]>
Commit | Line | Data |
---|---|---|
197e01b6 | 1 | /* Ada language support routines for GDB, the GNU debugger. Copyright (C) |
10a2c479 | 2 | |
ae6a3a4c TJB |
3 | 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008, |
4 | 2009 Free Software Foundation, Inc. | |
14f9c5c9 | 5 | |
a9762ec7 | 6 | This file is part of GDB. |
14f9c5c9 | 7 | |
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
14f9c5c9 | 12 | |
a9762ec7 JB |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
14f9c5c9 | 17 | |
a9762ec7 JB |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 20 | |
96d887e8 | 21 | |
4c4b4cd2 | 22 | #include "defs.h" |
14f9c5c9 | 23 | #include <stdio.h> |
0c30c098 | 24 | #include "gdb_string.h" |
14f9c5c9 AS |
25 | #include <ctype.h> |
26 | #include <stdarg.h> | |
27 | #include "demangle.h" | |
4c4b4cd2 PH |
28 | #include "gdb_regex.h" |
29 | #include "frame.h" | |
14f9c5c9 AS |
30 | #include "symtab.h" |
31 | #include "gdbtypes.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "expression.h" | |
34 | #include "parser-defs.h" | |
35 | #include "language.h" | |
36 | #include "c-lang.h" | |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 PH |
45 | #include "completer.h" |
46 | #include "gdb_stat.h" | |
47 | #ifdef UI_OUT | |
14f9c5c9 | 48 | #include "ui-out.h" |
4c4b4cd2 | 49 | #endif |
fe898f56 | 50 | #include "block.h" |
04714b91 | 51 | #include "infcall.h" |
de4f826b | 52 | #include "dictionary.h" |
60250e8b | 53 | #include "exceptions.h" |
f7f9143b JB |
54 | #include "annotate.h" |
55 | #include "valprint.h" | |
9bbc9174 | 56 | #include "source.h" |
0259addd | 57 | #include "observer.h" |
2ba95b9b | 58 | #include "vec.h" |
692465f1 | 59 | #include "stack.h" |
14f9c5c9 | 60 | |
ccefe4c4 | 61 | #include "psymtab.h" |
40bc484c | 62 | #include "value.h" |
956a9fb9 | 63 | #include "mi/mi-common.h" |
9ac4176b | 64 | #include "arch-utils.h" |
28010a5d | 65 | #include "exceptions.h" |
ccefe4c4 | 66 | |
4c4b4cd2 | 67 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 68 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
69 | Copied from valarith.c. */ |
70 | ||
71 | #ifndef TRUNCATION_TOWARDS_ZERO | |
72 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
73 | #endif | |
74 | ||
d2e4a39e | 75 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 84 | |
556bdfd4 | 85 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static struct value *desc_data (struct value *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static int desc_arity (struct type *); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 104 | |
d2e4a39e | 105 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 106 | |
40658b94 PH |
107 | static int full_match (const char *, const char *); |
108 | ||
40bc484c | 109 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 110 | |
4c4b4cd2 | 111 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 112 | struct block *, const char *, |
2570f2b7 | 113 | domain_enum, struct objfile *, int); |
14f9c5c9 | 114 | |
4c4b4cd2 | 115 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 116 | |
76a01679 | 117 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 118 | struct block *); |
14f9c5c9 | 119 | |
4c4b4cd2 PH |
120 | static int num_defns_collected (struct obstack *); |
121 | ||
122 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 123 | |
4c4b4cd2 | 124 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 125 | struct type *); |
14f9c5c9 | 126 | |
d2e4a39e | 127 | static void replace_operator_with_call (struct expression **, int, int, int, |
4c4b4cd2 | 128 | struct symbol *, struct block *); |
14f9c5c9 | 129 | |
d2e4a39e | 130 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 131 | |
4c4b4cd2 PH |
132 | static char *ada_op_name (enum exp_opcode); |
133 | ||
134 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 135 | |
d2e4a39e | 136 | static int numeric_type_p (struct type *); |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int integer_type_p (struct type *); |
14f9c5c9 | 139 | |
d2e4a39e | 140 | static int scalar_type_p (struct type *); |
14f9c5c9 | 141 | |
d2e4a39e | 142 | static int discrete_type_p (struct type *); |
14f9c5c9 | 143 | |
aeb5907d JB |
144 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
145 | const char **, | |
146 | int *, | |
147 | const char **); | |
148 | ||
149 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
150 | struct block *); | |
151 | ||
4c4b4cd2 | 152 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 153 | int, int, int *); |
4c4b4cd2 | 154 | |
d2e4a39e | 155 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 156 | |
b4ba55a1 JB |
157 | static struct type *ada_find_parallel_type_with_name (struct type *, |
158 | const char *); | |
159 | ||
d2e4a39e | 160 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 161 | |
10a2c479 | 162 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 163 | const gdb_byte *, |
4c4b4cd2 PH |
164 | CORE_ADDR, struct value *); |
165 | ||
166 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 167 | |
28c85d6c | 168 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 169 | |
d2e4a39e | 170 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 171 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 172 | |
d2e4a39e | 173 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 174 | |
ad82864c | 175 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 176 | |
ad82864c | 177 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 178 | |
ad82864c JB |
179 | static long decode_packed_array_bitsize (struct type *); |
180 | ||
181 | static struct value *decode_constrained_packed_array (struct value *); | |
182 | ||
183 | static int ada_is_packed_array_type (struct type *); | |
184 | ||
185 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 186 | |
d2e4a39e | 187 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 188 | struct value **); |
14f9c5c9 | 189 | |
50810684 | 190 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 191 | |
4c4b4cd2 PH |
192 | static struct value *coerce_unspec_val_to_type (struct value *, |
193 | struct type *); | |
14f9c5c9 | 194 | |
d2e4a39e | 195 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 198 | |
d2e4a39e | 199 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 200 | |
d2e4a39e | 201 | static int is_name_suffix (const char *); |
14f9c5c9 | 202 | |
73589123 PH |
203 | static int advance_wild_match (const char **, const char *, int); |
204 | ||
205 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 206 | |
d2e4a39e | 207 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 208 | |
4c4b4cd2 PH |
209 | static LONGEST pos_atr (struct value *); |
210 | ||
3cb382c9 | 211 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 212 | |
d2e4a39e | 213 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 214 | |
4c4b4cd2 PH |
215 | static struct symbol *standard_lookup (const char *, const struct block *, |
216 | domain_enum); | |
14f9c5c9 | 217 | |
4c4b4cd2 PH |
218 | static struct value *ada_search_struct_field (char *, struct value *, int, |
219 | struct type *); | |
220 | ||
221 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
222 | struct type *); | |
223 | ||
76a01679 | 224 | static int find_struct_field (char *, struct type *, int, |
52ce6436 | 225 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
226 | |
227 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
228 | struct value *); | |
229 | ||
4c4b4cd2 PH |
230 | static int ada_resolve_function (struct ada_symbol_info *, int, |
231 | struct value **, int, const char *, | |
232 | struct type *); | |
233 | ||
4c4b4cd2 PH |
234 | static int ada_is_direct_array_type (struct type *); |
235 | ||
72d5681a PH |
236 | static void ada_language_arch_info (struct gdbarch *, |
237 | struct language_arch_info *); | |
714e53ab PH |
238 | |
239 | static void check_size (const struct type *); | |
52ce6436 PH |
240 | |
241 | static struct value *ada_index_struct_field (int, struct value *, int, | |
242 | struct type *); | |
243 | ||
244 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
245 | struct expression *, |
246 | int *, enum noside); | |
52ce6436 PH |
247 | |
248 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
249 | struct expression *, | |
250 | int *, LONGEST *, int *, | |
251 | int, LONGEST, LONGEST); | |
252 | ||
253 | static void aggregate_assign_positional (struct value *, struct value *, | |
254 | struct expression *, | |
255 | int *, LONGEST *, int *, int, | |
256 | LONGEST, LONGEST); | |
257 | ||
258 | ||
259 | static void aggregate_assign_others (struct value *, struct value *, | |
260 | struct expression *, | |
261 | int *, LONGEST *, int, LONGEST, LONGEST); | |
262 | ||
263 | ||
264 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
265 | ||
266 | ||
267 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
268 | int *, enum noside); | |
269 | ||
270 | static void ada_forward_operator_length (struct expression *, int, int *, | |
271 | int *); | |
4c4b4cd2 PH |
272 | \f |
273 | ||
76a01679 | 274 | |
4c4b4cd2 | 275 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
276 | static unsigned int varsize_limit; |
277 | ||
4c4b4cd2 PH |
278 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
279 | returned by a function that does not return a const char *. */ | |
280 | static char *ada_completer_word_break_characters = | |
281 | #ifdef VMS | |
282 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
283 | #else | |
14f9c5c9 | 284 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 285 | #endif |
14f9c5c9 | 286 | |
4c4b4cd2 | 287 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 288 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 289 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 290 | |
4c4b4cd2 PH |
291 | /* Limit on the number of warnings to raise per expression evaluation. */ |
292 | static int warning_limit = 2; | |
293 | ||
294 | /* Number of warning messages issued; reset to 0 by cleanups after | |
295 | expression evaluation. */ | |
296 | static int warnings_issued = 0; | |
297 | ||
298 | static const char *known_runtime_file_name_patterns[] = { | |
299 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
300 | }; | |
301 | ||
302 | static const char *known_auxiliary_function_name_patterns[] = { | |
303 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
304 | }; | |
305 | ||
306 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
307 | static struct obstack symbol_list_obstack; | |
308 | ||
e802dbe0 JB |
309 | /* Inferior-specific data. */ |
310 | ||
311 | /* Per-inferior data for this module. */ | |
312 | ||
313 | struct ada_inferior_data | |
314 | { | |
315 | /* The ada__tags__type_specific_data type, which is used when decoding | |
316 | tagged types. With older versions of GNAT, this type was directly | |
317 | accessible through a component ("tsd") in the object tag. But this | |
318 | is no longer the case, so we cache it for each inferior. */ | |
319 | struct type *tsd_type; | |
320 | }; | |
321 | ||
322 | /* Our key to this module's inferior data. */ | |
323 | static const struct inferior_data *ada_inferior_data; | |
324 | ||
325 | /* A cleanup routine for our inferior data. */ | |
326 | static void | |
327 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
328 | { | |
329 | struct ada_inferior_data *data; | |
330 | ||
331 | data = inferior_data (inf, ada_inferior_data); | |
332 | if (data != NULL) | |
333 | xfree (data); | |
334 | } | |
335 | ||
336 | /* Return our inferior data for the given inferior (INF). | |
337 | ||
338 | This function always returns a valid pointer to an allocated | |
339 | ada_inferior_data structure. If INF's inferior data has not | |
340 | been previously set, this functions creates a new one with all | |
341 | fields set to zero, sets INF's inferior to it, and then returns | |
342 | a pointer to that newly allocated ada_inferior_data. */ | |
343 | ||
344 | static struct ada_inferior_data * | |
345 | get_ada_inferior_data (struct inferior *inf) | |
346 | { | |
347 | struct ada_inferior_data *data; | |
348 | ||
349 | data = inferior_data (inf, ada_inferior_data); | |
350 | if (data == NULL) | |
351 | { | |
352 | data = XZALLOC (struct ada_inferior_data); | |
353 | set_inferior_data (inf, ada_inferior_data, data); | |
354 | } | |
355 | ||
356 | return data; | |
357 | } | |
358 | ||
359 | /* Perform all necessary cleanups regarding our module's inferior data | |
360 | that is required after the inferior INF just exited. */ | |
361 | ||
362 | static void | |
363 | ada_inferior_exit (struct inferior *inf) | |
364 | { | |
365 | ada_inferior_data_cleanup (inf, NULL); | |
366 | set_inferior_data (inf, ada_inferior_data, NULL); | |
367 | } | |
368 | ||
4c4b4cd2 PH |
369 | /* Utilities */ |
370 | ||
720d1a40 | 371 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 372 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
373 | |
374 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
375 | In other words, we really expect the target type of a typedef type to be | |
376 | a non-typedef type. This is particularly true for Ada units, because | |
377 | the language does not have a typedef vs not-typedef distinction. | |
378 | In that respect, the Ada compiler has been trying to eliminate as many | |
379 | typedef definitions in the debugging information, since they generally | |
380 | do not bring any extra information (we still use typedef under certain | |
381 | circumstances related mostly to the GNAT encoding). | |
382 | ||
383 | Unfortunately, we have seen situations where the debugging information | |
384 | generated by the compiler leads to such multiple typedef layers. For | |
385 | instance, consider the following example with stabs: | |
386 | ||
387 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
388 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
389 | ||
390 | This is an error in the debugging information which causes type | |
391 | pck__float_array___XUP to be defined twice, and the second time, | |
392 | it is defined as a typedef of a typedef. | |
393 | ||
394 | This is on the fringe of legality as far as debugging information is | |
395 | concerned, and certainly unexpected. But it is easy to handle these | |
396 | situations correctly, so we can afford to be lenient in this case. */ | |
397 | ||
398 | static struct type * | |
399 | ada_typedef_target_type (struct type *type) | |
400 | { | |
401 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
402 | type = TYPE_TARGET_TYPE (type); | |
403 | return type; | |
404 | } | |
405 | ||
41d27058 JB |
406 | /* Given DECODED_NAME a string holding a symbol name in its |
407 | decoded form (ie using the Ada dotted notation), returns | |
408 | its unqualified name. */ | |
409 | ||
410 | static const char * | |
411 | ada_unqualified_name (const char *decoded_name) | |
412 | { | |
413 | const char *result = strrchr (decoded_name, '.'); | |
414 | ||
415 | if (result != NULL) | |
416 | result++; /* Skip the dot... */ | |
417 | else | |
418 | result = decoded_name; | |
419 | ||
420 | return result; | |
421 | } | |
422 | ||
423 | /* Return a string starting with '<', followed by STR, and '>'. | |
424 | The result is good until the next call. */ | |
425 | ||
426 | static char * | |
427 | add_angle_brackets (const char *str) | |
428 | { | |
429 | static char *result = NULL; | |
430 | ||
431 | xfree (result); | |
88c15c34 | 432 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
433 | return result; |
434 | } | |
96d887e8 | 435 | |
4c4b4cd2 PH |
436 | static char * |
437 | ada_get_gdb_completer_word_break_characters (void) | |
438 | { | |
439 | return ada_completer_word_break_characters; | |
440 | } | |
441 | ||
e79af960 JB |
442 | /* Print an array element index using the Ada syntax. */ |
443 | ||
444 | static void | |
445 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 446 | const struct value_print_options *options) |
e79af960 | 447 | { |
79a45b7d | 448 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
449 | fprintf_filtered (stream, " => "); |
450 | } | |
451 | ||
f27cf670 | 452 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 453 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 454 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 455 | |
f27cf670 AS |
456 | void * |
457 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 458 | { |
d2e4a39e AS |
459 | if (*size < min_size) |
460 | { | |
461 | *size *= 2; | |
462 | if (*size < min_size) | |
4c4b4cd2 | 463 | *size = min_size; |
f27cf670 | 464 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 465 | } |
f27cf670 | 466 | return vect; |
14f9c5c9 AS |
467 | } |
468 | ||
469 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 470 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
471 | |
472 | static int | |
ebf56fd3 | 473 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
474 | { |
475 | int len = strlen (target); | |
5b4ee69b | 476 | |
d2e4a39e | 477 | return |
4c4b4cd2 PH |
478 | (strncmp (field_name, target, len) == 0 |
479 | && (field_name[len] == '\0' | |
480 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
481 | && strcmp (field_name + strlen (field_name) - 6, |
482 | "___XVN") != 0))); | |
14f9c5c9 AS |
483 | } |
484 | ||
485 | ||
872c8b51 JB |
486 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
487 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
488 | and return its index. This function also handles fields whose name | |
489 | have ___ suffixes because the compiler sometimes alters their name | |
490 | by adding such a suffix to represent fields with certain constraints. | |
491 | If the field could not be found, return a negative number if | |
492 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
493 | |
494 | int | |
495 | ada_get_field_index (const struct type *type, const char *field_name, | |
496 | int maybe_missing) | |
497 | { | |
498 | int fieldno; | |
872c8b51 JB |
499 | struct type *struct_type = check_typedef ((struct type *) type); |
500 | ||
501 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
502 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
503 | return fieldno; |
504 | ||
505 | if (!maybe_missing) | |
323e0a4a | 506 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 507 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
508 | |
509 | return -1; | |
510 | } | |
511 | ||
512 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
513 | |
514 | int | |
d2e4a39e | 515 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
516 | { |
517 | if (name == NULL) | |
518 | return 0; | |
d2e4a39e | 519 | else |
14f9c5c9 | 520 | { |
d2e4a39e | 521 | const char *p = strstr (name, "___"); |
5b4ee69b | 522 | |
14f9c5c9 | 523 | if (p == NULL) |
4c4b4cd2 | 524 | return strlen (name); |
14f9c5c9 | 525 | else |
4c4b4cd2 | 526 | return p - name; |
14f9c5c9 AS |
527 | } |
528 | } | |
529 | ||
4c4b4cd2 PH |
530 | /* Return non-zero if SUFFIX is a suffix of STR. |
531 | Return zero if STR is null. */ | |
532 | ||
14f9c5c9 | 533 | static int |
d2e4a39e | 534 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
535 | { |
536 | int len1, len2; | |
5b4ee69b | 537 | |
14f9c5c9 AS |
538 | if (str == NULL) |
539 | return 0; | |
540 | len1 = strlen (str); | |
541 | len2 = strlen (suffix); | |
4c4b4cd2 | 542 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
543 | } |
544 | ||
4c4b4cd2 PH |
545 | /* The contents of value VAL, treated as a value of type TYPE. The |
546 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 547 | |
d2e4a39e | 548 | static struct value * |
4c4b4cd2 | 549 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 550 | { |
61ee279c | 551 | type = ada_check_typedef (type); |
df407dfe | 552 | if (value_type (val) == type) |
4c4b4cd2 | 553 | return val; |
d2e4a39e | 554 | else |
14f9c5c9 | 555 | { |
4c4b4cd2 PH |
556 | struct value *result; |
557 | ||
558 | /* Make sure that the object size is not unreasonable before | |
559 | trying to allocate some memory for it. */ | |
714e53ab | 560 | check_size (type); |
4c4b4cd2 | 561 | |
41e8491f JK |
562 | if (value_lazy (val) |
563 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
564 | result = allocate_value_lazy (type); | |
565 | else | |
566 | { | |
567 | result = allocate_value (type); | |
568 | memcpy (value_contents_raw (result), value_contents (val), | |
569 | TYPE_LENGTH (type)); | |
570 | } | |
74bcbdf3 | 571 | set_value_component_location (result, val); |
9bbda503 AC |
572 | set_value_bitsize (result, value_bitsize (val)); |
573 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 574 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
575 | return result; |
576 | } | |
577 | } | |
578 | ||
fc1a4b47 AC |
579 | static const gdb_byte * |
580 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
581 | { |
582 | if (valaddr == NULL) | |
583 | return NULL; | |
584 | else | |
585 | return valaddr + offset; | |
586 | } | |
587 | ||
588 | static CORE_ADDR | |
ebf56fd3 | 589 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
590 | { |
591 | if (address == 0) | |
592 | return 0; | |
d2e4a39e | 593 | else |
14f9c5c9 AS |
594 | return address + offset; |
595 | } | |
596 | ||
4c4b4cd2 PH |
597 | /* Issue a warning (as for the definition of warning in utils.c, but |
598 | with exactly one argument rather than ...), unless the limit on the | |
599 | number of warnings has passed during the evaluation of the current | |
600 | expression. */ | |
a2249542 | 601 | |
77109804 AC |
602 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
603 | provided by "complaint". */ | |
a0b31db1 | 604 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 605 | |
14f9c5c9 | 606 | static void |
a2249542 | 607 | lim_warning (const char *format, ...) |
14f9c5c9 | 608 | { |
a2249542 | 609 | va_list args; |
a2249542 | 610 | |
5b4ee69b | 611 | va_start (args, format); |
4c4b4cd2 PH |
612 | warnings_issued += 1; |
613 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
614 | vwarning (format, args); |
615 | ||
616 | va_end (args); | |
4c4b4cd2 PH |
617 | } |
618 | ||
714e53ab PH |
619 | /* Issue an error if the size of an object of type T is unreasonable, |
620 | i.e. if it would be a bad idea to allocate a value of this type in | |
621 | GDB. */ | |
622 | ||
623 | static void | |
624 | check_size (const struct type *type) | |
625 | { | |
626 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 627 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
628 | } |
629 | ||
0963b4bd | 630 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 631 | static LONGEST |
c3e5cd34 | 632 | max_of_size (int size) |
4c4b4cd2 | 633 | { |
76a01679 | 634 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 635 | |
76a01679 | 636 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
637 | } |
638 | ||
0963b4bd | 639 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 640 | static LONGEST |
c3e5cd34 | 641 | min_of_size (int size) |
4c4b4cd2 | 642 | { |
c3e5cd34 | 643 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
644 | } |
645 | ||
0963b4bd | 646 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 647 | static ULONGEST |
c3e5cd34 | 648 | umax_of_size (int size) |
4c4b4cd2 | 649 | { |
76a01679 | 650 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 651 | |
76a01679 | 652 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
653 | } |
654 | ||
0963b4bd | 655 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
656 | static LONGEST |
657 | max_of_type (struct type *t) | |
4c4b4cd2 | 658 | { |
c3e5cd34 PH |
659 | if (TYPE_UNSIGNED (t)) |
660 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
661 | else | |
662 | return max_of_size (TYPE_LENGTH (t)); | |
663 | } | |
664 | ||
0963b4bd | 665 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
666 | static LONGEST |
667 | min_of_type (struct type *t) | |
668 | { | |
669 | if (TYPE_UNSIGNED (t)) | |
670 | return 0; | |
671 | else | |
672 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
673 | } |
674 | ||
675 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
676 | LONGEST |
677 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 678 | { |
76a01679 | 679 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
680 | { |
681 | case TYPE_CODE_RANGE: | |
690cc4eb | 682 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 683 | case TYPE_CODE_ENUM: |
690cc4eb PH |
684 | return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1); |
685 | case TYPE_CODE_BOOL: | |
686 | return 1; | |
687 | case TYPE_CODE_CHAR: | |
76a01679 | 688 | case TYPE_CODE_INT: |
690cc4eb | 689 | return max_of_type (type); |
4c4b4cd2 | 690 | default: |
43bbcdc2 | 691 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
692 | } |
693 | } | |
694 | ||
695 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
696 | LONGEST |
697 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 698 | { |
76a01679 | 699 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
700 | { |
701 | case TYPE_CODE_RANGE: | |
690cc4eb | 702 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 703 | case TYPE_CODE_ENUM: |
690cc4eb PH |
704 | return TYPE_FIELD_BITPOS (type, 0); |
705 | case TYPE_CODE_BOOL: | |
706 | return 0; | |
707 | case TYPE_CODE_CHAR: | |
76a01679 | 708 | case TYPE_CODE_INT: |
690cc4eb | 709 | return min_of_type (type); |
4c4b4cd2 | 710 | default: |
43bbcdc2 | 711 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
712 | } |
713 | } | |
714 | ||
715 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 716 | non-range scalar type. */ |
4c4b4cd2 PH |
717 | |
718 | static struct type * | |
719 | base_type (struct type *type) | |
720 | { | |
721 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
722 | { | |
76a01679 JB |
723 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
724 | return type; | |
4c4b4cd2 PH |
725 | type = TYPE_TARGET_TYPE (type); |
726 | } | |
727 | return type; | |
14f9c5c9 | 728 | } |
4c4b4cd2 | 729 | \f |
76a01679 | 730 | |
4c4b4cd2 | 731 | /* Language Selection */ |
14f9c5c9 AS |
732 | |
733 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 734 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 735 | |
14f9c5c9 | 736 | enum language |
ccefe4c4 | 737 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 738 | { |
d2e4a39e | 739 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
740 | (struct objfile *) NULL) != NULL) |
741 | return language_ada; | |
14f9c5c9 AS |
742 | |
743 | return lang; | |
744 | } | |
96d887e8 PH |
745 | |
746 | /* If the main procedure is written in Ada, then return its name. | |
747 | The result is good until the next call. Return NULL if the main | |
748 | procedure doesn't appear to be in Ada. */ | |
749 | ||
750 | char * | |
751 | ada_main_name (void) | |
752 | { | |
753 | struct minimal_symbol *msym; | |
f9bc20b9 | 754 | static char *main_program_name = NULL; |
6c038f32 | 755 | |
96d887e8 PH |
756 | /* For Ada, the name of the main procedure is stored in a specific |
757 | string constant, generated by the binder. Look for that symbol, | |
758 | extract its address, and then read that string. If we didn't find | |
759 | that string, then most probably the main procedure is not written | |
760 | in Ada. */ | |
761 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
762 | ||
763 | if (msym != NULL) | |
764 | { | |
f9bc20b9 JB |
765 | CORE_ADDR main_program_name_addr; |
766 | int err_code; | |
767 | ||
96d887e8 PH |
768 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
769 | if (main_program_name_addr == 0) | |
323e0a4a | 770 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 771 | |
f9bc20b9 JB |
772 | xfree (main_program_name); |
773 | target_read_string (main_program_name_addr, &main_program_name, | |
774 | 1024, &err_code); | |
775 | ||
776 | if (err_code != 0) | |
777 | return NULL; | |
96d887e8 PH |
778 | return main_program_name; |
779 | } | |
780 | ||
781 | /* The main procedure doesn't seem to be in Ada. */ | |
782 | return NULL; | |
783 | } | |
14f9c5c9 | 784 | \f |
4c4b4cd2 | 785 | /* Symbols */ |
d2e4a39e | 786 | |
4c4b4cd2 PH |
787 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
788 | of NULLs. */ | |
14f9c5c9 | 789 | |
d2e4a39e AS |
790 | const struct ada_opname_map ada_opname_table[] = { |
791 | {"Oadd", "\"+\"", BINOP_ADD}, | |
792 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
793 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
794 | {"Odivide", "\"/\"", BINOP_DIV}, | |
795 | {"Omod", "\"mod\"", BINOP_MOD}, | |
796 | {"Orem", "\"rem\"", BINOP_REM}, | |
797 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
798 | {"Olt", "\"<\"", BINOP_LESS}, | |
799 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
800 | {"Ogt", "\">\"", BINOP_GTR}, | |
801 | {"Oge", "\">=\"", BINOP_GEQ}, | |
802 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
803 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
804 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
805 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
806 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
807 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
808 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
809 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
810 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
811 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
812 | {NULL, NULL} | |
14f9c5c9 AS |
813 | }; |
814 | ||
4c4b4cd2 PH |
815 | /* The "encoded" form of DECODED, according to GNAT conventions. |
816 | The result is valid until the next call to ada_encode. */ | |
817 | ||
14f9c5c9 | 818 | char * |
4c4b4cd2 | 819 | ada_encode (const char *decoded) |
14f9c5c9 | 820 | { |
4c4b4cd2 PH |
821 | static char *encoding_buffer = NULL; |
822 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 823 | const char *p; |
14f9c5c9 | 824 | int k; |
d2e4a39e | 825 | |
4c4b4cd2 | 826 | if (decoded == NULL) |
14f9c5c9 AS |
827 | return NULL; |
828 | ||
4c4b4cd2 PH |
829 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
830 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
831 | |
832 | k = 0; | |
4c4b4cd2 | 833 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 834 | { |
cdc7bb92 | 835 | if (*p == '.') |
4c4b4cd2 PH |
836 | { |
837 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
838 | k += 2; | |
839 | } | |
14f9c5c9 | 840 | else if (*p == '"') |
4c4b4cd2 PH |
841 | { |
842 | const struct ada_opname_map *mapping; | |
843 | ||
844 | for (mapping = ada_opname_table; | |
1265e4aa JB |
845 | mapping->encoded != NULL |
846 | && strncmp (mapping->decoded, p, | |
847 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
848 | ; |
849 | if (mapping->encoded == NULL) | |
323e0a4a | 850 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
851 | strcpy (encoding_buffer + k, mapping->encoded); |
852 | k += strlen (mapping->encoded); | |
853 | break; | |
854 | } | |
d2e4a39e | 855 | else |
4c4b4cd2 PH |
856 | { |
857 | encoding_buffer[k] = *p; | |
858 | k += 1; | |
859 | } | |
14f9c5c9 AS |
860 | } |
861 | ||
4c4b4cd2 PH |
862 | encoding_buffer[k] = '\0'; |
863 | return encoding_buffer; | |
14f9c5c9 AS |
864 | } |
865 | ||
866 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
867 | quotes, unfolded, but with the quotes stripped away. Result good |
868 | to next call. */ | |
869 | ||
d2e4a39e AS |
870 | char * |
871 | ada_fold_name (const char *name) | |
14f9c5c9 | 872 | { |
d2e4a39e | 873 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
874 | static size_t fold_buffer_size = 0; |
875 | ||
876 | int len = strlen (name); | |
d2e4a39e | 877 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
878 | |
879 | if (name[0] == '\'') | |
880 | { | |
d2e4a39e AS |
881 | strncpy (fold_buffer, name + 1, len - 2); |
882 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
883 | } |
884 | else | |
885 | { | |
886 | int i; | |
5b4ee69b | 887 | |
14f9c5c9 | 888 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 889 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
890 | } |
891 | ||
892 | return fold_buffer; | |
893 | } | |
894 | ||
529cad9c PH |
895 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
896 | ||
897 | static int | |
898 | is_lower_alphanum (const char c) | |
899 | { | |
900 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
901 | } | |
902 | ||
29480c32 JB |
903 | /* Remove either of these suffixes: |
904 | . .{DIGIT}+ | |
905 | . ${DIGIT}+ | |
906 | . ___{DIGIT}+ | |
907 | . __{DIGIT}+. | |
908 | These are suffixes introduced by the compiler for entities such as | |
909 | nested subprogram for instance, in order to avoid name clashes. | |
910 | They do not serve any purpose for the debugger. */ | |
911 | ||
912 | static void | |
913 | ada_remove_trailing_digits (const char *encoded, int *len) | |
914 | { | |
915 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
916 | { | |
917 | int i = *len - 2; | |
5b4ee69b | 918 | |
29480c32 JB |
919 | while (i > 0 && isdigit (encoded[i])) |
920 | i--; | |
921 | if (i >= 0 && encoded[i] == '.') | |
922 | *len = i; | |
923 | else if (i >= 0 && encoded[i] == '$') | |
924 | *len = i; | |
925 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
926 | *len = i - 2; | |
927 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
928 | *len = i - 1; | |
929 | } | |
930 | } | |
931 | ||
932 | /* Remove the suffix introduced by the compiler for protected object | |
933 | subprograms. */ | |
934 | ||
935 | static void | |
936 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
937 | { | |
938 | /* Remove trailing N. */ | |
939 | ||
940 | /* Protected entry subprograms are broken into two | |
941 | separate subprograms: The first one is unprotected, and has | |
942 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 943 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
944 | the protection. Since the P subprograms are internally generated, |
945 | we leave these names undecoded, giving the user a clue that this | |
946 | entity is internal. */ | |
947 | ||
948 | if (*len > 1 | |
949 | && encoded[*len - 1] == 'N' | |
950 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
951 | *len = *len - 1; | |
952 | } | |
953 | ||
69fadcdf JB |
954 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
955 | ||
956 | static void | |
957 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
958 | { | |
959 | int i = *len - 1; | |
960 | ||
961 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
962 | i--; | |
963 | ||
964 | if (encoded[i] != 'X') | |
965 | return; | |
966 | ||
967 | if (i == 0) | |
968 | return; | |
969 | ||
970 | if (isalnum (encoded[i-1])) | |
971 | *len = i; | |
972 | } | |
973 | ||
29480c32 JB |
974 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
975 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
976 | replaced by ENCODED. | |
14f9c5c9 | 977 | |
4c4b4cd2 | 978 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 979 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
980 | is returned. */ |
981 | ||
982 | const char * | |
983 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
984 | { |
985 | int i, j; | |
986 | int len0; | |
d2e4a39e | 987 | const char *p; |
4c4b4cd2 | 988 | char *decoded; |
14f9c5c9 | 989 | int at_start_name; |
4c4b4cd2 PH |
990 | static char *decoding_buffer = NULL; |
991 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 992 | |
29480c32 JB |
993 | /* The name of the Ada main procedure starts with "_ada_". |
994 | This prefix is not part of the decoded name, so skip this part | |
995 | if we see this prefix. */ | |
4c4b4cd2 PH |
996 | if (strncmp (encoded, "_ada_", 5) == 0) |
997 | encoded += 5; | |
14f9c5c9 | 998 | |
29480c32 JB |
999 | /* If the name starts with '_', then it is not a properly encoded |
1000 | name, so do not attempt to decode it. Similarly, if the name | |
1001 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1002 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1003 | goto Suppress; |
1004 | ||
4c4b4cd2 | 1005 | len0 = strlen (encoded); |
4c4b4cd2 | 1006 | |
29480c32 JB |
1007 | ada_remove_trailing_digits (encoded, &len0); |
1008 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1009 | |
4c4b4cd2 PH |
1010 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1011 | the suffix is located before the current "end" of ENCODED. We want | |
1012 | to avoid re-matching parts of ENCODED that have previously been | |
1013 | marked as discarded (by decrementing LEN0). */ | |
1014 | p = strstr (encoded, "___"); | |
1015 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1016 | { |
1017 | if (p[3] == 'X') | |
4c4b4cd2 | 1018 | len0 = p - encoded; |
14f9c5c9 | 1019 | else |
4c4b4cd2 | 1020 | goto Suppress; |
14f9c5c9 | 1021 | } |
4c4b4cd2 | 1022 | |
29480c32 JB |
1023 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1024 | is for the body of a task, but that information does not actually | |
1025 | appear in the decoded name. */ | |
1026 | ||
4c4b4cd2 | 1027 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 1028 | len0 -= 3; |
76a01679 | 1029 | |
a10967fa JB |
1030 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1031 | from the TKB suffix because it is used for non-anonymous task | |
1032 | bodies. */ | |
1033 | ||
1034 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
1035 | len0 -= 2; | |
1036 | ||
29480c32 JB |
1037 | /* Remove trailing "B" suffixes. */ |
1038 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1039 | ||
4c4b4cd2 | 1040 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
1041 | len0 -= 1; |
1042 | ||
4c4b4cd2 | 1043 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1044 | |
4c4b4cd2 PH |
1045 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1046 | decoded = decoding_buffer; | |
14f9c5c9 | 1047 | |
29480c32 JB |
1048 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1049 | ||
4c4b4cd2 | 1050 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1051 | { |
4c4b4cd2 PH |
1052 | i = len0 - 2; |
1053 | while ((i >= 0 && isdigit (encoded[i])) | |
1054 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1055 | i -= 1; | |
1056 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1057 | len0 = i - 1; | |
1058 | else if (encoded[i] == '$') | |
1059 | len0 = i; | |
d2e4a39e | 1060 | } |
14f9c5c9 | 1061 | |
29480c32 JB |
1062 | /* The first few characters that are not alphabetic are not part |
1063 | of any encoding we use, so we can copy them over verbatim. */ | |
1064 | ||
4c4b4cd2 PH |
1065 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1066 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1067 | |
1068 | at_start_name = 1; | |
1069 | while (i < len0) | |
1070 | { | |
29480c32 | 1071 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1072 | if (at_start_name && encoded[i] == 'O') |
1073 | { | |
1074 | int k; | |
5b4ee69b | 1075 | |
4c4b4cd2 PH |
1076 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1077 | { | |
1078 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1079 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1080 | op_len - 1) == 0) | |
1081 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1082 | { |
1083 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1084 | at_start_name = 0; | |
1085 | i += op_len; | |
1086 | j += strlen (ada_opname_table[k].decoded); | |
1087 | break; | |
1088 | } | |
1089 | } | |
1090 | if (ada_opname_table[k].encoded != NULL) | |
1091 | continue; | |
1092 | } | |
14f9c5c9 AS |
1093 | at_start_name = 0; |
1094 | ||
529cad9c PH |
1095 | /* Replace "TK__" with "__", which will eventually be translated |
1096 | into "." (just below). */ | |
1097 | ||
4c4b4cd2 PH |
1098 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1099 | i += 2; | |
529cad9c | 1100 | |
29480c32 JB |
1101 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1102 | be translated into "." (just below). These are internal names | |
1103 | generated for anonymous blocks inside which our symbol is nested. */ | |
1104 | ||
1105 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1106 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1107 | && isdigit (encoded [i+4])) | |
1108 | { | |
1109 | int k = i + 5; | |
1110 | ||
1111 | while (k < len0 && isdigit (encoded[k])) | |
1112 | k++; /* Skip any extra digit. */ | |
1113 | ||
1114 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1115 | is indeed followed by "__". */ | |
1116 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1117 | i = k; | |
1118 | } | |
1119 | ||
529cad9c PH |
1120 | /* Remove _E{DIGITS}+[sb] */ |
1121 | ||
1122 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1123 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1124 | one implements the actual entry code, and has a suffix following |
1125 | the convention above; the second one implements the barrier and | |
1126 | uses the same convention as above, except that the 'E' is replaced | |
1127 | by a 'B'. | |
1128 | ||
1129 | Just as above, we do not decode the name of barrier functions | |
1130 | to give the user a clue that the code he is debugging has been | |
1131 | internally generated. */ | |
1132 | ||
1133 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1134 | && isdigit (encoded[i+2])) | |
1135 | { | |
1136 | int k = i + 3; | |
1137 | ||
1138 | while (k < len0 && isdigit (encoded[k])) | |
1139 | k++; | |
1140 | ||
1141 | if (k < len0 | |
1142 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1143 | { | |
1144 | k++; | |
1145 | /* Just as an extra precaution, make sure that if this | |
1146 | suffix is followed by anything else, it is a '_'. | |
1147 | Otherwise, we matched this sequence by accident. */ | |
1148 | if (k == len0 | |
1149 | || (k < len0 && encoded[k] == '_')) | |
1150 | i = k; | |
1151 | } | |
1152 | } | |
1153 | ||
1154 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1155 | the GNAT front-end in protected object subprograms. */ | |
1156 | ||
1157 | if (i < len0 + 3 | |
1158 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1159 | { | |
1160 | /* Backtrack a bit up until we reach either the begining of | |
1161 | the encoded name, or "__". Make sure that we only find | |
1162 | digits or lowercase characters. */ | |
1163 | const char *ptr = encoded + i - 1; | |
1164 | ||
1165 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1166 | ptr--; | |
1167 | if (ptr < encoded | |
1168 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1169 | i++; | |
1170 | } | |
1171 | ||
4c4b4cd2 PH |
1172 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1173 | { | |
29480c32 JB |
1174 | /* This is a X[bn]* sequence not separated from the previous |
1175 | part of the name with a non-alpha-numeric character (in other | |
1176 | words, immediately following an alpha-numeric character), then | |
1177 | verify that it is placed at the end of the encoded name. If | |
1178 | not, then the encoding is not valid and we should abort the | |
1179 | decoding. Otherwise, just skip it, it is used in body-nested | |
1180 | package names. */ | |
4c4b4cd2 PH |
1181 | do |
1182 | i += 1; | |
1183 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1184 | if (i < len0) | |
1185 | goto Suppress; | |
1186 | } | |
cdc7bb92 | 1187 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1188 | { |
29480c32 | 1189 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1190 | decoded[j] = '.'; |
1191 | at_start_name = 1; | |
1192 | i += 2; | |
1193 | j += 1; | |
1194 | } | |
14f9c5c9 | 1195 | else |
4c4b4cd2 | 1196 | { |
29480c32 JB |
1197 | /* It's a character part of the decoded name, so just copy it |
1198 | over. */ | |
4c4b4cd2 PH |
1199 | decoded[j] = encoded[i]; |
1200 | i += 1; | |
1201 | j += 1; | |
1202 | } | |
14f9c5c9 | 1203 | } |
4c4b4cd2 | 1204 | decoded[j] = '\000'; |
14f9c5c9 | 1205 | |
29480c32 JB |
1206 | /* Decoded names should never contain any uppercase character. |
1207 | Double-check this, and abort the decoding if we find one. */ | |
1208 | ||
4c4b4cd2 PH |
1209 | for (i = 0; decoded[i] != '\0'; i += 1) |
1210 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1211 | goto Suppress; |
1212 | ||
4c4b4cd2 PH |
1213 | if (strcmp (decoded, encoded) == 0) |
1214 | return encoded; | |
1215 | else | |
1216 | return decoded; | |
14f9c5c9 AS |
1217 | |
1218 | Suppress: | |
4c4b4cd2 PH |
1219 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1220 | decoded = decoding_buffer; | |
1221 | if (encoded[0] == '<') | |
1222 | strcpy (decoded, encoded); | |
14f9c5c9 | 1223 | else |
88c15c34 | 1224 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1225 | return decoded; |
1226 | ||
1227 | } | |
1228 | ||
1229 | /* Table for keeping permanent unique copies of decoded names. Once | |
1230 | allocated, names in this table are never released. While this is a | |
1231 | storage leak, it should not be significant unless there are massive | |
1232 | changes in the set of decoded names in successive versions of a | |
1233 | symbol table loaded during a single session. */ | |
1234 | static struct htab *decoded_names_store; | |
1235 | ||
1236 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1237 | in the language-specific part of GSYMBOL, if it has not been | |
1238 | previously computed. Tries to save the decoded name in the same | |
1239 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1240 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1241 | GSYMBOL). |
4c4b4cd2 PH |
1242 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1243 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1244 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1245 | |
76a01679 JB |
1246 | char * |
1247 | ada_decode_symbol (const struct general_symbol_info *gsymbol) | |
4c4b4cd2 | 1248 | { |
76a01679 | 1249 | char **resultp = |
afa16725 | 1250 | (char **) &gsymbol->language_specific.mangled_lang.demangled_name; |
5b4ee69b | 1251 | |
4c4b4cd2 PH |
1252 | if (*resultp == NULL) |
1253 | { | |
1254 | const char *decoded = ada_decode (gsymbol->name); | |
5b4ee69b | 1255 | |
714835d5 | 1256 | if (gsymbol->obj_section != NULL) |
76a01679 | 1257 | { |
714835d5 | 1258 | struct objfile *objf = gsymbol->obj_section->objfile; |
5b4ee69b | 1259 | |
714835d5 UW |
1260 | *resultp = obsavestring (decoded, strlen (decoded), |
1261 | &objf->objfile_obstack); | |
76a01679 | 1262 | } |
4c4b4cd2 | 1263 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1264 | case, we put the result on the heap. Since we only decode |
1265 | when needed, we hope this usually does not cause a | |
1266 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1267 | if (*resultp == NULL) |
76a01679 JB |
1268 | { |
1269 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1270 | decoded, INSERT); | |
5b4ee69b | 1271 | |
76a01679 JB |
1272 | if (*slot == NULL) |
1273 | *slot = xstrdup (decoded); | |
1274 | *resultp = *slot; | |
1275 | } | |
4c4b4cd2 | 1276 | } |
14f9c5c9 | 1277 | |
4c4b4cd2 PH |
1278 | return *resultp; |
1279 | } | |
76a01679 | 1280 | |
2c0b251b | 1281 | static char * |
76a01679 | 1282 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1283 | { |
1284 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1285 | } |
1286 | ||
1287 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1288 | suffixes that encode debugging information or leading _ada_ on |
1289 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1290 | information that is ignored). If WILD, then NAME need only match a | |
1291 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1292 | either argument is NULL. */ | |
14f9c5c9 | 1293 | |
2c0b251b | 1294 | static int |
40658b94 | 1295 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1296 | { |
1297 | if (sym_name == NULL || name == NULL) | |
1298 | return 0; | |
1299 | else if (wild) | |
73589123 | 1300 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1301 | else |
1302 | { | |
1303 | int len_name = strlen (name); | |
5b4ee69b | 1304 | |
4c4b4cd2 PH |
1305 | return (strncmp (sym_name, name, len_name) == 0 |
1306 | && is_name_suffix (sym_name + len_name)) | |
1307 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1308 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1309 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1310 | } |
14f9c5c9 | 1311 | } |
14f9c5c9 | 1312 | \f |
d2e4a39e | 1313 | |
4c4b4cd2 | 1314 | /* Arrays */ |
14f9c5c9 | 1315 | |
28c85d6c JB |
1316 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1317 | generated by the GNAT compiler to describe the index type used | |
1318 | for each dimension of an array, check whether it follows the latest | |
1319 | known encoding. If not, fix it up to conform to the latest encoding. | |
1320 | Otherwise, do nothing. This function also does nothing if | |
1321 | INDEX_DESC_TYPE is NULL. | |
1322 | ||
1323 | The GNAT encoding used to describle the array index type evolved a bit. | |
1324 | Initially, the information would be provided through the name of each | |
1325 | field of the structure type only, while the type of these fields was | |
1326 | described as unspecified and irrelevant. The debugger was then expected | |
1327 | to perform a global type lookup using the name of that field in order | |
1328 | to get access to the full index type description. Because these global | |
1329 | lookups can be very expensive, the encoding was later enhanced to make | |
1330 | the global lookup unnecessary by defining the field type as being | |
1331 | the full index type description. | |
1332 | ||
1333 | The purpose of this routine is to allow us to support older versions | |
1334 | of the compiler by detecting the use of the older encoding, and by | |
1335 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1336 | we essentially replace each field's meaningless type by the associated | |
1337 | index subtype). */ | |
1338 | ||
1339 | void | |
1340 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1341 | { | |
1342 | int i; | |
1343 | ||
1344 | if (index_desc_type == NULL) | |
1345 | return; | |
1346 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1347 | ||
1348 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1349 | to check one field only, no need to check them all). If not, return | |
1350 | now. | |
1351 | ||
1352 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1353 | the field type should be a meaningless integer type whose name | |
1354 | is not equal to the field name. */ | |
1355 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1356 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1357 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1358 | return; | |
1359 | ||
1360 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1361 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1362 | { | |
1363 | char *name = TYPE_FIELD_NAME (index_desc_type, i); | |
1364 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); | |
1365 | ||
1366 | if (raw_type) | |
1367 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1368 | } | |
1369 | } | |
1370 | ||
4c4b4cd2 | 1371 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1372 | |
d2e4a39e AS |
1373 | static char *bound_name[] = { |
1374 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1375 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1376 | }; | |
1377 | ||
1378 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1379 | ||
4c4b4cd2 | 1380 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1381 | |
14f9c5c9 | 1382 | |
4c4b4cd2 PH |
1383 | /* The desc_* routines return primitive portions of array descriptors |
1384 | (fat pointers). */ | |
14f9c5c9 AS |
1385 | |
1386 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1387 | level of indirection, if needed. */ |
1388 | ||
d2e4a39e AS |
1389 | static struct type * |
1390 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1391 | { |
1392 | if (type == NULL) | |
1393 | return NULL; | |
61ee279c | 1394 | type = ada_check_typedef (type); |
720d1a40 JB |
1395 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1396 | type = ada_typedef_target_type (type); | |
1397 | ||
1265e4aa JB |
1398 | if (type != NULL |
1399 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1400 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1401 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1402 | else |
1403 | return type; | |
1404 | } | |
1405 | ||
4c4b4cd2 PH |
1406 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1407 | ||
14f9c5c9 | 1408 | static int |
d2e4a39e | 1409 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1410 | { |
d2e4a39e | 1411 | return |
14f9c5c9 AS |
1412 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1413 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1414 | } | |
1415 | ||
4c4b4cd2 PH |
1416 | /* The descriptor type for thin pointer type TYPE. */ |
1417 | ||
d2e4a39e AS |
1418 | static struct type * |
1419 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1420 | { |
d2e4a39e | 1421 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1422 | |
14f9c5c9 AS |
1423 | if (base_type == NULL) |
1424 | return NULL; | |
1425 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1426 | return base_type; | |
d2e4a39e | 1427 | else |
14f9c5c9 | 1428 | { |
d2e4a39e | 1429 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1430 | |
14f9c5c9 | 1431 | if (alt_type == NULL) |
4c4b4cd2 | 1432 | return base_type; |
14f9c5c9 | 1433 | else |
4c4b4cd2 | 1434 | return alt_type; |
14f9c5c9 AS |
1435 | } |
1436 | } | |
1437 | ||
4c4b4cd2 PH |
1438 | /* A pointer to the array data for thin-pointer value VAL. */ |
1439 | ||
d2e4a39e AS |
1440 | static struct value * |
1441 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1442 | { |
df407dfe | 1443 | struct type *type = value_type (val); |
556bdfd4 | 1444 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1445 | |
556bdfd4 UW |
1446 | data_type = lookup_pointer_type (data_type); |
1447 | ||
14f9c5c9 | 1448 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1449 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1450 | else |
42ae5230 | 1451 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1452 | } |
1453 | ||
4c4b4cd2 PH |
1454 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1455 | ||
14f9c5c9 | 1456 | static int |
d2e4a39e | 1457 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1458 | { |
1459 | type = desc_base_type (type); | |
1460 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1461 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1462 | } |
1463 | ||
4c4b4cd2 PH |
1464 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1465 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1466 | |
d2e4a39e AS |
1467 | static struct type * |
1468 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1469 | { |
d2e4a39e | 1470 | struct type *r; |
14f9c5c9 AS |
1471 | |
1472 | type = desc_base_type (type); | |
1473 | ||
1474 | if (type == NULL) | |
1475 | return NULL; | |
1476 | else if (is_thin_pntr (type)) | |
1477 | { | |
1478 | type = thin_descriptor_type (type); | |
1479 | if (type == NULL) | |
4c4b4cd2 | 1480 | return NULL; |
14f9c5c9 AS |
1481 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1482 | if (r != NULL) | |
61ee279c | 1483 | return ada_check_typedef (r); |
14f9c5c9 AS |
1484 | } |
1485 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1486 | { | |
1487 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1488 | if (r != NULL) | |
61ee279c | 1489 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1490 | } |
1491 | return NULL; | |
1492 | } | |
1493 | ||
1494 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1495 | one, a pointer to its bounds data. Otherwise NULL. */ |
1496 | ||
d2e4a39e AS |
1497 | static struct value * |
1498 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1499 | { |
df407dfe | 1500 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1501 | |
d2e4a39e | 1502 | if (is_thin_pntr (type)) |
14f9c5c9 | 1503 | { |
d2e4a39e | 1504 | struct type *bounds_type = |
4c4b4cd2 | 1505 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1506 | LONGEST addr; |
1507 | ||
4cdfadb1 | 1508 | if (bounds_type == NULL) |
323e0a4a | 1509 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1510 | |
1511 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1512 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1513 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1514 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1515 | addr = value_as_long (arr); |
d2e4a39e | 1516 | else |
42ae5230 | 1517 | addr = value_address (arr); |
14f9c5c9 | 1518 | |
d2e4a39e | 1519 | return |
4c4b4cd2 PH |
1520 | value_from_longest (lookup_pointer_type (bounds_type), |
1521 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1522 | } |
1523 | ||
1524 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1525 | { |
1526 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1527 | _("Bad GNAT array descriptor")); | |
1528 | struct type *p_bounds_type = value_type (p_bounds); | |
1529 | ||
1530 | if (p_bounds_type | |
1531 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1532 | { | |
1533 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1534 | ||
1535 | if (TYPE_STUB (target_type)) | |
1536 | p_bounds = value_cast (lookup_pointer_type | |
1537 | (ada_check_typedef (target_type)), | |
1538 | p_bounds); | |
1539 | } | |
1540 | else | |
1541 | error (_("Bad GNAT array descriptor")); | |
1542 | ||
1543 | return p_bounds; | |
1544 | } | |
14f9c5c9 AS |
1545 | else |
1546 | return NULL; | |
1547 | } | |
1548 | ||
4c4b4cd2 PH |
1549 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1550 | position of the field containing the address of the bounds data. */ | |
1551 | ||
14f9c5c9 | 1552 | static int |
d2e4a39e | 1553 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1554 | { |
1555 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1556 | } | |
1557 | ||
1558 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1559 | size of the field containing the address of the bounds data. */ |
1560 | ||
14f9c5c9 | 1561 | static int |
d2e4a39e | 1562 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1563 | { |
1564 | type = desc_base_type (type); | |
1565 | ||
d2e4a39e | 1566 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1567 | return TYPE_FIELD_BITSIZE (type, 1); |
1568 | else | |
61ee279c | 1569 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1570 | } |
1571 | ||
4c4b4cd2 | 1572 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1573 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1574 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1575 | data. */ | |
4c4b4cd2 | 1576 | |
d2e4a39e | 1577 | static struct type * |
556bdfd4 | 1578 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1579 | { |
1580 | type = desc_base_type (type); | |
1581 | ||
4c4b4cd2 | 1582 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1583 | if (is_thin_pntr (type)) |
556bdfd4 | 1584 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1585 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1586 | { |
1587 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1588 | ||
1589 | if (data_type | |
1590 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1591 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1592 | } |
1593 | ||
1594 | return NULL; | |
14f9c5c9 AS |
1595 | } |
1596 | ||
1597 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1598 | its array data. */ | |
4c4b4cd2 | 1599 | |
d2e4a39e AS |
1600 | static struct value * |
1601 | desc_data (struct value *arr) | |
14f9c5c9 | 1602 | { |
df407dfe | 1603 | struct type *type = value_type (arr); |
5b4ee69b | 1604 | |
14f9c5c9 AS |
1605 | if (is_thin_pntr (type)) |
1606 | return thin_data_pntr (arr); | |
1607 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1608 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1609 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1610 | else |
