]> Git Repo - J-u-boot.git/blame - drivers/spi/fsl_qspi.c
Use __ASSEMBLY__ as the assembly macros
[J-u-boot.git] / drivers / spi / fsl_qspi.c
CommitLineData
83d290c5 1// SPDX-License-Identifier: GPL-2.0+
91afd36f 2
6b57ff6f 3/*
91afd36f
KS
4 * Freescale QuadSPI driver.
5 *
6 * Copyright (C) 2013 Freescale Semiconductor, Inc.
7 * Copyright (C) 2018 Bootlin
8 * Copyright (C) 2018 exceet electronics GmbH
9 * Copyright (C) 2018 Kontron Electronics GmbH
10 * Copyright 2019-2020 NXP
11 *
12 * This driver is a ported version of Linux Freescale QSPI driver taken from
13 * v5.5-rc1 tag having following information.
6b57ff6f 14 *
91afd36f
KS
15 * Transition to SPI MEM interface:
16 * Authors:
17 * Boris Brezillon <[email protected]>
18 * Frieder Schrempf <[email protected]>
19 * Yogesh Gaur <[email protected]>
20 * Suresh Gupta <[email protected]>
21 *
22 * Based on the original fsl-quadspi.c spi-nor driver.
23 * Transition to spi-mem in spi-fsl-qspi.c
6b57ff6f
AW
24 */
25
26#include <common.h>
f7ae49fc 27#include <log.h>
6b57ff6f 28#include <asm/io.h>
c05ed00a 29#include <linux/delay.h>
4d72caa5
SG
30#include <linux/libfdt.h>
31#include <linux/sizes.h>
32#include <linux/iopoll.h>
5bc48308 33#include <dm.h>
91afd36f
KS
34#include <linux/iopoll.h>
35#include <linux/sizes.h>
36#include <linux/err.h>
37#include <spi.h>
38#include <spi-mem.h>
6b57ff6f 39
5bc48308
HW
40DECLARE_GLOBAL_DATA_PTR;
41
91afd36f
KS
42/*
43 * The driver only uses one single LUT entry, that is updated on
44 * each call of exec_op(). Index 0 is preset at boot with a basic
45 * read operation, so let's use the last entry (15).
46 */
47#define SEQID_LUT 15
48
49/* Registers used by the driver */
50#define QUADSPI_MCR 0x00
51#define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16)
52#define QUADSPI_MCR_MDIS_MASK BIT(14)
53#define QUADSPI_MCR_CLR_TXF_MASK BIT(11)
54#define QUADSPI_MCR_CLR_RXF_MASK BIT(10)
55#define QUADSPI_MCR_DDR_EN_MASK BIT(7)
56#define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2)
57#define QUADSPI_MCR_SWRSTHD_MASK BIT(1)
58#define QUADSPI_MCR_SWRSTSD_MASK BIT(0)
59
60#define QUADSPI_IPCR 0x08
61#define QUADSPI_IPCR_SEQID(x) ((x) << 24)
62#define QUADSPI_FLSHCR 0x0c
63#define QUADSPI_FLSHCR_TCSS_MASK GENMASK(3, 0)
64#define QUADSPI_FLSHCR_TCSH_MASK GENMASK(11, 8)
65#define QUADSPI_FLSHCR_TDH_MASK GENMASK(17, 16)
66
67#define QUADSPI_BUF3CR 0x1c
68#define QUADSPI_BUF3CR_ALLMST_MASK BIT(31)
69#define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8)
70#define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8)
71
72#define QUADSPI_BFGENCR 0x20
73#define QUADSPI_BFGENCR_SEQID(x) ((x) << 12)
74
75#define QUADSPI_BUF0IND 0x30
76#define QUADSPI_BUF1IND 0x34
77#define QUADSPI_BUF2IND 0x38
78#define QUADSPI_SFAR 0x100
79
80#define QUADSPI_SMPR 0x108
81#define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16)
