]> Git Repo - J-u-boot.git/blame - drivers/spi/fsl_qspi.c
patman: Format checkpatch messages for IDE throwback
[J-u-boot.git] / drivers / spi / fsl_qspi.c
CommitLineData
6b57ff6f 1/*
5bc48308 2 * Copyright 2013-2015 Freescale Semiconductor, Inc.
6b57ff6f
AW
3 *
4 * Freescale Quad Serial Peripheral Interface (QSPI) driver
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9#include <common.h>
10#include <malloc.h>
11#include <spi.h>
12#include <asm/io.h>
13#include <linux/sizes.h>
5bc48308
HW
14#include <dm.h>
15#include <errno.h>
beedbc2e 16#include <watchdog.h>
6b57ff6f
AW
17#include "fsl_qspi.h"
18
5bc48308
HW
19DECLARE_GLOBAL_DATA_PTR;
20
6b57ff6f 21#define RX_BUFFER_SIZE 0x80
b93ab2ee
PF
22#ifdef CONFIG_MX6SX
23#define TX_BUFFER_SIZE 0x200
24#else
6b57ff6f 25#define TX_BUFFER_SIZE 0x40
b93ab2ee 26#endif
6b57ff6f 27
8770413f 28#define OFFSET_BITS_MASK GENMASK(23, 0)
6b57ff6f
AW
29
30#define FLASH_STATUS_WEL 0x02
31
32/* SEQID */
33#define SEQID_WREN 1
34#define SEQID_FAST_READ 2
35#define SEQID_RDSR 3
36#define SEQID_SE 4
37#define SEQID_CHIP_ERASE 5
38#define SEQID_PP 6
39#define SEQID_RDID 7
ba4dc8ab 40#define SEQID_BE_4K 8
a2358783
PF
41#ifdef CONFIG_SPI_FLASH_BAR
42#define SEQID_BRRD 9
43#define SEQID_BRWR 10
44#define SEQID_RDEAR 11
45#define SEQID_WREAR 12
46#endif
febffe8d
YY
47#define SEQID_WRAR 13
48#define SEQID_RDAR 14
6b57ff6f 49
53e3db7f
PF
50/* QSPI CMD */
51#define QSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */
52#define QSPI_CMD_RDSR 0x05 /* Read status register */
53#define QSPI_CMD_WREN 0x06 /* Write enable */
54#define QSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */
ba4dc8ab 55#define QSPI_CMD_BE_4K 0x20 /* 4K erase */
53e3db7f
PF
56#define QSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */
57#define QSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */
58#define QSPI_CMD_RDID 0x9f /* Read JEDEC ID */
59
a2358783
PF
60/* Used for Micron, winbond and Macronix flashes */
61#define QSPI_CMD_WREAR 0xc5 /* EAR register write */
62#define QSPI_CMD_RDEAR 0xc8 /* EAR reigster read */
63
64/* Used for Spansion flashes only. */
65#define QSPI_CMD_BRRD 0x16 /* Bank register read */
66#define QSPI_CMD_BRWR 0x17 /* Bank register write */
67
febffe8d
YY
68/* Used for Spansion S25FS-S family flash only. */
69#define QSPI_CMD_RDAR 0x65 /* Read any device register */
70#define QSPI_CMD_WRAR 0x71 /* Write any device register */
71
53e3db7f
PF
72/* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
73#define QSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
74#define QSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */
75#define QSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */
6b57ff6f 76
5bc48308 77/* fsl_qspi_platdata flags */
29e6abd9 78#define QSPI_FLAG_REGMAP_ENDIAN_BIG BIT(0)
6b57ff6f 79
5bc48308
HW
80/* default SCK frequency, unit: HZ */
81#define FSL_QSPI_DEFAULT_SCK_FREQ 50000000
6b57ff6f 82
5bc48308
HW
83/* QSPI max chipselect signals number */
84#define FSL_QSPI_MAX_CHIPSELECT_NUM 4
85
86#ifdef CONFIG_DM_SPI
87/**
88 * struct fsl_qspi_platdata - platform data for Freescale QSPI
89 *
90 * @flags: Flags for QSPI QSPI_FLAG_...
91 * @speed_hz: Default SCK frequency
92 * @reg_base: Base address of QSPI registers
93 * @amba_base: Base address of QSPI memory mapping
94 * @amba_total_size: size of QSPI memory mapping
95 * @flash_num: Number of active slave devices
96 * @num_chipselect: Number of QSPI chipselect signals
97 */
98struct fsl_qspi_platdata {
99 u32 flags;
100 u32 speed_hz;
bf9bffa9
YY
101 fdt_addr_t reg_base;
102 fdt_addr_t amba_base;
103 fdt_size_t amba_total_size;
5bc48308
HW
104 u32 flash_num;
105 u32 num_chipselect;
106};
b93ab2ee 107#endif
5bc48308
HW
108
109/**
110 * struct fsl_qspi_priv - private data for Freescale QSPI
111 *
112 * @flags: Flags for QSPI QSPI_FLAG_...
