]>
Commit | Line | Data |
---|---|---|
8b93c638 | 1 | /* Implementation of the GDB variable objects API. |
bc8332bb | 2 | |
0fb0cc75 | 3 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
7b6bb8da | 4 | 2009, 2010, 2011 Free Software Foundation, Inc. |
8b93c638 JM |
5 | |
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 8 | the Free Software Foundation; either version 3 of the License, or |
8b93c638 JM |
9 | (at your option) any later version. |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 17 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
8b93c638 JM |
18 | |
19 | #include "defs.h" | |
a6c442d8 | 20 | #include "exceptions.h" |
8b93c638 JM |
21 | #include "value.h" |
22 | #include "expression.h" | |
23 | #include "frame.h" | |
8b93c638 JM |
24 | #include "language.h" |
25 | #include "wrapper.h" | |
26 | #include "gdbcmd.h" | |
d2353924 | 27 | #include "block.h" |
79a45b7d | 28 | #include "valprint.h" |
a6c442d8 MK |
29 | |
30 | #include "gdb_assert.h" | |
b66d6d2e | 31 | #include "gdb_string.h" |
0cc7d26f | 32 | #include "gdb_regex.h" |
8b93c638 JM |
33 | |
34 | #include "varobj.h" | |
28335dcc | 35 | #include "vec.h" |
6208b47d VP |
36 | #include "gdbthread.h" |
37 | #include "inferior.h" | |
8b93c638 | 38 | |
b6313243 TT |
39 | #if HAVE_PYTHON |
40 | #include "python/python.h" | |
41 | #include "python/python-internal.h" | |
50389644 PA |
42 | #else |
43 | typedef int PyObject; | |
b6313243 TT |
44 | #endif |
45 | ||
8b93c638 JM |
46 | /* Non-zero if we want to see trace of varobj level stuff. */ |
47 | ||
48 | int varobjdebug = 0; | |
920d2a44 AC |
49 | static void |
50 | show_varobjdebug (struct ui_file *file, int from_tty, | |
51 | struct cmd_list_element *c, const char *value) | |
52 | { | |
53 | fprintf_filtered (file, _("Varobj debugging is %s.\n"), value); | |
54 | } | |
8b93c638 | 55 | |
581e13c1 | 56 | /* String representations of gdb's format codes. */ |
8b93c638 | 57 | char *varobj_format_string[] = |
72330bd6 | 58 | { "natural", "binary", "decimal", "hexadecimal", "octal" }; |
8b93c638 | 59 | |
581e13c1 | 60 | /* String representations of gdb's known languages. */ |
72330bd6 | 61 | char *varobj_language_string[] = { "unknown", "C", "C++", "Java" }; |
8b93c638 | 62 | |
0cc7d26f TT |
63 | /* True if we want to allow Python-based pretty-printing. */ |
64 | static int pretty_printing = 0; | |
65 | ||
66 | void | |
67 | varobj_enable_pretty_printing (void) | |
68 | { | |
69 | pretty_printing = 1; | |
70 | } | |
71 | ||
8b93c638 JM |
72 | /* Data structures */ |
73 | ||
74 | /* Every root variable has one of these structures saved in its | |
581e13c1 | 75 | varobj. Members which must be free'd are noted. */ |
8b93c638 | 76 | struct varobj_root |
72330bd6 | 77 | { |
8b93c638 | 78 | |
581e13c1 | 79 | /* Alloc'd expression for this parent. */ |
72330bd6 | 80 | struct expression *exp; |
8b93c638 | 81 | |
581e13c1 | 82 | /* Block for which this expression is valid. */ |
72330bd6 | 83 | struct block *valid_block; |
8b93c638 | 84 | |
44a67aa7 VP |
85 | /* The frame for this expression. This field is set iff valid_block is |
86 | not NULL. */ | |
e64d9b3d | 87 | struct frame_id frame; |
8b93c638 | 88 | |
c5b48eac | 89 | /* The thread ID that this varobj_root belong to. This field |
581e13c1 | 90 | is only valid if valid_block is not NULL. |
c5b48eac VP |
91 | When not 0, indicates which thread 'frame' belongs to. |
92 | When 0, indicates that the thread list was empty when the varobj_root | |
93 | was created. */ | |
94 | int thread_id; | |
95 | ||
a5defcdc VP |
96 | /* If 1, the -var-update always recomputes the value in the |
97 | current thread and frame. Otherwise, variable object is | |
581e13c1 | 98 | always updated in the specific scope/thread/frame. */ |
a5defcdc | 99 | int floating; |
73a93a32 | 100 | |
8756216b DP |
101 | /* Flag that indicates validity: set to 0 when this varobj_root refers |
102 | to symbols that do not exist anymore. */ | |
103 | int is_valid; | |
104 | ||
581e13c1 | 105 | /* Language info for this variable and its children. */ |
72330bd6 | 106 | struct language_specific *lang; |
8b93c638 | 107 | |
581e13c1 | 108 | /* The varobj for this root node. */ |
72330bd6 | 109 | struct varobj *rootvar; |
8b93c638 | 110 | |
72330bd6 AC |
111 | /* Next root variable */ |
112 | struct varobj_root *next; | |
113 | }; | |
8b93c638 JM |
114 | |
115 | /* Every variable in the system has a structure of this type defined | |
581e13c1 MS |
116 | for it. This structure holds all information necessary to manipulate |
117 | a particular object variable. Members which must be freed are noted. */ | |
8b93c638 | 118 | struct varobj |
72330bd6 | 119 | { |
8b93c638 | 120 | |
581e13c1 | 121 | /* Alloc'd name of the variable for this object. If this variable is a |
72330bd6 | 122 | child, then this name will be the child's source name. |
581e13c1 MS |
123 | (bar, not foo.bar). */ |
124 | /* NOTE: This is the "expression". */ | |
72330bd6 | 125 | char *name; |
8b93c638 | 126 | |
02142340 VP |
127 | /* Alloc'd expression for this child. Can be used to create a |
128 | root variable corresponding to this child. */ | |
129 | char *path_expr; | |
130 | ||
581e13c1 MS |
131 | /* The alloc'd name for this variable's object. This is here for |
132 | convenience when constructing this object's children. */ | |
72330bd6 | 133 | char *obj_name; |
8b93c638 | 134 | |
581e13c1 | 135 | /* Index of this variable in its parent or -1. */ |
72330bd6 | 136 | int index; |
8b93c638 | 137 | |
202ddcaa VP |
138 | /* The type of this variable. This can be NULL |
139 | for artifial variable objects -- currently, the "accessibility" | |
140 | variable objects in C++. */ | |
72330bd6 | 141 | struct type *type; |
8b93c638 | 142 | |
b20d8971 VP |
143 | /* The value of this expression or subexpression. A NULL value |
144 | indicates there was an error getting this value. | |
b2c2bd75 VP |
145 | Invariant: if varobj_value_is_changeable_p (this) is non-zero, |
146 | the value is either NULL, or not lazy. */ | |
30b28db1 | 147 | struct value *value; |
8b93c638 | 148 | |
581e13c1 | 149 | /* The number of (immediate) children this variable has. */ |
72330bd6 | 150 | int num_children; |
8b93c638 | 151 | |
581e13c1 | 152 | /* If this object is a child, this points to its immediate parent. */ |
72330bd6 | 153 | struct varobj *parent; |
8b93c638 | 154 | |
28335dcc VP |
155 | /* Children of this object. */ |
156 | VEC (varobj_p) *children; | |
8b93c638 | 157 | |
b6313243 TT |
158 | /* Whether the children of this varobj were requested. This field is |
159 | used to decide if dynamic varobj should recompute their children. | |
160 | In the event that the frontend never asked for the children, we | |
161 | can avoid that. */ | |
162 | int children_requested; | |
163 | ||
581e13c1 MS |
164 | /* Description of the root variable. Points to root variable for |
165 | children. */ | |
72330bd6 | 166 | struct varobj_root *root; |
8b93c638 | 167 | |
581e13c1 | 168 | /* The format of the output for this object. */ |
72330bd6 | 169 | enum varobj_display_formats format; |
fb9b6b35 | 170 | |
581e13c1 | 171 | /* Was this variable updated via a varobj_set_value operation. */ |
fb9b6b35 | 172 | int updated; |
85265413 NR |
173 | |
174 | /* Last print value. */ | |
175 | char *print_value; | |
25d5ea92 VP |
176 | |
177 | /* Is this variable frozen. Frozen variables are never implicitly | |
178 | updated by -var-update * | |
179 | or -var-update <direct-or-indirect-parent>. */ | |
180 | int frozen; | |
181 | ||
182 | /* Is the value of this variable intentionally not fetched? It is | |
183 | not fetched if either the variable is frozen, or any parents is | |
184 | frozen. */ | |
185 | int not_fetched; | |
b6313243 | 186 | |
0cc7d26f TT |
187 | /* Sub-range of children which the MI consumer has requested. If |
188 | FROM < 0 or TO < 0, means that all children have been | |
189 | requested. */ | |
190 | int from; | |
191 | int to; | |
192 | ||
193 | /* The pretty-printer constructor. If NULL, then the default | |
194 | pretty-printer will be looked up. If None, then no | |
195 | pretty-printer will be installed. */ | |
196 | PyObject *constructor; | |
197 | ||
b6313243 TT |
198 | /* The pretty-printer that has been constructed. If NULL, then a |
199 | new printer object is needed, and one will be constructed. */ | |
200 | PyObject *pretty_printer; | |
0cc7d26f TT |
201 | |
202 | /* The iterator returned by the printer's 'children' method, or NULL | |
203 | if not available. */ | |
204 | PyObject *child_iter; | |
205 | ||
206 | /* We request one extra item from the iterator, so that we can | |
207 | report to the caller whether there are more items than we have | |
208 | already reported. However, we don't want to install this value | |
209 | when we read it, because that will mess up future updates. So, | |
210 | we stash it here instead. */ | |
211 | PyObject *saved_item; | |
72330bd6 | 212 | }; |
8b93c638 | 213 | |
8b93c638 | 214 | struct cpstack |
72330bd6 AC |
215 | { |
216 | char *name; | |
217 | struct cpstack *next; | |
218 | }; | |
8b93c638 JM |
219 | |
220 | /* A list of varobjs */ | |
221 | ||
222 | struct vlist | |
72330bd6 AC |
223 | { |
224 | struct varobj *var; | |
225 | struct vlist *next; | |
226 | }; | |
8b93c638 JM |
227 | |
228 | /* Private function prototypes */ | |
229 | ||
581e13c1 | 230 | /* Helper functions for the above subcommands. */ |
8b93c638 | 231 | |
a14ed312 | 232 | static int delete_variable (struct cpstack **, struct varobj *, int); |
8b93c638 | 233 | |
a14ed312 KB |
234 | static void delete_variable_1 (struct cpstack **, int *, |
235 | struct varobj *, int, int); | |
8b93c638 | 236 | |
a14ed312 | 237 | static int install_variable (struct varobj *); |
8b93c638 | 238 | |
a14ed312 | 239 | static void uninstall_variable (struct varobj *); |
8b93c638 | 240 | |
a14ed312 | 241 | static struct varobj *create_child (struct varobj *, int, char *); |
8b93c638 | 242 | |
b6313243 TT |
243 | static struct varobj * |
244 | create_child_with_value (struct varobj *parent, int index, const char *name, | |
245 | struct value *value); | |
246 | ||
8b93c638 JM |
247 | /* Utility routines */ |
248 | ||
a14ed312 | 249 | static struct varobj *new_variable (void); |
8b93c638 | 250 | |
a14ed312 | 251 | static struct varobj *new_root_variable (void); |
8b93c638 | 252 | |
a14ed312 | 253 | static void free_variable (struct varobj *var); |
8b93c638 | 254 | |
74b7792f AC |
255 | static struct cleanup *make_cleanup_free_variable (struct varobj *var); |
256 | ||
a14ed312 | 257 | static struct type *get_type (struct varobj *var); |
8b93c638 | 258 | |
6e2a9270 VP |
259 | static struct type *get_value_type (struct varobj *var); |
260 | ||
a14ed312 | 261 | static struct type *get_target_type (struct type *); |
8b93c638 | 262 | |
a14ed312 | 263 | static enum varobj_display_formats variable_default_display (struct varobj *); |
8b93c638 | 264 | |
a14ed312 | 265 | static void cppush (struct cpstack **pstack, char *name); |
8b93c638 | 266 | |
a14ed312 | 267 | static char *cppop (struct cpstack **pstack); |
8b93c638 | 268 | |
acd65feb VP |
269 | static int install_new_value (struct varobj *var, struct value *value, |
270 | int initial); | |
271 | ||
581e13c1 | 272 | /* Language-specific routines. */ |
8b93c638 | 273 | |
a14ed312 | 274 | static enum varobj_languages variable_language (struct varobj *var); |
8b93c638 | 275 | |
a14ed312 | 276 | static int number_of_children (struct varobj *); |
8b93c638 | 277 | |
a14ed312 | 278 | static char *name_of_variable (struct varobj *); |
8b93c638 | 279 | |
a14ed312 | 280 | static char *name_of_child (struct varobj *, int); |
8b93c638 | 281 | |
30b28db1 | 282 | static struct value *value_of_root (struct varobj **var_handle, int *); |
8b93c638 | 283 | |
30b28db1 | 284 | static struct value *value_of_child (struct varobj *parent, int index); |
8b93c638 | 285 | |
de051565 MK |
286 | static char *my_value_of_variable (struct varobj *var, |
287 | enum varobj_display_formats format); | |
8b93c638 | 288 | |
85265413 | 289 | static char *value_get_print_value (struct value *value, |
b6313243 | 290 | enum varobj_display_formats format, |
d452c4bc | 291 | struct varobj *var); |
85265413 | 292 | |
b2c2bd75 VP |
293 | static int varobj_value_is_changeable_p (struct varobj *var); |
294 | ||
295 | static int is_root_p (struct varobj *var); | |
8b93c638 | 296 | |
d8b65138 JK |
297 | #if HAVE_PYTHON |
298 | ||
9a1edae6 PM |
299 | static struct varobj *varobj_add_child (struct varobj *var, |
300 | const char *name, | |
301 | struct value *value); | |
b6313243 | 302 | |
d8b65138 JK |
303 | #endif /* HAVE_PYTHON */ |
304 | ||
8b93c638 JM |
305 | /* C implementation */ |
306 | ||
a14ed312 | 307 | static int c_number_of_children (struct varobj *var); |
8b93c638 | 308 | |
a14ed312 | 309 | static char *c_name_of_variable (struct varobj *parent); |
8b93c638 | 310 | |
a14ed312 | 311 | static char *c_name_of_child (struct varobj *parent, int index); |
8b93c638 | 312 | |
02142340 VP |
313 | static char *c_path_expr_of_child (struct varobj *child); |
314 | ||
30b28db1 | 315 | static struct value *c_value_of_root (struct varobj **var_handle); |
8b93c638 | 316 | |
30b28db1 | 317 | static struct value *c_value_of_child (struct varobj *parent, int index); |
8b93c638 | 318 | |
a14ed312 | 319 | static struct type *c_type_of_child (struct varobj *parent, int index); |
8b93c638 | 320 | |
de051565 MK |
321 | static char *c_value_of_variable (struct varobj *var, |
322 | enum varobj_display_formats format); | |
8b93c638 JM |
323 | |
324 | /* C++ implementation */ | |
325 | ||
a14ed312 | 326 | static int cplus_number_of_children (struct varobj *var); |
8b93c638 | 327 | |
a14ed312 | 328 | static void cplus_class_num_children (struct type *type, int children[3]); |
8b93c638 | 329 | |
a14ed312 | 330 | static char *cplus_name_of_variable (struct varobj *parent); |
8b93c638 | 331 | |
a14ed312 | 332 | static char *cplus_name_of_child (struct varobj *parent, int index); |
8b93c638 | 333 | |
02142340 VP |
334 | static char *cplus_path_expr_of_child (struct varobj *child); |
335 | ||
30b28db1 | 336 | static struct value *cplus_value_of_root (struct varobj **var_handle); |
8b93c638 | 337 | |
30b28db1 | 338 | static struct value *cplus_value_of_child (struct varobj *parent, int index); |
8b93c638 | 339 | |
a14ed312 | 340 | static struct type *cplus_type_of_child (struct varobj *parent, int index); |
8b93c638 | 341 | |
de051565 MK |
342 | static char *cplus_value_of_variable (struct varobj *var, |
343 | enum varobj_display_formats format); | |
8b93c638 JM |
344 | |
345 | /* Java implementation */ | |
346 | ||
a14ed312 | 347 | static int java_number_of_children (struct varobj *var); |
8b93c638 | 348 | |
a14ed312 | 349 | static char *java_name_of_variable (struct varobj *parent); |
8b93c638 | 350 | |
a14ed312 | 351 | static char *java_name_of_child (struct varobj *parent, int index); |
8b93c638 | 352 | |
02142340 VP |
353 | static char *java_path_expr_of_child (struct varobj *child); |
354 | ||
30b28db1 | 355 | static struct value *java_value_of_root (struct varobj **var_handle); |
8b93c638 | 356 | |
30b28db1 | 357 | static struct value *java_value_of_child (struct varobj *parent, int index); |
8b93c638 | 358 | |
a14ed312 | 359 | static struct type *java_type_of_child (struct varobj *parent, int index); |
8b93c638 | 360 | |
de051565 MK |
361 | static char *java_value_of_variable (struct varobj *var, |
362 | enum varobj_display_formats format); | |
8b93c638 | 363 | |
40591b7d JCD |
364 | /* Ada implementation */ |
365 | ||
366 | static int ada_number_of_children (struct varobj *var); | |
367 | ||
368 | static char *ada_name_of_variable (struct varobj *parent); | |
369 | ||
370 | static char *ada_name_of_child (struct varobj *parent, int index); | |
371 | ||
372 | static char *ada_path_expr_of_child (struct varobj *child); | |
373 | ||
374 | static struct value *ada_value_of_root (struct varobj **var_handle); | |
375 | ||
376 | static struct value *ada_value_of_child (struct varobj *parent, int index); | |
377 | ||
378 | static struct type *ada_type_of_child (struct varobj *parent, int index); | |
379 | ||
380 | static char *ada_value_of_variable (struct varobj *var, | |
381 | enum varobj_display_formats format); | |
382 | ||
8b93c638 JM |
383 | /* The language specific vector */ |
384 | ||
385 | struct language_specific | |
72330bd6 | 386 | { |
8b93c638 | 387 | |
581e13c1 | 388 | /* The language of this variable. */ |
72330bd6 | 389 | enum varobj_languages language; |
8b93c638 | 390 | |
581e13c1 | 391 | /* The number of children of PARENT. */ |
72330bd6 | 392 | int (*number_of_children) (struct varobj * parent); |
8b93c638 | 393 | |
581e13c1 | 394 | /* The name (expression) of a root varobj. */ |
72330bd6 | 395 | char *(*name_of_variable) (struct varobj * parent); |
8b93c638 | 396 | |
581e13c1 | 397 | /* The name of the INDEX'th child of PARENT. */ |
72330bd6 | 398 | char *(*name_of_child) (struct varobj * parent, int index); |
8b93c638 | 399 | |
02142340 VP |
400 | /* Returns the rooted expression of CHILD, which is a variable |
401 | obtain that has some parent. */ | |
402 | char *(*path_expr_of_child) (struct varobj * child); | |
403 | ||
581e13c1 | 404 | /* The ``struct value *'' of the root variable ROOT. */ |
30b28db1 | 405 | struct value *(*value_of_root) (struct varobj ** root_handle); |
8b93c638 | 406 | |
581e13c1 | 407 | /* The ``struct value *'' of the INDEX'th child of PARENT. */ |
30b28db1 | 408 | struct value *(*value_of_child) (struct varobj * parent, int index); |
8b93c638 | 409 | |
581e13c1 | 410 | /* The type of the INDEX'th child of PARENT. */ |
72330bd6 | 411 | struct type *(*type_of_child) (struct varobj * parent, int index); |
8b93c638 | 412 | |
581e13c1 | 413 | /* The current value of VAR. */ |
de051565 MK |
414 | char *(*value_of_variable) (struct varobj * var, |