82#define QUADSPI_SMPR_FSDLY_MASK BIT(6)
83#define QUADSPI_SMPR_FSPHS_MASK BIT(5)
84#define QUADSPI_SMPR_HSENA_MASK BIT(0)
85
86#define QUADSPI_RBCT 0x110
87#define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0)
88#define QUADSPI_RBCT_RXBRD_USEIPS BIT(8)
89
90#define QUADSPI_TBDR 0x154
91
92#define QUADSPI_SR 0x15c
93#define QUADSPI_SR_IP_ACC_MASK BIT(1)
94#define QUADSPI_SR_AHB_ACC_MASK BIT(2)
95
96#define QUADSPI_FR 0x160
97#define QUADSPI_FR_TFF_MASK BIT(0)
98
99#define QUADSPI_RSER 0x164
100#define QUADSPI_RSER_TFIE BIT(0)
101
102#define QUADSPI_SPTRCLR 0x16c
103#define QUADSPI_SPTRCLR_IPPTRC BIT(8)
104#define QUADSPI_SPTRCLR_BFPTRC BIT(0)
105
106#define QUADSPI_SFA1AD 0x180
107#define QUADSPI_SFA2AD 0x184
108#define QUADSPI_SFB1AD 0x188
109#define QUADSPI_SFB2AD 0x18c
110#define QUADSPI_RBDR(x) (0x200 + ((x) * 4))
111
112#define QUADSPI_LUTKEY 0x300
113#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
114
115#define QUADSPI_LCKCR 0x304
116#define QUADSPI_LCKER_LOCK BIT(0)
117#define QUADSPI_LCKER_UNLOCK BIT(1)
118
119#define QUADSPI_LUT_BASE 0x310
120#define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
121#define QUADSPI_LUT_REG(idx) \
122 (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
123
124/* Instruction set for the LUT register */
125#define LUT_STOP 0
126#define LUT_CMD 1
127#define LUT_ADDR 2
128#define LUT_DUMMY 3
129#define LUT_MODE 4
130#define LUT_MODE2 5
131#define LUT_MODE4 6
132#define LUT_FSL_READ 7
133#define LUT_FSL_WRITE 8
134#define LUT_JMP_ON_CS 9
135#define LUT_ADDR_DDR 10
136#define LUT_MODE_DDR 11
137#define LUT_MODE2_DDR 12
138#define LUT_MODE4_DDR 13
139#define LUT_FSL_READ_DDR 14
140#define LUT_FSL_WRITE_DDR 15
141#define LUT_DATA_LEARN 16
142
143/*
144 * The PAD definitions for LUT register.
145 *
146 * The pad stands for the number of IO lines [0:3].
147 * For example, the quad read needs four IO lines,
148 * so you should use LUT_PAD(4).
149 */
150#define LUT_PAD(x) (fls(x) - 1)
151
152/*
153 * Macro for constructing the LUT entries with the following
154 * register layout:
155 *
156 * ---------------------------------------------------
157 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
158 * ---------------------------------------------------
159 */
160#define LUT_DEF(idx, ins, pad, opr) \
161 ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
162
163/* Controller needs driver to swap endianness */
ce7575a8
YL
164#define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0)
165
91afd36f
KS
166/* Controller needs 4x internal clock */
167#define QUADSPI_QUIRK_4X_INT_CLK BIT(1)
ce7575a8 168
91afd36f
KS
169/*
170 * TKT253890, the controller needs the driver to fill the txfifo with
171 * 16 bytes at least to trigger a data transfer, even though the extra
172 * data won't be transferred.
