]>
Commit | Line | Data |
---|---|---|
7d9884b9 JG |
1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
2 | Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc. | |
dd3b648e RP |
3 | |
4 | This file is part of GDB. | |
5 | ||
99a7de40 | 6 | This program is free software; you can redistribute it and/or modify |
dd3b648e | 7 | it under the terms of the GNU General Public License as published by |
99a7de40 JG |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
dd3b648e | 10 | |
99a7de40 | 11 | This program is distributed in the hope that it will be useful, |
dd3b648e RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
99a7de40 JG |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
dd3b648e | 19 | |
dd3b648e | 20 | #include "defs.h" |
d747e0af | 21 | #include <string.h> |
dd3b648e | 22 | #include "symtab.h" |
1ab3bf1b | 23 | #include "gdbtypes.h" |
dd3b648e RP |
24 | #include "value.h" |
25 | #include "gdbcore.h" | |
26 | #include "frame.h" | |
27 | #include "command.h" | |
f266e564 | 28 | #include "gdbcmd.h" |
ac88ca20 | 29 | #include "target.h" |
8050a57b | 30 | #include "demangle.h" |
dd3b648e | 31 | |
1ab3bf1b JG |
32 | /* Local function prototypes. */ |
33 | ||
849d0896 PS |
34 | static value_ptr value_headof PARAMS ((value_ptr, struct type *, |
35 | struct type *)); | |
1ab3bf1b | 36 | |
82a2edfb | 37 | static void show_values PARAMS ((char *, int)); |
1ab3bf1b | 38 | |
82a2edfb | 39 | static void show_convenience PARAMS ((char *, int)); |
71b16efa | 40 | |
dd3b648e RP |
41 | /* The value-history records all the values printed |
42 | by print commands during this session. Each chunk | |
43 | records 60 consecutive values. The first chunk on | |
44 | the chain records the most recent values. | |
45 | The total number of values is in value_history_count. */ | |
46 | ||
47 | #define VALUE_HISTORY_CHUNK 60 | |
48 | ||
49 | struct value_history_chunk | |
50 | { | |
51 | struct value_history_chunk *next; | |
82a2edfb | 52 | value_ptr values[VALUE_HISTORY_CHUNK]; |
dd3b648e RP |
53 | }; |
54 | ||
55 | /* Chain of chunks now in use. */ | |
56 | ||
57 | static struct value_history_chunk *value_history_chain; | |
58 | ||
59 | static int value_history_count; /* Abs number of last entry stored */ | |
dd3b648e RP |
60 | \f |
61 | /* List of all value objects currently allocated | |
62 | (except for those released by calls to release_value) | |
63 | This is so they can be freed after each command. */ | |
64 | ||
82a2edfb | 65 | static value_ptr all_values; |
dd3b648e RP |
66 | |
67 | /* Allocate a value that has the correct length for type TYPE. */ | |
68 | ||
82a2edfb | 69 | value_ptr |
dd3b648e RP |
70 | allocate_value (type) |
71 | struct type *type; | |
72 | { | |
82a2edfb | 73 | register value_ptr val; |
dd3b648e RP |
74 | |
75 | check_stub_type (type); | |
76 | ||
82a2edfb | 77 | val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type)); |
dd3b648e RP |
78 | VALUE_NEXT (val) = all_values; |
79 | all_values = val; | |
80 | VALUE_TYPE (val) = type; | |
81 | VALUE_LVAL (val) = not_lval; | |
82 | VALUE_ADDRESS (val) = 0; | |
83 | VALUE_FRAME (val) = 0; | |
84 | VALUE_OFFSET (val) = 0; | |
85 | VALUE_BITPOS (val) = 0; | |
86 | VALUE_BITSIZE (val) = 0; | |
87 | VALUE_REPEATED (val) = 0; | |
88 | VALUE_REPETITIONS (val) = 0; | |
89 | VALUE_REGNO (val) = -1; | |
90 | VALUE_LAZY (val) = 0; | |
91 | VALUE_OPTIMIZED_OUT (val) = 0; | |
30974778 | 92 | val->modifiable = 1; |
dd3b648e RP |
93 | return val; |
94 | } | |
95 | ||
96 | /* Allocate a value that has the correct length | |
97 | for COUNT repetitions type TYPE. */ | |
98 | ||
82a2edfb | 99 | value_ptr |
dd3b648e RP |
100 | allocate_repeat_value (type, count) |
101 | struct type *type; | |
102 | int count; | |
103 | { | |
82a2edfb | 104 | register value_ptr val; |
dd3b648e | 105 | |
82a2edfb JK |
106 | val = |
107 | (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count); | |
dd3b648e RP |
108 | VALUE_NEXT (val) = all_values; |
109 | all_values = val; | |
110 | VALUE_TYPE (val) = type; | |
111 | VALUE_LVAL (val) = not_lval; | |
112 | VALUE_ADDRESS (val) = 0; | |
113 | VALUE_FRAME (val) = 0; | |
114 | VALUE_OFFSET (val) = 0; | |
115 | VALUE_BITPOS (val) = 0; | |
116 | VALUE_BITSIZE (val) = 0; | |
117 | VALUE_REPEATED (val) = 1; | |
118 | VALUE_REPETITIONS (val) = count; | |
119 | VALUE_REGNO (val) = -1; | |
120 | VALUE_LAZY (val) = 0; | |
121 | VALUE_OPTIMIZED_OUT (val) = 0; | |
122 | return val; | |
123 | } | |
124 | ||
fcb887ff JK |
125 | /* Return a mark in the value chain. All values allocated after the |
126 | mark is obtained (except for those released) are subject to being freed | |
127 | if a subsequent value_free_to_mark is passed the mark. */ | |
82a2edfb | 128 | value_ptr |
fcb887ff JK |
129 | value_mark () |
130 | { | |
131 | return all_values; | |
132 | } | |
133 | ||
134 | /* Free all values allocated since MARK was obtained by value_mark | |
135 | (except for those released). */ | |
136 | void | |
137 | value_free_to_mark (mark) | |
82a2edfb | 138 | value_ptr mark; |
fcb887ff | 139 | { |
82a2edfb | 140 | value_ptr val, next; |
fcb887ff JK |
141 | |
142 | for (val = all_values; val && val != mark; val = next) | |
143 | { | |
144 | next = VALUE_NEXT (val); | |
145 | value_free (val); | |
146 | } | |
147 | all_values = val; | |
148 | } | |
149 | ||
dd3b648e RP |
150 | /* Free all the values that have been allocated (except for those released). |
151 | Called after each command, successful or not. */ | |
152 | ||
153 | void | |
154 | free_all_values () | |
155 | { | |
82a2edfb | 156 | register value_ptr val, next; |
dd3b648e RP |
157 | |
158 | for (val = all_values; val; val = next) | |
159 | { | |
160 | next = VALUE_NEXT (val); | |
161 | value_free (val); | |
162 | } | |
163 | ||
164 | all_values = 0; | |
165 | } | |
166 | ||
167 | /* Remove VAL from the chain all_values | |
168 | so it will not be freed automatically. */ | |
169 | ||
170 | void | |
171 | release_value (val) | |
82a2edfb | 172 | register value_ptr val; |
dd3b648e | 173 | { |
82a2edfb | 174 | register value_ptr v; |
dd3b648e RP |
175 | |
176 | if (all_values == val) | |
177 | { | |
178 | all_values = val->next; | |
179 | return; | |
180 | } | |
181 | ||
182 | for (v = all_values; v; v = v->next) | |
183 | { | |
184 | if (v->next == val) | |
185 | { | |
186 | v->next = val->next; | |
187 | break; | |
188 | } | |
189 | } | |
190 | } | |
191 | ||
999dd04b JL |
192 | /* Release all values up to mark */ |
193 | value_ptr | |
194 | value_release_to_mark (mark) | |
195 | value_ptr mark; | |
196 | { | |
197 | value_ptr val, next; | |
198 | ||
199 | for (val = next = all_values; next; next = VALUE_NEXT (next)) | |
200 | if (VALUE_NEXT (next) == mark) | |
201 | { | |
202 | all_values = VALUE_NEXT (next); | |
203 | VALUE_NEXT (next) = 0; | |
204 | return val; | |
205 | } | |
206 | all_values = 0; | |
207 | return val; | |
208 | } | |
209 | ||
dd3b648e RP |
210 | /* Return a copy of the value ARG. |
211 | It contains the same contents, for same memory address, | |
212 | but it's a different block of storage. */ | |
213 | ||
82a2edfb | 214 | value_ptr |
dd3b648e | 215 | value_copy (arg) |
82a2edfb | 216 | value_ptr arg; |
dd3b648e | 217 | { |
82a2edfb | 218 | register value_ptr val; |
dd3b648e RP |
219 | register struct type *type = VALUE_TYPE (arg); |
220 | if (VALUE_REPEATED (arg)) | |
