]>
Commit | Line | Data |
---|---|---|
197e01b6 | 1 | /* Ada language support routines for GDB, the GNU debugger. Copyright (C) |
10a2c479 | 2 | |
ae6a3a4c TJB |
3 | 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008, |
4 | 2009 Free Software Foundation, Inc. | |
14f9c5c9 | 5 | |
a9762ec7 | 6 | This file is part of GDB. |
14f9c5c9 | 7 | |
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
14f9c5c9 | 12 | |
a9762ec7 JB |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
14f9c5c9 | 17 | |
a9762ec7 JB |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 20 | |
96d887e8 | 21 | |
4c4b4cd2 | 22 | #include "defs.h" |
14f9c5c9 | 23 | #include <stdio.h> |
0c30c098 | 24 | #include "gdb_string.h" |
14f9c5c9 AS |
25 | #include <ctype.h> |
26 | #include <stdarg.h> | |
27 | #include "demangle.h" | |
4c4b4cd2 PH |
28 | #include "gdb_regex.h" |
29 | #include "frame.h" | |
14f9c5c9 AS |
30 | #include "symtab.h" |
31 | #include "gdbtypes.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "expression.h" | |
34 | #include "parser-defs.h" | |
35 | #include "language.h" | |
36 | #include "c-lang.h" | |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 PH |
45 | #include "completer.h" |
46 | #include "gdb_stat.h" | |
47 | #ifdef UI_OUT | |
14f9c5c9 | 48 | #include "ui-out.h" |
4c4b4cd2 | 49 | #endif |
fe898f56 | 50 | #include "block.h" |
04714b91 | 51 | #include "infcall.h" |
de4f826b | 52 | #include "dictionary.h" |
60250e8b | 53 | #include "exceptions.h" |
f7f9143b JB |
54 | #include "annotate.h" |
55 | #include "valprint.h" | |
9bbc9174 | 56 | #include "source.h" |
0259addd | 57 | #include "observer.h" |
2ba95b9b | 58 | #include "vec.h" |
14f9c5c9 | 59 | |
4c4b4cd2 PH |
60 | /* Define whether or not the C operator '/' truncates towards zero for |
61 | differently signed operands (truncation direction is undefined in C). | |
62 | Copied from valarith.c. */ | |
63 | ||
64 | #ifndef TRUNCATION_TOWARDS_ZERO | |
65 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
66 | #endif | |
67 | ||
4c4b4cd2 | 68 | static void extract_string (CORE_ADDR addr, char *buf); |
14f9c5c9 | 69 | |
50810684 | 70 | static void modify_general_field (struct type *, char *, LONGEST, int, int); |
14f9c5c9 | 71 | |
d2e4a39e | 72 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 73 | |
d2e4a39e | 74 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 75 | |
d2e4a39e | 76 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 77 | |
d2e4a39e | 78 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 79 | |
d2e4a39e | 80 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 81 | |
556bdfd4 | 82 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 83 | |
d2e4a39e | 84 | static struct value *desc_data (struct value *); |
14f9c5c9 | 85 | |
d2e4a39e | 86 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 87 | |
d2e4a39e | 88 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 89 | |
d2e4a39e | 90 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 91 | |
d2e4a39e | 92 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 93 | |
d2e4a39e | 94 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 95 | |
d2e4a39e | 96 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 97 | |
d2e4a39e | 98 | static int desc_arity (struct type *); |
14f9c5c9 | 99 | |
d2e4a39e | 100 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 101 | |
d2e4a39e | 102 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 103 | |
4a399546 UW |
104 | static struct value *ensure_lval (struct value *, |
105 | struct gdbarch *, CORE_ADDR *); | |
14f9c5c9 | 106 | |
d2e4a39e | 107 | static struct value *make_array_descriptor (struct type *, struct value *, |
4a399546 | 108 | struct gdbarch *, CORE_ADDR *); |
14f9c5c9 | 109 | |
4c4b4cd2 | 110 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 111 | struct block *, const char *, |
2570f2b7 | 112 | domain_enum, struct objfile *, int); |
14f9c5c9 | 113 | |
4c4b4cd2 | 114 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 115 | |
76a01679 | 116 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 117 | struct block *); |
14f9c5c9 | 118 | |
4c4b4cd2 PH |
119 | static int num_defns_collected (struct obstack *); |
120 | ||
121 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 122 | |
d2e4a39e | 123 | static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab |
76a01679 JB |
124 | *, const char *, int, |
125 | domain_enum, int); | |
14f9c5c9 | 126 | |
4c4b4cd2 | 127 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 128 | struct type *); |
14f9c5c9 | 129 | |
d2e4a39e | 130 | static void replace_operator_with_call (struct expression **, int, int, int, |
4c4b4cd2 | 131 | struct symbol *, struct block *); |
14f9c5c9 | 132 | |
d2e4a39e | 133 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 134 | |
4c4b4cd2 PH |
135 | static char *ada_op_name (enum exp_opcode); |
136 | ||
137 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 138 | |
d2e4a39e | 139 | static int numeric_type_p (struct type *); |
14f9c5c9 | 140 | |
d2e4a39e | 141 | static int integer_type_p (struct type *); |
14f9c5c9 | 142 | |
d2e4a39e | 143 | static int scalar_type_p (struct type *); |
14f9c5c9 | 144 | |
d2e4a39e | 145 | static int discrete_type_p (struct type *); |
14f9c5c9 | 146 | |
aeb5907d JB |
147 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
148 | const char **, | |
149 | int *, | |
150 | const char **); | |
151 | ||
152 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
153 | struct block *); | |
154 | ||
4c4b4cd2 | 155 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 156 | int, int, int *); |
4c4b4cd2 | 157 | |
d2e4a39e | 158 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 159 | |
d2e4a39e | 160 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 161 | |
10a2c479 | 162 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 163 | const gdb_byte *, |
4c4b4cd2 PH |
164 | CORE_ADDR, struct value *); |
165 | ||
166 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 167 | |
d2e4a39e | 168 | static struct type *to_fixed_range_type (char *, struct value *, |
1ce677a4 | 169 | struct type *); |
14f9c5c9 | 170 | |
d2e4a39e | 171 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 172 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 173 | |
d2e4a39e | 174 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 175 | |
ad82864c | 176 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 177 | |
ad82864c | 178 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 179 | |
ad82864c JB |
180 | static long decode_packed_array_bitsize (struct type *); |
181 | ||
182 | static struct value *decode_constrained_packed_array (struct value *); | |
183 | ||
184 | static int ada_is_packed_array_type (struct type *); | |
185 | ||
186 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 187 | |
d2e4a39e | 188 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 189 | struct value **); |
14f9c5c9 | 190 | |
50810684 | 191 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 192 | |
4c4b4cd2 PH |
193 | static struct value *coerce_unspec_val_to_type (struct value *, |
194 | struct type *); | |
14f9c5c9 | 195 | |
d2e4a39e | 196 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 197 | |
d2e4a39e | 198 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 199 | |
d2e4a39e | 200 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 201 | |
d2e4a39e | 202 | static int is_name_suffix (const char *); |
14f9c5c9 | 203 | |
d2e4a39e | 204 | static int wild_match (const char *, int, const char *); |
14f9c5c9 | 205 | |
d2e4a39e | 206 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 207 | |
4c4b4cd2 PH |
208 | static LONGEST pos_atr (struct value *); |
209 | ||
3cb382c9 | 210 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 211 | |
d2e4a39e | 212 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 213 | |
4c4b4cd2 PH |
214 | static struct symbol *standard_lookup (const char *, const struct block *, |
215 | domain_enum); | |
14f9c5c9 | 216 | |
4c4b4cd2 PH |
217 | static struct value *ada_search_struct_field (char *, struct value *, int, |
218 | struct type *); | |
219 | ||
220 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
221 | struct type *); | |
222 | ||
76a01679 | 223 | static int find_struct_field (char *, struct type *, int, |
52ce6436 | 224 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
225 | |
226 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
227 | struct value *); | |
228 | ||
229 | static struct value *ada_to_fixed_value (struct value *); | |
14f9c5c9 | 230 | |
4c4b4cd2 PH |
231 | static int ada_resolve_function (struct ada_symbol_info *, int, |
232 | struct value **, int, const char *, | |
233 | struct type *); | |
234 | ||
235 | static struct value *ada_coerce_to_simple_array (struct value *); | |
236 | ||
237 | static int ada_is_direct_array_type (struct type *); | |
238 | ||
72d5681a PH |
239 | static void ada_language_arch_info (struct gdbarch *, |
240 | struct language_arch_info *); | |
714e53ab PH |
241 | |
242 | static void check_size (const struct type *); | |
52ce6436 PH |
243 | |
244 | static struct value *ada_index_struct_field (int, struct value *, int, | |
245 | struct type *); | |
246 | ||
247 | static struct value *assign_aggregate (struct value *, struct value *, | |
248 | struct expression *, int *, enum noside); | |
249 | ||
250 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
251 | struct expression *, | |
252 | int *, LONGEST *, int *, | |
253 | int, LONGEST, LONGEST); | |
254 | ||
255 | static void aggregate_assign_positional (struct value *, struct value *, | |
256 | struct expression *, | |
257 | int *, LONGEST *, int *, int, | |
258 | LONGEST, LONGEST); | |
259 | ||
260 | ||
261 | static void aggregate_assign_others (struct value *, struct value *, | |
262 | struct expression *, | |
263 | int *, LONGEST *, int, LONGEST, LONGEST); | |
264 | ||
265 | ||
266 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
267 | ||
268 | ||
269 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
270 | int *, enum noside); | |
271 | ||
272 | static void ada_forward_operator_length (struct expression *, int, int *, | |
273 | int *); | |
4c4b4cd2 PH |
274 | \f |
275 | ||
76a01679 | 276 | |
4c4b4cd2 | 277 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
278 | static unsigned int varsize_limit; |
279 | ||
4c4b4cd2 PH |
280 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
281 | returned by a function that does not return a const char *. */ | |
282 | static char *ada_completer_word_break_characters = | |
283 | #ifdef VMS | |
284 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
285 | #else | |
14f9c5c9 | 286 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 287 | #endif |
14f9c5c9 | 288 | |
4c4b4cd2 | 289 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 290 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 291 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 292 | |
4c4b4cd2 PH |
293 | /* Limit on the number of warnings to raise per expression evaluation. */ |
294 | static int warning_limit = 2; | |
295 | ||
296 | /* Number of warning messages issued; reset to 0 by cleanups after | |
297 | expression evaluation. */ | |
298 | static int warnings_issued = 0; | |
299 | ||
300 | static const char *known_runtime_file_name_patterns[] = { | |
301 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
302 | }; | |
303 | ||
304 | static const char *known_auxiliary_function_name_patterns[] = { | |
305 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
306 | }; | |
307 | ||
308 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
309 | static struct obstack symbol_list_obstack; | |
310 | ||
311 | /* Utilities */ | |
312 | ||
41d27058 JB |
313 | /* Given DECODED_NAME a string holding a symbol name in its |
314 | decoded form (ie using the Ada dotted notation), returns | |
315 | its unqualified name. */ | |
316 | ||
317 | static const char * | |
318 | ada_unqualified_name (const char *decoded_name) | |
319 | { | |
320 | const char *result = strrchr (decoded_name, '.'); | |
321 | ||
322 | if (result != NULL) | |
323 | result++; /* Skip the dot... */ | |
324 | else | |
325 | result = decoded_name; | |
326 | ||
327 | return result; | |
328 | } | |
329 | ||
330 | /* Return a string starting with '<', followed by STR, and '>'. | |
331 | The result is good until the next call. */ | |
332 | ||
333 | static char * | |
334 | add_angle_brackets (const char *str) | |
335 | { | |
336 | static char *result = NULL; | |
337 | ||
338 | xfree (result); | |
88c15c34 | 339 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
340 | return result; |
341 | } | |
96d887e8 | 342 | |
4c4b4cd2 PH |
343 | static char * |
344 | ada_get_gdb_completer_word_break_characters (void) | |
345 | { | |
346 | return ada_completer_word_break_characters; | |
347 | } | |
348 | ||
e79af960 JB |
349 | /* Print an array element index using the Ada syntax. */ |
350 | ||
351 | static void | |
352 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 353 | const struct value_print_options *options) |
e79af960 | 354 | { |
79a45b7d | 355 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
356 | fprintf_filtered (stream, " => "); |
357 | } | |
358 | ||
4c4b4cd2 PH |
359 | /* Read the string located at ADDR from the inferior and store the |
360 | result into BUF. */ | |
361 | ||
362 | static void | |
14f9c5c9 AS |
363 | extract_string (CORE_ADDR addr, char *buf) |
364 | { | |
d2e4a39e | 365 | int char_index = 0; |
14f9c5c9 | 366 | |
4c4b4cd2 PH |
367 | /* Loop, reading one byte at a time, until we reach the '\000' |
368 | end-of-string marker. */ | |
d2e4a39e AS |
369 | do |
370 | { | |
371 | target_read_memory (addr + char_index * sizeof (char), | |
4c4b4cd2 | 372 | buf + char_index * sizeof (char), sizeof (char)); |
d2e4a39e AS |
373 | char_index++; |
374 | } | |
375 | while (buf[char_index - 1] != '\000'); | |
14f9c5c9 AS |
376 | } |
377 | ||
f27cf670 | 378 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 379 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 380 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 381 | |
f27cf670 AS |
382 | void * |
383 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 384 | { |
d2e4a39e AS |
385 | if (*size < min_size) |
386 | { | |
387 | *size *= 2; | |
388 | if (*size < min_size) | |
4c4b4cd2 | 389 | *size = min_size; |
f27cf670 | 390 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 391 | } |
f27cf670 | 392 | return vect; |
14f9c5c9 AS |
393 | } |
394 | ||
395 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 396 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
397 | |
398 | static int | |
ebf56fd3 | 399 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
400 | { |
401 | int len = strlen (target); | |
d2e4a39e | 402 | return |
4c4b4cd2 PH |
403 | (strncmp (field_name, target, len) == 0 |
404 | && (field_name[len] == '\0' | |
405 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
406 | && strcmp (field_name + strlen (field_name) - 6, |
407 | "___XVN") != 0))); | |
14f9c5c9 AS |
408 | } |
409 | ||
410 | ||
872c8b51 JB |
411 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
412 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
413 | and return its index. This function also handles fields whose name | |
414 | have ___ suffixes because the compiler sometimes alters their name | |
415 | by adding such a suffix to represent fields with certain constraints. | |
416 | If the field could not be found, return a negative number if | |
417 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
418 | |
419 | int | |
420 | ada_get_field_index (const struct type *type, const char *field_name, | |
421 | int maybe_missing) | |
422 | { | |
423 | int fieldno; | |
872c8b51 JB |
424 | struct type *struct_type = check_typedef ((struct type *) type); |
425 | ||
426 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
427 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
428 | return fieldno; |
429 | ||
430 | if (!maybe_missing) | |
323e0a4a | 431 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 432 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
433 | |
434 | return -1; | |
435 | } | |
436 | ||
437 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
438 | |
439 | int | |
d2e4a39e | 440 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
441 | { |
442 | if (name == NULL) | |
443 | return 0; | |
d2e4a39e | 444 | else |
14f9c5c9 | 445 | { |
d2e4a39e | 446 | const char *p = strstr (name, "___"); |
14f9c5c9 | 447 | if (p == NULL) |
4c4b4cd2 | 448 | return strlen (name); |
14f9c5c9 | 449 | else |
4c4b4cd2 | 450 | return p - name; |
14f9c5c9 AS |
451 | } |
452 | } | |
453 | ||
4c4b4cd2 PH |
454 | /* Return non-zero if SUFFIX is a suffix of STR. |
455 | Return zero if STR is null. */ | |
456 | ||
14f9c5c9 | 457 | static int |
d2e4a39e | 458 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
459 | { |
460 | int len1, len2; | |
461 | if (str == NULL) | |
462 | return 0; | |
463 | len1 = strlen (str); | |
464 | len2 = strlen (suffix); | |
4c4b4cd2 | 465 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
466 | } |
467 | ||
4c4b4cd2 PH |
468 | /* The contents of value VAL, treated as a value of type TYPE. The |
469 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 470 | |
d2e4a39e | 471 | static struct value * |
4c4b4cd2 | 472 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 473 | { |
61ee279c | 474 | type = ada_check_typedef (type); |
df407dfe | 475 | if (value_type (val) == type) |
4c4b4cd2 | 476 | return val; |
d2e4a39e | 477 | else |
14f9c5c9 | 478 | { |
4c4b4cd2 PH |
479 | struct value *result; |
480 | ||
481 | /* Make sure that the object size is not unreasonable before | |
482 | trying to allocate some memory for it. */ | |
714e53ab | 483 | check_size (type); |
4c4b4cd2 PH |
484 | |
485 | result = allocate_value (type); | |
74bcbdf3 | 486 | set_value_component_location (result, val); |
9bbda503 AC |
487 | set_value_bitsize (result, value_bitsize (val)); |
488 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 489 | set_value_address (result, value_address (val)); |
d69fe07e | 490 | if (value_lazy (val) |
df407dfe | 491 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) |
dfa52d88 | 492 | set_value_lazy (result, 1); |
d2e4a39e | 493 | else |
0fd88904 | 494 | memcpy (value_contents_raw (result), value_contents (val), |
4c4b4cd2 | 495 | TYPE_LENGTH (type)); |
14f9c5c9 AS |
496 | return result; |
497 | } | |
498 | } | |
499 | ||
fc1a4b47 AC |
500 | static const gdb_byte * |
501 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
502 | { |
503 | if (valaddr == NULL) | |
504 | return NULL; | |
505 | else | |
506 | return valaddr + offset; | |
507 | } | |
508 | ||
509 | static CORE_ADDR | |
ebf56fd3 | 510 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
511 | { |
512 | if (address == 0) | |
513 | return 0; | |
d2e4a39e | 514 | else |
14f9c5c9 AS |
515 | return address + offset; |
516 | } | |
517 | ||
4c4b4cd2 PH |
518 | /* Issue a warning (as for the definition of warning in utils.c, but |
519 | with exactly one argument rather than ...), unless the limit on the | |
520 | number of warnings has passed during the evaluation of the current | |
521 | expression. */ | |
a2249542 | 522 | |
77109804 AC |
523 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
524 | provided by "complaint". */ | |
525 | static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2); | |
526 | ||
14f9c5c9 | 527 | static void |
a2249542 | 528 | lim_warning (const char *format, ...) |
14f9c5c9 | 529 | { |
a2249542 MK |
530 | va_list args; |
531 | va_start (args, format); | |
532 | ||
4c4b4cd2 PH |
533 | warnings_issued += 1; |
534 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
535 | vwarning (format, args); |
536 | ||
537 | va_end (args); | |
4c4b4cd2 PH |
538 | } |
539 | ||
714e53ab PH |
540 | /* Issue an error if the size of an object of type T is unreasonable, |
541 | i.e. if it would be a bad idea to allocate a value of this type in | |
542 | GDB. */ | |
543 | ||
544 | static void | |
545 | check_size (const struct type *type) | |
546 | { | |
547 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 548 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
549 | } |
550 | ||
551 | ||
c3e5cd34 PH |
552 | /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from |
553 | gdbtypes.h, but some of the necessary definitions in that file | |
554 | seem to have gone missing. */ | |
555 | ||
556 | /* Maximum value of a SIZE-byte signed integer type. */ | |
4c4b4cd2 | 557 | static LONGEST |
c3e5cd34 | 558 | max_of_size (int size) |
4c4b4cd2 | 559 | { |
76a01679 JB |
560 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
561 | return top_bit | (top_bit - 1); | |
4c4b4cd2 PH |
562 | } |
563 | ||
c3e5cd34 | 564 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 565 | static LONGEST |
c3e5cd34 | 566 | min_of_size (int size) |
4c4b4cd2 | 567 | { |
c3e5cd34 | 568 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
569 | } |
570 | ||
c3e5cd34 | 571 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 572 | static ULONGEST |
c3e5cd34 | 573 | umax_of_size (int size) |
4c4b4cd2 | 574 | { |
76a01679 JB |
575 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
576 | return top_bit | (top_bit - 1); | |
4c4b4cd2 PH |
577 | } |
578 | ||
c3e5cd34 PH |
579 | /* Maximum value of integral type T, as a signed quantity. */ |
580 | static LONGEST | |
581 | max_of_type (struct type *t) | |
4c4b4cd2 | 582 | { |
c3e5cd34 PH |
583 | if (TYPE_UNSIGNED (t)) |
584 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
585 | else | |
586 | return max_of_size (TYPE_LENGTH (t)); | |
587 | } | |
588 | ||
589 | /* Minimum value of integral type T, as a signed quantity. */ | |
590 | static LONGEST | |
591 | min_of_type (struct type *t) | |
592 | { | |
593 | if (TYPE_UNSIGNED (t)) | |
594 | return 0; | |
595 | else | |
596 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
597 | } |
598 | ||
599 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
690cc4eb | 600 | static LONGEST |
4c4b4cd2 PH |
601 | discrete_type_high_bound (struct type *type) |
602 | { | |
76a01679 | 603 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
604 | { |
605 | case TYPE_CODE_RANGE: | |
690cc4eb | 606 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 607 | case TYPE_CODE_ENUM: |
690cc4eb PH |
608 | return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1); |
609 | case TYPE_CODE_BOOL: | |
610 | return 1; | |
611 | case TYPE_CODE_CHAR: | |
76a01679 | 612 | case TYPE_CODE_INT: |
690cc4eb | 613 | return max_of_type (type); |
4c4b4cd2 | 614 | default: |
323e0a4a | 615 | error (_("Unexpected type in discrete_type_high_bound.")); |
4c4b4cd2 PH |
616 | } |
617 | } | |
618 | ||
619 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
690cc4eb | 620 | static LONGEST |
4c4b4cd2 PH |
621 | discrete_type_low_bound (struct type *type) |
622 | { | |
76a01679 | 623 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
624 | { |
625 | case TYPE_CODE_RANGE: | |
690cc4eb | 626 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 627 | case TYPE_CODE_ENUM: |
690cc4eb PH |
628 | return TYPE_FIELD_BITPOS (type, 0); |
629 | case TYPE_CODE_BOOL: | |
630 | return 0; | |
631 | case TYPE_CODE_CHAR: | |
76a01679 | 632 | case TYPE_CODE_INT: |
690cc4eb | 633 | return min_of_type (type); |
4c4b4cd2 | 634 | default: |
323e0a4a | 635 | error (_("Unexpected type in discrete_type_low_bound.")); |
4c4b4cd2 PH |
636 | } |
637 | } | |
638 | ||
639 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 640 | non-range scalar type. */ |
4c4b4cd2 PH |
641 | |
642 | static struct type * | |
643 | base_type (struct type *type) | |
644 | { | |
645 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
646 | { | |
76a01679 JB |
647 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
648 | return type; | |
4c4b4cd2 PH |
649 | type = TYPE_TARGET_TYPE (type); |
650 | } | |
651 | return type; | |
14f9c5c9 | 652 | } |
4c4b4cd2 | 653 | \f |
76a01679 | 654 | |
4c4b4cd2 | 655 | /* Language Selection */ |
14f9c5c9 AS |
656 | |
657 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
658 | (the main program is in Ada iif the adainit symbol is found). | |
659 | ||
4c4b4cd2 | 660 | MAIN_PST is not used. */ |
d2e4a39e | 661 | |
14f9c5c9 | 662 | enum language |
d2e4a39e | 663 | ada_update_initial_language (enum language lang, |
4c4b4cd2 | 664 | struct partial_symtab *main_pst) |
14f9c5c9 | 665 | { |
d2e4a39e | 666 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
667 | (struct objfile *) NULL) != NULL) |
668 | return language_ada; | |
14f9c5c9 AS |
669 | |
670 | return lang; | |
671 | } | |
96d887e8 PH |
672 | |
673 | /* If the main procedure is written in Ada, then return its name. | |
674 | The result is good until the next call. Return NULL if the main | |
675 | procedure doesn't appear to be in Ada. */ | |
676 | ||
677 | char * | |
678 | ada_main_name (void) | |
679 | { | |
680 | struct minimal_symbol *msym; | |
f9bc20b9 | 681 | static char *main_program_name = NULL; |
6c038f32 | 682 | |
96d887e8 PH |
683 | /* For Ada, the name of the main procedure is stored in a specific |
684 | string constant, generated by the binder. Look for that symbol, | |
685 | extract its address, and then read that string. If we didn't find | |
686 | that string, then most probably the main procedure is not written | |
687 | in Ada. */ | |
688 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
689 | ||
690 | if (msym != NULL) | |
691 | { | |
f9bc20b9 JB |
692 | CORE_ADDR main_program_name_addr; |
693 | int err_code; | |
694 | ||
96d887e8 PH |
695 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
696 | if (main_program_name_addr == 0) | |
323e0a4a | 697 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 698 | |
f9bc20b9 JB |
699 | xfree (main_program_name); |
700 | target_read_string (main_program_name_addr, &main_program_name, | |
701 | 1024, &err_code); | |
702 | ||
703 | if (err_code != 0) | |
704 | return NULL; | |
96d887e8 PH |
705 | return main_program_name; |
706 | } | |
707 | ||
708 | /* The main procedure doesn't seem to be in Ada. */ | |
709 | return NULL; | |
710 | } | |
14f9c5c9 | 711 | \f |
4c4b4cd2 | 712 | /* Symbols */ |
d2e4a39e | 713 | |
4c4b4cd2 PH |
714 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
715 | of NULLs. */ | |
14f9c5c9 | 716 | |
d2e4a39e AS |
717 | const struct ada_opname_map ada_opname_table[] = { |
718 | {"Oadd", "\"+\"", BINOP_ADD}, | |
719 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
720 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
721 | {"Odivide", "\"/\"", BINOP_DIV}, | |
722 | {"Omod", "\"mod\"", BINOP_MOD}, | |
723 | {"Orem", "\"rem\"", BINOP_REM}, | |
724 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
725 | {"Olt", "\"<\"", BINOP_LESS}, | |
726 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
727 | {"Ogt", "\">\"", BINOP_GTR}, | |
728 | {"Oge", "\">=\"", BINOP_GEQ}, | |
729 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
730 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
731 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
732 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
733 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
734 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
735 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
736 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
737 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
738 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
739 | {NULL, NULL} | |
14f9c5c9 AS |
740 | }; |
741 | ||
4c4b4cd2 PH |
742 | /* The "encoded" form of DECODED, according to GNAT conventions. |
743 | The result is valid until the next call to ada_encode. */ | |
744 | ||
14f9c5c9 | 745 | char * |
4c4b4cd2 | 746 | ada_encode (const char *decoded) |
14f9c5c9 | 747 | { |
4c4b4cd2 PH |
748 | static char *encoding_buffer = NULL; |
749 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 750 | const char *p; |
14f9c5c9 | 751 | int k; |
d2e4a39e | 752 | |
4c4b4cd2 | 753 | if (decoded == NULL) |
14f9c5c9 AS |
754 | return NULL; |
755 | ||
4c4b4cd2 PH |
756 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
757 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
758 | |
759 | k = 0; | |
4c4b4cd2 | 760 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 761 | { |
cdc7bb92 | 762 | if (*p == '.') |
4c4b4cd2 PH |
763 | { |
764 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
765 | k += 2; | |
766 | } | |
14f9c5c9 | 767 | else if (*p == '"') |
4c4b4cd2 PH |
768 | { |
769 | const struct ada_opname_map *mapping; | |
770 | ||
771 | for (mapping = ada_opname_table; | |
1265e4aa JB |
772 | mapping->encoded != NULL |
773 | && strncmp (mapping->decoded, p, | |
774 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
775 | ; |
776 | if (mapping->encoded == NULL) | |
323e0a4a | 777 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
778 | strcpy (encoding_buffer + k, mapping->encoded); |
779 | k += strlen (mapping->encoded); | |
780 | break; | |
781 | } | |
d2e4a39e | 782 | else |
4c4b4cd2 PH |
783 | { |
784 | encoding_buffer[k] = *p; | |
785 | k += 1; | |
786 | } | |
14f9c5c9 AS |
787 | } |
788 | ||
4c4b4cd2 PH |
789 | encoding_buffer[k] = '\0'; |
790 | return encoding_buffer; | |
14f9c5c9 AS |
791 | } |
792 | ||
793 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
794 | quotes, unfolded, but with the quotes stripped away. Result good |
795 | to next call. */ | |
796 | ||
d2e4a39e AS |
797 | char * |
798 | ada_fold_name (const char *name) | |
14f9c5c9 | 799 | { |
d2e4a39e | 800 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
801 | static size_t fold_buffer_size = 0; |
802 | ||
803 | int len = strlen (name); | |
d2e4a39e | 804 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
805 | |
806 | if (name[0] == '\'') | |
807 | { | |
d2e4a39e AS |
808 | strncpy (fold_buffer, name + 1, len - 2); |
809 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
810 | } |
811 | else | |
812 | { | |
813 | int i; | |
814 | for (i = 0; i <= len; i += 1) | |
4c4b4cd2 | 815 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
816 | } |
817 | ||
818 | return fold_buffer; | |
819 | } | |
820 | ||
529cad9c PH |
821 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
822 | ||
823 | static int | |
824 | is_lower_alphanum (const char c) | |
825 | { | |
826 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
827 | } | |
828 | ||
29480c32 JB |
829 | /* Remove either of these suffixes: |
830 | . .{DIGIT}+ | |
831 | . ${DIGIT}+ | |
832 | . ___{DIGIT}+ | |
833 | . __{DIGIT}+. | |
834 | These are suffixes introduced by the compiler for entities such as | |
835 | nested subprogram for instance, in order to avoid name clashes. | |
836 | They do not serve any purpose for the debugger. */ | |
837 | ||
838 | static void | |
839 | ada_remove_trailing_digits (const char *encoded, int *len) | |
840 | { | |
841 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
842 | { | |
843 | int i = *len - 2; | |
844 | while (i > 0 && isdigit (encoded[i])) | |
845 | i--; | |
846 | if (i >= 0 && encoded[i] == '.') | |
847 | *len = i; | |
848 | else if (i >= 0 && encoded[i] == '$') | |
849 | *len = i; | |
850 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
851 | *len = i - 2; | |
852 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
853 | *len = i - 1; | |
854 | } | |
855 | } | |
856 | ||
857 | /* Remove the suffix introduced by the compiler for protected object | |
858 | subprograms. */ | |
859 | ||
860 | static void | |
861 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
862 | { | |
863 | /* Remove trailing N. */ | |
864 | ||
865 | /* Protected entry subprograms are broken into two | |
866 | separate subprograms: The first one is unprotected, and has | |
867 | a 'N' suffix; the second is the protected version, and has | |
868 | the 'P' suffix. The second calls the first one after handling | |
869 | the protection. Since the P subprograms are internally generated, | |
870 | we leave these names undecoded, giving the user a clue that this | |
871 | entity is internal. */ | |
872 | ||
873 | if (*len > 1 | |
874 | && encoded[*len - 1] == 'N' | |
875 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
876 | *len = *len - 1; | |
877 | } | |
878 | ||
69fadcdf JB |
879 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
880 | ||
881 | static void | |
882 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
883 | { | |
884 | int i = *len - 1; | |
885 | ||
886 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
887 | i--; | |
888 | ||
889 | if (encoded[i] != 'X') | |
890 | return; | |
891 | ||
892 | if (i == 0) | |
893 | return; | |
894 | ||
895 | if (isalnum (encoded[i-1])) | |
896 | *len = i; | |
897 | } | |
898 | ||
29480c32 JB |
899 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
900 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
901 | replaced by ENCODED. | |
14f9c5c9 | 902 | |
4c4b4cd2 | 903 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 904 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
905 | is returned. */ |
906 | ||
907 | const char * | |
908 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
909 | { |
910 | int i, j; | |
911 | int len0; | |
d2e4a39e | 912 | const char *p; |
4c4b4cd2 | 913 | char *decoded; |
14f9c5c9 | 914 | int at_start_name; |
4c4b4cd2 PH |
915 | static char *decoding_buffer = NULL; |
916 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 917 | |
29480c32 JB |
918 | /* The name of the Ada main procedure starts with "_ada_". |
919 | This prefix is not part of the decoded name, so skip this part | |
920 | if we see this prefix. */ | |
4c4b4cd2 PH |
921 | if (strncmp (encoded, "_ada_", 5) == 0) |
922 | encoded += 5; | |
14f9c5c9 | 923 | |
29480c32 JB |
924 | /* If the name starts with '_', then it is not a properly encoded |
925 | name, so do not attempt to decode it. Similarly, if the name | |
926 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 927 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
928 | goto Suppress; |
929 | ||
4c4b4cd2 | 930 | len0 = strlen (encoded); |
4c4b4cd2 | 931 | |
29480c32 JB |
932 | ada_remove_trailing_digits (encoded, &len0); |
933 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 934 | |
4c4b4cd2 PH |
935 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
936 | the suffix is located before the current "end" of ENCODED. We want | |
937 | to avoid re-matching parts of ENCODED that have previously been | |
938 | marked as discarded (by decrementing LEN0). */ | |
939 | p = strstr (encoded, "___"); | |
940 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
941 | { |
942 | if (p[3] == 'X') | |
4c4b4cd2 | 943 | len0 = p - encoded; |
14f9c5c9 | 944 | else |
4c4b4cd2 | 945 | goto Suppress; |
14f9c5c9 | 946 | } |
4c4b4cd2 | 947 | |
29480c32 JB |
948 | /* Remove any trailing TKB suffix. It tells us that this symbol |
949 | is for the body of a task, but that information does not actually | |
950 | appear in the decoded name. */ | |
951 | ||
4c4b4cd2 | 952 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 953 | len0 -= 3; |
76a01679 | 954 | |
a10967fa JB |
955 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
956 | from the TKB suffix because it is used for non-anonymous task | |
957 | bodies. */ | |
958 | ||
959 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
960 | len0 -= 2; | |
961 | ||
29480c32 JB |
962 | /* Remove trailing "B" suffixes. */ |
963 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
964 | ||
4c4b4cd2 | 965 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
966 | len0 -= 1; |
967 | ||
4c4b4cd2 | 968 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 969 | |
4c4b4cd2 PH |
970 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
971 | decoded = decoding_buffer; | |
14f9c5c9 | 972 | |
29480c32 JB |
973 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
974 | ||
4c4b4cd2 | 975 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 976 | { |
4c4b4cd2 PH |
977 | i = len0 - 2; |
978 | while ((i >= 0 && isdigit (encoded[i])) | |
979 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
980 | i -= 1; | |
981 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
982 | len0 = i - 1; | |
983 | else if (encoded[i] == '$') | |
984 | len0 = i; | |
d2e4a39e | 985 | } |
14f9c5c9 | 986 | |
29480c32 JB |
987 | /* The first few characters that are not alphabetic are not part |
988 | of any encoding we use, so we can copy them over verbatim. */ | |
989 | ||
4c4b4cd2 PH |
990 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
991 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
992 | |
993 | at_start_name = 1; | |
994 | while (i < len0) | |
995 | { | |
29480c32 | 996 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
997 | if (at_start_name && encoded[i] == 'O') |
998 | { | |
999 | int k; | |
1000 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) | |
1001 | { | |
1002 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1003 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1004 | op_len - 1) == 0) | |
1005 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1006 | { |
1007 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1008 | at_start_name = 0; | |
1009 | i += op_len; | |
1010 | j += strlen (ada_opname_table[k].decoded); | |
1011 | break; | |
1012 | } | |
1013 | } | |
1014 | if (ada_opname_table[k].encoded != NULL) | |
1015 | continue; | |
1016 | } | |
14f9c5c9 AS |
1017 | at_start_name = 0; |
1018 | ||
529cad9c PH |
1019 | /* Replace "TK__" with "__", which will eventually be translated |
1020 | into "." (just below). */ | |
1021 | ||
4c4b4cd2 PH |
1022 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1023 | i += 2; | |
529cad9c | 1024 | |
29480c32 JB |
1025 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1026 | be translated into "." (just below). These are internal names | |
1027 | generated for anonymous blocks inside which our symbol is nested. */ | |
1028 | ||
1029 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1030 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1031 | && isdigit (encoded [i+4])) | |
1032 | { | |
1033 | int k = i + 5; | |
1034 | ||
1035 | while (k < len0 && isdigit (encoded[k])) | |
1036 | k++; /* Skip any extra digit. */ | |
1037 | ||
1038 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1039 | is indeed followed by "__". */ | |
1040 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1041 | i = k; | |
1042 | } | |
1043 | ||
529cad9c PH |
1044 | /* Remove _E{DIGITS}+[sb] */ |
1045 | ||
1046 | /* Just as for protected object subprograms, there are 2 categories | |
1047 | of subprograms created by the compiler for each entry. The first | |
1048 | one implements the actual entry code, and has a suffix following | |
1049 | the convention above; the second one implements the barrier and | |
1050 | uses the same convention as above, except that the 'E' is replaced | |
1051 | by a 'B'. | |
1052 | ||
1053 | Just as above, we do not decode the name of barrier functions | |
1054 | to give the user a clue that the code he is debugging has been | |
1055 | internally generated. */ | |
1056 | ||
1057 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1058 | && isdigit (encoded[i+2])) | |
1059 | { | |
1060 | int k = i + 3; | |
1061 | ||
1062 | while (k < len0 && isdigit (encoded[k])) | |
1063 | k++; | |
1064 | ||
1065 | if (k < len0 | |
1066 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1067 | { | |
1068 | k++; | |
1069 | /* Just as an extra precaution, make sure that if this | |
1070 | suffix is followed by anything else, it is a '_'. | |
1071 | Otherwise, we matched this sequence by accident. */ | |
1072 | if (k == len0 | |
1073 | || (k < len0 && encoded[k] == '_')) | |
1074 | i = k; | |
1075 | } | |
1076 | } | |
1077 | ||
1078 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1079 | the GNAT front-end in protected object subprograms. */ | |
1080 | ||
1081 | if (i < len0 + 3 | |
1082 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1083 | { | |
1084 | /* Backtrack a bit up until we reach either the begining of | |
1085 | the encoded name, or "__". Make sure that we only find | |
1086 | digits or lowercase characters. */ | |
1087 | const char *ptr = encoded + i - 1; | |
1088 | ||
1089 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1090 | ptr--; | |
1091 | if (ptr < encoded | |
1092 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1093 | i++; | |
1094 | } | |
1095 | ||
4c4b4cd2 PH |
1096 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1097 | { | |
29480c32 JB |
1098 | /* This is a X[bn]* sequence not separated from the previous |
1099 | part of the name with a non-alpha-numeric character (in other | |
1100 | words, immediately following an alpha-numeric character), then | |
1101 | verify that it is placed at the end of the encoded name. If | |
1102 | not, then the encoding is not valid and we should abort the | |
1103 | decoding. Otherwise, just skip it, it is used in body-nested | |
1104 | package names. */ | |
4c4b4cd2 PH |
1105 | do |
1106 | i += 1; | |
1107 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1108 | if (i < len0) | |
1109 | goto Suppress; | |
1110 | } | |
cdc7bb92 | 1111 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1112 | { |
29480c32 | 1113 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1114 | decoded[j] = '.'; |
1115 | at_start_name = 1; | |
1116 | i += 2; | |
1117 | j += 1; | |
1118 | } | |
14f9c5c9 | 1119 | else |
4c4b4cd2 | 1120 | { |
29480c32 JB |
1121 | /* It's a character part of the decoded name, so just copy it |
1122 | over. */ | |
4c4b4cd2 PH |
1123 | decoded[j] = encoded[i]; |
1124 | i += 1; | |
1125 | j += 1; | |
1126 | } | |
14f9c5c9 | 1127 | } |
4c4b4cd2 | 1128 | decoded[j] = '\000'; |
14f9c5c9 | 1129 | |
29480c32 JB |
1130 | /* Decoded names should never contain any uppercase character. |
1131 | Double-check this, and abort the decoding if we find one. */ | |
1132 | ||
4c4b4cd2 PH |
1133 | for (i = 0; decoded[i] != '\0'; i += 1) |
1134 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1135 | goto Suppress; |
1136 | ||
4c4b4cd2 PH |
1137 | if (strcmp (decoded, encoded) == 0) |
1138 | return encoded; | |
1139 | else | |
1140 | return decoded; | |
14f9c5c9 AS |
1141 | |
1142 | Suppress: | |
4c4b4cd2 PH |
1143 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1144 | decoded = decoding_buffer; | |
1145 | if (encoded[0] == '<') | |
1146 | strcpy (decoded, encoded); | |
14f9c5c9 | 1147 | else |
88c15c34 | 1148 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1149 | return decoded; |
1150 | ||
1151 | } | |
1152 | ||
1153 | /* Table for keeping permanent unique copies of decoded names. Once | |
1154 | allocated, names in this table are never released. While this is a | |
1155 | storage leak, it should not be significant unless there are massive | |
1156 | changes in the set of decoded names in successive versions of a | |
1157 | symbol table loaded during a single session. */ | |
1158 | static struct htab *decoded_names_store; | |
1159 | ||
1160 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1161 | in the language-specific part of GSYMBOL, if it has not been | |
1162 | previously computed. Tries to save the decoded name in the same | |
1163 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1164 | in any case, the decoded symbol has a lifetime at least that of | |
1165 | GSYMBOL). | |
1166 | The GSYMBOL parameter is "mutable" in the C++ sense: logically | |
1167 | const, but nevertheless modified to a semantically equivalent form | |
1168 | when a decoded name is cached in it. | |
76a01679 | 1169 | */ |
4c4b4cd2 | 1170 | |
76a01679 JB |
1171 | char * |
1172 | ada_decode_symbol (const struct general_symbol_info *gsymbol) | |
4c4b4cd2 | 1173 | { |
76a01679 | 1174 | char **resultp = |
4c4b4cd2 PH |
1175 | (char **) &gsymbol->language_specific.cplus_specific.demangled_name; |
1176 | if (*resultp == NULL) | |
1177 | { | |
1178 | const char *decoded = ada_decode (gsymbol->name); | |
714835d5 | 1179 | if (gsymbol->obj_section != NULL) |
76a01679 | 1180 | { |
714835d5 UW |
1181 | struct objfile *objf = gsymbol->obj_section->objfile; |
1182 | *resultp = obsavestring (decoded, strlen (decoded), | |
1183 | &objf->objfile_obstack); | |
76a01679 | 1184 | } |
4c4b4cd2 | 1185 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1186 | case, we put the result on the heap. Since we only decode |
1187 | when needed, we hope this usually does not cause a | |
1188 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1189 | if (*resultp == NULL) |
76a01679 JB |
1190 | { |
1191 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1192 | decoded, INSERT); | |
1193 | if (*slot == NULL) | |
1194 | *slot = xstrdup (decoded); | |
1195 | *resultp = *slot; | |
1196 | } | |
4c4b4cd2 | 1197 | } |
14f9c5c9 | 1198 | |
4c4b4cd2 PH |
1199 | return *resultp; |
1200 | } | |
76a01679 | 1201 | |
2c0b251b | 1202 | static char * |
76a01679 | 1203 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1204 | { |
1205 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1206 | } |
1207 | ||
1208 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1209 | suffixes that encode debugging information or leading _ada_ on |
1210 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1211 | information that is ignored). If WILD, then NAME need only match a | |
1212 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1213 | either argument is NULL. */ | |
14f9c5c9 | 1214 | |
2c0b251b | 1215 | static int |
d2e4a39e | 1216 | ada_match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1217 | { |
1218 | if (sym_name == NULL || name == NULL) | |
1219 | return 0; | |
1220 | else if (wild) | |
1221 | return wild_match (name, strlen (name), sym_name); | |
d2e4a39e AS |
1222 | else |
1223 | { | |
1224 | int len_name = strlen (name); | |
4c4b4cd2 PH |
1225 | return (strncmp (sym_name, name, len_name) == 0 |
1226 | && is_name_suffix (sym_name + len_name)) | |
1227 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1228 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1229 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1230 | } |
14f9c5c9 | 1231 | } |
14f9c5c9 | 1232 | \f |
d2e4a39e | 1233 | |
4c4b4cd2 | 1234 | /* Arrays */ |
14f9c5c9 | 1235 | |
4c4b4cd2 | 1236 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1237 | |
d2e4a39e AS |
1238 | static char *bound_name[] = { |
1239 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1240 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1241 | }; | |
1242 | ||
1243 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1244 | ||
4c4b4cd2 | 1245 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1246 | |
4c4b4cd2 | 1247 | /* Like modify_field, but allows bitpos > wordlength. */ |
14f9c5c9 AS |
1248 | |
1249 | static void | |
50810684 UW |
1250 | modify_general_field (struct type *type, char *addr, |
1251 | LONGEST fieldval, int bitpos, int bitsize) | |
14f9c5c9 | 1252 | { |
50810684 | 1253 | modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize); |
14f9c5c9 AS |
1254 | } |
1255 | ||
1256 | ||
4c4b4cd2 PH |
1257 | /* The desc_* routines return primitive portions of array descriptors |
1258 | (fat pointers). */ | |
14f9c5c9 AS |
1259 | |
1260 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1261 | level of indirection, if needed. */ |
1262 | ||
d2e4a39e AS |
1263 | static struct type * |
1264 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1265 | { |
1266 | if (type == NULL) | |
1267 | return NULL; | |
61ee279c | 1268 | type = ada_check_typedef (type); |
1265e4aa JB |
1269 | if (type != NULL |
1270 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1271 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1272 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1273 | else |
1274 | return type; | |
1275 | } | |
1276 | ||
4c4b4cd2 PH |
1277 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1278 | ||
14f9c5c9 | 1279 | static int |
d2e4a39e | 1280 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1281 | { |
d2e4a39e | 1282 | return |
14f9c5c9 AS |
1283 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1284 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1285 | } | |
1286 | ||
4c4b4cd2 PH |
1287 | /* The descriptor type for thin pointer type TYPE. */ |
1288 | ||
d2e4a39e AS |
1289 | static struct type * |
1290 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1291 | { |
d2e4a39e | 1292 | struct type *base_type = desc_base_type (type); |
14f9c5c9 AS |
1293 | if (base_type == NULL) |
1294 | return NULL; | |
1295 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1296 | return base_type; | |
d2e4a39e | 1297 | else |
14f9c5c9 | 1298 | { |
d2e4a39e | 1299 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
14f9c5c9 | 1300 | if (alt_type == NULL) |
4c4b4cd2 | 1301 | return base_type; |
14f9c5c9 | 1302 | else |
4c4b4cd2 | 1303 | return alt_type; |
14f9c5c9 AS |
1304 | } |
1305 | } | |
1306 | ||
4c4b4cd2 PH |
1307 | /* A pointer to the array data for thin-pointer value VAL. */ |
1308 | ||
d2e4a39e AS |
1309 | static struct value * |
1310 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1311 | { |
df407dfe | 1312 | struct type *type = value_type (val); |
556bdfd4 UW |
1313 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
1314 | data_type = lookup_pointer_type (data_type); | |
1315 | ||
14f9c5c9 | 1316 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1317 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1318 | else |
42ae5230 | 1319 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1320 | } |
1321 | ||
4c4b4cd2 PH |
1322 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1323 | ||
14f9c5c9 | 1324 | static int |
d2e4a39e | 1325 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1326 | { |
1327 | type = desc_base_type (type); | |
1328 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1329 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1330 | } |
1331 | ||
4c4b4cd2 PH |
1332 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1333 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1334 | |
d2e4a39e AS |
1335 | static struct type * |
1336 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1337 | { |
d2e4a39e | 1338 | struct type *r; |
14f9c5c9 AS |
1339 | |
1340 | type = desc_base_type (type); | |
1341 | ||
1342 | if (type == NULL) | |
1343 | return NULL; | |
1344 | else if (is_thin_pntr (type)) | |
1345 | { | |
1346 | type = thin_descriptor_type (type); | |
1347 | if (type == NULL) | |
4c4b4cd2 | 1348 | return NULL; |
14f9c5c9 AS |
1349 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1350 | if (r != NULL) | |
61ee279c | 1351 | return ada_check_typedef (r); |
14f9c5c9 AS |
1352 | } |
1353 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1354 | { | |
1355 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1356 | if (r != NULL) | |
61ee279c | 1357 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1358 | } |
1359 | return NULL; | |
1360 | } | |
1361 | ||
1362 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1363 | one, a pointer to its bounds data. Otherwise NULL. */ |
1364 | ||
d2e4a39e AS |
1365 | static struct value * |
1366 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1367 | { |
df407dfe | 1368 | struct type *type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 1369 | if (is_thin_pntr (type)) |
14f9c5c9 | 1370 | { |
d2e4a39e | 1371 | struct type *bounds_type = |
4c4b4cd2 | 1372 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1373 | LONGEST addr; |
1374 | ||
4cdfadb1 | 1375 | if (bounds_type == NULL) |
323e0a4a | 1376 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1377 | |
1378 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1379 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1380 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1381 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1382 | addr = value_as_long (arr); |
d2e4a39e | 1383 | else |
42ae5230 | 1384 | addr = value_address (arr); |
14f9c5c9 | 1385 | |
d2e4a39e | 1386 | return |
4c4b4cd2 PH |
1387 | value_from_longest (lookup_pointer_type (bounds_type), |
1388 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1389 | } |
1390 | ||
1391 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1392 | return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, |
323e0a4a | 1393 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1394 | else |
1395 | return NULL; | |
1396 | } | |
1397 | ||
4c4b4cd2 PH |
1398 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1399 | position of the field containing the address of the bounds data. */ | |
1400 | ||
14f9c5c9 | 1401 | static int |
d2e4a39e | 1402 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1403 | { |
1404 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1405 | } | |
1406 | ||
1407 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1408 | size of the field containing the address of the bounds data. */ |
1409 | ||
14f9c5c9 | 1410 | static int |
d2e4a39e | 1411 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1412 | { |
1413 | type = desc_base_type (type); | |
1414 | ||
d2e4a39e | 1415 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1416 | return TYPE_FIELD_BITSIZE (type, 1); |
1417 | else | |
61ee279c | 1418 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1419 | } |
1420 | ||
4c4b4cd2 | 1421 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1422 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1423 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1424 | data. */ | |
4c4b4cd2 | 1425 | |
d2e4a39e | 1426 | static struct type * |
556bdfd4 | 1427 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1428 | { |
1429 | type = desc_base_type (type); | |
1430 | ||
4c4b4cd2 | 1431 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1432 | if (is_thin_pntr (type)) |
556bdfd4 | 1433 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1434 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1435 | { |
1436 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1437 | ||
1438 | if (data_type | |
1439 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
1440 | return TYPE_TARGET_TYPE (data_type); | |
1441 | } | |
1442 | ||
1443 | return NULL; | |
14f9c5c9 AS |
1444 | } |
1445 | ||
1446 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1447 | its array data. */ | |
4c4b4cd2 | 1448 | |
d2e4a39e AS |
1449 | static struct value * |
1450 | desc_data (struct value *arr) | |
14f9c5c9 | 1451 | { |
df407dfe | 1452 | struct type *type = value_type (arr); |
14f9c5c9 AS |
1453 | if (is_thin_pntr (type)) |
1454 | return thin_data_pntr (arr); | |
1455 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1456 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1457 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1458 | else |
1459 | return NULL; | |
1460 | } | |
1461 | ||
1462 | ||
1463 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1464 | position of the field containing the address of the data. */ |
1465 | ||
14f9c5c9 | 1466 | static int |
d2e4a39e | 1467 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1468 | { |
1469 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1470 | } | |
1471 | ||
1472 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1473 | size of the field containing the address of the data. */ |
1474 | ||
14f9c5c9 | 1475 | static int |
d2e4a39e | 1476 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1477 | { |
