } | |
10392 | else | |
10393 | { | |
10394 | if (flag != NULL) | |
4c4b4cd2 | 10395 | *flag = 1; |
14f9c5c9 AS |
10396 | return value_as_long (var_val); |
10397 | } | |
10398 | } | |
d2e4a39e | 10399 | |
14f9c5c9 AS |
10400 | |
10401 | /* Return a range type whose base type is that of the range type named | |
10402 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 10403 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
10404 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
10405 | corresponding range type from debug information; fall back to using it | |
10406 | if symbol lookup fails. If a new type must be created, allocate it | |
10407 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
10408 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 10409 | |
d2e4a39e | 10410 | static struct type * |
28c85d6c | 10411 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 10412 | { |
28c85d6c | 10413 | char *name; |
14f9c5c9 | 10414 | struct type *base_type; |
d2e4a39e | 10415 | char *subtype_info; |
14f9c5c9 | 10416 | |
28c85d6c JB |
10417 | gdb_assert (raw_type != NULL); |
10418 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 10419 | |
1ce677a4 | 10420 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
10421 | base_type = TYPE_TARGET_TYPE (raw_type); |
10422 | else | |
10423 | base_type = raw_type; | |
10424 | ||
28c85d6c | 10425 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
10426 | subtype_info = strstr (name, "___XD"); |
10427 | if (subtype_info == NULL) | |
690cc4eb | 10428 | { |
43bbcdc2 PH |
10429 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
10430 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 10431 | |
690cc4eb PH |
10432 | if (L < INT_MIN || U > INT_MAX) |
10433 | return raw_type; | |
10434 | else | |
28c85d6c | 10435 | return create_range_type (alloc_type_copy (raw_type), raw_type, |
43bbcdc2 PH |
10436 | ada_discrete_type_low_bound (raw_type), |
10437 | ada_discrete_type_high_bound (raw_type)); | |
690cc4eb | 10438 | } |
14f9c5c9 AS |
10439 | else |
10440 | { | |
10441 | static char *name_buf = NULL; | |
10442 | static size_t name_len = 0; | |
10443 | int prefix_len = subtype_info - name; | |
10444 | LONGEST L, U; | |
10445 | struct type *type; | |
10446 | char *bounds_str; | |
10447 | int n; | |
10448 | ||
10449 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
10450 | strncpy (name_buf, name, prefix_len); | |
10451 | name_buf[prefix_len] = '\0'; | |
10452 | ||
10453 | subtype_info += 5; | |
10454 | bounds_str = strchr (subtype_info, '_'); | |
10455 | n = 1; | |
10456 | ||
d2e4a39e | 10457 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
10458 | { |
10459 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
10460 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
10461 | return raw_type; | |
10462 | if (bounds_str[n] == '_') | |
10463 | n += 2; | |
0963b4bd | 10464 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
10465 | n += 1; |
10466 | subtype_info += 1; | |
10467 | } | |
d2e4a39e | 10468 | else |
4c4b4cd2 PH |
10469 | { |
10470 | int ok; | |
5b4ee69b | 10471 | |
4c4b4cd2 PH |
10472 | strcpy (name_buf + prefix_len, "___L"); |
10473 | L = get_int_var_value (name_buf, &ok); | |
10474 | if (!ok) | |
10475 | { | |
323e0a4a | 10476 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
10477 | L = 1; |
10478 | } | |
10479 | } | |
14f9c5c9 | 10480 | |
d2e4a39e | 10481 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
10482 | { |
10483 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
10484 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
10485 | return raw_type; | |
10486 | } | |
d2e4a39e | 10487 | else |
4c4b4cd2 PH |
10488 | { |
10489 | int ok; | |
5b4ee69b | 10490 | |
4c4b4cd2 PH |
10491 | strcpy (name_buf + prefix_len, "___U"); |
10492 | U = get_int_var_value (name_buf, &ok); | |
10493 | if (!ok) | |
10494 | { | |
323e0a4a | 10495 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
10496 | U = L; |
10497 | } | |
10498 | } | |
14f9c5c9 | 10499 | |
28c85d6c | 10500 | type = create_range_type (alloc_type_copy (raw_type), base_type, L, U); |
d2e4a39e | 10501 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
10502 | return type; |
10503 | } | |
10504 | } | |
10505 | ||
4c4b4cd2 PH |
10506 | /* True iff NAME is the name of a range type. */ |
10507 | ||
14f9c5c9 | 10508 | int |
d2e4a39e | 10509 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
10510 | { |
10511 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 10512 | } |
14f9c5c9 | 10513 | \f |
d2e4a39e | 10514 | |
4c4b4cd2 PH |
10515 | /* Modular types */ |
10516 | ||
10517 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 10518 | |
14f9c5c9 | 10519 | int |
d2e4a39e | 10520 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 10521 | { |
18af8284 | 10522 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
10523 | |
10524 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 10525 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 10526 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
10527 | } |
10528 | ||
0056e4d5 JB |
10529 | /* Try to determine the lower and upper bounds of the given modular type |
10530 | using the type name only. Return non-zero and set L and U as the lower | |
10531 | and upper bounds (respectively) if successful. */ | |
10532 | ||
10533 | int | |
10534 | ada_modulus_from_name (struct type *type, ULONGEST *modulus) | |
10535 | { | |
10536 | char *name = ada_type_name (type); | |
10537 | char *suffix; | |
10538 | int k; | |
10539 | LONGEST U; | |
10540 | ||
10541 | if (name == NULL) | |
10542 | return 0; | |
10543 | ||
10544 | /* Discrete type bounds are encoded using an __XD suffix. In our case, | |
10545 | we are looking for static bounds, which means an __XDLU suffix. | |
10546 | Moreover, we know that the lower bound of modular types is always | |
10547 | zero, so the actual suffix should start with "__XDLU_0__", and | |
10548 | then be followed by the upper bound value. */ | |
10549 | suffix = strstr (name, "__XDLU_0__"); | |
10550 | if (suffix == NULL) | |
10551 | return 0; | |
10552 | k = 10; | |
10553 | if (!ada_scan_number (suffix, k, &U, NULL)) | |
10554 | return 0; | |
10555 | ||
10556 | *modulus = (ULONGEST) U + 1; | |
10557 | return 1; | |
10558 | } | |
10559 | ||
4c4b4cd2 PH |
10560 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
10561 | ||
61ee279c | 10562 | ULONGEST |
0056e4d5 | 10563 | ada_modulus (struct type *type) |
14f9c5c9 | 10564 | { |
43bbcdc2 | 10565 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 10566 | } |
d2e4a39e | 10567 | \f |
f7f9143b JB |
10568 | |
10569 | /* Ada exception catchpoint support: | |
10570 | --------------------------------- | |
10571 | ||
10572 | We support 3 kinds of exception catchpoints: | |
10573 | . catchpoints on Ada exceptions | |
10574 | . catchpoints on unhandled Ada exceptions | |
10575 | . catchpoints on failed assertions | |
10576 | ||
10577 | Exceptions raised during failed assertions, or unhandled exceptions | |
10578 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
10579 | However, we can easily differentiate these two special cases, and having | |
10580 | the option to distinguish these two cases from the rest can be useful | |
10581 | to zero-in on certain situations. | |
10582 | ||
10583 | Exception catchpoints are a specialized form of breakpoint, | |
10584 | since they rely on inserting breakpoints inside known routines | |
10585 | of the GNAT runtime. The implementation therefore uses a standard | |
10586 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
10587 | of breakpoint_ops. | |
10588 | ||
0259addd JB |
10589 | Support in the runtime for exception catchpoints have been changed |
10590 | a few times already, and these changes affect the implementation | |
10591 | of these catchpoints. In order to be able to support several | |
10592 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 10593 | the runtime variant used by the program being debugged. */ |
f7f9143b JB |
10594 | |
10595 | /* The different types of catchpoints that we introduced for catching | |
10596 | Ada exceptions. */ | |
10597 | ||
10598 | enum exception_catchpoint_kind | |
10599 | { | |
10600 | ex_catch_exception, | |
10601 | ex_catch_exception_unhandled, | |
10602 | ex_catch_assert | |
10603 | }; | |
10604 | ||
3d0b0fa3 JB |
10605 | /* Ada's standard exceptions. */ |
10606 | ||
10607 | static char *standard_exc[] = { | |
10608 | "constraint_error", | |
10609 | "program_error", | |
10610 | "storage_error", | |
10611 | "tasking_error" | |
10612 | }; | |
10613 | ||
0259addd JB |
10614 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
10615 | ||
10616 | /* A structure that describes how to support exception catchpoints | |
10617 | for a given executable. */ | |
10618 | ||
10619 | struct exception_support_info | |
10620 | { | |
10621 | /* The name of the symbol to break on in order to insert | |
10622 | a catchpoint on exceptions. */ | |
10623 | const char *catch_exception_sym; | |
10624 | ||
10625 | /* The name of the symbol to break on in order to insert | |
10626 | a catchpoint on unhandled exceptions. */ | |
10627 | const char *catch_exception_unhandled_sym; | |
10628 | ||
10629 | /* The name of the symbol to break on in order to insert | |
10630 | a catchpoint on failed assertions. */ | |
10631 | const char *catch_assert_sym; | |
10632 | ||
10633 | /* Assuming that the inferior just triggered an unhandled exception | |
10634 | catchpoint, this function is responsible for returning the address | |
10635 | in inferior memory where the name of that exception is stored. | |
10636 | Return zero if the address could not be computed. */ | |
10637 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
10638 | }; | |
10639 | ||
10640 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
10641 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
10642 | ||
10643 | /* The following exception support info structure describes how to | |
10644 | implement exception catchpoints with the latest version of the | |
10645 | Ada runtime (as of 2007-03-06). */ | |
10646 | ||
10647 | static const struct exception_support_info default_exception_support_info = | |
10648 | { | |
10649 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
10650 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10651 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
10652 | ada_unhandled_exception_name_addr | |