113 * @bus_clk: QSPI input clk frequency
114 * @speed_hz: Default SCK frequency
115 * @cur_seqid: current LUT table sequence id
116 * @sf_addr: flash access offset
117 * @amba_base: Base address of QSPI memory mapping of every CS
118 * @amba_total_size: size of QSPI memory mapping
119 * @cur_amba_base: Base address of QSPI memory mapping of current CS
120 * @flash_num: Number of active slave devices
121 * @num_chipselect: Number of QSPI chipselect signals
122 * @regs: Point to QSPI register structure for I/O access
123 */
124struct fsl_qspi_priv {
125 u32 flags;
126 u32 bus_clk;
127 u32 speed_hz;
128 u32 cur_seqid;
129 u32 sf_addr;
130 u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
131 u32 amba_total_size;
132 u32 cur_amba_base;
133 u32 flash_num;
134 u32 num_chipselect;
135 struct fsl_qspi_regs *regs;
6b57ff6f
AW
136};
137
5bc48308 138#ifndef CONFIG_DM_SPI
6b57ff6f
AW
139struct fsl_qspi {
140 struct spi_slave slave;
5bc48308 141 struct fsl_qspi_priv priv;
6b57ff6f 142};
5bc48308
HW
143#endif
144
145static u32 qspi_read32(u32 flags, u32 *addr)
146{
147 return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
148 in_be32(addr) : in_le32(addr);
149}
150
151static void qspi_write32(u32 flags, u32 *addr, u32 val)
152{
153 flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
154 out_be32(addr, val) : out_le32(addr, val);
155}
6b57ff6f
AW
156
157/* QSPI support swapping the flash read/write data
158 * in hardware for LS102xA, but not for VF610 */
159static inline u32 qspi_endian_xchg(u32 data)
160{
161#ifdef CONFIG_VF610
162 return swab32(data);
163#else
164 return data;
165#endif
166}
167
5bc48308 168static void qspi_set_lut(struct fsl_qspi_priv *priv)
6b57ff6f 169{
5bc48308 170 struct fsl_qspi_regs *regs = priv->regs;
6b57ff6f
AW
171 u32 lut_base;
172
173 /* Unlock the LUT */
5bc48308
HW
174 qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
175 qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
6b57ff6f
AW
176
177 /* Write Enable */
178 lut_base = SEQID_WREN * 4;
5bc48308 179 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
6b57ff6f 180 PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
5bc48308
HW
181 qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
182 qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
183 qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
6b57ff6f
AW
184
185 /* Fast Read */
186 lut_base = SEQID_FAST_READ * 4;
a2358783 187#ifdef CONFIG_SPI_FLASH_BAR
5bc48308
HW
188 qspi_write32(priv->flags, &regs->lut[lut_base],
189 OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
190 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
a2358783
PF
191 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
192#else
6b57ff6f 193 if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
5bc48308
HW
194 qspi_write32(priv->flags, &regs->lut[lut_base],
195 OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
196 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
197 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
6b57ff6f 198 else
5bc48308 199 qspi_write32(priv->flags, &regs->lut[lut_base],
53e3db7f
PF
200 OPRND0(QSPI_CMD_FAST_READ_4B) |
201 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
202 OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
203 INSTR1(LUT_ADDR));
a2358783 204#endif
5bc48308
HW
205 qspi_write32(priv->flags, &regs->lut[lut_base + 1],
206 OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
207 OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
208 INSTR1(LUT_READ));
209 qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
210 qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
6b57ff6f
AW
211
212 /* Read Status */
213 lut_base = SEQID_RDSR * 4;
5bc48308 214 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
6b57ff6f
AW
215 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
216 PAD1(LUT_PAD1) | INSTR1(LUT_READ));
5bc48308
HW
217 qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
218 qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
219 qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
6b57ff6f
AW
220
221 /* Erase a sector */
222 lut_base = SEQID_SE * 4;
a2358783 223#ifdef CONFIG_SPI_FLASH_BAR
5bc48308 224 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
a2358783
PF
225 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
226 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
227#else
6b57ff6f 228 if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
5bc48308
HW
229 qspi_write32(priv->flags, &regs->lut[lut_base],
230 OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
231 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
232 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
6b57ff6f 233 else
5bc48308
HW
234 qspi_write32(priv->flags, &regs->lut[lut_base],
235 OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
236 INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
237 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
a2358783 238#endif
5bc48308
HW
239 qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
240 qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
241 qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
6b57ff6f
AW
242
243 /* Erase the whole chip */
244 lut_base = SEQID_CHIP_ERASE * 4;
5bc48308
HW
245 qspi_write32(priv->flags, &regs->lut[lut_base],
246 OPRND0(QSPI_CMD_CHIP_ERASE) |
247 PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
248 qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
249 qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
250 qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
6b57ff6f
AW
251
252 /* Page Program */
253 lut_base = SEQID_PP * 4;
a2358783 254#ifdef CONFIG_SPI_FLASH_BAR
5bc48308 255 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
a2358783
PF
256 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
257 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
258#else
6b57ff6f 259 if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
5bc48308
HW
260 qspi_write32(priv->flags, &regs->lut[lut_base],
261 OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
262 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
263 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
6b57ff6f 264 else
5bc48308
HW
265 qspi_write32(priv->flags, &regs->lut[lut_base],
266 OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
267 INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
268 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
a2358783 269#endif
b93ab2ee
PF
270#ifdef CONFIG_MX6SX
271 /*
272 * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
273 * So, Use IDATSZ in IPCR to determine the size and here set 0.
274 */
5bc48308 275 qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
b93ab2ee
PF
276 PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
277#else
5bc48308
HW
278 qspi_write32(priv->flags, &regs->lut[lut_base + 1],
279 OPRND0(TX_BUFFER_SIZE) |
280 PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
b93ab2ee 281#endif
5bc48308
HW
282 qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
283 qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
6b57ff6f
AW
284
285 /* READ ID */
286 lut_base = SEQID_RDID * 4;
5bc48308 287 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
6b57ff6f
AW
288 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
289 PAD1(LUT_PAD1) | INSTR1(LUT_READ));
5bc48308
HW
290 qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
291 qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
292 qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
6b57ff6f 293
ba4dc8ab
PF
294 /* SUB SECTOR 4K ERASE */
295 lut_base = SEQID_BE_4K * 4;
5bc48308 296 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
ba4dc8ab
PF
297 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
298 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
299
a2358783
PF
300#ifdef CONFIG_SPI_FLASH_BAR
301 /*
302 * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
303 * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
304 * initialization.