1478 | type = desc_base_type (type); | |
1479 | ||
1480 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1481 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1482 | else |
14f9c5c9 AS |
1483 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1484 | } | |
1485 | ||
4c4b4cd2 | 1486 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1487 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1488 | bound, if WHICH is 1. The first bound is I=1. */ |
1489 | ||
d2e4a39e AS |
1490 | static struct value * |
1491 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1492 | { |
d2e4a39e | 1493 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1494 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1495 | } |
1496 | ||
1497 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1498 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1499 | bound, if WHICH is 1. The first bound is I=1. */ |
1500 | ||
14f9c5c9 | 1501 | static int |
d2e4a39e | 1502 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1503 | { |
d2e4a39e | 1504 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1505 | } |
1506 | ||
1507 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1508 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1509 | bound, if WHICH is 1. The first bound is I=1. */ |
1510 | ||
76a01679 | 1511 | static int |
d2e4a39e | 1512 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1513 | { |
1514 | type = desc_base_type (type); | |
1515 | ||
d2e4a39e AS |
1516 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1517 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1518 | else | |
1519 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1520 | } |
1521 | ||
1522 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1523 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1524 | ||
d2e4a39e AS |
1525 | static struct type * |
1526 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1527 | { |
1528 | type = desc_base_type (type); | |
1529 | ||
1530 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1531 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1532 | else | |
14f9c5c9 AS |
1533 | return NULL; |
1534 | } | |
1535 | ||
4c4b4cd2 PH |
1536 | /* The number of index positions in the array-bounds type TYPE. |
1537 | Return 0 if TYPE is NULL. */ | |
1538 | ||
14f9c5c9 | 1539 | static int |
d2e4a39e | 1540 | desc_arity (struct type *type) |
14f9c5c9 AS |
1541 | { |
1542 | type = desc_base_type (type); | |
1543 | ||
1544 | if (type != NULL) | |
1545 | return TYPE_NFIELDS (type) / 2; | |
1546 | return 0; | |
1547 | } | |
1548 | ||
4c4b4cd2 PH |
1549 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1550 | an array descriptor type (representing an unconstrained array | |
1551 | type). */ | |
1552 | ||
76a01679 JB |
1553 | static int |
1554 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1555 | { |
1556 | if (type == NULL) | |
1557 | return 0; | |
61ee279c | 1558 | type = ada_check_typedef (type); |
4c4b4cd2 | 1559 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1560 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1561 | } |
1562 | ||
52ce6436 PH |
1563 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
1564 | * to one. */ | |
1565 | ||
2c0b251b | 1566 | static int |
52ce6436 PH |
1567 | ada_is_array_type (struct type *type) |
1568 | { | |
1569 | while (type != NULL | |
1570 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1571 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1572 | type = TYPE_TARGET_TYPE (type); | |
1573 | return ada_is_direct_array_type (type); | |
1574 | } | |
1575 | ||
4c4b4cd2 | 1576 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1577 | |
14f9c5c9 | 1578 | int |
4c4b4cd2 | 1579 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1580 | { |
1581 | if (type == NULL) | |
1582 | return 0; | |
61ee279c | 1583 | type = ada_check_typedef (type); |
14f9c5c9 | 1584 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1585 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
1586 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1587 | } |
1588 | ||
4c4b4cd2 PH |
1589 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1590 | ||
14f9c5c9 | 1591 | int |
4c4b4cd2 | 1592 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1593 | { |
556bdfd4 | 1594 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1595 | |
1596 | if (type == NULL) | |
1597 | return 0; | |
61ee279c | 1598 | type = ada_check_typedef (type); |
556bdfd4 UW |
1599 | return (data_type != NULL |
1600 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1601 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1602 | } |
1603 | ||
1604 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1605 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1606 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1607 | is still needed. */ |
1608 | ||
14f9c5c9 | 1609 | int |
ebf56fd3 | 1610 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1611 | { |
d2e4a39e | 1612 | return |
14f9c5c9 AS |
1613 | type != NULL |
1614 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1615 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1616 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1617 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1618 | } |
1619 | ||
1620 | ||
4c4b4cd2 | 1621 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1622 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1623 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1624 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1625 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1626 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1627 | a descriptor. */ |
d2e4a39e AS |
1628 | struct type * |
1629 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1630 | { |
ad82864c JB |
1631 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1632 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1633 | |
df407dfe AC |
1634 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1635 | return value_type (arr); | |
d2e4a39e AS |
1636 | |
1637 | if (!bounds) | |
ad82864c JB |
1638 | { |
1639 | struct type *array_type = | |
1640 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1641 | ||
1642 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1643 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1644 | decode_packed_array_bitsize (value_type (arr)); | |
1645 | ||
1646 | return array_type; | |
1647 | } | |
14f9c5c9 AS |
1648 | else |
1649 | { | |
d2e4a39e | 1650 | struct type *elt_type; |
14f9c5c9 | 1651 | int arity; |
d2e4a39e | 1652 | struct value *descriptor; |
14f9c5c9 | 1653 | |
df407dfe AC |
1654 | elt_type = ada_array_element_type (value_type (arr), -1); |
1655 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1656 | |
d2e4a39e | 1657 | if (elt_type == NULL || arity == 0) |
df407dfe | 1658 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1659 | |
1660 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1661 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1662 | return NULL; |
d2e4a39e | 1663 | while (arity > 0) |
4c4b4cd2 | 1664 | { |
e9bb382b UW |
1665 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1666 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1667 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1668 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
1669 | arity -= 1; | |
1670 | ||
df407dfe | 1671 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1672 | longest_to_int (value_as_long (low)), |
1673 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1674 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1675 | |
1676 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1677 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1678 | decode_packed_array_bitsize (value_type (arr)); | |
4c4b4cd2 | 1679 | } |
14f9c5c9 AS |
1680 | |
1681 | return lookup_pointer_type (elt_type); | |
1682 | } | |
1683 | } | |
1684 | ||
1685 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1686 | Otherwise, returns either a standard GDB array with bounds set |
1687 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1688 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1689 | ||
d2e4a39e AS |
1690 | struct value * |
1691 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1692 | { |
df407dfe | 1693 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1694 | { |
d2e4a39e | 1695 | struct type *arrType = ada_type_of_array (arr, 1); |
14f9c5c9 | 1696 | if (arrType == NULL) |
4c4b4cd2 | 1697 | return NULL; |
14f9c5c9 AS |
1698 | return value_cast (arrType, value_copy (desc_data (arr))); |
1699 | } | |
ad82864c JB |
1700 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1701 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
1702 | else |
1703 | return arr; | |
1704 | } | |
1705 | ||
1706 | /* If ARR does not represent an array, returns ARR unchanged. | |
1707 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1708 | be ARR itself if it already is in the proper form). */ |
1709 | ||
1710 | static struct value * | |
d2e4a39e | 1711 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1712 | { |
df407dfe | 1713 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1714 | { |
d2e4a39e | 1715 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
14f9c5c9 | 1716 | if (arrVal == NULL) |
323e0a4a | 1717 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1718 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1719 | return value_ind (arrVal); |
1720 | } | |
ad82864c JB |
1721 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1722 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 1723 | else |
14f9c5c9 AS |
1724 | return arr; |
1725 | } | |
1726 | ||
1727 | /* If TYPE represents a GNAT array type, return it translated to an | |
1728 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1729 | packing). For other types, is the identity. */ |
1730 | ||
d2e4a39e AS |
1731 | struct type * |
1732 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1733 | { |
ad82864c JB |
1734 | if (ada_is_constrained_packed_array_type (type)) |
1735 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
1736 | |
1737 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1738 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1739 | |
1740 | return type; | |
14f9c5c9 AS |
1741 | } |
1742 | ||
4c4b4cd2 PH |
1743 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1744 | ||
ad82864c JB |
1745 | static int |
1746 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
1747 | { |
1748 | if (type == NULL) | |
1749 | return 0; | |
4c4b4cd2 | 1750 | type = desc_base_type (type); |
61ee279c | 1751 | type = ada_check_typedef (type); |
d2e4a39e | 1752 | return |
14f9c5c9 AS |
1753 | ada_type_name (type) != NULL |
1754 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1755 | } | |
1756 | ||
ad82864c JB |
1757 | /* Non-zero iff TYPE represents a standard GNAT constrained |
1758 | packed-array type. */ | |
1759 | ||
1760 | int | |
1761 | ada_is_constrained_packed_array_type (struct type *type) | |
1762 | { | |
1763 | return ada_is_packed_array_type (type) | |
1764 | && !ada_is_array_descriptor_type (type); | |
1765 | } | |
1766 | ||
1767 | /* Non-zero iff TYPE represents an array descriptor for a | |
1768 | unconstrained packed-array type. */ | |
1769 | ||
1770 | static int | |
1771 | ada_is_unconstrained_packed_array_type (struct type *type) | |
1772 | { | |
1773 | return ada_is_packed_array_type (type) | |
1774 | && ada_is_array_descriptor_type (type); | |
1775 | } | |
1776 | ||
1777 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
1778 | return the size of its elements in bits. */ | |
1779 | ||
1780 | static long | |
1781 | decode_packed_array_bitsize (struct type *type) | |
1782 | { | |
1783 | char *raw_name = ada_type_name (ada_check_typedef (type)); | |
1784 | char *tail; | |
1785 | long bits; | |
1786 | ||
1787 | if (!raw_name) | |
1788 | raw_name = ada_type_name (desc_base_type (type)); | |
1789 | ||
1790 | if (!raw_name) | |
1791 | return 0; | |
1792 | ||
1793 | tail = strstr (raw_name, "___XP"); | |
1794 | ||
1795 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
1796 | { | |
1797 | lim_warning | |
1798 | (_("could not understand bit size information on packed array")); | |
1799 | return 0; | |
1800 | } | |
1801 | ||
1802 | return bits; | |
1803 | } | |
1804 | ||
14f9c5c9 AS |
1805 | /* Given that TYPE is a standard GDB array type with all bounds filled |
1806 | in, and that the element size of its ultimate scalar constituents | |
1807 | (that is, either its elements, or, if it is an array of arrays, its | |
1808 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1809 | but with the bit sizes of its elements (and those of any | |
1810 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
1811 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
1812 | in bits. */ | |
1813 | ||
d2e4a39e | 1814 | static struct type * |
ad82864c | 1815 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 1816 | { |
d2e4a39e AS |
1817 | struct type *new_elt_type; |
1818 | struct type *new_type; | |
14f9c5c9 AS |
1819 | LONGEST low_bound, high_bound; |
1820 | ||
61ee279c | 1821 | type = ada_check_typedef (type); |
14f9c5c9 AS |
1822 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
1823 | return type; | |
1824 | ||
e9bb382b | 1825 | new_type = alloc_type_copy (type); |
ad82864c JB |
1826 | new_elt_type = |
1827 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
1828 | elt_bits); | |
262452ec | 1829 | create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type)); |
14f9c5c9 AS |
1830 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
1831 | TYPE_NAME (new_type) = ada_type_name (type); | |
1832 | ||
262452ec | 1833 | if (get_discrete_bounds (TYPE_INDEX_TYPE (type), |
4c4b4cd2 | 1834 | &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
1835 | low_bound = high_bound = 0; |
1836 | if (high_bound < low_bound) | |
1837 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 1838 | else |
14f9c5c9 AS |
1839 | { |
1840 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 1841 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 1842 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
1843 | } |
1844 | ||
876cecd0 | 1845 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
1846 | return new_type; |
1847 | } | |
1848 | ||
ad82864c JB |
1849 | /* The array type encoded by TYPE, where |
1850 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 1851 | |
d2e4a39e | 1852 | static struct type * |
ad82864c | 1853 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 1854 | { |
4c4b4cd2 | 1855 | struct symbol *sym; |
d2e4a39e | 1856 | struct block **blocks; |
727e3d2e JB |
1857 | char *raw_name = ada_type_name (ada_check_typedef (type)); |
1858 | char *name; | |
1859 | char *tail; | |
d2e4a39e | 1860 | struct type *shadow_type; |
14f9c5c9 AS |
1861 | long bits; |
1862 | int i, n; | |
1863 | ||
727e3d2e JB |
1864 | if (!raw_name) |
1865 | raw_name = ada_type_name (desc_base_type (type)); | |
1866 | ||
1867 | if (!raw_name) | |
1868 | return NULL; | |
1869 | ||
1870 | name = (char *) alloca (strlen (raw_name) + 1); | |
1871 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
1872 | type = desc_base_type (type); |
1873 | ||
14f9c5c9 AS |
1874 | memcpy (name, raw_name, tail - raw_name); |
1875 | name[tail - raw_name] = '\000'; | |
1876 | ||
4c4b4cd2 PH |
1877 | sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN); |
1878 | if (sym == NULL || SYMBOL_TYPE (sym) == NULL) | |
14f9c5c9 | 1879 | { |
323e0a4a | 1880 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
1881 | return NULL; |
1882 | } | |
4c4b4cd2 | 1883 | shadow_type = SYMBOL_TYPE (sym); |
cb249c71 | 1884 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
1885 | |
1886 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
1887 | { | |
323e0a4a | 1888 | lim_warning (_("could not understand bounds information on packed array")); |
14f9c5c9 AS |
1889 | return NULL; |
1890 | } | |
d2e4a39e | 1891 | |
ad82864c JB |
1892 | bits = decode_packed_array_bitsize (type); |
1893 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
1894 | } |
1895 | ||
ad82864c JB |
1896 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
1897 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
1898 | standard GDB array type except that the BITSIZEs of the array |
1899 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 1900 | type length is set appropriately. */ |
14f9c5c9 | 1901 | |
d2e4a39e | 1902 | static struct value * |
ad82864c | 1903 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 1904 | { |
4c4b4cd2 | 1905 | struct type *type; |
14f9c5c9 | 1906 | |
4c4b4cd2 | 1907 | arr = ada_coerce_ref (arr); |
284614f0 JB |
1908 | |
1909 | /* If our value is a pointer, then dererence it. Make sure that | |
1910 | this operation does not cause the target type to be fixed, as | |
1911 | this would indirectly cause this array to be decoded. The rest | |
1912 | of the routine assumes that the array hasn't been decoded yet, | |
1913 | so we use the basic "value_ind" routine to perform the dereferencing, | |
1914 | as opposed to using "ada_value_ind". */ | |
df407dfe | 1915 | if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR) |
284614f0 | 1916 | arr = value_ind (arr); |
4c4b4cd2 | 1917 | |
ad82864c | 1918 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
1919 | if (type == NULL) |
1920 | { | |
323e0a4a | 1921 | error (_("can't unpack array")); |
14f9c5c9 AS |
1922 | return NULL; |
1923 | } | |
61ee279c | 1924 | |
50810684 | 1925 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 1926 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
1927 | { |
1928 | /* This is a (right-justified) modular type representing a packed | |
1929 | array with no wrapper. In order to interpret the value through | |
1930 | the (left-justified) packed array type we just built, we must | |
1931 | first left-justify it. */ | |
1932 | int bit_size, bit_pos; | |
1933 | ULONGEST mod; | |
1934 | ||
df407dfe | 1935 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
1936 | bit_size = 0; |
1937 | while (mod > 0) | |
1938 | { | |
1939 | bit_size += 1; | |
1940 | mod >>= 1; | |
1941 | } | |
df407dfe | 1942 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
1943 | arr = ada_value_primitive_packed_val (arr, NULL, |
1944 | bit_pos / HOST_CHAR_BIT, | |
1945 | bit_pos % HOST_CHAR_BIT, | |
1946 | bit_size, | |
1947 | type); | |
1948 | } | |
1949 | ||
4c4b4cd2 | 1950 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
1951 | } |
1952 | ||
1953 | ||
1954 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 1955 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 1956 | |
d2e4a39e AS |
1957 | static struct value * |
1958 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
1959 | { |
1960 | int i; | |
1961 | int bits, elt_off, bit_off; | |
1962 | long elt_total_bit_offset; | |
d2e4a39e AS |
1963 | struct type *elt_type; |
1964 | struct value *v; | |
14f9c5c9 AS |
1965 | |
1966 | bits = 0; | |
1967 | elt_total_bit_offset = 0; | |
df407dfe | 1968 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 1969 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 1970 | { |
d2e4a39e | 1971 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1972 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
1973 | error | |
323e0a4a | 1974 | (_("attempt to do packed indexing of something other than a packed array")); |
14f9c5c9 | 1975 | else |
4c4b4cd2 PH |
1976 | { |
1977 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
1978 | LONGEST lowerbound, upperbound; | |
1979 | LONGEST idx; | |
1980 | ||
1981 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
1982 | { | |
323e0a4a | 1983 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
1984 | lowerbound = upperbound = 0; |
1985 | } | |
1986 | ||
3cb382c9 | 1987 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 1988 | if (idx < lowerbound || idx > upperbound) |
323e0a4a | 1989 | lim_warning (_("packed array index %ld out of bounds"), (long) idx); |
4c4b4cd2 PH |
1990 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
1991 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 1992 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 1993 | } |
14f9c5c9 AS |
1994 | } |
1995 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
1996 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
1997 | |
1998 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 1999 | bits, elt_type); |
14f9c5c9 AS |
2000 | return v; |
2001 | } | |
2002 | ||
4c4b4cd2 | 2003 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2004 | |
2005 | static int | |
d2e4a39e | 2006 | has_negatives (struct type *type) |
14f9c5c9 | 2007 | { |
d2e4a39e AS |
2008 | switch (TYPE_CODE (type)) |
2009 | { | |
2010 | default: | |
2011 | return 0; | |
2012 | case TYPE_CODE_INT: | |
2013 | return !TYPE_UNSIGNED (type); | |
2014 | case TYPE_CODE_RANGE: | |
2015 | return TYPE_LOW_BOUND (type) < 0; | |
2016 | } | |
14f9c5c9 | 2017 | } |
d2e4a39e | 2018 | |
14f9c5c9 AS |
2019 | |
2020 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2021 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2022 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
4c4b4cd2 PH |
2023 | assigning through the result will set the field fetched from. |
2024 | VALADDR is ignored unless OBJ is NULL, in which case, | |
2025 | VALADDR+OFFSET must address the start of storage containing the | |
2026 | packed value. The value returned in this case is never an lval. | |
2027 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2028 | |
d2e4a39e | 2029 | struct value * |
fc1a4b47 | 2030 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2031 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2032 | struct type *type) |
14f9c5c9 | 2033 | { |
d2e4a39e | 2034 | struct value *v; |
4c4b4cd2 PH |
2035 | int src, /* Index into the source area */ |
2036 | targ, /* Index into the target area */ | |
2037 | srcBitsLeft, /* Number of source bits left to move */ | |
2038 | nsrc, ntarg, /* Number of source and target bytes */ | |
2039 | unusedLS, /* Number of bits in next significant | |
2040 | byte of source that are unused */ | |
2041 | accumSize; /* Number of meaningful bits in accum */ | |
2042 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2043 | unsigned char *unpacked; |
4c4b4cd2 | 2044 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2045 | unsigned char sign; |
2046 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2047 | /* Transmit bytes from least to most significant; delta is the direction |
2048 | the indices move. */ | |
50810684 | 2049 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2050 | |
61ee279c | 2051 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2052 | |
2053 | if (obj == NULL) | |
2054 | { | |
2055 | v = allocate_value (type); | |
d2e4a39e | 2056 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2057 | } |
9214ee5f | 2058 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 AS |
2059 | { |
2060 | v = value_at (type, | |
42ae5230 | 2061 | value_address (obj) + offset); |
d2e4a39e | 2062 | bytes = (unsigned char *) alloca (len); |
42ae5230 | 2063 | read_memory (value_address (v), bytes, len); |
14f9c5c9 | 2064 | } |
d2e4a39e | 2065 | else |
14f9c5c9 AS |
2066 | { |
2067 | v = allocate_value (type); | |
0fd88904 | 2068 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2069 | } |
d2e4a39e AS |
2070 | |
2071 | if (obj != NULL) | |
14f9c5c9 | 2072 | { |
42ae5230 | 2073 | CORE_ADDR new_addr; |
74bcbdf3 | 2074 | set_value_component_location (v, obj); |
42ae5230 | 2075 | new_addr = value_address (obj) + offset; |
9bbda503 AC |
2076 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2077 | set_value_bitsize (v, bit_size); | |
df407dfe | 2078 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2079 | { |
42ae5230 | 2080 | ++new_addr; |
9bbda503 | 2081 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2082 | } |
42ae5230 | 2083 | set_value_address (v, new_addr); |
14f9c5c9 AS |
2084 | } |
2085 | else | |
9bbda503 | 2086 | set_value_bitsize (v, bit_size); |
0fd88904 | 2087 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2088 | |
2089 | srcBitsLeft = bit_size; | |
2090 | nsrc = len; | |
2091 | ntarg = TYPE_LENGTH (type); | |
2092 | sign = 0; | |
2093 | if (bit_size == 0) | |
2094 | { | |
2095 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2096 | return v; | |
2097 | } | |
50810684 | 2098 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2099 | { |
d2e4a39e | 2100 | src = len - 1; |
1265e4aa JB |
2101 | if (has_negatives (type) |
2102 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2103 | sign = ~0; |
d2e4a39e AS |
2104 | |
2105 | unusedLS = | |
4c4b4cd2 PH |
2106 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2107 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2108 | |
2109 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2110 | { |
2111 | case TYPE_CODE_ARRAY: | |
2112 | case TYPE_CODE_UNION: | |
2113 | case TYPE_CODE_STRUCT: | |
2114 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2115 | accumSize = | |
2116 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2117 | /* ... And are placed at the beginning (most-significant) bytes | |
2118 | of the target. */ | |
529cad9c | 2119 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2120 | ntarg = targ + 1; |
4c4b4cd2 PH |
2121 | break; |
2122 | default: | |
2123 | accumSize = 0; | |
2124 | targ = TYPE_LENGTH (type) - 1; | |
2125 | break; | |
2126 | } | |
14f9c5c9 | 2127 | } |
d2e4a39e | 2128 | else |
14f9c5c9 AS |
2129 | { |
2130 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2131 | ||
2132 | src = targ = 0; | |
2133 | unusedLS = bit_offset; | |
2134 | accumSize = 0; | |
2135 | ||
d2e4a39e | 2136 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2137 | sign = ~0; |
14f9c5c9 | 2138 | } |
d2e4a39e | 2139 | |
14f9c5c9 AS |
2140 | accum = 0; |
2141 | while (nsrc > 0) | |
2142 | { | |
2143 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2144 | part of the value. */ |
d2e4a39e | 2145 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2146 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2147 | 1; | |
2148 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2149 | unsigned int signMask = sign & ~unusedMSMask; |
d2e4a39e | 2150 | accum |= |
4c4b4cd2 | 2151 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2152 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2153 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2154 | { |
2155 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2156 | accumSize -= HOST_CHAR_BIT; | |
2157 | accum >>= HOST_CHAR_BIT; | |
2158 | ntarg -= 1; | |
2159 | targ += delta; | |
2160 | } | |
14f9c5c9 AS |
2161 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2162 | unusedLS = 0; | |
2163 | nsrc -= 1; | |
2164 | src += delta; | |
2165 | } | |
2166 | while (ntarg > 0) | |
2167 | { | |
2168 | accum |= sign << accumSize; | |
2169 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2170 | accumSize -= HOST_CHAR_BIT; | |
2171 | accum >>= HOST_CHAR_BIT; | |
2172 | ntarg -= 1; | |
2173 | targ += delta; | |
2174 | } | |
2175 | ||
2176 | return v; | |
2177 | } | |
d2e4a39e | 2178 | |
14f9c5c9 AS |
2179 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2180 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2181 | not overlap. */ |
14f9c5c9 | 2182 | static void |
fc1a4b47 | 2183 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2184 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2185 | { |
2186 | unsigned int accum, mask; | |
2187 | int accum_bits, chunk_size; | |
2188 | ||
2189 | target += targ_offset / HOST_CHAR_BIT; | |
2190 | targ_offset %= HOST_CHAR_BIT; | |
2191 | source += src_offset / HOST_CHAR_BIT; | |
2192 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2193 | if (bits_big_endian_p) |
14f9c5c9 AS |
2194 | { |
2195 | accum = (unsigned char) *source; | |
2196 | source += 1; | |
2197 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2198 | ||
d2e4a39e | 2199 | while (n > 0) |
4c4b4cd2 PH |
2200 | { |
2201 | int unused_right; | |
2202 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; | |
2203 | accum_bits += HOST_CHAR_BIT; | |
2204 | source += 1; | |
2205 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2206 | if (chunk_size > n) | |
2207 | chunk_size = n; | |
2208 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2209 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2210 | *target = | |
2211 | (*target & ~mask) | |
2212 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2213 | n -= chunk_size; | |
2214 | accum_bits -= chunk_size; | |
2215 | target += 1; | |
2216 | targ_offset = 0; | |
2217 | } | |
14f9c5c9 AS |
2218 | } |
2219 | else | |
2220 | { | |
2221 | accum = (unsigned char) *source >> src_offset; | |
2222 | source += 1; | |
2223 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2224 | ||
d2e4a39e | 2225 | while (n > 0) |
4c4b4cd2 PH |
2226 | { |
2227 | accum = accum + ((unsigned char) *source << accum_bits); | |
2228 | accum_bits += HOST_CHAR_BIT; | |
2229 | source += 1; | |
2230 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2231 | if (chunk_size > n) | |
2232 | chunk_size = n; | |
2233 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2234 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2235 | n -= chunk_size; | |
2236 | accum_bits -= chunk_size; | |
2237 | accum >>= chunk_size; | |
2238 | target += 1; | |
2239 | targ_offset = 0; | |
2240 | } | |
14f9c5c9 AS |
2241 | } |
2242 | } | |
2243 | ||
14f9c5c9 AS |
2244 | /* Store the contents of FROMVAL into the location of TOVAL. |
2245 | Return a new value with the location of TOVAL and contents of | |
2246 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2247 | floating-point or non-scalar types. */ |
14f9c5c9 | 2248 | |
d2e4a39e AS |
2249 | static struct value * |
2250 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2251 | { |
df407dfe AC |
2252 | struct type *type = value_type (toval); |
2253 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2254 | |
52ce6436 PH |
2255 | toval = ada_coerce_ref (toval); |
2256 | fromval = ada_coerce_ref (fromval); | |
2257 | ||
2258 | if (ada_is_direct_array_type (value_type (toval))) | |
2259 | toval = ada_coerce_to_simple_array (toval); | |
2260 | if (ada_is_direct_array_type (value_type (fromval))) | |
2261 | fromval = ada_coerce_to_simple_array (fromval); | |
2262 | ||
88e3b34b | 2263 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2264 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2265 | |
d2e4a39e | 2266 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2267 | && bits > 0 |
d2e4a39e | 2268 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2269 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2270 | { |
df407dfe AC |
2271 | int len = (value_bitpos (toval) |
2272 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2273 | int from_size; |
d2e4a39e AS |
2274 | char *buffer = (char *) alloca (len); |
2275 | struct value *val; | |
42ae5230 | 2276 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2277 | |
2278 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2279 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2280 | |
52ce6436 | 2281 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2282 | from_size = value_bitsize (fromval); |
2283 | if (from_size == 0) | |
2284 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2285 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2286 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2287 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2288 | else |
50810684 UW |
2289 | move_bits (buffer, value_bitpos (toval), |
2290 | value_contents (fromval), 0, bits, 0); | |
52ce6436 PH |
2291 | write_memory (to_addr, buffer, len); |
2292 | if (deprecated_memory_changed_hook) | |
2293 | deprecated_memory_changed_hook (to_addr, len); | |
2294 | ||
14f9c5c9 | 2295 | val = value_copy (toval); |
0fd88904 | 2296 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2297 | TYPE_LENGTH (type)); |
04624583 | 2298 | deprecated_set_value_type (val, type); |
d2e4a39e | 2299 | |
14f9c5c9 AS |
2300 | return val; |
2301 | } | |
2302 | ||
2303 | return value_assign (toval, fromval); | |
2304 | } | |
2305 | ||
2306 | ||
52ce6436 PH |
2307 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2308 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2309 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2310 | * COMPONENT, and not the inferior's memory. The current contents | |
2311 | * of COMPONENT are ignored. */ | |
2312 | static void | |
2313 | value_assign_to_component (struct value *container, struct value *component, | |
2314 | struct value *val) | |
2315 | { | |
2316 | LONGEST offset_in_container = | |
42ae5230 | 2317 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2318 | int bit_offset_in_container = |
2319 | value_bitpos (component) - value_bitpos (container); | |
2320 | int bits; | |
2321 | ||
2322 | val = value_cast (value_type (component), val); | |
2323 | ||
2324 | if (value_bitsize (component) == 0) | |
2325 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2326 | else | |
2327 | bits = value_bitsize (component); | |
2328 | ||
50810684 | 2329 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2330 | move_bits (value_contents_writeable (container) + offset_in_container, |
2331 | value_bitpos (container) + bit_offset_in_container, | |
2332 | value_contents (val), | |
2333 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2334 | bits, 1); |
52ce6436 PH |
2335 | else |
2336 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2337 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2338 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2339 | } |
2340 | ||
4c4b4cd2 PH |
2341 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2342 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2343 | thereto. */ |
2344 | ||
d2e4a39e AS |
2345 | struct value * |
2346 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2347 | { |
2348 | int k; | |
d2e4a39e AS |
2349 | struct value *elt; |
2350 | struct type *elt_type; | |
14f9c5c9 AS |
2351 | |
2352 | elt = ada_coerce_to_simple_array (arr); | |
2353 | ||
df407dfe | 2354 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2355 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2356 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2357 | return value_subscript_packed (elt, arity, ind); | |
2358 | ||
2359 | for (k = 0; k < arity; k += 1) | |
2360 | { | |
2361 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2362 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2363 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2364 | } |
2365 | return elt; | |
2366 | } | |
2367 | ||
2368 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2369 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2370 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2371 | |
2c0b251b | 2372 | static struct value * |
d2e4a39e | 2373 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2374 | struct value **ind) |
14f9c5c9 AS |
2375 | { |
2376 | int k; | |
2377 | ||
2378 | for (k = 0; k < arity; k += 1) | |
2379 | { | |
2380 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2381 | |
2382 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2383 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2384 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2385 | value_copy (arr)); |
14f9c5c9 | 2386 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2387 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2388 | type = TYPE_TARGET_TYPE (type); |
2389 | } | |
2390 | ||
2391 | return value_ind (arr); | |
2392 | } | |
2393 | ||
0b5d8877 | 2394 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2395 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2396 | elements starting at index LOW. The lower bound of this array is LOW, as | |
2397 | per Ada rules. */ | |
0b5d8877 | 2398 | static struct value * |
f5938064 JG |
2399 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2400 | int low, int high) | |
0b5d8877 | 2401 | { |
6c038f32 | 2402 | CORE_ADDR base = value_as_address (array_ptr) |
0b5d8877 PH |
2403 | + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type))) |
2404 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type))); | |
6c038f32 PH |
2405 | struct type *index_type = |
2406 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)), | |
0b5d8877 | 2407 | low, high); |
6c038f32 | 2408 | struct type *slice_type = |
0b5d8877 | 2409 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
f5938064 | 2410 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2411 | } |
2412 | ||
2413 | ||
2414 | static struct value * | |
2415 | ada_value_slice (struct value *array, int low, int high) | |
2416 | { | |
df407dfe | 2417 | struct type *type = value_type (array); |
6c038f32 | 2418 | struct type *index_type = |
0b5d8877 | 2419 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2420 | struct type *slice_type = |
0b5d8877 | 2421 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
6c038f32 | 2422 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2423 | } |
2424 | ||
14f9c5c9 AS |
2425 | /* If type is a record type in the form of a standard GNAT array |
2426 | descriptor, returns the number of dimensions for type. If arr is a | |
2427 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2428 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2429 | |
2430 | int | |
d2e4a39e | 2431 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2432 | { |
2433 | int arity; | |
2434 | ||
2435 | if (type == NULL) | |
2436 | return 0; | |
2437 | ||
2438 | type = desc_base_type (type); | |
2439 | ||
2440 | arity = 0; | |
d2e4a39e | 2441 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2442 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2443 | else |
2444 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2445 | { |
4c4b4cd2 | 2446 | arity += 1; |
61ee279c | 2447 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2448 | } |
d2e4a39e | 2449 | |
14f9c5c9 AS |
2450 | return arity; |
2451 | } | |
2452 | ||
2453 | /* If TYPE is a record type in the form of a standard GNAT array | |
2454 | descriptor or a simple array type, returns the element type for | |
2455 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2456 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2457 | |
d2e4a39e AS |
2458 | struct type * |
2459 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2460 | { |
2461 | type = desc_base_type (type); | |
2462 | ||
d2e4a39e | 2463 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2464 | { |
2465 | int k; | |
d2e4a39e | 2466 | struct type *p_array_type; |
14f9c5c9 | 2467 | |
556bdfd4 | 2468 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2469 | |
2470 | k = ada_array_arity (type); | |
2471 | if (k == 0) | |
4c4b4cd2 | 2472 | return NULL; |
d2e4a39e | 2473 | |
4c4b4cd2 | 2474 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2475 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2476 | k = nindices; |
d2e4a39e | 2477 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2478 | { |
61ee279c | 2479 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2480 | k -= 1; |
2481 | } | |
14f9c5c9 AS |
2482 | return p_array_type; |
2483 | } | |
2484 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2485 | { | |
2486 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2487 | { |
2488 | type = TYPE_TARGET_TYPE (type); | |
2489 | nindices -= 1; | |
2490 | } | |
14f9c5c9 AS |
2491 | return type; |
2492 | } | |
2493 | ||
2494 | return NULL; | |
2495 | } | |
2496 | ||
4c4b4cd2 | 2497 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2498 | Does not examine memory. Throws an error if N is invalid or TYPE |
2499 | is not an array type. NAME is the name of the Ada attribute being | |
2500 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2501 | the error message. */ | |
14f9c5c9 | 2502 | |
1eea4ebd UW |
2503 | static struct type * |
2504 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2505 | { |
4c4b4cd2 PH |
2506 | struct type *result_type; |
2507 | ||
14f9c5c9 AS |
2508 | type = desc_base_type (type); |
2509 | ||
1eea4ebd UW |
2510 | if (n < 0 || n > ada_array_arity (type)) |
2511 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2512 | |
4c4b4cd2 | 2513 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2514 | { |
2515 | int i; | |
2516 | ||
2517 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2518 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2519 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2520 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2521 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2522 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2523 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2524 | result_type = NULL; | |
14f9c5c9 | 2525 | } |
d2e4a39e | 2526 | else |
1eea4ebd UW |
2527 | { |
2528 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2529 | if (result_type == NULL) | |
2530 | error (_("attempt to take bound of something that is not an array")); | |
2531 | } | |
2532 | ||
2533 | return result_type; | |
14f9c5c9 AS |
2534 | } |
2535 | ||
2536 | /* Given that arr is an array type, returns the lower bound of the | |
2537 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2538 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2539 | array-descriptor type. It works for other arrays with bounds supplied |
2540 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2541 | |
abb68b3e | 2542 | static LONGEST |
1eea4ebd | 2543 | ada_array_bound_from_type (struct type * arr_type, int n, int which) |
14f9c5c9 | 2544 | { |
1ce677a4 | 2545 | struct type *type, *elt_type, *index_type_desc, *index_type; |
262452ec | 2546 | LONGEST retval; |
1ce677a4 | 2547 | int i; |
262452ec JK |
2548 | |
2549 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2550 | |
ad82864c JB |
2551 | if (ada_is_constrained_packed_array_type (arr_type)) |
2552 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2553 | |
4c4b4cd2 | 2554 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2555 | return (LONGEST) - which; |
14f9c5c9 AS |
2556 | |
2557 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2558 | type = TYPE_TARGET_TYPE (arr_type); | |
2559 | else | |
2560 | type = arr_type; | |
2561 | ||
1ce677a4 UW |
2562 | elt_type = type; |
2563 | for (i = n; i > 1; i--) | |
2564 | elt_type = TYPE_TARGET_TYPE (type); | |
2565 | ||
14f9c5c9 | 2566 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
262452ec JK |
2567 | if (index_type_desc != NULL) |
2568 | index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1), | |
1ce677a4 | 2569 | NULL, TYPE_INDEX_TYPE (elt_type)); |
262452ec | 2570 | else |
1ce677a4 | 2571 | index_type = TYPE_INDEX_TYPE (elt_type); |
262452ec JK |
2572 | |
2573 | switch (TYPE_CODE (index_type)) | |
14f9c5c9 | 2574 | { |
262452ec JK |
2575 | case TYPE_CODE_RANGE: |
2576 | retval = which == 0 ? TYPE_LOW_BOUND (index_type) | |
2577 | : TYPE_HIGH_BOUND (index_type); | |
2578 | break; | |
2579 | case TYPE_CODE_ENUM: | |
2580 | retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0) | |
2581 | : TYPE_FIELD_BITPOS (index_type, | |
2582 | TYPE_NFIELDS (index_type) - 1); | |
2583 | break; | |
2584 | default: | |
2585 | internal_error (__FILE__, __LINE__, _("invalid type code of index type")); | |
2586 | } | |
abb68b3e | 2587 | |
262452ec | 2588 | return retval; |
14f9c5c9 AS |
2589 | } |
2590 | ||
2591 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2592 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2593 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2594 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2595 | |
1eea4ebd | 2596 | static LONGEST |
4dc81987 | 2597 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2598 | { |
df407dfe | 2599 | struct type *arr_type = value_type (arr); |
14f9c5c9 | 2600 | |
ad82864c JB |
2601 | if (ada_is_constrained_packed_array_type (arr_type)) |
2602 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2603 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2604 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2605 | else |
1eea4ebd | 2606 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2607 | } |
2608 | ||
2609 | /* Given that arr is an array value, returns the length of the | |
2610 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2611 | supplied by run-time quantities other than discriminants. |
2612 | Does not work for arrays indexed by enumeration types with representation | |
2613 | clauses at the moment. */ | |
14f9c5c9 | 2614 | |
1eea4ebd | 2615 | static LONGEST |
d2e4a39e | 2616 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2617 | { |
df407dfe | 2618 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 | 2619 | |
ad82864c JB |
2620 | if (ada_is_constrained_packed_array_type (arr_type)) |
2621 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2622 | |
4c4b4cd2 | 2623 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2624 | return (ada_array_bound_from_type (arr_type, n, 1) |
2625 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2626 | else |
1eea4ebd UW |
2627 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2628 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2629 | } |
2630 | ||
2631 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2632 | with bounds LOW to LOW-1. */ | |
2633 | ||
2634 | static struct value * | |
2635 | empty_array (struct type *arr_type, int low) | |
2636 | { | |
6c038f32 | 2637 | struct type *index_type = |
0b5d8877 PH |
2638 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)), |
2639 | low, low - 1); | |
2640 | struct type *elt_type = ada_array_element_type (arr_type, 1); | |
2641 | return allocate_value (create_array_type (NULL, elt_type, index_type)); | |
14f9c5c9 | 2642 | } |
14f9c5c9 | 2643 | \f |
d2e4a39e | 2644 | |
4c4b4cd2 | 2645 | /* Name resolution */ |
14f9c5c9 | 2646 | |
4c4b4cd2 PH |
2647 | /* The "decoded" name for the user-definable Ada operator corresponding |
2648 | to OP. */ | |
14f9c5c9 | 2649 | |
d2e4a39e | 2650 | static const char * |
4c4b4cd2 | 2651 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2652 | { |
2653 | int i; | |
2654 | ||
4c4b4cd2 | 2655 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2656 | { |
2657 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2658 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2659 | } |
323e0a4a | 2660 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2661 | } |
2662 | ||
2663 | ||
4c4b4cd2 PH |
2664 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2665 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2666 | undefined namespace) and converts operators that are | |
2667 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2668 | non-null, it provides a preferred result type [at the moment, only |
2669 | type void has any effect---causing procedures to be preferred over | |
2670 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2671 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2672 | |
4c4b4cd2 PH |
2673 | static void |
2674 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 2675 | { |
30b15541 UW |
2676 | struct type *context_type = NULL; |
2677 | int pc = 0; | |
2678 | ||
2679 | if (void_context_p) | |
2680 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
2681 | ||
2682 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
2683 | } |
2684 | ||
4c4b4cd2 PH |
2685 | /* Resolve the operator of the subexpression beginning at |
2686 | position *POS of *EXPP. "Resolving" consists of replacing | |
2687 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2688 | with their resolutions, replacing built-in operators with | |
2689 | function calls to user-defined operators, where appropriate, and, | |
2690 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2691 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2692 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2693 | |
d2e4a39e | 2694 | static struct value * |
4c4b4cd2 | 2695 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2696 | struct type *context_type) |
14f9c5c9 AS |
2697 | { |
2698 | int pc = *pos; | |
2699 | int i; | |
4c4b4cd2 | 2700 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2701 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2702 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2703 | int nargs; /* Number of operands. */ | |
52ce6436 | 2704 | int oplen; |
14f9c5c9 AS |
2705 | |
2706 | argvec = NULL; | |
2707 | nargs = 0; | |
2708 | exp = *expp; | |
2709 | ||
52ce6436 PH |
2710 | /* Pass one: resolve operands, saving their types and updating *pos, |
2711 | if needed. */ | |
14f9c5c9 AS |
2712 | switch (op) |
2713 | { | |
4c4b4cd2 PH |
2714 | case OP_FUNCALL: |
2715 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2716 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2717 | *pos += 7; | |
4c4b4cd2 PH |
2718 | else |
2719 | { | |
2720 | *pos += 3; | |
2721 | resolve_subexp (expp, pos, 0, NULL); | |
2722 | } | |
2723 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2724 | break; |
2725 | ||
14f9c5c9 | 2726 | case UNOP_ADDR: |
4c4b4cd2 PH |
2727 | *pos += 1; |
2728 | resolve_subexp (expp, pos, 0, NULL); | |
2729 | break; | |
2730 | ||
52ce6436 PH |
2731 | case UNOP_QUAL: |
2732 | *pos += 3; | |
17466c1a | 2733 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2734 | break; |
2735 | ||
52ce6436 | 2736 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2737 | case OP_ATR_SIZE: |
2738 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2739 | case OP_ATR_FIRST: |
2740 | case OP_ATR_LAST: | |
2741 | case OP_ATR_LENGTH: | |
2742 | case OP_ATR_POS: | |
2743 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2744 | case OP_ATR_MIN: |
2745 | case OP_ATR_MAX: | |
52ce6436 PH |
2746 | case TERNOP_IN_RANGE: |
2747 | case BINOP_IN_BOUNDS: | |
2748 | case UNOP_IN_RANGE: | |
2749 | case OP_AGGREGATE: | |
2750 | case OP_OTHERS: | |
2751 | case OP_CHOICES: | |
2752 | case OP_POSITIONAL: | |
2753 | case OP_DISCRETE_RANGE: | |
2754 | case OP_NAME: | |
2755 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2756 | *pos += oplen; | |
14f9c5c9 AS |
2757 | break; |
2758 | ||
2759 | case BINOP_ASSIGN: | |
2760 | { | |
4c4b4cd2 PH |
2761 | struct value *arg1; |
2762 | ||
2763 | *pos += 1; | |
2764 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
2765 | if (arg1 == NULL) | |
2766 | resolve_subexp (expp, pos, 1, NULL); | |
2767 | else | |
df407dfe | 2768 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 2769 | break; |
14f9c5c9 AS |
2770 | } |
2771 | ||
4c4b4cd2 | 2772 | case UNOP_CAST: |
4c4b4cd2 PH |
2773 | *pos += 3; |
2774 | nargs = 1; | |
2775 | break; | |
14f9c5c9 | 2776 | |
4c4b4cd2 PH |
2777 | case BINOP_ADD: |
2778 | case BINOP_SUB: | |
2779 | case BINOP_MUL: | |
2780 | case BINOP_DIV: | |
2781 | case BINOP_REM: | |
2782 | case BINOP_MOD: | |
2783 | case BINOP_EXP: | |
2784 | case BINOP_CONCAT: | |
2785 | case BINOP_LOGICAL_AND: | |
2786 | case BINOP_LOGICAL_OR: | |
2787 | case BINOP_BITWISE_AND: | |
2788 | case BINOP_BITWISE_IOR: | |
2789 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 2790 | |
4c4b4cd2 PH |
2791 | case BINOP_EQUAL: |
2792 | case BINOP_NOTEQUAL: | |
2793 | case BINOP_LESS: | |
2794 | case BINOP_GTR: | |
2795 | case BINOP_LEQ: | |
2796 | case BINOP_GEQ: | |
14f9c5c9 | 2797 | |
4c4b4cd2 PH |
2798 | case BINOP_REPEAT: |
2799 | case BINOP_SUBSCRIPT: | |
2800 | case BINOP_COMMA: | |
40c8aaa9 JB |
2801 | *pos += 1; |
2802 | nargs = 2; | |
2803 | break; | |
14f9c5c9 | 2804 | |
4c4b4cd2 PH |
2805 | case UNOP_NEG: |
2806 | case UNOP_PLUS: | |
2807 | case UNOP_LOGICAL_NOT: | |
2808 | case UNOP_ABS: | |
2809 | case UNOP_IND: | |
2810 | *pos += 1; | |
2811 | nargs = 1; | |
2812 | break; | |
14f9c5c9 | 2813 | |
4c4b4cd2 PH |
2814 | case OP_LONG: |
2815 | case OP_DOUBLE: | |
2816 | case OP_VAR_VALUE: | |
2817 | *pos += 4; | |
2818 | break; | |
14f9c5c9 | 2819 | |
4c4b4cd2 PH |
2820 | case OP_TYPE: |
2821 | case OP_BOOL: | |
2822 | case OP_LAST: | |
4c4b4cd2 PH |
2823 | case OP_INTERNALVAR: |
2824 | *pos += 3; | |
2825 | break; | |
14f9c5c9 | 2826 | |
4c4b4cd2 PH |
2827 | case UNOP_MEMVAL: |
2828 | *pos += 3; | |
2829 | nargs = 1; | |
2830 | break; | |
2831 | ||
67f3407f DJ |
2832 | case OP_REGISTER: |
2833 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2834 | break; | |
2835 | ||
4c4b4cd2 PH |
2836 | case STRUCTOP_STRUCT: |
2837 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2838 | nargs = 1; | |
2839 | break; | |
2840 | ||
4c4b4cd2 | 2841 | case TERNOP_SLICE: |
4c4b4cd2 PH |
2842 | *pos += 1; |
2843 | nargs = 3; | |
2844 | break; | |
2845 | ||
52ce6436 | 2846 | case OP_STRING: |
14f9c5c9 | 2847 | break; |
4c4b4cd2 PH |
2848 | |
2849 | default: | |
323e0a4a | 2850 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
2851 | } |
2852 | ||
76a01679 | 2853 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
2854 | for (i = 0; i < nargs; i += 1) |
2855 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
2856 | argvec[i] = NULL; | |
2857 | exp = *expp; | |
2858 | ||
2859 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
2860 | switch (op) |
2861 | { | |
2862 | default: | |
2863 | break; | |
2864 | ||
14f9c5c9 | 2865 | case OP_VAR_VALUE: |
4c4b4cd2 | 2866 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
2867 | { |
2868 | struct ada_symbol_info *candidates; | |
2869 | int n_candidates; | |
2870 | ||
2871 | n_candidates = | |
2872 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
2873 | (exp->elts[pc + 2].symbol), | |
2874 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
2875 | &candidates); | |
2876 | ||
2877 | if (n_candidates > 1) | |
2878 | { | |
2879 | /* Types tend to get re-introduced locally, so if there | |
2880 | are any local symbols that are not types, first filter | |
2881 | out all types. */ | |
2882 | int j; | |
2883 | for (j = 0; j < n_candidates; j += 1) | |
2884 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
2885 | { | |
2886 | case LOC_REGISTER: | |
2887 | case LOC_ARG: | |
2888 | case LOC_REF_ARG: | |
76a01679 JB |
2889 | case LOC_REGPARM_ADDR: |
2890 | case LOC_LOCAL: | |
76a01679 | 2891 | case LOC_COMPUTED: |
76a01679 JB |
2892 | goto FoundNonType; |
2893 | default: | |
2894 | break; | |
2895 | } | |
2896 | FoundNonType: | |
2897 | if (j < n_candidates) | |
2898 | { | |
2899 | j = 0; | |
2900 | while (j < n_candidates) | |
2901 | { | |
2902 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
2903 | { | |
2904 | candidates[j] = candidates[n_candidates - 1]; | |
2905 | n_candidates -= 1; | |
2906 | } | |
2907 | else | |
2908 | j += 1; | |
2909 | } | |
2910 | } | |
2911 | } | |
2912 | ||
2913 | if (n_candidates == 0) | |
323e0a4a | 2914 | error (_("No definition found for %s"), |
76a01679 JB |
2915 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2916 | else if (n_candidates == 1) | |
2917 | i = 0; | |
2918 | else if (deprocedure_p | |
2919 | && !is_nonfunction (candidates, n_candidates)) | |
2920 | { | |
06d5cf63 JB |
2921 | i = ada_resolve_function |
2922 | (candidates, n_candidates, NULL, 0, | |
2923 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
2924 | context_type); | |
76a01679 | 2925 | if (i < 0) |
323e0a4a | 2926 | error (_("Could not find a match for %s"), |
76a01679 JB |
2927 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2928 | } | |
2929 | else | |
2930 | { | |
