]>
Commit | Line | Data |
---|---|---|
a7aad9aa | 1 | /* Target-dependent code for the HP PA-RISC architecture. |
cda5a58a | 2 | |
e2882c85 | 3 | Copyright (C) 1986-2018 Free Software Foundation, Inc. |
c906108c SS |
4 | |
5 | Contributed by the Center for Software Science at the | |
6 | University of Utah ([email protected]). | |
7 | ||
c5aa993b | 8 | This file is part of GDB. |
c906108c | 9 | |
c5aa993b JM |
10 | This program is free software; you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 12 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 13 | (at your option) any later version. |
c906108c | 14 | |
c5aa993b JM |
15 | This program is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
c906108c | 19 | |
c5aa993b | 20 | You should have received a copy of the GNU General Public License |
a9762ec7 | 21 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
22 | |
23 | #include "defs.h" | |
c906108c SS |
24 | #include "bfd.h" |
25 | #include "inferior.h" | |
4e052eda | 26 | #include "regcache.h" |
e5d66720 | 27 | #include "completer.h" |
59623e27 | 28 | #include "osabi.h" |
343af405 | 29 | #include "arch-utils.h" |
1777feb0 | 30 | /* For argument passing to the inferior. */ |
c906108c | 31 | #include "symtab.h" |
fde2cceb | 32 | #include "dis-asm.h" |
26d08f08 AC |
33 | #include "trad-frame.h" |
34 | #include "frame-unwind.h" | |
35 | #include "frame-base.h" | |
c906108c | 36 | |
c906108c SS |
37 | #include "gdbcore.h" |
38 | #include "gdbcmd.h" | |
e6bb342a | 39 | #include "gdbtypes.h" |
c906108c | 40 | #include "objfiles.h" |
3ff7cf9e | 41 | #include "hppa-tdep.h" |
325fac50 | 42 | #include <algorithm> |
c906108c | 43 | |
369aa520 RC |
44 | static int hppa_debug = 0; |
45 | ||
60383d10 | 46 | /* Some local constants. */ |
3ff7cf9e JB |
47 | static const int hppa32_num_regs = 128; |
48 | static const int hppa64_num_regs = 96; | |
49 | ||
61a12cfa JK |
50 | /* We use the objfile->obj_private pointer for two things: |
51 | * 1. An unwind table; | |
52 | * | |
53 | * 2. A pointer to any associated shared library object. | |
54 | * | |
55 | * #defines are used to help refer to these objects. | |
56 | */ | |
57 | ||
58 | /* Info about the unwind table associated with an object file. | |
59 | * This is hung off of the "objfile->obj_private" pointer, and | |
60 | * is allocated in the objfile's psymbol obstack. This allows | |
61 | * us to have unique unwind info for each executable and shared | |
62 | * library that we are debugging. | |
63 | */ | |
64 | struct hppa_unwind_info | |
65 | { | |
66 | struct unwind_table_entry *table; /* Pointer to unwind info */ | |
67 | struct unwind_table_entry *cache; /* Pointer to last entry we found */ | |
68 | int last; /* Index of last entry */ | |
69 | }; | |
70 | ||
71 | struct hppa_objfile_private | |
72 | { | |
73 | struct hppa_unwind_info *unwind_info; /* a pointer */ | |
74 | struct so_list *so_info; /* a pointer */ | |
75 | CORE_ADDR dp; | |
76 | ||
77 | int dummy_call_sequence_reg; | |
78 | CORE_ADDR dummy_call_sequence_addr; | |
79 | }; | |
80 | ||
7c46b9fb RC |
81 | /* hppa-specific object data -- unwind and solib info. |
82 | TODO/maybe: think about splitting this into two parts; the unwind data is | |
83 | common to all hppa targets, but is only used in this file; we can register | |
84 | that separately and make this static. The solib data is probably hpux- | |
85 | specific, so we can create a separate extern objfile_data that is registered | |
86 | by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */ | |
61a12cfa | 87 | static const struct objfile_data *hppa_objfile_priv_data = NULL; |
7c46b9fb | 88 | |
1777feb0 | 89 | /* Get at various relevent fields of an instruction word. */ |
e2ac8128 JB |
90 | #define MASK_5 0x1f |
91 | #define MASK_11 0x7ff | |
92 | #define MASK_14 0x3fff | |
93 | #define MASK_21 0x1fffff | |
94 | ||
e2ac8128 JB |
95 | /* Sizes (in bytes) of the native unwind entries. */ |
96 | #define UNWIND_ENTRY_SIZE 16 | |
97 | #define STUB_UNWIND_ENTRY_SIZE 8 | |
98 | ||
c906108c | 99 | /* Routines to extract various sized constants out of hppa |
1777feb0 | 100 | instructions. */ |
c906108c SS |
101 | |
102 | /* This assumes that no garbage lies outside of the lower bits of | |
1777feb0 | 103 | value. */ |
c906108c | 104 | |
63807e1d | 105 | static int |
abc485a1 | 106 | hppa_sign_extend (unsigned val, unsigned bits) |
c906108c | 107 | { |
66c6502d | 108 | return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val); |
c906108c SS |
109 | } |
110 | ||
1777feb0 | 111 | /* For many immediate values the sign bit is the low bit! */ |
c906108c | 112 | |
63807e1d | 113 | static int |
abc485a1 | 114 | hppa_low_hppa_sign_extend (unsigned val, unsigned bits) |
c906108c | 115 | { |
66c6502d | 116 | return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1); |
c906108c SS |
117 | } |
118 | ||
e2ac8128 | 119 | /* Extract the bits at positions between FROM and TO, using HP's numbering |
1777feb0 | 120 | (MSB = 0). */ |
e2ac8128 | 121 | |
abc485a1 RC |
122 | int |
123 | hppa_get_field (unsigned word, int from, int to) | |
e2ac8128 JB |
124 | { |
125 | return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); | |
126 | } | |
127 | ||
1777feb0 | 128 | /* Extract the immediate field from a ld{bhw}s instruction. */ |
c906108c | 129 | |
abc485a1 RC |
130 | int |
131 | hppa_extract_5_load (unsigned word) | |
c906108c | 132 | { |
abc485a1 | 133 | return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5); |
c906108c SS |
134 | } |
135 | ||
1777feb0 | 136 | /* Extract the immediate field from a break instruction. */ |
c906108c | 137 | |
abc485a1 RC |
138 | unsigned |
139 | hppa_extract_5r_store (unsigned word) | |
c906108c SS |
140 | { |
141 | return (word & MASK_5); | |
142 | } | |
143 | ||
1777feb0 | 144 | /* Extract the immediate field from a {sr}sm instruction. */ |
c906108c | 145 | |
abc485a1 RC |
146 | unsigned |
147 | hppa_extract_5R_store (unsigned word) | |
c906108c SS |
148 | { |
149 | return (word >> 16 & MASK_5); | |
150 | } | |
151 | ||
1777feb0 | 152 | /* Extract a 14 bit immediate field. */ |
c906108c | 153 | |
abc485a1 RC |
154 | int |
155 | hppa_extract_14 (unsigned word) | |
c906108c | 156 | { |
abc485a1 | 157 | return hppa_low_hppa_sign_extend (word & MASK_14, 14); |
c906108c SS |
158 | } |
159 | ||
1777feb0 | 160 | /* Extract a 21 bit constant. */ |
c906108c | 161 | |
abc485a1 RC |
162 | int |
163 | hppa_extract_21 (unsigned word) | |
c906108c SS |
164 | { |
165 | int val; | |
166 | ||
167 | word &= MASK_21; | |
168 | word <<= 11; | |
abc485a1 | 169 | val = hppa_get_field (word, 20, 20); |
c906108c | 170 | val <<= 11; |
abc485a1 | 171 | val |= hppa_get_field (word, 9, 19); |
c906108c | 172 | val <<= 2; |
abc485a1 | 173 | val |= hppa_get_field (word, 5, 6); |
c906108c | 174 | val <<= 5; |
abc485a1 | 175 | val |= hppa_get_field (word, 0, 4); |
c906108c | 176 | val <<= 2; |
abc485a1 RC |
177 | val |= hppa_get_field (word, 7, 8); |
178 | return hppa_sign_extend (val, 21) << 11; | |
c906108c SS |
179 | } |
180 | ||
c906108c | 181 | /* extract a 17 bit constant from branch instructions, returning the |
1777feb0 | 182 | 19 bit signed value. */ |
c906108c | 183 | |
abc485a1 RC |
184 | int |
185 | hppa_extract_17 (unsigned word) | |
c906108c | 186 | { |
abc485a1 RC |
187 | return hppa_sign_extend (hppa_get_field (word, 19, 28) | |
188 | hppa_get_field (word, 29, 29) << 10 | | |
189 | hppa_get_field (word, 11, 15) << 11 | | |
c906108c SS |
190 | (word & 0x1) << 16, 17) << 2; |
191 | } | |
3388d7ff RC |
192 | |
193 | CORE_ADDR | |
194 | hppa_symbol_address(const char *sym) | |
195 | { | |
3b7344d5 | 196 | struct bound_minimal_symbol minsym; |
3388d7ff RC |
197 | |
198 | minsym = lookup_minimal_symbol (sym, NULL, NULL); | |
3b7344d5 | 199 | if (minsym.minsym) |
77e371c0 | 200 | return BMSYMBOL_VALUE_ADDRESS (minsym); |
3388d7ff RC |
201 | else |
202 | return (CORE_ADDR)-1; | |
203 | } | |
77d18ded | 204 | |
61a12cfa | 205 | static struct hppa_objfile_private * |
77d18ded RC |
206 | hppa_init_objfile_priv_data (struct objfile *objfile) |
207 | { | |
208 | struct hppa_objfile_private *priv; | |
209 | ||
210 | priv = (struct hppa_objfile_private *) | |
211 | obstack_alloc (&objfile->objfile_obstack, | |
212 | sizeof (struct hppa_objfile_private)); | |
213 | set_objfile_data (objfile, hppa_objfile_priv_data, priv); | |
214 | memset (priv, 0, sizeof (*priv)); | |
215 | ||
216 | return priv; | |
217 | } | |
c906108c SS |
218 | \f |
219 | ||
220 | /* Compare the start address for two unwind entries returning 1 if | |
221 | the first address is larger than the second, -1 if the second is | |
222 | larger than the first, and zero if they are equal. */ | |
223 | ||
224 | static int | |
fba45db2 | 225 | compare_unwind_entries (const void *arg1, const void *arg2) |
c906108c | 226 | { |
9a3c8263 SM |
227 | const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1; |
228 | const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2; | |
c906108c SS |
229 | |
230 | if (a->region_start > b->region_start) | |
231 | return 1; | |
232 | else if (a->region_start < b->region_start) | |
233 | return -1; | |
234 | else | |
235 | return 0; | |
236 | } | |
237 | ||
53a5351d | 238 | static void |
fdd72f95 | 239 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *data) |
53a5351d | 240 | { |
fdd72f95 | 241 | if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
53a5351d | 242 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
fdd72f95 RC |
243 | { |
244 | bfd_vma value = section->vma - section->filepos; | |
245 | CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data; | |
246 | ||
247 | if (value < *low_text_segment_address) | |
248 | *low_text_segment_address = value; | |
249 | } | |
53a5351d JM |
250 | } |
251 | ||
c906108c | 252 | static void |
fba45db2 | 253 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
1777feb0 | 254 | asection *section, unsigned int entries, |
241fd515 | 255 | size_t size, CORE_ADDR text_offset) |
c906108c SS |
256 | { |
257 | /* We will read the unwind entries into temporary memory, then | |
258 | fill in the actual unwind table. */ | |
fdd72f95 | 259 | |
c906108c SS |
260 | if (size > 0) |
261 | { | |
5db8bbe5 | 262 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
c906108c SS |
263 | unsigned long tmp; |
264 | unsigned i; | |
224c3ddb | 265 | char *buf = (char *) alloca (size); |
fdd72f95 | 266 | CORE_ADDR low_text_segment_address; |
c906108c | 267 | |
fdd72f95 | 268 | /* For ELF targets, then unwinds are supposed to |
1777feb0 | 269 | be segment relative offsets instead of absolute addresses. |
c2c6d25f JM |
270 | |
271 | Note that when loading a shared library (text_offset != 0) the | |
272 | unwinds are already relative to the text_offset that will be | |
273 | passed in. */ | |
5db8bbe5 | 274 | if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0) |
53a5351d | 275 | { |
fdd72f95 RC |
276 | low_text_segment_address = -1; |
277 | ||
53a5351d | 278 | bfd_map_over_sections (objfile->obfd, |
fdd72f95 RC |
279 | record_text_segment_lowaddr, |
280 | &low_text_segment_address); | |
53a5351d | 281 | |
fdd72f95 | 282 | text_offset = low_text_segment_address; |
53a5351d | 283 | } |
5db8bbe5 | 284 | else if (gdbarch_tdep (gdbarch)->solib_get_text_base) |
acf86d54 | 285 | { |
5db8bbe5 | 286 | text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile); |
acf86d54 | 287 | } |
53a5351d | 288 | |
c906108c SS |
289 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
290 | ||
291 | /* Now internalize the information being careful to handle host/target | |
c5aa993b | 292 | endian issues. */ |
c906108c SS |
293 | for (i = 0; i < entries; i++) |
294 | { | |
295 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
c5aa993b | 296 | (bfd_byte *) buf); |
c906108c SS |
297 | table[i].region_start += text_offset; |
298 | buf += 4; | |
c5aa993b | 299 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
300 | table[i].region_end += text_offset; |
301 | buf += 4; | |
c5aa993b | 302 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
303 | buf += 4; |
304 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
305 | table[i].Millicode = (tmp >> 30) & 0x1; | |
306 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
307 | table[i].Region_description = (tmp >> 27) & 0x3; | |
6fcecea0 | 308 | table[i].reserved = (tmp >> 26) & 0x1; |
c906108c SS |
309 | table[i].Entry_SR = (tmp >> 25) & 0x1; |
310 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
311 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
312 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
313 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
314 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
315 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
316 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
317 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
6fcecea0 | 318 | table[i].sr4export = (tmp >> 9) & 0x1; |
c906108c SS |
319 | table[i].cxx_info = (tmp >> 8) & 0x1; |
320 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
321 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
6fcecea0 | 322 | table[i].reserved1 = (tmp >> 5) & 0x1; |
c906108c SS |
323 | table[i].Save_SP = (tmp >> 4) & 0x1; |
324 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
325 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
6fcecea0 | 326 | table[i].save_r19 = (tmp >> 1) & 0x1; |
c906108c | 327 | table[i].Cleanup_defined = tmp & 0x1; |
c5aa993b | 328 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
329 | buf += 4; |
330 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
331 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
332 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
6fcecea0 RC |
333 | table[i].alloca_frame = (tmp >> 28) & 0x1; |
334 | table[i].reserved2 = (tmp >> 27) & 0x1; | |
c906108c SS |
335 | table[i].Total_frame_size = tmp & 0x7ffffff; |
336 | ||
1777feb0 | 337 | /* Stub unwinds are handled elsewhere. */ |
c906108c SS |
338 | table[i].stub_unwind.stub_type = 0; |
339 | table[i].stub_unwind.padding = 0; | |
340 | } | |
341 | } | |
342 | } | |
343 | ||
344 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
345 | the object file. This info is used mainly by find_unwind_entry() to find | |
346 | out the stack frame size and frame pointer used by procedures. We put | |
347 | everything on the psymbol obstack in the objfile so that it automatically | |
348 | gets freed when the objfile is destroyed. */ | |
349 | ||
350 | static void | |
fba45db2 | 351 | read_unwind_info (struct objfile *objfile) |
c906108c | 352 | { |
d4f3574e | 353 | asection *unwind_sec, *stub_unwind_sec; |
241fd515 | 354 | size_t unwind_size, stub_unwind_size, total_size; |
d4f3574e | 355 | unsigned index, unwind_entries; |
c906108c SS |
356 | unsigned stub_entries, total_entries; |
357 | CORE_ADDR text_offset; | |
7c46b9fb RC |
358 | struct hppa_unwind_info *ui; |
359 | struct hppa_objfile_private *obj_private; | |
c906108c | 360 | |
a99dad3d | 361 | text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
7c46b9fb RC |
362 | ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack, |
363 | sizeof (struct hppa_unwind_info)); | |
c906108c SS |
364 | |
365 | ui->table = NULL; | |
366 | ui->cache = NULL; | |
367 | ui->last = -1; | |
368 | ||
d4f3574e SS |
369 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
370 | sections in a single executable. So we just iterate over every | |
371 | section in the BFD looking for unwinder sections intead of trying | |
1777feb0 | 372 | to do a lookup with bfd_get_section_by_name. |
c906108c | 373 | |
d4f3574e SS |
374 | First determine the total size of the unwind tables so that we |
375 | can allocate memory in a nice big hunk. */ | |
376 | total_entries = 0; | |
377 | for (unwind_sec = objfile->obfd->sections; | |
378 | unwind_sec; | |
379 | unwind_sec = unwind_sec->next) | |
c906108c | 380 | { |
d4f3574e SS |
381 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
382 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
383 | { | |
384 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
385 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
c906108c | 386 | |
d4f3574e SS |
387 | total_entries += unwind_entries; |
388 | } | |
c906108c SS |
389 | } |
390 | ||
d4f3574e | 391 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
043f5962 | 392 | use stub unwinds at the current time. */ |
d4f3574e SS |
393 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); |
394 | ||
c906108c SS |
395 | if (stub_unwind_sec) |
396 | { | |
397 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