173 */
174#define QUADSPI_QUIRK_TKT253890 BIT(2)
ce7575a8 175
91afd36f
KS
176/* TKT245618, the controller cannot wake up from wait mode */
177#define QUADSPI_QUIRK_TKT245618 BIT(3)
178
179/*
180 * Controller adds QSPI_AMBA_BASE (base address of the mapped memory)
181 * internally. No need to add it when setting SFXXAD and SFAR registers
5bc48308 182 */
91afd36f 183#define QUADSPI_QUIRK_BASE_INTERNAL BIT(4)
5bc48308 184
91afd36f
KS
185/*
186 * Controller uses TDH bits in register QUADSPI_FLSHCR.
187 * They need to be set in accordance with the DDR/SDR mode.
5bc48308 188 */
91afd36f
KS
189#define QUADSPI_QUIRK_USE_TDH_SETTING BIT(5)
190
191struct fsl_qspi_devtype_data {
192 unsigned int rxfifo;
193 unsigned int txfifo;
194 unsigned int ahb_buf_size;
195 unsigned int quirks;
196 bool little_endian;
6b57ff6f
AW
197};
198
ce7575a8 199static const struct fsl_qspi_devtype_data vybrid_data = {
91afd36f
KS
200 .rxfifo = SZ_128,
201 .txfifo = SZ_64,
202 .ahb_buf_size = SZ_1K,
203 .quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
204 .little_endian = true,
ce7575a8
YL
205};
206
207static const struct fsl_qspi_devtype_data imx6sx_data = {
91afd36f
KS
208 .rxfifo = SZ_128,
209 .txfifo = SZ_512,
210 .ahb_buf_size = SZ_1K,
211 .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
212 .little_endian = true,
213};
214
215static const struct fsl_qspi_devtype_data imx7d_data = {
216 .rxfifo = SZ_128,
217 .txfifo = SZ_512,
218 .ahb_buf_size = SZ_1K,
219 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
220 QUADSPI_QUIRK_USE_TDH_SETTING,
221 .little_endian = true,
ce7575a8
YL
222};
223
91afd36f
KS
224static const struct fsl_qspi_devtype_data imx6ul_data = {
225 .rxfifo = SZ_128,
226 .txfifo = SZ_512,
227 .ahb_buf_size = SZ_1K,
228 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
229 QUADSPI_QUIRK_USE_TDH_SETTING,
230 .little_endian = true,
ce7575a8 231};
5bc48308 232
91afd36f
KS
233static const struct fsl_qspi_devtype_data ls1021a_data = {
234 .rxfifo = SZ_128,
235 .txfifo = SZ_64,
236 .ahb_buf_size = SZ_1K,
237 .quirks = 0,
238 .little_endian = false,
9699fb4d
YL
239};
240
91afd36f
KS
241static const struct fsl_qspi_devtype_data ls1088a_data = {
242 .rxfifo = SZ_128,
243 .txfifo = SZ_128,
244 .ahb_buf_size = SZ_1K,
245 .quirks = QUADSPI_QUIRK_TKT253890,
246 .little_endian = true,
247};
248
249static const struct fsl_qspi_devtype_data ls2080a_data = {
250 .rxfifo = SZ_128,
251 .txfifo = SZ_64,
252 .ahb_buf_size = SZ_1K,
253 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL,
254 .little_endian = true,
255};
256
257struct fsl_qspi {
258 struct udevice *dev;
259 void __iomem *iobase;
260 void __iomem *ahb_addr;
261 u32 memmap_phy;
262 const struct fsl_qspi_devtype_data *devtype_data;
263 int selected;
264};
265
266static inline int needs_swap_endian(struct fsl_qspi *q)
5bc48308 267{
91afd36f 268 return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
5bc48308
HW
269}
270
91afd36f 271static inline int needs_4x_clock(struct fsl_qspi *q)
5bc48308 272{
91afd36f 273 return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
5bc48308 274}
6b57ff6f 275
91afd36f 276static inline int needs_fill_txfifo(struct fsl_qspi *q)
1f553564 277{
91afd36f 278 return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
1f553564
RS
279}
280
91afd36f 281static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
6b57ff6f 282{
91afd36f 283 return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
6b57ff6f
AW
284}
285
91afd36f 286static inline int needs_amba_base_offset(struct fsl_qspi *q)
6b57ff6f 287{
91afd36f
KS
288 return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL);
289}
febffe8d 290
91afd36f
KS
291static inline int needs_tdh_setting(struct fsl_qspi *q)
292{
293 return q->devtype_data->quirks & QUADSPI_QUIRK_USE_TDH_SETTING;
6b57ff6f
AW
294}
295
5f7f70c1 296/*
91afd36f
KS
297 * An IC bug makes it necessary to rearrange the 32-bit data.
