]> Git Repo - J-u-boot.git/blame - drivers/spi/fsl_qspi.c
dm: treewide: Update 'auto' declarations to be on one line
[J-u-boot.git] / drivers / spi / fsl_qspi.c
CommitLineData
83d290c5 1// SPDX-License-Identifier: GPL-2.0+
91afd36f 2
6b57ff6f 3/*
91afd36f
KS
4 * Freescale QuadSPI driver.
5 *
6 * Copyright (C) 2013 Freescale Semiconductor, Inc.
7 * Copyright (C) 2018 Bootlin
8 * Copyright (C) 2018 exceet electronics GmbH
9 * Copyright (C) 2018 Kontron Electronics GmbH
10 * Copyright 2019-2020 NXP
11 *
12 * This driver is a ported version of Linux Freescale QSPI driver taken from
13 * v5.5-rc1 tag having following information.
6b57ff6f 14 *
91afd36f
KS
15 * Transition to SPI MEM interface:
16 * Authors:
17 * Boris Brezillon <[email protected]>
18 * Frieder Schrempf <[email protected]>
19 * Yogesh Gaur <[email protected]>
20 * Suresh Gupta <[email protected]>
21 *
22 * Based on the original fsl-quadspi.c spi-nor driver.
23 * Transition to spi-mem in spi-fsl-qspi.c
6b57ff6f
AW
24 */
25
26#include <common.h>
d13da03f
SA
27#include <dm.h>
28#include <dm/device_compat.h>
f7ae49fc 29#include <log.h>
d13da03f
SA
30#include <spi.h>
31#include <spi-mem.h>
cd93d625 32#include <linux/bitops.h>
c05ed00a 33#include <linux/delay.h>
4d72caa5
SG
34#include <linux/libfdt.h>
35#include <linux/sizes.h>
36#include <linux/iopoll.h>
91afd36f
KS
37#include <linux/iopoll.h>
38#include <linux/sizes.h>
39#include <linux/err.h>
d13da03f 40#include <asm/io.h>
6b57ff6f 41
5bc48308
HW
42DECLARE_GLOBAL_DATA_PTR;
43
91afd36f
KS
44/*
45 * The driver only uses one single LUT entry, that is updated on
46 * each call of exec_op(). Index 0 is preset at boot with a basic
47 * read operation, so let's use the last entry (15).
48 */
49#define SEQID_LUT 15
def88bce 50#define SEQID_LUT_AHB 14
91afd36f
KS
51
52/* Registers used by the driver */
53#define QUADSPI_MCR 0x00
54#define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16)
55#define QUADSPI_MCR_MDIS_MASK BIT(14)
56#define QUADSPI_MCR_CLR_TXF_MASK BIT(11)
57#define QUADSPI_MCR_CLR_RXF_MASK BIT(10)
58#define QUADSPI_MCR_DDR_EN_MASK BIT(7)
59#define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2)
60#define QUADSPI_MCR_SWRSTHD_MASK BIT(1)
61#define QUADSPI_MCR_SWRSTSD_MASK BIT(0)
62
63#define QUADSPI_IPCR 0x08
64#define QUADSPI_IPCR_SEQID(x) ((x) << 24)
65#define QUADSPI_FLSHCR 0x0c
66#define QUADSPI_FLSHCR_TCSS_MASK GENMASK(3, 0)
67#define QUADSPI_FLSHCR_TCSH_MASK GENMASK(11, 8)
68#define QUADSPI_FLSHCR_TDH_MASK GENMASK(17, 16)
69
70#define QUADSPI_BUF3CR 0x1c
71#define QUADSPI_BUF3CR_ALLMST_MASK BIT(31)
72#define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8)
73#define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8)
74
75#define QUADSPI_BFGENCR 0x20
76#define QUADSPI_BFGENCR_SEQID(x) ((x) << 12)
77
78#define QUADSPI_BUF0IND 0x30
79#define QUADSPI_BUF1IND 0x34
80#define QUADSPI_BUF2IND 0x38
81#define QUADSPI_SFAR 0x100
82
83#define QUADSPI_SMPR 0x108
84#define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16)
85#define QUADSPI_SMPR_FSDLY_MASK BIT(6)
86#define QUADSPI_SMPR_FSPHS_MASK BIT(5)
87#define QUADSPI_SMPR_HSENA_MASK BIT(0)
88
89#define QUADSPI_RBCT 0x110
90#define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0)
91#define QUADSPI_RBCT_RXBRD_USEIPS BIT(8)