10653 | }; | |
10654 | ||
10655 | /* The following exception support info structure describes how to | |
10656 | implement exception catchpoints with a slightly older version | |
10657 | of the Ada runtime. */ | |
10658 | ||
10659 | static const struct exception_support_info exception_support_info_fallback = | |
10660 | { | |
10661 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
10662 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10663 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
10664 | ada_unhandled_exception_name_addr_from_raise | |
10665 | }; | |
10666 | ||
f17011e0 JB |
10667 | /* Return nonzero if we can detect the exception support routines |
10668 | described in EINFO. | |
10669 | ||
10670 | This function errors out if an abnormal situation is detected | |
10671 | (for instance, if we find the exception support routines, but | |
10672 | that support is found to be incomplete). */ | |
10673 | ||
10674 | static int | |
10675 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
10676 | { | |
10677 | struct symbol *sym; | |
10678 | ||
10679 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
10680 | that should be compiled with debugging information. As a result, we | |
10681 | expect to find that symbol in the symtabs. */ | |
10682 | ||
10683 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
10684 | if (sym == NULL) | |
a6af7abe JB |
10685 | { |
10686 | /* Perhaps we did not find our symbol because the Ada runtime was | |
10687 | compiled without debugging info, or simply stripped of it. | |
10688 | It happens on some GNU/Linux distributions for instance, where | |
10689 | users have to install a separate debug package in order to get | |
10690 | the runtime's debugging info. In that situation, let the user | |
10691 | know why we cannot insert an Ada exception catchpoint. | |
10692 | ||
10693 | Note: Just for the purpose of inserting our Ada exception | |
10694 | catchpoint, we could rely purely on the associated minimal symbol. | |
10695 | But we would be operating in degraded mode anyway, since we are | |
10696 | still lacking the debugging info needed later on to extract | |
10697 | the name of the exception being raised (this name is printed in | |
10698 | the catchpoint message, and is also used when trying to catch | |
10699 | a specific exception). We do not handle this case for now. */ | |
10700 | if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL)) | |
10701 | error (_("Your Ada runtime appears to be missing some debugging " | |
10702 | "information.\nCannot insert Ada exception catchpoint " | |
10703 | "in this configuration.")); | |
10704 | ||
10705 | return 0; | |
10706 | } | |
f17011e0 JB |
10707 | |
10708 | /* Make sure that the symbol we found corresponds to a function. */ | |
10709 | ||
10710 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
10711 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
10712 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
10713 | ||
10714 | return 1; | |
10715 | } | |
10716 | ||
0259addd JB |
10717 | /* Inspect the Ada runtime and determine which exception info structure |
10718 | should be used to provide support for exception catchpoints. | |
10719 | ||
3eecfa55 JB |
10720 | This function will always set the per-inferior exception_info, |
10721 | or raise an error. */ | |
0259addd JB |
10722 | |
10723 | static void | |
10724 | ada_exception_support_info_sniffer (void) | |
10725 | { | |
3eecfa55 | 10726 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
10727 | struct symbol *sym; |
10728 | ||
10729 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 10730 | if (data->exception_info != NULL) |
0259addd JB |
10731 | return; |
10732 | ||
10733 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 10734 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 10735 | { |
3eecfa55 | 10736 | data->exception_info = &default_exception_support_info; |
0259addd JB |
10737 | return; |
10738 | } | |
10739 | ||
10740 | /* Try our fallback exception suport info. */ | |
f17011e0 | 10741 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 10742 | { |
3eecfa55 | 10743 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
10744 | return; |
10745 | } | |
10746 | ||
10747 | /* Sometimes, it is normal for us to not be able to find the routine | |
10748 | we are looking for. This happens when the program is linked with | |
10749 | the shared version of the GNAT runtime, and the program has not been | |
10750 | started yet. Inform the user of these two possible causes if | |
10751 | applicable. */ | |
10752 | ||
ccefe4c4 | 10753 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
10754 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
10755 | ||
10756 | /* If the symbol does not exist, then check that the program is | |
10757 | already started, to make sure that shared libraries have been | |
10758 | loaded. If it is not started, this may mean that the symbol is | |
10759 | in a shared library. */ | |
10760 | ||
10761 | if (ptid_get_pid (inferior_ptid) == 0) | |
10762 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
10763 | ||
10764 | /* At this point, we know that we are debugging an Ada program and | |
10765 | that the inferior has been started, but we still are not able to | |
0963b4bd | 10766 | find the run-time symbols. That can mean that we are in |
0259addd JB |
10767 | configurable run time mode, or that a-except as been optimized |
10768 | out by the linker... In any case, at this point it is not worth | |
10769 | supporting this feature. */ | |
10770 | ||
7dda8cff | 10771 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
10772 | } |
10773 | ||
f7f9143b JB |
10774 | /* True iff FRAME is very likely to be that of a function that is |
10775 | part of the runtime system. This is all very heuristic, but is | |
10776 | intended to be used as advice as to what frames are uninteresting | |
10777 | to most users. */ | |
10778 | ||
10779 | static int | |
10780 | is_known_support_routine (struct frame_info *frame) | |
10781 | { | |
4ed6b5be | 10782 | struct symtab_and_line sal; |
f7f9143b | 10783 | char *func_name; |
692465f1 | 10784 | enum language func_lang; |
f7f9143b | 10785 | int i; |
f7f9143b | 10786 | |
4ed6b5be JB |
10787 | /* If this code does not have any debugging information (no symtab), |
10788 | This cannot be any user code. */ | |
f7f9143b | 10789 | |
4ed6b5be | 10790 | find_frame_sal (frame, &sal); |
f7f9143b JB |
10791 | if (sal.symtab == NULL) |
10792 | return 1; | |
10793 | ||
4ed6b5be JB |
10794 | /* If there is a symtab, but the associated source file cannot be |
10795 | located, then assume this is not user code: Selecting a frame | |
10796 | for which we cannot display the code would not be very helpful | |
10797 | for the user. This should also take care of case such as VxWorks | |
10798 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 10799 | |
9bbc9174 | 10800 | if (symtab_to_fullname (sal.symtab) == NULL) |
f7f9143b JB |
10801 | return 1; |
10802 | ||
4ed6b5be JB |
10803 | /* Check the unit filename againt the Ada runtime file naming. |
10804 | We also check the name of the objfile against the name of some | |
10805 | known system libraries that sometimes come with debugging info | |
10806 | too. */ | |
10807 | ||
f7f9143b JB |
10808 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
10809 | { | |
10810 | re_comp (known_runtime_file_name_patterns[i]); | |
10811 | if (re_exec (sal.symtab->filename)) | |
10812 | return 1; | |
4ed6b5be JB |
10813 | if (sal.symtab->objfile != NULL |
10814 | && re_exec (sal.symtab->objfile->name)) | |
10815 | return 1; | |
f7f9143b JB |
10816 | } |
10817 | ||
4ed6b5be | 10818 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 10819 | |
e9e07ba6 | 10820 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
10821 | if (func_name == NULL) |
10822 | return 1; | |
10823 | ||
10824 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
10825 | { | |
10826 | re_comp (known_auxiliary_function_name_patterns[i]); | |
10827 | if (re_exec (func_name)) | |
10828 | return 1; | |
10829 | } | |
10830 | ||
10831 | return 0; | |
10832 | } | |
10833 | ||
10834 | /* Find the first frame that contains debugging information and that is not | |
10835 | part of the Ada run-time, starting from FI and moving upward. */ | |
10836 | ||
0ef643c8 | 10837 | void |
f7f9143b JB |
10838 | ada_find_printable_frame (struct frame_info *fi) |
10839 | { | |
10840 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
10841 | { | |
10842 | if (!is_known_support_routine (fi)) | |
10843 | { | |
10844 | select_frame (fi); | |
10845 | break; | |
10846 | } | |
10847 | } | |
10848 | ||
10849 | } | |
10850 | ||
10851 | /* Assuming that the inferior just triggered an unhandled exception | |
10852 | catchpoint, return the address in inferior memory where the name | |
10853 | of the exception is stored. | |
10854 | ||
10855 | Return zero if the address could not be computed. */ | |
10856 | ||
10857 | static CORE_ADDR | |
10858 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
10859 | { |
10860 | return parse_and_eval_address ("e.full_name"); | |
10861 | } | |
10862 | ||
10863 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
10864 | should be used when the inferior uses an older version of the runtime, | |
10865 | where the exception name needs to be extracted from a specific frame | |
10866 | several frames up in the callstack. */ | |
10867 | ||
10868 | static CORE_ADDR | |
10869 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
10870 | { |
10871 | int frame_level; | |
10872 | struct frame_info *fi; | |
3eecfa55 | 10873 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
f7f9143b JB |
10874 | |
10875 | /* To determine the name of this exception, we need to select | |
10876 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
10877 | at least 3 levels up, so we simply skip the first 3 frames | |
10878 | without checking the name of their associated function. */ | |
10879 | fi = get_current_frame (); | |
10880 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
10881 | if (fi != NULL) | |
10882 | fi = get_prev_frame (fi); | |
10883 | ||
10884 | while (fi != NULL) | |
10885 | { | |
692465f1 JB |
10886 | char *func_name; |
10887 | enum language func_lang; | |
10888 | ||
e9e07ba6 | 10889 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
f7f9143b | 10890 | if (func_name != NULL |