298 * Later chips, such as IMX6SLX, have fixed this bug.
5f7f70c1 299 */
91afd36f 300static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
5f7f70c1 301{
91afd36f 302 return needs_swap_endian(q) ? __swab32(a) : a;
5f7f70c1
PF
303}
304
91afd36f
KS
305/*
306 * R/W functions for big- or little-endian registers:
307 * The QSPI controller's endianness is independent of
308 * the CPU core's endianness. So far, although the CPU
309 * core is little-endian the QSPI controller can use
310 * big-endian or little-endian.
311 */
312static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
5f7f70c1 313{
91afd36f
KS
314 if (q->devtype_data->little_endian)
315 out_le32(addr, val);
316 else
317 out_be32(addr, val);
318}
5f7f70c1 319
91afd36f
KS
320static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
321{
322 if (q->devtype_data->little_endian)
323 return in_le32(addr);
5f7f70c1 324
91afd36f 325 return in_be32(addr);
5f7f70c1
PF
326}
327
91afd36f 328static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
5f7f70c1 329{
91afd36f
KS
330 switch (width) {
331 case 1:
332 case 2:
333 case 4:
334 return 0;
335 }
5f7f70c1 336
91afd36f 337 return -ENOTSUPP;
5f7f70c1
PF
338}
339
91afd36f
KS
340static bool fsl_qspi_supports_op(struct spi_slave *slave,
341 const struct spi_mem_op *op)
5f7f70c1 342{
91afd36f
KS
343 struct fsl_qspi *q = dev_get_priv(slave->dev->parent);
344 int ret;
345
346 ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
347
348 if (op->addr.nbytes)
349 ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
350
351 if (op->dummy.nbytes)
352 ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
5bc48308 353
91afd36f
KS
354 if (op->data.nbytes)
355 ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
5f7f70c1 356
91afd36f
KS
357 if (ret)
358 return false;
5f7f70c1
PF
359
360 /*
91afd36f
KS
361 * The number of instructions needed for the op, needs
362 * to fit into a single LUT entry.
5f7f70c1 363 */
91afd36f
KS
364 if (op->addr.nbytes +
365 (op->dummy.nbytes ? 1 : 0) +
366 (op->data.nbytes ? 1 : 0) > 6)
367 return false;
368
369 /* Max 64 dummy clock cycles supported */
370 if (op->dummy.nbytes &&
371 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
372 return false;
373
374 /* Max data length, check controller limits and alignment */
375 if (op->data.dir == SPI_MEM_DATA_IN &&
376 (op->data.nbytes > q->devtype_data->ahb_buf_size ||
377 (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
378 !IS_ALIGNED(op->data.nbytes, 8))))
379 return false;
380
381 if (op->data.dir == SPI_MEM_DATA_OUT &&
382 op->data.nbytes > q->devtype_data->txfifo)
383 return false;
384
385 return true;
5f7f70c1 386}
5f7f70c1 387
91afd36f
KS
388static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
389 const struct spi_mem_op *op)
a2358783 390{
91afd36f
KS
391 void __iomem *base = q->iobase;
392 u32 lutval[4] = {};
393 int lutidx = 1, i;
a2358783 394
91afd36f
KS
395 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
396 op->cmd.opcode);
a2358783 397
91afd36f
KS
398 /*
399 * For some unknown reason, using LUT_ADDR doesn't work in some
400 * cases (at least with only one byte long addresses), so
401 * let's use LUT_MODE to write the address bytes one by one
402 */
403 for (i = 0; i < op->addr.nbytes; i++) {
404 u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
a2358783 405
91afd36f
KS
406 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
407 LUT_PAD(op->addr.buswidth),
408 addrbyte);
409 lutidx++;
a2358783
PF
410 }
411
91afd36f
KS
412 if (op->dummy.nbytes) {
413 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
414 LUT_PAD(op->dummy.buswidth),
415 op->dummy.nbytes * 8 /
416 op->dummy.buswidth);
417 lutidx++;
6b57ff6f
AW
418 }
419
91afd36f
KS
420 if (op->data.nbytes) {
421 lutval[lutidx / 2] |= LUT_DEF(lutidx,
422 op->data.dir == SPI_MEM_DATA_IN ?