92
93#define QUADSPI_TBDR 0x154
94
95#define QUADSPI_SR 0x15c
96#define QUADSPI_SR_IP_ACC_MASK BIT(1)
97#define QUADSPI_SR_AHB_ACC_MASK BIT(2)
98
99#define QUADSPI_FR 0x160
100#define QUADSPI_FR_TFF_MASK BIT(0)
101
102#define QUADSPI_RSER 0x164
103#define QUADSPI_RSER_TFIE BIT(0)
104
105#define QUADSPI_SPTRCLR 0x16c
106#define QUADSPI_SPTRCLR_IPPTRC BIT(8)
107#define QUADSPI_SPTRCLR_BFPTRC BIT(0)
108
109#define QUADSPI_SFA1AD 0x180
110#define QUADSPI_SFA2AD 0x184
111#define QUADSPI_SFB1AD 0x188
112#define QUADSPI_SFB2AD 0x18c
113#define QUADSPI_RBDR(x) (0x200 + ((x) * 4))
114
115#define QUADSPI_LUTKEY 0x300
116#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
117
118#define QUADSPI_LCKCR 0x304
119#define QUADSPI_LCKER_LOCK BIT(0)
120#define QUADSPI_LCKER_UNLOCK BIT(1)
121
122#define QUADSPI_LUT_BASE 0x310
123#define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
124#define QUADSPI_LUT_REG(idx) \
125 (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
126
def88bce
YL
127#define QUADSPI_AHB_LUT_OFFSET (SEQID_LUT_AHB * 4 * 4)
128#define QUADSPI_AHB_LUT_REG(idx) \
129 (QUADSPI_LUT_BASE + QUADSPI_AHB_LUT_OFFSET + (idx) * 4)
130
91afd36f
KS
131/* Instruction set for the LUT register */
132#define LUT_STOP 0
133#define LUT_CMD 1
134#define LUT_ADDR 2
135#define LUT_DUMMY 3
136#define LUT_MODE 4
137#define LUT_MODE2 5
138#define LUT_MODE4 6
139#define LUT_FSL_READ 7
140#define LUT_FSL_WRITE 8
141#define LUT_JMP_ON_CS 9
142#define LUT_ADDR_DDR 10
143#define LUT_MODE_DDR 11
144#define LUT_MODE2_DDR 12
145#define LUT_MODE4_DDR 13
146#define LUT_FSL_READ_DDR 14
147#define LUT_FSL_WRITE_DDR 15
148#define LUT_DATA_LEARN 16
149
150/*
151 * The PAD definitions for LUT register.
152 *
153 * The pad stands for the number of IO lines [0:3].
154 * For example, the quad read needs four IO lines,
155 * so you should use LUT_PAD(4).
156 */
157#define LUT_PAD(x) (fls(x) - 1)
158
159/*
160 * Macro for constructing the LUT entries with the following
161 * register layout:
162 *
163 * ---------------------------------------------------
164 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
165 * ---------------------------------------------------
166 */
167#define LUT_DEF(idx, ins, pad, opr) \
168 ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
169
170/* Controller needs driver to swap endianness */
ce7575a8
YL
171#define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0)
172
91afd36f
KS
173/* Controller needs 4x internal clock */
174#define QUADSPI_QUIRK_4X_INT_CLK BIT(1)
ce7575a8 175
91afd36f
KS
176/*
177 * TKT253890, the controller needs the driver to fill the txfifo with
178 * 16 bytes at least to trigger a data transfer, even though the extra
179 * data won't be transferred.
180 */
181#define QUADSPI_QUIRK_TKT253890 BIT(2)
ce7575a8 182
91afd36f
KS
183/* TKT245618, the controller cannot wake up from wait mode */
184#define QUADSPI_QUIRK_TKT245618 BIT(3)
185
186/*
187 * Controller adds QSPI_AMBA_BASE (base address of the mapped memory)
188 * internally. No need to add it when setting SFXXAD and SFAR registers
5bc48308 189 */
91afd36f 190#define QUADSPI_QUIRK_BASE_INTERNAL BIT(4)
5bc48308 191
91afd36f
KS
192/*
193 * Controller uses TDH bits in register QUADSPI_FLSHCR.