1611 | return NULL; | |
1612 | } | |
1613 | ||
1614 | ||
1615 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1616 | position of the field containing the address of the data. */ |
1617 | ||
14f9c5c9 | 1618 | static int |
d2e4a39e | 1619 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1620 | { |
1621 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1622 | } | |
1623 | ||
1624 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1625 | size of the field containing the address of the data. */ |
1626 | ||
14f9c5c9 | 1627 | static int |
d2e4a39e | 1628 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1629 | { |
1630 | type = desc_base_type (type); | |
1631 | ||
1632 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1633 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1634 | else |
14f9c5c9 AS |
1635 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1636 | } | |
1637 | ||
4c4b4cd2 | 1638 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1639 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1640 | bound, if WHICH is 1. The first bound is I=1. */ |
1641 | ||
d2e4a39e AS |
1642 | static struct value * |
1643 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1644 | { |
d2e4a39e | 1645 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1646 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1647 | } |
1648 | ||
1649 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1650 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1651 | bound, if WHICH is 1. The first bound is I=1. */ |
1652 | ||
14f9c5c9 | 1653 | static int |
d2e4a39e | 1654 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1655 | { |
d2e4a39e | 1656 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1657 | } |
1658 | ||
1659 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1660 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1661 | bound, if WHICH is 1. The first bound is I=1. */ |
1662 | ||
76a01679 | 1663 | static int |
d2e4a39e | 1664 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1665 | { |
1666 | type = desc_base_type (type); | |
1667 | ||
d2e4a39e AS |
1668 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1669 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1670 | else | |
1671 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1672 | } |
1673 | ||
1674 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1675 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1676 | ||
d2e4a39e AS |
1677 | static struct type * |
1678 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1679 | { |
1680 | type = desc_base_type (type); | |
1681 | ||
1682 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1683 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1684 | else | |
14f9c5c9 AS |
1685 | return NULL; |
1686 | } | |
1687 | ||
4c4b4cd2 PH |
1688 | /* The number of index positions in the array-bounds type TYPE. |
1689 | Return 0 if TYPE is NULL. */ | |
1690 | ||
14f9c5c9 | 1691 | static int |
d2e4a39e | 1692 | desc_arity (struct type *type) |
14f9c5c9 AS |
1693 | { |
1694 | type = desc_base_type (type); | |
1695 | ||
1696 | if (type != NULL) | |
1697 | return TYPE_NFIELDS (type) / 2; | |
1698 | return 0; | |
1699 | } | |
1700 | ||
4c4b4cd2 PH |
1701 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1702 | an array descriptor type (representing an unconstrained array | |
1703 | type). */ | |
1704 | ||
76a01679 JB |
1705 | static int |
1706 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1707 | { |
1708 | if (type == NULL) | |
1709 | return 0; | |
61ee279c | 1710 | type = ada_check_typedef (type); |
4c4b4cd2 | 1711 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1712 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1713 | } |
1714 | ||
52ce6436 | 1715 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1716 | * to one. */ |
52ce6436 | 1717 | |
2c0b251b | 1718 | static int |
52ce6436 PH |
1719 | ada_is_array_type (struct type *type) |
1720 | { | |
1721 | while (type != NULL | |
1722 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1723 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1724 | type = TYPE_TARGET_TYPE (type); | |
1725 | return ada_is_direct_array_type (type); | |
1726 | } | |
1727 | ||
4c4b4cd2 | 1728 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1729 | |
14f9c5c9 | 1730 | int |
4c4b4cd2 | 1731 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1732 | { |
1733 | if (type == NULL) | |
1734 | return 0; | |
61ee279c | 1735 | type = ada_check_typedef (type); |
14f9c5c9 | 1736 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1737 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1738 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1739 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1740 | } |
1741 | ||
4c4b4cd2 PH |
1742 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1743 | ||
14f9c5c9 | 1744 | int |
4c4b4cd2 | 1745 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1746 | { |
556bdfd4 | 1747 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1748 | |
1749 | if (type == NULL) | |
1750 | return 0; | |
61ee279c | 1751 | type = ada_check_typedef (type); |
556bdfd4 UW |
1752 | return (data_type != NULL |
1753 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1754 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1755 | } |
1756 | ||
1757 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1758 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1759 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1760 | is still needed. */ |
1761 | ||
14f9c5c9 | 1762 | int |
ebf56fd3 | 1763 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1764 | { |
d2e4a39e | 1765 | return |
14f9c5c9 AS |
1766 | type != NULL |
1767 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1768 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1769 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1770 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1771 | } |
1772 | ||
1773 | ||
4c4b4cd2 | 1774 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1775 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1776 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1777 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1778 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1779 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1780 | a descriptor. */ |
d2e4a39e AS |
1781 | struct type * |
1782 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1783 | { |
ad82864c JB |
1784 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1785 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1786 | |
df407dfe AC |
1787 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1788 | return value_type (arr); | |
d2e4a39e AS |
1789 | |
1790 | if (!bounds) | |
ad82864c JB |
1791 | { |
1792 | struct type *array_type = | |
1793 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1794 | ||
1795 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1796 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1797 | decode_packed_array_bitsize (value_type (arr)); | |
1798 | ||
1799 | return array_type; | |
1800 | } | |
14f9c5c9 AS |
1801 | else |
1802 | { | |
d2e4a39e | 1803 | struct type *elt_type; |
14f9c5c9 | 1804 | int arity; |
d2e4a39e | 1805 | struct value *descriptor; |
14f9c5c9 | 1806 | |
df407dfe AC |
1807 | elt_type = ada_array_element_type (value_type (arr), -1); |
1808 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1809 | |
d2e4a39e | 1810 | if (elt_type == NULL || arity == 0) |
df407dfe | 1811 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1812 | |
1813 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1814 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1815 | return NULL; |
d2e4a39e | 1816 | while (arity > 0) |
4c4b4cd2 | 1817 | { |
e9bb382b UW |
1818 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1819 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1820 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1821 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1822 | |
5b4ee69b | 1823 | arity -= 1; |
df407dfe | 1824 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1825 | longest_to_int (value_as_long (low)), |
1826 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1827 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1828 | |
1829 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1830 | { |
1831 | /* We need to store the element packed bitsize, as well as | |
1832 | recompute the array size, because it was previously | |
1833 | computed based on the unpacked element size. */ | |
1834 | LONGEST lo = value_as_long (low); | |
1835 | LONGEST hi = value_as_long (high); | |
1836 | ||
1837 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1838 | decode_packed_array_bitsize (value_type (arr)); | |
1839 | /* If the array has no element, then the size is already | |
1840 | zero, and does not need to be recomputed. */ | |
1841 | if (lo < hi) | |
1842 | { | |
1843 | int array_bitsize = | |
1844 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
1845 | ||
1846 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
1847 | } | |
1848 | } | |
4c4b4cd2 | 1849 | } |
14f9c5c9 AS |
1850 | |
1851 | return lookup_pointer_type (elt_type); | |
1852 | } | |
1853 | } | |
1854 | ||
1855 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1856 | Otherwise, returns either a standard GDB array with bounds set |
1857 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1858 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1859 | ||
d2e4a39e AS |
1860 | struct value * |
1861 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1862 | { |
df407dfe | 1863 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1864 | { |
d2e4a39e | 1865 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 1866 | |
14f9c5c9 | 1867 | if (arrType == NULL) |
4c4b4cd2 | 1868 | return NULL; |
14f9c5c9 AS |
1869 | return value_cast (arrType, value_copy (desc_data (arr))); |
1870 | } | |
ad82864c JB |
1871 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1872 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
1873 | else |
1874 | return arr; | |
1875 | } | |
1876 | ||
1877 | /* If ARR does not represent an array, returns ARR unchanged. | |
1878 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1879 | be ARR itself if it already is in the proper form). */ |
1880 | ||
720d1a40 | 1881 | struct value * |
d2e4a39e | 1882 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1883 | { |
df407dfe | 1884 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1885 | { |
d2e4a39e | 1886 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 1887 | |
14f9c5c9 | 1888 | if (arrVal == NULL) |
323e0a4a | 1889 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1890 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1891 | return value_ind (arrVal); |
1892 | } | |
ad82864c JB |
1893 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1894 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 1895 | else |
14f9c5c9 AS |
1896 | return arr; |
1897 | } | |
1898 | ||
1899 | /* If TYPE represents a GNAT array type, return it translated to an | |
1900 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1901 | packing). For other types, is the identity. */ |
1902 | ||
d2e4a39e AS |
1903 | struct type * |
1904 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1905 | { |
ad82864c JB |
1906 | if (ada_is_constrained_packed_array_type (type)) |
1907 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
1908 | |
1909 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1910 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1911 | |
1912 | return type; | |
14f9c5c9 AS |
1913 | } |
1914 | ||
4c4b4cd2 PH |
1915 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1916 | ||
ad82864c JB |
1917 | static int |
1918 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
1919 | { |
1920 | if (type == NULL) | |
1921 | return 0; | |
4c4b4cd2 | 1922 | type = desc_base_type (type); |
61ee279c | 1923 | type = ada_check_typedef (type); |
d2e4a39e | 1924 | return |
14f9c5c9 AS |
1925 | ada_type_name (type) != NULL |
1926 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1927 | } | |
1928 | ||
ad82864c JB |
1929 | /* Non-zero iff TYPE represents a standard GNAT constrained |
1930 | packed-array type. */ | |
1931 | ||
1932 | int | |
1933 | ada_is_constrained_packed_array_type (struct type *type) | |
1934 | { | |
1935 | return ada_is_packed_array_type (type) | |
1936 | && !ada_is_array_descriptor_type (type); | |
1937 | } | |
1938 | ||
1939 | /* Non-zero iff TYPE represents an array descriptor for a | |
1940 | unconstrained packed-array type. */ | |
1941 | ||
1942 | static int | |
1943 | ada_is_unconstrained_packed_array_type (struct type *type) | |
1944 | { | |
1945 | return ada_is_packed_array_type (type) | |
1946 | && ada_is_array_descriptor_type (type); | |
1947 | } | |
1948 | ||
1949 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
1950 | return the size of its elements in bits. */ | |
1951 | ||
1952 | static long | |
1953 | decode_packed_array_bitsize (struct type *type) | |
1954 | { | |
720d1a40 | 1955 | char *raw_name; |
ad82864c JB |
1956 | char *tail; |
1957 | long bits; | |
1958 | ||
720d1a40 JB |
1959 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
1960 | of the fat pointer type. We need the name of the fat pointer type | |
1961 | to do the decoding, so strip the typedef layer. */ | |
1962 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
1963 | type = ada_typedef_target_type (type); | |
1964 | ||
1965 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
1966 | if (!raw_name) |
1967 | raw_name = ada_type_name (desc_base_type (type)); | |
1968 | ||
1969 | if (!raw_name) | |
1970 | return 0; | |
1971 | ||
1972 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 1973 | gdb_assert (tail != NULL); |
ad82864c JB |
1974 | |
1975 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
1976 | { | |
1977 | lim_warning | |
1978 | (_("could not understand bit size information on packed array")); | |
1979 | return 0; | |
1980 | } | |
1981 | ||
1982 | return bits; | |
1983 | } | |
1984 | ||
14f9c5c9 AS |
1985 | /* Given that TYPE is a standard GDB array type with all bounds filled |
1986 | in, and that the element size of its ultimate scalar constituents | |
1987 | (that is, either its elements, or, if it is an array of arrays, its | |
1988 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1989 | but with the bit sizes of its elements (and those of any | |
1990 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
1991 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
1992 | in bits. */ | |
1993 | ||
d2e4a39e | 1994 | static struct type * |
ad82864c | 1995 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 1996 | { |
d2e4a39e AS |
1997 | struct type *new_elt_type; |
1998 | struct type *new_type; | |
14f9c5c9 AS |
1999 | LONGEST low_bound, high_bound; |
2000 | ||
61ee279c | 2001 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2002 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2003 | return type; | |
2004 | ||
e9bb382b | 2005 | new_type = alloc_type_copy (type); |
ad82864c JB |
2006 | new_elt_type = |
2007 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2008 | elt_bits); | |
262452ec | 2009 | create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type)); |
14f9c5c9 AS |
2010 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2011 | TYPE_NAME (new_type) = ada_type_name (type); | |
2012 | ||
262452ec | 2013 | if (get_discrete_bounds (TYPE_INDEX_TYPE (type), |
4c4b4cd2 | 2014 | &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
2015 | low_bound = high_bound = 0; |
2016 | if (high_bound < low_bound) | |
2017 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2018 | else |
14f9c5c9 AS |
2019 | { |
2020 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2021 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2022 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2023 | } |
2024 | ||
876cecd0 | 2025 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2026 | return new_type; |
2027 | } | |
2028 | ||
ad82864c JB |
2029 | /* The array type encoded by TYPE, where |
2030 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2031 | |
d2e4a39e | 2032 | static struct type * |
ad82864c | 2033 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2034 | { |
727e3d2e JB |
2035 | char *raw_name = ada_type_name (ada_check_typedef (type)); |
2036 | char *name; | |
2037 | char *tail; | |
d2e4a39e | 2038 | struct type *shadow_type; |
14f9c5c9 | 2039 | long bits; |
14f9c5c9 | 2040 | |
727e3d2e JB |
2041 | if (!raw_name) |
2042 | raw_name = ada_type_name (desc_base_type (type)); | |
2043 | ||
2044 | if (!raw_name) | |
2045 | return NULL; | |
2046 | ||
2047 | name = (char *) alloca (strlen (raw_name) + 1); | |
2048 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2049 | type = desc_base_type (type); |
2050 | ||
14f9c5c9 AS |
2051 | memcpy (name, raw_name, tail - raw_name); |
2052 | name[tail - raw_name] = '\000'; | |
2053 | ||
b4ba55a1 JB |
2054 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2055 | ||
2056 | if (shadow_type == NULL) | |
14f9c5c9 | 2057 | { |
323e0a4a | 2058 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2059 | return NULL; |
2060 | } | |
cb249c71 | 2061 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
2062 | |
2063 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2064 | { | |
0963b4bd MS |
2065 | lim_warning (_("could not understand bounds " |
2066 | "information on packed array")); | |
14f9c5c9 AS |
2067 | return NULL; |
2068 | } | |
d2e4a39e | 2069 | |
ad82864c JB |
2070 | bits = decode_packed_array_bitsize (type); |
2071 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2072 | } |
2073 | ||
ad82864c JB |
2074 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2075 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2076 | standard GDB array type except that the BITSIZEs of the array |
2077 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2078 | type length is set appropriately. */ |
14f9c5c9 | 2079 | |
d2e4a39e | 2080 | static struct value * |
ad82864c | 2081 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2082 | { |
4c4b4cd2 | 2083 | struct type *type; |
14f9c5c9 | 2084 | |
4c4b4cd2 | 2085 | arr = ada_coerce_ref (arr); |
284614f0 JB |
2086 | |
2087 | /* If our value is a pointer, then dererence it. Make sure that | |
2088 | this operation does not cause the target type to be fixed, as | |
2089 | this would indirectly cause this array to be decoded. The rest | |
2090 | of the routine assumes that the array hasn't been decoded yet, | |
2091 | so we use the basic "value_ind" routine to perform the dereferencing, | |
2092 | as opposed to using "ada_value_ind". */ | |
df407dfe | 2093 | if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR) |
284614f0 | 2094 | arr = value_ind (arr); |
4c4b4cd2 | 2095 | |
ad82864c | 2096 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2097 | if (type == NULL) |
2098 | { | |
323e0a4a | 2099 | error (_("can't unpack array")); |
14f9c5c9 AS |
2100 | return NULL; |
2101 | } | |
61ee279c | 2102 | |
50810684 | 2103 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2104 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2105 | { |
2106 | /* This is a (right-justified) modular type representing a packed | |
2107 | array with no wrapper. In order to interpret the value through | |
2108 | the (left-justified) packed array type we just built, we must | |
2109 | first left-justify it. */ | |
2110 | int bit_size, bit_pos; | |
2111 | ULONGEST mod; | |
2112 | ||
df407dfe | 2113 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2114 | bit_size = 0; |
2115 | while (mod > 0) | |
2116 | { | |
2117 | bit_size += 1; | |
2118 | mod >>= 1; | |
2119 | } | |
df407dfe | 2120 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2121 | arr = ada_value_primitive_packed_val (arr, NULL, |
2122 | bit_pos / HOST_CHAR_BIT, | |
2123 | bit_pos % HOST_CHAR_BIT, | |
2124 | bit_size, | |
2125 | type); | |
2126 | } | |
2127 | ||
4c4b4cd2 | 2128 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2129 | } |
2130 | ||
2131 | ||
2132 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2133 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2134 | |
d2e4a39e AS |
2135 | static struct value * |
2136 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2137 | { |
2138 | int i; | |
2139 | int bits, elt_off, bit_off; | |
2140 | long elt_total_bit_offset; | |
d2e4a39e AS |
2141 | struct type *elt_type; |
2142 | struct value *v; | |
14f9c5c9 AS |
2143 | |
2144 | bits = 0; | |
2145 | elt_total_bit_offset = 0; | |
df407dfe | 2146 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2147 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2148 | { |
d2e4a39e | 2149 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2150 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2151 | error | |
0963b4bd MS |
2152 | (_("attempt to do packed indexing of " |
2153 | "something other than a packed array")); | |
14f9c5c9 | 2154 | else |
4c4b4cd2 PH |
2155 | { |
2156 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2157 | LONGEST lowerbound, upperbound; | |
2158 | LONGEST idx; | |
2159 | ||
2160 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2161 | { | |
323e0a4a | 2162 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2163 | lowerbound = upperbound = 0; |
2164 | } | |
2165 | ||
3cb382c9 | 2166 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2167 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2168 | lim_warning (_("packed array index %ld out of bounds"), |
2169 | (long) idx); | |
4c4b4cd2 PH |
2170 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2171 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2172 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2173 | } |
14f9c5c9 AS |
2174 | } |
2175 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2176 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2177 | |
2178 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2179 | bits, elt_type); |
14f9c5c9 AS |
2180 | return v; |
2181 | } | |
2182 | ||
4c4b4cd2 | 2183 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2184 | |
2185 | static int | |
d2e4a39e | 2186 | has_negatives (struct type *type) |
14f9c5c9 | 2187 | { |
d2e4a39e AS |
2188 | switch (TYPE_CODE (type)) |
2189 | { | |
2190 | default: | |
2191 | return 0; | |
2192 | case TYPE_CODE_INT: | |
2193 | return !TYPE_UNSIGNED (type); | |
2194 | case TYPE_CODE_RANGE: | |
2195 | return TYPE_LOW_BOUND (type) < 0; | |
2196 | } | |
14f9c5c9 | 2197 | } |
d2e4a39e | 2198 | |
14f9c5c9 AS |
2199 | |
2200 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2201 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2202 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
0963b4bd | 2203 | assigning through the result will set the field fetched from. |
4c4b4cd2 PH |
2204 | VALADDR is ignored unless OBJ is NULL, in which case, |
2205 | VALADDR+OFFSET must address the start of storage containing the | |
2206 | packed value. The value returned in this case is never an lval. | |
2207 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2208 | |
d2e4a39e | 2209 | struct value * |
fc1a4b47 | 2210 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2211 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2212 | struct type *type) |
14f9c5c9 | 2213 | { |
d2e4a39e | 2214 | struct value *v; |
4c4b4cd2 PH |
2215 | int src, /* Index into the source area */ |
2216 | targ, /* Index into the target area */ | |
2217 | srcBitsLeft, /* Number of source bits left to move */ | |
2218 | nsrc, ntarg, /* Number of source and target bytes */ | |
2219 | unusedLS, /* Number of bits in next significant | |
2220 | byte of source that are unused */ | |
2221 | accumSize; /* Number of meaningful bits in accum */ | |
2222 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2223 | unsigned char *unpacked; |
4c4b4cd2 | 2224 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2225 | unsigned char sign; |
2226 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2227 | /* Transmit bytes from least to most significant; delta is the direction |
2228 | the indices move. */ | |
50810684 | 2229 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2230 | |
61ee279c | 2231 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2232 | |
2233 | if (obj == NULL) | |
2234 | { | |
2235 | v = allocate_value (type); | |
d2e4a39e | 2236 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2237 | } |
9214ee5f | 2238 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 AS |
2239 | { |
2240 | v = value_at (type, | |
42ae5230 | 2241 | value_address (obj) + offset); |
d2e4a39e | 2242 | bytes = (unsigned char *) alloca (len); |
42ae5230 | 2243 | read_memory (value_address (v), bytes, len); |
14f9c5c9 | 2244 | } |
d2e4a39e | 2245 | else |
14f9c5c9 AS |
2246 | { |
2247 | v = allocate_value (type); | |
0fd88904 | 2248 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2249 | } |
d2e4a39e AS |
2250 | |
2251 | if (obj != NULL) | |
14f9c5c9 | 2252 | { |
42ae5230 | 2253 | CORE_ADDR new_addr; |
5b4ee69b | 2254 | |
74bcbdf3 | 2255 | set_value_component_location (v, obj); |
42ae5230 | 2256 | new_addr = value_address (obj) + offset; |
9bbda503 AC |
2257 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2258 | set_value_bitsize (v, bit_size); | |
df407dfe | 2259 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2260 | { |
42ae5230 | 2261 | ++new_addr; |
9bbda503 | 2262 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2263 | } |
42ae5230 | 2264 | set_value_address (v, new_addr); |
14f9c5c9 AS |
2265 | } |
2266 | else | |
9bbda503 | 2267 | set_value_bitsize (v, bit_size); |
0fd88904 | 2268 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2269 | |
2270 | srcBitsLeft = bit_size; | |
2271 | nsrc = len; | |
2272 | ntarg = TYPE_LENGTH (type); | |
2273 | sign = 0; | |
2274 | if (bit_size == 0) | |
2275 | { | |
2276 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2277 | return v; | |
2278 | } | |
50810684 | 2279 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2280 | { |
d2e4a39e | 2281 | src = len - 1; |
1265e4aa JB |
2282 | if (has_negatives (type) |
2283 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2284 | sign = ~0; |
d2e4a39e AS |
2285 | |
2286 | unusedLS = | |
4c4b4cd2 PH |
2287 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2288 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2289 | |
2290 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2291 | { |
2292 | case TYPE_CODE_ARRAY: | |
2293 | case TYPE_CODE_UNION: | |
2294 | case TYPE_CODE_STRUCT: | |
2295 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2296 | accumSize = | |
2297 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2298 | /* ... And are placed at the beginning (most-significant) bytes | |
2299 | of the target. */ | |
529cad9c | 2300 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2301 | ntarg = targ + 1; |
4c4b4cd2 PH |
2302 | break; |
2303 | default: | |
2304 | accumSize = 0; | |
2305 | targ = TYPE_LENGTH (type) - 1; | |
2306 | break; | |
2307 | } | |
14f9c5c9 | 2308 | } |
d2e4a39e | 2309 | else |
14f9c5c9 AS |
2310 | { |
2311 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2312 | ||
2313 | src = targ = 0; | |
2314 | unusedLS = bit_offset; | |
2315 | accumSize = 0; | |
2316 | ||
d2e4a39e | 2317 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2318 | sign = ~0; |
14f9c5c9 | 2319 | } |
d2e4a39e | 2320 | |
14f9c5c9 AS |
2321 | accum = 0; |
2322 | while (nsrc > 0) | |
2323 | { | |
2324 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2325 | part of the value. */ |
d2e4a39e | 2326 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2327 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2328 | 1; | |
2329 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2330 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2331 | |
d2e4a39e | 2332 | accum |= |
4c4b4cd2 | 2333 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2334 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2335 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2336 | { |
2337 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2338 | accumSize -= HOST_CHAR_BIT; | |
2339 | accum >>= HOST_CHAR_BIT; | |
2340 | ntarg -= 1; | |
2341 | targ += delta; | |
2342 | } | |
14f9c5c9 AS |
2343 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2344 | unusedLS = 0; | |
2345 | nsrc -= 1; | |
2346 | src += delta; | |
2347 | } | |
2348 | while (ntarg > 0) | |
2349 | { | |
2350 | accum |= sign << accumSize; | |
2351 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2352 | accumSize -= HOST_CHAR_BIT; | |
2353 | accum >>= HOST_CHAR_BIT; | |
2354 | ntarg -= 1; | |
2355 | targ += delta; | |
2356 | } | |
2357 | ||
2358 | return v; | |
2359 | } | |
d2e4a39e | 2360 | |
14f9c5c9 AS |
2361 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2362 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2363 | not overlap. */ |
14f9c5c9 | 2364 | static void |
fc1a4b47 | 2365 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2366 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2367 | { |
2368 | unsigned int accum, mask; | |
2369 | int accum_bits, chunk_size; | |
2370 | ||
2371 | target += targ_offset / HOST_CHAR_BIT; | |
2372 | targ_offset %= HOST_CHAR_BIT; | |
2373 | source += src_offset / HOST_CHAR_BIT; | |
2374 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2375 | if (bits_big_endian_p) |
14f9c5c9 AS |
2376 | { |
2377 | accum = (unsigned char) *source; | |
2378 | source += 1; | |
2379 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2380 | ||
d2e4a39e | 2381 | while (n > 0) |
4c4b4cd2 PH |
2382 | { |
2383 | int unused_right; | |
5b4ee69b | 2384 | |
4c4b4cd2 PH |
2385 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2386 | accum_bits += HOST_CHAR_BIT; | |
2387 | source += 1; | |
2388 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2389 | if (chunk_size > n) | |
2390 | chunk_size = n; | |
2391 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2392 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2393 | *target = | |
2394 | (*target & ~mask) | |
2395 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2396 | n -= chunk_size; | |
2397 | accum_bits -= chunk_size; | |
2398 | target += 1; | |
2399 | targ_offset = 0; | |
2400 | } | |
14f9c5c9 AS |
2401 | } |
2402 | else | |
2403 | { | |
2404 | accum = (unsigned char) *source >> src_offset; | |
2405 | source += 1; | |
2406 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2407 | ||
d2e4a39e | 2408 | while (n > 0) |
4c4b4cd2 PH |
2409 | { |
2410 | accum = accum + ((unsigned char) *source << accum_bits); | |
2411 | accum_bits += HOST_CHAR_BIT; | |
2412 | source += 1; | |
2413 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2414 | if (chunk_size > n) | |
2415 | chunk_size = n; | |
2416 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2417 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2418 | n -= chunk_size; | |
2419 | accum_bits -= chunk_size; | |
2420 | accum >>= chunk_size; | |
2421 | target += 1; | |
2422 | targ_offset = 0; | |
2423 | } | |
14f9c5c9 AS |
2424 | } |
2425 | } | |
2426 | ||
14f9c5c9 AS |
2427 | /* Store the contents of FROMVAL into the location of TOVAL. |
2428 | Return a new value with the location of TOVAL and contents of | |
2429 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2430 | floating-point or non-scalar types. */ |
14f9c5c9 | 2431 | |
d2e4a39e AS |
2432 | static struct value * |
2433 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2434 | { |
df407dfe AC |
2435 | struct type *type = value_type (toval); |
2436 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2437 | |
52ce6436 PH |
2438 | toval = ada_coerce_ref (toval); |
2439 | fromval = ada_coerce_ref (fromval); | |
2440 | ||
2441 | if (ada_is_direct_array_type (value_type (toval))) | |
2442 | toval = ada_coerce_to_simple_array (toval); | |
2443 | if (ada_is_direct_array_type (value_type (fromval))) | |
2444 | fromval = ada_coerce_to_simple_array (fromval); | |
2445 | ||
88e3b34b | 2446 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2447 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2448 | |
d2e4a39e | 2449 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2450 | && bits > 0 |
d2e4a39e | 2451 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2452 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2453 | { |
df407dfe AC |
2454 | int len = (value_bitpos (toval) |
2455 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2456 | int from_size; |
d2e4a39e AS |
2457 | char *buffer = (char *) alloca (len); |
2458 | struct value *val; | |
42ae5230 | 2459 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2460 | |
2461 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2462 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2463 | |
52ce6436 | 2464 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2465 | from_size = value_bitsize (fromval); |
2466 | if (from_size == 0) | |
2467 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2468 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2469 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2470 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2471 | else |
50810684 UW |
2472 | move_bits (buffer, value_bitpos (toval), |
2473 | value_contents (fromval), 0, bits, 0); | |
52ce6436 | 2474 | write_memory (to_addr, buffer, len); |
8cebebb9 PP |
2475 | observer_notify_memory_changed (to_addr, len, buffer); |
2476 | ||
14f9c5c9 | 2477 | val = value_copy (toval); |
0fd88904 | 2478 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2479 | TYPE_LENGTH (type)); |
04624583 | 2480 | deprecated_set_value_type (val, type); |
d2e4a39e | 2481 | |
14f9c5c9 AS |
2482 | return val; |
2483 | } | |
2484 | ||
2485 | return value_assign (toval, fromval); | |
2486 | } | |
2487 | ||
2488 | ||
52ce6436 PH |
2489 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2490 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2491 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2492 | * COMPONENT, and not the inferior's memory. The current contents | |
2493 | * of COMPONENT are ignored. */ | |
2494 | static void | |
2495 | value_assign_to_component (struct value *container, struct value *component, | |
2496 | struct value *val) | |
2497 | { | |
2498 | LONGEST offset_in_container = | |
42ae5230 | 2499 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2500 | int bit_offset_in_container = |
2501 | value_bitpos (component) - value_bitpos (container); | |
2502 | int bits; | |
2503 | ||
2504 | val = value_cast (value_type (component), val); | |
2505 | ||
2506 | if (value_bitsize (component) == 0) | |
2507 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2508 | else | |
2509 | bits = value_bitsize (component); | |
2510 | ||
50810684 | 2511 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2512 | move_bits (value_contents_writeable (container) + offset_in_container, |
2513 | value_bitpos (container) + bit_offset_in_container, | |
2514 | value_contents (val), | |
2515 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2516 | bits, 1); |
52ce6436 PH |
2517 | else |
2518 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2519 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2520 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2521 | } |
2522 | ||
4c4b4cd2 PH |
2523 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2524 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2525 | thereto. */ |
2526 | ||
d2e4a39e AS |
2527 | struct value * |
2528 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2529 | { |
2530 | int k; | |
d2e4a39e AS |
2531 | struct value *elt; |
2532 | struct type *elt_type; | |
14f9c5c9 AS |
2533 | |
2534 | elt = ada_coerce_to_simple_array (arr); | |
2535 | ||
df407dfe | 2536 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2537 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2538 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2539 | return value_subscript_packed (elt, arity, ind); | |
2540 | ||
2541 | for (k = 0; k < arity; k += 1) | |
2542 | { | |
2543 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2544 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2545 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2546 | } |
2547 | return elt; | |
2548 | } | |
2549 | ||
2550 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2551 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2552 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2553 | |
2c0b251b | 2554 | static struct value * |
d2e4a39e | 2555 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2556 | struct value **ind) |
14f9c5c9 AS |
2557 | { |
2558 | int k; | |
2559 | ||
2560 | for (k = 0; k < arity; k += 1) | |
2561 | { | |
2562 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2563 | |
2564 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2565 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2566 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2567 | value_copy (arr)); |
14f9c5c9 | 2568 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2569 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2570 | type = TYPE_TARGET_TYPE (type); |
2571 | } | |
2572 | ||
2573 | return value_ind (arr); | |
2574 | } | |
2575 | ||
0b5d8877 | 2576 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2577 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2578 | elements starting at index LOW. The lower bound of this array is LOW, as | |
0963b4bd | 2579 | per Ada rules. */ |
0b5d8877 | 2580 | static struct value * |
f5938064 JG |
2581 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2582 | int low, int high) | |
0b5d8877 | 2583 | { |
b0dd7688 | 2584 | struct type *type0 = ada_check_typedef (type); |
6c038f32 | 2585 | CORE_ADDR base = value_as_address (array_ptr) |
b0dd7688 JB |
2586 | + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0))) |
2587 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
6c038f32 | 2588 | struct type *index_type = |
b0dd7688 | 2589 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)), |
0b5d8877 | 2590 | low, high); |
6c038f32 | 2591 | struct type *slice_type = |
b0dd7688 | 2592 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
5b4ee69b | 2593 | |
f5938064 | 2594 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2595 | } |
2596 | ||
2597 | ||
2598 | static struct value * | |
2599 | ada_value_slice (struct value *array, int low, int high) | |
2600 | { | |
b0dd7688 | 2601 | struct type *type = ada_check_typedef (value_type (array)); |
6c038f32 | 2602 | struct type *index_type = |
0b5d8877 | 2603 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2604 | struct type *slice_type = |
0b5d8877 | 2605 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2606 | |
6c038f32 | 2607 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2608 | } |
2609 | ||
14f9c5c9 AS |
2610 | /* If type is a record type in the form of a standard GNAT array |
2611 | descriptor, returns the number of dimensions for type. If arr is a | |
2612 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2613 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2614 | |
2615 | int | |
d2e4a39e | 2616 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2617 | { |
2618 | int arity; | |
2619 | ||
2620 | if (type == NULL) | |
2621 | return 0; | |
2622 | ||
2623 | type = desc_base_type (type); | |
2624 | ||
2625 | arity = 0; | |
d2e4a39e | 2626 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2627 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2628 | else |
2629 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2630 | { |
4c4b4cd2 | 2631 | arity += 1; |
61ee279c | 2632 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2633 | } |
d2e4a39e | 2634 | |
14f9c5c9 AS |
2635 | return arity; |
2636 | } | |
2637 | ||
2638 | /* If TYPE is a record type in the form of a standard GNAT array | |
2639 | descriptor or a simple array type, returns the element type for | |
2640 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2641 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2642 | |
d2e4a39e AS |
2643 | struct type * |
2644 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2645 | { |
2646 | type = desc_base_type (type); | |
2647 | ||
d2e4a39e | 2648 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2649 | { |
2650 | int k; | |
d2e4a39e | 2651 | struct type *p_array_type; |
14f9c5c9 | 2652 | |
556bdfd4 | 2653 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2654 | |
2655 | k = ada_array_arity (type); | |
2656 | if (k == 0) | |
4c4b4cd2 | 2657 | return NULL; |
d2e4a39e | 2658 | |
4c4b4cd2 | 2659 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2660 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2661 | k = nindices; |
d2e4a39e | 2662 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2663 | { |
61ee279c | 2664 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2665 | k -= 1; |
2666 | } | |
14f9c5c9 AS |
2667 | return p_array_type; |
2668 | } | |
2669 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2670 | { | |
2671 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2672 | { |
2673 | type = TYPE_TARGET_TYPE (type); | |
2674 | nindices -= 1; | |
2675 | } | |
14f9c5c9 AS |
2676 | return type; |
2677 | } | |
2678 | ||
2679 | return NULL; | |
2680 | } | |
2681 | ||
4c4b4cd2 | 2682 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2683 | Does not examine memory. Throws an error if N is invalid or TYPE |
2684 | is not an array type. NAME is the name of the Ada attribute being | |
2685 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2686 | the error message. */ | |
14f9c5c9 | 2687 | |
1eea4ebd UW |
2688 | static struct type * |
2689 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2690 | { |
4c4b4cd2 PH |
2691 | struct type *result_type; |
2692 | ||
14f9c5c9 AS |
2693 | type = desc_base_type (type); |
2694 | ||
1eea4ebd UW |
2695 | if (n < 0 || n > ada_array_arity (type)) |
2696 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2697 | |
4c4b4cd2 | 2698 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2699 | { |
2700 | int i; | |
2701 | ||
2702 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2703 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2704 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2705 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2706 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2707 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2708 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2709 | result_type = NULL; | |
14f9c5c9 | 2710 | } |
d2e4a39e | 2711 | else |
1eea4ebd UW |
2712 | { |
2713 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2714 | if (result_type == NULL) | |
2715 | error (_("attempt to take bound of something that is not an array")); | |
2716 | } | |
2717 | ||
2718 | return result_type; | |
14f9c5c9 AS |
2719 | } |
2720 | ||
2721 | /* Given that arr is an array type, returns the lower bound of the | |
2722 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2723 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2724 | array-descriptor type. It works for other arrays with bounds supplied |
2725 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2726 | |
abb68b3e | 2727 | static LONGEST |
1eea4ebd | 2728 | ada_array_bound_from_type (struct type * arr_type, int n, int which) |
14f9c5c9 | 2729 | { |
1ce677a4 | 2730 | struct type *type, *elt_type, *index_type_desc, *index_type; |
1ce677a4 | 2731 | int i; |
262452ec JK |
2732 | |
2733 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2734 | |
ad82864c JB |
2735 | if (ada_is_constrained_packed_array_type (arr_type)) |
2736 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2737 | |
4c4b4cd2 | 2738 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2739 | return (LONGEST) - which; |
14f9c5c9 AS |
2740 | |
2741 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2742 | type = TYPE_TARGET_TYPE (arr_type); | |
2743 | else | |
2744 | type = arr_type; | |
2745 | ||
1ce677a4 UW |
2746 | elt_type = type; |
2747 | for (i = n; i > 1; i--) | |
2748 | elt_type = TYPE_TARGET_TYPE (type); | |
2749 | ||
14f9c5c9 | 2750 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
28c85d6c | 2751 | ada_fixup_array_indexes_type (index_type_desc); |
262452ec | 2752 | if (index_type_desc != NULL) |
28c85d6c JB |
2753 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
2754 | NULL); | |
262452ec | 2755 | else |
1ce677a4 | 2756 | index_type = TYPE_INDEX_TYPE (elt_type); |
262452ec | 2757 | |
43bbcdc2 PH |
2758 | return |
2759 | (LONGEST) (which == 0 | |
2760 | ? ada_discrete_type_low_bound (index_type) | |
2761 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2762 | } |
2763 | ||
2764 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2765 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2766 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2767 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2768 | |
1eea4ebd | 2769 | static LONGEST |
4dc81987 | 2770 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2771 | { |
df407dfe | 2772 | struct type *arr_type = value_type (arr); |
14f9c5c9 | 2773 | |
ad82864c JB |
2774 | if (ada_is_constrained_packed_array_type (arr_type)) |
2775 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2776 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2777 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2778 | else |
1eea4ebd | 2779 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2780 | } |
2781 | ||
2782 | /* Given that arr is an array value, returns the length of the | |
2783 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2784 | supplied by run-time quantities other than discriminants. |
2785 | Does not work for arrays indexed by enumeration types with representation | |
2786 | clauses at the moment. */ | |
14f9c5c9 | 2787 | |
1eea4ebd | 2788 | static LONGEST |
d2e4a39e | 2789 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2790 | { |
df407dfe | 2791 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 | 2792 | |
ad82864c JB |
2793 | if (ada_is_constrained_packed_array_type (arr_type)) |
2794 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2795 | |
4c4b4cd2 | 2796 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2797 | return (ada_array_bound_from_type (arr_type, n, 1) |
2798 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2799 | else |
1eea4ebd UW |
2800 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2801 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2802 | } |
2803 | ||
2804 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2805 | with bounds LOW to LOW-1. */ | |
2806 | ||
2807 | static struct value * | |
2808 | empty_array (struct type *arr_type, int low) | |
2809 | { | |
b0dd7688 | 2810 | struct type *arr_type0 = ada_check_typedef (arr_type); |
6c038f32 | 2811 | struct type *index_type = |
b0dd7688 | 2812 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), |
0b5d8877 | 2813 | low, low - 1); |
b0dd7688 | 2814 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 2815 | |
0b5d8877 | 2816 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 2817 | } |
14f9c5c9 | 2818 | \f |
d2e4a39e | 2819 | |
4c4b4cd2 | 2820 | /* Name resolution */ |
14f9c5c9 | 2821 | |
4c4b4cd2 PH |
2822 | /* The "decoded" name for the user-definable Ada operator corresponding |
2823 | to OP. */ | |
14f9c5c9 | 2824 | |
d2e4a39e | 2825 | static const char * |
4c4b4cd2 | 2826 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2827 | { |
2828 | int i; | |
2829 | ||
4c4b4cd2 | 2830 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2831 | { |
2832 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2833 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2834 | } |
323e0a4a | 2835 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2836 | } |
2837 | ||
2838 | ||
4c4b4cd2 PH |
2839 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2840 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2841 | undefined namespace) and converts operators that are | |
2842 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2843 | non-null, it provides a preferred result type [at the moment, only |
2844 | type void has any effect---causing procedures to be preferred over | |
2845 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2846 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2847 | |
4c4b4cd2 PH |
2848 | static void |
2849 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 2850 | { |
30b15541 UW |
2851 | struct type *context_type = NULL; |
2852 | int pc = 0; | |
2853 | ||
2854 | if (void_context_p) | |
2855 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
2856 | ||
2857 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
2858 | } |
2859 | ||
4c4b4cd2 PH |
2860 | /* Resolve the operator of the subexpression beginning at |
2861 | position *POS of *EXPP. "Resolving" consists of replacing | |
2862 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2863 | with their resolutions, replacing built-in operators with | |
2864 | function calls to user-defined operators, where appropriate, and, | |
2865 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2866 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2867 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2868 | |
d2e4a39e | 2869 | static struct value * |
4c4b4cd2 | 2870 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2871 | struct type *context_type) |
14f9c5c9 AS |
2872 | { |
2873 | int pc = *pos; | |
2874 | int i; | |
4c4b4cd2 | 2875 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2876 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2877 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2878 | int nargs; /* Number of operands. */ | |
52ce6436 | 2879 | int oplen; |
14f9c5c9 AS |
2880 | |
2881 | argvec = NULL; | |
2882 | nargs = 0; | |
2883 | exp = *expp; | |
2884 | ||
52ce6436 PH |
2885 | /* Pass one: resolve operands, saving their types and updating *pos, |
2886 | if needed. */ | |
14f9c5c9 AS |
2887 | switch (op) |
2888 | { | |
4c4b4cd2 PH |
2889 | case OP_FUNCALL: |
2890 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2891 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2892 | *pos += 7; | |
4c4b4cd2 PH |
2893 | else |
2894 | { | |
2895 | *pos += 3; | |
2896 | resolve_subexp (expp, pos, 0, NULL); | |
2897 | } | |
2898 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2899 | break; |
2900 | ||
14f9c5c9 | 2901 | case UNOP_ADDR: |
4c4b4cd2 PH |
2902 | *pos += 1; |
2903 | resolve_subexp (expp, pos, 0, NULL); | |
2904 | break; | |
2905 | ||
52ce6436 PH |
2906 | case UNOP_QUAL: |
2907 | *pos += 3; | |
17466c1a | 2908 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2909 | break; |
2910 | ||
52ce6436 | 2911 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2912 | case OP_ATR_SIZE: |
2913 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2914 | case OP_ATR_FIRST: |
2915 | case OP_ATR_LAST: | |
2916 | case OP_ATR_LENGTH: | |
2917 | case OP_ATR_POS: | |
2918 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2919 | case OP_ATR_MIN: |
2920 | case OP_ATR_MAX: | |
52ce6436 PH |
2921 | case TERNOP_IN_RANGE: |
2922 | case BINOP_IN_BOUNDS: | |
2923 | case UNOP_IN_RANGE: | |
2924 | case OP_AGGREGATE: | |
2925 | case OP_OTHERS: | |
2926 | case OP_CHOICES: | |
2927 | case OP_POSITIONAL: | |
2928 | case OP_DISCRETE_RANGE: | |
2929 | case OP_NAME: | |
2930 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2931 | *pos += oplen; | |
14f9c5c9 AS |
2932 | break; |
2933 | ||
2934 | case BINOP_ASSIGN: | |
2935 | { | |
4c4b4cd2 PH |
2936 | struct value *arg1; |
2937 | ||
2938 | *pos += 1; | |
2939 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
2940 | if (arg1 == NULL) | |
2941 | resolve_subexp (expp, pos, 1, NULL); | |
2942 | else | |
df407dfe | 2943 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 2944 | break; |
14f9c5c9 AS |
2945 | } |
2946 | ||
4c4b4cd2 | 2947 | case UNOP_CAST: |
4c4b4cd2 PH |
2948 | *pos += 3; |
2949 | nargs = 1; | |
2950 | break; | |
14f9c5c9 | 2951 | |
4c4b4cd2 PH |
2952 | case BINOP_ADD: |
2953 | case BINOP_SUB: | |
2954 | case BINOP_MUL: | |
2955 | case BINOP_DIV: | |
2956 | case BINOP_REM: | |
2957 | case BINOP_MOD: | |
2958 | case BINOP_EXP: | |
2959 | case BINOP_CONCAT: | |
2960 | case BINOP_LOGICAL_AND: | |
2961 | case BINOP_LOGICAL_OR: | |
2962 | case BINOP_BITWISE_AND: | |
2963 | case BINOP_BITWISE_IOR: | |
2964 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 2965 | |
4c4b4cd2 PH |
2966 | case BINOP_EQUAL: |
2967 | case BINOP_NOTEQUAL: | |
2968 | case BINOP_LESS: | |
2969 | case BINOP_GTR: | |
2970 | case BINOP_LEQ: | |
2971 | case BINOP_GEQ: | |
14f9c5c9 | 2972 | |
4c4b4cd2 PH |
2973 | case BINOP_REPEAT: |
2974 | case BINOP_SUBSCRIPT: | |
2975 | case BINOP_COMMA: | |
40c8aaa9 JB |
2976 | *pos += 1; |
2977 | nargs = 2; | |
2978 | break; | |
14f9c5c9 | 2979 | |
4c4b4cd2 PH |
2980 | case UNOP_NEG: |
2981 | case UNOP_PLUS: | |
2982 | case UNOP_LOGICAL_NOT: | |
2983 | case UNOP_ABS: | |
2984 | case UNOP_IND: | |
2985 | *pos += 1; | |
2986 | nargs = 1; | |
2987 | break; | |
14f9c5c9 | 2988 | |
4c4b4cd2 PH |
2989 | case OP_LONG: |
2990 | case OP_DOUBLE: | |
2991 | case OP_VAR_VALUE: | |
2992 | *pos += 4; | |
2993 | break; | |
14f9c5c9 | 2994 | |
4c4b4cd2 PH |
2995 | case OP_TYPE: |
2996 | case OP_BOOL: | |
2997 | case OP_LAST: | |
4c4b4cd2 PH |
2998 | case OP_INTERNALVAR: |
2999 | *pos += 3; | |
3000 | break; | |
14f9c5c9 | 3001 | |
4c4b4cd2 PH |
3002 | case UNOP_MEMVAL: |
3003 | *pos += 3; | |
3004 | nargs = 1; | |
3005 | break; | |
3006 | ||
67f3407f DJ |
3007 | case OP_REGISTER: |
3008 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3009 | break; | |
3010 | ||
4c4b4cd2 PH |
3011 | case STRUCTOP_STRUCT: |
3012 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3013 | nargs = 1; | |
3014 | break; | |
3015 | ||
4c4b4cd2 | 3016 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3017 | *pos += 1; |
3018 | nargs = 3; | |
3019 | break; | |
3020 | ||
52ce6436 | 3021 | case OP_STRING: |
14f9c5c9 | 3022 | break; |
4c4b4cd2 PH |
3023 | |
3024 | default: | |
323e0a4a | 3025 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3026 | } |
3027 | ||
76a01679 | 3028 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
3029 | for (i = 0; i < nargs; i += 1) |
3030 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3031 | argvec[i] = NULL; | |
3032 | exp = *expp; | |
3033 | ||
3034 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3035 | switch (op) |
3036 | { | |
3037 | default: | |
3038 | break; | |
3039 | ||
14f9c5c9 | 3040 | case OP_VAR_VALUE: |
4c4b4cd2 | 3041 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
3042 | { |
3043 | struct ada_symbol_info *candidates; | |
3044 | int n_candidates; | |
3045 | ||
3046 | n_candidates = | |
3047 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3048 | (exp->elts[pc + 2].symbol), | |
3049 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
3050 | &candidates); | |
3051 | ||
3052 | if (n_candidates > 1) | |
3053 | { | |
3054 | /* Types tend to get re-introduced locally, so if there | |
3055 | are any local symbols that are not types, first filter | |
3056 | out all types. */ | |
3057 | int j; | |
3058 | for (j = 0; j < n_candidates; j += 1) | |
3059 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
3060 | { | |
3061 | case LOC_REGISTER: | |
3062 | case LOC_ARG: | |
3063 | case LOC_REF_ARG: | |
76a01679 JB |
3064 | case LOC_REGPARM_ADDR: |
3065 | case LOC_LOCAL: | |
76a01679 | 3066 | case LOC_COMPUTED: |
76a01679 JB |
3067 | goto FoundNonType; |
3068 | default: | |
3069 | break; | |
3070 | } | |
3071 | FoundNonType: | |
3072 | if (j < n_candidates) | |
3073 | { | |
3074 | j = 0; | |
3075 | while (j < n_candidates) | |
3076 | { | |
3077 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
3078 | { | |
3079 | candidates[j] = candidates[n_candidates - 1]; | |
3080 | n_candidates -= 1; | |
3081 | } | |
3082 | else | |
3083 | j += 1; | |
3084 | } | |
3085 | } | |
3086 | } | |
3087 | ||
3088 | if (n_candidates == 0) | |
323e0a4a | 3089 | error (_("No definition found for %s"), |
76a01679 JB |
3090 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3091 | else if (n_candidates == 1) | |
3092 | i = 0; | |
3093 | else if (deprocedure_p | |
3094 | && !is_nonfunction (candidates, n_candidates)) | |
3095 | { | |
06d5cf63 JB |
3096 | i = ada_resolve_function |
3097 | (candidates, n_candidates, NULL, 0, | |
3098 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3099 | context_type); | |
76a01679 | 3100 | if (i < 0) |
323e0a4a | 3101 | error (_("Could not find a match for %s"), |
76a01679 JB |
3102 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3103 | } | |
3104 | else | |
3105 | { | |
323e0a4a | 3106 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3107 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3108 | user_select_syms (candidates, n_candidates, 1); | |
3109 | i = 0; | |
3110 | } | |
3111 | ||
3112 | exp->elts[pc + 1].block = candidates[i].block; | |
3113 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
3114 | if (innermost_block == NULL |
3115 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3116 | innermost_block = candidates[i].block; |
3117 | } | |
3118 | ||
3119 | if (deprocedure_p | |
3120 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3121 | == TYPE_CODE_FUNC)) | |
3122 | { | |
3123 | replace_operator_with_call (expp, pc, 0, 0, | |
3124 | exp->elts[pc + 2].symbol, | |
3125 | exp->elts[pc + 1].block); | |
3126 | exp = *expp; | |
3127 | } | |
14f9c5c9 AS |
3128 | break; |
3129 | ||
3130 | case OP_FUNCALL: | |
3131 | { | |
4c4b4cd2 | 3132 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3133 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
3134 | { |
3135 | struct ada_symbol_info *candidates; | |
3136 | int n_candidates; | |
3137 | ||
3138 | n_candidates = | |
76a01679 JB |
3139 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3140 | (exp->elts[pc + 5].symbol), | |
3141 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
3142 | &candidates); | |
4c4b4cd2 PH |
3143 | if (n_candidates == 1) |
3144 | i = 0; | |
3145 | else | |
3146 | { | |
06d5cf63 JB |
3147 | i = ada_resolve_function |
3148 | (candidates, n_candidates, | |
3149 | argvec, nargs, | |
3150 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3151 | context_type); | |
4c4b4cd2 | 3152 | if (i < 0) |
323e0a4a | 3153 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3154 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3155 | } | |
3156 | ||
3157 | exp->elts[pc + 4].block = candidates[i].block; | |
3158 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
3159 | if (innermost_block == NULL |
3160 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3161 | innermost_block = candidates[i].block; |
3162 | } | |
14f9c5c9 AS |
3163 | } |
3164 | break; | |
3165 | case BINOP_ADD: | |
3166 | case BINOP_SUB: | |
3167 | case BINOP_MUL: | |
3168 | case BINOP_DIV: | |
3169 | case BINOP_REM: | |
3170 | case BINOP_MOD: | |
3171 | case BINOP_CONCAT: | |
3172 | case BINOP_BITWISE_AND: | |
3173 | case BINOP_BITWISE_IOR: | |
3174 | case BINOP_BITWISE_XOR: | |
3175 | case BINOP_EQUAL: | |
3176 | case BINOP_NOTEQUAL: | |
3177 | case BINOP_LESS: | |
3178 | case BINOP_GTR: | |
3179 | case BINOP_LEQ: | |
3180 | case BINOP_GEQ: | |
3181 | case BINOP_EXP: | |
3182 | case UNOP_NEG: | |
3183 | case UNOP_PLUS: | |
3184 | case UNOP_LOGICAL_NOT: | |
3185 | case UNOP_ABS: | |
3186 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3187 | { |