423 LUT_FSL_READ : LUT_FSL_WRITE,
424 LUT_PAD(op->data.buswidth),
425 0);
426 lutidx++;
6b57ff6f
AW
427 }
428
91afd36f 429 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
6b57ff6f 430
91afd36f
KS
431 /* unlock LUT */
432 qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
433 qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
434
435 dev_dbg(q->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
436 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
6b57ff6f 437
91afd36f
KS
438 /* fill LUT */
439 for (i = 0; i < ARRAY_SIZE(lutval); i++)
440 qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
a2358783 441
91afd36f
KS
442 /* lock LUT */
443 qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
444 qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
445}
a2358783 446
91afd36f
KS
447/*
448 * If we have changed the content of the flash by writing or erasing, or if we
449 * read from flash with a different offset into the page buffer, we need to
450 * invalidate the AHB buffer. If we do not do so, we may read out the wrong
451 * data. The spec tells us reset the AHB domain and Serial Flash domain at
452 * the same time.
453 */
454static void fsl_qspi_invalidate(struct fsl_qspi *q)
455{
456 u32 reg;
6b57ff6f 457
91afd36f
KS
458 reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
459 reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
460 qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
6b57ff6f 461
10509987 462 /*
91afd36f
KS
463 * The minimum delay : 1 AHB + 2 SFCK clocks.
464 * Delay 1 us is enough.
10509987 465 */
91afd36f 466 udelay(1);
6b57ff6f 467
91afd36f
KS
468 reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
469 qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
6b57ff6f
AW
470}
471
91afd36f 472static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_slave *slave)
6b57ff6f 473{
91afd36f
KS
474 struct dm_spi_slave_platdata *plat =
475 dev_get_parent_platdata(slave->dev);
476
477 if (q->selected == plat->cs)
478 return;
6b57ff6f 479
91afd36f
KS
480 q->selected = plat->cs;
481 fsl_qspi_invalidate(q);
6b57ff6f
AW
482}
483
91afd36f 484static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
6b57ff6f 485{
91afd36f
KS
486 memcpy_fromio(op->data.buf.in,
487 q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size,
488 op->data.nbytes);
6b57ff6f
AW
489}
490
91afd36f
KS
491static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
492 const struct spi_mem_op *op)
6b57ff6f 493{
91afd36f
KS
494 void __iomem *base = q->iobase;
495 int i;
496 u32 val;
6b57ff6f 497
91afd36f
KS
498 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
499 memcpy(&val, op->data.buf.out + i, 4);
500 val = fsl_qspi_endian_xchg(q, val);
501 qspi_writel(q, val, base + QUADSPI_TBDR);
6b57ff6f
AW
502 }
503
91afd36f
KS
504 if (i < op->data.nbytes) {
505 memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
506 val = fsl_qspi_endian_xchg(q, val);
507 qspi_writel(q, val, base + QUADSPI_TBDR);
508 }
5bc48308 509
91afd36f
KS
510 if (needs_fill_txfifo(q)) {
511 for (i = op->data.nbytes; i < 16; i += 4)