194 * They need to be set in accordance with the DDR/SDR mode.
5bc48308 195 */
91afd36f
KS
196#define QUADSPI_QUIRK_USE_TDH_SETTING BIT(5)
197
def88bce
YL
198/*
199 * Controller only has Two CS on flash A, no flash B port
200 */
201#define QUADSPI_QUIRK_SINGLE_BUS BIT(6)
202
91afd36f
KS
203struct fsl_qspi_devtype_data {
204 unsigned int rxfifo;
205 unsigned int txfifo;
206 unsigned int ahb_buf_size;
207 unsigned int quirks;
208 bool little_endian;
6b57ff6f
AW
209};
210
ce7575a8 211static const struct fsl_qspi_devtype_data vybrid_data = {
91afd36f
KS
212 .rxfifo = SZ_128,
213 .txfifo = SZ_64,
214 .ahb_buf_size = SZ_1K,
215 .quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
216 .little_endian = true,
ce7575a8
YL
217};
218
219static const struct fsl_qspi_devtype_data imx6sx_data = {
91afd36f
KS
220 .rxfifo = SZ_128,
221 .txfifo = SZ_512,
222 .ahb_buf_size = SZ_1K,
223 .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
224 .little_endian = true,
225};
226
227static const struct fsl_qspi_devtype_data imx7d_data = {
228 .rxfifo = SZ_128,
229 .txfifo = SZ_512,
230 .ahb_buf_size = SZ_1K,
231 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
232 QUADSPI_QUIRK_USE_TDH_SETTING,
233 .little_endian = true,
ce7575a8
YL
234};
235
91afd36f
KS
236static const struct fsl_qspi_devtype_data imx6ul_data = {
237 .rxfifo = SZ_128,
238 .txfifo = SZ_512,
239 .ahb_buf_size = SZ_1K,
240 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
241 QUADSPI_QUIRK_USE_TDH_SETTING,
242 .little_endian = true,
ce7575a8 243};
5bc48308 244
93d6c8f7
YL
245static const struct fsl_qspi_devtype_data imx7ulp_data = {
246 .rxfifo = SZ_64,
247 .txfifo = SZ_64,
248 .ahb_buf_size = SZ_128,
249 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
def88bce 250 QUADSPI_QUIRK_USE_TDH_SETTING | QUADSPI_QUIRK_SINGLE_BUS,
93d6c8f7
YL
251 .little_endian = true,
252};
253
91afd36f
KS
254static const struct fsl_qspi_devtype_data ls1021a_data = {
255 .rxfifo = SZ_128,
256 .txfifo = SZ_64,
257 .ahb_buf_size = SZ_1K,
258 .quirks = 0,
259 .little_endian = false,
9699fb4d
YL
260};
261
91afd36f
KS
262static const struct fsl_qspi_devtype_data ls1088a_data = {
263 .rxfifo = SZ_128,
264 .txfifo = SZ_128,
265 .ahb_buf_size = SZ_1K,
266 .quirks = QUADSPI_QUIRK_TKT253890,
267 .little_endian = true,
268};
269
270static const struct fsl_qspi_devtype_data ls2080a_data = {
271 .rxfifo = SZ_128,
272 .txfifo = SZ_64,
273 .ahb_buf_size = SZ_1K,
274 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL,
275 .little_endian = true,
276};
277
278struct fsl_qspi {
279 struct udevice *dev;
280 void __iomem *iobase;
281 void __iomem *ahb_addr;
282 u32 memmap_phy;
def88bce 283 u32 memmap_size;
91afd36f
KS
284 const struct fsl_qspi_devtype_data *devtype_data;
285 int selected;
286};
287
288static inline int needs_swap_endian(struct fsl_qspi *q)
5bc48308 289{
91afd36f 290 return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
5bc48308
HW
291}
292
91afd36f 293static inline int needs_4x_clock(struct fsl_qspi *q)
5bc48308 294{
91afd36f 295 return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
5bc48308 296}
6b57ff6f 297
91afd36f 298static inline int needs_fill_txfifo(struct fsl_qspi *q)
1f553564 299{
91afd36f 300 return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
1f553564
RS
301}
302
91afd36f 303static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
6b57ff6f 304{
91afd36f 305 return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
6b57ff6f
AW
306}
307
91afd36f 308static inline int needs_amba_base_offset(struct fsl_qspi *q)
6b57ff6f 309{
91afd36f
KS
310 return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL);
311}
febffe8d 312
91afd36f
KS
313static inline int needs_tdh_setting(struct fsl_qspi *q)
314{
315 return q->devtype_data->quirks & QUADSPI_QUIRK_USE_TDH_SETTING;
6b57ff6f
AW
316}
317
def88bce
YL
318static inline int needs_single_bus(struct fsl_qspi *q)
319{
320 return q->devtype_data->quirks & QUADSPI_QUIRK_SINGLE_BUS;
321}
322
5f7f70c1 323/*
91afd36f
KS
324 * An IC bug makes it necessary to rearrange the 32-bit data.