305 */
306 lut_base = SEQID_BRRD * 4;
5bc48308 307 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
a2358783
PF
308 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
309 PAD1(LUT_PAD1) | INSTR1(LUT_READ));
310
311 lut_base = SEQID_BRWR * 4;
5bc48308 312 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
a2358783
PF
313 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
314 PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
315
316 lut_base = SEQID_RDEAR * 4;
5bc48308 317 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
a2358783
PF
318 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
319 PAD1(LUT_PAD1) | INSTR1(LUT_READ));
320
321 lut_base = SEQID_WREAR * 4;
5bc48308 322 qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
a2358783
PF
323 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
324 PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
325#endif
febffe8d
YY
326
327 /*
328 * Read any device register.
329 * Used for Spansion S25FS-S family flash only.
330 */
331 lut_base = SEQID_RDAR * 4;
332 qspi_write32(priv->flags, &regs->lut[lut_base],
333 OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) |
334 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
335 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
336 qspi_write32(priv->flags, &regs->lut[lut_base + 1],
337 OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
338 OPRND1(1) | PAD1(LUT_PAD1) |
339 INSTR1(LUT_READ));
340
341 /*
342 * Write any device register.
343 * Used for Spansion S25FS-S family flash only.
344 */
345 lut_base = SEQID_WRAR * 4;
346 qspi_write32(priv->flags, &regs->lut[lut_base],
347 OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) |
348 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
349 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
350 qspi_write32(priv->flags, &regs->lut[lut_base + 1],
351 OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
352
6b57ff6f 353 /* Lock the LUT */
5bc48308
HW
354 qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
355 qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
6b57ff6f
AW
356}
357
5f7f70c1
PF
358#if defined(CONFIG_SYS_FSL_QSPI_AHB)
359/*
360 * If we have changed the content of the flash by writing or erasing,
361 * we need to invalidate the AHB buffer. If we do not do so, we may read out
362 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
363 * domain at the same time.
364 */
5bc48308 365static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
5f7f70c1 366{
5bc48308 367 struct fsl_qspi_regs *regs = priv->regs;
5f7f70c1
PF
368 u32 reg;
369
5bc48308 370 reg = qspi_read32(priv->flags, &regs->mcr);
5f7f70c1 371 reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
5bc48308 372 qspi_write32(priv->flags, &regs->mcr, reg);
5f7f70c1
PF
373
374 /*
375 * The minimum delay : 1 AHB + 2 SFCK clocks.
376 * Delay 1 us is enough.
377 */
378 udelay(1);
379
380 reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
5bc48308 381 qspi_write32(priv->flags, &regs->mcr, reg);
5f7f70c1
PF
382}
383
384/* Read out the data from the AHB buffer. */
5bc48308 385static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
5f7f70c1 386{
5bc48308 387 struct fsl_qspi_regs *regs = priv->regs;
5f7f70c1 388 u32 mcr_reg;
04e5c6d9 389 void *rx_addr = NULL;
5f7f70c1 390
5bc48308 391 mcr_reg = qspi_read32(priv->flags, &regs->mcr);
5f7f70c1 392
5bc48308
HW
393 qspi_write32(priv->flags, &regs->mcr,
394 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
5f7f70c1
PF
395 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
396
04e5c6d9 397 rx_addr = (void *)(uintptr_t)(priv->cur_amba_base + priv->sf_addr);
5f7f70c1 398 /* Read out the data directly from the AHB buffer. */
04e5c6d9 399 memcpy(rxbuf, rx_addr, len);
5f7f70c1 400
5bc48308 401 qspi_write32(priv->flags, &regs->mcr, mcr_reg);
5f7f70c1
PF
402}
403
5bc48308 404static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
5f7f70c1
PF
405{
406 u32 reg, reg2;
5bc48308 407 struct fsl_qspi_regs *regs = priv->regs;
5f7f70c1 408
5bc48308 409 reg = qspi_read32(priv->flags, &regs->mcr);
5f7f70c1 410 /* Disable the module */
5bc48308 411 qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
5f7f70c1
PF
412
413 /* Set the Sampling Register for DDR */
5bc48308 414 reg2 = qspi_read32(priv->flags, &regs->smpr);
5f7f70c1
PF
415 reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
416 reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
5bc48308 417 qspi_write32(priv->flags, &regs->smpr, reg2);
5f7f70c1
PF
418
419 /* Enable the module again (enable the DDR too) */
420 reg |= QSPI_MCR_DDR_EN_MASK;
421 /* Enable bit 29 for imx6sx */
29e6abd9 422 reg |= BIT(29);
5f7f70c1 423
5bc48308 424 qspi_write32(priv->flags, &regs->mcr, reg);
5f7f70c1
PF
425}
426
427/*
428 * There are two different ways to read out the data from the flash:
429 * the "IP Command Read" and the "AHB Command Read".
430 *
431 * The IC guy suggests we use the "AHB Command Read" which is faster
432 * then the "IP Command Read". (What's more is that there is a bug in
433 * the "IP Command Read" in the Vybrid.)
434 *
435 * After we set up the registers for the "AHB Command Read", we can use
436 * the memcpy to read the data directly. A "missed" access to the buffer
437 * causes the controller to clear the buffer, and use the sequence pointed
438 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
439 */
5bc48308 440static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
5f7f70c1 441{
5bc48308
HW
442 struct fsl_qspi_regs *regs = priv->regs;
443
5f7f70c1 444 /* AHB configuration for access buffer 0/1/2 .*/
5bc48308
HW
445 qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
446 qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
447 qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
448 qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
5f7f70c1
PF
449 (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
450
451 /* We only use the buffer3 */
5bc48308
HW
452 qspi_write32(priv->flags, &regs->buf0ind, 0);
453 qspi_write32(priv->flags, &regs->buf1ind, 0);
454 qspi_write32(priv->flags, &regs->buf2ind, 0);
5f7f70c1
PF
455
456 /*
457 * Set the default lut sequence for AHB Read.