415 | enum varobj_display_formats format); | |
72330bd6 | 416 | }; |
8b93c638 | 417 | |
581e13c1 | 418 | /* Array of known source language routines. */ |
d5d6fca5 | 419 | static struct language_specific languages[vlang_end] = { |
581e13c1 | 420 | /* Unknown (try treating as C). */ |
8b93c638 | 421 | { |
72330bd6 AC |
422 | vlang_unknown, |
423 | c_number_of_children, | |
424 | c_name_of_variable, | |
425 | c_name_of_child, | |
02142340 | 426 | c_path_expr_of_child, |
72330bd6 AC |
427 | c_value_of_root, |
428 | c_value_of_child, | |
429 | c_type_of_child, | |
72330bd6 | 430 | c_value_of_variable} |
8b93c638 JM |
431 | , |
432 | /* C */ | |
433 | { | |
72330bd6 AC |
434 | vlang_c, |
435 | c_number_of_children, | |
436 | c_name_of_variable, | |
437 | c_name_of_child, | |
02142340 | 438 | c_path_expr_of_child, |
72330bd6 AC |
439 | c_value_of_root, |
440 | c_value_of_child, | |
441 | c_type_of_child, | |
72330bd6 | 442 | c_value_of_variable} |
8b93c638 JM |
443 | , |
444 | /* C++ */ | |
445 | { | |
72330bd6 AC |
446 | vlang_cplus, |
447 | cplus_number_of_children, | |
448 | cplus_name_of_variable, | |
449 | cplus_name_of_child, | |
02142340 | 450 | cplus_path_expr_of_child, |
72330bd6 AC |
451 | cplus_value_of_root, |
452 | cplus_value_of_child, | |
453 | cplus_type_of_child, | |
72330bd6 | 454 | cplus_value_of_variable} |
8b93c638 JM |
455 | , |
456 | /* Java */ | |
457 | { | |
72330bd6 AC |
458 | vlang_java, |
459 | java_number_of_children, | |
460 | java_name_of_variable, | |
461 | java_name_of_child, | |
02142340 | 462 | java_path_expr_of_child, |
72330bd6 AC |
463 | java_value_of_root, |
464 | java_value_of_child, | |
465 | java_type_of_child, | |
40591b7d JCD |
466 | java_value_of_variable}, |
467 | /* Ada */ | |
468 | { | |
469 | vlang_ada, | |
470 | ada_number_of_children, | |
471 | ada_name_of_variable, | |
472 | ada_name_of_child, | |
473 | ada_path_expr_of_child, | |
474 | ada_value_of_root, | |
475 | ada_value_of_child, | |
476 | ada_type_of_child, | |
477 | ada_value_of_variable} | |
8b93c638 JM |
478 | }; |
479 | ||
581e13c1 | 480 | /* A little convenience enum for dealing with C++/Java. */ |
8b93c638 | 481 | enum vsections |
72330bd6 AC |
482 | { |
483 | v_public = 0, v_private, v_protected | |
484 | }; | |
8b93c638 JM |
485 | |
486 | /* Private data */ | |
487 | ||
581e13c1 | 488 | /* Mappings of varobj_display_formats enums to gdb's format codes. */ |
72330bd6 | 489 | static int format_code[] = { 0, 't', 'd', 'x', 'o' }; |
8b93c638 | 490 | |
581e13c1 | 491 | /* Header of the list of root variable objects. */ |
8b93c638 | 492 | static struct varobj_root *rootlist; |
8b93c638 | 493 | |
581e13c1 MS |
494 | /* Prime number indicating the number of buckets in the hash table. */ |
495 | /* A prime large enough to avoid too many colisions. */ | |
8b93c638 JM |
496 | #define VAROBJ_TABLE_SIZE 227 |
497 | ||
581e13c1 | 498 | /* Pointer to the varobj hash table (built at run time). */ |
8b93c638 JM |
499 | static struct vlist **varobj_table; |
500 | ||
581e13c1 | 501 | /* Is the variable X one of our "fake" children? */ |
8b93c638 JM |
502 | #define CPLUS_FAKE_CHILD(x) \ |
503 | ((x) != NULL && (x)->type == NULL && (x)->value == NULL) | |
504 | \f | |
505 | ||
506 | /* API Implementation */ | |
b2c2bd75 VP |
507 | static int |
508 | is_root_p (struct varobj *var) | |
509 | { | |
510 | return (var->root->rootvar == var); | |
511 | } | |
8b93c638 | 512 | |
d452c4bc UW |
513 | #ifdef HAVE_PYTHON |
514 | /* Helper function to install a Python environment suitable for | |
515 | use during operations on VAR. */ | |
516 | struct cleanup * | |
517 | varobj_ensure_python_env (struct varobj *var) | |
518 | { | |
519 | return ensure_python_env (var->root->exp->gdbarch, | |
520 | var->root->exp->language_defn); | |
521 | } | |
522 | #endif | |
523 | ||
581e13c1 | 524 | /* Creates a varobj (not its children). */ |
8b93c638 | 525 | |
7d8547c9 AC |
526 | /* Return the full FRAME which corresponds to the given CORE_ADDR |
527 | or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ | |
528 | ||
529 | static struct frame_info * | |
530 | find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) | |
531 | { | |
532 | struct frame_info *frame = NULL; | |
533 | ||
534 | if (frame_addr == (CORE_ADDR) 0) | |
535 | return NULL; | |
536 | ||
9d49bdc2 PA |
537 | for (frame = get_current_frame (); |
538 | frame != NULL; | |
539 | frame = get_prev_frame (frame)) | |
7d8547c9 | 540 | { |
1fac167a UW |
541 | /* The CORE_ADDR we get as argument was parsed from a string GDB |
542 | output as $fp. This output got truncated to gdbarch_addr_bit. | |
543 | Truncate the frame base address in the same manner before | |
544 | comparing it against our argument. */ | |
545 | CORE_ADDR frame_base = get_frame_base_address (frame); | |
546 | int addr_bit = gdbarch_addr_bit (get_frame_arch (frame)); | |
a109c7c1 | 547 | |
1fac167a UW |
548 | if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) |
549 | frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1; | |
550 | ||
551 | if (frame_base == frame_addr) | |
7d8547c9 AC |
552 | return frame; |
553 | } | |
9d49bdc2 PA |
554 | |
555 | return NULL; | |
7d8547c9 AC |
556 | } |
557 | ||
8b93c638 JM |
558 | struct varobj * |
559 | varobj_create (char *objname, | |
72330bd6 | 560 | char *expression, CORE_ADDR frame, enum varobj_type type) |
8b93c638 JM |
561 | { |
562 | struct varobj *var; | |
8b93c638 JM |
563 | struct cleanup *old_chain; |
564 | ||
581e13c1 | 565 | /* Fill out a varobj structure for the (root) variable being constructed. */ |
8b93c638 | 566 | var = new_root_variable (); |
74b7792f | 567 | old_chain = make_cleanup_free_variable (var); |
8b93c638 JM |
568 | |
569 | if (expression != NULL) | |
570 | { | |
e4195b40 | 571 | struct frame_info *fi; |
35633fef | 572 | struct frame_id old_id = null_frame_id; |
e4195b40 | 573 | struct block *block; |
8b93c638 JM |
574 | char *p; |
575 | enum varobj_languages lang; | |
e55dccf0 | 576 | struct value *value = NULL; |
8b93c638 | 577 | |
9d49bdc2 PA |
578 | /* Parse and evaluate the expression, filling in as much of the |
579 | variable's data as possible. */ | |
580 | ||
581 | if (has_stack_frames ()) | |
582 | { | |
581e13c1 | 583 | /* Allow creator to specify context of variable. */ |
9d49bdc2 PA |
584 | if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME)) |
585 | fi = get_selected_frame (NULL); | |
586 | else | |
587 | /* FIXME: cagney/2002-11-23: This code should be doing a | |
588 | lookup using the frame ID and not just the frame's | |
589 | ``address''. This, of course, means an interface | |
590 | change. However, with out that interface change ISAs, | |
591 | such as the ia64 with its two stacks, won't work. | |
592 | Similar goes for the case where there is a frameless | |
593 | function. */ | |
594 | fi = find_frame_addr_in_frame_chain (frame); | |
595 | } | |
8b93c638 | 596 | else |
9d49bdc2 | 597 | fi = NULL; |
8b93c638 | 598 | |
581e13c1 | 599 | /* frame = -2 means always use selected frame. */ |
73a93a32 | 600 | if (type == USE_SELECTED_FRAME) |
a5defcdc | 601 | var->root->floating = 1; |
73a93a32 | 602 | |
8b93c638 JM |
603 | block = NULL; |
604 | if (fi != NULL) | |
ae767bfb | 605 | block = get_frame_block (fi, 0); |
8b93c638 JM |
606 | |
607 | p = expression; | |
608 | innermost_block = NULL; | |
73a93a32 | 609 | /* Wrap the call to parse expression, so we can |
581e13c1 | 610 | return a sensible error. */ |
73a93a32 JI |
611 | if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp)) |
612 | { | |
f748fb40 | 613 | do_cleanups (old_chain); |
73a93a32 JI |
614 | return NULL; |
615 | } | |
8b93c638 | 616 | |
581e13c1 | 617 | /* Don't allow variables to be created for types. */ |
8b93c638 JM |
618 | if (var->root->exp->elts[0].opcode == OP_TYPE) |
619 | { | |
620 | do_cleanups (old_chain); | |
bc8332bb AC |
621 | fprintf_unfiltered (gdb_stderr, "Attempt to use a type name" |
622 | " as an expression.\n"); | |
8b93c638 JM |
623 | return NULL; |
624 | } | |
625 | ||
626 | var->format = variable_default_display (var); | |
627 | var->root->valid_block = innermost_block; | |
1b36a34b | 628 | var->name = xstrdup (expression); |
02142340 | 629 | /* For a root var, the name and the expr are the same. */ |
1b36a34b | 630 | var->path_expr = xstrdup (expression); |
8b93c638 JM |
631 | |
632 | /* When the frame is different from the current frame, | |
633 | we must select the appropriate frame before parsing | |
634 | the expression, otherwise the value will not be current. | |
581e13c1 | 635 | Since select_frame is so benign, just call it for all cases. */ |
4e22772d | 636 | if (innermost_block) |
8b93c638 | 637 | { |
4e22772d JK |
638 | /* User could specify explicit FRAME-ADDR which was not found but |
639 | EXPRESSION is frame specific and we would not be able to evaluate | |
640 | it correctly next time. With VALID_BLOCK set we must also set | |
641 | FRAME and THREAD_ID. */ | |
642 | if (fi == NULL) | |
643 | error (_("Failed to find the specified frame")); | |
644 | ||
7a424e99 | 645 | var->root->frame = get_frame_id (fi); |
c5b48eac | 646 | var->root->thread_id = pid_to_thread_id (inferior_ptid); |
35633fef | 647 | old_id = get_frame_id (get_selected_frame (NULL)); |
c5b48eac | 648 | select_frame (fi); |
8b93c638 JM |
649 | } |
650 | ||
340a7723 | 651 | /* We definitely need to catch errors here. |
8b93c638 | 652 | If evaluate_expression succeeds we got the value we wanted. |
581e13c1 | 653 | But if it fails, we still go on with a call to evaluate_type(). */ |
acd65feb | 654 | if (!gdb_evaluate_expression (var->root->exp, &value)) |
e55dccf0 VP |
655 | { |
656 | /* Error getting the value. Try to at least get the | |
657 | right type. */ | |
658 | struct value *type_only_value = evaluate_type (var->root->exp); | |
a109c7c1 | 659 | |
e55dccf0 VP |
660 | var->type = value_type (type_only_value); |
661 | } | |
662 | else | |
663 | var->type = value_type (value); | |
acd65feb | 664 | |
acd65feb | 665 | install_new_value (var, value, 1 /* Initial assignment */); |
8b93c638 JM |
666 | |
667 | /* Set language info */ | |
668 | lang = variable_language (var); | |
d5d6fca5 | 669 | var->root->lang = &languages[lang]; |
8b93c638 | 670 | |
581e13c1 | 671 | /* Set ourselves as our root. */ |
8b93c638 JM |
672 | var->root->rootvar = var; |
673 | ||
581e13c1 | 674 | /* Reset the selected frame. */ |
35633fef JK |
675 | if (frame_id_p (old_id)) |
676 | select_frame (frame_find_by_id (old_id)); | |
8b93c638 JM |
677 | } |
678 | ||
73a93a32 | 679 | /* If the variable object name is null, that means this |
581e13c1 | 680 | is a temporary variable, so don't install it. */ |
73a93a32 JI |
681 | |
682 | if ((var != NULL) && (objname != NULL)) | |
8b93c638 | 683 | { |
1b36a34b | 684 | var->obj_name = xstrdup (objname); |
8b93c638 JM |
685 | |
686 | /* If a varobj name is duplicated, the install will fail so | |
581e13c1 | 687 | we must cleanup. */ |
8b93c638 JM |
688 | if (!install_variable (var)) |
689 | { | |
690 | do_cleanups (old_chain); | |
691 | return NULL; | |
692 | } | |
693 | } | |
694 | ||
695 | discard_cleanups (old_chain); | |
696 | return var; | |
697 | } | |
698 | ||
581e13c1 | 699 | /* Generates an unique name that can be used for a varobj. */ |
8b93c638 JM |
700 | |
701 | char * | |
702 | varobj_gen_name (void) | |
703 | { | |
704 | static int id = 0; | |
e64d9b3d | 705 | char *obj_name; |
8b93c638 | 706 | |
581e13c1 | 707 | /* Generate a name for this object. */ |
8b93c638 | 708 | id++; |
b435e160 | 709 | obj_name = xstrprintf ("var%d", id); |
8b93c638 | 710 | |
e64d9b3d | 711 | return obj_name; |
8b93c638 JM |
712 | } |
713 | ||
61d8f275 JK |
714 | /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call |
715 | error if OBJNAME cannot be found. */ | |
8b93c638 JM |
716 | |
717 | struct varobj * | |
718 | varobj_get_handle (char *objname) | |
719 | { | |
720 | struct vlist *cv; | |
721 | const char *chp; | |
722 | unsigned int index = 0; | |
723 | unsigned int i = 1; | |
724 | ||
725 | for (chp = objname; *chp; chp++) | |
726 | { | |
727 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
728 | } | |
729 | ||
730 | cv = *(varobj_table + index); | |
731 | while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0)) | |
732 | cv = cv->next; | |
733 | ||
734 | if (cv == NULL) | |
8a3fe4f8 | 735 | error (_("Variable object not found")); |
8b93c638 JM |
736 | |
737 | return cv->var; | |
738 | } | |
739 | ||
581e13c1 | 740 | /* Given the handle, return the name of the object. */ |
8b93c638 JM |
741 | |
742 | char * | |
743 | varobj_get_objname (struct varobj *var) | |
744 | { | |
745 | return var->obj_name; | |
746 | } | |
747 | ||
581e13c1 | 748 | /* Given the handle, return the expression represented by the object. */ |
8b93c638 JM |
749 | |
750 | char * | |
751 | varobj_get_expression (struct varobj *var) | |
752 | { | |
753 | return name_of_variable (var); | |
754 | } | |
755 | ||
756 | /* Deletes a varobj and all its children if only_children == 0, | |
3e43a32a MS |
757 | otherwise deletes only the children; returns a malloc'ed list of |
758 | all the (malloc'ed) names of the variables that have been deleted | |
581e13c1 | 759 | (NULL terminated). */ |
8b93c638 JM |
760 | |
761 | int | |
762 | varobj_delete (struct varobj *var, char ***dellist, int only_children) | |
763 | { | |
764 | int delcount; | |
765 | int mycount; | |
766 | struct cpstack *result = NULL; | |
767 | char **cp; | |
768 | ||
581e13c1 | 769 | /* Initialize a stack for temporary results. */ |
8b93c638 JM |
770 | cppush (&result, NULL); |
771 | ||
772 | if (only_children) | |
581e13c1 | 773 | /* Delete only the variable children. */ |
8b93c638 JM |
774 | delcount = delete_variable (&result, var, 1 /* only the children */ ); |
775 | else | |
581e13c1 | 776 | /* Delete the variable and all its children. */ |
8b93c638 JM |
777 | delcount = delete_variable (&result, var, 0 /* parent+children */ ); |
778 | ||
581e13c1 | 779 | /* We may have been asked to return a list of what has been deleted. */ |
8b93c638 JM |
780 | if (dellist != NULL) |
781 | { | |
782 | *dellist = xmalloc ((delcount + 1) * sizeof (char *)); | |
783 | ||
784 | cp = *dellist; | |
785 | mycount = delcount; | |
786 | *cp = cppop (&result); | |
787 | while ((*cp != NULL) && (mycount > 0)) | |
788 | { | |
789 | mycount--; | |
790 | cp++; | |
791 | *cp = cppop (&result); | |
792 | } | |
793 | ||
794 | if (mycount || (*cp != NULL)) | |
8a3fe4f8 | 795 | warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"), |
72330bd6 | 796 | mycount); |
8b93c638 JM |
797 | } |
798 | ||
799 | return delcount; | |
800 | } | |
801 | ||
d8b65138 JK |
802 | #if HAVE_PYTHON |
803 | ||
b6313243 TT |
804 | /* Convenience function for varobj_set_visualizer. Instantiate a |
805 | pretty-printer for a given value. */ | |
806 | static PyObject * | |
807 | instantiate_pretty_printer (PyObject *constructor, struct value *value) | |
808 | { | |
b6313243 TT |
809 | PyObject *val_obj = NULL; |
810 | PyObject *printer; | |
b6313243 | 811 | |
b6313243 | 812 | val_obj = value_to_value_object (value); |
b6313243 TT |
813 | if (! val_obj) |
814 | return NULL; | |
815 | ||
816 | printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL); | |
817 | Py_DECREF (val_obj); | |
818 | return printer; | |
b6313243 TT |
819 | } |
820 | ||
d8b65138 JK |
821 | #endif |
822 | ||
581e13c1 | 823 | /* Set/Get variable object display format. */ |
8b93c638 JM |
824 | |
825 | enum varobj_display_formats | |
826 | varobj_set_display_format (struct varobj *var, | |
827 | enum varobj_display_formats format) | |
828 | { | |
829 | switch (format) | |
830 | { | |
831 | case FORMAT_NATURAL: | |
832 | case FORMAT_BINARY: | |
833 | case FORMAT_DECIMAL: | |
834 | case FORMAT_HEXADECIMAL: | |
835 | case FORMAT_OCTAL: | |
836 | var->format = format; | |
837 | break; | |
838 | ||
839 | default: | |
840 | var->format = variable_default_display (var); | |
841 | } | |
842 | ||
ae7d22a6 VP |
843 | if (varobj_value_is_changeable_p (var) |
844 | && var->value && !value_lazy (var->value)) | |
845 | { | |
6c761d9c | 846 | xfree (var->print_value); |
d452c4bc | 847 | var->print_value = value_get_print_value (var->value, var->format, var); |
ae7d22a6 VP |
848 | } |
849 | ||
8b93c638 JM |
850 | return var->format; |
851 | } | |
852 | ||
853 | enum varobj_display_formats | |
854 | varobj_get_display_format (struct varobj *var) | |
855 | { | |
856 | return var->format; | |
857 | } | |
858 | ||
b6313243 TT |
859 | char * |
860 | varobj_get_display_hint (struct varobj *var) | |
861 | { | |
862 | char *result = NULL; | |
863 | ||
864 | #if HAVE_PYTHON | |
d452c4bc UW |
865 | struct cleanup *back_to = varobj_ensure_python_env (var); |
866 | ||
b6313243 TT |
867 | if (var->pretty_printer) |
868 | result = gdbpy_get_display_hint (var->pretty_printer); | |
d452c4bc UW |
869 | |
870 | do_cleanups (back_to); | |
b6313243 TT |
871 | #endif |
872 | ||
873 | return result; | |
874 | } | |
875 | ||
0cc7d26f TT |
876 | /* Return true if the varobj has items after TO, false otherwise. */ |
877 | ||
878 | int | |
879 | varobj_has_more (struct varobj *var, int to) | |
880 | { | |
881 | if (VEC_length (varobj_p, var->children) > to) | |
882 | return 1; | |
883 | return ((to == -1 || VEC_length (varobj_p, var->children) == to) | |
884 | && var->saved_item != NULL); | |
885 | } | |
886 | ||
c5b48eac VP |
887 | /* If the variable object is bound to a specific thread, that |
888 | is its evaluation can always be done in context of a frame | |
889 | inside that thread, returns GDB id of the thread -- which | |
581e13c1 | 890 | is always positive. Otherwise, returns -1. */ |
c5b48eac VP |
891 | int |
892 | varobj_get_thread_id (struct varobj *var) | |
893 | { | |
894 | if (var->root->valid_block && var->root->thread_id > 0) | |
895 | return var->root->thread_id; | |
896 | else | |
897 | return -1; | |