323e0a4a | 2931 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
2932 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2933 | user_select_syms (candidates, n_candidates, 1); | |
2934 | i = 0; | |
2935 | } | |
2936 | ||
2937 | exp->elts[pc + 1].block = candidates[i].block; | |
2938 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
2939 | if (innermost_block == NULL |
2940 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
2941 | innermost_block = candidates[i].block; |
2942 | } | |
2943 | ||
2944 | if (deprocedure_p | |
2945 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
2946 | == TYPE_CODE_FUNC)) | |
2947 | { | |
2948 | replace_operator_with_call (expp, pc, 0, 0, | |
2949 | exp->elts[pc + 2].symbol, | |
2950 | exp->elts[pc + 1].block); | |
2951 | exp = *expp; | |
2952 | } | |
14f9c5c9 AS |
2953 | break; |
2954 | ||
2955 | case OP_FUNCALL: | |
2956 | { | |
4c4b4cd2 | 2957 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 2958 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
2959 | { |
2960 | struct ada_symbol_info *candidates; | |
2961 | int n_candidates; | |
2962 | ||
2963 | n_candidates = | |
76a01679 JB |
2964 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
2965 | (exp->elts[pc + 5].symbol), | |
2966 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
2967 | &candidates); | |
4c4b4cd2 PH |
2968 | if (n_candidates == 1) |
2969 | i = 0; | |
2970 | else | |
2971 | { | |
06d5cf63 JB |
2972 | i = ada_resolve_function |
2973 | (candidates, n_candidates, | |
2974 | argvec, nargs, | |
2975 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
2976 | context_type); | |
4c4b4cd2 | 2977 | if (i < 0) |
323e0a4a | 2978 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
2979 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
2980 | } | |
2981 | ||
2982 | exp->elts[pc + 4].block = candidates[i].block; | |
2983 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
2984 | if (innermost_block == NULL |
2985 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
2986 | innermost_block = candidates[i].block; |
2987 | } | |
14f9c5c9 AS |
2988 | } |
2989 | break; | |
2990 | case BINOP_ADD: | |
2991 | case BINOP_SUB: | |
2992 | case BINOP_MUL: | |
2993 | case BINOP_DIV: | |
2994 | case BINOP_REM: | |
2995 | case BINOP_MOD: | |
2996 | case BINOP_CONCAT: | |
2997 | case BINOP_BITWISE_AND: | |
2998 | case BINOP_BITWISE_IOR: | |
2999 | case BINOP_BITWISE_XOR: | |
3000 | case BINOP_EQUAL: | |
3001 | case BINOP_NOTEQUAL: | |
3002 | case BINOP_LESS: | |
3003 | case BINOP_GTR: | |
3004 | case BINOP_LEQ: | |
3005 | case BINOP_GEQ: | |
3006 | case BINOP_EXP: | |
3007 | case UNOP_NEG: | |
3008 | case UNOP_PLUS: | |
3009 | case UNOP_LOGICAL_NOT: | |
3010 | case UNOP_ABS: | |
3011 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3012 | { |
3013 | struct ada_symbol_info *candidates; | |
3014 | int n_candidates; | |
3015 | ||
3016 | n_candidates = | |
3017 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3018 | (struct block *) NULL, VAR_DOMAIN, | |
3019 | &candidates); | |
3020 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, | |
76a01679 | 3021 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3022 | if (i < 0) |
3023 | break; | |
3024 | ||
76a01679 JB |
3025 | replace_operator_with_call (expp, pc, nargs, 1, |
3026 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3027 | exp = *expp; |
3028 | } | |
14f9c5c9 | 3029 | break; |
4c4b4cd2 PH |
3030 | |
3031 | case OP_TYPE: | |
b3dbf008 | 3032 | case OP_REGISTER: |
4c4b4cd2 | 3033 | return NULL; |
14f9c5c9 AS |
3034 | } |
3035 | ||
3036 | *pos = pc; | |
3037 | return evaluate_subexp_type (exp, pos); | |
3038 | } | |
3039 | ||
3040 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3041 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3042 | a non-pointer. */ |
14f9c5c9 | 3043 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3044 | liberal. */ |
14f9c5c9 AS |
3045 | |
3046 | static int | |
4dc81987 | 3047 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3048 | { |
61ee279c PH |
3049 | ftype = ada_check_typedef (ftype); |
3050 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3051 | |
3052 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3053 | ftype = TYPE_TARGET_TYPE (ftype); | |
3054 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3055 | atype = TYPE_TARGET_TYPE (atype); | |
3056 | ||
d2e4a39e | 3057 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3058 | { |
3059 | default: | |
5b3d5b7d | 3060 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3061 | case TYPE_CODE_PTR: |
3062 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3063 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3064 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3065 | else |
1265e4aa JB |
3066 | return (may_deref |
3067 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3068 | case TYPE_CODE_INT: |
3069 | case TYPE_CODE_ENUM: | |
3070 | case TYPE_CODE_RANGE: | |
3071 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3072 | { |
3073 | case TYPE_CODE_INT: | |
3074 | case TYPE_CODE_ENUM: | |
3075 | case TYPE_CODE_RANGE: | |
3076 | return 1; | |
3077 | default: | |
3078 | return 0; | |
3079 | } | |
14f9c5c9 AS |
3080 | |
3081 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3082 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3083 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3084 | |
3085 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3086 | if (ada_is_array_descriptor_type (ftype)) |
3087 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3088 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3089 | else |
4c4b4cd2 PH |
3090 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3091 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3092 | |
3093 | case TYPE_CODE_UNION: | |
3094 | case TYPE_CODE_FLT: | |
3095 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3096 | } | |
3097 | } | |
3098 | ||
3099 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3100 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3101 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3102 | argument function. */ |
14f9c5c9 AS |
3103 | |
3104 | static int | |
d2e4a39e | 3105 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3106 | { |
3107 | int i; | |
d2e4a39e | 3108 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3109 | |
1265e4aa JB |
3110 | if (SYMBOL_CLASS (func) == LOC_CONST |
3111 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3112 | return (n_actuals == 0); |
3113 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3114 | return 0; | |
3115 | ||
3116 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3117 | return 0; | |
3118 | ||
3119 | for (i = 0; i < n_actuals; i += 1) | |
3120 | { | |
4c4b4cd2 | 3121 | if (actuals[i] == NULL) |
76a01679 JB |
3122 | return 0; |
3123 | else | |
3124 | { | |
61ee279c | 3125 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i)); |
df407dfe | 3126 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3127 | |
76a01679 JB |
3128 | if (!ada_type_match (ftype, atype, 1)) |
3129 | return 0; | |
3130 | } | |
14f9c5c9 AS |
3131 | } |
3132 | return 1; | |
3133 | } | |
3134 | ||
3135 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3136 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3137 | FUNC_TYPE is not a valid function type with a non-null return type | |
3138 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3139 | ||
3140 | static int | |
d2e4a39e | 3141 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3142 | { |
d2e4a39e | 3143 | struct type *return_type; |
14f9c5c9 AS |
3144 | |
3145 | if (func_type == NULL) | |
3146 | return 1; | |
3147 | ||
4c4b4cd2 PH |
3148 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
3149 | return_type = base_type (TYPE_TARGET_TYPE (func_type)); | |
3150 | else | |
3151 | return_type = base_type (func_type); | |
14f9c5c9 AS |
3152 | if (return_type == NULL) |
3153 | return 1; | |
3154 | ||
4c4b4cd2 | 3155 | context_type = base_type (context_type); |
14f9c5c9 AS |
3156 | |
3157 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3158 | return context_type == NULL || return_type == context_type; | |
3159 | else if (context_type == NULL) | |
3160 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3161 | else | |
3162 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3163 | } | |
3164 | ||
3165 | ||
4c4b4cd2 | 3166 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3167 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3168 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3169 | that returns that type, then eliminate matches that don't. If | |
3170 | CONTEXT_TYPE is void and there is at least one match that does not | |
3171 | return void, eliminate all matches that do. | |
3172 | ||
14f9c5c9 AS |
3173 | Asks the user if there is more than one match remaining. Returns -1 |
3174 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3175 | solely for messages. May re-arrange and modify SYMS in |
3176 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3177 | |
4c4b4cd2 PH |
3178 | static int |
3179 | ada_resolve_function (struct ada_symbol_info syms[], | |
3180 | int nsyms, struct value **args, int nargs, | |
3181 | const char *name, struct type *context_type) | |
14f9c5c9 | 3182 | { |
30b15541 | 3183 | int fallback; |
14f9c5c9 | 3184 | int k; |
4c4b4cd2 | 3185 | int m; /* Number of hits */ |
14f9c5c9 | 3186 | |
d2e4a39e | 3187 | m = 0; |
30b15541 UW |
3188 | /* In the first pass of the loop, we only accept functions matching |
3189 | context_type. If none are found, we add a second pass of the loop | |
3190 | where every function is accepted. */ | |
3191 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3192 | { |
3193 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3194 | { |
61ee279c | 3195 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3196 | |
3197 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3198 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3199 | { |
3200 | syms[m] = syms[k]; | |
3201 | m += 1; | |
3202 | } | |
3203 | } | |
14f9c5c9 AS |
3204 | } |
3205 | ||
3206 | if (m == 0) | |
3207 | return -1; | |
3208 | else if (m > 1) | |
3209 | { | |
323e0a4a | 3210 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3211 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3212 | return 0; |
3213 | } | |
3214 | return 0; | |
3215 | } | |
3216 | ||
4c4b4cd2 PH |
3217 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3218 | in a listing of choices during disambiguation (see sort_choices, below). | |
3219 | The idea is that overloadings of a subprogram name from the | |
3220 | same package should sort in their source order. We settle for ordering | |
3221 | such symbols by their trailing number (__N or $N). */ | |
3222 | ||
14f9c5c9 | 3223 | static int |
4c4b4cd2 | 3224 | encoded_ordered_before (char *N0, char *N1) |
14f9c5c9 AS |
3225 | { |
3226 | if (N1 == NULL) | |
3227 | return 0; | |
3228 | else if (N0 == NULL) | |
3229 | return 1; | |
3230 | else | |
3231 | { | |
3232 | int k0, k1; | |
d2e4a39e | 3233 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3234 | ; |
d2e4a39e | 3235 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3236 | ; |
d2e4a39e | 3237 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3238 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3239 | { | |
3240 | int n0, n1; | |
3241 | n0 = k0; | |
3242 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3243 | n0 -= 1; | |
3244 | n1 = k1; | |
3245 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3246 | n1 -= 1; | |
3247 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3248 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3249 | } | |
14f9c5c9 AS |
3250 | return (strcmp (N0, N1) < 0); |
3251 | } | |
3252 | } | |
d2e4a39e | 3253 | |
4c4b4cd2 PH |
3254 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3255 | encoded names. */ | |
3256 | ||
d2e4a39e | 3257 | static void |
4c4b4cd2 | 3258 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3259 | { |
4c4b4cd2 | 3260 | int i; |
d2e4a39e | 3261 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3262 | { |
4c4b4cd2 | 3263 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3264 | int j; |
3265 | ||
d2e4a39e | 3266 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3267 | { |
3268 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3269 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3270 | break; | |
3271 | syms[j + 1] = syms[j]; | |
3272 | } | |
d2e4a39e | 3273 | syms[j + 1] = sym; |
14f9c5c9 AS |
3274 | } |
3275 | } | |
3276 | ||
4c4b4cd2 PH |
3277 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3278 | by asking the user (if necessary), returning the number selected, | |
3279 | and setting the first elements of SYMS items. Error if no symbols | |
3280 | selected. */ | |
14f9c5c9 AS |
3281 | |
3282 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3283 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3284 | |
3285 | int | |
4c4b4cd2 | 3286 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3287 | { |
3288 | int i; | |
d2e4a39e | 3289 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3290 | int n_chosen; |
3291 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3292 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3293 | |
3294 | if (max_results < 1) | |
323e0a4a | 3295 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3296 | if (nsyms <= 1) |
3297 | return nsyms; | |
3298 | ||
717d2f5a JB |
3299 | if (select_mode == multiple_symbols_cancel) |
3300 | error (_("\ | |
3301 | canceled because the command is ambiguous\n\ | |
3302 | See set/show multiple-symbol.")); | |
3303 | ||
3304 | /* If select_mode is "all", then return all possible symbols. | |
3305 | Only do that if more than one symbol can be selected, of course. | |
3306 | Otherwise, display the menu as usual. */ | |
3307 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3308 | return nsyms; | |
3309 | ||
323e0a4a | 3310 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3311 | if (max_results > 1) |
323e0a4a | 3312 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3313 | |
4c4b4cd2 | 3314 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3315 | |
3316 | for (i = 0; i < nsyms; i += 1) | |
3317 | { | |
4c4b4cd2 PH |
3318 | if (syms[i].sym == NULL) |
3319 | continue; | |
3320 | ||
3321 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3322 | { | |
76a01679 JB |
3323 | struct symtab_and_line sal = |
3324 | find_function_start_sal (syms[i].sym, 1); | |
323e0a4a AC |
3325 | if (sal.symtab == NULL) |
3326 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3327 | i + first_choice, | |
3328 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3329 | sal.line); | |
3330 | else | |
3331 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3332 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3333 | sal.symtab->filename, sal.line); | |
4c4b4cd2 PH |
3334 | continue; |
3335 | } | |
d2e4a39e | 3336 | else |
4c4b4cd2 PH |
3337 | { |
3338 | int is_enumeral = | |
3339 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3340 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3341 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
6f38eac8 | 3342 | struct symtab *symtab = syms[i].sym->symtab; |
4c4b4cd2 PH |
3343 | |
3344 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3345 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3346 | i + first_choice, |
3347 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3348 | symtab->filename, SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3349 | else if (is_enumeral |
3350 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3351 | { |
a3f17187 | 3352 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 JB |
3353 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
3354 | gdb_stdout, -1, 0); | |
323e0a4a | 3355 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3356 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3357 | } | |
3358 | else if (symtab != NULL) | |
3359 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3360 | ? _("[%d] %s in %s (enumeral)\n") |
3361 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3362 | i + first_choice, |
3363 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3364 | symtab->filename); | |
3365 | else | |
3366 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3367 | ? _("[%d] %s (enumeral)\n") |
3368 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3369 | i + first_choice, |
3370 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3371 | } | |
14f9c5c9 | 3372 | } |
d2e4a39e | 3373 | |
14f9c5c9 | 3374 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3375 | "overload-choice"); |
14f9c5c9 AS |
3376 | |
3377 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3378 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3379 | |
3380 | return n_chosen; | |
3381 | } | |
3382 | ||
3383 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3384 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3385 | order in CHOICES[0 .. N-1], and return N. |
3386 | ||
3387 | The user types choices as a sequence of numbers on one line | |
3388 | separated by blanks, encoding them as follows: | |
3389 | ||
4c4b4cd2 | 3390 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3391 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3392 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3393 | ||
4c4b4cd2 | 3394 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3395 | |
3396 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3397 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3398 | |
3399 | int | |
d2e4a39e | 3400 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3401 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3402 | { |
d2e4a39e | 3403 | char *args; |
0bcd0149 | 3404 | char *prompt; |
14f9c5c9 AS |
3405 | int n_chosen; |
3406 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3407 | |
14f9c5c9 AS |
3408 | prompt = getenv ("PS2"); |
3409 | if (prompt == NULL) | |
0bcd0149 | 3410 | prompt = "> "; |
14f9c5c9 | 3411 | |
0bcd0149 | 3412 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3413 | |
14f9c5c9 | 3414 | if (args == NULL) |
323e0a4a | 3415 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3416 | |
3417 | n_chosen = 0; | |
76a01679 | 3418 | |
4c4b4cd2 PH |
3419 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3420 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3421 | while (1) |
3422 | { | |
d2e4a39e | 3423 | char *args2; |
14f9c5c9 AS |
3424 | int choice, j; |
3425 | ||
3426 | while (isspace (*args)) | |
4c4b4cd2 | 3427 | args += 1; |
14f9c5c9 | 3428 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3429 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3430 | else if (*args == '\0') |
4c4b4cd2 | 3431 | break; |
14f9c5c9 AS |
3432 | |
3433 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3434 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3435 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3436 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3437 | args = args2; |
3438 | ||
d2e4a39e | 3439 | if (choice == 0) |
323e0a4a | 3440 | error (_("cancelled")); |
14f9c5c9 AS |
3441 | |
3442 | if (choice < first_choice) | |
4c4b4cd2 PH |
3443 | { |
3444 | n_chosen = n_choices; | |
3445 | for (j = 0; j < n_choices; j += 1) | |
3446 | choices[j] = j; | |
3447 | break; | |
3448 | } | |
14f9c5c9 AS |
3449 | choice -= first_choice; |
3450 | ||
d2e4a39e | 3451 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3452 | { |
3453 | } | |
14f9c5c9 AS |
3454 | |
3455 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3456 | { |
3457 | int k; | |
3458 | for (k = n_chosen - 1; k > j; k -= 1) | |
3459 | choices[k + 1] = choices[k]; | |
3460 | choices[j + 1] = choice; | |
3461 | n_chosen += 1; | |
3462 | } | |
14f9c5c9 AS |
3463 | } |
3464 | ||
3465 | if (n_chosen > max_results) | |
323e0a4a | 3466 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3467 | |
14f9c5c9 AS |
3468 | return n_chosen; |
3469 | } | |
3470 | ||
4c4b4cd2 PH |
3471 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3472 | on the function identified by SYM and BLOCK, and taking NARGS | |
3473 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3474 | |
3475 | static void | |
d2e4a39e | 3476 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 PH |
3477 | int oplen, struct symbol *sym, |
3478 | struct block *block) | |
14f9c5c9 AS |
3479 | { |
3480 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3481 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3482 | struct expression *newexp = (struct expression *) |
14f9c5c9 | 3483 | xmalloc (sizeof (struct expression) |
4c4b4cd2 | 3484 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3485 | struct expression *exp = *expp; |
14f9c5c9 AS |
3486 | |
3487 | newexp->nelts = exp->nelts + 7 - oplen; | |
3488 | newexp->language_defn = exp->language_defn; | |
3489 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); | |
d2e4a39e | 3490 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3491 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3492 | |
3493 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3494 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3495 | ||
3496 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3497 | newexp->elts[pc + 4].block = block; | |
3498 | newexp->elts[pc + 5].symbol = sym; | |
3499 | ||
3500 | *expp = newexp; | |
aacb1f0a | 3501 | xfree (exp); |
d2e4a39e | 3502 | } |
14f9c5c9 AS |
3503 | |
3504 | /* Type-class predicates */ | |
3505 | ||
4c4b4cd2 PH |
3506 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3507 | or FLOAT). */ | |
14f9c5c9 AS |
3508 | |
3509 | static int | |
d2e4a39e | 3510 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3511 | { |
3512 | if (type == NULL) | |
3513 | return 0; | |
d2e4a39e AS |
3514 | else |
3515 | { | |
3516 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3517 | { |
3518 | case TYPE_CODE_INT: | |
3519 | case TYPE_CODE_FLT: | |
3520 | return 1; | |
3521 | case TYPE_CODE_RANGE: | |
3522 | return (type == TYPE_TARGET_TYPE (type) | |
3523 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3524 | default: | |
3525 | return 0; | |
3526 | } | |
d2e4a39e | 3527 | } |
14f9c5c9 AS |
3528 | } |
3529 | ||
4c4b4cd2 | 3530 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3531 | |
3532 | static int | |
d2e4a39e | 3533 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3534 | { |
3535 | if (type == NULL) | |
3536 | return 0; | |
d2e4a39e AS |
3537 | else |
3538 | { | |
3539 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3540 | { |
3541 | case TYPE_CODE_INT: | |
3542 | return 1; | |
3543 | case TYPE_CODE_RANGE: | |
3544 | return (type == TYPE_TARGET_TYPE (type) | |
3545 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3546 | default: | |
3547 | return 0; | |
3548 | } | |
d2e4a39e | 3549 | } |
14f9c5c9 AS |
3550 | } |
3551 | ||
4c4b4cd2 | 3552 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3553 | |
3554 | static int | |
d2e4a39e | 3555 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3556 | { |
3557 | if (type == NULL) | |
3558 | return 0; | |
d2e4a39e AS |
3559 | else |
3560 | { | |
3561 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3562 | { |
3563 | case TYPE_CODE_INT: | |
3564 | case TYPE_CODE_RANGE: | |
3565 | case TYPE_CODE_ENUM: | |
3566 | case TYPE_CODE_FLT: | |
3567 | return 1; | |
3568 | default: | |
3569 | return 0; | |
3570 | } | |
d2e4a39e | 3571 | } |
14f9c5c9 AS |
3572 | } |
3573 | ||
4c4b4cd2 | 3574 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3575 | |
3576 | static int | |
d2e4a39e | 3577 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3578 | { |
3579 | if (type == NULL) | |
3580 | return 0; | |
d2e4a39e AS |
3581 | else |
3582 | { | |
3583 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3584 | { |
3585 | case TYPE_CODE_INT: | |
3586 | case TYPE_CODE_RANGE: | |
3587 | case TYPE_CODE_ENUM: | |
3588 | return 1; | |
3589 | default: | |
3590 | return 0; | |
3591 | } | |
d2e4a39e | 3592 | } |
14f9c5c9 AS |
3593 | } |
3594 | ||
4c4b4cd2 PH |
3595 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3596 | a user-defined function. Errs on the side of pre-defined operators | |
3597 | (i.e., result 0). */ | |
14f9c5c9 AS |
3598 | |
3599 | static int | |
d2e4a39e | 3600 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3601 | { |
76a01679 | 3602 | struct type *type0 = |
df407dfe | 3603 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3604 | struct type *type1 = |
df407dfe | 3605 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3606 | |
4c4b4cd2 PH |
3607 | if (type0 == NULL) |
3608 | return 0; | |
3609 | ||
14f9c5c9 AS |
3610 | switch (op) |
3611 | { | |
3612 | default: | |
3613 | return 0; | |
3614 | ||
3615 | case BINOP_ADD: | |
3616 | case BINOP_SUB: | |
3617 | case BINOP_MUL: | |
3618 | case BINOP_DIV: | |
d2e4a39e | 3619 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3620 | |
3621 | case BINOP_REM: | |
3622 | case BINOP_MOD: | |
3623 | case BINOP_BITWISE_AND: | |
3624 | case BINOP_BITWISE_IOR: | |
3625 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3626 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3627 | |
3628 | case BINOP_EQUAL: | |
3629 | case BINOP_NOTEQUAL: | |
3630 | case BINOP_LESS: | |
3631 | case BINOP_GTR: | |
3632 | case BINOP_LEQ: | |
3633 | case BINOP_GEQ: | |
d2e4a39e | 3634 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3635 | |
3636 | case BINOP_CONCAT: | |
ee90b9ab | 3637 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3638 | |
3639 | case BINOP_EXP: | |
d2e4a39e | 3640 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3641 | |
3642 | case UNOP_NEG: | |
3643 | case UNOP_PLUS: | |
3644 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3645 | case UNOP_ABS: |
3646 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3647 | |
3648 | } | |
3649 | } | |
3650 | \f | |
4c4b4cd2 | 3651 | /* Renaming */ |
14f9c5c9 | 3652 | |
aeb5907d JB |
3653 | /* NOTES: |
3654 | ||
3655 | 1. In the following, we assume that a renaming type's name may | |
3656 | have an ___XD suffix. It would be nice if this went away at some | |
3657 | point. | |
3658 | 2. We handle both the (old) purely type-based representation of | |
3659 | renamings and the (new) variable-based encoding. At some point, | |
3660 | it is devoutly to be hoped that the former goes away | |
3661 | (FIXME: hilfinger-2007-07-09). | |
3662 | 3. Subprogram renamings are not implemented, although the XRS | |
3663 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3664 | ||
3665 | /* If SYM encodes a renaming, | |
3666 | ||
3667 | <renaming> renames <renamed entity>, | |
3668 | ||
3669 | sets *LEN to the length of the renamed entity's name, | |
3670 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3671 | the string describing the subcomponent selected from the renamed | |
3672 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming | |
3673 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR | |
3674 | are undefined). Otherwise, returns a value indicating the category | |
3675 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3676 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3677 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3678 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3679 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3680 | may be NULL, in which case they are not assigned. | |
3681 | ||
3682 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3683 | ||
3684 | enum ada_renaming_category | |
3685 | ada_parse_renaming (struct symbol *sym, | |
3686 | const char **renamed_entity, int *len, | |
3687 | const char **renaming_expr) | |
3688 | { | |
3689 | enum ada_renaming_category kind; | |
3690 | const char *info; | |
3691 | const char *suffix; | |
3692 | ||
3693 | if (sym == NULL) | |
3694 | return ADA_NOT_RENAMING; | |
3695 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3696 | { |
aeb5907d JB |
3697 | default: |
3698 | return ADA_NOT_RENAMING; | |
3699 | case LOC_TYPEDEF: | |
3700 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3701 | renamed_entity, len, renaming_expr); | |
3702 | case LOC_LOCAL: | |
3703 | case LOC_STATIC: | |
3704 | case LOC_COMPUTED: | |
3705 | case LOC_OPTIMIZED_OUT: | |
3706 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3707 | if (info == NULL) | |
3708 | return ADA_NOT_RENAMING; | |
3709 | switch (info[5]) | |
3710 | { | |
3711 | case '_': | |
3712 | kind = ADA_OBJECT_RENAMING; | |
3713 | info += 6; | |
3714 | break; | |
3715 | case 'E': | |
3716 | kind = ADA_EXCEPTION_RENAMING; | |
3717 | info += 7; | |
3718 | break; | |
3719 | case 'P': | |
3720 | kind = ADA_PACKAGE_RENAMING; | |
3721 | info += 7; | |
3722 | break; | |
3723 | case 'S': | |
3724 | kind = ADA_SUBPROGRAM_RENAMING; | |
3725 | info += 7; | |
3726 | break; | |
3727 | default: | |
3728 | return ADA_NOT_RENAMING; | |
3729 | } | |
14f9c5c9 | 3730 | } |
4c4b4cd2 | 3731 | |
aeb5907d JB |
3732 | if (renamed_entity != NULL) |
3733 | *renamed_entity = info; | |
3734 | suffix = strstr (info, "___XE"); | |
3735 | if (suffix == NULL || suffix == info) | |
3736 | return ADA_NOT_RENAMING; | |
3737 | if (len != NULL) | |
3738 | *len = strlen (info) - strlen (suffix); | |
3739 | suffix += 5; | |
3740 | if (renaming_expr != NULL) | |
3741 | *renaming_expr = suffix; | |
3742 | return kind; | |
3743 | } | |
3744 | ||
3745 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3746 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3747 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3748 | ADA_NOT_RENAMING otherwise. */ | |
3749 | static enum ada_renaming_category | |
3750 | parse_old_style_renaming (struct type *type, | |
3751 | const char **renamed_entity, int *len, | |
3752 | const char **renaming_expr) | |
3753 | { | |
3754 | enum ada_renaming_category kind; | |
3755 | const char *name; | |
3756 | const char *info; | |
3757 | const char *suffix; | |
14f9c5c9 | 3758 | |
aeb5907d JB |
3759 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
3760 | || TYPE_NFIELDS (type) != 1) | |
3761 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 3762 | |
aeb5907d JB |
3763 | name = type_name_no_tag (type); |
3764 | if (name == NULL) | |
3765 | return ADA_NOT_RENAMING; | |
3766 | ||
3767 | name = strstr (name, "___XR"); | |
3768 | if (name == NULL) | |
3769 | return ADA_NOT_RENAMING; | |
3770 | switch (name[5]) | |
3771 | { | |
3772 | case '\0': | |
3773 | case '_': | |
3774 | kind = ADA_OBJECT_RENAMING; | |
3775 | break; | |
3776 | case 'E': | |
3777 | kind = ADA_EXCEPTION_RENAMING; | |
3778 | break; | |
3779 | case 'P': | |
3780 | kind = ADA_PACKAGE_RENAMING; | |
3781 | break; | |
3782 | case 'S': | |
3783 | kind = ADA_SUBPROGRAM_RENAMING; | |
3784 | break; | |
3785 | default: | |
3786 | return ADA_NOT_RENAMING; | |
3787 | } | |
14f9c5c9 | 3788 | |
aeb5907d JB |
3789 | info = TYPE_FIELD_NAME (type, 0); |
3790 | if (info == NULL) | |
3791 | return ADA_NOT_RENAMING; | |
3792 | if (renamed_entity != NULL) | |
3793 | *renamed_entity = info; | |
3794 | suffix = strstr (info, "___XE"); | |
3795 | if (renaming_expr != NULL) | |
3796 | *renaming_expr = suffix + 5; | |
3797 | if (suffix == NULL || suffix == info) | |
3798 | return ADA_NOT_RENAMING; | |
3799 | if (len != NULL) | |
3800 | *len = suffix - info; | |
3801 | return kind; | |
3802 | } | |
52ce6436 | 3803 | |
14f9c5c9 | 3804 | \f |
d2e4a39e | 3805 | |
4c4b4cd2 | 3806 | /* Evaluation: Function Calls */ |
14f9c5c9 | 3807 | |
4c4b4cd2 PH |
3808 | /* Return an lvalue containing the value VAL. This is the identity on |
3809 | lvalues, and otherwise has the side-effect of pushing a copy of VAL | |
3810 | on the stack, using and updating *SP as the stack pointer, and | |
42ae5230 | 3811 | returning an lvalue whose value_address points to the copy. */ |
14f9c5c9 | 3812 | |
d2e4a39e | 3813 | static struct value * |
4a399546 | 3814 | ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp) |
14f9c5c9 | 3815 | { |
c3e5cd34 PH |
3816 | if (! VALUE_LVAL (val)) |
3817 | { | |
df407dfe | 3818 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
c3e5cd34 PH |
3819 | |
3820 | /* The following is taken from the structure-return code in | |
3821 | call_function_by_hand. FIXME: Therefore, some refactoring seems | |
3822 | indicated. */ | |
4a399546 | 3823 | if (gdbarch_inner_than (gdbarch, 1, 2)) |
c3e5cd34 | 3824 | { |
42ae5230 | 3825 | /* Stack grows downward. Align SP and value_address (val) after |
c3e5cd34 PH |
3826 | reserving sufficient space. */ |
3827 | *sp -= len; | |
4a399546 UW |
3828 | if (gdbarch_frame_align_p (gdbarch)) |
3829 | *sp = gdbarch_frame_align (gdbarch, *sp); | |
42ae5230 | 3830 | set_value_address (val, *sp); |
c3e5cd34 PH |
3831 | } |
3832 | else | |
3833 | { | |
3834 | /* Stack grows upward. Align the frame, allocate space, and | |
3835 | then again, re-align the frame. */ | |
4a399546 UW |
3836 | if (gdbarch_frame_align_p (gdbarch)) |
3837 | *sp = gdbarch_frame_align (gdbarch, *sp); | |
42ae5230 | 3838 | set_value_address (val, *sp); |
c3e5cd34 | 3839 | *sp += len; |
4a399546 UW |
3840 | if (gdbarch_frame_align_p (gdbarch)) |
3841 | *sp = gdbarch_frame_align (gdbarch, *sp); | |
c3e5cd34 | 3842 | } |
a84a8a0d | 3843 | VALUE_LVAL (val) = lval_memory; |
14f9c5c9 | 3844 | |
42ae5230 | 3845 | write_memory (value_address (val), value_contents_raw (val), len); |
c3e5cd34 | 3846 | } |
14f9c5c9 AS |
3847 | |
3848 | return val; | |
3849 | } | |
3850 | ||
3851 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
3852 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
3853 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 3854 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 3855 | |
a93c0eb6 JB |
3856 | struct value * |
3857 | ada_convert_actual (struct value *actual, struct type *formal_type0, | |
4a399546 | 3858 | struct gdbarch *gdbarch, CORE_ADDR *sp) |
14f9c5c9 | 3859 | { |
df407dfe | 3860 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 3861 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
3862 | struct type *formal_target = |
3863 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 3864 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
3865 | struct type *actual_target = |
3866 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 3867 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 3868 | |
4c4b4cd2 | 3869 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 3870 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
4a399546 | 3871 | return make_array_descriptor (formal_type, actual, gdbarch, sp); |
a84a8a0d JB |
3872 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
3873 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 3874 | { |
a84a8a0d | 3875 | struct value *result; |
14f9c5c9 | 3876 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3877 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 3878 | result = desc_data (actual); |
14f9c5c9 | 3879 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
3880 | { |
3881 | if (VALUE_LVAL (actual) != lval_memory) | |
3882 | { | |
3883 | struct value *val; | |
df407dfe | 3884 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 3885 | val = allocate_value (actual_type); |
990a07ab | 3886 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 3887 | (char *) value_contents (actual), |
4c4b4cd2 | 3888 | TYPE_LENGTH (actual_type)); |
4a399546 | 3889 | actual = ensure_lval (val, gdbarch, sp); |
4c4b4cd2 | 3890 | } |
a84a8a0d | 3891 | result = value_addr (actual); |
4c4b4cd2 | 3892 | } |
a84a8a0d JB |
3893 | else |
3894 | return actual; | |
3895 | return value_cast_pointers (formal_type, result); | |
14f9c5c9 AS |
3896 | } |
3897 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
3898 | return ada_value_ind (actual); | |
3899 | ||
3900 | return actual; | |
3901 | } | |
3902 | ||
3903 | ||
4c4b4cd2 PH |
3904 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
3905 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 3906 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
3907 | to-descriptor type rather than a descriptor type), a struct value * |
3908 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 3909 | |
d2e4a39e | 3910 | static struct value * |
4a399546 UW |
3911 | make_array_descriptor (struct type *type, struct value *arr, |
3912 | struct gdbarch *gdbarch, CORE_ADDR *sp) | |
14f9c5c9 | 3913 | { |
d2e4a39e AS |
3914 | struct type *bounds_type = desc_bounds_type (type); |
3915 | struct type *desc_type = desc_base_type (type); | |
3916 | struct value *descriptor = allocate_value (desc_type); | |
3917 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 3918 | int i; |
d2e4a39e | 3919 | |
df407dfe | 3920 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1) |
14f9c5c9 | 3921 | { |
50810684 UW |
3922 | modify_general_field (value_type (bounds), |
3923 | value_contents_writeable (bounds), | |
1eea4ebd | 3924 | ada_array_bound (arr, i, 0), |
4c4b4cd2 PH |
3925 | desc_bound_bitpos (bounds_type, i, 0), |
3926 | desc_bound_bitsize (bounds_type, i, 0)); | |
50810684 UW |
3927 | modify_general_field (value_type (bounds), |
3928 | value_contents_writeable (bounds), | |
1eea4ebd | 3929 | ada_array_bound (arr, i, 1), |
4c4b4cd2 PH |
3930 | desc_bound_bitpos (bounds_type, i, 1), |
3931 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 3932 | } |
d2e4a39e | 3933 | |
4a399546 | 3934 | bounds = ensure_lval (bounds, gdbarch, sp); |
d2e4a39e | 3935 | |
50810684 UW |
3936 | modify_general_field (value_type (descriptor), |
3937 | value_contents_writeable (descriptor), | |
4a399546 | 3938 | value_address (ensure_lval (arr, gdbarch, sp)), |
76a01679 JB |
3939 | fat_pntr_data_bitpos (desc_type), |
3940 | fat_pntr_data_bitsize (desc_type)); | |
4c4b4cd2 | 3941 | |
50810684 UW |
3942 | modify_general_field (value_type (descriptor), |
3943 | value_contents_writeable (descriptor), | |
42ae5230 | 3944 | value_address (bounds), |
4c4b4cd2 PH |
3945 | fat_pntr_bounds_bitpos (desc_type), |
3946 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 3947 | |
4a399546 | 3948 | descriptor = ensure_lval (descriptor, gdbarch, sp); |
14f9c5c9 AS |
3949 | |
3950 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
3951 | return value_addr (descriptor); | |
3952 | else | |
3953 | return descriptor; | |
3954 | } | |
14f9c5c9 | 3955 | \f |
963a6417 PH |
3956 | /* Dummy definitions for an experimental caching module that is not |
3957 | * used in the public sources. */ | |
96d887e8 | 3958 | |
96d887e8 PH |
3959 | static int |
3960 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 3961 | struct symbol **sym, struct block **block) |
96d887e8 PH |
3962 | { |
3963 | return 0; | |
3964 | } | |
3965 | ||
3966 | static void | |
3967 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
2570f2b7 | 3968 | struct block *block) |
96d887e8 PH |
3969 | { |
3970 | } | |
4c4b4cd2 PH |
3971 | \f |
3972 | /* Symbol Lookup */ | |
3973 | ||
3974 | /* Return the result of a standard (literal, C-like) lookup of NAME in | |
3975 | given DOMAIN, visible from lexical block BLOCK. */ | |
3976 | ||
3977 | static struct symbol * | |
3978 | standard_lookup (const char *name, const struct block *block, | |
3979 | domain_enum domain) | |
3980 | { | |
3981 | struct symbol *sym; | |
4c4b4cd2 | 3982 | |
2570f2b7 | 3983 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 3984 | return sym; |
2570f2b7 UW |
3985 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
3986 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
3987 | return sym; |
3988 | } | |
3989 | ||
3990 | ||
3991 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
3992 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
3993 | since they contend in overloading in the same way. */ | |
3994 | static int | |
3995 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
3996 | { | |
3997 | int i; | |
3998 | ||
3999 | for (i = 0; i < n; i += 1) | |
4000 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4001 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4002 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4003 | return 1; |
4004 | ||
4005 | return 0; | |
4006 | } | |
4007 | ||
4008 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4009 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4010 | |
4011 | static int | |
d2e4a39e | 4012 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4013 | { |
d2e4a39e | 4014 | if (type0 == type1) |
14f9c5c9 | 4015 | return 1; |
d2e4a39e | 4016 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4017 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4018 | return 0; | |
d2e4a39e | 4019 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4020 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4021 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4022 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4023 | return 1; |
d2e4a39e | 4024 | |
14f9c5c9 AS |
4025 | return 0; |
4026 | } | |
4027 | ||
4028 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4029 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4030 | |
4031 | static int | |
d2e4a39e | 4032 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4033 | { |
4034 | if (sym0 == sym1) | |
4035 | return 1; | |
176620f1 | 4036 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4037 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4038 | return 0; | |
4039 | ||
d2e4a39e | 4040 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4041 | { |
4042 | case LOC_UNDEF: | |
4043 | return 1; | |
4044 | case LOC_TYPEDEF: | |
4045 | { | |
4c4b4cd2 PH |
4046 | struct type *type0 = SYMBOL_TYPE (sym0); |
4047 | struct type *type1 = SYMBOL_TYPE (sym1); | |
4048 | char *name0 = SYMBOL_LINKAGE_NAME (sym0); | |
4049 | char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4050 | int len0 = strlen (name0); | |
4051 | return | |
4052 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4053 | && (equiv_types (type0, type1) | |
4054 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4055 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4056 | } |
4057 | case LOC_CONST: | |
4058 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4059 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4060 | default: |
4061 | return 0; | |
14f9c5c9 AS |
4062 | } |
4063 | } | |
4064 | ||
4c4b4cd2 PH |
4065 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4066 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4067 | |
4068 | static void | |
76a01679 JB |
4069 | add_defn_to_vec (struct obstack *obstackp, |
4070 | struct symbol *sym, | |
2570f2b7 | 4071 | struct block *block) |
14f9c5c9 AS |
4072 | { |
4073 | int i; | |
4074 | size_t tmp; | |
4c4b4cd2 | 4075 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4076 | |
529cad9c PH |
4077 | /* Do not try to complete stub types, as the debugger is probably |
4078 | already scanning all symbols matching a certain name at the | |
4079 | time when this function is called. Trying to replace the stub | |
4080 | type by its associated full type will cause us to restart a scan | |
4081 | which may lead to an infinite recursion. Instead, the client | |
4082 | collecting the matching symbols will end up collecting several | |
4083 | matches, with at least one of them complete. It can then filter | |
4084 | out the stub ones if needed. */ | |
4085 | ||
4c4b4cd2 PH |
4086 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4087 | { | |
4088 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4089 | return; | |
4090 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4091 | { | |
4092 | prevDefns[i].sym = sym; | |
4093 | prevDefns[i].block = block; | |
4c4b4cd2 | 4094 | return; |
76a01679 | 4095 | } |
4c4b4cd2 PH |
4096 | } |
4097 | ||
4098 | { | |
4099 | struct ada_symbol_info info; | |
4100 | ||
4101 | info.sym = sym; | |
4102 | info.block = block; | |
4c4b4cd2 PH |
4103 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4104 | } | |
4105 | } | |
4106 | ||
4107 | /* Number of ada_symbol_info structures currently collected in | |
4108 | current vector in *OBSTACKP. */ | |
4109 | ||
76a01679 JB |
4110 | static int |
4111 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4112 | { |
4113 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4114 | } | |
4115 | ||
4116 | /* Vector of ada_symbol_info structures currently collected in current | |
4117 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4118 | its final address. */ | |
4119 | ||
76a01679 | 4120 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4121 | defns_collected (struct obstack *obstackp, int finish) |
4122 | { | |
4123 | if (finish) | |
4124 | return obstack_finish (obstackp); | |
4125 | else | |
4126 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4127 | } | |
4128 | ||
96d887e8 PH |
4129 | /* Look, in partial_symtab PST, for symbol NAME in given namespace. |
4130 | Check the global symbols if GLOBAL, the static symbols if not. | |
4131 | Do wild-card match if WILD. */ | |
4c4b4cd2 | 4132 | |
96d887e8 PH |
4133 | static struct partial_symbol * |
4134 | ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name, | |
4135 | int global, domain_enum namespace, int wild) | |
4c4b4cd2 | 4136 | { |
96d887e8 PH |
4137 | struct partial_symbol **start; |
4138 | int name_len = strlen (name); | |
4139 | int length = (global ? pst->n_global_syms : pst->n_static_syms); | |
4140 | int i; | |
4c4b4cd2 | 4141 | |
96d887e8 | 4142 | if (length == 0) |
4c4b4cd2 | 4143 | { |
96d887e8 | 4144 | return (NULL); |
4c4b4cd2 PH |
4145 | } |
4146 | ||
96d887e8 PH |
4147 | start = (global ? |
4148 | pst->objfile->global_psymbols.list + pst->globals_offset : | |
4149 | pst->objfile->static_psymbols.list + pst->statics_offset); | |
4c4b4cd2 | 4150 | |
96d887e8 | 4151 | if (wild) |
4c4b4cd2 | 4152 | { |
96d887e8 PH |
4153 | for (i = 0; i < length; i += 1) |
4154 | { | |
4155 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4156 | |
5eeb2539 AR |
4157 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4158 | SYMBOL_DOMAIN (psym), namespace) | |
1265e4aa | 4159 | && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym))) |
96d887e8 PH |
4160 | return psym; |
4161 | } | |
4162 | return NULL; | |
4c4b4cd2 | 4163 | } |
96d887e8 PH |
4164 | else |
4165 | { | |
4166 | if (global) | |
4167 | { | |
4168 | int U; | |
4169 | i = 0; | |
4170 | U = length - 1; | |
4171 | while (U - i > 4) | |
4172 | { | |
4173 | int M = (U + i) >> 1; | |
4174 | struct partial_symbol *psym = start[M]; | |
4175 | if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0]) | |
4176 | i = M + 1; | |
4177 | else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0]) | |
4178 | U = M - 1; | |
4179 | else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0) | |
4180 | i = M + 1; | |
4181 | else | |
4182 | U = M; | |
4183 | } | |
4184 | } | |
4185 | else | |
4186 | i = 0; | |
4c4b4cd2 | 4187 | |
96d887e8 PH |
4188 | while (i < length) |
4189 | { | |
4190 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4191 | |
5eeb2539 AR |
4192 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4193 | SYMBOL_DOMAIN (psym), namespace)) | |
96d887e8 PH |
4194 | { |
4195 | int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len); | |
4c4b4cd2 | 4196 | |
96d887e8 PH |
4197 | if (cmp < 0) |
4198 | { | |
4199 | if (global) | |
4200 | break; | |
4201 | } | |
4202 | else if (cmp == 0 | |
4203 | && is_name_suffix (SYMBOL_LINKAGE_NAME (psym) | |
76a01679 | 4204 | + name_len)) |
96d887e8 PH |
4205 | return psym; |
4206 | } | |
4207 | i += 1; | |
4208 | } | |
4c4b4cd2 | 4209 | |
96d887e8 PH |
4210 | if (global) |
4211 | { | |
4212 | int U; | |
4213 | i = 0; | |
4214 | U = length - 1; | |
4215 | while (U - i > 4) | |
4216 | { | |
4217 | int M = (U + i) >> 1; | |
4218 | struct partial_symbol *psym = start[M]; | |
4219 | if (SYMBOL_LINKAGE_NAME (psym)[0] < '_') | |
4220 | i = M + 1; | |
4221 | else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_') | |
4222 | U = M - 1; | |
4223 | else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0) | |
4224 | i = M + 1; | |
4225 | else | |
4226 | U = M; | |
4227 | } | |
4228 | } | |
4229 | else | |
4230 | i = 0; | |
4c4b4cd2 | 4231 | |
96d887e8 PH |
4232 | while (i < length) |
4233 | { | |
4234 | struct partial_symbol *psym = start[i]; | |
4c4b4cd2 | 4235 | |
5eeb2539 AR |
4236 | if (symbol_matches_domain (SYMBOL_LANGUAGE (psym), |
4237 | SYMBOL_DOMAIN (psym), namespace)) | |
96d887e8 PH |
4238 | { |
4239 | int cmp; | |
4c4b4cd2 | 4240 | |
96d887e8 PH |
4241 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0]; |
4242 | if (cmp == 0) | |
4243 | { | |
4244 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5); | |
4245 | if (cmp == 0) | |
4246 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5, | |
76a01679 | 4247 | name_len); |
96d887e8 | 4248 | } |
4c4b4cd2 | 4249 | |
96d887e8 PH |
4250 | if (cmp < 0) |
4251 | { | |
4252 | if (global) | |
4253 | break; | |
4254 | } | |
4255 | else if (cmp == 0 | |
4256 | && is_name_suffix (SYMBOL_LINKAGE_NAME (psym) | |
76a01679 | 4257 | + name_len + 5)) |
96d887e8 PH |
4258 | return psym; |
4259 | } | |
4260 | i += 1; | |
4261 | } | |
4262 | } | |
4263 | return NULL; | |
4c4b4cd2 PH |
4264 | } |
4265 | ||
96d887e8 PH |
4266 | /* Return a minimal symbol matching NAME according to Ada decoding |
4267 | rules. Returns NULL if there is no such minimal symbol. Names | |
4268 | prefixed with "standard__" are handled specially: "standard__" is | |
4269 | first stripped off, and only static and global symbols are searched. */ | |
4c4b4cd2 | 4270 | |
96d887e8 PH |
4271 | struct minimal_symbol * |
4272 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4273 | { |
4c4b4cd2 | 4274 | struct objfile *objfile; |
96d887e8 PH |
4275 | struct minimal_symbol *msymbol; |
4276 | int wild_match; | |
4c4b4cd2 | 4277 | |
96d887e8 | 4278 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
4c4b4cd2 | 4279 | { |
96d887e8 | 4280 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4281 | wild_match = 0; |
4c4b4cd2 PH |
4282 | } |
4283 | else | |
96d887e8 | 4284 | wild_match = (strstr (name, "__") == NULL); |
4c4b4cd2 | 4285 | |
96d887e8 PH |
4286 | ALL_MSYMBOLS (objfile, msymbol) |
4287 | { | |
4288 | if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match) | |
4289 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) | |
4290 | return msymbol; | |
4291 | } | |
4c4b4cd2 | 4292 | |
96d887e8 PH |
4293 | return NULL; |
4294 | } | |
4c4b4cd2 | 4295 | |
96d887e8 PH |
4296 | /* For all subprograms that statically enclose the subprogram of the |
4297 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4298 | and their blocks to the list of data in OBSTACKP, as for | |
4299 | ada_add_block_symbols (q.v.). If WILD, treat as NAME with a | |
4300 | wildcard prefix. */ | |
4c4b4cd2 | 4301 | |
96d887e8 PH |
4302 | static void |
4303 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4304 | const char *name, domain_enum namespace, |
96d887e8 PH |
4305 | int wild_match) |
4306 | { | |
96d887e8 | 4307 | } |
14f9c5c9 | 4308 | |
96d887e8 PH |
4309 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4310 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4311 | |
96d887e8 PH |
4312 | static int |
4313 | is_nondebugging_type (struct type *type) | |
4314 | { | |
4315 | char *name = ada_type_name (type); | |
4316 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); | |
4317 | } | |
4c4b4cd2 | 4318 | |
96d887e8 PH |
4319 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4320 | duplicate other symbols in the list (The only case I know of where | |
4321 | this happens is when object files containing stabs-in-ecoff are | |
4322 | linked with files containing ordinary ecoff debugging symbols (or no | |
4323 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4324 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4325 | |
96d887e8 PH |
4326 | static int |
4327 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4328 | { | |
4329 | int i, j; | |
4c4b4cd2 | 4330 | |
96d887e8 PH |
4331 | i = 0; |
4332 | while (i < nsyms) | |
4333 | { | |
339c13b6 JB |
4334 | int remove = 0; |
4335 | ||
4336 | /* If two symbols have the same name and one of them is a stub type, | |
4337 | the get rid of the stub. */ | |
4338 | ||
4339 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4340 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4341 | { | |
4342 | for (j = 0; j < nsyms; j++) | |
4343 | { | |
4344 | if (j != i | |
4345 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4346 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4347 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4348 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
4349 | remove = 1; | |
4350 | } | |
4351 | } | |
4352 | ||
4353 | /* Two symbols with the same name, same class and same address | |
4354 | should be identical. */ | |
4355 | ||
4356 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4357 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4358 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4359 | { | |
4360 | for (j = 0; j < nsyms; j += 1) | |
4361 | { | |
4362 | if (i != j | |
4363 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4364 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4365 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4366 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4367 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4368 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
339c13b6 | 4369 | remove = 1; |
4c4b4cd2 | 4370 | } |
4c4b4cd2 | 4371 | } |
339c13b6 JB |
4372 | |
4373 | if (remove) | |
4374 | { | |
4375 | for (j = i + 1; j < nsyms; j += 1) | |
4376 | syms[j - 1] = syms[j]; | |
4377 | nsyms -= 1; | |
4378 | } | |
4379 | ||
96d887e8 | 4380 | i += 1; |
14f9c5c9 | 4381 | } |
96d887e8 | 4382 | return nsyms; |
14f9c5c9 AS |
4383 | } |
4384 | ||
96d887e8 PH |
4385 | /* Given a type that corresponds to a renaming entity, use the type name |
4386 | to extract the scope (package name or function name, fully qualified, | |
4387 | and following the GNAT encoding convention) where this renaming has been | |
4388 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4389 | |
96d887e8 PH |
4390 | static char * |
4391 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4392 | { |
96d887e8 PH |
4393 | /* The renaming types adhere to the following convention: |
4394 | <scope>__<rename>___<XR extension>. | |
4395 | So, to extract the scope, we search for the "___XR" extension, | |
4396 | and then backtrack until we find the first "__". */ | |
76a01679 | 4397 | |
96d887e8 PH |
4398 | const char *name = type_name_no_tag (renaming_type); |
4399 | char *suffix = strstr (name, "___XR"); | |
4400 | char *last; | |
4401 | int scope_len; | |
4402 | char *scope; | |
14f9c5c9 | 4403 | |
96d887e8 PH |
4404 | /* Now, backtrack a bit until we find the first "__". Start looking |
4405 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4406 | |
96d887e8 PH |
4407 | for (last = suffix - 3; last > name; last--) |
4408 | if (last[0] == '_' && last[1] == '_') | |
4409 | break; | |
76a01679 | 4410 | |
96d887e8 | 4411 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4412 | |
96d887e8 PH |
4413 | scope_len = last - name; |
4414 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4415 | |
96d887e8 PH |
4416 | strncpy (scope, name, scope_len); |
4417 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4418 | |
96d887e8 | 4419 | return scope; |
4c4b4cd2 PH |