325 * Later chips, such as IMX6SLX, have fixed this bug.
5f7f70c1 326 */
91afd36f 327static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
5f7f70c1 328{
91afd36f 329 return needs_swap_endian(q) ? __swab32(a) : a;
5f7f70c1
PF
330}
331
91afd36f
KS
332/*
333 * R/W functions for big- or little-endian registers:
334 * The QSPI controller's endianness is independent of
335 * the CPU core's endianness. So far, although the CPU
336 * core is little-endian the QSPI controller can use
337 * big-endian or little-endian.
338 */
339static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
5f7f70c1 340{
91afd36f
KS
341 if (q->devtype_data->little_endian)
342 out_le32(addr, val);
343 else
344 out_be32(addr, val);
345}
5f7f70c1 346
91afd36f
KS
347static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
348{
349 if (q->devtype_data->little_endian)
350 return in_le32(addr);
5f7f70c1 351
91afd36f 352 return in_be32(addr);
5f7f70c1
PF
353}
354
91afd36f 355static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
5f7f70c1 356{
91afd36f
KS
357 switch (width) {
358 case 1:
359 case 2:
360 case 4:
361 return 0;
362 }
5f7f70c1 363
91afd36f 364 return -ENOTSUPP;
5f7f70c1
PF
365}
366
91afd36f
KS
367static bool fsl_qspi_supports_op(struct spi_slave *slave,
368 const struct spi_mem_op *op)
5f7f70c1 369{
91afd36f
KS
370 struct fsl_qspi *q = dev_get_priv(slave->dev->parent);
371 int ret;
372
373 ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
374
375 if (op->addr.nbytes)
376 ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
377
378 if (op->dummy.nbytes)
379 ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
5bc48308 380
91afd36f
KS
381 if (op->data.nbytes)
382 ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
5f7f70c1 383
91afd36f
KS
384 if (ret)
385 return false;
5f7f70c1
PF
386
387 /*
91afd36f
KS
388 * The number of instructions needed for the op, needs
389 * to fit into a single LUT entry.
5f7f70c1 390 */
91afd36f
KS
391 if (op->addr.nbytes +
392 (op->dummy.nbytes ? 1 : 0) +
393 (op->data.nbytes ? 1 : 0) > 6)
394 return false;
395
396 /* Max 64 dummy clock cycles supported */
397 if (op->dummy.nbytes &&
398 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
399 return false;
400
401 /* Max data length, check controller limits and alignment */
402 if (op->data.dir == SPI_MEM_DATA_IN &&
403 (op->data.nbytes > q->devtype_data->ahb_buf_size ||
404 (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
405 !IS_ALIGNED(op->data.nbytes, 8))))
406 return false;
407
408 if (op->data.dir == SPI_MEM_DATA_OUT &&
409 op->data.nbytes > q->devtype_data->txfifo)
410 return false;
411
412 return true;
5f7f70c1 413}
5f7f70c1 414
91afd36f
KS
415static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
416 const struct spi_mem_op *op)
a2358783 417{
91afd36f
KS
418 void __iomem *base = q->iobase;
419 u32 lutval[4] = {};
420 int lutidx = 1, i;
a2358783 421
91afd36f
KS
422 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
423 op->cmd.opcode);
a2358783 424
def88bce
YL
425 if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP)) {
426 if (op->addr.nbytes) {
427 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
428 LUT_PAD(op->addr.buswidth),
429 (op->addr.nbytes == 4) ? 0x20 : 0x18);
430 lutidx++;
431 }
432 } else {
433 /*
434 * For some unknown reason, using LUT_ADDR doesn't work in some
435 * cases (at least with only one byte long addresses), so
436 * let's use LUT_MODE to write the address bytes one by one
437 */
438 for (i = 0; i < op->addr.nbytes; i++) {
439 u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
440
441 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
442 LUT_PAD(op->addr.buswidth),
443 addrbyte);
444 lutidx++;
445 }
a2358783
PF
446 }
447
91afd36f
KS
448 if (op->dummy.nbytes) {
449 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
450 LUT_PAD(op->dummy.buswidth),
451 op->dummy.nbytes * 8 /
452 op->dummy.buswidth);
453 lutidx++;
6b57ff6f
AW
454 }
455
91afd36f
KS
456 if (op->data.nbytes) {
457 lutval[lutidx / 2] |= LUT_DEF(lutidx,
458 op->data.dir == SPI_MEM_DATA_IN ?