221 | val = allocate_repeat_value (type, VALUE_REPETITIONS (arg)); | |
222 | else | |
223 | val = allocate_value (type); | |
224 | VALUE_LVAL (val) = VALUE_LVAL (arg); | |
225 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg); | |
226 | VALUE_OFFSET (val) = VALUE_OFFSET (arg); | |
227 | VALUE_BITPOS (val) = VALUE_BITPOS (arg); | |
228 | VALUE_BITSIZE (val) = VALUE_BITSIZE (arg); | |
229 | VALUE_REGNO (val) = VALUE_REGNO (arg); | |
230 | VALUE_LAZY (val) = VALUE_LAZY (arg); | |
30974778 | 231 | val->modifiable = arg->modifiable; |
dd3b648e RP |
232 | if (!VALUE_LAZY (val)) |
233 | { | |
51b57ded FF |
234 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg), |
235 | TYPE_LENGTH (VALUE_TYPE (arg)) | |
236 | * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1)); | |
dd3b648e RP |
237 | } |
238 | return val; | |
239 | } | |
240 | \f | |
241 | /* Access to the value history. */ | |
242 | ||
243 | /* Record a new value in the value history. | |
244 | Returns the absolute history index of the entry. | |
245 | Result of -1 indicates the value was not saved; otherwise it is the | |
246 | value history index of this new item. */ | |
247 | ||
248 | int | |
249 | record_latest_value (val) | |
82a2edfb | 250 | value_ptr val; |
dd3b648e RP |
251 | { |
252 | int i; | |
253 | ||
254 | /* Check error now if about to store an invalid float. We return -1 | |
255 | to the caller, but allow them to continue, e.g. to print it as "Nan". */ | |
4ed3a9ea FF |
256 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT) |
257 | { | |
258 | unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i); | |
259 | if (i) return -1; /* Indicate value not saved in history */ | |
260 | } | |
dd3b648e RP |
261 | |
262 | /* Here we treat value_history_count as origin-zero | |
263 | and applying to the value being stored now. */ | |
264 | ||
265 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
266 | if (i == 0) | |
267 | { | |
268 | register struct value_history_chunk *new | |
269 | = (struct value_history_chunk *) | |
270 | xmalloc (sizeof (struct value_history_chunk)); | |
4ed3a9ea | 271 | memset (new->values, 0, sizeof new->values); |
dd3b648e RP |
272 | new->next = value_history_chain; |
273 | value_history_chain = new; | |
274 | } | |
275 | ||
276 | value_history_chain->values[i] = val; | |
4abc83b9 JK |
277 | |
278 | /* We don't want this value to have anything to do with the inferior anymore. | |
279 | In particular, "set $1 = 50" should not affect the variable from which | |
280 | the value was taken, and fast watchpoints should be able to assume that | |
281 | a value on the value history never changes. */ | |
282 | if (VALUE_LAZY (val)) | |
283 | value_fetch_lazy (val); | |
30974778 JK |
284 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched |
285 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
286 | but the current contents of that location. c'est la vie... */ | |
287 | val->modifiable = 0; | |
dd3b648e RP |
288 | release_value (val); |
289 | ||
290 | /* Now we regard value_history_count as origin-one | |
291 | and applying to the value just stored. */ | |
292 | ||
293 | return ++value_history_count; | |
294 | } | |
295 | ||
296 | /* Return a copy of the value in the history with sequence number NUM. */ | |
297 | ||
82a2edfb | 298 | value_ptr |
dd3b648e RP |
299 | access_value_history (num) |
300 | int num; | |
301 | { | |
302 | register struct value_history_chunk *chunk; | |
303 | register int i; | |
304 | register int absnum = num; | |
305 | ||
306 | if (absnum <= 0) | |
307 | absnum += value_history_count; | |
308 | ||
309 | if (absnum <= 0) | |
310 | { | |
311 | if (num == 0) | |
312 | error ("The history is empty."); | |
313 | else if (num == 1) | |
314 | error ("There is only one value in the history."); | |
315 | else | |
316 | error ("History does not go back to $$%d.", -num); | |
317 | } | |
318 | if (absnum > value_history_count) | |
319 | error ("History has not yet reached $%d.", absnum); | |
320 | ||
321 | absnum--; | |
322 | ||
323 | /* Now absnum is always absolute and origin zero. */ | |
324 | ||
325 | chunk = value_history_chain; | |
326 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
327 | i > 0; i--) | |
328 | chunk = chunk->next; | |
329 | ||
330 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
331 | } | |
332 | ||
333 | /* Clear the value history entirely. | |
334 | Must be done when new symbol tables are loaded, | |
335 | because the type pointers become invalid. */ | |
336 | ||
337 | void | |
338 | clear_value_history () | |
339 | { | |
340 | register struct value_history_chunk *next; | |
341 | register int i; | |
82a2edfb | 342 | register value_ptr val; |
dd3b648e RP |
343 | |
344 | while (value_history_chain) | |
345 | { | |
346 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
a8a69e63 | 347 | if ((val = value_history_chain->values[i]) != NULL) |
be772100 | 348 | free ((PTR)val); |
dd3b648e | 349 | next = value_history_chain->next; |
be772100 | 350 | free ((PTR)value_history_chain); |
dd3b648e RP |
351 | value_history_chain = next; |
352 | } | |
353 | value_history_count = 0; | |
354 | } | |
355 | ||
356 | static void | |
f266e564 | 357 | show_values (num_exp, from_tty) |
dd3b648e RP |
358 | char *num_exp; |
359 | int from_tty; | |
360 | { | |
361 | register int i; | |
82a2edfb | 362 | register value_ptr val; |
dd3b648e RP |
363 | static int num = 1; |
364 | ||
365 | if (num_exp) | |
366 | { | |
46c28185 RP |
367 | /* "info history +" should print from the stored position. |
368 | "info history <exp>" should print around value number <exp>. */ | |
369 | if (num_exp[0] != '+' || num_exp[1] != '\0') | |
dd3b648e RP |
370 | num = parse_and_eval_address (num_exp) - 5; |
371 | } | |
372 | else | |
373 | { | |
374 | /* "info history" means print the last 10 values. */ | |
375 | num = value_history_count - 9; | |
376 | } | |
377 | ||
378 | if (num <= 0) | |
379 | num = 1; | |
380 | ||
381 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
382 | { | |
383 | val = access_value_history (i); | |
384 | printf_filtered ("$%d = ", i); | |
199b2450 | 385 | value_print (val, gdb_stdout, 0, Val_pretty_default); |
dd3b648e RP |
386 | printf_filtered ("\n"); |
387 | } | |
388 | ||
389 | /* The next "info history +" should start after what we just printed. */ | |
390 | num += 10; | |
391 | ||
392 | /* Hitting just return after this command should do the same thing as | |
393 | "info history +". If num_exp is null, this is unnecessary, since | |
394 | "info history +" is not useful after "info history". */ | |
395 | if (from_tty && num_exp) | |
396 | { | |
397 | num_exp[0] = '+'; | |
398 | num_exp[1] = '\0'; | |
399 | } | |
400 | } | |
401 | \f | |
402 | /* Internal variables. These are variables within the debugger | |
403 | that hold values assigned by debugger commands. | |
404 | The user refers to them with a '$' prefix | |
405 | that does not appear in the variable names stored internally. */ | |
406 | ||
407 | static struct internalvar *internalvars; | |
408 | ||
409 | /* Look up an internal variable with name NAME. NAME should not | |
410 | normally include a dollar sign. | |
411 | ||
412 | If the specified internal variable does not exist, | |
413 | one is created, with a void value. */ | |
414 | ||
415 | struct internalvar * | |
416 | lookup_internalvar (name) | |