4420 | } |
4421 | ||
96d887e8 | 4422 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4423 | |
96d887e8 PH |
4424 | static int |
4425 | is_package_name (const char *name) | |
4c4b4cd2 | 4426 | { |
96d887e8 PH |
4427 | /* Here, We take advantage of the fact that no symbols are generated |
4428 | for packages, while symbols are generated for each function. | |
4429 | So the condition for NAME represent a package becomes equivalent | |
4430 | to NAME not existing in our list of symbols. There is only one | |
4431 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4432 | |
96d887e8 | 4433 | char *fun_name; |
76a01679 | 4434 | |
96d887e8 PH |
4435 | /* If it is a function that has not been defined at library level, |
4436 | then we should be able to look it up in the symbols. */ | |
4437 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4438 | return 0; | |
14f9c5c9 | 4439 | |
96d887e8 PH |
4440 | /* Library-level function names start with "_ada_". See if function |
4441 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4442 | |
96d887e8 | 4443 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4444 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4445 | if (strstr (name, "__") != NULL) |
4446 | return 0; | |
4c4b4cd2 | 4447 | |
b435e160 | 4448 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4449 | |
96d887e8 PH |
4450 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4451 | } | |
14f9c5c9 | 4452 | |
96d887e8 | 4453 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4454 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4455 | |
96d887e8 | 4456 | static int |
aeb5907d | 4457 | old_renaming_is_invisible (const struct symbol *sym, char *function_name) |
96d887e8 | 4458 | { |
aeb5907d JB |
4459 | char *scope; |
4460 | ||
4461 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4462 | return 0; | |
4463 | ||
4464 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4465 | |
96d887e8 | 4466 | make_cleanup (xfree, scope); |
14f9c5c9 | 4467 | |
96d887e8 PH |
4468 | /* If the rename has been defined in a package, then it is visible. */ |
4469 | if (is_package_name (scope)) | |
aeb5907d | 4470 | return 0; |
14f9c5c9 | 4471 | |
96d887e8 PH |
4472 | /* Check that the rename is in the current function scope by checking |
4473 | that its name starts with SCOPE. */ | |
76a01679 | 4474 | |
96d887e8 PH |
4475 | /* If the function name starts with "_ada_", it means that it is |
4476 | a library-level function. Strip this prefix before doing the | |
4477 | comparison, as the encoding for the renaming does not contain | |
4478 | this prefix. */ | |
4479 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4480 | function_name += 5; | |
f26caa11 | 4481 | |
aeb5907d | 4482 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4483 | } |
4484 | ||
aeb5907d JB |
4485 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4486 | is not visible from the function associated with CURRENT_BLOCK or | |
4487 | that is superfluous due to the presence of more specific renaming | |
4488 | information. Places surviving symbols in the initial entries of | |
4489 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4490 | |
4491 | Rationale: | |
aeb5907d JB |
4492 | First, in cases where an object renaming is implemented as a |
4493 | reference variable, GNAT may produce both the actual reference | |
4494 | variable and the renaming encoding. In this case, we discard the | |
4495 | latter. | |
4496 | ||
4497 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4498 | entity. Unfortunately, STABS currently does not support the definition |
4499 | of types that are local to a given lexical block, so all renamings types | |
4500 | are emitted at library level. As a consequence, if an application | |
4501 | contains two renaming entities using the same name, and a user tries to | |
4502 | print the value of one of these entities, the result of the ada symbol | |
4503 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4504 | |
96d887e8 PH |
4505 | This function partially covers for this limitation by attempting to |
4506 | remove from the SYMS list renaming symbols that should be visible | |
4507 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4508 | method with the current information available. The implementation | |
4509 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4510 | ||
4511 | - When the user tries to print a rename in a function while there | |
4512 | is another rename entity defined in a package: Normally, the | |
4513 | rename in the function has precedence over the rename in the | |
4514 | package, so the latter should be removed from the list. This is | |
4515 | currently not the case. | |
4516 | ||
4517 | - This function will incorrectly remove valid renames if | |
4518 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4519 | has been changed by an "Export" pragma. As a consequence, | |
4520 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4521 | |
14f9c5c9 | 4522 | static int |
aeb5907d JB |
4523 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4524 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4525 | { |
4526 | struct symbol *current_function; | |
4527 | char *current_function_name; | |
4528 | int i; | |
aeb5907d JB |
4529 | int is_new_style_renaming; |
4530 | ||
4531 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4532 | a simple variable foo in the same block, discard the latter. | |
4533 | First, zero out such symbols, then compress. */ | |
4534 | is_new_style_renaming = 0; | |
4535 | for (i = 0; i < nsyms; i += 1) | |
4536 | { | |
4537 | struct symbol *sym = syms[i].sym; | |
4538 | struct block *block = syms[i].block; | |
4539 | const char *name; | |
4540 | const char *suffix; | |
4541 | ||
4542 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4543 | continue; | |
4544 | name = SYMBOL_LINKAGE_NAME (sym); | |
4545 | suffix = strstr (name, "___XR"); | |
4546 | ||
4547 | if (suffix != NULL) | |
4548 | { | |
4549 | int name_len = suffix - name; | |
4550 | int j; | |
4551 | is_new_style_renaming = 1; | |
4552 | for (j = 0; j < nsyms; j += 1) | |
4553 | if (i != j && syms[j].sym != NULL | |
4554 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4555 | name_len) == 0 | |
4556 | && block == syms[j].block) | |
4557 | syms[j].sym = NULL; | |
4558 | } | |
4559 | } | |
4560 | if (is_new_style_renaming) | |
4561 | { | |
4562 | int j, k; | |
4563 | ||
4564 | for (j = k = 0; j < nsyms; j += 1) | |
4565 | if (syms[j].sym != NULL) | |
4566 | { | |
4567 | syms[k] = syms[j]; | |
4568 | k += 1; | |
4569 | } | |
4570 | return k; | |
4571 | } | |
4c4b4cd2 PH |
4572 | |
4573 | /* Extract the function name associated to CURRENT_BLOCK. | |
4574 | Abort if unable to do so. */ | |
76a01679 | 4575 | |
4c4b4cd2 PH |
4576 | if (current_block == NULL) |
4577 | return nsyms; | |
76a01679 | 4578 | |
7f0df278 | 4579 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4580 | if (current_function == NULL) |
4581 | return nsyms; | |
4582 | ||
4583 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4584 | if (current_function_name == NULL) | |
4585 | return nsyms; | |
4586 | ||
4587 | /* Check each of the symbols, and remove it from the list if it is | |
4588 | a type corresponding to a renaming that is out of the scope of | |
4589 | the current block. */ | |
4590 | ||
4591 | i = 0; | |
4592 | while (i < nsyms) | |
4593 | { | |
aeb5907d JB |
4594 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4595 | == ADA_OBJECT_RENAMING | |
4596 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4597 | { |
4598 | int j; | |
aeb5907d | 4599 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4600 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4601 | nsyms -= 1; |
4602 | } | |
4603 | else | |
4604 | i += 1; | |
4605 | } | |
4606 | ||
4607 | return nsyms; | |
4608 | } | |
4609 | ||
339c13b6 JB |
4610 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4611 | whose name and domain match NAME and DOMAIN respectively. | |
4612 | If no match was found, then extend the search to "enclosing" | |
4613 | routines (in other words, if we're inside a nested function, | |
4614 | search the symbols defined inside the enclosing functions). | |
4615 | ||
4616 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4617 | ||
4618 | static void | |
4619 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4620 | struct block *block, domain_enum domain, | |
4621 | int wild_match) | |
4622 | { | |
4623 | int block_depth = 0; | |
4624 | ||
4625 | while (block != NULL) | |
4626 | { | |
4627 | block_depth += 1; | |
4628 | ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match); | |
4629 | ||
4630 | /* If we found a non-function match, assume that's the one. */ | |
4631 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4632 | num_defns_collected (obstackp))) | |
4633 | return; | |
4634 | ||
4635 | block = BLOCK_SUPERBLOCK (block); | |
4636 | } | |
4637 | ||
4638 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4639 | enclosing subprogram. */ | |
4640 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
4641 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match); | |
4642 | } | |
4643 | ||
4644 | /* Add to OBSTACKP all non-local symbols whose name and domain match | |
4645 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
4646 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
4647 | ||
4648 | static void | |
4649 | ada_add_non_local_symbols (struct obstack *obstackp, const char *name, | |
4650 | domain_enum domain, int global, | |
4651 | int wild_match) | |
4652 | { | |
4653 | struct objfile *objfile; | |
4654 | struct partial_symtab *ps; | |
4655 | ||
4656 | ALL_PSYMTABS (objfile, ps) | |
4657 | { | |
4658 | QUIT; | |
4659 | if (ps->readin | |
4660 | || ada_lookup_partial_symbol (ps, name, global, domain, wild_match)) | |
4661 | { | |
4662 | struct symtab *s = PSYMTAB_TO_SYMTAB (ps); | |
4663 | const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK; | |
4664 | ||
4665 | if (s == NULL || !s->primary) | |
4666 | continue; | |
4667 | ada_add_block_symbols (obstackp, | |
4668 | BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind), | |
4669 | name, domain, objfile, wild_match); | |
4670 | } | |
4671 | } | |
4672 | } | |
4673 | ||
4c4b4cd2 PH |
4674 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing |
4675 | scope and in global scopes, returning the number of matches. Sets | |
6c9353d3 | 4676 | *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 PH |
4677 | indicating the symbols found and the blocks and symbol tables (if |
4678 | any) in which they were found. This vector are transient---good only to | |
4679 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4680 | symbol match within the nest of blocks whose innermost member is BLOCK0, | |
4681 | is the one match returned (no other matches in that or | |
4682 | enclosing blocks is returned). If there are any matches in or | |
4683 | surrounding BLOCK0, then these alone are returned. Otherwise, the | |
4684 | search extends to global and file-scope (static) symbol tables. | |
4685 | Names prefixed with "standard__" are handled specially: "standard__" | |
4686 | is first stripped off, and only static and global symbols are searched. */ | |
14f9c5c9 AS |
4687 | |
4688 | int | |
4c4b4cd2 | 4689 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
76a01679 JB |
4690 | domain_enum namespace, |
4691 | struct ada_symbol_info **results) | |
14f9c5c9 AS |
4692 | { |
4693 | struct symbol *sym; | |
14f9c5c9 | 4694 | struct block *block; |
4c4b4cd2 | 4695 | const char *name; |
4c4b4cd2 | 4696 | int wild_match; |
14f9c5c9 | 4697 | int cacheIfUnique; |
4c4b4cd2 | 4698 | int ndefns; |
14f9c5c9 | 4699 | |
4c4b4cd2 PH |
4700 | obstack_free (&symbol_list_obstack, NULL); |
4701 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 4702 | |
14f9c5c9 AS |
4703 | cacheIfUnique = 0; |
4704 | ||
4705 | /* Search specified block and its superiors. */ | |
4706 | ||
4c4b4cd2 PH |
4707 | wild_match = (strstr (name0, "__") == NULL); |
4708 | name = name0; | |
76a01679 JB |
4709 | block = (struct block *) block0; /* FIXME: No cast ought to be |
4710 | needed, but adding const will | |
4711 | have a cascade effect. */ | |
339c13b6 JB |
4712 | |
4713 | /* Special case: If the user specifies a symbol name inside package | |
4714 | Standard, do a non-wild matching of the symbol name without | |
4715 | the "standard__" prefix. This was primarily introduced in order | |
4716 | to allow the user to specifically access the standard exceptions | |
4717 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4718 | is ambiguous (due to the user defining its own Constraint_Error | |
4719 | entity inside its program). */ | |
4c4b4cd2 PH |
4720 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
4721 | { | |
4722 | wild_match = 0; | |
4723 | block = NULL; | |
4724 | name = name0 + sizeof ("standard__") - 1; | |
4725 | } | |
4726 | ||
339c13b6 | 4727 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 4728 | |
339c13b6 JB |
4729 | ada_add_local_symbols (&symbol_list_obstack, name, block, namespace, |
4730 | wild_match); | |
4c4b4cd2 | 4731 | if (num_defns_collected (&symbol_list_obstack) > 0) |
14f9c5c9 | 4732 | goto done; |
d2e4a39e | 4733 | |
339c13b6 JB |
4734 | /* No non-global symbols found. Check our cache to see if we have |
4735 | already performed this search before. If we have, then return | |
4736 | the same result. */ | |
4737 | ||
14f9c5c9 | 4738 | cacheIfUnique = 1; |
2570f2b7 | 4739 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
4740 | { |
4741 | if (sym != NULL) | |
2570f2b7 | 4742 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
4743 | goto done; |
4744 | } | |
14f9c5c9 | 4745 | |
339c13b6 JB |
4746 | /* Search symbols from all global blocks. */ |
4747 | ||
4748 | ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1, | |
4749 | wild_match); | |
d2e4a39e | 4750 | |
4c4b4cd2 | 4751 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 4752 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 4753 | |
4c4b4cd2 | 4754 | if (num_defns_collected (&symbol_list_obstack) == 0) |
339c13b6 JB |
4755 | ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0, |
4756 | wild_match); | |
14f9c5c9 | 4757 | |
4c4b4cd2 PH |
4758 | done: |
4759 | ndefns = num_defns_collected (&symbol_list_obstack); | |
4760 | *results = defns_collected (&symbol_list_obstack, 1); | |
4761 | ||
4762 | ndefns = remove_extra_symbols (*results, ndefns); | |
4763 | ||
d2e4a39e | 4764 | if (ndefns == 0) |
2570f2b7 | 4765 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 4766 | |
4c4b4cd2 | 4767 | if (ndefns == 1 && cacheIfUnique) |
2570f2b7 | 4768 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 4769 | |
aeb5907d | 4770 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 4771 | |
14f9c5c9 AS |
4772 | return ndefns; |
4773 | } | |
4774 | ||
d2e4a39e | 4775 | struct symbol * |
aeb5907d | 4776 | ada_lookup_encoded_symbol (const char *name, const struct block *block0, |
21b556f4 | 4777 | domain_enum namespace, struct block **block_found) |
14f9c5c9 | 4778 | { |
4c4b4cd2 | 4779 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
4780 | int n_candidates; |
4781 | ||
aeb5907d | 4782 | n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates); |
14f9c5c9 AS |
4783 | |
4784 | if (n_candidates == 0) | |
4785 | return NULL; | |
4c4b4cd2 | 4786 | |
aeb5907d JB |
4787 | if (block_found != NULL) |
4788 | *block_found = candidates[0].block; | |
4c4b4cd2 | 4789 | |
21b556f4 | 4790 | return fixup_symbol_section (candidates[0].sym, NULL); |
aeb5907d JB |
4791 | } |
4792 | ||
4793 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
4794 | scope and in global scopes, or NULL if none. NAME is folded and | |
4795 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
4796 | choosing the first symbol if there are multiple choices. | |
4797 | *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol | |
4798 | table in which the symbol was found (in both cases, these | |
4799 | assignments occur only if the pointers are non-null). */ | |
4800 | struct symbol * | |
4801 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 4802 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d JB |
4803 | { |
4804 | if (is_a_field_of_this != NULL) | |
4805 | *is_a_field_of_this = 0; | |
4806 | ||
4807 | return | |
4808 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), | |
21b556f4 | 4809 | block0, namespace, NULL); |
4c4b4cd2 | 4810 | } |
14f9c5c9 | 4811 | |
4c4b4cd2 PH |
4812 | static struct symbol * |
4813 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 JB |
4814 | const char *linkage_name, |
4815 | const struct block *block, | |
21b556f4 | 4816 | const domain_enum domain) |
4c4b4cd2 PH |
4817 | { |
4818 | if (linkage_name == NULL) | |
4819 | linkage_name = name; | |
76a01679 | 4820 | return ada_lookup_symbol (linkage_name, block_static_block (block), domain, |
21b556f4 | 4821 | NULL); |
14f9c5c9 AS |
4822 | } |
4823 | ||
4824 | ||
4c4b4cd2 PH |
4825 | /* True iff STR is a possible encoded suffix of a normal Ada name |
4826 | that is to be ignored for matching purposes. Suffixes of parallel | |
4827 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 4828 | are given by any of the regular expressions: |
4c4b4cd2 | 4829 | |
babe1480 JB |
4830 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
4831 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
4832 | _E[0-9]+[bs]$ [protected object entry suffixes] | |
61ee279c | 4833 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
4834 | |
4835 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
4836 | match is performed. This sequence is used to differentiate homonyms, | |
4837 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 4838 | |
14f9c5c9 | 4839 | static int |
d2e4a39e | 4840 | is_name_suffix (const char *str) |
14f9c5c9 AS |
4841 | { |
4842 | int k; | |
4c4b4cd2 PH |
4843 | const char *matching; |
4844 | const int len = strlen (str); | |
4845 | ||
babe1480 JB |
4846 | /* Skip optional leading __[0-9]+. */ |
4847 | ||
4c4b4cd2 PH |
4848 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
4849 | { | |
babe1480 JB |
4850 | str += 3; |
4851 | while (isdigit (str[0])) | |
4852 | str += 1; | |
4c4b4cd2 | 4853 | } |
babe1480 JB |
4854 | |
4855 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 4856 | |
babe1480 | 4857 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 4858 | { |
babe1480 | 4859 | matching = str + 1; |
4c4b4cd2 PH |
4860 | while (isdigit (matching[0])) |
4861 | matching += 1; | |
4862 | if (matching[0] == '\0') | |
4863 | return 1; | |
4864 | } | |
4865 | ||
4866 | /* ___[0-9]+ */ | |
babe1480 | 4867 | |
4c4b4cd2 PH |
4868 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
4869 | { | |
4870 | matching = str + 3; | |
4871 | while (isdigit (matching[0])) | |
4872 | matching += 1; | |
4873 | if (matching[0] == '\0') | |
4874 | return 1; | |
4875 | } | |
4876 | ||
529cad9c PH |
4877 | #if 0 |
4878 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
4879 | with a N at the end. Unfortunately, the compiler uses the same | |
4880 | convention for other internal types it creates. So treating | |
4881 | all entity names that end with an "N" as a name suffix causes | |
4882 | some regressions. For instance, consider the case of an enumerated | |
4883 | type. To support the 'Image attribute, it creates an array whose | |
4884 | name ends with N. | |
4885 | Having a single character like this as a suffix carrying some | |
4886 | information is a bit risky. Perhaps we should change the encoding | |
4887 | to be something like "_N" instead. In the meantime, do not do | |
4888 | the following check. */ | |
4889 | /* Protected Object Subprograms */ | |
4890 | if (len == 1 && str [0] == 'N') | |
4891 | return 1; | |
4892 | #endif | |
4893 | ||
4894 | /* _E[0-9]+[bs]$ */ | |
4895 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
4896 | { | |
4897 | matching = str + 3; | |
4898 | while (isdigit (matching[0])) | |
4899 | matching += 1; | |
4900 | if ((matching[0] == 'b' || matching[0] == 's') | |
4901 | && matching [1] == '\0') | |
4902 | return 1; | |
4903 | } | |
4904 | ||
4c4b4cd2 PH |
4905 | /* ??? We should not modify STR directly, as we are doing below. This |
4906 | is fine in this case, but may become problematic later if we find | |
4907 | that this alternative did not work, and want to try matching | |
4908 | another one from the begining of STR. Since we modified it, we | |
4909 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
4910 | if (str[0] == 'X') |
4911 | { | |
4912 | str += 1; | |
d2e4a39e | 4913 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
4914 | { |
4915 | if (str[0] != 'n' && str[0] != 'b') | |
4916 | return 0; | |
4917 | str += 1; | |
4918 | } | |
14f9c5c9 | 4919 | } |
babe1480 | 4920 | |
14f9c5c9 AS |
4921 | if (str[0] == '\000') |
4922 | return 1; | |
babe1480 | 4923 | |
d2e4a39e | 4924 | if (str[0] == '_') |
14f9c5c9 AS |
4925 | { |
4926 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 4927 | return 0; |
d2e4a39e | 4928 | if (str[2] == '_') |
4c4b4cd2 | 4929 | { |
61ee279c PH |
4930 | if (strcmp (str + 3, "JM") == 0) |
4931 | return 1; | |
4932 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
4933 | the LJM suffix in favor of the JM one. But we will | |
4934 | still accept LJM as a valid suffix for a reasonable | |
4935 | amount of time, just to allow ourselves to debug programs | |
4936 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
4937 | if (strcmp (str + 3, "LJM") == 0) |
4938 | return 1; | |
4939 | if (str[3] != 'X') | |
4940 | return 0; | |
1265e4aa JB |
4941 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
4942 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
4943 | return 1; |
4944 | if (str[4] == 'R' && str[5] != 'T') | |
4945 | return 1; | |
4946 | return 0; | |
4947 | } | |
4948 | if (!isdigit (str[2])) | |
4949 | return 0; | |
4950 | for (k = 3; str[k] != '\0'; k += 1) | |
4951 | if (!isdigit (str[k]) && str[k] != '_') | |
4952 | return 0; | |
14f9c5c9 AS |
4953 | return 1; |
4954 | } | |
4c4b4cd2 | 4955 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 4956 | { |
4c4b4cd2 PH |
4957 | for (k = 2; str[k] != '\0'; k += 1) |
4958 | if (!isdigit (str[k]) && str[k] != '_') | |
4959 | return 0; | |
14f9c5c9 AS |
4960 | return 1; |
4961 | } | |
4962 | return 0; | |
4963 | } | |
d2e4a39e | 4964 | |
aeb5907d JB |
4965 | /* Return non-zero if the string starting at NAME and ending before |
4966 | NAME_END contains no capital letters. */ | |
529cad9c PH |
4967 | |
4968 | static int | |
4969 | is_valid_name_for_wild_match (const char *name0) | |
4970 | { | |
4971 | const char *decoded_name = ada_decode (name0); | |
4972 | int i; | |
4973 | ||
5823c3ef JB |
4974 | /* If the decoded name starts with an angle bracket, it means that |
4975 | NAME0 does not follow the GNAT encoding format. It should then | |
4976 | not be allowed as a possible wild match. */ | |
4977 | if (decoded_name[0] == '<') | |
4978 | return 0; | |
4979 | ||
529cad9c PH |
4980 | for (i=0; decoded_name[i] != '\0'; i++) |
4981 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
4982 | return 0; | |
4983 | ||
4984 | return 1; | |
4985 | } | |
4986 | ||
4c4b4cd2 PH |
4987 | /* True if NAME represents a name of the form A1.A2....An, n>=1 and |
4988 | PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores | |
4989 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
4990 | true). */ | |
4991 | ||
14f9c5c9 | 4992 | static int |
4c4b4cd2 | 4993 | wild_match (const char *patn0, int patn_len, const char *name0) |
14f9c5c9 | 4994 | { |
5823c3ef JB |
4995 | char* match; |
4996 | const char* start; | |
4997 | start = name0; | |
4998 | while (1) | |
14f9c5c9 | 4999 | { |
5823c3ef JB |
5000 | match = strstr (start, patn0); |
5001 | if (match == NULL) | |
5002 | return 0; | |
5003 | if ((match == name0 | |
5004 | || match[-1] == '.' | |
5005 | || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_') | |
5006 | || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0)) | |
5007 | && is_name_suffix (match + patn_len)) | |
5008 | return (match == name0 || is_valid_name_for_wild_match (name0)); | |
5009 | start = match + 1; | |
96d887e8 | 5010 | } |
96d887e8 PH |
5011 | } |
5012 | ||
96d887e8 PH |
5013 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5014 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
5015 | (if necessary). If WILD, treat as NAME with a wildcard prefix. | |
5016 | OBJFILE is the section containing BLOCK. | |
5017 | SYMTAB is recorded with each symbol added. */ | |
5018 | ||
5019 | static void | |
5020 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 5021 | struct block *block, const char *name, |
96d887e8 | 5022 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5023 | int wild) |
96d887e8 PH |
5024 | { |
5025 | struct dict_iterator iter; | |
5026 | int name_len = strlen (name); | |
5027 | /* A matching argument symbol, if any. */ | |
5028 | struct symbol *arg_sym; | |
5029 | /* Set true when we find a matching non-argument symbol. */ | |
5030 | int found_sym; | |
5031 | struct symbol *sym; | |
5032 | ||
5033 | arg_sym = NULL; | |
5034 | found_sym = 0; | |
5035 | if (wild) | |
5036 | { | |
5037 | struct symbol *sym; | |
5038 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5039 | { |
5eeb2539 AR |
5040 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5041 | SYMBOL_DOMAIN (sym), domain) | |
1265e4aa | 5042 | && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym))) |
76a01679 | 5043 | { |
2a2d4dc3 AS |
5044 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5045 | continue; | |
5046 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5047 | arg_sym = sym; | |
5048 | else | |
5049 | { | |
76a01679 JB |
5050 | found_sym = 1; |
5051 | add_defn_to_vec (obstackp, | |
5052 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5053 | block); |
76a01679 JB |
5054 | } |
5055 | } | |
5056 | } | |
96d887e8 PH |
5057 | } |
5058 | else | |
5059 | { | |
5060 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5061 | { |
5eeb2539 AR |
5062 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5063 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5064 | { |
5065 | int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len); | |
5066 | if (cmp == 0 | |
5067 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len)) | |
5068 | { | |
2a2d4dc3 AS |
5069 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5070 | { | |
5071 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5072 | arg_sym = sym; | |
5073 | else | |
5074 | { | |
5075 | found_sym = 1; | |
5076 | add_defn_to_vec (obstackp, | |
5077 | fixup_symbol_section (sym, objfile), | |
5078 | block); | |
5079 | } | |
5080 | } | |
76a01679 JB |
5081 | } |
5082 | } | |
5083 | } | |
96d887e8 PH |
5084 | } |
5085 | ||
5086 | if (!found_sym && arg_sym != NULL) | |
5087 | { | |
76a01679 JB |
5088 | add_defn_to_vec (obstackp, |
5089 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5090 | block); |
96d887e8 PH |
5091 | } |
5092 | ||
5093 | if (!wild) | |
5094 | { | |
5095 | arg_sym = NULL; | |
5096 | found_sym = 0; | |
5097 | ||
5098 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5099 | { |
5eeb2539 AR |
5100 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5101 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5102 | { |
5103 | int cmp; | |
5104 | ||
5105 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5106 | if (cmp == 0) | |
5107 | { | |
5108 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5109 | if (cmp == 0) | |
5110 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5111 | name_len); | |
5112 | } | |
5113 | ||
5114 | if (cmp == 0 | |
5115 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5116 | { | |
2a2d4dc3 AS |
5117 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5118 | { | |
5119 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5120 | arg_sym = sym; | |
5121 | else | |
5122 | { | |
5123 | found_sym = 1; | |
5124 | add_defn_to_vec (obstackp, | |
5125 | fixup_symbol_section (sym, objfile), | |
5126 | block); | |
5127 | } | |
5128 | } | |
76a01679 JB |
5129 | } |
5130 | } | |
76a01679 | 5131 | } |
96d887e8 PH |
5132 | |
5133 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5134 | They aren't parameters, right? */ | |
5135 | if (!found_sym && arg_sym != NULL) | |
5136 | { | |
5137 | add_defn_to_vec (obstackp, | |
76a01679 | 5138 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5139 | block); |
96d887e8 PH |
5140 | } |
5141 | } | |
5142 | } | |
5143 | \f | |
41d27058 JB |
5144 | |
5145 | /* Symbol Completion */ | |
5146 | ||
5147 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5148 | name in a form that's appropriate for the completion. The result | |
5149 | does not need to be deallocated, but is only good until the next call. | |
5150 | ||
5151 | TEXT_LEN is equal to the length of TEXT. | |
5152 | Perform a wild match if WILD_MATCH is set. | |
5153 | ENCODED should be set if TEXT represents the start of a symbol name | |
5154 | in its encoded form. */ | |
5155 | ||
5156 | static const char * | |
5157 | symbol_completion_match (const char *sym_name, | |
5158 | const char *text, int text_len, | |
5159 | int wild_match, int encoded) | |
5160 | { | |
5161 | char *result; | |
5162 | const int verbatim_match = (text[0] == '<'); | |
5163 | int match = 0; | |
5164 | ||
5165 | if (verbatim_match) | |
5166 | { | |
5167 | /* Strip the leading angle bracket. */ | |
5168 | text = text + 1; | |
5169 | text_len--; | |
5170 | } | |
5171 | ||
5172 | /* First, test against the fully qualified name of the symbol. */ | |
5173 | ||
5174 | if (strncmp (sym_name, text, text_len) == 0) | |
5175 | match = 1; | |
5176 | ||
5177 | if (match && !encoded) | |
5178 | { | |
5179 | /* One needed check before declaring a positive match is to verify | |
5180 | that iff we are doing a verbatim match, the decoded version | |
5181 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5182 | is not a suitable completion. */ | |
5183 | const char *sym_name_copy = sym_name; | |
5184 | int has_angle_bracket; | |
5185 | ||
5186 | sym_name = ada_decode (sym_name); | |
5187 | has_angle_bracket = (sym_name[0] == '<'); | |
5188 | match = (has_angle_bracket == verbatim_match); | |
5189 | sym_name = sym_name_copy; | |
5190 | } | |
5191 | ||
5192 | if (match && !verbatim_match) | |
5193 | { | |
5194 | /* When doing non-verbatim match, another check that needs to | |
5195 | be done is to verify that the potentially matching symbol name | |
5196 | does not include capital letters, because the ada-mode would | |
5197 | not be able to understand these symbol names without the | |
5198 | angle bracket notation. */ | |
5199 | const char *tmp; | |
5200 | ||
5201 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5202 | if (*tmp != '\0') | |
5203 | match = 0; | |
5204 | } | |
5205 | ||
5206 | /* Second: Try wild matching... */ | |
5207 | ||
5208 | if (!match && wild_match) | |
5209 | { | |
5210 | /* Since we are doing wild matching, this means that TEXT | |
5211 | may represent an unqualified symbol name. We therefore must | |
5212 | also compare TEXT against the unqualified name of the symbol. */ | |
5213 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5214 | ||
5215 | if (strncmp (sym_name, text, text_len) == 0) | |
5216 | match = 1; | |
5217 | } | |
5218 | ||
5219 | /* Finally: If we found a mach, prepare the result to return. */ | |
5220 | ||
5221 | if (!match) | |
5222 | return NULL; | |
5223 | ||
5224 | if (verbatim_match) | |
5225 | sym_name = add_angle_brackets (sym_name); | |
5226 | ||
5227 | if (!encoded) | |
5228 | sym_name = ada_decode (sym_name); | |
5229 | ||
5230 | return sym_name; | |
5231 | } | |
5232 | ||
2ba95b9b JB |
5233 | typedef char *char_ptr; |
5234 | DEF_VEC_P (char_ptr); | |
5235 | ||
41d27058 JB |
5236 | /* A companion function to ada_make_symbol_completion_list(). |
5237 | Check if SYM_NAME represents a symbol which name would be suitable | |
5238 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5239 | it is appended at the end of the given string vector SV. | |
5240 | ||
5241 | ORIG_TEXT is the string original string from the user command | |
5242 | that needs to be completed. WORD is the entire command on which | |
5243 | completion should be performed. These two parameters are used to | |
5244 | determine which part of the symbol name should be added to the | |
5245 | completion vector. | |
5246 | if WILD_MATCH is set, then wild matching is performed. | |
5247 | ENCODED should be set if TEXT represents a symbol name in its | |
5248 | encoded formed (in which case the completion should also be | |
5249 | encoded). */ | |
5250 | ||
5251 | static void | |
d6565258 | 5252 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5253 | const char *sym_name, |
5254 | const char *text, int text_len, | |
5255 | const char *orig_text, const char *word, | |
5256 | int wild_match, int encoded) | |
5257 | { | |
5258 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
5259 | wild_match, encoded); | |
5260 | char *completion; | |
5261 | ||
5262 | if (match == NULL) | |
5263 | return; | |
5264 | ||
5265 | /* We found a match, so add the appropriate completion to the given | |
5266 | string vector. */ | |
5267 | ||
5268 | if (word == orig_text) | |
5269 | { | |
5270 | completion = xmalloc (strlen (match) + 5); | |
5271 | strcpy (completion, match); | |
5272 | } | |
5273 | else if (word > orig_text) | |
5274 | { | |
5275 | /* Return some portion of sym_name. */ | |
5276 | completion = xmalloc (strlen (match) + 5); | |
5277 | strcpy (completion, match + (word - orig_text)); | |
5278 | } | |
5279 | else | |
5280 | { | |
5281 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5282 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5283 | strncpy (completion, word, orig_text - word); | |
5284 | completion[orig_text - word] = '\0'; | |
5285 | strcat (completion, match); | |
5286 | } | |
5287 | ||
d6565258 | 5288 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5289 | } |
5290 | ||
5291 | /* Return a list of possible symbol names completing TEXT0. The list | |
5292 | is NULL terminated. WORD is the entire command on which completion | |
5293 | is made. */ | |
5294 | ||
5295 | static char ** | |
5296 | ada_make_symbol_completion_list (char *text0, char *word) | |
5297 | { | |
5298 | char *text; | |
5299 | int text_len; | |
5300 | int wild_match; | |
5301 | int encoded; | |
2ba95b9b | 5302 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5303 | struct symbol *sym; |
5304 | struct symtab *s; | |
5305 | struct partial_symtab *ps; | |
5306 | struct minimal_symbol *msymbol; | |
5307 | struct objfile *objfile; | |
5308 | struct block *b, *surrounding_static_block = 0; | |
5309 | int i; | |
5310 | struct dict_iterator iter; | |
5311 | ||
5312 | if (text0[0] == '<') | |
5313 | { | |
5314 | text = xstrdup (text0); | |
5315 | make_cleanup (xfree, text); | |
5316 | text_len = strlen (text); | |
5317 | wild_match = 0; | |
5318 | encoded = 1; | |
5319 | } | |
5320 | else | |
5321 | { | |
5322 | text = xstrdup (ada_encode (text0)); | |
5323 | make_cleanup (xfree, text); | |
5324 | text_len = strlen (text); | |
5325 | for (i = 0; i < text_len; i++) | |
5326 | text[i] = tolower (text[i]); | |
5327 | ||
5328 | encoded = (strstr (text0, "__") != NULL); | |
5329 | /* If the name contains a ".", then the user is entering a fully | |
5330 | qualified entity name, and the match must not be done in wild | |
5331 | mode. Similarly, if the user wants to complete what looks like | |
5332 | an encoded name, the match must not be done in wild mode. */ | |
5333 | wild_match = (strchr (text0, '.') == NULL && !encoded); | |
5334 | } | |
5335 | ||
5336 | /* First, look at the partial symtab symbols. */ | |
5337 | ALL_PSYMTABS (objfile, ps) | |
5338 | { | |
5339 | struct partial_symbol **psym; | |
5340 | ||
5341 | /* If the psymtab's been read in we'll get it when we search | |
5342 | through the blockvector. */ | |
5343 | if (ps->readin) | |
5344 | continue; | |
5345 | ||
5346 | for (psym = objfile->global_psymbols.list + ps->globals_offset; | |
5347 | psym < (objfile->global_psymbols.list + ps->globals_offset | |
5348 | + ps->n_global_syms); psym++) | |
5349 | { | |
5350 | QUIT; | |
d6565258 | 5351 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym), |
41d27058 JB |
5352 | text, text_len, text0, word, |
5353 | wild_match, encoded); | |
5354 | } | |
5355 | ||
5356 | for (psym = objfile->static_psymbols.list + ps->statics_offset; | |
5357 | psym < (objfile->static_psymbols.list + ps->statics_offset | |
5358 | + ps->n_static_syms); psym++) | |
5359 | { | |
5360 | QUIT; | |
d6565258 | 5361 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym), |
41d27058 JB |
5362 | text, text_len, text0, word, |
5363 | wild_match, encoded); | |
5364 | } | |
5365 | } | |
5366 | ||
5367 | /* At this point scan through the misc symbol vectors and add each | |
5368 | symbol you find to the list. Eventually we want to ignore | |
5369 | anything that isn't a text symbol (everything else will be | |
5370 | handled by the psymtab code above). */ | |
5371 | ||
5372 | ALL_MSYMBOLS (objfile, msymbol) | |
5373 | { | |
5374 | QUIT; | |
d6565258 | 5375 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
41d27058 JB |
5376 | text, text_len, text0, word, wild_match, encoded); |
5377 | } | |
5378 | ||
5379 | /* Search upwards from currently selected frame (so that we can | |
5380 | complete on local vars. */ | |
5381 | ||
5382 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5383 | { | |
5384 | if (!BLOCK_SUPERBLOCK (b)) | |
5385 | surrounding_static_block = b; /* For elmin of dups */ | |
5386 | ||
5387 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5388 | { | |
d6565258 | 5389 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5390 | text, text_len, text0, word, |
5391 | wild_match, encoded); | |
5392 | } | |
5393 | } | |
5394 | ||
5395 | /* Go through the symtabs and check the externs and statics for | |
5396 | symbols which match. */ | |
5397 | ||
5398 | ALL_SYMTABS (objfile, s) | |
5399 | { | |
5400 | QUIT; | |
5401 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5402 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5403 | { | |
d6565258 | 5404 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5405 | text, text_len, text0, word, |
5406 | wild_match, encoded); | |
5407 | } | |
5408 | } | |
5409 | ||
5410 | ALL_SYMTABS (objfile, s) | |
5411 | { | |
5412 | QUIT; | |
5413 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5414 | /* Don't do this block twice. */ | |
5415 | if (b == surrounding_static_block) | |
5416 | continue; | |
5417 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5418 | { | |
d6565258 | 5419 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5420 | text, text_len, text0, word, |
5421 | wild_match, encoded); | |
5422 | } | |
5423 | } | |
5424 | ||
5425 | /* Append the closing NULL entry. */ | |
2ba95b9b | 5426 | VEC_safe_push (char_ptr, completions, NULL); |
41d27058 | 5427 | |
2ba95b9b JB |
5428 | /* Make a copy of the COMPLETIONS VEC before we free it, and then |
5429 | return the copy. It's unfortunate that we have to make a copy | |
5430 | of an array that we're about to destroy, but there is nothing much | |
5431 | we can do about it. Fortunately, it's typically not a very large | |
5432 | array. */ | |
5433 | { | |
5434 | const size_t completions_size = | |
5435 | VEC_length (char_ptr, completions) * sizeof (char *); | |
5436 | char **result = malloc (completions_size); | |
5437 | ||
5438 | memcpy (result, VEC_address (char_ptr, completions), completions_size); | |
5439 | ||
5440 | VEC_free (char_ptr, completions); | |
5441 | return result; | |
5442 | } | |
41d27058 JB |
5443 | } |
5444 | ||
963a6417 | 5445 | /* Field Access */ |
96d887e8 | 5446 | |
73fb9985 JB |
5447 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5448 | for tagged types. */ | |
5449 | ||
5450 | static int | |
5451 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5452 | { | |
5453 | char *name; | |
5454 | ||
5455 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5456 | return 0; | |
5457 | ||
5458 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5459 | if (name == NULL) | |
5460 | return 0; | |
5461 | ||
5462 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5463 | } | |
5464 | ||
963a6417 PH |
5465 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5466 | to be invisible to users. */ | |
96d887e8 | 5467 | |
963a6417 PH |
5468 | int |
5469 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5470 | { |
963a6417 PH |
5471 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5472 | return 1; | |
73fb9985 JB |
5473 | |
5474 | /* Check the name of that field. */ | |
5475 | { | |
5476 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5477 | ||
5478 | /* Anonymous field names should not be printed. | |
5479 | brobecker/2007-02-20: I don't think this can actually happen | |
5480 | but we don't want to print the value of annonymous fields anyway. */ | |
5481 | if (name == NULL) | |
5482 | return 1; | |
5483 | ||
5484 | /* A field named "_parent" is internally generated by GNAT for | |
5485 | tagged types, and should not be printed either. */ | |
5486 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) | |
5487 | return 1; | |
5488 | } | |
5489 | ||
5490 | /* If this is the dispatch table of a tagged type, then ignore. */ | |
5491 | if (ada_is_tagged_type (type, 1) | |
5492 | && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) | |
5493 | return 1; | |
5494 | ||
5495 | /* Not a special field, so it should not be ignored. */ | |
5496 | return 0; | |
963a6417 | 5497 | } |
96d887e8 | 5498 | |
963a6417 PH |
5499 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
5500 | pointer or reference type whose ultimate target has a tag field. */ | |
96d887e8 | 5501 | |
963a6417 PH |
5502 | int |
5503 | ada_is_tagged_type (struct type *type, int refok) | |
5504 | { | |
5505 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
5506 | } | |
96d887e8 | 5507 | |
963a6417 | 5508 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5509 | |
963a6417 PH |
5510 | int |
5511 | ada_is_tag_type (struct type *type) | |
5512 | { | |
5513 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
5514 | return 0; | |
5515 | else | |
96d887e8 | 5516 | { |
963a6417 PH |
5517 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5518 | return (name != NULL | |
5519 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 5520 | } |
96d887e8 PH |
5521 | } |
5522 | ||
963a6417 | 5523 | /* The type of the tag on VAL. */ |
76a01679 | 5524 | |
963a6417 PH |
5525 | struct type * |
5526 | ada_tag_type (struct value *val) | |
96d887e8 | 5527 | { |
df407dfe | 5528 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 5529 | } |
96d887e8 | 5530 | |
963a6417 | 5531 | /* The value of the tag on VAL. */ |
96d887e8 | 5532 | |
963a6417 PH |
5533 | struct value * |
5534 | ada_value_tag (struct value *val) | |
5535 | { | |
03ee6b2e | 5536 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
5537 | } |
5538 | ||
963a6417 PH |
5539 | /* The value of the tag on the object of type TYPE whose contents are |
5540 | saved at VALADDR, if it is non-null, or is at memory address | |
5541 | ADDRESS. */ | |
96d887e8 | 5542 | |
963a6417 | 5543 | static struct value * |
10a2c479 | 5544 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 5545 | const gdb_byte *valaddr, |
963a6417 | 5546 | CORE_ADDR address) |
96d887e8 | 5547 | { |
963a6417 PH |
5548 | int tag_byte_offset, dummy1, dummy2; |
5549 | struct type *tag_type; | |
5550 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, | |
52ce6436 | 5551 | NULL, NULL, NULL)) |
96d887e8 | 5552 | { |
fc1a4b47 | 5553 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
5554 | ? NULL |
5555 | : valaddr + tag_byte_offset); | |
963a6417 | 5556 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 5557 | |
963a6417 | 5558 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 5559 | } |
963a6417 PH |
5560 | return NULL; |
5561 | } | |
96d887e8 | 5562 | |
963a6417 PH |
5563 | static struct type * |
5564 | type_from_tag (struct value *tag) | |
5565 | { | |
5566 | const char *type_name = ada_tag_name (tag); | |
5567 | if (type_name != NULL) | |
5568 | return ada_find_any_type (ada_encode (type_name)); | |
5569 | return NULL; | |
5570 | } | |
96d887e8 | 5571 | |
963a6417 PH |
5572 | struct tag_args |
5573 | { | |
5574 | struct value *tag; | |
5575 | char *name; | |
5576 | }; | |
4c4b4cd2 | 5577 | |
529cad9c PH |
5578 | |
5579 | static int ada_tag_name_1 (void *); | |
5580 | static int ada_tag_name_2 (struct tag_args *); | |
5581 | ||
4c4b4cd2 PH |
5582 | /* Wrapper function used by ada_tag_name. Given a struct tag_args* |
5583 | value ARGS, sets ARGS->name to the tag name of ARGS->tag. | |
5584 | The value stored in ARGS->name is valid until the next call to | |
5585 | ada_tag_name_1. */ | |
5586 | ||
5587 | static int | |
5588 | ada_tag_name_1 (void *args0) | |
5589 | { | |
5590 | struct tag_args *args = (struct tag_args *) args0; | |
5591 | static char name[1024]; | |
76a01679 | 5592 | char *p; |
4c4b4cd2 PH |
5593 | struct value *val; |
5594 | args->name = NULL; | |
03ee6b2e | 5595 | val = ada_value_struct_elt (args->tag, "tsd", 1); |
529cad9c PH |
5596 | if (val == NULL) |
5597 | return ada_tag_name_2 (args); | |
03ee6b2e | 5598 | val = ada_value_struct_elt (val, "expanded_name", 1); |
529cad9c PH |
5599 | if (val == NULL) |
5600 | return 0; | |
5601 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5602 | for (p = name; *p != '\0'; p += 1) | |
5603 | if (isalpha (*p)) | |
5604 | *p = tolower (*p); | |
5605 | args->name = name; | |
5606 | return 0; | |
5607 | } | |
5608 | ||
5609 | /* Utility function for ada_tag_name_1 that tries the second | |
5610 | representation for the dispatch table (in which there is no | |
5611 | explicit 'tsd' field in the referent of the tag pointer, and instead | |
5612 | the tsd pointer is stored just before the dispatch table. */ | |
5613 | ||
5614 | static int | |
5615 | ada_tag_name_2 (struct tag_args *args) | |
5616 | { | |
5617 | struct type *info_type; | |
5618 | static char name[1024]; | |
5619 | char *p; | |
5620 | struct value *val, *valp; | |
5621 | ||
5622 | args->name = NULL; | |
5623 | info_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
5624 | if (info_type == NULL) | |
5625 | return 0; | |
5626 | info_type = lookup_pointer_type (lookup_pointer_type (info_type)); | |
5627 | valp = value_cast (info_type, args->tag); | |
5628 | if (valp == NULL) | |
5629 | return 0; | |
2497b498 | 5630 | val = value_ind (value_ptradd (valp, -1)); |
4c4b4cd2 PH |
5631 | if (val == NULL) |
5632 | return 0; | |
03ee6b2e | 5633 | val = ada_value_struct_elt (val, "expanded_name", 1); |
4c4b4cd2 PH |
5634 | if (val == NULL) |
5635 | return 0; | |
5636 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5637 | for (p = name; *p != '\0'; p += 1) | |
5638 | if (isalpha (*p)) | |
5639 | *p = tolower (*p); | |
5640 | args->name = name; | |
5641 | return 0; | |
5642 | } | |
5643 | ||
5644 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
5645 | * a C string. */ | |
5646 | ||
5647 | const char * | |
5648 | ada_tag_name (struct value *tag) | |
5649 | { | |
5650 | struct tag_args args; | |
df407dfe | 5651 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 5652 | return NULL; |
76a01679 | 5653 | args.tag = tag; |
4c4b4cd2 PH |
5654 | args.name = NULL; |
5655 | catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL); | |
5656 | return args.name; | |
5657 | } | |
5658 | ||
5659 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 5660 | |
d2e4a39e | 5661 | struct type * |
ebf56fd3 | 5662 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
5663 | { |
5664 | int i; | |
5665 | ||
61ee279c | 5666 | type = ada_check_typedef (type); |
14f9c5c9 AS |
5667 | |
5668 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
5669 | return NULL; | |
5670 | ||
5671 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
5672 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
5673 | { |
5674 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
5675 | ||
5676 | /* If the _parent field is a pointer, then dereference it. */ | |
5677 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
5678 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
5679 | /* If there is a parallel XVS type, get the actual base type. */ | |
5680 | parent_type = ada_get_base_type (parent_type); | |
5681 | ||
5682 | return ada_check_typedef (parent_type); | |
5683 | } | |
14f9c5c9 AS |
5684 | |
5685 | return NULL; | |
5686 | } | |
5687 | ||
4c4b4cd2 PH |
5688 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
5689 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
5690 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5691 | |
5692 | int | |
ebf56fd3 | 5693 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 5694 | { |
61ee279c | 5695 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
4c4b4cd2 PH |
5696 | return (name != NULL |
5697 | && (strncmp (name, "PARENT", 6) == 0 | |
5698 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
5699 | } |
5700 | ||
4c4b4cd2 | 5701 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 5702 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 5703 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 5704 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 5705 | structures. */ |
14f9c5c9 AS |
5706 | |
5707 | int | |
ebf56fd3 | 5708 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 5709 | { |
d2e4a39e AS |
5710 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5711 | return (name != NULL | |
4c4b4cd2 PH |
5712 | && (strncmp (name, "PARENT", 6) == 0 |
5713 | || strcmp (name, "REP") == 0 | |
5714 | || strncmp (name, "_parent", 7) == 0 | |
5715 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
5716 | } |
5717 | ||
4c4b4cd2 PH |
5718 | /* True iff field number FIELD_NUM of structure or union type TYPE |
5719 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
5720 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5721 | |
5722 | int | |
ebf56fd3 | 5723 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 5724 | { |
d2e4a39e | 5725 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
14f9c5c9 | 5726 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 5727 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
5728 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
5729 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
5730 | } |
5731 | ||
5732 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 5733 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
5734 | returns the type of the controlling discriminant for the variant. |
5735 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 5736 | |
d2e4a39e | 5737 | struct type * |
ebf56fd3 | 5738 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 5739 | { |
d2e4a39e | 5740 | char *name = ada_variant_discrim_name (var_type); |
7c964f07 | 5741 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
5742 | } |
5743 | ||
4c4b4cd2 | 5744 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 5745 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 5746 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
5747 | |
5748 | int | |
ebf56fd3 | 5749 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 5750 | { |
d2e4a39e | 5751 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
5752 | return (name != NULL && name[0] == 'O'); |
5753 | } | |
5754 | ||
5755 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
5756 | returns the name of the discriminant controlling the variant. |
5757 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 5758 | |
d2e4a39e | 5759 | char * |
ebf56fd3 | 5760 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 5761 | { |
d2e4a39e | 5762 | static char *result = NULL; |
14f9c5c9 | 5763 | static size_t result_len = 0; |
d2e4a39e AS |
5764 | struct type *type; |
5765 | const char *name; | |
5766 | const char *discrim_end; | |
5767 | const char *discrim_start; | |
14f9c5c9 AS |
5768 | |
5769 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
5770 | type = TYPE_TARGET_TYPE (type0); | |
5771 | else | |
5772 | type = type0; | |
5773 | ||
5774 | name = ada_type_name (type); | |
5775 | ||
5776 | if (name == NULL || name[0] == '\000') | |
5777 | return ""; | |
5778 | ||
5779 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
5780 | discrim_end -= 1) | |
5781 | { | |
4c4b4cd2 PH |
5782 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
5783 | break; | |
14f9c5c9 AS |
5784 | } |
5785 | if (discrim_end == name) | |
5786 | return ""; | |
5787 | ||
d2e4a39e | 5788 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
5789 | discrim_start -= 1) |
5790 | { | |
d2e4a39e | 5791 | if (discrim_start == name + 1) |
4c4b4cd2 | 5792 | return ""; |
76a01679 | 5793 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
5794 | && strncmp (discrim_start - 3, "___", 3) == 0) |
5795 | || discrim_start[-1] == '.') | |
5796 | break; | |
14f9c5c9 AS |
5797 | } |
5798 | ||
5799 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
5800 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 5801 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
5802 | return result; |
5803 | } | |
5804 | ||
4c4b4cd2 PH |
5805 | /* Scan STR for a subtype-encoded number, beginning at position K. |
5806 | Put the position of the character just past the number scanned in | |
5807 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
5808 | Return 1 if there was a valid number at the given position, and 0 | |
5809 | otherwise. A "subtype-encoded" number consists of the absolute value | |
5810 | in decimal, followed by the letter 'm' to indicate a negative number. | |
5811 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
5812 | |
5813 | int | |
d2e4a39e | 5814 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
5815 | { |
5816 | ULONGEST RU; | |
5817 | ||
d2e4a39e | 5818 | if (!isdigit (str[k])) |
14f9c5c9 AS |
5819 | return 0; |
5820 | ||
4c4b4cd2 | 5821 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 5822 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 5823 | LONGEST. */ |
14f9c5c9 AS |
5824 | RU = 0; |
5825 | while (isdigit (str[k])) | |
5826 | { | |
d2e4a39e | 5827 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
5828 | k += 1; |
5829 | } | |
5830 | ||
d2e4a39e | 5831 | if (str[k] == 'm') |
14f9c5c9 AS |
5832 | { |
5833 | if (R != NULL) | |
4c4b4cd2 | 5834 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
5835 | k += 1; |
5836 | } | |
5837 | else if (R != NULL) | |
5838 | *R = (LONGEST) RU; | |
5839 | ||
4c4b4cd2 | 5840 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
5841 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
5842 | number representable as a LONGEST (although either would probably work | |
5843 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 5844 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
5845 | |
5846 | if (new_k != NULL) | |
5847 | *new_k = k; | |
5848 | return 1; | |
5849 | } | |
5850 | ||
4c4b4cd2 PH |
5851 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
5852 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
5853 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 5854 | |
d2e4a39e | 5855 | int |
ebf56fd3 | 5856 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 5857 | { |