512 qspi_writel(q, 0, base + QUADSPI_TBDR);
513 }
5bc48308
HW
514}
515
91afd36f
KS
516static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
517 const struct spi_mem_op *op)
5bc48308 518{
91afd36f
KS
519 void __iomem *base = q->iobase;
520 int i;
521 u8 *buf = op->data.buf.in;
522 u32 val;
5bc48308 523
91afd36f
KS
524 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
525 val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
526 val = fsl_qspi_endian_xchg(q, val);
527 memcpy(buf + i, &val, 4);
528 }
529
530 if (i < op->data.nbytes) {
531 val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
532 val = fsl_qspi_endian_xchg(q, val);
533 memcpy(buf + i, &val, op->data.nbytes - i);
534 }
5bc48308
HW
535}
536
91afd36f
KS
537static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
538 u32 mask, u32 delay_us, u32 timeout_us)
5bc48308 539{
91afd36f 540 u32 reg;
5bc48308 541
91afd36f
KS
542 if (!q->devtype_data->little_endian)
543 mask = (u32)cpu_to_be32(mask);
544
545 return readl_poll_timeout(base, reg, !(reg & mask), timeout_us);
5bc48308 546}
5bc48308 547
91afd36f 548static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
5bc48308 549{
91afd36f
KS
550 void __iomem *base = q->iobase;
551 int err = 0;
5bc48308 552
91afd36f
KS
553 /*
554 * Always start the sequence at the same index since we update
555 * the LUT at each exec_op() call. And also specify the DATA
556 * length, since it's has not been specified in the LUT.
557 */
558 qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
559 base + QUADSPI_IPCR);
5bc48308 560
91afd36f
KS
561 /* wait for the controller being ready */
562 err = fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR,
563 (QUADSPI_SR_IP_ACC_MASK |
564 QUADSPI_SR_AHB_ACC_MASK),
565 10, 1000);
566
567 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
568 fsl_qspi_read_rxfifo(q, op);
569
570 return err;
5bc48308
HW
571}
572
91afd36f
KS
573static int fsl_qspi_exec_op(struct spi_slave *slave,
574 const struct spi_mem_op *op)
5bc48308 575{
91afd36f
KS
576 struct fsl_qspi *q = dev_get_priv(slave->dev->parent);
577 void __iomem *base = q->iobase;
578 u32 addr_offset = 0;
579 int err = 0;
5bc48308 580
91afd36f
KS
581 /* wait for the controller being ready */
582 fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
583 QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
5bc48308 584
91afd36f 585 fsl_qspi_select_mem(q, slave);
5bc48308 586
91afd36f
KS
587 if (needs_amba_base_offset(q))
588 addr_offset = q->memmap_phy;
589
590 qspi_writel(q,
591 q->selected * q->devtype_data->ahb_buf_size + addr_offset,
592 base + QUADSPI_SFAR);
593
594 qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
595 QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
596 base + QUADSPI_MCR);
597
598 qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
599 base + QUADSPI_SPTRCLR);
600
601 fsl_qspi_prepare_lut(q, op);
5bc48308 602
bf9bffa9 603 /*
91afd36f
KS
604 * If we have large chunks of data, we read them through the AHB bus
605 * by accessing the mapped memory. In all other cases we use
606 * IP commands to access the flash.