417 | char *name; | |
418 | { | |
419 | register struct internalvar *var; | |
420 | ||
421 | for (var = internalvars; var; var = var->next) | |
2e4964ad | 422 | if (STREQ (var->name, name)) |
dd3b648e RP |
423 | return var; |
424 | ||
425 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); | |
58ae87f6 | 426 | var->name = concat (name, NULL); |
dd3b648e RP |
427 | var->value = allocate_value (builtin_type_void); |
428 | release_value (var->value); | |
429 | var->next = internalvars; | |
430 | internalvars = var; | |
431 | return var; | |
432 | } | |
433 | ||
82a2edfb | 434 | value_ptr |
dd3b648e RP |
435 | value_of_internalvar (var) |
436 | struct internalvar *var; | |
437 | { | |
82a2edfb | 438 | register value_ptr val; |
dd3b648e RP |
439 | |
440 | #ifdef IS_TRAPPED_INTERNALVAR | |
441 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
442 | return VALUE_OF_TRAPPED_INTERNALVAR (var); | |
443 | #endif | |
444 | ||
445 | val = value_copy (var->value); | |
446 | if (VALUE_LAZY (val)) | |
447 | value_fetch_lazy (val); | |
448 | VALUE_LVAL (val) = lval_internalvar; | |
449 | VALUE_INTERNALVAR (val) = var; | |
450 | return val; | |
451 | } | |
452 | ||
453 | void | |
454 | set_internalvar_component (var, offset, bitpos, bitsize, newval) | |
455 | struct internalvar *var; | |
456 | int offset, bitpos, bitsize; | |
82a2edfb | 457 | value_ptr newval; |
dd3b648e RP |
458 | { |
459 | register char *addr = VALUE_CONTENTS (var->value) + offset; | |
460 | ||
461 | #ifdef IS_TRAPPED_INTERNALVAR | |
462 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
463 | SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset); | |
464 | #endif | |
465 | ||
466 | if (bitsize) | |
58e49e21 | 467 | modify_field (addr, value_as_long (newval), |
dd3b648e RP |
468 | bitpos, bitsize); |
469 | else | |
4ed3a9ea | 470 | memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval))); |
dd3b648e RP |
471 | } |
472 | ||
473 | void | |
474 | set_internalvar (var, val) | |
475 | struct internalvar *var; | |
82a2edfb | 476 | value_ptr val; |
dd3b648e | 477 | { |
51f83933 JK |
478 | value_ptr newval; |
479 | ||
dd3b648e RP |
480 | #ifdef IS_TRAPPED_INTERNALVAR |
481 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
482 | SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0); | |
483 | #endif | |
484 | ||
51f83933 JK |
485 | newval = value_copy (val); |
486 | ||
6fab5bef JG |
487 | /* Force the value to be fetched from the target now, to avoid problems |
488 | later when this internalvar is referenced and the target is gone or | |
489 | has changed. */ | |
51f83933 JK |
490 | if (VALUE_LAZY (newval)) |
491 | value_fetch_lazy (newval); | |
492 | ||
493 | /* Begin code which must not call error(). If var->value points to | |
494 | something free'd, an error() obviously leaves a dangling pointer. | |
495 | But we also get a danling pointer if var->value points to | |
496 | something in the value chain (i.e., before release_value is | |
497 | called), because after the error free_all_values will get called before | |
498 | long. */ | |
499 | free ((PTR)var->value); | |
500 | var->value = newval; | |
501 | release_value (newval); | |
502 | /* End code which must not call error(). */ | |
dd3b648e RP |
503 | } |
504 | ||
505 | char * | |
506 | internalvar_name (var) | |
507 | struct internalvar *var; | |
508 | { | |
509 | return var->name; | |
510 | } | |
511 | ||
512 | /* Free all internalvars. Done when new symtabs are loaded, | |
513 | because that makes the values invalid. */ | |
514 | ||
515 | void | |
516 | clear_internalvars () | |
517 | { | |
518 | register struct internalvar *var; | |
519 | ||
520 | while (internalvars) | |
521 | { | |
522 | var = internalvars; | |
523 | internalvars = var->next; | |
be772100 JG |
524 | free ((PTR)var->name); |
525 | free ((PTR)var->value); | |
526 | free ((PTR)var); | |
dd3b648e RP |
527 | } |
528 | } | |
529 | ||
530 | static void | |
ac88ca20 JG |
531 | show_convenience (ignore, from_tty) |
532 | char *ignore; | |
533 | int from_tty; | |
dd3b648e RP |
534 | { |
535 | register struct internalvar *var; | |
536 | int varseen = 0; | |
537 | ||
538 | for (var = internalvars; var; var = var->next) | |
539 | { | |
540 | #ifdef IS_TRAPPED_INTERNALVAR | |
541 | if (IS_TRAPPED_INTERNALVAR (var->name)) | |
542 | continue; | |
543 | #endif | |
544 | if (!varseen) | |
545 | { | |
dd3b648e RP |
546 | varseen = 1; |
547 | } | |
afe4ca15 | 548 | printf_filtered ("$%s = ", var->name); |
199b2450 | 549 | value_print (var->value, gdb_stdout, 0, Val_pretty_default); |
afe4ca15 | 550 | printf_filtered ("\n"); |
dd3b648e RP |
551 | } |
552 | if (!varseen) | |
199b2450 | 553 | printf_unfiltered ("No debugger convenience variables now defined.\n\ |
dd3b648e RP |
554 | Convenience variables have names starting with \"$\";\n\ |
555 | use \"set\" as in \"set $foo = 5\" to define them.\n"); | |
556 | } | |
557 | \f | |
558 | /* Extract a value as a C number (either long or double). | |
559 | Knows how to convert fixed values to double, or | |
560 | floating values to long. | |
561 | Does not deallocate the value. */ | |
562 | ||
563 | LONGEST | |
564 | value_as_long (val) | |
82a2edfb | 565 | register value_ptr val; |
dd3b648e RP |
566 | { |
567 | /* This coerces arrays and functions, which is necessary (e.g. | |
568 | in disassemble_command). It also dereferences references, which | |
569 | I suspect is the most logical thing to do. */ | |
570 | if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM) | |
571 | COERCE_ARRAY (val); | |
572 | return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val)); | |
573 | } | |
574 | ||
575 | double | |
576 | value_as_double (val) | |
82a2edfb | 577 | register value_ptr val; |
dd3b648e RP |
578 | { |
579 | double foo; | |
580 | int inv; | |
581 | ||
582 | foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv); | |
583 | if (inv) | |
584 | error ("Invalid floating value found in program."); | |
585 | return foo; | |
586 | } | |
e1ce8aa5 JK |
587 | /* Extract a value as a C pointer. |
588 | Does not deallocate the value. */ | |
589 | CORE_ADDR | |
590 | value_as_pointer (val) | |
82a2edfb | 591 | value_ptr val; |
e1ce8aa5 | 592 | { |
2bff8e38 JK |
593 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
594 | whether we want this to be true eventually. */ | |
b2ccb6a4 JK |
595 | #if 0 |
596 | /* ADDR_BITS_REMOVE is wrong if we are being called for a | |
597 | non-address (e.g. argument to "signal", "info break", etc.), or | |
598 | for pointers to char, in which the low bits *are* significant. */ | |
ae0ea72e | 599 | return ADDR_BITS_REMOVE(value_as_long (val)); |
b2ccb6a4 JK |
600 | #else |
601 | return value_as_long (val); | |
602 | #endif | |
e1ce8aa5 | 603 | } |
dd3b648e RP |
604 | \f |
605 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
606 | as a long, or as a double, assuming the raw data is described | |
607 | by type TYPE. Knows how to convert different sizes of values | |
608 | and can convert between fixed and floating point. We don't assume | |
609 | any alignment for the raw data. Return value is in host byte order. | |
610 | ||
611 | If you want functions and arrays to be coerced to pointers, and | |
612 | references to be dereferenced, call value_as_long() instead. | |
613 | ||
614 | C++: It is assumed that the front-end has taken care of | |