d2e4a39e | 5858 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
5859 | int p; |
5860 | ||
5861 | p = 0; | |
5862 | while (1) | |
5863 | { | |
d2e4a39e | 5864 | switch (name[p]) |
4c4b4cd2 PH |
5865 | { |
5866 | case '\0': | |
5867 | return 0; | |
5868 | case 'S': | |
5869 | { | |
5870 | LONGEST W; | |
5871 | if (!ada_scan_number (name, p + 1, &W, &p)) | |
5872 | return 0; | |
5873 | if (val == W) | |
5874 | return 1; | |
5875 | break; | |
5876 | } | |
5877 | case 'R': | |
5878 | { | |
5879 | LONGEST L, U; | |
5880 | if (!ada_scan_number (name, p + 1, &L, &p) | |
5881 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
5882 | return 0; | |
5883 | if (val >= L && val <= U) | |
5884 | return 1; | |
5885 | break; | |
5886 | } | |
5887 | case 'O': | |
5888 | return 1; | |
5889 | default: | |
5890 | return 0; | |
5891 | } | |
5892 | } | |
5893 | } | |
5894 | ||
5895 | /* FIXME: Lots of redundancy below. Try to consolidate. */ | |
5896 | ||
5897 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
5898 | ARG_TYPE, extract and return the value of one of its (non-static) | |
5899 | fields. FIELDNO says which field. Differs from value_primitive_field | |
5900 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 5901 | |
4c4b4cd2 | 5902 | static struct value * |
d2e4a39e | 5903 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 5904 | struct type *arg_type) |
14f9c5c9 | 5905 | { |
14f9c5c9 AS |
5906 | struct type *type; |
5907 | ||
61ee279c | 5908 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
5909 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
5910 | ||
4c4b4cd2 | 5911 | /* Handle packed fields. */ |
14f9c5c9 AS |
5912 | |
5913 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
5914 | { | |
5915 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
5916 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 5917 | |
0fd88904 | 5918 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
5919 | offset + bit_pos / 8, |
5920 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
5921 | } |
5922 | else | |
5923 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
5924 | } | |
5925 | ||
52ce6436 PH |
5926 | /* Find field with name NAME in object of type TYPE. If found, |
5927 | set the following for each argument that is non-null: | |
5928 | - *FIELD_TYPE_P to the field's type; | |
5929 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
5930 | an object of that type; | |
5931 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
5932 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
5933 | 0 otherwise; | |
5934 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
5935 | fields up to but not including the desired field, or by the total | |
5936 | number of fields if not found. A NULL value of NAME never | |
5937 | matches; the function just counts visible fields in this case. | |
5938 | ||
5939 | Returns 1 if found, 0 otherwise. */ | |
5940 | ||
4c4b4cd2 | 5941 | static int |
76a01679 JB |
5942 | find_struct_field (char *name, struct type *type, int offset, |
5943 | struct type **field_type_p, | |
52ce6436 PH |
5944 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
5945 | int *index_p) | |
4c4b4cd2 PH |
5946 | { |
5947 | int i; | |
5948 | ||
61ee279c | 5949 | type = ada_check_typedef (type); |
76a01679 | 5950 | |
52ce6436 PH |
5951 | if (field_type_p != NULL) |
5952 | *field_type_p = NULL; | |
5953 | if (byte_offset_p != NULL) | |
d5d6fca5 | 5954 | *byte_offset_p = 0; |
52ce6436 PH |
5955 | if (bit_offset_p != NULL) |
5956 | *bit_offset_p = 0; | |
5957 | if (bit_size_p != NULL) | |
5958 | *bit_size_p = 0; | |
5959 | ||
5960 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
5961 | { |
5962 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
5963 | int fld_offset = offset + bit_pos / 8; | |
5964 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
76a01679 | 5965 | |
4c4b4cd2 PH |
5966 | if (t_field_name == NULL) |
5967 | continue; | |
5968 | ||
52ce6436 | 5969 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
5970 | { |
5971 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
52ce6436 PH |
5972 | if (field_type_p != NULL) |
5973 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
5974 | if (byte_offset_p != NULL) | |
5975 | *byte_offset_p = fld_offset; | |
5976 | if (bit_offset_p != NULL) | |
5977 | *bit_offset_p = bit_pos % 8; | |
5978 | if (bit_size_p != NULL) | |
5979 | *bit_size_p = bit_size; | |
76a01679 JB |
5980 | return 1; |
5981 | } | |
4c4b4cd2 PH |
5982 | else if (ada_is_wrapper_field (type, i)) |
5983 | { | |
52ce6436 PH |
5984 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
5985 | field_type_p, byte_offset_p, bit_offset_p, | |
5986 | bit_size_p, index_p)) | |
76a01679 JB |
5987 | return 1; |
5988 | } | |
4c4b4cd2 PH |
5989 | else if (ada_is_variant_part (type, i)) |
5990 | { | |
52ce6436 PH |
5991 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
5992 | fixed type?? */ | |
4c4b4cd2 | 5993 | int j; |
52ce6436 PH |
5994 | struct type *field_type |
5995 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 5996 | |
52ce6436 | 5997 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 5998 | { |
76a01679 JB |
5999 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6000 | fld_offset | |
6001 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6002 | field_type_p, byte_offset_p, | |
52ce6436 | 6003 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6004 | return 1; |
4c4b4cd2 PH |
6005 | } |
6006 | } | |
52ce6436 PH |
6007 | else if (index_p != NULL) |
6008 | *index_p += 1; | |
4c4b4cd2 PH |
6009 | } |
6010 | return 0; | |
6011 | } | |
6012 | ||
52ce6436 | 6013 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6014 | |
52ce6436 PH |
6015 | static int |
6016 | num_visible_fields (struct type *type) | |
6017 | { | |
6018 | int n; | |
6019 | n = 0; | |
6020 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6021 | return n; | |
6022 | } | |
14f9c5c9 | 6023 | |
4c4b4cd2 | 6024 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6025 | and search in it assuming it has (class) type TYPE. |
6026 | If found, return value, else return NULL. | |
6027 | ||
4c4b4cd2 | 6028 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 6029 | |
4c4b4cd2 | 6030 | static struct value * |
d2e4a39e | 6031 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 6032 | struct type *type) |
14f9c5c9 AS |
6033 | { |
6034 | int i; | |
61ee279c | 6035 | type = ada_check_typedef (type); |
14f9c5c9 | 6036 | |
52ce6436 | 6037 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 AS |
6038 | { |
6039 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6040 | ||
6041 | if (t_field_name == NULL) | |
4c4b4cd2 | 6042 | continue; |
14f9c5c9 AS |
6043 | |
6044 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 6045 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
6046 | |
6047 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 6048 | { |
06d5cf63 JB |
6049 | struct value *v = /* Do not let indent join lines here. */ |
6050 | ada_search_struct_field (name, arg, | |
6051 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6052 | TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 PH |
6053 | if (v != NULL) |
6054 | return v; | |
6055 | } | |
14f9c5c9 AS |
6056 | |
6057 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 6058 | { |
52ce6436 | 6059 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 6060 | int j; |
61ee279c | 6061 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 PH |
6062 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6063 | ||
52ce6436 | 6064 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6065 | { |
06d5cf63 JB |
6066 | struct value *v = ada_search_struct_field /* Force line break. */ |
6067 | (name, arg, | |
6068 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6069 | TYPE_FIELD_TYPE (field_type, j)); | |
4c4b4cd2 PH |
6070 | if (v != NULL) |
6071 | return v; | |
6072 | } | |
6073 | } | |
14f9c5c9 AS |
6074 | } |
6075 | return NULL; | |
6076 | } | |
d2e4a39e | 6077 | |
52ce6436 PH |
6078 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6079 | int, struct type *); | |
6080 | ||
6081 | ||
6082 | /* Return field #INDEX in ARG, where the index is that returned by | |
6083 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6084 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
6085 | * If found, return value, else return NULL. */ | |
6086 | ||
6087 | static struct value * | |
6088 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6089 | struct type *type) | |
6090 | { | |
6091 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6092 | } | |
6093 | ||
6094 | ||
6095 | /* Auxiliary function for ada_index_struct_field. Like | |
6096 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
6097 | * *INDEX_P. */ | |
6098 | ||
6099 | static struct value * | |
6100 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6101 | struct type *type) | |
6102 | { | |
6103 | int i; | |
6104 | type = ada_check_typedef (type); | |
6105 | ||
6106 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6107 | { | |
6108 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6109 | continue; | |
6110 | else if (ada_is_wrapper_field (type, i)) | |
6111 | { | |
6112 | struct value *v = /* Do not let indent join lines here. */ | |
6113 | ada_index_struct_field_1 (index_p, arg, | |
6114 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6115 | TYPE_FIELD_TYPE (type, i)); | |
6116 | if (v != NULL) | |
6117 | return v; | |
6118 | } | |
6119 | ||
6120 | else if (ada_is_variant_part (type, i)) | |
6121 | { | |
6122 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
6123 | find_struct_field. */ | |
6124 | error (_("Cannot assign this kind of variant record")); | |
6125 | } | |
6126 | else if (*index_p == 0) | |
6127 | return ada_value_primitive_field (arg, offset, i, type); | |
6128 | else | |
6129 | *index_p -= 1; | |
6130 | } | |
6131 | return NULL; | |
6132 | } | |
6133 | ||
4c4b4cd2 PH |
6134 | /* Given ARG, a value of type (pointer or reference to a)* |
6135 | structure/union, extract the component named NAME from the ultimate | |
6136 | target structure/union and return it as a value with its | |
f5938064 | 6137 | appropriate type. |
14f9c5c9 | 6138 | |
4c4b4cd2 PH |
6139 | The routine searches for NAME among all members of the structure itself |
6140 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6141 | (e.g., '_parent'). |
6142 | ||
03ee6b2e PH |
6143 | If NO_ERR, then simply return NULL in case of error, rather than |
6144 | calling error. */ | |
14f9c5c9 | 6145 | |
d2e4a39e | 6146 | struct value * |
03ee6b2e | 6147 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6148 | { |
4c4b4cd2 | 6149 | struct type *t, *t1; |
d2e4a39e | 6150 | struct value *v; |
14f9c5c9 | 6151 | |
4c4b4cd2 | 6152 | v = NULL; |
df407dfe | 6153 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6154 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6155 | { | |
6156 | t1 = TYPE_TARGET_TYPE (t); | |
6157 | if (t1 == NULL) | |
03ee6b2e | 6158 | goto BadValue; |
61ee279c | 6159 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6160 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6161 | { |
994b9211 | 6162 | arg = coerce_ref (arg); |
76a01679 JB |
6163 | t = t1; |
6164 | } | |
4c4b4cd2 | 6165 | } |
14f9c5c9 | 6166 | |
4c4b4cd2 PH |
6167 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6168 | { | |
6169 | t1 = TYPE_TARGET_TYPE (t); | |
6170 | if (t1 == NULL) | |
03ee6b2e | 6171 | goto BadValue; |
61ee279c | 6172 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6173 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6174 | { |
6175 | arg = value_ind (arg); | |
6176 | t = t1; | |
6177 | } | |
4c4b4cd2 | 6178 | else |
76a01679 | 6179 | break; |
4c4b4cd2 | 6180 | } |
14f9c5c9 | 6181 | |
4c4b4cd2 | 6182 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6183 | goto BadValue; |
14f9c5c9 | 6184 | |
4c4b4cd2 PH |
6185 | if (t1 == t) |
6186 | v = ada_search_struct_field (name, arg, 0, t); | |
6187 | else | |
6188 | { | |
6189 | int bit_offset, bit_size, byte_offset; | |
6190 | struct type *field_type; | |
6191 | CORE_ADDR address; | |
6192 | ||
76a01679 JB |
6193 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
6194 | address = value_as_address (arg); | |
4c4b4cd2 | 6195 | else |
0fd88904 | 6196 | address = unpack_pointer (t, value_contents (arg)); |
14f9c5c9 | 6197 | |
1ed6ede0 | 6198 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6199 | if (find_struct_field (name, t1, 0, |
6200 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6201 | &bit_size, NULL)) |
76a01679 JB |
6202 | { |
6203 | if (bit_size != 0) | |
6204 | { | |
714e53ab PH |
6205 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6206 | arg = ada_coerce_ref (arg); | |
6207 | else | |
6208 | arg = ada_value_ind (arg); | |
76a01679 JB |
6209 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6210 | bit_offset, bit_size, | |
6211 | field_type); | |
6212 | } | |
6213 | else | |
f5938064 | 6214 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6215 | } |
6216 | } | |
6217 | ||
03ee6b2e PH |
6218 | if (v != NULL || no_err) |
6219 | return v; | |
6220 | else | |
323e0a4a | 6221 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6222 | |
03ee6b2e PH |
6223 | BadValue: |
6224 | if (no_err) | |
6225 | return NULL; | |
6226 | else | |
6227 | error (_("Attempt to extract a component of a value that is not a record.")); | |
14f9c5c9 AS |
6228 | } |
6229 | ||
6230 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6231 | If DISPP is non-null, add its byte displacement from the beginning of a |
6232 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6233 | work for packed fields). |
6234 | ||
6235 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6236 | followed by "___". |
14f9c5c9 | 6237 | |
4c4b4cd2 PH |
6238 | TYPE can be either a struct or union. If REFOK, TYPE may also |
6239 | be a (pointer or reference)+ to a struct or union, and the | |
6240 | ultimate target type will be searched. | |
14f9c5c9 AS |
6241 | |
6242 | Looks recursively into variant clauses and parent types. | |
6243 | ||
4c4b4cd2 PH |
6244 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6245 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6246 | |
4c4b4cd2 | 6247 | static struct type * |
76a01679 JB |
6248 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6249 | int noerr, int *dispp) | |
14f9c5c9 AS |
6250 | { |
6251 | int i; | |
6252 | ||
6253 | if (name == NULL) | |
6254 | goto BadName; | |
6255 | ||
76a01679 | 6256 | if (refok && type != NULL) |
4c4b4cd2 PH |
6257 | while (1) |
6258 | { | |
61ee279c | 6259 | type = ada_check_typedef (type); |
76a01679 JB |
6260 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6261 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6262 | break; | |
6263 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6264 | } |
14f9c5c9 | 6265 | |
76a01679 | 6266 | if (type == NULL |
1265e4aa JB |
6267 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6268 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6269 | { |
4c4b4cd2 | 6270 | if (noerr) |
76a01679 | 6271 | return NULL; |
4c4b4cd2 | 6272 | else |
76a01679 JB |
6273 | { |
6274 | target_terminal_ours (); | |
6275 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6276 | if (type == NULL) |
6277 | error (_("Type (null) is not a structure or union type")); | |
6278 | else | |
6279 | { | |
6280 | /* XXX: type_sprint */ | |
6281 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6282 | type_print (type, "", gdb_stderr, -1); | |
6283 | error (_(" is not a structure or union type")); | |
6284 | } | |
76a01679 | 6285 | } |
14f9c5c9 AS |
6286 | } |
6287 | ||
6288 | type = to_static_fixed_type (type); | |
6289 | ||
6290 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6291 | { | |
6292 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6293 | struct type *t; | |
6294 | int disp; | |
d2e4a39e | 6295 | |
14f9c5c9 | 6296 | if (t_field_name == NULL) |
4c4b4cd2 | 6297 | continue; |
14f9c5c9 AS |
6298 | |
6299 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6300 | { |
6301 | if (dispp != NULL) | |
6302 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6303 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6304 | } |
14f9c5c9 AS |
6305 | |
6306 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6307 | { |
6308 | disp = 0; | |
6309 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6310 | 0, 1, &disp); | |
6311 | if (t != NULL) | |
6312 | { | |
6313 | if (dispp != NULL) | |
6314 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6315 | return t; | |
6316 | } | |
6317 | } | |
14f9c5c9 AS |
6318 | |
6319 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6320 | { |
6321 | int j; | |
61ee279c | 6322 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 PH |
6323 | |
6324 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6325 | { | |
b1f33ddd JB |
6326 | /* FIXME pnh 2008/01/26: We check for a field that is |
6327 | NOT wrapped in a struct, since the compiler sometimes | |
6328 | generates these for unchecked variant types. Revisit | |
6329 | if the compiler changes this practice. */ | |
6330 | char *v_field_name = TYPE_FIELD_NAME (field_type, j); | |
4c4b4cd2 | 6331 | disp = 0; |
b1f33ddd JB |
6332 | if (v_field_name != NULL |
6333 | && field_name_match (v_field_name, name)) | |
6334 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
6335 | else | |
6336 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j), | |
6337 | name, 0, 1, &disp); | |
6338 | ||
4c4b4cd2 PH |
6339 | if (t != NULL) |
6340 | { | |
6341 | if (dispp != NULL) | |
6342 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6343 | return t; | |
6344 | } | |
6345 | } | |
6346 | } | |
14f9c5c9 AS |
6347 | |
6348 | } | |
6349 | ||
6350 | BadName: | |
d2e4a39e | 6351 | if (!noerr) |
14f9c5c9 AS |
6352 | { |
6353 | target_terminal_ours (); | |
6354 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6355 | if (name == NULL) |
6356 | { | |
6357 | /* XXX: type_sprint */ | |
6358 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6359 | type_print (type, "", gdb_stderr, -1); | |
6360 | error (_(" has no component named <null>")); | |
6361 | } | |
6362 | else | |
6363 | { | |
6364 | /* XXX: type_sprint */ | |
6365 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6366 | type_print (type, "", gdb_stderr, -1); | |
6367 | error (_(" has no component named %s"), name); | |
6368 | } | |
14f9c5c9 AS |
6369 | } |
6370 | ||
6371 | return NULL; | |
6372 | } | |
6373 | ||
b1f33ddd JB |
6374 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6375 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
6376 | represents an unchecked union (that is, the variant part of a | |
6377 | record that is named in an Unchecked_Union pragma). */ | |
6378 | ||
6379 | static int | |
6380 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
6381 | { | |
6382 | char *discrim_name = ada_variant_discrim_name (var_type); | |
6383 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) | |
6384 | == NULL); | |
6385 | } | |
6386 | ||
6387 | ||
14f9c5c9 AS |
6388 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6389 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
6390 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
6391 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 6392 | |
d2e4a39e | 6393 | int |
ebf56fd3 | 6394 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 6395 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
6396 | { |
6397 | int others_clause; | |
6398 | int i; | |
d2e4a39e | 6399 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
6400 | struct value *outer; |
6401 | struct value *discrim; | |
14f9c5c9 AS |
6402 | LONGEST discrim_val; |
6403 | ||
0c281816 JB |
6404 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
6405 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
6406 | if (discrim == NULL) | |
14f9c5c9 | 6407 | return -1; |
0c281816 | 6408 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
6409 | |
6410 | others_clause = -1; | |
6411 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
6412 | { | |
6413 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 6414 | others_clause = i; |
14f9c5c9 | 6415 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 6416 | return i; |
14f9c5c9 AS |
6417 | } |
6418 | ||
6419 | return others_clause; | |
6420 | } | |
d2e4a39e | 6421 | \f |
14f9c5c9 AS |
6422 | |
6423 | ||
4c4b4cd2 | 6424 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
6425 | |
6426 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
6427 | (i.e., a size that is not statically recorded in the debugging | |
6428 | data) does not accurately reflect the size or layout of the value. | |
6429 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 6430 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
6431 | |
6432 | /* There is a subtle and tricky problem here. In general, we cannot | |
6433 | determine the size of dynamic records without its data. However, | |
6434 | the 'struct value' data structure, which GDB uses to represent | |
6435 | quantities in the inferior process (the target), requires the size | |
6436 | of the type at the time of its allocation in order to reserve space | |
6437 | for GDB's internal copy of the data. That's why the | |
6438 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 6439 | rather than struct value*s. |
14f9c5c9 AS |
6440 | |
6441 | However, GDB's internal history variables ($1, $2, etc.) are | |
6442 | struct value*s containing internal copies of the data that are not, in | |
6443 | general, the same as the data at their corresponding addresses in | |
6444 | the target. Fortunately, the types we give to these values are all | |
6445 | conventional, fixed-size types (as per the strategy described | |
6446 | above), so that we don't usually have to perform the | |
6447 | 'to_fixed_xxx_type' conversions to look at their values. | |
6448 | Unfortunately, there is one exception: if one of the internal | |
6449 | history variables is an array whose elements are unconstrained | |
6450 | records, then we will need to create distinct fixed types for each | |
6451 | element selected. */ | |
6452 | ||
6453 | /* The upshot of all of this is that many routines take a (type, host | |
6454 | address, target address) triple as arguments to represent a value. | |
6455 | The host address, if non-null, is supposed to contain an internal | |
6456 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 6457 | target at the target address. */ |
14f9c5c9 AS |
6458 | |
6459 | /* Assuming that VAL0 represents a pointer value, the result of | |
6460 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 6461 | dynamic-sized types. */ |
14f9c5c9 | 6462 | |
d2e4a39e AS |
6463 | struct value * |
6464 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 6465 | { |
d2e4a39e | 6466 | struct value *val = unwrap_value (value_ind (val0)); |
4c4b4cd2 | 6467 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
6468 | } |
6469 | ||
6470 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
6471 | qualifiers on VAL0. */ |
6472 | ||
d2e4a39e AS |
6473 | static struct value * |
6474 | ada_coerce_ref (struct value *val0) | |
6475 | { | |
df407dfe | 6476 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
6477 | { |
6478 | struct value *val = val0; | |
994b9211 | 6479 | val = coerce_ref (val); |
d2e4a39e | 6480 | val = unwrap_value (val); |
4c4b4cd2 | 6481 | return ada_to_fixed_value (val); |
d2e4a39e AS |
6482 | } |
6483 | else | |
14f9c5c9 AS |
6484 | return val0; |
6485 | } | |
6486 | ||
6487 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 6488 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
6489 | |
6490 | static unsigned int | |
ebf56fd3 | 6491 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
6492 | { |
6493 | return (off + alignment - 1) & ~(alignment - 1); | |
6494 | } | |
6495 | ||
4c4b4cd2 | 6496 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
6497 | |
6498 | static unsigned int | |
ebf56fd3 | 6499 | field_alignment (struct type *type, int f) |
14f9c5c9 | 6500 | { |
d2e4a39e | 6501 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 6502 | int len; |
14f9c5c9 AS |
6503 | int align_offset; |
6504 | ||
64a1bf19 JB |
6505 | /* The field name should never be null, unless the debugging information |
6506 | is somehow malformed. In this case, we assume the field does not | |
6507 | require any alignment. */ | |
6508 | if (name == NULL) | |
6509 | return 1; | |
6510 | ||
6511 | len = strlen (name); | |
6512 | ||
4c4b4cd2 PH |
6513 | if (!isdigit (name[len - 1])) |
6514 | return 1; | |
14f9c5c9 | 6515 | |
d2e4a39e | 6516 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
6517 | align_offset = len - 2; |
6518 | else | |
6519 | align_offset = len - 1; | |
6520 | ||
4c4b4cd2 | 6521 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
6522 | return TARGET_CHAR_BIT; |
6523 | ||
4c4b4cd2 PH |
6524 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
6525 | } | |
6526 | ||
6527 | /* Find a symbol named NAME. Ignores ambiguity. */ | |
6528 | ||
6529 | struct symbol * | |
6530 | ada_find_any_symbol (const char *name) | |
6531 | { | |
6532 | struct symbol *sym; | |
6533 | ||
6534 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
6535 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
6536 | return sym; | |
6537 | ||
6538 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
6539 | return sym; | |
14f9c5c9 AS |
6540 | } |
6541 | ||
dddfab26 UW |
6542 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
6543 | solely for types defined by debug info, it will not search the GDB | |
6544 | primitive types. */ | |
4c4b4cd2 | 6545 | |
d2e4a39e | 6546 | struct type * |
ebf56fd3 | 6547 | ada_find_any_type (const char *name) |
14f9c5c9 | 6548 | { |
4c4b4cd2 | 6549 | struct symbol *sym = ada_find_any_symbol (name); |
14f9c5c9 | 6550 | |
14f9c5c9 | 6551 | if (sym != NULL) |
dddfab26 | 6552 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 6553 | |
dddfab26 | 6554 | return NULL; |
14f9c5c9 AS |
6555 | } |
6556 | ||
aeb5907d JB |
6557 | /* Given NAME and an associated BLOCK, search all symbols for |
6558 | NAME suffixed with "___XR", which is the ``renaming'' symbol | |
4c4b4cd2 PH |
6559 | associated to NAME. Return this symbol if found, return |
6560 | NULL otherwise. */ | |
6561 | ||
6562 | struct symbol * | |
6563 | ada_find_renaming_symbol (const char *name, struct block *block) | |
aeb5907d JB |
6564 | { |
6565 | struct symbol *sym; | |
6566 | ||
6567 | sym = find_old_style_renaming_symbol (name, block); | |
6568 | ||
6569 | if (sym != NULL) | |
6570 | return sym; | |
6571 | ||
6572 | /* Not right yet. FIXME pnh 7/20/2007. */ | |
6573 | sym = ada_find_any_symbol (name); | |
6574 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) | |
6575 | return sym; | |
6576 | else | |
6577 | return NULL; | |
6578 | } | |
6579 | ||
6580 | static struct symbol * | |
6581 | find_old_style_renaming_symbol (const char *name, struct block *block) | |
4c4b4cd2 | 6582 | { |
7f0df278 | 6583 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
6584 | char *rename; |
6585 | ||
6586 | if (function_sym != NULL) | |
6587 | { | |
6588 | /* If the symbol is defined inside a function, NAME is not fully | |
6589 | qualified. This means we need to prepend the function name | |
6590 | as well as adding the ``___XR'' suffix to build the name of | |
6591 | the associated renaming symbol. */ | |
6592 | char *function_name = SYMBOL_LINKAGE_NAME (function_sym); | |
529cad9c PH |
6593 | /* Function names sometimes contain suffixes used |
6594 | for instance to qualify nested subprograms. When building | |
6595 | the XR type name, we need to make sure that this suffix is | |
6596 | not included. So do not include any suffix in the function | |
6597 | name length below. */ | |
69fadcdf | 6598 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
6599 | const int rename_len = function_name_len + 2 /* "__" */ |
6600 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 6601 | |
529cad9c | 6602 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
6603 | ada_remove_trailing_digits (function_name, &function_name_len); |
6604 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
6605 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 6606 | |
4c4b4cd2 PH |
6607 | /* Library-level functions are a special case, as GNAT adds |
6608 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 6609 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
6610 | have this prefix, so we need to skip this prefix if present. */ |
6611 | if (function_name_len > 5 /* "_ada_" */ | |
6612 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
6613 | { |
6614 | function_name += 5; | |
6615 | function_name_len -= 5; | |
6616 | } | |
4c4b4cd2 PH |
6617 | |
6618 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
6619 | strncpy (rename, function_name, function_name_len); |
6620 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
6621 | "__%s___XR", name); | |
4c4b4cd2 PH |
6622 | } |
6623 | else | |
6624 | { | |
6625 | const int rename_len = strlen (name) + 6; | |
6626 | rename = (char *) alloca (rename_len * sizeof (char)); | |
88c15c34 | 6627 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
6628 | } |
6629 | ||
6630 | return ada_find_any_symbol (rename); | |
6631 | } | |
6632 | ||
14f9c5c9 | 6633 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 6634 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 6635 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
6636 | otherwise return 0. */ |
6637 | ||
14f9c5c9 | 6638 | int |
d2e4a39e | 6639 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
6640 | { |
6641 | if (type1 == NULL) | |
6642 | return 1; | |
6643 | else if (type0 == NULL) | |
6644 | return 0; | |
6645 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
6646 | return 1; | |
6647 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
6648 | return 0; | |
4c4b4cd2 PH |
6649 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
6650 | return 1; | |
ad82864c | 6651 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 6652 | return 1; |
4c4b4cd2 PH |
6653 | else if (ada_is_array_descriptor_type (type0) |
6654 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 6655 | return 1; |
aeb5907d JB |
6656 | else |
6657 | { | |
6658 | const char *type0_name = type_name_no_tag (type0); | |
6659 | const char *type1_name = type_name_no_tag (type1); | |
6660 | ||
6661 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
6662 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
6663 | return 1; | |
6664 | } | |
14f9c5c9 AS |
6665 | return 0; |
6666 | } | |
6667 | ||
6668 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
6669 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
6670 | ||
d2e4a39e AS |
6671 | char * |
6672 | ada_type_name (struct type *type) | |
14f9c5c9 | 6673 | { |
d2e4a39e | 6674 | if (type == NULL) |
14f9c5c9 AS |
6675 | return NULL; |
6676 | else if (TYPE_NAME (type) != NULL) | |
6677 | return TYPE_NAME (type); | |
6678 | else | |
6679 | return TYPE_TAG_NAME (type); | |
6680 | } | |
6681 | ||
6682 | /* Find a parallel type to TYPE whose name is formed by appending | |
4c4b4cd2 | 6683 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 6684 | |
d2e4a39e | 6685 | struct type * |
ebf56fd3 | 6686 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 6687 | { |
d2e4a39e | 6688 | static char *name; |
14f9c5c9 | 6689 | static size_t name_len = 0; |
14f9c5c9 | 6690 | int len; |
d2e4a39e AS |
6691 | char *typename = ada_type_name (type); |
6692 | ||
14f9c5c9 AS |
6693 | if (typename == NULL) |
6694 | return NULL; | |
6695 | ||
6696 | len = strlen (typename); | |
6697 | ||
d2e4a39e | 6698 | GROW_VECT (name, name_len, len + strlen (suffix) + 1); |
14f9c5c9 AS |
6699 | |
6700 | strcpy (name, typename); | |
6701 | strcpy (name + len, suffix); | |
6702 | ||
6703 | return ada_find_any_type (name); | |
6704 | } | |
6705 | ||
6706 | ||
6707 | /* If TYPE is a variable-size record type, return the corresponding template | |
4c4b4cd2 | 6708 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 6709 | |
d2e4a39e AS |
6710 | static struct type * |
6711 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 6712 | { |
61ee279c | 6713 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6714 | |
6715 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 6716 | || ada_type_name (type) == NULL) |
14f9c5c9 | 6717 | return NULL; |
d2e4a39e | 6718 | else |
14f9c5c9 AS |
6719 | { |
6720 | int len = strlen (ada_type_name (type)); | |
4c4b4cd2 PH |
6721 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
6722 | return type; | |
14f9c5c9 | 6723 | else |
4c4b4cd2 | 6724 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
6725 | } |
6726 | } | |
6727 | ||
6728 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 6729 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 6730 | |
d2e4a39e AS |
6731 | static int |
6732 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
6733 | { |
6734 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
d2e4a39e | 6735 | return name != NULL |
14f9c5c9 AS |
6736 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
6737 | && strstr (name, "___XVL") != NULL; | |
6738 | } | |
6739 | ||
4c4b4cd2 PH |
6740 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
6741 | represent a variant record type. */ | |
14f9c5c9 | 6742 | |
d2e4a39e | 6743 | static int |
4c4b4cd2 | 6744 | variant_field_index (struct type *type) |
14f9c5c9 AS |
6745 | { |
6746 | int f; | |
6747 | ||
4c4b4cd2 PH |
6748 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
6749 | return -1; | |
6750 | ||
6751 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
6752 | { | |
6753 | if (ada_is_variant_part (type, f)) | |
6754 | return f; | |
6755 | } | |
6756 | return -1; | |
14f9c5c9 AS |
6757 | } |
6758 | ||
4c4b4cd2 PH |
6759 | /* A record type with no fields. */ |
6760 | ||
d2e4a39e | 6761 | static struct type * |
e9bb382b | 6762 | empty_record (struct type *template) |
14f9c5c9 | 6763 | { |
e9bb382b | 6764 | struct type *type = alloc_type_copy (template); |
14f9c5c9 AS |
6765 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
6766 | TYPE_NFIELDS (type) = 0; | |
6767 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 6768 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
6769 | TYPE_NAME (type) = "<empty>"; |
6770 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
6771 | TYPE_LENGTH (type) = 0; |
6772 | return type; | |
6773 | } | |
6774 | ||
6775 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
6776 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
6777 | the beginning of this section) VAL according to GNAT conventions. | |
6778 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 6779 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
6780 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
6781 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 6782 | of the variant. |
14f9c5c9 | 6783 | |
4c4b4cd2 PH |
6784 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
6785 | length are not statically known are discarded. As a consequence, | |
6786 | VALADDR, ADDRESS and DVAL0 are ignored. | |
6787 | ||
6788 | NOTE: Limitations: For now, we assume that dynamic fields and | |
6789 | variants occupy whole numbers of bytes. However, they need not be | |
6790 | byte-aligned. */ | |
6791 | ||
6792 | struct type * | |
10a2c479 | 6793 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 6794 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
6795 | CORE_ADDR address, struct value *dval0, |
6796 | int keep_dynamic_fields) | |
14f9c5c9 | 6797 | { |
d2e4a39e AS |
6798 | struct value *mark = value_mark (); |
6799 | struct value *dval; | |
6800 | struct type *rtype; | |
14f9c5c9 | 6801 | int nfields, bit_len; |
4c4b4cd2 | 6802 | int variant_field; |
14f9c5c9 | 6803 | long off; |
4c4b4cd2 | 6804 | int fld_bit_len, bit_incr; |
14f9c5c9 AS |
6805 | int f; |
6806 | ||
4c4b4cd2 PH |
6807 | /* Compute the number of fields in this record type that are going |
6808 | to be processed: unless keep_dynamic_fields, this includes only | |
6809 | fields whose position and length are static will be processed. */ | |
6810 | if (keep_dynamic_fields) | |
6811 | nfields = TYPE_NFIELDS (type); | |
6812 | else | |
6813 | { | |
6814 | nfields = 0; | |
76a01679 | 6815 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
6816 | && !ada_is_variant_part (type, nfields) |
6817 | && !is_dynamic_field (type, nfields)) | |
6818 | nfields++; | |
6819 | } | |
6820 | ||
e9bb382b | 6821 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
6822 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
6823 | INIT_CPLUS_SPECIFIC (rtype); | |
6824 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 6825 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
6826 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
6827 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
6828 | TYPE_NAME (rtype) = ada_type_name (type); | |
6829 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 6830 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 6831 | |
d2e4a39e AS |
6832 | off = 0; |
6833 | bit_len = 0; | |
4c4b4cd2 PH |
6834 | variant_field = -1; |
6835 | ||
14f9c5c9 AS |
6836 | for (f = 0; f < nfields; f += 1) |
6837 | { | |
6c038f32 PH |
6838 | off = align_value (off, field_alignment (type, f)) |
6839 | + TYPE_FIELD_BITPOS (type, f); | |
14f9c5c9 | 6840 | TYPE_FIELD_BITPOS (rtype, f) = off; |
d2e4a39e | 6841 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 6842 | |
d2e4a39e | 6843 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
6844 | { |
6845 | variant_field = f; | |
6846 | fld_bit_len = bit_incr = 0; | |
6847 | } | |
14f9c5c9 | 6848 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 6849 | { |
284614f0 JB |
6850 | const gdb_byte *field_valaddr = valaddr; |
6851 | CORE_ADDR field_address = address; | |
6852 | struct type *field_type = | |
6853 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
6854 | ||
4c4b4cd2 | 6855 | if (dval0 == NULL) |
b5304971 JG |
6856 | { |
6857 | /* rtype's length is computed based on the run-time | |
6858 | value of discriminants. If the discriminants are not | |
6859 | initialized, the type size may be completely bogus and | |
6860 | GDB may fail to allocate a value for it. So check the | |
6861 | size first before creating the value. */ | |
6862 | check_size (rtype); | |
6863 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
6864 | } | |
4c4b4cd2 PH |
6865 | else |
6866 | dval = dval0; | |
6867 | ||
284614f0 JB |
6868 | /* If the type referenced by this field is an aligner type, we need |
6869 | to unwrap that aligner type, because its size might not be set. | |
6870 | Keeping the aligner type would cause us to compute the wrong | |
6871 | size for this field, impacting the offset of the all the fields | |
6872 | that follow this one. */ | |
6873 | if (ada_is_aligner_type (field_type)) | |
6874 | { | |
6875 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
6876 | ||
6877 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
6878 | field_address = cond_offset_target (field_address, field_offset); | |
6879 | field_type = ada_aligned_type (field_type); | |
6880 | } | |
6881 | ||
6882 | field_valaddr = cond_offset_host (field_valaddr, | |
6883 | off / TARGET_CHAR_BIT); | |
6884 | field_address = cond_offset_target (field_address, | |
6885 | off / TARGET_CHAR_BIT); | |
6886 | ||
6887 | /* Get the fixed type of the field. Note that, in this case, | |
6888 | we do not want to get the real type out of the tag: if | |
6889 | the current field is the parent part of a tagged record, | |
6890 | we will get the tag of the object. Clearly wrong: the real | |
6891 | type of the parent is not the real type of the child. We | |
6892 | would end up in an infinite loop. */ | |
6893 | field_type = ada_get_base_type (field_type); | |
6894 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
6895 | field_address, dval, 0); | |
6896 | ||
6897 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 PH |
6898 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
6899 | bit_incr = fld_bit_len = | |
6900 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; | |
6901 | } | |
14f9c5c9 | 6902 | else |
4c4b4cd2 PH |
6903 | { |
6904 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
6905 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); | |
6906 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
6907 | bit_incr = fld_bit_len = | |
6908 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); | |
6909 | else | |
6910 | bit_incr = fld_bit_len = | |
6911 | TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT; | |
6912 | } | |
14f9c5c9 | 6913 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 6914 | bit_len = off + fld_bit_len; |
14f9c5c9 | 6915 | off += bit_incr; |
4c4b4cd2 PH |
6916 | TYPE_LENGTH (rtype) = |
6917 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 6918 | } |
4c4b4cd2 PH |
6919 | |
6920 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 6921 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
6922 | the record. This can happen in the presence of representation |
6923 | clauses. */ | |
6924 | if (variant_field >= 0) | |
6925 | { | |
6926 | struct type *branch_type; | |
6927 | ||
6928 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
6929 | ||
6930 | if (dval0 == NULL) | |
6931 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
6932 | else | |
6933 | dval = dval0; | |
6934 | ||
6935 | branch_type = | |
6936 | to_fixed_variant_branch_type | |
6937 | (TYPE_FIELD_TYPE (type, variant_field), | |
6938 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
6939 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
6940 | if (branch_type == NULL) | |
6941 | { | |
6942 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
6943 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
6944 | TYPE_NFIELDS (rtype) -= 1; | |
6945 | } | |
6946 | else | |
6947 | { | |
6948 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
6949 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
6950 | fld_bit_len = | |
6951 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
6952 | TARGET_CHAR_BIT; | |
6953 | if (off + fld_bit_len > bit_len) | |
6954 | bit_len = off + fld_bit_len; | |
6955 | TYPE_LENGTH (rtype) = | |
6956 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
6957 | } | |
6958 | } | |
6959 | ||
714e53ab PH |
6960 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
6961 | should contain the alignment of that record, which should be a strictly | |
6962 | positive value. If null or negative, then something is wrong, most | |
6963 | probably in the debug info. In that case, we don't round up the size | |
6964 | of the resulting type. If this record is not part of another structure, | |
6965 | the current RTYPE length might be good enough for our purposes. */ | |
6966 | if (TYPE_LENGTH (type) <= 0) | |
6967 | { | |
323e0a4a AC |
6968 | if (TYPE_NAME (rtype)) |
6969 | warning (_("Invalid type size for `%s' detected: %d."), | |
6970 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
6971 | else | |
6972 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
6973 | TYPE_LENGTH (type)); | |
714e53ab PH |
6974 | } |
6975 | else | |
6976 | { | |
6977 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
6978 | TYPE_LENGTH (type)); | |
6979 | } | |
14f9c5c9 AS |
6980 | |
6981 | value_free_to_mark (mark); | |
d2e4a39e | 6982 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 6983 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
6984 | return rtype; |
6985 | } | |
6986 | ||
4c4b4cd2 PH |
6987 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
6988 | of 1. */ | |
14f9c5c9 | 6989 | |
d2e4a39e | 6990 | static struct type * |
fc1a4b47 | 6991 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
6992 | CORE_ADDR address, struct value *dval0) |
6993 | { | |
6994 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
6995 | address, dval0, 1); | |
6996 | } | |
6997 | ||
6998 | /* An ordinary record type in which ___XVL-convention fields and | |
6999 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
7000 | static approximations, containing all possible fields. Uses | |
7001 | no runtime values. Useless for use in values, but that's OK, | |
7002 | since the results are used only for type determinations. Works on both | |
7003 | structs and unions. Representation note: to save space, we memorize | |
7004 | the result of this function in the TYPE_TARGET_TYPE of the | |
7005 | template type. */ | |
7006 | ||
7007 | static struct type * | |
7008 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
7009 | { |
7010 | struct type *type; | |
7011 | int nfields; | |
7012 | int f; | |
7013 | ||
4c4b4cd2 PH |
7014 | if (TYPE_TARGET_TYPE (type0) != NULL) |
7015 | return TYPE_TARGET_TYPE (type0); | |
7016 | ||
7017 | nfields = TYPE_NFIELDS (type0); | |
7018 | type = type0; | |
14f9c5c9 AS |
7019 | |
7020 | for (f = 0; f < nfields; f += 1) | |
7021 | { | |
61ee279c | 7022 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 7023 | struct type *new_type; |
14f9c5c9 | 7024 | |
4c4b4cd2 PH |
7025 | if (is_dynamic_field (type0, f)) |
7026 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 7027 | else |
f192137b | 7028 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
7029 | if (type == type0 && new_type != field_type) |
7030 | { | |
e9bb382b | 7031 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
7032 | TYPE_CODE (type) = TYPE_CODE (type0); |
7033 | INIT_CPLUS_SPECIFIC (type); | |
7034 | TYPE_NFIELDS (type) = nfields; | |
7035 | TYPE_FIELDS (type) = (struct field *) | |
7036 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
7037 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
7038 | sizeof (struct field) * nfields); | |
7039 | TYPE_NAME (type) = ada_type_name (type0); | |
7040 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 7041 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
7042 | TYPE_LENGTH (type) = 0; |
7043 | } | |
7044 | TYPE_FIELD_TYPE (type, f) = new_type; | |
7045 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 7046 | } |
14f9c5c9 AS |
7047 | return type; |
7048 | } | |
7049 | ||
4c4b4cd2 | 7050 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
7051 | whose address in memory is ADDRESS, returns a revision of TYPE, |
7052 | which should be a non-dynamic-sized record, in which the variant | |
7053 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
7054 | for discriminant values in DVAL0, which can be NULL if the record |
7055 | contains the necessary discriminant values. */ | |
7056 | ||
d2e4a39e | 7057 | static struct type * |
fc1a4b47 | 7058 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 7059 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7060 | { |
d2e4a39e | 7061 | struct value *mark = value_mark (); |
4c4b4cd2 | 7062 | struct value *dval; |
d2e4a39e | 7063 | struct type *rtype; |
14f9c5c9 AS |
7064 | struct type *branch_type; |
7065 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 7066 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7067 | |
4c4b4cd2 | 7068 | if (variant_field == -1) |
14f9c5c9 AS |
7069 | return type; |
7070 | ||
4c4b4cd2 PH |
7071 | if (dval0 == NULL) |
7072 | dval = value_from_contents_and_address (type, valaddr, address); | |
7073 | else | |
7074 | dval = dval0; | |
7075 | ||
e9bb382b | 7076 | rtype = alloc_type_copy (type); |
14f9c5c9 | 7077 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
7078 | INIT_CPLUS_SPECIFIC (rtype); |
7079 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7080 | TYPE_FIELDS (rtype) = |
7081 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7082 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7083 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7084 | TYPE_NAME (rtype) = ada_type_name (type); |
7085 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7086 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7087 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7088 | ||
4c4b4cd2 PH |
7089 | branch_type = to_fixed_variant_branch_type |
7090 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7091 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7092 | TYPE_FIELD_BITPOS (type, variant_field) |
7093 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7094 | cond_offset_target (address, |
4c4b4cd2 PH |
7095 | TYPE_FIELD_BITPOS (type, variant_field) |
7096 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7097 | if (branch_type == NULL) |
14f9c5c9 | 7098 | { |
4c4b4cd2 PH |
7099 | int f; |
7100 | for (f = variant_field + 1; f < nfields; f += 1) | |
7101 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7102 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7103 | } |
7104 | else | |
7105 | { | |
4c4b4cd2 PH |
7106 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7107 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7108 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7109 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7110 | } |
4c4b4cd2 | 7111 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7112 | |
4c4b4cd2 | 7113 | value_free_to_mark (mark); |
14f9c5c9 AS |
7114 | return rtype; |
7115 | } | |
7116 | ||
7117 | /* An ordinary record type (with fixed-length fields) that describes | |
7118 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7119 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7120 | should be in DVAL, a record value; it may be NULL if the object |
7121 | at ADDR itself contains any necessary discriminant values. | |
7122 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7123 | values from the record are needed. Except in the case that DVAL, | |
7124 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7125 | unchecked) is replaced by a particular branch of the variant. | |
7126 | ||
7127 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7128 | is questionable and may be removed. It can arise during the | |
7129 | processing of an unconstrained-array-of-record type where all the | |
7130 | variant branches have exactly the same size. This is because in | |
7131 | such cases, the compiler does not bother to use the XVS convention | |
7132 | when encoding the record. I am currently dubious of this | |
7133 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7134 | |
d2e4a39e | 7135 | static struct type * |
fc1a4b47 | 7136 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7137 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7138 | { |
d2e4a39e | 7139 | struct type *templ_type; |
14f9c5c9 | 7140 | |
876cecd0 | 7141 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7142 | return type0; |
7143 | ||
d2e4a39e | 7144 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7145 | |
7146 | if (templ_type != NULL) | |
7147 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7148 | else if (variant_field_index (type0) >= 0) |
7149 | { | |
7150 | if (dval == NULL && valaddr == NULL && address == 0) | |
7151 | return type0; | |
7152 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7153 | dval); | |
7154 | } | |
14f9c5c9 AS |
7155 | else |
7156 | { | |
876cecd0 | 7157 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7158 | return type0; |
7159 | } | |
7160 | ||
7161 | } | |
7162 | ||
7163 | /* An ordinary record type (with fixed-length fields) that describes | |
7164 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7165 | union type. Any necessary discriminants' values should be in DVAL, | |
7166 | a record value. That is, this routine selects the appropriate | |
7167 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd JB |
7168 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
7169 | it represents a variant subject to a pragma Unchecked_Union. */ | |
14f9c5c9 | 7170 | |
d2e4a39e | 7171 | static struct type * |
fc1a4b47 | 7172 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7173 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7174 | { |
7175 | int which; | |
d2e4a39e AS |
7176 | struct type *templ_type; |
7177 | struct type *var_type; | |
14f9c5c9 AS |
7178 | |
7179 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7180 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7181 | else |
14f9c5c9 AS |
7182 | var_type = var_type0; |
7183 | ||
7184 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7185 | ||
7186 | if (templ_type != NULL) | |
7187 | var_type = templ_type; | |
7188 | ||
b1f33ddd JB |
7189 | if (is_unchecked_variant (var_type, value_type (dval))) |
7190 | return var_type0; | |
d2e4a39e AS |
7191 | which = |
7192 | ada_which_variant_applies (var_type, | |
0fd88904 | 7193 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7194 | |
7195 | if (which < 0) | |
e9bb382b | 7196 | return empty_record (var_type); |
14f9c5c9 | 7197 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 7198 | return to_fixed_record_type |
d2e4a39e AS |
7199 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7200 | valaddr, address, dval); | |
4c4b4cd2 | 7201 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7202 | return |
7203 | to_fixed_record_type | |
7204 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7205 | else |
7206 | return TYPE_FIELD_TYPE (var_type, which); | |
7207 | } | |
7208 | ||
7209 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7210 | at ADDR, and that DVAL describes a record containing any | |
7211 | discriminants used in TYPE0, returns a type for the value that | |
7212 | contains no dynamic components (that is, no components whose sizes | |
7213 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7214 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7215 | varsize_limit. */ |
14f9c5c9 | 7216 | |
d2e4a39e AS |
7217 | static struct type * |
7218 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7219 | int ignore_too_big) |
14f9c5c9 | 7220 | { |
d2e4a39e AS |
7221 | struct type *index_type_desc; |
7222 | struct type *result; | |
ad82864c | 7223 | int constrained_packed_array_p; |
14f9c5c9 | 7224 | |
284614f0 | 7225 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7226 | return type0; |
14f9c5c9 | 7227 | |
ad82864c JB |
7228 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
7229 | if (constrained_packed_array_p) | |
7230 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 7231 | |
14f9c5c9 AS |
7232 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
7233 | if (index_type_desc == NULL) | |
7234 | { | |
61ee279c | 7235 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
14f9c5c9 | 7236 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7237 | depend on the contents of the array in properly constructed |
7238 | debugging data. */ | |
529cad9c PH |
7239 | /* Create a fixed version of the array element type. |
7240 | We're not providing the address of an element here, | |
e1d5a0d2 | 7241 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7242 | the conversion. This should not be a problem, since arrays of |
7243 | unconstrained objects are not allowed. In particular, all | |
7244 | the elements of an array of a tagged type should all be of | |
7245 | the same type specified in the debugging info. No need to | |
7246 | consult the object tag. */ | |
1ed6ede0 | 7247 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 7248 | |
284614f0 JB |
7249 | /* Make sure we always create a new array type when dealing with |
7250 | packed array types, since we're going to fix-up the array | |