459 LUT_FSL_READ : LUT_FSL_WRITE,
460 LUT_PAD(op->data.buswidth),
461 0);
462 lutidx++;
6b57ff6f
AW
463 }
464
91afd36f 465 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
6b57ff6f 466
91afd36f
KS
467 /* unlock LUT */
468 qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
469 qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
470
471 dev_dbg(q->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
472 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
6b57ff6f 473
91afd36f
KS
474 /* fill LUT */
475 for (i = 0; i < ARRAY_SIZE(lutval); i++)
476 qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
a2358783 477
def88bce
YL
478 if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP)) {
479 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN &&
480 op->addr.nbytes) {
481 for (i = 0; i < ARRAY_SIZE(lutval); i++)
482 qspi_writel(q, lutval[i], base + QUADSPI_AHB_LUT_REG(i));
483 }
484 }
485
91afd36f
KS
486 /* lock LUT */
487 qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
488 qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
489}
a2358783 490
91afd36f
KS
491/*
492 * If we have changed the content of the flash by writing or erasing, or if we
493 * read from flash with a different offset into the page buffer, we need to
494 * invalidate the AHB buffer. If we do not do so, we may read out the wrong
495 * data. The spec tells us reset the AHB domain and Serial Flash domain at
496 * the same time.
497 */
498static void fsl_qspi_invalidate(struct fsl_qspi *q)
499{
500 u32 reg;
6b57ff6f 501
91afd36f
KS
502 reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
503 reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
504 qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
6b57ff6f 505
10509987 506 /*
91afd36f
KS
507 * The minimum delay : 1 AHB + 2 SFCK clocks.
508 * Delay 1 us is enough.
10509987 509 */
91afd36f 510 udelay(1);
6b57ff6f 511
91afd36f
KS
512 reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
513 qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
6b57ff6f
AW
514}
515
91afd36f 516static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_slave *slave)
6b57ff6f 517{
91afd36f 518 struct dm_spi_slave_platdata *plat =
caa4daa2 519 dev_get_parent_plat(slave->dev);
91afd36f
KS
520
521 if (q->selected == plat->cs)
522 return;
6b57ff6f 523
91afd36f
KS
524 q->selected = plat->cs;
525 fsl_qspi_invalidate(q);
6b57ff6f
AW
526}
527
def88bce
YL
528static u32 fsl_qspi_memsize_per_cs(struct fsl_qspi *q)
529{
530 if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP)) {
531 if (needs_single_bus(q))
532 return q->memmap_size / 2;
533 else
534 return q->memmap_size / 4;
535 } else {
536 return ALIGN(q->devtype_data->ahb_buf_size, 0x400);
537 }
538}
539
91afd36f 540static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
6b57ff6f 541{
def88bce
YL
542 void __iomem *ahb_read_addr = q->ahb_addr;
543
544 if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP)) {
545 if (op->addr.nbytes)
546 ahb_read_addr += op->addr.val;
547 }
548
91afd36f 549 memcpy_fromio(op->data.buf.in,
def88bce 550 ahb_read_addr + q->selected * fsl_qspi_memsize_per_cs(q),
91afd36f 551 op->data.nbytes);
6b57ff6f
AW
552}
553
91afd36f
KS
554static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
555 const struct spi_mem_op *op)
6b57ff6f 556{
91afd36f
KS
557 void __iomem *base = q->iobase;
558 int i;
559 u32 val;
6b57ff6f 560
91afd36f
KS
561 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
562 memcpy(&val, op->data.buf.out + i, 4);
563 val = fsl_qspi_endian_xchg(q, val);
564 qspi_writel(q, val, base + QUADSPI_TBDR);