898 | } | |
899 | ||
25d5ea92 VP |
900 | void |
901 | varobj_set_frozen (struct varobj *var, int frozen) | |
902 | { | |
903 | /* When a variable is unfrozen, we don't fetch its value. | |
904 | The 'not_fetched' flag remains set, so next -var-update | |
905 | won't complain. | |
906 | ||
907 | We don't fetch the value, because for structures the client | |
908 | should do -var-update anyway. It would be bad to have different | |
909 | client-size logic for structure and other types. */ | |
910 | var->frozen = frozen; | |
911 | } | |
912 | ||
913 | int | |
914 | varobj_get_frozen (struct varobj *var) | |
915 | { | |
916 | return var->frozen; | |
917 | } | |
918 | ||
0cc7d26f TT |
919 | /* A helper function that restricts a range to what is actually |
920 | available in a VEC. This follows the usual rules for the meaning | |
921 | of FROM and TO -- if either is negative, the entire range is | |
922 | used. */ | |
923 | ||
924 | static void | |
925 | restrict_range (VEC (varobj_p) *children, int *from, int *to) | |
926 | { | |
927 | if (*from < 0 || *to < 0) | |
928 | { | |
929 | *from = 0; | |
930 | *to = VEC_length (varobj_p, children); | |
931 | } | |
932 | else | |
933 | { | |
934 | if (*from > VEC_length (varobj_p, children)) | |
935 | *from = VEC_length (varobj_p, children); | |
936 | if (*to > VEC_length (varobj_p, children)) | |
937 | *to = VEC_length (varobj_p, children); | |
938 | if (*from > *to) | |
939 | *from = *to; | |
940 | } | |
941 | } | |
942 | ||
d8b65138 JK |
943 | #if HAVE_PYTHON |
944 | ||
0cc7d26f TT |
945 | /* A helper for update_dynamic_varobj_children that installs a new |
946 | child when needed. */ | |
947 | ||
948 | static void | |
949 | install_dynamic_child (struct varobj *var, | |
950 | VEC (varobj_p) **changed, | |
951 | VEC (varobj_p) **new, | |
952 | VEC (varobj_p) **unchanged, | |
953 | int *cchanged, | |
954 | int index, | |
955 | const char *name, | |
956 | struct value *value) | |
957 | { | |
958 | if (VEC_length (varobj_p, var->children) < index + 1) | |
959 | { | |
960 | /* There's no child yet. */ | |
961 | struct varobj *child = varobj_add_child (var, name, value); | |
a109c7c1 | 962 | |
0cc7d26f TT |
963 | if (new) |
964 | { | |
965 | VEC_safe_push (varobj_p, *new, child); | |
966 | *cchanged = 1; | |
967 | } | |
968 | } | |
969 | else | |
970 | { | |
971 | varobj_p existing = VEC_index (varobj_p, var->children, index); | |
a109c7c1 | 972 | |
0cc7d26f TT |
973 | if (install_new_value (existing, value, 0)) |
974 | { | |
975 | if (changed) | |
976 | VEC_safe_push (varobj_p, *changed, existing); | |
977 | } | |
978 | else if (unchanged) | |
979 | VEC_safe_push (varobj_p, *unchanged, existing); | |
980 | } | |
981 | } | |
982 | ||
0cc7d26f TT |
983 | static int |
984 | dynamic_varobj_has_child_method (struct varobj *var) | |
985 | { | |
986 | struct cleanup *back_to; | |
987 | PyObject *printer = var->pretty_printer; | |
988 | int result; | |
989 | ||
990 | back_to = varobj_ensure_python_env (var); | |
991 | result = PyObject_HasAttr (printer, gdbpy_children_cst); | |
992 | do_cleanups (back_to); | |
993 | return result; | |
994 | } | |
995 | ||
996 | #endif | |
997 | ||
b6313243 TT |
998 | static int |
999 | update_dynamic_varobj_children (struct varobj *var, | |
1000 | VEC (varobj_p) **changed, | |
0cc7d26f TT |
1001 | VEC (varobj_p) **new, |
1002 | VEC (varobj_p) **unchanged, | |
1003 | int *cchanged, | |
1004 | int update_children, | |
1005 | int from, | |
1006 | int to) | |
b6313243 TT |
1007 | { |
1008 | #if HAVE_PYTHON | |
b6313243 TT |
1009 | struct cleanup *back_to; |
1010 | PyObject *children; | |
b6313243 | 1011 | int i; |
b6313243 | 1012 | PyObject *printer = var->pretty_printer; |
b6313243 | 1013 | |
d452c4bc | 1014 | back_to = varobj_ensure_python_env (var); |
b6313243 TT |
1015 | |
1016 | *cchanged = 0; | |
1017 | if (!PyObject_HasAttr (printer, gdbpy_children_cst)) | |
1018 | { | |
1019 | do_cleanups (back_to); | |
1020 | return 0; | |
1021 | } | |
1022 | ||
0cc7d26f | 1023 | if (update_children || !var->child_iter) |
b6313243 | 1024 | { |
0cc7d26f TT |
1025 | children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst, |
1026 | NULL); | |
b6313243 | 1027 | |
0cc7d26f TT |
1028 | if (!children) |
1029 | { | |
1030 | gdbpy_print_stack (); | |
1031 | error (_("Null value returned for children")); | |
1032 | } | |
b6313243 | 1033 | |
0cc7d26f | 1034 | make_cleanup_py_decref (children); |
b6313243 | 1035 | |
0cc7d26f TT |
1036 | if (!PyIter_Check (children)) |
1037 | error (_("Returned value is not iterable")); | |
1038 | ||
1039 | Py_XDECREF (var->child_iter); | |
1040 | var->child_iter = PyObject_GetIter (children); | |
1041 | if (!var->child_iter) | |
1042 | { | |
1043 | gdbpy_print_stack (); | |
1044 | error (_("Could not get children iterator")); | |
1045 | } | |
1046 | ||
1047 | Py_XDECREF (var->saved_item); | |
1048 | var->saved_item = NULL; | |
1049 | ||
1050 | i = 0; | |
b6313243 | 1051 | } |
0cc7d26f TT |
1052 | else |
1053 | i = VEC_length (varobj_p, var->children); | |
b6313243 | 1054 | |
0cc7d26f TT |
1055 | /* We ask for one extra child, so that MI can report whether there |
1056 | are more children. */ | |
1057 | for (; to < 0 || i < to + 1; ++i) | |
b6313243 | 1058 | { |
0cc7d26f | 1059 | PyObject *item; |
a4c8e806 | 1060 | int force_done = 0; |
b6313243 | 1061 | |
0cc7d26f TT |
1062 | /* See if there was a leftover from last time. */ |
1063 | if (var->saved_item) | |
1064 | { | |
1065 | item = var->saved_item; | |
1066 | var->saved_item = NULL; | |
1067 | } | |
1068 | else | |
1069 | item = PyIter_Next (var->child_iter); | |
b6313243 | 1070 | |
0cc7d26f | 1071 | if (!item) |
a4c8e806 TT |
1072 | { |
1073 | /* Normal end of iteration. */ | |
1074 | if (!PyErr_Occurred ()) | |
1075 | break; | |
1076 | ||
1077 | /* If we got a memory error, just use the text as the | |
1078 | item. */ | |
1079 | if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error)) | |
1080 | { | |
1081 | PyObject *type, *value, *trace; | |
1082 | char *name_str, *value_str; | |
1083 | ||
1084 | PyErr_Fetch (&type, &value, &trace); | |
1085 | value_str = gdbpy_exception_to_string (type, value); | |
1086 | Py_XDECREF (type); | |
1087 | Py_XDECREF (value); | |
1088 | Py_XDECREF (trace); | |
1089 | if (!value_str) | |
1090 | { | |
1091 | gdbpy_print_stack (); | |
1092 | break; | |
1093 | } | |
1094 | ||
1095 | name_str = xstrprintf ("<error at %d>", i); | |
1096 | item = Py_BuildValue ("(ss)", name_str, value_str); | |
1097 | xfree (name_str); | |
1098 | xfree (value_str); | |
1099 | if (!item) | |
1100 | { | |
1101 | gdbpy_print_stack (); | |
1102 | break; | |
1103 | } | |
1104 | ||
1105 | force_done = 1; | |
1106 | } | |
1107 | else | |
1108 | { | |
1109 | /* Any other kind of error. */ | |
1110 | gdbpy_print_stack (); | |
1111 | break; | |
1112 | } | |
1113 | } | |
b6313243 | 1114 | |
0cc7d26f TT |
1115 | /* We don't want to push the extra child on any report list. */ |
1116 | if (to < 0 || i < to) | |
b6313243 | 1117 | { |
0cc7d26f | 1118 | PyObject *py_v; |
ddd49eee | 1119 | const char *name; |
0cc7d26f TT |
1120 | struct value *v; |
1121 | struct cleanup *inner; | |
1122 | int can_mention = from < 0 || i >= from; | |
1123 | ||
1124 | inner = make_cleanup_py_decref (item); | |
1125 | ||
1126 | if (!PyArg_ParseTuple (item, "sO", &name, &py_v)) | |
a4c8e806 TT |
1127 | { |
1128 | gdbpy_print_stack (); | |
1129 | error (_("Invalid item from the child list")); | |
1130 | } | |
0cc7d26f TT |
1131 | |
1132 | v = convert_value_from_python (py_v); | |
8dc78533 JK |
1133 | if (v == NULL) |
1134 | gdbpy_print_stack (); | |
0cc7d26f TT |
1135 | install_dynamic_child (var, can_mention ? changed : NULL, |
1136 | can_mention ? new : NULL, | |
1137 | can_mention ? unchanged : NULL, | |
1138 | can_mention ? cchanged : NULL, i, name, v); | |
1139 | do_cleanups (inner); | |
b6313243 | 1140 | } |
0cc7d26f | 1141 | else |
b6313243 | 1142 | { |
0cc7d26f TT |
1143 | Py_XDECREF (var->saved_item); |
1144 | var->saved_item = item; | |
b6313243 | 1145 | |
0cc7d26f TT |
1146 | /* We want to truncate the child list just before this |
1147 | element. */ | |
1148 | break; | |
1149 | } | |
a4c8e806 TT |
1150 | |
1151 | if (force_done) | |
1152 | break; | |
b6313243 TT |
1153 | } |
1154 | ||
1155 | if (i < VEC_length (varobj_p, var->children)) | |
1156 | { | |
0cc7d26f | 1157 | int j; |
a109c7c1 | 1158 | |
0cc7d26f TT |
1159 | *cchanged = 1; |
1160 | for (j = i; j < VEC_length (varobj_p, var->children); ++j) | |
1161 | varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0); | |
1162 | VEC_truncate (varobj_p, var->children, i); | |
b6313243 | 1163 | } |
0cc7d26f TT |
1164 | |
1165 | /* If there are fewer children than requested, note that the list of | |
1166 | children changed. */ | |
1167 | if (to >= 0 && VEC_length (varobj_p, var->children) < to) | |
1168 | *cchanged = 1; | |
1169 | ||
b6313243 TT |
1170 | var->num_children = VEC_length (varobj_p, var->children); |
1171 | ||
1172 | do_cleanups (back_to); | |
1173 | ||
b6313243 TT |
1174 | return 1; |
1175 | #else | |
1176 | gdb_assert (0 && "should never be called if Python is not enabled"); | |
1177 | #endif | |
1178 | } | |
25d5ea92 | 1179 | |
8b93c638 JM |
1180 | int |
1181 | varobj_get_num_children (struct varobj *var) | |
1182 | { | |
1183 | if (var->num_children == -1) | |
b6313243 | 1184 | { |
0cc7d26f TT |
1185 | if (var->pretty_printer) |
1186 | { | |
1187 | int dummy; | |
1188 | ||
1189 | /* If we have a dynamic varobj, don't report -1 children. | |
1190 | So, try to fetch some children first. */ | |
1191 | update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy, | |
1192 | 0, 0, 0); | |
1193 | } | |
1194 | else | |
b6313243 TT |
1195 | var->num_children = number_of_children (var); |
1196 | } | |
8b93c638 | 1197 | |
0cc7d26f | 1198 | return var->num_children >= 0 ? var->num_children : 0; |
8b93c638 JM |
1199 | } |
1200 | ||
1201 | /* Creates a list of the immediate children of a variable object; | |
581e13c1 | 1202 | the return code is the number of such children or -1 on error. */ |
8b93c638 | 1203 | |
d56d46f5 | 1204 | VEC (varobj_p)* |
0cc7d26f | 1205 | varobj_list_children (struct varobj *var, int *from, int *to) |
8b93c638 | 1206 | { |
8b93c638 | 1207 | char *name; |
b6313243 TT |
1208 | int i, children_changed; |
1209 | ||
1210 | var->children_requested = 1; | |
1211 | ||
0cc7d26f TT |
1212 | if (var->pretty_printer) |
1213 | { | |
b6313243 TT |
1214 | /* This, in theory, can result in the number of children changing without |
1215 | frontend noticing. But well, calling -var-list-children on the same | |
1216 | varobj twice is not something a sane frontend would do. */ | |
0cc7d26f TT |
1217 | update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed, |
1218 | 0, 0, *to); | |
1219 | restrict_range (var->children, from, to); | |
1220 | return var->children; | |
1221 | } | |
8b93c638 | 1222 | |
8b93c638 JM |
1223 | if (var->num_children == -1) |
1224 | var->num_children = number_of_children (var); | |
1225 | ||
74a44383 DJ |
1226 | /* If that failed, give up. */ |
1227 | if (var->num_children == -1) | |
d56d46f5 | 1228 | return var->children; |
74a44383 | 1229 | |
28335dcc VP |
1230 | /* If we're called when the list of children is not yet initialized, |
1231 | allocate enough elements in it. */ | |
1232 | while (VEC_length (varobj_p, var->children) < var->num_children) | |
1233 | VEC_safe_push (varobj_p, var->children, NULL); | |
1234 | ||
8b93c638 JM |
1235 | for (i = 0; i < var->num_children; i++) |
1236 | { | |
d56d46f5 | 1237 | varobj_p existing = VEC_index (varobj_p, var->children, i); |
28335dcc VP |
1238 | |
1239 | if (existing == NULL) | |
1240 | { | |
1241 | /* Either it's the first call to varobj_list_children for | |
1242 | this variable object, and the child was never created, | |
1243 | or it was explicitly deleted by the client. */ | |
1244 | name = name_of_child (var, i); | |
1245 | existing = create_child (var, i, name); | |
1246 | VEC_replace (varobj_p, var->children, i, existing); | |
1247 | } | |
8b93c638 JM |
1248 | } |
1249 | ||
0cc7d26f | 1250 | restrict_range (var->children, from, to); |
d56d46f5 | 1251 | return var->children; |
8b93c638 JM |
1252 | } |
1253 | ||
d8b65138 JK |
1254 | #if HAVE_PYTHON |
1255 | ||
b6313243 TT |
1256 | static struct varobj * |
1257 | varobj_add_child (struct varobj *var, const char *name, struct value *value) | |
1258 | { | |
1259 | varobj_p v = create_child_with_value (var, | |
1260 | VEC_length (varobj_p, var->children), | |
1261 | name, value); | |
a109c7c1 | 1262 | |
b6313243 | 1263 | VEC_safe_push (varobj_p, var->children, v); |
b6313243 TT |
1264 | return v; |
1265 | } | |
1266 | ||
d8b65138 JK |
1267 | #endif /* HAVE_PYTHON */ |
1268 | ||
8b93c638 | 1269 | /* Obtain the type of an object Variable as a string similar to the one gdb |
581e13c1 | 1270 | prints on the console. */ |
8b93c638 JM |
1271 | |
1272 | char * | |
1273 | varobj_get_type (struct varobj *var) | |
1274 | { | |
581e13c1 | 1275 | /* For the "fake" variables, do not return a type. (It's type is |
8756216b DP |
1276 | NULL, too.) |
1277 | Do not return a type for invalid variables as well. */ | |
1278 | if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid) | |
8b93c638 JM |
1279 | return NULL; |
1280 | ||
1a4300e9 | 1281 | return type_to_string (var->type); |
8b93c638 JM |
1282 | } |
1283 | ||
1ecb4ee0 DJ |
1284 | /* Obtain the type of an object variable. */ |
1285 | ||
1286 | struct type * | |
1287 | varobj_get_gdb_type (struct varobj *var) | |
1288 | { | |
1289 | return var->type; | |
1290 | } | |
1291 | ||
02142340 VP |
1292 | /* Return a pointer to the full rooted expression of varobj VAR. |
1293 | If it has not been computed yet, compute it. */ | |
1294 | char * | |
1295 | varobj_get_path_expr (struct varobj *var) | |
1296 | { | |
1297 | if (var->path_expr != NULL) | |
1298 | return var->path_expr; | |
1299 | else | |
1300 | { | |
1301 | /* For root varobjs, we initialize path_expr | |
1302 | when creating varobj, so here it should be | |
1303 | child varobj. */ | |
1304 | gdb_assert (!is_root_p (var)); | |
1305 | return (*var->root->lang->path_expr_of_child) (var); | |
1306 | } | |
1307 | } | |
1308 | ||
8b93c638 JM |
1309 | enum varobj_languages |
1310 | varobj_get_language (struct varobj *var) | |
1311 | { | |
1312 | return variable_language (var); | |
1313 | } | |
1314 | ||
1315 | int | |
1316 | varobj_get_attributes (struct varobj *var) | |
1317 | { | |
1318 | int attributes = 0; | |
1319 | ||
340a7723 | 1320 | if (varobj_editable_p (var)) |
581e13c1 | 1321 | /* FIXME: define masks for attributes. */ |
8b93c638 JM |
1322 | attributes |= 0x00000001; /* Editable */ |
1323 | ||
1324 | return attributes; | |
1325 | } | |
1326 | ||
0cc7d26f TT |
1327 | int |
1328 | varobj_pretty_printed_p (struct varobj *var) | |
1329 | { | |
1330 | return var->pretty_printer != NULL; | |
1331 | } | |
1332 | ||
de051565 MK |
1333 | char * |
1334 | varobj_get_formatted_value (struct varobj *var, | |
1335 | enum varobj_display_formats format) | |
1336 | { | |
1337 | return my_value_of_variable (var, format); | |
1338 | } | |
1339 | ||
8b93c638 JM |
1340 | char * |
1341 | varobj_get_value (struct varobj *var) | |
1342 | { | |
de051565 | 1343 | return my_value_of_variable (var, var->format); |
8b93c638 JM |
1344 | } |
1345 | ||
1346 | /* Set the value of an object variable (if it is editable) to the | |
581e13c1 MS |
1347 | value of the given expression. */ |
1348 | /* Note: Invokes functions that can call error(). */ | |
8b93c638 JM |
1349 | |
1350 | int | |
1351 | varobj_set_value (struct varobj *var, char *expression) | |
1352 | { | |
30b28db1 | 1353 | struct value *val; |
8b93c638 JM |
1354 | |
1355 | /* The argument "expression" contains the variable's new value. | |
581e13c1 MS |
1356 | We need to first construct a legal expression for this -- ugh! */ |
1357 | /* Does this cover all the bases? */ | |
8b93c638 | 1358 | struct expression *exp; |
30b28db1 | 1359 | struct value *value; |
8b93c638 | 1360 | int saved_input_radix = input_radix; |
340a7723 | 1361 | char *s = expression; |
8b93c638 | 1362 | |
340a7723 | 1363 | gdb_assert (varobj_editable_p (var)); |
8b93c638 | 1364 | |
581e13c1 | 1365 | input_radix = 10; /* ALWAYS reset to decimal temporarily. */ |
340a7723 NR |
1366 | exp = parse_exp_1 (&s, 0, 0); |
1367 | if (!gdb_evaluate_expression (exp, &value)) | |
1368 | { | |
581e13c1 | 1369 | /* We cannot proceed without a valid expression. */ |
340a7723 NR |
1370 | xfree (exp); |
1371 | return 0; | |
8b93c638 JM |
1372 | } |
1373 | ||
340a7723 NR |
1374 | /* All types that are editable must also be changeable. */ |
1375 | gdb_assert (varobj_value_is_changeable_p (var)); | |
1376 | ||
1377 | /* The value of a changeable variable object must not be lazy. */ | |
1378 | gdb_assert (!value_lazy (var->value)); | |
1379 | ||
1380 | /* Need to coerce the input. We want to check if the | |
1381 | value of the variable object will be different | |
1382 | after assignment, and the first thing value_assign | |
1383 | does is coerce the input. | |
1384 | For example, if we are assigning an array to a pointer variable we | |
b021a221 | 1385 | should compare the pointer with the array's address, not with the |
340a7723 NR |
1386 | array's content. */ |
1387 | value = coerce_array (value); | |
1388 | ||
1389 | /* The new value may be lazy. gdb_value_assign, or | |
1390 | rather value_contents, will take care of this. | |
1391 | If fetching of the new value will fail, gdb_value_assign | |
1392 | with catch the exception. */ | |
1393 | if (!gdb_value_assign (var->value, value, &val)) | |
1394 | return 0; | |
1395 | ||
1396 | /* If the value has changed, record it, so that next -var-update can | |
1397 | report this change. If a variable had a value of '1', we've set it | |
1398 | to '333' and then set again to '1', when -var-update will report this | |