3188 | struct ada_symbol_info *candidates; | |
3189 | int n_candidates; | |
3190 | ||
3191 | n_candidates = | |
3192 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3193 | (struct block *) NULL, VAR_DOMAIN, | |
3194 | &candidates); | |
3195 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, | |
76a01679 | 3196 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3197 | if (i < 0) |
3198 | break; | |
3199 | ||
76a01679 JB |
3200 | replace_operator_with_call (expp, pc, nargs, 1, |
3201 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3202 | exp = *expp; |
3203 | } | |
14f9c5c9 | 3204 | break; |
4c4b4cd2 PH |
3205 | |
3206 | case OP_TYPE: | |
b3dbf008 | 3207 | case OP_REGISTER: |
4c4b4cd2 | 3208 | return NULL; |
14f9c5c9 AS |
3209 | } |
3210 | ||
3211 | *pos = pc; | |
3212 | return evaluate_subexp_type (exp, pos); | |
3213 | } | |
3214 | ||
3215 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3216 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3217 | a non-pointer. */ |
14f9c5c9 | 3218 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3219 | liberal. */ |
14f9c5c9 AS |
3220 | |
3221 | static int | |
4dc81987 | 3222 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3223 | { |
61ee279c PH |
3224 | ftype = ada_check_typedef (ftype); |
3225 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3226 | |
3227 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3228 | ftype = TYPE_TARGET_TYPE (ftype); | |
3229 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3230 | atype = TYPE_TARGET_TYPE (atype); | |
3231 | ||
d2e4a39e | 3232 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3233 | { |
3234 | default: | |
5b3d5b7d | 3235 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3236 | case TYPE_CODE_PTR: |
3237 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3238 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3239 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3240 | else |
1265e4aa JB |
3241 | return (may_deref |
3242 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3243 | case TYPE_CODE_INT: |
3244 | case TYPE_CODE_ENUM: | |
3245 | case TYPE_CODE_RANGE: | |
3246 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3247 | { |
3248 | case TYPE_CODE_INT: | |
3249 | case TYPE_CODE_ENUM: | |
3250 | case TYPE_CODE_RANGE: | |
3251 | return 1; | |
3252 | default: | |
3253 | return 0; | |
3254 | } | |
14f9c5c9 AS |
3255 | |
3256 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3257 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3258 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3259 | |
3260 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3261 | if (ada_is_array_descriptor_type (ftype)) |
3262 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3263 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3264 | else |
4c4b4cd2 PH |
3265 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3266 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3267 | |
3268 | case TYPE_CODE_UNION: | |
3269 | case TYPE_CODE_FLT: | |
3270 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3271 | } | |
3272 | } | |
3273 | ||
3274 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3275 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3276 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3277 | argument function. */ |
14f9c5c9 AS |
3278 | |
3279 | static int | |
d2e4a39e | 3280 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3281 | { |
3282 | int i; | |
d2e4a39e | 3283 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3284 | |
1265e4aa JB |
3285 | if (SYMBOL_CLASS (func) == LOC_CONST |
3286 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3287 | return (n_actuals == 0); |
3288 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3289 | return 0; | |
3290 | ||
3291 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3292 | return 0; | |
3293 | ||
3294 | for (i = 0; i < n_actuals; i += 1) | |
3295 | { | |
4c4b4cd2 | 3296 | if (actuals[i] == NULL) |
76a01679 JB |
3297 | return 0; |
3298 | else | |
3299 | { | |
5b4ee69b MS |
3300 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3301 | i)); | |
df407dfe | 3302 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3303 | |
76a01679 JB |
3304 | if (!ada_type_match (ftype, atype, 1)) |
3305 | return 0; | |
3306 | } | |
14f9c5c9 AS |
3307 | } |
3308 | return 1; | |
3309 | } | |
3310 | ||
3311 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3312 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3313 | FUNC_TYPE is not a valid function type with a non-null return type | |
3314 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3315 | ||
3316 | static int | |
d2e4a39e | 3317 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3318 | { |
d2e4a39e | 3319 | struct type *return_type; |
14f9c5c9 AS |
3320 | |
3321 | if (func_type == NULL) | |
3322 | return 1; | |
3323 | ||
4c4b4cd2 PH |
3324 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
3325 | return_type = base_type (TYPE_TARGET_TYPE (func_type)); | |
3326 | else | |
3327 | return_type = base_type (func_type); | |
14f9c5c9 AS |
3328 | if (return_type == NULL) |
3329 | return 1; | |
3330 | ||
4c4b4cd2 | 3331 | context_type = base_type (context_type); |
14f9c5c9 AS |
3332 | |
3333 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3334 | return context_type == NULL || return_type == context_type; | |
3335 | else if (context_type == NULL) | |
3336 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3337 | else | |
3338 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3339 | } | |
3340 | ||
3341 | ||
4c4b4cd2 | 3342 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3343 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3344 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3345 | that returns that type, then eliminate matches that don't. If | |
3346 | CONTEXT_TYPE is void and there is at least one match that does not | |
3347 | return void, eliminate all matches that do. | |
3348 | ||
14f9c5c9 AS |
3349 | Asks the user if there is more than one match remaining. Returns -1 |
3350 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3351 | solely for messages. May re-arrange and modify SYMS in |
3352 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3353 | |
4c4b4cd2 PH |
3354 | static int |
3355 | ada_resolve_function (struct ada_symbol_info syms[], | |
3356 | int nsyms, struct value **args, int nargs, | |
3357 | const char *name, struct type *context_type) | |
14f9c5c9 | 3358 | { |
30b15541 | 3359 | int fallback; |
14f9c5c9 | 3360 | int k; |
4c4b4cd2 | 3361 | int m; /* Number of hits */ |
14f9c5c9 | 3362 | |
d2e4a39e | 3363 | m = 0; |
30b15541 UW |
3364 | /* In the first pass of the loop, we only accept functions matching |
3365 | context_type. If none are found, we add a second pass of the loop | |
3366 | where every function is accepted. */ | |
3367 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3368 | { |
3369 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3370 | { |
61ee279c | 3371 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3372 | |
3373 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3374 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3375 | { |
3376 | syms[m] = syms[k]; | |
3377 | m += 1; | |
3378 | } | |
3379 | } | |
14f9c5c9 AS |
3380 | } |
3381 | ||
3382 | if (m == 0) | |
3383 | return -1; | |
3384 | else if (m > 1) | |
3385 | { | |
323e0a4a | 3386 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3387 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3388 | return 0; |
3389 | } | |
3390 | return 0; | |
3391 | } | |
3392 | ||
4c4b4cd2 PH |
3393 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3394 | in a listing of choices during disambiguation (see sort_choices, below). | |
3395 | The idea is that overloadings of a subprogram name from the | |
3396 | same package should sort in their source order. We settle for ordering | |
3397 | such symbols by their trailing number (__N or $N). */ | |
3398 | ||
14f9c5c9 | 3399 | static int |
4c4b4cd2 | 3400 | encoded_ordered_before (char *N0, char *N1) |
14f9c5c9 AS |
3401 | { |
3402 | if (N1 == NULL) | |
3403 | return 0; | |
3404 | else if (N0 == NULL) | |
3405 | return 1; | |
3406 | else | |
3407 | { | |
3408 | int k0, k1; | |
5b4ee69b | 3409 | |
d2e4a39e | 3410 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3411 | ; |
d2e4a39e | 3412 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3413 | ; |
d2e4a39e | 3414 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3415 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3416 | { | |
3417 | int n0, n1; | |
5b4ee69b | 3418 | |
4c4b4cd2 PH |
3419 | n0 = k0; |
3420 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3421 | n0 -= 1; | |
3422 | n1 = k1; | |
3423 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3424 | n1 -= 1; | |
3425 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3426 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3427 | } | |
14f9c5c9 AS |
3428 | return (strcmp (N0, N1) < 0); |
3429 | } | |
3430 | } | |
d2e4a39e | 3431 | |
4c4b4cd2 PH |
3432 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3433 | encoded names. */ | |
3434 | ||
d2e4a39e | 3435 | static void |
4c4b4cd2 | 3436 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3437 | { |
4c4b4cd2 | 3438 | int i; |
5b4ee69b | 3439 | |
d2e4a39e | 3440 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3441 | { |
4c4b4cd2 | 3442 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3443 | int j; |
3444 | ||
d2e4a39e | 3445 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3446 | { |
3447 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3448 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3449 | break; | |
3450 | syms[j + 1] = syms[j]; | |
3451 | } | |
d2e4a39e | 3452 | syms[j + 1] = sym; |
14f9c5c9 AS |
3453 | } |
3454 | } | |
3455 | ||
4c4b4cd2 PH |
3456 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3457 | by asking the user (if necessary), returning the number selected, | |
3458 | and setting the first elements of SYMS items. Error if no symbols | |
3459 | selected. */ | |
14f9c5c9 AS |
3460 | |
3461 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3462 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3463 | |
3464 | int | |
4c4b4cd2 | 3465 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3466 | { |
3467 | int i; | |
d2e4a39e | 3468 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3469 | int n_chosen; |
3470 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3471 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3472 | |
3473 | if (max_results < 1) | |
323e0a4a | 3474 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3475 | if (nsyms <= 1) |
3476 | return nsyms; | |
3477 | ||
717d2f5a JB |
3478 | if (select_mode == multiple_symbols_cancel) |
3479 | error (_("\ | |
3480 | canceled because the command is ambiguous\n\ | |
3481 | See set/show multiple-symbol.")); | |
3482 | ||
3483 | /* If select_mode is "all", then return all possible symbols. | |
3484 | Only do that if more than one symbol can be selected, of course. | |
3485 | Otherwise, display the menu as usual. */ | |
3486 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3487 | return nsyms; | |
3488 | ||
323e0a4a | 3489 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3490 | if (max_results > 1) |
323e0a4a | 3491 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3492 | |
4c4b4cd2 | 3493 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3494 | |
3495 | for (i = 0; i < nsyms; i += 1) | |
3496 | { | |
4c4b4cd2 PH |
3497 | if (syms[i].sym == NULL) |
3498 | continue; | |
3499 | ||
3500 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3501 | { | |
76a01679 JB |
3502 | struct symtab_and_line sal = |
3503 | find_function_start_sal (syms[i].sym, 1); | |
5b4ee69b | 3504 | |
323e0a4a AC |
3505 | if (sal.symtab == NULL) |
3506 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3507 | i + first_choice, | |
3508 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3509 | sal.line); | |
3510 | else | |
3511 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3512 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3513 | sal.symtab->filename, sal.line); | |
4c4b4cd2 PH |
3514 | continue; |
3515 | } | |
d2e4a39e | 3516 | else |
4c4b4cd2 PH |
3517 | { |
3518 | int is_enumeral = | |
3519 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3520 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3521 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
6f38eac8 | 3522 | struct symtab *symtab = syms[i].sym->symtab; |
4c4b4cd2 PH |
3523 | |
3524 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3525 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3526 | i + first_choice, |
3527 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3528 | symtab->filename, SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3529 | else if (is_enumeral |
3530 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3531 | { |
a3f17187 | 3532 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 JB |
3533 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
3534 | gdb_stdout, -1, 0); | |
323e0a4a | 3535 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3536 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3537 | } | |
3538 | else if (symtab != NULL) | |
3539 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3540 | ? _("[%d] %s in %s (enumeral)\n") |
3541 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3542 | i + first_choice, |
3543 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3544 | symtab->filename); | |
3545 | else | |
3546 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3547 | ? _("[%d] %s (enumeral)\n") |
3548 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3549 | i + first_choice, |
3550 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3551 | } | |
14f9c5c9 | 3552 | } |
d2e4a39e | 3553 | |
14f9c5c9 | 3554 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3555 | "overload-choice"); |
14f9c5c9 AS |
3556 | |
3557 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3558 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3559 | |
3560 | return n_chosen; | |
3561 | } | |
3562 | ||
3563 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3564 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3565 | order in CHOICES[0 .. N-1], and return N. |
3566 | ||
3567 | The user types choices as a sequence of numbers on one line | |
3568 | separated by blanks, encoding them as follows: | |
3569 | ||
4c4b4cd2 | 3570 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3571 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3572 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3573 | ||
4c4b4cd2 | 3574 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3575 | |
3576 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3577 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3578 | |
3579 | int | |
d2e4a39e | 3580 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3581 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3582 | { |
d2e4a39e | 3583 | char *args; |
0bcd0149 | 3584 | char *prompt; |
14f9c5c9 AS |
3585 | int n_chosen; |
3586 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3587 | |
14f9c5c9 AS |
3588 | prompt = getenv ("PS2"); |
3589 | if (prompt == NULL) | |
0bcd0149 | 3590 | prompt = "> "; |
14f9c5c9 | 3591 | |
0bcd0149 | 3592 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3593 | |
14f9c5c9 | 3594 | if (args == NULL) |
323e0a4a | 3595 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3596 | |
3597 | n_chosen = 0; | |
76a01679 | 3598 | |
4c4b4cd2 PH |
3599 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3600 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3601 | while (1) |
3602 | { | |
d2e4a39e | 3603 | char *args2; |
14f9c5c9 AS |
3604 | int choice, j; |
3605 | ||
3606 | while (isspace (*args)) | |
4c4b4cd2 | 3607 | args += 1; |
14f9c5c9 | 3608 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3609 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3610 | else if (*args == '\0') |
4c4b4cd2 | 3611 | break; |
14f9c5c9 AS |
3612 | |
3613 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3614 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3615 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3616 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3617 | args = args2; |
3618 | ||
d2e4a39e | 3619 | if (choice == 0) |
323e0a4a | 3620 | error (_("cancelled")); |
14f9c5c9 AS |
3621 | |
3622 | if (choice < first_choice) | |
4c4b4cd2 PH |
3623 | { |
3624 | n_chosen = n_choices; | |
3625 | for (j = 0; j < n_choices; j += 1) | |
3626 | choices[j] = j; | |
3627 | break; | |
3628 | } | |
14f9c5c9 AS |
3629 | choice -= first_choice; |
3630 | ||
d2e4a39e | 3631 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3632 | { |
3633 | } | |
14f9c5c9 AS |
3634 | |
3635 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3636 | { |
3637 | int k; | |
5b4ee69b | 3638 | |
4c4b4cd2 PH |
3639 | for (k = n_chosen - 1; k > j; k -= 1) |
3640 | choices[k + 1] = choices[k]; | |
3641 | choices[j + 1] = choice; | |
3642 | n_chosen += 1; | |
3643 | } | |
14f9c5c9 AS |
3644 | } |
3645 | ||
3646 | if (n_chosen > max_results) | |
323e0a4a | 3647 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3648 | |
14f9c5c9 AS |
3649 | return n_chosen; |
3650 | } | |
3651 | ||
4c4b4cd2 PH |
3652 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3653 | on the function identified by SYM and BLOCK, and taking NARGS | |
3654 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3655 | |
3656 | static void | |
d2e4a39e | 3657 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 PH |
3658 | int oplen, struct symbol *sym, |
3659 | struct block *block) | |
14f9c5c9 AS |
3660 | { |
3661 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3662 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3663 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 3664 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 3665 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3666 | struct expression *exp = *expp; |
14f9c5c9 AS |
3667 | |
3668 | newexp->nelts = exp->nelts + 7 - oplen; | |
3669 | newexp->language_defn = exp->language_defn; | |
3489610d | 3670 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 3671 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 3672 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3673 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3674 | |
3675 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3676 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3677 | ||
3678 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3679 | newexp->elts[pc + 4].block = block; | |
3680 | newexp->elts[pc + 5].symbol = sym; | |
3681 | ||
3682 | *expp = newexp; | |
aacb1f0a | 3683 | xfree (exp); |
d2e4a39e | 3684 | } |
14f9c5c9 AS |
3685 | |
3686 | /* Type-class predicates */ | |
3687 | ||
4c4b4cd2 PH |
3688 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3689 | or FLOAT). */ | |
14f9c5c9 AS |
3690 | |
3691 | static int | |
d2e4a39e | 3692 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3693 | { |
3694 | if (type == NULL) | |
3695 | return 0; | |
d2e4a39e AS |
3696 | else |
3697 | { | |
3698 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3699 | { |
3700 | case TYPE_CODE_INT: | |
3701 | case TYPE_CODE_FLT: | |
3702 | return 1; | |
3703 | case TYPE_CODE_RANGE: | |
3704 | return (type == TYPE_TARGET_TYPE (type) | |
3705 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3706 | default: | |
3707 | return 0; | |
3708 | } | |
d2e4a39e | 3709 | } |
14f9c5c9 AS |
3710 | } |
3711 | ||
4c4b4cd2 | 3712 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3713 | |
3714 | static int | |
d2e4a39e | 3715 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3716 | { |
3717 | if (type == NULL) | |
3718 | return 0; | |
d2e4a39e AS |
3719 | else |
3720 | { | |
3721 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3722 | { |
3723 | case TYPE_CODE_INT: | |
3724 | return 1; | |
3725 | case TYPE_CODE_RANGE: | |
3726 | return (type == TYPE_TARGET_TYPE (type) | |
3727 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3728 | default: | |
3729 | return 0; | |
3730 | } | |
d2e4a39e | 3731 | } |
14f9c5c9 AS |
3732 | } |
3733 | ||
4c4b4cd2 | 3734 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3735 | |
3736 | static int | |
d2e4a39e | 3737 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3738 | { |
3739 | if (type == NULL) | |
3740 | return 0; | |
d2e4a39e AS |
3741 | else |
3742 | { | |
3743 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3744 | { |
3745 | case TYPE_CODE_INT: | |
3746 | case TYPE_CODE_RANGE: | |
3747 | case TYPE_CODE_ENUM: | |
3748 | case TYPE_CODE_FLT: | |
3749 | return 1; | |
3750 | default: | |
3751 | return 0; | |
3752 | } | |
d2e4a39e | 3753 | } |
14f9c5c9 AS |
3754 | } |
3755 | ||
4c4b4cd2 | 3756 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3757 | |
3758 | static int | |
d2e4a39e | 3759 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3760 | { |
3761 | if (type == NULL) | |
3762 | return 0; | |
d2e4a39e AS |
3763 | else |
3764 | { | |
3765 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3766 | { |
3767 | case TYPE_CODE_INT: | |
3768 | case TYPE_CODE_RANGE: | |
3769 | case TYPE_CODE_ENUM: | |
872f0337 | 3770 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
3771 | return 1; |
3772 | default: | |
3773 | return 0; | |
3774 | } | |
d2e4a39e | 3775 | } |
14f9c5c9 AS |
3776 | } |
3777 | ||
4c4b4cd2 PH |
3778 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3779 | a user-defined function. Errs on the side of pre-defined operators | |
3780 | (i.e., result 0). */ | |
14f9c5c9 AS |
3781 | |
3782 | static int | |
d2e4a39e | 3783 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3784 | { |
76a01679 | 3785 | struct type *type0 = |
df407dfe | 3786 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3787 | struct type *type1 = |
df407dfe | 3788 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3789 | |
4c4b4cd2 PH |
3790 | if (type0 == NULL) |
3791 | return 0; | |
3792 | ||
14f9c5c9 AS |
3793 | switch (op) |
3794 | { | |
3795 | default: | |
3796 | return 0; | |
3797 | ||
3798 | case BINOP_ADD: | |
3799 | case BINOP_SUB: | |
3800 | case BINOP_MUL: | |
3801 | case BINOP_DIV: | |
d2e4a39e | 3802 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3803 | |
3804 | case BINOP_REM: | |
3805 | case BINOP_MOD: | |
3806 | case BINOP_BITWISE_AND: | |
3807 | case BINOP_BITWISE_IOR: | |
3808 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3809 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3810 | |
3811 | case BINOP_EQUAL: | |
3812 | case BINOP_NOTEQUAL: | |
3813 | case BINOP_LESS: | |
3814 | case BINOP_GTR: | |
3815 | case BINOP_LEQ: | |
3816 | case BINOP_GEQ: | |
d2e4a39e | 3817 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3818 | |
3819 | case BINOP_CONCAT: | |
ee90b9ab | 3820 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3821 | |
3822 | case BINOP_EXP: | |
d2e4a39e | 3823 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3824 | |
3825 | case UNOP_NEG: | |
3826 | case UNOP_PLUS: | |
3827 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3828 | case UNOP_ABS: |
3829 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3830 | |
3831 | } | |
3832 | } | |
3833 | \f | |
4c4b4cd2 | 3834 | /* Renaming */ |
14f9c5c9 | 3835 | |
aeb5907d JB |
3836 | /* NOTES: |
3837 | ||
3838 | 1. In the following, we assume that a renaming type's name may | |
3839 | have an ___XD suffix. It would be nice if this went away at some | |
3840 | point. | |
3841 | 2. We handle both the (old) purely type-based representation of | |
3842 | renamings and the (new) variable-based encoding. At some point, | |
3843 | it is devoutly to be hoped that the former goes away | |
3844 | (FIXME: hilfinger-2007-07-09). | |
3845 | 3. Subprogram renamings are not implemented, although the XRS | |
3846 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3847 | ||
3848 | /* If SYM encodes a renaming, | |
3849 | ||
3850 | <renaming> renames <renamed entity>, | |
3851 | ||
3852 | sets *LEN to the length of the renamed entity's name, | |
3853 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3854 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 3855 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
3856 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
3857 | are undefined). Otherwise, returns a value indicating the category | |
3858 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3859 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3860 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3861 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3862 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3863 | may be NULL, in which case they are not assigned. | |
3864 | ||
3865 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3866 | ||
3867 | enum ada_renaming_category | |
3868 | ada_parse_renaming (struct symbol *sym, | |
3869 | const char **renamed_entity, int *len, | |
3870 | const char **renaming_expr) | |
3871 | { | |
3872 | enum ada_renaming_category kind; | |
3873 | const char *info; | |
3874 | const char *suffix; | |
3875 | ||
3876 | if (sym == NULL) | |
3877 | return ADA_NOT_RENAMING; | |
3878 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3879 | { |
aeb5907d JB |
3880 | default: |
3881 | return ADA_NOT_RENAMING; | |
3882 | case LOC_TYPEDEF: | |
3883 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3884 | renamed_entity, len, renaming_expr); | |
3885 | case LOC_LOCAL: | |
3886 | case LOC_STATIC: | |
3887 | case LOC_COMPUTED: | |
3888 | case LOC_OPTIMIZED_OUT: | |
3889 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3890 | if (info == NULL) | |
3891 | return ADA_NOT_RENAMING; | |
3892 | switch (info[5]) | |
3893 | { | |
3894 | case '_': | |
3895 | kind = ADA_OBJECT_RENAMING; | |
3896 | info += 6; | |
3897 | break; | |
3898 | case 'E': | |
3899 | kind = ADA_EXCEPTION_RENAMING; | |
3900 | info += 7; | |
3901 | break; | |
3902 | case 'P': | |
3903 | kind = ADA_PACKAGE_RENAMING; | |
3904 | info += 7; | |
3905 | break; | |
3906 | case 'S': | |
3907 | kind = ADA_SUBPROGRAM_RENAMING; | |
3908 | info += 7; | |
3909 | break; | |
3910 | default: | |
3911 | return ADA_NOT_RENAMING; | |
3912 | } | |
14f9c5c9 | 3913 | } |
4c4b4cd2 | 3914 | |
aeb5907d JB |
3915 | if (renamed_entity != NULL) |
3916 | *renamed_entity = info; | |
3917 | suffix = strstr (info, "___XE"); | |
3918 | if (suffix == NULL || suffix == info) | |
3919 | return ADA_NOT_RENAMING; | |
3920 | if (len != NULL) | |
3921 | *len = strlen (info) - strlen (suffix); | |
3922 | suffix += 5; | |
3923 | if (renaming_expr != NULL) | |
3924 | *renaming_expr = suffix; | |
3925 | return kind; | |
3926 | } | |
3927 | ||
3928 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3929 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3930 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3931 | ADA_NOT_RENAMING otherwise. */ | |
3932 | static enum ada_renaming_category | |
3933 | parse_old_style_renaming (struct type *type, | |
3934 | const char **renamed_entity, int *len, | |
3935 | const char **renaming_expr) | |
3936 | { | |
3937 | enum ada_renaming_category kind; | |
3938 | const char *name; | |
3939 | const char *info; | |
3940 | const char *suffix; | |
14f9c5c9 | 3941 | |
aeb5907d JB |
3942 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
3943 | || TYPE_NFIELDS (type) != 1) | |
3944 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 3945 | |
aeb5907d JB |
3946 | name = type_name_no_tag (type); |
3947 | if (name == NULL) | |
3948 | return ADA_NOT_RENAMING; | |
3949 | ||
3950 | name = strstr (name, "___XR"); | |
3951 | if (name == NULL) | |
3952 | return ADA_NOT_RENAMING; | |
3953 | switch (name[5]) | |
3954 | { | |
3955 | case '\0': | |
3956 | case '_': | |
3957 | kind = ADA_OBJECT_RENAMING; | |
3958 | break; | |
3959 | case 'E': | |
3960 | kind = ADA_EXCEPTION_RENAMING; | |
3961 | break; | |
3962 | case 'P': | |
3963 | kind = ADA_PACKAGE_RENAMING; | |
3964 | break; | |
3965 | case 'S': | |
3966 | kind = ADA_SUBPROGRAM_RENAMING; | |
3967 | break; | |
3968 | default: | |
3969 | return ADA_NOT_RENAMING; | |
3970 | } | |
14f9c5c9 | 3971 | |
aeb5907d JB |
3972 | info = TYPE_FIELD_NAME (type, 0); |
3973 | if (info == NULL) | |
3974 | return ADA_NOT_RENAMING; | |
3975 | if (renamed_entity != NULL) | |
3976 | *renamed_entity = info; | |
3977 | suffix = strstr (info, "___XE"); | |
3978 | if (renaming_expr != NULL) | |
3979 | *renaming_expr = suffix + 5; | |
3980 | if (suffix == NULL || suffix == info) | |
3981 | return ADA_NOT_RENAMING; | |
3982 | if (len != NULL) | |
3983 | *len = suffix - info; | |
3984 | return kind; | |
3985 | } | |
52ce6436 | 3986 | |
14f9c5c9 | 3987 | \f |
d2e4a39e | 3988 | |
4c4b4cd2 | 3989 | /* Evaluation: Function Calls */ |
14f9c5c9 | 3990 | |
4c4b4cd2 | 3991 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
3992 | lvalues, and otherwise has the side-effect of allocating memory |
3993 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 3994 | |
d2e4a39e | 3995 | static struct value * |
40bc484c | 3996 | ensure_lval (struct value *val) |
14f9c5c9 | 3997 | { |
40bc484c JB |
3998 | if (VALUE_LVAL (val) == not_lval |
3999 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4000 | { |
df407dfe | 4001 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4002 | const CORE_ADDR addr = |
4003 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4004 | |
40bc484c | 4005 | set_value_address (val, addr); |
a84a8a0d | 4006 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 4007 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4008 | } |
14f9c5c9 AS |
4009 | |
4010 | return val; | |
4011 | } | |
4012 | ||
4013 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4014 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4015 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4016 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4017 | |
a93c0eb6 | 4018 | struct value * |
40bc484c | 4019 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4020 | { |
df407dfe | 4021 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4022 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4023 | struct type *formal_target = |
4024 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4025 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4026 | struct type *actual_target = |
4027 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4028 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4029 | |
4c4b4cd2 | 4030 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4031 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4032 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4033 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4034 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4035 | { |
a84a8a0d | 4036 | struct value *result; |
5b4ee69b | 4037 | |
14f9c5c9 | 4038 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4039 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4040 | result = desc_data (actual); |
14f9c5c9 | 4041 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4042 | { |
4043 | if (VALUE_LVAL (actual) != lval_memory) | |
4044 | { | |
4045 | struct value *val; | |
5b4ee69b | 4046 | |
df407dfe | 4047 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4048 | val = allocate_value (actual_type); |
990a07ab | 4049 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4050 | (char *) value_contents (actual), |
4c4b4cd2 | 4051 | TYPE_LENGTH (actual_type)); |
40bc484c | 4052 | actual = ensure_lval (val); |
4c4b4cd2 | 4053 | } |
a84a8a0d | 4054 | result = value_addr (actual); |
4c4b4cd2 | 4055 | } |
a84a8a0d JB |
4056 | else |
4057 | return actual; | |
4058 | return value_cast_pointers (formal_type, result); | |
14f9c5c9 AS |
4059 | } |
4060 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4061 | return ada_value_ind (actual); | |
4062 | ||
4063 | return actual; | |
4064 | } | |
4065 | ||
438c98a1 JB |
4066 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4067 | type TYPE. This is usually an inefficient no-op except on some targets | |
4068 | (such as AVR) where the representation of a pointer and an address | |
4069 | differs. */ | |
4070 | ||
4071 | static CORE_ADDR | |
4072 | value_pointer (struct value *value, struct type *type) | |
4073 | { | |
4074 | struct gdbarch *gdbarch = get_type_arch (type); | |
4075 | unsigned len = TYPE_LENGTH (type); | |
4076 | gdb_byte *buf = alloca (len); | |
4077 | CORE_ADDR addr; | |
4078 | ||
4079 | addr = value_address (value); | |
4080 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4081 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4082 | return addr; | |
4083 | } | |
4084 | ||
14f9c5c9 | 4085 | |
4c4b4cd2 PH |
4086 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4087 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4088 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4089 | to-descriptor type rather than a descriptor type), a struct value * |
4090 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4091 | |
d2e4a39e | 4092 | static struct value * |
40bc484c | 4093 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4094 | { |
d2e4a39e AS |
4095 | struct type *bounds_type = desc_bounds_type (type); |
4096 | struct type *desc_type = desc_base_type (type); | |
4097 | struct value *descriptor = allocate_value (desc_type); | |
4098 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4099 | int i; |
d2e4a39e | 4100 | |
0963b4bd MS |
4101 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4102 | i > 0; i -= 1) | |
14f9c5c9 | 4103 | { |
19f220c3 JK |
4104 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4105 | ada_array_bound (arr, i, 0), | |
4106 | desc_bound_bitpos (bounds_type, i, 0), | |
4107 | desc_bound_bitsize (bounds_type, i, 0)); | |
4108 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4109 | ada_array_bound (arr, i, 1), | |
4110 | desc_bound_bitpos (bounds_type, i, 1), | |
4111 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4112 | } |
d2e4a39e | 4113 | |
40bc484c | 4114 | bounds = ensure_lval (bounds); |
d2e4a39e | 4115 | |
19f220c3 JK |
4116 | modify_field (value_type (descriptor), |
4117 | value_contents_writeable (descriptor), | |
4118 | value_pointer (ensure_lval (arr), | |
4119 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4120 | fat_pntr_data_bitpos (desc_type), | |
4121 | fat_pntr_data_bitsize (desc_type)); | |
4122 | ||
4123 | modify_field (value_type (descriptor), | |
4124 | value_contents_writeable (descriptor), | |
4125 | value_pointer (bounds, | |
4126 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4127 | fat_pntr_bounds_bitpos (desc_type), | |
4128 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4129 | |
40bc484c | 4130 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4131 | |
4132 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4133 | return value_addr (descriptor); | |
4134 | else | |
4135 | return descriptor; | |
4136 | } | |
14f9c5c9 | 4137 | \f |
963a6417 | 4138 | /* Dummy definitions for an experimental caching module that is not |
0963b4bd | 4139 | * used in the public sources. */ |
96d887e8 | 4140 | |
96d887e8 PH |
4141 | static int |
4142 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 4143 | struct symbol **sym, struct block **block) |
96d887e8 PH |
4144 | { |
4145 | return 0; | |
4146 | } | |
4147 | ||
4148 | static void | |
4149 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
2570f2b7 | 4150 | struct block *block) |
96d887e8 PH |
4151 | { |
4152 | } | |
4c4b4cd2 PH |
4153 | \f |
4154 | /* Symbol Lookup */ | |
4155 | ||
4156 | /* Return the result of a standard (literal, C-like) lookup of NAME in | |
4157 | given DOMAIN, visible from lexical block BLOCK. */ | |
4158 | ||
4159 | static struct symbol * | |
4160 | standard_lookup (const char *name, const struct block *block, | |
4161 | domain_enum domain) | |
4162 | { | |
4163 | struct symbol *sym; | |
4c4b4cd2 | 4164 | |
2570f2b7 | 4165 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 4166 | return sym; |
2570f2b7 UW |
4167 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
4168 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
4169 | return sym; |
4170 | } | |
4171 | ||
4172 | ||
4173 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4174 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4175 | since they contend in overloading in the same way. */ | |
4176 | static int | |
4177 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4178 | { | |
4179 | int i; | |
4180 | ||
4181 | for (i = 0; i < n; i += 1) | |
4182 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4183 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4184 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4185 | return 1; |
4186 | ||
4187 | return 0; | |
4188 | } | |
4189 | ||
4190 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4191 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4192 | |
4193 | static int | |
d2e4a39e | 4194 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4195 | { |
d2e4a39e | 4196 | if (type0 == type1) |
14f9c5c9 | 4197 | return 1; |
d2e4a39e | 4198 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4199 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4200 | return 0; | |
d2e4a39e | 4201 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4202 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4203 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4204 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4205 | return 1; |
d2e4a39e | 4206 | |
14f9c5c9 AS |
4207 | return 0; |
4208 | } | |
4209 | ||
4210 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4211 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4212 | |
4213 | static int | |
d2e4a39e | 4214 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4215 | { |
4216 | if (sym0 == sym1) | |
4217 | return 1; | |
176620f1 | 4218 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4219 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4220 | return 0; | |
4221 | ||
d2e4a39e | 4222 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4223 | { |
4224 | case LOC_UNDEF: | |
4225 | return 1; | |
4226 | case LOC_TYPEDEF: | |
4227 | { | |
4c4b4cd2 PH |
4228 | struct type *type0 = SYMBOL_TYPE (sym0); |
4229 | struct type *type1 = SYMBOL_TYPE (sym1); | |
4230 | char *name0 = SYMBOL_LINKAGE_NAME (sym0); | |
4231 | char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4232 | int len0 = strlen (name0); | |
5b4ee69b | 4233 | |
4c4b4cd2 PH |
4234 | return |
4235 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4236 | && (equiv_types (type0, type1) | |
4237 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4238 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4239 | } |
4240 | case LOC_CONST: | |
4241 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4242 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4243 | default: |
4244 | return 0; | |
14f9c5c9 AS |
4245 | } |
4246 | } | |
4247 | ||
4c4b4cd2 PH |
4248 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4249 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4250 | |
4251 | static void | |
76a01679 JB |
4252 | add_defn_to_vec (struct obstack *obstackp, |
4253 | struct symbol *sym, | |
2570f2b7 | 4254 | struct block *block) |
14f9c5c9 AS |
4255 | { |
4256 | int i; | |
4c4b4cd2 | 4257 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4258 | |
529cad9c PH |
4259 | /* Do not try to complete stub types, as the debugger is probably |
4260 | already scanning all symbols matching a certain name at the | |
4261 | time when this function is called. Trying to replace the stub | |
4262 | type by its associated full type will cause us to restart a scan | |
4263 | which may lead to an infinite recursion. Instead, the client | |
4264 | collecting the matching symbols will end up collecting several | |
4265 | matches, with at least one of them complete. It can then filter | |
4266 | out the stub ones if needed. */ | |
4267 | ||
4c4b4cd2 PH |
4268 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4269 | { | |
4270 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4271 | return; | |
4272 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4273 | { | |
4274 | prevDefns[i].sym = sym; | |
4275 | prevDefns[i].block = block; | |
4c4b4cd2 | 4276 | return; |
76a01679 | 4277 | } |
4c4b4cd2 PH |
4278 | } |
4279 | ||
4280 | { | |
4281 | struct ada_symbol_info info; | |
4282 | ||
4283 | info.sym = sym; | |
4284 | info.block = block; | |
4c4b4cd2 PH |
4285 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4286 | } | |
4287 | } | |
4288 | ||
4289 | /* Number of ada_symbol_info structures currently collected in | |
4290 | current vector in *OBSTACKP. */ | |
4291 | ||
76a01679 JB |
4292 | static int |
4293 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4294 | { |
4295 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4296 | } | |
4297 | ||
4298 | /* Vector of ada_symbol_info structures currently collected in current | |
4299 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4300 | its final address. */ | |
4301 | ||
76a01679 | 4302 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4303 | defns_collected (struct obstack *obstackp, int finish) |
4304 | { | |
4305 | if (finish) | |
4306 | return obstack_finish (obstackp); | |
4307 | else | |
4308 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4309 | } | |
4310 | ||
96d887e8 PH |
4311 | /* Return a minimal symbol matching NAME according to Ada decoding |
4312 | rules. Returns NULL if there is no such minimal symbol. Names | |
4313 | prefixed with "standard__" are handled specially: "standard__" is | |
4314 | first stripped off, and only static and global symbols are searched. */ | |
4c4b4cd2 | 4315 | |
96d887e8 PH |
4316 | struct minimal_symbol * |
4317 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4318 | { |
4c4b4cd2 | 4319 | struct objfile *objfile; |
96d887e8 PH |
4320 | struct minimal_symbol *msymbol; |
4321 | int wild_match; | |
4c4b4cd2 | 4322 | |
96d887e8 | 4323 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
4c4b4cd2 | 4324 | { |
96d887e8 | 4325 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4326 | wild_match = 0; |
4c4b4cd2 PH |
4327 | } |
4328 | else | |
96d887e8 | 4329 | wild_match = (strstr (name, "__") == NULL); |
4c4b4cd2 | 4330 | |
96d887e8 PH |
4331 | ALL_MSYMBOLS (objfile, msymbol) |
4332 | { | |
40658b94 | 4333 | if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match) |
96d887e8 PH |
4334 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
4335 | return msymbol; | |
4336 | } | |
4c4b4cd2 | 4337 | |
96d887e8 PH |
4338 | return NULL; |
4339 | } | |
4c4b4cd2 | 4340 | |
96d887e8 PH |
4341 | /* For all subprograms that statically enclose the subprogram of the |
4342 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4343 | and their blocks to the list of data in OBSTACKP, as for | |
4344 | ada_add_block_symbols (q.v.). If WILD, treat as NAME with a | |
4345 | wildcard prefix. */ | |
4c4b4cd2 | 4346 | |
96d887e8 PH |
4347 | static void |
4348 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4349 | const char *name, domain_enum namespace, |
96d887e8 PH |
4350 | int wild_match) |
4351 | { | |
96d887e8 | 4352 | } |
14f9c5c9 | 4353 | |
96d887e8 PH |
4354 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4355 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4356 | |
96d887e8 PH |
4357 | static int |
4358 | is_nondebugging_type (struct type *type) | |
4359 | { | |
4360 | char *name = ada_type_name (type); | |
5b4ee69b | 4361 | |
96d887e8 PH |
4362 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4363 | } | |
4c4b4cd2 | 4364 | |
96d887e8 PH |
4365 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4366 | duplicate other symbols in the list (The only case I know of where | |
4367 | this happens is when object files containing stabs-in-ecoff are | |
4368 | linked with files containing ordinary ecoff debugging symbols (or no | |
4369 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4370 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4371 | |
96d887e8 PH |
4372 | static int |
4373 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4374 | { | |
4375 | int i, j; | |
4c4b4cd2 | 4376 | |
96d887e8 PH |
4377 | i = 0; |
4378 | while (i < nsyms) | |
4379 | { | |
339c13b6 JB |
4380 | int remove = 0; |
4381 | ||
4382 | /* If two symbols have the same name and one of them is a stub type, | |
4383 | the get rid of the stub. */ | |
4384 | ||
4385 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4386 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4387 | { | |
4388 | for (j = 0; j < nsyms; j++) | |
4389 | { | |
4390 | if (j != i | |
4391 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4392 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4393 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4394 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
4395 | remove = 1; | |
4396 | } | |
4397 | } | |
4398 | ||
4399 | /* Two symbols with the same name, same class and same address | |
4400 | should be identical. */ | |
4401 | ||
4402 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4403 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4404 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4405 | { | |
4406 | for (j = 0; j < nsyms; j += 1) | |
4407 | { | |
4408 | if (i != j | |
4409 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4410 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4411 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4412 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4413 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4414 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
339c13b6 | 4415 | remove = 1; |
4c4b4cd2 | 4416 | } |
4c4b4cd2 | 4417 | } |
339c13b6 JB |
4418 | |
4419 | if (remove) | |
4420 | { | |
4421 | for (j = i + 1; j < nsyms; j += 1) | |
4422 | syms[j - 1] = syms[j]; | |
4423 | nsyms -= 1; | |
4424 | } | |
4425 | ||
96d887e8 | 4426 | i += 1; |
14f9c5c9 | 4427 | } |
96d887e8 | 4428 | return nsyms; |
14f9c5c9 AS |
4429 | } |
4430 | ||
96d887e8 PH |
4431 | /* Given a type that corresponds to a renaming entity, use the type name |
4432 | to extract the scope (package name or function name, fully qualified, | |
4433 | and following the GNAT encoding convention) where this renaming has been | |
4434 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4435 | |
96d887e8 PH |
4436 | static char * |
4437 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4438 | { |
96d887e8 | 4439 | /* The renaming types adhere to the following convention: |
0963b4bd | 4440 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
4441 | So, to extract the scope, we search for the "___XR" extension, |
4442 | and then backtrack until we find the first "__". */ | |
76a01679 | 4443 | |
96d887e8 PH |
4444 | const char *name = type_name_no_tag (renaming_type); |
4445 | char *suffix = strstr (name, "___XR"); | |
4446 | char *last; | |
4447 | int scope_len; | |
4448 | char *scope; | |
14f9c5c9 | 4449 | |
96d887e8 PH |
4450 | /* Now, backtrack a bit until we find the first "__". Start looking |
4451 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4452 | |
96d887e8 PH |
4453 | for (last = suffix - 3; last > name; last--) |
4454 | if (last[0] == '_' && last[1] == '_') | |
4455 | break; | |
76a01679 | 4456 | |
96d887e8 | 4457 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4458 | |
96d887e8 PH |
4459 | scope_len = last - name; |
4460 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4461 | |
96d887e8 PH |
4462 | strncpy (scope, name, scope_len); |
4463 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4464 | |
96d887e8 | 4465 | return scope; |
4c4b4cd2 PH |
4466 | } |
4467 | ||
96d887e8 | 4468 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4469 | |
96d887e8 PH |
4470 | static int |
4471 | is_package_name (const char *name) | |
4c4b4cd2 | 4472 | { |
96d887e8 PH |
4473 | /* Here, We take advantage of the fact that no symbols are generated |
4474 | for packages, while symbols are generated for each function. | |
4475 | So the condition for NAME represent a package becomes equivalent | |
4476 | to NAME not existing in our list of symbols. There is only one | |
4477 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4478 | |
96d887e8 | 4479 | char *fun_name; |
76a01679 | 4480 | |
96d887e8 PH |
4481 | /* If it is a function that has not been defined at library level, |
4482 | then we should be able to look it up in the symbols. */ | |
4483 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4484 | return 0; | |
14f9c5c9 | 4485 | |
96d887e8 PH |
4486 | /* Library-level function names start with "_ada_". See if function |
4487 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4488 | |
96d887e8 | 4489 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4490 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4491 | if (strstr (name, "__") != NULL) |
4492 | return 0; | |
4c4b4cd2 | 4493 | |
b435e160 | 4494 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4495 | |
96d887e8 PH |
4496 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4497 | } | |
14f9c5c9 | 4498 | |
96d887e8 | 4499 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4500 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4501 | |
96d887e8 | 4502 | static int |
aeb5907d | 4503 | old_renaming_is_invisible (const struct symbol *sym, char *function_name) |
96d887e8 | 4504 | { |
aeb5907d JB |
4505 | char *scope; |
4506 | ||
4507 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4508 | return 0; | |
4509 | ||
4510 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4511 | |
96d887e8 | 4512 | make_cleanup (xfree, scope); |
14f9c5c9 | 4513 | |
96d887e8 PH |
4514 | /* If the rename has been defined in a package, then it is visible. */ |
4515 | if (is_package_name (scope)) | |
aeb5907d | 4516 | return 0; |
14f9c5c9 | 4517 | |
96d887e8 PH |
4518 | /* Check that the rename is in the current function scope by checking |
4519 | that its name starts with SCOPE. */ | |
76a01679 | 4520 | |
96d887e8 PH |
4521 | /* If the function name starts with "_ada_", it means that it is |
4522 | a library-level function. Strip this prefix before doing the | |
4523 | comparison, as the encoding for the renaming does not contain | |
4524 | this prefix. */ | |
4525 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4526 | function_name += 5; | |
f26caa11 | 4527 | |
aeb5907d | 4528 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4529 | } |
4530 | ||
aeb5907d JB |
4531 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4532 | is not visible from the function associated with CURRENT_BLOCK or | |
4533 | that is superfluous due to the presence of more specific renaming | |
4534 | information. Places surviving symbols in the initial entries of | |
4535 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4536 | |
4537 | Rationale: | |
aeb5907d JB |
4538 | First, in cases where an object renaming is implemented as a |
4539 | reference variable, GNAT may produce both the actual reference | |
4540 | variable and the renaming encoding. In this case, we discard the | |
4541 | latter. | |
4542 | ||
4543 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4544 | entity. Unfortunately, STABS currently does not support the definition |
4545 | of types that are local to a given lexical block, so all renamings types | |
4546 | are emitted at library level. As a consequence, if an application | |
4547 | contains two renaming entities using the same name, and a user tries to | |
4548 | print the value of one of these entities, the result of the ada symbol | |
4549 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4550 | |
96d887e8 PH |
4551 | This function partially covers for this limitation by attempting to |
4552 | remove from the SYMS list renaming symbols that should be visible | |
4553 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4554 | method with the current information available. The implementation | |
4555 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4556 | ||
4557 | - When the user tries to print a rename in a function while there | |
4558 | is another rename entity defined in a package: Normally, the | |
4559 | rename in the function has precedence over the rename in the | |
4560 | package, so the latter should be removed from the list. This is | |
4561 | currently not the case. | |
4562 | ||
4563 | - This function will incorrectly remove valid renames if | |
4564 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4565 | has been changed by an "Export" pragma. As a consequence, | |
4566 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4567 | |
14f9c5c9 | 4568 | static int |
aeb5907d JB |
4569 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4570 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4571 | { |
4572 | struct symbol *current_function; | |
4573 | char *current_function_name; | |
4574 | int i; | |
aeb5907d JB |
4575 | int is_new_style_renaming; |
4576 | ||
4577 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4578 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 4579 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
4580 | is_new_style_renaming = 0; |
4581 | for (i = 0; i < nsyms; i += 1) | |
4582 | { | |
4583 | struct symbol *sym = syms[i].sym; | |
4584 | struct block *block = syms[i].block; | |
4585 | const char *name; | |
4586 | const char *suffix; | |
4587 | ||
4588 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4589 | continue; | |
4590 | name = SYMBOL_LINKAGE_NAME (sym); | |
4591 | suffix = strstr (name, "___XR"); | |
4592 | ||
4593 | if (suffix != NULL) | |
4594 | { | |
4595 | int name_len = suffix - name; | |
4596 | int j; | |
5b4ee69b | 4597 | |
aeb5907d JB |
4598 | is_new_style_renaming = 1; |
4599 | for (j = 0; j < nsyms; j += 1) | |
4600 | if (i != j && syms[j].sym != NULL | |
4601 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4602 | name_len) == 0 | |
4603 | && block == syms[j].block) | |
4604 | syms[j].sym = NULL; | |
4605 | } | |
4606 | } | |
4607 | if (is_new_style_renaming) | |
4608 | { | |
4609 | int j, k; | |
4610 | ||
4611 | for (j = k = 0; j < nsyms; j += 1) | |
4612 | if (syms[j].sym != NULL) | |
4613 | { | |
4614 | syms[k] = syms[j]; | |
4615 | k += 1; | |
4616 | } | |
4617 | return k; | |
4618 | } | |
4c4b4cd2 PH |
4619 | |
4620 | /* Extract the function name associated to CURRENT_BLOCK. | |
4621 | Abort if unable to do so. */ | |
76a01679 | 4622 | |
4c4b4cd2 PH |
4623 | if (current_block == NULL) |
4624 | return nsyms; | |
76a01679 | 4625 | |
7f0df278 | 4626 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4627 | if (current_function == NULL) |
4628 | return nsyms; | |
4629 | ||
4630 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4631 | if (current_function_name == NULL) | |
4632 | return nsyms; | |
4633 | ||
4634 | /* Check each of the symbols, and remove it from the list if it is | |
4635 | a type corresponding to a renaming that is out of the scope of | |
4636 | the current block. */ | |
4637 | ||
4638 | i = 0; | |
4639 | while (i < nsyms) | |
4640 | { | |
aeb5907d JB |
4641 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4642 | == ADA_OBJECT_RENAMING | |
4643 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4644 | { |
4645 | int j; | |
5b4ee69b | 4646 | |
aeb5907d | 4647 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4648 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4649 | nsyms -= 1; |
4650 | } | |
4651 | else | |
4652 | i += 1; | |
4653 | } | |
4654 | ||
4655 | return nsyms; | |
4656 | } | |
4657 | ||
339c13b6 JB |
4658 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4659 | whose name and domain match NAME and DOMAIN respectively. | |
4660 | If no match was found, then extend the search to "enclosing" | |
4661 | routines (in other words, if we're inside a nested function, | |
4662 | search the symbols defined inside the enclosing functions). | |
4663 | ||
4664 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4665 | ||
4666 | static void | |
4667 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4668 | struct block *block, domain_enum domain, | |
4669 | int wild_match) | |
4670 | { | |
4671 | int block_depth = 0; | |
4672 | ||
4673 | while (block != NULL) | |
4674 | { | |
4675 | block_depth += 1; | |
4676 | ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match); | |
4677 | ||
4678 | /* If we found a non-function match, assume that's the one. */ | |
4679 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4680 | num_defns_collected (obstackp))) | |
4681 | return; | |
4682 | ||
4683 | block = BLOCK_SUPERBLOCK (block); | |
4684 | } | |
4685 | ||
4686 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4687 | enclosing subprogram. */ | |
4688 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
4689 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match); | |
4690 | } | |
4691 | ||
ccefe4c4 | 4692 | /* An object of this type is used as the user_data argument when |
40658b94 | 4693 | calling the map_matching_symbols method. */ |
ccefe4c4 | 4694 | |
40658b94 | 4695 | struct match_data |
ccefe4c4 | 4696 | { |
40658b94 | 4697 | struct objfile *objfile; |
ccefe4c4 | 4698 | struct obstack *obstackp; |
40658b94 PH |
4699 | struct symbol *arg_sym; |
4700 | int found_sym; | |
ccefe4c4 TT |
4701 | }; |
4702 | ||
40658b94 PH |
4703 | /* A callback for add_matching_symbols that adds SYM, found in BLOCK, |
4704 | to a list of symbols. DATA0 is a pointer to a struct match_data * | |
4705 | containing the obstack that collects the symbol list, the file that SYM | |
4706 | must come from, a flag indicating whether a non-argument symbol has | |
4707 | been found in the current block, and the last argument symbol | |
4708 | passed in SYM within the current block (if any). When SYM is null, | |
4709 | marking the end of a block, the argument symbol is added if no | |
4710 | other has been found. */ | |
ccefe4c4 | 4711 | |
40658b94 PH |
4712 | static int |
4713 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 4714 | { |
40658b94 PH |
4715 | struct match_data *data = (struct match_data *) data0; |
4716 | ||
4717 | if (sym == NULL) | |
4718 | { | |
4719 | if (!data->found_sym && data->arg_sym != NULL) | |
4720 | add_defn_to_vec (data->obstackp, | |
4721 | fixup_symbol_section (data->arg_sym, data->objfile), | |
4722 | block); | |
4723 | data->found_sym = 0; | |
4724 | data->arg_sym = NULL; | |
4725 | } | |
4726 | else | |
4727 | { | |
4728 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
4729 | return 0; | |
4730 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
4731 | data->arg_sym = sym; | |
4732 | else | |
4733 | { | |
4734 | data->found_sym = 1; | |
4735 | add_defn_to_vec (data->obstackp, | |
4736 | fixup_symbol_section (sym, data->objfile), | |
4737 | block); | |
4738 | } | |
4739 | } | |
4740 | return 0; | |
4741 | } | |
4742 | ||
4743 | /* Compare STRING1 to STRING2, with results as for strcmp. | |
4744 | Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0 | |
4745 | implies compare_names (STRING1, STRING2) (they may differ as to | |
4746 | what symbols compare equal). */ | |
5b4ee69b | 4747 | |
40658b94 PH |
4748 | static int |
4749 | compare_names (const char *string1, const char *string2) | |
4750 | { | |
4751 | while (*string1 != '\0' && *string2 != '\0') | |
4752 | { | |
4753 | if (isspace (*string1) || isspace (*string2)) | |
4754 | return strcmp_iw_ordered (string1, string2); | |