6b57ff6f
AW
565 }
566
91afd36f
KS
567 if (i < op->data.nbytes) {
568 memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
569 val = fsl_qspi_endian_xchg(q, val);
570 qspi_writel(q, val, base + QUADSPI_TBDR);
571 }
5bc48308 572
91afd36f
KS
573 if (needs_fill_txfifo(q)) {
574 for (i = op->data.nbytes; i < 16; i += 4)
575 qspi_writel(q, 0, base + QUADSPI_TBDR);
576 }
5bc48308
HW
577}
578
91afd36f
KS
579static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
580 const struct spi_mem_op *op)
5bc48308 581{
91afd36f
KS
582 void __iomem *base = q->iobase;
583 int i;
584 u8 *buf = op->data.buf.in;
585 u32 val;
5bc48308 586
91afd36f
KS
587 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
588 val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
589 val = fsl_qspi_endian_xchg(q, val);
590 memcpy(buf + i, &val, 4);
591 }
592
593 if (i < op->data.nbytes) {
594 val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
595 val = fsl_qspi_endian_xchg(q, val);
596 memcpy(buf + i, &val, op->data.nbytes - i);
597 }
5bc48308
HW
598}
599
91afd36f
KS
600static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
601 u32 mask, u32 delay_us, u32 timeout_us)
5bc48308 602{
91afd36f 603 u32 reg;
5bc48308 604
91afd36f
KS
605 if (!q->devtype_data->little_endian)
606 mask = (u32)cpu_to_be32(mask);
607
608 return readl_poll_timeout(base, reg, !(reg & mask), timeout_us);
5bc48308 609}
5bc48308 610
91afd36f 611static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
5bc48308 612{
91afd36f
KS
613 void __iomem *base = q->iobase;
614 int err = 0;
5bc48308 615
91afd36f
KS
616 /*
617 * Always start the sequence at the same index since we update
618 * the LUT at each exec_op() call. And also specify the DATA
619 * length, since it's has not been specified in the LUT.
620 */
621 qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
622 base + QUADSPI_IPCR);
5bc48308 623
91afd36f
KS
624 /* wait for the controller being ready */
625 err = fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR,
626 (QUADSPI_SR_IP_ACC_MASK |
627 QUADSPI_SR_AHB_ACC_MASK),
628 10, 1000);
629
630 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
631 fsl_qspi_read_rxfifo(q, op);
632
633 return err;
5bc48308
HW
634}
635
91afd36f
KS
636static int fsl_qspi_exec_op(struct spi_slave *slave,
637 const struct spi_mem_op *op)
5bc48308 638{
91afd36f
KS
639 struct fsl_qspi *q = dev_get_priv(slave->dev->parent);
640 void __iomem *base = q->iobase;
641 u32 addr_offset = 0;
642 int err = 0;
5bc48308 643
91afd36f
KS
644 /* wait for the controller being ready */
645 fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
646 QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
5bc48308 647
91afd36f 648 fsl_qspi_select_mem(q, slave);
5bc48308 649
91afd36f
KS
650 if (needs_amba_base_offset(q))
651 addr_offset = q->memmap_phy;
652
def88bce
YL
653 if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP)) {
654 if (op->addr.nbytes)
655 addr_offset += op->addr.val;
656 }
657
91afd36f 658 qspi_writel(q,
def88bce 659 q->selected * fsl_qspi_memsize_per_cs(q) + addr_offset,
91afd36f
KS
660 base + QUADSPI_SFAR);
661
662 qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
663 QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
664 base + QUADSPI_MCR);
665
666 qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
667 base + QUADSPI_SPTRCLR);
668
669 fsl_qspi_prepare_lut(q, op);
5bc48308 670
bf9bffa9 671 /*
91afd36f
KS
672 * If we have large chunks of data, we read them through the AHB bus
673 * by accessing the mapped memory. In all other cases we use
674 * IP commands to access the flash.