458 * Parallel mode is disabled.
459 */
5bc48308 460 qspi_write32(priv->flags, &regs->bfgencr,
5f7f70c1
PF
461 SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
462
463 /*Enable DDR Mode*/
5bc48308 464 qspi_enable_ddr_mode(priv);
5f7f70c1
PF
465}
466#endif
467
a2358783
PF
468#ifdef CONFIG_SPI_FLASH_BAR
469/* Bank register read/write, EAR register read/write */
5bc48308 470static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
a2358783 471{
5bc48308 472 struct fsl_qspi_regs *regs = priv->regs;
a2358783
PF
473 u32 reg, mcr_reg, data, seqid;
474
5bc48308
HW
475 mcr_reg = qspi_read32(priv->flags, &regs->mcr);
476 qspi_write32(priv->flags, &regs->mcr,
477 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
a2358783 478 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
5bc48308 479 qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
a2358783 480
5bc48308 481 qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
a2358783 482
5bc48308 483 if (priv->cur_seqid == QSPI_CMD_BRRD)
a2358783
PF
484 seqid = SEQID_BRRD;
485 else
486 seqid = SEQID_RDEAR;
487
5bc48308
HW
488 qspi_write32(priv->flags, &regs->ipcr,
489 (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
a2358783
PF
490
491 /* Wait previous command complete */
5bc48308 492 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
a2358783
PF
493 ;
494
495 while (1) {
5bc48308 496 reg = qspi_read32(priv->flags, &regs->rbsr);
a2358783 497 if (reg & QSPI_RBSR_RDBFL_MASK) {
5bc48308 498 data = qspi_read32(priv->flags, &regs->rbdr[0]);
a2358783
PF
499 data = qspi_endian_xchg(data);
500 memcpy(rxbuf, &data, len);
5bc48308
HW
501 qspi_write32(priv->flags, &regs->mcr,
502 qspi_read32(priv->flags, &regs->mcr) |
a2358783
PF
503 QSPI_MCR_CLR_RXF_MASK);
504 break;
505 }
506 }
507
5bc48308 508 qspi_write32(priv->flags, &regs->mcr, mcr_reg);
a2358783
PF
509}
510#endif
511
5bc48308 512static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
6b57ff6f 513{
5bc48308 514 struct fsl_qspi_regs *regs = priv->regs;
5207014d
GQ
515 u32 mcr_reg, rbsr_reg, data, size;
516 int i;
6b57ff6f 517
5bc48308
HW
518 mcr_reg = qspi_read32(priv->flags, &regs->mcr);
519 qspi_write32(priv->flags, &regs->mcr,
520 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
521 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
522 qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
6b57ff6f 523
5bc48308 524 qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
6b57ff6f 525
5bc48308
HW
526 qspi_write32(priv->flags, &regs->ipcr,
527 (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
528 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
6b57ff6f
AW
529 ;
530
531 i = 0;
5207014d 532 while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
5bc48308 533 rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
6b57ff6f 534 if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
5bc48308 535 data = qspi_read32(priv->flags, &regs->rbdr[i]);
6b57ff6f 536 data = qspi_endian_xchg(data);
5207014d
GQ
537 size = (len < 4) ? len : 4;
538 memcpy(rxbuf, &data, size);
539 len -= size;
6b57ff6f 540 rxbuf++;
6b57ff6f
AW
541 i++;
542 }
543 }
544
5bc48308 545 qspi_write32(priv->flags, &regs->mcr, mcr_reg);
6b57ff6f
AW
546}
547
5f7f70c1 548/* If not use AHB read, read data from ip interface */
5bc48308 549static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
6b57ff6f 550{
5bc48308 551 struct fsl_qspi_regs *regs = priv->regs;
6b57ff6f
AW
552 u32 mcr_reg, data;
553 int i, size;
554 u32 to_or_from;
febffe8d
YY
555 u32 seqid;
556
557 if (priv->cur_seqid == QSPI_CMD_RDAR)
558 seqid = SEQID_RDAR;
559 else
560 seqid = SEQID_FAST_READ;
6b57ff6f 561
5bc48308
HW
562 mcr_reg = qspi_read32(priv->flags, &regs->mcr);
563 qspi_write32(priv->flags, &regs->mcr,
564 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
565 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
566 qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
6b57ff6f 567
5bc48308 568 to_or_from = priv->sf_addr + priv->cur_amba_base;
6b57ff6f
AW
569
570 while (len > 0) {
beedbc2e
AS
571 WATCHDOG_RESET();
572
5bc48308 573 qspi_write32(priv->flags, &regs->sfar, to_or_from);
6b57ff6f
AW
574
575 size = (len > RX_BUFFER_SIZE) ?