3eecfa55 | 10891 | && strcmp (func_name, data->exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
10892 | break; /* We found the frame we were looking for... */ |
10893 | fi = get_prev_frame (fi); | |
10894 | } | |
10895 | ||
10896 | if (fi == NULL) | |
10897 | return 0; | |
10898 | ||
10899 | select_frame (fi); | |
10900 | return parse_and_eval_address ("id.full_name"); | |
10901 | } | |
10902 | ||
10903 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
10904 | (of any type), return the address in inferior memory where the name | |
10905 | of the exception is stored, if applicable. | |
10906 | ||
10907 | Return zero if the address could not be computed, or if not relevant. */ | |
10908 | ||
10909 | static CORE_ADDR | |
10910 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
10911 | struct breakpoint *b) | |
10912 | { | |
3eecfa55 JB |
10913 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
10914 | ||
f7f9143b JB |
10915 | switch (ex) |
10916 | { | |
10917 | case ex_catch_exception: | |
10918 | return (parse_and_eval_address ("e.full_name")); | |
10919 | break; | |
10920 | ||
10921 | case ex_catch_exception_unhandled: | |
3eecfa55 | 10922 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
10923 | break; |
10924 | ||
10925 | case ex_catch_assert: | |
10926 | return 0; /* Exception name is not relevant in this case. */ | |
10927 | break; | |
10928 | ||
10929 | default: | |
10930 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10931 | break; | |
10932 | } | |
10933 | ||
10934 | return 0; /* Should never be reached. */ | |
10935 | } | |
10936 | ||
10937 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
10938 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
10939 | When an error is intercepted, a warning with the error message is printed, | |
10940 | and zero is returned. */ | |
10941 | ||
10942 | static CORE_ADDR | |
10943 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
10944 | struct breakpoint *b) | |
10945 | { | |
10946 | struct gdb_exception e; | |
10947 | CORE_ADDR result = 0; | |
10948 | ||
10949 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
10950 | { | |
10951 | result = ada_exception_name_addr_1 (ex, b); | |
10952 | } | |
10953 | ||
10954 | if (e.reason < 0) | |
10955 | { | |
10956 | warning (_("failed to get exception name: %s"), e.message); | |
10957 | return 0; | |
10958 | } | |
10959 | ||
10960 | return result; | |
10961 | } | |
10962 | ||
28010a5d PA |
10963 | static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind, |
10964 | char *, char **, | |
c0a91b2b | 10965 | const struct breakpoint_ops **); |
28010a5d PA |
10966 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
10967 | ||
10968 | /* Ada catchpoints. | |
10969 | ||
10970 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
10971 | stop the target on every exception the program throws. When a user | |
10972 | specifies the name of a specific exception, we translate this | |
10973 | request into a condition expression (in text form), and then parse | |
10974 | it into an expression stored in each of the catchpoint's locations. | |
10975 | We then use this condition to check whether the exception that was | |
10976 | raised is the one the user is interested in. If not, then the | |
10977 | target is resumed again. We store the name of the requested | |
10978 | exception, in order to be able to re-set the condition expression | |
10979 | when symbols change. */ | |
10980 | ||
10981 | /* An instance of this type is used to represent an Ada catchpoint | |
10982 | breakpoint location. It includes a "struct bp_location" as a kind | |
10983 | of base class; users downcast to "struct bp_location *" when | |
10984 | needed. */ | |
10985 | ||
10986 | struct ada_catchpoint_location | |
10987 | { | |
10988 | /* The base class. */ | |
10989 | struct bp_location base; | |
10990 | ||
10991 | /* The condition that checks whether the exception that was raised | |
10992 | is the specific exception the user specified on catchpoint | |
10993 | creation. */ | |
10994 | struct expression *excep_cond_expr; | |
10995 | }; | |
10996 | ||
10997 | /* Implement the DTOR method in the bp_location_ops structure for all | |
10998 | Ada exception catchpoint kinds. */ | |
10999 | ||
11000 | static void | |
11001 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
11002 | { | |
11003 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
11004 | ||
11005 | xfree (al->excep_cond_expr); | |
11006 | } | |
11007 | ||
11008 | /* The vtable to be used in Ada catchpoint locations. */ | |
11009 | ||
11010 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
11011 | { | |
11012 | ada_catchpoint_location_dtor | |
11013 | }; | |
11014 | ||
11015 | /* An instance of this type is used to represent an Ada catchpoint. | |
11016 | It includes a "struct breakpoint" as a kind of base class; users | |
11017 | downcast to "struct breakpoint *" when needed. */ | |
11018 | ||
11019 | struct ada_catchpoint | |
11020 | { | |
11021 | /* The base class. */ | |
11022 | struct breakpoint base; | |
11023 | ||
11024 | /* The name of the specific exception the user specified. */ | |
11025 | char *excep_string; | |
11026 | }; | |
11027 | ||
11028 | /* Parse the exception condition string in the context of each of the | |
11029 | catchpoint's locations, and store them for later evaluation. */ | |
11030 | ||
11031 | static void | |
11032 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
11033 | { | |
11034 | struct cleanup *old_chain; | |
11035 | struct bp_location *bl; | |
11036 | char *cond_string; | |
11037 | ||
11038 | /* Nothing to do if there's no specific exception to catch. */ | |
11039 | if (c->excep_string == NULL) | |
11040 | return; | |
11041 | ||
11042 | /* Same if there are no locations... */ | |
11043 | if (c->base.loc == NULL) | |
11044 | return; | |
11045 | ||
11046 | /* Compute the condition expression in text form, from the specific | |
11047 | expection we want to catch. */ | |
11048 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
11049 | old_chain = make_cleanup (xfree, cond_string); | |
11050 | ||
11051 | /* Iterate over all the catchpoint's locations, and parse an | |
11052 | expression for each. */ | |
11053 | for (bl = c->base.loc; bl != NULL; bl = bl->next) | |
11054 | { | |
11055 | struct ada_catchpoint_location *ada_loc | |
11056 | = (struct ada_catchpoint_location *) bl; | |
11057 | struct expression *exp = NULL; | |
11058 | ||
11059 | if (!bl->shlib_disabled) | |
11060 | { | |
11061 | volatile struct gdb_exception e; | |
11062 | char *s; | |
11063 | ||
11064 | s = cond_string; | |
11065 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11066 | { | |
11067 | exp = parse_exp_1 (&s, block_for_pc (bl->address), 0); | |
11068 | } | |
11069 | if (e.reason < 0) | |
11070 | warning (_("failed to reevaluate internal exception condition " | |
11071 | "for catchpoint %d: %s"), | |
11072 | c->base.number, e.message); | |
11073 | } | |
11074 | ||
11075 | ada_loc->excep_cond_expr = exp; | |
11076 | } | |
11077 | ||
11078 | do_cleanups (old_chain); | |
11079 | } | |
11080 | ||
11081 | /* Implement the DTOR method in the breakpoint_ops structure for all | |
11082 | exception catchpoint kinds. */ | |
11083 | ||
11084 | static void | |
11085 | dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
11086 | { | |
11087 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11088 | ||
11089 | xfree (c->excep_string); | |
348d480f | 11090 | |
2060206e | 11091 | bkpt_breakpoint_ops.dtor (b); |
28010a5d PA |
11092 | } |
11093 | ||
11094 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
11095 | structure for all exception catchpoint kinds. */ | |
11096 | ||
11097 | static struct bp_location * | |
11098 | allocate_location_exception (enum exception_catchpoint_kind ex, | |
11099 | struct breakpoint *self) | |
11100 | { | |
11101 | struct ada_catchpoint_location *loc; | |
11102 | ||
11103 | loc = XNEW (struct ada_catchpoint_location); | |
11104 | init_bp_location (&loc->base, &ada_catchpoint_location_ops, self); | |
11105 | loc->excep_cond_expr = NULL; | |
11106 | return &loc->base; | |
11107 | } | |
11108 | ||
11109 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
11110 | exception catchpoint kinds. */ | |
11111 | ||
11112 | static void | |
11113 | re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
11114 | { | |
11115 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11116 | ||
11117 | /* Call the base class's method. This updates the catchpoint's | |
11118 | locations. */ | |
2060206e | 11119 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
11120 | |
11121 | /* Reparse the exception conditional expressions. One for each | |
11122 | location. */ | |
11123 | create_excep_cond_exprs (c); | |
11124 | } | |
11125 | ||
11126 | /* Returns true if we should stop for this breakpoint hit. If the | |
11127 | user specified a specific exception, we only want to cause a stop | |
11128 | if the program thrown that exception. */ | |
11129 | ||
11130 | static int | |
11131 | should_stop_exception (const struct bp_location *bl) | |
11132 | { | |
11133 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
11134 | const struct ada_catchpoint_location *ada_loc | |
11135 | = (const struct ada_catchpoint_location *) bl; | |
11136 | volatile struct gdb_exception ex; | |
11137 | int stop; | |
11138 | ||
11139 | /* With no specific exception, should always stop. */ | |
11140 | if (c->excep_string == NULL) | |
11141 | return 1; | |
11142 | ||
11143 | if (ada_loc->excep_cond_expr == NULL) | |
11144 | { | |
11145 | /* We will have a NULL expression if back when we were creating | |
11146 | the expressions, this location's had failed to parse. */ | |
11147 | return 1; | |
11148 | } | |
11149 | ||
11150 | stop = 1; | |
11151 | TRY_CATCH (ex, RETURN_MASK_ALL) | |
11152 | { | |
11153 | struct value *mark; | |
11154 | ||
11155 | mark = value_mark (); | |
11156 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr)); | |
11157 | value_free_to_mark (mark); | |
11158 | } | |
11159 | if (ex.reason < 0) | |
11160 | exception_fprintf (gdb_stderr, ex, | |
11161 | _("Error in testing exception condition:\n")); | |
11162 | return stop; | |
11163 | } | |
11164 | ||
11165 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
11166 | for all exception catchpoint kinds. */ | |
11167 | ||
11168 | static void | |