bf9bffa9 675 */
91afd36f
KS
676 if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
677 op->data.dir == SPI_MEM_DATA_IN) {
678 fsl_qspi_read_ahb(q, op);
679 } else {
680 qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
681 QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);
682
683 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
684 fsl_qspi_fill_txfifo(q, op);
685
686 err = fsl_qspi_do_op(q, op);
ce7575a8
YL
687 }
688
91afd36f
KS
689 /* Invalidate the data in the AHB buffer. */
690 fsl_qspi_invalidate(q);
ce7575a8 691
91afd36f
KS
692 return err;
693}
1c631da4 694
91afd36f
KS
695static int fsl_qspi_adjust_op_size(struct spi_slave *slave,
696 struct spi_mem_op *op)
697{
698 struct fsl_qspi *q = dev_get_priv(slave->dev->parent);
699
700 if (op->data.dir == SPI_MEM_DATA_OUT) {
701 if (op->data.nbytes > q->devtype_data->txfifo)
702 op->data.nbytes = q->devtype_data->txfifo;
703 } else {
704 if (op->data.nbytes > q->devtype_data->ahb_buf_size)
705 op->data.nbytes = q->devtype_data->ahb_buf_size;
706 else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
707 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
1c631da4
SG
708 }
709
91afd36f
KS
710 return 0;
711}
712
713static int fsl_qspi_default_setup(struct fsl_qspi *q)
714{
715 void __iomem *base = q->iobase;
def88bce 716 u32 reg, addr_offset = 0, memsize_cs;
91afd36f
KS
717
718 /* Reset the module */
719 qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
720 base + QUADSPI_MCR);
721 udelay(1);
5bc48308 722
91afd36f
KS
723 /* Disable the module */
724 qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
725 base + QUADSPI_MCR);
5bc48308 726
4e147418 727 /*
91afd36f
KS
728 * Previous boot stages (BootROM, bootloader) might have used DDR
729 * mode and did not clear the TDH bits. As we currently use SDR mode
730 * only, clear the TDH bits if necessary.
4e147418 731 */
91afd36f
KS
732 if (needs_tdh_setting(q))
733 qspi_writel(q, qspi_readl(q, base + QUADSPI_FLSHCR) &
734 ~QUADSPI_FLSHCR_TDH_MASK,
735 base + QUADSPI_FLSHCR);
736
737 reg = qspi_readl(q, base + QUADSPI_SMPR);
738 qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
739 | QUADSPI_SMPR_FSPHS_MASK
740 | QUADSPI_SMPR_HSENA_MASK
741 | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
742
743 /* We only use the buffer3 for AHB read */
744 qspi_writel(q, 0, base + QUADSPI_BUF0IND);
745 qspi_writel(q, 0, base + QUADSPI_BUF1IND);
746 qspi_writel(q, 0, base + QUADSPI_BUF2IND);
747
def88bce
YL
748 if (IS_ENABLED(CONFIG_FSL_QSPI_AHB_FULL_MAP))
749 qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT_AHB),
750 q->iobase + QUADSPI_BFGENCR);
751 else
752 qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
753 q->iobase + QUADSPI_BFGENCR);
754
91afd36f
KS
755 qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
756 qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
757 QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
758 base + QUADSPI_BUF3CR);
759
760 if (needs_amba_base_offset(q))
761 addr_offset = q->memmap_phy;
4e147418 762
5bc48308 763 /*
91afd36f
KS
764 * In HW there can be a maximum of four chips on two buses with
765 * two chip selects on each bus. We use four chip selects in SW
766 * to differentiate between the four chips.
767 * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD,
768 * SFB2AD accordingly.