398 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
399 | } | |
400 | else | |
401 | { | |
402 | stub_unwind_size = 0; | |
403 | stub_entries = 0; | |
404 | } | |
405 | ||
406 | /* Compute total number of unwind entries and their total size. */ | |
d4f3574e | 407 | total_entries += stub_entries; |
c906108c SS |
408 | total_size = total_entries * sizeof (struct unwind_table_entry); |
409 | ||
410 | /* Allocate memory for the unwind table. */ | |
411 | ui->table = (struct unwind_table_entry *) | |
8b92e4d5 | 412 | obstack_alloc (&objfile->objfile_obstack, total_size); |
c5aa993b | 413 | ui->last = total_entries - 1; |
c906108c | 414 | |
d4f3574e SS |
415 | /* Now read in each unwind section and internalize the standard unwind |
416 | entries. */ | |
c906108c | 417 | index = 0; |
d4f3574e SS |
418 | for (unwind_sec = objfile->obfd->sections; |
419 | unwind_sec; | |
420 | unwind_sec = unwind_sec->next) | |
421 | { | |
422 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
423 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
424 | { | |
425 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
426 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
427 | ||
428 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
429 | unwind_entries, unwind_size, text_offset); | |
430 | index += unwind_entries; | |
431 | } | |
432 | } | |
433 | ||
434 | /* Now read in and internalize the stub unwind entries. */ | |
c906108c SS |
435 | if (stub_unwind_size > 0) |
436 | { | |
437 | unsigned int i; | |
224c3ddb | 438 | char *buf = (char *) alloca (stub_unwind_size); |
c906108c SS |
439 | |
440 | /* Read in the stub unwind entries. */ | |
441 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
442 | 0, stub_unwind_size); | |
443 | ||
444 | /* Now convert them into regular unwind entries. */ | |
445 | for (i = 0; i < stub_entries; i++, index++) | |
446 | { | |
447 | /* Clear out the next unwind entry. */ | |
448 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
449 | ||
1777feb0 | 450 | /* Convert offset & size into region_start and region_end. |
c906108c SS |
451 | Stuff away the stub type into "reserved" fields. */ |
452 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
453 | (bfd_byte *) buf); | |
454 | ui->table[index].region_start += text_offset; | |
455 | buf += 4; | |
456 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
c5aa993b | 457 | (bfd_byte *) buf); |
c906108c SS |
458 | buf += 2; |
459 | ui->table[index].region_end | |
c5aa993b JM |
460 | = ui->table[index].region_start + 4 * |
461 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
c906108c SS |
462 | buf += 2; |
463 | } | |
464 | ||
465 | } | |
466 | ||
467 | /* Unwind table needs to be kept sorted. */ | |
468 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
469 | compare_unwind_entries); | |
470 | ||
471 | /* Keep a pointer to the unwind information. */ | |
7c46b9fb RC |
472 | obj_private = (struct hppa_objfile_private *) |
473 | objfile_data (objfile, hppa_objfile_priv_data); | |
474 | if (obj_private == NULL) | |
77d18ded RC |
475 | obj_private = hppa_init_objfile_priv_data (objfile); |
476 | ||
c906108c SS |
477 | obj_private->unwind_info = ui; |
478 | } | |
479 | ||
480 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
481 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
482 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
483 | search of the unwind tables, we depend upon them to be sorted. */ | |
484 | ||
485 | struct unwind_table_entry * | |
fba45db2 | 486 | find_unwind_entry (CORE_ADDR pc) |
c906108c SS |
487 | { |
488 | int first, middle, last; | |
489 | struct objfile *objfile; | |
7c46b9fb | 490 | struct hppa_objfile_private *priv; |
c906108c | 491 | |
369aa520 | 492 | if (hppa_debug) |
5af949e3 UW |
493 | fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ", |
494 | hex_string (pc)); | |
369aa520 | 495 | |
1777feb0 | 496 | /* A function at address 0? Not in HP-UX! */ |
c906108c | 497 | if (pc == (CORE_ADDR) 0) |
369aa520 RC |
498 | { |
499 | if (hppa_debug) | |
500 | fprintf_unfiltered (gdb_stdlog, "NULL }\n"); | |
501 | return NULL; | |
502 | } | |
c906108c SS |
503 | |
504 | ALL_OBJFILES (objfile) | |
c5aa993b | 505 | { |
7c46b9fb | 506 | struct hppa_unwind_info *ui; |
c5aa993b | 507 | ui = NULL; |
9a3c8263 SM |
508 | priv = ((struct hppa_objfile_private *) |
509 | objfile_data (objfile, hppa_objfile_priv_data)); | |
7c46b9fb RC |
510 | if (priv) |
511 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; | |
c906108c | 512 | |
c5aa993b JM |
513 | if (!ui) |
514 | { | |
515 | read_unwind_info (objfile); | |
9a3c8263 SM |
516 | priv = ((struct hppa_objfile_private *) |
517 | objfile_data (objfile, hppa_objfile_priv_data)); | |
7c46b9fb | 518 | if (priv == NULL) |
8a3fe4f8 | 519 | error (_("Internal error reading unwind information.")); |
7c46b9fb | 520 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; |
c5aa993b | 521 | } |
c906108c | 522 | |
1777feb0 | 523 | /* First, check the cache. */ |
c906108c | 524 | |
c5aa993b JM |
525 | if (ui->cache |
526 | && pc >= ui->cache->region_start | |
527 | && pc <= ui->cache->region_end) | |
369aa520 RC |
528 | { |
529 | if (hppa_debug) | |
5af949e3 UW |
530 | fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n", |
531 | hex_string ((uintptr_t) ui->cache)); | |
369aa520 RC |
532 | return ui->cache; |
533 | } | |
c906108c | 534 | |
1777feb0 | 535 | /* Not in the cache, do a binary search. */ |
c906108c | 536 | |
c5aa993b JM |
537 | first = 0; |
538 | last = ui->last; | |
c906108c | 539 | |
c5aa993b JM |
540 | while (first <= last) |
541 | { | |
542 | middle = (first + last) / 2; | |
543 | if (pc >= ui->table[middle].region_start | |
544 | && pc <= ui->table[middle].region_end) | |
545 | { | |
546 | ui->cache = &ui->table[middle]; | |
369aa520 | 547 | if (hppa_debug) |
5af949e3 UW |
548 | fprintf_unfiltered (gdb_stdlog, "%s }\n", |
549 | hex_string ((uintptr_t) ui->cache)); | |
c5aa993b JM |
550 | return &ui->table[middle]; |
551 | } | |
c906108c | 552 | |
c5aa993b JM |
553 | if (pc < ui->table[middle].region_start) |
554 | last = middle - 1; | |
555 | else | |
556 | first = middle + 1; | |
557 | } | |
558 | } /* ALL_OBJFILES() */ | |
369aa520 RC |
559 | |
560 | if (hppa_debug) | |
561 | fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n"); | |
562 | ||
c906108c SS |
563 | return NULL; |
564 | } | |
565 | ||
c9cf6e20 MG |
566 | /* Implement the stack_frame_destroyed_p gdbarch method. |
567 | ||
568 | The epilogue is defined here as the area either on the `bv' instruction | |
1777feb0 | 569 | itself or an instruction which destroys the function's stack frame. |
1fb24930 RC |
570 | |
571 | We do not assume that the epilogue is at the end of a function as we can | |
572 | also have return sequences in the middle of a function. */ | |
c9cf6e20 | 573 | |
1fb24930 | 574 | static int |
c9cf6e20 | 575 | hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
1fb24930 | 576 | { |
e17a4113 | 577 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
1fb24930 RC |
578 | unsigned long status; |
579 | unsigned int inst; | |
e362b510 | 580 | gdb_byte buf[4]; |
1fb24930 | 581 | |
8defab1a | 582 | status = target_read_memory (pc, buf, 4); |
1fb24930 RC |
583 | if (status != 0) |
584 | return 0; | |
585 | ||
e17a4113 | 586 | inst = extract_unsigned_integer (buf, 4, byte_order); |
1fb24930 RC |
587 | |
588 | /* The most common way to perform a stack adjustment ldo X(sp),sp | |
589 | We are destroying a stack frame if the offset is negative. */ | |
590 | if ((inst & 0xffffc000) == 0x37de0000 | |
591 | && hppa_extract_14 (inst) < 0) | |
592 | return 1; | |
593 | ||
594 | /* ldw,mb D(sp),X or ldd,mb D(sp),X */ | |
595 | if (((inst & 0x0fc010e0) == 0x0fc010e0 | |
596 | || (inst & 0x0fc010e0) == 0x0fc010e0) | |
597 | && hppa_extract_14 (inst) < 0) | |
598 | return 1; | |
599 | ||
600 | /* bv %r0(%rp) or bv,n %r0(%rp) */ | |
601 | if (inst == 0xe840c000 || inst == 0xe840c002) | |
602 | return 1; | |
603 | ||
604 | return 0; | |
605 | } | |
606 | ||
04180708 | 607 | constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04}; |
598cc9dc | 608 | |
04180708 | 609 | typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint; |
aaab4dba | 610 | |
e23457df AC |
611 | /* Return the name of a register. */ |
612 | ||
4a302917 | 613 | static const char * |
d93859e2 | 614 | hppa32_register_name (struct gdbarch *gdbarch, int i) |
e23457df | 615 | { |
a121b7c1 | 616 | static const char *names[] = { |
e23457df AC |
617 | "flags", "r1", "rp", "r3", |
618 | "r4", "r5", "r6", "r7", | |
619 | "r8", "r9", "r10", "r11", | |
620 | "r12", "r13", "r14", "r15", | |
621 | "r16", "r17", "r18", "r19", | |
622 | "r20", "r21", "r22", "r23", | |
623 | "r24", "r25", "r26", "dp", | |
624 | "ret0", "ret1", "sp", "r31", | |
625 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
626 | "pcsqt", "eiem", "iir", "isr", | |
627 | "ior", "ipsw", "goto", "sr4", | |
628 | "sr0", "sr1", "sr2", "sr3", | |
629 | "sr5", "sr6", "sr7", "cr0", | |
630 | "cr8", "cr9", "ccr", "cr12", | |
631 | "cr13", "cr24", "cr25", "cr26", | |
632 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
633 | "fpsr", "fpe1", "fpe2", "fpe3", | |
634 | "fpe4", "fpe5", "fpe6", "fpe7", | |
635 | "fr4", "fr4R", "fr5", "fr5R", | |
636 | "fr6", "fr6R", "fr7", "fr7R", | |
637 | "fr8", "fr8R", "fr9", "fr9R", | |
638 | "fr10", "fr10R", "fr11", "fr11R", | |
639 | "fr12", "fr12R", "fr13", "fr13R", | |
640 | "fr14", "fr14R", "fr15", "fr15R", | |
641 | "fr16", "fr16R", "fr17", "fr17R", | |
642 | "fr18", "fr18R", "fr19", "fr19R", | |
643 | "fr20", "fr20R", "fr21", "fr21R", | |
644 | "fr22", "fr22R", "fr23", "fr23R", | |
645 | "fr24", "fr24R", "fr25", "fr25R", | |
646 | "fr26", "fr26R", "fr27", "fr27R", | |
647 | "fr28", "fr28R", "fr29", "fr29R", | |
648 | "fr30", "fr30R", "fr31", "fr31R" | |
649 | }; | |
650 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
651 | return NULL; | |
652 | else | |
653 | return names[i]; | |
654 | } | |
655 | ||
4a302917 | 656 | static const char * |
d93859e2 | 657 | hppa64_register_name (struct gdbarch *gdbarch, int i) |
e23457df | 658 | { |
a121b7c1 | 659 | static const char *names[] = { |
e23457df AC |
660 | "flags", "r1", "rp", "r3", |
661 | "r4", "r5", "r6", "r7", | |
662 | "r8", "r9", "r10", "r11", | |
663 | "r12", "r13", "r14", "r15", | |
664 | "r16", "r17", "r18", "r19", | |
665 | "r20", "r21", "r22", "r23", | |
666 | "r24", "r25", "r26", "dp", | |
667 | "ret0", "ret1", "sp", "r31", | |
668 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
669 | "pcsqt", "eiem", "iir", "isr", | |
670 | "ior", "ipsw", "goto", "sr4", | |
671 | "sr0", "sr1", "sr2", "sr3", | |
672 | "sr5", "sr6", "sr7", "cr0", | |
673 | "cr8", "cr9", "ccr", "cr12", | |
674 | "cr13", "cr24", "cr25", "cr26", | |
675 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
676 | "fpsr", "fpe1", "fpe2", "fpe3", | |
677 | "fr4", "fr5", "fr6", "fr7", | |
678 | "fr8", "fr9", "fr10", "fr11", | |
679 | "fr12", "fr13", "fr14", "fr15", | |
680 | "fr16", "fr17", "fr18", "fr19", | |
681 | "fr20", "fr21", "fr22", "fr23", | |
682 | "fr24", "fr25", "fr26", "fr27", | |
683 | "fr28", "fr29", "fr30", "fr31" | |
684 | }; | |
685 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
686 | return NULL; | |
687 | else | |
688 | return names[i]; | |
689 | } | |
690 | ||
85c83e99 | 691 | /* Map dwarf DBX register numbers to GDB register numbers. */ |
1ef7fcb5 | 692 | static int |
d3f73121 | 693 | hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
1ef7fcb5 | 694 | { |
85c83e99 | 695 | /* The general registers and the sar are the same in both sets. */ |
0fde2c53 | 696 | if (reg >= 0 && reg <= 32) |
1ef7fcb5 RC |
697 | return reg; |
698 | ||
699 | /* fr4-fr31 are mapped from 72 in steps of 2. */ | |
85c83e99 | 700 | if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1)) |
1ef7fcb5 RC |
701 | return HPPA64_FP4_REGNUM + (reg - 72) / 2; |
702 | ||
1ef7fcb5 RC |
703 | return -1; |
704 | } | |
705 | ||
79508e1e AC |
706 | /* This function pushes a stack frame with arguments as part of the |
707 | inferior function calling mechanism. | |
708 | ||
709 | This is the version of the function for the 32-bit PA machines, in | |
710 | which later arguments appear at lower addresses. (The stack always | |
711 | grows towards higher addresses.) | |
712 | ||
713 | We simply allocate the appropriate amount of stack space and put | |
714 | arguments into their proper slots. */ | |
715 | ||
4a302917 | 716 | static CORE_ADDR |
7d9b040b | 717 | hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
79508e1e AC |
718 | struct regcache *regcache, CORE_ADDR bp_addr, |
719 | int nargs, struct value **args, CORE_ADDR sp, | |
720 | int struct_return, CORE_ADDR struct_addr) | |
721 | { | |
e17a4113 UW |
722 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
723 | ||
79508e1e AC |
724 | /* Stack base address at which any pass-by-reference parameters are |
725 | stored. */ | |
726 | CORE_ADDR struct_end = 0; | |
727 | /* Stack base address at which the first parameter is stored. */ | |
728 | CORE_ADDR param_end = 0; | |
729 | ||
79508e1e AC |
730 | /* Two passes. First pass computes the location of everything, |
731 | second pass writes the bytes out. */ | |
732 | int write_pass; | |
d49771ef RC |
733 | |
734 | /* Global pointer (r19) of the function we are trying to call. */ | |
735 | CORE_ADDR gp; | |
736 | ||
737 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
738 | ||
79508e1e AC |
739 | for (write_pass = 0; write_pass < 2; write_pass++) |
740 | { | |
1797a8f6 | 741 | CORE_ADDR struct_ptr = 0; |
1777feb0 | 742 | /* The first parameter goes into sp-36, each stack slot is 4-bytes. |
2a6228ef RC |
743 | struct_ptr is adjusted for each argument below, so the first |
744 | argument will end up at sp-36. */ | |
745 | CORE_ADDR param_ptr = 32; | |
79508e1e | 746 | int i; |
2a6228ef RC |
747 | int small_struct = 0; |
748 | ||
79508e1e AC |
749 | for (i = 0; i < nargs; i++) |
750 | { | |
751 | struct value *arg = args[i]; | |
4991999e | 752 | struct type *type = check_typedef (value_type (arg)); |
79508e1e AC |
753 | /* The corresponding parameter that is pushed onto the |
754 | stack, and [possibly] passed in a register. */ | |
948f8e3d | 755 | gdb_byte param_val[8]; |
79508e1e AC |
756 | int param_len; |
757 | memset (param_val, 0, sizeof param_val); | |
758 | if (TYPE_LENGTH (type) > 8) | |
759 | { | |
760 | /* Large parameter, pass by reference. Store the value | |
761 | in "struct" area and then pass its address. */ | |
762 | param_len = 4; | |
1797a8f6 | 763 | struct_ptr += align_up (TYPE_LENGTH (type), 8); |
79508e1e | 764 | if (write_pass) |
0fd88904 | 765 | write_memory (struct_end - struct_ptr, value_contents (arg), |
79508e1e | 766 | TYPE_LENGTH (type)); |
e17a4113 UW |
767 | store_unsigned_integer (param_val, 4, byte_order, |
768 | struct_end - struct_ptr); | |
79508e1e AC |
769 | } |
770 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
771 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
772 | { | |
773 | /* Integer value store, right aligned. "unpack_long" | |
774 | takes care of any sign-extension problems. */ | |
775 | param_len = align_up (TYPE_LENGTH (type), 4); | |
e17a4113 | 776 | store_unsigned_integer (param_val, param_len, byte_order, |
79508e1e | 777 | unpack_long (type, |
0fd88904 | 778 | value_contents (arg))); |
79508e1e | 779 | } |
2a6228ef RC |
780 | else if (TYPE_CODE (type) == TYPE_CODE_FLT) |
781 | { | |
782 | /* Floating point value store, right aligned. */ | |
783 | param_len = align_up (TYPE_LENGTH (type), 4); | |
0fd88904 | 784 | memcpy (param_val, value_contents (arg), param_len); |
2a6228ef | 785 | } |
79508e1e AC |
786 | else |
787 | { | |
79508e1e | 788 | param_len = align_up (TYPE_LENGTH (type), 4); |
2a6228ef RC |
789 | |
790 | /* Small struct value are stored right-aligned. */ | |
79508e1e | 791 | memcpy (param_val + param_len - TYPE_LENGTH (type), |
0fd88904 | 792 | value_contents (arg), TYPE_LENGTH (type)); |
2a6228ef RC |
793 | |
794 | /* Structures of size 5, 6 and 7 bytes are special in that | |
795 | the higher-ordered word is stored in the lower-ordered | |
796 | argument, and even though it is a 8-byte quantity the | |
797 | registers need not be 8-byte aligned. */ | |
1b07b470 | 798 | if (param_len > 4 && param_len < 8) |
2a6228ef | 799 | small_struct = 1; |
79508e1e | 800 | } |
2a6228ef | 801 | |
1797a8f6 | 802 | param_ptr += param_len; |
2a6228ef RC |
803 | if (param_len == 8 && !small_struct) |
804 | param_ptr = align_up (param_ptr, 8); | |
805 | ||
806 | /* First 4 non-FP arguments are passed in gr26-gr23. | |
807 | First 4 32-bit FP arguments are passed in fr4L-fr7L. | |