bf9bffa9 607 */
91afd36f
KS
608 if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
609 op->data.dir == SPI_MEM_DATA_IN) {
610 fsl_qspi_read_ahb(q, op);
611 } else {
612 qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
613 QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);
614
615 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
616 fsl_qspi_fill_txfifo(q, op);
617
618 err = fsl_qspi_do_op(q, op);
ce7575a8
YL
619 }
620
91afd36f
KS
621 /* Invalidate the data in the AHB buffer. */
622 fsl_qspi_invalidate(q);
ce7575a8 623
91afd36f
KS
624 return err;
625}
1c631da4 626
91afd36f
KS
627static int fsl_qspi_adjust_op_size(struct spi_slave *slave,
628 struct spi_mem_op *op)
629{
630 struct fsl_qspi *q = dev_get_priv(slave->dev->parent);
631
632 if (op->data.dir == SPI_MEM_DATA_OUT) {
633 if (op->data.nbytes > q->devtype_data->txfifo)
634 op->data.nbytes = q->devtype_data->txfifo;
635 } else {
636 if (op->data.nbytes > q->devtype_data->ahb_buf_size)
637 op->data.nbytes = q->devtype_data->ahb_buf_size;
638 else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
639 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
1c631da4
SG
640 }
641
91afd36f
KS
642 return 0;
643}
644
645static int fsl_qspi_default_setup(struct fsl_qspi *q)
646{
647 void __iomem *base = q->iobase;
648 u32 reg, addr_offset = 0;
649
650 /* Reset the module */
651 qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
652 base + QUADSPI_MCR);
653 udelay(1);
5bc48308 654
91afd36f
KS
655 /* Disable the module */
656 qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
657 base + QUADSPI_MCR);
5bc48308 658
4e147418 659 /*
91afd36f
KS
660 * Previous boot stages (BootROM, bootloader) might have used DDR
661 * mode and did not clear the TDH bits. As we currently use SDR mode
662 * only, clear the TDH bits if necessary.
4e147418 663 */
91afd36f
KS
664 if (needs_tdh_setting(q))
665 qspi_writel(q, qspi_readl(q, base + QUADSPI_FLSHCR) &
666 ~QUADSPI_FLSHCR_TDH_MASK,
667 base + QUADSPI_FLSHCR);
668
669 reg = qspi_readl(q, base + QUADSPI_SMPR);
670 qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
671 | QUADSPI_SMPR_FSPHS_MASK
672 | QUADSPI_SMPR_HSENA_MASK
673 | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
674
675 /* We only use the buffer3 for AHB read */
676 qspi_writel(q, 0, base + QUADSPI_BUF0IND);
677 qspi_writel(q, 0, base + QUADSPI_BUF1IND);
678 qspi_writel(q, 0, base + QUADSPI_BUF2IND);
679
680 qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
681 q->iobase + QUADSPI_BFGENCR);
682 qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
683 qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
684 QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
685 base + QUADSPI_BUF3CR);
686
687 if (needs_amba_base_offset(q))
688 addr_offset = q->memmap_phy;
4e147418 689
5bc48308 690 /*
91afd36f
KS
691 * In HW there can be a maximum of four chips on two buses with
692 * two chip selects on each bus. We use four chip selects in SW
693 * to differentiate between the four chips.
694 * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD,
695 * SFB2AD accordingly.