576 RX_BUFFER_SIZE : len;
577
5bc48308 578 qspi_write32(priv->flags, &regs->ipcr,
febffe8d 579 (seqid << QSPI_IPCR_SEQID_SHIFT) |
5bc48308
HW
580 size);
581 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
6b57ff6f
AW
582 ;
583
584 to_or_from += size;
585 len -= size;
586
587 i = 0;
588 while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
5bc48308 589 data = qspi_read32(priv->flags, &regs->rbdr[i]);
6b57ff6f 590 data = qspi_endian_xchg(data);
febffe8d
YY
591 if (size < 4)
592 memcpy(rxbuf, &data, size);
593 else
594 memcpy(rxbuf, &data, 4);
6b57ff6f
AW
595 rxbuf++;
596 size -= 4;
597 i++;
598 }
5bc48308
HW
599 qspi_write32(priv->flags, &regs->mcr,
600 qspi_read32(priv->flags, &regs->mcr) |
601 QSPI_MCR_CLR_RXF_MASK);
6b57ff6f
AW
602 }
603
5bc48308 604 qspi_write32(priv->flags, &regs->mcr, mcr_reg);
6b57ff6f
AW
605}
606
5bc48308 607static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
6b57ff6f 608{
5bc48308 609 struct fsl_qspi_regs *regs = priv->regs;
a2358783 610 u32 mcr_reg, data, reg, status_reg, seqid;
6b57ff6f
AW
611 int i, size, tx_size;
612 u32 to_or_from = 0;
613
5bc48308
HW
614 mcr_reg = qspi_read32(priv->flags, &regs->mcr);
615 qspi_write32(priv->flags, &regs->mcr,
616 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
617 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
618 qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
6b57ff6f
AW
619
620 status_reg = 0;
621 while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
beedbc2e
AS
622 WATCHDOG_RESET();
623
5bc48308
HW
624 qspi_write32(priv->flags, &regs->ipcr,
625 (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
626 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
6b57ff6f
AW
627 ;
628
5bc48308
HW
629 qspi_write32(priv->flags, &regs->ipcr,
630 (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
631 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
6b57ff6f
AW
632 ;
633
5bc48308 634 reg = qspi_read32(priv->flags, &regs->rbsr);
6b57ff6f 635 if (reg & QSPI_RBSR_RDBFL_MASK) {
5bc48308 636 status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
6b57ff6f
AW
637 status_reg = qspi_endian_xchg(status_reg);
638 }
5bc48308
HW
639 qspi_write32(priv->flags, &regs->mcr,
640 qspi_read32(priv->flags, &regs->mcr) |
641 QSPI_MCR_CLR_RXF_MASK);
6b57ff6f
AW
642 }
643
a2358783
PF
644 /* Default is page programming */
645 seqid = SEQID_PP;
febffe8d
YY
646 if (priv->cur_seqid == QSPI_CMD_WRAR)
647 seqid = SEQID_WRAR;
a2358783 648#ifdef CONFIG_SPI_FLASH_BAR
5bc48308 649 if (priv->cur_seqid == QSPI_CMD_BRWR)
a2358783 650 seqid = SEQID_BRWR;
5bc48308 651 else if (priv->cur_seqid == QSPI_CMD_WREAR)
a2358783
PF
652 seqid = SEQID_WREAR;
653#endif
654
5bc48308 655 to_or_from = priv->sf_addr + priv->cur_amba_base;
a2358783 656
5bc48308 657 qspi_write32(priv->flags, &regs->sfar, to_or_from);
6b57ff6f
AW
658
659 tx_size = (len > TX_BUFFER_SIZE) ?
660 TX_BUFFER_SIZE : len;
661
a2358783 662 size = tx_size / 4;
6b57ff6f 663 for (i = 0; i < size; i++) {
a2358783
PF
664 memcpy(&data, txbuf, 4);
665 data = qspi_endian_xchg(data);
5bc48308 666 qspi_write32(priv->flags, &regs->tbdr, data);
a2358783 667 txbuf += 4;
6b57ff6f
AW
668 }
669
a2358783
PF
670 size = tx_size % 4;
671 if (size) {
672 data = 0;
673 memcpy(&data, txbuf, size);
674 data = qspi_endian_xchg(data);
5bc48308 675 qspi_write32(priv->flags, &regs->tbdr, data);
a2358783
PF
676 }
677
5bc48308
HW
678 qspi_write32(priv->flags, &regs->ipcr,
679 (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
680 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
6b57ff6f
AW
681 ;
682
5bc48308 683 qspi_write32(priv->flags, &regs->mcr, mcr_reg);
6b57ff6f
AW
684}
685
940d2b89 686static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len)
6b57ff6f 687{
5bc48308 688 struct fsl_qspi_regs *regs = priv->regs;
6b57ff6f
AW
689 u32 mcr_reg, reg, data;
690
5bc48308
HW
691 mcr_reg = qspi_read32(priv->flags, &regs->mcr);
692 qspi_write32(priv->flags, &regs->mcr,
693 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
694 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
695 qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
6b57ff6f 696
5bc48308 697 qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
6b57ff6f 698
5bc48308
HW
699 qspi_write32(priv->flags, &regs->ipcr,
700 (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
701 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
6b57ff6f
AW
702 ;
703
704 while (1) {
5bc48308 705 reg = qspi_read32(priv->flags, &regs->rbsr);
6b57ff6f 706 if (reg & QSPI_RBSR_RDBFL_MASK) {
5bc48308 707 data = qspi_read32(priv->flags, &regs->rbdr[0]);
6b57ff6f 708 data = qspi_endian_xchg(data);
940d2b89 709 memcpy(rxbuf, &data, len);
5bc48308
HW
710 qspi_write32(priv->flags, &regs->mcr,
711 qspi_read32(priv->flags, &regs->mcr) |
712 QSPI_MCR_CLR_RXF_MASK);
6b57ff6f
AW
713 break;
714 }
715 }
716
5bc48308 717 qspi_write32(priv->flags, &regs->mcr, mcr_reg);
6b57ff6f
AW
718}
719
5bc48308 720static void qspi_op_erase(struct fsl_qspi_priv *priv)
6b57ff6f 721{
5bc48308 722 struct fsl_qspi_regs *regs = priv->regs;
6b57ff6f
AW
723 u32 mcr_reg;
724 u32 to_or_from = 0;
725
5bc48308
HW
726 mcr_reg = qspi_read32(priv->flags, &regs->mcr);
727 qspi_write32(priv->flags, &regs->mcr,