4755 | if (*string1 != *string2) | |
4756 | break; | |
4757 | string1 += 1; | |
4758 | string2 += 1; | |
4759 | } | |
4760 | switch (*string1) | |
4761 | { | |
4762 | case '(': | |
4763 | return strcmp_iw_ordered (string1, string2); | |
4764 | case '_': | |
4765 | if (*string2 == '\0') | |
4766 | { | |
052874e8 | 4767 | if (is_name_suffix (string1)) |
40658b94 PH |
4768 | return 0; |
4769 | else | |
4770 | return -1; | |
4771 | } | |
dbb8534f | 4772 | /* FALLTHROUGH */ |
40658b94 PH |
4773 | default: |
4774 | if (*string2 == '(') | |
4775 | return strcmp_iw_ordered (string1, string2); | |
4776 | else | |
4777 | return *string1 - *string2; | |
4778 | } | |
ccefe4c4 TT |
4779 | } |
4780 | ||
339c13b6 JB |
4781 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
4782 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
4783 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
4784 | ||
4785 | static void | |
40658b94 PH |
4786 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
4787 | domain_enum domain, int global, | |
4788 | int is_wild_match) | |
339c13b6 JB |
4789 | { |
4790 | struct objfile *objfile; | |
40658b94 | 4791 | struct match_data data; |
339c13b6 | 4792 | |
ccefe4c4 | 4793 | data.obstackp = obstackp; |
40658b94 | 4794 | data.arg_sym = NULL; |
339c13b6 | 4795 | |
ccefe4c4 | 4796 | ALL_OBJFILES (objfile) |
40658b94 PH |
4797 | { |
4798 | data.objfile = objfile; | |
4799 | ||
4800 | if (is_wild_match) | |
4801 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
4802 | aux_add_nonlocal_symbols, &data, | |
4803 | wild_match, NULL); | |
4804 | else | |
4805 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
4806 | aux_add_nonlocal_symbols, &data, | |
4807 | full_match, compare_names); | |
4808 | } | |
4809 | ||
4810 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
4811 | { | |
4812 | ALL_OBJFILES (objfile) | |
4813 | { | |
4814 | char *name1 = alloca (strlen (name) + sizeof ("_ada_")); | |
4815 | strcpy (name1, "_ada_"); | |
4816 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
4817 | data.objfile = objfile; | |
0963b4bd MS |
4818 | objfile->sf->qf->map_matching_symbols (name1, domain, |
4819 | objfile, global, | |
4820 | aux_add_nonlocal_symbols, | |
4821 | &data, | |
40658b94 PH |
4822 | full_match, compare_names); |
4823 | } | |
4824 | } | |
339c13b6 JB |
4825 | } |
4826 | ||
4c4b4cd2 PH |
4827 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing |
4828 | scope and in global scopes, returning the number of matches. Sets | |
6c9353d3 | 4829 | *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 PH |
4830 | indicating the symbols found and the blocks and symbol tables (if |
4831 | any) in which they were found. This vector are transient---good only to | |
4832 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4833 | symbol match within the nest of blocks whose innermost member is BLOCK0, | |
4834 | is the one match returned (no other matches in that or | |
4835 | enclosing blocks is returned). If there are any matches in or | |
4836 | surrounding BLOCK0, then these alone are returned. Otherwise, the | |
4837 | search extends to global and file-scope (static) symbol tables. | |
4838 | Names prefixed with "standard__" are handled specially: "standard__" | |
4839 | is first stripped off, and only static and global symbols are searched. */ | |
14f9c5c9 AS |
4840 | |
4841 | int | |
4c4b4cd2 | 4842 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
76a01679 JB |
4843 | domain_enum namespace, |
4844 | struct ada_symbol_info **results) | |
14f9c5c9 AS |
4845 | { |
4846 | struct symbol *sym; | |
14f9c5c9 | 4847 | struct block *block; |
4c4b4cd2 | 4848 | const char *name; |
4c4b4cd2 | 4849 | int wild_match; |
14f9c5c9 | 4850 | int cacheIfUnique; |
4c4b4cd2 | 4851 | int ndefns; |
14f9c5c9 | 4852 | |
4c4b4cd2 PH |
4853 | obstack_free (&symbol_list_obstack, NULL); |
4854 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 4855 | |
14f9c5c9 AS |
4856 | cacheIfUnique = 0; |
4857 | ||
4858 | /* Search specified block and its superiors. */ | |
4859 | ||
4c4b4cd2 PH |
4860 | wild_match = (strstr (name0, "__") == NULL); |
4861 | name = name0; | |
76a01679 JB |
4862 | block = (struct block *) block0; /* FIXME: No cast ought to be |
4863 | needed, but adding const will | |
4864 | have a cascade effect. */ | |
339c13b6 JB |
4865 | |
4866 | /* Special case: If the user specifies a symbol name inside package | |
4867 | Standard, do a non-wild matching of the symbol name without | |
4868 | the "standard__" prefix. This was primarily introduced in order | |
4869 | to allow the user to specifically access the standard exceptions | |
4870 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4871 | is ambiguous (due to the user defining its own Constraint_Error | |
4872 | entity inside its program). */ | |
4c4b4cd2 PH |
4873 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
4874 | { | |
4875 | wild_match = 0; | |
4876 | block = NULL; | |
4877 | name = name0 + sizeof ("standard__") - 1; | |
4878 | } | |
4879 | ||
339c13b6 | 4880 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 4881 | |
339c13b6 JB |
4882 | ada_add_local_symbols (&symbol_list_obstack, name, block, namespace, |
4883 | wild_match); | |
4c4b4cd2 | 4884 | if (num_defns_collected (&symbol_list_obstack) > 0) |
14f9c5c9 | 4885 | goto done; |
d2e4a39e | 4886 | |
339c13b6 JB |
4887 | /* No non-global symbols found. Check our cache to see if we have |
4888 | already performed this search before. If we have, then return | |
4889 | the same result. */ | |
4890 | ||
14f9c5c9 | 4891 | cacheIfUnique = 1; |
2570f2b7 | 4892 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
4893 | { |
4894 | if (sym != NULL) | |
2570f2b7 | 4895 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
4896 | goto done; |
4897 | } | |
14f9c5c9 | 4898 | |
339c13b6 JB |
4899 | /* Search symbols from all global blocks. */ |
4900 | ||
40658b94 PH |
4901 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1, |
4902 | wild_match); | |
d2e4a39e | 4903 | |
4c4b4cd2 | 4904 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 4905 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 4906 | |
4c4b4cd2 | 4907 | if (num_defns_collected (&symbol_list_obstack) == 0) |
40658b94 PH |
4908 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0, |
4909 | wild_match); | |
14f9c5c9 | 4910 | |
4c4b4cd2 PH |
4911 | done: |
4912 | ndefns = num_defns_collected (&symbol_list_obstack); | |
4913 | *results = defns_collected (&symbol_list_obstack, 1); | |
4914 | ||
4915 | ndefns = remove_extra_symbols (*results, ndefns); | |
4916 | ||
d2e4a39e | 4917 | if (ndefns == 0) |
2570f2b7 | 4918 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 4919 | |
4c4b4cd2 | 4920 | if (ndefns == 1 && cacheIfUnique) |
2570f2b7 | 4921 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 4922 | |
aeb5907d | 4923 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 4924 | |
14f9c5c9 AS |
4925 | return ndefns; |
4926 | } | |
4927 | ||
d2e4a39e | 4928 | struct symbol * |
aeb5907d | 4929 | ada_lookup_encoded_symbol (const char *name, const struct block *block0, |
21b556f4 | 4930 | domain_enum namespace, struct block **block_found) |
14f9c5c9 | 4931 | { |
4c4b4cd2 | 4932 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
4933 | int n_candidates; |
4934 | ||
aeb5907d | 4935 | n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates); |
14f9c5c9 AS |
4936 | |
4937 | if (n_candidates == 0) | |
4938 | return NULL; | |
4c4b4cd2 | 4939 | |
aeb5907d JB |
4940 | if (block_found != NULL) |
4941 | *block_found = candidates[0].block; | |
4c4b4cd2 | 4942 | |
21b556f4 | 4943 | return fixup_symbol_section (candidates[0].sym, NULL); |
aeb5907d JB |
4944 | } |
4945 | ||
4946 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
4947 | scope and in global scopes, or NULL if none. NAME is folded and | |
4948 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 4949 | choosing the first symbol if there are multiple choices. |
aeb5907d JB |
4950 | *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol |
4951 | table in which the symbol was found (in both cases, these | |
4952 | assignments occur only if the pointers are non-null). */ | |
4953 | struct symbol * | |
4954 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 4955 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d JB |
4956 | { |
4957 | if (is_a_field_of_this != NULL) | |
4958 | *is_a_field_of_this = 0; | |
4959 | ||
4960 | return | |
4961 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), | |
21b556f4 | 4962 | block0, namespace, NULL); |
4c4b4cd2 | 4963 | } |
14f9c5c9 | 4964 | |
4c4b4cd2 PH |
4965 | static struct symbol * |
4966 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 | 4967 | const struct block *block, |
21b556f4 | 4968 | const domain_enum domain) |
4c4b4cd2 | 4969 | { |
94af9270 | 4970 | return ada_lookup_symbol (name, block_static_block (block), domain, NULL); |
14f9c5c9 AS |
4971 | } |
4972 | ||
4973 | ||
4c4b4cd2 PH |
4974 | /* True iff STR is a possible encoded suffix of a normal Ada name |
4975 | that is to be ignored for matching purposes. Suffixes of parallel | |
4976 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 4977 | are given by any of the regular expressions: |
4c4b4cd2 | 4978 | |
babe1480 JB |
4979 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
4980 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
4981 | _E[0-9]+[bs]$ [protected object entry suffixes] | |
61ee279c | 4982 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
4983 | |
4984 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
4985 | match is performed. This sequence is used to differentiate homonyms, | |
4986 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 4987 | |
14f9c5c9 | 4988 | static int |
d2e4a39e | 4989 | is_name_suffix (const char *str) |
14f9c5c9 AS |
4990 | { |
4991 | int k; | |
4c4b4cd2 PH |
4992 | const char *matching; |
4993 | const int len = strlen (str); | |
4994 | ||
babe1480 JB |
4995 | /* Skip optional leading __[0-9]+. */ |
4996 | ||
4c4b4cd2 PH |
4997 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
4998 | { | |
babe1480 JB |
4999 | str += 3; |
5000 | while (isdigit (str[0])) | |
5001 | str += 1; | |
4c4b4cd2 | 5002 | } |
babe1480 JB |
5003 | |
5004 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5005 | |
babe1480 | 5006 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5007 | { |
babe1480 | 5008 | matching = str + 1; |
4c4b4cd2 PH |
5009 | while (isdigit (matching[0])) |
5010 | matching += 1; | |
5011 | if (matching[0] == '\0') | |
5012 | return 1; | |
5013 | } | |
5014 | ||
5015 | /* ___[0-9]+ */ | |
babe1480 | 5016 | |
4c4b4cd2 PH |
5017 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5018 | { | |
5019 | matching = str + 3; | |
5020 | while (isdigit (matching[0])) | |
5021 | matching += 1; | |
5022 | if (matching[0] == '\0') | |
5023 | return 1; | |
5024 | } | |
5025 | ||
529cad9c PH |
5026 | #if 0 |
5027 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5028 | with a N at the end. Unfortunately, the compiler uses the same |
5029 | convention for other internal types it creates. So treating | |
529cad9c | 5030 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5031 | some regressions. For instance, consider the case of an enumerated |
5032 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5033 | name ends with N. |
5034 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5035 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5036 | to be something like "_N" instead. In the meantime, do not do |
5037 | the following check. */ | |
5038 | /* Protected Object Subprograms */ | |
5039 | if (len == 1 && str [0] == 'N') | |
5040 | return 1; | |
5041 | #endif | |
5042 | ||
5043 | /* _E[0-9]+[bs]$ */ | |
5044 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5045 | { | |
5046 | matching = str + 3; | |
5047 | while (isdigit (matching[0])) | |
5048 | matching += 1; | |
5049 | if ((matching[0] == 'b' || matching[0] == 's') | |
5050 | && matching [1] == '\0') | |
5051 | return 1; | |
5052 | } | |
5053 | ||
4c4b4cd2 PH |
5054 | /* ??? We should not modify STR directly, as we are doing below. This |
5055 | is fine in this case, but may become problematic later if we find | |
5056 | that this alternative did not work, and want to try matching | |
5057 | another one from the begining of STR. Since we modified it, we | |
5058 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5059 | if (str[0] == 'X') |
5060 | { | |
5061 | str += 1; | |
d2e4a39e | 5062 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5063 | { |
5064 | if (str[0] != 'n' && str[0] != 'b') | |
5065 | return 0; | |
5066 | str += 1; | |
5067 | } | |
14f9c5c9 | 5068 | } |
babe1480 | 5069 | |
14f9c5c9 AS |
5070 | if (str[0] == '\000') |
5071 | return 1; | |
babe1480 | 5072 | |
d2e4a39e | 5073 | if (str[0] == '_') |
14f9c5c9 AS |
5074 | { |
5075 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5076 | return 0; |
d2e4a39e | 5077 | if (str[2] == '_') |
4c4b4cd2 | 5078 | { |
61ee279c PH |
5079 | if (strcmp (str + 3, "JM") == 0) |
5080 | return 1; | |
5081 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5082 | the LJM suffix in favor of the JM one. But we will | |
5083 | still accept LJM as a valid suffix for a reasonable | |
5084 | amount of time, just to allow ourselves to debug programs | |
5085 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5086 | if (strcmp (str + 3, "LJM") == 0) |
5087 | return 1; | |
5088 | if (str[3] != 'X') | |
5089 | return 0; | |
1265e4aa JB |
5090 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5091 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5092 | return 1; |
5093 | if (str[4] == 'R' && str[5] != 'T') | |
5094 | return 1; | |
5095 | return 0; | |
5096 | } | |
5097 | if (!isdigit (str[2])) | |
5098 | return 0; | |
5099 | for (k = 3; str[k] != '\0'; k += 1) | |
5100 | if (!isdigit (str[k]) && str[k] != '_') | |
5101 | return 0; | |
14f9c5c9 AS |
5102 | return 1; |
5103 | } | |
4c4b4cd2 | 5104 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5105 | { |
4c4b4cd2 PH |
5106 | for (k = 2; str[k] != '\0'; k += 1) |
5107 | if (!isdigit (str[k]) && str[k] != '_') | |
5108 | return 0; | |
14f9c5c9 AS |
5109 | return 1; |
5110 | } | |
5111 | return 0; | |
5112 | } | |
d2e4a39e | 5113 | |
aeb5907d JB |
5114 | /* Return non-zero if the string starting at NAME and ending before |
5115 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5116 | |
5117 | static int | |
5118 | is_valid_name_for_wild_match (const char *name0) | |
5119 | { | |
5120 | const char *decoded_name = ada_decode (name0); | |
5121 | int i; | |
5122 | ||
5823c3ef JB |
5123 | /* If the decoded name starts with an angle bracket, it means that |
5124 | NAME0 does not follow the GNAT encoding format. It should then | |
5125 | not be allowed as a possible wild match. */ | |
5126 | if (decoded_name[0] == '<') | |
5127 | return 0; | |
5128 | ||
529cad9c PH |
5129 | for (i=0; decoded_name[i] != '\0'; i++) |
5130 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5131 | return 0; | |
5132 | ||
5133 | return 1; | |
5134 | } | |
5135 | ||
73589123 PH |
5136 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
5137 | that could start a simple name. Assumes that *NAMEP points into | |
5138 | the string beginning at NAME0. */ | |
4c4b4cd2 | 5139 | |
14f9c5c9 | 5140 | static int |
73589123 | 5141 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 5142 | { |
73589123 | 5143 | const char *name = *namep; |
5b4ee69b | 5144 | |
5823c3ef | 5145 | while (1) |
14f9c5c9 | 5146 | { |
aa27d0b3 | 5147 | int t0, t1; |
73589123 PH |
5148 | |
5149 | t0 = *name; | |
5150 | if (t0 == '_') | |
5151 | { | |
5152 | t1 = name[1]; | |
5153 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5154 | { | |
5155 | name += 1; | |
5156 | if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0) | |
5157 | break; | |
5158 | else | |
5159 | name += 1; | |
5160 | } | |
aa27d0b3 JB |
5161 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5162 | || name[2] == target0)) | |
73589123 PH |
5163 | { |
5164 | name += 2; | |
5165 | break; | |
5166 | } | |
5167 | else | |
5168 | return 0; | |
5169 | } | |
5170 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5171 | name += 1; | |
5172 | else | |
5823c3ef | 5173 | return 0; |
73589123 PH |
5174 | } |
5175 | ||
5176 | *namep = name; | |
5177 | return 1; | |
5178 | } | |
5179 | ||
5180 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
5181 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5182 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
5183 | ||
5184 | static int | |
5185 | wild_match (const char *name, const char *patn) | |
5186 | { | |
5187 | const char *p, *n; | |
5188 | const char *name0 = name; | |
5189 | ||
5190 | while (1) | |
5191 | { | |
5192 | const char *match = name; | |
5193 | ||
5194 | if (*name == *patn) | |
5195 | { | |
5196 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5197 | if (*p != *name) | |
5198 | break; | |
5199 | if (*p == '\0' && is_name_suffix (name)) | |
5200 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
5201 | ||
5202 | if (name[-1] == '_') | |
5203 | name -= 1; | |
5204 | } | |
5205 | if (!advance_wild_match (&name, name0, *patn)) | |
5206 | return 1; | |
96d887e8 | 5207 | } |
96d887e8 PH |
5208 | } |
5209 | ||
40658b94 PH |
5210 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
5211 | informational suffix. */ | |
5212 | ||
c4d840bd PH |
5213 | static int |
5214 | full_match (const char *sym_name, const char *search_name) | |
5215 | { | |
40658b94 | 5216 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
5217 | } |
5218 | ||
5219 | ||
96d887e8 PH |
5220 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5221 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 5222 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
96d887e8 PH |
5223 | OBJFILE is the section containing BLOCK. |
5224 | SYMTAB is recorded with each symbol added. */ | |
5225 | ||
5226 | static void | |
5227 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 5228 | struct block *block, const char *name, |
96d887e8 | 5229 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5230 | int wild) |
96d887e8 PH |
5231 | { |
5232 | struct dict_iterator iter; | |
5233 | int name_len = strlen (name); | |
5234 | /* A matching argument symbol, if any. */ | |
5235 | struct symbol *arg_sym; | |
5236 | /* Set true when we find a matching non-argument symbol. */ | |
5237 | int found_sym; | |
5238 | struct symbol *sym; | |
5239 | ||
5240 | arg_sym = NULL; | |
5241 | found_sym = 0; | |
5242 | if (wild) | |
5243 | { | |
c4d840bd PH |
5244 | for (sym = dict_iter_match_first (BLOCK_DICT (block), name, |
5245 | wild_match, &iter); | |
5246 | sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 5247 | { |
5eeb2539 AR |
5248 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5249 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 5250 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 5251 | { |
2a2d4dc3 AS |
5252 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5253 | continue; | |
5254 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5255 | arg_sym = sym; | |
5256 | else | |
5257 | { | |
76a01679 JB |
5258 | found_sym = 1; |
5259 | add_defn_to_vec (obstackp, | |
5260 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5261 | block); |
76a01679 JB |
5262 | } |
5263 | } | |
5264 | } | |
96d887e8 PH |
5265 | } |
5266 | else | |
5267 | { | |
c4d840bd | 5268 | for (sym = dict_iter_match_first (BLOCK_DICT (block), name, |
40658b94 | 5269 | full_match, &iter); |
c4d840bd | 5270 | sym != NULL; sym = dict_iter_match_next (name, full_match, &iter)) |
76a01679 | 5271 | { |
5eeb2539 AR |
5272 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5273 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 5274 | { |
c4d840bd PH |
5275 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5276 | { | |
5277 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5278 | arg_sym = sym; | |
5279 | else | |
2a2d4dc3 | 5280 | { |
c4d840bd PH |
5281 | found_sym = 1; |
5282 | add_defn_to_vec (obstackp, | |
5283 | fixup_symbol_section (sym, objfile), | |
5284 | block); | |
2a2d4dc3 | 5285 | } |
c4d840bd | 5286 | } |
76a01679 JB |
5287 | } |
5288 | } | |
96d887e8 PH |
5289 | } |
5290 | ||
5291 | if (!found_sym && arg_sym != NULL) | |
5292 | { | |
76a01679 JB |
5293 | add_defn_to_vec (obstackp, |
5294 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5295 | block); |
96d887e8 PH |
5296 | } |
5297 | ||
5298 | if (!wild) | |
5299 | { | |
5300 | arg_sym = NULL; | |
5301 | found_sym = 0; | |
5302 | ||
5303 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5304 | { |
5eeb2539 AR |
5305 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5306 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5307 | { |
5308 | int cmp; | |
5309 | ||
5310 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5311 | if (cmp == 0) | |
5312 | { | |
5313 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5314 | if (cmp == 0) | |
5315 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5316 | name_len); | |
5317 | } | |
5318 | ||
5319 | if (cmp == 0 | |
5320 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5321 | { | |
2a2d4dc3 AS |
5322 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5323 | { | |
5324 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5325 | arg_sym = sym; | |
5326 | else | |
5327 | { | |
5328 | found_sym = 1; | |
5329 | add_defn_to_vec (obstackp, | |
5330 | fixup_symbol_section (sym, objfile), | |
5331 | block); | |
5332 | } | |
5333 | } | |
76a01679 JB |
5334 | } |
5335 | } | |
76a01679 | 5336 | } |
96d887e8 PH |
5337 | |
5338 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5339 | They aren't parameters, right? */ | |
5340 | if (!found_sym && arg_sym != NULL) | |
5341 | { | |
5342 | add_defn_to_vec (obstackp, | |
76a01679 | 5343 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5344 | block); |
96d887e8 PH |
5345 | } |
5346 | } | |
5347 | } | |
5348 | \f | |
41d27058 JB |
5349 | |
5350 | /* Symbol Completion */ | |
5351 | ||
5352 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5353 | name in a form that's appropriate for the completion. The result | |
5354 | does not need to be deallocated, but is only good until the next call. | |
5355 | ||
5356 | TEXT_LEN is equal to the length of TEXT. | |
5357 | Perform a wild match if WILD_MATCH is set. | |
5358 | ENCODED should be set if TEXT represents the start of a symbol name | |
5359 | in its encoded form. */ | |
5360 | ||
5361 | static const char * | |
5362 | symbol_completion_match (const char *sym_name, | |
5363 | const char *text, int text_len, | |
5364 | int wild_match, int encoded) | |
5365 | { | |
41d27058 JB |
5366 | const int verbatim_match = (text[0] == '<'); |
5367 | int match = 0; | |
5368 | ||
5369 | if (verbatim_match) | |
5370 | { | |
5371 | /* Strip the leading angle bracket. */ | |
5372 | text = text + 1; | |
5373 | text_len--; | |
5374 | } | |
5375 | ||
5376 | /* First, test against the fully qualified name of the symbol. */ | |
5377 | ||
5378 | if (strncmp (sym_name, text, text_len) == 0) | |
5379 | match = 1; | |
5380 | ||
5381 | if (match && !encoded) | |
5382 | { | |
5383 | /* One needed check before declaring a positive match is to verify | |
5384 | that iff we are doing a verbatim match, the decoded version | |
5385 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5386 | is not a suitable completion. */ | |
5387 | const char *sym_name_copy = sym_name; | |
5388 | int has_angle_bracket; | |
5389 | ||
5390 | sym_name = ada_decode (sym_name); | |
5391 | has_angle_bracket = (sym_name[0] == '<'); | |
5392 | match = (has_angle_bracket == verbatim_match); | |
5393 | sym_name = sym_name_copy; | |
5394 | } | |
5395 | ||
5396 | if (match && !verbatim_match) | |
5397 | { | |
5398 | /* When doing non-verbatim match, another check that needs to | |
5399 | be done is to verify that the potentially matching symbol name | |
5400 | does not include capital letters, because the ada-mode would | |
5401 | not be able to understand these symbol names without the | |
5402 | angle bracket notation. */ | |
5403 | const char *tmp; | |
5404 | ||
5405 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5406 | if (*tmp != '\0') | |
5407 | match = 0; | |
5408 | } | |
5409 | ||
5410 | /* Second: Try wild matching... */ | |
5411 | ||
5412 | if (!match && wild_match) | |
5413 | { | |
5414 | /* Since we are doing wild matching, this means that TEXT | |
5415 | may represent an unqualified symbol name. We therefore must | |
5416 | also compare TEXT against the unqualified name of the symbol. */ | |
5417 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5418 | ||
5419 | if (strncmp (sym_name, text, text_len) == 0) | |
5420 | match = 1; | |
5421 | } | |
5422 | ||
5423 | /* Finally: If we found a mach, prepare the result to return. */ | |
5424 | ||
5425 | if (!match) | |
5426 | return NULL; | |
5427 | ||
5428 | if (verbatim_match) | |
5429 | sym_name = add_angle_brackets (sym_name); | |
5430 | ||
5431 | if (!encoded) | |
5432 | sym_name = ada_decode (sym_name); | |
5433 | ||
5434 | return sym_name; | |
5435 | } | |
5436 | ||
2ba95b9b JB |
5437 | DEF_VEC_P (char_ptr); |
5438 | ||
41d27058 JB |
5439 | /* A companion function to ada_make_symbol_completion_list(). |
5440 | Check if SYM_NAME represents a symbol which name would be suitable | |
5441 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5442 | it is appended at the end of the given string vector SV. | |
5443 | ||
5444 | ORIG_TEXT is the string original string from the user command | |
5445 | that needs to be completed. WORD is the entire command on which | |
5446 | completion should be performed. These two parameters are used to | |
5447 | determine which part of the symbol name should be added to the | |
5448 | completion vector. | |
5449 | if WILD_MATCH is set, then wild matching is performed. | |
5450 | ENCODED should be set if TEXT represents a symbol name in its | |
5451 | encoded formed (in which case the completion should also be | |
5452 | encoded). */ | |
5453 | ||
5454 | static void | |
d6565258 | 5455 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5456 | const char *sym_name, |
5457 | const char *text, int text_len, | |
5458 | const char *orig_text, const char *word, | |
5459 | int wild_match, int encoded) | |
5460 | { | |
5461 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
5462 | wild_match, encoded); | |
5463 | char *completion; | |
5464 | ||
5465 | if (match == NULL) | |
5466 | return; | |
5467 | ||
5468 | /* We found a match, so add the appropriate completion to the given | |
5469 | string vector. */ | |
5470 | ||
5471 | if (word == orig_text) | |
5472 | { | |
5473 | completion = xmalloc (strlen (match) + 5); | |
5474 | strcpy (completion, match); | |
5475 | } | |
5476 | else if (word > orig_text) | |
5477 | { | |
5478 | /* Return some portion of sym_name. */ | |
5479 | completion = xmalloc (strlen (match) + 5); | |
5480 | strcpy (completion, match + (word - orig_text)); | |
5481 | } | |
5482 | else | |
5483 | { | |
5484 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5485 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5486 | strncpy (completion, word, orig_text - word); | |
5487 | completion[orig_text - word] = '\0'; | |
5488 | strcat (completion, match); | |
5489 | } | |
5490 | ||
d6565258 | 5491 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5492 | } |
5493 | ||
ccefe4c4 | 5494 | /* An object of this type is passed as the user_data argument to the |
7b08b9eb | 5495 | expand_partial_symbol_names method. */ |
ccefe4c4 TT |
5496 | struct add_partial_datum |
5497 | { | |
5498 | VEC(char_ptr) **completions; | |
5499 | char *text; | |
5500 | int text_len; | |
5501 | char *text0; | |
5502 | char *word; | |
5503 | int wild_match; | |
5504 | int encoded; | |
5505 | }; | |
5506 | ||
7b08b9eb JK |
5507 | /* A callback for expand_partial_symbol_names. */ |
5508 | static int | |
5509 | ada_expand_partial_symbol_name (const char *name, void *user_data) | |
ccefe4c4 TT |
5510 | { |
5511 | struct add_partial_datum *data = user_data; | |
7b08b9eb JK |
5512 | |
5513 | return symbol_completion_match (name, data->text, data->text_len, | |
5514 | data->wild_match, data->encoded) != NULL; | |
ccefe4c4 TT |
5515 | } |
5516 | ||
41d27058 JB |
5517 | /* Return a list of possible symbol names completing TEXT0. The list |
5518 | is NULL terminated. WORD is the entire command on which completion | |
5519 | is made. */ | |
5520 | ||
5521 | static char ** | |
5522 | ada_make_symbol_completion_list (char *text0, char *word) | |
5523 | { | |
5524 | char *text; | |
5525 | int text_len; | |
5526 | int wild_match; | |
5527 | int encoded; | |
2ba95b9b | 5528 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5529 | struct symbol *sym; |
5530 | struct symtab *s; | |
41d27058 JB |
5531 | struct minimal_symbol *msymbol; |
5532 | struct objfile *objfile; | |
5533 | struct block *b, *surrounding_static_block = 0; | |
5534 | int i; | |
5535 | struct dict_iterator iter; | |
5536 | ||
5537 | if (text0[0] == '<') | |
5538 | { | |
5539 | text = xstrdup (text0); | |
5540 | make_cleanup (xfree, text); | |
5541 | text_len = strlen (text); | |
5542 | wild_match = 0; | |
5543 | encoded = 1; | |
5544 | } | |
5545 | else | |
5546 | { | |
5547 | text = xstrdup (ada_encode (text0)); | |
5548 | make_cleanup (xfree, text); | |
5549 | text_len = strlen (text); | |
5550 | for (i = 0; i < text_len; i++) | |
5551 | text[i] = tolower (text[i]); | |
5552 | ||
5553 | encoded = (strstr (text0, "__") != NULL); | |
5554 | /* If the name contains a ".", then the user is entering a fully | |
5555 | qualified entity name, and the match must not be done in wild | |
5556 | mode. Similarly, if the user wants to complete what looks like | |
5557 | an encoded name, the match must not be done in wild mode. */ | |
5558 | wild_match = (strchr (text0, '.') == NULL && !encoded); | |
5559 | } | |
5560 | ||
5561 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 5562 | { |
ccefe4c4 TT |
5563 | struct add_partial_datum data; |
5564 | ||
5565 | data.completions = &completions; | |
5566 | data.text = text; | |
5567 | data.text_len = text_len; | |
5568 | data.text0 = text0; | |
5569 | data.word = word; | |
5570 | data.wild_match = wild_match; | |
5571 | data.encoded = encoded; | |
7b08b9eb | 5572 | expand_partial_symbol_names (ada_expand_partial_symbol_name, &data); |
41d27058 JB |
5573 | } |
5574 | ||
5575 | /* At this point scan through the misc symbol vectors and add each | |
5576 | symbol you find to the list. Eventually we want to ignore | |
5577 | anything that isn't a text symbol (everything else will be | |
5578 | handled by the psymtab code above). */ | |
5579 | ||
5580 | ALL_MSYMBOLS (objfile, msymbol) | |
5581 | { | |
5582 | QUIT; | |
d6565258 | 5583 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
41d27058 JB |
5584 | text, text_len, text0, word, wild_match, encoded); |
5585 | } | |
5586 | ||
5587 | /* Search upwards from currently selected frame (so that we can | |
5588 | complete on local vars. */ | |
5589 | ||
5590 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5591 | { | |
5592 | if (!BLOCK_SUPERBLOCK (b)) | |
5593 | surrounding_static_block = b; /* For elmin of dups */ | |
5594 | ||
5595 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5596 | { | |
d6565258 | 5597 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5598 | text, text_len, text0, word, |
5599 | wild_match, encoded); | |
5600 | } | |
5601 | } | |
5602 | ||
5603 | /* Go through the symtabs and check the externs and statics for | |
5604 | symbols which match. */ | |
5605 | ||
5606 | ALL_SYMTABS (objfile, s) | |
5607 | { | |
5608 | QUIT; | |
5609 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5610 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5611 | { | |
d6565258 | 5612 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5613 | text, text_len, text0, word, |
5614 | wild_match, encoded); | |
5615 | } | |
5616 | } | |
5617 | ||
5618 | ALL_SYMTABS (objfile, s) | |
5619 | { | |
5620 | QUIT; | |
5621 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5622 | /* Don't do this block twice. */ | |
5623 | if (b == surrounding_static_block) | |
5624 | continue; | |
5625 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5626 | { | |
d6565258 | 5627 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5628 | text, text_len, text0, word, |
5629 | wild_match, encoded); | |
5630 | } | |
5631 | } | |
5632 | ||
5633 | /* Append the closing NULL entry. */ | |
2ba95b9b | 5634 | VEC_safe_push (char_ptr, completions, NULL); |
41d27058 | 5635 | |
2ba95b9b JB |
5636 | /* Make a copy of the COMPLETIONS VEC before we free it, and then |
5637 | return the copy. It's unfortunate that we have to make a copy | |
5638 | of an array that we're about to destroy, but there is nothing much | |
5639 | we can do about it. Fortunately, it's typically not a very large | |
5640 | array. */ | |
5641 | { | |
5642 | const size_t completions_size = | |
5643 | VEC_length (char_ptr, completions) * sizeof (char *); | |
dc19db01 | 5644 | char **result = xmalloc (completions_size); |
2ba95b9b JB |
5645 | |
5646 | memcpy (result, VEC_address (char_ptr, completions), completions_size); | |
5647 | ||
5648 | VEC_free (char_ptr, completions); | |
5649 | return result; | |
5650 | } | |
41d27058 JB |
5651 | } |
5652 | ||
963a6417 | 5653 | /* Field Access */ |
96d887e8 | 5654 | |
73fb9985 JB |
5655 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5656 | for tagged types. */ | |
5657 | ||
5658 | static int | |
5659 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5660 | { | |
5661 | char *name; | |
5662 | ||
5663 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5664 | return 0; | |
5665 | ||
5666 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5667 | if (name == NULL) | |
5668 | return 0; | |
5669 | ||
5670 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5671 | } | |
5672 | ||
963a6417 PH |
5673 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5674 | to be invisible to users. */ | |
96d887e8 | 5675 | |
963a6417 PH |
5676 | int |
5677 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5678 | { |
963a6417 PH |
5679 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5680 | return 1; | |
73fb9985 JB |
5681 | |
5682 | /* Check the name of that field. */ | |
5683 | { | |
5684 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5685 | ||
5686 | /* Anonymous field names should not be printed. | |
5687 | brobecker/2007-02-20: I don't think this can actually happen | |
5688 | but we don't want to print the value of annonymous fields anyway. */ | |
5689 | if (name == NULL) | |
5690 | return 1; | |
5691 | ||
5692 | /* A field named "_parent" is internally generated by GNAT for | |
5693 | tagged types, and should not be printed either. */ | |
5694 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) | |
5695 | return 1; | |
5696 | } | |
5697 | ||
5698 | /* If this is the dispatch table of a tagged type, then ignore. */ | |
5699 | if (ada_is_tagged_type (type, 1) | |
5700 | && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) | |
5701 | return 1; | |
5702 | ||
5703 | /* Not a special field, so it should not be ignored. */ | |
5704 | return 0; | |
963a6417 | 5705 | } |
96d887e8 | 5706 | |
963a6417 | 5707 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 5708 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 5709 | |
963a6417 PH |
5710 | int |
5711 | ada_is_tagged_type (struct type *type, int refok) | |
5712 | { | |
5713 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
5714 | } | |
96d887e8 | 5715 | |
963a6417 | 5716 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5717 | |
963a6417 PH |
5718 | int |
5719 | ada_is_tag_type (struct type *type) | |
5720 | { | |
5721 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
5722 | return 0; | |
5723 | else | |
96d887e8 | 5724 | { |
963a6417 | 5725 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 5726 | |
963a6417 PH |
5727 | return (name != NULL |
5728 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 5729 | } |
96d887e8 PH |
5730 | } |
5731 | ||
963a6417 | 5732 | /* The type of the tag on VAL. */ |
76a01679 | 5733 | |
963a6417 PH |
5734 | struct type * |
5735 | ada_tag_type (struct value *val) | |
96d887e8 | 5736 | { |
df407dfe | 5737 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 5738 | } |
96d887e8 | 5739 | |
963a6417 | 5740 | /* The value of the tag on VAL. */ |
96d887e8 | 5741 | |
963a6417 PH |
5742 | struct value * |
5743 | ada_value_tag (struct value *val) | |
5744 | { | |
03ee6b2e | 5745 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
5746 | } |
5747 | ||
963a6417 PH |
5748 | /* The value of the tag on the object of type TYPE whose contents are |
5749 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 5750 | ADDRESS. */ |
96d887e8 | 5751 | |
963a6417 | 5752 | static struct value * |
10a2c479 | 5753 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 5754 | const gdb_byte *valaddr, |
963a6417 | 5755 | CORE_ADDR address) |
96d887e8 | 5756 | { |
b5385fc0 | 5757 | int tag_byte_offset; |
963a6417 | 5758 | struct type *tag_type; |
5b4ee69b | 5759 | |
963a6417 | 5760 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 5761 | NULL, NULL, NULL)) |
96d887e8 | 5762 | { |
fc1a4b47 | 5763 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
5764 | ? NULL |
5765 | : valaddr + tag_byte_offset); | |
963a6417 | 5766 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 5767 | |
963a6417 | 5768 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 5769 | } |
963a6417 PH |
5770 | return NULL; |
5771 | } | |
96d887e8 | 5772 | |
963a6417 PH |
5773 | static struct type * |
5774 | type_from_tag (struct value *tag) | |
5775 | { | |
5776 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 5777 | |
963a6417 PH |
5778 | if (type_name != NULL) |
5779 | return ada_find_any_type (ada_encode (type_name)); | |
5780 | return NULL; | |
5781 | } | |
96d887e8 | 5782 | |
963a6417 PH |
5783 | struct tag_args |
5784 | { | |
5785 | struct value *tag; | |
5786 | char *name; | |
5787 | }; | |
4c4b4cd2 | 5788 | |
529cad9c PH |
5789 | |
5790 | static int ada_tag_name_1 (void *); | |
5791 | static int ada_tag_name_2 (struct tag_args *); | |
5792 | ||
4c4b4cd2 | 5793 | /* Wrapper function used by ada_tag_name. Given a struct tag_args* |
0963b4bd | 5794 | value ARGS, sets ARGS->name to the tag name of ARGS->tag. |
4c4b4cd2 PH |
5795 | The value stored in ARGS->name is valid until the next call to |
5796 | ada_tag_name_1. */ | |
5797 | ||
5798 | static int | |
5799 | ada_tag_name_1 (void *args0) | |
5800 | { | |
5801 | struct tag_args *args = (struct tag_args *) args0; | |
5802 | static char name[1024]; | |
76a01679 | 5803 | char *p; |
4c4b4cd2 | 5804 | struct value *val; |
5b4ee69b | 5805 | |
4c4b4cd2 | 5806 | args->name = NULL; |
03ee6b2e | 5807 | val = ada_value_struct_elt (args->tag, "tsd", 1); |
529cad9c PH |
5808 | if (val == NULL) |
5809 | return ada_tag_name_2 (args); | |
03ee6b2e | 5810 | val = ada_value_struct_elt (val, "expanded_name", 1); |
529cad9c PH |
5811 | if (val == NULL) |
5812 | return 0; | |
5813 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5814 | for (p = name; *p != '\0'; p += 1) | |
5815 | if (isalpha (*p)) | |
5816 | *p = tolower (*p); | |
5817 | args->name = name; | |
5818 | return 0; | |
5819 | } | |
5820 | ||
e802dbe0 JB |
5821 | /* Return the "ada__tags__type_specific_data" type. */ |
5822 | ||
5823 | static struct type * | |
5824 | ada_get_tsd_type (struct inferior *inf) | |
5825 | { | |
5826 | struct ada_inferior_data *data = get_ada_inferior_data (inf); | |
5827 | ||
5828 | if (data->tsd_type == 0) | |
5829 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
5830 | return data->tsd_type; | |
5831 | } | |
5832 | ||
529cad9c PH |
5833 | /* Utility function for ada_tag_name_1 that tries the second |
5834 | representation for the dispatch table (in which there is no | |
5835 | explicit 'tsd' field in the referent of the tag pointer, and instead | |
0963b4bd | 5836 | the tsd pointer is stored just before the dispatch table. */ |
529cad9c PH |
5837 | |
5838 | static int | |
5839 | ada_tag_name_2 (struct tag_args *args) | |
5840 | { | |
5841 | struct type *info_type; | |
5842 | static char name[1024]; | |
5843 | char *p; | |
5844 | struct value *val, *valp; | |
5845 | ||
5846 | args->name = NULL; | |
e802dbe0 | 5847 | info_type = ada_get_tsd_type (current_inferior()); |
529cad9c PH |
5848 | if (info_type == NULL) |
5849 | return 0; | |
5850 | info_type = lookup_pointer_type (lookup_pointer_type (info_type)); | |
5851 | valp = value_cast (info_type, args->tag); | |
5852 | if (valp == NULL) | |
5853 | return 0; | |
2497b498 | 5854 | val = value_ind (value_ptradd (valp, -1)); |
4c4b4cd2 PH |
5855 | if (val == NULL) |
5856 | return 0; | |
03ee6b2e | 5857 | val = ada_value_struct_elt (val, "expanded_name", 1); |
4c4b4cd2 PH |
5858 | if (val == NULL) |
5859 | return 0; | |
5860 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5861 | for (p = name; *p != '\0'; p += 1) | |
5862 | if (isalpha (*p)) | |
5863 | *p = tolower (*p); | |
5864 | args->name = name; | |
5865 | return 0; | |
5866 | } | |
5867 | ||
5868 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
e802dbe0 | 5869 | a C string. */ |
4c4b4cd2 PH |
5870 | |
5871 | const char * | |
5872 | ada_tag_name (struct value *tag) | |
5873 | { | |
5874 | struct tag_args args; | |
5b4ee69b | 5875 | |
df407dfe | 5876 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 5877 | return NULL; |
76a01679 | 5878 | args.tag = tag; |
4c4b4cd2 PH |
5879 | args.name = NULL; |
5880 | catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL); | |
5881 | return args.name; | |
5882 | } | |
5883 | ||
5884 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 5885 | |
d2e4a39e | 5886 | struct type * |
ebf56fd3 | 5887 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
5888 | { |
5889 | int i; | |
5890 | ||
61ee279c | 5891 | type = ada_check_typedef (type); |
14f9c5c9 AS |
5892 | |
5893 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
5894 | return NULL; | |
5895 | ||
5896 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
5897 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
5898 | { |
5899 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
5900 | ||
5901 | /* If the _parent field is a pointer, then dereference it. */ | |
5902 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
5903 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
5904 | /* If there is a parallel XVS type, get the actual base type. */ | |
5905 | parent_type = ada_get_base_type (parent_type); | |
5906 | ||
5907 | return ada_check_typedef (parent_type); | |
5908 | } | |
14f9c5c9 AS |
5909 | |
5910 | return NULL; | |
5911 | } | |
5912 | ||
4c4b4cd2 PH |
5913 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
5914 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
5915 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5916 | |
5917 | int | |
ebf56fd3 | 5918 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 5919 | { |
61ee279c | 5920 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 5921 | |
4c4b4cd2 PH |
5922 | return (name != NULL |
5923 | && (strncmp (name, "PARENT", 6) == 0 | |
5924 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
5925 | } |
5926 | ||
4c4b4cd2 | 5927 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 5928 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 5929 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 5930 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 5931 | structures. */ |
14f9c5c9 AS |
5932 | |
5933 | int | |
ebf56fd3 | 5934 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 5935 | { |
d2e4a39e | 5936 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 5937 | |
d2e4a39e | 5938 | return (name != NULL |
4c4b4cd2 PH |
5939 | && (strncmp (name, "PARENT", 6) == 0 |
5940 | || strcmp (name, "REP") == 0 | |
5941 | || strncmp (name, "_parent", 7) == 0 | |
5942 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
5943 | } |
5944 | ||
4c4b4cd2 PH |
5945 | /* True iff field number FIELD_NUM of structure or union type TYPE |
5946 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
5947 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5948 | |
5949 | int | |
ebf56fd3 | 5950 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 5951 | { |
d2e4a39e | 5952 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 5953 | |
14f9c5c9 | 5954 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 5955 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
5956 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
5957 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
5958 | } |
5959 | ||
5960 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 5961 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
5962 | returns the type of the controlling discriminant for the variant. |
5963 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 5964 | |
d2e4a39e | 5965 | struct type * |
ebf56fd3 | 5966 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 5967 | { |
d2e4a39e | 5968 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 5969 | |
7c964f07 | 5970 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
5971 | } |
5972 | ||
4c4b4cd2 | 5973 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 5974 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 5975 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
5976 | |
5977 | int | |
ebf56fd3 | 5978 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 5979 | { |
d2e4a39e | 5980 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 5981 | |
14f9c5c9 AS |
5982 | return (name != NULL && name[0] == 'O'); |
5983 | } | |
5984 | ||
5985 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
5986 | returns the name of the discriminant controlling the variant. |
5987 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 5988 | |
d2e4a39e | 5989 | char * |
ebf56fd3 | 5990 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 5991 | { |
d2e4a39e | 5992 | static char *result = NULL; |
14f9c5c9 | 5993 | static size_t result_len = 0; |
d2e4a39e AS |
5994 | struct type *type; |
5995 | const char *name; | |
5996 | const char *discrim_end; | |
5997 | const char *discrim_start; | |
14f9c5c9 AS |
5998 | |
5999 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
6000 | type = TYPE_TARGET_TYPE (type0); | |
6001 | else | |
6002 | type = type0; | |
6003 | ||
6004 | name = ada_type_name (type); | |
6005 | ||
6006 | if (name == NULL || name[0] == '\000') | |
6007 | return ""; | |
6008 | ||
6009 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6010 | discrim_end -= 1) | |
6011 | { | |
4c4b4cd2 PH |
6012 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
6013 | break; | |
14f9c5c9 AS |
6014 | } |
6015 | if (discrim_end == name) | |
6016 | return ""; | |
6017 | ||
d2e4a39e | 6018 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6019 | discrim_start -= 1) |
6020 | { | |
d2e4a39e | 6021 | if (discrim_start == name + 1) |
4c4b4cd2 | 6022 | return ""; |
76a01679 | 6023 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
6024 | && strncmp (discrim_start - 3, "___", 3) == 0) |
6025 | || discrim_start[-1] == '.') | |
6026 | break; | |
14f9c5c9 AS |
6027 | } |
6028 | ||
6029 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
6030 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 6031 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
6032 | return result; |
6033 | } | |
6034 | ||
4c4b4cd2 PH |
6035 | /* Scan STR for a subtype-encoded number, beginning at position K. |
6036 | Put the position of the character just past the number scanned in | |
6037 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
6038 | Return 1 if there was a valid number at the given position, and 0 | |
6039 | otherwise. A "subtype-encoded" number consists of the absolute value | |
6040 | in decimal, followed by the letter 'm' to indicate a negative number. | |
6041 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
6042 | |
6043 | int | |
d2e4a39e | 6044 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
6045 | { |
6046 | ULONGEST RU; | |
6047 | ||
d2e4a39e | 6048 | if (!isdigit (str[k])) |
14f9c5c9 AS |
6049 | return 0; |
6050 | ||
4c4b4cd2 | 6051 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 6052 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 6053 | LONGEST. */ |
14f9c5c9 AS |
6054 | RU = 0; |
6055 | while (isdigit (str[k])) | |
6056 | { | |
d2e4a39e | 6057 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
6058 | k += 1; |
6059 | } | |
6060 | ||
d2e4a39e | 6061 | if (str[k] == 'm') |
14f9c5c9 AS |
6062 | { |
6063 | if (R != NULL) | |
4c4b4cd2 | 6064 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
6065 | k += 1; |
6066 | } | |
6067 | else if (R != NULL) | |
6068 | *R = (LONGEST) RU; | |
6069 | ||
4c4b4cd2 | 6070 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6071 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6072 | number representable as a LONGEST (although either would probably work | |
6073 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6074 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6075 | |
6076 | if (new_k != NULL) | |
6077 | *new_k = k; | |
6078 | return 1; | |
6079 | } | |
6080 | ||
4c4b4cd2 PH |
6081 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6082 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6083 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6084 | |
d2e4a39e | 6085 | int |
ebf56fd3 | 6086 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6087 | { |
d2e4a39e | 6088 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6089 | int p; |
6090 | ||
6091 | p = 0; | |
6092 | while (1) | |
6093 | { | |
d2e4a39e | 6094 | switch (name[p]) |
4c4b4cd2 PH |
6095 | { |
6096 | case '\0': | |
6097 | return 0; | |
6098 | case 'S': | |
6099 | { | |
6100 | LONGEST W; | |
5b4ee69b | 6101 | |
4c4b4cd2 PH |
6102 | if (!ada_scan_number (name, p + 1, &W, &p)) |
6103 | return 0; | |
6104 | if (val == W) | |
6105 | return 1; | |
6106 | break; | |
6107 | } | |
6108 | case 'R': | |
6109 | { | |
6110 | LONGEST L, U; | |
5b4ee69b | 6111 | |
4c4b4cd2 PH |
6112 | if (!ada_scan_number (name, p + 1, &L, &p) |
6113 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6114 | return 0; | |
6115 | if (val >= L && val <= U) | |
6116 | return 1; | |
6117 | break; | |
6118 | } | |
6119 | case 'O': | |
6120 | return 1; | |
6121 | default: | |
6122 | return 0; | |
6123 | } | |
6124 | } | |
6125 | } | |
6126 | ||
0963b4bd | 6127 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
6128 | |
6129 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6130 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6131 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6132 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6133 | |
4c4b4cd2 | 6134 | static struct value * |
d2e4a39e | 6135 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6136 | struct type *arg_type) |
14f9c5c9 | 6137 | { |
14f9c5c9 AS |
6138 | struct type *type; |
6139 | ||
61ee279c | 6140 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
6141 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
6142 | ||
4c4b4cd2 | 6143 | /* Handle packed fields. */ |
14f9c5c9 AS |
6144 | |
6145 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
6146 | { | |
6147 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6148 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6149 | |
0fd88904 | 6150 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6151 | offset + bit_pos / 8, |
6152 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6153 | } |
6154 | else | |
6155 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6156 | } | |
6157 | ||
52ce6436 PH |
6158 | /* Find field with name NAME in object of type TYPE. If found, |
6159 | set the following for each argument that is non-null: | |
6160 | - *FIELD_TYPE_P to the field's type; | |
6161 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6162 | an object of that type; | |
6163 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6164 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6165 | 0 otherwise; | |
6166 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6167 | fields up to but not including the desired field, or by the total | |
6168 | number of fields if not found. A NULL value of NAME never | |
6169 | matches; the function just counts visible fields in this case. | |
6170 | ||
0963b4bd | 6171 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 6172 | |
4c4b4cd2 | 6173 | static int |
76a01679 JB |
6174 | find_struct_field (char *name, struct type *type, int offset, |
6175 | struct type **field_type_p, | |
52ce6436 PH |
6176 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6177 | int *index_p) | |
4c4b4cd2 PH |
6178 | { |
6179 | int i; | |
6180 | ||
61ee279c | 6181 | type = ada_check_typedef (type); |
76a01679 | 6182 | |
52ce6436 PH |
6183 | if (field_type_p != NULL) |
6184 | *field_type_p = NULL; | |
6185 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6186 | *byte_offset_p = 0; |
52ce6436 PH |
6187 | if (bit_offset_p != NULL) |
6188 | *bit_offset_p = 0; | |
6189 | if (bit_size_p != NULL) | |
6190 | *bit_size_p = 0; | |
6191 | ||
6192 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6193 | { |
6194 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6195 | int fld_offset = offset + bit_pos / 8; | |
6196 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
76a01679 | 6197 | |
4c4b4cd2 PH |
6198 | if (t_field_name == NULL) |
6199 | continue; | |
6200 | ||
52ce6436 | 6201 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6202 | { |
6203 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 6204 | |
52ce6436 PH |
6205 | if (field_type_p != NULL) |
6206 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6207 | if (byte_offset_p != NULL) | |
6208 | *byte_offset_p = fld_offset; | |
6209 | if (bit_offset_p != NULL) | |
6210 | *bit_offset_p = bit_pos % 8; | |
6211 | if (bit_size_p != NULL) | |
6212 | *bit_size_p = bit_size; | |
76a01679 JB |
6213 | return 1; |
6214 | } | |
4c4b4cd2 PH |
6215 | else if (ada_is_wrapper_field (type, i)) |
6216 | { | |
52ce6436 PH |
6217 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6218 | field_type_p, byte_offset_p, bit_offset_p, | |
6219 | bit_size_p, index_p)) | |
76a01679 JB |
6220 | return 1; |
6221 | } | |
4c4b4cd2 PH |
6222 | else if (ada_is_variant_part (type, i)) |
6223 | { | |
52ce6436 PH |
6224 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6225 | fixed type?? */ | |
4c4b4cd2 | 6226 | int j; |
52ce6436 PH |
6227 | struct type *field_type |
6228 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6229 | |
52ce6436 | 6230 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6231 | { |
76a01679 JB |
6232 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6233 | fld_offset | |
6234 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6235 | field_type_p, byte_offset_p, | |
52ce6436 | 6236 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6237 | return 1; |
4c4b4cd2 PH |
6238 | } |
6239 | } | |
52ce6436 PH |
6240 | else if (index_p != NULL) |
6241 | *index_p += 1; | |
4c4b4cd2 PH |
6242 | } |
6243 | return 0; | |
6244 | } | |
6245 | ||
0963b4bd | 6246 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6247 | |
52ce6436 PH |
6248 | static int |
6249 | num_visible_fields (struct type *type) | |
6250 | { | |
6251 | int n; | |
5b4ee69b | 6252 | |
52ce6436 PH |
6253 | n = 0; |
6254 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6255 | return n; | |
6256 | } | |
14f9c5c9 | 6257 | |
4c4b4cd2 | 6258 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6259 | and search in it assuming it has (class) type TYPE. |
6260 | If found, return value, else return NULL. | |
6261 | ||
4c4b4cd2 | 6262 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 6263 | |
4c4b4cd2 | 6264 | static struct value * |
d2e4a39e | 6265 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 6266 | struct type *type) |
14f9c5c9 AS |
6267 | { |
6268 | int i; | |
14f9c5c9 | 6269 | |
5b4ee69b | 6270 | type = ada_check_typedef (type); |
52ce6436 | 6271 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 AS |
6272 | { |
6273 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6274 | ||
6275 | if (t_field_name == NULL) | |
4c4b4cd2 | 6276 | continue; |
14f9c5c9 AS |
6277 | |
6278 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 6279 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
6280 | |
6281 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 6282 | { |
0963b4bd | 6283 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
6284 | ada_search_struct_field (name, arg, |
6285 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6286 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6287 | |
4c4b4cd2 PH |
6288 | if (v != NULL) |
6289 | return v; | |
6290 | } | |
14f9c5c9 AS |
6291 | |
6292 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 6293 | { |
0963b4bd | 6294 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 6295 | int j; |
5b4ee69b MS |
6296 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6297 | i)); | |
4c4b4cd2 PH |
6298 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6299 | ||
52ce6436 | 6300 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6301 | { |
0963b4bd MS |
6302 | struct value *v = ada_search_struct_field /* Force line |
6303 | break. */ | |
06d5cf63 JB |
6304 | (name, arg, |
6305 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6306 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 6307 | |
4c4b4cd2 PH |
6308 | if (v != NULL) |
6309 | return v; | |
6310 | } | |
6311 | } | |
14f9c5c9 AS |
6312 | } |
6313 | return NULL; | |
6314 | } | |
d2e4a39e | 6315 | |
52ce6436 PH |
6316 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6317 | int, struct type *); | |
6318 | ||
6319 | ||
6320 | /* Return field #INDEX in ARG, where the index is that returned by | |
6321 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6322 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 6323 | * If found, return value, else return NULL. */ |
52ce6436 PH |
6324 | |
6325 | static struct value * | |
6326 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6327 | struct type *type) | |
6328 | { | |
6329 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6330 | } | |
6331 | ||
6332 | ||
6333 | /* Auxiliary function for ada_index_struct_field. Like | |
6334 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 6335 | * *INDEX_P. */ |
52ce6436 PH |
6336 | |
6337 | static struct value * | |
6338 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6339 | struct type *type) | |
6340 | { | |
6341 | int i; | |
6342 | type = ada_check_typedef (type); | |
6343 | ||
6344 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6345 | { | |
6346 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6347 | continue; | |
6348 | else if (ada_is_wrapper_field (type, i)) | |
6349 | { | |
0963b4bd | 6350 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
6351 | ada_index_struct_field_1 (index_p, arg, |
6352 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6353 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6354 | |
52ce6436 PH |
6355 | if (v != NULL) |
6356 | return v; | |
6357 | } | |
6358 | ||
6359 | else if (ada_is_variant_part (type, i)) | |
6360 | { | |
6361 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 6362 | find_struct_field. */ |
52ce6436 PH |
6363 | error (_("Cannot assign this kind of variant record")); |
6364 | } | |