11169 | check_status_exception (enum exception_catchpoint_kind ex, bpstat bs) | |
11170 | { | |
11171 | bs->stop = should_stop_exception (bs->bp_location_at); | |
11172 | } | |
11173 | ||
f7f9143b JB |
11174 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
11175 | for all exception catchpoint kinds. */ | |
11176 | ||
11177 | static enum print_stop_action | |
348d480f | 11178 | print_it_exception (enum exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 11179 | { |
79a45e25 | 11180 | struct ui_out *uiout = current_uiout; |
348d480f PA |
11181 | struct breakpoint *b = bs->breakpoint_at; |
11182 | ||
956a9fb9 | 11183 | annotate_catchpoint (b->number); |
f7f9143b | 11184 | |
956a9fb9 | 11185 | if (ui_out_is_mi_like_p (uiout)) |
f7f9143b | 11186 | { |
956a9fb9 JB |
11187 | ui_out_field_string (uiout, "reason", |
11188 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); | |
11189 | ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition)); | |
f7f9143b JB |
11190 | } |
11191 | ||
00eb2c4a JB |
11192 | ui_out_text (uiout, |
11193 | b->disposition == disp_del ? "\nTemporary catchpoint " | |
11194 | : "\nCatchpoint "); | |
956a9fb9 JB |
11195 | ui_out_field_int (uiout, "bkptno", b->number); |
11196 | ui_out_text (uiout, ", "); | |
f7f9143b | 11197 | |
f7f9143b JB |
11198 | switch (ex) |
11199 | { | |
11200 | case ex_catch_exception: | |
f7f9143b | 11201 | case ex_catch_exception_unhandled: |
956a9fb9 JB |
11202 | { |
11203 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
11204 | char exception_name[256]; | |
11205 | ||
11206 | if (addr != 0) | |
11207 | { | |
11208 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
11209 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
11210 | } | |
11211 | else | |
11212 | { | |
11213 | /* For some reason, we were unable to read the exception | |
11214 | name. This could happen if the Runtime was compiled | |
11215 | without debugging info, for instance. In that case, | |
11216 | just replace the exception name by the generic string | |
11217 | "exception" - it will read as "an exception" in the | |
11218 | notification we are about to print. */ | |
967cff16 | 11219 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
11220 | } |
11221 | /* In the case of unhandled exception breakpoints, we print | |
11222 | the exception name as "unhandled EXCEPTION_NAME", to make | |
11223 | it clearer to the user which kind of catchpoint just got | |
11224 | hit. We used ui_out_text to make sure that this extra | |
11225 | info does not pollute the exception name in the MI case. */ | |
11226 | if (ex == ex_catch_exception_unhandled) | |
11227 | ui_out_text (uiout, "unhandled "); | |
11228 | ui_out_field_string (uiout, "exception-name", exception_name); | |
11229 | } | |
11230 | break; | |
f7f9143b | 11231 | case ex_catch_assert: |
956a9fb9 JB |
11232 | /* In this case, the name of the exception is not really |
11233 | important. Just print "failed assertion" to make it clearer | |
11234 | that his program just hit an assertion-failure catchpoint. | |
11235 | We used ui_out_text because this info does not belong in | |
11236 | the MI output. */ | |
11237 | ui_out_text (uiout, "failed assertion"); | |
11238 | break; | |
f7f9143b | 11239 | } |
956a9fb9 JB |
11240 | ui_out_text (uiout, " at "); |
11241 | ada_find_printable_frame (get_current_frame ()); | |
f7f9143b JB |
11242 | |
11243 | return PRINT_SRC_AND_LOC; | |
11244 | } | |
11245 | ||
11246 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
11247 | for all exception catchpoint kinds. */ | |
11248 | ||
11249 | static void | |
11250 | print_one_exception (enum exception_catchpoint_kind ex, | |
a6d9a66e | 11251 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11252 | { |
79a45e25 | 11253 | struct ui_out *uiout = current_uiout; |
28010a5d | 11254 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
11255 | struct value_print_options opts; |
11256 | ||
11257 | get_user_print_options (&opts); | |
11258 | if (opts.addressprint) | |
f7f9143b JB |
11259 | { |
11260 | annotate_field (4); | |
5af949e3 | 11261 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
11262 | } |
11263 | ||
11264 | annotate_field (5); | |
a6d9a66e | 11265 | *last_loc = b->loc; |
f7f9143b JB |
11266 | switch (ex) |
11267 | { | |
11268 | case ex_catch_exception: | |
28010a5d | 11269 | if (c->excep_string != NULL) |
f7f9143b | 11270 | { |
28010a5d PA |
11271 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
11272 | ||
f7f9143b JB |
11273 | ui_out_field_string (uiout, "what", msg); |
11274 | xfree (msg); | |
11275 | } | |
11276 | else | |
11277 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
11278 | ||
11279 | break; | |
11280 | ||
11281 | case ex_catch_exception_unhandled: | |
11282 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
11283 | break; | |
11284 | ||
11285 | case ex_catch_assert: | |
11286 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
11287 | break; | |
11288 | ||
11289 | default: | |
11290 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11291 | break; | |
11292 | } | |
11293 | } | |
11294 | ||
11295 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
11296 | for all exception catchpoint kinds. */ | |
11297 | ||
11298 | static void | |
11299 | print_mention_exception (enum exception_catchpoint_kind ex, | |
11300 | struct breakpoint *b) | |
11301 | { | |
28010a5d | 11302 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 11303 | struct ui_out *uiout = current_uiout; |
28010a5d | 11304 | |
00eb2c4a JB |
11305 | ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ") |
11306 | : _("Catchpoint ")); | |
11307 | ui_out_field_int (uiout, "bkptno", b->number); | |
11308 | ui_out_text (uiout, ": "); | |
11309 | ||
f7f9143b JB |
11310 | switch (ex) |
11311 | { | |
11312 | case ex_catch_exception: | |
28010a5d | 11313 | if (c->excep_string != NULL) |
00eb2c4a JB |
11314 | { |
11315 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
11316 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
11317 | ||
11318 | ui_out_text (uiout, info); | |
11319 | do_cleanups (old_chain); | |
11320 | } | |
f7f9143b | 11321 | else |
00eb2c4a | 11322 | ui_out_text (uiout, _("all Ada exceptions")); |
f7f9143b JB |
11323 | break; |
11324 | ||
11325 | case ex_catch_exception_unhandled: | |
00eb2c4a | 11326 | ui_out_text (uiout, _("unhandled Ada exceptions")); |
f7f9143b JB |
11327 | break; |
11328 | ||
11329 | case ex_catch_assert: | |
00eb2c4a | 11330 | ui_out_text (uiout, _("failed Ada assertions")); |
f7f9143b JB |
11331 | break; |
11332 | ||
11333 | default: | |
11334 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11335 | break; | |
11336 | } | |
11337 | } | |
11338 | ||
6149aea9 PA |
11339 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
11340 | for all exception catchpoint kinds. */ | |
11341 | ||
11342 | static void | |
11343 | print_recreate_exception (enum exception_catchpoint_kind ex, | |
11344 | struct breakpoint *b, struct ui_file *fp) | |
11345 | { | |
28010a5d PA |
11346 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
11347 | ||
6149aea9 PA |
11348 | switch (ex) |
11349 | { | |
11350 | case ex_catch_exception: | |
11351 | fprintf_filtered (fp, "catch exception"); | |
28010a5d PA |
11352 | if (c->excep_string != NULL) |
11353 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
11354 | break; |
11355 | ||
11356 | case ex_catch_exception_unhandled: | |
78076abc | 11357 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
11358 | break; |
11359 | ||
11360 | case ex_catch_assert: | |
11361 | fprintf_filtered (fp, "catch assert"); | |
11362 | break; | |
11363 | ||
11364 | default: | |
11365 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11366 | } | |
d9b3f62e | 11367 | print_recreate_thread (b, fp); |
6149aea9 PA |
11368 | } |
11369 | ||
f7f9143b JB |
11370 | /* Virtual table for "catch exception" breakpoints. */ |
11371 | ||
28010a5d PA |
11372 | static void |
11373 | dtor_catch_exception (struct breakpoint *b) | |
11374 | { | |
11375 | dtor_exception (ex_catch_exception, b); | |
11376 | } | |
11377 | ||
11378 | static struct bp_location * | |
11379 | allocate_location_catch_exception (struct breakpoint *self) | |
11380 | { | |
11381 | return allocate_location_exception (ex_catch_exception, self); | |
11382 | } | |
11383 | ||
11384 | static void | |
11385 | re_set_catch_exception (struct breakpoint *b) | |
11386 | { | |
11387 | re_set_exception (ex_catch_exception, b); | |
11388 | } | |
11389 | ||
11390 | static void | |
11391 | check_status_catch_exception (bpstat bs) | |
11392 | { | |
11393 | check_status_exception (ex_catch_exception, bs); | |
11394 | } | |
11395 | ||
f7f9143b | 11396 | static enum print_stop_action |
348d480f | 11397 | print_it_catch_exception (bpstat bs) |
f7f9143b | 11398 | { |
348d480f | 11399 | return print_it_exception (ex_catch_exception, bs); |
f7f9143b JB |
11400 | } |
11401 | ||
11402 | static void | |
a6d9a66e | 11403 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11404 | { |
a6d9a66e | 11405 | print_one_exception (ex_catch_exception, b, last_loc); |
f7f9143b JB |
11406 | } |
11407 | ||
11408 | static void | |
11409 | print_mention_catch_exception (struct breakpoint *b) | |
11410 | { | |
11411 | print_mention_exception (ex_catch_exception, b); | |
11412 | } | |
11413 | ||
6149aea9 PA |
11414 | static void |
11415 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
11416 | { | |
11417 | print_recreate_exception (ex_catch_exception, b, fp); | |
11418 | } | |
11419 | ||
2060206e | 11420 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
11421 | |
11422 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
11423 | ||
28010a5d PA |
11424 | static void |
11425 | dtor_catch_exception_unhandled (struct breakpoint *b) | |
11426 | { | |
11427 | dtor_exception (ex_catch_exception_unhandled, b); | |
11428 | } | |
11429 | ||
11430 | static struct bp_location * | |
11431 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
11432 | { | |
11433 | return allocate_location_exception (ex_catch_exception_unhandled, self); | |
11434 | } | |
11435 | ||
11436 | static void | |
11437 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
11438 | { | |
11439 | re_set_exception (ex_catch_exception_unhandled, b); | |
11440 | } | |
11441 | ||
11442 | static void | |
11443 | check_status_catch_exception_unhandled (bpstat bs) | |
11444 | { | |
11445 | check_status_exception (ex_catch_exception_unhandled, bs); | |