7251 | type length and element bitsize a little further down. */ | |
ad82864c | 7252 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 7253 | result = type0; |
14f9c5c9 | 7254 | else |
e9bb382b | 7255 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 7256 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
7257 | } |
7258 | else | |
7259 | { | |
7260 | int i; | |
7261 | struct type *elt_type0; | |
7262 | ||
7263 | elt_type0 = type0; | |
7264 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 7265 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
7266 | |
7267 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
7268 | depend on the contents of the array in properly constructed |
7269 | debugging data. */ | |
529cad9c PH |
7270 | /* Create a fixed version of the array element type. |
7271 | We're not providing the address of an element here, | |
e1d5a0d2 | 7272 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7273 | the conversion. This should not be a problem, since arrays of |
7274 | unconstrained objects are not allowed. In particular, all | |
7275 | the elements of an array of a tagged type should all be of | |
7276 | the same type specified in the debugging info. No need to | |
7277 | consult the object tag. */ | |
1ed6ede0 JB |
7278 | result = |
7279 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
7280 | |
7281 | elt_type0 = type0; | |
14f9c5c9 | 7282 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
7283 | { |
7284 | struct type *range_type = | |
7285 | to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i), | |
1ce677a4 | 7286 | dval, TYPE_INDEX_TYPE (elt_type0)); |
e9bb382b | 7287 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 7288 | result, range_type); |
1ce677a4 | 7289 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 7290 | } |
d2e4a39e | 7291 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 7292 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7293 | } |
7294 | ||
ad82864c | 7295 | if (constrained_packed_array_p) |
284614f0 JB |
7296 | { |
7297 | /* So far, the resulting type has been created as if the original | |
7298 | type was a regular (non-packed) array type. As a result, the | |
7299 | bitsize of the array elements needs to be set again, and the array | |
7300 | length needs to be recomputed based on that bitsize. */ | |
7301 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
7302 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
7303 | ||
7304 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
7305 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
7306 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
7307 | TYPE_LENGTH (result)++; | |
7308 | } | |
7309 | ||
876cecd0 | 7310 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 7311 | return result; |
d2e4a39e | 7312 | } |
14f9c5c9 AS |
7313 | |
7314 | ||
7315 | /* A standard type (containing no dynamically sized components) | |
7316 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
7317 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 7318 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
7319 | ADDRESS or in VALADDR contains these discriminants. |
7320 | ||
1ed6ede0 JB |
7321 | If CHECK_TAG is not null, in the case of tagged types, this function |
7322 | attempts to locate the object's tag and use it to compute the actual | |
7323 | type. However, when ADDRESS is null, we cannot use it to determine the | |
7324 | location of the tag, and therefore compute the tagged type's actual type. | |
7325 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 7326 | |
f192137b JB |
7327 | static struct type * |
7328 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 7329 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 7330 | { |
61ee279c | 7331 | type = ada_check_typedef (type); |
d2e4a39e AS |
7332 | switch (TYPE_CODE (type)) |
7333 | { | |
7334 | default: | |
14f9c5c9 | 7335 | return type; |
d2e4a39e | 7336 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 7337 | { |
76a01679 | 7338 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
7339 | struct type *fixed_record_type = |
7340 | to_fixed_record_type (type, valaddr, address, NULL); | |
529cad9c PH |
7341 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
7342 | then we can determine its tag, and compute the object's actual | |
1ed6ede0 JB |
7343 | type from there. Note that we have to use the fixed record |
7344 | type (the parent part of the record may have dynamic fields | |
7345 | and the way the location of _tag is expressed may depend on | |
7346 | them). */ | |
529cad9c | 7347 | |
1ed6ede0 | 7348 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 JB |
7349 | { |
7350 | struct type *real_type = | |
1ed6ede0 JB |
7351 | type_from_tag (value_tag_from_contents_and_address |
7352 | (fixed_record_type, | |
7353 | valaddr, | |
7354 | address)); | |
76a01679 | 7355 | if (real_type != NULL) |
1ed6ede0 | 7356 | return to_fixed_record_type (real_type, valaddr, address, NULL); |
76a01679 | 7357 | } |
4af88198 JB |
7358 | |
7359 | /* Check to see if there is a parallel ___XVZ variable. | |
7360 | If there is, then it provides the actual size of our type. */ | |
7361 | else if (ada_type_name (fixed_record_type) != NULL) | |
7362 | { | |
7363 | char *name = ada_type_name (fixed_record_type); | |
7364 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
7365 | int xvz_found = 0; | |
7366 | LONGEST size; | |
7367 | ||
88c15c34 | 7368 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
7369 | size = get_int_var_value (xvz_name, &xvz_found); |
7370 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
7371 | { | |
7372 | fixed_record_type = copy_type (fixed_record_type); | |
7373 | TYPE_LENGTH (fixed_record_type) = size; | |
7374 | ||
7375 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
7376 | observed this when the debugging info is STABS, and | |
7377 | apparently it is something that is hard to fix. | |
7378 | ||
7379 | In practice, we don't need the actual type definition | |
7380 | at all, because the presence of the XVZ variable allows us | |
7381 | to assume that there must be a XVS type as well, which we | |
7382 | should be able to use later, when we need the actual type | |
7383 | definition. | |
7384 | ||
7385 | In the meantime, pretend that the "fixed" type we are | |
7386 | returning is NOT a stub, because this can cause trouble | |
7387 | when using this type to create new types targeting it. | |
7388 | Indeed, the associated creation routines often check | |
7389 | whether the target type is a stub and will try to replace | |
7390 | it, thus using a type with the wrong size. This, in turn, | |
7391 | might cause the new type to have the wrong size too. | |
7392 | Consider the case of an array, for instance, where the size | |
7393 | of the array is computed from the number of elements in | |
7394 | our array multiplied by the size of its element. */ | |
7395 | TYPE_STUB (fixed_record_type) = 0; | |
7396 | } | |
7397 | } | |
1ed6ede0 | 7398 | return fixed_record_type; |
4c4b4cd2 | 7399 | } |
d2e4a39e | 7400 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 7401 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
7402 | case TYPE_CODE_UNION: |
7403 | if (dval == NULL) | |
4c4b4cd2 | 7404 | return type; |
d2e4a39e | 7405 | else |
4c4b4cd2 | 7406 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 7407 | } |
14f9c5c9 AS |
7408 | } |
7409 | ||
f192137b JB |
7410 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
7411 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
7412 | ada_to_fixed_type_1 would return the type referenced by TYPE. */ | |
7413 | ||
7414 | struct type * | |
7415 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
7416 | CORE_ADDR address, struct value *dval, int check_tag) | |
7417 | ||
7418 | { | |
7419 | struct type *fixed_type = | |
7420 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
7421 | ||
7422 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
7423 | && TYPE_TARGET_TYPE (type) == fixed_type) | |
7424 | return type; | |
7425 | ||
7426 | return fixed_type; | |
7427 | } | |
7428 | ||
14f9c5c9 | 7429 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 7430 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 7431 | |
d2e4a39e AS |
7432 | static struct type * |
7433 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 7434 | { |
d2e4a39e | 7435 | struct type *type; |
14f9c5c9 AS |
7436 | |
7437 | if (type0 == NULL) | |
7438 | return NULL; | |
7439 | ||
876cecd0 | 7440 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7441 | return type0; |
7442 | ||
61ee279c | 7443 | type0 = ada_check_typedef (type0); |
d2e4a39e | 7444 | |
14f9c5c9 AS |
7445 | switch (TYPE_CODE (type0)) |
7446 | { | |
7447 | default: | |
7448 | return type0; | |
7449 | case TYPE_CODE_STRUCT: | |
7450 | type = dynamic_template_type (type0); | |
d2e4a39e | 7451 | if (type != NULL) |
4c4b4cd2 PH |
7452 | return template_to_static_fixed_type (type); |
7453 | else | |
7454 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7455 | case TYPE_CODE_UNION: |
7456 | type = ada_find_parallel_type (type0, "___XVU"); | |
7457 | if (type != NULL) | |
4c4b4cd2 PH |
7458 | return template_to_static_fixed_type (type); |
7459 | else | |
7460 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7461 | } |
7462 | } | |
7463 | ||
4c4b4cd2 PH |
7464 | /* A static approximation of TYPE with all type wrappers removed. */ |
7465 | ||
d2e4a39e AS |
7466 | static struct type * |
7467 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
7468 | { |
7469 | if (ada_is_aligner_type (type)) | |
7470 | { | |
61ee279c | 7471 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 7472 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 7473 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
7474 | |
7475 | return static_unwrap_type (type1); | |
7476 | } | |
d2e4a39e | 7477 | else |
14f9c5c9 | 7478 | { |
d2e4a39e AS |
7479 | struct type *raw_real_type = ada_get_base_type (type); |
7480 | if (raw_real_type == type) | |
4c4b4cd2 | 7481 | return type; |
14f9c5c9 | 7482 | else |
4c4b4cd2 | 7483 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
7484 | } |
7485 | } | |
7486 | ||
7487 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 7488 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
7489 | type Foo; |
7490 | type FooP is access Foo; | |
7491 | V: FooP; | |
7492 | type Foo is array ...; | |
4c4b4cd2 | 7493 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
7494 | cross-references to such types, we instead substitute for FooP a |
7495 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 7496 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
7497 | |
7498 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
7499 | exists, otherwise TYPE. */ |
7500 | ||
d2e4a39e | 7501 | struct type * |
61ee279c | 7502 | ada_check_typedef (struct type *type) |
14f9c5c9 | 7503 | { |
727e3d2e JB |
7504 | if (type == NULL) |
7505 | return NULL; | |
7506 | ||
14f9c5c9 AS |
7507 | CHECK_TYPEDEF (type); |
7508 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 7509 | || !TYPE_STUB (type) |
14f9c5c9 AS |
7510 | || TYPE_TAG_NAME (type) == NULL) |
7511 | return type; | |
d2e4a39e | 7512 | else |
14f9c5c9 | 7513 | { |
d2e4a39e AS |
7514 | char *name = TYPE_TAG_NAME (type); |
7515 | struct type *type1 = ada_find_any_type (name); | |
14f9c5c9 AS |
7516 | return (type1 == NULL) ? type : type1; |
7517 | } | |
7518 | } | |
7519 | ||
7520 | /* A value representing the data at VALADDR/ADDRESS as described by | |
7521 | type TYPE0, but with a standard (static-sized) type that correctly | |
7522 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
7523 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 7524 | creation of struct values]. */ |
14f9c5c9 | 7525 | |
4c4b4cd2 PH |
7526 | static struct value * |
7527 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
7528 | struct value *val0) | |
14f9c5c9 | 7529 | { |
1ed6ede0 | 7530 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
14f9c5c9 AS |
7531 | if (type == type0 && val0 != NULL) |
7532 | return val0; | |
d2e4a39e | 7533 | else |
4c4b4cd2 PH |
7534 | return value_from_contents_and_address (type, 0, address); |
7535 | } | |
7536 | ||
7537 | /* A value representing VAL, but with a standard (static-sized) type | |
7538 | that correctly describes it. Does not necessarily create a new | |
7539 | value. */ | |
7540 | ||
7541 | static struct value * | |
7542 | ada_to_fixed_value (struct value *val) | |
7543 | { | |
df407dfe | 7544 | return ada_to_fixed_value_create (value_type (val), |
42ae5230 | 7545 | value_address (val), |
4c4b4cd2 | 7546 | val); |
14f9c5c9 AS |
7547 | } |
7548 | ||
4c4b4cd2 | 7549 | /* A value representing VAL, but with a standard (static-sized) type |
14f9c5c9 AS |
7550 | chosen to approximate the real type of VAL as well as possible, but |
7551 | without consulting any runtime values. For Ada dynamic-sized | |
4c4b4cd2 | 7552 | types, therefore, the type of the result is likely to be inaccurate. */ |
14f9c5c9 | 7553 | |
2c0b251b | 7554 | static struct value * |
d2e4a39e | 7555 | ada_to_static_fixed_value (struct value *val) |
14f9c5c9 | 7556 | { |
d2e4a39e | 7557 | struct type *type = |
df407dfe AC |
7558 | to_static_fixed_type (static_unwrap_type (value_type (val))); |
7559 | if (type == value_type (val)) | |
14f9c5c9 AS |
7560 | return val; |
7561 | else | |
4c4b4cd2 | 7562 | return coerce_unspec_val_to_type (val, type); |
14f9c5c9 | 7563 | } |
d2e4a39e | 7564 | \f |
14f9c5c9 | 7565 | |
14f9c5c9 AS |
7566 | /* Attributes */ |
7567 | ||
4c4b4cd2 PH |
7568 | /* Table mapping attribute numbers to names. |
7569 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 7570 | |
d2e4a39e | 7571 | static const char *attribute_names[] = { |
14f9c5c9 AS |
7572 | "<?>", |
7573 | ||
d2e4a39e | 7574 | "first", |
14f9c5c9 AS |
7575 | "last", |
7576 | "length", | |
7577 | "image", | |
14f9c5c9 AS |
7578 | "max", |
7579 | "min", | |
4c4b4cd2 PH |
7580 | "modulus", |
7581 | "pos", | |
7582 | "size", | |
7583 | "tag", | |
14f9c5c9 | 7584 | "val", |
14f9c5c9 AS |
7585 | 0 |
7586 | }; | |
7587 | ||
d2e4a39e | 7588 | const char * |
4c4b4cd2 | 7589 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 7590 | { |
4c4b4cd2 PH |
7591 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
7592 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
7593 | else |
7594 | return attribute_names[0]; | |
7595 | } | |
7596 | ||
4c4b4cd2 | 7597 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 7598 | |
4c4b4cd2 PH |
7599 | static LONGEST |
7600 | pos_atr (struct value *arg) | |
14f9c5c9 | 7601 | { |
24209737 PH |
7602 | struct value *val = coerce_ref (arg); |
7603 | struct type *type = value_type (val); | |
14f9c5c9 | 7604 | |
d2e4a39e | 7605 | if (!discrete_type_p (type)) |
323e0a4a | 7606 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
7607 | |
7608 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7609 | { | |
7610 | int i; | |
24209737 | 7611 | LONGEST v = value_as_long (val); |
14f9c5c9 | 7612 | |
d2e4a39e | 7613 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 PH |
7614 | { |
7615 | if (v == TYPE_FIELD_BITPOS (type, i)) | |
7616 | return i; | |
7617 | } | |
323e0a4a | 7618 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
7619 | } |
7620 | else | |
24209737 | 7621 | return value_as_long (val); |
4c4b4cd2 PH |
7622 | } |
7623 | ||
7624 | static struct value * | |
3cb382c9 | 7625 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 7626 | { |
3cb382c9 | 7627 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
7628 | } |
7629 | ||
4c4b4cd2 | 7630 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 7631 | |
d2e4a39e AS |
7632 | static struct value * |
7633 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 7634 | { |
d2e4a39e | 7635 | if (!discrete_type_p (type)) |
323e0a4a | 7636 | error (_("'VAL only defined on discrete types")); |
df407dfe | 7637 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 7638 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
7639 | |
7640 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7641 | { | |
7642 | long pos = value_as_long (arg); | |
7643 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) | |
323e0a4a | 7644 | error (_("argument to 'VAL out of range")); |
d2e4a39e | 7645 | return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); |
14f9c5c9 AS |
7646 | } |
7647 | else | |
7648 | return value_from_longest (type, value_as_long (arg)); | |
7649 | } | |
14f9c5c9 | 7650 | \f |
d2e4a39e | 7651 | |
4c4b4cd2 | 7652 | /* Evaluation */ |
14f9c5c9 | 7653 | |
4c4b4cd2 PH |
7654 | /* True if TYPE appears to be an Ada character type. |
7655 | [At the moment, this is true only for Character and Wide_Character; | |
7656 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 7657 | |
d2e4a39e AS |
7658 | int |
7659 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 7660 | { |
7b9f71f2 JB |
7661 | const char *name; |
7662 | ||
7663 | /* If the type code says it's a character, then assume it really is, | |
7664 | and don't check any further. */ | |
7665 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
7666 | return 1; | |
7667 | ||
7668 | /* Otherwise, assume it's a character type iff it is a discrete type | |
7669 | with a known character type name. */ | |
7670 | name = ada_type_name (type); | |
7671 | return (name != NULL | |
7672 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
7673 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
7674 | && (strcmp (name, "character") == 0 | |
7675 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 7676 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 7677 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
7678 | } |
7679 | ||
4c4b4cd2 | 7680 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
7681 | |
7682 | int | |
ebf56fd3 | 7683 | ada_is_string_type (struct type *type) |
14f9c5c9 | 7684 | { |
61ee279c | 7685 | type = ada_check_typedef (type); |
d2e4a39e | 7686 | if (type != NULL |
14f9c5c9 | 7687 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
7688 | && (ada_is_simple_array_type (type) |
7689 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
7690 | && ada_array_arity (type) == 1) |
7691 | { | |
7692 | struct type *elttype = ada_array_element_type (type, 1); | |
7693 | ||
7694 | return ada_is_character_type (elttype); | |
7695 | } | |
d2e4a39e | 7696 | else |
14f9c5c9 AS |
7697 | return 0; |
7698 | } | |
7699 | ||
7700 | ||
7701 | /* True if TYPE is a struct type introduced by the compiler to force the | |
7702 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 7703 | distinctive name. */ |
14f9c5c9 AS |
7704 | |
7705 | int | |
ebf56fd3 | 7706 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 7707 | { |
61ee279c | 7708 | type = ada_check_typedef (type); |
714e53ab PH |
7709 | |
7710 | /* If we can find a parallel XVS type, then the XVS type should | |
7711 | be used instead of this type. And hence, this is not an aligner | |
7712 | type. */ | |
7713 | if (ada_find_parallel_type (type, "___XVS") != NULL) | |
7714 | return 0; | |
7715 | ||
14f9c5c9 | 7716 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
7717 | && TYPE_NFIELDS (type) == 1 |
7718 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
7719 | } |
7720 | ||
7721 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 7722 | the parallel type. */ |
14f9c5c9 | 7723 | |
d2e4a39e AS |
7724 | struct type * |
7725 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 7726 | { |
d2e4a39e AS |
7727 | struct type *real_type_namer; |
7728 | struct type *raw_real_type; | |
14f9c5c9 AS |
7729 | |
7730 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
7731 | return raw_type; | |
7732 | ||
284614f0 JB |
7733 | if (ada_is_aligner_type (raw_type)) |
7734 | /* The encoding specifies that we should always use the aligner type. | |
7735 | So, even if this aligner type has an associated XVS type, we should | |
7736 | simply ignore it. | |
7737 | ||
7738 | According to the compiler gurus, an XVS type parallel to an aligner | |
7739 | type may exist because of a stabs limitation. In stabs, aligner | |
7740 | types are empty because the field has a variable-sized type, and | |
7741 | thus cannot actually be used as an aligner type. As a result, | |
7742 | we need the associated parallel XVS type to decode the type. | |
7743 | Since the policy in the compiler is to not change the internal | |
7744 | representation based on the debugging info format, we sometimes | |
7745 | end up having a redundant XVS type parallel to the aligner type. */ | |
7746 | return raw_type; | |
7747 | ||
14f9c5c9 | 7748 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 7749 | if (real_type_namer == NULL |
14f9c5c9 AS |
7750 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
7751 | || TYPE_NFIELDS (real_type_namer) != 1) | |
7752 | return raw_type; | |
7753 | ||
7754 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
d2e4a39e | 7755 | if (raw_real_type == NULL) |
14f9c5c9 AS |
7756 | return raw_type; |
7757 | else | |
7758 | return raw_real_type; | |
d2e4a39e | 7759 | } |
14f9c5c9 | 7760 | |
4c4b4cd2 | 7761 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 7762 | |
d2e4a39e AS |
7763 | struct type * |
7764 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
7765 | { |
7766 | if (ada_is_aligner_type (type)) | |
7767 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
7768 | else | |
7769 | return ada_get_base_type (type); | |
7770 | } | |
7771 | ||
7772 | ||
7773 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 7774 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 7775 | |
fc1a4b47 AC |
7776 | const gdb_byte * |
7777 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 7778 | { |
d2e4a39e | 7779 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 7780 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
7781 | valaddr + |
7782 | TYPE_FIELD_BITPOS (type, | |
7783 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
7784 | else |
7785 | return valaddr; | |
7786 | } | |
7787 | ||
4c4b4cd2 PH |
7788 | |
7789 | ||
14f9c5c9 | 7790 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 7791 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
7792 | const char * |
7793 | ada_enum_name (const char *name) | |
14f9c5c9 | 7794 | { |
4c4b4cd2 PH |
7795 | static char *result; |
7796 | static size_t result_len = 0; | |
d2e4a39e | 7797 | char *tmp; |
14f9c5c9 | 7798 | |
4c4b4cd2 PH |
7799 | /* First, unqualify the enumeration name: |
7800 | 1. Search for the last '.' character. If we find one, then skip | |
76a01679 JB |
7801 | all the preceeding characters, the unqualified name starts |
7802 | right after that dot. | |
4c4b4cd2 | 7803 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
7804 | translates dots into "__". Search forward for double underscores, |
7805 | but stop searching when we hit an overloading suffix, which is | |
7806 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 7807 | |
c3e5cd34 PH |
7808 | tmp = strrchr (name, '.'); |
7809 | if (tmp != NULL) | |
4c4b4cd2 PH |
7810 | name = tmp + 1; |
7811 | else | |
14f9c5c9 | 7812 | { |
4c4b4cd2 PH |
7813 | while ((tmp = strstr (name, "__")) != NULL) |
7814 | { | |
7815 | if (isdigit (tmp[2])) | |
7816 | break; | |
7817 | else | |
7818 | name = tmp + 2; | |
7819 | } | |
14f9c5c9 AS |
7820 | } |
7821 | ||
7822 | if (name[0] == 'Q') | |
7823 | { | |
14f9c5c9 AS |
7824 | int v; |
7825 | if (name[1] == 'U' || name[1] == 'W') | |
4c4b4cd2 PH |
7826 | { |
7827 | if (sscanf (name + 2, "%x", &v) != 1) | |
7828 | return name; | |
7829 | } | |
14f9c5c9 | 7830 | else |
4c4b4cd2 | 7831 | return name; |
14f9c5c9 | 7832 | |
4c4b4cd2 | 7833 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 7834 | if (isascii (v) && isprint (v)) |
88c15c34 | 7835 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 7836 | else if (name[1] == 'U') |
88c15c34 | 7837 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 7838 | else |
88c15c34 | 7839 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
7840 | |
7841 | return result; | |
7842 | } | |
d2e4a39e | 7843 | else |
4c4b4cd2 | 7844 | { |
c3e5cd34 PH |
7845 | tmp = strstr (name, "__"); |
7846 | if (tmp == NULL) | |
7847 | tmp = strstr (name, "$"); | |
7848 | if (tmp != NULL) | |
4c4b4cd2 PH |
7849 | { |
7850 | GROW_VECT (result, result_len, tmp - name + 1); | |
7851 | strncpy (result, name, tmp - name); | |
7852 | result[tmp - name] = '\0'; | |
7853 | return result; | |
7854 | } | |
7855 | ||
7856 | return name; | |
7857 | } | |
14f9c5c9 AS |
7858 | } |
7859 | ||
14f9c5c9 AS |
7860 | /* Evaluate the subexpression of EXP starting at *POS as for |
7861 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 7862 | expression. */ |
14f9c5c9 | 7863 | |
d2e4a39e AS |
7864 | static struct value * |
7865 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 7866 | { |
4b27a620 | 7867 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
7868 | } |
7869 | ||
7870 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 7871 | value it wraps. */ |
14f9c5c9 | 7872 | |
d2e4a39e AS |
7873 | static struct value * |
7874 | unwrap_value (struct value *val) | |
14f9c5c9 | 7875 | { |
df407dfe | 7876 | struct type *type = ada_check_typedef (value_type (val)); |
14f9c5c9 AS |
7877 | if (ada_is_aligner_type (type)) |
7878 | { | |
de4d072f | 7879 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 7880 | struct type *val_type = ada_check_typedef (value_type (v)); |
14f9c5c9 | 7881 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 7882 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
7883 | |
7884 | return unwrap_value (v); | |
7885 | } | |
d2e4a39e | 7886 | else |
14f9c5c9 | 7887 | { |
d2e4a39e | 7888 | struct type *raw_real_type = |
61ee279c | 7889 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 7890 | |
14f9c5c9 | 7891 | if (type == raw_real_type) |
4c4b4cd2 | 7892 | return val; |
14f9c5c9 | 7893 | |
d2e4a39e | 7894 | return |
4c4b4cd2 PH |
7895 | coerce_unspec_val_to_type |
7896 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 7897 | value_address (val), |
1ed6ede0 | 7898 | NULL, 1)); |
14f9c5c9 AS |
7899 | } |
7900 | } | |
d2e4a39e AS |
7901 | |
7902 | static struct value * | |
7903 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
7904 | { |
7905 | LONGEST val; | |
7906 | ||
df407dfe | 7907 | if (type == value_type (arg)) |
14f9c5c9 | 7908 | return arg; |
df407dfe | 7909 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 7910 | val = ada_float_to_fixed (type, |
df407dfe | 7911 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 7912 | value_as_long (arg))); |
d2e4a39e | 7913 | else |
14f9c5c9 | 7914 | { |
a53b7a21 | 7915 | DOUBLEST argd = value_as_double (arg); |
14f9c5c9 AS |
7916 | val = ada_float_to_fixed (type, argd); |
7917 | } | |
7918 | ||
7919 | return value_from_longest (type, val); | |
7920 | } | |
7921 | ||
d2e4a39e | 7922 | static struct value * |
a53b7a21 | 7923 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 7924 | { |
df407dfe | 7925 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 7926 | value_as_long (arg)); |
a53b7a21 | 7927 | return value_from_double (type, val); |
14f9c5c9 AS |
7928 | } |
7929 | ||
4c4b4cd2 PH |
7930 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
7931 | return the converted value. */ | |
7932 | ||
d2e4a39e AS |
7933 | static struct value * |
7934 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 7935 | { |
df407dfe | 7936 | struct type *type2 = value_type (val); |
14f9c5c9 AS |
7937 | if (type == type2) |
7938 | return val; | |
7939 | ||
61ee279c PH |
7940 | type2 = ada_check_typedef (type2); |
7941 | type = ada_check_typedef (type); | |
14f9c5c9 | 7942 | |
d2e4a39e AS |
7943 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
7944 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
7945 | { |
7946 | val = ada_value_ind (val); | |
df407dfe | 7947 | type2 = value_type (val); |
14f9c5c9 AS |
7948 | } |
7949 | ||
d2e4a39e | 7950 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
7951 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
7952 | { | |
7953 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
4c4b4cd2 PH |
7954 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
7955 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
323e0a4a | 7956 | error (_("Incompatible types in assignment")); |
04624583 | 7957 | deprecated_set_value_type (val, type); |
14f9c5c9 | 7958 | } |
d2e4a39e | 7959 | return val; |
14f9c5c9 AS |
7960 | } |
7961 | ||
4c4b4cd2 PH |
7962 | static struct value * |
7963 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
7964 | { | |
7965 | struct value *val; | |
7966 | struct type *type1, *type2; | |
7967 | LONGEST v, v1, v2; | |
7968 | ||
994b9211 AC |
7969 | arg1 = coerce_ref (arg1); |
7970 | arg2 = coerce_ref (arg2); | |
df407dfe AC |
7971 | type1 = base_type (ada_check_typedef (value_type (arg1))); |
7972 | type2 = base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 7973 | |
76a01679 JB |
7974 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
7975 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
7976 | return value_binop (arg1, arg2, op); |
7977 | ||
76a01679 | 7978 | switch (op) |
4c4b4cd2 PH |
7979 | { |
7980 | case BINOP_MOD: | |
7981 | case BINOP_DIV: | |
7982 | case BINOP_REM: | |
7983 | break; | |
7984 | default: | |
7985 | return value_binop (arg1, arg2, op); | |
7986 | } | |
7987 | ||
7988 | v2 = value_as_long (arg2); | |
7989 | if (v2 == 0) | |
323e0a4a | 7990 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
7991 | |
7992 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
7993 | return value_binop (arg1, arg2, op); | |
7994 | ||
7995 | v1 = value_as_long (arg1); | |
7996 | switch (op) | |
7997 | { | |
7998 | case BINOP_DIV: | |
7999 | v = v1 / v2; | |
76a01679 JB |
8000 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
8001 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
8002 | break; |
8003 | case BINOP_REM: | |
8004 | v = v1 % v2; | |
76a01679 JB |
8005 | if (v * v1 < 0) |
8006 | v -= v2; | |
4c4b4cd2 PH |
8007 | break; |
8008 | default: | |
8009 | /* Should not reach this point. */ | |
8010 | v = 0; | |
8011 | } | |
8012 | ||
8013 | val = allocate_value (type1); | |
990a07ab | 8014 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
8015 | TYPE_LENGTH (value_type (val)), |
8016 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
8017 | return val; |
8018 | } | |
8019 | ||
8020 | static int | |
8021 | ada_value_equal (struct value *arg1, struct value *arg2) | |
8022 | { | |
df407dfe AC |
8023 | if (ada_is_direct_array_type (value_type (arg1)) |
8024 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 8025 | { |
f58b38bf JB |
8026 | /* Automatically dereference any array reference before |
8027 | we attempt to perform the comparison. */ | |
8028 | arg1 = ada_coerce_ref (arg1); | |
8029 | arg2 = ada_coerce_ref (arg2); | |
8030 | ||
4c4b4cd2 PH |
8031 | arg1 = ada_coerce_to_simple_array (arg1); |
8032 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
8033 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
8034 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 8035 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 8036 | /* FIXME: The following works only for types whose |
76a01679 JB |
8037 | representations use all bits (no padding or undefined bits) |
8038 | and do not have user-defined equality. */ | |
8039 | return | |
df407dfe | 8040 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 8041 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 8042 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
8043 | } |
8044 | return value_equal (arg1, arg2); | |
8045 | } | |
8046 | ||
52ce6436 PH |
8047 | /* Total number of component associations in the aggregate starting at |
8048 | index PC in EXP. Assumes that index PC is the start of an | |
8049 | OP_AGGREGATE. */ | |
8050 | ||
8051 | static int | |
8052 | num_component_specs (struct expression *exp, int pc) | |
8053 | { | |
8054 | int n, m, i; | |
8055 | m = exp->elts[pc + 1].longconst; | |
8056 | pc += 3; | |
8057 | n = 0; | |
8058 | for (i = 0; i < m; i += 1) | |
8059 | { | |
8060 | switch (exp->elts[pc].opcode) | |
8061 | { | |
8062 | default: | |
8063 | n += 1; | |
8064 | break; | |
8065 | case OP_CHOICES: | |
8066 | n += exp->elts[pc + 1].longconst; | |
8067 | break; | |
8068 | } | |
8069 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
8070 | } | |
8071 | return n; | |
8072 | } | |
8073 | ||
8074 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
8075 | component of LHS (a simple array or a record), updating *POS past | |
8076 | the expression, assuming that LHS is contained in CONTAINER. Does | |
8077 | not modify the inferior's memory, nor does it modify LHS (unless | |
8078 | LHS == CONTAINER). */ | |
8079 | ||
8080 | static void | |
8081 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
8082 | struct expression *exp, int *pos) | |
8083 | { | |
8084 | struct value *mark = value_mark (); | |
8085 | struct value *elt; | |
8086 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) | |
8087 | { | |
22601c15 UW |
8088 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
8089 | struct value *index_val = value_from_longest (index_type, index); | |
52ce6436 PH |
8090 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
8091 | } | |
8092 | else | |
8093 | { | |
8094 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
8095 | elt = ada_to_fixed_value (unwrap_value (elt)); | |
8096 | } | |
8097 | ||
8098 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
8099 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
8100 | else | |
8101 | value_assign_to_component (container, elt, | |
8102 | ada_evaluate_subexp (NULL, exp, pos, | |
8103 | EVAL_NORMAL)); | |
8104 | ||
8105 | value_free_to_mark (mark); | |
8106 | } | |
8107 | ||
8108 | /* Assuming that LHS represents an lvalue having a record or array | |
8109 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
8110 | of that aggregate's value to LHS, advancing *POS past the | |
8111 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
8112 | lvalue containing LHS (possibly LHS itself). Does not modify | |
8113 | the inferior's memory, nor does it modify the contents of | |
8114 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ | |
8115 | ||
8116 | static struct value * | |
8117 | assign_aggregate (struct value *container, | |
8118 | struct value *lhs, struct expression *exp, | |
8119 | int *pos, enum noside noside) | |
8120 | { | |
8121 | struct type *lhs_type; | |
8122 | int n = exp->elts[*pos+1].longconst; | |
8123 | LONGEST low_index, high_index; | |
8124 | int num_specs; | |
8125 | LONGEST *indices; | |
8126 | int max_indices, num_indices; | |
8127 | int is_array_aggregate; | |
8128 | int i; | |
8129 | struct value *mark = value_mark (); | |
8130 | ||
8131 | *pos += 3; | |
8132 | if (noside != EVAL_NORMAL) | |
8133 | { | |
8134 | int i; | |
8135 | for (i = 0; i < n; i += 1) | |
8136 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
8137 | return container; | |
8138 | } | |
8139 | ||
8140 | container = ada_coerce_ref (container); | |
8141 | if (ada_is_direct_array_type (value_type (container))) | |
8142 | container = ada_coerce_to_simple_array (container); | |
8143 | lhs = ada_coerce_ref (lhs); | |
8144 | if (!deprecated_value_modifiable (lhs)) | |
8145 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
8146 | ||
8147 | lhs_type = value_type (lhs); | |
8148 | if (ada_is_direct_array_type (lhs_type)) | |
8149 | { | |
8150 | lhs = ada_coerce_to_simple_array (lhs); | |
8151 | lhs_type = value_type (lhs); | |
8152 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
8153 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
8154 | is_array_aggregate = 1; | |
8155 | } | |
8156 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
8157 | { | |
8158 | low_index = 0; | |
8159 | high_index = num_visible_fields (lhs_type) - 1; | |
8160 | is_array_aggregate = 0; | |
8161 | } | |
8162 | else | |
8163 | error (_("Left-hand side must be array or record.")); | |
8164 | ||
8165 | num_specs = num_component_specs (exp, *pos - 3); | |
8166 | max_indices = 4 * num_specs + 4; | |
8167 | indices = alloca (max_indices * sizeof (indices[0])); | |
8168 | indices[0] = indices[1] = low_index - 1; | |
8169 | indices[2] = indices[3] = high_index + 1; | |
8170 | num_indices = 4; | |
8171 | ||
8172 | for (i = 0; i < n; i += 1) | |
8173 | { | |
8174 | switch (exp->elts[*pos].opcode) | |
8175 | { | |
8176 | case OP_CHOICES: | |
8177 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
8178 | &num_indices, max_indices, | |
8179 | low_index, high_index); | |
8180 | break; | |
8181 | case OP_POSITIONAL: | |
8182 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
8183 | &num_indices, max_indices, | |
8184 | low_index, high_index); | |
8185 | break; | |
8186 | case OP_OTHERS: | |
8187 | if (i != n-1) | |
8188 | error (_("Misplaced 'others' clause")); | |
8189 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
8190 | num_indices, low_index, high_index); | |
8191 | break; | |
8192 | default: | |
8193 | error (_("Internal error: bad aggregate clause")); | |
8194 | } | |
8195 | } | |
8196 | ||
8197 | return container; | |
8198 | } | |
8199 | ||
8200 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
8201 | construct at *POS, updating *POS past the construct, given that | |
8202 | the positions are relative to lower bound LOW, where HIGH is the | |
8203 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
8204 | updating *NUM_INDICES as needed. CONTAINER is as for | |
8205 | assign_aggregate. */ | |
8206 | static void | |
8207 | aggregate_assign_positional (struct value *container, | |
8208 | struct value *lhs, struct expression *exp, | |
8209 | int *pos, LONGEST *indices, int *num_indices, | |
8210 | int max_indices, LONGEST low, LONGEST high) | |
8211 | { | |
8212 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
8213 | ||
8214 | if (ind - 1 == high) | |
e1d5a0d2 | 8215 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
8216 | if (ind <= high) |
8217 | { | |
8218 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
8219 | *pos += 3; | |
8220 | assign_component (container, lhs, ind, exp, pos); | |
8221 | } | |
8222 | else | |
8223 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8224 | } | |
8225 | ||
8226 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
8227 | construct at *POS, updating *POS past the construct, given that | |
8228 | the allowable indices are LOW..HIGH. Record the indices assigned | |
8229 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
8230 | needed. CONTAINER is as for assign_aggregate. */ | |
8231 | static void | |
8232 | aggregate_assign_from_choices (struct value *container, | |
8233 | struct value *lhs, struct expression *exp, | |
8234 | int *pos, LONGEST *indices, int *num_indices, | |
8235 | int max_indices, LONGEST low, LONGEST high) | |
8236 | { | |
8237 | int j; | |
8238 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
8239 | int choice_pos, expr_pc; | |
8240 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
8241 | ||
8242 | choice_pos = *pos += 3; | |
8243 | ||
8244 | for (j = 0; j < n_choices; j += 1) | |
8245 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8246 | expr_pc = *pos; | |
8247 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8248 | ||
8249 | for (j = 0; j < n_choices; j += 1) | |
8250 | { | |
8251 | LONGEST lower, upper; | |
8252 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
8253 | if (op == OP_DISCRETE_RANGE) | |
8254 | { | |
8255 | choice_pos += 1; | |
8256 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8257 | EVAL_NORMAL)); | |
8258 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8259 | EVAL_NORMAL)); | |
8260 | } | |
8261 | else if (is_array) | |
8262 | { | |
8263 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
8264 | EVAL_NORMAL)); | |
8265 | upper = lower; | |
8266 | } | |
8267 | else | |
8268 | { | |
8269 | int ind; | |
8270 | char *name; | |
8271 | switch (op) | |
8272 | { | |
8273 | case OP_NAME: | |
8274 | name = &exp->elts[choice_pos + 2].string; | |
8275 | break; | |
8276 | case OP_VAR_VALUE: | |
8277 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
8278 | break; | |
8279 | default: | |
8280 | error (_("Invalid record component association.")); | |
8281 | } | |
8282 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
8283 | ind = 0; | |
8284 | if (! find_struct_field (name, value_type (lhs), 0, | |
8285 | NULL, NULL, NULL, NULL, &ind)) | |
8286 | error (_("Unknown component name: %s."), name); | |
8287 | lower = upper = ind; | |
8288 | } | |
8289 | ||
8290 | if (lower <= upper && (lower < low || upper > high)) | |
8291 | error (_("Index in component association out of bounds.")); | |
8292 | ||
8293 | add_component_interval (lower, upper, indices, num_indices, | |
8294 | max_indices); | |
8295 | while (lower <= upper) | |
8296 | { | |
8297 | int pos1; | |
8298 | pos1 = expr_pc; | |
8299 | assign_component (container, lhs, lower, exp, &pos1); | |
8300 | lower += 1; | |
8301 | } | |
8302 | } | |
8303 | } | |
8304 | ||
8305 | /* Assign the value of the expression in the OP_OTHERS construct in | |
8306 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
8307 | have not been previously assigned. The index intervals already assigned | |
8308 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
8309 | OP_OTHERS clause. CONTAINER is as for assign_aggregate*/ | |
8310 | static void | |
8311 | aggregate_assign_others (struct value *container, | |
8312 | struct value *lhs, struct expression *exp, | |
8313 | int *pos, LONGEST *indices, int num_indices, | |
8314 | LONGEST low, LONGEST high) | |
8315 | { | |
8316 | int i; | |
8317 | int expr_pc = *pos+1; | |
8318 | ||
8319 | for (i = 0; i < num_indices - 2; i += 2) | |
8320 | { | |
8321 | LONGEST ind; | |
8322 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) | |
8323 | { | |
8324 | int pos; | |
8325 | pos = expr_pc; | |
8326 | assign_component (container, lhs, ind, exp, &pos); | |
8327 | } | |
8328 | } | |
8329 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8330 | } | |
8331 | ||
8332 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
8333 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
8334 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
8335 | MAX_SIZE. The resulting intervals do not overlap. */ | |
8336 | static void | |
8337 | add_component_interval (LONGEST low, LONGEST high, | |
8338 | LONGEST* indices, int *size, int max_size) | |
8339 | { | |
8340 | int i, j; | |
8341 | for (i = 0; i < *size; i += 2) { | |
8342 | if (high >= indices[i] && low <= indices[i + 1]) | |
8343 | { | |
8344 | int kh; | |
8345 | for (kh = i + 2; kh < *size; kh += 2) | |
8346 | if (high < indices[kh]) | |
8347 | break; | |
8348 | if (low < indices[i]) | |
8349 | indices[i] = low; | |
8350 | indices[i + 1] = indices[kh - 1]; | |
8351 | if (high > indices[i + 1]) | |
8352 | indices[i + 1] = high; | |
8353 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
8354 | *size -= kh - i - 2; | |
8355 | return; | |
8356 | } | |
8357 | else if (high < indices[i]) | |
8358 | break; | |
8359 | } | |
8360 | ||
8361 | if (*size == max_size) | |
8362 | error (_("Internal error: miscounted aggregate components.")); | |
8363 | *size += 2; | |
8364 | for (j = *size-1; j >= i+2; j -= 1) | |
8365 | indices[j] = indices[j - 2]; | |
8366 | indices[i] = low; | |
8367 | indices[i + 1] = high; | |
8368 | } | |
8369 | ||
6e48bd2c JB |
8370 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
8371 | is different. */ | |
8372 | ||
8373 | static struct value * | |
8374 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
8375 | { | |
8376 | if (type == ada_check_typedef (value_type (arg2))) | |
8377 | return arg2; | |
8378 | ||
8379 | if (ada_is_fixed_point_type (type)) | |
8380 | return (cast_to_fixed (type, arg2)); | |
8381 | ||
8382 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 8383 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
8384 | |
8385 | return value_cast (type, arg2); | |
8386 | } | |
8387 | ||
284614f0 JB |
8388 | /* Evaluating Ada expressions, and printing their result. |
8389 | ------------------------------------------------------ | |
8390 | ||
8391 | We usually evaluate an Ada expression in order to print its value. | |
8392 | We also evaluate an expression in order to print its type, which | |
8393 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
8394 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
8395 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
8396 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
8397 | similar. | |
8398 | ||
8399 | Evaluating expressions is a little more complicated for Ada entities | |
8400 | than it is for entities in languages such as C. The main reason for | |
8401 | this is that Ada provides types whose definition might be dynamic. | |
8402 | One example of such types is variant records. Or another example | |
8403 | would be an array whose bounds can only be known at run time. | |
8404 | ||
8405 | The following description is a general guide as to what should be | |
8406 | done (and what should NOT be done) in order to evaluate an expression | |
8407 | involving such types, and when. This does not cover how the semantic | |
8408 | information is encoded by GNAT as this is covered separatly. For the | |
8409 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
8410 | in the GNAT sources. | |
8411 | ||
8412 | Ideally, we should embed each part of this description next to its | |
8413 | associated code. Unfortunately, the amount of code is so vast right | |
8414 | now that it's hard to see whether the code handling a particular | |
8415 | situation might be duplicated or not. One day, when the code is | |
8416 | cleaned up, this guide might become redundant with the comments | |
8417 | inserted in the code, and we might want to remove it. | |
8418 | ||
8419 | When evaluating Ada expressions, the tricky issue is that they may | |
8420 | reference entities whose type contents and size are not statically | |
8421 | known. Consider for instance a variant record: | |
8422 | ||
8423 | type Rec (Empty : Boolean := True) is record | |
8424 | case Empty is | |
8425 | when True => null; | |
8426 | when False => Value : Integer; | |
8427 | end case; | |
8428 | end record; | |
8429 | Yes : Rec := (Empty => False, Value => 1); | |
8430 | No : Rec := (empty => True); | |
8431 | ||
8432 | The size and contents of that record depends on the value of the | |
8433 | descriminant (Rec.Empty). At this point, neither the debugging | |
8434 | information nor the associated type structure in GDB are able to | |
8435 | express such dynamic types. So what the debugger does is to create | |
8436 | "fixed" versions of the type that applies to the specific object. | |
8437 | We also informally refer to this opperation as "fixing" an object, | |
8438 | which means creating its associated fixed type. | |
8439 | ||
8440 | Example: when printing the value of variable "Yes" above, its fixed | |
8441 | type would look like this: | |
8442 | ||
8443 | type Rec is record | |
8444 | Empty : Boolean; | |
8445 | Value : Integer; | |
8446 | end record; | |
8447 | ||
8448 | On the other hand, if we printed the value of "No", its fixed type | |
8449 | would become: | |
8450 | ||
8451 | type Rec is record | |
8452 | Empty : Boolean; | |
8453 | end record; | |
8454 | ||
8455 | Things become a little more complicated when trying to fix an entity | |
8456 | with a dynamic type that directly contains another dynamic type, | |
8457 | such as an array of variant records, for instance. There are | |
8458 | two possible cases: Arrays, and records. | |
8459 | ||
8460 | Arrays are a little simpler to handle, because the same amount of | |
8461 | memory is allocated for each element of the array, even if the amount | |
8462 | of space used by each element changes from element to element. | |
8463 | Consider for instance the following array of type Rec: | |
8464 | ||
8465 | type Rec_Array is array (1 .. 2) of Rec; | |
8466 | ||
8467 | The type structure in GDB describes an array in terms of its | |
8468 | bounds, and the type of its elements. By design, all elements | |
8469 | in the array have the same type. So we cannot use a fixed type | |
8470 | for the array elements in this case, since the fixed type depends | |
8471 | on the actual value of each element. | |
8472 | ||
8473 | Fortunately, what happens in practice is that each element of | |
8474 | the array has the same size, which is the maximum size that | |
8475 | might be needed in order to hold an object of the element type. | |
8476 | And the compiler shows it in the debugging information by wrapping | |
8477 | the array element inside a private PAD type. This type should not | |
8478 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
8479 | that we also use the adjective "aligner" in our code to designate | |
8480 | these wrapper types. | |
8481 | ||
8482 | These wrapper types should have a constant size, which is the size | |
8483 | of each element of the array. In the case when the size is statically | |
8484 | known, the PAD type will already have the right size, and the array | |
8485 | element type should remain unfixed. But there are cases when | |
8486 | this size is not statically known. For instance, assuming that | |
8487 | "Five" is an integer variable: | |
8488 | ||
8489 | type Dynamic is array (1 .. Five) of Integer; | |
8490 | type Wrapper (Has_Length : Boolean := False) is record | |
8491 | Data : Dynamic; | |
8492 | case Has_Length is | |
8493 | when True => Length : Integer; | |
8494 | when False => null; | |
8495 | end case; | |
8496 | end record; | |
8497 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
8498 | ||
8499 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
8500 | Data => (others => 17), | |
8501 | Length => 1)); | |
8502 | ||
8503 | ||
8504 | The debugging info would describe variable Hello as being an | |
8505 | array of a PAD type. The size of that PAD type is not statically | |
8506 | known, but can be determined using a parallel XVZ variable. | |
8507 | In that case, a copy of the PAD type with the correct size should | |
8508 | be used for the fixed array. | |
8509 | ||
8510 | However, things are slightly different in the case of dynamic | |
8511 | record types. In this case, in order to compute the associated | |
8512 | fixed type, we need to determine the size and offset of each of | |
8513 | its components. This, in turn, requires us to compute the fixed | |
8514 | type of each of these components. | |
8515 | ||
8516 | Consider for instance the example: | |
8517 | ||
8518 | type Bounded_String (Max_Size : Natural) is record | |
8519 | Str : String (1 .. Max_Size); | |
8520 | Length : Natural; | |
8521 | end record; | |
8522 | My_String : Bounded_String (Max_Size => 10); | |
8523 | ||
8524 | In that case, the position of field "Length" depends on the size | |
8525 | of field Str, which itself depends on the value of the Max_Size | |
8526 | discriminant. In order to fix the type of variable My_String, | |
8527 | we need to fix the type of field Str. Therefore, fixing a variant | |
8528 | record requires us to fix each of its components. | |
8529 | ||
8530 | However, if a component does not have a dynamic size, the component | |
8531 | should not be fixed. In particular, fields that use a PAD type | |
8532 | should not fixed. Here is an example where this might happen | |
8533 | (assuming type Rec above): | |
8534 | ||
8535 | type Container (Big : Boolean) is record | |
8536 | First : Rec; | |
8537 | After : Integer; | |
8538 | case Big is | |
8539 | when True => Another : Integer; | |
8540 | when False => null; | |
8541 | end case; | |
8542 | end record; | |
8543 | My_Container : Container := (Big => False, | |
8544 | First => (Empty => True), | |
8545 | After => 42); | |
8546 | ||
8547 | In that example, the compiler creates a PAD type for component First, | |
8548 | whose size is constant, and then positions the component After just | |
8549 | right after it. The offset of component After is therefore constant | |
8550 | in this case. | |
8551 | ||
8552 | The debugger computes the position of each field based on an algorithm | |
8553 | that uses, among other things, the actual position and size of the field | |
8554 | preceding it. Let's now imagine that the user is trying to print the | |
8555 | value of My_Container. If the type fixing was recursive, we would | |
8556 | end up computing the offset of field After based on the size of the | |
8557 | fixed version of field First. And since in our example First has | |
8558 | only one actual field, the size of the fixed type is actually smaller | |
8559 | than the amount of space allocated to that field, and thus we would | |
8560 | compute the wrong offset of field After. | |
8561 | ||
8562 | Unfortunately, we need to watch out for dynamic components of variant | |
8563 | records (identified by the ___XVL suffix in the component name). | |
8564 | Even if the target type is a PAD type, the size of that type might | |
8565 | not be statically known. So the PAD type needs to be unwrapped and | |
8566 | the resulting type needs to be fixed. Otherwise, we might end up | |
8567 | with the wrong size for our component. This can be observed with | |
8568 | the following type declarations: | |
8569 | ||
8570 | type Octal is new Integer range 0 .. 7; | |
8571 | type Octal_Array is array (Positive range <>) of Octal; | |
8572 | pragma Pack (Octal_Array); | |
8573 | ||
8574 | type Octal_Buffer (Size : Positive) is record | |
8575 | Buffer : Octal_Array (1 .. Size); | |
8576 | Length : Integer; | |
8577 | end record; | |
8578 | ||
8579 | In that case, Buffer is a PAD type whose size is unset and needs | |
8580 | to be computed by fixing the unwrapped type. | |
8581 | ||
8582 | Lastly, when should the sub-elements of a type that remained unfixed | |
8583 | thus far, be actually fixed? | |
8584 | ||
8585 | The answer is: Only when referencing that element. For instance | |
8586 | when selecting one component of a record, this specific component | |
8587 | should be fixed at that point in time. Or when printing the value | |
8588 | of a record, each component should be fixed before its value gets | |
8589 | printed. Similarly for arrays, the element of the array should be | |
8590 | fixed when printing each element of the array, or when extracting | |
8591 | one element out of that array. On the other hand, fixing should | |
8592 | not be performed on the elements when taking a slice of an array! | |
8593 | ||
8594 | Note that one of the side-effects of miscomputing the offset and | |
8595 | size of each field is that we end up also miscomputing the size | |
8596 | of the containing type. This can have adverse results when computing | |
8597 | the value of an entity. GDB fetches the value of an entity based | |
8598 | on the size of its type, and thus a wrong size causes GDB to fetch | |
8599 | the wrong amount of memory. In the case where the computed size is | |
8600 | too small, GDB fetches too little data to print the value of our | |
8601 | entiry. Results in this case as unpredicatble, as we usually read | |
8602 | past the buffer containing the data =:-o. */ | |
8603 | ||