6365 | else if (*index_p == 0) | |
6366 | return ada_value_primitive_field (arg, offset, i, type); | |
6367 | else | |
6368 | *index_p -= 1; | |
6369 | } | |
6370 | return NULL; | |
6371 | } | |
6372 | ||
4c4b4cd2 PH |
6373 | /* Given ARG, a value of type (pointer or reference to a)* |
6374 | structure/union, extract the component named NAME from the ultimate | |
6375 | target structure/union and return it as a value with its | |
f5938064 | 6376 | appropriate type. |
14f9c5c9 | 6377 | |
4c4b4cd2 PH |
6378 | The routine searches for NAME among all members of the structure itself |
6379 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6380 | (e.g., '_parent'). |
6381 | ||
03ee6b2e PH |
6382 | If NO_ERR, then simply return NULL in case of error, rather than |
6383 | calling error. */ | |
14f9c5c9 | 6384 | |
d2e4a39e | 6385 | struct value * |
03ee6b2e | 6386 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6387 | { |
4c4b4cd2 | 6388 | struct type *t, *t1; |
d2e4a39e | 6389 | struct value *v; |
14f9c5c9 | 6390 | |
4c4b4cd2 | 6391 | v = NULL; |
df407dfe | 6392 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6393 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6394 | { | |
6395 | t1 = TYPE_TARGET_TYPE (t); | |
6396 | if (t1 == NULL) | |
03ee6b2e | 6397 | goto BadValue; |
61ee279c | 6398 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6399 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6400 | { |
994b9211 | 6401 | arg = coerce_ref (arg); |
76a01679 JB |
6402 | t = t1; |
6403 | } | |
4c4b4cd2 | 6404 | } |
14f9c5c9 | 6405 | |
4c4b4cd2 PH |
6406 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6407 | { | |
6408 | t1 = TYPE_TARGET_TYPE (t); | |
6409 | if (t1 == NULL) | |
03ee6b2e | 6410 | goto BadValue; |
61ee279c | 6411 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6412 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6413 | { |
6414 | arg = value_ind (arg); | |
6415 | t = t1; | |
6416 | } | |
4c4b4cd2 | 6417 | else |
76a01679 | 6418 | break; |
4c4b4cd2 | 6419 | } |
14f9c5c9 | 6420 | |
4c4b4cd2 | 6421 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6422 | goto BadValue; |
14f9c5c9 | 6423 | |
4c4b4cd2 PH |
6424 | if (t1 == t) |
6425 | v = ada_search_struct_field (name, arg, 0, t); | |
6426 | else | |
6427 | { | |
6428 | int bit_offset, bit_size, byte_offset; | |
6429 | struct type *field_type; | |
6430 | CORE_ADDR address; | |
6431 | ||
76a01679 JB |
6432 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
6433 | address = value_as_address (arg); | |
4c4b4cd2 | 6434 | else |
0fd88904 | 6435 | address = unpack_pointer (t, value_contents (arg)); |
14f9c5c9 | 6436 | |
1ed6ede0 | 6437 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6438 | if (find_struct_field (name, t1, 0, |
6439 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6440 | &bit_size, NULL)) |
76a01679 JB |
6441 | { |
6442 | if (bit_size != 0) | |
6443 | { | |
714e53ab PH |
6444 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6445 | arg = ada_coerce_ref (arg); | |
6446 | else | |
6447 | arg = ada_value_ind (arg); | |
76a01679 JB |
6448 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6449 | bit_offset, bit_size, | |
6450 | field_type); | |
6451 | } | |
6452 | else | |
f5938064 | 6453 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6454 | } |
6455 | } | |
6456 | ||
03ee6b2e PH |
6457 | if (v != NULL || no_err) |
6458 | return v; | |
6459 | else | |
323e0a4a | 6460 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6461 | |
03ee6b2e PH |
6462 | BadValue: |
6463 | if (no_err) | |
6464 | return NULL; | |
6465 | else | |
0963b4bd MS |
6466 | error (_("Attempt to extract a component of " |
6467 | "a value that is not a record.")); | |
14f9c5c9 AS |
6468 | } |
6469 | ||
6470 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6471 | If DISPP is non-null, add its byte displacement from the beginning of a |
6472 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6473 | work for packed fields). |
6474 | ||
6475 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6476 | followed by "___". |
14f9c5c9 | 6477 | |
0963b4bd | 6478 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
6479 | be a (pointer or reference)+ to a struct or union, and the |
6480 | ultimate target type will be searched. | |
14f9c5c9 AS |
6481 | |
6482 | Looks recursively into variant clauses and parent types. | |
6483 | ||
4c4b4cd2 PH |
6484 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6485 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6486 | |
4c4b4cd2 | 6487 | static struct type * |
76a01679 JB |
6488 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6489 | int noerr, int *dispp) | |
14f9c5c9 AS |
6490 | { |
6491 | int i; | |
6492 | ||
6493 | if (name == NULL) | |
6494 | goto BadName; | |
6495 | ||
76a01679 | 6496 | if (refok && type != NULL) |
4c4b4cd2 PH |
6497 | while (1) |
6498 | { | |
61ee279c | 6499 | type = ada_check_typedef (type); |
76a01679 JB |
6500 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6501 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6502 | break; | |
6503 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6504 | } |
14f9c5c9 | 6505 | |
76a01679 | 6506 | if (type == NULL |
1265e4aa JB |
6507 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6508 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6509 | { |
4c4b4cd2 | 6510 | if (noerr) |
76a01679 | 6511 | return NULL; |
4c4b4cd2 | 6512 | else |
76a01679 JB |
6513 | { |
6514 | target_terminal_ours (); | |
6515 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6516 | if (type == NULL) |
6517 | error (_("Type (null) is not a structure or union type")); | |
6518 | else | |
6519 | { | |
6520 | /* XXX: type_sprint */ | |
6521 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6522 | type_print (type, "", gdb_stderr, -1); | |
6523 | error (_(" is not a structure or union type")); | |
6524 | } | |
76a01679 | 6525 | } |
14f9c5c9 AS |
6526 | } |
6527 | ||
6528 | type = to_static_fixed_type (type); | |
6529 | ||
6530 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6531 | { | |
6532 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6533 | struct type *t; | |
6534 | int disp; | |
d2e4a39e | 6535 | |
14f9c5c9 | 6536 | if (t_field_name == NULL) |
4c4b4cd2 | 6537 | continue; |
14f9c5c9 AS |
6538 | |
6539 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6540 | { |
6541 | if (dispp != NULL) | |
6542 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6543 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6544 | } |
14f9c5c9 AS |
6545 | |
6546 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6547 | { |
6548 | disp = 0; | |
6549 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6550 | 0, 1, &disp); | |
6551 | if (t != NULL) | |
6552 | { | |
6553 | if (dispp != NULL) | |
6554 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6555 | return t; | |
6556 | } | |
6557 | } | |
14f9c5c9 AS |
6558 | |
6559 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6560 | { |
6561 | int j; | |
5b4ee69b MS |
6562 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6563 | i)); | |
4c4b4cd2 PH |
6564 | |
6565 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6566 | { | |
b1f33ddd JB |
6567 | /* FIXME pnh 2008/01/26: We check for a field that is |
6568 | NOT wrapped in a struct, since the compiler sometimes | |
6569 | generates these for unchecked variant types. Revisit | |
0963b4bd | 6570 | if the compiler changes this practice. */ |
b1f33ddd | 6571 | char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 6572 | disp = 0; |
b1f33ddd JB |
6573 | if (v_field_name != NULL |
6574 | && field_name_match (v_field_name, name)) | |
6575 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
6576 | else | |
0963b4bd MS |
6577 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
6578 | j), | |
b1f33ddd JB |
6579 | name, 0, 1, &disp); |
6580 | ||
4c4b4cd2 PH |
6581 | if (t != NULL) |
6582 | { | |
6583 | if (dispp != NULL) | |
6584 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6585 | return t; | |
6586 | } | |
6587 | } | |
6588 | } | |
14f9c5c9 AS |
6589 | |
6590 | } | |
6591 | ||
6592 | BadName: | |
d2e4a39e | 6593 | if (!noerr) |
14f9c5c9 AS |
6594 | { |
6595 | target_terminal_ours (); | |
6596 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6597 | if (name == NULL) |
6598 | { | |
6599 | /* XXX: type_sprint */ | |
6600 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6601 | type_print (type, "", gdb_stderr, -1); | |
6602 | error (_(" has no component named <null>")); | |
6603 | } | |
6604 | else | |
6605 | { | |
6606 | /* XXX: type_sprint */ | |
6607 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6608 | type_print (type, "", gdb_stderr, -1); | |
6609 | error (_(" has no component named %s"), name); | |
6610 | } | |
14f9c5c9 AS |
6611 | } |
6612 | ||
6613 | return NULL; | |
6614 | } | |
6615 | ||
b1f33ddd JB |
6616 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6617 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
6618 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 6619 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
6620 | |
6621 | static int | |
6622 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
6623 | { | |
6624 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 6625 | |
b1f33ddd JB |
6626 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
6627 | == NULL); | |
6628 | } | |
6629 | ||
6630 | ||
14f9c5c9 AS |
6631 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6632 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
6633 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
6634 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 6635 | |
d2e4a39e | 6636 | int |
ebf56fd3 | 6637 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 6638 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
6639 | { |
6640 | int others_clause; | |
6641 | int i; | |
d2e4a39e | 6642 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
6643 | struct value *outer; |
6644 | struct value *discrim; | |
14f9c5c9 AS |
6645 | LONGEST discrim_val; |
6646 | ||
0c281816 JB |
6647 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
6648 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
6649 | if (discrim == NULL) | |
14f9c5c9 | 6650 | return -1; |
0c281816 | 6651 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
6652 | |
6653 | others_clause = -1; | |
6654 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
6655 | { | |
6656 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 6657 | others_clause = i; |
14f9c5c9 | 6658 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 6659 | return i; |
14f9c5c9 AS |
6660 | } |
6661 | ||
6662 | return others_clause; | |
6663 | } | |
d2e4a39e | 6664 | \f |
14f9c5c9 AS |
6665 | |
6666 | ||
4c4b4cd2 | 6667 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
6668 | |
6669 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
6670 | (i.e., a size that is not statically recorded in the debugging | |
6671 | data) does not accurately reflect the size or layout of the value. | |
6672 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 6673 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
6674 | |
6675 | /* There is a subtle and tricky problem here. In general, we cannot | |
6676 | determine the size of dynamic records without its data. However, | |
6677 | the 'struct value' data structure, which GDB uses to represent | |
6678 | quantities in the inferior process (the target), requires the size | |
6679 | of the type at the time of its allocation in order to reserve space | |
6680 | for GDB's internal copy of the data. That's why the | |
6681 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 6682 | rather than struct value*s. |
14f9c5c9 AS |
6683 | |
6684 | However, GDB's internal history variables ($1, $2, etc.) are | |
6685 | struct value*s containing internal copies of the data that are not, in | |
6686 | general, the same as the data at their corresponding addresses in | |
6687 | the target. Fortunately, the types we give to these values are all | |
6688 | conventional, fixed-size types (as per the strategy described | |
6689 | above), so that we don't usually have to perform the | |
6690 | 'to_fixed_xxx_type' conversions to look at their values. | |
6691 | Unfortunately, there is one exception: if one of the internal | |
6692 | history variables is an array whose elements are unconstrained | |
6693 | records, then we will need to create distinct fixed types for each | |
6694 | element selected. */ | |
6695 | ||
6696 | /* The upshot of all of this is that many routines take a (type, host | |
6697 | address, target address) triple as arguments to represent a value. | |
6698 | The host address, if non-null, is supposed to contain an internal | |
6699 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 6700 | target at the target address. */ |
14f9c5c9 AS |
6701 | |
6702 | /* Assuming that VAL0 represents a pointer value, the result of | |
6703 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 6704 | dynamic-sized types. */ |
14f9c5c9 | 6705 | |
d2e4a39e AS |
6706 | struct value * |
6707 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 6708 | { |
d2e4a39e | 6709 | struct value *val = unwrap_value (value_ind (val0)); |
5b4ee69b | 6710 | |
4c4b4cd2 | 6711 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
6712 | } |
6713 | ||
6714 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
6715 | qualifiers on VAL0. */ |
6716 | ||
d2e4a39e AS |
6717 | static struct value * |
6718 | ada_coerce_ref (struct value *val0) | |
6719 | { | |
df407dfe | 6720 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
6721 | { |
6722 | struct value *val = val0; | |
5b4ee69b | 6723 | |
994b9211 | 6724 | val = coerce_ref (val); |
d2e4a39e | 6725 | val = unwrap_value (val); |
4c4b4cd2 | 6726 | return ada_to_fixed_value (val); |
d2e4a39e AS |
6727 | } |
6728 | else | |
14f9c5c9 AS |
6729 | return val0; |
6730 | } | |
6731 | ||
6732 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 6733 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
6734 | |
6735 | static unsigned int | |
ebf56fd3 | 6736 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
6737 | { |
6738 | return (off + alignment - 1) & ~(alignment - 1); | |
6739 | } | |
6740 | ||
4c4b4cd2 | 6741 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
6742 | |
6743 | static unsigned int | |
ebf56fd3 | 6744 | field_alignment (struct type *type, int f) |
14f9c5c9 | 6745 | { |
d2e4a39e | 6746 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 6747 | int len; |
14f9c5c9 AS |
6748 | int align_offset; |
6749 | ||
64a1bf19 JB |
6750 | /* The field name should never be null, unless the debugging information |
6751 | is somehow malformed. In this case, we assume the field does not | |
6752 | require any alignment. */ | |
6753 | if (name == NULL) | |
6754 | return 1; | |
6755 | ||
6756 | len = strlen (name); | |
6757 | ||
4c4b4cd2 PH |
6758 | if (!isdigit (name[len - 1])) |
6759 | return 1; | |
14f9c5c9 | 6760 | |
d2e4a39e | 6761 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
6762 | align_offset = len - 2; |
6763 | else | |
6764 | align_offset = len - 1; | |
6765 | ||
4c4b4cd2 | 6766 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
6767 | return TARGET_CHAR_BIT; |
6768 | ||
4c4b4cd2 PH |
6769 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
6770 | } | |
6771 | ||
6772 | /* Find a symbol named NAME. Ignores ambiguity. */ | |
6773 | ||
6774 | struct symbol * | |
6775 | ada_find_any_symbol (const char *name) | |
6776 | { | |
6777 | struct symbol *sym; | |
6778 | ||
6779 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
6780 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
6781 | return sym; | |
6782 | ||
6783 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
6784 | return sym; | |
14f9c5c9 AS |
6785 | } |
6786 | ||
dddfab26 UW |
6787 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
6788 | solely for types defined by debug info, it will not search the GDB | |
6789 | primitive types. */ | |
4c4b4cd2 | 6790 | |
d2e4a39e | 6791 | struct type * |
ebf56fd3 | 6792 | ada_find_any_type (const char *name) |
14f9c5c9 | 6793 | { |
4c4b4cd2 | 6794 | struct symbol *sym = ada_find_any_symbol (name); |
14f9c5c9 | 6795 | |
14f9c5c9 | 6796 | if (sym != NULL) |
dddfab26 | 6797 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 6798 | |
dddfab26 | 6799 | return NULL; |
14f9c5c9 AS |
6800 | } |
6801 | ||
aeb5907d JB |
6802 | /* Given NAME and an associated BLOCK, search all symbols for |
6803 | NAME suffixed with "___XR", which is the ``renaming'' symbol | |
4c4b4cd2 PH |
6804 | associated to NAME. Return this symbol if found, return |
6805 | NULL otherwise. */ | |
6806 | ||
6807 | struct symbol * | |
6808 | ada_find_renaming_symbol (const char *name, struct block *block) | |
aeb5907d JB |
6809 | { |
6810 | struct symbol *sym; | |
6811 | ||
6812 | sym = find_old_style_renaming_symbol (name, block); | |
6813 | ||
6814 | if (sym != NULL) | |
6815 | return sym; | |
6816 | ||
0963b4bd | 6817 | /* Not right yet. FIXME pnh 7/20/2007. */ |
aeb5907d JB |
6818 | sym = ada_find_any_symbol (name); |
6819 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) | |
6820 | return sym; | |
6821 | else | |
6822 | return NULL; | |
6823 | } | |
6824 | ||
6825 | static struct symbol * | |
6826 | find_old_style_renaming_symbol (const char *name, struct block *block) | |
4c4b4cd2 | 6827 | { |
7f0df278 | 6828 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
6829 | char *rename; |
6830 | ||
6831 | if (function_sym != NULL) | |
6832 | { | |
6833 | /* If the symbol is defined inside a function, NAME is not fully | |
6834 | qualified. This means we need to prepend the function name | |
6835 | as well as adding the ``___XR'' suffix to build the name of | |
6836 | the associated renaming symbol. */ | |
6837 | char *function_name = SYMBOL_LINKAGE_NAME (function_sym); | |
529cad9c PH |
6838 | /* Function names sometimes contain suffixes used |
6839 | for instance to qualify nested subprograms. When building | |
6840 | the XR type name, we need to make sure that this suffix is | |
6841 | not included. So do not include any suffix in the function | |
6842 | name length below. */ | |
69fadcdf | 6843 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
6844 | const int rename_len = function_name_len + 2 /* "__" */ |
6845 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 6846 | |
529cad9c | 6847 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
6848 | ada_remove_trailing_digits (function_name, &function_name_len); |
6849 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
6850 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 6851 | |
4c4b4cd2 PH |
6852 | /* Library-level functions are a special case, as GNAT adds |
6853 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 6854 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
6855 | have this prefix, so we need to skip this prefix if present. */ |
6856 | if (function_name_len > 5 /* "_ada_" */ | |
6857 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
6858 | { |
6859 | function_name += 5; | |
6860 | function_name_len -= 5; | |
6861 | } | |
4c4b4cd2 PH |
6862 | |
6863 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
6864 | strncpy (rename, function_name, function_name_len); |
6865 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
6866 | "__%s___XR", name); | |
4c4b4cd2 PH |
6867 | } |
6868 | else | |
6869 | { | |
6870 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 6871 | |
4c4b4cd2 | 6872 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 6873 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
6874 | } |
6875 | ||
6876 | return ada_find_any_symbol (rename); | |
6877 | } | |
6878 | ||
14f9c5c9 | 6879 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 6880 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 6881 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
6882 | otherwise return 0. */ |
6883 | ||
14f9c5c9 | 6884 | int |
d2e4a39e | 6885 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
6886 | { |
6887 | if (type1 == NULL) | |
6888 | return 1; | |
6889 | else if (type0 == NULL) | |
6890 | return 0; | |
6891 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
6892 | return 1; | |
6893 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
6894 | return 0; | |
4c4b4cd2 PH |
6895 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
6896 | return 1; | |
ad82864c | 6897 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 6898 | return 1; |
4c4b4cd2 PH |
6899 | else if (ada_is_array_descriptor_type (type0) |
6900 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 6901 | return 1; |
aeb5907d JB |
6902 | else |
6903 | { | |
6904 | const char *type0_name = type_name_no_tag (type0); | |
6905 | const char *type1_name = type_name_no_tag (type1); | |
6906 | ||
6907 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
6908 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
6909 | return 1; | |
6910 | } | |
14f9c5c9 AS |
6911 | return 0; |
6912 | } | |
6913 | ||
6914 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
6915 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
6916 | ||
d2e4a39e AS |
6917 | char * |
6918 | ada_type_name (struct type *type) | |
14f9c5c9 | 6919 | { |
d2e4a39e | 6920 | if (type == NULL) |
14f9c5c9 AS |
6921 | return NULL; |
6922 | else if (TYPE_NAME (type) != NULL) | |
6923 | return TYPE_NAME (type); | |
6924 | else | |
6925 | return TYPE_TAG_NAME (type); | |
6926 | } | |
6927 | ||
b4ba55a1 JB |
6928 | /* Search the list of "descriptive" types associated to TYPE for a type |
6929 | whose name is NAME. */ | |
6930 | ||
6931 | static struct type * | |
6932 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
6933 | { | |
6934 | struct type *result; | |
6935 | ||
6936 | /* If there no descriptive-type info, then there is no parallel type | |
6937 | to be found. */ | |
6938 | if (!HAVE_GNAT_AUX_INFO (type)) | |
6939 | return NULL; | |
6940 | ||
6941 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
6942 | while (result != NULL) | |
6943 | { | |
6944 | char *result_name = ada_type_name (result); | |
6945 | ||
6946 | if (result_name == NULL) | |
6947 | { | |
6948 | warning (_("unexpected null name on descriptive type")); | |
6949 | return NULL; | |
6950 | } | |
6951 | ||
6952 | /* If the names match, stop. */ | |
6953 | if (strcmp (result_name, name) == 0) | |
6954 | break; | |
6955 | ||
6956 | /* Otherwise, look at the next item on the list, if any. */ | |
6957 | if (HAVE_GNAT_AUX_INFO (result)) | |
6958 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
6959 | else | |
6960 | result = NULL; | |
6961 | } | |
6962 | ||
6963 | /* If we didn't find a match, see whether this is a packed array. With | |
6964 | older compilers, the descriptive type information is either absent or | |
6965 | irrelevant when it comes to packed arrays so the above lookup fails. | |
6966 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 6967 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
6968 | return ada_find_any_type (name); |
6969 | ||
6970 | return result; | |
6971 | } | |
6972 | ||
6973 | /* Find a parallel type to TYPE with the specified NAME, using the | |
6974 | descriptive type taken from the debugging information, if available, | |
6975 | and otherwise using the (slower) name-based method. */ | |
6976 | ||
6977 | static struct type * | |
6978 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
6979 | { | |
6980 | struct type *result = NULL; | |
6981 | ||
6982 | if (HAVE_GNAT_AUX_INFO (type)) | |
6983 | result = find_parallel_type_by_descriptive_type (type, name); | |
6984 | else | |
6985 | result = ada_find_any_type (name); | |
6986 | ||
6987 | return result; | |
6988 | } | |
6989 | ||
6990 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 6991 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 6992 | |
d2e4a39e | 6993 | struct type * |
ebf56fd3 | 6994 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 6995 | { |
b4ba55a1 | 6996 | char *name, *typename = ada_type_name (type); |
14f9c5c9 | 6997 | int len; |
d2e4a39e | 6998 | |
14f9c5c9 AS |
6999 | if (typename == NULL) |
7000 | return NULL; | |
7001 | ||
7002 | len = strlen (typename); | |
7003 | ||
b4ba55a1 | 7004 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 AS |
7005 | |
7006 | strcpy (name, typename); | |
7007 | strcpy (name + len, suffix); | |
7008 | ||
b4ba55a1 | 7009 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
7010 | } |
7011 | ||
14f9c5c9 | 7012 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 7013 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 7014 | |
d2e4a39e AS |
7015 | static struct type * |
7016 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 7017 | { |
61ee279c | 7018 | type = ada_check_typedef (type); |
14f9c5c9 AS |
7019 | |
7020 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 7021 | || ada_type_name (type) == NULL) |
14f9c5c9 | 7022 | return NULL; |
d2e4a39e | 7023 | else |
14f9c5c9 AS |
7024 | { |
7025 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 7026 | |
4c4b4cd2 PH |
7027 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
7028 | return type; | |
14f9c5c9 | 7029 | else |
4c4b4cd2 | 7030 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
7031 | } |
7032 | } | |
7033 | ||
7034 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 7035 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 7036 | |
d2e4a39e AS |
7037 | static int |
7038 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
7039 | { |
7040 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 7041 | |
d2e4a39e | 7042 | return name != NULL |
14f9c5c9 AS |
7043 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
7044 | && strstr (name, "___XVL") != NULL; | |
7045 | } | |
7046 | ||
4c4b4cd2 PH |
7047 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
7048 | represent a variant record type. */ | |
14f9c5c9 | 7049 | |
d2e4a39e | 7050 | static int |
4c4b4cd2 | 7051 | variant_field_index (struct type *type) |
14f9c5c9 AS |
7052 | { |
7053 | int f; | |
7054 | ||
4c4b4cd2 PH |
7055 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
7056 | return -1; | |
7057 | ||
7058 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
7059 | { | |
7060 | if (ada_is_variant_part (type, f)) | |
7061 | return f; | |
7062 | } | |
7063 | return -1; | |
14f9c5c9 AS |
7064 | } |
7065 | ||
4c4b4cd2 PH |
7066 | /* A record type with no fields. */ |
7067 | ||
d2e4a39e | 7068 | static struct type * |
e9bb382b | 7069 | empty_record (struct type *template) |
14f9c5c9 | 7070 | { |
e9bb382b | 7071 | struct type *type = alloc_type_copy (template); |
5b4ee69b | 7072 | |
14f9c5c9 AS |
7073 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
7074 | TYPE_NFIELDS (type) = 0; | |
7075 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 7076 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
7077 | TYPE_NAME (type) = "<empty>"; |
7078 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
7079 | TYPE_LENGTH (type) = 0; |
7080 | return type; | |
7081 | } | |
7082 | ||
7083 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
7084 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
7085 | the beginning of this section) VAL according to GNAT conventions. | |
7086 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 7087 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
7088 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
7089 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 7090 | of the variant. |
14f9c5c9 | 7091 | |
4c4b4cd2 PH |
7092 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
7093 | length are not statically known are discarded. As a consequence, | |
7094 | VALADDR, ADDRESS and DVAL0 are ignored. | |
7095 | ||
7096 | NOTE: Limitations: For now, we assume that dynamic fields and | |
7097 | variants occupy whole numbers of bytes. However, they need not be | |
7098 | byte-aligned. */ | |
7099 | ||
7100 | struct type * | |
10a2c479 | 7101 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 7102 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
7103 | CORE_ADDR address, struct value *dval0, |
7104 | int keep_dynamic_fields) | |
14f9c5c9 | 7105 | { |
d2e4a39e AS |
7106 | struct value *mark = value_mark (); |
7107 | struct value *dval; | |
7108 | struct type *rtype; | |
14f9c5c9 | 7109 | int nfields, bit_len; |
4c4b4cd2 | 7110 | int variant_field; |
14f9c5c9 | 7111 | long off; |
d94e4f4f | 7112 | int fld_bit_len; |
14f9c5c9 AS |
7113 | int f; |
7114 | ||
4c4b4cd2 PH |
7115 | /* Compute the number of fields in this record type that are going |
7116 | to be processed: unless keep_dynamic_fields, this includes only | |
7117 | fields whose position and length are static will be processed. */ | |
7118 | if (keep_dynamic_fields) | |
7119 | nfields = TYPE_NFIELDS (type); | |
7120 | else | |
7121 | { | |
7122 | nfields = 0; | |
76a01679 | 7123 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
7124 | && !ada_is_variant_part (type, nfields) |
7125 | && !is_dynamic_field (type, nfields)) | |
7126 | nfields++; | |
7127 | } | |
7128 | ||
e9bb382b | 7129 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
7130 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
7131 | INIT_CPLUS_SPECIFIC (rtype); | |
7132 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 7133 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
7134 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
7135 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
7136 | TYPE_NAME (rtype) = ada_type_name (type); | |
7137 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7138 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 7139 | |
d2e4a39e AS |
7140 | off = 0; |
7141 | bit_len = 0; | |
4c4b4cd2 PH |
7142 | variant_field = -1; |
7143 | ||
14f9c5c9 AS |
7144 | for (f = 0; f < nfields; f += 1) |
7145 | { | |
6c038f32 PH |
7146 | off = align_value (off, field_alignment (type, f)) |
7147 | + TYPE_FIELD_BITPOS (type, f); | |
14f9c5c9 | 7148 | TYPE_FIELD_BITPOS (rtype, f) = off; |
d2e4a39e | 7149 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 7150 | |
d2e4a39e | 7151 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
7152 | { |
7153 | variant_field = f; | |
d94e4f4f | 7154 | fld_bit_len = 0; |
4c4b4cd2 | 7155 | } |
14f9c5c9 | 7156 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 7157 | { |
284614f0 JB |
7158 | const gdb_byte *field_valaddr = valaddr; |
7159 | CORE_ADDR field_address = address; | |
7160 | struct type *field_type = | |
7161 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
7162 | ||
4c4b4cd2 | 7163 | if (dval0 == NULL) |
b5304971 JG |
7164 | { |
7165 | /* rtype's length is computed based on the run-time | |
7166 | value of discriminants. If the discriminants are not | |
7167 | initialized, the type size may be completely bogus and | |
0963b4bd | 7168 | GDB may fail to allocate a value for it. So check the |
b5304971 JG |
7169 | size first before creating the value. */ |
7170 | check_size (rtype); | |
7171 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7172 | } | |
4c4b4cd2 PH |
7173 | else |
7174 | dval = dval0; | |
7175 | ||
284614f0 JB |
7176 | /* If the type referenced by this field is an aligner type, we need |
7177 | to unwrap that aligner type, because its size might not be set. | |
7178 | Keeping the aligner type would cause us to compute the wrong | |
7179 | size for this field, impacting the offset of the all the fields | |
7180 | that follow this one. */ | |
7181 | if (ada_is_aligner_type (field_type)) | |
7182 | { | |
7183 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
7184 | ||
7185 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
7186 | field_address = cond_offset_target (field_address, field_offset); | |
7187 | field_type = ada_aligned_type (field_type); | |
7188 | } | |
7189 | ||
7190 | field_valaddr = cond_offset_host (field_valaddr, | |
7191 | off / TARGET_CHAR_BIT); | |
7192 | field_address = cond_offset_target (field_address, | |
7193 | off / TARGET_CHAR_BIT); | |
7194 | ||
7195 | /* Get the fixed type of the field. Note that, in this case, | |
7196 | we do not want to get the real type out of the tag: if | |
7197 | the current field is the parent part of a tagged record, | |
7198 | we will get the tag of the object. Clearly wrong: the real | |
7199 | type of the parent is not the real type of the child. We | |
7200 | would end up in an infinite loop. */ | |
7201 | field_type = ada_get_base_type (field_type); | |
7202 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
7203 | field_address, dval, 0); | |
27f2a97b JB |
7204 | /* If the field size is already larger than the maximum |
7205 | object size, then the record itself will necessarily | |
7206 | be larger than the maximum object size. We need to make | |
7207 | this check now, because the size might be so ridiculously | |
7208 | large (due to an uninitialized variable in the inferior) | |
7209 | that it would cause an overflow when adding it to the | |
7210 | record size. */ | |
7211 | check_size (field_type); | |
284614f0 JB |
7212 | |
7213 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 7214 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
7215 | /* The multiplication can potentially overflow. But because |
7216 | the field length has been size-checked just above, and | |
7217 | assuming that the maximum size is a reasonable value, | |
7218 | an overflow should not happen in practice. So rather than | |
7219 | adding overflow recovery code to this already complex code, | |
7220 | we just assume that it's not going to happen. */ | |
d94e4f4f | 7221 | fld_bit_len = |
4c4b4cd2 PH |
7222 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
7223 | } | |
14f9c5c9 | 7224 | else |
4c4b4cd2 | 7225 | { |
9f0dec2d JB |
7226 | struct type *field_type = TYPE_FIELD_TYPE (type, f); |
7227 | ||
720d1a40 JB |
7228 | /* If our field is a typedef type (most likely a typedef of |
7229 | a fat pointer, encoding an array access), then we need to | |
7230 | look at its target type to determine its characteristics. | |
7231 | In particular, we would miscompute the field size if we took | |
7232 | the size of the typedef (zero), instead of the size of | |
7233 | the target type. */ | |
7234 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
7235 | field_type = ada_typedef_target_type (field_type); | |
7236 | ||
9f0dec2d | 7237 | TYPE_FIELD_TYPE (rtype, f) = field_type; |
4c4b4cd2 PH |
7238 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
7239 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 7240 | fld_bit_len = |
4c4b4cd2 PH |
7241 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
7242 | else | |
d94e4f4f | 7243 | fld_bit_len = |
9f0dec2d | 7244 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; |
4c4b4cd2 | 7245 | } |
14f9c5c9 | 7246 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 7247 | bit_len = off + fld_bit_len; |
d94e4f4f | 7248 | off += fld_bit_len; |
4c4b4cd2 PH |
7249 | TYPE_LENGTH (rtype) = |
7250 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 7251 | } |
4c4b4cd2 PH |
7252 | |
7253 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 7254 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
7255 | the record. This can happen in the presence of representation |
7256 | clauses. */ | |
7257 | if (variant_field >= 0) | |
7258 | { | |
7259 | struct type *branch_type; | |
7260 | ||
7261 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
7262 | ||
7263 | if (dval0 == NULL) | |
7264 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7265 | else | |
7266 | dval = dval0; | |
7267 | ||
7268 | branch_type = | |
7269 | to_fixed_variant_branch_type | |
7270 | (TYPE_FIELD_TYPE (type, variant_field), | |
7271 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
7272 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
7273 | if (branch_type == NULL) | |
7274 | { | |
7275 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
7276 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
7277 | TYPE_NFIELDS (rtype) -= 1; | |
7278 | } | |
7279 | else | |
7280 | { | |
7281 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
7282 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7283 | fld_bit_len = | |
7284 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
7285 | TARGET_CHAR_BIT; | |
7286 | if (off + fld_bit_len > bit_len) | |
7287 | bit_len = off + fld_bit_len; | |
7288 | TYPE_LENGTH (rtype) = | |
7289 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
7290 | } | |
7291 | } | |
7292 | ||
714e53ab PH |
7293 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
7294 | should contain the alignment of that record, which should be a strictly | |
7295 | positive value. If null or negative, then something is wrong, most | |
7296 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 7297 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
7298 | the current RTYPE length might be good enough for our purposes. */ |
7299 | if (TYPE_LENGTH (type) <= 0) | |
7300 | { | |
323e0a4a AC |
7301 | if (TYPE_NAME (rtype)) |
7302 | warning (_("Invalid type size for `%s' detected: %d."), | |
7303 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
7304 | else | |
7305 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
7306 | TYPE_LENGTH (type)); | |
714e53ab PH |
7307 | } |
7308 | else | |
7309 | { | |
7310 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
7311 | TYPE_LENGTH (type)); | |
7312 | } | |
14f9c5c9 AS |
7313 | |
7314 | value_free_to_mark (mark); | |
d2e4a39e | 7315 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 7316 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7317 | return rtype; |
7318 | } | |
7319 | ||
4c4b4cd2 PH |
7320 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
7321 | of 1. */ | |
14f9c5c9 | 7322 | |
d2e4a39e | 7323 | static struct type * |
fc1a4b47 | 7324 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
7325 | CORE_ADDR address, struct value *dval0) |
7326 | { | |
7327 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
7328 | address, dval0, 1); | |
7329 | } | |
7330 | ||
7331 | /* An ordinary record type in which ___XVL-convention fields and | |
7332 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
7333 | static approximations, containing all possible fields. Uses | |
7334 | no runtime values. Useless for use in values, but that's OK, | |
7335 | since the results are used only for type determinations. Works on both | |
7336 | structs and unions. Representation note: to save space, we memorize | |
7337 | the result of this function in the TYPE_TARGET_TYPE of the | |
7338 | template type. */ | |
7339 | ||
7340 | static struct type * | |
7341 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
7342 | { |
7343 | struct type *type; | |
7344 | int nfields; | |
7345 | int f; | |
7346 | ||
4c4b4cd2 PH |
7347 | if (TYPE_TARGET_TYPE (type0) != NULL) |
7348 | return TYPE_TARGET_TYPE (type0); | |
7349 | ||
7350 | nfields = TYPE_NFIELDS (type0); | |
7351 | type = type0; | |
14f9c5c9 AS |
7352 | |
7353 | for (f = 0; f < nfields; f += 1) | |
7354 | { | |
61ee279c | 7355 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 7356 | struct type *new_type; |
14f9c5c9 | 7357 | |
4c4b4cd2 PH |
7358 | if (is_dynamic_field (type0, f)) |
7359 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 7360 | else |
f192137b | 7361 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
7362 | if (type == type0 && new_type != field_type) |
7363 | { | |
e9bb382b | 7364 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
7365 | TYPE_CODE (type) = TYPE_CODE (type0); |
7366 | INIT_CPLUS_SPECIFIC (type); | |
7367 | TYPE_NFIELDS (type) = nfields; | |
7368 | TYPE_FIELDS (type) = (struct field *) | |
7369 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
7370 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
7371 | sizeof (struct field) * nfields); | |
7372 | TYPE_NAME (type) = ada_type_name (type0); | |
7373 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 7374 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
7375 | TYPE_LENGTH (type) = 0; |
7376 | } | |
7377 | TYPE_FIELD_TYPE (type, f) = new_type; | |
7378 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 7379 | } |
14f9c5c9 AS |
7380 | return type; |
7381 | } | |
7382 | ||
4c4b4cd2 | 7383 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
7384 | whose address in memory is ADDRESS, returns a revision of TYPE, |
7385 | which should be a non-dynamic-sized record, in which the variant | |
7386 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
7387 | for discriminant values in DVAL0, which can be NULL if the record |
7388 | contains the necessary discriminant values. */ | |
7389 | ||
d2e4a39e | 7390 | static struct type * |
fc1a4b47 | 7391 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 7392 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7393 | { |
d2e4a39e | 7394 | struct value *mark = value_mark (); |
4c4b4cd2 | 7395 | struct value *dval; |
d2e4a39e | 7396 | struct type *rtype; |
14f9c5c9 AS |
7397 | struct type *branch_type; |
7398 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 7399 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7400 | |
4c4b4cd2 | 7401 | if (variant_field == -1) |
14f9c5c9 AS |
7402 | return type; |
7403 | ||
4c4b4cd2 PH |
7404 | if (dval0 == NULL) |
7405 | dval = value_from_contents_and_address (type, valaddr, address); | |
7406 | else | |
7407 | dval = dval0; | |
7408 | ||
e9bb382b | 7409 | rtype = alloc_type_copy (type); |
14f9c5c9 | 7410 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
7411 | INIT_CPLUS_SPECIFIC (rtype); |
7412 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7413 | TYPE_FIELDS (rtype) = |
7414 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7415 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7416 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7417 | TYPE_NAME (rtype) = ada_type_name (type); |
7418 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7419 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7420 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7421 | ||
4c4b4cd2 PH |
7422 | branch_type = to_fixed_variant_branch_type |
7423 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7424 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7425 | TYPE_FIELD_BITPOS (type, variant_field) |
7426 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7427 | cond_offset_target (address, |
4c4b4cd2 PH |
7428 | TYPE_FIELD_BITPOS (type, variant_field) |
7429 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7430 | if (branch_type == NULL) |
14f9c5c9 | 7431 | { |
4c4b4cd2 | 7432 | int f; |
5b4ee69b | 7433 | |
4c4b4cd2 PH |
7434 | for (f = variant_field + 1; f < nfields; f += 1) |
7435 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7436 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7437 | } |
7438 | else | |
7439 | { | |
4c4b4cd2 PH |
7440 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7441 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7442 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7443 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7444 | } |
4c4b4cd2 | 7445 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7446 | |
4c4b4cd2 | 7447 | value_free_to_mark (mark); |
14f9c5c9 AS |
7448 | return rtype; |
7449 | } | |
7450 | ||
7451 | /* An ordinary record type (with fixed-length fields) that describes | |
7452 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7453 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7454 | should be in DVAL, a record value; it may be NULL if the object |
7455 | at ADDR itself contains any necessary discriminant values. | |
7456 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7457 | values from the record are needed. Except in the case that DVAL, | |
7458 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7459 | unchecked) is replaced by a particular branch of the variant. | |
7460 | ||
7461 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7462 | is questionable and may be removed. It can arise during the | |
7463 | processing of an unconstrained-array-of-record type where all the | |
7464 | variant branches have exactly the same size. This is because in | |
7465 | such cases, the compiler does not bother to use the XVS convention | |
7466 | when encoding the record. I am currently dubious of this | |
7467 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7468 | |
d2e4a39e | 7469 | static struct type * |
fc1a4b47 | 7470 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7471 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7472 | { |
d2e4a39e | 7473 | struct type *templ_type; |
14f9c5c9 | 7474 | |
876cecd0 | 7475 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7476 | return type0; |
7477 | ||
d2e4a39e | 7478 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7479 | |
7480 | if (templ_type != NULL) | |
7481 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7482 | else if (variant_field_index (type0) >= 0) |
7483 | { | |
7484 | if (dval == NULL && valaddr == NULL && address == 0) | |
7485 | return type0; | |
7486 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7487 | dval); | |
7488 | } | |
14f9c5c9 AS |
7489 | else |
7490 | { | |
876cecd0 | 7491 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7492 | return type0; |
7493 | } | |
7494 | ||
7495 | } | |
7496 | ||
7497 | /* An ordinary record type (with fixed-length fields) that describes | |
7498 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7499 | union type. Any necessary discriminants' values should be in DVAL, | |
7500 | a record value. That is, this routine selects the appropriate | |
7501 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 7502 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 7503 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 7504 | |
d2e4a39e | 7505 | static struct type * |
fc1a4b47 | 7506 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7507 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7508 | { |
7509 | int which; | |
d2e4a39e AS |
7510 | struct type *templ_type; |
7511 | struct type *var_type; | |
14f9c5c9 AS |
7512 | |
7513 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7514 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7515 | else |
14f9c5c9 AS |
7516 | var_type = var_type0; |
7517 | ||
7518 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7519 | ||
7520 | if (templ_type != NULL) | |
7521 | var_type = templ_type; | |
7522 | ||
b1f33ddd JB |
7523 | if (is_unchecked_variant (var_type, value_type (dval))) |
7524 | return var_type0; | |
d2e4a39e AS |
7525 | which = |
7526 | ada_which_variant_applies (var_type, | |
0fd88904 | 7527 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7528 | |
7529 | if (which < 0) | |
e9bb382b | 7530 | return empty_record (var_type); |
14f9c5c9 | 7531 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 7532 | return to_fixed_record_type |
d2e4a39e AS |
7533 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7534 | valaddr, address, dval); | |
4c4b4cd2 | 7535 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7536 | return |
7537 | to_fixed_record_type | |
7538 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7539 | else |
7540 | return TYPE_FIELD_TYPE (var_type, which); | |
7541 | } | |
7542 | ||
7543 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7544 | at ADDR, and that DVAL describes a record containing any | |
7545 | discriminants used in TYPE0, returns a type for the value that | |
7546 | contains no dynamic components (that is, no components whose sizes | |
7547 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7548 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7549 | varsize_limit. */ |
14f9c5c9 | 7550 | |
d2e4a39e AS |
7551 | static struct type * |
7552 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7553 | int ignore_too_big) |
14f9c5c9 | 7554 | { |
d2e4a39e AS |
7555 | struct type *index_type_desc; |
7556 | struct type *result; | |
ad82864c | 7557 | int constrained_packed_array_p; |
14f9c5c9 | 7558 | |
b0dd7688 | 7559 | type0 = ada_check_typedef (type0); |
284614f0 | 7560 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7561 | return type0; |
14f9c5c9 | 7562 | |
ad82864c JB |
7563 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
7564 | if (constrained_packed_array_p) | |
7565 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 7566 | |
14f9c5c9 | 7567 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
28c85d6c | 7568 | ada_fixup_array_indexes_type (index_type_desc); |
14f9c5c9 AS |
7569 | if (index_type_desc == NULL) |
7570 | { | |
61ee279c | 7571 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 7572 | |
14f9c5c9 | 7573 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7574 | depend on the contents of the array in properly constructed |
7575 | debugging data. */ | |
529cad9c PH |
7576 | /* Create a fixed version of the array element type. |
7577 | We're not providing the address of an element here, | |
e1d5a0d2 | 7578 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7579 | the conversion. This should not be a problem, since arrays of |
7580 | unconstrained objects are not allowed. In particular, all | |
7581 | the elements of an array of a tagged type should all be of | |
7582 | the same type specified in the debugging info. No need to | |
7583 | consult the object tag. */ | |
1ed6ede0 | 7584 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 7585 | |
284614f0 JB |
7586 | /* Make sure we always create a new array type when dealing with |
7587 | packed array types, since we're going to fix-up the array | |
7588 | type length and element bitsize a little further down. */ | |
ad82864c | 7589 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 7590 | result = type0; |
14f9c5c9 | 7591 | else |
e9bb382b | 7592 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 7593 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
7594 | } |
7595 | else | |
7596 | { | |
7597 | int i; | |
7598 | struct type *elt_type0; | |
7599 | ||
7600 | elt_type0 = type0; | |
7601 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 7602 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
7603 | |
7604 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
7605 | depend on the contents of the array in properly constructed |
7606 | debugging data. */ | |
529cad9c PH |
7607 | /* Create a fixed version of the array element type. |
7608 | We're not providing the address of an element here, | |
e1d5a0d2 | 7609 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7610 | the conversion. This should not be a problem, since arrays of |
7611 | unconstrained objects are not allowed. In particular, all | |
7612 | the elements of an array of a tagged type should all be of | |
7613 | the same type specified in the debugging info. No need to | |
7614 | consult the object tag. */ | |
1ed6ede0 JB |
7615 | result = |
7616 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
7617 | |
7618 | elt_type0 = type0; | |
14f9c5c9 | 7619 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
7620 | { |
7621 | struct type *range_type = | |
28c85d6c | 7622 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 7623 | |
e9bb382b | 7624 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 7625 | result, range_type); |
1ce677a4 | 7626 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 7627 | } |
d2e4a39e | 7628 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 7629 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7630 | } |
7631 | ||
ad82864c | 7632 | if (constrained_packed_array_p) |
284614f0 JB |
7633 | { |
7634 | /* So far, the resulting type has been created as if the original | |
7635 | type was a regular (non-packed) array type. As a result, the | |
7636 | bitsize of the array elements needs to be set again, and the array | |
7637 | length needs to be recomputed based on that bitsize. */ | |
7638 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
7639 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
7640 | ||
7641 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
7642 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
7643 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
7644 | TYPE_LENGTH (result)++; | |
7645 | } | |
7646 | ||
876cecd0 | 7647 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 7648 | return result; |
d2e4a39e | 7649 | } |
14f9c5c9 AS |
7650 | |
7651 | ||
7652 | /* A standard type (containing no dynamically sized components) | |
7653 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
7654 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 7655 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
7656 | ADDRESS or in VALADDR contains these discriminants. |
7657 | ||
1ed6ede0 JB |
7658 | If CHECK_TAG is not null, in the case of tagged types, this function |
7659 | attempts to locate the object's tag and use it to compute the actual | |
7660 | type. However, when ADDRESS is null, we cannot use it to determine the | |
7661 | location of the tag, and therefore compute the tagged type's actual type. | |
7662 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 7663 | |
f192137b JB |
7664 | static struct type * |
7665 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 7666 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 7667 | { |
61ee279c | 7668 | type = ada_check_typedef (type); |
d2e4a39e AS |
7669 | switch (TYPE_CODE (type)) |
7670 | { | |
7671 | default: | |
14f9c5c9 | 7672 | return type; |
d2e4a39e | 7673 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 7674 | { |
76a01679 | 7675 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
7676 | struct type *fixed_record_type = |
7677 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 7678 | |
529cad9c PH |
7679 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
7680 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 7681 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
7682 | type (the parent part of the record may have dynamic fields |
7683 | and the way the location of _tag is expressed may depend on | |
7684 | them). */ | |
529cad9c | 7685 | |
1ed6ede0 | 7686 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 JB |
7687 | { |
7688 | struct type *real_type = | |
1ed6ede0 JB |
7689 | type_from_tag (value_tag_from_contents_and_address |
7690 | (fixed_record_type, | |
7691 | valaddr, | |
7692 | address)); | |
5b4ee69b | 7693 | |
76a01679 | 7694 | if (real_type != NULL) |
1ed6ede0 | 7695 | return to_fixed_record_type (real_type, valaddr, address, NULL); |
76a01679 | 7696 | } |
4af88198 JB |
7697 | |
7698 | /* Check to see if there is a parallel ___XVZ variable. | |
7699 | If there is, then it provides the actual size of our type. */ | |
7700 | else if (ada_type_name (fixed_record_type) != NULL) | |
7701 | { | |
7702 | char *name = ada_type_name (fixed_record_type); | |
7703 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
7704 | int xvz_found = 0; | |
7705 | LONGEST size; | |
7706 | ||
88c15c34 | 7707 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
7708 | size = get_int_var_value (xvz_name, &xvz_found); |
7709 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
7710 | { | |
7711 | fixed_record_type = copy_type (fixed_record_type); | |
7712 | TYPE_LENGTH (fixed_record_type) = size; | |
7713 | ||
7714 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
7715 | observed this when the debugging info is STABS, and | |
7716 | apparently it is something that is hard to fix. | |
7717 | ||
7718 | In practice, we don't need the actual type definition | |
7719 | at all, because the presence of the XVZ variable allows us | |
7720 | to assume that there must be a XVS type as well, which we | |
7721 | should be able to use later, when we need the actual type | |
7722 | definition. | |
7723 | ||
7724 | In the meantime, pretend that the "fixed" type we are | |
7725 | returning is NOT a stub, because this can cause trouble | |
7726 | when using this type to create new types targeting it. | |
7727 | Indeed, the associated creation routines often check | |
7728 | whether the target type is a stub and will try to replace | |
0963b4bd | 7729 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
7730 | might cause the new type to have the wrong size too. |
7731 | Consider the case of an array, for instance, where the size | |
7732 | of the array is computed from the number of elements in | |
7733 | our array multiplied by the size of its element. */ | |
7734 | TYPE_STUB (fixed_record_type) = 0; | |
7735 | } | |
7736 | } | |
1ed6ede0 | 7737 | return fixed_record_type; |
4c4b4cd2 | 7738 | } |
d2e4a39e | 7739 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 7740 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
7741 | case TYPE_CODE_UNION: |
7742 | if (dval == NULL) | |
4c4b4cd2 | 7743 | return type; |
d2e4a39e | 7744 | else |
4c4b4cd2 | 7745 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 7746 | } |
14f9c5c9 AS |
7747 | } |
7748 | ||
f192137b JB |
7749 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
7750 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
7751 | |
7752 | The typedef layer needs be preserved in order to differentiate between | |
7753 | arrays and array pointers when both types are implemented using the same | |
7754 | fat pointer. In the array pointer case, the pointer is encoded as | |
7755 | a typedef of the pointer type. For instance, considering: | |
7756 | ||
7757 | type String_Access is access String; | |
7758 | S1 : String_Access := null; | |
7759 | ||
7760 | To the debugger, S1 is defined as a typedef of type String. But | |
7761 | to the user, it is a pointer. So if the user tries to print S1, | |
7762 | we should not dereference the array, but print the array address | |
7763 | instead. | |
7764 | ||
7765 | If we didn't preserve the typedef layer, we would lose the fact that | |
7766 | the type is to be presented as a pointer (needs de-reference before | |
7767 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
7768 | |
7769 | struct type * | |
7770 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
7771 | CORE_ADDR address, struct value *dval, int check_tag) | |
7772 | ||
7773 | { | |
7774 | struct type *fixed_type = | |
7775 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
7776 | ||
96dbd2c1 JB |
7777 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
7778 | then preserve the typedef layer. | |
7779 | ||
7780 | Implementation note: We can only check the main-type portion of | |
7781 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
7782 | from TYPE now returns a type that has the same instance flags | |
7783 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
7784 | target type is a "struct", then the typedef elimination will return | |
7785 | a "const" version of the target type. See check_typedef for more | |
7786 | details about how the typedef layer elimination is done. | |
7787 | ||
7788 | brobecker/2010-11-19: It seems to me that the only case where it is | |
7789 | useful to preserve the typedef layer is when dealing with fat pointers. | |
7790 | Perhaps, we could add a check for that and preserve the typedef layer | |
7791 | only in that situation. But this seems unecessary so far, probably | |
7792 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
7793 | */ | |
f192137b | 7794 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 7795 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 7796 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
7797 | return type; |
7798 | ||
7799 | return fixed_type; | |
7800 | } | |