11446 | } | |
11447 | ||
f7f9143b | 11448 | static enum print_stop_action |
348d480f | 11449 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 11450 | { |
348d480f | 11451 | return print_it_exception (ex_catch_exception_unhandled, bs); |
f7f9143b JB |
11452 | } |
11453 | ||
11454 | static void | |
a6d9a66e UW |
11455 | print_one_catch_exception_unhandled (struct breakpoint *b, |
11456 | struct bp_location **last_loc) | |
f7f9143b | 11457 | { |
a6d9a66e | 11458 | print_one_exception (ex_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
11459 | } |
11460 | ||
11461 | static void | |
11462 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
11463 | { | |
11464 | print_mention_exception (ex_catch_exception_unhandled, b); | |
11465 | } | |
11466 | ||
6149aea9 PA |
11467 | static void |
11468 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
11469 | struct ui_file *fp) | |
11470 | { | |
11471 | print_recreate_exception (ex_catch_exception_unhandled, b, fp); | |
11472 | } | |
11473 | ||
2060206e | 11474 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
11475 | |
11476 | /* Virtual table for "catch assert" breakpoints. */ | |
11477 | ||
28010a5d PA |
11478 | static void |
11479 | dtor_catch_assert (struct breakpoint *b) | |
11480 | { | |
11481 | dtor_exception (ex_catch_assert, b); | |
11482 | } | |
11483 | ||
11484 | static struct bp_location * | |
11485 | allocate_location_catch_assert (struct breakpoint *self) | |
11486 | { | |
11487 | return allocate_location_exception (ex_catch_assert, self); | |
11488 | } | |
11489 | ||
11490 | static void | |
11491 | re_set_catch_assert (struct breakpoint *b) | |
11492 | { | |
11493 | return re_set_exception (ex_catch_assert, b); | |
11494 | } | |
11495 | ||
11496 | static void | |
11497 | check_status_catch_assert (bpstat bs) | |
11498 | { | |
11499 | check_status_exception (ex_catch_assert, bs); | |
11500 | } | |
11501 | ||
f7f9143b | 11502 | static enum print_stop_action |
348d480f | 11503 | print_it_catch_assert (bpstat bs) |
f7f9143b | 11504 | { |
348d480f | 11505 | return print_it_exception (ex_catch_assert, bs); |
f7f9143b JB |
11506 | } |
11507 | ||
11508 | static void | |
a6d9a66e | 11509 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11510 | { |
a6d9a66e | 11511 | print_one_exception (ex_catch_assert, b, last_loc); |
f7f9143b JB |
11512 | } |
11513 | ||
11514 | static void | |
11515 | print_mention_catch_assert (struct breakpoint *b) | |
11516 | { | |
11517 | print_mention_exception (ex_catch_assert, b); | |
11518 | } | |
11519 | ||
6149aea9 PA |
11520 | static void |
11521 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
11522 | { | |
11523 | print_recreate_exception (ex_catch_assert, b, fp); | |
11524 | } | |
11525 | ||
2060206e | 11526 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 11527 | |
f7f9143b JB |
11528 | /* Return a newly allocated copy of the first space-separated token |
11529 | in ARGSP, and then adjust ARGSP to point immediately after that | |
11530 | token. | |
11531 | ||
11532 | Return NULL if ARGPS does not contain any more tokens. */ | |
11533 | ||
11534 | static char * | |
11535 | ada_get_next_arg (char **argsp) | |
11536 | { | |
11537 | char *args = *argsp; | |
11538 | char *end; | |
11539 | char *result; | |
11540 | ||
11541 | /* Skip any leading white space. */ | |
11542 | ||
11543 | while (isspace (*args)) | |
11544 | args++; | |
11545 | ||
11546 | if (args[0] == '\0') | |
11547 | return NULL; /* No more arguments. */ | |
11548 | ||
11549 | /* Find the end of the current argument. */ | |
11550 | ||
11551 | end = args; | |
11552 | while (*end != '\0' && !isspace (*end)) | |
11553 | end++; | |
11554 | ||
11555 | /* Adjust ARGSP to point to the start of the next argument. */ | |
11556 | ||
11557 | *argsp = end; | |
11558 | ||
11559 | /* Make a copy of the current argument and return it. */ | |
11560 | ||
11561 | result = xmalloc (end - args + 1); | |
11562 | strncpy (result, args, end - args); | |
11563 | result[end - args] = '\0'; | |
11564 | ||
11565 | return result; | |
11566 | } | |
11567 | ||
11568 | /* Split the arguments specified in a "catch exception" command. | |
11569 | Set EX to the appropriate catchpoint type. | |
28010a5d | 11570 | Set EXCEP_STRING to the name of the specific exception if |
f7f9143b JB |
11571 | specified by the user. */ |
11572 | ||
11573 | static void | |
11574 | catch_ada_exception_command_split (char *args, | |
11575 | enum exception_catchpoint_kind *ex, | |
28010a5d | 11576 | char **excep_string) |
f7f9143b JB |
11577 | { |
11578 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
11579 | char *exception_name; | |
11580 | ||
11581 | exception_name = ada_get_next_arg (&args); | |
11582 | make_cleanup (xfree, exception_name); | |
11583 | ||
11584 | /* Check that we do not have any more arguments. Anything else | |
11585 | is unexpected. */ | |
11586 | ||
11587 | while (isspace (*args)) | |
11588 | args++; | |
11589 | ||
11590 | if (args[0] != '\0') | |
11591 | error (_("Junk at end of expression")); | |
11592 | ||
11593 | discard_cleanups (old_chain); | |
11594 | ||
11595 | if (exception_name == NULL) | |
11596 | { | |
11597 | /* Catch all exceptions. */ | |
11598 | *ex = ex_catch_exception; | |
28010a5d | 11599 | *excep_string = NULL; |
f7f9143b JB |
11600 | } |
11601 | else if (strcmp (exception_name, "unhandled") == 0) | |
11602 | { | |
11603 | /* Catch unhandled exceptions. */ | |
11604 | *ex = ex_catch_exception_unhandled; | |
28010a5d | 11605 | *excep_string = NULL; |
f7f9143b JB |
11606 | } |
11607 | else | |
11608 | { | |
11609 | /* Catch a specific exception. */ | |
11610 | *ex = ex_catch_exception; | |
28010a5d | 11611 | *excep_string = exception_name; |
f7f9143b JB |
11612 | } |
11613 | } | |
11614 | ||
11615 | /* Return the name of the symbol on which we should break in order to | |
11616 | implement a catchpoint of the EX kind. */ | |
11617 | ||
11618 | static const char * | |
11619 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
11620 | { | |
3eecfa55 JB |
11621 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
11622 | ||
11623 | gdb_assert (data->exception_info != NULL); | |
0259addd | 11624 | |
f7f9143b JB |
11625 | switch (ex) |
11626 | { | |
11627 | case ex_catch_exception: | |
3eecfa55 | 11628 | return (data->exception_info->catch_exception_sym); |
f7f9143b JB |
11629 | break; |
11630 | case ex_catch_exception_unhandled: | |
3eecfa55 | 11631 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
11632 | break; |
11633 | case ex_catch_assert: | |
3eecfa55 | 11634 | return (data->exception_info->catch_assert_sym); |
f7f9143b JB |
11635 | break; |
11636 | default: | |
11637 | internal_error (__FILE__, __LINE__, | |
11638 | _("unexpected catchpoint kind (%d)"), ex); | |
11639 | } | |
11640 | } | |
11641 | ||
11642 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
11643 | of the EX kind. */ | |
11644 | ||
c0a91b2b | 11645 | static const struct breakpoint_ops * |
4b9eee8c | 11646 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
11647 | { |
11648 | switch (ex) | |
11649 | { | |
11650 | case ex_catch_exception: | |
11651 | return (&catch_exception_breakpoint_ops); | |
11652 | break; | |
11653 | case ex_catch_exception_unhandled: | |
11654 | return (&catch_exception_unhandled_breakpoint_ops); | |
11655 | break; | |
11656 | case ex_catch_assert: | |
11657 | return (&catch_assert_breakpoint_ops); | |
11658 | break; | |
11659 | default: | |
11660 | internal_error (__FILE__, __LINE__, | |
11661 | _("unexpected catchpoint kind (%d)"), ex); | |
11662 | } | |
11663 | } | |
11664 | ||
11665 | /* Return the condition that will be used to match the current exception | |
11666 | being raised with the exception that the user wants to catch. This | |
11667 | assumes that this condition is used when the inferior just triggered | |
11668 | an exception catchpoint. | |
11669 | ||
11670 | The string returned is a newly allocated string that needs to be | |
11671 | deallocated later. */ | |
11672 | ||
11673 | static char * | |
28010a5d | 11674 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 11675 | { |
3d0b0fa3 JB |
11676 | int i; |
11677 | ||
0963b4bd | 11678 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 11679 | runtime units that have been compiled without debugging info; if |
28010a5d | 11680 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
11681 | exception (e.g. "constraint_error") then, during the evaluation |
11682 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 11683 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
11684 | may then be set only on user-defined exceptions which have the |
11685 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
11686 | ||
11687 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 11688 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
11689 | exception constraint_error" is rewritten into "catch exception |
11690 | standard.constraint_error". | |
11691 | ||
11692 | If an exception named contraint_error is defined in another package of | |
11693 | the inferior program, then the only way to specify this exception as a | |
11694 | breakpoint condition is to use its fully-qualified named: | |
11695 | e.g. my_package.constraint_error. */ | |
11696 | ||
11697 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
11698 | { | |
28010a5d | 11699 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
11700 | { |
11701 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 11702 | excep_string); |
3d0b0fa3 JB |
11703 | } |
11704 | } | |
28010a5d | 11705 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
11706 | } |
11707 | ||
11708 | /* Return the symtab_and_line that should be used to insert an exception | |
11709 | catchpoint of the TYPE kind. | |
11710 | ||
28010a5d PA |
11711 | EXCEP_STRING should contain the name of a specific exception that |
11712 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 11713 | |
28010a5d PA |
11714 | ADDR_STRING returns the name of the function where the real |
11715 | breakpoint that implements the catchpoints is set, depending on the | |
11716 | type of catchpoint we need to create. */ | |
f7f9143b JB |
11717 | |
11718 | static struct symtab_and_line | |
28010a5d | 11719 | ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string, |
c0a91b2b | 11720 | char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
11721 | { |
11722 | const char *sym_name; | |