8604 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
8605 | for the Ada language. */ | |
8606 | ||
52ce6436 | 8607 | static struct value * |
ebf56fd3 | 8608 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 8609 | int *pos, enum noside noside) |
14f9c5c9 AS |
8610 | { |
8611 | enum exp_opcode op; | |
14f9c5c9 AS |
8612 | int tem, tem2, tem3; |
8613 | int pc; | |
8614 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
8615 | struct type *type; | |
52ce6436 | 8616 | int nargs, oplen; |
d2e4a39e | 8617 | struct value **argvec; |
14f9c5c9 | 8618 | |
d2e4a39e AS |
8619 | pc = *pos; |
8620 | *pos += 1; | |
14f9c5c9 AS |
8621 | op = exp->elts[pc].opcode; |
8622 | ||
d2e4a39e | 8623 | switch (op) |
14f9c5c9 AS |
8624 | { |
8625 | default: | |
8626 | *pos -= 1; | |
6e48bd2c JB |
8627 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
8628 | arg1 = unwrap_value (arg1); | |
8629 | ||
8630 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
8631 | then we need to perform the conversion manually, because | |
8632 | evaluate_subexp_standard doesn't do it. This conversion is | |
8633 | necessary in Ada because the different kinds of float/fixed | |
8634 | types in Ada have different representations. | |
8635 | ||
8636 | Similarly, we need to perform the conversion from OP_LONG | |
8637 | ourselves. */ | |
8638 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
8639 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
8640 | ||
8641 | return arg1; | |
4c4b4cd2 PH |
8642 | |
8643 | case OP_STRING: | |
8644 | { | |
76a01679 JB |
8645 | struct value *result; |
8646 | *pos -= 1; | |
8647 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8648 | /* The result type will have code OP_STRING, bashed there from | |
8649 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
8650 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
8651 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 8652 | return result; |
4c4b4cd2 | 8653 | } |
14f9c5c9 AS |
8654 | |
8655 | case UNOP_CAST: | |
8656 | (*pos) += 2; | |
8657 | type = exp->elts[pc + 1].type; | |
8658 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
8659 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8660 | goto nosideret; |
6e48bd2c | 8661 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
8662 | return arg1; |
8663 | ||
4c4b4cd2 PH |
8664 | case UNOP_QUAL: |
8665 | (*pos) += 2; | |
8666 | type = exp->elts[pc + 1].type; | |
8667 | return ada_evaluate_subexp (type, exp, pos, noside); | |
8668 | ||
14f9c5c9 AS |
8669 | case BINOP_ASSIGN: |
8670 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
8671 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
8672 | { | |
8673 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
8674 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
8675 | return arg1; | |
8676 | return ada_value_assign (arg1, arg1); | |
8677 | } | |
003f3813 JB |
8678 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
8679 | except if the lhs of our assignment is a convenience variable. | |
8680 | In the case of assigning to a convenience variable, the lhs | |
8681 | should be exactly the result of the evaluation of the rhs. */ | |
8682 | type = value_type (arg1); | |
8683 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
8684 | type = NULL; | |
8685 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 8686 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 8687 | return arg1; |
df407dfe AC |
8688 | if (ada_is_fixed_point_type (value_type (arg1))) |
8689 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
8690 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 8691 | error |
323e0a4a | 8692 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 8693 | else |
df407dfe | 8694 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 8695 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
8696 | |
8697 | case BINOP_ADD: | |
8698 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8699 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8700 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8701 | goto nosideret; |
2ac8a782 JB |
8702 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
8703 | return (value_from_longest | |
8704 | (value_type (arg1), | |
8705 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
8706 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8707 | || ada_is_fixed_point_type (value_type (arg2))) | |
8708 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8709 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
8710 | /* Do the addition, and cast the result to the type of the first |
8711 | argument. We cannot cast the result to a reference type, so if | |
8712 | ARG1 is a reference type, find its underlying type. */ | |
8713 | type = value_type (arg1); | |
8714 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8715 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 8716 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 8717 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
8718 | |
8719 | case BINOP_SUB: | |
8720 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8721 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8722 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8723 | goto nosideret; |
2ac8a782 JB |
8724 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
8725 | return (value_from_longest | |
8726 | (value_type (arg1), | |
8727 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
8728 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8729 | || ada_is_fixed_point_type (value_type (arg2))) | |
8730 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8731 | error (_("Operands of fixed-point subtraction must have the same type")); |
b7789565 JB |
8732 | /* Do the substraction, and cast the result to the type of the first |
8733 | argument. We cannot cast the result to a reference type, so if | |
8734 | ARG1 is a reference type, find its underlying type. */ | |
8735 | type = value_type (arg1); | |
8736 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8737 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 8738 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 8739 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
8740 | |
8741 | case BINOP_MUL: | |
8742 | case BINOP_DIV: | |
e1578042 JB |
8743 | case BINOP_REM: |
8744 | case BINOP_MOD: | |
14f9c5c9 AS |
8745 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
8746 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8747 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8748 | goto nosideret; |
e1578042 | 8749 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
8750 | { |
8751 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
8752 | return value_zero (value_type (arg1), not_lval); | |
8753 | } | |
14f9c5c9 | 8754 | else |
4c4b4cd2 | 8755 | { |
a53b7a21 | 8756 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 8757 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 8758 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 8759 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 8760 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 8761 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
8762 | return ada_value_binop (arg1, arg2, op); |
8763 | } | |
8764 | ||
4c4b4cd2 PH |
8765 | case BINOP_EQUAL: |
8766 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 8767 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 8768 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 8769 | if (noside == EVAL_SKIP) |
76a01679 | 8770 | goto nosideret; |
4c4b4cd2 | 8771 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 8772 | tem = 0; |
4c4b4cd2 | 8773 | else |
f44316fa UW |
8774 | { |
8775 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
8776 | tem = ada_value_equal (arg1, arg2); | |
8777 | } | |
4c4b4cd2 | 8778 | if (op == BINOP_NOTEQUAL) |
76a01679 | 8779 | tem = !tem; |
fbb06eb1 UW |
8780 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
8781 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
8782 | |
8783 | case UNOP_NEG: | |
8784 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8785 | if (noside == EVAL_SKIP) | |
8786 | goto nosideret; | |
df407dfe AC |
8787 | else if (ada_is_fixed_point_type (value_type (arg1))) |
8788 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 8789 | else |
f44316fa UW |
8790 | { |
8791 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
8792 | return value_neg (arg1); | |
8793 | } | |
4c4b4cd2 | 8794 | |
2330c6c6 JB |
8795 | case BINOP_LOGICAL_AND: |
8796 | case BINOP_LOGICAL_OR: | |
8797 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
8798 | { |
8799 | struct value *val; | |
8800 | ||
8801 | *pos -= 1; | |
8802 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
8803 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
8804 | return value_cast (type, val); | |
000d5124 | 8805 | } |
2330c6c6 JB |
8806 | |
8807 | case BINOP_BITWISE_AND: | |
8808 | case BINOP_BITWISE_IOR: | |
8809 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
8810 | { |
8811 | struct value *val; | |
8812 | ||
8813 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
8814 | *pos = pc; | |
8815 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8816 | ||
8817 | return value_cast (value_type (arg1), val); | |
8818 | } | |
2330c6c6 | 8819 | |
14f9c5c9 AS |
8820 | case OP_VAR_VALUE: |
8821 | *pos -= 1; | |
6799def4 | 8822 | |
14f9c5c9 | 8823 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
8824 | { |
8825 | *pos += 4; | |
8826 | goto nosideret; | |
8827 | } | |
8828 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
8829 | /* Only encountered when an unresolved symbol occurs in a |
8830 | context other than a function call, in which case, it is | |
52ce6436 | 8831 | invalid. */ |
323e0a4a | 8832 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 8833 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 8834 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 8835 | { |
0c1f74cf JB |
8836 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
8837 | if (ada_is_tagged_type (type, 0)) | |
8838 | { | |
8839 | /* Tagged types are a little special in the fact that the real | |
8840 | type is dynamic and can only be determined by inspecting the | |
8841 | object's tag. This means that we need to get the object's | |
8842 | value first (EVAL_NORMAL) and then extract the actual object | |
8843 | type from its tag. | |
8844 | ||
8845 | Note that we cannot skip the final step where we extract | |
8846 | the object type from its tag, because the EVAL_NORMAL phase | |
8847 | results in dynamic components being resolved into fixed ones. | |
8848 | This can cause problems when trying to print the type | |
8849 | description of tagged types whose parent has a dynamic size: | |
8850 | We use the type name of the "_parent" component in order | |
8851 | to print the name of the ancestor type in the type description. | |
8852 | If that component had a dynamic size, the resolution into | |
8853 | a fixed type would result in the loss of that type name, | |
8854 | thus preventing us from printing the name of the ancestor | |
8855 | type in the type description. */ | |
b79819ba JB |
8856 | struct type *actual_type; |
8857 | ||
0c1f74cf | 8858 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); |
b79819ba JB |
8859 | actual_type = type_from_tag (ada_value_tag (arg1)); |
8860 | if (actual_type == NULL) | |
8861 | /* If, for some reason, we were unable to determine | |
8862 | the actual type from the tag, then use the static | |
8863 | approximation that we just computed as a fallback. | |
8864 | This can happen if the debugging information is | |
8865 | incomplete, for instance. */ | |
8866 | actual_type = type; | |
8867 | ||
8868 | return value_zero (actual_type, not_lval); | |
0c1f74cf JB |
8869 | } |
8870 | ||
4c4b4cd2 PH |
8871 | *pos += 4; |
8872 | return value_zero | |
8873 | (to_static_fixed_type | |
8874 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
8875 | not_lval); | |
8876 | } | |
d2e4a39e | 8877 | else |
4c4b4cd2 | 8878 | { |
284614f0 JB |
8879 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
8880 | arg1 = unwrap_value (arg1); | |
4c4b4cd2 PH |
8881 | return ada_to_fixed_value (arg1); |
8882 | } | |
8883 | ||
8884 | case OP_FUNCALL: | |
8885 | (*pos) += 2; | |
8886 | ||
8887 | /* Allocate arg vector, including space for the function to be | |
8888 | called in argvec[0] and a terminating NULL. */ | |
8889 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
8890 | argvec = | |
8891 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
8892 | ||
8893 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 8894 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 8895 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
8896 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
8897 | else | |
8898 | { | |
8899 | for (tem = 0; tem <= nargs; tem += 1) | |
8900 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8901 | argvec[tem] = 0; | |
8902 | ||
8903 | if (noside == EVAL_SKIP) | |
8904 | goto nosideret; | |
8905 | } | |
8906 | ||
ad82864c JB |
8907 | if (ada_is_constrained_packed_array_type |
8908 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 8909 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
8910 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
8911 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
8912 | /* This is a packed array that has already been fixed, and | |
8913 | therefore already coerced to a simple array. Nothing further | |
8914 | to do. */ | |
8915 | ; | |
df407dfe AC |
8916 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
8917 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 8918 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
8919 | argvec[0] = value_addr (argvec[0]); |
8920 | ||
df407dfe | 8921 | type = ada_check_typedef (value_type (argvec[0])); |
4c4b4cd2 PH |
8922 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
8923 | { | |
61ee279c | 8924 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
8925 | { |
8926 | case TYPE_CODE_FUNC: | |
61ee279c | 8927 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
8928 | break; |
8929 | case TYPE_CODE_ARRAY: | |
8930 | break; | |
8931 | case TYPE_CODE_STRUCT: | |
8932 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
8933 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 8934 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
8935 | break; |
8936 | default: | |
323e0a4a | 8937 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 8938 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
8939 | break; |
8940 | } | |
8941 | } | |
8942 | ||
8943 | switch (TYPE_CODE (type)) | |
8944 | { | |
8945 | case TYPE_CODE_FUNC: | |
8946 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8947 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
8948 | return call_function_by_hand (argvec[0], nargs, argvec + 1); | |
8949 | case TYPE_CODE_STRUCT: | |
8950 | { | |
8951 | int arity; | |
8952 | ||
4c4b4cd2 PH |
8953 | arity = ada_array_arity (type); |
8954 | type = ada_array_element_type (type, nargs); | |
8955 | if (type == NULL) | |
323e0a4a | 8956 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 8957 | if (arity != nargs) |
323e0a4a | 8958 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 8959 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 8960 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8961 | return |
8962 | unwrap_value (ada_value_subscript | |
8963 | (argvec[0], nargs, argvec + 1)); | |
8964 | } | |
8965 | case TYPE_CODE_ARRAY: | |
8966 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8967 | { | |
8968 | type = ada_array_element_type (type, nargs); | |
8969 | if (type == NULL) | |
323e0a4a | 8970 | error (_("element type of array unknown")); |
4c4b4cd2 | 8971 | else |
0a07e705 | 8972 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8973 | } |
8974 | return | |
8975 | unwrap_value (ada_value_subscript | |
8976 | (ada_coerce_to_simple_array (argvec[0]), | |
8977 | nargs, argvec + 1)); | |
8978 | case TYPE_CODE_PTR: /* Pointer to array */ | |
8979 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
8980 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8981 | { | |
8982 | type = ada_array_element_type (type, nargs); | |
8983 | if (type == NULL) | |
323e0a4a | 8984 | error (_("element type of array unknown")); |
4c4b4cd2 | 8985 | else |
0a07e705 | 8986 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8987 | } |
8988 | return | |
8989 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
8990 | nargs, argvec + 1)); | |
8991 | ||
8992 | default: | |
e1d5a0d2 PH |
8993 | error (_("Attempt to index or call something other than an " |
8994 | "array or function")); | |
4c4b4cd2 PH |
8995 | } |
8996 | ||
8997 | case TERNOP_SLICE: | |
8998 | { | |
8999 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9000 | struct value *low_bound_val = | |
9001 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
9002 | struct value *high_bound_val = |
9003 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9004 | LONGEST low_bound; | |
9005 | LONGEST high_bound; | |
994b9211 AC |
9006 | low_bound_val = coerce_ref (low_bound_val); |
9007 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
9008 | low_bound = pos_atr (low_bound_val); |
9009 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 9010 | |
4c4b4cd2 PH |
9011 | if (noside == EVAL_SKIP) |
9012 | goto nosideret; | |
9013 | ||
4c4b4cd2 PH |
9014 | /* If this is a reference to an aligner type, then remove all |
9015 | the aligners. */ | |
df407dfe AC |
9016 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9017 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
9018 | TYPE_TARGET_TYPE (value_type (array)) = | |
9019 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 9020 | |
ad82864c | 9021 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 9022 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
9023 | |
9024 | /* If this is a reference to an array or an array lvalue, | |
9025 | convert to a pointer. */ | |
df407dfe AC |
9026 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9027 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
9028 | && VALUE_LVAL (array) == lval_memory)) |
9029 | array = value_addr (array); | |
9030 | ||
1265e4aa | 9031 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 9032 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 9033 | (value_type (array)))) |
0b5d8877 | 9034 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
9035 | |
9036 | array = ada_coerce_to_simple_array_ptr (array); | |
9037 | ||
714e53ab PH |
9038 | /* If we have more than one level of pointer indirection, |
9039 | dereference the value until we get only one level. */ | |
df407dfe AC |
9040 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
9041 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
9042 | == TYPE_CODE_PTR)) |
9043 | array = value_ind (array); | |
9044 | ||
9045 | /* Make sure we really do have an array type before going further, | |
9046 | to avoid a SEGV when trying to get the index type or the target | |
9047 | type later down the road if the debug info generated by | |
9048 | the compiler is incorrect or incomplete. */ | |
df407dfe | 9049 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 9050 | error (_("cannot take slice of non-array")); |
714e53ab | 9051 | |
df407dfe | 9052 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR) |
4c4b4cd2 | 9053 | { |
0b5d8877 | 9054 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9055 | return empty_array (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 PH |
9056 | low_bound); |
9057 | else | |
9058 | { | |
9059 | struct type *arr_type0 = | |
df407dfe | 9060 | to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 | 9061 | NULL, 1); |
f5938064 JG |
9062 | return ada_value_slice_from_ptr (array, arr_type0, |
9063 | longest_to_int (low_bound), | |
9064 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
9065 | } |
9066 | } | |
9067 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9068 | return array; | |
9069 | else if (high_bound < low_bound) | |
df407dfe | 9070 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 9071 | else |
529cad9c PH |
9072 | return ada_value_slice (array, longest_to_int (low_bound), |
9073 | longest_to_int (high_bound)); | |
4c4b4cd2 | 9074 | } |
14f9c5c9 | 9075 | |
4c4b4cd2 PH |
9076 | case UNOP_IN_RANGE: |
9077 | (*pos) += 2; | |
9078 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 9079 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 9080 | |
14f9c5c9 | 9081 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9082 | goto nosideret; |
14f9c5c9 | 9083 | |
4c4b4cd2 PH |
9084 | switch (TYPE_CODE (type)) |
9085 | { | |
9086 | default: | |
e1d5a0d2 PH |
9087 | lim_warning (_("Membership test incompletely implemented; " |
9088 | "always returns true")); | |
fbb06eb1 UW |
9089 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9090 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
9091 | |
9092 | case TYPE_CODE_RANGE: | |
030b4912 UW |
9093 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
9094 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
9095 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9096 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
9097 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9098 | return | |
9099 | value_from_longest (type, | |
4c4b4cd2 PH |
9100 | (value_less (arg1, arg3) |
9101 | || value_equal (arg1, arg3)) | |
9102 | && (value_less (arg2, arg1) | |
9103 | || value_equal (arg2, arg1))); | |
9104 | } | |
9105 | ||
9106 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 9107 | (*pos) += 2; |
4c4b4cd2 PH |
9108 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9109 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 9110 | |
4c4b4cd2 PH |
9111 | if (noside == EVAL_SKIP) |
9112 | goto nosideret; | |
14f9c5c9 | 9113 | |
4c4b4cd2 | 9114 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
9115 | { |
9116 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9117 | return value_zero (type, not_lval); | |
9118 | } | |
14f9c5c9 | 9119 | |
4c4b4cd2 | 9120 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 9121 | |
1eea4ebd UW |
9122 | type = ada_index_type (value_type (arg2), tem, "range"); |
9123 | if (!type) | |
9124 | type = value_type (arg1); | |
14f9c5c9 | 9125 | |
1eea4ebd UW |
9126 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
9127 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 9128 | |
f44316fa UW |
9129 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9130 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9131 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9132 | return |
fbb06eb1 | 9133 | value_from_longest (type, |
4c4b4cd2 PH |
9134 | (value_less (arg1, arg3) |
9135 | || value_equal (arg1, arg3)) | |
9136 | && (value_less (arg2, arg1) | |
9137 | || value_equal (arg2, arg1))); | |
9138 | ||
9139 | case TERNOP_IN_RANGE: | |
9140 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9141 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9142 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9143 | ||
9144 | if (noside == EVAL_SKIP) | |
9145 | goto nosideret; | |
9146 | ||
f44316fa UW |
9147 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9148 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9149 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9150 | return |
fbb06eb1 | 9151 | value_from_longest (type, |
4c4b4cd2 PH |
9152 | (value_less (arg1, arg3) |
9153 | || value_equal (arg1, arg3)) | |
9154 | && (value_less (arg2, arg1) | |
9155 | || value_equal (arg2, arg1))); | |
9156 | ||
9157 | case OP_ATR_FIRST: | |
9158 | case OP_ATR_LAST: | |
9159 | case OP_ATR_LENGTH: | |
9160 | { | |
76a01679 JB |
9161 | struct type *type_arg; |
9162 | if (exp->elts[*pos].opcode == OP_TYPE) | |
9163 | { | |
9164 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
9165 | arg1 = NULL; | |
5bc23cb3 | 9166 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
9167 | } |
9168 | else | |
9169 | { | |
9170 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9171 | type_arg = NULL; | |
9172 | } | |
9173 | ||
9174 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 9175 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
9176 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
9177 | *pos += 4; | |
9178 | ||
9179 | if (noside == EVAL_SKIP) | |
9180 | goto nosideret; | |
9181 | ||
9182 | if (type_arg == NULL) | |
9183 | { | |
9184 | arg1 = ada_coerce_ref (arg1); | |
9185 | ||
ad82864c | 9186 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
9187 | arg1 = ada_coerce_to_simple_array (arg1); |
9188 | ||
1eea4ebd UW |
9189 | type = ada_index_type (value_type (arg1), tem, |
9190 | ada_attribute_name (op)); | |
9191 | if (type == NULL) | |
9192 | type = builtin_type (exp->gdbarch)->builtin_int; | |
76a01679 JB |
9193 | |
9194 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 9195 | return allocate_value (type); |
76a01679 JB |
9196 | |
9197 | switch (op) | |
9198 | { | |
9199 | default: /* Should never happen. */ | |
323e0a4a | 9200 | error (_("unexpected attribute encountered")); |
76a01679 | 9201 | case OP_ATR_FIRST: |
1eea4ebd UW |
9202 | return value_from_longest |
9203 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 9204 | case OP_ATR_LAST: |
1eea4ebd UW |
9205 | return value_from_longest |
9206 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 9207 | case OP_ATR_LENGTH: |
1eea4ebd UW |
9208 | return value_from_longest |
9209 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
9210 | } |
9211 | } | |
9212 | else if (discrete_type_p (type_arg)) | |
9213 | { | |
9214 | struct type *range_type; | |
9215 | char *name = ada_type_name (type_arg); | |
9216 | range_type = NULL; | |
9217 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
1ce677a4 | 9218 | range_type = to_fixed_range_type (name, NULL, type_arg); |
76a01679 JB |
9219 | if (range_type == NULL) |
9220 | range_type = type_arg; | |
9221 | switch (op) | |
9222 | { | |
9223 | default: | |
323e0a4a | 9224 | error (_("unexpected attribute encountered")); |
76a01679 | 9225 | case OP_ATR_FIRST: |
690cc4eb PH |
9226 | return value_from_longest |
9227 | (range_type, discrete_type_low_bound (range_type)); | |
76a01679 | 9228 | case OP_ATR_LAST: |
690cc4eb PH |
9229 | return value_from_longest |
9230 | (range_type, discrete_type_high_bound (range_type)); | |
76a01679 | 9231 | case OP_ATR_LENGTH: |
323e0a4a | 9232 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
9233 | } |
9234 | } | |
9235 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 9236 | error (_("unimplemented type attribute")); |
76a01679 JB |
9237 | else |
9238 | { | |
9239 | LONGEST low, high; | |
9240 | ||
ad82864c JB |
9241 | if (ada_is_constrained_packed_array_type (type_arg)) |
9242 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 9243 | |
1eea4ebd | 9244 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); |
76a01679 | 9245 | if (type == NULL) |
1eea4ebd UW |
9246 | type = builtin_type (exp->gdbarch)->builtin_int; |
9247 | ||
76a01679 JB |
9248 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9249 | return allocate_value (type); | |
9250 | ||
9251 | switch (op) | |
9252 | { | |
9253 | default: | |
323e0a4a | 9254 | error (_("unexpected attribute encountered")); |
76a01679 | 9255 | case OP_ATR_FIRST: |
1eea4ebd | 9256 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
9257 | return value_from_longest (type, low); |
9258 | case OP_ATR_LAST: | |
1eea4ebd | 9259 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
9260 | return value_from_longest (type, high); |
9261 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
9262 | low = ada_array_bound_from_type (type_arg, tem, 0); |
9263 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
9264 | return value_from_longest (type, high - low + 1); |
9265 | } | |
9266 | } | |
14f9c5c9 AS |
9267 | } |
9268 | ||
4c4b4cd2 PH |
9269 | case OP_ATR_TAG: |
9270 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9271 | if (noside == EVAL_SKIP) | |
76a01679 | 9272 | goto nosideret; |
4c4b4cd2 PH |
9273 | |
9274 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 9275 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
9276 | |
9277 | return ada_value_tag (arg1); | |
9278 | ||
9279 | case OP_ATR_MIN: | |
9280 | case OP_ATR_MAX: | |
9281 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9282 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9283 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9284 | if (noside == EVAL_SKIP) | |
76a01679 | 9285 | goto nosideret; |
d2e4a39e | 9286 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9287 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 9288 | else |
f44316fa UW |
9289 | { |
9290 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9291 | return value_binop (arg1, arg2, | |
9292 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
9293 | } | |
14f9c5c9 | 9294 | |
4c4b4cd2 PH |
9295 | case OP_ATR_MODULUS: |
9296 | { | |
31dedfee | 9297 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 | 9298 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
4c4b4cd2 | 9299 | |
76a01679 JB |
9300 | if (noside == EVAL_SKIP) |
9301 | goto nosideret; | |
4c4b4cd2 | 9302 | |
76a01679 | 9303 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 9304 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 9305 | |
76a01679 JB |
9306 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
9307 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
9308 | } |
9309 | ||
9310 | ||
9311 | case OP_ATR_POS: | |
9312 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9313 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9314 | if (noside == EVAL_SKIP) | |
76a01679 | 9315 | goto nosideret; |
3cb382c9 UW |
9316 | type = builtin_type (exp->gdbarch)->builtin_int; |
9317 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9318 | return value_zero (type, not_lval); | |
14f9c5c9 | 9319 | else |
3cb382c9 | 9320 | return value_pos_atr (type, arg1); |
14f9c5c9 | 9321 | |
4c4b4cd2 PH |
9322 | case OP_ATR_SIZE: |
9323 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
9324 | type = value_type (arg1); |
9325 | ||
9326 | /* If the argument is a reference, then dereference its type, since | |
9327 | the user is really asking for the size of the actual object, | |
9328 | not the size of the pointer. */ | |
9329 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
9330 | type = TYPE_TARGET_TYPE (type); | |
9331 | ||
4c4b4cd2 | 9332 | if (noside == EVAL_SKIP) |
76a01679 | 9333 | goto nosideret; |
4c4b4cd2 | 9334 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 9335 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 9336 | else |
22601c15 | 9337 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 9338 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
9339 | |
9340 | case OP_ATR_VAL: | |
9341 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 9342 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 9343 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 9344 | if (noside == EVAL_SKIP) |
76a01679 | 9345 | goto nosideret; |
4c4b4cd2 | 9346 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9347 | return value_zero (type, not_lval); |
4c4b4cd2 | 9348 | else |
76a01679 | 9349 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
9350 | |
9351 | case BINOP_EXP: | |
9352 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9353 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9354 | if (noside == EVAL_SKIP) | |
9355 | goto nosideret; | |
9356 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 9357 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 9358 | else |
f44316fa UW |
9359 | { |
9360 | /* For integer exponentiation operations, | |
9361 | only promote the first argument. */ | |
9362 | if (is_integral_type (value_type (arg2))) | |
9363 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9364 | else | |
9365 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9366 | ||
9367 | return value_binop (arg1, arg2, op); | |
9368 | } | |
4c4b4cd2 PH |
9369 | |
9370 | case UNOP_PLUS: | |
9371 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9372 | if (noside == EVAL_SKIP) | |
9373 | goto nosideret; | |
9374 | else | |
9375 | return arg1; | |
9376 | ||
9377 | case UNOP_ABS: | |
9378 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9379 | if (noside == EVAL_SKIP) | |
9380 | goto nosideret; | |
f44316fa | 9381 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 9382 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 9383 | return value_neg (arg1); |
14f9c5c9 | 9384 | else |
4c4b4cd2 | 9385 | return arg1; |
14f9c5c9 AS |
9386 | |
9387 | case UNOP_IND: | |
6b0d7253 | 9388 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 9389 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9390 | goto nosideret; |
df407dfe | 9391 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 9392 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
9393 | { |
9394 | if (ada_is_array_descriptor_type (type)) | |
9395 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9396 | { | |
9397 | struct type *arrType = ada_type_of_array (arg1, 0); | |
9398 | if (arrType == NULL) | |
323e0a4a | 9399 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 9400 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
9401 | } |
9402 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
9403 | || TYPE_CODE (type) == TYPE_CODE_REF | |
9404 | /* In C you can dereference an array to get the 1st elt. */ | |
9405 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
9406 | { |
9407 | type = to_static_fixed_type | |
9408 | (ada_aligned_type | |
9409 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
9410 | check_size (type); | |
9411 | return value_zero (type, lval_memory); | |
9412 | } | |
4c4b4cd2 | 9413 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
9414 | { |
9415 | /* GDB allows dereferencing an int. */ | |
9416 | if (expect_type == NULL) | |
9417 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
9418 | lval_memory); | |
9419 | else | |
9420 | { | |
9421 | expect_type = | |
9422 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
9423 | return value_zero (expect_type, lval_memory); | |
9424 | } | |
9425 | } | |
4c4b4cd2 | 9426 | else |
323e0a4a | 9427 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 9428 | } |
76a01679 | 9429 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 9430 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 9431 | |
96967637 JB |
9432 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
9433 | /* GDB allows dereferencing an int. If we were given | |
9434 | the expect_type, then use that as the target type. | |
9435 | Otherwise, assume that the target type is an int. */ | |
9436 | { | |
9437 | if (expect_type != NULL) | |
9438 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
9439 | arg1)); | |
9440 | else | |
9441 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
9442 | (CORE_ADDR) value_as_address (arg1)); | |
9443 | } | |
6b0d7253 | 9444 | |
4c4b4cd2 PH |
9445 | if (ada_is_array_descriptor_type (type)) |
9446 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9447 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 9448 | else |
4c4b4cd2 | 9449 | return ada_value_ind (arg1); |
14f9c5c9 AS |
9450 | |
9451 | case STRUCTOP_STRUCT: | |
9452 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
9453 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
9454 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9455 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9456 | goto nosideret; |
14f9c5c9 | 9457 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9458 | { |
df407dfe | 9459 | struct type *type1 = value_type (arg1); |
76a01679 JB |
9460 | if (ada_is_tagged_type (type1, 1)) |
9461 | { | |
9462 | type = ada_lookup_struct_elt_type (type1, | |
9463 | &exp->elts[pc + 2].string, | |
9464 | 1, 1, NULL); | |
9465 | if (type == NULL) | |
9466 | /* In this case, we assume that the field COULD exist | |
9467 | in some extension of the type. Return an object of | |
9468 | "type" void, which will match any formal | |
9469 | (see ada_type_match). */ | |
30b15541 UW |
9470 | return value_zero (builtin_type (exp->gdbarch)->builtin_void, |
9471 | lval_memory); | |
76a01679 JB |
9472 | } |
9473 | else | |
9474 | type = | |
9475 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
9476 | 0, NULL); | |
9477 | ||
9478 | return value_zero (ada_aligned_type (type), lval_memory); | |
9479 | } | |
14f9c5c9 | 9480 | else |
284614f0 JB |
9481 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
9482 | arg1 = unwrap_value (arg1); | |
9483 | return ada_to_fixed_value (arg1); | |
9484 | ||
14f9c5c9 | 9485 | case OP_TYPE: |
4c4b4cd2 PH |
9486 | /* The value is not supposed to be used. This is here to make it |
9487 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
9488 | (*pos) += 2; |
9489 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9490 | goto nosideret; |
14f9c5c9 | 9491 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 9492 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 9493 | else |
323e0a4a | 9494 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
9495 | |
9496 | case OP_AGGREGATE: | |
9497 | case OP_CHOICES: | |
9498 | case OP_OTHERS: | |
9499 | case OP_DISCRETE_RANGE: | |
9500 | case OP_POSITIONAL: | |
9501 | case OP_NAME: | |
9502 | if (noside == EVAL_NORMAL) | |
9503 | switch (op) | |
9504 | { | |
9505 | case OP_NAME: | |
9506 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 9507 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
9508 | case OP_AGGREGATE: |
9509 | error (_("Aggregates only allowed on the right of an assignment")); | |
9510 | default: | |
e1d5a0d2 | 9511 | internal_error (__FILE__, __LINE__, _("aggregate apparently mangled")); |
52ce6436 PH |
9512 | } |
9513 | ||
9514 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
9515 | *pos += oplen - 1; | |
9516 | for (tem = 0; tem < nargs; tem += 1) | |
9517 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9518 | goto nosideret; | |
14f9c5c9 AS |
9519 | } |
9520 | ||
9521 | nosideret: | |
22601c15 | 9522 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 9523 | } |
14f9c5c9 | 9524 | \f |
d2e4a39e | 9525 | |
4c4b4cd2 | 9526 | /* Fixed point */ |
14f9c5c9 AS |
9527 | |
9528 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
9529 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 9530 | Otherwise, return NULL. */ |
14f9c5c9 | 9531 | |
d2e4a39e | 9532 | static const char * |
ebf56fd3 | 9533 | fixed_type_info (struct type *type) |
14f9c5c9 | 9534 | { |
d2e4a39e | 9535 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
9536 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
9537 | ||
d2e4a39e AS |
9538 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
9539 | { | |
14f9c5c9 AS |
9540 | const char *tail = strstr (name, "___XF_"); |
9541 | if (tail == NULL) | |
4c4b4cd2 | 9542 | return NULL; |
d2e4a39e | 9543 | else |
4c4b4cd2 | 9544 | return tail + 5; |
14f9c5c9 AS |
9545 | } |
9546 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
9547 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
9548 | else | |
9549 | return NULL; | |
9550 | } | |
9551 | ||
4c4b4cd2 | 9552 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
9553 | |
9554 | int | |
ebf56fd3 | 9555 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
9556 | { |
9557 | return fixed_type_info (type) != NULL; | |
9558 | } | |
9559 | ||
4c4b4cd2 PH |
9560 | /* Return non-zero iff TYPE represents a System.Address type. */ |
9561 | ||
9562 | int | |
9563 | ada_is_system_address_type (struct type *type) | |
9564 | { | |
9565 | return (TYPE_NAME (type) | |
9566 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
9567 | } | |
9568 | ||
14f9c5c9 AS |
9569 | /* Assuming that TYPE is the representation of an Ada fixed-point |
9570 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 9571 | delta cannot be determined. */ |
14f9c5c9 AS |
9572 | |
9573 | DOUBLEST | |
ebf56fd3 | 9574 | ada_delta (struct type *type) |
14f9c5c9 AS |
9575 | { |
9576 | const char *encoding = fixed_type_info (type); | |
facc390f | 9577 | DOUBLEST num, den; |
14f9c5c9 | 9578 | |
facc390f JB |
9579 | /* Strictly speaking, num and den are encoded as integer. However, |
9580 | they may not fit into a long, and they will have to be converted | |
9581 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
9582 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
9583 | &num, &den) < 2) | |
14f9c5c9 | 9584 | return -1.0; |
d2e4a39e | 9585 | else |
facc390f | 9586 | return num / den; |
14f9c5c9 AS |
9587 | } |
9588 | ||
9589 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 9590 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
9591 | |
9592 | static DOUBLEST | |
ebf56fd3 | 9593 | scaling_factor (struct type *type) |
14f9c5c9 AS |
9594 | { |
9595 | const char *encoding = fixed_type_info (type); | |
facc390f | 9596 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 9597 | int n; |
d2e4a39e | 9598 | |
facc390f JB |
9599 | /* Strictly speaking, num's and den's are encoded as integer. However, |
9600 | they may not fit into a long, and they will have to be converted | |
9601 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
9602 | n = sscanf (encoding, | |
9603 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
9604 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
9605 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
9606 | |
9607 | if (n < 2) | |
9608 | return 1.0; | |
9609 | else if (n == 4) | |
facc390f | 9610 | return num1 / den1; |
d2e4a39e | 9611 | else |
facc390f | 9612 | return num0 / den0; |
14f9c5c9 AS |
9613 | } |
9614 | ||
9615 | ||
9616 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 9617 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
9618 | |
9619 | DOUBLEST | |
ebf56fd3 | 9620 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 9621 | { |
d2e4a39e | 9622 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
9623 | } |
9624 | ||
4c4b4cd2 PH |
9625 | /* The representation of a fixed-point value of type TYPE |
9626 | corresponding to the value X. */ | |
14f9c5c9 AS |
9627 | |
9628 | LONGEST | |
ebf56fd3 | 9629 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
9630 | { |
9631 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
9632 | } | |
9633 | ||
9634 | ||
4c4b4cd2 | 9635 | /* VAX floating formats */ |
14f9c5c9 AS |
9636 | |
9637 | /* Non-zero iff TYPE represents one of the special VAX floating-point | |
4c4b4cd2 PH |
9638 | types. */ |
9639 | ||
14f9c5c9 | 9640 | int |
d2e4a39e | 9641 | ada_is_vax_floating_type (struct type *type) |
14f9c5c9 | 9642 | { |
d2e4a39e | 9643 | int name_len = |
14f9c5c9 | 9644 | (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type)); |
d2e4a39e | 9645 | return |
14f9c5c9 | 9646 | name_len > 6 |
d2e4a39e | 9647 | && (TYPE_CODE (type) == TYPE_CODE_INT |
4c4b4cd2 PH |
9648 | || TYPE_CODE (type) == TYPE_CODE_RANGE) |
9649 | && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0; | |
14f9c5c9 AS |
9650 | } |
9651 | ||
9652 | /* The type of special VAX floating-point type this is, assuming | |
4c4b4cd2 PH |
9653 | ada_is_vax_floating_point. */ |
9654 | ||
14f9c5c9 | 9655 | int |
d2e4a39e | 9656 | ada_vax_float_type_suffix (struct type *type) |
14f9c5c9 | 9657 | { |
d2e4a39e | 9658 | return ada_type_name (type)[strlen (ada_type_name (type)) - 1]; |
14f9c5c9 AS |
9659 | } |
9660 | ||
4c4b4cd2 | 9661 | /* A value representing the special debugging function that outputs |
14f9c5c9 | 9662 | VAX floating-point values of the type represented by TYPE. Assumes |
4c4b4cd2 PH |
9663 | ada_is_vax_floating_type (TYPE). */ |
9664 | ||
d2e4a39e AS |
9665 | struct value * |
9666 | ada_vax_float_print_function (struct type *type) | |
9667 | { | |
9668 | switch (ada_vax_float_type_suffix (type)) | |
9669 | { | |
9670 | case 'F': | |
9671 | return get_var_value ("DEBUG_STRING_F", 0); | |
9672 | case 'D': | |
9673 | return get_var_value ("DEBUG_STRING_D", 0); | |
9674 | case 'G': | |
9675 | return get_var_value ("DEBUG_STRING_G", 0); | |
9676 | default: | |
323e0a4a | 9677 | error (_("invalid VAX floating-point type")); |
d2e4a39e | 9678 | } |
14f9c5c9 | 9679 | } |
14f9c5c9 | 9680 | \f |
d2e4a39e | 9681 | |
4c4b4cd2 | 9682 | /* Range types */ |
14f9c5c9 AS |
9683 | |
9684 | /* Scan STR beginning at position K for a discriminant name, and | |
9685 | return the value of that discriminant field of DVAL in *PX. If | |
9686 | PNEW_K is not null, put the position of the character beyond the | |
9687 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 9688 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
9689 | |
9690 | static int | |
07d8f827 | 9691 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 9692 | int *pnew_k) |
14f9c5c9 AS |
9693 | { |
9694 | static char *bound_buffer = NULL; | |
9695 | static size_t bound_buffer_len = 0; | |
9696 | char *bound; | |
9697 | char *pend; | |
d2e4a39e | 9698 | struct value *bound_val; |
14f9c5c9 AS |
9699 | |
9700 | if (dval == NULL || str == NULL || str[k] == '\0') | |
9701 | return 0; | |
9702 | ||
d2e4a39e | 9703 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
9704 | if (pend == NULL) |
9705 | { | |
d2e4a39e | 9706 | bound = str + k; |
14f9c5c9 AS |
9707 | k += strlen (bound); |
9708 | } | |
d2e4a39e | 9709 | else |
14f9c5c9 | 9710 | { |
d2e4a39e | 9711 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 9712 | bound = bound_buffer; |
d2e4a39e AS |
9713 | strncpy (bound_buffer, str + k, pend - (str + k)); |
9714 | bound[pend - (str + k)] = '\0'; | |
9715 | k = pend - str; | |
14f9c5c9 | 9716 | } |
d2e4a39e | 9717 | |
df407dfe | 9718 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
9719 | if (bound_val == NULL) |
9720 | return 0; | |
9721 | ||
9722 | *px = value_as_long (bound_val); | |
9723 | if (pnew_k != NULL) | |
9724 | *pnew_k = k; | |
9725 | return 1; | |
9726 | } | |
9727 | ||
9728 | /* Value of variable named NAME in the current environment. If | |
9729 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
9730 | otherwise causes an error with message ERR_MSG. */ |
9731 | ||
d2e4a39e AS |
9732 | static struct value * |
9733 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 9734 | { |
4c4b4cd2 | 9735 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
9736 | int nsyms; |
9737 | ||
4c4b4cd2 PH |
9738 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
9739 | &syms); | |
14f9c5c9 AS |
9740 | |
9741 | if (nsyms != 1) | |
9742 | { | |
9743 | if (err_msg == NULL) | |
4c4b4cd2 | 9744 | return 0; |
14f9c5c9 | 9745 | else |
8a3fe4f8 | 9746 | error (("%s"), err_msg); |
14f9c5c9 AS |
9747 | } |
9748 | ||
4c4b4cd2 | 9749 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 9750 | } |
d2e4a39e | 9751 | |
14f9c5c9 | 9752 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
9753 | no such variable found, returns 0, and sets *FLAG to 0. If |
9754 | successful, sets *FLAG to 1. */ | |
9755 | ||
14f9c5c9 | 9756 | LONGEST |
4c4b4cd2 | 9757 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 9758 | { |
4c4b4cd2 | 9759 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 9760 | |
14f9c5c9 AS |
9761 | if (var_val == 0) |
9762 | { | |
9763 | if (flag != NULL) | |
4c4b4cd2 | 9764 | *flag = 0; |
14f9c5c9 AS |
9765 | return 0; |
9766 | } | |
9767 | else | |
9768 | { | |
9769 | if (flag != NULL) | |
4c4b4cd2 | 9770 | *flag = 1; |
14f9c5c9 AS |
9771 | return value_as_long (var_val); |
9772 | } | |
9773 | } | |
d2e4a39e | 9774 | |
14f9c5c9 AS |
9775 | |
9776 | /* Return a range type whose base type is that of the range type named | |
9777 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 9778 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
9779 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
9780 | corresponding range type from debug information; fall back to using it | |
9781 | if symbol lookup fails. If a new type must be created, allocate it | |
9782 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
9783 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 9784 | |
d2e4a39e | 9785 | static struct type * |
1ce677a4 | 9786 | to_fixed_range_type (char *name, struct value *dval, struct type *orig_type) |
14f9c5c9 AS |
9787 | { |
9788 | struct type *raw_type = ada_find_any_type (name); | |
9789 | struct type *base_type; | |
d2e4a39e | 9790 | char *subtype_info; |
14f9c5c9 | 9791 | |
1ce677a4 | 9792 | /* Fall back to the original type if symbol lookup failed. */ |
dddfab26 | 9793 | if (raw_type == NULL) |
1ce677a4 | 9794 | raw_type = orig_type; |
dddfab26 | 9795 | |
1ce677a4 | 9796 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
9797 | base_type = TYPE_TARGET_TYPE (raw_type); |
9798 | else | |
9799 | base_type = raw_type; | |
9800 | ||
9801 | subtype_info = strstr (name, "___XD"); | |
9802 | if (subtype_info == NULL) | |
690cc4eb PH |
9803 | { |
9804 | LONGEST L = discrete_type_low_bound (raw_type); | |
9805 | LONGEST U = discrete_type_high_bound (raw_type); | |
9806 | if (L < INT_MIN || U > INT_MAX) | |
9807 | return raw_type; | |
9808 | else | |
e9bb382b | 9809 | return create_range_type (alloc_type_copy (orig_type), raw_type, |
690cc4eb PH |
9810 | discrete_type_low_bound (raw_type), |
9811 | discrete_type_high_bound (raw_type)); | |
9812 | } | |
14f9c5c9 AS |
9813 | else |
9814 | { | |
9815 | static char *name_buf = NULL; | |
9816 | static size_t name_len = 0; | |
9817 | int prefix_len = subtype_info - name; | |
9818 | LONGEST L, U; | |
9819 | struct type *type; | |
9820 | char *bounds_str; | |
9821 | int n; | |
9822 | ||
9823 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
9824 | strncpy (name_buf, name, prefix_len); | |
9825 | name_buf[prefix_len] = '\0'; | |
9826 | ||
9827 | subtype_info += 5; | |
9828 | bounds_str = strchr (subtype_info, '_'); | |
9829 | n = 1; | |
9830 | ||
d2e4a39e | 9831 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
9832 | { |
9833 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
9834 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
9835 | return raw_type; | |
9836 | if (bounds_str[n] == '_') | |
9837 | n += 2; | |
9838 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ | |
9839 | n += 1; | |
9840 | subtype_info += 1; | |
9841 | } | |
d2e4a39e | 9842 | else |
4c4b4cd2 PH |
9843 | { |
9844 | int ok; | |
9845 | strcpy (name_buf + prefix_len, "___L"); | |
9846 | L = get_int_var_value (name_buf, &ok); | |
9847 | if (!ok) | |
9848 | { | |
323e0a4a | 9849 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
9850 | L = 1; |
9851 | } | |
9852 | } | |
14f9c5c9 | 9853 | |
d2e4a39e | 9854 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
9855 | { |
9856 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
9857 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
9858 | return raw_type; | |
9859 | } | |
d2e4a39e | 9860 | else |
4c4b4cd2 PH |
9861 | { |
9862 | int ok; | |
9863 | strcpy (name_buf + prefix_len, "___U"); | |
9864 | U = get_int_var_value (name_buf, &ok); | |
9865 | if (!ok) | |
9866 | { | |
323e0a4a | 9867 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
9868 | U = L; |
9869 | } | |
9870 | } | |
14f9c5c9 | 9871 | |
e9bb382b | 9872 | type = create_range_type (alloc_type_copy (orig_type), base_type, L, U); |
d2e4a39e | 9873 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
9874 | return type; |
9875 | } | |
9876 | } | |
9877 | ||
4c4b4cd2 PH |
9878 | /* True iff NAME is the name of a range type. */ |
9879 | ||
14f9c5c9 | 9880 | int |
d2e4a39e | 9881 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
9882 | { |
9883 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 9884 | } |
14f9c5c9 | 9885 | \f |
d2e4a39e | 9886 | |
4c4b4cd2 PH |
9887 | /* Modular types */ |
9888 | ||
9889 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 9890 | |
14f9c5c9 | 9891 | int |
d2e4a39e | 9892 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 9893 | { |
4c4b4cd2 | 9894 | struct type *subranged_type = base_type (type); |
14f9c5c9 AS |
9895 | |
9896 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 9897 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 9898 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
9899 | } |
9900 | ||
0056e4d5 JB |
9901 | /* Try to determine the lower and upper bounds of the given modular type |
9902 | using the type name only. Return non-zero and set L and U as the lower | |
9903 | and upper bounds (respectively) if successful. */ | |
9904 | ||
9905 | int | |
9906 | ada_modulus_from_name (struct type *type, ULONGEST *modulus) | |
9907 | { | |
9908 | char *name = ada_type_name (type); | |
9909 | char *suffix; | |
9910 | int k; | |
9911 | LONGEST U; | |
9912 | ||
9913 | if (name == NULL) | |
9914 | return 0; | |
9915 | ||
9916 | /* Discrete type bounds are encoded using an __XD suffix. In our case, | |
9917 | we are looking for static bounds, which means an __XDLU suffix. | |
9918 | Moreover, we know that the lower bound of modular types is always | |
9919 | zero, so the actual suffix should start with "__XDLU_0__", and | |
9920 | then be followed by the upper bound value. */ | |
9921 | suffix = strstr (name, "__XDLU_0__"); | |
9922 | if (suffix == NULL) | |
9923 | return 0; | |
9924 | k = 10; | |
9925 | if (!ada_scan_number (suffix, k, &U, NULL)) | |
9926 | return 0; | |
9927 | ||
9928 | *modulus = (ULONGEST) U + 1; | |
9929 | return 1; | |
9930 | } | |
9931 | ||
4c4b4cd2 PH |
9932 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
9933 | ||
61ee279c | 9934 | ULONGEST |
0056e4d5 | 9935 | ada_modulus (struct type *type) |
14f9c5c9 | 9936 | { |
0056e4d5 JB |
9937 | ULONGEST modulus; |
9938 | ||
9939 | /* Normally, the modulus of a modular type is equal to the value of | |
9940 | its upper bound + 1. However, the upper bound is currently stored | |
9941 | as an int, which is not always big enough to hold the actual bound | |
9942 | value. To workaround this, try to take advantage of the encoding | |
9943 | that GNAT uses with with discrete types. To avoid some unnecessary | |
9944 | parsing, we do this only when the size of TYPE is greater than | |
9945 | the size of the field holding the bound. */ | |
9946 | if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type)) | |
9947 | && ada_modulus_from_name (type, &modulus)) | |
9948 | return modulus; | |
9949 | ||
d37209fd | 9950 | return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 9951 | } |
d2e4a39e | 9952 | \f |
f7f9143b JB |
9953 | |
9954 | /* Ada exception catchpoint support: | |
9955 | --------------------------------- | |
9956 | ||
9957 | We support 3 kinds of exception catchpoints: | |
9958 | . catchpoints on Ada exceptions | |
9959 | . catchpoints on unhandled Ada exceptions | |
9960 | . catchpoints on failed assertions | |
9961 | ||
9962 | Exceptions raised during failed assertions, or unhandled exceptions | |
9963 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
9964 | However, we can easily differentiate these two special cases, and having | |
9965 | the option to distinguish these two cases from the rest can be useful | |
9966 | to zero-in on certain situations. | |
9967 | ||
9968 | Exception catchpoints are a specialized form of breakpoint, | |
9969 | since they rely on inserting breakpoints inside known routines | |
9970 | of the GNAT runtime. The implementation therefore uses a standard | |
9971 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