7801 | ||
14f9c5c9 | 7802 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 7803 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 7804 | |
d2e4a39e AS |
7805 | static struct type * |
7806 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 7807 | { |
d2e4a39e | 7808 | struct type *type; |
14f9c5c9 AS |
7809 | |
7810 | if (type0 == NULL) | |
7811 | return NULL; | |
7812 | ||
876cecd0 | 7813 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7814 | return type0; |
7815 | ||
61ee279c | 7816 | type0 = ada_check_typedef (type0); |
d2e4a39e | 7817 | |
14f9c5c9 AS |
7818 | switch (TYPE_CODE (type0)) |
7819 | { | |
7820 | default: | |
7821 | return type0; | |
7822 | case TYPE_CODE_STRUCT: | |
7823 | type = dynamic_template_type (type0); | |
d2e4a39e | 7824 | if (type != NULL) |
4c4b4cd2 PH |
7825 | return template_to_static_fixed_type (type); |
7826 | else | |
7827 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7828 | case TYPE_CODE_UNION: |
7829 | type = ada_find_parallel_type (type0, "___XVU"); | |
7830 | if (type != NULL) | |
4c4b4cd2 PH |
7831 | return template_to_static_fixed_type (type); |
7832 | else | |
7833 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7834 | } |
7835 | } | |
7836 | ||
4c4b4cd2 PH |
7837 | /* A static approximation of TYPE with all type wrappers removed. */ |
7838 | ||
d2e4a39e AS |
7839 | static struct type * |
7840 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
7841 | { |
7842 | if (ada_is_aligner_type (type)) | |
7843 | { | |
61ee279c | 7844 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 7845 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 7846 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
7847 | |
7848 | return static_unwrap_type (type1); | |
7849 | } | |
d2e4a39e | 7850 | else |
14f9c5c9 | 7851 | { |
d2e4a39e | 7852 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 7853 | |
d2e4a39e | 7854 | if (raw_real_type == type) |
4c4b4cd2 | 7855 | return type; |
14f9c5c9 | 7856 | else |
4c4b4cd2 | 7857 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
7858 | } |
7859 | } | |
7860 | ||
7861 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 7862 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
7863 | type Foo; |
7864 | type FooP is access Foo; | |
7865 | V: FooP; | |
7866 | type Foo is array ...; | |
4c4b4cd2 | 7867 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
7868 | cross-references to such types, we instead substitute for FooP a |
7869 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 7870 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
7871 | |
7872 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
7873 | exists, otherwise TYPE. */ |
7874 | ||
d2e4a39e | 7875 | struct type * |
61ee279c | 7876 | ada_check_typedef (struct type *type) |
14f9c5c9 | 7877 | { |
727e3d2e JB |
7878 | if (type == NULL) |
7879 | return NULL; | |
7880 | ||
720d1a40 JB |
7881 | /* If our type is a typedef type of a fat pointer, then we're done. |
7882 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
7883 | what allows us to distinguish between fat pointers that represent | |
7884 | array types, and fat pointers that represent array access types | |
7885 | (in both cases, the compiler implements them as fat pointers). */ | |
7886 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
7887 | && is_thick_pntr (ada_typedef_target_type (type))) | |
7888 | return type; | |
7889 | ||
14f9c5c9 AS |
7890 | CHECK_TYPEDEF (type); |
7891 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 7892 | || !TYPE_STUB (type) |
14f9c5c9 AS |
7893 | || TYPE_TAG_NAME (type) == NULL) |
7894 | return type; | |
d2e4a39e | 7895 | else |
14f9c5c9 | 7896 | { |
d2e4a39e AS |
7897 | char *name = TYPE_TAG_NAME (type); |
7898 | struct type *type1 = ada_find_any_type (name); | |
5b4ee69b | 7899 | |
05e522ef JB |
7900 | if (type1 == NULL) |
7901 | return type; | |
7902 | ||
7903 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
7904 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
7905 | types, only for the typedef-to-array types). If that's the case, |
7906 | strip the typedef layer. */ | |
7907 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
7908 | type1 = ada_check_typedef (type1); | |
7909 | ||
7910 | return type1; | |
14f9c5c9 AS |
7911 | } |
7912 | } | |
7913 | ||
7914 | /* A value representing the data at VALADDR/ADDRESS as described by | |
7915 | type TYPE0, but with a standard (static-sized) type that correctly | |
7916 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
7917 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 7918 | creation of struct values]. */ |
14f9c5c9 | 7919 | |
4c4b4cd2 PH |
7920 | static struct value * |
7921 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
7922 | struct value *val0) | |
14f9c5c9 | 7923 | { |
1ed6ede0 | 7924 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 7925 | |
14f9c5c9 AS |
7926 | if (type == type0 && val0 != NULL) |
7927 | return val0; | |
d2e4a39e | 7928 | else |
4c4b4cd2 PH |
7929 | return value_from_contents_and_address (type, 0, address); |
7930 | } | |
7931 | ||
7932 | /* A value representing VAL, but with a standard (static-sized) type | |
7933 | that correctly describes it. Does not necessarily create a new | |
7934 | value. */ | |
7935 | ||
0c3acc09 | 7936 | struct value * |
4c4b4cd2 PH |
7937 | ada_to_fixed_value (struct value *val) |
7938 | { | |
df407dfe | 7939 | return ada_to_fixed_value_create (value_type (val), |
42ae5230 | 7940 | value_address (val), |
4c4b4cd2 | 7941 | val); |
14f9c5c9 | 7942 | } |
d2e4a39e | 7943 | \f |
14f9c5c9 | 7944 | |
14f9c5c9 AS |
7945 | /* Attributes */ |
7946 | ||
4c4b4cd2 PH |
7947 | /* Table mapping attribute numbers to names. |
7948 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 7949 | |
d2e4a39e | 7950 | static const char *attribute_names[] = { |
14f9c5c9 AS |
7951 | "<?>", |
7952 | ||
d2e4a39e | 7953 | "first", |
14f9c5c9 AS |
7954 | "last", |
7955 | "length", | |
7956 | "image", | |
14f9c5c9 AS |
7957 | "max", |
7958 | "min", | |
4c4b4cd2 PH |
7959 | "modulus", |
7960 | "pos", | |
7961 | "size", | |
7962 | "tag", | |
14f9c5c9 | 7963 | "val", |
14f9c5c9 AS |
7964 | 0 |
7965 | }; | |
7966 | ||
d2e4a39e | 7967 | const char * |
4c4b4cd2 | 7968 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 7969 | { |
4c4b4cd2 PH |
7970 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
7971 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
7972 | else |
7973 | return attribute_names[0]; | |
7974 | } | |
7975 | ||
4c4b4cd2 | 7976 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 7977 | |
4c4b4cd2 PH |
7978 | static LONGEST |
7979 | pos_atr (struct value *arg) | |
14f9c5c9 | 7980 | { |
24209737 PH |
7981 | struct value *val = coerce_ref (arg); |
7982 | struct type *type = value_type (val); | |
14f9c5c9 | 7983 | |
d2e4a39e | 7984 | if (!discrete_type_p (type)) |
323e0a4a | 7985 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
7986 | |
7987 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7988 | { | |
7989 | int i; | |
24209737 | 7990 | LONGEST v = value_as_long (val); |
14f9c5c9 | 7991 | |
d2e4a39e | 7992 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 PH |
7993 | { |
7994 | if (v == TYPE_FIELD_BITPOS (type, i)) | |
7995 | return i; | |
7996 | } | |
323e0a4a | 7997 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
7998 | } |
7999 | else | |
24209737 | 8000 | return value_as_long (val); |
4c4b4cd2 PH |
8001 | } |
8002 | ||
8003 | static struct value * | |
3cb382c9 | 8004 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 8005 | { |
3cb382c9 | 8006 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
8007 | } |
8008 | ||
4c4b4cd2 | 8009 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 8010 | |
d2e4a39e AS |
8011 | static struct value * |
8012 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 8013 | { |
d2e4a39e | 8014 | if (!discrete_type_p (type)) |
323e0a4a | 8015 | error (_("'VAL only defined on discrete types")); |
df407dfe | 8016 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 8017 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
8018 | |
8019 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8020 | { | |
8021 | long pos = value_as_long (arg); | |
5b4ee69b | 8022 | |
14f9c5c9 | 8023 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 8024 | error (_("argument to 'VAL out of range")); |
d2e4a39e | 8025 | return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); |
14f9c5c9 AS |
8026 | } |
8027 | else | |
8028 | return value_from_longest (type, value_as_long (arg)); | |
8029 | } | |
14f9c5c9 | 8030 | \f |
d2e4a39e | 8031 | |
4c4b4cd2 | 8032 | /* Evaluation */ |
14f9c5c9 | 8033 | |
4c4b4cd2 PH |
8034 | /* True if TYPE appears to be an Ada character type. |
8035 | [At the moment, this is true only for Character and Wide_Character; | |
8036 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 8037 | |
d2e4a39e AS |
8038 | int |
8039 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 8040 | { |
7b9f71f2 JB |
8041 | const char *name; |
8042 | ||
8043 | /* If the type code says it's a character, then assume it really is, | |
8044 | and don't check any further. */ | |
8045 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
8046 | return 1; | |
8047 | ||
8048 | /* Otherwise, assume it's a character type iff it is a discrete type | |
8049 | with a known character type name. */ | |
8050 | name = ada_type_name (type); | |
8051 | return (name != NULL | |
8052 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
8053 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
8054 | && (strcmp (name, "character") == 0 | |
8055 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 8056 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 8057 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
8058 | } |
8059 | ||
4c4b4cd2 | 8060 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
8061 | |
8062 | int | |
ebf56fd3 | 8063 | ada_is_string_type (struct type *type) |
14f9c5c9 | 8064 | { |
61ee279c | 8065 | type = ada_check_typedef (type); |
d2e4a39e | 8066 | if (type != NULL |
14f9c5c9 | 8067 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
8068 | && (ada_is_simple_array_type (type) |
8069 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
8070 | && ada_array_arity (type) == 1) |
8071 | { | |
8072 | struct type *elttype = ada_array_element_type (type, 1); | |
8073 | ||
8074 | return ada_is_character_type (elttype); | |
8075 | } | |
d2e4a39e | 8076 | else |
14f9c5c9 AS |
8077 | return 0; |
8078 | } | |
8079 | ||
5bf03f13 JB |
8080 | /* The compiler sometimes provides a parallel XVS type for a given |
8081 | PAD type. Normally, it is safe to follow the PAD type directly, | |
8082 | but older versions of the compiler have a bug that causes the offset | |
8083 | of its "F" field to be wrong. Following that field in that case | |
8084 | would lead to incorrect results, but this can be worked around | |
8085 | by ignoring the PAD type and using the associated XVS type instead. | |
8086 | ||
8087 | Set to True if the debugger should trust the contents of PAD types. | |
8088 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
8089 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
8090 | |
8091 | /* True if TYPE is a struct type introduced by the compiler to force the | |
8092 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 8093 | distinctive name. */ |
14f9c5c9 AS |
8094 | |
8095 | int | |
ebf56fd3 | 8096 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 8097 | { |
61ee279c | 8098 | type = ada_check_typedef (type); |
714e53ab | 8099 | |
5bf03f13 | 8100 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
8101 | return 0; |
8102 | ||
14f9c5c9 | 8103 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
8104 | && TYPE_NFIELDS (type) == 1 |
8105 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
8106 | } |
8107 | ||
8108 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 8109 | the parallel type. */ |
14f9c5c9 | 8110 | |
d2e4a39e AS |
8111 | struct type * |
8112 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 8113 | { |
d2e4a39e AS |
8114 | struct type *real_type_namer; |
8115 | struct type *raw_real_type; | |
14f9c5c9 AS |
8116 | |
8117 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
8118 | return raw_type; | |
8119 | ||
284614f0 JB |
8120 | if (ada_is_aligner_type (raw_type)) |
8121 | /* The encoding specifies that we should always use the aligner type. | |
8122 | So, even if this aligner type has an associated XVS type, we should | |
8123 | simply ignore it. | |
8124 | ||
8125 | According to the compiler gurus, an XVS type parallel to an aligner | |
8126 | type may exist because of a stabs limitation. In stabs, aligner | |
8127 | types are empty because the field has a variable-sized type, and | |
8128 | thus cannot actually be used as an aligner type. As a result, | |
8129 | we need the associated parallel XVS type to decode the type. | |
8130 | Since the policy in the compiler is to not change the internal | |
8131 | representation based on the debugging info format, we sometimes | |
8132 | end up having a redundant XVS type parallel to the aligner type. */ | |
8133 | return raw_type; | |
8134 | ||
14f9c5c9 | 8135 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 8136 | if (real_type_namer == NULL |
14f9c5c9 AS |
8137 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
8138 | || TYPE_NFIELDS (real_type_namer) != 1) | |
8139 | return raw_type; | |
8140 | ||
f80d3ff2 JB |
8141 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
8142 | { | |
8143 | /* This is an older encoding form where the base type needs to be | |
8144 | looked up by name. We prefer the newer enconding because it is | |
8145 | more efficient. */ | |
8146 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
8147 | if (raw_real_type == NULL) | |
8148 | return raw_type; | |
8149 | else | |
8150 | return raw_real_type; | |
8151 | } | |
8152 | ||
8153 | /* The field in our XVS type is a reference to the base type. */ | |
8154 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 8155 | } |
14f9c5c9 | 8156 | |
4c4b4cd2 | 8157 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 8158 | |
d2e4a39e AS |
8159 | struct type * |
8160 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
8161 | { |
8162 | if (ada_is_aligner_type (type)) | |
8163 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
8164 | else | |
8165 | return ada_get_base_type (type); | |
8166 | } | |
8167 | ||
8168 | ||
8169 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 8170 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 8171 | |
fc1a4b47 AC |
8172 | const gdb_byte * |
8173 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 8174 | { |
d2e4a39e | 8175 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 8176 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
8177 | valaddr + |
8178 | TYPE_FIELD_BITPOS (type, | |
8179 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
8180 | else |
8181 | return valaddr; | |
8182 | } | |
8183 | ||
4c4b4cd2 PH |
8184 | |
8185 | ||
14f9c5c9 | 8186 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 8187 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
8188 | const char * |
8189 | ada_enum_name (const char *name) | |
14f9c5c9 | 8190 | { |
4c4b4cd2 PH |
8191 | static char *result; |
8192 | static size_t result_len = 0; | |
d2e4a39e | 8193 | char *tmp; |
14f9c5c9 | 8194 | |
4c4b4cd2 PH |
8195 | /* First, unqualify the enumeration name: |
8196 | 1. Search for the last '.' character. If we find one, then skip | |
76a01679 JB |
8197 | all the preceeding characters, the unqualified name starts |
8198 | right after that dot. | |
4c4b4cd2 | 8199 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
8200 | translates dots into "__". Search forward for double underscores, |
8201 | but stop searching when we hit an overloading suffix, which is | |
8202 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 8203 | |
c3e5cd34 PH |
8204 | tmp = strrchr (name, '.'); |
8205 | if (tmp != NULL) | |
4c4b4cd2 PH |
8206 | name = tmp + 1; |
8207 | else | |
14f9c5c9 | 8208 | { |
4c4b4cd2 PH |
8209 | while ((tmp = strstr (name, "__")) != NULL) |
8210 | { | |
8211 | if (isdigit (tmp[2])) | |
8212 | break; | |
8213 | else | |
8214 | name = tmp + 2; | |
8215 | } | |
14f9c5c9 AS |
8216 | } |
8217 | ||
8218 | if (name[0] == 'Q') | |
8219 | { | |
14f9c5c9 | 8220 | int v; |
5b4ee69b | 8221 | |
14f9c5c9 | 8222 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
8223 | { |
8224 | if (sscanf (name + 2, "%x", &v) != 1) | |
8225 | return name; | |
8226 | } | |
14f9c5c9 | 8227 | else |
4c4b4cd2 | 8228 | return name; |
14f9c5c9 | 8229 | |
4c4b4cd2 | 8230 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 8231 | if (isascii (v) && isprint (v)) |
88c15c34 | 8232 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 8233 | else if (name[1] == 'U') |
88c15c34 | 8234 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 8235 | else |
88c15c34 | 8236 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
8237 | |
8238 | return result; | |
8239 | } | |
d2e4a39e | 8240 | else |
4c4b4cd2 | 8241 | { |
c3e5cd34 PH |
8242 | tmp = strstr (name, "__"); |
8243 | if (tmp == NULL) | |
8244 | tmp = strstr (name, "$"); | |
8245 | if (tmp != NULL) | |
4c4b4cd2 PH |
8246 | { |
8247 | GROW_VECT (result, result_len, tmp - name + 1); | |
8248 | strncpy (result, name, tmp - name); | |
8249 | result[tmp - name] = '\0'; | |
8250 | return result; | |
8251 | } | |
8252 | ||
8253 | return name; | |
8254 | } | |
14f9c5c9 AS |
8255 | } |
8256 | ||
14f9c5c9 AS |
8257 | /* Evaluate the subexpression of EXP starting at *POS as for |
8258 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 8259 | expression. */ |
14f9c5c9 | 8260 | |
d2e4a39e AS |
8261 | static struct value * |
8262 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 8263 | { |
4b27a620 | 8264 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
8265 | } |
8266 | ||
8267 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 8268 | value it wraps. */ |
14f9c5c9 | 8269 | |
d2e4a39e AS |
8270 | static struct value * |
8271 | unwrap_value (struct value *val) | |
14f9c5c9 | 8272 | { |
df407dfe | 8273 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 8274 | |
14f9c5c9 AS |
8275 | if (ada_is_aligner_type (type)) |
8276 | { | |
de4d072f | 8277 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 8278 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 8279 | |
14f9c5c9 | 8280 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 8281 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
8282 | |
8283 | return unwrap_value (v); | |
8284 | } | |
d2e4a39e | 8285 | else |
14f9c5c9 | 8286 | { |
d2e4a39e | 8287 | struct type *raw_real_type = |
61ee279c | 8288 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 8289 | |
5bf03f13 JB |
8290 | /* If there is no parallel XVS or XVE type, then the value is |
8291 | already unwrapped. Return it without further modification. */ | |
8292 | if ((type == raw_real_type) | |
8293 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
8294 | return val; | |
14f9c5c9 | 8295 | |
d2e4a39e | 8296 | return |
4c4b4cd2 PH |
8297 | coerce_unspec_val_to_type |
8298 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 8299 | value_address (val), |
1ed6ede0 | 8300 | NULL, 1)); |
14f9c5c9 AS |
8301 | } |
8302 | } | |
d2e4a39e AS |
8303 | |
8304 | static struct value * | |
8305 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
8306 | { |
8307 | LONGEST val; | |
8308 | ||
df407dfe | 8309 | if (type == value_type (arg)) |
14f9c5c9 | 8310 | return arg; |
df407dfe | 8311 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 8312 | val = ada_float_to_fixed (type, |
df407dfe | 8313 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8314 | value_as_long (arg))); |
d2e4a39e | 8315 | else |
14f9c5c9 | 8316 | { |
a53b7a21 | 8317 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 8318 | |
14f9c5c9 AS |
8319 | val = ada_float_to_fixed (type, argd); |
8320 | } | |
8321 | ||
8322 | return value_from_longest (type, val); | |
8323 | } | |
8324 | ||
d2e4a39e | 8325 | static struct value * |
a53b7a21 | 8326 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 8327 | { |
df407dfe | 8328 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8329 | value_as_long (arg)); |
5b4ee69b | 8330 | |
a53b7a21 | 8331 | return value_from_double (type, val); |
14f9c5c9 AS |
8332 | } |
8333 | ||
4c4b4cd2 PH |
8334 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
8335 | return the converted value. */ | |
8336 | ||
d2e4a39e AS |
8337 | static struct value * |
8338 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 8339 | { |
df407dfe | 8340 | struct type *type2 = value_type (val); |
5b4ee69b | 8341 | |
14f9c5c9 AS |
8342 | if (type == type2) |
8343 | return val; | |
8344 | ||
61ee279c PH |
8345 | type2 = ada_check_typedef (type2); |
8346 | type = ada_check_typedef (type); | |
14f9c5c9 | 8347 | |
d2e4a39e AS |
8348 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
8349 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
8350 | { |
8351 | val = ada_value_ind (val); | |
df407dfe | 8352 | type2 = value_type (val); |
14f9c5c9 AS |
8353 | } |
8354 | ||
d2e4a39e | 8355 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
8356 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
8357 | { | |
8358 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
4c4b4cd2 PH |
8359 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
8360 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
323e0a4a | 8361 | error (_("Incompatible types in assignment")); |
04624583 | 8362 | deprecated_set_value_type (val, type); |
14f9c5c9 | 8363 | } |
d2e4a39e | 8364 | return val; |
14f9c5c9 AS |
8365 | } |
8366 | ||
4c4b4cd2 PH |
8367 | static struct value * |
8368 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
8369 | { | |
8370 | struct value *val; | |
8371 | struct type *type1, *type2; | |
8372 | LONGEST v, v1, v2; | |
8373 | ||
994b9211 AC |
8374 | arg1 = coerce_ref (arg1); |
8375 | arg2 = coerce_ref (arg2); | |
df407dfe AC |
8376 | type1 = base_type (ada_check_typedef (value_type (arg1))); |
8377 | type2 = base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 8378 | |
76a01679 JB |
8379 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
8380 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
8381 | return value_binop (arg1, arg2, op); |
8382 | ||
76a01679 | 8383 | switch (op) |
4c4b4cd2 PH |
8384 | { |
8385 | case BINOP_MOD: | |
8386 | case BINOP_DIV: | |
8387 | case BINOP_REM: | |
8388 | break; | |
8389 | default: | |
8390 | return value_binop (arg1, arg2, op); | |
8391 | } | |
8392 | ||
8393 | v2 = value_as_long (arg2); | |
8394 | if (v2 == 0) | |
323e0a4a | 8395 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
8396 | |
8397 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
8398 | return value_binop (arg1, arg2, op); | |
8399 | ||
8400 | v1 = value_as_long (arg1); | |
8401 | switch (op) | |
8402 | { | |
8403 | case BINOP_DIV: | |
8404 | v = v1 / v2; | |
76a01679 JB |
8405 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
8406 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
8407 | break; |
8408 | case BINOP_REM: | |
8409 | v = v1 % v2; | |
76a01679 JB |
8410 | if (v * v1 < 0) |
8411 | v -= v2; | |
4c4b4cd2 PH |
8412 | break; |
8413 | default: | |
8414 | /* Should not reach this point. */ | |
8415 | v = 0; | |
8416 | } | |
8417 | ||
8418 | val = allocate_value (type1); | |
990a07ab | 8419 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
8420 | TYPE_LENGTH (value_type (val)), |
8421 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
8422 | return val; |
8423 | } | |
8424 | ||
8425 | static int | |
8426 | ada_value_equal (struct value *arg1, struct value *arg2) | |
8427 | { | |
df407dfe AC |
8428 | if (ada_is_direct_array_type (value_type (arg1)) |
8429 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 8430 | { |
f58b38bf JB |
8431 | /* Automatically dereference any array reference before |
8432 | we attempt to perform the comparison. */ | |
8433 | arg1 = ada_coerce_ref (arg1); | |
8434 | arg2 = ada_coerce_ref (arg2); | |
8435 | ||
4c4b4cd2 PH |
8436 | arg1 = ada_coerce_to_simple_array (arg1); |
8437 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
8438 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
8439 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 8440 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 8441 | /* FIXME: The following works only for types whose |
76a01679 JB |
8442 | representations use all bits (no padding or undefined bits) |
8443 | and do not have user-defined equality. */ | |
8444 | return | |
df407dfe | 8445 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 8446 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 8447 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
8448 | } |
8449 | return value_equal (arg1, arg2); | |
8450 | } | |
8451 | ||
52ce6436 PH |
8452 | /* Total number of component associations in the aggregate starting at |
8453 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 8454 | OP_AGGREGATE. */ |
52ce6436 PH |
8455 | |
8456 | static int | |
8457 | num_component_specs (struct expression *exp, int pc) | |
8458 | { | |
8459 | int n, m, i; | |
5b4ee69b | 8460 | |
52ce6436 PH |
8461 | m = exp->elts[pc + 1].longconst; |
8462 | pc += 3; | |
8463 | n = 0; | |
8464 | for (i = 0; i < m; i += 1) | |
8465 | { | |
8466 | switch (exp->elts[pc].opcode) | |
8467 | { | |
8468 | default: | |
8469 | n += 1; | |
8470 | break; | |
8471 | case OP_CHOICES: | |
8472 | n += exp->elts[pc + 1].longconst; | |
8473 | break; | |
8474 | } | |
8475 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
8476 | } | |
8477 | return n; | |
8478 | } | |
8479 | ||
8480 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
8481 | component of LHS (a simple array or a record), updating *POS past | |
8482 | the expression, assuming that LHS is contained in CONTAINER. Does | |
8483 | not modify the inferior's memory, nor does it modify LHS (unless | |
8484 | LHS == CONTAINER). */ | |
8485 | ||
8486 | static void | |
8487 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
8488 | struct expression *exp, int *pos) | |
8489 | { | |
8490 | struct value *mark = value_mark (); | |
8491 | struct value *elt; | |
5b4ee69b | 8492 | |
52ce6436 PH |
8493 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
8494 | { | |
22601c15 UW |
8495 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
8496 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 8497 | |
52ce6436 PH |
8498 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
8499 | } | |
8500 | else | |
8501 | { | |
8502 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
8503 | elt = ada_to_fixed_value (unwrap_value (elt)); | |
8504 | } | |
8505 | ||
8506 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
8507 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
8508 | else | |
8509 | value_assign_to_component (container, elt, | |
8510 | ada_evaluate_subexp (NULL, exp, pos, | |
8511 | EVAL_NORMAL)); | |
8512 | ||
8513 | value_free_to_mark (mark); | |
8514 | } | |
8515 | ||
8516 | /* Assuming that LHS represents an lvalue having a record or array | |
8517 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
8518 | of that aggregate's value to LHS, advancing *POS past the | |
8519 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
8520 | lvalue containing LHS (possibly LHS itself). Does not modify | |
8521 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 8522 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
8523 | |
8524 | static struct value * | |
8525 | assign_aggregate (struct value *container, | |
8526 | struct value *lhs, struct expression *exp, | |
8527 | int *pos, enum noside noside) | |
8528 | { | |
8529 | struct type *lhs_type; | |
8530 | int n = exp->elts[*pos+1].longconst; | |
8531 | LONGEST low_index, high_index; | |
8532 | int num_specs; | |
8533 | LONGEST *indices; | |
8534 | int max_indices, num_indices; | |
8535 | int is_array_aggregate; | |
8536 | int i; | |
52ce6436 PH |
8537 | |
8538 | *pos += 3; | |
8539 | if (noside != EVAL_NORMAL) | |
8540 | { | |
8541 | int i; | |
5b4ee69b | 8542 | |
52ce6436 PH |
8543 | for (i = 0; i < n; i += 1) |
8544 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
8545 | return container; | |
8546 | } | |
8547 | ||
8548 | container = ada_coerce_ref (container); | |
8549 | if (ada_is_direct_array_type (value_type (container))) | |
8550 | container = ada_coerce_to_simple_array (container); | |
8551 | lhs = ada_coerce_ref (lhs); | |
8552 | if (!deprecated_value_modifiable (lhs)) | |
8553 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
8554 | ||
8555 | lhs_type = value_type (lhs); | |
8556 | if (ada_is_direct_array_type (lhs_type)) | |
8557 | { | |
8558 | lhs = ada_coerce_to_simple_array (lhs); | |
8559 | lhs_type = value_type (lhs); | |
8560 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
8561 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
8562 | is_array_aggregate = 1; | |
8563 | } | |
8564 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
8565 | { | |
8566 | low_index = 0; | |
8567 | high_index = num_visible_fields (lhs_type) - 1; | |
8568 | is_array_aggregate = 0; | |
8569 | } | |
8570 | else | |
8571 | error (_("Left-hand side must be array or record.")); | |
8572 | ||
8573 | num_specs = num_component_specs (exp, *pos - 3); | |
8574 | max_indices = 4 * num_specs + 4; | |
8575 | indices = alloca (max_indices * sizeof (indices[0])); | |
8576 | indices[0] = indices[1] = low_index - 1; | |
8577 | indices[2] = indices[3] = high_index + 1; | |
8578 | num_indices = 4; | |
8579 | ||
8580 | for (i = 0; i < n; i += 1) | |
8581 | { | |
8582 | switch (exp->elts[*pos].opcode) | |
8583 | { | |
8584 | case OP_CHOICES: | |
8585 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
8586 | &num_indices, max_indices, | |
8587 | low_index, high_index); | |
8588 | break; | |
8589 | case OP_POSITIONAL: | |
8590 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
8591 | &num_indices, max_indices, | |
8592 | low_index, high_index); | |
8593 | break; | |
8594 | case OP_OTHERS: | |
8595 | if (i != n-1) | |
8596 | error (_("Misplaced 'others' clause")); | |
8597 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
8598 | num_indices, low_index, high_index); | |
8599 | break; | |
8600 | default: | |
8601 | error (_("Internal error: bad aggregate clause")); | |
8602 | } | |
8603 | } | |
8604 | ||
8605 | return container; | |
8606 | } | |
8607 | ||
8608 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
8609 | construct at *POS, updating *POS past the construct, given that | |
8610 | the positions are relative to lower bound LOW, where HIGH is the | |
8611 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
8612 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 8613 | assign_aggregate. */ |
52ce6436 PH |
8614 | static void |
8615 | aggregate_assign_positional (struct value *container, | |
8616 | struct value *lhs, struct expression *exp, | |
8617 | int *pos, LONGEST *indices, int *num_indices, | |
8618 | int max_indices, LONGEST low, LONGEST high) | |
8619 | { | |
8620 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
8621 | ||
8622 | if (ind - 1 == high) | |
e1d5a0d2 | 8623 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
8624 | if (ind <= high) |
8625 | { | |
8626 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
8627 | *pos += 3; | |
8628 | assign_component (container, lhs, ind, exp, pos); | |
8629 | } | |
8630 | else | |
8631 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8632 | } | |
8633 | ||
8634 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
8635 | construct at *POS, updating *POS past the construct, given that | |
8636 | the allowable indices are LOW..HIGH. Record the indices assigned | |
8637 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 8638 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
8639 | static void |
8640 | aggregate_assign_from_choices (struct value *container, | |
8641 | struct value *lhs, struct expression *exp, | |
8642 | int *pos, LONGEST *indices, int *num_indices, | |
8643 | int max_indices, LONGEST low, LONGEST high) | |
8644 | { | |
8645 | int j; | |
8646 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
8647 | int choice_pos, expr_pc; | |
8648 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
8649 | ||
8650 | choice_pos = *pos += 3; | |
8651 | ||
8652 | for (j = 0; j < n_choices; j += 1) | |
8653 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8654 | expr_pc = *pos; | |
8655 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8656 | ||
8657 | for (j = 0; j < n_choices; j += 1) | |
8658 | { | |
8659 | LONGEST lower, upper; | |
8660 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 8661 | |
52ce6436 PH |
8662 | if (op == OP_DISCRETE_RANGE) |
8663 | { | |
8664 | choice_pos += 1; | |
8665 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8666 | EVAL_NORMAL)); | |
8667 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8668 | EVAL_NORMAL)); | |
8669 | } | |
8670 | else if (is_array) | |
8671 | { | |
8672 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
8673 | EVAL_NORMAL)); | |
8674 | upper = lower; | |
8675 | } | |
8676 | else | |
8677 | { | |
8678 | int ind; | |
8679 | char *name; | |
5b4ee69b | 8680 | |
52ce6436 PH |
8681 | switch (op) |
8682 | { | |
8683 | case OP_NAME: | |
8684 | name = &exp->elts[choice_pos + 2].string; | |
8685 | break; | |
8686 | case OP_VAR_VALUE: | |
8687 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
8688 | break; | |
8689 | default: | |
8690 | error (_("Invalid record component association.")); | |
8691 | } | |
8692 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
8693 | ind = 0; | |
8694 | if (! find_struct_field (name, value_type (lhs), 0, | |
8695 | NULL, NULL, NULL, NULL, &ind)) | |
8696 | error (_("Unknown component name: %s."), name); | |
8697 | lower = upper = ind; | |
8698 | } | |
8699 | ||
8700 | if (lower <= upper && (lower < low || upper > high)) | |
8701 | error (_("Index in component association out of bounds.")); | |
8702 | ||
8703 | add_component_interval (lower, upper, indices, num_indices, | |
8704 | max_indices); | |
8705 | while (lower <= upper) | |
8706 | { | |
8707 | int pos1; | |
5b4ee69b | 8708 | |
52ce6436 PH |
8709 | pos1 = expr_pc; |
8710 | assign_component (container, lhs, lower, exp, &pos1); | |
8711 | lower += 1; | |
8712 | } | |
8713 | } | |
8714 | } | |
8715 | ||
8716 | /* Assign the value of the expression in the OP_OTHERS construct in | |
8717 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
8718 | have not been previously assigned. The index intervals already assigned | |
8719 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 8720 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
8721 | static void |
8722 | aggregate_assign_others (struct value *container, | |
8723 | struct value *lhs, struct expression *exp, | |
8724 | int *pos, LONGEST *indices, int num_indices, | |
8725 | LONGEST low, LONGEST high) | |
8726 | { | |
8727 | int i; | |
5ce64950 | 8728 | int expr_pc = *pos + 1; |
52ce6436 PH |
8729 | |
8730 | for (i = 0; i < num_indices - 2; i += 2) | |
8731 | { | |
8732 | LONGEST ind; | |
5b4ee69b | 8733 | |
52ce6436 PH |
8734 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
8735 | { | |
5ce64950 | 8736 | int localpos; |
5b4ee69b | 8737 | |
5ce64950 MS |
8738 | localpos = expr_pc; |
8739 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
8740 | } |
8741 | } | |
8742 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8743 | } | |
8744 | ||
8745 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
8746 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
8747 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
8748 | MAX_SIZE. The resulting intervals do not overlap. */ | |
8749 | static void | |
8750 | add_component_interval (LONGEST low, LONGEST high, | |
8751 | LONGEST* indices, int *size, int max_size) | |
8752 | { | |
8753 | int i, j; | |
5b4ee69b | 8754 | |
52ce6436 PH |
8755 | for (i = 0; i < *size; i += 2) { |
8756 | if (high >= indices[i] && low <= indices[i + 1]) | |
8757 | { | |
8758 | int kh; | |
5b4ee69b | 8759 | |
52ce6436 PH |
8760 | for (kh = i + 2; kh < *size; kh += 2) |
8761 | if (high < indices[kh]) | |
8762 | break; | |
8763 | if (low < indices[i]) | |
8764 | indices[i] = low; | |
8765 | indices[i + 1] = indices[kh - 1]; | |
8766 | if (high > indices[i + 1]) | |
8767 | indices[i + 1] = high; | |
8768 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
8769 | *size -= kh - i - 2; | |
8770 | return; | |
8771 | } | |
8772 | else if (high < indices[i]) | |
8773 | break; | |
8774 | } | |
8775 | ||
8776 | if (*size == max_size) | |
8777 | error (_("Internal error: miscounted aggregate components.")); | |
8778 | *size += 2; | |
8779 | for (j = *size-1; j >= i+2; j -= 1) | |
8780 | indices[j] = indices[j - 2]; | |
8781 | indices[i] = low; | |
8782 | indices[i + 1] = high; | |
8783 | } | |
8784 | ||
6e48bd2c JB |
8785 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
8786 | is different. */ | |
8787 | ||
8788 | static struct value * | |
8789 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
8790 | { | |
8791 | if (type == ada_check_typedef (value_type (arg2))) | |
8792 | return arg2; | |
8793 | ||
8794 | if (ada_is_fixed_point_type (type)) | |
8795 | return (cast_to_fixed (type, arg2)); | |
8796 | ||
8797 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 8798 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
8799 | |
8800 | return value_cast (type, arg2); | |
8801 | } | |
8802 | ||
284614f0 JB |
8803 | /* Evaluating Ada expressions, and printing their result. |
8804 | ------------------------------------------------------ | |
8805 | ||
21649b50 JB |
8806 | 1. Introduction: |
8807 | ---------------- | |
8808 | ||
284614f0 JB |
8809 | We usually evaluate an Ada expression in order to print its value. |
8810 | We also evaluate an expression in order to print its type, which | |
8811 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
8812 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
8813 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
8814 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
8815 | similar. | |
8816 | ||
8817 | Evaluating expressions is a little more complicated for Ada entities | |
8818 | than it is for entities in languages such as C. The main reason for | |
8819 | this is that Ada provides types whose definition might be dynamic. | |
8820 | One example of such types is variant records. Or another example | |
8821 | would be an array whose bounds can only be known at run time. | |
8822 | ||
8823 | The following description is a general guide as to what should be | |
8824 | done (and what should NOT be done) in order to evaluate an expression | |
8825 | involving such types, and when. This does not cover how the semantic | |
8826 | information is encoded by GNAT as this is covered separatly. For the | |
8827 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
8828 | in the GNAT sources. | |
8829 | ||
8830 | Ideally, we should embed each part of this description next to its | |
8831 | associated code. Unfortunately, the amount of code is so vast right | |
8832 | now that it's hard to see whether the code handling a particular | |
8833 | situation might be duplicated or not. One day, when the code is | |
8834 | cleaned up, this guide might become redundant with the comments | |
8835 | inserted in the code, and we might want to remove it. | |
8836 | ||
21649b50 JB |
8837 | 2. ``Fixing'' an Entity, the Simple Case: |
8838 | ----------------------------------------- | |
8839 | ||
284614f0 JB |
8840 | When evaluating Ada expressions, the tricky issue is that they may |
8841 | reference entities whose type contents and size are not statically | |
8842 | known. Consider for instance a variant record: | |
8843 | ||
8844 | type Rec (Empty : Boolean := True) is record | |
8845 | case Empty is | |
8846 | when True => null; | |
8847 | when False => Value : Integer; | |
8848 | end case; | |
8849 | end record; | |
8850 | Yes : Rec := (Empty => False, Value => 1); | |
8851 | No : Rec := (empty => True); | |
8852 | ||
8853 | The size and contents of that record depends on the value of the | |
8854 | descriminant (Rec.Empty). At this point, neither the debugging | |
8855 | information nor the associated type structure in GDB are able to | |
8856 | express such dynamic types. So what the debugger does is to create | |
8857 | "fixed" versions of the type that applies to the specific object. | |
8858 | We also informally refer to this opperation as "fixing" an object, | |
8859 | which means creating its associated fixed type. | |
8860 | ||
8861 | Example: when printing the value of variable "Yes" above, its fixed | |
8862 | type would look like this: | |
8863 | ||
8864 | type Rec is record | |
8865 | Empty : Boolean; | |
8866 | Value : Integer; | |
8867 | end record; | |
8868 | ||
8869 | On the other hand, if we printed the value of "No", its fixed type | |
8870 | would become: | |
8871 | ||
8872 | type Rec is record | |
8873 | Empty : Boolean; | |
8874 | end record; | |
8875 | ||
8876 | Things become a little more complicated when trying to fix an entity | |
8877 | with a dynamic type that directly contains another dynamic type, | |
8878 | such as an array of variant records, for instance. There are | |
8879 | two possible cases: Arrays, and records. | |
8880 | ||
21649b50 JB |
8881 | 3. ``Fixing'' Arrays: |
8882 | --------------------- | |
8883 | ||
8884 | The type structure in GDB describes an array in terms of its bounds, | |
8885 | and the type of its elements. By design, all elements in the array | |
8886 | have the same type and we cannot represent an array of variant elements | |
8887 | using the current type structure in GDB. When fixing an array, | |
8888 | we cannot fix the array element, as we would potentially need one | |
8889 | fixed type per element of the array. As a result, the best we can do | |
8890 | when fixing an array is to produce an array whose bounds and size | |
8891 | are correct (allowing us to read it from memory), but without having | |
8892 | touched its element type. Fixing each element will be done later, | |
8893 | when (if) necessary. | |
8894 | ||
8895 | Arrays are a little simpler to handle than records, because the same | |
8896 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 8897 | the amount of space actually used by each element differs from element |
21649b50 | 8898 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
8899 | |
8900 | type Rec_Array is array (1 .. 2) of Rec; | |
8901 | ||
1b536f04 JB |
8902 | The actual amount of memory occupied by each element might be different |
8903 | from element to element, depending on the value of their discriminant. | |
21649b50 | 8904 | But the amount of space reserved for each element in the array remains |
1b536f04 | 8905 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
8906 | the debugging information available, from which we can then determine |
8907 | the array size (we multiply the number of elements of the array by | |
8908 | the size of each element). | |
8909 | ||
8910 | The simplest case is when we have an array of a constrained element | |
8911 | type. For instance, consider the following type declarations: | |
8912 | ||
8913 | type Bounded_String (Max_Size : Integer) is | |
8914 | Length : Integer; | |
8915 | Buffer : String (1 .. Max_Size); | |
8916 | end record; | |
8917 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
8918 | ||
8919 | In this case, the compiler describes the array as an array of | |
8920 | variable-size elements (identified by its XVS suffix) for which | |
8921 | the size can be read in the parallel XVZ variable. | |
8922 | ||
8923 | In the case of an array of an unconstrained element type, the compiler | |
8924 | wraps the array element inside a private PAD type. This type should not | |
8925 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
8926 | that we also use the adjective "aligner" in our code to designate |
8927 | these wrapper types. | |
8928 | ||
1b536f04 | 8929 | In some cases, the size allocated for each element is statically |
21649b50 JB |
8930 | known. In that case, the PAD type already has the correct size, |
8931 | and the array element should remain unfixed. | |
8932 | ||
8933 | But there are cases when this size is not statically known. | |
8934 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
8935 | |
8936 | type Dynamic is array (1 .. Five) of Integer; | |
8937 | type Wrapper (Has_Length : Boolean := False) is record | |
8938 | Data : Dynamic; | |
8939 | case Has_Length is | |
8940 | when True => Length : Integer; | |
8941 | when False => null; | |
8942 | end case; | |
8943 | end record; | |
8944 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
8945 | ||
8946 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
8947 | Data => (others => 17), | |
8948 | Length => 1)); | |
8949 | ||
8950 | ||
8951 | The debugging info would describe variable Hello as being an | |
8952 | array of a PAD type. The size of that PAD type is not statically | |
8953 | known, but can be determined using a parallel XVZ variable. | |
8954 | In that case, a copy of the PAD type with the correct size should | |
8955 | be used for the fixed array. | |
8956 | ||
21649b50 JB |
8957 | 3. ``Fixing'' record type objects: |
8958 | ---------------------------------- | |
8959 | ||
8960 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
8961 | record types. In this case, in order to compute the associated |
8962 | fixed type, we need to determine the size and offset of each of | |
8963 | its components. This, in turn, requires us to compute the fixed | |
8964 | type of each of these components. | |
8965 | ||
8966 | Consider for instance the example: | |
8967 | ||
8968 | type Bounded_String (Max_Size : Natural) is record | |
8969 | Str : String (1 .. Max_Size); | |
8970 | Length : Natural; | |
8971 | end record; | |
8972 | My_String : Bounded_String (Max_Size => 10); | |
8973 | ||
8974 | In that case, the position of field "Length" depends on the size | |
8975 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 8976 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
8977 | we need to fix the type of field Str. Therefore, fixing a variant |
8978 | record requires us to fix each of its components. | |
8979 | ||
8980 | However, if a component does not have a dynamic size, the component | |
8981 | should not be fixed. In particular, fields that use a PAD type | |
8982 | should not fixed. Here is an example where this might happen | |
8983 | (assuming type Rec above): | |
8984 | ||
8985 | type Container (Big : Boolean) is record | |
8986 | First : Rec; | |
8987 | After : Integer; | |
8988 | case Big is | |
8989 | when True => Another : Integer; | |
8990 | when False => null; | |
8991 | end case; | |
8992 | end record; | |
8993 | My_Container : Container := (Big => False, | |
8994 | First => (Empty => True), | |
8995 | After => 42); | |
8996 | ||
8997 | In that example, the compiler creates a PAD type for component First, | |
8998 | whose size is constant, and then positions the component After just | |
8999 | right after it. The offset of component After is therefore constant | |
9000 | in this case. | |
9001 | ||
9002 | The debugger computes the position of each field based on an algorithm | |
9003 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
9004 | preceding it. Let's now imagine that the user is trying to print |
9005 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
9006 | end up computing the offset of field After based on the size of the |
9007 | fixed version of field First. And since in our example First has | |
9008 | only one actual field, the size of the fixed type is actually smaller | |
9009 | than the amount of space allocated to that field, and thus we would | |
9010 | compute the wrong offset of field After. | |
9011 | ||
21649b50 JB |
9012 | To make things more complicated, we need to watch out for dynamic |
9013 | components of variant records (identified by the ___XVL suffix in | |
9014 | the component name). Even if the target type is a PAD type, the size | |
9015 | of that type might not be statically known. So the PAD type needs | |
9016 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
9017 | we might end up with the wrong size for our component. This can be | |
9018 | observed with the following type declarations: | |
284614f0 JB |
9019 | |
9020 | type Octal is new Integer range 0 .. 7; | |
9021 | type Octal_Array is array (Positive range <>) of Octal; | |
9022 | pragma Pack (Octal_Array); | |
9023 | ||
9024 | type Octal_Buffer (Size : Positive) is record | |
9025 | Buffer : Octal_Array (1 .. Size); | |
9026 | Length : Integer; | |
9027 | end record; | |
9028 | ||
9029 | In that case, Buffer is a PAD type whose size is unset and needs | |
9030 | to be computed by fixing the unwrapped type. | |
9031 | ||
21649b50 JB |
9032 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
9033 | ---------------------------------------------------------- | |
9034 | ||
9035 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
9036 | thus far, be actually fixed? |
9037 | ||
9038 | The answer is: Only when referencing that element. For instance | |
9039 | when selecting one component of a record, this specific component | |
9040 | should be fixed at that point in time. Or when printing the value | |
9041 | of a record, each component should be fixed before its value gets | |
9042 | printed. Similarly for arrays, the element of the array should be | |
9043 | fixed when printing each element of the array, or when extracting | |
9044 | one element out of that array. On the other hand, fixing should | |
9045 | not be performed on the elements when taking a slice of an array! | |
9046 | ||
9047 | Note that one of the side-effects of miscomputing the offset and | |
9048 | size of each field is that we end up also miscomputing the size | |
9049 | of the containing type. This can have adverse results when computing | |
9050 | the value of an entity. GDB fetches the value of an entity based | |
9051 | on the size of its type, and thus a wrong size causes GDB to fetch | |
9052 | the wrong amount of memory. In the case where the computed size is | |
9053 | too small, GDB fetches too little data to print the value of our | |
9054 | entiry. Results in this case as unpredicatble, as we usually read | |
9055 | past the buffer containing the data =:-o. */ | |
9056 | ||
9057 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
9058 | for the Ada language. */ | |
9059 | ||
52ce6436 | 9060 | static struct value * |
ebf56fd3 | 9061 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 9062 | int *pos, enum noside noside) |
14f9c5c9 AS |
9063 | { |
9064 | enum exp_opcode op; | |
b5385fc0 | 9065 | int tem; |
14f9c5c9 AS |
9066 | int pc; |
9067 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
9068 | struct type *type; | |
52ce6436 | 9069 | int nargs, oplen; |
d2e4a39e | 9070 | struct value **argvec; |
14f9c5c9 | 9071 | |
d2e4a39e AS |
9072 | pc = *pos; |
9073 | *pos += 1; | |
14f9c5c9 AS |
9074 | op = exp->elts[pc].opcode; |
9075 | ||
d2e4a39e | 9076 | switch (op) |
14f9c5c9 AS |
9077 | { |
9078 | default: | |
9079 | *pos -= 1; | |
6e48bd2c JB |
9080 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
9081 | arg1 = unwrap_value (arg1); | |
9082 | ||
9083 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
9084 | then we need to perform the conversion manually, because | |
9085 | evaluate_subexp_standard doesn't do it. This conversion is | |
9086 | necessary in Ada because the different kinds of float/fixed | |
9087 | types in Ada have different representations. | |
9088 | ||
9089 | Similarly, we need to perform the conversion from OP_LONG | |
9090 | ourselves. */ | |
9091 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
9092 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
9093 | ||
9094 | return arg1; | |
4c4b4cd2 PH |
9095 | |
9096 | case OP_STRING: | |
9097 | { | |
76a01679 | 9098 | struct value *result; |
5b4ee69b | 9099 | |
76a01679 JB |
9100 | *pos -= 1; |
9101 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9102 | /* The result type will have code OP_STRING, bashed there from | |
9103 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
9104 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
9105 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 9106 | return result; |
4c4b4cd2 | 9107 | } |
14f9c5c9 AS |
9108 | |
9109 | case UNOP_CAST: | |
9110 | (*pos) += 2; | |
9111 | type = exp->elts[pc + 1].type; | |
9112 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
9113 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9114 | goto nosideret; |
6e48bd2c | 9115 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
9116 | return arg1; |
9117 | ||
4c4b4cd2 PH |
9118 | case UNOP_QUAL: |
9119 | (*pos) += 2; | |
9120 | type = exp->elts[pc + 1].type; | |
9121 | return ada_evaluate_subexp (type, exp, pos, noside); | |
9122 | ||
14f9c5c9 AS |
9123 | case BINOP_ASSIGN: |
9124 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
9125 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
9126 | { | |
9127 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
9128 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
9129 | return arg1; | |
9130 | return ada_value_assign (arg1, arg1); | |
9131 | } | |
003f3813 JB |
9132 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
9133 | except if the lhs of our assignment is a convenience variable. | |
9134 | In the case of assigning to a convenience variable, the lhs | |
9135 | should be exactly the result of the evaluation of the rhs. */ | |
9136 | type = value_type (arg1); | |
9137 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
9138 | type = NULL; | |
9139 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 9140 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9141 | return arg1; |
df407dfe AC |
9142 | if (ada_is_fixed_point_type (value_type (arg1))) |
9143 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
9144 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 9145 | error |
323e0a4a | 9146 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 9147 | else |
df407dfe | 9148 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 9149 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
9150 | |
9151 | case BINOP_ADD: | |
9152 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9153 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9154 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9155 | goto nosideret; |
2ac8a782 JB |
9156 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9157 | return (value_from_longest | |
9158 | (value_type (arg1), | |
9159 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
9160 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9161 | || ada_is_fixed_point_type (value_type (arg2))) | |
9162 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 9163 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
9164 | /* Do the addition, and cast the result to the type of the first |
9165 | argument. We cannot cast the result to a reference type, so if | |
9166 | ARG1 is a reference type, find its underlying type. */ | |
9167 | type = value_type (arg1); | |
9168 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9169 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9170 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9171 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
9172 | |
9173 | case BINOP_SUB: | |
9174 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9175 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9176 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9177 | goto nosideret; |
2ac8a782 JB |
9178 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9179 | return (value_from_longest | |
9180 | (value_type (arg1), | |
9181 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
9182 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9183 | || ada_is_fixed_point_type (value_type (arg2))) | |
9184 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
9185 | error (_("Operands of fixed-point subtraction " |
9186 | "must have the same type")); | |
b7789565 JB |
9187 | /* Do the substraction, and cast the result to the type of the first |
9188 | argument. We cannot cast the result to a reference type, so if | |
9189 | ARG1 is a reference type, find its underlying type. */ | |
9190 | type = value_type (arg1); | |
9191 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9192 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9193 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9194 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
9195 | |
9196 | case BINOP_MUL: | |
9197 | case BINOP_DIV: | |
e1578042 JB |
9198 | case BINOP_REM: |
9199 | case BINOP_MOD: | |
14f9c5c9 AS |
9200 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9201 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9202 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9203 | goto nosideret; |
e1578042 | 9204 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
9205 | { |
9206 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9207 | return value_zero (value_type (arg1), not_lval); | |
9208 | } | |
14f9c5c9 | 9209 | else |
4c4b4cd2 | 9210 | { |
a53b7a21 | 9211 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 9212 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 9213 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 9214 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 9215 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 9216 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
9217 | return ada_value_binop (arg1, arg2, op); |
9218 | } | |
9219 | ||
4c4b4cd2 PH |
9220 | case BINOP_EQUAL: |
9221 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 9222 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 9223 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 9224 | if (noside == EVAL_SKIP) |
76a01679 | 9225 | goto nosideret; |
4c4b4cd2 | 9226 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9227 | tem = 0; |
4c4b4cd2 | 9228 | else |
f44316fa UW |
9229 | { |
9230 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9231 | tem = ada_value_equal (arg1, arg2); | |
9232 | } | |
4c4b4cd2 | 9233 | if (op == BINOP_NOTEQUAL) |
76a01679 | 9234 | tem = !tem; |
fbb06eb1 UW |
9235 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9236 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
9237 | |
9238 | case UNOP_NEG: | |
9239 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9240 | if (noside == EVAL_SKIP) | |
9241 | goto nosideret; | |
df407dfe AC |
9242 | else if (ada_is_fixed_point_type (value_type (arg1))) |
9243 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 9244 | else |
f44316fa UW |
9245 | { |
9246 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9247 | return value_neg (arg1); | |
9248 | } | |
4c4b4cd2 | 9249 | |
2330c6c6 JB |
9250 | case BINOP_LOGICAL_AND: |
9251 | case BINOP_LOGICAL_OR: | |
9252 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
9253 | { |
9254 | struct value *val; | |
9255 | ||
9256 | *pos -= 1; | |
9257 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
9258 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9259 | return value_cast (type, val); | |
000d5124 | 9260 | } |
2330c6c6 JB |
9261 | |
9262 | case BINOP_BITWISE_AND: | |