11723 | struct symbol *sym; | |
f7f9143b | 11724 | |
0259addd JB |
11725 | /* First, find out which exception support info to use. */ |
11726 | ada_exception_support_info_sniffer (); | |
11727 | ||
11728 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 11729 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
11730 | sym_name = ada_exception_sym_name (ex); |
11731 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
11732 | ||
f17011e0 JB |
11733 | /* We can assume that SYM is not NULL at this stage. If the symbol |
11734 | did not exist, ada_exception_support_info_sniffer would have | |
11735 | raised an exception. | |
f7f9143b | 11736 | |
f17011e0 JB |
11737 | Also, ada_exception_support_info_sniffer should have already |
11738 | verified that SYM is a function symbol. */ | |
11739 | gdb_assert (sym != NULL); | |
11740 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
11741 | |
11742 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
11743 | *addr_string = xstrdup (sym_name); |
11744 | ||
f7f9143b | 11745 | /* Set OPS. */ |
4b9eee8c | 11746 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 11747 | |
f17011e0 | 11748 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
11749 | } |
11750 | ||
11751 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
11752 | ||
f7f9143b JB |
11753 | If the user asked the catchpoint to catch only a specific |
11754 | exception, then save the exception name in ADDR_STRING. | |
11755 | ||
11756 | See ada_exception_sal for a description of all the remaining | |
11757 | function arguments of this function. */ | |
11758 | ||
9ac4176b | 11759 | static struct symtab_and_line |
f7f9143b | 11760 | ada_decode_exception_location (char *args, char **addr_string, |
28010a5d | 11761 | char **excep_string, |
c0a91b2b | 11762 | const struct breakpoint_ops **ops) |
f7f9143b JB |
11763 | { |
11764 | enum exception_catchpoint_kind ex; | |
11765 | ||
28010a5d PA |
11766 | catch_ada_exception_command_split (args, &ex, excep_string); |
11767 | return ada_exception_sal (ex, *excep_string, addr_string, ops); | |
11768 | } | |
11769 | ||
11770 | /* Create an Ada exception catchpoint. */ | |
11771 | ||
11772 | static void | |
11773 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, | |
11774 | struct symtab_and_line sal, | |
11775 | char *addr_string, | |
11776 | char *excep_string, | |
c0a91b2b | 11777 | const struct breakpoint_ops *ops, |
28010a5d PA |
11778 | int tempflag, |
11779 | int from_tty) | |
11780 | { | |
11781 | struct ada_catchpoint *c; | |
11782 | ||
11783 | c = XNEW (struct ada_catchpoint); | |
11784 | init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, | |
11785 | ops, tempflag, from_tty); | |
11786 | c->excep_string = excep_string; | |
11787 | create_excep_cond_exprs (c); | |
3ea46bff | 11788 | install_breakpoint (0, &c->base, 1); |
f7f9143b JB |
11789 | } |
11790 | ||
9ac4176b PA |
11791 | /* Implement the "catch exception" command. */ |
11792 | ||
11793 | static void | |
11794 | catch_ada_exception_command (char *arg, int from_tty, | |
11795 | struct cmd_list_element *command) | |
11796 | { | |
11797 | struct gdbarch *gdbarch = get_current_arch (); | |
11798 | int tempflag; | |
11799 | struct symtab_and_line sal; | |
11800 | char *addr_string = NULL; | |
28010a5d | 11801 | char *excep_string = NULL; |
c0a91b2b | 11802 | const struct breakpoint_ops *ops = NULL; |
9ac4176b PA |
11803 | |
11804 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
11805 | ||
11806 | if (!arg) | |
11807 | arg = ""; | |
28010a5d PA |
11808 | sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops); |
11809 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, | |
11810 | excep_string, ops, tempflag, from_tty); | |
9ac4176b PA |
11811 | } |
11812 | ||
11813 | static struct symtab_and_line | |
f7f9143b | 11814 | ada_decode_assert_location (char *args, char **addr_string, |
c0a91b2b | 11815 | const struct breakpoint_ops **ops) |
f7f9143b JB |
11816 | { |
11817 | /* Check that no argument where provided at the end of the command. */ | |
11818 | ||
11819 | if (args != NULL) | |
11820 | { | |
11821 | while (isspace (*args)) | |
11822 | args++; | |
11823 | if (*args != '\0') | |
11824 | error (_("Junk at end of arguments.")); | |
11825 | } | |
11826 | ||
28010a5d | 11827 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops); |
f7f9143b JB |
11828 | } |
11829 | ||
9ac4176b PA |
11830 | /* Implement the "catch assert" command. */ |
11831 | ||
11832 | static void | |
11833 | catch_assert_command (char *arg, int from_tty, | |
11834 | struct cmd_list_element *command) | |
11835 | { | |
11836 | struct gdbarch *gdbarch = get_current_arch (); | |
11837 | int tempflag; | |
11838 | struct symtab_and_line sal; | |
11839 | char *addr_string = NULL; | |
c0a91b2b | 11840 | const struct breakpoint_ops *ops = NULL; |
9ac4176b PA |
11841 | |
11842 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
11843 | ||
11844 | if (!arg) | |
11845 | arg = ""; | |
11846 | sal = ada_decode_assert_location (arg, &addr_string, &ops); | |
28010a5d PA |
11847 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, |
11848 | NULL, ops, tempflag, from_tty); | |
9ac4176b | 11849 | } |
4c4b4cd2 PH |
11850 | /* Operators */ |
11851 | /* Information about operators given special treatment in functions | |
11852 | below. */ | |
11853 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
11854 | ||
11855 | #define ADA_OPERATORS \ | |
11856 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
11857 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
11858 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
11859 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
11860 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
11861 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
11862 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
11863 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
11864 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
11865 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
11866 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
11867 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
11868 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
11869 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
11870 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
11871 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
11872 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
11873 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
11874 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
11875 | |
11876 | static void | |
554794dc SDJ |
11877 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
11878 | int *argsp) | |
4c4b4cd2 PH |
11879 | { |
11880 | switch (exp->elts[pc - 1].opcode) | |
11881 | { | |
76a01679 | 11882 | default: |
4c4b4cd2 PH |
11883 | operator_length_standard (exp, pc, oplenp, argsp); |
11884 | break; | |
11885 | ||
11886 | #define OP_DEFN(op, len, args, binop) \ | |
11887 | case op: *oplenp = len; *argsp = args; break; | |
11888 | ADA_OPERATORS; | |
11889 | #undef OP_DEFN | |
52ce6436 PH |
11890 | |
11891 | case OP_AGGREGATE: | |
11892 | *oplenp = 3; | |
11893 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
11894 | break; | |
11895 | ||
11896 | case OP_CHOICES: | |
11897 | *oplenp = 3; | |
11898 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
11899 | break; | |
4c4b4cd2 PH |
11900 | } |
11901 | } | |
11902 | ||
c0201579 JK |
11903 | /* Implementation of the exp_descriptor method operator_check. */ |
11904 | ||
11905 | static int | |
11906 | ada_operator_check (struct expression *exp, int pos, | |
11907 | int (*objfile_func) (struct objfile *objfile, void *data), | |
11908 | void *data) | |
11909 | { | |
11910 | const union exp_element *const elts = exp->elts; | |
11911 | struct type *type = NULL; | |
11912 | ||
11913 | switch (elts[pos].opcode) | |
11914 | { | |
11915 | case UNOP_IN_RANGE: | |
11916 | case UNOP_QUAL: | |
11917 | type = elts[pos + 1].type; | |
11918 | break; | |
11919 | ||
11920 | default: | |
11921 | return operator_check_standard (exp, pos, objfile_func, data); | |
11922 | } | |
11923 | ||
11924 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
11925 | ||
11926 | if (type && TYPE_OBJFILE (type) | |
11927 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
11928 | return 1; | |
11929 | ||
11930 | return 0; | |
11931 | } | |
11932 | ||
4c4b4cd2 PH |
11933 | static char * |
11934 | ada_op_name (enum exp_opcode opcode) | |
11935 | { | |
11936 | switch (opcode) | |
11937 | { | |
76a01679 | 11938 | default: |
4c4b4cd2 | 11939 | return op_name_standard (opcode); |
52ce6436 | 11940 | |
4c4b4cd2 PH |
11941 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
11942 | ADA_OPERATORS; | |
11943 | #undef OP_DEFN | |
52ce6436 PH |
11944 | |
11945 | case OP_AGGREGATE: | |
11946 | return "OP_AGGREGATE"; | |
11947 | case OP_CHOICES: | |
11948 | return "OP_CHOICES"; | |
11949 | case OP_NAME: | |
11950 | return "OP_NAME"; | |
4c4b4cd2 PH |
11951 | } |
11952 | } | |
11953 | ||
11954 | /* As for operator_length, but assumes PC is pointing at the first | |
11955 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 11956 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
11957 | |
11958 | static void | |
76a01679 JB |
11959 | ada_forward_operator_length (struct expression *exp, int pc, |
11960 | int *oplenp, int *argsp) | |
4c4b4cd2 | 11961 | { |
76a01679 | 11962 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
11963 | { |
11964 | default: | |
11965 | *oplenp = *argsp = 0; | |
11966 | break; | |
52ce6436 | 11967 | |
4c4b4cd2 PH |
11968 | #define OP_DEFN(op, len, args, binop) \ |
11969 | case op: *oplenp = len; *argsp = args; break; | |
11970 | ADA_OPERATORS; | |
11971 | #undef OP_DEFN | |
52ce6436 PH |
11972 | |
11973 | case OP_AGGREGATE: | |
11974 | *oplenp = 3; | |
11975 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
11976 | break; | |
11977 | ||
11978 | case OP_CHOICES: | |
11979 | *oplenp = 3; | |
11980 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
11981 | break; | |
11982 | ||
11983 | case OP_STRING: | |
11984 | case OP_NAME: | |
11985 | { | |
11986 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 11987 | |
52ce6436 PH |
11988 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
11989 | *argsp = 0; | |
11990 | break; | |
11991 | } | |
4c4b4cd2 PH |
11992 | } |
11993 | } | |
11994 | ||