1399 | variable as changed -- because the first assignment has set the | |
1400 | 'updated' flag. There's no need to optimize that, because return value | |
1401 | of -var-update should be considered an approximation. */ | |
581e13c1 | 1402 | var->updated = install_new_value (var, val, 0 /* Compare values. */); |
340a7723 NR |
1403 | input_radix = saved_input_radix; |
1404 | return 1; | |
8b93c638 JM |
1405 | } |
1406 | ||
0cc7d26f TT |
1407 | #if HAVE_PYTHON |
1408 | ||
1409 | /* A helper function to install a constructor function and visualizer | |
1410 | in a varobj. */ | |
1411 | ||
1412 | static void | |
1413 | install_visualizer (struct varobj *var, PyObject *constructor, | |
1414 | PyObject *visualizer) | |
1415 | { | |
1416 | Py_XDECREF (var->constructor); | |
1417 | var->constructor = constructor; | |
1418 | ||
1419 | Py_XDECREF (var->pretty_printer); | |
1420 | var->pretty_printer = visualizer; | |
1421 | ||
1422 | Py_XDECREF (var->child_iter); | |
1423 | var->child_iter = NULL; | |
1424 | } | |
1425 | ||
1426 | /* Install the default visualizer for VAR. */ | |
1427 | ||
1428 | static void | |
1429 | install_default_visualizer (struct varobj *var) | |
1430 | { | |
d65aec65 PM |
1431 | /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */ |
1432 | if (CPLUS_FAKE_CHILD (var)) | |
1433 | return; | |
1434 | ||
0cc7d26f TT |
1435 | if (pretty_printing) |
1436 | { | |
1437 | PyObject *pretty_printer = NULL; | |
1438 | ||
1439 | if (var->value) | |
1440 | { | |
1441 | pretty_printer = gdbpy_get_varobj_pretty_printer (var->value); | |
1442 | if (! pretty_printer) | |
1443 | { | |
1444 | gdbpy_print_stack (); | |
1445 | error (_("Cannot instantiate printer for default visualizer")); | |
1446 | } | |
1447 | } | |
1448 | ||
1449 | if (pretty_printer == Py_None) | |
1450 | { | |
1451 | Py_DECREF (pretty_printer); | |
1452 | pretty_printer = NULL; | |
1453 | } | |
1454 | ||
1455 | install_visualizer (var, NULL, pretty_printer); | |
1456 | } | |
1457 | } | |
1458 | ||
1459 | /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to | |
1460 | make a new object. */ | |
1461 | ||
1462 | static void | |
1463 | construct_visualizer (struct varobj *var, PyObject *constructor) | |
1464 | { | |
1465 | PyObject *pretty_printer; | |
1466 | ||
d65aec65 PM |
1467 | /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */ |
1468 | if (CPLUS_FAKE_CHILD (var)) | |
1469 | return; | |
1470 | ||
0cc7d26f TT |
1471 | Py_INCREF (constructor); |
1472 | if (constructor == Py_None) | |
1473 | pretty_printer = NULL; | |
1474 | else | |
1475 | { | |
1476 | pretty_printer = instantiate_pretty_printer (constructor, var->value); | |
1477 | if (! pretty_printer) | |
1478 | { | |
1479 | gdbpy_print_stack (); | |
1480 | Py_DECREF (constructor); | |
1481 | constructor = Py_None; | |
1482 | Py_INCREF (constructor); | |
1483 | } | |
1484 | ||
1485 | if (pretty_printer == Py_None) | |
1486 | { | |
1487 | Py_DECREF (pretty_printer); | |
1488 | pretty_printer = NULL; | |
1489 | } | |
1490 | } | |
1491 | ||
1492 | install_visualizer (var, constructor, pretty_printer); | |
1493 | } | |
1494 | ||
1495 | #endif /* HAVE_PYTHON */ | |
1496 | ||
1497 | /* A helper function for install_new_value. This creates and installs | |
1498 | a visualizer for VAR, if appropriate. */ | |
1499 | ||
1500 | static void | |
1501 | install_new_value_visualizer (struct varobj *var) | |
1502 | { | |
1503 | #if HAVE_PYTHON | |
1504 | /* If the constructor is None, then we want the raw value. If VAR | |
1505 | does not have a value, just skip this. */ | |
1506 | if (var->constructor != Py_None && var->value) | |
1507 | { | |
1508 | struct cleanup *cleanup; | |
0cc7d26f TT |
1509 | |
1510 | cleanup = varobj_ensure_python_env (var); | |
1511 | ||
1512 | if (!var->constructor) | |
1513 | install_default_visualizer (var); | |
1514 | else | |
1515 | construct_visualizer (var, var->constructor); | |
1516 | ||
1517 | do_cleanups (cleanup); | |
1518 | } | |
1519 | #else | |
1520 | /* Do nothing. */ | |
1521 | #endif | |
1522 | } | |
1523 | ||
acd65feb VP |
1524 | /* Assign a new value to a variable object. If INITIAL is non-zero, |
1525 | this is the first assignement after the variable object was just | |
1526 | created, or changed type. In that case, just assign the value | |
1527 | and return 0. | |
581e13c1 MS |
1528 | Otherwise, assign the new value, and return 1 if the value is |
1529 | different from the current one, 0 otherwise. The comparison is | |
1530 | done on textual representation of value. Therefore, some types | |
1531 | need not be compared. E.g. for structures the reported value is | |
1532 | always "{...}", so no comparison is necessary here. If the old | |
1533 | value was NULL and new one is not, or vice versa, we always return 1. | |
b26ed50d VP |
1534 | |
1535 | The VALUE parameter should not be released -- the function will | |
1536 | take care of releasing it when needed. */ | |
acd65feb VP |
1537 | static int |
1538 | install_new_value (struct varobj *var, struct value *value, int initial) | |
1539 | { | |
1540 | int changeable; | |
1541 | int need_to_fetch; | |
1542 | int changed = 0; | |
25d5ea92 | 1543 | int intentionally_not_fetched = 0; |
7a4d50bf | 1544 | char *print_value = NULL; |
acd65feb | 1545 | |
acd65feb | 1546 | /* We need to know the varobj's type to decide if the value should |
3e43a32a | 1547 | be fetched or not. C++ fake children (public/protected/private) |
581e13c1 | 1548 | don't have a type. */ |
acd65feb | 1549 | gdb_assert (var->type || CPLUS_FAKE_CHILD (var)); |
b2c2bd75 | 1550 | changeable = varobj_value_is_changeable_p (var); |
b6313243 TT |
1551 | |
1552 | /* If the type has custom visualizer, we consider it to be always | |
581e13c1 | 1553 | changeable. FIXME: need to make sure this behaviour will not |
b6313243 TT |
1554 | mess up read-sensitive values. */ |
1555 | if (var->pretty_printer) | |
1556 | changeable = 1; | |
1557 | ||
acd65feb VP |
1558 | need_to_fetch = changeable; |
1559 | ||
b26ed50d VP |
1560 | /* We are not interested in the address of references, and given |
1561 | that in C++ a reference is not rebindable, it cannot | |
1562 | meaningfully change. So, get hold of the real value. */ | |
1563 | if (value) | |
0cc7d26f | 1564 | value = coerce_ref (value); |
b26ed50d | 1565 | |
acd65feb VP |
1566 | if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION) |
1567 | /* For unions, we need to fetch the value implicitly because | |
1568 | of implementation of union member fetch. When gdb | |
1569 | creates a value for a field and the value of the enclosing | |
1570 | structure is not lazy, it immediately copies the necessary | |
1571 | bytes from the enclosing values. If the enclosing value is | |
1572 | lazy, the call to value_fetch_lazy on the field will read | |
1573 | the data from memory. For unions, that means we'll read the | |
1574 | same memory more than once, which is not desirable. So | |
1575 | fetch now. */ | |
1576 | need_to_fetch = 1; | |
1577 | ||
1578 | /* The new value might be lazy. If the type is changeable, | |
1579 | that is we'll be comparing values of this type, fetch the | |
1580 | value now. Otherwise, on the next update the old value | |
1581 | will be lazy, which means we've lost that old value. */ | |
1582 | if (need_to_fetch && value && value_lazy (value)) | |
1583 | { | |
25d5ea92 VP |
1584 | struct varobj *parent = var->parent; |
1585 | int frozen = var->frozen; | |
a109c7c1 | 1586 | |
25d5ea92 VP |
1587 | for (; !frozen && parent; parent = parent->parent) |
1588 | frozen |= parent->frozen; | |
1589 | ||
1590 | if (frozen && initial) | |
1591 | { | |
1592 | /* For variables that are frozen, or are children of frozen | |
1593 | variables, we don't do fetch on initial assignment. | |
1594 | For non-initial assignemnt we do the fetch, since it means we're | |
1595 | explicitly asked to compare the new value with the old one. */ | |
1596 | intentionally_not_fetched = 1; | |
1597 | } | |
1598 | else if (!gdb_value_fetch_lazy (value)) | |
acd65feb | 1599 | { |
acd65feb VP |
1600 | /* Set the value to NULL, so that for the next -var-update, |
1601 | we don't try to compare the new value with this value, | |
1602 | that we couldn't even read. */ | |
1603 | value = NULL; | |
1604 | } | |
acd65feb VP |
1605 | } |
1606 | ||
e848a8a5 TT |
1607 | /* Get a reference now, before possibly passing it to any Python |
1608 | code that might release it. */ | |
1609 | if (value != NULL) | |
1610 | value_incref (value); | |
b6313243 | 1611 | |
7a4d50bf VP |
1612 | /* Below, we'll be comparing string rendering of old and new |
1613 | values. Don't get string rendering if the value is | |
1614 | lazy -- if it is, the code above has decided that the value | |
1615 | should not be fetched. */ | |
0cc7d26f | 1616 | if (value && !value_lazy (value) && !var->pretty_printer) |
d452c4bc | 1617 | print_value = value_get_print_value (value, var->format, var); |
7a4d50bf | 1618 | |
acd65feb VP |
1619 | /* If the type is changeable, compare the old and the new values. |
1620 | If this is the initial assignment, we don't have any old value | |
1621 | to compare with. */ | |
7a4d50bf | 1622 | if (!initial && changeable) |
acd65feb | 1623 | { |
3e43a32a MS |
1624 | /* If the value of the varobj was changed by -var-set-value, |
1625 | then the value in the varobj and in the target is the same. | |
1626 | However, that value is different from the value that the | |
581e13c1 | 1627 | varobj had after the previous -var-update. So need to the |
3e43a32a | 1628 | varobj as changed. */ |
acd65feb | 1629 | if (var->updated) |
57e66780 | 1630 | { |
57e66780 DJ |
1631 | changed = 1; |
1632 | } | |
0cc7d26f | 1633 | else if (! var->pretty_printer) |
acd65feb VP |
1634 | { |
1635 | /* Try to compare the values. That requires that both | |
1636 | values are non-lazy. */ | |
25d5ea92 VP |
1637 | if (var->not_fetched && value_lazy (var->value)) |
1638 | { | |
1639 | /* This is a frozen varobj and the value was never read. | |
1640 | Presumably, UI shows some "never read" indicator. | |
1641 | Now that we've fetched the real value, we need to report | |
1642 | this varobj as changed so that UI can show the real | |
1643 | value. */ | |
1644 | changed = 1; | |
1645 | } | |
1646 | else if (var->value == NULL && value == NULL) | |
581e13c1 | 1647 | /* Equal. */ |
acd65feb VP |
1648 | ; |
1649 | else if (var->value == NULL || value == NULL) | |
57e66780 | 1650 | { |
57e66780 DJ |
1651 | changed = 1; |
1652 | } | |
acd65feb VP |
1653 | else |
1654 | { | |
1655 | gdb_assert (!value_lazy (var->value)); | |
1656 | gdb_assert (!value_lazy (value)); | |
85265413 | 1657 | |
57e66780 | 1658 | gdb_assert (var->print_value != NULL && print_value != NULL); |
85265413 | 1659 | if (strcmp (var->print_value, print_value) != 0) |
7a4d50bf | 1660 | changed = 1; |
acd65feb VP |
1661 | } |
1662 | } | |
1663 | } | |
85265413 | 1664 | |
ee342b23 VP |
1665 | if (!initial && !changeable) |
1666 | { | |
1667 | /* For values that are not changeable, we don't compare the values. | |
1668 | However, we want to notice if a value was not NULL and now is NULL, | |
1669 | or vise versa, so that we report when top-level varobjs come in scope | |
1670 | and leave the scope. */ | |
1671 | changed = (var->value != NULL) != (value != NULL); | |
1672 | } | |
1673 | ||
acd65feb | 1674 | /* We must always keep the new value, since children depend on it. */ |
25d5ea92 | 1675 | if (var->value != NULL && var->value != value) |
acd65feb VP |
1676 | value_free (var->value); |
1677 | var->value = value; | |
25d5ea92 VP |
1678 | if (value && value_lazy (value) && intentionally_not_fetched) |
1679 | var->not_fetched = 1; | |
1680 | else | |
1681 | var->not_fetched = 0; | |
acd65feb | 1682 | var->updated = 0; |
85265413 | 1683 | |
0cc7d26f TT |
1684 | install_new_value_visualizer (var); |
1685 | ||
1686 | /* If we installed a pretty-printer, re-compare the printed version | |
1687 | to see if the variable changed. */ | |
1688 | if (var->pretty_printer) | |
1689 | { | |
1690 | xfree (print_value); | |
1691 | print_value = value_get_print_value (var->value, var->format, var); | |
e8f781e2 TT |
1692 | if ((var->print_value == NULL && print_value != NULL) |
1693 | || (var->print_value != NULL && print_value == NULL) | |
1694 | || (var->print_value != NULL && print_value != NULL | |
1695 | && strcmp (var->print_value, print_value) != 0)) | |
0cc7d26f TT |
1696 | changed = 1; |
1697 | } | |
1698 | if (var->print_value) | |
1699 | xfree (var->print_value); | |
1700 | var->print_value = print_value; | |
1701 | ||
b26ed50d | 1702 | gdb_assert (!var->value || value_type (var->value)); |
acd65feb VP |
1703 | |
1704 | return changed; | |
1705 | } | |
acd65feb | 1706 | |
0cc7d26f TT |
1707 | /* Return the requested range for a varobj. VAR is the varobj. FROM |
1708 | and TO are out parameters; *FROM and *TO will be set to the | |
1709 | selected sub-range of VAR. If no range was selected using | |
1710 | -var-set-update-range, then both will be -1. */ | |
1711 | void | |
1712 | varobj_get_child_range (struct varobj *var, int *from, int *to) | |
b6313243 | 1713 | { |
0cc7d26f TT |
1714 | *from = var->from; |
1715 | *to = var->to; | |
b6313243 TT |
1716 | } |
1717 | ||
0cc7d26f TT |
1718 | /* Set the selected sub-range of children of VAR to start at index |
1719 | FROM and end at index TO. If either FROM or TO is less than zero, | |
1720 | this is interpreted as a request for all children. */ | |
1721 | void | |
1722 | varobj_set_child_range (struct varobj *var, int from, int to) | |
b6313243 | 1723 | { |
0cc7d26f TT |
1724 | var->from = from; |
1725 | var->to = to; | |
b6313243 TT |
1726 | } |
1727 | ||
1728 | void | |
1729 | varobj_set_visualizer (struct varobj *var, const char *visualizer) | |
1730 | { | |
1731 | #if HAVE_PYTHON | |
34fa1d9d MS |
1732 | PyObject *mainmod, *globals, *constructor; |
1733 | struct cleanup *back_to; | |
b6313243 | 1734 | |
d452c4bc | 1735 | back_to = varobj_ensure_python_env (var); |
b6313243 TT |
1736 | |
1737 | mainmod = PyImport_AddModule ("__main__"); | |
1738 | globals = PyModule_GetDict (mainmod); | |
1739 | Py_INCREF (globals); | |
1740 | make_cleanup_py_decref (globals); | |
1741 | ||
1742 | constructor = PyRun_String (visualizer, Py_eval_input, globals, globals); | |
b6313243 | 1743 | |
0cc7d26f | 1744 | if (! constructor) |
b6313243 TT |
1745 | { |
1746 | gdbpy_print_stack (); | |
da1f2771 | 1747 | error (_("Could not evaluate visualizer expression: %s"), visualizer); |
b6313243 TT |
1748 | } |
1749 | ||
0cc7d26f TT |
1750 | construct_visualizer (var, constructor); |
1751 | Py_XDECREF (constructor); | |
b6313243 | 1752 | |
0cc7d26f TT |
1753 | /* If there are any children now, wipe them. */ |
1754 | varobj_delete (var, NULL, 1 /* children only */); | |
1755 | var->num_children = -1; | |
b6313243 TT |
1756 | |
1757 | do_cleanups (back_to); | |
1758 | #else | |
da1f2771 | 1759 | error (_("Python support required")); |
b6313243 TT |
1760 | #endif |
1761 | } | |
1762 | ||
8b93c638 JM |
1763 | /* Update the values for a variable and its children. This is a |
1764 | two-pronged attack. First, re-parse the value for the root's | |
1765 | expression to see if it's changed. Then go all the way | |
1766 | through its children, reconstructing them and noting if they've | |
1767 | changed. | |
1768 | ||
25d5ea92 VP |
1769 | The EXPLICIT parameter specifies if this call is result |
1770 | of MI request to update this specific variable, or | |
581e13c1 | 1771 | result of implicit -var-update *. For implicit request, we don't |
25d5ea92 | 1772 | update frozen variables. |
705da579 | 1773 | |
581e13c1 | 1774 | NOTE: This function may delete the caller's varobj. If it |
8756216b DP |
1775 | returns TYPE_CHANGED, then it has done this and VARP will be modified |
1776 | to point to the new varobj. */ | |
8b93c638 | 1777 | |
1417b39d JB |
1778 | VEC(varobj_update_result) * |
1779 | varobj_update (struct varobj **varp, int explicit) | |
8b93c638 JM |
1780 | { |
1781 | int changed = 0; | |
25d5ea92 | 1782 | int type_changed = 0; |
8b93c638 | 1783 | int i; |
30b28db1 | 1784 | struct value *new; |
b6313243 | 1785 | VEC (varobj_update_result) *stack = NULL; |
f7f9ae2c | 1786 | VEC (varobj_update_result) *result = NULL; |
8b93c638 | 1787 | |
25d5ea92 VP |
1788 | /* Frozen means frozen -- we don't check for any change in |
1789 | this varobj, including its going out of scope, or | |
1790 | changing type. One use case for frozen varobjs is | |
1791 | retaining previously evaluated expressions, and we don't | |
1792 | want them to be reevaluated at all. */ | |
1793 | if (!explicit && (*varp)->frozen) | |
f7f9ae2c | 1794 | return result; |
8756216b DP |
1795 | |
1796 | if (!(*varp)->root->is_valid) | |
f7f9ae2c | 1797 | { |
cfce2ea2 | 1798 | varobj_update_result r = {0}; |
a109c7c1 | 1799 | |
cfce2ea2 | 1800 | r.varobj = *varp; |
f7f9ae2c VP |
1801 | r.status = VAROBJ_INVALID; |
1802 | VEC_safe_push (varobj_update_result, result, &r); | |
1803 | return result; | |
1804 | } | |
8b93c638 | 1805 | |
25d5ea92 | 1806 | if ((*varp)->root->rootvar == *varp) |
ae093f96 | 1807 | { |
cfce2ea2 | 1808 | varobj_update_result r = {0}; |
a109c7c1 | 1809 | |
cfce2ea2 | 1810 | r.varobj = *varp; |
f7f9ae2c VP |
1811 | r.status = VAROBJ_IN_SCOPE; |
1812 | ||
581e13c1 | 1813 | /* Update the root variable. value_of_root can return NULL |
25d5ea92 | 1814 | if the variable is no longer around, i.e. we stepped out of |
581e13c1 | 1815 | the frame in which a local existed. We are letting the |
25d5ea92 VP |
1816 | value_of_root variable dispose of the varobj if the type |
1817 | has changed. */ | |
25d5ea92 | 1818 | new = value_of_root (varp, &type_changed); |
f7f9ae2c VP |
1819 | r.varobj = *varp; |
1820 | ||
1821 | r.type_changed = type_changed; | |
ea56f9c2 | 1822 | if (install_new_value ((*varp), new, type_changed)) |