728 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
729 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
730 qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
6b57ff6f 731
5bc48308
HW
732 to_or_from = priv->sf_addr + priv->cur_amba_base;
733 qspi_write32(priv->flags, &regs->sfar, to_or_from);
6b57ff6f 734
5bc48308
HW
735 qspi_write32(priv->flags, &regs->ipcr,
736 (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
737 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
6b57ff6f
AW
738 ;
739
5bc48308
HW
740 if (priv->cur_seqid == QSPI_CMD_SE) {
741 qspi_write32(priv->flags, &regs->ipcr,
ba4dc8ab 742 (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
5bc48308
HW
743 } else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
744 qspi_write32(priv->flags, &regs->ipcr,
ba4dc8ab
PF
745 (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
746 }
5bc48308 747 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
6b57ff6f
AW
748 ;
749
5bc48308 750 qspi_write32(priv->flags, &regs->mcr, mcr_reg);
6b57ff6f
AW
751}
752
5bc48308 753int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
6b57ff6f
AW
754 const void *dout, void *din, unsigned long flags)
755{
6b57ff6f 756 u32 bytes = DIV_ROUND_UP(bitlen, 8);
a2358783 757 static u32 wr_sfaddr;
6b57ff6f
AW
758 u32 txbuf;
759
760 if (dout) {
a2358783 761 if (flags & SPI_XFER_BEGIN) {
5bc48308 762 priv->cur_seqid = *(u8 *)dout;
a2358783
PF
763 memcpy(&txbuf, dout, 4);
764 }
6b57ff6f
AW
765
766 if (flags == SPI_XFER_END) {
5bc48308
HW
767 priv->sf_addr = wr_sfaddr;
768 qspi_op_write(priv, (u8 *)dout, bytes);
6b57ff6f
AW
769 return 0;
770 }
771
febffe8d
YY
772 if (priv->cur_seqid == QSPI_CMD_FAST_READ ||
773 priv->cur_seqid == QSPI_CMD_RDAR) {
5bc48308
HW
774 priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
775 } else if ((priv->cur_seqid == QSPI_CMD_SE) ||
776 (priv->cur_seqid == QSPI_CMD_BE_4K)) {
777 priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
778 qspi_op_erase(priv);
febffe8d
YY
779 } else if (priv->cur_seqid == QSPI_CMD_PP ||
780 priv->cur_seqid == QSPI_CMD_WRAR) {
a2358783 781 wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
5bc48308
HW
782 } else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
783 (priv->cur_seqid == QSPI_CMD_WREAR)) {
a2358783 784#ifdef CONFIG_SPI_FLASH_BAR
a2358783 785 wr_sfaddr = 0;
a2358783 786#endif
5bc48308 787 }
6b57ff6f
AW
788 }
789
790 if (din) {
5bc48308 791 if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
5f7f70c1 792#ifdef CONFIG_SYS_FSL_QSPI_AHB
5bc48308 793 qspi_ahb_read(priv, din, bytes);
5f7f70c1 794#else
5bc48308 795 qspi_op_read(priv, din, bytes);
5f7f70c1 796#endif
febffe8d
YY
797 } else if (priv->cur_seqid == QSPI_CMD_RDAR) {
798 qspi_op_read(priv, din, bytes);
5bc48308
HW
799 } else if (priv->cur_seqid == QSPI_CMD_RDID)
800 qspi_op_rdid(priv, din, bytes);
801 else if (priv->cur_seqid == QSPI_CMD_RDSR)
940d2b89 802 qspi_op_rdsr(priv, din, bytes);
a2358783 803#ifdef CONFIG_SPI_FLASH_BAR
5bc48308
HW
804 else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
805 (priv->cur_seqid == QSPI_CMD_RDEAR)) {
806 priv->sf_addr = 0;
807 qspi_op_rdbank(priv, din, bytes);
a2358783
PF
808 }
809#endif
6b57ff6f
AW
810 }
811
5f7f70c1 812#ifdef CONFIG_SYS_FSL_QSPI_AHB
5bc48308
HW
813 if ((priv->cur_seqid == QSPI_CMD_SE) ||
814 (priv->cur_seqid == QSPI_CMD_PP) ||
815 (priv->cur_seqid == QSPI_CMD_BE_4K) ||
816 (priv->cur_seqid == QSPI_CMD_WREAR) ||
817 (priv->cur_seqid == QSPI_CMD_BRWR))
818 qspi_ahb_invalid(priv);
819#endif
820
821 return 0;
822}
823
824void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
825{
826 u32 mcr_val;
827
828 mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
829 if (disable)
830 mcr_val |= QSPI_MCR_MDIS_MASK;
831 else
832 mcr_val &= ~QSPI_MCR_MDIS_MASK;
833 qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
834}
835
836void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
837{
838 u32 smpr_val;
839
840 smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
841 smpr_val &= ~clear_bits;
842 smpr_val |= set_bits;
843 qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
844}
845#ifndef CONFIG_DM_SPI
846static unsigned long spi_bases[] = {
847 QSPI0_BASE_ADDR,
848#ifdef CONFIG_MX6SX
849 QSPI1_BASE_ADDR,
850#endif
851};
852
853static unsigned long amba_bases[] = {
854 QSPI0_AMBA_BASE,
855#ifdef CONFIG_MX6SX
856 QSPI1_AMBA_BASE,
857#endif
858};
859
860static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
861{
862 return container_of(slave, struct fsl_qspi, slave);
863}
864
865struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
866 unsigned int max_hz, unsigned int mode)
867{
3c6b1767 868 u32 mcr_val;
5bc48308
HW
869 struct fsl_qspi *qspi;
870 struct fsl_qspi_regs *regs;
871 u32 total_size;
872
873 if (bus >= ARRAY_SIZE(spi_bases))
874 return NULL;
875
876 if (cs >= FSL_QSPI_FLASH_NUM)
877 return NULL;
878
879 qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
880 if (!qspi)
881 return NULL;
882
883#ifdef CONFIG_SYS_FSL_QSPI_BE
884 qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
885#endif
886
887 regs = (struct fsl_qspi_regs *)spi_bases[bus];
888 qspi->priv.regs = regs;
889 /*
890 * According cs, use different amba_base to choose the
891 * corresponding flash devices.