5bc48308 769 */
def88bce
YL
770 memsize_cs = fsl_qspi_memsize_per_cs(q);
771 qspi_writel(q, memsize_cs + addr_offset,
91afd36f 772 base + QUADSPI_SFA1AD);
def88bce 773 qspi_writel(q, memsize_cs * 2 + addr_offset,
91afd36f 774 base + QUADSPI_SFA2AD);
def88bce
YL
775 if (!needs_single_bus(q)) {
776 qspi_writel(q, memsize_cs * 3 + addr_offset,
777 base + QUADSPI_SFB1AD);
778 qspi_writel(q, memsize_cs * 4 + addr_offset,
779 base + QUADSPI_SFB2AD);
780 }
91afd36f
KS
781
782 q->selected = -1;
783
784 /* Enable the module */
785 qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
786 base + QUADSPI_MCR);
5bc48308
HW
787 return 0;
788}
789
91afd36f
KS
790static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
791 .adjust_op_size = fsl_qspi_adjust_op_size,
792 .supports_op = fsl_qspi_supports_op,
793 .exec_op = fsl_qspi_exec_op,
794};
795
796static int fsl_qspi_probe(struct udevice *bus)
5bc48308 797{
91afd36f
KS
798 struct dm_spi_bus *dm_bus = bus->uclass_priv;
799 struct fsl_qspi *q = dev_get_priv(bus);
5bc48308 800 const void *blob = gd->fdt_blob;
e160f7d4 801 int node = dev_of_offset(bus);
91afd36f
KS
802 struct fdt_resource res;
803 int ret;
5bc48308 804
91afd36f
KS
805 q->dev = bus;
806 q->devtype_data = (struct fsl_qspi_devtype_data *)
807 dev_get_driver_data(bus);
5bc48308 808
91afd36f
KS
809 /* find the resources */
810 ret = fdt_get_named_resource(blob, node, "reg", "reg-names", "QuadSPI",
811 &res);
bf9bffa9 812 if (ret) {
91afd36f 813 dev_err(bus, "Can't get regs base addresses(ret = %d)!\n", ret);
bf9bffa9
YY
814 return -ENOMEM;
815 }
91afd36f
KS
816
817 q->iobase = map_physmem(res.start, res.end - res.start, MAP_NOCACHE);
818
bf9bffa9 819 ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
91afd36f 820 "QuadSPI-memory", &res);
5bc48308 821 if (ret) {
91afd36f 822 dev_err(bus, "Can't get AMBA base addresses(ret = %d)!\n", ret);
5bc48308
HW
823 return -ENOMEM;
824 }
825
91afd36f
KS
826 q->ahb_addr = map_physmem(res.start, res.end - res.start, MAP_NOCACHE);
827 q->memmap_phy = res.start;
def88bce 828 q->memmap_size = res.end - res.start;
5bc48308 829
91afd36f
KS
830 dm_bus->max_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
831 66000000);
5bc48308 832
91afd36f 833 fsl_qspi_default_setup(q);
5bc48308
HW
834
835 return 0;
836}
837
838static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
91afd36f 839 const void *dout, void *din, unsigned long flags)
5bc48308 840{
91afd36f 841 return 0;
5bc48308
HW
842}
843
844static int fsl_qspi_claim_bus(struct udevice *dev)
845{
5bc48308
HW
846 return 0;
847}
848
849static int fsl_qspi_release_bus(struct udevice *dev)
850{
5bc48308
HW
851 return 0;
852}
853
854static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
855{
5bc48308
HW
856 return 0;
857}
858
859static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
860{
5bc48308
HW
861 return 0;
862}
863
864static const struct dm_spi_ops fsl_qspi_ops = {
865 .claim_bus = fsl_qspi_claim_bus,
866 .release_bus = fsl_qspi_release_bus,
867 .xfer = fsl_qspi_xfer,
868 .set_speed = fsl_qspi_set_speed,
869 .set_mode = fsl_qspi_set_mode,
91afd36f 870 .mem_ops = &fsl_qspi_mem_ops,
5bc48308
HW
871};
872
873static const struct udevice_id fsl_qspi_ids[] = {
91afd36f
KS
874 { .compatible = "fsl,vf610-qspi", .data = (ulong)&vybrid_data, },
875 { .compatible = "fsl,imx6sx-qspi", .data = (ulong)&imx6sx_data, },
876 { .compatible = "fsl,imx6ul-qspi", .data = (ulong)&imx6ul_data, },
877 { .compatible = "fsl,imx7d-qspi", .data = (ulong)&imx7d_data, },
93d6c8f7 878 { .compatible = "fsl,imx7ulp-qspi", .data = (ulong)&imx7ulp_data, },
91afd36f
KS
879 { .compatible = "fsl,ls1021a-qspi", .data = (ulong)&ls1021a_data, },
880 { .compatible = "fsl,ls1088a-qspi", .data = (ulong)&ls1088a_data, },
881 { .compatible = "fsl,ls2080a-qspi", .data = (ulong)&ls2080a_data, },
5bc48308
HW
882 { }
883};
884
885U_BOOT_DRIVER(fsl_qspi) = {
886 .name = "fsl_qspi",
887 .id = UCLASS_SPI,
888 .of_match = fsl_qspi_ids,
889 .ops = &fsl_qspi_ops,
41575d8e 890 .priv_auto = sizeof(struct fsl_qspi),
5bc48308 891 .probe = fsl_qspi_probe,
5bc48308 892};
This page took 0.517961 seconds and 4 git commands to generate.