f7f9ae2c | 1823 | r.changed = 1; |
ea56f9c2 | 1824 | |
25d5ea92 | 1825 | if (new == NULL) |
f7f9ae2c | 1826 | r.status = VAROBJ_NOT_IN_SCOPE; |
b6313243 | 1827 | r.value_installed = 1; |
f7f9ae2c VP |
1828 | |
1829 | if (r.status == VAROBJ_NOT_IN_SCOPE) | |
b6313243 | 1830 | { |
0b4bc29a JK |
1831 | if (r.type_changed || r.changed) |
1832 | VEC_safe_push (varobj_update_result, result, &r); | |
b6313243 TT |
1833 | return result; |
1834 | } | |
1835 | ||
1836 | VEC_safe_push (varobj_update_result, stack, &r); | |
1837 | } | |
1838 | else | |
1839 | { | |
cfce2ea2 | 1840 | varobj_update_result r = {0}; |
a109c7c1 | 1841 | |
cfce2ea2 | 1842 | r.varobj = *varp; |
b6313243 | 1843 | VEC_safe_push (varobj_update_result, stack, &r); |
b20d8971 | 1844 | } |
8b93c638 | 1845 | |
8756216b | 1846 | /* Walk through the children, reconstructing them all. */ |
b6313243 | 1847 | while (!VEC_empty (varobj_update_result, stack)) |
8b93c638 | 1848 | { |
b6313243 TT |
1849 | varobj_update_result r = *(VEC_last (varobj_update_result, stack)); |
1850 | struct varobj *v = r.varobj; | |
1851 | ||
1852 | VEC_pop (varobj_update_result, stack); | |
1853 | ||
1854 | /* Update this variable, unless it's a root, which is already | |
1855 | updated. */ | |
1856 | if (!r.value_installed) | |
1857 | { | |
1858 | new = value_of_child (v->parent, v->index); | |
1859 | if (install_new_value (v, new, 0 /* type not changed */)) | |
1860 | { | |
1861 | r.changed = 1; | |
1862 | v->updated = 0; | |
1863 | } | |
1864 | } | |
1865 | ||
1866 | /* We probably should not get children of a varobj that has a | |
1867 | pretty-printer, but for which -var-list-children was never | |
581e13c1 | 1868 | invoked. */ |
b6313243 TT |
1869 | if (v->pretty_printer) |
1870 | { | |
0cc7d26f | 1871 | VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0; |
26f9bcee | 1872 | int i, children_changed = 0; |
b6313243 TT |
1873 | |
1874 | if (v->frozen) | |
1875 | continue; | |
1876 | ||
0cc7d26f TT |
1877 | if (!v->children_requested) |
1878 | { | |
1879 | int dummy; | |
1880 | ||
1881 | /* If we initially did not have potential children, but | |
1882 | now we do, consider the varobj as changed. | |
1883 | Otherwise, if children were never requested, consider | |
1884 | it as unchanged -- presumably, such varobj is not yet | |
1885 | expanded in the UI, so we need not bother getting | |
1886 | it. */ | |
1887 | if (!varobj_has_more (v, 0)) | |
1888 | { | |
1889 | update_dynamic_varobj_children (v, NULL, NULL, NULL, | |
1890 | &dummy, 0, 0, 0); | |
1891 | if (varobj_has_more (v, 0)) | |
1892 | r.changed = 1; | |
1893 | } | |
1894 | ||
1895 | if (r.changed) | |
1896 | VEC_safe_push (varobj_update_result, result, &r); | |
1897 | ||
1898 | continue; | |
1899 | } | |
1900 | ||
b6313243 TT |
1901 | /* If update_dynamic_varobj_children returns 0, then we have |
1902 | a non-conforming pretty-printer, so we skip it. */ | |
0cc7d26f TT |
1903 | if (update_dynamic_varobj_children (v, &changed, &new, &unchanged, |
1904 | &children_changed, 1, | |
1905 | v->from, v->to)) | |
b6313243 | 1906 | { |
0cc7d26f | 1907 | if (children_changed || new) |
b6313243 | 1908 | { |
0cc7d26f TT |
1909 | r.children_changed = 1; |
1910 | r.new = new; | |
b6313243 | 1911 | } |
0cc7d26f TT |
1912 | /* Push in reverse order so that the first child is |
1913 | popped from the work stack first, and so will be | |
1914 | added to result first. This does not affect | |
1915 | correctness, just "nicer". */ | |
1916 | for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i) | |
b6313243 | 1917 | { |
0cc7d26f | 1918 | varobj_p tmp = VEC_index (varobj_p, changed, i); |
cfce2ea2 | 1919 | varobj_update_result r = {0}; |
a109c7c1 | 1920 | |
cfce2ea2 | 1921 | r.varobj = tmp; |
0cc7d26f | 1922 | r.changed = 1; |
b6313243 TT |
1923 | r.value_installed = 1; |
1924 | VEC_safe_push (varobj_update_result, stack, &r); | |
1925 | } | |
0cc7d26f TT |
1926 | for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i) |
1927 | { | |
1928 | varobj_p tmp = VEC_index (varobj_p, unchanged, i); | |
a109c7c1 | 1929 | |
0cc7d26f TT |
1930 | if (!tmp->frozen) |
1931 | { | |
cfce2ea2 | 1932 | varobj_update_result r = {0}; |
a109c7c1 | 1933 | |
cfce2ea2 | 1934 | r.varobj = tmp; |
0cc7d26f TT |
1935 | r.value_installed = 1; |
1936 | VEC_safe_push (varobj_update_result, stack, &r); | |
1937 | } | |
1938 | } | |
b6313243 TT |
1939 | if (r.changed || r.children_changed) |
1940 | VEC_safe_push (varobj_update_result, result, &r); | |
0cc7d26f TT |
1941 | |
1942 | /* Free CHANGED and UNCHANGED, but not NEW, because NEW | |
1943 | has been put into the result vector. */ | |
1944 | VEC_free (varobj_p, changed); | |
1945 | VEC_free (varobj_p, unchanged); | |
1946 | ||
b6313243 TT |
1947 | continue; |
1948 | } | |
1949 | } | |
28335dcc VP |
1950 | |
1951 | /* Push any children. Use reverse order so that the first | |
1952 | child is popped from the work stack first, and so | |
1953 | will be added to result first. This does not | |
1954 | affect correctness, just "nicer". */ | |
1955 | for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i) | |
8b93c638 | 1956 | { |
28335dcc | 1957 | varobj_p c = VEC_index (varobj_p, v->children, i); |
a109c7c1 | 1958 | |
28335dcc | 1959 | /* Child may be NULL if explicitly deleted by -var-delete. */ |
25d5ea92 | 1960 | if (c != NULL && !c->frozen) |
28335dcc | 1961 | { |
cfce2ea2 | 1962 | varobj_update_result r = {0}; |
a109c7c1 | 1963 | |
cfce2ea2 | 1964 | r.varobj = c; |
b6313243 | 1965 | VEC_safe_push (varobj_update_result, stack, &r); |
28335dcc | 1966 | } |
8b93c638 | 1967 | } |
b6313243 TT |
1968 | |
1969 | if (r.changed || r.type_changed) | |
1970 | VEC_safe_push (varobj_update_result, result, &r); | |
8b93c638 JM |
1971 | } |
1972 | ||
b6313243 TT |
1973 | VEC_free (varobj_update_result, stack); |
1974 | ||
f7f9ae2c | 1975 | return result; |
8b93c638 JM |
1976 | } |
1977 | \f | |
1978 | ||
1979 | /* Helper functions */ | |
1980 | ||
1981 | /* | |
1982 | * Variable object construction/destruction | |
1983 | */ | |
1984 | ||
1985 | static int | |
fba45db2 KB |
1986 | delete_variable (struct cpstack **resultp, struct varobj *var, |
1987 | int only_children_p) | |
8b93c638 JM |
1988 | { |
1989 | int delcount = 0; | |
1990 | ||
1991 | delete_variable_1 (resultp, &delcount, var, | |
1992 | only_children_p, 1 /* remove_from_parent_p */ ); | |
1993 | ||
1994 | return delcount; | |
1995 | } | |
1996 | ||
581e13c1 | 1997 | /* Delete the variable object VAR and its children. */ |
8b93c638 JM |
1998 | /* IMPORTANT NOTE: If we delete a variable which is a child |
1999 | and the parent is not removed we dump core. It must be always | |
581e13c1 | 2000 | initially called with remove_from_parent_p set. */ |
8b93c638 | 2001 | static void |
72330bd6 AC |
2002 | delete_variable_1 (struct cpstack **resultp, int *delcountp, |
2003 | struct varobj *var, int only_children_p, | |
2004 | int remove_from_parent_p) | |
8b93c638 | 2005 | { |
28335dcc | 2006 | int i; |
8b93c638 | 2007 | |
581e13c1 | 2008 | /* Delete any children of this variable, too. */ |
28335dcc VP |
2009 | for (i = 0; i < VEC_length (varobj_p, var->children); ++i) |
2010 | { | |
2011 | varobj_p child = VEC_index (varobj_p, var->children, i); | |
a109c7c1 | 2012 | |
214270ab VP |
2013 | if (!child) |
2014 | continue; | |
8b93c638 | 2015 | if (!remove_from_parent_p) |
28335dcc VP |
2016 | child->parent = NULL; |
2017 | delete_variable_1 (resultp, delcountp, child, 0, only_children_p); | |
8b93c638 | 2018 | } |
28335dcc | 2019 | VEC_free (varobj_p, var->children); |
8b93c638 | 2020 | |
581e13c1 | 2021 | /* if we were called to delete only the children we are done here. */ |
8b93c638 JM |
2022 | if (only_children_p) |
2023 | return; | |
2024 | ||
581e13c1 | 2025 | /* Otherwise, add it to the list of deleted ones and proceed to do so. */ |
73a93a32 | 2026 | /* If the name is null, this is a temporary variable, that has not |
581e13c1 | 2027 | yet been installed, don't report it, it belongs to the caller... */ |
73a93a32 | 2028 | if (var->obj_name != NULL) |
8b93c638 | 2029 | { |
5b616ba1 | 2030 | cppush (resultp, xstrdup (var->obj_name)); |
8b93c638 JM |
2031 | *delcountp = *delcountp + 1; |
2032 | } | |
2033 | ||
581e13c1 | 2034 | /* If this variable has a parent, remove it from its parent's list. */ |
8b93c638 JM |
2035 | /* OPTIMIZATION: if the parent of this variable is also being deleted, |
2036 | (as indicated by remove_from_parent_p) we don't bother doing an | |
2037 | expensive list search to find the element to remove when we are | |
581e13c1 | 2038 | discarding the list afterwards. */ |
72330bd6 | 2039 | if ((remove_from_parent_p) && (var->parent != NULL)) |
8b93c638 | 2040 | { |
28335dcc | 2041 | VEC_replace (varobj_p, var->parent->children, var->index, NULL); |
8b93c638 | 2042 | } |
72330bd6 | 2043 | |
73a93a32 JI |
2044 | if (var->obj_name != NULL) |
2045 | uninstall_variable (var); | |
8b93c638 | 2046 | |
581e13c1 | 2047 | /* Free memory associated with this variable. */ |
8b93c638 JM |
2048 | free_variable (var); |
2049 | } | |
2050 | ||
581e13c1 | 2051 | /* Install the given variable VAR with the object name VAR->OBJ_NAME. */ |
8b93c638 | 2052 | static int |
fba45db2 | 2053 | install_variable (struct varobj *var) |
8b93c638 JM |
2054 | { |
2055 | struct vlist *cv; | |
2056 | struct vlist *newvl; | |
2057 | const char *chp; | |
2058 | unsigned int index = 0; | |
2059 | unsigned int i = 1; | |
2060 | ||
2061 | for (chp = var->obj_name; *chp; chp++) | |
2062 | { | |
2063 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
2064 | } | |
2065 | ||
2066 | cv = *(varobj_table + index); | |
2067 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
2068 | cv = cv->next; | |
2069 | ||
2070 | if (cv != NULL) | |
8a3fe4f8 | 2071 | error (_("Duplicate variable object name")); |
8b93c638 | 2072 | |
581e13c1 | 2073 | /* Add varobj to hash table. */ |
8b93c638 JM |
2074 | newvl = xmalloc (sizeof (struct vlist)); |
2075 | newvl->next = *(varobj_table + index); | |
2076 | newvl->var = var; | |
2077 | *(varobj_table + index) = newvl; | |
2078 | ||
581e13c1 | 2079 | /* If root, add varobj to root list. */ |
b2c2bd75 | 2080 | if (is_root_p (var)) |
8b93c638 | 2081 | { |
581e13c1 | 2082 | /* Add to list of root variables. */ |
8b93c638 JM |
2083 | if (rootlist == NULL) |
2084 | var->root->next = NULL; | |
2085 | else | |
2086 | var->root->next = rootlist; | |
2087 | rootlist = var->root; | |
8b93c638 JM |
2088 | } |
2089 | ||
2090 | return 1; /* OK */ | |
2091 | } | |
2092 | ||
581e13c1 | 2093 | /* Unistall the object VAR. */ |
8b93c638 | 2094 | static void |
fba45db2 | 2095 | uninstall_variable (struct varobj *var) |
8b93c638 JM |
2096 | { |
2097 | struct vlist *cv; | |
2098 | struct vlist *prev; | |
2099 | struct varobj_root *cr; | |
2100 | struct varobj_root *prer; | |
2101 | const char *chp; | |
2102 | unsigned int index = 0; | |
2103 | unsigned int i = 1; | |
2104 | ||
581e13c1 | 2105 | /* Remove varobj from hash table. */ |
8b93c638 JM |
2106 | for (chp = var->obj_name; *chp; chp++) |
2107 | { | |
2108 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
2109 | } | |
2110 | ||
2111 | cv = *(varobj_table + index); | |
2112 | prev = NULL; | |
2113 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
2114 | { | |
2115 | prev = cv; | |
2116 | cv = cv->next; | |
2117 | } | |
2118 | ||
2119 | if (varobjdebug) | |
2120 | fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name); | |
2121 | ||
2122 | if (cv == NULL) | |
2123 | { | |
72330bd6 AC |
2124 | warning |
2125 | ("Assertion failed: Could not find variable object \"%s\" to delete", | |
2126 | var->obj_name); | |
8b93c638 JM |
2127 | return; |
2128 | } | |
2129 | ||
2130 | if (prev == NULL) | |
2131 | *(varobj_table + index) = cv->next; | |
2132 | else | |
2133 | prev->next = cv->next; | |
2134 | ||
b8c9b27d | 2135 | xfree (cv); |
8b93c638 | 2136 | |
581e13c1 | 2137 | /* If root, remove varobj from root list. */ |
b2c2bd75 | 2138 | if (is_root_p (var)) |
8b93c638 | 2139 | { |
581e13c1 | 2140 | /* Remove from list of root variables. */ |
8b93c638 JM |
2141 | if (rootlist == var->root) |
2142 | rootlist = var->root->next; | |
2143 | else | |
2144 | { | |
2145 | prer = NULL; | |
2146 | cr = rootlist; | |
2147 | while ((cr != NULL) && (cr->rootvar != var)) | |
2148 | { | |
2149 | prer = cr; | |
2150 | cr = cr->next; | |
2151 | } | |
2152 | if (cr == NULL) | |
2153 | { | |
8f7e195f JB |
2154 | warning (_("Assertion failed: Could not find " |
2155 | "varobj \"%s\" in root list"), | |
3e43a32a | 2156 | var->obj_name); |
8b93c638 JM |
2157 | return; |
2158 | } | |
2159 | if (prer == NULL) | |
2160 | rootlist = NULL; | |
2161 | else | |
2162 | prer->next = cr->next; | |
2163 | } | |
8b93c638 JM |
2164 | } |
2165 | ||
2166 | } | |
2167 | ||
581e13c1 | 2168 | /* Create and install a child of the parent of the given name. */ |
8b93c638 | 2169 | static struct varobj * |
fba45db2 | 2170 | create_child (struct varobj *parent, int index, char *name) |
b6313243 TT |
2171 | { |
2172 | return create_child_with_value (parent, index, name, | |
2173 | value_of_child (parent, index)); | |
2174 | } | |
2175 | ||
2176 | static struct varobj * | |
2177 | create_child_with_value (struct varobj *parent, int index, const char *name, | |
2178 | struct value *value) | |
8b93c638 JM |
2179 | { |
2180 | struct varobj *child; | |
2181 | char *childs_name; | |
2182 | ||
2183 | child = new_variable (); | |
2184 | ||
581e13c1 | 2185 | /* Name is allocated by name_of_child. */ |
b6313243 TT |
2186 | /* FIXME: xstrdup should not be here. */ |
2187 | child->name = xstrdup (name); | |
8b93c638 | 2188 | child->index = index; |
8b93c638 JM |
2189 | child->parent = parent; |
2190 | child->root = parent->root; | |
b435e160 | 2191 | childs_name = xstrprintf ("%s.%s", parent->obj_name, name); |
8b93c638 JM |
2192 | child->obj_name = childs_name; |
2193 | install_variable (child); | |
2194 | ||
acd65feb VP |
2195 | /* Compute the type of the child. Must do this before |
2196 | calling install_new_value. */ | |
2197 | if (value != NULL) | |
2198 | /* If the child had no evaluation errors, var->value | |
581e13c1 | 2199 | will be non-NULL and contain a valid type. */ |
acd65feb VP |
2200 | child->type = value_type (value); |
2201 | else | |
581e13c1 | 2202 | /* Otherwise, we must compute the type. */ |
acd65feb VP |
2203 | child->type = (*child->root->lang->type_of_child) (child->parent, |
2204 | child->index); | |
2205 | install_new_value (child, value, 1); | |
2206 | ||
8b93c638 JM |
2207 | return child; |
2208 | } | |
8b93c638 JM |
2209 | \f |
2210 | ||
2211 | /* | |
2212 | * Miscellaneous utility functions. | |
2213 | */ | |
2214 | ||
581e13c1 | 2215 | /* Allocate memory and initialize a new variable. */ |
8b93c638 JM |
2216 | static struct varobj * |
2217 | new_variable (void) | |
2218 | { | |
2219 | struct varobj *var; | |
2220 | ||
2221 | var = (struct varobj *) xmalloc (sizeof (struct varobj)); | |
2222 | var->name = NULL; | |
02142340 | 2223 | var->path_expr = NULL; |
8b93c638 JM |
2224 | var->obj_name = NULL; |
2225 | var->index = -1; | |
2226 | var->type = NULL; | |
2227 | var->value = NULL; | |
8b93c638 JM |
2228 | var->num_children = -1; |
2229 | var->parent = NULL; | |
2230 | var->children = NULL; | |
2231 | var->format = 0; | |
2232 | var->root = NULL; | |
fb9b6b35 | 2233 | var->updated = 0; |
85265413 | 2234 | var->print_value = NULL; |
25d5ea92 VP |
2235 | var->frozen = 0; |
2236 | var->not_fetched = 0; | |
b6313243 | 2237 | var->children_requested = 0; |
0cc7d26f TT |
2238 | var->from = -1; |
2239 | var->to = -1; | |
2240 | var->constructor = 0; | |
b6313243 | 2241 | var->pretty_printer = 0; |
0cc7d26f TT |
2242 | var->child_iter = 0; |
2243 | var->saved_item = 0; | |
8b93c638 JM |
2244 | |
2245 | return var; | |
2246 | } | |
2247 | ||
581e13c1 | 2248 | /* Allocate memory and initialize a new root variable. */ |
8b93c638 JM |
2249 | static struct varobj * |
2250 | new_root_variable (void) | |
2251 | { | |
2252 | struct varobj *var = new_variable (); | |
a109c7c1 | 2253 | |
3e43a32a | 2254 | var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root)); |
8b93c638 JM |
2255 | var->root->lang = NULL; |
2256 | var->root->exp = NULL; | |
2257 | var->root->valid_block = NULL; | |
7a424e99 | 2258 | var->root->frame = null_frame_id; |
a5defcdc | 2259 | var->root->floating = 0; |
8b93c638 | 2260 | var->root->rootvar = NULL; |
8756216b | 2261 | var->root->is_valid = 1; |
8b93c638 JM |
2262 | |
2263 | return var; | |
2264 | } | |
2265 | ||
581e13c1 | 2266 | /* Free any allocated memory associated with VAR. */ |
8b93c638 | 2267 | static void |
fba45db2 | 2268 | free_variable (struct varobj *var) |
8b93c638 | 2269 | { |
d452c4bc UW |
2270 | #if HAVE_PYTHON |
2271 | if (var->pretty_printer) | |
2272 | { | |
2273 | struct cleanup *cleanup = varobj_ensure_python_env (var); | |
0cc7d26f TT |
2274 | Py_XDECREF (var->constructor); |
2275 | Py_XDECREF (var->pretty_printer); | |
2276 | Py_XDECREF (var->child_iter); | |
2277 | Py_XDECREF (var->saved_item); | |
d452c4bc UW |
2278 | do_cleanups (cleanup); |
2279 | } | |
2280 | #endif | |
2281 | ||
36746093 JK |
2282 | value_free (var->value); |
2283 | ||
581e13c1 | 2284 | /* Free the expression if this is a root variable. */ |
b2c2bd75 | 2285 | if (is_root_p (var)) |
8b93c638 | 2286 | { |
3038237c | 2287 | xfree (var->root->exp); |
8038e1e2 | 2288 | xfree (var->root); |
8b93c638 JM |
2289 | } |
2290 | ||
8038e1e2 AC |
2291 | xfree (var->name); |
2292 | xfree (var->obj_name); | |
85265413 | 2293 | xfree (var->print_value); |
02142340 | 2294 | xfree (var->path_expr); |
8038e1e2 | 2295 | xfree (var); |
8b93c638 JM |
2296 | } |
2297 | ||
74b7792f AC |
2298 | static void |
2299 | do_free_variable_cleanup (void *var) | |
2300 | { | |
2301 | free_variable (var); | |
2302 | } | |
2303 | ||
2304 | static struct cleanup * | |