9263 | case BINOP_BITWISE_IOR: | |
9264 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
9265 | { |
9266 | struct value *val; | |
9267 | ||
9268 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
9269 | *pos = pc; | |
9270 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9271 | ||
9272 | return value_cast (value_type (arg1), val); | |
9273 | } | |
2330c6c6 | 9274 | |
14f9c5c9 AS |
9275 | case OP_VAR_VALUE: |
9276 | *pos -= 1; | |
6799def4 | 9277 | |
14f9c5c9 | 9278 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
9279 | { |
9280 | *pos += 4; | |
9281 | goto nosideret; | |
9282 | } | |
9283 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
9284 | /* Only encountered when an unresolved symbol occurs in a |
9285 | context other than a function call, in which case, it is | |
52ce6436 | 9286 | invalid. */ |
323e0a4a | 9287 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 9288 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 9289 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9290 | { |
0c1f74cf | 9291 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
9292 | /* Check to see if this is a tagged type. We also need to handle |
9293 | the case where the type is a reference to a tagged type, but | |
9294 | we have to be careful to exclude pointers to tagged types. | |
9295 | The latter should be shown as usual (as a pointer), whereas | |
9296 | a reference should mostly be transparent to the user. */ | |
9297 | if (ada_is_tagged_type (type, 0) | |
9298 | || (TYPE_CODE(type) == TYPE_CODE_REF | |
9299 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) | |
0c1f74cf JB |
9300 | { |
9301 | /* Tagged types are a little special in the fact that the real | |
9302 | type is dynamic and can only be determined by inspecting the | |
9303 | object's tag. This means that we need to get the object's | |
9304 | value first (EVAL_NORMAL) and then extract the actual object | |
9305 | type from its tag. | |
9306 | ||
9307 | Note that we cannot skip the final step where we extract | |
9308 | the object type from its tag, because the EVAL_NORMAL phase | |
9309 | results in dynamic components being resolved into fixed ones. | |
9310 | This can cause problems when trying to print the type | |
9311 | description of tagged types whose parent has a dynamic size: | |
9312 | We use the type name of the "_parent" component in order | |
9313 | to print the name of the ancestor type in the type description. | |
9314 | If that component had a dynamic size, the resolution into | |
9315 | a fixed type would result in the loss of that type name, | |
9316 | thus preventing us from printing the name of the ancestor | |
9317 | type in the type description. */ | |
b79819ba JB |
9318 | struct type *actual_type; |
9319 | ||
0c1f74cf | 9320 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); |
b79819ba JB |
9321 | actual_type = type_from_tag (ada_value_tag (arg1)); |
9322 | if (actual_type == NULL) | |
9323 | /* If, for some reason, we were unable to determine | |
9324 | the actual type from the tag, then use the static | |
9325 | approximation that we just computed as a fallback. | |
9326 | This can happen if the debugging information is | |
9327 | incomplete, for instance. */ | |
9328 | actual_type = type; | |
9329 | ||
9330 | return value_zero (actual_type, not_lval); | |
0c1f74cf JB |
9331 | } |
9332 | ||
4c4b4cd2 PH |
9333 | *pos += 4; |
9334 | return value_zero | |
9335 | (to_static_fixed_type | |
9336 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
9337 | not_lval); | |
9338 | } | |
d2e4a39e | 9339 | else |
4c4b4cd2 | 9340 | { |
284614f0 JB |
9341 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
9342 | arg1 = unwrap_value (arg1); | |
4c4b4cd2 PH |
9343 | return ada_to_fixed_value (arg1); |
9344 | } | |
9345 | ||
9346 | case OP_FUNCALL: | |
9347 | (*pos) += 2; | |
9348 | ||
9349 | /* Allocate arg vector, including space for the function to be | |
9350 | called in argvec[0] and a terminating NULL. */ | |
9351 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
9352 | argvec = | |
9353 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
9354 | ||
9355 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 9356 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 9357 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
9358 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
9359 | else | |
9360 | { | |
9361 | for (tem = 0; tem <= nargs; tem += 1) | |
9362 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9363 | argvec[tem] = 0; | |
9364 | ||
9365 | if (noside == EVAL_SKIP) | |
9366 | goto nosideret; | |
9367 | } | |
9368 | ||
ad82864c JB |
9369 | if (ada_is_constrained_packed_array_type |
9370 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 9371 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
9372 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
9373 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
9374 | /* This is a packed array that has already been fixed, and | |
9375 | therefore already coerced to a simple array. Nothing further | |
9376 | to do. */ | |
9377 | ; | |
df407dfe AC |
9378 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
9379 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 9380 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
9381 | argvec[0] = value_addr (argvec[0]); |
9382 | ||
df407dfe | 9383 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
9384 | |
9385 | /* Ada allows us to implicitly dereference arrays when subscripting | |
9386 | them. So, if this is an typedef (encoding use for array access | |
9387 | types encoded as fat pointers), strip it now. */ | |
9388 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
9389 | type = ada_typedef_target_type (type); | |
9390 | ||
4c4b4cd2 PH |
9391 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
9392 | { | |
61ee279c | 9393 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
9394 | { |
9395 | case TYPE_CODE_FUNC: | |
61ee279c | 9396 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9397 | break; |
9398 | case TYPE_CODE_ARRAY: | |
9399 | break; | |
9400 | case TYPE_CODE_STRUCT: | |
9401 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
9402 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 9403 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9404 | break; |
9405 | default: | |
323e0a4a | 9406 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 9407 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
9408 | break; |
9409 | } | |
9410 | } | |
9411 | ||
9412 | switch (TYPE_CODE (type)) | |
9413 | { | |
9414 | case TYPE_CODE_FUNC: | |
9415 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9416 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
9417 | return call_function_by_hand (argvec[0], nargs, argvec + 1); | |
9418 | case TYPE_CODE_STRUCT: | |
9419 | { | |
9420 | int arity; | |
9421 | ||
4c4b4cd2 PH |
9422 | arity = ada_array_arity (type); |
9423 | type = ada_array_element_type (type, nargs); | |
9424 | if (type == NULL) | |
323e0a4a | 9425 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 9426 | if (arity != nargs) |
323e0a4a | 9427 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 9428 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 9429 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9430 | return |
9431 | unwrap_value (ada_value_subscript | |
9432 | (argvec[0], nargs, argvec + 1)); | |
9433 | } | |
9434 | case TYPE_CODE_ARRAY: | |
9435 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9436 | { | |
9437 | type = ada_array_element_type (type, nargs); | |
9438 | if (type == NULL) | |
323e0a4a | 9439 | error (_("element type of array unknown")); |
4c4b4cd2 | 9440 | else |
0a07e705 | 9441 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9442 | } |
9443 | return | |
9444 | unwrap_value (ada_value_subscript | |
9445 | (ada_coerce_to_simple_array (argvec[0]), | |
9446 | nargs, argvec + 1)); | |
9447 | case TYPE_CODE_PTR: /* Pointer to array */ | |
9448 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
9449 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9450 | { | |
9451 | type = ada_array_element_type (type, nargs); | |
9452 | if (type == NULL) | |
323e0a4a | 9453 | error (_("element type of array unknown")); |
4c4b4cd2 | 9454 | else |
0a07e705 | 9455 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9456 | } |
9457 | return | |
9458 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
9459 | nargs, argvec + 1)); | |
9460 | ||
9461 | default: | |
e1d5a0d2 PH |
9462 | error (_("Attempt to index or call something other than an " |
9463 | "array or function")); | |
4c4b4cd2 PH |
9464 | } |
9465 | ||
9466 | case TERNOP_SLICE: | |
9467 | { | |
9468 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9469 | struct value *low_bound_val = | |
9470 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
9471 | struct value *high_bound_val = |
9472 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9473 | LONGEST low_bound; | |
9474 | LONGEST high_bound; | |
5b4ee69b | 9475 | |
994b9211 AC |
9476 | low_bound_val = coerce_ref (low_bound_val); |
9477 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
9478 | low_bound = pos_atr (low_bound_val); |
9479 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 9480 | |
4c4b4cd2 PH |
9481 | if (noside == EVAL_SKIP) |
9482 | goto nosideret; | |
9483 | ||
4c4b4cd2 PH |
9484 | /* If this is a reference to an aligner type, then remove all |
9485 | the aligners. */ | |
df407dfe AC |
9486 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9487 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
9488 | TYPE_TARGET_TYPE (value_type (array)) = | |
9489 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 9490 | |
ad82864c | 9491 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 9492 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
9493 | |
9494 | /* If this is a reference to an array or an array lvalue, | |
9495 | convert to a pointer. */ | |
df407dfe AC |
9496 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9497 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
9498 | && VALUE_LVAL (array) == lval_memory)) |
9499 | array = value_addr (array); | |
9500 | ||
1265e4aa | 9501 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 9502 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 9503 | (value_type (array)))) |
0b5d8877 | 9504 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
9505 | |
9506 | array = ada_coerce_to_simple_array_ptr (array); | |
9507 | ||
714e53ab PH |
9508 | /* If we have more than one level of pointer indirection, |
9509 | dereference the value until we get only one level. */ | |
df407dfe AC |
9510 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
9511 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
9512 | == TYPE_CODE_PTR)) |
9513 | array = value_ind (array); | |
9514 | ||
9515 | /* Make sure we really do have an array type before going further, | |
9516 | to avoid a SEGV when trying to get the index type or the target | |
9517 | type later down the road if the debug info generated by | |
9518 | the compiler is incorrect or incomplete. */ | |
df407dfe | 9519 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 9520 | error (_("cannot take slice of non-array")); |
714e53ab | 9521 | |
df407dfe | 9522 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR) |
4c4b4cd2 | 9523 | { |
0b5d8877 | 9524 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9525 | return empty_array (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 PH |
9526 | low_bound); |
9527 | else | |
9528 | { | |
9529 | struct type *arr_type0 = | |
df407dfe | 9530 | to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 | 9531 | NULL, 1); |
5b4ee69b | 9532 | |
f5938064 JG |
9533 | return ada_value_slice_from_ptr (array, arr_type0, |
9534 | longest_to_int (low_bound), | |
9535 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
9536 | } |
9537 | } | |
9538 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9539 | return array; | |
9540 | else if (high_bound < low_bound) | |
df407dfe | 9541 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 9542 | else |
529cad9c PH |
9543 | return ada_value_slice (array, longest_to_int (low_bound), |
9544 | longest_to_int (high_bound)); | |
4c4b4cd2 | 9545 | } |
14f9c5c9 | 9546 | |
4c4b4cd2 PH |
9547 | case UNOP_IN_RANGE: |
9548 | (*pos) += 2; | |
9549 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 9550 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 9551 | |
14f9c5c9 | 9552 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9553 | goto nosideret; |
14f9c5c9 | 9554 | |
4c4b4cd2 PH |
9555 | switch (TYPE_CODE (type)) |
9556 | { | |
9557 | default: | |
e1d5a0d2 PH |
9558 | lim_warning (_("Membership test incompletely implemented; " |
9559 | "always returns true")); | |
fbb06eb1 UW |
9560 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9561 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
9562 | |
9563 | case TYPE_CODE_RANGE: | |
030b4912 UW |
9564 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
9565 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
9566 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9567 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
9568 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9569 | return | |
9570 | value_from_longest (type, | |
4c4b4cd2 PH |
9571 | (value_less (arg1, arg3) |
9572 | || value_equal (arg1, arg3)) | |
9573 | && (value_less (arg2, arg1) | |
9574 | || value_equal (arg2, arg1))); | |
9575 | } | |
9576 | ||
9577 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 9578 | (*pos) += 2; |
4c4b4cd2 PH |
9579 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9580 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 9581 | |
4c4b4cd2 PH |
9582 | if (noside == EVAL_SKIP) |
9583 | goto nosideret; | |
14f9c5c9 | 9584 | |
4c4b4cd2 | 9585 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
9586 | { |
9587 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9588 | return value_zero (type, not_lval); | |
9589 | } | |
14f9c5c9 | 9590 | |
4c4b4cd2 | 9591 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 9592 | |
1eea4ebd UW |
9593 | type = ada_index_type (value_type (arg2), tem, "range"); |
9594 | if (!type) | |
9595 | type = value_type (arg1); | |
14f9c5c9 | 9596 | |
1eea4ebd UW |
9597 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
9598 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 9599 | |
f44316fa UW |
9600 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9601 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9602 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9603 | return |
fbb06eb1 | 9604 | value_from_longest (type, |
4c4b4cd2 PH |
9605 | (value_less (arg1, arg3) |
9606 | || value_equal (arg1, arg3)) | |
9607 | && (value_less (arg2, arg1) | |
9608 | || value_equal (arg2, arg1))); | |
9609 | ||
9610 | case TERNOP_IN_RANGE: | |
9611 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9612 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9613 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9614 | ||
9615 | if (noside == EVAL_SKIP) | |
9616 | goto nosideret; | |
9617 | ||
f44316fa UW |
9618 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9619 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9620 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9621 | return |
fbb06eb1 | 9622 | value_from_longest (type, |
4c4b4cd2 PH |
9623 | (value_less (arg1, arg3) |
9624 | || value_equal (arg1, arg3)) | |
9625 | && (value_less (arg2, arg1) | |
9626 | || value_equal (arg2, arg1))); | |
9627 | ||
9628 | case OP_ATR_FIRST: | |
9629 | case OP_ATR_LAST: | |
9630 | case OP_ATR_LENGTH: | |
9631 | { | |
76a01679 | 9632 | struct type *type_arg; |
5b4ee69b | 9633 | |
76a01679 JB |
9634 | if (exp->elts[*pos].opcode == OP_TYPE) |
9635 | { | |
9636 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
9637 | arg1 = NULL; | |
5bc23cb3 | 9638 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
9639 | } |
9640 | else | |
9641 | { | |
9642 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9643 | type_arg = NULL; | |
9644 | } | |
9645 | ||
9646 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 9647 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
9648 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
9649 | *pos += 4; | |
9650 | ||
9651 | if (noside == EVAL_SKIP) | |
9652 | goto nosideret; | |
9653 | ||
9654 | if (type_arg == NULL) | |
9655 | { | |
9656 | arg1 = ada_coerce_ref (arg1); | |
9657 | ||
ad82864c | 9658 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
9659 | arg1 = ada_coerce_to_simple_array (arg1); |
9660 | ||
1eea4ebd UW |
9661 | type = ada_index_type (value_type (arg1), tem, |
9662 | ada_attribute_name (op)); | |
9663 | if (type == NULL) | |
9664 | type = builtin_type (exp->gdbarch)->builtin_int; | |
76a01679 JB |
9665 | |
9666 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 9667 | return allocate_value (type); |
76a01679 JB |
9668 | |
9669 | switch (op) | |
9670 | { | |
9671 | default: /* Should never happen. */ | |
323e0a4a | 9672 | error (_("unexpected attribute encountered")); |
76a01679 | 9673 | case OP_ATR_FIRST: |
1eea4ebd UW |
9674 | return value_from_longest |
9675 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 9676 | case OP_ATR_LAST: |
1eea4ebd UW |
9677 | return value_from_longest |
9678 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 9679 | case OP_ATR_LENGTH: |
1eea4ebd UW |
9680 | return value_from_longest |
9681 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
9682 | } |
9683 | } | |
9684 | else if (discrete_type_p (type_arg)) | |
9685 | { | |
9686 | struct type *range_type; | |
9687 | char *name = ada_type_name (type_arg); | |
5b4ee69b | 9688 | |
76a01679 JB |
9689 | range_type = NULL; |
9690 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 9691 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
9692 | if (range_type == NULL) |
9693 | range_type = type_arg; | |
9694 | switch (op) | |
9695 | { | |
9696 | default: | |
323e0a4a | 9697 | error (_("unexpected attribute encountered")); |
76a01679 | 9698 | case OP_ATR_FIRST: |
690cc4eb | 9699 | return value_from_longest |
43bbcdc2 | 9700 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 9701 | case OP_ATR_LAST: |
690cc4eb | 9702 | return value_from_longest |
43bbcdc2 | 9703 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 9704 | case OP_ATR_LENGTH: |
323e0a4a | 9705 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
9706 | } |
9707 | } | |
9708 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 9709 | error (_("unimplemented type attribute")); |
76a01679 JB |
9710 | else |
9711 | { | |
9712 | LONGEST low, high; | |
9713 | ||
ad82864c JB |
9714 | if (ada_is_constrained_packed_array_type (type_arg)) |
9715 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 9716 | |
1eea4ebd | 9717 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); |
76a01679 | 9718 | if (type == NULL) |
1eea4ebd UW |
9719 | type = builtin_type (exp->gdbarch)->builtin_int; |
9720 | ||
76a01679 JB |
9721 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9722 | return allocate_value (type); | |
9723 | ||
9724 | switch (op) | |
9725 | { | |
9726 | default: | |
323e0a4a | 9727 | error (_("unexpected attribute encountered")); |
76a01679 | 9728 | case OP_ATR_FIRST: |
1eea4ebd | 9729 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
9730 | return value_from_longest (type, low); |
9731 | case OP_ATR_LAST: | |
1eea4ebd | 9732 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
9733 | return value_from_longest (type, high); |
9734 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
9735 | low = ada_array_bound_from_type (type_arg, tem, 0); |
9736 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
9737 | return value_from_longest (type, high - low + 1); |
9738 | } | |
9739 | } | |
14f9c5c9 AS |
9740 | } |
9741 | ||
4c4b4cd2 PH |
9742 | case OP_ATR_TAG: |
9743 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9744 | if (noside == EVAL_SKIP) | |
76a01679 | 9745 | goto nosideret; |
4c4b4cd2 PH |
9746 | |
9747 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 9748 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
9749 | |
9750 | return ada_value_tag (arg1); | |
9751 | ||
9752 | case OP_ATR_MIN: | |
9753 | case OP_ATR_MAX: | |
9754 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9755 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9756 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9757 | if (noside == EVAL_SKIP) | |
76a01679 | 9758 | goto nosideret; |
d2e4a39e | 9759 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9760 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 9761 | else |
f44316fa UW |
9762 | { |
9763 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9764 | return value_binop (arg1, arg2, | |
9765 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
9766 | } | |
14f9c5c9 | 9767 | |
4c4b4cd2 PH |
9768 | case OP_ATR_MODULUS: |
9769 | { | |
31dedfee | 9770 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 9771 | |
5b4ee69b | 9772 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
9773 | if (noside == EVAL_SKIP) |
9774 | goto nosideret; | |
4c4b4cd2 | 9775 | |
76a01679 | 9776 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 9777 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 9778 | |
76a01679 JB |
9779 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
9780 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
9781 | } |
9782 | ||
9783 | ||
9784 | case OP_ATR_POS: | |
9785 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9786 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9787 | if (noside == EVAL_SKIP) | |
76a01679 | 9788 | goto nosideret; |
3cb382c9 UW |
9789 | type = builtin_type (exp->gdbarch)->builtin_int; |
9790 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9791 | return value_zero (type, not_lval); | |
14f9c5c9 | 9792 | else |
3cb382c9 | 9793 | return value_pos_atr (type, arg1); |
14f9c5c9 | 9794 | |
4c4b4cd2 PH |
9795 | case OP_ATR_SIZE: |
9796 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
9797 | type = value_type (arg1); |
9798 | ||
9799 | /* If the argument is a reference, then dereference its type, since | |
9800 | the user is really asking for the size of the actual object, | |
9801 | not the size of the pointer. */ | |
9802 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
9803 | type = TYPE_TARGET_TYPE (type); | |
9804 | ||
4c4b4cd2 | 9805 | if (noside == EVAL_SKIP) |
76a01679 | 9806 | goto nosideret; |
4c4b4cd2 | 9807 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 9808 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 9809 | else |
22601c15 | 9810 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 9811 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
9812 | |
9813 | case OP_ATR_VAL: | |
9814 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 9815 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 9816 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 9817 | if (noside == EVAL_SKIP) |
76a01679 | 9818 | goto nosideret; |
4c4b4cd2 | 9819 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9820 | return value_zero (type, not_lval); |
4c4b4cd2 | 9821 | else |
76a01679 | 9822 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
9823 | |
9824 | case BINOP_EXP: | |
9825 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9826 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9827 | if (noside == EVAL_SKIP) | |
9828 | goto nosideret; | |
9829 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 9830 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 9831 | else |
f44316fa UW |
9832 | { |
9833 | /* For integer exponentiation operations, | |
9834 | only promote the first argument. */ | |
9835 | if (is_integral_type (value_type (arg2))) | |
9836 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9837 | else | |
9838 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9839 | ||
9840 | return value_binop (arg1, arg2, op); | |
9841 | } | |
4c4b4cd2 PH |
9842 | |
9843 | case UNOP_PLUS: | |
9844 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9845 | if (noside == EVAL_SKIP) | |
9846 | goto nosideret; | |
9847 | else | |
9848 | return arg1; | |
9849 | ||
9850 | case UNOP_ABS: | |
9851 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9852 | if (noside == EVAL_SKIP) | |
9853 | goto nosideret; | |
f44316fa | 9854 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 9855 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 9856 | return value_neg (arg1); |
14f9c5c9 | 9857 | else |
4c4b4cd2 | 9858 | return arg1; |
14f9c5c9 AS |
9859 | |
9860 | case UNOP_IND: | |
6b0d7253 | 9861 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 9862 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9863 | goto nosideret; |
df407dfe | 9864 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 9865 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
9866 | { |
9867 | if (ada_is_array_descriptor_type (type)) | |
9868 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9869 | { | |
9870 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 9871 | |
4c4b4cd2 | 9872 | if (arrType == NULL) |
323e0a4a | 9873 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 9874 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
9875 | } |
9876 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
9877 | || TYPE_CODE (type) == TYPE_CODE_REF | |
9878 | /* In C you can dereference an array to get the 1st elt. */ | |
9879 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
9880 | { |
9881 | type = to_static_fixed_type | |
9882 | (ada_aligned_type | |
9883 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
9884 | check_size (type); | |
9885 | return value_zero (type, lval_memory); | |
9886 | } | |
4c4b4cd2 | 9887 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
9888 | { |
9889 | /* GDB allows dereferencing an int. */ | |
9890 | if (expect_type == NULL) | |
9891 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
9892 | lval_memory); | |
9893 | else | |
9894 | { | |
9895 | expect_type = | |
9896 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
9897 | return value_zero (expect_type, lval_memory); | |
9898 | } | |
9899 | } | |
4c4b4cd2 | 9900 | else |
323e0a4a | 9901 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 9902 | } |
0963b4bd | 9903 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 9904 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 9905 | |
96967637 JB |
9906 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
9907 | /* GDB allows dereferencing an int. If we were given | |
9908 | the expect_type, then use that as the target type. | |
9909 | Otherwise, assume that the target type is an int. */ | |
9910 | { | |
9911 | if (expect_type != NULL) | |
9912 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
9913 | arg1)); | |
9914 | else | |
9915 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
9916 | (CORE_ADDR) value_as_address (arg1)); | |
9917 | } | |
6b0d7253 | 9918 | |
4c4b4cd2 PH |
9919 | if (ada_is_array_descriptor_type (type)) |
9920 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9921 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 9922 | else |
4c4b4cd2 | 9923 | return ada_value_ind (arg1); |
14f9c5c9 AS |
9924 | |
9925 | case STRUCTOP_STRUCT: | |
9926 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
9927 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
9928 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9929 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9930 | goto nosideret; |
14f9c5c9 | 9931 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9932 | { |
df407dfe | 9933 | struct type *type1 = value_type (arg1); |
5b4ee69b | 9934 | |
76a01679 JB |
9935 | if (ada_is_tagged_type (type1, 1)) |
9936 | { | |
9937 | type = ada_lookup_struct_elt_type (type1, | |
9938 | &exp->elts[pc + 2].string, | |
9939 | 1, 1, NULL); | |
9940 | if (type == NULL) | |
9941 | /* In this case, we assume that the field COULD exist | |
9942 | in some extension of the type. Return an object of | |
9943 | "type" void, which will match any formal | |
0963b4bd | 9944 | (see ada_type_match). */ |
30b15541 UW |
9945 | return value_zero (builtin_type (exp->gdbarch)->builtin_void, |
9946 | lval_memory); | |
76a01679 JB |
9947 | } |
9948 | else | |
9949 | type = | |
9950 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
9951 | 0, NULL); | |
9952 | ||
9953 | return value_zero (ada_aligned_type (type), lval_memory); | |
9954 | } | |
14f9c5c9 | 9955 | else |
284614f0 JB |
9956 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
9957 | arg1 = unwrap_value (arg1); | |
9958 | return ada_to_fixed_value (arg1); | |
9959 | ||
14f9c5c9 | 9960 | case OP_TYPE: |
4c4b4cd2 PH |
9961 | /* The value is not supposed to be used. This is here to make it |
9962 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
9963 | (*pos) += 2; |
9964 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9965 | goto nosideret; |
14f9c5c9 | 9966 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 9967 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 9968 | else |
323e0a4a | 9969 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
9970 | |
9971 | case OP_AGGREGATE: | |
9972 | case OP_CHOICES: | |
9973 | case OP_OTHERS: | |
9974 | case OP_DISCRETE_RANGE: | |
9975 | case OP_POSITIONAL: | |
9976 | case OP_NAME: | |
9977 | if (noside == EVAL_NORMAL) | |
9978 | switch (op) | |
9979 | { | |
9980 | case OP_NAME: | |
9981 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 9982 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
9983 | case OP_AGGREGATE: |
9984 | error (_("Aggregates only allowed on the right of an assignment")); | |
9985 | default: | |
0963b4bd MS |
9986 | internal_error (__FILE__, __LINE__, |
9987 | _("aggregate apparently mangled")); | |
52ce6436 PH |
9988 | } |
9989 | ||
9990 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
9991 | *pos += oplen - 1; | |
9992 | for (tem = 0; tem < nargs; tem += 1) | |
9993 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9994 | goto nosideret; | |
14f9c5c9 AS |
9995 | } |
9996 | ||
9997 | nosideret: | |
22601c15 | 9998 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 9999 | } |
14f9c5c9 | 10000 | \f |
d2e4a39e | 10001 | |
4c4b4cd2 | 10002 | /* Fixed point */ |
14f9c5c9 AS |
10003 | |
10004 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
10005 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 10006 | Otherwise, return NULL. */ |
14f9c5c9 | 10007 | |
d2e4a39e | 10008 | static const char * |
ebf56fd3 | 10009 | fixed_type_info (struct type *type) |
14f9c5c9 | 10010 | { |
d2e4a39e | 10011 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
10012 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
10013 | ||
d2e4a39e AS |
10014 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
10015 | { | |
14f9c5c9 | 10016 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 10017 | |
14f9c5c9 | 10018 | if (tail == NULL) |
4c4b4cd2 | 10019 | return NULL; |
d2e4a39e | 10020 | else |
4c4b4cd2 | 10021 | return tail + 5; |
14f9c5c9 AS |
10022 | } |
10023 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
10024 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
10025 | else | |
10026 | return NULL; | |
10027 | } | |
10028 | ||
4c4b4cd2 | 10029 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
10030 | |
10031 | int | |
ebf56fd3 | 10032 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
10033 | { |
10034 | return fixed_type_info (type) != NULL; | |
10035 | } | |
10036 | ||
4c4b4cd2 PH |
10037 | /* Return non-zero iff TYPE represents a System.Address type. */ |
10038 | ||
10039 | int | |
10040 | ada_is_system_address_type (struct type *type) | |
10041 | { | |
10042 | return (TYPE_NAME (type) | |
10043 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
10044 | } | |
10045 | ||
14f9c5c9 AS |
10046 | /* Assuming that TYPE is the representation of an Ada fixed-point |
10047 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 10048 | delta cannot be determined. */ |
14f9c5c9 AS |
10049 | |
10050 | DOUBLEST | |
ebf56fd3 | 10051 | ada_delta (struct type *type) |
14f9c5c9 AS |
10052 | { |
10053 | const char *encoding = fixed_type_info (type); | |
facc390f | 10054 | DOUBLEST num, den; |
14f9c5c9 | 10055 | |
facc390f JB |
10056 | /* Strictly speaking, num and den are encoded as integer. However, |
10057 | they may not fit into a long, and they will have to be converted | |
10058 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10059 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10060 | &num, &den) < 2) | |
14f9c5c9 | 10061 | return -1.0; |
d2e4a39e | 10062 | else |
facc390f | 10063 | return num / den; |
14f9c5c9 AS |
10064 | } |
10065 | ||
10066 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 10067 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
10068 | |
10069 | static DOUBLEST | |
ebf56fd3 | 10070 | scaling_factor (struct type *type) |
14f9c5c9 AS |
10071 | { |
10072 | const char *encoding = fixed_type_info (type); | |
facc390f | 10073 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 10074 | int n; |
d2e4a39e | 10075 | |
facc390f JB |
10076 | /* Strictly speaking, num's and den's are encoded as integer. However, |
10077 | they may not fit into a long, and they will have to be converted | |
10078 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10079 | n = sscanf (encoding, | |
10080 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
10081 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10082 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
10083 | |
10084 | if (n < 2) | |
10085 | return 1.0; | |
10086 | else if (n == 4) | |
facc390f | 10087 | return num1 / den1; |
d2e4a39e | 10088 | else |
facc390f | 10089 | return num0 / den0; |
14f9c5c9 AS |
10090 | } |
10091 | ||
10092 | ||
10093 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 10094 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
10095 | |
10096 | DOUBLEST | |
ebf56fd3 | 10097 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 10098 | { |
d2e4a39e | 10099 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
10100 | } |
10101 | ||
4c4b4cd2 PH |
10102 | /* The representation of a fixed-point value of type TYPE |
10103 | corresponding to the value X. */ | |
14f9c5c9 AS |
10104 | |
10105 | LONGEST | |
ebf56fd3 | 10106 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
10107 | { |
10108 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
10109 | } | |
10110 | ||
14f9c5c9 | 10111 | \f |
d2e4a39e | 10112 | |
4c4b4cd2 | 10113 | /* Range types */ |
14f9c5c9 AS |
10114 | |
10115 | /* Scan STR beginning at position K for a discriminant name, and | |
10116 | return the value of that discriminant field of DVAL in *PX. If | |
10117 | PNEW_K is not null, put the position of the character beyond the | |
10118 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 10119 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
10120 | |
10121 | static int | |
07d8f827 | 10122 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 10123 | int *pnew_k) |
14f9c5c9 AS |
10124 | { |
10125 | static char *bound_buffer = NULL; | |
10126 | static size_t bound_buffer_len = 0; | |
10127 | char *bound; | |
10128 | char *pend; | |
d2e4a39e | 10129 | struct value *bound_val; |
14f9c5c9 AS |
10130 | |
10131 | if (dval == NULL || str == NULL || str[k] == '\0') | |
10132 | return 0; | |
10133 | ||
d2e4a39e | 10134 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
10135 | if (pend == NULL) |
10136 | { | |
d2e4a39e | 10137 | bound = str + k; |
14f9c5c9 AS |
10138 | k += strlen (bound); |
10139 | } | |
d2e4a39e | 10140 | else |
14f9c5c9 | 10141 | { |
d2e4a39e | 10142 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 10143 | bound = bound_buffer; |
d2e4a39e AS |
10144 | strncpy (bound_buffer, str + k, pend - (str + k)); |
10145 | bound[pend - (str + k)] = '\0'; | |
10146 | k = pend - str; | |
14f9c5c9 | 10147 | } |
d2e4a39e | 10148 | |
df407dfe | 10149 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
10150 | if (bound_val == NULL) |
10151 | return 0; | |
10152 | ||
10153 | *px = value_as_long (bound_val); | |
10154 | if (pnew_k != NULL) | |
10155 | *pnew_k = k; | |
10156 | return 1; | |
10157 | } | |
10158 | ||
10159 | /* Value of variable named NAME in the current environment. If | |
10160 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
10161 | otherwise causes an error with message ERR_MSG. */ |
10162 | ||
d2e4a39e AS |
10163 | static struct value * |
10164 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 10165 | { |
4c4b4cd2 | 10166 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
10167 | int nsyms; |
10168 | ||
4c4b4cd2 PH |
10169 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
10170 | &syms); | |
14f9c5c9 AS |
10171 | |
10172 | if (nsyms != 1) | |
10173 | { | |
10174 | if (err_msg == NULL) | |
4c4b4cd2 | 10175 | return 0; |
14f9c5c9 | 10176 | else |
8a3fe4f8 | 10177 | error (("%s"), err_msg); |
14f9c5c9 AS |
10178 | } |
10179 | ||
4c4b4cd2 | 10180 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 10181 | } |
d2e4a39e | 10182 | |
14f9c5c9 | 10183 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
10184 | no such variable found, returns 0, and sets *FLAG to 0. If |
10185 | successful, sets *FLAG to 1. */ | |
10186 | ||
14f9c5c9 | 10187 | LONGEST |
4c4b4cd2 | 10188 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 10189 | { |
4c4b4cd2 | 10190 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 10191 | |
14f9c5c9 AS |
10192 | if (var_val == 0) |
10193 | { | |
10194 | if (flag != NULL) | |
4c4b4cd2 | 10195 | *flag = 0; |
14f9c5c9 AS |
10196 | return 0; |
10197 | } | |
10198 | else | |
10199 | { | |
10200 | if (flag != NULL) | |
4c4b4cd2 | 10201 | *flag = 1; |
14f9c5c9 AS |
10202 | return value_as_long (var_val); |
10203 | } | |
10204 | } | |
d2e4a39e | 10205 | |
14f9c5c9 AS |
10206 | |
10207 | /* Return a range type whose base type is that of the range type named | |
10208 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 10209 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
10210 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
10211 | corresponding range type from debug information; fall back to using it | |
10212 | if symbol lookup fails. If a new type must be created, allocate it | |
10213 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
10214 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 10215 | |
d2e4a39e | 10216 | static struct type * |
28c85d6c | 10217 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 10218 | { |
28c85d6c | 10219 | char *name; |
14f9c5c9 | 10220 | struct type *base_type; |
d2e4a39e | 10221 | char *subtype_info; |
14f9c5c9 | 10222 | |
28c85d6c JB |
10223 | gdb_assert (raw_type != NULL); |
10224 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 10225 | |
1ce677a4 | 10226 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
10227 | base_type = TYPE_TARGET_TYPE (raw_type); |
10228 | else | |
10229 | base_type = raw_type; | |
10230 | ||
28c85d6c | 10231 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
10232 | subtype_info = strstr (name, "___XD"); |
10233 | if (subtype_info == NULL) | |
690cc4eb | 10234 | { |
43bbcdc2 PH |
10235 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
10236 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 10237 | |
690cc4eb PH |
10238 | if (L < INT_MIN || U > INT_MAX) |
10239 | return raw_type; | |
10240 | else | |
28c85d6c | 10241 | return create_range_type (alloc_type_copy (raw_type), raw_type, |
43bbcdc2 PH |
10242 | ada_discrete_type_low_bound (raw_type), |
10243 | ada_discrete_type_high_bound (raw_type)); | |
690cc4eb | 10244 | } |
14f9c5c9 AS |
10245 | else |
10246 | { | |
10247 | static char *name_buf = NULL; | |
10248 | static size_t name_len = 0; | |
10249 | int prefix_len = subtype_info - name; | |
10250 | LONGEST L, U; | |
10251 | struct type *type; | |
10252 | char *bounds_str; | |
10253 | int n; | |
10254 | ||
10255 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
10256 | strncpy (name_buf, name, prefix_len); | |
10257 | name_buf[prefix_len] = '\0'; | |
10258 | ||
10259 | subtype_info += 5; | |
10260 | bounds_str = strchr (subtype_info, '_'); | |
10261 | n = 1; | |
10262 | ||
d2e4a39e | 10263 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
10264 | { |
10265 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
10266 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
10267 | return raw_type; | |
10268 | if (bounds_str[n] == '_') | |
10269 | n += 2; | |
0963b4bd | 10270 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
10271 | n += 1; |
10272 | subtype_info += 1; | |
10273 | } | |
d2e4a39e | 10274 | else |
4c4b4cd2 PH |
10275 | { |
10276 | int ok; | |
5b4ee69b | 10277 | |
4c4b4cd2 PH |
10278 | strcpy (name_buf + prefix_len, "___L"); |
10279 | L = get_int_var_value (name_buf, &ok); | |
10280 | if (!ok) | |
10281 | { | |
323e0a4a | 10282 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
10283 | L = 1; |
10284 | } | |
10285 | } | |
14f9c5c9 | 10286 | |
d2e4a39e | 10287 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
10288 | { |
10289 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
10290 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
10291 | return raw_type; | |
10292 | } | |
d2e4a39e | 10293 | else |
4c4b4cd2 PH |
10294 | { |
10295 | int ok; | |
5b4ee69b | 10296 | |
4c4b4cd2 PH |
10297 | strcpy (name_buf + prefix_len, "___U"); |
10298 | U = get_int_var_value (name_buf, &ok); | |
10299 | if (!ok) | |
10300 | { | |
323e0a4a | 10301 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
10302 | U = L; |
10303 | } | |
10304 | } | |
14f9c5c9 | 10305 | |
28c85d6c | 10306 | type = create_range_type (alloc_type_copy (raw_type), base_type, L, U); |
d2e4a39e | 10307 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
10308 | return type; |
10309 | } | |
10310 | } | |
10311 | ||
4c4b4cd2 PH |
10312 | /* True iff NAME is the name of a range type. */ |
10313 | ||
14f9c5c9 | 10314 | int |
d2e4a39e | 10315 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
10316 | { |
10317 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 10318 | } |
14f9c5c9 | 10319 | \f |
d2e4a39e | 10320 | |
4c4b4cd2 PH |
10321 | /* Modular types */ |
10322 | ||
10323 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 10324 | |
14f9c5c9 | 10325 | int |
d2e4a39e | 10326 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 10327 | { |
4c4b4cd2 | 10328 | struct type *subranged_type = base_type (type); |
14f9c5c9 AS |
10329 | |
10330 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 10331 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 10332 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
10333 | } |
10334 | ||
0056e4d5 JB |
10335 | /* Try to determine the lower and upper bounds of the given modular type |
10336 | using the type name only. Return non-zero and set L and U as the lower | |
10337 | and upper bounds (respectively) if successful. */ | |
10338 | ||
10339 | int | |
10340 | ada_modulus_from_name (struct type *type, ULONGEST *modulus) | |
10341 | { | |
10342 | char *name = ada_type_name (type); | |
10343 | char *suffix; | |
10344 | int k; | |
10345 | LONGEST U; | |
10346 | ||
10347 | if (name == NULL) | |
10348 | return 0; | |
10349 | ||
10350 | /* Discrete type bounds are encoded using an __XD suffix. In our case, | |
10351 | we are looking for static bounds, which means an __XDLU suffix. | |
10352 | Moreover, we know that the lower bound of modular types is always | |
10353 | zero, so the actual suffix should start with "__XDLU_0__", and | |
10354 | then be followed by the upper bound value. */ | |
10355 | suffix = strstr (name, "__XDLU_0__"); | |
10356 | if (suffix == NULL) | |
10357 | return 0; | |
10358 | k = 10; | |
10359 | if (!ada_scan_number (suffix, k, &U, NULL)) | |
10360 | return 0; | |
10361 | ||
10362 | *modulus = (ULONGEST) U + 1; | |
10363 | return 1; | |
10364 | } | |
10365 | ||
4c4b4cd2 PH |
10366 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
10367 | ||
61ee279c | 10368 | ULONGEST |
0056e4d5 | 10369 | ada_modulus (struct type *type) |
14f9c5c9 | 10370 | { |
43bbcdc2 | 10371 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 10372 | } |
d2e4a39e | 10373 | \f |
f7f9143b JB |
10374 | |
10375 | /* Ada exception catchpoint support: | |
10376 | --------------------------------- | |
10377 | ||
10378 | We support 3 kinds of exception catchpoints: | |
10379 | . catchpoints on Ada exceptions | |
10380 | . catchpoints on unhandled Ada exceptions | |
10381 | . catchpoints on failed assertions | |
10382 | ||
10383 | Exceptions raised during failed assertions, or unhandled exceptions | |
10384 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
10385 | However, we can easily differentiate these two special cases, and having | |
10386 | the option to distinguish these two cases from the rest can be useful | |
10387 | to zero-in on certain situations. | |
10388 | ||
10389 | Exception catchpoints are a specialized form of breakpoint, | |
10390 | since they rely on inserting breakpoints inside known routines | |
10391 | of the GNAT runtime. The implementation therefore uses a standard | |
10392 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
10393 | of breakpoint_ops. | |
10394 | ||
0259addd JB |
10395 | Support in the runtime for exception catchpoints have been changed |
10396 | a few times already, and these changes affect the implementation | |
10397 | of these catchpoints. In order to be able to support several | |
10398 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 10399 | the runtime variant used by the program being debugged. */ |
f7f9143b JB |
10400 | |
10401 | /* The different types of catchpoints that we introduced for catching | |
10402 | Ada exceptions. */ | |
10403 | ||
10404 | enum exception_catchpoint_kind | |
10405 | { | |
10406 | ex_catch_exception, | |
10407 | ex_catch_exception_unhandled, | |
10408 | ex_catch_assert | |
10409 | }; | |
10410 | ||
3d0b0fa3 JB |
10411 | /* Ada's standard exceptions. */ |
10412 | ||
10413 | static char *standard_exc[] = { | |
10414 | "constraint_error", | |
10415 | "program_error", | |
10416 | "storage_error", | |
10417 | "tasking_error" | |
10418 | }; | |
10419 | ||
0259addd JB |
10420 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
10421 | ||
10422 | /* A structure that describes how to support exception catchpoints | |
10423 | for a given executable. */ | |
10424 | ||
10425 | struct exception_support_info | |
10426 | { | |
10427 | /* The name of the symbol to break on in order to insert | |
10428 | a catchpoint on exceptions. */ | |
10429 | const char *catch_exception_sym; | |
10430 | ||
10431 | /* The name of the symbol to break on in order to insert | |
10432 | a catchpoint on unhandled exceptions. */ | |
10433 | const char *catch_exception_unhandled_sym; | |
10434 | ||
10435 | /* The name of the symbol to break on in order to insert | |
10436 | a catchpoint on failed assertions. */ | |
10437 | const char *catch_assert_sym; | |
10438 | ||
10439 | /* Assuming that the inferior just triggered an unhandled exception | |
10440 | catchpoint, this function is responsible for returning the address | |
10441 | in inferior memory where the name of that exception is stored. | |
10442 | Return zero if the address could not be computed. */ | |
10443 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
10444 | }; | |
10445 | ||
10446 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
10447 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
10448 | ||
10449 | /* The following exception support info structure describes how to | |
10450 | implement exception catchpoints with the latest version of the | |
10451 | Ada runtime (as of 2007-03-06). */ | |
10452 | ||
10453 | static const struct exception_support_info default_exception_support_info = | |
10454 | { | |
10455 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
10456 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10457 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
10458 | ada_unhandled_exception_name_addr | |
10459 | }; | |
10460 | ||
10461 | /* The following exception support info structure describes how to | |
10462 | implement exception catchpoints with a slightly older version | |
10463 | of the Ada runtime. */ | |
10464 | ||
10465 | static const struct exception_support_info exception_support_info_fallback = | |
10466 | { | |
10467 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
10468 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10469 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
10470 | ada_unhandled_exception_name_addr_from_raise | |
10471 | }; | |
10472 | ||
10473 | /* For each executable, we sniff which exception info structure to use | |
10474 | and cache it in the following global variable. */ | |
10475 | ||
10476 | static const struct exception_support_info *exception_info = NULL; | |
10477 | ||
10478 | /* Inspect the Ada runtime and determine which exception info structure | |
10479 | should be used to provide support for exception catchpoints. | |
10480 | ||
10481 | This function will always set exception_info, or raise an error. */ | |
10482 | ||
10483 | static void | |
10484 | ada_exception_support_info_sniffer (void) | |
10485 | { | |
10486 | struct symbol *sym; | |
10487 | ||
10488 | /* If the exception info is already known, then no need to recompute it. */ | |
10489 | if (exception_info != NULL) | |
10490 | return; | |
10491 | ||
10492 | /* Check the latest (default) exception support info. */ | |
10493 | sym = standard_lookup (default_exception_support_info.catch_exception_sym, | |
10494 | NULL, VAR_DOMAIN); | |
10495 | if (sym != NULL) | |
10496 | { | |
10497 | exception_info = &default_exception_support_info; | |
10498 | return; | |
10499 | } | |
10500 | ||
10501 | /* Try our fallback exception suport info. */ | |
10502 | sym = standard_lookup (exception_support_info_fallback.catch_exception_sym, | |
10503 | NULL, VAR_DOMAIN); | |
10504 | if (sym != NULL) | |
10505 | { | |
10506 | exception_info = &exception_support_info_fallback; | |
10507 | return; | |
10508 | } | |
10509 | ||
10510 | /* Sometimes, it is normal for us to not be able to find the routine | |
10511 | we are looking for. This happens when the program is linked with | |
10512 | the shared version of the GNAT runtime, and the program has not been | |
10513 | started yet. Inform the user of these two possible causes if | |
10514 | applicable. */ | |
10515 | ||
ccefe4c4 | 10516 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
10517 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
10518 | ||
10519 | /* If the symbol does not exist, then check that the program is | |
10520 | already started, to make sure that shared libraries have been | |
10521 | loaded. If it is not started, this may mean that the symbol is | |
10522 | in a shared library. */ | |
10523 | ||
10524 | if (ptid_get_pid (inferior_ptid) == 0) | |
10525 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
10526 | ||
10527 | /* At this point, we know that we are debugging an Ada program and | |
10528 | that the inferior has been started, but we still are not able to | |
0963b4bd | 10529 | find the run-time symbols. That can mean that we are in |
0259addd JB |
10530 | configurable run time mode, or that a-except as been optimized |
10531 | out by the linker... In any case, at this point it is not worth | |
10532 | supporting this feature. */ | |
10533 | ||
10534 | error (_("Cannot insert catchpoints in this configuration.")); | |
10535 | } | |
10536 | ||
10537 | /* An observer of "executable_changed" events. | |
10538 | Its role is to clear certain cached values that need to be recomputed | |
10539 | each time a new executable is loaded by GDB. */ | |
10540 | ||
10541 | static void | |
781b42b0 | 10542 | ada_executable_changed_observer (void) |
0259addd JB |
10543 | { |
10544 | /* If the executable changed, then it is possible that the Ada runtime | |
10545 | is different. So we need to invalidate the exception support info | |
10546 | cache. */ | |
10547 | exception_info = NULL; | |
10548 | } | |
10549 | ||
f7f9143b JB |
10550 | /* True iff FRAME is very likely to be that of a function that is |
10551 | part of the runtime system. This is all very heuristic, but is | |
10552 | intended to be used as advice as to what frames are uninteresting | |
10553 | to most users. */ | |
10554 | ||
10555 | static int | |
10556 | is_known_support_routine (struct frame_info *frame) | |
10557 | { | |
4ed6b5be | 10558 | struct symtab_and_line sal; |
f7f9143b | 10559 | char *func_name; |
692465f1 | 10560 | enum language func_lang; |
f7f9143b | 10561 | int i; |
f7f9143b | 10562 | |
4ed6b5be JB |
10563 | /* If this code does not have any debugging information (no symtab), |
10564 | This cannot be any user code. */ | |
f7f9143b | 10565 | |
4ed6b5be | 10566 | find_frame_sal (frame, &sal); |
f7f9143b JB |
10567 | if (sal.symtab == NULL) |
10568 | return 1; | |
10569 | ||
4ed6b5be JB |
10570 | /* If there is a symtab, but the associated source file cannot be |
10571 | located, then assume this is not user code: Selecting a frame | |
10572 | for which we cannot display the code would not be very helpful | |
10573 | for the user. This should also take care of case such as VxWorks | |
10574 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 10575 | |
9bbc9174 | 10576 | if (symtab_to_fullname (sal.symtab) == NULL) |
f7f9143b JB |
10577 | return 1; |
10578 | ||
4ed6b5be JB |
10579 | /* Check the unit filename againt the Ada runtime file naming. |
10580 | We also check the name of the objfile against the name of some | |
10581 | known system libraries that sometimes come with debugging info | |
10582 | too. */ | |
10583 | ||
f7f9143b JB |
10584 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
10585 | { | |
10586 | re_comp (known_runtime_file_name_patterns[i]); | |
10587 | if (re_exec (sal.symtab->filename)) | |
10588 | return 1; | |
4ed6b5be JB |
10589 | if (sal.symtab->objfile != NULL |
10590 | && re_exec (sal.symtab->objfile->name)) | |
10591 | return 1; | |
f7f9143b JB |
10592 | } |
10593 | ||
4ed6b5be | 10594 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 10595 | |
e9e07ba6 | 10596 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
10597 | if (func_name == NULL) |
10598 | return 1; | |
10599 | ||
10600 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
10601 | { | |
10602 | re_comp (known_auxiliary_function_name_patterns[i]); | |
10603 | if (re_exec (func_name)) | |
10604 | return 1; | |
10605 | } | |
10606 | ||
10607 | return 0; | |
10608 | } | |
10609 | ||
10610 | /* Find the first frame that contains debugging information and that is not | |
10611 | part of the Ada run-time, starting from FI and moving upward. */ | |
10612 | ||
0ef643c8 | 10613 | void |
f7f9143b JB |
10614 | ada_find_printable_frame (struct frame_info *fi) |
10615 | { | |
10616 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
10617 | { | |
10618 | if (!is_known_support_routine (fi)) | |
10619 | { | |
10620 | select_frame (fi); | |
10621 | break; | |
10622 | } | |
10623 | } | |
10624 | ||
10625 | } | |
10626 | ||
10627 | /* Assuming that the inferior just triggered an unhandled exception | |
10628 | catchpoint, return the address in inferior memory where the name | |
10629 | of the exception is stored. | |
10630 | ||
10631 | Return zero if the address could not be computed. */ | |
10632 | ||
10633 | static CORE_ADDR | |
10634 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
10635 | { |
10636 | return parse_and_eval_address ("e.full_name"); | |
10637 | } | |
10638 | ||
10639 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
10640 | should be used when the inferior uses an older version of the runtime, | |
10641 | where the exception name needs to be extracted from a specific frame | |
10642 | several frames up in the callstack. */ | |
10643 | ||
10644 | static CORE_ADDR | |
10645 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
10646 | { |
10647 | int frame_level; | |
10648 | struct frame_info *fi; | |
10649 | ||
10650 | /* To determine the name of this exception, we need to select | |
10651 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
10652 | at least 3 levels up, so we simply skip the first 3 frames | |
10653 | without checking the name of their associated function. */ | |
10654 | fi = get_current_frame (); | |
10655 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
10656 | if (fi != NULL) | |
10657 | fi = get_prev_frame (fi); | |
10658 | ||
10659 | while (fi != NULL) | |
10660 | { | |
692465f1 JB |
10661 | char *func_name; |
10662 | enum language func_lang; | |
10663 | ||
e9e07ba6 | 10664 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
f7f9143b | 10665 | if (func_name != NULL |
0259addd | 10666 | && strcmp (func_name, exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
10667 | break; /* We found the frame we were looking for... */ |
10668 | fi = get_prev_frame (fi); | |
10669 | } | |
10670 | ||
10671 | if (fi == NULL) | |
10672 | return 0; | |
10673 | ||
10674 | select_frame (fi); | |
10675 | return parse_and_eval_address ("id.full_name"); | |
10676 | } | |
10677 | ||
10678 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
10679 | (of any type), return the address in inferior memory where the name | |
10680 | of the exception is stored, if applicable. | |
10681 | ||
10682 | Return zero if the address could not be computed, or if not relevant. */ | |
10683 | ||
10684 | static CORE_ADDR | |
10685 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
10686 | struct breakpoint *b) | |
10687 | { | |
10688 | switch (ex) | |
10689 | { | |
10690 | case ex_catch_exception: | |
10691 | return (parse_and_eval_address ("e.full_name")); | |
10692 | break; | |
10693 | ||
10694 | case ex_catch_exception_unhandled: | |
0259addd | 10695 | return exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
10696 | break; |
10697 | ||
10698 | case ex_catch_assert: | |
10699 | return 0; /* Exception name is not relevant in this case. */ | |
10700 | break; | |
10701 | ||
10702 | default: | |
10703 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10704 | break; | |
10705 | } | |
10706 | ||
10707 | return 0; /* Should never be reached. */ | |
10708 | } | |
10709 | ||
10710 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
10711 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
10712 | When an error is intercepted, a warning with the error message is printed, | |
10713 | and zero is returned. */ | |
10714 | ||
10715 | static CORE_ADDR | |
10716 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
10717 | struct breakpoint *b) | |
10718 | { | |
10719 | struct gdb_exception e; | |
10720 | CORE_ADDR result = 0; | |
10721 | ||
10722 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
10723 | { | |
10724 | result = ada_exception_name_addr_1 (ex, b); | |
10725 | } | |
10726 | ||
10727 | if (e.reason < 0) | |
10728 | { | |
10729 | warning (_("failed to get exception name: %s"), e.message); | |
10730 | return 0; | |
10731 | } | |
10732 | ||
10733 | return result; | |
10734 | } | |
10735 | ||
28010a5d PA |
10736 | static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind, |
10737 | char *, char **, | |
10738 | struct breakpoint_ops **); | |
10739 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); | |
10740 | ||
10741 | /* Ada catchpoints. | |
10742 | ||
10743 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