808 | First 2 64-bit FP arguments are passed in fr5 and fr7. | |
809 | ||
810 | The rest go on the stack, starting at sp-36, towards lower | |
811 | addresses. 8-byte arguments must be aligned to a 8-byte | |
812 | stack boundary. */ | |
79508e1e AC |
813 | if (write_pass) |
814 | { | |
1797a8f6 | 815 | write_memory (param_end - param_ptr, param_val, param_len); |
2a6228ef RC |
816 | |
817 | /* There are some cases when we don't know the type | |
818 | expected by the callee (e.g. for variadic functions), so | |
819 | pass the parameters in both general and fp regs. */ | |
820 | if (param_ptr <= 48) | |
79508e1e | 821 | { |
2a6228ef RC |
822 | int grreg = 26 - (param_ptr - 36) / 4; |
823 | int fpLreg = 72 + (param_ptr - 36) / 4 * 2; | |
824 | int fpreg = 74 + (param_ptr - 32) / 8 * 4; | |
825 | ||
826 | regcache_cooked_write (regcache, grreg, param_val); | |
827 | regcache_cooked_write (regcache, fpLreg, param_val); | |
828 | ||
79508e1e | 829 | if (param_len > 4) |
2a6228ef RC |
830 | { |
831 | regcache_cooked_write (regcache, grreg + 1, | |
832 | param_val + 4); | |
833 | ||
834 | regcache_cooked_write (regcache, fpreg, param_val); | |
835 | regcache_cooked_write (regcache, fpreg + 1, | |
836 | param_val + 4); | |
837 | } | |
79508e1e AC |
838 | } |
839 | } | |
840 | } | |
841 | ||
842 | /* Update the various stack pointers. */ | |
843 | if (!write_pass) | |
844 | { | |
2a6228ef | 845 | struct_end = sp + align_up (struct_ptr, 64); |
79508e1e AC |
846 | /* PARAM_PTR already accounts for all the arguments passed |
847 | by the user. However, the ABI mandates minimum stack | |
848 | space allocations for outgoing arguments. The ABI also | |
849 | mandates minimum stack alignments which we must | |
850 | preserve. */ | |
2a6228ef | 851 | param_end = struct_end + align_up (param_ptr, 64); |
79508e1e AC |
852 | } |
853 | } | |
854 | ||
855 | /* If a structure has to be returned, set up register 28 to hold its | |
1777feb0 | 856 | address. */ |
79508e1e | 857 | if (struct_return) |
9c9acae0 | 858 | regcache_cooked_write_unsigned (regcache, 28, struct_addr); |
79508e1e | 859 | |
e38c262f | 860 | gp = tdep->find_global_pointer (gdbarch, function); |
d49771ef RC |
861 | |
862 | if (gp != 0) | |
9c9acae0 | 863 | regcache_cooked_write_unsigned (regcache, 19, gp); |
d49771ef | 864 | |
79508e1e | 865 | /* Set the return address. */ |
77d18ded RC |
866 | if (!gdbarch_push_dummy_code_p (gdbarch)) |
867 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); | |
79508e1e | 868 | |
c4557624 | 869 | /* Update the Stack Pointer. */ |
34f75cc1 | 870 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end); |
c4557624 | 871 | |
2a6228ef | 872 | return param_end; |
79508e1e AC |
873 | } |
874 | ||
38ca4e0c MK |
875 | /* The 64-bit PA-RISC calling conventions are documented in "64-Bit |
876 | Runtime Architecture for PA-RISC 2.0", which is distributed as part | |
877 | as of the HP-UX Software Transition Kit (STK). This implementation | |
878 | is based on version 3.3, dated October 6, 1997. */ | |
2f690297 | 879 | |
38ca4e0c | 880 | /* Check whether TYPE is an "Integral or Pointer Scalar Type". */ |
2f690297 | 881 | |
38ca4e0c MK |
882 | static int |
883 | hppa64_integral_or_pointer_p (const struct type *type) | |
884 | { | |
885 | switch (TYPE_CODE (type)) | |
886 | { | |
887 | case TYPE_CODE_INT: | |
888 | case TYPE_CODE_BOOL: | |
889 | case TYPE_CODE_CHAR: | |
890 | case TYPE_CODE_ENUM: | |
891 | case TYPE_CODE_RANGE: | |
892 | { | |
893 | int len = TYPE_LENGTH (type); | |
894 | return (len == 1 || len == 2 || len == 4 || len == 8); | |
895 | } | |
896 | case TYPE_CODE_PTR: | |
897 | case TYPE_CODE_REF: | |
aa006118 | 898 | case TYPE_CODE_RVALUE_REF: |
38ca4e0c MK |
899 | return (TYPE_LENGTH (type) == 8); |
900 | default: | |
901 | break; | |
902 | } | |
903 | ||
904 | return 0; | |
905 | } | |
906 | ||
907 | /* Check whether TYPE is a "Floating Scalar Type". */ | |
908 | ||
909 | static int | |
910 | hppa64_floating_p (const struct type *type) | |
911 | { | |
912 | switch (TYPE_CODE (type)) | |
913 | { | |
914 | case TYPE_CODE_FLT: | |
915 | { | |
916 | int len = TYPE_LENGTH (type); | |
917 | return (len == 4 || len == 8 || len == 16); | |
918 | } | |
919 | default: | |
920 | break; | |
921 | } | |
922 | ||
923 | return 0; | |
924 | } | |
2f690297 | 925 | |
1218e655 RC |
926 | /* If CODE points to a function entry address, try to look up the corresponding |
927 | function descriptor and return its address instead. If CODE is not a | |
928 | function entry address, then just return it unchanged. */ | |
929 | static CORE_ADDR | |
e17a4113 | 930 | hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code) |
1218e655 | 931 | { |
e17a4113 | 932 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
1218e655 RC |
933 | struct obj_section *sec, *opd; |
934 | ||
935 | sec = find_pc_section (code); | |
936 | ||
937 | if (!sec) | |
938 | return code; | |
939 | ||
940 | /* If CODE is in a data section, assume it's already a fptr. */ | |
941 | if (!(sec->the_bfd_section->flags & SEC_CODE)) | |
942 | return code; | |
943 | ||
944 | ALL_OBJFILE_OSECTIONS (sec->objfile, opd) | |
945 | { | |
946 | if (strcmp (opd->the_bfd_section->name, ".opd") == 0) | |
aded6f54 | 947 | break; |
1218e655 RC |
948 | } |
949 | ||
950 | if (opd < sec->objfile->sections_end) | |
951 | { | |
952 | CORE_ADDR addr; | |
953 | ||
aded6f54 PA |
954 | for (addr = obj_section_addr (opd); |
955 | addr < obj_section_endaddr (opd); | |
956 | addr += 2 * 8) | |
957 | { | |
1218e655 | 958 | ULONGEST opdaddr; |
948f8e3d | 959 | gdb_byte tmp[8]; |
1218e655 RC |
960 | |
961 | if (target_read_memory (addr, tmp, sizeof (tmp))) | |
962 | break; | |
e17a4113 | 963 | opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order); |
1218e655 | 964 | |
aded6f54 | 965 | if (opdaddr == code) |
1218e655 RC |
966 | return addr - 16; |
967 | } | |
968 | } | |
969 | ||
970 | return code; | |
971 | } | |
972 | ||
4a302917 | 973 | static CORE_ADDR |
7d9b040b | 974 | hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
2f690297 AC |
975 | struct regcache *regcache, CORE_ADDR bp_addr, |
976 | int nargs, struct value **args, CORE_ADDR sp, | |
977 | int struct_return, CORE_ADDR struct_addr) | |
978 | { | |
38ca4e0c | 979 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
e17a4113 | 980 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
38ca4e0c MK |
981 | int i, offset = 0; |
982 | CORE_ADDR gp; | |
2f690297 | 983 | |
38ca4e0c MK |
984 | /* "The outgoing parameter area [...] must be aligned at a 16-byte |
985 | boundary." */ | |
986 | sp = align_up (sp, 16); | |
2f690297 | 987 | |
38ca4e0c MK |
988 | for (i = 0; i < nargs; i++) |
989 | { | |
990 | struct value *arg = args[i]; | |
991 | struct type *type = value_type (arg); | |
992 | int len = TYPE_LENGTH (type); | |
0fd88904 | 993 | const bfd_byte *valbuf; |
1218e655 | 994 | bfd_byte fptrbuf[8]; |
38ca4e0c | 995 | int regnum; |
2f690297 | 996 | |
38ca4e0c MK |
997 | /* "Each parameter begins on a 64-bit (8-byte) boundary." */ |
998 | offset = align_up (offset, 8); | |
77d18ded | 999 | |
38ca4e0c | 1000 | if (hppa64_integral_or_pointer_p (type)) |
2f690297 | 1001 | { |
38ca4e0c MK |
1002 | /* "Integral scalar parameters smaller than 64 bits are |
1003 | padded on the left (i.e., the value is in the | |
1004 | least-significant bits of the 64-bit storage unit, and | |
1005 | the high-order bits are undefined)." Therefore we can | |
1006 | safely sign-extend them. */ | |
1007 | if (len < 8) | |
449e1137 | 1008 | { |
df4df182 | 1009 | arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg); |
38ca4e0c MK |
1010 | len = 8; |
1011 | } | |
1012 | } | |
1013 | else if (hppa64_floating_p (type)) | |
1014 | { | |
1015 | if (len > 8) | |
1016 | { | |
1017 | /* "Quad-precision (128-bit) floating-point scalar | |
1018 | parameters are aligned on a 16-byte boundary." */ | |
1019 | offset = align_up (offset, 16); | |
1020 | ||
1021 | /* "Double-extended- and quad-precision floating-point | |
1022 | parameters within the first 64 bytes of the parameter | |
1023 | list are always passed in general registers." */ | |
449e1137 AC |
1024 | } |
1025 | else | |
1026 | { | |
38ca4e0c | 1027 | if (len == 4) |
449e1137 | 1028 | { |
38ca4e0c MK |
1029 | /* "Single-precision (32-bit) floating-point scalar |
1030 | parameters are padded on the left with 32 bits of | |
1031 | garbage (i.e., the floating-point value is in the | |
1032 | least-significant 32 bits of a 64-bit storage | |
1033 | unit)." */ | |
1034 | offset += 4; | |
449e1137 | 1035 | } |
38ca4e0c MK |
1036 | |
1037 | /* "Single- and double-precision floating-point | |
1038 | parameters in this area are passed according to the | |
1039 | available formal parameter information in a function | |
1040 | prototype. [...] If no prototype is in scope, | |
1041 | floating-point parameters must be passed both in the | |
1042 | corresponding general registers and in the | |
1043 | corresponding floating-point registers." */ | |
1044 | regnum = HPPA64_FP4_REGNUM + offset / 8; | |
1045 | ||
1046 | if (regnum < HPPA64_FP4_REGNUM + 8) | |
449e1137 | 1047 | { |
38ca4e0c MK |
1048 | /* "Single-precision floating-point parameters, when |
1049 | passed in floating-point registers, are passed in | |
1050 | the right halves of the floating point registers; | |
1051 | the left halves are unused." */ | |
1052 | regcache_cooked_write_part (regcache, regnum, offset % 8, | |
0fd88904 | 1053 | len, value_contents (arg)); |
449e1137 AC |
1054 | } |
1055 | } | |
2f690297 | 1056 | } |
38ca4e0c | 1057 | else |
2f690297 | 1058 | { |
38ca4e0c MK |
1059 | if (len > 8) |
1060 | { | |
1061 | /* "Aggregates larger than 8 bytes are aligned on a | |
1062 | 16-byte boundary, possibly leaving an unused argument | |
1777feb0 | 1063 | slot, which is filled with garbage. If necessary, |
38ca4e0c MK |
1064 | they are padded on the right (with garbage), to a |
1065 | multiple of 8 bytes." */ | |
1066 | offset = align_up (offset, 16); | |
1067 | } | |
1068 | } | |
1069 | ||
1218e655 RC |
1070 | /* If we are passing a function pointer, make sure we pass a function |
1071 | descriptor instead of the function entry address. */ | |
1072 | if (TYPE_CODE (type) == TYPE_CODE_PTR | |
1073 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) | |
1074 | { | |
1075 | ULONGEST codeptr, fptr; | |
1076 | ||
1077 | codeptr = unpack_long (type, value_contents (arg)); | |
e17a4113 UW |
1078 | fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr); |
1079 | store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order, | |
1080 | fptr); | |
1218e655 RC |
1081 | valbuf = fptrbuf; |
1082 | } | |
1083 | else | |
1084 | { | |
1085 | valbuf = value_contents (arg); | |
1086 | } | |
1087 | ||
38ca4e0c | 1088 | /* Always store the argument in memory. */ |
1218e655 | 1089 | write_memory (sp + offset, valbuf, len); |
38ca4e0c | 1090 | |
38ca4e0c MK |
1091 | regnum = HPPA_ARG0_REGNUM - offset / 8; |
1092 | while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0) | |
1093 | { | |
1094 | regcache_cooked_write_part (regcache, regnum, | |
325fac50 PA |
1095 | offset % 8, std::min (len, 8), valbuf); |
1096 | offset += std::min (len, 8); | |
1097 | valbuf += std::min (len, 8); | |
1098 | len -= std::min (len, 8); | |
38ca4e0c | 1099 | regnum--; |
2f690297 | 1100 | } |
38ca4e0c MK |
1101 | |
1102 | offset += len; | |
2f690297 AC |
1103 | } |
1104 | ||
38ca4e0c MK |
1105 | /* Set up GR29 (%ret1) to hold the argument pointer (ap). */ |
1106 | regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64); | |
1107 | ||
1108 | /* Allocate the outgoing parameter area. Make sure the outgoing | |
1109 | parameter area is multiple of 16 bytes in length. */ | |
325fac50 | 1110 | sp += std::max (align_up (offset, 16), (ULONGEST) 64); |
38ca4e0c MK |
1111 | |
1112 | /* Allocate 32-bytes of scratch space. The documentation doesn't | |
1113 | mention this, but it seems to be needed. */ | |
1114 | sp += 32; | |
1115 | ||
1116 | /* Allocate the frame marker area. */ | |
1117 | sp += 16; | |
1118 | ||
1119 | /* If a structure has to be returned, set up GR 28 (%ret0) to hold | |
1120 | its address. */ | |
2f690297 | 1121 | if (struct_return) |
38ca4e0c | 1122 | regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr); |
2f690297 | 1123 | |
38ca4e0c | 1124 | /* Set up GR27 (%dp) to hold the global pointer (gp). */ |
e38c262f | 1125 | gp = tdep->find_global_pointer (gdbarch, function); |
77d18ded | 1126 | if (gp != 0) |
38ca4e0c | 1127 | regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp); |
77d18ded | 1128 | |
38ca4e0c | 1129 | /* Set up GR2 (%rp) to hold the return pointer (rp). */ |
77d18ded RC |
1130 | if (!gdbarch_push_dummy_code_p (gdbarch)) |
1131 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); | |
2f690297 | 1132 | |
38ca4e0c MK |
1133 | /* Set up GR30 to hold the stack pointer (sp). */ |
1134 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp); | |
c4557624 | 1135 | |
38ca4e0c | 1136 | return sp; |
2f690297 | 1137 | } |
38ca4e0c | 1138 | \f |
2f690297 | 1139 | |
08a27113 MK |
1140 | /* Handle 32/64-bit struct return conventions. */ |
1141 | ||
1142 | static enum return_value_convention | |
6a3a010b | 1143 | hppa32_return_value (struct gdbarch *gdbarch, struct value *function, |
08a27113 | 1144 | struct type *type, struct regcache *regcache, |
e127f0db | 1145 | gdb_byte *readbuf, const gdb_byte *writebuf) |
08a27113 MK |
1146 | { |
1147 | if (TYPE_LENGTH (type) <= 2 * 4) | |
1148 | { | |
1149 | /* The value always lives in the right hand end of the register | |
1150 | (or register pair)? */ | |
1151 | int b; | |
1152 | int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28; | |
1153 | int part = TYPE_LENGTH (type) % 4; | |
1154 | /* The left hand register contains only part of the value, | |
1155 | transfer that first so that the rest can be xfered as entire | |
1156 | 4-byte registers. */ | |
1157 | if (part > 0) | |
1158 | { | |
1159 | if (readbuf != NULL) | |
1160 | regcache_cooked_read_part (regcache, reg, 4 - part, | |
1161 | part, readbuf); | |
1162 | if (writebuf != NULL) | |
1163 | regcache_cooked_write_part (regcache, reg, 4 - part, | |
1164 | part, writebuf); | |
1165 | reg++; | |
1166 | } | |
1167 | /* Now transfer the remaining register values. */ | |
1168 | for (b = part; b < TYPE_LENGTH (type); b += 4) | |
1169 | { | |
1170 | if (readbuf != NULL) | |
e127f0db | 1171 | regcache_cooked_read (regcache, reg, readbuf + b); |
08a27113 | 1172 | if (writebuf != NULL) |
e127f0db | 1173 | regcache_cooked_write (regcache, reg, writebuf + b); |
08a27113 MK |
1174 | reg++; |
1175 | } | |
1176 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1177 | } | |
1178 | else | |
1179 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1180 | } | |
1181 | ||
1182 | static enum return_value_convention | |
6a3a010b | 1183 | hppa64_return_value (struct gdbarch *gdbarch, struct value *function, |
08a27113 | 1184 | struct type *type, struct regcache *regcache, |
e127f0db | 1185 | gdb_byte *readbuf, const gdb_byte *writebuf) |
08a27113 MK |
1186 | { |
1187 | int len = TYPE_LENGTH (type); | |
1188 | int regnum, offset; | |
1189 | ||
bad43aa5 | 1190 | if (len > 16) |
08a27113 MK |
1191 | { |
1192 | /* All return values larget than 128 bits must be aggregate | |
1193 | return values. */ | |
9738b034 MK |
1194 | gdb_assert (!hppa64_integral_or_pointer_p (type)); |
1195 | gdb_assert (!hppa64_floating_p (type)); | |
08a27113 MK |
1196 | |
1197 | /* "Aggregate return values larger than 128 bits are returned in | |
1198 | a buffer allocated by the caller. The address of the buffer | |
1199 | must be passed in GR 28." */ | |
1200 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1201 | } | |
1202 | ||
1203 | if (hppa64_integral_or_pointer_p (type)) | |
1204 | { | |
1205 | /* "Integral return values are returned in GR 28. Values | |
1206 | smaller than 64 bits are padded on the left (with garbage)." */ | |
1207 | regnum = HPPA_RET0_REGNUM; | |
1208 | offset = 8 - len; | |
1209 | } | |
1210 | else if (hppa64_floating_p (type)) | |
1211 | { | |
1212 | if (len > 8) | |
1213 | { | |
1214 | /* "Double-extended- and quad-precision floating-point | |
1215 | values are returned in GRs 28 and 29. The sign, | |
1216 | exponent, and most-significant bits of the mantissa are | |
1217 | returned in GR 28; the least-significant bits of the | |
1218 | mantissa are passed in GR 29. For double-extended | |
1219 | precision values, GR 29 is padded on the right with 48 | |
1220 | bits of garbage." */ | |
1221 | regnum = HPPA_RET0_REGNUM; | |
1222 | offset = 0; | |