892 *
893 * If not, only one flash device is used even if passing
894 * different cs using `sf probe`
895 */
896 qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
897
898 qspi->slave.max_write_size = TX_BUFFER_SIZE;
899
3c6b1767 900 mcr_val = qspi_read32(qspi->priv.flags, &regs->mcr);
5bc48308 901 qspi_write32(qspi->priv.flags, &regs->mcr,
3c6b1767
YS
902 QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
903 (mcr_val & QSPI_MCR_END_CFD_MASK));
5bc48308
HW
904
905 qspi_cfg_smpr(&qspi->priv,
906 ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
907 QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
908
909 total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
910 /*
911 * Any read access to non-implemented addresses will provide
912 * undefined results.
913 *
914 * In case single die flash devices, TOP_ADDR_MEMA2 and
915 * TOP_ADDR_MEMB2 should be initialized/programmed to
916 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
917 * setting the size of these devices to 0. This would ensure
918 * that the complete memory map is assigned to only one flash device.
919 */
920 qspi_write32(qspi->priv.flags, &regs->sfa1ad,
921 FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
922 qspi_write32(qspi->priv.flags, &regs->sfa2ad,
923 FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
924 qspi_write32(qspi->priv.flags, &regs->sfb1ad,
925 total_size | amba_bases[bus]);
926 qspi_write32(qspi->priv.flags, &regs->sfb2ad,
927 total_size | amba_bases[bus]);
928
929 qspi_set_lut(&qspi->priv);
930
931#ifdef CONFIG_SYS_FSL_QSPI_AHB
932 qspi_init_ahb_read(&qspi->priv);
5f7f70c1
PF
933#endif
934
5bc48308
HW
935 qspi_module_disable(&qspi->priv, 0);
936
937 return &qspi->slave;
938}
939
940void spi_free_slave(struct spi_slave *slave)
941{
942 struct fsl_qspi *qspi = to_qspi_spi(slave);
943
944 free(qspi);
945}
946
947int spi_claim_bus(struct spi_slave *slave)
948{
6b57ff6f
AW
949 return 0;
950}
951
952void spi_release_bus(struct spi_slave *slave)
953{
954 /* Nothing to do */
955}
5bc48308
HW
956
957int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
958 const void *dout, void *din, unsigned long flags)
959{
960 struct fsl_qspi *qspi = to_qspi_spi(slave);
961
962 return qspi_xfer(&qspi->priv, bitlen, dout, din, flags);
963}
964
965void spi_init(void)
966{
967 /* Nothing to do */
968}
969#else
970static int fsl_qspi_child_pre_probe(struct udevice *dev)
971{
bcbe3d15 972 struct spi_slave *slave = dev_get_parent_priv(dev);
5bc48308
HW
973
974 slave->max_write_size = TX_BUFFER_SIZE;
975
976 return 0;
977}
978
979static int fsl_qspi_probe(struct udevice *bus)
980{
3c6b1767 981 u32 mcr_val;
4e147418 982 u32 amba_size_per_chip;
5bc48308
HW
983 struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
984 struct fsl_qspi_priv *priv = dev_get_priv(bus);
985 struct dm_spi_bus *dm_spi_bus;
4e147418 986 int i;
5bc48308
HW
987
988 dm_spi_bus = bus->uclass_priv;
989
990 dm_spi_bus->max_hz = plat->speed_hz;
991
c2a4cb17 992 priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base;
5bc48308
HW
993 priv->flags = plat->flags;
994
995 priv->speed_hz = plat->speed_hz;
bf9bffa9
YY
996 /*
997 * QSPI SFADR width is 32bits, the max dest addr is 4GB-1.
998 * AMBA memory zone should be located on the 0~4GB space
999 * even on a 64bits cpu.
1000 */
1001 priv->amba_base[0] = (u32)plat->amba_base;
1002 priv->amba_total_size = (u32)plat->amba_total_size;
5bc48308
HW
1003 priv->flash_num = plat->flash_num;
1004 priv->num_chipselect = plat->num_chipselect;
1005
3c6b1767 1006 mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
5bc48308 1007 qspi_write32(priv->flags, &priv->regs->mcr,
3c6b1767
YS
1008 QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
1009 (mcr_val & QSPI_MCR_END_CFD_MASK));
5bc48308
HW
1010
1011 qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
1012 QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
1013
4e147418
YY
1014 /*
1015 * Assign AMBA memory zone for every chipselect
1016 * QuadSPI has two channels, every channel has two chipselects.
1017 * If the property 'num-cs' in dts is 2, the AMBA memory will be divided
1018 * into two parts and assign to every channel. This indicate that every
1019 * channel only has one valid chipselect.
1020 * If the property 'num-cs' in dts is 4, the AMBA memory will be divided
1021 * into four parts and assign to every chipselect.
1022 * Every channel will has two valid chipselects.
1023 */
1024 amba_size_per_chip = priv->amba_total_size >>
1025 (priv->num_chipselect >> 1);
1026 for (i = 1 ; i < priv->num_chipselect ; i++)
1027 priv->amba_base[i] =
1028 amba_size_per_chip + priv->amba_base[i - 1];
1029
5bc48308
HW
1030 /*
1031 * Any read access to non-implemented addresses will provide
1032 * undefined results.
1033 *
1034 * In case single die flash devices, TOP_ADDR_MEMA2 and
1035 * TOP_ADDR_MEMB2 should be initialized/programmed to
1036 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
1037 * setting the size of these devices to 0. This would ensure
1038 * that the complete memory map is assigned to only one flash device.