11995 | static int | |
11996 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
11997 | { | |
11998 | enum exp_opcode op = exp->elts[elt].opcode; | |
11999 | int oplen, nargs; | |
12000 | int pc = elt; | |
12001 | int i; | |
76a01679 | 12002 | |
4c4b4cd2 PH |
12003 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
12004 | ||
76a01679 | 12005 | switch (op) |
4c4b4cd2 | 12006 | { |
76a01679 | 12007 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
12008 | case OP_ATR_FIRST: |
12009 | case OP_ATR_LAST: | |
12010 | case OP_ATR_LENGTH: | |
12011 | case OP_ATR_IMAGE: | |
12012 | case OP_ATR_MAX: | |
12013 | case OP_ATR_MIN: | |
12014 | case OP_ATR_MODULUS: | |
12015 | case OP_ATR_POS: | |
12016 | case OP_ATR_SIZE: | |
12017 | case OP_ATR_TAG: | |
12018 | case OP_ATR_VAL: | |
12019 | break; | |
12020 | ||
12021 | case UNOP_IN_RANGE: | |
12022 | case UNOP_QUAL: | |
323e0a4a AC |
12023 | /* XXX: gdb_sprint_host_address, type_sprint */ |
12024 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
12025 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
12026 | fprintf_filtered (stream, " ("); | |
12027 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
12028 | fprintf_filtered (stream, ")"); | |
12029 | break; | |
12030 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
12031 | fprintf_filtered (stream, " (%d)", |
12032 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
12033 | break; |
12034 | case TERNOP_IN_RANGE: | |
12035 | break; | |
12036 | ||
52ce6436 PH |
12037 | case OP_AGGREGATE: |
12038 | case OP_OTHERS: | |
12039 | case OP_DISCRETE_RANGE: | |
12040 | case OP_POSITIONAL: | |
12041 | case OP_CHOICES: | |
12042 | break; | |
12043 | ||
12044 | case OP_NAME: | |
12045 | case OP_STRING: | |
12046 | { | |
12047 | char *name = &exp->elts[elt + 2].string; | |
12048 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 12049 | |
52ce6436 PH |
12050 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
12051 | break; | |
12052 | } | |
12053 | ||
4c4b4cd2 PH |
12054 | default: |
12055 | return dump_subexp_body_standard (exp, stream, elt); | |
12056 | } | |
12057 | ||
12058 | elt += oplen; | |
12059 | for (i = 0; i < nargs; i += 1) | |
12060 | elt = dump_subexp (exp, stream, elt); | |
12061 | ||
12062 | return elt; | |
12063 | } | |
12064 | ||
12065 | /* The Ada extension of print_subexp (q.v.). */ | |
12066 | ||
76a01679 JB |
12067 | static void |
12068 | ada_print_subexp (struct expression *exp, int *pos, | |
12069 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 12070 | { |
52ce6436 | 12071 | int oplen, nargs, i; |
4c4b4cd2 PH |
12072 | int pc = *pos; |
12073 | enum exp_opcode op = exp->elts[pc].opcode; | |
12074 | ||
12075 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
12076 | ||
52ce6436 | 12077 | *pos += oplen; |
4c4b4cd2 PH |
12078 | switch (op) |
12079 | { | |
12080 | default: | |
52ce6436 | 12081 | *pos -= oplen; |
4c4b4cd2 PH |
12082 | print_subexp_standard (exp, pos, stream, prec); |
12083 | return; | |
12084 | ||
12085 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
12086 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
12087 | return; | |
12088 | ||
12089 | case BINOP_IN_BOUNDS: | |
323e0a4a | 12090 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12091 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12092 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 12093 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12094 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 12095 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
12096 | fprintf_filtered (stream, "(%ld)", |
12097 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
12098 | return; |
12099 | ||
12100 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 12101 | if (prec >= PREC_EQUAL) |
76a01679 | 12102 | fputs_filtered ("(", stream); |
323e0a4a | 12103 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12104 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12105 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
12106 | print_subexp (exp, pos, stream, PREC_EQUAL); |
12107 | fputs_filtered (" .. ", stream); | |
12108 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
12109 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
12110 | fputs_filtered (")", stream); |
12111 | return; | |
4c4b4cd2 PH |
12112 | |
12113 | case OP_ATR_FIRST: | |
12114 | case OP_ATR_LAST: | |
12115 | case OP_ATR_LENGTH: | |
12116 | case OP_ATR_IMAGE: | |
12117 | case OP_ATR_MAX: | |
12118 | case OP_ATR_MIN: | |
12119 | case OP_ATR_MODULUS: | |
12120 | case OP_ATR_POS: | |
12121 | case OP_ATR_SIZE: | |
12122 | case OP_ATR_TAG: | |
12123 | case OP_ATR_VAL: | |
4c4b4cd2 | 12124 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
12125 | { |
12126 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
12127 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); | |
12128 | *pos += 3; | |
12129 | } | |
4c4b4cd2 | 12130 | else |
76a01679 | 12131 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
12132 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
12133 | if (nargs > 1) | |
76a01679 JB |
12134 | { |
12135 | int tem; | |
5b4ee69b | 12136 | |
76a01679 JB |
12137 | for (tem = 1; tem < nargs; tem += 1) |
12138 | { | |
12139 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
12140 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
12141 | } | |
12142 | fputs_filtered (")", stream); | |
12143 | } | |
4c4b4cd2 | 12144 | return; |
14f9c5c9 | 12145 | |
4c4b4cd2 | 12146 | case UNOP_QUAL: |
4c4b4cd2 PH |
12147 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
12148 | fputs_filtered ("'(", stream); | |
12149 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
12150 | fputs_filtered (")", stream); | |
12151 | return; | |
14f9c5c9 | 12152 | |
4c4b4cd2 | 12153 | case UNOP_IN_RANGE: |
323e0a4a | 12154 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12155 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12156 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
12157 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); |
12158 | return; | |
52ce6436 PH |
12159 | |
12160 | case OP_DISCRETE_RANGE: | |
12161 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12162 | fputs_filtered ("..", stream); | |
12163 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12164 | return; | |
12165 | ||
12166 | case OP_OTHERS: | |
12167 | fputs_filtered ("others => ", stream); | |
12168 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12169 | return; | |
12170 | ||
12171 | case OP_CHOICES: | |
12172 | for (i = 0; i < nargs-1; i += 1) | |
12173 | { | |
12174 | if (i > 0) | |
12175 | fputs_filtered ("|", stream); | |
12176 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12177 | } | |
12178 | fputs_filtered (" => ", stream); | |
12179 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12180 | return; | |
12181 | ||
12182 | case OP_POSITIONAL: | |
12183 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12184 | return; | |
12185 | ||
12186 | case OP_AGGREGATE: | |
12187 | fputs_filtered ("(", stream); | |
12188 | for (i = 0; i < nargs; i += 1) | |
12189 | { | |
12190 | if (i > 0) | |
12191 | fputs_filtered (", ", stream); | |
12192 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12193 | } | |
12194 | fputs_filtered (")", stream); | |
12195 | return; | |
4c4b4cd2 PH |
12196 | } |
12197 | } | |
14f9c5c9 AS |
12198 | |
12199 | /* Table mapping opcodes into strings for printing operators | |
12200 | and precedences of the operators. */ | |
12201 | ||
d2e4a39e AS |
12202 | static const struct op_print ada_op_print_tab[] = { |
12203 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
12204 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
12205 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
12206 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
12207 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
12208 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
12209 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
12210 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
12211 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
12212 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
12213 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
12214 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
12215 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
12216 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
12217 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
12218 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
12219 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
12220 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
12221 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
12222 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
12223 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
12224 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
12225 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
12226 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
12227 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
12228 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
12229 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
12230 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
12231 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
12232 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
12233 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 12234 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
12235 | }; |
12236 | \f | |
72d5681a PH |
12237 | enum ada_primitive_types { |
12238 | ada_primitive_type_int, | |
12239 | ada_primitive_type_long, | |
12240 | ada_primitive_type_short, | |
12241 | ada_primitive_type_char, | |
12242 | ada_primitive_type_float, | |
12243 | ada_primitive_type_double, | |
12244 | ada_primitive_type_void, | |
12245 | ada_primitive_type_long_long, | |
12246 | ada_primitive_type_long_double, | |
12247 | ada_primitive_type_natural, | |
12248 | ada_primitive_type_positive, | |
12249 | ada_primitive_type_system_address, | |
12250 | nr_ada_primitive_types | |
12251 | }; | |
6c038f32 PH |
12252 | |
12253 | static void | |
d4a9a881 | 12254 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
12255 | struct language_arch_info *lai) |
12256 | { | |
d4a9a881 | 12257 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 12258 | |
72d5681a | 12259 | lai->primitive_type_vector |