1223 | } | |
1224 | else | |
1225 | { | |
1226 | /* "Single-precision and double-precision floating-point | |
1227 | return values are returned in FR 4R (single precision) or | |
1228 | FR 4 (double-precision)." */ | |
1229 | regnum = HPPA64_FP4_REGNUM; | |
1230 | offset = 8 - len; | |
1231 | } | |
1232 | } | |
1233 | else | |
1234 | { | |
1235 | /* "Aggregate return values up to 64 bits in size are returned | |
1236 | in GR 28. Aggregates smaller than 64 bits are left aligned | |
1237 | in the register; the pad bits on the right are undefined." | |
1238 | ||
1239 | "Aggregate return values between 65 and 128 bits are returned | |
1240 | in GRs 28 and 29. The first 64 bits are placed in GR 28, and | |
1241 | the remaining bits are placed, left aligned, in GR 29. The | |
1242 | pad bits on the right of GR 29 (if any) are undefined." */ | |
1243 | regnum = HPPA_RET0_REGNUM; | |
1244 | offset = 0; | |
1245 | } | |
1246 | ||
1247 | if (readbuf) | |
1248 | { | |
08a27113 MK |
1249 | while (len > 0) |
1250 | { | |
1251 | regcache_cooked_read_part (regcache, regnum, offset, | |
325fac50 PA |
1252 | std::min (len, 8), readbuf); |
1253 | readbuf += std::min (len, 8); | |
1254 | len -= std::min (len, 8); | |
08a27113 MK |
1255 | regnum++; |
1256 | } | |
1257 | } | |
1258 | ||
1259 | if (writebuf) | |
1260 | { | |
08a27113 MK |
1261 | while (len > 0) |
1262 | { | |
1263 | regcache_cooked_write_part (regcache, regnum, offset, | |
325fac50 PA |
1264 | std::min (len, 8), writebuf); |
1265 | writebuf += std::min (len, 8); | |
1266 | len -= std::min (len, 8); | |
08a27113 MK |
1267 | regnum++; |
1268 | } | |
1269 | } | |
1270 | ||
1271 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1272 | } | |
1273 | \f | |
1274 | ||
d49771ef | 1275 | static CORE_ADDR |
a7aad9aa | 1276 | hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, |
d49771ef RC |
1277 | struct target_ops *targ) |
1278 | { | |
1279 | if (addr & 2) | |
1280 | { | |
0dfff4cb | 1281 | struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; |
a7aad9aa | 1282 | CORE_ADDR plabel = addr & ~3; |
0dfff4cb | 1283 | return read_memory_typed_address (plabel, func_ptr_type); |
d49771ef RC |
1284 | } |
1285 | ||
1286 | return addr; | |
1287 | } | |
1288 | ||
1797a8f6 AC |
1289 | static CORE_ADDR |
1290 | hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1291 | { | |
1292 | /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_ | |
1293 | and not _bit_)! */ | |
1294 | return align_up (addr, 64); | |
1295 | } | |
1296 | ||
2f690297 AC |
1297 | /* Force all frames to 16-byte alignment. Better safe than sorry. */ |
1298 | ||
1299 | static CORE_ADDR | |
1797a8f6 | 1300 | hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
2f690297 AC |
1301 | { |
1302 | /* Just always 16-byte align. */ | |
1303 | return align_up (addr, 16); | |
1304 | } | |
1305 | ||
cc72850f | 1306 | CORE_ADDR |
61a1198a | 1307 | hppa_read_pc (struct regcache *regcache) |
c906108c | 1308 | { |
cc72850f | 1309 | ULONGEST ipsw; |
61a1198a | 1310 | ULONGEST pc; |
c906108c | 1311 | |
61a1198a UW |
1312 | regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw); |
1313 | regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc); | |
fe46cd3a RC |
1314 | |
1315 | /* If the current instruction is nullified, then we are effectively | |
1316 | still executing the previous instruction. Pretend we are still | |
cc72850f MK |
1317 | there. This is needed when single stepping; if the nullified |
1318 | instruction is on a different line, we don't want GDB to think | |
1319 | we've stepped onto that line. */ | |
fe46cd3a RC |
1320 | if (ipsw & 0x00200000) |
1321 | pc -= 4; | |
1322 | ||
cc72850f | 1323 | return pc & ~0x3; |
c906108c SS |
1324 | } |
1325 | ||
cc72850f | 1326 | void |
61a1198a | 1327 | hppa_write_pc (struct regcache *regcache, CORE_ADDR pc) |
c906108c | 1328 | { |
61a1198a UW |
1329 | regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc); |
1330 | regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4); | |
c906108c SS |
1331 | } |
1332 | ||
c906108c | 1333 | /* For the given instruction (INST), return any adjustment it makes |
1777feb0 | 1334 | to the stack pointer or zero for no adjustment. |
c906108c SS |
1335 | |
1336 | This only handles instructions commonly found in prologues. */ | |
1337 | ||
1338 | static int | |
fba45db2 | 1339 | prologue_inst_adjust_sp (unsigned long inst) |
c906108c SS |
1340 | { |
1341 | /* This must persist across calls. */ | |
1342 | static int save_high21; | |
1343 | ||
1344 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
1345 | if ((inst & 0xffffc000) == 0x37de0000) | |
abc485a1 | 1346 | return hppa_extract_14 (inst); |
c906108c SS |
1347 | |
1348 | /* stwm X,D(sp) */ | |
1349 | if ((inst & 0xffe00000) == 0x6fc00000) | |
abc485a1 | 1350 | return hppa_extract_14 (inst); |
c906108c | 1351 | |
104c1213 JM |
1352 | /* std,ma X,D(sp) */ |
1353 | if ((inst & 0xffe00008) == 0x73c00008) | |
66c6502d | 1354 | return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 | 1355 | |
e22b26cb | 1356 | /* addil high21,%r30; ldo low11,(%r1),%r30) |
c906108c | 1357 | save high bits in save_high21 for later use. */ |
e22b26cb | 1358 | if ((inst & 0xffe00000) == 0x2bc00000) |
c906108c | 1359 | { |
abc485a1 | 1360 | save_high21 = hppa_extract_21 (inst); |
c906108c SS |
1361 | return 0; |
1362 | } | |
1363 | ||
1364 | if ((inst & 0xffff0000) == 0x343e0000) | |
abc485a1 | 1365 | return save_high21 + hppa_extract_14 (inst); |
c906108c SS |
1366 | |
1367 | /* fstws as used by the HP compilers. */ | |
1368 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
abc485a1 | 1369 | return hppa_extract_5_load (inst); |
c906108c SS |
1370 | |
1371 | /* No adjustment. */ | |
1372 | return 0; | |
1373 | } | |
1374 | ||
1375 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
1376 | ||
1377 | static int | |
fba45db2 | 1378 | is_branch (unsigned long inst) |
c906108c SS |
1379 | { |
1380 | switch (inst >> 26) | |
1381 | { | |
1382 | case 0x20: | |
1383 | case 0x21: | |
1384 | case 0x22: | |
1385 | case 0x23: | |
7be570e7 | 1386 | case 0x27: |
c906108c SS |
1387 | case 0x28: |
1388 | case 0x29: | |
1389 | case 0x2a: | |
1390 | case 0x2b: | |
7be570e7 | 1391 | case 0x2f: |
c906108c SS |
1392 | case 0x30: |
1393 | case 0x31: | |
1394 | case 0x32: | |
1395 | case 0x33: | |
1396 | case 0x38: | |
1397 | case 0x39: | |
1398 | case 0x3a: | |
7be570e7 | 1399 | case 0x3b: |
c906108c SS |
1400 | return 1; |
1401 | ||
1402 | default: | |
1403 | return 0; | |
1404 | } | |
1405 | } | |
1406 | ||
1407 | /* Return the register number for a GR which is saved by INST or | |
b35018fd | 1408 | zero if INST does not save a GR. |
c906108c | 1409 | |
b35018fd | 1410 | Referenced from: |
7be570e7 | 1411 | |
b35018fd CG |
1412 | parisc 1.1: |
1413 | https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf | |
c906108c | 1414 | |
b35018fd CG |
1415 | parisc 2.0: |
1416 | https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf | |
c906108c | 1417 | |
b35018fd CG |
1418 | According to Table 6-5 of Chapter 6 (Memory Reference Instructions) |
1419 | on page 106 in parisc 2.0, all instructions for storing values from | |
1420 | the general registers are: | |
c5aa993b | 1421 | |
b35018fd CG |
1422 | Store: stb, sth, stw, std (according to Chapter 7, they |
1423 | are only in both "inst >> 26" and "inst >> 6". | |
1424 | Store Absolute: stwa, stda (according to Chapter 7, they are only | |
1425 | in "inst >> 6". | |
1426 | Store Bytes: stby, stdby (according to Chapter 7, they are | |
1427 | only in "inst >> 6"). | |
1428 | ||
1429 | For (inst >> 26), according to Chapter 7: | |
1430 | ||
1431 | The effective memory reference address is formed by the addition | |
1432 | of an immediate displacement to a base value. | |
1433 | ||
1434 | - stb: 0x18, store a byte from a general register. | |
1435 | ||
1436 | - sth: 0x19, store a halfword from a general register. | |
1437 | ||
1438 | - stw: 0x1a, store a word from a general register. | |
1439 | ||
1440 | - stwm: 0x1b, store a word from a general register and perform base | |
1441 | register modification (2.0 will still treate it as stw). | |
1442 | ||
1443 | - std: 0x1c, store a doubleword from a general register (2.0 only). | |
1444 | ||
1445 | - stw: 0x1f, store a word from a general register (2.0 only). | |
1446 | ||
1447 | For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7: | |
1448 | ||
1449 | The effective memory reference address is formed by the addition | |
1450 | of an index value to a base value specified in the instruction. | |
1451 | ||
1452 | - stb: 0x08, store a byte from a general register (1.1 calls stbs). | |
1453 | ||
1454 | - sth: 0x09, store a halfword from a general register (1.1 calls | |
1455 | sths). | |
1456 | ||
1457 | - stw: 0x0a, store a word from a general register (1.1 calls stws). | |
1458 | ||
1459 | - std: 0x0b: store a doubleword from a general register (2.0 only) | |
1460 | ||
1461 | Implement fast byte moves (stores) to unaligned word or doubleword | |
1462 | destination. | |
1463 | ||
1464 | - stby: 0x0c, for unaligned word (1.1 calls stbys). | |
1465 | ||
1466 | - stdby: 0x0d for unaligned doubleword (2.0 only). | |
1467 | ||
1468 | Store a word or doubleword using an absolute memory address formed | |
1469 | using short or long displacement or indexed | |
1470 | ||
1471 | - stwa: 0x0e, store a word from a general register to an absolute | |
1472 | address (1.0 calls stwas). | |
1473 | ||
1474 | - stda: 0x0f, store a doubleword from a general register to an | |
1475 | absolute address (2.0 only). */ | |
1476 | ||
1477 | static int | |
1478 | inst_saves_gr (unsigned long inst) | |
1479 | { | |
1480 | switch ((inst >> 26) & 0x0f) | |
1481 | { | |
1482 | case 0x03: | |
1483 | switch ((inst >> 6) & 0x0f) | |
1484 | { | |
1485 | case 0x08: | |
1486 | case 0x09: | |
1487 | case 0x0a: | |
1488 | case 0x0b: | |
1489 | case 0x0c: | |
1490 | case 0x0d: | |
1491 | case 0x0e: | |
1492 | case 0x0f: | |
1493 | return hppa_extract_5R_store (inst); | |
1494 | default: | |
1495 | return 0; | |
1496 | } | |
1497 | case 0x18: | |
1498 | case 0x19: | |
1499 | case 0x1a: | |
1500 | case 0x1b: | |
1501 | case 0x1c: | |
1502 | /* no 0x1d or 0x1e -- according to parisc 2.0 document */ | |
1503 | case 0x1f: | |
1504 | return hppa_extract_5R_store (inst); | |
1505 | default: | |
1506 | return 0; | |
1507 | } | |
c906108c SS |
1508 | } |
1509 | ||
1510 | /* Return the register number for a FR which is saved by INST or | |
1511 | zero it INST does not save a FR. | |
1512 | ||
1513 | Note we only care about full 64bit register stores (that's the only | |
1514 | kind of stores the prologue will use). | |
1515 | ||
1516 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
1517 | ||
1518 | static int | |
fba45db2 | 1519 | inst_saves_fr (unsigned long inst) |
c906108c | 1520 | { |
1777feb0 | 1521 | /* Is this an FSTD? */ |
c906108c | 1522 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
abc485a1 | 1523 | return hppa_extract_5r_store (inst); |
7be570e7 | 1524 | if ((inst & 0xfc000002) == 0x70000002) |
abc485a1 | 1525 | return hppa_extract_5R_store (inst); |
1777feb0 | 1526 | /* Is this an FSTW? */ |
c906108c | 1527 | if ((inst & 0xfc00df80) == 0x24001200) |
abc485a1 | 1528 | return hppa_extract_5r_store (inst); |
7be570e7 | 1529 | if ((inst & 0xfc000002) == 0x7c000000) |
abc485a1 | 1530 | return hppa_extract_5R_store (inst); |
c906108c SS |
1531 | return 0; |
1532 | } | |
1533 | ||
1534 | /* Advance PC across any function entry prologue instructions | |
1777feb0 | 1535 | to reach some "real" code. |
c906108c SS |
1536 | |
1537 | Use information in the unwind table to determine what exactly should | |
1538 | be in the prologue. */ | |
1539 | ||
1540 | ||
a71f8c30 | 1541 | static CORE_ADDR |
be8626e0 MD |
1542 | skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc, |
1543 | int stop_before_branch) | |
c906108c | 1544 | { |
e17a4113 | 1545 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
e362b510 | 1546 | gdb_byte buf[4]; |
c906108c SS |
1547 | CORE_ADDR orig_pc = pc; |
1548 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
1549 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
1550 | struct unwind_table_entry *u; | |
a71f8c30 | 1551 | int final_iteration; |
c906108c SS |
1552 | |
1553 | restart_gr = 0; | |
1554 | restart_fr = 0; | |
1555 | ||
1556 | restart: | |
1557 | u = find_unwind_entry (pc); | |
1558 | if (!u) | |
1559 | return pc; | |
1560 | ||
1777feb0 | 1561 | /* If we are not at the beginning of a function, then return now. */ |
c906108c SS |
1562 | if ((pc & ~0x3) != u->region_start) |
1563 | return pc; | |
1564 | ||
1565 | /* This is how much of a frame adjustment we need to account for. */ | |
1566 | stack_remaining = u->Total_frame_size << 3; | |
1567 | ||
1568 | /* Magic register saves we want to know about. */ | |
1569 | save_rp = u->Save_RP; | |
1570 | save_sp = u->Save_SP; | |
1571 | ||
1572 | /* An indication that args may be stored into the stack. Unfortunately | |
1573 | the HPUX compilers tend to set this in cases where no args were | |
1574 | stored too!. */ | |
1575 | args_stored = 1; | |
1576 | ||
1577 | /* Turn the Entry_GR field into a bitmask. */ | |
1578 | save_gr = 0; | |
1579 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1580 | { | |
1581 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 1582 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
c906108c SS |
1583 | continue; |
1584 | ||
1585 | save_gr |= (1 << i); | |
1586 | } | |
1587 | save_gr &= ~restart_gr; | |
1588 | ||
1589 | /* Turn the Entry_FR field into a bitmask too. */ | |
1590 | save_fr = 0; | |
1591 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1592 | save_fr |= (1 << i); | |
1593 | save_fr &= ~restart_fr; | |
1594 | ||
a71f8c30 RC |
1595 | final_iteration = 0; |
1596 | ||
c906108c SS |
1597 | /* Loop until we find everything of interest or hit a branch. |
1598 | ||
1599 | For unoptimized GCC code and for any HP CC code this will never ever | |
1600 | examine any user instructions. | |
1601 | ||
1602 | For optimzied GCC code we're faced with problems. GCC will schedule | |
1603 | its prologue and make prologue instructions available for delay slot | |
1604 | filling. The end result is user code gets mixed in with the prologue | |
1605 | and a prologue instruction may be in the delay slot of the first branch | |
1606 | or call. | |
1607 | ||
1608 | Some unexpected things are expected with debugging optimized code, so | |
1609 | we allow this routine to walk past user instructions in optimized | |
1610 | GCC code. */ | |
1611 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
1612 | || args_stored) | |
1613 | { | |
1614 | unsigned int reg_num; | |
1615 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
1616 | unsigned long old_save_rp, old_save_sp, next_inst; | |
1617 | ||
1618 | /* Save copies of all the triggers so we can compare them later | |
c5aa993b | 1619 | (only for HPC). */ |
c906108c SS |
1620 | old_save_gr = save_gr; |
1621 | old_save_fr = save_fr; | |
1622 | old_save_rp = save_rp; | |
1623 | old_save_sp = save_sp; | |
1624 | old_stack_remaining = stack_remaining; | |
1625 | ||
8defab1a | 1626 | status = target_read_memory (pc, buf, 4); |
e17a4113 | 1627 | inst = extract_unsigned_integer (buf, 4, byte_order); |
c5aa993b | 1628 | |
c906108c SS |
1629 | /* Yow! */ |
1630 | if (status != 0) | |
1631 | return pc; | |
1632 | ||
1633 | /* Note the interesting effects of this instruction. */ | |
1634 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
1635 | ||
7be570e7 JM |
1636 | /* There are limited ways to store the return pointer into the |
1637 | stack. */ | |
c4c79048 | 1638 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1) |
c906108c SS |
1639 | save_rp = 0; |
1640 | ||
104c1213 | 1641 | /* These are the only ways we save SP into the stack. At this time |
c5aa993b | 1642 | the HP compilers never bother to save SP into the stack. */ |
104c1213 JM |
1643 | if ((inst & 0xffffc000) == 0x6fc10000 |
1644 | || (inst & 0xffffc00c) == 0x73c10008) | |
c906108c SS |
1645 | save_sp = 0; |
1646 | ||
6426a772 JM |
1647 | /* Are we loading some register with an offset from the argument |
1648 | pointer? */ | |
1649 | if ((inst & 0xffe00000) == 0x37a00000 | |
1650 | || (inst & 0xffffffe0) == 0x081d0240) | |
1651 | { | |
1652 | pc += 4; | |
1653 | continue; | |
1654 | } | |
1655 | ||
c906108c SS |
1656 | /* Account for general and floating-point register saves. */ |
1657 | reg_num = inst_saves_gr (inst); | |
1658 | save_gr &= ~(1 << reg_num); | |
1659 | ||