615 | all matters concerning pointers to members. A pointer | |
616 | to member which reaches here is considered to be equivalent | |
617 | to an INT (or some size). After all, it is only an offset. */ | |
618 | ||
619 | LONGEST | |
620 | unpack_long (type, valaddr) | |
621 | struct type *type; | |
622 | char *valaddr; | |
623 | { | |
624 | register enum type_code code = TYPE_CODE (type); | |
625 | register int len = TYPE_LENGTH (type); | |
626 | register int nosign = TYPE_UNSIGNED (type); | |
627 | ||
bf5c0d64 | 628 | switch (code) |
dd3b648e | 629 | { |
bf5c0d64 JK |
630 | case TYPE_CODE_ENUM: |
631 | case TYPE_CODE_BOOL: | |
632 | case TYPE_CODE_INT: | |
633 | case TYPE_CODE_CHAR: | |
b96bc1e4 | 634 | case TYPE_CODE_RANGE: |
bf5c0d64 JK |
635 | if (nosign) |
636 | return extract_unsigned_integer (valaddr, len); | |
dd3b648e | 637 | else |
bf5c0d64 JK |
638 | return extract_signed_integer (valaddr, len); |
639 | ||
640 | case TYPE_CODE_FLT: | |
641 | return extract_floating (valaddr, len); | |
642 | ||
643 | case TYPE_CODE_PTR: | |
644 | case TYPE_CODE_REF: | |
645 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
646 | whether we want this to be true eventually. */ | |
34df79fc | 647 | return extract_address (valaddr, len); |
dd3b648e | 648 | |
bf5c0d64 JK |
649 | case TYPE_CODE_MEMBER: |
650 | error ("not implemented: member types in unpack_long"); | |
651 | ||
652 | default: | |
ca0865db | 653 | error ("Value can't be converted to integer."); |
bf5c0d64 JK |
654 | } |
655 | return 0; /* Placate lint. */ | |
dd3b648e RP |
656 | } |
657 | ||
658 | /* Return a double value from the specified type and address. | |
659 | INVP points to an int which is set to 0 for valid value, | |
660 | 1 for invalid value (bad float format). In either case, | |
661 | the returned double is OK to use. Argument is in target | |
662 | format, result is in host format. */ | |
663 | ||
664 | double | |
665 | unpack_double (type, valaddr, invp) | |
666 | struct type *type; | |
667 | char *valaddr; | |
668 | int *invp; | |
669 | { | |
670 | register enum type_code code = TYPE_CODE (type); | |
671 | register int len = TYPE_LENGTH (type); | |
672 | register int nosign = TYPE_UNSIGNED (type); | |
673 | ||
674 | *invp = 0; /* Assume valid. */ | |
675 | if (code == TYPE_CODE_FLT) | |
676 | { | |
677 | if (INVALID_FLOAT (valaddr, len)) | |
678 | { | |
679 | *invp = 1; | |
680 | return 1.234567891011121314; | |
681 | } | |
89ce0c8f JK |
682 | return extract_floating (valaddr, len); |
683 | } | |
684 | else if (nosign) | |
685 | { | |
686 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
687 | return (unsigned LONGEST) unpack_long (type, valaddr); | |
688 | } | |
689 | else | |
690 | { | |
691 | /* Signed -- we are OK with unpack_long. */ | |
692 | return unpack_long (type, valaddr); | |
dd3b648e | 693 | } |
dd3b648e | 694 | } |
e1ce8aa5 JK |
695 | |
696 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
697 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
698 | We don't assume any alignment for the raw data. Return value is in | |
699 | host byte order. | |
700 | ||
701 | If you want functions and arrays to be coerced to pointers, and | |
702 | references to be dereferenced, call value_as_pointer() instead. | |
703 | ||
704 | C++: It is assumed that the front-end has taken care of | |
705 | all matters concerning pointers to members. A pointer | |
706 | to member which reaches here is considered to be equivalent | |
707 | to an INT (or some size). After all, it is only an offset. */ | |
708 | ||
709 | CORE_ADDR | |
710 | unpack_pointer (type, valaddr) | |
711 | struct type *type; | |
712 | char *valaddr; | |
713 | { | |
2bff8e38 JK |
714 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
715 | whether we want this to be true eventually. */ | |
716 | return unpack_long (type, valaddr); | |
e1ce8aa5 | 717 | } |
dd3b648e RP |
718 | \f |
719 | /* Given a value ARG1 (offset by OFFSET bytes) | |
720 | of a struct or union type ARG_TYPE, | |
721 | extract and return the value of one of its fields. | |
722 | FIELDNO says which field. | |
723 | ||
724 | For C++, must also be able to return values from static fields */ | |
725 | ||
82a2edfb | 726 | value_ptr |
dd3b648e | 727 | value_primitive_field (arg1, offset, fieldno, arg_type) |
82a2edfb | 728 | register value_ptr arg1; |
dd3b648e RP |
729 | int offset; |
730 | register int fieldno; | |
731 | register struct type *arg_type; | |
732 | { | |
82a2edfb | 733 | register value_ptr v; |
dd3b648e RP |
734 | register struct type *type; |
735 | ||
736 | check_stub_type (arg_type); | |
737 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
738 | ||
739 | /* Handle packed fields */ | |
740 | ||
741 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
742 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
743 | { | |
96b2f51c | 744 | v = value_from_longest (type, |
dd3b648e RP |
745 | unpack_field_as_long (arg_type, |
746 | VALUE_CONTENTS (arg1), | |
747 | fieldno)); | |
748 | VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; | |
749 | VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
750 | } | |
751 | else | |
752 | { | |
753 | v = allocate_value (type); | |
754 | if (VALUE_LAZY (arg1)) | |
755 | VALUE_LAZY (v) = 1; | |
756 | else | |
4ed3a9ea FF |
757 | memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset, |
758 | TYPE_LENGTH (type)); | |
dd3b648e RP |
759 | } |
760 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
761 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
762 | VALUE_LVAL (v) = lval_internalvar_component; | |
763 | VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1); | |
764 | VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1); | |
765 | return v; | |
766 | } | |
767 | ||
768 | /* Given a value ARG1 of a struct or union type, | |
769 | extract and return the value of one of its fields. | |
770 | FIELDNO says which field. | |
771 | ||
772 | For C++, must also be able to return values from static fields */ | |
773 | ||
82a2edfb | 774 | value_ptr |
dd3b648e | 775 | value_field (arg1, fieldno) |
82a2edfb | 776 | register value_ptr arg1; |
dd3b648e RP |
777 | register int fieldno; |
778 | { | |
779 | return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1)); | |
780 | } | |
781 | ||
545af6ce PB |
782 | /* Return a non-virtual function as a value. |
783 | F is the list of member functions which contains the desired method. | |
784 | J is an index into F which provides the desired method. */ | |
785 | ||
82a2edfb | 786 | value_ptr |
94603999 | 787 | value_fn_field (arg1p, f, j, type, offset) |
82a2edfb | 788 | value_ptr *arg1p; |
545af6ce PB |
789 | struct fn_field *f; |
790 | int j; | |
94603999 JG |
791 | struct type *type; |
792 | int offset; | |
dd3b648e | 793 | { |
82a2edfb | 794 | register value_ptr v; |
94603999 | 795 | register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
dd3b648e RP |
796 | struct symbol *sym; |
797 | ||
545af6ce | 798 | sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), |
dd3b648e | 799 | 0, VAR_NAMESPACE, 0, NULL); |
f1c6dbf6 | 800 | if (! sym) |
82a2edfb | 801 | return NULL; |
f1c6dbf6 KH |
802 | /* |
803 | error ("Internal error: could not find physical method named %s", | |
545af6ce | 804 | TYPE_FN_FIELD_PHYSNAME (f, j)); |
f1c6dbf6 | 805 | */ |
dd3b648e | 806 | |
94603999 | 807 | v = allocate_value (ftype); |