10744 | stop the target on every exception the program throws. When a user | |
10745 | specifies the name of a specific exception, we translate this | |
10746 | request into a condition expression (in text form), and then parse | |
10747 | it into an expression stored in each of the catchpoint's locations. | |
10748 | We then use this condition to check whether the exception that was | |
10749 | raised is the one the user is interested in. If not, then the | |
10750 | target is resumed again. We store the name of the requested | |
10751 | exception, in order to be able to re-set the condition expression | |
10752 | when symbols change. */ | |
10753 | ||
10754 | /* An instance of this type is used to represent an Ada catchpoint | |
10755 | breakpoint location. It includes a "struct bp_location" as a kind | |
10756 | of base class; users downcast to "struct bp_location *" when | |
10757 | needed. */ | |
10758 | ||
10759 | struct ada_catchpoint_location | |
10760 | { | |
10761 | /* The base class. */ | |
10762 | struct bp_location base; | |
10763 | ||
10764 | /* The condition that checks whether the exception that was raised | |
10765 | is the specific exception the user specified on catchpoint | |
10766 | creation. */ | |
10767 | struct expression *excep_cond_expr; | |
10768 | }; | |
10769 | ||
10770 | /* Implement the DTOR method in the bp_location_ops structure for all | |
10771 | Ada exception catchpoint kinds. */ | |
10772 | ||
10773 | static void | |
10774 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
10775 | { | |
10776 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
10777 | ||
10778 | xfree (al->excep_cond_expr); | |
10779 | } | |
10780 | ||
10781 | /* The vtable to be used in Ada catchpoint locations. */ | |
10782 | ||
10783 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
10784 | { | |
10785 | ada_catchpoint_location_dtor | |
10786 | }; | |
10787 | ||
10788 | /* An instance of this type is used to represent an Ada catchpoint. | |
10789 | It includes a "struct breakpoint" as a kind of base class; users | |
10790 | downcast to "struct breakpoint *" when needed. */ | |
10791 | ||
10792 | struct ada_catchpoint | |
10793 | { | |
10794 | /* The base class. */ | |
10795 | struct breakpoint base; | |
10796 | ||
10797 | /* The name of the specific exception the user specified. */ | |
10798 | char *excep_string; | |
10799 | }; | |
10800 | ||
10801 | /* Parse the exception condition string in the context of each of the | |
10802 | catchpoint's locations, and store them for later evaluation. */ | |
10803 | ||
10804 | static void | |
10805 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
10806 | { | |
10807 | struct cleanup *old_chain; | |
10808 | struct bp_location *bl; | |
10809 | char *cond_string; | |
10810 | ||
10811 | /* Nothing to do if there's no specific exception to catch. */ | |
10812 | if (c->excep_string == NULL) | |
10813 | return; | |
10814 | ||
10815 | /* Same if there are no locations... */ | |
10816 | if (c->base.loc == NULL) | |
10817 | return; | |
10818 | ||
10819 | /* Compute the condition expression in text form, from the specific | |
10820 | expection we want to catch. */ | |
10821 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
10822 | old_chain = make_cleanup (xfree, cond_string); | |
10823 | ||
10824 | /* Iterate over all the catchpoint's locations, and parse an | |
10825 | expression for each. */ | |
10826 | for (bl = c->base.loc; bl != NULL; bl = bl->next) | |
10827 | { | |
10828 | struct ada_catchpoint_location *ada_loc | |
10829 | = (struct ada_catchpoint_location *) bl; | |
10830 | struct expression *exp = NULL; | |
10831 | ||
10832 | if (!bl->shlib_disabled) | |
10833 | { | |
10834 | volatile struct gdb_exception e; | |
10835 | char *s; | |
10836 | ||
10837 | s = cond_string; | |
10838 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
10839 | { | |
10840 | exp = parse_exp_1 (&s, block_for_pc (bl->address), 0); | |
10841 | } | |
10842 | if (e.reason < 0) | |
10843 | warning (_("failed to reevaluate internal exception condition " | |
10844 | "for catchpoint %d: %s"), | |
10845 | c->base.number, e.message); | |
10846 | } | |
10847 | ||
10848 | ada_loc->excep_cond_expr = exp; | |
10849 | } | |
10850 | ||
10851 | do_cleanups (old_chain); | |
10852 | } | |
10853 | ||
10854 | /* Implement the DTOR method in the breakpoint_ops structure for all | |
10855 | exception catchpoint kinds. */ | |
10856 | ||
10857 | static void | |
10858 | dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
10859 | { | |
10860 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
10861 | ||
10862 | xfree (c->excep_string); | |
10863 | } | |
10864 | ||
10865 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
10866 | structure for all exception catchpoint kinds. */ | |
10867 | ||
10868 | static struct bp_location * | |
10869 | allocate_location_exception (enum exception_catchpoint_kind ex, | |
10870 | struct breakpoint *self) | |
10871 | { | |
10872 | struct ada_catchpoint_location *loc; | |
10873 | ||
10874 | loc = XNEW (struct ada_catchpoint_location); | |
10875 | init_bp_location (&loc->base, &ada_catchpoint_location_ops, self); | |
10876 | loc->excep_cond_expr = NULL; | |
10877 | return &loc->base; | |
10878 | } | |
10879 | ||
10880 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
10881 | exception catchpoint kinds. */ | |
10882 | ||
10883 | static void | |
10884 | re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
10885 | { | |
10886 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
10887 | ||
10888 | /* Call the base class's method. This updates the catchpoint's | |
10889 | locations. */ | |
10890 | breakpoint_re_set_default (b); | |
10891 | ||
10892 | /* Reparse the exception conditional expressions. One for each | |
10893 | location. */ | |
10894 | create_excep_cond_exprs (c); | |
10895 | } | |
10896 | ||
10897 | /* Returns true if we should stop for this breakpoint hit. If the | |
10898 | user specified a specific exception, we only want to cause a stop | |
10899 | if the program thrown that exception. */ | |
10900 | ||
10901 | static int | |
10902 | should_stop_exception (const struct bp_location *bl) | |
10903 | { | |
10904 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
10905 | const struct ada_catchpoint_location *ada_loc | |
10906 | = (const struct ada_catchpoint_location *) bl; | |
10907 | volatile struct gdb_exception ex; | |
10908 | int stop; | |
10909 | ||
10910 | /* With no specific exception, should always stop. */ | |
10911 | if (c->excep_string == NULL) | |
10912 | return 1; | |
10913 | ||
10914 | if (ada_loc->excep_cond_expr == NULL) | |
10915 | { | |
10916 | /* We will have a NULL expression if back when we were creating | |
10917 | the expressions, this location's had failed to parse. */ | |
10918 | return 1; | |
10919 | } | |
10920 | ||
10921 | stop = 1; | |
10922 | TRY_CATCH (ex, RETURN_MASK_ALL) | |
10923 | { | |
10924 | struct value *mark; | |
10925 | ||
10926 | mark = value_mark (); | |
10927 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr)); | |
10928 | value_free_to_mark (mark); | |
10929 | } | |
10930 | if (ex.reason < 0) | |
10931 | exception_fprintf (gdb_stderr, ex, | |
10932 | _("Error in testing exception condition:\n")); | |
10933 | return stop; | |
10934 | } | |
10935 | ||
10936 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
10937 | for all exception catchpoint kinds. */ | |
10938 | ||
10939 | static void | |
10940 | check_status_exception (enum exception_catchpoint_kind ex, bpstat bs) | |
10941 | { | |
10942 | bs->stop = should_stop_exception (bs->bp_location_at); | |
10943 | } | |
10944 | ||
f7f9143b JB |
10945 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
10946 | for all exception catchpoint kinds. */ | |
10947 | ||
10948 | static enum print_stop_action | |
10949 | print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
10950 | { | |
956a9fb9 | 10951 | annotate_catchpoint (b->number); |
f7f9143b | 10952 | |
956a9fb9 | 10953 | if (ui_out_is_mi_like_p (uiout)) |
f7f9143b | 10954 | { |
956a9fb9 JB |
10955 | ui_out_field_string (uiout, "reason", |
10956 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); | |
10957 | ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition)); | |
f7f9143b JB |
10958 | } |
10959 | ||
956a9fb9 JB |
10960 | ui_out_text (uiout, "\nCatchpoint "); |
10961 | ui_out_field_int (uiout, "bkptno", b->number); | |
10962 | ui_out_text (uiout, ", "); | |
f7f9143b | 10963 | |
f7f9143b JB |
10964 | switch (ex) |
10965 | { | |
10966 | case ex_catch_exception: | |
f7f9143b | 10967 | case ex_catch_exception_unhandled: |
956a9fb9 JB |
10968 | { |
10969 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
10970 | char exception_name[256]; | |
10971 | ||
10972 | if (addr != 0) | |
10973 | { | |
10974 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
10975 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
10976 | } | |
10977 | else | |
10978 | { | |
10979 | /* For some reason, we were unable to read the exception | |
10980 | name. This could happen if the Runtime was compiled | |
10981 | without debugging info, for instance. In that case, | |
10982 | just replace the exception name by the generic string | |
10983 | "exception" - it will read as "an exception" in the | |
10984 | notification we are about to print. */ | |
967cff16 | 10985 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
10986 | } |
10987 | /* In the case of unhandled exception breakpoints, we print | |
10988 | the exception name as "unhandled EXCEPTION_NAME", to make | |
10989 | it clearer to the user which kind of catchpoint just got | |
10990 | hit. We used ui_out_text to make sure that this extra | |
10991 | info does not pollute the exception name in the MI case. */ | |
10992 | if (ex == ex_catch_exception_unhandled) | |
10993 | ui_out_text (uiout, "unhandled "); | |
10994 | ui_out_field_string (uiout, "exception-name", exception_name); | |
10995 | } | |
10996 | break; | |
f7f9143b | 10997 | case ex_catch_assert: |
956a9fb9 JB |
10998 | /* In this case, the name of the exception is not really |
10999 | important. Just print "failed assertion" to make it clearer | |
11000 | that his program just hit an assertion-failure catchpoint. | |
11001 | We used ui_out_text because this info does not belong in | |
11002 | the MI output. */ | |
11003 | ui_out_text (uiout, "failed assertion"); | |
11004 | break; | |
f7f9143b | 11005 | } |
956a9fb9 JB |
11006 | ui_out_text (uiout, " at "); |
11007 | ada_find_printable_frame (get_current_frame ()); | |
f7f9143b JB |
11008 | |
11009 | return PRINT_SRC_AND_LOC; | |
11010 | } | |
11011 | ||
11012 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
11013 | for all exception catchpoint kinds. */ | |
11014 | ||
11015 | static void | |
11016 | print_one_exception (enum exception_catchpoint_kind ex, | |
a6d9a66e | 11017 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11018 | { |
28010a5d | 11019 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
11020 | struct value_print_options opts; |
11021 | ||
11022 | get_user_print_options (&opts); | |
11023 | if (opts.addressprint) | |
f7f9143b JB |
11024 | { |
11025 | annotate_field (4); | |
5af949e3 | 11026 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
11027 | } |
11028 | ||
11029 | annotate_field (5); | |
a6d9a66e | 11030 | *last_loc = b->loc; |
f7f9143b JB |
11031 | switch (ex) |
11032 | { | |
11033 | case ex_catch_exception: | |
28010a5d | 11034 | if (c->excep_string != NULL) |
f7f9143b | 11035 | { |
28010a5d PA |
11036 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
11037 | ||
f7f9143b JB |
11038 | ui_out_field_string (uiout, "what", msg); |
11039 | xfree (msg); | |
11040 | } | |
11041 | else | |
11042 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
11043 | ||
11044 | break; | |
11045 | ||
11046 | case ex_catch_exception_unhandled: | |
11047 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
11048 | break; | |
11049 | ||
11050 | case ex_catch_assert: | |
11051 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
11052 | break; | |
11053 | ||
11054 | default: | |
11055 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11056 | break; | |
11057 | } | |
11058 | } | |
11059 | ||
11060 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
11061 | for all exception catchpoint kinds. */ | |
11062 | ||
11063 | static void | |
11064 | print_mention_exception (enum exception_catchpoint_kind ex, | |
11065 | struct breakpoint *b) | |
11066 | { | |
28010a5d PA |
11067 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
11068 | ||
f7f9143b JB |
11069 | switch (ex) |
11070 | { | |
11071 | case ex_catch_exception: | |
28010a5d | 11072 | if (c->excep_string != NULL) |
f7f9143b | 11073 | printf_filtered (_("Catchpoint %d: `%s' Ada exception"), |
28010a5d | 11074 | b->number, c->excep_string); |
f7f9143b JB |
11075 | else |
11076 | printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number); | |
11077 | ||
11078 | break; | |
11079 | ||
11080 | case ex_catch_exception_unhandled: | |
11081 | printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"), | |
11082 | b->number); | |
11083 | break; | |
11084 | ||
11085 | case ex_catch_assert: | |
11086 | printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number); | |
11087 | break; | |
11088 | ||
11089 | default: | |
11090 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11091 | break; | |
11092 | } | |
11093 | } | |
11094 | ||
6149aea9 PA |
11095 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
11096 | for all exception catchpoint kinds. */ | |
11097 | ||
11098 | static void | |
11099 | print_recreate_exception (enum exception_catchpoint_kind ex, | |
11100 | struct breakpoint *b, struct ui_file *fp) | |
11101 | { | |
28010a5d PA |
11102 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
11103 | ||
6149aea9 PA |
11104 | switch (ex) |
11105 | { | |
11106 | case ex_catch_exception: | |
11107 | fprintf_filtered (fp, "catch exception"); | |
28010a5d PA |
11108 | if (c->excep_string != NULL) |
11109 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
11110 | break; |
11111 | ||
11112 | case ex_catch_exception_unhandled: | |
78076abc | 11113 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
11114 | break; |
11115 | ||
11116 | case ex_catch_assert: | |
11117 | fprintf_filtered (fp, "catch assert"); | |
11118 | break; | |
11119 | ||
11120 | default: | |
11121 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11122 | } | |
11123 | } | |
11124 | ||
f7f9143b JB |
11125 | /* Virtual table for "catch exception" breakpoints. */ |
11126 | ||
28010a5d PA |
11127 | static void |
11128 | dtor_catch_exception (struct breakpoint *b) | |
11129 | { | |
11130 | dtor_exception (ex_catch_exception, b); | |
11131 | } | |
11132 | ||
11133 | static struct bp_location * | |
11134 | allocate_location_catch_exception (struct breakpoint *self) | |
11135 | { | |
11136 | return allocate_location_exception (ex_catch_exception, self); | |
11137 | } | |
11138 | ||
11139 | static void | |
11140 | re_set_catch_exception (struct breakpoint *b) | |
11141 | { | |
11142 | re_set_exception (ex_catch_exception, b); | |
11143 | } | |
11144 | ||
11145 | static void | |
11146 | check_status_catch_exception (bpstat bs) | |
11147 | { | |
11148 | check_status_exception (ex_catch_exception, bs); | |
11149 | } | |
11150 | ||
f7f9143b JB |
11151 | static enum print_stop_action |
11152 | print_it_catch_exception (struct breakpoint *b) | |
11153 | { | |
11154 | return print_it_exception (ex_catch_exception, b); | |
11155 | } | |
11156 | ||
11157 | static void | |
a6d9a66e | 11158 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11159 | { |
a6d9a66e | 11160 | print_one_exception (ex_catch_exception, b, last_loc); |
f7f9143b JB |
11161 | } |
11162 | ||
11163 | static void | |
11164 | print_mention_catch_exception (struct breakpoint *b) | |
11165 | { | |
11166 | print_mention_exception (ex_catch_exception, b); | |
11167 | } | |
11168 | ||
6149aea9 PA |
11169 | static void |
11170 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
11171 | { | |
11172 | print_recreate_exception (ex_catch_exception, b, fp); | |
11173 | } | |
11174 | ||
f7f9143b JB |
11175 | static struct breakpoint_ops catch_exception_breakpoint_ops = |
11176 | { | |
28010a5d PA |
11177 | dtor_catch_exception, |
11178 | allocate_location_catch_exception, | |
11179 | re_set_catch_exception, | |
ce78b96d JB |
11180 | NULL, /* insert */ |
11181 | NULL, /* remove */ | |
11182 | NULL, /* breakpoint_hit */ | |
28010a5d | 11183 | check_status_catch_exception, |
e09342b5 | 11184 | NULL, /* resources_needed */ |
9c06b0b4 | 11185 | NULL, /* works_in_software_mode */ |
f7f9143b JB |
11186 | print_it_catch_exception, |
11187 | print_one_catch_exception, | |
f1310107 | 11188 | NULL, /* print_one_detail */ |
6149aea9 PA |
11189 | print_mention_catch_exception, |
11190 | print_recreate_catch_exception | |
f7f9143b JB |
11191 | }; |
11192 | ||
11193 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
11194 | ||
28010a5d PA |
11195 | static void |
11196 | dtor_catch_exception_unhandled (struct breakpoint *b) | |
11197 | { | |
11198 | dtor_exception (ex_catch_exception_unhandled, b); | |
11199 | } | |
11200 | ||
11201 | static struct bp_location * | |
11202 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
11203 | { | |
11204 | return allocate_location_exception (ex_catch_exception_unhandled, self); | |
11205 | } | |
11206 | ||
11207 | static void | |
11208 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
11209 | { | |
11210 | re_set_exception (ex_catch_exception_unhandled, b); | |
11211 | } | |
11212 | ||
11213 | static void | |
11214 | check_status_catch_exception_unhandled (bpstat bs) | |
11215 | { | |
11216 | check_status_exception (ex_catch_exception_unhandled, bs); | |
11217 | } | |
11218 | ||
f7f9143b JB |
11219 | static enum print_stop_action |
11220 | print_it_catch_exception_unhandled (struct breakpoint *b) | |
11221 | { | |
11222 | return print_it_exception (ex_catch_exception_unhandled, b); | |
11223 | } | |
11224 | ||
11225 | static void | |
a6d9a66e UW |
11226 | print_one_catch_exception_unhandled (struct breakpoint *b, |
11227 | struct bp_location **last_loc) | |
f7f9143b | 11228 | { |
a6d9a66e | 11229 | print_one_exception (ex_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
11230 | } |
11231 | ||
11232 | static void | |
11233 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
11234 | { | |
11235 | print_mention_exception (ex_catch_exception_unhandled, b); | |
11236 | } | |
11237 | ||
6149aea9 PA |
11238 | static void |
11239 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
11240 | struct ui_file *fp) | |
11241 | { | |
11242 | print_recreate_exception (ex_catch_exception_unhandled, b, fp); | |
11243 | } | |
11244 | ||
f7f9143b | 11245 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = { |
28010a5d PA |
11246 | dtor_catch_exception_unhandled, |
11247 | allocate_location_catch_exception_unhandled, | |
11248 | re_set_catch_exception_unhandled, | |
ce78b96d JB |
11249 | NULL, /* insert */ |
11250 | NULL, /* remove */ | |
11251 | NULL, /* breakpoint_hit */ | |
28010a5d | 11252 | check_status_catch_exception_unhandled, |
e09342b5 | 11253 | NULL, /* resources_needed */ |
9c06b0b4 | 11254 | NULL, /* works_in_software_mode */ |
f7f9143b JB |
11255 | print_it_catch_exception_unhandled, |
11256 | print_one_catch_exception_unhandled, | |
f1310107 | 11257 | NULL, /* print_one_detail */ |
6149aea9 PA |
11258 | print_mention_catch_exception_unhandled, |
11259 | print_recreate_catch_exception_unhandled | |
f7f9143b JB |
11260 | }; |
11261 | ||
11262 | /* Virtual table for "catch assert" breakpoints. */ | |
11263 | ||
28010a5d PA |
11264 | static void |
11265 | dtor_catch_assert (struct breakpoint *b) | |
11266 | { | |
11267 | dtor_exception (ex_catch_assert, b); | |
11268 | } | |
11269 | ||
11270 | static struct bp_location * | |
11271 | allocate_location_catch_assert (struct breakpoint *self) | |
11272 | { | |
11273 | return allocate_location_exception (ex_catch_assert, self); | |
11274 | } | |
11275 | ||
11276 | static void | |
11277 | re_set_catch_assert (struct breakpoint *b) | |
11278 | { | |
11279 | return re_set_exception (ex_catch_assert, b); | |
11280 | } | |
11281 | ||
11282 | static void | |
11283 | check_status_catch_assert (bpstat bs) | |
11284 | { | |
11285 | check_status_exception (ex_catch_assert, bs); | |
11286 | } | |
11287 | ||
f7f9143b JB |
11288 | static enum print_stop_action |
11289 | print_it_catch_assert (struct breakpoint *b) | |
11290 | { | |
11291 | return print_it_exception (ex_catch_assert, b); | |
11292 | } | |
11293 | ||
11294 | static void | |
a6d9a66e | 11295 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11296 | { |
a6d9a66e | 11297 | print_one_exception (ex_catch_assert, b, last_loc); |
f7f9143b JB |
11298 | } |
11299 | ||
11300 | static void | |
11301 | print_mention_catch_assert (struct breakpoint *b) | |
11302 | { | |
11303 | print_mention_exception (ex_catch_assert, b); | |
11304 | } | |
11305 | ||
6149aea9 PA |
11306 | static void |
11307 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
11308 | { | |
11309 | print_recreate_exception (ex_catch_assert, b, fp); | |
11310 | } | |
11311 | ||
f7f9143b | 11312 | static struct breakpoint_ops catch_assert_breakpoint_ops = { |
28010a5d PA |
11313 | dtor_catch_assert, |
11314 | allocate_location_catch_assert, | |
11315 | re_set_catch_assert, | |
ce78b96d JB |
11316 | NULL, /* insert */ |
11317 | NULL, /* remove */ | |
11318 | NULL, /* breakpoint_hit */ | |
28010a5d | 11319 | check_status_catch_assert, |
e09342b5 | 11320 | NULL, /* resources_needed */ |
9c06b0b4 | 11321 | NULL, /* works_in_software_mode */ |
f7f9143b JB |
11322 | print_it_catch_assert, |
11323 | print_one_catch_assert, | |
f1310107 | 11324 | NULL, /* print_one_detail */ |
6149aea9 PA |
11325 | print_mention_catch_assert, |
11326 | print_recreate_catch_assert | |
f7f9143b JB |
11327 | }; |
11328 | ||
f7f9143b JB |
11329 | /* Return a newly allocated copy of the first space-separated token |
11330 | in ARGSP, and then adjust ARGSP to point immediately after that | |
11331 | token. | |
11332 | ||
11333 | Return NULL if ARGPS does not contain any more tokens. */ | |
11334 | ||
11335 | static char * | |
11336 | ada_get_next_arg (char **argsp) | |
11337 | { | |
11338 | char *args = *argsp; | |
11339 | char *end; | |
11340 | char *result; | |
11341 | ||
11342 | /* Skip any leading white space. */ | |
11343 | ||
11344 | while (isspace (*args)) | |
11345 | args++; | |
11346 | ||
11347 | if (args[0] == '\0') | |
11348 | return NULL; /* No more arguments. */ | |
11349 | ||
11350 | /* Find the end of the current argument. */ | |
11351 | ||
11352 | end = args; | |
11353 | while (*end != '\0' && !isspace (*end)) | |
11354 | end++; | |
11355 | ||
11356 | /* Adjust ARGSP to point to the start of the next argument. */ | |
11357 | ||
11358 | *argsp = end; | |
11359 | ||
11360 | /* Make a copy of the current argument and return it. */ | |
11361 | ||
11362 | result = xmalloc (end - args + 1); | |
11363 | strncpy (result, args, end - args); | |
11364 | result[end - args] = '\0'; | |
11365 | ||
11366 | return result; | |
11367 | } | |
11368 | ||
11369 | /* Split the arguments specified in a "catch exception" command. | |
11370 | Set EX to the appropriate catchpoint type. | |
28010a5d | 11371 | Set EXCEP_STRING to the name of the specific exception if |
f7f9143b JB |
11372 | specified by the user. */ |
11373 | ||
11374 | static void | |
11375 | catch_ada_exception_command_split (char *args, | |
11376 | enum exception_catchpoint_kind *ex, | |
28010a5d | 11377 | char **excep_string) |
f7f9143b JB |
11378 | { |
11379 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
11380 | char *exception_name; | |
11381 | ||
11382 | exception_name = ada_get_next_arg (&args); | |
11383 | make_cleanup (xfree, exception_name); | |
11384 | ||
11385 | /* Check that we do not have any more arguments. Anything else | |
11386 | is unexpected. */ | |
11387 | ||
11388 | while (isspace (*args)) | |
11389 | args++; | |
11390 | ||
11391 | if (args[0] != '\0') | |
11392 | error (_("Junk at end of expression")); | |
11393 | ||
11394 | discard_cleanups (old_chain); | |
11395 | ||
11396 | if (exception_name == NULL) | |
11397 | { | |
11398 | /* Catch all exceptions. */ | |
11399 | *ex = ex_catch_exception; | |
28010a5d | 11400 | *excep_string = NULL; |
f7f9143b JB |
11401 | } |
11402 | else if (strcmp (exception_name, "unhandled") == 0) | |
11403 | { | |
11404 | /* Catch unhandled exceptions. */ | |
11405 | *ex = ex_catch_exception_unhandled; | |
28010a5d | 11406 | *excep_string = NULL; |
f7f9143b JB |
11407 | } |
11408 | else | |
11409 | { | |
11410 | /* Catch a specific exception. */ | |
11411 | *ex = ex_catch_exception; | |
28010a5d | 11412 | *excep_string = exception_name; |
f7f9143b JB |
11413 | } |
11414 | } | |
11415 | ||
11416 | /* Return the name of the symbol on which we should break in order to | |
11417 | implement a catchpoint of the EX kind. */ | |
11418 | ||
11419 | static const char * | |
11420 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
11421 | { | |
0259addd JB |
11422 | gdb_assert (exception_info != NULL); |
11423 | ||
f7f9143b JB |
11424 | switch (ex) |
11425 | { | |
11426 | case ex_catch_exception: | |
0259addd | 11427 | return (exception_info->catch_exception_sym); |
f7f9143b JB |
11428 | break; |
11429 | case ex_catch_exception_unhandled: | |
0259addd | 11430 | return (exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
11431 | break; |
11432 | case ex_catch_assert: | |
0259addd | 11433 | return (exception_info->catch_assert_sym); |
f7f9143b JB |
11434 | break; |
11435 | default: | |
11436 | internal_error (__FILE__, __LINE__, | |
11437 | _("unexpected catchpoint kind (%d)"), ex); | |
11438 | } | |
11439 | } | |
11440 | ||
11441 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
11442 | of the EX kind. */ | |
11443 | ||
11444 | static struct breakpoint_ops * | |
4b9eee8c | 11445 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
11446 | { |
11447 | switch (ex) | |
11448 | { | |
11449 | case ex_catch_exception: | |
11450 | return (&catch_exception_breakpoint_ops); | |
11451 | break; | |
11452 | case ex_catch_exception_unhandled: | |
11453 | return (&catch_exception_unhandled_breakpoint_ops); | |
11454 | break; | |
11455 | case ex_catch_assert: | |
11456 | return (&catch_assert_breakpoint_ops); | |
11457 | break; | |
11458 | default: | |
11459 | internal_error (__FILE__, __LINE__, | |
11460 | _("unexpected catchpoint kind (%d)"), ex); | |
11461 | } | |
11462 | } | |
11463 | ||
11464 | /* Return the condition that will be used to match the current exception | |
11465 | being raised with the exception that the user wants to catch. This | |
11466 | assumes that this condition is used when the inferior just triggered | |
11467 | an exception catchpoint. | |
11468 | ||
11469 | The string returned is a newly allocated string that needs to be | |
11470 | deallocated later. */ | |
11471 | ||
11472 | static char * | |
28010a5d | 11473 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 11474 | { |
3d0b0fa3 JB |
11475 | int i; |
11476 | ||
0963b4bd | 11477 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 11478 | runtime units that have been compiled without debugging info; if |
28010a5d | 11479 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
11480 | exception (e.g. "constraint_error") then, during the evaluation |
11481 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 11482 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
11483 | may then be set only on user-defined exceptions which have the |
11484 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
11485 | ||
11486 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 11487 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
11488 | exception constraint_error" is rewritten into "catch exception |
11489 | standard.constraint_error". | |
11490 | ||
11491 | If an exception named contraint_error is defined in another package of | |
11492 | the inferior program, then the only way to specify this exception as a | |
11493 | breakpoint condition is to use its fully-qualified named: | |
11494 | e.g. my_package.constraint_error. */ | |
11495 | ||
11496 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
11497 | { | |
28010a5d | 11498 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
11499 | { |
11500 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 11501 | excep_string); |
3d0b0fa3 JB |
11502 | } |
11503 | } | |
28010a5d | 11504 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
11505 | } |
11506 | ||
11507 | /* Return the symtab_and_line that should be used to insert an exception | |
11508 | catchpoint of the TYPE kind. | |
11509 | ||
28010a5d PA |
11510 | EXCEP_STRING should contain the name of a specific exception that |
11511 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 11512 | |
28010a5d PA |
11513 | ADDR_STRING returns the name of the function where the real |
11514 | breakpoint that implements the catchpoints is set, depending on the | |
11515 | type of catchpoint we need to create. */ | |
f7f9143b JB |
11516 | |
11517 | static struct symtab_and_line | |
28010a5d PA |
11518 | ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string, |
11519 | char **addr_string, struct breakpoint_ops **ops) | |
f7f9143b JB |
11520 | { |
11521 | const char *sym_name; | |
11522 | struct symbol *sym; | |
11523 | struct symtab_and_line sal; | |
11524 | ||
0259addd JB |
11525 | /* First, find out which exception support info to use. */ |
11526 | ada_exception_support_info_sniffer (); | |
11527 | ||
11528 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b JB |
11529 | the Ada exceptions requested by the user. */ |
11530 | ||
11531 | sym_name = ada_exception_sym_name (ex); | |
11532 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
11533 | ||
11534 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11535 | that should be compiled with debugging information. As a result, we | |
11536 | expect to find that symbol in the symtabs. If we don't find it, then | |
11537 | the target most likely does not support Ada exceptions, or we cannot | |
11538 | insert exception breakpoints yet, because the GNAT runtime hasn't been | |
11539 | loaded yet. */ | |
11540 | ||
11541 | /* brobecker/2006-12-26: It is conceivable that the runtime was compiled | |
11542 | in such a way that no debugging information is produced for the symbol | |
11543 | we are looking for. In this case, we could search the minimal symbols | |
11544 | as a fall-back mechanism. This would still be operating in degraded | |
11545 | mode, however, as we would still be missing the debugging information | |
11546 | that is needed in order to extract the name of the exception being | |
11547 | raised (this name is printed in the catchpoint message, and is also | |
11548 | used when trying to catch a specific exception). We do not handle | |
11549 | this case for now. */ | |
11550 | ||
11551 | if (sym == NULL) | |
0259addd | 11552 | error (_("Unable to break on '%s' in this configuration."), sym_name); |
f7f9143b JB |
11553 | |
11554 | /* Make sure that the symbol we found corresponds to a function. */ | |
11555 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11556 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
11557 | sym_name, SYMBOL_CLASS (sym)); | |
11558 | ||
11559 | sal = find_function_start_sal (sym, 1); | |
11560 | ||
11561 | /* Set ADDR_STRING. */ | |
11562 | ||
11563 | *addr_string = xstrdup (sym_name); | |
11564 | ||
f7f9143b | 11565 | /* Set OPS. */ |
4b9eee8c | 11566 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b JB |
11567 | |
11568 | return sal; | |
11569 | } | |
11570 | ||
11571 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
11572 | ||
f7f9143b JB |
11573 | If the user asked the catchpoint to catch only a specific |
11574 | exception, then save the exception name in ADDR_STRING. | |
11575 | ||
11576 | See ada_exception_sal for a description of all the remaining | |
11577 | function arguments of this function. */ | |
11578 | ||
9ac4176b | 11579 | static struct symtab_and_line |
f7f9143b | 11580 | ada_decode_exception_location (char *args, char **addr_string, |
28010a5d | 11581 | char **excep_string, |
f7f9143b JB |
11582 | struct breakpoint_ops **ops) |
11583 | { | |
11584 | enum exception_catchpoint_kind ex; | |
11585 | ||
28010a5d PA |
11586 | catch_ada_exception_command_split (args, &ex, excep_string); |
11587 | return ada_exception_sal (ex, *excep_string, addr_string, ops); | |
11588 | } | |
11589 | ||
11590 | /* Create an Ada exception catchpoint. */ | |
11591 | ||
11592 | static void | |
11593 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, | |
11594 | struct symtab_and_line sal, | |
11595 | char *addr_string, | |
11596 | char *excep_string, | |
11597 | struct breakpoint_ops *ops, | |
11598 | int tempflag, | |
11599 | int from_tty) | |
11600 | { | |
11601 | struct ada_catchpoint *c; | |
11602 | ||
11603 | c = XNEW (struct ada_catchpoint); | |
11604 | init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, | |
11605 | ops, tempflag, from_tty); | |
11606 | c->excep_string = excep_string; | |
11607 | create_excep_cond_exprs (c); | |
11608 | install_breakpoint (&c->base); | |
f7f9143b JB |
11609 | } |
11610 | ||
9ac4176b PA |
11611 | /* Implement the "catch exception" command. */ |
11612 | ||
11613 | static void | |
11614 | catch_ada_exception_command (char *arg, int from_tty, | |
11615 | struct cmd_list_element *command) | |
11616 | { | |
11617 | struct gdbarch *gdbarch = get_current_arch (); | |
11618 | int tempflag; | |
11619 | struct symtab_and_line sal; | |
11620 | char *addr_string = NULL; | |
28010a5d | 11621 | char *excep_string = NULL; |
9ac4176b PA |
11622 | struct breakpoint_ops *ops = NULL; |
11623 | ||
11624 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
11625 | ||
11626 | if (!arg) | |
11627 | arg = ""; | |
28010a5d PA |
11628 | sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops); |
11629 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, | |
11630 | excep_string, ops, tempflag, from_tty); | |
9ac4176b PA |
11631 | } |
11632 | ||
11633 | static struct symtab_and_line | |
f7f9143b JB |
11634 | ada_decode_assert_location (char *args, char **addr_string, |
11635 | struct breakpoint_ops **ops) | |
11636 | { | |
11637 | /* Check that no argument where provided at the end of the command. */ | |
11638 | ||
11639 | if (args != NULL) | |
11640 | { | |
11641 | while (isspace (*args)) | |
11642 | args++; | |
11643 | if (*args != '\0') | |
11644 | error (_("Junk at end of arguments.")); | |
11645 | } | |
11646 | ||
28010a5d | 11647 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops); |
f7f9143b JB |
11648 | } |
11649 | ||
9ac4176b PA |
11650 | /* Implement the "catch assert" command. */ |
11651 | ||
11652 | static void | |
11653 | catch_assert_command (char *arg, int from_tty, | |
11654 | struct cmd_list_element *command) | |
11655 | { | |
11656 | struct gdbarch *gdbarch = get_current_arch (); | |
11657 | int tempflag; | |
11658 | struct symtab_and_line sal; | |
11659 | char *addr_string = NULL; | |
11660 | struct breakpoint_ops *ops = NULL; | |
11661 | ||
11662 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
11663 | ||
11664 | if (!arg) | |
11665 | arg = ""; | |
11666 | sal = ada_decode_assert_location (arg, &addr_string, &ops); | |
28010a5d PA |
11667 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, |
11668 | NULL, ops, tempflag, from_tty); | |
9ac4176b | 11669 | } |
4c4b4cd2 PH |
11670 | /* Operators */ |
11671 | /* Information about operators given special treatment in functions | |
11672 | below. */ | |
11673 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
11674 | ||
11675 | #define ADA_OPERATORS \ | |
11676 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
11677 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
11678 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
11679 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
11680 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
11681 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
11682 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
11683 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
11684 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
11685 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
11686 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
11687 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
11688 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
11689 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
11690 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
11691 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
11692 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
11693 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
11694 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
11695 | |
11696 | static void | |
554794dc SDJ |
11697 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
11698 | int *argsp) | |
4c4b4cd2 PH |
11699 | { |
11700 | switch (exp->elts[pc - 1].opcode) | |
11701 | { | |
76a01679 | 11702 | default: |
4c4b4cd2 PH |
11703 | operator_length_standard (exp, pc, oplenp, argsp); |
11704 | break; | |
11705 | ||
11706 | #define OP_DEFN(op, len, args, binop) \ | |
11707 | case op: *oplenp = len; *argsp = args; break; | |
11708 | ADA_OPERATORS; | |
11709 | #undef OP_DEFN | |
52ce6436 PH |
11710 | |
11711 | case OP_AGGREGATE: | |
11712 | *oplenp = 3; | |
11713 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
11714 | break; | |
11715 | ||
11716 | case OP_CHOICES: | |
11717 | *oplenp = 3; | |
11718 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
11719 | break; | |
4c4b4cd2 PH |
11720 | } |
11721 | } | |
11722 | ||
c0201579 JK |
11723 | /* Implementation of the exp_descriptor method operator_check. */ |
11724 | ||
11725 | static int | |
11726 | ada_operator_check (struct expression *exp, int pos, | |
11727 | int (*objfile_func) (struct objfile *objfile, void *data), | |
11728 | void *data) | |
11729 | { | |
11730 | const union exp_element *const elts = exp->elts; | |
11731 | struct type *type = NULL; | |
11732 | ||
11733 | switch (elts[pos].opcode) | |
11734 | { | |
11735 | case UNOP_IN_RANGE: | |
11736 | case UNOP_QUAL: | |
11737 | type = elts[pos + 1].type; | |
11738 | break; | |
11739 | ||
11740 | default: | |
11741 | return operator_check_standard (exp, pos, objfile_func, data); | |
11742 | } | |
11743 | ||
11744 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
11745 | ||
11746 | if (type && TYPE_OBJFILE (type) | |
11747 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
11748 | return 1; | |
11749 | ||
11750 | return 0; | |
11751 | } | |
11752 | ||
4c4b4cd2 PH |
11753 | static char * |
11754 | ada_op_name (enum exp_opcode opcode) | |
11755 | { | |
11756 | switch (opcode) | |
11757 | { | |
76a01679 | 11758 | default: |
4c4b4cd2 | 11759 | return op_name_standard (opcode); |
52ce6436 | 11760 | |
4c4b4cd2 PH |
11761 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
11762 | ADA_OPERATORS; | |
11763 | #undef OP_DEFN | |
52ce6436 PH |
11764 | |
11765 | case OP_AGGREGATE: | |
11766 | return "OP_AGGREGATE"; | |
11767 | case OP_CHOICES: | |
11768 | return "OP_CHOICES"; | |
11769 | case OP_NAME: | |
11770 | return "OP_NAME"; | |
4c4b4cd2 PH |
11771 | } |
11772 | } | |
11773 | ||
11774 | /* As for operator_length, but assumes PC is pointing at the first | |
11775 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 11776 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
11777 | |
11778 | static void | |
76a01679 JB |
11779 | ada_forward_operator_length (struct expression *exp, int pc, |
11780 | int *oplenp, int *argsp) | |
4c4b4cd2 | 11781 | { |
76a01679 | 11782 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
11783 | { |
11784 | default: | |
11785 | *oplenp = *argsp = 0; | |
11786 | break; | |
52ce6436 | 11787 | |
4c4b4cd2 PH |
11788 | #define OP_DEFN(op, len, args, binop) \ |
11789 | case op: *oplenp = len; *argsp = args; break; | |
11790 | ADA_OPERATORS; | |
11791 | #undef OP_DEFN | |
52ce6436 PH |
11792 | |
11793 | case OP_AGGREGATE: | |
11794 | *oplenp = 3; | |
11795 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
11796 | break; | |
11797 | ||
11798 | case OP_CHOICES: | |
11799 | *oplenp = 3; | |
11800 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
11801 | break; | |
11802 | ||
11803 | case OP_STRING: | |
11804 | case OP_NAME: | |
11805 | { | |
11806 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 11807 | |
52ce6436 PH |
11808 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
11809 | *argsp = 0; | |
11810 | break; | |
11811 | } | |
4c4b4cd2 PH |
11812 | } |
11813 | } | |
11814 | ||
11815 | static int | |
11816 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
11817 | { | |
11818 | enum exp_opcode op = exp->elts[elt].opcode; | |
11819 | int oplen, nargs; | |
11820 | int pc = elt; | |
11821 | int i; | |
76a01679 | 11822 | |
4c4b4cd2 PH |
11823 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
11824 | ||
76a01679 | 11825 | switch (op) |
4c4b4cd2 | 11826 | { |
76a01679 | 11827 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
11828 | case OP_ATR_FIRST: |
11829 | case OP_ATR_LAST: | |
11830 | case OP_ATR_LENGTH: | |
11831 | case OP_ATR_IMAGE: | |
11832 | case OP_ATR_MAX: | |
11833 | case OP_ATR_MIN: | |
11834 | case OP_ATR_MODULUS: | |
11835 | case OP_ATR_POS: | |
11836 | case OP_ATR_SIZE: | |
11837 | case OP_ATR_TAG: | |
11838 | case OP_ATR_VAL: | |
11839 | break; | |
11840 | ||
11841 | case UNOP_IN_RANGE: | |
11842 | case UNOP_QUAL: | |
323e0a4a AC |
11843 | /* XXX: gdb_sprint_host_address, type_sprint */ |
11844 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
11845 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
11846 | fprintf_filtered (stream, " ("); | |
11847 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
11848 | fprintf_filtered (stream, ")"); | |
11849 | break; | |
11850 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
11851 | fprintf_filtered (stream, " (%d)", |
11852 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
11853 | break; |
11854 | case TERNOP_IN_RANGE: | |
11855 | break; | |
11856 | ||
52ce6436 PH |
11857 | case OP_AGGREGATE: |
11858 | case OP_OTHERS: | |
11859 | case OP_DISCRETE_RANGE: | |
11860 | case OP_POSITIONAL: | |
11861 | case OP_CHOICES: | |
11862 | break; | |
11863 | ||
11864 | case OP_NAME: | |
11865 | case OP_STRING: | |
11866 | { | |
11867 | char *name = &exp->elts[elt + 2].string; | |
11868 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 11869 | |
52ce6436 PH |
11870 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
11871 | break; | |
11872 | } | |
11873 | ||
4c4b4cd2 PH |
11874 | default: |
11875 | return dump_subexp_body_standard (exp, stream, elt); | |
11876 | } | |
11877 | ||
11878 | elt += oplen; | |
11879 | for (i = 0; i < nargs; i += 1) | |
11880 | elt = dump_subexp (exp, stream, elt); | |
11881 | ||
11882 | return elt; | |
11883 | } | |
11884 | ||
11885 | /* The Ada extension of print_subexp (q.v.). */ | |
11886 | ||
76a01679 JB |
11887 | static void |
11888 | ada_print_subexp (struct expression *exp, int *pos, | |
11889 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 11890 | { |
52ce6436 | 11891 | int oplen, nargs, i; |
4c4b4cd2 PH |
11892 | int pc = *pos; |
11893 | enum exp_opcode op = exp->elts[pc].opcode; | |
11894 | ||
11895 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11896 | ||
52ce6436 | 11897 | *pos += oplen; |
4c4b4cd2 PH |
11898 | switch (op) |
11899 | { | |
11900 | default: | |
52ce6436 | 11901 | *pos -= oplen; |
4c4b4cd2 PH |
11902 | print_subexp_standard (exp, pos, stream, prec); |
11903 | return; | |
11904 | ||
11905 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
11906 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
11907 | return; | |
11908 | ||
11909 | case BINOP_IN_BOUNDS: | |
323e0a4a | 11910 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11911 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11912 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 11913 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11914 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 11915 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
11916 | fprintf_filtered (stream, "(%ld)", |
11917 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
11918 | return; |
11919 | ||
11920 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 11921 | if (prec >= PREC_EQUAL) |
76a01679 | 11922 | fputs_filtered ("(", stream); |
323e0a4a | 11923 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11924 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11925 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
11926 | print_subexp (exp, pos, stream, PREC_EQUAL); |
11927 | fputs_filtered (" .. ", stream); | |
11928 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
11929 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
11930 | fputs_filtered (")", stream); |
11931 | return; | |
4c4b4cd2 PH |
11932 | |
11933 | case OP_ATR_FIRST: | |
11934 | case OP_ATR_LAST: | |
11935 | case OP_ATR_LENGTH: | |
11936 | case OP_ATR_IMAGE: | |
11937 | case OP_ATR_MAX: | |
11938 | case OP_ATR_MIN: | |
11939 | case OP_ATR_MODULUS: | |
11940 | case OP_ATR_POS: | |
11941 | case OP_ATR_SIZE: | |
11942 | case OP_ATR_TAG: | |
11943 | case OP_ATR_VAL: | |
4c4b4cd2 | 11944 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
11945 | { |
11946 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
11947 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); | |
11948 | *pos += 3; | |
11949 | } | |
4c4b4cd2 | 11950 | else |
76a01679 | 11951 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
11952 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
11953 | if (nargs > 1) | |
76a01679 JB |
11954 | { |
11955 | int tem; | |
5b4ee69b | 11956 | |
76a01679 JB |
11957 | for (tem = 1; tem < nargs; tem += 1) |
11958 | { | |
11959 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
11960 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
11961 | } | |
11962 | fputs_filtered (")", stream); | |
11963 | } | |
4c4b4cd2 | 11964 | return; |
14f9c5c9 | 11965 | |
4c4b4cd2 | 11966 | case UNOP_QUAL: |
4c4b4cd2 PH |
11967 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
11968 | fputs_filtered ("'(", stream); | |
11969 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
11970 | fputs_filtered (")", stream); | |
11971 | return; | |
14f9c5c9 | 11972 | |
4c4b4cd2 | 11973 | case UNOP_IN_RANGE: |
323e0a4a | 11974 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11975 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11976 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
11977 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); |
11978 | return; | |
52ce6436 PH |
11979 | |
11980 | case OP_DISCRETE_RANGE: | |
11981 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11982 | fputs_filtered ("..", stream); | |
11983 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11984 | return; | |
11985 | ||
11986 | case OP_OTHERS: | |
11987 | fputs_filtered ("others => ", stream); | |
11988 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11989 | return; | |
11990 | ||
11991 | case OP_CHOICES: | |
11992 | for (i = 0; i < nargs-1; i += 1) | |
11993 | { | |
11994 | if (i > 0) | |
11995 | fputs_filtered ("|", stream); | |
11996 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11997 | } | |
11998 | fputs_filtered (" => ", stream); | |
11999 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12000 | return; | |
12001 | ||
12002 | case OP_POSITIONAL: | |
12003 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12004 | return; | |
12005 | ||
12006 | case OP_AGGREGATE: | |
12007 | fputs_filtered ("(", stream); | |
12008 | for (i = 0; i < nargs; i += 1) | |
12009 | { | |
12010 | if (i > 0) | |
12011 | fputs_filtered (", ", stream); | |
12012 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12013 | } | |
12014 | fputs_filtered (")", stream); | |
12015 | return; | |
4c4b4cd2 PH |
12016 | } |
12017 | } | |
14f9c5c9 AS |
12018 | |
12019 | /* Table mapping opcodes into strings for printing operators | |
12020 | and precedences of the operators. */ | |
12021 | ||
d2e4a39e AS |
12022 | static const struct op_print ada_op_print_tab[] = { |
12023 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
12024 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
12025 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
12026 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
12027 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
12028 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
12029 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
12030 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
12031 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
12032 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
12033 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
12034 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
12035 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
12036 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
12037 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
12038 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
12039 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
12040 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
12041 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
12042 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
12043 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
12044 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
12045 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
12046 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
12047 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
12048 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
12049 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
12050 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
12051 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
12052 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
12053 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 12054 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
12055 | }; |
12056 | \f | |
72d5681a PH |
12057 | enum ada_primitive_types { |
12058 | ada_primitive_type_int, | |
12059 | ada_primitive_type_long, | |
12060 | ada_primitive_type_short, | |
12061 | ada_primitive_type_char, | |
12062 | ada_primitive_type_float, | |
12063 | ada_primitive_type_double, | |
12064 | ada_primitive_type_void, | |
12065 | ada_primitive_type_long_long, | |
12066 | ada_primitive_type_long_double, | |
12067 | ada_primitive_type_natural, | |
12068 | ada_primitive_type_positive, | |
12069 | ada_primitive_type_system_address, | |
12070 | nr_ada_primitive_types | |
12071 | }; | |
6c038f32 PH |
12072 | |
12073 | static void | |
d4a9a881 | 12074 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
12075 | struct language_arch_info *lai) |
12076 | { | |
d4a9a881 | 12077 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 12078 | |
72d5681a | 12079 | lai->primitive_type_vector |
d4a9a881 | 12080 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 12081 | struct type *); |
e9bb382b UW |
12082 | |
12083 | lai->primitive_type_vector [ada_primitive_type_int] | |
12084 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12085 | 0, "integer"); | |
12086 | lai->primitive_type_vector [ada_primitive_type_long] | |
12087 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
12088 | 0, "long_integer"); | |
12089 | lai->primitive_type_vector [ada_primitive_type_short] | |
12090 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
12091 | 0, "short_integer"); | |
12092 | lai->string_char_type | |
12093 | = lai->primitive_type_vector [ada_primitive_type_char] | |
12094 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
12095 | lai->primitive_type_vector [ada_primitive_type_float] | |
12096 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
12097 | "float", NULL); | |
12098 | lai->primitive_type_vector [ada_primitive_type_double] | |
12099 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12100 | "long_float", NULL); | |
12101 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
12102 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
12103 | 0, "long_long_integer"); | |
12104 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
12105 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12106 | "long_long_float", NULL); | |
12107 | lai->primitive_type_vector [ada_primitive_type_natural] | |
12108 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12109 | 0, "natural"); | |
12110 | lai->primitive_type_vector [ada_primitive_type_positive] | |
12111 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12112 | 0, "positive"); | |
12113 | lai->primitive_type_vector [ada_primitive_type_void] | |
12114 | = builtin->builtin_void; | |
12115 | ||
12116 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
12117 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
12118 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
12119 | = "system__address"; | |
fbb06eb1 | 12120 | |
47e729a8 | 12121 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 12122 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 12123 | } |
6c038f32 PH |
12124 | \f |
12125 | /* Language vector */ | |
12126 | ||
12127 | /* Not really used, but needed in the ada_language_defn. */ | |
12128 | ||
12129 | static void | |
6c7a06a3 | 12130 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 12131 | { |
6c7a06a3 | 12132 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
12133 | } |
12134 | ||
12135 | static int | |
12136 | parse (void) | |
12137 | { | |
12138 | warnings_issued = 0; | |
12139 | return ada_parse (); | |
12140 | } | |
12141 | ||
12142 | static const struct exp_descriptor ada_exp_descriptor = { | |
12143 | ada_print_subexp, | |
12144 | ada_operator_length, | |
c0201579 | 12145 | ada_operator_check, |
6c038f32 PH |
12146 | ada_op_name, |
12147 | ada_dump_subexp_body, | |
12148 | ada_evaluate_subexp | |
12149 | }; | |
12150 | ||
12151 | const struct language_defn ada_language_defn = { | |
12152 | "ada", /* Language name */ | |
12153 | language_ada, | |
6c038f32 PH |
12154 | range_check_off, |
12155 | type_check_off, | |
12156 | case_sensitive_on, /* Yes, Ada is case-insensitive, but | |
12157 | that's not quite what this means. */ | |
6c038f32 | 12158 | array_row_major, |
9a044a89 | 12159 | macro_expansion_no, |
6c038f32 PH |
12160 | &ada_exp_descriptor, |
12161 | parse, | |
12162 | ada_error, | |
12163 | resolve, | |
12164 | ada_printchar, /* Print a character constant */ | |
12165 | ada_printstr, /* Function to print string constant */ | |
12166 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 12167 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 12168 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
12169 | ada_val_print, /* Print a value using appropriate syntax */ |
12170 | ada_value_print, /* Print a top-level value */ | |
12171 | NULL, /* Language specific skip_trampoline */ | |
2b2d9e11 | 12172 | NULL, /* name_of_this */ |
6c038f32 PH |
12173 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
12174 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
12175 | ada_la_decode, /* Language specific symbol demangler */ | |
0963b4bd MS |
12176 | NULL, /* Language specific |
12177 | class_name_from_physname */ | |
6c038f32 PH |
12178 | ada_op_print_tab, /* expression operators for printing */ |
12179 | 0, /* c-style arrays */ | |
12180 | 1, /* String lower bound */ | |
6c038f32 | 12181 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 12182 | ada_make_symbol_completion_list, |
72d5681a | 12183 | ada_language_arch_info, |
e79af960 | 12184 | ada_print_array_index, |
41f1b697 | 12185 | default_pass_by_reference, |
ae6a3a4c | 12186 | c_get_string, |
6c038f32 PH |
12187 | LANG_MAGIC |
12188 | }; | |
12189 | ||
2c0b251b PA |
12190 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
12191 | extern initialize_file_ftype _initialize_ada_language; | |
12192 | ||
5bf03f13 JB |
12193 | /* Command-list for the "set/show ada" prefix command. */ |
12194 | static struct cmd_list_element *set_ada_list; | |
12195 | static struct cmd_list_element *show_ada_list; | |
12196 | ||
12197 | /* Implement the "set ada" prefix command. */ | |
12198 | ||
12199 | static void | |
12200 | set_ada_command (char *arg, int from_tty) | |
12201 | { | |
12202 | printf_unfiltered (_(\ | |
12203 | "\"set ada\" must be followed by the name of a setting.\n")); | |
12204 | help_list (set_ada_list, "set ada ", -1, gdb_stdout); | |
12205 | } | |
12206 | ||
12207 | /* Implement the "show ada" prefix command. */ | |
12208 | ||
12209 | static void | |
12210 | show_ada_command (char *args, int from_tty) | |
12211 | { | |
12212 | cmd_show_list (show_ada_list, from_tty, ""); | |
12213 | } | |
12214 | ||
d2e4a39e | 12215 | void |
6c038f32 | 12216 | _initialize_ada_language (void) |
14f9c5c9 | 12217 | { |
6c038f32 PH |
12218 | add_language (&ada_language_defn); |
12219 | ||
5bf03f13 JB |
12220 | add_prefix_cmd ("ada", no_class, set_ada_command, |
12221 | _("Prefix command for changing Ada-specfic settings"), | |
12222 | &set_ada_list, "set ada ", 0, &setlist); | |
12223 | ||
12224 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
12225 | _("Generic command for showing Ada-specific settings."), | |
12226 | &show_ada_list, "show ada ", 0, &showlist); | |
12227 | ||
12228 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
12229 | &trust_pad_over_xvs, _("\ | |
12230 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
12231 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
12232 | _("\ | |
12233 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
12234 | should normally trust the contents of PAD types, but certain older versions\n\ | |
12235 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
12236 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
12237 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
12238 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
12239 | this option to \"off\" unless necessary."), | |
12240 | NULL, NULL, &set_ada_list, &show_ada_list); | |
12241 | ||
9ac4176b PA |
12242 | add_catch_command ("exception", _("\ |
12243 | Catch Ada exceptions, when raised.\n\ | |
12244 | With an argument, catch only exceptions with the given name."), | |
12245 | catch_ada_exception_command, | |
12246 | NULL, | |
12247 | CATCH_PERMANENT, | |
12248 | CATCH_TEMPORARY); | |
12249 | add_catch_command ("assert", _("\ | |
12250 | Catch failed Ada assertions, when raised.\n\ | |
12251 | With an argument, catch only exceptions with the given name."), | |
12252 | catch_assert_command, | |
12253 | NULL, | |
12254 | CATCH_PERMANENT, | |
12255 | CATCH_TEMPORARY); | |
12256 | ||
6c038f32 | 12257 | varsize_limit = 65536; |
6c038f32 PH |
12258 | |
12259 | obstack_init (&symbol_list_obstack); | |
12260 | ||
12261 | decoded_names_store = htab_create_alloc | |
12262 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
12263 | NULL, xcalloc, xfree); | |
6b69afc4 JB |
12264 | |
12265 | observer_attach_executable_changed (ada_executable_changed_observer); | |
e802dbe0 JB |
12266 | |
12267 | /* Setup per-inferior data. */ | |
12268 | observer_attach_inferior_exit (ada_inferior_exit); | |
12269 | ada_inferior_data | |
12270 | = register_inferior_data_with_cleanup (ada_inferior_data_cleanup); | |
14f9c5c9 | 12271 | } |