1660 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1661 | Unfortunately args_stored only tells us that some arguments |
1662 | where stored into the stack. Not how many or what kind! | |
c906108c | 1663 | |
c5aa993b JM |
1664 | This is a kludge as on the HP compiler sets this bit and it |
1665 | never does prologue scheduling. So once we see one, skip past | |
1666 | all of them. We have similar code for the fp arg stores below. | |
c906108c | 1667 | |
c5aa993b JM |
1668 | FIXME. Can still die if we have a mix of GR and FR argument |
1669 | stores! */ | |
be8626e0 | 1670 | if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) |
819844ad | 1671 | && reg_num <= 26) |
c906108c | 1672 | { |
be8626e0 | 1673 | while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) |
819844ad | 1674 | && reg_num <= 26) |
c906108c SS |
1675 | { |
1676 | pc += 4; | |
8defab1a | 1677 | status = target_read_memory (pc, buf, 4); |
e17a4113 | 1678 | inst = extract_unsigned_integer (buf, 4, byte_order); |
c906108c SS |
1679 | if (status != 0) |
1680 | return pc; | |
1681 | reg_num = inst_saves_gr (inst); | |
1682 | } | |
1683 | args_stored = 0; | |
1684 | continue; | |
1685 | } | |
1686 | ||
1687 | reg_num = inst_saves_fr (inst); | |
1688 | save_fr &= ~(1 << reg_num); | |
1689 | ||
8defab1a | 1690 | status = target_read_memory (pc + 4, buf, 4); |
e17a4113 | 1691 | next_inst = extract_unsigned_integer (buf, 4, byte_order); |
c5aa993b | 1692 | |
c906108c SS |
1693 | /* Yow! */ |
1694 | if (status != 0) | |
1695 | return pc; | |
1696 | ||
1697 | /* We've got to be read to handle the ldo before the fp register | |
c5aa993b | 1698 | save. */ |
c906108c SS |
1699 | if ((inst & 0xfc000000) == 0x34000000 |
1700 | && inst_saves_fr (next_inst) >= 4 | |
819844ad | 1701 | && inst_saves_fr (next_inst) |
be8626e0 | 1702 | <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
c906108c SS |
1703 | { |
1704 | /* So we drop into the code below in a reasonable state. */ | |
1705 | reg_num = inst_saves_fr (next_inst); | |
1706 | pc -= 4; | |
1707 | } | |
1708 | ||
1709 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1710 | This is a kludge as on the HP compiler sets this bit and it |
1711 | never does prologue scheduling. So once we see one, skip past | |
1712 | all of them. */ | |
819844ad | 1713 | if (reg_num >= 4 |
be8626e0 | 1714 | && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
c906108c | 1715 | { |
819844ad UW |
1716 | while (reg_num >= 4 |
1717 | && reg_num | |
be8626e0 | 1718 | <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
c906108c SS |
1719 | { |
1720 | pc += 8; | |
8defab1a | 1721 | status = target_read_memory (pc, buf, 4); |
e17a4113 | 1722 | inst = extract_unsigned_integer (buf, 4, byte_order); |
c906108c SS |
1723 | if (status != 0) |
1724 | return pc; | |
1725 | if ((inst & 0xfc000000) != 0x34000000) | |
1726 | break; | |
8defab1a | 1727 | status = target_read_memory (pc + 4, buf, 4); |
e17a4113 | 1728 | next_inst = extract_unsigned_integer (buf, 4, byte_order); |
c906108c SS |
1729 | if (status != 0) |
1730 | return pc; | |
1731 | reg_num = inst_saves_fr (next_inst); | |
1732 | } | |
1733 | args_stored = 0; | |
1734 | continue; | |
1735 | } | |
1736 | ||
1737 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
c5aa993b | 1738 | instruction is in the delay slot of the first call/branch. */ |
a71f8c30 | 1739 | if (is_branch (inst) && stop_before_branch) |
c906108c SS |
1740 | break; |
1741 | ||
1742 | /* What a crock. The HP compilers set args_stored even if no | |
c5aa993b JM |
1743 | arguments were stored into the stack (boo hiss). This could |
1744 | cause this code to then skip a bunch of user insns (up to the | |
1745 | first branch). | |
1746 | ||
1747 | To combat this we try to identify when args_stored was bogusly | |
1748 | set and clear it. We only do this when args_stored is nonzero, | |
1749 | all other resources are accounted for, and nothing changed on | |
1750 | this pass. */ | |
c906108c | 1751 | if (args_stored |
c5aa993b | 1752 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
c906108c SS |
1753 | && old_save_gr == save_gr && old_save_fr == save_fr |
1754 | && old_save_rp == save_rp && old_save_sp == save_sp | |
1755 | && old_stack_remaining == stack_remaining) | |
1756 | break; | |
c5aa993b | 1757 | |
c906108c SS |
1758 | /* Bump the PC. */ |
1759 | pc += 4; | |
a71f8c30 RC |
1760 | |
1761 | /* !stop_before_branch, so also look at the insn in the delay slot | |
1762 | of the branch. */ | |
1763 | if (final_iteration) | |
1764 | break; | |
1765 | if (is_branch (inst)) | |
1766 | final_iteration = 1; | |
c906108c SS |
1767 | } |
1768 | ||
1769 | /* We've got a tenative location for the end of the prologue. However | |
1770 | because of limitations in the unwind descriptor mechanism we may | |
1771 | have went too far into user code looking for the save of a register | |
1772 | that does not exist. So, if there registers we expected to be saved | |
1773 | but never were, mask them out and restart. | |
1774 | ||
1775 | This should only happen in optimized code, and should be very rare. */ | |
c5aa993b | 1776 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
c906108c SS |
1777 | { |
1778 | pc = orig_pc; | |
1779 | restart_gr = save_gr; | |
1780 | restart_fr = save_fr; | |
1781 | goto restart; | |
1782 | } | |
1783 | ||
1784 | return pc; | |
1785 | } | |
1786 | ||
1787 | ||
7be570e7 JM |
1788 | /* Return the address of the PC after the last prologue instruction if |
1789 | we can determine it from the debug symbols. Else return zero. */ | |
c906108c SS |
1790 | |
1791 | static CORE_ADDR | |
fba45db2 | 1792 | after_prologue (CORE_ADDR pc) |
c906108c SS |
1793 | { |
1794 | struct symtab_and_line sal; | |
1795 | CORE_ADDR func_addr, func_end; | |
c906108c | 1796 | |
7be570e7 JM |
1797 | /* If we can not find the symbol in the partial symbol table, then |
1798 | there is no hope we can determine the function's start address | |
1799 | with this code. */ | |
c906108c | 1800 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
7be570e7 | 1801 | return 0; |
c906108c | 1802 | |
7be570e7 | 1803 | /* Get the line associated with FUNC_ADDR. */ |
c906108c SS |
1804 | sal = find_pc_line (func_addr, 0); |
1805 | ||
7be570e7 JM |
1806 | /* There are only two cases to consider. First, the end of the source line |
1807 | is within the function bounds. In that case we return the end of the | |
1808 | source line. Second is the end of the source line extends beyond the | |
1809 | bounds of the current function. We need to use the slow code to | |
1777feb0 | 1810 | examine instructions in that case. |
c906108c | 1811 | |
7be570e7 JM |
1812 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
1813 | the wrong thing to do. In fact, it should be entirely possible for this | |
1814 | function to always return zero since the slow instruction scanning code | |
1815 | is supposed to *always* work. If it does not, then it is a bug. */ | |
1816 | if (sal.end < func_end) | |
1817 | return sal.end; | |
c5aa993b | 1818 | else |
7be570e7 | 1819 | return 0; |
c906108c SS |
1820 | } |
1821 | ||
1822 | /* To skip prologues, I use this predicate. Returns either PC itself | |
1823 | if the code at PC does not look like a function prologue; otherwise | |
1777feb0 | 1824 | returns an address that (if we're lucky) follows the prologue. |
a71f8c30 RC |
1825 | |
1826 | hppa_skip_prologue is called by gdb to place a breakpoint in a function. | |
1777feb0 | 1827 | It doesn't necessarily skips all the insns in the prologue. In fact |
a71f8c30 RC |
1828 | we might not want to skip all the insns because a prologue insn may |
1829 | appear in the delay slot of the first branch, and we don't want to | |
1830 | skip over the branch in that case. */ | |
c906108c | 1831 | |
8d153463 | 1832 | static CORE_ADDR |
6093d2eb | 1833 | hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
c906108c | 1834 | { |
c5aa993b | 1835 | CORE_ADDR post_prologue_pc; |
c906108c | 1836 | |
c5aa993b JM |
1837 | /* See if we can determine the end of the prologue via the symbol table. |
1838 | If so, then return either PC, or the PC after the prologue, whichever | |
1839 | is greater. */ | |
c906108c | 1840 | |
c5aa993b | 1841 | post_prologue_pc = after_prologue (pc); |
c906108c | 1842 | |
7be570e7 JM |
1843 | /* If after_prologue returned a useful address, then use it. Else |
1844 | fall back on the instruction skipping code. | |
1845 | ||
1846 | Some folks have claimed this causes problems because the breakpoint | |
1847 | may be the first instruction of the prologue. If that happens, then | |
1848 | the instruction skipping code has a bug that needs to be fixed. */ | |
c5aa993b | 1849 | if (post_prologue_pc != 0) |
325fac50 | 1850 | return std::max (pc, post_prologue_pc); |
c5aa993b | 1851 | else |
be8626e0 | 1852 | return (skip_prologue_hard_way (gdbarch, pc, 1)); |
c906108c SS |
1853 | } |
1854 | ||
29d375ac | 1855 | /* Return an unwind entry that falls within the frame's code block. */ |
227e86ad | 1856 | |
29d375ac | 1857 | static struct unwind_table_entry * |
227e86ad | 1858 | hppa_find_unwind_entry_in_block (struct frame_info *this_frame) |
29d375ac | 1859 | { |
227e86ad | 1860 | CORE_ADDR pc = get_frame_address_in_block (this_frame); |
93d42b30 DJ |
1861 | |
1862 | /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the | |
ad1193e7 | 1863 | result of get_frame_address_in_block implies a problem. |
93d42b30 | 1864 | The bits should have been removed earlier, before the return |
c7ce8faa | 1865 | value of gdbarch_unwind_pc. That might be happening already; |
93d42b30 DJ |
1866 | if it isn't, it should be fixed. Then this call can be |
1867 | removed. */ | |
227e86ad | 1868 | pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc); |
29d375ac RC |
1869 | return find_unwind_entry (pc); |
1870 | } | |
1871 | ||
26d08f08 AC |
1872 | struct hppa_frame_cache |
1873 | { | |
1874 | CORE_ADDR base; | |
1875 | struct trad_frame_saved_reg *saved_regs; | |
1876 | }; | |
1877 | ||
1878 | static struct hppa_frame_cache * | |
227e86ad | 1879 | hppa_frame_cache (struct frame_info *this_frame, void **this_cache) |
26d08f08 | 1880 | { |
227e86ad | 1881 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
e17a4113 UW |
1882 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
1883 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; | |
26d08f08 AC |
1884 | struct hppa_frame_cache *cache; |
1885 | long saved_gr_mask; | |
1886 | long saved_fr_mask; | |
26d08f08 AC |
1887 | long frame_size; |
1888 | struct unwind_table_entry *u; | |
9f7194c3 | 1889 | CORE_ADDR prologue_end; |
50b2f48a | 1890 | int fp_in_r1 = 0; |
26d08f08 AC |
1891 | int i; |
1892 | ||
369aa520 RC |
1893 | if (hppa_debug) |
1894 | fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ", | |
227e86ad | 1895 | frame_relative_level(this_frame)); |
369aa520 | 1896 | |
26d08f08 | 1897 | if ((*this_cache) != NULL) |
369aa520 RC |
1898 | { |
1899 | if (hppa_debug) | |
5af949e3 UW |
1900 | fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }", |
1901 | paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); | |
9a3c8263 | 1902 | return (struct hppa_frame_cache *) (*this_cache); |
369aa520 | 1903 | } |
26d08f08 AC |
1904 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
1905 | (*this_cache) = cache; | |
227e86ad | 1906 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
26d08f08 AC |
1907 | |
1908 | /* Yow! */ | |
227e86ad | 1909 | u = hppa_find_unwind_entry_in_block (this_frame); |
26d08f08 | 1910 | if (!u) |
369aa520 RC |
1911 | { |
1912 | if (hppa_debug) | |
1913 | fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }"); | |
9a3c8263 | 1914 | return (struct hppa_frame_cache *) (*this_cache); |
369aa520 | 1915 | } |
26d08f08 AC |
1916 | |
1917 | /* Turn the Entry_GR field into a bitmask. */ | |
1918 | saved_gr_mask = 0; | |
1919 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1920 | { | |
1921 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 1922 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
26d08f08 AC |
1923 | continue; |
1924 | ||
1925 | saved_gr_mask |= (1 << i); | |
1926 | } | |
1927 | ||
1928 | /* Turn the Entry_FR field into a bitmask too. */ | |
1929 | saved_fr_mask = 0; | |
1930 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1931 | saved_fr_mask |= (1 << i); | |
1932 | ||
1933 | /* Loop until we find everything of interest or hit a branch. | |
1934 | ||
1935 | For unoptimized GCC code and for any HP CC code this will never ever | |
1936 | examine any user instructions. | |
1937 | ||
1938 | For optimized GCC code we're faced with problems. GCC will schedule | |
1939 | its prologue and make prologue instructions available for delay slot | |
1940 | filling. The end result is user code gets mixed in with the prologue | |
1941 | and a prologue instruction may be in the delay slot of the first branch | |
1942 | or call. | |
1943 | ||
1944 | Some unexpected things are expected with debugging optimized code, so | |
1945 | we allow this routine to walk past user instructions in optimized | |
1946 | GCC code. */ | |
1947 | { | |
1948 | int final_iteration = 0; | |
46acf081 | 1949 | CORE_ADDR pc, start_pc, end_pc; |
26d08f08 AC |
1950 | int looking_for_sp = u->Save_SP; |
1951 | int looking_for_rp = u->Save_RP; | |
1952 | int fp_loc = -1; | |
9f7194c3 | 1953 | |
a71f8c30 | 1954 | /* We have to use skip_prologue_hard_way instead of just |
9f7194c3 RC |
1955 | skip_prologue_using_sal, in case we stepped into a function without |
1956 | symbol information. hppa_skip_prologue also bounds the returned | |
1957 | pc by the passed in pc, so it will not return a pc in the next | |
1777feb0 | 1958 | function. |
a71f8c30 RC |
1959 | |
1960 | We used to call hppa_skip_prologue to find the end of the prologue, | |
1961 | but if some non-prologue instructions get scheduled into the prologue, | |
1962 | and the program is compiled with debug information, the "easy" way | |
1963 | in hppa_skip_prologue will return a prologue end that is too early | |
1964 | for us to notice any potential frame adjustments. */ | |
d5c27f81 | 1965 | |
ef02daa9 DJ |
1966 | /* We used to use get_frame_func to locate the beginning of the |
1967 | function to pass to skip_prologue. However, when objects are | |
1968 | compiled without debug symbols, get_frame_func can return the wrong | |
1777feb0 | 1969 | function (or 0). We can do better than that by using unwind records. |
46acf081 | 1970 | This only works if the Region_description of the unwind record |
1777feb0 | 1971 | indicates that it includes the entry point of the function. |
46acf081 RC |
1972 | HP compilers sometimes generate unwind records for regions that |
1973 | do not include the entry or exit point of a function. GNU tools | |
1974 | do not do this. */ | |
1975 | ||
1976 | if ((u->Region_description & 0x2) == 0) | |
1977 | start_pc = u->region_start; | |
1978 | else | |
227e86ad | 1979 | start_pc = get_frame_func (this_frame); |
d5c27f81 | 1980 | |
be8626e0 | 1981 | prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0); |
227e86ad | 1982 | end_pc = get_frame_pc (this_frame); |
9f7194c3 RC |
1983 | |
1984 | if (prologue_end != 0 && end_pc > prologue_end) | |
1985 | end_pc = prologue_end; | |
1986 | ||
26d08f08 | 1987 | frame_size = 0; |
9f7194c3 | 1988 | |
46acf081 | 1989 | for (pc = start_pc; |
26d08f08 AC |
1990 | ((saved_gr_mask || saved_fr_mask |
1991 | || looking_for_sp || looking_for_rp | |
1992 | || frame_size < (u->Total_frame_size << 3)) | |
9f7194c3 | 1993 | && pc < end_pc); |
26d08f08 AC |
1994 | pc += 4) |
1995 | { | |
1996 | int reg; | |
e362b510 | 1997 | gdb_byte buf4[4]; |
4a302917 RC |
1998 | long inst; |
1999 | ||
227e86ad | 2000 | if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4)) |
4a302917 | 2001 | { |
5af949e3 UW |
2002 | error (_("Cannot read instruction at %s."), |
2003 | paddress (gdbarch, pc)); | |
9a3c8263 | 2004 | return (struct hppa_frame_cache *) (*this_cache); |
4a302917 RC |
2005 | } |
2006 | ||
e17a4113 | 2007 | inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order); |
9f7194c3 | 2008 | |
26d08f08 AC |
2009 | /* Note the interesting effects of this instruction. */ |
2010 | frame_size += prologue_inst_adjust_sp (inst); | |
2011 | ||
2012 | /* There are limited ways to store the return pointer into the | |
2013 | stack. */ | |
2014 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
2015 | { | |
2016 | looking_for_rp = 0; | |
34f75cc1 | 2017 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; |
26d08f08 | 2018 | } |
dfaf8edb MK |
2019 | else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */ |
2020 | { | |
2021 | looking_for_rp = 0; | |