dd3b648e | 808 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); |
94603999 JG |
809 | VALUE_TYPE (v) = ftype; |
810 | ||
811 | if (arg1p) | |
812 | { | |
813 | if (type != VALUE_TYPE (*arg1p)) | |
814 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), | |
815 | value_addr (*arg1p))); | |
816 | ||
dcd8fd8c | 817 | /* Move the `this' pointer according to the offset. |
94603999 | 818 | VALUE_OFFSET (*arg1p) += offset; |
dcd8fd8c | 819 | */ |
94603999 JG |
820 | } |
821 | ||
dd3b648e RP |
822 | return v; |
823 | } | |
824 | ||
825 | /* Return a virtual function as a value. | |
826 | ARG1 is the object which provides the virtual function | |
94603999 | 827 | table pointer. *ARG1P is side-effected in calling this function. |
dd3b648e RP |
828 | F is the list of member functions which contains the desired virtual |
829 | function. | |
e532974c JK |
830 | J is an index into F which provides the desired virtual function. |
831 | ||
832 | TYPE is the type in which F is located. */ | |
82a2edfb | 833 | value_ptr |
94603999 | 834 | value_virtual_fn_field (arg1p, f, j, type, offset) |
82a2edfb | 835 | value_ptr *arg1p; |
dd3b648e RP |
836 | struct fn_field *f; |
837 | int j; | |
e532974c | 838 | struct type *type; |
94603999 | 839 | int offset; |
dd3b648e | 840 | { |
82a2edfb | 841 | value_ptr arg1 = *arg1p; |
dd3b648e RP |
842 | /* First, get the virtual function table pointer. That comes |
843 | with a strange type, so cast it to type `pointer to long' (which | |
844 | should serve just fine as a function type). Then, index into | |
845 | the table, and convert final value to appropriate function type. */ | |
82a2edfb JK |
846 | value_ptr entry, vfn, vtbl; |
847 | value_ptr vi = value_from_longest (builtin_type_int, | |
848 | (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j)); | |
e532974c JK |
849 | struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j); |
850 | struct type *context; | |
851 | if (fcontext == NULL) | |
852 | /* We don't have an fcontext (e.g. the program was compiled with | |
853 | g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE. | |
854 | This won't work right for multiple inheritance, but at least we | |
855 | should do as well as GDB 3.x did. */ | |
856 | fcontext = TYPE_VPTR_BASETYPE (type); | |
857 | context = lookup_pointer_type (fcontext); | |
858 | /* Now context is a pointer to the basetype containing the vtbl. */ | |
dd3b648e RP |
859 | if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1)) |
860 | arg1 = value_ind (value_cast (context, value_addr (arg1))); | |
861 | ||
862 | context = VALUE_TYPE (arg1); | |
e532974c | 863 | /* Now context is the basetype containing the vtbl. */ |
dd3b648e RP |
864 | |
865 | /* This type may have been defined before its virtual function table | |
866 | was. If so, fill in the virtual function table entry for the | |
867 | type now. */ | |
868 | if (TYPE_VPTR_FIELDNO (context) < 0) | |
71b16efa | 869 | fill_in_vptr_fieldno (context); |
dd3b648e RP |
870 | |
871 | /* The virtual function table is now an array of structures | |
872 | which have the form { int16 offset, delta; void *pfn; }. */ | |
94603999 JG |
873 | vtbl = value_ind (value_primitive_field (arg1, 0, |
874 | TYPE_VPTR_FIELDNO (context), | |
875 | TYPE_VPTR_BASETYPE (context))); | |
dd3b648e RP |
876 | |
877 | /* Index into the virtual function table. This is hard-coded because | |
878 | looking up a field is not cheap, and it may be important to save | |
879 | time, e.g. if the user has set a conditional breakpoint calling | |
880 | a virtual function. */ | |
881 | entry = value_subscript (vtbl, vi); | |
882 | ||
36a2283d | 883 | if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT) |
dd3b648e | 884 | { |
36a2283d PB |
885 | /* Move the `this' pointer according to the virtual function table. */ |
886 | VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0)); | |
887 | ||
888 | if (! VALUE_LAZY (arg1)) | |
889 | { | |
890 | VALUE_LAZY (arg1) = 1; | |
891 | value_fetch_lazy (arg1); | |
892 | } | |
dd3b648e | 893 | |
36a2283d PB |
894 | vfn = value_field (entry, 2); |
895 | } | |
896 | else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR) | |
897 | vfn = entry; | |
898 | else | |
899 | error ("I'm confused: virtual function table has bad type"); | |
dd3b648e RP |
900 | /* Reinstantiate the function pointer with the correct type. */ |
901 | VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j)); | |
902 | ||
94603999 | 903 | *arg1p = arg1; |
dd3b648e RP |
904 | return vfn; |
905 | } | |
906 | ||
71b16efa JK |
907 | /* ARG is a pointer to an object we know to be at least |
908 | a DTYPE. BTYPE is the most derived basetype that has | |
909 | already been searched (and need not be searched again). | |
910 | After looking at the vtables between BTYPE and DTYPE, | |
911 | return the most derived type we find. The caller must | |
912 | be satisfied when the return value == DTYPE. | |
913 | ||
914 | FIXME-tiemann: should work with dossier entries as well. */ | |
915 | ||
82a2edfb | 916 | static value_ptr |
7cb0f870 | 917 | value_headof (in_arg, btype, dtype) |
82a2edfb | 918 | value_ptr in_arg; |
71b16efa JK |
919 | struct type *btype, *dtype; |
920 | { | |
921 | /* First collect the vtables we must look at for this object. */ | |
922 | /* FIXME-tiemann: right now, just look at top-most vtable. */ | |
82a2edfb | 923 | value_ptr arg, vtbl, entry, best_entry = 0; |
71b16efa JK |
924 | int i, nelems; |
925 | int offset, best_offset = 0; | |
926 | struct symbol *sym; | |
927 | CORE_ADDR pc_for_sym; | |
928 | char *demangled_name; | |
1ab3bf1b JG |
929 | struct minimal_symbol *msymbol; |
930 | ||
aec4cb91 MT |
931 | btype = TYPE_VPTR_BASETYPE (dtype); |
932 | check_stub_type (btype); | |
7cb0f870 | 933 | arg = in_arg; |
aec4cb91 | 934 | if (btype != dtype) |
7cb0f870 MT |
935 | arg = value_cast (lookup_pointer_type (btype), arg); |
936 | vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype))); | |
71b16efa JK |
937 | |
938 | /* Check that VTBL looks like it points to a virtual function table. */ | |
1ab3bf1b JG |
939 | msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl)); |
940 | if (msymbol == NULL | |
36a2283d PB |
941 | || (demangled_name = SYMBOL_NAME (msymbol)) == NULL |
942 | || !VTBL_PREFIX_P (demangled_name)) | |
71b16efa JK |
943 | { |
944 | /* If we expected to find a vtable, but did not, let the user | |
945 | know that we aren't happy, but don't throw an error. | |
946 | FIXME: there has to be a better way to do this. */ | |
947 | struct type *error_type = (struct type *)xmalloc (sizeof (struct type)); | |
7cb0f870 | 948 | memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type)); |
71b16efa | 949 | TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *")); |
7cb0f870 MT |
950 | VALUE_TYPE (in_arg) = error_type; |
951 | return in_arg; | |
71b16efa JK |
952 | } |
953 | ||
954 | /* Now search through the virtual function table. */ | |
955 | entry = value_ind (vtbl); | |
e1ce8aa5 | 956 | nelems = longest_to_int (value_as_long (value_field (entry, 2))); |
71b16efa JK |
957 | for (i = 1; i <= nelems; i++) |
958 | { | |
96b2f51c JG |
959 | entry = value_subscript (vtbl, value_from_longest (builtin_type_int, |
960 | (LONGEST) i)); | |
36a2283d PB |
961 | /* This won't work if we're using thunks. */ |
962 | if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT) | |