5bc48308 696 */
91afd36f
KS
697 qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset,
698 base + QUADSPI_SFA1AD);
699 qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset,
700 base + QUADSPI_SFA2AD);
701 qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset,
702 base + QUADSPI_SFB1AD);
703 qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset,
704 base + QUADSPI_SFB2AD);
705
706 q->selected = -1;
707
708 /* Enable the module */
709 qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
710 base + QUADSPI_MCR);
5bc48308
HW
711 return 0;
712}
713
91afd36f
KS
714static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
715 .adjust_op_size = fsl_qspi_adjust_op_size,
716 .supports_op = fsl_qspi_supports_op,
717 .exec_op = fsl_qspi_exec_op,
718};
719
720static int fsl_qspi_probe(struct udevice *bus)
5bc48308 721{
91afd36f
KS
722 struct dm_spi_bus *dm_bus = bus->uclass_priv;
723 struct fsl_qspi *q = dev_get_priv(bus);
5bc48308 724 const void *blob = gd->fdt_blob;
e160f7d4 725 int node = dev_of_offset(bus);
91afd36f
KS
726 struct fdt_resource res;
727 int ret;
5bc48308 728
91afd36f
KS
729 q->dev = bus;
730 q->devtype_data = (struct fsl_qspi_devtype_data *)
731 dev_get_driver_data(bus);
5bc48308 732
91afd36f
KS
733 /* find the resources */
734 ret = fdt_get_named_resource(blob, node, "reg", "reg-names", "QuadSPI",
735 &res);
bf9bffa9 736 if (ret) {
91afd36f 737 dev_err(bus, "Can't get regs base addresses(ret = %d)!\n", ret);
bf9bffa9
YY
738 return -ENOMEM;
739 }
91afd36f
KS
740
741 q->iobase = map_physmem(res.start, res.end - res.start, MAP_NOCACHE);
742
bf9bffa9 743 ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
91afd36f 744 "QuadSPI-memory", &res);
5bc48308 745 if (ret) {
91afd36f 746 dev_err(bus, "Can't get AMBA base addresses(ret = %d)!\n", ret);
5bc48308
HW
747 return -ENOMEM;
748 }
749
91afd36f
KS
750 q->ahb_addr = map_physmem(res.start, res.end - res.start, MAP_NOCACHE);
751 q->memmap_phy = res.start;
5bc48308 752
91afd36f
KS
753 dm_bus->max_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
754 66000000);
5bc48308 755
91afd36f 756 fsl_qspi_default_setup(q);
5bc48308
HW
757
758 return 0;
759}
760
761static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
91afd36f 762 const void *dout, void *din, unsigned long flags)
5bc48308 763{
91afd36f 764 return 0;
5bc48308
HW
765}
766
767static int fsl_qspi_claim_bus(struct udevice *dev)
768{
5bc48308
HW
769 return 0;
770}
771
772static int fsl_qspi_release_bus(struct udevice *dev)
773{
5bc48308
HW
774 return 0;
775}
776
777static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
778{
5bc48308
HW
779 return 0;
780}
781
782static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
783{
5bc48308
HW
784 return 0;
785}
786
787static const struct dm_spi_ops fsl_qspi_ops = {
788 .claim_bus = fsl_qspi_claim_bus,
789 .release_bus = fsl_qspi_release_bus,
790 .xfer = fsl_qspi_xfer,
791 .set_speed = fsl_qspi_set_speed,
792 .set_mode = fsl_qspi_set_mode,
91afd36f 793 .mem_ops = &fsl_qspi_mem_ops,
5bc48308
HW
794};
795
796static const struct udevice_id fsl_qspi_ids[] = {
91afd36f
KS
797 { .compatible = "fsl,vf610-qspi", .data = (ulong)&vybrid_data, },
798 { .compatible = "fsl,imx6sx-qspi", .data = (ulong)&imx6sx_data, },
799 { .compatible = "fsl,imx6ul-qspi", .data = (ulong)&imx6ul_data, },
800 { .compatible = "fsl,imx7d-qspi", .data = (ulong)&imx7d_data, },
801 { .compatible = "fsl,ls1021a-qspi", .data = (ulong)&ls1021a_data, },
802 { .compatible = "fsl,ls1088a-qspi", .data = (ulong)&ls1088a_data, },
803 { .compatible = "fsl,ls2080a-qspi", .data = (ulong)&ls2080a_data, },
5bc48308
HW
804 { }
805};
806
807U_BOOT_DRIVER(fsl_qspi) = {
808 .name = "fsl_qspi",
809 .id = UCLASS_SPI,
810 .of_match = fsl_qspi_ids,
811 .ops = &fsl_qspi_ops,
91afd36f 812 .priv_auto_alloc_size = sizeof(struct fsl_qspi),
5bc48308 813 .probe = fsl_qspi_probe,
5bc48308 814};
This page took 0.462358 seconds and 4 git commands to generate.