2022 | cache->saved_regs[HPPA_RP_REGNUM].addr = -24; | |
2023 | } | |
c4c79048 RC |
2024 | else if (inst == 0x0fc212c1 |
2025 | || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ | |
26d08f08 AC |
2026 | { |
2027 | looking_for_rp = 0; | |
34f75cc1 | 2028 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; |
26d08f08 AC |
2029 | } |
2030 | ||
2031 | /* Check to see if we saved SP into the stack. This also | |
2032 | happens to indicate the location of the saved frame | |
2033 | pointer. */ | |
2034 | if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ | |
2035 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
2036 | { | |
2037 | looking_for_sp = 0; | |
eded0a31 | 2038 | cache->saved_regs[HPPA_FP_REGNUM].addr = 0; |
26d08f08 | 2039 | } |
50b2f48a RC |
2040 | else if (inst == 0x08030241) /* copy %r3, %r1 */ |
2041 | { | |
2042 | fp_in_r1 = 1; | |
2043 | } | |
26d08f08 AC |
2044 | |
2045 | /* Account for general and floating-point register saves. */ | |
2046 | reg = inst_saves_gr (inst); | |
2047 | if (reg >= 3 && reg <= 18 | |
eded0a31 | 2048 | && (!u->Save_SP || reg != HPPA_FP_REGNUM)) |
26d08f08 AC |
2049 | { |
2050 | saved_gr_mask &= ~(1 << reg); | |
abc485a1 | 2051 | if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0) |
26d08f08 AC |
2052 | /* stwm with a positive displacement is a _post_ |
2053 | _modify_. */ | |
2054 | cache->saved_regs[reg].addr = 0; | |
2055 | else if ((inst & 0xfc00000c) == 0x70000008) | |
2056 | /* A std has explicit post_modify forms. */ | |
2057 | cache->saved_regs[reg].addr = 0; | |
2058 | else | |
2059 | { | |
2060 | CORE_ADDR offset; | |
2061 | ||
2062 | if ((inst >> 26) == 0x1c) | |
66c6502d | 2063 | offset = (inst & 0x1 ? -(1 << 13) : 0) |
1777feb0 | 2064 | | (((inst >> 4) & 0x3ff) << 3); |
26d08f08 | 2065 | else if ((inst >> 26) == 0x03) |
abc485a1 | 2066 | offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5); |
26d08f08 | 2067 | else |
abc485a1 | 2068 | offset = hppa_extract_14 (inst); |
26d08f08 AC |
2069 | |
2070 | /* Handle code with and without frame pointers. */ | |
2071 | if (u->Save_SP) | |
2072 | cache->saved_regs[reg].addr = offset; | |
2073 | else | |
1777feb0 MS |
2074 | cache->saved_regs[reg].addr |
2075 | = (u->Total_frame_size << 3) + offset; | |
26d08f08 AC |
2076 | } |
2077 | } | |
2078 | ||
2079 | /* GCC handles callee saved FP regs a little differently. | |
2080 | ||
2081 | It emits an instruction to put the value of the start of | |
2082 | the FP store area into %r1. It then uses fstds,ma with a | |
2083 | basereg of %r1 for the stores. | |
2084 | ||
2085 | HP CC emits them at the current stack pointer modifying the | |
2086 | stack pointer as it stores each register. */ | |
2087 | ||
2088 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
2089 | if ((inst & 0xffffc000) == 0x34610000 | |
2090 | || (inst & 0xffffc000) == 0x37c10000) | |
abc485a1 | 2091 | fp_loc = hppa_extract_14 (inst); |
26d08f08 AC |
2092 | |
2093 | reg = inst_saves_fr (inst); | |
2094 | if (reg >= 12 && reg <= 21) | |
2095 | { | |
2096 | /* Note +4 braindamage below is necessary because the FP | |
2097 | status registers are internally 8 registers rather than | |
2098 | the expected 4 registers. */ | |
2099 | saved_fr_mask &= ~(1 << reg); | |
2100 | if (fp_loc == -1) | |
2101 | { | |
2102 | /* 1st HP CC FP register store. After this | |
2103 | instruction we've set enough state that the GCC and | |
2104 | HPCC code are both handled in the same manner. */ | |
34f75cc1 | 2105 | cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0; |
26d08f08 AC |
2106 | fp_loc = 8; |
2107 | } | |
2108 | else | |
2109 | { | |
eded0a31 | 2110 | cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc; |
26d08f08 AC |
2111 | fp_loc += 8; |
2112 | } | |
2113 | } | |
2114 | ||
1777feb0 | 2115 | /* Quit if we hit any kind of branch the previous iteration. */ |
26d08f08 AC |
2116 | if (final_iteration) |
2117 | break; | |
2118 | /* We want to look precisely one instruction beyond the branch | |
2119 | if we have not found everything yet. */ | |
2120 | if (is_branch (inst)) | |
2121 | final_iteration = 1; | |
2122 | } | |
2123 | } | |
2124 | ||
2125 | { | |
2126 | /* The frame base always represents the value of %sp at entry to | |
2127 | the current function (and is thus equivalent to the "saved" | |
2128 | stack pointer. */ | |
227e86ad JB |
2129 | CORE_ADDR this_sp = get_frame_register_unsigned (this_frame, |
2130 | HPPA_SP_REGNUM); | |
ed70ba00 | 2131 | CORE_ADDR fp; |
9f7194c3 RC |
2132 | |
2133 | if (hppa_debug) | |
5af949e3 UW |
2134 | fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, " |
2135 | "prologue_end=%s) ", | |
2136 | paddress (gdbarch, this_sp), | |
2137 | paddress (gdbarch, get_frame_pc (this_frame)), | |
2138 | paddress (gdbarch, prologue_end)); | |
9f7194c3 | 2139 | |
ed70ba00 RC |
2140 | /* Check to see if a frame pointer is available, and use it for |
2141 | frame unwinding if it is. | |
2142 | ||
2143 | There are some situations where we need to rely on the frame | |
2144 | pointer to do stack unwinding. For example, if a function calls | |
2145 | alloca (), the stack pointer can get adjusted inside the body of | |
2146 | the function. In this case, the ABI requires that the compiler | |
2147 | maintain a frame pointer for the function. | |
2148 | ||
2149 | The unwind record has a flag (alloca_frame) that indicates that | |
2150 | a function has a variable frame; unfortunately, gcc/binutils | |
2151 | does not set this flag. Instead, whenever a frame pointer is used | |
2152 | and saved on the stack, the Save_SP flag is set. We use this to | |
2153 | decide whether to use the frame pointer for unwinding. | |
2154 | ||
ed70ba00 RC |
2155 | TODO: For the HP compiler, maybe we should use the alloca_frame flag |
2156 | instead of Save_SP. */ | |
2157 | ||
227e86ad | 2158 | fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM); |
46acf081 | 2159 | |
6fcecea0 | 2160 | if (u->alloca_frame) |
46acf081 | 2161 | fp -= u->Total_frame_size << 3; |
ed70ba00 | 2162 | |
227e86ad | 2163 | if (get_frame_pc (this_frame) >= prologue_end |
6fcecea0 | 2164 | && (u->Save_SP || u->alloca_frame) && fp != 0) |
ed70ba00 RC |
2165 | { |
2166 | cache->base = fp; | |
2167 | ||
2168 | if (hppa_debug) | |
5af949e3 UW |
2169 | fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]", |
2170 | paddress (gdbarch, cache->base)); | |
ed70ba00 | 2171 | } |
1658da49 RC |
2172 | else if (u->Save_SP |
2173 | && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM)) | |
9f7194c3 | 2174 | { |
9f7194c3 RC |
2175 | /* Both we're expecting the SP to be saved and the SP has been |
2176 | saved. The entry SP value is saved at this frame's SP | |
2177 | address. */ | |
e17a4113 | 2178 | cache->base = read_memory_integer (this_sp, word_size, byte_order); |
9f7194c3 RC |
2179 | |
2180 | if (hppa_debug) | |
5af949e3 UW |
2181 | fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]", |
2182 | paddress (gdbarch, cache->base)); | |
9f7194c3 | 2183 | } |
26d08f08 | 2184 | else |
9f7194c3 | 2185 | { |
1658da49 RC |
2186 | /* The prologue has been slowly allocating stack space. Adjust |
2187 | the SP back. */ | |
2188 | cache->base = this_sp - frame_size; | |
9f7194c3 | 2189 | if (hppa_debug) |
5af949e3 UW |
2190 | fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]", |
2191 | paddress (gdbarch, cache->base)); | |
9f7194c3 RC |
2192 | |
2193 | } | |
eded0a31 | 2194 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); |
26d08f08 AC |
2195 | } |
2196 | ||
412275d5 AC |
2197 | /* The PC is found in the "return register", "Millicode" uses "r31" |
2198 | as the return register while normal code uses "rp". */ | |
26d08f08 | 2199 | if (u->Millicode) |
9f7194c3 | 2200 | { |
5859efe5 | 2201 | if (trad_frame_addr_p (cache->saved_regs, 31)) |
9ed5ba24 RC |
2202 | { |
2203 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31]; | |
2204 | if (hppa_debug) | |
2205 | fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } "); | |
2206 | } | |
9f7194c3 RC |
2207 | else |
2208 | { | |
227e86ad | 2209 | ULONGEST r31 = get_frame_register_unsigned (this_frame, 31); |
34f75cc1 | 2210 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31); |
9ed5ba24 RC |
2211 | if (hppa_debug) |
2212 | fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } "); | |
9f7194c3 RC |
2213 | } |
2214 | } | |
26d08f08 | 2215 | else |
9f7194c3 | 2216 | { |
34f75cc1 | 2217 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) |
9ed5ba24 RC |
2218 | { |
2219 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = | |
2220 | cache->saved_regs[HPPA_RP_REGNUM]; | |
2221 | if (hppa_debug) | |
2222 | fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } "); | |
2223 | } | |
9f7194c3 RC |
2224 | else |
2225 | { | |
227e86ad JB |
2226 | ULONGEST rp = get_frame_register_unsigned (this_frame, |
2227 | HPPA_RP_REGNUM); | |
34f75cc1 | 2228 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); |
9ed5ba24 RC |
2229 | if (hppa_debug) |
2230 | fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } "); | |
9f7194c3 RC |
2231 | } |
2232 | } | |
26d08f08 | 2233 | |
50b2f48a RC |
2234 | /* If Save_SP is set, then we expect the frame pointer to be saved in the |
2235 | frame. However, there is a one-insn window where we haven't saved it | |
2236 | yet, but we've already clobbered it. Detect this case and fix it up. | |
2237 | ||
2238 | The prologue sequence for frame-pointer functions is: | |
2239 | 0: stw %rp, -20(%sp) | |
2240 | 4: copy %r3, %r1 | |
2241 | 8: copy %sp, %r3 | |
2242 | c: stw,ma %r1, XX(%sp) | |
2243 | ||
2244 | So if we are at offset c, the r3 value that we want is not yet saved | |
2245 | on the stack, but it's been overwritten. The prologue analyzer will | |
2246 | set fp_in_r1 when it sees the copy insn so we know to get the value | |
2247 | from r1 instead. */ | |
2248 | if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM) | |
2249 | && fp_in_r1) | |
2250 | { | |
227e86ad | 2251 | ULONGEST r1 = get_frame_register_unsigned (this_frame, 1); |
50b2f48a RC |
2252 | trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1); |
2253 | } | |
1658da49 | 2254 | |
26d08f08 AC |
2255 | { |
2256 | /* Convert all the offsets into addresses. */ | |
2257 | int reg; | |
65c5db89 | 2258 | for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++) |
26d08f08 AC |
2259 | { |
2260 | if (trad_frame_addr_p (cache->saved_regs, reg)) | |
2261 | cache->saved_regs[reg].addr += cache->base; | |
2262 | } | |
2263 | } | |
2264 | ||
f77a2124 | 2265 | { |
f77a2124 RC |
2266 | struct gdbarch_tdep *tdep; |
2267 | ||
f77a2124 RC |
2268 | tdep = gdbarch_tdep (gdbarch); |
2269 | ||
2270 | if (tdep->unwind_adjust_stub) | |
227e86ad | 2271 | tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs); |
f77a2124 RC |
2272 | } |
2273 | ||
369aa520 | 2274 | if (hppa_debug) |
5af949e3 UW |
2275 | fprintf_unfiltered (gdb_stdlog, "base=%s }", |
2276 | paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); | |
9a3c8263 | 2277 | return (struct hppa_frame_cache *) (*this_cache); |
26d08f08 AC |
2278 | } |
2279 | ||
2280 | static void | |
227e86ad JB |
2281 | hppa_frame_this_id (struct frame_info *this_frame, void **this_cache, |
2282 | struct frame_id *this_id) | |
26d08f08 | 2283 | { |
d5c27f81 | 2284 | struct hppa_frame_cache *info; |
d5c27f81 RC |
2285 | struct unwind_table_entry *u; |
2286 | ||
227e86ad JB |
2287 | info = hppa_frame_cache (this_frame, this_cache); |
2288 | u = hppa_find_unwind_entry_in_block (this_frame); | |
d5c27f81 RC |
2289 | |
2290 | (*this_id) = frame_id_build (info->base, u->region_start); | |
26d08f08 AC |
2291 | } |
2292 | ||
227e86ad JB |
2293 | static struct value * |
2294 | hppa_frame_prev_register (struct frame_info *this_frame, | |
2295 | void **this_cache, int regnum) | |
26d08f08 | 2296 | { |
227e86ad JB |
2297 | struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache); |
2298 | ||
1777feb0 MS |
2299 | return hppa_frame_prev_register_helper (this_frame, |
2300 | info->saved_regs, regnum); | |
227e86ad JB |
2301 | } |
2302 | ||
2303 | static int | |
2304 | hppa_frame_unwind_sniffer (const struct frame_unwind *self, | |
2305 | struct frame_info *this_frame, void **this_cache) | |
2306 | { | |
2307 | if (hppa_find_unwind_entry_in_block (this_frame)) | |
2308 | return 1; | |
2309 | ||
2310 | return 0; | |
0da28f8a RC |
2311 | } |
2312 | ||
2313 | static const struct frame_unwind hppa_frame_unwind = | |
2314 | { | |
2315 | NORMAL_FRAME, | |
8fbca658 | 2316 | default_frame_unwind_stop_reason, |
0da28f8a | 2317 | hppa_frame_this_id, |
227e86ad JB |
2318 | hppa_frame_prev_register, |
2319 | NULL, | |
2320 | hppa_frame_unwind_sniffer | |
0da28f8a RC |
2321 | }; |
2322 | ||
0da28f8a RC |
2323 | /* This is a generic fallback frame unwinder that kicks in if we fail all |
2324 | the other ones. Normally we would expect the stub and regular unwinder | |
2325 | to work, but in some cases we might hit a function that just doesn't | |
2326 | have any unwind information available. In this case we try to do | |
2327 | unwinding solely based on code reading. This is obviously going to be | |
2328 | slow, so only use this as a last resort. Currently this will only | |
2329 | identify the stack and pc for the frame. */ | |
2330 | ||
2331 | static struct hppa_frame_cache * | |
227e86ad | 2332 | hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache) |
0da28f8a | 2333 | { |
e17a4113 UW |
2334 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
2335 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
0da28f8a | 2336 | struct hppa_frame_cache *cache; |
4ba6a975 MK |
2337 | unsigned int frame_size = 0; |
2338 | int found_rp = 0; | |
2339 | CORE_ADDR start_pc; | |
0da28f8a | 2340 | |
d5c27f81 | 2341 | if (hppa_debug) |
4ba6a975 MK |
2342 | fprintf_unfiltered (gdb_stdlog, |
2343 | "{ hppa_fallback_frame_cache (frame=%d) -> ", | |
227e86ad | 2344 | frame_relative_level (this_frame)); |
d5c27f81 | 2345 | |
0da28f8a RC |
2346 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
2347 | (*this_cache) = cache; | |
227e86ad | 2348 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
0da28f8a | 2349 | |
227e86ad | 2350 | start_pc = get_frame_func (this_frame); |
4ba6a975 | 2351 | if (start_pc) |
0da28f8a | 2352 | { |
227e86ad | 2353 | CORE_ADDR cur_pc = get_frame_pc (this_frame); |
4ba6a975 | 2354 | CORE_ADDR pc; |
0da28f8a | 2355 | |
4ba6a975 MK |
2356 | for (pc = start_pc; pc < cur_pc; pc += 4) |
2357 | { | |
2358 | unsigned int insn; | |
0da28f8a | 2359 | |
e17a4113 | 2360 | insn = read_memory_unsigned_integer (pc, 4, byte_order); |
4ba6a975 | 2361 | frame_size += prologue_inst_adjust_sp (insn); |
6d1be3f1 | 2362 | |
4ba6a975 MK |
2363 | /* There are limited ways to store the return pointer into the |
2364 | stack. */ | |
2365 | if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
2366 | { | |
2367 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; | |
2368 | found_rp = 1; | |
2369 | } | |
c4c79048 RC |
2370 | else if (insn == 0x0fc212c1 |
2371 | || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ | |
4ba6a975 MK |
2372 | { |
2373 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; | |
2374 | found_rp = 1; | |
2375 | } | |
2376 | } | |
412275d5 | 2377 | } |
0da28f8a | 2378 | |
d5c27f81 | 2379 | if (hppa_debug) |
4ba6a975 MK |
2380 | fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n", |
2381 | frame_size, found_rp); | |
d5c27f81 | 2382 | |
227e86ad | 2383 | cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
4ba6a975 | 2384 | cache->base -= frame_size; |
6d1be3f1 | 2385 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); |
0da28f8a RC |
2386 | |
2387 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) | |
2388 | { | |
2389 | cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base; | |
4ba6a975 MK |
2390 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = |
2391 | cache->saved_regs[HPPA_RP_REGNUM]; | |
0da28f8a | 2392 | } |
412275d5 AC |
2393 | else |
2394 | { | |
4ba6a975 | 2395 | ULONGEST rp; |
227e86ad | 2396 | rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM); |
0da28f8a | 2397 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); |
412275d5 | 2398 | } |
0da28f8a RC |
2399 | |
2400 | return cache; | |
26d08f08 AC |
2401 | } |
2402 | ||
0da28f8a | 2403 | static void |
227e86ad | 2404 | hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache, |
0da28f8a RC |
2405 | struct frame_id *this_id) |
2406 | { | |
2407 | struct hppa_frame_cache *info = | |
227e86ad JB |
2408 | hppa_fallback_frame_cache (this_frame, this_cache); |
2409 | ||
2410 | (*this_id) = frame_id_build (info->base, get_frame_func (this_frame)); | |