963 | break; | |
e1ce8aa5 | 964 | offset = longest_to_int (value_as_long (value_field (entry, 0))); |
bcccec8c PB |
965 | /* If we use '<=' we can handle single inheritance |
966 | * where all offsets are zero - just use the first entry found. */ | |
967 | if (offset <= best_offset) | |
71b16efa JK |
968 | { |
969 | best_offset = offset; | |
970 | best_entry = entry; | |
971 | } | |
972 | } | |
71b16efa JK |
973 | /* Move the pointer according to BEST_ENTRY's offset, and figure |
974 | out what type we should return as the new pointer. */ | |
bcccec8c PB |
975 | if (best_entry == 0) |
976 | { | |
977 | /* An alternative method (which should no longer be necessary). | |
978 | * But we leave it in for future use, when we will hopefully | |
979 | * have optimizes the vtable to use thunks instead of offsets. */ | |
980 | /* Use the name of vtable itself to extract a base type. */ | |
f1c6dbf6 | 981 | demangled_name += 4; /* Skip _vt$ prefix. */ |
bcccec8c PB |
982 | } |
983 | else | |
984 | { | |
985 | pc_for_sym = value_as_pointer (value_field (best_entry, 2)); | |
986 | sym = find_pc_function (pc_for_sym); | |
8050a57b | 987 | demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI); |
bcccec8c PB |
988 | *(strchr (demangled_name, ':')) = '\0'; |
989 | } | |
71b16efa | 990 | sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0); |
2e4964ad FF |
991 | if (sym == NULL) |
992 | error ("could not find type declaration for `%s'", demangled_name); | |
bcccec8c PB |
993 | if (best_entry) |
994 | { | |
995 | free (demangled_name); | |
996 | arg = value_add (value_cast (builtin_type_int, arg), | |
997 | value_field (best_entry, 0)); | |
998 | } | |
7cb0f870 | 999 | else arg = in_arg; |
71b16efa JK |
1000 | VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym)); |
1001 | return arg; | |
1002 | } | |
1003 | ||
1004 | /* ARG is a pointer object of type TYPE. If TYPE has virtual | |
1005 | function tables, probe ARG's tables (including the vtables | |
1006 | of its baseclasses) to figure out the most derived type that ARG | |
1007 | could actually be a pointer to. */ | |
1008 | ||
82a2edfb | 1009 | value_ptr |
71b16efa | 1010 | value_from_vtable_info (arg, type) |
82a2edfb | 1011 | value_ptr arg; |
71b16efa JK |
1012 | struct type *type; |
1013 | { | |
1014 | /* Take care of preliminaries. */ | |
1015 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
1016 | fill_in_vptr_fieldno (type); | |
1017 | if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg)) | |
1018 | return 0; | |
1019 | ||
1020 | return value_headof (arg, 0, type); | |
1021 | } | |
1022 | ||
1410f5f1 JK |
1023 | /* Return true if the INDEXth field of TYPE is a virtual baseclass |
1024 | pointer which is for the base class whose type is BASECLASS. */ | |
1025 | ||
1026 | static int | |
1027 | vb_match (type, index, basetype) | |
1028 | struct type *type; | |
1029 | int index; | |
1030 | struct type *basetype; | |
1031 | { | |
1032 | struct type *fieldtype; | |
1410f5f1 JK |
1033 | char *name = TYPE_FIELD_NAME (type, index); |
1034 | char *field_class_name = NULL; | |
1035 | ||
1036 | if (*name != '_') | |
1037 | return 0; | |
f1c6dbf6 | 1038 | /* gcc 2.4 uses _vb$. */ |
1410f5f1 JK |
1039 | if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER) |
1040 | field_class_name = name + 4; | |
f1c6dbf6 | 1041 | /* gcc 2.5 will use __vb_. */ |
1410f5f1 JK |
1042 | if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_') |
1043 | field_class_name = name + 5; | |
1044 | ||
1045 | if (field_class_name == NULL) | |
1046 | /* This field is not a virtual base class pointer. */ | |
1047 | return 0; | |
1048 | ||
1049 | /* It's a virtual baseclass pointer, now we just need to find out whether | |
1050 | it is for this baseclass. */ | |
1051 | fieldtype = TYPE_FIELD_TYPE (type, index); | |
1052 | if (fieldtype == NULL | |
1053 | || TYPE_CODE (fieldtype) != TYPE_CODE_PTR) | |
1054 | /* "Can't happen". */ | |
1055 | return 0; | |
1056 | ||
1057 | /* What we check for is that either the types are equal (needed for | |
1058 | nameless types) or have the same name. This is ugly, and a more | |
1059 | elegant solution should be devised (which would probably just push | |
1060 | the ugliness into symbol reading unless we change the stabs format). */ | |
1061 | if (TYPE_TARGET_TYPE (fieldtype) == basetype) | |
1062 | return 1; | |
1063 | ||
1064 | if (TYPE_NAME (basetype) != NULL | |
1065 | && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL | |
1066 | && STREQ (TYPE_NAME (basetype), | |
1067 | TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)))) | |
1068 | return 1; | |
1069 | return 0; | |
1070 | } | |
1071 | ||
94603999 JG |
1072 | /* Compute the offset of the baseclass which is |
1073 | the INDEXth baseclass of class TYPE, for a value ARG, | |
1074 | wih extra offset of OFFSET. | |
1075 | The result is the offste of the baseclass value relative | |
1076 | to (the address of)(ARG) + OFFSET. | |
1077 | ||
1078 | -1 is returned on error. */ | |
1079 | ||
1080 | int | |
1081 | baseclass_offset (type, index, arg, offset) | |
1082 | struct type *type; | |
1083 | int index; | |
82a2edfb | 1084 | value_ptr arg; |
94603999 JG |
1085 | int offset; |
1086 | { | |
1087 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1088 | ||
1089 | if (BASETYPE_VIA_VIRTUAL (type, index)) | |
1090 | { | |
1091 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1092 | register int i, len = TYPE_NFIELDS (type); | |
1093 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
94603999 | 1094 | |
94603999 JG |
1095 | /* First look for the virtual baseclass pointer |
1096 | in the fields. */ | |
1097 | for (i = n_baseclasses; i < len; i++) | |
1098 | { | |
1410f5f1 | 1099 | if (vb_match (type, i, basetype)) |
94603999 JG |
1100 | { |
1101 | CORE_ADDR addr | |
1102 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
1103 | VALUE_CONTENTS (arg) + VALUE_OFFSET (arg) | |
1104 | + offset | |
1105 | + (TYPE_FIELD_BITPOS (type, i) / 8)); | |
1106 | ||
1107 | if (VALUE_LVAL (arg) != lval_memory) | |
1108 | return -1; | |
1109 | ||
1110 | return addr - | |
1111 | (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset); | |
1112 | } | |
1113 | } | |
1114 | /* Not in the fields, so try looking through the baseclasses. */ | |
1115 | for (i = index+1; i < n_baseclasses; i++) | |
1116 | { | |
1117 | int boffset = | |
1118 | baseclass_offset (type, i, arg, offset); | |
1119 | if (boffset) | |
1120 | return boffset; | |
1121 | } | |
1122 | /* Not found. */ | |
1123 | return -1; | |
1124 | } | |
1125 | ||
1126 | /* Baseclass is easily computed. */ | |
1127 | return TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1128 | } | |
1129 | ||
dd3b648e | 1130 | /* Compute the address of the baseclass which is |
f1d77e90 | 1131 | the INDEXth baseclass of class TYPE. The TYPE base |
71b16efa JK |
1132 | of the object is at VALADDR. |
1133 | ||
1134 | If ERRP is non-NULL, set *ERRP to be the errno code of any error, | |
1135 | or 0 if no error. In that case the return value is not the address | |
1136 | of the baseclasss, but the address which could not be read | |
1137 | successfully. */ | |
dd3b648e | 1138 | |
94603999 JG |
1139 | /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */ |
1140 | ||
dd3b648e | 1141 | char * |
71b16efa | 1142 | baseclass_addr (type, index, valaddr, valuep, errp) |