1039 */
4e147418
YY
1040 qspi_write32(priv->flags, &priv->regs->sfa1ad, priv->amba_base[1]);
1041 switch (priv->num_chipselect) {
1042 case 2:
1043 qspi_write32(priv->flags, &priv->regs->sfa2ad,
1044 priv->amba_base[1]);
1045 qspi_write32(priv->flags, &priv->regs->sfb1ad,
1046 priv->amba_base[1] + amba_size_per_chip);
1047 qspi_write32(priv->flags, &priv->regs->sfb2ad,
1048 priv->amba_base[1] + amba_size_per_chip);
1049 break;
1050 case 4:
1051 qspi_write32(priv->flags, &priv->regs->sfa2ad,
1052 priv->amba_base[2]);
1053 qspi_write32(priv->flags, &priv->regs->sfb1ad,
1054 priv->amba_base[3]);
1055 qspi_write32(priv->flags, &priv->regs->sfb2ad,
1056 priv->amba_base[3] + amba_size_per_chip);
1057 break;
1058 default:
1059 debug("Error: Unsupported chipselect number %u!\n",
1060 priv->num_chipselect);
1061 qspi_module_disable(priv, 1);
1062 return -EINVAL;
1063 }
5bc48308
HW
1064
1065 qspi_set_lut(priv);
1066
1067#ifdef CONFIG_SYS_FSL_QSPI_AHB
1068 qspi_init_ahb_read(priv);
1069#endif
1070
1071 qspi_module_disable(priv, 0);
1072
1073 return 0;
1074}
1075
1076static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
1077{
bf9bffa9 1078 struct fdt_resource res_regs, res_mem;
5bc48308
HW
1079 struct fsl_qspi_platdata *plat = bus->platdata;
1080 const void *blob = gd->fdt_blob;
1081 int node = bus->of_offset;
1082 int ret, flash_num = 0, subnode;
1083
1084 if (fdtdec_get_bool(blob, node, "big-endian"))
1085 plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
1086
bf9bffa9
YY
1087 ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1088 "QuadSPI", &res_regs);
1089 if (ret) {
1090 debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
1091 return -ENOMEM;
1092 }
1093 ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1094 "QuadSPI-memory", &res_mem);
5bc48308 1095 if (ret) {
bf9bffa9 1096 debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
5bc48308
HW
1097 return -ENOMEM;
1098 }
1099
1100 /* Count flash numbers */
df87e6b1 1101 fdt_for_each_subnode(subnode, blob, node)
5bc48308
HW
1102 ++flash_num;
1103
1104 if (flash_num == 0) {
1105 debug("Error: Missing flashes!\n");
1106 return -ENODEV;
1107 }
1108
1109 plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
1110 FSL_QSPI_DEFAULT_SCK_FREQ);
1111 plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
1112 FSL_QSPI_MAX_CHIPSELECT_NUM);
1113
bf9bffa9
YY
1114 plat->reg_base = res_regs.start;
1115 plat->amba_base = res_mem.start;
1116 plat->amba_total_size = res_mem.end - res_mem.start + 1;
5bc48308
HW
1117 plat->flash_num = flash_num;
1118
bf9bffa9 1119 debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n",
5bc48308 1120 __func__,
bf9bffa9
YY
1121 (u64)plat->reg_base,
1122 (u64)plat->amba_base,
1123 (u64)plat->amba_total_size,
5bc48308
HW
1124 plat->speed_hz,
1125 plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
1126 );
1127
1128 return 0;
1129}
1130
1131static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
1132 const void *dout, void *din, unsigned long flags)
1133{
1134 struct fsl_qspi_priv *priv;
1135 struct udevice *bus;
1136
1137 bus = dev->parent;
1138 priv = dev_get_priv(bus);
1139
1140 return qspi_xfer(priv, bitlen, dout, din, flags);
1141}
1142
1143static int fsl_qspi_claim_bus(struct udevice *dev)
1144{
1145 struct fsl_qspi_priv *priv;
1146 struct udevice *bus;
1147 struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
1148
1149 bus = dev->parent;
1150 priv = dev_get_priv(bus);
1151
4e147418 1152 priv->cur_amba_base = priv->amba_base[slave_plat->cs];
5bc48308
HW
1153
1154 qspi_module_disable(priv, 0);
1155
1156 return 0;
1157}
1158
1159static int fsl_qspi_release_bus(struct udevice *dev)
1160{
1161 struct fsl_qspi_priv *priv;
1162 struct udevice *bus;
1163
1164 bus = dev->parent;
1165 priv = dev_get_priv(bus);
1166
1167 qspi_module_disable(priv, 1);
1168
1169 return 0;
1170}
1171
1172static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
1173{
1174 /* Nothing to do */
1175 return 0;
1176}
1177
1178static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
1179{
1180 /* Nothing to do */
1181 return 0;
1182}
1183
1184static const struct dm_spi_ops fsl_qspi_ops = {
1185 .claim_bus = fsl_qspi_claim_bus,
1186 .release_bus = fsl_qspi_release_bus,
1187 .xfer = fsl_qspi_xfer,
1188 .set_speed = fsl_qspi_set_speed,
1189 .set_mode = fsl_qspi_set_mode,
1190};
1191
1192static const struct udevice_id fsl_qspi_ids[] = {
1193 { .compatible = "fsl,vf610-qspi" },
1194 { .compatible = "fsl,imx6sx-qspi" },
1195 { }
1196};
1197
1198U_BOOT_DRIVER(fsl_qspi) = {
1199 .name = "fsl_qspi",
1200 .id = UCLASS_SPI,
1201 .of_match = fsl_qspi_ids,
1202 .ops = &fsl_qspi_ops,
1203 .ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
1204 .platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
1205 .priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
1206 .probe = fsl_qspi_probe,
1207 .child_pre_probe = fsl_qspi_child_pre_probe,
1208};
1209#endif
This page took 0.407112 seconds and 4 git commands to generate.