0da28f8a RC |
2411 | } |
2412 | ||
227e86ad JB |
2413 | static struct value * |
2414 | hppa_fallback_frame_prev_register (struct frame_info *this_frame, | |
2415 | void **this_cache, int regnum) | |
0da28f8a | 2416 | { |
1777feb0 MS |
2417 | struct hppa_frame_cache *info |
2418 | = hppa_fallback_frame_cache (this_frame, this_cache); | |
227e86ad | 2419 | |
1777feb0 MS |
2420 | return hppa_frame_prev_register_helper (this_frame, |
2421 | info->saved_regs, regnum); | |
0da28f8a RC |
2422 | } |
2423 | ||
2424 | static const struct frame_unwind hppa_fallback_frame_unwind = | |
26d08f08 AC |
2425 | { |
2426 | NORMAL_FRAME, | |
8fbca658 | 2427 | default_frame_unwind_stop_reason, |
0da28f8a | 2428 | hppa_fallback_frame_this_id, |
227e86ad JB |
2429 | hppa_fallback_frame_prev_register, |
2430 | NULL, | |
2431 | default_frame_sniffer | |
26d08f08 AC |
2432 | }; |
2433 | ||
7f07c5b6 RC |
2434 | /* Stub frames, used for all kinds of call stubs. */ |
2435 | struct hppa_stub_unwind_cache | |
2436 | { | |
2437 | CORE_ADDR base; | |
2438 | struct trad_frame_saved_reg *saved_regs; | |
2439 | }; | |
2440 | ||
2441 | static struct hppa_stub_unwind_cache * | |
227e86ad | 2442 | hppa_stub_frame_unwind_cache (struct frame_info *this_frame, |
7f07c5b6 RC |
2443 | void **this_cache) |
2444 | { | |
227e86ad | 2445 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
7f07c5b6 | 2446 | struct hppa_stub_unwind_cache *info; |
22b0923d | 2447 | struct unwind_table_entry *u; |
7f07c5b6 RC |
2448 | |
2449 | if (*this_cache) | |
9a3c8263 | 2450 | return (struct hppa_stub_unwind_cache *) *this_cache; |
7f07c5b6 RC |
2451 | |
2452 | info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache); | |
2453 | *this_cache = info; | |
227e86ad | 2454 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
7f07c5b6 | 2455 | |
227e86ad | 2456 | info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
7f07c5b6 | 2457 | |
22b0923d RC |
2458 | /* By default we assume that stubs do not change the rp. */ |
2459 | info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM; | |
2460 | ||
7f07c5b6 RC |
2461 | return info; |
2462 | } | |
2463 | ||
2464 | static void | |
227e86ad | 2465 | hppa_stub_frame_this_id (struct frame_info *this_frame, |
7f07c5b6 RC |
2466 | void **this_prologue_cache, |
2467 | struct frame_id *this_id) | |
2468 | { | |
2469 | struct hppa_stub_unwind_cache *info | |
227e86ad | 2470 | = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
f1b38a57 RC |
2471 | |
2472 | if (info) | |
227e86ad | 2473 | *this_id = frame_id_build (info->base, get_frame_func (this_frame)); |
7f07c5b6 RC |
2474 | } |
2475 | ||
227e86ad JB |
2476 | static struct value * |
2477 | hppa_stub_frame_prev_register (struct frame_info *this_frame, | |
2478 | void **this_prologue_cache, int regnum) | |
7f07c5b6 RC |
2479 | { |
2480 | struct hppa_stub_unwind_cache *info | |
227e86ad | 2481 | = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
f1b38a57 | 2482 | |
227e86ad | 2483 | if (info == NULL) |
8a3fe4f8 | 2484 | error (_("Requesting registers from null frame.")); |
7f07c5b6 | 2485 | |
1777feb0 MS |
2486 | return hppa_frame_prev_register_helper (this_frame, |
2487 | info->saved_regs, regnum); | |
227e86ad | 2488 | } |
7f07c5b6 | 2489 | |
227e86ad JB |
2490 | static int |
2491 | hppa_stub_unwind_sniffer (const struct frame_unwind *self, | |
2492 | struct frame_info *this_frame, | |
2493 | void **this_cache) | |
7f07c5b6 | 2494 | { |
227e86ad JB |
2495 | CORE_ADDR pc = get_frame_address_in_block (this_frame); |
2496 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
84674fe1 | 2497 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7f07c5b6 | 2498 | |
6d1be3f1 | 2499 | if (pc == 0 |
84674fe1 | 2500 | || (tdep->in_solib_call_trampoline != NULL |
3e5d3a5a | 2501 | && tdep->in_solib_call_trampoline (gdbarch, pc)) |
464963c9 | 2502 | || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL)) |
227e86ad JB |
2503 | return 1; |
2504 | return 0; | |
7f07c5b6 RC |
2505 | } |
2506 | ||
227e86ad JB |
2507 | static const struct frame_unwind hppa_stub_frame_unwind = { |
2508 | NORMAL_FRAME, | |
8fbca658 | 2509 | default_frame_unwind_stop_reason, |
227e86ad JB |
2510 | hppa_stub_frame_this_id, |
2511 | hppa_stub_frame_prev_register, | |
2512 | NULL, | |
2513 | hppa_stub_unwind_sniffer | |
2514 | }; | |
2515 | ||
26d08f08 | 2516 | static struct frame_id |
227e86ad | 2517 | hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
26d08f08 | 2518 | { |
227e86ad JB |
2519 | return frame_id_build (get_frame_register_unsigned (this_frame, |
2520 | HPPA_SP_REGNUM), | |
2521 | get_frame_pc (this_frame)); | |
26d08f08 AC |
2522 | } |
2523 | ||
cc72850f | 2524 | CORE_ADDR |
26d08f08 AC |
2525 | hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
2526 | { | |
fe46cd3a RC |
2527 | ULONGEST ipsw; |
2528 | CORE_ADDR pc; | |
2529 | ||
cc72850f MK |
2530 | ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM); |
2531 | pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM); | |
fe46cd3a RC |
2532 | |
2533 | /* If the current instruction is nullified, then we are effectively | |
2534 | still executing the previous instruction. Pretend we are still | |
cc72850f MK |
2535 | there. This is needed when single stepping; if the nullified |
2536 | instruction is on a different line, we don't want GDB to think | |
2537 | we've stepped onto that line. */ | |
fe46cd3a RC |
2538 | if (ipsw & 0x00200000) |
2539 | pc -= 4; | |
2540 | ||
cc72850f | 2541 | return pc & ~0x3; |
26d08f08 AC |
2542 | } |
2543 | ||
ff644745 JB |
2544 | /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE. |
2545 | Return NULL if no such symbol was found. */ | |
2546 | ||
3b7344d5 | 2547 | struct bound_minimal_symbol |
ff644745 JB |
2548 | hppa_lookup_stub_minimal_symbol (const char *name, |
2549 | enum unwind_stub_types stub_type) | |
2550 | { | |
2551 | struct objfile *objfile; | |
2552 | struct minimal_symbol *msym; | |
3b7344d5 | 2553 | struct bound_minimal_symbol result = { NULL, NULL }; |
ff644745 JB |
2554 | |
2555 | ALL_MSYMBOLS (objfile, msym) | |
2556 | { | |
efd66ac6 | 2557 | if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0) |
ff644745 JB |
2558 | { |
2559 | struct unwind_table_entry *u; | |
2560 | ||
efd66ac6 | 2561 | u = find_unwind_entry (MSYMBOL_VALUE (msym)); |
ff644745 | 2562 | if (u != NULL && u->stub_unwind.stub_type == stub_type) |
3b7344d5 TT |
2563 | { |
2564 | result.objfile = objfile; | |
2565 | result.minsym = msym; | |
2566 | return result; | |
2567 | } | |
ff644745 JB |
2568 | } |
2569 | } | |
2570 | ||
3b7344d5 | 2571 | return result; |
ff644745 JB |
2572 | } |
2573 | ||
c906108c | 2574 | static void |
c482f52c | 2575 | unwind_command (const char *exp, int from_tty) |
c906108c SS |
2576 | { |
2577 | CORE_ADDR address; | |
2578 | struct unwind_table_entry *u; | |
2579 | ||
2580 | /* If we have an expression, evaluate it and use it as the address. */ | |
2581 | ||
2582 | if (exp != 0 && *exp != 0) | |
2583 | address = parse_and_eval_address (exp); | |
2584 | else | |
2585 | return; | |
2586 | ||
2587 | u = find_unwind_entry (address); | |
2588 | ||
2589 | if (!u) | |
2590 | { | |
2591 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
2592 | return; | |
2593 | } | |
2594 | ||
3329c4b5 | 2595 | printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u)); |
c906108c | 2596 | |
5af949e3 | 2597 | printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start)); |
d5c27f81 | 2598 | gdb_flush (gdb_stdout); |
c906108c | 2599 | |
5af949e3 | 2600 | printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end)); |
d5c27f81 | 2601 | gdb_flush (gdb_stdout); |
c906108c | 2602 | |
c906108c | 2603 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
c906108c SS |
2604 | |
2605 | printf_unfiltered ("\n\tflags ="); | |
2606 | pif (Cannot_unwind); | |
2607 | pif (Millicode); | |
2608 | pif (Millicode_save_sr0); | |
2609 | pif (Entry_SR); | |
2610 | pif (Args_stored); | |
2611 | pif (Variable_Frame); | |
2612 | pif (Separate_Package_Body); | |
2613 | pif (Frame_Extension_Millicode); | |
2614 | pif (Stack_Overflow_Check); | |
2615 | pif (Two_Instruction_SP_Increment); | |
6fcecea0 RC |
2616 | pif (sr4export); |
2617 | pif (cxx_info); | |
2618 | pif (cxx_try_catch); | |
2619 | pif (sched_entry_seq); | |
c906108c SS |
2620 | pif (Save_SP); |
2621 | pif (Save_RP); | |
2622 | pif (Save_MRP_in_frame); | |
6fcecea0 | 2623 | pif (save_r19); |
c906108c SS |
2624 | pif (Cleanup_defined); |
2625 | pif (MPE_XL_interrupt_marker); | |
2626 | pif (HP_UX_interrupt_marker); | |
2627 | pif (Large_frame); | |
6fcecea0 | 2628 | pif (alloca_frame); |
c906108c SS |
2629 | |
2630 | putchar_unfiltered ('\n'); | |
2631 | ||
c906108c | 2632 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
c906108c SS |
2633 | |
2634 | pin (Region_description); | |
2635 | pin (Entry_FR); | |
2636 | pin (Entry_GR); | |
2637 | pin (Total_frame_size); | |
57dac9e1 RC |
2638 | |
2639 | if (u->stub_unwind.stub_type) | |
2640 | { | |
2641 | printf_unfiltered ("\tstub type = "); | |
2642 | switch (u->stub_unwind.stub_type) | |
2643 | { | |
2644 | case LONG_BRANCH: | |
2645 | printf_unfiltered ("long branch\n"); | |
2646 | break; | |
2647 | case PARAMETER_RELOCATION: | |
2648 | printf_unfiltered ("parameter relocation\n"); | |
2649 | break; | |
2650 | case EXPORT: | |
2651 | printf_unfiltered ("export\n"); | |
2652 | break; | |
2653 | case IMPORT: | |
2654 | printf_unfiltered ("import\n"); | |
2655 | break; | |
2656 | case IMPORT_SHLIB: | |
2657 | printf_unfiltered ("import shlib\n"); | |
2658 | break; | |
2659 | default: | |
2660 | printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type); | |
2661 | } | |
2662 | } | |
c906108c | 2663 | } |
c906108c | 2664 | |
38ca4e0c MK |
2665 | /* Return the GDB type object for the "standard" data type of data in |
2666 | register REGNUM. */ | |
d709c020 | 2667 | |
eded0a31 | 2668 | static struct type * |
38ca4e0c | 2669 | hppa32_register_type (struct gdbarch *gdbarch, int regnum) |
d709c020 | 2670 | { |
38ca4e0c | 2671 | if (regnum < HPPA_FP4_REGNUM) |
df4df182 | 2672 | return builtin_type (gdbarch)->builtin_uint32; |
d709c020 | 2673 | else |
27067745 | 2674 | return builtin_type (gdbarch)->builtin_float; |
d709c020 JB |
2675 | } |
2676 | ||
eded0a31 | 2677 | static struct type * |
38ca4e0c | 2678 | hppa64_register_type (struct gdbarch *gdbarch, int regnum) |
3ff7cf9e | 2679 | { |
38ca4e0c | 2680 | if (regnum < HPPA64_FP4_REGNUM) |
df4df182 | 2681 | return builtin_type (gdbarch)->builtin_uint64; |
3ff7cf9e | 2682 | else |
27067745 | 2683 | return builtin_type (gdbarch)->builtin_double; |
3ff7cf9e JB |
2684 | } |
2685 | ||
38ca4e0c MK |
2686 | /* Return non-zero if REGNUM is not a register available to the user |
2687 | through ptrace/ttrace. */ | |
d709c020 | 2688 | |
8d153463 | 2689 | static int |
64a3914f | 2690 | hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum) |
d709c020 JB |
2691 | { |
2692 | return (regnum == 0 | |
34f75cc1 RC |
2693 | || regnum == HPPA_PCSQ_HEAD_REGNUM |
2694 | || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) | |
2695 | || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM)); | |
38ca4e0c | 2696 | } |
d709c020 | 2697 | |
d037d088 | 2698 | static int |
64a3914f | 2699 | hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) |
d037d088 CD |
2700 | { |
2701 | /* cr26 and cr27 are readable (but not writable) from userspace. */ | |
2702 | if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) | |
2703 | return 0; | |
2704 | else | |
64a3914f | 2705 | return hppa32_cannot_store_register (gdbarch, regnum); |
d037d088 CD |
2706 | } |
2707 | ||
38ca4e0c | 2708 | static int |
64a3914f | 2709 | hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum) |
38ca4e0c MK |
2710 | { |
2711 | return (regnum == 0 | |
2712 | || regnum == HPPA_PCSQ_HEAD_REGNUM | |
2713 | || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) | |
2714 | || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM)); | |
d709c020 JB |
2715 | } |
2716 | ||
d037d088 | 2717 | static int |
64a3914f | 2718 | hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) |
d037d088 CD |
2719 | { |
2720 | /* cr26 and cr27 are readable (but not writable) from userspace. */ | |
2721 | if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) | |
2722 | return 0; | |
2723 | else | |
64a3914f | 2724 | return hppa64_cannot_store_register (gdbarch, regnum); |
d037d088 CD |
2725 | } |
2726 | ||
8d153463 | 2727 | static CORE_ADDR |
85ddcc70 | 2728 | hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr) |
d709c020 JB |
2729 | { |
2730 | /* The low two bits of the PC on the PA contain the privilege level. | |
2731 | Some genius implementing a (non-GCC) compiler apparently decided | |
2732 | this means that "addresses" in a text section therefore include a | |
2733 | privilege level, and thus symbol tables should contain these bits. | |
2734 | This seems like a bonehead thing to do--anyway, it seems to work | |
2735 | for our purposes to just ignore those bits. */ | |
2736 | ||
2737 | return (addr &= ~0x3); | |
2738 | } | |
2739 | ||
e127f0db MK |
2740 | /* Get the ARGIth function argument for the current function. */ |
2741 | ||
4a302917 | 2742 | static CORE_ADDR |
143985b7 AF |
2743 | hppa_fetch_pointer_argument (struct frame_info *frame, int argi, |
2744 | struct type *type) | |
2745 | { | |
e127f0db | 2746 | return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi); |
143985b7 AF |
2747 | } |
2748 | ||
05d1431c | 2749 | static enum register_status |
0f8d9d59 | 2750 | hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, |
e127f0db | 2751 | int regnum, gdb_byte *buf) |
0f8d9d59 | 2752 | { |
05d1431c PA |
2753 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
2754 | ULONGEST tmp; | |
2755 | enum register_status status; | |
0f8d9d59 | 2756 | |
03f50fc8 | 2757 | status = regcache->raw_read (regnum, &tmp); |
05d1431c PA |
2758 | if (status == REG_VALID) |
2759 | { | |
2760 | if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM) | |
2761 | tmp &= ~0x3; | |
2762 | store_unsigned_integer (buf, sizeof tmp, byte_order, tmp); | |
2763 | } | |
2764 | return status; | |
0f8d9d59 RC |
2765 | } |
2766 | ||
d49771ef | 2767 | static CORE_ADDR |
e38c262f | 2768 | hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function) |
d49771ef RC |
2769 | { |
2770 | return 0; | |
2771 | } | |
2772 | ||
227e86ad JB |
2773 | struct value * |
2774 | hppa_frame_prev_register_helper (struct frame_info *this_frame, | |
0da28f8a | 2775 | struct trad_frame_saved_reg saved_regs[], |
227e86ad | 2776 | int regnum) |
0da28f8a | 2777 | { |
227e86ad | 2778 | struct gdbarch *arch = get_frame_arch (this_frame); |
e17a4113 | 2779 | enum bfd_endian byte_order = gdbarch_byte_order (arch); |
8f4e467c | 2780 | |
8693c419 MK |
2781 | if (regnum == HPPA_PCOQ_TAIL_REGNUM) |
2782 | { | |
227e86ad JB |
2783 | int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM); |
2784 | CORE_ADDR pc; | |
2785 | struct value *pcoq_val = | |
2786 | trad_frame_get_prev_register (this_frame, saved_regs, | |
2787 | HPPA_PCOQ_HEAD_REGNUM); | |
8693c419 | 2788 | |
e17a4113 UW |
2789 | pc = extract_unsigned_integer (value_contents_all (pcoq_val), |
2790 | size, byte_order); | |
227e86ad | 2791 | return frame_unwind_got_constant (this_frame, regnum, pc + 4); |
8693c419 | 2792 | } |
0da28f8a | 2793 | |
227e86ad | 2794 | return trad_frame_get_prev_register (this_frame, saved_regs, regnum); |
0da28f8a | 2795 | } |
8693c419 | 2796 | \f |
0da28f8a | 2797 | |
34f55018 MK |
2798 | /* An instruction to match. */ |
2799 | struct insn_pattern | |
2800 | { | |
2801 | unsigned int data; /* See if it matches this.... */ | |
2802 | unsigned int mask; /* ... with this mask. */ | |
2803 | }; | |
2804 | ||
2805 | /* See bfd/elf32-hppa.c */ | |
2806 | static struct insn_pattern hppa_long_branch_stub[] = { | |
2807 | /* ldil LR'xxx,%r1 */ | |
2808 | { 0x20200000, 0xffe00000 }, | |
2809 | /* be,n RR'xxx(%sr4,%r1) */ | |
2810 | { 0xe0202002, 0xffe02002 }, | |
2811 | { 0, 0 } | |
2812 | }; | |
2813 | ||
2814 | static struct insn_pattern hppa_long_branch_pic_stub[] = { | |
2815 | /* b,l .+8, %r1 */ | |
2816 | { 0xe8200000, 0xffe00000 }, | |
2817 | /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */ | |
2818 | { 0x28200000, 0xffe00000 }, | |
2819 | /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */ | |
2820 | { 0xe0202002, 0xffe02002 }, | |
2821 | { 0, 0 } | |
2822 | }; | |
2823 | ||
2824 | static struct insn_pattern hppa_import_stub[] = { | |
2825 | /* addil LR'xxx, %dp */ | |
2826 | { 0x2b600000, 0xffe00000 }, | |
2827 | /* ldw RR'xxx(%r1), %r21 */ | |