2305 | make_cleanup_free_variable (struct varobj *var) | |
2306 | { | |
2307 | return make_cleanup (do_free_variable_cleanup, var); | |
2308 | } | |
2309 | ||
581e13c1 | 2310 | /* This returns the type of the variable. It also skips past typedefs |
6766a268 | 2311 | to return the real type of the variable. |
94b66fa7 KS |
2312 | |
2313 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
581e13c1 | 2314 | except within get_target_type and get_type. */ |
8b93c638 | 2315 | static struct type * |
fba45db2 | 2316 | get_type (struct varobj *var) |
8b93c638 JM |
2317 | { |
2318 | struct type *type; | |
8b93c638 | 2319 | |
a109c7c1 | 2320 | type = var->type; |
6766a268 DJ |
2321 | if (type != NULL) |
2322 | type = check_typedef (type); | |
8b93c638 JM |
2323 | |
2324 | return type; | |
2325 | } | |
2326 | ||
6e2a9270 VP |
2327 | /* Return the type of the value that's stored in VAR, |
2328 | or that would have being stored there if the | |
581e13c1 | 2329 | value were accessible. |
6e2a9270 VP |
2330 | |
2331 | This differs from VAR->type in that VAR->type is always | |
2332 | the true type of the expession in the source language. | |
2333 | The return value of this function is the type we're | |
2334 | actually storing in varobj, and using for displaying | |
2335 | the values and for comparing previous and new values. | |
2336 | ||
2337 | For example, top-level references are always stripped. */ | |
2338 | static struct type * | |
2339 | get_value_type (struct varobj *var) | |
2340 | { | |
2341 | struct type *type; | |
2342 | ||
2343 | if (var->value) | |
2344 | type = value_type (var->value); | |
2345 | else | |
2346 | type = var->type; | |
2347 | ||
2348 | type = check_typedef (type); | |
2349 | ||
2350 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
2351 | type = get_target_type (type); | |
2352 | ||
2353 | type = check_typedef (type); | |
2354 | ||
2355 | return type; | |
2356 | } | |
2357 | ||
8b93c638 | 2358 | /* This returns the target type (or NULL) of TYPE, also skipping |
94b66fa7 KS |
2359 | past typedefs, just like get_type (). |
2360 | ||
2361 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
581e13c1 | 2362 | except within get_target_type and get_type. */ |
8b93c638 | 2363 | static struct type * |
fba45db2 | 2364 | get_target_type (struct type *type) |
8b93c638 JM |
2365 | { |
2366 | if (type != NULL) | |
2367 | { | |
2368 | type = TYPE_TARGET_TYPE (type); | |
6766a268 DJ |
2369 | if (type != NULL) |
2370 | type = check_typedef (type); | |
8b93c638 JM |
2371 | } |
2372 | ||
2373 | return type; | |
2374 | } | |
2375 | ||
2376 | /* What is the default display for this variable? We assume that | |
581e13c1 | 2377 | everything is "natural". Any exceptions? */ |
8b93c638 | 2378 | static enum varobj_display_formats |
fba45db2 | 2379 | variable_default_display (struct varobj *var) |
8b93c638 JM |
2380 | { |
2381 | return FORMAT_NATURAL; | |
2382 | } | |
2383 | ||
581e13c1 | 2384 | /* FIXME: The following should be generic for any pointer. */ |
8b93c638 | 2385 | static void |
fba45db2 | 2386 | cppush (struct cpstack **pstack, char *name) |
8b93c638 JM |
2387 | { |
2388 | struct cpstack *s; | |
2389 | ||
2390 | s = (struct cpstack *) xmalloc (sizeof (struct cpstack)); | |
2391 | s->name = name; | |
2392 | s->next = *pstack; | |
2393 | *pstack = s; | |
2394 | } | |
2395 | ||
581e13c1 | 2396 | /* FIXME: The following should be generic for any pointer. */ |
8b93c638 | 2397 | static char * |
fba45db2 | 2398 | cppop (struct cpstack **pstack) |
8b93c638 JM |
2399 | { |
2400 | struct cpstack *s; | |
2401 | char *v; | |
2402 | ||
2403 | if ((*pstack)->name == NULL && (*pstack)->next == NULL) | |
2404 | return NULL; | |
2405 | ||
2406 | s = *pstack; | |
2407 | v = s->name; | |
2408 | *pstack = (*pstack)->next; | |
b8c9b27d | 2409 | xfree (s); |
8b93c638 JM |
2410 | |
2411 | return v; | |
2412 | } | |
2413 | \f | |
2414 | /* | |
2415 | * Language-dependencies | |
2416 | */ | |
2417 | ||
2418 | /* Common entry points */ | |
2419 | ||
581e13c1 | 2420 | /* Get the language of variable VAR. */ |
8b93c638 | 2421 | static enum varobj_languages |
fba45db2 | 2422 | variable_language (struct varobj *var) |
8b93c638 JM |
2423 | { |
2424 | enum varobj_languages lang; | |
2425 | ||
2426 | switch (var->root->exp->language_defn->la_language) | |
2427 | { | |
2428 | default: | |
2429 | case language_c: | |
2430 | lang = vlang_c; | |
2431 | break; | |
2432 | case language_cplus: | |
2433 | lang = vlang_cplus; | |
2434 | break; | |
2435 | case language_java: | |
2436 | lang = vlang_java; | |
2437 | break; | |
40591b7d JCD |
2438 | case language_ada: |
2439 | lang = vlang_ada; | |
2440 | break; | |
8b93c638 JM |
2441 | } |
2442 | ||
2443 | return lang; | |
2444 | } | |
2445 | ||
2446 | /* Return the number of children for a given variable. | |
2447 | The result of this function is defined by the language | |
581e13c1 | 2448 | implementation. The number of children returned by this function |
8b93c638 | 2449 | is the number of children that the user will see in the variable |
581e13c1 | 2450 | display. */ |
8b93c638 | 2451 | static int |
fba45db2 | 2452 | number_of_children (struct varobj *var) |
8b93c638 | 2453 | { |
82ae4854 | 2454 | return (*var->root->lang->number_of_children) (var); |
8b93c638 JM |
2455 | } |
2456 | ||
3e43a32a | 2457 | /* What is the expression for the root varobj VAR? Returns a malloc'd |
581e13c1 | 2458 | string. */ |
8b93c638 | 2459 | static char * |
fba45db2 | 2460 | name_of_variable (struct varobj *var) |
8b93c638 JM |
2461 | { |
2462 | return (*var->root->lang->name_of_variable) (var); | |
2463 | } | |
2464 | ||
3e43a32a | 2465 | /* What is the name of the INDEX'th child of VAR? Returns a malloc'd |
581e13c1 | 2466 | string. */ |
8b93c638 | 2467 | static char * |
fba45db2 | 2468 | name_of_child (struct varobj *var, int index) |
8b93c638 JM |
2469 | { |
2470 | return (*var->root->lang->name_of_child) (var, index); | |
2471 | } | |
2472 | ||
a5defcdc VP |
2473 | /* What is the ``struct value *'' of the root variable VAR? |
2474 | For floating variable object, evaluation can get us a value | |
2475 | of different type from what is stored in varobj already. In | |
2476 | that case: | |
2477 | - *type_changed will be set to 1 | |
2478 | - old varobj will be freed, and new one will be | |
2479 | created, with the same name. | |
2480 | - *var_handle will be set to the new varobj | |
2481 | Otherwise, *type_changed will be set to 0. */ | |
30b28db1 | 2482 | static struct value * |
fba45db2 | 2483 | value_of_root (struct varobj **var_handle, int *type_changed) |
8b93c638 | 2484 | { |
73a93a32 JI |
2485 | struct varobj *var; |
2486 | ||
2487 | if (var_handle == NULL) | |
2488 | return NULL; | |
2489 | ||
2490 | var = *var_handle; | |
2491 | ||
2492 | /* This should really be an exception, since this should | |
581e13c1 | 2493 | only get called with a root variable. */ |
73a93a32 | 2494 | |
b2c2bd75 | 2495 | if (!is_root_p (var)) |
73a93a32 JI |
2496 | return NULL; |
2497 | ||
a5defcdc | 2498 | if (var->root->floating) |
73a93a32 JI |
2499 | { |
2500 | struct varobj *tmp_var; | |
2501 | char *old_type, *new_type; | |
6225abfa | 2502 | |
73a93a32 JI |
2503 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, |
2504 | USE_SELECTED_FRAME); | |
2505 | if (tmp_var == NULL) | |
2506 | { | |
2507 | return NULL; | |
2508 | } | |
6225abfa | 2509 | old_type = varobj_get_type (var); |
73a93a32 | 2510 | new_type = varobj_get_type (tmp_var); |
72330bd6 | 2511 | if (strcmp (old_type, new_type) == 0) |
73a93a32 | 2512 | { |
fcacd99f VP |
2513 | /* The expression presently stored inside var->root->exp |
2514 | remembers the locations of local variables relatively to | |
2515 | the frame where the expression was created (in DWARF location | |
2516 | button, for example). Naturally, those locations are not | |
2517 | correct in other frames, so update the expression. */ | |
2518 | ||
2519 | struct expression *tmp_exp = var->root->exp; | |
a109c7c1 | 2520 | |
fcacd99f VP |
2521 | var->root->exp = tmp_var->root->exp; |
2522 | tmp_var->root->exp = tmp_exp; | |
2523 | ||
73a93a32 JI |
2524 | varobj_delete (tmp_var, NULL, 0); |
2525 | *type_changed = 0; | |
2526 | } | |
2527 | else | |
2528 | { | |
1b36a34b | 2529 | tmp_var->obj_name = xstrdup (var->obj_name); |
0cc7d26f TT |
2530 | tmp_var->from = var->from; |
2531 | tmp_var->to = var->to; | |
a5defcdc VP |
2532 | varobj_delete (var, NULL, 0); |
2533 | ||
73a93a32 JI |
2534 | install_variable (tmp_var); |
2535 | *var_handle = tmp_var; | |
705da579 | 2536 | var = *var_handle; |
73a93a32 JI |
2537 | *type_changed = 1; |
2538 | } | |
74dddad3 MS |
2539 | xfree (old_type); |
2540 | xfree (new_type); | |
73a93a32 JI |
2541 | } |
2542 | else | |
2543 | { | |
2544 | *type_changed = 0; | |
2545 | } | |
2546 | ||
2547 | return (*var->root->lang->value_of_root) (var_handle); | |
8b93c638 JM |
2548 | } |
2549 | ||
581e13c1 | 2550 | /* What is the ``struct value *'' for the INDEX'th child of PARENT? */ |
30b28db1 | 2551 | static struct value * |
fba45db2 | 2552 | value_of_child (struct varobj *parent, int index) |
8b93c638 | 2553 | { |
30b28db1 | 2554 | struct value *value; |
8b93c638 JM |
2555 | |
2556 | value = (*parent->root->lang->value_of_child) (parent, index); | |
2557 | ||
8b93c638 JM |
2558 | return value; |
2559 | } | |
2560 | ||
581e13c1 | 2561 | /* GDB already has a command called "value_of_variable". Sigh. */ |
8b93c638 | 2562 | static char * |
de051565 | 2563 | my_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 2564 | { |
8756216b | 2565 | if (var->root->is_valid) |
0cc7d26f TT |
2566 | { |
2567 | if (var->pretty_printer) | |
2568 | return value_get_print_value (var->value, var->format, var); | |
2569 | return (*var->root->lang->value_of_variable) (var, format); | |
2570 | } | |
8756216b DP |
2571 | else |
2572 | return NULL; | |
8b93c638 JM |
2573 | } |
2574 | ||
85265413 | 2575 | static char * |
b6313243 | 2576 | value_get_print_value (struct value *value, enum varobj_display_formats format, |
d452c4bc | 2577 | struct varobj *var) |
85265413 | 2578 | { |
57e66780 | 2579 | struct ui_file *stb; |
621c8364 | 2580 | struct cleanup *old_chain; |
fbb8f299 | 2581 | gdb_byte *thevalue = NULL; |
79a45b7d | 2582 | struct value_print_options opts; |
be759fcf PM |
2583 | struct type *type = NULL; |
2584 | long len = 0; | |
2585 | char *encoding = NULL; | |
2586 | struct gdbarch *gdbarch = NULL; | |
3a182a69 JK |
2587 | /* Initialize it just to avoid a GCC false warning. */ |
2588 | CORE_ADDR str_addr = 0; | |
09ca9e2e | 2589 | int string_print = 0; |
57e66780 DJ |
2590 | |
2591 | if (value == NULL) | |
2592 | return NULL; | |
2593 | ||
621c8364 TT |
2594 | stb = mem_fileopen (); |
2595 | old_chain = make_cleanup_ui_file_delete (stb); | |
2596 | ||
be759fcf | 2597 | gdbarch = get_type_arch (value_type (value)); |
b6313243 TT |
2598 | #if HAVE_PYTHON |
2599 | { | |
d452c4bc UW |
2600 | PyObject *value_formatter = var->pretty_printer; |
2601 | ||
09ca9e2e TT |
2602 | varobj_ensure_python_env (var); |
2603 | ||
0cc7d26f | 2604 | if (value_formatter) |
b6313243 | 2605 | { |
0cc7d26f TT |
2606 | /* First check to see if we have any children at all. If so, |
2607 | we simply return {...}. */ | |
2608 | if (dynamic_varobj_has_child_method (var)) | |
621c8364 TT |
2609 | { |
2610 | do_cleanups (old_chain); | |
2611 | return xstrdup ("{...}"); | |
2612 | } | |
b6313243 | 2613 | |
0cc7d26f | 2614 | if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst)) |
b6313243 | 2615 | { |
0cc7d26f | 2616 | struct value *replacement; |
0cc7d26f TT |
2617 | PyObject *output = NULL; |
2618 | ||
0cc7d26f | 2619 | output = apply_varobj_pretty_printer (value_formatter, |
621c8364 TT |
2620 | &replacement, |
2621 | stb); | |
00bd41d6 PM |
2622 | |
2623 | /* If we have string like output ... */ | |
0cc7d26f TT |
2624 | if (output) |
2625 | { | |
09ca9e2e TT |
2626 | make_cleanup_py_decref (output); |
2627 | ||
00bd41d6 PM |
2628 | /* If this is a lazy string, extract it. For lazy |
2629 | strings we always print as a string, so set | |
2630 | string_print. */ | |
be759fcf | 2631 | if (gdbpy_is_lazy_string (output)) |
0cc7d26f | 2632 | { |
09ca9e2e TT |
2633 | gdbpy_extract_lazy_string (output, &str_addr, &type, |
2634 | &len, &encoding); | |
2635 | make_cleanup (free_current_contents, &encoding); | |
be759fcf PM |
2636 | string_print = 1; |
2637 | } | |
2638 | else | |
2639 | { | |
00bd41d6 PM |
2640 | /* If it is a regular (non-lazy) string, extract |
2641 | it and copy the contents into THEVALUE. If the | |
2642 | hint says to print it as a string, set | |
2643 | string_print. Otherwise just return the extracted | |
2644 | string as a value. */ | |
2645 | ||
be759fcf PM |
2646 | PyObject *py_str |
2647 | = python_string_to_target_python_string (output); | |
a109c7c1 | 2648 | |
be759fcf PM |
2649 | if (py_str) |
2650 | { | |
2651 | char *s = PyString_AsString (py_str); | |
00bd41d6 PM |
2652 | char *hint; |
2653 | ||
2654 | hint = gdbpy_get_display_hint (value_formatter); | |
2655 | if (hint) | |
2656 | { | |
2657 | if (!strcmp (hint, "string")) | |
2658 | string_print = 1; | |
2659 | xfree (hint); | |
2660 | } | |
a109c7c1 | 2661 | |
be759fcf PM |
2662 | len = PyString_Size (py_str); |
2663 | thevalue = xmemdup (s, len + 1, len + 1); | |
2664 | type = builtin_type (gdbarch)->builtin_char; | |
2665 | Py_DECREF (py_str); | |
09ca9e2e TT |
2666 | |
2667 | if (!string_print) | |
2668 | { | |
2669 | do_cleanups (old_chain); | |
2670 | return thevalue; | |
2671 | } | |
2672 | ||
2673 | make_cleanup (xfree, thevalue); | |
be759fcf | 2674 | } |
8dc78533 JK |
2675 | else |
2676 | gdbpy_print_stack (); | |
0cc7d26f | 2677 | } |
0cc7d26f | 2678 | } |
00bd41d6 PM |
2679 | /* If the printer returned a replacement value, set VALUE |
2680 | to REPLACEMENT. If there is not a replacement value, | |
2681 | just use the value passed to this function. */ | |
0cc7d26f TT |
2682 | if (replacement) |
2683 | value = replacement; | |
b6313243 | 2684 | } |
b6313243 | 2685 | } |
b6313243 TT |
2686 | } |
2687 | #endif | |
2688 | ||
79a45b7d TT |
2689 | get_formatted_print_options (&opts, format_code[(int) format]); |
2690 | opts.deref_ref = 0; | |
b6313243 | 2691 | opts.raw = 1; |
00bd41d6 PM |
2692 | |
2693 | /* If the THEVALUE has contents, it is a regular string. */ | |
b6313243 | 2694 | if (thevalue) |
09ca9e2e TT |
2695 | LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts); |
2696 | else if (string_print) | |
00bd41d6 PM |
2697 | /* Otherwise, if string_print is set, and it is not a regular |
2698 | string, it is a lazy string. */ | |
09ca9e2e | 2699 | val_print_string (type, encoding, str_addr, len, stb, &opts); |
b6313243 | 2700 | else |
00bd41d6 | 2701 | /* All other cases. */ |
b6313243 | 2702 | common_val_print (value, stb, 0, &opts, current_language); |
00bd41d6 | 2703 | |
759ef836 | 2704 | thevalue = ui_file_xstrdup (stb, NULL); |
57e66780 | 2705 | |
85265413 NR |
2706 | do_cleanups (old_chain); |
2707 | return thevalue; | |
2708 | } | |
2709 | ||
340a7723 NR |
2710 | int |
2711 | varobj_editable_p (struct varobj *var) | |
2712 | { | |
2713 | struct type *type; | |
340a7723 NR |
2714 | |
2715 | if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value))) | |
2716 | return 0; | |
2717 | ||
2718 | type = get_value_type (var); | |
2719 | ||
2720 | switch (TYPE_CODE (type)) | |
2721 | { | |
2722 | case TYPE_CODE_STRUCT: | |
2723 | case TYPE_CODE_UNION: | |
2724 | case TYPE_CODE_ARRAY: | |
2725 | case TYPE_CODE_FUNC: | |
2726 | case TYPE_CODE_METHOD: | |
2727 | return 0; | |
2728 | break; | |
2729 | ||
2730 | default: | |
2731 | return 1; | |
2732 | break; | |
2733 | } | |
2734 | } | |
2735 | ||
acd65feb VP |
2736 | /* Return non-zero if changes in value of VAR |
2737 | must be detected and reported by -var-update. | |
2738 | Return zero is -var-update should never report | |
2739 | changes of such values. This makes sense for structures | |
2740 | (since the changes in children values will be reported separately), | |
2741 | or for artifical objects (like 'public' pseudo-field in C++). | |
2742 | ||
2743 | Return value of 0 means that gdb need not call value_fetch_lazy | |
2744 | for the value of this variable object. */ | |
8b93c638 | 2745 | static int |
b2c2bd75 | 2746 | varobj_value_is_changeable_p (struct varobj *var) |
8b93c638 JM |
2747 | { |
2748 | int r; | |
2749 | struct type *type; | |
2750 | ||
2751 | if (CPLUS_FAKE_CHILD (var)) | |
2752 | return 0; | |
2753 | ||
6e2a9270 | 2754 | type = get_value_type (var); |
8b93c638 JM |
2755 | |
2756 | switch (TYPE_CODE (type)) | |
2757 | { | |
72330bd6 AC |
2758 | case TYPE_CODE_STRUCT: |
2759 | case TYPE_CODE_UNION: | |
2760 | case TYPE_CODE_ARRAY: | |
2761 | r = 0; | |
2762 | break; | |
8b93c638 | 2763 | |
72330bd6 AC |
2764 | default: |
2765 | r = 1; | |
8b93c638 JM |
2766 | } |
2767 | ||
2768 | return r; | |
2769 | } | |
2770 | ||
5a413362 VP |
2771 | /* Return 1 if that varobj is floating, that is is always evaluated in the |
2772 | selected frame, and not bound to thread/frame. Such variable objects | |
2773 | are created using '@' as frame specifier to -var-create. */ | |
2774 | int | |
2775 | varobj_floating_p (struct varobj *var) | |
2776 | { | |
2777 | return var->root->floating; | |
2778 | } | |
2779 | ||
2024f65a VP |
2780 | /* Given the value and the type of a variable object, |
2781 | adjust the value and type to those necessary | |
2782 | for getting children of the variable object. | |
2783 | This includes dereferencing top-level references | |
2784 | to all types and dereferencing pointers to | |
581e13c1 | 2785 | structures. |
2024f65a | 2786 | |
581e13c1 | 2787 | Both TYPE and *TYPE should be non-null. VALUE |
2024f65a VP |
2788 | can be null if we want to only translate type. |
2789 | *VALUE can be null as well -- if the parent | |