dd3b648e RP |
1143 | struct type *type; |
1144 | int index; | |
1145 | char *valaddr; | |
82a2edfb | 1146 | value_ptr *valuep; |
71b16efa | 1147 | int *errp; |
dd3b648e RP |
1148 | { |
1149 | struct type *basetype = TYPE_BASECLASS (type, index); | |
1150 | ||
71b16efa JK |
1151 | if (errp) |
1152 | *errp = 0; | |
aec4cb91 | 1153 | |
dd3b648e RP |
1154 | if (BASETYPE_VIA_VIRTUAL (type, index)) |
1155 | { | |
1156 | /* Must hunt for the pointer to this virtual baseclass. */ | |
1157 | register int i, len = TYPE_NFIELDS (type); | |
1158 | register int n_baseclasses = TYPE_N_BASECLASSES (type); | |
dd3b648e | 1159 | |
dd3b648e RP |
1160 | /* First look for the virtual baseclass pointer |
1161 | in the fields. */ | |
1162 | for (i = n_baseclasses; i < len; i++) | |
1163 | { | |
1410f5f1 | 1164 | if (vb_match (type, i, basetype)) |
dd3b648e | 1165 | { |
82a2edfb | 1166 | value_ptr val = allocate_value (basetype); |
71b16efa JK |
1167 | CORE_ADDR addr; |
1168 | int status; | |
1169 | ||
e1ce8aa5 JK |
1170 | addr |
1171 | = unpack_pointer (TYPE_FIELD_TYPE (type, i), | |
71b16efa JK |
1172 | valaddr + (TYPE_FIELD_BITPOS (type, i) / 8)); |
1173 | ||
1174 | status = target_read_memory (addr, | |
1175 | VALUE_CONTENTS_RAW (val), | |
4f6f12f9 | 1176 | TYPE_LENGTH (basetype)); |
71b16efa JK |
1177 | VALUE_LVAL (val) = lval_memory; |
1178 | VALUE_ADDRESS (val) = addr; | |
1179 | ||
1180 | if (status != 0) | |
1181 | { | |
1182 | if (valuep) | |
1183 | *valuep = NULL; | |
1184 | release_value (val); | |
1185 | value_free (val); | |
1186 | if (errp) | |
1187 | *errp = status; | |
1188 | return (char *)addr; | |
1189 | } | |
1190 | else | |
1191 | { | |
1192 | if (valuep) | |
1193 | *valuep = val; | |
1194 | return (char *) VALUE_CONTENTS (val); | |
1195 | } | |
dd3b648e RP |
1196 | } |
1197 | } | |
1198 | /* Not in the fields, so try looking through the baseclasses. */ | |
1199 | for (i = index+1; i < n_baseclasses; i++) | |
1200 | { | |
1201 | char *baddr; | |
1202 | ||
e1ce8aa5 | 1203 | baddr = baseclass_addr (type, i, valaddr, valuep, errp); |
dd3b648e RP |
1204 | if (baddr) |
1205 | return baddr; | |
1206 | } | |
1207 | /* Not found. */ | |
1208 | if (valuep) | |
1209 | *valuep = 0; | |
1210 | return 0; | |
1211 | } | |
1212 | ||
1213 | /* Baseclass is easily computed. */ | |
1214 | if (valuep) | |
1215 | *valuep = 0; | |
1216 | return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8; | |
1217 | } | |
dd3b648e | 1218 | \f |
4db8e515 FF |
1219 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at |
1220 | VALADDR. | |
1221 | ||
1222 | Extracting bits depends on endianness of the machine. Compute the | |
1223 | number of least significant bits to discard. For big endian machines, | |
1224 | we compute the total number of bits in the anonymous object, subtract | |
1225 | off the bit count from the MSB of the object to the MSB of the | |
1226 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1227 | count. For little endian machines, the discard count is simply the | |
1228 | number of bits from the LSB of the anonymous object to the LSB of the | |
1229 | bitfield. | |
1230 | ||
1231 | If the field is signed, we also do sign extension. */ | |
1232 | ||
1233 | LONGEST | |
dd3b648e RP |
1234 | unpack_field_as_long (type, valaddr, fieldno) |
1235 | struct type *type; | |
1236 | char *valaddr; | |
1237 | int fieldno; | |
1238 | { | |
4db8e515 FF |
1239 | unsigned LONGEST val; |
1240 | unsigned LONGEST valmask; | |
dd3b648e RP |
1241 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); |
1242 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
4db8e515 | 1243 | int lsbcount; |
dd3b648e | 1244 | |
34df79fc | 1245 | val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); |
4db8e515 FF |
1246 | |
1247 | /* Extract bits. See comment above. */ | |
dd3b648e | 1248 | |
122ad9ab | 1249 | #if BITS_BIG_ENDIAN |
4db8e515 | 1250 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); |
dd3b648e | 1251 | #else |
4db8e515 | 1252 | lsbcount = (bitpos % 8); |
dd3b648e | 1253 | #endif |
4db8e515 | 1254 | val >>= lsbcount; |
dd3b648e | 1255 | |
4db8e515 FF |
1256 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. |
1257 | If the field is signed, and is negative, then sign extend. */ | |
1258 | ||
1259 | if ((bitsize > 0) && (bitsize < 8 * sizeof (val))) | |
1260 | { | |
1261 | valmask = (((unsigned LONGEST) 1) << bitsize) - 1; | |
1262 | val &= valmask; | |
1263 | if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno))) | |
1264 | { | |
1265 | if (val & (valmask ^ (valmask >> 1))) | |
1266 | { | |
1267 | val |= ~valmask; | |
1268 | } | |
1269 | } | |
1270 | } | |
1271 | return (val); | |
dd3b648e RP |
1272 | } |
1273 | ||
3f2e006b JG |
1274 | /* Modify the value of a bitfield. ADDR points to a block of memory in |
1275 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1276 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
1277 | indicate which bits (in target bit order) comprise the bitfield. */ | |
1278 | ||
dd3b648e RP |
1279 | void |
1280 | modify_field (addr, fieldval, bitpos, bitsize) | |
1281 | char *addr; | |
58e49e21 | 1282 | LONGEST fieldval; |
dd3b648e RP |
1283 | int bitpos, bitsize; |
1284 | { | |
58e49e21 | 1285 | LONGEST oword; |
dd3b648e | 1286 | |
c3a21801 JG |
1287 | /* Reject values too big to fit in the field in question, |
1288 | otherwise adjoining fields may be corrupted. */ | |
61a7292f SG |
1289 | if (bitsize < (8 * sizeof (fieldval)) |
1290 | && 0 != (fieldval & ~((1<<bitsize)-1))) | |
58e49e21 JK |
1291 | { |
1292 | /* FIXME: would like to include fieldval in the message, but | |
1293 | we don't have a sprintf_longest. */ | |
1294 | error ("Value does not fit in %d bits.", bitsize); | |
1295 | } | |
34df79fc JK |
1296 | |
1297 | oword = extract_signed_integer (addr, sizeof oword); | |
dd3b648e | 1298 | |
3f2e006b | 1299 | /* Shifting for bit field depends on endianness of the target machine. */ |
122ad9ab | 1300 | #if BITS_BIG_ENDIAN |
dd3b648e RP |
1301 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; |
1302 | #endif | |
1303 | ||
58e49e21 | 1304 | /* Mask out old value, while avoiding shifts >= size of oword */ |
c3a21801 | 1305 | if (bitsize < 8 * sizeof (oword)) |
58e49e21 | 1306 | oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos); |
c3a21801 | 1307 | else |
58e49e21 | 1308 | oword &= ~((~(unsigned LONGEST)0) << bitpos); |
dd3b648e | 1309 | oword |= fieldval << bitpos; |
3f2e006b | 1310 | |
34df79fc | 1311 | store_signed_integer (addr, sizeof oword, oword); |
dd3b648e RP |
1312 | } |
1313 | \f | |
1314 | /* Convert C numbers into newly allocated values */ | |
1315 | ||
82a2edfb | 1316 | value_ptr |
96b2f51c | 1317 | value_from_longest (type, num) |
dd3b648e RP |
1318 | struct type *type; |
1319 | register LONGEST num; | |
1320 | { | |
82a2edfb | 1321 | register value_ptr val = allocate_value (type); |
dd3b648e RP |
1322 | register enum type_code code = TYPE_CODE (type); |
1323 | register int len = TYPE_LENGTH (type); | |
1324 | ||
34df79fc | 1325 | switch (code) |
dd3b648e | 1326 | { |
34df79fc JK |
1327 | case TYPE_CODE_INT: |
1328 | case TYPE_CODE_CHAR: | |
1329 | case TYPE_CODE_ENUM: | |
1330 | case TYPE_CODE_BOOL: | |
b96bc1e4 | 1331 | case TYPE_CODE_RANGE: |
34df79fc JK |
1332 | store_signed_integer (VALUE_CONTENTS_RAW (val), len, num); |