2828 | { 0x48350000, 0xffffb000 }, | |
2829 | /* bv %r0(%r21) */ | |
2830 | { 0xeaa0c000, 0xffffffff }, | |
2831 | /* ldw RR'xxx+4(%r1), %r19 */ | |
2832 | { 0x48330000, 0xffffb000 }, | |
2833 | { 0, 0 } | |
2834 | }; | |
2835 | ||
2836 | static struct insn_pattern hppa_import_pic_stub[] = { | |
2837 | /* addil LR'xxx,%r19 */ | |
2838 | { 0x2a600000, 0xffe00000 }, | |
2839 | /* ldw RR'xxx(%r1),%r21 */ | |
2840 | { 0x48350000, 0xffffb000 }, | |
2841 | /* bv %r0(%r21) */ | |
2842 | { 0xeaa0c000, 0xffffffff }, | |
2843 | /* ldw RR'xxx+4(%r1),%r19 */ | |
2844 | { 0x48330000, 0xffffb000 }, | |
2845 | { 0, 0 }, | |
2846 | }; | |
2847 | ||
2848 | static struct insn_pattern hppa_plt_stub[] = { | |
2849 | /* b,l 1b, %r20 - 1b is 3 insns before here */ | |
2850 | { 0xea9f1fdd, 0xffffffff }, | |
2851 | /* depi 0,31,2,%r20 */ | |
2852 | { 0xd6801c1e, 0xffffffff }, | |
2853 | { 0, 0 } | |
34f55018 MK |
2854 | }; |
2855 | ||
2856 | /* Maximum number of instructions on the patterns above. */ | |
2857 | #define HPPA_MAX_INSN_PATTERN_LEN 4 | |
2858 | ||
2859 | /* Return non-zero if the instructions at PC match the series | |
2860 | described in PATTERN, or zero otherwise. PATTERN is an array of | |
2861 | 'struct insn_pattern' objects, terminated by an entry whose mask is | |
2862 | zero. | |
2863 | ||
2864 | When the match is successful, fill INSN[i] with what PATTERN[i] | |
2865 | matched. */ | |
2866 | ||
2867 | static int | |
e17a4113 UW |
2868 | hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc, |
2869 | struct insn_pattern *pattern, unsigned int *insn) | |
34f55018 | 2870 | { |
e17a4113 | 2871 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
34f55018 MK |
2872 | CORE_ADDR npc = pc; |
2873 | int i; | |
2874 | ||
2875 | for (i = 0; pattern[i].mask; i++) | |
2876 | { | |
2877 | gdb_byte buf[HPPA_INSN_SIZE]; | |
2878 | ||
8defab1a | 2879 | target_read_memory (npc, buf, HPPA_INSN_SIZE); |
e17a4113 | 2880 | insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order); |
34f55018 MK |
2881 | if ((insn[i] & pattern[i].mask) == pattern[i].data) |
2882 | npc += 4; | |
2883 | else | |
2884 | return 0; | |
2885 | } | |
2886 | ||
2887 | return 1; | |
2888 | } | |
2889 | ||
2890 | /* This relaxed version of the insstruction matcher allows us to match | |
2891 | from somewhere inside the pattern, by looking backwards in the | |
2892 | instruction scheme. */ | |
2893 | ||
2894 | static int | |
e17a4113 UW |
2895 | hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc, |
2896 | struct insn_pattern *pattern, unsigned int *insn) | |
34f55018 MK |
2897 | { |
2898 | int offset, len = 0; | |
2899 | ||
2900 | while (pattern[len].mask) | |
2901 | len++; | |
2902 | ||
2903 | for (offset = 0; offset < len; offset++) | |
e17a4113 UW |
2904 | if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE, |
2905 | pattern, insn)) | |
34f55018 MK |
2906 | return 1; |
2907 | ||
2908 | return 0; | |
2909 | } | |
2910 | ||
2911 | static int | |
2912 | hppa_in_dyncall (CORE_ADDR pc) | |
2913 | { | |
2914 | struct unwind_table_entry *u; | |
2915 | ||
2916 | u = find_unwind_entry (hppa_symbol_address ("$$dyncall")); | |
2917 | if (!u) | |
2918 | return 0; | |
2919 | ||
2920 | return (pc >= u->region_start && pc <= u->region_end); | |
2921 | } | |
2922 | ||
2923 | int | |
3e5d3a5a | 2924 | hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc) |
34f55018 MK |
2925 | { |
2926 | unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; | |
2927 | struct unwind_table_entry *u; | |
2928 | ||
3e5d3a5a | 2929 | if (in_plt_section (pc) || hppa_in_dyncall (pc)) |
34f55018 MK |
2930 | return 1; |
2931 | ||
2932 | /* The GNU toolchain produces linker stubs without unwind | |
2933 | information. Since the pattern matching for linker stubs can be | |
2934 | quite slow, so bail out if we do have an unwind entry. */ | |
2935 | ||
2936 | u = find_unwind_entry (pc); | |
806e23c0 | 2937 | if (u != NULL) |
34f55018 MK |
2938 | return 0; |
2939 | ||
e17a4113 UW |
2940 | return |
2941 | (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn) | |
2942 | || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn) | |
2943 | || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn) | |
2944 | || hppa_match_insns_relaxed (gdbarch, pc, | |
2945 | hppa_long_branch_pic_stub, insn)); | |
34f55018 MK |
2946 | } |
2947 | ||
2948 | /* This code skips several kind of "trampolines" used on PA-RISC | |
2949 | systems: $$dyncall, import stubs and PLT stubs. */ | |
2950 | ||
2951 | CORE_ADDR | |
52f729a7 | 2952 | hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) |
34f55018 | 2953 | { |
0dfff4cb UW |
2954 | struct gdbarch *gdbarch = get_frame_arch (frame); |
2955 | struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; | |
2956 | ||
34f55018 MK |
2957 | unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; |
2958 | int dp_rel; | |
2959 | ||
2960 | /* $$dyncall handles both PLABELs and direct addresses. */ | |
2961 | if (hppa_in_dyncall (pc)) | |
2962 | { | |
52f729a7 | 2963 | pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22); |
34f55018 MK |
2964 | |
2965 | /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */ | |
2966 | if (pc & 0x2) | |
0dfff4cb | 2967 | pc = read_memory_typed_address (pc & ~0x3, func_ptr_type); |
34f55018 MK |
2968 | |
2969 | return pc; | |
2970 | } | |
2971 | ||
e17a4113 UW |
2972 | dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn); |
2973 | if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn)) | |
34f55018 MK |
2974 | { |
2975 | /* Extract the target address from the addil/ldw sequence. */ | |
2976 | pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]); | |
2977 | ||
2978 | if (dp_rel) | |
52f729a7 | 2979 | pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM); |
34f55018 | 2980 | else |
52f729a7 | 2981 | pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19); |
34f55018 MK |
2982 | |
2983 | /* fallthrough */ | |
2984 | } | |
2985 | ||
3e5d3a5a | 2986 | if (in_plt_section (pc)) |
34f55018 | 2987 | { |
0dfff4cb | 2988 | pc = read_memory_typed_address (pc, func_ptr_type); |
34f55018 MK |
2989 | |
2990 | /* If the PLT slot has not yet been resolved, the target will be | |
2991 | the PLT stub. */ | |
3e5d3a5a | 2992 | if (in_plt_section (pc)) |
34f55018 MK |
2993 | { |
2994 | /* Sanity check: are we pointing to the PLT stub? */ | |
e17a4113 | 2995 | if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn)) |
34f55018 | 2996 | { |
5af949e3 UW |
2997 | warning (_("Cannot resolve PLT stub at %s."), |
2998 | paddress (gdbarch, pc)); | |
34f55018 MK |
2999 | return 0; |
3000 | } | |
3001 | ||
3002 | /* This should point to the fixup routine. */ | |
0dfff4cb | 3003 | pc = read_memory_typed_address (pc + 8, func_ptr_type); |
34f55018 MK |
3004 | } |
3005 | } | |
3006 | ||
3007 | return pc; | |
3008 | } | |
3009 | \f | |
3010 | ||
8e8b2dba MC |
3011 | /* Here is a table of C type sizes on hppa with various compiles |
3012 | and options. I measured this on PA 9000/800 with HP-UX 11.11 | |
3013 | and these compilers: | |
3014 | ||
3015 | /usr/ccs/bin/cc HP92453-01 A.11.01.21 | |
3016 | /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP | |
3017 | /opt/aCC/bin/aCC B3910B A.03.45 | |
3018 | gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11 | |
3019 | ||
3020 | cc : 1 2 4 4 8 : 4 8 -- : 4 4 | |
3021 | ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
3022 | ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
3023 | ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
3024 | acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
3025 | acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
3026 | acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
3027 | gcc : 1 2 4 4 8 : 4 8 16 : 4 4 | |
3028 | ||
3029 | Each line is: | |
3030 | ||
3031 | compiler and options | |
3032 | char, short, int, long, long long | |
3033 | float, double, long double | |
3034 | char *, void (*)() | |
3035 | ||
3036 | So all these compilers use either ILP32 or LP64 model. | |
3037 | TODO: gcc has more options so it needs more investigation. | |
3038 | ||
a2379359 MC |
3039 | For floating point types, see: |
3040 | ||
3041 | http://docs.hp.com/hpux/pdf/B3906-90006.pdf | |
3042 | HP-UX floating-point guide, hpux 11.00 | |
3043 | ||
8e8b2dba MC |
3044 | -- chastain 2003-12-18 */ |
3045 | ||
e6e68f1f JB |
3046 | static struct gdbarch * |
3047 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
3048 | { | |
3ff7cf9e | 3049 | struct gdbarch_tdep *tdep; |
e6e68f1f JB |
3050 | struct gdbarch *gdbarch; |
3051 | ||
3052 | /* find a candidate among the list of pre-declared architectures. */ | |
3053 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
3054 | if (arches != NULL) | |
3055 | return (arches->gdbarch); | |
3056 | ||
3057 | /* If none found, then allocate and initialize one. */ | |
41bf6aca | 3058 | tdep = XCNEW (struct gdbarch_tdep); |
3ff7cf9e JB |
3059 | gdbarch = gdbarch_alloc (&info, tdep); |
3060 | ||
3061 | /* Determine from the bfd_arch_info structure if we are dealing with | |
3062 | a 32 or 64 bits architecture. If the bfd_arch_info is not available, | |
3063 | then default to a 32bit machine. */ | |
3064 | if (info.bfd_arch_info != NULL) | |
3065 | tdep->bytes_per_address = | |
3066 | info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte; | |
3067 | else | |
3068 | tdep->bytes_per_address = 4; | |
3069 | ||
d49771ef RC |
3070 | tdep->find_global_pointer = hppa_find_global_pointer; |
3071 | ||
3ff7cf9e JB |
3072 | /* Some parts of the gdbarch vector depend on whether we are running |
3073 | on a 32 bits or 64 bits target. */ | |
3074 | switch (tdep->bytes_per_address) | |
3075 | { | |
3076 | case 4: | |
3077 | set_gdbarch_num_regs (gdbarch, hppa32_num_regs); | |
3078 | set_gdbarch_register_name (gdbarch, hppa32_register_name); | |
eded0a31 | 3079 | set_gdbarch_register_type (gdbarch, hppa32_register_type); |
38ca4e0c MK |
3080 | set_gdbarch_cannot_store_register (gdbarch, |
3081 | hppa32_cannot_store_register); | |
3082 | set_gdbarch_cannot_fetch_register (gdbarch, | |
d037d088 | 3083 | hppa32_cannot_fetch_register); |
3ff7cf9e JB |
3084 | break; |
3085 | case 8: | |
3086 | set_gdbarch_num_regs (gdbarch, hppa64_num_regs); | |
3087 | set_gdbarch_register_name (gdbarch, hppa64_register_name); | |
eded0a31 | 3088 | set_gdbarch_register_type (gdbarch, hppa64_register_type); |
1ef7fcb5 | 3089 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum); |
38ca4e0c MK |
3090 | set_gdbarch_cannot_store_register (gdbarch, |
3091 | hppa64_cannot_store_register); | |
3092 | set_gdbarch_cannot_fetch_register (gdbarch, | |
d037d088 | 3093 | hppa64_cannot_fetch_register); |
3ff7cf9e JB |
3094 | break; |
3095 | default: | |
e2e0b3e5 | 3096 | internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"), |
3ff7cf9e JB |
3097 | tdep->bytes_per_address); |
3098 | } | |
3099 | ||
3ff7cf9e | 3100 | set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
3ff7cf9e | 3101 | set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
e6e68f1f | 3102 | |
8e8b2dba MC |
3103 | /* The following gdbarch vector elements are the same in both ILP32 |
3104 | and LP64, but might show differences some day. */ | |
3105 | set_gdbarch_long_long_bit (gdbarch, 64); | |
3106 | set_gdbarch_long_double_bit (gdbarch, 128); | |
8da61cc4 | 3107 | set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); |
8e8b2dba | 3108 | |
3ff7cf9e JB |
3109 | /* The following gdbarch vector elements do not depend on the address |
3110 | size, or in any other gdbarch element previously set. */ | |
60383d10 | 3111 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); |
c9cf6e20 MG |
3112 | set_gdbarch_stack_frame_destroyed_p (gdbarch, |
3113 | hppa_stack_frame_destroyed_p); | |
a2a84a72 | 3114 | set_gdbarch_inner_than (gdbarch, core_addr_greaterthan); |
eded0a31 AC |
3115 | set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM); |
3116 | set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM); | |
85ddcc70 | 3117 | set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove); |
60383d10 | 3118 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); |
cc72850f MK |
3119 | set_gdbarch_read_pc (gdbarch, hppa_read_pc); |
3120 | set_gdbarch_write_pc (gdbarch, hppa_write_pc); | |
60383d10 | 3121 | |
143985b7 AF |
3122 | /* Helper for function argument information. */ |
3123 | set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); | |
3124 | ||
3a3bc038 AC |
3125 | /* When a hardware watchpoint triggers, we'll move the inferior past |
3126 | it by removing all eventpoints; stepping past the instruction | |
3127 | that caused the trigger; reinserting eventpoints; and checking | |
3128 | whether any watched location changed. */ | |
3129 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
3130 | ||
5979bc46 | 3131 | /* Inferior function call methods. */ |
fca7aa43 | 3132 | switch (tdep->bytes_per_address) |
5979bc46 | 3133 | { |
fca7aa43 AC |
3134 | case 4: |
3135 | set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call); | |
3136 | set_gdbarch_frame_align (gdbarch, hppa32_frame_align); | |
d49771ef RC |
3137 | set_gdbarch_convert_from_func_ptr_addr |
3138 | (gdbarch, hppa32_convert_from_func_ptr_addr); | |
fca7aa43 AC |
3139 | break; |
3140 | case 8: | |
782eae8b AC |
3141 | set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call); |
3142 | set_gdbarch_frame_align (gdbarch, hppa64_frame_align); | |
fca7aa43 | 3143 | break; |
782eae8b | 3144 | default: |
e2e0b3e5 | 3145 | internal_error (__FILE__, __LINE__, _("bad switch")); |
fad850b2 AC |
3146 | } |
3147 | ||
3148 | /* Struct return methods. */ | |
fca7aa43 | 3149 | switch (tdep->bytes_per_address) |
fad850b2 | 3150 | { |
fca7aa43 AC |
3151 | case 4: |
3152 | set_gdbarch_return_value (gdbarch, hppa32_return_value); | |
3153 | break; | |
3154 | case 8: | |
782eae8b | 3155 | set_gdbarch_return_value (gdbarch, hppa64_return_value); |
f5f907e2 | 3156 | break; |
fca7aa43 | 3157 | default: |
e2e0b3e5 | 3158 | internal_error (__FILE__, __LINE__, _("bad switch")); |
e963316f | 3159 | } |
7f07c5b6 | 3160 | |
04180708 YQ |
3161 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc); |
3162 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind); | |
7f07c5b6 | 3163 | set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read); |
85f4f2d8 | 3164 | |
5979bc46 | 3165 | /* Frame unwind methods. */ |
227e86ad | 3166 | set_gdbarch_dummy_id (gdbarch, hppa_dummy_id); |
782eae8b | 3167 | set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc); |
7f07c5b6 | 3168 | |
50306a9d RC |
3169 | /* Hook in ABI-specific overrides, if they have been registered. */ |
3170 | gdbarch_init_osabi (info, gdbarch); | |
3171 | ||
7f07c5b6 | 3172 | /* Hook in the default unwinders. */ |
227e86ad JB |
3173 | frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind); |
3174 | frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind); | |
3175 | frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind); | |
5979bc46 | 3176 | |
e6e68f1f JB |
3177 | return gdbarch; |
3178 | } | |
3179 | ||
3180 | static void | |
464963c9 | 3181 | hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
e6e68f1f | 3182 | { |
464963c9 | 3183 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
fdd72f95 RC |
3184 | |
3185 | fprintf_unfiltered (file, "bytes_per_address = %d\n", | |
3186 | tdep->bytes_per_address); | |
3187 | fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no"); | |
e6e68f1f JB |
3188 | } |
3189 | ||
4facf7e8 JB |
3190 | void |
3191 | _initialize_hppa_tdep (void) | |
3192 | { | |
e6e68f1f | 3193 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
4facf7e8 | 3194 | |
7c46b9fb RC |
3195 | hppa_objfile_priv_data = register_objfile_data (); |
3196 | ||
4facf7e8 | 3197 | add_cmd ("unwind", class_maintenance, unwind_command, |
1a966eab | 3198 | _("Print unwind table entry at given address."), |
4facf7e8 JB |
3199 | &maintenanceprintlist); |
3200 | ||
1777feb0 | 3201 | /* Debug this files internals. */ |
7915a72c AC |
3202 | add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\ |
3203 | Set whether hppa target specific debugging information should be displayed."), | |
3204 | _("\ | |
3205 | Show whether hppa target specific debugging information is displayed."), _("\ | |
4a302917 RC |
3206 | This flag controls whether hppa target specific debugging information is\n\ |
3207 | displayed. This information is particularly useful for debugging frame\n\ | |
7915a72c | 3208 | unwinding problems."), |
2c5b56ce | 3209 | NULL, |
7915a72c | 3210 | NULL, /* FIXME: i18n: hppa debug flag is %s. */ |
2c5b56ce | 3211 | &setdebuglist, &showdebuglist); |
4facf7e8 | 3212 | } |