581e13c1 | 2790 | value is not known. |
02142340 VP |
2791 | |
2792 | If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1 | |
b6313243 | 2793 | depending on whether pointer was dereferenced |
02142340 | 2794 | in this function. */ |
2024f65a VP |
2795 | static void |
2796 | adjust_value_for_child_access (struct value **value, | |
02142340 VP |
2797 | struct type **type, |
2798 | int *was_ptr) | |
2024f65a VP |
2799 | { |
2800 | gdb_assert (type && *type); | |
2801 | ||
02142340 VP |
2802 | if (was_ptr) |
2803 | *was_ptr = 0; | |
2804 | ||
2024f65a VP |
2805 | *type = check_typedef (*type); |
2806 | ||
2807 | /* The type of value stored in varobj, that is passed | |
2808 | to us, is already supposed to be | |
2809 | reference-stripped. */ | |
2810 | ||
2811 | gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF); | |
2812 | ||
2813 | /* Pointers to structures are treated just like | |
2814 | structures when accessing children. Don't | |
2815 | dererences pointers to other types. */ | |
2816 | if (TYPE_CODE (*type) == TYPE_CODE_PTR) | |
2817 | { | |
2818 | struct type *target_type = get_target_type (*type); | |
2819 | if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT | |
2820 | || TYPE_CODE (target_type) == TYPE_CODE_UNION) | |
2821 | { | |
2822 | if (value && *value) | |
3f4178d6 | 2823 | { |
a109c7c1 MS |
2824 | int success = gdb_value_ind (*value, value); |
2825 | ||
3f4178d6 DJ |
2826 | if (!success) |
2827 | *value = NULL; | |
2828 | } | |
2024f65a | 2829 | *type = target_type; |
02142340 VP |
2830 | if (was_ptr) |
2831 | *was_ptr = 1; | |
2024f65a VP |
2832 | } |
2833 | } | |
2834 | ||
2835 | /* The 'get_target_type' function calls check_typedef on | |
2836 | result, so we can immediately check type code. No | |
2837 | need to call check_typedef here. */ | |
2838 | } | |
2839 | ||
8b93c638 JM |
2840 | /* C */ |
2841 | static int | |
fba45db2 | 2842 | c_number_of_children (struct varobj *var) |
8b93c638 | 2843 | { |
2024f65a VP |
2844 | struct type *type = get_value_type (var); |
2845 | int children = 0; | |
8b93c638 | 2846 | struct type *target; |
8b93c638 | 2847 | |
02142340 | 2848 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 | 2849 | target = get_target_type (type); |
8b93c638 JM |
2850 | |
2851 | switch (TYPE_CODE (type)) | |
2852 | { | |
2853 | case TYPE_CODE_ARRAY: | |
2854 | if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0 | |
d78df370 | 2855 | && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) |
8b93c638 JM |
2856 | children = TYPE_LENGTH (type) / TYPE_LENGTH (target); |
2857 | else | |
74a44383 DJ |
2858 | /* If we don't know how many elements there are, don't display |
2859 | any. */ | |
2860 | children = 0; | |
8b93c638 JM |
2861 | break; |
2862 | ||
2863 | case TYPE_CODE_STRUCT: | |
2864 | case TYPE_CODE_UNION: | |
2865 | children = TYPE_NFIELDS (type); | |
2866 | break; | |
2867 | ||
2868 | case TYPE_CODE_PTR: | |
581e13c1 | 2869 | /* The type here is a pointer to non-struct. Typically, pointers |
2024f65a VP |
2870 | have one child, except for function ptrs, which have no children, |
2871 | and except for void*, as we don't know what to show. | |
2872 | ||
0755e6c1 FN |
2873 | We can show char* so we allow it to be dereferenced. If you decide |
2874 | to test for it, please mind that a little magic is necessary to | |
2875 | properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and | |
581e13c1 | 2876 | TYPE_NAME == "char". */ |
2024f65a VP |
2877 | if (TYPE_CODE (target) == TYPE_CODE_FUNC |
2878 | || TYPE_CODE (target) == TYPE_CODE_VOID) | |
2879 | children = 0; | |
2880 | else | |
2881 | children = 1; | |
8b93c638 JM |
2882 | break; |
2883 | ||
2884 | default: | |
581e13c1 | 2885 | /* Other types have no children. */ |
8b93c638 JM |
2886 | break; |
2887 | } | |
2888 | ||
2889 | return children; | |
2890 | } | |
2891 | ||
2892 | static char * | |
fba45db2 | 2893 | c_name_of_variable (struct varobj *parent) |
8b93c638 | 2894 | { |
1b36a34b | 2895 | return xstrdup (parent->name); |
8b93c638 JM |
2896 | } |
2897 | ||
bbec2603 VP |
2898 | /* Return the value of element TYPE_INDEX of a structure |
2899 | value VALUE. VALUE's type should be a structure, | |
581e13c1 | 2900 | or union, or a typedef to struct/union. |
bbec2603 VP |
2901 | |
2902 | Returns NULL if getting the value fails. Never throws. */ | |
2903 | static struct value * | |
2904 | value_struct_element_index (struct value *value, int type_index) | |
8b93c638 | 2905 | { |
bbec2603 VP |
2906 | struct value *result = NULL; |
2907 | volatile struct gdb_exception e; | |
bbec2603 | 2908 | struct type *type = value_type (value); |
a109c7c1 | 2909 | |
bbec2603 VP |
2910 | type = check_typedef (type); |
2911 | ||
2912 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
2913 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
8b93c638 | 2914 | |
bbec2603 VP |
2915 | TRY_CATCH (e, RETURN_MASK_ERROR) |
2916 | { | |
d6a843b5 | 2917 | if (field_is_static (&TYPE_FIELD (type, type_index))) |
bbec2603 VP |
2918 | result = value_static_field (type, type_index); |
2919 | else | |
2920 | result = value_primitive_field (value, 0, type_index, type); | |
2921 | } | |
2922 | if (e.reason < 0) | |
2923 | { | |
2924 | return NULL; | |
2925 | } | |
2926 | else | |
2927 | { | |
2928 | return result; | |
2929 | } | |
2930 | } | |
2931 | ||
2932 | /* Obtain the information about child INDEX of the variable | |
581e13c1 | 2933 | object PARENT. |
bbec2603 VP |
2934 | If CNAME is not null, sets *CNAME to the name of the child relative |
2935 | to the parent. | |
2936 | If CVALUE is not null, sets *CVALUE to the value of the child. | |
2937 | If CTYPE is not null, sets *CTYPE to the type of the child. | |
2938 | ||
2939 | If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding | |
2940 | information cannot be determined, set *CNAME, *CVALUE, or *CTYPE | |
2941 | to NULL. */ | |
2942 | static void | |
2943 | c_describe_child (struct varobj *parent, int index, | |
02142340 VP |
2944 | char **cname, struct value **cvalue, struct type **ctype, |
2945 | char **cfull_expression) | |
bbec2603 VP |
2946 | { |
2947 | struct value *value = parent->value; | |
2024f65a | 2948 | struct type *type = get_value_type (parent); |
02142340 VP |
2949 | char *parent_expression = NULL; |
2950 | int was_ptr; | |
bbec2603 VP |
2951 | |
2952 | if (cname) | |
2953 | *cname = NULL; | |
2954 | if (cvalue) | |
2955 | *cvalue = NULL; | |
2956 | if (ctype) | |
2957 | *ctype = NULL; | |
02142340 VP |
2958 | if (cfull_expression) |
2959 | { | |
2960 | *cfull_expression = NULL; | |
2961 | parent_expression = varobj_get_path_expr (parent); | |
2962 | } | |
2963 | adjust_value_for_child_access (&value, &type, &was_ptr); | |
bbec2603 | 2964 | |
8b93c638 JM |
2965 | switch (TYPE_CODE (type)) |
2966 | { | |
2967 | case TYPE_CODE_ARRAY: | |
bbec2603 | 2968 | if (cname) |
3e43a32a MS |
2969 | *cname |
2970 | = xstrdup (int_string (index | |
2971 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)), | |
2972 | 10, 1, 0, 0)); | |
bbec2603 VP |
2973 | |
2974 | if (cvalue && value) | |
2975 | { | |
2976 | int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)); | |
a109c7c1 | 2977 | |
2497b498 | 2978 | gdb_value_subscript (value, real_index, cvalue); |
bbec2603 VP |
2979 | } |
2980 | ||
2981 | if (ctype) | |
2982 | *ctype = get_target_type (type); | |
2983 | ||
02142340 | 2984 | if (cfull_expression) |
43bbcdc2 PH |
2985 | *cfull_expression = |
2986 | xstrprintf ("(%s)[%s]", parent_expression, | |
2987 | int_string (index | |
2988 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)), | |
2989 | 10, 1, 0, 0)); | |
02142340 VP |
2990 | |
2991 | ||
8b93c638 JM |
2992 | break; |
2993 | ||
2994 | case TYPE_CODE_STRUCT: | |
2995 | case TYPE_CODE_UNION: | |
bbec2603 | 2996 | if (cname) |
1b36a34b | 2997 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); |
bbec2603 VP |
2998 | |
2999 | if (cvalue && value) | |
3000 | { | |
3001 | /* For C, varobj index is the same as type index. */ | |
3002 | *cvalue = value_struct_element_index (value, index); | |
3003 | } | |
3004 | ||
3005 | if (ctype) | |
3006 | *ctype = TYPE_FIELD_TYPE (type, index); | |
3007 | ||
02142340 VP |
3008 | if (cfull_expression) |
3009 | { | |
3010 | char *join = was_ptr ? "->" : "."; | |
a109c7c1 | 3011 | |
02142340 VP |
3012 | *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join, |
3013 | TYPE_FIELD_NAME (type, index)); | |
3014 | } | |
3015 | ||
8b93c638 JM |
3016 | break; |
3017 | ||
3018 | case TYPE_CODE_PTR: | |
bbec2603 VP |
3019 | if (cname) |
3020 | *cname = xstrprintf ("*%s", parent->name); | |
8b93c638 | 3021 | |
bbec2603 | 3022 | if (cvalue && value) |
3f4178d6 DJ |
3023 | { |
3024 | int success = gdb_value_ind (value, cvalue); | |
a109c7c1 | 3025 | |
3f4178d6 DJ |
3026 | if (!success) |
3027 | *cvalue = NULL; | |
3028 | } | |
bbec2603 | 3029 | |
2024f65a VP |
3030 | /* Don't use get_target_type because it calls |
3031 | check_typedef and here, we want to show the true | |
3032 | declared type of the variable. */ | |
bbec2603 | 3033 | if (ctype) |
2024f65a | 3034 | *ctype = TYPE_TARGET_TYPE (type); |
02142340 VP |
3035 | |
3036 | if (cfull_expression) | |
3037 | *cfull_expression = xstrprintf ("*(%s)", parent_expression); | |
bbec2603 | 3038 | |
8b93c638 JM |
3039 | break; |
3040 | ||
3041 | default: | |
581e13c1 | 3042 | /* This should not happen. */ |
bbec2603 VP |
3043 | if (cname) |
3044 | *cname = xstrdup ("???"); | |
02142340 VP |
3045 | if (cfull_expression) |
3046 | *cfull_expression = xstrdup ("???"); | |
581e13c1 | 3047 | /* Don't set value and type, we don't know then. */ |
8b93c638 | 3048 | } |
bbec2603 | 3049 | } |
8b93c638 | 3050 | |
bbec2603 VP |
3051 | static char * |
3052 | c_name_of_child (struct varobj *parent, int index) | |
3053 | { | |
3054 | char *name; | |
a109c7c1 | 3055 | |
02142340 | 3056 | c_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
3057 | return name; |
3058 | } | |
3059 | ||
02142340 VP |
3060 | static char * |
3061 | c_path_expr_of_child (struct varobj *child) | |
3062 | { | |
3063 | c_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
3064 | &child->path_expr); | |
3065 | return child->path_expr; | |
3066 | } | |
3067 | ||
c5b48eac VP |
3068 | /* If frame associated with VAR can be found, switch |
3069 | to it and return 1. Otherwise, return 0. */ | |
3070 | static int | |
3071 | check_scope (struct varobj *var) | |
3072 | { | |
3073 | struct frame_info *fi; | |
3074 | int scope; | |
3075 | ||
3076 | fi = frame_find_by_id (var->root->frame); | |
3077 | scope = fi != NULL; | |
3078 | ||
3079 | if (fi) | |
3080 | { | |
3081 | CORE_ADDR pc = get_frame_pc (fi); | |
a109c7c1 | 3082 | |
c5b48eac VP |
3083 | if (pc < BLOCK_START (var->root->valid_block) || |
3084 | pc >= BLOCK_END (var->root->valid_block)) | |
3085 | scope = 0; | |
3086 | else | |
3087 | select_frame (fi); | |
3088 | } | |
3089 | return scope; | |
3090 | } | |
3091 | ||
30b28db1 | 3092 | static struct value * |
fba45db2 | 3093 | c_value_of_root (struct varobj **var_handle) |
8b93c638 | 3094 | { |
5e572bb4 | 3095 | struct value *new_val = NULL; |
73a93a32 | 3096 | struct varobj *var = *var_handle; |
c5b48eac | 3097 | int within_scope = 0; |
6208b47d VP |
3098 | struct cleanup *back_to; |
3099 | ||
581e13c1 | 3100 | /* Only root variables can be updated... */ |
b2c2bd75 | 3101 | if (!is_root_p (var)) |
581e13c1 | 3102 | /* Not a root var. */ |
73a93a32 JI |
3103 | return NULL; |
3104 | ||
4f8d22e3 | 3105 | back_to = make_cleanup_restore_current_thread (); |
72330bd6 | 3106 | |
581e13c1 | 3107 | /* Determine whether the variable is still around. */ |
a5defcdc | 3108 | if (var->root->valid_block == NULL || var->root->floating) |
8b93c638 | 3109 | within_scope = 1; |
c5b48eac VP |
3110 | else if (var->root->thread_id == 0) |
3111 | { | |
3112 | /* The program was single-threaded when the variable object was | |
3113 | created. Technically, it's possible that the program became | |
3114 | multi-threaded since then, but we don't support such | |
3115 | scenario yet. */ | |
3116 | within_scope = check_scope (var); | |
3117 | } | |
8b93c638 JM |
3118 | else |
3119 | { | |
c5b48eac VP |
3120 | ptid_t ptid = thread_id_to_pid (var->root->thread_id); |
3121 | if (in_thread_list (ptid)) | |
d2353924 | 3122 | { |
c5b48eac VP |
3123 | switch_to_thread (ptid); |
3124 | within_scope = check_scope (var); | |
3125 | } | |
8b93c638 | 3126 | } |
72330bd6 | 3127 | |
8b93c638 JM |
3128 | if (within_scope) |
3129 | { | |
73a93a32 | 3130 | /* We need to catch errors here, because if evaluate |
85d93f1d VP |
3131 | expression fails we want to just return NULL. */ |
3132 | gdb_evaluate_expression (var->root->exp, &new_val); | |
8b93c638 JM |
3133 | return new_val; |
3134 | } | |
3135 | ||
6208b47d VP |
3136 | do_cleanups (back_to); |
3137 | ||
8b93c638 JM |
3138 | return NULL; |
3139 | } | |
3140 | ||
30b28db1 | 3141 | static struct value * |
fba45db2 | 3142 | c_value_of_child (struct varobj *parent, int index) |
8b93c638 | 3143 | { |
bbec2603 | 3144 | struct value *value = NULL; |
8b93c638 | 3145 | |
a109c7c1 | 3146 | c_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
3147 | return value; |
3148 | } | |
3149 | ||
3150 | static struct type * | |
fba45db2 | 3151 | c_type_of_child (struct varobj *parent, int index) |
8b93c638 | 3152 | { |
bbec2603 | 3153 | struct type *type = NULL; |
a109c7c1 | 3154 | |
02142340 | 3155 | c_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
3156 | return type; |
3157 | } | |
3158 | ||
8b93c638 | 3159 | static char * |
de051565 | 3160 | c_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 3161 | { |
14b3d9c9 JB |
3162 | /* BOGUS: if val_print sees a struct/class, or a reference to one, |
3163 | it will print out its children instead of "{...}". So we need to | |
3164 | catch that case explicitly. */ | |
3165 | struct type *type = get_type (var); | |
e64d9b3d | 3166 | |
b6313243 TT |
3167 | /* If we have a custom formatter, return whatever string it has |
3168 | produced. */ | |
3169 | if (var->pretty_printer && var->print_value) | |
3170 | return xstrdup (var->print_value); | |
3171 | ||
581e13c1 | 3172 | /* Strip top-level references. */ |
14b3d9c9 JB |
3173 | while (TYPE_CODE (type) == TYPE_CODE_REF) |
3174 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
3175 | ||
3176 | switch (TYPE_CODE (type)) | |
8b93c638 JM |
3177 | { |
3178 | case TYPE_CODE_STRUCT: | |
3179 | case TYPE_CODE_UNION: | |
3180 | return xstrdup ("{...}"); | |
3181 | /* break; */ | |
3182 | ||
3183 | case TYPE_CODE_ARRAY: | |
3184 | { | |
e64d9b3d | 3185 | char *number; |
a109c7c1 | 3186 | |
b435e160 | 3187 | number = xstrprintf ("[%d]", var->num_children); |
e64d9b3d | 3188 | return (number); |
8b93c638 JM |
3189 | } |
3190 | /* break; */ | |
3191 | ||
3192 | default: | |
3193 | { | |
575bbeb6 KS |
3194 | if (var->value == NULL) |
3195 | { | |
3196 | /* This can happen if we attempt to get the value of a struct | |
581e13c1 MS |
3197 | member when the parent is an invalid pointer. This is an |
3198 | error condition, so we should tell the caller. */ | |
575bbeb6 KS |
3199 | return NULL; |
3200 | } | |
3201 | else | |
3202 | { | |
25d5ea92 VP |
3203 | if (var->not_fetched && value_lazy (var->value)) |
3204 | /* Frozen variable and no value yet. We don't | |
3205 | implicitly fetch the value. MI response will | |
3206 | use empty string for the value, which is OK. */ | |
3207 | return NULL; | |
3208 | ||
b2c2bd75 | 3209 | gdb_assert (varobj_value_is_changeable_p (var)); |
acd65feb | 3210 | gdb_assert (!value_lazy (var->value)); |
de051565 MK |
3211 | |
3212 | /* If the specified format is the current one, | |
581e13c1 | 3213 | we can reuse print_value. */ |
de051565 MK |
3214 | if (format == var->format) |
3215 | return xstrdup (var->print_value); | |
3216 | else | |
d452c4bc | 3217 | return value_get_print_value (var->value, format, var); |
85265413 | 3218 | } |
e64d9b3d | 3219 | } |
8b93c638 JM |
3220 | } |
3221 | } | |
3222 | \f | |
3223 | ||
3224 | /* C++ */ | |
3225 | ||
3226 | static int | |
fba45db2 | 3227 | cplus_number_of_children (struct varobj *var) |
8b93c638 JM |
3228 | { |
3229 | struct type *type; | |
3230 | int children, dont_know; | |
3231 | ||
3232 | dont_know = 1; | |
3233 | children = 0; | |
3234 | ||
3235 | if (!CPLUS_FAKE_CHILD (var)) | |
3236 | { | |
2024f65a | 3237 | type = get_value_type (var); |
02142340 | 3238 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
3239 | |
3240 | if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) || | |
72330bd6 | 3241 | ((TYPE_CODE (type)) == TYPE_CODE_UNION)) |
8b93c638 JM |
3242 | { |
3243 | int kids[3]; | |
3244 | ||
3245 | cplus_class_num_children (type, kids); | |
3246 | if (kids[v_public] != 0) | |
3247 | children++; | |
3248 | if (kids[v_private] != 0) | |
3249 | children++; | |
3250 | if (kids[v_protected] != 0) | |
3251 | children++; | |
3252 | ||
581e13c1 | 3253 | /* Add any baseclasses. */ |
8b93c638 JM |
3254 | children += TYPE_N_BASECLASSES (type); |
3255 | dont_know = 0; | |
3256 | ||
581e13c1 | 3257 | /* FIXME: save children in var. */ |
8b93c638 JM |
3258 | } |
3259 | } | |
3260 | else | |
3261 | { | |
3262 | int kids[3]; | |
3263 | ||
2024f65a | 3264 | type = get_value_type (var->parent); |
02142340 | 3265 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
3266 | |
3267 | cplus_class_num_children (type, kids); | |
6e382aa3 | 3268 | if (strcmp (var->name, "public") == 0) |
8b93c638 | 3269 | children = kids[v_public]; |
6e382aa3 | 3270 | else if (strcmp (var->name, "private") == 0) |
8b93c638 JM |
3271 | children = kids[v_private]; |
3272 | else | |
3273 | children = kids[v_protected]; | |
3274 | dont_know = 0; | |
3275 | } | |
3276 | ||
3277 | if (dont_know) | |
3278 | children = c_number_of_children (var); | |
3279 | ||
3280 | return children; | |
3281 | } | |
3282 | ||
3283 | /* Compute # of public, private, and protected variables in this class. | |