1333 | break; | |
1334 | ||
1335 | case TYPE_CODE_REF: | |
1336 | case TYPE_CODE_PTR: | |
1337 | /* This assumes that all pointers of a given length | |
1338 | have the same form. */ | |
1339 | store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num); | |
1340 | break; | |
1341 | ||
1342 | default: | |
1343 | error ("Unexpected type encountered for integer constant."); | |
dd3b648e | 1344 | } |
dd3b648e RP |
1345 | return val; |
1346 | } | |
1347 | ||
82a2edfb | 1348 | value_ptr |
dd3b648e RP |
1349 | value_from_double (type, num) |
1350 | struct type *type; | |
1351 | double num; | |
1352 | { | |
82a2edfb | 1353 | register value_ptr val = allocate_value (type); |
dd3b648e RP |
1354 | register enum type_code code = TYPE_CODE (type); |
1355 | register int len = TYPE_LENGTH (type); | |
1356 | ||
1357 | if (code == TYPE_CODE_FLT) | |
1358 | { | |
bf5c0d64 | 1359 | store_floating (VALUE_CONTENTS_RAW (val), len, num); |
dd3b648e RP |
1360 | } |
1361 | else | |
1362 | error ("Unexpected type encountered for floating constant."); | |
1363 | ||
dd3b648e RP |
1364 | return val; |
1365 | } | |
1366 | \f | |
1367 | /* Deal with the value that is "about to be returned". */ | |
1368 | ||
1369 | /* Return the value that a function returning now | |
1370 | would be returning to its caller, assuming its type is VALTYPE. | |
1371 | RETBUF is where we look for what ought to be the contents | |
1372 | of the registers (in raw form). This is because it is often | |
1373 | desirable to restore old values to those registers | |
1374 | after saving the contents of interest, and then call | |
1375 | this function using the saved values. | |
1376 | struct_return is non-zero when the function in question is | |
1377 | using the structure return conventions on the machine in question; | |
1378 | 0 when it is using the value returning conventions (this often | |
1379 | means returning pointer to where structure is vs. returning value). */ | |
1380 | ||
82a2edfb | 1381 | value_ptr |
dd3b648e RP |
1382 | value_being_returned (valtype, retbuf, struct_return) |
1383 | register struct type *valtype; | |
1384 | char retbuf[REGISTER_BYTES]; | |
1385 | int struct_return; | |
1386 | /*ARGSUSED*/ | |
1387 | { | |
82a2edfb | 1388 | register value_ptr val; |
dd3b648e RP |
1389 | CORE_ADDR addr; |
1390 | ||
1391 | #if defined (EXTRACT_STRUCT_VALUE_ADDRESS) | |
1392 | /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */ | |
1393 | if (struct_return) { | |
1394 | addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf); | |
1395 | if (!addr) | |
1396 | error ("Function return value unknown"); | |
1397 | return value_at (valtype, addr); | |
1398 | } | |
1399 | #endif | |
1400 | ||
1401 | val = allocate_value (valtype); | |
1402 | EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val)); | |
1403 | ||
1404 | return val; | |
1405 | } | |
1406 | ||
1407 | /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of | |
1408 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc | |
1409 | and TYPE is the type (which is known to be struct, union or array). | |
1410 | ||
1411 | On most machines, the struct convention is used unless we are | |
1412 | using gcc and the type is of a special size. */ | |
9925b928 JK |
1413 | /* As of about 31 Mar 93, GCC was changed to be compatible with the |
1414 | native compiler. GCC 2.3.3 was the last release that did it the | |
1415 | old way. Since gcc2_compiled was not changed, we have no | |
1416 | way to correctly win in all cases, so we just do the right thing | |
1417 | for gcc1 and for gcc2 after this change. Thus it loses for gcc | |
1418 | 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled | |
1419 | would cause more chaos than dealing with some struct returns being | |
1420 | handled wrong. */ | |
dd3b648e RP |
1421 | #if !defined (USE_STRUCT_CONVENTION) |
1422 | #define USE_STRUCT_CONVENTION(gcc_p, type)\ | |
9925b928 JK |
1423 | (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \ |
1424 | || TYPE_LENGTH (value_type) == 2 \ | |
1425 | || TYPE_LENGTH (value_type) == 4 \ | |
1426 | || TYPE_LENGTH (value_type) == 8 \ | |
1427 | ) \ | |
dd3b648e RP |
1428 | )) |
1429 | #endif | |
1430 | ||
1431 | /* Return true if the function specified is using the structure returning | |
1432 | convention on this machine to return arguments, or 0 if it is using | |
1433 | the value returning convention. FUNCTION is the value representing | |
1434 | the function, FUNCADDR is the address of the function, and VALUE_TYPE | |
1435 | is the type returned by the function. GCC_P is nonzero if compiled | |
1436 | with GCC. */ | |
1437 | ||
1438 | int | |
1439 | using_struct_return (function, funcaddr, value_type, gcc_p) | |
82a2edfb | 1440 | value_ptr function; |
dd3b648e RP |
1441 | CORE_ADDR funcaddr; |
1442 | struct type *value_type; | |
1443 | int gcc_p; | |
1444 | /*ARGSUSED*/ | |
1445 | { | |
1446 | register enum type_code code = TYPE_CODE (value_type); | |
1447 | ||
1448 | if (code == TYPE_CODE_ERROR) | |
1449 | error ("Function return type unknown."); | |
1450 | ||
1451 | if (code == TYPE_CODE_STRUCT || | |
1452 | code == TYPE_CODE_UNION || | |
1453 | code == TYPE_CODE_ARRAY) | |
1454 | return USE_STRUCT_CONVENTION (gcc_p, value_type); | |
1455 | ||
1456 | return 0; | |
1457 | } | |
1458 | ||
1459 | /* Store VAL so it will be returned if a function returns now. | |
1460 | Does not verify that VAL's type matches what the current | |
1461 | function wants to return. */ | |
1462 | ||
1463 | void | |
1464 | set_return_value (val) | |
82a2edfb | 1465 | value_ptr val; |
dd3b648e RP |
1466 | { |
1467 | register enum type_code code = TYPE_CODE (VALUE_TYPE (val)); | |
1468 | double dbuf; | |
1469 | LONGEST lbuf; | |
1470 | ||
1471 | if (code == TYPE_CODE_ERROR) | |
1472 | error ("Function return type unknown."); | |
1473 | ||
f1d77e90 JG |
1474 | if ( code == TYPE_CODE_STRUCT |
1475 | || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */ | |
1476 | error ("GDB does not support specifying a struct or union return value."); | |
dd3b648e RP |
1477 | |
1478 | /* FIXME, this is bogus. We don't know what the return conventions | |
1479 | are, or how values should be promoted.... */ | |
1480 | if (code == TYPE_CODE_FLT) | |
1481 | { | |
1482 | dbuf = value_as_double (val); | |
1483 | ||
1484 | STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf); | |
1485 | } | |
1486 | else | |
1487 | { | |
1488 | lbuf = value_as_long (val); | |
1489 | STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf); | |
1490 | } | |
1491 | } | |
1492 | \f | |
1493 | void | |
1494 | _initialize_values () | |
1495 | { | |
f266e564 | 1496 | add_cmd ("convenience", no_class, show_convenience, |
dd3b648e RP |
1497 | "Debugger convenience (\"$foo\") variables.\n\ |
1498 | These variables are created when you assign them values;\n\ | |
1499 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\ | |
1500 | A few convenience variables are given values automatically:\n\ | |
1501 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
f266e564 JK |
1502 | \"$__\" holds the contents of the last address examined with \"x\".", |
1503 | &showlist); | |
dd3b648e | 1504 | |
f266e564 JK |
1505 | add_cmd ("values", no_class, show_values, |
1506 | "Elements of value history around item number IDX (or last ten).", | |
1507 | &showlist); | |
dd3b648e | 1508 | } |