9972 | of breakpoint_ops. | |
9973 | ||
0259addd JB |
9974 | Support in the runtime for exception catchpoints have been changed |
9975 | a few times already, and these changes affect the implementation | |
9976 | of these catchpoints. In order to be able to support several | |
9977 | variants of the runtime, we use a sniffer that will determine | |
9978 | the runtime variant used by the program being debugged. | |
9979 | ||
f7f9143b JB |
9980 | At this time, we do not support the use of conditions on Ada exception |
9981 | catchpoints. The COND and COND_STRING fields are therefore set | |
9982 | to NULL (most of the time, see below). | |
9983 | ||
9984 | Conditions where EXP_STRING, COND, and COND_STRING are used: | |
9985 | ||
9986 | When a user specifies the name of a specific exception in the case | |
9987 | of catchpoints on Ada exceptions, we store the name of that exception | |
9988 | in the EXP_STRING. We then translate this request into an actual | |
9989 | condition stored in COND_STRING, and then parse it into an expression | |
9990 | stored in COND. */ | |
9991 | ||
9992 | /* The different types of catchpoints that we introduced for catching | |
9993 | Ada exceptions. */ | |
9994 | ||
9995 | enum exception_catchpoint_kind | |
9996 | { | |
9997 | ex_catch_exception, | |
9998 | ex_catch_exception_unhandled, | |
9999 | ex_catch_assert | |
10000 | }; | |
10001 | ||
3d0b0fa3 JB |
10002 | /* Ada's standard exceptions. */ |
10003 | ||
10004 | static char *standard_exc[] = { | |
10005 | "constraint_error", | |
10006 | "program_error", | |
10007 | "storage_error", | |
10008 | "tasking_error" | |
10009 | }; | |
10010 | ||
0259addd JB |
10011 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
10012 | ||
10013 | /* A structure that describes how to support exception catchpoints | |
10014 | for a given executable. */ | |
10015 | ||
10016 | struct exception_support_info | |
10017 | { | |
10018 | /* The name of the symbol to break on in order to insert | |
10019 | a catchpoint on exceptions. */ | |
10020 | const char *catch_exception_sym; | |
10021 | ||
10022 | /* The name of the symbol to break on in order to insert | |
10023 | a catchpoint on unhandled exceptions. */ | |
10024 | const char *catch_exception_unhandled_sym; | |
10025 | ||
10026 | /* The name of the symbol to break on in order to insert | |
10027 | a catchpoint on failed assertions. */ | |
10028 | const char *catch_assert_sym; | |
10029 | ||
10030 | /* Assuming that the inferior just triggered an unhandled exception | |
10031 | catchpoint, this function is responsible for returning the address | |
10032 | in inferior memory where the name of that exception is stored. | |
10033 | Return zero if the address could not be computed. */ | |
10034 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
10035 | }; | |
10036 | ||
10037 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
10038 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
10039 | ||
10040 | /* The following exception support info structure describes how to | |
10041 | implement exception catchpoints with the latest version of the | |
10042 | Ada runtime (as of 2007-03-06). */ | |
10043 | ||
10044 | static const struct exception_support_info default_exception_support_info = | |
10045 | { | |
10046 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
10047 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10048 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
10049 | ada_unhandled_exception_name_addr | |
10050 | }; | |
10051 | ||
10052 | /* The following exception support info structure describes how to | |
10053 | implement exception catchpoints with a slightly older version | |
10054 | of the Ada runtime. */ | |
10055 | ||
10056 | static const struct exception_support_info exception_support_info_fallback = | |
10057 | { | |
10058 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
10059 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10060 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
10061 | ada_unhandled_exception_name_addr_from_raise | |
10062 | }; | |
10063 | ||
10064 | /* For each executable, we sniff which exception info structure to use | |
10065 | and cache it in the following global variable. */ | |
10066 | ||
10067 | static const struct exception_support_info *exception_info = NULL; | |
10068 | ||
10069 | /* Inspect the Ada runtime and determine which exception info structure | |
10070 | should be used to provide support for exception catchpoints. | |
10071 | ||
10072 | This function will always set exception_info, or raise an error. */ | |
10073 | ||
10074 | static void | |
10075 | ada_exception_support_info_sniffer (void) | |
10076 | { | |
10077 | struct symbol *sym; | |
10078 | ||
10079 | /* If the exception info is already known, then no need to recompute it. */ | |
10080 | if (exception_info != NULL) | |
10081 | return; | |
10082 | ||
10083 | /* Check the latest (default) exception support info. */ | |
10084 | sym = standard_lookup (default_exception_support_info.catch_exception_sym, | |
10085 | NULL, VAR_DOMAIN); | |
10086 | if (sym != NULL) | |
10087 | { | |
10088 | exception_info = &default_exception_support_info; | |
10089 | return; | |
10090 | } | |
10091 | ||
10092 | /* Try our fallback exception suport info. */ | |
10093 | sym = standard_lookup (exception_support_info_fallback.catch_exception_sym, | |
10094 | NULL, VAR_DOMAIN); | |
10095 | if (sym != NULL) | |
10096 | { | |
10097 | exception_info = &exception_support_info_fallback; | |
10098 | return; | |
10099 | } | |
10100 | ||
10101 | /* Sometimes, it is normal for us to not be able to find the routine | |
10102 | we are looking for. This happens when the program is linked with | |
10103 | the shared version of the GNAT runtime, and the program has not been | |
10104 | started yet. Inform the user of these two possible causes if | |
10105 | applicable. */ | |
10106 | ||
10107 | if (ada_update_initial_language (language_unknown, NULL) != language_ada) | |
10108 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); | |
10109 | ||
10110 | /* If the symbol does not exist, then check that the program is | |
10111 | already started, to make sure that shared libraries have been | |
10112 | loaded. If it is not started, this may mean that the symbol is | |
10113 | in a shared library. */ | |
10114 | ||
10115 | if (ptid_get_pid (inferior_ptid) == 0) | |
10116 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
10117 | ||
10118 | /* At this point, we know that we are debugging an Ada program and | |
10119 | that the inferior has been started, but we still are not able to | |
10120 | find the run-time symbols. That can mean that we are in | |
10121 | configurable run time mode, or that a-except as been optimized | |
10122 | out by the linker... In any case, at this point it is not worth | |
10123 | supporting this feature. */ | |
10124 | ||
10125 | error (_("Cannot insert catchpoints in this configuration.")); | |
10126 | } | |
10127 | ||
10128 | /* An observer of "executable_changed" events. | |
10129 | Its role is to clear certain cached values that need to be recomputed | |
10130 | each time a new executable is loaded by GDB. */ | |
10131 | ||
10132 | static void | |
781b42b0 | 10133 | ada_executable_changed_observer (void) |
0259addd JB |
10134 | { |
10135 | /* If the executable changed, then it is possible that the Ada runtime | |
10136 | is different. So we need to invalidate the exception support info | |
10137 | cache. */ | |
10138 | exception_info = NULL; | |
10139 | } | |
10140 | ||
f7f9143b JB |
10141 | /* Return the name of the function at PC, NULL if could not find it. |
10142 | This function only checks the debugging information, not the symbol | |
10143 | table. */ | |
10144 | ||
10145 | static char * | |
10146 | function_name_from_pc (CORE_ADDR pc) | |
10147 | { | |
10148 | char *func_name; | |
10149 | ||
10150 | if (!find_pc_partial_function (pc, &func_name, NULL, NULL)) | |
10151 | return NULL; | |
10152 | ||
10153 | return func_name; | |
10154 | } | |
10155 | ||
10156 | /* True iff FRAME is very likely to be that of a function that is | |
10157 | part of the runtime system. This is all very heuristic, but is | |
10158 | intended to be used as advice as to what frames are uninteresting | |
10159 | to most users. */ | |
10160 | ||
10161 | static int | |
10162 | is_known_support_routine (struct frame_info *frame) | |
10163 | { | |
4ed6b5be | 10164 | struct symtab_and_line sal; |
f7f9143b JB |
10165 | char *func_name; |
10166 | int i; | |
f7f9143b | 10167 | |
4ed6b5be JB |
10168 | /* If this code does not have any debugging information (no symtab), |
10169 | This cannot be any user code. */ | |
f7f9143b | 10170 | |
4ed6b5be | 10171 | find_frame_sal (frame, &sal); |
f7f9143b JB |
10172 | if (sal.symtab == NULL) |
10173 | return 1; | |
10174 | ||
4ed6b5be JB |
10175 | /* If there is a symtab, but the associated source file cannot be |
10176 | located, then assume this is not user code: Selecting a frame | |
10177 | for which we cannot display the code would not be very helpful | |
10178 | for the user. This should also take care of case such as VxWorks | |
10179 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 10180 | |
9bbc9174 | 10181 | if (symtab_to_fullname (sal.symtab) == NULL) |
f7f9143b JB |
10182 | return 1; |
10183 | ||
4ed6b5be JB |
10184 | /* Check the unit filename againt the Ada runtime file naming. |
10185 | We also check the name of the objfile against the name of some | |
10186 | known system libraries that sometimes come with debugging info | |
10187 | too. */ | |
10188 | ||
f7f9143b JB |
10189 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
10190 | { | |
10191 | re_comp (known_runtime_file_name_patterns[i]); | |
10192 | if (re_exec (sal.symtab->filename)) | |
10193 | return 1; | |
4ed6b5be JB |
10194 | if (sal.symtab->objfile != NULL |
10195 | && re_exec (sal.symtab->objfile->name)) | |
10196 | return 1; | |
f7f9143b JB |
10197 | } |
10198 | ||
4ed6b5be | 10199 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 10200 | |
4ed6b5be | 10201 | func_name = function_name_from_pc (get_frame_address_in_block (frame)); |
f7f9143b JB |
10202 | if (func_name == NULL) |
10203 | return 1; | |
10204 | ||
10205 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
10206 | { | |
10207 | re_comp (known_auxiliary_function_name_patterns[i]); | |
10208 | if (re_exec (func_name)) | |
10209 | return 1; | |
10210 | } | |
10211 | ||
10212 | return 0; | |
10213 | } | |
10214 | ||
10215 | /* Find the first frame that contains debugging information and that is not | |
10216 | part of the Ada run-time, starting from FI and moving upward. */ | |
10217 | ||
0ef643c8 | 10218 | void |
f7f9143b JB |
10219 | ada_find_printable_frame (struct frame_info *fi) |
10220 | { | |
10221 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
10222 | { | |
10223 | if (!is_known_support_routine (fi)) | |
10224 | { | |
10225 | select_frame (fi); | |
10226 | break; | |
10227 | } | |
10228 | } | |
10229 | ||
10230 | } | |
10231 | ||
10232 | /* Assuming that the inferior just triggered an unhandled exception | |
10233 | catchpoint, return the address in inferior memory where the name | |
10234 | of the exception is stored. | |
10235 | ||
10236 | Return zero if the address could not be computed. */ | |
10237 | ||
10238 | static CORE_ADDR | |
10239 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
10240 | { |
10241 | return parse_and_eval_address ("e.full_name"); | |
10242 | } | |
10243 | ||
10244 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
10245 | should be used when the inferior uses an older version of the runtime, | |
10246 | where the exception name needs to be extracted from a specific frame | |
10247 | several frames up in the callstack. */ | |
10248 | ||
10249 | static CORE_ADDR | |
10250 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
10251 | { |
10252 | int frame_level; | |
10253 | struct frame_info *fi; | |
10254 | ||
10255 | /* To determine the name of this exception, we need to select | |
10256 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
10257 | at least 3 levels up, so we simply skip the first 3 frames | |
10258 | without checking the name of their associated function. */ | |
10259 | fi = get_current_frame (); | |
10260 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
10261 | if (fi != NULL) | |
10262 | fi = get_prev_frame (fi); | |
10263 | ||
10264 | while (fi != NULL) | |
10265 | { | |
10266 | const char *func_name = | |
10267 | function_name_from_pc (get_frame_address_in_block (fi)); | |
10268 | if (func_name != NULL | |
0259addd | 10269 | && strcmp (func_name, exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
10270 | break; /* We found the frame we were looking for... */ |
10271 | fi = get_prev_frame (fi); | |
10272 | } | |
10273 | ||
10274 | if (fi == NULL) | |
10275 | return 0; | |
10276 | ||
10277 | select_frame (fi); | |
10278 | return parse_and_eval_address ("id.full_name"); | |
10279 | } | |
10280 | ||
10281 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
10282 | (of any type), return the address in inferior memory where the name | |
10283 | of the exception is stored, if applicable. | |
10284 | ||
10285 | Return zero if the address could not be computed, or if not relevant. */ | |
10286 | ||
10287 | static CORE_ADDR | |
10288 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
10289 | struct breakpoint *b) | |
10290 | { | |
10291 | switch (ex) | |
10292 | { | |
10293 | case ex_catch_exception: | |
10294 | return (parse_and_eval_address ("e.full_name")); | |
10295 | break; | |
10296 | ||
10297 | case ex_catch_exception_unhandled: | |
0259addd | 10298 | return exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
10299 | break; |
10300 | ||
10301 | case ex_catch_assert: | |
10302 | return 0; /* Exception name is not relevant in this case. */ | |
10303 | break; | |
10304 | ||
10305 | default: | |
10306 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10307 | break; | |
10308 | } | |
10309 | ||
10310 | return 0; /* Should never be reached. */ | |
10311 | } | |
10312 | ||
10313 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
10314 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
10315 | When an error is intercepted, a warning with the error message is printed, | |
10316 | and zero is returned. */ | |
10317 | ||
10318 | static CORE_ADDR | |
10319 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
10320 | struct breakpoint *b) | |
10321 | { | |
10322 | struct gdb_exception e; | |
10323 | CORE_ADDR result = 0; | |
10324 | ||
10325 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
10326 | { | |
10327 | result = ada_exception_name_addr_1 (ex, b); | |
10328 | } | |
10329 | ||
10330 | if (e.reason < 0) | |
10331 | { | |
10332 | warning (_("failed to get exception name: %s"), e.message); | |
10333 | return 0; | |
10334 | } | |
10335 | ||
10336 | return result; | |
10337 | } | |
10338 | ||
10339 | /* Implement the PRINT_IT method in the breakpoint_ops structure | |
10340 | for all exception catchpoint kinds. */ | |
10341 | ||
10342 | static enum print_stop_action | |
10343 | print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
10344 | { | |
10345 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
10346 | char exception_name[256]; | |
10347 | ||
10348 | if (addr != 0) | |
10349 | { | |
10350 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
10351 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
10352 | } | |
10353 | ||
10354 | ada_find_printable_frame (get_current_frame ()); | |
10355 | ||
10356 | annotate_catchpoint (b->number); | |
10357 | switch (ex) | |
10358 | { | |
10359 | case ex_catch_exception: | |
10360 | if (addr != 0) | |
10361 | printf_filtered (_("\nCatchpoint %d, %s at "), | |
10362 | b->number, exception_name); | |
10363 | else | |
10364 | printf_filtered (_("\nCatchpoint %d, exception at "), b->number); | |
10365 | break; | |
10366 | case ex_catch_exception_unhandled: | |
10367 | if (addr != 0) | |
10368 | printf_filtered (_("\nCatchpoint %d, unhandled %s at "), | |
10369 | b->number, exception_name); | |
10370 | else | |
10371 | printf_filtered (_("\nCatchpoint %d, unhandled exception at "), | |
10372 | b->number); | |
10373 | break; | |
10374 | case ex_catch_assert: | |
10375 | printf_filtered (_("\nCatchpoint %d, failed assertion at "), | |
10376 | b->number); | |
10377 | break; | |
10378 | } | |
10379 | ||
10380 | return PRINT_SRC_AND_LOC; | |
10381 | } | |
10382 | ||
10383 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
10384 | for all exception catchpoint kinds. */ | |
10385 | ||
10386 | static void | |
10387 | print_one_exception (enum exception_catchpoint_kind ex, | |
a6d9a66e | 10388 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 10389 | { |
79a45b7d TT |
10390 | struct value_print_options opts; |
10391 | ||
10392 | get_user_print_options (&opts); | |
10393 | if (opts.addressprint) | |
f7f9143b JB |
10394 | { |
10395 | annotate_field (4); | |
5af949e3 | 10396 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
10397 | } |
10398 | ||
10399 | annotate_field (5); | |
a6d9a66e | 10400 | *last_loc = b->loc; |
f7f9143b JB |
10401 | switch (ex) |
10402 | { | |
10403 | case ex_catch_exception: | |
10404 | if (b->exp_string != NULL) | |
10405 | { | |
10406 | char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string); | |
10407 | ||
10408 | ui_out_field_string (uiout, "what", msg); | |
10409 | xfree (msg); | |
10410 | } | |
10411 | else | |
10412 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
10413 | ||
10414 | break; | |
10415 | ||
10416 | case ex_catch_exception_unhandled: | |
10417 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
10418 | break; | |
10419 | ||
10420 | case ex_catch_assert: | |
10421 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
10422 | break; | |
10423 | ||
10424 | default: | |
10425 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10426 | break; | |
10427 | } | |
10428 | } | |
10429 | ||
10430 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
10431 | for all exception catchpoint kinds. */ | |
10432 | ||
10433 | static void | |
10434 | print_mention_exception (enum exception_catchpoint_kind ex, | |
10435 | struct breakpoint *b) | |
10436 | { | |
10437 | switch (ex) | |
10438 | { | |
10439 | case ex_catch_exception: | |
10440 | if (b->exp_string != NULL) | |
10441 | printf_filtered (_("Catchpoint %d: `%s' Ada exception"), | |
10442 | b->number, b->exp_string); | |
10443 | else | |
10444 | printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number); | |
10445 | ||
10446 | break; | |
10447 | ||
10448 | case ex_catch_exception_unhandled: | |
10449 | printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"), | |
10450 | b->number); | |
10451 | break; | |
10452 | ||
10453 | case ex_catch_assert: | |
10454 | printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number); | |
10455 | break; | |
10456 | ||
10457 | default: | |
10458 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10459 | break; | |
10460 | } | |
10461 | } | |
10462 | ||
10463 | /* Virtual table for "catch exception" breakpoints. */ | |
10464 | ||
10465 | static enum print_stop_action | |
10466 | print_it_catch_exception (struct breakpoint *b) | |
10467 | { | |
10468 | return print_it_exception (ex_catch_exception, b); | |
10469 | } | |
10470 | ||
10471 | static void | |
a6d9a66e | 10472 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 10473 | { |
a6d9a66e | 10474 | print_one_exception (ex_catch_exception, b, last_loc); |
f7f9143b JB |
10475 | } |
10476 | ||
10477 | static void | |
10478 | print_mention_catch_exception (struct breakpoint *b) | |
10479 | { | |
10480 | print_mention_exception (ex_catch_exception, b); | |
10481 | } | |
10482 | ||
10483 | static struct breakpoint_ops catch_exception_breakpoint_ops = | |
10484 | { | |
ce78b96d JB |
10485 | NULL, /* insert */ |
10486 | NULL, /* remove */ | |
10487 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10488 | print_it_catch_exception, |
10489 | print_one_catch_exception, | |
10490 | print_mention_catch_exception | |
10491 | }; | |
10492 | ||
10493 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
10494 | ||
10495 | static enum print_stop_action | |
10496 | print_it_catch_exception_unhandled (struct breakpoint *b) | |
10497 | { | |
10498 | return print_it_exception (ex_catch_exception_unhandled, b); | |
10499 | } | |
10500 | ||
10501 | static void | |
a6d9a66e UW |
10502 | print_one_catch_exception_unhandled (struct breakpoint *b, |
10503 | struct bp_location **last_loc) | |
f7f9143b | 10504 | { |
a6d9a66e | 10505 | print_one_exception (ex_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
10506 | } |
10507 | ||
10508 | static void | |
10509 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
10510 | { | |
10511 | print_mention_exception (ex_catch_exception_unhandled, b); | |
10512 | } | |
10513 | ||
10514 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = { | |
ce78b96d JB |
10515 | NULL, /* insert */ |
10516 | NULL, /* remove */ | |
10517 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10518 | print_it_catch_exception_unhandled, |
10519 | print_one_catch_exception_unhandled, | |
10520 | print_mention_catch_exception_unhandled | |
10521 | }; | |
10522 | ||
10523 | /* Virtual table for "catch assert" breakpoints. */ | |
10524 | ||
10525 | static enum print_stop_action | |
10526 | print_it_catch_assert (struct breakpoint *b) | |
10527 | { | |
10528 | return print_it_exception (ex_catch_assert, b); | |
10529 | } | |
10530 | ||
10531 | static void | |
a6d9a66e | 10532 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 10533 | { |
a6d9a66e | 10534 | print_one_exception (ex_catch_assert, b, last_loc); |
f7f9143b JB |
10535 | } |
10536 | ||
10537 | static void | |
10538 | print_mention_catch_assert (struct breakpoint *b) | |
10539 | { | |
10540 | print_mention_exception (ex_catch_assert, b); | |
10541 | } | |
10542 | ||
10543 | static struct breakpoint_ops catch_assert_breakpoint_ops = { | |
ce78b96d JB |
10544 | NULL, /* insert */ |
10545 | NULL, /* remove */ | |
10546 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10547 | print_it_catch_assert, |
10548 | print_one_catch_assert, | |
10549 | print_mention_catch_assert | |
10550 | }; | |
10551 | ||
10552 | /* Return non-zero if B is an Ada exception catchpoint. */ | |
10553 | ||
10554 | int | |
10555 | ada_exception_catchpoint_p (struct breakpoint *b) | |
10556 | { | |
10557 | return (b->ops == &catch_exception_breakpoint_ops | |
10558 | || b->ops == &catch_exception_unhandled_breakpoint_ops | |
10559 | || b->ops == &catch_assert_breakpoint_ops); | |
10560 | } | |
10561 | ||
f7f9143b JB |
10562 | /* Return a newly allocated copy of the first space-separated token |
10563 | in ARGSP, and then adjust ARGSP to point immediately after that | |
10564 | token. | |
10565 | ||
10566 | Return NULL if ARGPS does not contain any more tokens. */ | |
10567 | ||
10568 | static char * | |
10569 | ada_get_next_arg (char **argsp) | |
10570 | { | |
10571 | char *args = *argsp; | |
10572 | char *end; | |
10573 | char *result; | |
10574 | ||
10575 | /* Skip any leading white space. */ | |
10576 | ||
10577 | while (isspace (*args)) | |
10578 | args++; | |
10579 | ||
10580 | if (args[0] == '\0') | |
10581 | return NULL; /* No more arguments. */ | |
10582 | ||
10583 | /* Find the end of the current argument. */ | |
10584 | ||
10585 | end = args; | |
10586 | while (*end != '\0' && !isspace (*end)) | |
10587 | end++; | |
10588 | ||
10589 | /* Adjust ARGSP to point to the start of the next argument. */ | |
10590 | ||
10591 | *argsp = end; | |
10592 | ||
10593 | /* Make a copy of the current argument and return it. */ | |
10594 | ||
10595 | result = xmalloc (end - args + 1); | |
10596 | strncpy (result, args, end - args); | |
10597 | result[end - args] = '\0'; | |
10598 | ||
10599 | return result; | |
10600 | } | |
10601 | ||
10602 | /* Split the arguments specified in a "catch exception" command. | |
10603 | Set EX to the appropriate catchpoint type. | |
10604 | Set EXP_STRING to the name of the specific exception if | |
10605 | specified by the user. */ | |
10606 | ||
10607 | static void | |
10608 | catch_ada_exception_command_split (char *args, | |
10609 | enum exception_catchpoint_kind *ex, | |
10610 | char **exp_string) | |
10611 | { | |
10612 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
10613 | char *exception_name; | |
10614 | ||
10615 | exception_name = ada_get_next_arg (&args); | |
10616 | make_cleanup (xfree, exception_name); | |
10617 | ||
10618 | /* Check that we do not have any more arguments. Anything else | |
10619 | is unexpected. */ | |
10620 | ||
10621 | while (isspace (*args)) | |
10622 | args++; | |
10623 | ||
10624 | if (args[0] != '\0') | |
10625 | error (_("Junk at end of expression")); | |
10626 | ||
10627 | discard_cleanups (old_chain); | |
10628 | ||
10629 | if (exception_name == NULL) | |
10630 | { | |
10631 | /* Catch all exceptions. */ | |
10632 | *ex = ex_catch_exception; | |
10633 | *exp_string = NULL; | |
10634 | } | |
10635 | else if (strcmp (exception_name, "unhandled") == 0) | |
10636 | { | |
10637 | /* Catch unhandled exceptions. */ | |
10638 | *ex = ex_catch_exception_unhandled; | |
10639 | *exp_string = NULL; | |
10640 | } | |
10641 | else | |
10642 | { | |
10643 | /* Catch a specific exception. */ | |
10644 | *ex = ex_catch_exception; | |
10645 | *exp_string = exception_name; | |
10646 | } | |
10647 | } | |
10648 | ||
10649 | /* Return the name of the symbol on which we should break in order to | |
10650 | implement a catchpoint of the EX kind. */ | |
10651 | ||
10652 | static const char * | |
10653 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
10654 | { | |
0259addd JB |
10655 | gdb_assert (exception_info != NULL); |
10656 | ||
f7f9143b JB |
10657 | switch (ex) |
10658 | { | |
10659 | case ex_catch_exception: | |
0259addd | 10660 | return (exception_info->catch_exception_sym); |
f7f9143b JB |
10661 | break; |
10662 | case ex_catch_exception_unhandled: | |
0259addd | 10663 | return (exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
10664 | break; |
10665 | case ex_catch_assert: | |
0259addd | 10666 | return (exception_info->catch_assert_sym); |
f7f9143b JB |
10667 | break; |
10668 | default: | |
10669 | internal_error (__FILE__, __LINE__, | |
10670 | _("unexpected catchpoint kind (%d)"), ex); | |
10671 | } | |
10672 | } | |
10673 | ||
10674 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
10675 | of the EX kind. */ | |
10676 | ||
10677 | static struct breakpoint_ops * | |
4b9eee8c | 10678 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
10679 | { |
10680 | switch (ex) | |
10681 | { | |
10682 | case ex_catch_exception: | |
10683 | return (&catch_exception_breakpoint_ops); | |
10684 | break; | |
10685 | case ex_catch_exception_unhandled: | |
10686 | return (&catch_exception_unhandled_breakpoint_ops); | |
10687 | break; | |
10688 | case ex_catch_assert: | |
10689 | return (&catch_assert_breakpoint_ops); | |
10690 | break; | |
10691 | default: | |
10692 | internal_error (__FILE__, __LINE__, | |
10693 | _("unexpected catchpoint kind (%d)"), ex); | |
10694 | } | |
10695 | } | |
10696 | ||
10697 | /* Return the condition that will be used to match the current exception | |
10698 | being raised with the exception that the user wants to catch. This | |
10699 | assumes that this condition is used when the inferior just triggered | |
10700 | an exception catchpoint. | |
10701 | ||
10702 | The string returned is a newly allocated string that needs to be | |
10703 | deallocated later. */ | |
10704 | ||
10705 | static char * | |
10706 | ada_exception_catchpoint_cond_string (const char *exp_string) | |
10707 | { | |
3d0b0fa3 JB |
10708 | int i; |
10709 | ||
10710 | /* The standard exceptions are a special case. They are defined in | |
10711 | runtime units that have been compiled without debugging info; if | |
10712 | EXP_STRING is the not-fully-qualified name of a standard | |
10713 | exception (e.g. "constraint_error") then, during the evaluation | |
10714 | of the condition expression, the symbol lookup on this name would | |
10715 | *not* return this standard exception. The catchpoint condition | |
10716 | may then be set only on user-defined exceptions which have the | |
10717 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
10718 | ||
10719 | To avoid this unexcepted behavior, these standard exceptions are | |
10720 | systematically prefixed by "standard". This means that "catch | |
10721 | exception constraint_error" is rewritten into "catch exception | |
10722 | standard.constraint_error". | |
10723 | ||
10724 | If an exception named contraint_error is defined in another package of | |
10725 | the inferior program, then the only way to specify this exception as a | |
10726 | breakpoint condition is to use its fully-qualified named: | |
10727 | e.g. my_package.constraint_error. */ | |
10728 | ||
10729 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
10730 | { | |
10731 | if (strcmp (standard_exc [i], exp_string) == 0) | |
10732 | { | |
10733 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
10734 | exp_string); | |
10735 | } | |
10736 | } | |
f7f9143b JB |
10737 | return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string); |
10738 | } | |
10739 | ||
10740 | /* Return the expression corresponding to COND_STRING evaluated at SAL. */ | |
10741 | ||
10742 | static struct expression * | |
10743 | ada_parse_catchpoint_condition (char *cond_string, | |
10744 | struct symtab_and_line sal) | |
10745 | { | |
10746 | return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0)); | |
10747 | } | |
10748 | ||
10749 | /* Return the symtab_and_line that should be used to insert an exception | |
10750 | catchpoint of the TYPE kind. | |
10751 | ||
10752 | EX_STRING should contain the name of a specific exception | |
10753 | that the catchpoint should catch, or NULL otherwise. | |
10754 | ||
10755 | The idea behind all the remaining parameters is that their names match | |
10756 | the name of certain fields in the breakpoint structure that are used to | |
10757 | handle exception catchpoints. This function returns the value to which | |
10758 | these fields should be set, depending on the type of catchpoint we need | |
10759 | to create. | |
10760 | ||
10761 | If COND and COND_STRING are both non-NULL, any value they might | |
10762 | hold will be free'ed, and then replaced by newly allocated ones. | |
10763 | These parameters are left untouched otherwise. */ | |
10764 | ||
10765 | static struct symtab_and_line | |
10766 | ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string, | |
10767 | char **addr_string, char **cond_string, | |
10768 | struct expression **cond, struct breakpoint_ops **ops) | |
10769 | { | |
10770 | const char *sym_name; | |
10771 | struct symbol *sym; | |
10772 | struct symtab_and_line sal; | |
10773 | ||
0259addd JB |
10774 | /* First, find out which exception support info to use. */ |
10775 | ada_exception_support_info_sniffer (); | |
10776 | ||
10777 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b JB |
10778 | the Ada exceptions requested by the user. */ |
10779 | ||
10780 | sym_name = ada_exception_sym_name (ex); | |
10781 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
10782 | ||
10783 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
10784 | that should be compiled with debugging information. As a result, we | |
10785 | expect to find that symbol in the symtabs. If we don't find it, then | |
10786 | the target most likely does not support Ada exceptions, or we cannot | |
10787 | insert exception breakpoints yet, because the GNAT runtime hasn't been | |
10788 | loaded yet. */ | |
10789 | ||
10790 | /* brobecker/2006-12-26: It is conceivable that the runtime was compiled | |
10791 | in such a way that no debugging information is produced for the symbol | |
10792 | we are looking for. In this case, we could search the minimal symbols | |
10793 | as a fall-back mechanism. This would still be operating in degraded | |
10794 | mode, however, as we would still be missing the debugging information | |
10795 | that is needed in order to extract the name of the exception being | |
10796 | raised (this name is printed in the catchpoint message, and is also | |
10797 | used when trying to catch a specific exception). We do not handle | |
10798 | this case for now. */ | |
10799 | ||
10800 | if (sym == NULL) | |
0259addd | 10801 | error (_("Unable to break on '%s' in this configuration."), sym_name); |
f7f9143b JB |
10802 | |
10803 | /* Make sure that the symbol we found corresponds to a function. */ | |
10804 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
10805 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
10806 | sym_name, SYMBOL_CLASS (sym)); | |
10807 | ||
10808 | sal = find_function_start_sal (sym, 1); | |
10809 | ||
10810 | /* Set ADDR_STRING. */ | |
10811 | ||
10812 | *addr_string = xstrdup (sym_name); | |
10813 | ||
10814 | /* Set the COND and COND_STRING (if not NULL). */ | |
10815 | ||
10816 | if (cond_string != NULL && cond != NULL) | |
10817 | { | |
10818 | if (*cond_string != NULL) | |
10819 | { | |
10820 | xfree (*cond_string); | |
10821 | *cond_string = NULL; | |
10822 | } | |
10823 | if (*cond != NULL) | |
10824 | { | |
10825 | xfree (*cond); | |
10826 | *cond = NULL; | |
10827 | } | |
10828 | if (exp_string != NULL) | |
10829 | { | |
10830 | *cond_string = ada_exception_catchpoint_cond_string (exp_string); | |
10831 | *cond = ada_parse_catchpoint_condition (*cond_string, sal); | |
10832 | } | |
10833 | } | |
10834 | ||
10835 | /* Set OPS. */ | |
4b9eee8c | 10836 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b JB |
10837 | |
10838 | return sal; | |
10839 | } | |
10840 | ||
10841 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
10842 | ||
10843 | Set TYPE to the appropriate exception catchpoint type. | |
10844 | If the user asked the catchpoint to catch only a specific | |
10845 | exception, then save the exception name in ADDR_STRING. | |
10846 | ||
10847 | See ada_exception_sal for a description of all the remaining | |
10848 | function arguments of this function. */ | |
10849 | ||
10850 | struct symtab_and_line | |
10851 | ada_decode_exception_location (char *args, char **addr_string, | |
10852 | char **exp_string, char **cond_string, | |
10853 | struct expression **cond, | |
10854 | struct breakpoint_ops **ops) | |
10855 | { | |
10856 | enum exception_catchpoint_kind ex; | |
10857 | ||
10858 | catch_ada_exception_command_split (args, &ex, exp_string); | |
10859 | return ada_exception_sal (ex, *exp_string, addr_string, cond_string, | |
10860 | cond, ops); | |
10861 | } | |
10862 | ||
10863 | struct symtab_and_line | |
10864 | ada_decode_assert_location (char *args, char **addr_string, | |
10865 | struct breakpoint_ops **ops) | |
10866 | { | |
10867 | /* Check that no argument where provided at the end of the command. */ | |
10868 | ||
10869 | if (args != NULL) | |
10870 | { | |
10871 | while (isspace (*args)) | |
10872 | args++; | |
10873 | if (*args != '\0') | |
10874 | error (_("Junk at end of arguments.")); | |
10875 | } | |
10876 | ||
10877 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL, | |
10878 | ops); | |
10879 | } | |
10880 | ||
4c4b4cd2 PH |
10881 | /* Operators */ |
10882 | /* Information about operators given special treatment in functions | |
10883 | below. */ | |
10884 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
10885 | ||
10886 | #define ADA_OPERATORS \ | |
10887 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
10888 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
10889 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
10890 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
10891 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
10892 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
10893 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
10894 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
10895 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
10896 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
10897 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
10898 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
10899 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
10900 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
10901 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
10902 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
10903 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
10904 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
10905 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
10906 | |
10907 | static void | |
10908 | ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp) | |
10909 | { | |
10910 | switch (exp->elts[pc - 1].opcode) | |
10911 | { | |
76a01679 | 10912 | default: |
4c4b4cd2 PH |
10913 | operator_length_standard (exp, pc, oplenp, argsp); |
10914 | break; | |
10915 | ||
10916 | #define OP_DEFN(op, len, args, binop) \ | |
10917 | case op: *oplenp = len; *argsp = args; break; | |
10918 | ADA_OPERATORS; | |
10919 | #undef OP_DEFN | |
52ce6436 PH |
10920 | |
10921 | case OP_AGGREGATE: | |
10922 | *oplenp = 3; | |
10923 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
10924 | break; | |
10925 | ||
10926 | case OP_CHOICES: | |
10927 | *oplenp = 3; | |
10928 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
10929 | break; | |
4c4b4cd2 PH |
10930 | } |
10931 | } | |
10932 | ||
10933 | static char * | |
10934 | ada_op_name (enum exp_opcode opcode) | |
10935 | { | |
10936 | switch (opcode) | |
10937 | { | |
76a01679 | 10938 | default: |
4c4b4cd2 | 10939 | return op_name_standard (opcode); |
52ce6436 | 10940 | |
4c4b4cd2 PH |
10941 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
10942 | ADA_OPERATORS; | |
10943 | #undef OP_DEFN | |
52ce6436 PH |
10944 | |
10945 | case OP_AGGREGATE: | |
10946 | return "OP_AGGREGATE"; | |
10947 | case OP_CHOICES: | |
10948 | return "OP_CHOICES"; | |
10949 | case OP_NAME: | |
10950 | return "OP_NAME"; | |
4c4b4cd2 PH |
10951 | } |
10952 | } | |
10953 | ||
10954 | /* As for operator_length, but assumes PC is pointing at the first | |
10955 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 10956 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
10957 | |
10958 | static void | |
76a01679 JB |
10959 | ada_forward_operator_length (struct expression *exp, int pc, |
10960 | int *oplenp, int *argsp) | |
4c4b4cd2 | 10961 | { |
76a01679 | 10962 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
10963 | { |
10964 | default: | |
10965 | *oplenp = *argsp = 0; | |
10966 | break; | |
52ce6436 | 10967 | |
4c4b4cd2 PH |
10968 | #define OP_DEFN(op, len, args, binop) \ |
10969 | case op: *oplenp = len; *argsp = args; break; | |
10970 | ADA_OPERATORS; | |
10971 | #undef OP_DEFN | |
52ce6436 PH |
10972 | |
10973 | case OP_AGGREGATE: | |
10974 | *oplenp = 3; | |
10975 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
10976 | break; | |
10977 | ||
10978 | case OP_CHOICES: | |
10979 | *oplenp = 3; | |
10980 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
10981 | break; | |
10982 | ||
10983 | case OP_STRING: | |
10984 | case OP_NAME: | |
10985 | { | |
10986 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
10987 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); | |
10988 | *argsp = 0; | |
10989 | break; | |
10990 | } | |
4c4b4cd2 PH |
10991 | } |
10992 | } | |
10993 | ||
10994 | static int | |
10995 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
10996 | { | |
10997 | enum exp_opcode op = exp->elts[elt].opcode; | |
10998 | int oplen, nargs; | |
10999 | int pc = elt; | |
11000 | int i; | |
76a01679 | 11001 | |
4c4b4cd2 PH |
11002 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
11003 | ||
76a01679 | 11004 | switch (op) |
4c4b4cd2 | 11005 | { |
76a01679 | 11006 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
11007 | case OP_ATR_FIRST: |
11008 | case OP_ATR_LAST: | |
11009 | case OP_ATR_LENGTH: | |
11010 | case OP_ATR_IMAGE: | |
11011 | case OP_ATR_MAX: | |
11012 | case OP_ATR_MIN: | |
11013 | case OP_ATR_MODULUS: | |
11014 | case OP_ATR_POS: | |
11015 | case OP_ATR_SIZE: | |
11016 | case OP_ATR_TAG: | |
11017 | case OP_ATR_VAL: | |
11018 | break; | |
11019 | ||
11020 | case UNOP_IN_RANGE: | |
11021 | case UNOP_QUAL: | |
323e0a4a AC |
11022 | /* XXX: gdb_sprint_host_address, type_sprint */ |
11023 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
11024 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
11025 | fprintf_filtered (stream, " ("); | |
11026 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
11027 | fprintf_filtered (stream, ")"); | |
11028 | break; | |
11029 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
11030 | fprintf_filtered (stream, " (%d)", |
11031 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
11032 | break; |
11033 | case TERNOP_IN_RANGE: | |
11034 | break; | |
11035 | ||
52ce6436 PH |
11036 | case OP_AGGREGATE: |
11037 | case OP_OTHERS: | |
11038 | case OP_DISCRETE_RANGE: | |
11039 | case OP_POSITIONAL: | |
11040 | case OP_CHOICES: | |
11041 | break; | |
11042 | ||
11043 | case OP_NAME: | |
11044 | case OP_STRING: | |
11045 | { | |
11046 | char *name = &exp->elts[elt + 2].string; | |
11047 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
11048 | fprintf_filtered (stream, "Text: `%.*s'", len, name); | |
11049 | break; | |
11050 | } | |
11051 | ||
4c4b4cd2 PH |
11052 | default: |
11053 | return dump_subexp_body_standard (exp, stream, elt); | |
11054 | } | |
11055 | ||
11056 | elt += oplen; | |
11057 | for (i = 0; i < nargs; i += 1) | |
11058 | elt = dump_subexp (exp, stream, elt); | |
11059 | ||
11060 | return elt; | |
11061 | } | |
11062 | ||
11063 | /* The Ada extension of print_subexp (q.v.). */ | |
11064 | ||
76a01679 JB |
11065 | static void |
11066 | ada_print_subexp (struct expression *exp, int *pos, | |
11067 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 11068 | { |
52ce6436 | 11069 | int oplen, nargs, i; |
4c4b4cd2 PH |
11070 | int pc = *pos; |
11071 | enum exp_opcode op = exp->elts[pc].opcode; | |
11072 | ||
11073 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11074 | ||
52ce6436 | 11075 | *pos += oplen; |
4c4b4cd2 PH |
11076 | switch (op) |
11077 | { | |
11078 | default: | |
52ce6436 | 11079 | *pos -= oplen; |
4c4b4cd2 PH |
11080 | print_subexp_standard (exp, pos, stream, prec); |
11081 | return; | |
11082 | ||
11083 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
11084 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
11085 | return; | |
11086 | ||
11087 | case BINOP_IN_BOUNDS: | |
323e0a4a | 11088 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11089 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11090 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 11091 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11092 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 11093 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
11094 | fprintf_filtered (stream, "(%ld)", |
11095 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
11096 | return; |
11097 | ||
11098 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 11099 | if (prec >= PREC_EQUAL) |
76a01679 | 11100 | fputs_filtered ("(", stream); |
323e0a4a | 11101 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11102 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11103 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
11104 | print_subexp (exp, pos, stream, PREC_EQUAL); |
11105 | fputs_filtered (" .. ", stream); | |
11106 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
11107 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
11108 | fputs_filtered (")", stream); |
11109 | return; | |
4c4b4cd2 PH |
11110 | |
11111 | case OP_ATR_FIRST: | |
11112 | case OP_ATR_LAST: | |
11113 | case OP_ATR_LENGTH: | |
11114 | case OP_ATR_IMAGE: | |
11115 | case OP_ATR_MAX: | |
11116 | case OP_ATR_MIN: | |
11117 | case OP_ATR_MODULUS: | |
11118 | case OP_ATR_POS: | |
11119 | case OP_ATR_SIZE: | |
11120 | case OP_ATR_TAG: | |
11121 | case OP_ATR_VAL: | |
4c4b4cd2 | 11122 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
11123 | { |
11124 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
11125 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); | |
11126 | *pos += 3; | |
11127 | } | |
4c4b4cd2 | 11128 | else |
76a01679 | 11129 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
11130 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
11131 | if (nargs > 1) | |
76a01679 JB |
11132 | { |
11133 | int tem; | |
11134 | for (tem = 1; tem < nargs; tem += 1) | |
11135 | { | |
11136 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
11137 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
11138 | } | |
11139 | fputs_filtered (")", stream); | |
11140 | } | |
4c4b4cd2 | 11141 | return; |
14f9c5c9 | 11142 | |
4c4b4cd2 | 11143 | case UNOP_QUAL: |
4c4b4cd2 PH |
11144 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
11145 | fputs_filtered ("'(", stream); | |
11146 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
11147 | fputs_filtered (")", stream); | |
11148 | return; | |
14f9c5c9 | 11149 | |
4c4b4cd2 | 11150 | case UNOP_IN_RANGE: |
323e0a4a | 11151 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11152 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11153 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
11154 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); |
11155 | return; | |
52ce6436 PH |
11156 | |
11157 | case OP_DISCRETE_RANGE: | |
11158 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11159 | fputs_filtered ("..", stream); | |
11160 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11161 | return; | |
11162 | ||
11163 | case OP_OTHERS: | |
11164 | fputs_filtered ("others => ", stream); | |
11165 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11166 | return; | |
11167 | ||
11168 | case OP_CHOICES: | |
11169 | for (i = 0; i < nargs-1; i += 1) | |
11170 | { | |
11171 | if (i > 0) | |
11172 | fputs_filtered ("|", stream); | |
11173 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11174 | } | |
11175 | fputs_filtered (" => ", stream); | |
11176 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11177 | return; | |
11178 | ||
11179 | case OP_POSITIONAL: | |
11180 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11181 | return; | |
11182 | ||
11183 | case OP_AGGREGATE: | |
11184 | fputs_filtered ("(", stream); | |
11185 | for (i = 0; i < nargs; i += 1) | |
11186 | { | |
11187 | if (i > 0) | |
11188 | fputs_filtered (", ", stream); | |
11189 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11190 | } | |
11191 | fputs_filtered (")", stream); | |
11192 | return; | |
4c4b4cd2 PH |
11193 | } |
11194 | } | |
14f9c5c9 AS |
11195 | |
11196 | /* Table mapping opcodes into strings for printing operators | |
11197 | and precedences of the operators. */ | |
11198 | ||
d2e4a39e AS |
11199 | static const struct op_print ada_op_print_tab[] = { |
11200 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
11201 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
11202 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
11203 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
11204 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
11205 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
11206 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
11207 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
11208 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
11209 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
11210 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
11211 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
11212 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
11213 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
11214 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
11215 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
11216 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
11217 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
11218 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
11219 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
11220 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
11221 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
11222 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
11223 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
11224 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
11225 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
11226 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
11227 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
11228 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
11229 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
11230 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 11231 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
11232 | }; |
11233 | \f | |
72d5681a PH |
11234 | enum ada_primitive_types { |
11235 | ada_primitive_type_int, | |
11236 | ada_primitive_type_long, | |
11237 | ada_primitive_type_short, | |
11238 | ada_primitive_type_char, | |
11239 | ada_primitive_type_float, | |
11240 | ada_primitive_type_double, | |
11241 | ada_primitive_type_void, | |
11242 | ada_primitive_type_long_long, | |
11243 | ada_primitive_type_long_double, | |
11244 | ada_primitive_type_natural, | |
11245 | ada_primitive_type_positive, | |
11246 | ada_primitive_type_system_address, | |
11247 | nr_ada_primitive_types | |
11248 | }; | |
6c038f32 PH |
11249 | |
11250 | static void | |
d4a9a881 | 11251 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
11252 | struct language_arch_info *lai) |
11253 | { | |
d4a9a881 | 11254 | const struct builtin_type *builtin = builtin_type (gdbarch); |
72d5681a | 11255 | lai->primitive_type_vector |
d4a9a881 | 11256 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 11257 | struct type *); |
e9bb382b UW |
11258 | |
11259 | lai->primitive_type_vector [ada_primitive_type_int] | |
11260 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
11261 | 0, "integer"); | |
11262 | lai->primitive_type_vector [ada_primitive_type_long] | |
11263 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
11264 | 0, "long_integer"); | |
11265 | lai->primitive_type_vector [ada_primitive_type_short] | |
11266 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
11267 | 0, "short_integer"); | |
11268 | lai->string_char_type | |
11269 | = lai->primitive_type_vector [ada_primitive_type_char] | |
11270 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
11271 | lai->primitive_type_vector [ada_primitive_type_float] | |
11272 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
11273 | "float", NULL); | |
11274 | lai->primitive_type_vector [ada_primitive_type_double] | |
11275 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
11276 | "long_float", NULL); | |
11277 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
11278 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
11279 | 0, "long_long_integer"); | |
11280 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
11281 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
11282 | "long_long_float", NULL); | |
11283 | lai->primitive_type_vector [ada_primitive_type_natural] | |
11284 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
11285 | 0, "natural"); | |
11286 | lai->primitive_type_vector [ada_primitive_type_positive] | |
11287 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
11288 | 0, "positive"); | |
11289 | lai->primitive_type_vector [ada_primitive_type_void] | |
11290 | = builtin->builtin_void; | |
11291 | ||
11292 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
11293 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
11294 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
11295 | = "system__address"; | |
fbb06eb1 | 11296 | |
47e729a8 | 11297 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 11298 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 11299 | } |
6c038f32 PH |
11300 | \f |
11301 | /* Language vector */ | |
11302 | ||
11303 | /* Not really used, but needed in the ada_language_defn. */ | |
11304 | ||
11305 | static void | |
6c7a06a3 | 11306 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 11307 | { |
6c7a06a3 | 11308 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
11309 | } |
11310 | ||
11311 | static int | |
11312 | parse (void) | |
11313 | { | |
11314 | warnings_issued = 0; | |
11315 | return ada_parse (); | |
11316 | } | |
11317 | ||
11318 | static const struct exp_descriptor ada_exp_descriptor = { | |
11319 | ada_print_subexp, | |
11320 | ada_operator_length, | |
11321 | ada_op_name, | |
11322 | ada_dump_subexp_body, | |
11323 | ada_evaluate_subexp | |
11324 | }; | |
11325 | ||
11326 | const struct language_defn ada_language_defn = { | |
11327 | "ada", /* Language name */ | |
11328 | language_ada, | |
6c038f32 PH |
11329 | range_check_off, |
11330 | type_check_off, | |
11331 | case_sensitive_on, /* Yes, Ada is case-insensitive, but | |
11332 | that's not quite what this means. */ | |
6c038f32 | 11333 | array_row_major, |
9a044a89 | 11334 | macro_expansion_no, |
6c038f32 PH |
11335 | &ada_exp_descriptor, |
11336 | parse, | |
11337 | ada_error, | |
11338 | resolve, | |
11339 | ada_printchar, /* Print a character constant */ | |
11340 | ada_printstr, /* Function to print string constant */ | |
11341 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 11342 | ada_print_type, /* Print a type using appropriate syntax */ |
5c6ce71d | 11343 | default_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
11344 | ada_val_print, /* Print a value using appropriate syntax */ |
11345 | ada_value_print, /* Print a top-level value */ | |
11346 | NULL, /* Language specific skip_trampoline */ | |
2b2d9e11 | 11347 | NULL, /* name_of_this */ |
6c038f32 PH |
11348 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
11349 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
11350 | ada_la_decode, /* Language specific symbol demangler */ | |
11351 | NULL, /* Language specific class_name_from_physname */ | |
11352 | ada_op_print_tab, /* expression operators for printing */ | |
11353 | 0, /* c-style arrays */ | |
11354 | 1, /* String lower bound */ | |
6c038f32 | 11355 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 11356 | ada_make_symbol_completion_list, |
72d5681a | 11357 | ada_language_arch_info, |
e79af960 | 11358 | ada_print_array_index, |
41f1b697 | 11359 | default_pass_by_reference, |
ae6a3a4c | 11360 | c_get_string, |
6c038f32 PH |
11361 | LANG_MAGIC |
11362 | }; | |
11363 | ||
2c0b251b PA |
11364 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
11365 | extern initialize_file_ftype _initialize_ada_language; | |
11366 | ||
d2e4a39e | 11367 | void |
6c038f32 | 11368 | _initialize_ada_language (void) |
14f9c5c9 | 11369 | { |
6c038f32 PH |
11370 | add_language (&ada_language_defn); |
11371 | ||
11372 | varsize_limit = 65536; | |
6c038f32 PH |
11373 | |
11374 | obstack_init (&symbol_list_obstack); | |
11375 | ||
11376 | decoded_names_store = htab_create_alloc | |
11377 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
11378 | NULL, xcalloc, xfree); | |
6b69afc4 JB |
11379 | |
11380 | observer_attach_executable_changed (ada_executable_changed_observer); | |
14f9c5c9 | 11381 | } |