3284 | That means we need to descend into all baseclasses and find out | |
581e13c1 | 3285 | how many are there, too. */ |
8b93c638 | 3286 | static void |
1669605f | 3287 | cplus_class_num_children (struct type *type, int children[3]) |
8b93c638 | 3288 | { |
d48cc9dd DJ |
3289 | int i, vptr_fieldno; |
3290 | struct type *basetype = NULL; | |
8b93c638 JM |
3291 | |
3292 | children[v_public] = 0; | |
3293 | children[v_private] = 0; | |
3294 | children[v_protected] = 0; | |
3295 | ||
d48cc9dd | 3296 | vptr_fieldno = get_vptr_fieldno (type, &basetype); |
8b93c638 JM |
3297 | for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++) |
3298 | { | |
d48cc9dd DJ |
3299 | /* If we have a virtual table pointer, omit it. Even if virtual |
3300 | table pointers are not specifically marked in the debug info, | |
3301 | they should be artificial. */ | |
3302 | if ((type == basetype && i == vptr_fieldno) | |
3303 | || TYPE_FIELD_ARTIFICIAL (type, i)) | |
8b93c638 JM |
3304 | continue; |
3305 | ||
3306 | if (TYPE_FIELD_PROTECTED (type, i)) | |
3307 | children[v_protected]++; | |
3308 | else if (TYPE_FIELD_PRIVATE (type, i)) | |
3309 | children[v_private]++; | |
3310 | else | |
3311 | children[v_public]++; | |
3312 | } | |
3313 | } | |
3314 | ||
3315 | static char * | |
fba45db2 | 3316 | cplus_name_of_variable (struct varobj *parent) |
8b93c638 JM |
3317 | { |
3318 | return c_name_of_variable (parent); | |
3319 | } | |
3320 | ||
2024f65a VP |
3321 | enum accessibility { private_field, protected_field, public_field }; |
3322 | ||
3323 | /* Check if field INDEX of TYPE has the specified accessibility. | |
3324 | Return 0 if so and 1 otherwise. */ | |
3325 | static int | |
3326 | match_accessibility (struct type *type, int index, enum accessibility acc) | |
8b93c638 | 3327 | { |
2024f65a VP |
3328 | if (acc == private_field && TYPE_FIELD_PRIVATE (type, index)) |
3329 | return 1; | |
3330 | else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index)) | |
3331 | return 1; | |
3332 | else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index) | |
3333 | && !TYPE_FIELD_PROTECTED (type, index)) | |
3334 | return 1; | |
3335 | else | |
3336 | return 0; | |
3337 | } | |
3338 | ||
3339 | static void | |
3340 | cplus_describe_child (struct varobj *parent, int index, | |
02142340 VP |
3341 | char **cname, struct value **cvalue, struct type **ctype, |
3342 | char **cfull_expression) | |
2024f65a | 3343 | { |
2024f65a | 3344 | struct value *value; |
8b93c638 | 3345 | struct type *type; |
02142340 VP |
3346 | int was_ptr; |
3347 | char *parent_expression = NULL; | |
8b93c638 | 3348 | |
2024f65a VP |
3349 | if (cname) |
3350 | *cname = NULL; | |
3351 | if (cvalue) | |
3352 | *cvalue = NULL; | |
3353 | if (ctype) | |
3354 | *ctype = NULL; | |
02142340 VP |
3355 | if (cfull_expression) |
3356 | *cfull_expression = NULL; | |
2024f65a | 3357 | |
8b93c638 JM |
3358 | if (CPLUS_FAKE_CHILD (parent)) |
3359 | { | |
2024f65a VP |
3360 | value = parent->parent->value; |
3361 | type = get_value_type (parent->parent); | |
02142340 VP |
3362 | if (cfull_expression) |
3363 | parent_expression = varobj_get_path_expr (parent->parent); | |
8b93c638 JM |
3364 | } |
3365 | else | |
2024f65a VP |
3366 | { |
3367 | value = parent->value; | |
3368 | type = get_value_type (parent); | |
02142340 VP |
3369 | if (cfull_expression) |
3370 | parent_expression = varobj_get_path_expr (parent); | |
2024f65a | 3371 | } |
8b93c638 | 3372 | |
02142340 | 3373 | adjust_value_for_child_access (&value, &type, &was_ptr); |
2024f65a VP |
3374 | |
3375 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3f4178d6 | 3376 | || TYPE_CODE (type) == TYPE_CODE_UNION) |
8b93c638 | 3377 | { |
02142340 | 3378 | char *join = was_ptr ? "->" : "."; |
a109c7c1 | 3379 | |
8b93c638 JM |
3380 | if (CPLUS_FAKE_CHILD (parent)) |
3381 | { | |
6e382aa3 JJ |
3382 | /* The fields of the class type are ordered as they |
3383 | appear in the class. We are given an index for a | |
3384 | particular access control type ("public","protected", | |
3385 | or "private"). We must skip over fields that don't | |
3386 | have the access control we are looking for to properly | |
581e13c1 | 3387 | find the indexed field. */ |
6e382aa3 | 3388 | int type_index = TYPE_N_BASECLASSES (type); |
2024f65a | 3389 | enum accessibility acc = public_field; |
d48cc9dd DJ |
3390 | int vptr_fieldno; |
3391 | struct type *basetype = NULL; | |
3392 | ||
3393 | vptr_fieldno = get_vptr_fieldno (type, &basetype); | |
6e382aa3 | 3394 | if (strcmp (parent->name, "private") == 0) |
2024f65a | 3395 | acc = private_field; |
6e382aa3 | 3396 | else if (strcmp (parent->name, "protected") == 0) |
2024f65a VP |
3397 | acc = protected_field; |
3398 | ||
3399 | while (index >= 0) | |
6e382aa3 | 3400 | { |
d48cc9dd DJ |
3401 | if ((type == basetype && type_index == vptr_fieldno) |
3402 | || TYPE_FIELD_ARTIFICIAL (type, type_index)) | |
2024f65a VP |
3403 | ; /* ignore vptr */ |
3404 | else if (match_accessibility (type, type_index, acc)) | |
6e382aa3 JJ |
3405 | --index; |
3406 | ++type_index; | |
6e382aa3 | 3407 | } |
2024f65a VP |
3408 | --type_index; |
3409 | ||
3410 | if (cname) | |
3411 | *cname = xstrdup (TYPE_FIELD_NAME (type, type_index)); | |
3412 | ||
3413 | if (cvalue && value) | |
3414 | *cvalue = value_struct_element_index (value, type_index); | |
3415 | ||
3416 | if (ctype) | |
3417 | *ctype = TYPE_FIELD_TYPE (type, type_index); | |
02142340 VP |
3418 | |
3419 | if (cfull_expression) | |
3e43a32a MS |
3420 | *cfull_expression |
3421 | = xstrprintf ("((%s)%s%s)", parent_expression, | |
3422 | join, | |
3423 | TYPE_FIELD_NAME (type, type_index)); | |
2024f65a VP |
3424 | } |
3425 | else if (index < TYPE_N_BASECLASSES (type)) | |
3426 | { | |
3427 | /* This is a baseclass. */ | |
3428 | if (cname) | |
3429 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); | |
3430 | ||
3431 | if (cvalue && value) | |
0cc7d26f | 3432 | *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value); |
6e382aa3 | 3433 | |
2024f65a VP |
3434 | if (ctype) |
3435 | { | |
3436 | *ctype = TYPE_FIELD_TYPE (type, index); | |
3437 | } | |
02142340 VP |
3438 | |
3439 | if (cfull_expression) | |
3440 | { | |
3441 | char *ptr = was_ptr ? "*" : ""; | |
a109c7c1 | 3442 | |
581e13c1 | 3443 | /* Cast the parent to the base' type. Note that in gdb, |
02142340 VP |
3444 | expression like |
3445 | (Base1)d | |
3446 | will create an lvalue, for all appearences, so we don't | |
3447 | need to use more fancy: | |
3448 | *(Base1*)(&d) | |
0d932b2f MK |
3449 | construct. |
3450 | ||
3451 | When we are in the scope of the base class or of one | |
3452 | of its children, the type field name will be interpreted | |
3453 | as a constructor, if it exists. Therefore, we must | |
3454 | indicate that the name is a class name by using the | |
3455 | 'class' keyword. See PR mi/11912 */ | |
3456 | *cfull_expression = xstrprintf ("(%s(class %s%s) %s)", | |
02142340 VP |
3457 | ptr, |
3458 | TYPE_FIELD_NAME (type, index), | |
3459 | ptr, | |
3460 | parent_expression); | |
3461 | } | |
8b93c638 | 3462 | } |
8b93c638 JM |
3463 | else |
3464 | { | |
348144ba | 3465 | char *access = NULL; |
6e382aa3 | 3466 | int children[3]; |
a109c7c1 | 3467 | |
2024f65a | 3468 | cplus_class_num_children (type, children); |
6e382aa3 | 3469 | |
8b93c638 | 3470 | /* Everything beyond the baseclasses can |
6e382aa3 JJ |
3471 | only be "public", "private", or "protected" |
3472 | ||
3473 | The special "fake" children are always output by varobj in | |
581e13c1 | 3474 | this order. So if INDEX == 2, it MUST be "protected". */ |
8b93c638 JM |
3475 | index -= TYPE_N_BASECLASSES (type); |
3476 | switch (index) | |
3477 | { | |
3478 | case 0: | |
6e382aa3 | 3479 | if (children[v_public] > 0) |
2024f65a | 3480 | access = "public"; |
6e382aa3 | 3481 | else if (children[v_private] > 0) |
2024f65a | 3482 | access = "private"; |
6e382aa3 | 3483 | else |
2024f65a | 3484 | access = "protected"; |
6e382aa3 | 3485 | break; |
8b93c638 | 3486 | case 1: |
6e382aa3 | 3487 | if (children[v_public] > 0) |
8b93c638 | 3488 | { |
6e382aa3 | 3489 | if (children[v_private] > 0) |
2024f65a | 3490 | access = "private"; |
6e382aa3 | 3491 | else |
2024f65a | 3492 | access = "protected"; |
8b93c638 | 3493 | } |
6e382aa3 | 3494 | else if (children[v_private] > 0) |
2024f65a | 3495 | access = "protected"; |
6e382aa3 | 3496 | break; |
8b93c638 | 3497 | case 2: |
581e13c1 | 3498 | /* Must be protected. */ |
2024f65a | 3499 | access = "protected"; |
6e382aa3 | 3500 | break; |
8b93c638 | 3501 | default: |
581e13c1 | 3502 | /* error! */ |
8b93c638 JM |
3503 | break; |
3504 | } | |
348144ba MS |
3505 | |
3506 | gdb_assert (access); | |
2024f65a VP |
3507 | if (cname) |
3508 | *cname = xstrdup (access); | |
8b93c638 | 3509 | |
02142340 | 3510 | /* Value and type and full expression are null here. */ |
2024f65a | 3511 | } |
8b93c638 | 3512 | } |
8b93c638 JM |
3513 | else |
3514 | { | |
02142340 | 3515 | c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression); |
2024f65a VP |
3516 | } |
3517 | } | |
8b93c638 | 3518 | |
2024f65a VP |
3519 | static char * |
3520 | cplus_name_of_child (struct varobj *parent, int index) | |
3521 | { | |
3522 | char *name = NULL; | |
a109c7c1 | 3523 | |
02142340 | 3524 | cplus_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
3525 | return name; |
3526 | } | |
3527 | ||
02142340 VP |
3528 | static char * |
3529 | cplus_path_expr_of_child (struct varobj *child) | |
3530 | { | |
3531 | cplus_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
3532 | &child->path_expr); | |
3533 | return child->path_expr; | |
3534 | } | |
3535 | ||
30b28db1 | 3536 | static struct value * |
fba45db2 | 3537 | cplus_value_of_root (struct varobj **var_handle) |
8b93c638 | 3538 | { |
73a93a32 | 3539 | return c_value_of_root (var_handle); |
8b93c638 JM |
3540 | } |
3541 | ||
30b28db1 | 3542 | static struct value * |
fba45db2 | 3543 | cplus_value_of_child (struct varobj *parent, int index) |
8b93c638 | 3544 | { |
2024f65a | 3545 | struct value *value = NULL; |
a109c7c1 | 3546 | |
02142340 | 3547 | cplus_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
3548 | return value; |
3549 | } | |
3550 | ||
3551 | static struct type * | |
fba45db2 | 3552 | cplus_type_of_child (struct varobj *parent, int index) |
8b93c638 | 3553 | { |
2024f65a | 3554 | struct type *type = NULL; |
a109c7c1 | 3555 | |
02142340 | 3556 | cplus_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
3557 | return type; |
3558 | } | |
3559 | ||
8b93c638 | 3560 | static char * |
a109c7c1 MS |
3561 | cplus_value_of_variable (struct varobj *var, |
3562 | enum varobj_display_formats format) | |
8b93c638 JM |
3563 | { |
3564 | ||
3565 | /* If we have one of our special types, don't print out | |
581e13c1 | 3566 | any value. */ |
8b93c638 JM |
3567 | if (CPLUS_FAKE_CHILD (var)) |
3568 | return xstrdup (""); | |
3569 | ||
de051565 | 3570 | return c_value_of_variable (var, format); |
8b93c638 JM |
3571 | } |
3572 | \f | |
3573 | /* Java */ | |
3574 | ||
3575 | static int | |
fba45db2 | 3576 | java_number_of_children (struct varobj *var) |
8b93c638 JM |
3577 | { |
3578 | return cplus_number_of_children (var); | |
3579 | } | |
3580 | ||
3581 | static char * | |
fba45db2 | 3582 | java_name_of_variable (struct varobj *parent) |
8b93c638 JM |
3583 | { |
3584 | char *p, *name; | |
3585 | ||
3586 | name = cplus_name_of_variable (parent); | |
3587 | /* If the name has "-" in it, it is because we | |
581e13c1 | 3588 | needed to escape periods in the name... */ |
8b93c638 JM |
3589 | p = name; |
3590 | ||
3591 | while (*p != '\000') | |
3592 | { | |
3593 | if (*p == '-') | |
3594 | *p = '.'; | |
3595 | p++; | |
3596 | } | |
3597 | ||
3598 | return name; | |
3599 | } | |
3600 | ||
3601 | static char * | |
fba45db2 | 3602 | java_name_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3603 | { |
3604 | char *name, *p; | |
3605 | ||
3606 | name = cplus_name_of_child (parent, index); | |
581e13c1 | 3607 | /* Escape any periods in the name... */ |
8b93c638 JM |
3608 | p = name; |
3609 | ||
3610 | while (*p != '\000') | |
3611 | { | |
3612 | if (*p == '.') | |
3613 | *p = '-'; | |
3614 | p++; | |
3615 | } | |
3616 | ||
3617 | return name; | |
3618 | } | |
3619 | ||
02142340 VP |
3620 | static char * |
3621 | java_path_expr_of_child (struct varobj *child) | |
3622 | { | |
3623 | return NULL; | |
3624 | } | |
3625 | ||
30b28db1 | 3626 | static struct value * |
fba45db2 | 3627 | java_value_of_root (struct varobj **var_handle) |
8b93c638 | 3628 | { |
73a93a32 | 3629 | return cplus_value_of_root (var_handle); |
8b93c638 JM |
3630 | } |
3631 | ||
30b28db1 | 3632 | static struct value * |
fba45db2 | 3633 | java_value_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3634 | { |
3635 | return cplus_value_of_child (parent, index); | |
3636 | } | |
3637 | ||
3638 | static struct type * | |
fba45db2 | 3639 | java_type_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3640 | { |
3641 | return cplus_type_of_child (parent, index); | |
3642 | } | |
3643 | ||
8b93c638 | 3644 | static char * |
de051565 | 3645 | java_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 3646 | { |
de051565 | 3647 | return cplus_value_of_variable (var, format); |
8b93c638 | 3648 | } |
54333c3b | 3649 | |
40591b7d JCD |
3650 | /* Ada specific callbacks for VAROBJs. */ |
3651 | ||
3652 | static int | |
3653 | ada_number_of_children (struct varobj *var) | |
3654 | { | |
3655 | return c_number_of_children (var); | |
3656 | } | |
3657 | ||
3658 | static char * | |
3659 | ada_name_of_variable (struct varobj *parent) | |
3660 | { | |
3661 | return c_name_of_variable (parent); | |
3662 | } | |
3663 | ||
3664 | static char * | |
3665 | ada_name_of_child (struct varobj *parent, int index) | |
3666 | { | |
3667 | return c_name_of_child (parent, index); | |
3668 | } | |
3669 | ||
3670 | static char* | |
3671 | ada_path_expr_of_child (struct varobj *child) | |
3672 | { | |
3673 | return c_path_expr_of_child (child); | |
3674 | } | |
3675 | ||
3676 | static struct value * | |
3677 | ada_value_of_root (struct varobj **var_handle) | |
3678 | { | |
3679 | return c_value_of_root (var_handle); | |
3680 | } | |
3681 | ||
3682 | static struct value * | |
3683 | ada_value_of_child (struct varobj *parent, int index) | |
3684 | { | |
3685 | return c_value_of_child (parent, index); | |
3686 | } | |
3687 | ||
3688 | static struct type * | |
3689 | ada_type_of_child (struct varobj *parent, int index) | |
3690 | { | |
3691 | return c_type_of_child (parent, index); | |
3692 | } | |
3693 | ||
3694 | static char * | |
3695 | ada_value_of_variable (struct varobj *var, enum varobj_display_formats format) | |
3696 | { | |
3697 | return c_value_of_variable (var, format); | |
3698 | } | |
3699 | ||
54333c3b JK |
3700 | /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them |
3701 | with an arbitrary caller supplied DATA pointer. */ | |
3702 | ||
3703 | void | |
3704 | all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data) | |
3705 | { | |
3706 | struct varobj_root *var_root, *var_root_next; | |
3707 | ||
3708 | /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */ | |
3709 | ||
3710 | for (var_root = rootlist; var_root != NULL; var_root = var_root_next) | |
3711 | { | |
3712 | var_root_next = var_root->next; | |
3713 | ||
3714 | (*func) (var_root->rootvar, data); | |
3715 | } | |
3716 | } | |
8b93c638 JM |
3717 | \f |
3718 | extern void _initialize_varobj (void); | |
3719 | void | |
3720 | _initialize_varobj (void) | |
3721 | { | |
3722 | int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE; | |
3723 | ||
3724 | varobj_table = xmalloc (sizeof_table); | |
3725 | memset (varobj_table, 0, sizeof_table); | |
3726 | ||
85c07804 | 3727 | add_setshow_zinteger_cmd ("debugvarobj", class_maintenance, |
3e43a32a MS |
3728 | &varobjdebug, |
3729 | _("Set varobj debugging."), | |
3730 | _("Show varobj debugging."), | |
3731 | _("When non-zero, varobj debugging is enabled."), | |
3732 | NULL, show_varobjdebug, | |
85c07804 | 3733 | &setlist, &showlist); |
8b93c638 | 3734 | } |
8756216b | 3735 | |
54333c3b JK |
3736 | /* Invalidate varobj VAR if it is tied to locals and re-create it if it is |
3737 | defined on globals. It is a helper for varobj_invalidate. */ | |
2dbd25e5 | 3738 | |
54333c3b JK |
3739 | static void |
3740 | varobj_invalidate_iter (struct varobj *var, void *unused) | |
8756216b | 3741 | { |
54333c3b JK |
3742 | /* Floating varobjs are reparsed on each stop, so we don't care if the |
3743 | presently parsed expression refers to something that's gone. */ | |
3744 | if (var->root->floating) | |
3745 | return; | |
8756216b | 3746 | |
54333c3b JK |
3747 | /* global var must be re-evaluated. */ |
3748 | if (var->root->valid_block == NULL) | |
2dbd25e5 | 3749 | { |
54333c3b | 3750 | struct varobj *tmp_var; |
2dbd25e5 | 3751 | |
54333c3b JK |
3752 | /* Try to create a varobj with same expression. If we succeed |
3753 | replace the old varobj, otherwise invalidate it. */ | |
3754 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, | |
3755 | USE_CURRENT_FRAME); | |
3756 | if (tmp_var != NULL) | |
3757 | { | |
3758 | tmp_var->obj_name = xstrdup (var->obj_name); | |
3759 | varobj_delete (var, NULL, 0); | |
3760 | install_variable (tmp_var); | |
2dbd25e5 | 3761 | } |
54333c3b JK |
3762 | else |
3763 | var->root->is_valid = 0; | |
2dbd25e5 | 3764 | } |
54333c3b JK |
3765 | else /* locals must be invalidated. */ |
3766 | var->root->is_valid = 0; | |
3767 | } | |
3768 | ||
3769 | /* Invalidate the varobjs that are tied to locals and re-create the ones that | |
3770 | are defined on globals. | |
3771 | Invalidated varobjs will be always printed in_scope="invalid". */ | |
3772 | ||
3773 | void | |
3774 | varobj_invalidate (void) | |
3775 | { | |
3776 | all_root_varobjs (varobj_invalidate_iter, NULL); | |
8756216b | 3777 | } |