d4a9a881 | 12260 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 12261 | struct type *); |
e9bb382b UW |
12262 | |
12263 | lai->primitive_type_vector [ada_primitive_type_int] | |
12264 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12265 | 0, "integer"); | |
12266 | lai->primitive_type_vector [ada_primitive_type_long] | |
12267 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
12268 | 0, "long_integer"); | |
12269 | lai->primitive_type_vector [ada_primitive_type_short] | |
12270 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
12271 | 0, "short_integer"); | |
12272 | lai->string_char_type | |
12273 | = lai->primitive_type_vector [ada_primitive_type_char] | |
12274 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
12275 | lai->primitive_type_vector [ada_primitive_type_float] | |
12276 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
12277 | "float", NULL); | |
12278 | lai->primitive_type_vector [ada_primitive_type_double] | |
12279 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12280 | "long_float", NULL); | |
12281 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
12282 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
12283 | 0, "long_long_integer"); | |
12284 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
12285 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12286 | "long_long_float", NULL); | |
12287 | lai->primitive_type_vector [ada_primitive_type_natural] | |
12288 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12289 | 0, "natural"); | |
12290 | lai->primitive_type_vector [ada_primitive_type_positive] | |
12291 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12292 | 0, "positive"); | |
12293 | lai->primitive_type_vector [ada_primitive_type_void] | |
12294 | = builtin->builtin_void; | |
12295 | ||
12296 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
12297 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
12298 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
12299 | = "system__address"; | |
fbb06eb1 | 12300 | |
47e729a8 | 12301 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 12302 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 12303 | } |
6c038f32 PH |
12304 | \f |
12305 | /* Language vector */ | |
12306 | ||
12307 | /* Not really used, but needed in the ada_language_defn. */ | |
12308 | ||
12309 | static void | |
6c7a06a3 | 12310 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 12311 | { |
6c7a06a3 | 12312 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
12313 | } |
12314 | ||
12315 | static int | |
12316 | parse (void) | |
12317 | { | |
12318 | warnings_issued = 0; | |
12319 | return ada_parse (); | |
12320 | } | |
12321 | ||
12322 | static const struct exp_descriptor ada_exp_descriptor = { | |
12323 | ada_print_subexp, | |
12324 | ada_operator_length, | |
c0201579 | 12325 | ada_operator_check, |
6c038f32 PH |
12326 | ada_op_name, |
12327 | ada_dump_subexp_body, | |
12328 | ada_evaluate_subexp | |
12329 | }; | |
12330 | ||
12331 | const struct language_defn ada_language_defn = { | |
12332 | "ada", /* Language name */ | |
12333 | language_ada, | |
6c038f32 PH |
12334 | range_check_off, |
12335 | type_check_off, | |
12336 | case_sensitive_on, /* Yes, Ada is case-insensitive, but | |
12337 | that's not quite what this means. */ | |
6c038f32 | 12338 | array_row_major, |
9a044a89 | 12339 | macro_expansion_no, |
6c038f32 PH |
12340 | &ada_exp_descriptor, |
12341 | parse, | |
12342 | ada_error, | |
12343 | resolve, | |
12344 | ada_printchar, /* Print a character constant */ | |
12345 | ada_printstr, /* Function to print string constant */ | |
12346 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 12347 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 12348 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
12349 | ada_val_print, /* Print a value using appropriate syntax */ |
12350 | ada_value_print, /* Print a top-level value */ | |
12351 | NULL, /* Language specific skip_trampoline */ | |
2b2d9e11 | 12352 | NULL, /* name_of_this */ |
6c038f32 PH |
12353 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
12354 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
12355 | ada_la_decode, /* Language specific symbol demangler */ | |
0963b4bd MS |
12356 | NULL, /* Language specific |
12357 | class_name_from_physname */ | |
6c038f32 PH |
12358 | ada_op_print_tab, /* expression operators for printing */ |
12359 | 0, /* c-style arrays */ | |
12360 | 1, /* String lower bound */ | |
6c038f32 | 12361 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 12362 | ada_make_symbol_completion_list, |
72d5681a | 12363 | ada_language_arch_info, |
e79af960 | 12364 | ada_print_array_index, |
41f1b697 | 12365 | default_pass_by_reference, |
ae6a3a4c | 12366 | c_get_string, |
f8eba3c6 TT |
12367 | compare_names, |
12368 | ada_iterate_over_symbols, | |
6c038f32 PH |
12369 | LANG_MAGIC |
12370 | }; | |
12371 | ||
2c0b251b PA |
12372 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
12373 | extern initialize_file_ftype _initialize_ada_language; | |
12374 | ||
5bf03f13 JB |
12375 | /* Command-list for the "set/show ada" prefix command. */ |
12376 | static struct cmd_list_element *set_ada_list; | |
12377 | static struct cmd_list_element *show_ada_list; | |
12378 | ||
12379 | /* Implement the "set ada" prefix command. */ | |
12380 | ||
12381 | static void | |
12382 | set_ada_command (char *arg, int from_tty) | |
12383 | { | |
12384 | printf_unfiltered (_(\ | |
12385 | "\"set ada\" must be followed by the name of a setting.\n")); | |
12386 | help_list (set_ada_list, "set ada ", -1, gdb_stdout); | |
12387 | } | |
12388 | ||
12389 | /* Implement the "show ada" prefix command. */ | |
12390 | ||
12391 | static void | |
12392 | show_ada_command (char *args, int from_tty) | |
12393 | { | |
12394 | cmd_show_list (show_ada_list, from_tty, ""); | |
12395 | } | |
12396 | ||
2060206e PA |
12397 | static void |
12398 | initialize_ada_catchpoint_ops (void) | |
12399 | { | |
12400 | struct breakpoint_ops *ops; | |
12401 | ||
12402 | initialize_breakpoint_ops (); | |
12403 | ||
12404 | ops = &catch_exception_breakpoint_ops; | |
12405 | *ops = bkpt_breakpoint_ops; | |
12406 | ops->dtor = dtor_catch_exception; | |
12407 | ops->allocate_location = allocate_location_catch_exception; | |
12408 | ops->re_set = re_set_catch_exception; | |
12409 | ops->check_status = check_status_catch_exception; | |
12410 | ops->print_it = print_it_catch_exception; | |
12411 | ops->print_one = print_one_catch_exception; | |
12412 | ops->print_mention = print_mention_catch_exception; | |
12413 | ops->print_recreate = print_recreate_catch_exception; | |
12414 | ||
12415 | ops = &catch_exception_unhandled_breakpoint_ops; | |
12416 | *ops = bkpt_breakpoint_ops; | |
12417 | ops->dtor = dtor_catch_exception_unhandled; | |
12418 | ops->allocate_location = allocate_location_catch_exception_unhandled; | |
12419 | ops->re_set = re_set_catch_exception_unhandled; | |
12420 | ops->check_status = check_status_catch_exception_unhandled; | |
12421 | ops->print_it = print_it_catch_exception_unhandled; | |
12422 | ops->print_one = print_one_catch_exception_unhandled; | |
12423 | ops->print_mention = print_mention_catch_exception_unhandled; | |
12424 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
12425 | ||
12426 | ops = &catch_assert_breakpoint_ops; | |
12427 | *ops = bkpt_breakpoint_ops; | |
12428 | ops->dtor = dtor_catch_assert; | |
12429 | ops->allocate_location = allocate_location_catch_assert; | |
12430 | ops->re_set = re_set_catch_assert; | |
12431 | ops->check_status = check_status_catch_assert; | |
12432 | ops->print_it = print_it_catch_assert; | |
12433 | ops->print_one = print_one_catch_assert; | |
12434 | ops->print_mention = print_mention_catch_assert; | |
12435 | ops->print_recreate = print_recreate_catch_assert; | |
12436 | } | |
12437 | ||
d2e4a39e | 12438 | void |
6c038f32 | 12439 | _initialize_ada_language (void) |
14f9c5c9 | 12440 | { |
6c038f32 PH |
12441 | add_language (&ada_language_defn); |
12442 | ||
2060206e PA |
12443 | initialize_ada_catchpoint_ops (); |
12444 | ||
5bf03f13 JB |
12445 | add_prefix_cmd ("ada", no_class, set_ada_command, |
12446 | _("Prefix command for changing Ada-specfic settings"), | |
12447 | &set_ada_list, "set ada ", 0, &setlist); | |
12448 | ||
12449 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
12450 | _("Generic command for showing Ada-specific settings."), | |
12451 | &show_ada_list, "show ada ", 0, &showlist); | |
12452 | ||
12453 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
12454 | &trust_pad_over_xvs, _("\ | |
12455 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
12456 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
12457 | _("\ | |
12458 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
12459 | should normally trust the contents of PAD types, but certain older versions\n\ | |
12460 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
12461 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
12462 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
12463 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
12464 | this option to \"off\" unless necessary."), | |
12465 | NULL, NULL, &set_ada_list, &show_ada_list); | |
12466 | ||
9ac4176b PA |
12467 | add_catch_command ("exception", _("\ |
12468 | Catch Ada exceptions, when raised.\n\ | |
12469 | With an argument, catch only exceptions with the given name."), | |
12470 | catch_ada_exception_command, | |
12471 | NULL, | |
12472 | CATCH_PERMANENT, | |
12473 | CATCH_TEMPORARY); | |
12474 | add_catch_command ("assert", _("\ | |
12475 | Catch failed Ada assertions, when raised.\n\ | |
12476 | With an argument, catch only exceptions with the given name."), | |
12477 | catch_assert_command, | |
12478 | NULL, | |
12479 | CATCH_PERMANENT, | |
12480 | CATCH_TEMPORARY); | |
12481 | ||
6c038f32 | 12482 | varsize_limit = 65536; |
6c038f32 PH |
12483 | |
12484 | obstack_init (&symbol_list_obstack); | |
12485 | ||
12486 | decoded_names_store = htab_create_alloc | |
12487 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
12488 | NULL, xcalloc, xfree); | |
6b69afc4 | 12489 | |
e802dbe0 JB |
12490 | /* Setup per-inferior data. */ |
12491 | observer_attach_inferior_exit (ada_inferior_exit); | |
12492 | ada_inferior_data | |
12493 | = register_inferior_data_with_cleanup (ada_inferior_data_cleanup); | |
14f9c5c9 | 12494 | } |